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Abstract

Consider the design based situation where an r-regular set is sampled on a
random lattice. A fast algorithm for estimating the integrated mean curvature
based on this observation is to use a weighted sum of 2× · · · × 2 configuration
counts. We show that for a randomly translated lattice, no asymptotically un-
biased estimator of this type exists in dimension greater than or equal to three,
while for stationary isotropic lattices, asymptotically unbiased estimators are
plenty. Both results follow from a general formula that we state and prove,
describing the asymptotic behavior of hit-or-miss transforms of r-regular sets.

Keywords: Binary image, design based set-up, local algorithm, configurations,
mean curvature, r-regular sets, hit-or-miss transform

1 Introduction

Suppose we are given a digital image of some geometric object. In many practical si-
tuations within science, one is mainly interested in certain geometrical characteristics
of the underlying object. These are the so-called intrinsic volumes Vi and include the
volume Vd, the surface area 2Vd−1, the integrated mean curvature 2π(d− 1)−1Vd−2,
and the Euler characteristic V0. Therefore, a time consuming reconstruction of the
object is not of interest. Instead, we consider an algorithm for estimating the intrinsic
volumes based only on local information.

We model a digital image of a compact set X ⊆ Rd as a binary image, i.e. as the
set X ∩ L where L ⊆ Rd is some lattice. The vertices of each 2× · · · × 2 cell in the
lattice may belong to either X or Rd\X, yielding 22d possible configurations. We
then estimate Vi as a weighted sum of the number of occurences of each configura-
tion. The weights are functions of the lattice distance and we assume that they are
homogeneous of degree i. The advantage of such local algorithms is that they are
very efficiently implemented based on linearly filtering the image, see [5] for more
on the computational aspects.
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We apply these algorithms to the design based setting in which we sample a fixed
compact set with a lattice that has been ramdomly translated. Ideally, the estimator
should be unbiased, at least aymptotically when the resolution goes to infinity.

Local estimators for Vd−1 have already been widely studied. In [4], Kiderlen and
Rataj prove a formula for the asymptotic behavior of such an estimator. This was
later applied by Ziegel and Kiderlen in [9] to show that no asymptotically unbiased
estimator for the surface area of the type described above can exist in dimension
d = 3.

In this paper, we focus on the estimation of Vd−2. For d = 2, Vd−2 is the Euler
characteristic. It is well-known that estimating V0 is impossible even in the simple
case where X is a polygon. More generally, Kampf has shown in [3] that no asymp-
totically unbiased estimator for Vd−2 exists on the class of finite unions of polytopes.
In contrast, it was shown already in 1982 by Pavlidis in [6] that unbiased estimators
for V0 do exist on a class of sets with sufficiently ‘smooth’ boundary, namely the
class of so-called r-regular sets. For this reason, we will require throughout the paper
that X is r-regular when we consider estimators for Vd−2 in higher dimensions.

We are going to prove an extension to second order of Kiderlen and Rataj’s
asymptotic result [4, Theorem 1]. In particular, we obtain a formula for the asymp-
totic mean of a local estimator for Vd−2. This was done in [8] for d = 2 under
somewhat stronger conditions. The formula allows us to deduce the following main
theorem:

Theorem 1.1. In dimension d > 2, no weighted sum of 2 × · · · × 2 configuration
counts with homogeneous weights defines an asymptotically unbiased estimator for
Vd−2 on the class of r-regular sets.

This is contrary to the d = 2 case, but it generalizes Kampf’s result to the class
of r-regular sets. It is proved as Theorem 9.2 below. The counterexamples can be
chosen very simply to be of the form P ⊕ B(r) where B(r) is the ball of radius r
and P =

⊕k
i=1[0, ui] where u1, . . . , uk ∈ Rd are orthonormal vectors and ⊕ is the

Minkowski sum.
We give a formal definition of the type of local algorithm we consider in Section 2,

and in Section 3 we explain the design based setting and recall some known results.
In Section 4 and 5, we prove some general results on hit-or-miss transforms of r-
regular sets with finite structuring elements. As a corollary, we obtain formulas for
the asymptotic behavior of the mean estimator for Vd−2 in Section 6. In Section 7, we
apply this to find all asymptotically unbiased estimators in 3D under the assumption
that the lattice L is isotropic. In the remaining two sections, we investigate the case
where the lattice is not assumed to be isotropic. In Section 8, we recover the Pavlidis’
result that an asymptotically unbiased estimator for V0 does exist in dimension
d = 2. Finally, we prove Theorem 1.1 in Section 9.

2 Local estimators for intrinsic volumes

Let C denote the unit square [0, 1]d in Rd and let C0 be the set of vertices in C. The
vectors of the standard basis in Rd will be denoted by e1, . . . , ed. We enumerate the
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elements of C0 as follows: for x ∈ C0 we write x = xi where

i =
d∑

k=1

2k−11〈x,ek〉=1.

Here 1〈x,ek〉=1 is the indicator function. A 2×· · ·×2 configuration is a subset ξ ⊆ C0.
There are 22d possible configurations. We denote these by ξl for l = 0, . . . , 22d − 1
where the configuration ξ is assigned the index

l =
22
d−1∑

i=0

2i1xi∈ξ.

One could of course consider estimators based on n× · · · × n configurations as well.
The formulas we obtain in Section 4 and 5 apply to this case as well, but we treat
only estimators based on 2× · · · × 2 configurations in this paper.

Let Zd denote the standard lattice in Rd. More generally, we shall consider ortho-
gonal lattices aL(c, R) = aR(Zd + c) where c ∈ C is a translation vector, R ∈ SO(d)
is a rotation, and a > 0 is the lattice distance. Then C(aL), C0(aL), and ξl(aL) will
denote the corresponding transformations of C, C0, and ξl, respectively. We leave the
lattice out of the notation whenever it is clear from the context. The generalization
to the case where L is a general linear transformation of Zd is straightforward and
is left to the reader.

The elements of ξl are referred to as the ‘foreground’ or ‘black’ pixels and will
also be denoted by Bl, while the vertices of the complement Wl = C0\ξl = ξ

22d−l are
referred to as the ‘background’ or ‘white’ pixels.

Now let X ⊆ Rd be a compact set observed on the lattice aL. Based on the
set X ∩ aL we want to estimate the intrinsic volumes Vi(X) for i = 0, . . . , d. For a
general definition of Vi in the case where X is polyconvex, see [7]. In this paper, we
will only need the Vi introduced at the beginning of the introduction. In order for
Vi to be well-defined and for X ∩ aL to contain enough information about X, we
will need some regularity conditions on X. These will be specified later.

Our approach is to consider a local algorithm based on the observations of X on
the 2× · · · × 2 cells Cz of aL, where Cz = z +C(aL) for z ∈ aL(0, R). The number
of occurences of the configuration ξl is

Nl(X ∩ aL) =
∑

z∈aL(0,R)

1X∩(z+C0(aL))=z+ξl(aL).

Note that Nl depends only on X ∩ aL, as

X ∩ (z + C0(aL)) = (X ∩ aL) ∩ (z + C0(aL)).

If Φi(X; ·) denotes the ith curvature measure, normalized as in [7],

Vi(X) = Φi(X;Rd) =
∑

z∈aL(0,R)

Φi(X;C0
z )

where
C0
z = z +Ra([0, 1)d + c).
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We estimate each term in the sum based on the only information available about
X ∩ Cz, namely the set X ∩ (z + C0(aL)). If X ∩ (z + C0(aL)) = z + ξl(aL), we
estimate Φi(X;C0

z ) by some w(i)
l (a) ∈ R, leading to an estimator of the form

V̂i(X ∩ aL) =
22
d−1∑

l=0

w
(i)
l (a)Nl(X ∩ aL). (2.1)

The w(i)
l (a) are referred to as the weights.

Let M be the set of rigid motions and reflections preserving C0. If |M| is the
cardinality ofM,

V̂ ′i (X ∩ aL) =
1

|M|
∑

M∈M
V̂i(M(X ∩ aL)).

is another estimator of the form (2.1) and the bias of V̂ ′i (X) is the average of the
biases of V̂i on the sets MX, since Vi(X) is motion and reflection invariant. Hence
the worst possible bias of V̂ ′i on the sets MX is smaller than that of V̂i. Thus, in
the search for unbiased estimators, it is enough to consider estimators with weights
satisfying w(i)

l1
(a) = w

(i)
l2

(a) whenever ξl1 = Mξl2 for some M ∈M.
As Vi is homogeneous of degree i, i.e. Vi(aX) = aiVi(X), we will require the

estimator to satisfy
V̂i(aX ∩ aL) = aiVi(X ∩ L),

corresponding to weights of the form w
(i)
l (a) = aiw

(i)
l where w(i)

l ∈ R are constants.
If ηdj , j ∈ J , denote the equivalence classes of configurations under the action of

M, we end up with an estimator of the form

V̂i(X ∩ aL) = ai
∑

j∈J
w

(i)
j N̄j(X ∩ aL) (2.2)

where w(i)
j ∈ R and

N̄j =
∑

l:ξl∈ηdj

Nl.

3 The design based setting

In the design based setting we observe a fixed set X ⊆ Rd on a random lattice. If
the lattice is of the form aL = aR(Zd + c) where c ∈ C and R ∈ SO(d) are both
uniform random and mutually independent, we shall speak of a stationary isotropic
lattice. If aL = a(RZd + c) where the translation vector c ∈ C is uniform random
while R ∈ SO(d) is now fixed, we refer to it as a stationary non-isotropic lattice. In
both cases, the local estimator (2.2) is now a random variable with mean

EV̂i(X ∩ aL) = ai
∑

j∈J
w

(i)
j EN̄j(X ∩ aL).
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Ideally, this would equal Vi(X). However, this is generally not true in finite
resolution, i.e. for a > 0. Instead, we consider the asymptotic behavior of EV̂i(X)
as a tends to 0. This is obtained by explicit formulas for the asymptotic behavior of
aiENl when a→ 0.

Since N0 is infinite, w(i)
0 must equal zero in order for V̂i to be well-defined. All

other ENl are of order O(a1−d), see (3.1) below, except EN
22d−1

. In fact, for all the
sets X we shall consider,

lim
a→0

ad−iEV̂i(X) = w
(i)

22d−1
Vd(X),

see e.g. [5]. Thus for i < d, we must require w(i)

22d−1
= 0, otherwise the limit

lim
a→0

EV̂i(X ∩ aL)

does not exist.
For the surface area, it was shown by Kiderlen and Rataj [4, Theorem 5] that

if X is a full-dimensional compact gentle set and L is a stationary non-isotropic
lattice,

lim
a→0

ad−1ENl(X ∩ aL) =

∫

∂X

(−h(Bl ⊕ W̌l, n))+dHd−1 (3.1)

where for a set S ⊆ Rd, h(S, n) = sup{〈s, n〉 | s ∈ S} for n ∈ Sd−1 is the support
function, Š = {−s | s ∈ S}, and ⊕ is the Minkowski sum. Moreover, x+ = max{0, x}
for x ∈ R, and Hk denotes the kth Hausdorff measure. The notion of a gentle set is
explained in [4].

This result was later used by Ziegel and Kiderlen in [9] to prove that there does
not exist an asymptotically unbiased local estimator for the surface area of polygons
in dimension d = 3.

Actually, Kiderlen and Rataj proved a much more general theorem, namely [4,
Theorem 1]. We shall state the theorem here in a special case for later comparison:

Theorem 3.1 (Kiderlen, Rataj). Let X ⊆ Rd be a closed gentle set, A ⊆ Rd a
bounded Borel set, and B,W ⊆ Rd two non-empty finite sets. Then

lim
a→0

a−1Hd(ξ−1
∂X(A) ∩ (X 	 aB̌)\(X ⊕ aW̌ )) =

∫

∂X∩A
(−h(B ⊕ W̌ , n))+dHd−1

=

∫

∂X∩A
((−h(B, n))− h(W̌ , n))δ(B,W )(n)dHd−1. (3.2)

Here 	 is the Minkowski set difference. The set

(X 	 aB̌)\(X ⊕ aW̌ ) = {z ∈ Rd | z + aB ⊆ X, z + aW ⊆ Rd\X}

is called the hit-or-miss transform of X. If exo(∂X) denotes the set of points in
Rd that do not have a unique closest point in ∂X, then ξ∂X denotes the function
ξ∂X : Rd\ exo(∂X) → ∂X that takes a point z to the point in ∂X closest to z. In
the last line, the integral has just been rewritten in a form similar to what we shall
later obtain with the notation

δ(B,W )(n) = 1{h(B⊕W̌ ,n)<0}.
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Equation (3.1) follows from Theorem 3.1 and the observation that

adENl = ad
∫

C

∑

z∈aL(0,R)

1{X∩(z+C0(aL(c,R)))=z+ξl(aL(c,R))}dc

= Hd(z ∈ Rd | z + aBl ⊆ X, z + aWl ⊆ Rd\X) (3.3)
= Hd((X 	 aB̌l)\(X ⊕ aW̌l)).

In the following section, we will consider the second order asymptotic behavior of

Hd(ξ−1
∂X(A) ∩ (X 	 aB̌)\(X ⊕ aW̌ ))

for r-regular sets X when a tends to zero. The main result is a formula similar to
(3.2) but with the support functions replaced by certain quadratic terms. Choosing
(B,W ) = (Bl,Wl), Equation (3.3) shows that this has implications for the asymp-
totic behavior of ad−2ENl and thus for the asymptotic mean of V̂d−2.

4 Hit-or-miss transforms of r-regular sets

As explained in the introduction, estimating Vi causes problems for i < d − 1 even
for polygons, so we need some strong assumptions on X. Thus we consider the class
of so-called r-regular sets:

Definition 4.1. A closed subset X ⊆ Rd is called r-regular for r > 0 if for all
x ∈ ∂X there exists two balls Bi and Bo of radius r both containing x such that
Bi ⊆ X and int(Bo) ⊆ Rd\X.

The definition implies that ∂X is a C1 manifold, see e.g. [1], and to all x ∈ ∂X
there is a unique outward pointing normal vector n(x). Federer showed in [1] that
the normal vector field n is Hd−1-almost everywhere differentiable. In particular,
its principal curvatures ki can be defined almost everywhere as the eigenvalues of
the differential dn corresponding to the orthogonal principal directions ei. This ge-
neralizes the definition for C2 manifolds. Note for later that each ki is bounded
by r−1.

Federer uses the principal curvatures to generalize the curvature measures for
convex sets, see e.g. [7], to the much larger class of sets of positive reach which
includes the class of r-regular sets. In particular, 2π(d − 1)−1Vd−2 is defined as the
integrated mean curvature, i.e.

Vd−2(X) =
1

2π

∫

∂X

(k1 + · · ·+ kd−1)dHd−1.

The notion of principal curvatures also allows for a definition of the second
fundamental form IIx on the tangent space Tx∂X for Hd−1-almost all x ∈ ∂X,
similar to the definition for C2 manifolds. For

∑d−1
i=1 αiei ∈ Tx∂X, IIx is given by

IIx
(d−1∑

i=1

αiei

)
=

d−1∑

i=1

ki(x)α2
i
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whenever dxn is defined. Note that Tr(II) = k1 + · · ·+ kd−1.
When X is r-regular, the orthogonal complement Nx of Tx∂X is just the line

spanned by n(x). Thus we may define Q to be the quadratic form given on some
(α, tn(x)) ∈ Tx∂X ⊕Nx = Rd by

Qx(α, tn(x)) = − IIx(α) + Tr(IIx)t2,

whenever IIx is defined.
For a compact set S ⊆ Rd, let

S+(n) = {s ∈ S | h(S, n) = 〈s, n〉},
S−(n) = {s ∈ S | −h(Š, n) = 〈s, n〉} = S+(−n)

denote the support sets. Define

II+
x (S) = max{IIx(s) | s ∈ S+(n(x))},

II−x (S) = min{IIx(s) | s ∈ S−(n(x))}.

Since S+(n) may contain more than one point, II+
x (S) may not attain its value at a

unique s ∈ S. Thus we need the following:

Lemma 4.2. For a finite set S ⊆ Rd, there exist two measurable functions s+, s− :
∂X → S such that s±(x) ∈ S±(n(x)) and II±x (S) = IIx(s±(x)) for all x ∈ ∂X where
IIx is defined. In particular, II±(S) are measurable functions.

Proof. The finitely many sets

{x ∈ ∂X | s ∈ S+(n(x))} ∩ {x ∈ ∂X | II+
x (S) = II+

x (s)}

for s ∈ S are measurable since II is measurable. They divide ∂X into finitely many
measurable sets of the form

{x ∈ ∂X | {s ∈ S+(n(x)) | II+
x (S) = II+

x (s)} = S1}

for S1 ⊆ S and we just make a constant choice of s+ ∈ S1 on each of them.

Now define
Q±x (S) = Qx(s

±(x))

and note that this is independent of the actual choice of s±.
We are now ready to state the main result of this section:

Theorem 4.3. Let X ⊆ Rd be an r-regular set, A ⊆ Rd a bounded Borel set, and
B,W ⊆ Rd two non-empty finite sets. Then

lim
a→0

(
a−2Hd(ξ−1

∂X(A) ∩ (X 	 aB̌)\(X ⊕ aW̌ ))

− a−1

∫

∂X∩A
(−h(B ⊕ W̌ , n))+dHd−1

)

=
1

2

∫

∂X∩A
(Q+(B)−Q−(W ))δ(B,W )(n)dHd−1.
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This formula is a second order version of Theorem 3.1. Note in particular how the
last line resembles (3.2). This will be even more clear later in the isotropic setting.

As in [4], the idea of the proof of Theorem 4.3 is to apply [2, Theorem 2.1]. Define

f(B,W )(z, a) = 1{z+aB⊆X,z+aW⊆R2\X}1ξ−1
∂X(A).

For a compact set S we shall write ρ(S) = inf{ρ > 0 | S ⊆ B(ρ)}. Then f(B,W )(a, z)
has support in ∂X ⊕ B(r) whenever aρ(B ∪W ) ≤ r. In this case, [2, Theorem 2.1
and Corollary 2.5] yields

∫

Rd
f(B,W )(z, a)dz =

d−1∑

m=0

∫

∂X

∫ r

−r
tmf(B,W )(x+ tn(x), a)sm(k(x))dtH1(dx)

where sm(k) denotes the mth symmetric polynomial in the principal curvatures
k = (k1, . . . , kd−1). In particular, note that s1(k) = Tr(II).

Before proving Theorem 4.3, we state and prove a few technical lemmas for later
reference. The first one is concerned with the boundary behavior of X and is an
easy consequence of the definition of r-regular sets.

Let
T r∂X = {(x, α) ∈ T∂X | α ∈ Tx∂X, |α| < r}

be the open r-disk bundle in the tangent bundle T∂X.

Lemma 4.4. There is a function q : T r∂X → R taking α ∈ Tx∂X to the signed
distance from x+ α to ∂X along the line parallel to n(x) with the sign chosen such
that x+ α + q(x, α)n(x) ∈ ∂X. The function

q(x, aα)

a2

is uniformly bounded for x ∈ ∂X, α ∈ T ρx∂X, and a ∈ [− r
ρ
, r
ρ
]\{0}. Moreover,

lim
a→0

q(x, aα)

a2
= −1

2
IIx(α)

whenever the right hand side is defined.

Proof. Let x ∈ ∂X and let Bi = x−rn(x)+B(r) and Bo = x+rn(x)+B(r) denote
the inner and outer ball, respectively, as in the definition of r-regular sets. Then for
α ∈ T rx∂X, the line segment Lα = [x+α−rn, x+α+rn] contains a boundary point
yα = x + α + q(x, α)n, as it hits both Bi and int(Bo). This point must be unique,
otherwise choose α0 with |α0| minimal such that Lα0 contains two different points
p1 and p2. One of them, say p1, must have a small neighborhood not containing any
yα with |α| < |α0| and thus the normal vector n(p1) must be exactly − α0

|α0| . But then
the outer ball at p1 must contain x, which is a contradiction. Thus q is well-defined.

Moreover, a−2|q(x, aα)| is bounded by a−2(r−
√
r2 − |aα|2) and this is bounded

for |α| ≤ ρ and 0 6= |a| ≤ r
ρ
.

It remains to determine the limit lima→0 a
−2q(x, aα). Let x be a point where n is

differentiable. Then γ(a) = x+aα+ q(x, aα)n(x) is a C1 curve in ∂X with γ(0) = x
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and γ′(a) = α. Moreover q(x, aα) = 〈n(x), γ(a)−x〉. By l’Hôpital’s rule, it is enough
to show that

lim
a→0

〈n(x), γ′(a)〉
2a

= −1

2
IIx(α).

But this follows because

lim
a→0

〈n(x), γ′(a)〉
2a

= lim
a→0

〈n(γ(0))− n(γ(a)), γ′(a)〉
2a

= −1
2
dnx(α) = −1

2
IIx(α).

For x ∈ ∂X and s ∈ Rd with a|s| ≤ r, observe that for t ∈ [−r, r],

x+ tn(x) + as ∈ X if and only if t ≤ −a〈s, n(x)〉+ q(x, as− 〈as, n(x)〉n(x)).

Thus we write

t(as) = −a〈s, n(x)〉+ q(x, as− a〈s, n(x)〉n(x)).

For a finite set S, let

t−(aS) = max{t(as) | s ∈ S}
t+(aS) = min{t(as) | s ∈ S}.

With this notation, we obtain for aρ(B ∪W ) < r:

a−2

d−1∑

m=0

∫

∂X

∫ r

−r
tmf(B,W )(x+ tn, a)sm(k(x))dtHd−1(dx) (4.1)

= a−2

d−1∑

m=0

∫

∂X∩A

1

m+ 1
(t+(aB)m+1 − t−(aW )m+1)τ(B,W )sm(k)dtdHd−1

where
τ(B,W )(x, a) = 1{t+(aB)>t−(aW )}.

The indicator function τ(B,W )(x, a) may not equal δ(B,W )(n(x)) everywhere, but
the following lemma ensures that they do not differ too much.

Lemma 4.5. Let B and W be two finite non-empty sets. There are constants C and
ε depending only on ρ := ρ(B ∪W ), such that

|h(B ⊕ W̌ , n(x))||τ(B,W )(x, a)− δ(B,W )(n(x))| ≤ Ca

whenever a < ε.

Proof. On the set {τ(B,W )(x, a) − δ(B,W )(x) 6= 0}, either t−(aW ) ≥ t+(aB) and
h(B ⊕ W̌ , n(x)) < 0 or t−(aW ) < t+(aB) and h(B ⊕ W̌ , n(x)) ≥ 0.

In the first case, t−(aW ) ≥ t+(aB) and h(B ⊕ W̌ , n) < 0 implies that

0 ≤ t−(aW )− t+(aB) = −a〈w, n〉+ a〈b, n〉+ q(x, aα1)− q(x, aα2)
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for some choice of w ∈ W and b ∈ B and α1, α2 ∈ T ρx∂X. Thus

0 ≤ −ah(W̌ , n)− ah(B, n) ≤ a〈w, n〉 − a〈b, n〉
≤ q(x, aα1)− q(x, aα2) ≤ 2 sup{|q(x, aα)|, |α| ≤ ρ}.

By Lemma 4.4, the latter is bounded by Ca2 for some constant C and a sufficiently
small.

In the second case, let b ∈ B+(n) and w ∈ W−(n). The claim then follows from
the inequality

0 ≥ t−(aW )− t+(aB) ≥ t(aw)− t(ab) = h(B ⊕ W̌ , n) + q(x, aα1)− q(x, aα2).

It may be that t±(S) 6= t(s±), where s± are the functions from Lemma 4.2. Thus
we need the following:

Lemma 4.6. Let S be a finite set. For each x, there is an ε > 0 such that for all
a ≤ ε, there are s± ∈ S±(n(x)) with

t+(aS) = t(as+) = −ah(S, n) + q(x, aα1)

t−(aS) = t(as−) = ah(Š, n) + q(x, aα2)
(4.2)

for some |α1|, |α2| ≤ ρ(S). Moreover, there is a constant M depending only on ρ(S)
such that

|t+(aS) + ah(S, n)|, |t−(aS)− ah(Š, n)| ≤ a2M.

There is also a constant M ′ not depending on x such that

ν({R ∈ SO(d) | ∃s± ∈ (RS)±(n(x)) such that t±(aRS) 6= t(as±)}) ≤M ′a

where ν denotes the Haar measure on SO(d).

Proof. Suppose there is an s ∈ S with t−(aS) = t(as) ≥ t(as−). This implies that
〈s−, n〉 ≤ 〈s, n〉 and thus

0 ≤ t(as)− t(as−)

= −a〈s, n〉+ a〈s−, n〉+ q(x, aα1)− q(x, aα2)

≤ q(x, aα1)− q(x, aα2)

with |α1|, |α2| ≤ ρ(S). It follows that

0 ≤ a〈(s− s−), n〉 ≤ q(x, aα1)− q(x, aα2) ≤M1a
2. (4.3)

If this holds for arbitrarily small a, 〈(s − s−), n〉 = 0 and hence −h(Š, n) = 〈s, n〉.
The first claim now follows by the finiteness of S.

The second claim follows from (4.3) because

|t(as) + 〈as−, n〉| ≤ |t(as) + 〈as, n〉|+ |〈a(s− s−), n〉| ≤Ma2

for some M .
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Furthermore, by (4.3)

{R ∈ SO(d) | ∃s ∈ (RS)−(n) : t−(aRS) 6= t(as)}
⊆ {R ∈ SO(d) | ∃s1 6= s2 ∈ S : 〈(Rs1 −Rs2), n〉 ≤M1a}

and hence

ν(R ∈ SO(d) | ∃s ∈ (RS)−(n) : t−(aRS) 6= t(as))

≤ ν(R ∈ SO(d) | ∃s1 6= s2 ∈ S : 〈R(s1 − s2), n〉 ≤M1a)

≤ |S|2Hd−1(u ∈ Sd−1 | 〈u, n〉 ≤M2a)

≤M ′a

where |S| is the cardinality of S and M1 and M2 are some constants.
The case of S+ is similar.

We are finally ready to prove the main theorem of this section:

Proof of Theorem 4.3. We must compute the limit of (4.1) when a tends to zero.
First consider the terms with m ≥ 1. By Lemma 4.4, the terms

a−2t(as)m+1 = a−2(−a〈s, n〉+ q(x, aα))m+1

are bounded by some uniform constant for all s ∈ B ∪W . When m+ 1 > 2 they all
converge to zero pointwise. Hence by Lebesgue’s theorem of dominated convergence,

lim
a→0

a−2

∫

∂X∩A

1

m+ 1
(t+(aB)m+1 − t−(aW )m+1)τ(B,W )sm(k)dtdHd−1 = 0.

For m = 1, Lebesgue’s theorem yields

lim
a→0

a−2

∫

∂X∩A

1

2
(t+(aB)2 − t−(aW )2)τ(B,W )s1(k)dH1

=

∫

∂X∩A
lim
a→0

a−2 1

2
(t+(aB)2 − t−(aW )2)τ(B,W )s1(k)dH1 (4.4)

=

∫

∂X∩A

1

2
(h(B, n)2 − h(W̌ , n)2)δ(B,W )(n)s1(k)dH1

where the last equality uses the first part of Lemma 4.6.
It remains to handle the m = 0 term. Consider

lim
a→0

(∫

∂X∩A
a−2(t+(aB)− t−(aW ))τ(B,W )dHd−1

+ a−1

∫

∂X∩A
h(B ⊕ W̌ , n)δ(B,W )(n)dHd−1

)

= lim
a→0

(
a−2

∫

∂X∩A
(t+(aB)− t−(aW ) + ah(B ⊕ W̌ , n))τ(B,W )dHd−1

+ a−1

∫

∂X∩A
h(B ⊕ W̌ , n)(δ(B,W )(n)− τ(B,W ))dHd−1

)
.
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The integrand in the fourth line is bounded by (4.2) in Lemma 4.5, and pointwise,

τ(B,W )(x, a)→ δ(B,W )(x)

as a→ 0, so by Lebesgue’s theorem this term vanishes in the limit.
Furthermore,

a−2|t+(aB) + ah(B, n)|, a−2|t−(aW )− ah(W̌ , n)|

are uniformly bounded by Lemma 4.6, so

lim
a→0

a−2

∫

∂X∩A
(t+(aB)− t−(aW ) + a(h(B, n) + h(W̌ , n)))τ(B,W )dHd−1

=

∫

∂X∩A
lim
a→0

a−2(t+(aB)− t−(aW ) + a(h(B, n) + h(W̌ , n)))τ(B,W )dHd−1

=

∫

∂X∩A

1

2
(II+(W )− II−(B))δ(B,W )(n)dHd−1. (4.5)

The last equality follows from the first part of Lemma 4.6 and Lemma 4.4 because

lim
a→0

a−2(t+(aB) + ah(B, n)) = lim
a→0

a−2 min{t(ab) + a〈b, n〉 | b ∈ B+(n(x))}
= min{lim

a→0
a−2(t(ab) + a〈b, n〉) | b ∈ B+(n(x))}

= min
{
− 1

2
IIx(b) | b ∈ B+(n(x))

}

= −1
2
II+
x (B)

whenever IIx is defined. The W terms are treated similarly.
The claim now follows by combining (4.4) and (4.5).

5 Hit-or-miss transforms in a rotation invariant
setting

In this section we prove a version of Theorem 4.3 where a uniform random rotation
R ∈ SO(d) is applied to the sets B,W . For this we let SO(d) be the group of
rotations of Rd and νd the Haar measure on SO(d).

Theorem 5.1. Let X ⊆ Rd be an r-regular set, A ⊆ Rd a bounded Borel set, and
B,W ⊆ Rd two non-empty finite sets. Then

lim
a→0

(
a−2

∫

SO(d)

Hd(ξ−1
∂X(A) ∩ (X 	 aRB̌)\(X ⊕ aRW̌ ))νd(dR)

− a−1Hd−1(∂X ∩ A)

∫

Sd−1

(−h(B ⊕ W̌ , n))+dn

)

=
1

2

∫

∂X∩A

∫

SO(d)

(Q+(RB)−Q−(RW̌ ))δ(RB,RW )(n)νd(dR)dHd−1.

If X is a smooth manifold, then the convergence is O(a).
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For simplicity, we write

I = a−2

∫

SO(d)

Hd(ξ−1
∂X(A) ∩ (X 	 aRB̌)\(X ⊕ aRW̌ ))νd(dR)

in the following.
For a finite set S, let

D(S) = Sd−1 ∩
⋃

s1,s2∈S
{n ∈ Rd | 〈s1, n〉 = 〈s2, n〉}.

Then D(S) has Hd−1-measure zero in Sd−1.
For n /∈ D(S), the sets S±(n) contain exactly one point each. Thus we may define

p+
S , p

−
S : Sd−1 → S to be the unique functions with p±S (n) ∈ S±(n) for n /∈ D(S) and

p±S (n) = 0 otherwise. These satisfy p±S (n(x)) = s±(x)1{n(x)/∈D(S)} and for R ∈ SO(d),
p±RS(n) = cRp

±
S (n) where cRp±S denotes the conjugation cRp±S (n) = Rp±S (R−1n).

Let

E = {(x,R) ∈ ∂X × SO(d) | n(x) ∈ D(RS)}
= {(x,R) ∈ ∂X × SO(d) | R−1n(x) ∈ D(S)}.

Then this is also a set of measure zero.

Proof. First note that by Tonelli’s theorem
∫

SO(d)

∫

∂X∩A
(−h(RB ⊕RW̌ , n))+dHd−1νd(dR)

=

∫

∂X∩A

∫

SO(d)

(−h(B ⊕ W̌ , R−1n))+νd(dR)dHd−1

= Hd−1(∂X ∩ A)

∫

Sd−1

(−h(B ⊕ W̌ , n))+dn.

Thus, in order to prove the first statement, we must compute the limit of

I − a−1 lim
a→0

aI = a−2

d−1∑

m=0

∫

SO(d)

∫

∂X∩A

(∫ t+(aRB)

t−(aRW )

tmf(RB,RW )(x+ tn, a)sm(k(x))dt

− a(−h(RB ⊕RW̌ , n(x)))+

)
Hd−1(dx)νd(dR)

as a tends to zero. This is done exactly as in the proof of Theorem 4.3. The only dif-
ference is that one has to check that the limit also commutes with the integration over
SO(d), but this follows because the constants bounding the integrands are also uni-
form with respect to the SO(d)-action, depending only on ρ(B,W ) = ρ(RB,RW ).
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To prove the last statement, consider

a−1I − a−2 lim
a→0

aI − a−1 lim
a→0

(I − a−1 lim
a→0

aI))

=

∫

SO(d)

∫

∂X∩A

( d−1∑

m=0

a−3

m+ 1
(t+(aRB)m+1 − t−(aRW )m+1)τ(RB,RW )sm(k)

−
(
a−2

(
h(RB, n) + h(RW̌ , n)

)
− a−1 1

2

(
II+(RB)− II−(RW )

)

+ a−1 1
2

(
h(RB, n)2 − h(RW̌ , n)2

)
s1(k)

)
δ(RB,RW )(n)

)
νd(dR)dHd−1.

We must see that this is bounded when a→ 0.
For m ≥ 2, a−3t(as)m+1 is uniformly bounded for all |s| ≤ ρ(B ∪ W ) by

Lemma 4.4, taking care of these terms.
For m ≤ 1, let

T = Ec ∩ ({t+(aRB) 6= t(ap+
RB(n))} ∪ {t−(aRW ) 6= t(ap−RW (n))}).

Then

a−3(t+(aRB)m+1 − t−(aRW )m+1)sm(k)

= a−3(t(ap+
RB(n))

m+1 − t(ap−RW (n))
m+1

)sm(k)1Ec\T (5.1)

+ a−3(t+(aRB)m+1 − t−(aRW )m+1)sm(k)1T

almost everywhere.
For m = 1, note that a−3t(as)2 ≤ Ka−1 for some uniform constant K whenever

|s| ≤ ρ(B ∪W ). By the last part of Lemma 4.6, a−1νd(T ) is bounded and hence the
following integral is uniformly bounded:
∫

SO(d)

a−3(t+(aRB)2 − t−(aRW )2 + a2(h(RB, n)2 − h(RW̌ , n)2))s1(k)1Tν(dR)

Moreover,

a−3(t(ap+
RB(n))

2 − t(ap−RW (n))
2

+ a2(h(RB, n)2 − h(RW̌ , n)2))s1(k)1Ec\T

is bounded. This takes care of the remaining term in (5.1).
Finally, consider the case m = 0. By Lemma 4.6,

a−2
(
t+(aRB) + ah(RB, n) + a2 1

2
II+(RB)

)

is uniformly bounded. Thus
∫

SO(d)

a−3
(
t+(aRB) + ah(RB, n) + a2 1

2
II+(RB)

)
1Tνd(dR)

is bounded by the last part of Lemma 4.6. The terms involving W are handled
similarly.
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To deal with the remaining term in (5.1), we need the smoothness of X. Since
X is smooth, q : T r∂X → R is a smooth map. In local coordinates on ∂X,

q(x, aα) = −1
2
IIx(aα) +O(|aα|3)

where the O(|aα|3) term is bounded by

C|aα|3 sup

{∣∣∣∣
∂3q

dαidαjdαk
(x, aα)

∣∣∣∣ , i, j, k = 1, . . . , d− 1, |aα| ≤ r

}
.

The functions ∂3q
dαidαjdαk

(x, aα) are continuous and hence bounded on compact sets.
Since ∂X ∩ A is contained in a union of finitely many compact sets contained in
coordinate neighborhoods, the whole O(|aα|3) term is uniformly bounded on T r∂X|A
by C ′a3 for some constant C ′.

This shows that a−3(t(ap+
RB(n)) + ah(RB, n) + a2 1

2
II(p+

RB(n))) is bounded and
that the corresponding statement is true for W , so the claim follows.

The formula of Theorem 5.1 may be simplified further:

Theorem 5.2. Let X,A,B,W ⊆ Rd be as in Theorem 5.1. Then

lim
a→0

(I − a−1 lim
a→0

aI) = 1
2
Cd−2(X;A)

∫

Sd−1

(
d(h(B, n)2 − h(W̌ , n)2)

− (|p+
B(n)|2 − |p−W (n)|2)

)
δ(B,W )(n)Hd−1(dn).

where Cd−2(X; ·) is the (d− 2)th curvature measure on X normalized as in [7].

In particular, we recover Cd−2(X;A) up to a constant depending only on the sets
B and W .

Proof. For a finite set S and x ∈ ∂X fixed, we compute
∫

SO(d)

Q+
x (RS)δ(RB,RW )(n)νd(dR)

=

∫

SO(d)

∫

SO(d−1)

Q+
x (PRS)δ(B,W )((PR)−1n)νd−1(dP )νd(dR)

=

∫

SO(d)

∫

SO(d−1)

Qx(cPRp
+
S (n))νd−1(dP )δ(B,W )(R

−1n)νd(dR)

where SO(d − 1) is the subgroup that keeps n fixed. Note that cPRp+
S = PcRp

+
S .

15



Hence
∫

SO(d)

Q+
x (RS)δ(B,W )(R

−1n)νd(dR)

=

∫

SO(d)

∫

SO(d−1)

Qx(PcRp
+
S (n))νd−1(dP )δ(B,W )(R

−1n)νd(dR)

=

∫

SO(d)

(∫

SO(d−1)

(− IIx(PcRp+
S (n)))νd−1(dP )

+ Tr(IIx)〈cRp+
S (n), n〉2

)
δ(B,W )(R

−1n)νd(dR)

=

∫

SO(d)

(
1

d− 1
Tr(IIx)(〈cRp+

S (n), n〉2 − |cRp+
S (n)|2)

+ Tr(IIx)〈cRp+
S (n), n〉2

)
δ(B,W )(R

−1n)νd(dR)

=

∫

SO(d)

1

d− 1
Tr(IIx)(d〈p+

S (R−1n), R−1n〉2

− |p+
S (R−1n)|2)δ(B,W )(R

−1n)νd(dR)

=

∫

Sd

1

d− 1
Tr(IIx)(dh(S, u)2 − |p+

S (u)|2)δ(B,W )(u)Hd−1(du).

The third equality here may be proved using the characterization of the trace as the
unique basis invariant linear map on the space of linear maps on Rd−1. Inserting the
above in Theorem 5.1 yields the formula.

6 Application to configurations

We now return to the design based setting where we observe a compact r-regular
set X ⊆ Rd on a random lattice L.
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We introduce the following notation:

ϕ̄j(X) =
∑

l:ξl∈ηdj

∫

∂X

(−h(Bl ⊕ W̌l, n(x)))+Hd−1(dx),

ψ̄j = 2
∑

l:ξl∈ηdj

∫

Sd−1

(−h(Bl ⊕ W̌l, n))+Hd−1(dn),

λl(X) =
1

2

∫

∂X

(Q+(Bl)−Q−(Wl))δ(Bl,Wl)(n)dHd−1,

λ̄j(X) =
∑

l:ξl∈ηdj

λl(X),

µl =
π

d− 1

∫

Sd−1

(
d(h(Bl, n)2 − h(W̌l, n)2)

− (|p+
Bl

(n)|2 − |p−Wl
(n)|2)

)
δ(Bl,Wl)(n)dn,

µ̄j =
∑

l:ξl∈ηdj

µl.

Combining the observation (3.3) with Theorem 4.3 and 5.1, we obtain:

Corollary 6.1. Let ξl be a configuration with black and white points (Bl,Wl). If L
is a stationary non-isotropic lattice,

lim
a→0

(ad−2ENl − a−1 lim
a→0

ad−1ENl) = λl(X).

If L is stationary isotropic,

lim
a→0

(ad−2ENl − a−1 lim
a→0

ad−1ENl) = µlVd−2(X).

In particular, suppose V̂d−2 is a local estimator of the form (2.2). In both cases
lima→0EV̂d−2(X) exists if and only if lima→0 aEV̂d−2(X) = 0, where

lim
a→0

aEV̂d−2(X) =
∑

j∈J
w

(d−2)
j ϕ̄j(X)

lim
a→0

aEV̂d−2(X) = Vd−1(X)
∑

j∈J
w

(d−2)
j ψ̄j (6.1)

in the non-isotropic and isotropic case, respectively. In this case, the limit is

lim
a→0

EV̂d−2(X) =
∑

j∈J
w

(d−2)
j λ̄j(X)

in the non-isotropic case, and in the isotropic case

lim
a→0

EV̂d−2(X) = Vd−2(X)
∑

j∈J
w

(d−2)
j µ̄j. (6.2)

In the isotropic case, there are some symmetries allowing us to reduce the above
formula a bit further. The following properties are obvious:
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Proposition 6.2.
µl = −µ

(22d−1−l).

If ξl1 and ξl2 belong to the same configuration class,

µl1 = µl2 .

Let ξl ∈ ηdj1 and let ηdj2 be the configuration class of ξ
(22d−1−l). Then by the

corollary, we may as well choose w(d−2)
j1

= −w(d−2)
j2

. Since ψ̄j1 = ψ̄j2 , this also ensures
that the asymptotic mean exists. Finally it ensures that interchanging foreground
and background changes the sign of V̂d−2, which is desirable since Vd−2 has this
property.

Moreover, not all µl are zero, e.g. µ1 > 0. If ηd1 and ηd
2d−1

denote the configuration
classes of ξ1 and ξ

22d−2
, respectively, this shows:

Corollary 6.3. In the isotropic case, asymptotically unbiased estimators for Vd−2

do exist. For instance, the estimator with all weights equal to zero except

w
(d−2)
1 = −w(d−2)

2d−1
=

1

2µ̄1

is asymptotically unbiased.

The last proposition of this section reduces the formula for µ̄j in a way that
resembles (3.2) and the formula for ψ̄j even more.

Proposition 6.4.

µ̄j =
dπ

d− 1

∑

l:ξl∈ηdj

∫

Sd−1

(h(Bl, n)2 − h(W̌l, n)2)δ(Bl,Wl)(n)Hd−1(dn).

Proof. Choose a rotation R taking C to Č. For each configuration ξl, we let ξl′
denote R(ξl) + (1, 1, 1). Then

|p+
Bl

(n)|2 = d− |p+
Bl′

(Rn)|2,
|p−Wl

(n)|2 = d− |p−Wl′
(Rn)|2,

and δ(Bl,Wl)(n) = δ(Bl′ ,Wl′ )(Rn), so that
∫

Sd−1

(
(|p−Wl

|2 − |p+
Bl
|2)δ(Bl,Wl) + (|p−Wl′

|2 − |p+
Bl′
|2)δ(Bl′ ,Wl′ )

)
dHd−1

=

∫

Sd−1

(d− d)δ(Bl,Wl)dHd−1 = 0.

Hence

µl + µl′ =
πd

d− 1

∫

Sd−1

(
(h(Bl, n)2 − h(W̌l, n)2)δ(Bl,Wl)(n)

+ (h(Bl′ , n)2 − h(W̌l′ , n)2)δ(Bl′ ,Wl′ )(n)
)
Hd−1(dn)

from which the claim follows.
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7 More on the isotropic setting in 3D

We now specialize to the isotropic situation. That is, we assume throughout this
section that X ⊆ R3 is an r-regular compact set observed on a stationary isotropic
lattice aL. Theorem 6.1 determines the set of all asymptotically unbiased estimators
for Vd−2 as follows: an estimator is asymptotically unbiased if and only if the weights
satisfy two linear equations

∑

j∈J
w

(d−2)
j ψ̄j = 0,

∑

j∈J
w

(d−2)
j µ̄j = 1.

The first one ensures that the asymptotic mean exists and the second one makes the
estimator asymptotically unbiased.

The coefficients ψ̄j and µ̄j can in principle be computed directly for each con-
figuration. However, the actual computations are tedious. The computations in di-
mension d = 2 were done in [8]. Below we consider the case d = 3.

First note that δ(Bl,Wl) vanishes if Wl and Bl cannot be strongly separated by
a hyperplane, so we may ignore such configurations. Recall that we also ignore the
configurations ξ0 and ξ255. The remaining configurations fall into one of the eight
equivalence classes pictured below:

η3
1 η3

2 η3
3 η3

4,1

η3
4,2 η3

5 η3
6 η3

7

u e
e ee e

e e
�� ��

�� ��

u u
e ee e

e e
�� ��

�� ��

u u
e eu e

e e
�� ��

�� ��

u u
e eu u

e e
�� ��

�� ��

u u
u eu e

e e
�� ��

�� ��

u u
u eu u

e e
�� ��

�� ��

u u
u uu u

e e
�� ��

�� ��

u u
u uu u

u e
�� ��

�� ��

Proposition 7.1. lima→0 aEV̂1(X) equals

V2(X)
(

(3− 4ζ)(w
(1)
1 + w

(1)
7 ) + (−3 + 12ζ − 3

√
2)(w

(1)
2 + w

(1)
6 )

+ (3− 12ζ + 6
√

2− 2
√

3)(w
(1)
3 + w

(1)
5 ) + (−3 + 2

√
3)w

(1)
4,1

+ (8ζ − 6
√

2 + 2
√

3)w
(1)
4,2

)

where ζ = 3
√

2arctan(
√

2)
2π

.

Proof. We must compute the coefficients ψ̄j in (6.1). The computations are similar
to the computations of µ̄j below, so we leave them out here.
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Theorem 7.2. lima→0EV̂1(X) exists if and only if the weights satisfy

0 =
(

(3− 4ζ)(w
(1)
1 + w

(1)
7 ) + (−3 + 12ζ − 3

√
2)(w

(1)
2 + w

(1)
6 )

+ (3− 12ζ + 6
√

2− 2
√

3)(w
(1)
3 + w

(1)
5 ) + (−3 + 2

√
3)w

(1)
4,1

+ (8ζ − 6
√

2 + 2
√

3)w
(1)
4,2

)

and in this case

lim
a→0

EV̂1(X) = V1(X)
(

(3−
√

3)(w
(1)
1 − w(1)

7 ) + (3
√

3− 3
√

2)(w
(1)
2 − w(1)

6 )

+ (−3 + 6
√

2− 3
√

3)(w
(1)
3 − w(1)

5 )
)
.

If X is smooth, the convergence is O(a).

Proof. By Corollary 6.1 we must compute the coefficients µ̄j in (6.2). By Proposi-
tion 6.2, µ̄4,1 = µ̄4,2 = 0 and µ̄j = µ̄8−j, so it is enough to compute µ̄j for j = 1, 2, 3.

The hyperplanes 〈xi1 , n〉 = 〈xi2 , n〉 with xi1 , xi2 ∈ C0 divide S2 into 96 triangles
of two types: 48 triangle T 1

αβγ with vertices

vα,
1√
2
(vα + vβ),

√
2√
3

(
vα + 1

2
(vα + vβ)

)

and 48 triangles T 2
αβγ with vertices

1√
2
(vα + vβ),

√
2√
3

(
vα + 1

2
(vβ + vγ)

)
, 1√

3
(vα + vβ + vγ)

where {|α|, |β|, |γ|} = {1, 2, 3} and v±|α| = ±e|α|.
On the interior of each Tmαβγ, all indicator functions δ(Bl,Wl) and functions b+

l and
w−l are constant. For each k = 1, . . . , 7, there is exactly one configuration containing
k points such that δBl,Wl

is non-zero on Tmαβγ. For k = 4, this configuration is of type
η3

4,1 on T 1
αβγ and of type η3

4,2 on T 2
αβγ.

Let Rαβγ be the orthogonal map taking (vα, vβ, vγ) to (eα, eβ, eγ). This takes Tmαβγ
to Tm0 := Tm123 and h(Bl, n) = h(RαβγBl, Rαβγn). Thus

∫

Tmαβγ

h(Bl, n)2δ(Bl,Wl)(n)dn =

∫

Tm0

h(RαβγBl, n)2δ(RαβγBl,RαβγWl)(n)dn.

There is a unique x ∈ C0 such that RαβγC +x = C. Each x ∈ C0 corresponds to six
different Rαβγ. Since δ(RαβγBl,RαβγWl)(n) = δ(RαβγBl+x,RαβγWl+x)(n),

µ̄j = π
∑

l:ξl∈η3j

∫

Sd−1

d

d− 1
(h(Bl, n)2 − h(W̌l, n)2)δ(Bl,Wl)(n)dn

= 3
2
π
∑

l:ξl∈η3j

∑

αβγ

∫

T 1
αβγ∪T 2

αβγ

(h(Bl, n)2 − h(W̌l, n)2)δ(Bl,Wl)(n)dn

= 3
2
π
∑

l:ξl∈η3j

∑

αβγ

∫

T 1
0∪T 2

0

(h(RαβγBl, n)2 − h(RαβγW̌l, n)2)δ(RαβγBl,RαβγWl)(n)dn

= 3
2
π
∑

x∈C0

∫

T 1
0∪T 2

0

6(h(Blj − x, n)2 − h(W̌lj + x, n)2)δ(Blj ,Wlj
)(n)dn.
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where ξlj is the unique configuration of type j such that δ(Blj ,Wlj
) is not everywhere

zero on T 1
0 ∪ T 2

0 .
For j = 1, p+

Bl1
= (0, 0, 0) and p−Wl1

= (0, 0, 1) on both T 1
0 and T 2

0 . From this,

µ̄1 = 9π
∑

x∈C0

∫

T 1
0∪T 2

0

(〈(0, 0, 0)− x, n〉2 − 〈(0, 1, 0)− x, n〉2)dn

= 9π
∑

x∈C0

∫

T 1
0∪T 2

0

8(n1 + n2)n3dn.

where n = (n1, n2, n3). Parametrize the sphere by (cosφ, cos θ sinφ, sin θ sinφ) with
θ ∈ (0, 2π) and φ ∈ (0, π). Then this becomes

µ̄1 = 72π
1

4π

∫ π
4

0

∫ arccos

(
cos θ√

1+cos2 θ

)

0

(cos θ sin θ sin3 φ+ sin θ sin2 φ cosφ)dφdθ

= 3−
√

3.

For j = 2, we get p+
Bl2

= (0, 0, 1) and p+
Wl2

= (0, 1, 0) and thus

µ̄2 = 9π
∑

x∈C0

∫

T 1
0∪T 2

0

(〈(0, 0, 1)− x, n〉2 − 〈(0, 1, 0)− x, n)2〉dn

= 9π
∑

x∈C0

∫

T 1
0∪T 2

0

8(n2 − n3)n1dn

= 18

∫ π
4

0

∫ arccos

(
cos θ√

1+cos2 θ

)

0

(cos θ − sin θ) cosφ sin2 φdφdθ

= 3
√

3− 3
√

2.

Finally for j = 3, p+
Bl3

= (0, 1, 0) and p−Wl3
= (1, 0, 0) on T 1

0 , while on T 2
0 ,

p−Wl3
= (0, 1, 1). However, on both triangles

∑

x∈C0

(〈p+
Bl3
− x, n〉2 − 〈p−Wl3

− x, n)2〉 = 8(n1 − n2)n3.

and thus

µ̄3 = 72π

∫

T0

(n3 − n1)n2dn

= 18

∫ π
4

0

∫ arccos

(
cos θ√

1+cos2 θ

)

0

(cosφ− cos θ sinφ) sin θ sin2 φdφdθ

= −3
√

3 + 6
√

2− 3.

Inserting this in (6.2) proves the claim.
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8 Unbiased estimators for the Euler characteristic
in 2D

The remainder of this paper is devoted to the case where L is a stationary non-
isotropic lattice. In dimension d = 2, Vd−2 is simply the Euler characteristic. In
this case, it follows from known results that there exists a unique asymptotically
unbiased estimator of the form (2.2). The existence goes back to Pavlidis [6] and
the uniqueness follows from the results of [4]. In this section, we show how this also
follows as a consequence of Corollary 6.1. In contrast, we shall see in Section 9 that
no asymptotically unbiased estimator of the form (2.1) can exist in dimensions d ≥ 3.

Let X ⊆ R2 be an r-regular set observed on a stationary lattice and V̂d−2 a
local estimator of the form (2.1). Again we ignore the configurations ξ0 and ξ15.
Moreover, δ(Bl,Wl) vanishes for ξ6 and ξ9. The remaining configurations fall into one
of the following three equivalence classes:

η2
1 η2

2 η2
3

t d
d d

t t
d d

t t
t d

For d = 2, Theorem 4.3 reduces to:

Corollary 8.1. Let X ⊆ R2 be a compact r-regular set observed on a stationary
non-isotropic lattice and let ξl be a configuration. Then

lim
a→0

(ENl − a−1 lim
a→0

aENl)

=
1

2

∫

∂X

(2(h(Bl, n)2 − h(Wl, n)2)− (|p+
Bl
|2 − |p−Wl

|2))δ(Bl,Wl)dC0(X; ·)

=
1

2π
µ̄lV0(X).

Here C0(X; ·) is the 0th curvature measure given by C0(X;A) =
∫
A∩∂X kdH1.

The second equality uses the identity C0(X; ·) ◦ n−1 = 2πV0(X)H1 as measures
on S1.

From this we first obtain the following criterion for the existence of an asymptotic
mean:

Proposition 8.2. lima→0EV̂0(X) exists for all X if and only if

w
(0)
2 = 0 and w(0)

1 = −w(0)
3 . (8.1)

Proof. By Corollary 8.1, lima→0EV̂0(X) exists if and only if
3∑

j=1

w
(0)
j ϕ̄j(X) = 0. (8.2)

Write n = (n1, n2) ∈ S1 ⊆ R2. Then for j = 1, 3,
∑

l:ξl∈η2j

(−h(Bl ⊕ W̌l, n))+ = min{|n1|, |n2|},
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wheras ∑

l:ξl∈η22

(−h(Bl ⊕ W̌l, n))+ = max{|n1|, |n2|} −min{|n1|, |n2|}.

Hence the equation (8.2) becomes
∫

∂X

((
w

(0)
1 + w

(0)
3 − w(0)

2

)
min{|n1|, |n2|}+ w

(0)
2 max{|n1|, |n2|}

)
dH1 = 0.

This holds for all X if w(0)
1 +w

(0)
3 = w

(0)
2 = 0. On the other hand, this is a necessary

condition, as one may realize e.g. by considering sets of the form [0, (0, x)] ⊕ B(r)
where [x, y] denotes the line segment from x to y.

Theorem 8.3. For an estimator satisfying (8.1),

lim
a→0

EV̂0(X) = 2
(
w

(0)
1 − w(0)

3

)
V0(X).

Thus the estimator with weights

w
(0)
1 = −w(0)

3 = 1
4

and w
(0)
2 = 0

is the unique asymptotically unbiased estimator for the Euler characteristic of the
form (2.2) in the non-isotropic setting.

Proof. Under the condition (8.1), lima→0EV̂0(X) is given by Corollary 8.1 if we can
compute the coefficients µ̄j. This is done in [8, Section 8] and it yields

lim
a→0

EV̂0(X) = 2
(
w

(0)
1 − w(0)

3

)
V0(X) = 4w

(0)
1 V0(X)

as claimed.

9 Non-existence of unbiased estimators for Vd−2 in
higher dimensions

We now consider estimators of the form (2.2) for Vd−2 in dimensions d ≥ 3 in the
design based setting where an r-regular set X ⊆ Rd is observed on a stationary
non-isotropic lattice aL. Contrary to the d = 2 case, we shall see that in higher
dimensions there are no asymptotically unbiased estimators based on 2 × · · · × 2
configurations. The proof goes by constructing counterexamples. These are all of
the form P ⊕B(r) where P is a polygon.

In the following we write wj = w
(d−2)
j for simplicity.

Theorem 9.1. For d = 3, there exists no asymptotically unbiased estimator for V1

of the form (2.2) on the class of r-regular sets.

Proof. Assume that V̂1 is an estimator of the form (2.2) and that the weights have
been chosen so that lima→0 aEV̂1(X) = 0 and lima→0EV̂1(X) = V1(X) for all r-
regular sets X.
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In particular, this holds for X = B(r). Since X is rotation invariant, a random
rotation of L does not change ENl. Thus λ̄l(X) = µ̄lVd−2(B(r)), so it follows from
Theorem 7.2 that the weights must satisfy

(3−
√

3)(w1−w7)+(3
√

3−3
√

2)(w2−w6)+(−3+6
√

2−3
√

3)(w3−w5) = 1. (9.1)

We next consider three test sets of the form Xi = [0, tiui]⊕ B(r) for ti ∈ R and
u1 = (1, 0, 0), u2 =

(
1√
2
, 1√

2
, 0
)
and u3 =

(
1√
3
, 1√

3
, 1√

3

)
. Then

V1(X) = ti + 4r = ti + V1(B(r)). (9.2)

Note that

∂X = (0 + rS2 ∩H−ui) ∪ (tiui + rS2 ∩H+
ui

) ∪ ([0, tiui]× rS1(ui))

where H±ui denote the halfspaces {z ∈ R3 | ±〈z, ui〉 ≥ 0} and rS1(ui) is the sphere
of radius r in u⊥i . Thus

λl(X) =
1

2

∫

[0,tiui]×rS1(ui)

(Q+(Bl)−Q−(W̌l))δ(Bl,Wl)dHd−1

+
1

2

∫

rS2

(Q+(Bl)−Q−(Wl))δ(Bl,Wl)dHd−1

=
1

2

∫

[0,tiui]×rS1(ui)

(Q+(Bl)−Q−(Wl))δ(Bl,Wl)dHd−1 + λl(B(r)).

Combining this with Corollary 6.1 yields

lim
a→0

EV̂1(Xi)− lim
a→0

EV̂1(B(r))

=
∑

j∈J
wj

∑

l:ξl∈η3j

1

2

∫

[0,tiui]×rS1(ui)

(Q+(Bl)−Q−(Wl))δ(Bl,Wl)dHd−1.

Under the assumption that V̂1 is asymptotically unbiased on both B(r) and Xi,
(9.2) shows that the weights must satisfy

hi :=
∑

j∈J
wj

∑

l:ξl∈η3j

1

2

∫

[0,tiui]×rS1(ui)

(Q+(Bl)−Q−(Wl))δ(Bl,Wl)dHd−1 = ti

for i = 1, 2, 3.
But Q takes a very simple form on [0, tiui]× rS1(ui). Namely, for t ∈ [0, ti] and

n ∈ S1(ui),
Qtui+rn(s) = 1

r
(〈s, n〉2 − 〈s, ui × n〉2)

where × is the cross-product in R3. In particular, Qtui+rn(s) depends only on n and
the projection of s onto u⊥i . Hence

hi = ti
∑

j∈J
wj

∑

l:ξl∈η3j

1

2

∫

S1(ui)

(
〈b+
l , n〉2 − 〈b+

l , ui × n〉2

− 〈w−l , n〉2 + 〈w−l , ui × n〉2
)
δ(Bl,Wl)(n)H1(dn).
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It is now a straightforward computation to see that

h1 = 2(w2 − w6)t1,

h2 = (
√

2(w1 − w7) +
√

2(w3 − w5))t2,

h3 = (
√

3(w1 − w7) +
√

3(w2 − w6)−
√

3(w3 − w5))t3.

But no weights can satisfy the three equations hi = ti and Equation (9.1) at the
same time.

Theorem 9.2. There are no asymptotically unbiased estimators for Vd−2 of the form
(2.2) in dimension d ≥ 3.

For shortness we write

Gj =
1

2

∑

l:ξl∈ηj
(Q+(Bl)−Q−(Wl))δ(Bl,Wl)

in the following.

Proof. The idea is to generalize the approach for d = 3 by considering some example
sets for which the computations reduce to the ones already performed in dimension 3.
Again we assume that an asymptotically unbiased estimator V̂d−2 is given.

Let u1, . . . , uk ∈ Sd−1 be k ≤ d− 2 orthonormal vectors. We consider sets of the
form

([0, t1u1]⊕ · · · ⊕ [0, tkuk])× rSd−k−1(u1, . . . , uk)

where Sd−k−1(u1, . . . , uk) denotes the unit sphere in span(u1, . . . , uk)
⊥ and ti > 0.

We first show by induction in k that the weights must satisfy

∑

j∈J
wj

∫

(
⊕k
i=1[0,tiui])×rSd−k−1(u1,...,uk)

GjdHd−1 =
κd−k
κ2

(
d− k

2

)
rd−k−2

k∏

i=1

ti (9.3)

where κN is the volume of the unit ball in RN . This is obviously true for k = 0 since
the estimator is unbiased for X = B(r). Assume it is true for k − 1 and consider
X = P ⊕B(r) where P =

⊕k
i=1[0, tiui]. The relative open m-faces of P are the sets

x+
m⊕

i=1

(0, tkiuki)

for
x ∈ A(k1, . . . , km) =

{ ∑

s6=k1,...km
εstsus | εs ∈ {0, 1}

}
.

The normal cone of such a face is

N(x, k1, . . . km) =
⋂

s 6=k1,...km
H+

(−1)εs−1us
∩ span(uk1 , . . . , ukm)⊥.
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Then ∂X can be divided into disjoint subsets of the form

x+

( m⊕

i=1

(0, tkiuki)

)
× (N(x, k1, . . . , km) ∩ rSd−1)

for x ∈ A(k1, . . . , km). Note that
⋃

x∈A(k1,...,km)

N(x, k1, . . . km) ∩ rSd−1 = rSd−m−1(uk1 , . . . , ukm) (9.4)

and for x1 6= x2,

N(x1, k1, . . . km) ∩N(x2, k1, . . . km) ∩ rSd−1

has Hd−m−1-measure zero in rSd−m−1(uk1 , . . . , ukm). Thus for m < k,

∑

j∈J
wj

∑

x∈A(k1,...,km)

∫

x+(
⊕m
i=1(0,tkiuki ))×(N(x,k1,...,km)∩rSd−1)

GjdHd−1

=
∑

j∈J
wj

∫

(
⊕m
i=1(0,tkiuki ))×rSd−m−1(uk1 ,...,ukm )

GjdHd−1

=
κd−m
κ2

(
d−m

2

)
rd−m−2

m∏

i=1

tki

where the last equality follows by induction. But then it must hold for m = k as
well since on the one hand lima→0EV̂d−2(P ⊕B(r)) equals

∑

j∈J
wj

k∑

m=0

∑

1≤k1<···<km≤k,
x∈A(k1,...,km)

∫

x+(
⊕m
i=1(0,tkiuki ))×(N(x,k1,...,km)∩rSd−1)

GjdHd−1,

while on the other hand, the Steiner formula yields

Vd−2 (P ⊕B(r)) =
1

κ2

d−2∑

m=0

(
d−m

2

)
rd−m−2κd−mVm(P )

=
1

κ2

d−2∑

m=0

(
d−m

2

)
rd−m−2κd−m

∑

1≤k1<···<km≤k

m∏

i=1

tki .

Here the last equality uses [7, Equation (4.2.30)] and the observation (9.4). This
proves the induction step.

In particular, (9.3) holds for k = d− 2 and the orthonormal vectors ui, e4, . . . , ed
where ui ∈ span(e1, e2, e3) are defined as in Theorem 9.1 for i = 1, 2, 3. That is,

∑

j∈J
wj

∫

([0,tiui]⊕
⊕d
m=4[0,em])×rS1(ui,e4,...,ed)

GjdHd−1 = ti. (9.5)

If ξl ⊆ span(e1, e2, e3) ∼= R3 is a configuration in R3, we let ξ′l ⊆ Rd denote the
configuration C0 ∩ P−1(ξl) where P : Rd → span(e1, e2, e3) is the projection. If ξl1
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and ξl2 differ only by a rigid motion, so do ξ′l1 and ξ′l2 . If the configuration classes η3
j

in R3 are indexed by j ∈ J and ξl ∈ η3
j , we let ηdj , j ∈ J , denote the configuration

class of ξ′l.
For x ∈ ([0, tiui]⊕

⊕d
m=4[0, em])× rS1(ui, e4, . . . , ed),

δ(Bl,Wl)(n(x)) = δ(PBl,PWl)(n(x)).

Thus only configurations of type ηdj with j ∈ J can occur. Moreover, since all
principal curvatures vanish in the directions ui, e4, . . . , ed,

∑

j∈J
wj

∫

([0,tiui]⊕
⊕d
m=4[0,em])×rS1(ui,e4,...,ed)

GjdHd−1

=
∑

j∈J
wj

∑

l:ξl∈ηdj

1

2

∫

[0,tiui]×rS1(ui)

(Q+(PBl)−Q−(PWl))δ(PBl,PWl)dHd−1

= hi.

where hi is as in the proof of Theorem 9.1. Thus by (9.5) the weights must satisfy
the equations hi = ti.

Applying (9.3) to the k = d − 3 vectors e4, . . . , ed shows that the weights must
also satisfy (9.1). But then the wj have to satisfy the same set of equations as in
the proof of Theorem 9.1, which was impossible.
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