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Chapter 0 INTRODUCTION

Differential Geometryconcernsgeometricconceptsstudied by meansof differential
and integral calculus. Its origin goesfar backin the history of Mathematics,and an
important step in the developmentwas the investigationby C.F. Gaussin 1827 of
surfacedn Euclidean3-space However,thereal break-throughn the theorywasmade
by B. Riemannin 1854in his famousinaugurallecture* Uber die Hypothesenwelche
der Geometriezu Grundeliegen”: “On the basichypothesesinderlyingGeometry”.

Whenyou readthis lectureyou will be surprisedo find thathe herenot only made
thefoundationsof DifferentialGeometryput alsothatof otherbranche®f Mathematics,
which were not existingat the time: Set-Theoryand Topology. In his theory Riemann
wantedto createa framework, which on one handincluded both Euclideanand the
non Euclideangeometriegwhich were new at the time) and on the other handwould
generalizethe Gaussiantheory of surfacesto higher dimensions. Furthermore,he
expectedhat his theory would be usefulin formulating variouspartsof mathematical
physics,a subjecthe was also studying at aboutthe sametime.

As a starting point Riemanntook the basic conceptsof Euclidean Geometry:
“points’, “lines” and “distance”. First of all the “points’ should constitute the
domain of his geometryand this should locally be describedby » real parameters,
(n the dimension),so for this purposehe introducedthe conceptof an n—dimensional
manifold.

As an examplewe canthink of a submanifoldin Euclideanspace,e.g. a surface
in 3-space




or even more concretely the n—sphere in (n + 1)-space

\/

But the main point made by Riemann was that a manifold is an intrinsically defined
objectdisregarded from the surrounding Euclidean space.

The other two concepts “lines’” and “distance” are closely related since in Euclid's
“Elements’ lines are characterized as the set of points lying “straight” between two
given points, i.e. it is a curve, which realizes the shortest distance between two points.

So how do we measure “distances’ or rather “arc length” for curves in a manifold?
Let us look at our example with a submanifold M in Euclidean space RY

and let v : [a,b] — M be a differentiable curve. Now the arc length in RY is well-
known and is given by the formula

b
o) = [ 17 d



where/(t) is thefield of tangentsalongy and||v||* =< v, v > definesthe normof the
vectorv € RY. Now againRiemants point is that this formula shouldbe intrinsically
definedin M, thatis, the normof tangentvectorsto M shouldbe part of the structure;
furthermorethis norm shouldcomefrom aninner productin eachtangentspace.Thus
we are led to the following definition.

Definition 0.1

A Riemanniamanifoldis a smooth(C*°) manifold M togetherwith a Riemannian
metric, that is, for eachpoint p € M thereis given an inner productin the tangent
spaceTl, M, i.e. a symmetricpositivedefinitebilinear form.

9p(--) : T,M x T,M — R.

Furthermorey is smoothin the sensethat for any two smoothvectorfields X, Y in M
the function p — ¢,(X,,Y}) is a smoothfunction.

Remark
Foru,v € T,M we shall often write g,(u,v) = (u,v), = (u,v) dependingon
the context.

Exercise 0.2

Let M C R" be a submanifoldof RY.Then for eachp € M the tangentspace
T, M is naturallyidentified with a subspacef RY andthusinheritsthe Euclideaninner
productfrom R". Showthat this definesa Riemannianmetric on M in the senseof
Definition 0.1.

Returnto M ageneralmanifoldwith Riemanniarmetricg. Thefollowing definition
now makesgood sense:

Definition 0.3
i) Let~y:[a,b] — M beasmoothcurve. Thenthe arc lengthof ~ is definedby

b
L(y) = Lh() = [ |1/ (t) | dt  where|jv]* = g,(v,v) forv e T,M.

i) Let~ : [a,b] — M be piecewisesmooth,i.e. ~ is continuousand thereis a
subdivisiona = ty < t1 < ... < t; = b suchthat~y|[t;_1,;] is smooth for
i = 1,...,k. Thendefine

k
L(y)=Li(v) =Y _LE (v)
=1



iii) Assume M is connected and let p,q € M. Then the distance between p and ¢ is
defined

d(p, q) = inf {L(~) | v piecewise smooth, v : [a,b] — M, y(a) = p,7(b) = ¢}

Remark

We shall see later that d defines a metric in M in the usual sense and that this
metric defines the same topology as the given one (M being a manifold is a Hausdorff
space to begin with!)

Coming back to the geometric concept of a “lineg” as defined in Euclid’s book, we
would again like to define a line in a Riemannian manifold as a set of points such that
the arc length between any two points on the line equals the distance in the sense of
Definition 0.3. However, this raises the following two questions:

Question 1

Given two points p,q € M; does there exist an arc, called a geodesic curve,
connecting the two points and whose arc length equals the distance?

Question 2

Is the curve in Question 1, if it exists, uniquely determined?
Unfortunately the answers to both questions are “No”:

Examples 0.4

i) Let M = R? — {(0,0)} with the Riemannian metric inherited from R2. Let
p= (—1,0), q = 170)

w (o)

~~

(-1,0) (0,0 (1,0

Clearly, as seen on the figure, d(p, ¢) = 2. However, a geodesic in M would aso
be a geodesic in R2, and since that is unique it would contain the point (0,0), which
is not allowed, so there is no geodesic curve connecting p and ¢ inside M.

i) Let M =S2CR3 p= Northpole, ¢ = South pole



q
The shortest length of an arc from p to ¢ is realized by any half great circle through
p and ¢. Hence there are infinitely many geodesic curves from p to q.

In spite of these examples it turns out that geodesic curves do exist “locally”, that
is, if the endpoints p and ¢ are not too far apart, and also in this case the geodesic curves
are unique. To show these facts will be our first task in the development of Riemannian
Geometry. However, before we get that far, we need some preparations.






Chapter 1 DIFFERENTIABLE MANIFOLDS

In this chapter we review the basic notions of differentiable manifolds

i)

the

Definition 1.1
Let M be a Hausdorff space with a countable basis for the topology. Let n € N
Zero).

A chart or coordinate system on M is apar (U,x), U C Mopen,x:U —
U’ C R™ a homeomorphism onto an open set.

Two charts (U, x) and (V,y) are said to have smooth overlap if
yox L:x(UNV)—yUNV)

and
xoy l:y(UNV)—=x(UNV)

are smooth mappings (hence diffeomorphisms).

An atlas for a differentiable structure on M is aset A = {Us,Xq},; Of Charts
with pairwise smooth overlap, such that {U,} covers M, i.e. M = UyerU,. TWO
atlasses A and A’ define the same differentiable structure if AU.A’ is again an atlas.

A differentiable manifold of dimension = is a Hausdorff space M as above with
a differentiable structure, i.e. with an atlas A. A chart (U,x) belongs to the
differentiable structure for M, if it belongs to an atlas for this, i.e. if it has
smooth overlap with any chart in .A. We shall often write M or M" to denote
the differentiable manifold.

Notation

If (U,x) is a chart we can write x = (z',...,2"). Thenz': U — R are caled
local coordinates for the manifold.

Definition 1.2
Let N" be a differentiable manifold. A submanifold M™ C N™ is a set such that

for each p € M there exist charts (U, x) around p in N such that

MnU={qelU| 2™ (g) = 2™ (q) = ... = 2"(q) = 0}



Exercise 1.3

a Show that for M C N a submanifold, the set of charts
(UnM, xlUnM) where(U,x) are charts in N as in definition 1.2,
makes M into a manifold.

b) Show that 5™ C R"*!, S" = {2 € R""! | [¢| =1} is a submanifold of R"**.

c) Let M C R? be the subset
M = {(z1,32) | |x1]| + |22] = 1},
cover M by the sets
UL = {(z1,29) e M ‘ +z; >0}, i=1,2,
and let x!, : UL — R be defined by
x5 (z1,m2) = zo , X3(x1, 29) = 21.
Show that { (UL , x4)},_, , isan atlas for a differentiable structure on M; but M

X
A2

\
x
N

is not a submanifold.



Definition 1.4

A continuous mapping f : M™ — N" between two manifolds is called smooth or
differentiable if for every chart (U,x) on M and (V,y) on N

yofox': x(fH(V)nU) - y(V)
(*) al al
R™ R"

is smooth.

Notation
The set of smooth functions f : M — R is denoted C*°(M).

The Tangent Space
Let M be an n—dimensional differentiable manifold and let p € M.

Definition 1.5

i) A tangent vector at p is an equivalence class of pairs (x,v) where (U, x) is a chart
around p and v € R™ a vector.

(x,v) ~ (y,w)
if D(xoy™),,,(w)=v  D(f)= differential of /.

[x, v],, denotes an equivalence class, v = (vy, ..., v,) are caled the coordinates for
the tangent vector in the coordinate system (U, x).

if) The set of tangent vectors in p is denoted 7, M and is called the tangent space.

The following is an easy consequence of the definition

Proposition 1.6

a) T,M isan n—dimensional vector space over R.

p) If (Ux) isachart around p, then there is a natural isomorphismx, : 7,M — R"
given by

XX, V]p = v



v) 1If (y, V) is some other chart around p we have a commutative diagram

T,M
Y,/ N\ X«
R"™ D(xo_y))y (») R™

We can now talk about tangent vectors to arcs in M :

Definition 1.7

Let v :  (a,b) — M, (a,b) C R be a differentiable curve and let ¢y €
(a,b) with (tg) = p. The tangent 7/(to) € T,M is defined by %X(to) = +/(to) =
—te for (U,x) any chart around p.
(Note: this is well-defined!)

[x, ], where v = %(X °7)

Remark
For M = U C R™ an open set and x = id we get a natural isomorphism

id, : T,U = R™. We shall usually identify 7,,U with R via this isomorphism. More
generally for A/ C R™ a submanifold (see definition 1.2) the tangent space 7, M for
p € M naturaly identifies with alinear subspace of R”, namely the subspace of tangent
vectors to curves through p lying entirely in M.

Another way of characterizing tangent vectors is in terms of the associated direc-
tional derivation:

Definition 1.8

Let X, = [x,0], € T,M and let f € C°°(M). Then the directional derivative of
f with respect to X, is

Xp(f) = vxpy(fox™") = D(fo X_l)x(p)(v)
(Note: again this is well-defined.)

Notation

Let (U,x) be achart around p and let e; ... e, € R™ be the canonical basis vectors,
that is, ¢; = (0,...,0,1;,...,0). Then we will denote the corresponding tangent
vectors in T, M

e
ox™
p

’ that IS: % = [Xa 6i]p
X

1
ox » »

10



Remark
If f € C°°(M) then the derivation corresponding to % \p is given by

0 B _ B B(fox_l)
aut |, /) = DU exTgled == |

The directional derivative f — X,(f) : C>(M) — R is a derivation in the following
sense:

Definition 1.9
[:C>®(M) — Risa derivation at p if [ is R—linear and
I(f-g)=1Uf)-g(p)+ fp) Ug)
for al f,g € C>*(M).

Theorem 1.10

If I : C>*°(M) — R is a derivation at p then there is a unique X, € T,M such
that | = X,(-).

For the proof we need a few lemmas.

Lemma 1.11

Let f € C>°(U), U open neighbourhood of p € M. Then there is f € C(M)
such that f and f agree in a neighbourhood V' C U and f = 0 outside a bigger
neighbourhood W, V C W C W C U.

Pr oof

By taking U smaller we can suppose U is the domain of achart x : U — U’ S R~
Now choose a “bump-function” ¢ : U’ — R, that is, ¢ is smooth, $ = 1 on some
V' £ U withx(p) € V! and ¢ = 0 outside W’ 2 V', W’ C U’. Then put

= . [0 outside W = x~ (W)
FO=Qyoxa) @) qot

Lemma 1.12
Let f € C°(U), where (U,x)isachartaroundp. Assumex(p) =0 and x(U) C
R™ isan open ball with centre 0. Thenthereexistg; € C>*(U), i= 1,...,n,suchthat

1) f(g) = f(p) + ;1 v(q) gile)  VgeuU
2) g(p) = =)

11



Pr oof

It suffices to take U C R™an open ball, p = 0 and (z!,...,2™) the identity chart.
Then we must show that for f defined in U C R™ we have

(*) f(xl,...,a:”):f(0)+ingi(a:1,...,a:”)
i=1
for some g; : U — R with ¢;(0) = % (0).
To show (*) consider f(ta!,...,ta"), t € [0,1],

Il
O\H
&N.
—~
S
=
—~
~
=
e
u@#
=
3
~—
IS
~

Proof of theorem 1.10
Let [ : C*°(M) — R be a derivation at p.

. 1(1)=11-1)=11)-1+1- I(1). Hencel(1) = 0. By linearity i(k) = 0 for k
any constant.

[I. If f is zero in a neighbourhood of p then I(f) = 0. In fact as in the proof of
lemma 1.11 we can find h € C*°(M), such that h = 1 near p and h = 0 outside
the neighbourhood where f vanishes. Hence f - h = 0 so that

0=1U(f h)=1Uf) 1+ f(p)-Uh) =1(f)
We conclude that if f,g € C°(M) and f = g in a neighbourhood of p then

If) = Ug).

[11. By step Il we can extend [ to all C'*° functions, which are just defined in some neigh-
bourhood of p, simply by setting I(f) = l(f) where f isdefined near p , f €
C>°(M) and f and f agree in a neighbourhood of p. Given f, f exists by lemma

1.11. Extended in this way [ is till a derivation on the set of all such locally
defined functions.

12



V. Now let (U,x) be a chart around p as in lemma 1.12. Then

(**) ] = Zl 3351

In fact by that lemma, f = f(p) + > a’g; , and since x(p) = 0

||M

3x2

Now the right hand side of (**) is the derivation by a tangent vector, which shows
the theorem.

Definition 1.13

Let f: M — N be adifferentiable mapping between differentiable manifolds. The
differential of f or the tangent mapping f.(= T'f = df) at the point p € M is defined by

filx, 0], = [y, D(yofo X—l)x(p)(v)] o)

where (U,x) and (V}y) are charts around p and f(p) respectively.
(Note: This is well-defined.)

Remark

For M =U CR™, N =1V CR" open sets, the differential of f : U — V a
p € U identifieswith the usual differential D f,, : R™ — R™ viathe natural isomorphisms
T,U =R™, T,V =R"

The following is straight forward:

Proposition 1.14
) fo: TpM — TN islinear.

i) Let X, € T,M. Then f,X, corresponds to the derivation

(f+Xp)(u) = Xp(uo f) u € CF(N)

13



iif) Theidentityid : M — M has ids =id : T,M — T,M, andif f : M — N and
g : N — L are differentiablemappingswe havethe “chain-rule”

(gof)* = g« © fx thatis, (gof)*p:g*f(p)of*p:

T,M LY Ty N
(g © f)* N T
Tigof)(p) L

Smooth Vector Fields

Definition 1.15

A family of tangent vectors {X,} .., . X, € T, M, is called a smoothvectorfield
if for every chart (U, x) the mapping U — R" given by p — x.X, is differentiable.

Remark

For M = U C R" we can identify a smooth vector field X with a smooth map
X : U — R" using the natural identification 7,U = R™. More generaly for M C R"
a submanifold we shall identify a smooth vector field X on M with a smooth map
X : M — R"suchthat X(p) € T,M C R*, foralpe M (cf. remark following
definition 1.7).

Example 1.16
For (U,x) achatandi=1,...,n, {%

} is a smooth vector field in U,
P)peU

which we of course denote 2.

If now X is any vector field in U, then by definition
n p 8
X = ; Y ozt

where v' : U — R are smooth iff X is smooth.

Exercise 1.17
A family of tangent vectors X, € T,M ., p € M , defines a smooth vector field
iff for every f € C°°(M) the function X (f) defined by

X(N)p) = Xp(f) peM

is smooth.

14



Next let us define the Lie bracketof two smooth vector fields X and Y on M :
For each p € M define

(X, Y],(f) = Xp(Y () = Yp(X(f)) feC™(M)

Proposition 1.18

i) Themapping[X,Y] (-) : C>°(M) — R is a derivation, hencedefinesa tangent
vector at p.

i) Thefamily [X, Y]p , p € M, definesa smoothvectorfield.

Proof

Let f,g € C(M). Then

Y(f-9)=Y(f)-9+f-Y(9)
Hence
Xp(Y(f - 9)) = Xp(Y(£)) - 9(p) + Y5 (F) - Xp(9) + Xp(f) - Yolg) + F(p) - Xp(Y (9))
Similarly
Yo(X(f - 9) = Yp(X()) - 9(p) + Xp(f) - Yo(g) + Yo (f) - Xp(9) + f()Yn(X(9))
Subtracting we get
(X, YT, (f - 9) = [X,Y],(F) - 9(p) + F(R)[X, Y], (9)

which shows i).
ii) is obvious in view of exercise 1.17.

Definition 1.19
For X,Y smooth vector fields the vector field [X, Y| given by [X, Y], above is
caled the Lie bracketof X and Y.

Notation
Sometimes we shall write

Lx(Y)=[X,Y].

15



Remark
If (U,x) is any chart then the vector fields % satisfy
0 0 .
[ﬁ ’ @] =0 Vis
The following proposition is straight forward

Proposition 1.20
The Lie bracket satisfies

i) [X,Y]is R—linear in both X and Y,
i) Lx(f-Y)=X(f)-Y +fLx(Y), feC®M),

iii) (Jacobi identity)
[X’ [Ya Z” + [Yv [ZaX” + [Z’ [X, Y” =0,

Iv) equivalently
Lx([Y,2]) = [Lx(Y), Z] + [Y, Lx (Z)],

V) [X.Y] = —[V.X].

Now let us return to the notion of a Riemannian metric:
Recall that a Riemannian metric on M is a collection of inner products

gp(+,+) TpyM xT,M — R

such that for X, Y smooth vector fields on M the function p — g¢,(X,,,Y),) is smooth.
Now suppose (U,x) is a chart; then in particular the functions g;; = g(% , 3%-) are
smooth and for each p € U the symmetric matrix {g;;(p)} determines the inner product

gp In T, M. In fact, if v,w € T,M have coordinates

. )

vzg v’ w:E w! —
, . Oz’
i j

0
ox? » »

)

Then

; 0
gp(v,w) = gp (Z Ly

i

. (0
]
= v w gij(p)
i,J

o,
pjzw]w

&)

9
» oxJ

16



That is, g, is the bilinear form given by the matrix {g;;(p)} with respect to the basis
9
VAR 6x’n

0
Ozt
p p

{9:5(p)} is a positive symmetric matrix.

. Notice that since g, is symmetric and positive definite, the matrix

Remark
Notice that the Euclidean metric in U c R™ with coordinates (z1,...,2") corre-
sponds to the matrix
1 O
(***) 9p = { } Vv p.
O 1

Therefore if (U,x) is a chart in a manifold M with metric ¢ such that (***) holds,
then we shall say that the metric with respect to (U, x) is Euclidean or flat. We shall
see later that given a metric we can not always find a local chart, which makes the
metric Euclidean.

Theorem 1.21
Every differentiable manifold has at least one Riemannian metric.

Pr oof

Let M be an arbitrary manifold. To begin with let (U,x) be a chart and observe
that at least in U we can find a Riemannian metric simply by choosing the Euclidean
one with respect to X, i.e. such that (***) holds. Hence if we cover M by coordinate
charts {(Ua , Xa)},er then in each U, we can find a metric

dOP), ) TM x T,M — R, pe U,

Now we can choose a partition of unity subordinate {U,} ., thet is, a family
{¢a}aer Of smooth functions ¢, : M — R, such that

) 0< ¢q <1
i) Supp ¢o € Ua

iii) For each p € M there is a neighbourhood V', which intersects Supp ¢, for only
finitely many o and > ¢, = 1.

Then we can define a metric g by
gp(v,w) =" Galp) - g5 (v, w).
In fact for fixed p, g, is afinite convex combination of positive symmetric bilinear

functions and hence is a positive definite symmetric bilinear function. Furthermore g
is smooth:

17



Given X and Y smooth vector fields the function

p = (X, Yp) Z¢ (X, Y,)

is locally a finite sum of smooth functions. This proves the theorem.

18



Appendix A PARTITION OF UNITY

Definition Al
Let X be atopological space and ¢/ = {U,},; @ covering of X.

1) A covering V = {Vﬂ}ﬁeJ is called a refinement of U/ if, for every 3 € J, there
isan « € I such that Vg C U,.

2) A set of subsets {A.},c; of X is caled locally finite if every point of X has a
neighbourhood U such that U N A, # @ for a most finitely many « € 1.

Definition A2.

Let M be a smooth manifold and &/ = {U,},; @ open covering of M. A
partition of unity subordinate ¢/ is a family {¢q},c; Of C> functions on A such that
the following holds:

i) 0<¢o <1landSuppoé, C U, , fordl a € I,
i) {Supp¢a | @ €I} is localy finite,

ii) for al p € M we have

Z@a(p) =1

a€el

Theorem A3

Let i = {Ua},c; be an open covering of a smooth manifold AZ. Then there exists
a partition of unity subordinate /.

For the proof we need a few preparations:

Notation
For » > 0 put

K(r)= {xe R™ ‘ || <7"}.

We shall use without proof the existence of “ bump functions’ (see e.g. Warner [ ]):

Lemma A4
There exists a non-negative smooth function ¢» on R™ such that

) oK) =1

i) Suppy C K(2).

19



Next we prove:

Lemma A5
Let i/ = {U,},c; be an open covering of an m—dimensional smooth manifold M/
Then there exists an atlas

A={x;:Vi—>V/CR™}, i€ J
with J countable, such that
a) {Vi},cs is alocally finite refinement of I/,
b) Vi = K(3),

o) If weput W; =x; (K(1)), then W = {W;},., is a covering of M.

Pr oof

1. First we construct a sequence of compact subsets A,, , n € N, such that A4,, C
A, and U2, A, = M. In fact, since M is localy compact with a countable basis,
we can cover M by countably many open sets O = {O4,...,0,,...} such that O,, is
compact for every n. Then we define A,, by induction: For n = 1 put A; = O;. For
higher n suppose that A,, is found such that O; U ... U O,, C A,. Then since A,, is
compact and O is a covering we can find an N > n + 1 such that

A, CO1U...UOy.

Then we put Apy1 = 61 U...UOp.

2. Now fix n € N. Then we have (putting A9 = A_; = 0)
C= An-l-l\fin C A)n-l-?\An—l =B

where C' is compact and B is open. Around every point of C' we can now choose a
chart x : V — V/ = K(3) such that for somea € I wehaveV C BNU,. Let W =
x~1(K(1)). Since C can be covered by finitely many such W's we obtain a finite set
of charts

(A6) (Vn,a1 ) Xn,a'l)a SEI) (Vn,akn ) Xn,ozkn)
such that
Ant1\A, C Wiy U U Wi, -

Let A be the atlas consisting of al the charts {(V;,x;)},c; in (A.6) for adl n €
N. Then clearly V = {V;},.; is a refinement of .

20



By construction there are at most finitely many V;'s inside /fn, hence V is locally
finite. also since

M = U An\An—l g U An-{-l\/in—l

it is clear that the ;s cover M. This proves the lemma since J is clearly countable.

Proof of theorem A3.

Let U = {Us},c; be an open covering of M and choose an étlas A as in lemma
A5. Choosing a “bump function” asin lemma A4 we define; : M — R, i€ J, by
oy Joxi(p) . peV,
vilp) = {0, P&V

Then clearly v; is smooth and satisfies

i) Supp v; C x;71(K(2)),

i) Y|Ww; = 1.
Note that S : M — R defined by

=D iy

is well-defined and smooth since V is locally finite. Since V is a refinement of U/, we
can choose a function v : J — [ suchthat V; C U, () for al ¢ € J. Now we define
for each a € 1

= > /S, peM
v(i)=c
(and ¢ = 0 if v(i) # « for al i € J). Note that since the W;’'s cover M we have
S(p) > 1foradl p e M, and aso ¢, is well-defined and smooth on M. Clearly
0< Z 1y < ZM =S
)= 1€
so that 0 < ¢, < 1. AlsO

Suppda C | J Suppi € | ViCUa
Y(i)=a y(i)=a
and {Supp da } . iSlocaly finite. Infact, suppose U is a neighbourhood of p such that
only V;,, ..., V;, hasnon-empty intersection with U. Then Supp ¢,NU # ( only if a €
{~(i1),...,v(ix)} which is a finite set. Finally we clearly have

D da) =2, D vie)/SW)

a€l agl y(i)=a

=> i(p)/S(p) =
i€J
Hence {¢q } . is a partition of unity subordinate ¢/.
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Chapter 2 CONNECTIONS

In the introduction we mentioned the problem of finding the curve between two given
points on a Riemannian manifold such that the arc length is minimal. Thisis actualy a
classical problem in Variational Calculus and for a solution curve there is a necessary
condition known as “the Euler differentia equation”. It turns out that this is most
conveniently expressible in terms of a first order differential operator caled a “linear
connection” associated with the Riemannian metric.

We therefore start by studying the formal properties of such a linear connection.

Definition 2.1

Let M be a smooth manifold. A linear connection in M is an operator v (“dell”),
which to any two smooth vector fields X and Y on M associatesathird v x (Y) such that

1) vx(Y) is smooth.

2) Vxi+x,(Y) = v, (V) + vV, (Y)

3 vx(Y1+Yy) = vx(11) + vx(Y2)

4) vix(Y) = fvx(Y) fe (M)

5 vx(fY)=[fvx(Y)+X(f) Y fec=(M).

Proposition 2.2
vx(Y)(p) depends only on X, (and Y), that is, if X}, = X then Vx(Y)(p) =
vx(Y)(p).

Pr oof

First assume that X and X’ agree in some neighbourhood of p, and choose a “bump
function” f on M, which is 1 near p and O outside a neighbourhood in which X and
X' agree. Then fX = fX' so that by 4)

fVX(Y) = VfX(Y) = VfX/(Y) = fVXI(Y).
Evaluating at p yields
vx(Y)(p) = vx (Y)(p)
Hence v x (Y')(p) makes sense just X is defined in a neighbourhood of p. Now choose
alocal chart (U, x) and write X = 3" v'2%; in U. Then by 2) and 4)
i=1

vx(Y) = viv%m = ;viva%{(l/)

=1
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Hence

where the right hand side only involves v*(p) , i = 1,...,n, that is, the coordinates
of X,.

Notation
We shall write vx (V) = vx(Y)(p)

Remark

The Lie-derivation Lx(Y) does not define a connection since it does not satisfy
4) in the definition 2.1.

Exercise 2.3

Let M™ C RV be a submanifold, and as usua identify T,M , p € M, with a
subspace in RY. (See remark following definition 1.7.) For v € RY let Tv = Ty,
denote the orthogonalprojectionof v onto 7;,(M). Now define for X, € T,M , v,
as follows:

Identify Y, a smooth vector field on M, withamap Y : M — R and define

vx, (V)= T(Dx,(Y)),

where Dx (Y) = D(Y)(X,) = (Xp(Y1),..., X,(YY))is the directional derivative
of Y in the direction X,,. Show that v (Y') defines a connection in M in the sense
of definition 2.1.

Notation

For M™ = U anopen set in R™ the connection in Exercise 2.3 is caled the
Euclideanor flat connection.

Next let us express a connection in local coordinates:
Let (U,«!,...,u") bealoca coordinate system on M and let us put 8y = 52, k =

ouk

1,...,n, for short. Then v/ (restricted to U) is determined by n* smooth functions I'};
given by

(2.4) Vo, (05) = Y Tl o
k
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Infact let X =Y 2" 9;, Y =y’ 9; be smooth vector fields on U then
i J

ox9) =95 a1~ S (Za)
Zx(z Ww))
DR ICHLES S S PSLTY
[z
et i

-3 (S o
k 7
y' =0k + ) Thy
;

(2.5)

We summarize in

Proposition 2.6

Let 7 be a connectionin M and (U, u!,...,u") alocal chartin M. Thenv | U, is
determined by the n* smooth functions Ffj in (2.4). Furthermore given n3 such functions
we can define 57 in U by the formulas (2.5) and this defines a connection in U.

Pr oof

It remainsto prove that <7 given by (2.5) satisfies definition 2.1. The only non-trivial
point is equation 5). So let f € C°>°(U). Then

vx(fV) =Y (Z o (14) ) 0

k 7

where

(fy'“),z: ( ) ZF Sy =)y + f oyt

Hence
vx(fY)=> (Z 7 0(f) - yk) O+ (Z fvifyk,i> O =X(N)Y +f vx(Y).
Ko\ i Ko\
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From this we conclude

Corollary 2.7
Every smooth manifold has a connection.

Pr oof

The proof is similar to the proof of the existence of a Riemannian metric: Cover M

by local coordinate charts. In each U, choose any connection, say put Ffj = 0, which
defines a connection vY= in U,. Now choose a partition of unity {®a} e Subordinate
{Ua}per » and put

v=> ¢av
a

that is

vx(Y) =) 6o Vi (V)
One checks easily that this defines a connection in M.

Parallel Transport

Now consider a differentiable manifold with given connection 7. The reason why
v is caled a “connection” is that it provides a way of “connecting” the tangent space
at one point p by the tangent space at another point ¢q. We cannot expect to find a
canonical isomorphism 7,,M = T,M for any two points unless M is paralellizable
(which not all manifolds are). However, given a smooth curve

v:la,b] — M, v(a) =p, y(b) =q,

we can parallel transport a tangent vector v € 7, M along ~y to a vector in T, (M).

Let v : [a,b] — M be a smooth curve. By a smooth vector field along v we mean
a family {Vi},¢(, ) Of tangent vectors V; € T, ;)M which is smooth in the following
sense:

Suppose (U, u,...,u") are local coordinates near y(ty) and

Vt:ZU <t)aui

P 7(t)

for ¢ in an interval around tq; then we require the functions v*(¢) to be smooth (note
that this is independent of choice of chart).

Example.
The velocity vector field Cfi—] is a smooth vector field along ~.
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Now our connection makes it possible to make the covariant derivative of a vector
field aong ~:

Lemma 2.8
There is a uniquely determined operator in the set of vector fields along
DV

— V/ — vd'y (V)

178 =
Hdt a

called covariant derivation along v such that

DV+W) _ DV , DW
g XM Ly Dy
b) For f € C*(a,b) : DUV) — 4y 4 fDV

¢ IfV,=Y, Y avector field on M, then

Pr oof

It is clearly enough to prove this localy, so we can assume that there are local
coordinates (U, ul,...,u") , suchthat ~[a,b] C U. Put §; = 2, and write V. =
i v'0; v' @ [a,b] — R smooth, and v/ = w’/ o, i,j =1,...,n.
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Uniqueness: Using a) — ¢) we obtain

pv D, dv D
o~ 2wV ;<dt 0 ”a@)
dv’
=2 | gty | i;faa(ai)>
dv’ i dv?
_; Eaz—FU ;dtvaj@)
_ . i dy’ k
=2 vt )
7 7,k
-3 dvk+zd7 ot i | o
B dt dt g
k ij
That is given 57 and v, =~ depends only on V, which proves uniqueness.

Existence simply follows by defining 2% by the above formula.

Definition 2.9

A vector field V aong v is caled parallel if ZF =0

Proposition 2.10

Given a smooth curve v : [a,b] — M and a vector V, € T, M. Then there is a
unique parallel vector field V; along v extending V/,.

Proof

By subdivision it is clearly enough to do this for  lying inside a coordinate chart
(U,ul,...,u™). Looking at the proof of lemma 2.8 we see that we must solve the
differential equations

dvk dvf ki
—_— F =0 k=1,...
dt+izj ar Y SRR
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for ¢ € [a,b] and initid condition v'(a) = v, i = 1,...,n.
Now this is a differential equation of the form

v'=g-v , v:la, b — R"

for g(t) an n x n matrix-valued function. From the general theorem for existence and
uniqueness of differential equations we know that such solutions exist at least in a small
interval. However, since the equation is linear the solution exists over al of [a,b]. In
fact suppose by < b is the supremum of end points of intervals [a, ) on which solutions
do exist. Now in a smal interval around by we can find solutions vy, ..., v, such
that for each ¢ in the interval vy (¢),...,v,(¢) isabasis for R”. Now given v(a) choose
b* < by in this interval so that we have a solution v defined on [a, 3), b* < § < by.
Then v(b*) = zqv1(b*) +. .. + 20, (0*), z; € R and zv1 + ... 4+ zpv, iSa@solution in
a small interval around by extending v. This is a contradiction so by = b.
Furthermore the solution is unique which proves the proposition.

Definition 2.11
7y TpyM — T, M given by ,(V,) =V}, for V; a parallel field along ~ is called
the parallel transport along 7.

Remark
7y 1 Tp,M — T,M is a linear isomorphism.

Example 2.13

M = R™ with the Euclidean connection. Then 7 : T,R" — T,R" is the usual
parallel trandation.

Exercise 2.12

a) Let S? C R? be the unit sphere with connection induced from R? as in exercise 2.3
Let v be the horizontal circle parametrized by

v(t) = (acost , asint, ), 0 <a<l, -1<pf<1
0<t< 27, o+ 32 =1

Let X(t) = (—sint, cost, 0) = X Cfl—z be the normalized velocity field and
Y(t) = (—fcost, —fsint,a) be the orthogona field pointing to the north pole.
Show that for any angle 6y € [0, 2] the field Z given by

Z(t) = cos (6p — Pt) X (t) +sin (g — ft)Y (t) t € [0, 27]
is parallel along ~.
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b)

d)

Let C C R3 be the cone
C = {(x,y,z) ‘ a2(x2 +y2) =232 2> 0}

where 0 < o, 3 < 1 are fixed and satisfy o? + 32 = 1. Again let C have the
induced connection from R3, and let L C C be the ray through the point (3,0, a).
Finally let R? have the Euclidean connection and let U C R? be the sector given
by polar coordinates

U:{(T,G) ‘ 0<0<27rﬁ}

where (z,y) = (rcosf, rsinf).
Show that there is a diffeomorphism ¢ : U — C' — L given by

(r,0) — (Tﬂcos% , Tﬂsin% , T&)

and that it preserves the connections.
(Hint: Express the Euclidean connection in R? by polar coordinates, i.e., find Ffj).

Let My, My C RV be two submanifolds which “touch” along a curve v : [a, b] —
My N My, thatis TyMy =T, M foral t € [a, b]. Show that in the induced
connections from R parallel transport along v in M; is the same as parallel
transport along v in Ms.

Give a “geometric proof of a) using c) with M; = S? and M, a cone in R?
touching S? aong the circle ~.

£

M

M1

We now again turn to a manifold with a Riemannian metric, and we want to

show that there is a canonical connection associated to it, the so-called “Riemannian
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connection” or the “Levi-Civita connection”.

Proposition 2.13

Let M be a Riemannian manifold with metric < -, - > . For v a connection in
M the following are equivalent:

i) For all smooth vector fields X, Y, Y’
XYY" = (vx(V),Y") + (Y,vxY")

i) For every smooth curve v : [a,b] — M, the parallel transport 7, : T\ M —
T, M is a linear isometry.

Proof
First let us show that i) is equivaent to

i) For ~ : [a,b] — M any smooth curve and V, W vector fields along ~

d DV DW

7 (VW) = <W’W> + <V, 7>.
In fact clearly i') impliesi). On the other hand, if i’) istrue for VW, and f : [a,b] — R
issmooth, then it is easy to see that i) istrue for V and W replaced by fV and W or by
V and fW. Now if i) istrue for M then, it is clearly true locally, hence in particular
it follows for any X and Y,Y’" = ;2: , 52 in some local coordinate system. Now
since vx(Y)(p) only depends on X (p) we thus have i) valid for V, W = 2, , 2%
restricted to v. And since any vector field along + is a linear combination of these
where the coefficients are smooth functions, i’) follows by our previous remark. Thus
i) is equivalent to i).

Now i) = ii). Infact by i’) for V and W parallel along v we have since

v _, PW
a — 7 dt
that %(V, W) =0, thatis, (V,W) is constant along ~ and in particular

=0

(Va, Wa) = (Vo, Wh)

which proves ii).

To prove ii) = i) or rather ii) = 1) first choose paralel fields along
v, Pi,...,P,, such that Pl( )y, Pp(a) is an orthonormal basis in T, (a)M. Then
by assumption Pi(t), ..., Pu(t) is agaln an orthonormal basis for T',,) M for each ¢ €
[a,b]. Now for V(t) = Z Vi(t)Pi(t) , W(t) = Z;wi(t)P;(t) any two vector fields
aong v we then have

_ Zviuz
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hence g o o
vt . - dw?

Swowy =3y 2z

A it w+;” dt

But since
DV dv’ DW dw’
i —PpP, —= -~ p
dt XZ: dt dt XJ: dt 7
(because the P;’s are parallél) this equation is just i’) which proves the proposition.

Definition 2.14

A connection vy is called symmetric or torsion free if for all smooth vector fields
X and Y

vx(Y) = vy(X) = [X,Y]

Exercise 2.15
Define for X,Y as above the torsion

T(X,Y)=vx(¥) - vy(X) - [X,Y]

a) Show that 7' is atensor, that is, 7(X, Y )(p) depends only on X,, and Y.
(Hint: Show that for f € C°(M) , T(fX,Y) = T(X, fY) = fT(X,Y) and
compare the proof of proposition 2.2)

b) If (U,u',...,u") isaloca coordinate system and I'}; are defined by (2.4), then
T = 0iff T}, = T% Vi, j.

Theorem 2.16
Let M be a Riemannian manifold. Then thereis precisely one connection <7 such that

a) VvV is symmetric.

b) Either i) or ii) in proposition 2.13 is fulfilled.

Notation

The connection given by theorem 2.16 is called the Riemannian connection or the
Levi-Civita connection for the Riemannian metric.
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Proof of theorem 2.16.

Uniqueness. It is enough to do it locally. Thus let (U,«!,...,u") be a coordinate
chart and as before let 9; = % ,i=1,...,n,and g;; = (0; , 9;), where (-, -) isthe
Riemannian metric. Now by assumption using proposition 2.13 i)

(2.17) 0 (gjx) = 0:(0; , ) = (V,(0;) , k) + (95, Vo,(O))

and as in (2.4) let

Vo, (9) =Y Tia.
l
Furthermore put

(2.18) (i, k] = (Vo,(05) . k)= T gu
l

Then (2.17) reads
(2.19) 9 gj = [ij, k] + [ik, J]
and by cyclic permutations

(2.19)" 9j gri = 7k, 1] + [ji, K]

(2.19)" O gij = ki, j] + [kJ, ]

Now since the connection is symmetric [ij, k] = [ji, k] and we obtain from (2.19)" ™"

. 1 !
ij, k] = 5(9i g1 + 0 ki — Ok 9i5) = D _Lij ik
(220) [ ] 2( J J [ ]) ; 7
,5,k=1,...,n
Now introducing the inverse matrix
ij -1
{97} =9}

we can write (2.20) in the form

(2.21) i = [ij. k] g i l=1,...,n
k

so that Pﬁj are uniquely determined by {g;;} and the derivatives of {g;;}. This clearly
shows uniqueness.

Existence now follows locally by simply defining in a chart a connection corre-
sponding to the functions Fﬁ i given by (2.21). On overlapping charts the corresponding
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connections will agree by the uniqueness. This ends the proof.

Notation

The functions [ij, k] and Ffj are called Christoffel-symbols (of the first respectively
the second kind) for the connection, and the equations (2.20) and (2.21) are called the
Christoffel identities.

Exercise 2.22
Let M c RV be a submanifold and let 7 be the connection in M induced from
RY as in exercise 2.3.

1) Show that v/ is symmetric.

i) Show that 57 is the Riemannian connection associated to the Riemannian metric
induced from RV (cf. exercise 0.2).



Chapter 3 GEODESICS AND THE
EXPONENTIAL MAP

Let M be a manifold with a linear connection <.

Definition 3.1
A smooth curve v : [a,b] — M is caled a geodesic if the velocity vector field 2t
is paralel aong v, that is if
D dv
dt \ dt

Let us express this condition in local coordinates: let (U, u!,...,u") be the local
coordinates and let I'}; be the Christoffel symbols. Let v/(t) = u'(y(t)) i=1,.

so that d” =3 ddt 0;. Now in the proof of proposition 2.10 we found that a vector

field along v given in Iocal coordinates by V; = %; v%0; is paralld iff it satisfies

dv* v . .
i]
Hence v is a geodesic iff it satisfies

dv dq/]
3.2 rk =0 k=1,....n.
(3.2) dt2 +Z g dt e ™

This is a system of 2nd order differential equations of the following form: Let
u=(u',...,u") € R", U C R* an open set with coordinates (u,v), F: U — R"
Is smooth, and the equation is

d*u du

. —F e

dt? (u’ dt>

In this situation we need the following

Theorem 3.3

Given (uy, vq) € U there exists a neighbourhood W of (u;, vy) and e > 0 such that
for each (ug,vop) € W the differential equation

d*u du
iy
dt? <u’ dt)

has a unique solution ¢ — wu(t) defined for |¢| < e and satisfying

du

— = Vp.
dt 0

t=0

u(0) = ug
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Furthermore the solution depends smoothly on the initial data (ug, vo).

“Proof”

This follows from the corresponding existence and uniqueness theorem for the 1st
order equations

dua dv
i v i F(u,v)
with initial condition u(0) = uy , v(0) = vo. See eg. Lang [ 4].

We shall now “trandlate” this theorem into a statement concerning geodesics in a
manifold. This involves the tangent bundle of the manifold considered as a manifold.
Thus

T™ = | | ,M
peEM

is given the structure of a smooth manifold determined by the local charts given as
follows: Let asusua (U, !, ..., u") beloca coordinatesin M and 9; = ;2; the vector

fieldsin U. Then in TU = || T,M every tangent vector is uniquely expressible in
peU
the form

n
vp = E ' 0;
i=1

P

vp (ul(p),...,un(p), vl,...,v”) € R*"

gives a chart in T M. For details we refer to appendix B (theorem B.4).

Now suppose M is given a Riemannian metric (always possible by theorem 1.21).
Then a neighbourhood of the O vector in 7,,,M , 0,,, contains a neighbourhood of
the form

{v,eTM [peU, ||v < e}

for some U C M neighbourhood of pg and some ¢ > 0. Again we refer to appendix
B for a proof (see proposition B.5).
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Again let 57 be a connection in M (not necessarily the Riemannian one). Then we
can reformulate theorem 3.3 applied to the equations (3.2):

Corollary 3.4

For every point py € M thereis a neighbourhood U of py and real numberse, 6 > 0
such that: for each p € U and v € T),M with || v ||< e there is a unique geodesic

Yo i (=26, 26) = M
such that

dyy
dt

Furthermore ~,(¢) depends smoothly ont and v, € {v € TU | || v |< €}.

7@(0) =D, (0) = .

Remarks

1. In this corollary 6 can be taken to be 1 by replacing ¢ by ¢ - 6. In fact if
Yo (=26, 20) — M is a geodesic then vs,(t) = 7,(6t) , t € (—2,2), isdso a
geodesic.

2. By the usua arguments for solutions to differential equations there is a unique
maximal geodesic v,(t) (i.e. defined on the largest possible interval (—a, b), a,b > 0).

Definition 3.5
Suppose v,(t) is defined for ¢ = 1 then put

exp,, (v) = 7»(1)

Remarks

1. By Remark 1 above exp, (v) is defined for v € T,M of length < e, pina
neighbourhood of py. Furthermore the map v — exp, (v) is smooth on this set. We
shall prove a more global statement in appendix C.
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2. Note also that v,(t) = exp, (tv) by the same argument.

Example 3.6

Consider S' C R? = C with the induced connection. Then exp; : T1(S') —
St is given by exp (t% ‘1) = exp (it). In fact let y(t) = exp (it); then/(t) =
iexp (it) and %—;"(fy(t)) is the orthogonal projection onto spang{~'(¢)} of v"(t) =
—exp (it) which is clearly O, so that v is a geodesic.

Next let us study the local properties of geodesics. Again suppose M has a metric
and for p € M let, asin Corollary 3.4, U be a neighbourhood of p and let ¢ > 0 be
chosen such that exp, (v) exists for ¢ € U, || v [[< ¢, and so that it depends smoothly
ong,v. LetVCTU C TM betheset of v e T,M , ¢ € U with || v |[[< e and define

F:V—-MxM

by
F(vg) = (q , eXDy 'u).
Then clearly F' is smooth, and F(0,) = (p,p).

Proposition 3.7
F; is non-singular at 0,.

Pr oof

Assume (U,u',...,u™) are local coordinates around p and as usua let 9; =
6?”.. Then any v = v, € V isof theform v, = =;v%0; \q and we have alocal coordinate
system on V' given by

vg (ul(q),...,u”(q), vl,...,v").

Now M x M has a local coordinate system (U x U , ui,...,uf,ul, ..., u%) around
(p,p). The differential F at the point 0, is given by

P A I
ou’ 0, ouj
F, 8. = 8‘
ot 0, oul

So F, has matrix G 2) Q.E.D.
Hence F' is a diffeomorphism in a neighbourhood of 0,. Again suppose this
neighbourhood is of the form

0
» oul

P

p

V:{vq‘qEV ||vq||<6}
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Choose W neighbourhood of p such that
F(V)OWxW

Then we have actually proved:

Theorem 3.8

Let M be a Riemannian manifold and 57 a connection in M (not necessarily the
Riemannian connection). For each p € M there is a neighbourhood W and a real
number ¢ > 0 such that
1) Vg, € W 3 unique v € T,(M) with || v [|< e suchthat t — exp, (tv) isa

geodesic from q to ¢’.

2) Themap W x W — TM given by (¢,¢') — wv issmooth.

3) Foreachq e W, exp,: {veT,M || v|<e} — M isa diffeomorphism onto an
open set U, 0 W.

Notation

A neighbourhood of the form U, as in 3) above is caled a normal neighbourhood
of q.

Remarks
1. Notice that W in theorem 3.8 can be chosen as a normal neighbourhood of p.

2. One can actualy prove that for small ¢ a norma neighbourhood W of radius e
is actually convex, that is, the geodesic between any two points in W stays inside W.
(See e.g. Helgason, [2, Chapter | § 6].)

Geodesics for Riemannian connections.
So now assume that <7 is the Riemannian connection. Recall that for + : [a,b] — M
the length L is given by
=0~ [

and consider the arc length function
t
0 =10 = |
Now if « is a geodesic then
D d7 d7
dtdt ' dt

alal

dvy

du.
duu




so that H‘fi—z is constant, in fact if v =, v € T,M, then “fi—z = ||v|| so that s(t) =
||v]| -t for 4, : (=26, 26) — M. Hence we have shown that a geodesic is parametrized
proportionaly to arc length.

Notation

If v(s) = expsv with || v ||= 1 then v is called a normalized geodesic and s is
just the arc length.

Remark

If exp, (v) = ¢, then || v || is the length of the geodesic exp, (tv) from ¢ to ¢/,
hence 1) in theorem 3.8 can be expressed by saying that up to parametrization by a
constant there is a unique geodesic from ¢ to ¢’ of length < .

We shall now show that locally geodesics are the curves of shortest length:

Theorem 3.9

Let M be a Riemannian manifold and 57 the Riemannian connection. Let W and
¢ be asin theorem 3.8 and ~ : [0,1] — M a geodesic of length L(~) < € joining two
points y(0) = ¢ , ¥(1) = ¢, ¢,¢' € W.

Then for any path w in M joining ¢ and ¢’ we have L() < L(w).

Furthermore = holds iff w and ~ agree after reparametrization.

For the proof we need several lemmas. First a small technical one.

Lemma 3.10

Leta: Q — M, Q C R? with parameters (s, ), be a smooth map. Then at every
point of 2

Proof

Clearly it is enough to prove this locally, so assume «(2) C U, (U,u!,... u") is
alocal chart. Asusual let {Ffj} be the Christoffel symbols for the connection. Recall
from lemma 2.8 that 2 is given by

k |
ﬁz(‘zzﬁ)a V=Y
k 1

L
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where o/ = u’ o o, and V a vector field dlong ¢t — a(s, t),s fixed. In particular for
V=92 = 3oy,

v

D Oa %ok 0o dat
Doa pk 997 00 5
it 95 Xk:(ataﬁz i ot as>a’“

Now since 57 isSsymmetric, i.e. Ffj = 1“;‘?2. , the above expression is completely symmetric

in s and ¢, which proves the statement.
Next we have the famous

Lemma 3.11 (Gauss).

Let U, € M be a normal neighbourhood of ¢. Then the geodesics through ¢ are
orthogonal trajectories to the hypersurfaces

S,(c) = {equ (v) ‘ veT,M, ||v|= c} Lc<e

Proof

We shall show that tangents to a curve in S,(c) are orthogona to the radial
geodesics, i.e. the geodesics emanating from ¢. So let v(t) € T,M,t € [a,b], be a
curve with || v(¢) ||= 1. We shall show that

d

pr exp, (co(t)) ‘

t=to

is orthogonal to

7 &XPq (rv(to))

r=c

S,4(©)

So consider « : (—e,€) X [a,b] — M given by

a(r,t) = exp, (ro(t))

a1



and let us prove

da  Oa
<E,E>—O \VIT,tE(—G,G)X[CL,b].

0 /0a O« D da OJOa oo D O«
E<E’E>:<EE’E>+<E’EE>
= 0 +<0_Oz 28_a>

or = Ot Or

sincer — «(r,t) isageodesic and in view of the previous lemma. Furthermore
‘ da|?

2
o = :1
2 =l
d /0a O« D Oda O« oo D O«
0=— a 0 o /) — ., A A + A A A :2<a>
dt \ Or = Or dt or = Or or =~ Ot Or
It follows that
2 /0 da\ _
or\or ' ot/

so that (2%, 9) is constant in r. However, for r = 0 , wehave «(0,t) =

g, foral t € [a,b] sothat 92(0,¢) = 0; hence (92, %2) =0, foral randt.

Now

In the next lemma again U, is a normal neighbourhood of radius ¢ > 0 around
q € M :

Lemma 3.12
Let v : [a,b] — U; — {q} be a piecewise smooth curve and write
(t) = expy (r(t) - v(t)) , ol =1, 0<r(t) <e.
Then

L (y) = |r(b) — r(a)]
and = holds iff v is constant and » monotone.

r(b)
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Proof
Again consider

a(r,t) = exp, (ro(t)), 0<r<e,teabl
Then by the chain rule

dy . 0a  Oa
a5 T
Oa Oar.,
and by Gauss's lemma &% 1 5%; hence
+‘

[l

and = holds iff 22 = 0 (where this makes sense).

It follows that
/H 4E /\rl—var )2 1r(b) = r(@).

1) var(r) = |r(b) — r(a)|, i.e. r iS monotone,
and

0_@2
ot

da

> !/
or r(t)

Furthermore = holds iff

2) %—‘;} = 0 "amost everywhere’, i.e., since exp,, is a diffeomorphism, v(t) is constant.

This proves the lemma.

Proof of theorem 3.9

Again let U, be the norma neighbourhood of ¢ of radius e > 0 and ¢ =
exp, (rv) with [lv]] =1, 0 <7 < e. We shal show that if w is any piecewise smooth
curve from ¢ to ¢’ then L(w) > r. Now let 0 < § < r and consider the two spheres in
Uy, S(6) and S(r) of radius ¢ and r respectively.

q/

S(r) | w
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Then there is some segment w’ of w connecting S(6) and S(r) and lying totally in
between. In fact w must cross S(¢) sometime by continuity and hence there is a “last”
point «’ € [a,b] with w(a’) € S(6) and a “first” point v’ € [a,b] with w(b') € S(r).
Clearly L(w) > L(w'), and since ' : [d',t/] — U, — {¢} we conclude from the
previous lemma that

Lw)>L(w)>r—46 foralé>o.

Hence L(w) > r. Now suppose L(w) = r. Then again for e > 6 > 0 we conclude from
the previous lemmathat w contains aray connecting .S(6) and S(r). In fact the segment
w' from S(¢) to S(r) has L(w') > r —é; but dso r = L(w) > L(w1) + L(w') + L(wa)
where w = wy * W' * we and L(wy) > ¢ by the first part of the lemma, so that
L(w') <r—6, ie L(w') =r—4é For different choices of § these rays either have the
same direction or are digoint, so for small 6 they must have the same direction, and
thus, if we reparametrize w by arc length, it contains the ray ¢ — exp (tv), 0 < ¢t <
r, ||v|l = 1 where v is the common direction of the rays. Therefore w coincides after
reparametrization with this geodesic.

Now recall the definition of distance

d(p,q) = inf {L()| v a piecewise smooth curve from p to ¢}.

Corollary 3.13
1) d is a metric.
ii) The topology of M agrees with the metric topology given by d.

Pr oof

First notice that for ¢ small the normal neighbourhood U, around ¢ of radius € is
just the set

U, = {q' eM ‘ d(q, q') < e}.

In fact clearly C holds since t — exp, (tv) , t € [0,1] is a geodesic from ¢ to qJ =
exp, (v) of length [lv|| < e. And on the other hand if ¢’ ¢ U, then a curve w from
q to ¢ must cut the sphere S(r) of any radius r < e and so by theorem 3.9 has
Lw)>r Vr<e henceL(w)>ce€, thais, d(q,q¢) > e

To see that d is a metric the only non-trivial statement isthat d(q,¢') =0 = ¢ =¢ .
By the above remark ¢' € U, so that ¢’ = exp, (1), vl =1, 0 < r < e. Now
if » > 0 then any curve from ¢ to ¢’ has L(w) > r sothat d(q,q') > r > 0, which
contradicts the assumption. Hence r = 0, that is, ¢ = ¢'. It is straight forward to prove
the triangle inequality:

d(p,q) <d(p.d)+d(d, q) Vp.¢.q.
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For this choose ¢ > 0 and a curve w joining p and ¢’ of length L(w) < d(p,¢') + ¢ and
acurve ' joining ¢’ and ¢ of length L(w') < d(¢’, ¢) + €. Then w followed by ' gives
a curve from p to ¢ of length < d(p,¢) + d(¢, q) + 2¢, so that

d(p,q) <d(p.d)+d(d.q) +2¢, Ve

Hence the result.

For the second part we just observe that the topology of M has a basis consisting
of the neighbourhoods U, (¢) for ¢ small. However, this is exactly the topology defined
by the metric by our first statement.

We can now prove a global version of the last part of theorem 3.9:

Corollary 3.14

Let w : [0,]] — M be a piecewise smooth curve parametrized by arc length and
suppose that w has length less than or equal to the length of any other curve from w(0)
to w(l). Then w is a geodesic (and in particular a smooth curve).

Pr oof

It is clearly enough to show locally that w is a geodesic curve. So consider a
segment w|[a, b] contained in an open set W as in theorem 3.8. Then by theorem 3.9
w|[a, b] must agree with a geodesic (w|[a, b] clearly has smaller length than any other
curve from w(a) to w(b)).

Definition 3.15
A geodesic redlizing the distance between two points is called a minimal geodesic.

Remark

Thus corollary 3.14 says that any curve realizing the distance between its endpoints
is (after reparametrization) a minimal geodesic. Also by theorem 3.9 small segments
of a geodesic are minimal.

We shall now find conditions which ensure the existence of minimal geodesics
(although they are not unique).

Definition 3.16

A connection 57 on a manifold M is called geodesically complete if any geodesic
can be extended infinitely in both directions, i.e., if every maximal geodesic is defined
on R.
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Theorem 3.17 (Hopf-Rinow)
Let M be a Riemannian manifold. Then the following are equivalent:

a) The Riemannian connection is geodesically complete.

b) (M,d) is a complete metric space (i.e., every Cauchy sequence converges to some
point).

If case @) and b) holds we have furthermore

c) Any two points of M can be joined by a minimal geodesic.

Proof

b) = a) : Lety: (a,b) — M be amaxima geodesic and suppose b < co. Let
{t,,} be an increasing sequence ¢,, — b. Since v is parametrized proportionally to arc
length let us assume without loss of generality that ¢ is the arc length. Then

d(’y(tn—f-p)a 7<tn)) < |tn+p - tn| p,n € N.

Hence, sincet,, — b, {7(¢,)} isaCauchy sequence. Let by assumption ¢ = lim ~(¢,)
and choose a neighbourhood W around ¢ and an ¢ > 0 as in theorem 3.8.

For large n we have «(t,,) € W and ~(t) is the minima geodesic from ~(¢,) to
Y(tn+p) SO that

d(Y(tngp) , Y(tn)) = tagp — tn.

Lettingp — oo, d(q, v(tn)) = b—t,. Therefore y(t) , t € [t , tn4p iSacurve from
the sphere of radius b — ¢,, to the sphere of radius b — ¢,,4, centered at ¢, so that

v | [tn . tntp] isjust aradial geodesic by lemma 3.12, that is
v(t) =exp, (b—t)v), b—e<t<b
for some v € T, M, |[v|| = 1. But then we can simply extend v by

Y(t) =exp, (b—1t)v), b<t<b+e
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This contradicts the maximality of ~+ so that b = co. Similarly a = —ooc.
In order to prove a) = b) we shall prove
I. a)+c)=Db) II. a)=c¢)
I. To see that any Cauchy sequence converges it is enough to see that any bounded

set X is contained in a compact set. (Since a Cauchy sequence is bounded it then has
a converging subsequence, which in turn implies that the original sequence converges.)

To see this choose ¢ € X and suppose d(q,¢') < K V ¢’ € X. But by c)
qJ = exp, (v) , v € TyM

and by @) exp, : T;M — M is aways defined and continuous (cf. appendix C), so
in particular

loll < K} — M})

¢ € Image (equ : {'u

which is compact. It thus remains to prove

Il & = c). Consider p,q € M , d(p,q) = r. Choose a normal e—ball U, around
p and let S(6) C U, be the shell of radius 6 < e. Since S(6) is compact there exists
po € S(6) with d(po, ) minimal. Put pg = exp, (6v) , ||[v]| =1, v € T,M.

Claim: ¢ =expy(rv).

We shall prove this in the following way. We put () = exp,(tv) , t € R (which
is well-defined by a)), and we shall show

*) d(v(t),q)=r—t Ytelor].

In particular for t = = (*) is the claim.
First notice that we always have

d(y(t),q) >r—t

in fact; r = d(p,q) < d(p,v(t)) + d(v(t),q) < t+ d((t),q). Next observe that (*)
holds for t = 6. In fact

r = inf {L(w) ‘ 7 arc from p to q}

> min (d(p,s)+d(s,q)) =6+ d(po, q);
seS(6)

hence d(pg, ¢) < r — 6, which proves (*) for ¢t = 6. Also notice that if (*) holds for ¢
then it also holds for al smaller t > § since then

d(y(t').q) < d(y(#).7(1) +d(y(t).q) St~ +r—t =711

By continuity we can now find a maximal ¢y such that (*) holds for ¢ < ¢y,. Suppose
to < r and we want to get a contradiction:
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Do as above: Take a small shell S(¢) of radius ¢’ around ~(#g). Let p; again be
of minimal distance from ¢. Then as above

d(p67 q) = d(7<t0)7 q) —8=r- to — &'

Then / . /
d(p,po) = d(p,q) — d(pg,q) =7 — (r —to — ¢')
=ty + 0.

But the curve  from p to ~(ty) followed by the geodesic ray from ~(ty) to pj is a
curve of length ¢y + ¢’ and hence must be the (unbroken) geodesic from p to pj. Since
it agrees with - on the first part, it must be equal to v, that is, pj, = y(tp + ¢') and so

d(v(to + 6'), q) = d(pf),q) =r— (to + 6').

Hence (*) holds for t = ¢y + ¢’ contradicting the maximality of ¢.

Examples of geodesics

Example 3.18

1) R™ with the Euclidean metric has as Riemannian connection the Euclidean con-
nection (exercise 2.22) which has Ffj = 0. Hence the differential equation for a
geodesic is just

d%y

750, v : [a,b] — R™

=y

The solutions are of course just the straight linesin R™. Notice that R™ is complete.
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i) M = U C R"™ anopensubsewith the Euclideanmetric hasof courseagainstraight
lines as geodesics.However,unlessU = R™, U will neverbe complete. Notice,
however,thatif U is convex any two points can be joined by a minimal geodesic
so thatc) in theorem3.17 is not equivalentto completeness.

Example 3.19
The sphere S™ C R™*! with the inducedmetric hasas geodesicghe great circles,
thatis, the intersectionsof S™ with the 2-planesthroughO.

To seethis let V. C R"*! be sucha 2-planeandlet I : R**! — R"*! be the
isometry reflectingin V, i.e.,

x reV

I(x)_{—x veVvt
Thenclearly I : S™ — S™ hasC = V n S™ asfixed point set. We shall showthat C
is a geodesic.Clearly it suficesto showthatif =,y € C areclose, thenthe smaller
segmenbf C' joining themis the connectingminimal geodesigwhich existsby theorem
3.9). Solet vy be the minimal geodesigoining  andy. ThenI(~) is alsoa minimal
geodesigoining x andy. Henceif v is parametrizeddy arc lengthwe get I(~y) = ~,
thatis, v C C.

Example 3.20. The Poincaré upper halfplane

Let
H2:{z:x+iyEC‘y>0}

wsen=(7 1)

Y

be given the metric

Proposition 3.21
i) The group

ad—bc>0}

Gl(2,R)" = {(i Z)
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acts on ‘H? as a group of isometries by
z +— (az+0b) /[ (cz+d)

ii) The geodesics in ‘H? are the half circles and half lines perpendicular to the line
y = 0. In particular H? is complete.

Proof
) Identifying a tangentvectorin H?2 by a complexnumberwe first notice that the
inner productat a point z € H? is given by
1

(v,w), = 5 Re (vw), wv,weC.
(Im z)

Now for a matrix UCL Z considerthe map g : H?> — H? given by g(z) =

(az+0b)/(cz+d). The differentialat a point z is given by multiplication by the com-
plex derivative

;o (cz+d)a—(az+b)c A
g(z) = (cz + d)* ez +d)?

where A = ad — cb is the determinant.
Also we compute

1 faz+b az+0b\ 1 (az+b)(cZ+d)— (aZ+b)(cz+d)
Im(g(z))_Z(cz+d_cz+d>_Z ez + d|?
~ Almz
B ez +d|*
Therefore
1 N
(92, gsw) () = W Re (9 (2)vg'(2) w)
:MRe oy :#Re VW) = (v, w
(o) T (e T

which provesthat y actsas an isometry.
i) First let us show that the half y—axis,

lz{z'y ‘ y>0}

is ageodesic For thiswe usethereflectionr : H? — H? givenby r(z + iy) = —x+iy,
which is easilyseento be anisometry(not coveredby i)) with [ asfixed point set. The
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argumentof example3.19thenshowsthat! is a geodesic.If we write () = iy(t) and
parametrizeby arc length then y must satisfy

y’(t)‘ _
y(t)

thatis y/(t) = zy(t). Thereforeconsideredasa geodesidhroughthe point i, [ is given
by

I(t) =ie!, —oo <t< oo,

in particularit is definedfor all ¢. In orderto getgeodesicsn all directionsthroughthe
point ¢, let g in i) be the isometrygiven by the rotation matrix

cosf —sinf
(sin@ cos&) feR

Thenclearly y(i) = ¢ andthe differentialis given by multiplication by

1 :
/ Z — — 6—21/9'
9() (isin 6 + cos 0)?
Henceg(l) is the geodesichroughi pointing in the direction determinedby the angle
5 —26. In orderto getgeodesicshroughany otherpoint just noticethat G1(2, R)+ acts

transitivelyon #2. In factif z = ai+b, a > 0 thenz = g(i) for g given by the matrix

a b
<0 1>, A=a>0.

In all caseghe geodesicsarethe imagesof [ undersomeMobius transformatiomasin

I). Thesealwaystake circles (or lines) to circles (or lines) and also preserveangles.
Therefore andsincethe x—axisis mappedonto itself, theimageswill alwaysbe either
a circle perpendiculato the z—axis or a line perpendiculato the x—axis. (One might
think thatit is enoughthatonly “one end’ of thegeodesigs perpendiculato the x—axis,
but by first rotating/ by 180° we seethat also the otherend mustbe perpendiculato

the z—axis).

Exercise 3.22 The disc model for the hyperbolic plane.
Let D C C bethe unit disc D = {z € C| |z] < 1} with the Riemannianmetric
given by

4 Re (v)

()

i) Showthat the Cayley transform ¢ : D — H? given by

c(z) = —i

<Ua w)z =

z4+1
zZ—1

IS an isometry.
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i) Show that for a,b € C with |a|*> — |b|* = 1, the transformation

az+b
Ez+6

Z =
is an isometry of D onto itself.

iii) Show that the geodesics through O are the Euclidean straight lines and that the
distance from O to any other point is given by

1+ |z|

d(0,z) =log =

iv) Show that all other geodesics are circular arcs perpendicular to the boundary circle
|2| = 1 and that for any two points z1, z2 € D the distance is given by

21 — by, 29 — by
z21—0b1" z9—D01

d(z1,22) = log <

where b; and b, are the points of intersection of the joining geodesic circular arc
and the boundary (cf. the figure).

b,

Example 3.23. The hyperbolic n-space
In R**! let F be the bilinear form

F(z,y) = =% + 'yt + ...+ 2™y"
and consider

H" — {x e R+ ‘ Flz,z) = _1}

Proposition 3.24

i) H" is an n-dimensional submanifold of R™*! with two connected components,
H" = H? UH", whereeg = (1,0,0,...,0) € H}.
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i)

i)

For a € H™ the tangent space T, H" is naturally identified with
T,H" = {x € R*t! ‘ F(z,a) = 0}

and F' restricted to 7, H™ is positive definite, so that H™ gets a natural Riemannian
metric defined by (v, w), = F(v,w) , v,w € ToH".

Let O(1,n) C Gl(n + 1,R) be the subgroup of linear maps A satisfying
F(Az, Ay) = F(z,y) VYa,y € R
and let O(1,n)" C O(1,n) consist of those satisfying further
F(Aeg,e0) < 0.

Then O(1,7n)" is a subgroup acting transitively on H? as a group of isometries.
Furthermore the subgroup of O(1, 7)™ fixing eq isO(n) acting onspan {ey, ..., e, }.

The geodesics in H are all curves of theform HY NE |, E C R**+! isa 2-plane
through 0 such that F'|E is non-degenerate of type (1,1).

H?Y is complete.
There is an isometry of D in exercise 3.22 onto HfL given by

<1+|z|2, 2Rez, 21mz>

z —
1— |2

Pr oof

That H" is a submanifold follows easily from the Implicit Function Theorem. To
see that it has at least 2 components observe that 2% # 0 , Vo e H" soit
suffices to see that, say H., is connected. But if « = (29,...,2™) € H, then

@) 4+ @)= (") =120

and = holds only for = eg. Hence (z',...,2") lies on a sphere and thus for
n > 1 it can be connected to the point (\/(3:0)2 —-1,0,.. .,0). Hence we can
suppose that z2 = 2? = ... = 2™ = 0. Thus we are reduced to the case n = 1

where H™ consists of two hyperbolas.
Let a = (a¥,...,a") € H". By differentiation of F(z,z) = —1 it follows easily

that
T,H" = {x e R+ ‘ F(z,a) = o}
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which is clearly a n—dimensional vector space. To see that F|T,H" is positive

definite let us assume a # ep (otherwise T,H" = span {ey,...,en} Which is a
trivial case). Then for z = (29,...,2") € T,H", z'a! + ... + 2"a" = 2%°
so that

n n
|2%%| = |2'a' +... +2"a"| < \IZ (x7)? JZ(@’V
1 1

Hence

2
2] < \/F(a.2) + (a0)? %

and since /a% —1/|a’| < 1 thisis only possible if either zy = 0 or F(z,z) > 0.

But if zp = 0 and F(z,z) = 0 then clearly x = 0. Hence F|T,H" is positive
definite.

iii) To prove that O(1,n)" isasubgroup first notice that if a,b € HY then F(a,b) < 0.

) =

In fact a = (ao,...,a,”) , b= (bo,...,b”), with a°,° > 0 and F(a,a
F(b,b) = —1. Then

n
F(a,b) = —a"b° + Z a'bt <0
1

since

i a'b
1

< J 3 (ai)QJ S0 = (@) =1 /00 1 < [a%].
1 1

Therefore, for A, B € O(1,n)" , a = Aeg , b = Bey satisfies
F(B™'Aey, eq) = F(Aeq , Beg) <0
that is, B~'A € O(1,n)". To see that O(1,n)* acts transitively on H” is now easily

proved using the usua Gram-Schmidt procedure to extend « € HY to an orthonormal
basis for R**! (orthonormal with respect to F).

The remaining statements we leave as

Exercise 3.25
Prove all unproven statements in proposition 3.24.
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Appendix B THE TANGENT BUNDLE

Let M be a differentiable manifold. We will show how to make the disoint union

T™™ = | | T,M
peEM

into a manifold. This manifold is called the tangent bundle for M. The first step is to
make T'M into a topological space.

More generally consider a set X together with a covering by subsets {U, } ., that
IS, X = UqaerU,. Suppose further that for each o € I there is associated a topological
space U/, and a bijection h,, : U, — UL. In this situation we have:

Lemma B.1
Assume that the following holds for each «, 3 € I suchthat U, N Us # 0 :

1. ha(UsNUg) is open in UL,

2. hgohy': ha(UsanUs) — Uj is continuous.
Then there is a unique topology on X such that for all « € I the following holds:

1. U, isopenin X

2. hg : Uy, — Ul is a homeomorphism.

Pr oof

First notice that it follows from i) and ii) that furthermore hg (U, N Up) is open
in Uj; and

(B.2) hgohyt t ha(Ua NUg) — hg(Ua N Up)

is a homeomorphism. Now define a topology on X by stipulating U C X is open
iff for al « € I , ho(UNU,) is open in Ul,. This is easily seen to define a
topology on X and clearly 1) is fulfilled. To show 2) we fix o € I and consider
V C U,. If Visopenin X then clearly ho(V) is open in U, by the definition of
the topology. We must show the converse, i.e, that if h.(V) is open in Ul then
V' is open, that is, for every § € I, hg(V nUg) is open in Uj;. for this notice that
VNnUs C U,NUg and since the map in (B.2) is ahomeomorphism, clearly hz(V NUp) is
openin hg(Ua N Up) iff ho (V N Us) isopenin kg, (Uy, N Ug) C U But thisobviously
follows from the assumption that %, (V) is open in U’,, which proves the lemma.

Now return to M an n—dimensional manifold and cover it by coordinate charts
(Usyua),a € I, uq = (ul,...,u2) : Uy — UL, C R™ Then TM is covered by
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the sets

TU, = | | T,M
p€EUa

and for each o € I we have a bijection

he : TUy — TU! = U! x R* C R*"
given by
(B.3) ha(vp) = (ué(p),...,ug(p),vl,...,v")

where

vp:Zvi €e1T,M , pel,.

i=1 P
It is easily checked that X = T'M together with the covering {TU,},.; and the
bijections h, , a € I, satisfy lemma B.1, so that 7'M becomes a topological space.
Furthermore the following is straightforward.

0
oul,

Theorem B.4

T M is a differentiable manifold of dimension 2n with local coordinate charts given
by (TU,, h,) as defined by (B.3).

Now let M be equipped with a Riemannian metric (-, -), and let || - || be the
associated norm in the tangent spaces. The following is used in connection with
corollary 3.4:

Proposition B.5

Let 0,, € T, M be the 0—vector and let W C TM be an open neighbourhood of
Op, in T'M. Then there is an open neighbourhood V' C W of the form

V={v, €eTM |peU, |v| <e}

for a suitable open neighbourhood U of py in M and ¢ > 0.

Pr oof

Let (Up,u!,...,u™) be a coordinate chart around po and let the metric be given
by the matrix {g;;}, i.e.

gl]<p) = <al ‘p ’ aj ‘p> y DE Uy.
That is if vp = X; Uiai ‘p then

) -
lopl* =~ gij(p)v'e’.
ij
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Since this is clearly a differentiable expression as a function in the coordinates of v, it
follows that a set V as defined in the proposition is an open set. Let h : TU; — R?"
be the chart

h(vp) = (ul(p), u™(p), vl L"),

where v, = Y v ; \p . Since h is a homeomorphism onto its image we can clearly

choose a neiglhbourhood Vi € W of 0,, of the form
VlZ{UPETM‘pEUQ, |Up|<61}

where U, C Uy is a neighbourhood of py and

o] = /)2 4.+ (o)’

is the usual Euclidean norm. Now let B C U be a compact neighbourhood of pg
of the form

B={peUs||u(p)—u(pm) <6}
for some § > 0. We claim that there is an e > 0 such that
||vp|| > f2|”p|
for all v, satisfying p € B. In that case
v ={o, e TM | u(p) — u(po)| < 8, vyl < e},

where ¢ = €€z, is a neighbourhood of 0, of the required form and Vi C W. That
ez exists follows from the continuity of the function v, +— ||v,|| restricted to the
compact set

S={v,€TM |pe B, |v,| =1}

This ends the proof of the proposition.
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Appendix C DIFFERENTIABILITY OF THE EXPONENTIAL MAP

In the proof of Hopf-Rinow’s theorem (3.17) it is used that for a geodesically complete
Riemannian manifold M the exponential map exp : TM — M is smooth.

In this appendix we shall prove this statement using the corresponding local
statement in corollary 3.4. Thus let M be an n—dimensional manifold with connection
v and metric (-, ).

Theorem C.1

Let V. C TM be the domain for the exponential map, that is, v = v, € V' iff there
exists a geodesic curve v, : (—e,a) — M such that %,(0) = ¢ , B (0) = v, € >
0and a>1. ThenV C TM isan open set and exp : V' — M is a smooth map.

For this we need the following:

Lemma C.2

Let N be a manifold and let 7 : [a,b] x N — M be a smooth map. Suppose there
is a coordinate chart (U, «!,...,u™) such that y(a x N) C U. For = € N let

T"Yz M e T’y(b,az)M

Ty(a.2)
be the parallel transport along v(¢, ) , t € [a,b]. Thenthemapping © : R" x N — TM
given by

O(v,x) =7y, (Zi v'0; ‘v(a w)) , U= (vl, . ,v"), x €N,

IS a smooth map.

Pr oof

It clearly suffices to prove this localy; hence we can assume ([a,b] x N) C U.
Now for » € N let V{; .y be a pardlel field along (¢, ) , t € [a,b] and write

i 0
V(t,:c) = Z'U (ta 1‘) ot

7 7(t7$) ‘

That is, (v!,... ,v") are solutions to the linear system of differential equations

87 -
k _
E U5 —r 5 =0, k=1,...,n.

Since these solutions depend smoothly on the initial values (v!(a, 2),...,v"(a,z)) and

since . .
= Z v'(b,z)0; forv = Z v'(a, x)0;,
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the lemma clearly follows.

Proof of theorem C.1

Suppose vy € T, M isin the domain for exp, and put w(t) = exp,, (tvg) , t € [0, 1].
We must show that exp is defined and smooth on an open subset of 7'M containing the
line segment {tvo | ¢ € [0,1]}. By compactness of the interval we can find a subdivision

O=tr<ti <... <ty =1

and for each j a neighbourhood W; of w(t¢;) and an ¢; > 0 as in theorem 3.8 such
that w([0,1]) C Wy U ... U Wy. By possibly subdividing further we can assume that
both w(t;) and w(t;,,) liein W;, j=0,..., N — 1. By induction we shall now show
that exp is defined and is smooth on an open set containing {tvg \ te€0,t]} : The
case j = 0 is obvious by theorem 3.8. So assume the statement holds for ; and we
shall prove it for j + 1. First we choose a coordinate chart (U, u',...,u") around p
and notice that (by possibly making U smaller) we can assume that exp, (w) is defined
and smooth for ¢ € U and w = T; w' 9, , where (w',...,w") € Q for some open
set 2 C R™ containing the segment

{t(vé,...,vg) ‘ te [O,tj]} ., Where vy = Z )
1

p

Also, we can assume that exp, (w) € WoU... U W;. Now put N = U x Q and let
v :10,1] x N — M be defined by

v(s, ¢, w) = exp, (sw) , s €[0,1],

where w = (wl,...,w”) and w =Y wi8i|q. Now let © : R" x N — T'M be defined
as in lemma C.2. Then clearly

(C.3) expg (sw) = eXPeyp (w) (s —1)O(w, ¢, w))
is defined for s > 1 as long as

(¢g,w) € N, and

C4
€4 |(s = 1)O(w, ¢, w)|| < e, for exp, (w) € W

Furthermore the expression in (C.3) is smooth as a function of ¢, w, and s. Theset V' C
T M of vectorsv = sw satisfying (C.4) is clearly an open subset, and thus exp is smooth
on this set by (C.3). Since w(tj+1) € W; , wehavethat ||(t —t;)O(vg, p,vy)| <
ej fort e [tj,tj_H] and

w(t) = €XDPu(t;) ((t— tj)@@o,payo))-

Hence {two|t € [t;,tj4+1]} C V'. Since dready {two|t € [0,¢;]} € V' we have com-
pleted the induction.
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Chapter 4 THE CURVATURE TENSOR AND
THE STRUCTURAL EQUATIONS

In this section we are concerned with the problem of determining when two Riemannian
manifolds are isometric. In particular when a Riemannian manifold is isometric to the
Euclidean space R™ with the usua Euclidean metric. We shall see that aready locally
this presents a non-trivial problem. First a few elementary facts about isometries:

Definition 4.1

A diffeomorphism ® : M — N of Riemannian manifolds A and N is called an
isometry if the differential

(I)* . TqM — Tq,(q)N
is a linear isometry for each ¢ € M, i.e. if

(yv, Qyw) = (v,w) Yov,weT;M.

We have already seen examples of isometries in the previous chapter 88 3.19 - 3.24,
where we have implicitly used the following

Exercise 4.2
Let M and N be Riemannian manifolds and let ® : M — N be a diffeomorphism.

a) If ® isanisometry then ® preserves arc length and distances, and maps geodesics
to geodesics.

b) If @ is distance preserving, i.e., if d(®(p), ®(q)) = d(p,q) VY p,q, then ® is an
isometry.
(Hint: first show that geodesics are mapped to geodesics).

Let us return to the problem of determining when two Riemannian manifolds M
and N are locally isometric. More precisely choose pointsp € M , p' € N and suppose
we have given a linear isometry

¢ :TyM — Ty N

and we ask for an isometry ® of a neighbourhood of p onto a neighbourhood of p’
such that

(I)(p) = p/ ) (I)*p = .

With these data there is at most one choice for @ :

61



To see this choose € > 0 so that the balls B, C T,M and By C T, N of radius
e are mapped diffeomorphically under the exponential maps exp,, and exp,, onto open
sets U, and U, respectively. Suppose now that ¢ : U, — Uy, is an isometry and
®,, = ¢. Then for v € B, the curve

7(t) = @ (exp,, (tv)) <1

is clearly a geodesic with

W0 =1 0= 6)

so that (t) = exp,, (té(v)) and hence
@ (exp,, (v)) = exp, (3(v)).

Hence we have proved

Proposition 4.3
The isometry ® : U, — Uy is uniquely determined by

¢ = exp,y oo exp;1 2 Up — Uy

However, ¢ defined by this formula is not aways an isometry, and we shall give
rather complicated looking necessary and sufficient conditions for this.

As usua the first step is to reduce the problem to a question about connections.
So now let M and N have linear connections (denoted by 57 and 7’ respectively) and
suppose ¢ : M — N is a diffeomorphism.

Notation:

Given a vector field X on M we have the ®—transformed vector field X® on N
defined by

Xg = e (Xom(p))

Definition 4.4
® : M — N iscalled an affine transformation if for all C*° vector fields X,Y on M

Vo (Y?) = (v (V).

The following exercise was implicitly used in exercise 2.12:
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Exercise 4.5
Let ® : M — N be a diffeomorphism.
a For (U, w',...,u'™) acoordinate chart for N, let (U, u!,...,u™) be the corre-

sponding coordinate chart U = ®~1U" | u! = "o ® on M. Show that ® : U — U’
is an affine transformation iff I'}; = I'% o @

b) Show that affine transformations preserve parallel transport and geodesics.

Proposition 4.6

Let & : M — N be a diffeomorphism of connected Riemannian manifolds. Suppose
that at some point p € M, (®4), isan isometry. Then @ is an isometry iff ¢ is an affine
transformation with respect to the Riemannian connections.

Proof
= Let 7/ be the Riemannian connection on N. Then the formula
@71
vx(Y)= [V’Xq, (Y‘I’)] ,  X,Y vector fields on M,

is easily seen to define a connection on M, and aso it is easily seen that it is symmetric
and Riemannian. Hence v/ is the Riemannian connection on M, hence @ is an affine
transformation.

< Let ¢ € M and choose a piecewise smooth curve v from p to ¢q. Let
T : T,M — T,M be the parallel transport along v. Since @ is affine it preserves
paralel transport and so

(‘P*)q =70 Dyp 0 !

where 7' is paralléel transport along ® o v. Now since 7/ and 7 are both isometries, we
conclude that aso (®.), is an isometry.

Now let M be a manifold with connection 7. We have aready defined the torsion
tensor field 7' for 7 (see exercise 2.15) by the formula

(4.7) T(X,Y)=vx(Y) - vy(X) - [X,Y]

where X and Y are smooth vector fieldson M. Similarly we define the curvature tensor
field R, which to any 3 smooth vector fields X, Y, Z associates a 4th by the formula

(4.8) R(X,Y)Z =vxVy(Z) - VyVx(Z) = Vixy|(2).
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Exercise 4.9

Show that (4.7) and (4.8) define tensors, that is, their values at a point ¢ € M
depend only on X,,Y,, Z,.

We now want to show that in some sense R and 7' determine the connection. For
this purpose we shall use a local moving frame, that is, an open neighbourhood U and
a set of smooth vector fields X1, ..., X,, on U, such that for every point ¢ € U, the set
{Xi(q),...,Xn(q)} is a basis for T, M.

Example 4.10
If (U,u',...,u") is alocal coordinate system then (U, 52r,..., 5% ) is a loca
moving frame.

Notice that the connection restricted to U is determined by the n? functions {Ffj}
given by

(4.12) vx,(X;) =) T5X
k

Similarly the tensors T and R are determined by the functions {TZ’;} and { h]}
respectively given by

(4.12) T(X:, X;) Z

(4.13) R(X;, X;)X; = ZRl”Xk

The so-called structural equations are really just a reformulation of these equations in
terms of differential forms.

First let us recall the basic facts of the calculus of differential forms (see e.g. Spivak
[6, I, chapter 7] or Warner [7, chapter I1] ):

Differential forms

A differential form w of degree k associates to £ smooth vector fields X1, ..., X},
areal valued smooth function w(Xy, ..., X}) such that it has the “tensor property” (see
exercise 4.9 above), and such that it is multilinear and alternating in X1, ..., X}.

For wy anl—form and wy a k—form, the product w; Aws isthe (k+1)—form given by
w1 A wg(X ch—}—l)

= 7(]{: I Z)' Z sign O' w1 <X0(1)7 e 7Xa(l)) w9 (Xa(l—}—l)a ey Xa(l+k))



where ¢ runs through all permutations of 1, ...,k 4+ [. This product is associative and
graded commutative, i.e. wi Aws = (—1)klw2 A wy. Furthermore there is an exterior
differential d, which to any £—form w associates a (k + 1)—form dw given by

k+1
1 Z. )
(@) (X1, X)) = =7 ) (—1)HXi(w(Xl,...,Xi,...,Xk+1>)+
=1

+Z (—1)i+jw<[Xi,Xj], Xi,..., Xi, .. .,Xj, ces an+l)]
1<J

where the “hat” means that the term is left out.
d has the following properties:

i) d islinear over R,
i) dd = 0,

i) d(w1 A WQ) = (dwl) N wo + (—l)kwl A dwoy
for w; a k—form,

iv) For f asmooth function df is the 1-form given by
(df )(X) = X(f) , for X asmooth vector field,

v) d islocal, that is, for any open set U C M,
wlU=0 = dw|U=0

(i.e. dw|U depends only on w|U).

In alocal coordinate system (U, u!, ..., ™) any k—form w has a unique presentation

w= Z ail___ikduil Ao A du™

1<i1<...<ix<n

where «;,.. ;. are smooth functions on U.

Finally if F : M — N is a smooth map of manifolds M and N, and if w is a
k—form on N then there is a unique induced k—form F*w on M such that for any &
vector fields Xq,..., X, on M

F*w)(X1,. .., Xp)(q) = wpg) (FeXig, ..., FxXgg) Vg e M.

F* preserves A and commutes with d.
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The structural equations

Now return to our manifold M with connection 57 and consider a local moving
frame (U, X1, ..., X,) which will be kept fixed in the following. In U we have the
dual 1-forms {¢',...,0"} defined by

0'(X;) = 6

where ', is the Kronecker 6, that is, &; = 0 for i # j and §% = 1. Dual to equation
(4.11) we consider the 1-forms

(4.14) wh =T} 0F
k

so that {6} and {wij} together determine I} ; and hence the connection.

Theorem 4.15 (The structural equations)

i) do' = =3 WL AP+ > T 07 A6
p jk
i) doy = =3 W, AW+ 5 Ry 67 A0
p jk
Proof

We shall prove only i) since ii) is completely analogous. First define the functions
s by

(X, X Zcm

Then we shall check i) by evaluating both sides on X, X; :

L (F0X0) — X(F(X) — 00, X))

= —5 Crg-

(d6") (X, Xs) =

On the other hand

(— Zwip A 01’) (Xr, Xs) = —% Z (wip(Xr)op(Xs) — wip(Xs)Hp(Xr))

p

1 .
( Z T',07 Aak> (Xr, Xs) = 5 Tt
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But since

Z T8 Xi =T(Xr, Xs) = Vx.(Xs) — Vx,(Xr) — [ X0, X
= Z Firs o Fisr o Cirs)Xi
7

wehave T¢, =T" _ —T¢  — (... The equation i) now clearly follows from this.
Theorem 4.15 becomes particularly useful in the following special moving frame:

Consider a point p € M and let U be a “normal neighbourhood” around p defined as

follows. Let Xq,...,X,, € T,M be abasis and write any vector v € T,,M in the form

v = Y v'X;. Choose ¢ > 0 so that the e—ball

1

2
B, = UETpM‘(Z(Ui)2> <ep CT,M

maps diffeomorphically under exp,, onto an open neighbourhood U (this is possible by
theorem 3.8 by choosing any metric on M such that X7,..., X, is orthonormal at p).
Now we get a moving frame X7,..., X} on U by pardlel transporting X;i,..., X,
along the radial geodesics, and we consider the structural equations with respect to this
moving frame:

Consider V. C R x T,M givenby V = {(t,v) | tv € B,}. V is an open set with
coordinates (t,v',...,v"). Let ¥ : V — U be the map ¥(t,v) = exp, (tv).
Then we have

Theorem 4.16 (The structural equations in polar coordinates)

i) v — vidt+# T = o

where §' and @ ; do not contain dt.
i) Furthermore 6° and W'l satisfy the differential equations:
ot . . . —k
8 G = dv'+ Yot + 3 T8
k ik
b) 7t = %:Rlzg'k v 9
J

with initial conditions 6" |,_ = 0, WY |,—o= 0.
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Pr oof

i) Since U, (4) = £ exp, (tv) = Y v'X; and since ¢ gives the ith coordinate

with respect to { X} the first equation is obvious. Similarly

U (w')) (%) =T (; r;’cje’“> <%) = ;F?;j o*.

However, the fields X are parallel along the curve v, (t) = exp,, (tv) with thv =% =
Y- v; X} It follows that for each j , V- (X]*> vanishes along ., i.e.

0= () = TN dong

or equivaently

0=> Tj" aongr, forali,j.
k

This proves i).
i) We prove only equation a); the other one is similar:
By i) we have

d(T*0") = dv' A dt + dt A % g + terms not involving dt.

Similarly using theorem 4.15 we have

*(df") Zw A(vPdt)+ Z k(vjdt AT 05T A dt>+ terms not involving dt.

Using le = —T,g i and comparing the coefficients of dt in the two egquations we obtain
0 —i » j
—dv’ +a—9—zp:vw—l—z kv@

which is just @). The initial conditions follows trivially from the fact that ¥(0,v) is
constantly equal to p.

Corollary 4.17

A Riemanniammanifold M is locally isometricto R” with the Euclideanmetric iff
the curvatue tensor R is constantlyequalto O.

Notation

A Riemannian manifold satisfying R = 0 is called flat.
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Proof of 4.17

= is trivial. ,

<« For a Riemannian connection 7 = 0 s0 @, = 0 and §' = tdv’ are the solutions
of @ and b) of theorem 4.16. In particular for ¥, = exp, , ¥1: B, — U we have

U160° = dv' and Uiw’; = 0.

Thus, if T, M is given the usual Euclidean metric in the coordinates (v?,. .., v™) then
clearly ¥, is an affine transformation. Hence if X1,..., X,, are chosen orthonormal
then ¥, is an isometry by proposition 4.6.

More generally the uniqueness of the solutions to the equations a) and b) in theorem
4.16 is expressed as follows:

Corollary 4.18

Let (M,V) and (N, V') be manifolds with connectionsand let 7', R and 7", R' be
the torsion and curvature tensor fieldsfor 57 and 7/ respectively. Letp € M, p’ € N and
let ¢ : T,M — T,y N bealinear isomorphism. Let U and U’ be normal neighbourhoods
around p and p’ of the same radius (with respect to a fixed basis of 7}, M respectively its
image in T,y N). Furthermore for eachq € U , ¢ = exp,, (v), let ¢' = exp, (¢v) € U’
and let 7, and 7,/ be the parallel transports along exp,, (tv) respectively exp,y (tov).

Then ¢ extends to an affine transformation ® : U — U’ iff the following is satisfied:
YV ¢ € U the linear isomorphism

éq =Tq O ¢0Tq_1 cTyM — Ty N
satisfies
a T'(agq(v) , (Bq(w)) = q;qT(v,w) VoweT,M

7

b, R/((zq(v) , éq(w))&q(z) = $R(v,w)z Y, w,z € T,M
Furthermore @ is unique and is given by

¢ = exp, opo explj1

Remark

In particular for Riemannian manifolds A/ and NV and alinear isometry ¢ : T,M —
Ty N, the above map is an isometry iff b) above is satisfied.

Proof of 4.18
Let Xy,...,X,, € T,M be abasis and X7, ..., X the associated moving frame
in U. Let {6"} and {wij} be the corresponding frame and connection forms. Put
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X = ¢X1,..., X, = ¢X, and similarly consider the frame X{*,..., X* in U’ and
the corresponding forms {¢"} and {w’ij}. Alsolet V CRx T,M and V! C R x Ty N
be asintheorem 4.16 and let ¥ : V — U and ¥’ : V' — U’ be the maps defined by
U(t,v) = exp, (tv), '’ (t', v') = expy (t'v').
Again we define
Q = exp,y ogo exp];1
and observe that
Dol =1"U0og,

where ¢ : V — V' isthe map (¢,v) — (t, ¢(v)). With respect to the above frames the
torsion and curvature tensors have components T;k}, {R;'j k} and {TJ’Z}, {R;j.k}
which by our assumptions satisfy

jr =Tjiod and Rjy = Rij 00
in V. Hence, in the notation of theorem 4.16, both

{éi , wij} and {gb*@'i , ¢*w’ij}
satisfy the structural equations in polar coordinates. Since they also have the same
initial values they must be the same set of 1-forms. Hence we conclude that

\Ij*ez _ é* (\Ijl*léli) _ \D*(I)*elz

VW' = ¢" (‘I"*w'zj) = \Il*q)*w”j.
In particular, since ¥, = exp, is a diffeomorphism, we obtain the equations
(4.19) 0" = ©*0" and w'; = P*w";.
By the first equation in (4.19) we get

(XH® =X, i=1,...,n

Writing

vx: (X7) =Y Th Xi and V(X)) =D T Xp
k k
we conclude from the second equation in (4.19) that Ffj = r;’; o ®. Hence

%y ((60)") = Vi (X9 = 32 T 61 = (93 ()"
k

That is, ® is an affine transformation.

Remark
It follows from the proof that (XZ.*)‘I> =X/*, i=1,...,n. Hence foral ¢ € U,

- 1
Pg=Tg0opoT, = Dy
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Chapter 5 THE SECTIONAL CURVATURE

In the previous section we saw that a Riemannian metric is locally determined by
its curvature tensor field. This does not sound as a great advance since we need to

determine the n* functions Rklij instead of the n? functions {g;;}! However, the

curvature tensor field satisfies certain symmetry relations which enable us to cut down
on the number of invariants needed to determine the metric up to isometry.

If M is a Riemannian manifold with metric ¢(-, -) = (-, -) and curvature ten-
sor field R we shall also consider the curvature tensor in 4 vector field variables
(R(X,Y)Z,W).

Proposition 5.1
The curvature tensor of a Riemannian manifold with metric ¢ satisfies:

) R(X,Y)Z+ R(Y,X)Z =0
i) RX,Y)Z+ R(Y,Z)X +R(Z,X)Y =0 (Bianchi's identity)
i) (R(X,Y)Z, W)+ (R(X, Y)W, Z) =0
v) (R(X,Y)Z,W) = (R(Z,W)X,Y)

Proof

Recall the definition

R(X, Y)Z =VxVyZ —VyVxZd — V[X,Y]Z'
The skew-symmetry relation i) is obvious from this. ii) Since R is a tensor it suffices
to prove ii) for X = ;2. v = 2. 7 = 2. where (U,u!,....u") isaloca chart
in M. Inthis case dl Lie brackets [X, Y], [X, Z], [Y, Z] are zero, so we must show
the identity
(52) VxVyZ —VyVxZ +VyVzX —VzVy X +VzVxY —VxVvzY =0
However, the symmetry of the connection implies
VyZ—VZy:[X,Z]:O, VX —-VxZ=0,9YxY -y X =0

from which (5.2) clearly follows.
To prove iii) it clearly suffices to prove for al X,Y, Z :

(R(X,Y)Z,Z) =0.
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Again we may assume [X,Y]| = 0 so that we must show

<VvaZ —VyVxZ, Z> =0

(5.3) (VxVyZ. Z) = (VyxZ, Z)

Now since v/ is Riemannian we have

X(Z,2) = 2vxZ,7Z)

and
YX<Z, Z> = 2Y<V)(Z, Z> = 2<VyVXZ, Z> + 2(VXZ, VyZ>
so that
1
<VyVXZ, Z> = §YX<Z, Z) — <VXz, VyZ>.
but since

0=[X,Y]=XY - YX weget
(Vy V7, Z) = %XY(Z, 2y~ (9 7, IxZ)
=(VxVyZ,Z)

by symmetry in X and Y. This proves (5.3) and thus iii).

iv) now follows completely algebraically from i)-iii):

In fact by i) and ii) we obtain
and by iii) and ii)
Adding (5.4) and (5.5) now gives

- 2R(X,Y)Z,W)
(56) =(R(X, Z2)Y,W) + (R(Z,Y)X,W) + (R(Y, W)X, Z) + (R(W, XY, Z).

In this interchange X and Z respectively Y and W to obtain
2(R(Z,W)X,Y)
(57)  =(R(Z.X)W,Y) +(R(X,W)Z,Y) + (RW,Y)Z,X) + (R(Y, Z)W, X)
=(R(X, 2)Y, W) + (R(W,X)Y, Z) + (R(Y, W)X, Z) + (R(Z,Y)X, W)

where we have used i) and iii) in each term. Since the right hand sides of (5.6) and
(5.7) are the same we have proved iv).

With these identities proved we can now show that the curvature tensor field R in
some sense is determined by the so-called sectional curvature:
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Definition 5.8

Let M be a Riemannian manifold of dim > 2 with metric ¢ and let R be the
corresponding curvature tensor field. For p € M and S C T, M a 2—plane choose y, z
spanning S and define the sectional curvature by

(R(y, 2)y, z)

Ho(8) =~ ly A 2|

where [y A 2> = (y,9)(z, 2) — (y, 2) is the square of the area of the parallelogram
spanned by y and z.

Proposition 5.9
K,(S) does not depend on the choice of y and .

Pr oof
Let
y1 = a1y + iz
21 = agy + [Paz.
Then clearly
2
1 B

8%
i Az =

Now by proposition 5.1 the curvature tensor (R(X,Y)Z, W) is alternating in X,Y as
well as Z, W, hence

(R(y1, 21)y1,21) = o1 1 (R(y, 2)y1, 21)
ay o
— | O 2<R(y 2)y, z)
O{Q ’,82 ) g

from which the proposition clearly follows.

We can now reformulate corollary 4.18 in the Riemannian case in terms of the
sectional curvature:

Theorem 5.10

Let M and N be Riemannian manifolds with metrics (-, -) and (-, -)’ respec-
tively and let K, K’ be the associated sectional curvatures. Let p €¢ M, p' € N
and ¢ : T,M — T,N be a linear isometry. Let U and U’ be normal neighbour-
hoods around p and p’ of the same radius. Furthermore for each ¢ €¢ U , ¢ =
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exp, (v), let ¢ = expy (¢v) € U’ and let 7, , 7, be the parallel transports along
exp,, (tv) respectively exp, (té(v)).

Then ¢ extends to an isometry ® : U — U’ iff the following is satisfied:

Vq € U the linear isometry

(Eq =Ty O ¢OTq_1 cTyM — Ty N
satisfies

Ky (68) = Ky(S)  ¥SCT,M a2 plane.
Furthermore @ is unique and given by

¢ = exp, opo exp}j1

Proof
By corollary 4.18 it suffices to show for dl ¢ € U that
(5.11) R'(ng(x), ggq(y)>d;qz = dNJq(R(x, y)z) Ya,y,z€T,M.

In the following let us fix ¢ € U and write ¢ = ¢, , K = K, etc. Then (5.11) is
equivaent to

~ ~ ~ ~ / ~ - /
(512) (R (d0,0y)d2 duw) = (8(R(x,y)z), bw)
or, since ¢ is an isometry
- - - - !/

(513 (R(62,0y)2 dw) = (R(,y)2,w) Va,y,zweT,M.
Again since ¢ is an isometry clearly

L2

‘(by A qﬁz‘ = |y A Z|2 Vy,zeTyM
SO our assumption K’(gﬁS) = K(S), VS C T,M, is equivalent to

- -~ - -~ /
(5.14) (R (6y.62)dy.02) = (R(y.2)y.2) Yy, € T,M,
Thus we want to conclude (5.13) from (5.14). For this we write

Bla,y,zw) = (R (b2,6(0)) 62, du) ~(R(x,y)2 w),
r,y,z,w e TyM.

and we notice that

(5.15) B(y,z,y,2) =0 Vy,ze€T,M.
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Now by proposition 5.1 we have
B(z,y,z,w) = B(z,w,z,y) Va,y,z,weTM

so in particular B(z, y, z, w) is symmetric in y and w. By (5.15) and the “parallelogram
identity” we obtain

B(z,y,z,w) =0 Vuz,yweT,M
or
(5.16) B(z,y,z,w) = —B(z,y,x,w) Vua,y,z,w e T,M.
Now using ii) in proposition 5.1 we obtain
(5.17) B(z,y,z,w)+ B(y, z,x,w) + B(z,z,y,w) = 0.

But
B(y,z,x, IU) = —B(z,y,x,w) = B(SL’,y,Z, IU)

and
B(Zamava) = _B(y,.’l?, Z,ZU) = B(xayaza w)

so that by (5.17) we obtain 3B(z,y, z,w) = 0 for al z,y, z,w € T, M. This proves
the theorem.

Remark
In case of M asurfacei.e. dimM = 2 there is only one plane at each point p € M

so the sectional curvature in this case is just a function K : M — R.

Next let us see how to calculate the sectional curvature: First a trivia lemma:

Lemma 5.18
Let M be a manifold with connection <7 and curvature tensor R and let
(U,u,...,u") bealocal coordinate system. Also with 9; = ;2 , i =1,...,n, write

Zr O and R(0;,0;)0; = Zleak

Then Rj;; are given by

ark  ark
Eo_ gl Sl P 1k Pk
Rij=—5— 25+ (leFip—Fqup)-
P
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Pr oof
Since (U,«!,...,u") is a coordinate chart we have [9;,d;] = 0 for all i, j. Hence

R(0;,0;)01 = V5,Y5,(01) — V5,Y5,(0))
= Vy, (Z F§18p> — Vy; (Z FZ@I,)
- Zarﬂa +er ZF
- Z 0; lea Z 1—‘ Z F
= Z (&'sz 9; Fzz>3k + Z Z (F‘;?ll“fp - PZF?P) O
k

which proves the lemma.

Now if M is a Riemannian manifold with metric (-, -) and we again look at the
curvature tensor (R(X,Y)Z, W) in the local coordinate system (U, u!, ..., u™), then
it is determined by the functions

(5.19) Ryiij = (R(95,0;)0;, O) ZQ’W lij*

In general this formula gives too messy calculations for practical use even for surfaces.
However, for M = M? a surface one can choose the coordinates in a convenient way
to simplify the calculations: Thus consider p € M and choose an orthonormal basis
{e1, ea} for T, M. Then in a normal neighbourhood U C M centered at p of radius
p > 0 we have the geodesic polar coordinates (r,6) , 0 < r < p, # in an interva
of length < 27, such that

q = exp,, (7(g)(cos O(g)er +sind(q)e2)) ¢ € U — {p}.

Notice that by the Gauss lemma (3.11) the vector fields % and % are perpendicular,
and since

r — exp,, (r(cosfeq + sin fes
p,, (7 (

Is a normalized geodesic, % has length 1. Therefore the metric ¢ is given in the
coordinates (r,¢) by the matrix {g;;} , i,j = 1,2 :

(5.20) gn=1, g12=921=0, g2 =G,
where G = (2, 2} > 0. The inverse matrix {g/} is then
(5.21) g'lht=1,g%=g¢"=0,¢?=1/G,
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and the Christoffel symbols (2.20) and (2.21) are easily calculated:

1 0G
221]=-2 5. [L1]=[121=[211=0
,
(522) 1 0G 1 0G
22.2]= 557, N22=p12=55", [11,2] =0
1 0G
5.23) Thy = 55 I, =T{,=T3 =0
. F?:ia_G 2 ZFQZLa_G 2 =0
279G 99 RT M Togor BMTH
Exercise 5.24

Verify (5.22) and (5.23).
We now have

Proposition 5.25 (Gauss)

Let M be a surface with geodesic polar coordinates (r, §) and metric given by (5.20).
Then the sectional curvature is the function K given by

* (VG

Pr oof

Since at every point % and % spans the tangent space, the sectiona curvature is
given by

) _ (R(5 &) dp: 3r) _ Rion

S5

)

o

00 _
1 0 G G
0 G
where by (5.19) and lemma 5.18
orl, ori
Rig12 = 911R1212 = R1212 = WQQ - TOH + Z (ngr%p o F]f2 F%p)
P
L _LPG 109G (106G (126G 1 (oG’
2 02 2G Or 20r ) 2 Or2 4G\ or

o ()

This proves the proposition.
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Example 5.26

Let us calculate the curvature of the hyperbolic plane using the disc model D in
exercise 3.22. By (ii) in that exercise the geodesic polar coordinates at the point O is
given by (r,0) where () = 2/|z| and ¢"(*) = (1 +|2])/(1 — |2|) or

z = e —1 €i9.
e"+1
Then )
BT—l 2 2
0z 0z <6T+1) (e" —1)*(e"+1)
G = g %, % =4 D) =4 5
el ((er+1)" = (er = 1)%)
2r 1 2
=4 H = sinh?r.
(4e)
Therefore by proposition 5.25 the sectiona curvature is given by
IR L
= i W(smhr) =—1.

Notice that the fact that K is constant follows without any calculations just from the
fact that the isometry group acts transitively on the hyperbolic plane.

Exercise 5.27

For the 2—sphere S?2 C R3 of radius 1 show that the metric in geodesic polar
coordinates is given by

g =1, gia=go1 =0, ggo = sin’r

and show that the sectiona curvature is K = 1.

Now return to a Riemannian manifold of dimension » > 2 and let us show that the
computation of sectional curvatures can be reduced to surfaces.

Proposition 5.28

Let M be a Riemannian manifold, let p € M and let S C T,M be a 2-plane.
Choose B C T, M a ball such that exp, : B—-UCM is a diffeomorphism onto a
normal neighbourhood, and consider the surface N = exp, (BN S). Let N be given
the metric induced from M. Then the sectional curvatures KV and K™ of N and M

respectively satisfy:
AN(Qy oM
Ap (S) - Kp (S)
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Pr oof

It is convenient to use what is caled a Riemannian normal coordinate sys-
tem around p defined as follows: Let {e;,...,e,} be an orthonormal basis for
T,M; then, since exp, : B — U is a diffeomorphism, we have a local coordinate
system (U, u!,...,u") determined by

4= epr (Z ul(q)el) ) V(] el.

i=1
In this coordinate system the Christoffel symbols satisfy:
(5.29) Ii(p) =0 Vi jk.

In fact for v = (v',...,v") € R the curve v,

t —exp, (t(v'er +...+v"1)) , [t| small,

is a geodesic through p with coordinates 7¢ = u® o v,(t) = tv!, so by the differential
equation (3.2) we have for t = 0 :

(5.30) Z Ffj (P! =0 k=1,2...n.

For fixed k£ this is a quadratic form (since the connection is symmetric) which is
constantly zero, hence the coefficients are all zero, which proves (5.29). The components
Rkhj for the curvature tensor field in this coordinate system are now given by lemma
5.18 which at the point p reduces to

ork,
ou’

ork
oul

(4.31) Rklij (p) =

p
and hence by (5.19)

Riiij(p) = (R(es, €5)er, ex) Zgiw F1i; (P
81—‘“
- Z (P Z Gis(P
p p
= 2 (Z gkufﬁ) - W(ngﬂfz)
H p M

d . 9
= oLl Kl(p) = 55 lil, K](p).

Now choose the basis {e,...,e,} in T,M such that S = span {e;, ez}. Clearly for
v € S thecurve t — exp, (tv) is ageodesic in N so that (N, u!,?) is a Riemannian
normal coordinate system for N. It follows that the metric in N with respect to this

(5.32)

p
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coordinate system is just given by the matrix{g;; },,j < 2, where {g;;} is the matrix
defining the metric in M/ in the coordinate system (U, u!,..., u")
Now clearly by (5.32) and (2.20)

Kp(S) = —Ro112(p) = Ri212(p) = % 22,1](p) — % [12,1](p)

is the same for M and N which proves the proposition.

As an application let us calculate the sectional curvatures for the n—sphere and
hyperbolic n—space (see example 3.23):

Proposition 5.33

i. For S™ C R™*! the sphere of radius 1 the sectional curvature is constantly equal 1,
that is, K,(S) = 1, VpeSt, S CT,(s").

ii. For H the hyperbolic n—space the sectional curvature is constantly equal to —1,
that is, K,(S) = -1, Vp e H} , S C T,(HY).

Proof

Let us prove ii), the proof of i) is entirely similar. Since the isometry group
O(1,n)" acts transitively on HY (proposition 3.24 iii)) it suffices to calculate K,(S)
for p = eg = (1,0,...,0), and since the isometry group fixing e is the orthogonal
group we get the same sectional curvature in al plane directions. Thus at least K,(.5)
is constant and we just need to caculate K., (S) for S = span {ej,es} C T, (H_’;).
Now clearly by proposition 3.24 iv) we have exp,, (S) = H_% C span{eg, eq, ez} S0 by
proposition 5.28 K., (S) can be calculated in H2. Hence by example 5.26 K., (S) = —1
which proves ii).

Exercise 5.34
Prove proposition 5.33 i).

Exercise 5.35
I. Letr > 0 bea positive real number and let ® : M — N be a diffeomorphism of
Riemannian manifolds with metrics (-, -) and (-, -)’ respectively such that
(B, Duy) =12, y) Vo,ye T,M ,Yqe M.
Show that @ is an affine transformation and deduce that the sectional curvatures K
and K’ for M and N respectively are related by

1

= T—QKq(S) for al 2-planes S C T, M,

Vqe M.

Kg(q)(®x5)
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For r > 0 let S C R™*! be the sphere of radius r, i.e.,
Sy = {a: c R**! ‘ (a:l)2 +...+ ($n+1)2 = 7"2}

with the usua induced Riemannian metric. Show that the sectional curvature K of
S™ is congtant and K = 1/r2.

Forr > 0 let H?, C R™*! bethe hyperbolic space of “radiusir”, i.e, H?, C R"*!
is a connected component of the submanifold

r

H" = {x c Rt

—(x0)2 + (a:l)2 o4 (@) = —7‘2}

with the metric induced from the bilinear form F' as in example 3.23. Show that
the sectional curvature K of H, is constant and that X = —%.

Corollary 5.36
Let M be a Riemannian manifold of constant sectional curvature K

If K > 0 then M islocally isometric to S with r = 1/V K.
If K = 0 then M islocally isometric to R"™.

If K < 0 then M islocally isometric to H*, with r =1/v/—K.

Pr oof
This is immediate from theorem 5.10.
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Chapter 6 CURVATURE FOR SUBMANIFOLDS
OF EUCLIDEAN SPACE

In this section we shall study the curvature for an n—dimensional submanifold A/ C R*
with the Riemannian metric in M induced from the Euclidean metric in R* which we
shall denote by (-, -). As usual we shall identify the tangent space T,M , p € M
with the corresponding subspace of R*, so that a vector field X on M is identified
with a function X : M — R*. InR* the Riemannian connection is just given by
the directional derivative Dx,Y for Y a vectorfield on R* and X, € RF any (tangent)
vector. We shall often consider vector fields along M, i.e. functionsY : M — R*
and for these the directional derivative DY is defined for X, € T,M , p € M. In
particular, as we have seen in exercises 2.3 and 2.22, the Riemannian connection in M
is given for Y atangent field to M and X, € T,M by

6.1) vx,(Y)= " (Dx,(Y)),

where Tv for v € R* is the orthogonal projection of v onto T,M. Now we shall
also need the normal space 7, M L of vectors perpendicular to T,M , andforv €
T,R* we denote v1 = v — Tv the projection of v onto the normal space at p. Thus as
in (6.1) let Y be atangent field to A/ and X,, € T,/ and consider

1

(6.2) S(Xp.Y) = (Dx,(Y)),

Then we have

Proposition 6.3
1. S(X,,Y) does only depend on Y, that is, S defines a bilinear map

S:T,M x T,M — T,M~*
such that for X and Y smooth tangent fieldson M themap p — S(X,,Y),) issmooth.
2. S is symmgtric, i.e.
S(z,y) =Sy, ) Va,yeT,M,pe M.
3. For Y atangent field on M and X, € T,M

Dx,(Y) = vx,(Y) + 5(Xp, Vp)
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Proof
i) We shall see that S(X,,Y) satisfies
S(Xp, fY) = f(p)S(X,,Y) for f € C(M).
In fact
S(X,, fY) = Dx, (fY)" = (X,(H)Y + f()Dx,(Y))"
= [(n)(Dx, (V)" = f(0)S(X,,,Y).

This proves the first statement. The smoothness of p — S(X,,,Y,) is obvious from

the definition.
i) By i) is enough to prove this for X = ;2; =|,, Y= 2 |, for (Uyul,...,u")

a loca coordinate chart in M around p. In this case we have

(6.4) DxY = Dy X.

Infactif f: U’ — U C M C R isthe inverse of the coordinate chart and we consider
this as a function from U’ C R™ into R* then (6.4) is just the formula

2 f 2 f
Jutoul  dwloul
Now ii) just follows from (6.4) by taking normal components.
iii) is obvious from the definition.

(6.5)

We can now calculate the curvature tensor in terms of the above bilinear map S

Theorem 6.6 (Gauss equations)
For X,Y, Z, W tangent fields on M we have

(R(X,Y)Z,W) =(5(Y,Z), S(X,W)) = (S(X,2), S(Y,W)).

Pr oof

Since both side of the equation are multilinear with respect to functions it suffices
to prove thisfor X = 2. | ¥V = 2 7 =2 where (U,u},...,u") is alocd

oul oul

coordinate system. Then we have

(6.7) Dx(DyZ) = Dy(DxZ)
similar to (6.4) above, and also

(6.8) R(X,)Y)Z =vxVy(Z)—vyVx(Z).
Now

Dx(DyZ)=Dx(VyZ)+ Dx(S(Y,2))

(6.9) = VxVyZ +S(X,VyZ) + Dx(S(Y, Z))
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and similarly

(6.10) Dy(DxZ) =VyVxZ+S(Y,VxZ)+ Dy(S(X, Z))

subtracting (6.10) from (6.9) we then obtain

(6.11) 0= R(X,Y)Z+ S(X,vyZ)—S(Y,vxZ)+ Dx(S(Y,Z)) — Dy(S(X, Z))
or

(6.12) R(X,Y)Z=—-S(X,vyZ)+S(Y,vxZ)— Dx(S(Y,Z)) + Dy(S(X, Z)).

Since W is a tangent field and S(X,vyZ) and S(Y,VvxZ) are norma fields we
therefore get from (6.12):

(6.13) (RIX,Y)Z,W)=—(DxS(Y,Z), W)+ (DyS(X, Z),W).
But again (S(Y,Z),W) = 0 o that

(5.1 — (DxS(Y. Z), W) + (S(Y. Z), S(X, W)
and similarly
(6.15) 0= (DyS(X, Z), W)+ (S(X, Z), S(Y, W)).

Substituting (6.14) and (6.15) in (6.13) now Yyields the desired equation.

In particular let us consider the case of a hypersurface, i.e. M™ C R*™! and let
us suppose that we have given a unit normal vector field [V, that is, a smooth vector
field dlong M™ such that 7,M+ = span {N,} for al p € M and such that the length
of IV, isone. Notice that at least locally such a field always exists and it is unique up
to asign £1. In this situation the bilinear function S defines the “second fundamental
form” 11 by the equation

(6.16) S(X,Y)=1I(X,Y)N
for X and Y vector fields on M. We then clearly obtain:
Corollary 6.17 (Gauss Theorema Egregium)
1. For X,Y, Z, W tangent fields on a hypersurface M in R**!, we have
(R(X,Y)Z,W)=T1(Y, Z)IL (X,W) =1L (X, Z)IL (Y, W).
2. In particular the sectional curvature for S = span{y, z} C T,M is given by

1(y, y)IL(z, 2) — (y, 2)? |
(W, u)(z,2) — (y,2)*

KP(S) =

85



Remark

Classically the metric (- , -) is called the “first fundamental form” and is denoted I,
so that the above formula can be memorized as “the second fundamental form divided
by the first”. For M asurface in R? this is called the Gaussian curvature.

The second fundamental form can also be expressed in terms of the derivative of
N:

Proposition 6.18
Let M C R"*! be a hypersurface with unit normal field V.

1. For al X, € T,M wehave Dx,N € T,M.
2. For Y atangent field in M and X, € T,M we have the Weingarten equations
<DXPN, Y},} = —<N, DXPY> = —II(X,,Y)).

3. In particular for X,,Y, € T,M
(Dx, N, Yp) = (Dy, N Xp)

Pr oof
i) Since (N, N) = 1 we have

0= X,(N,N)=2(Dx,N,N,)

this proves that Dx, IV is perpendicular to NV, hence is a tangent vector.
i) Since (N,Y) = 0,

0=X,(N,Y) = <DXpN’ Yp> + <Np’ DXpr>
which proves ii).

iii) Clearly follows from ii) and the symmetry of 1l (i.e. the symmetry of S).

The normal field N considered asamap N : M — R"*! is clearly a smooth map
into the unit sphere S C R**! called the Gaussmap N : M — S™. Then as noticed
above Ty(,)S" = T,M so that the differential

N, : T,M — Ty, S™ = T,M
maps T),M to itself. In these terms ii) above becomes
(6.19) (New,y) = —Il(z,y) Va,yeT,M.

For n = 2 this gives another characterization of the curvature:
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Corollary 6.20

Let M C R® be a surface with normal field V. Then the Gaussian curvature K,
of M at p is given by K, = det N, where N, : T,M — T,M is the differential of
the Gauss map.

Pr oof

Let{e1,e2} be an orthonormal basis for 7,M, and let {n;;} be the matrix for IV,
with respect to {e1,e2}, that is, by (6.19)

ni; = (Nyej, e5) = —1I(e;, €5).
Then by corollary 6.17 the Gaussian curvature is given by

2
Kp = H(el, 61)11(62, 62) — H(el, 62) = Nni11M22 — TL%Q
nir N2
n21  N22

which is the determinant of N...

Exercise 6.21

a LetH(u,v) =Y hjju'v? | u,v € R" be asymmetric bilinear form. Let M C R™*+!

M= { <u %H(u,u)) e [R”}

so that the tangent space at 0 € M is naturally identified with R™ given by the first n
coordinates in R®*1. Show that the second fundamental form for M at 0islly = H.

1]
be the hypersurface

b. For n=2 describe the 3 different cases K Z 0 for the Gaussian curvature Kp in

<
terms of the bilinear form H, and draw pictures of the standard forms of A for
each case.

Exercise 6.22

Let M C R3 be a surface with normal field N and second fundamental form
Il. Let v : [a,b] — M be a smooth curve without self-intersection . Also suppose

II(%,%) £ 0 and K,y # 0 for al ¢ in [a, 1],

a. Show that there is a smooth vector field Y along ~ tangent to M such that for all
t € la,b], II(Y(t) : fl—z) =0 and aso Y (¢) and CC% are linearly independent.

b. Now define f : R x [a,b] — R3 by f(s,t) = sY(t) + () and show that for some
e > 0 the set



is a submanifold of R* which touches M aong v in the sense of exercise 2.12 c).

c. Show that the Gaussian curvature of M, is identically zero and conclude that M,
is locally isometric to R? (M, is called an “osculating developable’).
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Chapter 7 THE GAUSS-BONNET THEOREM

In this section we shall prove the classical Gauss-Bonnet theorem stating that the integral
of the curvature function over a compact surface M is 27 times the Euler characteristic
x(M). First a few remarks about integration:

Let M be a Riemannian manifold with Riemannian metric ¢ = g(-, ). Then for
a suitable class of “integrable functions” we shall define the integral as follows. For
convenience we assume the functions have compact support.

First suppose that the support of the function f is contained in a neighbourhood
such that (U,u) , u: U — U’ C R" is a coordinate chart. Let {g;;} be the matrix
defining the metric in this coordinate chart and let G = det{g;; }. Then we define f to be
integrable if (f o u™)v/G o u~1! is (Lebegues or Riemann) integrable in U’ C R™ and

[ = [eu) vaouT
(7.1) M g

:/f(ul,...,u")y/G(ul,...,u”) dut ... du™
HTL

Notice that if (V,v), v:V — V' C R" is another coordinate chart and if {g;;} is
the matrix defining ¢ in this chart then

N i o 0
G—det{gm}—det{g<ﬁ, %>}
_ det ot 9 o' 9
- g — 9t GuF £ i 9!
- 2
ou o 9
=G} 4o o) |

- 2
ou®
— det e

= det (D(uov))*G

Therefore if Supp f C U NV we get from the transformation formula for integrals that

/(fov—l)\/m:/(fov—l)‘det (D(uov—l))‘m

72
:/(fou_l)\/Gou—1

brl

where one integrand is integrable iff the other one is integrable. Hence the integral in
(7.1) does not depend on the choice of coordinate chart.
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In the general case we cover the support of the function f by coordinate neigh-
bourhoods {U, },; and since we have assumed supp f to be compact we can take the
covering to be finite. Now choose a partition of unity {¢q},; subordinate to {U,}.
Then f is defined to be integrable iff f - ¢, isintegrable for all « € I and we define

73) [t =% [ra
M

a€el M
where the right hand side is defined by (7.1) since f - ¢, has support in U,. This
definition is independent of choice of covering and partition of unity. In fact if {Vg} ser

is another finite covering of suppf and {3} se isasubordinate partition of unity then
clearly for o € I, f - ¢, isintegrable iff f - ¢, - 13 isintegrable for al g € J and

[ 6a=3 [ touts
M B M

It thus follows that f - ¢, isintegrable Vo € I iff f-¢,15 isintegrableVa € I, g€ J
and by symmetry iff f -3 is integrable V3 € J.
Similarly in this case

> [ toa=3 [ roain=¥ [ s
“ B M

oz,ﬁM
which shows that (7.3) is well-defined.

Now let us return to a 2-dimensional Riemannian manifold A/ and let us define
some nice domains of integration in M:

Definition 7.4

A polygonal domain P C M is acompact connected subset such that the boundary
consists of finitely many piecewise geodesic curves with no double points.

We shall decompose such a polygonal domain into some particularly simple ones
namely small geodesic triangles defined as follows: Let W C M and e > 0 be as in
theorem 3.8, that is, for ¢,¢’ € W there is a unique minimal geodesic of length <
joining ¢ and ¢/, and furthermore for all ¢ € W, there is a normal neighbourhood around
g of radius e. Then we will define

Definition 7.5
Let W be as above and ¥ C W any subset.

i) X is geodesically convex if whenever ¢,¢' € ¥ aso the minimal geodesic arc
connecting ¢, ¢’ is contained in .

i) A subset X C W is called a small geodesic triangle with vertices p1, po, p3 if

a) Y is geodesically convex and contains pi, p2, p3,
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b) whenever ¥’ C W is geodesically convex and contains py, po, p3 then ¥ C ¥/,

C) pi1,p2,p3 do not lie on one geodesic line.

We shall show that there are plenty of small geodesic triangles. For thislet py € W
be any point and let p2, p3 € W be chosen in such a way that

«) the minimal geodesic arc +; connecting p2 and ps is contained in W — {p;}
and is not part of a radial geodesic,

(3) the radia geodesics emanating from p; and joining a point on ~; are also
contained in W.

p2

Notice that if just po and ps are chosen sufficiently close to p; then o) and ) are
fulfilled if just p1, p2, p3 are not on the same geodesic line. In fact take U,, € W a
normal neighbourhood of radius 6 < ¢ and let po, p3 have distance less than g from py.
Then d(pa, p3) < % and any point on the minimal geodesic y; has distance less than
36 from p1 henceliesin U,.

Proposition 7.7

Let Wand € > 0 be as above and let p;, pa, p3 € W satisfy (7.6) «) and ) and let
Y C W be the union of geodesic rays from p; to the minimal geodesic arc y; joining ps
and p3. Then X is a small geodesic triangle with vertices py, p2, p3. Conversely every
small geodesic triangle contained in W is the union of the geodesic rays joining one
vertex to its opposite side. Furthermore X is a polygonal domain bounded by the 3
minimal geodesics joining the vertices.
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Proof

Let ¥ C W be constructed as in (7.6); then we shall show that ¥ is a small
geodesic triangle with vertices p1, po, ps3..

First notice that ¥ is a polygonal domain bounded by the minimal geodesics
Y1, 72,73 joining po and ps , p1 and ps, respectively p; and po. In fact clearly every
geodesic ray emanating from p; intersects ~; precisely once so that the inverse image
of ¥ by the exponential map exp,, is a compact set in 7),, M bounded by two line
segments and a curve.

exp (%)

Next let us show that ¥ is geodesically convex. For this let ¢ and ¢’ be two points
in X and let w be the minimal geodesic joining them and suppose w does not stay inside
Y. Then clearly some segment of w will join two boundary points and otherwise stay
entirely outside ¥, so we can assume that ¢, ¢’ lie on either v;,v9 or v3 and w lies
entirely outside X except for the endpoints.

Case 1. ¢,¢' € 1 then w is clearly part of 1, which is a contradiction.

Case 2. ¢ € 71,4 € 2. Then by replacing p2 by ¢ we can suppose we are in
case 3 below.
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Cae3. g€ v,q €.

It suffices to show that w stays in the same angular component as v;. In fact it can
never intersect -, since in that case either w would be part of 3 or 3, or we would
get new intersection points on ~; as in case 1.

Now w has only two possible angular components to stay in, and for ¢’ close to p3
and ¢ close to p, it must be the same component as for v;. Hence by continuity the
component must be the same as the one containing v; for all ¢ and ¢/. This shows that
Y isconvex. That X satisfies b) in definition 7.5 ii) is obvious from the definition.

Now conversely given ¥ C W a small geodesic triangle with vertices py, p2, ps3.
Then clearly by convexity the sides vi,v2,v3 are aso contained in . Furthermore
the set ' consisting of all geodesic rays joining p; to v; is then also contained in
Y C W and clearly satisfies (7.6). On the other hand we have just shown then that
Y/ is geodesically convex. Hence by 7.5 i) b) ¥/ D X, that is, ¥’ = X. This ends
the proof.

Proposition 7.8

Every polygonal domain P C M can be triangulated into small geodesic triangles.
That is, there exist finitely many small geodesic triangles X1, . . ., X, such that

k
1. P=

i=1
2. Any two triangles intersect in at most one common vertex or one common side.

Pr oof

First observe that by proposition 7.7 any interior point ¢ in P has a neighbourhood
which is the interior of a geodesic triangle. In fact choose W C P a neighbourhood
of ¢ asin 7.5 above, let p; € W p1 # ¢ be any point, and let p’ € W be any point
opposite p; with respect to ¢. Then for « any geodesic through p’ different from the
line p, p’ and for any choice of py, p3 on ~ sufficiently close to p’ and on opposite sides,
the points p1, p2, p3 Will determine a geodesic triangle containing ¢ in the interior.
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Next for each point ¢ on the boundary we have a neighbourhood as in either of
the figures

It follows by compactness that we can cover P by finitely many geodesic triangles
such that i) the interiors cover the interior of P, ii) the boundaries cover the boundary
of P.

Now if two triangles ¥; and X, intersect then we subdivide the union 3; U X9
into smaller triangles using all necessary new vertices, in order to get a triangulation.
Adding one triangle at a time we eventually obtain the desired triangulation.

With these preliminaries out of the way we can now prove the Gauss-Bonnet theorem
for a small triangle:

Theorem 7.9 (Gauss)

Let ¥ be a small geodesic triangle with vertices A, B,C and opposite sides
a, 3,y respectively. Let /A /B,/C be the angles between the geodesics
(v, 8), (v, a) and (a, 3) respectively. Let K be the curvature function. Then

/K: A+ /B + [C—m.
bY

Note 1
Here [ K = [ 1y - K where 1y is the characteristic function for %, that is,

by M
In(q) =0forqg € ¥, 1x(q) = 1forq € X.
Note 2
The angle between two geodesics is just the angle between their tangents in the

tangent space at the point of intersection.
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A=p

For the proof of theorem 7.9 we shall consider polar coordinates (r, §) with respect
to the point p = A. Notice that since ¥ is “small” it lies inside a normal neighbourhood
of p and is the union of all geodesic rays joining p to the opposite side «.

Recall that the metric is given by

g1=1,012=921=0, go =G

where G = g(&; , &) is a positive function. A priori G is not defined for r = 0.
However, we have

Lemma 7.10

1. lim /G(r,0) = 0 uniformly in 6.

r—0+

2. Tlirél+6—((r, ¢) — 1 uniformly in 6.

3. lim 2YG(r ) — 0 uniformly in 6.

r—0+

Pr oof
Let v = rcosf e; + rsinf ey € T,M, then at (r,0), VG(r,0) is the length of
the vector

0
(epr) *v (%) € Texpp (v) (17\4)

where now (r,) are the polar coordinates in 7,M. Now since (exp,),  depends
continuously on v € T,M and since (exp, ), = id : T,M — T,M we get for given
e > 0 that

‘H(expp)*v(u)H - HUH‘ < e |lull YueT,M,
v close to 0.

(7.11)
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Now for
v=1rcosf el +rsinf ey

% = —rsinf e; + rcosb ey
so that || % ]| = r. Hence we conclude from (7.11) for u = 3, :
(7.12) ‘\/5 (r,0) —r| <e-r for r close to 0.
Clearly i) follows from (7.12). Next recall from proposition 5.25 that
(7.13) a;f = -KVG

and since K is clearly continuous at zero (converging to K,) iii) follows.
Now for 6; > 65 we get from (7.13)
61

(7.14) W5(51,9) - @(52,0) = — / KVG dr,
or or
b2
hence letting 6o — 0 it follows for fixed ¢ that
lir% a\/a(r, 6)
r— T

exists and by (7.12) the limit must be 1. Hence by (7.14) we conclude for §; small
and 0 arbitrary

61
(7.15) 8(9—\/6(51,9) =1- / KVG dr,
T

0

which clearly converges uniformly to 1 as ; — 0. This proves the lemma.

Next let us investigate v/G aong the geodesic « : For this we parametrize « by
arc length s and we let o(s) denote the angle between « and the radia geodesic, i.e.
the angle between the tangent vectors 22 and 2 at a(s)

da
ds

‘\ o(s)
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Notice that since a radial geodesic intersects the geodesic « only once the polar
coordinate # is increasing in s, SO we can express the angle ¢ as a function in 6 aong
«. Then we have:

Lemma 7.15
Along the geodesic o we have
a\/é( (s)) = do ,d6 _ do
ar VT Taslds T T de
Proof

Write «(s) in polar coordinates (r,#), that is,
a(s) = exp, (r(s) cos 0(s)e1 + 7(s)sinf(s)ez).

Then the equations (3.2) for the geodesic a give with a'!(s) = 7(s) , a?(s) = 0(s) :

2 1 i
(7.16) @a +3 1 da da’ _
i

ds? s ds

or by the identities (5.23):
2 2
(7.17) dr _ 106 <d_9)

The angle o(s) is determined by
) _dr
a(s) ds

since both vectors have unit length. Differentiating this we obtain using (7.17):

doo 0
(7.18) coso(s) = g(g o

do  d%r 1 0G [do\?
ds )’

(7.19) —sino(s) - o = 73z - T

but since « is parametrized by arc length

dr\> [do\>
- - =1
(&) + (%)<

so that by (7.18)

2 2
(7.20) sin? o(s) =1 —cos?o(s) =1 — <@) = (d_@) G.

Hence we obtain from (7.19)

do do 109G [do\?
—@@'ds—i—T(@)
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or

(7.21) == -

This gives the lemma.

We now prove the theorem:

Proof of theorem 7.9

As above let X be parametrized by polar coordinates (r,0) at the point p = A
and choose the basis {e1,e2} € T4(M) such that e; is the tangent vector of . Then
for points in X, 6 varies between 0 and /A, and given 6, r varies between 0 and
ro(0) where (1,(0), 6) are the polar coordinates of the unique point on the geodesic a.
Now by (7.1) and proposition 5.25 we have

[A ra(0) (A ra(0)
/K:/de / KVG dr = —/d0 / a;@dr
» 0 0 0 0 '

/A
- _/ (%a(ra(e),e)q)de by lemma 7.10
0
/A
:/(2—;+1>d9 by lemma 7.15
0

= (A+0(LA) - o(0)
= /A+(C—(r—[B)
= [A+/C+(B—n

which was to be proven.

Next we want to extend this theorem to more general polygonal domains. So let
P C M be a polygonal domain. The boundary 0P by definition consists of finitely
many closed curves, which are broken geodesics. Each of the finitely many non-smooth
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points of the boundary p1,...,p; we cal avertex and to each of these we can attach a
well-defined interior angle 51,...,0; where 0 < §; < 2w, i = 1,...,l. The quantities

(7.22) a =1 — [, < a; <, 1=1,...,1

are caled the exterior angles.
We shall also need the notion of the Euler characteristic of P :

Definition 7.23

Let P C M be a polygona domain triangulated into finitely many triangles as in
proposition 7.8. Let V' be the number of vertices, £ the number of edges, 7' the number
of triangles in this triangulation. Then the Euler characteristic y(P) is

X(P)=V —E+T.

Note

From Topology it is known that y(P) is a topologica invariant, independent of
choice of triangulation. In particular for P = M an oriented 2-manifold

xX(M) =2(1-g)

where ¢ is the genus of M. This in turn is the number of handles, which should
be attached to a 2-sphere in order to obtain a manifold diffeomorphic to M (by the
classification of surfaces this is always possible).

Theorem 7.24 (Gauss-Bonnet)

Let M be a 2-dimensional Riemannian manifold with curvature function K. Let
P C M be a polygonal domain and let 1, ..., a; be the exterior angles at the vertices
of P. Then

l
/K:27rx(P)—Zozi.
) 1

For the proof we need the following trivial lemma:

Lemma 7.25

Let P C M be a polygonal domain triangulated into small geodesic triangles
¥1,..., 2. Then for any integrable function f on P

P/fi/f.

i=1 F
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Pr oof
It is easily seen from the definition (7.3) of theintegral [ that itisalinear functional

M
on the vector space of integrable functions. Now the function

k
(7.26) lp-f = Y 1Is.f
=1

is zero outside the boundaries of the triangles X;. In a coordinate neighbourhood the
boundaries of triangles are clearly sets of measure zero, so the integral of the function
(7.26) is clearly zero by the definition. Hence

/f /1p /= ;/hifzg/f-

Proof of Theorem 7.24

Choose a triangulation of P as in proposition 7.8. Let X¢,..., X7 be the small
geodesic trianglesin thisand ¢, . .., gy al the vertices. Let ¢1,...,¢mn , m <V beadl
the vertices on the boundary 0P. This includes the vertices py,...,p; of OP (i.e. the
non-smooth points), but there may be more. For each ¥, , j =1,...,7 we name the
3 vertices A;, B;,C; considered as vertices of £;. Then by lemma 7.25 and theorem
7.9 we have

(7.27) /A Z/K AAJ-+ZBJ-+AC]-)—7TT.
J= 12
In this sum each vertex ¢; , ¢ = 1,...,V may occur several times as a vertex in

different triangles.

For each interior vertex the different angles clearly add up to 27 whereasfor ¢; € 0P
they add up to the interior angle 3; at ¢;. Hence

T m
Z(ZAZ'+ZBJ'+ZC]') = Z/Bi—l-(v—
(7.28) i=1 =1

m

:27TV—Z(7T—5z’)—

=1
Notice that since the boundary consists of closed curves the number m is also the number

of edges in the boundary for the triangulation of P. Then a simple combinatorial
argument gives

(7.29) 3T = 2E — m.

In fact counting the 3 vertices of al triangles gives a doubling of a vertex every time
two triangles have a common edge, i.e. at al edges, which are not part of the boundary.
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Since there are E — m of these the formula (7.29) is proved. Inserting (7.29) in (7.28)
gives

T m
(7.30) > (LAi+/[Bj+/Cj) =2V +3Tr—2Er — > a
j=1 i=1
with a; = 7 — g; foreachq; , i = 1,...,m.
Hence (7.27) reduces to

m

(7.31) /K =27V + 21T — 2nE — Zai = 2mx(P) — Z Q;.
P 1=1 1=1

Notice that if ¢; is a smooth point of the boundary then the exterior angle is 0 so (7.31)
is just the required formula in theorem 7.24.

Remark

Notice that it follows from theorem 7.24 that the Euler characteristic x(P) is
independent of choice of triangulation for P.

Let us make a number of corollaries.

Corollary 7.32
For M a compact Riemannian 2-manifold with curvature function K
/ K = 21 y(M).
M
In particular for M oriented,
/ K = 47(1— g)
M

where g is the genus of M.

Definition 7.33
A Polygon in M is a polygonal domain homeomorphic to a disk.

Corollary 7.34

Suppose M has constant curvature K and let P C M be a polygon with interior
angles 3, ..., 3 attheverticespy,...,p; € OP. Let A(P) = [ 1 betheareaof P. Then
P

l
Y Bi=(-2)m+A(P)- K.
j=1
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In particular for P a triangle with vertices A, B, C

/A+/B+/C=7n+A(P) K.

Pr oof
Immediate from theorem 7.24 and the fact that for a polygon P, x(P) =1

Corollary 7.35
Suppose M has curvature function K satisfying K < 0; then there cannot exist a
polygon with 2 vertices.

a

e =

oy

Pr oof

Infact if P wasa polygon with 2 vertices with exterior angles oy, ay then x(P) =1
and so

/K:27T—(0z1+0z2)>0
P
contradicting K < 0.

Exercise 7.36

Let F: M — L be a smooth map of n—dimensional oriented manifolds. Suppose
M is compact and L is connected. Then the degree of F' is defined by

deg(F)= Y elF)

zeF~1(y)

wherey € L isregular value (i.e. F,, isnon-singular foral z € F~1(y)) and e,(F) =
+1 depending on F, being orientation preserving or reversing.

1. Suppose M and L have Riemannian metrics g;; and g, respectively, and define
forx € M

det (F)(x) = det {gp (Fuei, ;) }

where {ej1,...,e,} and {e],... e} } are positively oriented orthonormal bases for
T M and Ty, (L) respectively. Show that for any integrable function f on L

/ (f o F)det (F) = deg(F) / .
L

M
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Suppose M C R? is a compact oriented submanifold with normal field V. Show
that the Gauss-map N : M — S? satisfies

1

d
7 and % at afs)
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Chapter 8 LOCALLY AND GLOBALLY
SYMMETRIC SPACES

We have seen that in some sense a Riemannian manifold is determined locally by its
curvature. In particular manifolds of the same constant curvature are locally isometric.
In this section we shall show that this is even true globally provided the manifolds
are ssimply connected. This we shall show in the more genera context of symmetric
spaces.

Definition 8.1

1. A manifold M with connection 17 and associated torsion and curvature vector
fields T and R, is called locally affine symmetric if 1) T'= 0, 2) R is parallel along
geodesics, i.e. if R satisfies:

For every pair of pointsp,q € M let 7 : T,M — T, M denote the parallel transport
along a geodesic from p to ¢. Then

R(rv,mw)rz = 7(R(v,w)z) Vov,w,z€T,M.

2. A Riemannian manifold M is called a Riemannian locally symmetric space if M
with the Riemannian connection is locally affine symmetric.

Remark

One can show that if R is parallel along geodesics then R is paralel along any
curve (see Helgason [chapter | 87]).

Exercise 8.2

a. Show that a manifold with affine connection is an affine locally symmetric space
just 1) and 2) above are satisfied locally.

b. Show that a Riemannian manifold of constant sectional curvature is a locally
symmetric space.

The phrase “locally symmetric” is justified by the following:

Proposition 8.3

A manifold M with connection <7 is locally affine symmetric iff for all points
p € M there is a normal neighbourhood U, such that the map s, : U, —
Up taking exp, (v) to exp, (—v) is an affine transformation.
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In particular a Riemannian manifold is Riemannian locally symmetric iff s, : U, —
U, is an isometry for all p.

Pr oof
Clearly the second statement follows from the first and proposition 4.6 since
(sp), = —id: T,M — T,M is an isometry.

Let us prove the first statement:

= Consider ¢ = —id : T,M — T, M. Then clearly for 7' = 0 and R paralel a)
and b) of Corollary 4.18 are satisfied. Therefore s,, is an affine transformation.

For <« we shall use the following lemma:

Lemma 8.4

Let M be a manifold with connection 57 and let v : (—¢, ) — M be a smooth curve.
For V; a smooth vector field along  the covariant derivative along v at t = 0 isgiven by

DV N S
T oo™ i 5 (V) = T0)

where 7, : T

50) (M) — T,5)(M) is the parallel transport along ~.

Pr oof

For given s > 0 let Z, , 0 < ¢ < s be a parallel vector field along v such that
Zy = 7, 'V;. Choose local coordinates (ul, ..., u") around v(0) and put 9; = 2 as
usual. Then

Zy=>Y )9 , Vi=> v (t)9;, fort<s.
i J
By the mean value theorem
k de %

2*(s) = 2%(0) +SW( *) for some t* € [0, s].
Therefore the k—th component (with respect to the frame {9;}) of L(71(V;) — V%) is
Lik ke _ L[ Lk d2F k
—(z (0) — (o)) ——<z () = s(t") = 0*(0) ).

S

Since Z is parald along ~v we have

foj%z]_oforallt<s

where 7' = u' o 4. Therefore, for s — 0, 1(2*(0) — v*(0)) converges to

dv®

S ot D))+ 4 (o)

— Yt dt
i
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which is exactly the expression in local coordinates of % \ 1o (see proof of lemma
2.8).

We can now finish the proof of proposition 8.3:

To show that R is parallel amounts to show that for v a geodesic and X,Y, 7
paralel fields along v the vector field V = R(X,Y)Z is also parallel dong +. Now if
m is any point of v we can assume m = ~(0) and we just have to prove

DV

(8.5) s

=0.
t=0

Now choose a norma neighbourhood U,,, around m such that s,, : U, — U,, iSan
affine transformation. By lemma 8.4

DV _ 1L 1, B 1 _
= e v Lo W)
1 . 1. _ _
=z SV (-l

so in order to prove (8.5) it is enough to show that for small s > 0 the parallel
transport 7 from p = y(—s) to ¢ = (s) aong v takes V_; to V; (because in that case
7N Ve) = 77 (r(Vos)) = 7-1(V_,) ). Equivalently we must show

(8.6) R(rx,1y)T2 = TR(2,Yy)% Va,y,zeT,M.

Now since s, is an affine transformation we have

a) T($m, v, Sm,w) = s, T (v, w)

*

b) R(S$m, vy Sm,W)Sm,2 = Sm, R(v,w)z

for dl v, w,z € T,M. For p = ¢ = m & immediately gives T'(—v, —w) = =T (v, w),
hence 7" = 0. Therefore in order to finish the proof we shall just prove that b) implies
(8.6) above. This obvioudly follows if we show

(8.7) Sm, = =T : T,M — T, M.

For this let L; be a parallel vector field aong () , t € [—s, s]. Then since s, is an
affine transformation, the field s,,,. (L) is a paralel field aong the curve t — ~(—t),
or equivaently —s,,, (L_;) is parallel adong ~(t), t € [—s, s]. But

_Sm*(L—t) ‘t:(): _Sm*LO - Lt ‘t:O .

Hence by uniqueness of parallel transport

—Sm*<L_t) =1y foral t e [—8, 8].
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In particular t = s gives (8.7), which finishes the proof of proposition 8.3.

In order to study global properties of symmetric spaces we introduce the following
notion:

Definition 8.8

A connected and complete Riemannian manifold M is called a Riemannian globally
symmetric space if at each point p there is an isometry s, : M — M such that

sp(exp, (v)) = exp, (—v) for dl v e T,M.

Exercise 8.9

Show that the unit sphere S™ C R™*! and the hyperbolic n—space H? (example
3.23) are Riemannian globally symmetric spaces.

Example 8.10. Siegel’s upper half space

Thisis a generalization of example 3.20: Let Let M,,(C) denote the set of complex
n X n—matrices. For Z € M,(C) let Z' denote the transpose of Z and trZ is the trace.
Let S,, C M,(C) be the set of symmetric matrices Z = X + Y where X and Y are
real and Y is a positive definite matrix. &,, is clearly an open subset of set S,,(C) of
all symmetric matrices, which is naturally identified with c*5™ . The tangent space of
S,, a any point is thus naturally identified with S,,(C) and we define the Riemannian

metric at a point Z = X +1iY € 6, by

(8.11) gz(V,W)=Re [tr(Y'VYT'W)], V,W € S,(C).

Exercise 8.12
1. Show that (8.11) defines a Riemannian metric in G,,.

2. For Q+iP € &, dffineh : &, — &, by h(Z) = PiZP: +Q, Z€ &,.
Show that / defines an isometry and observe that h(iI) = @ + iP. Conclude that
the group of isometries of G,, acts transitively on G,,.

3. Show that G,, is complete. (Hint: thisis a direct consequence of ii).)

4. Show that the map s : &, — &,, defined by s(Z) = —Z~! is an isometry keeping
the point 7/ fixed and with s, =—id at that point.

5. Conclude that &,, is a Riemannian symmetric space.

108



6. Let ®,, C G, bethe set of matrices D of the form

idy O

D= dy >0,...,d, > 0.
O idn

Show that ®,, in the induced metric is isometric to Euclidean n—space via the

isometry R — 9,, given by

jelt O
(tl,...,tn) — ( )
O ieln

7. Let Z C G,, be the set of matrices of the form zI where z = x + iy, y > 0.
Show that Z in the induced metric is isometric to the hyperbolic plane of radius
iv/n (see Exercise 5.35).

8. One can show that the submanifolds ®,, and Z are geodesic, that is, whenever
two points are in the submanifold, the whole geodesic line joining them lies in the
submanifold as well. Given this, show that the sectiona curvature of G,, at the
point ¢/ is not constant provided n > 1.

Remark

There is the following analogue of proposition 3.21 1) for G,,, which we shall state
without proof:

The real symplectic group Sp(2n,R) is the subgroup of Gl(2n,R) consisting of
matrices ¢g satisfying

g Jg=J

(5 )

Sp(2n, R) acts as a group of isometries on &,, by

where J is the 2n x 2n—matrix

9(Z)=(AZ + B)(CZ+ D)™, Zeanhereg:(g g).

Notice that the isometries considered in exercise 8.11 ii) and iii) are of this form.

A Riemannian globally symmetric space is obviously locally symmetric by propo-
sition 8.3. For the other direction we shall prove the following:
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Theorem 8.13

Let M be a connected and complete Riemannian locally symmetric space. If fur-
thermore M is simply connected then M is globally symmetric.

Before proving this theorem let us recall a few facts from the theory of covering
spaces (see e.g. Greenberg-Harper [1]).

Let X be a connected topological space (we do not assume X to be a Hausdorff
spacel). A mapping 7 : X — X is called a covering of X if each pomt in X has
an open neighbourhood U such that 7T is a union of open sets of X each mapping
homeomorphically onto U under 7. Also recall that for a path connected space X, the
fundamental group 71 (X) = m (X, x0), 9 € X abase point, is the set of homotopy
classes of loops v : [0,1] — X with y(0) = (1) = . X is called simply connected
or 1-connected if m1(X) = 1.

The basic theorem about covering spaces is, that for any connected, locally con-
nected and “semi-locally 1—connected” space X, there is a universal covering space
7: X — X, that is, a covering with X simply connected. Furthermore X is unique in
the following sense: Let 2o € X be a base point and for each covering 7 : X — X let
Fy be a point over z;. Given a different universal covering p: Y — X withjy € YV
lying over z there is a unique homeomorphism 4 : X — Y such that h(io) = 7o
and such that the diagram

commutes. In particular there is a 1-1 correspondence between the points of 7~ !(xq)
and the group of homeomorphisms & : X — X covering the identity. This group is
called the group of deck-transformations of 7 and is, in a natural way, isomorphic to
(X, z0). 7: X — X is clearly an open mapping, so we can identify X with the
quotient space 71 (X )\X. On the other hand suppose I is a group of homeomorphisms
of some simply connected (and locally connected etc. ...) space X such that I’ acts
properly discontinuously on X, that is, for each z € X there is a neighbourhood U
of 2 such that U N h(U) = ¢ for al h # id , h € T. Then the quotient space I'\ X
has fundamental group isomorphic to I' and the projection X — I'\ X is the universal
covering.

Now suppose M is a connected Riemannian manifold and let 7 : N — M be
a covering. Then clearly N can be given a C°° structure such that = is a loca
diffeomorphism, and the Riemannian metric pulls back to a Riemannian metric on
N.

Proposition 8.14

a Acurve~ : [a,b] — N isageodesic iff 7 o v isa geodesic in M,
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b. N is complete iff M is complete,
c. N islocally symmetric iff M islocally symmetric.

d If # : N — M is the universal covering then the deck transformations act as
isometrics, and the action is properly discontinuous.

Exercise 8.15
Prove proposition 8.14.

Remark

In particular the universal covering N of a complete Riemannian locally symmetric
space is also a complete Riemannian locally symmetric space, hence by theorem 8.13
a Riemannian globally symmetric space.

On the other hand, suppose we have given a group I" of isometries of a connected
Riemannian manifold N. The action is called free if v € I', v #id, implies that v has
no fixed point, and it is called discontinuous if no orbit has an accumulation point.

Proposition 8.16
The action of T" on N is properly discontinuous iff it is free and discontinuous.

Proof

If ' acts properly discontinuously on N then clearly the action is free. Suppose
it is not discontinuous. Then Jz¢p € N and a sequence {,} of different elements of
I' such that v,z9 — yo. That is, for any open neighbourhood U of yy we can find 2
different (actualy infinitely many) p,q¢ € N such that v,29 , v420 € U. Hence g =
g+ # id and g(yg0) = Y0 € U sothat gU N U # @, which contradicts the
proper discontinuity.

Conversely suppose the action is free and discontinuous and let = € N be arbitrary.
Then

r=inf {d(yz,z)|y €T, v #id} >0

and we consider a norma neighourhood U of = of radius < r/2. Suppose there is a
v €T such that U N yU # 0, that is, thereisay € U such that vy € U. Then

d(z,vx) < d(x,vy) + d(vy, vo) = d(z,vy) + d(y,x) <,

hence v = id by the definition of r, which shows that the action is properly discon-
tinuous.

It is now straightforward to prove the following:
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Proposition 8.17

a. Suppose N isa simply connected Riemannian manifold and " a group of isometries
of IV, such that the action is free and discontinuous. Then M = T'\ NV isin a natural
way a Riemannian manifold such that the projection 7 : N — M is the universal
covering with I" as the group of deck transformations.

b. If NV isthe universal covering of a Riemannian manifold My and I is the group of
deck transformations then 1/ is isometric to '\ V.

Exercise 8.18

Prove proposition 8.17. (Warning: Rememberto show that M = T'\N is a
Hausdorf space.).

Oncewe haveprovedtheorem8.13we concludefrom propositions3.14 and8.17:

Corollary 8.19

Every connected and complete Riemannian locally symmetric space M is isometric
to a quotient M = T'\ N of a simply connected Riemannian globally symmetric space N
by a group of isometries I acting properly discontinuously on N.

Remark

Thus if one wantsto classify all completelocally symmetricspacesthis should
be donein two steps:

I.  Find all simply connectedRiemannianglobally symmetricspaces.

II. Given a globally symmetricspacefind all isometrygroupsacting properly discon-
tinuously.

The first problemwas completelysolvedby Elie Cartan.For detailsseee.g. Helgason
[2] or Wolf [8]. The secondproblemis quite hard and in generalunsolved(seee.g.
Wolf, op.cit.). For spacesof constantcurvaturethis problemis called the “Clif ford-
Klein spaceform” problem.

We now turn to the proof of theorem8.13, which follows from the more general

Theorem 8.20

Let M and N be connected and simply connected complete Riemannian locally
symmetric spaces. Letp e M, p' € N and ¢ : T,M — Ty N alinear isometry. Then
there is an isometry ® : M — N with ®,, = ¢ iff

R (¢v, pw) oz = ¢(R(v, w)z) for all v, w,z € T,M,

where R and R’ are the curvature tensor fields.
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Furthermore @ is uniquely determined and is given by
@ (exp, (v)) = expy (6(v)) VveT,M.

Remark 1

Clearly theorem 8.13 follows from theorem 8.20 by taking M = N , p =
pland ¢ = —id.

Remark 2

Let ~ > 0 and suppose that p and p’ has normal neighbourhoods U, and U, of
radius = (i.e. the exponential mappings are diffeomorphisms onto U, and U,’). Then
theorem 8.20 is true for M = U, and N = U,/ by corollary 4.18.

The second remark is essential for the proof of theorem 8.20, which will be divided
into a few lemmas. First a trivial one:

Lemma 8.21

Let M and N be connected Riemannian manifolds and ®, ¥ : M — N two
isometries. Suppose that at some point p € M

*) ®(p) = ¥(p) and ., = Vs,
Then & = .

Pr oof

It suffices to show that the set A C M of points p, for which (*) holds, is both open
and closed. By continuity it is clearly closed, and if (*) holds for p then by proposition
4.3, ® and ¥ agree in a normal neighbourhood around p. Hence the set A is also open
which proves the lemma.

Now let M and IV be connected Riemannian manifolds and let ® be an isometry of
an open neighbourhood U of a point p € M onto an open set in N. Let p' = ®(p). We
now want to extend ® to al of M by extending ® along curves. So let v : [0,1] — M
be a piecewise smooth curve with v(0) = p. We say that @ is extendable along ~ if
there is a family @.(¢ € [0,1]) of isometries of open neighbourhoods U; of v(¢) onto
open sets of N, such that if |t — ¢/| is sufficiently small then U; N Uy # 0 and

@, |U; NU{ = @p|Uy N Uy |

and such that Uy = U , &) = &. (P;, U;) is called a continuation of ® along ~.
If (U, V;) is another continuation of ® along ~ then, by the argument of lemma 8.20
above the set of ¢ € [0, 1] for which

D4 (v(t)) = We((t)) and (@¢),y 1) = (V1))
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isdl of [0, 1]. Hence for al ¢ € [0, 1], ¥; and ¥, agree on the connected component of
Uy N'V; containing ~(¢). So if continuations exist they are in some sense unique.

Now let M and N be complete locally symmetric spaces and let @ be an isometry
of a normal neighbourhood U,, of a point p € M onto a normal neighbourhood U,',
P = 2(p).

Lemma 8.22

Let v : [0,1] — M, v(0) = p, be a piecewise smooth curve. Then @ is extendable
along . Furthermore there is a real number » > 0 such that for all ¢ we can choose U;
to be the normal neighbourhood around ~(t) of radius r.

Pr oof

Let I = length (7). Thesets {q| d(q,p) <20} CM  (resp. {¢'| d(¢',p') < 2} C
N) are compact. Hence by theorem 3.8 these sets can be covered by a finite number
of open sets W (resp. W') such that for som p > 0 the normal neighbourhoods U, of
radius 2p exist and contain W for all ¢ € W (similarly for W’). Let » > 0 be smaller
than any of these p. We shall now extend ® along v such that U;,t € [0,1] is the
normal neighbourhood of radius » and center ~(t).

Let s* be the supremum of the s € [0, 1] such that ® is extendable along v | [0, s].
Put p; = (t), t € [0,1] and ¢+ = P:(ps) , t < s*. By completeness there is a point
¢* € N such that

Oy(p) — ¢*, fort— s™.

Then clearly d(q*,p") < 2l so we can choose neighbourhoods W and W' as above
around p,- and ¢* respectively. Now choose sop < s* such that

foral t, so <t<s".
d<ptaps*)<T7 d(Qta q*)<7‘} 0=

By remark 2 following theorem 8.20, ®,, has an extension to al of the normal
neighbourhood V' of radius 2r around p,,. But if U; isthe normal neighbourhood around
ps of radius r, then clearly U; C V for sp < t < s* and the extension of @, agrees
with ®; on Uy , sg < t < s*. Hence ® is extendable along 7|[0, s*] and if s* < 1 @
is extendable along v beyond s* by the same argument. This shows that s* = 1 and
ends the proof of the lemma.

Now let ,6 : [0,1] — M be two piecewise smooth curves such that

7(0) =6(0) =p and (1) =6(1) = ¢

and let ®; and ¥; be the continuations of ® along v and ¢ respectively.
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Lemma 8.23
If v and 6 are homotopic then ®; and ¥, agree in a neighbourhood of ¢.

Proof

That v and é are homotopic means that there is afamily a*(s € [0, 1]) of piecewise
smooth curves with o*(0) = p, a*(1) = ¢, o® = v, o' =6, such that the map
(s,t) — a°(t) is continuous. Let ®; be a continuation of ¢ along o® so that

We shall show that the set of s € [0,1] such that
*) @] and ®; agree in a neighbourhood of ¢,

is open and closed. By the argument of lemma 8.21, this is clearly closed. So now
suppose (*) holds for s = o and we shall find ¢ > 0 such that (*) holds for |s — 0| < e.
By lemma 8.22 we can find » > 0 such that we can suppose that ®¢ is defined on the
normal neighbourhood V; of a?(¢) of radius 2r. By uniform continuity we can find
e > 0 such that

d(a?(t) , a’(t)) <r foro0<t<land |o—s|<e

For such s the norma neighbourhoods U} of o®(t) of radius r is contained in V; so
(®7 , V;#) is acontinuation of ® aong «®. By uniqueness of continuations ®¢ and &
agree in a neighbourhood of a®(¢). In particular ®; and @ agree near q.

This proves the lemma.

Proof of theorem 8.20

As above choose norma neighbourhoods U and U’ around p and p’ and let
@y : U — U’ be the isometry with (®9),, = ¢ according to the remark 2 following
the statement of the theorem. For any point ¢ € M choose a piecewise smooth curve
v : 10,1 — M with v(0) = p , 7(1) = ¢, and let ®; be the continuation of ® along
v. Define

®(q) = @1(q).

Since M is simply connected this is well-defined by lemma 8.23. Clearly ®|U = @
and in general if (®;,U;) is a continuation of ®, along ~ then ®|U; = &;. It follows
that @ is locally an isometry.

Similarly using ¢! : TyN — T,M we get amap ¥ : N — M extending d)o_l
and also ¥ is alocal isometry. Now clearly ¥ o @ is defined by extending the identity
of U aong curves in M, so by uniqueness ¥ o & = id. Similarly ® o ¥ = id, which
ends the proof of the theorem 8.20 and hence also theorem 8.13. Notice that we have
implicitly used the following:
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Exercise 8.24

Let v,6 : [0,1] — M be piecewise smooth curves in a Riemannian manifold and
suppose v(0) = 6(0) and y(1) = 6(1). Show that if v and § are homotopic through
continuous curves then they are homotopic through piecewise smooth curves.

Corollary 8.25
Let M™ n > 1, be a complete connected Riemannian manifold of constant curvature
K. Then the universal covering is isometric to

a The sphere ST, of radius 1/VK if K > 0.
b. Euclidean space R" if K = 0.

c. The hyperbolic space Hf/er if K < 0.

Pr oof

Let Mg denote the above mentioned standard model for a complete manifold of
constant curvature K. Notice that My is simply connected. Also by proposition 8.14
we can assume M simply connected. Now choose any points p € M , p' € Mg
and normal neighbourhoods U, U, of the same radius. By corollary 5.36 there is an
isometry ¢ : U, — U, and in particular the condition of theorem 8.20 is fulfilled for
¢ = ®,p. Hence ® extends to an isometry of M to Mg.

Exercise 8.26

a.  Show that lemma 8.22 remains valid even if M is not complete.

b. Now let M be a locally symmetric space and N a simply connected globally
symmetric space and let = : M — M be the universal covering. Choose basepoints
pE€ M, pe Mwithap = pandp’ € N and suppose a linear isometry ¢ :

T,M — T, N satisfies R(¢v, pw)pz = chR(v,w)z , foral v,w,z € T,M. Show
that there is a unique local isometry ® : M — N with ®(p) = p', Dy = ¢ 0 Typ.

c. Show that ® in b) is an isometry iff M is complete.

(Note: @ in b) is caled the developing map for M in N).

Exercise 8.27
Let M be a complete localy symmetric space.

a. Show that if M is simply connected then the group of isometries acts transitively
on M.
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b. Show that if for some point p € M every linear isometry ¢ : T, M — T,M satisfies
R(¢v, pw)pz = ¢R(v, w)z for dl v, w, z € T, M, then M has constant curvature

Exercise 8.28

For K areal number and n > 2 let My = Mj be the standard model for the
n—dimensional simply connected manifold of constant curvature K (see corollary 8.25).
Let G denote the group of isometries given in the 3 cases by:

a G =0(n+1).

b. G = E(n), the group of Euclidean motions of R”, that is, for v € R” and A €
O(n) , g € E(n) isgivenby g(z) = v+ Az, z € R™

c. G = O(1,n)" (see proposition 3.24).
1. Show that in all 3 cases G is the full group of isometries of M.

2. Show that G has a natural topology as a subset of some Euclidean space such that

a) G is atopological group, i.e., the map G x G — G given by (g,h) — gh™!
IS continuous

3) The action of G on My is continuous, i.e., the map G x M — M given by
(9,2) — gz is continuous.

3. Show that if ' C G is a subgroup acting without fixed points on My then the
action is discontinuous iff I' is a discrete subset of G.

4. Conclude that the complete Riemannian manifolds of constant curvature K are, up
to isometry, al manifolds M of the form M = I'\ My, whereT" C G is a discrete
subgroup acting without fixed pointson Mg . Inparticular for K >0, C O(n+1)

is a finite group acting without fixed points on Sf/ Nie
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Chapter 9 LIE GROUPS AND LIE ALGEBRAS

For the further study of symmetric spaces we need the basic properties of Lie groups
and Lie algebras.

c)

d)

d)

€)

Definition 9.1
A C*° manifold G with a multiplication G x G — G is called a Lie group if

G is a group,

The map G x G — G given by (¢g,h) — gh™! isa C> map.

Examples 9.2

(R™,+) is a Lie group.

The quotient group R/Z is a Lie group.

Let M(n,R) be the set of n x n real matrices and let Gl(n,R) C M(n,R) be the
open subset of non-singular matrices with the usual matrix multiplication. Then

Gl(n,R), the general linear group of order n over R, is a Lie group.

Similarly the general linear groups Gl(n, C) over C and Gl(n,H) over H are Lie
groups (C and H being the complex numbers and the quarternions respectively).

O(n) € Gl(n,R), the subgroup of orthogonal matrices, i.e., matrices A satisfying
AtA = AA' = I, makes a Lie group, the orthogonal group.

C Gl(n, C), the subgroup of unitary matrices, i.e. matrices A satisfying
A* = A = A~' makes a Lie group, the unitary group.

Sl(n,R) C Gl(n,R) or Sl(n,C) C Gl(n, C), the special linear groups of matrices
A with det A = 1, are Lie groups.

SO(n) = O(n) N Sl(n,R) , SU(n) = U(n) N Sl(n, C) are Lie groups.

Exercise 9.3
Show that examples a) - €) are Lie groups.

Definition 9.4
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Two Lie groups G and G’ are called isomorphic if there is an isomorphism
¢ : G — G', i.e, agroup isomorphism, which is also a diffeomorphism.

Exercise 9.5

Show that there are natural isomorphisms of Lie groups. R/Z ~ U(1) ~ SO(2).

Exercise 9.6
Show that if G isa Lie group and if a subgroup I' C G satisfies

=

I liesin the center of G, that is, y¢g =gy Vge G, VyeT,
2. T isdiscrete, that is, every v € T' has a neighbourhood not meeting I' — {~};
Then the quotient group G//T" isin a natural way a Lie group.

Exercise 9.7

a. Show that if G; and G5 are Lie groups then also G1 x G is a Lie group.

b. Show that R/Z x R/Z ~ R?/72.

Definition 9.8

Let G be aLie group. A subgroup H C G is caled a Lie subgroup if H has a
smooth structure, such that i) H is a Lie group and ii) The inclusioni : H — G is
an immersion of manifolds.

Warning

If asubset N C M of an n—dimensional manifold has a smooth structure of
dimension £ < n, such that the inclusion i : N < M is an immersion, then N is
not necessarily a submanifold, but what is called an immersed submanifold, i.e., every
point in N has a coordinate neighbourhood (U, x) in M and a neighbourhood V' in N
such that i) z341(p) = ... = z,(p) =0forp e V,andii) x: V = RF x0C R" isa
coordinate chart on N. We do not know that V' can be chosen as U N N. Furthermore
asubset N C M may have different differentiable structures such that the inclusions
are submanifolds as the following drawing shows:

(OO

Example 9.9

Let G = R?/7% and H C G the image of aline in R? with irrational slope. Then
H ~ R isalLie subgroup, but A is not a submanifold in G. Infact H isdensein G.
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Proposition 9.10
Let G beaLiegroup. Let Gy denote the connected component containing the identity
e. Then G is an open submanifold and is a Lie subgroup.

Pr oof

G is closed since components are always closed. G is open because every point
of g € Gy has an open neighbourhood diffeomorphic with an open ball in a Euclidean
space, i.e., a connected open neighbourhood in G. Hence Gy is an open submanifold.
G is aso a subgroup: In fact, fix a € Gg; then a~1Gy is connected since z — o~ 'z
is a diffeomorphism. Since a=la = e € Go N a~'Gy we obtain =Gy = Gy.

Exercise 9.11
a. Let G bealiegroup and Gy the identity component. Show that G isnormal in G.

b. For G = O(n) show that Gy = SO(n) and G/Gy ~ Z/2.
c. For G = Gl(n,R) find Gy and G/Go.

d. For G = O(1,n) find Gy and G/Gy.

Notation

For « € G we shal use
L,:G— G, Ly(z) = ax
R,: G — G, R,(x) = xa.

Notice that L, and R, are diffeomorphisms of G.

Definition 9.12

A vector field X on G is caled left invariant (respectively right invariant) if
Lo« Xy = Xy (respectively R, X, = Xp,) for dl a,b € G.

Proposition 9.13

There is a natural 1-1 correspondence between 7.G and the set of left invariant
smooth vector fields on G given by: X a left invariant vector field corresponds to
Xe € T.G.

Pr oof

Since a left invariant vector field X satisfies X, = Xye = La«(Xe), it is clearly
determined by X.. It suffices to show that every vector X, € T.G extends to a smooth
vector field X on G by

Xo = Law(Xe).
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For this it is enough to show that X thus defined is smooth in a neighbourhood U of
e, since for b € G, bU is a neighbourhood of b and

Xpo = Lb*(Xa) , a€eU.
Choose a coordinate system (U, x) around e. Then it is enough to consider X, = % o
j=1,...,n. Now aso let V C U such that a,b € V implies ab € U. We shall show
that X («%) issmooth in V forany i = 1,...,n

X () (0) = (LX) (27) = Xe (a7 0 La) = 5 (a' o L)

1)
Here 2% o L,(b) = 2*(a-b) and since
VxV U

given by (a,b) — a-b issmooth and since z* is smooth also %(xi(a +b)) is smooth

where 21 ... 27 are the coordinates «! ... 2™ used on the second copy of V in V x V.
This ends the proof.

Proposition 9.14

Let X; and Xy be left invariant vector fields on G. Then also the Lie bracket
[X1, Xo] is left invariant.

This follows from the following more general situation: Let ® : M — N be a
smooth map between two manifolds. Two vector fields X on M and Y on NV are called
d—related if X(fo®) =Y (f)o® fordl f € C®(N).

Lemma 9.15

Let ®: M — N asabove and let X1, Xy be vector fields on M, Y7, Y vector fields
on N. Suppose X; and Y; are d—related, i = 1,2. Then also [X, X3]| and [Y7, Y3]
are d—related.

Pr oof

ba

[X1, X2](f 0 @) = X1(Xa(f 0 @) — Xo(X1(f 0 @))
= X1(Ya(f) 0 @) — X2(Yi(f) 0 @)
= Y1(Ya(f)) 0 @ — Ya(Y1(f)) 0 @
= [V1,Y3](f) o

Proof of proposition 9.14.
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TakeG =M = N and ® = L,. A vector field X on G isleft invariant iff Va € G,
X(foLy)=X(f)oLa V[feCTaG),

i.e. iff X isL,—related to itself. Therefore if X; and Xy are left invariant vector fields,
X; is L,—related to itself, i = 1,2, and so by the lemma aso [X, X3] is L,—related
to itsdlf, i.e. left invariant.

Definition 9.16
The Lie algebra of G is the vector space £(G) = T.G with the Lie product

L(G) x L(G) — L(G)
given as follows: For X,Y € L(G) let X and Y be the corresponding left invariant

vector fields. Then [X, Y] is the unique vector in T.G such that the corresponding left
invariant vector field is [f(,ff]. That is, [X,Y]~ = {X,Y].

Definition 9.17
A Lie algebra (over R) is a finite dimensional real vector space g with a bilinear
operation
[_ ,—] gxXg—4
satisfying
1. [X,X]=0 VX e g,

2. (Jacobi identity)
[X,Y], 2]+ [[Y. 2], X] + [[Z,X],Y] =0 VXY, Z € g.

Proposition 9.18

For G a Lie group, £(G) is a Lie algebra as in definition 9.17
Proof

This is immediate from proposition 1.20.

Notation
We shall often use the notation g = L(G).

Let us now determine £(G) in the examples above. First notice that if U C R™
Is an open set and if we identify a vector field X on U with a function X : U — R"
(cf. remark following definition 1.15), then given two smooth vector fields X and Y
the Lie bracket is given by

(9.19) [X,Y] = Dx(Y) — Dy(X)
where Dy, denotes the directional derivative, that is, the differential evaluated at X,.
(9.19) follows by direct calculation and is just the fact that the torsion 7" in Euclidean
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space is zero (exercise 2.22).

Examples 9.20

a Consider G = (R",+) and let us calculate the Lie Bracket in the Lie algebra
TH(G) =R": Forz € R", L,(y) = v +y s0 L« = id. Hence a left invariant
vector field is just a constant function X : R — R"™. Hence by (9.19)

[X,Y]=Dx(Y) - Dy(X) =0.

That is, £(G) = R with [X,Y] = 0 V X,Y. This Lie algebra is called
commutative.

b. Consider G = Gl(n,R) C M(n,R). Gisanopensetin M(n,R) ~ R"*, so we shall
identify the tangent space of G at every point with M (n,R). In particular £(G) =
T.G = M(n,R) and X € M(n,R) corresponds to the left invariant vector field

Xp = PX.

(Note that Lp(X) = PX so Lp.X = PX.) Given X,Y € M(n,R) we must
compute by (9.19)

X,7] = Dg (V) - g (%)
Here the differential of Y is given by

dY =d(PY)= (dP)-Y (forY fixed)

SO
Dg, (V) =Xp-y =P XY
Similarly
Dy, (X)=P-v-X,
Hence

[)N(,?}P:P-X-Y—P-Y-X:P(XY—YX)
= (XY - YX)7
It follows that the Lie bracket is just given by

(9.21) [X,Y]=XY -YX

using the usual matrix multiplication.
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Notation
L(Gl(n,R)) = gl,,(R) = M(n,R) with the Lie product (9.21).

Next let us notice the functorial properties of L:

Definition 9.22

A homomorphism of Lie groups is a smooth map ¢ : H — G of the Lie groups H
and G, such that ¢ is a group homomorphism.

Proposition 9.23
a. A homomorphism of Lie groups ¢ : H — G induces a Lie algebra homomorphism
¢« : L(H) — L(G) given by the differential of ¢ at e. That is,

¢*[X1X2] = [Cb*X1 ) ¢*X2] vV X1,Xs € ,C(H)

b. Inparticular if H C G isa Lie subgroup then £L(H) C £(G) is a Lie subalgebra,
e, if X1, Xy € L(H) thenalso [ X, Xy] € L(H).

Pr oof

X eL(H)andY = ¢.X € L(G) and let X, respectively ¥, bethe corresponding
left invariant vector fields on H, respectively G. Then X and Y are ¢—related, in fact
for f € C*(G)anda € H

Xo(f 0 0) = (Las X)(f © 8) = 6u(Lan X)()
= (L(apdX) (f) = Yy (f)

where we have used that ¢« o Las = Lg(q) © ¢« SINCE ¢ 0 Ly = Ly(q) © 6.

Now let X1, Xy € L(H)andY) = ¢. X1, V2 = ¢ X, and let X;,Y; be the
corresponding left invariant vector fields. Then since X; and Y; are ¢—related it
follows from lemma 9.15 that [Xl,f(g] and [f/l,ffg] are ¢p—related. In particular for
[ e = (G)

G«[ X1, Xo](f) = [Xu, Xo](f 0 ¢) = [Y1,Y2](f)
= [0+ X1, 6 X0](f)

so indeed
¢« [ X1, Xo| = [0+ X1, : X2].

b) is immediate from a).

The basic theorem about the interplay between Lie groups and Lie algebras is the
following:
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Theorem 9.24

Let G be aLiegroup, g = £(G) and let h C g be a subalgebra. Then there is a
unique connected Lie subgroup H C G such that L(H) = b.

For the proof we need the Frobenius theorem about integrable distributions:

In general let M be a manifold of dimension n. A distribution A of dimension k
on M is a collection of k—dimensional subspaces A, C T,M, one for each p € M.
Furthermore A is assumed to be smooth in the following sense: Localy we can find
smooth vector fields X, ..., X; such that Xi(p),..., Xx(p) span A, for each p in a
neighbourhood.

The distribution is called integrable if whenever X and Y are smooth vector fields
belonging to A (i.e. takes valuesin A) then also [X, Y] belongs to A. The following
is straightforward:

Lemma 9.25

a) A isintegrableiff A islocally integrable, i.e., iff every point has a neighbourhood
U such that A|U is integrable.

b) A islocally integrable iff every point has a neighbourhood U with smooth vector
fields X1,..., X} satisfying

1 Xi(p),...,Xk(p) span A, for allp € U

2. there are smooth function ¢y € c>®U), wa,i,j=1,...,k, such that

k
[Xi, X;] =) ¢ Xa.

a=1

The notion of integrability is relevant for finding integral manifolds for A. By
this we mean a connected k—dimensiona immersed submanifold N C M (that is, N
has a differentiable structure such that the inclusion i : N — M is an immersion cf.
the remarks following 9.8 above) such that T, N = A, for al p € N. We state the
following theorem without proof (see e.g. Spivak [6 Vol. | chap. 6] or Warner [7
88 1.60 — 1.64]):

Theorem 9.26 (Frobenius)
Let A be a k—dimensional distribution in M and suppose A is integrable.

Then thereisa unique foliation F of M with all leaves as integral manifolds for A.
Thatis, M = |J F, adigoint union of leaves F,, each of which isa maximal integral

a€el
manifold for A. Furthermore the leaves F, are unique. Also, there are coordinate
charts (U, x) for M such that

x(U) = (—€,€) X ... x (—€,¢) CR"™, €>0,
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and such that each F, N U is a union of sets of the form
U, = {q eU ‘ F ) = a2 (g) = a”}
with a',i = k+1,...,n , satisfying |[a'| < .

Remark

Notice that we obtain coordinate charts for 7, of the form (Us, (z!,...,2%)|Us),
where (U, x) is a coordinate chart for M as above and U, C F, N U one of the sets
defined there. This determines the differential structure of F, uniquely.

Proof of theorem 9.24

Let A be the distribution in G given by A, = L., h C T,G. Clearly if
X1,..., X, span b and X1, ..., X}, are the corresponding left invariant vector fields
then Xya,..., Xza span A«. Hence A is smooth and it is also integrable by lemma
9.25 since

k
X, Xj] =) cf Xq

a=1

for some constants %, so that also

157
~ ~ k ~
X %] =Y K.
a=1

Now let F be the corresponding foliation and let H be the leaf of F through e.
For any b € G we clearly have

(Lb)*Aa = Lb*La*b = Aba

so by the uniqueness of the foliation it follows that L, permutes the leaves of F. In
particular for b € H , Ly-1H is a leaf containing b~'b = e, hence L,-1H = H. It
follows that H is a subgroup. It remains to show that the multiplication in H is C*°.

For this first notice that L, : H — H, for b € H, is smooth. Also choose a chart
(U,x) around e in G as in theorem 9.26 with x(e) = 0 and let VV C U be chosen such
that =16 € U for dl a,b € V. Put

Uoz{qu\x’““(q):...:x"(q):o}, Vo=UpNV.

so that Vy C Uy are neighbourhoods of e in H. If we choose U and V' such that x(U)
and x(V') are n—balls in R" then x(Uy) are k — balsin R* x 0 so in particular they
are connected. Now given a € Vo we have L,-1Vy CU N H and L,-1V; contains e =
o la sothat L,-1Vy C Uy. That is, if a,b € Vj then =6 € Uy. Since (Uy , x|Up) is
a chart for H it follows that the map (a,b) — a~'b is smooth in V x V5. Hence the
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theorem follows from the following:

Lemma 9.27

Let G be a group with a C* structure such that left trandation is C*° and G is
connected. Suppose V' is a neighbourhood of e such that themap V' x V' — G given by
(a,b) — a~'b is smooth. Then G is a Lie group.

Exercise 9.28

a Prove lemma 9.27.

b. Prove the uniqueness of H in theorem 9.24.

Theorem 9.29

Let G and H be Lie groups with Lie algebras g and b respectively. Let ® : g — h
be a Lie algebra homomorphism. Then there is a neighbourhood U of e € G and a C*°
map ¢ : U — H such that

1. ¢(ab) = ¢(a)p(b) Va,b € U with ab € U,

2. b = O

Moreover if ¢,v : G — H are Lie group homomorphisms with ¢, = ¥y : g —
h then ¢|c, = ¥|a, Where Gy is the connected component containing e.

Proof
First notice that the Lie group G x H hasLiealgebrag®h = g x b with Lie product

(X190 Xe, V1Y =[X1, V7] ® [Xg, Y2
Let 8 C g & b be the set
t={Xo®X) | Xecg}
and notice that ¢ is a subalgebra: Indeed, if X,Y € g then
X©dX,YedY]=[X,Y]a[@X, ®Y]=[X,Y]o O[X,Y].

Hence by theorem 9.24 there is a unique connected Lie subgroup K C G x H with
Lie algebra €. Let 71 : G x H — G be the projection. Then clearly

W = 7T1|K K -G
is a Lie group homomorphism and clearly w. : € — g is given by

(9.30) w(X®dX)=X VXeg
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Hence w, : T.K — T.G is an isomorphism so there is an open neighbourhood V' of
(e,e) € K such that w : V — U C @G isadiffeomorphism onto the open neighbourhood
U of e e G. Now let 79 : G x H — H be the projection onto H and put

p=mow t:U — H.
Then since w is a homomorphism clearly
o(ab) = ¢(a)p(b) for a,b € U with ab € U.
AlSO ¢ye = Tose © W ' SO by (9.30)
Gre(X) = Te( X ®PX)=0X , VX € g.
This proves the first part.

As for the second part, let ¢, 1) : G — H with ¢y = 4. = ® : g — b and suppose
G is connected. Let

0p:G—GxH 05(9) = (9,9(9))
0,:G—GxH 0y(9) = (9,9(9))

Then clearly 6, and 6,, are immersions and
Ops(X) = (X, X)) = 0y (X).
Hence 04 = 0, by theorem 9.24 and s0 ¢ = 7.

Corollary 9.31

If G and H are Lie groups with isomorphic Lie algebras, then they are locally
isomorphic. |.e., there are neighbourhoods U C G, V C H and a diffeomorphism
¢ : U — V with

o(ab) = ¢(a)d(b) Va,be U with ab e U.

Pr oof
Obvious from theorem 9.29.

As another application of theorem 9.29 one can show (for a proof see Spivak [6
chap. 10 problem 8] or Warner [7 theorem 3.27]):

Theorem 9.32

a. Let G be a connected and simply connected Lie group and let H be another Lie
group. Suppose @ : £L(G) — L(H) is a Lie algebra homomorphism, then there is a
unique Lie group homomorphism ¢ : G — H with ¢, = ®.

b. Inparticular if G and H are simply connected Lie groups and £(G) and L(H) are
isomorphic, then G and H are isomorphic.
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With this the following proposition is straightforward.

Proposition 9.33
a. The universal covering G of a connected Lie group G isin a canonical way a Lie
group.

b.  Two connected Lie groups G and H have isomorphic Lie algebras iff the universal
covering groups G and H are isomorphic.

Exercise 9.34
Prove proposition 9.33.

We shall prove theorem 9.32 in the following special case:

Corollary 9.35

Let G beaLiegroup and X € £(G). Then there is a unique Lie group homomor-
phism ¢ : R — G such that (b*o(%) = X.

Proof

Let usidentify £(R) with R and let ® : R — L(G) be given by ®(«) = aX. Then
by theorem 9.29 there is areal number ¢ > 0 and a differentiable map ¢ : (—¢,¢) — G
with

1 o(s+1t) = o(s)p(t) whenever s, |t] , |s+1t] < e,

d d
2. d_(f ‘tzOZ (/5*0(%) = X.
In order to extend ¢ to R we write every ¢t € R in the form

€ €
t:k<§>+r, ke, Ir <,
and we define
b(t) = {c,b(e/z)’“ - o(r) =
| d(—€/2)7% - p(r) if k< 0.

The uniqueness of ¢ is contained in theorem 9.29.

Notation

The homomorphism ¢ above is called a one-parameter group with infinitessmal
generator X. We aso define

(9.36) exp (X) = (1),



Clearly ¢(t) = exp (tX) , foral ¢ € R. The map
exp: L(G) = G

is called the exponential map for G.

Proposition 9.37

For G a Lie group there is a left invariant connection 7 on G (that is, vis =
Vv, Vg € G) such that the geodesics through e are precisely the one-parameter groups.
In particular 57 is complete.

Proof

Let X1,...,X, be a basis for £(G) and let X;,...,X,, be the corresponding
moving frame on G of left invariant vector fields. Let sy be the connection given by
the equation (4.11) with I*; = 0 , that is, v (Y) = 0 for X, Y any left invariant
vector fields. 7 is obvioudly left invariant. Let us show that a one-parameter group
¢:R — Gisageodesic: Let X = ¢.o(%) and let X be the associated |eft invariant
vector field. Since ¢(s +t) = ¢(s) - ¢(t) we get

so clearly

which shows that ¢(t) , t € R, is a geodesic.

Remark

If G is compact there is a left and right invariant Riemannian metric (that is, L,
and R, are isometries for al g € G, see theorem 9.50 below). One can then show that
the one-parameter groups are geodesics with respect to the corresponding Riemannian
connection. But for G non-compact one cannot in general find a Riemannian metric
with this property. In fact for G = SI(2,R) the exponential map is not surjective
in contrast to Hopf-Rinow’s theorem for a Riemannian connection (theorem 3.17), cf.
exercise 9.39 below.

Example 9.38
Consder G = Gl(n,R) , L(G) = gl(n,R) = the set of n x n matrices. The
exponential map is in this case given by
2 An

A A
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where this series is absolutely convergent in the operator norm. To see that this is the
exponential map consider for fixed A

2 n

A A A
Exp(tA) =1+ = + — 2 +... +—t"+..., teR,
1! 2! n!

which is an absolutely convergent power series in t. Hence

d A2 A

%Exp(tA)— o gAtt ot
= AExp(tA)

s0 E(t) = Exp(tA) is the unique solution to the linear differential equation

d
—E(t)=AB(),  B(O)=1.

Now given s € R

%E(tJrs) — AB(t+s), E(0+s)=E(s)

and also
HEW - Be) = (45 B0) - B6) =4 BOE)
E(0)E(s) = E(s).
Hence by uniqueness of the solutions we obtain
E(t+s)=E(t)E(s)

so that indeed E : R — Gl(n, R) is a one-parameter group.

Exercise 9.39

Let )
SI(Z,R):{g: <‘CL d) ‘detg:ad—bc:l}

a. Show that the Lie algebra is

sI(2,R) = {X = <Z _ba>

b. Show that Exp : s[(2,R) — SI(2,R) is given by

[ (cosh v—det X)T + nhﬁ X X if det X <0,

Exp X ={ I+ X, if det X =0,

a,b,cER}

(cosVdetX)I 4+ sinvdetX it det X > 0.
\
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C.

Let us consider 1-parameter groups the same if they have proprotional infinitesimal

generators.
A0
(0 /\—1) ) A 7£ 1a

Show that
lies in exactly one 1-parameter subgroup if A > 0, in infinitely many if A = —1
and in no 1-parameter subgroup if A < 0, A # —1.

Let us list a few properties of the exponential map:

Proposition 9.40
exp : L(G) — G is smooth and maps a neigbourhood of 0 diffeomorphically onto
a neighbourhood of e.

If  : H — G is a homomorphism of Lie groupsthen exp o ¢, = ¢ o exp, i.e,
the diagram below commutes

In particular for H C G a Lie subgroup

expg | L(H) =expy : L(H) — H.

Pr oof
a) follows from theorem 3.8, theorem C.1 in appendix C and proposition 9.37.
b)if v : R — H isal-parameter group with v, (%) = X, thenclearly ¢oy : R — G

is a 1-parameter group with infinitesimal generator

d d
(@070 <%) = Qe © (’Y*O <%>> = 0x X,

50 exp (6:X) = ¢ 0 7(1) = (exp X),

c) clearly follows from b).

Remark
It follows in particular that the differentiable structure on a Lie subgroup H C G

is uniquely determined by the requirement that

expg: L(H) — H
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is a diffeomorphism in a neighbourhood of 0.

Exercise 9.41
For G a Lie group let 57 be the left invariant connection given by VX(Y) =
0 for X,Y any left invariant vector fields (cf. proposition 9.37).

a Show that the torsion tensor field 7" is left invariant and is given by T(X,Y) =
—[X,Y], X,Y € L(G). Show aso that the curvature tensor field is zero.

b. Show that if G is connected then a vector field isleft invariant iff it is parallel along
al 1-parameter groups and their left cosets.

c. For G and H two connected Lie groups and ¢ : G — H a diffeomorphism with
o(e) = e, show that ¢ is an affine transformation iff it is a Lie group isomorphism.
(Hint: First observe that if ¢ is an affine transformation then it preserves left
invariance of vector fields.)

As an application of the exponential map we shall study homogeneous spaces. Let
G bealiegroup and H C G aclosed Lie subgroup (in particular H is an embedded
submanifold). Consider the set G/H of cosets gH with the quotient topology.

Exercise 9.42

Show that G//H is a Hausdorff space and the map G x G/H — G/H defined by
(9.9H) — g¢'H is continuous.

Theorem 9.43

For G aLiegroup and H C G a closed Lie subgroup, the quotient space G/H
isin a natural way a smooth manifold and the map G x G/H — G/H defined by
(9.9'H) — gg'HisC™.

Pr oof

Let g O b be the Lie algebras of G and H respectively and let m C g be a
complementary subspace, ie. g = mé h. Letr : G — G/H be the canonica
projection. Since the map ® : g — G defined by

®(A,B)=exp(A)-exp(B), Aem, Beb,

has differential equal to the identity at e, we can find neighbourhoods Uy, € m , Uy C
h of 0inm and b, such that

Q:UnxUy—G

is a diffeomorphism onto an open neighbourhood of e in G. In particular exp Uy C H
is an open subset, so we can choose V' a neighbourhood of e in G such that

VNH= eprh.
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By continuity we can find a compact neighbourhood U C Uy, of 0 such that

exp (—X') -exp (X") eV VX' X"eU.

Clam. 7 : expU — G/H is a homeomorphism. (The set expU C G is called
a local cross section).

Clearly exp : U — expU C G is continuous and one-to-one, hence a homeomor-
phism, so we shall just see that 7 is one-to-one on exp U : Suppose

mexp (X') = mexp (X"), X' X"eU.
Then there exists h € H such that
h=exp(—X')-exp (X") €V,
hence h = expZ , Z € Uy. It follows that
exp (X') exp (Z) = exp (X").

But since ® is one-to-one, Z = 0 and X’ = X”. This proves the claim above.
Now put ¢ = moexp : U — G/H. Then we shall use (¥U, ~!) as a coordinate
chart around H € G/H, and in genera

WV o Lyt gu(U) » U

shall be a coordinate chart around gH € G/H. It is now straightforward to check that
this gives a smooth structure on G/H and that the map G x G/H — G/H given by
(9,9'H) — g¢'H is smooth.

Remark
Notice that the above map G x G/H — G/H is aleft action of G on G/H, s0
that G acts smoothly on G/H.

Examples 9.44
a In Gl(n,R) consider for given k£ < n the subgroup A(k,n —k) C Gl(n,R) of

0 92

where I is the £ x k identity matrix, A € M(k,n — k) an arbitrary k x (n — k)-
matrix, and g2 € Gl(n — k,R). Then Gl(n,R)/A(k,n — k) is in a natura way
diffeomorphic to the open set W,, . € M(n, k) = R™* of k linearly independent
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column-vctors in R™, and the left action of Gl(n,R) corresponds to the natural
left matrix multiplication on such columns. In particular Gl(n,R)/A(1,n — 1) ~

R™ — {0}.

Let P(k,n —k) C Gl(n,R) be the subgroup of matrices

(g1 A
g_<0 92)

where g1 € GI(k,R) , g2 € Gl(n—k,R) , A € M(k,n— k). Then by theorem
9.43 we get a manifold structure on G(R") = Gl(n, R)/P(k,n — k). Notice that
P(k,n—k) = A(k,n — k) - Gl(k,R) and hence by &) we have a bijection

Gr(R") ~ W, 1/Gl(k,R)

where on the right we have used the usua right matrix multiplication of
Gl(k,R) on W,, . C M(n, k). Now the set W,, ,,/Gl(k, R) isin anatural way iden-
tified with the set of £-dimensional linear subspaces of R™. Therefore the manifold
Gr(R™) is usualy identified with this set and is caled the Grassmann manifold
of k-planesin R". For k =1, G1(R") = P(R") is caled the n — 1-dimensiona
(real) projective space.

Exercise 9.45
Let 1 x O (n— k) C O(n) be the subgroup of orthogonal matrices of the form

QZ<I 0>, g2 € O(n — k).

0 g0

Show that O(n)/1 x O(n —k) is diffeomorphic to the submanifold V,,; C
M(n, k) = R™* of matrices X satisfying

XX =7

that is, the set of k£ orthonormal vectors in R". V,, ;. is called the Stiefel manifold
of orthogonal k-frames in R™. So in particular

O(n)/1 x O(n —1) = V,,p =S 1,

Show that
Gk(IR") ~ O(n)/O(k) x O(n — k) ~ V,,1/O(k)
where O(k) x O(n — k) C O(n) is the subgroup of matrices of the form
( o). @eO), e Ot
In paticular  P(R") is identified with S"7!1/O(1) where O(1) =
{1,—1} actsby v(£1) = =w.
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We end this chapter with a few remarks on the adjoint representation of a Lie
group G with Lie algebra g = L(G).

Definition 9.46

For g € G define Ad(g) : g — g to bethedifferential at e of the inner automorphism

T gxg_l.

Proposition 9.47
a Ad(g) is invertible and
Ad: G — Gl(g)

is a Lie group homomor phism.

b. The differential of Ad is given by
ad : g — End(g)

where ad(X)(Y) = [X, Y], X,Y € g.

c. Ad(exp(X)) = Exp(adX), X € g, where Exp : End(g) — Gl(g) isgivenin
example 9.38.

d. exp (Ad(g)X) = gexp (X)g_1 , VX €eg, ge€d.

Proof
a) For g € G let oy, : G — G be given by
og(x) = grg~t, 2z eq,
so that
Ad(g) = (0g),. : 8 — 8-
Clearly o40,-1 = 0. =id , s0 Ad(g)Ad(g~!) = id. Similarly
Ad(gg') = Ad(g) o Ad(¢') g, €G.

Also the map ¢ : G x G — G given by ¢(g,2) = grg~" is clearly differentiable so
that ¢. : T(G x G) — TG is differentiable. Now

Ad(g)(X) = ¢*((o ® X)(gve)> eT.(G), XeT.G,geG,

sothemap G x g — ggivenby (9, X) — Ad(g)(X) is differentiable from which
a) easily follows.
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b) For X € g put g; = exp (tX) , t € R, and notice that
d

Ad(X) = 2 Ad(a) | _
so that
d d .
ALO(Y) = & alesp (V))g |
That is, for f € C*(G)
62
(9.48) Ad(X)Y)(S) = 5.5 flge(exp sY)g—) -
s=0,t=

Now, for fixed s € R

9 0
5% f(gi(expsY)g—y) = o f(gtexp sY') ‘

t=0

O FepsY)an |

(9.49)
t=0

On the other hand the left invariant vector field Y corresponding to Y clearly satisfies

Yy(f)=Y(foly) = % foLg(expsY)

s=0
d
= f(gexpsY) o, Veeg,
s0 that
H? d -~ .
iy Tl | = 20| _ =X (V)
Similarly
9? )
o F((exp sY)(exp tX) \t=073=0= v (X(f)

Hence by (9.48)
ALV = X (V) =Y (X)) = [X,Y](f)
so that indeed
AL (X)(Y) = [X, Y] = ad(X)(Y).

c) now follows from b) and proposition 9.40 applied to Ad : G — Gl(g).

d) is obvious from the definitions. In fact, the one parameter group ¢t +—
gexp (tX)g~!, t € R, has infinitesimal generator

Cgep (tX)g™) | _ = Ad(g)(X).
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As an application of the adjoint representation let us prove:

Theorem 9.50

If K isa compact Lie group then it has a bi-invariant Riemannian metric, that is,
Ly and R, , g € K, are isometries.

Proof
First choose an inner product (-, -) in 7. K and extend it to a Riemannian metric

on K by
(x,y), = <Lg_1*yc, L, y> ,Vae,ye T,K , g€ K.

Asin chapter 7 this enables us to integrate functionson K. By construction L, : K — K
is an isometry for every g € G. Hence clearly

/f:/foLg Vg e K and f integrable on K.
K K

We claim that also

(9.51) /f: /foRg Vg€ K and f integrable on K.
K K

For this notice that (cf. exercise 7.36)
/f - /(foRg) |det Ry |
K K
where |det R,| is the function X' — R whose value at k € K is & the determinant of

Ry« : Ty K — Ty, K with respect to an orthonorma basis. Since Ieft trandlation is an
isometry (Ry),, has the same determinant up to sign) for all & and

det Ry, = det (Rys : T.K — T,K)
= tdet (L1 0 Ry TK — T.K)
= ddet Ad(g7h)

However, det o Ad : K — R* = GI(1,R) defines a Lie group homomorphism, and
since K is compact the image in R* is a compact subgroup of R* and hence is +1. It
follows that |det R4| = 1 and hence (9.51) is proved.

Now define another inner product in 7. K by

(2, 9)) = / (Ad(k)z , Ad(k)y)dk , 2,y € T.K.
K
Then

(9.52) ((Ad(g)r , Ad(g9)y)) = ((z,y)), VgeK, v,yeT.K.
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In fact
(Ad(g)a, Ad(g)) = [ (Ad(k - g)z, Ad(k- )
K

:/(Ad(k)x,Ad(k)y)dk = {(z,9))

K
follows using (9.51). It is now easily checked that the metric defined by

<<°L?y>>g = <<Lg—1*.’1j ’ Lg_l*y>> y Lyl € TeK:
is bi-invariant: As before it is left invariant and also

((Ris , Rpsy)) g1, = <<L(gk)*1*Rk*x ’ L(gk)fl*Rk*y>>
= <<Rk*Lk_1*Lg—1*w : Rk*kal*Lgfl*y>>

- <<<<Ad>(>k_1)Lgl*x A L)) = (e L))
= ((x,
by (9.52). This proves thye t?leorem.

Exercise 9.53

Let G be aLiegroup and H C G aclosed Lie subgroup. Let g O bh be the Lie
algebras of G and H respectively.

a.  Show that the projection 7 : G — G/H gives rise to an exact sequence
0—h—gST(G/H)—0
and that for h € H there is a commutative diagram

0 — b — g — T.(G/H) — 0
L Ad(h) L Ad(h) | Lps
0 — b — g — T.G/H) — 0

b. Show that there is a one-one correspondence between left invariant Riemannian
metrics on G/H and inner products (-, -) in g/h satisfying
(Ad(h)z , Ad(h)y) = (v,y) Vw,y€g/h, heH,

c. Show that if K C G, with K compact, then there exist left invariant metrics on
G/K.

Remark

Riemannian manifolds of the form considered in b) above are called homogeneous
Riemannian manifolds. In the next section we shall see that every ssmply connected
Riemannian symmetric space is a homegenous Riemannian manifold with compact
isotropy subgroup.
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Chapter 10 THE ISOMETRY GROUP OF A
SYMMETRIC SPACE

From now on we shall call a connected Riemannian globally symmetric space just a
symmetric space. In this section we shall study the group of isometries of a symmetric
space, and we shall show that it is in a natura way a Lie group. As a first step we
make it into a topological group. For convenience we assume M simply connected.

Definition 10.1

For M a connected Riemannian manifold let /() denote the group of isometries
of M. I(M) is given the compact open topology, that is, a basis for the topology is
given by the finite intersections of sets of the form

W(C,U)={gelI(M)]|g(C)CU}
where C C M is compact and U C M is open.

Proposition 10.2
I(M) is a Hausdorff space with a countable basis for the topology.

Pr oof

Since M is a connected manifold it has a countable basis {0, } and since M is
locally compact we can assume that O,, is compact for al n. Then it is easily seen
that the set of finite intersections of the sets W (0, 0,,) constitutes a countable basis
for the topology of I(M).

Remark

The usefulness of this proposition lies in the fact that if f: X — Y is afunction
and X has a countable basis then f is continuous iff f maps convergent sequences to
convergent sequences.

Proposition 10.3
Let {¢n} C I(M) and f € I(M). Then the following are equivalent:

a ¢, — [ pointwise on M.
b) ¢, — f uniformly on compact sets.

C) ¢, — [ inthe compact open topology.
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Proof

b) = c) = a) iseasy. @ = b): Given C compact and ¢ > 0. Find finitely many
points p; € C such that any point p € C' has distance less than ¢ from some point p;.
Let N be so large that for al ¢

d(on(pi), f(pi)) <e fordln> N.

Then if p € C has distance less than ¢ from p; we have

d(on(p) , f(p)) < d(dn(p) » On(pi)) + d(dn(pi) , f(pi))+
+d(f(pi) , f(p)
= d(p,pi) + d(¢n(pi) , f(pi)) + d(pi,p) < 3e.
for n > N. This ends the proof.

More generally let U C M be an open set and let (U, M) denote the set of
isometries of U onto an open set of M. Agan I(U, M) is given the compact open
topology.

Proposition 10.4

Let M be a smply connected symmetric space. For any open set U C M isthe
restriction map p : I(M) — I(U, M) a homeomorphism.

Pr oof

By lemma8.21 p isinjective and by theorem 8.20 it isonto. Clearly p is continuous.
In order to see that p~! is continuous let {¢,,} € I(M) be a sequence and f € I(M)
such that ¢, — f on U. In view of proposition 10.3 it is enough to prove that
on(e) — fla) Vg€ M

For this we shall need normal neighbourhoods V', which are regular in the following
sense: For every ¢,¢' € V there is a unique v € T,(M) (of small length) such that
q¢' = exp, (v), and the mapping V' x V' — T M sending (¢, ¢') to v is a diffeomorphism
onto an open neighbourhood. By theorem 3.8 every point has a regular normal
neighbourhood. Furthermore notice that for any two points p and p’ there is an isometry
of M taking p to p’ (in fact the symmetry in the midpoint of a geodesic from p to p’
does this). Therefore, we can find an » > 0 such that any point has a regular normal
neighbourhood of radius r. With this in mind we shall prove

Lemma 10.5

Let M, {¢,} and f be as above and suppose M has regular normal neighbourhoods
of radius 2r. Suppose ¢,,(¢) — f(q) for ¢ in a neighbourhood of p € M. Then

onlq) — f(q) for d(p,q) <.

Given this lemma we can end the proof of the proposition as follows. Suppose ¢,, — f

142



on U and choose py € U. Let gy € M be arbitrary and choose a curve v : [0,1] — M
from py to ¢o. Then by an argument similar to the proof of lemma 8.22 we have
for al ¢t € [0,1] that ¢,(q) — f(¢) for ¢ in a neighbourhood of ~(¢). In particular
on(q0) — f(qo). It remains to prove lemma 10.5:

Proof of lemma 10.5
Suppose ¢, (q) — f(q) for ¢ in a neighbourhood of p.

Case 1. ¢,(p) = f(p) Vn. Since ¢, (exp, (v)) = exp, (dn+(v)) for small v €
T,(M) and since exp, is a homeomorphism on a small neighbourhood we conclude
that ¢pn«(v) — f«(v) for smal v and hence by linearity for al v € T,(M). Hence
én (exp,, (v)) converges to f(exp, (v)) for al v, that is, ¢,(q) — f(q) Vg€ M.

General case. Clearly it is enough to consider f = id. So ¢,(q) — ¢ in a
neighbourhood of p. Let p, be the midpoint of the geodesic from p to ¢,(p) and
let s,, be the symmetry in p,,. Hence s,(p) = ¢,(p) or equivaently

$n 0 On(p) = p.

also let sg be the symmetry in p. We claim that it is enough to show that s,, — sg
on the norma neighbourhood V' of radius r. Because then by proposition 10.3 this
convergence is uniform on compact subsets of V' and it follows easily that ¢, —
id on V' iff s, 0 ¢, — so on V' which reduces the general case to case 1.

It therefore remains to prove that if p,, — p then the corresponding symmetries s,
converges to sq in the neighbourhood V. But by assumption the normal neighbourhood
of radius 2r is regular. Therefore the mapping

(¢.4') — exp, (—v) = 54(¢) (¢ = exp, (v))

is differentiable on V' x V' and is in particular continuous as a function in ¢. This ends
the proof of the lemma and hence of proposition 10.4.

As a corollary we get:

Corollary 10.6
For a simply connected symmetric space the mapping M — I(M) given by sending
q to the symmetry s, is continuous.

Pr oof

As seen in the proof of lemma 10.5 the mapping ¢ — s, of V' into I(V, M) (for
V" aregular norma neighbourhood of a point p) is continuous. The statement therefore
follows from proposition 10.4.
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Corollary 10.7

Let M be a simply connected symmetric space and choosep € M. Let K C I(M)
be the isotropy subgroup at p, that is,

K ={k e (M) ‘ k(p) =p}.

Then the homomorphism k — ks, is a homeomorphism of & onto a compact subgroup
of the group of linear isometries of 7,,(M).

Proof

Put V= T,(M) and let O(V') be the group of isometries of V. On O(V) all
possible topologies agree: the matrix topology induced from a choice of a basis of V,
the norm topology with respect to the inner product, the compact open topology and
the topology of pointwise convergence. From case 1 in the proof of lemma 10.5 it
follows that a sequence k,, € K converges in a neighbourhood of p iff (kn)*p converges
in O(V). It therefore follows from proposition 10.4. that the topology on K induced
from I(M) is the same as the one induced from O(V). Now by theorem 8.20 the
image of K in O(V) is the set of linear isometries ¢ : T,(M) — T,(M) satisfying
R(¢v, pw)pz = ¢R(v,w)z , where R is the curvature tensor field at p. Thisis clearly
a closed subset of the compact group O(V).

Corollary 10.8
I(M) is locally compact.

Pr oof

Let usfind acompact neighbourhood of id € I(M). Againfor C and U subsets of M
weput W(C,U) ={g € I(M)| g(C) C U}. Choosep € M and an open neighbourhood
U such that U is compact and is contained in a normal neighbourhood of p. Then

ide W(p,U) S W(p,U)

and we claim that W (p,U) is compact. So let ¢, € W (p,U). Replacing {¢,} with
a subsequence we can suppose that ¢, (p) converges to some point ¢ € U. Let sy be
the symmetry in the midpoint between p and ¢ and aso let s,, be the symmetry in the
midpoint between p and ¢, (p). By corollary 10.6 s,, — sg. AlSO s, 0 ¢ (p) = p SO
since K is compact we can find a convergent subsequence of {s,, o ¢, } and hence a
convergent subsequence of {¢,,}. This ends the proof.

We shall now study the action of (M) on M.

Proposition 10.9
Let M be a simply connected symmetric space.

a I(M) is atopological group.
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b. The evaluation map (M) x M — M sending (g, p) to g(p) is continuous.

c. Givenp € M let K be the isotropy group at p. Then the mapping = : I(M) — M
sending ¢ to g(p) induces a homeomorphism @ : I(M)/K = M , where the left
hand side is the set of cosets {g K} with the quotient topology.

Proof

a) and b) are trivial.

c) Consider the diagram of maps

IM)/)K 5 M
Tp /S
I(M)

As remarked above I(M) acts transitively on M hence 7 is clearly bijective. Also 7 is
obviously continuous. We shall prove that 7 is open. It is clearly enough to find an open
neighbourhood W of id € I(M) suchthat W = p~1(pW) and such that 7| pW is open.
For thischoose p and U asin the proof of corollary 10.8, and put W = W (p, U). Clearly
W =na"Y(U) = p~1(pW). Also W (p,U) is compact. Since 7 is continuous /(M)/K
is Hausdorff hence p(W (p,U)) is compact and 7|p(W (p,U)) is a homeomorphism
onto U. Hence 7|p(WW) is a homeomorphism onto U.

In order to make I(M) into a Lie group we first consider the isotropy subgroup
Kape M:

Proposition 10.10
The isotropy group K at p € M is a compact Lie group.

Proof
As in the proof of corollary 10.7 we put V' = T,,M and we identify K with the
subgroup of the orthogonal group O (V') given by the set of linear isometriesg : V — V
satisfying R(gv, gw)gz = g R(v,w)z , for dl v,w,z € V', where R is the curvature
tensor field at p. Putting B(z,y,z,w) = (R(z,y)z, w) we can identify K with the
subgroup
K ={g€O() | Blgz,gy, gz gw) = B(z,y,z,w), Y ,y,z,w € V},

and we shall show that this is a Lie subgroup of the Lie group O(V). For this let
W denote the vector space of multilinear functions V x V x V xV — R and let
F : O(V) — W be the differentiable map given by

F(9)=Bo(gxgxgxg).
Also let o(V) C End(V') denote the Lie algebra of O(V), i.e. the set of skew-adjoint
linear endomorphisms of V. Then by differentiation it is easily checked that

t = Ker Fi.. C o(V)
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can be identified with the subspace of skew-adjoint linear maps A satisfying

B(Az,y,z,w) + B(x, Ay, z,w) + B(z,y, Az, w) + B(z,y, z, Aw) = 0,
vxayazaw eV

Now by the Implicit Function Theorem there is a neighbourhood U of e in O(V') and
an (embedded) submanifold L C U suchthat K NU C L and T.L = £. On the other
hand it is easily checked that ¢ is a Lie subalgebra of o(1") so by theorem 9.24 there
is a corresponding connected Lie subgroup Ky € O(V') and we claim that Ky C K. In
fact for A € ¢ it is easy to check by differentiation that F/(Exp(tA)) is constant in ¢ so
that Exp(A) € K; that is, Exp(€) € K. It follows that

KonUCKNUCL

and since Ky and L have the same tangent space a e¢ we get, by possibly making
U smaler that KyNnU = KNU = L. Hence K is a submanifold of O(V) in a
neighbourhood of e. Since for k£ € K left-multiplication by £ is a diffeomorphism of
O(V) it follows easily that K C O(V) is a submanifold and hence a Lie subgroup. We
have aready seen that K is compact.

Remark

Notice that it follows from the proof that K is actually an embedded submanifold
of O(T,M). In particular the manifold structure is uniquely determined.

We shall now prove:

Theorem 10.11
a I(M) has the structure of a Lie group such that the action
I(M)x M — M

is C°,

1%

b. For po € M and K theisotropy group at p the homeomorphism7 : I(M)/K = M

is a diffeomorphism.

The idea of the proof is simply to construct the local cross section as in theorem
9.43 and use the differentiable structure on M together with the differentiable structure
on K. Recall that in theorem 9.43 the local cross section is given by local 1-parameter
subgroups with infinitesimal generator in the complement of the Lie algebra of the
isotropy group. So we first construct these local 1-parameter subgroups of isometries.
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Definition 10.12

Let v be a geodesicof M. A transvection along~ is anisometry7 of M, which
preservesy andinducesparalleltranslationalong~ on the tangentspacesat points of
v. If v goesthroughp thenT is saidto be a transvectionat p.

Example 10.13

In Euclideanspacewith the flat metric the transvectionsare of coursethe parallel
translations.

Exercise 10.14
Describethe transvectionson a sphere.

Lemma 10.15

a. Given v a geodesic through p. Then there is a unique family 7; , t € R, of
transvections along « such that 7;(p) = ~(t).

b. Tt—l—s:TtoTs Vit,s € R.

c. Let N be a normal neighbourhood of p. Then the map v : N — I(M) given by
associating to exp, (v) the transvection 7 along exp,, (tv) is continuous,

Pr oof

a) is obviousfrom theorem8.20, explicitly 7; = s,;/2) © s, @asshownin the proof
of proposition8.3.

b) is obviousfrom the uniquenes®f a) and the fact that 7s(y(¢)) = y(s +1t) ,
which is easily proved.

c) By a) ¢ is given explicitly by
w(epr (U)) - Sexpp (lv) © Sp
so c) follows from corollary 10.6

Proof of theorem 10.11
Let B = ¢(N) asin Lemma10.15above. Then clearly

v:B—-NCM

is a homeomorphismso choosinglocal coordinateson N we geta C°° structureon
B. Clearlythe map (z,k) — 9(x) -k,

Nx K — B-K CI(M)
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is 1-1 onto an open set, and since K is a Lie group it follows that B - K has a C*
structure. Let

¢p:B-K—NXxXxK

be the inverse map. For any g € I(M) we give g - B- K C I(M) the C* structure
induced by

pg=¢oLsy1: g-B-K— NxK,

where as usual L, denotes left-multiplication by g. We must show that these structures
are compatible on their overlaps. It is enough to show that if gBK N BK #
() then ¢, o gbg_l iIsC®. Now if g boky = bk, by, b € B, ko, k € K, then gbip = bp
and it follows that ¢(p) is near to p so if we replace B above by some smaller B’ then
g can be written in the form g = b1k, for by € B, ky € K. So it is clearly enough
to show

Claim
If biby € B, k1ko € K runs through all elements such that

b1k1b2ks = bk, beB, keK,

then b and £ are C* functions of by, bo, k1, k2.

This will prove that 7(M) is a C* manifold. But at the same time it will
prove that I(M) is a Lie-group. In fact suppose we have proved the claim and put
V =B-K C I(M). Then V isaneighbourhood of e and by the claim the multiplication
restricted to V is C*°. Also since K is a Lie group and since clearly b +— b1 is C™®
on B (via ¢ this map is equivalent to s,) it follows easily that g +— g~ is C* on
V. Hence given the claim I(M) is a Lie group due to the following lemma, the proof
of which is left to the reader:

Lemma 10.16

Let G be a topological group with a C* structure such that left translation is C*.
Suppose V' is a neighbourhood of e such that the multiplication V' x V' — G and the
map g — ¢! of Vinto G are C*®. Then G is a Lie group.

Proof of claim
Suppose
b1k1baks = b/ﬂ, blbl,bg €B , klkl,kg e K.

First notice that klbgkfl = b* isatransvection at p. Infact if by isthe transvection from
p 1o by(p) = exp, (v) then clearly k1bak ! isthe transvection from p to exp, ((k1),v) =
k1(b2p). Since K acts C* on T,,(M) (by definition of the C* structure on K) via the
mapping k1 — (k1)« and since exp, is a diffeomorphism onto the neighbourhood N
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it follows that b*p = ki (b2p) isa C* function of by and kp, so b* isa C* function
of bz and kl.

Now bikiboky = b1b*k1ko = bk where b is the transvection from p to b1b*p. So
we must show that b;b*p depends C*° on byp and b*p. Here b1b*p is constructed as
follows from byp and b*p: Take X € T;,(M) such that exp,, (X) = b*p; parallel trandate
X aong the geodesic to b1p and apply exp,,,. Each of these are ¢ operations as
functions of v*p and b;p. Similarly the matrix coordinates of the differential at p of
the map

b= by b* =k (ki ko)t

depends C* on b;p and b*p so the coordinates of k(k; kg)_l depends C*° on
b1, ba, k1, ko. Hence since K isaLie group £ depends C*° on by, by, k1, ko. This proves
the claim and hence that I(M) is a Lie group.

Notice that since = : B — N is a diffeomorphism we have aso proved that the
action ((bk),q) +— bk-qisC*> aslong asbk-q € N. Itis easy from this to prove
the remaining statements of theorem 10.11.
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Chapter 11 SYMMETRIC SPACES AND
ORTHOGONAL INVOLUTIVE ALGEBRAS

In chapter 9 we associated to a Lie group its Lie algebra. Similarly we shall construct
to a symmetric space an associated algebraic object called an orthogonal involutive
algebra.

First a few remarks on the adjoint representation af a Lie Group G. Recall that for
g € G the mapping G — G defined by x +— gag~! has differential Ad(g) : g — g and
the mapping Ad : G — Gl(g) is called the adjoint representation of G. The differential
of this is the map ad : g — End(g) defined by

ad(X)(Y)=[X,Y] , X.Yeg.

For an arbitrary Lie algebra g we still have ad : g — End(g) defined as above and
the image ad(g) C End(g) is a Lie subalgebra of End(g) which is the Lie algebra of
Gl(g). Let Int(g) C Gl(g) be the connected Lie subgroup corresponding to ad(g). If g
is the Lie algebra of a Lie group G then it follows from 9.47 that Ad : G — Gl(g) is
a Lie group homomorphism onto Int(g). Notice that the topology on Int(g) need not
be induced from the topology on Gl(g).

Now let ¢ C g be a Lie subalgebra. Then ad(®) C ad(g) is a Lie subalgebra and
hence corresponds to a Lie subgroup K* C Int(g) C Gl(g). We now have:

Proposition 11.1
The following are equivalent

1. K* is a compact Lie group.
2. The set K* is compact in the induced topology from Gl(g).

3. K*isclosedin Gl(g) and g hasa K* invariant positive definite symmetric bilinear
form.

4. K*isclosed in Gl(g) and g has an ad(t)—invariant positive definite symmetric
bilinear form Q, i.e.

Q([X,Y],Z)-i-Q(Y,[X,Z]):() VXEE,Y,ZGQ.

Proof
a) = b) istrivial. On the other hand if K* C Gl(g) is compact then by proposition
7.6 it isaclosed Lie subgroup in a canonical way which proves b) = a).

b) = c) by integrating an arbitrary positive definite symmetric bilinear form over
K* (cf. theorem 9.50).
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c) = b) is obvious since the orthogonal group is compact.
c) = d) by differentiating the equation

Q(Exp (tadX)Y , Exp (tadX) Z) =Q(Y, Z),
Xet, YV Zeg,

with respect to t.

d) = a). Let O(g) C Gl(g) be the orthogonal group corresponding to the positive
definite bilinear form Q. It follows from d) that ad(€) is contained in the Lie algebra
of O(g) hence K* C O(g) which is compact.

Definition 11.2
If either of @) - d) above holds we say that £ is compactly embedded in g.

If £ is compactly embedded in ¢ then £ is called a compact Lie-algebra. l.e. £ is
compact iff Int(€) is a compact group.

Notice that K compact clearly implies that the corresponding Lie algebra ¢ is
compact. However, the other direction is in general not true (e.g. for Abelian Lie
algebras).

Now return to M a simply connected symmetric space and let po € M with
symmetry so. Let Go = Io(M) be the connected component of the isometry group
I(M) of M. Furthermore let Ky = Io(M) N K where K is the isotropy group for
po. Finaly let 7 : Gy — M be the mapping 7(g) = gpo. With this notation we
now have:

Theorem 11.3

1. Ky is connected and the mapping 7@ : Go/Ky — M induced by = is a diffeomor-
phism.

2. Themappingo : G — G givenby g — sg o g o sg IS an involutive automor phism

(that is o = id) such that K is the connected component of the group K, of fixed
points for o.

3. Let g betheLiealgebraof Gyo. Theng =¢& p, where
t={Xeglo. X=X}, p={XegloX=-X}

and £ is the Lie algebra of K. Furthermore 7.(€) = 0 and 7« : p — Tp, (M) is
an isomorphism.

4. If X € p then t — exp(tX) - py is the geodesic with tangent vector 7,.X and
exp (tX) is the family of transvections along that curve.
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5. For k € Ky we have Ad(k)(p) C p and
T Ad(R)(X) = k(X)) VX € p.

Pr oof

a) For every p € M thereis atransvection taking pg to p; hence G acts transitively
on M, so clearly Go/Ky = M. Now let us show that Ky = K N Gq is connected.
Consider 7 : Gy — M and notice that around any point of M we can find a
neighbourhood U such that 7—!(U) is homeomorphic to U x K, (compare the proof
of theorem 10.11. Using this it is easy to see that if v : [0,1] — G is a curve and
a®:[0,1] — M , s € ]0,1], is a homotopy of = o v keeping the endpoints fixed (that
is, a’ = oy and @*(0) = a%(0) , @*(1) =a’(1) Vs € [0,1]), then we can find
a lifted homotopy (keeping the endpoints fixed) o* : [0,1] — M , s € [0, 1], such that
7oa®=a®and o’ = +. (To show this subdivide [0, 1] x [0,1] into small squares).

Now let k € KNGy and join k by acurve vy : [0,1] — Go toe. Since M issimply
connected 7 o 7y is homotopic to the constant loop and if o is a lift of the homotopy
as above, then clearly o! : [0,1] — Gy is a curve lying inside K and joining & to
e. Hence K is connected.

b) K, isclearly a closed subgroup of G with Liealgebrat = {X € g| 0. X = X }.
It is therefore enough to prove that ¢ is actually the Lie algebra of Ky or equivaently
that for X € ¢ exp(X) € K. But for X € ¢ we have

exp (tX)po = o(exp (tX))po =so((exptX)po)
ViteR,

so since py isthe only fixed point in aneighbourhood of py, it follows that exp (tK)py =
Do Vte R, hence exp(tX) € K Vt.

c) Clearly g = € & p and we have just proved that ¢ is the Lie algebra of
Ky. Obvioudy 7.t = 0. Now let v € T,(M) and let T; be the family of
transvections aong exp,, (tv) = Ti(po). Now T; is a one-parameter group so that
T; = exp (tX) for some X € g. Then

d d
Ti(po) | = — expy, (tv) | =w

T dt t=0 dt t=0
SO 7wy 1 g — Tpo(M) is onto. Hence by dimension reasons 7, : p — Ty, (M) is an
isomorphism.

d) Notice that X in the above argument liesin p. In fact 7_; is the one parameter
group of transvections along the geodesic

T4 (X)

exp,, (—tv) = spexp,, (tv) = (so exp (tX)so)po =
= o(exp (tX))po = exp (t 0. X )po,

o that 0.(X) = —X, that is, X € p. Since 7, : p — T, (M) is an isomorphism an
arbitrary X € p occurs as the infinitesimal generator of the one parameter group of
transvections along the geodesic exp,, (tv) where v = . X.
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e For k € Ko and X € p we have
o(k(exp tX)k™') = k(exp (=tX))k™' |, VteR,
or equivaently
exp (0xAd(k)(tX)) = exp (Ad(k)(—tX)) , VteR.
Hence 0. Ad(k)(X) = —Ad(k)(X) sothat Ad(k)(X) € p. Also

(exp t Ad(k)(X)) po = (k exp (tX)k_l)po = k(exp,, (m:tX))
= exp,, (t k(X)) , VteR,

so clearly
T Ad(k)(X) = kumi(X).

This ends the proof.

To the symmetric space M we can associate the Lie algebra g of G together with
the involutive automorphism o, : g — g. In general consider a Lie algebra g with an
involution s : g — g. Then again g = € & p where

t={Xeg|sX=X}, p={Xeg|sX = -X},
and it is easy to see that
e ejCE, [ep]Cp, [pp]CE

In the following whenever g is a Lie algebra with involution s, we shall denote the +1
and —1 eigenspaces by £ and p respectively.

Definition 11.4

An orthogonal involutive Lie algebra is a triple (g, s, Q) where g is a Lie
algebra with involution s and @ is a positive definite symmetric bilinear form on
p which is ad(€)—invariant, that is,

QUX,Y]LZ) + QY [X,Z]) =0 VXelkY Zep

Furthermore we require that ¥ C g is compactly embedded and that ¥ does not contain
any non-zero ideal of g.

Remark

Since £ is compactly embedded we can extend @ to a positive definite symmetric
form on g, which is s-invariant and ad(¥®)-invariant. However, only Q|p is part of the
structure.
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Proposition 11.5

For a simply connected symmetric space M let g be the associated Lie algebra with
involution ¢, asin theorem 11.3, and let Q be the bilinear form on p induced from the
Riemannian metric on 7,,,(M) via the isomorphism 7, : p ~ Tpo(M).

Then (g, 0., Q) is an orthogonal involutive Lie algebra.

Proof

Most of this is already contained in theorem 11.3. Since K| is compact clearly
Ad(Ky) C Gl(g) is compact so £ is compactly embedded. It remains to see that ¢ does
not contain an ideal of g. So suppose a C Eisanidea of g. Then [a,p] Canp =0
which implies a = 0. In fact suppose Y € ¢ and [Y,p] = 0 then by theorem 11.3
€) we have

(exp tY), m(X) = 7 Ad (exp tY)(X)
=mExp(ad(tY) (X)) =0 VXep,teR,

S0 since Ky acts effectively on 7, (M) we haveexp tY =id Vit € R, henceY =0,
which ends the proof.

We will now prove that the orthogona involutive Lie algebra determines the
symmetric space. In fact the curvature tensor field of M is determined by the Lie-
product of g :

Theorem 11.6

Let M be a symmetric space as above and (g, s, @) the associated orthogonal
involutive Lie algebra. Then the curvature tensor field of M at the point pg is given by

Ry (m X, mY)mo Z = —m[[X, Y], Z], X,Y,Z € p.

Pr oof

An element X € g determines a 1-parameter group of isometries of M namely
{exp t X , t € R} and hence a vector field X* on M, that is,

. d
X == ((exp tX)p) o

Now let X be the right invariant vector field on G corresponding to X. Then X and
X* are m—related, that is

(%) =Xk, VeeG

In fact both sides are equal to % ((exp tX)gpo) |,—, - It follows that for X,V € g the
vector fields [X,Y] and [X*,Y*] are adso 7—related. Now it is easy to see that the
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Lie multiplication on g defined by right-invariant vector fields and the one defined by
left-invariant vector fields differ by a— sign. It follows that for X,Y € g

(X, Y] = —[x",Y*]

so we can identify the Lie-algebra g (except for a minus) with the Lie algebra of vector
fields on M of the form X* asabove. For X € g we call X* an infinitesimal isometry.
Similarly for X € g(X € &), X* iscalled an infinitesimal transvection (rotation).

In order to prove the theorem we must therefore prove

(R(X*,Y*)Z7),, = =X Y], 27,

) VXY, Z€p.

Notice that the left hand side only depends on X, Yy and Z; . Also [X*,Y"] =
0 since [X, Y] € ¥, so theright hand side does not change if we replace Z* with another
vector field with the same value at py. Instead of (*) we shall therefore prove

(**) (R(X*,Y*"Z') = —[[X*Y*], Z']

po Po

where Z, = Z; and Z' is parallel aong the geodesics through po.
In the following we write Lx(Y) = [X, Y] for X and Y vector fields on M.
By definition

R(X*, Y*)Z’ = VX*VY*Z/ - VY*VX*Z/ - V[X*’y*]Z/.

Since [X*, Y], = 0 the last term vanishes a po. Notice aso that (vy-(Z')),, =0
since Z' is parallel in any direction at py. Since the torsion is zero we therefore have

V x = (Vy*Zl)pO = (LX* VY*Z/)

Po

Now any isometry ¢ is an affine transformation, i.e. for arbitrary vector fields Y and
Z on M with g—transformed vector fields Y7 and Z9 we have

Vya(29) = (Vv (2)).

Letting g =exptX , X € g, t € R, and differentiating with respect to ¢, we therefore
have

Lx-vy(Z) = V[X*’y](Z) + Vy(Lx«(Z))
for arbitrary vector fields Y and Z.

It follows that
V x= (Vy*Zl)pO = V[X*,Y*] (Z,)po + (vY*LX* (Z/))

= (Vy-Lx«(2"))

Po

Po

since again [X*,Y*],, = 0.
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Finally LX*(Z’)p0 = 0 since Z' is parallel and exp(tX) preserves parallel trans-
lation. Hence again

(Vy-Lx-(Z')),, = (Iy-Lx-(Z')),,

so we conclude that
Vx-(Vy-Z'), = (Ly-Lx-(Z')), .
It follows that

(R(X™, Y*)Z’)po = (Ly-Lx-~ (Z’))po — (Lx+Ly- (Z’))po
= (Ly-x(27)),, = —[[X" Y7, 7]

by the Jacobi identity. This proves (**) and ends the proof of the theorem.

Po Po

Corollary 11.7

Let M and N be simply connected symmetric spaces such that the associated
orthogonal involutive Lie algebras are isomorphic. Then M and N are isometric.

Pr oof
Obvious from theorem 11.6 and theorem 8.20.

Example 11.8

Euclidean space R™ with the usual metric is a symmetric space. The group of
isometries E(n) is the Euclidean group generated by the orthogonal group O(n) and
the trandations « — = + v for v € R™. The Lie algebra of O(n) is denoted o(n) and
is the Lie subalgebra of End(R™) of skew-symmetric endomorphisms. The orthogonal
involutive Lie-algebraassociated to R™ isthen (o(n) & R™ , s, Q), where[,]|R" =
Oand[,]:o(n) x R" — R™ is given by the usua action of o(n) C End(R") on R™.
The involution s is given by s|o(n) = id and s|R™ = —id. Finally @ is the usual
inner product on R™.

Notice that if € C o(n) is a Lie subalgebra, then aso (ESR™, s, Q) is an
orthogonal involutive Lie algebra.

Definition 11.9
(g0, s0, Qo) is an orthogonal involutive Lie subalgebra of (g, s, Q) if
g0C9g,s|go=s0, Po=pandQ=Q.

Definition 11.10

An orthogond involutive Lie subalgebraof (o(n) & R™, s, @) inthe above example
11.8 is called a Euclidean orthogonal involutive Lie algebra.

Equivalently (g, s, @) is Euclidean if [p, p] = 0.
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Now let (g, s, Q) be any orthogonal involutive Lie algebra. We want to construct
an associated symmetric space. For this we need the following proposition which will
be proved in section 13 (see remark following theorem 13.5).

Proposition 11.11

Let (g, s, Q) be an orthogonal involutive Lie algebra. Then there is a Lie group
G with Lie algebra g.

Taking the universal covering we can assume G to be simply connected. Then there
is also an involutive automorphism ¢ of G with differential o, = s and clearly the fixed
point set of ¢ is a closed subgroup. The identity component we denote by K. Clearly
the Lie algebra of K is ¢, the fixed points of the involution s. Now let M = G/K and
let 7 : G — M be the natural projection. Since K is closed M is a manifold and

s p — To(M) OZ{IN(}EM,

is an isomorphism. We give M a Riemannian metric as follows: G clearly acts on M
by left trandations and K fixes the point o. Also notice that the adjoint action of K on
the Lie algebra g keeps the subspace p invariant. In fact

o«(Ad(exp X)(Y)) = Ad(exp s«z)(0+Y) = — Ad(exp X)(Y)
for X et, Y ep.

Since the bilinear form @ on p isad(®)—invariantitisalso Ad (f() — invariant. \We now
identify 7,,(M) with p viathe map 7., and it is easy to see that under this identification
the adjoint action of & on p corresponds to the induced action by K on T, (M). We can
therefore extend the bilinear form to a Riemannian metric on all of A by the formula

QX,Y)=Q((Ly1),X, (Iy1).Y), X,Y €Ty(M)

where L, denotes left-multiplication by g € G. By definition Q is G—invariant.

Theorem 11.12

The Riemannian manifold M constructed above is a simply connected symmetric
space and the associated orthogonal involutive Lie algebra contains (g, s, @) as an
orthogonal involutive Lie subalgebra.

Pr oof

M is simply connected since G is simply connected and K is connected. In fact
suppose v :[0,1] — M isacurve with (0) = (1) = o. Using local cross sections of

: G — G/K one can lift 7 to acurve 4 : [0,1] — G such that 5(0) = e , 7 5(1) =

that is, 5(1) € K. Since K is connected we can join (1) to e by a curve inside
R’ . Since v is clearly homotopic to a curve which is constant near 1 we can therefore
assume that (1) = e. Now since ¥ is homotopic to the constant loop the same is
true for v = 7o 7.
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Now let us show that A is symmetric. In fact the symmetry so a o is induced
by 0 : G — G, that is,

Clearly
so(gp) = Log) 0 50(p), 9€G, peM,

hence

spoLg =1L osq, Vged.

o(g)
It follows easily from this and the definition of the metric that so : M — M is an
isometry. To see that sg is the geodesic symmetry at o it is enough to observe that
sox = —id : T,(M) — T,(M) which is obvious since by definition sy7 = mo and
since a*\p = —id. The symmetry at p = gK is clearly s, = Ly osgo Ly-1. It
follows that M is at least locally symmetric and it remains to see that M is complete.
However, this follows simply because the symmetries s, are globally defined. In fact
suppose v : (a,b) — M is a maxima geodesic and choose ¢y € (a,b) near b. Then
with p = ~(ty) the geodesic

Sp (v(2tg — 1)), 2t — b <t < 2ty — a,

agrees with the geodesic y on theinterval |t — ty| < b—ty. Therefore~y can be prolonged
to the interval (a, 2ty — a) which is larger than (a,b) for ¢y > C‘Qi” contrary to the
maximality. This proves that M is complete, and hence is a globally symmetric space.

Now let GGy as before denote the connected component of the isometry group of
M. The involution o¢ of Gg is given by

Uo(h):SOOhOSO, h € Gy.

Let go be the corresponding Lie algebra with involution ogx. clearly there is a natural
map L : G — Gg sending g to L,, and as shown above

L =590 Lgosy=o09(Ly), geG

a(g)

so L and hence L, : g — go preserve the involutions. Also if 79 : Gog — M is
evaluation at o clearly m = my o L and since m.|p and mo.|p, are both isomorphism onto
T,(M) it follows that L, : p — pg is an isomorphism.

Now let a C g be the kernel of L.. Then a is an s—invariant ideal of g, hence
a=antd@anyp. Butsince L, : p — pp isan isomorphismanp =0 so a C ¢ and
hence a = 0 by assumption. Hence L. is injective, which proves the theorem.

Remark 1

It follows that the kernel Z C G of L isadiscrete invariant subgroup of G contained
in K, soif weput G = G/Z, K = K/Z, then M = G/K and here the map
L: G — Iy(M) is injective.
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Remark 2

In general we cannot expect L to be onto. In fact any Euclidean orthogonal
involutive Lie algebra gives M = R" as the associated symmetric space and here
Io(M) is the whole Euclidean group.

Definition 11.13.

An orthogonal involutive Lie agebra (g, s, Q) is caled maximal if it is not a
subalgebra (in the sense of definition 11.9) of any bigger one.

Corollary 11.14

There is a 1-1 correspondence between simply connected symmetric spaces and
maximal orthogonal involutive Lie algebras.

Proof

Suppose (g, s, Q) is maximal then by definition L. : g — go in the proof of
theorem 11.11 is onto.

Now suppose M is a simply connected symmetric space. We must show that
the associated orthogonal involutive Lie algebra (g, s, Q) is maxima. But suppose
(¢, §', @) is any bigger one and let M’ be the associated symmetric space. Then
since p = p’ the spaces M and M’ are isometric by theorem 11.6 and theorem 8.20
and hence by theorem 11.12, g’ C g.
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Chapter 12 SEMI-SIMPLE LIE ALGEBRAS
AND LIE GROUPS

For the study of orthogonal involutive Lie algebras we need a few facts from the theory
of semi-simple Lie algebras.

Let g be a Lie agebra. The Killing form B on g is the symmetric bilinear form
defined by

B(X,Y) =trace ((ad X)o (adY)) X,Y €g.

Clearly B isinvariant under automorphism of g, that is, if 0 : g — g isan automorphism
then B(oX,0Y) = B(X,Y), X,Y € g. Also B isad(g)—invariant, that is,

B(Z,X],Y)+B(X,[Z,Y])=0, X,Y,Zeg

Definition 12.1
g is caled semi-simple if B is non-degenerate, i.e,, if

B(X,Z)=0 VXeg=27Z=0.

g is called smple if it is semi-simple and has no proper ideals.
A Liegroup iscalled semi-simple (simple) if its Lie algebrais semi-simple (smple).

Remark

If a C gisanideal thenitis easy to see that the Killing form of a is the restriction
of the Killing form of g.

Lemma 12.2
If g is semi-simple then it has no non-zero Abelian ideal.

Proof
Suppose a C g is an Abelian idedl, that is, [a, a] = 0. Then for Z € a and X € g,

ad(Z)ad(X)(a) =0, ad(Z)ad(X)(g) C g

hence B (Z, X) = trace (ad (Z)ad (X)) = 0. So since g is semi-simple a = 0.

Lemma 12.3
Let g be semi-simple and a C g an ideal. Let

aL:{Xeg‘B(X,Z)zo VZea}.
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Then at is anideal and g = a @ a' as Lie algebras. Furthermore a and at are
semi-simple.

Pr oof
Since

B(IY,X],Z)= —-B(X,[Y,Z]) =0, Xea', Yeg
Z € a,

at is an idea. Hence also a N at is an ideal. Also
B([X,Y],Z)= —B(Y,[X,Z]) =0, Zeg,Yeal,6 Xeauq,
so anat is Abelian; hence a N at = 0 by lemma 12.2. Thisproves g = a & at as

Lie algebras. It follows that Bla  (or B|at) is non-degenerate, hence by the remark
above a is semi-simple.

Corollary 12.4
If g is semi-simple then

g=0g05...0 g,

as Lie algebras, where go, ..., g, are all the simple ideals of g.

Proof
Clearly by lemma 12.3 we can decompose g into a direct sum of simple ideals.
Now suppose a C g is a simple idea different from g; , ¢ = 0 , ...r. Then

ang;=0 Vi; butthen[a,a] C [g,a] =0s0a=0.
For a Lie algebra g the center 3 is defined as
3={Xecg|[X,Y]=0 VYeg}
We then obviously have

Corollary 12.5
Let g be semi-simple. Then

a) The center of g is zero.

ad(g). In particular g is isomorphic to the Lie algebra of the Lie group

b) g =
Int (g) C Gl(g).
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Recall that in general Int (g) does not have the topology induced from Gl(g).
However, for g semi-simple Int (g) is a closed subgroup as we shall now see:

Let Aut (g) C Gl(g) be the group of automorphisms of g. Thisis clearly a closed
subgroup, and so is a Lie group. The Lie algebra is easily seen to be the set of
derivations, Der (g) C End(g). That is, D is a derivation if

DIX,Y]=[DX,Y]+[X, DY], X,Y¢€g.

By the Jacobi identity ad (g) C Der(g).

Proposition 12.6

If g is semi-simple then ad(g) = Der(g). In particular Int (g) is the identity
component of Aut (g).

Proof
The second statement clearly follows from the first. Now

[D, ad X] = Doad(X) —ad (X) o D = ad (DX),

hence a = ad (g) isanidea of Der (g). Since a = g the Killing form is non-degenerate
ona. Let a*+ C Der (g) betheidea of Der (g) “orthogonal” to a under B. Then clearly
anat = 0. It follows that

D, ad X]=ad(DX)=0 VXecg,Dca

Hence DX =0 VX € g, s0 alt = 0 which proves the proposition.

Proposition 12.7

Let g beaLiealgebrawith center 3 andlet ¥ C g be a subalgebra suchthat 3n¢ = 0.
If € is compactly embedded then B \ £ is negative definite.

In particular a semi-simple Lie algebra is compact iff B is negative definite.

Pr oof

By assumption we have a positive definite symmetric bilinear form @ on g invariant
under ad(®). For T € ¢, ad(T) is therefore given by a skew-symmetric matrix with
respect to an orthogonal basisfor ). Hencead T hasimaginary eigenvaluesily, . .., i)
and it follows that

B(T,T) =trace (adT) o (adT)) = —%; M2 <0
unless ad7 = 0, that is, unless 7 € €Nz = 0.
Theorem 12.8
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Let G be a semi-simple Lie group with Lie algebra g. Then G is compact iff g is
compact.

Sketch proof
As remarked before = is trivial.
<. It is clearly enough to consider G simply connected. Then the adjoint

homomorphism
Ad: G — Int(g)

is the universal covering and the kernel is the center Z of G. So we must prove that
if G is semi-simple and G/Z is compact then Z is finite. We can clearly give G/Z a
bi-invariant metric, and it follows that the induced metric is bi-invariant, that G/Z and
hence G is complete and that the geodesics of G through e are exactly the one-parameter
subgroups. Now suppose Z is infinite and choose z, € Z such that

d(zp,€) — o0, n — 00.
Let X,, € g suchthat || X,| = 1 and
exp t, X, = zn for some t,, € R.

By going to a subsegquence we can assume that { X,,} converges, i.e. let X = lim X,.

n—oo

One can then prove that span {X} C g is in the center of g contradicting the semi-
simplicity of g. We refer to Helgason [chapter |1, § 6] for details.

Until now we have studied simple and semi-simple Lie algebras over R. These
notions, of course, aso make sense over C. Now let g be a real Lie algebra and let
gc = g @r C be the complexification, i.e. as area vector space gc = g ¢ ig and

(X, iY] = —[X,Y], iX,Y] = [X,iY] =iX,Y], X,Yecg.

Proposition 12.9
Let g be a real Lie algebra.

a) g issemi-simple iff gc is semi-simple.

b) Suppose g issimple. Then g¢ is not simple iff g is the underlying real Lie algebra
of a complex Lie algebra.

Proof
a) is straightforward.
b) First assume that g¢ is not ssimple and write

gc=90®... g, r2=1,
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as in corollary 12.4, where go,..., g, ae complex ssimple ideals in gc. For each
i=20,1,...,r, we consider the homomorphism of real Lie algebras ¢; : g — g, defined
as the composition of the inclusion g C g¢ and the projection onto the i-th factor.
Clearly ¢; is non-zero and since g is simple ¢; is injective. In particular, for each i,

dimc gc = dimH g < dimH g4; = 2 dimc di-

It follows that » = 1 and dim¢ g; = %dimc gc. Hence dimg go = dimg g and ¢y :
g — go IS an isomorphism over the reals. Thus g is isomorphic to the real Lie algebra
underlying go.
On the other hand let h be acomplex Lie algebraand let g be the underlying real Lie
algebra. Also let j : g — g be the R-linear map given by multiplication by +/—1 on b.
Then the complexification gc = g @ ig has a non-trivial ideal consisting of all
elements of the form v 4+ ijv, v € h, so indeed g¢ is not simple.

Definition 12.10

Let g beacomplex Liealgebra. A real formof g isasubalgebra gy of the underlying
real Lie algebra of g such that g = go & igo.

Equivalently a rea form gy is the set of fixed points for an anti-linear involution
o of the underlying real Lie algebra of g. Here o : g — g is anti-linear if

c(AX)=Xo(X), Xeg,eC,

and \ is the complex conjugate of A. ¢ is called the conjugation of g with respect to
go. We state without proof (see Helgason [chapter 3 § 6]) the following:

Theorem 12.11
Every complex semi-simple Lie algebra has a compact real form.

We prove that the compact real form is unique in some sense. More generally
we have:

Proposition 12.12

Let go be a semi-simple real Lie algebra and let g be the complexification. Let u
be a compact real form of g and let o and 7 be the conjugations of g with respect to
go and u respectively. Then there is ¢ € Int (g) such that the compact real form ¢u
is invariant under o.

Pr oof

Notice that the conjugation with respect to ¢uism = éré~! and that ¢u is
o—invariant iff oy = To.
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Since u is compact we can define a Hermitian inner product ( -, - ) on g by
(X,Y)= —B(X,7Y), X, Yeag.
Now let N = o7 and it is easy to see that
(X,NY)=(NX,Y), X, Yeg.

Observe also that 7N = N~ Clearly the self-adjoint operator P = N? has positive
eigenvalues so that the one-parameter group of automorphisms

P'=Exptlog P, t €R,

is well-defined. It follows that P* € Int(g). Again P!t = P~
We want to use Pi as ¢. So let 7, = PPt Then

oy =oP'rPt = ogrP% = NP~%
rio = P'tP o = PN~ = NT1p¥ = Np?]

Hence for ¢t = i , o = 110 and the proposition is proved.

Corollary 12.13
Let g be a complex semi-simple Lie algebra. If ug and u; are compact real forms
then there is an automorphism ¢ € Int(g) such that ¢uy = u;.

Pr oof

Let 79 and 7; be the conjugations with respect to uy and u; respectively. By the
proposition we can assume that u; is invariant under 7o and so

U =ugnNuy @ (iuo) N uy.

But since B is negative definite on u; and positive definite on iuy we have iug Nu; =
0souy = uy.

Remark

It follows from this and the theorem 12.8 and 12.11 that the classification of compact
semi-simple ssmply connected Lie groups is equivalent to the classification of complex
semi-simple Lie algebras.

We now turn to the study of non-compact semi-simple Lie algebras and show that
this is closely related to the study of orthogonal involutive Lie algebras.

Let g = goc be areal semi-simple Lie algebra, let g = go be the complexification
and let 7 be the conjugation with respect to gq. Now let u be a compact real form with
corresponding conjugation o of g. By proposition 12.12 we can assume that ¢ and 7
commute or equivalently that gy is o—invariant. Then

go=%®po, ELo=goNu, po=goNiu
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is the eigenspace decomposition of go with respect to ¢. This is caled a Cartan
decomposition of go. Notice that B|pg is positive definite. It follows that the bilinear
form @ defined on gy by

Qo= —B, Qlpo=DB, Q(ty,pg)=0

is positive definite and ad(®y)—invariant. Therefore &, is compactly embedded in
go if just Int(€g) is closed in Gl(gg). But this is obvious since Int(¥) is the identity
component of the subgroup of Int(gg) fixed by the involution ¢ — oo goo.

Therefore the triple (go, o|go, B|po) has all the properties of an orthogonal invo-
lutive Lie algebra except that £, may contain a non-zero idea of gy. This may very
well happen if g¢ in the decomposition of corollary 12.4 contains a compact ideal. We
therefore restrict to ssimple Lie-algebras:

Corollary 12.14

If go isa non-compact simplereal Lie algebra then there isa corresponding orthogo-
nal involutive Lie algebra (go, o, Q) such that go = £ & po isa Cartan decomposition
of gg. The bilinear form @ is the restriction to pq of the Killing form B.

Exercise 12.15

Show that a Cartan decomposition is unique up to isomorphism with an element
o € Int(go).

Example 12.16

Suppose g is a complex semi-simple Lie algebra and let € C g be a compact real
form. Then it is easily seen that the underlying real Lie algebra of g is also semi-smple
and that g = @it isa Cartan decomposition (p = it). Notice also that if g issimple then
the underlying real algebrais also simple so this gives an example of corollary 12.14.
(In fact suppose a C g isareal ided, then ania and a + ¢a are complex ideals so by
smplicity g = a®ia. But then [ia, a] C iana =0 so aso [a,a] = 0; hence [g,g] =0
which contradicts the semi-simplicity of g.)

Exercise 12.17

Describe the Lie algebra and its Cartan decomposition for the following non-
compact simple groups:

a Sl(n,R) : The group of n x n matrices of determinant one.

b) SO(p,q): The group of matrices of Sl(p + ¢, R) which leaves invariant the sym-
metric bilinear form:

—T1Y1 — T2Y2 — ... — TpYp + Tp41Yp+1 + oo o F+ TprqYptq-
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c) Sp(n,R) : The group of matrices of Gl(2n,R) leaving invariant the alternating
bilinear form

T1Yn+1l — Tn+1¥Y1 + T2Yn+2 — Tnt2y2 + ..o + TpYon — T2nYn.
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Chapter 13 THE STRUCTURE OF ORTHOGONAL
INVOLUTIVE LIE ALGEBRAS

In this chapter we shall reduce the classification of orthogona involutive Lie algebras
(and equivalently of simply connected symmetric spaces) to that of compact simple
Lie algebras and their involutions. In particular we shall establish a duality between
symmetric spaces of compact and non-compact type generalizing the classical “duality”
between spherical and hyberbolic geometry.

Recall that an orthogonal involutive Lie algebra is a triple (g, s, Q) where s is
an involution of the Lie algebra g, and if € and p denote the +1 and —1 eigenspaces
of s, then @ is a positive definite symmetric bilinear form on p. Furthermore @ is
ad(®)-invariant, ¢ is compactly embedded in g and finally no non-zero ideal of g is
contained in . Also B denote the Killing form on g.

We need the following 3 lemmas:

Lemma 13.1
a B(tp) = 0.
b. B|t is negative definite.

c. Ifu, o Cpare ad(¥)—invariant subspaces such that B(u, to) = 0 then [u, ] =
0.

Proof
a) Clearly B is s—invariant so B(X,Y) = —B(X,Y)for X € ¢, Y € p.
b) follows from proposition 12.7 provided £ does not contain any element in the

center of g. But suppose X is such an element then span {X} is a one-dimensiona
ideal of g contained in &, which is a contradiction.

L Xecu,Yew, Z=[X,Y]e€t ThenW =Y, Z] € . Hence
B(Z,Z)=B([X,Y],Z) =B(X,W)=0

and hence Z = 0 by b).

Lemma 13.2
Let 3 = {Z € g| [Z,p] =0}
Then 3 is an Abelian ideal contained in p. Furthermore g is semi-simple iff 3 = 0.

Pr oof

169



3 isanided: Infact [p, 3] = 0 by definition, and if X € £ and Z € 3 then
[[Xa Z],Y] = _[[Za Y]aX] - [[Ya X]7Z] = 07 for Y e p

0 [X, 7] € 3.
Also 3N tisanidea so3 N & = 0. On the other hand 3 is s—invariant so
3 =3Np C p. Hence 3 is Abdlian.
It follows that if g is semi-simple then 3 = 0 by lemma 12.2. On the other hand
suppose g is not semi-simple. Then
n={Xeg|BX,)Y)=0VY € g}

is an s—invariant ideal and by lemma 13.1, b) nnN €t =0 so n C p. Hence by lemma
13.1, ¢), [n,p] = 0 so n C 3. Therefore n non-zero gives 3 # 0.

Lemma 13.3

Suppose g is semi-simple. Then € = [p, p| and (g, s, Q) isa maximal orthogonal
involutive Lie algebra.

Proof

Notice that if (g, s, Q) C (g, 3, Q) and g is semi-simple then also g is semi-
simple by lemma 13.2 because p = p. It is therefore enough to prove ¢ = [p, p], since
then also & = [p,p] = [p,p] = L.

Solet h = [p,p] +p C g. By the Jacobi identity [, 5] C b and clearly [p, h] C
h so b is anideal of g. Let h* be the orthogonal complement with respect to B. So
g="hobhtand [h,ht] = 0. In paticular b+ C 3 = 0. Hence h = g.

Definition 13.4

(g, s, Q) is cdled irreducible if it is not Euclidean and if p does not contain a
proper ad(®)—invariant subspace.

We can now prove:

Theorem 13.5
Let (g, s, Q) beanorthogonal involutive Liealgebra. Then thereisa decomposition

g=00091D... DG
into a direct sumof s—invariant ideals, such that there are corresponding decompositions
t=tote..al

and
P=poDp1O...0p  (Qpi,p;) =0, i #j)
of £ and p, and such that
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1 (go, S|g(), Q|p0) is Euclidean,

2. (gi, s|gi, Q|pi), i > 1, areirreducibleand g;, i > 1, are semi-simple.

Furthermore the decomposition is unique up to a permutation of the irreducible
factors.

Pr oof
Define a : p — p by

B(X,Y) =Q(aX,Y), X,Y € p.

Then clearly a hasreal eigenvalues \g = 0, A1, ..., A, 7 > 0. Let pg be the eigenspace
belonging to Ao = 0 and let p, be the eigenspaces belonging to \; # 0, ¢ > 0.
Clearly po and p., i = 1,...,r, are mutually orthogonal (with respect to Q). Each
p’ we split into an orthogonal sum of irreducible ad(€)—invariant subspaces. So let
P1,....pt, t > 1, beadl these ad(t)—invariant subspaces and let \,..., \; be the
corresponding eigenvalues for a. By construction

P=pPoSpP1D... 0Pt

is an orthogonal direct sum with respect to @ and since B|p; isamultiple of @ we have

B(pi, pj) =0, i#j, i,j20.
It follows by lemma 13.1, c) that

[pi, pj] =0 i#J, 4,j=0.
Now define

gi = [pi. Pl +pi, i1
By construction and by the Jacobi identity g; are ad(®)—invariant. Similarly
gi, pj|=0, i#j, 121,520

Hence g;, ¢+ = 1,...,t, are ideds and

9i. 9] =0 i#j,4,j>1

For i > 1, Blp; = X\ Q with \; # 0 and B|[p;, p;] is negative definite. Hence
, iIs non-degenerate, i.e., g; is semi-simple. Let

=
2
(V4
—_

g=019...9 0.

Then clearly ¢’ is a semi-simple ideal so if gy = {X € g| B(X,¢') =0} then g =
go @ g
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Again go isan s—invariant ideal and pNpy = po by definition. Also let &g = £ngo.
Then gy = & @ po and since B(pg, p) = 0 we conclude from lemma 13.1, c) that
[po, p] = 0 soin particular (go, s|go, Q|po) is Euclidean. This proves the existence
of a decomposition.

To prove the uniqueness first notice that py , p1,...,p: mMust necessarily be
eigenspaces for the operator «, so in particular the decomposition

p=podp, wherep'=pia...®p,

is unique. It follows that the decomposition of (g, s, @) into a Euclidean and a semi-
simple part is unique. We can therefore assume g semi-smple. Notice also that
(g, s, Q) is irreducible iff there is no decomposition g = g; & go into s—invariant
ideals. It follows using corollary 12.4 that if (g, s, Q) is irreducible and g is semi-
simple then either g issimple, or g = Hh o h, with h a simple idea of g and s
interchanges the factors. Therefore if g is semi-simple with involution s it follows
easily from corollary 12.4 that g has a unigue decomposition into s—invariant ideals
(up to a permutation) which proves the uniqueness of the decomposition in the theorem.

Remark

It follows from theorem 13.5 that if (g, s, @) is an orthogona involutive Lie
algebrathen g = go @ g’ with g’ semi-simple and g, a subalgebra of the Lie algebra of
the Euclidean group. Hence by corollary 12.5 g is the Lie algebra of some Lie group.
This proves proposition 11.11.

Using the 1-1 correspondence between orthogonal involutive Lie algebras and
simply connected symmetric spaces we can also give ageometric formulation of theorem
13.5: We say that asimply connected symmetric spaceisirreducibleif the corresponding
orthogonal involutive Lie algebra is irreducible.

Theorem 13.6
A simply connected symmetric space M has a unique decomposition

M = My x My X ...x My, t>0,

such that M is some Euclidean space and M; , ¢ > 0, isirreducible.

In particular M isirreducible iff A is not Euclidean and does not factorize into a
product of symmetric spaces.

We shall now investigate the irreducible orthogonal involutive Lie algebras. For
this we introduce the notion of “duality”:

Suppose (g, s, @) isan orthogona involutive Lie algebra. Let gc be the complex-
ification of g, and let s also denote the extension of the involution to gc-. Asusual g =
t © p and consider the real vector space

g°=toipCgc.
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g* is clearly an s—invariant subalgebra of g¢. Define @* on i p by
Q" (X, Y)=Q(:HX,iY), X, Y ep,
and let s* = s|p*. Then it is straightforward to see that
(9, 5, Q) =(g", 5" Q")

is again an orthogonal involutive Lie algebra (g*, s*, @) is caled the dual of
(g, s, Q). Obviously

(8,5, Q)" = (g, s, Q)

Lemma 13.7

1 If
(ga S, Q) = @ (gla Sty Qz)

(3

as in theorem 13.5, then

(g*a S*a Q*) = @ (g;kv 32(7 Q;k)

(3

2. (9,5 Q)" = (9,5 Q) iff (9, s, Q) is Euclidean.
3. (g, s, Q) isirreducible iff (g*, s*, Q") isirreducible.

4. 1If (g, s, Q) isirreducible then precisely one of g or g* is compact.

Proof
1) and 3) are obvious.

4) By the proof of theorem 135, Blp = AQ, A # 0.HenceBlip =
—AQ, soeither Blp or Blip is negative definite (and not both are). Now by lemma
13.1 BJ¥ is negative definite so 4) follows from proposition 12.7.

2) If (g, s, Q) isisomorphic to its dual, then it cannot have any irreducible factors
by 4).

Definition 13.8

If g is compact then (g, s, ) and the associated symmetric space M is said to
be of the compact type. If g is not compact then (g, s, Q) and M are said to be of
the non-compact type.

Remar k
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By theorem 12.8 a symmetric space of the compact type isin fact a compact space.

The compact and non-compact types are aso distinguished by the sectional cur-
vature:

Proposition 13.9

Suppose M is an irreducible symmetric space with associated orthogonal involutive
Lie algebra (g, s, @). Let p be identified with the tangent space 7,,M at the point p.
Then the sectional curvature for a two plane S C p is given by

KP(‘S) = /\B([X’ Y] ) [Xv Y])a

where {X, Y} is an orthonormal basisfor S and A # 0 is given by A Blp = Q.

In particular K,(S) > 0or < 0 according to whether M is of the compact or
non-compact type.

Pr oof
As noticed above there is A # 0 such that A B|p = Q. Then

K’P(S) = _Q(R(X’Y)Xv Y) = /\B([[Xv Y],X],Y)
= AB([X,Y],[X,Y]).

Now [X, Y] € & and B|t is negative definite. Hence K,(S) and A have opposite sign
and since M is of the compact type iff A < 0 this proves the proposition.

Remark

One can prove that if M is simply connected and has non-positive sectional
curvature then exp,, : T,(M) — M is a diffeomorphism (see e.g. Helgason [chapter |,
§ 13] or Milnor, [theorem 19.2]). In particular a sSimply connected symmetric space of
the non-compact type is diffeomorphic to Euclidean space.

We now have the following classification of the irreducible orthogona involutive
Lie algebras:

Theorem 13.10

The irreducible orthogonal involutive Lie algebras (g, s, @) fall into the following
4 digoint classes:

|. gisacompact simpleLiealgebra, s isanautomorphismof order 2, Q@ = AB|p, A <
0.

Il. g = L& L, L isacompact simple Lie algebra, s(X,Y) = (V,X), XY €
L and Q = ABlp, A < 0.
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[11. g is a non-compact simple Lie algebra and g¢ issimple. g = ¢ @ p is a Cartan
decomposition and @ = AB|p, A > 0.

V. g is the underlying real Lie algebra of a complex simple Lie algebra, and ¢ is
a compact real form. Again g = € © it is a Cartan decomposition with p =
itand@ = AB|p, A > 0.

Classes | and Il are the ones of compact type and classes Il and IV are the ones
of non-compact type. Furthermore duality interchanges class | and I11 and interchanges
class Il and IV.

Pr oof

Since in al these classes g cannot be decomposed into smaller s—invariant ideals,
(g, s, Q) isirreducible in all cases. Also it is clear from the above that Q = A Blp
with A < 0 in the compact cases and A > 0 in the non-compact cases.

Now suppose (g, s, Q) is irreducible and g is compact semi-simple. Then as
remarked in the proof of the uniqueness of the decomposition in theorem 13.5, either g
issimple in which case we areinclass |, or g = £ & £ where £ isa simple idea and
s interchanges the factors. Since g is compact also £ is compact and we arein class 1.

Also it follows using proposition 12.9 that
I* CHI and IT* C 1V,

and that 11l and IV are digoint.

By duality every irreducible orthogonal involutive Lie algebra with g non-compact
is either in 1" or 1I" hence either in 111 or IV and it follows that I = 11l and II" =
IV. This ends the proof.

An irreducible symmetric space is of course said to be of class I, II, Il or IV
according to the class of the associated orthogonal involutive Lie algebra. Thus the
symmetric spaces of class|l are exactly the simply connected simple compact Lie groups
with a bi-invariant metric. By duality the classification of these is equivalent to the
classification of complex simple Lie agebras, which is given by the so-called Dynkin-
diagrams (see e.g. Humphreys [3]). For a complete classification of the symmetric
spaces of class | (or by duality of class I11) see e.g. Helgason [chapter 10, § 6] or Wolf
[chapter 8, 8§ 11]. Notice that this also gives a classification of the non-compact simple
Lie-algebras by corollary 13.13 and the exercise 12.15.

Exercise 13.11

Each Cartan decomposition of the Lie algebras considered in exercise 12.17 gives
rise to an irreducible symmetric space of type I11. Describe in each case the correspond-
ing dual symmetric space of the compact type I.
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