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0. INTRODUCTION

This is intended as a rapid introduction to basic Riemannian geometry with min-
imal prerequisites. In contrast to all other books on the topic, the basic theory
of differentiable manifolds is not a prerequisite nor a topic which is treated first.
Rather, the theory of smooth manifolds emerges naturally halfway through the text,
in the passage from local to global considerations, and is only treated then with this
as motivation.

The idea behind our approach is to begin with local Riemannian geometry from
the point of view of special metric spaces. The only prerequisites needed for this
are basic linear algebra, analysis and metric spaces. The obvious length metric on
say the graph in R” x R of a smooth function f : R” — R serves as the motivation
for the general concept of a Riemannian patch (which is nothing but a Riemannian
metric on an open subset of R"). In this context, geodesics defined as locally shortest



2 KARSTEN GROVE

curves (parametrized by arclength) are easily seen to exist. - The first variation of
arclength formula for smooth curves motivates the concept of connections and the
exponential map. Via theGauss-lemma one then sees that the metrically defined
geodesics are actually smooth curves satisfying the second order geodesic equation
used to construct the exponential map. Likewise it follows that isometries, i.e. dis-
tance preserving maps, between Riemannian patches are smooth, a key observation
in the passage from local to global Riemannian spaces. Indeed, a metric space which
is locally isometric to a Riemannian patch, is in particular a smooth manifold. This
allows us to carry over immediately all considerations for Riemannian patches to
global Riemannian spaces, i.e. Riemannian manifolds . In particular, the essential
notions of curvature (introduced as a measurement for the deviation of the expo-
nential map form being an isometry), Jacobi fields and parallel transport carry over
to global spaces since they are isometry invariants.

Once the global notions are in place, the equivalence between metric and geodesic
completeness is proved. This so-called Hopf-Rinow theorem is the germ of most
if not all global results in metric differential geometry. Two of the most classical
results concerning relations between geometry and topology, the Hadamard-Cartan
and the Bonnet-Myers theorems, are easily obtained at this relatively early stage in
our treatment.

A general pedestrian (but possibly terse) treatment of bundles, forms and tensors
in general is given primarily for the purpose of submanifold theory and relative curva-
ture (second fundamental form). The Theorema Egregium is used to provide explicit
models for spaces of constant curvature. The dual notion of Riemannian submersions
and the corresponding Gray-O’Niell formula is treated with the immediate purpose
of discussing homogeneous spaces.

We have chosen to terminate our treatment at this point, where Riemannian
geometry bifurcates into many different directions. One of these, now referred to
as comparison theory has been the driving force behind our point of view in this
geometric introduction to Riemannian geometry.

As an introduction to the subject it is important to stress that the problems form
an integral part of the text. In an attempt to strive for clarity in the exposition,
details of proofs are often deferred to the problems. - The notes are based on
one semester courses taught at the University of Maryland and at the University of
Aarhus. It is a pleasure to thank the students at both universities for their important
input. The final draft of the notes was written while on sabbatical at the University
of Aarhus during 1996/1997. T am grateful for the support an excellent research
atmosphere provided by the mathematics department.

1. RIEMANNIAN LENGTH AND DISTANCE

Recall that the euclidean distance between points © = (zy,...,2,) and y =
(Y1,.-.,yn) in R™ is given by

N

(1.1) pla,y) =l —yll = (& —y,0 —y)* = (Z(mi—yiV)

=1

In terms of this, the euclidean length of a (continuous) curve ¢ : [a,b] — R is
defined as
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k
(1.2) Ly(c) = sup Ly(P) = sup Z p(e(ti—y), e(ti)),

i=1
where the supremum is taken over all partitions P = {a =ty < t; < --- < t;, = b}

of [a,b]. Clearly any parameter change of ¢ yields a curve with the same length.
Moreover

(1.3) Lo(¢) = Lo(¢ifan) + Lo(ej),
for any t € [a, b], and
(1.4) Lo(c) = Lo(¢ljar b1))

whenever [a;, b;] C [a,b]. In particular, ¢/, 5,1 has finite length if ¢ does. Such curves
are called rectifiable. Any C'-curve, c is rectifiable, in fact

(15) L) = [ 1ot

where ¢’ : [a,b] — R" is the derivative, '(t) = ZL¢(t) of c. Clearly

(1.6) p(c(a), c(b)) < Lo(c)
for any curve ¢, with equality if and only if ¢ is the line segment from c(a) to ¢(b).

Now let U C R" be a connected open subset in R”. If confined to U, the induced
euclidean distance is not a reasonable measure for the distance between points in U,
unless it is convex. Instead define

(1.7) disto(z,y) = inf Ly(c),

where ¢ : [a,b] — U joins z and y, i.e. ¢(a) = z and ¢(b) = y. Here it is sufficient
to take the infimum over curves c¢ that are piecewise regular. A continuous curve
¢ : [a,b] - U C R" is piecewise regular provided [a,b] admits a partition a =
ty < t1 < -+ < t = b such that the restriction ¢| : [t;_1,t;] — U, is C'' with
017&0, i=1,...,k. Clearly

also defines a metric on U with the same topology.

More generally consider a function f: U — R of class C*,k > 1. Any curve c on
the graph of f in U x R C R""! is of the form c(t) = (¢ (¢), f o c1(t)) for some curve
¢; in U. Moreover, if ¢; is C!

L9 Lol = [ (P + (o) 02k = [ (g (0. ch(0)

where for each © € U, g, is the inner product on R" defined in terms of the
euclidean inner product (,) by g, = (,) o D(id, f), x D(id, f),. This motivates the
following

Definition 1.10. A riemannian C*-structure on an open set U C R” is a C*-map
g, which to each x € U assigns an inner product on R*. The pair (U, g) is called a
riemannian patch.
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If e1,...,e, is the standard basis for R” , the inner products

(1.11) gij = g(e;, €j), ihwj=1,...,n
determine g completely. These coordinate functions are all C". Let G, : R* — R”

be the symmetric linear map, whose matrix with respect to eq,..., e, is {g;;(z)}.
With this notation

(1.12) 9x(u,v) = (u, Gyv)

forall z € U,u,v € R".

Although less will often do, we assume for convenience that all maps considered
(including riemannian metrics, g) are smooth, i.e. C*°, unless otherwise explicitely
stated.

The (riemannian) length of a piecewise C'-curve ¢ : [a,b] — U is defined as

N

(1.13) L@ = [ (g (o). @) dr

We will only use subscripts as e.g. L,, if we need to be specific about the riemannian
structure. Asin (1.7), if U is connected, we define the (riemannian) distance between
xz,y € U by

(1.14) dist(x,y) = inf L(c),

where the infimum is taken over all piecewise regular curves joining = and y in U.
Comparing g with a (constant) euclidean inner product shows that

(1.15) dist: U x U - R

is a metric whose topology coincides with the original one on U.

Example 1.16. Let (U, g) be any riemannian patch and f a positive function on
U. Then (U, f - g) is another riemannian patch. Two such patches are said to be
conformally related. An important special case that can be described that way is
the socalled hyperbolic space. Here U = {x € R* | ||z|| < 1} is equipped with the

riemannian structure
4

9z = W<’>’

also called the Poincaré metric.
We will see that the hyperbolic space, together with the euclidean space and the
sphere are the simply connected model spaces, i.e. spaces of constant curvature.

Problem 1.17. Prove (1.3), (1.4), and give an example of a non-rectifiable curve.
Problem 1.18. Prove (1.6), (1.15) and the statements following them.
Problem 1.19. Prove the claim following (1.7).

Problem 1.20. Show that any ((a, b), dist,) is locally isometric to ((a,b), p1). Is it
true globally?

Problem 1.21. Extend the situation in (1.9) to the case where f : U — R is
replaced by a C* map F :— R™ (It follows from Nash’s embedding theorem that
any riemannian path can be obtained this way).
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2. GEODESICS

In analogy with (1.2) we can define the length of any continuous curve ¢ : [a, b] —
(U, dist) by

(2.1) L(c) = sup Z dist(e(ti_1), c(t;)),

where the supremum is taken over all partititions a = ¢y < --- < t;, = b of [a, b].
Again taking inf L(c) over all curves with fixed endpoints defines a metric which in
general is larger than the original one. In our case, however

(2.2) dist(x, y) = inf L(c),

where the infimum is taken over all continuous curves ¢ from x to y in U. A metric
space with this property is called a length space (or inner metric space).

A normal geodesic in (U, dist) is a curve ¢ which is locally distance preserving i.e.
for any ¢ in the domain of ¢

(2.3) dist(c(t1), e(t2)) = [t — to]

whenever ¢; and t, are sufficiently close to t. A geodesic is a curve which up to an
affine change of parameter is a normal geodesic. A geodesic ¢ : [a,b] — U is called
minimal if dist(c(a),c(b)) = L(c). Since U is locally compact, the following yields
the existence of "short” minimal geodesics.

Lemma 2.4. Forx € U choose e > 0 so that the ball B(x,c) = {y € U | dist(z,y) <
e} has compact closure. Then any y € B(x,e) can be joined to x by a minimal
geodesic.

Proof: Select a sequence of curves ¢, : [0,1] — U parametrized proportional to
arc length, such that ¢,(0) = z,¢,(1) = y and L(c,) — dist(z,y). Then {¢,} is an
equicontinuous family. Moreover, for n sufficiently large ¢, ([0,1]) C B(z,¢). By As-
coli’s theorem a subsequence {c,, } of {c,} converges uniformly to a continuous curve
c:1[0,1] — B(x,¢e) from x to y. Moreover, L(c) = dist(x,y) and ¢ is parametrized
proportional to arc length. O

The key point in the above proof is that all ¢, map into a compact set for n large.
In particular, if the closure of any ball in (U, dist) is compact, any two points can
be joined by a minimal geodesic.

The following is a generalization of the Heine-Borel theorem for R™.

Theorem 2.5. Suppose the riemannian patch (U, g) is a complete metric space.
Then every closed and bounded set is compact. Moreover, any two points in U may
be joined by a minimal geodesic.

Proof: We need to show that every closed ball

(2.6) B(z,r) ={y € U | dist(x,y) < r}
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is compact. Since U is locally compact, it suffices to show that B(z, R) is compact
provided B(z,r) is compact for all 7 < R. Now let {z,} be any sequence in B(zx, R).
Since

(2.7) dist (B(x,r1), B(y,r2)) < dist(x,y) —r — 9

for any x,y € U and rq,ry positive, we see that B(x, R — ) N B(x,,2¢) # ¢ for
every 0 < ¢ < R. Let {¢,} be a decreasing sequence of positive numbers such that
ep — 0. For each p, pick y? so that

yb € B(z,R —¢,) and dist(z,, y?) < 2¢,.

By assumption {y?} has a convergent subsequence for each p. Hence the diagonal
proceedure yields a subsequence {n;} such that {y? } is convergent for all p. The
sequence {7, } being the uniform limit of {y} } is a Cauchy-sequence. Thus {z, }

is convergent and consequently B(z, R) is compact.
Since closed balls are compact the existence of minimal geodesics has already been
proved above. O

In the next few sections we will show that geodesics are smooth curves which are
solutions to a second order differential equation.

Problem 2.8. Prove (2.2) and give an example of a metric space where it is false.

Problem 2.9. Prove that (2.6) holds for all length spaces, and show that it is wrong
in general.

Problem 2.10. Prove that (2.7) holds in all length spaces, but not in general.
Problem 2.11. Prove that 2.4 and 2.5 hold for all locally compact length spaces.

3. FIRST VARIATION OF ARC LENGTH

A one parameter variation of a curve ¢ : [a,b] — U is a map
Vi:la,b] X (—¢,8) > U

such that V (¢,0) = ¢(t) for all ¢ € [a,b]. We assume that V is piecewise C* &k > 1,
i.e. there is a partition a = tp < --- < tp, = b of [a,b] so that Vi, | 1jx(cps)
is C* i = 1,...,m. In particular, for each s € (—¢,¢), the curve ¢, = V(,s) is
piecewise C*, and for each t € [a,b] the curve o, = V(t,-) is C*. The curve

X(t) = %V(t, 5)js=0 = 0(0)

is called the variation field of V' along c.

We are interested in the variation of L(c;). The general case can easily be analyzed
after having dealt with the case m = 1, i.e. V is C*. Assume moreover that ¢ = ¢,
is parametrized proportionally to arc length i.e. gqu(c¢/(t),d(t)) = [? is constant.
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Then L(c,) is a C* function of s near zero, and

Lite) = [ guioten, oyt
dS CS _dS . gcs(t) Cs 7cs
b 0 /

= | 55 {e(0). Geney (1) 2dt

9 0 ,

:<§$V(ta 5), Ge,(1)Cs (1)) +
/ 0 ) 0 0
(ci(t), DGcs(t)(gv(ta s))cy(t) + Gcs(t)aav(ta s))
9 0 ,
_2<§£V(t, 8),Gcs(t)cs(t)>—|—
0

(i), Ge,yG 1y DGyt (55V (t:5)e(2)).

Thus the evaluation at s = 0 yields

3.1 oo =" [ (TN 0, ot
where

(32) VAX(H) = X (1) + T (¢(0), X (1)
and

(3.3) T, (u,v) = %G;lDGx(v)u

for all z € U,u,v € R*. Note, that for each z € U,'I'; : R* x R* — R" is bilinear,
and

(3.4) VI X +Y)=vViX + VY,
(3.5) VIfX) = fX + fOIX

holds for any fields X, Y along ¢, and any function f : [a,b] — R. Moreover, for any
fields X, Y along ¢ we have

(3-6) gC(X, Y)I = QC(VzXa Y) + gC(X7 sz)
where
(3.7) VIX(1) = X (1) + T (¢(0), X (1)

and ?T';(u,v) = Ty (v, u) for all z € U,u,v € R".
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Given any smooth map I' that assigns to any z € U a bilinear map I',, : R* xR* —
R™ the expression

(33) TN (1) = X(0) + Do (1), X (1)

is called the covariant derivative of X along ¢ with Christoffel symbol I'. Clearly
(3.4) and (3.5) hold for any I'. If moreover I is symmetric, i.e. T'; is symmetric for
each x € U, then

0 0
(39) vcs %V(ta S) - vtftav(ta 5)

holds for any C* variation V.

Note, that if 'T is symmetric, then 'T'" = ?T" and the formulas (3.4), (3.5), (3.6)
and (3.7) would all be valid for vV with T' = 'T" = T". In this case a separate direct
calculation shows that

d b
(3.10) £L(cs)‘s:0 = ll/ Gery (VX (2), € (t))dt
or equivalently
d oo
(3.11) £L(cs)‘s:0:l_1 g.(X, ) —/ 9e(X, V)

Observe that any X is the variation field for a variation of ¢ (take e.g. V(t,s) =
c(t) + sX(t)). In particular, if the smooth curve ¢ is a minimal geodesic, then
%L(cs)|s:0 = 0 for all X with X(a) = 0, X(b) = 0. We conclude, that any smooth
geodesic ¢, will satisfy the differential equation.

(3.12) Ved = "(t) + Tey(d(t),C(t) = 0.

Given any I, the equation (3.12) is called the geodesic equation for the covariant
derivative, or connection V. This equation is equivalent to the system

(3.13) d=d ; d=-T.dd

of first order equations. From the existence and uniqueness theorem for first order
ordinary differential equations, we get immediately

Theorem 3.14. For every (zo,yo) € U X R™ there is an interval J(zo,vy) 2 0 and a
unique mazimal solution ¢(gy ) @ J(T0,v0) = U to (8.12) satisfying c(zgue)(0) = %o,
and C(go00) (0) = vo. Moreover, the set W = {(z,v,t) | (z,v) € U x R*,t € J(x,v)}
is open in U x R* x R, and the map W — U, (x,v,t) = c(z0)(t) is smooth.

Note, that if ¢ is a V-geodesic, i.e. ¢ is a solution to (3.12), and ¢(0) = =, '(0) = v,
then by homogeneity ¢(t) = c(at) (a constant) is a V-geodesic with ¢(0) = z and
d(0)=a-wv.

In the next section we will see, that for any riemannian structure g on U, there
is a unique symmetric I such that (3.6) holds. A first variation argument which we
will carry out in section 5 then shows that the corresponding V-geodesics are exactly
the geodesics as defined in section 2.

Problem 3.15. Show that any regular curve ¢ can be parametrized so that ¢’ has
a constant g-norm.

Problem 3.16. Prove (3.4), (3.5), and (3.6).
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Problem 3.17. Prove (3.9) and (3.10).
Problem 3.18. Prove the homogeneity property of V-geodesics stated above.
Problem 3.19. Show that in general 'T" # 2T

Problem 3.20. If g is constant in U, show that 'I' = 2I' = 0. What are the
V-geodesics in this case?

4. THE LEvVI CIVITA CONNECTION

A pair (z,v) € U x R", as considered in the previous section, is called a tangent
vector at © € U. The set {x} x R” of tangent vectors at x clearly form a vector
space isomorphic to R* via I, : R* — {z} x R", v — (x,v), called the tangent space
to U at x. We will also use the notation v, for the tangent vector (z,v), T, U for the
tangent space {x} x R”, and T'U for the union of tangent spaces %;J T.U =U x R".

If ¢:[a,b] — U is a differentiable curve, the tangent vector (c(t),c(t)) is called
the velocity vector of ¢ at ¢(t) € U (or more precisely at ¢ € [a,b]). This is simply
denoted by é(t). Note, that any tangent vector v, is the velocity vector of a curve, e.g.
vy = ¢(0), where ¢(t) = x + tv. Curves ¢y, ¢y are tangent at x if ¢1(t1) = co(t2) =
and ¢ (t1) = ¢o(t2). This is clearly an equivalence relation, and the set of equivalence
classes of curves through = € U is naturally isomorphic to the tangent space T,U.
This view point is extremely useful.

We can now interpret a riemannian structure g on U C R” as a map that assigns
to any « € U an inner product, g, = (, ), on the tangent space T, U. Moreover, any
map Y : U — R” can be viewed as a map, that assigns to any x € U a tangent
vector (z,Y (z)) € T,U at x. With this interpretation, Y is called a vector field on
U. Similarly, if ¢ : [a,b] — U, amap Y : [a,b] — R" may be viewed also as a map
that assigns to any ¢ € [a,b] a tangent vector at ¢(t). This is why such a map is
then called a wvector field along c.

Now fix a map I' : U — L?(R",R"; R") as in section 3. If Y : U — R" is a vector
field on U and ¢ : [a,b] — U is a curve, then Y o ¢ is a vector field along c¢. By (3.8)

Ve(Y o c)(t) = DY (i) (c'(1)) + ey (' (1), Y (c(1)))

only depends on ¢(t) and Y near ¢(t). Therefore if v, = (z,v) is a tangent vector at
x we define

(4.1) Vi, Y = 0, [Y] + Tu(v, Y (2)),

where v,[Y] = DY, (v) is the directional derivative of Y in direction v,. v, Y is
called the covariant derivative of Y in direction v,. This again we may view as a
tangent vector at x if we please. Clearly

(4.2) Vave+bu, Y = aVy, Y +0V, Y
for all a,b € R and v, u, € T,U. Moreover, as in (3.4) and (3.5)

vvm(fY) = Ux[f] Y + f ’ vvmya
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hold for all vector fields Y7,Y5 on U and functions f : U — R. Here again v,[f] =
D f.(v) is the directional derivative of f in direction wv,.

If now also X : U — R" is a vector field on U we define the covariant derivative
VxY of Y in direction X, as the vector field

(4.5) (VxY)(z) = Vx,Y.
Then by (4.2), (4.2) and (4.4)

(4.6) Vxi+x,Y =Vyx,Y +Vx,Y

(4.7) VixY = fuyY

(4.8) Vx(Y1 +Y2) =Y + VxYo

(4.9) Vx(fY) = X[fIY + fvxY,

where X|[f] : U — R is defined by X|[f](z) = X, [f] = Df.(X(x)).

A map V that assigns to any pair of vector fields X,Y a vector field VxY such
that (4.6)-(4.9) hold is also called a connection. Using these properties it is easy to
see that a connection V is completely determined by

n
(4.10) Ve € = Z Ffjek,
k=1
where e¢; : U — R",i = 1,...,n are the standard coordinate vector fields on U.

Now I'}; : U — Ryi,j,k = 1,...,n define a map I' : U — L*(R",R*;R") by
L(x) (3 wies, Y vie;) = Y ugw;ler, and the connection defined by this I' coincides
with the connection we started out with. In other words there is a one to one
correspondence between connections V and Christoffel symbols I'.

Observe that for vector fields in U that
(4.11) VxY — VyX = X[Y] - Y[X]
if ' is symmetric. The vector field [X,Y](z) = X,[Y] — Y,[X] is called the Lie
bracket of X and Y. In general
(4.12) T(X,)Y)=VyY —VyX — [X,Y]
at each x € U only depends on X,,Y, € T,,U. Thus foreachz € U, T, : T,UXT, U —
T,U is bilinear map called the torsion tensor of V. Clearly I' is symmetric if and
only if V is torsion free, i.e. T'= 0.

By definition [X,Y](z) depends on X and Y near x € U, and the directional
derivative is computed as
(4.13) (X, Y[f] = XL [Y[[f]] - Ya[X[f]]
We say that X and Y commute, provided [X,Y] = 0. The coordinate vector fields
clearly commute.

The advantage of (4.13) is that it allows an invariant definition of the Lie bracket.
The point is that tangent vectors can also be viewed abstractly as ”directional
derivatives”. Given a tangent vector v, € T, U, clearly

(4.14) ve[f + h] = vi[f] + v [h],
(4.15) v f - h] = v [f] - h(x) + f(x)vs[h]
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for all smooth functions f, h defined near .

The tangent vector v, thus induces what is called a derivation on the set of
functions near x. The map that assigns to each tangent vector the corresponding
directional derivative is a linear isomorphism between the tangent space at x and
the vector space of derivations on functions defined near x (cf. Problems 4.28-4.34).

Similarly we can view vector fields on U as derivations on the ring of smooth
functions on U. (cf. Problem 4.35).

In section 3 we have seen the use of a connection V which is torsion free and
metric, i.e.

(4.16) X[g(Y,2)] = g(VxY,Z) + g(Y,Vx Z)
for all vector fields X,Y and Z on U, or equivalently

(4.17) 9(X,Y) = g(V.X,Y) + g(X,v.Y)
for all curves ¢ in U and vector fields X,Y along ¢. The following is sometimes
referred to as the fundamental lemma of riemannian geometry.

Theorem 4.18. For every riemannian structure g on an open set U C R"™ there is
one and only one torsion free metric connection V.

Proof: Uniqueness: If V is a torsion free metric connection, then

0
8:cz-
by (4.16). Permuting the indices cyclicly and using (4.11) with [e;, e;] = 0 then gives

(4.19) gk = eil(ej, er)] = (V€5 ex) + (€5, Ve €r)

1/ 0 0 0
4.20 Veeiep)=—==—¢gix+—0qix — —0ii | -
( ) < le] €k> 2 <8ng]k + 8x]gk 8xkg]>
On the other hand
(4.21) (Ve€jy €x) = Zréjglk
I=1
Thus if {g¥'} is the matrix of G~! we get
1 « 0 0 0

4.22 rt. =2 gk 4 —— ik — ——q;5 | g*
( ) Y 2;<8ngjk+8x]gk 8xkg]>g ’

which expresses I' in terms of g alone.

Existence: Define Vv using (4.22). Then I is clearly symmetric i.e. V is torsion
free. Moreover (4.20) and then clearly (4.19) hold for this connection. However, it
is straight forward to see that (4.16) follows from (4.19). Hence V defined by (4.22)
is a torsion free metric connection. O]

The connection given by (4.22) is called the Levi Civita Connection of g. Unless
otherwise explicitly stated, this is the connection that we will use from now on.
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Problem 4.23. Show that the relation "tangency” among curves is an equivalence
relation. Give an explicit bijective map between the set of such equivalence classes
and tangent vectors.

Problem 4.24. Show that there is a one-to-one correspondence between Christoffel
symbols [' and connections V.

Problem 4.25. Find the coordinates of [ X, Y] as defined in (4.11), and prove (4.13).
Problem 4.26. Show that

[fX,hY] = f-h[X, Y]+ (f - X[R))Y = (h-Y[f]))X
for all functions f, h and vector fields X, Y on U.

Problem 4.27. User (4.26) to show that 7" as defined in (4.12) is bilinear with
respect to functions on U.

Problem 4.28. Let x € U. Suppose U; C U,Uy C U are open neighbourhoods
of x, and f : Uy — R, h: Uy — R are smooth functions. Define f + h, f - h as
the functions defined on U; N U; by pointwise operations. The set of locally defined
smooth functions with these operations is denoted by F,. A derivation on F,. is a
map D : F, — R such that

(4.29) D(af 4+ bh) = aD(f) + bD(h)
(4.30) D(f-h) = D(f)-h(x) + f(x) - D(h).
Show that the set of derivations, Der, on F, is a vector space, and that the map

T,U — Der, that assigns to any tangent vector v, the corresponding directional
derivative is a linear map.

Problem 4.31. Show that D(1) = 0 for any D € Der, where 1 is the constant
function 1 defined in a neighbourhood of z. Use this to show that D(f) = D(h) if
f = h in a neighbourhood of z.

Problem 4.32. Let V' C R" be an open convex set. Prove that for any smooth
function f: V — R, and any fixed z € V

fly) = flz) = Z(yz —xi)fiy), yeY,

i=1
where f; : V — R are smooth functions with fi(z) = 2L(z),i=1,...,n.

ox;
Hintif (y) — £(2) = [} & £(0 + ty — ))dt.
Problem 4.33. Using (4.31) and (4.32) on any function f defined near z € U, show

that
D(f) = Z Z D ezr

i=1
for any derivation D € Der,, where hi( ) =y, — i =1,...,n.

Problem 4.34. Show that the map T,U — Der, defined in (4.28) is a linear
isomorphism.

Problem 4.35. Show that the vector space of smooth vector fields on U is isomor-
phic to the vector space of derivations on C*°(U, R).

Problem 4.36. Interpret [X,Y] as a derivation.
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Problem 4.37. Show that X, Y — [X, Y] is bilinear, anti symmetric, and satisfies
the Jacobi identity.

(4.38) (X, [V, 2]+ [Z,[X, Y]]+ [Y,[Z,X]] = 0.

By definition of a Lie algebra, this makes the vector space of vector fields on U with
the product [,] into a Lie algebra.

Problem 4.39. Show that (4.16) is equivalent to (4.17).

Problem 4.40. Fill in the missing details in the proof of (4.18)

Problem 4.41. What is the Levi Civita connection if g is constant? What are the
V-geodesics in this case?

Problem 4.42. Let U = H = {x € R" | &, > 0} be the upper half space with
the riemannian structure g, = —>(,). Find the Christoffel symbols Fi-“j for the Levi
Civita connection of g.

5. THE EXPONENTIAL MAP

In this section we will show that the V-geodesics for the Levi Civita connection
are exactly the geodesics as defined in section 2.
From (3.14) and the homogeneity of (3.12), it follows that the set

(5.1) O={(z,v) eUxR"|1€ J(x,v)}
is an open neighbourhood of U x {0} in U x R". Moreover, O, = O N T,U is
starshaped around 0, € T,U. The ezxponential map, exp : O — U is defined by

(5.2) exp(vy) = Claw)(1)

for all tangent vectors v, = (x,v) € T,U ,x € U. By (3.14), the exponential map is
clearly smooth and exp(0,) = z for all z € U. Consider the smooth map

(5.3) (myexp) : O - U xU ,(z,v) = (x,exp(vy))
and observe that

n n

(5.4) o
D(7,exp)z0) = id id | n

for all z € U. By the inverse function theorem and (7, exp) {0} injective, it follows
that

Theorem 5.5. There are open neighbourhoods D of U x {0} in U x R™ and V of
AU) in U x U, such that (m,exp) : D — V is a diffeomorphism, i.e. it is a smooth
bijective map with smooth inverse.

If exp : O, — U is the restriction of exp to O, we get immediately

Corollary 5.6. For each x € U there are open neighbourhoods D, of 0, € T, U and
V, of © € U such that exp, : D, — V, s a diffeomorphism.
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Since for all v, € O, exp(tvy) = ¢,,(t) for t € [0,1] (cf. 5.4) and L(cy,j0,1]) =
|vg]| = (v, v5) 2, we see that exp, maps the line segment from 0, to v, in T,U onto
the V-geodesic segment in direction v, of length ||v,||. The comparison of euclidean
geometry of T,U near 0, with riemannian geometry of U near z via exp, is crucial
for the understanding of (local) riemannian geometry.

In the first step of this comparison, it is convenient to view the differential of a
map as a map between tangent spaces. To be precise if f : U — R™ is differentiable
at x € U with differential Df, : R* — R™, the map

(57) f*z : TxU — Tf(I)Rm

defined by f. (z,v) = (f(z), Df;(v)) is called the tangent map, or the induced map
of f at x € U. If there is no confusion, it may also simply be referred to as the
differential of the map.

If f is differentiable at all points x € U, the induced map f, : TU = U x R* —
TR™ = R™ x R™ is simply given by f. |r,v= f.,. With this formalism the chain
rule takes the pleasant form

(5.8) (foh).= fioh,

when h : U = V, f : V — RF are differentiable maps defined on open subsets
UcCR", V CcR"”. With this notation we have.

Theorem 5.9. For all x € U, exp, : O, — U s a radial isometry, i.e.
<eXp* (Uv)a €xp, (uv)>exp(v) = <Uva uv>x

for all v € O, and tangent vectors u, € T,0,.

Proof: Consider the variation
V(t,s) = exp,(z,t(v+ su))

for t € [0, 1] and s near zero. Note that each ¢, is a V-geodesic and the first variation
formula (cf. 3.11) gives

d _
T Les)is=o = [Ivllz exp,, (), exp,, (v0) expio)-
On the other hand, L(c,) = ||v+su||; and s0 £ L(c,) js=0 = [|[v||7" (u, v)o = [J0]| 7" (w0, v0)s-

O

This result is often referred to as the Gauss-lemma. Using it we will now show
that V-geodesics are locally length minimizing, i.e. that V-geodesics are geodesics
in the sense of section 2. To do this, let o : [0,1] — O, be any piecewise C'-curve
with 0(0) = 0, and o(1) = v,. Then

(5.10) L(exp o) > L(cy,(j0,1]) = ||Vl

and strict inequality holds if there is a t5 € (0, 1] such that the component of & (%)
orthogonal to (o), () is not annihilated by exp, ., -
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In proving (5.10) we may assume that v, # 0 and o(t) # 0, for all t € (0,1]. Let
a(t) be the unit radial vector field along o in T, U. If 6(t) is not proportional to a(t)

set
_ o) = {6(t), a(t).a(t)
"0 50— {600, ald)al0)l
For such ¢, 6 = (a(t),5(t))a(t) + (b(t),5(t))b(t) and hence by the Gauss-lemma
(5.9)

[(exp 00) (1) [lexp(oryy = (a(t), 5())3 + (b(t), 5(£))2]| exp. b(t) leep (o)

In particular, ||(expoo)(t)||expet)) =>| (a(t),d(t))s | for all t € (0,1], and strict
inequality follows if there is a ty as described under (5.10). On the other hand,
2|lo||. = (6, a), and hence

1
L(exp o0) :/ | (exp 00) (t)][exp(o (1)) dt

/ [ {a(t), 5(0))s | dt
2/0 (8t

=[lv[l
=L(cv.|0,1))
This proves (5.10) and the equality discussion.

Now choose ¢ > 0 so that exp, is a diffecomorphism from D, (d) = {(z,v) € O, |
|v|l. < 0} onto V,(d). From (5.10) it follows that for each y € V,(J) the geodesic,
c(t) = exp,(texp, ' (y)) is a curve from x to y whose length is shorter than the length
of any other piecewise C'-curve in U from z to y. In particular, V,(§) = B(z,§) is
the metric d-ball in U centered at .

Problem 5.11. Show that O, is open and starshaped.
Problem 5.12. Verify (5.4).

Problem 5.13. Show that B(z,d) = {y € U | dist(x,y) < 0} = exp,(D,(d)) for §
sufficiently small.

Problem 5.14. Show that dist,, = dist,, if and only if g; = gs.

Problem 5.15. Consider the metric space (R", dist), where dist(z,y) = max |z; —
y;|. Show that dist # dist, for any riemannian structure g on R”.

6. ISOMETRIES

Let (Ui, g1), (Us, g2) be two riemannian patches, and F : (Uy, dist,, ) — (Us, dist,,)
an isometry, i.e. F is a distance preserving map with F(U;) = U,. The inverse
F~': U, — U is also an isometry. In particular, F' is a homeomorphism and
dimU; = dimU; = n. The following is crucial in our treatment of riemannian
geometry.

Theorem 6.1. An isometry F between riemannian patches (Ui, g1), (Uz, g2) is a
diffeomorphism. Moreover, F,, : T,U — Tpu)Us is a linear isometry for all x € Uy,
and F' o exp, = expp(,) oF,.
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Proof: Fix z € U; and choose 6 > 0 such that exp, : D,(26) — B(y,2d) and
eXPr(y) : Drgy)(26) = B(F(y),20) are diffeomorphisms for all y € B(z,20) (cf. 5.5)
as in the last paragraph of section 5.

Since F' is an isometry, it maps for each y € B(z,d) the unique minimal geodesic
from z to y, to the unique minimal geodesic from F(z) to F(y) (cf. 6.2). Since
exp, : Dy(0) = B(z,0) and expp(, : Dr@)(6) = B(F(x),6) are diffeomorphisms,
we only need to show that exp;a) oF oexp, : Dy(0) = Dp(y)(6) is smooth. In fact,
we claim that it is the restriction of a linear isometry T,U; — Tp)Us. We have
already seen, that it preserves the norm of vectors. To show that it preserves angles,
consider vectors u,, v, € D,(0), and let V' : [0,1] x [0, 1] — B(x,20) be the variation

V(t7 S) = eXpeXp(’Uz)(t ’ expe;lp(vm)(expx(s ’ UI)))

For each s, this is the unique minimal geodesic from exp(v;) to exp(su;). The first
variation formula (3.11) then yields

d _
_L(CS)IS=0 = ||U:v||x1<uxa —Ug)e = —||ul| cos ¥,

ds

where 1 is the angle between u, and v,. Again, however, since F' is an isometry
it maps the variation V' to the corresponding variation for the vectors exp;%x) oF o

exp,(uz), and exp;%m) oF o exp,(v;). Repeating the argument above, then shows
that the angle between these vectors is also 1. The argument also shows that
F, = exp;%x) oF" o exp,, which completes the proof. U

Problem 6.2. Show that isometries map geodesics to geodesics in any length-space.

Problem 6.3. Show that isometries between riemannian patches preserve the co-
variant derivative of the corresponding Levi-Civita connections. Is this true for the
connection defined in (3.3) and (3.7)7

Problem 6.4. What are the geodesics on (U, g) corresponding to the hemisphere,
graph (f);f:U={z e R" | |z]| <1} - R,  —/1— ||z||? (cf. (1.9) and the
paragraph below it).

Hint: It is possible to argue using local uniqueness of geodesics together with
(6.2).
Problem 6.5. Let F' : U; — U, be a smooth bijective map between riemannian
patches (Ui, g1), (Uz, g2) such that

92(Fi(vs), Fi(us)) = g1(vz, ua)

for all x € U; and tangent vectors ug,v, € T,U;. Show that F : (U, distg;) —
(Us, dist go) is an isometry.

Problem 6.6. Let (U_y,g_;) be the 2-dimensional Poincaré disc (cf. 1.16) and
(H,g) the upper half plane (cf. 4.42). Identify R? with the complex plane C and
show that z — iZ; defines an isometry F': H — U_;. What are the geodesics on
H,U_,?

7. JACOBI FIELDS AND CURVATURE

In the last section we saw that a bijective map of riemannian patches is an isometry
if and only if it is smooth and its induced map is an isometry on all tangent spaces.
To continue our comparison between local euclidian and local riemannian geometry
we now proceed to investigate the map induced by the exponential map.
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Fix x € U and v € O,. We have already seen a glimpse of how to describe
(expy)ww : TyOz = Texp(w)U. Namely, any tangent vector to O, at v is represented
by a curve of the form a(s) =v+s-u for some u € T,U. Therefore, for this tangent
vector u, € T,0,,exp,(u,) is represented by the curve exp(v+s-u). To get a better
description of this consider as in the proof of 5.9 the variation

V(t,s) = exp,(t(v + su))

for t € [0,1] and s near zero. Using the notation from section 3, o7 = exp oo, and
for s = 0, the variation field X = X along ¢ is given by X (t) = 6;(0) = exp, (tus.,).
Since each ¢ is a geodesic and hence satisfies a second order equation we expect
each X to do the same. Now V. ¢, =0 for all £ and all s gives

0=V,,V,,Cs
(7.1) =V, Ve.bs — Ve, Vo,bs + Ve, Vo, Cs
:vat vcsc‘s - vcsvatés + vcsvcso.—t

by (4.11) (cf. also 3.9). For fixed s, the last term is V., V., X;. Moreover, if Z is any
vector field along V', then

VoVe, Z(1,5) = .0(¢5: Z))

[FV ts (C ,Z)]+

(6t +I
0 0 0
838152 0s

0
FV( (Ut, 8tZ + FV(t 5)( Z))

0 0 0 0
2 %7+ pr <
s Ot v (g5 V) (5
0. 0 0
FV(t,s) (&VE %Z) 1—‘V(t s) (a
0. 0
+ Fv(t,s)(a‘/, az) + Fv(t,s)(g‘/, FV(t,s)(

)+

Z
0
8VZ)

0 0

EV, 7))

and similarly

0 0 0 0
Ve,V Z(t,5) ===~ Z + DDy, s)(atV)(gv, Z)+

Ot Os
0. 0 0 0
Fv(t’s)(a V atZ) FV ts (ata V Z)+

0 0 0 0
V,5Z)+ Ly, s)(atV, FV(t,s)(&

bve (815 Js

V,Z)).

Hence
vUtstZ - vcsttZ :DFV(t,S)(Ullt)(Clsv Z) - DFV(t,S)(CIs)(Ullta Z)+

7.2
(7.2) Py (01 (e, 2)) = Ty (e, T(0 2))

which clearly depends on Z, 0] and ¢, at (¢,s). Inserting (7.2) into (7.1) at s = 0
yields

(7.3) VeV X + R(X,¢)é=0
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for the variation field X = X, along ¢ = ¢y. Here for each x € U, R, : T,U x T,,U X
T, U — T,U is the 3-linear map defined by the right hand side of (7.2), i.e

Ry (g, vy) 2z =DT;(u)(v, 2) — DT, (v)(u, 2)+
Fo(u, (v, 2)) — Tp(v, Ta(u, 2))

for all u, v,z € R*. Observe, that for any u,, v,, z, € T, U there is a variation V' and
a vector ﬁeld Z such that V(O 0) =z, 2V(0,0) = u, gtV(O 0) =v and Z(0,0) = z
(take e.g. V(t,s) =ax+t-v+s-u and Z(t s) = z for all ¢, s near zero).

In general for vector fields X, Y, and Z on U one finds
(7.5) R(X,Y)Z =VxVyZ —VyVxZ — Vixy|Z.

One way to see this is to note that the right hand side is linear with respect to
functions in all 3 variables. It then follows, that each x € U it only depends on
X,Y and Z at x. Choosing X,Y, and Z as above together with (7.2) and (7.4),
then proves (7.5). This expression makes sense for any connection V. It is called
the curvature tensor of V.

(7.4)

The equation (7.3) is called the Jacobi equation, and any vector field X along a
geodesic ¢, which satisfies this equation is called a Jacob: field along c. The Jacobi
equation is clearly a second order linear differential equation. In particular

Theorem 7.6. For any (mazimal) geodesic ¢ : J — U and tangent vectors u,v €
T o)U there is a unique Jacobi field X : J — TU, along ¢ with X(0) = u, and
v.X(0) =

Using the above, we now see that for v € O, and u € T,U, X (t) = exp, (tuy) is
the unique Jacobi field along ¢, : J, — U with initial conditions

(7.7) X(0) =0, V., X(0)=

Because of the Gauss-lemma (5.9) we are particularly interested in || X (t)||exp(to)
when u is perpendular to v. Rather than || X (¢)||, let us consider f(¢) = || X (¢)||* =
(X (1), X(t))exp(tv)- Abbreviating v.X simply by X’ we have

F0) =(X(#), X(#))(0) = 0
F1(0) =2(X"(1), X(1))(0) = 0
F1(0) =2{(X"(1), X (1)) + (X'(£), X'(£)) }(0) = 2[|u|*
F0) =2{(X" (), X (1)) + 3(X"(1), X'(#)) }(0)
=2{(X"(0), X(0)) — 3(R(X(0), v)v,u)} = 0

X( :
F7(0) =2{(X™(8), X (1)) + 4(X™(#), X'(1)) + 3(X"(1), X"(1)) }(0)
=8(X"(0), u).

The Taylor expansion for || X (¢)[|* therefore looks like

I
IX@F ~ [l + %(X"'(O), wtt + ...
Here the first term only depends on ¢ at x. For the second term, however
X" =—(R(X,¢)c)
=— R(X,é¢)¢ — R(X',¢)¢ — R(X, ¢ )é — R(X, ¢)d
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by (7.3) and (7.13), i.e. X"(0) = —R(u,v)v. Assuming without loss of generality,
that ||ul| = [|v]| = 1, we get

1
(7.8) lexp. (tu)u|* = £ = < sec(p)t’ +0(2°),

where sec(p) = (R(u,v)v,u) is called the sectional curvature of the plane p spanned
by u and v in T, U. It is easy to see that for linearly independent u and v,

(R(u,v)v,u)
(79 W) = ol — G, o
only depends on the 2-plane p spanned by wu,v. From (7.8) it is evident that it is
the sectional curvature that determines whether exp is expanding or contracting.
Problem 7.10. Prove formula 7.5.
Problem 7.11. Prove Theorem 7.6.

Problem 7.12. Let X be a Jacobi field along the geodesic c. Write X = X+ + X,
where X " is proportional to ¢ and X+ is perpendicular to ¢. Show that X+ and
XT are Jacobi fields along c. Show that X " (t) = (a+ bt)é(t) for constants a,b € R.

Problem 7.13. Show that for each vector field X,
Vx(R(YY,Z)W) - R(VxY,Z)W — R(Y,VxZ)W — R(Y, Z)VxW

is linear with respect to functions, in all three variables Y, Z and W. Therefore, it
defines for each x € U a 3-linear map (VyR), : T,U x T,U x T,U — T,U called the
covariant derivative of R in direction X.

Problem 7.14. In the spirit of 7.13, show that Vxg = 0 for all vector fields X.
Problem 7.15. Show the Bianchi identity

(VxR)(Y, Z)W + (VyR)(Z, X)W + (VzR)(X, Y)W =0
for all vector fields X,Y, Z and W (cf. 7.13).

Problem 7.16. Show that (7.9) defines a function on two-dimensional subspaces of
T.UxeU.

8. CURVATURE IDENTITIES

In this section we will show that knowing the curvature tensor R or the sectional
curvature function sec amounts to the same thing.

Theorem 8.1. The curvature tensor R of the Levi Civita connection V for a rie-
mannian structure (,) on U satisfies the identities
() R(X,Y)Z = —R(Y, X)Z
(ii)) RX,Y)Z+R(Y,Z) X+ R(Z,X)Y =0
(iv) (R(X,Y)Z, W) = (R(Z,W)X,Y)
for all vector fields X,Y,Z and W on U.

Proof: The first identity is obvious by 7.5. To prove the remaining identities first
note that all expression are tensorial, i.e. for each x € U they depend only on
X,Y,Z, and W at x. To prove them we are therefore free to choose X,Y, Z, and W
so that all Lie brackets are zero (e.g. extend X,,Y,, Z,, and W, to constant vector
fields on U).
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Then by (4.11) and (7.5)
VxY =vy X
R(X,Y)Z =VxVyZ —VyVxZ

and similarly for all other combinations of XY, Z, and W. The identity (ii) is then
a straight forward computation. Moreover, (iii) is equivalent to

(i)’ (R(X,Y)Z,Z) =0
for all X,Y, and Z. Now
<R(X, Y)Z, Z> :<VvaZ - VYVXZ, Z>
:XKVYZ, Z>] - <VYZ, VXZ>
- Y[VxZ,Z)|+ (VxZ,VyZ)

:X[%Y[(Z, Z)]] - Y[%XKZ, Z)]]
5112, 2)
=0,

where we have used (4.16) and (4.13). The last identity is a purely formal conse-
quence of the first three. From (ii) we have

(iv) (R(X,Y)Z, W)+ (R(Y,Z)X, W)+ (R(Z,X)Y,W) =0
and interchanging W in turn with X, Y, and Z yields
(iv)” (RW,Y)Z, X))+ (R(Y,Z)W, X))+ (R(Z,W)Y,X) =0
(iv)” (R(X, W) Z,)Y) +(RW, 2)X,Y) + (R(Z,X)IW,Y) =0
(iv)”” (R(X, Y)W, Z) + (R(Y, W)X, Z) + (R(W,X)Y,Z) =0

By adding (iv)’-(iv)”” and using (i) and (iii) we get
(R(X,W)Z+R(W,Z)X,Y)+ (R(W,Y)Z,X) = 0.
Hence (ii) implies
—(R(Z, X)W,Y) + (RW,Y)Z,X) =0

which up to a change of letters is (iv).

We are now ready to show that the map
(X,Y,Z,W) = (R(X,Y)Z,W)

is completely determined by the ”bi quadratic” form

(8.2) E(X,Y)=(R(X,Y)Y, X)
for all X, Y. First we want to rewrite R(X,Y)Z :
RIX,Y +Z)(Y + Z) =R(X,Y)Y + R(X,Y)Z + R(X, Z)Y + R(X,Z)Z
R(X + Z,Y)(X + Z) =R(X,Y)X + R(X,Y)Z + R(Z,Y)X + R(Z,Y)Z
0=R(X,Y)Z +R(Y,X)Z
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Adding these three equations and applying (i) and (ii) from 8.1 gives
RX, Y+ Z)Y+Z)—RY, X+ 2Z)( X+ Z)=3R(X,Y)Z + R(X,Y)Y
~R(Y, X)X + R(X,2)Z — R(Y,Z)Z
and hence
R(X,Y)Z :%{R(X, Y+2)Y+2)-RY,X+2)( X+ 7)
“R(X,Y)Y + R(Y, X)X — R(X,Z)Z + R(Y, Z)Z}

(8.3)

Now fix a vector field B on U and consider the map wg defined by
wp(X,Y)=(R(X,B)B,Y)

for all vector fields X,Y on U. From (i), (iii) and (iv) of 8.1 we see that wp is

symmetric. In particular

2(R(X,B)B,Y) =2wp(X,Y)

(8.4) =wp(X +Y, X +Y) —wp(X,X) —wp(Y,Y)
=k(X +Y,B)—k(X,B) - k(Y,B).

Combining (8.3) and (8.4) results in

(R(X,Y)Z, W) = {k X+WY+2Z)—k(Y+W, X+ 2)

(
—R(X +W,Y) — k(X + W, Z) + k(Y + W, X)
(85) FRY +W,2) —k(X,Y + Z) + k(Y, X + Z)
CR(W, X + Z) — k(W,Y + Z) + k(X, Z)
—k(Y, Z) = E(W, X) + k(W,Y)}.
Since k(ug,vy) = (R(ug, Vy)Vg, uz) = sec(span (ug,v,)) for linearly independent
Uz, Uy € T,U and k(ug,v,) = 0 for linearly dependent w,,v,, it is clear that the

sectional curvature determines the curvature tensor R. In particular, R = 0 if and
only if sec = 0.

The Ricci-tensor, ¢; R is defined for each € U as the bilinear map
(8.6) c1R(ug, v,) = trace (w, — R(wy, uy)v,)

c1 R(ug,ug)

for all ug,v, € T,U. Clearly Ricci = Tus 2
spanned by wu,. This is called the Ricci curvature. Clearly

, u; # 0 only depends on the line

n—1
(8.7) Ric(l) =) sec(oy),

i=1
for | = span{X} and o; = span{X,u;}, where X, uy,..., u,_1 is an orthonormal
basis for T, U. Averaging once more defines the scalar curvature Scal : U — R, i.e.
(8.8) Scal(x chR Uiy u;) =2 Z sec(o4j),

1<i<j<n

where uy, ..., u, is an orthonormal basis for T, U and o;; = span{u;, u,}. Note, that

it is only for n > 2 that these curvatures are essentially different.
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Problem 8.9. Show that R; defined by
R(X,)Y)Z =Y, 2)X —(X,Z2)Y

is tensorial, and satisfies (i)-(iv) of 8.1. This will be shown to be the curvature
tensor of a space with constant (sectional) curvature 1. Note that the corresponding
bi quadratic form £y is given by

ki(X,Y) = [ XY — (X, Y)?,

_ k(ug,vz)
k1 (Uw :Uz) ’

and hence sec(span(uy,v;))
ki(tg, vz) > 0).
Problem 8.10. Prove (8.7) and the second equality in (8.8).

for u,, v, linearly independent (equivalently

9. SECOND VARIATION OF ARC LENGTH AND CONVEXITY

We have seen how curvature controlles the local behaviour of geodesics. To see
that it also affects the length of curves near a geodesic, we will compute the second
variation of arc length.

A two parameter variation of a curve ¢ : [a,b] — U is a continuous map
W :a,b] X (—e1,61) X (—€9,89) = U

such that W (t,0,0) = ¢(t) for ¢t € [a,b]. We assume W is piecewise C*, k > 2, i.e.
there is a partion a =ty < -+ < t,, = b of [a, b] for which Wp,_| 11x(=e1,e1)x(—22,e0)
is C*, i =1,...,m. As in the case of a one parameter variation we let ¢y, ,, be the
curve W (-, s1, s2) , and we are interested in L(c;, s,) for s1, so near zero when ¢y = ¢
is a geodesic. Again it is sufficient to understand the case m = 1, i.e. W is of class
Ck. If ey, €1, €5 are the standard coordinate vector fields on [a, b] X (—&1, £1) X (—&2, £2)
we set,

T=W,oey, X1 =W,0e1, Xo=W,o0e9

and call X, X, the variation vector fields along W. Assume ||¢]| = | # 0, then
L(cs, 5,) is of class C? near (0,0) and

(9'1) &L(Csl 82)(07 0) = lil{<vX1X27 T> |z +I(X1LvX2L)}
881882 '
where
b
9.2) (v, ;) = / (VoY1 9.Y5) — (R(Y:,8)é,Ya)

is the socalled index form on the vector space of vector fields along ¢. The formula
(9.1) is referred to as the second variation of arc length.
To prove (9.1) we proceed as follows (cf. 3.10)

0 b 9 1
L Llegs,) = | —(T,T)3dt
G- Llews) = [ Zo(TT)

b
— [Tl T D

b
= [T X
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and therefore
o2

b
- — . _3
o) = [ (DI T ) (w2 That

b

+/ T~ H{(Vx, Vo X0, T) + (Vi X, Vx,T) }dt
‘ b

=—/ TN (Ve Xy, TY(VrXo, T)dt

b
+ [T RO, T) X T) + (9775, Xa, T)
+ (V1 X, VrXy) }dt.
At (s1,59) = (0,0) we have

82

b
- — —1 b
881882L(CSI’52) l {<VX1X2’T> |a /a <R(X17T)T7 X2>

(9.3) b
T T
+/a (Vo Xy, Vo Xo) — (Vo Xy, m><vTX2’ m>}

Now X; = X + (X, H;—Wﬁ and hence V7 X; = Vo X + (V7 X, ﬁ>ﬁ since c is

a geodesic. Since (X5, T) = 0 also (Vr X5, T) =0 and (9.1) follows from (9.3).

)

If in particular W is a variation with fixed end points, i.e. W {(a, s1, s2) = ¢(a) and

W (b, 51, s9) = ¢(b) for all sy, s9, then %;5,2[1(051,52)(070) =17 I(X{ X5).

Observe that if 7(X,Y) = 0 for all vector fields Y along ¢ which vanishes at the
end points, then

VeV X + R(X,¢)é=0
i.e. X is a Jacobi field along c.

We will now use (9.1) to prove

Theorem 9.4. For every x € U there is an € > 0 such that the ball B(x,¢e) is
strictly conver, i.e. for anyy,z € B(x,¢) there is a unique minimal geodesic ¢ in U
from y to z, and c is contained in B(x,¢).

Proof: Fixz € U and § > 0 such that exp, : D(25) — B(y, 26) is a diffeomorphism
for all y € B(x,0). For y,z € B(z,9) let ¢ : [0,dist(y, z)] — B(z,2d) be the unique
minimal geodesic from y to z and consider the 2-parameter variation

W (t, s1,52) = exp,(t-exp, ' c(s; + s2))
for t € [0,1]. For fixed sq, so we have that L(cy, ,) = dist(z, ¢(s1+ s2)) and therefore

%;”L(csm) at s = 51+ o is the same as j—; dist(z, ¢(s)), assuming ¢(s) # x. Thus
using (9.1) we get

d2
(9.5) e dist(z, c(s)) = dist(z, ¢(s)) ' I(X+H, XH),

where X; = Xy, = X is the Jacobi field along the minimal geodesic ¢, from x to ¢(s)
with X (0) = 0, and X (1) = ¢(s). Since X+ is a Jacobi field, we obtain by (9.2),
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that
2

e dist(z, c(s)) =dist(z, c(s)) (v, X (1), X (1))

:% dist(z, c(s)) "X+, XHY(1)

Now suppose ¢(s) ¢ B(x,0) for some s € (0,1). Then dist(z,c(s)) has a local
maximum at say sp € (0,1). For the corresponding c,, we have X = X' and

j—; dist(z, ¢(so)) < 0. For § sufficiently small, however, this is impossible according
to the following lemma.

Lemma 9.6. For any x € U there is an € > 0 such that for every y € B(x,¢)
and every unit vector u € T,U perpendicular to the unique minimal geodesic cgy :
0,1] = B(x,e) C U from x to y there is a unique Jacobi field X along c,, with
X(0) =0 and X (1) = u. Moreover (X, X) (1) > 0 for all such X.

Proof: The first follows from section 7 when £ > 0 is chosen so that exp, : D,(¢) —
B(z,¢) is a diffeomorphism. By the construction of X in section 7 we get

(9.7) X @ < [[exp,,, [ I X (0)]],

where v = exp,'(y) € Dy(¢), and | exp,, || denotes the operator norm of exp,,, :
11,0y — T.,,»U. In particular

(9.8) (X, X)'(0) =0, (X,X)"(0) = [exp,, [I7".
Since X is a Jacobi field, then

(X, X)'(1) =/ 20(X"(1), X'(1)) — (R(X (), Cay(t))Cay(t), X (2))dt
(9.9) 0

1
>2 [ X0l 2- B [XO)F 22 C.
0

where E is an upper bound for || exp, || on D,(¢) and C' is an upper bound for sect
the non-negative of the sectional curvature on B(z,¢). Now

/ 2(R(X, )iy, X)
<2 -(;:2 - E - | X(0)]| - max || X'|| - r
where 7 is an upper bound for ||R|| on B(x, ). Using (9.10) for || X" (¢)|| = max || X"||
gives
(9.11)  max || X'|| < [|X(0)|{V1 +e*E2r2 + 2Er} < || X (0)||{1 + 22°E - r}
Combining (9.9)-(9.11) clearly shows that (X, X)'(1) > 0 for sufficiently small ¢

independent of X.

Problem 9.12. Let (U, g) be a riemannian patch and x € U. Show that the metric
on B(z,¢) induced from dist, is the same as dist, when B(z,¢) is strictly convex.
Here g is the restriciton of g to B(z,¢).

X" O = X" O] =

(9.10)

Problem 9.13. Let (U, g) be riemannian patch with non-positive curvature, i.e.
Sec < 0. Show that any geodesic ¢ : [a,b] — U is shorter than any other curve from
c(a) to ¢(b) near c.
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10. PARALLEL TRANSPORT

There is yet another geometric aspect associated with riemannian patches (U, g).
Given any connection V on U we say that a vector field X along a curve ¢ : [a,b] — U
is parallel if

(10.1) v.X(t) = %X(t) + T (X (), (1) =0

for all ¢ € [a,b]. Since this is a first order linear differential equation in X we get
immediately

Theorem 10.2. Let V be a connection on U and c: J — U a Ct-curve in U. For
u € Toun)U there is a unique parallel field X along ¢ with Xy, = u. Moreover,
the map Teuy) U — TouyU defined by X (to) — X (t1), X parallel along c is a linear
1somorphism.

The linear isomorphism 7" : T,;\U — T U of 10.2 is called parallel transport
along ¢ from ¢(tp) to ¢(t1). In terms of parallel transport we can express the covariant
derivative of a vector field X along ¢ as

(103) VX (1) = 550t = TX(0))msy

To see this, simply let Xi,..., X,, be a basis of parallel fields along ¢ and write
X = Z:’L:l Z; - Xz

As we will see later on, the importance of parallel transport is partly due to the
fact that it allows us to compare vector fields along say geodesics in different patches
(manifolds).

Let us now see how parallel transport relates to curvature.

Fix x € U, u,, v, 2, € T,U. To describe R(ug,v,)z, we let V :Jy x Jo — U be a
map so that V(0,0) = x, and Vi )(€1) = usz, Vi(o0)(€2) = v, Here J;,i = 1,2 are
intervals around 0 € R and ey, e; are the coordinate vector fields in R?. (Take e.g.
V(t,s) =z +tu+s-v).

Define a vector field z along V' as follows

2(t,s) = T2 T (7).

From the existence and uniqueness theorem for differential equations we get that
z is smooth. By (7.2) and (7.4)

R(uy,v)2e =(Ve, Ve, 2 — V4, Ve, 2)(0,0)
=V.,V,,2(0,0)

since z is a parallel along any ¢, curve. Now using (10.3) we have

Rz, 02)2, = lim > (T2(4,2(t, 0)) — V1, 2(0, 0))

t—0 t
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and similarly

Vo, 2(t,0) =lim S (T204(,5) — 2(1,0))

s—0 S

V0,2(0,0) =lim - (7202(0, )  2(0,0))

s—0 §

:0,

where the last equality is by construction of z. Thus
32

~ 9tds

where Z(t,s) € T,U is defined in terms of parallel translation along ”coordinate
loops”, by Z(t,s) = TOTOTT Y 2,.

(10.4) R(ug, vg) 2y

Z(0,0),

This formula gives a geometric interpretation of the curvature tensor in terms of
parallel transport.

Problem 10.5. Prove 10.2.

Problem 10.6. Show that R = 0 if and only if parallel transport is locally path
independent.

Problem 10.7. Fill out the details in the proof of (10.4).

Problem 10.8. Let (U, g) be a riemannian patch with sectional curvature Sec > 1.
Show that any normal minimal geodesic ¢ : [0,{] — U has length L(c) =1 < 7.
Hint: Let X be a parallel field along ¢ with X ¢, and show that I(Y,Y) < 0 for

Y (t) = sin(t - T)X(#).

Problem 10.9. Let (Uy, g1), (Us, g2) be riemannian patches. The patch (U, g) with

U=U; xU; CR" xR" and
(G| 0
o= ()

is called the riemannian product of U; and U,. Find the Levi Civita connection V
of g in terms of the Levi Civita connections V, V5 for g, gs.

What are the geodesics on U?

Express dist, in terms of dist g; and dist g».

Let I} : Uy — Uy, Fy: Uy — U, be isometries. Show that F' = Fy x Fy : Uy xU; —
U, x Uy is an isometry.

Find the curvature tensor R on U in terms of R; and R,.

Show that all "mixed sectional curvatures” (curvature of two planes spanned by
a vector tangent to U; and a vector tangent to Us) are zero.

Problem 10.10. Let (U, g) be a riemannian patch. Show that the sectional curva-
ture Sec = 0 if and only if exp, is an isometry near 0, for all x € U.

11. MANIFOLDS AND MAPS

From section 1, 2 we know that the graph of a function f : U — R in a natural
way is a length space which is isometric to a riemannian patch. Since many spaces
may be described locally as the graph of a function, we make the following general
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Definition 11.1. A riemannian n-space is a length space, (M™, dist) which is lo-
cally isometric to a riemannian n-patch, i.e., for any p € M there is an open neigh-
bourhood p € V,, a riemannian patch (U,, g,) and an isometry ¢, : (Vg,dist) —
(Uy, disty,, ).

From (6.1), (9.4) and (9.12) it follows that all the coordinate changes @g| o gp;|1 :
©0a(Va N V3) = ps(V, N Vg) above are diffeomorphisms between open sets in R”.
By definition therefore, the collection of homeomorphisms ¢, : V,, — U, C R
form an atlas for a differentiable structure on M™. Two atlases {(V,,pq)} and
{(Wp,15)} on M™ are said to be equivalent if they together form an atlas on M,
i.e., if all possible coordinate changes are smooth. An equivalence class of atlases is
called a differentiable structure, and M together with such a structure is called a

differentiable manifold. In particular we have

Theorem 11.2. A riemannian n-space (M, dist) has the structure of an n-dimensional
differentiable manifold.

Clearly {(R", idrn)} form an atlas on R™, and this way R” is given a structure of a
differentiable manifold. This particular structure is called the standard differentiable
structure on R™. Also any open set V' C M of a differentiable manifold carries an
induced differentiable structure.

We say that a continuous map f : M™ — N™ between differentiable manifolds is
C* if and only if Y50 fop 't o (fTH(Wp)) — 1s(Wp) is of class CF for all charts
(Va, pa) on M™ and all charts (Wjs,13) on N.

Now let p € M and consider all differentiable curves ¢ : J — M through p i.e.
0 € J and ¢(0) = p. We say that ¢, is tangent to ¢ if for one and hence all charts
©Ya : Vo = Uy C R around p, that (pa0c1)'(0) = (paocs)'(0). The set of equivalence
classes is the tangent space, T, M, of M at p. The bijection T,M — T, ,U, yields a
well defined linear structure on 7, M. The collection TM = Uyep/T, M of all tangent
spaces to M is called the tangent bundle of M. As in section 4 we can also view
T, M as the vector space of derivations of the set of smooth functions f € F, defined
near p.
Theorem 11.3. Let M™ be an n-dimensional differentiable manifold. Then T M
has the structure of a 2n-dimensional differentiable manifold, and the projection
n:TM — M, n(T,M) = {p}, is smooth.
Proof: Let {(V,, pa)} be an atlas on M. Let %(p), ce %(p) be the basis for T, M
corresponding to the canonical basis e;(¢a(p)), .- ., en(@a(p)) for T, Us = R" via
the isomorphism T,M — T, Ua,p € V,. Then any tangent vector u, € T,M
may be written uniquely as u, = > . 9 (p). With this presentation define

i=1 Wit
o, :1(Vy) — Uy x R* by

D, (Z ulaila (p)) = (p,ur,...,uy)

=1

for all u, € T,M. Then ®50 ®_'(p,u) = (ps0 ;"' (p), D(ps o ¢,"),u) and hence
(771(Va), ®,) defines an atlas for TM as desired (a topology of T'M is uniquely
determined by the requirements, 7—1(V},) is open and @, is a homeomorphism for
all @). To see that m : TM — M is smooth it is enough to observe that

Yaomo® Uy x R* = U,, (z,u) =2z
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is smooth for all «. O

As in section 5, any smooth map f : M™ — N™ gives rise to an induced map (or
tangent map) f. : TM — TN, defined by f.([c]) = [f o ¢] for any tangent vector
v, = [c] represented by the curve c. With the differentiable structures on 7'M, and
TN given above, we get immediately

Theorem 11.4. The induced map f, : TM — TN of a smooth map f: M — N is
smooth, and satisfies Ty o f, = fomyy.

A wector field X on M is a map X : M — TM such that m o X = idy,, i.e.,
X(p) € T,M for all p € M. Unless otherwise stated we will only consider smooth

vector fields X : M — T'M. The coordinate vector fields %, ce axin onV, C M
are clearly smooth, and 3%- = (¢5')« 0 €;, where ¢;, i = 1,...,n, are the constant

basis vector fields in U, C R".

Viewing vector fields X as derivations on the algebra C'*(M,R), of smooth func-
tions f : M — R, the Lie bracket [X,Y] of vector fields X and Y on M is defined
by

XY = XY = YIX[S]]

for all f € C°(M,R) (cf. section 4). If [X,Y] = 0 we say that X and Y commute.
Clearly the coordinate vector fields %, ceey 8:1% on V, commute.

Problem 11.5. Give an example of a metric space (.S, dist) which is locally isometric
to a riemannian patch, but not a length space. Show, however, that the associated
length space (S, dist;) is a riemannian n-space.

Problem 11.6. Show that {(R, )} with o(f) = 3 for all £ € R is an atlas for
a differentiable structure on R. Is this the same as the standard structure on R?
Exhibit a diffeomorphism between them.

Problem 11.7. Let S" = {z € R*™' | ||z|]| = 1} be the standard n-sphere in R**!.
Exhibit an atlas for S™ using orthogonal projections onto coordinate hyper planes
in R"™!, Exhibit an atlas for S™ using stereographic projection. Show that these
atlases define the same differentiable structure on S™. What is the least number of
charts needed for a differentiable structure on S™?

Show that the length-space structure on S™ induced from the euclidean distance
in R"*! makes S™ into a riemannian n-space.

Show that the orthogonal group O(n + 1) is the group of isometries on S™.

What are the geodesics on S™7

Show that S™ has constant curvature.

Problem 11.8. Let B™ and F* be differentiable manifolds. Show that B™ x F*
has a differentiable structure with atlas {(V, x Wg, v X 1g)} where {(V,, ¢q)} and
{(W3,1p)} are atlases for B and F' respectively. What is the dimension of B x F'?

Problem 11.9. Let M"** B" and F* be differentiable manifolds and 7 : M — B
be a smooth map. The triple (M, m, B) is called a fiber bundle with fiber F' if each
p € B has an open neighbourhood U such that 7='(U) C M is diffeomorphic to
U x F via a diffeomorphism @ : 77 }(U) — U x F and the diagram
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(11.10) () UxF

is commutative, i.e. Py o® = m. Here P, : U X F' — U is the projection onto the
first factor.

If B can be chosen as U we say that the bundle is ¢rivial (or a product). The
property (11.10) is referred to as the bundle 7 : M — B being locally trivial.

Show that the tangent bundle 7 : M — M is a fiber bundle with fiber R*. In
fact, show that the local trivializations ® may be chosen so that @, = @ -1 :
7 (p) — {p} x R" is a linear isomorphism for all p € U. By definition therefore
m:T'M — M is called an n-dimensional vector bundle over M.

Problem 11.11. Let 7 : E"** — M™ be a k-dimensional vector bundle over M".
A map s: M — FE such that mos = id), is called a section of w. Sections si,...,Sn,
are said to be linearly independent if si(p),...,sm(p) € 7 '(p) = E, are linearly
independent vectors in the vector space E, for all p € M.

Show that = : E — M is trivial if and only if there are k£ linearly independent
smooth sections sy, ..., s, of 7.

Problem 11.12. Let F': M — N be a smooth map between differentiable mani-
folds. For each v € T, M, show that F,(v) € Tpp)N as a derivation on functions, f
defined near F(p) is given by F.(v)[f] = v[f o F].

Problem 11.13. A point in the real projective space RP" is by definition a pair
of antipodal points (z, —z) on the n-sphere S™. Show that RP™ has a differentiable
structure such that = : S* — RP",z — (z,—x) is a fiber bundle with fiber F' =
{1,—1}. A fiber bundle with discrete fiber is called a covering space.

Problem 11.14. Consider the trivial vector bundle 7 : S x R — S™. Show that
by identifying antipodal points (z,t) ~ (—z,—t) in S* x R and z ~ —z in S™ as in
(11.13), 7 induces a map 7 from E = S" xR/ to RP™ = S™/ . such that (E,r, RP™)
is a one dimensional vector bundle over RP". This is called the canonical line bundle
over RP". For n = 1, this is the "infinite” Mdbius band over RP! = S,

View RP™ C E as the image of the zero section of 7 : E — RP"™. Show that
E — RP™ is path connected and conclude that 7 is a non-trivial bundle.

Problem 11.15. Show that a differentiable manifold M is connected if and only if
it is path connected.

Problem 11.16. Let {V,} be a cover of M, i.e. M = U,V,, Vo C M. Suppose
o @ Vo — R are injective maps, such that ¢, (Vy) = U, and o (Vo NVg) = Uyp
are open subsets in R", and @go ¢, ! : Uys — Up, are all continuous.

Show that there is a unique topology on M such that each V, C M is open
and ¢, : Vo, — U, is a homeomorphism. With this topology, M is a topological
n-manifold (a topological space locally homeormorphic to R™).

12. COMPLETENESS

From section 2 we know in particular, that if M™ is a complete riemannian n-
space, then any two points of M can be joined by a minimal geodesic. We will begin
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this section by showing that the same conclusion holds provided M is geodesically
complete, i.e. any geodesic defined on all of R.

First however observe, that if X,Y are smooth vector fields on M, then the Levi
Civita connection V® on the U,’s define uniquely VxY as the vector field

(12.1) Vx Yy, = (9, )e 0 Vs Yo 0 ¢a,
where X, is the vector field (p,). 0 X 0 o', and similarly for Y, (cf. 6.3). The map
V clearly has the properties
) Vxiix,Y = VY + VY
) VixY =f-vxY
12.4) Vx(Y1+Y3) = vy + VY,
) Vx(f-Y)=X[f]-Y 4+ f-VxY
) VxY — vy X - [X,Y]=0
12.7) Z[9(X,Y)] = g(VzX,Y) + g(X,VzY),
for all smooth vector fields X;, Y;, Z and functions f on M. Here g is the map that
to each p € M assigns the inner product g, on the tangent space 7, M induced from
g* on T, Uy by
(12.8) 9p(t,0) = g5, ) ((@a) (1), (£a)+(v))

for all u,v € T,M. Clearly the function g(X,Y’) : M — R defined by p — ¢,(X,,Y})
is smooth whenever X, Y are smooth vector fields on M. A differentiable n-manifold
M together with such a riemannian structure g is called a riemannian n-manifold.
Conversely, a connected riemannian n-manifold (M, g) with dist : M x M — R
defined in analogy with (1.14) via (1.13) is a riemannian n-space.

Because of (12.2)-(12.5) we say that V is a connection on M (or more precisely on
the tangent bundle TM — M), and V xY is the covariant derivative of Y in direction
X. The left hand side, T(X,Y’) of (12.6) is bilinear with respect to functions on
M; it is called the torsion tensor of V. As in section 4 we say that V is torsion free
(or symmetric) if (12.6) holds, and metric if (12.7) holds. These properties uniquely
determine Vv, which we refer to as the Levi Civita connection on (M,g). In fact
proceeding as in the proof of Theorem 4.18 with general vector fields X, Y, and Z
instead of e;, ¢;, and e, and using (12.6) and (12.7) one gets

(VxY, Z) = %{XKY, )] = Z[(X, V)] + Y[(Z, X)]

_<X7 [Ya Z]> + <Z7 [Xa Y]> + <Y7 [Z7X]>}

For fixed X,Y, the right hand side is linear in Z with respect to functions on M.
Therefore (12.9) is a coordinate free description of V equivalent to (4.22).

(12.9)

In terms of the Levi Civita connection V on a riemannian n-manifold (space),
M™, the geodesics on M are the smooth curves ¢ on M which satisfy the geodesic
equation V.¢ = 0. In particular, for each tangent vector v € T'M, there is a unique
maximal geodesic ¢, : J, — M such that ¢,(0) = v. Moreover, if W = {(v,t) €
TM xR |teJ,} then W CTM xR is open and the map W — M, (v,t) — ¢,(t)
is smooth (cf. 3.14).
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As in section 5 we let O = {v € TM | 1 € J,}. Then O C TM is an open
neighbourhood of the zero section M C T'M, and

exp: 0 — M, v—c,(1)
is a smooth map. Clearly M is geodesically complete if and only if J, = R for all
v € TM, or equivalently O = T M.

Lemma 12.10. Suppose O, = ONT,M =T,M for somep € M. Then any q € M
can be joined to p by a minimal geodesic.

Proof: Choose 0 > 0 so that exp, : D,(26) — B(p,20) is a diffeomorphism. In

particular, for any ¢ € B(p,d) = {x € M | dist(p,z) < ¢} there is a unique
minimal geodesic from p to ¢ (cf. section 5). Now suppose dist(p,q) > 0. Since
0B(p,d) = exp,(S(p,0)), S(p,d) = {v € T,M | ||lv|]| = 0}, is compact, there is a
q' € 0B(p,d) such that dist(q, 0B(p,d)) = dist(q,¢'). In particular

dist(p, ¢) = ¢ + dist(q’, q)-

Now let ¢ : R — M be the unique maximal normal (||¢|| = 1) geodesic such that
C|0,5] is the minimal geodesic from p to ¢'. We claim that c(dist(p, ¢)) = ¢. To see
this, consider the set

A ={t € [0,dist(p, q)] | dist(c(¢), ¢) = dist(p, q) — ¢}
Clearly A is closed and [0,6] C A. For any t € R
dist(p, q) < dist(p, c(t)) + dist(c(t), q) < t + dist(c(t), q).

Thus if t € A, we see that ¢y 4 and hence any subsegment ¢jjo 41, € [0, t], is minimal.
It follows that

dist(p, q) =t" + dist(c(t'), c(t)) + dist(c(t), q)
=t' + dist(c(t'), q)
by the triangle inequality, and therefore ¢ € A. The set A is therefore a closed
interval [0,%p]. Assume ty < dist(p,q) and choose 0 < &y < min{tg,dist(p,q) —

to} so small that B(c(ty),do) is a ball like B(p,d) above. Like there, choose ¢" €
aB(C(to), (50) with

dist(c(to), q) = do + dist(q", q),
and let ¢ : [tg,to + dp] — M be the unique minimal geodesic from c(ty) to ¢”. Now
dist(p, q) = to + o + dist(¢", ¢)
whence, by the triangle inequality
dist(p, ¢") = to + do.

! —
[07t0] -

/! o / . 7o .. . . . ;
Cl[0,t0]> C|[tg,to+00] — C- Since ¢” is a minimal curve, it is a geodesic. In particular
" o__ "o
" = c|jo,to+60) and ¢" = c(to + ). Thus

dist(p, ¢) = (to + do) + dist(c(to + o), q),

ie. ty+ dy € A, contradicting the definition of 5. Therefore ¢, = dist(p, ¢q), and
Cl0,dist(p,q) 1S @ minimal geodesic from p to g. O

But then dist(p,¢") = L(c"), where ¢ is the piecewise smooth curve cf
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It follows directly from this lemma, that if M is geodesically complete, then any
pair of points p, ¢ € M can be joined by a minimal geodesic. This point in direction
of the following result called the Hopf-Rinov Theorem:

Theorem 12.11. A riemannian n-space is complete if and only if it is geodesically
complete.

Proof: Assume M" is geodesically complete, and let {gx} be a Cauchy-sequence in
M. Fix p € M and choose according to 12.10 minimal geodesics ¢ : [0, dist(p, gx)] —
M from p to g for each k. Clearly {dist(p,qx)} is a Cauchy sequence in R. Since
R is complete we have limdist(p, gx) = ¢t. Moreover {¢x(0)} is a sequence of unit
vectors in T,M. By compactness of S,(1) C T,M this sequence has a convergent
subsequence, limég, (0) = v. In particular dist(p, gx,,) - ¢, (0) — t - v, and by
continuity of exp, : T,M — M we get g, = exp,(t-v). It follows that the Cauchy
sequence {qx} itself converges to ¢, i.e. M™ is complete.

Now suppose M" is complete, and let p € M be an arbitrary point in M. For
v € T,M we must show that J, = R if J, = (a,b) with b < oo let {#;} be an
increasing sequence in .J, with ¢, — b. Clearly {¢,(t)} is a Cauchy-sequence in M.
Let ¢ = lim¢,(t) and define ¢ : [0,b] — M by ¢(t) = ¢,(t) for t < b and ¢(b) = q.
Then ¢ is a continuous path in M. Now choose § > 0 according to (5.4) so that
(7, exp) is a diffcomorphism when restricted to the set

{veTM]||v| <24, m(v) € B(g,9)}.

Then any two points in B(g, ) are joined by a unique minimal geodesic of length
< 20. Moreover, the corresponding maximal geodesic is defined on an interval
containing (—26,26). Pick t < s < b so that ¢,[t,b] C B(q,0) and ¢ 4 is the unique
minimal geodesic from ¢,(t) to ¢,(s) and dist(c,(t),c,(s)) < 6. By construction,
however, this minimal geodesic and hence ¢, can be extended through and beyond
¢. This contradicts the definition of b when b < co. Similarly we see that a = —o0,
i.e. J, =R and M is geodesically complete.

Problem 12.12. Show that VY is well defined by (12.1).
Problem 12.13. Show that g, is well defined by (12.8).

Problem 12.14. Show that g(aiq, 8%) = g5 © o and conclude that g(X,Y) is
smooth for smooth X, Y. ’

Problem 12.15. Prove (12.9) and show that it uniquely defines the Levi Civita
connection.

Problem 12.16. Show that for each v € T'M there is a unique maximal geodesic
¢y o Jy = M. Show that W = {(v,t) |t € J,} C TM x R is open and W —
M, (v,t) — ¢,(t) is smooth. Show that O is open, exp : O — M is smooth and
0, =0 NT,M is starshaped around O, € T,,M.

Problem 12.17. Show that a local isometry between riemannian n-manifolds is a
local diffeomorphism. Let M be a complete riemannian n-space and F' : M — M
an isometry. Show that F' is completely determined by F,  for any p € M. (Hint:
show that expy, oF., = F oexp,).
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13. GLOBAL EFFECTS OF CURVATURE

In sections 7 and 9 we investigated local and semi-global effects of curvature. In
this section we will prove two classical theorems about curvature and topology of
Riemannian spaces.

Let M™ be a Riemannian n-space with Riemannian structure (, ). Since isometries
between Riemannian patches preserve the curvature tensor, it is clear that for p € M,
R,: T,M xT,M x T,M — T,M given by

(131) Rp(ua 'U)w - (¢c_z1)*¢a(p)Rga(p)(¢a*(u)7 ¢a* (U))¢o¢*w7

is well defined. For vector fields X, Y and Z on M the curvature tensor R of (13.1)
is also given in terms of the Levi-Civita connection V of section 12 by

(13.2) R(X,Y)Z = VxVyZ —VyVxZ — Vixy 2.

The sectional curvature , Ricci curvature , and scalar curvature are all defined from
R and (, ) as in section 8.

The following result is called the Hadamard—Cartan theorem.

Theorem 13.3. A simply connected complete Riemannian n-space of non-positive
curvature s diffeomorphic to R".

Proof: Let M"™ be any complete Riemannian n-space with sec M < 0. We will
prove the theorem by showing that in fact exp,: T,M — M is a covering map for
any p € M (cf. 12.11).

First we claim that for any v € T,M, (exp,)sw: To(TpyM) — TexpwyM is a linear
isomorphism and hence by the inverse function theorem exp, is a local diffeomor-
phism. If not, there is a u_Lv such that (exp,).(u,) = 0 € Texp) M. The vector field
X(t) = (exp,)«(tus) along the geodesic ¢,: R — M is a Jacobi field i.e.

(13.4) Ve, Ve, X + R(X,é,)é0 =0

with X 1¢,, X(0) =0 € T,M and X(1) = (exp,).(u,) = 0 € T¢,(1yM (cf. section
5 and 7). By assumption on the curvature and (13.4), (X", X) > 0 and therefore
also (X, X)" = 2{(X", X) + (X', X")} > 0, i.e. || X][|?: [0,1] — R is convex. Since
1X(0)[] = [[X(1)]]| = 0, we conclude that X = 0, contradicting the fact that exp, is
a diffeomorphism near 0 € T, M. Now the local diffeomorphism exp,: T,M — M
induces a Riemannian structure on 7,M such that for the corresponding metric
space, exp, is a local isometry. Moreover, since the straight lines through 0 € T, M
are also geodesics in this new metric space, it follows from 12.11 that T,M is a
complete Riemannian n-space.

For ¢ € M choose € > 0 so that B(g, €) is strictly convex (cf. section 9). Then by
completeness of T, M, the balls B(v,¢) C T,M, exp,(v) = q are mutually disjoint.
Otherwise, there would be a geodesic loop at g of length less that 2¢. By the same
reasoning, in fact exp,: B(v, €) — B(g, €) is a diffeomorphism for each v € exp, ' (q),
in particular exp,: T,M — M is a covering map (cf. 11.13).

Since T, M ~ R" is simply connected, exp,: T,M — M is a diffeomorphism if M
is simply connected.

At the other extreme we have the so called Bonnet-Myers theorem.
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Theorem 13.5. Let M™ be a complete Riemannian n-space with Ricci curvature
Ric M > (n— 1)k, k > 0. Then M is compact, and the fundamental group m (M)
s finite.
Proof: We will show that dist(p, ¢) < 7/vk for any pair of points p,q € M. Then
by completeness of M, it is compact and diam(M) < 7/Vk.

Let c¢: [0,1] — M, ¢(0) = p, ¢(I) = g be a normal minimal geodesic, and suppose
1> 7/VE. Let Xi,...,X,_1,X, be parallel fields along c, i.e.
(13.6) V.X;i=0, i=1,....n—1

with {X;(¢)} an orthonormal basis, and X, = ¢ For Yi(t) = sin(t - 7/1)X;(?),
t=1,...,n—1 we have

I(Y;, ;) = /Ol{G)ZcosZ (t%) — sin? (t- %) Secz-(t)} dt,

where I is the index form (cf. 9.2) and sec;(t) is the sectional curvature of the 2-plane
spanned by X;(t) and é(t). By (8.7) therefore

gf(n,m) - /l {(n— 1) G)QCOSQ (t%) ~ sin? (t- ?) Ric(c’)} dt
<=1 [{(5) e ;)_ksinz(t;)}dt
en [ (;){ st
(e o{ 5+

<0.

In particular I(Y;,Y;) < 0 for some i, and hence ¢ is not locally the shortest curve
according to the second variation formula (9.1). Thus [ < 7/Vk.

To show the last part of the theorem, consider the universal cover 7: M — M,
with fiber 71 (M). As in the proof of (13.3), 7 induces a Riemannian structure on
M so that 7 is a local isometry. In particular, Ric M > (n — 1)k and also M is
complete. Thus it follows from what we have already seen, that M is compact, and
therefor 7 (M) is finite.

Problem 13.7. Show that the curvature tensor R, is well defined by (13.1).
Problem 13.8. Show that the right hand side of (13.2) is linear with respect to
functions on M in each variable X, Y and Z. Show (13.2).

Problem 13.9. Define Jacobi fields, and parallel fields locally and then prove (13.4)
and (13.6).

Problem 13.10. Show that the first and second variation formulas (3.11) and (9.1)
hold globally in a Riemannian space M.

Problem 13.11. Let c¢: [0,I]] — M be a geodesic in a Riemannian space M, and
u,v € Tyo)M. Show that there is a vector field Y along c,(s) s.t. Y'(0) = v. Define
the variation V (¢, s) = exp,, ) t - Y(s), and show that the variation field X along c
is the unique Jacobi field along ¢ with X (0) = u, X'(0) =
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14. VECTOR BUNDLES AND TENSORS

We have already seen examples of vector bundles and tensors. Here we will discuss
these topics in general.

A (smooth) k-dimensional vector bundle is a triple (E,m, M), where E, M are
differentiable manifolds, and 7: £ — M is a smooth map with the following prop-
erties:

For every p € M there is an open neighborhood U C M of p and a diffeomorphism
®: 7 1(U) - U x R* such that

(14.1) = Y(U) 2 U x R
A

is a commutative diagram. Moreover, 7' (p) is a k-dimensional vector space, for all
p € M, such that each map @,: 7 *(q) — R* given by ®; = ps 0 ®;-1(y is a linear
isomorphism. F is called the total space , M the base space , and 7 the projection
of the bundle. The vector space E, = 7 '(q) is called the fiber over ¢ € M. The
map ® in (14.1) is referred to as a trivialization of (E,m, M) over U, it is also called
a local trivialization, and the bundle is said to be locally trivial. If U = M, the
bundle is called (globally) trivial .

A (smooth) map s: M — E such that 7 o s = idy, is called a section of the
bundle. With this terminology, a vector field X on a manifold M is a section of the
tangent bundle (T'M, 7, M). We say that sections sy, ..., s, are linearly independent
if and only if s1(p), ..., su(p) are linearly independent in E,. According to (11.11)
a k-dimensional vector bundle (E, 7, M) is trivial if and only if it has k linearly
independent sections. In particular, this is always true locally.

The space of smooth sections of (E,m, M) will be denoted by S®(F).

A bundle map between two vector bundles (Ey, m, M) and (E2, ma, Ms) is a pair
(F, f), where F': E; — Fy and f: M; — M, are smooth, and

(14.2) E, —~ E,

Ml_f>M2

is a commutative diagram. Moreover, for every p; € M, the map F),, = _F"F;I(pl) By,
— Eaggpyy is linear. If M = M; = M, and f = idy; the pair (F,idy) is called a
bundle isomorphism provided F' is a diffeomorphism.

Example 14.3. (pull back) Let (E,m, M) be a k-dimensional vector bundle and
f: N — M a smooth map between differentiable manifolds. In N x E consider the
set f*(E) ={(p,e) | f(p) =m(e)} and define 7: f*(E) — N, F: f*(E) — E as the
projections Pi: Nx E — N, Py: N x E — F restricted to f*(E) C N x E. There is
a unique differentiable structure on f*(E) such that (f*(E), 7, N) is a k-dimensional
vector bundle and (F, f) a bundle map. This is called the pull back of (E,m, M) by f.
It is also determined by the requirement that a section s*: U — f*(E), 7os* =idy
is smooth if and only if the corresponding section along f, sy = Fos*: U — E,
mo sy = f,is smooth. Note that s* = (id, sf).



36 KARSTEN GROVE

In the next two examples we consider two vector bundles (E;, m;, M), i = 1,2 over
M.

Example 14.4. (Sum) Consider the vector bundle (E; X Ep,m X my, M x M)
over M x M and the diagonal map A: M — M x M. The pull back (A*(E; X

E,), 7r1/>\</7r2, M) is called the direct sum of (Ey,m, M) and (E2, w3, Ms). Clearly the
fiber A*(E| X Ey)(p) = 71 X 79 1(p) = {p} X Ei(p) X Ex(p) = E1(p) ® Ex(p), pe M
and we use the notation (E; & Ey,m, M).

Example 14.5. (Hom) Consider the set L(Ey; Ey) = U,epr L(E1(p); E2(p)), the
collection of all linear maps from fibers E(p) = 7, (p) in E} to corresponding fibers
Es(p) = 75 (p) in E,. Moreover define 7: L(Ey; Ey) — M by 7n(L(E\(p); E2(p))) =
p, p € M. Then L(E;;E,) carries a unique differentiable structure such that
(L(Ey; Ey),m, M) is a vector bundle in which s: U — L(E}; Es), mos = idy is
a smooth section if and only if the pair (S,idy): (Eyjy, 71, U) — (E2jy, w2, U) given
by S(v1) = s(m(v1))(v1) is a bundle map, U C M open.

In view of the above examples, note that a general bundle map (F, f): (Fy,m, M) —
(Ey, 9, M) may be viewed as a smooth section in (L(Ey; f*(E2)),m, M;) and vise
versa. This also illustrates the thesis: “Knowing a bundle is knowing its sections”.

Example 14.6. (Dual bundle) For a bundle (E, 7, M) consider its dual bundle
(&%, m, M) where E* = [ ¢\, E(p)* ~ L(E; M x R) as in 14.5. The dual bundle
(T*M,m, M) of the tangent bundle (T'M,m, M) of M is also called the cotangent
bundle of M.

Smooth sections of (T*M,n, M) are also called 1-forms or differential forms of
degree 1. If f: M — R is a smooth function the differential df of f given by
dfy: T,M — R, v — v[f] clearly is a 1-form on M. If zl,..., 2" are the coordi-
nate functions of a coordinate patch ¢,: V, — U, C R*, V, C M, the sections

dzl,...,dz" are linearly independent. In fact dzl(p),...,dz"(p) C T,M* is the
dual basis of 52+ (p), ..., 5% (p) € T,M In particular any 1-form on V, is written

uniquely as w =Y 1| fidx®, where f;: V, = R i =1,...,n are smooth functions.

Given vector bundles (E;, m;, M), i =1,...,k and (E, 7, M) we obtain by iterating
14.5 a vector bundle (L(Ey; L(Es, ..., L(Eg; E)---)), 7, M) of iterated linear maps.
This of course is canonically isomorphic to the bundle (L(E},..., Ey; E),m, M) of
k-linear maps from E;(p) X -+ X Ex(p) to E(p), p € M. This way we can interpret
the torsion tensor, 7', of a connection V on M as a smooth section in the bundle
(L(TM,TM;TM), 7, M) = (L*(TM;TM), 7, M) of bilinear maps T,M x T,M —
T,M, p € M. The curvature tensor, R, is a smooth section in (L*(TM;TM),m, M),
and a Riemannian structure g is a smooth section in (L*(TM;R), w, M).

Example 14.7. (Tensor product) If (E;, m;, M), i = 1,2 are vector bundles over
M, the bundle (L(Ey, Fy;R), m, M) of bilinear maps E;(p) X Es(p) - R, p € M
is also denoted by (Ef ® Ej,m, M) and called the tensor product of (E}, 7, M)
and (E5,mo, M). If ey,...;ex € Ei(p), fi1,-..,fi € Ey(p) are bases with cor-
responding dual bases ef,...,ex € Ei(p)*, fi,..., fi € Ea(p)", {ef @ €j}, i =
1,...,k, j = 1,...,1 is a basis for Ej(p) ® E3(p). An isomorphism FEj(p) ®
E5(p) =2 L(Ei(p), E2(p); R) is then given where e ® ef: Ei(p) x Ey(p) — R is
the map (vy,vp) — €f(v1) - €;(v2). With this notation we can write any bilinear
map B: Ey(p) x Ea(p) — R uniquely as B = Y bjje; ® €}. In the case E; = TM
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observe that a Riemannian structure (metric tensor) on M is given locally i.e. in
charts ¢o: Vo — Us CR" by g = > gfidar§ @ daf.

Again the construction (notation) in 14.7 can be iterated to yield L(E, ..., Ey; R) =
E;®- - -QE} for vector bundles (E;, m;, M), i =1,..., k. Since canonically (E**, 7, M) &
(E,m, M) we have the tensor product bundle (E\®- - -QFE,,m, M) = (L(E},..., E5;R),m, M).
With this notation, g is a section in T*M QT™* M, T is a section in T*M QT*M QT M,
and R is a section in T"M @ T*M @ T*M ® TM. A tensor of type (r,s) on
a manifold M is by definition a section in the bundle (T7(TM),w, M), where in
TIHTM)=TM ®---QTM QT*M ® --- @ T*M there are r factors of TM and s
factors of T*M.

We will now give a different interpretation of tensors. For purposes of exposition
let us return to the case (Ef ® E5, m, M) = (L(E,, E>; R, 7, M). Clearly any smooth
section B of this bundle induces a map

(14.8) B: 8®(B)) x 8®(E) — C%(M)

that assigns to section s; € S®(F;) of (E;,m;, M) the map p — B(p)(s1(p), s2(p)),
p € M. This map is bilinear with respect to C*°(M). In order to see that the
converse is also true, i.e., a bilinear map (14.8) defines a section in (E; ® Ej, 7w, M),

we need to use so-called localization functions .
Consider the function h: R — R defined by

et >0
14.9 h(t) = ’
(149) () {0, -

Then h > 0 is smooth, and A(t) > 0 for ¢ > 0. Therefore, if 0 < r < R, the function
¢: R* — R given by

h(R? — ||=]*)

(14.10) p(z) = h(R? — ||z|]2) + h(]|z]|? = r?)

is smooth and ¢(z) = 1 if ||z|| < r and ¢(x) = 0 if ||z]| > R. Clearly if p € M
and U C M is an open neighborhood of p, there is a smooth function ¢: M — [0, 1]
s.t. ¢ =1 near p and supp ¢ = {q € M | #(q) # 0} C U (provided M is Hausdorff).
Such a function is called a localization function at p € M.

Now suppose B: 8¥(F;) x 8®(Fy) — C*(M) is bilinear with respect to C*°(M).
Let s1,5; be sections in (Fy, 7, M) with s1(p) = 51(p). In a local basis of sections
e1,... e defined on U > p we have sy = > tie;, 51p = ) tie;, and t;(p) = £;(p).
Let ¢ be a localization function at p with supp ¢ C U. Then we get globally defined
sections Fj;, and functions 7T;, ¢« = 1,...k that are zero outside U and ¢ - e;, resp.
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¢ - t; inside U. Using this we get
B(s1,52)(p) = 6°(p) B(s1, 59) (p)
= B(¢”s1,52) ()

= B(51, 52)(p)

and similarly B(si, s2)(p) = B(s1,52)(p) if s2(p) = 52(p). Moreover if v; € Ei(p),
vy € Ey(p) we may construct sections s; € S®(Ey), so € S®(E,) such that s;(p) =
v;, © = 1,2. This again uses a localization function ¢ and local trivializations of
(E;, 7, M) near p.

In view of the above we may also view a tensor of type (r, s) on M as a map
(14.11) T §°°(T*M) X e X S°°(T*M)J><§°°(TM) X oee X S°°(TM2—> C*(M)

T 5

which is (r + s)-linear with respect to C'(M).
Problem 14.12. Complete the proof of the claims in 14.3 and 14.5.
Problem 14.13. Show that df as defined on page 36 is a smooth section of the
cotangent bundle.
Problem 14.14. Fill in the missing details in 14.7.
Problem 14.15. Prove the existence of localization functions (cf. 14.9, 14.10, ...).
Show that it is necessary that M is Hausdorff.
Problem 14.16. On a Riemannian manifold (M, ( , )) exhibit a canonical bun-
dle isomorphism (m,id,,), m: TM — T*M. Using this the gradient of a smooth
f: M — R is defined by m o grad f = df.

What is grad f in local coordinates?

Problem 14.17. Let V be the Levi—Civita connection on a Riemannian manifold
(M,{ ,)). The divergence of a vector field X on M is defined as the function
(div X)(p) = trace(v — V,X), v € T,M.

What is div X in local coordinates?

The Laplacian of a function f: M — R is defined by Af = divgrad f.

Find the local expression of Af.

Problem 14.18. Show that a connection V on a manifold M can be defined as a
linear map

V:S®(TM)— S*(T*M TM)
sothat V(f-X)=df @ X + fVX, f € C®(M), X € S®(T'M).

15. CONNECTIONS AND DIFFERENTIAL FORMS

A connection in a vector bundle (F,m, M) is a map V which assigns to any vector
field X on M, and section s € S®(F) a section Vxs € S®(E) such that (12.2)-
(12.5) hold with obvious modifications. The first two of these expresses that Vys
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is tensorial in the X-variable. Using the notation from the previous section we can
therefore also say that a connection V in (E, 7, M) is a linear map

(15.1) V:S8®E) = S*®(T"M®F)

which satisfies

(15.2) V(fs)=df ® s+ fVs

for all f € C*°(M), and s € S®(F). Using localization maps it is easy to see that
(15.3) (Vxs)w = (Vxso)w

whenever sy = sg;7, U C M open. This also allows to define Vxs when X and s
are defined only on U C M. If X4,..., X, and s4,..., s, define local trivializations

of TMy; and E\y respectively we set

k
(15.4) Vys;=» Thsi,
=1

and call Féj the components of V relative to these trivializations.
The curvature tensor R is defined by

(155) R(X, Y)S = VvaS — VyVXS — V[X,y}S
for all vector field X, Y and sections s.

Example 15.6. Let V be a connection on (E,m, M), and f: N — M a smooth
map. There is a unique connection V* on the pull back bundle (f*(E), 7, N) such
that V% (id, so f) = (id, V1, x s) for vector fields X on N and sections s in (E, 7, M).

In particular if ¢: J — M is a smooth curve in M, we get an induced connection
V* on (¢*(E), 7, J). This allows us to differentiate sections s. along ¢ in direction
2 € C>(TJ), V¥ s.. Earlier we have used the notation Vs for the case E = T'M.

t

o
A section s along c is called parallel if and only if V.s = 0. Also in this generality
this leads to the notion of parallel transport along c. This in turn gives a geometric
interpretation of the curvature tensor as in section 10.

Example 15.7. Given connections V' in (Ej, m;, M), i = 1,2. There is a unique
connection V in (L(Ey; Ey), 7, M) such that

(VXT)Sl == VX(TS‘l) - TVXS‘l
for all T € 8®(L(Ey; Ey),m, M), X € 8°(TM) and s, € S®(E}).

Clearly now using the above example iteratively one constructs canonical connec-
tions on tensor bundles (cf. also section 7).

We can use the notion of parallel transport to define orientability of a vector bundle
(E,m,M). First recall that an orientation of R¥ is an equivalence class of bases,
where {ey,..., e} is equivalent to {ey,..., e} (determine the same orientation) if
and only if the linear map T: R¥ — R* that maps {ey,..., e} into {é;,...,€} has
positive determinant. The holonomy group ®,, of the connection V at p € M is
by definition the subgroup of GL(FE(p)) consisting of parallel transports along loops
at p. Note that &, = &, for any p,q¢ € M. The bundle (£, 7, M) is said to be
orientable if and only if det(®,) C R;. An orientation of each fiber E(q) is then
obtained from an orientation at a fixed fiber E(p) by means of parallel transport
along paths from p to gq.



40 KARSTEN GROVE

The concept of orientability is independent of connections, however. This will
follow from a description in terms of exterior powers given below.

Example 15.8. For a fixed k-dimensional vector bundle (E, w, M) consider the bun-
dle (L"(E;R), m, M) of r-linear maps from the fibers of E to R. For fixed p € M con-
sider the subspace A"(E(p); R) C L"(E(p); R) consisting of alternating r-linear maps
wie wlvy,...,v) = signow(Ve(), - - ., Ve@)) for every permutation o of {1,...,r},
r < k. Clearly there is a unique vector bundle (A"(E;R),, M) where a section
w: U — A"(Ejy;R) is smooth if and only if w(sy,...,s,) is a smooth function on
U whenever s;...,s, are smooth sections of Ejy — U. If e;,...,¢e; is a basis for
E(p) with dual basis e],... ey, then {ej A...Aef}, 1 <4y < -2 < <k
form a basis for a (f)—dimensional vector space A"(E(p)*) =2 A"(E(p);R) where
the isomorphism is established so that e; A...Aej: E(p) x --- x E(p) = R is
the map (vi,...,v;) — det{e] (v)} = >, signoe] (vy)) -+ - €] (Vo(r)). Using
this we say that (E,m, M) is orientable if and only if the one-dimensional bundle
(A¥(E,R),m, M) = (A*(E*), 7, M) is trivial. A choice of a non-trivial section deter-
mines an orientation on every fiber E(p), p € M. If (E,m, M) is equipped with a
connection V, the two notions of orientability are naturally the same.

Consider now the special case E' = TM. A smooth section in (A"(TM;R), 7, M) =
(A™(T*M),m, M) is called an r-form on M, or a differential form of degree r. Lo-
cally, in a coordinate system (x1,...,2,) an r-form w is written uniquely as w; =

Y i<iycociyp<p Wir-iy dTiy A - Adz;, . The obvious product A”(T,M*) x A*(T,M*) A
N3 (T, M*) called the wedge product takes the form

11 .
(15.9) aAB(vi,...,Upys) = 51 Stgn o A(Va(1)s - - > Vo)) B(Vo(rt1)s - - -, Vo(r+s))

g

when viewed as a map A"(T,M;R) x A*(T,M;R) — A™"*(1,M;R). If we denote
the space of r-forms on M by D"(M), then clearly D(M) = @_, D" (M) becomes
a graded algebra. Here we set D°(M) = C®(M).

Theorem 15.10. There is a unique linear extension d: D(M) — D(M) of the
differential on D°(M) so that

(i) dD" C D" (M) (d has degree 1)

(ii) dlwAn) =dwAn+ (=1)wAdn, w € D*(M), n € D(M)

(iii) d* =dod = 0.
Proof: Uniqueness: First observe that by using localization functions we conclude
dwiy = dnu if wy =nu. Ww =Y w, 4.dr;, A...Adz;, in a chart U C M we get
(again via localization functions) that dw) = ) du;,. i, Adx;, A...Adz;,, which shows
uniqueness. FEristence: Given w € D"(M) and suppose w = Sugy i dri A A
dl‘ir- Deﬁning dUI D(U) — D(U) so that dU Z uil...irdxh VANPRAN d!L’ir = Z duilmir VAN
dx;, A ... A dz; one checks that d satisfies the conditions in the theorem. Hence
d: D(M) — D(M) given as dwjy = dywy is well defined by the uniqueness part.
Moreover, this d clearly satisfies the conditions as stated in the theorem.

The map d: D(M) — D(M) is called the exterior derivative . Since d* = 0, by
definition

(15.11) D' (M) — -+ = D' (M) = D" (M) — -+ = D" (M) =0
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is a chain complex whose cohomology groups
_ Ker{d: D" — D"t}
Im{d: D—1 — Dr}
are the so called de Rham cohomology groups (vector spaces) of M. It is a surprizing
fact that H"(M) are homotopy invariant of M.

(15.12) H (M)

Differential forms constitute a powerfull tool in geometry and topology, not only
because they form a differential graded algebra (D(M),d), but also because they
behave nicely with respect to maps f: M — N. In fact, for every w € D"(N) we
have f*(w) € D"(M) defined by

(15.13) frwp(Xa(p)s - Xo(p) = Wi (fapXi(P)s - -+, fpXi(P), PEM
whenever Xi,...X, are smooth vector fields on M. Then f*: D(N) — D(M) is
a homomorphism of commutative graded differential algebras. Here commutative
refer to the property w Anp = (=1)""nAw, w € D' (M), n € D*(M).

Problem 15.14. Prove (15.3) and the statements in (15.6) and (15.7).

Problem 15.15. Fill in the missing details in (15.8), (15.9), and (15.10).

Problem 15.16. Show that dw(X,Y) = X[w(Y)] — Y[w(X)] — w([X,Y]) for any
1-form w.

Problem 15.17. Show that f* is well defined by (15.13) and prove the stated
properties of it. If M and N are orientable, what whould it mean that f: M — N
is orientation preserving 7

Problem 15.18. Let Féj be the components of a connection V on (E, 7, M) relative
to trivializations of T M, F over U determined by X, ..., X, and s1,..., s; (cf. 15.4).
For fixed [ and j consider the 1-form w! on U defined by w!(X;) = T'};. Show that

Vsj =Y, wh®s;, and that any k x k-matrix of 1-forms {w!} in this way determine
a connection on (Eyy,m,U). These 1-forms are called connection forms .

Problem 15.19. Let V: S®(FE) — S®(TM* ® E) be a connection in (E,m, M).
Show that there is a unique linear map

V: S8®(TM* ® E) — S®(AX(TM*) ® E)
such that

~

VO®s)=dd®@s—60AV(s)

for every 1-form 6 on M and section s € S*°(FE). Show that moreover

V(f0®s)=df AN(0@5s)+ V(O ®s).
Hint: Consider local sections 6y,...,0, and sq,..., s.
Problem 15.20. Show that the composed map R = VoV : S®(FE) — S®(A>(TM*)®
F) is linear with respect to C*°(M). Thus R can be viewed as a section in L(E; A>(TM*)®
E) 2 N2(TM*)® L(E; F) 2 A*(TM; L(E,E)). In a trivialization of E by sections
S1,...,S show that

Rls) = V(X utos) = e

where Qé is the 2-form given by

L gl N
Q2 = dw; E Wi A Wy
«
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These 2-forms are called the curvature forms of the connection V.

Problem 15.21. Find the expression for ) (cf. 15.10) in terms of the I'};’s, and
show that R defined in 15.20 is in fact the curvature tensor of V.

The form interpretation of curvature is important in the development of character-
istic classes for bundles.

16. SUBMANIFOLDS

Let M™ be an n-dimensional manifold and L. C M a subset. We say that L is
a k-dimensional (embedded) submanifold of M if for every p € L there is a chart
¢:V — U C R for M such that ¢(p) = 0 and ¢(V N L) = UNRF. We will
refer to such charts as submanifold charts . It is clear that the collection {¢,} of
submanifold charts for L form an atlas for L, making it into a k-dimensional smooth
manifold. Moreover the manifold topology of L obtained this way coincides with
the induced topology from M (cf. 16.7).

More generally we say that a map f: L¥ — M™ between smooth manifolds is an
immersion provided f,,: T, L — Ty M is injective for every p € L. From the inverse
function theorem it follows that there are charts ¢, : V, — U, C R* around p and
$5: Vs — Uz C R™ around f(p), such that ¢go fo,(z) = (x,0) for all z € U, (cf.
16.8). Observe that f(V,) C M is a k-dimensional submanifold of M. If in addition
f: L — M is globally injective, we say that the subset f(L) C M is an immersed
submanifold. Finally, an injective immersion f: L — M is called an embedding if
f: L — f(L) is a homeomorphism when f(L) is given the induced topology from M.
Clearly, the image f(L) of an imbedding f is a submanifold. Conversely, if L C M
is a submanifold, the inclusion map ¢: L < M is an embedding.

Example 16.1. An immersion from an interval is simply a regular curve, ¢: J — M,
i.e. ¢(t) # 0, t € J. The picture below represents such a regular curve c: R — R?

D,

with say ¢(—1) = ¢(1) = (0,1) and ¢: R — {—1,1} — R® is injective. Clearly
¢: (—o00,1) = R? is 1-1 immersion, but not an embedding.

Another such example is given by c¢: R — S! x S! where c(t) = (e2™, e?mot)

a € R — Q. Here ¢(R) is dense in 7% = S x St

b

Locally, of course any submanifold is the solution set of a system of equations. The
following global version of this is very useful: Let f: M — N be a smooth map,
and ¢ € N. Then the solution set f~'(q¢) = L C M is a submanifold of M provided
fap: T,M — T,N is surjective for all p € f~'(q). The existence of submanifold
charts around p € L is again guaranteed by the inverse function theorem (cf. 16.10).
More generally, if f: M — N and L C N is a submanifold, one says that f is
transversal to L if f.,(T,M) + Ty L = Ty N for all p e f71(L). Also in this case
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f7YL) C M is a submanifold (16.11). A map f: M — N is called a submersion if
Jep: TyM — Ty, N is surjective for all p € M. Clearly a submersion is transversal
to every submanifold L C N.

Example 16.2. Let (E, 7, M) be a vector bundle over M and f: N — M a smooth
map. Then A = {(p,p) € M x M | p € M} is a submanifold of M x M and
fxm: NxE— M x M is transversal to A. In particular the total space f*(E) =
(f x m)"Y(A) of the bundle induced by f is a submanifold of N x E (cf. 14.3).

Example 16.3. If (E* 7w, M) is a vector bundle with Riemannian structure g, i.e.
g is a smooth section in (L?(E;R), 7, M) which is symmetric and positive definite
at each p € M. The map || [|*: E — R is smooth and a submersion when restricted
to E — M. Here M is identified with the image of the zero section in (E, 7, M). In
particular the unit sphere bundle (S(E),w, M), S(E) = || ||7}(1) is a fiber bundle
with fiber S*¥-1.

Example 16.4. The image of any section s: M — E of a vector bundle (E, 7, M)
is a submanifold of E.

The following observation is often used

Lemma 16.5. Let M, N and L be smooth manifolds and f: M — N, g: N — L
maps. Then

(1) If g is an imbedding, f is smooth if and only if g o f is smooth.
(ii) If f is a submersion onto N, then g: N — L is smooth if and only if go f
s smooth.

Example 16.6. Let L(n,n) denote the n?-dimensional vector space of all n x n ma-
trices, and GL(n) C L(n,n) the invertible ones. Clearly det: L(n,n) — R is smooth
and in particular, GL(n) = det™"(R\{0}) is an open subset of L(n,n). Moreover the
group operations GL(n) x GL(n) — GL(n), (A, B) — AB and GL(n) — GL(n),
A+ A7 are smooth. By definition, a Lie Group is a smooth manifold G' which
at the same time is a group and the group operations are smooth. In particular,
the general linear group GL(n) is a Lie group. This group has many important
subgroups, that are also Lie groups. Here let us point out only two such subgroups:
(i) SL(n) = det™'(1) € GL(n) is called the special linear group . Clearly, det: GL(n)
— R — {0} is a submersion, and in particular SL(n) is a submanifold of GL(n). By
using (16.5)(i) it is easy to see that the group operations on SL(n) are smooth.
Thus, SL(n) is a Lie group.

(i) O(n) = {A € GL(n) | AA" = id} is the orthogonal group . Let Sym(n) de-
note the vector space of symmetric n x n matrices. Then f: GL(n) — Sym(n)
defined by f(A) = AA" is smooth and f.x: TaGL(n) — TyaySym(n) is surjective
for all A € f~1(id) = O(n). By the above arguments therefore also O(n) is a Lie
group. Note that O(n) has two connected components. The identity component
SO(n) = O(n) N SL(n) is called the special orthogonal group.

Problem 16.7. Show that the manifold topology of a submanifold L C M is the
same as the induced topology on L from M.

Problem 16.8. Let f: L¥ — M™ be a smooth map and suppose f,,: T,L — TrpyM
is 1-1 for some p € L. Show that k£ < n, and use the inverse function theorem to
construct charts 1,: V, — U, C R¥ around p and ¢5: V3 — Uz C R around f(p)
so that ¢s(f (¢, (x))) = (x,0) for all z € U,.
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Problem 16.9. Show that the image of c: R — S x St in (16.1) is dense in S x S*.

Problem 16.10. Let f: M™ — N* be a smooth map and p € M a point so that
Jep: TyM — Typ)N is surjective. Show that n > k, and use the inverse function
theorem to construct charts ¢,: Vo, — U, C R* around p and ¢g: Vg — Uz C R
around f(p) so that Yo fod ' (z1,...,2n) = (w1,...,2%) for all (zy,...,2,) € U,.
Problem 16.11. Let f: M" — N* be a smooth map, and L C N a submanifold
of codimension [, i.e. dim N — dim L. = [. Show that if f is transversal to L, then
f7Y(L) is a submanifold of M with codimension I.

Hint: For p € f~!(L) choose a submanifold chart around f(p) € L C N, and reduce
to the case where L is a point.

Problem 16.12. Prove the statements in 16.3.
Problem 16.13. Prove the statements in 16.4.
Problem 16.14. Prove Lemma 16.5.

Problem 16.15. Prove the statements in in 16.6.

Problem 16.16. Let G be an n-dimensional Lie group. For each a € G the maps
L,,R,: G =G, g—a-g,g-a are called left translation , resp. right translation in
G by a.
(i) Show that all left and right translations are diffeomorphisms of G

A vector field X on G is called left invariant (right invariant ) if X,p = (La)sb(Xp)
(resp. (Rp).a(Xy)) for all a,b € G.
(ii) For any v € T.G let X, € T,G be the vector X, = (L) (v). Show that X
defined this way is a smooth left invariant vector field on G.
(iii) Define a vector space isomorphism between T,G and the space of left invariant
vector fields on GG. Here e € (G is the neutral element.
(iv) Let X and Y be left invariant vector fields on G. Show that [X,Y] is left
invariant.

This gives the vector space g of left invariant vector fields on G the structure of
an n-dimensional Lie algebra g = T.G.

Define a connection V on G such that VX = 0 , i.e. X is parallel for all left
invariant vector fields X € g.
(v) Show that T(X,Y) = —[X,Y], and R = 0.

Let (, ) be an inner product for T,G. Define ( , ), by (La.u, Ly, v)q = (u,v) for
all u,v € T,G.
(vi) Show that ( , ) is a Riemannian structure on G.
(vii) Show that all left translations L, are isometries in this metric.

17. RELATIVE CURVATURE

Consider a submanifold M™ C N™"* of a Riemannian manifold (N, ( , )). Then
for each p € M the tangent space T, N admits an orthogonal splitting
(17.1) T,N =T,M & T,M~
where T, M~ is called the normal space to M at p. Let TM* = Upenr T,M* and
define 7: TM*+ — M by n(T,M*) = p for all p € M. Then

Theorem 17.2. TM* admit a unique differentiable structure such that (T M*, 7, M)
is a k-dimensional sub vector bundle of (I'Nj,m, M).
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Naturally (M=, m, M) is called the normal bundle to M in N. Clearly the
Riemannian metric ( , ) on T'N restrict to smooth inner products on TM and T M+
respectively. In particular M is a Riemannian manifold. We will use ( , ) to denote
its restrictions also.

Any smooth vector field Z: M — TN along M decomposes uniquely as Z = Z ' +
Z+, where Z" is a smooth vector field on M and Z+ is a smooth normal field to
M. If we let V denote also the restriction of the Levi-Civita connection on N to
(T'Nyag, 7, M) (cf. 15.6) we get

(17.3) VxY =VxY +a(X,Y),

where

(17.4) VY = (VxY)T, a(X,Y) = (VxY)*t
for all smooth vector fields X,Y on M. Moreover

(17.5) Vxn = S(n,X)+ Vxn,

where

(17.6) S, X) = (Vxn)', Vxn = (Vxn)*

for all smooth vector (resp. normal) fields X, n on M.

Theorem 17.7. (1) V defined in (17.4) is the Levi-Civita connection on M.
(2) V defined in (17.5) is a metric connection for the normal bundle of M.
(3) a and S defined in (17.4) and (17.5) are tensorial. Moreover (a(X,Y),n) =
—(S(n,X),Y) for all X Y andn, and « is symmetric.

Proof: It is easy to see that V defined in (17.4) and (17.5) are metric connections (cf.
12.2-12.5,12.7). Since the Lie bracket of vector fields X, Y tangent to a submanifold
is again tangent to the submanifold (cf. 17.16), this completes the proof of (1) and

(2).

To prove (3) first note that « clearly is bilinear and linear with respect to C*° (M)
in the X-variable. Again, using that [X, Y] is tangent to M, and V is symmetric, we
get that a(X,Y) = «(Y, X) and thus in particular also tensorial in the Y-variable.
To see that S is linear with respect to C*°(M) in the n-variable we proceed by

S(fn, X) = (Vxfn)" = XI[fl-n)" +(f-Vxn)" = fS(n, X). Finally
((X,Y),n) = (VxY,n)
= X(Y,n) — (Y, Vxn)
= —(¥,5(n, X))

since V is metric and Y is tangential, and 7 is normal to M.

For p € M, the symmetric bilinear map
(17.8) a,: T,M x T,M — T,M~*

is called the second fundamental tensor for M in N at p. If 1, is a unit normal
vector to M at p, then I, = (a,(-,-),n,) is called the second fundamental form in
direction 7,. The trace of «,

1 n
(17.9) H,=— > (e er),
=1

dim M
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e, ..., e, and orthonormal basis for T, M, is called the mean curvature vector at p (cf.
17.7). M is said to be a minimal submanifold if and only if its mean curvature vector
field H is identically zero. Even stronger, if a = 0, we say that M is totally geodesic
. A minimal submanifold can be characterized geometrically, like geodesics, as being
stationary for the volume function under variations. The geometric significance of
M being totally geodesic is, that geodesics in M are also geodesics in N (cf. 17.18).
According to (17.7) it is equivalent to consider for p € M the bilinear map

(17.10) Sp: TyM* x T,M — T, M.
For fixed unit normal vector 7, the symmetric linear map

(17.11) Sn, = Sp(np,+): Ty,M — T,M

4

is called the shape operator (or Weingarten map ) to M in direction 7,. Its eigen-
values are called the principal curvatures of M relative to n,. The corresponding
eigenvectors are called principal curvature directions. In analogy with the above
definition,

1
(1712) an = m trace Snp
is called the mean curvature with respect to 7,, and moreover
(17.13) an = det S,,p

is called the Gauss—Kronecker curvature with respect to n,.
All such curvatures are called relative , or extrinsic curvatures of M in N. The
situation is of course particularly simple if codim M = 1.

Let us now give another geometric interpretation of the second fundamental tensor,
or equivalently, shape operator.

Consider a variation
V:MX(—€¢€) = N
of M in N, and assume for simplicity, that each Vi: M — N is an embedding, and

that the variation field 1, = Vi(,0) () is normal to M in N. For each s € (—¢,¢)
we get an induced Riemannian metric (, )5 on M. Then

Proposition 17.14. For any vector fields X,Y on M,

d
LUX, Y Y gpemo = 205, X, V).
d8< ’ > | 0 < n >
Proof: Observe that (X,Y), = (V5. X, V. Y) and thus
d

%(X, Y)gps=0 = (Ve X, Vi Y)]
(Vo X, Vi Yo 4 (Vi X, Vo VeV )
= (Vxn,Y) + (X, Vyn)
= (Sp(X),Y) + (X, 5,(Y))
= 2(5,(X),Y)

where we have used that [X, 2] =0 on M x (—¢,€) (cf. 17.16) and S, symmetric.



RIEMANNIAN GEOMETRY: A METRIC ENTRANCE 47

We can interpret (17.14) by saying that the second fundamental tensor (—2«) is the
“gradient” of the Riemannian metric restricted to M. Finally we want to establish
a relation between extrinsic and intrinsic curvatures of M. For surfaces in R? this
is the famous Theorema egregium of Gauss.

Theorem 17.15. Let N"** be a Riemannian manifold and M™ C N a submanifold
with the induced Riemannian structure, and n > 2. Forp € M, ny,...,nx € T,M*
and orthonormal basis and any u,v,w,z € T,M, we have

(i) R(u,v)w = (R(u,v) Z{z v, w) — 1 (u, w)Ss(v)}

(ii) (R(u,v)w, z) = (R(u,v)w, 2 —i—Z{l v, w)l;i(u, z) — li(u, w)l;(v, 2)}

(iii) k(u,v) = k(u,v) + Zdet <§1Eu’ w) é’(u’ U)) ,

— i(v,u) (v, v)

where R, R are the curvature tensors of M, N, l; = l,,, S;i = Sy,
k, k the biquadratic forms of R, R (cf. 8.2).

Proof: Since (ii) and (iii) are straight forward consequences of (i) we only prove
this. First extend u, v, w, and z to smooth vector fields near p, and 7y,...,n; to
smooth normal fields near p. Then from

1=1,...,k and

k
V,w = V,w + Z<vvw7 i)

=1

we get

vuvvw V w + Z V w, n; ]772 <vvwanz>vunl)

and hence by definition of S;, [; and 17.7
k
(V Vo) =V, V,w + Zli(v, w)Si(u

Interchanging u and v and using (Vi ,w) " = Vi, ,)w we obtain (i) by definition of
R, R.

Observe that in the special case where N = R?® with its usual flat metric, and M is
a 2-dimensional submanifold of R?, then the sectional curvature of M is the same
as the Gauss—(Kronecker) curvature of M. In general, according to a deep theorem
of J. Nash any Riemannian manifold M™ can be isometrically embedded in some
Euclidean space R***.

Problem 17.16. Let X be a smooth vector field on a manifold M. Use the existence
and uniqueness theorem for ordinary differential equations to show:
(1) For every p € M there is an open neighborhood U > p, and € > 0 and a smooth
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map ®: U x (—¢,¢) = M s.t.

® (qt>(§t)= X(®(q,1)), (g,t) €U

®(q,t +s) = ®(P(q,t),s) when defined
®(q,0)=q, qeU

(2) Show that ¢, = ®(- ,t): U — M is a diffeomorphism onto its image.
Now let Y be another vector field on M. Show that

(+) X, Y], = lim ~[Y, — ().Y),), p€ M,

t—0 ¢

where (4.Y), = ¢.p-1()Yo-1(p), ¢ a diffeomorphism.
Hint: Let f be a function defined near p and consider f(q,t) = f(é:(q)) — f(q).
Define g¢(q, t fo (q,ts) ds and show

fodr=Ff+t-g, go=XI[f]
where g, = g( ,t). Now set p(t) = ¢; '(p) and show (¢ fixed)

(@)Y )plf] = Yo Lf © ¢4] = Yoo Lf] + Y0 [9:]

and hence

fim [V — (6. Y], 1] = lim S[V171(p) — YIF)(p(t))] ~ lim ¥V [a] (p(1)
= X,V17] - Vyloo]

The right hand side of (x) is also denoted by Lx(Y') and called the Lie derivative of
Y in direction X.

(3) Show that Lx extends to a type preserving derivation on all tensor fields, and
Lx f = X|[f] for every function f.

Problem 17.17. Show that the definition of H, in (17.9) is independent of the
orthonormal basis eq, ..., e,.

Problem 17.18. Show that M C N is totally geodesic i.e. « = 0 if and only if all
geodesics in M are geodesics in N.

The remaining problems all deal with surfaces of revolution in R®. Let ¢ = (c1,¢): J —
R? be a regular curve with ¢; > 0 on .J. The surface of revolution gotten by rotating

¢ around the second axis in 3-space is the image of the immersion f: J x R — R3
defined by

f(t,s) = (ci1(t) cos(s), ci(t) sin(s), ca(t))
for all (¢,s) € J x R.
Problem 17.19. Show that

cy(t) cos seq + cy(t) sin ses — ¢ (t)es

le@l

Z(t,s) =



RIEMANNIAN GEOMETRY: A METRIC ENTRANCE 49

is a normal field along f (e, eq, €3 standard coordinate fields in R?*). Show that

cicy — el

SRR (A AT

Ch

SZf*(GZ) = C1((C'1)2 + (C%)Z)I/Zf*GZ

(here e, ey are the coordinate fields in J x R). What are the principal curvatures?

Problem 17.20. Let ¢,(t) = R+ rcost, co(t) = rsint, t € Rand 0 < r < R. The
corresponding surface of revolution is 72 C R3. Show that the principal curvatures
of this torus are given by

1 cost
A= — d g=—"-—7-—
L an > R+ rcost
whence . Rao
+ 2rcost
H=—-(\+X\) =
2( 1) 2r(R 4+ rcost)
is the mean curvature, and
cost
vee 2T (R4 rcost)

is the Gauss and sectional curvature. Where is sec > 0, =0, < 07.

Problem 17.21. Consider the Catenoid , i.e. the surface of revolution determined
by ¢(t) = (cosht,t), t € R Show that the principal curvatures are given by

N 1
"7 cosh®t >~ cosh’t’
In particular, the Catenoid is a minimal surface (H = 0) and sec = —cosh *¢ < 0

everywhere.

18. SPACE FORMS

We already know that R” with its usual Riemannian structure has constant cur-
vature sec = 0. We also know that a sphere S™(r) = {z € R*"! | ||z|| = r} has
constant positive curvature (cf. 11.7, 13.3). Here we will show that it has constant
curvature sec = r%

First let us consider in general a Riemannian manifold N"*! and a smooth function
f: N >R Let M = f~'(a), a € R and suppose df # 0 on M. Then M" is a
codimension 1 submanifold of N (cf. 16.10). We will use the results in the previous
section to compute the curvature of M with its induced Riemannian structure.

By definition (grad f,v) = df(v) and we see that grad f is a nowhere vanishing
normal field to M. Thus n = grad f/|| grad f|| is a unit normal field of M. The

shape operator of M is therefore given by

_ T _ (Vygrad il

for tangent vectors v to M.
By definition, the Hessian tensor of f is the (1,1) tensor given by H(X)
Vx grad f, and the hessian is the (2,0) tensor hp(X,Y) = (Hp(X),Y). If p €

=
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is a critical point for f, i.e. df, =0, and (z1,...,x,41) are local coordinates near p
then hs(p) is given by the matrix
o0 f
18.2
(182 {ooa0]
with respect to the basis a%l(p), e Waﬂ(p), for T,N.

With this terminology we get the following expression for the second fundamental
form [ = [, of M:

hy(u,v)

18.3 Hu,v) =—
159 0= grad f]
for all u,v € T,M, p € M. Thus from (17.15) we obtain

hy(v,w)hp(u, 2) — hy(u, w)hs(v, 2)
| grad f2

(18.4) (R(u,v)w, z) = (R(u,v)w, 2) +

In the special case N = R"*! with its standard flat metric, and f: R**! — R,
r— [|z]|> = Y 22 we get for M = f~'(r?), that

(18.5) (R(u,v)w, 2) = || grad f||7*{hs (v, w)hs(u, z) — hy(u,w)hs(v, 2)}

and so it only remains to compute grad f, and hy. Now clearly

n+1
(18.6) grad f =2p, p(z) =) wie;
i=1
and therefore
(18.7) Hf(u) = QVUinei = 2u, hy(u,v) = 2(u,v).

Since || grad f||* = 4r% on M = S%(r) we get by substituting into (18.5) that indeed
sec=1r"

It is possible to construct examples of manifolds with constant negative curvature
in a similar way. Rather than using R**! with its standard flat Riemannian met-
ric, one has to replace this by its standard flat Lorenz metric. Since we have not
developed this concept here, we will proceed by appealing to another useful tool:
conformal change of metric.

Two Riemannian metrics g and g on a smooth manifold M are said to be confor-
mally equivalent if there is a function f € C*°(M) such that § = e/ - g. Similarly, a
diffeomorphism F': M — M between Riemannian manifolds is said to be conformal
if F*§ = e/ - g. This is the case if and only if F, preserves angles.

Now suppose § = e/ - g, and let V, V be the Levi-Civita connections of § and g¢
respectively.
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Theorem 18.8. For all smooth vector field X, Y, and Z on M,

(i) VxY =VyY + %{X[f]Y + Y[f]X — g(X,Y) grad f}
(ii)

R(X,Y)Z = R(X,Y)Z

(X, 2)Y = by (¥, 2)X + g(X, 2)Hy(Y) — gV, Z)Hy(X)}

02 - v, 2) e )X

— (X[f1Z[f] = 9(X, Z) | grad f|*)Y
+ (X[f19(Y, Z2) = Y[flg(X, Z)) grad f}

and in particular,

(iii)
el stc() = seer) = 5y (v,0) + hylasu) + 5 (grad £ = ol 7P = ul 1))

for any two plane o = span(u,v), where u,v € T,M are orthonormal with respect to
gp. All the right hand sides above are expressed entirely in terms of g.

Proof: (ii) and (iii) follow from (i) by a simple, but rather lengthy computation.
To prove (i) we use the characterization (12.9) of the Levi-Civita connection (cf.
also 4.20, 4.22).

Since the difference of connections is a tensor (cf. 18.13) one only needs to check
(i) on coordinate vector fields.

We will now use 18.8 when ¢ is the usual flat Riemannian metric on R". For
k€ R, let

R", k>0

U () = {rere [l < ) k<o

be equipped with the metric g, = ¢y - g, where

4

S U,..
A+ & © 7

or(T) =

Thus gy, is conformally equivalent to the flat metric g and f; = log 4—2log(1+Fk||z[|?).

Theorem 18.9. The Riemannian manifold (U, gx) has constant curvature sec = k.
Moreover, for k <0 it is complete.

||2 in the last section we obtain

Proof: From our computation of grad || -

4k
gradfk = |2p

1+ k[
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and hence
_4k<pav>
il = (grad fr,v) = —— L
v [fk] (gra fk U> 1—|—]€||!L'||2
16k2 ||z
d 2 __— 7
8k*(p,v) 4k
H —V,erad f, = ——~ M0 77 v
1) = Voarad e = T Y T T R
In particular
8k*(p,v)? 4k

h — =
N (T R R P
for unit vectors v € T,R". From (18.8)(iii) therefore

1 8k 8K || ||
on(w)sec(o) =0~ 3 <_1 T HEP T Tk

i.e. sec(o) = k for every two plane o.

The completeness is obvious for £ = 0. Now suppose k£ < 0. Since the metric
is obviously radially symmetric, it follows that Euclidean rays emanating from the
origin are geodesics (up to parametrization). In order to show completeness, therefor
according to Hopf-Rinow, we only have to show that these curves are infinitely long.

Now
1
VI 2
/\/ﬂ gt
o 14 kt?

diverges. The manifold (U_q,g_1) is called the Poincaré model for the hyperbolic
n-space. Another model, also due to Poincaré, is the upper half space H = {x =
(z1,...,2,) € R* | 2, > 0} with the metric §(z) = —-g(z).

Problem 18.10. Prove 18.2 and conclude that i is independent of the Riemannian
metric at a critical point.

Problem 18.11. Prove 18.6 and 18.7.

Problem 18.12. Prove that a diffeomorphism is conformal if and only if it preserves
angles.

Problem 18.13. If V! and V? are connections in a vector bundle (E,m, M), show
that
T(X,s)=Vks—Vxs
is tensorial in X as well as in s.
Problem 18.14. Complete the proof of 18.8

19. RIEMANNIAN SUBMERSIONS

Numerous manifolds arize naturally as solution sets to equations, i.e. as submani-
folds of other manifolds. We have seen how to compute curvature in such cases. An-
other important class of manifolds are more naturally described as quotient spaces.
This is the case for example for orbit spaces of group actions.



RIEMANNIAN GEOMETRY: A METRIC ENTRANCE 53

The dual concept to isometric immersions, is that of Riemannian submersions. A
submersian 7: F — M between Riemannian manifolds (E, g) and (M, g) is called a
Riemannian submersion if

(19.1) g(meu, mov) = g(u,v)

for all u,v € (Kerm,,)", p € E. Since 7(E) is open we assume w.l.o.g. that 7: E —
M is surjective.

Rather than using g, ¢ we will use the notation ( , ) for both. The tangent space
T, E splits orthogonally as

T,E=E) ® E;
where ] = Ker,, is the tangent space to the fiber 7' (x(p)). E, is called the

vertical space at p and EpL the horizontal space at p. Every vector field Z on F splits
accordingly

_ 7T 1L T T 1L €L
Z=7"+7, Z] €E], Z* € E;

and Z is smooth if and only if Z" and Z+ are smooth. For every smooth vector
field X on M there is a unique smooth horizontal vector field X on F, i.e. X =0,

such that m,(X,) = X(7(p)) for all p € E. X is called the horizontal lift of X (cf.
also 19.7).

Theorem 19.2. The Levi-Civita connections V, V on E, and M respectively are
related by

(VY)* = (VxY)
for all smooth vector fields X, Y on M.
Proof: Again using (12.9) and the properties of 7 (cf. 19.7) we get immediately:
2TLY,2) = X(V,2) + V{2, %) - Z(X,¥)
=X, Z)on+Y(Z, X)on—Z(X,Y)or
+ <Za [X7Y]> om — <X7 [K Z]> o + <Ya [ZaX]> o

=2(VxY,Z)om

— A(VxY, Z)
for all vector fields X, Y and Z on M.

Now note that if T' is a vertical field on F, i.e. m,T = 0, then T is 7-related to
the zero field on M (cf. 19.7), so for any lift X of a vector field X on M we have
T, X] =10, X] =0 (cf. 19.7) and therefore
(19.3) [T,X]* =0
for any vertical T.

Theorem 19.4. For any smooth vector fields X, Y on M,
1

(ViY)' = §[X,Y]T = A(X,Y)

and A defined this way is a tensor.
Proof: By (12.9), (19.3) and T(X,Y) = 0 we get 2(VY,T) = ([X, Y], T), for all
X, Y on M and vertical 7" on E.
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In particular V ¢ X is horizontal. This shows, that geodesics in M lift to horizontal
geodesics in E. Conversely a geodesic in E which is horizontal at one point is
horizontal at all points, and in fact a horizontal lift of a geodesic in M. In short

(19.5) o expﬁjﬁ = expM OT |t -

We are now ready to compare curvature tensors.
Theorem 19.6. For X,Y, Z U smooth vector fields on M we have

0 (ROCY)ZD) = (ROGY)Z0) + (V27 [5,07)
1

%27 7,07 - (K VT 12,077,

(ii) sec(span(X,Y)) = sec(span(X,Y)) + %H[X, Y112,

when X, Y locally form an orthonormal 2-frame field on M.

Proof: (ii) follows directly from (i) which is proved as follows

<R(X, Y)Z, U> om = (<VvaZ, U> - <VyVXZ, U> - <V[X’Y]Z, U)) o

where we have used (19.2), (19.3), (19.4) and of course that V is the Levi-Civita
connection.

Problem 19.7. Let f: M — N be a smooth map. Vector fields X on M and X on
N are said to be f-related provided f.,(X,) = Xy, for all p € M. Show that if X
and X are f-related, Y and Y are f-related, then [X,Y] and [X,Y] are f-related.

Problem 19.8. Let 7: E — M be a submersion of a smooth manifold £ onto a
Riemannian manifold (M, g). Show that (provided E admits any Riemannian metric
then) £ admits a Riemannian metric g such that 7 is a Riemannian submersion.

Problem 19.9. Let 7: E — M be a Riemannian submersion. Show that if F is
complete, so is M. In this case, show that all fibers are diffeomorphic, and in fact
m: E — M is a locally trivial fiber bundle.

Problem 19.10. Let 7: £ — M be a vector bundle with connection V. For U € F
let E- C T,FE be the subset of all tangent vectors at u € E represented by parallel
fields through w. Show that Ej- is a subspace and m,: B} — Ty M is a linear
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isomorphism. Define a Riemannian metric on E so that 7: £ — M is a Riemannian
submersion.

20. LIE GROUPS AND HOMOGENEOUS SPACES

Suppose G is a Lie group (cf. 16.6 and 16.6) with bi-invariant Riemannian metric
(,),1.e. left as well as right translations are isometries (e.g. any compact Lie group
admits such a metric, cf. 20.8 and 20.9).

Theorem 20.1. Inversion .: G — G, g — ¢~
symmetric space.

L is an isometry. Moreover G is a

Proof: Representing tangent vectors by curves we see that
(20.2) ey (U, v) =u+v, u,veE TG
where i: G X G — G is the multiplication. In particular
(20.3) bee(u) = —u, uweTG

and so v, is an isometry. In general t = L,-1 010 R,-1 for any g € G so by (20.3)
Leg: TyG — Ty-1G is an isometry.
Now let Iy = Lyov0 Ly, g € G. Then each I, is an isometry, I, = ¢ and

(20.4) Iy(g) =9,  (g)yg = —ldr,a-

By definition therefore, G is a symmetric space , since at each point there is an
isometry which reverses geodesics through the point.

Now let ¢: J — G be a geodesic with ¢(0) = g, c¢(t1) = g1. The isometry I, o I,
maps c(t) to c¢(2t; + t) whenever t,ty,2t,2t; +t € J. This shows that ¢ can be
extended to R, i.e. G is complete.

A one-parameter subgroup of Lie group G, is a smooth homomorphism ¢ : (R, +) —

G.

Theorem 20.5. The geodesics through e € G coincide with the one-parameter sub-
groups of G. The Levi—Civita connection V 1is given by

() VXY:%[X,Y], X,V eg
(ii) R(X,Y)Z = —i [X,Y],Z], X,Y,Z€g
(i) (R(X,Y)Z,U) = —iqx, Y], [Z,U]), X.Y.ZUcag.

In particular G has nonnegative sectional curvature.

Proof: Let c: R — G be a geodesic with ¢(0) = e. Using the reflexion I.,) we
obtain c(t; — t) = I.uc(ti +t) = c(t1)c(ty +t) 'e(t1) and by induction ¢(mt;) =
c(ty)™ for any ¢t; € R and m € Z. But then

c(g + 2) = c((ps + qr%) - C(é)psm B C(g)c(g)

for all p,q,r,s € Z and hence c(t + s) = c(t)c(s) for all t,s € R. Tt also follows,
that the left translates of the one-parameter subgroup, ¢ are exactly all the integral
curves of the left invariant vector field X € g determined by X(e) = ¢(0). Since
these are all geodesics we get VxX = 0 for any X € g. We get (i) by polarization
and symmetry of V. (ii) and (iii) are now straightforward.
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Before we discuss homogenous spaces, let us consider in general a smooth isometric
action M x H — M of a Lie group H on a Riemannian manifold M, i.e.

M xH — M, p(hihy) = (phi)hs

for all p € M, hy,hy € H. Moreover pe = p for all p € M, and h: M — M,
p — p - his an isometry for all h € H. The action is free if all isotropy subgroups
H,={h € H | h(p) = p} are trivial.

Theorem 20.6. If M x H — M is a free, proper isometric action, then the orbit
space N = M/H admits a structure of a smooth Riemannian manifold such that
w: M — M/H is a Riemannian submersion.

Proof: Fix p € M, consider the map p: H — M, h — ph. This is clearly 1-1
and smooth. Moreover for X, € T, H let X € § be the corresponding left invariant
vector field on H. If ¢ is the integral curve with ¢(0) = e, then h - ¢ represents X,
and hence phc represents p,(Xj). Thus if p.(X,) = 0, then (ph)c(t) represents the
zero vector for all ¢ € R. This, however, would only be possible if phc is constant,
which is impossible since the action is free. This shows that p: H — M is a 1-1
immersion, and hence an embedded submanifold by the assumption on properness.
Now consider the restriction of exp: TM — M to the normal bundle T'(p - H)* of
p-H C M. Clearly (for any submanifold) exp has maximal rank along the zero
section of this normal bundle. Consequently it is a diffeomorphism when restricted
to a suitable neighborhood. In our case, since H acts by isometries we can choose an
€ > 0 such that exp: {n € T(pH)"* | ||n]| < €} — M is an equivariant (i.e. commutes
with action of H) diffeomorphism onto {¢ € M | dist(q,p- H) < €}. Since the action
is free, T(pH)* — pH is a trivial bundle, and hence each orbit in this neighborhood
is represented by a unique point in a fixed normal e-disc at p. It follows that M/H
is a smooth manifold, and in fact 7: M — M/H a locally trivial fiber bundle with
fiber H. Moreover the equivariant metric in the normal bundle to each orbit exhibits
a Riemannian metric on M/H so that 7: M — M/H is a Riemannian submersion.

Now let us consider the special case where G is a Lie group with biinvariant metric,
and H a closed Lie subgroup. N = G/H will denote the space of left cosets of H in
G with the quotient topology of m: G — G/H. Letting H act on the right of G we
obviously get an isometric, proper action whose orbits coincide with the left coset of
H. According to 20.6, therefore G/H admits a structure of a smooth Riemannian
manifold such that 7: G — G/H is a Riemannian submersion. The homogeneous
space G/H with this metric is called a normal homogeneous space . From (20.5)
and (19.6) we compute the sectional curvature of G/H by

(20.7) sec(0) = EH[X,Y]LII2 XL Y],

where o = span(X,Y), X, Y orthonormal in G/H and X, Y horizontal lifts to G.
Note that we only have to compute the curvatures at one point.

Problem 20.8. If G is a compact Lie group there is a biinvariant measure on it
with finite volume. Show by averaging that G has a biinvariant metric.

Problem 20.9. Let G be a Lie group and X € g ~ T,G. The ad X: G — g is the
map Y — [X,Y] and the Killing—Cartan form on g is defined by

H(X,Y) = trace(ad X o ad ).
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Show that ¢ is bilinear, symmetric and biinvariant. When G is semisimple and
compact, then it is negative definite. (G semisimple < ¢ nondegenerate. G compact
& ¢ negative semidefinite.)

Problem 20.10. Show that the Grassman manifold G, of all k-dimensional sub-
spaces in R*™* can be viewed as a normal homogeneous space.

Problem 20.11. Same problem for complex Grassman manifold of complex k-
dimensional subspaces in C"**. For k = 1, this is the complex projective space
CpP™.

Problem 20.12. View CP" as an orbit space S?**!'/S" and conclude that CP" as
positive curvature.

Problem 20.13. Prove (20.2), (20.3) and (20.4).

Problem 20.14. Complete the proof of 20.5.

Problem 20.15. Fill in the missing details in the proof of 20.6.
Problem 20.16. Prove 20.7.
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