Algebraic approximation of analytic sets

M. Ferrarotti E. Fortuna L. Wilson

July 8, 2009

Abstract

In this paper we prove jet-sufficiency theorems for an equivalence relation (s-equivalence) for analytic map-germs f from $\mathbb{R}^n, 0$ to $\mathbb{R}^p, 0$, and use them to prove theorems on the s-approximation of analytic sets by algebraic sets.

Two subanalytic set germs at 0 are s-equivalent if the Hausdorff distance between their intersections with the sphere centered at 0 of radius r goes to zero faster than r^s. Then $z = j^k f(0)$ is V_s sufficient (respectively L_s sufficient) if, for all representatives g of z, $V_f = f^{-1}(0)$ and V_g (respectively $f(\mathbb{R}^n)$ and $g(\mathbb{R}^n)$) are s-equivalent. We prove that if the submersion points of f in V_f are dense in V_f, then some jet of f is V_s sufficient. We also prove that if $f^{-1}(0) = 0$, then some jet of f is L_s sufficient. The zero sets and image sets of such maps with s-sufficient jets are s-equivalent to algebraic sets.