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This paper considers statistical inference procedures for a class of models for positively correlated
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1. Introduction

Møller and Rubak (2010) provided a review of a class of models for positively correlated
count variables N = (N1, . . . , Nm), which possess a number of appealing properties. This
model class was referred to as α-permanental random fields, since it is a special case of
the class of general α-permanental point processes which have been the subject of much
research interest in recent years, see Macchi (1971, 1975), Shirai and Takahashi (2003a,b),
Georgii and Yoo (2005), and McCullagh and Møller (2006). As each count variable Ni
follows a negative binomial distribution, an α-permanental random field may be referred
to as a multivariate negative binomial distribution. The probabilistic properties of these
multivariate distributions have been studied in detail in Griffiths and Milne (1987), Vere-
Jones (1997), and Møller and Rubak (2010), but to the best of our knowledge no statistical
inference based on the models have been conducted. In this paper we develop statistical
inference procedures using the full likelihood, quasi-likelihood or composite likelihoods.

Section 2 introduces the notation and provides the necessary background material.
Section 3 describes the inferential procedures, and Section 4 illustrates their use for an-
alyzing two different data sets. Technicalities are deferred to Appendix A, which, among
other things, establishes a new result concerning the joint density of any two count vari-
ables (Ni, Nj).

2. The α-permanental random field

This section contains a very brief introduction to the necessary background material
about the α-permanental random field. We mainly follow the notation and terminology
of Møller and Rubak (2010), and further details can be found therein.

We start by recalling the definition of the α-permanent of an n × n matrix A with
entries Ai,j ,

perα(A) =
∑

σ∈Sn

αc(σ)A1,σ(1)A2,σ(2) · · ·An,σ(n),

where Sn is the set of all permutations of 1, . . . , n, and c(σ) denotes the number of
cycles in σ. In a more general setup, it may be convenient to work with the related
α-determinant detα(A) = αnper1/α(A) as in Møller and Rubak (2010), but it is not
necessary here. In general the α-permanent is very expensive computationally, and apart
from a few special cases it can only be approximated (see Appendix A for details).

The distribution of an α-permanental random field N = (N1, . . . , Nm) is specified by
a positive real parameter α and a real m ×m matrix C, and we write N ∼ per(α,C).
Throughout this paper we assume that the matrix

C̃ = αC(I + αC)−1 (1)

exists. As discussed below, further restrictions need to be satisfied by (α,C) or by (α, C̃)
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to ensure the existence of the distribution per(α,C). Then, for

n = (n1, . . . , nm) ∈ {0, 1, . . .}m, n⋆ =

m∑

i=1

ni,

the probability function is given by

p(n) =
|I − C̃|1/α∏m

i=1 ni!
per1/α(C̃[n]), (2)

where C̃[n] is the n⋆ × n⋆ block matrix obtained from C̃ by repeating the i’th index ni
times (cf. Section A.2 for further details). Marginally each Ni follows a negative bino-
mial distribution with mean ENi = Ci,i and variance VarNi = Ci,i + αC2

i,i. Furthermore,
Cov(Ni, Nj) = αCi,jCj,i ≥ 0 for i 6= j, so all correlations are non-negative. The parameter
α influences both the amount of over-dispersion and the strength of correlation between
variables. In particular these decrease as α tends to zero and the limiting distribution
is Poisson with independent components regardless of the matrix C. No combination
of parameters (α,C) exists such that the components of N are Poisson variables with
positive correlation. However, over-dispersion without correlation is possible, in which
case the components are independent negative binomial variables. In other words, the α-
permanental model is such that, if there is correlation among the counts, over-dispersion
will also be present. The over-dispersion factor for each Ni is 1 + αE(Ni).

In this paper we mainly consider the case where the following doubly stochastic con-
struction applies: First, let X = (X1, . . . , Xm) follow a certain multivariate gamma dis-
tribution denoted Γm(α,C), where Proposition 4.5 in Vere-Jones (1997) gives a sufficient
and necessary condition for the existence of this multivariate gamma distribution, but
the following sufficient condition (C1) is simpler to use:

(C1) C is a covariance matrix and α ∈
(
0, 2

m−1

]
∪
{

2
m−2 ,

2
m−3 , . . . , 1, 2

}
.

Under (C1), X is distributed as the diagonal of a Wishart matrix with 2/α degrees
of freedom and mean C, so marginally Xi is gamma distributed with EXi = Ci,i and
Cov(Xi, Xj) = αCi,jCj,i (Møller and Rubak, 2010, Section 4.1). Second, conditionally
on X, let the Ni’s be independent Poisson random variables with E(Ni |Xi) = Xi.

Under the doubly stochastic scheme, for k = 1, 2, . . . and given an observation of
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N = n, the Bayes estimate of the k’th moment of the unknown mean Xi is

E(Xk
i |n) =

1

p(n)

∫

Rm
+

xki p(n |x)p(x) dx

= (ni + 1) · · · (ni + k)
1

p(n)

∫

Rm
+

xni+k
i

(ni + k)!
e−xi

∏

j 6=i

[xnj

j

nj !
e−xj

]
p(x) dx

= (ni + 1) · · · (ni + k)
p(nki )

p(n)

=
per1/α(C̃[n

k
i ])

per1/α(C̃[n])
, (3)

where n = (n1, . . . , nm) and nki = (n1, . . . , ni−1, ni+ k, ni+1, . . . , nm). Furthermore, if D
is a diagonal matrix with diagonal entries Di,i =

√
ai where ai ≥ 0, then

(X1, . . . , Xm) ∼ Γm(α,C) ⇒ (a1X1, . . . , amXm) ∼ Γm(α,DCD). (4)

As noted in Vere-Jones (1997) the doubly stochastic construction is not necessary for
the existence of the α-permanental random field: there are (α,C) such that per(α,C) ex-
ists, but a corresponding gamma random field Γm(α,C) does not exist. Another sufficient
condition for the existence of per(α,C) is

(C2) C̃ has non-negative entries and all eigenvalues have modulus less than 1

(Vere-Jones (1997); Møller and Rubak (2010)). When (C1) is satisfied, simulation of first
X and second N is easily done by the doubly stochastic construction. If (C2) but not
(C1) is satisfied, a Poisson randomization can be used for simulation (Møller and Rubak,
2010, Section 4.2).

3. Inference

3.1. Full likelihood

Given a realization n of an α-permanental random field with a parametric model for the
matrix C = Cψ, where ψ is a real d-dimensional parameter, note that C̃ = C̃θ depends
on θ = (α, ψ), cf. (1). In principle, we can evaluate the log-likelihood

ℓ(α, ψ;n) =
1

α
log |I − C̃θ|+ log per1/α(C̃θ[n]) (5)

on a grid of (α, ψ) in order to obtain the maximum likelihood estimate (MLE) (α̂, ψ̂) (pro-
vided it exists). Further, for each grid point (α, ψ), we have access to the log-likelihood

ratio λ(α, ψ) = 2(ℓ(α̂, ψ̂)− ℓ(α, ψ)), which may be compared with quantiles of the χ2
d+1

distribution to find approximate confidence regions.
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However, as mentioned previously and discussed in Appendix A, exact calculation of
the α-permanent is usually not tractable, and in fact even approximate calculation may be
computationally expensive. Furthermore, the grid evaluation requires some knowledge of
the range of (α, ψ) values to include in the grid. Therefore we study composite likelihoods
which both serve as a computationally simple method for inference in its own right and
can be used for initializing the grid evaluation of the full likelihood.

3.2. Composite likelihood

Composite likelihoods have been extensively studied in many connections, see e.g. Lind-
say (1988) and Cox and Reid (2004). Here we outline how composite likelihood methods
can be used for the α-permanental random field model, using either the univariate or the
bivariate distributions.

Given an observation n and a parametric model as in Section 3.1, we define the first-
order composite log-likelihood by

ℓ1(θ) =

m∑

i=1

log pi(ni | θ), (6)

where pi is the marginal probability function for Ni. It corresponds to the log-likelihood
for m independent negative binomial random variables. In this case likelihood inference
can be done using an iterative Newton-Raphson procedure and efficient software imple-
mentations are readily available (Venables and Ripley, 2002, Section 7.4). Depending on
the parametric model for C, some parameters may be unidentifiable using this procedure,
since only the diagonal elements of C enter in the first-order composite log-likelihood,
as exemplified in Section 4.1. Due to the computational simplicity of this composite
log-likelihood, it is well suited for initialization of the parameters in more complicated
methods.

In a similar manner as above, we define the pairwise composite log-likelihood by

ℓ2(θ) =

m−1∑

i=1

m∑

j=i+1

log pi,j(ni, nj | θ), (7)

where pi,j denotes the bivariate probability function for (Ni, Nj). These bivariate distri-
butions have been thought to be quite complicated, cf. the discussion in Griffiths and
Milne (1987), and previously it was not possible to use these bivariate distributions in
practice. However, in Appendix A.2.3 we give a computationally simple formula for cal-
culation of the relevant α-permanent. The resulting bivariate probability function is

pi,j(ni, nj) =

(
ai
b

)ni
(aj
b

)nj
Γ( 1

α + ni)Γ(
1
α + nj)

b
1
αni!nj !Γ(

1
α )Γ(

1
α )

ni∧nj∑

k=0

(
ni
k

)(
nj
k

)
k!Γ( 1

α )

Γ( 1
α + k)

c2k, (8)
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where

ai = α2(Ci,iCj,j − C2
i,j) + αCi,i, aj = α2(Ci,iCj,j − C2

i,j) + αCj,j ,

b = α2(Ci,iCj,j − C2
i,j) + α(Ci,i + Cj,j) + 1, c =

αCi,j√
aiaj

.

This makes it practically feasible to implement the pairwise composite log-likelihood for
statistical inference.

In many applications there is a distance function or neighbourhood structure attached
to the domain, or index set, of the field. For example, when modeling spatial regions some
regions will share a boundary and will be called neighbours. In this way there will also
be a natural notion of higher order neighbours, such that regions not sharing a boundary
but with a common neighbour are second order neighbours etc. The part of the pairwise
composite log-likelihood (7) corresponding to contributions from k’th order neighbours
is denoted

ℓ2k(θ) =
∑

(i,j)∈P(k)

log pi,j(ni, nj | θ),

where P(k) denotes the set of distinct pairs (i, j) that are k’th order neighbours. It may
then be interesting to use the k’th order pairwise composite log-likelihood

ℓ2<k(θ) =

k∑

l=1

ℓ2l (θ).

Note that the pairwise composite log-likelihood defined in (7) corresponds to including
neighbours of all orders and we may write ℓ2(θ) = ℓ2<∞(θ).

3.3. Quasi-likelihood

As an alternative to composite likelihood inference based on low dimensional marginal
distributions as above we may consider inference based on low order moments. For an
α-permanental random field the factorial moments are given by α-permanents and are
especially tractable for low orders (see Vere-Jones, 1997; Møller and Rubak, 2010).

The quasi-likelihood as introduced by Wedderburn (1974) has been widely used in
the literature and has a well developed asymptotic theory (cf. McCullagh, 1983). In the
following we detail how to apply quasi-likelihood methods for α-permanental random
fields, and only briefly recall the necessary general results.

As an initial step we construct a vector

Y = (Ni, Ni(Ni − 1), Nij){i=1,...,m ; i<j≤m},

and denote the length of Y by n. We do not necessarily include products of all pairs of
counts NiNj with j > i; we may only consider a subset based on neighbour relations.
Note, that the mean µ = µ(θ) = Eθ(Y) and the covariance matrix Σ = Σθ = Covθ(Y)
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can be expressed in terms of factorial moments of order at most 4, which are easily
evaluated analytically.

Let D = Dθ be the n × d derivative matrix with entries Dir = ∂µi/∂θr. Then the
quasi-likelihood estimating function for θ is

U(θ;Y) = D⊤
θ Σ

−1
θ (Y − µ(θ)),

which has zero expectation and covariance matrix V = Vθ = Cov(U) = D⊤Σ−1D. The

quasi-likelihood estimator θ̂ ≡ θ̂(Y) is the root of the vector equation U(θ̂) = 0, which
can be found iteratively. Using a modified Newton-Raphson scheme the current estimate
θ̂(i) is updated to

θ̂(i+1) = θ̂(i) + V −1

θ̂(i)
U(θ̂(i);Y).

The iterative procedure is stopped once the estimate has converged within a specified
tolerance. Under regularity conditions the quasi-likelihood estimator is asymptotically
Gaussian with covariance matrix V −1, which is calculated in each step of the iterative
procedure. This allows us to attach an asymptotic variance V −1

θ to the quasi-likelihood
estimate.

4. Examples

4.1. One dimensional example

Figure 1 shows counts of clover leaves in 200 squares of size 5×5 cm along a 10 m transect
line as detailed in Augustin et al. (2006). This data can be viewed as a realization of a one-
dimensional random field consisting of 200 sites on the real line, with positive association
expected between the counts due to the multiplicity of leaves per plant and the clustering
of plants in patches. We model the leaf counts N = (N1, . . . , N200) as N ∼ per(α,C),
where Ci,j = κρ|i−j| with 0 ≤ ρ ≤ 1 and κ ≥ 0. Then condition (C2) is satisfied (Møller
and Rubak, 2010, Proposition 1). Furthermore, by arguments similar to those used in the
proof of Proposition 1 in Møller and Rubak (2010), it can be shown that for all α > 0, C
satisfies a regularity condition (Vere-Jones, 1997, Proposition 4.5) implying the existence
of X ∼ Γm(α,C) so that per(α,C) has a doubly stochastic construction, cf. Section 2.
Therefore, it makes sense to calculate the Bayes estimate Eθ(X |n) of the conditional
intensity for all positive α. The Bayes estimate for the model using the MLE as found
below is superimposed as a line in Figure 1.

As an initial step in the parameter estimation we use the first-order composite log-
likelihood. Notice, since ℓ1(α, κ, ρ) is independent of ρ, it is not possible to estimate
this parameter using ℓ1. Using the iterative Newton-Raphson procedure of Venables
and Ripley (2002), the estimate of log(κ) is 0.247 ± 0.257 and the estimate of 1/α is
0.396 ± 0.141, where both estimates are quoted plus/minus two standard errors. The
point estimates correspond to κ̂ = 1.28 and α̂ = 2.5. For a grid of parameter values
evaluation of the full log-likelihood yielded the MLE (α̂, κ̂, ρ̂) = (2.3, 1.28, 0.860). A
three dimensional approximate 95% confidence region can be found by calculating the
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Figure 1: Counts of clover leaves in 200 square patches with Bayes estimate of the random
mean field superimposed as a line.

likelihood ratio λ(α, κ, ρ) = 2(ℓ(α̂, κ̂, ρ̂) − ℓ(α, κ, ρ)) for all points of the parameter grid
and compare with the 95th percentile of the χ2

3-distribution. Marginal confidence intervals
are (1.4, 4.4) for α, (0.7, 4.7) for κ, and (0.8, 0.95) for ρ. To visualize the confidence region
in two dimensions Figure 2a shows a contour plot of λ(α, κ̂, ρ) as a function of (α, ρ)
with κ fixed at the MLE κ̂ = 1.28. The contours are based on the 50th, 95th, and 99th
percentile of the χ2

3-distribution. Figures 2b-2d are similar contour plots based on ℓ21, ℓ
2
9

and ℓ2<∞ with κ fixed at κ̂ = 1.28. In these plots the contours are no longer related to any
confidence regions. It is clear that ℓ21 in Figure 2b determines ρ quite well, and the higher
order neighbour pairs do not contain much information about ρ. A plot of the empirical
autocorrelation function (not shown) reveals that it is negative for neighbours of order
9, which explains the shape of the contour plot in Figure 2c, where the maximum is at
ρ = 0. The pairwise composite log-likelihood with neighbours of all orders is a sum of
many composite log-likelihoods, where ρ is poorly determined for the majority of them,
which causes the shape of the contour plot in Figure 2d. However, the point estimates
of the parameters other than ρ do not change much when inference is based on ℓ2<k
for growing k. Based on ℓ2<2 the estimates are (α̂, κ̂, ρ̂) = (2.5, 1.28, 0.860) whereas ℓ2<∞
yields the point estimates (α̂, κ̂, ρ̂) = (2.5, 1.28, 0.855).

Using the modified Newton-Raphson scheme described in Section 3.3 the quasi-likeli-
hood estimates (with corresponding two standard errors) are found to be α̂ = 2.2± 1.5,
κ̂ = 1.35 ± 0.7 and ρ̂ = 0.85 ± 0.16 when only first order neighbours are used. The
quasi-likelihood estimates only change slightly when higher order neighbours are used,
and they are not quoted here.

The full likelihood calculations have been carried out using the Monte Carlo (MC)
importance sampling algorithm of Kou and McCullagh (2009), which provides an esti-
mate of both the α-permanent in (5) and the standard error of this estimate. We used
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Figure 2: Contour plot of (a) the full log-likelihood, ℓ(θ), compared with contour plots
of the pairwise composite log-likelihood with (b) first order neighbours only, ℓ21(θ); (c)
ninth order neighbours only, ℓ29(θ); (d) neighbours of all orders, ℓ

2
<∞(θ). For all the plots

κ is fixed at the MLE κ̂ = 1.28.
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105 samples, giving an average relative error (ratio of the standard error and the esti-
mate) of 0.077. As noted in Kou and McCullagh (2009), their algorithm is especially well
suited for estimating ratios of α-permanents as required in the Bayes estimate (3). For
the calculation used for obtaining Figure 1, 104 MC samples were sufficient.

It is possible to perform model validation based on simulation using the Poisson ran-
domization (Møller and Rubak, 2010, Section 4.2). We simulated 100 realizations from
the model using the MLE, and checked some properties of the data against the simulated
realizations. A characteristic feature for the data is the large number of zeros overall and
the apparent clustering of the zeros. For example, the average total number of zeros in
the simulated realizations was 111 with the first and third quartile at 103 respectively
119, while data has 114 zeros. The largest cluster of zeros in data is 13 where the simu-
lated realizations have an average of 12 with the first and third quartile at 10 respectively
15. Besides the simulation based validation we also checked empirical first and second
order moments of data with the theoretical moments of the fitted model, and they also
revealed a very good fit.

In conclusion any of the proposed estimation methods provide good point estimates,
but in particular the composite likelihood based approach including neighbours of all
orders has a big information loss about the correlation parameter ρ. When it is compu-
tationally feasible, as it was the case here, using the full likelihood is preferred.

4.2. Disease mapping

Choo and Walker (2008) presented a so-called multivariate Poisson-Gamma (MPG)
model to investigate the spatial variations of cases n = (n1, . . . , nm) of testis cancer
in the m = 19 municipalities of the county of Frederiksborg in Denmark, where corre-
sponding expected values e = (e1, . . . , em) based on the population and age structures
are treated as covariates. For illustrative purposes, we present another approach using
α-permanental random fields and leading to the perhaps surprising conclusion that there
is little evidence in these data of either over-dispersion or spatial correlation.

The parameters of interest are the incidence ratios γi, i = 1, . . . ,m, which indi-
cate whether municipality i has an over-representation of testis cancer (γi > 1) or
not (0 < γi ≤ 1). Specifically, conditional on Γ = (γ1, . . . , γm), we assume the data
is a realization of independently Poisson distributed counts Ni with E(Ni |Γ) = γiei,
i = 1, . . . ,m. The raw estimates are given by γ̂i = ni/ei, which agree with the MLE if Γ
is a deterministic parameter vector. However, typically Γ would be treated as a random
field with spatial dependence, cf. Choo and Walker (2008) and the references therein.

Before proceeding any further, some general remarks about modelling of this type of
spatial epidemiological data are needed. In principle, each count Ni can be viewed as
the aggregation over an area Ai of an underlying point process specifying the domestic
location of each individual diagnosed with the disease. It would be natural to specify a
Cox point process model for this underlying data process, where the random intensity
at location x, γ(x) has mean e(x), which is the known age-adjusted population density
at x. Then, conditional on γ the counts Ni are independent Poisson variables with mean
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∫
Ai
γ(x) dx. The distributional properties of this integral are usually intractable, and it is

a well-known unsolved problem in the literature to specify a point process model where
inference based on aggregated count data is tractable (see Richardson, 2003; Møller,
2003). A common approach, which we follow here, is simply to specify a model directly
in terms of the aggregated data without considering a consistent underlying point process
model. However, an important point to be derived from this discussion is that the model
should respect geographic integrity, namely that the marginal distribution for a subset
of the aggregated data should belong to the same class.

We assume Γ ∼ Γm(α,R) where R is a correlation matrix. This ensures that
E(Ni) = E(γiei) = ei, as one may naturally require. Let C = DRD with D diago-
nal and Di,i =

√
ei. We consider a doubly stochastic construction as in Section 2

with X = DΓD ∼ Γm(α,C) and N ∼ per(α,C), cf. (4). Moreover, assuming that

α ∈
(
0, 2

m

]
∪
{

2
m−1 ,

2
m−2 , . . . , 2

}
, condition (C1) is satisfied, and so the model is well

defined.
The final stage of the model is to specify the off diagonal entries of R which determine

the correlation structure of the model. A natural approach is to use a neighbourhood
relation when specifying R, and we assume that

Ri,j =

{
ρ if i ∼ j
0 otherwise,

(9)

where for the present data, i ∼ j indicates that municipalities i and j share a border.
Care must be taken to ensure R is indeed semi-definite; we realized empirically that R
is only semi-definite if 0 ≤ ρ ≤ ρc, where ρc ≤ 1 is a critical value depending on the
neighbourhood structure. The critical value can be approximated before any inference is
carried out, e.g. by using a spectral decomposition, which for the data at hand revealed
ρc ≈ 0.416.

In the special case ρ = 0, the model reduces to m independent negative binomial
random variables, and so the full log-likelihood is equivalent to the first-order composite
log-likelihood. For this model α is the only parameter, and it is straightforward to find
the Bayes estimates

E(γi |n) =
1 + α̂ni
1 + α̂ei

i = 1, . . . ,m.

The MLE of 1/α is 36.2± 69.2 leading to the point estimate α̂ = 0.0277. The large value
of twice the standard error indicates that a negative binomial model is not necessary
and a likelihood ratio test against the simpler Poisson null model is performed. The
negative binomial model has −2ℓ(α̂) = 107.66 whereas the Poisson model (corresponding
to α = 0) has −2ℓ(0) = 105.44, and the likelihood ratio test yields a p-value of about
14%. Similarly, the standard Pearson χ2 test for over-dispersion yields the test statistic
of

∑
(ni − ei)

2/ei = 25.5 on 18 degrees of freedom, for a p-value of about 11%. In other
words, there is little evidence of either over-dispersion or spatial correlation.

If ρ is included as a parameter in the model, either full, quasi- or pairwise composite
likelihood inference can be used. However, in this example the MC importance sampling
algorithm of Kou and McCullagh (2009) used to estimate the α-permanent performs
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poorly; even for a very large number of MC samples (108) the standard error of the
estimate is relatively large. On the other hand, both quasi- and pairwise composite like-
lihood inference is fast and does not require any approximation (apart from the inherent
surrogate nature of these methods).

For the quasi-likelihood iterative scheme ρ quickly approaches zero at which point
the covariance matrix V becomes singular, so no standard errors can be given. However,
α stabilizes at 0.027± 0.064 making it clear that α = 0 is well within two standard
errors of the estimate. Figure 3a shows a contour plot of the pairwise composite log-
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Figure 3: Contour plots based on pairwise composite log-likelihood using (a) first order
neighbours only (b) neighbours of all orders.

likelihood based on first order neighbours only, whereas the contour plot in Figure 3b is
based on neighbours of all orders. Notice that in both cases the correlation parameter ρ
is poorly determined and the maximal composite likelihood value is attained at ρ = 0
confirming the findings of the quasi-likelihood method. Furthermore, it appears that
Figure 3b contains less information about ρ than Figure 3a. This is explained by the fact
that ρ only enters in bivariate distributions of directly neighbouring sites, and all the
terms of ℓ2<∞ not appearing in ℓ21 are independent of ρ. The estimate of α is respectively
0.0165 and 0.0268 when using ℓ21 and ℓ2<∞. Thus, it seems preferable to use ℓ2<∞ to
estimate α since it yields an estimate close to the MLE for ρ = 0.

For this dataset the main interest is in estimating the incidence ratios γi, which is
done by calculating the Bayes estimates Eθ̂(γi |n) under the fitted model. Table 1 lists
these estimates for each model as well as the estimates for the MPG model in Choo
and Walker (2008). The model with ρ = ρc is included for illustrative purposes and for
both this model and the independent negative binomial model with ρ = 0 the value
of α is fixed at 0.0277. The table reveals that estimates based on the MPG model are
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Table 1. Bayes estimates of the incidence ratios for the two α-permanental models with ρ = ρc and
ρ = 0 compared with raw Poisson estimates and MPG estimates of Choo and Walker (2008).

ni ei raw ρ = 0 ρ = ρc MPG
Allerød 18 17.61 1.02 1.01 0.97 1.01

Birkerød 17 18.20 0.93 0.98 1.01 1.00
Farum 14 13.65 1.03 1.01 1.02 0.99

Fredensborg-Humlebæk 14 14.29 0.98 0.99 0.97 0.93
Frederikssund 21 13.17 1.59 1.16 1.17 1.14
Frederiksværk 14 14.63 0.96 0.99 0.99 0.98

Græsted-Gilleleje 13 12.38 1.05 1.01 0.98 0.93
Helsinge 8 13.66 0.59 0.89 0.89 0.86
Helsingør 31 47.18 0.66 0.81 0.81 0.73
Hillerød 28 27.23 1.03 1.01 1.00 0.98

Hundested 8 6.44 1.24 1.04 1.22 1.03
Hørsholm 28 17.04 1.64 1.21 1.03 1.23
Jægerspris 4 6.05 0.66 0.95 0.98 0.97

Karlebo 12 13.78 0.87 0.96 1.01 0.99
Skibby 6 4.57 1.31 1.03 1.10 1.09

Skævinge 6 4.28 1.40 1.04 0.98 1.02
Slangerup 3 6.44 0.47 0.92 1.05 0.95
Stenløse 13 10.47 1.24 1.05 0.95 1.05
Ølstykke 14 10.93 1.28 1.06 1.06 1.11

close to estimates based on the the independent negative binomial model lending further
support to the findings that a complex model is unnecessary for this particular dataset.
In conclusion, it appears that it suffices to use the model with no spatial dependence
between incidence ratios, which was not touched upon by Choo and Walker (2008).

To calculate the Bayes estimates for the model with ρ = ρc, ratios of α-permanents are
again needed, but this poses no significant problem, since the MC importance sampling
algorithm estimates these well even though the individual α-permanents are difficult to
estimate.

5. Discussion

For the dataset of counts of clover leaves in Section 4.1 the α-permanental random field
model with an exponential covariance matrix provides a good fit. Estimation based on
both the full, quasi- and pairwise composite likelihood gives similar point estimates, but
the shape of the pairwise composite likelihood is sensitive to the choice of neighbourhood
order included in the model. This adds the disadvantage of having to choose the neigh-
bourhood order when using the pairwise composite likelihood, while the quasi-likelihood
appears to be less sensitive to this choice. In the analysis of this dataset, it is noticeable
that the Bayes estimate of the random mean field in Figure 1 is spiky, which may be
caused by the choice of covariance model. An immediate advantage of using the expo-
nential covariance model is that the α-permanental model is well defined for all values
of α ≥ 0. For a general covariance model the largest generally admissible value of α is 2.
However, it may be possible to find covariance models allowing for α > 2 as it was the
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case for the exponential covariance model. Alternatively, it may be possible to obtain a
good fit with α fixed at 2 using an alternative covariance model of e.g. polynomial type,
which would be expected to yield a smoother Bayes estimate of the random mean field.

The dataset of testis cancer cases in Section 4.2 illustrates a simple yet important
fact: There is little point in using a complicated model with over-dispersion and spatial
dependence if the data shows evidence of neither. However, the example still allows us
to illustrate the potential use of the α-permanental model for disease mapping.
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Appendix A: Evaluating α-permanents

In this appendix we both present some general results for α-permanents (Appendix A.1)
and some results on simple patterned matrices (Appendices A.2-A.3) as well as illus-
trate how an existing algorithm for approximating α-permanents in some cases may be
improved (Appendix A.4).

A.1. Preliminary results

Here we give a few general results for α-permanents, which we will need later.

A.1.1. Expansion by sums of cyclic products

For any positive integer n let In = (1, . . . , n), and let I0 denote the “empty subse-
quence”. Given a positive integer m ≤ n, let I = (i1, . . . , im) be an ordered subsequence
of In meaning that 1 ≤ i1 < · · · < im ≤ n, and let Ic = (j1, . . . , jn−m) denote the com-
plementary subsequence so that {i1, . . . , im} and {j1, . . . , jn−m} are disjoint with union
{1, . . . , n}. For any such I we let I(r, I) denote the class of ordered subsequences of I of
length r ≥ 0 using the convention I(0, I) = {I0}.

For any n×n matrix A, we define AI as the m×m submatrix of A with (k, l)’th entry
Aik,il . Furthermore, we let cyp(AI) denote the sum of cyclic products of length |I| = m
formed from AI . Thus, cyp(AI) is a sum over (m− 1)! terms, and if e.g. m = 3 we have

cyp(AI) = Ai1,i2Ai2,i3Ai3,i1 +Ai1,i3Ai3,i2Ai2,i1 .

Maybee and Quirk (1969) provides the following formula for calculating the determi-
nant of a n× n matrix A.

Theorem 1. For n > 1 and any fixed I ∈ I(n−1, {1, . . . , n}),

|A| = AIc,Ic |AI |+
n−2∑

r=0

(−1)n−1−r ∑

J∈I(r,I)
|AJ |cyp(AJc),

where we define |A∅| = 1.

This result extends straightforwardly to α-permanents.

Corollary 1. For all α ∈ R, n > 1 and any fixed I ∈ I(n−1, {1, . . . , n}),

perα(A) = αAIc,Icperα(AI) +

n−2∑

r=0

∑

J∈I(r,I)
αperα(AJ )cyp(AJc). (10)

where we define perα(A∅) = 1.
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Proof. From Theorem 1 we know that the right hand side of (10) has all the n! terms
of the form A1,σ(1) · · ·An,σ(n) and we only need to verify each term is weighted correctly.
The first term on the right hand side of (10) is

αAIc,Icperα(AI) = αAIc,Ic
∑

σ∈Sn−1

αc(σ)
n−1∏

i=1

(AI)i,σ(i),

and since AIc,Ic introduces a new cycle to all terms the weighting with αc(σ)+1 is correct.
The rest of the terms are

n−2∑

r=0

∑

J∈I(r,I)
αperα(AJ )cyp(AJc) =

n−2∑

r=0

∑

J∈I(r,I)
α

∑

σ∈Sr

αc(σ)
r∏

i=1

(AJ )i,σ(i)cyp(AJc)

and since again exactly one new cycle is introduced by the cyclic product the weight is
correct.

A.1.2. Expansion by cofactors

Let A be a n×nmatrix. By isolating a given element Ar,s of perα(A) it is obvious that the
coefficient of Ar,s depends only on the elements of the reduced matrix of order n−1 with
row r and column s deleted. However, the coefficient is in general not the α-permanent
of the reduced matrix, and Vere-Jones (1997) remarks that no simple cofactor expansion
of perα(A) is known. However, in the following we give a cofactor expansion by a slight
modification of the recipe for determinants. The (r, s) minor is a square matrix Ar,s of
order n − 1 obtained from A in two steps as follows: First switch rows r and s; then
delete column s and row s (row r from the original matrix). The switching of rows is
not a part of the standard definition of a minor, but it is needed for α 6= ±1 to maintain
the cycle structure, and is done prior to deletion to avoid ambiguity about labelling. If
r = s, the first step is nugatory; otherwise if r 6= s the symmetrically opposed component
As,r occurs on the diagonal of Ar,s, and every other element on the diagonal of the minor
also occurs on the diagonal of A. The components of the cofactor matrix cofα(A) are
defined as

cofα(A)r,s =

{
αperα(A

r,s) r = s
perα(A

r,s) otherwise.

On row r, the cofactor expansion of the α-permanent is

perα(A) = αAr,rperα(A
r,r) +

∑

s 6=r
Ar,sperα(A

r,s)

=

n∑

s=1

Ar,s cofα(A)r,s. (11)

Although the definition of a minor has been modified to suit the general case, for α = −1
this reduces to the standard cofactor expansion of a determinant.
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A.2. Block matrices

Evaluating multivariate negative binomial probabilities involves the α-permanent of a
block matrix, which are studied in this appendix. For any m × m matrix A and non-
negative integers n = (n1, . . . , nm), let n⋆ =

∑m
i=1 ni and define the block matrix A[n]

as the n⋆ × n⋆ matrix obtained from A by repeating index i ni times. For example, if
m = 4 and n = (2, 0, 1, 3)

A[n] = A[(2, 0, 1, 3)] =




A1,1 A1,1 A1,3 A1,4 A1,4 A1,4

A1,1 A1,1 A1,3 A1,4 A1,4 A1,4

A3,1 A3,1 A3,3 A3,4 A3,4 A3,4

A4,1 A4,1 A4,3 A4,4 A4,4 A4,4

A4,1 A4,1 A4,3 A4,4 A4,4 A4,4

A4,1 A4,1 A4,3 A4,4 A4,4 A4,4



.

We call A the generating matrix, n the block sizes, and A[n] a m-dimensional block
matrix.

A.2.1. One-dimensional block matrices

When A is a 1 × 1 matrix with element a and the block size is n we have A[n] = a1n,
where 1n is the n× n matrix whose elements are all one. This matrix has α-permanent

perα(1n) = α↑n = α(α+ 1) · · · (α+ n− 1),

called the ascending factorial function. Furthermore, perα(A[n]) = anα↑n.

A.2.2. Block-diagonal matrices

For a general block-diagonal matrix it is easy to verify that the α-permanent is the prod-
uct of the α-permanent of the blocks. The special block diagonal matrix with constant
blocks can be written as A[n], where the generator A is a diagonal matrix with diagonal
(a1, . . . , am), and in this case we have

perα(A[n]) =
m∏

i=1

perα(ai1ni
) =

m∏

i=1

ani
i α

↑ni .

A.2.3. Two-dimensional block matrix

For two-dimensional block matrices we have the following result allowing efficient calcu-
lation of the α-permanent.

Proposition 1. Let A be a 2× 2 matrix and define

ρ =
A1,2A2,1

A1,1A2,2
.
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Then

perα(A[n1, n2]) = An1
1,1A

n2
2,2α

↑n1α↑n2

n1∧n2∑

j=0

n↓j1 n↓j2 ρj

j! α↑j , (12)

where we define α↑n1α↑n2/α↑j = 0 when both the numerator and denominator is
zero, n↓j = n(n− 1) · · · (n− j + 1), n↓0 = 1 and α↑0 = 1. Thus, n↓n = 1↑n = n! and
perα(A[0, 0]) = 1.

Proof. As a preliminary, we note the following property of the ascending factorial func-
tion:

n∑

r=0

α↑(k+r)/r! =
α↑(n+k+1)

n! (α+ k)
(13)

for non-negative integer k such that α + k 6= 0. If k = 0 the sum is (α + 1)↑n/n!,
which is readily established by induction on n. The result for general k then follows from
α↑(k+r) = α↑k(α+ k)↑r.

Any 2× 2 matrix A can be factorized as

A = DRD =

[
d1 0
0 d2

] [
1 ρ1
ρ2 1

] [
d1 0
0 d2

]
,

where the (possibly complex) numbers d1, d2, ρ1, ρ2 satisfy d21 = A1,1, d22 = A2,2,
ρ1 = A1,2/(d1d2), and ρ2 = A2,1/(d1d2). Then it can be verified that

perα(A[n1, n2]) = An1
1,1A

n2
2,2perα(R[n1, n2]), (14)

and therefore to prove (12) it is sufficient to show that

perα(R[n1, n2]) = α↑n1α↑n2

n1∧n2∑

j=0

n↓j1 n↓j2 ρj

j! α↑j (15)

with ρ = ρ1ρ2.
For n2 > 0, let S[n1, n2] be the matrix obtained from R[n1, n2] by replacing the first

row by the last row. Then S is square but asymmetric, and the cofactor expansion gives
the bivariate permanental recurrence relation

perα(R[n1 + 1, n2]) = (α+ n1)perα(R[n1, n2]) + n2ρ12perα(S[n1 + 1, n2 − 1]),

perα(S[n1 + 1, n2]) = (α+ n1)ρ21perα(R[n1, n2]) + n2perα(S[n1 + 1, n2 − 1]).

For successively smaller values of n2, repeated substitution of the second expression into
the first eliminates perα(S[...]), giving the linear recurrence relations

perα(R[n1+1, n2]) = (α+n1)perα(R[n1, n2])+ρ(α+n1)

n2∑

i=1

n↓i2 perα(R[n1, n2−i]), (16)
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one equation for each n1, n2 ≥ 0. These equations are linearly independent of full rank,
and have a unique solution for any given boundary value perα(R[0, 0]). It follows imme-
diately that perα(R[n, 0]) = α↑nperα(R[0, 0]), so the desired boundary value is one.

On the assumption that n2 ≤ n1, we now show that (15) is a solution of the system
of linear equations (16). We start by noticing from (16) that α↑n1 is a common factor
in all terms of perα(R[n1, n2]) implying perα(R[n1, n2]) = 0 when α is a non-positive
integer bigger than −n2. This proves the claim for these values of α and in what follows
we consider all other values of α. After substituting (15), the right side of (16) becomes

α↑n1+1α↑n2

n2∑

j=0

n↓j1 n↓j2
j!

ρj

α↑j + ρα↑n1+1
n2∑

i=1

n↓i2 α
↑n2−i

n2−i∑

j=0

n↓j1 (n2 − i)↓j

j!

ρj

α↑j

= α↑n1+1α↑n2

n2∑

j=0

n↓j1 n↓j2
j!

ρj

α↑j + ρα↑n1+1
n2−1∑

j=0

(
n1
j

)
ρj

α↑j

n2−j∑

i=1

n↓i2 α
↑n2−i(n2 − i)↓j .

On account of the ascending factorial identity (13), the final sum reduces to

n2−j∑

i=1

n↓i2 α
↑n2−i(n2 − i)↓j = α↑n2n2!/((α+ j)(n2 − j − 1)!) = α↑n2n↓j+1

2 /(α+ j),

which simplifies the preceding expression to

α↑n1+1α↑n2

n2∑

j=0

(
n1
j

)
n↓j2 ρj

α↑j + ρα↑n1+1α↑n2

n2−1∑

j=0

(
n1
j

)
n↓j+1
2 ρj

(α+ j)α↑j

= α↑n1+1α↑n2

n2∑

j=0

(
n1
j

)
n↓j2 ρj

α↑j + α↑n1+1α↑n2

n2−1∑

j=0

(
n1
j

)
n↓j+1
2 ρj+1

α↑j+1

= α↑n1+1α↑n2

n2∑

j=0

(
n1
j

)
n↓j2 ρj

α↑j + α↑n1+1α↑n2

n2∑

j=1

(
n1
j − 1

)
n↓j2 ρj

α↑j

= α↑n1+1α↑n2

n2∑

j=0

(
n1 + 1

j

)
n↓j2 ρj

α↑j ,

showing that (15) satisfies the permanental recurrence equations (16). Since the re-
currence equations are linear, any solution satisfying the desired boundary condition
perα(A[0, 0]) = 1 is necessarily unique.

Proposition 1 can be combined with the result on block-diagonal matrices (Section A.2)
to calculate the α-permanent of a block-diagonal matrix where each block possibly is a
two-dimensional block matrix.

A.2.4. The ordinary permanent (α = 1)

For a general m-dimensional block matrix we have the following result in the special case
α = 1, for which the α-permanent reduces to the ordinary permanent (Minc, 1978).
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Proposition 2. Let A[n] be a m-dimensional block matrix with block sizes
n = (n1, . . . , nm). Further, let Tn denote the set of all two way tables k = {kij}i,j=1,...,m,
kij ∈ N0 with row and column totals n1, . . . , nm. Then

per1(A[n]) =
∑

Tn

m∏

i=1

(ni!)
2

m∏

i,j=1

A
kij
i,j

kij !

Proof. By definition,

per1(A[n]) =
∑

σ∈Sn⋆

A[n]1,σ(1) · · ·A[n]n⋆,σ(n⋆).

In each term of the sum the i’th row index must occur exactly ni times and the j’th
column index must occur exactly nj times. This makes it clear that each term in the sum
is of the form

m∏

i=1

m∏

j=1

A
kij
i,j , where

m∑

j=1

kij = ni and

m∑

i=1

kij = nj . (17)

The question is how many times each term of this form occurs in the sum over all
permutations. First k11 A1,1’s must be chosen from A[n], which can be done in

n1n1 · (n1−1)(n1−1) · · · (n1−k11+1)(n1−k11+1)

k11!

ways. When these are chosen we must choose k12 A1,2’s, which can be done in

(n1−k11)n2 · (n1−k11−1)(n2−1) · · · (n1−k11−k12+1)(n2−k12+1)

k12!

ways. We can continue in this fashion and finally find the number of ways to choose the
k1m A1,m’s. Then we can start a new row and find that the k21 A2,1’s can be chosen in

n2(n1−k11) · (n2−1)(n1−k11−1) · · · (n2−k21+1)(n1−k11−k21+1)

k21!

ways. Continuing in this fashion we see that for i, j = 1, . . . ,m the number of ways to
choose the kij Aij ’s is

(ni−ki1−· · ·−ki,j−1)(nj−k1j−· · ·−ki−1,j)· · ·(ni−ki1−· · ·−kij+1)(nj−k1j−· · ·−kij+1)

kij !
.

(18)
To find the coefficient for the term in (17) we need to take the product over i, j = 1, . . . ,m
of (18). The product of the numerators simplifies considerably and we end up with

∏m
i=1(ni!)

2

∏m
i=1

∏m
j=1 kij !

,

and so the result follows.
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In the two-dimensional case Proposition 2 extends to α > 0 as detailed in Section A.2.3.
It is plausible that this is also the case in the m-dimensional case. More precisely, if we as
in the proof of Proposition 1 consider a m×m matrix R with unit diagonal we conjecture

perα(R[n]) =

m∏

i=1

(ni!α
↑ni)

∑

Tn

m∏

i,j=1

R
kij
i,j

kij !
P (k, α)

where P is a (hopefully simple) rational function in k and α necessarily satisfying
P (k, 1) = 1. However, we have not yet been able to establish the correct form for P
even though some promising patterns have been found in low dimensional examples.

A.3. Penta-diagonal matrices

This section generalizes the efficient algorithm of Sweet (1969) for computing the deter-
minant of a penta-diagonal matrix to the more general case of the α-permanent. The
development follows the same lines as Sweet (1969).

Let A be a n × n penta-diagonal matrix (i.e. Ai,j = 0 for |i − j| > 2) and let n > 3.
By applying Corollary 1 with I = In−1 = (1, . . . , n− 1) we have

perα(A) = αAn,nperα(AIn−1
) +

n−2∑

r=0

∑

J∈I(r,In−1)

αperα(AJ )cyp(AJc).

Note that for J ∈ I(r, In−1) the subsequence Jc always contains n. If |Jc| ≥ 3 (i.e.
r ≤ n − 3) the only subsequences Jc giving rise to non-zero cyclic products are of the
form Jc = Icr = (r+1, . . . , n). This can be seen by considering a subsequence of the form
J̃ = (r, . . . , r + j − 1, r + j + 1, . . . , n). In order to make a cyclic product Ai1,i2 · · ·Air,i1
non-zero using J̃ as index set, we have to choose the element Ar+j−1,r+j+1, but then we
have no way of connecting the upper and lower end of the index set without having a
difference of more than two in the indices leading to one of the elements being zero.

When r = n − 2 such that |Jc| = 2 the only non-zero two-cycles clearly arise when
Jc = (n− 1, n) and Jc = (n− 2, n). Consequently we have

n−2∑

r=0

∑

J∈I(r,In−1)

αperα(AJ )cyp(AJc)

= αAn−1,nAn,n−1perα(AIn−2
) + αAn−2,nAn,n−2perα(A(1,...,n−3,n−1))

+

n−3∑

r=0

αperα(AIr )cyp(AIcr ).

If we consider perα(A(1,...,n−3,n−1)) similar arguments as above yield

perα(A(1,...,n−3,n−1)) = αAn−1,n−1perα(AIn−3
) + αAn−3,n−1An−1,n−3perα(AIn−4

).
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Finally we need to analyze the sum of cyclic products cyp(AIcr ) when 0 ≤ r ≤ n− 3. In
this case when n− r is even the only two non-zero terms in the sum are

cyp(r, n) = Ar+1,r+2Ar+2,r+4 · · ·An−2,nAn,n−1An−1,n−3 · · ·Ar+5,r+3Ar+3,r+1,

cypt(r, n) = Ar+1,r+3Ar+3,r+5 · · ·An−3,n−1An−1,nAn,n−2 · · ·Ar+4,r+2Ar+2,r+1,

and when n− r is odd

cyp(r, n) = Ar+1,r+2Ar+2,r+4 · · ·An−3,n−1An−1,nAn,n−2 · · ·Ar+5,r+3Ar+3,r+1,

cypt(r, n) = Ar+1,r+3Ar+3,r+5 · · ·An−2,nAn,n−1An−1,n−3 · · ·Ar+4,r+2Ar+2,r+1.

To ease the notation we let

ai = Ai,i, i = 1, . . . , n

bi = Ai,i+1Ai+1,i, i = 1, . . . , n−1

βi = Ai,i+2Ai+2,i, i = 1, . . . , n−2

pαi = perα(AIi), i = 0, . . . , n,

when stating the formula in the following corollary.

Corollary 2. Let A be a n × n penta-diagonal matrix with n > 3. Then, using the
notation from above,

pαn = αanp
α
n−1 + αbn−1p

α
n−2 + α2βn−2an−1p

α
n−3 + α2βn−2βn−3p

α
n−4

+

n−3∑

r=0

αpαr (cyp(r, n) + cypt(r, n)).

This gives an easy way to recursively calculate the α-permanent of a penta-diagonal
matrix, and if we also assume that bi 6= 0, i = 1, . . . , n−1, we can simplify the calculations
further. This follows the exact same lines as for the regular determinant in Sweet (1969),
and we leave out the details in the following. The key idea is that the cyclic products of
length greater than three can be written in terms of shorter cyclic products. Using the
notation

ci = Ai,i+1Ai+1,i+2Ai+2,i,

cti = Ai,i+2Ai+2,i+1Ai+1,i,

for i = 1, . . . , n−2 we have that

cyp(r, n) =





cr+1c
t
r+2···cn−3c

t
n−2

b2b3···bn−2
for n− r even

cr+1c
t
r+2···cn−4c

t
n−3cn−2

b2b3···bn−2
for n− r odd.
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The recursive algorithm for calculating the α-permanent is then:
Set p−1 = 0, p0 = 1, p1 = αa1,1, p2 = α2a1,1a2,2 + αb1, ǫ−1 = e−1 = 0, and compute

ρk−2 = ak−1pk−3 + βk−3pk−4,

ǫk−3 = pk−3 +
ctk−3

bk−2
ek−4,

ek−3 = pk−3 +
ck−3

bk−2
ǫk−4,

pk = αakpk−1 + αbk−1pk−2 + α2βk−2ρk−2 + αck−2ǫk−3 + αctk−2ek−3.

A.4. Approximating the α-permanent

As mentioned previously, the exact calculation of the α-permanent is in general compu-
tationally intractable apart from the special cases treated in the previous sections, but
it can be approximated using the importance sampling scheme of Kou and McCullagh
(2009). Using this method approximation of the α-permanent in e.g. the log-likelihood (5)
is feasible for datasets with a moderate total number of counts n⋆ (of the order a couple
of hundreds). In the following we will discuss how the introduction of a control variate
(see Hammersley and Handscomb (1964)) potentially can improve the performance of
the algorithm.

To approximate perα(A) for a given n× n matrix A the algorithm uses permutations
σ1, . . . , σN ∈ Sn independently sampled from a certain probability distribution f(σ) on
Sn as detailed in Kou and McCullagh (2009). The unbiased estimate is then

X = g(σ1, . . . , σN ;A,α) =
1

N

N∑

i=1

1

f(σi)
αn−c(σi)A1,σi(1)A2,σi(2) · · ·An,σi(n).

Now let A′ approximate A in some sense and have a form such that perα(A
′) can be

calculated efficiently (e.g. a block-diagonal or penta-diagonal approximation as detailed
in Sections A.2-A.3). Then we use the same set of permutations to form the zero mean
random variable Y = g(σ1, . . . , σN ;A′, α) − perα(A

′), and introduce the control variate
corrected unbiased estimate of perα(A) as Z = X − βY . Notice that

σ2
Z = σ2

X + β2σ2
Y − 2βρσXσY ,

where σ2
X = Var(X), σ2

Y = Var(Y ), σ2
Z = Var(Z) and ρ = Corr(X,Y ). Hereby, the

optimal value of β minimizing the variance of Z is

β̂ = ρ
σX
σY

, (19)

which changes the variation in the estimate of perα(A) by a factor σ2
Z/σ

2
X = 1 − ρ2. In

Hammersley and Handscomb (1964) the suboptimal fixed value of β = 1 is used, but
we prefer the optimal value (19), which only requires the additional calculation of an
estimate of ρ. We exemplify the use of control variates in what follows below.
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A.4.1. Example using control variates

Consider a multivariate negative binomial distribution of dimensionm = 10 parametrized
by α = 1 and C with entries Ci,j = κρ|i−j|, where κ = 2 and ρ = 0.5. The probability
of observing any given outcome n is given by (2), which depends on the α-permanent of
the block matrix C̃[n]. We have approximated this α-permanent for different outcomes
n using either a penta-diagonal control variate or a block-diagonal control variate. The
penta-diagonal matrix is obtained simply by truncating C̃[n] to be penta-diagonal (i.e.
all entries not on the diagonal or the two first super- or sub-diagonals are set to zero).
The block-diagonal matrix is obtained by only retaining the five two-dimensional block
matrices of sizes n2i−1+n2i, i = 1, . . . , 5 along the diagonal of C̃[n] and setting all other
entries to zero. Table 2 shows the estimated probability for three different outcomes
plus/minus two standard errors. Results are shown for both types of control variates as
well as with no control variate using 500 MC samples.

Table 2. Comparison of control variates

(1,1,1,1,1,1,1,1,1,1) (1,3,1,3,1,3,1,3,1,3) (3,3,3,3,3,3,3,3,3,3)

none β = 0 37.31± 1.34× 10−8 38.85± 3.87× 10−10 13.88± 2.21× 10−11

block
β = 1 37.70± 1.04× 10−8 40.19± 2.40× 10−10 14.48± 1.94× 10−11

β = β̂ 37.55± 0.75× 10−8 39.93± 2.28× 10−10 14.39± 1.93× 10−11

penta
β = 1 38.16± 0.02× 10−8 40.81± 2.45× 10−10 13.29± 2.00× 10−11

β = β̂ 38.16± 0.02× 10−8 40.41± 2.32× 10−10 13.37± 1.99× 10−11


