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Abstract

We introduce a regression model for data on non-linear manifolds. The model
describes the relation between a set of manifold valued observations, such as
shapes of anatomical objects, and Euclidean explanatory variables. The ap-
proach is based on stochastic development of Euclidean diffusion processes to
the manifold. Defining the data distribution as the transition distribution of
the mapped stochastic process, parameters of the model, the non-linear ana-
logue of design matrix and intercept, are found via maximum likelihood. The
model is intrinsically related to the geometry encoded in the connection of the
manifold. We propose an estimation procedure which applies the Laplace ap-
proximation of the likelihood function. A simulation study of the performance
of the model is performed and the model is applied to a real dataset of Corpus
Callosum shapes.

Keywords: Regression, Statistics on Manifolds, Non-linear Statistics, Frame
Bundle, Stochastic Development

1 Introduction

A main focus in computational anatomy is to study the shape of anatomical ob-
jects. Performing statistical analysis of anatomical objects is however challenging
due to the non-linear nature of shape spaces. The established statistical theory for
Euclidean data does not directly allow us to answer questions like: How does a
treatment affect the deformation of an organ? or: Is it possible to categorize sick
and healthy patients based on the shape of the subject’s organs?

Shape spaces are typically non-linear and often equipped with manifold structure.
Examples of manifold-valued shape data include landmarks, curves, surfaces, and
images with warp variation. The lack of vector space structure for manifold-valued
data implies that addition and scalar multiplication are not defined. Several concepts
in statistics rely on addition and scalar multiplication, these including mean value,
variance, and regression models. Hence, in order to make inference on manifold-
valued data, generalization of Euclidean statistical theory is necessary.
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Figure 1: The idea behind the proposed regression model. Stochastic processes in Rm
is transported to M, by stohcastic development ϕ, to model the relation between the
explanatory variables and the response y ∈M.

This paper focuses on generalization of regression models to manifolds. The aim is
to model the relation between Euclidean explanatory variables and a manifold-valued
response. The regression model has, as an example, applications in computational
anatomy [23]. The proposed model can for example be used to analyze how age
affects the shape of Corpus Callosum [7].

Several approaches have previously been proposed for defining normal distribu-
tions on manifolds [14, 19]. In [19], the distribution is defined based on Brownian
motions in Rm and the fact that normal distributions on Rm can be defined as tran-
sition distributions of Brownian motions. The normal distribution on the manifold
is then defined as the transition distribution of the stochastic development of the
Euclidean Brownian motion [10]. The proposed regression model will be defined in
a similar manner. The construction can be considered intrinsic as it only depends
on the connection of the manifold, e.g. the Levi-Civita connection of a Riemannian
manifold. It does not rely on linearization of the manifold, and it naturally includes
the effect of curvature in the mapping of the stochastic processes.

In Euclidean linear regression, the relation between explanatory variables, X,
and a response variable, y, is modeled by an affine function of X,

y = a + Xb + ε. (1.1)

Due to the lack of vector space structure, alternatives for modeling relations be-
tween the given variables, X and y, are needed in the non-linear situation. Several
ideas have previously been introduced and a selection of these will be described in
Section 2.

In this paper, the regression model is considered as a transported linear regression
defined in Rm. This approach is inspired by the transport of normal distributions
defined in [19]. Notice that the linear regression model (1.1) can be generalized to
situations in which several observations are observed over time,

yt = at + Xtb + εt, for t ∈ [t1, t2]. (1.2)

Our approach suggests to define the regression model by transportation of stochastic
processes, Zt = at+Xtb+εt, in Rm on to the manifold in order to obtain the relation
to the response variable, y (see Figure 1).

The paper will be structured as follows. In Section 2, we give a discussion on
previous methods developed for regression on manifolds. Section 3 presents a short
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description of development of stochastic paths from a Euclidean space to the man-
ifold. Section 4 introduces the proposed model, followed by a description of the
estimation procedure in Section 5. In Section 6 and 7, illustrative examples are con-
sidered for the application and performance of the model. The paper is ended by a
discussion of the defined model in Section 8.

2 Background

Multiple approaches have been proposed for generalizing regression models to non-
linear manifolds. The methods consider the regression problem in different situations.
In this paper we will consider the case of Euclidean exaplanatory variables and
a manifold-valued response. There have been several works describing regression
models for manifold-valued data in other situations [4, 1, 13, 21].

Regression models for describing the relation between a manifold-valued response
and Euclidean explanatory variables have also previously been introduced. Exam-
ples include [12] in which an extrinsic regression model is introduced, and [15],
which defines an intrinsic regression model where the parameter vector is estimated
by minimizing the total sum of squares based on the Riemannian manifold distance.
Another example is the geodesic regression model introduced in [7], which is a gen-
eralization of the linear regression model in Euclidean spaces. The relation is here
modeled by a geodesic described by an initial velocity dependent on an explanatory
variable and a starting point on the manifold.

In this paper, we will take a different view on how to relate the response and ex-
planatory variables. Instead of considering the relation as being modeled by geodesics
on the manifold as in [7], we will describe the relation by stochastic paths trans-
ported from the space of explanatory variables to the manifold. By defining the
regression model using stochastic paths, we are able to model non-geodesic rela-
tions, incorporate several explanatory variables, and consider random effects in the
model. Non-geodesic relations have been considered by others before. An example
is [17] in which the geodesic regression model from [7] is generalized in order to
model more complex shape changes. The regression function is in this case fitted
by piecewise cubic splines that describes the variation of one explanatory variable.
In [9], a regression model is introduced, in which the non-geodesic relation is ob-
tained by time-warping. Others have proposed to model the non-geodesic relation
by either a generalized polynomial regression model or by non-linear kernel-based
regression [8, 25, 3, 2, 6]. On the contrary, [16] introduces the Hierarchical Geodesic
Model which are able to consider several explanatory variables including random
variables, but assumes nested observations and does only consider geodesic relations.
A regression model, which incorporates both a non-geodesic relation and several ex-
planatory variables, is proposed in [5]. This work defines an intrinsic regression model
on Riemannian symmetric spaces, in which the regression function is obtained by
minimizing the conditional mean of residuals defined by the log-map.

In addition to describing the proposed model, we perform estimation of model
parameters by maximum likelihood using the transition density on the manifold. The
model does not linearize the manifold as in many of the local regression models, but
instead take into account the curvature of the manifold at each point as encoded in
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the connection through the mapping of the stochastic process.

3 Stochastic Development

In this section we give a brief description of stochastic development of curves in Rm

to the manifold. The reader is referred to [10, 20, 18] for a deeper description of this
concept.

LetM be a d-dimensional manifold provided with a connection ∇ and metric g.
The connection is necessary for transportation of tangent vectors along curves on the
manifold. A frequently used connection is the Levi-Civita connection coming from
a Riemannian structure onM. Let ∂i for i = 1, . . . , d denote a coordinate frame on
M and let dxi be the corresponding dual frame. A connection ∇ is given in terms
of its Christoffel symbols defined by ∇∂i∂j = Γkij∂k. For the Levi-Civita connection,
the Christoffel symbols are given by

Γkij = 1
2
gkl(∂igjl + ∂jgil − ∂lgij) (3.1)

in which gij is the components of g in the coordinate basis, i.e. g = gijdx
idxj, and

gij is the inverse components.
Consider the frame bundle FM being the set of tuples (y, ν) in which y ∈ M

and ν is a frame for the tangent space TyM. Let π : FM → M be the projection
map given by π(y, ν) = y for (y, ν) ∈ FM. A smooth curve Ut on FM is a smooth
selection of frames, i.e. for every t ∈ I, Ut = (yt, νt) in which νt : Rd → Tπ(Ut)M is a
frame.

Given a connection ∇, the tangent space of the frame bundle, TFM, splits into
a horizontal and a vertical part, TFM = HFM⊕V FM. The horizontal subspace
explains infinitesimal changes of the base point on the manifold. On the other hand,
tangent vectors in V FM describe changes of the frame ν keeping the base point
fixed. Given a tangent vector v ∈ TyM and a frame ν, a vector in H(y,ν)FM can
be defined by horizontal lift. The horizontal lift of a tangent vector v is the unique
horizontal vector w ∈ H(y,ν)FM, satisfying π?w = v, where π? : H(y,ν)FM→ TyM
is induced by the projection π. The horizontal lift of v will be denoted hl(v).

Consider a probability space (Ω,F , P ) and a stochastic processXt : Ω→W(Rm),
where W(Rm) denotes the path space of Rm. The stochastic development of Xt to
FM can be defined as a solution, Ut, of the Stratonovich stochastic differential
equation,

dUt =
d∑

i=1

Hi(Ut) ◦ dX i
t , (3.2)

where ◦ symbolizes a Stratonovich stochastic differential equation. The vector fields
H1, . . . , Hd denotes a basis for the horizontal subspace of TFM. Given a point
u = (y, ν) ∈ FM, Hi are defined as Hi(u) = hl(ν(ei)), i = 1, . . . , d, where e1, . . . , ed
is the canonical basis for Rd. A path Yt on the manifold M can then be obtained
by the projection of Ut ontoM by the projection map π, i.e. Yt = π(Ut).

Consider two processes X1
t , X

2
t in Rm, t ∈ [0, T ] for T > 0, for which X1

0 =
X2

0 = x0 and X1
T = X2

T . If Y 1
t , Y 2

t denotes the stochastic development of X1
t and
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Figure 2: Illustration of the regression model. Stochastic processes zit, defined in (4.1),
are transported through the frame bundle FM to M, with stochastic development, ϕ.
Each observation yi is then modelled as a noisy member of the endpoint distribution of the
transported zit processes. The model supports cases where the endpoint noise ε̃ perturbes
yi in the ambient space Rk in whichM is embedded.

X2
t respectively onM, then it does not in general hold that Y 1

T = Y 2
T onM due to

the curvature of the manifold.

4 Model

Let M be a d-dimensional manifold embedded in the ambient space Rk for some
k ≥ d and consider a response variable y in M. Let νy0 : Rd → Ty0M be a frame
for the tangent space at a reference point y0 ∈ M. Assume that y1, . . . ,yn ∈ Rk

are n realizations of y ∈ M and let xi = (x1i , . . . , x
m
i ) ∈ Rm denote the vector

of explanatory variables for the i’th observation. Notice that the realizations of y
are assumed to lie in the ambient space Rk and not required to be in M. This
construction allows for observations measured with noise which are not necessarily
observed as elements ofM.

The strategy of the proposed model is to define stochastic processes according
to the generalized linear regression in (1.2) and transport these to the manifold by
stochastic development. All stochastic processes are defined for t ∈ [0, T ] for a T > 0.
Consider for each observation i the stochastic process zit : Ω→W(Rm), solution to
the stochastic differential equation,

dzit = βdt+ W̃dX i
t + dεt. (4.1)

The first term, βdt, is a fixed drift for β ∈ Rm. W̃dX i
t is the dependence of the

explanatory variables with X i
t : Ω → W(Rm) being a stochastic process satisfying

X i
0(ω) = 0 and X i

T (ω) = xi for ω ∈ Ω. The matrix W̃ is a m×m-dimensional matrix
with columns relating to the basis vectors of the frame νy0 onM. Consider the matrix
W with columns consisting of basis vectors of νy0 . IfM has a Riemannian metric,
then W = UW̃ , in which U denotes a d×m orthonormal matrix with respect to the
metric. Notice that this model can incorporate both fixed and random explanatory
variables. If the j’th explanatory variable, xji , is a random effect, X ij

t is modeled as
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a Brownian bridge, while it for fixed effects are modeled as a constant drift. The
random error, εt, is modeled as a multidimensional Brownian motion on Rm.

The i’th observation yi is modeled as a noisy endpoint of the stochastic develop-
ment of zit. If m < d only a reduced frame ν̃y0 is used for the stochastic development
of zit. The reduced frame is considered as we are only interested in the effect of frame
vectors associated to the explanatory variables. The basis vectors of ν̃y0 corresponds
to the columns of W . Given the reference point y0 ∈M, define stochastic processes
Y i
t as the stochastic development of zit. Let YTi : Ω → M be a random variable

following the distribution of endpoints of the stochastic development Y i
t . Then

yi = YTi + ε̃i, (4.2)

where ε̃i ∼ N (0, τ 2Id) represents the random measurement error that pulls the real-
ization, yi, from the manifold. In Figure 2, the two steps of the model are illustrated.
First, the stochastic development of zit are defined on the frame bundle and finally,
this stochastic development is projected to the manifold.

Notice that in the case M = Rk with the standard connection on Rk, the pro-
posed model reduces to the regular regression model for data in Rk. Assume y ∈ Rk

and that X i
t is a vector from 0 to xi. Then β and y0 relates to the intercept, W is

the matrix of regression coefficients and εt and ε̃ the iid. random noise.

5 Estimation

The reference point y0, the matrixW , the drift β, and the variance parameter τ 2 are
the parameters of the model. These parameters can be estimated in several ways.
This section describes a Laplace approximation of the marginal likelihood function
which are used for finding optimal parameter estimates. We could alternatively use
a Monte Carlo EM based procedure using simulations of the missing data, Y i

t for
t ∈ [0, T ], to optimize the complete data likelihood. This will be considered in future
works.

Laplace approximation can be used to determine a linear approximation of a
non-linear likelihood function [11]. Let θ denote the vector of parameters, and dxt a
discretization of the process Xt at ns+1 time-points. Hence dxt is a vector of length
n·m·ns, in which ns denotes the number of time steps, n the number of observations,
and m the number of explanatory variables. Let f(y|θ) be the conditional density
of the response y ∈ M given θ and p(dxt|θ) the density of the discretization of Xt

given θ. To find the optimal parameter vector, θ, the following likelihood has to be
optimized,

L(θ;y) = f(y|θ) =

∫
f(y|dxt, θ)p(dxt|θ)d(dxt) =

∫
e−nh(dxt) d(dxt), (5.1)

where h(dxt) = − 1
n

log f(y|dxt, θ)− 1
n

log p(dxt|θ). The Laplace approximation of L
is then given by

L(θ;y) ≈ f(y|dxot , θ)p(dxot |θ)(2π)
mns
2 |Σ| 12n−mns

2 , (5.2)
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Figure 3: The figures show the simulation of a dataset. (left) The stochastic paths in Rm
are shown, where the vector of explanatory variables for each observation i is represented
by a green dot. (center) The true frame for the simulated data as well as the reference shape
are plotted. (right) The simulated observations are shown, with the stochastic developments
as the red processes.

in which dxot = argmaxdxt
{−h(dxt)} and Σ = (D2h(dxt))

−1, the inverse of the
Hessian of h(dxt). The approximated likelihood is then optimized wrt. θ to obtain the
estimated parameters. In the following simulation study, the Laplace approximation
is used for parameter estimation. The code for the estimation algorithm as well as
the simulation study below was implemented in Theano [22]. The code is available
at https://bitbucket.org/stefansommer/theanodiffgeom.

6 Simulation Study

This section investigates properties of the model on simulated synthetic data. Two
setups will be introduced, both considering landmark representations of shapes. The
data are assumed to lie in a manifold defined in the LDDMM (Large Deformation
Diffeomorphic Metric Mapping) framework [24].

In the LDDMM framework, deformations of shapes are modeled as smooth flows
which are solutions to ordinary differential equations defined by vector fields. A point
q ∈M is a finite number of landmarks, q = (x11, x

2
1, . . . , x

1
nl
, x2nl

). The metric onM is
given by g(v, w) =

∑nl

i,j vK
−1(xi, xj)w, where K−1 denotes the inverse of a kernel K.

In this simulation study K is the Gaussian kernel with standard deviation, σ = 0.5.
Based on this metric the Levi-Civita connection can be obtained by calculating the
Christoffel symbols defined in (3.1).

To begin with, we consider estimation of W̃ and y0 and investigate the per-
formance of the estimation procedure. The shapes that will be considered con-
sists of 8 landmarks generated from the unit circle with landmarks located at
0, π

4
, π
2
, . . . , 3π

2
, 7π

4
radians. The center plot of Figure 3 shows the unit circle with

the chosen frame for each landmark. The number of explanatory variables are set
to m = 2 and the variables are drawn from a normal distribution with mean 0 and
standard deviation 2. The other parameters are set to

W̃ =

(
0.2 0.1
0.1 0.2

)
, τ = 0.1 (6.1)

In Figure 3 is shown an example of simulated observations as well as the sam-
ple paths X i

t . A total of 50 datasets were sampled, in which each consisted of 20
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Figure 4: The distribution of the estimated W̃ parameters. The red horizontal lines show
the true parameters given in (6.1).
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Figure 5: (left) The estimated reference point y0 (red) for the dataset with 20 observations.
(right) The estimated y0 for 60 (cyan) and 100 (red) observations. In both plots, the initial
(green) and the true reference circle (blue) are shown.

observations. For each simulated dataset, the W̃ matrix was estimated. Each of the
estimated distrubtions for the entries of W̃ are shown in Figure 4. By the results,
we conclude that the estimated parameters are fairly stable between the different
simulations and that the true values are well centered in each distribution. For this
simulation, the estimation procedure is thus able to estimate the true W̃ parameters
that were specified in the model.

Three similar datasets, as explained above, were sampled with different number
of observations, 20, 60 and 100 respectively. The matrix W̃ as well as the reference
point y0 were estimated for each of the three datasets. In this case, the estimated
W̃ matrix was found to be

Ŵ20 =

(
0.206 0.136
0.147 0.322

)
, Ŵ60 =

(
0.22 0.11
0.11 0.21

)
, Ŵ100 =

(
0.205 0.104
0.115 0.214

)
(6.2)

while the estimated reference points are shown in Figure 5. By increasing the number
of observations, we conclude that the estimated parameters W̃ and y0 converge
towards the true parameters.
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Figure 6: Comparison of the estimated (blue), initial (green) and true frame vectors (red).

In the second study, we consider the problem of estimating the frame matrix U . In
this case, each observation consists of 3 landmarks that were generated from a setup
shown in Figure 6. We only consider one explanatory variable, meaning that only
one frame vector has to be estimated for each landmark. The true frame vectors
for each landmark was set to a vertical unit vector. In the estimation procedure,
the frame vectors were initialized with the Euclidean linear regression estimate.
In Figure 6 is shown the true (red), the initial (green) and the estimated frame
(blue) for each landmark. The estimation procedure converges to a good estimate of
the true frame. Estimation of the initial frame was considered for different number
of observations, but the estimated frame did not seem to converge for increasing
number of observations. The difference in the parameter estimates might therefore
be a result of either the linear approximation of the likelihood or that the optimal
solution of the initial frame is not unique.

7 Data Example

We now apply the model to a real dataset consisting of landmark representations of
Corpus Callosum (CC) shapes. The model is used to describe the effect of age on
CC shapes. The manifold considered is the same as that introduced in Section 6,
but in this case σ = 0.1. Again the Levi-Civita connection is used.

A subset of the CC dataset is plotted in Figure 7. For model fitting, a dataset of
20 CC shapes was considered with age values ranging from 22 to 78. The model was
fitted to CC shapes represented by a subset of 20 landmarks. We did not incorporate
a drift term in the model, and only the frame and W̃ has been estimated. The refrence
point was set to the mean shape (Figure 7) and τ = 0.1.

The estimated frame for the 20 landmarks are shown in Figure 7 on top of the
mean shape. The weight matrix was estimated as W̃ = −0.0002. Given the low
estimate of W̃ and hence a small frame matrix W , the result of this experiment
suggests a low age effect on CC for these data.
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Figure 7: (left) A subset of the Corpus Callosum data. (right) The mean shape with the
estimated frame for the 20 landmarks used in the model fitting.

8 Discussion

A method was proposed for modeling the relation between a manifold-valued re-
sponse and Euclidean explanatory variables. The relation was modeled by transport
of stochastic paths from Rm to the manifold. The stochastic paths defined on Rm

was given as solutions to a stochastic differential equation with a contribution from
a fixed drift, a stochastic process related to the explanatory variables, and a ran-
dom noise assumed to follow a multidimensional Brownian motion. The response
variable was then modeled as a noisy observation of a stochastic variable following
the distribution of the endpoints of the transported process. The proposed model is
intrinsic and based on a connection on the manifold without making linearization
of the non-linear space. Moreover, a likelihood based estimation procedure were de-
scribed using Laplace approximation of the marginal likelihood. We experimentally
illustrated the model and the parameter estimation using a simulation study and a
real data example.

Other procedures could be used for estimation of parameters. As an example, the
Monte Carlo EM procedure could be used to optimize the complete data likelihood
based on simulations of the missing data. Another example is to approximate the
distribution of the response by moment matching.

An interesting problem to investigate is how to make variable selection in the
model. As the contribution from the explanatory variables is defined in comparison
with the frame basis vectors, one idea is to exclude those explanatory variables
which corresponds to frame vectors parallel to the curve. These frame vectors will
not contribute to the stochastic development and hence will not be important for
explaining the relation to the response variable.

An important assumption of the manifold considered, is that the manifold is
equipped with a connection. In this paper, the Levi-Civita connection was used, but
several other connections could have been chosen. It would be interesting to explore
how the choice of connection affects the model.

As it is possible to transport stochastic paths from a manifold to a Euclidean
space, the model could be generalized to handle situations in which a Euclidean
response variable is compared to manifold-valued explanatory variables. Based on
such a model, one might be able to make categorization of individuals based on
manifold-valued shapes.
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