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A GENERALIZATION OF ABEL’S THEOREM
AND THE ABEL–JACOBI MAP1

JOHAN L. DUPONT AND FRANZ W. KAMBER

Abstract. We generalize Abel’s classical theorem on linear equivalence of divi-
sors on a Riemann surface. For every closed submanifold Md ⊂ Xn in a compact
oriented Riemannian n–manifold, or more generally for any d–cycle Z relative
to a triangulation of X , we define a (simplicial) (n − d − 1)–gerbe ΛZ , the Abel
gerbe determined by Z, whose vanishing as a Deligne cohomology class generalizes
the notion of ‘linear equivalence to zero’. In this setting, Abel’s theorem remains
valid. Moreover we generalize the classical Inversion Theorem for the Abel–Jacobi
map, thereby proving that the moduli space of Abel gerbes is isomorphic to the
harmonic Deligne cohomology; that is, gerbes with harmonic curvature.
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1. Introduction

In this paper we shall expand on some beautiful ideas of Hitchin [15] and Chatter-
jee [2], generalizing the classical notion of linear equivalence of divisors and Abel’s
theorem about the existence of meromorphic functions with prescribed zeroes and
poles on a compact Riemann surface (see Section 2). As is well-known, this problem
is equivalent to the existence of a parallel section, for some complex connection,
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2 J. L DUPONT AND F. W KAMBER

in the holomorphic line bundle of the divisor. In general, for a closed oriented Rie-
mannian manifold X of dimension n, we replace the divisor by a cycle Z of arbitrary
dimension d, d = 0, . . . , n− 1 for a smooth triangulation of X.

In Section 4, we associate to Z an abelian gerbe ΛZ which we call the Abel gerbe for
Z, whose class [ΛZ ] in the smooth Deligne cohomology Hn−d

D (X,Z) only depends
on Z. Two cycles are then defined to be linearly equivalent, if their Abel gerbes
represent the same class in Deligne cohomology. This definition is in agreement
with the definition in the classical situation. At this level of generality we prove
in Section 5 Abel’s theorem 5.3, characterizing linear equivalence of Abel gerbes in
terms of period integrals (cf. Chatterjee [2], Theorem 6.4.2 for 2–gerbes associated
to submanifolds of codimension 3).

Abel’s theorem. Let Z = ∂Γ, Γ ∈ Cd+1(K). Then Z is linearly equivalent to zero,
that is [ΛZ ] = 0 ∈ Hn−d

D (X,Z), if and only if∫
Γ

θ ∈ Z ,

for all harmonic θ ∈ Ωd+1(X) with integral periods.

Other well-known results from the theory of Riemann surfaces make sense in
higher dimensions as well. Thus in Section 6, we introduce the Picard torus of
Deligne classes represented by topologically trivial flat gerbes and the Jacobi torus
which is the recipient of the period map. The former is analogous to the Picard
variety of holomorphic line bundles of degree zero on a Riemann surface, in which
case every holomorphic line bundle is associated to a divisor. The Jacobi torus is
analogous to the Jacobi variety of a Riemann surface. We determine the moduli
space Md(X) of Abel gerbes in full generality, as well as the moduli space M◦

d(X)
of topologically trivial Abel gerbes.

Prior to stating and proving our main theorem 6.14, we illustrate our method by
a number of examples (Examples 6.7 to 6.13). Below, we quote Theorem 6.14.

Moduli theorem. Let X be a compact connected oriented Riemannian manifold
X of dimension n ≥ 2 and let d = 0, . . . , n− 1. Then
(1) The Picard map α : M◦

d(X) → Picn−d−1(X) is an isomorphism.
(2) The Abel–Jacobi map J : M◦

d(X) → Jacd+1(X) is an isomorphism.
(3) The mapping Λ: Md(X) → Hn−d

D (X,Z) is an isomorphism.
(4) Every equivalence class of (n−d−1)–gerbes in the harmonic Deligne cohomology
Hn−d
D (X,Z), given by classes in Hn−d

D (X,Z) whose curvature is harmonic, can be
realized by a unique (up to linear equivalence) Abel gerbe.

In the final Sections 7 and 8, we shall investigate the Abel gerbe associated to
the fundamental cycle of an embedded closed submanifold M ⊂ X. In particular,
we shall compare the restriction of this gerbe to M with the characteristic gerbe
([10]) called the Euler gerbe, which respresents the Cheeger–Chern–Simons class
for the normal bundle with the Riemannian connection and is defined in terms of
the Pfaffian polynomial. We prove in Theorem 7.1 that these two gerbes differ by
a third canonical gerbe, called the difference gerbe. This is a topologically trivial
gerbe whose curvature is the difference between the harmonic form representing the
Poincaré dual of [M ] ∈ Hd(X) and a specific choice for the form representing the
Thom class of the normal bundle.
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For the construction of these gerbes it is important to use the representation of
Deligne cohomology and gerbes by simplicial differential forms as developed in our
previous paper [10]. For completeness, we recall in Section 2 the basic definitions
and properties of these topics.

We thank James Glazebrook, Jouko Mikkelson and Jørgen Tornehave for helpful
discussions. Both authors thank the Erwin Schrödinger International Institute for
Mathematical Physics (ESI), Vienna, Austria and the seond named author thanks
the Department for Mathematical Sciences (IMF) at Aarhus University for hospi-
tality and support during the preparation of this work.

2. Abel’s Theorem on linear equivalence of divisors on a Riemann
surface

For motivation, let us recall the classical Abel theorem. Let X be a compact
Riemann surface and d =

∑k
i=1 aipi, ai ∈ Z, pi ∈ X a divisor. A first necessary

condition for finding a meromorphic function with zeros and poles exactly in {pi}
of order ai, is that the degree Deg d =

∑
i ai = 0 ∈ Z; that is, there is chain Γ with

∂Γ = d.

Abel’s theorem. Suppose that Deg(d) = 0 and d = ∂Γ, where Γ is a (smooth)
1–chain on X. Then d admits a global meromorphic function, that is d ∼ 0, if and
only if ∫

Γ

θ ∈ Z ,

for every harmonic 1–form θ ∈ H1(X,Z) with integral periods.

The relationship with smooth connections in the holomorphic line bundle L(d)
for the divisor d is given by the following Lemma.

Lemma 2.1. L(d) admits a non–vanishing holomorphic section; that is, d ∼ 0, if
and only if L(d) admits a non–vanishing C∞–section, which is parallel with respect
to a suitable complex connection in L(d).

Proof. Recall that L(d) is given by first choosing an open covering U = {Ui}i∈I and
local solutions fi on Ui. Then

gij = fi/fj : Ui ∩ Uj → C∗ = C \ {0}
is a Čech cocycle defining a holomorphic line bundle L(d). If hi : Ui → C∗ defines a
holomorphic section of L(d) i.e. if gijhj = hi on Ui ∩ Uj ∀i, j ∈ I, then

fi/hi = fi/(gijhj) = fj/hj

defines a global meromorphic solution. For finding {hi} we define a smooth connec-
tion in L(d), i.e. a family ωi ∈ Ω1(Ui), such that g−1

ij dgij = ωi − ωj on Ui ∩ Uj and
we can arrange that ωi = f−1

i dfi away from small neighborhoods of {pi}.
Now suppose L(d) has a non–vanishing parallel C∞–section {ki}, i.e. a section

satisfying
k−1

i dki = ωi in Ui,

then away from {pi} we have

d log ki = ωi = d log fi .
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Hence log ki is holomorphic away from pi. But log ki is smooth all through Ui so the
singularity of log ki is removable. Hence we can redefine ki throughout Ui to give a
holomorphic section. �

Our goal is to generalize these classical results to submanifolds Md ⊂ Xn of
compact oriented Riemannian manifolds Xn, and more generally to cycles Z ⊂ X,
by using the notion of the Abel gerbe.

3. Review of ‘gerbes with connection’ and simplicial gerbes

3.1. Gerbes with connections. Let X be a smooth manifold and U = {Ui}i∈I an
open covering. We assume that the covering U is good, i.e. all

Ui0...ip = Ui0 ∩ · · · ∩ Uip

are contractible. We identify the circle group U(1) with R/Z via the exponential
map; that is

U(1) = circle group ∼= R/Z
exp(2πit) ↔ t

A Hermitian ℓ–gerbe is given by a cocycle in the Čech complex

θ ∈ Čℓ(U ,R/Z);

that is, θi0...iℓ : Ui0...iℓ → R/Z satisfying

0 ≡ δ̌θi0...iℓ =
∑

ν

(−1)νθi0...̌iν ...iℓ+1
.

For ℓ = 1, θ defines a line bundle.
We consider the modified Čech-deRham bi–complex:

...
...

...

Č2(U ,R/Z) Č2(U ,R/Z)
d

Č2(U ,Ω1)
d

Č2(U ,Ω2)
d · · ·

Č1(U ,R/Z)

δ

Č1(U ,R/Z)
d

δ

Č1(U ,Ω1)
d

δ

Č1(U ,Ω2)
d

δ

· · ·

Č0(U ,R/Z)

δ

Č0(U ,R/Z)
d

δ

Č0(U ,Ω1)
d

δ

Č0(U ,Ω2)
d

δ

· · ·

Map(X,R/Z) d

ε∗

Ω1(X)
d

ε∗

Ω2(X)
d

ε∗

· · ·
where the dotted lines indicate the total complex with differential D = δ̌ + (−1)pd
on Čp(U ,Ω∗).

A connection in an ℓ-gerbe θ is a sequence ω = (ω0, . . . , ωℓ) in the Čech–deRham
bi-complex

ων ∈ Čν(U ,Ωℓ−ν), ν = 0, . . . , ℓ,
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satisfying
ωℓ ≡ −θ mod Z, δ̌ων−1 + (−1)νdων = 0, ν = 1, . . . , ℓ .

In particular, we have δ̌(dω0) = 0, so that dω0 is given by a global form Fω, the
curvature of (θ, ω); that is, we set

dω0 ∈ Im
{
ε∗ : Ωℓ+1(X) → Č0(U ,Ωℓ+1)

}
,

where ε : ⊔i Ui → X is the natural map and
Fω := (ε∗)−1(dω0) ∈ Ωℓ+1(X).

Definition 3.1. (1) Two gerbes with connection are equivalent, (θ1, ω1) ∼ (θ2, ω2),
if ω1 − ω2 is a coboundary in(

Č∗(U ,Ω∗)
/
Č∗(U ,Z), D

)
.

(2) Hℓ+1
D (X,Z), the set of equivalence classes [θ, ω] of ℓ–gerbes with connection, is

the smooth Deligne cohomology of X.
(3) Hℓ(X,R/Z) is the set of equivalence classes of ℓ--gerbes with flat connection;
that is Fω = 0. Hence we have the exact sequence

0 Hℓ(X,R/Z) Hℓ+1
D (X,Z)

d∗
Ωℓ+1

cl (X,Z) 0

[θ, ω] Fω

(3.1)

where Ωℓ+1
cl (X,Z) denotes the closed (ℓ+ 1)–forms with integral periods.

Let us introduce the notation
Hℓ+1
D (X) = Ωℓ(X)/dΩℓ−1(X) (3.2)

The elements [ω] ∈ Hℓ+1
D (X) can be interpreted as equivalence classes of connections

on the trivial ℓ–gerbe θ = 0 by setting
ω0 = ε∗ω , Fω = dω , δ̌ω0 = 0 , ω1 = · · · = ωℓ = 0. (3.3)

Thus ι(ω) = (0; ε∗ω, 0, . . . , 0) induces a well–defined mapping

ι∗ : Hℓ+1
D (X) → Hℓ+1

D (X,Z),

since ι(dα) = D(0; ε∗α, 0, . . . , 0). Clearly the connection is flat if and only if Fω =
dω = 0, that is [ω] ∈ Hℓ(X,R).
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We then have the following commutative diagram with exact rows and columns:

0 0

0 j∗Hℓ(X,Z)
∼=

Ωℓ
cl(X,Z)/dΩℓ−1(X) 0

0 Hℓ(X,R)

ρ∗

Hℓ+1
D (X)

ι∗

Ωℓ(X)/Ωℓ
cl(X)

d

0

0 Hℓ(X,R/Z)

β∗

Hℓ+1
D (X,Z)

c

d∗
Ωℓ+1

cl (X,Z) 0

Hℓ+1(X,Z)

j∗

Hℓ(X,R/Z)
δ̌∗
∼= j∗Hℓ+1(X,Z) 0

Hℓ+1(X,R) 0 0

(3.4)

Remarks 3.2. The diagram (3.4) incorporates many properties of our construction:
(1) The second exact row follows from the definition (3.2).
(2) The third exact row is (3.1), with d∗ being the curvature.
(3) The exact column on the left is the Bockstein sequence for

0 → Z j−→ R ρ−→ R/Z → 0.

Note that the image of β∗ is the (finite) torsion subgroup of Hℓ+1(X,Z); that is, β∗
induces an isomorphism

Hℓ(X,R/Z)/ρ∗
(
Hℓ(X,R)/j∗Hℓ(X,Z)

) ∼= TorZ(Hℓ+1(X,Z),R/Z) ⊆ Hℓ+1(X,Z).

(4) The map c is the characteristic class δ̌∗[θ] = −[δ̌ωl] of the gerbe [θ, ω] (the
Douady–Dixmier invariant); it is equivalent to the last map [θ, ω] 7→ [θ] in the middle
exact column, which simply forgets the connection. These maps are surjective, since
every (naked) gerbe [θ] ∈ Hℓ(X,R/Z) admits a connection.

(5) The image of ι∗ ; that is, the equivalence classes of trivial gerbes with connec-
tion, is given exactly by the the kernel of the characteristic class c, so we may call
these gerbes topologically trivial.
(6) It follows that the Deligne cohomology is given by an exact sequence (i.e. the
middle exact column in (3.4))

0 → Ωℓ(X)/Ωℓ
cl(X,Z)

ι∗−−→
⊆

Hℓ+1
D (X,Z)

c−→ Hℓ+1(X,Z) → 0 . (3.5)

(7) The commutativity of the diagram involving the slanted arrows expresses the
fact that the characteristic class of a gerbe determines the deRham class of the
curvature in Hℓ+1(X,R); that is, j∗c([θ, ω]) = [Fω].
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3.2. Simplicial forms and gerbes. In this section, we recall the reformulation
of Deligne cohomology in terms of simplicial deRham theory [10]. For simplicial
deRham theory we refer to [6], [7].

Consider the standard simplex ∆p ⊆ Rp+1

∆p = {(t0, . . . , tp) |
∑

iti = 1, ti ≥ 0}
with face maps εi : ∆p−1 → ∆p, i = 0, . . . , p, given by

εi(t0, . . . , tp−1) = (t0, . . . , 0, . . . , tp−1), (t0, . . . , tp−1) ∈ ∆p−1.

The open covering U = {Ui}i∈I of X determines a simplicial manifold NU
NU(p) =

⊔
(j0,...,jp)

Uj0...jp, p = 0, 1, . . .

with face operators εj : NU(p) → NU(p− 1), i = 0, . . . , p, given by

Uj0...jp →֒ Uj0...ǰi...jp

The fat realisation is
‖NU‖ =

⊔
p

∆p ×NU(p)/ ∼,

with identifications (t, εix) ∼ (εit, x), t ∈ ∆p−1, x ∈ NU(p).

Definition 3.3. A simplicial k–form ω on NU is a sequence ω(p) ∈ Ωk
(
∆p×NU(p)

)
satisfying

(εi × id)∗ω(p) = (id× εi)
∗ω(p−1), i = 0, . . . , p, ∀p ,

and we denote by Ωk(‖NU‖) the set of simplicial k-forms.

Theorem 3.4 (deRham). [6], [7] There are quasi–isomorphisms (inducing isomor-
phisms in cohomology)

I∆ : Ω∗(‖NU‖) → Č(U ,Ω∗),

given by

I∆(ω) = (ων), ων =

∫
∆ν

ω(ν);

and
ε∗ : Ω∗(X) → Ω∗(‖NU‖),

induced by the natural map

ε : ∆p ×NU(p) → NU(p) → X.

We also need the following

Definition 3.5. ω ∈ Ωk(‖NU‖) is integral if
(1) ω(p) =

∑
αi0,...,ik(t)dti1 ∧ · · · ∧ dtik ,

(2) I∆(ω) ∈ Č∗(U ,Z) ⊆ Č∗(U ,Ω0).
We denote by Ω∗

Z(‖NU‖) ⊆ Ω∗(‖NU‖) the subcomplex of integral forms.

Remark 3.6. Note that we now have that I∆ : Ω∗
Z(‖NU‖) → Č∗(U ,Z) is also a

quasi–isomorphism.
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Theorem 3.7. [10] Every ℓ-gerbe with connection is up to equivalence determined
by a simplicial form Λ ∈ Ωℓ(‖NU‖) satisfying

dΛ = ε∗α− β, with α ∈ Ωℓ+1(X), β ∈ Ωℓ+1
Z (‖NU‖). (3.6)

In fact

ων =

∫
∆ν

Λν , ν = 0, . . . , ℓ, −θ = ωℓ,

and α is the curvature.

Equivalently, we have

Theorem 3.8. Every element in Hℓ+1
D (X,Z) is represented by a unique class [Λ] in

Ωℓ(‖NU‖)/(Ωℓ
Z(‖NU‖) + dΩℓ−1(‖NU‖)),

satisfying (3.6) above.

Proof. Let Hℓ+1
D (X,Z)′ be the subgroup of such classes [Λ] satisfying (3.6). Then

there is a diagram with exact rows:

0 Hℓ
(
Ω∗(‖NU‖)/Ω∗

Z(‖NU‖))
I∆

∼=

Hℓ+1
D (X,Z)′

I∆

Ωℓ+1
cl (X,Z)

id

0

0 Hℓ(X,R/Z) Hℓ+1
D (X,Z) Ωℓ+1

cl (X,Z) 0

The vertical map on the left is an isomorphism by deRham’s Theorem. Hence
Theorem 3.8 follows from the 5-lemma. �

4. Abel gerbes associated to submanifolds and cycles

Classically on a Riemann surface two divisors d1, d2 are called linearly equivalent if
d1−d2 is the divisor of a meromorphic function. We have seen that this is equivalent
to finding a parallel section for a suitable connection in the line bundle L(d1 − d2).
Using gerbes we can generalise that to higher dimensions as follows.

Let X = Xn be a compact connected oriented manifold, ∂X = ∅, with Riemannian
metric. Choose a smooth triangulation, i.e. a homeomorphism to a finite simplicial
complex X ≈ |K|, such that the homeomorphism is a diffeomorphism on each
simplex. Let

Z ∈ Cd(K)

be a cycle, and let |Z| ⊆ |K| be the subcomplex consisting of all simplices of Z and
their faces. Also choose a good covering U of X, finer than the covering by open
stars of K. Let

ηZ ∈ Hn−d(X,Z) ⊂ Ωn−d(X) , βZ ∈ Ωn−d
Z (‖NU‖).

both represent the Poincaré dual of [Z] ∈ Hd(X); ηZ is a harmonic form, and
βZ is an integral form with supp βZ ⊆ ‖NUZ‖, UZ = {Ui | Ui ∩ Z 6= ∅}. Here
Hℓ(X,Z) ⊂ Hℓ(X) denote the harmonic forms, respectively the integral lattice of
harmonic forms.
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Following Hitchin [15] , we can solve the distributional Poisson equation (in
Ωd(X)′):

∆HZ = ηZ − δZ , (4.1)

where ∆ is the Laplace operator, ηZ the harmonic form dual to [Z] and δZ the Dirac
measure associated to Z; that is,

ηZ(ψ) =

∫
X

ηZ ∧ ψ , δZ(ψ) =

∫
Z

ψ, ψ ∈ Ωd(X).

HZ is uniquely defined up to a global harmonic (n − d)–form, and is smooth out-
side |Z|. Since ηZ and δZ represent the same cohomology class, we get from the
deRham–Hodge decomposition

∆HZ = d ∗ d ∗HZ ,

where ∗ is the Hodge ∗–operator. Setting FZ = ∗ d ∗ HZ , it follows that FZ is
uniquely defined by Z and we have

∆HZ = dFZ = ηZ − δZ . (4.2)

In particular, F = FZ |X−|Z| = ∗ d ∗HZ |X−|Z| is smooth and

dF = ηZ |X−|Z|. (4.3)

Theorem 4.1. There is a canonical Deligne class [ΛZ ] ∈ Hn−d
D (X,Z), such that

ΛZ ∈ Ωn−d−1(‖NU‖) satisfies:
(1) dΛZ = ε∗ηZ − βZ . Thus the curvature of ΛZ is the integral harmonic form
ηZ ∈ Hn−d(X,Z) and the characteristic class of ΛZ is the integral class [βZ ] ∈
Hn−d(X,Z).
(2) F = FZ |X−|Z| ∈ Ωn−d−1(X − Z) is smooth, satisfying dF = ηZ |X−|Z|.
(3) ΛZ|W = ε∗F , where W = ‖NU‖ − ‖NUZ‖.
Proof. Let

K0 = {a0, . . . , am, . . . , aN}
Z0 = {a0, . . . , am}

be the vertices of K and the subcomplex |Z| respectively. Then the coverings of
|K| and |Z| respectively are U = {Ui | i = 0, . . . , N} and UZ = {Ui | i = 0, . . . , m},
where Ui = Star(ai). Let V =

⋃m
i=0Ui, which is a regular neighborhood of |Z|. Then

by Lefschetz and Poincaré duality we have a commutative diagram

Hn−d(V , ∂V )
∼=

∼=

Hn−d(X,X − |Z|) ∼=
Hd(|Z|)

Hn−d(X,X − V ) Hn−d(X)
∼=

Hd(X).

It follows, as claimed above, that the Poincaré dual of [Z] ∈ Hd(X) is represented
in Hn−d(X) ∼= Hn−d(‖U‖) by an integral simplicial form βZ ∈ Ωn−d

Z (‖NU‖) with
supp(βZ) ⊆ ‖NUZ‖.

For the construction of ΛZ , we first define the following simplicial forms

η0, η1, η2 ∈ Ωn−d(‖NU‖)
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and F1 ∈ Ωn−d−1)(‖NU‖). They are given on ∆p × Ui0 ∩ · · · ∩ Uip respectively by
the forms:

(η0)i0...ip =
∑
is≤m

tis ηZ , (η1)i0...ip =
∑
is>m

tis ηZ

(η2)i0...ip =
∑
is>m

dtis ∧ F = −
∑
is≤m

dtis ∧ F,

(F1)i0...ip =
∑
is>m

tis ∧ F.

Notice that both η2 and F1 vanish on ∆p × Ui0...ip ∩ |Z|, since Ui0...ip ∩ |Z| 6= ∅ only
if all is ≤ m. From these formulas, we clearly have

dF1 = η1 + η2 , ηZ = η0 + η1,

ηZ = (η0 − η2) + dF1,

The second equation implies that d(η0 − η2) = 0. Furthermore, by construction

supp(η0) , supp(η2) ⊂ ‖NUZ‖.
It follows that both βZ and η0−η2 lie in Ωn−d(‖NU‖), both have support in ‖NUZ‖
and both represent the Lefschetz dual of [Z] ∈ Hd(|Z|) in Hn−d(‖NU‖, ‖NU‖ −
‖NUZ‖) ∼= Hn−d(X,X − V ). Hence there is a simplicial form γ ∈ Ωn−d−1(‖NU‖),
also with supp(γ) ⊆ ‖NUZ‖, such that η0−η2 = βZ +dγ. Now we define ΛZ = γ+F1

so that we have
ΛZ = γ + F1 ∈ Ωn−d−1(‖NU‖),
dΛZ = dγ + dF1 = ηZ − βZ .

(4.4)

We now must show that the class of ΛZ in Deligne cohomology Hn−d
D (X,Z) depends

only on Z. Recalling that F and hence F1 are uniquely defined by the Poisson
equation (4.2), let β ′ be another integral form representing the Poincaré dual of
[Z] and suppose γ′ satisfies the same properties as γ relative to β ′; in particular
η0 − η2 = β ′ + dγ′. Then d(γ − γ′) = (β ′ − βZ) = dκ; that is d(γ − γ′ − κ) = 0,
with κ ∈ Ωn−d−1

Z (‖NU‖) integral and all forms γ, γ′, κ having support in ‖NUZ‖.
But since Hn−d−1(X,X − |Z|) ∼= Hd+1(|Z|) = 0, we have γ − γ′ − κ = dτ , for
τ ∈ Ωn−d−2(‖NU‖) also with support in ‖NUZ‖. Thus we have from (4.4)

γ′ + F1 = γ + F1 − (κ + dτ)

Λ′
Z = ΛZ − (κ+ dτ).

By Theorem 3.8, this shows that the equivalence class [ΛZ ] is well–defined and we
get

[Λ′
Z ] = [ΛZ ] ∈ Hn−d

D (X,Z). (4.5)
The properties of ΛZ stated in (1) to (3) are clear from the construction. �

Note that from the preceding proof, we have

ΛZ |‖NUZ‖ = γ|‖NUZ‖. (4.6)

Definition 4.2. The Deligne cohomology class

[ΛZ ] ∈ Hn−d
D (X,Z) (4.7)

we shall call the Abel gerbe associated to the cycle Z.
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Remark 4.3. In particular, if M = Md ⊂ X is a closed oriented submanifold,
we choose a triangulation K of X, such that Md ≈ |L|, where L is a subcomplex
of K. Then there is a canonical simplicial cycle ZM ∈ Cd(L) ⊆ Cd(K), such that
|ZM | = |L| ⊆ |K| and ZM represents the fundamental class [M ] ∈ Hd(M) ∼= Z.
Viewed as a cycle on X ≈ |K|, ZM ∈ Cd(K) represents the image of [M ] under
the homomorphism Hd(M) ∼= Z → Hd(X), also denoted by [M ]; that is, we have
[ZM ] = [M ] ∈ Hd(X). Then we put ΛM = ΛZM

, so that

[ΛM ] ∈ Hn−d
D (X,Z) (4.8)

is well–defined, with dΛM = ε∗ηM − βM having the obvious meaning, namely ηM =
ηZM

and βM = βZM
.

5. Linear equivalence of cycles and Abel’s Theorem

For X a Riemann surface and Z = d a divisor as in Section 2, the Abel gerbe is the
associated holomorphic line bundle L(d) with the complex connection given by the
holomorphic structure. In this case, by Lemma 2.1 Z has a meromorphic solution,
i.e. it is linearly equivalent to zero, if and only if [ΛZ ] = 0 in H2

D(X,Z). Motivated
by this, we introduce the following definition of linear equivalence for cycles.

Definition 5.1. Two cycles Z1, Z2 ∈ Cd(K) are called linearly equivalent if

[ΛZ1−Z2 ] = [ΛZ1]− [ΛZ2 ] = 0 ∈ Hn−d
D (X,Z). (5.1)

Remark 5.2. If [ΛZ ] = 0 then in particular ηZ = 0 and [βZ ] = 0 in Hn−d(X,Z),
that is, Z is homologous to zero.

Theorem 5.3 (Abel’s Theorem). Let Z = ∂Γ, Γ ∈ Cd+1(K). Then Z is linearly
equivalent to zero, if and only if ∫

Γ

θ ∈ Z ,

for all harmonic θ ∈ Hd+1(X,Z) with integral periods.

For the proof, we again solve the distributional equation (4.1) with ηZ = 0:
∆HZ = −δZ = −dδΓ, (5.2)

where δΓ(ψ) =
∫
Γ
ψ, ψ ∈ Ωd+1(X). Hence for F∂Γ = FZ = ∗ d ∗HZ as before, we get

∆HZ = dF∂Γ = −dδΓ,
and

d(F∂Γ + δΓ) = 0,

so that by Hodge theory for currents
F∂Γ + δΓ = αΓ + dT, (5.3)

for a harmonic form αΓ ∈ Hn−d−1(X) and a (n−d−2)–current T ∈ Ωd+2(X)′. Note
that αΓ is smooth by elliptic regularity.
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We shall first prove the following theorem.

Theorem 5.4. For Z = ∂Γ, the simplicial gerbe ΛZ and the harmonic form αΓ

have the following properties:
(1) As simplicial forms, we have

ΛZ = Λ∂Γ ≡ ε∗αΓ mod
(
Ωn−d−1

Z (‖NU‖) + dΩn−d−2(‖NU‖)) ; (5.4)

that is, the simplicial form ΛZ is given by the global harmonic form αΓ.
(2) There exists an integral form κ ∈ Ωn−d−1

Z (‖NU‖) with support in a regular
neighborhood VΓ of |Γ|, such that for all harmonic (d+1)–forms with integral periods
θ ∈ Hd+1(X,Z), we have∫

[X]

(ΛZ + κ) ∧ ε∗θ ≡
∫

Γ

θ mod Z. (5.5)

(3) If Z = ∂Γ = ∂Γ′, then ζ = αΓ′ − αΓ ∈ Hn−d−1(X,Z); that is, ζ is a har-
monic form with integral periods. Hence, [αΓ] is well-defined in the Picard torus
Picn−d−1(X) = Hn−d−1(X)/Hn−d−1(X,Z) in (6.9).

Proof. First notice that since FZ = ∗ d ∗HZ and θ is harmonic, we get from (5.3)∫
X

αΓ ∧ θ = 〈FZ + δΓ, θ〉 = 〈δΓ, θ〉 =

∫
Γ

θ. (5.6)

This shows that (1) and (2) are equivalent.
For the proof of (2), we let VΓ =

⋃{Ui ∈ UΓ}, where UΓ is the set of open sets
Ui ∈ U intersecting Γ, so that VΓ is a regular neighborhood of |Γ|. Since formula (5.5)
is additive in Γ, we can without loss of generality assume that Γ consists of a single
simplex and that VΓ is contractible. Therefore we can assume that θ|VΓ

= dν for
some ν ∈ Ωd(VΓ). From the formulas for integration of simplicial forms (cf. Dupont–
Kamber [10] and Dupont–Ljungmann [11] ), together with the construction of ΛZ

in the proof of Theorem 4.1, we now get

〈FZ + δΓ, θ〉 =

∫
[X−VΓ]

FZ ∧ θ + 〈(FZ |V Γ
+ δΓ), dν〉

=

∫
[X−VΓ]

ΛZ ∧ ε∗θ −
∫

[∂V Γ]

ΛZ ∧ ε∗ν

=

∫
[X−VΓ]

ΛZ ∧ ε∗θ +

∫
[V Γ]

dκ ∧ ε∗ν +

∫
[V Γ]

ΛZ ∧ ε∗θ

=

∫
[X]

ΛZ ∧ ε∗θ +

∫
[V Γ]

κ ∧ ε∗θ +

∫
[∂V Γ]

κ ∧ ε∗ν

=

∫
[X]

(ΛZ + κ) ∧ ε∗θ.

(5.7)

Here we have used that, since Z = ∂Γ ∼ 0, we have ηZ = 0 and βZ = −dκ and hence
dΛZ = dκ for some integral simplicial form κ with support in VΓ. We used also the
simplicial Stokes’ theorem [11] to see that

∫
[V Γ]

d(κ∧ ε∗ν) =
∫
[∂V Γ]

κ∧ ε∗ν = 0, since
κ vanishes on ∂V Γ. Equations (5.6) and (5.7) now prove (2).

For the proof of (3), let Z = ∂Γ = ∂Γ′. Then ∂(Γ′−Γ) = 0 and Z ′ = Γ′− Γ is an
integral (d+1)–cycle. Equation (5.3) implies δZ′ = δΓ′−δΓ = (αΓ′−αΓ)+d(T ′−T ).
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So ζ = αΓ′ − αΓ satifies δZ′ = ζ + d(T ′ − T ). Since Z ′ is an integral cycle, ζ must
be an integral harmonic form ζ ∈ Hn−d−1(X,Z). �

Abel’s Theorem 5.3 is now a consequence of the following Corollary to Theo-
rem 5.4.

Corollary 5.5. For Z = ∂Γ as above, the following statements are equivalent:
(1) [ΛZ ] = 0 in Hn−d

D (X,Z);
(2) For all harmonic (d+ 1)–forms θ with integral periods; that is, θ ∈ Hd+1(X,Z),
we have ∫

Γ

θ ∈ Z. (5.8)

(3) There exists Γ0 with ∂Γ0 = Z, such that

F∂Γ0 + δΓ0 = dT0,

where FZ = F∂Γ0 is given as before. By (5.3), we have αΓ0 = 0.

Proof. By Theorem 5.4 [ΛZ ] is represented in Hn−d−1(X,R) by the harmonic form
αΓ. Hence (1) and (2) are equivalent to αΓ ≡ 0 mod Hn−d−1(X,Z). From Theorem
(5.4) (3), we know that [αΓ] = 0 ∈ Hn−d−1(X)/Hn−d−1(X,Z). By changing Γ by a
cycle, we can make αΓ = 0. This proves that (3) is equivalent to (1) and (2). �
Remark 5.6. Notice that F∂Γ|X−|Z| is harmonic by (4.3) and F∂Γ is thus analogous
to a meromorphic solution in the classical Abel Theorem.

6. Moduli spaces

In this section, we need to enlarge the chain complex C∗(K) with respect to
a smooth triangulation K of X; that is X ≈ |K|, which was introduced at the
beginning of Section 4. Therefore we look at the limit complex

C∗(X) = lim
−→
K

C∗(K) ⊂ S∗(X), (6.1)

taking into account the inclusions of chain complexes C∗(K) ⊆ C∗(K ′) where K ′

is a subtriangulation of K, e.g. barycentric subtriangulations. Obviously, we can
view C∗(X) as a subcomplex of the singular complex S∗(X) of X. Then C∗(K) ⊆
C∗(K ′) ⊂ S∗(X) induces isomorphisms in homology, so that we have canonical
isomorphisms

H∗(C∗(X)) ∼= lim
−→
K

H∗(K) ∼= H∗(X).

As the construction of the Abel gerbe in Section 4 involves deRham–Hodge theory
on the compact oriented Riemannian manifold X, we need now to better understand
the terms in diagram (3.4) for the Deligne cohomology in view of the deRham–Hodge
decomposition of forms on X:

Ωℓ(X) ∼= Hℓ(X)⊕ dΩℓ−1(X)⊕ d∗Ωℓ+1(X). (6.2)

We recall that Hℓ(X,Z) ⊂ Hℓ(X) denotes the harmonic forms, respectively the
integral lattice of harmonic forms. Further, the sum decompositions in (6.2) and
the following formulas are orthogonal. Thus the deRham–Hodge decomposition
(6.2) implies that

Hℓ+1
D (X) ∼= Hℓ(X)⊕ d∗Ωℓ+1(X) , Ωℓ(X)/Ωℓ

cl(X) ∼= d∗Ωℓ+1(X) (6.3)
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and also
Ωℓ

cl(X,Z) ∼= Hℓ(X,Z)⊕ dd∗Ωℓ(X). (6.4)
This implies

j∗Hℓ(X,Z) ∼= Ωℓ
cl(X,Z)/dd∗Ωℓ(X) ∼= Hℓ(X,Z), (6.5)

as well as
Ωℓ(X)/Ωℓ

cl(X,Z) ∼= Hℓ(X)/Hℓ(X,Z)⊕ d∗Ωℓ+1(X). (6.6)

Remarks 6.1. This has the following consequences for the diagram (3.4):
(1) By (6.3), the right arrow in the second exact row is of the form

Hℓ+1
D (X) ∼= Hℓ(X)⊕ d∗Ωℓ+1(X) → Ωℓ(X)/Ωℓ

cl(X) ∼= d∗Ωℓ+1(X), (6.7)

and is given by orthogonal projection to the second summand. Here the infinite
dimensional part d∗Ωℓ+1(X) consists of topologically trivial gerbes of the form ω0 =
d∗α whose curvature dω0 = dd∗α uniquely determines ω0 = d∗α.
(2) Using (6.3), (6.5), the kernel of ι∗ are the harmonic forms Hℓ(X,Z) with integral
periods. Thus the image of ι∗ contains the torus

Hℓ(X,R)/j∗Hℓ(X,Z)

⊆ρ∗

∼= Hℓ(X)/Hℓ(X,Z)

⊆ι∗

Hℓ(X,R/Z)
⊆

Hℓ+1
D (X,Z)

(6.8)

of topologically trivial flat ℓ–gerbes. In our motivating situation in Section 2, where
ℓ = 1, this torus corresponds to the Picard variety of topologically trivial holomor-
phic line bundles. We will refer to it as the Picard torus and write

Picℓ(X) = Hℓ(X)/Hℓ(X,Z). (6.9)

Note that from (3.4) and Remark 3.2 (3), the Picard torus in (6.8) differs from the
moduli space Hℓ(X,R/Z) of flat ℓ–gerbes by the torsion subgroup of Hℓ+1(X,Z).
This is encoded in diagram (3.4) by the left exact column; that is, the Bockstein
exact sequence. In fact, the torus on the left side of (6.8) is exactly the kernel
of the Bockstein boundary map β∗ and the image of β∗ is the torsion subgroup of
Hℓ+1(X,Z).
(3) It follows from (3.5) and (6.6) that the Deligne cohomology is given by an exact
sequence (i.e. the middle exact column in (3.4))

0 → Picℓ(X)⊕ d∗Ωℓ+1(X)
ι∗−−→
⊆

Hℓ+1
D (X,Z)

c−→ Hℓ+1(X,Z) → 0 , (6.10)

since ι∗ is injective on d∗Ωℓ+1(X) by exactness of the third column of (3.4).
(4) Harmonic Deligne cohomology: If we pull back the exact sequence (3.1) along
the inclusion Hℓ+1(X,Z) ⊂ Ωℓ+1

cl (X,Z), we obtain the harmonic Deligne cohomology
Hℓ+1
D (X,Z) of ℓ–gerbes with harmonic curvature:

0 Hℓ(X,R/Z)

id

Hℓ+1
D (X,Z)

d∗

⊂

Hℓ+1(X,Z)

⊂

0

0 Hℓ(X,R/Z) Hℓ+1
D (X,Z)

d∗
Ωℓ+1

cl (X,Z) 0.

(6.11)
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Then the exact sequence (6.10) becomes

0 → Picℓ(X)
ι∗−→
⊆
Hℓ+1
D (X,Z)

c−→ Hℓ+1(X,Z) → 0 , (6.12)

For these reasons, we call these gerbes harmonic gerbes and Hℓ+1
D (X,Z) the har-

monic Deligne cohomology.

6.1. The Picard torus and the Picard map. From the construction of the Abel
gerbe in Theorem 4.1 and the definition of linear equivalence in Definition 5.1, we
have an injection of abelian groups

Λ: Md(X) : = Zd(X)/{lin. equiv.} ⊆ Hn−d
D (X,Z), (6.13)

where the inclusion Λ is induced by Z 7→ [ΛZ ].
For the boundaries Bd(X) ⊂ Zd(X), we have the following inclusion from Theorem

5.4 (1), (3):

α : M◦
d(X) : = Bd(X)/{lin. equiv.} ⊆ Picn−d−1(X). (6.14)

where the inclusion is given by Z = ∂Γ 7→ αΓ = [αΓ]. Thus Md(X), respectively
M◦

d(X), is the moduli space of Abel gerbes, respectively the moduli space of topo-
logically trivial Abel gerbes. From Theorem 5.4 (1) and (6.8) we have the following
Cartesian diagram; that is, a pull–back diagram:

Md(X)
Λ

⊆ Hn−d
D (X,Z)

M◦
d(X)

α

⊆

⊆

Picn−d−1(X)

⊆ ι∗ (6.15)

Recall that by construction the image of Md(X) in Hn−d
D (X,Z) is contained in

the group of gerbes whose curvature is harmonic with integral periods; that is, in
the harmonic Deligne cohomology Hn−d

D (X,Z) (cf. (6.11)). In contrast, M◦
d(X) is

exactly the part of Md(X) which maps into the Picard torus (6.8), (6.9), namely
Picn−d−1(X); that is, it consists of flat, topologically trivial gerbes. We call α the
Picard map.

From (6.12) and the fact that the characteristic class of the Abel gerbe [ΛZ ] is the
Poincaré dual [βZ ] of [Z], it follows that we have canonical isomorphisms

Md(X)/M◦
d(X) ∼= Hd(X,Z)

PD−−−→∼= Hn−d(X,Z), (6.16)

the second being Poincaré duality, induced by the characteristic class. We will
see in Proposition 6.6 that M◦

d(X) is connected in Picn−d−1(X). So if M◦
d(X) ∼=

Picn−d−1(X), then Md(X) ∼= Hn−d
D (X,Z), the harmonic Deligne cohomology of

classes with harmonic curvature.
Thus, we need to understand the image of M◦

d in the Picard torus Picn−d−1(X)
of topologically trivial flat gerbes.

Remark 6.2. Torsion classes (cf. Remark 6.1 (2)): Suppose that the Abel gerbe
ΛZ is flat; that is ηZ = 0, so that [ΛZ ] ∈ Hn−d−1(X,R/Z). By diagram (3.4), the
characteristic class [βZ ] ∈ Hn−d(X,Z) is given by [βZ ] = β∗[ΛZ ], where β∗ is the
Bockstein homomorphism. Thus βZ is a torsion class, say m · [βZ ] = 0 for some
m ∈ N+. By Poincaré duality, we have also m · Z = ∂Γ and so m · Z determines an
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element in M◦
d(X). Finally the Bockstein formula implies m · β∗[ΛZ ] = 0; that is,

m · [ΛZ ] = [αΓ] takes value in the Picard torus Picn−d−1(X).

6.2. The Jacobi torus and the Abel–Jacobi map. First, we observe that
α 7→ ∫

X
α∧ induces by Poincaré duality a canonical isomorphism ϕ : Hn−d−1(X) ∼=

Hd+1(X)∗. It further induces an isomorphism of abelian tori of (real) dimension
dimHd+1(X.R) :

ϕ : Hn−d−1(X)/Hn−d−1(X,Z) ∼= Hom(Hd+1(X,Z),R/Z). (6.17)

This is valid for d = 0, . . . , n − 1. The torus on the right hand side of (6.17)
corresponds classically to the Jacobi variety of a Riemann surface, where n = 2,
d = 0. We shall call it the Jacobi torus and denote it by Jacd+1(X). We now recall
formula (5.6); that is, ∫

X

αΓ ∧ θ =

∫
Γ

θ, θ ∈ Hd+1(X).

Combining (5.6) with (6.17), we obtain a commutative diagram

Picn−d−1(X)

ϕ∼=M◦
d(X)

α

⊆

J

⊆
Jacd+1(X),

(6.18)

where J is induced by the functional

Z = ∂Γ 7→ J∂Γ(θ) =

∫
Γ

θ, θ ∈ Hd+1(X,Z). (6.19)

Note that J is well-defined and injective by Abel’s Theorem 5.3, plus the fact that
J∂Γ(θ) has integral values if Γ is a cycle; that is ∂Γ = 0. We shall call J the
Abel–Jacobi map. Thus we may just as well use the map J to investigate the image
ofM◦

d(X). The Abel–Jacobi map J is given in terms of period integrals and therefore
is more explicit than the Picard map α, which is determined by the solution of a
Laplace–Poisson equation. Therefore it is in general easier to deal with and more
effective in explicit calculations, as we shall see.

Remarks 6.3. Intermediate Jacobians:
(1) For a Kähler manifold, our definition of the Jacobians agrees with the tori
underlying the complex intermediate Jacobians in odd degrees, which are related to
holomorphic Deligne cohomology (cf. Griffiths–Harris [13], Ch. 2.6, Dupont–Hain-
Zucker [8] and also Clemens [5]). For divisors on algebraic manifolds of complex
dimension greater than one, it is not clear how our version of Abel’s theorem is
related to the version by Griffiths [12].
(2) We also remark that for dimX = n = 4k + 2, d = 2k, k ≥ 0, the Picard and
the Jacobi tori in degree n− d− 1 = d+ 1 = 2k + 1 carry a canonical complex and
symplectic structure, compatible with the isomorphism

Pic2k+1(X)
ϕ−−→∼= Jac2k+1(X).
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The former is induced by the Hodge ∗–operator onH2k+1(X) and the latter is defined
by the pairing 〈α, β〉 =

∫
X
α ∧ β on H2k+1(X).

6.3. Deformations. We now consider ‘deformations’ of Abel gerbes as follows:

Definition 6.4.
(1) A regular (d+1)–simplex inX is a smooth embedding Γ: ∆d+1 → X of the stan-
dard simplex ∆d+1 (or rather an open neighborhood in the hyperplane

∑d+1
i=0 ti = 1).

Note that any simplex in a triangulation K of X can be parametrized as a regular
simplex.
(2) A deformation of a cycle Z = ∂Γ ∈ Bd(X) for a triangulation K of X is a family
of cycles Zr = ∂Γr ∈ Bd(X), r ∈ [0, 1], for some subdivisions Kr of K, such that
Γ1 = Γ, each simplex of Γr is regular and r 7→ J(Zr) = J∂Γr =

∫
Γr

(·) ∈ Jacd+1(X)
is a smooth curve.

The following deformation techniques are used repeatedly in what follows and we
state them in a separate Lemma.

Lemma 6.5. Let Z = ∂Γ, for Γ any (d+1)–chain in Cd+1(K) consisting of regular
simplices in Cd+1(K), where K is an arbitrary triangulation of X. Then there is a
deformation Zr = ∂Γr, r ∈ [0, 1] of Z satisfying:
(1) Γr ∈ Cd+1(Kr), |Kr| a subdivision of |K|.
(2) For αr = αΓr , the map ]0, 1] → Picn−d−1(X) given by r 7→ [αr] is smooth.
(3) For Jr = J∂Γr , the map ]0, 1] → Jacd+1(X) given by r 7→ Jr is smooth.
(4) [αr] → 0 in Picn−d−1(X) for r ↓ 0.
(5) Jr(θ) =

∫
Γr
θ → 0, r ↓ 0, for all θ ∈ Hd+1(X).

Proof. It is clearly enough to take Γ to be a regular (d + 1)–simplex Γ: ∆d+1 →
X of K. Then we simply define Γr = Γ ◦ φr, with φr(t0, . . . , td−1, td, td+1) =
(t0, . . . , td−1, td + (1− r) td+1, r td+1), t ∈ ∆d+1. Then Γr, r ∈ [0, 1] clearly satisfies
(1) and (2). (2) and (3) are equivalent by formula (5.6). Furthermore by Theorem
5.4 and formula (5.6), conditions (4) and (5) are equivalent and are fulfilled, since∫
Γr
θ → 0, r ↓ 0, for all θ ∈ Hd+1(X) by construction of Γr. �

Proposition 6.6. (1) M◦
d(X) is connected in the Picard torus, respectively the

Jacobi torus.
(2) The closure M◦

d(X) in the induced topology is a subtorus of Picn−d−1(X).
(3) For α, respectively J to be surjective, it is necessary and sufficient that their
image contain an open neighborhood of the origin (or an open neighborhood of any
point in their image).

Proof. Again let ∂Γ for Γ any (d + 1)–chain in Cd+1(K), where K is an arbitrary
triangulation of X. To prove (1), we again take Γ to be a regular (d+1)–simplex and
we define as before Γr(t) = Γ(t0, . . . , td−1, td + (1− r)td+1, r td+1), t ∈ ∆d+1. Then
(1) follows from Lemma 6.5 and (2) clearly follows from (1). To prove (3), we have
only to observe that α, respectively J are homomorphisms of abelian groups. The
statement follows from the fact that any open neighborhood of the origin in either
torus generates the entire torus. Observe that, except for (1), the above deformations
can take place in the interior of the fundamental domain of Hn−d−1(X) relative to
the integral lattice Hn−d−1(X,Z). �
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6.4. The moduli theorem. In this Section we determine the moduli space of Abel
gerbes by establishing an inversion theorem for the Abel–Jacobi map. Before stating
and proving the main Theorem 6.14, we will illustrate the technique involved in some
important examples.

Example 6.7. The case n ≥ 2, d = n− 1:
The Jacobi map J : M◦

n−1(X) → Jacn(X) is an isomorphism. Therefore, so is the
Picard map α : M◦

n−1(X) → Pic0(X). This is the easiest case, since the Picard and
Jacobi tori are now in degree 0, respectively n. Thus

Pic0(X)
ϕ−−→∼= Jacn(X) ∼= Hom(Hn(X,Z),R/Z) ∼= R/Z,

with the generator of the integral lattice given by θ0 = Vol, assuming that the
volume is normalized. Taking a deformation Γr, r ∈ [0, 1] of a regular n–simplex
as in Lemma 6.5, we get JΓr(θ0) =

∫
Γr

Vol > 0, respectively JΓr(θ0) =
∫
Γr

Vol < 0,
if the orientation of the regular simplex ∆n is reversed. Further, we have JΓr(θ0) =∫
Γr

Vol → 0, r ↓ 0. Thus the image contains an interval around the origin and so
the Jacobi map must be an isomorphism M◦

n−1(X) ∼= Jacn(X).
In this case, the Deligne cohomology H1

D(X,Z) consists of 0–gerbes, which are
given by f 0 ∈ Č0(U ,R), such that δ̌f 0 ≡ 0 mod Z, so that f 0 defines a global
smooth function θ : X → R/Z ∼= U(1), modulo global functions Ω0(X). Since δ̌df 0 =
dδ̌f 0 = 0, the curvature Ff is a closed 1–form with integral periods, determined by
ε∗(Ff) = df 0. The characteristic class of [θ, f ] is given by c[θ, f ] = [δ̌f 0] ∈ H1(X,Z);
that is, the obstruction to lift θ to a global function f ∈ Ω0(X).

Example 6.8. The case n > 2, d = n− 2:
Here we look at Abel 1–gerbes associated to submanifolds Mn−2 ⊂ Xn of codimen-
sion 2 or more generally to cycles Z ∈ Cn−2(X). In this case, we have

Pic1(X)
ϕ−−→∼= Jacn−1(X) ∼= Hom(Hn−1(X,Z),R/Z),

and the Abel–Jacobi map J : M◦
n−2(X) ∼= Jacn−1(X) is an isomorphism. The moduli

space Mn−2(X) of Abel 1–gerbes is generated by cycles Z ∈ Cn−2(X) and is given
by Mn−2(X) ∼= H2

D(X,Z); that is, the moduli space of complex line bundles with
unitary connection and harmonic curvature.

Example 6.9. X = Tn, n ≥ 2, d = 0, . . . , n− 1:
The Jacobi map J : M◦

d(X) → Jacd+1(X) is an isomorphism; so is the Picard map
α : M◦

d(X) → Picn−d−1(X). Here, we take X = Tn, an n–dimensional torus with
the flat (invariant) Riemannian metric. In this case, the dimension of the Picard–,
respectively the Jacobi torus is dimHd+1(X,R) =

(
n

d+1

)
, d = 0, . . . , n − 1. There

is an orthonormal basis {θ1, . . . , θn} of integral, harmonic, invariant 1–forms which
form a framing of the cotangent bundle T ∗(X) and determine an orthonormal basis of
Hd+1(X,Z) by θI = θi1 ∧· · ·∧θid+1

, where I = (i1 < i2 < · · · < id+1). The dual basis
{e1, . . . , en} determines (d+1)–subspaces eI = ei1∧· · ·∧eid+1

of Rn, respectively basis
elements of Λd+1(Rn) for all multi–indices I as above. By deforming small (d+ 1)–
parallelepipeds PI in the direction of eI by the method of Lemma 6.5 and considering
the families of Jacobi integrals JPI

(θI) =
∫

PI
θI or their linear combinations, one

generates (small) open sets in the range of the Jacobi map.
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Example 6.10. The case n ≥ 2, d = 0:
This is similar to the classical case of divisors on a Riemann surface. In this case,
we have

Picn−1(X)
ϕ−−→∼= Jac1(X) ∼= Hom(H1(X,Z),R/Z).

Theorem 6.14 asserts that the Jacobi map J : M◦
0(X) → Jac1(X) is an isomorphism.

Therefore, so is the Picard map α : M◦
0(X) → Picn−1(X). The moduli space M0(X)

of Abel (n−1)–gerbes defined by points {p} ⊂ X, whose curvature is the normalized
harmonic volume form Vol, satisfies M0(X) ∼= Hn

D(X,Z); that is, the space of
(n − 1)–gerbes with harmonic curvature. In this case, we have M0(X)/M◦

0(X) ∼=
H0(X,Z). If X is connected with basepoint p0, the Abel–Jacobi map J : B0(X) →
Jac1(X) defines a smooth mapping j : X → Jac1(X) by j(p) (θ) =

∫ p

p0
θ mod Z,

for θ ∈ H1(X,Z). In turn, the mapping j determines the Abel–Jacobi map J
completely. To see this, choose regular 1–simplices Γi, such that ∂Γi = {pi} −
{qi}, i = 1, . . . , m, m ≥ 1. Then for Γ =

∑
i Γi, we have J∂Γ (θ) =

∑
i

∫
Γi
θ ≡∑

i (j(pi) (θ) − j(qi) (θ)) mod Z. Thus Abel’s Theorem implies that
∑

i j(pi) =∑
i j(qi), if and only if the 0–chains

∑
i {pi} and

∑
i {qi} are linearly equivalent.

Note that this argument does not prove surjectivity of J .

Example 6.11. Riemann surfaces X of genus g ≥ 1, n = 2, d = 0:
In this case, we have

Pic1(X)
ϕ−−→∼= Jac1(X) ∼= Hom(H1(X,Z),R/Z),

and α : M◦
0(X) → Pic1(X), respectively J : M◦

0(X) → Jac1(X), correspond to
the Picard, respectively the Abel–Jacobi map of the Riemann surface. The Jacobi
integral involves path integrals over 1–chains Γ of the form JΓ(θ) =

∫
Γ
θ. The Deligne

cohomology H2
D(X,Z) is the moduli space of 1–gerbes; that is complex line bundles

with unitary connection.
On a Riemann surface the first cohomology group H1(X,M∗

X) vanishes (cf. [14],
Ch.7, Theorem 12). This is a non–trivial consequence of the Riemann–Roch theorem
and Serre duality. From the exact cohomology sequence

0 → H0(X,O∗
X) → H0(X,M∗

X)
D−−→ H0(X,DX)

δ∗−−→ H1(X,O∗
X) → H1(X,M∗

X)

of the divisor sequence

0 → O∗
X →M∗

X
D−−→ DX → 0,

it follows that H0(X,DX)
δ∗−→ H1(X,O∗

X) is surjective and every holomorphic line
bundle is the line bundle of a divisor. In particular, the divisors of degree zero are
mapped onto the Picard variety

Pic(X) = H1(X,OX)/H1(X,Z) ⊆ H1(X,O∗
X).

Pic(X) is a complex torus of dimC Pic(X) = g, the variety of holomorphic line
bundles L with Deg(L) = c1(L) = 0; that is, topologically trivial holomorphic line
bundles. In our context, the Picard torus Pic1(X) is a real torus of dimension 2g
and the above shows that M◦

0(X) ∼= Pic1(X). Our proof of J : M◦
0(X) ∼= Jac1(X)

in Theorem 6.14 is much more elementary and closer to the direct generation of all
holomorphic line bundles via divisors in [14], Ch.7 (c) and the Inversion Theorem
in [13], Ch. 2.2. Thus, we choose suitable 1–simplices Γi on cycles Yi representing a
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basis [Yi] ∈ H1(X,Z), i = 1, . . . , 2g and deform their endpoints pi = Γi(0, 1) along
the curves Γi by Γi(r)(t0, t1) = Γi(t0 + (1 − r)t1, rt1), r ∈ [0, 1] to the fixed initial
points p0,i = Γi(1, 0). In this way one generates an open set in the image of the
Abel–Jacobi map by the functionals J∂Γ(r1,...,r2g) =

∫
Γ(r1,...,r2g)

, where Γ(r1, . . . , r2g) =∑2g
i=1 Γi(ri). The same procedure applies also to Example 6.10 for the generation of

(n− 1)–gerbes defined by points in X.

Example 6.12. The case n = 3, d = 0:
This is a special case of Example 6.10; so, we have

Pic2(X)
ϕ−−→∼= Jac1(X) ∼= Hom(H1(X,Z),R/Z).

Theorem 6.14 asserts that the Abel–Jacobi map J : M◦
0(X) ∼= Jac1(X) is an iso-

morphism. The moduli space M0(X) of Abel gerbes defined by points {p} ⊂ X3

and whose curvature is the normalized harmonic volume form Vol is given by
M0(X) ∼= H3

D(X,Z); that is, the moduli space of 2–gerbes with harmonic cur-
vature. In this situation, the Abel–Jacobi map was introduced and Abel’s theorem
proved by Hitchin [15], Ch. 3.2 and Chatterjee [2] in the context of 2–gerbes. This
was one of our motivating examples.

Example 6.13. The case n > 3, d = n− 3:
Here we look at Abel 2–gerbes associated to submanifolds Mn−3 ⊂ Xn of codimen-
sion 3 or more generally to cycles Z ∈ Cn−3(X). In this case, we have

Pic2(X)
ϕ−−→∼= Jacn−2(X) ∼= Hom(Hn−2(X,Z),R/Z),

Theorem 6.14 asserts that the Abel–Jacobi map J : M◦
n−3(X) → Jacn−2(X) is an

isomorphism. Therefore, so is the Picard map α : M◦
n−3(X) → Pic2(X). The moduli

space Mn−3(X) of Abel 2–gerbes is generated by cycles Z ∈ Cn−3(X) and is given
by Mn−3(X) ∼= H3

D(X,Z); that is, the moduli space of 2–gerbes with harmonic
curvature. However, except possibly for the case n = 4, d = 1, it is not clear whether
it would be sufficient to consider only codimension three submanifolds M ⊂ X; at
any rate, in our proof of Theorem 6.14 we need to consider cycles Z ∈ Cn−3(X) (cf.
Bohr–Hanke–Kotschick [1]).

For codimension 3 submanifolds Mn−3 ⊂ Xn, the Abel–Jacobi map was also
investigated and Abel’s theorem proved by Hitchin [15] and Chatterjee [2], Theo-
rem 6.4.2, in the context of 2–gerbes. Moreover, Hitchin in [15], Theorem 3.2 proves
a moduli theorem for families of special Lagrangian 3–tori in a Calabi–Yau 3–fold
via the Abel–Jacobi map. Again, these were motivating examples for the present
work.

Theorem 6.14 (Moduli Theorem). The following statements are equivalent and
hold for any compact connected oriented Riemannian manifold X of dimension
n ≥ 2, d = 0, . . . , n− 1:
(1) The Picard map α : M◦

d(X) → Picn−d−1(X) is an isomorphism.
(2) The Abel–Jacobi map J : M◦

d(X) → Jacd+1(X) is an isomorphism.
(3) The mapping Λ: Md(X) → Hn−d

D (X,Z) is an isomorphism.
(4) Every equivalence class [Λ] of (n − d − 1)–gerbes in the harmonic Deligne co-
homology Hn−d

D (X,Z) can be realized by a unique (up to linear equivalence) Abel
gerbe ΛZ.
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Proof. (1) and (2) are equivalent by diagram (6.18). To prove that (3) is equivalent
to (1), we observe thst (6.12), (6.15) and (6.16) determine a commutative diagram

0 M◦
d(X)

α

Md(X)

Λ

Hd(X)

∼= PD

0

0 Picn−d−1(X) Hn−d
D (X,Z)

d∗
Hn−d(X,Z) 0.

(6.20)

The result follows now from the 5–lemma. (4) is a restatement of (3). Thus it
suffices to prove (2).

We choose an (orthonormal) basis {θ1, . . . , θk}, k = dimHd+1(X,R) in the inte-
gral lattice Hd+1(X,Z) ⊂ Hd+1(X) of harmonic forms and observe that the Jacobi
vector

J∂Γ =
(∫

Γ
θ1, . . . ,

∫
Γ
θk

)
(6.21)

determines the element J∂Γ ∈ Jacd+1(X) via the expansion θ =
∑k

i=1 aiθi , ai ∈ Z
for any θ ∈ Hd+1(X,Z). Next, we choose a dual basis {Y i} in the integral lattice
j∗Hd+1(X,Z) ⊂ Hd+1(X,R), represented by cycles Yi ∈ Zd+1(X), i = 1, . . . , k; that
is, we have ∫

Yi

θj = δij . (6.22)

Now, we write Yi =
∑

ℓ Γi,ℓ, where the Γi,ℓ are regular (d+ 1)–simplices for a trian-
gulation K of X. Expanding

det
(∫

Yi
θj

)
(i,j=1,...,k)

= 1, (6.23)

we see that for every i = 1, . . . , k, there is an ℓi such that for Γi = Γi,ℓi
we have

det
(∫

Γi
θj

)
(i,j=1,...,k)

> 0. (6.24)

We now deform the regular simplices Γi according to the deformation in the proof
of Lemma 6.5; so we consider Γi(r) : ∆d+1 φr−→ ∆d+1 Γi−→ X, r ∈ [0, 1]; that is
Γi (r) = Γi ◦ φr. First we have from Lemma 6.5 (5)

lim
r↓0

∫
Γi(r)

θ = 0, i = 1, . . . , k,

for every θ ∈ Hd+1(X,Z), since Γi (r) degenerates to a d–simplex as r ↓ 0. This is
equivalent to

lim
r↓0

J∂Γi(r) = 0, i = 1, . . . , k. (6.25)

From (6.24) it follows that we can choose ε > 0 sufficiently small, such that the
smooth mapping

r = (r1, . . . , rk) 7→
(∫

Γi(ri)
θj

)
(i,j=1,...,k)

=


∫
Γ1(r1)

θ1 . . .
∫
Γ1(r1)

θk

...
...

...∫
Γk(rk)

θ1 . . .
∫
Γk(rk)

θk

 (6.26)

has positive determinant for ri ∈ (1 − ε, 1]. Moreover, by passing to a subtrian-
gulation of K if necessary, we can achieve that our construction takes place in the
interior of the fundamental domain in the universal cover Hom(Hd+1(X,Z),R) of
Jacd+1(X). Therefore the Jacobi vectors (the row vectors in (6.26))

J∂Γi(ri) =
(∫

Γi(ri)
θ1, . . . ,

∫
Γi(ri)

θk

)
(6.27)
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are linearly independent in Hom(Hd+1(X,Z),R) for ri ∈ (1− ε, 1] and i = 1, . . . , k.
Setting Γ(r1, . . . , rk) =

∑k
i=1 Γi(ri) and taking the linear combination of the Jacobi

vectors

J∂Γ(r1,...,rk) =

k∑
i=1

J∂Γi(ri) =

k∑
i=1

(∫
Γi(ri)

θ1, . . . ,
∫
Γi(ri)

θk

)
(6.28)

gives a mapping Φ: D → Hom(Hd+1(X,Z),R) ∼= Rk defined by

Φ: D ∋ r = (r1, . . . , rk) 7→ J∂Γ(r1,...,rk) =

k∑
i=1

J∂Γi(ri). (6.29)

Here D ⊂ Rk is the hypercube (prism) given by ri ∈ [0, 1], i = 1, . . . , k. Φ is
continuous on D and smooth on the interior B ⊂ D, given by ri ∈ (0, 1), i = 1, . . . , k.

The following lemma asserts that the Jacobian DΦ has positive determinant in
the neighborhood of an inner point r0 = (r0,1, . . . , r0,k) ∈ B. By the inverse function
theorem, Φ is a local diffeomorphism near r0 and therefore our theorem follows from
Proposition 6.6 (3). �

Lemma 6.15. The Jacobian matrix DΦ is given by

DΦ =

(
∂Φj

∂ri

)
(i,j=1,...,k)

=

(
∂
∫

Γi(ri)
θj

∂ri

)
(i,j=1,...,k)

. (6.30)

Further, there exists r0 = (r0,1, . . . , r0,k) ∈ B, such that detDΦ(r0) > 0.

Proof. The form of the Jacobian matrix DΦ follows immediately from the fact that
each Jacobi vector J∂Γi(ri) in (6.26) and in the definition (6.28), (6.29) of Φ depends
only on one variable ri. In what follows, we will use this fact repeatedly. We now
inductively use partial differentiation to pass from (6.26) to (6.30), using just the
intermediate value theorem of calculus. Writing the matrix in (6.26) as a column
of Jacobi vectors, we know that the determinant is positive for ri in the indicated
region, while it goes to 0 for r1 ↓ 0 by (6.25). Therefore there is a r0,1 ∈ (0, 1), such
that

∂

∂r1
|r0,1 det


J∂Γ1(r1)

J∂Γ2(r2)
...

J∂Γk(rk)

 = det


∂J∂Γ1(r0,1)

∂r1

J∂Γ2(r2)
...

J∂Γk(rk)

 > 0. (6.31)

Proceeding inductively, we assume that we have r0,1, . . . , r0,j−1 ∈ (0, 1), 1 < j ≤ k,
such that the determinant

det



∂J∂Γ1(r0,1)

∂r1...
∂J∂Γj−1(r0,j−1)

∂rj−1

J∂Γj(rj)
...

J∂Γk(rk)


> 0 (6.32)
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is positive for rj , . . . , rk ∈ (1 − ε, 1]. Since (6.32) goes to zero as rj ↓ 0 by (6.25),
there is a r0,j ∈ (0, 1), such that

∂

∂rj

|r0,j
det



∂J∂Γ1(r0,1)

∂r1...
∂J∂Γj−1(r0,j−1)

∂rj−1

J∂Γj(rj)

J∂Γj+1(rj+1)
...

J∂Γk(rk)


= det



∂J∂Γ1(r0,1)

∂r1...
∂J∂Γj−1(r0,j−1)

∂rj−1
∂J∂Γj(r0,j )

∂rj

J∂Γj+1(rj+1)
...

J∂Γk(rk)


> 0, (6.33)

with rj+1, . . . , rk as above. This completes the induction. So for j = k we have
r0 = (r0,1, . . . , r0,k) ∈ B such that (6.33) is positive at r0. But for j = k, (6.33) is
the determinant of the Jacobian (6.30) and the proof is complete. �

7. Euler and Thom gerbes

In this section we construct the Euler gerbe and the Thom gerbe of an orthogonal
bundle, based on the ‘gerbe approach’ in [10]. In Section 8 we will investigate the
relationship between the Euler–, Thom– and the Abel gerbe. We briefly recall the
main properties of the construction of characteristic gerbes from section 5 of [10] ,
which generalizes the classical constructions of secondary characteristic classes and
‘characters’ for connections on principal G-bundles in terms of simplicial forms.
For the classical constructions we refer to Kamber–Tondeur [17], Chern–Simons [4],
Cheeger–Simons [3] or Dupont–Kamber [9].

In the following p : P → X is a smooth principal G-bundle, G a Lie-group with
only finitely many components and K ⊆ G is the maximal compact subgroup. As in
Section 5 of [10], we fix an invariant homogeneous polynomial Q ∈ In+1(G), n ≥ 0,
such that one of the following 2 cases occur:
Case I: Q ∈ ker(In+1(G) → In+1(K)).
Case II: Q ∈ In+1

Z (G), that is, there exists an integral class u ∈ H2n+2(BK,Z)
representing the Chern-Weil image of Q in H∗(BG,R) ∼= H∗(BK,R).

With this notation the secondary characteristic class associated to Q (case I) or
(Q, u) (case II) for a connection A on P → X is a class

[Λ(Q,A)] ∈ H2n+2
D (X) in case I,

[Λ(Q, u,A)] ∈ H2n+2
D (X,Z) in case II.

(7.1)

Note that that the characteristic classes in H∗
D(X) are defined by global forms,

whereas the classes in H∗
D(X,Z) are defined by simplicial forms.

(1) The classes in (7.1) are natural with respect to bundle maps and compatible
coverings.

(2) Curvature formula :

dΛ(Q,A) = Q(F n+1
A ) in case I

dΛ(Q, u,A) = ε∗Q(F n+1
A )− γ in case II

(7.2)

where γ ∈ ΩZ(|NU|) represents the characteristic class u(P ) associated with
u and FA is the curvature of A.
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(3) If Q(F n+1
A ) = 0, then

[ Λ(Q,A) ] ∈ H2n+1(X,R) in case I

[ Λ(Q, u,A) ] ∈ H2n+1(X,R/Z) in case II,
(7.3)

and
β∗[Λ(Q, u,A)] = −u(P ) (7.4)

where β∗ : H2n+1(X,R/Z) → H2n+2(X,Z) is the Bockstein homomorphism.
We shall now use these classes for the case G = SO(2m), Pf ∈ Im

Z (SO(2m)) the
Pfaffian polynomial and u = e ∈ H2m(BSO(2m),Z) the Euler class. That is, for
Y any smooth manifold and π : E → Y a 2m-dimensional oriented vector bundle
with Riemannian metric and metric connection A we obtain a characteristic class
[Λ(Pf, e, A)] ∈ H2m

D (Y,Z) represented by a simplicial form

Λ(Pf, e, A) ∈ Ω2m−1(‖NU‖)
for a suitable covering U of Y , satisfying

dΛ(Pf, e, A) = ε∗ Pf(FA)− e(E). (7.5)

We shall refer to this form Λ(Pf, e, A) as the Euler gerbe associated to E.
As is the case for the primary Euler class e(E), there is an alternative definition

of Λ(Pf, e, A), using the Thom space of E:
Let (B(E), S(E)) denote the ball and sphere bundle of radius 1. Then up to the

choice of a ‘bump function’ in the radial direction, the volume form and connection
determine a ‘canonical’ representative form UE ∈ Ω2m

c (B(E)), with support inside
S(E), for the Thom class in H2m(B(E), S(E)). The restriction of UE to a neighbor-
hood of the image of the zero section s : Y → E is independent of the choice of the
bump function. For FA the curvature form of A, we have

s∗UE = Pf(FA) ∈ Ω2m(Y ). (7.6)

For a suitable open covering V of B(E), let βE ∈ Ω2m
Z (‖NV‖) represent the Thom

class of E inH2m(B(E), S(E),Z); that is, βE vanishes when restricted to ‖NV∩S(E)‖.
Then there exists a simplicial form µE ∈ Ω2m−1(‖V‖), also with µE vanishing in
‖NV ∩ S(E)‖, such that

dµE = ε∗UE − βE . (7.7)
Since H2m−1(B(E), S(E)) = 0, the form µE is unique modulo Ω2m−1

Z (‖NV‖) +
dΩ2m−2(B(E)) and hence the Deligne class [µE] ∈ H2m

D (B(E),Z) is well–defined.
We shall call µE theThom gerbe of E.

Proposition 7.1. The Thom gerbe determines the characteristic Euler gerbe by the
formula:

[s∗µE ] = [Λ(Pf, e, A)] ∈ H2m
D (Y,Z). (7.8)

Proof. In the ‘universal’ case (cf. [10], Proposition 5.3), the differential of both sides
of the equation is ε∗ Pf(FA)−e(E) by (7.5), (7.6) and (7.7). Hence the result follows
from the fact that H2m−1(BSO(2m),R) = 0. �

We shall now study the Euler and Thom gerbe in particular for E = νM = ν, where
ν → M is the normal bundle of a submanifold Md ⊂ Xn, which we now assume
to be of even codimension n − d = 2m. Here X as usual is a compact oriented
Riemannian manifold. In this case, we identify ν with a tubular neighborhood V of
M ⊂ X and let V0 = B(ν) ⊂ V .
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Now both Uν and βν define (ordinary, respectively simplicial) forms on V with
respect to V 0 and hence µν ∈ Ω2m−1(‖NV ∩ B(ν)‖) extends (non–canonically) to
a simplicial form µ̃ν ∈ Ω2m−1(‖NU‖) for a suitable covering U of X, extending V
on V . Hence we have

[µ̃ν ] ∈ H2m−1(X,Z). (7.9)
which we shall call the extended Thom gerbe. Once Uν ∈ Ω2m(V ) is chosen, [µ̃ν ] is
well-defined, independent of the choice of U and the choice of µν . But it does depend
on the ‘scaling’ of Uν ∈ Ω2m(V ). This of course is not the case for [µν ] ∈ H2m

D (M),
since Uν |V0 has a canonical form.

8. Comparison of the Abel gerbe and the Euler gerbe

Continuing with the situation in Section 7 of a submanifold Md ⊂ X, of even
codimension, we want to compare the Euler gerbe with the Abel gerbe associated
to M . Thus let M ⊂ V0 ⊂ V 0 ⊆ V be a tubular neighborhood of M and let
Uν ∈ Ωn−d

c (V0) be the ‘canonical’ Thom class representative. Extend it to X by 0
outside V0 (also denoted by Uν ). With this we can define a topologically trivial
gerbe, called the difference gerbe

[τM ] ∈ Hn−d
D (X)

as follows:
From the beginning of Section 4, recall that F = FZ|X−|Z| = ∗ d ∗ HZ|X−|Z| is
smooth and satisfies (4.3); that is dF = ηZ |X−|Z|. Triangulate M ⊂ X and choose
the covering U as in Section 4; choose a partition of unity {ϕi}i=1,...,N subordinate
to U and define smooth forms in Ωn−d(X):

ζ0 =
∑
i≤m

ϕi ηM , ζ1 =
∑
i>m

ϕi ηM ,

ζ2 =
∑
i>m

dϕi ∧ F = −
∑
i≤m

dϕi ∧ F,

G1 =
∑
i>m

ϕi F.

Again, we have
dG1 = ζ1 + ζ2 , ηM = ζ0 + ζ1,

ηM = (ζ0 − ζ2) + dG1,

with supp(ζ0 − ζ2) ⊆ V . Then d(ζ0 − ζ2) = 0 and hence ζ0 − ζ2 = Uν + dλ, for
λ ∈ Ωn−d−1(X), supp(λ) ⊆ V . Then we put τM = λ + G1 ∈ Ωn−d−1(X), so that
dτM = dλ+ dG1 = (ζ0 − ζ2 − Uν) + dG1 = ηM − Uν ; that is, τM satisfies

τM = λ+G1 ∈ Ωn−d−1(X),

dτM = ηM − Uν .
(8.1)

Hence we get [τM ] ∈ Hn−d
D (X), and again this is well-defined (even independent

of the choice of U and {ϕi}i=1,...,N) once Uν is chosen. Again, since Uν |V0 has a
canonical form, we have of course that τM |V0 ∈ Hn−d

D (V0) and τM |M ∈ Hn−d
D (M) are

well-defined. Also note that in a neighborhood (say V0), we have G1|V0 = 0, so that
τ |V0 = λ.
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Theorem 8.1. (1) In Hn−d
D (X,Z), we have

[ΛM ] = [µ̃ν ] + ι∗ [τM ] (8.2)
and all three are well-defined except that they depend on a ‘scaling’ of Uν . Further,
the characteristic class of ΛM and µ̃ν is [βM ] = [βν ] ∈ Hn−d(X,Z) and τM is a
topologically trivial gerbe with curvature ηM − Uν , where ηM ∈ Hn−d(X,Z).
(2) In particular, in Hn−d

D (M,Z), we have

[ΛM |M ] = [Λ(Pf, e, A)] + ι∗ [τM |M ]. (8.3)

Proof. First we observe that the integral simplicial form βM = βZM
, representing

the Poincaré dual of [M ] ∈ Hd(X), which was constructed at the beginning of the
proof of Theorem 4.1 and in Remark 4.3, can now be chosen to be the integral
representative βν of the Thom class for the normal bundle ν. Since

ηM − βM = ηM − βν = (ηM − Uν) + (Uν − βν),

we have
dΛM = dτM + dµ̃ν;

that is
d(ΛM − τM − µ̃ν) = d(γ + F1 − (λ+G1)− µ̃ν) = 0,

where γ, F1 are as in the proof of Theorem 4.1.
Now, choosing U suitable, we can assume (F1 −G1)|X−W = 0, and since again

Hn−d−1(W, ∂W ) ∼= Hn−d−1(B(ν), S(ν)) = 0,

we get that
(γ − λ) + (F1 −G1)− µ̃ν ∈ dΩn−d−2(‖U‖).

The theorem is proved. �
Corollary 8.2. Suppose that [ΛM ] = 0 ∈ Hn−d

D (X,Z); that is, M ⊂ X is linearly
equivalent to zero. Then the Euler gerbe [Λ(Pf, e, A)] ∈ Hn−d

D (M,Z) is topologically
trivial, given by the global gerbe [Λ(Pf, e, A)] = −ι∗[τM |M ].

Proof. This follows directly from Theorem 8.1 (2). �
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