17. Riesz’ representation theorem

Klaus Thomsen matkt@imf.au.dk

Institut for Matematiske Fag
Det Naturvidenskabelige Fakultet
Aarhus Universitet

November 2005
We read the lecture notes on Riesz’ representation theorem, mostly stolen from Walter Rudin’s book: ’Real and complex analysis’.
The Riesz representation theorem - the setting

Throughout the note X will be a fixed locally compact Hausdorff space. By $C_c(X)$ we denote the vector space of continuous compactly supported functions on X, i.e. a continuous function $f : X \rightarrow \mathbb{C}$ is in $C_c(X)$ if and only if

$$\text{supp } f = \{ x \in X : f(x) \neq 0 \}$$

is a compact subset of X.

A linear functional $\Lambda : C_c(X) \rightarrow \mathbb{C}$ is said to be positive when

$$f \in C_c(X), \quad f(x) \geq 0 \quad \forall x \in X \quad \Rightarrow \quad \Lambda(f) \geq 0.$$

Some simple examples of positive linear functionals on $C_c(X)$ are easy to come by: For example, one may choose a couple of points $x_1, x_2 \in X$ and two non-negative real numbers α_1, α_2, and define $\Gamma : C_c(X) \rightarrow \mathbb{C}$ such that

$$\Gamma(f) = \alpha_1 f(x_1) + \alpha_2 f(x_2).$$

Then Γ is a positive linear functional on $C_c(X)$.
The Riesz representation theorem - the setting

More generally: Let μ be a measure defined on a σ-algebra of subsets of X which (at least) contains the Borel sets in X. If μ is finite on every compact subset of X, i.e. if $\mu(K) < \infty$ when $K \subseteq X$ is compact, then any function $f \in C_c(X)$ is integrable with respect to μ. (This follows from Proposition 15 ii) on p. 267 in Roydends book since $|f| \leq M 1_K$, where $M = \sup \{|f(x)| : x \in X\} < \infty$ and 1_K is the characteristic function of $K = \text{supp } f$.) We can therefore define $\Lambda_\mu : C_c(X) \to \mathbb{C}$ by integration with respect to μ, i.e.

$$\Lambda_\mu(f) = \int_X f \, d\mu,$$

(sometimes written $\int_X f(x) \, d\mu(x)$ to emphasize the variable.) It follows from Proposition 15 i)+ ii) on p. 267 in Roydends book that Λ_μ is then a positive linear functional on $C_c(X)$. The main content of Riesz’s representation theorem is that every positive linear functional on $C_c(X)$ arises in this way.
Let X be a locally compact Hausdorff space. Let $\Lambda : C_c(X) \to \mathbb{C}$ be a positive linear functional. Then there exists a σ-algebra \mathcal{M} in X which contains all Borel sets in X, and there exists a unique positive measure μ on \mathcal{M} which represents Λ in the sense that

(a) \[\Lambda(f) = \int_X f \, d\mu \text{ for every } f \in C_c(X), \]

and which has the following additional properties:
The Riesz representation theorem for positive functionals

Theorem

(b) \(\mu(K) < \infty \) when \(K \subseteq X \) is compact.

(c) For every \(E \in \mathcal{M} \), we have

\[
\mu(E) = \inf \{ \mu(V) : E \subseteq V, \ V \text { open} \}.
\]

(d) The relation

\[
\mu(E) = \sup \{ \mu(K) : K \subseteq E, \ K \text { compact} \}
\]

holds for every open set \(E \), and every \(E \in \mathcal{M} \) with \(\mu(E) < \infty \).

(e) If \(E \in \mathcal{M} \), \(A \subseteq E \), and \(\mu(E) = 0 \), then \(A \in \mathcal{M} \).
The proof - uniqueness

The uniqueness part of the statement is that if μ_1 and μ_2 are both measures on \mathcal{M} with the properties (a)-(d), then $\mu_1 = \mu_2$.

We start by proving this. For this we introduce the following notation: When $f \in C_c(X)$ is a function taking values in $[0, 1]$, and $E \subseteq X$ we shall write

$$f \prec E,$$

when $\text{supp} \ f \subseteq E$, and

$$E \prec f$$

when $f(x) = 1$ for $x \in E$.

It follows then from Urysohn’s lemma, Lemma 0.17 in ’Kommentarer’ that whenever K is a compact subset of X, V an open subset of X, and $K \subseteq V$, then there is an $f \in C_c(X)$ such that

$$K \prec f \prec V.$$
In particular, it follows that

\[
\mu_1(K) = \int_X 1_K \, d\mu_1 \leq \int_X f \, d\mu_1 = \int_X f \, d\mu_2 \leq \int_X 1_V \, d\mu_2 = \mu_2(V)
\]

(1)

in this situation, i.e. when \(K \) is compact, \(V \) is open and \(K \subseteq V \). Since \(\mu_2 \) satisfies (c) we deduce from (1) that \(\mu_1(K) \leq \mu_2(K) \) when \(K \subseteq X \) is compact. Since \(\mu_1 \) and \(\mu_2 \) both have property (d) we conclude that \(\mu_1(V) \leq \mu_2(V) \) when \(V \subseteq X \) is open. Since they also both have property (c) we conclude that \(\mu_1(E) \leq \mu_2(E) \) for all \(E \in \mathcal{M} \). By symmetry we must also have the reversed inequality, and we may therefore conclude that \(\mu_1 = \mu_2 \).
We turn now to the construction of the measure μ. First we define $\mu(V)$ when $V \subseteq X$ is open:

$$\mu(V) = \sup \{ \Lambda(f) : f \prec V \}.$$ \hfill (2)

Since a part of the conditions in '$f \prec V$' is that $f(X) \subseteq [0, 1]$ it follows that $\mu(V) \geq 0$ because Λ is a positive linear functional. Note that it may very well be that $\mu(V) = \infty$! Note also that when V_1 and V_2 are both open and $V_1 \subseteq V_2$, then it follows from (2) that $\mu(V_1) \leq \mu(V_2)$. Hence, when we set

$$\mu(E) = \inf \{ \mu(V) : E \subseteq V \}$$ \hfill (3)

for any subset $E \subseteq X$, we haven’t changed the definition on open sets. In other words, with (3) we have an extension of μ from open to arbitrary sets.
This extension will not in general give us a measure defined, as it is, on all subsets of \(X\), and a major part of the proof is to identify a \(\sigma\)-algebra of sets in \(X\) which contains the Borel sets, and on which \(\mu\) does give us a measure. (The trouble, of course, is the countable additivity of \(\mu\)!)

Let \(\mathcal{M}_F\) be the subsets \(E\) of \(X\) for which \(\mu(E) < \infty\) and

\[
\mu(E) = \sup \{ \mu(K) : K \subseteq E \text{ compact} \}.
\]

(4)

Let \(\mathcal{M}\) be the subsets \(E\) of \(X\) with the property that

\[
E \cap K \in \mathcal{M}_F
\]

(5)

when \(K \subseteq X\) is compact.
We prove that $\mu : \mathcal{M} \to [0, \infty]$ has the required properties:

First of all, observe that μ is *monotone*, in the sense that

$$A \subseteq B \Rightarrow \mu(A) \leq \mu(B)$$

(6)

since $\{\mu(V) : B \subseteq V\} \subseteq \{\mu(V) : A \subseteq V\}$.

Next we establish the following

If E_1, E_2, E_3, \ldots, are arbitrary subsets of X,

$$\mu \left(\bigcup_{i=1}^{\infty} E_i \right) \leq \sum_{i=1}^{\infty} \mu(E_i).$$

(7)
Proof of (7)

We prove first that

\[\mu(V_1 \cup V_2) \leq \mu(V_1) + \mu(V_2) \]

(8)

when \(V_1 \) and \(V_2 \) are open.

To this end, let \(g \prec V_1 \cup V_2 \). It follows then from Theorem 0.18 in 'Kommentarer' - the theorem on partitions of unity - that there are functions \(h_i \in C_c(X) \), \(i = 1, 2 \), such that \(h_1(x) + h_2(x) = 1 \) when \(x \in \text{supp} \ g \), and \(g_i \prec V_i \), \(i = 1, 2 \).

It follows that \(g = gh_1 + gh_2 \) so the additivity of \(\Lambda \) shows that \(\Lambda(g) = \Lambda(gh_1) + \Lambda(gh_2) \).

Since \(gh_i \prec V_i \) we conclude that \(\Lambda(g) \leq \mu(V_1) + \mu(V_2) \). It follows then from (2) that \(\mu_2(V_1 \cup V_2) \leq \mu(V_1) + \mu(V_2) \), proving (8).
Proof of (7)

By induction it follows that

\[\mu \left(\bigcup_{i=1}^{n} V_i \right) \leq \sum_{i=1}^{n} \mu(V_i) \] \hspace{1cm} (9)

for any finite collection \(V_1, V_2, \ldots, V_n \) of open sets in \(X \).

This is then used to prove (7) in the following way: If \(\mu(E_i) = \infty \) for some \(i \), the inequality (7) is trivial, so we may assume that \(\mu(E_i) < \infty \) for all \(i \).

Let \(\epsilon > 0 \). It follows from the definition, (3), that there are open sets \(V_i, i = 1, 2, \ldots, \) in \(X \) such that \(E_i \subseteq V_i \) and

\[\mu(V_i) \leq \mu(E_i) + 2^{-i} \epsilon \] for all \(i \).

Since \(\bigcup_{i=1}^{\infty} E_i \subseteq \bigcup_{i=1}^{\infty} V_i \) we conclude that

\[\mu \left(\bigcup_{i=1}^{\infty} E_i \right) \leq \mu \left(\bigcup_{i=1}^{\infty} V_i \right) \] \hspace{1cm} (10)
Proof of (7)

To estimate the right-hand side, let \(f \prec \bigcup_{i=1}^{\infty} V_i \). Then \(V_i, i = 1, 2, \ldots \), is an open cover of the compact set \(\text{supp} \ f \) so there is an \(n \in \mathbb{N} \) such that \(f \prec \bigcup_{i=1}^{n} V_i \).

Then

\[
\Lambda(f) \leq \mu \left(\bigcup_{i=1}^{\infty} V_i \right),
\]

and by use of (9) we find that

\[
\Lambda(f) \leq \sum_{i=1}^{n} \mu(V_i) \leq \sum_{i=1}^{n} (\mu(E_i) + 2^{-i} \epsilon) \leq \epsilon + \sum_{i=1}^{n} \mu(E_i) \leq \epsilon + \sum_{i=1}^{\infty} \mu(E_i).
\]

Since \(f \prec \bigcup_{i=1}^{\infty} V_i \) was arbitrary we conclude (by using (2)) that

\[
\mu \left(\bigcup_{i=1}^{\infty} V_i \right) \leq \epsilon + \sum_{i=1}^{\infty} \mu(E_i).
\]

Since \(\epsilon > 0 \) was arbitrary, we conclude that

\[
\mu \left(\bigcup_{i=1}^{\infty} V_i \right) \leq \sum_{i=1}^{\infty} \mu(E_i).
\]

In combination with (10), this proves (7).
The next step is to establish

If $K \subseteq X$ is compact, then $K \in \mathcal{M}_F$, and

$$
\mu(K) = \inf \{\Lambda(f) : K \prec f\}.
$$ \tag{11}

If $K \prec f$, and $0 < \alpha < 1$, set $V_\alpha = \{x \in X : f(x) > \alpha\}$. Then $K \subseteq V_\alpha$ since $f(x) = 1$ when $x \in K$, and when $g \in C_c(X)$ is any function such that $g \prec V_\alpha$, we have that $\alpha g \leq f$. Hence $\Lambda(\alpha g) = \alpha \Lambda(g) \leq \Lambda(f)$ because Λ is linear and positive. It follows that

$$
\mu(K) \leq \mu(V_\alpha) = \sup \{\Lambda(g) : g \prec V_\alpha\} \leq \alpha^{-1} \Lambda(f).
$$
Proof of (11)

In particular we see that $\mu(K) < \infty$, and by letting $\alpha \to 1$ we obtain the conclusion that $\mu(K) \leq \Lambda(f)$.

Since $K \prec f$ was arbitrary, we see that $\mu(K) \leq \inf \{\Lambda(f) : K \prec f\}$. On the other hand, if we let $\epsilon > 0$, it follows from (3) that there is an open set $V \supseteq K$ such that $\mu(V) \leq \mu(K) + \epsilon$.

By Urysohn's lemma there is a function $K \prec f \prec V$, and for this function $\Lambda(f) \leq \mu(V)$ by (2). Since $K \prec f$, we conclude that $\inf \{\Lambda(f) : K \prec f\} \leq \mu(K) + \epsilon$.

Since $\epsilon > 0$ was arbitrary, we have established the equality in (11). As we saw, $\mu(K) < \infty$, so it follows from (6) and the compactness of K that $K \in M_F$. - (11) is proved.
Proof of (12)

Every open set satisfies (4).

Hence $V \in M_F$ when V is open and $\mu(V) < \infty$. \hfill (12)

Let $V \subseteq X$ be open, and let α be a real number such that $\alpha < \mu(V)$. By definition of $\mu(V)$, cf. (2), there is an $f \in C_c(X)$ such that $f \prec V$ and $\Lambda(f) \geq \alpha$.

Then $K = \text{supp } f$ is a compact subset of V, and when W is an open subset containing K, viz. $K \subseteq W$, then $f \prec W$ and hence $\mu(W) \geq \Lambda(f)$.

It follows from (3) that $\mu(K) \geq \Lambda(f) > \alpha$. Since $\alpha < \mu(V)$ was arbitrary, we conclude that $\sup \{\mu(K) : K \subseteq V\} \geq \mu(V)$. The reversed inequality is trivial, thanks to (6), so (12) has been established.
Proof of (13)

Suppose \(E = \bigcup_{i=1}^{\infty} E_i \), where \(E_1, E_2, E_3, \ldots \), are pairwise disjoint members of \(\mathcal{M}_F \). Then

\[
\mu(E) = \sum_{i=1}^{\infty} \mu(E_i).
\]

If, in addition, \(\mu(E) < \infty \), then also \(E \in \mathcal{M}_F \).

We prove first that

\[
\mu(K_1 \cup K_2) = \mu(K_1) + \mu(K_2) \quad (14)
\]

when \(K_i, i = 1, 2 \), are compact and disjoint.
Proof of (13)

By Urysohn’s lemma there is an \(f \in C_c(X) \) such that \(0 \leq f \leq 1 \), \(f(x) = 1 \), \(x \in K_1 \), and \(f(x) = 0 \) when \(x \in K_2 \).

Let \(\varepsilon > 0 \). It follows from (11) that there is \(g \in C_c(X) \) such that \(K_1 \cup K_2 \prec g \) and \(\Lambda(g) \leq \mu(K_1 \cup K_2) + \varepsilon \).

Then \(K_1 \prec fg \) and \(K_2 \prec (1 - f)g \). Hence \(\mu(K_1) \leq \Lambda(fg) \) and \(\mu(K_2) \leq \Lambda((1 - f)g) \) by (11).

Since \(\Lambda \) is linear, we find that

\[
\mu(K_1) + \mu(K_2) \leq \Lambda(fg) + \Lambda((1 - f)g) = \Lambda(g) \leq \mu(K_1 \cup K_2) + \varepsilon.
\]

Since \(\varepsilon > 0 \) was arbitrary we conclude that \(\mu(K_1) + \mu(K_2) \leq \mu(K_1 \cup K_2) \), and then (14) follows from (7).
To prove the equality in (13) we pick compact subsets $K_i \subseteq E_i$ such that $\mu(K_i) \geq \mu(E_i) - 2^{-i}\epsilon$. This is possible since $E_i \in \mathcal{M}_F$.

For each n, $\bigcup_{i=1}^{n} K_i$ is a compact subset of E, and it follows from (14) that

$$
\mu(E) \geq \mu \left(\bigcup_{i=1}^{n} K_i \right) = \sum_{i=1}^{n} \mu(K_i) \geq \sum_{i=1}^{n} \mu(E_i) - 2^{-i}\epsilon \geq \sum_{i=1}^{n} \mu(E_i) - \epsilon.
$$

Since n and $\epsilon > 0$ are arbitrary here, we conclude that

$$
\mu(E) \geq \sum_{i=1}^{\infty} \mu(E_i).
$$

Combined with (7) this yields the equality in (13).
Proof of (13)

Returning to (15) we conclude then that if $\mu(E) < \infty$, $K_n = \bigcup_{i=1}^{n} K_i$ is a compact subset of E such that

$$\mu(K) \geq \sum_{i=1}^{n} \mu(E_i) - \epsilon = \mu(E) - \sum_{j=n+1}^{\infty} \mu(E_j) - \epsilon.$$

Since $\sum_{i=1}^{\infty} \mu(E_i) = \mu(E) < \infty$ we have that $\sum_{j=n+1}^{\infty} \mu(E_j) < \epsilon$ if n is large enough. So for n large, K_n is a compact subset of E such that $\mu(K_n) \geq \mu(E) - 2\epsilon$.

It follows that E satisfies (4) when $\mu(E) < \infty$. Thus $E \in \mathcal{M}_F$ in this case.
Proof of (17)

If $E \in \mathcal{M}_F$, and $\epsilon > 0$, there is a compact subset $K \subseteq X$ and an open subset $V \subseteq X$ such that $K \subseteq E \subseteq V$, and $\mu(V \setminus K) \leq \epsilon$. (17)

It follows from (3) that there is an open set $V \supseteq E$ such that $\mu(V) \leq \mu(E) + \frac{\epsilon}{2}$ and since (4) holds and $\mu(E) < \infty$ there is a compact subset $K \subseteq E$ such that $\mu(K) \geq \mu(E) - \frac{\epsilon}{2}$.

Note that $V = K \cup (V \setminus K)$, and that $V \setminus K$ is open. It follows from (12) that $V \setminus K \in \mathcal{M}_F$ since $\mu(V \setminus K) \leq \mu(V) < \infty$, and from (11) that $K \in \mathcal{M}_F$, so we conclude from (13) that

$$
\mu(V) = \mu(K) + \mu(V \setminus K),
$$

which implies that

$$
\mu(V \setminus K) = \mu(V) - \mu(K) \leq \mu(E) + \frac{\epsilon}{2} - \mu(E) + \frac{\epsilon}{2} = \epsilon.
$$
Proof of (18)

If \(A \in \mathcal{M}_F, \ B \in \mathcal{M}_F \), then \(A \setminus B, \ A \cup B, \) and \(A \cap B \) belong to \(\mathcal{M}_F \).

(18)

Since \(\mu(A \cup B) \leq \mu(A) + \mu(B) < \infty \) (using (7)), it follows from (6) that \(\mu(A \setminus B) < \infty, \ \mu(A \cup B) < \infty \) and \(\mu(A \cap B) < \infty \).

So it remains just to show that all three sets in the statement satisfy (4).

To this end, let \(\epsilon > 0 \). By (17) there are compact sets \(K_i, i = 1, 2 \), and open sets \(V_i, i = 1, 2 \), such that \(K_1 \subseteq A \subseteq V_1, \ K_2 \subseteq B \subseteq V_2 \), and \(\mu(V_i \setminus K_i) \leq \epsilon, i = 1, 2 \).

Note that

\[
A \setminus B \subseteq V_1 \setminus K_2 \subseteq (V_1 \setminus K_1) \cup (K_1 \setminus V_2) \cup (V_2 \setminus K_2).
\]
Proof of (18)

Of the three last sets two are open and one is compact. (12) and (11) they are all in \mathcal{M}_F and hence (7) implies that

$$\mu(A \setminus B) \leq \mu(V_1 \setminus K_1) + \mu(K_1 \setminus V_2) + \mu(V_2 \setminus K_2) \leq \epsilon + \mu(K_1 \setminus V_2) + \epsilon.$$

Then $K_1 \setminus V_2$ is a compact subset of $A \setminus B$ such that

$$\mu(K_1 \setminus V_2) \geq \mu(A \setminus B) - 2\epsilon.$$

Since $\epsilon > 0$ was arbitrary, this shows that $A \setminus B \in \mathcal{M}_F$. Once this is established it follows from (13) that $A \cup B = (A \setminus B) \cup B$ and $A \cap B = A \setminus (A \setminus B)$ are both in \mathcal{M}_F.

Proof of (19)

\(\mathcal{M} \) is a \(\sigma \)-algebra in \(X \) which contains all Borel sets. \hspace{1cm} (19)

In the following \(K \) is an arbitrary compact subset of \(X \). Recall that \(K \in \mathcal{M}_F \) by Observation 11.

Let \(A \in \mathcal{M} \), and consider the complement \(A^c = X \setminus A \). By definition of \(\mathcal{M} \), \(A \cap K \in \mathcal{M}_F \), and \(A^c \cap K = K \setminus (A \cap K) \) is therefore the set-theoretic difference of two sets from \(\mathcal{M}_F \). Hence \(A^c \cap K \in \mathcal{M}_F \) by (18). This shows that \(A^c \in \mathcal{M} \) since \(K \) was arbitrary.

Consider then a sequence \(A_i, i = 1, 2, 3, \ldots \), of sets from \(\mathcal{M} \). Put \(B_1 = A_1 \cap K \), and \(B_n = (A_n \cap K) \setminus (B_1 \cup B_2 \cup \cdots \cup B_{n-1}) \), \(n \geq 2 \).

Then the \(B_i \)'s are disjoint subsets of \(X \) and
\[
K \cap (\bigcup_{n=1}^{\infty} A_n) = \bigcup_{n=1}^{\infty} B_n.
\]
It follows from (18) that \(B_i \in \mathcal{M}_F \) for all \(i \).

Since \((K \cap (\bigcup_{n=1}^{\infty} A_n)) \leq \mu(K) < \infty \) by (6) and (11), we deduce from (13) that \(\bigcup_{n=1}^{\infty} B_n \in \mathcal{M}_F \). It follows that \(\bigcup_{n=1}^{\infty} A_n \in \mathcal{M} \) since \(K \) was arbitrary.

It follows that \(\mathcal{M} \) is a \(\sigma \)-algebra.
If C is a closed subset of X, the intersection $C \cap K$ is compact and hence an element of \mathcal{M}_F by Observation 11. Thus $C \in \mathcal{M}$ since K was arbitrary, and we see that \mathcal{M} contains all closed subsets of X. Being a σ-algebra it must therefore contain all Borel subsets of X.

$$\mathcal{M}_F = \{ A \in \mathcal{M} : \mu(A) < \infty \}.$$

(20)

If $A \in \mathcal{M}_F$, $\mu(A) < \infty$ by definition. Furthermore, it follows from (11) and (18) that $A \cap K \in \mathcal{M}_F$ for every compact subset K. Hence $A \in \mathcal{M}$. This proves one of the desired inclusions.

To prove the other, assume that $A \in \mathcal{M}$ and that $\mu(A) < \infty$. To prove that $A \in \mathcal{M}_F$, let $\epsilon > 0$. By definition of μ there is an open set $V \supseteq A$ such that $\mu(V) < \infty$. By (12) $V \in \mathcal{M}_F$, and by (17) we can find a compact subset $K \subseteq V$ such that $\mu(V \setminus K) \leq \epsilon$.

Klaus Thomsen
17. Riesz’ representation theorem
Since $A \cap K \in \mathcal{M}_F$, there is a compact subset $H \subseteq A \cap K$ such that

$$\mu(H) \geq \mu(A \cap K) - \epsilon.$$

Since $A \subseteq (A \cap K) \cup (V \setminus K)$, it follows that

$$\mu(A) \leq \mu(A \cap K) + \mu(V \setminus K) \leq \mu(H) + \epsilon + \mu(V \setminus K) \leq \mu(H) + 2\epsilon.$$

Since $\epsilon > 0$ was arbitrary, we see from this that $A \in \mathcal{M}_F$, as desired.
Proof of (21)

\(\mu \) is a measure on \(\mathcal{M} \). \hspace{1cm} (21)

Let \(E_1, E_2, \ldots \) be a sequence of mutually disjoint elements of \(\mathcal{M} \).

If \(\mu(E_i) = \infty \) for some \(i \), it is clear that

\[\mu(\bigcup_{i=1}^{\infty} E_i) = \infty = \sum_{i=1}^{\infty} \mu(E_i). \]

Otherwise, it follows from (20) that \(E_i \in \mathcal{M}_F \) and hence

\[\mu(\bigcup_{i=1}^{\infty} E_i) = \sum_{i=1}^{\infty} \mu(E_i) \text{ by (13)}. \]

The reader is now asked to observe that the properties of \(\mu \)
stipulated in (b)-(e) all hold: (b) follows from (11), (c) follows from
the definition of \(\mu \), (d) follows from (20) and (12), while (e) follows
from (20) since the set \(A \) of (e) is in \(\mathcal{M}_F \) be definition of \(\mathcal{M}_F \).
Proof of a)

It remains to check that condition (a) holds. To this end it suffices to check that

$$\Lambda(f) \leq \int_X f \, d\mu$$ \hspace{1cm} (22)

for every real-valued element of $C_c(X)$.

Indeed, it follows then that also $\Lambda(-f) \leq \int_X -f \, d\mu$ holds, which implies first that $\Lambda(f) \geq \int_X f \, d\mu$ and then that $\Lambda(f) = \int_X f \, d\mu$.

By linearity this yields (a).

We prove (22): Choose $a < b$ in \mathbb{R} such that $f(X) \subseteq [a, b]$, and let $\epsilon > 0$. Choose $y_0 < y_1 < y_2 < \cdots < y_n$ such that $y_i - y_{i-1} < \epsilon$ for all i, $y_0 < a$ and $y_n = b$. Put

$$E_i = \{x \in \mathbb{R} : y_{i-1} < f(x) \leq y_i\} \cap K,$$

$i = 1, 2, \ldots, n$, where $K = \text{supp} \, f$.

Since f is continuous and hence Borel measurable, the E_i's are Borel sets. They are mutually disjoint.
It follows from the definition of μ that there are open sets $W_i \supseteq E_i$ such that $\mu(W_i) < \mu(E_i) + \frac{\epsilon}{n}$. Set $V_i = W_i \cap f^{-1}(\left(-\infty, y_i + \epsilon\right])$. Then V_i is an open set such that $V_i \supseteq E_i$, $f(x) < y_i + \epsilon$, $x \in V_i$, and

$$\mu(V_i) \leq \mu(W_i) < \mu(E_i) + \frac{\epsilon}{n}. \tag{23}$$

Note that $K \subseteq \bigcup_{i=1}^{n} V_i$. It follows from Theorem 0.18 in 'Kommentarer' that there are continuous functions $h_i : X \to [0, 1]$ such that $h_i \prec V_i$, $i = 1, 2, \ldots, n$, and $\sum_{i=1}^{n} h_i(x) = 1$, $x \in K$. Then $f = \sum_{i=1}^{n} h_if$, and it follows from (19) that
Proof of a)

\[\mu(K) \leq \Lambda \left(\sum_{i=1}^{n} h_i \right) = \sum_{i=1}^{n} \Lambda(h_i). \quad (24) \]

Since \(h_i f \leq (y_i + \epsilon)h_i \), and since \(y_i - \epsilon < f(x) \) on \(E_i \), we find that

\[\Lambda(f) = \sum_{i=1}^{n} \Lambda(h_i f) \leq \sum_{i=1}^{n} (y_i + \epsilon)\Lambda(h_i) \]

\[= \sum_{i=1}^{n} (|a| + y_i + \epsilon)\Lambda(h_i) - \sum_{i=1}^{n} |a|\Lambda(h_i) \quad (25) \]

\[\leq \sum_{i=1}^{n} (|a| + y_i + \epsilon)\mu(V_i) - \sum_{i=1}^{n} |a|\Lambda(h_i) \quad \text{(using (2))} \]
Proof of a)

\[\leq \sum_{i=1}^{n} (|a| + y_i + \epsilon) \left[\mu(E_i) + \frac{\epsilon}{n} \right] - \sum_{i=1}^{n} |a| \Lambda(h_i) \quad \text{(using (23))} \]

\[\leq \sum_{i=1}^{n} (|a| + y_i + \epsilon) \left[\mu(E_i) + \frac{\epsilon}{n} \right] - |a| \mu(K) \quad \text{(using (24))} \]

\[= \sum_{i=1}^{n} (y_i + \epsilon) \left[\mu(E_i) + \frac{\epsilon}{n} \right] + \sum_{i=1}^{n} |a| \frac{\epsilon}{n} \quad \text{(since} \sum_{i=1}^{n} \mu(E_i) = \mu(K)) \]

\[= \sum_{i=1}^{n} (y_i - \epsilon) \mu(E_i) + 2\epsilon \mu(K) + \sum_{i=1}^{n} (|a| + y_i + \epsilon) \frac{\epsilon}{n} \]

\[\quad \text{(since} \sum_{i=1}^{n} \mu(E_i) = \mu(K)) \]

(26)
Proof of a)

\[
\leq \int_X f \, d\mu + 2\epsilon \mu(K) + \sum_{i=1}^n (|a| + y_i + \epsilon) \frac{\epsilon}{n} \quad \text{(since } \sum_{i=1}^n (y_i - \epsilon)1_{E_i} \leq f) \]
\[
\leq \int_X f \, d\mu + 2\epsilon \mu(K) + \epsilon (|a| + b + \epsilon) \quad \text{(since } y_i \leq b \text{ for all } i). \]

(27)
Proof of a)

Since \(\epsilon > 0 \) was arbitrary here, this yields (22).