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0. Introduction

This is intended as a rapid introduction to basic Riemannian geometry with min-
imal prerequisites. In contrast to all other books on the topic, the basic theory
of di�erentiable manifolds is not a prerequisite nor a topic which is treated �rst.
Rather, the theory of smooth manifolds emerges naturally halfway through the text,
in the passage from local to global considerations, and is only treated then with this
as motivation.
The idea behind our approach is to begin with local Riemannian geometry from

the point of view of special metric spaces. The only prerequisites needed for this
are basic linear algebra, analysis and metric spaces. The obvious length metric on
say the graph in Rn � R of a smooth function f : Rn ! R serves as the motivation
for the general concept of a Riemannian patch (which is nothing but a Riemannian
metric on an open subset of Rn). In this context, geodesics de�ned as locally shortest
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2 KARSTEN GROVE

curves (parametrized by arclength) are easily seen to exist. - The �rst variation of
arclength formula for smooth curves motivates the concept of connections and the
exponential map. Via theGauss-lemma one then sees that the metrically de�ned
geodesics are actually smooth curves satisfying the second order geodesic equation
used to construct the exponential map. Likewise it follows that isometries, i.e. dis-
tance preserving maps, between Riemannian patches are smooth, a key observation
in the passage from local to global Riemannian spaces. Indeed, a metric space which
is locally isometric to a Riemannian patch, is in particular a smooth manifold. This
allows us to carry over immediately all considerations for Riemannian patches to
global Riemannian spaces, i.e. Riemannian manifolds . In particular, the essential
notions of curvature (introduced as a measurement for the deviation of the expo-
nential map form being an isometry), Jacobi �elds and parallel transport carry over
to global spaces since they are isometry invariants.
Once the global notions are in place, the equivalence between metric and geodesic

completeness is proved. This so-called Hopf-Rinow theorem is the germ of most
if not all global results in metric di�erential geometry. Two of the most classical
results concerning relations between geometry and topology, the Hadamard-Cartan
and the Bonnet-Myers theorems, are easily obtained at this relatively early stage in
our treatment.
A general pedestrian (but possibly terse) treatment of bundles, forms and tensors

in general is given primarily for the purpose of submanifold theory and relative curva-
ture (second fundamental form). The Theorema Egregium is used to provide explicit
models for spaces of constant curvature. The dual notion of Riemannian submersions
and the corresponding Gray-O'Niell formula is treated with the immediate purpose
of discussing homogeneous spaces.
We have chosen to terminate our treatment at this point, where Riemannian

geometry bifurcates into many di�erent directions. One of these, now referred to
as comparison theory has been the driving force behind our point of view in this
geometric introduction to Riemannian geometry.
As an introduction to the subject it is important to stress that the problems form

an integral part of the text. In an attempt to strive for clarity in the exposition,
details of proofs are often deferred to the problems. - The notes are based on
one semester courses taught at the University of Maryland and at the University of
Aarhus. It is a pleasure to thank the students at both universities for their important
input. The �nal draft of the notes was written while on sabbatical at the University
of Aarhus during 1996/1997. I am grateful for the support an excellent research
atmosphere provided by the mathematics department.

1. Riemannian length and distance

Recall that the euclidean distance between points x = (x1; : : : ; xn) and y =
(y1; : : : ; yn) in Rn is given by

(1.1) �(x; y) = kx� yk = hx� y; x� yi 12 =
 

nX
i=1

(xi � yi)
2

! 1
2

:

In terms of this, the euclidean length of a (continuous) curve c : [a; b] ! Rn is
de�ned as
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(1.2) L0(c) = supL0(P ) = sup
kX
i=1

�(c(ti�1); c(ti));

where the supremum is taken over all partitions P = fa = t0 < t1 < � � � < tk = bg
of [a; b]. Clearly any parameter change of c yields a curve with the same length.
Moreover

(1.3) L0(c) = L0(cj[a;t]) + L0(cj[t;b]);

for any t 2 [a; b], and

(1.4) L0(c) � L0(cj[a1;b1]);

whenever [a1; b1] � [a; b]. In particular, cj[a1;b1] has �nite length if c does. Such curves
are called recti�able. Any C1-curve, c is recti�able, in fact

(1.5) L0(c) =

Z b

a

kc0(t)kdt;

where c0 : [a; b]! Rn is the derivative, c0(t) = d
dt
c(t) of c. Clearly

(1.6) �(c(a); c(b)) � L0(c)

for any curve c, with equality if and only if c is the line segment from c(a) to c(b).

Now let U � Rn be a connected open subset in Rn . If con�ned to U , the induced
euclidean distance is not a reasonable measure for the distance between points in U ,
unless it is convex. Instead de�ne

(1.7) dist0(x; y) = inf L0(c);

where c : [a; b] ! U joins x and y, i.e. c(a) = x and c(b) = y. Here it is suÆcient
to take the in�mum over curves c that are piecewise regular. A continuous curve
c : [a; b] ! U � Rn is piecewise regular provided [a; b] admits a partition a =
t0 < t1 < � � � < tk = b such that the restriction cj : [ti�1; ti] ! U , is C1 with
c0j 6= 0; i = 1; : : : ; k. Clearly

(1.8) dist0 � �

also de�nes a metric on U with the same topology.
More generally consider a function f : U ! R of class Ck; k � 1. Any curve c on

the graph of f in U �R � Rn+1 is of the form c(t) = (c1(t); f Æ c1(t)) for some curve
c1 in U . Moreover, if c1 is C

1

(1.9) L0(c) =

Z b

a

(kc01(t)k2 + (f Æ c1)0(t)2) 12dt =
Z b

a

(gc(t)(c
0
1(t); c

0
1(t))

1
2dt;

where for each x 2 U; gx is the inner product on Rn de�ned in terms of the
euclidean inner product h; i by gx = h; i ÆD(id; f)x �D(id; f)x. This motivates the
following

De�nition 1.10. A riemannian Ck-structure on an open set U � Rn is a Ck-map
g, which to each x 2 U assigns an inner product on Rn . The pair (U; g) is called a
riemannian patch.
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If e1; : : : ; en is the standard basis for Rn , the inner products

(1.11) gij = g(ei; ej); i; j = 1; : : : ; n

determine g completely. These coordinate functions are all Cr. Let Gx : Rn ! Rn
be the symmetric linear map, whose matrix with respect to e1; : : : ; en is fgij(x)g.
With this notation

(1.12) gx(u; v) = hu;Gxvi
for all x 2 U; u; v 2 Rn .
Although less will often do, we assume for convenience that all maps considered

(including riemannian metrics, g) are smooth, i.e. C1, unless otherwise explicitely
stated.
The (riemannian) length of a piecewise C1-curve c : [a; b]! U is de�ned as

(1.13) L(c) =

Z b

a

�
gc(t)(c

0(t); c0(t))
�1
2 dt:

We will only use subscripts as e.g. Lg, if we need to be speci�c about the riemannian
structure. As in (1.7), if U is connected, we de�ne the (riemannian) distance between
x; y 2 U by

(1.14) dist(x; y) = inf L(c);

where the in�mum is taken over all piecewise regular curves joining x and y in U .
Comparing g with a (constant) euclidean inner product shows that

(1.15) dist : U � U ! R
is a metric whose topology coincides with the original one on U .

Example 1.16. Let (U; g) be any riemannian patch and f a positive function on
U . Then (U; f � g) is another riemannian patch. Two such patches are said to be
conformally related. An important special case that can be described that way is
the socalled hyperbolic space. Here U = fx 2 Rn j kxk < 1g is equipped with the
riemannian structure

gx =
4

(1� kxk2)2 h; i;
also called the Poincar�e metric.
We will see that the hyperbolic space, together with the euclidean space and the

sphere are the simply connected model spaces, i.e. spaces of constant curvature.

Problem 1.17. Prove (1.3), (1.4), and give an example of a non-recti�able curve.

Problem 1.18. Prove (1.6), (1.15) and the statements following them.

Problem 1.19. Prove the claim following (1.7).

Problem 1.20. Show that any ((a; b); distg) is locally isometric to ((a; b); �1). Is it
true globally?

Problem 1.21. Extend the situation in (1.9) to the case where f : U ! R is
replaced by a Ck map F :! Rm (It follows from Nash's embedding theorem that
any riemannian path can be obtained this way).
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2. Geodesics

In analogy with (1.2) we can de�ne the length of any continuous curve c : [a; b]!
(U; dist) by

(2.1) L(c) = sup
kX
i=1

dist(c(ti�1); c(ti));

where the supremum is taken over all partititions a = t0 < � � � < tk = b of [a; b].
Again taking inf L(c) over all curves with �xed endpoints de�nes a metric which in
general is larger than the original one. In our case, however

(2.2) dist(x; y) = inf L(c);

where the in�mum is taken over all continuous curves c from x to y in U . A metric
space with this property is called a length space (or inner metric space).

A normal geodesic in (U; dist) is a curve c which is locally distance preserving i.e.
for any t in the domain of c

(2.3) dist(c(t1); c(t2)) = jt1 � t2j
whenever t1 and t2 are suÆciently close to t. A geodesic is a curve which up to an
aÆne change of parameter is a normal geodesic. A geodesic c : [a; b] ! U is called
minimal if dist(c(a); c(b)) = L(c). Since U is locally compact, the following yields
the existence of "short" minimal geodesics.

Lemma 2.4. For x 2 U choose " > 0 so that the ball B(x; ") = fy 2 U j dist(x; y) <
"g has compact closure. Then any y 2 B(x; ") can be joined to x by a minimal
geodesic.

Proof: Select a sequence of curves cn : [0; 1] ! U parametrized proportional to
arc length, such that cn(0) = x; cn(1) = y and L(cn) ! dist(x; y). Then fcng is an

equicontinuous family. Moreover, for n suÆciently large cn([0; 1]) � B(x; "). By As-
coli's theorem a subsequence fcnkg of fcng converges uniformly to a continuous curve

c : [0; 1] ! B(x; ") from x to y. Moreover, L(c) = dist(x; y) and c is parametrized
proportional to arc length. �

The key point in the above proof is that all cn map into a compact set for n large.
In particular, if the closure of any ball in (U; dist) is compact, any two points can
be joined by a minimal geodesic.
The following is a generalization of the Heine-Borel theorem for Rn .

Theorem 2.5. Suppose the riemannian patch (U; g) is a complete metric space.
Then every closed and bounded set is compact. Moreover, any two points in U may
be joined by a minimal geodesic.

Proof: We need to show that every closed ball

(2.6) B(x; r) = fy 2 U j dist(x; y) � rg
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is compact. Since U is locally compact, it suÆces to show that B(x;R) is compact

provided B(x; r) is compact for all r < R. Now let fxng be any sequence in B(x;R).
Since

(2.7) dist (B(x; r1); B(y; r2)) � dist(x; y)� r1 � r2

for any x; y 2 U and r1; r2 positive, we see that B(x;R � ") \ B(xn; 2") 6= � for
every 0 < " < R. Let f"pg be a decreasing sequence of positive numbers such that
"p ! 0. For each p, pick ypn so that

ypn 2 B(x;R � "p) and dist(xn; y
p
n) � 2"p:

By assumption fypng has a convergent subsequence for each p. Hence the diagonal
proceedure yields a subsequence fnkg such that fypnkg is convergent for all p. The
sequence fxnkg being the uniform limit of fypnkg is a Cauchy-sequence. Thus fxnkg
is convergent and consequently B(x;R) is compact.
Since closed balls are compact the existence of minimal geodesics has already been

proved above. �

In the next few sections we will show that geodesics are smooth curves which are
solutions to a second order di�erential equation.

Problem 2.8. Prove (2.2) and give an example of a metric space where it is false.

Problem 2.9. Prove that (2.6) holds for all length spaces, and show that it is wrong
in general.

Problem 2.10. Prove that (2.7) holds in all length spaces, but not in general.

Problem 2.11. Prove that 2.4 and 2.5 hold for all locally compact length spaces.

3. First variation of arc length

A one parameter variation of a curve c : [a; b]! U is a map

V : [a; b]� (�"; ")! U

such that V (t; 0) = c(t) for all t 2 [a; b]. We assume that V is piecewise Ck; k � 1,
i.e. there is a partition a = t0 < � � � < tm = b of [a; b] so that Vj[ti�1;ti]�(�";")
is Ck; i = 1; : : : ; m. In particular, for each s 2 (�"; "), the curve cs = V (; s) is
piecewise Ck, and for each t 2 [a; b] the curve �t = V (t; �) is Ck. The curve

X(t) =
@

@s
V (t; s)js=0 = �0t(0)

is called the variation �eld of V along c.

We are interested in the variation of L(cs). The general case can easily be analyzed
after having dealt with the case m = 1, i.e. V is Ck. Assume moreover that c = c0
is parametrized proportionally to arc length i.e. gc(t)(c

0(t); c0(t)) = l2 is constant.
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Then L(cs) is a C
k function of s near zero, and

d

ds
L(cs) =

d

ds

Z b

a

gcs(t)(c
0
s(t); c

0
s(t))

1
2dt

=

Z b

a

@

@s
hc0s(t); Gcs(t)c

0
s(t)i

1
2dt

=

Z b

a

1

2
gcs(t)(c

0
s(t); c

0
s(t))

� 1
2
@

@s
hc0s(t); Gcs(t)c

0
s(t)idt

Now

@

@s
hc0s(t); Gcs(t)c

0
s(t)i =h

@

@s

@

@t
V (t; s); Gcs(t)c

0
s(t)i+

hc0s(t);
@

@s
[Gcs(t)c

0
s(t)]i

=h @
@t

@

@s
V (t; s); Gcs(t)c

0
s(t)i+

hc0s(t); DGcs(t)(
@

@s
V (t; s))c0s(t) +Gcs(t)

@

@s

@

@t
V (t; s)i

=2h @
@t

@

@s
V (t; s); Gcs(t)c

0
s(t)i+

hc0s(t); Gcs(t)G
�1
cs(t)

DGcs(t)(
@

@s
V (t; s))c0s(t)i:

Thus the evaluation at s = 0 yields

(3.1)
d

ds
L(cs)js=0 = l�1

Z b

a

gc(t)(O
1
cX(t); c0(t))dt

where

(3.2) O
1
cX(t) =

d

dt
X(t) + 1�c(t)(c

0(t); X(t))

and

(3.3) 1�x(u; v) =
1

2
G�1
x DGx(v)u

for all x 2 U; u; v 2 Rn . Note, that for each x 2 U; 1�x : Rn � Rn ! Rn is bilinear,
and

O
1
c(X + Y ) = O1

cX + O1
cY;(3.4)

O
1
c(fX) = f 0X + fO1

cX(3.5)

holds for any �elds X; Y along c, and any function f : [a; b]! R. Moreover, for any
�elds X; Y along c we have

(3.6) gc(X; Y )
0 = gc(O

2
cX; Y ) + gc(X;O

2
cY )

where

(3.7) O
2
cX(t) =

d

dt
X(t) + 2�c(t)(c

0(t); X(t))

and 2�x(u; v) =
1�x(v; u) for all x 2 U; u; v 2 Rn .
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Given any smooth map � that assigns to any x 2 U a bilinear map �x : Rn�Rn !
Rn the expression

(3.8) OcX(t) =
d

dt
X(t) + �c(t)(c

0(t); X(t))

is called the covariant derivative of X along c with Christo�el symbol �. Clearly
(3.4) and (3.5) hold for any �. If moreover � is symmetric, i.e. �x is symmetric for
each x 2 U , then
(3.9) Ocs

@

@s
V (t; s) = O�t

@

@t
V (t; s)

holds for any Ck variation V .
Note, that if 1� is symmetric, then 1� = 2� and the formulas (3.4), (3.5), (3.6)

and (3.7) would all be valid for O with � = 1� = 2�. In this case a separate direct
calculation shows that

(3.10)
d

ds
L(cs)js=0 = l�1

Z b

a

gc(t)(OcX(t); c0(t))dt

or equivalently

(3.11)
d

ds
L(cs)js=0 = l�1

(
gc(X; c

0)

����b
a

�
Z b

a

gc(X;Occ
0)

)
Observe that any X is the variation �eld for a variation of c (take e.g. V (t; s) =

c(t) + sX(t)). In particular, if the smooth curve c is a minimal geodesic, then
d
ds
L(cs)js=0 = 0 for all X with X(a) = 0; X(b) = 0. We conclude, that any smooth

geodesic c, will satisfy the di�erential equation.

(3.12) Occ
0 = c00(t) + �c(t)(c

0(t); c0(t)) = 0:

Given any �, the equation (3.12) is called the geodesic equation for the covariant
derivative, or connection O. This equation is equivalent to the system

(3.13) c0 = d ; d0 = ��c(d; d)
of �rst order equations. From the existence and uniqueness theorem for �rst order
ordinary di�erential equations, we get immediately

Theorem 3.14. For every (x0; y0) 2 U�Rn there is an interval J(x0; v0) 3 0 and a
unique maximal solution c(x0;v0) : J(x0; v0)! U to (3.12) satisfying c(x0;v0)(0) = x0,
and c(x0;v0)

0(0) = v0. Moreover, the set W = f(x; v; t) j (x; v) 2 U � Rn ; t 2 J(x; v)g
is open in U � Rn � R, and the map W ! U; (x; v; t)! c(x;v)(t) is smooth.

Note, that if c is a O-geodesic, i.e. c is a solution to (3.12), and c(0) = x; c0(0) = v,
then by homogeneity �c(t) = c(at) (a constant) is a O-geodesic with �c(0) = x and
�c0(0) = a � v.
In the next section we will see, that for any riemannian structure g on U , there

is a unique symmetric � such that (3.6) holds. A �rst variation argument which we
will carry out in section 5 then shows that the corresponding O-geodesics are exactly
the geodesics as de�ned in section 2.

Problem 3.15. Show that any regular curve c can be parametrized so that c0 has
a constant g-norm.

Problem 3.16. Prove (3.4), (3.5), and (3.6).
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Problem 3.17. Prove (3.9) and (3.10).

Problem 3.18. Prove the homogeneity property of O-geodesics stated above.

Problem 3.19. Show that in general 1� 6= 2�.

Problem 3.20. If g is constant in U , show that 1� = 2� = 0. What are the
O-geodesics in this case?

4. The Levi Civita connection

A pair (x; v) 2 U � Rn , as considered in the previous section, is called a tangent
vector at x 2 U . The set fxg � Rn of tangent vectors at x clearly form a vector
space isomorphic to Rn via Ix : Rn ! fxg� Rn ; v ! (x; v), called the tangent space
to U at x. We will also use the notation vx for the tangent vector (x; v); TxU for the
tangent space fxg� Rn , and TU for the union of tangent spaces [

x
TxU = U � Rn .

If c : [a; b] ! U is a di�erentiable curve, the tangent vector (c(t); c0(t)) is called
the velocity vector of c at c(t) 2 U (or more precisely at t 2 [a; b]). This is simply
denoted by _c(t). Note, that any tangent vector vx is the velocity vector of a curve, e.g.
vx = _c(0), where c(t) = x + tv. Curves c1; c2 are tangent at x if c1(t1) = c2(t2) = x
and _c1(t1) = _c2(t2). This is clearly an equivalence relation, and the set of equivalence
classes of curves through x 2 U is naturally isomorphic to the tangent space TxU .
This view point is extremely useful.

We can now interpret a riemannian structure g on U � Rn as a map that assigns
to any x 2 U an inner product, gx = h; ix on the tangent space TxU . Moreover, any
map Y : U ! Rn can be viewed as a map, that assigns to any x 2 U a tangent
vector (x; Y (x)) 2 TxU at x. With this interpretation, Y is called a vector �eld on
U . Similarly, if c : [a; b] ! U , a map Y : [a; b] ! Rn may be viewed also as a map
that assigns to any t 2 [a; b] a tangent vector at c(t). This is why such a map is
then called a vector �eld along c.

Now �x a map � : U ! L2(Rn ;Rn ;Rn) as in section 3. If Y : U ! Rn is a vector
�eld on U and c : [a; b]! U is a curve, then Y Æ c is a vector �eld along c. By (3.8)

Oc(Y Æ c)(t) = DYc(t)(c
0(t)) + �c(t)(c

0(t); Y (c(t)))

only depends on _c(t) and Y near c(t). Therefore if vx = (x; v) is a tangent vector at
x we de�ne

(4.1) OvxY = vx[Y ] + �x(v; Y (x));

where vx[Y ] = DYx(v) is the directional derivative of Y in direction vx. OvxY is
called the covariant derivative of Y in direction vx. This again we may view as a
tangent vector at x if we please. Clearly

(4.2) Oavx+buxY = aOvxY + bOuxY

for all a; b 2 R and vx; ux 2 TxU . Moreover, as in (3.4) and (3.5)

Ovx(Y1 + Y2) = OvxY1 + OvxY2(4.3)

Ovx(fY ) = vx[f ] � Y + f � OvxY;(4.4)
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hold for all vector �elds Y1; Y2 on U and functions f : U ! R. Here again vx[f ] =
Dfx(v) is the directional derivative of f in direction vx.

If now also X : U ! Rn is a vector �eld on U we de�ne the covariant derivative
OXY of Y in direction X, as the vector �eld

(4.5) (OXY )(x) = OXxY:

Then by (4.2), (4.2) and (4.4)

OX1+X2Y = OX1Y + OX2Y(4.6)

OfXY = fOXY(4.7)

OX(Y1 + Y2) = OXY1 + OXY2(4.8)

OX(fY ) = X[f ]Y + fOXY;(4.9)

where X[f ] : U ! R is de�ned by X[f ](x) = Xx[f ] = Dfx(X(x)).

A map O that assigns to any pair of vector �elds X; Y a vector �eld OXY such
that (4.6)-(4.9) hold is also called a connection. Using these properties it is easy to
see that a connection O is completely determined by

(4.10) Oeiej =
nX

k=1

�kijek;

where ei : U ! Rn ; i = 1; : : : ; n are the standard coordinate vector �elds on U .
Now �kij : U ! R; i; j; k = 1; : : : ; n de�ne a map � : U ! L2(Rn ;Rn ;Rn) by

�(x)(
P
uiei;

P
vjej) =

P
uivj�

k
ijek, and the connection de�ned by this � coincides

with the connection we started out with. In other words there is a one to one
correspondence between connections O and Christo�el symbols �.

Observe that for vector �elds in U that

(4.11) OXY � OYX = X[Y ]� Y [X]

if � is symmetric. The vector �eld [X; Y ](x) = Xx[Y ] � Yx[X] is called the Lie
bracket of X and Y . In general

(4.12) T (X; Y ) = OXY � OYX � [X; Y ]

at each x 2 U only depends onXx; Yx 2 TxU . Thus for each x 2 U; Tx : TxU�TxU !
TxU is bilinear map called the torsion tensor of O. Clearly � is symmetric if and
only if O is torsion free, i.e. T = 0.
By de�nition [X; Y ](x) depends on X and Y near x 2 U , and the directional

derivative is computed as

(4.13) [X; Y ]x[f ] = Xx[Y [f ]]� Yx[X[f ]]

We say that X and Y commute, provided [X; Y ] = 0. The coordinate vector �elds
clearly commute.

The advantage of (4.13) is that it allows an invariant de�nition of the Lie bracket.
The point is that tangent vectors can also be viewed abstractly as "directional
derivatives". Given a tangent vector vx 2 TxU , clearly

vx[f + h] = vx[f ] + vx[h];(4.14)

vx[f � h] = vx[f ] � h(x) + f(x)vx[h](4.15)
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for all smooth functions f; h de�ned near x.
The tangent vector vx thus induces what is called a derivation on the set of

functions near x. The map that assigns to each tangent vector the corresponding
directional derivative is a linear isomorphism between the tangent space at x and
the vector space of derivations on functions de�ned near x (cf. Problems 4.28-4.34).

Similarly we can view vector �elds on U as derivations on the ring of smooth
functions on U . (cf. Problem 4.35).

In section 3 we have seen the use of a connection O which is torsion free and
metric, i.e.

(4.16) X[g(Y; Z)] = g(OXY; Z) + g(Y;OXZ)

for all vector �elds X; Y and Z on U , or equivalently

(4.17) g(X; Y )0 = g(OcX; Y ) + g(X;OcY )

for all curves c in U and vector �elds X; Y along c. The following is sometimes
referred to as the fundamental lemma of riemannian geometry.

Theorem 4.18. For every riemannian structure g on an open set U � Rn there is
one and only one torsion free metric connection O.

Proof: Uniqueness: If O is a torsion free metric connection, then

(4.19)
@

@xi
gjk = ei[hej; eki] = hOeiej; eki+ hej;Oeieki

by (4.16). Permuting the indices cyclicly and using (4.11) with [ei; ej] = 0 then gives

(4.20) hOeiej; eki =
1

2

�
@

@xi
gjk +

@

@xj
gik � @

@xk
gij

�
:

On the other hand

(4.21) hOeiej; eki =
nX
l=1

�lijglk

Thus if fgklg is the matrix of G�1 we get

(4.22) �lij =
1

2

nX
k=1

�
@

@xi
gjk +

@

@xj
gik � @

@xk
gij

�
gkl;

which expresses � in terms of g alone.

Existence: De�ne O using (4.22). Then � is clearly symmetric i.e. O is torsion
free. Moreover (4.20) and then clearly (4.19) hold for this connection. However, it
is straight forward to see that (4.16) follows from (4.19). Hence O de�ned by (4.22)
is a torsion free metric connection. �

The connection given by (4.22) is called the Levi Civita Connection of g. Unless
otherwise explicitly stated, this is the connection that we will use from now on.
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Problem 4.23. Show that the relation "tangency" among curves is an equivalence
relation. Give an explicit bijective map between the set of such equivalence classes
and tangent vectors.

Problem 4.24. Show that there is a one-to-one correspondence between Christo�el
symbols � and connections O.

Problem 4.25. Find the coordinates of [X; Y ] as de�ned in (4.11), and prove (4.13).

Problem 4.26. Show that

[fX; hY ] = f � h[X; Y ] + (f �X[h])Y � (h � Y [f ])X
for all functions f; h and vector �elds X; Y on U .

Problem 4.27. User (4.26) to show that T as de�ned in (4.12) is bilinear with
respect to functions on U .

Problem 4.28. Let x 2 U . Suppose U1 � U; U2 � U are open neighbourhoods
of x, and f : U1 ! R; h : U2 ! R are smooth functions. De�ne f + h; f � h as
the functions de�ned on U1 \ U2 by pointwise operations. The set of locally de�ned
smooth functions with these operations is denoted by Fx. A derivation on Fx. is a
map D : Fx ! R such that

D(af + bh) = aD(f) + bD(h)(4.29)

D(f � h) = D(f) � h(x) + f(x) �D(h):(4.30)

Show that the set of derivations, Derx on Fx is a vector space, and that the map
TxU ! Derx that assigns to any tangent vector vx the corresponding directional
derivative is a linear map.

Problem 4.31. Show that D(1) = 0 for any D 2 Derx where 1 is the constant
function 1 de�ned in a neighbourhood of x. Use this to show that D(f) = D(h) if
f = h in a neighbourhood of x.

Problem 4.32. Let V � Rn be an open convex set. Prove that for any smooth
function f : V ! R, and any �xed x 2 V

f(y)� f(x) =
nX
i=1

(yi � xi)fi(y); y 2 Y;

where fi : V ! R are smooth functions with fi(x) =
@f
@xi

(x); i = 1; : : : ; n.

Hint:f(y)� f(x) =
R 1

0
d
dt
f(x+ t(y � x))dt.

Problem 4.33. Using (4.31) and (4.32) on any function f de�ned near x 2 U , show
that

D(f) =
nX
i=1

D(hi)
@f

@xi
(x) =

nX
i=1

D(hi)eix [f ];

for any derivation D 2 Derx, where hi(y) = yi � xi; i = 1; : : : ; n.

Problem 4.34. Show that the map TxU ! Derx de�ned in (4.28) is a linear
isomorphism.

Problem 4.35. Show that the vector space of smooth vector �elds on U is isomor-
phic to the vector space of derivations on C1(U;R).

Problem 4.36. Interpret [X; Y ] as a derivation.
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Problem 4.37. Show that X; Y ! [X; Y ] is bilinear, anti symmetric, and satis�es
the Jacobi identity.

(4.38) [X; [Y; Z]] + [Z; [X; Y ]] + [Y; [Z;X]] = 0:

By de�nition of a Lie algebra, this makes the vector space of vector �elds on U with
the product [; ] into a Lie algebra.

Problem 4.39. Show that (4.16) is equivalent to (4.17).

Problem 4.40. Fill in the missing details in the proof of (4.18)

Problem 4.41. What is the Levi Civita connection if g is constant? What are the
O-geodesics in this case?

Problem 4.42. Let U = H = fx 2 Rn j xn > 0g be the upper half space with
the riemannian structure gx =

1
x2n
h; i. Find the Christo�el symbols �kij for the Levi

Civita connection of g.

5. The exponential map

In this section we will show that the O-geodesics for the Levi Civita connection
are exactly the geodesics as de�ned in section 2.
From (3.14) and the homogeneity of (3.12), it follows that the set

(5.1) O = f(x; v) 2 U � Rn j 1 2 J(x; v)g
is an open neighbourhood of U � f0g in U � Rn . Moreover, Ox = O \ TxU is
starshaped around 0x 2 TxU . The exponential map, exp : O! U is de�ned by

(5.2) exp(vx) = c(x;v)(1)

for all tangent vectors vx = (x; v) 2 TxU ; x 2 U . By (3.14), the exponential map is
clearly smooth and exp(0x) = x for all x 2 U . Consider the smooth map

(5.3) (�; exp) : O! U � U ; (x; v)! (x; exp(vx))

and observe that

n n

D(�; exp)(x;0) =

 
id 0
id id

!
n
n

(5.4)

for all x 2 U . By the inverse function theorem and (�; exp)jU�f0g injective, it follows
that

Theorem 5.5. There are open neighbourhoods D of U � f0g in U � Rn and V of
4(U) in U �U , such that (�; exp) : D ! V is a di�eomorphism, i.e. it is a smooth
bijective map with smooth inverse.

If exp : Ox ! U is the restriction of exp to Ox we get immediately

Corollary 5.6. For each x 2 U there are open neighbourhoods Dx of 0x 2 TxU and
Vx of x 2 U such that expx : Dx ! Vx is a di�eomorphism.



14 KARSTEN GROVE

Since for all vx 2 O; exp(tvx) = cvx(t) for t 2 [0; 1] (cf. 5.4) and L(cvxj[0;1]) =
kvxk = hvx; vxi 12 , we see that expx maps the line segment from 0x to vx in TxU onto
the O-geodesic segment in direction vx of length kvxk. The comparison of euclidean
geometry of TxU near 0x with riemannian geometry of U near x via expx is crucial
for the understanding of (local) riemannian geometry.

In the �rst step of this comparison, it is convenient to view the di�erential of a
map as a map between tangent spaces. To be precise if f : U ! Rm is di�erentiable
at x 2 U with di�erential Dfx : Rn ! Rm , the map

(5.7) f�x : TxU ! Tf(x)R
m

de�ned by f�x(x; v) = (f(x); Dfx(v)) is called the tangent map, or the induced map
of f at x 2 U . If there is no confusion, it may also simply be referred to as the
di�erential of the map.
If f is di�erentiable at all points x 2 U , the induced map f� : TU = U � Rn !

TRm = Rm � Rm is simply given by f� jTxU= f�x . With this formalism the chain
rule takes the pleasant form

(5.8) (f Æ h)� = f� Æ h�
when h : U ! V; f : V ! Rk are di�erentiable maps de�ned on open subsets
U � Rn ; V � Rm . With this notation we have.

Theorem 5.9. For all x 2 U; expx : Ox ! U is a radial isometry, i.e.

hexp�(vv); exp�(uv)iexp(v) = hvv; uvix
for all v 2 Ox and tangent vectors uv 2 TvOx.

Proof: Consider the variation

V (t; s) = expx(x; t(v + su))

for t 2 [0; 1] and s near zero. Note that each cs is a O-geodesic and the �rst variation
formula (cf. 3.11) gives

d

ds
L(cs)js=0 = kvk�1

x hexp�v(uv); exp�v(vv)iexp(v):

On the other hand, L(cs) = kv+sukx and so d
ds
L(cs)js=0 = kvk�1

x hu; vix = kvk�1
x huv; vvix.

�

This result is often referred to as the Gauss-lemma. Using it we will now show
that O-geodesics are locally length minimizing, i.e. that O-geodesics are geodesics
in the sense of section 2. To do this, let � : [0; 1] ! Ox be any piecewise C1-curve
with �(0) = 0x and �(1) = vx. Then

(5.10) L(exp Æ�) � L(cvxj[0;1]) = kvxkx;
and strict inequality holds if there is a t0 2 (0; 1] such that the component of _�(t0)
orthogonal to �(t0)�(t0) is not annihilated by exp��(t0).
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In proving (5.10) we may assume that vx 6= 0 and �(t) 6= 0x for all t 2 (0; 1]. Let
a(t) be the unit radial vector �eld along � in TxU . If _�(t) is not proportional to a(t)
set

b(t) =
_�(t)� h _�(t); a(t)ixa(t)

k _�(t)� h _�(t); a(t)ixa(t)kx
For such t; _� = ha(t); _�(t)ixa(t) + hb(t); _�(t)ixb(t) and hence by the Gauss-lemma
(5.9)

k( _exp Æ�)(t)k2exp(�(t)) = ha(t); _�(t)i2x + hb(t); _�(t)i2xk exp� b(t)k2exp(�(t))
In particular, k( _exp Æ�)(t)kexp(�(t)) �j ha(t); _�(t)ix j for all t 2 (0; 1], and strict

inequality follows if there is a t0 as described under (5.10). On the other hand,
d
dt
k�kx = h _�; aix and hence

L(exp Æ�) =
Z 1

0

k( _exp Æ�)(t)kexp(�(t))dt

�
Z 1

0

j ha(t); _�(t)ix j dt

�
Z 1

0

d

dt
k�(t)kxdt

=kvkx
=L(cvxj[0;1])

This proves (5.10) and the equality discussion.

Now choose Æ > 0 so that expx is a di�eomorphism from Dx(Æ) = f(x; v) 2 Ox j
kvkx < Æg onto Vx(Æ). From (5.10) it follows that for each y 2 Vx(Æ) the geodesic,
c(t) = expx(t exp

�1
x (y)) is a curve from x to y whose length is shorter than the length

of any other piecewise C1-curve in U from x to y. In particular, Vx(Æ) = B(x; Æ) is
the metric Æ-ball in U centered at x.

Problem 5.11. Show that Ox is open and starshaped.

Problem 5.12. Verify (5.4).

Problem 5.13. Show that B(x; Æ) = fy 2 U j dist(x; y) < Æg = expx(Dx(Æ)) for Æ
suÆciently small.

Problem 5.14. Show that distg1 = distg2 if and only if g1 = g2.

Problem 5.15. Consider the metric space (Rn ; dist), where dist(x; y) = max jxi �
yij. Show that dist 6= distg for any riemannian structure g on Rn .

6. Isometries

Let (U1; g1); (U2; g2) be two riemannian patches, and F : (U1; distg1)! (U2; distg2)
an isometry, i.e. F is a distance preserving map with F (U1) = U2. The inverse
F�1 : U2 ! U1 is also an isometry. In particular, F is a homeomorphism and
dimU1 = dimU2 = n. The following is crucial in our treatment of riemannian
geometry.

Theorem 6.1. An isometry F between riemannian patches (U1; g1); (U2; g2) is a
di�eomorphism. Moreover, F�x : TxU1 ! TF (x)U2 is a linear isometry for all x 2 U1,
and F Æ expx = expF (x) ÆF�x.
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Proof: Fix x 2 U1 and choose Æ > 0 such that expy : Dy(2Æ) ! B(y; 2Æ) and
expF (y) : DF (y)(2Æ)! B(F (y); 2Æ) are di�eomorphisms for all y 2 B(x; 2Æ) (cf. 5.5)
as in the last paragraph of section 5.
Since F is an isometry, it maps for each y 2 B(x; Æ) the unique minimal geodesic

from x to y, to the unique minimal geodesic from F (x) to F (y) (cf. 6.2). Since
expx : Dx(Æ) ! B(x; Æ) and expF (x) : DF (x)(Æ) ! B(F (x); Æ) are di�eomorphisms,

we only need to show that exp�1
F (x) ÆF Æ expx : Dx(Æ)! DF (x)(Æ) is smooth. In fact,

we claim that it is the restriction of a linear isometry TxU1 ! TF (x)U2. We have
already seen, that it preserves the norm of vectors. To show that it preserves angles,
consider vectors ux; vx 2 Dx(Æ), and let V : [0; 1]� [0; 1]! B(x; 2Æ) be the variation

V (t; s) = expexp(vx)(t � exp�1
exp(vx)

(expx(s � ux))):
For each s, this is the unique minimal geodesic from exp(vx) to exp(sux). The �rst
variation formula (3.11) then yields

d

ds
L(cs)js=0 = kvxk�1

x hux;�vxix = �kukx cos#;
where # is the angle between ux and vx. Again, however, since F is an isometry
it maps the variation V to the corresponding variation for the vectors exp�1

F (x) ÆF Æ
expx(ux), and exp�1

F (x) ÆF Æ expx(vx). Repeating the argument above, then shows

that the angle between these vectors is also #. The argument also shows that
F�x = exp�1

F (x) ÆF Æ expx, which completes the proof. �

Problem 6.2. Show that isometries map geodesics to geodesics in any length-space.

Problem 6.3. Show that isometries between riemannian patches preserve the co-
variant derivative of the corresponding Levi-Civita connections. Is this true for the
connection de�ned in (3.3) and (3.7)?

Problem 6.4. What are the geodesics on (U; g) corresponding to the hemisphere,

graph (f); f : U = fx 2 Rn j kxk < 1g ! R; x !p1� kxk2 (cf. (1.9) and the
paragraph below it).
Hint: It is possible to argue using local uniqueness of geodesics together with

(6.2).

Problem 6.5. Let F : U1 ! U2 be a smooth bijective map between riemannian
patches (U1; g1); (U2; g2) such that

g2(F�(v�); F�(u�)) = g1(vx; ux)

for all x 2 U1 and tangent vectors ux; vx 2 TxU1. Show that F : (U1; dist g1) !
(U2; dist g2) is an isometry.

Problem 6.6. Let (U�1; g�1) be the 2-dimensional Poincar�e disc (cf. 1.16) and
(H; g) the upper half plane (cf. 4.42). Identify R2 with the complex plane C and
show that z ! i z�i

z+i
de�nes an isometry F : H ! U�1. What are the geodesics on

H;U�1?

7. Jacobi fields and curvature

In the last section we saw that a bijective map of riemannian patches is an isometry
if and only if it is smooth and its induced map is an isometry on all tangent spaces.
To continue our comparison between local euclidian and local riemannian geometry
we now proceed to investigate the map induced by the exponential map.
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Fix x 2 U and v 2 Ox. We have already seen a glimpse of how to describe
(expx)�v : TvOx ! Texp(v)U . Namely, any tangent vector to Ox at v is represented
by a curve of the form �(s) = v+ s �u for some u 2 TxU . Therefore, for this tangent
vector uv 2 TvOx; exp�(uv) is represented by the curve exp(v+s �u). To get a better
description of this consider as in the proof of 5.9 the variation

V (t; s) = expx(t(v + su))

for t 2 [0; 1] and s near zero. Using the notation from section 3, �1 = exp Æ�, and
for s = 0, the variation �eld X = X0 along c is given by X(t) = _�t(0) = exp�(tut�v).
Since each cs is a geodesic and hence satis�es a second order equation we expect
each Xs to do the same. Now Ocs _cs = 0 for all t and all s gives

0 =O�tOcs _cs

=O�tOcs _cs � OcsO�t _cs + OcsO�t _cs

=O�tOcs _cs � OcsO�t _cs + OcsOcs _�t

(7.1)

by (4.11) (cf. also 3.9). For �xed s, the last term is OcsOcsXs. Moreover, if Z is any
vector �eld along V , then

O�tOcsZ(t; s) =O�t(
@

@t
Z + �cs(t)(c

0
s; Z))

=
@

@s

@

@t
Z +

@

@s
[�V (t;s)(c

0
s; Z)]+

�V (t;s)(�
0
t;
@

@t
Z + �V (t;s)(c

0
s; Z))

=
@

@s

@

@t
Z +D�V (t;s)(

@

@s
V )(

@

@t
V; Z)+

�V (t;s)(
@

@t
V;

@

@s
Z) + �V (t;s)(

@

@s

@

@t
V; Z)

+ �V (t;s)(
@

@s
V;

@

@t
Z) + �V (t;s)(

@

@s
V;�V (t;s)(

@

@t
V; Z))

and similarly

OcsO�tZ(t; s) =
@

@t

@

@s
Z +D�V (t;s)(

@

@t
V )(

@

@s
V; Z)+

�V (t;s)(
@

@s
V;

@

@t
Z) + �V (t;s)(

@

@t

@

@s
V; Z)+

�V (t;s)(
@

@t
V;

@

@s
Z) + �V (t;s)(

@

@t
V;�V (t;s)(

@

@s
V; Z)):

Hence

O�tOcsZ � OcsO�tZ =D�V (t;s)(�
0
t)(c

0
s; Z)�D�V (t;s)(c

0
s)(�

0
t; Z)+

�V (t;s)(�
0
t;�(c

0
s; Z))� �V (t;s)(c

0
s;�(�

0
t; Z))

(7.2)

which clearly depends on Z; �0t and c
0
s at (t; s). Inserting (7.2) into (7.1) at s = 0

yields

(7.3) OcOcX +R(X; _c) _c = 0
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for the variation �eld X = X0 along c = c0. Here for each x 2 U; Rx : TxU � TxU �
TxU ! TxU is the 3-linear map de�ned by the right hand side of (7.2), i.e.

Rx(ux; vx)zx =D�x(u)(v; z)�D�x(v)(u; z)+

�x(u;�x(v; z))� �x(v;�x(u; z))
(7.4)

for all u; v; z 2 Rn . Observe, that for any ux; vx; zx 2 TxU there is a variation V and
a vector �eld Z such that V (0; 0) = x; @

@s
V (0; 0) = u; @

@t
V (0; 0) = v and Z(0; 0) = z

(take e.g. V (t; s) = x + t � v + s � u and Z(t; s) = z for all t; s near zero).
In general for vector �elds X; Y; and Z on U one �nds

(7.5) R(X; Y )Z = OXOYZ � OYOXZ � O[X;Y ]Z:

One way to see this is to note that the right hand side is linear with respect to
functions in all 3 variables. It then follows, that each x 2 U it only depends on
X; Y and Z at x. Choosing X; Y; and Z as above together with (7.2) and (7.4),
then proves (7.5). This expression makes sense for any connection O. It is called
the curvature tensor of O.

The equation (7.3) is called the Jacobi equation, and any vector �eld X along a
geodesic c, which satis�es this equation is called a Jacobi �eld along c. The Jacobi
equation is clearly a second order linear di�erential equation. In particular

Theorem 7.6. For any (maximal) geodesic c : J ! U and tangent vectors u; v 2
Tc(0)U there is a unique Jacobi �eld X : J ! TU , along c with X(0) = u, and
OcX(0) = v.

Using the above, we now see that for v 2 Ox and u 2 TxU; X(t) = exp�(tutv) is
the unique Jacobi �eld along cv : Jv ! U with initial conditions

(7.7) X(0) = 0x; OcvX(0) = u:

Because of the Gauss-lemma (5.9) we are particularly interested in kX(t)kexp(tv)
when u is perpendular to v. Rather than kX(t)k, let us consider f(t) = kX(t)k2 =
hX(t); X(t)iexp(tv). Abbreviating OcX simply by X 0 we have

f(0) =hX(t); X(t)i(0) = 0

f 0(0) =2hX 0(t); X(t)i(0) = 0

f 00(0) =2fhX 00(t); X(t)i+ hX 0(t); X 0(t)ig(0) = 2kuk2
f 000(0) =2fhX 000(t); X(t)i+ 3hX 00(t); X 0(t)ig(0)

=2fhX 000(0); X(0)i � 3hR(X(0); v)v; uig = 0

f 0000(0) =2fhX 0000(t); X(t)i+ 4hX 000(t); X 0(t)i+ 3hX 00(t); X 00(t)ig(0)
=8hX 000(0); ui:

The Taylor expansion for kX(t)k2 therefore looks like

kX(t)k2 � kuk2t2 + 1

3
hX 000(0); uit4 + : : :

Here the �rst term only depends on g at x. For the second term, however

X 000 =� (R(X; _c) _c)0

=� R0(X; _c) _c� R(X 0; _c) _c�R(X; _c0) _c�R(X; _c) _c0
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by (7.3) and (7.13), i.e. X 000(0) = �R(u; v)v. Assuming without loss of generality,
that kuk = kvk = 1, we get

(7.8) k exp�(tu)tvk2 = t2 � 1

3
sec(p)t4 + 0(t5);

where sec(p) = hR(u; v)v; ui is called the sectional curvature of the plane p spanned
by u and v in TxU . It is easy to see that for linearly independent u and v,

(7.9) sec(p) =
hR(u; v)v; ui

kuk2kvk2 � hu; vi2
only depends on the 2-plane p spanned by u; v. From (7.8) it is evident that it is
the sectional curvature that determines whether exp is expanding or contracting.

Problem 7.10. Prove formula 7.5.

Problem 7.11. Prove Theorem 7.6.

Problem 7.12. Let X be a Jacobi �eld along the geodesic c. Write X = X?+X>,
where X> is proportional to _c and X? is perpendicular to _c. Show that X? and
X> are Jacobi �elds along c. Show that X>(t) = (a+ bt) _c(t) for constants a; b 2 R.
Problem 7.13. Show that for each vector �eld X,

OX(R(Y; Z)W )� R(OXY; Z)W � R(Y;OXZ)W �R(Y; Z)OXW

is linear with respect to functions, in all three variables Y; Z and W . Therefore, it
de�nes for each x 2 U a 3-linear map (OXR)x : TxU �TxU �TxU ! TxU called the
covariant derivative of R in direction X.

Problem 7.14. In the spirit of 7.13, show that OXg = 0 for all vector �elds X.

Problem 7.15. Show the Bianchi identity

(OXR)(Y; Z)W + (OYR)(Z;X)W + (OZR)(X; Y )W = 0

for all vector �elds X; Y; Z and W (cf. 7.13).

Problem 7.16. Show that (7.9) de�nes a function on two-dimensional subspaces of
TxU; x 2 U .

8. Curvature identities

In this section we will show that knowing the curvature tensor R or the sectional
curvature function sec amounts to the same thing.

Theorem 8.1. The curvature tensor R of the Levi Civita connection O for a rie-
mannian structure h; i on U satis�es the identities

(i) R(X; Y )Z = �R(Y;X)Z
(ii) R(X; Y )Z +R(Y; Z)X +R(Z;X)Y = 0
(iii) hR(X; Y )Z;W i = �hR(X; Y )W;Zi
(iv) hR(X; Y )Z;W i = hR(Z;W )X; Y i

for all vector �elds X; Y; Z and W on U .

Proof: The �rst identity is obvious by 7.5. To prove the remaining identities �rst
note that all expression are tensorial, i.e. for each x 2 U they depend only on
X; Y; Z; and W at x. To prove them we are therefore free to choose X; Y; Z; and W
so that all Lie brackets are zero (e.g. extend Xx; Yx; Zx; and Wx to constant vector
�elds on U).
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Then by (4.11) and (7.5)

OXY = OYX

R(X; Y )Z = OXOYZ � OYOXZ

and similarly for all other combinations of X; Y; Z; and W . The identity (ii) is then
a straight forward computation. Moreover, (iii) is equivalent to

(iii)' hR(X; Y )Z;Zi = 0

for all X; Y; and Z. Now

hR(X; Y )Z;Zi =hOXOYZ � OYOXZ;Zi
=X[hOYZ;Zi]� hOYZ;OXZi
� Y [hOXZ;Zi] + hOXZ;OYZi

=X[
1

2
Y [hZ;Zi]]� Y [

1

2
X[hZ;Zi]]

=
1

2
[X; Y ][hZ;Zi]

=0;

where we have used (4.16) and (4.13). The last identity is a purely formal conse-
quence of the �rst three. From (ii) we have

(iv)' hR(X; Y )Z;W i+ hR(Y; Z)X;W i+ hR(Z;X)Y;W i = 0

and interchanging W in turn with X; Y; and Z yields

(iv)" hR(W;Y )Z;Xi+ hR(Y; Z)W;Xi+ hR(Z;W )Y;Xi = 0
(iv)"' hR(X;W )Z; Y i+ hR(W;Z)X; Y i+ hR(Z;X)W;Y i = 0
(iv)"" hR(X; Y )W;Zi+ hR(Y;W )X;Zi+ hR(W;X)Y; Zi = 0

By adding (iv)'-(iv)"" and using (i) and (iii) we get

hR(X;W )Z +R(W;Z)X; Y i+ hR(W;Y )Z;Xi = 0:

Hence (ii) implies

�hR(Z;X)W;Y i+ hR(W;Y )Z;Xi = 0

which up to a change of letters is (iv).

We are now ready to show that the map

(X; Y; Z;W )! hR(X; Y )Z;W i
is completely determined by the "bi quadratic" form

(8.2) k(X; Y ) = hR(X; Y )Y;Xi
for all X; Y . First we want to rewrite R(X; Y )Z :

R(X; Y + Z)(Y + Z) =R(X; Y )Y +R(X; Y )Z +R(X;Z)Y +R(X;Z)Z

R(X + Z; Y )(X + Z) =R(X; Y )X +R(X; Y )Z +R(Z; Y )X +R(Z; Y )Z

0 =R(X; Y )Z +R(Y;X)Z
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Adding these three equations and applying (i) and (ii) from 8.1 gives

R(X; Y + Z)(Y + Z)� R(Y;X + Z)(X + Z) =3R(X; Y )Z +R(X; Y )Y

�R(Y;X)X +R(X;Z)Z � R(Y; Z)Z

and hence

R(X; Y )Z =
1

3
fR(X; Y + Z)(Y + Z)�R(Y;X + Z)(X + Z)

�R(X; Y )Y +R(Y;X)X �R(X;Z)Z +R(Y; Z)Zg
(8.3)

Now �x a vector �eld B on U and consider the map !B de�ned by

!B(X; Y ) = hR(X;B)B; Y i
for all vector �elds X; Y on U . From (i), (iii) and (iv) of 8.1 we see that !B is
symmetric. In particular

2hR(X;B)B; Y i =2!B(X; Y )
=!B(X + Y;X + Y )� !B(X;X)� !B(Y; Y )

=k(X + Y;B)� k(X;B)� k(Y;B):

(8.4)

Combining (8.3) and (8.4) results in

hR(X; Y )Z;W i =1

6
fk(X +W;Y + Z)� k(Y +W;X + Z)

� k(X +W;Y )� k(X +W;Z) + k(Y +W;X)

+ k(Y +W;Z)� k(X; Y + Z) + k(Y;X + Z)

+ k(W;X + Z)� k(W;Y + Z) + k(X;Z)

� k(Y; Z)� k(W;X) + k(W;Y )g:

(8.5)

Since k(ux; vx) = hR(ux; vx)vx; uxi = sec(span (ux; vx)) for linearly independent
ux; vx 2 TxU and k(ux; vx) = 0 for linearly dependent ux; vx, it is clear that the
sectional curvature determines the curvature tensor R. In particular, R = 0 if and
only if sec = 0.

The Ricci-tensor, c1R is de�ned for each x 2 U as the bilinear map

(8.6) c1R(ux; vx) = trace (wx ! R(wx; ux)vx)

for all ux; vx 2 TxU . Clearly Ricci = c1R(ux;ux)
kuxk2 ; ux 6= 0 only depends on the line

spanned by ux. This is called the Ricci curvature. Clearly

(8.7) Ric(l) =
n�1X
i=1

sec(�i);

for l = spanfXg and �i = spanfX; uig, where X; u1; : : : ; un�1 is an orthonormal
basis for TxU . Averaging once more de�nes the scalar curvature Scal : U ! R, i.e.

(8.8) Scal(x) =
nX
i=1

c1R(ui; ui) = 2
X

1�i<j�n
sec(�ij);

where u1; : : : ; un is an orthonormal basis for TxU and �ij = spanfui; ujg. Note, that
it is only for n > 2 that these curvatures are essentially di�erent.
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Problem 8.9. Show that R1 de�ned by

R1(X; Y )Z = hY; ZiX � hX;ZiY
is tensorial, and satis�es (i)-(iv) of 8.1. This will be shown to be the curvature
tensor of a space with constant (sectional) curvature 1. Note that the corresponding
bi quadratic form k1 is given by

k1(X; Y ) = kXk2kY k2 � hX; Y i2;
and hence sec(span(ux; vx)) =

k(ux;vx)
k1(ux;vx)

, for ux; vx linearly independent (equivalently

k1(ux; vx) > 0).

Problem 8.10. Prove (8.7) and the second equality in (8.8).

9. Second variation of arc length and convexity

We have seen how curvature controlles the local behaviour of geodesics. To see
that it also a�ects the length of curves near a geodesic, we will compute the second
variation of arc length.

A two parameter variation of a curve c : [a; b]! U is a continuous map

W : [a; b]� (�"1; "1)� (�"2; "2)! U

such that W (t; 0; 0) = c(t) for t 2 [a; b]. We assume W is piecewise Ck; k � 2, i.e.
there is a partion a = t0 < � � � < tm = b of [a; b] for which Wj[ti�1;ti]�(�"1;"1)�(�"2;"2)
is Ck; i = 1; : : : ; m. As in the case of a one parameter variation we let cs1;s2 be the
curveW (�; s1; s2) , and we are interested in L(cs1;s2) for s1; s2 near zero when c0;0 = c
is a geodesic. Again it is suÆcient to understand the case m = 1, i.e. W is of class
Ck. If e0; e1; e2 are the standard coordinate vector �elds on [a; b]�(�"1; "1)�(�"2; "2)
we set

T =W� Æ e0; X1 = W� Æ e1; X2 = W� Æ e2
and call X1; X2 the variation vector �elds along W . Assume k _ck = l 6= 0, then
L(cs1;s2) is of class C

2 near (0; 0) and

(9.1)
@2

@s1@s2
L(cs1;s2)(0; 0) = l�1fhOX1X2; T i jba +I(X?

1 ; X
?
2 )g

where

(9.2) I(Y1; Y2) =

Z b

a

hOcY1;OcY2i � hR(Y1; _c) _c; Y2i

is the socalled index form on the vector space of vector �elds along c. The formula
(9.1) is referred to as the second variation of arc length.
To prove (9.1) we proceed as follows (cf. 3.10)

@

@s2
L(cs1;s2) =

Z b

a

@

@s2
hT; T i 12dt

=

Z b

a

kTk�1hOX2T; T idt

=

Z b

a

kTk�1hOTX2; T idt;
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and therefore

@2

@s1@s2
L(cs1;s2) =

Z b

a

(�1)kTk�3hOX1T; T ihOTX2; T idt

+

Z b

a

kTk�1fhOX1OTX2; T i+ hOTX2;OX1T igdt

=�
Z b

a

kTk�3hOTX1; T ihOTX2; T idt

+

Z b

a

kTk�1fhR(X1; T )X2; T i+ hOTOX1X2; T i
+ hOTX2;OTX1igdt:

At (s1; s2) = (0; 0) we have

@2

@s1@s2
L(cs1;s2) =l

�1fhOX1X2; T i jba �
Z b

a

hR(X1; T )T;X2i

+

Z b

a

hOTX1;OTX2i � hOTX1;
T

kTkihOTX2;
T

kTkig
(9.3)

Now Xi = X?
i + hXi;

T
kTki T

kTk and hence OTXi = OTX
?
i + hOTXi;

T
kTki T

kTk since c is
a geodesic. Since hX?

i ; T i = 0 also hOTX
?
i ; T i = 0 and (9.1) follows from (9.3).

If in particularW is a variation with �xed end points, i.e. W (a; s1; s2) = c(a) and

W (b; s1; s2) = c(b) for all s1; s2, then
@2

@s1@s2
L(cs1;s2)(0; 0) = l�1 � I(X?

1 ; X
?
2 ).

Observe that if I(X; Y ) = 0 for all vector �elds Y along c which vanishes at the
end points, then

OcOcX +R(X; _c) _c = 0

i.e. X is a Jacobi �eld along c.

We will now use (9.1) to prove

Theorem 9.4. For every x 2 U there is an " > 0 such that the ball B(x; ") is
strictly convex, i.e. for any y; z 2 B(x; ") there is a unique minimal geodesic c in U
from y to z, and c is contained in B(x; ").

Proof: Fix x 2 U and Æ > 0 such that expy : D(2Æ)! B(y; 2Æ) is a di�eomorphism
for all y 2 B(x; Æ). For y; z 2 B(x; Æ) let c : [0; dist(y; z)]! B(x; 2Æ) be the unique
minimal geodesic from y to z and consider the 2-parameter variation

W (t; s1; s2) = expx(t � exp�1
x c(s1 + s2))

for t 2 [0; 1]. For �xed s1; s2 we have that L(cs1;s2) = dist(x; c(s1+s2)) and therefore
@2

@s1@s2
L(cs1;s2) at s = s1+s2 is the same as d2

ds2
dist(x; c(s)), assuming c(s) 6= x. Thus

using (9.1) we get

(9.5)
d2

ds2
dist(x; c(s)) = dist(x; c(s))�1I(X?; X?);

where X1 = X2 = X is the Jacobi �eld along the minimal geodesic cs from x to c(s)
with X(0) = 0x and X(1) = _c(s). Since X? is a Jacobi �eld, we obtain by (9.2),
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that

d2

ds2
dist(x; c(s)) =dist(x; c(s))�1hOcsX

?(1); X?(1)i

=
1

2
dist(x; c(s))�1hX?; X?i0(1)

Now suppose c(s) =2 B(x; Æ) for some s 2 (0; 1). Then dist(x; c(s)) has a local
maximum at say s0 2 (0; 1). For the corresponding cs0 we have X = X? and
d2

ds2
dist(x; c(s0)) � 0. For Æ suÆciently small, however, this is impossible according

to the following lemma.

Lemma 9.6. For any x 2 U there is an " > 0 such that for every y 2 B(x; ")
and every unit vector u 2 TyU perpendicular to the unique minimal geodesic cxy :
[0; 1] ! B(x; ") � U from x to y there is a unique Jacobi �eld X along cxy with
X(0) = 0 and X(1) = u. Moreover hX;Xi0(1) > 0 for all such X.

Proof: The �rst follows from section 7 when " > 0 is chosen so that expx : Dx(")!
B(x; ") is a di�eomorphism. By the construction of X in section 7 we get

(9.7) kX(t)k � k exp�tv k � kX 0(0)k;
where v = exp�1

x (y) 2 Dx("), and k exp�tv k denotes the operator norm of exp�tv :
TtvOx ! Tcxy(t)U . In particular

(9.8) hX;Xi0(0) = 0; hX;Xi00(0) � k exp�v k�1:

Since X is a Jacobi �eld, then

hX;Xi0(1) =
Z 1

0

2fhX 0(t); X 0(t)i � hR(X(t); _cxy(t)) _cxy(t); X(t)idt

�2
Z 1

0

kX 0(t)k2dt� 2 � E2 � kX 0(0)k2 � "2 �C;
(9.9)

where E is an upper bound for k exp� k on Dx(") and C is an upper bound for sec+

the non-negative of the sectional curvature on B(x; "). Now��kX 0(t)k2 � kX 0(0)k2�� = ����Z t

0

�2hR(X; _cxy) _cxy; X 0i
����

�2 � "2 � E � kX 0(0)k �max kX 0k � r
(9.10)

where r is an upper bound for kRk on B(x; "). Using (9.10) for kX 0(t)k = max kX 0k
gives

(9.11) max kX 0k � kX 0(0)kf
p
1 + "4E2r2 + "2Erg � kX 0(0)kf1 + 2"2E � rg

Combining (9.9)-(9.11) clearly shows that hX;Xi0(1) > 0 for suÆciently small "
independent of X.

Problem 9.12. Let (U; g) be a riemannian patch and x 2 U . Show that the metric
on B(x; ") induced from distg is the same as distgj when B(x; ") is strictly convex.
Here gj is the restriciton of g to B(x; ").

Problem 9.13. Let (U; g) be riemannian patch with non-positive curvature, i.e.
Sec � 0. Show that any geodesic c : [a; b]! U is shorter than any other curve from
c(a) to c(b) near c.
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10. Parallel transport

There is yet another geometric aspect associated with riemannian patches (U; g).
Given any connection O on U we say that a vector �eldX along a curve c : [a; b]! U
is parallel if

(10.1) OcX(t) =
d

dt
X(t) + �c(t)(X(t); c0(t)) = 0

for all t 2 [a; b]. Since this is a �rst order linear di�erential equation in X we get
immediately

Theorem 10.2. Let O be a connection on U and c : J ! U a C1-curve in U . For
u 2 Tc(t0)U there is a unique parallel �eld X along c with Xc(t0) = u. Moreover,
the map Tc(t0)U ! Tc(t1)U de�ned by X(t0)! X(t1); X parallel along c is a linear
isomorphism.

The linear isomorphism T t0t1
c : Tc(t0)U ! Tc(t1)U of 10.2 is called parallel transport

along c from c(t0) to c(t1). In terms of parallel transport we can express the covariant
derivative of a vector �eld X along c as

(10.3) OcX(t0) =
d

dt
(t! T tt0

c (X(t)))jt=t0

To see this, simply let X1; : : : ; Xn be a basis of parallel �elds along c and write
X =

Pn
i=1 xi �Xi.

As we will see later on, the importance of parallel transport is partly due to the
fact that it allows us to compare vector �elds along say geodesics in di�erent patches
(manifolds).

Let us now see how parallel transport relates to curvature.

Fix x 2 U; ux; vx; zx 2 TxU . To describe R(ux; vx)zx we let V : J1 � J2 ! U be a
map so that V (0; 0) = x, and V�(0;0)(e1) = ux; V�(0;0)(e2) = vx. Here Ji; i = 1; 2 are
intervals around 0 2 R and e1; e2 are the coordinate vector �elds in R2 . (Take e.g.
V (t; s) = x + tu+ s � v).
De�ne a vector �eld z along V as follows

z(t; s) = T 0t
cs T 0s

�0
(zx):

From the existence and uniqueness theorem for di�erential equations we get that
z is smooth. By (7.2) and (7.4)

R(ux; vx)zx =(OcsO�tz � O�tOcsz)(0; 0)

=OcsO�tz(0; 0)

since z is a parallel along any cs curve. Now using (10.3) we have

R(ux; vx)zx = lim
t!0

1

t
(T t0

c0
(O�tz(t; 0))� O�tz(0; 0))
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and similarly

O�tz(t; 0) = lim
s!0

1

s
(T s0

�t z(t; s)� z(t; 0))

O�0z(0; 0) = lim
s!0

1

s
(T s0

�0 z(0; s)� z(0; 0))

=0;

where the last equality is by construction of z. Thus

(10.4) R(ux; vx)zx =
@2

@t@s
Z(0; 0);

where Z(t; s) 2 TxU is de�ned in terms of parallel translation along "coordinate
loops", by Z(t; s) = T t0

c0
T s0
�t T 0t

cs T 0s
�0
zx.

This formula gives a geometric interpretation of the curvature tensor in terms of
parallel transport.

Problem 10.5. Prove 10.2.

Problem 10.6. Show that R � 0 if and only if parallel transport is locally path
independent.

Problem 10.7. Fill out the details in the proof of (10.4).

Problem 10.8. Let (U; g) be a riemannian patch with sectional curvature Sec � 1.
Show that any normal minimal geodesic c : [0; l]! U has length L(c) = l � �.
Hint: Let X be a parallel �eld along c with X? _c, and show that I(Y; Y ) < 0 for

Y (t) = sin(t � �
l
)X(t).

Problem 10.9. Let (U1; g1); (U2; g2) be riemannian patches. The patch (U; g) with
U = U1 � U2 � Rn � Rn and

G =

�
G1 0
0 G2

�
is called the riemannian product of U1 and U2. Find the Levi Civita connection O
of g in terms of the Levi Civita connections O1;O2 for g1; g2.
What are the geodesics on U?
Express distg in terms of dist g1 and dist g2.
Let F1 : U1 ! U1; F2 : U2 ! U2 be isometries. Show that F = F1�F2 : U1�U2 !

U1 � U2 is an isometry.
Find the curvature tensor R on U in terms of R1 and R2.
Show that all "mixed sectional curvatures" (curvature of two planes spanned by

a vector tangent to U1 and a vector tangent to U2) are zero.

Problem 10.10. Let (U; g) be a riemannian patch. Show that the sectional curva-
ture Sec � 0 if and only if expx is an isometry near 0x for all x 2 U .

11. Manifolds and maps

From section 1, 2 we know that the graph of a function f : U ! R in a natural
way is a length space which is isometric to a riemannian patch. Since many spaces
may be described locally as the graph of a function, we make the following general
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De�nition 11.1. A riemannian n-space is a length space, (Mn; dist) which is lo-
cally isometric to a riemannian n-patch, i.e., for any p 2M there is an open neigh-
bourhood p 2 V�, a riemannian patch (U�; g�) and an isometry '� : (V�; dist) !
(U�; distg�).

From (6.1), (9.4) and (9.12) it follows that all the coordinate changes '�j Æ '�1
�j :

'�(V� \ V�) ! '�(V� \ V�) above are di�eomorphisms between open sets in Rn .
By de�nition therefore, the collection of homeomorphisms '� : V� ! U� � Rn
form an atlas for a di�erentiable structure on Mn. Two atlases f(V�; '�)g and
f(W�;  �)g on Mn are said to be equivalent if they together form an atlas on M ,
i.e., if all possible coordinate changes are smooth. An equivalence class of atlases is
called a di�erentiable structure, and M together with such a structure is called a
di�erentiable manifold. In particular we have

Theorem 11.2. A riemannian n-space (M; dist) has the structure of an n-dimensional
di�erentiable manifold.

Clearly f(Rn ; idRn)g form an atlas on Rn , and this way Rn is given a structure of a
di�erentiable manifold. This particular structure is called the standard di�erentiable
structure on Rn . Also any open set V � M of a di�erentiable manifold carries an
induced di�erentiable structure.
We say that a continuous map f : Mn ! Nm between di�erentiable manifolds is

Ck if and only if  � Æ f Æ '�1
� : '�(f

�1(W�))!  �(W�) is of class C
k for all charts

(V�; '�) on M
n and all charts (W�;  �) on N .

Now let p 2 M and consider all di�erentiable curves c : J ! M through p i.e.
0 2 J and c(0) = p. We say that c1 is tangent to c2 if for one and hence all charts
'� : V� ! U� � Rn around p, that ('�Æc1)0(0) = ('�Æc2)0(0). The set of equivalence
classes is the tangent space, TpM , ofM at p. The bijection TpM ! T'�(p)U� yields a
well de�ned linear structure on TpM . The collection TM = [p2MTpM of all tangent
spaces to M is called the tangent bundle of M . As in section 4 we can also view
TpM as the vector space of derivations of the set of smooth functions f 2 Fp de�ned
near p.

Theorem 11.3. Let Mn be an n-dimensional di�erentiable manifold. Then TM
has the structure of a 2n-dimensional di�erentiable manifold, and the projection
� : TM !M; �(TpM) = fpg, is smooth.

Proof: Let f(V�; '�)g be an atlas onM . Let @
@x1�

(p); : : : ; @
@xn�

(p) be the basis for TpM

corresponding to the canonical basis e1('�(p)); : : : ; en('�(p)) for T'�(p)U�
�= Rn via

the isomorphism TpM ! T'�(p)U�; p 2 V�. Then any tangent vector up 2 TpM

may be written uniquely as up =
Pn

i=1 ui
@

@xi�
(p). With this presentation de�ne

�� : �(V�)! U� � Rn by

��

 
nX
i=1

ui
@

@xi�
(p)

!
= (p; u1; : : : ; un)

for all up 2 TpM . Then �� Æ ��1
� (p; u) = ('� Æ '�1

� (p); D('� Æ '�1
� )pu) and hence

(��1(V�);��) de�nes an atlas for TM as desired (a topology of TM is uniquely
determined by the requirements, ��1(V�) is open and �� is a homeomorphism for
all �). To see that � : TM !M is smooth it is enough to observe that

'� Æ � Æ ��1
� : U� � Rn ! U�; (x; u)! x
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is smooth for all �. �

As in section 5, any smooth map f : Mn ! Nm gives rise to an induced map (or
tangent map) f� : TM ! TN , de�ned by f�([c]) = [f Æ c] for any tangent vector
vp = [c] represented by the curve c. With the di�erentiable structures on TM , and
TN given above, we get immediately

Theorem 11.4. The induced map f� : TM ! TN of a smooth map f :M ! N is
smooth, and satis�es �N Æ f� = f Æ �M .

A vector �eld X on M is a map X : M ! TM such that � Æ X = idM , i.e.,
X(p) 2 TpM for all p 2 M . Unless otherwise stated we will only consider smooth
vector �elds X : M ! TM . The coordinate vector �elds @

@x1�
; : : : ; @

@xn�
on V� � M

are clearly smooth, and @
@i�

= ('�1
� )� Æ ei, where ei; i = 1; : : : ; n, are the constant

basis vector �elds in U� � Rn .
Viewing vector �elds X as derivations on the algebra C1(M;R), of smooth func-

tions f : M ! R, the Lie bracket [X; Y ] of vector �elds X and Y on M is de�ned
by

[X; Y ][f ] = X[Y [f ]]� Y [X[f ]]

for all f 2 C1(M;R) (cf. section 4). If [X; Y ] = 0 we say that X and Y commute.
Clearly the coordinate vector �elds @

@xi�
; : : : ; @

@xn�
on V� commute.

Problem 11.5. Give an example of a metric space (S; dist) which is locally isometric
to a riemannian patch, but not a length space. Show, however, that the associated
length space (S; distl) is a riemannian n-space.

Problem 11.6. Show that f(R; ')g with '(t) = t3 for all t 2 R is an atlas for
a di�erentiable structure on R. Is this the same as the standard structure on R?
Exhibit a di�eomorphism between them.

Problem 11.7. Let Sn = fx 2 Rn+1 j kxk = 1g be the standard n-sphere in Rn+1 .
Exhibit an atlas for Sn using orthogonal projections onto coordinate hyper planes
in Rn+1 . Exhibit an atlas for Sn using stereographic projection. Show that these
atlases de�ne the same di�erentiable structure on Sn. What is the least number of
charts needed for a di�erentiable structure on Sn?
Show that the length-space structure on Sn induced from the euclidean distance

in Rn+1 makes Sn into a riemannian n-space.
Show that the orthogonal group O(n+ 1) is the group of isometries on Sn.
What are the geodesics on Sn?
Show that Sn has constant curvature.

Problem 11.8. Let Bn and F k be di�erentiable manifolds. Show that Bn � F k

has a di�erentiable structure with atlas f(V��W�; '�� �)g where f(V�; '�)g and
f(W�;  �)g are atlases for B and F respectively. What is the dimension of B � F ?

Problem 11.9. Let Mn+k; Bn, and F k be di�erentiable manifolds and � :M ! B
be a smooth map. The triple (M;�;B) is called a �ber bundle with �ber F if each
p 2 B has an open neighbourhood U such that ��1(U) � M is di�eomorphic to
U � F via a di�eomorphism � : ��1(U)! U � F and the diagram
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(11.10) ��1(U)

�j
##GGGGGGGGG

� // U � F

P1||xxxxxxxxx

U

is commutative, i.e. P1 Æ � = �j. Here P1 : U � F ! U is the projection onto the
�rst factor.
If B can be chosen as U we say that the bundle is trivial (or a product). The

property (11.10) is referred to as the bundle � :M ! B being locally trivial.
Show that the tangent bundle � : TM ! M is a �ber bundle with �ber Rn . In

fact, show that the local trivializations � may be chosen so that �p = �j��1(p) :
��1(p) ! fpg � Rn is a linear isomorphism for all p 2 U . By de�nition therefore
� : TM !M is called an n-dimensional vector bundle over M .

Problem 11.11. Let � : En+k ! Mn be a k-dimensional vector bundle over Mn.
A map s :M ! E such that � Æ s = idM is called a section of �. Sections s1; : : : ; sm
are said to be linearly independent if s1(p); : : : ; sm(p) 2 ��1(p) = Ep are linearly
independent vectors in the vector space Ep for all p 2M .
Show that � : E ! M is trivial if and only if there are k linearly independent

smooth sections s1; : : : ; sk of �.

Problem 11.12. Let F : M ! N be a smooth map between di�erentiable mani-
folds. For each v 2 TpM , show that F�(v) 2 TF (p)N as a derivation on functions, f
de�ned near F (p) is given by F�(v)[f ] = v[f Æ F ].
Problem 11.13. A point in the real projective space RP n is by de�nition a pair
of antipodal points (x;�x) on the n-sphere Sn. Show that RP n has a di�erentiable
structure such that � : Sn ! RP n ; x ! (x;�x) is a �ber bundle with �ber F =
f1;�1g. A �ber bundle with discrete �ber is called a covering space.

Problem 11.14. Consider the trivial vector bundle ~� : Sn � R ! Sn. Show that
by identifying antipodal points (x; t) � (�x;�t) in Sn � R and x � �x in Sn as in
(11.13), ~� induces a map � from E = Sn�R=� to RP n = Sn=� such that (E; �;RP n)
is a one dimensional vector bundle over RP n . This is called the canonical line bundle
over RP n . For n = 1, this is the "in�nite" M�obius band over RP 1 = S1.
View RP n � E as the image of the zero section of � : E ! RP n . Show that

E � RP n is path connected and conclude that � is a non-trivial bundle.

Problem 11.15. Show that a di�erentiable manifold M is connected if and only if
it is path connected.

Problem 11.16. Let fV�g be a cover of M , i.e. M = [�V�; V� � M . Suppose
'� : V� ! Rn are injective maps, such that '�(V�) = U� and '�(V� \ V�) = U��

are open subsets in Rn , and '� Æ '�1
� : U�� ! U�� are all continuous.

Show that there is a unique topology on M such that each V� � M is open
and '� : V� ! U� is a homeomorphism. With this topology, M is a topological
n-manifold (a topological space locally homeormorphic to Rn).

12. Completeness

From section 2 we know in particular, that if Mn is a complete riemannian n-
space, then any two points ofM can be joined by a minimal geodesic. We will begin
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this section by showing that the same conclusion holds provided M is geodesically
complete, i.e. any geodesic de�ned on all of R.

First however observe, that if X; Y are smooth vector �elds on M , then the Levi
Civita connection O� on the U�'s de�ne uniquely OXY as the vector �eld

(12.1) OXYjV� = ('�1
� )� Æ O�

X�
Y� Æ '�;

where X� is the vector �eld ('�)� ÆX Æ'�1
� , and similarly for Y� (cf. 6.3). The map

O clearly has the properties

OX1+X2Y = OX1Y + OX2Y(12.2)

OfXY = f �OXY(12.3)

OX(Y1 + Y2) = OXY1 + OXY2(12.4)

OX(f � Y ) = X[f ] � Y + f � OXY(12.5)

OXY � OYX � [X; Y ] = 0(12.6)

Z[g(X; Y )] = g(OZX; Y ) + g(X;OZY );(12.7)

for all smooth vector �elds Xi; Yi; Z and functions f on M . Here g is the map that
to each p 2M assigns the inner product gp on the tangent space TpM induced from
g� on T'�(p)U� by

(12.8) gp(u; v) = g�'�(p) (('�)�(u); ('�)�(v))

for all u; v 2 TpM . Clearly the function g(X; Y ) :M ! R de�ned by p! gp(Xp; Yp)
is smooth whenever X; Y are smooth vector �elds onM . A di�erentiable n-manifold
M together with such a riemannian structure g is called a riemannian n-manifold.
Conversely, a connected riemannian n-manifold (M; g) with dist : M � M ! R
de�ned in analogy with (1.14) via (1.13) is a riemannian n-space.

Because of (12.2)-(12.5) we say that O is a connection onM (or more precisely on
the tangent bundle TM !M), and OXY is the covariant derivative of Y in direction
X. The left hand side, T (X; Y ) of (12.6) is bilinear with respect to functions on
M ; it is called the torsion tensor of O. As in section 4 we say that O is torsion free
(or symmetric) if (12.6) holds, and metric if (12.7) holds. These properties uniquely
determine O, which we refer to as the Levi Civita connection on (M; g). In fact
proceeding as in the proof of Theorem 4.18 with general vector �elds X; Y; and Z
instead of ei; ej; and ek and using (12.6) and (12.7) one gets

hOXY; Zi = 1

2
fX[hY; Zi]� Z[hX; Y i] + Y [hZ;Xi]

�hX; [Y; Z]i+ hZ; [X; Y ]i+ hY; [Z;X]ig:
(12.9)

For �xed X; Y , the right hand side is linear in Z with respect to functions on M .
Therefore (12.9) is a coordinate free description of O equivalent to (4.22).

In terms of the Levi Civita connection O on a riemannian n-manifold (space),
Mn, the geodesics on M are the smooth curves c on M which satisfy the geodesic
equation Oc _c = 0. In particular, for each tangent vector v 2 TM , there is a unique
maximal geodesic cv : Jv ! M such that _cv(0) = v. Moreover, if W = f(v; t) 2
TM � R j t 2 Jvg then W � TM � R is open and the map W !M; (v; t)! cv(t)
is smooth (cf. 3.14).
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As in section 5 we let O = fv 2 TM j 1 2 Jvg. Then O � TM is an open
neighbourhood of the zero section M � TM , and

exp : O!M; v ! cv(1)

is a smooth map. Clearly M is geodesically complete if and only if Jv = R for all
v 2 TM , or equivalently O = TM .

Lemma 12.10. Suppose Op = O \ TpM = TpM for some p 2M . Then any q 2M
can be joined to p by a minimal geodesic.

Proof: Choose Æ > 0 so that expp : Dp(2Æ) ! B(p; 2Æ) is a di�eomorphism. In

particular, for any q 2 B(p; Æ) = fx 2 M j dist(p; x) � Æg there is a unique
minimal geodesic from p to q (cf. section 5). Now suppose dist(p; q) > Æ. Since
@B(p; Æ) = expp(S(p; Æ)); S(p; Æ) = fv 2 TpM j kvk = Æg, is compact, there is a
q0 2 @B(p; Æ) such that dist(q; @B(p; Æ)) = dist(q; q0). In particular

dist(p; q) = Æ + dist(q0; q):

Now let c : R ! M be the unique maximal normal (k _ck = 1) geodesic such that
cj[0;Æ] is the minimal geodesic from p to q0. We claim that c(dist(p; q)) = q. To see
this, consider the set

A = ft 2 [0; dist(p; q)] j dist(c(t); q) = dist(p; q)� tg:
Clearly A is closed and [0; Æ] � A. For any t 2 R

dist(p; q) � dist(p; c(t)) + dist(c(t); q) � t+ dist(c(t); q):

Thus if t 2 A, we see that cj[0;t] and hence any subsegment cj[0;t0]; t0 2 [0; t], is minimal.
It follows that

dist(p; q) =t0 + dist(c(t0); c(t)) + dist(c(t); q)

=t0 + dist(c(t0); q)

by the triangle inequality, and therefore t0 2 A. The set A is therefore a closed
interval [0; t0]. Assume t0 < dist(p; q) and choose 0 < Æ0 < minft0; dist(p; q) �
t0g so small that B(c(t0); Æ0) is a ball like B(p; Æ) above. Like there, choose q00 2
@B(c(t0); Æ0) with

dist(c(t0); q) = Æ0 + dist(q00; q);

and let c0 : [t0; t0 + Æ0]!M be the unique minimal geodesic from c(t0) to q
00. Now

dist(p; q) = t0 + Æ0 + dist(q00; q)

whence, by the triangle inequality

dist(p; q00) = t0 + Æ0:

But then dist(p; q00) = L(c00), where c00 is the piecewise smooth curve c00j[0;t0] =

cj[0;t0]; c
00
j[t0;t0+Æ0] = c0. Since c00 is a minimal curve, it is a geodesic. In particular

c00 = cj[0;t0+Æ0] and q
00 = c(t0 + Æ0). Thus

dist(p; q) = (t0 + Æ0) + dist(c(t0 + Æ0); q);

i.e. t0 + Æ0 2 A, contradicting the de�nition of t0. Therefore t0 = dist(p; q), and
cj[0;dist(p;q) is a minimal geodesic from p to q. �
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It follows directly from this lemma, that if M is geodesically complete, then any
pair of points p; q 2M can be joined by a minimal geodesic. This point in direction
of the following result called the Hopf-Rinov Theorem:

Theorem 12.11. A riemannian n-space is complete if and only if it is geodesically
complete.

Proof: Assume Mn is geodesically complete, and let fqkg be a Cauchy-sequence in
M . Fix p 2 M and choose according to 12.10 minimal geodesics ck : [0; dist(p; qk)]!
M from p to qk for each k. Clearly fdist(p; qk)g is a Cauchy sequence in R. Since
R is complete we have limdist(p; qk) = t. Moreover f _ck(0)g is a sequence of unit
vectors in TpM . By compactness of Sp(1) � TpM this sequence has a convergent
subsequence, lim _ckm(0) = v. In particular dist(p; qkm) � _ckm(0) ! t � v, and by
continuity of expp : TpM !M we get qkm = expp(t � v). It follows that the Cauchy
sequence fqkg itself converges to q, i.e. Mn is complete.
Now suppose Mn is complete, and let p 2 M be an arbitrary point in M . For

v 2 TpM we must show that Jv = R. if Jv = (a; b) with b < 1 let ftkg be an
increasing sequence in Jv with tk ! b. Clearly fcv(tk)g is a Cauchy-sequence in M .
Let q = lim cv(tk) and de�ne c : [0; b] ! M by c(t) = cv(t) for t < b and c(b) = q.
Then c is a continuous path in M . Now choose Æ > 0 according to (5.4) so that
(�; exp) is a di�eomorphism when restricted to the set

fv 2 TM j kvk < 2Æ; �(v) 2 B(q; Æ)g:

Then any two points in B(q; Æ) are joined by a unique minimal geodesic of length
< 2Æ. Moreover, the corresponding maximal geodesic is de�ned on an interval
containing (�2Æ; 2Æ). Pick t < s < b so that cv[t; b] � B(q; Æ) and cj[t;s] is the unique
minimal geodesic from cv(t) to cv(s) and dist(cv(t); cv(s)) < Æ. By construction,
however, this minimal geodesic and hence cv can be extended through and beyond
q. This contradicts the de�nition of b when b <1. Similarly we see that a = �1,
i.e. Jv = R and M is geodesically complete.

Problem 12.12. Show that OXY is well de�ned by (12.1).

Problem 12.13. Show that gp is well de�ned by (12.8).

Problem 12.14. Show that g( @
@x�i

; @
@x�j

) = g�ij Æ '� and conclude that g(X; Y ) is

smooth for smooth X; Y .

Problem 12.15. Prove (12.9) and show that it uniquely de�nes the Levi Civita
connection.

Problem 12.16. Show that for each v 2 TM there is a unique maximal geodesic
cv : Jv ! M . Show that W = f(v; t) j t 2 Jvg � TM � R is open and W !
M; (v; t) ! cv(t) is smooth. Show that O is open, exp : O ! M is smooth and
Op = O \ TpM is starshaped around Op 2 TpM .

Problem 12.17. Show that a local isometry between riemannian n-manifolds is a
local di�eomorphism. Let M be a complete riemannian n-space and F : M ! M
an isometry. Show that F is completely determined by F�p for any p 2 M . (Hint:
show that expF (p) ÆF�p = F Æ expp).
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13. Global effects of curvature

In sections 7 and 9 we investigated local and semi-global e�ects of curvature. In
this section we will prove two classical theorems about curvature and topology of
Riemannian spaces.

Let Mn be a Riemannian n-space with Riemannian structure h ; i. Since isometries
between Riemannian patches preserve the curvature tensor, it is clear that for p 2 M ,
Rp : TpM � TpM � TpM ! TpM given by

(13.1) Rp(u; v)w = (��1
� )���(p)R

�
��(p)(���(u); ���(v))���w;

is well de�ned. For vector �elds X, Y and Z on M the curvature tensor R of (13.1)
is also given in terms of the Levi{Civita connection r of section 12 by

(13.2) R(X; Y )Z = rXrYZ �rYrXZ �r[X;Y ]Z:

The sectional curvature , Ricci curvature , and scalar curvature are all de�ned from
R and h ; i as in section 8.

The following result is called the Hadamard{Cartan theorem.

Theorem 13.3. A simply connected complete Riemannian n-space of non-positive
curvature is di�eomorphic to Rn .

Proof: Let Mn be any complete Riemannian n-space with secM � 0. We will
prove the theorem by showing that in fact expp : TpM ! M is a covering map for
any p 2M (cf. 12.11).
First we claim that for any v 2 TpM , (expp)�v : Tv(TpM) ! Texp(v)M is a linear

isomorphism and hence by the inverse function theorem expp is a local di�eomor-
phism. If not, there is a u?v such that (expp)�(uv) = 0 2 Texp(v)M . The vector �eld
X(t) = (expp)�(tutv) along the geodesic cv : R !M is a Jacobi �eld i.e.

(13.4) rcvrcvX +R(X; _cv) _cv = 0

with X? _cv, X(0) = 0 2 TpM and X(1) = (expp)�(uv) = 0 2 Tcv(1)M (cf. section
5 and 7). By assumption on the curvature and (13.4), hX 00; Xi � 0 and therefore
also hX;Xi00 = 2fhX 00; Xi + hX 0; X 0ig � 0, i.e. kXk2 : [0; 1] ! R is convex. Since
kX(0)k = kX(1)k = 0, we conclude that X � 0, contradicting the fact that expp is
a di�eomorphism near 0 2 TpM . Now the local di�eomorphism expp : TpM ! M
induces a Riemannian structure on TpM such that for the corresponding metric
space, expp is a local isometry. Moreover, since the straight lines through 0 2 TpM
are also geodesics in this new metric space, it follows from 12.11 that TpM is a
complete Riemannian n-space.
For q 2M choose � > 0 so that B(q; �) is strictly convex (cf. section 9). Then by

completeness of TpM , the balls B(v; �) � TpM , expp(v) = q are mutually disjoint.
Otherwise, there would be a geodesic loop at q of length less that 2�. By the same
reasoning, in fact exppj : B(v; �)! B(q; �) is a di�eomorphism for each v 2 exp�1

p (q),
in particular expp : TpM !M is a covering map (cf. 11.13).
Since TpM ' Rn is simply connected, expp : TpM !M is a di�eomorphism if M

is simply connected.

At the other extreme we have the so called Bonnet{Myers theorem.
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Theorem 13.5. Let Mn be a complete Riemannian n-space with Ricci curvature
Ric M � (n � 1)k, k > 0. Then M is compact, and the fundamental group �1(M)
is �nite.

Proof: We will show that dist(p; q) � �=
p
k for any pair of points p; q 2 M . Then

by completeness of M , it is compact and diam(M) � �=
p
k.

Let c : [0; l] ! M , c(0) = p, c(l) = q be a normal minimal geodesic, and suppose

l > �=
p
k. Let X1; : : : ; Xn�1; Xn be parallel �elds along c, i.e.

(13.6) rcXi = 0; i = 1; : : : ; n� 1

with fXi(t)g an orthonormal basis, and Xn = _c. For Yi(t) = sin(t � �=l)Xi(t),
i = 1; : : : ; n� 1 we have

I(Yi; Yi) =

Z l

0

���
l

�2
cos2

�
t � �

l

�
� sin2

�
t � �

l

�
seci(t)

�
dt;

where I is the index form (cf. 9.2) and seci(t) is the sectional curvature of the 2-plane
spanned by Xi(t) and _c(t). By (8.7) therefore

n�1X
i=1

I(Yi; Yi) =

Z l

0

�
(n� 1)

��
l

�2
cos2

�
t � �

l

�
� sin2

�
t � �

l

�
Ric( _c)

�
dt

� (n� 1)

Z l

0

���
l

�2
cos2

�
t � �

l

�
� k sin2

�
t � �

l

��
dt

= (n� 1)

Z �

0

�
l

�

����
l

�2
cos2 u� k sin2 u

�
du

=

�
l

�

�
(n� 1)

���
l

�2
� �
2
� k � �

2

�
< 0:

In particular I(Yi; Yi) < 0 for some i, and hence c is not locally the shortest curve

according to the second variation formula (9.1). Thus l � �=
p
k.

To show the last part of the theorem, consider the universal cover � : ~M ! M ,
with �ber �1(M). As in the proof of (13.3), � induces a Riemannian structure on
~M so that � is a local isometry. In particular, Ric ~M � (n � 1)k and also ~M is
complete. Thus it follows from what we have already seen, that ~M is compact, and
therefor �1(M) is �nite.

Problem 13.7. Show that the curvature tensor Rp is well de�ned by (13.1).

Problem 13.8. Show that the right hand side of (13.2) is linear with respect to
functions on M in each variable X, Y and Z. Show (13.2).

Problem 13.9. De�ne Jacobi �elds, and parallel �elds locally and then prove (13.4)
and (13.6).

Problem 13.10. Show that the �rst and second variation formulas (3.11) and (9.1)
hold globally in a Riemannian space M .

Problem 13.11. Let c : [0; l] ! M be a geodesic in a Riemannian space M , and
u; v 2 Tc(0)M . Show that there is a vector �eld Y along cu(s) s.t. Y

0(0) = v. De�ne
the variation V (t; s) = expcu(s) t � Y (s), and show that the variation �eld X along c
is the unique Jacobi �eld along c with X(0) = u, X 0(0) = v.
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14. Vector bundles and tensors

We have already seen examples of vector bundles and tensors. Here we will discuss
these topics in general.
A (smooth) k-dimensional vector bundle is a triple (E; �;M), where E, M are

di�erentiable manifolds, and � : E ! M is a smooth map with the following prop-
erties:
For every p 2M there is an open neighborhood U �M of p and a di�eomorphism

�: ��1(U)! U � Rk such that

(14.1) ��1(U)

�j
##GGGGGGGGG

� // U � Rk

P1{{wwwwwwwww

U

is a commutative diagram. Moreover, ��1(p) is a k-dimensional vector space, for all
p 2 M , such that each map �q : �

�1(q)! Rk given by �q = p2 Æ �j��1(q) is a linear
isomorphism. E is called the total space , M the base space , and � the projection
of the bundle. The vector space Eq = ��1(q) is called the �ber over q 2 M . The
map � in (14.1) is referred to as a trivialization of (E; �;M) over U , it is also called
a local trivialization, and the bundle is said to be locally trivial. If U = M , the
bundle is called (globally) trivial .
A (smooth) map s : M ! E such that � Æ s = idM is called a section of the

bundle. With this terminology, a vector �eld X on a manifoldM is a section of the
tangent bundle (TM; �;M). We say that sections s1; : : : ; sm are linearly independent
if and only if s1(p); : : : ; sm(p) are linearly independent in Ep. According to (11.11)
a k-dimensional vector bundle (E; �;M) is trivial if and only if it has k linearly
independent sections. In particular, this is always true locally.
The space of smooth sections of (E; �;M) will be denoted by S1(E).
A bundle map between two vector bundles (E1; �1;M1) and (E2; �2;M2) is a pair

(F; f), where F : E1 ! E2 and f : M1 !M2 are smooth, and

(14.2) E1
F //

�1
��

E2

�2
��

M1
f

// M2

is a commutative diagram. Moreover, for every p1 2M1, the map Fp1 = Fj��1
1 (p1)

: E1p1

! E2f(p1) is linear. If M = M1 = M2 and f = idM the pair (F; idM) is called a
bundle isomorphism provided F is a di�eomorphism.

Example 14.3. (pull back) Let (E; �;M) be a k-dimensional vector bundle and
f : N !M a smooth map between di�erentiable manifolds. In N � E consider the
set f �(E) = f(p; e) j f(p) = �(e)g and de�ne ~� : f �(E)! N , F : f �(E)! E as the
projections P1 : N�E ! N , P2 : N�E ! E restricted to f �(E) � N�E. There is
a unique di�erentiable structure on f �(E) such that (f �(E); ~�;N) is a k-dimensional
vector bundle and (F; f) a bundle map. This is called the pull back of (E; �;M) by f .
It is also determined by the requirement that a section s� : U ! f �(E), ~� Æ s� = idU
is smooth if and only if the corresponding section along f , sf = F Æ s� : U ! E,
� Æ sf = f , is smooth. Note that s� = (id; sf).
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In the next two examples we consider two vector bundles (Ei; �i;M), i = 1; 2 over
M .

Example 14.4. (Sum) Consider the vector bundle (E1 � E2; �1 � �2;M � M)
over M �M and the diagonal map �: M ! M � M . The pull back (��(E1 �
E2); �̂1 � �2;M) is called the direct sum of (E1; �1;M) and (E2; �2;M2). Clearly the

�ber ��(E1�E2)(p) = �̂1 � �2
�1
(p) = fpg�E1(p)�E2(p) �= E1(p)�E2(p), p 2M

and we use the notation (E1 � E2; �;M).

Example 14.5. (Hom) Consider the set L(E1;E2) =
S

p2M L(E1(p);E2(p)), the

collection of all linear maps from �bers E1(p) = ��1
1 (p) in E1 to corresponding �bers

E2(p) = ��1
2 (p) in E2. Moreover de�ne � : L(E1;E2)!M by �(L(E1(p);E2(p))) =

p, p 2 M . Then L(E1;E2) carries a unique di�erentiable structure such that
(L(E1;E2); �;M) is a vector bundle in which s : U ! L(E1;E2), � Æ s = idU is
a smooth section if and only if the pair (S; idU) : (E1jU ; �1j; U)! (E2jU ; �2j; U) given
by S(v1) = s(�1(v1))(v1) is a bundle map, U �M open.

In view of the above examples, note that a general bundle map (F; f) : (E1; �1;M1)!
(E2; �2;M2) may be viewed as a smooth section in (L(E1; f

�(E2)); �;M1) and vise
versa. This also illustrates the thesis: \Knowing a bundle is knowing its sections".

Example 14.6. (Dual bundle) For a bundle (E; �;M) consider its dual bundle
(E�; �;M) where E� =

S
p2M E(p)� ' L(E;M � R) as in 14.5. The dual bundle

(T �M;�;M) of the tangent bundle (TM; �;M) of M is also called the cotangent
bundle of M .

Smooth sections of (T �M;�;M) are also called 1-forms or di�erential forms of
degree 1. If f : M ! R is a smooth function the di�erential df of f given by
dfp : TpM ! R, v 7! v[f ] clearly is a 1-form on M . If x1�; : : : ; x

n
� are the coordi-

nate functions of a coordinate patch �� : V� ! U� � Rn , V� � M , the sections
dx1�; : : : ; dx

n
� are linearly independent. In fact dx1�(p); : : : ; dx

n
�(p) � TpM

� is the
dual basis of @

@x1�
(p); : : : ; @

@xn�
(p) 2 TpM In particular any 1-form on V� is written

uniquely as ! =
Pn

i=1 fidx
i
�, where fi : V� ! R, i = 1; : : : ; n are smooth functions.

Given vector bundles (Ei; �i;M), i = 1; : : : ; k and (E; �;M) we obtain by iterating
14.5 a vector bundle (L(E1;L(E2; : : : ; L(Ek;E) � � � )); �;M) of iterated linear maps.
This of course is canonically isomorphic to the bundle (L(E1; : : : ; Ek;E); �;M) of
k-linear maps from E1(p)� � � � �Ek(p) to E(p), p 2 M . This way we can interpret
the torsion tensor, T , of a connection r on M as a smooth section in the bundle
(L(TM; TM ;TM); �;M) = (L2(TM ;TM); �;M) of bilinear maps TpM � TpM !
TpM , p 2M . The curvature tensor, R, is a smooth section in (L3(TM ;TM); �;M),
and a Riemannian structure g is a smooth section in (L2(TM ;R); �;M).

Example 14.7. (Tensor product) If (Ei; �i;M), i = 1; 2 are vector bundles over
M , the bundle (L(E1; E2;R); �;M) of bilinear maps E1(p) � E2(p) ! R, p 2 M
is also denoted by (E�

1 
 E�
2 ; �;M) and called the tensor product of (E�

1 ; �1;M)
and (E�

2 ; �2;M). If e1; : : : ; ek 2 E1(p), f1; : : : ; fl 2 E2(p) are bases with cor-
responding dual bases e�1; : : : ; e

�
k 2 E1(p)

�, f �1 ; : : : ; f
�
l 2 E2(p)

�, fe�i 
 e�jg, i =
1; : : : ; k, j = 1; : : : ; l is a basis for E�

1(p) 
 E�
2(p). An isomorphism E�

1(p) 

E�

2(p)
�= L(E1(p); E2(p);R) is then given where e�i 
 e�j : E1(p) � E2(p) ! R is

the map (v1; v2) ! e�i (v1) � e�j(v2). With this notation we can write any bilinear
map B : E1(p) � E2(p) ! R uniquely as B =

P
bije

�
i 
 e�j . In the case Ei = TM
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observe that a Riemannian structure (metric tensor) on M is given locally i.e. in
charts �� : V� ! U� � Rn by gj =

P
g�ijdx

�
i 
 dx�j .

Again the construction (notation) in 14.7 can be iterated to yield L(E1; : : : ; Ek;R) �=
E�

1
� � �
E�
k for vector bundles (Ei; �i;M), i = 1; : : : ; k. Since canonically (E��; �;M) �=

(E; �;M) we have the tensor product bundle (E1
� � �
Er; �;M) �= (L(E�
1 ; : : : ; E

�
k;R); �;M).

With this notation, g is a section in T �M
T �M , T is a section in T �M
T �M
TM ,
and R is a section in T �M 
 T �M 
 T �M 
 TM . A tensor of type (r; s) on
a manifold M is by de�nition a section in the bundle (T r

s (TM); �;M), where in
T r
s (TM) = TM 
 � � � 
 TM 
 T �M 
 � � � 
 T �M there are r factors of TM and s

factors of T �M .
We will now give a di�erent interpretation of tensors. For purposes of exposition

let us return to the case (E�
1 
E�

2 ; �;M) �= (L(E1; E2;R; �;M). Clearly any smooth
section B of this bundle induces a map

(14.8) B : S1(E1)� S1(E2)! C1(M)

that assigns to section si 2 S1(Ei) of (Ei; �i;M) the map p ! B(p)(s1(p); s2(p)),
p 2 M . This map is bilinear with respect to C1(M). In order to see that the
converse is also true, i.e., a bilinear map (14.8) de�nes a section in (E�

1 
E�
2 ; �;M),

we need to use so-called localization functions .
Consider the function h : R ! R de�ned by

(14.9) h(t) =

(
e�t

�2
; t > 0

0; t � 0

Then h � 0 is smooth, and h(t) > 0 for t > 0. Therefore, if 0 < r < R, the function
� : Rn ! R given by

(14.10) �(x) =
h(R2 � kxk2)

h(R2 � kxk2) + h(kxk2 � r2)

is smooth and �(x) = 1 if jjxjj � r and �(x) = 0 if jjxjj � R. Clearly if p 2 M
and U �M is an open neighborhood of p, there is a smooth function � : M ! [0; 1]

s.t. � � 1 near p and supp� = fq 2M j �(q) 6= 0g � U (provided M is Hausdor�).
Such a function is called a localization function at p 2M .
Now suppose B : S1(E1)�S1(E2)! C1(M) is bilinear with respect to C1(M).

Let s1; �s1 be sections in (E1; �;M) with s1(p) = �s1(p). In a local basis of sections
e1; : : : ; ek de�ned on U 3 p we have s1jU =

P
tiei, �s1jU =

P
�tiei, and ti(p) = �ti(p).

Let � be a localization function at p with supp � � U . Then we get globally de�ned
sections Ei, and functions Ti, i = 1; : : : k that are zero outside U and � � ei, resp.
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� � ti inside U . Using this we get

B(s1; s2)(p) = �2(p)B(s1; s2)(p)

= B(�2s1; s2)(p)

= B
�X

TiEi; s2

�
(p)

=
�X

TiB(Ei; s2)
�
(p)

=
X

ti(p)B(Ei; s2)(p)

=
X

�ti(p)B(Ei; s2)(p)

= B(�s1; s2)(p)

and similarly B(s1; s2)(p) = B(s1; �s2)(p) if s2(p) = �s2(p). Moreover if v1 2 E1(p),
v2 2 E2(p) we may construct sections s1 2 S1(E1), s2 2 S1(E2) such that si(p) =
vi, i = 1; 2. This again uses a localization function � and local trivializations of
(Ei; �i;M) near p.
In view of the above we may also view a tensor of type (r; s) on M as a map

(14.11) T : S1(T �M)� � � � � S1(T �M)| {z }
r

�S1(TM)� � � � � S1(TM)| {z }
s

! C1(M)

which is (r + s)-linear with respect to C1(M).

Problem 14.12. Complete the proof of the claims in 14.3 and 14.5.

Problem 14.13. Show that df as de�ned on page 36 is a smooth section of the
cotangent bundle.

Problem 14.14. Fill in the missing details in 14.7.

Problem 14.15. Prove the existence of localization functions (cf. 14.9, 14.10, : : :).
Show that it is necessary that M is Hausdor�.

Problem 14.16. On a Riemannian manifold (M; h ; i) exhibit a canonical bun-
dle isomorphism (m; idm), m : TM ! T �M . Using this the gradient of a smooth
f : M ! R is de�ned by m Æ grad f = df .
What is grad f in local coordinates?

Problem 14.17. Let r be the Levi{Civita connection on a Riemannian manifold
(M; h ; i). The divergence of a vector �eld X on M is de�ned as the function
(divX)(p) = trace(v !rvX), v 2 TpM .
What is divX in local coordinates?
The Laplacian of a function f : M ! R is de�ned by �f = div grad f .
Find the local expression of �f .

Problem 14.18. Show that a connection r on a manifold M can be de�ned as a
linear map

r : S1(TM)! S1(T �M 
 TM)

so that r(f �X) = df 
X + frX, f 2 C1(M), X 2 S1(TM).

15. Connections and differential forms

A connection in a vector bundle (E; �;M) is a map r which assigns to any vector
�eld X on M , and section s 2 S1(E) a section rXs 2 S1(E) such that (12.2){
(12.5) hold with obvious modi�cations. The �rst two of these expresses that rXs
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is tensorial in the X-variable. Using the notation from the previous section we can
therefore also say that a connection r in (E; �;M) is a linear map

(15.1) r : S1(E)! S1(T �M 
 E)

which satis�es

(15.2) r(fs) = df 
 s+ frs
for all f 2 C1(M), and s 2 S1(E). Using localization maps it is easy to see that

(15.3) (rXs1)jU = (rXs2)jU

whenever s1jU = s2jU , U � M open. This also allows to de�ne rXs when X and s
are de�ned only on U � M . If X1; : : : ; Xn and s1; : : : ; sk de�ne local trivializations
of TMjU and EjU respectively we set

(15.4) rXi
sj =

kX
l=1

�lijsl;

and call �lij the components of r relative to these trivializations.
The curvature tensor R is de�ned by

(15.5) R(X; Y )s = rXrY s�rYrXs�r[X;Y ]s

for all vector �eld X, Y and sections s.

Example 15.6. Let r be a connection on (E; �;M), and f : N ! M a smooth
map. There is a unique connection r� on the pull back bundle (f �(E); ~�;N) such
that r�

X(id; sÆf) = (id;rf�Xs) for vector �elds X on N and sections s in (E; �;M).

In particular if c : J !M is a smooth curve in M , we get an induced connection
r� on (c�(E); ~�; J). This allows us to di�erentiate sections sc along c in direction
@
@t
2 C1(TJ), r�

@
@t

sc. Earlier we have used the notation rcs for the case E = TM .

A section s along c is called parallel if and only if rcs = 0. Also in this generality
this leads to the notion of parallel transport along c. This in turn gives a geometric
interpretation of the curvature tensor as in section 10.

Example 15.7. Given connections ri in (Ei; �i;M), i = 1; 2. There is a unique
connection r in (L(E1;E2); �;M) such that

(rXT )s1 = rX(Ts1)� TrXs1

for all T 2 S1(L(E1;E2); �;M), X 2 S1(TM) and s1 2 S1(E1).

Clearly now using the above example iteratively one constructs canonical connec-
tions on tensor bundles (cf. also section 7).

We can use the notion of parallel transport to de�ne orientability of a vector bundle
(E; �;M). First recall that an orientation of Rk is an equivalence class of bases,
where fe1; : : : ; ekg is equivalent to f�e1; : : : ; �ekg (determine the same orientation) if
and only if the linear map T : Rk ! Rk that maps fe1; : : : ; ekg into f�e1; : : : ; �ekg has
positive determinant. The holonomy group �p, of the connection r at p 2 M is
by de�nition the subgroup of GL(E(p)) consisting of parallel transports along loops
at p. Note that �p

�= �q for any p; q 2 M . The bundle (E; �;M) is said to be
orientable if and only if det(�p) � R+ . An orientation of each �ber E(q) is then
obtained from an orientation at a �xed �ber E(p) by means of parallel transport
along paths from p to q.
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The concept of orientability is independent of connections, however. This will
follow from a description in terms of exterior powers given below.

Example 15.8. For a �xed k-dimensional vector bundle (E; �;M) consider the bun-
dle (Lr(E;R); �;M) of r-linear maps from the �bers of E to R. For �xed p 2M con-
sider the subspace Ar(E(p);R) � Lr(E(p);R) consisting of alternating r-linear maps
! i.e. !(v1; : : : ; vr) = sign � !(v�(i); : : : ; v�(r)) for every permutation � of f1; : : : ; rg,
r � k. Clearly there is a unique vector bundle (Ar(E;R); �;M) where a section
! : U ! Ar(EjU ;R) is smooth if and only if !(s1; : : : ; sr) is a smooth function on
U whenever s1 : : : ; sr are smooth sections of EjU ! U . If e1; : : : ; ek is a basis for
E(p) with dual basis e�1; : : : ; e

�
k, then fe�i1 ^ : : : ^ e�irg, 1 � i1 < � � � < ir � k

form a basis for a
�
k
r

�
-dimensional vector space �r(E(p)�) �= Ar(E(p);R) where

the isomorphism is established so that e�i1 ^ : : : ^ e�ir : E(p) � � � � � E(p) ! R is
the map (v1; : : : ; vr) ! detfe�ij(vl)g =

P
� sign� e

�
i1
(v�(1)) � � � � � e�ir(v�(r)). Using

this we say that (E; �;M) is orientable if and only if the one-dimensional bundle
(Ak(E;R); �;M) �= (�k(E�); �;M) is trivial. A choice of a non-trivial section deter-
mines an orientation on every �ber E(p), p 2 M . If (E; �;M) is equipped with a
connection r, the two notions of orientability are naturally the same.

Consider now the special case E = TM . A smooth section in (Ar(TM ;R); �;M) �=
(�r(T �M); �;M) is called an r-form on M , or a di�erential form of degree r. Lo-
cally, in a coordinate system (x1; : : : ; xn) an r-form ! is written uniquely as !j =P

1�i1<���<ir�n ui1���irdxi1 ^ : : :^ dxir . The obvious product �r(TpM
�)��s(TpM

�) !̂
�r+s(TpM

�) called the wedge product takes the form

(15.9) �^�(v1; : : : ; vr+s) = 1

r!

1

s!
sign �

X
�

�(v�(1); : : : ; v�(r))��(v�(r+1); : : : ; v�(r+s))

when viewed as a map Ar(TpM ;R) � As(TpM ;R) ! Ar+s(TpM ;R). If we denote
the space of r-forms on M by Dr(M), then clearly D(M) =

Ln
r=0Dr(M) becomes

a graded algebra. Here we set D0(M) = C1(M).

Theorem 15.10. There is a unique linear extension d : D(M) ! D(M) of the
di�erential on D0(M) so that

(i) dDr � Dr+1(M) (d has degree 1)
(ii) d(! ^ �) = d! ^ � + (�1)s! ^ d�, ! 2 Ds(M), � 2 D(M)
(iii) d2 = d Æ d = 0.

Proof: Uniqueness: First observe that by using localization functions we conclude
d!jU = d�jU if !jU = �jU . If !j =

P
ui1:::irdxi1 ^ : : : ^ dxir in a chart U � M we get

(again via localization functions) that d!j =
P
dui1:::ir^dxi1^: : :^dxir , which shows

uniqueness. Existence: Given ! 2 Dr(M) and suppose !jU =
P
ui1:::irdxi1 ^ : : : ^

dxir . De�ning dU : D(U)! D(U) so that dU
P
ui1:::irdxi1 ^ : : :^ dxir =

P
dui1:::ir ^

dxi1 ^ : : : ^ dxir one checks that d satis�es the conditions in the theorem. Hence
d : D(M) ! D(M) given as d!jU = dU!jU is well de�ned by the uniqueness part.
Moreover, this d clearly satis�es the conditions as stated in the theorem.

The map d : D(M) ! D(M) is called the exterior derivative . Since d2 = 0, by
de�nition

(15.11) D0(M)! � � � ! Dr(M)! Dr+1(M)! � � � ! Dn(M)! 0



RIEMANNIAN GEOMETRY: A METRIC ENTRANCE 41

is a chain complex whose cohomology groups

(15.12) Hr(M) =
Kerfd : Dr ! Dr+1g
Imfd : Dr�1 ! Drg

are the so called de Rham cohomology groups (vector spaces) ofM . It is a surprizing
fact that Hr(M) are homotopy invariant of M .

Di�erential forms constitute a powerfull tool in geometry and topology, not only
because they form a di�erential graded algebra (D(M); d), but also because they
behave nicely with respect to maps f : M ! N . In fact, for every ! 2 Dr(N) we
have f �(!) 2 Dr(M) de�ned by

(15.13) f �!p(X1(p); : : : ; Xr(p)) = !f(p)(f�pX1(p); : : : ; f�pXr(p)); p 2M
whenever X1; : : :Xr are smooth vector �elds on M . Then f � : D(N) ! D(M) is
a homomorphism of commutative graded di�erential algebras. Here commutative
refer to the property ! ^ � = (�1)r+s� ^ !, ! 2 Dr(M), � 2 Ds(M).

Problem 15.14. Prove (15.3) and the statements in (15.6) and (15.7).

Problem 15.15. Fill in the missing details in (15.8), (15.9), and (15.10).

Problem 15.16. Show that d!(X; Y ) = X[!(Y )] � Y [!(X)] � !([X; Y ]) for any
1-form !.

Problem 15.17. Show that f � is well de�ned by (15.13) and prove the stated
properties of it. If M and N are orientable, what whould it mean that f : M ! N
is orientation preserving ?

Problem 15.18. Let �lij be the components of a connection r on (E; �;M) relative
to trivializations of TM , E over U determined byX1; : : : ; Xn and s1; : : : ; sk (cf. 15.4).
For �xed l and j consider the 1-form !lj on U de�ned by !lj(Xi) = �lij. Show that

rsj =
P

l !
l
j 
 sl, and that any k� k-matrix of 1-forms f!ljg in this way determine

a connection on (EjU ; �; U). These 1-forms are called connection forms .

Problem 15.19. Let r : S1(E) ! S1(TM� 
 E) be a connection in (E; �;M).
Show that there is a unique linear map

r̂ : S1(TM� 
 E)! S1(�2(TM�)
 E)

such that
r̂(� 
 s) = d� 
 s� � ^r(s)

for every 1-form � on M and section s 2 S1(E). Show that moreover

r̂(f(� 
 s)) = df ^ (� 
 s) + fr̂(� 
 s):

Hint: Consider local sections �1; : : : ; �n and s1; : : : ; sk.

Problem 15.20. Show that the composed mapR = r̂Ær : S1(E)! S1(�2(TM�)

E) is linear with respect to C1(M). Thus R can be viewed as a section in L(E; �2(TM�)

E) �= �2(TM�)
 L(E;E) �= A2(TM ;L(E;E)). In a trivialization of E by sections
s1; : : : ; sk show that

R(sj) = r̂(
X

!lj 
 sl) =
X


l
j 
 sl;

where 
l
j is the 2-form given by


l
j = d!lj �

X
�

!�j ^ !l�:
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These 2-forms are called the curvature forms of the connection r.
Problem 15.21. Find the expression for 
l

j (cf. 15.10) in terms of the �lij's, and
show that R de�ned in 15.20 is in fact the curvature tensor of r.

The form interpretation of curvature is important in the development of character-
istic classes for bundles.

16. Submanifolds

Let Mn be an n-dimensional manifold and L � M a subset. We say that L is
a k-dimensional (embedded) submanifold of M if for every p 2 L there is a chart
� : V ! U � Rn for M such that �(p) = 0 and �(V \ L) = U \ Rk . We will
refer to such charts as submanifold charts . It is clear that the collection f�jLg of
submanifold charts for L form an atlas for L, making it into a k-dimensional smooth
manifold. Moreover the manifold topology of L obtained this way coincides with
the induced topology from M (cf. 16.7).
More generally we say that a map f : Lk ! Mn between smooth manifolds is an

immersion provided f�p : TpL! Tf(p)M is injective for every p 2 L. From the inverse
function theorem it follows that there are charts  � : V� ! U� � Rk around p and
�� : V� ! U� � Rn around f(p), such that �� Æf Æ �1

� (x) = (x; 0) for all x 2 U� (cf.
16.8). Observe that f(V�) � M is a k-dimensional submanifold of M . If in addition
f : L ! M is globally injective, we say that the subset f(L) � M is an immersed
submanifold. Finally, an injective immersion f : L ! M is called an embedding if
f : L! f(L) is a homeomorphism when f(L) is given the induced topology fromM .
Clearly, the image f(L) of an imbedding f is a submanifold. Conversely, if L � M
is a submanifold, the inclusion map i : L ,!M is an embedding.

Example 16.1. An immersion from an interval is simply a regular curve, c : J !M ,
i.e. _c(t) 6= 0, t 2 J . The picture below represents such a regular curve c : R ! R2

(0,1)

with say c(�1) = c(1) = (0; 1) and cj : R � f�1; 1g ! R2 is injective. Clearly
cj : (�1; 1)! R2 is 1-1 immersion, but not an embedding.

Another such example is given by c : R ! S1 � S1 where c(t) = (e2�it; e2�i�t),
� 2 R � Q . Here c(R) is dense in T 2 = S1 � S1.

Locally, of course any submanifold is the solution set of a system of equations. The
following global version of this is very useful: Let f : M ! N be a smooth map,
and q 2 N . Then the solution set f�1(q) = L � M is a submanifold of M provided
f�p : TpM ! TqN is surjective for all p 2 f�1(q). The existence of submanifold
charts around p 2 L is again guaranteed by the inverse function theorem (cf. 16.10).
More generally, if f : M ! N and L � N is a submanifold, one says that f is
transversal to L if f�p(TpM) + Tf(p)L = Tf(p)N for all p 2 f�1(L). Also in this case
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f�1(L) � M is a submanifold (16.11). A map f : M ! N is called a submersion if
f�p : TpM ! Tf(p)N is surjective for all p 2 M . Clearly a submersion is transversal
to every submanifold L � N .

Example 16.2. Let (E; �;M) be a vector bundle over M and f : N !M a smooth
map. Then � = f(p; p) 2 M � M j p 2 Mg is a submanifold of M � M and
f � � : N �E !M �M is transversal to �. In particular the total space f �(E) =
(f � �)�1(�) of the bundle induced by f is a submanifold of N � E (cf. 14.3).

Example 16.3. If (Ek; �;M) is a vector bundle with Riemannian structure g, i.e.
g is a smooth section in (L2(E;R); �;M) which is symmetric and positive de�nite
at each p 2M . The map k k2 : E ! R is smooth and a submersion when restricted
to E �M . Here M is identi�ed with the image of the zero section in (E; �;M). In
particular the unit sphere bundle (S(E); �;M), S(E) = k k�1(1) is a �ber bundle
with �ber Sk�1.

Example 16.4. The image of any section s : M ! E of a vector bundle (E; �;M)
is a submanifold of E.

The following observation is often used

Lemma 16.5. Let M;N and L be smooth manifolds and f : M ! N , g : N ! L
maps. Then

(i) If g is an imbedding, f is smooth if and only if g Æ f is smooth.
(ii) If f is a submersion onto N , then g : N ! L is smooth if and only if g Æ f

is smooth.

Example 16.6. Let L(n; n) denote the n2-dimensional vector space of all n�n ma-
trices, and GL(n) � L(n; n) the invertible ones. Clearly det : L(n; n)! R is smooth
and in particular, GL(n) = det�1(Rnf0g) is an open subset of L(n; n). Moreover the
group operations GL(n) � GL(n) ! GL(n), (A;B) 7! AB and GL(n) ! GL(n),
A 7! A�1 are smooth. By de�nition, a Lie Group is a smooth manifold G which
at the same time is a group and the group operations are smooth. In particular,
the general linear group GL(n) is a Lie group. This group has many important
subgroups, that are also Lie groups. Here let us point out only two such subgroups:
(i) SL(n) = det�1(1) � GL(n) is called the special linear group . Clearly, det : GL(n)
! R �f0g is a submersion, and in particular SL(n) is a submanifold of GL(n). By
using (16.5)(i) it is easy to see that the group operations on SL(n) are smooth.
Thus, SL(n) is a Lie group.
(ii) O(n) = fA 2 GL(n) j AAt = idg is the orthogonal group . Let Sym(n) de-
note the vector space of symmetric n � n matrices. Then f : GL(n) ! Sym(n)
de�ned by f(A) = AAt is smooth and f�A : TAGL(n) ! Tf(A) Sym(n) is surjective
for all A 2 f�1(id) = O(n). By the above arguments therefore also O(n) is a Lie
group. Note that O(n) has two connected components. The identity component
SO(n) = O(n) \ SL(n) is called the special orthogonal group.

Problem 16.7. Show that the manifold topology of a submanifold L � M is the
same as the induced topology on L from M .

Problem 16.8. Let f : Lk !Mn be a smooth map and suppose f�p : TpL! Tf(p)M
is 1-1 for some p 2 L. Show that k � n, and use the inverse function theorem to
construct charts  � : V� ! U� � Rk around p and �� : V� ! U� � Rn around f(p)
so that ��(f( 

�1
� (x))) = (x; 0) for all x 2 U�.
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Problem 16.9. Show that the image of c : R ! S1�S1 in (16.1) is dense in S1�S1.

Problem 16.10. Let f : Mn ! Nk be a smooth map and p 2 M a point so that
f�p : TpM ! Tf(p)N is surjective. Show that n � k, and use the inverse function
theorem to construct charts �� : V� ! U� � Rn around p and  � : V� ! U� � Rk
around f(p) so that  � Æ f Æ ��1

� (x1; : : : ; xn) = (x1; : : : ; xk) for all (x1; : : : ; xn) 2 U�.

Problem 16.11. Let f : Mn ! Nk be a smooth map, and L � N a submanifold
of codimension l, i.e. dimN � dimL = l. Show that if f is transversal to L, then
f�1(L) is a submanifold of M with codimension l.
Hint: For p 2 f�1(L) choose a submanifold chart around f(p) 2 L � N , and reduce
to the case where L is a point.

Problem 16.12. Prove the statements in 16.3.

Problem 16.13. Prove the statements in 16.4.

Problem 16.14. Prove Lemma 16.5.

Problem 16.15. Prove the statements in in 16.6.

Problem 16.16. Let G be an n-dimensional Lie group. For each a 2 G the maps
La; Ra : G! G, g 7! a � g; g � a are called left translation , resp. right translation in
G by a.
(i) Show that all left and right translations are di�eomorphisms of G
A vector �eld X on G is called left invariant (right invariant ) ifXa�b = (La)�b(Xb)

(resp. (Rb)�a(Xa)) for all a; b 2 G.
(ii) For any v 2 TeG let Xa 2 TaG be the vector Xa = (La)�e(v). Show that X
de�ned this way is a smooth left invariant vector �eld on G.
(iii) De�ne a vector space isomorphism between TeG and the space of left invariant
vector �elds on G. Here e 2 G is the neutral element.
(iv) Let X and Y be left invariant vector �elds on G. Show that [X; Y ] is left
invariant.
This gives the vector space g of left invariant vector �elds on G the structure of

an n-dimensional Lie algebra g �= TeG.
De�ne a connection r on G such that rX = 0 , i.e. X is parallel for all left

invariant vector �elds X 2 g.
(v) Show that T (X; Y ) = �[X; Y ], and R � 0.
Let h ; i be an inner product for TeG. De�ne h ; ia by hLa�u; La�via = hu; vi for

all u; v 2 TeG.
(vi) Show that h ; i is a Riemannian structure on G.
(vii) Show that all left translations La are isometries in this metric.

17. Relative curvature

Consider a submanifold Mn � Nn+k of a Riemannian manifold (N; h ; i). Then
for each p 2M the tangent space TpN admits an orthogonal splitting

(17.1) TpN = TpM � TpM
?

where TpM
? is called the normal space to M at p. Let TM? =

S
p2M TpM

? and

de�ne � : TM? !M by �(TpM
?) = p for all p 2M . Then

Theorem 17.2. TM? admit a unique di�erentiable structure such that (TM?; �;M)
is a k-dimensional sub vector bundle of (TNjM ; �;M).
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Naturally (TM?; �;M) is called the normal bundle to M in N . Clearly the
Riemannian metric h ; i on TN restrict to smooth inner products on TM and TM?

respectively. In particular M is a Riemannian manifold. We will use h ; i to denote
its restrictions also.

Any smooth vector �eld Z : M ! TN along M decomposes uniquely as Z = Z> +
Z?, where Z> is a smooth vector �eld on M and Z? is a smooth normal �eld to
M . If we let �r denote also the restriction of the Levi{Civita connection on N to
(TNjM ; �;M) (cf. 15.6) we get

(17.3) �rXY = rXY + �(X; Y );

where

(17.4) rXY = ( �rXY )
>; �(X; Y ) = ( �rXY )

?

for all smooth vector �elds X; Y on M . Moreover

(17.5) �rX� = S(�;X) +rX�;

where

(17.6) S(�;X) = ( �rX�)
>; rX� = ( �rX�)

?

for all smooth vector (resp. normal) �elds X; � on M .

Theorem 17.7. (1) r de�ned in (17.4) is the Levi{Civita connection on M .
(2) r de�ned in (17.5) is a metric connection for the normal bundle of M .
(3) � and S de�ned in (17.4) and (17.5) are tensorial. Moreover h�(X; Y ); �i =

�hS(�;X); Y i for all X ,Y and �, and � is symmetric.

Proof: It is easy to see thatr de�ned in (17.4) and (17.5) are metric connections (cf.
12.2{12.5, 12.7). Since the Lie bracket of vector �elds X, Y tangent to a submanifold
is again tangent to the submanifold (cf. 17.16), this completes the proof of (1) and
(2).
To prove (3) �rst note that � clearly is bilinear and linear with respect to C1(M)

in the X-variable. Again, using that [X; Y ] is tangent toM , and �r is symmetric, we
get that �(X; Y ) = �(Y;X) and thus in particular also tensorial in the Y -variable.
To see that S is linear with respect to C1(M) in the �-variable we proceed by
S(f�;X) = ( �rXf�)

> = (X[f ] � �)> + (f � �rX�)
> = fS(�;X). Finally

h�(X; Y ); �i = h �rXY; �i
= XhY; �i � hY; �rX�i
= �hY; S(�;X)i

since �r is metric and Y is tangential, and � is normal to M .

For p 2M , the symmetric bilinear map

(17.8) �p : TpM � TpM ! TpM
?

is called the second fundamental tensor for M in N at p. If �p is a unit normal
vector to M at p, then lnp = h�p(�; �); �pi is called the second fundamental form in
direction �p. The trace of �p,

(17.9) Hp = � 1

dimM

nX
i=1

�p(ei; ei);
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e1; : : : ; en and orthonormal basis for TpM , is called themean curvature vector at p (cf.
17.7). M is said to be a minimal submanifold if and only if its mean curvature vector
�eld H is identically zero. Even stronger, if � � 0, we say that M is totally geodesic
. A minimal submanifold can be characterized geometrically, like geodesics, as being
stationary for the volume function under variations. The geometric signi�cance of
M being totally geodesic is, that geodesics in M are also geodesics in N (cf. 17.18).
According to (17.7) it is equivalent to consider for p 2M the bilinear map

(17.10) Sp : TpM
? � TpM ! TpM:

For �xed unit normal vector �p the symmetric linear map

(17.11) S�p = Sp(�p; �) : TpM ! TpM

is called the shape operator (or Weingarten map ) to M in direction �p. Its eigen-
values are called the principal curvatures of M relative to �p. The corresponding
eigenvectors are called principal curvature directions. In analogy with the above
de�nition,

(17.12) H�p =
1

dimM
traceS�p

is called the mean curvature with respect to �p, and moreover

(17.13) G�p = detS�p

is called the Gauss{Kronecker curvature with respect to �p.
All such curvatures are called relative , or extrinsic curvatures of M in N . The

situation is of course particularly simple if codim M = 1.

Let us now give another geometric interpretation of the second fundamental tensor,
or equivalently, shape operator.

Consider a variation

V : M � (��; �)! N

of M in N , and assume for simplicity, that each Vs : M ! N is an embedding, and
that the variation �eld �p = V�(p;0)

�
@
@s

�
is normal to M in N . For each s 2 (��; �)

we get an induced Riemannian metric h ; is on M . Then

Proposition 17.14. For any vector �elds X; Y on M ,

d

ds
hX; Y isjs=0 = 2hS�X; Y i:

Proof: Observe that hX; Y is = hVs�X; Vs�Y i and thus

d

ds
hX; Y isjs=0 = �[hVs�X; Vs�Y i]

= hr�Vs�X; Vs�Y ijs=0 + hVs�X;r�Vs�Y ijs=0

= hrX�; Y i+ hX;rY �i
= hS�(X); Y i+ hX;S�(Y )i
= 2hS�(X); Y i

where we have used that [X; @
@s
] = 0 on M � (��; �) (cf. 17.16) and S� symmetric.
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We can interpret (17.14) by saying that the second fundamental tensor (�2�) is the
\gradient" of the Riemannian metric restricted to M . Finally we want to establish
a relation between extrinsic and intrinsic curvatures of M . For surfaces in R3 this
is the famous Theorema egregium of Gauss.

Theorem 17.15. Let Nn+k be a Riemannian manifold and Mn � N a submanifold
with the induced Riemannian structure, and n � 2. For p 2 M , �1; : : : ; �k 2 TpM

?

and orthonormal basis and any u; v; w; z 2 TpM , we have

R(u; v)w = ( �R(u; v)w)> �
kX
i=1

fli(v; w)Si(u)� li(u; w)Si(v)g(i)

hR(u; v)w; zi = h �R(u; v)w; zi+
kX
i=1

fli(v; w)li(u; z)� li(u; w)li(v; z)g(ii)

k(u; v) = �k(u; v) +
kX
i=1

det

�
li(u; u) li(u; v)
li(v; u) li(v; v)

�
;(iii)

where R, �R are the curvature tensors of M , N , li = l�i, Si = S�i, i = 1; : : : ; k and
k, �k the biquadratic forms of R, �R (cf. 8.2).

Proof: Since (ii) and (iii) are straight forward consequences of (i) we only prove
this. First extend u, v, w, and z to smooth vector �elds near p, and �1; : : : ; �k to
smooth normal �elds near p. Then from

�rvw = rvw +
kX
i=1

h �rvw; �ii�i

we get

�ru
�rvw = �rurvw +

kX
i=1

(u[h �rvw; �ii]�i + h �rvw; �ii �ru�i)

and hence by de�nition of Si, li and 17.7

( �ru
�rvw)

> = rurvw +
kX
i=1

li(v; w)Si(u):

Interchanging u and v and using ( �r[u;v]w)
> = r[u;v]w we obtain (i) by de�nition of

R, �R.

Observe that in the special case where N = R3 with its usual 
at metric, and M is
a 2-dimensional submanifold of R3 , then the sectional curvature of M is the same
as the Gauss{(Kronecker) curvature of M . In general, according to a deep theorem
of J. Nash any Riemannian manifold Mn can be isometrically embedded in some
Euclidean space Rn+k .

Problem 17.16. LetX be a smooth vector �eld on a manifoldM . Use the existence
and uniqueness theorem for ordinary di�erential equations to show:
(1) For every p 2M there is an open neighborhood U 3 p, and � > 0 and a smooth
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map �: U � (��; �)!M s.t.

��(q;t)(
@

@t
)= X(�(q; t)); (q; t) 2 U

�(q; t + s) = �(�(q; t); s) when de�ned

�(q; 0) = q; q 2 U

(2) Show that �t = �(� ; t) : U !M is a di�eomorphism onto its image.
Now let Y be another vector �eld on M . Show that

(�) [X; Y ]p = lim
t!0

1

t
[Yp � ((�t)�Y )p]; p 2M;

where (��Y )p = ����1(p)Y'�1(p), � a di�eomorphism.
Hint: Let f be a function de�ned near p and consider f(q; t) = f(�t(q)) � f(q).

De�ne g(q; t) =
R 1

0
f 0(q; ts) ds and show

f Æ �t = f + t � gt; g0 = X[f ]

where gt = g( ; t). Now set p(t) = ��1
t (p) and show (t �xed)

((�t)�Y )p[f ] = Yp(t)[f Æ �t] = Yp(t)[f ] + tYp(t)[gt]

and hence

lim
t!0

1

t
[Y � (�t)�Y ]p[f ] = lim

t!0

1

t
[Y [f ](p)� Y [f ](p(t))]� lim

t!0
Y [gt](p(t))

= Xp[Y [f ]]� Yp[g0]:

The right hand side of (�) is also denoted by LX(Y ) and called the Lie derivative of
Y in direction X.
(3) Show that LX extends to a type preserving derivation on all tensor �elds, and
LXf = X[f ] for every function f .

Problem 17.17. Show that the de�nition of Hp in (17.9) is independent of the
orthonormal basis e1; : : : ; en.

Problem 17.18. Show that M � N is totally geodesic i.e. � � 0 if and only if all
geodesics in M are geodesics in N .

The remaining problems all deal with surfaces of revolution in R3 . Let c = (c1; c2) : J !
R2 be a regular curve with c1 > 0 on J . The surface of revolution gotten by rotating
c around the second axis in 3-space is the image of the immersion f : J � R ! R3
de�ned by

f(t; s) = (c1(t) cos(s); c1(t) sin(s); c2(t))

for all (t; s) 2 J � R.
Problem 17.19. Show that

Z(t; s) =
c02(t) cos se1 + c02(t) sin se2 � c01(t)e3

k _c(t)k
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is a normal �eld along f (e1, e2, e3 standard coordinate �elds in R3). Show that

SZf�(e1) =
c01c

00
2 � c02c

00
1

((c01)2 + (c02)2)3=2
f�e1

SZf�(e2) =
c02

c1((c01)2 + (c02)2)1=2
f�e2

(here e1, e2 are the coordinate �elds in J � R). What are the principal curvatures?

Problem 17.20. Let c1(t) = R + r cos t, c2(t) = r sin t, t 2 R and 0 < r < R. The
corresponding surface of revolution is T 2 � R3 . Show that the principal curvatures
of this torus are given by

�1 =
1

r
and �2 =

cos t

R + r cos t

whence

H =
1

2
(�1 + �2) =

R + 2r cos t

2r(R + r cos t)

is the mean curvature, and

sec = G = �1�2 =
cos t

r(R+ r cos t)

is the Gauss and sectional curvature. Where is sec > 0, = 0, < 0?.

Problem 17.21. Consider the Catenoid , i.e. the surface of revolution determined
by c(t) = (cosh t; t), t 2 R. Show that the principal curvatures are given by

�1 = � 1

cosh2 t
; �2 =

1

cosh2 t
:

In particular, the Catenoid is a minimal surface (H � 0) and sec = � cosh�4 t < 0
everywhere.

18. Space forms

We already know that Rn with its usual Riemannian structure has constant cur-
vature sec = 0. We also know that a sphere Sn(r) = fx 2 Rn+1 j kxk = rg has
constant positive curvature (cf. 11.7, 13.3). Here we will show that it has constant
curvature sec = 1

r2
.

First let us consider in general a Riemannian manifoldNn+1 and a smooth function
f : N ! R. Let M = f�1(a), a 2 R and suppose df 6= 0 on M . Then Mn is a
codimension 1 submanifold of N (cf. 16.10). We will use the results in the previous
section to compute the curvature of M with its induced Riemannian structure.
By de�nition hgrad f; vi = df(v) and we see that grad f is a nowhere vanishing

normal �eld to M . Thus � = grad f=k grad fk is a unit normal �eld of M . The
shape operator of M is therefore given by

(18.1) S(v) = (rv�)
> =

(rv grad f)
>

k grad fk
for tangent vectors v to M .
By de�nition, the Hessian tensor of f is the (1; 1) tensor given by Hf(X) =

rX grad f , and the hessian is the (2; 0) tensor hf(X; Y ) = hHf(X); Y i. If p 2 N
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is a critical point for f , i.e. dfp = 0, and (x1; : : : ; xn+1) are local coordinates near p
then hf(p) is given by the matrix

(18.2)

�
@2f

@xi@xj
(p)

�
with respect to the basis @

@x1
(p); : : : ; @

@xn+1
(p); for TpN .

With this terminology we get the following expression for the second fundamental
form l = l� of M :

(18.3) l(u; v) = � hf (u; v)

k grad fk

for all u; v 2 TpM , p 2M . Thus from (17.15) we obtain

(18.4) hR(u; v)w; zi = h �R(u; v)w; zi+ hf (v; w)hf(u; z)� hf(u; w)hf(v; z)

k grad fk2 :

In the special case N = Rn+1 with its standard 
at metric, and f : Rn+1 ! R,
x 7! kxk2 =Px2i we get for M = f�1(r2), that

(18.5) hR(u; v)w; zi = k grad fk�2fhf(v; w)hf(u; z)� hf(u; w)hf(v; z)g

and so it only remains to compute grad f , and hf . Now clearly

(18.6) grad f = 2�; �(x) =
n+1X
i=1

xiei

and therefore

(18.7) Hf(u) = 2ru

X
xiei = 2u; hf(u; v) = 2hu; vi:

Since k grad fk2 = 4r2 on M = S2(r) we get by substituting into (18.5) that indeed
sec � r�2.
It is possible to construct examples of manifolds with constant negative curvature

in a similar way. Rather than using Rn+1 with its standard 
at Riemannian met-
ric, one has to replace this by its standard 
at Lorenz metric. Since we have not
developed this concept here, we will proceed by appealing to another useful tool:
conformal change of metric.
Two Riemannian metrics g and ~g on a smooth manifoldM are said to be confor-

mally equivalent if there is a function f 2 C1(M) such that ~g = ef � g. Similarly, a
di�eomorphism F : M ! ~M between Riemannian manifolds is said to be conformal
if F �~g = ef � g. This is the case if and only if F� preserves angles.
Now suppose ~g = ef � g, and let ~r, r be the Levi{Civita connections of ~g and g

respectively.



RIEMANNIAN GEOMETRY: A METRIC ENTRANCE 51

Theorem 18.8. For all smooth vector �eld X, Y , and Z on M ,

~rXY = rXY +
1

2
fX[f ]Y + Y [f ]X � g(X; Y ) grad fg(i)

~R(X; Y )Z = R(X; Y )Z

(ii)

+
1

2
fhf(X;Z)Y � hf(Y; Z)X + g(X;Z)Hf(Y )� g(Y; Z)Hf(X)g

+
1

4
f(Y [f ]Z[f ]� g(Y; Z)k grad fk2)X
� (X[f ]Z[f ]� g(X;Z)k grad fk2)Y
+ (X[f ]g(Y; Z)� Y [f ]g(X;Z)) grad fg

and in particular,

ef(p) ~sec(�) = sec(�)� 1

2
fhf (v; v) + hf(u; u) +

1

2
(k grad fk2 � v[f ]2 � u[f ]2)g

(iii)

for any two plane � = span(u; v), where u; v 2 TpM are orthonormal with respect to
gp. All the right hand sides above are expressed entirely in terms of g.

Proof: (ii) and (iii) follow from (i) by a simple, but rather lengthy computation.
To prove (i) we use the characterization (12.9) of the Levi{Civita connection (cf.
also 4.20, 4.22).
Since the di�erence of connections is a tensor (cf. 18.13) one only needs to check

(i) on coordinate vector �elds.

We will now use 18.8 when g is the usual 
at Riemannian metric on Rn . For
k 2 R, let

Uk =

8<:R
n ; k � 0

Dn
�

1p
jkj

�
=
n
x 2 Rn

��� kxk2 < 1
jkj

o
; k < 0

be equipped with the metric gk = �k � g, where

�k(x) =
4

(1 + kkxk2)2 ; x 2 Uk:

Thus gk is conformally equivalent to the 
at metric g and fk = log 4�2 log(1+kkxk2).
Theorem 18.9. The Riemannian manifold (Uk; gk) has constant curvature sec � k.
Moreover, for k � 0 it is complete.

Proof: From our computation of grad k � k2 in the last section we obtain

grad fk = � 4k

1 + kk � k2�
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and hence

vx[fk] = hgrad fk; vi = �4kh�; vi
1 + kkxk2

k grad fk(x)k2 = 16k2kxk2
(1 + kkxk2)2

Hfk(v) = rv grad fk =
8k2h�; vi

(1 + kkxk2)2�(x)�
4k

1 + kkxk2 v:

In particular

hfk(v; v) =
8k2h�; vi2

(1 + kkxk2)2 �
4k

1 + kkxk2
for unit vectors v 2 TxRn . From (18.8)(iii) therefore

�k(x)sec(�) = 0� 1

2

�
� 8k

1 + kkxk2 +
8k2kxk2

(1 + kkxk2)2
�

= �k(x) � k
i.e. sec(�) = k for every two plane �.
The completeness is obvious for k = 0. Now suppose k < 0. Since the metric

is obviously radially symmetric, it follows that Euclidean rays emanating from the
origin are geodesics (up to parametrization). In order to show completeness, therefor
according to Hopf{Rinow, we only have to show that these curves are in�nitely long.
Now Z 1p

jkj

0

2

1 + kt2
dt

diverges. The manifold (U�1; g�1) is called the Poincar�e model for the hyperbolic
n-space. Another model, also due to Poincar�e, is the upper half space H = fx =
(x1; : : : ; xn) 2 Rn j xn > 0g with the metric ~g(x) = 1

x2n
g(x).

Problem 18.10. Prove 18.2 and conclude that hf is independent of the Riemannian
metric at a critical point.

Problem 18.11. Prove 18.6 and 18.7.

Problem 18.12. Prove that a di�eomorphism is conformal if and only if it preserves
angles.

Problem 18.13. If r1 and r2 are connections in a vector bundle (E; �;M), show
that

T (X; s) = r1
Xs�r2

Xs

is tensorial in X as well as in s.

Problem 18.14. Complete the proof of 18.8

19. Riemannian submersions

Numerous manifolds arize naturally as solution sets to equations, i.e. as submani-
folds of other manifolds. We have seen how to compute curvature in such cases. An-
other important class of manifolds are more naturally described as quotient spaces.
This is the case for example for orbit spaces of group actions.
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The dual concept to isometric immersions, is that of Riemannian submersions. A
submersian � : E !M between Riemannian manifolds (E; �g) and (M; g) is called a
Riemannian submersion if

(19.1) g(��u; ��v) = �g(u; v)

for all u; v 2 (Ker ��p)?, p 2 E. Since �(E) is open we assume w.l.o.g. that � : E !
M is surjective.
Rather than using �g, g we will use the notation h ; i for both. The tangent space

TpE splits orthogonally as

TpE = E>
p � E?

p

where E>
p = Ker ��p is the tangent space to the �ber ��1(�(p)). E>

p is called the

vertical space at p and E?
p the horizontal space at p. Every vector �eld Z on E splits

accordingly

Z = Z> + Z?; Z>
p 2 E>

p ; Z
?
p 2 E?

p

and Z is smooth if and only if Z> and Z? are smooth. For every smooth vector
�eld X on M there is a unique smooth horizontal vector �eld �X on E, i.e. �X> = 0,
such that ��( �Xp) = X(�(p)) for all p 2 E. �X is called the horizontal lift of X (cf.
also 19.7).

Theorem 19.2. The Levi{Civita connections �r, r on E, and M respectively are
related by

( �r �X
�Y )? = (rXY )

for all smooth vector �elds X, Y on M .

Proof: Again using (12.9) and the properties of � (cf. 19.7) we get immediately:

2h �r �X
�Y ; �Zi = �Xh �Y ; �Zi+ �Y h �Z; �Xi � �Zh �X; �Y i

+ h �Z; [ �X; �Y ]i � h �X; [ �Y ; �Z]i+ h �Y ; [ �Z; �X]i
= XhY; Zi Æ � + Y hZ;Xi Æ � � ZhX; Y i Æ �

+ hZ; [X; Y ]i Æ � � hX; [Y; Z]i Æ � + hY; [Z;X]i Æ �
= 2hrXY; Zi Æ �
= 2hrXY ; �Zi

for all vector �elds X, Y and Z on M .
Now note that if T is a vertical �eld on E, i.e. ��T = 0, then T is �-related to

the zero �eld on M (cf. 19.7), so for any lift �X of a vector �eld X on M we have
��[T; �X] = [0; X] = 0 (cf. 19.7) and therefore

(19.3) [T; �X]? = 0

for any vertical T .

Theorem 19.4. For any smooth vector �elds X, Y on M ,

( �r �X
�Y )> =

1

2
[ �X; �Y ]> = A(X; Y )

and A de�ned this way is a tensor.

Proof: By (12.9), (19.3) and T h �X; �Y i = 0 we get 2h �r �X
�Y ; T i = h[ �X; �Y ]; T i, for all

X, Y on M and vertical T on E.
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In particular �r �X
�X is horizontal. This shows, that geodesics inM lift to horizontal

geodesics in E. Conversely a geodesic in E which is horizontal at one point is
horizontal at all points, and in fact a horizontal lift of a geodesic in M . In short

(19.5) � Æ expEjE?
p
= expM Æ��jE?

p
:

We are now ready to compare curvature tensors.

Theorem 19.6. For X; Y; Z; U smooth vector �elds on M we have

hR(X; Y )Z; Ui = h �R( �X; �Y ) �Z; �Ui+ 1

4
h[ �Y ; �Z]>; [ �X; �U ]>i(i)

� 1

4
h[ �X; �Z]>; [ �Y ; �U ]>i � 1

2
h[ �X; �Y ]>; [ �Z; �U ]>i;

sec(span(X; Y )) = �sec(span( �X; �Y )) +
3

4
k[ �X; �Y ]>k2;(ii)

when X, Y locally form an orthonormal 2-frame �eld on M .

Proof: (ii) follows directly from (i) which is proved as follows

hR(X; Y )Z; Ui Æ � = (hrXrYZ; Ui � hrYrXZ; Ui � hr[X;Y ]Z; Ui) Æ �
= h �r �XrYZ; �Ui � h �r �YrXZ; �Ui � hr[X;Y ]

�Z; �Ui
= h �r �X( �r �Y

�Z � ( �r �Y
�Z)>); �Ui � h �r �Y ( �r �X

�Z � ( �r �X
�Z)>); �Ui

� h �r[ �X; �Y ]�[ �X; �Y ]>
�Z; �Ui

= h �R( �X; �Y ) �Z; �Ui � h �r �X( �r �Y
�Z)>; �Ui

+ h �r �Y ( �r �X
�Z)>; �Ui+ h �r[ �X; �Y ]>

�Z; �Ui
= h �R( �X; �Y ) �Z; �Ui+ h( �r �Y

�Z)>; �r �X
�Ui � h( �r �X

�Z)>; �r �Y
�Ui

+ h �r �Z [ �X; �Y ]
>; �Ui

= h �R( �X; �Y ) �Z; �Ui+ 1

4
h[ �Y ; �Z]>; [ �X; �U ]>i � 1

4
h[ �X; �Z]>; [ �Y ; �U ]>i

� h[ �X; �Y ]>; �r �Z
�Ui

where we have used (19.2), (19.3), (19.4) and of course that �r is the Levi{Civita
connection.

Problem 19.7. Let f : M ! N be a smooth map. Vector �elds �X on M and X on
N are said to be f -related provided f�p( �Xp) = Xf(p) for all p 2 M . Show that if �X
and X are f -related, �Y and Y are f -related, then [ �X; �Y ] and [X; Y ] are f -related.

Problem 19.8. Let � : E ! M be a submersion of a smooth manifold E onto a
Riemannian manifold (M; g). Show that (provided E admits any Riemannian metric
then) E admits a Riemannian metric �g such that � is a Riemannian submersion.

Problem 19.9. Let � : E ! M be a Riemannian submersion. Show that if E is
complete, so is M . In this case, show that all �bers are di�eomorphic, and in fact
� : E !M is a locally trivial �ber bundle.

Problem 19.10. Let � : E !M be a vector bundle with connection r. For U 2 E
let E?

u � TuE be the subset of all tangent vectors at u 2 E represented by parallel
�elds through u. Show that E?

u is a subspace and ��j : E?
u ! T�(u)M is a linear
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isomorphism. De�ne a Riemannian metric on E so that � : E !M is a Riemannian
submersion.

20. Lie groups and homogeneous spaces

Suppose G is a Lie group (cf. 16.6 and 16.6) with bi-invariant Riemannian metric
h ; i, i.e. left as well as right translations are isometries (e.g. any compact Lie group
admits such a metric, cf. 20.8 and 20.9).

Theorem 20.1. Inversion � : G ! G, g 7! g�1 is an isometry. Moreover G is a
symmetric space.

Proof: Representing tangent vectors by curves we see that

(20.2) ��(e;e)(u; v) = u+ v; u; v 2 TeG
where � : G�G! G is the multiplication. In particular

(20.3) ��e(u) = �u; u 2 TeG
and so ��e is an isometry. In general � = Lg�1 Æ � Æ Rg�1 for any g 2 G so by (20.3)
��g : TgG! Tg�1G is an isometry.
Now let Ig = Lg Æ � Æ Lg�1 , g 2 G. Then each Ig is an isometry, Ie = � and

(20.4) Ig(g) = g; (Ig)�g = �idTgG:
By de�nition therefore, G is a symmetric space , since at each point there is an
isometry which reverses geodesics through the point.
Now let c : J ! G be a geodesic with c(0) = g, c(t1) = g1. The isometry Ig1 Æ Ig

maps c(t) to c(2t1 + t) whenever t; t1; 2t1; 2t1 + t 2 J . This shows that c can be
extended to R, i.e. G is complete.
A one-parameter subgroup of Lie groupG, is a smooth homomorphism' : (R;+) !

G.

Theorem 20.5. The geodesics through e 2 G coincide with the one-parameter sub-
groups of G. The Levi{Civita connection r is given by

rXY =
1

2
[X; Y ]; X; Y 2 g(i)

R(X; Y )Z = �1

4

�
[X; Y ]; Z

�
; X; Y; Z 2 g(ii)

hR(X; Y )Z; Ui = �1

4
h[X; Y ]; [Z; U ]i; X; Y; Z; U 2 g:(iii)

In particular G has nonnegative sectional curvature.

Proof: Let c : R ! G be a geodesic with c(0) = e. Using the re
exion Ic(t1) we
obtain c(t1 � t) = Ic(t1)c(t1 + t) = c(t1)c(t1 + t)�1c(t1) and by induction c(mt1) =
c(t1)

m for any t1 2 R and m 2 Z. But then

c
�p
q
+
r

s

�
= c
�
(ps+ qr)

1

qs

�
= c
� 1

qs

�ps+qr
= c
�p
q

�
c
�r
s

�
for all p; q; r; s 2 Z and hence c(t + s) = c(t)c(s) for all t; s 2 R. It also follows,
that the left translates of the one-parameter subgroup, c are exactly all the integral
curves of the left invariant vector �eld X 2 g determined by X(e) = _c(0). Since
these are all geodesics we get rXX = 0 for any X 2 g. We get (i) by polarization
and symmetry of r. (ii) and (iii) are now straightforward.
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Before we discuss homogenous spaces, let us consider in general a smooth isometric
action M �H !M of a Lie group H on a Riemannian manifold M , i.e.

M �H !M; p(h1h2) = (ph1)h2

for all p 2 M , h1; h2 2 H. Moreover pe = p for all p 2 M , and h : M ! M ,
p 7! p � h is an isometry for all h 2 H. The action is free if all isotropy subgroups
Hp = fh 2 H j h(p) = pg are trivial.
Theorem 20.6. If M �H ! M is a free, proper isometric action, then the orbit
space N = M=H admits a structure of a smooth Riemannian manifold such that
� : M !M=H is a Riemannian submersion.

Proof: Fix p 2 M , consider the map p : H ! M , h 7! ph. This is clearly 1-1
and smooth. Moreover for Xh 2 ThH let X 2 h be the corresponding left invariant
vector �eld on H. If c is the integral curve with c(0) = e, then h � c represents Xh

and hence phc represents p�(Xh). Thus if p�(Xh) = 0, then (ph)c(t) represents the
zero vector for all t 2 R. This, however, would only be possible if phc is constant,
which is impossible since the action is free. This shows that p : H ! M is a 1-1
immersion, and hence an embedded submanifold by the assumption on properness.

Now consider the restriction of exp : gTM ! M to the normal bundle T (p �H)? of
p � H � M . Clearly (for any submanifold) exp has maximal rank along the zero
section of this normal bundle. Consequently it is a di�eomorphism when restricted
to a suitable neighborhood. In our case, since H acts by isometries we can choose an
� > 0 such that exp : f� 2 T (pH)? j k�k < �g !M is an equivariant (i.e. commutes
with action of H) di�eomorphism onto fq 2M j dist(q; p �H) < �g. Since the action
is free, T (pH)? ! pH is a trivial bundle, and hence each orbit in this neighborhood
is represented by a unique point in a �xed normal �-disc at p. It follows that M=H
is a smooth manifold, and in fact � : M ! M=H a locally trivial �ber bundle with
�ber H. Moreover the equivariant metric in the normal bundle to each orbit exhibits
a Riemannian metric on M=H so that � : M !M=H is a Riemannian submersion.

Now let us consider the special case where G is a Lie group with biinvariant metric,
and H a closed Lie subgroup. N = G=H will denote the space of left cosets of H in
G with the quotient topology of � : G! G=H. Letting H act on the right of G we
obviously get an isometric, proper action whose orbits coincide with the left coset of
H. According to 20.6, therefore G=H admits a structure of a smooth Riemannian
manifold such that � : G ! G=H is a Riemannian submersion. The homogeneous
space G=H with this metric is called a normal homogeneous space . From (20.5)
and (19.6) we compute the sectional curvature of G=H by

(20.7) sec(�) =
1

4
k[ �X; �Y ]?k2 + k[ �X; �Y ]>k2;

where � = span(X; Y ), X, Y orthonormal in G=H and �X, �Y horizontal lifts to G.
Note that we only have to compute the curvatures at one point.

Problem 20.8. If G is a compact Lie group there is a biinvariant measure on it
with �nite volume. Show by averaging that G has a biinvariant metric.

Problem 20.9. Let G be a Lie group and X 2 g ' TeG. The adX : G! g is the
map Y ! [X; Y ] and the Killing{Cartan form on g is de�ned by

�(X; Y ) = trace(adX Æ adY ):
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Show that � is bilinear, symmetric and biinvariant. When G is semisimple and
compact, then it is negative de�nite. (G semisimple, � nondegenerate. G compact
, � negative semide�nite.)

Problem 20.10. Show that the Grassman manifold Gn;k of all k-dimensional sub-
spaces in Rn+k can be viewed as a normal homogeneous space.

Problem 20.11. Same problem for complex Grassman manifold of complex k-
dimensional subspaces in C n+k . For k = 1, this is the complex projective space
C P n .

Problem 20.12. View C P n as an orbit space S2n+1=S1 and conclude that C P n as
positive curvature.

Problem 20.13. Prove (20.2), (20.3) and (20.4).

Problem 20.14. Complete the proof of 20.5.

Problem 20.15. Fill in the missing details in the proof of 20.6.

Problem 20.16. Prove 20.7.
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