Algorithms to Estimate the Rose of Directions of a Spatial Fibre Process

Markus Kiderlen

Thiele Centre
University of Aarhus
Denmark

Workshop on Stochastic Geometry and Spatial Statistics, Freudenstadt, 2005
Quantifying Anisotropy of Stationary Fibre Processes

1. Roses of Directions and Intersections, the Associated Zonoid
2. Three nonparametric Estimation Methods
3. Convergence results

Applications: Carbon Fibres and Simulations

1. Carbon fibres
2. Simulated data

Conclusion
Stationary Fibre Processes

Stationary fibre process X: locally finite random collection of C^1-fibres in \mathbb{R}^d, $d \geq 2$, with translation invariant distribution.

Length density \overline{L} of X: mean total fibre length per unit volume.
The Rose of Directions

Rose of directions \mathcal{R}:

distribution of the tangent in a *typical* point of X

\mathcal{R} is an even measure on S^{d-1}.

(Euclidean) unit sphere in \mathbb{R}^d

Directional measure: $\eta = \overline{L} \cdot \mathcal{R}$.
The Rose of Intersections

Rose of intersections γ:

$$\gamma(u) = \text{intensity of } X \cap u^\perp$$

(mean number of intersection points per unit $(d-1)$-volume)

γ is the Cosine transform of η:

$$\gamma(u) = \int_{S^{d-1}} |\cos \Theta(u, v)| \, d\eta(v) =: \mathcal{I}_\eta(u), \quad u \in S^{d-1}.$$

Thus, $\gamma \longleftrightarrow \eta$.

Markus Kiderlen

Estimating the Rose of Directions
The associated zonoid

Let $Z \subset \mathbb{R}^d$ be a compact, convex set with support function

$$h(Z, u) = \gamma(u)$$

is called the associated zonoid (Steiner compact) of X.

Thus, $Z \longleftrightarrow \gamma \longleftrightarrow \eta$:

All three quantities yield the same information on (an-)isotropy.
Estimation of η from the Rose of Intersections.

Assume that there are given:

- a sequence of test planes $u_1^\perp, u_2^\perp, \ldots$, i.e. $u_1, u_2 \ldots \in S^{d-1}$,
- $k \in \mathbb{N}$ blurred measurements

$$y_i = \gamma(u_i) + \varepsilon_i, \quad i = 1, \ldots, k,$$

where ε_i are independent random variables with mean 0 and variance σ^2.

Problem: Find an estimator $\hat{\eta}_k$ for η from this data.

Key idea: Let $\hat{\eta}_k$ be an even measure on S^{d-1}, such that the cosine transform $T_{\hat{\eta}_k}$ of $\hat{\eta}_k$ in directions u_1, \ldots, u_k best fits the measurements y_1, \ldots, y_k.
Estimation of η from the Rose of Intersections.

Assume that there are given:
- a sequence of test planes $u_1^\perp, u_2^\perp, \ldots$, i.e. $u_1, u_2 \ldots \in S^{d-1}$,
- $k \in \mathbb{N}$ blurred measurements

$$y_i = \gamma(u_i) + \varepsilon_i, \quad i = 1, \ldots, k,$$

where ε_i are independent random variables with mean 0 and variance σ^2.

Problem: Find an estimator $\hat{\eta}_k$ for η from this data.

Key idea: Let $\hat{\eta}_k$ be an even measure on S^{d-1}, such that the cosine transform $\mathcal{T}\hat{\eta}_k$ of $\hat{\eta}_k$ in directions u_1, \ldots, u_k best fits the measurements y_1, \ldots, y_k.
Least Squares Estimation

If “best fit” is understood in the sense of least squares:

Then \(\hat{\eta}_k \) is a solution of

\[
\text{minimize } \sum_{i=1}^{k} (T_{\mu}(u_i) - y_i)^2 \\
\text{subject to: } \mu \text{ is an even measure on } S^{d-1}.
\]

If \(\varepsilon_1, \ldots, \varepsilon_k \) are i.i.d. Gaussian, \(\hat{\eta}_k \) is a maximum likelihood estimator,

Using results from convex geometry, (LSQ) can be discretized loss-free and becomes a least squares problem with less than \(k^{d-1} \) unknowns.
Least Squares Estimation

If “best fit” is understood in the sense of least squares:

Then $\hat{\eta}_k$ is a solution of

$$\min \sum_{i=1}^{k} (T_{\mu}(u_i) - y_i)^2$$

subject to: μ is an even measure on S^{d-1}.

(LSQ)

- If $\varepsilon_1, \ldots, \varepsilon_k$ are i.i.d. Gaussian, $\hat{\eta}_k$ is a maximum likelihood estimator.
- Using results from convex geometry, (LSQ) can be discretized loss-free and becomes a least squares problem with less than k^{d-1} unknowns.
“Best fit” in terms of the Kullback-Leibler divergence:

Then $\hat{\eta}_k$ is a solution of

$$\text{minimize } \sum_{i=1}^{k} \left(y_i \log I_{\mu}(u_i) - I_{\mu}(u_i) \right)$$

subject to: μ is an even measure on S^{d-1}.

If y_1, \ldots, y_k are Poisson distributed, then $\hat{\eta}_k$ is a maximum likelihood estimator.

Again, (EM) can be discretized loss-free. Numerical solution using the iterative EM-algorithm or MCMC-methods.
Best Estimation in the Sense of Information Theory

“Best fit” in terms of the Kullback-Leibler divergence:

Then $\hat{\eta}_k$ is a solution of

\[
\text{minimize } \sum_{i=1}^{k} (y_i \log T_\mu(u_i) - T_\mu(u_i)) \\
\text{subject to: } \mu \text{ is an even measure on } S^{d-1}.
\]

(EM)

- If y_1, \ldots, y_k are Poisson distributed, then $\hat{\eta}_k$ is a maximum likelihood estimator.
- Again, (EM) can be discretized loss-free. Numerical solution using the iterative EM-algorithm or MCMC-methods.
“Best fit” in a geometric sense: Find the largest zonoid with support function $T(\hat{\eta}_k(\cdot))$ with $T(\hat{\eta}_k(u_i)) \leq y_i$, $i = 1, \ldots, k$.

Then $\hat{\eta}_k$ is a solution of

\[
\begin{align*}
\text{minimize} & \quad \sum_{i=1}^{k} (y_i - T(\mu)(u_i)) \\
\text{subject to:} & \quad T(\mu)(u_i) \leq y_i, \quad i = 1, \ldots, k, \\
\text{and} & \quad \mu \text{ is an even measure on } S^{d-1}.
\end{align*}
\]

\(\text{ (LP)}\)

- No natural interpretation as maximum likelihood estimator.
- After loss-free discretization, (LP) becomes a linear program.
“Best fit” in a **geometric sense**: Find the largest zonoid with support function $\mathcal{T}_{\hat{\eta}_k}(\cdot)$ with $\mathcal{T}_{\hat{\eta}_k}(u_i) \leq y_i$, $i = 1, \ldots, k$.

Then $\hat{\eta}_k$ is a solution of

\[
\begin{align*}
\text{minimize} & \quad \sum_{i=1}^{k} (y_i - \mathcal{T}_\mu(u_i)) \\
\text{subject to:} & \quad \mathcal{T}_\mu(u_i) \leq y_i, \quad i = 1, \ldots, k, \\
& \text{and} \quad \mu \text{ is an even measure on } S^{d-1}.
\end{align*}
\]

(LP)

- **No** natural interpretation as maximum likelihood estimator.
- **After** loss-free discretization, (LP) becomes a linear program.
Consistency of the LSQ–estimator I

Assume that

- the measurement normals u_1, u_2, \ldots are “nicely spread”,
- the measurement errors $\varepsilon_1, \varepsilon_2, \ldots$ are i.i.d. Gaussian,
- the directional measure η is not degenerate.

Strong consistency: the LSQ–estimator $\hat{\eta}_k$ satisfies

$$\lim_{k \to \infty} \hat{\eta}_k = \eta,$$

almost surely,

in the weak sense.
Consistency of the LSQ–estimator II

Stronger assumption; \((u_i)\) is “uniformly spread”:
\[
\max_{u \in S^{d-1}} \min_{1 \leq i \leq k} \{ \|u - u_i\|, \|u - (-u_i)\| \} = O(k^{-1/(d-1)}).
\]

Theorem (Speed of Convergence; Gardner, Milanfar & K.)

Let \(\hat{\eta}_k\) be the LSQ–estimator and \(\varepsilon > 0\).
Almost surely, \(\exists c > 0, \ N \in \mathbb{N}\) such that for all \(k \geq N\):
\[
d_P(\hat{\eta}_k, \eta) \leq \begin{cases}
 c \cdot k^{-1/15+\varepsilon} & d = 2, \\
 c \cdot k^{-(d+2)/(2(d+4)(2d+1))} + \varepsilon & d = 3, 4, \\
 c \cdot k^{-1/((d-1)(d+4))} + \varepsilon & d \geq 5.
\end{cases}
\]

\(d_P\) is the Prohorov–distance.
Consistency of the EM– and LP–estimators

- The EM-estimator is strongly consistent. (Assumptions like those for the LSQ–estimator.)
- The LP-estimator is weakly consistent. (Assumptions on \((\varepsilon_i)\) stronger than for the LSQ–estimator.)

Estimation of the associated zonoid:
- The associated zonoid can estimated by the zonoid \(\hat{Z}_k\) with
 \[
h(\hat{Z}_k, \cdot) = T_{\hat{\eta}_k}.
\]
- Consistency results for \(\hat{\eta}_k\) carry over to \(\hat{Z}_k\).
Planar sections type A (left) and type B (right). Polarized light micrographs of size $150\mu m \times 150\mu m$.

(A lot of) work done by Andreas Pfrang, University of Karlsruhe!
Estimators for type A fibre architectures

LSQ–estimator $\hat{\eta}_k$ from $k = 10$ (!) measurements. ($\cong EM$– and LP–estimator)

Estimator \hat{Z}_k of the associated zonoid derived from $\hat{\eta}_k$.
Estimators for type B fibre architectures I

mm/mm^2

135

100

50

0

LSQ–estimator $\hat{\eta}_k$ from $k = 11$ measurements.

Estimator \hat{Z}_k of the associated zonoid derived from $\hat{\eta}_k$.
Estimators for type B fibre architectures II

Estimator \(\hat{Z}_k \) derived from the EM–estimator.
(Same \(y_1, \ldots, y_{11} \) as before)

Estimator \(\hat{Z}_k \) derived from the LP–estimator.
LSQ–estimator $\hat{\eta}_k$ from isotropic, exact measurements.

$(y_1, \ldots, y_{10}$ as for type A)

Estimator \hat{Z}_k of the associated zonoid derived from $\hat{\eta}_k$.
LP-estimator for exact isotropic data

LP-estimator $\hat{\eta}_k$ from isotropic, exact measurements.
(y_1, \ldots, y_{10} as for type A)

Estimator \hat{Z}_k of the associated zonoid derived from $\hat{\eta}_k$.
The following conclusions can be drawn:

- **large k:** All three estimators are consistent; the LP-estimator being the most unstable,
- **small k:** (applications!): EM– and LSQ–estimator behave very similar, LP–estimator is poorest, expressed anisotropy can be detected by all three,
- **recommendation:** use of the LSQ-estimator (maximum likelihood, easy to implement),
- **associated zonoid:** an intuitive tool to illustrate anisotropy.