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Abstract

We introduce a flexible spatial point process model for spatial point patterns exhibiting linear structures,
without incorporating a latent line process. The model is given by an underlying sequential point process
model, i.e. each new point is generated given the previous points. Under this model the points can be of
one of three types: a ‘background point’, an ‘independent cluster point’, or a ‘dependent cluster point’.
The background and independent cluster points are thought to exhibit ‘complete spatial randomness’,
while the conditional distribution of a dependent cluster point given the previous points is such that
the dependent cluster point is likely to occur closely to a previous cluster point. We demonstrate
the flexibility of the model for producing point patterns with linear structures, and propose to use
the model as the likelihood in a Bayesian setting when analyzing a spatial point pattern exhibiting
linear structures but where the exact mechanism responsible for the formations of lines is unknown.
We illustrate this methodology by analyzing two spatial point pattern data sets (locations of bronze
age graves in Denmark and locations of mountain tops in Spain) without knowing which points are
background points, independent cluster points, and dependent cluster points.

Keywords: clustering; Dirichlet tessellation; simulation-based Bayesian inference; spatial point process.

1 Introduction

Many observed spatial point patterns contain points placed roughly on line segments, as exemplified by the
locations of barrows shown in Figures 1a and the locations of mountain tops shown in 1b (further details
on these data sets are given in Section 2.3). Such linear structures may be associated to a line segment
process. For example, in Berman (1986) (see also Berman and Diggle (1989) and Foxall and Baddeley
(2002)) both a point process representing copper deposits and a line segment process representing geological
faults are observed and investigated for a possible association. Another example is animal latrines near
territory boundaries modelled by the edges of an unobserved (deformed) Dirichlet (or Voronoi) tessellation
(Blackwell 2001, Blackwell and Møller 2003, Skare, Møller and Jensen 2007). However, in many other cases,
including the two data sets in Figure 1, the exact mechanism responsible for the formations of lines is
unknown. Thus the development of tractable and practically useful spatial point process models, capable of
producing point patterns with linear structures—but without introducing an observed or latent line segment
process—becomes important.

——
Figure 1 about here

——
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In this paper we introduce a flexible point process model with linear structures without incorporating any
line segment process into the model. It is a sequential point process model, i.e. the points has an ordering,
and moreover the points can be of one of three types: a ‘background point’, an ‘independent cluster point’, or
a ‘dependent cluster point’. The background and independent cluster points are thought to exhibit ‘complete
spatial randomness’, while the conditional distribution of a dependent cluster point given the previous points
is such that the dependent cluster point is likely to occur closely to a previous cluster point. The model
turns out to be easy to simulate and interpret. Section 2 provides further details on the model and shows
simulated realizations.

The joint density for our sequential point process model turns out to be expressible in closed form and
depends on an unknown parameter θ = (p, q, σ) ∈ [0, 1]× [0, 1]× (0,∞). Briefly, 1− q, (1−p)q, pq specify the
probabilities of the three types a point can be (‘background’, ‘independent cluster’, or ‘dependent cluster’
point), while σ controls the spread of a dependent cluster point around the previous cluster points. However,
we assume that only the collection of the points is observable within a given bounded planar region W (the
observation window) meaning that both the types and the ordering of the points are unknown. Section 3
proposes to treat this ‘missing data problem’ by using a simulation-based Bayesian approach with a prior
on θ and incorporating the missing data into the posterior. The usefulness of this methodology is illustrated
by analyzing the two data sets in Figure 1.

2 The sequential point process model

Let W ⊂ R2 be a given bounded region of area |W | > 0. We think of W as an observation window, such as
the rectangular regions in Figure 1, and we suppose that a finite point pattern {x1, . . . , xn} ⊂ W is observed.
For convenience, when introducing the model for cluster points in Section 2.1, we assume that W is convex,
but it is possible to extend our setting to the case where W is not convex.

In the vast literature on spatial point processes, most models are specified directly as a Poisson process,
a Cox process (i.e. a hierarchical model for a Poisson process conditional on a random intensity function),
a Poisson cluster process, or by a density function which often is of the Markov or Gibbs type, see Møller
and Waagepetersen (2004), Møller and Waagepetersen (2007), and the references therein. However, the
recognition of an underlying space-time point process may not only be natural but also lead to a more
tractable model. A particular simple and useful case is sequential point process models, i.e. sequential
constructions with an ordering of the points. Such models include in particular Matérn hard core processes
of types II and III and more generally random sequel adsorption models, see Møller, Huber and Wolpert
(2010) and the references therein, but our particular sequential point process model introduced in the sequel
seems new.

For simplicity and because of lack of information in the applications we have in mind, we ignore modelling
the distribution of both n and the waiting times between point occurrences, i.e. we fix n to be the observed
number of points, and we consider a setting with discrete times. We let xc = (x1, . . . , xk) and xb =
(xk+1, . . . , xn) denote the ordered cluster points and ordered background points, respectively, where k is
random. Note that these orderings concern not all the n points together, so we only have that x1 and xk are
the first and last cluster points, and xk+1 and xn the first and last background points. First the model for xc

conditional on k is specified in Section 2.1, and second the full model for (xc, xb) is specified in Section 2.2
such that we do not need to take the ordering of all the n points into consideration. Note that both the
subpatterns {x1, . . . , xk} and {xk+1, . . . , xn} and their orderings are unknown, since only {x1, . . . , xn} is
observed. This missing data problem is first treated in Section 3.

2.1 The model for cluster points

We make the following model assumptions for the cluster points, where the number of cluster points k > 0 is
fixed, and p ∈ [0, 1] and σ > 0 are unknown parameters whose meaning will soon be clear. The first cluster
point x1 is uniformly distributed on W , with density

f(x1) = 1/|W |, x1 ∈ W.

For i = 2, . . . , k, conditional on the cluster points x1, . . . , xi−1, with probability p, the next cluster point xi

becomes a dependent cluster point, with a density h(xi|{x1, . . . , xi−1};σ) with respect to Lebesgue measure
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on W and specified in (2) below; otherwise xi becomes an independent cluster point, which is uniformly
distributed on W (and hence independent of the previous cluster points). So xi conditional on x1, . . . , xi−1

follows the mixture density

f(xi|x1, . . . , xi−1; p, σ) = ph(xi|{x1, . . . , xi−1};σ) + (1− p)/|W |, xi ∈ W. (1)

For notational convenience, if i = 1, we set f(xi|x1, . . . , xi−1; p, σ) = f(x1).
As the notation indicates, h(xi|{x1, . . . , xi−1};σ) will not depend on the ordering of the previous cluster

points x1, . . . , xi−1. Specifically, for i > 1 and x1, . . . , xi ∈ W ,

h(xi|{x1, . . . , xi−1};σ) =
l2i exp(−r2i /λ)

λ|W |(1 − exp(−l2i /λ))
if 0 < ri < li, (2)

and h(xi|{x1, . . . , xi−1};σ) = 0 otherwise, where λ = 2σ2, and ri and li are defined as follows. Consider the
Dirichlet (or Voronoi) tessellation of R2 with nuclei x1, . . . , xi−1, that is the tessellation with cells

Cj = {ξ ∈ R2 : ‖ξ − xj‖ ≤ ‖ξ − xj′‖, j′ = 1, . . . , i− 1}, j = 1, . . . , i− 1,

where ‖ · ‖ denotes Eucledian distance (see e.g. Okabe, Boots and Sugihara (1992) or Møller (1994)). Note
that Cj ∩W is convex—this is where the assumption that W is convex becomes convenient—and xi belongs
almost surely to a unique Dirichlet cell, say Cj . Then ri = ‖xi − xj‖ and li is the length of the line segment
through xi and with endpoints at xj and the boundary of Cj ∩ W . See the example in Figure 2a, where
i = 4 and j = 2. Making a change of the variable xi − xj to the polar coordinates (θi, ri), we obtain

∫

Cj

l2i exp(−r2i /λ)

λ|W |(1 − exp(−l2i /λ))
dxi =

∫ 2π

0

(∫ li

0

ril
2
i exp(−r2i /λ)

λ|W |(1 − exp(−l2i /λ))
dri

)
dθi =

∫ 2π

0

l2i
2|W | dθi =

|Cj |
|W | .

Consequently, since |W | =∑i−1
j=1 |Cj ∩W |, (2) is indeed a density function with respect to Lebesgue measure

restricted to W . It also follows that xi appears in cell Cj with probability pj = |Cj ∩W |/|W |, and if xi is
conditioned to be in Cj , then xi follows the restriction of N2(xj , σ

2I) to Cj ∩W , where N2(xj , σ
2I) denotes

the radially symmetric bivariate normal distribution with mean xj and standard deviation σ. This justifies
the terminology ‘dependent cluster point’, but it is perhaps surprising that realizations of the model for
cluster points exhibit linear structures as demonstrated later on.

——
Figure 2 about here

——

As explained in the following two paragraphs, an important advantages of the model is that neither the
calculation of the distribution p1, . . . , pi−1 or the construction of the entire Dirichlet tessellation is needed
when evaluating the density (2) or simulating from this distribution.

To evaluate the density (2) we use the following simple steps, where we exploit the construction of
Dirichlet cells and the fact that Cj ∩W is convex for all j < i.

(a) Find the closest point xj to xi with j < i, the half-line Lj with endpoint xj and passing through xi,
and the intersection point vj between Lj and the boundary of W . Calculate lj = ‖vj − xj‖.

(b) For each j′ ∈ {1, . . . , i−1}\{j}, find the line Lj′ passing through (xj+xj′)/2 and perpendicular to the
line through xj and xj′ . If vj′ is the intersection point between Lj and Lj′ within W , then calculate
lj′ = ‖vj′ − xj‖. If Lj ∩ Lj′ ∩W = ∅, then set lj′ = ∞.

(c) Return ri = ‖xi − xj‖ and li = min{l1, . . . , li−1}.
Figure 2b shows an example, where i = 5, step (a) returns j = 4 and l4 = ‖v4 − x4‖, step (b) returns
l1 = ‖v1 − x4‖, l2 = ∞, and l3 = ‖v3 − x4‖, and step (c) returns r5 = ‖x5 − x4‖ and l5 = ‖v3 − x4‖. Since
C4 ∩ W is the region around x4 bounded by the lines L1, L2, L3 and the boundary of W , (c) returns the
correct result.

Moreover, we can easily make a simulation under (2) by the following steps.
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(A) Generate a uniform point yi in W , which is independent of x1, . . . , xi−1.

(B) Find the (almost surely unique) closest point xj to yi (1 ≤ j < i), the half-line Lj through yi and with
end-point xj , and the distance li from xj to the intersection point between Lj and the boundary of
Cj ∩W (we calculate li in the same way as in (a)-(c) above).

(C) Generate ti from an exponential distribution with parameter 1/λ and restricted to the interval (0, l2i ).
Set ri =

√
ti.

(D) Return xi as the point on Lj with distance ri from xj .

Figure 3a shows a simulation of xc when W and k = 81 are as in Figure 1b (the mountain tops), and
p = 0.800 and σ = 286.4m are given by the estimated posterior mean obtained by the Bayesian method in
Section 3 (with q = 1) using the mountain tops data set. Nearly all of the points in Figure 3a are placed
in medium sized linear structures, whereas the point pattern in Figure 1b shows larger linear structures but
also solitary points. As shown in Sections 2.3.2 and 3, the extension in Section 2.2 of the model to the case
with the background points included provides a much better description of the mountain tops data set.

——
Figure 3 about here

——

2.2 The model with background points included

We now extend the model by the following assumptions. Conditional on (n, k), xb is independent of xc

and forms a binomial process on W , i.e. the m = n − k background points are independent and uniformly
distributed onW . Further, k conditional on n is binomially distributed with index n and unknown probability
q ∈ [0, 1]. So writing xc = ∅ (the empty set) if k = 0, and xb = ∅ if m = 0, the density of x = (xc, xb) is

π(xc, xb|q, p, σ) =
(
n
k

)
qk
(
1− q

|W |

)m k∏

i=1

f(xi|x1, . . . , xi−1; p, σ) (3)

with respect to the measure ν on ∪n
l=0W

l×Wn−l given by ν =
∑n

l=0 νk, where νl is the product of Lebesgue
measure onW l and Lebesgue measure onWn−l (interpreting ‘Lebesgue measure onW 0’ as the point measure
concentrated at W 0 = {∅}).

One way of simulating x under (3) is by initially setting xc = ∅ and xb = ∅, generating independent
uniform points y1, . . . , yn in W , and independently of these points, generating independent identically dis-
tributed random variables j1, . . . , jn, where

P(ji = 1) = 1− q, P(ji = 2) = q(1 − p), P(ji = 3) = pq.

For i = 1, . . . , n, if ji = 1 then yi becomes a background point, meaning that yi is added to xb; if ji = 2
then yi becomes an independent cluster point, so it is added to xc; if ji = 3 then yi is transformed into a
dependent cluster point in accordance to (B)-(D) in Section 2.1, and this dependent cluster point is then
added to xc.

For practical reasons we have ignored possible edge effects caused by unobserved points outside W .
Observe that if n is assumed to be Poisson distributed with parameter κ > 0, then y = {y1, . . . , yn} becomes
a homogeneous Poisson process, and thus the independent division of y into background points, independent
cluster points, and ‘points which are later transformed into dependent cluster points’ as described above form
three independent homogeneous Poisson processes on W given by {yj : ij = 1}, {yj : ij = 2}, {yj : ij = 3}
and with intensities (1 − q)κ, q(1 − p)κ, pqκ, respectively. To eliminate the problem with edge effects, we
could extend this to three independent stationary Poisson processes Φ1,Φ2,Φ3 on R2, with intensities as
above, and where we attach an arrival time to each cluster point in order to specify a sequential construction
of the dependent cluster points which are obtained by transforming the points in Φ3 in exactly the same
way as described above. For instance, these arrival times could be independent and identically distributed
and follow a continuous distribution (as this ensures that the arrival times are almost surely distinct); see
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Møller et al. (2010) for a somewhat similar extension in the case of the Matérn hard core process of type III.
The resulting point process would be given by the superposition X = Φ1 ∪ Φ2 ∪ Ψ3, where Ψ3 denotes the
point process of dependent cluster points, and X is stationary with intensity κ. However, dealing with such
an extended model would make it much harder to perform a detailed statistical analysis, so we refrain any
further in this paper to consider this extension of the model.

2.3 Data examples and simulations

This section provides further details on the data sets given in Figure 1, and discusses some simulations of
our sequential point process model in relation to the data sets.

2.3.1 Location of barrows

Our first data set (Figure 1a) is the location of barrows within a 15 × 15 km region in Western Jutland,
Denmark. Barrows, which are bronze age burial sites resembling small hills, are important sources of
information for archaeologists. Contrary to other areas of Denmark, a relatively large proportion of the
barrows are still present in the Western Jutland due to less intensive agriculture. The spatial distribution
of barrows across Denmark shows a variety of patterns, particularly clusters of points along various lines,
where some lines seem to stretch across the landscape for hundreds of kilometers.

The barrow lines have traditionally been regarded as reflecting a prehistoric system of roads, cf. Müller
(1904), though there are other potential explanations for this phenomenon, see e.g. Sahlquist (2001). Our
sequential point process model provides an alternative explanation, since it has the following näıve interpre-
tation: the barrows are placed according to a ‘local decision-making rule’, where

• the i’th barrow corresponds to a person who died at a uniformly placed location yi (independently of
previously generated barrows);

• with probability 1 − pq the survivors bury the person in a barrow at location yi, and conditional on
this event, with probabilities (1 − q)/(1 − pq) and (q − pq)/(1 − pq), yi becomes a background point
respective an independent cluster point;

• otherwise the survivors bury the person in a barrow close to the closest barrow located at a previous
cluster point, and the location of this new barrow becomes a dependent cluster point.

Figure 4 shows a simulated point pattern with the same 15 × 15 km region and number of points as in
the barrows data set, and where (q, p, σ) = (0.758, 0.723, 68.3m) is the estimated posterior mean obtained
by the Bayesian method in Section 3. Figure 1a (the barrows data set) and Figure 4 (the simulation) have
both some similarities and differences. In particular the linear structures in Figure 1a are longer than in
Figure 4; this was also typically observed when we made a number of further simulations (not shown here).
A closer look at Figure 1a reveals a possible reason for this: the longer linear structures have both small
and large gaps between neighboring points, and it is quite possible that the model ‘sees’ the large gaps
as separating different clusters, so the data is ‘interpreted’ as containing many smaller clusters. This may
suggest to replace the ‘normal’ density function (2) by a density with heavier tails. We shall not pursue this
any further in this paper, but merely note that the current model only fits some aspects of the barrow data
set.

——
Figure 4 about here

——

2.3.2 Location of mountain tops

Our second data set (Figure 1b) is the location of mountain tops (above 2600m of sea level) in a 7.5× 10.5
km region in the Pyrenees of Northern Spain. Many of the mountain tops are located along linear structures,
which of course is a consequence of the fact that many tops are located along the mountain ridges. However,
visually the linear structures are somewhat obscured by some tops located off the ridges. We consider our

5



sequential point process model only as a flexible way of modelling these mountain tops and do not intend to
give an interpretation in terms of the model’s sequential construction.

Figure 3b shows a simulated point pattern with the same 7.5 × 10.5 km region and number of points
as in the mountain data set, and where (q, p, σ) = (0.825, 0.887, 278.1m) is the estimated posterior mean
obtained by the Bayesian method in Section 3. Comparing with the data in Figure 1b, we see no obvious
discrepancies. Both contain medium length linear structures, gaps with no or few points, and quite many
solitary points.

3 Simulation-based Bayesian inference

3.1 Likelihood and missing data

The likelihood function for the observed point pattern {x1, . . . , xn} can in principle be derived from the
density (3) but it turns out to be too complicated because of the following ‘missing data’ problem. Recall
that (3) is a joint density for xc = (x1, . . . , xk) and xb = (xk+1, . . . , xn). Let z = (z1, . . . , zn) denote an
arbitrary ordering of {x1, . . . , xn}. Define u = (u1, . . . , un) such that ui = 1 if zi is a cluster point, and
ui = 0 if zi is a background point. Given the values of u1, . . . , un, define the permutation ω = (ω1, . . . , ωk)
of the sequence of those i with ui = 1 such that xc = (zω1 , . . . , zωk

), and the permutation η = (η1, . . . , ηm) of
the sequence of those i with ui = 0 such that xb = (zη1 , . . . , zηm). In other words, zωi is the i’th cluster point,
and zηj is the j’th background point. Clearly (xc, xb) is in a one-to-one correspondence with (z, u, ω, η), so
(u, ω, η) is the missing data, and the density of z is given by summing in (3) over all (u, ω, η). For fixed (u, ω),
(3) does not depend on η, so essentially it is only (u, ω) which is missing. Hence the number of terms in the
sum reduces to

∑n
k=0 n!/k! (the cardinality of the state space of (u, ω)), and apparently the sum cannot be

reduced any further. This number of terms is very huge when n = 81 as in the mountain tops data set, and
extremely huge when n = 1147 as in the barrows data set. This makes the likelihood based on the data z
intractable.

We treat this missing data problem by including (u, ω) into the posterior considered in Section 3.2. Note
that conditional on z, (u, ω) is in a one-to-one correspondence with (xc, {xk+1, . . . , xn}), and its probability
mass density is proportional to

π̃(u, ω|z; q, p, σ) = 1

k!
qk
(
1− q

|W |

)m k∏

i=1

f(xi|x1, . . . , xi−1; p, σ) (4)

for all u = (u1, . . . , un) ∈ {0, 1}n and all permutations ω = (ω1, . . . , ωk) of the sequence of those i with
ui = 1. As discussed in Section 3.2, as one ingredient of making simulation-based Bayesian inference, we
make simulations from (4). Incidentally, such simulations would also be needed if we want to determine an
approximate maximum likelihood estimate of θ based on a missing data Markov chain Monte Carlo (MCMC)
approach, see Geyer (1999) and Møller and Waagepetersen (2004).

3.2 Prior assumptions and posterior distribution

As argued in Section 3.1, we shall consider the posterior distribution of the unknown quantities u, ω, q, p, σ.
By Bayes formula, the posterior density is proportional to the term (4) times the prior density of (q, p, σ).
In the sequel we impose independent and ‘flat’ priors on the parameters q, p, and σ, where both p and q
follow a uniform distribution on the interval [0, 1], while σ follows an inverse gamma density π(σ) with shape
parameter 2 and a known scale parameter β > 0. Thereby σ has mean value β but an infinite variance.
These prior assumptions, including the specification of β, seem less important as the posterior distribution
based on either of our two data sets will be dominated by the term (4) as demonstrated in Section 3.3.

The posterior distribution of (u, ω, q, p, σ) given z naturally splits into four ‘full conditionals’, where we
use the generic notation π̃ for unnormalized densities:

(I) (u, ω)|(z, q, p, σ) has unnormalized probability mass density π̃(u, ω|z, p, q, σ) given by (4);

(II) q|(z, u, ω, p, σ) is Beta-distributed with parameters k + 1 and m+ 1;
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(III) p|(z, u, ω, q, σ) has unnormalized density

π̃(p|z, u, ω, q, λ) =
k∏

i=1

f(zωi|zω1 , . . . , zωi−1 ; p, σ), 0 < p < 1; (5)

(IV) σ|(z, u, ω, q, p) has unnormalized density

π̃(σ|z, u, ω, q, p) = π(σ)
k∏

i=1

f(zωi |zω1 , . . . , zωi−1 ; p, σ), σ > 0. (6)

We presume that the reader has some familiarity to MCMC algorithms, see e.g. Gilks, Richardson and
Spiegelhalter (1996). For simulation of the posterior, we use a fixed scan Metropolis-within-Gibbs algorithm
(also called a hybrid Metropolis-Hastings algorithm) which makes updates from the full conditionals in
(I)-(IV). Details are given in Appendix A.

3.3 Posterior results

In this section we report on simulation-based posterior results when β = 150; results for other choices of β
look very similar as discussed in Section 3.4. For generating simulations of the posterior distributions for
the mountain tops data set, we have used 100,000 steps in the Markov chains, where we have discarded
the first 10,000 steps as burn-in. Since the barrows data set is much larger than the mountain tops data
set, and it thus takes more steps to adequately explore the space of missing data, we have used 500,000
steps with a burn-in of 100,000 steps for this data set. For approximating the posterior distributions of the
parameters (q, p, σ), we have used all simulations resulting from this, while for approximating the posterior
distributions of the missing data (u, ω), we have subsampled the data, only using every 100th sample for the
approximations.

For our two data sets, Figures 5 and 6 show the marginal posterior distributions of the parameters
q, p, and σ, and Figures 7 and 8 the bivariate posterior distributions of (q, p), (q, σ), and (p, σ). These
distributions are very different from the flat and independent priors assumed in Section 3.2, showing that
the posterior density is dominated by the term (4) and not by the prior density of (q, p, σ).

——
Figure 5 about here

——

——
Figure 6 about here

——

——
Figure 7 about here

——

——
Figure 8 about here

——

For the barrows data set, the marginal and posterior distributions of the parameters q, p, σ (Figure 6)
and the bivariate posterior distributions of (q, p), (q, σ), and (p, σ) (Figure 8) are rather close to normal
and bivariate normal distributions. There is a positive correlation between σ and q, and between σ and
p, while q and p are negatively correlated—this may seem logical for the following reason. As σ increases,
the ‘attraction’ of a dependent cluster point towards its closest previous cluster point is relaxed, so both
the mean number of cluster points (i.e. nq) and the probability of a cluster point being a dependent cluster
point (i.e. p) tend to increase but in a way such that mean number of dependent cluster points (i.e. npq) is
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not getting too large. For the mountain tops data set, it looks quite differently, as the marginal posterior
distributions of q and p in Figure 5 are left skewed, and the bivariate distributions in Figure 7 are far from
being normal.

Figure 9 illustrates the usefulness of our Bayesian approach for estimating the linear structures. Each data
point in the figure is the center of a circle with a radius proportional to the marginal posterior probability
of the data point being a cluster point, where in each figure the largest circle corresponds to a probability of
one. Figure 9a concerns the mountain tops data set, where the type of the points seem to be well-estimated,
since all the points located in the linear formations are marked by large circles, and the solitary points are
marked by small circles. In Figure 9b (the barrows data set) this is mostly also the case, although some
points may seem to have been ‘misclassified’.

——
Figure 9 about here

——

Figure 10 shows the estimated order in which the cluster points appear in linear structures using circles
of different radii. More precisely, consider the order (ω1, . . . , ωk) of the cluster points, and let oi denote the
number of the point zi in this order, i.e. oi = j if ωj = i, and let ōi denote the average of a sample of oi
obtained from the Markov chains, disregarding all steps where zi is a background point. The figures show
circles centered at the data points with radii proportional to exp(−bōi) where b = 0.004 for the barrows
data set and b = 0.1 for the mountain tops data set, i.e. large circles in the figures indicate that points
have appeared early. The b values have been chosen by trial-and-error to give plots where the different sizes
of the circles can be clearly seen. Note that good choices of b depends on the number of points n and the
configuration of the points. In Figure 10a we see that the early points are located in the largest cluster,
while the solitary points are usually appearing very late, when they are part of the cluster (they are usually
background points as can be seen by comparing Figure 10a with Figure 9a). Figure 10b shows a different
picture: here the larger clusters can be seen as consisting of many smaller clusters of points appearing roughly
at the same time. This indicates that these are indeed interpreted as many smaller clusters as suggested in
Section 2.3.

——
Figure 10 about here

——

3.4 Model checking and sensitivity analysis

In this section, we check how well the model fits certain aspects of the data, as well as how sensitive the
model is to changes in the prior distribution.

3.4.1 Model checking

We have already compared the two data sets to simulations visually in Section 2.3. In the present section,
we compare simulated data from the posterior predictive distribution with the observed data; recall that a
simulation from the posterior predictive distribution is given by simulating first a realization (p, q, σ) from
the posterior distribution and second a realization of a point pattern generated by our sequential point
process model with parameters p, q, σ. We focus on investigating the shape of the linear structures on a
more detailed level than in Section 2.3.

One way of measuring the shape of the linear structures is to use the angle between an arbitrary point
and the two nearest points. Consider the point zi, and let zj and zk denote its two nearest points. Then
we denote the angle between the vectors zj − zi and zk − zi by ai ∈ [0, π]. An abundance of angles close
to either 0 or π indicates that many points are located on roughly straight lines. In Figure 11, the crosses
correspond to a histogram of such angles for the data grouped into ten equidistant intervals of [0, π], and
the small horizontal lines correspond to 0.5 %, 2.5 %, 50 %, 97.5 %, and 99.5 % quantiles obtained from 199
posterior predictions. Figure 11a shows no clear discrepancies between the mountain tops data set and the
simulations, although for two values the data lies on the edge of approximated 99% interval. In Figure 11b
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there some more clear differences, in particular the simulations show a higher tendency to produce angles
close to 0 than the barrows data set.

——
Figure 11 about here

——

Another kind of model check is based on ‘squeezedness’ defined as follows. Consider the Delaunay
triangulation generated by the data, i.e. if zi and zj share a common Dirichlet edge, then they are the end
points of an edge in the Delaunay triangulation (see e.g. Okabe et al. (1992) or Møller (1994)). Consider
two Delaunay triangles with vertices {zi, zj, zk} and {zi, zj , zl}, i.e. zi and zj specify a common edge ei,j of
the two triangles. Then

qi,j = 1− ‖zi − zj‖/min{(‖zi − zl‖+ ‖zj − zl‖)/2, (‖zi − zk‖+ ‖zj − zk‖)/2}

is the squeezedness associated to ei,j. This quantity takes values in the interval [−1, 1], and it is close to
one if the points zi and zj are clearly part of a linear structure with zk and zl on each side of this structure.
Figure 12a shows the empirical distribution function of qi,j for the mountain tops data set together with
quantiles obtained from 199 posterior predictions. The empirical distribution function for the data resembles
the simulations fairly well and stays within the quantiles, except for a brief excursion around the value
qi,j = 0.2. Here the empirical distribution function is lower than the simulations, suggesting that the linear
structures in the data is slightly tighter packed than in the simulations. Figure 12b shows a similar picture
for the barrows data set, except here the empirical distribution function for the data is higher than the
simulations around the value qi,j = 0.5, suggesting more loosely packed linear structures in the data. Note
that the high end of these figures, i.e. values where qi,j is close to one, is the most interesting part of the
figures, since points in linear structures typically will influence this part of the function.

——
Figure 12 about here

——

3.4.2 Sensitivity analysis

In this section, we check how sensitive the posterior distributions are to changes in the values of the hyper-
parameters. We focus on β since this parameter has been chosen rather arbitrarily to be 150 in Section 3.3.
For the mountain tops data set we have also tried other values to test whether this choice has any signifi-
cant influence on the posterior distributions. Here we compare the values β = 50, 150, 300. The two other
values, β = 50 and β = 300, both give posterior distributions for the parameters that are visually almost
indistinguishable from the ones shown in Figures 5 and 7. The posterior distributions of the missing data
for the different choices of β are even closer; for all three values of β the plots of the posterior distributions
of the missing data are visually the same as the ones given in Figures 9a and 10a.

Since the barrows data set contains many more points than the mountain tops data set, there is much
more information in the data, and we therefore expect the prior distribution to have even less impact on the
analysis for this data set.

As a further argument that the present choice of prior distributions does not influence the analysis much,
consider the estimated marginal posteriors in Figures 5 and 6. All of these look very different from the
uniform and inverse gamma distributions used as priors, which indicates that the data must have a high
impact on the posterior distributions.

Appendix A: Posterior simulations

This appendix describes how to make MCMC updates from each of the full conditionals (I)-(IV) in Sec-
tion 3.2.

To update q from the Beta-distribution in (II), we simply use a Gibbs update, while we use random walk
Metropolis algorithms in (III)-(IV). Specifically, in case of (III), if p is the current state of the random walk
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Metropolis chain, we generate a proposal p′ from the uniform distribution on [p − ǫ, p + ǫ] for some fixed
value ǫ > 0, calculate the Hastings ratio H(p, p′) = 1[0 < p′ < 1]π̃(p′|z, u, ω, q, σ)/π̃(p|z, u, ω, q, σ) obtained
from (5), accept the proposal with probability min{1, H(p, p′)} as the next state of the chain, and otherwise
let p be the next state of the chain. Similarly in case of (IV), where if σ is the current state of the chain, we
generate a normally distributed proposal σ′ with mean σ and some fixed standard deviation τ , calculate the
Hastings ratio H(σ, σ′) = 1[σ′ > 0]π̃(σ′|z, u, ω, q, p)/π̃(σ|z, u, ω, q, p) obtained from (6), and make a similar
accept/rejection step to see if σ or σ′ should be the next state.

For (I) we use a Metropolis-within-Gibbs algorithm, with updates of different types as described in the
sequel. Let (u,w) denote a generic ‘current state of the chain’, and let xc and xb be the corresponding
‘current states’ of the cluster and background processes. For i = 1, . . . , n, let xk+1 be the first zi with ui = 0,
xk+2 the second zi with ui = 0, and so on. This assignment plays no role as the ordering of background
points is of no importance, cf. Section 3.2. In Sections A1, A2, and A3, we describe updates of type 0, 1,
and i ≥ 2, respectively. Briefly, in a type 0 update, we propose that a background point becomes a cluster
point, in a type 1 update, we propose that a cluster point becomes a background point, and in a type i ≥ 2
update, we propose to shift the ordering of two succeeding cluster points. Since (4) is a discrete density, it
becomes straightforward to calculate the Hastings ratios. We assume there is an equal probability for doing
either a type 0 or type 1 update, and we use a systematic updating scheme, where we first do either a type
0 or type 1 update, and second if k > 1, make updates of type 2, . . . , k.

In the analyses in Section 3.3, we have used ǫ = 0.1 and τ = 10 when running the Markov chains. For
the mountain tops data set 100,000 steps with a burn-in of 10,000 steps was used, while the barrows data
set required 500,000 steps with a burn-in of 100,000. The reason for the higher number of steps and the
high burn-in required for the barrows data set is the higher number of points in the data set, which means
that we need many type 0 and 1 updates for adequately exploring the space of the missing data. Apart from
this, the mixing of the Markov chains seems to be good. Note also that the computation time for each step
increases with the number of cluster points.

A1: A background point becomes a cluster point

For a type 0 update, if k = n we do nothing, so suppose that m = n− k > 0. Uniformly at random we pick
j ∈ {0, . . . , k} and i ∈ {k + 1, . . . , n}, and we propose to update k by k′ = k + 1, m by m′ = m− 1, xc by

x′
c = (x′

1, . . . , x
′
k′) = (x1, . . . , xj , xi, xj+1, . . . , xk)

and xb by
x′
b = (x′

k′+1, . . . , x
′
n) = (xk+1, . . . , xi−1, xi+1, . . . , xn).

In other words, we propose to update (u, ω) by

u′ = (u′
1, . . . , u

′
n) = (u1, . . . , ui−1, 1, ui+1, . . . , un)

and
ω′ = (ω′

1, . . . , ω
′
k+1) = (ω1, . . . , ωj , ω

′
j+1, ωj+1, . . . , ωk)

where ω′
j+1 is defined by xi = zω′

j+1
.

To obtain the Hastings ratio, we start by recalling that (u, ω) is a one-to-one correspondence with
(xc, {xk+1, . . . , xn}). When a background point becomes a cluster point, there arem possibilities for choosing
a background point and k+1 possibilities for choosing a position in the order of the clusters points. For the
reverse update, i.e. when a cluster point becomes a background point (the type 1 update in Section A2), there
are k′ possibilities for choosing a cluster point, and since the order of the background points is irrelevant,
we do not have to account for the position among the background points. From this and (4) we obtain the
Hastings ratio H0 = r(j, xc, xi), where

r(j, xc, xi) =

1
k′

1
k′!q

k′
(

1−q
|W |

)m′ ∏
l≤k′ f(x′

l|x′
1, . . . , x

′
l−1)

1
k+1

1
m

1
k! q

k
(

1−q
|W |

)m∏
l≤k f(xl|x1, . . . , xl−1)

.

10



Note that we suppress in the notation that f(xl|x1, . . . , xl−1) = f(xl|x1, . . . , xl−1; p, σ) and f(x′
l|x′

1, . . . , x
′
l−1) =

f(x′
l|x′

1, . . . , x
′
l−1; p, σ) both depend on (p, σ). Clearly, the Hastings ratio reduces to

r(j, xc, xi) =
mq|W |

(k + 1)(1− q)
f(xi|x1, . . . , xj)

k∏

l=j+1

f(xl|x1, . . . , xl−1, xi)

f(xl|x1, . . . , xl−1)
.

A2: A cluster point becomes a background point

Type 1 updates are the reverse of type 0 updates. If k = 0 we do nothing, so suppose that k > 0. Uniformly
at random we pick j ∈ {1, . . . , k} and i ∈ {k, . . . , n}, and propose k′ = k − 1, m′ = m+ 1,

x′
c = (x′

1, . . . , x
′
k′ ) = (x1, . . . , xj−1, xj+1, . . . , xk)

and
x′
b = (x′

k′+1, . . . , x
′
n) = (xk+1, . . . , xi, xj , xi+1, . . . , xn).

In other words, we propose

u′ = (u′
1, . . . , u

′
n) = (u1, . . . , ui−1, 0, ui, . . . , un)

and
ω′ = (ω′

1, . . . , ω
′
k−1) = (ω1, . . . , ωj−1, ωj+1, . . . , ωk).

The Hastings ratio is H1 = 1/r(j − 1, x′
c, xj).

A3: Shifting the ordering of two succeeding cluster points

When k > 1 and i ∈ {2, . . . , k}, a type i update is given as follows. Propose to keep x′
b = xb and replace xc

by
x′
c = (x′

1, . . . , x
′
k) = (x1, . . . , xi−2, xi, xi−1, xi+1, . . . , xk).

In other words, propose u′ = u and

ω′ = (ω′
1, . . . , ω

′
k) = (ω1, . . . , ωi−2, ωi, ωi−1, ωi+1, . . . , ωk).

By (4), the Hastings ratio is

Hi =
f(xi|x1, . . . , xi−2)f(xi−1|x1, . . . , xi−2, xi)

f(xi−1|x1, . . . , xi−2)f(xi|x1, . . . , xi−1)
.
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(a) (b)

Figure 1: (a): The locations of 1147 barrows (bronze age burial sites) in a 15 × 15 km region. (b): The
locations of 81 mountain tops in a 7.5× 10.5 km region.
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Figure 2: (a): Example with a rectangular window W , i = 4, three cluster points x1, x2, x3, and their
respective Dirichlet cells C1, C2, C3 within W . The new cluster point xi and the distances li and ri are
shown. (b): Example with i = 5, showing four cluster points x1, . . . , x4 and a new cluster point xi (filled
circles), where xi is closest to x4. The half line L4 (dashed line), the lines L1, L2, L3 (solid lines), and the
intersection points v1, v3 and v4 (empty circles) are also shown.

(a) (b)

Figure 3: (a): A simulated point pattern of k = 81 cluster points when p = 0.800, σ = 286.4m, and W
is a 7.5 × 10.5 km region. (b): A simulated point pattern of n = 81 cluster and background points, where
q = 0.825, p = 0.887, σ = 278.1m, and W is a 7.5× 10.5 km region.
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Figure 4: A simulated point pattern of n = 1147 cluster and background points, where q = 0.758, p = 0.723,
σ = 68.3m, and W is a 15× 15 km region.
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Figure 5: Histograms showing the marginal posterior distributions of q, p, and σ for the mountain tops data
set.
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Figure 6: Histograms showing the marginal posterior distributions of q, p, and σ for the barrows data set
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Figure 7: Scatter plots showing the marginal posterior distributions of (q, p), (q, σ), and (p, σ) for the
mountain tops data set. In each plot the dots are obtained by subsampling from an MCMC sample obtained
by taking every 50th sample.
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Figure 8: Scatter plots showing the marginal posterior distributions of (q, p), (q, σ), and (p, σ) for the barrows
data set. In each plot the dots are obtained by subsampling from an MCMC sample obtained by taking
every 50th sample.

(a) (b)

Figure 9: Scatter plot with circles indicating the marginal posterior probability of a point being a cluster
point for (a) the mountain tops data set and (b) the barrows data set.
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(a) (b)

Figure 10: Scatter plot with circles indicating the order in which the cluster points occur in (a) the mountain
tops data set and (b) the barrows data set.
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Figure 11: (a): The distribution of angles ai for the mountain tops data set (crosses) and 0.5 %, 2.5 %, 50
%, 97.5 %, and 99.5 % quantiles obtained from 199 posterior predictions. (b): A similar plot for the barrows
data set.
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Figure 12: (a): The distribution function for squeezedness qi,j for the mountain tops data set (solid line) and
0.5 %, 2.5 %, 50 %, 97.5 %, and 99.5 % quantiles obtained from 199 posterior predictions. (b): A similar
plot for the barrows data set.
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