Digital Stereology

Markus Kiderlen

Thiele Centre
University of Aarhus
Denmark

Opening of the Thiele Center, May 2005
How to determine the quartz content in a block of granite?
Delesse (1847):

\[\text{volume fraction in 3D} \approx \text{area fraction in a planar section} \]
A problem from Geology III

Rosiwal (1898):

volume fraction in 3D \approx \text{length fraction in linear sections}

Glagolev (1933):

volume fraction in 3D \approx \text{relative number of points in } X
Let X be the phase of interest (quartz)

$$\int_{-\infty}^{\infty} \text{Area}(X \cap L_z) \, dz = \text{Vol}(X)$$

Random sampling: $z =$ uniform random “height” $\xi \in [0, 1]$:

$$\mathbb{E}_\xi \text{Area}(X \cap L_\xi) = \text{Vol}(X).$$

expectation w.r.t. ξ
Two basic approaches

- **Design based approach:**
 The *sampling* is done in a random, homogenous way, the set \(X \) is deterministic.

- **Model based approach:**
 No assumptions on the sampling procedure, the set \(X \) is “stochastically homogenous”

(\(\rightsquigarrow \) stochastic geometry: stationary random set)

We will only use the design based approach here!
Two basic approaches

- **Design based approach:**
 The sampling is done in a random, homogenous way, the set X is deterministic.

- **Model based approach:**
 No assumptions on the sampling procedure
 the set X is “stochastically homogenous”
 (⇝ stochastic geometry: stationary random set)

We will only use the design based approach here!
Stereology is a subarea of stochastic geometry dealing with the estimation of geometric characteristics (volume, area, boundary length, particle number, . . .) of structures from random samples.

Sampling schemes can be
- sections with lower dimensional test planes (Delesse, Rosival),
- sections with full-dimensional test windows,
- sections with point lattices (Glagolev).

Digital stereology deals with point lattice samples.
Outline of the Talk

- Stereology
 - Geometric characteristics
 - Sampling with planes and full dimensional sets

- Digital Stereology
 - Digitization of sets
 - Digitization of characteristics
 - Estimation of the surface area measure
The convex ring

\[X \in \mathcal{R} = \{ \text{finite unions of convex bodies} \subset \mathbb{R}^d \}, \quad d \geq 1. \]

\(\mathcal{R} \) is called convex ring.

We will need Minkowski addition of \(X, X' \in \mathcal{R} \):

\[X \oplus X' := \{ x + x' \mid x \in X, x' \in X' \}. \]
Let B^d be the (Euclidean) unit ball in \mathbb{R}^d and κ_d its volume.

Jakob Steiner (1840): If X is a convex body, then

$$\text{Vol}(X \oplus \epsilon B^d) = \sum_{j=0}^{d} \kappa_{d-j} V_j(X) \epsilon^{d-j}, \quad \epsilon \geq 0.$$

$V_j(X) =: j$-th intrinsic volume of X.

\[X \oplus \epsilon B^2 \]
Intrinsic Volumes

Properties of V_j:

1. **Motion-invariant:** $V_j(\vartheta(X + x)) = V_j(X)$,
 - Translation vector $x \in \mathbb{R}^d$
 - Rotation $\vartheta \in SO_d := \text{rotation group}$

2. **Monotone:** $X \subset X' \Rightarrow V_j(X) \leq V_j(X')$

3. **Additive:** $V_j(X \cup X') = V_j(X) + V_j(X') - V_j(X \cap X')$
 - (where X, X' and $X \cup X'$ are convex bodies)

Hadwiger (1957):

Any motion-inv., monotone, additive functional on the convex bodies is a nonneg. linear combination of V_0, \ldots, V_d.
Intrinsic Volumes

Properties of V_j:

1. **motion-invariant**: $V_j(\vartheta(X + x)) = V_j(X)$,
 translation vector $x \in \mathbb{R}^d$
 rotation $\vartheta \in SO_d := \text{rotation group}$

2. **monotone**: $X \subset X' \Rightarrow V_j(X) \leq V_j(X')$

3. **additive**:
 $V_j(X \cup X') = V_j(X) + V_j(X') - V_j(X \cap X')$
 (where X, X' and $X \cup X'$ are convex bodies)

Hadwiger (1957):

Any motion-inv., monotone, additive functional on the convex bodies is a nonneg. linear combination of V_0, \ldots, V_d.
Additive Extensions of V_j

$V_j(X) := \text{additive extension of } V_j \text{ on } R.$

Geometric interpretation:

$V_d(X) = \text{Vol}(X)$ is the volume (Lebesgue measure) of X, $2V_{d-1}(X)$ = surface area of X

($= (d-1)$-dim. Hausdorff measure $\mathcal{H}^{d-1}(\partial X)$),

$V_j(X) : \text{connected to curvatures in boundary points}$

$V_0(X) = \text{Euler-Poincaré-characteristic of } X.$

$V_0(X) = 4 - 1 = 3.$
Let L be a fixed k-dimensional linear subspace in \mathbb{R}^d.

arbitrary movement of L: $\vartheta(L + y)$, $y \in L^\perp$, $\vartheta \in SO_d$.

Crofton's formula for $X \in \mathcal{R}$

$$\int_{SO_d} \int_{L^\perp} V_j(X \cap \vartheta(L + y)) \, d\mathcal{H}^{d-k}(y) d\nu(\vartheta) =$$

$$\text{const}_{d,j,k} \, V_{d+j-k}(X).$$

Here: $\nu = \text{invariant probability measure on } SO_d$.

In particular $j = k$: "Fubini’s theorem",

Markus Kiderlen

Digital Stereology
As X is bounded, we may exclude planes lying "far out" (i.e. restrict to $|y| \leq M$ for some $M > 0$.)

\[
\mathbb{E}_\vartheta \mathbb{E}_{|y| \leq M} V_j(X \cap \vartheta(L + y)) = c \cdot V_{d+j-k}(X).
\]

- Unbiased estimator for V_{d+j-k} from a random, k-dim. section.
- For $j = 0$, $k = 0$, \ldots, $d - 1$, this yields all intrinsic volumes except $V_0(X)$.

Markus Kiderlen

Digital Stereology
Sampling with full dimensional sets

For two convex bodies X and W consider

$$f_W(t) = \int_{\mathbb{R}^d} \mathbf{1}\{(y + tW) \cap X \neq \emptyset\} \, dy.$$

$W = B^d$:}

Steiner’s formula \Rightarrow

$$f_{B^d}(0) = V_d(X), \quad f'_{B^d}(0) = 2V_{d-1}(X), \quad f''_{B^d}(0) = 2\pi V_{d-2}(X), \ldots$$

For non-convex X (most of) the formulae are wrong!
An Extension

A general Steiner formula \((\text{Hug, 2000}) \)
\[X \in \mathcal{R} \text{ and arbitrary convex bodies } W \Rightarrow \]

\[f'_W(0) = \int_{S^{d-1}} h_W(-u) S(X,\, du). \]

\(f'_W(0) \): unit sphere in \(\mathbb{R}^d \)
\(h_W \): cont. function depending on \(W \)
\(S(X,\, du) \): surface area measure

Digital Stereology: Can we replace \(W \) by a finite set (points of a sampling grid)?
Outline of the talk

- Stereology
 - Geometric characteristics
 - Sampling with planes and full dimensional sets

- Digital Stereology
 - Digitization of sets
 - Digitization of characteristics
 - Estimation of the surface area measure
A Simple Digitization Model

Regular lattice $t\mathbb{Z}^d$ with $t > 0$ being the lattice distance.

Digitization of X: $\hat{X}_t := X \cap (t\mathbb{Z}^d)$.

To avoid "lower dimensional parts", assume from now on

$$X \in \mathcal{R}_{reg} = \{X \in \mathcal{R} \mid X = \text{cl int } X\}.$$
Random digitization

We randomize the sampling scheme

- randomly translated lattice:
 Choose ξ uniformly in $[0, 1]^d$ and consider $t(\xi + \mathbb{Z}^d)$.

- randomly rotated lattice:
 Choose ϑ uniformly in SO_d and consider $\vartheta(t\mathbb{Z}^d)$.

In both cases: \hat{X}_t becomes a random (finite) set.

We will only work with randomly translated lattices here.
Digitization of Characteristics: Definition

Assumptions:

- $\mathcal{M} \subset \mathcal{R}_{\text{reg}}$ is a family of sets,
- $\varphi : \mathcal{M} \to \mathbb{R}$ is a geometric characteristic (e.g. V_j),
- $X \in \mathcal{M}$ is a measurable, real-valued $\hat{\varphi}$ on digitized sets with

$$\lim_{t \to 0^+} \hat{\varphi}(\hat{X}_t) = \varphi(X) \text{ a.s.},$$

then φ is consistently digitalizable on \mathcal{M},
- $\lim_{t \to 0^+} \mathbb{E}\hat{\varphi}(\hat{X}_t) = \varphi(X)$, then φ is digitalizable in mean on \mathcal{M}.

$\hat{\varphi}$ is called digital algorithm for φ (Serra, 1982, Heijmans, 1992, K. 2005).
Examples

- $V_d = \text{Vol}$ is consistently digitalizable on \mathcal{R}_{reg} with

 $$\hat{V}_d(\hat{X}_t) = t^d \cdot \text{card}(\hat{X}_t).$$

- V_j is consistently digitalizable on the convex bodies in \mathcal{R}_{reg}

 $$\hat{V}_j(\hat{X}_t) = V_j(\text{conv} \, \hat{X}_t).$$

But: There are no digitization results for V_j ($j < d$) on \mathcal{R}_{reg}! We discuss in the following candidates \hat{V}_j used in practice.
The Euler-Poincaré-characteristic I

Digitization of V_0: polygonal approximation using \hat{X}_t:

Here elementary polygons are $\mathcal{E} = \{\cdot, -, |, \square\}$ (and similar for $d \neq 2$).

Then put $\hat{V}_0(\hat{X}_t) := V_0(P)$.

Markus Kiderlen Digital Stereology
The Euler-Poincaré-characteristic II

Properties of \hat{V}_0:

- V_0 additive \Rightarrow \hat{V}_0 locally computable
 "marching square/cube algorithms"
- $d = 1$: consistent digitization on \mathcal{R}_{reg}

\[\lim_{t \to 0^+} \hat{V}_0(\hat{X}_t) = V_0(X). \]

No digitization on \mathcal{R}_{reg} for $d > 1$!

(Serra, 1982 ($d = 2$), Nagel et al., 2001 ($d = 3$))

\[\lim_{t \to 0^+} \hat{V}_0(\hat{X}_t) = V_0(X) \text{ a.s.} \]

if X is "morphologically open and closed".

Condition very restrictive; necessary cond. unknown.
Intrinsic volumes V_j with $0 < j < d$

Crofton's formula for $X \in \mathcal{R}_{reg}$

$$V_{d-k}(X) = c \int_{SO_d} \int_{L^\perp} V_0(X \cap \vartheta(L + y)) \, dH^{d-k}(y) \, d\nu(\vartheta).$$

Example $d = 2$ (and $k = 1 \Rightarrow \text{"boundary length"})$:

1. **Bad approximation!**
 - up to 20% error!

2. **o.k:**
 - error $\leq 5\%$
Surface Area and Fit-and-miss Events

Goal: use \hat{X}_t to estimate $S(X, \cdot) = \text{local counterpart of } V_{d-1}$.
Assume $d = 2$.

$$R, B = \text{finite, non-empty test sets in } \mathbb{Z}^d \ (\text{"red"}, \text{"black"})$$

$(R, B) := \text{is called configuration, e.g. } (R, B) \hat{=} \left(\begin{array}{c} \cdot \\ \cdot \end{array} \right)$

$\#(R, B) := \text{number of occurrences of } t(k + (R, B)), k \in \mathbb{Z}^d \text{ in } \hat{X}_t.$

\[
\begin{array}{cccccccc}
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot \\
\\end{array}
\]

$\#(R, B) = 2$
(Jensen, K., 2003)

$$t \mathbb{E} \#(R, B) \rightarrow \int_{S^1} h_{(R,B)}(-u) \, dS(X, u), \quad t \rightarrow 0^+.$$

The function $h_{(R,B)}(\cdot)$ is explicitly known.

Choice of the Configurations (R, B)

- $B \cup W$ should have small diameter,
- "marching square"-algorithms should be applicable.

$$(R, B) \overset{\hat{=}}{=} \left(\begin{array}{c} \cdot \vline \cdot \\ \cdot \vline \cdot \\ \cdot \vline \cdot \end{array} \right) \quad \text{"}2 \times 2\text{-configurations"}$$

$$(R, B) \overset{\hat{=}}{=} \left(\begin{array}{c} \cdot \vline \cdot \vline \cdot \\ \cdot \vline \cdot \vline \cdot \\ \cdot \vline \cdot \vline \cdot \end{array} \right) \quad \text{"}3 \times 3\text{-configurations"}$$
2 × 2-Configurations I

All 2 × 2-configurations that yield non-vanishing integrals:

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(●●)</td>
<td>–</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>(●●)</td>
<td>(●●)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>(●●)</td>
<td>–</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>(●●)</td>
<td>(●●)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>(●●)</td>
<td>–</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>(●●)</td>
<td>(●●)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>(●●)</td>
<td>–</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>(●●)</td>
<td>(●●)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Application: For sufficiently small \(t > 0 \) the counts

\[
\#(R, B) \approx t \int_{S^1} h_{(R,B)}(-u) dS(X, u)
\]

lead to (estimates of) 8 different integrals of \(S(X, \cdot) \).

Model: \(\hat{S}(X, \cdot) = \sum_{i=1}^{8} \alpha_i \delta_{u_i} \) with \(\alpha_1, \ldots, \alpha_8 \geq 0 \).

Approach: Determine \(\alpha_1, \ldots, \alpha_8 \geq 0 \) in such a way that

\[
t \int_{S^1} h_{(R,B)}(-u) d\hat{S}(X, u) \text{ is "close to" } \#(R, B).
\]
Application example: Rolled Steel

The digital image of a rolled steel (black phase = X).

The estimated masses of $S(X, \cdot)$ from 2×2-configurations.

The total mass of this estimator also yields an estimator for $V_1(X)$.
Objection!

"I think that he is simplifying things far too much..."
The considerations are restricted

1. to the planar case \((d = 2)\),
2. to \(\mathcal{R}_{\text{reg}}\) (might be too restrictive for applications),
3. to a very simple digitization model for \(\tilde{X}_t\),

Alternative: the threshold digitization \(\tilde{X}_t(\theta)\), \(0 < \theta \leq 1\):

\[
\text{Lattice point } x:\quad x \in \tilde{X}_t(\theta) : \iff \text{Vol}(\text{Cell}_x \cap X) \geq \theta \cdot \text{Vol}(\text{Cell}_x) .
\]

\[\theta = 1/2\]
A Far-reaching Generalization

(Rataj, K., 2005+)

\[t \mathbb{E} \#(R, B) \rightarrow \int_{S^{d-1}} h(R, B)(-u) \, dS(X, u), \quad t \rightarrow 0+. \]

holds for

- \(d \geq 1 \),
- \(X \) in a \textbf{very general set-class}
 (full-dimensional finite unions of sets of positive reach),
- \(\hat{X}_t \) or \(\tilde{X}_t(\theta) \) as underlying digitization.