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~ Preface

This thesis consists of a summary, an introduction, and eight papers on different topics in
contingent claim pricing. Whereas the summary only briefly describes the contributions
of the papers, the introduction goes in more detail with the topics of the papers and
link their results to the existing literature.

The thesis is written partly in LATEX, Publisher, and Word, reflecting the different
preferences of coauthors and myself. This has unfortunately resulted in different
typographical styles. We kindly ask the reader to bare over with this.

In my opinion, discussions and exchange of ideas is an essential input to good re-
search. I would like to thank the following for excellent comments and discussions:
Leif Andersen, Simon Babbs, Marc Chesney, Bent Jesper Christensen, Peter Ove Chris-
tensen, Michel Crouhy, Anders Damgaard, Darrell Duffie, Bernard Dumas, Pierre Collin
Dufresne, Raul Espejel, Brian Fuglsbjerg, Bob Goldstein, Barbara Gruenewald, Asb-
jom Hansen, Hua He, David Heath, Peter Honore, Farshid Jamshidian, Bjarke Jensen,
Peter Lgchte Jgrgensen, Bill Keirstead, David Lando, Hayne Leland, 2xJesper Lund,
Terry Marsh, Stewart Mayhew, Kristian Miltersen, Rolf Poulsen, Mark Rubinstein, Wei
Shi, Erik Schloegl, Eduardo Schwartz, Klaus Toft, Jgrgen Warncke, and particularly my
advisor Jgrgen Aase Nielsen.



‘Summary

This thesis consists of an introdlilction and eight papers on different topics in contingent
claim pricing. The papers are:

1. “The Pricing of Discretely ‘Sampled Asian and Lookback Options: A Change of

Numeraire Approach”.

2. “The Passport Option”, with Leif Andersen and Rupert Brotherton-Ratcliffe, Gen-
eral Re Financial Products, New York.

3. “American Option Pricing in the Jump-Diffusion Model”, with Barbara Gruenewald,
Johannes Gutenberg University of Mainz, Germany.

4. “Implied Modelling: Stable Implementation, Hedging, and Duality”.

5. “New Skin for the Old Ceremony: Eight Different Derivations of the Black-
Scholes Formula”, with Bjarke Jensen and Rolf Poulsen, Department of Operations
Research, University of Aarhus.

6. “An Arbitrage Term Structure Model of Interest Rates with Stochastic Volatility”,
with Pierre Collin Dufresne, HEC, Paris, and Wei Shi, Salomon Brothers, Tokyo..

7. “Pricing by Arbitrage in An International Economy™.

8. “A Gaussian Exchange Rate and Term Structure Model”.

Below we summarize the results and the content of these papers.

1. It is demonstrated that within the Black and Scholes (1973) model it is possible to
reduce a number of discretely sampled Asian and lookback option pricing problems to
problems of dimension one. The options considered are Asians and lookback options
with fixed and floating strike prices. The main idea is to use the stock as numeraire for
the martingale measure instead of the bank-account. Doing so we obtain that the stock
price deflated option prices are functions of current time and position of a single one-
dimensional Markov process. Due to the discrete sampling this process is discontinuous
at the sampling dates, but continuous between the sampling points. This means that the
option pricing problem can be solved by numerically solving a sequence, in the time
domain, of standard partial differential equations (PDEs), where the first PDE generates
the terminal boundary conditions of the second, which generates the boundary conditions
of third, and so on. We use a Crank-Nicholson scheme to numerically solve this system
of PDEs and by examples we demonstrate that this technique, in terms of speed and
accuracy, is superior to Monte Carlo methods. We also illustrate that continuous versus
discrete sampling can have substantial effects on the resulting option prices. Finally we

. show that the technique extends to the case when the underlying stock exhibits jumps

and we illustrate the effect of jumps on Asian and lookback option prices.

2. The passport option is an [OTC traded contract that grants its holder the right
to continuously switch between short and long positions in the underlying stock. If
positive, the accumulated gain is paid to the holder at the maturity of the option. In the
framework of Black and Scholes (1973), it is shown that the option pricing problem can
be solved as a stochastic control problem with one state variable. We derive the optimal



switching strategy and a partial differential equation for the stock price deflated option
priée. A closed-form solution is|presented for the special case when the underlying 1s a
martingale under the risk-neutrall probability measure. For the general case we present
an implicit finite difference scheme for the numerical solution. Various extensions of the
basic passport option are considered, including American exercise features and discrete
rather than continuous switching rights. We illustrate several features of the passport
option by numerical examples.‘

3. The paper considers the pricing of American options when the underlying stock
exhibits discontinuous returns. Our model of the stock is a “risk-neutralized” version
of the jump-diffusion model of Merton (1976), where jumps are triggered by a Poisson
process and the sizes of the jumps are displaced lognormal distributed. The paper
presenté three new results for the American option pricing problem in this modelling
framework. First, it is shown that if the parameters of the model are constant over time
then the American option prices satisfy a forward partial integro differential equation in
maturity date and strike price. This implies that risk-adjusted parameters of the model
can be inferred directly from observed option prices. Second, it is well-known that
in the Black and Scholes (1973) model, the early exercise boundary of the American
options might exhibit a discontinuity at expiration of the option. In the paper it is shown
that this discontinuity is larger for the jump-model and the size of the discontinuity is
quantified. By numerical examples it is illustrated that the difference to the Black-
Scholes case can be quite -large. Third, the paper gives closed form solutions for the
perpetual option prices when the underlying exhibits constant jumps. A final section of
the paper compares different numerical procedures for calculation of American option
prices in a jump-diffusion economy.

4. Under the assumption that the underlying stock evolves according to a continuous
Markov process, European call option prices satisfy a forward partial differential
equation (PDE), where the variables are maturity date and strike price, whereas current
time and spot are fixed. In the paper it is shown that the “Greeks” of European option,
i.e. the option prices’ partial derivatives with respect to the spot price, time, etc., also
satisfy forward PDEs. This means that given a surface of local volatilities in time
and spot, we are able to solve for the “Greeks” of European options of all strikes and
maturities by simultaneously solving a small number of PDEs numerically. If the local
volatility surface is inferred from observed option prices, the resulting “Greeks” will
be “implied” by the option prices themselves. The forward equations also imply an
interesting duality, namely that the European option pricing problem can be solved
in a “dual” economy where time is reversed, the role of the spot and the strike are
interchanged, etc.

We derive a closed form relation between implied Black-Scholes volatilities and local
volatilities and use this relation| to back out the local volatility surface from a set of
observed S&P 500 index option|bid/ask prices. We then numerically solve the forward
equations to identify the Greeks of the input options. This is done using an implicit finite
difference method that insures stability even though the model has to fit option “smiles”



of several different maturities. The example illustrates that the implied “Greeks” might
differ substantially from those ?f the Black-Scholes model.

5. The paper surveys eight #ifferent derivations of the Black and Scholes (1973)
European option pricing formula. From pure arbitrage reasoning we have six different
derivations: }

i. The classical hedge argument leads to the fundamental partial differential equation
for option prices, that is solved by pure non-probabilistic techniques.

ii. The martingale approach where we derive the Black-Scholes formula as a risk-
adjusted expectation.

iii. The change of numeraire technique that enables us to solve for the option price’
without calculating a single integral.

1v. A stop-loss start-gain stratégy replicrates the option, but this strategy is not self-
financing and the value of the required external financing is shown to equal the
Black-Scholes price minus the initial price of the stop-loss start-gain strategy.

v. The European option price also solves a forward partial differential equation. This
leads to a duality of the option pricing problem.

vi. Introducing the change of numeraire approach in the standard binomial model leads
to a very short proof that the European option price of the binomial model converges
to the Black-Scholes value.

The last two derivations put ‘the Black-Scholes formula in an equilibrium context. The
Black-Scholes formula is shown to be consistent with:

vil. The continuous-time capital asset pricing model.

viii. A single period representative investor economy, where the representative investor
has constant relative risk-aversion and is endowed with lognormal distributed
terminal wealth.

6. The paper presents an arbitrage based continuous-time model of the term structure of
interest rates with “true” stochastﬁc volatility in the sense that the volatilities of the bonds
do not exhibit a one-to-one correspondence with the shape and the level of the yield
curve. Most existing “stochasti¢ volatility” term structure models have the drawback
that a change in volatility is immediately reflected in the shape or the level of the yield
curve. The model has two random factors, represented by two Brownian motions. The
level of the yield curve is only directly affected by the first Brownian motion whereas
the volatility is driven by both Brownian motions. Using the methodology of Heath,
Jarrow, and Morton (1992), risk-adjusted dynamics of both factors are derived in a
preference-free way. In order to.do so we assume the existence of futures contracts on
the volatility of the bonds in addition to the existence of a full continuum of initially
observed zero-coupon bonds. A hedging argument shows that the volatility futures
contracts can be replicated by a Ltatic trading strategy in yield futures contracts. Given
the initial yield curve and the volatility futures prices, the model is fully specified by
defining the volatility structure of the volatility futures contracts. The paper provides
a simple specification of this volatility structure that only requires the estimation of



approximation of the model is presented. We illustrate convergence, speed, and accuracy
of this approximation by numerical examples and we analyze the effect of stochastic
volatility on bond option prices.

7. In the paper we consider a general international multicurrency economy. Under
the assumption of dynamic _corppleteness and absence of arbitrage, we formalize the
relationship between change of| numeraire, exchange rates, and change of martingale
measure. We show that knowledge of the nominal risk-premia of two currencies to a
large extend enables us to fix the stochastic evolution of the exchange rate between the
two economies. We demonstrate that use of the implicit change of numeraire induced
by the exchange rates can reduce the complexity of the calculation of currency options
and futures prices.

8. The paper presents a tractable model for the valuation of contingent claims on the term
structures of two currencies and the associated exchange rate. The modelling framework
is a deterministic version of the general Heath, Jarrow, and Morton (1992) framework
that takes the initial yield curves as direct input. In this modelling framework we show
that hedge portfolios of Européan style claims based on the underlying instruments
can be identified by an integral representation. Further, we illustrate that closed-form
solutions can be obtained for a general class of cross-currency derivatives and we
identify a class of deterministic volatility structures that imply Markov representation
by a three-dimensional Gaussian process. For this class of volatility structures all
types of European style contingent claim prices and hedge ratios can be obtained by
numerical integration in maximum three dimensions. “



Introduction

Though the general theory of contingent claim pricing applies to contingent claims on
all traded assets it is common to treat term structure derivatives separately because
arbitrage consistent modelling of the random behavior of the term structure of interest
rates is a great deal more complicated than the stochastic modelling of shares of equity,
commodities, and foreign exchange. We follow this praxis and divide the introduction
into two main sections, one for “stock” options and one for term structure contingent
claims. Each of these sections|contain subsections for the different topics considered
in the papers. But first, we brieﬁy describe the general assumptions, style, and notation
of the thesis.

Assumptions, Style, and Notation
We consider stylized financial markets where there are

i. No frictions: No taxes, transactions costs, or short-selling constraints, perfectly
divisible assets and continuous trading is possible.

ii. Price taking behavior: Trading decisions do not influence the market prices.

ii. Absence of arbitrage.

The assumptions might not seem reasonable from the perspective of each and every
individual investor but they might be a good approximation for how financial markets
work on an aggregate level. If we suppose that a market contains a large number of
equally taxed investors with negligeable transactions cost and the ability to trade in such
volume that the issue of divisibility can be ignored, then it is likely that these investors
will drive the market prices towards a competitive equilibrium where the market prices
will be as if we were in a situation of no market imperfections. Absence of arbitrage is
a necessary condition for the existence of a “no-frictions” equilibrium and is therefore
a natural “minimal” requirement for a model of the market.

In most research on contingent ¢laim pricing and in most of our work the perfect market
assumptions are combined with the assumption that asset prices evolve continuously.
This lead to the celebrated result of Black and Scholes (1973), that we can construct a
self-financing portfolio of marketed assets which replicates the pay-off of the considered -
contingent claim and hence if there are no arbitrage opportunities, the value of the
claim must equal the initial cost of the replicating portfolio. This is both good and bad
news for the contingent claims analysis. On one hand it means that contingent claim
pricing is relative rather than absolute. That is, given a model of random evolution of
the underlying asset evolution the contingent claim prices can be determined from the
prices of the underlying assets observed in the market and we do not need to specify the
expected return or the preferences of the investors in order to come up with the price of
the considered claim. On the other hand, the result also means that contingent claims are
redundant securities that are alrf:ady spanned by the market of underlying assets. This
gives rise to the natural question: Why do investors trade derivatives? The justification
could be that many investors face significant transaction costs and other imperfections



hmmng their market access. Such agents have natural incentives to engage in contracts
with investors with access to hedge the contracts in the market. This is typically what
we observe in derivatives markets: Investors engage in OTC contracts with investment
banks that use a combination of marketed options and dynamic trading to hedge their
portfolio of derivatives.

Concerning style, we will in general work under the paradigm of “sufficient mathe-
matical regularity”. We are for example going to assume the existence of martingale
measures instead of imposing mathematical conditions on the allowed trading strate-
gies in order to guarantee that 4bsence of arbitrage imply their existence. Likewise, if
we differentiate something we are implicitly assuming that this “something” is appro-
priately differentiable and if we integrate something we are gomg to assume that this
“something” is appropriately integrable.
Since pricing and hedging are the main objects of our papers we will generally specify
the models directly under a martingale measure.
The notation varies a little from paper to paper. In general our time axis is the
nonnegative part of the real line. Claims are issued at time 0 and mature at time
T > 0 and current time is ¢t € [0,T].

We generally use the term “a stock” as a common term for a share of equity, a foreign
exchange rate, or a commodity. The time ¢ price of a stock is S(t). The stock
is generally assumed to be paying a continuous “dividend yield” of ¢(t), with the
interpretation that the dividend yield of a currency is the foreign interest rate and for
a commodity ¢ represents minus the net convenience yield. We let B(t) be the value
of a bank-account that continuously accumulates the spot interest rate r(t). We will
let Q denote the martingale measure with the bank account as numeraire and Q' the
martingale measure with the stock price as numeraire.

For term structure models we let P(¢t,T) be the time ¢ price of a zero-coupon bond
maturing a time 7" and f(¢,7) be the time ¢ instantaneous forward rate for deposit at
time 7. Q is again the martingale measure with the bank account as numeraire and oT
is the martingale measure with the time 7' maturity zero-coupon bond as numeraire.



Stock Options

This section is divided into six subsections. The first three subsections are based on the
papers “The Pricing of Discretely Sampled Asian and Lookback Options: A Change
of Numeraire Approach” and “The Passport Option” and consider the pricing of Asian
and lookback options and a new over-the-counter (OTC) traded contract termed “the
passport option”. The modelling framework is here the standard Black-Scholes model
“where the stock and the bank-account evolve according to the stochastic differential
equations (SDEs)

ds(t)
S = (- 9dt+edW ()
= (r—q+0%)dt + odW'(t) (1)
dB(t) _
B

where 7, ¢ are constant, ¢ is the constant volatility, and W, W’ are Brownian motions
under Q, Q' respectively.

Next, a subsection discusses the pricing of exotic and American options when the
underlying exhibits jumps. This subsection is partly based on the paper “The Pricing of
Discretely Sampled Asian and Lookback Options: A Change of Numeraire Approach”
and partly on “American Option Pricing in the Jump-Diffusion Model”.

The following subsection treats another alternative to the Black-Scholes model: The
“implied” modelling approach, where observed option prices are used to fix a diffusion
model. This subsection is based on the paper “Implied Modelling: Stable Implemen-
tation, Hedging, and Duality”.

The section on stock options is concluded by a subsection on the survey paper “New
Skin for the Old Ceremony: Eight Different Derivations of the Black-Scholes Formula”.

Asian Options

Asian options is a general term for options on the arithmetic average of the underlying
stock over a subperiod of the life of the option. In the Black-Scholes framework
there are no simple closed-form solutions for such contracts.! Various transforms
and approximations of Asian option prices have been described in the literature, see
for example Geman and Yor (1993) and Rogers and Shi (1995). However, these
expressions are all derived under the assumption that the arithmetic average is sampled
over continuous intervals, and this might be a poor approximation of the actually traded
options. In the paper “The Pricing of Discretely Sampled Asian and Lookback Options:
A Change of Numeraire Approach”, we consider efficient numerical methods for the
pricing of options depending on, the discretely sampled arithmetic averages. The main
trick applied in the paper is a change of numeraire technique that enables us to describe
the problems as solutions to simple one-dimensional Markov problems. The change

! By the term “simple closed-form” we here mean expressions that are not written in terms of infinite sums and integrals over
non-standard functions.



of numeraire technique is to ouF knowledge first applied to Asian options by Ingersoll
(1987). But Ingersoll only considers Asian options with floating strike (often termed “the
average strike option”) and only in the case when the average is sampled continuously.
We will now describe the technique under discrete sampling of the underlying.

The fixed strike Asian option on a discretely sampled average has the terminal pay-off

1o "
(; ; S(t:) — K) ©)

where 0 < t; < ... < t, < T are the sampling points and A  is a constant.
In a standard Black-Scholes framework the fair price is given by

n +
A e 1 )
F(t) =E2|e (Tt (H E_;S(tﬁ—h) (3)

At a first glance this seems to be a rather complicated problem to solve numerically,
because a Markov representation under © would involve two state variables: the current
stock price and the current average. But the pricing can also be performed using the
martingale measure with the stock price as numeraire:

n +
LY St) - K
— Q' | —q(T-t) i=1
F(t)=S(t)EF |e™? 5T 4)
Define
= 3> S(t:)— A
1t <t
m(t) = max {i:¢; <t}
Using Ito’s lemma we find that?
dz(t) = —(r — )z(t—)dt — oz(t—)dW'(£) + %dm(t) 7

where W’ is a standard Brownian motion under Q'. The SDE for z reveals that z is a
Markov process under ', and we may write F(t)/S(t) = f(t,z(t)). Using that e~ % f
is a Q'-martingale, applying Ito expansion and the martingale representation theorem
lead to a system of PDEs. Specifically, on ¢t ¢ {t1,...,tn}, f solves the PDE

of = fi~ (= afe + 50% fus ®

2 By the notation z(t—) and z(t+) we mean

z(t—) = lim z(t — |¢{)
e—0 (6)
z(t+) = Eh_% z(t + |e})



.....

flti—z) = f(ti"‘-, T+ %)
f(T,z) =2z2%

)

This system can be solved numerically by backward recursion, where the first PDE gen-
erates the boundary conditions for the second, which generates the boundary conditions
for the third and so on.

In the paper we speed up the procedure by noting that x can only cross the level
x = 0 at the observation points, {t;} and that the expectation of = can be computed in
closed form. Numerically we apply the implicit Crank-Nicholson scheme for the actual
solution. We prefer the implicit' schemes for stability and the Crank-Nicholson version
because of its second order accuracy in the time domain.’

The floating strike Asian has the terminal pay-off

1 T |
— S(t;) —aS(T 10
(n ; (t:) — oS ( )) (10)
where « is a constant. Again we apply the change of numeraire technique and consider

Z; S(t:)

1t <t

()= S0 11
x(t) 50 (11)
Using Ito’s lemma yields

dz(t) = —(r — @)z(t—)dt — oz(t=)dW'(t) + dm(t) ,t>t

12
I(t1)=1 ( )

which again is a Markov process. We get that the stock price deflated option price
satisfies the same set of PDE as the deflated fixed strike Asian option price, but this
time subject to the boundary conditions

flti—, z) = f(ti+,x+1)
+
f(T,I)=<%x—a) (13)

In this case we can also treat American style features by introducing the free-boundary
condition

f(t,7) > (ﬁx - a) ' (14)

The numerical solution method is essentially the same as for the fixed strike Asian
option.

3 For the properties of finite difference methods, see for example Mitchell and Griffiths (1930).
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For both of the Asian options, hedge ratios can be identified on the (¢,x) grid by use
of the tact that the hedge ratios are given by

F(t,x(t)) — () f2 (8, 2(1)) (15)

In the paper we compare this solution technique to Monte-Carlo solutions, and find that
this method is about 100-1000 times faster than Monte-Carlo for the same accuracy,
even though the Monte Carlo method is speeded up by use of a rather sophisticated
control variate technique. We also illustrate that discrete rather than continuous sampling
actually has effects on the resulting option prices. For realistic parameters, going from
continuous to monthly sampling has an effect of roughly 5 per cent for options with
one year to maturity.

Lookback Options

“Lookback options” is a common term for contingent claims depending on extrema of
the underlying. Lookback options were first analyzed in Gatto, Goldman, and Sosin
(1979), and Goldman, Sosin, and Shepp (1979). In a Black-Scholes setting these papers
present closed form solutions for a couple of types of lookback options. Conze and
Viswanathan (1991) derive closed form solutions for several more types of lookback
options and Shepp and Shirayev (1993) derive a closed form solution for a special
type of perpetual American style lookback option, termed the Russian option. All of
this work is based on the assumption that the maximum is taken over a continuum of
sampling points.

Babbs (1992) utilizes the change of numeraire approach to device a simple binomial
scheme for the numerical evaluation of the standard (floating strike) lookback option.
Babbs considers the discrete sampling case and illustrates that continuous versus discrete
sampling may have a dramatic effect on lookback option prices. In the paper “The
Pricing of Discretely Sampled Asian and Lookback Options: A Change of Numeraire
Approach” we show how the change of numeraire technique can be applied to establish
an efficient numerical valuation technique of fixed strike lookback options (also termed
options on extrema) under discrete sampling. The technique of Babbs does not
immediately apply to this case, instead we transform the option pricing problem into a
barrier option problem and solve!the pricing problem in two steps. Below we summarize
how this is done.

The fixed strike lookback option promises the holder the terminal pay-off
(1)~ K)™ (16)

where
S(t) = max S(¢; ) a7

2:1; <t

and 0 < t; < ... < t, £ T are the sampling dates.
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Suppose the current maximum'is greater or equal to the strike of the option, i.e.
S(t) > K. We can now evaludte the option by*

F(t) = EQ [e""(T‘t)(S(T) _ K)J“]
= EQ [‘e—r(T—t)g(T)} (T

- (18)
o' |- S| _ -ty
_S(t)F) [ t (T)] e 2
= S(t)!f(t) — e T
Define
z(t) = S(t)/S(¢) (19)
Applying Ito’s lemma yields
dz(t) = —(r — Q)z(t=)dt — ox(t=)dW'(t) + (1 — z(t=))Tdm(t) ,t>t 20)

.L‘(tl) =1

where m(-) is the sampling date counter.
We see that z is a Markov process and thereby that f = f(t,z(¢)). Further we see
that for ¢t € {t1,...,tn}, f solves

qf:ft—('r_Q)xfz+ ~ xzf:cx (21)

subject to the boundary conditions

) — f(ti-l—,;l') -1:2].
-y = { Jme) o2 -

F(T2) =

This solves the problem for S(¢) > K. For the case S(t) < K, we define the first
passage time among the sampling points to the level K by

ri=1inf {t; : S(t;) > K} (23)

with the natural convention inf Q = 00. Doing so we have that we can write®
F(t) = B2 [0 S(r) 1 (r,2(r) = e TV P cr

(24)

= B2 [ 5(n)f(r,1) — T IK 1, <r|

We see that this is a Markov problem, this time in S, and that we can identify F' as
the solution to the (standard) PDE

| 1
rF = F‘t +(r —q)SFs + 50252F55 (25)

4 Note that time ¢ information now includes!the event {S(t) > K'}.
5 We let 1,4 denote the indicator function on the set A.
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ont ¢ {t1,...,tn}, subject to'the boundary conditions

| [ F(t;+,5) S <K
Fltim 5) = {Sf(ti, 1)—e"THK  S>K (26)
F(tp,+,8) =0

So numerically solving for the price of the lookback option with fixed strike is a two step
procedure. First, we numerically solve for the function f on a (¢, x)-grid. We then solve
for the actual price on a grid in (¢, S) using the numerical solution for {f(t;,1)},=; _ .-
Hedge ratios are natural by-products of the second grid.

The numerical accuracy of this scheme turns out to be a little lower than for the Asian
options. This is probably due to the fact that the numerical solution here involves a
two-step procedure that accumulates numerical errors. But the solution technique is
still much faster than Monte Carlo methods for the same precision. Our numerical
results confirm the results by Babbs (1992) that discrete versus continuous sampling
has dramatic effects on lookback option prices. Under realistic parameter assumptions,
going from daily to continuous sampling increases option prices by roughly 8 per cent
for option with one year to maturity.

Options with pay-offs of the type
(3(T) - aS(T)) " 27

can be treated more directly. In fact, all one has to do is to replace the terminal
boundary condition in (22) by

fT,z)=(x—a)" (28)

then the price of the option is given by F(t) = S(t)f(¢,z(t)). If we want to consider
this type of option with an American exercise feature we just have to add the free-
boundary condition

ft,z) > (z—a)" (29)

The Passport Option

A passport option is an OTC traded contract that grants its holder to repeatedly switch
between short and long positions in an underlying asset. The gains on the stream of
short/long positions are accumulated and, if positive, paid to the holder at maturity of
the option. Holding a long (short) position over the whole life of the option makes the
passport option equivalent to an at-the-money European call (put) option. The price of
the passport option is thus bounded from below by the maximum of the call and the
put option prices, and we might view the passport option as a contract that entitles the
owner to continuously switch between a call and a put option.

The paper “The Passport Option” is to our knowledge the first theoretical treatment of
the pricing of this contract.

13



The passport option pay-off can be represented by
T +

| / (w)dS(w) (30)

0

where {7(u)}o<, < 1S an adapted strategy chosen by the holder with the property that
m(u) € [-1, +1] for all u, assumed sufficiently regular to admit the above stochastic
integral to have weak solutions.

At a first glance it seems that solving the pricing problem involves a stochastic control
problem of two dimensions: the stochastic integral and the stock price. But, as we saw
in the previous section, problems of this type are often easier to handle after a change
of numeraire. Define

[ w(w)ds ()
x(t) = OT (31)
In the Black-Scholes economy we have that
dz(t) = (x(t) — z(t))((r — q)dt + cdW'(2)) (32)

We can now formulate the option pricing problem as a stochastic control problem:

F(t)=S(t) sup E?’[e-ﬂT—%(Tﬁ]
{W(“)}ue[t,q‘]
subject to

dzx(u) = (w(u) — x(u)) [(r —q)du + ordI‘V’(u)} ,u >t

Following @ksendahl (1995), the structure of the SDE for x implies that we can restrict
the search for optimal strategies to strategies with 7 = 7 (¢, z(¢)), hence we have that
f = F/S = f(t.x(t)). Further, the optimal strategy solves the Bellman equation

(33)

0 = max {—qf + fe+(r—g)(m —x)fe + %0’2(% - x)szz} (34)

This is a second order polynomial in 7, and the convexity of. f (which is shown in the
paper) implies that the optimal strategy is given by

m* =sign((r — q)fz — 072 fzz) (35)

Hence, we get an optimal control of the “bang-bang” type.
Plugging this back into the Bellman equation yields the non-linear PDE

af =ft - (T - Q)xfd: + %(1 +x2)fa:a: + !(T —q)fz — O-QCEfsz (36)

with boundary condition

f(T,z)=2" (37)
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Application of Ito’s lemma img‘lies that the replicating portfolio is given by
\
-2 f: (38)

number of stocks and the rema:ining amount
=S(m —x)fs (39)

on the bank-account. So even though f is a smooth function the replicating portfolio
will have discontinuous weights in the stock and the bank-account and the option will
have infinite “gamma” when the strategy changes.

In the special case r = g, it is possible to come up with a closed form solution. The
optimal strategy reduces to®

7* = —sign(z) (40)
and the PDE becomes linear:
L, 2

af = fi+ 507 (1 + |z])" fez (41)
Note that the strategy m = —sign(x) is the strategy that maximizes the local volatility
of z.
The solution to the PDE is’®

) T
Flt,z) = e 1T g% L (2(t) — (1+ |x|)<I>(:( ) —oVT —t /<I> z(s))d
t

:(5) — :_ln_(lﬂ + EU\/T— s

oVT —s 2
(42)
In the above formula the first three terms under the bracket represent the maximum of
holding either 7 = —1 or # = 1 for the remaining of the life of the option. The last

term, the time integral, represents the value of the right to switch strategy at future dates.

In the paper we describe two implicit finite difference schemes for the numerical solution
of the passport option price in the general case r # ¢q. The first scheme is constructed
to price passport options where the strategy can be changed continuously, whereas
the second scheme is designed tto price passport options with only a discrete number
of switching dates. Both schemes can also be used to price passport options with
American or Bermudan exercise features.?

6 We let sign(z) = 1.0 — 1:<o. .
7 $(-) is the distribution function for a stan ard normal random variable.

8 Even though the formula involves non-dlfferentlable functions, f is in fact at least twice continuous differentiable in z. This
is shown in the paper.
i As an alternative to the implicit schemes Jamshidian (1997) suggests numerical integration to price the passport option.
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Our numerical examples show several interesting features of the passport option, among
those:

i.  Depending on the drift of the underlying asset, the optimal strategy will change at
either zero, one or two levels of x. This behavior can be described by

—sign(z — x4(t)) r<gq
Tt x) = 1 =21 (y<a<ar(t) T >4 (43)
1 , T > q

where z.(t) < z*(t) are two curves, depending on the parameters, but decreasing
(increasing) in t for 7 > ¢ (r < q).

ii. The discrete passport option prices converge rapidly to the continuous passport
option prices when the number of switching dates is increased.

iii. When an American exercise feature is added to the basic passport option and the
drift of the underlying is positive, the early exercise boundary cuts through both
the upper long region and the short region.

Discontinuous Returns of the Underlying Stock

The papers “The Pricing of Discretely Observed Asian and Lookback Options: A
Change of Numeraire Approach” and “American Option Pricing in the Jump Diffusion
Model” treat different aspects of contingent claim pricing when the underlying stock
exhibits discontinuous dynamics.

When the underlying asset exhibits discontinuous returns the economy consisting of
the risky stock and the money market account is no longer dynamically complete,
which means that we can no longer replicate any pay-off measurable with respect to
the filtration generated by the stock by a self-financing trading strategy. This has two
effects:

1. The martingale measure with the bank-account as numeraire is no longer unique.
ii. The introduction of derivativ;e securities might change the stock price and the interest
rate.

(i.) implies that the price of a derivative security becomes non-unique and relative to
what martingale measure is chosen. (ii.) is a far more serious problem to the option
pricing issue; introducing new contingent claims can change the existing equilibrium
and thereby the market prices of the underlying.

These two problems are circumvented in our papers by introducing two assumptions.
First, we simply fix a martingale% measure with the bank-account as numeraire and use
this measure as our pricing functional. In fact, we only specify the asset price dynamics
under the equivalent martingale measure and do not describe the asset dynamics under
the original measure. Second, we assume that the existing market price of the stock and
the interest rate are unaffected by the introduction of the considered derivative securities.
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Specifically we assume that under the martingale measure with the bank-account as
numeraire, ¢, the stock evolves according to the SDE

;Z(j)) = (r — ¢ — k\)dt + adW (t) + I(t)dN(2) @

where
IV is a standard Brownian motion.
:V is a Poisson process with constant intensity A.

{1(t)};> is a sequence of independent and identically distributed random variables.
Their distribution 1s given by

1.
I (1+1(1) N(v - 55 52> (45)
for all t.
k is the mean jump in the instantaneous return
k=EQ[I(t) =e"—1 (46)

The processes W, I, N are assumed independent.

We thus have a model where the stock price exhibits random proportional jumps
triggered by a constant intensity Poisson process. Between jumps the stock price evolves
continuously according to a geometric Brownian motion.

The interest rate and the dividend yield, 7, ¢, are assumed to be strictly positive.!® The
bank-account is as usual given by

B(t) =e™ 47

This is in essence a “risk-neutral” version of the Merton (1976) model. Merton starts
under the original measure and assumes that the jump-risk is non-systematic. Doing
so, Merton is able to fix a martingale measure and obtains a closed form formula
for European call options on the stock. Amin (1993) and Bates (1991) also start
under the original measure and use an argumentation based on a representative investor
equilibrium to fix a martingale measure. However, only the risk-adjusted dynamics
affect derivative prices. This is the reason why we do not specify the relation between
the original and the risk-adjusted probability measures.

Once the martingale measure with the bank account as numeraire, Q, is fixed so is the
martingale measure with the stock as numeraire, @', and under Q' the stock evolves
according to

= (r — g — kA + 02)dt + odW'(t) + I'(t)dN'(t) (48)

where

{W'(t) = W(t) — ot};> is a standard Brownian.

0 The strict positivity is essential because we are going to consider American call options, and these options will not be
exercised prematurely in case of no dividends.
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AN'(t)};>0 is a Poisson pro;cess with intensity
N=XM1+k) (49)

{I'(t)},>0 is a sequence of independent random variables with distribution
1.,
n(1+1) 5 N(v + 58 63) (50)

for all ¢
The processes W/, N, I’ are independent.

The paper “American Option Pricing in the Jump-Diffusion Model” presents three new
results on the American option pricing problem in this type of setting:

i. Let C(T,K) be the initial time O price of an American call option with strike K
and expiration date T'. Then the surface of these prices can be found as the solution
to the partial integro differential equation (PIDE)!!

: 1 -
(¢+N)C=~Cr — (r — g = kNKCg + 50°K*Cxx

+00
. (51)
+ X / C(T, 1{6—7—52/”5:)@(3)(1:
on
{({T,K): C(T,K) > 5(0) — K’} (52)
subject to the free-boundary
C(T,K) > (5(0)— K)* (53)

and the initial boundary condition
C(0,K) = (S(0)— K)" (54)
ii. Let Sg be the solution to the implicit equation

o KT+/\(1 _ (I)<ln(Sg{SK)+7 _ %5))
D x (- o (RN 1))

when time tends to expiration of the option the limit of early exercise boundary for
an American call option is given by

(35)

max (K, Sg) (56)

11 ¢(-) is the standard normal density function.
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iii,_If the jumps are constant, ie. 6 =0, and the jumps are positiVe (7 > 0) then the
early exercise boundary of a perpetual call option is given by

x m =AU n > 7 -~
1 _.rfe%rv Z e (\v) @((T—q—/\/\)l+n! _ %a\/ﬁ)dv

- = Vv
S =K — (57)
—qv T e O)” (r—q—kX)v+n~ 1
1—gq [e - o + 50V |dv
of 2:20 ! ) ( Vv 2 )
and the price is given by
T e ()"
C(t) =q¢S(t) / e 1Y Z n—'@(dn(v, S(t), S%.))dv
0 n=0 )
< 0 v n
ok [y St i s(0), 52 - oVl Y
0 n=0 ’
In(z/y)+{r—g—EkMNu+n
Oz, y) = 2P+ 0\/15 Ju + ny

If the jumps are constant and negative the early exercise boundary of the perpetual
call option is given by!?

154
Sy =K——— 59
where 3 is the positive solution to the equation
1, . 1 .
0=A1+k)’+ 50—2,82 + ('r —g—kX— 502)3 —(r+X) (60)
and the price is given by
S, —K :
C(t) = 22— 5(1)° (61)
(55%)

The first result (i.) has some interesting applications. First, given parameters it is
possible to generate a double continuum of American option prices by only solving
one partial integro differential equation numerically. Second, if a surface of American
option prices in the time-to-maturity and strike dimensions can be interpolated from a
set of discrete market option pric}es then it is possible to directly infer the risk-adjusted
parameters for this type of model‘. Unfortunately, this forward relationship is only valid
if parameters are independent of time. So the forward equation can not be used to
specify a model that exactly fits jany surface of American option prices.

Using the put-call parity it is dluite easy to verify that the limit, as time tends to
expiration, of a early exercise béundary for an American call option has to be greater
or equal to |

K max (1,7/q) (62)

12 In the paper we show that this equation has only one positive root and this root is strictly bigger than one.
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in_any model. To our knowledge van Moerbeke (1976) is the first to show that this is
the exact limit in the Black-Scholes model. Our result (ii.) quantifies the limit of the
early exercise boundary at expiration for the jump-model. In the paper we use numerical
examples to demonstrate that thjs limit can be quite a lot bigger than it is the case for
the Black-Scholes model. In fact, when r < ¢ and there is no discontinuity of the
early exercise boundary at expiration for the Black-Scholes model, the early exercise
boundary for the jump model might exhibit a quite large discontinuity at expiration of the
option. The intuition behind this| is that the jump component in the stock price implies
that the uncertainty of the terminal pay-off does not vanish as time tends to expiration
of the option. The result also illustrates that one should be careful about approximating
the early exercise boundary of American options by the one of the Black-Scholes in
the presence of jump risk.

The third result gives the prices of perpetual options under jump risk. These results can
be generalized to the case of random sized, but uniformly signed, jumps. The second
result (the negative jump case), fis also found by Chesney (1995), that uses the result
to device a numerical approximation for the American option. Another application of
these results would be optimal capital structure problems in corporate finance where the
firm value process is discontinuous due to technological innovations.

The last section of the paper considers numerical methods for the pricing of American
options under jump risk. We derive a general finite difference grid that covers both the
explicit scheme, used by Amin (1993) as well as implicit schemes. The implicit schemes
are preferable because of their precision and stability properties. For the constant jump
case we consider two alternative numerical procedures and their accuracy.

The paper “The Pricing of Discretely Observed Asian and Lookback Options: A Change
of Numeraire Approach” shows that the change of numeraire approach can also be
applied to reduce the complexity|of Asian and lookback option pricing problems in the
case of discontinuous dynamics of the underlying stock. As an example let us consider
the discretely sampled Asian opti‘on considered in a previous section. As before define

% > S(t) - K

x(t) = ’”“Sts( 5 (63)

With the discontinuous dynamics that we have assumed in this section we have that
z evolves according to

dz(t) = —(r =+ ¢ — kN)z(t—)dt — ox(t—)dW'(t)

BT

. 1
oV O+ ydn®

where m(-) is the sampling point counter.
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We see that x 1s again a Markov process under Q. This implies that if we set f = F/S,
then fis the solution to the PIDE

(44 N)f = fi = (r = g = KN)afe + 50%0 fen
+o0 . (65)
+ X / f(t,;re_"’*é_/”&)qb(z)dz

—o0
on {(t,x): t & {t1,....tn}} suF)ject to the boundary conditions

f(ti}-,x) = f(ti+,z + 1/n)
f(T,z) ==z*

We solve the PIDEs numerically| by use of implicit finite difference schemes similar to
the one derived in “American Option Pricing in the Jump-Diffusion Model”.

For parameters ensuring that the hocal second moment of the underlying is the same we
compare the exotic option prices of the jump model with those of the standard Black-
Scholes model. We generally find that the more peaked and fat-tailed distribution of the
jump model implies that at-the-money options have lower prices and deep in-the-money
and out-of-the-money options have higher prices than in the Black-Scholes framework.

(66)

“Implied” Modelling

Option prices on today’s option markets often deviate considerably from the option
prices implied by the Black—Sc;joles model. For standard European options it is not
unusual to see implied Black—ScHoles volatilities for the same maturity ranging from 10
to 30 per cent for different strikes.!> The graph of implied volatilities as function of -
the strike is often termed the “smile”, though the “smile” for equity options typically
looks more like a “skew” with high implied volatility for low strikes and low implied
volatility for high strikes. Pronounced smile effects have become increasingly common
on equity option markets after the 1987 stock market crash and on the foreign exchange
option markets after the Europear? currency crisis in 1992. In other words, markets have
put more (risk-adjusted) probability mass to extreme events after these shocks.

The smile effects have lead to the development of option pricing models that match the
observed option smile. The maxp purpose of these models is to be able to price and
hedge other options in accordanc‘:e with the marketed option prices. Thereby the title
of this chapter: models implied by market prices.

Breeden and Litzenberger (1978): are among the first to notice, or at least to quantify,
the information content of observed option prices. Breeden and Litzenberger note that
if C(T, K) is the current price of a call option with maturity 7" and strike K then

. 9C(T,K)
- Teke

13 By the term “implied (Black-Scholes) volatility” we mean the volatility that would make the Black-Scholes formula produce
the observed option price.

(67)
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is the market state price den51ty in the point {S(T') = A'}. Put differently, a butterfly
spread around a certain strike approximates the state price in that point.!* The state
prices density is sufficient to price all types of European style option with the same
maturity and the curve of options of different strikes is sufficient to statically hedge it.
However, the state price density, not even of all maturities, is not sufficient to price for
example American style or barrier type of options. For this purpose we need a model
for the dynamic evolution of the underlying stock.

The simplest continuous-time model, that (potentially) has sufficient degree of freedom
to match a full surface of option prices in the time-to-maturity and strike dimensions, is

dS(t)
S()

= (7(t) — q(®))dt + o(t, S(2))aW (t) (68)

where 1V is a Q-Brownian mot}ion, r(-),q(-) are respectively the deterministic time-
dependent interest rate and dividend yield, and o (-, -) is the local volatility, a determin-
istic function of time and current spot.

Such a model can not be an appropriate model for the long term stock price behavior.
Suppose for example that o is monotonic in S. If we then consider the stock price
evolution under two different equivalent probability measures, the exponential structure
of the stock price SDE, implies that the stock price volatility will either vanish or explode
as time tends to infinity under at least one of the probability measures. However, for
short term horizons the model is able to capture important stylized facts of equity
markets, such as for example that when the stock price drops the volatility rises.
Dupire (1993a) shows that the relatlon between the surface of European call options
and the local volatility is given }by the forward PDE!®

1 5. .
0= {—qC’ —Cr — (r—q)KCgk + 5021;2@{,( (T, K) (69)

subject to C'(0, K) = (S(0) — K)™

Given a full surface of option prices, the current forward interest rates and forward
dividend yields, it is possible to back out a unique local volatility surface supporting the
option prices, by plugging the derivatives into the above formula. It is not immediately
clear that any smooth surface of option prices consistent with absence of static arbitrage
can be supported by a valid local volatility function, but Andersen (1996) shows that
this is actually the case. |

Rubinstein (1994) and Derman and Kani (1994) go along the same lines as Dupire, but
in a discrete-time (binomial) setting.

It should be mentioned that the forward equation is also valid if the interest rate and
the dividend yield are allowed to depend on the current spot and it would in principle
be possible to come up with interest rates and dividend yields functions that made it
possible to match at least some ypes of option smiles. But first, volatility rather than

14 A butterfly spread around the sirike K is aposition consisting of long one option with strike K + AK and one option with
strike K — AK, and short two options with strike K.
15 In order to avoid confusion it should be stressed that when we write o(7T, K') we simply mean o(t, S())|i=1;5(2)=K -
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drift seems to be the most impoﬁtam factor for short term options so such an approach
does not seem to be a sound direction for equity, currency and commodity option
pricing. Secondly, it would lead to grotesque models where for example the interest
rate would be a direct function of a stock index (and the other way around).

In the paper “Implied Modelling: Stable Implementation, Hedging and Duality” it is
noted that the forward equation‘can be differentiated with respect to the initial stock
price in which case we get

; ; 1 5 .
A = =Aq — (r— ) KAk + §UZAZAKK

| 70)
A0, ) =}1K55(0)

where

oC(T, K)
05(0)
is the initial hedge ratio of an option with maturity 7' and strike A. Further we have

that!®

A(T,K) = (71)

1, .
gL =-Ir—(r—¢)KTx + 5021(21“ K

(73)
[0, ') = 6(S(0) — K)
where 82C(T )
I(T,K) = ——/ 74
| ( ) 43 ) 05(0)2 ( )

is the initial “gamma” of a call obtion with maturity 7" and strike /X. The gamma of an
option represents the sensitivity &‘f the replicating portfolio to a change in the underlying
stock price. Staying within the lingo of option traders (or modern Greek) there is also
a forward relation for the “Vegas” of the options

. 1 ..
¢V — oK*Crg = —Up — (r — )R ¥ + -2-0”2K2‘I’1\'1\'
¥(0,K) =0

(75)

where we define

C(T,K)|¢, a—C(T K
\II(T,K)=1;1I% ( )|{ (t,Sl—f-} (T, K)

(76)

This quantity can be interpreted as the marginal effect on option prices if we perform
a small parallel shift of the full local volatility surface. The Vega is of course to
some extend “inconsistent” with the model, where we have assumed that volatility only

16 §(.) is here the Dirac delta function, that has the formal properties

‘ §(x)=0,z#0

[ (72)

/6(x)da: =1
—€
for any € > 0.
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changes as time evolves or the stock price changes. However, the Vega is important
because it reflects sensitivity to misspecification of the model.

Using the “Greek” forward equations one can generate the partial sensitivities for all
marketed options by only solving one PDE numerically, and if the local volatility surface
is calibrated to match observed option prices, the resulting “Greeks” are implied by the
option prices themselves. This is clearly advantageous to the conventional alternative
that would be to obtain the Greeks from the standard backward PDEs. Doing so would
require the numerical solution of at least one PDE for each marketed option.

The forward PDEs also reveal an interesting duality. That is, if we revert time, and
let S(0) be a known quantity, and invent a backward running Brownian motion Z and
let the “strike” follow the diffusion

d[f{((tt)) = (r — q)d(—t) + o(t, K(t))dZ(—t) a7
K(T)=K

then the forward equations are the backward equations related to the initial value
problems

C(T,K)=E [e—qT(K(m _ S(0)T|K(T) = K]
A(T, K) = B|e™ 1 0y c5(0) K (T) = K| - (78)
[(T,K) = Eﬁe—qTé(K(O) — S(O)IK(T) = K]

We have here that the European call option pricing problem can be represented as a
put option pricing problem where time is reverted, interest rates and dividend yields
are swapped, the strike is the uhderlying, and the underlying is the strike. Secondly
we obtain integral representations for two differentials. At a first sight this looks as
a trivial consequence of a change of numeraire, however this is not the case due to
the reversed time scale and the fact that the strike and the spot change places in the
volatility term of the “underlying”.

For the numerical implementation Dupire (1993a), Rubinstein (1994), and Derman and
Kani (1994) apply binomial or trinomial trees, i.e. explicit schemes. The explicit
schemes have the drawback that they may give rise to stability problems: the node
probabilities can become negati‘ve when one tries to fit an arbitrary local volatility
function induced by observed option prices. This is particularly a problem for the
binomial tree that is very poorlﬂj suited for fitting smiles of different maturities. To
overcome this problem we apply an implicit finite difference scheme for the numerical
solution. The implicit finite difference scheme is unconditionally stable and convergent,
see for example Mitchell and Griffiths (1980). We convert the observed bid and ask
option prices into implied bid and ask volatilities and fit a smooth implied volatility
surface in between these discrete points. We then use a closed form relation between
local and implied volatility, derived in the paper, to convert the implied volatility surface
into a local volatility surface. Using the implicit finite difference scheme we can now
solve for example American and exotic option prices. We can also use the implicit
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scheme and the forward equatlon to back out the “Greeks” implied by the option prices
themselves

In the paper we apply this technique to a “snapshot” of actual prices on S&P 500
index option prices. All in all 'we have a table of input option prices of 21 strikes
and 3 different maturities, all observed at the same time. We find that the implied
risk-neutral density is dramatically left skewed and peaked.!” The smile, or rather
the “skew”, of local volatility surface is much more pronounced than the one of the
implied volatilities. This causes the implied Deltas and Gammas to deviate considerably
from what is implied by combirhng the Black-Scholes model and the option’s implied
volatilities. For the Vega and for other sensitivities the effect is not that pronounced.
The call options Deltas are much lower for the implied model than for the Black-Sholes
benchmark. The intuitive explanatlon of this is the following:!® The option Delta can
be approximated by

1

2glC(S +AS) — (S~ AS)] (79)

When the stock rises, the option price increases but since volatility at same time falls
the option prices does not increase as much as would be the case in the Black-Scholes
model. On the other hand when the stock falls the option price drops less than under the
Black-Scholes model because the volatility rises. This explains why the implied model
imply smaller hedge ratios than the Black-Scholes model when there is a volatility skew.

“Elgh‘t Ways to Skin a Cat”

As the title indicates, the paper “New Skin for the Old Ceremony: Eight Different
Derivations of the Black-Scholes Formula” surveys different techniques to obtain the
Black-Scholes formula. The paper serves as an account for the different techniques,
applied in continuous-time finance over the past twenty years and it can be seen as
an introduction to the area. It can also be seen as a tribute to the path-breaking work
~ of Fisher Black and Myron Scholes. In our humble opinion, their main result, that
contingent claims can be prices relative to existing securities, and their option pricing
formula stand among the most important economic contributions of this century.

The paper gives six pure arbitrage based derivations:

i. The classical dynamic hedging argument by Black and Scholes (1973) that leads to
the fundamental partial diffe;rential equation of derivative security prices. We show
how Fourier transforms can be applied to constructively solve the PDE and obtain
the Black-Scholes formula.

ii. We derive the martingale approach of Harrison and Kreps (1979) and Harrison
and Pliska (1981), discuss the connection to the fundamental PDE, and obtain the
Black-Scholes formula as a risk-adjusted expectation of the discounted pay-off.

7 This observation has been confirmed by more thorough empirical studies, see for example Jackwert and Rubinstein (1996).
18 This formulation is due to Derman et al (1996).
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i,

1v.

V1.

A change of numeraire approach is introduced and two martingale measures with

two different numeraires, the bank-account and the stock, are used to derive the
Black-Scholes formula without calculating a single integral.

The concept of pricing by arbitrage hinges on the ability to construct a self-financing
portfolio that replicates the option pay-off. Following Carr and Jarrow (1990)
we show that a stop-loss start-gain strategy replicates the option contract, but the
strategy is not self-financing, and the initial value of required external financing
exactly equals the Black-Scholes price minus the initial cost of the stop-loss start-
gain strategy. This constitutes a fifth proof of the Black-Scholes formula.

In the spirit of Dupire (1993a) we use the forward Fokker-Planck equation to derive
a forward PDE for the call {)ption prices, where the variables are time to maturity
and strike rather than time and spot as in fundamental (backward) PDE. The forward
PDE reveals an interesting duality:!? the call option can be priced in a dual economy
where time is reversed, the call option becomes a put with strike equal to the current
spot, the strike is the underlying, etc. Using this duality we derive the Black-Scholes
formula and the option delta as respectively a put option price and a digital option
price in the dual economy.

We consider the binomial model of Cox, Ross and Rubinstein (1979) and introduce
the change of numeraire approach in discrete-time. Using this approach we are
able to derive the convergence of the binomial option pricing formula to the Black-
Scholes formula in a few lines.

We give two derivations of the Black-Scholes formula in the context of economic
equilibria: '

vii. We show that the Black—Scholes formula is consistent with the continuous-time

CAPM of Merton (1971).

viil.Like Rubinstein (1976), we show that the formula can be obtained in a single period,

representative investor economy, where the aggregate endowment is lognormal
distributed and the representative investor has constant relative risk-aversion.

A final section of the paper briefly discusses the stability of the Black-Scholes formula
if imperfections, such as transactions costs and non-continuous trading, are present in
the economy.

19

See also the discussion in the previous subsection.
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The Term Structure of Interest Rates

This section is split into four sLbsections. The first subsection reviews the relations
between different rates and zerolcoupon bonds and describes the general Heath, Jarrow
and Morton (1992) (HIM) approach used in our papers on term structure modelling.
The second subsection describes| the continuous-time stochastic volatility term structure
model of the paper “An Arbitrage Term Structure Model of Interest Rates with Stochastic
Volatility”, and the third subsection describes a general discretezation scheme applied
in that paper. The section is concluded by a subsection on the modelling of several
term structures of different curréncies. This subsection is based on the papers “Pricing
by Arbitrage in An International' Economy” and “A Gaussian Exchange Rate and Term
Structure Model”.

The HJM Approach

The relations between zero-coupon bond prices and interest rates, forward rates, the
spot rate, and the bank account are |

W P(t.T)

e P(t.T) = e—(T—ORET)
¢ (t,T)=e

T

9o P — [ 1wy
flt,T) = —ana—gn & Pt,T)=e ¢

ol P(tT) l
oT T=t

R(t.T) =

(80)
r(t) = f(t,t) = R(t,t) =

where

P(t,T) is the time ¢ price of a zero-coupon bond maturing at time 7". The boundary
condition is of course P(T,T) = 1, for all 7.

R(t,T) is the time t interest rate or yield-to-maturity of a zero-coupon bond
maturing at time 7.

f(t,T) is the time ¢ instantaneous forward rate for deposit in the interval
[T,T + dT).

r(t) is the time t spot intere$t rate, hence the return of holding a bond or the bank
account over the interval [t + dt].

Here and in the following we‘ will assume that the curve of zero-coupon bonds
{P(t,T)}7>, can be observed for all times t.

The object is now to specify models with arbitrage consistent stochastic dynamics for
the evolution of the term structure in order to be able to price and hedge contingent
claims on the yield curve, such as for example options on coupon bonds and interest
rates. What makes this more difficult than setting up a model for a single stock is that
the term structure of zero-coupon bond prices, {P(t,T)}7~,, can be interpreted as a
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full continuum of derivative assets each promising a payment of $1 at maturity. This
means that any model of the term structure has to specified so that the zero-coupon
bonds mature at par. But there is more to arbitrage consistent term structure modelling.
Using the general pricing equation we get that

T
—fr(u)du
P(t.T)=EZ2|e : (81)

From this it is seen that the risk-adjusted dynamics of the spot rate define the risk-
adjusted dynamics of the whole term structure, and that it is hard to independently
specify the risk-adjusted dynam‘lcs of two bonds with different maturities and avoid
arbitrage.?° |

The classical approach, followéd by Merton (1970), Vasicek (1977), Cox, Ingersoll
and Ross (1985), Beaglehole a1‘1d Tenney (1991), and many others, is to specify the
evolution of the term structure through a specification of the spot rate dynamics under
Q, either directly or through a specification of the short rate process under the original
measure and equilibrium considerations that establish the relation between the original
measure and the martingale measure Q.

A more direct approach was pioneered by Ho and Lee (1986) in discrete-time and later
developed in a general continuous-time setting by Heath, Jarrow and Morton (1992).
The idea is to represent the stochastic evolution of the term structure by a continuum
of stochastic differential equations

d”(gt;?)) = r(t)dt + o(t, T)AW (t)
( t): __ 8WP(LT) (82)
=TT 0<t<T

where W is a d-dimensional Brownian motion under Q, and {o(¢,T)}oc;<r is 2
family of (1 x d)-dimensional adapted processes. Given the initial term structure
{P(0.T)}7o and a specification of the bond volatilities we have specified the term
structure evolution.?! In order to ensure that the zero-coupon bonds mature at par HIM
show that it is sufficient to require that o(¢,) is absolutely continuous and o(¢,t) = 0

for all ¢, i.e
- / os(t,y)dy (83)

t

for some family of well- behaveh (1 x d)-dimensional processes {af (t,y }0 <<y’ In
fact, HIM specify their modelhng framework in terms of forward rates and obtain the

2 Famous examples of models that violate tFns fact and run into cxrculanty problems are Brennan and Schwartz (1979) and
Schaefer and Schwartz (1987).

2 Of course, the bond volatilities have to be sufﬁc1ently regular for the family of processes (82) to be well-defined. As discussed
in the original HIM paper, a direct insertion of ithe bond volatilities of the Cox, Ingersoll and Ross (1985) model into (82) will
lead to undefined bond price processes for some initial term structures, and setting o(¢, T') = constant - In P(t,T) will lead to
explosive forward rates.
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following risk-adjusted dynamic!s of the forward rates

i
.....

T
df(t.T) = |oy(t, T)/o'f(t, y) dy|dt +os(t,T)dW(2) (84)

t

The term structure evolution is mow described by the family of stochastic differential
equations

T
{df(t, T) = {af(t, T) [ o(t, y)’dy} dt—f-af(t,T)dW(t)} (85)
¢ 0<t<T

and given the initial forward rates {f(0, )}y, and a specification of {o(¢, T)} o, <7
we have specified the term structure evolution under Q. o

If we have a term structure contingent claim that promises a cash flow of
a(u) = a(u, P(u,T1), ..., P(u,Ty)) (86)
at time u € [0.7] and a terminal payment of
3 =p(P(T,Ty),...,P(T.T,)) (87)
the claim will have a fair value of

8

O™ BT)/BE (88)

The advantage of this approach is that the model automatically fits the initial term
structure and that the volatilities|of the zero-coupon bonds can be specified so that our
model matches the empirical local covariance structure of the yield curve.

The downside is that we seldom get a finite dimensional Markov representation of
the term structure and thereby a pricing PDE. This means that all pricing has to
be done by either Monte-Carlo 'simulations or non-recombining tree approximations.
Monte-Carlo techniques do not apply to American or Bermudan style claims, and non-
recombining tree-structures are due to their explosive nature not applicable for long
maturity contracts. Despite these numerical intractabilities, this approach remains the
current state-of-the-art, and the #erm structure models that we have considered in the
papers “An Arbitrage Term Structure Model with Stochastic Volatility”, “Pricing by
Arbitrage in an International Economy”, and “A Gaussian Exchange Rate and Term
Structure Model” are all formulated within the HIM framework.

S}ochastic Volatility

Some term structure derivatives might be equally sensitive to changes in the volatility
of the yield curve as to changes in the shape and the level of the yield curve itself. A
hedging strategy that only accounts for changes in the level and the shape of the yield
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curve might therefore exhibit ¢ nsiderable tracking errors for very volatility dependent
contingent claims. This suggest two things. First that we consider hedging strategies
that involve other interest rate volatility dependent claims such as for example yield
options. Secondly, that we deljelop models that incorporate random changes in the
volatility that are not direct functions of the level of the yield curve, so that we can
compute arbitrage consistent hedge ratios in derivative instruments.
Most existing models that involvie stochastic interest rate volatility, such as for example
Longstaff and Schwartz (1992), Fong and Vasicek (1991) and Chen (1995), have the
drawback that changing volatility is directly linked to changing level and shape of the
yield curve. These models are ‘therefore qualitatively equivalent to other multifactor
models where a number of yields serve as instruments for the driving stochastic
processes. In fact, all of the mentioned models can be nested in the general exponential
affine model described by Dufﬁ‘p and Kan (1993).
In the paper “An Arbitrage Term Structure Model of Interest Rates with Stochastic
Volatility” we suggest a model{ where the uncertainty is driven by a standard two-
dimensional Brownian motion. The first Brownian motion only affects the level of the
yield curve, whereas the second Brownian motion only directly influences the volatility
of the yield curve. Hence we have that

% = u(t, T)dt + a(t,T)dWlp(t) (89)
where (W, WF) is a standard two-dimensional Brownian motion under the original
measure P and {u(t, T)}o<i<r, {0(t, T)}o<i< are families of processes adapted to
the filtration generated by the two-dimensional Brownian motion, with the volatilities
satisfying the condition o(t,T) itT—’.; 0 for all T.

‘Since the yield curve is only diriectly affected by the first Brownian motion, the bond
market is incomplete in itself and the set of possible martingale measures with the
bank-account as numeraire is not a singleton. To fix the martingale measure, we assume
that there in addition to the full continuum of zero-coupon bonds exists a market for
continuously resettled futures contracts on the instantaneous proportional variance of
the zero-coupon bonds. We let V(t, z, T) be the time ¢ futures price for delivery of the
instantaneous variance of the bond with maturity T at time t, i.e. the futures contract
is on the quantity o (Z, T)z.

Volatility risk is now traded which implies that the martingale measure is unique, and
we have that

V(tET) =B |0 (t.7)’] (90)

By the martingale representation theorem there exists some family of (1 X 2)-
dimensional processes, {avy (¢,7, T)}0 <i<icTs SO that
dV(t\, t,T)
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fqﬁgﬁO <t<t<T, where W ;: (W ,W'-g)' is a standard two-dimensional Brownian

motion under Q. Given the init%al term structure, the initial structure of futures prices,

{V(0.t.T)}y<i - satisfying the restriction V' (0,¢,T) ?F 0, and a specification of the
= ¢

family {ov(t.%,T)}, the evolution of the term structure is now specified by the system

dP(t.T)
—— = r(t)dt t, T)dWi(t
pg) = O+ ot T)AW()
dv (t,t.T _
VT ( = T> = oy (¢t,1,T)dW(t)
(t1.7) 92)
r(t) = dln P(¢,T) ‘
_‘ oT T=t
i V(i t,T) ,T>t
t’ T 12 — ? b 3
o(t.T) { 0 T =t
So far we have relied on the exi‘stence of futures contracts on the local variance of the
zero-coupon bonds. We will novT/ show that these contracts can be replicated by a static
hedge strategy in yield futures contracts. Consider a futures contract for delivery of the
yield R(.T) at time 7. The time ¢ settlement price for such a contract is given by

Y(t.5,T) =EZ[R(,T)] (93)

Hence we have that
t

t
1 .
(T —1)Y(0.t,T) = —In P(0.T) — E< /T(u)du + —?—EQ /U(u. TYdu| (94)

' ‘ 0 } 0
Differentiating with respect to ¢ and rearranging yield

V(0,t,T) = 2Y/(0,£,1) + 28%[(1“ —1)Y(0,t,T)] 95)

So the futures contract for delivery of the instantaneous variance of a bond can be
replicated by a limiting position in yield futures contracts. The hedging argument is
not unlike the one applied to forward contracts in Dupire (1993b). However, Dupire’s
analysis of forward contracts does not apply in a stochastic interest rate environment
as the one considered here.
The paper proposes the following simple specification of the model

o(t,7,T) = () (”1 ) (96)

V2
|

and we obtain the following dynamics of the bond volatilities
o(t,T) = V(0,t,T)e"® 97)

where = follows the Ornstein-Uhlenbeck process
dz(t) = (w(t) — kz(t))dt + v1dWi(t) + v2dWa(t)

7(t) = —~%(1/12 + V%) (1 + 6_2'“)
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We see that this specification implies that the volatility curve of the bonds shifts
paféllely. Litterman, Scheinkmgn and Weiss (1991) provide some empirical support
for this feature.

In order to be able to analyze the effect of stochastic volatility on bond option prices
we specify the initial bond variance futures prices to be of the same form as the local
bond variance in the extended Vasicek (1977) model.?> We set

(1 _ e—a(T—t)) 2

a?

V(0,t,T) = 3 (99)

where «a, 3 are constants, and we obtain the following representation of the spot interest
rate in our model

dr(t) = (6:(t) — ar(t))dt — o ()dWy(2)

|
dlno,(t) = (E—g—t—)— — kln crr(t)> dt + v1dW1(t) + vadWa(t)

(100)

' t

IT—t +’62 /e—ga(t_U)ar(u)zdu + af(O, t)
0

o,y = 2101 g;LT)

We see that the model as expected reduces to the extended Vasicek model when the

volatility of the volatility, (1/12 + V%)l/ 2, goes to zero. We also note that we actually
have a Markov representation of the term structure by the triple (7, oy, 0r). This is
not surprising since we have defined the volatility structure of the bonds to be of the
separable form identified and tenined “quasi-Gaussian” by Jamshidian (1991) and further
analyzed by Cheyette (1995) and Ritchken and Sankarasubrahmanyam (1995).

Using a general discrete approximation of the model, described below, we now compare
prices of call options on zero-coupon bonds in the stochastic volatility model to option
prices generated by an extended Vasicek model with similar parameters. As Heston
(1993), that considers stock options, we find that the effect of stochastic volatility on
option prices depends on the correlation between the underlying (in this case the bonds)
and the stochastic volatility. The general result is that stochastic volatility increases
at-the-money option prices. The intuition must be that stochastic volatility makes
the distribution of the underlying more peaked and fat-tailed. Negative correlation
decreases deep in-the-money call option prices and increases out-of-the-money call
option prices. Positive correlation has the opposite effect. The intuition behind this
is that the presence of correlation between the level and the volatility “skews” the
distribution of the underlying in|the direction of the sign of the correlation.
|

Discret? Term-Structure Models

We make use of a discrete versi(‘)ns of the continuous-time HIM modelling framework
in the paper “An Arbitrage Term Structure Model of Interest Rates with Stochastic
Volatility”. In the following we summarize the main ideas behind the scheme.

22 See Hull and White (1990).
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Consider a discrete economy where time is indexed by {tk}r=o._. n- At each time step,
tr, the current state is given by tixe k sequence {so,....Sk—1} with s; €{l,...,d+1}
for all j. Following the time step ¢, there are (d + 1) new states each with conditional
Q-probability 0°(t;), s=1,... Jd + 1. The bond prices in these new states are related
to the current bond prices by the relation®®

Pi(tpy1,tn) = _ﬁ%‘%hs(tk’t") O<EkE<n<N (101)
for s =1,....d+ 1. We impose the following conditions on the perturbation function
ho(-):

d1
> ROt tn)0° (k) = 1
s=1 (102)

h;s(tk, ter1) =1

B3 (th,tn) > 0
for all s.k,n.
The first restriction ensures that the bond prices deflated by the (discrete-time) bank-
account are martingales under Q. The second restriction ensures that the bond prices
mature at par and the third condition is an arbitrage condition that implies that bond
prices remain positive.
We note that this is a very general specification that applies to all kinds of traded assets
where a martingale restriction is|satisfied. In the stochastic volatility paper we apply a
similar scheme to volatility futures contracts and it also possible to apply the scheme
to stocks and foreign exchange rates. When we apply the scheme to assets without a
terminal boundary condition, the second condition above drops out.
Also note that we have not rest;ricted the perturbation function h'(-) to be determin-
istic. It might depend on current or past realized prices in the tree along the path
{s0,...,Sk—1}- The same goes for the risk-neutral probabilities, but for convergence
reasons we usually set 6°(tx) = 1/(d + 1) for all s, k.
The perturbation functions here can be interpreted as discrete Radon-Nikodym deriva-
tives in the sense that '

RE(tk, tn)6° (tk) (103)

is the conditional probability that state s occurs over the next time step under the
probability measure with the ¢,-maturity bond as numeraire, also denoted the “Ipn-
forward risk adjusted” probabilijty measure.

In order to mimic the stochastic behavior of a continuous-time model with a d-

dimensional Brownian motion driving the uncertainty, we have to specify the per-
turbation function appropriately. To do so, specify the (d + 1)-dimensional vectors

3 The superscripts here denote the realization of s.. The dependence of the current state is ignored to reduce the notational
complexity. .
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€ly; - -+ €4 SO that |
|
d+1 ‘
Z Hthk)ei,s(tk) =0 .
s=1 |
d+1 0 i# . (104)
Z esctk)fi,s(tk)fj,s = { 1 h _ J
s—1 72 - .]

for 2,7 = 1.....d.
Loosely speaking the vector

€ov/Thrt — &k = (1,5, - €ds)V/Eke1 — Bk (105)

is supposed to ‘“‘approximate” a realization of an increment of the d-dimensional
Brownian motion . We therefore impose the above conditions. The first condition
ensures that each of the ¢;’s have zero mean and the second condition ensures that the
€;’s are uncorrelated and have upit variance. For d = 2,6 = 1/3 an example of this is

e.;lz(o.o Vv2.0)
e2= (V15 —V05) (106)

e3=(—v15 —05)

Note that the vectors define symmetric points on the unit circle scaled by V.
We now define the perturbation| functions to be
‘ e (tkrtn1)e s (te)V/Eks1—tk

h (tk’ tn) = Z H'U(tk)eg(thtn—-l)5~,v(tk)\/tk+1_tk (107)

v

Note that the denominator of the perturbation function is the @-mean of the numerator
if we consider ¢.. as a random vector. It might seem curious why we let the perturbation
function for the ¢, maturity bond depend on the ¢,—; maturity continuous volatility.
The reason is that this specification ensures that the bonds mature at par, that the
discrete model remains right-continuous, and that the volatility of a bond decreases in
“uniform” steps as time tends to the maturity.

If we define At = tgy1 — tg, Az(tr) = z(tgs1) — z(tx), and the discrete spot interest
rate R(tr) = —1n P(tk, tx+1)/At, Taylor expansion of the above equations yields

CAln P(tg, tn) = (R(tk) - —1—|Ia(tk,tn_1)ll2) At + o (tg, th1)é(tr) VAL
2 (108)

+0 ((At)3/ ZD
We see that first and second morr‘lent of the local evolution of the bond prices match the
ones of the continuous-time model. If we had a finite dimensional Markov representation

of the continuous-time model this would essentially be sufficient to guarantee that the
price processes of the discrete model converge to the ones of the discrete model under
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the probability measure Q. FO% the stochastic volatility model the convergence issue is
an unresolved mathematical question but numerical examples indicate that the discrete
model converges relatively fast.

The scheme is generally not reco}mbining, not even when there exists a finite dimensional
Markov representation of the continuous-time model. The non-recombining property
has the obvious disadvantage that the number of nodes grows exponentially. On the
other hand this also means that we need fewer time steps to cover a large number of
points and that the scheme converges after a low number of time steps, typically 10-15
time steps are sufficient which we illustrate in the stochastic volatility paper. But of
course the exploding nature makes the non-recombining tree poorly suited for handling
long maturity claims.

|

One interesting application of the scheme is to combine it with Monte-Carlo simulations.
If we consider term structure models without a finite dimensional Markov representation,
we can not in general find the hedge ratios of a particular claim from pure Monte Carlo
simulations because the diffusion of the claim is not given by a simple first order
differential. The idea is now to take one step initially using the discrete scheme and
then perform Monte-Carlo simulations from each of the resulting branches, possibly
using the same realizations of the driving Brownian motion. In each of the branches at
time ¢; we now have the price of the claim and approximations of the continuous-time
hedge ratios can be obtained using simple matrix algebra.

The scheme can be seen as a generalization of the Ho and Lee (1986) binomial model,
because Ho and Lee also use multiplicative perturbation functions. There are also certain
similarities to the discrete schemes described in He (1990) and Heath, Jarrow and Morton
(1990). Hua He also uses a (d —fT 1)-multinomial process to mimic the evolution of a d-
dimensional Brownian motion. However, He’s approximation is not directly applicable
to term structure models unless #here is a finite-dimensional Markov representation and
it 1s not necessarily arbitrage—friee for all time-step length — the asset prices can go
negative if the time-steps are iong or the volatility is high. Our scheme, though, is
applicable to any term structur%a model and the multiplicative structure ensures that
asset prices always remain positive. The HIM discretization scheme is also by nature
additive rather than multiplicative, and the direct discretization of the forward rate PDEs
means that HIM need to correct the evolutions in order to ensure absence of arbitrage.
Also, HIM use a splitting index of 2¢ to approximate a d-dimensional Brownian motion
which means that the discrete model becomes dynamically incomplete for d > 1.

Multicurreri:cy Term Structure Modelling

\
The papers “Pricing by Arbitrzllge in An International Economy” and “A Gaussian

Exchange Rate and Term Structure Model” examine the modelling of term structures
in different currencies. The purpose is here to construct models that can be used for
the pricing of exchange rate derivatives under interest rate risk and contingent claims
written on bonds of different currencies, such as for example cross-currency swaptions.

24 See for example Ethier and Kurtz (1986).
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In, the following the notation is qhe same as in the previous except that we let subscript
¢ indicate that the considered quantity is of currency 7 where 7 € {0,1}. We will denote
currency 0 “domestic currency” \and currency 1 is “foreign currency”. We suppose that
the uncertainty in the economy cons1stmg of the two countries is driven by a common
d-dimensional Brownian motlon WP under the original probability measure P. We
let S be the exchange rate denoted in domestic currency units per foreign currency
unit and we let o5 be the proportional volatility term of the exchange rate, a (1 x d)-
dimensional process. We assume that the global economy is dynamically complete so
x 1 x/S(T)

that we can write
{Bo(T)/Bo(t)} S(t) 1(T)/B1(t)]

for any time 7" measurable x for some unique martingale measures Qp, Q;. This relation
.implies that the relation between [the martingale measures of the two different currencies
must be given by the Radon-Nikodym derivative

dQ1  Bi(t) S(t)
" dQy o Bo(t) S(O)

on the information at time ¢ and it means that we can write the relation between the
Brownian motions as

EQO

t (109)

EQ1 [

(110)

dWi(t) = dWy(t) — og(t) dt

Let n; be the vector of nominal
dWP + pldt. We can now wri

dS(t)

EOR

(111)

risk-premiums of currency ¢, in the sense that dW; =
e

— r1(t))dt + (no(t) — m(t))dWo(t) (112)

If we suppose that we could measure the nominal risk-premium vector on each market,

we would be able to fix the local

and the exchange rate, and there

evolution of the exchange rate.

ccovariance between the financial assets of each market
by to a large extend also be able to fix the stochastic

After applying the HIM framework to each of the two bond markets and using the
above we obtain the following modelling framework of the “global” bond market

dPO(tv T)

= ro(t)dt t,T)dWy(t

Po(t, T) TO( ) +UO( ? ) 0( )

db(t,T) |

— = = T)dW(t

AT Wt DI (113)
= (r1(t) — o1(t, T)os(t))dt + o1(¢, T)dWo(t)
_ OlmF(t,T)

ri(t) = —— oT 'T:t
with the restriction o;(¢,T) t?;‘ 0. After specifying the processes

{o0(t,T),01(t, T)}o<s<7 We have specified the evolution of the two yield curves.
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Except for the explicit use of difl‘cerem martingale measures this is the international HIM
formulation derived in Amin & [Jarrow (1991). The application of different martingale
measures has some advantages |for the calculation of derivative prices. We can, for
example, represent the time 0 price of a European call option on the exchange rate as

P(0.T)QF (S(T) > K) — KPy(0,T)QF(S(T) > K) (114)

where Q7 is the currency i martingale measure with the maturity 7' discount bond
as numeraire, under which dWl;}F(t) = dW;(t) — o;(t, T)'dt defines a vector Brownian
motion. If we constrain the vol;atility terms of the bonds and the exchange rate to be
deterministic we almost immediately obtain the exchange rate option pricing formula
of Amin (1990). I‘

Even though the volatility term% are deterministic, we are not sure that the resulting
model of the exchange rate and the bond markets have a finite dimensional Markov
representation. This means that if we for example want to calculate the price of a coupon
bond option with A/ remaining coupons we have to evaluate an M -dimensional integral.
The paper “A Gaussian Exchan%e Rate and Term Structure Model” identifies a class
of deterministic bond volatility specifications that admit a Markov representation with
the same dimension as the driving Brownian motion. This volatility structure is termed
Gaussian. Under the Gaussian, volatility specification the joint system of the bond
prices and the exchange rate can for each martingale measure Q € { Q;, Q;fr }i=0,1;T> :
be represented by

| PO, T) 4.7 (T2
Pi(t,T) 2 ﬁe&(t,ﬂg)mm.r) o
l SORA0.) cimorrpiey=2)
S(t) —‘ —730—(_0—3‘)'——6 (1 15)
‘ t
xQ(t) = /G(u)dWQ(u)
0

where A, C' are deterministic functions defined by the volatility structure and the chosen
martingale measure (Q), B, D 'are deterministic three-dimensional vector functions
defined by the volatility structure%, and G is a deterministic 3 x 3 matrix function defined
by the volatility structure, and ﬁn:ally W< is a three dimensional Brownian motion under
the chosen martingale measure Q.ZS Moreover, we have that the volatility structure is
Gaussian if and only if for each ‘[martingale measure Q € {Qi, Q?}izo,l;Tz ,» the joint
process (79, 7r1,1n.5) is a vector Gaussian process.26 This class of volatility structures is
a natural international extension ‘of the volatility structures considered in Babbs (1990)
and Jamshidian (1991).

We now have that any European style contingent claim with a time 7" domestic currency
value given by the function

F(S(T), P(T, T1), L. Po(T, Tar), (T, Th), ..., Pi(T, Tnr)) (116)

The exact specifications of A, B, C, D, G are given in the paper.
6 Arbitrage considerations restrict the possible specifications of the vector Gaussian process under each of the martingale
measures. For brevity we omit the discussion here and refer to the papeér.

S

[
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hag a time 0 currency 0 value of
P(0,T)E [F(-)]
— P(0.T)E® [F (xQOT(T)>]

= P(0,7) /F(z)p(:)d:

RS

(117)

where p(-) is the time 0 densi& of 2% (T) under QF, a three-dimensional normal
density function. In other words most European style contingent claims written on
the term structures of the two currencies and/or the exchange rate can be priced by
numerically evaluating a three-dimensional integral which is clearly more efficient than
evaluating the M-dimensional integral considered previously.

Finally, we show that it is possit§>le to give a similar three-dimensional integral repre-
sentation of a hedge portfolio for the claim considered in (116). This hedge portfolio
has the desirable feature that it is based on the underlying instruments:

SG), Po(--Th)s o s Po(, Tag), P(-, 1), - - PL(-- Tag) (118)
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Abstract

In this paper we consider the American option pricing problem in a risk-neutralized
version of the jump-diffusion model of Merton (1976). We derive a forward equation
for the American option pricing problem where the strike and maturity date are the

variables whereas the current spo
forward equation can also be used
observed American option prices.

t and time are fixed. Among other applications the
for static estimation of risk-adjusted parameters from
We show that the early exercise boundary in the jump

model exhibits a larger discontinuity at maturity of the option than it is the case under

the Black-Scholes model. We qu

tify the discontinuity and illustrate its magnitude by

numerical examples. For the constant jump case we derive closed form expressions

for the price and the optimal e)J‘
A final section of the paper desc}

ercise boundary of the perpetual American option.
ribes a general finite difference method for solving

option valuation problems when ﬂhe underlying exhibits discontinuous dynamics. For

the constant jump case we prese

nt two alternative approximations of the American

option price. We compare the apl?roximations by numerical examples.



Introduction

Mg

Whereas the: American option pricing problem is well examined within the context of
the Black-Scholes model, little attention has been devoted to the problem under other
assumptions on the stock price behavior. In this paper we consider the American call
option pricing problem in a jump-diffusion setting and present some new results in this
setting. Our model of the stock price is a risk-neutralized version of the Merton (1976)
model, i.e. we fix a martingale measure and under this probability measure we assume
stock price dynamics like in the Merton model.

We show that under time-homogeneity, the American option pricing problem can be
solved by solving a forward partial integro differential equation. In this equation current
time and stock price are kept constant whereas the expiration date and the strike price
are variables. The forward equation might be used for simultaneously solving a double
continuum of option prices by only solving one partial integro differential equation.
The forward equation may also be applied for estimating the parameters of the model
from observed American option prices.

We derive the limit of the early [exercise boundary when time tends to expiration of
the option. Due to the discontinuous dynamics of the stock price this limit shows to
be higher than the analogue of the Black-Scholes model, and for realistic parameters
this difference is quite substantialj. This means that close to expiration, investors might
deter the exercise even though the option is far in-the-money.

In the constant jump size case Chesney (1995) derived the price and the early exercise
boundary of the perpetual American call option when the jumps in the return are
negative. In this paper we give closed form expressions for the perpetual option price
and boundary when the jumps in the return are positive. The closed form solutions for
the perpetual option might show useful for analyzing optimal capital structure problems
in corporate finance. We also show that in the constant positive jump and finite maturity
case the American option price cém be represented in an analytical form, that depends
on the early exercise boundary. ‘

In a final section we describe a éeneral finite difference algorithm for option pricing
problems in a jump-diffusion s%tting. For the constant jump case we derive two
alternative numerical approximations of the American option price: one for positive
jumps and one for negative jumps. In the positive jump case the approximation is
based on the analytical represent:ation of the American option price obtained in this
paper. In the other case, when jumps are negative, the approximation is similar to
the one of Baron-Adesi and Whaléy (1987) and has earlier been described by Chesney
(1995). We compare the different approximations by numerical examples.

The paper is organized as follows: the first section presents the model and restates the
European option pricing formula by Merton (1976) in a slightly different form. The
second section considers the general American option pricing problem in the jump-
diffusion model and gives the forward equation for the option pricing problem and the
limiting result for the early exercise boundary. In the third. section we consider the
special case of constant jump size. We derive the price of the perpetual option and its




early exercise boundary in this caLe The last section presents some possible numerical
procedures and approximations for the American option price.

The Jump-Diffusion Model and European Options

money market account.

We choose to start by assuming the existence of a martingale measure, Q, under which
all discounted security prices including accumulated dividends are martingales. The
existence of a martingale measure implies absence of arbitrage. Under the martingale
measure we assume that the underlymg stock price evolves according to the stochastic
differential equation:

We consider an economy that Tntains two assets: a dividend paying stock and a

O _ (¢~ g — kNt + 0dW (1) + TN (D) M

where

r is the constant positive intelrest rate.!

¢ 1s the constant positive dividend yield of the underlying.

o 1s the constant continuous volatility component.

1V is a standard Brownian motion.

.V is a Poisson process with constant intensity A and arrival times {u;},_, , _given
by u; = inf {¢|N(t) = i}.

{I(t)};> is a sequence of independent identically distributed random variables.
Their distribution is given by:

1o 2
1n(1+[(t))QN</ 25,6) (2)
for all z. |
k is the mean jump in the in‘stantaneous return:
‘k =E9I(t)=¢" -1 (3)

The processes W, N, I are assumed independent.
For currencies ¢ denotes the foreign continuously compounded interest rate.
The second asset of the economy, the money market account, has deterministic dy-
namics:
dB(t)
—= = rdt
B(t) 4)
B(0)=1
The discontinuous dynamics of the stock price implies that the market is incomplete.
In other words, given the dynamic(j under the original measure, the martingale measure,
Q, is non-unique. However, once the martingale measure, Q, is fixed the original
|

! By the term positive here and in the following we mean strict positivity, i.e. 7,q > 0.



probability measure has no influence on derivative pricing. The relation between the
original measure and the martingale measure does of course effect portfolio and hedging
decisions, but the object of this paper is purely the pricing issue so for the rest of the
paper we will ignore this discussiin and simply assume the Q-dynamics outlined above.?
In the next section we will hint at how one identifies the risk-adjusted dynamics from
observed American option prices.

The stock price behavior can be represented in the form:

S(t) T S(0)elr Dt Are(t) M(2) )
= 5(0)e" "M (1)
where M€ is the continuous maﬁtingale:
1
M®(t) = exp (—50275 + aW(t)) (6)
and M¢? is the pure discontinuous martingale:
‘ N(t)
M) = e AT (@ + I(wi)) 7
=1
Lastly we define the martingale:
M = M- M* (8

It will show useful to introduce asecond equivalent martingale measure. We define the
probability measure Q' by the Radon-Nikodym derivative:

aqQ’

| 0 g™ M(t) 9
Q' is the martingale measure with the stock price as numeraire. That is, under Q’
any asset price discounted by the stock price including accumulated dividends is a
martingale, as opposed to under| Q where any asset price discounted by the money
market account is a martingale.
Using the Girsanov theorem we |get that the stock price evolution under Q' can be
described by the stochastic differL:ntial equation:’

ds(t)
S(t-)

(r—g A+ o?)dt + odW'(t) + I'(t)dN'(t) (10)

where W' is the Q’-standard Brownian motion:

"(t) =W(t) — at. (11)

2 For a relation between the dynamics under the original measure and the dynamics under the martingale measure based on a
representative investor equilibrium argumentation, lsee Bates (1993).
3 One possible reference for a Girsanov Theorem general enough to handle our situation is Dellacherie and Meyer (1982).




and N’ is a Q' Poisson process with intensity:
LN =M1+k) (12)

{r (t)}tZO is a sequence of independent identically distributed random variables with
distribution: '

In (14 I'(t)) 5 N<7 + ;1562, 52> (13)

for all ¢.

Conditioning on the number of jumps over the interval [0,¢], N(¢) = n respectively
N'(t) = n, we have that:

%zexp((r—q—k/\—fa)t+aW Zln T+ I(u )
= exp ((r—q—’k)\—l-;cr )t—|~aW’ +Zln 1+I(u1))>

=1

(14)

From this we see that the stock price is conditionally log-normal under both martingale
measures: W

( ()IN() )5N((T_q_]g)\)t+n7—%(02t+n(52),02t+n52>

S(0) s
()N = N ENE + ny + — (02t + n62), 6% + 62
< (O)l (1) = n)a,i<(7"—q_ )+n/+§(a +n ),0 +n )
Using that
| o=t
QN(t rfft)
J/ —)\t()\/) (16)
‘ T

the distribution functions of the stock price under the two martingale measures can be
expressed explicitly in terms of sums of normal distribution functions. From this we
almost immediately obtain the Merton (1976) formula for the European call option.

Lemma 1: The European Call pption Price.

Define: ‘
Ii/n(s)2 = 025 + né®
1 —q—kA 1 (17)
dn(s,z,y) = n(z/y) + (Tyn(g) )Js -y + §un(8)

Consider a European call option v}vith expiration T and strike price K. Define the time
to maturity to be v = T — t. The fair time t price of the option at the state space point



(t,S ) is:

JPO Aoy \
o(t,5) = Se= Y e———ﬁ—v)q)(dn(v, S, K))
n:DO —)\U(.)\ ) (18)
— Ke™™ Z e—n!flcp(dn(v, S, K) — vn(v))
n=0

where ®(-) denotes the cumulated standard normal distribution function.

Proof:

Note that:
c(t) = E2 [e—ﬂT ~0(5(T) — K)+]

M(T
= E2 [e_q(T‘”S(t ( )1S(T)>K} _EQ [e_T(T—t)K]‘S(T)>A’} (19)

N

M (t)

=e T8 Q' (S(T) > K) — e T VK Q,(S(T) > K)
Using the distributional properties in (15) and (16) yields the result.
(]
Instead of representing the option; price as a sum of Black-Scholes prices as in Merton
(1976) we choose to represent the option price by a decomposition based on the
probabilities under the two different martingale measures in play here. This gives a
straightforward interpretation of the Merton (1976) formula: the terminal pay-off is
split into two components and these two components are valued under two different
martingale measures. The first component is an uncertain component dependent on
the terminal stock price. By choosing the martingale measure with the stock price as
numeraire for evaluating this component one offsets “the stock price risk”. The second
component is a fixed amount equal to the strike price. Since the quantity is fixed the
proper martingale measure to apply for valuation is the one with the bank-account as
numeraire. Also note the power of the change of numeraire technique: we derived the
Merton formula without calculatiing a single integral.

We now turn to the American option pricing problem.

The American Option Pricing Problem

Due to the positive dividend yield it might be rational to exercise the American call
option prematurely. Each exermse strategy can be represented by a stopping time. It
is therefore possible to charactemze the American option pricing as a stopping time
problem, where the object is to find the stopping time that maximizes the value of the
option. To formalize this let 7' be the expiration date of an American call option with
strike K, and let 7; 7 be the set of all stopping times on the interval [t, T'| for the stock
price process (1). Then the value of the American call can be written:

C(t) = sup E?{e_T(T‘t)(S(T) -K)+} (20)
T€L T



For ﬁxed maturity and strike we |see that due to the Markovian properties of the stock
prlce process C' must be a function of current time and stock price only, i.e. we can
write:

C(t) =C(t,5(1) 21
It is natural to divide the state space into two sets: the continuation region,
{(z,9)|C(t,S) > S — K} (22)
and the early exercise region,
{4, 9)IC(t,S) =5~ K} 23)

We will take the following result as preliminary to our analysis.

Lemma 2: Properties of the American Option Pricing Problem.

i. The American option price is the unique solution to the partial integro differential
equation (PIDE): |

oc 1 25260

(r + \)C = QCZHT_Q_M)S +ABQ[C(t, S(1+1))] (24)

ot 35?2
on the continuation region, subject to the terminal boundary condition:
Cc(T,8)=(S-K)* (25)
and the free boundary condition:
C(t,S) > (S-K)* (26)

E2[] is the Q expectation operator over 1I.

ii. C as a function of (t,S) is continuous and the first derivative of the option price
with respect to the stock price, 0C [0S, exists and is continuous for t < T.

iii. The early exercise and the continuation regions are connected sets and the early
exercise region is closed. Thﬁ early exercise boundary defined by the function:

s*(b) = inf {C(t,5) = S - K} @7

is decreasing for t < T.

The results (i.)-(ii.) can be found in Mastroeni and Mulinacci (1996) and Zhang (1993).
The appendix contains a proof Jf (ii1.).

. The PIDE is the discontinuous cqunterpart to the fundamental partial differential equa-
tion of Black-Scholes (1973). The second preliminary result is the high-contact or
smooth pasting condition saying that dC/8S =1 at the boundary of the early exercise
region. The third result states that for each point in time there is a unique stock price,
S*, so that for S > S™* the option should be exercised.

Due to the time-homogeneity of the model the American option pricing problem can
also be solved by solving a forward partial integro differential equation. This is stated
in the following result.



Rggl_;lt 1: The Forward Equation of The American Option Pricing Problem.

Without loss- of generality set cur{rent time to be zero. Let S be the current stock price
and let C(T, ') be the current price of an American call with expiration date T' and
strike price K.

The function C (T, ) is the unique solution to the PIDE:

(¢+X)C = —%—(r —q- kk)A’%+%UZK2%%+A’EQ’ [C (T, 1—%)] (28)
on the set:
{(T)K)|IC(T,K) > S - K} (29)
subject to the initial boundary condition: |
C(0,K)=(S—RK)" (30)
and the free boundary condition:l
é(T, Ky>(S—-K)" (31)

EQ'[] is the expectation operator over I' under Q.

The forward equation turns the American option pricing problem into a problem where
the spot and the current time are fixed and the strike and expiration date are the variables
whereas the opposite is the case for the backward equation. The forward equation has
two applications. First, it is possible to obtain a double continuum in strike and maturity
of option prices by only solving one forward equation numerically. Second, we observe
that given a double continuum of observed option prices it is possible to back out
the parameters implied by the oﬁnion prices. In other words equation (28) admits a
static estimation of the risk-adjus‘ted parameters of the model. It is important to note
though that the derivation of the forward equation depends crucially on the assumption
of time-homogeneity. In case the parameters depend on time the forward equation will
not be valid.

The forward equation without the free boundary conditions is also satisfied by the
European option prices. This is easily seen from the proof in the appendix.

As an example of use of the forward equation, numerical solution of the forward PIDE
yields the graphs of American and European option prices with time to maturity equal
to one year shown in Figure 1. We refer the reader to the last section for the details
on the numerical solution of PIDEs.

Note that the forward equation ac{ually generates a full double continuum of American
option prices for all maturity dates and strikes. So we could also show Figure 1 as a
three dimensional graph. | '

It is natural to use the forward equation to generate the picture of critical strike prices,
rather than critical stock prices, as function of the maturity date. That is, we fix current



Figure 1: Option Prices as F uTctions of Strike
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Time O European (dashed line) and Am(‘zn'can (solid line) option prices as functions of strike generated by
forward equation. Parameters: r = 0.03,¢ = 0.05,0 =0.1,A = 1.0,y =0.0,6 = 0.1,T = 1.0, S(0) =
100.0. ‘
time and stock price, (¢,.5), and for each maturity © > ¢ we find the maximal strike
price K*(u) that solves

S = K*(@) = CtS) | ymur-y (32)

Note that K*(+) is a by-product when one numerically solves the free boundary problem
of Result 1. Doing so we get the picture shown in Figure 2.

Figure 2 indicates a discontinuity (of the critical strikes when time to maturity tends to
zero. We will now show the existence of such a discontinuity and quantify its size.

It is well known that in the Black-Scholes model, the early exercise boundary in some
cases exhibits a discontinuity at expiration of the option. Kim (1990) and van Moerbeke
(1976) show that the limit of the é‘arly exercise boundary in the Black-Scholes is given
by: ‘

K max <1, g) (33)

The following result gives the limit of the early exercise boundary for our model when

time tends to expiration of the option.
\

Result 2: The Limiting Behaviojr of the Early Exercise Boundary.

Define S; as the unique solution to the equation:

r+ (1~ o B0 _ 15))
g+ (1- 0BG 4 16))

Si=K (34)



Figure 2: Critical Strike Price

as Function of Time to Maturity
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‘ maturity date

= 100.0.

Tndary when time tends to expiration is given by:

lim 5*(t) = max (K, S;
lim 5°(t) = max (K, 55)

A proof is given in the Appendix.

From the put-call parity we have that:

C(t,S) > c(t
4

|
S* — K = C(;t S*) Z e—q(T_t)S* _ e—T‘(T—t)I{

Rearranging this and taking the

S* > F

But this is also satisfied for our

JS) > e TG _ e (T
0) 2

imit yields:

’1 _ e—'r‘(T—-t) r

-

V————— — K-
1—e 9T gy ¢
result, since we have that:

T
S*> KT
0="94

This can be seen by rearranging 1(33). We get:

qgS —rK

=KA<1_<1>(113(_5/§(_)U

= \EQ|(K - 5(1+ D)"]

)

<

10

0.8

1)) s (1oL

25)) (39)

urity date seen from time 0. Parameters: r = 0.05,¢9 = 0.05,0 =

(35)

(36)

(37

(38)



Note that the right hand side of |the above is positive, decreasing, and concave in S
and that the left hand side is positive for S > Kr/q. Hence S exists, is unique and
(37) holds.

To give an intuitive argument why Result 1 holds, consider the pure jump case, i.e.
o = 0. Suppose that we are sitt?ng a very small instant At before expiration of the
option and that the current stock price is S > K. If we do not exercise the option we
will with probability AA? get thé present value amount:

[SA = (g4 kNAL+ 1) — (1 — rADK]T + O(AL?) (40)
and with probability (1 — AA¢) we will get the present value amount:
S(1— (g +kNAL) — K(1 — rAt) + O(At?) (41)

This has current value:

AE2 [(5(1 Ty K)*“] At
+S(1— (g+ N)At)— K(1— (r+ A)At) + O(At?)

In(S/K)+~v 1 o (In(S/K)+~ 1 (42)
T_Fié) —-AA@(———(—S—————~§(S>

+S(1— (g+N)At) = K(1 - (r+V)At) + O(Ar?)

= X’S(I)(

Setting this equal to the intrinsic value of the option, rearranging, and dropping terms
of higher order than At yields equation (35) for the critical stock price. Of course the
critical value has to be higher than the strike so we get (36) for the critical stock price.

If we vary the mean jump size, i.e. v, we get the limits of the early exercise boundaries
and the option prices given in Table 1.

Table 1: Limit of the Early Exercise Boundary for Different Values of the Mean
Jump Size

g Sy C e OBS Cps CBS

-0.1 120.94 6.30 6.29 0.1761 6.74 6.68
0.0 112.48 5.24 5.20 0.1415 542 5.37
0.1 105.65 6.63 16.52 0.1704 6.52 6.46

Limits of early exercise boundaries, S§, as function of mean jump size, -y; time 0 European, c, and
American, C, option prices as functions of -y; corresponding Black-Scholes volatilites (see describtion
below) and option prices. Parameters: r = 0.05,¢ = 0.05,0 =0.1,A =1.0,6 = 0.1,T = 1.0, 5(0) =
100.0, K = 100.0. ‘

In the jump-diffusion model the Q)-variance of the log-stock price is given by:

| 2
varg(ln S(t)] = (02 + A ( <7 - %52> + (52> ) t (43)

1



We will term the square root of lhls quantity opsv/t. Using this volatility we get the
optlon prices under the Black- Scholes model given in Table 1.

Noting that under Black-Scholes

the three cases in Table 2 be eql‘aal to A =

he limit of the early exercise boundary will in all of
100.0, we see that the differences of the

limit for the jump model to the limit of the Black-Scholes are rather large, between 5

and 20 pct. We also note that thisi
Going back to the notion critical
prices as time to maturity tends

For the case considered in Figure
equal to 88.90, which is consister

Comparing the early exercise bo
counterparts on the time scale [0,

Figure 3: Early Exercise Bound

difference increases as the mean jump size decreases.
strike prices, we note the limit of the critical strike

to zero is given by:

5(0)/S§ (44)
2 we therefore get a limit of the critical strike price

1t with the picture shown in Figure 2.
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Figure 4:

Early Exercise Boundary — Zero Mean Jump Size
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The Constant Jump Case

oo
)

In this section we will assume that the jumps are constant i.e. 6 = 0, and thereby:
1S(t :
;(T()) = (r—q—k\)dt + odW(t) + kdN(t) (45)
The distributional properties of the model and the European option pricing formula are
still valid with the minor modiﬁ‘pation that § has to be set to zero in (2), (13), (15)
and (17). I '
The partial integro differential eq‘uation (24) now reduces to:

oC aC 1 ., ,9%C
r+A)C =—+(r—q—k\S— + z025* :
(r+X) 8t+(r q Jf )SaS+205852+)\C(t,S(1+k)) (46)
The boundary conditions are of course still the same.

For the constant jump case we get a closed form expression for the limit of the early
exercise boundary when time tends to expiration of the option.

Result 3: The Limiting Behavior of The Early Exercise
Boundary in the Constant Jumjp Case.

In the constant jump case the limiting behavior of the early exercise boundary is given by:
ok . T r+A
%}S (t) = K max (1, . m) (47)
A proof is given in the appendix.
Again, to gain insight in why this result holds consider the pure jump economy, 1.e.
o = 0, at some time point just bifore expiration of the option. As in (42) we get the
present value of keeping the option:
MS(1+ k) — K)TAt
+S(1=(g+N)At) — K(1 — (r + \)At) + O(At?)
Setting this equal to the intrinsic value and dropping terms of higher order than At
yields the following equation forithe critical stock price: ‘
(g+N)S—(r+ MK = (N5 - AK)" (49)
Since the dividend yield is positivé the left hand side of this equation has a higher slope
(in S) than the right hand side, and goes through 0 in the point S = K(r + A)/(g + X).

So this point is the unique solution if and only if

JK > ;:;K®q2r(1+k)® ;:j >
If this is not the case the unique solution to (49) is bigger than KM XN = K/(1+k)
and equal to Kr/q. So we get what is stated in the result.
Setting 6 = 0 and varying v we get the limits of the early exercise boundaries and
the option prices shown in Table 2. We omit the trivial case v = 0, where the model
coincides with the Black-Scholes| model.
We note that the limits are lower than for the model with random jump sizes.
In the case when the jumps are positive, the American call option has an analytical

representation. Below we state this result.

(48)

(50)
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Table 2: Limit of the Early Exeﬂ'use Boundary for Different Values of the Constant
J ump Size

g S()“ C e OBS Cgs CBS
-0.1 109.97 5.29 5.27 0.1414 5.42 5.36
0.1 100.00 548 5.40 0.1414 5.42 5.36

*

Limits of early exercise boundaries, Sg, as function of mean jump size, <y; time O European, ¢, and
American, C, option prices as functions of -y; corresponding Black-Scholes volatilites and option prices.
Parameters: r = 0.05,q = 0.05,0 = 0/1,A = 1.0,6 = 0.0, T = 1.0, 5(0) = 100.0, K = 100.0.

Result 4: Analytical Representation of the American Option.

Suppose the jumps are positive, i.e. ¥ > 0, then the American option price can be
represented as: ‘

Tt XNvyr, \?

C(t,S) =c(t,S)+qS e'q”if—nl———)—@(dn(v, S, 8*(t + v)))dv

T—
—rK / e "
0

A proof is given in the Appendix.
It is important to note that the decomposition of the American call price is only valid
when the jumps are positive. The proof of the decomposition breaks down if the stock
price can jump out of the early exercise region.

A similar decomposition can be derived for models where jumps are stochastic but only
positive. As an example one could let In /() ’ N(-).

(51)
_-————4)—@((1”(1), S,5*(t+v)) — o/v)dv

~

The decomposition can be used fornumerical approximation of the price of the American
call option with finite maturity when we have only positive jumps. The idea is to use
(51) to obtain the early exercise boundary by a backward recursive procedure and then
plug the early exercise boundary back into the pricing formula (51) to obtain the price
of the American call. We will return to this in a subsequent section.

It is also worth noting that one could derive a decomposition like the one above with
maturity and strike as the variables and the critical strike as function of maturity as
the unknown. This would speed up the numerical calculations in the case where one
wanted to calculate more than one American option price.

Now we turn to the perpetual case.

Due to the time-homogeneity of our model we have that the perpetual American option
will only be a function of the current stock price and the optimal exercise boundary
will be constant. In the following we give the prices and the early exercise boundaries
for the American call option. The problem splits up into two cases: When jumps are
positive and when they are negative.
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Regylt 5: The Perpetual Amergcan Option.

1. If the jumps are positive, v > 0, we have that the early exercise boundary of the
perpetual call is given by:

1— rfe_;“ 3 e TS,/\U) <I>((r qa}:}\%v+m Uﬁ)dv
* - 0 n=0
St =K—2L (52)

N e~ Mv(\p)" (r—g—kX)v+ny
1—q[e > — + 20y )dv
[em Y =he (= )

The perpetual American call price is given by:

C(S) = qS/e_q” i N 5 (0,5, 5%))dv

= n!
(33)
X —Av /\7,
—rlx/‘“’Z (dn(v, S, S%) — ov/v)dv
. n=0
1. If the jumps are negatzve, v < 0, then the early exercise boundary is given by:
. B
S: =K
- Se=Kg— (54)
where (3 is the positive solution to the equation:
1 5 . 1
0:A(1+k)ﬂ+§02[32+(r—q—kk-—_—z-a2>ﬂ~(-r+)\) (55)
The price of the perpetual c%ll is given by:
Sy — K
C(8) =22 _25F (56)
| (5%)°

A proof is given in the appehdi)‘(

The result for negative constant Jumps in the above result is also found by Chesney
(1995).

It should again be noted that 51mllz{r formulas could be derived for models with stochastic
but exclusively positive or negative jumps.

It is rather surprising that the forms of the perpetual option price in these two cases
are -so different. It is worth notinE though that in the case when the jump size and/or
the jump intensity tend to zero the two solutions coincide. In fact the solution for the
positive jumps tends to the BlackrScholes solution, and this solution can be integrated
to give (56), as demonstrated by Kim (1990).

Let us now consider the difference between the perpetual option prices of the jump
model with those of the Black-Scholes model. For the two cases, v = +0.1, we get
the prices and the boundaries gian in the table below.

Figure 6 shows the differences in the perpetual option prices for stock prices around
at-the-money.

We note that even though the early exercise boundaries in the two cases v = +0.1
are very close, the prices of the perpetual options differ quite substantially in the at-
the-money region.
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Table 3: Perpetual Option Prices and The Early Exercise Boundaries

Y : C Seo CBs .BS
-0.1 15.71 153.78 16.19 155.83
0.1 16.33 153.66 16.19 155.83

Perpetual American option prices, C', and exercise boundaries, S5, as functions of +; corresponding
Black-Scholes perpetual American option prices. Parameters: » = 0.05,¢ = 0.05,0 = 0.1,A =1.0,6 =
0.0,7 = 1.0,5(0) = 100.0, A = 100.0.

Figure 6: Perpetual Option Prices Around At-The-Money

+/-0.1

18

17

16

15

perpetual option prices: jump models relative to Black-Scholes; gamma

|
|
% %8 1 100 102 104

| spot
Perpetual option prices as function of current spot. Parameters: v = 0.1 (top solid line), v = —-0.1
(bottom solid line), A = 0,0ss = 0.1414 (dashed line), r = 0.05,¢ = 0.05,¢ = 0.1, A = 1.0,6 =

0.0, K = 100.0.

Numerical Approximations

For the genéral case, when the jumps are random, the partial integro equation in (24)
can be solved by finite difference techniques. In Amin (1993) this was done using an
explicit finite difference approximation.“ Below we describe a general finite difference
method for solving PIDEs. As a s:pecial case it contains the explicit method by Amin
(1993), but it also contains PIDE analogous to the Crank-Nicolson and the pure implicit
approximation schemes. The main advantages of the implicit algorithms are that they are
more likely to be stable and that their convergence in general are of higher orders. The
basic idea is to approximate the derivatives and the integral in (24) by central differences
and a Riemann sum respectively and thereby turn the partial integro differential equation

4 Amin (1993) terms his approximation “a Markov chain approximation”, because he approximates the continuous dynamics
of the stock with a discrete process rather than diséletizing the PIDE by explicit differences. However, the two approaches result
in the same numerical valuation. :
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into a partial sum and difference lequation. First we make the transformations:
r=1InS
y=In(1+1) 7)
and redefine:
C(t,z) := C(t,e%) (58)
The PIDE can now be expressed as:
(r + A)C =
%%+ (r—q—k)\—%oQ % 7302227?+/\/C(t,x+y)¢(y)dy %

where ¢ i1s the normal density function:

ey — L (v—v+3%)
U(y) = NG exp ( 552 (60)

We evaluate the PIDE at the point (¢ + 0At, z) for some fixed 6 € [0,1] and make
the approximations:

C(t +0At, ) ~ (1 — )C(t,x) + 6C(t + At, z)

I+ IALT) L ot v Atlz) — Ot 2))

ot At
OC(t+0At,z) 1-—86
— ~ . — r—A
B SAS (Clt,xz+Azx) - C(t,x x))
+ %(C(t + Atz + Az) — C(t + At,z — Ax))
PC(t+45tz) 1-4
. ~ - Az) —2C(t t,x — A
52 (AI)Z(C’(t,aJ + Ax) (t,z) + C(t,x — Ax))
+ @ ? (C(t + At,z + Az) — 2C(t + At,z) + C(t + At,x — Ax))
| (61)
The integral is approximated by:
At |
/C<t+ 7,:c+y>u (y)dy ~
n (62)
> (1= 0)C(t,x + hAz) +6C(t + At, 2 + hAZ)[Y(hAz) Az
h=—n
for some number n. The choice of § corresponds to different schemes: 6 = 0

corresponds to a pure implicit scheme, § = 1/2 corresponds to the Crank-Nicolson
approximation, and § = 1 is equivalent to an explicit scheme.
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Plugging these approximations in‘lo equation (59) and rearranging yields:

S anClt,z+hAz) = Y BuC(t+ Atz + hAz) (63)
h=—n ‘ h=—n
with: Ly
_ r—q—k\~30° o2 B
a_p=(1-— 9)( AL 2(n)? AAzY(—Azx)

1 ; o?

_ r—q|— kA — %02 o2
a; =(1-0) (—- AL — 2(A$)2 — Mzy(Ax) (64)

ap = =M1 — 0)Azy(hAz) ,|h| > 1

30 = é +0 (—('r +3) - (;)2 + )\A:m//(o))

8
1-0
We limit the state space to the grid:

ti=1At ,i1=0,... . [; At=T/I

Oy = — Qp ,|h’>0

65
z;i=z+jAz ,j=0,...,J; Az =(T—z)/J ©
and supply the boundary conditions:
Clt,x)=¢"—K ,2>7T
(66)

Ct,x) =c(t,z) ,z<z
where the closed form solution of Lemma 2 is used for the European option price.

At each time point, ¢;, we now have (J + 1) equations of the type (63) — one for
each z;. These equations can be arranged into a (J + 1) x (J + 1)-dimensional matrix
equation of the following type:

AC(t;) +a(t;) = BC(ti41) + b(tiv1) 67)
where A is a (J+ 1) x (J +1) matrix with rows consisting of the numbers:
0,...,0,0pn,...,Q0,-.-,0n,0,...,0) (68)

placed so that the element ap is on the diagonal. The matrix B is constructed in the
same way but with elements taken from the 3’s. C(¢;) is the vector:

C(tz) = (C(ti,xo), cee C(ti,l’j), ey C’(ti, CCJ))I (69)
and a(t;), b(ti+1) are the (J + 1)-dimensional vectors with j’th elements:
E a,C(t;, zj+ hAx)
A zé|z,T]
hE{IhISnlzJThA ¢[z,7]} (70)
Z BrC(tix1, xj+ hAzx)

he{lhl<nle;+hAoglz ]}
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By_supplying the boundary conditions:

C(T,zj) = (6% — K)* -
Clt;, z;) > (€% — K)T

the full grid option prices can be solved by backward recursion where one at each point

in time solves the matrix system (67) and checks the free boundary condition. Zhang

(1993) establishes the convergence of the option prices in a scheme like this.

Due to time-homogeneity the matrix A is the same at all time steps so it need only be
inverted once whereafter the matrix equation (67) can be solved by multiplication. This
makes the routine fairly fast. For the case § = 1 (the explicit method) the matrix A
need not be inverted because it is| proportional to the identity. This makes the explicit
method marginally faster for a given number of state-space points. But the drawback
of this method is that it is potentially unstable. Unless the choice of At/ (Aa:)2 is
bounded by a certain constant, the method will not converge or be stable. This is in
fact true for all schemes with 6 > 1/2. Another way of speeding up the algorithm
is to take two different weights for the differential approximations and for the integral
approximation. One might for example set § = 0 on the differences and § = 1 on the
sums. The matrix A would then| be tridiagonal which would speed up the inversion
and thereby the algorithm considerably. Combining this with an approximation of the
integral that covers only a low number of points (say 10 points) would further increase

the computational efficiency.

All prices and figures in the previous section were produced with 6 =1/2 and

z =1n(S5(0)/4), T =1n(25(0))
I=.J=200 (72)
n =199

For constant jump sizes the grid is adjusted so that the jump falls on a grid point.
Instead of solving the backward BIDE (24) one might instead solve the forward PIDE
(28). This is computationally advantageous if one has to calculate more than one option
price. The same numerical technique applies to the forward PIDE.

Figure 7 illustrates the convergence of the finite difference scheme for the European
option case for increasing [ = .J = n + 1. Parameters of the scheme are as above.

For the positive constant jump case there exists another approximation method. The idea
is to use the decomposition in Result 4. First the time axis is divided by the time points:

t; =iT/I ,i=0,...,1 (73)
and the early exercise boundary is approximated by the sequence of discrete points:
{s7(%:)} (74)
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F igyre 7: Relative Error of Fini

te Difference Solution for European Options

<]
o

-1.0 -0.5

percentage relative error of European option price
-1.5
s

100

Relative percentage error of time 0 Eur
and stock price dimension. Parameters:
100.0. K = 100,T = 1.0.

The time integral in Result 4 is aj
we get the following expression:

C(t,S) ~ Ci(t, S) = c(t, S)

—(g+X)(ti—t) o (X (t:|—
+qS Z e\ : Z—"

nt<t; n=0
oo
. - —(r+/\)(ti—t) (A(tl _
K ) e >
1t<t; n=0

By Result 3 the limit of the early
the approximate early exercise bou
on the equation:

S7(ti

starting at time ¢;_;. Knowing the ¢
lated using the approximation Cy(¢
integral by a midpoint sum and line
the selected points. Another possib
For simplicity we choose only to de
noting that this approximation is a
should expect that for a given set

300 400 500

grid size

200

ppean option price as function of number of grid points in time

r = 0.05,¢g = 0.05,0 =01.2=10,vy=00,6 =01,5 =

pproximated by a right hand side Riemann sum and

(I)(dn(ti —t,5, S;(ti)))(ti —ti—1)

®(dn(ti —t, 5, S7(t:)) — ov/ti — £) (ti — ti1)

(75)
exercise boundary at expiration is well-known so

indary can now be identified by backward recursion

) — K = Cy(t;, S7(t;)) (76)

carly exercise boundary the option price can be calcu-
,S). One could also choose to approximate the time
:arly interpolate the early exercise boundary between
le approximation is to use a trapezoid approximation.
>scribe the right hand side approximation. It is worth
pproximating only the time integral. Therefore, one

of time-points this approximation would be more

precise than the finite difference a

roximation. Clearly this approximation will always

converge as the number of time points / tends to infinity.
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The following approximation is ng

t a discretization but rather based on neglecting a term

in the PIDE. It is therefore not clear how well this approximation works. Chesney (1995)

suggests this approximation of the
case. The approximation has pr
Baron-Adesi and Whaley (1987).

American option price for the negative constant jump

eviously been applied in the Black-Scholes case by

The idea is the following. Since C and c satisfy the

same linear PIDE on the continuation region so does C —c. Define X () = 1— e—r(T-1)
and f by
Xf=C-c (17)
then f solves:
. of Of 1 5.5, 0%f
A X)f=X— —q—kN)SX - X—= +AXf(t :
(r+AX)f Xat+(r q ) aS+2cf5 a52+ f(t,S(1+k)) (78)
If we neglect the term XJf /0t we obtain the following equation for f:
r _ nedf 1 5 f :
(£ +A)f = (r =g = kNS5 + 502 =2 + Af(6, S +K)  (79)
A solution to this equation is
9(0)S(t)™" (80)
where ¢(t) is a time-dependent function and 3(t) solves’
1. : 1 . r
= A1+ k)Y + Z6%6(1) —g—kA—=02)B(t) = [ ==+ A 81
0= A1 +R)" +5078()" H {7 -0 507 ) B(t) S ON (81)
defining:
C t,S(t)) =3(t) - K (82)
and imposing the high contact condition (see lemma 2(ii.)):
oC (. 4
ﬁ(t,S(t)) =1 (83)
we obtain the following approximation of the American call option price:
' ~ O\ A1)
Cp(t, S) = clt, S) + At) (S/5(1)) (849)
where S(t) is the implicit solution to the equation:®
) ) 8c<t, S’(t)) 3(t)
K = — 86
$) - K =c(4,50) + |1 — 20 (86)
3 Note that when T — oo, 8(t) tends to 3 of the perpetual option.
6 Note that Be(t, § . X (xim)
e(t, —qv e~ MU (AN)"
55T = ¢ 1;0—-—-—-, ®(dn)
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and A(t) is given by:

A(t)

The curve {S’(t)
form of the approximating optio
approximation.

} approximates

In Table 4 we compare the two
solutions for at-the-money option
The number of time points for th
difference method is applied with

Table 4: The two Alternative Aj

n

t,5(t)
aS

1— 36( ) @87

the early exercise boundary. Due to functional
price we will term this approximation the power

alternative approximations to the finite difference
s for different dividend yields and jump intensities.
e integral approximation is set to 100 and the finite
the parameters given in (72).

pproximations Compared to Finite Difference

q Cp Crp Cr Crp
v=—-0.1 v=-0.1 v=20.1 v=0.1
0.05 5.32 5.29 5.49 5.48
0.10 3.53 3.47 4.11 4.09
0.15 2.39 2.38 3.25 3.24
0.20 1.66 1.69 2.66 2.64
A Cp Crp Cr Crp
v=-0.1 v=-0.1 v=0.1 v=0.1
0.5 4.63 4.60 4.72 4.71
2.0 6.50 6.47 6.77 6.76
5.0 9.17 9.13 9.62 9.61
10.0 12.39 12.34 13.02 13.00

Time 0 American option prices of powe
to finite difference solution, Crp, for di
Base case parameters: © = 0.05,q = 0.

We see that the deviations betwee
solution are rather large, with a m
magnitude of deviations might be
approximation, on the other hand,
maximum relative deviation is less
seem to be a little bit lower than tt
the higher theoretical precision of]

that the finite difference approxim

American options.

r approximation, Cp, and integral approximation, C, compared
fferent values of the dividend yield, ¢, and the jump-intensity, A.
5,0 =0.1,A=1.0,6§ =0.1, S = 100.0, K = 100,T = 1.0.

n the power approximation and the finite difference
aximum relative error of approximately 2 pct. Such
too high for many applications. The time-integral
is very close to the finite difference solution and the
than 1 pct. The prices of the finite difference method
10se of the time-integral approximation. Considering
the time-integral approximation this might indicate
ation in our implementation slightly underprices the
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Figure 8: Early Exercise Boundaries — Power Approximation versus Finite Dif-

Rt
ference

120 125

115

early exercise boundary: approximation versus F.D.; gamma=-0.1

110

T T T

0.0 0.2 0.4 0.6 0.8 1.0
time

Early exercise boundary of power approximation (solid line) compared to early exercise boundary of
finite difference approximation (dashed line). Parameters: r = 0.05,¢ = 0.05,0 = 0.1,A = 1.0,y =
—-0.1,6 = 0.0,T = 1.0, K = 100.0.

Figure 8 and 9 show the early exercise boundaries of the two alternative approximations
compared to those of the finite difference solution.

The difference between the early|exercise boundary of the power approximation and
the finite difference solution is rather large and it seems to be increasing as time to
maturity increases. The power approximation might therefore be too inaccurate for
exercise decisions.

For the time-integral approximation we see that the two boundaries are fairly close and
that the difference seems to be constant over time. The discrepancies might be attributed
to the fact that the finite-difference approximation only considers discrete points in the
stock price dimension and that on average the true boundary (in z terms) will lie Az/2
below the boundary showed by the finite difference approximation. We note that there
is a slight tendency of instability|for the time-integral approximation for times close
to maturity. In our implementation this was a persistent but not a serious problem for
moderate jump intensities.

Regarding computer-time, the power approximation is much faster than the time-integral
approximation which again in our implementation shows to be marginally faster than
the finite difference approximation. But the finite difference approximation can also be
used in the random jump-size case, and it applies to various other types of derivatives
such as barrier options, lookbacks, and Asian options. We will return to the pricing of
exotic options in a jump-diffusion context in another paper.

|
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Figure 9: Early Exercise Boundaries — Time-Integral Approximation versus Finite

Différence
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time

Early exercise boundary of time integral approximation (solid line) compared to early exercise boundary

of finite difference approximation (dashed
01,6 =0.1,T = 1.0, K = 100.0.

line). Parameters: r = 0.05,¢ = 0.05,0 =0.1,A = 1.0,v =

Conclusion

In this paper we have derived a forward equation for American option prices in a
Jjump-diffusion setting. In the paper we have focused on its application to pricing a
full continuum of American option prices. But as mentioned the forward equation

has another interesting application.

It admits a static estimation of the risk-adjusted

parameters from observed American options prices. Moreover it is our belief that this
type of forward equation also might be derived in other time-homogeneous models,
such as recent models where the stock price follows hyperbolic distributions, see for

example Chang and Madan (1995)

This again allows static estimation of risk-adjusted

parameters from American option |prices in these models.

We have shown that the American option pricing problem in the jump-diffusion setting
differs from the continuous path setting in the way that the limit of the early exercise
boundary when time tends to expiration of the option might be considerably higher than

in the continuous path case. Empiri

al observations of the exercise behavior of currency

options on exchange rates in non-fully credible target zones might confirm this.

For the perpetual option we have obtained closed form solutions in the constant jump
case. These solutions might be valuable for corporate finance models like Leland (1994)
with the underlying value process following noncontinuous dynamics.

The last section has described a general finite difference method for the solution of
PIDEs. This method will apply to|the valuation of other types of options. Finally we
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have described two alternative approximations of the American option price when the
jumps are constant.
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Proof of Lemma 2 (iii.):

Let 7* be the optimal stopping {
have that:

C(t,S) =E2 [e—r

From this it is easily verified that
Since C is continuous, increasing,

S

it follows that

for all S > S*(t). Moreover since
S—-K

for any ¢ satisfying t < t +¢€ < ]
this with (90) we have that the st
connected sets.

Appendix

ime for the American option pricing problem. We

\M(r*)

M(t) (88)

— ( Selr=a)(r"—t

]

C' is decreasing in ¢ and increasing and convex in S.

and convex in S, and the fact that:
- K<C{S)<S (89)
C(t,S)=S—-K (90)
C is decreasing in t we have for all S > S*(¢) that
=C(t,S) > C(t+¢,S5) 9n

. This means that S*(-) is decreasing. Combining
pping region as well as the continuation regions are

Since C is continuous the continuation region is open and the stopping region is closed.

O

Proof of Result 1:

Reconsider the stopping time prot

C(Ov 507 Ta K)
Changing the martingale measure

C(0,50;T,K) =

where 7; 7 is the set of all stoppir

lem at time O:

= sup EQ{G_TT(S(T) - K)+} (92)
T€To,r
to Q' gives us the following representation:
: SoK\ "
sup E€{e ™" (S — ——0—>
TE%,T S(T) (93)
sup EQ’{e_qT(So - Y('r))+}
T7€T'0,T
ng times on [0, T] for the process:
SoK
Y(t) = —— 94
(t) 50 (94)
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Using Ito’s lemma yields:

The problem is now turned into
underlying process and consequer

— kA)dt —

I'(t)

1+[(t)le()

adW'(t) —
Y(0) =K

(95)

a put option pricing problem with a well-behaved

itly we can write

C(0,80;,T,K) =v(0,Y;T) leK (96)
where /(-) is the unique solution| to the PIDE:
(g+ Ny =
' o 1 5 0% o’ Y 97)
— — —_— = —T
(r—gq LA)YaY 5 Yay2+/\E ’1+I”
on
{E& (Y T) > (So - ¥)*} 98)
subject to the terminal boundary condition:
UTY;T) = (S0 - Y)" (99)
and the free boundary condition:
U(t,Y;T) > (So—Y)" (100)
Due to the time-homogeneity of the backward equation we have that:

Combining this with (97) we obta
O

Proof of Result 2:

By Lemma 2 we that S*(-) is decr

a strictly increasing sequence witl
has a limit.
Define S**(¢) as the implicit solu

S**
Since
c(t, §) — (e-
and
e—q(T—t

in the forward equation (28).

easing and clearly S*(T') = K, so if we let {¢,} be

1t, < T and lim t, = T, the sequence {S*(¢,)}

n—oo

tion to the equation:

t) — K = c(t, S™(t)) (102)
qT-1)g _ o=r(T~1) K) —~ 0 (103)
S—o0
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for

we have that a finite S**(¢) exist
1S unique.
Since C > ¢ we have that:

for all n. So:

lim su
n—oc

Now let 7" be the optimal stoppin
that:

0 < Ctn, S) — c(tn, S)

< E2 [e-""“*—tn)(S(T*) K

Flrer + 7T (S(T) = K) 1y

—E2 [e“""<T—fn>(5(T) R

= SEtQ, [e_q(T*_tn)lT*<T] _

Take S > lim inf S**(¢,,). Then ¢(

n—oo

5S> K

p

1 — e——‘r(T—t)

=} (105)

s for all ¢ and since 9¢/dS < 1 forall t < T, S**

S*(tn) < S*(tn) (106)

S™*(tn) < lim S*(tn) (107)

g time for the American option and fix S. We have

[ 1recr + e T (S(T) = K)* 1]

(108)

tn,S) < .S — K for infinitely many n. Suppose that:

then there exists an n’ so that S < S*(¢,,) for all n > n’ and thus:

for all n > n’. Thereby there exi

C(

for infinitely many n. But this contradicts (108) so we conclude that

S < lim S*(t,) (109)
5 — K < Cltn, S) (110)
sts an € > 0 so that

tn,S) — c(tn, S) > € (111)
S > lim S*(t,) (112)

n—o0
\
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and thereby that:

limi
n—ag

We have now found that the sequ
to the limit of the sequence {S

We now consider the limit of S
In the following we will in gene
and o(-) for the standard norm
f(x) = O(g(z)) near a point x
will let f(z) = o(g(z)) denote t
Using Lemma 1 we get:

(tn) > lim S*(tn)

n—oo

nf S** (113)

lence {S**(¢,)} has a limit and that this limit is equal

(tn)}-

"*(t) as t — T. _

ral use the notation v = T — ¢ for time to expiration

al density function. We will also use the notation

o if f(z)/g(x) T h for some constant A and we
—+ZTo

he situation when A = 0.

5 0D G (4 (v, S (E), K) — va(v))

4 n

=0

i 1—e

1— e—(r+

w 3 N g(g (v, §* (1), K))

n=0

MY B(do(v, S*(t), K) — vo(v)) + O(v)

(114)

1 — e
In order to calculate the limit we

In (5™ (1)/K)

fo—

where ko is a nonnegative finite

lim g

1T

Hence

S

o (S™(t)/K)

(@+Xwd(dy(v, S*(t), K)) + O(v)

> distinguish the two cases:

— ko

Tr—t T

(115)
T —t T
number. In the first case we have that

lo=£iTr¥do—l/0:k0/o’ (116)

(8) _1—®(ko/o) _

lim
1T

which again is consistent with (1

Now consider the second case. S|

that S**(-) is analytic for t < T.

In (¢

with hg being a nonnegative const

hi(T) = 0. If hg = 0 we must

B 1= ®(kojo) (17

15) in the sense that In (S**(¢)/K) v 0.

**(-) is bounded from below by K and (114) implies
For t < T we can therefore write:

;**(t)/K) = ho + h1(t) (118)

ant and h; () being an analytic function on [0, '] with
again have that:

lim 57 () =

1
T K

(119)
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If ho is positive need to apply I’Hospital’s rule to gain the limit of (114). To do this
we need to make some prior observations. We have that

In (S**(¢)/K)

T—t

_ho + hi(t) _ 0((T— t)_1/2) (120)

T—t

near T. Moreover since hj is analytic and h;(T) = 0 we have that:

0= ha(t) + h’l(t)(T—t)+(’)((T—t)2> (121)

for t < T. This means that:

and thereby that:

R (t) = 0<(T - t)_1> (122)

A Im(S™(M)/K) _ M) | Tho+hi(t) _ o(w-4"*)  a

ot T—t Vv

near 1.

For n > 1 we have:

4y = In (S (t)/A)-{T(r—q‘— EXv + ny _.l\/m
Va2v + né? 2 (124)
In (lim S**(¢)/K) +ny l\/ﬁ‘é
1T V/né 2

and by (122):

Ndn — vp)
ot

_ Ry (t) +1ho+h1(t) + ('r—q—k/\)v-i-n'yo_2~ 7"—q-—k/\—%c72 (125)
Volv+né? 2 (v + n62)3/2 Vo?2v 4+ né?

=o(v7!) + O(1)

After these considerations we are ready to apply 1’Hospital’s rule to (114). For the
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numerator we get:

6]
v —(r+X\)v
(r+ Ae )

n=0

n=

n—1
e~ (rHA i (Av)

n=1

= ()" (
Lo 3L (Av) 3 — ) 222

n=0
= (r+A)e T
_ /\e-—(r+)\)v(q)(ay

+ e—(r—i—)\)-v(;b(do

> (A)”
retrs e

n=1

—(r+ /\)<I>(+O

+— 1g)-

v(@(dg — o) + O(T — 1))

1—v1) +O(T - t))
d(do — o)
Jt

(dn = vn) ot

()

+o(+o(v?
Av)"

o0

n=1

+ O(v)

- 714+ 1-—-4
1T

Applying the same analysis to th

T+

In (lim $**(t) /K) + 7
A® ar

6

ol

(1 _1) + (’)(1))

a(dy —

Un)

(m (13%1 57 (1) /K) +r
: _

e denominator yields:

6

( lim s**(t)/K)
tTT

. %6 +0<v1/2)

1 =
tlTI’}l I\
g+ N

So for the second case considere

hm S (t)/K |+
tTT
1= ;

d here we have that:
. S™(t)  Sp
| = =
ar K K
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1
56

(127)
+ %6))

(128)



We_conclude that:
lim
AV
and the result follows.

O

Proof of Result 3:

As in the proof of Result 3 we h
the one for the European, defined
in the previous proof we have th

S**(t) = max (K, Sp) (129)

ave that the boundary for the American option and
by (101) coincide in the limit. Using Lemma 1 as
at:

x v
gy 1€ —éﬂ (dn(v, S™(t), K) = 0/7)
S*(t) ne
K - 20 e~Mu()! -
' 1-emt 3 e (da(v, S (1), K) (130)
| e OB, 5 (1), K) — oy/T) + O)
1= e (@ 0(do(v, S**(1), K)) + O(v)
As in the proof of Result 3 we split the limit into two situations:
El(ST(t)iA) ?}ko
— t
- i (131)
(S W/K)
T—-t 0T

where ko is a finite nonnegative
when:

We now consider the second case
we get:

(7, + )\)e—(r+/\)v

(o8]

_ )\e—(r+)\)v Z‘

n=[1

o0

4o (A Z

n=0
=(r+ Ae
_ /\e—(r+)\)v (‘I)

+ e—~(r+x\)’u¢(d0

o0

4o tv§

n=1

—(r+H

number. The first situation corresponds to the case

im
1T A
and use 1’Hospital’s rule on (130). For the numerator

=1 (132)

2 ()"

Z{) ( n! (I)(d” o Uﬁ)
()\v)n—l
(n —1)!

(Aw)"
n!

®(dn — o/v)

¢(dn — av/v) A — 7v/0) gtaﬁ)
A ((do — o/v) + O(T —
(dl - 0’\/2_)) +O(T — t))

- 0\/1_)) 9(do gtaﬁ)
Av)"

8(dn — /) 2n — TV gf‘m

(133)

t))

(
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By arguments similar to the ones

dp—oVT —t= O((T _ t)_1/2>

a(d,, — 0

d
So the third term and the fourth
The first term tends to:

For the second term there are ag

1T

1T

F=o(ir o)

term tend to zero as £ T 7.

T+ A

ain two cases:

lim <ln§— (t) +7> <0=>di — —
I 1T

1

lim <In§— (t) +”,> >0=d — 400
| tT

K

In the first case we can conclude that:

This is consistent with (136) if 3

T+ A
q-+ N

In the second case we have that;

which again is consistent with (1

S*™(t) T4+ A
K arq+ XN

ind only if:

T r+A
1+ <le -< ——
) qg g+
S**(t) T
- ._—) -
K #Tq
37) if and only if:
T r+ A

g q+ XN

Finally we see that the border case:

4]

is exactly the situation when:

Hence:
S** (t)

lim (lnS _(t) +’y> =0

K

T r+ A
q—q+/\’
— K max 1,£,T+/\
1T g g+ XN
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in the proof of Result 3 we have for all n > 0:

(134)

(135)

(136)

(137)

(138)

(139)

(140)

(141)

(142)

(143)

(144)



Prggf of Result 4:

Since C' and 9C'/dS are continuous, decreasing in ¢ and increasing in S, respectively,
and
S—-K)y"<c<s

(145)
0<9C/aS <1

C,0C/dS are absolutely continuous in the ¢ and the S direction, respectively. Therefore
the derivatives dC/dt and 92C/8S? exist almost everywhere in the two dimensional
Lebesque sense (the exception is| the early exercise boundary) and we can therefore
apply Ito’s lemma to C/B and get:

LC.5(0)
B(t)
1s—y<s=(t—) [OC ac 1, 9*C 9
— -~ — g —hkN)S—= + =0°S— + AEZ[AC] —
B(D) at—i—(r q A)Sas+205852+ < [AC] ertv
lg(iy>5-(t~
G i G} 15)’(>:) D [(r — g — k)5 + ABZ[AC] — #(S - K)]dt + dH (1)
(146)
where H is some Q-martingale and A is the difference operator
Af(S) = f(S+1)) - f(S) (147)

First note that by the PIDE (24), the ﬁrst term in (146) is identical to zero. Next note
that since jumps go only upwards AC' = AS on the stopping region.” We therefore get:

Ct,S@®) _  lse-)>s-(t-) .
d BO B [¢S(t—) — rK]dt + dH () (148)

Integrating from ¢ to 7 and multiplying by B(t) yields:

B(t) \

B—T)C(T, 5(T)) — C(t, S(t))

=e " T=0(8(T) — K)" — C(t,5(1)) (149)
T

= / e " (¢S (w) — TK) 15> s-(uydu + H(T) — H(t)
) |

Taking conditional expectations, rearranging, using the Fubini Theorem, changing the
measure and applying the distributional properties (15) and (16) yield the result.

O

7 This property is absolutely essential to the prloof. If jumps could go downwards, equation (147) would have an extra term.
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Proof of Result 5:

To prove (i.)- we see from Lemma 1 that:
t) — 0 (150)
T—o0
Using Result 4 we have at the early exercise boundary:
s o0 Ny, \T
. \ A
S2 - K= a5t [ Y] T a0, 5%, S5
o | (151)
20
- —-rv = e_)\U(Av)n * *
—rK [ e Z(]-—n!—@(dn(v,sm,sm) — ov/v)dy
0 n=

Rearranging yields the result for ¢

The price is obtained by inserting

To prove (ii.) note that the partial
-option reduces to the time homog

(r+XNC(S)=(r—q—kX)

subject to the boundary condition

S >

q
N

C(
ac
{

C(
S%

A

The last boundary condition shoul
exercise boundary should maximiz
The object is now to find the unique
(153).
If @ solves (55) then ASP is a so
boundary condition can only be s

Since the right hand side of (55) is
values for 8 € {0,1} and since it

exactly one solution that is strictly
The second boundary condition in

g

he early exercise boundary of the perpetual option.
SZ%, in the pricing formula of Result 4.

difference and differential equation for the perpetual
eneous equation:

SC'(S) + ;02520"(5) + \C(S(1+k)) (152)

S:

C(S) 2 (S-K)*
5) =S5 — K
S%)
1S

.,

=1

(153)

)

= arg max C(S;5™)

d be interpreted in the sense that the optimal early
e the call value for all stock prices.
= solution to (152) subject to the boundary conditions

lution to (152) for any constant A. But the fourth
atisfied when

B>0 (154)

1 convex-and increasing function in 8 with a negative
tends to infinity for § — oo, the equation (55) has
y greater than 1.
nplies that:
A=K (155)
(55"
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Maximizing the call value:
S — K
= 5P (156)
(55)

over all possible early exercise strategies yields:

. _ B
S°°_B—1

K (157)

for all S.
We note that the first boundary condition as well as the high contact condition are
satisfied by the solution. This concludes the proof. '

|

37




References

Aase, K. (1996): “An Equilibrium Approach to Derivative Securities: Stochastic
Volatility and Survival”. Working Paper, University of Oslo.

Amin, K. (1993): “Jump Diffusion Option Valuation in Discrete Time”. Journal
of Finance, 58, no. 5.

Baron-Adesi and Whaley (1987): “Efficient Analytic Approximation of American

Bjerksund, P. and G. Stensland (1992): “American Exchange Options and a Put-Call
Transformations”. Working Paper, Norwegian School of Economics and Business
Administration.

Black, F. and M. Scholes (1973): “The Pricing of Options and Corporate Liabili-
ties”. Journal of Political Economy, 81, pp. 637-654.

Chang, E. and D. Madan (1995): “Volatility Smiles, Skewness Premia, and Risk
Metrics: Application of a Four Parameter Closed Form Generalization of the
Geometric Brownian Motion”, Working Paper, University of Maryland.

Chesney, M. (1995): “A Simple Method for the Valuation of American Options in
a Jump Diffusion Setting”. Working Paper, HEC, Paris.

Dellacherie, C. and P. Meyer (1982): “Probabilities and Potential”. North-Holland
Publishing Company.

Kim, J. (1990): “The Analytical Valuation of American Options”. Review of
Financial Studies, 3, pp. 547-572.

Leland, H. (1994): “Corporate Debt Value, Bond Covenants, and Optimal Capital
Structure”. Journal of Finance, 59, no. 4.

Mastroeni, L. and S. Mulinagci (1996): “An Integro-Differential Variational In-
equality and the Pricing of American Options in a Jump Diffusion Model: Bounds
and Stability”. Working Paper, University of Rome.

Merton, R. (1976): “Option Pricing when Underlying Stock Returns are Discontin-
uous”. Journal of Financial Economics, 3, pp. 125-144.

" van Moerbeke, P. (1976): “On Optimal Stopping and Free Boundary Problems”.
Arch. Rational Mech. Anal.,|60, pp. 101-148.

Zhang, X. (1993): “Options Americaines et Modeles de Diffusion avec Sauts”.
C.R. Acad. Sci. Paris, Serie I, pp. 857-862.

38




The Passport Option

Leif Andersen!, Jesper Andreasen?, Rupert Brotherton-Ratcliffe!

Preliminary Version

First Draft: January 26, 1997
This Version: February 13, 1997

lGeneral Re Financial Products, 630 Fifth Avenue, Suite 450, New York, NY 10111
2nstitute of Mathematics, Aarhus University, DK-8000C, Denmark




The Passport Option

Abstract :
A passport option! is a contract that grmts its holder the right to repeatedly switch

between short and long positions in a£ underlying asset. The gains on the stream of
short/long positions are accumulated and paid at the option maturity, if positive. Working
in the framework of geometric Browm'a.L'l motion, we show that the value of the passport
option is the solution to a Markov sto{chastic control problem. We derive the optimal
switching strategy and a partial differential equation satisfied by the asset-deflated option
price. A closed-form solution is derived| for the special case where the underlying asset is
a martingale under the risk-neutral measure. For the general case, the paper illustrates
how a Crank-Nicholson finite difference scheme can be used for practical computation of
the option value. The numerical schem§ developed in the paper is applicable to a number

of variations on the basic passport optim;n contract.




1. The Passport Option
Consider a time horizon [0.7] and A+1 |discrete dates f,,f,,ls.....¢5_;,t, , Where ¢, =0 and
t,=T.Ateach ¢, i=0.2,..., H -1 an investor takes a position u(f;) €[—1.1] in an asset
S: the position is held over the interval|(¢,,¢,,,]. The choice of u(¢;) is determined by the

investor at time ¢,. The accumulated gain of the asset holdings over [0,77] is

H-1

D u(t)S(t,) - S (1)

i=0

Under the terms of the Furopean passport option contract, the option holder has the
right, but not the obligation. to receive this gain at the option maturity 7. The payout of

the option at 7 is thus

[2 Wt S (1,.0) - S<r,-)]) @)

i=0
where we have used the notation z” = (z,0).

The most salient feature of the passport option is obviously the H rights to alter the
position in the underlying asset. While in practice the choice of the holding strategy u
might be "irrational" and dictated by external hedging needs?, the seller of the option
clearly must assume that the buyer wi‘ll attempt to maximize his financial gain on the
contract. Unless the buyer of the optidp contractually agrees to a specific strategy, the
passport option will consequently alw;/ays command a price that corresponds to the
strategy u for which the option value is maximized. Determination of this strategy is, as

we shall see, generally a non-trivial problem.

The rest of this paper is organized as follows. In Section 2, we provide notation and state
our process assumptions. Section 3 analyzes the pricing of European passport options for
the case where changes in holding strategy takes place in continuous time. In Section 4,
we address the numerical implementation of the results derived in Section 3. Section 5
contains various numerical results, and Section 6 discusses extensions of the numerical
method to more complicated options. Finally, Section 7 contains our conclusions and

some directions for further research.



W&

2. A Continuous-Time Framewc
Let us consider a standard Black-Sch
account B and a dividend-paying stock:

evolves deterministically
B(t) =exp(rr)

We assume that S pays a constant divid

Brownian motion with constant volatil

the absence of arbitrage dictates the

ork
oles economy with two assets: a money-market

S. Assuming a constant risk-free interest rate r, B

end yield of y and follows a one-factor geometric

ity o . According to Harrison and Pliska (1981),
existence of a probability measure Q (the "risk

neutral” measure) under which the process for S can be written as the stochastic

differential equation (SDE)

dS(t)/ S(t) = (r —y )dt +cdW (1

here, W is a standard Brownian motion

To characterize the short/long strategy ¢

adapted process {u(t)}oe,r>, Where u

introduce the gain process*

w(t) = jo'u(s)dS(s)

or
dw(t) = u(t)dS(t), w(0)=0.

Equation (4a-b) is a continuous-time

sufficiently small time increments #,

although the value of the passport optio:

~—~"

under Q.

f the passport option holder, we now introduce an
(t) e[-1,1]. With this definition of u, we can

(42)
(4b)

version of the discrete gain process (1). For
—t, in (2), (4a-b) is a reasonable approximation
n will be biased high’ (see Section 6.2).

For a given holding strategy u, the paydut at expiration 7 of the European passport option

is defined as

VT)=wT)".

As ¥,/ B is a martingale under (), the time ¢ option value 1s



Fy=e™" ’4"’E,,Q[W(T)’]
where EY[] denotes time ¢ expectation 1

We stress that the pricing equation (5) h

allowing the option buyer to chose u fr

European passport option is the maximum

(5)
under the probability measure Q.

olds for any fixed strategy u. As discussed earlier,

eely in [-1,1] implies that the fair value V of the

V(t)=sup, gy V(t) = Sup,q_ }e-r( TECIW(T)] (6)

where. from (4b).

dw(t) = w()S(t)(r =y )dr +u(r)o

Equations (6) and (7) together form a

terminal bequest function and u the cont

3. Solution

S()dW (1) ) 7)

stochastic control problem with w(7)" being the

rols.

As the process (7) for w depends on S, we first attempt to introduce a shift of probability

measure that will remove S from the
Theorem (Karatzas and Shreve (1994

measure (' under which

dw'(t)=dW(t)-odt

is a Brownian motion. We have

Proposition 1

SDE for w. Specifically, we use the Girsanov

), Section 3.5) to introduce a new probability

&

Define x(f) = w(t)/ S(£), v,(£) =V, (1)1 S(t), and v(£)=V(£)/ S(¢). (5) and (6) can then

be written

v, (1)=e"ES [x(T)"]

9



\’(t) = Supue{-l,l] vu([)

where

(10)

dx(t) = [u(t) = x())(r =y )t +[u(t) = x(O)lodW' (1) . (11)

Proof:

First. notice that as ¥V, (t)/ B(t) is a martingale under O, we can use the Martingale
Representation Theorem (Duffie (1996), p. 287) to write

av (e)/ V. (t)y=rdt +o(t)dW(t)

tor some volatility function ¢(¢). From,

Ito's lemma and (8)

dv, (1) v, ()= (y +0° —o(t)o)dt +(9(t) ~c )dW (r)
=ydt +(p(t) = )dW' (1)

whereby we conclude that v (t)e™ isa

v ()=e" TE v (T)] ="

(O'-martingale. That is, we have

VEP[x(T)"]

which is (9). (10) follows directly from (6). (11) follows from (7) and Ito's lemma. &

With Proposition 1, we have reduced th

one-variable (x) setting. To proceed, we

Lemma 1
In the absence of arbitrage, the S-deflate

e stochastic control problem (5), (6), and (7) to a

first need the following lemma:

d option value v is an increasing function of x:

x* > x® = v(t,x?) = v(t,x?)

Moreover, v is a convex function of x:

(12)



it (=i = )+ (- ve xS ) 2 v x "), (13)

for 7. €[0.1].

Proof:
To prove (12), consider two investors 4 and B, each having purchased identical 7-

maturity passport options. The two investors have chosen different strategies u over [0,7],

resulting in different gains at time ;. We assume that 4 did at least as well as B, i.e.
L wl() = w'(r). _ (14)

| Now assume that B's optimal strategy going forward is u,(s), t <s<T.From (5), we can

write the fair value J”* of B's option as
Vo) = V()= e-’”'-”E,Q[(Aw”(t, T)+wi(t))’

‘I. * .
where Aw?(r.T) EJ. 1,(5)dS(s).

As B's optimal strategy may or may not be the same as 4's optimal strategy, we have the

following inequality for the fair value of 4's option

VA =V 2V = e"‘T"”E,Q[(AwB(t, T)+ w‘4(t))+} > V5(r) (15)

|
The last inequality follows from (14). Dividing (14) and (15) by S(¢) results in (12).
To show convexity, we introduce a third investor C and replace (14) with the condition

W (£) = Awi() + (1= MwE (1) (16)

With B's optimal strategy being u,(s),/t <s< T, obviously

rinzvio,
Ve()= V"?;(t).




We thus have

PO+ (1= () 2 V) + (1= &

(A1

> e"(r_')E,Q[(Aw

= "-’>E;-’[x

=Vt

The last equality follows from (16). [

result. &

s &

0 .
. Witl

W (1)
v (1. T)+ WA(f)Y +(1- )»)(AW”([~ T)+ “'(b([)y]

(6, T)+awi () +(1- x)w"(t))*]

(17)

ividing (16) and (17) by S(¢) gives the desired

-1
Define now sign(z) =
g(z) {1, 220

the main result of this section:

Proposition 2

The S-deflated option price v(t) is a f
optimal holding strategy {#'(£)}ogcr» ¥

w(t)=u(t,x)= sign((r -y )%

%y )
and —- > 0. v satisfies t

where a_v >0 >
Ox

Ox

ov
—+

. o 1 .
—_ — _.__.+_ —
o (u —x)(r Y)ax 2(u

h Proposition 1 and Lemma 1, we can now state

unction of only 7 and x(r), v(¢)=v(r.x(¢)). The

(r) e[-11], 1s given by

b aZV
-X0°— 18
Ox” ) (18)
he partial differential equation (PDE)
2
oY —yy (192)
Ox”

or, equivalently,



v ér 1 .-Gy ' 207
——x(r—y7)—+==(l+x 6 o=+ (r—y)——X0 | =7y (19b)
ct cx 2 cx- ax ox”

with boundary condition

VI =x(T).

Proof:
By Theorem 11.3 in @ksendahl (1993), the form of the SDE (11) for x under Q' allows us

to restrict the search for u~ to functions depending only on time and the current level of x,

lLe.
()= u‘(_l,x(z‘)).

Similarly, v(r)=v(t,x(r)). Applying the Hamilton-Jacobi-Bellman (HJB) equation (see

e.g. Oksendahl (1995), Theorem 11.1) on (9) and (10), we get

ov cv | 1 . L8
sup,,e{_]‘”{gﬁh(h—x)(r—-/_)a——+;(11—x)'6“§—yv}=0. (20)

The supremum in (20) is obtained at /= " (¢.x(1)) .

Setting
ov 1,8 cv , ov 1 , 0%y
C=(r-vy)—,C=—0"—,|C; =——x(r — — +=x%" -
GEOm)o s GEo om (G E XU e e

the maximum in (20) can be written

sup g iG + A(C —2xC,) + nC 21

ta
[

From the convexity properties outlined in Lemma 1, we know that d*v/ox* 20. As
consequently C, >0, the maximum in (21) will always be obtained for either A=1 or

h=—1. The obvious result is



. . . ) . _Ov , 0%y
u (t.x)=sign(C, —2xC,)=sign| (r =y )——-x0" — |.
ox ox~

The result év/6x >0 follows directly from Lemma 1. (19b) follows from (19a) by

insertion of (18) and using (z[)z =1 m

|
| : :
Not surprisingly. the optimal control is always either 1 or -1 (i.e. of the so-called "bang-

bang" type); allowing the option holder to take "fractional” positions (i.e. =1 <u <1) does

not add any value to the option contraCTt.

While we have used probabilistic techniques to derive the form of the PDE (19a-b), the
equation can also be derived from a "c}lassic” instantaneous hedge argument. Appendix A
briefly discusses this approach and alsp shows that the instantaneous hedge ratio is given
by |

OV

hedge ratio = %+ U —=v+u —x)éli
0 ow Ox

We notice that the hedge ratio will jump whenever the sign of u*(r,x(t)) 1s switched.

Corollary ‘
In the special case when r =y , the optimal holding strategy is

u'(¢,x(t)) = —sign(x(t)) = —sign(w(?)) . (22)
The valuation PDE becomes

ov 1 o%v
—+—(1Hx|)Y’c*— =vyv,
o Ty e o =y

<

T)=x(T)". (23)




When r=v .S is a martingale under Q (see (3)). This fact might appear to make the
result (22) problematic: if S'is a maninéale (under Q) without any predictable trend. why
is it possible to extract more value by :following (22) than by using a naive strategy, say
u(t,x(t))=17 To answer this question.‘ set » =y and consider the case where the option
holder must make his last change of strategy at some predetermined intermediate time
s €(0,7). Let us denote the fair value of this option V'. At s, the option holder has
accumulated a gain of w(s) and is faced with the decision of setting either u(s,x(s))=1
or u(s,x(s))=-1. Depending on whether a short or a long position is chosen, the

terminal payout is
\

|
u(s.x(s))=1: V(T) = (S(T) - i[S(s) - w(s)])+ (24a)
(s, x(s))=~1: VT = ([S(s) +w(s)]=S(T))". (24b)
(24a) is the payout of a regular call obtion with strike S(s)— w(s), while (24b) is the
payout of a put option with strike S(s)+ w(s). Applying the Black-Scholes formula
(Black and Scholes (1973), Merton (1973)) with r =y , we get

(590 = {N(dc)—[S(_S)_ W()INV(d, ~oVT=5), S(s) > w(s) 0250
w(s), S(s) 2 w(s)
T = { 55( 5)+ w(s)] \’(d )= S(s)N(d, 5T ~5), S(s) > —w(s) (25b)
S(s)< - w(s)
where
In(S(s)/[S(s) = w(s)]) + Lo *(T —5)
dL'
o T -5
~In(S(s)/[S(s) + w()]) + Lo (T —s)
dl’
oNT -5
and N() is the standard cumulative nonﬂal distribution.
Obviously, the option value at time s 1s 1
Vi(s)= MAX(V,\(5),V (s)) - (26)

10
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[t is easy to verity that the asymmetry of the Black-Scholes put and call formulas imply

that

w(s)>0=0 (s)>V,,(s) (27a)
w(s)=0=V_(s)=V_(s) (27b)
w(s)<0=T_(s) <V, (s). (27¢)

From (26) and (27a-c) we conclude that a) the right to shift at time s is, indeed, worth a
positive amount; and b) the optimal strategy at time s is u(s,x(s)) = —sign(x(s)) . Notice
L that (27a-c) i1s a consequence of the skew of the log-normal distribution of S. Had §
" instead been normally distributed, V| would equal V', for all w(s), and the right to

F switch would have been worthless®.

For later use, we now set v'(¢,x(¢))=V"*(¢,x(¢))/ S(¢), and notice, after straightforward

manipulations, that (26) can be written as

vs(S,X(s)) = e“y(T—.r){x(S)+ +N(d)- (1+| x(s)|)N(d -G \/}*_“E)} ’ 28)
d= —In(I+x(s))) +Lc*(T - s)
B oNT -5 I

Returning to the case of infinitely many switching rights, but still » =y , it turns out that

the PDE (23) is sufficiently simple to allow for a closed form solution:

Proposition 3
In the special case of r =y , the solution to (23) is given by

v(t,x(1)) = e"”T"){x(t)* + N(d(1))—(14] x(t)])N(d(t) —o~NT - t) +1lc 2J"T N(d(s))ds}
(29)

—In(iHx(O)+1cX(T -t
T -t

N’

d(t) =

11




Proof:
(29) can be verified directly by insertion into (23). See Appendix B for details about

using the Laplace transtorm to derive (29). 4

By comparison with (28). we note ;that the value of the passport option can be
|

decomposed into two terms: a term that captures the value of the option assuming time ¢

is the last day on which a change in strategy is allowed, and a term that captures the value

3 'I.
of having the right to modify the strategy in the future. The latter term, %G‘J. N(d(s))ds,

can easily be evaluated using numerical integration’; it is bounded by

0<io’ [ N(d(s)ds <to™(T-1)

Clearly the importance of this term decreases as f approaches T.

As a final comment, we notice that despite the presence of the non-differentiable
functions |x| and (-x)*. (29) is in fact differentiable, even at x =0: v e C**([0,T) x R).

See Appendix B for further discussion of this issue and an analysis of the local behavior

X

of v around x = 0. As discussed earlier. the hedge ratio will jump whenever x crosses 0.

4. Numerical Solution

While we have been able to solve the problem of valuing the European passport option in
the special case of r =7y , the general EDE (18)-(19a) appears not to have a closed-form
solution if » #vy . To handle this case, we turn to the development of a numerical scheme

based on a finite difference discretization of the price PDE. First, define a uniform mesh

(x;,¢;) with

i

for 0<i< M, 0<j<N and t,=T. x, and x,, represent —co0 and oo , respectively;

4o \E

reasonable choices for these numbers are, say, e . Using the short notation
v, =v(t,x;) and wu(f,x)=u,, a mixed Iimplicit-explicit finite difference

discretization of (19a) is given by

12



Blo(y,, —x,) = A(r=7 )y, T-":)]Vf-x_,- -

3[603(11;_/ —x,) +o(l +9YA,)]",;/ +

H!io'z(lli‘_[ - '\:.")2 + Ax(r _7 )(u:l - xi)]vi+l"j -

—(1-6 )[GZ(_ZI;/ - x:‘)2 —A(r—y )(u:/ —'Yi)]vi"'/J'l *

2(=8)0 (), = x,) —a(l=(1=8)A )]y, ., ~ G0
(1=-0)o (4, = x,) + A (r =1 )@, = %) Vs

where 0<6 <1 and o = A% / A, . The b?undary condition on this system of equations is

— ‘ 3D

In (30). the parameter ® determines the time at which the partial derivatives w.r.t. x are
evaluated. If 6 =1, the x-derivatives are evaluated at time {, and the differencing scheme
gives rise to the fully implicit finite difference method. 1If 6 =0, the x-derivatives are
evaluated one time-step ahead, at ¢ jwl and the differencing scheme is known as the
explicit finite difference method, also sometimes referred to as a trinomial tree. Finally,
when 6 = 5, the x-derivatives are evaluated at (¢, +¢,,,) and the scheme becomes the
Crank-Nicholson method. Values of 6 c‘iifferent from 0, 1/2, and 1 are possible, but little

used in practice. }

For the PDE (19a), the dependence of the coefficients on x makes the explicit scheme
prone to instability8. We generally prefer the Crank-Nicholson scheme (6 = 1), which has
the highest order of convergence in A, (%ee Smith (1985) for further discussion).

The discretization scheme (30) must be complemented by an algorithm to find the
optimal strategy u; ;- Many such schen‘les are possible; here we present an algorithm
based directly on the continuous-time result (18). In Section 6.2 we will discuss another

approach particularly suitable for discrete passport options.

13



Step 1:
Make a guess tor the values of zz;I. For example. we can set u, ;= z¢;/+l. The starting
value of 1 ,_, at the second-to-last time-step ¢,_, can be computed analytically using the

Black-Scholes formula (as in (26)).

Step 2:
Solve the tri-diagonal system (30) for v, ; in the usual way (see e.g. Press er al (1992), p.
50-51). In this step, we must also impose appropriate boundary conditions at x, and x,,.

For example, we can set v, , =0 and v, =v,, , +(v, ;= Vi) (1+74,), the latter

being a discretization of the asymptotic behavior 8v/éx — e """ for large x.

Step 3:
Update the values of u;, using the following discretization of (18):

(i" -Y )e(vul" _ V"_L/'):-I_ (1 _e)(v,'+l./+l - vi-l._/'+l) -
- . 2A.r (qz)
lli., = Slgl’l 3
J c’x OV, =2V, + e D+ A=)V =2V i + Vi)

Az

Return to Step 2 until the values of ; calculated in this step remain unchanged from the

previous iteration. &

As the switching boundary #* normally changes very little from one time-step to the
next, typically only one or two iterations are needed in Step 3. We note that the usage of
(32) in Step 3 requires v to be convex. In cases where this condition cannot be guaranteed
(e.g. for options with more complicated payouts than (31)) Step 3 must be modified. This

1ssue will be discussed in Section 6.3.

5. Numerical Examples
As a specific example, we now introduce a stock S with a time  value of $100 and a
volatility of 30%. We first assume that interest rates and dividends are 0, i.e. r =y =0,
and consider the pricing of a European passport option with one year left to maturity.
Depending on the value of the current gain, w(t), (29) gives the following theoretical

option values F(r)°:

14



Theoretical Value ¢

f European Passport Option
S(ty=8100; r =y =0: 6 =03 T—¢t=1

at-the-money put (V,(¢)) defined in (
defined as ¥/(£)— MAX(F](£),V,(¢)) an
value of the future rights to switch the

w(r) ) 1 /(1) V() Premium
$100 $100.1566 | $100.0000 | $100.1493 $0.0073
§£50 $51.6456 $50.0746 £51.4859 $0.1597
$20 $25.9063 $23.5344 $25.4406 $0.4658
$10 $18.8846 $17.0129 $18.1410 $0.7436
$0 $13.1381 $11.9235 $11.9235 $1.2145
-$10 $8.8808 $8.1410 $7.0129 $0.7398
-$20 $5.8876 $5.4406 $3.5344 $0.4470
-$50 $1.5893 $)1.4859 $0.0746 $0.1034
-$100 $0.1566 $0.1493 $0.0000 $0.0073
Table 1

In the table above. we have also listed the values of the at-the-money call (¥]'(¢)) and the
24a-b). The "premium" column in the table is
d. as mentioned earlier, can be interpreted as the

position in S. As expected, this value is highest

around w(¢)=0; i.e. when there is the most uncertainty about the future sign of w(¢) (and

thus, from (23), the sign of the asset position u(¢)).

In Figure 1 below we have graphed M V/(t), and V/(¢) against w. The peak of the

premium V(£)— MAX(V/(1),V!,(1)) at x

= (0 is evident.

15



e
Option Value vs. Current Gain
S(6)=$100; r=y =0: 6 =03, T—t=1
: 30

Passport Option

Value ($)

%Gain w(t) (S)

|
|
Figure 1
\

We now turn to the application of th‘p finite difference scheme outlined in Section 4.
Using a Crank-Nicholson scheme (8 =1), the same process parameters as above, and

w(r) =0, we get the following prices a§ a function of the grid size:

Crank-Nicholson Numerical Value of European Passport Option

S(1)=3$100; r=y =0; 6 =03; T—t=1; w(t)=30
Theoretical Value = $13.1381
Time-steps (N)
x-steps (M) 25 50 100
50 $13.0834 $13.0830 $13.0829
100 $13.1240 $13.1236 $13.1235
200 $13.1349 $13.1345 $13.1343
400 $13.1392 $13.1373 $13.1372
Table 2

16



[n generating Table 2. we have used odd-even averaging (i.e. the prices reported in the
table are the averages of the prices computed with A/ and M+1 x-steps). The CPU time
when V=400 and N=100 was 0.85 seconds (166 MHz Pentium).

We see from the table above that i) the numerical scheme converges to the theoretical

value, and ii) the number of x-steps is|clearly more important than the number of time-
steps. In Table 3 below, we have fixed the number of time-steps to N=50 and listed

option prices for various values of w (with odd-even averaging). Again, it is clear that the

numerical scheme converges to the correct values.

Crank-Nicholson Numerical Value of European Passport Option

S(t)=3$100; =y =0:6=03T-t=1

N=50
Gain w(t)
x-steps (M) -$20 -$10 $0 $10 $20
50 $5.9074 $8.9220 $13.0830 $18.9222 $25.9074
100 $5.8900 $8.8745 $13.1236 $18.8745 $25.8900
200 $5.8884 $8.8794 $13.1345 $18.8794 $25.8884
400 $5.8879 $8.8807 $13.1373 $18.8807 $25.8879
Theoretical | $5.8876 $8.8808 | $13.1381 | $18.8846 $25.9063

Table 3

Now, let us turn to an example where| r =y . Specifically let us set!® r = 5% and y =
4.5%, and consider a 2-year passport option. With N = 100 and M = 800, the Crank-

Nicholson scheme gives the following results (with odd-even averaging):

17




Crank-Nicholson Numerical Value of European Passport Option
S(t)=5100; r=3%:; v =45%: 6 =03; T —(=2
N =100: /=800

wr) () V(1) 0 Premium
$20 $28.2277 $25.2453 $26.7334 $1.4943
$10 $22.3741 $20.0208 $20.4249 $1.9492
$0 $17.4323 $15.7362 $14.8268 $1.6961
-$10 $13.5100 $12.2859 $10.0631 $1.2241
-$20 $10.4261 $9.5460 $6.2392 $0.8801
Table 4

In the figure below. we have graphec‘i the optimal holding strategy u  as observed in the
finite difference lattice; notice the‘ perhaps surprising presence of three distinctive

regions. ‘

Optimal Holding Strategij vs. Time to Expiry and Current Gain
S(£)=8100: r =5%; v =45%; 6 =03

Gain w (t) ($)

u =1 I

1.0 ' 1.5 2.0

Tinlle to Expiry T-t (Years)

Figure 2
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6. Extensions

6.1. American Exercise
So far we have limited our discussion of the passport option to the European variety

where the payout can only take place| at the final maturity date. In this section we will

consider the pricing of the American passport option which can be exercised at any time
before the final maturity. Using t to denote the time of exercise, a rational exercise

policy 1s characterized the following equation for the S-deflated option price
v(t) = sup, , E,Q'[e"""“_"x(r )+] (33)

where the supremum is taken over stopping times t on [f,7] and. as before, u(s),
s e€[t,T], is an adapted process taking values in {-1,1]. (33) is a natural extension of
equation (10), but is not suitable for actual computations. For this purpose, we state the

following formulation of v as the solution to a free boundary problem:

Proposition 5
Let A={(t,x)e[0,T)x R:v(s,x)>x"} denote the continuation region of the American

passport option. The S-deflated value of the American passport option satisfies the PDE

Ov . ov 1 . ., ,30%
——=(u =x)(r=y)—+—-(¥ 9x)’ 6" —=7yv, 35a
y (u —x)(r Y)ax 2( } ) 7 Y (35a)
u =u (t,x)=sign (r—y)@—czx 8‘171 (35b)
Ox | Ox~
on A, subject to the free boundary condition, for all (¢,x),
v(t,x)>x" (35¢)

and subject to the terminal boundary condition

19



W(T.x)=x". \ (35d)

1
|
Proof:
As in the proof of Proposition 2, we| first note that the structure of the SDE (11) for x
allows us to only consider holding strategies of the form u = u(s,x(s)) and stopping times

of the form |

T = inf{s > 1:(s.x(s)) € B}

where B is a stopping region, a subset of [0,7]x R (see e.g. Duffie (1996). p. 172-178).
For a particular, not necessarily op}timal, stopping time t of the above form, we
introduce - 1

v (£.x(1)) = Sup g1y, E,‘-)'{e‘”’“i”x(t )*] (36)
such that
v(2,x(0)) = sup, v* (£, x(£)) = v* (£.x(1))

where 1 is the optimal exercise strategy. If (z,x(¢))eB then. by definition,
vi(t,x(1))=x(r)". Otherwise, when (r,x(r)) ([0,T]x R)\ B, we use the fact that the
HJB equation can be extended to cases where the bequest function (here: x*) is realized
at a stopping time of the form above (see @Oksendahl (1993), p. 213-215). That is, the

optimal holding strategy u_ , given the exercise policy, is such that

ov* "
Suphe{—l,l]{g_(h_x)(r -7) P

1 o
+—(h-x)c? ~yv° 37
2( ) o Y } (37)
attains its maximum at s = (t,x(t));. As the convexity property outlined in Lemma 1
can easily be verified to hold for v*, #e get, as in Proposition 2, that . is given by

T 2t
aai _o2 J (38)

U = sign((r -v)

20



tor (7.x10)) e([0.T]x )\ B. (37) and (38) hold for all exercise strategies. including the

optimal strategy t . For t=1 . ‘v" becomes v. 1. becomes u . and the set
([0.7]:< )\ B becomes the continuatifn region 4. (35a-d) follow. a

We notice that the PDE (35a) is similar to the one solved for the European option,
equation (19a), although obviously thfl boundary conditions and the valid region for the
PDE has changed. To incorporate early exercise into the numerical scheme in Section 4,
we consequently just apply the usual technique of setting

v, = MAX(3, ,,x%7)

Y

(39)
where v, is the solution to the tri-diagonal system (30).

As an application of (39). consider the 2-year option from Section 5 where r = 5% and y
= 4.5%. In Table 5 below, we have listed the values of the American and European
passport options. along with the values of corresponding American calls and puts. In the
table, the "exercise premium" is the excess of the American passport option over the
European passport option, and the "svsi/itching premium" is the excess of the American
passport option over the largest of the American put and call. Not surprisingly the

exercise premium is an increasing function of w.

Crank-Nicholson Numerical Value of European and American Passport Option
S(t)=8100; r =5%; y =45%; 60 =03, T—t=2
N'=100; M= 800

w(t) European | American | American | American | Exercise | Switching
1409) 1463) V(1) 0 Premium | Premium
$20 $28.2277 | $29.1764 | '$25.9756 | $27.8907 | $0.9487 | $1.2857
$10 $22.3741 | $23.0050 | [$20.4814 | $21.1853 | $0.6309 | $1.8197
$0 $17.4323 | $17.8418 | |$16.0218 | $15.2867 | $0.4095 | $1.8200
-$10 $13.5100 | $13.7776 | |$12.4762 | $10.3297 | $0.2676 | $1.3014
-$20 $10.4261 | $10.6031 | |$9.6682 | $9.6682 | $0.1170 | $0.9349
Table 5
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Figure 3 illustrates how the early exercise boundary interacts with the regions for u .
Comparison with Figure 2 shows that| the right to early exercise in this case "cuts off"

most of the upper holding strategy region.

Optimal Holding aind Exercise Strategies vs.
Time to Expiry and Current Gain

S(t)=%100: r=5%; v =45%; ¢ =03

100

Exercise

50i

25 |

Gain w (1) (§)

25 . w =1

-50

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Time to Expiry T-¢t (Years)

6.2. Discrete Passport Options |

We now return to the case discussed ir!p Section 1 where the holding strategy » can only
be modified at H discrete times, f,,,t,,...,t,4_ , where 1, =0 and ¢, =7 . The S-deflated
option price now solves the PDE

ov . ovi. 1, . 2, 2 0%

o (W ) =x)r =) =+ S (ax ()~ )0 g =y (402)
on ¢t €(t,,t,,) subject to the boundary conditions

V(= X) = V(t,+,X) (40b)
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wWTl.x)=x". (40c)

Here we have used the notation lim,| ,(z+e[)=c+ and lm__ (z-]€e])=z—-. (40b)
represents a set of so-called jump conditions which ensure that the option price is
continuous for all ¢ (see Wilmott er|a/ (1993), p. 138-139 for a simple economical
justification). Assume now that v(¢,,,+.x) is known, and let v_(z,x) and v,,(¢,x) denote
the solutions to (40a-d) on ¢ e(sit,,) when u(r,x(r))=-1 and u(t.x(s))=1,
respectively. The value of the option at/time ¢, + is then given by

v(r+.x)= MAX(v_(r,+.x),v_(;+.X) 41
i [ [

with the optimal holding strategy |

w (1. x(1,)) = sign(v_,(1,+.x(L, ))r v_,(1,+.x(1,))) (42)

To solve these equations numericall_\ff on fe(t,t,), we apply the finite difference
scheme (30) on v_, and v,, with the known boundary condition (from (40b)):

Vot =) = v —x ) = v, +. X))

After having solved for v_(r,+.x) and|v,,(¢,+.x), (41) is applied and we can move on to

the next interval r €(¢,_,.1,).

In the table and graph below. we display the results of applying the above numerical
scheme to the case where S(t)=%$100, r=y =0, 6 =03, T—¢t=1, and w(t)=30. We
assume that the switching dates are echuidistant, t,=IiT/ H. For all values of H in the
table, we have used a 500 by 500 ﬁnitie difference lattice. As expected, the price of the

discrete passport option is an increasing function of H.



Option Value V' (¢) ($)

Crank-Nicholson Numerical [Value of Time-Discrete Passport Option
S(1y=$100: r=vy=0. c=03; T—t=1w(t)=50
N=3500; M=500

H )
1 $11.9225
2 $12.3283
5 $12.7408
10 $12.9714
20 $13.0186
50 | $13.0860
100 $13.1102
250 $13.1255
500 $13.1308
H = (Analytic) | $13.1381

Table 6

Value of Time-Discrete Passiport Option vs. No. of Switching Dates

S(t)=5100: r=v=0, 6 =03 T-r=1 wt)=3%0
13.20
00 |~
12.80 .
12600 44 Continuous Switching

Discrete Switching
12.40 |
12.20
12.00 - i :
0 100 200 300 400

Numb(’:r of Switching Dates H

500

Figure 4
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While the scheme above has been designed specifically with time-discrete switching in

mind. we notice that application of extrapolation methods should allow us to price

continuous passport options as well., We also note that American exercise can be

incorporated in the scheme using the same techniques as in Section 6.1.

6.3. Non-convex Price Functions

So far we have exclusively considered the option payout V(7)) = w(7T)" and. as shown in
Lemma 1, have always been able to rjély on convexity of the S-deflated price function
v(£)=1(t)/ S(t). To handle option pa‘youts where convexity cannot be guaranteed, we

first state the following generalization of Proposition 2:

Proposition 4:

Consider an option with a payout at time 7,

V(T)=S(TY(w(T)/ S(T))

for some sufficiently regular function d);(-) . v =1(t,x) satisfies the PDE

Y —or- L e gy (42\3)
ot ox 2 ! cx”

with boundary condition

v(T) =o(x(T)).

Defining y(f,x)=x— tr —3’ )(;_v/ Zn‘: , the optimal strategy u'(f,x(¢)) e[-11] is given
o’ ox ox’

by

. y(t,x), if v e[-L1] and &*v/ox* <0
u ( , )= ) ) (44)
sign(y (t,x)), otherwise
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Proof:
The proof of (43) is identical to the proof of (19a). (44) is obviously identical to (18) in
case ¢*v/éx” 2 0. For 0°v/éx? < 0. consider equation (21) in the proof of (18),

SUp gt G+ (G = 2xCy) + A*C,)

As (, now is negative, we differentiate w.r.t. 4 and obtain the first-order condition for

the maximum

-

h=x—-—

2C,

The definitions of ¢, and C, (in the proof of Proposition 2). and the restriction that
I e[-11] lead to (44). 4

We see from (44) that when v is concave, the optimal control is no longer of the pure

"bang-bang" type.

To adapt the numerical algorithm in Section 4 the options covered by Proposition 4, we
note that the only changes necessary|involve modifying the terminal payout condition

(31) to

viy =0(x;) | (45)

and changing the computation of the oé)timal holding strategy (32) to

U=

« Wi if v ij € (-1L1] and e(vi+l.j - 2vi,_j + vi-l,,,') +(1-0) Vet T 21’i._/+x Vi )<0
sign(\p i j), otherwise
(46)

where

o A (r—v) 0( lielj vi—l,j) +(1 —e)(vi+1,_/+1 - Vi—l,_j+l)

ij i 2 | .
2c e(vi+l.j - 2vi,j + vi-l,j) +(1-0 )(V/+|__/+1 - 2vi,j+| + vi—],j+l)
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A2

i cv, .0V . . ) .
Notice that the presence of the term —/ — in the optimal holding strategy for concave
cx| Ox~

v can potentially lead to numerical difficulties if both derivatives are close to zero. In

veneral. the numerical properties of the above scheme must be examined on a case-by-

case basis.

As an alternative to the scheme discussed above, we can also use the algorithm from
Section 6.2, which also allows us to consider discretely sampled options. As the optimal

holding strategy is no longer guaranteed to be either 1 or -1, we need to replace (42) with

V(£+.X) =8Up,, oy v, (4+,X)) ;

|

This is a simple univariate optimization problem which in most cases is easy to solve
using standard methods. |
Again, both schemes discussed above can be extended to American exercise using the

techniques discussed in Section 6.1.

7. Summary

In this paper we have discussed nume:rical and analytical approaches to the pricing of
passport options with continuous and ‘discrete switching rights. While certain general
analytical results are possible in the continuous case, only in special circumstances does it
appear possible to derive closed-form pricing formulas; in most cases, one must instead
rely on numerical schemes for price and hedge computations. As the usual binomial and
trinomial lattices are ill-suited for the passport option price PDE, the numerical methods
developed in this paper are instead based on a Crank-Nicholson finite difference scheme.
The developed methods are stable and fast, and can readily handle both early (American)

exercise, time-discrete holding strategies, and more complicated option payouts.

To conclude the paper, let us point ot that while the paper was set in an idealized
framework with constant interest rates, |volatilities, and dividends, the numerical scheme
as well as many of the analytical resHllts apply equally well to the case where these
parameters are functions of time. With time-varying parameters, the holding strategy
boundaries are likely to be quite complicated. Another relevant extension that we leave to
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future research is the incorporation of

whenever the holding strategy 1s revers

;possible penalty costs paid by the option holder

ed from short to long or long to short.
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‘ppendl\ A
The Ins{antaheous Hedge

We consider a portfolio consisting of one passport option and - units of stock. The time ¢

value of this portfolio is simply
[T=V-kS. (A.1)

Now. over the short interval (¢, 1+dt), the value of the portfolio changes by an amount

Under the optimal strategy u . }" =V (¢!S,w). Assuming sufficient differentiability of V,

Al =dV — k(dS +vSdt). (A2)

we can write

i lalf 2, SV (alSd)1
Bt aS aw DS 5Sow

1
<
Er

dv

Using (3) and (4b) to write dw =1'dS and (dSY =o°S*dr , we get

4 ’\2 4 - “ZV 2 2 4 L}

a2 4 +(ﬂ+ y QK)dS eV L +() s (A3)
ot oS ow 88* oSow :

Combining (A.2) and (A.3), we notice that we can make the portfolio IT instantaneously

risk-free by selecting

LoV
= | (A.4)

oS ow
With the hedge ratio choice (A.4), the faonfolio must earn an instantaneous return of r,
i.e. dl1=rIldt.Combination of (A.2), (A.3), and (A.4) then yields

W 1 @V LW W oV .oV
— +-c°S? +2u +! S(—+ — |=rV (A5
o 2 (asz a5 ) awj (r=y )3 g+ aw) V- (A-5e)
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The payotf condition at £ = 7 is given bkl
1

I(T.S.w)=w". ' | (A.5b)

Equations (A.3a-b) allow us to write the solution as
V(6,500) = Sv(t,x), x=w/S| (A.6)
|

Substitution of (A.6) into (A.5a-b) resul‘ts in the following PDE for v(z,x):

gv 1 .. L 0% . ov
—+—c(u —x) —5 +{(u —.\‘P(r—y)r—:yv, wWTx)=x".
or 2 ox” ox : _

Note that. in terms of the function v(z.x). the required hedge ratio (A.4) is given by

k:v+(zf—x)@. (A.7)
ox ‘




Appendix B

Solution of Equation (23)

We first consider the homogenous case r =y =0. Let

t=03(T~1), v(t,x)= f(r,x)

so that (24)-(25) becomes

2

= 2 (14fxl) L. f0x)=x.

\‘\

[w)}

[@INP
|

)

The Laplace transform f"(s,x,‘) of f(t.x), given by

Fo=[e fend
1

satisfies the ordinary differential equation

(B.1)

(B.2)

(B.3)

with f ~x/s as x —> o0, and f” — 0 las x — —o0 . The solution to (B.3) is readily found

to be

) ()T

f(S’X):—S——Fm‘ ;

Both f‘ and 8f / &x are continuous at x = 0.

(B.4)

Using standard inversion formulae (see, for example, Abramowitz & Stegun (1972), p.

1020-1030), we obtain the solution
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Flrx)=x"+N{(z(t))-(1H xs)N(z('c )— \/r_) + 7.’0 N(z(u))du . (B.5)
~In(1+x) T
qAt)=—=——>+—.
VT 2

{B.3) holds ftor r=v =0. For r=v 0. we note that if v solves (23) when y =0,

ve ' solves (23) for y = 0. Using|this result and reversing the variable shift (B.1)

leads to equation (29).

To investigate the behavior of (B.5) around x = 0, we first notice that

f0) =1+t )N(4vT )+ vt (3 ) -4 (B.6)

As :('c)=%\?—iﬂ-»+()(x:) and .\'(:(r)_)zN(%\/;)—%N’(%v?%-()(x:). we get

AT

from (B.5) and (B.6):

flr.x) = f(2.0)+x +Hx(N(4 Vo )-1)- 41+ [N (3 u)du+ 0
= f(1.0)+x — L x+O(x%)
= f(t.0)+ix+O(x7)

where the first and second equalities require a few straightforward manipulations. We

conclude that f(or v) is at least twice differentiable atx = 0.
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Endnotes

‘The name of this option is. to the best of our knowledge. due to Peter Carr.

“Indeed. it appears that the option |originally was created as a hedging tool for
corporations uncertain about the day-to-day changes in the magnitude and sign of their
exposure to FX rates. The passport option is also a useful tool for speculation in short-
term movements of stock or FX levels.

¥While we use the word "stock", S could equally well be an FX rate or a commodity. The
"dividend" v should then be interpreted as the foreign interest rate or the net of
convenience yield and storage costs. respectively.

|
*This definition of the gain process im#liciﬂy assumes that the passport option holder is
not entitled to any of the dividends paid by the asset. Reinvestment of dividends can,

however, easily be accounted for by simply setting vy =0.

3This is due to the fact that the representation (4a-b) implies an infinite number of rights
to switch from long to short. In (2), the option holder has only a finite number () of such
rights. Notice also that choosing a piecewise constant strategy u in (4a-b) allows us to
replicate any discrete strategy.

This result also holds in the case of infinitely many switch dates. When dS(¢) =ocdW(t)

v 1, . 0% : .
under O, (20) becomes sup,,e[_,“{% +1hG” ? ‘, } =0 which shows that u'(£,x(¢)) =£1.
ar 2 ox*

’In the perpetual case. 7 =, the integral can be evaluated as a weighted sum of two
Bessel functions.

$In the trinomial tree analogy, instability of the explicit scheme is basically equivalent to
negative branching probabilities in the tree. An analysis of (30) reveals that negative
probabilities are virtually impossible to }avoid.

|
9A 200-step Simpson scheme was used to evaluate the integral in (29).

10We let r and y be quite close to ensule that the optimal strategy boundary is reasonably
interesting. If » >>v , the "call" strategy, u=1, tends to dominate the "put" strategy

u=-1.
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Abstract

This paper considers the pricing of four types of exotic options with terminal pay-offs that

depend on discrete samples of the path of the underlying asset. These options are: the Asian
e strike option (an Asian option with floating strike), the
. and the lookback option with fixed strike. In a Black &

Scholes (1973) framework we are able to describe these option prices as functions of current

option with fixed strike, the averag

lookback option with floating strike

time and a non-continuous one-dimensional state variable. The main trick used to obtain
this is an appropriate change of numeraire. The discontinuity of the state variable is limited
to the dates over which the arithmetic average or the extrema is calculated. This means that
the option prices can be calculated by numerically solving a sequence (in the time dimension)

of partial differential equations in one variable in addition to time. Computationally this is

not harder than numerically solvin
Scholes model. The valuation of

to have a similarity: It is possible

g one standard partial differential equation in the Black-
the fixed strike Asian and lookback options are shown

to reformulate the pricing problems of these options as

barrier option pricing problems. For the floating strike options it is also possible to treat
the American exercise using our technique. We illustrate the speed and the accuracy of
our technique by numerical examples where we compare our prices to prices generated by

Monte Carlo simulations. By numerical examples we also illustrate that discrete rather than

continuous sampling have quite a large effect on the prices of the options considered in this
paper. This is particularly the case for the lookback options. Finally we show that our
technique also can be applied to the case when the underlying has discontinuous dynamics.

In this case we show that the option contracts can be found by numerical solving partial

integro differential equations.




1 Introduction

Exotic options that have pay-offs tl
the minimum of the underlying st
popular hedging and speculation in
body of litterature has considered 1
Black & Scholes (1973) model close
prices by Goldman, Sosin & Gatto
Viswanathan (1991). No closed forr

but various transforms and approxi

Yor (1993) and Rogers & Shi (1995)).

The closed form solutions for the 1
maximum is taken over the whole ¢
lookback options the maximum is n

life of the option. The maximum

whole life of the option or only ove

specifications the assumption of cont

same goes for the average options.

on the arithmetic average are also b
continuous intervals, typically the w
depend on averages sampled over 4
consequence is that in practice one
price these types of contracts.
In this paper we suggest a simple a
simulations for four types of path-d
option, the lookback option with fi3
The idea is to make use of change of
functions of time and a one-dimensic
been applied to the pricing of lookb
indicated, this paper extends the m

dependent options.

Due to the discrete observations, t

observation points with probability

state variable evolves continuously, s

L

hat depend on the arithmetic average, the maximum, or

ock over a certain time period have become increasing

struments over recent vears. Parallel to that, a growing

he pricing and hedging of such derivatives. Within the

d form solutions have been obtained for lookback option

1979a), Goldman, Sosin & Shepp (19795), and Conze &

m solution has yet been derived for Asian option prices,

mations have been obtained. see for example Geman &

ookback options are based on the assumption that the
ontinuous path of the underlying. But, for most traded
ot based on daily highs of the underlying over the whole
is rather based on daily closing prices over either the
r a discrete number of trading days. For such contract
inuous observations seems as a poor approximation. The
The approximations obtained for the options depending
ased on the assumption that the average is sampled over
hole life of the option. However, all traded Asian options
discrete and often a low number of trading days. The

has to resolve to Monte Carlo simulations in order to

nd computationally efficient alternative to Monte Carlo
ependent options: The Asian option, the average strike
ced strike, and the lookback option with floating strike.
numeraire techniques to obtain that the option prices are
nal Markov state variable. The technique has previously
ack options with floating strike by Babbs (1992), but as
le’thodology to the pricing of three other types of path-

the state variables involved here exhibit jumps at the
one. However, in between two observation points the

o it is possible to describe the option price as the solution




to a standard partial differential eq
generate the terminal boundary con
PDEs that can be solved numericall
(rank-Nicolson  schemes for the nury
also set up binomial or trinomial tr
two reasons. First, the non-standa
the stability of such trees. That is,
to insure the stability of the numeri
are similar to barrier option pricing
pricing problems, see for example B
As mentioned the fixed strike optior
option can be converted into barrier
the nature of the original pricing p1
we identify here have a "barrier” ty
certain level, typically at-the-money
to derive the risk-adjusted expectat
For the floating strike options it is
of options with an American featur
quite dramatic effect on the prices ¢
We provide numerical examples that
Our benchmark is Monte Carlo sim
a control variate technique. In mos
accuracy compared to the Monte Cz
Further numerical examples show th
the average or the maximum has qu
case when we consider the lookback
the arithmetic average.

Finally we show how the technique
discontinuous dynamics. Our model
(1976) model where the jumps are tr

displaced lognormal distributed. In 1

of partial integro differential equatig

techniques. We apply such an algor

juation (PDE) in such a region. Letting the first PDE
dition of the second and so forth we obtain a sequence of
v by finite difference techniques. In the paper we employ

nerical solution of the pricing problems. We could in fact

ees for the numerical solution but we choose not to for

rd dvnamics of the state variable yields problems with

one has to take unreasonable small time steps in order
cal solution. Second, the nature of the pricing problems
problems. Trees give rise to odd-even problems for such
oyle & Lau (1994).

) pricing problems for both the 1ookback and the Asian

option pricing problems. This is rather surprising given
oblems. However, the determining state variables that
pe of behavior, in the sense that if they go through a
their dynamics become more tractable and it is possible

on of the terminal pay-off in closed form.

1lso possible to apply the PDE technique to the pricing

e. We illustrate that the American feature can have a
f average strike options.

illustrate the speed and the accuracy of our procedures.
ulations with a large number of samples combined with
t cases the finite difference solutions get within penny
rlo solutions in less than one second of CPU time.

at the discrete rather than continuous sampling of either
ite an effect on the option prices. This is especially the

options, but the effect is also significant for options on

can be applied to the case when the underlying exhibits
is in this case a "risk-neutralised” version of the Merton
iggered by a Poisson process and the jumps in return are
his case the sequence of PDEs is replaced by a sequence
ns (PIDEs), that also can be solved by finite difference

ithm and illustrate the effect of jumps on the prices of

|
the options considered here, by numerial examples.
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The paper is organized as follows. The first section shortly describes the modelling framework
and the main trick applied in this pa
We then have a section for each of t
Asian (fixed) strike option, the ay
floating strike lookback option. Ea
and the speed of our solution proce
discrete versus continuous sampling

also can be applied to non-continug

2 The Model and C

We start by considering the standa
paying stock and a money market a
when the underlying exhibits discor
We assume the existence of an equiy
securitv prices (including accumula
absence of arbitrage.

Under @ the stock is assumed to ey

d

5

S(t))

where r is the constant continuously
dividend yield, o is the instantane
@-Brownian motion.

If one considers the pricing of curre
rate or minus the proportional cost;

The money-market account evolves

dB

B(t

Suppose that a security promises a
that can be represented by some we
T, {S(u)}o<u<r- Then the fair price

(1)

F(t) = B [eT-05]

per: the change of numeraire for the martingale measure.
he considered options. in respective order these are: the
rerage strike option, the fixed strike lookback and the
ch section contains numerical examples of the accuracy
dure. Then a section follows that considers the effect of
. The final section of the paper shows how our technique

us dynamics of the underlying stock.

hange of Numeraire

wrd Black-Scholes economy with two assets: a dividend
ccount. We will later extend the model to cover the case
itinuous dynamics.

alent martingale measure, @, under which all discounted

ted dividends) are martingales. This assumption implies

rolve according to the stochastic differential equation

3

— = (r — q)dt + odW (1), (1)

y compounded interest rate, g is the constant continuous

bus volatility of the stock return, and W is a standard

ncy or commodity options, ¢ denotes the foreign interest
of-carry, respectively.

according to

(1)

= rdt, B(0) = 1

vayment of H $ at time T, where H is a random variable
l-behaved functional taken on the stock price up to time

> at time ¢ of this claim can be represented as

(2)



where E, [-] denotes expectation tak

at time .

MoreoVer, the Martingale Reprenta

adapted to the filtration generated
dF(t)

This implies that there exists a cont

stock and the money market accoun

of A = v/(¢S) number of stocks a

we are able to write F'(t) = F'(t

(possibly multidimensional) then

One might also solve the security

resulting in the alternative valuatio

F(t)

where E/ [-] denotes conditional exp
d

on [t,T]. By the Girsanov Theorem

and thereby
dS(t)
5(t)
When H depends on the whole patk
in principle keep track of the whole

calculate the expectation in the val
valuation equation (3). However, if]

evolution

q
5 M

en under the measure @ conditional on the information

ition Theorem guarantees that there exists a process vy

by the stock price so that ’
= r F'(t)dt + v(t)dW (1)

inuously rebalanced self-financing trading strategy in the
t replicating the security. This trading strategy consists
nd the rest F — AS on the money market account. If

'(t)’

(t)) where = is some locally deterministic process

oF
= B_S(t)

valuation problem by applying a change of numeraire

|

ectation under Q'. which is defined by

S(T)
S(t)elr—aT=1)

A(t)

n equation

= S(¢)E} [G_Q(T_t)——‘ ol

S(T) 3)

2' = CIQ (4)

we have that under Q’

W'(t) = W(t) — ot

(r —q+ o?)dt + odW'(t)

1 of the underlying up to the terminal date, T', we should
path of the underlying up to current time, ¢, in order to
nation equation (2) or the expectation in the alternative

we are able to come up with a Markov process, z, with

t,z(t))dt + v(t, z(t))dW'(t)

4




so that

for some function ((-), then it is
underlying. Due to the Markov pr
only keeping track of the current val
a function of (¢, z(t)) only, and f ¢

PDE
qf =

subject to the terminal boundary ¢
ically by finite difference technique
solving the expectation by Monte-(
We will now show that a Markov rej

fixed and floating strikes and for th

3 The Asian Optior

3

not neccesarv to keep track of the whole path of the

operty of x. the expectation in (3) can be evaluated by

ve of z. Hence, the deflated option price f = F//S will be

an be represented as the solution to the one-dimensional

of

of , o1
o1

#81

1 ,0°f
+ ZU dx?

ondition f(7',z) = ((x). The PDE can be solved numer-

s, which, as will be demonstrated, is much faster than

‘arlo methods.
presentation is indeed possible for the Asian options with

e lookback options with fixed and floating strike.

1 Wit_h Fixed Strike

Let
0:t0§;t1<<tn§tn+1:T
and define
Al = X s
1<i<n:t; <t
m(t) = max{i:t; <t}

The Asian option with fixed strike

where is A is some fixed amount -

The object is now to evaluate the t

1<i<n
promises the holder the time T payment’

(-A(T) - K*

the strike price.

ime t fair price of the option

LAT) - K

! |e—9(T-1)
) S(T)

i ( )* (6)

1We define z* = max(0, z).




Let

------
s

LA() = K

x(t) = 2

S )

When we hit an observation point, ¢;, the process z will jumps by 1/n. To see this, note

that for 1 < i < n we have?

;L‘(t.l'-l—)

At times in between observations

the process z evolves continuously, because only the de-

nominator in (7) changes as time evolves. Hence, using Ito’s lemma we have?

dx(t) =

—(r = g)e{t=)dt — oz(t-)dW () + 31

—(r —\q)z(t—)dt — oz (t—)dW'(t) + %dm(t)

We see that under Q’, the evolution of « only depends on z itself, so z is a Markov process
under Q. This implies that evaluation of the expectation in (6) only requires the knowledge
of the current position of z and we can write F(¢)/S(t) = f(¢,z(t)).

Further, we observe that if z(¢) >0, then z(u) > 0 for all u > t with probability one. This

implies that for all z(¢) > 0

f(t,z(1))

==l

i’ [e"Q(T_t):c(T)+|x(t)]
[T 02(T) a(2)]

1 _ .
—r(T—t)x(t)_i_; Z e~ T(T—ti)—q(ti=1) (8)

it <t; <tn

e

[0}

g(t, (1))

The third equality is shown in the Appendix.
We note that if z(¢) < 0, the process z can only pass through the level 2 = 0 at the future

*We define z(t—) = lime_o z(t — |¢]) and z(¢+) = lime_g (¢ + [€]).
3We define 14 to be the indicator function on the set A.




sampling points {t;}m(t)<i<n- SUPPO

then have

X4

fti z(t:)) = ¢

In case the level @ = 0 is not pass
nothing. To formalize this let us de

the process 2, among the oberserva

We can then write

Solving for f is then a first passage
the parallel to an "up-and-in” barrie
is the risk-adjusted expectation of t
to a certain level. This problem ca
solved numerically as we will illustr

note that by definition

se r passes the level z = 0 at some point ¢;. (: < n). We

(ti, z(t:)) = g(ti, 2(ti—) + 1/n)

ed for any {¢;}i=1..., the holder of option will receive

fine 7 to be the first passage time of the level + = 0 for

.....

inf {¢;:z(t;) >0}

1<i<n
3 e J— >_ 1
Jnf {tize(tiz) 2 =1/n}

(9)
(10)

E' [ g(r, 2()) 2(1)]
B/ [ g(r, 2(7=) + 1/n)|z ()

time problem for a Markov process. This demonstrates
>r option: the stock price deflated value of the option, f,
he discounted value of a pay-off at the first passage-time
n be formulated as a PDE problem, that easily can be

ate in the subsection below. Before we consider that, we

Fit) = St 2(0)
and by Ito expansion
A) = f{t2() - 20 2 (1,2(0)
We also have that
FOlken = s 2200

Which gives us the possibility of sol

is identified.

ving for more than one option price once the function f

-1




3.1 Numerical Solution

One can now set up a system of
e‘volutlon of z. Except from the o
Brownian motlon., so a Cox, Ross &
could be used on the regions in b
observation points are additive ang
normally is specified to be log linea,
As yet an alternative one might u
Q'. Discretising the state space in
for the option prices using numerig
to current time. Computationally
is the implicit finite difference met!
operations and will thus in general
implicit finite difference techniques,
We now need to identify the PDE

price or rather the function f. This

and Numerical Results

trinomial or binomial trees that discretize the random
bservation points, {t;}i=1,...,  evolves as a geometric
Rubinstein (1979) binomial tree applied to the x process
etween observation points. However, the jumps at the
| this works poorly with a standard binomial tree that
r. So we choose not to use this approach.

se that z(t;) conditional on z(f;_1) is lognormal under
the z dimension will therefore make it possible to solve
al integration at each point ¢; and backwards recursion
this procedure is qudratic in the chosen mesh size. So
hod. The implicit schemes, though, only involve simple
be faster. We therefore choose to concentrate on the
system for the numerical solution of the Asian option

can be done directly in (¢, ), but we prefer to eliminate

the discontinuous dvnamics by introducing
m(t)
y(t) = (t) -
n
We now have (1) it 0 ()
v m : m ,
dy(t) = =(r = g){y(t) + —=) = oly(t) + — —)dW'(t) (11)
Since e~ f(t) is a Q'-martingale, Ito’s lemma and the Martingale Representation Theorem
together imply that f is the solution to the PDE
af m(t) 9f 1 , (t),290°f
— —(r— — + =o* 12
af = 5 (r—a)ly+— )0.+2 (y+ 2 )ay (12)
on {(t,y):ti; <t<t,y<—(i—1)/n,i=1,...,n}, subject to the boundary conditions
flti—y) = flti+,y),y<-—i/n
fltimy) = g(toy+i/n),—(i=1)/n>y = ~i/n (13)
and




for t > t,.
When solving this numerically, we s
value &f f(t,—,y).

as terminal boundary condition for

We then numer

to current time we get the current y
Note that the state space of the pro
that y < —(¢—1)/n when t,_; <t <
observation points, and running ba
conditions specified by the known fi
We solve this system on a linear gr

upper point equal t0 Ymer = —(2 —

Typically we set y,;n = —2 for mat

that we hit all the points {¢;}. In

some “artifical” boundary conditior

the boundaries of the grid. The solu
refer the reader to Mitchell & Griffi

the Crank-Nicolson scheme. but am

stable and that its local precision is

finite difference schemes for partial

Table 1 compares option prices for v

with different grid sizes to option
reference we also report the CPU t

two different types of techniques.

tart at time t,—. By the boundary conditions we get the
cally solve back to time t,_1+. where the solution acts
the numerical solution on (¢,-;.t,—1). Recursing back
ralue of f and thereby the option price.

cess y changes as time progresses. At each time we have
' ¢;. But the state space is constant for all ¢ between two
ckwards in time, the new added regions have boundary
inction g(-, ).

id where we at all times in the interval (¢;_;,t;) set the
1)/n — Ay/2 and the lower point to some ypm < —1.
urities less than a year. The time points are chosen so
order to solve the PDE numerically we need to specify
15 at Ymin and Ymez. We choose to set 92f/dy? = 0 at
tion technique applied is a Crank-Nicolcon scheme. We
ths (1980) for a detailed description of the properties of
ong the nice properties are that the scheme is uniformly
of order (At)? + (Ay)? which is maximal for standard
differential equations of the parabolic type.

arious strikes generated by the finite difference algorithm
prices obtained by Monte Carlo simulations. For the

mes accured for generating the option prices using the




Asian Option Prices
K | M.C. F.D..I=500 F.D.,I=100 F.D..I=50
. 90.0 | 12.98 12.99 12.99 12.98
92.5 | 11.05 11.05 11.05 11.05
95.0 | 9.27 9.27 9.27 9.27
97.5 | 7.67 7.66 7.66 7.66
100.0 | 6.24 6.23 6.23 6.23
102.5 | 5.01 5.00 5.00 5.00
105.0 | 3.96 3.95 3.95 3.95
107.5 | 3.08 3.07 3.07 3.07
110.0 | 2.36 2.35 2.35 2.36
CPU | 46.0s 0.65s 0.06s 0.04s

Table 1 :

The parameters are:
100.0,¢; = 0.15. M.
finite difference solut
We used 7/10 numbe
Carlo prices are base(
standard deviations g
Reported CPU times

We see that the finite difference alg
the prices change very little as the
pared to the Monte Carlo procedur
note that the Monte Carlo price is
simulation to another; as mentione
option prices are approximately 3 -
For the reported CPU times, here a
ming was done in C and the hardws
Let us briefly describe the Monte {
to our Monte Carlo simulations in
That 1s, we simulate a collection of

the regression equation

1
e—r(T—t)( ZA

N

where ay,...,a, are constants. Not
We run an ordinary least squares 1

efficients {a;} and the Q-mean of t

r=0.05¢=00.0=02T=1.0,t=0.0,n=10,50) =
C.” refers to Monte Carlo Solution, and "F.D.” refers to
ion. The different I’s refer to the number of time steps.
r of steps per jump size 1/n in the y direction. The Monte
| on 10° simulations with a control variate technique. The
f the Monte Carlo estimated prices is estimated to 3-10~3.
are for all 9 strikes.

orithm for this option is surprisingly accurate, and that
grid size is changed. The maximum relative error com-
e is approximately 0.4 percent. Here it is important to
not an absolute figure. It might vary slightly from one
1 in the legend of Table 1, the standard deviation of the
1073,

nd in the following, it should be noted that all program-
are used was a Hewlett-Packard 9000 Unix system.
Carlo technique. We apply a control variate technique

order to decrease the number of necessary simulations.
paths, {(S(t1),...,5(ts))(w)}., under Q and consider

|

S° ai(S(t:) — S(0)eloN=)

=1

Loy - gyt

n

w) =

E, [e—r(T—t)(

+ [ }m

e that the regressors under the sum have zero Q-mean.
regression on this and simultaneously estimate the co-

he pay-off, i.e. the fair price of the option. This also

10




gives us an estimate of the standard deviation of the estimate of the parameters. i.e. an
estimate of the standard deviation| of the Monte Carlo option prices. The properties of the
procedire are described in detail in Davidson & Mackinnon (1993). One can also include
different powers of the stock price minus its moments as control variates. We choose not
to, because the stock prices alone give sufficient precision for our purpose and because the
presence of additional parameters to be estimated makes the Monte Carlo procedure more

computationally demanding.

4 The Average Strike Option

With the definitions in the previous section the pay-off terminal time T pay-off of the average

strike (put) option can be written as

1 ~
(FA(T) — aS(T)*t
n
where o is a constant.

Using the valuation equation (3) we have that the time ¢ price of the option is given by:

F(t) = S(t)E; e_Q(T"”(%% —a)t
For t > t; define z(¢) by
_ Al
o0 =55 (15)

Applying the same argument as in the previous section we get that for ¢ > ¢;:

dz(t) = —(r+q)z(t—)dt — ox(t—)dW'(t) + dm(t)

This is a Markov process with domain on the positive part of the real line. The object is

now to solve the initial value problem
F()/S() = £t 2(0)) = B [ 09(2(T) ~ a) (1) (16)

Due to the Markovian property of z this can be done by solving a sequence of PDEs, as we

formally describe in the following section.

11




Suppose that we want to evaluate

the option might me exercised at s¢

A

Finding the fair price of such a co

are supposed to find the exercise tir

this let 7 be the set of stopping ti

generated by the stock price. Then

the fair value

F(t)
reT

S(t)s

-

S(t)

-

This defines a Markovian stopping
boundary formulation as we will ill

Both in the American and the Eurg
F
Applying the alternative valuation
F(t)

The hedge ratios are given by’

At). e

A(t) f

4.1 Numerical Solution

As for the fixed strike case we intrg

(_

n

sup E;

an average strike option with an American feature. 1.e.

me time, ¢, in the interval [t;, T'] with resulting payout

ntract is a stopping time problem in the sense that we
me that maximizes the value of the option. To formalize
mes on the interval [¢;. T] with respect to the filtration

the average strike option with the American feature has

1

m(r)

l:e—r(r—t)(

oo [t LAY

' Ey [e G s "

up E/ [e“q(T"t)( ! J‘(T)—-a)+ll'(t):| (17)
€7 m(7)

time problem for f = F/S that can be treated in a free
ustrate in the following subsection.

pean style case we have that for ¢ > #;:
(t) = S()f(t,=(t))
equation (3) to this quantity we get that for ¢ < ¢;:

= S(t)em " f(1,,1)

__q(tl_t)f(tlv 1)7t < tl

af

t1,z(t)) — x(t)ax r(t)),t >t

(t..

and Results

duce




and we have

dy(t) = —(r — @)(y(t) + m(t))dt — o(y(t) + m(t))dW'(¢)

Ontioy <t<t,i>1,e%"f is a Q' -matingale and therefore the solution to

.- of _ af 1, 2& ‘
of =5, —(r—4q y+m(t))ay +507(y +m(t)) 0 (18)
on y > —i, subject to the boundary| conditions
flti—y) = [fltit.y)
1
fllant.y) = f(T,y):(;y+l~a)+ (19)

The American style average strike option can be handled by adding the free boundary con-

dition

flty) > (Lerl—oz)+ (20)

m(t)

We apply a linear grid to this problem, supply the same "artificial” boundary conditions as

for the fixed strike, and again we use the Crank-Nicolson scheme.

Table 2 reports prices generated by the finite difference algorithm and compare these quan-

tities to numbers generated by Monte Carlo simulations.

Alverage Strike Option Prices
a | M.C. FD.,I=500 F.D.,I=100 F.D..I=50
0.900 | 8.98 8.98 8.98 38.99
0.925 | 7.18 7.18 717 7.18
0.950 | 5.61 5.60 5.60 5.58
0.975 | 4.28 4.27 4.26 1.26
1.000 | 3.18 3.18 3.18 3.18
1.025 | 2.31 2.31 2.30 2.30
1.050 | 1.65 1.64 1.64 1.63
1.075 | 1.14 1.14 1.14 1.14
1.100 | 0.78 0.77 0.77 0.77
CPU | 48.0s 1.94s 0.12s 0.03s

Table 2 : The parameters are: 1 =0.05,¢=0.0,0 =0.2,7=1.0,t =0.0,n = 10, 5(0) =
100.0,¢; = 0.1:. "M.Q.” refers to Monte Carlo Solution. and ”F.D.” refers to
finite difference solution. The different I’s refer to the number of time steps.
We used I/10 number of steps per jump size 1/n in the y direction. The Monte
Carlo prices are based jon 10° simulations with a control variate technique. The
standard error on the| estimated Monte Carlo option prices is approximately
3.0- 103, Reported CPU times are for all 9 strikes.
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As for the fixed strike Asian the precision of the finite difference solution is remarkable.
Even though the grid size changes|by a factor 10, the relative price changes are less than
0.6 peréent for all strikes. The maximum relative deviation to the Monte Carlo solution is
about 1.2 percéent. But, it shall again be emphasized that the Monte Carlo solution need
not be more accurate than the finite difference solutions and serves only as a benchmark. .
The additional computer time accured here compared to the Asian option is due to the fact
that here a finite difference algorithm has to be run for each « wheras for the Asian option
one need only solve one finite difference grid to obtain the prices for all strikes.

Figure 1 illustrates the effect of adding the American feature to the average strike option

when the parameters are given as in Table 2. As we see, the effect is quite large.

4 6 8 10 12 14

average strike option prices: American versus European
2

0

0.90 0.95 1.00 1.05 1.10 1.15 1.20
alpha

Figure 1: American (solid line) versus European style (dotted line) average strike option
prices. Parameters are: r = 0.05,9 = 0.0,0 = 0.2,7 = 1.0, = 0.0, 5(0) = 100.0. Prices
were generated using a 500 x 300 finite difference grid.

5 The Lookback Option with Fixed Strike

For t > 0 define

S(t)= sup S(t)
1<i<m(t)

14




with the convention S(t) = 0 for ¢|< ¢,.
The fixed strike lookback option promises the time I' payment
(S(t) — &)*
The solution of this pricing problem is a two-step procedure. First, we solve the option price
at time t when S(t) > K. We then solve for the case S(t) < K by observing that in this
case the option might be Vlewed as a first passage time problem of S to the level A" where
the reward is equal to the value of the option at S(¢) > K.
Suppose S(t) > K. We then have
F(t) = B [e"TE(T) - A’)+]
= B [e7T(E(T) - K)
Y —_ ‘5 T —T
= S(t)E, [e T} (T-1) (21)
Define )
S(t
z(t) = = 22
for t > t,.
For 1 <: < n we have
r(t;4+) = lz(t;—) <1
;L‘(ti--i-) = ;I.'(ti—),;l‘(t.g—) >1
Elsewhere the evolution of z is continuous and for ¢ > t; we have
de(t) = —(r—gq)e(t=)dt —ox(t—=)dW'(t) + (1 — z(t—)) dm(t)
2(ty) = 1
So z is a Markov process with domain on z > 0.
Define
5(T)
¢ - FE! —q(T—t)~\ "/
= E, [T 2(T)]
= B [e7T92(T)|a(t )} (23)
15




|
where the last equality follows du
We have that f can be written as
numertically solving the PDE rela
this is done in the subsection belo

This establishes the option price a
F(t)

Suppose we are sitting at time ¢ >

we get a reward of

F(t;)

The second equality is valid becau
a level of A or above is not reache
of the option receives nothing.

(25) implies that we for ¢ > 0, S(¢

F(t) Eq ™

E [e“r(

where

with the convention inf ) = oco.

This shows the parallel to an up-a

by numerically solving the first pas

the subsection below. Finding the
solve for {f(u,z)} for all (u,z) wi
initial value problem from T down
Else we keep { f(ti,1) }1<i<nu;>¢ an
The hedge ratio is given by

TS(r)f(r 1) — € TR L, |S(8)]

e to the Markov property of z.

f(t) = f(t,2(t)), and that this quantity can be found by

ted to the initial value problem (23). We will show how

W.

tt>1t, S(t) > K. explicitly

= S(t)f(t,z(t)) —e " TR (24)

t; with S(¢) < K. The first time t; > ¢, (i < n), S(ti) > K

(25)

se in the above, ¢; is the first time S(¢) goes above K. If

d at any of the sampling times ¢;,7 = 1,...,n, the holder

< I may write the option price as

TSR f(m1) — e TTTE) Lo,

1%?£n{ti :S(t) > A}

nd-in barrier option. When f is known, £ can be found
sage time problem (26). We illustrate how this is done in
option price is therefore a two-step procedure. First we
th 4 > max(¢,t;). This is done by numerically solving a
to t. If 5(t) > K then the option price is given by (24).
d solve the first passage time problem (26).

Al) = %;—(t,S(t)),?(t)<K
A() = Flha®) - 2t)2L(t,2(),30) > K




5.1 Numerical Solution

We start by performing a log tréns
dy(t) =

Since e~ % f(¢) is a Q"-martingale an

(23) can be found as the solution {

1
—(r—q+ 50

and Results

formation. We define y = Inx and we get*

2)dt — odW'(t) + y(t—)"dm(t)

d y 1s Markovian, the solution to the initial value problem
o the following system of PDEs. On t,_y <t < t;,2 > 1,

f solves ,
_ f af |1 2'2f .
af = |- (r—q+; U)a— 27 By (27)
subject to the boundary conditions
f(iz_"vy) = f(tz_i"o)’y <0
flti—y) = fltit+,y),y 20 (28)
fltnin+,y) = f(T.y)=¢*
Now redefine y and let y(t) = In(S(¢t)/R). The first passage time problem (26) can be

handled by noting that for S(t) <

dg

T ot

on {(t,y) :tisa <t<t,i=1,...,
g(ti—.y)

9(ti—.y)

9(tnt,y)

The f(¢,-) in (30) should be inter

we can treat f and ¢ in the same

step in that respective order. At cu

F(t) = Kg(t, S(t)/K).

N, g= F/K is the solution to

1 ,. 0g ,d%g

1
—+(7'—Q"'§O')@+§ E (29)
;y < 0}, subject to the boundary conditions:
= g(ti+,y),y <0
= e/ f(t;,0) — eI 5y >0 (30)
= 0,y<0

pretated as function of y as in (27). This means that
orid and simultaneously solve for f and g, at each time

rrent time ¢ options of different strikes are generated by

4The notation {-)~ is defined by

3)

= —min(0,
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We apply the Crank-Nicolson scheme to the numerical solution of this problem, where we

supply the "artificial” boundary conditions®

af d%

Y

9f

9 _

oy*| 9y Oy dy

at the upper and the lower bound of the grid and we arrange the grid so that the level y = 0
is on the grid and the points {¢;} are among the time points of the grid.

Below Table 3 shows option prices generated by finite difference and compares to option

prices of Monte Carlo solution.

Fixed Strike Lookback Option Prices
LK | M.C. F.D., I=300 F.D.,I=100 F.D.,I=50
90.0 | 24.41 24.39 24.27 23.81
92.5 | 22.07 22.06 21.93 21.47
95.0 | 19.78 19.77 19.64 19.18
97.5 | 17.57 17.56 17.43 16.96
100.0 | 15.48 15.47 15.34 14.87
102.5 | 13.53 13.52 13.39 12.95
105.0 | 11.75 11.74 11.62 11.22
107.5 | 10.14 10.14 10.03 9.67
110.0 | 8.70 8.71 3.62 3.30
CPU | 46.0s 0.68s 0.06s 0.03s

Table 3 : The parameters are:

r=0.05.¢=0.0,0=0.2,7=1.0,t =0.0,n = 10.5(0)

100.0,%; = 0.15. "M.C.” refers to Monte Carlo Solution, and "F.D.” refers to
finite difference solution. The different I’s refer to the number of time steps
and also to the number of steps in the y direction. The Monte Carlo prices
are based on 10° simulations with a control variate technique. The standard
deviations of the Mante Carlo prices are approximately 3.0 - 1073, Reported

CPU times are for all 9 strikes.

Comparing the finite difference solution on the 500 x 500 grid to the Monte Carlo solution

approximately 0.1 percent which is clearly within any

shows a maximal relative error of

reasonable demands for precision.

grids do not show sufficient precision.

involved here; numerical errors might be accumulated in the two steps. The conclusion is

that this type of option requires a

sections.

But the finite difference solutions for the two smaller

finer mesh than the options considered in the previous

3These conditions are equivalent to the condition 8% f/dz? = §°F/9S? = 0.
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6 The Lookback Og

With the definitions of the previou

option can be expressed as

Of the options considered in this p
For t > t; the fair price is given by

F(t)

where x is defined as in (22). ¢

Letting f = F/S, f solves a Marko
subsection below we supply the PD
If we want to consider a floating str

the fair price of such a contract can

btion with Floating Strike

s sections the time T pay-off of a floating strike lookback

’ —q{(T-1) g(T) —a +:l
w30 oy
Ef [e™T9(2(T) — a)t|a(1)]

vian initial boundary problem equivalent to (23). In the
E with boundary conditions associated to this problem.
ike lookback option with an American feature, note that

be represented as

F(t) = supkE; [e"‘("_t)(g('r) — CYS(T))+]
Te€T
o 1] —q(r—t '5(7') ‘ :
= b(l)srtelfr) E; [e ( )(S('r) a)+} | (31)
= S(t)supE’ [G_Q(T_t)(x(r) — a)ﬂm(t)]

where 7 is the set of stopping time
As i (1
boundary problem for f = F/S.

below.

In both the European and the Ame

7) this is a Markovian stoj

TeT
s on [t,T] adapted to the filtration generated by S.

pping time problem that can be reformulated as a free

We formulate this as a PDE problem in the subsection

rican style floating strike lookback option we have that

F(t) = S(t) t“”f(tl, ),t <t
F(t) = S{)f(t,z(t),t>t
The hedge ratio is given by
A(t) = eT? B 0f(4,1),t < ty
AW = flt2(t) - 209 (1, 2(1),1 > 1

6This is also observed by Babbs (1992

outlined below. However, Babbs applies a

, who treats the American style case in a way similar to what is
binomial scheme for the numerical solution.
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6.1 Numerical Solution

As for the fixed strike lookback w
y = Ilnz. We now get that f solves
or
ot

when t;_y <t < t;.1 > 1. subject tq

qf =

f(tn+1 i

and Results

e choose to log-transform the state variable, and define

the PDE

1
(r—q+ 502

Z

)

of
dy

2P f
dy?

1
2

the boundary conditions

flt:+,0),y <0
flti+,y).y =0
f(T,y) = (e —a)F

If we consider an American style option we have to add the free boundary condition

(t.y) > (e —a)F

We apply the same “artificial” boundary conditions as in the previous section and again we

use the Crank-Nicolson scheme for

the numerical solution.

Table 4 reports option prices generated using the finite difference solution and compares to

option prices found by Monte-Carl

b simulations.

Floating Strike Lookback Option Prices
a | M.C. FD..I=500 F.D. I=100 F.D.I=50

1.000 | 10.01 10.00 9.96 9.86
1.025 | 8.27 8.26 8.23 8.14
1.050 | 6.77 6.76 6.74 6.68
1.075 | 5.51 5.50 547 5.43
1.100 | 4.46 4.45 4.42 4.39
1.125 | 3.59 3.58 3.56 3.53
1.150 | 2.88 2.87 2.85 2.81
1.175 | 2.30 2.29 2.28 2.25
1.200 | 1.83 1.82 1.81 1.79
CPU | 46.0s 2.43s 0.14s 0.06s

Table 4 : The parameters are:
100.0,¢; = 0.17. "M.

finite difference solut

are based on 10% sim

r=0.05,¢=0.0,0=02T=10,t=0.0,n=10,5(0) =
C.” refers to Monte Carlo Solution, and ”F.D.” refers to
ion. The different I’s refer to the number of time steps
and also to the number of steps in the y direction. The Monte Carlo prices
ulations with a control variate technique. The standard
deviation of the Monte Carlo option prices is approximately 3-1073. Reported
CPU times are for all 9 strikes.

20



We choose only to show prices for values of o greater than one. This is because all options
with & < 1 are all "in-the-moneyv™ with probability one, due to the sampling of the maximum
that Wé use here (we have ¢, = T). That means that for all & < 1 the option contract has a
value that equals the value of the contract with a = 1 plus S(0)(1 — a)e 7.

Comparing the finite difference solutions to the Monte Carlo solutions we have that the
maximal relative error is about 0.5 percent for the 500 x 500 grid. 1 percent for the 100 x 100
grid, and approximately 2 percent lfor the 50 x 50 grid. This is acceptable but the example
shows that one has to use a higher degree of precision for the lookback than for the Asian
options.

Figure 2 illustrates the effect of adding an American exercise feature to the option when the
parameters are given as for the prices of Table 4. The effect is significant, though not as

large as for the average strike optian.
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fioating strike lookback option prices: American versus European
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Figure 2: American style (solid line) versus European style (dotted line) floating strike
lookback option prices. Parameters are: 7 = 0.05.¢ = 0.0,0 = 0.2, = 1.0,¢ = 0.0, 5(0) =
100.0. Prices are generated using a 500 x 500 finite difference grid.

7 Discrete versus Continuous Sampling

In this section we consider the difference between discrete and continuous sampling of the
underlying. For the options depending on averages we extend our methodology to the con-

tinuous observation case and apply finite difference solutions to the resulting PDEs, whereas
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we apply the closed form solutions

backs.

7.1 Average Options

Suppose now that the average for

obtained by Conze and Viswanathan (1991) for the look-

the fixed strike Asian option is calculated over the full

interval [0. T]. Redefining A and x|as
t
A(t) = / S(u)du
0
LA(t)— K
. _ T
x(t) = 50
vields
dz(t) = (% - (r — q)x(t))dt — oz(t)dW'(t)

so x is a Markov process under Q'.
This implies that the deflated optio
i

qf=at+(

subject to the terminal boundary ¢

Using this we can numerically solve

Table 5 compares options with discr

n price f = F'/S solves the PDE 7

1 0f |1, ,0%
T (r— q)x)a:v + ‘20 ¢ Ox?
ondition

f(T,z)=z"

- for Asian option prices by a finite difference algorithm.

ete observation average to those with continuous average.

"The methodology of identifying the A
can also be applied here since the process
that z(u) > 0 for all u > ¢ with probabilig

\sian option pricing problem as a barrier option pricing problem
z as defined here also exhibits the property that z{t) > 0 implies
y one.
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Asian Option Prices

N n=o0 n=250 n=352 n=12 n=4
90.0 | 12.59 12.61 12.67  12.92  13.58
92.5 | 10.62 10.64 10.71  10.98 11.69
95.0 3.31 8.834 8.91 9.19 9.95
97.5 7.19 7.21 7.28 7.58 8.36
100.0 | 576 5.78 5.85 6.16 6.94
102.5 4.53 ! 1.55 4.62 4.92 5.69
105.0 | 3.51 @ 3.32 3.59 3.87 4.61
107.5 | 2.67 2.68 2.74 3.00 3.69
110.0 | 1.99 2.00 2.06 2.29 2.92

Table 3 :

Discrete option price

We see that the option prices incre

attributed the fact that the standa

observations increases.

The parameters are:
100.0,%; = i/n. n re
refers to the continu
dimension 500 x 500

r = 0.05,9g = 0.0.c = 02,7 = 1.0,¢t = 0.0,5(0) =
fers to the number of discrete observations, and n = oo
ous observation case. Prices are generated on a grid of
points. For the n = 250 case we took 1250 time steps.
s were cross checked with Monte Carlo simulations.

ase as the number of observations decrease. This can be

rd deviation of the average decreases as the number of

Even when sampling is performed weekly the effect of discrete observations versus continuous

observations is significant. This illustrates that the approximation that we sample continu-

ously might be crude even when sa

mpling is performed quite frequent.

For the average strike option we have that if
x(t) = A(t)/S(t)
then
dz(t) = (1 —(r —q)z(t))dt — oz(t)dW'(1)
z(0) = 0

and thereby that the deflated optio

of

ot

subject to the terminal boundary c

qf = = +(

I

h price f = F/S solves the PDE 8

af 1, 292_11
L —(r— q)x)gx— + 57 % 5 (33)
pndition
1
T,l‘) = (—I - a)+

T

8Ingersoll (1987) is to the author’s kno

wledge the first to observe this.
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and in case the option 1s American

I 1
wa j(t..r)Z(?J«"Q)

for all t.

the PDE is also subject to the free boundary condition

We can now generate continuous average strike option prices by numerical solution of the

PDE (33). Doing so we can compare to average strike option prices with discretely sampled

average. This is done in Table 6.

Average Strike Option Prices

n=250 n=52 n=12 n=4

« n=uqoo
0.900 { 9.04
0.925 | 7.30
0.950 | 5.78
0.975 | 4.48
1.000 | 3.40
1.025 2.54
1.050 | 1.85
1.075 1.33
1.100 | 0.93

9.04 9.03 8.99 8.93
7.30 7.28 7.20 7.01
3.77 5.74 3.62 5.34
4.47 4.43 1.30 3.95
3.40 3.36 3.21 2.83
2.53 2.49 2.35 1.96
1.84 1.81 1.68 1.32
1.32 1.29 1.17 0.87
0.93 0.90 0.80 0.55

Table 6: The parameters are:

r = 0.05,¢ = 0.0.0 = 02,7 = 1.0, = 0.0,S(0) =

100.0.t; = i/n. n refers to the number of discrete observations, and n = oo
corresponds to the continuous observation case. Prices were generated on a

grid of dimension 50
steps. Discrete option

x 500 points. For the n = 250 case we took 1250 time
prices were cross checked with Monte Carlo simulations.

We see that the average strike option prices increase as the number of observations is in-

creased. This can be explained by the observation that second moment of the average minus

the terminal stock price increases as the number of observations increase.

The difference between continuous

and discrete sampling is not as big as for the Asian op-

tion. It is still present, though, when sampling is performed on weekly basis, especially for

the out-of-the-money options.

7.2 Lookback Options

Defining the maximum as

S(t) = sup S(u)

0<u<lt



Conze & Viswanathan (1991) der
strike continuous lookback options

uous I6okback options.? Table 7 ar

1d 8 illustrate the differences.

Fixed Strike Lookback Option Prices

K |n=x n=250 n=52 n=12 n=4{
90.0 | 28.68 27.80 26.80  24.77  22.01
92.5 | 26.30 25.42 24,42 2242 19.30
95.0 23.92 23.04 22.05 20.11  17.67
97.5 21.35 20.67 19.69 17.87 15.65
100.0 | 19.17 © 18.31 1741 1575 13.76
102.5 | 16.89 , 16.10 1527  13.77 12.01
105.0 | 14.80 14.07 13.31 11.97  10.41
107.5 | 1291 12.24 11.55 10.34  38.98
110.0 | 11.20 10.60 9.98 8.89 7.70

Table T : The parameters are

r = 0.05¢ = 00,0 = 02,7 = 1.0.t = 0.0,5(0) =

100.0,t; = i/n. n refers to the number of discrete observations. and n = oo
refers to the continupus observation case. Prices were generated on a grid of
dimension 500 x 500 points. For the n = 250 case we took 1230 time steps.
Discrete option prices were cross checked with Monte Carlo simulations.

Floating Strike Lookback Option Prices

! n=o0c0 n=20 n=52 n=12 n=41
1.000 | 14.29 13.41 1241 1037 741
1.025 | 11.97 11.20 10.34 8.58 6.03
1.050 | 9.98 9.31 38.56 7.04 4.86
1.075 | 8.29 7.71 7.06 5.73 3.87
1.100 | 6.86 6.36 5.79 4.65 3.06
1.125 | 5.65 5.22 1.74 3.75 2.40
1.150 | 4.64 4.27 3.86 3.01 1.87
L.175} 3.79 3.48 3.13 2.41 1.45
1.200 | 3.09 2.82 2.53 1.92 1.12

Table 8 : The parameters are: r = 0.05,g = 0.0,0 = 0.2,7 = 1.0, = 0.0,5(0) =
100.0,¢; = i/n. n refers to the number of discrete observations. and n = co
refers to the continuous observation case. Prices were generated on a grid of
dimension 500 x 500| points. For the n = 250 case we took 1250 time steps.
Discrete option prices were cross checked with Monte Carlo simulations.

9The solution method that we apply
lookbacks. To see this, observe that for th
Brownian motion under with reflecting bag

it to the floating strike lookback in a binomial setting.
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ive closed form solutions for the floating and the fixed

We use these formulas to compare discrete and contin-

to the discrete lookbacks can also be applied _to the continuous
e continuous maximum we have that under @', §/5 is a geometric
undary (from above) in 1. Babbs (1992) observes this and applies



The differences between continuous
illustrate that for lookbacks there
strike the relative differences betwe
10 percent. For floating strike opt,
So taking the continuous maximu

approximation.

& Discontinuous Re

In this section we extend the mode
and show that the technique used
of stock price behavior.

Under @ the stock is assumed to e

where r.¢,0. 1 are defined as in §

{{(t)}+>0 is a sequence of independe

and discrete lookback option prices are quite large which

1s a great distance between 250 and infinity. For fixed

>en daily and continuous observations are between 3 and

ions the same quantity is in between 7 and 10 percent.

m as a proxy for a discrete maximum is a rather poor

turns of the Underlying

2] of the stock price to allow for discontinuous dynamics

in the previous sections also can be applied to this type

volve according to the stochastic differential equation

s — kNt + odW (1) + I(t)dN(t) (34)

ection (2). :V is a Poisson process with intensity A and

nt and identically distributed random variables with the

distributional property
In(1 +

and @-mean

W.I,.N are assumed to be indepen
The economy 1s now incomplete, 1.

bond that perfectly replicates the

means that the martingale measur

derivative pricing once a martingale

the Q-dynamics for the stock giver
probability measure and the martin

hedging decisions, but that is beyon

for the remaining of the paper.

| 1.
I(t)) ~a N(y — 56%,6%)

E[I(t) =€ —1

dent processes.

=Y
vy

there exists no hedging strategy in the stock and the
pay-off of derivatives, and fixing the original measure
re @ is non-unique. However, this does not influence
measure. @, is fixed like we do above by simply assuming
1 by (34). Of course the relation between the objective
gale measure matters if we are considering portfolio and

d the scope of this paper, so we will ignore this dicussion




Defining Q' as in (4) the Girsanov

()
)

where W’ is a @Q’-Brownian Motion

ds
q

Sy S rTes

identically distributed random vari
ln(l + y
and N’ is a Q' Poisson process witl

A

W, I'. N" are also independent und

In this type of economy the valuati

8.1 Path Dependent Op

The techniques applied to the pricir
the case when the underlying exhib
one.
The Asian option with fixed strike }

now have that

This is clearly a Markov process w
u >t with probability one. This i1

given by

F(t)/5(t)

where ¢(-,-) 1s defined as in (8). Th

Now if z(¢t) < 0 the process = can

which again implies that for z(t) <

Theorem implies that °

kX4 o®)dt + odW'(t) + I'(t)dN'(t)

1 given as in (3), {I'(t)}+>0 is a sequence of independent

ables with distribution given by
I, .
/(1)) ~o N(y + 56%,6)

1 intensity

= M1+ k) = Ae”

er Q.

on equations (2) and (3) are still valid.

tions under Jumps

ng problems in the previous sections naturally extend to

its jumps. To see this let us consider the options one by

nas the value given by (6) and if we define z as in (6) we

—q—kN)z(t—=)dt — ox(t—)dW'(t)
) I'(t)

1+ I'(t)

(33)
dN'(t) + %dm(t)

ith the property that if z(¢) > 0 then z(u) > 0 for all
mplies that if (¢) > 0 then the deflated option price is

J(t) = E¢[2(T)] = g(t,2(2)) (36)

e last equality is shown in the Appendix.

0 we may write the deflated price of the option, f, as

10Note that the Q' measure is uniquely

related to Q. So once @ is fixed, so is Q’.
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the solution to a first passage time problem as we did in (9). We will return to how this is

solved numerically in the subsection below. Once f is obtained. the option price is given by

s

F(t) = 5(t)f(t. 2())

For the average strike option considered in Section 4 we get that if we define x as in (13). z
now evolves according to

I'(t)

dz(t) = —(r—q—kXNa(t=)dt — oz(t—)dW'(t) — x(t—)

T(tl) = 1
for t > ¢;. This is a Markov process with domain on = > 0. The solution to the deflated
option price is now given as the solrtion to the Markovian initial value problem

(t.2(0) = B [T o(T) - @) a1

n

We show how to handle this numerically in the following subsection. For the average strike
option with an American exercise feature we obtain the same type of Markovian stopping
time problem as in (17). This can be given a free boundary formulation that we will consider

in the next subsection. Given f we have that

F(t) = S@)f(t2(t),t>t
F(t) = S(t)e1M=9f(t 1)t <ty

The lookback option with fixed strike can also be handled by the technique applied in Section
5. The key observations are the same. We first note that for S(¢) > KA the option price

might be written as in (24). Defining z = 5/S Ito’s lemma implies that for ¢ > ¢,

dz(t) = —(r— q)z(t—)dt — oz(t—)dW'(t)
I'(t) _ -
— I(t——)mdl\[ (t) + (1 — ‘L(t—))+dm(t) (31)
;L'(tl) = 1

This is clearly a Markov process with domain on z > 0. So
F(t) = E; [T =92(T)]
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1s the solution to a Markov initial
of this problem in the following. (
price as the solution to a Markovia
a Markovian process. So once f is
handled by numerically solving the
is done. To summarize, we have a 1

given by

(1)

else the option price is given by as
(26).

Consider now the floating strike lo
Markov stochastic evolution (37). S

to Markov initial value problem
F(t)/5(t) = f(2,(
for t > t;. and for t < #;:
F(t)

We will return to how this can be har
style option is handled as in (31). T
problem. In the following subsectig

as a free boundary problem.

8.2 Numerical Solution

The Markovian nature of the refomy
subsection means that the pricing ca
(PIDEs). The term integro is added
but also integrals since the processe

random times. The numerical solut

applying finite difference techniques

conditions in order to make this ma

typically include terms outside the

Y

S(t)f(t, x(t)) — Ke "T=Y

1) = E [e_Q(T_t)(

value problem. We will return to the numerical solution

n the other hand, if S(t) < A we can write the option

n first passage time problem as in (26), because S is still

s obtained for the points {¢;};=;.... the problem can be

first passage time problem. We will return to how this

wo step procedure: If S(t) > K. then the option price is

(38)

the solution to a Markov first passage time problem like

okback option. We have seen that if = S/5, z has the

o the European style option price is given as the solution

l.'L'(T) —a)t|z(t)

n

= S(t)e 1M f(t,,1)

ndled numerically in the subsection below. The American
hat is, we have to solve a Markov optimal stopping time

n we do this numerically by reformulating the problem

and Results under Jumps

ilated pricing problems that we have seen in the previous
n be done by solving partial integro differential equations
| because the PIDEs not only involve partial derivatives
s considered here have discontinuities of random sizes at
on of such equations can still be done on finite grids by
, but we need to supply additional "artificial” boundary
chinery work. This is because the integrals in the PIDEs

boundaries of a reasonably sized grid. We will in the
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following derive the PIDEs that need to be solved numerically and supply our choices of

“artificial” boundary conditions.

In t.he'i)""'foﬂowing we will let Y, an(i 1

These quantities are in some of th

Ymaz denote the lower and upper boundary, respectively.

e cases dependent on the interval (¢;-;,t;) that we are

considering. but for brevity we will ignore this.
With y(t) = x(t)—m(t)/n the PIDE analog to the PDE (12) for the fixed strike Asian option
can be written as.
X af m(t) 0*f m(t) ,O*f
Nf = ——=(r—q—kA ) e — )=
0 = = ma= ki + BT Sy + TS
g ytm(t)/n  m(i) _ .
+ NE3 [f(t, 7 n )lyminSerlT:_(,tl)/"—%”Symaz +h(t.y) (39)
The operator E} [-] is defined for any function v(-) by
‘ 20
WA = [ e (40)
where v(-) is the density for I’ und‘er Q'
| 1 1 In(1+6)—7v 1,
H(€) = ——=—=———exp(—~(————— — =48
$E) = o xRl =5 (g 56%)
The function A(-.-) is in turn defined as
m(t)/n t
]z(t.y) — A,E,I f(t. Y + 'n( )/n e 7n( ))(1 +mt)/n _ m(t)< Ymin + 1 ytmit)/n m(f)>yma1)

141
The PIDE (39) is to be solved subj

{(t,y) ttia < t‘

Before we can solve this numericall;

We set

Straightforward calculations show t

h(ty) = XeTT7Y(

i<n:t; >t

1+17 141/

ect to the boundary conditions (13) and (14), on the set

,n}

v we need to make a reasonable approximation for A(-,

<thy<(@-=1)/n1=1,.

.

gty + m(t)/n),y > Ymax

— 079 < Ymin
hat
ma:+m(t!/n
my(t) In ® vrm@/n_ T 1
v+ )9( 5 -39
I max+m£tnn
e-—'r(T——ti)—q(t,'—t))Q(l y+m(2)/n + v %6)
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Substituting this into (39) and us
J*f/Oy* = 0 at the lower and t}
Asian option price using the finite
(1996). Whitout affecting stabililty
an explicit approximation for the
derivatives.

For the floating strike option we in

ing the additional “artificial” boundary condition that

le upper bounds we can now numerically solve for the

difference scheme described in Andreasen & Gruenewald
, the speed of the procedure might be increased by taking

integral and an implicit approximation for the partial

troduce y(t) = x(t) — m(t) as in Section 4. and we obtain

the follwoing PIDE analog to the PDE (18)
7 0f ~2f 1 2 202f
(g+A)f a—t—(r—f ——k,\)(y-l—m(t))—(fy——}-ga (y +m(t)) Y
" y + mf(t)
+ NEp [[f(E, Hxr m(t))lym,-n<yj;’}‘,”—m(t)qmm + h(t,y) (41)
that is valid on {(¢t,y) : ;.1 <t < t,,y > —(i —1),: =2,...,n + 1} and has to be solved

subject to the boundary conditions

to the free boundary condition (20).

For y > Ymar we set

(19) and in case the option is American style additionally

1
flty) = B[ Ty 1 o)
_ ¥ +m(t)6--q(T—t) n l Z e—r(T~ti)—q(ti_—t) — e T
n niSn:t¢>t

in the European case and for the American style option we let

1

£,
T =
For y < ymin we set
flt,y) =0
in both cases. This result in the follwoing approximations for i(-,-). For the European case
we get
mi(t e—r?(T—t) in —}ﬂiﬂ% - 1
h(t,y) — /\(y + ( )) ; Ymaz+m(t) + ‘_5)
n n 6 2
! m(t)/n
1 I v LA
+ N(= Z e~ (T-ti)=alti=t) _ =T NP(—2 S — 55)

n i<n:t; >t
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In case the option is American we have the approximation

y In y+m(1‘)(z ')1/ — 1
_ [ ymar+m(t)/n -
MLy) = Al + 1) : + 56)
In ytm(t)/n 1
— Nad( ”’"“’*"(;W” ~ =4)

Substituting these equations into the PIDE (41) we can now numerically solve the average
strike option prices using the algortihm described in Andreasen & Gruenewald (1996).

Consider the Lookback option with fixed strike. With y = In(5/S) and we have that f
defined as in (23) solves the PIDE

i L W OF 10
+ E’, [f( Y — 11’1 1+ _[' )lymin<y—ln(1+1’)<ymaz] + h(t,y) (42)

on the set {(t.y):ti_1 <t <t;,i=2,....,n+ 1} subject to the boundary conditions (28).
Let

f(ta.ﬁ ) = f(tvymm)vy < Ymin
f(talﬂ ) = e_T(T_t)+ya Y > Ymax

The last condition is obtained by taking the discounted conditional Q' expectation of z(T') as

if there were no jumps in z at the observation points {¢;};=1,.. .- h(-,-) s then approximated
by
| Y —UYma 7 1
h(t y) — /\e—r(T—t)'Hl(D(%?_"__/ + ;5)
Ymin — Y — 7 1
£ NS Y R(E—E + 56)

The PIDE (42) can now be solved numerically on a grid. This gives us the solution for the
option price when S(t) > A". If this is not the case we proceed by noting that for 5(¢) < K,
with the definitions y = In(S/K) and g = F/K, the PIDE equivalent to the PDE (29) is

dg 1 ,.0g 1 029
Ng = —g—kA— =
(r+ Mg 5 Tr—a—k G)ay+ E
+ AE; [g(thy +10(1 + 1)1y cutint 4 D<omes | + A(EY) (43)

on {(t,y):ti-1 <t <t;,i=1,...,n} subject to the boundary conditions (30).
The operator Ef[-] is defined as in (40) with the modification that the Q' density is now
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replaced by the Q-density. Analogo
h(t.y) = Er [g(t.y + In(

For y < ymin we set

and for y > ynq, we let

9(t, y(1))

E; [e_r
E, [e"rf

e‘Q(tm(tT

From this we obtain
[

Using this we can numerically solve
Finally, let us consider the lookback
f = F/S we get that f is the solut
subject to the boundary conditions
the free boundary condition (33). |

this option. For y < ymin we set

f

“Q(tm(t)+1—i)+y@(y__w +

us to the previous, the function A(-.-) is defined as

I + I))(1y+ln(1+1)<ym.‘n + 1y+1n(1+I)>ymaz)]

g(t,y)

tm(t)+1—t)g(tm(t)+l’ y(tm(t)+1))]

tm(t)+1—t)ey(tm(t)+1)f(t r{T—t)

m(t)+1, 1) — €

+1—t)+y(t)f(tm(t)+1, 1) — e 7(T-1)

1
5 5%
y_ymar+'7_1

) 26)

the PIDE (43) using the finite difference machinery.
option with floating strike. Definiting y = In(S/S) and
ion to (42) on {(t,y) : tis1 <t < t;,1=2,...,n+1},

(32) and if the option is American style also subject to

r(T—t)Q(

Vhat is left is to supply an approximation of A(-,-) for

t’ y) = f(t? ymin)

for both the American and European style cases.

For y > Ymar we set

flty) =

e—r(T—t)+y _ 6—q(T—t)a

for the European case. This correspo}nds to the dicounted Q’-expected terminal payoff if we

ignore that the option could go out—of—the—money and the (possible) jumps at the observation

points {#;}i=1,... For the American

style option we set

(ty)=¢' —a
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for y > Ymas-

Doing so we get the following approximation for 2 when the option is European

h(t* y) = /\e_r(T—t)“!"y(D(uLn;tﬁ i

y_ymax+7'_
1)

+ /\If(tv ymm)é(w +

N
~—

SR (VR I NN
> >
N p——

For the American style option we get the approximation

y_]/ma$+7

1
hit,y) = Aea(t iz +59)
7 y_.m-a.z'_,"‘/ 1
- ‘Aa(D(—Lé——?S)
/ Ymin — Y — 7 1
N ymin) (P 4 =)

With this we can numerically solve for the price of the lookback option with floating strike.
The Figures 3 through 6 illustrate|the effect of adding a jump component to the stochastic

evolution of the underlying. We set the parameters of the jump model so that the Q-local

variance of the stock

:l Iu:t = 022

for both models.

The effect of adding the jump|component is low for the Asian options. Probably due
to the more fat tailed and peaked distribution of the jump model, there is a tendency of
lower prices for the jump model around at-the-money and higher prices deeb in-the-money
and out-of-the-money. The introduction of jumps reduces the prices of the average strike
options at least around at—the-morI:ey. Deep-out-of-the money options seem to have higher
prices than in the Black-Scholes case. The fixed strike lookbacks prices are also reduced
when there are jumps in the dynamics of the underlying. This must again be attributed the
more peaked distribution of the jump-model. For floating strike lookback option prices, we

see a similar picture: Reduced prices except for the deep out-of-money case.
|
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Asian option prices: jump model versus Black-Scholes
2

9 95 100 105 110 115 120
strike
Figure 3: Asian option prices: Jump model (solid line) versus Black-Scholes model (dotted
line). Parameters are: r = 0.05,¢ = 0.0,0 = 02,7 = 1.0,¢ = 0.0,5(0) = 100.0 for both
models, except for the jump model where o = 0.099 and A = 3.0,6 = 0.1, = 0.0. Prices
were generated using a 500 x 500 {‘inite difference grid.

4

2

average strike option prices: jump model versus Black-Scholes
0

0.90 0.95

Figure 4: Average strike option prices: Jump model (solid line) versus Black-Scholes model
(dotted line). Parameters are: r = 0.05,¢ = 0.0, = 0.2,T = 1.0, = 0.0, S(0) = 100.0 for
both models, except for the jump model where o = 0.099 and A = 3.0, = 0.1,y = 0.0.
Prices were generated using a 500 x 500 finite difference grid.
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Figure 5: Fixed strike lookback option prices: Jump model (solid line) versus Black-Scholes
model (dotted line). Parameters are: r = 0.05,¢ = 0.0,0 = 0.2.7 = 1.0,t = 0.0, 5(0) =
100.0 for both models. except for the jump model where o = 0.099 and A =3.0,6 = 0.1, =
0.0. Prices were generated using a 500 x 500 finite difference grid.
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Figure 6: Fixed strike lookback option prices: Jump model (solid line) versus Black-Scholes
model (dotted line). Parameters are: r = 0.05,¢ = 0.0,0 = 0.2,T = 1.0,¢t = 0.0,5(0) =
100.0 for both models, except for ti;le jump model where o = 0.099 and A =3.0,6 = 0.1,y =
0.0. Prices were generated using a 500 x 500 finite difference grid.

36



9 Conclusion

This-paper has described an approach to the numerical pricing of discretely observed path-
dependent options that is highly competitive in terms of accurracy and speed compared to

Monte Carlo simulations. We have illustrated this by numerical examples for four types of

path-dependent options.
A second advantage of this pricing technique compared to Monte Carlo techniques is the
ability to price the floating strike A;America.n style options. This can not be done by standard
Monte Carlo methods. o '

In the Black-Scholes and the jump framework the technique applies to most types of Euro-
pean options on the average and 'Jhe maximum (or minimum). Among the types of options
that have not been considered in this paper but can be priced using our approach are combi-
nations of maximum, minimum, a d average and digital options on the average and/or the
maximum. Another application f01:' our technique is the pricing of equity linked life insurance

contracts.




10 Appendix |
104 Derivation of the Equations (8) and (36)

Let x be defined as in (7) and let v(-) be a deterministic function. Using Ito’s lemma and

(35) we get
div(t)e(t)]= = (U'(t):c(i—) —(r—q—=ENv(t)z(t—))dt — oz(t—)v(t)dW'(t)
I'(t) / 1
- v(t)z( —i)l - [’(t)dN (t) + u(t)gdm(t)
\
Inserting

we get that

dlv(t)z(t)] = —oz(t—)v(t)dW'(t) — z/(t)a:(t—)(1 -|I—([t’)(t)dN,(t) — kAdt) + z/(t)%dm(t) (44)
We have that
I'(u)

/t'x(u—)y(u)(adw'(u.) + dN'(u) — kXdu)

1+ I'(u)

is a Q"-martingale, so integrating (44) and taking Q’ expectation yield

T
e=ITE! [2(T)] = e(r“”t:c(t)+%/ e dm (u)

t

1 .
= e(r_‘”a:(t)-f-— Z e(r—a)t:

1:i<t; >tn

So we get that

€_q(T_t)E; [.Z'(T)] —_ t’}i_r(vT—t)IE(t) + l Z e—r(T—t,-)—q(t,——t)

n 1:t<t; <tn

For A = 0 we have equation (8) and for A > 0 we have equation (36).
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' Abstract

Dupire (1993) derives a forward partial differential equation for European
option prices. In this paper we go further and derive forward equations for
all the “Greeks” of European aption prices. The forward equations turn the
option pricing problem into a jproblem in strikes and maturities with fixed
spot and time rather than a problem in spot and time with fixed maturity and
strike. Examination of the forward equations reveals that the European option
pricing problem might be solved in a dual economy where every parameter
of the option pricing problem ig reversed: time is reversed, the underlying is
now the strike, the strike price |is the underlying, the call is a put, etc.

We set up a model that takes a set of marketed European option prices of
different strikes and maturities as primitives, i.e. the model is constructed so
that it automatically fits the current “volatility smiles” of different maturities.
The numerical implementation of the model will always be stable given that
there is absence of static -arbitrage in the input option prices. The derived
forward equations enable us to find the “Greeks” of the marketed options
implied by the option prices themselves in a computational efficient way. In
fact we are able to find the “Greeks” of all options on a 200 x 200 grid (in time
to maturity and strike) in less than a second of computer time. A numerical
example based on S&P 500 data shows that the “implied Greeks” can differ
considerably from those of the|Black-Scholes model. This suggests that in a
world with “volatility smiles”, hedging strategies based on the Black-Scholes
model might exhibit large tracking errors.




Introduction

In recent years considerable attention among financial researchers as well as practitioners
has been directed towards construction and implementation of option pricing models
that automatically fit option prices observed in financial markets. This development has
been pushed forward by very pronounced deviations of option prices observed in today’s
financial markets from prices calculated using the Black-Scholes (1973) model. It is
not unusual to see implied volatilitijs, deduced by inverting the Black-Scholes formula,
ranging from 10% for out-of-the-money stock call options to 30% for in-the-money
calls. Dramatic “smiles” has also been observed in currency options markets.

The object of this line of research is mainly to derive models that can be used for
the pricing and hedging of exotic options and OTC derivatives but also the hedging of
marketed options, in a way that is consistent with market prices on standard options.
In other words, the idea is to take a set of exchange traded options as primitives and
then price and hedge other derivatives relative to the marketed options.

The theoretical basis for this research goes back to Breeden and Litzenberger (1978)
who show that buying a butterfly spread in call options around a fixed strike price is
approximately equivalent to buying|a state contingent claim on the spot being in that
point. So given a continuum over [strikes of option prices the state price density or
equivalently the risk-neutral density of the spot can be recovered by taking the second
derivative of the option prices with| respect to the strike.

In a discrete time and state setting erman and Kani (1994) and Rubinstein (1994) go
further and construct binomial modéls that fit a set of input option prices.

Dupire (1993) investigates the contiLuous—time case where the stock price is driven by
a Markovian diffusion process. He shows that if European option prices are given for
all strikes and all maturities then the local volatility as a function of time and spot
can be determined uniquely from these prices. To show this Dupire uses the forward
Fokker-Planck equation of the risk-neutral density of the stock-price process to derive
a forward equation for European option prices in maturity date and strike price. From
this he is able to deduce the volatility function of the spot from the derivatives of the
option prices in the strike and time-to-maturity dimension. Dupire suggests a trinomial
approximation scheme for the actual implementation.

In this paper we show that the forward equatien for the option prices has other
applications. First, we show that the Deltas and the Gammas of the marketed options
also satisfy a forward running equati$n. Secondly, we show that the Vegas (the volatility
sensitivities) and the option prices’ sénsitivities to other parameters can be deduced from
similar equations. This enables us tieompute the “Greeks” in a very efficient way: we
get out all “the Greeks” of all the marketed options by running only one finite difference
grid forward, simultaneously solviné a small set of PDEs. And these “Greeks” are the
ones implied by the prices of the marketed options.

Lastly we show that the forward equations for the option prices imply a duality: the
problem of pricing and hedging of European options can be solved in a dual economy
where the spot is the strike, the strike is the spot, the call is the put, the interest rate is

2



the dividend yield, and the dividend|yield is the interest rate. The hedge ratio will be
the price of a digital option and the| Gamma will be a state price.

For the actual numerical implementation, the binomial and the trinomial models of
Derman and Kani (1994), Rubinstein (1994), and Dupire (1993) unfortunately all suffer
from one or both of the following drawbacks:

i. The model only fits option prices at one maturity date.
ii. The model is not always stable

(i.) implies that the model only matches the option prices across strikes at one maturity
date only, i.e. information from option prices at other maturities is not incorporated
in the model. (ii.) means that even though option prices given as input are consistent
with absence of arbitrage the one period risk-neutral probabilities might go negative.
This of course induce arbitrage and stability problems in the model. The stability
problem is due to the fact that these implementations all try to push the evolution of
the underlying, that in this case can have as arbitrary volatility function, into a binomial
structure or an explicit finite difference scheme. This approach is bound to give trouble
with the stability, since explicit finite difference and binomial lattice schemes can not

approximate any Markovian diffusion process.

In this paper we suggest an implementation that incorporates information from all strikes
and all maturities. Moreover our im ‘lementation is stable given that input option prices
are consistent with absence of static arbitrage. This is obtained through first deducing
the local volatility function from option prices observed in the market and then using an
implicit finite difference scheme for calculating other option prices, hedge ratios, and
parameter sensitivities. The implicit finite difference method has the advantage over
that any continuous Markov process |can be treated without problems with the stability.
Furthermore it is computational efficient. As an input our implementation can take
either observed European option prices or (Black-Scholes) implied volatilities.

Andersen (1996) also uses the implicit finite difference method in the context of implied
modelling. In this paper the risk-neutral distribution is first estimated from a set of input
option prices. Then by solving a constrained quadratic program the local volatilities
are backed out from the risk-neutra] densities of the different maturities. Contrary to
this we directly infer the local volatilities from the input implied volatilities. This is
done through an explicit formula that relates the surface of implied volatilities to the
surface of local volatilities. And instead of solving a large set of backward equations to
obtain the “Greeks” of the input options we calculate these quantities by simultaneously

solving a small set of forward equations.

We illustrate our implementation by a numerical example, where the ‘input data are
extracted from a single day of S&P| 500 index option quotes. Our numerical example
shows that the implied local volatility smile is much more pronounced than the implied
Black-Scholes volatility. smile. Implied risk-neutral distributions seem to be peaked
and highly skewed. We show that this implies that the call option hedge ratios of the
implied model are substantially lower than those implied by the Black-Scholes model.

3



Delta might induce significant “over hedging” for the calls and vice-versa for the puts.
Gammas and other sensitivities also seem to differ significantly from those of the Black-
Scholes model.

This suggests that in a world with * lolatlhty smiles”, hedging using the Black-Scholes
The paper is organized as follows. The first section presents the modelling framework
and reviews the standard arbitrage pricing results for one-factor diffusion models. In
the second section we present the forward equation of Dupire (1993) and give new
forward equations for the Deltas and other option price sensitivities. The duality of the
option pricing problem in our modelling framework is discussed in the third section.

The fourth and last section considers the numerical implementation.

The Modelling Framework and Arbitrage Pricing

We start by presenting the type of model that we will consider in this paper and review
some standard arbitrage pricing results.

We consider an economy where there is a single dividend paying stock and a money
market account.! Suppose that the continuously compounded interest rate, 7, and the
stock’s continuous dividend yield, g, are deterministic functions of time. Assume that
the stock price evolves according to the stochastic differential equation

dS(t)

S = (e, S(0) — Nt + o S()dw” (2) ()

where w” is a standard Brownian motion under the objective probability measure P,
i is the instantaneous mean return of holding the stock, and o is the instantaneous
standard deviation of the return, the|so-called local volatility. We assume that p, o are
well-behaved functions of time and |stock price. Further we define

T
B(t;T) = exp —/T(y)dy
(2)-

D(t;T) = exp / q(y
t

B(t;T) will be the time t price of |a zero-coupon bond expiring at time T and 7(T)
will be the time ¢ continuously compounded maturity T forward rate. D(-) can be
interpreted as a compounded dividend factor in the sense that S(T')/(S(¢ YD(t;T)) is

the return over [t, T] of the strategy of buying one stock at time ¢ and then continuously
reinvesting the dividends in new stocks.

Under absence of arbitrage and assimption of sufficient regularity of the stock price
process there exists an equivalent probability measure, Q, under which all discounted

! Currency options as well as options on commodities can also be considered in this framework. All one has to do is to replace
the dividend yield by the foreign interest rate or minus the cost-of-carry of the commodity.
\



asset.prices including accumulated
risk-neutral measure. Moreover the
any pay-off measurable with respect|
replicated by a self-financing dynarn
completeness of the model means t
risk-neutral measure the stock evoly

20— (v

S5(t)
where w< is a standard Brownian
maturity date 7' and strike K writte

B(t;T

Due to the Markovian properties o}
be written as the function

Using Ito’s lemma this implies that
solving the backward partial differe

dividends are martingales.> This is the so-called
model is dynamically complete, in the sense that
to the filtration generated by the stock price can be

iic trading strategy in the stock and the bond. The

hat the risk-neutral measure is unique. Under the
es according to the stochastic differential equation

— g(t)dt + o (t, S(t))dw?(t) 3)

morion under @. A European call option with
n on the stock will have the time ¢ price?

E{(S(T) - K)*} @

the stock price process the call option price can

C(t,S;T,K) ®)

the valuation of the option can be performed by
ntial equation

_ _oc oCc 1 2 .20°C
with the boundary condition
C(T,$:T,K)=(S - K)* (7)

Moreover the self-financing dynami
A(t, S(t);1
stocks and the remaining amount
C@, ST,

on the bank-account.

Forward EquationT

The previous section reviewed the

c trading strategy replicating the option consists of

_aC(t,S(t); T, K)

a5 ®)

" K)

K) — A(t, S(t); T, K)S(t) )

for European Option Prices

ell-known theory of pricing by arbitrage, initiated

by Black and Scholes (1973) and further developed and refined by Harrison and Kreps
(1979), and others. In this section we consider a less well-known result by Dupire
(1993), and derive some implications of this result.

Dupire shows that under our assumptions, the option prices also satisfy a forward
equation in maturity date and strike price. The result is restated below.

2 For sufficient regularity conditions see for example Rydberg (1996).

3 In this paper we will only consider European calls. All.the presented results can also be deduced for European puts by use
of the put-call parity. !




Result, 1: The Forward Equation for European Option Prices.
The option price function C(t,S; T, K) is the solution to the forward partial differential
equation

. oc LoC 1 2.9 0%C
qo(T)C = F7d (r(1]) — q(T))K E) + §O'(T, K)°K EYe (10)
subject to the boundary condition ‘
C(t,5;t,K)=(S - K)* (11)

Dupire derives Result 1 in a zero-interest rate and no-dividend economy. For complete-
ness we show Result 1 in this slightly more general setting in the Appendix.*

Result 1 converts the option pricing problem from one where strike and maturity are
fixed and spot and time are variables into a problem where spot and time are fixed
whereas expiration and strike are variables.

This result has several implications. If we observe a double continuum of option
_prices in strike and maturity and this surface is sufficiently smooth to admit double
differentiation in the strike direction\tcmd single differentiation in the maturity dimension,
then the local volatility function is uniquely determined from (10). The trick is simply
_ to isolate the local volatility function and then to plug in the derivatives of the observed
option prices. Under the assumption that the surface of option prices is sufficiently
smooth Andersen (1996) shows that if there are no static arbitrage opportunities in the
option market then this procedure will always produce a valid local volatility function,
ie. o(t,S)* > 0 for all (t,S). In practical implementations the described procedure
requires extensive use of extrapolation and interpolation. This a nontrivial subject that
we will return to in a subsequent section.

Result 1 also tells us that if we know the volatility function then a full grid, in maturity
date and strike, of option prices can be computed by solving only one partial differential
equation numerically. This is clearly advantageous to solving a full set of backward
equations or alternatively solving the Fokker-Planck equation for the risk-neutral density
and then obtaining the option prices from numerical integration. Forward equations also
- hold for the standard sensitivities of the option prices to changes in the spot and time.
The result below demonstrates this

First define:

o?C(t,S;T,K)

T(t,S;T,K) =
aC tag-QT K) (12)
o, 5:7, k) = LI

The I reflects the sensitivity of the hedge ratio to changes in the underlying or the
“convexity” of the option, i.e the second order. non-linear element of the option price’s
response to changes in the spot. The © reflects the change in the option price due to
time elapsing.

\

4 The forward equation (10) is in fact also valid v}/hen r, q additionally are allowed to be functions of the underlying.
| .
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Result, 2: Forward Equations for A, T", ©.

i. The hedge ratio for the option prices, A(t,S; T, K), is the solution to the forward
partial differential equation

~_ 0A JOA 1 29 OPA
subject to the boundary condition
At,S;t,K) = 1g<s (14)

ii. The convexity of the option prices, I'(t, S; T, K), is the solution to the forward partial
differential equation '

or ar 1 29 O
IVl =—-——{( — K—+-0(T,K)°’K -
((T)T = =2 = (r(T) = gD K g + 50D KV K s (19)
subject to the boundary condition
[, S;t, K) =6(K —S5) (16)
where 6(-) is the Dirac Delta function.”
iii. The time sensitivity of the option prices, ©(t,S; T, K), is given by
o, S;T,K) =
(18)

MO S: T, K) — (r(£) — q(£))SA(t, S: T, K) — %a(t, SYSI(t,S: T, K)

The proof of this result is rather simple: To see (i.) differentiate (10) with respect to the
stock price and change the orders :} differentiation. Differentiating once again gives us
(ii.). Finally (iii.) obtains from the backward PDE (6).

Say we have identified the local volatility function supporting the observed option
prices. Then the hedge ratio and the other sensitivities implied by the option prices can
be obtained by numerically solving two forward PDEs simultaneously in the same grid.
We illustrate how to do this in practice by a numerical example in the last section.®
Option traders often like to consider the sensitivity of the option prices to a change
in the volatility. This is clearly inconsistent with the standard Black-Scholes model as
well as the kind of model considered here. In our framework volatility only changes

3 The Dirac Delta function is the density with respect to the Lebesque measure of 0 (1), in the sense that

x)=0,z#0
r an
/ §(z)dz =1
—e !
for any € > 0.
6 One could also obtain these quantities by numerically solving 2 forward equations of the type given in Result 1, for two

stock prices locally around the current spot, and then approximate the derivatives by first and second order central differences.
This is computational almost as efficient as the described procedure.
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Result 3: Forward Equations for‘

i. The option price volatility sensi

partial differential equation

gq(TYV —o(T,K)K

ov

or

(r(T)

subject to the boundary conditig

ii.
partial differential equation:

The option price interest rate sen

ss, for practical reasons it is often useful to deduce
ge in the local volatility surface of the additive type

Sy o(t,S) +¢€ (19)

imber. We will term the sensitivity of the option
represent it by

U(t,S;T, K) (20)

er changes of the type

r(t) ~r(t) +e

g(t) ~ q(t) +¢

price sensitivities be denoted
®(t,S5;T,K)

A, S;T,K)

21

(22)
1 giving us an ad-hoc based estimate of for example
e interest rate, the above defined sensitivities also

| implementations due to bid-ask spreads and other

cquations for identification of these sensitivities.
!

Sensitivities to Parameters.

ivity, U(t,S;T. K), is the solution to the forward

L, 02C(t,S; T, K)

algp 1 LAV (23)
L (—— V22 =
(T)K 5=+ 50(T, KK o
n
U(t,S;t, K) =0 (24)

sitivity, ®(t, S; T, K), is the solution to the forward

()0 + 590, $: T, K)

8% * o 0 1 029 (2)
_ _ 1 7 24-2

77— (1) T a(D)E 53 + 50(T, KV’ K 57

7 Bond portfolio managers also compute and use

duration and convexity of bonds as measures of bond price sensitivities to

interest changes even though these measures are inco!
(1979).

qsistent with almost any term structure model, see Cox, Ingersoll and Ross
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The European option pricing probler
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n Option Pricing Problem.
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dual economy are described in the following table:

Economy Primal Dual
Underlying 'S K

Option Call Put

Strike K S

Interest rate T q

Dividend yield q T

A Hedge ratio Digital option
r Gamma State price
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U o Vega | Vega

¢ Interest rate sensitivity Dividend rate sensitivity

A Dividend rate sensitivity Interest rate sensitivity

After these considerations we now|turn to the second object of the paper: the imple-
mentation of the described theory.

Numerical Implementation

We now consider the construction ofl a model that fits a discrete set of observed European
option prices in the sense that the option prices of the model lie in between the bid/ask
spread of the marketed options.
According to Result 1 we can derive a unique local volatility surface that supports a
given smooth double continuum, in|strike and maturity, of option prices. First we need
this smooth double continuum of option prices. This requires interpolation between
the observed strikes and maturities but in most cases it also requires extrapolation into
areas where we do not have observations. We will for example never have observations
of option prices with maturities all|the way down to current time. This is not unlike
estimating the first and the last part of the term structure of interest rates.

We prefer to do the interpolation and extrapolation in the space of implied (Black-
Scholes) volatilities rather than directly in option prices for two reasons: First, it is easier
to relate to implied volatilities than to the prices themselves, which is probably also why
traders often prefer to quote option prices in terms of implied volatilities. Secondly, it
is easier to smooth, interpolate, and extrapolate in a space where the function that has
to be interpolated is rather (though not at all perfectly) flat. Presumably this will be the
case for the surface of implied volatilities. '

When the identification of the implied volatility surface is done we need to convert
these into local volatilities. Defining 6(7, K) to be the time 0 (Black-Scholes) implied
volatility function of strike, K, and maturity date, T', Result 5 gives the relation between
implied Black-Scholes volatility and local volatility.’

Result 5: The Relation between Implied and Local Volatility.
The local volatility function is related to the Black-Scholes implied volatility by the
equation

=+ or+(r—q)Kok
d(d—-6VT) ,.
K+————( 5 )(UK)

N

(T,K)

]. 2 2 _
50(T K K*? = .

1 ‘ ~ 2 ~ :
W+2;\_/,TKU + oKk

(34)

- 1, SD(O;T)
~ 6(T,K)VT |KB(0;T)

9 Result 5 was simultaneously derived by Andersen (1996).

AT, K
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where,. subscripts denote partial derivatives.

The proof of Result 5 is in the appendix.

The local volatilities are given as differentials of the implied volatility surface, whereas
if we want to convert local volatilities into Black-Scholes implied volatilities we have
to perform (not straightforward) integration, or solve the partial differential equation
(10). For the term structure of interest rates we have a similar relation: Forward rates
can be obtained from yield-to-maturity rates by differentiation, but we have to perform
integration to get the yield-to-maturity rates from forward rates.

Our implementation is rather simple and does not require any iteration or search for an
optimal or feasible solution once we have identified or rather estimated the surface of
implied volatilities of the market. It can be summarized in the following steps:

i. Convert bid and ask option prices into implied volatilities.

ii. Smooth a surface of implied v‘ latilities in the (7', K') space between bid and ask
volatilities. :

iii. Use Result 5 to convert implied volatilities to local volatilities.

iv. Using Result 1 through 3 we simultaneously solve for all the “Greeks” of the
marketed options by a forward running implicit finite difference scheme.

v. The scheme constructed in (iv.)| can now be solved backwards to obtain prices and
hedge ratios of non-marketed

In the above we do not necessarily need to compute the “Greeks”. Step (iv.) might be
skipped and we might go directly from step (iii.) to step (v.).

We now illustrate our procedure by a numerical example.'?

The input data are bid and ask option prices, interest rates, dividend yields and the
spot. In the example below the option prices used as input are based on median bid/ask
quotes of S&P 500 call option prices over the day 90.03.19. The interest rates and the
dividend yields are backed out from the put-call parity.

Suppose we have a table of bid/ask option price implied volatilities, interest rates and
dividend yields as the one below. An empty cell means that there is no observation for
this particular time to maturity and strike.

The interest rates and dividend yields in the above table are related to the discount
factors and the factors of accumulated dividends by

B(0;T) =exp(—-TR(0; T))

(35)
D(0;T) = exp (~TQ(0; T))
We perform cubic splines in the rates R, (), and then find r, ¢ by the relations
0;T
r(T)=R(0;T) + T———aR( T)
20(0:T) ¢
o(T) = QO T) + T2 |

10 The data set was kindly provided by Jens Jackwerth and Mark Rubinstein.
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Table 1: Input Data.

T; — 0.2411 0.5096 0.7589

K;l GbidlOask Obid/Oask Gbid/Oask

250 0.2729/0.3907 0.2564/0.3054 0.2569/0.2860
275 0.2761/0.3261 0.2467/0.2738 0.2460/0.2642
300 0.2337/0.2596 0.2215/0.2385 0.2264/0.2362
305 0.2295/0.2531 0.2150/0.2301 -

310 0.2183/0.2408 0.2093/0.2229 -

315 0.2112/0.2265 0.2036/0.2165 -

320 0.2007/0.2138 0.1969/0.2089 -

325 0.1890/0.2021 0.1872/0.1995 0.1969/0.2054
330 0.1807/0.1908 0.1832/0.1920 0.1888/0.1975
335 0.1728/0.1816 0.1763/0.1846 0.1840/0.1920
340 0.1623/0.1690 0.1688/0.1769 0.1775/0.1856
345 0.1517/0.1589 0.1625/0.1701 0.1727/0.1794
350 0.1414/0.1482 0.1580/0.1655 0.1707/0.1745
355 0.1303/0.1393 0.1529/0.1595 0.1624/0.1688
360 0.1216/0.1321 0.1465/0.1523 0.1568/0.1633
365 0.1119/0.1271 - -

370 0.0998/0.1303 - -

375 0.0970/0.1297 0.1245/0.1351 0.1402/0.1460
380 0.1064/0.1220 - -

385 0.1093/0.1273 - -

400 - - 0.0819/0.1124
Interest Rate 0.0803 0.0807 0.0802
R(0;T)

Dividend Yield 0.0378 0.0358 0.0353
Q(0;T)

Spot 341.18

Letting S, S be the lower and the
want to consider and letting 7 be

upper bound of the range of stock prices that we
our time horizon, the object is now to estimate a

“smooth” surface of implied volatilities, {6(T, K )}Te[o,r], Ke[s3] that lies in between
the bid and ask input volatilities. As objective function for the “smoothness” we take
the sums of squared second derivatives of the implied volatility surface in the (joint)
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time tQ maturity and strike directio

R

over the function {6(7, K')} subjec

05id(Ts, K)

for all strikes A; and maturities T
We let

5=5(0
and limit the state space to the disg
strikes between Ay = S and the lo
highest strike and Ayg = S. In the
maturities given in Table 1 plus the

we now have a grid of 5 x 41 poir

volatility function to be well-behave

the constraints
G1ia (T3, 250)
for all K; < 250,7 = 1,2,3 and

G1iq(0.2411, 385) <
G5:4(0.7589, 400) <

(0.2
(0.75

One might argue that these constrain

volatilities outside the range of obse

volatility might go negative which
a bit careful about the constraints or

strikes. If the implied volatility surf]
of input strikes the outcome can be

volatility surface.
The optimization program (37) has

>3 ((xeor

U =] j=1

min
{6(T:,K;)},

s.t. Gpia(Ti, Kj) < 6(T;, Kj) <

n, i.e. we minimize!!

9% \* (9%
— b KK
8T8K> + (8T2> (T, K)dKdT (37)
t to the constraint
< 6(Ti, Kj) < Gask(Ti. Kj) (38)
given in table 1.
/2,8 = 25(0),7 = 0.8 (39)

rete points given by the strikes in Table 1 plus 10
west strike of Table 1 and 10 strikes between the
time to maturity dimension we only consider the
time points 75 = 0.0 and Ty = 7 = 0.8. All in all
its or 204 variables, {5(T;, K ])} For the implied
d outside the interval of strikes [250, 400], we add

< 6(T;, Kj) < Gask(T5-250) (40)
111, K;) < 6401(0.2411.385), K; > 385 an
589, K ;) < 645:(0.7589. 400), K; > 400

ts are arbitrary, but some constraints on the implied
2rved option prices are needed. Otherwise implied
of course implies a static arbitrage. One has to be
1 the implied volatilities outside the frame of input
ace is bent too hard at the boundaries of the range

arbitrage opportunities and/or spikes in the local

the following discrete counterpart

+2(Ark8) + (Arro))(T;, K;) ) x My

(42)

CGask(Ti, Kj), 1=1.2,3;5=0,...,40

11

Any norm of the 2 X 2 matrix (82&/ T, K )%) can be used. We choose the simplest possible.
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where. Arr, A7k and A are the discrete second derivative operators
2 ) — (T - 5(T;, ) — 6(Ti_q, -
ATT@'(T}_,') — (Tl+17 ) 0( 1 ) N U( 1 ) 0'( 1 )

Tiv1 — T Tiv1—T; T, —Ti

Arpé(Th K) = 1 < (Tiq1, Aj’+1) = 0’(Ti+1*l\j—1)
Tip1 — T Ky —Kj
_ 0(Tima, Kja) T 6(Ti-, Kj—1)>
]\—j.f_]_ T I\fj_l

Q>

Q>

. . 2 o(-, Kiy1) — (-, K; o(+, K;)—0o(-, K-
ArEo(AG) = 4= - SRS ( )9 _J,) ( ! 1)>
Xj_*_l—-fx]'_l [\j...l—]Xj f\j—[x]'_l
(43)
and M;; is the areal
Mi; = (Tipp — Tim1) (K1 — K1) /4 (44)

This is a quadratic program with linear constraints. For the numerical solution of this
program we apply Lempke’s algorithm that exploits the linear quadratic structure of the
problem, which makes it fast compared to a general non-linear optimization scheme.!2
Instead of going through the procedure of estimating the “true market prices” of
the options one might be tempted [to simply smooth a surface through the midpoint
volatilities and take this surface as direct input to the model. However, the local
volatility surface implied by the input implied volatilities is extremely sensitive to small
changes in the input implied volatilities and the outcome might be that “tick size noise”
triggers a local volatility surface with a lot of spikes and dips.

We obtain the estimated implied volatilities and call option prices listed in Table 2.
By solving the optimization problem we obtain the estimated implied volatilities and
call option prices listed in Table 2. If a cell is marked by (*) it means that there
were no observed option price for that particular combination of strike and maturity.
The numbers given in such cells T interpolated values obtained by the optimization

program. For brevity we choose not to list the option prices or the implied volatilities
outside the range of strikes of the input options, but Figure 1 shows the full surface of
implied volatilities, which is generated by two dimensional cubic spline interpolation
between the discrete points of the optimization program.

As noted, we obtain the full continuous surface of implied volatilities,
{6(T,K )}TG[O,T]; Ke[sF) by interpolating between the discrete points of the opti-
mization problem using a bicubic spline procedure. A straightforward bicubic spline
does not guarantee sufficient smoothness of the implied volatility surface to apply
Result 5 to back out the local volatilities. The problem is that one usually performs
a bicubic spline by first splining in the first direction and then in the second. Twice
continuous differentiability is thereby obtained in the last direction, whereas not even
continuous differentiability is guaranteed in the first direction. To overcome this
problem we take the approach described below.

12 Lempke’s algorithm is basically a modified simljalex algorithm. For a more detailed description, see for example Bazaraa and
Shetty (1979). |
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Table 2: Estimated Implied Volatilities and Call Option Prices

T, — ’ 0.2411 0.5096 0.7589

hjl (- ) () a(-)

/IC() C(-,) C(-)

250 0.3066/93.13 0.2634/95.89 0.2636/98.78

275 0.2799/69.23 0.2473/73.22 0.2504/77.39

300 0.2393/45.99 0.2216/51.52 0.2277/56.89

305 0.2301/41.48 0.2157/47.34 0.2224/52.93%*

310 0.2207/37.04 0.2097/43.24 0.2169/49.03*

315 0.2112/32.69 0.2036/39.22 0.2114/45.19*

320 0.2016/28.44 0.1974/35.31 0.2059/41.44*

325 0.1919/24.33 0.1912/31.50 0.2002/37.77

330 0.1823/20.39 0.1849/27.82 0.1945/34.20

335 1 0.1728/16.67 0.1785/24.29 0.1887/30.73

340 0.1636/13.21 0.1721/20.92 0.1828/27.38

345 0.1547/10.10 0.1659/17.74 0.1769/24.16

350 0.1464/7.38 0.1593/14.77 0.1710/21.08

355 0.1388/5.13 0.1529/12.03 0.1650/18.16

360 0.1321/2.81 0.1465/9.56 0.1590/15.42

365 0.1264/2.08 0.1402/7.37* 0.1530/12.87*

370 0.1217/1.21 0.1339/5.48* 0.1470/10.53*

375 0.1178/0.66 0.1278/3.91 0.1410/8.41

380 0.1145/0.34 0.1218/2.65%* 0.1351/6.54*

385 0.1118/0.16 0.1160/1.69* 0.1291/4.93*

400 - 0.1093/0.02* 0.1008/0.29%* 0.1124/1.66
We want to apply a finite difference grid to our pricing problem. We therefore need
the local volatility in say M x N grid points, {(ti, Sj)},=; . n.j=1,. s oD the box
[0,7] x [S,S]. To obtain this from Result 5 we need &,67,0k, 5Kk in each of these
points. By first performing a standard bicubic spline we obtain ¢ in all of the points
{(: 55)}4 5 '

We then perform one-dimensional splines in the ¢-direction on the values {&(t;, S;)}.
for each level S; and obtain the values of & for all the points {(%ti + %ti+1~, Si) }z]
By taking central differences we now have an approximation of o7 for all points

{(t:, S5}, ;-
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Figure 1: The Implied Black-Scholes Volatilities.
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Equivalently, we perform one-dimensional cubic splines in the S-dimension on
{.6(.ti,5j)}]. for each time t; to obtain the values {&(ti,%Sj"*‘%Sj.pl)}i’j. Com-
bining this with central differences |we obtain approximating values for Gx, Gk K for
all points on the considered grid {(¢:, 5;)}; ;-

The smoothness of the one-dimensional splines guarantees that the central differences
are well-behaved. Note however that it does not guarantee the existence of cross
derivatives or continuous differentiability along any curve on the plane {(¢, S)}, but we
only need the existence of the derivatives along the lines in the S and ¢ directions. The
procedure is, of course, theoretically inferior to performing a real bicubic spline that
guarantees twice continuous differentiability of the function (-, -) in any direction, but
the procedure has the advantage that|it only relies on one-dimensional spline procedures
which can be found in many standard computer libraries or scientific computing books,
for example in Flannery, Press, Teukolsky, and Vetterling (1992). Also important, is
that it is computationally fast.
By performing this procedure and plugging the approximations for (4,67, 0k, OKK)
into Result 5 we get the surface of Jlocal volatilities shown in Figure 2.

The smile is much more pronounced in the local volatility domain than in the implied
volatility domain. When a surface of implied volatilities is converted into local
volatilities then every tendency of deviation from the Black-Scholes model or constant
volatility case is inflated.

The surface of local volatilities is rather smooth for our input data. Whereas implied
volatility is in the region of 8 to 40 |percent, local volatility is in the region of 5 to 50
percent. A couple of observations deserve further comments though: there is a clear
tendency of that the local volatility drops pretty dramatically on the high in the region
where the stock price is in the interval [250,275]. This can partly be attributed our
smoothing procedure that starts levering out the implied volatilities in that region. But
the fact that this gets more pronounced as we move out in time must be attributed input
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Figure 2: Implied Local Volatilities.

data. Stale option prices in the long maturity/high strike corner might be the problem.
We could partly avoid this by not bounding the implied volatilities, but the consequence
would be that the local volatility would explode above the level of the highest strike.
Another observation is that there is|a slight tendency of a fold in the high strike and
short time to maturity region. This must be caused by the fact that we used call options
as input data, and that such options gre extremely sensitive to “tick size noise” because
their prices are very low.

We obtain the option prices of the model and the “Greeks” of the marketed options
by numerically solving the partial differential equations of Result 1, 2, and 3. The
machinery used here is the implicit finite difference method.!> The method is uniformly
stable as long as the supplied volatility function, interest rates, and dividends are
continuous and bounded, see Mitchell and Griffiths (1980). The basic idea in this scheme
is to approximate the derivatives in a partial differential equations by differences, turning
the partial differential equation into|a partial difference equation. To illustrate this let
us consider the partial differential equation (10). After performing the transformation
z = In K we get the PDE

oC oc 1 2 02C

q(T)C = 57~ (T(T) —q(T) + %U(T,x)2) B + §U(T, z) Fre (45)

We have implicitly redefined the n(Ttation so that

o(T,z) :=o(T,e")

(46)
C(T,z) =C(0,50;T,€")

The logarithmic transformation is performed because of the exponential (or com-
pounded) nature of the dynamics of the underlying stock. In most cases this increases
the precision of the finite difference scheme.

13 One might expect that the Cranck-Nicholson algorithm would give higher precision here. However our analysis suggests that
the straightforward implicit finite difference is sufficiently accurate for our purposes.
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We make the following approximat
oC(T,x) 1

o7 = ap c(h)

oC(T.x) 1

dr  2Ax

9*°C(T, x) o1

oz (Ax)2

(C(T,x

(1],

ons
_ O(T — AT, z))
+ Azx) — C(T,z — Azx))

z+ Ar) —2C(T,z) + C(T,z — Ax))

47)

Plugging these difference approximations into equation (45) and rearranging we get the

partial difference equation

C(T — AT, z) = a(T,z)C(T,z — Az) + B(T,z)C(T,z) + (T, z)C(T, z)

with b4 1o? P
AT( e 2(A:c)2) z.2)
o2
T, x)= <1+AT(q+ 2)>(T,x)
(Az)
—q+ 152 o?
==l ( v 2(A:1:)2) T2)
We now limit our state space to the grid
T,=iAl, i=0,...,N
rj=z+jAz, j=0,....,.M
AT =0.8/N
Az=(T—-z)/M
z =1n(50/2)
7 = In (250)
and supply the boundary condition |that
2 2 LT AC(T;, x;

for j = 0, M for all <. On the boy
appropriate differences to get a line

a(T;,2z0) =
Mﬂww=(

v(ﬂ,xo) = <
oT;,zpm) =

B(Ti zar) =

_(éﬂlli

Ti,zm) =0
1+AT<
AT(r —q
Az

Az

1+AT<q+
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(48)

(49)

(50)

(D)

andaries we again approximate the derivatives by
ar equation as (48), this time with

(52)



We can arrange all this into a tridiagonal set of linear equations of dimension (.M + 1) x
(M +1) and write it on the form

C(Ti-1) = A(Ty)C(Ty) (53)
where A(-) is a known tridiagonal matrix and C(-) is the vector of option prices at the
different strikes, K; = e™, j = 0,|..., M. The idea is now to invert (47) to obtain
C(T;) given C(T;-1). Since each element in C(0) is known by the boundary condition

(S —e%)* (54)

we can solve the system recursively to obtain the initial option prices for all strikes
and maturities in the grid.
The Delta and Gamma functions satisfy the same (log-transformed) PDE so for these
quantities we have a similar tridiagonal matrix equation at each time step — the matrix
A(-) is the same as for the option prices. We only have to supply the initial boundary

conditions
1.1‘]‘ Sln S

lxje[nS—Az/2.1n5+Az/2] (55)
SAr

for each element in the initial vectors of Deltas and Gammas.

For the more exotic “Greeks” we have boundary conditions saying that they should
be equal to O at all initial nodes. Their associated PDEs are different from the PDEs
considered above in that they have a term added at the left hand side of the equations.
But these terms are known when the system of partial differential equations is solved
simultaneously, so the linear system that has to be solved at each time step is for the
Vega function '

W(Ti-) = A(T;)(¥(T;) - B(T) (56)

where ¥(-) is at each time step the vector of Vegas for different strikes, K; = e*/, and
B(T;) is the vector with elements

(67

32C(Ti, l‘j) . BC(T“ :L'j)
dx? ox

ATo(T;, x;) (
The above partial derivatives are approximated by central differences.

Dividend and interest rate sensitivities are handled in a similar way. For the interest
sensitivity function, ®, we substitute the vector B(7;) in equation (50) by a vector
with elements

arTzs) (58)
oz
For A we substitute B(7;) in equatipn (50) by a vector with elements:
oC(T;, z;
AT(—C(T,-,x,-) + ——%x—x’—)> (59)
\
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Table 3: Option Prices and Local

Volatilities of the Model.

T, — 0.2411 0.5096 0.7589

Al C(--), (o(-,-) C(,), (a(-,-)) | C(:-), (a(-))
250 93.14 (0.3407 95.88 (0.2720) 98.78 (0.3542)
275 69.23 (0.4136 73.22 (0.3414) 77.39 (0.4863)
300 45.99 (0.4260 51.51 (0.2967) 56.89 (0.3810)
305 41.47 (0.3099 47.33 (0.2754) 52.92 (0.3401)*
310 37.02 (0.2941 43.23 (0.2691) 49.02 (0.3340)*
315 32.67 (0.2765 39.21 (0.2594) 45.19 (0.3143)*
320 28.42 (0.2511 35.29 (0.2475) 45.19 (0.2985)*
325 24.31 (0.2287 31.49 (0.2355) 37.77 (0.2823)
330 20.36 (0.2070 27.81 (0.2236) 34.19 (0.2650)
335 16.64 (0.1881 24.27 (0.2110) 30.73 (0.2496)
340 13.19 (0.1683 20.91 (0.1987) 27.38 (0.2333)
345 10.07 (0.1517 17.72 (0.1862) 24.15 (0.2182)
350 7.37 (0.1372) 14.76 (0.1736) 21.09 (0.2038)
355 5.12 (0.1253) 12.03 (0.1608) 18.16 (0.1897)
360 3.37 (0.1150) 19.56 (0.1483) 15.42 (0.1769)
365 2.09 (0.1095) 7.37 (0.1352)* 12.87 (0.1646)*
370 1.23 (0.1041) 5.49 (0.1225)* 10.54 (0.1533)*
375 0.68 (0.0993) 3.92 (0.1106) 8.43 (0.1417)
380 0.35 (0.0962) 2.66 (0.0990)* 6.56 (0.1303)*
385 0.18 (0.0892) 1.71 (0.0888)* 4.95 (0.1226)*
400 0.02 (0.0940)* 0.31 (0.0638)* 1.68 (0.0933)

A first check of the accuracy of the scheme is to see if we hit the observed option prices
in Table 2. We choose a grid of 200 x 200 points. The option prices of the model are
reported in the table below. The bracketed value in each cell is the local volatility at
time equal to the maturity date and spot equal to the strike.

The cells where numbers are marked by (*) are the ones where there were no initial
observation. By running our scheme forward we get out these option prices as well. In
fact we get out option prices and sensitivities in all the 200 x 200 points of our grid.

Comparing Table 3 with Table 2 we see that the pricing errors are relatively small;
the highest absolute error is about 2 cents. It should be noted that the pricing error
is due discretization error only. In a finer grid the pricing errors would in general
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be smaller. However, we fell that the precision of the scheme is sufficient for most
practical purposes.
From the option prices we can back| out the risk-neutral distribution of the model using
that the time O risk-neutral density in (7, K') is given by:

1 &%C

B o;T)W(T’ K) , (60)

The resulting risk-neutral distribution on our grid of the logarithm of the stock price
is shown in Figure 4.

Figure 4: The Implied Risk-Neutral Density.
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The risk-neutral distribution is rather smooth, but it gets more skewed as we move out
in time. Figure 5 shows the risk-neutral distribution of the underlying at the maturities
of the input option prices.

We see that the risk-neutral distributions are very peaked, skewed and lower fat-tailed.
There is a slight tendency of bimodularity at all maturities. The market’s risk-neutral
probability of a “crash” is obviously rather high, whereas the market’s risk-neutral
probability of a very bull market is low.!* It should be stressed that this probability
distribution reflects the investors’ aggregate expectations towards the future stock price
evolution adjusted for risk, and this is not necessarily the same as the actual stock
price distribution. In fact the actual distribution as well as the investors’ aggregate
perceptions about it might differ substantially from what is shown in Figure 4-5 due
to the risk-adjustment.

In Figure 6-8 we show the Deltas of the model compared to the Deltas of the Black-
Scholes model. Dotted lines are Deltas of the model whereas dotted lines are Deltas
of the Black-Scholes model.

14 See Jackwerth and Rubinstein (1996) for a deta%led empirical investigation of this phenomenon
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Figure 5: Implied Risk-Neutral Densities at the Maturities of the Input Options.
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Figure 6: The Deltas of the Input Options — Short Maturity.
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The Deltas shown in Figure 6-8 are depicted as functions of the strike and against
the Black-Scholes Deltas calculated with the implied volatilities of the different strikes
(see Table 1). Since in our case the implied volatilities vary over the strike prices the

Black-Scholes Deltas as a function
skewed risk-neutral distribution imp

of strike do not look as in a standard textbook. The
lies that the call Deltas of the model are significantly

lower than those of the Black-Scholes model. The opposite is the case for the puts.
The maximum absolute difference is at-the-money and of a magnitude of approximately
20 percent This means that if we used Black-Scholes (with the implied volatilities) for
hedging the marketed call options, vslle would effectively “over-hedge” quite substantially

relative to our model.
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Figure 7: The Deltas of the Input Options — Mid Maturity.
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Figure 8: The Deltas of the Input Options — Long Maturity.
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Since the European option prices are taken as primitives and inputs in this modelling
framework one might ask what the Deltas of the marketed options are needed for.
The Deltas serve at least three purposes: First, if one wants to replicate exotic claims
by dynamic trading in the marketed options, one would need the Deltas to construct
such a strategy. Secondly, the Deltas reflect the primal risk-exposure of options. This
information is of high value to managers of books of options. Thirdly, one might be
trying to arbitrage marketed options by dynamic trading strategies in other marketed
options, the stock and/or futures contracts, in which case one again would need the
Deltas. '

Figure 9-10 show the Gammas of the marketed options implied by our model (solid
lines) relative to those of the Black-Scholes model with volatility equal to the implied
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Figure 9: The Gammas of the Input Options — Short Maturity.
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Figure 10: The Gammas of the Input Options — Mid Maturity.
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volatility (dotted lines). For brevity| we choose to show the Gammas for the two first
maturities only. The differences between the Gammas of our model and the ones of
the Black-Scholes model are rather large. We see that the Gammas are much bigger for
in-the-money calls for our model and lower for the out-of-the-money options. This
means that in our model the composition of the replicating portfolio change more
rapidly than under Black-Scholes. |This again implies potentially higher transaction
costs. Considering the trade-off between tracking error and accumulated transaction
costs this might induce that one would choose to rebalance hedging portfolios more
infrequent under our model than under the Black-Scholes model.

In Figure 11-12 we show the Thetas}of our model (solid lines) compared to those of the
Black Scholes model (dotted lines) for the two first maturities. The Thetas turn out to
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be more, similar to those of the Black-Scholes model than the Deltas and the Gammas,
though the differences seem to increase as time to maturity increases.

Figure 11: The Thetas of the Input Options — Short Maturity.
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Of the more exotic “Greeks” we will only consider the Vegas. These are depicted in
Figure 13—-14 below for the two first maturities.

\
!
!
|
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Figure 15: The Vegas of the Input Options — Short Maturity.
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Figure 16: The Vegas of the Input Options — Mid Maturity.
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The Vegas of our model (solid lines) and the Vegas of the Black-Scholes (dotted lines)
shown in Figure 15-16 seem very similar, though they show different things. In fact the
Black-Scholes Vegas show what would happen if the surface of implied volatilities was
shifted parallely, in which case the option prices of our model would follow. The Vegas
of our model show what would happen if the surface of local volatilities was shifted
parallely. It is therefore rather surprising that the two different Vegas are so similar.
Generally though the Vegas of the model are a little bit higher than those implied by
the Black-Scholes model.
Regarding the precision of the calculated sensitivities and computer time: we first
checked our scheme for the standard Black-Scholes case. The observed discrepancies
were so small that they would not h‘ave any significant effect in practical applications.
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The program that estimates the implied volatility surface runs in approximately 5 seconds
of CPU time on a Hewlett-Packard 9000 unix system. The program that generates the
local volatility surface, and calculatés the risk-neutral distribution and the “Greeks” of
all the options in the 200 x 200 grid of time to maturity and strikes runs in approximately
10 seconds of CPU time on the same system.!> By far most of the computer time is
used at generating the grid of local volatilities and exporting the output data. Once
the grid of local volatilities is generated the actual calculation of sensitivities is done
in less than 0.5 seconds of CPU time. This means that any exotic claim satisfying the
backward PDE (6) could be priced within a split of a second. They way this is done is
through backward finite difference in the constructed grid of local volatilities, interest
rates and dividend yields. This for example applies to American options and barrier
options. For more exotic path dependent claims such as Asian options and look-back
options, the surface of local volatilities lends itself to Monte Carlo methods.

Conclusion

In this paper we have derived new forward equations for the sensitivities of European op-
tion prices. These forward equations admit fast numerical computation of the “Greeks”
of European Options. We have shown that the European option pricing problem might
be solved in a dual setting, where the economy is virtually turned upside-down. We
have presented a numerical implementation of a model that incorporates observed option
prices at different maturities and strike prices. Moreover our implementation shows to
be computational fast and fairly precise. Our numerical example shows that “implied
Greeks” might differ substantially from those implied by the Black-Scholes model.
Future research should be directed towards utilizing American style option prices
as primitives, and towards testing whether the “implied” models actually outperform
existing option pricing models when it comes to hedging standard options as well as
exotics. Another interesting topic for future research is to see if stochastic volatility
models could be implemented in a Tay so that they fit market option prices.
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Proof of Result 1

We will show the result under the
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By taking derivatives of the above

formulae we get:

oC(T,K) 2 7
. K y
T = —s0i) [ et niay @
OK
K
92C(T, k)

By rearranging this and inserting in
O

Proof of Result 5

Like in the previous proofs we fix ¢

The implied volatilities satisfy:

the forward equation the forward PDE obtains.

urrent time to be 0 without loss of generality.

C(0,8;T, K) = W(T, K, 5(T, K)) (68)
where W (-) is the Black-Scholes formula:
W(T,K;v) = D(O- 1)S®(d) — B(0; T)K® (d _ U\/T)
_1,8D0T) 1 (69)
This means that we can write:
oCc oW n oW |
aT ~ T ' av
oc ow oW
= 5 70
9K ~ K v K 70
&C 32W+2 W +32W(U 2 LW
3R7 ~ ORZ T 2anoR K T e OK) Tt 5, 0Kk
where subscripts denote partial deriyatives.
By Result 1 we have that:
, ow ‘ 8W 1, ,0°W
=——— - —_—t = —_— 71
(W = ——=5 = (1) = 4D K 5 + 50 K o (D
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So by.plugging the derivatives of (f

() into Result 1 we get:
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The last equality follows since differ
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entiation of the Black-Scholes formula shows that:
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This concludes the proof.
O
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Abstract

In this paper we present eight different|derivations of the Black-Scholes formula. To the best
of our knowledge this is the largest collection of derivations of the Black-Scholes formula. In
these derivations we pass through almast all techniques applied in continuous-time arbitrage
pricing. So the paper can also be seen as an introduction to continuous-time arbitrage pricing.
Our first derivation is the classical hedging argument presented in the original article, Black
& Scholes (1973). We derive the fundamental partial differential equation (PDE) and rather

than just verifving that the formula solves the PDE, we give a constructive technique to

derive the formula from the PDE. We [then derive the martingale approach and discuss the
connection to the fundamental PDE. We solve the risk-adjusted expectation and obtain the
formula. In the following section we apply the change of numeraire technique, which gives
intuition to the functional form of the f | rmula, and derive the Black-Scholes formula without
calculating a single integral. Since the self-financing argument is central in understanding
the arbitrage pricing principle. we use another section to demonstrate that a "stop-loss and
start-gain” strategy is not self-financing and that the value of the required external financing
equals the Black-Scholes formula minus the intrinsic value of the option. A fifth derivation
of the formula is based on the forward equation of European option prices, derived by Dupire
(1993). We show that the forward eqj

where time is reversed, the option is a put rather than a call, etc. We solve for the option
price in this economy which gives us the Black-Scholes formula, and show that the hedge
ratio can be obtained as the price of a digital option in the dual economy. We then consider
the discrete-time binomial model by Cox. Ross & Rubinstein (1979). We introduce the
concept of change of numeraire in this| setting, and obtain the convergence of the binomial

option pricing formula to the Black-Scholes formula in a few lines. We feel that this type

uation gives rise to the definition of a dual economy

of derivation provides more intuition than many textbook derivations of the same result.
The last two sections derive the Black-Scholes formula in the contexts of different equilibria.
First we apply the continuous-time CAPM to the option pricing problem and obtain the
fundamental PDE. We then show tha‘f the Black-Scholes formula might be obtained in a

representative investor equilibrium without continuous trading.



1 Introduction

Along with the Modigliani-Miller theorem and the CAPM-pricing relation, the Black-Scholes
formula for the price of a call-option is among the most famous results in financial economics.
In fact its appearance in 1973 triggered the almost explosive development of the field com-
 monly referred to as ‘mathematical finance’. Almost every book in that field contains a proof
and an alternative proof of the the result. Even the original paper by Black and Scholes
contained an ’alternative derivation’. This has led to a range of proofs. These illustrate the
techniques that are being used in the area today. This paper serves as an account of the
quite sophisticated techniques that have been developed in mathematical finance during the
last 20 vears.

Our intent is to illustrate how these can be used to derive a result that most people with
interest in finance are familiar with. TLe real power of the techniques naturally lies in their
ability to cope with different generalizations of the simple set-up of Black and Scholes, but
we know from our own experience that a 'general to specific’-approach can provide better
understanding. By nature this paper is technical but we have a fairly high degree of detail
and many references meaning that it should be possible for readers not previously familiar
with the techniques to understand and gain insight from the paper. Furthermore a certain
level of detail is necessary to illustrate how approaches differ, while at the same time indicat-
ing the parallels. To the best of our knpwledge this is the largest collection of Black-Scholes
proofs in the literature to this date.

The outline of the paper is as follows: In Section 2 we describe the model, some central
concepts, present the result that the [rest of the paper is going to evolve around: THE
BLACK-SCHOLES FORMULA, and point out why it is, exactly, that this result is so bril-
liant. By the hedge argument (that was the ingenious insight of Black and Scholes) the
fundamental partial differential equation (PDE) for the arbitrage-free price of a call-option
is derived in Section 3. Here we also LHus‘nrate that their argument stands up to the test .
of today’s more rigorous framework a%d indicate how to solve the PDE constructively by
non-probabilistic methods. Section 4 shows how martingale techniques can be used to solve
the pricing problem and stresses the rilationship between means of solutions of stochastic
differential equations (SDEs) and PDEs. Furthermore this section aims to take the mystery
out of the concept of an ’equivalent martingale measure’, something that is almost a mantra
to mathematical finance. Section 5 shows how the seemingly neutral concept of using differ-

ent numeraires can turn out to be a very powerful tool, something the focus in finance circles



has recently been drawn to. In fact we derive the Black-Scholes formula without calculating
a single integral. In Section 6 we initially try to ‘mess with your head’ by making a strat-
egy that $eemingly contradicts the previous results. But we show that a careful inspection
and some advanced stochastic calculus not only resolves the paradox, but also provides an
extra proof. It is shown in Section T that the price of the call-option also satisfies a PDE
that runs in strike price and maturity date, a forward equation. We see that this not only
gives another proof of the result but also has practical implications for numerical purposes.
Section 8 derives the formula as a limiting case of discrete binomial model. The actual con-
vergence proof is not only shorter than most others in the literature but also highlights an
interesting similarity between numeraire/measure changes in discrete and continuous cases.
Section 9 shows that we can also derive the formula from the continuous time CAPM model,
which links together two of the most celebrated results in financial economics. Utility max-
imization of a representative agent with a utility function exhibiting constant relative risk
aversion 1s shown also to do the trick irl Section 10. Sections 9 and 10 thus demonstrate that
we can restrict either the distributions of returns or the preferences of investors to derive

interesting results, something that holis in other cases too. Finally, Section 11 sums up the

contributions of the paper and discusses the results.

2 The Model and the Result

We consider a non-dividend paying stock the price of which is assumed to be the solution to
the stochastic differential equation (SDE)
ds

St

L = pdt + odWF, (1)

where p and o are constants and (W/) is a Brownian Motion on some filtered probability
space (Q.(F), P).

Furthermore consider a bond with price dynamics given by

dB,

B =rdt, Br=1

where r is the (continuously compounded) interest rate which is assumed to be constant.’
Our aim is to price a European call-option on the stock with maturity date T and strike

price K. This is a security that gives the bearer the right, but not the obligation, to buy

INotice that this is an ordinary differential equation with solution given by: B; = e~m(T-1),
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whose prices are taken as given. We do not need any other general equilibrium constraints

on the economy other than there being 'mo free lunches’. We shall later see that we can

arrive at the result from a general equilibrium model, but this is in a sense ‘overkill’: The

above conditions are exactly what we need.

3 The Hedge Argument, The Fundamental PDE, and
"How to Solve’ |

The technique presented in this section is the one originally used by Black and Scholes to
derive the formula that now bears their names. The result was simultaneously and indepen-
dently derived by Merton. Let Y; denate the price of a call option with strike A" and maturity
T. Now assume that Y; can be written as a twice continuously differentiable function of 5;

(hence. no dependence on past S,’s) and ¢. That is

Y: = C(5;,1)
Ito’s Lemma applied to Y; yvields
- LoC  9Cc 1, ,0%C oc P .
d}t = (/th-a—-s—, + “a—t + 50-2,53 85'2> dt + EgabtdI/Vt (3)

where some of the dependences have

Now assume that a self-financing trad
asSt +

so a; is the number of shares of stock

Hence we have

dY; d

—_

a4

o~

(a4

where the second equality follows frg
Ito-expressions for dY;. This means (k
(1992)) that the drift- and diffusion t

Matching ’diffusion’-terms yields ( sin

been notationally suppressed.

ling strategy (ai, b;) exists such that

held and b; is the number of bonds held at time ¢.

1,5; + b:B)
1S, + b,dB;
1S, + brBy)dt + a;0 S, dWF

m the self-financing condition. So now we have two
y the Unique Decomposition Theorem, see e.g. Duffie

erms in these must be equal.

ce S; >0 P -as.)
oC

¢ = %(Stat)a

a

3




which gives us the shares of stock to| hold.
On the other hand from (4)
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o, we would just sell the option and buy the replicating
lepending on which is the cheaper alternative). This
. An arbitrage opportunity !

o we know that the proposed trading strategy is indeed

just assumed so far, that this was the case,’and made

s trading strategy as introduced in the above is self-

aC
5. = ®(z(z))

1) > (z — e "T-1K)*+ but this turns out to be automatically




and because ® and z are twice differe

our standard Ito Formula. We have 1

A

d
.From the definitions of Y;. a;, and b

dY;

d(aiSy) + d(b1
(a;dS; + dayS;

(ltdSt + (datSt
a;dS; + (dC —

Now, dC we know from (3) and as a4

ntiable in  and ¢ (for t < T') we have no trouble using

o show that
}; = (ltdSt + btdBt
¢, [to vields

3:)

+ da;dSy) + d(C — a;5y)

+ da,;dS; + dC — da;dS; — da;S; — a;dS;)
a:dSy)

= % we have (by (1))

. - oc 1 ,0%C -
dY; = a,dS; (a_t 502 552 S7)dt (7)
but as C' solves (5) we have —')% + 1o 3259 Se=rC — T‘St%. Plugging this into (7) gives
. . 1 ., 0C
(Iyt = Clt(lbt + E(C - btﬁ) (T'Btdt)
> dB,
= CLtdSt =+ btdBt

As we see it was not difficult to show

something to show), but it hinges on
a trading strategy that is obviously s
In the words of Lou Reed:

“Don’t believe half of what you

The intention has been to highlight th
by continuously trading in the stock
that Black and Scholes do not fully

with. Nonetheless they are remarkabl]

The next section may be more intere

technique for solving (5)-(6).

v (the hardest part is convincing yourself that there is
the properties of C'. Later (in Section 6 ) we will meet

elf-financing. Except: It isn’t !

see and none of what you hear.”

e central hedge-argument: The option can be replicated
and the bond. It could seem from the original article
realize what a powerful technique they have come up
y clear in their argumentation.

sting in a historical context as we show a constructive




3.1

Solving PDEs is usually a pretty tri
the reader to verify that the express
PDE (5) and boundary condition. Th
depends strongly on one’s ability to
A Feynman-Kac approach. which hig
used for a more constructive proof. I
Lemma can also be used for the cons

An analytic way of solving the PDE

1.

Lo

normalized in points of disconti

Solving the Black-Scholes PDE

By making the transformations

u(z

solving Equation (3) can be see

with the boundary condition

This is known to physisists as
equivalent to transforming the

variables.

The Fourier Transform (FT), A

notation varies)
¢, 0) =
where u : R x R, — R. Pr

simply by replacing '’ by -1’

the differentiation rule for Four

#(2) wene)

cky matter. Therefore most textbooks just encourage

ion in the Black-Scholes Formula actually satisfies the

is is a straightforward calculation. the volume of which

lifferentiate.

rhly resembles the technique used in Section 4, can be

n fact if we insist on taking a probabilistic view, Ito’s

truction of a solution.

is given by the following sketch:

(with r =T —1t)

2

s = ln(;t)—{—(r—%)r (8)
6 = o’r (9)
,0) = €7C(z,t) (10)

n to be eqivalent to solving

—Uy, —uUsg =10
o ez 6

Z

u(z,0) = (e — K)*

the heat equation. In the martingale approach this is

problem into one that only involves standard normal

, is a mapping between function spaces defined by (the

1
Flu,€) = 11

(1,6) = —= ()
»vided that the considered function is continuous (or
nuity) an inverse F'T exists and is explicitly calculated

in (11) (hence it acts very similar to a FT). By using

/oo u(w,@)e%dlr

ier Transforms (see e.g. Borchsenius (1985))

(—iﬁ)n‘r(th 5)

8




it is seen that the FT of u, 4, satisfies the ordinary differential equation”

fo(€,0) + 2E20(€,6) = 0

with boundary condition @(&,0) = F((e* — K)*,€). This is easily solved by:

w r"o

—6

w(€,0) = u(€,0)e”

3. The problem is then transformed back. Here we need the convolution theorem for
FT’s®
F(fg.&) = F(f,€) = Flg,€),

which obviously also appears to inverse FT’s. We then have
u(z,0) = u(z,0) x Ng(z)

where R is such that Ap(€) = 6_5’-’39. Fortunately any table of FTs will tell you that®

[ %)

SE
I

_I:I 1 _
be™Vard: = —e

%/_:f“ T

Note that something that bears more than a vague resemblance to a normal density

I\’g(;l').

function has now turned up. The convolution integral that one has to evaluate thus

looks like:

]_ (o) 2
u(z,0) = \/? (63_y —K)"'e_{’?dy
\/ ?7r

In(E)+(rro?/2)r 2 In{ £)+(r—02/2)7 2
= / ! e Ve Tdy — K " e~ % dy

\/ﬂ— \/—

ln( Ly (r+a?/2)7 2
/ " (7Y — K)e %o dy

= e 20

V218 J- )
. In(&) 4 (r +02%/2)7 ln—”“}—f-r—a
Vo

TNotlce that in our case the order of differentiation w.r.t § and integration can be interchanged.

8% denotes convolution: (f * g)(€) = \/T_Wffom f(& — z)g(z)dz. Notice the scaling.
It might be listed under Fourier COSINE Transforms.

eH0/2 () HEo2 /2T e dy — Ko (ln(f) +(r—o?/2)7




which by transforming (compl

etely) back to the original variables yields!'®

Gee = € Tulz.7)
— ¢ TTelnrH (0?27 (oT) 2P(-) — e TTR®()
o (PR PAT =) ren g [E) /DT 1)
o/ (T — 1) o /(T —t)
Voila! The Black-Scholes formula!

This technique is the one originally u

this might be somewhat hidden in tl

4 The Martingale A

In the last section the partial differen
ology were derived under the assum
In this section we will derive the ma
Markov property of the stock and d
tained in the previous section. Usin
Black-Scholes formula.
The martingale pricing technique wa
developed and refined by Harrison &

We start by defining the quantity

and the Girsanov factor
&t =

The Girsanov factor is a positive P-1

bility measure Q, equivalent to P, b

on F;. According to the Girsanov T}

sed by Black & Scholes (1973)/Merton (19735) although

he original papers.

pproach

tial equation and thereby the arbitrage pricing method-
ption that the stock price followed a Markov process.

rtingale pricing approach that does not depend on the

raw the analogy to the partial differential equation ob-

g the martingale valuation technique we calculate the

s pioneered by Cox & Ross (1976) and later on further
Kreps (1979), Harrison & Pliska (1981), and others.

[
]7:

g

1.
= exp(—5n’t — W)
martingale with mean 1, so we can define a new proba-

v setting

dQ = &dP (12)

neorem we have that under Q

I/VtQ = I/th +nt

10see (8)-(10).

10

) |



is a Brownian motion.!! Plugging th

according to the stochastic differenti

Let us now define

G

t

We observe that from the definition
filtration (F;). By the Martingale Re

L

-~

/.12 Introducing T

1.

for some process

Brownian motion we get

(th

Now consider a self-financing strate]
consisting of « stocks and the remair

strategy evolves according to

dv;

rVid
(atS

(atS

Choosing V5 = G and

we see that GG,V have the same evol

all t. Since Cr = G we conlude that

UFor the Girsanov Theorem in the conte;
12A possible reference for the Martingale

—~

3

r

.
|

atdf)'t

it + (ltO'StdI/VtQ

is into (1) vields that under @, the stock price evolves

al equation

]

U

= rdt + cdW2 (13)

t

BEZ |(S7 - K)*]

BE? ET

t

(St — K)+J

e~ "Gy must be a Q-martingale with respect to the

presentation Theorem we therefore have that
[G_rthJ = ’“/tdlfvrtg

= €"'v/G, using Ito’s lemma and reintroducing the P

Gi(rdt + T,dWS2)
Gi((r + Tyn)dt + T dWF)

gy with value V and no consumption flow before T

1ing amount is put in b = (V — aS5)/B bonds. Such a

+ Vi — a5y

dB
B; t

(14)
(g — 1) +rV)dt + aoSedW)
ron + rVy)dt + (ltO'StdI/VtP

_ rv
T oS
ution and the same starting value, hence V; = G, for

C; = G, for all t. Otherwise there exists an arbitrage

a

xt of financial economics see for example Duffie (1992).
Representation Theorem is Duffie (1992).

11




because G can be replicated through the dynamic trading strategy outlined above. We have

now obtained the martingale pricing equation

A

Cy= ¢ "TIER [(Sp — K

)"

d on w and/or o being constants. In fact the measure Q@

(15)

Note that this relation does not depen
is unique and the replication argument goes through as long as only the diffusion coefficient,
but not necessarily the drift, of the stock is adapted to the filtration generated by the stock.'®
Investors need not have the same beliefs about the drift of the stock for the arbitrage pricing
to be valid. All they have to agree about is the diffusion coefficient. In a continuous-time
economy this means that all they have to agree about are the zero-sets for the stock price
evolution.
Before we use the martingale valuation equation to calculate the Black-Scholes formula we
note that the Markovian property of the stock price process under Q together with the above
valuation equation implies that we can write the option price as a function of current time
. Using Ito’s lemma it follows that!?

_025282_0 OC (S, 1)

052 as

and stock price only, i.e. Cy = C(S;.t

([Ct = (

Comparing this to equation (14) and

ot

LoC 1

TroEs TS ) (e t)dt + S dWE (16)

matching the diffusion terms yields

_9C(Sut)

rSt = aq O'S-[

a;:d

and thereby that the replicating strategy is given by

ai‘(sh t)
a5

. Ct - CLtSt
= Bt

ay = ? bt

Matching the drift terms yields the partial differential equation

. lac . aC 1, ,0°C
C = % T s T30 Y g
st Cr = (St —RA)*t

On the other hand we see that if S fa

Q the partial differential equation imp

13For obscure stock price processes £ mig

(12) is not an equivalent probability measure

148trictly speaking C need to be differenti
both (2) and the derivations below show tha

llows the process (13) under the probability measure

lies that the discounted option price, e~ "*C}, must be

ht not be a P-martingale, which implies that Q as defined by
. But if Q is well-defined it is unique.

able in ¢t and twice differentiable in S for (16) to be valid. But
b 1t 1s.

12




a Q-martingale. From this the pricir
analogy between the two pricing met
To compute the Black-Scholes formu

@ with mean and variance

ng equation (15) follows. We see that there is a strict
hodologies.

la we use that sitting at time 0, ln ST is normal under

1. v
o - o
m = E[lnS7]=InSe+ (r— ;oZ)T (17)
; o)
v? = Var®[lnS7] = T (18)
SO
1
' —rT i m+vzx ~ 6_512
Co = e (e — K)) dx
ln K—m 21
v
o m4vr— Lo Y
= T coc L dr—eTK T dx
In K\—m ?7{' In K—m '-).IT
a ~Li(z—v)? —1g2
= g THmigy? /wQ €’ dr —e TR €7 dz
-~ Jin K= G In K—
wi=m \for mi=m \ /o

In(So/K) +rT
T

soo

5 Change of Numers

This section reviews a popular techni

Co

The technique is often referred to as
a change of discounting factor from
nique will show to be extremely pow
formula without evaluating a single 1
of numeraire approach also exposes
Black-Scholes formula as will be dem
The change of numeraire technique s
was probably known in the financial 1
The idea is the following. We note t
not depend on the bank-account bein

choose S as the numeraire of another

1
+ ;a\/f) — e TK® (

In(Se/K) +rT 1
oVT

aﬁ)

4

lire

que for solving the valuation equation
e TE [(Sr — K)7|

the change of numeraire technique because it involves
the bank-account to the underlying asset. The tech-
erful: in this section we will derive the Black-Scholes
ntegral. But more than being a technique the change
0 intriquing interpretation of the probabilities in the
onstrated in this section.
howed up in several papers in the late eighties but it
research community long before.
hat the martingale approach in the last section does
g used as numeraire for the pay-offs. In fact we could
martingale measure, Q’, and under this measure

Ct

A

13




would be a martingale. To see this o

~rt
er

& n

is a postive Q-martingale with mean

measure related to @ and P by:

on F;. The Brownian motion under ¢

9]

[’v;‘

Straightforward application of this vi

bserve that

-2
t

)

1
R exp(—;azt + o1t

1.

Hence, we can define a new equivalent probability

t2ldQ

0

51
~rt qf £,dP

~'0

€

€

Q)" 1s then given by

N’

WE — ot
WF +qt — ot

elds the valuation equation

— K\t
Co = SoE€ [(—S—T—;—A—)} (19)
St
where ” ,
S ,
‘q Lo{r + o%)dt 4 odW 2
oy

But this does not reduce the complex
still have to evaluate an integral like t

our initial valuation equation. We sp

—rT

C‘o EQ [6

We feel that this equation has a very
finishes in-the-money, the option pay
component is the uncertain amount S
The present value of receiving St at
with some risk-adjusted probability of
because it exactly off-sets the “S5”-rish
were “risk-neutral” with respect to th

The

—K is a fixed dollar amount.

ity of derivation of the Black-Scholes formula. We will
he one in the previous section. So instead we reconsider

lit up the pay-off to get:

5'T1{ST>K}] — e "TRE® [1{5T>K}]

> K)— e TKQ(Sr > K) (20)

' nice interpretation: Given that the European option
Loff can be decomposed into two components, the first
7, and the second component is the fixed amount — K.
time T is of course Sp. But this has to be weighted
f finishing in-the-money. Q' is the right measure to use
c. In other words under Q' pay-offs are valued as if one
e risk of the underlying stock. The second component

proper probability measure to apply is therefore the

14



measure Q under which pay-offs are 1
The formula is general, in the sense th
account as numeraire exists (and this
above formula. In a subsequent sectig
Cox et al. (1979) model has a similar
To obtain the Black-Scholes formula v

above equation. We observe that und

by

E? [In S

Var® [In S

Using this and the distribution of S(T'

obtain

Q'(S7 > K)

Q(St > K)

and thereby the Black-Scholes formuls:

The change of numeraire technique 1
types of option contracts and to mor

technique has elegantly been applied t

risk-adjustment”, see for example Jam

context of exotic options the techniqu

lookback options, barrier options, and

Babbs (1992), Dufresne, Kierstad & R

6 Shaking your Foun

In this section we will investigate a stz

and costs nothing initially. Moreover i

this strategy is not self-financing and t
Black-Scholes formula. However we wil

we will actually reach the B.-S. formuy

neasured relative to the risk-less bond.

at it does not depend on the underlying stock following
t, if an equivalent martingale measure with the bank
measure need not be unique) then one can derive the
n we will show that the European option price of the
interpretation.

ve simply have to evaluate the two probabilities in the
ler @', In St is normal with mean and variance given

1.
InSo + (r + 302)]’

a’T

T]

T]

under @ given in the previous section we immediately

d
d

s a very powerful tool that can be applied to other

In(So/K) + rT
T

In(So/K) +rT
VT

S

YR Y
q

q
3

i

e general models. In the fixed income literature this
b option pricing problems under the name of "forward-
shidian (1989) and El Karoui & Rochet (1989). In the
e has shown useful in the evaluation of Asian options,
various other exotica. See for example Ingersoll (1987),

loss (1996), and Graversen & Peskir (1995).

dation

rategy that duplicates the payoff of the European call
t seems to be self-financing. However, as we shall see,
herefore does not qualify to be a “threat” against the
1 see that by taking care of the extra external financing

la. The idea of getting the Black-Scholes formula in

15




this way is due to Carr & Jarrow (1
the literature by Seidenverg (1988) a
stop-loss’ start-gain strategy.
(Consider the following trading strate
the stock price hold one share of th
stock price falls below the present val

see below this strategy will at termin

Now if the stock price initially is wg

strategy costs nothing initially. Ther

arbitrage-opportunities in the Black

more formally. Let:

a¢

b

Then the value of the portfolio at tin

Y,
1
(

Now we see that the value of the po

furthermore since By = 1 we see thai

Therefore if % < K then the portfo

is self-financing we notice that the se

t
Vi=Yo+ [
0

can be reduced (by using Ito’s lemms:

h_ Y
B~ B

If we ease notation by letting

F;

where F; is the stock price with the b

gives us that the stop-loss and start-g

(F, — K)" = (Fy -

ay

!
N

990).The strategy has also been carefully analyzed in

nd Dybvig (1988) and is known to practitioners as the

>gy: If the present value of the strike price K is below
e stock. Finance this by using borrowed funds. If the
ue of the strike price liquidate the position. As we shall
al date T" be worth exactly the same as the call-option.
rth less than the present value of the strike price the
refore if the strategy is self-financing this would create

Scholes-economy. To analyze this strategy we proceed

L{5t>1\'-Bt}7

'_1{St>KB¢}I\’r Vit € [O.T]

ne t, Y3, is equal to:

St + b By
St>I\'Bt}St - 1{St>1\—Bt}]‘,Bt '

;t — I\’Bt)-'— (21)

rtfolio is always the lower bound for a call option and
we have duplicated the call’s payoff.
io initially costs nothing. To examine if this portfolio

If-financing condition:

t
1.dS, + / budB., Vi€ [0,T].
0

) , Vie[0,T]. (22)

=5

ond as numeraire (the forward price) we see that (22)

vt € [0,T],

rain strategy is self-financing if and only if:

t
K)o+ /0 1rorydF., Ve [0,T). (23)

16




Fortunately enough this is not the cas

described above. To see that the stra

R

Lemma 1 Let X be a continuous se

M is a local martingale.

1. Let g :
Then:

R — R be a conver f
9(X:) = g(Xo)

where D™ g s the left-hand derd
D™y

and p is the second dertvative 7

p(a, b)

o

Let k: R — [0,00) be a Borel-
/Ot M(X(w))d < M
holds for P-a.e. w € Q).

3. M(z.w) >0 P-as

Using (24) with the convex function

p(dr) = =gy give us:'®

(F,— K)* = (Fy— K)T +

We see that the difference between (2
time at I’ by time ¢ in the stochasti
positive with positive probability for
strategy is not self-financing.

If we take the “risk-neutral” expectat
ES [(F: — (

15see Karatzas & Shreve (1988) p. 218.
16This is also known as the Tanaka-Meye

KY*| =

>s (w)

e - otherwise there could be arbitrage in the economy as

tegy is not self-financing we use the following lemma:*?

mimartingale of the form: X; = Xo + M; + V;, where

unction (which is not necessarily twice differentiable).

+/Dg X—{—/

vative. Le.
—g(z)

p(dr), (24)

glx +h)
h

z) = lim
A—0_

neasure:

a < b.

= D7 g(b) — D" g(a),

measurable function. Then:

_ 2[” b(z) Az, w)dz, 0 <1< oo (25)

g(z) = (x — K)*, noticing that D~ g(x) = 1{z>x} and

t
/ L smydFy + A(K), Vi€ [0, 7). (26)
0

3) and (26) is the term A;(K’) which is called the local
c calculus literature. Now we will show that A,(K) is
any t, which shows us that the stop-loss and start-gain
ion of (26) we get:

Fo — Kt +EZ[A(K)], Vte[0,T], (27)

r-formula.

17




where
Q
Eg
because F'is a Q-martingale and ther

Now it is obvious from the results in

QFy>HK)>

(z — K]

get that Jensen's inequality holds stri

Furthermore: Because ¢(x)

ES (£ — K)F)

Now combining (27) with (28) we ge
Q(N(N)>0)>0. Vt€(0.7T]. The
that the strategy is not self-financing
In our setting A;(A') has a very nice i
the following way:

Buy one share of stock each time F i
also go short in A" bonds. We see tha
additional € bonds. Furthermore we lj
Now let U;(€) denote the number of t
we see that with the above mentione

time t to handle the external financin
111
el

That is: The additional local time tern

financing required to trade by the sto

Now we will show that evaluating (217

that:
Go _
By
yields the B.S.-formula. L.e.:

COZ(S()—C

equals the Black-Scholes price of the ¢

(29) has a nice interpretation: The fir

)

(£

¢
/ 1{Fu>K}dFu] =0,
0

reby we have that the integral-term is a Q-martingale.

the previous sections that:

, QF, <K)>0. Vte(0.T].

)T is strictly convex over an interval containing A we

ctly for g(z). Le.:

> (E2[F]-K)" = (R - K)* (28)

-

ot ES [A:(K)] > 0. Since A,(K) > 0 it follows that
refore P (A;(K) > 0) >0, VYt € (0,7] which shows us

1terpretation. Suppose that we change our strategy in

1ses from A to A + ¢, € > 0. In this case we should
t every time the transaction takes place it requires an
quidate the portfolio every time F' goes back to A'.

imes F' has risen from K to K + € until time {. Then
1 strategy we would have to invest in eU;(e) bonds at

g. Now it can be shown that:
%léUt(é) = A¢(K).

n from equation (26) can be interpreted as the external
p-loss start-gain strategy.

') for t = T and noticing (from the previous section)

r — K)*] = E§ [(Sr — K)*]

TR + e TES [Ar(K))]. (29)

yption.

st term on the right-hand side is the option’s intrinsic

18




value and is according to (21) equal to the initial investment required in the stop-loss start-
gain strategy. The residual (e "7 ES [AT(H)]) is referred to as the option’s time value which
in this case is the present value of the expected external financial costs.

.From the previous section we know that F' is a ()-martingale. By Girsanov’s theorem we

therefore have that:
dF; = o F,dW 2.
% That is: X
: Fy = Foexp{oW? — o7t}
Therefore we get the following transition density for F':

1 [ 1 mFt—(mFo—_la2t)>2
W(Fy t: Fo,0) = I —Z 2
e 0.0) Fta\/i\/ﬂexp{ ( oVt

1 | (ln (I—}Z‘tl) — %azt 20
- FtO'\/i-q) s ( )

where ¢(z) = \/—?z-—l;exp (—%:2> is the standard normal density function.

Now taking the -risk-neutral” expectation of (25) with X = F we get:

T
EQ [/ KE)d <|F >,
0

~ E2 [2 /_ i k(:z:)AT(ar)d;r] . (31)

Using that d < F >;= o?F?*(t)dt on the left side and employing Fubini‘s theorem on the
right side of (31) gives us:

oo T e
/_ﬁk(x)/o o222 (z, t; Fo, 0)dt d:c:/ k(2)2E2 [Ar(z)] de. (32)

—00

Now choose k(z) = 1{;c4}, where A € F. (32) then becomes:

r T
/ / oe(z, b Fo,0)dt de = / 2EQ [Ar(z)] d.
AJO A

Realizing that the integrands are nonnegative and that both integrals are equal for any

A € F we get: :
T

/ o2ep(z, t; Fo, 0)dt = 2E2 [Ar(z)] - (33)
0

Combining (30) with (33) yields:

1Q

B [Ar(K) = 25 [T Ly (hl (B) - %“Zt) dt. (34)

2 Jo it oVt
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If we substitute (34) back into (29) v

to .
o
T 1

Now changing variable by v = g

S

+
+

Co = (5'0 —_ €_rT[X’)
Finally we have reached the Black-S

entiated with respect to o is:
e TRV
with the boundary condition that Cj

7 The Forward Equa

Compared to the technique applied ir
formula might seem cumbersome. (
shed further light on the European
duality of the pricing problem that
a forward partial differential equatio
variables are the strike and the matur
opposed to the standard backward pa
spot and time are the variables and
equation reveals that the option pri
every parameter is turned upside do
put with strike equal to the current s

Again we start from the valuation eq

Co

Co= (S0~ e"'TI\’>+ +E

- (m(

ye get:

_rTaK/T 1  (In (%)—;021‘ i
2 Jo \/f@ oVt ’

ves us:

2

In (2r) — 32T
T )dz/.

holes formula. This is seen by noticing that (2) differ-
Ke—"T) B %O-QT

)

= (So — e”"TK)* when o = 0.

1
51/

e‘rTIx'\/T/a o (
0

_So _

(35)

ition of European Option Prices

1 section 5 the following derivation of the Black-Scholes
Dn the other hand the result that we will derive will
option pricing problem and will expose an interesting

we consider. In the spirit of Dupire (1993) we derive

n for the European option prices. In this equation the
ity whereas the current spot and time are fixed. This is
rtial differential equation derived in section 3, where the
strike and maturity are fixed. Examining this forward
cing problem can be solved in a dual economy where
wn: the strike price is the underlying, the option is a
pot, time is reversed, etc.

uation

TR (S — K)7] (36)

T /A (¢ — K)p(z, T)dz
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where ¥ (x.T) is the Q-density of St
Due to the Markov property of the
Planck equation'”
o
aT
subject to the initial boundary condi
function.’® We will use this to derive

Assuming that

9
Jdz

for @ — oo, which is clearly satisfied

equation over the interval (y, co) yiel
a 20
0=—— V(x, T
or Jy (

Integrating once more, this time over

0= [7 [T ute )

Now we go back to the pricing equati

T)dz + ryv(y,T) —

in the point z given Sg at time 0.

spot price we have that @ solves the forward Fokker-

tion v (z,0) = é(z — Sp), where 4(-) 1s the Dirac Delta

a forward equation for the option prices.

rev(z, T) — 0
o?z*p(z, T) — O
[021?2';[)(;10, T)] — 0
in the Black-Scholes model, integration of the forward

d

S:

[

91 22

3y (74w T)

(K, 00), yields

to dy+r [~ ybly, T)dy + 5o K2R, T)

on. By partwise integration we have that

_ —TT [ o] is. o] ,‘
Co=c¢ /A /y v(z, T)dz dy
so that 5 a0
— Y NG . — o™ T rT Y0
E)T/K /y V(x,T)de dy = re™" Co+ € 3T
Further we have that
0 aC
| RY; 2 — rT I AR & ¢]
/, yP(y,T)dy = € Co— Ke 1%
9*C,
7 rT 4] ¢
(K, T) Y (37)

17See Revuz & Yor (1991) p 269 for the F
13The Dirac Delta function is defined by

for all z # 0 and

for all ¢ > 0.

okker-Planck equation.

8z)=0

/_i §(z)dz =1




If we let C'(KA.T) denote the initial pricevof a European call with strike A expiring at time

T. we obtain the following forward partial differential equation for the European call option

prices
)
0=——
d

_ w9 2 0°C

o 1
T 1710% JR?

9 yr
+;0’[X

4

(38)

subject to the initial boundary condi
The forward equation can now be so
The advanced reader might observe
valuation equation under the Q" mea
stock price process in the Black-Scho
vield of the underlying stock. Andrea
a forward‘equat.ion for American ca
diffusion model of Merton (1976).1°
assumption of sufficient regularity it

ds;

S,

tion C'(K,0) = (So — K)*.

lved to yield the Black-Scholes formula.

that the forward equation could be derived from the

sure, (19), combined with the time homogeneity of the

les model. Under the assumption of a positive dividend

sen & Gruenewald (1996) apply this technique to obtain

Is in the Black-Scholes model as well as in the jump-
But the forward equation (38) is more general; under

holds for all Ito processes of the type

p(t;w)dt + oSy, t)dW T

if additionally the interest rate is only a function of time and the stock price. For stock

option pricing and short maturities it is in most cases reasonable to assume (at most) time-
dependent interest rates. Given todays yield curve it is then possible to uniquely determine
the function ¢(S,¢) from a full double continuum of option prices, C(A,T), by the forward
equation (38). The trick is simply to estimate the derivatives in (38) and isolate the function -
. of marketed options we can “infer the option pricing

st observed by Dupire (1993), but already Breeden &

o(-,-). In other words from a full set

model of the market”. This was firs

Litzenberger (1978) noted the relati
stock’s risk-adjusted distribution at 4
of different strikes.2°
Another interesting implication of the
(now possibly a function of time and
only solving one partial differential ¢

this also goes for the hedge ratios of

A(K

19The positive dividend yield implies tha

2OFor further exploration of this see for exz

and Jackwerth & Rubinstein (1996).

on (37). This relation tells us that we can infer the

given maturity date from a continuum of option prices

> forward equation is that when the volatility coefficient

spot) is given we can price all options on the market by

zquation numerically. Andreasen (1996) observes that

the European options. To see this define

T) = OC(K,T)
95

t the American call might be exercised prematurely.
ample Shimko (1991), Derman & Kani (1994), Rubinstein (1994),

(39)

ls=s,
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Differentiation of the forward equation

0=——
0
subject to the initial boundary cond

Similar forward equations might be

equation. Suppose that the time ax
sitting at time T evaluating
ER

for the process

dR X’t

b} \’t

where W7 is some backward running
Then the forward equation (38) is th
conclude that the option pricing prol

reversed, the strike is the underlying

put on the initial stock price. and fir

that in this "space” the hedge ratio

option pricing can therefore be perfor

We conlude this section by using (4

calculate the hedge ratio. Note that {

Ko = K exp (

SO

EF [( So — Ko)¥|Kr = K

ln(So/I\')+rT+1§a\/T

A
= —rN—

r

(38) now yields
0A 0*A
17104 ORK?
tion A(A,0) = 1(5,>R3-

1
+ —021’)

Jerived for other “Greeks™.
The last point to be stated is the duali

ity of the option pricing problem implied by the forward
1s 1s reversed, Sp is a fixed quantity, and that we are

(S0 — Ko)*| K1 = K] (40)

—r)d(—t) + cdW [

Brownian motion under some probability measure R.
e backward equation résulting for this problem. So we
blem might be solved in a dual economy where time is
that pays a proportional dividend of r, the option is a
rally the interest rate is equal to zero. Further we see
of the original economy will be a digital option. The
med in a reversed binomial tree.?!

D) to calculate the Black-Scholes formula and (39) to
under R we have that

1
—r— 2T + o(W - W}z))

e

_ o VT (50 _ [{e(—r—%az)T+a\/TJ:) dz
—no ' \/2—7r
In S?/_-I-TT+ T g-ba? ln(SO/\?_H-rT_!_ T o tla—oVT)?
- S / ’ de—eTK [ ° < i
—eo V2T —oo V2r

In(So/K) + rT
oVT

suo

*1For more on the duality see Dupire (199

+ éa T) ~eTK® (

1

In(So/K) +rT
ovT

F4

a\/T)

4) and Andreasen (1996).
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For the hedge ratio we get:

R(Ky < So|Kr = K)
5 <1n(5'0/1() +rT

E® [1iro<s) | AT = K

—

_ aﬁ) |

1
2

ovT

8 A ConVergence Proof

C'ox. Ross, and Rubinstein were the first to publish a paper with a formal convergence proof
1 less known paper with the same result (and from the

r (1979). But the use of binomial models for economic

along the lines of this section. A muck
same vear) is by Rendleman & Bartte
reasoning is much older, dating (at least) back to Arrow and Debreu in the 507ies.

Let us consider the following situation: A stock today has a price of Sp and can in the next

period either go up to uSy or down to dSp. This happens with probabilities p and 1 — p,
rther exists a risk-free zero coupon bond maturing in
ounded) interest rate rq (u > 1+ry > d > 0, to avoid

tock with exercise price K. The situation is illustrated

respectively. In the economy there fu
the next period with (discretely comp
dominance). and a call-option on the g

in Figure 1.

Stock Bond Call

uSo 1 Cu = (uSo — K)*
So

dSo 1 Cy=(dSo — K)*

Figure 1: The One-Period Binomial Model

We are interested in hedging the optic

hedge, i.e. an exact replication of t

n by trading @ shares of stock and b bonds. A perfect

he option’s pay-off in every possible future state, is

24



achieved by letting

Cy — Cy
L = T
(u—d)Soy
- uCy—dC,
T (u—d)
(notice that a = %, so the analogy to the continuous case is striking).

To prevent arbitrage opportunities t

present price of the call-option. Writi

he price of the hedge portfolio must be equal to the
ng this out and reshuffling leads to

Co =R (qCu+ (1 — q)Ca) (41)
Where
—d
q= il , R=1+4ry
u—d

So we see that the price of the call-op|
expectation i1s under a measure that
original probabilities do not enter the

al. (1979). Notice that we can write (
Co _
By
with obvious subscript notation and
Using the bond as numeraire, the cal

is consistent with that of Section 5. A

then direct inspection reveals that

with Q' being the measure induced by
as numeraire, the call price is a Q'-m:
The argument is easily extended to
movements per unit of time ensuring
carry over in a discrete setting. Using

out the call price as

Co = SoQ'(S

tion 1s the discounted expected future value where the
gives probability ¢ of an 'up-jump’. Notice that the
expression. This hedge argument is the key in Cox et
41) as

o (CT

Q@ denoting the measure naturally induced by ¢. So:

_ -7
BT>’ Bo= R

price is a @-martingale. In other words the notation

t this point let us make an observation. If we consider

q9 = 1+T‘dq
C (C
G 17 (2)

v ¢'. Again the notation is consistent: Using the stock

artingale.

2 setting with n independent multiplicative binomial

us that the martingale pricing techniques of Section 4
the arguments from Section 5 we can thus still write

9

(M > K) = KB,Q(5%W > K) (42)
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where

in

with 'bi’ denoting the binomial distri
can only be a function of current stg
ability to exactly replicate the final p
strategy in the stock and the bond.

For computational purposes (42) is o

(

with m being the smallest non-nega

o5

C(): 0@1

®(m;Tn,q) denoting the complemer

In the Black-Scholes setting we have

o

=

InSy <~
. Q’
InSr X

Now let anything with an '»’ on it r
Our aim is to show that as n approa

that of the Black-Scholes model. Bec

task is to choose the parameters of th

In S

Regarding interest rates we don’t hay

the key parameters we have to choos

A good choice is

SouldTmi

T
i % bi(Tn.g)
i & bi(Tn.q)
BO = R_Tn
bution. Again we claim that the call price at any time

ck price and time. This claim is then justified by our

ay-off which only depends on St by a dynamic trading

ften rewritten as

m;Tn,q) — KBy®(m:Tn,q) (43)

tive integer greater than In(K/(Sod*™))/In(u/d) and
itary binomial distribution function.

that

2

)

N(n Sy + (r = —)T.0*T)

N

t

2

Mm&+v+%ﬁﬂvy

efer to a binomial model with n moves per time unit.

ches infinity the call-price in the n-model converges to

ause of the decompositions and (20) and (42) our main

1e binomial model such that

2

N(In So + (r — =)T,0°T) (44)

2

N(InSo + (r + 5)T,0°T)

4

(15)

ve much choice but to let R, = e’/*. This means that

e are the sizes of the up and down moves, u, and d,;.

(46)

Inu,

Ind, (47)

3+ 317
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With M, and V,, denoting mean and

)

variance of ln 5'»5,-“ we then have

e .U,? = InSp+Tn(g.lnu, + (1 —g,)Ind,)
Ve = Tng,(l —¢)(nu, —Ind,)?
and likewise for Q’. Remembering that
B er’m — d,
I = U, — dy

allows us to rewrite M, and V,, by Tz

order. This. when keeping +'s and -’

M2

Q
‘n
and by similar calculations we get:

.MT?’
Ve

n

So the first and second moments con
vanish in the limit. This allows us t
Central Limit Theorem (see e.g. Dt
Finally dominated convergence ensu
(42) converge to their continuous cou
We have not used the original prob:
assumed them to be non-zero). Furtk
order n or higher in (46) and (47) an

This could, if we were such inclined, h

In this Section we have thus illustrate

1. The Black-Scholes formula can

2. The change of numeraire techni

wvlor expanding the exponential function to the second

s straight, reveals that

2
lnSo—!—(r— U—

2 )T
T

9

InSo+ (r + =T
o*T

werge, under the respective measures, and the jumps
o invoke (basically) a Lindeberg-Feller version of the
iffie (1992)) to confirm the validity of (44) and (45).
res that the elements of the binomial decomposition
nterparts, which establishes the desired result.

abilities for anything (except that we have implicitly
rermore it can be shown that we can add any term of
d still have the same Q (and Q') convergence results.
elp us establish convergence of the underlying process.

>d two things:
be seen as the limiting case of a binomial model.

que also works nicely in a discrete setting.




9 The Continuous-T

This section shows that one might a
time capital asset pricing model by
Ingersoll (1987) but a similar deriva
that the market in total contains N (

to the /V-dimensional stochastic diffe
dS

where [ is the diagonal matrix with
v

pa)

constant vector, ¥ is a constant NV
motion under P. For simplicity we

additionally exists a risk free asset pa

r. Consider an investor that maximiz

over consumption flow, x, and risky p

constraint or dynamic budget constrs

dV, = a'dS,

QAAV
where V; is the current wealth and 8 i

f; is the fraction of the investor’s wez

Defining the indirect utility as

'](‘/;1 t)
we get the Bellman-Hamilton equatig
aJ
0 = ma> — + (V&
gt

The first order conditions imply that

h=—

22For an intuitive proof of the Bellman H

will suppose that ©

ime CAPM

|so obtain the Black-Scholes formula in the continuous-
Merton (1971).

ition appears in Cox and Rubinstein (1985).

The derivation is basically taken from

Suppose

non-dividend paying) risky assets that evolve according

rential equation:

. = Is,(udt + SdWF)

diagonal elements (Si,...,5x), & is an N-dimensional
x .V matrix, and W? is an .V-dimensional Brownian
has full rank. Suppose that there
ving a constant continuously compounded interest rate

es expected additive utility on some time horizon [0, 7].

E? [/Oru(:vt,t)dt}

ortfolio holdings vector, a, subject to the self-financing

Alnt

(Vi — a;S¢)rdt — z,dt
—rl)+ 7V, — z,)dt + V}H;Eduftp

s the N dimensional vector with elements ; = ¢;5;/V.

alth invested in risky asset z.

P T
(gn}a)‘c B [./t u(@s, s )ds]
022
oJ 2wy 9?J
u—rl)+rV~t)5—‘-/~+ V9 00‘/,2
in optimum
aJ/oV -1/,

amilton equation see for example Ingersoll (1987).
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Observe that for all 4, j the ratio ;/6, is independent of wealth and utility. So if all investors
have additive separable utility they will all hold the same portfolio of risky assets. This

means that the market portfolio of risky assets will be given by
Orr|= k(ZZ)"H(p —r1)

for some one-dimensional process k. The expected instantaneous excess return of the (risky)

market portfolio is therefore

par = =kl = P (S e = 1)
and the local variance of the market return is
vay = Ki(p —r1) (SZ) M (u —r1)

The vector of local covariances between the market portfolio and the assets’ instantaneous

return is given by
= k(p—rl)

Combining these equations we get

C; .
pi =71+ —(prr —r)
Uar

Now suppose an option contract on .5 is introduced on the market in zero net supply. Since
the market is dynamically complete the market equilibrium is not changed and the above
expected return relation is still valid. |If the option price is only a function of the underlying
stock and time, [to’s lemma implies that the local covariance of the return of the option with

the market return can be written as

1 9C

— e
Cas™
Therefore the expected instantaneous return of the option contract is given by
1 00 C;

r+ =

C%E(ﬂM —r).

Using Ito’s lemma on the option price, C'(S;(t),t), yields that the instantaneous return of

the option contract is given by

1 |oC OC’
= |5+

1 9*C
262
C Lot 05 ” 5552

$ 95?2
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Equating this to the return of the option and inserting the expected return of the underlying

stock vields the partial differential equation
IC | OC |1 ,,0%C
TC:—*—‘—I-Tb— = Zqzﬁ
95 27" 3%
where we have omitted the subscript|on the stock and introduced the notation o2 = ||X;])*.

We have thereby derived the Black-Scholes partial differential equation in the context of the

continuous-time CAPM. The formula for the European call can be calculated as in Section
3.

Note that this approach relies on tl
As sh

the Black-Scholes hedging argument

he assumption that the option price is a function of

time and currrent stock only. own in Section 3 this assumption can be justified by

that uniquely fixes the option price given no arbitrage
posibilities. But here our argumentation is not based on a hedging argument but rather a
risk-return relation. It is therefore important to note that the above derivation only shows
the consistency of the Black-Scholes formula with the CAPM pricing relation, the derivation
does not prove the Black-Scholes formula.
.From the last equations it is tempting to conclude that the Black-Scholes formula or a
e derived in the context of any linear factor model of

ous-time CAPM. This is only true though if the market

preference-free pricing formula can b)

expected asset return like the continu

additionally is dynamically complete

introduced in an incomplete economy,

of the existing assets will change. As
market is effectively complete. An exa
asset pricing model described in Mer

investment opportunity set are spann

10 A Representative

In this section we show that the Blac
continuous-trade assumption 1s replac
power utility. The approach was intr
First, let us consider a one-period mg

Suppose an agent maximizes expecte

23Gee also Christensen, Graversen & Milt

or effectively complete. In general, if a new asset 1s
a new equilibrium will be the outcome and the prices
mentioned, an exception to this is when an incomplete
zmple of this situation is the consumption based capital
ton (1973a) where the state variables determining the

ed by the marketed assets.?

Investor Approach

k-Scholes formula can be derived in a model where the
ed by the assumption of a representative investor with
bduced by Rubinstein (1976).

del where trading can be performed at the times 0, 7.

d utility of terminal consumption

E? [u(z7)]

ersen (1996).
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subject to the budget constraint

where « is the vector of portfolio hol

and Vg is the initial wealth. Forming

S

where the prime denotes the first der

constraint. Specifically we get for the

€

Combining these equations we get th
S() = €

With these preliminaries let us now

with power utility function

with v < 0, i.e. —~ is the constant re
Now we redefine the notation; let S
aggregate wealth.

Let us assume that aggregate consum

log-normally distributed, so that we

where W? W7 are P-Brownian moti

Note that
u'(x7

E? [u/(

For the market to be in equilibrium w

stock. Inserting the above in the valu

So

Soe_rTE

So e(u+<7'

a'St

(LISO

rr
Vo

dings, S is the vector of prices of the marketed assets,

the Lagrangian yields the first order condition

o= \1EF [ (z7)ST]

ivative and A is the Lagrange multiplier of the budget

» risk-free asset

rT — /\—IEP {U,(.’L'T)]

e valuation equation

TP ll,(.’L'T) o
. [EP [u'm;)]”}

assume that the market has a representative investor

a7
147
lative risk aversion of the representative investor.

u(zx)

be the price of one particular stock, and V4 be initial

ption at time T and the time T stock price are jointly

ran write

Syoe(u—%-a2)T+aW’%?

‘/Oe(u.x—%a'g)T+UIPVZT
ons with constant correlation p.

)
rr)]
ve must have that the valuation equation holds for the

1.2 2 P
e~ 27 a'_.,T+'yaIWI'T

ation equation yields
P [ (=3 (0% 402 )T+aw}’+wanr]

ozp—r)T
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SO

B

Now we want to evaluate a call opti

and the above derivations we get:
Co = B [
SoEP [6_%(

—Ke TEF

a

By introducing the joint density of (
us the Black-Scholes formula. But it
induced by the Girsanov factors unde

Define two new equivalent probability

2

ft=r—"p00; (43)

on on St with strike A'. Using the valuation equation

L2

¥ JET-F’YUJ;LV_:T(ST _ ]{)-{-]

24 9vpoos+2 o'z VT 4o W'}) +vor W'f

o 1{5T2A'}}
]

WP WPF)r we could calculate the expectations to give

1.2,.2 P
— =20 TH~o 1V
[e 2 x LI ¢ |{~ >I\'}

- is much easier to make use of the change of measure

er the expectations.

- measure Q' and @ by the Radon-Nikodyn derivatives

dQ’ 2424 252\ To WP wP
— e—--(a +2vpooe+y 02 ) T+o Wy +vo W p
dP
e R
dP
Using these probability measures we [can write

Ot

SoQ'(

Co =

The Girsanov Theorem together with

St

where W< 1W< are some standard ng
ability measures.?* Using this we imr
In this section the assumption of con
tence of a representative investor. Un

a representative investor is in general

the one analyzed. Even if a represer

of existing assets, and the represent

this case the option) is introduced on

approach is widely used in models of

*4Notice: The correlation between the tw

Q') we use.

Sr > K)— e " TKQ(Sr > K)

 relation (48) imply that

7
— SO€TT+%¢72T+JPVTQ

SoerT— %02 T+0W19

rmal Brownian motions under the two respective prob-
nediately obtain the Black-Scholes formula.

tinuous trade was replaced by the assumption of exis-
less investors have identical or very similar preferences
not guaranteed to exist in an incomplete market like
ntative investor exists, the market equilibrium, prices
ative preferences might change when a new asset (in
| an incomplete market. Despite these drawbacks this

incomplete markets.

o coordinates is p no matter which of the two measures (Q or
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11 Discussion

This paper has presented eight differe
thereby presented most of the techni
ing. Except for the last section the
assumptions, namely the ability to t
The question is now how robust is tk
assumptions. Ingersoll (1987) consid
last section. Ingersoll does not assun
existence of a representative agent, |
distribution. Ingersoll shows that if i
is decreasing in the underlying stock t
price, and these bounds will (of cours
that is decreasing in the stock is cons
earns a positive risk premium.
Constantinides & Zariphopoulou (19
Black-Scholes model. They give an u
bound for the reservation ask price fo
in this economy. For reasonable paran
Black-Scholes price.
These findings indicate that the Blac
of market imperfections than one shot
not be able to perfectly replicate the
reach an equilibrium where the optior
In todays option markets the implied
maturities.?> This of course means th
observed option prices. But it doesn’t
Black-Scholes arbitrage pricing metho
continuous evolution. So if observed ¢
1t just means that a more advanced m
surprising if the most simple continuo

These final considerations only suppo

25The implied volatility of an option is the

options.

nt ways to derive the Black-Scholes formula. We have

ques applied in today’s continuous-time arbitrage pric-

derivations have all relied on two seemingly crucial
rade continously and the absence of market frictions.
e Black-Scholes formula when we start to relax these
ers a one period model like the one considered in the
ne log-normality of the aggregate consumption or the
but solely that the underlying asset has a log-normal
nvestors reach an equilibrium where the pricing kernel
hen rather narrow bounds can be put on the call option
e) lie around the Black-Scholes price. A pricing kernel

istent with an equilibrium where the risk of the stock

}95) introduce proportional transaction costs in the

pper bound for the reservation bid price and a lower

r any investor with concave utility of terminal wealth

neters these bounds are placed rather tight around the

k-Scholes formula is more robust to the introduction

1ld think. In other words even though investors might
option pay-off through dynamic trading thev may still

1 is priced very close to the Black-Scholes price.

volatilities differ quite substantially across strikes and
at the Black-Scholes model is not consistent with the
necessarily invalidate the Black-Scholes approach. The:
dology holds as long as the underlying asset follows a
ption prices do not confirm the Black-Scholes model,
10del is needed. One could also note that it would be
us-time model matched reality.

rt that the Black-Scholes arbitrage pricing methodol-

2 volatility that makes the Black-Scholes price equal one of the
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ogy stands as one of the finest econon

model will remain a benchmark for a
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Heath, Jarrow and Morton (1990) (HJM), takes the initial term structure as given
and, using the no arbitrage condition, derives some restrictions on the drift and
diffusiorf terms of the process of the forward rates under the risk neutral probability
measure Q.

The result is that given an initial term structure and a specification of the volatil-
ity of the forward rates or equivalently of the volatility of the bond prices, all deriva-
tives prices can be computed without any specification of the “market price of risk”
in a way consistent with the no arbitrage condition. Moreover, the bond prices com-
puted using the model match the ones observed in the market. Of course, the major
problem of this “arbitrage” approach is to find a reasonable volatility specification
(in terms of number of factors driving the term structure as well as their functional
form) and very often also to propose |a computationally efficient implementation.

In this paper, we propose to extend the HIM methodology to account for the
presence of a term structure of instantaneous volatilities of bond prices. The idea is
to make use of the information present in traded contracts other than the bond prices
themselves, to back out the implicit term structure of instantaneous volatilities of
zero coupon bond prices and derive the dynamics of the instantaneous volatility of
bond prices under the risk neutral measure in a way consistent with the no arbitage
condition. We achieve this result in two steps. First, we show that if a futures
contract (with futures price V (¢,¢,7T)) for delivery of the instantaneous volatility
of bond prices (op(t, T)?) at time ¢ were traded on the market at time ¢, then the
" dynamics under the @ measure of the term structure of beth the instantaneous
volatilities of bond prices and the bond prices themselves would be completely de-
termined by the instantaneous volatility specification of this futures price V (¢,%,T').
This is similar to the HIM result with one more “layer,” namely we assume the
existence of traded bond prices and the existence of traded futures contracts on the
volatility of bond prices with futures price V (¢,¢,T). Second, we show that even
though such a futures contract does not exist, it can be perfectly replicated by trad-
ing in an interest rate futures contract that does exist (a future on yields in our
example). Our first assumption, thus| does not appear so far fetched.

Dupire (1993) makes a similar hedging argument in order to extend the Black-
Scholes stock option pricing model to Incorporate stochastic volatility in a preference
free fashion. There are major differences, though, between his approach and ours.
We address those in the third section

Our model is thus a two factor model of the term structure. The first factor
affects directly the level of interest rates and the second factor affects the bond price
volatility. It is related to the stochastic volatility option pricing literature (Hull and

White (1987), Scott (1987), Scott (1993), Chesney and Scott (1989), Heston (1993))




and the equivalent literature in the
(1992) and Fong and Vasicek (1991)
model the volatility as a second factor. They differ in the way they determine the
oth Longstaff and Schwartz, and Scott (1993)
, Ingersoll and Ross (1985), whereas the others

simply assume that the “market price of risk” of volatility is a constant (equal to

ed income field namely Longstaff and Schwartz

All those models have in common that they

“market price of risk” of volatility.

use an equilibrium approach as in Co

zero 1.e. volatility risk is not priced for Hull and White, Chesney and Scott, Heston
or positive for Fong and Vasicek).

It is not very realistic to assume that volatility risk is not priced, especially for
interest rate sensitive assets.? The equilibrium approach appears to be theoretically
the soundest, but probably, for practical purposes, not very relevant, since it is
hardly possible to put the real world into a general equilibrium framework. The
arbitrage approach we propose appears to be a good alternative in that it finds
a consistent way to price assets without having to make assumptions about the
market price of risk of volatility. The latter is “incorporated” in the term structure
of instantaneous volatility futures prices. Of course, the market price of risk of
the factor affecting the level of interest rates is handled just as in the traditional
HJM model. Hence, the specificity of our model is that the market prices of risk
of both the factor affecting the level of the yield curve and the volatility need not
be specified. They are “incorporated” in the two observed term structures of yields
and futures prices.

As for all pricing models the tradeoff is always between realism and computa-
tional complexity. The preferable HIM approach to pricing fixed income derivatives
has often been dismissed on behalf of its complexity and difficulty to implement as
it often gives rise to non Markovian models for the short rate (i.e. non-recombining
lattices) and is strongly dependent on the specification of the volatility of forward
rates. Adding a “layer” to the HIM model could appear to be even more formidable.
We thus propose a simple discretization scheme and illustrate the convergence as
well as speed of the procedure on some numerical examples.

Whether the added complexity is of importance or not will be a matter of em-
pirical tests. There appears though [to be a growing body of empirical literature
supporting the effort to account for stochastic volatility in interest rate movements
when trying to price interest rate sensitive derivatives.

Dybvig (1990) for example conducts historical data analysis to look into the

specification of the model factors. He studies the forward rates of maturities up to

2Indeed it seems difficult to argue that interest rate risk is diversifiable or that it is not correlated
with per capita consumption rates; and these are the two main arguments usually advanced to
justify the zero market price of risk assumption.




five years, and shows that conditiona
the next period’s innovations in log d
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has a significant one on bond option
Litterman, Scheinkman and Weiss
the relationship between the level of i
and show that, for hedging of fixed
stochastic volatility is an essential fea
Finally, Brenner, Harjes and Kron
dynamics of the short-term interest 1
models studied by Chan, Karolyi, L

popular GARCH models. Their em

1 on the information at a given point in time,
iscounts are almost perfectly correlated across
cond f&ctor in a term structure model should
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e a small effect on bond pricing but probably
pricing.
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income securities with option like features,
ture.

er (1993) investigate a functional form for the
ate volatility, which nests the term structure
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pirical results suggest that it is not enough

to model the variation of interest ra
But, on the other

rely too heavily on serial correlation i

te volatility through the level of the rate, as
hand, they show that GARCH type models

n variances and thus fail to adequately model

most models do.

the relationship between interest rate levels and volatility. Their conclusion is that
while it is important to model the dependence of interest rate volatility on interest
rate level, a second factor driving the volatility of interests rates is probably more
appropriate.

Although we have not empirically tested our model for goodness of fit using real
world data, it nevertheless provides some theoretical support as for why stochastic
volatility might be important for bond option pricing. We show that for a particular
parametrization of the initial volatility structure the simple specification of our
model boils down to an extended Vasicek Model with stochastic volatility. It thus
lends itself nicely to some interesting |comparisons with the homoskedastic case.

The results of our comparisons are similar in nature to the ones obtained by
Heston (1993). Yet they are surprising because of the different driving processes
considered (in Heston the underlying, which is the stock price and not the short rate
- interest rates are constant in his model - follows a geometric Brownian motion,
whereas here the short rate is mean reverting). The results suggest that stochastic
volatility is important when one considers pricing contingent claims on the term
structure. Indeed, significant pricing |differences arise although both models fit the
same initial term structure and long term volatility of the short rate.

The rest of the paper is organized as follows. Section 2 derives the general model
assuming the existence of a futures contract on the instantaneous volatility of bond

prices. Section 3 presents the hedging argument that motivates the modelization
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This assumption might seem a little restrictive since these contracts are not
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initial term structure of interest rates characterized by {P (0, T)},<p<, and a spec-

ification of the vector process of the instantaneous volatility of the futures prices
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market for futures on yield, how many mat

we have provided only one example of a coni
(although this contract was probably not ¢

perhaps this will also help develop the mark

urities are traded on that market... But notice, that
tract that could be used to hedge bond price volatility
reated for that purpose). There may be others. And
et for such contracts?




By analogy with previous work

choose a state independent, separable

Iia

UV(ta t

where k and v are deterministic func
form of diffusion usually leads to a s
for the underlying variable.®

Indeed, for 0 < t < T we have:

mV(t,T)=mV(0,t,T)~ ;Zl-n(t
For a fixed T > 0 we also have:

N A 1

InV(¢,t,t+T) =V (0, t,t+T)—§

Combining the two equations above ¥

V(,t,T)

by Jamshidian (1991) and Babbs (1990) we
specification for the diffusion part of V (¢, ¢, T):
5 T) = s(E)v(t) (20)

‘tions defined on R and R? respectively. This

o called “generalized mean reverting” process

2 [ llo) Pau + x(e) [ w@yau() (21)

w0 [[o)lPdutn(e) [ v)dn) @2)
ve have:

V(t,t,t+T) _ X (23)

V(0,t,T)

Notice that under this specification t{
the maturity of the underlying volat]
V (t,t,T) as the expectation of the vg
T (which it is, but with the expectat
that in this model the expected shift
between time 0 and t) is the same ac

Alternatively, we can use the defi

following:
UP(th)2
where
1 2 2
4X@) = {—a IR -
+x(t)u(t) dwe(t)
Setting

w(f) =

8The analogy is not perfect, since, here, i
be shown to follow such a process. This is b
the futures price and not of the futures prig

VO, t,t+T)

he return on futures prices is independent of
lity. That is, if we consider the futures price
latility at time  for a bond maturing at time
ion taken under the Q measure), then we see
in volatility between two dates (in the above
cross all maturities of the underlying bonds.

nition of op(t,T)% = V(¢,t,T) and write the

— V(0,t,T)eX® (24)
1 ) t k(1)
§n(t)/c(t) /0 || (w)]]Pdu + ;(BX (t)} dt

(25)
, u(t) =e™ ( Z; ) (26)

t is the natural logarithm of the futures price that can
ecause we are specifying the diffusion of the return on
e itself.
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we get:

e

(n(t) — &

dX (t)
_1

(t) 1

We see that with this simple specifica;
man, Scheinkman and Weiss (1991)
for parallely shifting bond price vol

(vi +1

the model, the volatility level exhibij
property since absence of mean-revers
instability. One might be interested
instantaneous interest rate level in ou
6 where we draw a comparison with a
general it is very hard to get a simple
cess. In particular, it is highly unlike
futures prices the short rate would ex
analyze this point further in section ¢

In the following section we show
taneous volatility oy (t,t,T) of the fi

volatility of bond prices at £, a simpl

5 Numerical Implen
proximation Schen

The implementation of the “arbitrage
ture usually involves Monte Carlo sin
appropriate for European type conti
option has early exercise features or
unefficient when it comes to finding t

Following the lead of Ho and Lee
pose and alfernative method that can
as well as hedge ratios.

Nevertheless, our approach differs

propose a binomial recombining tree

tation of the short rate that allows 1

is not possible in our model since we
in the tree. Our model will in geners
short term rate and thus of bond p1

Moreover, since we are handling twa

( () dt + v1dw2(t) + vodws(¢)

2 (1 +e7>)

(27)
(28)

tion the volatility curve shifts parallely. Litter-
provide some empirical support in their study
atility curves. Also, in this simple version of
ts mean-reversion. This is indeed a deéirable
sion of the volatility curves might have induced
to investigate the form of the process of the
r model. We will consider that issue in section
generalized Vasicek model. But notice that in
>, explicit representation of the short rate pro-
y that for general term structures of volatility
hibit constant mean reversion as well. We will
5.
how for the given specification of the instan-
utures price for delivery of the instantaneous

e numerical algorithm can be implemented.

1entation: A Discrete Ap-

1€

” based models that fit the current term struc-

wlation techniques. These techniques are very

ngent claims, but they usually fail when the
is path dependent. Moreover they are very
he appropriaté hedge ratios.

(1986) and the approach of He (1990) we pro-

be used to price American type of derivatives

s from both cited papers. Ho and Lee (1986)
for a very special Markovian type of represen-
o fit the current term structure. Clearly this
have to fit two term structures at every node
1 not allow a Markovian representation of the
rices. The tree will thus be non-recombining.

) sources of noise, our tree has to be at least

11




trinomial (see Ingersoll (1987)). We thus choose to discretize the model in a trino-
mial non-recombining discretization s

cheme similar to He (1990). Contrary to He,
though, we do not discretize the stochastic differential equation under the P mea-
sure but directly under the risk neutral measure. Moreover, our dicretization scheme
can be applied to the case of a continuum of asset prices that do not necessarily

have a common finite dimensional Markovian representation (i.e. we can fit any

initial term structure of yields and volatilities within our framework). Of course,
the price of the latter extension is that, unlike He, we do not have a rigorous proof
of the convergence of our discretization scheme. Nevertheless, we give a sketch of

proof that suggests that the convergen
9

ce is likely to occur, and rely on the numerical
implementation for further evidence.
The setup is the following:
At each time step tg, Vk € {1,---, N} the current state is a k—sequence {s¢,, s¢,, - - -
with sy, € {1,2,3} V5 € {1,2,---,k — 1}. At each point (tk, {s¢;}je{o,-k}) the risk-

neutral probability of state s occuring over the next time interval is given by 6°(x)

) Stk—l}

with the natural restriction: 3°2_, 6%(tx) = 1. We will drop the t; argument since in

our implementation we choose §° = 1/3 Vs.
We assume that over each time stiep bond and futures prices are perturbed ac-
cording to the following scheme for s € {1,2, 3}:
Pt t
P(tris, tn) = —(ic——f—)—-hs(tk,tn), 0<k<n<N (29)
P(tky tk+1)
Vit tntn) = Vbt ta)g bkt tn), 0Sk<I<n< N (30)

The functions h(-) and g(-) are possibly state dependent and have to fulfill the

following arbitrage restrictions:

S Rtk tn)8° = 1 (31)
) hi(te, thr1) = 1 - (32)
h*(tk,tn) > O (33)
Y9tk )87 = 1 (34)
) 9°(te, ti,tn) > O (35)

Notice that these conditions insure that P(tg, t,) = P(tk, tes1)ES[P (try1, tn)], which

is the martingale restriction for discc

unted prices under the risk neutral measure.

Notice also that the function h can be interpreted as a Radon Nykodim derivative.

As a matter of fact it changes the me

asure from @ to the so called forward neutral

9We are not aware of existing mathematical results similar to the Ethier and Kurtz (1986)

theorem that would allow to extend He's pr

oof to the non-Markovian framework.
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measure (see Jamshidian (1991) and El Karaoui and Rochet (1989)). A similar

interpretation holds for g.

We then define two three dimensional vectors (g7 and £3) of constants {£1 s} se{1,2,3}

and {£2s}se{1,2,3) Which represent the possible realisations of the two source of risk

at each node in the tree. Hence they have to satisfy the zero mean and unit variance

restrictions of Brownian motion whi

their “discretized” version:

ch translate into the following restrictions on

¥ 0% = 0 (36)
¥ 6%l = 1 (37)
26;51,552,3 =0 (38)

s

for i = 1,2.1% Let us then define:

eap(tk,tn—1)€1,s ter1—tk

he(te, t _ )

( k n) 2,:21 ‘9sleaP(tk’t”‘1)51,s'm ( )
eav(tk’tl‘l’tn—l)'&,sm

S(te, t b — .

g (k, 1 n) §,==1 esleav(tk’tl_l’t"‘l)le-,s'\/m ( )

In the above . ¢ denotes the s™ lin
vectors £; and 5.

Notice that the A and ¢ functions
the Martingale properties of the price

e of the horizontal concatenation of the two

are chosen so that (31)-(35) hold, i.e. so that

s are satisfied and so that the bonds mature at

par. One notational particularity might deserve some attention. Because we choose

to translate (6) into its discretized version:

op (t1

it becomes necessary to use op(tg, tn
price maturing at t,. This is purely t

Intuition for the functional form
noting that using a discretized versi

(for small tgi1 — tg):

P(tk,tn) e"‘%(a})(tk:tn—l

th tn) =
P(tien, tn) P(te, tet1)

0For our implementation we have

{v2.0,-/0.5, —v/0.5}. For different possib
11 Alternatively this notation can be seen
is right-continuous.

S tn—l) = 0: (41) .

_1) in the perturbation function for the bond
o insure that bond prices mature at par.!!
of h given above can easily be obtained by

on of equations (12) one can (formally) write

20 p (tert8)2) (b1 ~t) HO P (thstrm1)—0p (B 1)) (w2t ) —w2(2k)
(42)
chosen: &7 = {0.0,V15,—V15} and & =

le choices of the perturbation matrix see He (1990).
as a translation of the fact that the discretized process

13




But, using the condition (41) above and noting that:

e%ap(tk’tfiil)z(tk-i-l_tk) — EQ[eaP(tkrtn—-l)(wlg(tk—f-l)-wlg(tk))] _ i gs’(tk)evp(tmtn-l)fl,,l\/ 1tk ,

s'=1

we find the functional form for A in (29). A similar heuristic derivation can be given

for g. , '
With op(tk, tno1)? = V (i, t, tn_i), the price structure of our non-recombining

trinomial tree can be generated.
We now turn to the issue of convergence of this discretization scheme. As we

already mentioned, we are not aware lof mathematical results that would help prove

the convergence. But looking at the moments of the bonds and futures prices shows

that the model has desirable features. It also gives more insight as to why we chose

this discretization scheme.

Taking the log of equation (29) and using the above we get:

In P(trt1, tn) — In P(tg, tn) = — In P(fk, tryr) + In A% (tr, tn) =

—1n P(tk, tk+1) —In (Z es'eap(tx,tn—1)€1,su/tk+l—tk) + O'P(tIm tn—l)el,s /tk—f-l — t

s'=1

Recalling R(t, T') from equation (1) and Taylor expanding the exponential and the

logarithm around respectively 1 and|0 gives the following stochastic dynamics for

our discretized model:1?

l In P(tgs1,tn) — In P(tg, tn) =
i [R(tk, tht1) — %UP(tk, tn-1)?] (tiah — tx) + op(tx, tn-1)€1,sy/tes1 — tk + 0 ((tk+1 — tk)%)
Applying the same techniques to the futures prices we get their dynamics:

In V(¢k+1, t,tn) — InV (tg, b, tn) =

1 ' 3
"'§”UV(tk) ti—1, tn—1)||2(tk+1 — tg) + ov(tk, tio1, .tn-1)'€-,s\/tk+1 —trt+o ((tk+1 - tlc)2)

Neglecting the terms of order o ((tk+1 — tk)%) and above we get the following mo-

ments:

B2 (A P(tn )] = (Rltk thr) = 30p(tksta-1)?) (ers <40)

Et% [AInV (¢, ti, tn)]| = —';'HUV(% o1, toe1) [P (e — te)  (44)

Var [Aln P(te, tn)] = 0p(te, tn-1)2(tess — ti) (45)

Varg [AInV (tx, b, ta)]| = v (te, o, tnot) (tes1 — t) (46)

:ovf’; [Aln P(tr, tn), AInV (tg, 1, t,)] | = 0p(tk, tno1)[ov (tr, ti1y trn1)1,1 (Err1 —(80)

12Note that the discretization error appears only in the drift term and not in the volatility.
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Noting from (1) and (3) that r(t) =limz_; R(t, T'), we see that the above is analo-
gous to the continuous time model. This provides a starting point for showing the
converégnce in Q distribution of our discretized model to the continuous time limit
when the time interval tk+1 — Lk tends to zero. Below we give numerical examples
that illustrate the convergence of the discrete approximation of the continuous-time
model.

Note that for hedging purposes| we need 3 (1 plus the number of sources of
uncertainty) assets that are not perfectly correlated with each other. In our case all
bond prices are perfectly instantaneously correlated. Thus we cannot hedge volatility
risk using only bonds. The futures contract on interest rate yields - introduced in
section 2, for the hedging argument|- would be the ideal tool to hedge bond price
volatility risk. If, for practical reasons such a contract were not available, we would
suggest to define a “reference” option, the price of which could easily be obtained
using our discretization scheme. Hedge ratios could then be computed using two
bonds of different maturities and this “reference” option.

Table 1 gives some numerical results that illustrate the convergence of our dis-
cretization scheme. We consider American and European put options to sell 100 of
the underlying 2 year zero-coupon bond. Maturity of the options is 1 year. The
strikes were set equal to the initial forward prices. We used the simple specification
of the model with the parameters set to k = 2.0, v; = —0.5, and vy = 0.5. The
yield curve was upward sloping with |a short rate of 5% and a long rate of 7%. The

parametrization of the initial yield curve was:
R(0,T) = 0.07 — 0.02¢ 2T (48)

We chose the initial volatility curve|so that the forward rate volatility was 7% in
the short end and 2% in the long end. Explicitly:

aa'p(o, T

5 =002+ 0.05¢~T (49)

The volatility futures price term structures were chosen to be equal to the initial
volatility curve (ie. V(0,t,T) = (0.02 % (T'—t) —0.05(1 — e_(T_t)))z). Of course,
this was done for illustrative purposes only. Any other (parametric as well as non
parametric) form of initial yield, volatility, and volatility futures price curves can be

handled just as easily within our framework.
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Discrete Approximation
N | European American CPU time
= 2 1.88 2.05 <0.1s
3 1.57 2.01 <0.1s
4 1.57 2.16 <0.1s
3 1.56 2.10 <0.1s
6 1.49 2.09 0.2s
7 1.49 2.13 0.3s
8 1.49 2.13 0.6s
9 1.46 2.12 1.5s
10 1.46 2.14 4.5s
11 1.46 2.13 14.0s
12 1.44 2.12 42s
13 1.44 2.14 2m0l1s
14 1.44 2.14 6m01s
15 1.43 2.13 18m
16 1.43 2.14 54m
17 1.43 2.14 2h42m
M.C. 1.43 - -
i Table 1 : European and American put prices and
i CPU-time as a function of time steps in
the discrete approximation. The pro-
gramming was done in C and the hard-

ware used was a HP-9000 Unix system.

We note that after 10 steps or 4.5 s
ative error compared to the values of
be compared to the value obtained fr
It is our feeling that the speed of the
program, for example by minimizing t
Another way of obtaining higher accu

trapolation.

A non-recombining tree structure
identical recombining structure becayj
exponentially (3" in our case) verst
This gives a finer mesh of points and

therefore, be approximated to a highe

structure is of course the same as its a

time required for evaluating a tree as

the number of time steps in the tree th

should therefore expect the tree to ur

option prices should not be affected.

some extent, offset this effect on Am

econds of CPU time prices are within 1.5% rel-
the longest tree. The European prices can also
om Monte-Carlo simulations denoted “M.C..”
program could be increased by optimizing the
he call of logarithm and exponential functions.

racy is by use of averaging and Richardson ex-

will converge mﬁch faster than an otherwise
use the number of nodes in the tree increases
1s polynomially for a recombining structure.
the distribution of the underlying prices will,
r degree of accuracy. The drawback of the tree
dvantage: the exponential increase of computer
the number of time steps increases. This limits
at can be handled within reasonable time. One
1dervalue American options whereas European
The use of Richardson extrapolation could, to

erican option prices.
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6 Effects of stochastic volatility on bond option
prices: Comparison with the generalized Va-
sicek model.

It has been argued that stochastic volatility might be an important determinant of

bond option prices. In this section we try to investigate the effects of stochastic

volatility on bond option prices implied by our model. Recently Heston (1993) has
shown that for options on stocks, stochastic volatility had very subtle effects. He
compares a stochastic volatility option price with a regular Black Scholes model
and shows that: (i) if the correlation between the stock price and the volatility
i1s null an increase in the volatility of the volatility increases the kurtosis of the
underlying stock price distribution and, hence, increases in and out of the money
option prices, whereas it decreases at of the money option prices (relatively to the
Black Scholes model).'® (ii) If the correlation between stock price and volatility
is positive (negative), this increases (decreases) the kurtosis - that is it increases
the right (left) tail of the stock price distribution - and, consequently, it increases
(decreases) out of the money options and decreases (increases) in of the money
options.
We follow Heston and try to compare our model to a well known benchmark of
one factor models used for pricing interest rate derivatives: the generalized Vasicek
model (see Hull and White (1990)).
- This model assumes a generalized mean reverting process for the short rate given

by the following equation under Q:

dr(t) = (¢(t) —|agwr(t)) dt + ogwdz(t) (50)

where z; is a one dimensional brownian motion.*

As in Heston, though, the two models will be comparable only if they have
approximately the same structure, i.e. differ only in'the stochastic volatility feature.
We thus investigate under what conditions the short rate process in our model (as
specified in section 3), will exhibit similar mean reversion as the extended Vasicek
process.

Integrating (2) we get:

dop(s,T) T oop(5,T) . o
it Rl 45 DN Rt St Bl A 51
2 ds A 2—dwl(s) ()

13Heston uses the long term mean of the volatility in the Black Scholes formula to keep the
comparison relevant.
14This is not the most general presentation, since agw and oyw could be made time dependent
as well (see Hull and White (1990)). But, for simplicity of exposition we shall specialize to the
case where they are true constants.

T
f(t¢ T) = f(o) T) +/; UP(S?: T)‘
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Then, using (3), we get:

t dop(s,T) t dop(s,T)
:O,t/ ¢ i d—/———’— dwf
re = f(0,¢) + ; op(s,t) T |, s— | T |, wi(s) (52)
Taking the differential of the latter we find the process of the short rate:
8f(t) T) 80-1:’():. T)
dry = ——=| | dt — ———==|  dwi(t
Tt T |, o |, (t) (53)
with:
of (¢, T af 0, T t 9 T
2en) L uen) L pameny
T=t T=t /0 oT T=¢
t d%op(s,T) t 3%0p(t, T)|
+ ) ds — | === 27/ Q
A op(s,t) o | s A 5T |y, dw*(t)

It is clear, that, even with our currez
will not, in general, follow such a sig
(54) to (52), it is easy to see that a st
exhibit mean reversion is:
8¢ P(t, T

oT?

with a being a constant. Hence, su
condition for the short term rate to ex
bond price and futures prices volati

equation:

oV (0,t,T)/8T

nt, simple specification, the short rate process
nple mean reverting process. But, comparing

\fficient condition for the short rate process to

. 80‘p(t, T)
oT

bstituting (24) into (55), we find a sufficient

thibit mean reversion, namely: when the initial

r=—a , (55)

lity structure verify the following differential

_0*v(0,t,T)/8T?

2V (0,¢,T)
In the special case where the initial

condition, our model can be convenie

8V (0,t,T)/dT (56)

volatility structure verifies the latter sufficient

ntly summarized by the following set of equa- '

tions:
dr(t) = (¢:(t) —ar(t)) dt — o1(0,1)0,(t)dw () (57)
o (t) = %T—) + At c7(0, s,t)%0.(s)%ds + af(0,1) (58)
T=t
dlno,(t) = (—7%”- —kln ar(t)) dt + o,dw(t) (59)

where we have changed slightly some notations to make the relationship between

the two models more apparent. The

)

a7(0,t,T)

changes are given by the following:

7(0’ t, T)1/2

aT (60)
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av (0,t,T)Y/?

70,t) = of(0,t,t) = (61)
Ur b - Ur 1 ¥
oT S
or(t) = XB/2 (62)
V2 + v2
O = i 12 2 (63)
Q Q
2 2
' V1 T Vg

All of these variables have straightfo
Is a standard Brownian motion tha

correlation coefficient is:

pdt = dw(

In order to be able to perform the com

tion of the inital volatility curve. On
V(0,¢,T) -

In that case 07(0,t,T) = Be~*T-1) g

With this specification of the initi
readily comparable.

We choose the same initial yield
0.07 — 0.02¢7%9T. The instantaneous
match the long term mean of the vola
(with 7(00) = —(v? + v3)/4).

The correlation between the shor
varying v, between —4/v? + v3 and +4
the difference between the ACS mod
year maturity on one year zero coup
spot price is taken to be 86.99 § (this

two year maturity). The inital forwar

reversion parameter (k) of the volati
the comparisons. The mean reversion

Table 2 below summarizes the variou

rward interpretations. But notice that w$(t)

t is correlated with wlg. The instantaneous

U1
Vvi+v3

parison it remains to find a suitable parametriza-

)dws(t) = (65)

e that fits the purpose nicely is the following:

(a-

e—a.(T—t) )2

= (32

= (66)

wd o7 (0,t) = .

al volatility structure, the two models are now

curve for both models, namely: R(0,T) =
volatility for the HW model is chosen so as to
tility of the short rate, i.e. ogw = [e™(%)/(2+1)

rt rate and the volatility can be changed by
-1/v? +v3. The following graphs 1, 2, 3 show
el and the HW call option prices with a one
on bonds for various strike prices. The inital
corresponds to 100 zero coupon bonds with a
rd price (P(0,2)/P(0,1)) is 93.068. The mean
lity of the short rate is set to 0.5 throughout
parameter of the short rate (a) was set to 0.2.

s parameter choices made for the comparison.
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Graph 1 shows the difference bet

for zero correlation and various oy,

0.18
0.16
0.14
0.12
0.10
0.08
0.06
0.04
0.02

Parameter choices
R(0, T) = 0.07 — 0.02¢~20T
P1(0,1,2) = P(0,2)/P(0,1) = 93.06
V(0,¢t,T) = '[32%'(:_'))1
a=0.2
B =0.05
k=0.5
0, =03 ogw = 0.0489
(o 0.6 ogw = 0.0457
Table 2

ween the ACS model and the HW model prices

namely:o, = 0.3, and o, = 0.6).1°

P

Figure 1: Difference ACS minus HV
strike prices. The correlation betwee

As a result we see that an increa
increase in prices of at the money cg
and in the money option prices, but i

less pronounced then in Heston’s wo

15The transformation from o, to values f
(65).

107.94 +
111,67 +

V call option price for different o, and various
n volatility and short rate (p) is set to zero.

se in the volatility of the volatility leads to an
11 options. There is a slight decrease in far out
t is hardly perceptible on the graph. It is much

rk, but, nevertheless, present.

for v, and 1;2 is straightforward given equations (63)and
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Notice that for g, = 0, both mog
observed gives thus another idea of
Simulations were run with twelve tim
to the HW model of at most 0.04 fo

a relative error of around 2% in the

with a standard deviation of 2.2%).

increasing the number of time steps

in our table 1 (previous section).

0.20
0.18
0.16
0.14
0.12
0.10
0.08
0.06
0.04
0.02
0.00
002 T

Figure 2: Difference ACS minus HV
strike prices. The correlation betwes

Graphs 2 and 3 show the differen

prices when the correlation is respe

0.5). The results show that for nega

decreases out of the money option p

relative to the homskedastic model.

Moreover, for both cases, the differe

increases. These results are similar

interesting given the different natur

rate in our comparison is mean revert

lels should give the same prices. The difference
the convergence of our discretization scheme.
1e steps and give rise to a difference with respect
r option prices that are worth around 1.58 (i.e.
worst case - the average relative error was 0.8%
Of course these result can be improved by

at the expense of computation time as shown

\ {Vol of vol =06

93.06
104.22
107.94
111.67

96.78
100.50

V call option price for different o, and various-
n volatility and short rate (p) is set to +0.5.

ce between the ACS and HW model call option
ctively negative (p = —0.5) and positive (p =
itive correlation the stochastic volatility model
rices, and increases in the money option prices
For positive correlation the results are reversed.
:nce increases as the volatility of the volatility
in nature to Heston’s (1993), which is rather
s of the two processes considered. The interest

ing as opposed to the process for the stock price
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0.18
0.16

Figure 3: Difference ACS minus HV
strike prices. The correlation betwes

/ M\ vol of vol = 0.6

/
0.14 \
0.12 \
\

0.10
0.08
0.06
0,04
0.02
0.00 ’

™~ o — [ O @ > AN <r ~
om I ~ 3 9 o ! ~ D N o 9
g 2 2z 8 g 8 8 8 & B =

V call option price for different o, and various
n volatility and short rate (p) is set to —0.5.
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which follows a geometric brownian motion in Heston’s work (Heston sets interest
rates to zero in his comparison).
Notice also that the intuition proposed by Heston applies to our framework when

the proper correlation is considered, namely the correlation between bond prices and

volatility.

Positive correlation (p = dwPdw§ > 0) implies a negative correlation between
the short rate and its instaneous volatility (as can be seen from equations (57) and
the left tail of the distribution of the interest

low interest rates which in turn imply “more”

(59)). Hence it implies an increase i
rate. One thus expects to see “more”
high bond prices and hence an increase in out of the money option prices relative
to in the money option prices. This is exactly what we observe in Figure 2.

Of course, for negative correlation between bond prices and instaneous volatility
of the short rate (p < 0, see Figure 3), the results are reversed: the increase in the
right tail of the distribution of interest rates (due to positive correlation of the short
rate with the volatility) increases in of the money option prices with respect to out of
the money option prices. It is interesting to observe that even with a mean reverting
short rate as well as a mean reverting volatility these features remain present.

These results also show that the choice of the volatility process can have a big
impact on bond option prices, although, by construction, the inital term structure
of yields as well as long term volatilities are the same in both models. Moreover,
they help to illustrate the convergence of the discretization scheme we proposed in

the previous section.

7 Conclusion

This paper has presented a new appragach to the pricing of term structure contingent
claims in the presence of stochastic volatility. Unlike the previous models we do not
need to explicitly model the market price of volatility risk. Our paper extends the
Heath Jarrow and Morton methodology in that it takes as input the current term
structure of both bond prices and instantaneous volatility of bond prices as well as
the specification of the diffusion part|of the volatility'® and derives the risk neutral
dynamics of interest rates and instantaneous volatility of interest rates. We can thus
price any interest rate contingent claim in an arbitrage free way.

We propose a trinomial tree as a| discrete approximation scheme to our model

that should be usefull to price and hedge any European as well as American type of

16Notice that it is actually the term structure of futures prices on the underlying volatility
V (¢, ¢, T) in the paper that we take as input, but it is really a proxy for the volatility itself, that
cannot be observed explicitly.
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contingent claims on the term structure. We also show that for a simple parametriza-

tion of the initial volatility structure

A

in our model, exhibits mean reversio

comparisons with the homoskedastiq

, and futures prices of volatility, the short rate,
n just as in the extended Vasicek model. Thus,

case are possible. These lead to similar results

as in Heston (1993) for stock options. It demonstrates that the often claimed im-

portance of the volatility specificatio
also, is a further indication of the cq

Future work should be directed t¢
testing its validity. Several metho

volatility models that could be applie

(1991) for a survey and comparison).

n for bond option prices is a valid concern and,
nvergence of our discretization scheme.

ywards implementing this model and empirically
ds have been proposed to estimate stochastic
d to our model (see Taylor (1991) and Anderson
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Abstract
This paper investigates the concept of arbitrage pricing in a complete multicurrency
economy. It turns out that the exchange rate can be described by the pricing functionals
of the different currencies, and thereby that the exchange rate dynamics to a large extend
can be inferred from asset price dynamics. With this insight the pricing of currency
derivatives can be simplified by use of the implicit change of martingale measure induced
by the exchange rates. In the last section of the paper an exchange rate model, that
incorporates stochastic term structure dynamics, is presented.

Introduction

Dynamics of exchange rates and asset prices of different currencies are highly interre-
lated. Investors buy currency to hold [foreign assets, not to hold the currency itself. Due
to this, restrictions are put on the stochastic evolution of the exchange rates. In this
paper we find these restrictions and show that the stochastic evolution of the exchange
rates to a large extend can be deduced from the dynamics of the asset prices. The key
insight here is to consider the currencies for what they are, namely different numeraires
for different investors. An exchange rate is thereby not only a risky asset paying a div-
idend stream equal to the foreign int%rest rate but also a tool for change of numeraire
and pricing functional. We show that the exchange rates are explicitly given from the
pricing functionals of the different cﬁirencies, and by this that the exchange rates, the
term structures and the change of martingale measures are highly interrelated.

Our framework is an extension of the one developed in Amin & Jarrow (1991), in
the sense that we require completeness of the global market and absence of arbitrage
from every investor’s perspective. This is used to deduce the explicit evolution of the
exchange rates. '

The first section presents the framework considered and the assumptions on which
the results presented later are based. The second section presents the exact stochastic
evolution of the exchange rate. The tlTird section describes results for futures and option
pricing that are immediate consequences of the exchange rate result. We also obtain
a result for the pricing of futures on|the exchange rate, that is valid for a broad class
of term structure models. The last section presents a model that incorporates domestic
and foreign term structure dynamics. |An argument based on equilibrium considerations
justifies that the stochastic evolution of the exchange rate can be entirely described
by the term structure dynamics. This and our futures price result make the model
presented easy to adjust to initial data.

The Framework

Consider an international economy with +1 currencies each indexed byi e {0,...,1}.
Currency number 0 will be the basis or domestic currency in which all exchange rates are
quoted. In each currency a set of assets is marketed. These sets are denoted (H;);—o 1>
and the set of all assets in the global|economy is denoted H = U;H;. The uncertainty
of the prices of the different assets and the exchange rates will be represented by the
following standard continuous time d‘nd continuous state set-up.
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Let (Q.F,Q) be a probability sp
(Ft)tE[O.T] generated by an M-dimen
(. F.Q). We will denote the Lebesc
indicate a time point in the interval |
Suppose that there exists a locally ris
that r; is progressively measurable a
can define the bank account in the ¢

B;i(t)

Now consider asset k € H;. Let y(t
+ all dividends from asset & occurred

ace with a complete right-continuous filtration

sional standard Brownian motion (w(t))te[oﬂ on

Jue measure A. When nothing else is stated, ¢ will
0, 7], and 7 will refer to any of the currencies.

k-free interest rate, r;, in each currency. Suppose

nd @ — a.s. integrable in the time domain, so we

‘th currency as:

t

exp /ri(u)du

0

(1

be equal to the time ¢ currency : price of asset k
in the interval [0, ] accumulated in the ¢’th bank

account. Suppose that y; 1s an Ito process which evolves according to:

dyr(t) = ye(t) ek

where the volatility term is an A -di
or the price of asset k.

The exchange rate S; quotes the price
0. Of course Sy = 1, but forz = 1
evolving according to:

dSi(t) = Si(t)us,

where the volatility term again is an
For k € H; the value of asset k in ¢

Since j is arbitrary v,‘c is defined for
of asset £ € H in currency 7 by

t,w)dt + yk(t)ak(t,w)'d'w(t) 2)

mensional process. We will denote y; the value

of the 2’th currency in terms of currency number
,---,1 we will assume that S; is an Ito process

t,w)dt + S;(t)os, (t,w) dw(t) (3)
M -dimensional process.
Turrency ¢ is given by

i Sivk

o= 217" 4
Vg 3. 4

all £k € H. Do also define the discounted value

k]

v

S

A
~k

S

1

By earlier assumptions and Ito’s lemma, this is an Ito process and its evolution can be

described on the form:
dzi(t) = Z ()

where again the volatility term is an

Complete Markets

t,w)dt + 2L (t)6%(t, w) dw(t) 6)

M-dimensional process.




We will, assume complete markets in
assets {k1(7), ... kar(¢)} C H so that

A

is non-singular ) X A — a.s. on the
excess return vector process

Foreach i € {0, ..., I} define the vect
{o

Arbitrage-free Markets
Assume that for each ¢ € {0,...,I}
equation

oH

1’1

L+ (6) m =0

the sense that for each i € {0, .., I} there exist M/
the M x M dimensional matrix process

(5,@1(i))'
(%; (i))l

interval [0,7]. Now let I'; be the corresponding

(7)

Via(5)

8)
’YZM ()

or process 7; as the () x A—almost unique solution

i+ A =0 )]

and for each £ € H,n; is also the solution to the

(10)

The above assumption can be based on an arbitrage argument similar to the one given
in Vasicek (1977). From now on 7; will be referred to as the risk premium in the ¢’th

currency. The m’th element of (—7»;)

can be seen as the premium given by the market

for exposure to the m’th risk factor represented as the m’th element of the Brownian

motion.

Measures and Martingale Pricing |
Suppose that for all ¢ € {0,..., I}, 7
and that

i

&i(t) = exp /m‘

0

and
t

exp /(m(u) + 6i(u))

0

are (Q-martingales for all k € H. H
assets in H there exist zero-coupon bg
currency. Let the volatility term of a z¢

Processes.

is Q — a.s. square integrable in the time domain

W - 5 [ Inw)Pdu an
0
1 t
dw(w) = 5 [ ) + sl (12)
0

or convenience we will assume that among the
onds of all maturities in the interval [0, 7] in each
ro-coupon bond in the 7’th currency with maturity




T, be-given by a;(t.T) ,t € [0,T].
for t € [0,7] define:

which is a (J-martingale by the abo
the 2’th currency by the Radon-Nik

t

T (1) = exp / (ns(w) + ai(u

0

1)) dw(u

Denote the corresponding price by P;(¢,T), and

/llm )+ ai(u, T)||*du (13)

l\.)l)—l

ve assumption. Define the risk-neutral measure in
odyn derivative

dQy

0 (14)

= &(T)

The time T forward risk-adjusted measure in the ’th currency has domain on [0, T

and is defined by

10T
d% =G (T) (15)
Finally define the martingale pricing process in the ’th currency by
&(1)
(t) B:(2) (16)

By use of the Girsanov Theorem we

i.

il.
iil.

1v.

V1.

Vil.

(QT)TE[O ,7]

Qv (Qr)lzl ____ ‘are
main. t
wi(t) = w(t) — [ ni(u)du is a ]

_ 0
z(t) is a Q7 martingale for all

wl(t) = wi(t)

v ()

Piit,T)

vi(t)Ai(t) is a Q-martingale for

0

¢
— fai(u,T)du is| a

is 2 Q7 -martingale for al

have the following results:

equivalent probability measures on common do-

\/-dimensional Brownian motion under Q.
ke H.

M-dimensional Brownian motion under Q7.

1k € H.

all k € H.

If z; is a non-negative random variable so that z; € F; , z;Ai(t) € L(Q), then a

derivative asset with a time ¢ valu

has a time 0 value of

Vi(0) = E{z;Ai(t)|Fo}

where E, EY, E! denote the expe

e of z; in currency ¢ and no intermediate pay-outs

g

ctation operators under Q, QF, Q" respectively!.

e } B0, 0Bz} A7)

This result is due to Harrison & Pliska (1981).




It 1s important to note that each of
currency in which they are defined.

The Stochastic Evolution of th
With the framework established we

Theorem.
In the environment described we hay
The drift term of the exchange rate

Hs, =Tp—T
The volatility term of the exchange 1
0s;, =1

Up to indistinguishability the exchan

The Radon-Nikodyn derivatives betw
forward risk adjusted measures are g

']

(0)

the above pricing functionals, works only in the

¢ Exchange Rates
can state the first result.

ve for all 7 € {0,...,I}:

is given by
~—cr'51_170, AXQ —as. (18)
ate can be written as:

— 7o, AXQ —a.s. (19)

- 2
ge rate can be written as*:

Ailt) Bo(t) &(t)
20~ OB 0
P;(0,t) ¢ (t)
Py(0,t) ¢4(t)

veen the risk neutral measures and between the
iven by:

(20)

dQi _ Bi(7) Si(r) .,

105~ Bo(r) S0y @7 o1
dQ!  Py(0,t) Si(t) Q-

Q5 ~ P01 S0 ¢ *F

Proof
The first statement is an immediate cq

is a (Qj-martingale. The second stater
and Ito derive

zi(t

under Q7. Using that a martingale n
pk = 15 — 0}.n; and the first result of

—(os;, = 05,)'m0 — ¢
27

+los >+ o

This relation appears implicitly in Dumas et al. (i

onsequence of Ito’s lemma and the fact that

Si(t)Bi(t)
Bo(t)
nent is established by the following. Let k£ € H;

(22)

)= Si(O)ye(t)
- Si(t)Bi(t)

nust have zero drift A x @ — a.s. and inserting
the theorem we get the relation:

(23)

\L, »
i + 0,0 — 05,05, + 04,05, 24)
! ! /
5, +orm —ogm =0

993)




Separating terms yields:
!/
O (O'Si T
/
Usj (O'Si - Usj

which is true for all 2, ; = 0,...,1 an
and simple manipulations we get tha

/
0.0

|,05i

Completeness of the global economy
(20) and (21) follow directly from th

Remark

The first result in the theorem states
domestic risk neutralized probabilitie
probability measure unless the two ec
Actually assuming that the risk premi
the exchange rate can depend positiv|
rates.

The second statement of the theorem
currency derivatives, that the use of

that we can ignore the specification ¢

the stochastic evolution of the price]

- 0s;) = o (i — 15)
) = (nj —mo) (05, — 05,)

d k € H; (remember that s, = 0). By symmetry
t forall i € {0,...,I}, k € H:

(25)

/
=g —
|© = o's,(m — o)
now yields the second statement of the theorem.
le two first results.[]

that the open interest parity will hold under the
s. This is obviously not true under the original
onomies considered have identical risk premiums.
ums depend on the interest rates, the drift term of
ely or negatively of the difference in the interest

has the unpleasant consequence for the pricing of
an equivalent martingale measure does not mean
f risk premiums. Also we must stress that given
s, one can not arbitrarily specify the functional

form of og, without possibly violati
illustrated in Ingersoll (1987) p. 40

g the principle of absence of arbitrage. This is
01.

In principle all sources of uncertainty in domestic and foreign asset markets are reflected
in the exchange rate. More than that, the volatility term of the exchange rate can refiect
sources of uncertainty that are not present in any marketed asset. This is seen by
the possibility that one of the columns in A\; could have only zero-elements except
for the element representing (S;B;)/(S;B;).

Until now we have worked under the implicit assumption that there exists some original
(“true”) measure () that each investor agrees to. At a first glance at the theorem, one
could fear that heterogeneous beliefs would induce different beliefs about the volatility
coefficients of the exchange rates. This is not necessarily the case. Assume that Q
represents the beliefs of one investor and Q represents the beliefs of another, and that
@ and Q are equivalent probability measures so that the Radon-Nikodyn derivative can
be written as a (J—martingale:

dQ ro, 1 [ 9
% = S 27
o= | [owauw -3 [IowiPd @)
0 0
Then ‘
fi =T HAG, T,- -+ Azﬁz =0 (28)




define ithe expected excess return vectors and the risk premiums consistent with the
beliefs of the second investor. Now/|it is easily seen that

n;=mni—0 (29)

and thereby that the volatility terms of the exchange rates are unaffected by heteroge-
neous but “equivalent” beliefs. '
The third statement of the theorem gives an intuitively appealing relation between the
martingale pricing processes and the ¢xchange rates. The exchange rate is simply a tool
for change of numeraire and thereby also for change of pricing functional. This and the
last statement point out that the term structure of interest rates, the change of measures,
and the exchange rate are highly interrelated. As we will see in the next section this
has consequences for the pricing of currency derivatives.

Observe that if the pricing functionals are uniquely determined from the asset prices
alone, then the dynamics of the exchange rates are uniquely determined from the
stochastic evolution of the asset prices. This is the case if each market is complete
in itself.

Our exchange rate result is consistent in the sense that prices turn out to be the same
no matter which pricing functional is|used. To see this consider the asset in (vii). Due
to the theorem we have that the domestic value of this asset is given by

Si(O)Vi(O) = Si(O)E(~ i./\.i(t)lfo) = E(l‘isi(t)./\o(t”fo) (30)

So investors based in different countries come to the same prices.

A last observation can be made from the theorem, namely that in general the exchange
rates will be path-dependent, due to|the fact that the bank accounts in the different
currencies and Radon-Nikodyn derivatives in general will depend on the whole path
of the Brownian motion. So the exchange rates can not be inverted from the asset
prices even though it may be possible to represent the ’local’ stochastic evolution of
the exchange rates by the asset prices only.

The Pricing of Currency Derivatives

Currency derivatives can like other assets be valuated directly by the pricing functionals
described in (17). But for a derivative asset that can be priced by a terminal value that
is piecewise linear in (So,...,Sy), i& is in some cases more convenient to make use
of the change of measure and pricing functional induced by the exchange rates. We
will demonstrate this by considering exchange rate options and futures marketed in the
domestic currency.

European Currency Options

Consider a fixed basket of currencies with weight ¢; in the ¢’th currency. A European
call option with strike price K and maturity ¢ has the time O value:

I
vert(0) =~ q:Si(0) Pi(0,1)QH(A) — K Po(0,1)Q4(A) 31
i=0 |



where::.

I
A= {w XY ‘ ZQiSi(t) > [\'} (32)
=0
The corresponding put value can be obtained from the put-call parity:
VPU(0) = Vell(o) - E:% P;(0,t) + K Py(0,t) (33)
Proof
Clearly
I +
Vcall(t) = (Z q-iSi(t) — ]{) (34)
i=0
is F;-measurable, nonnegative and Ao(t)V°(t) € L1(Q) so by (17):
I +
Vcall(o) Py(0, t) (Z g S;i(t) — f\.’) ‘ Fo
i=0
I
= Po(0.) ) aiEG{Si(1)1alFo} — K Po(0, ) E§{14] Fo} (33)
i=0
I
= a:Si(0)Pi(0,)Q4(A) — K Po(0,£)Qh(A)

i=0
The last equality follows by use of tk
evaluating a put-option in a similar

Example

Fix i € {1,...,I} and suppose that

ai(u

only depend on time and maturity.

contains currency z and ¢; = 1. Ther

1e theorem. The put-call parity can be obtained by
fashion. [J

for all u € [0,¢] :

(‘) , ao(u,t) , crz(u)

Let us consider the case where the basket only
1 the option described above has the value:

(36)

veell(t) = 5;(0)Py(0,£)Q4(A) — K Po(0,6)Q4(A) (37)
Under the two measures the exchange rate can be written as:
I
Si(t) = Si(0)= (0.%) exp _l,ﬂ + vz
Fo(0,¢)
P;(0,1) 1 (38)
S;(t) = S;(0)== ~ 2
(t) S(O)Po(O,t) exp <2V +1/a:>
where
NNQD,ﬁ&NmD (39)

@

i




and

¢
= llai(u.?
[

Using this we get?:
V'call(o) — SL(O)P

where

1
di =-In
v

Finding a closed form solution for the
difficult unless we make the unrealis
rates are perfectly correlated under t

Remark

The general option pricing equation
option can be decomposed in two p
present value of the basket of curre
expected present value (negative) of b
If one views the exchange rate as a ris
to the foreign interest rate it is clear
might be exercised prematurely. So
can only be used for finding the “Eu

Futures Prices

Let us now consider the futures pr

[

1/2

)+ os.(u) — aglu, t)”zdu (40)

(0, )N (d4) — K Po(0, )N (d-) @1)
S;(0)P;(0,t) 1

(K%m¢>)i?’ *2)

e price of an option on a full basket of currencies is
tic assumption that the log values of the exchange
he various forward risk adjusted measures.

31) tells us that the value of a European currency
arts. The first term in (31) reflects the expected
ncies at the exercise. The second term states the
uying the basket of currencies at the strike price K.
ky asset paying a continuous dividend stream equal
that an American call option on the exchange rate
for American options the above formulas (31-33)
ropean component” of the American option price.

ice for delivery of currency ¢ at time T > t.

Throughout this paper we will assum

F(t,

e that the futures price is given by:

) = E5(Si(T)|F2) (43)

In the appendix we give a proof of this for the case where the bank account and the
futures price are sufficiently regular Ito processes. A proof for the Gaussian case when
7o is bounded can be found in Babbs (1990).

Assume that Bo(T)A;(T) € L*(Q) then by the above assumption and the theorem the
Bo(T)/Bo(t)

futures price is given by:
f
mGWMﬂ’%

-olkd

By linearity of futures prices the price for a futures on a basket of currencies is given
by the weighted sum of the individual futures prices.

Fi.T) =SB |
44)

=&mamﬂﬁ{

3 This result was originally obtained in Amin & Jar;row (1991) by use of a slightly different technique.
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Example

Under Q7 we can write the domestic bank account as:

T

o

¢
T
1
X exp -3 llao(u,
t

If we assume non-stochastic volatilit
and that the second is a Q;fr—marting

By(T)

1
Po(t. T

u, T) (ao(u, T) — os,(u) — a;i(u, T))du

By(t)

. (45)

T)||2du — /ao(u,T)'d'w?(u)

y terms, we have that the first term is deterministic
ale, and thereby that*:

T

exp /

t

Pi(t.T)

Po(t. T) (46)

F'(t.T) = Si(t) a0(u, T) (ao(u, T) — 05, (u) — ai(u, T))du

Observe that the first term in the above equation is the forward price.

Remark

From the general futures pricing re
price can be found from the current
structures. The dynamics of the exch
The stochastic evolution does though

sult (44) we see that the exchange rate futures
exchange rate and the foreign and domestic term
ange rate do not explicitly enter the futures price.
implicitly enter the futures price equation because

the change of measure from the dome

stic to the foreign risk neutral probabilities involves

the stochastic evolution of the exchange rate. This is illustrated in (45).

We also observe from (44) that whej the domestic term structure is non-stochastic, the
futures price will equal the forward price.’ The intuition behind this is that one may
regard the exchange rate as a risky |asset paying a continuous dividend stream equal
to the foreign interest rate. Then we can apply the result of Black (1976) and Cox,
Ingersoll & Ross (1981) stating that when the (domestic) interest rate is non-stochastic,
forward and futures prices are equal.

A second observation can be made from the general futures pricing equation, namely that
for a large class of term structure models the futures price will have a functional form
similar to the one of the bond prices. To be more precise let NV < M and suppose that:

ro(t) — ry(t) = g(2)'z(t) + h(t) 47)
where v is the unique solution to:
dz(t) = (a(t) + b(t)z(t))dt + C(t)D(¢, z)dw; (t) (48)

and g, k. a, b, C are time-dependent continuous functions on R, R, RN RV*N RNxN

Gt 2),. .. /Ay (t,'x‘)) with (dn(t, )=t v be-

respectively. D(t,z) = Diag(
07 is defined as w;

w- =

ing functions and continuous in time and affine in z.

This was also originally found by Amin & Jarrow (1991).

5 This observation was also made in Amin & Jan-oyv (1991) in the Gaussian frame work.
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U(t) C RVS,
Then the futures price is given by:

Fi(t,T) = Si(t) ¢

where G', H'are time and maturity d
are continuous differentiable in both
The proof of the conjecture stated ab
the one stated in Duffie & Kan (1993
Given that x is a general continuou
degeneracy condition is fulfilled, one
functional form then the difference i
will evolve according to a stochastic ¢
proof of that is similar to the one g
affine term structure models.
Observe that (47-48) include the te
(1977), Cox, Ingersoll & Ross (1985b
extensions of these.

A Model

In the following we propose a model

term structure dynamics in the differe

the theorem. So this model is not onl

for the term structures in the differen

observed term structures and can be
makes it a suitable tool for valuation

and bonds in different currencies, sut
Suppose that z is an M -dimensional

2XP (G'i(t, T)+ H(t, T),I(t))

all ¢t : z(t) € U(t) Q — a.s. for some open set

(49)

ependent functions on R, RV respectively. G*, H

arguments.
ove, is given in the appendix and is equivalent to
) for the exponential affine term structure models.

s Markovian on an open set and a certain non-
can show that if the futures price has the above
n the interest rates will be affine in = and that z
lifferential equation similar to (48) under Q7. The
ven in Duffie & Kan (1993) for the exponential

rm structure models in Merton (1973), Vasicek
and various time dependent and multidimensional

for the exchange rates that incorporates stochastic
nt currencies and is consistent with the results of
y a model for the exchange rates but also a model
t currencies. The model can embody the intially
brought to yield only positive interest rates. This
of long term contingent claims on exchange rates
ch as swaps and swaptions.

Markovian state variable that ’drives’ all prices

and exchange rates in the global economy, in the sense that for all k£ € H:

ikt w) = pi(t,

an for all 7 € {0,...,I}:
ps:(t,w) = s, (t,

Assume that = under @) is the uniqu
dz(t) = (a(t) + b'(

where a :

continuous functions of time. For

6
equation on {(t,z(t))|t € [0, 7], z(t) € U(t)} where
conditions for all ¢ : () € U(t) Q — a.s.

[0,7] = ®M | ' = Dia

Duffie & Kan (1993) supply regularity conditions

z(t)), or(t,w) = or(t, z(t)) (50)

z(t)) , os.(t,w) = os,(t, 2(t)) (51)
e solution to the stochastic differential equation:

)z (t))dt + C(¢) D(x(t))dw] (¢)

g (b}

all m

(52)

..,b'ﬁ\/[) , and C = Diag(ey,...,cp) are
. ¢m does not change sign on [0,7]. D

1 .

o
[

sufficient for existence of a unique solution to the stochastic differential
[(t) is the open set U(t) = ) {q € RV |dn(t,q) > 0}. Under these
n
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is defined as the function D(z) =
the stochastic differential equation |
2am(t) > cp(t) , m=1.... M |
Assume that: '

ri(t) = B4(t)x

for some continuous vector function
rates we would require that 3;, > 0

The bond prices are given by

'Pl(t'l T) = €Xp

where A%, B* are functions on ®, RM
argument and continuous in the last.

Bi(t) = 3 Binlt, T) e
B, (T,T)

AN, T) =

for all ¢ € [0,T].
This is in essence a multicurrency,

of the model in Cox, Ingersoll & R

Jamshidian (1993b) termed “a separa|
the bond prices can be separated into

Using the theorem and the stochastic d
term of the exchange rates can be w

os.(t) = [C(t)D(=(t)](

For currency derivative pricing we car
t oo
Q 5 as

Diag(,/Z1...../Tar). In order to ensure that
nas a unique solution we impose the restriction

t € [0,7].

te0.7] (53)

e

5 : [0, 7] — RM . To ensure non-negative interest
on the interval [0, 7] forall m =1,..., M.

(A'(t,T) + B'(t, T)'z(t)) (54)

respectively, continuous differentiable in the first
A*, B* are given as the solutions to:

)P+ Bt TI(1) + 2 Bin(t,T)

20, ’m=1,...,]\é[
T

/(L(u)'Bi(u, T)du

t

(35)

multidimensional and time dependent extension
oss (1985b). This specific type of model is in
ble multifactor CIR-square-root model”, because
a product of one-factor model prices.

ifferential equation for x we get that the volatility
ritten as’:

b'(t) — (1)) z(t) = D(x(t))C(2)p'(t)

1 now write the ¢’th exchange rate at time ¢ under

(56)

PR T P £ N 2 o
() = SO cee | 2 0/ VAt 5 0 ) (1) 2 (1)
1 M i 2 2 t i ! t
xexp | —3 Z /Vm(u,t) em(u) a:m(u)du+/1/ (u,t) C(u)D(z(u))dw;(u)
m=1
0 0 57
where

Vi(u,t) = B'(u,t) t+ p'(u) — B(u,t) , u € [0,1] (58)

Except on a QQ-zero-subset of Q2 where D(z(t)) is

singular. |

13




and
dx(u) = + (v

é(u) = (ea(w)”

(a’(u) (u) + é(u)B

Even though the bond prices in the d
this will not be the case for the ex
depend on the whole path (r(u))
all times describes the exchange rates
transformation of the exchange rates
variables then becomes M + I. If v
variables, s; will under Qj evolve a

M

dsi(t) = Z (/37%(1‘)

m=1

+p'(t)'C(t)D

We can now write the new (M + 1)
and exchange rates as the solution t

_ Az
dq(t) = d(s

where ¢, h®, K are time dependent fur
tively.
Under assumption of sufficient regula

note the time ¢ price of a currency con

no intermediate payments in the inte
by V(q(T)), then by (vii) and Ito’s le
equation:

Bt (t) = %m« <K(t)D
+(g(t) + RO(t)z (¢

change rates.

u€[0t]

I (u, t)/)ﬂ;(u)) du + C(u)D(z(u))du

.,cM(u)Q)/ . u €0,

)
(39

fferent currencies at any time ¢ are given by x(t),
The exchange rates at time ¢ will
. In order to design a Markovian process that at
and the bond prices we could introduce a suitable

as additional state variables. The number of state
ve let s;
ccording to:

=1InS;,i=1,...,1 be the new state

80 (¢) — m( )2 cm(t)2>xm(t)dt

I(t))d'LUS(t) ,

(60)

1=1,...,1

-dimensional state variable for the system of bonds

D:

+ RO(t)z(t))dt + K (t) D(x(t))dwy(t) (61)

wctions on RM+ RIMHDXM p(M+DXM recnec

rity® we can do the following. Let V' (£, ¢(t)) de-
tingent claim marketed in domestic currency with
rval [0, T[ and a terminal value at time T given
mma V (¢, g(¢)) must fulfill the partial differential

, 62
dqdq’

) 5V (ta(®) + 2V (t.a(0)

z())D(x(¢)) K (t)

V(t,q<t>)) "
(

for all t € [0, T'] subject to the bound

aLry condition V'

(T, q(T)) = V(q(T)). In principle

we could now set up a finite difference scheme for solving the partial differential

equation. This might be possible for
dimensional system it probably will b
do Monte Carlo simulations for the p

could be based on either (57)-(59) o

8 For regularity conditions see Friedman (1975) ch.

the case where [ = 1, M = 2, bpt for a higher
almost impossible. In that case we will have to

icing of currency derivatives. These simulations
(61).
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Equilibrium Considerations
Note that the functional form of the volatility term for the exchange rates is consistent
with risk premiums of the form:

ni(t) = D(z()At) (63)

for some time dependent vector function );. Referring to Ingersoll (1987) p.400-401
this is consistent with absence of arbitrage in this type of model.

In the next section we show that if| we use all M state variables for modelling the
stochastic evolution of the term structures, then the model is uniquely parameterized
from the observed term structures and exchange rate futures prices. It may not seem
appropriate for practical use of the model to assume that all state variables that affect
the exchange rates also affect at least one of the term structures, but from a theoretical
point of view there is no reason to believe that this should not be the case. To see
this let us consider a two country version of the equilibrium model described in Cox,
Ingersoll & Ross (1985a). In the following let all parameters be constants and let us
ignore time indices. Suppose that in each country there is a single production process,
whose value in the numeraire of the ’th country evolves according to:

dK; = K;gizdt + K;h.D(z)dw , i = 0,1 (64)

for some constant vectors g;, h;. Under the “original’ measure @), x is assumed to be
evolving according to a stochastic differential equation similar to (52) but with constant
parameters. Now make the assumption that the two markets as well as the global market
are complete and that there is no trade between the two countries’. Further, make the
assumption that all investors only consume the products of their native country and that
they have rational expectations and maximize the expected value of identical additive
separable log utility functions over infinite investment horizons. Using the work of Cox,
Ingersoll & Ross (1985a) we can write the equilibrium interest rates as:

M
T, = Z (giy — (hi’m)z)l‘m y 1= 0, 1 (65)

The risk premiums become:
n; = (.’E)hi ,1=0,1 ‘ (66)

Because of the no-trade assumption the exchange rate between the two countries is only
a ’shadow’ exchange rate. This will have the stochastic evolution:

M
ds =S5 (Z (go,m —91,m + h17m( 1m — h()’m))l‘m dt + S(hl — ho)'D(m)dw 67

m=1

We observe that only in the special case where there exists m so that g;m =
(hi,m)2 , 1 = 0,1, there will be state variables that affect the volatility term of the

? In absence of the no-trade restriction the analysis would be much more complex. It is though the opinion of the author that
introducing trade between the two countries would not zilter the conclusion of the analysis.
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exchange rate but not one of the te

Calibration of the Model

structures.

Calibrating the described model can be done in several ways, we suggest the following.

Assume that all state variables affecting the exchange rates also are present in the term

structures, and let 1/ > 2.

For simplicity let I = 1, let all parameters of the model

except a be constants, and let C' be equal to the identity matrix. Assume that the risk
premiums are of the form given in (63) and estimate 3%, 3* from time series data. We

need now to find the function a(u)
With constant parameters there exist
ferentiable in time and maturity!°.
tiable initial forward curve in each

(fol0.T))repr) - (fil0.T))pepo,r- U
a must fulfill the integral equations:

nd the constant vectors b°, b1.

closed form solutions for BY, B infinitely dif-
Suppose that there exists a continuous differen-
currency. Let the forward curves be given by
Jsing that f;(0,T) = —%ln P;(0,T) we get that

T
fo(0,T) = — /a(‘u)'S%Bo(u, T)du — %BO(O, T)'z(0)
" (68)
r 0 0 /
f1(0,T) = — /a.(u) E—TBl(u,T)du - é—fBl(O,T) z(0)
0

z(0) can be obtained by inversion of]
The above defines a Volterra integral ¢
has continuous solutions for (a(t‘))te[O
If no solution satisfies the restriction
term structures. In order to fix a solut
and ay = a; for k.1 > (M +1)/2, or
Let Fp, F7 denote futures prices for
domestic and the foreign market resp
symmetry we know that currency futy

FO(O, T) = 51(0) €X

1
Fi(0.T) = >
where 1
B = B = SHp (6T
HY(T,T)
GOt,T) =

10 See Cox, Ingersoll & Ross (1985b).

M different bond prices.

quation in two dimensions. The integral equation
-] but only if M = 2 the solution will be unique.
am(t) > % for all t,m we can not fit the initial
ion for a we could set a,, = a, for m,n < M/2
one could let as, ..., ays be ccnstants.

futures on the exchange rate marketed in the
ectively. Given our futures price result and the
ures prices are given by:

p (G°(0,T) + H°(0,T)'z(0))

69
xp (G*(0,T) + H'(0,T) z(0)) (69)
2 0 1 9 0
+ Hm(tv T)bm + 5£Hm(t’ T) ’
=0, m=1,....M
(70)

T

: / a(w) HO(u, T)du

t
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and

Rie

B, = 30, = %H}n(t, T) + HL(t, TS, + %H}n(t. T),
HL(T.T)=0,m=1,....M
r (71)
Glt,T) = / a(u) HY(u, T)du

forall 0 <t < T < 7. In this cons
exists and it is of course on the sam
If we take a sufficient number of ¢
forward curves the parameters a, b°
using numerical techniques. Now al
Observe that we could also choose t
The bond volatility curves could be
structure contingent claims!?, or by u
structure contingent claim prices des

m so that 3%, = 0 then %, and theret

curves.

As another alternative for using the
currency derivatives such as options
Carlo simulations and thereby a lot
check whether the model calibrated
option prices or not.
If we had assumed that some of the st
the exchange rate, but not affected th
parameters for the term structures an
would have to do Monte Carlo sim

t

tant parameter case an explicit expression for H*
1e form as B*.!!

urrency futures in each currency and the initial
b! can now be found from the equations above
so pl is determined.

o parameterize b°,b* from bond volatility curves.
obtained from finite difference valuation of term
1se of the closed form solutions for different term
cribed in Jamshidian (1993b). But if there exists
)y pi, can not be inferred from the bond volatility

futures prices for-calibration, we could use other
on the exchange rate. That would require Monte-
more computer time. It is though advisable to
on the futures prices actually fits the observed

ate variables were present in the volatility term of
e term structures, we could calibrate the common
1d exchange rate by the futures method. But we
lations on exchange rate derivatives (other than

futures) to calibrate the remaining parameters of the model.

Conclusion

In a multi currency and complete global market setting the stochastic evolution for the
exchange rates has been found. We have developed formulas for European options and
futures on the exchange rates, and found a closed form solution for the currency futures
price that is consistent with a large class of term structure models. We have presented a
model for the evolution of the exchange rate that precludes negative interest rates. This
makes it a suitable tool for evaluating long term contingent claims on the exchange rate
and on bonds in different currencies.| Due to our futures price result it turns out that
this model is easily calibrated to the observed initial prices.

What remains to be done is to see if|the results presented for the stochastic evolution
of the exchange rate extend to the general semi-martingale case!®. Another interesting

Again see Cox, Ingersoll & Ross (1985b).
See Duffie & Kan (1993).

It is the belief of the author that this is easily shown to be the case.
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question is to see what can be said about the situation where the global market is
incomplete. -
Turning to the presented model, empirical testing is needed to see how well it fits actual
term structure and exchange rate dynamics, and how well it predicts contingent claim
prices.
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Appendix

Lemma

Let F(t.T) be the time t futures pr
asset has a time 7" domestic value of
futures price under @ is an Ito proc

dF(t) = ur(t)d
where o € H}(Q}).1* Make the furt
Ft T

Proof
The following argument is similar to
Consider the discounted cumulated d

K]

Bo(t)

t
s

t

The initial value of a futures is 0, sg
the above is a QQj-martingale. By assu
above a (Jp-martingale if and only if
the requirement is possible and undg
which yields that:

F(t,T

Note that the result does not violate
process. [J

Proof of the Futures Price Conject

Define
v(t,x

o(t,x

¥ HP(Qj) is defined as the set of progressively me3

55((

0

15 This will be the case if for exampie ro is Q — a.s
10,11 Q —a.s.

u+ op(t) dwi(t) ,t €[0,T]

Bo(t) / Bo(u) ™} (u)du +

ce for delivery of an asset at time 1" > t. The
V(T). Assume that V(T) € L(Q}) and that the

ess that evolves according to

(72)

her assumption that (Bg) 'or € HY(QF)."> Then

) = Eg(V(T)|F+) (74)
the one in Duffie (1992).
vidend process for the futures:
Bo(u) " dF(u)
(75)

Bo(u) Yop(u) dwi(u) | ,s € [t,T]

under absence of arbitrage we will require that
mptions (Bo)_ldp € H}(Q), and thereby is the
urp =0,A x Qf — a.s. So under the assumptions
r the requirement F' must be a (j-martingale,

) = E5(V(T)|F) (76)

the assumption that the futures price is an Ito

ure

)
)

1surable processes X which fulfill the requirement:

a(t) + bt

C(t)D(t, z) 7

m /2
[X(u)zdu)P ) < oo
. non-negative at all time points, because in that case would Bo(u)'l €
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The candidate functional form for th
price result we see that:

at

The left hand side of the above equatic
for G', H* exist then G, H' are cont
By Ito’s lemma G*, H* must satisfy t

ZJn

+ZHL (t, T)vp(t, T) +
n=1

Bo(T)/Bo(t)

B{(T)/Bo(?) ’ Fe

t)+1§

m

for all ¢ < T subject to the boundary
the n’th row in o. Note that the abo?
we can separate terms to get the V

b = exp (6700, ) + (1 T)'5(0)

e futures price is given by (48). By our futures

(78)

on is continuous differentiable in 7, so if solutions
inuous differentiable in 1.

he partial differential equation:

D z:Hz t, TVHL(t, T)om(t, x)on(t, )

=] n=1

(79)

9 i

9 .
—H'(t, Tz,
g (t,T)JrnZ:;a,f L, T)x

condition G*(T,T) = H:(T,T) = 0. o, denotes

ve PDE is affine in x. Since U(t) is an open set
1 1 equations:

J . : .
0= 5 Hi(t,T) + Ky (¢ H{(t. T)) , Hi(T,T) =0, n=1,...,N
f . (80)
0= a—atGi(t, T)+ L' (¢, H'(t,T)) , GN(T,T) =0

where £', K% [0,7] x RY — R are
.V equations form an /V-dimensional

of differential equation is called a R

linear-quadratic in the last argument. The first
ordinary differential equation, in H*. This type
icatti equation and is known to have a unique

solution.!® The last differential equation then defines a unique solution for G*. The
continuity of the parameters of the stochastic differential equation ensures that G*, H*
are continuous differentiable in ¢. [
16 By a solution f to a differential equation like
= 2 T+ 66 5T, ST = 0 1)
we mean that forall 0 < t; <t < T
f(t2,T) = (01, T) = = [ 6w, f(w, T))du, [T,T) =0 (52)
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Abstract

This paper presents a tractable model for the valuation of contingent claims on the term
structures of interest rates of two crnrencies and the exchange rate between them, such
as for example cross currency swaptions. The modelling framework is a deterministic
volatility version of the general Hkath, Jarrow, and Morton (1992) model that takes
the initial yields and volatility curves as direct input. We illustrate that closed-form
formulas can be obtained for a general class of cross-currency derivatives and we
identify a class of deterministic volatility structures that imply Markov representation by
a three dimensional Gaussian process. For this class of volatility structures all types of
European style contingent claim prices and hedge ratios can be obtained by numerical
integration in maximum three dimensions.




| Introduction

This paper presents an arbitrage based model for the term structures in two different
currencies and the associated excﬂange rate. The model is constructed to take the yield
curves of the different term structures as input, and thus no fitting is needed in order
to match the observed term structures. Likewise, the joint local covariance structure of
the bonds and the exchange rate are direct input to the model.

Under the assumption that the volatilities of the bonds are deterministic functions of
time and time-to-maturity we illustrate by examples how closed form solutions can be
obtained for a class of claims in this multicurrency economy. Our examples include
options on yield spreads and options on exchange rate futures.

We also show that if volatilities are deterministic, it is possible to give an integral
representation rather than a differential representation for a hedging portfoilo based on
the underlying instruments.

Within the class of deterministic bond volatilities we identify a class of volatility
structures that imply finite dimensional Markovian representation of the yield curves
by a vector Gaussian process for|the joint evolution of the spot interest rates of the
two currencies and the logarithm of the exchange rate. This is a natural multicurrency
extension of the work by Babbs (1990) and Jamshidian (1991). As Jamshidian (1991)
we therefore term this class of volatilities “Gaussian”.

Under the Gaussian volatility structures all European style claim prices and hedge
ratios on the two term structures and the exchange rate can be computed by numerical
integration in maximum three dimensions.

The paper is organized as follows.| The first section describes the modelling framework
that we use. The second sectio? considers the pricing of contingent claims under
deterministic volatilities and presents the Gaussian volatility structure. Proofs are given
in the appendix.

The General Continuous-Time Framework

We consider an economy of two currencies and the exchange rate between them.
Currency 0 is domestic currency |and currency 1 is foreign currency, and we let S
denote the exchange rate in terms of domestic currency units per foreign currency unit.
We assume that there in each currency exists a full curve of zero-coupon bonds of all
maturities. The currency ¢, time ¢ price of a maturity T zero-coupon bond will be
denoted P;(¢,T) and the spot rate|of currency ¢, 7;, is given by

Oln Pi(t, T)

() |= 1
. TZ(t) oT ‘T:t ( )
The accumulating money market account in currency i, therefore has the value
f ri{u)du
B;i(t) = eo 2)



We .assume that the uncertainty of the exchange rate and the yield curves are driven
by a common d-dimensional Bro'Lvnian motion, and that there for each currency exist
equivalent martingale measures vi'ith different numeraires. To be precise we assume
that there exist martingale measures Q;, er so that a claim paying = domestic currency
units at time ¢ < 7', with = being measurable with respect to the information at time
t, has the initial domestic currenlcy value

ES [ﬁ?tﬂ =R(0-T)ES {Po(f, T>} 3)
s 420 - om0

Q; is the currency ¢ martingale measure with the bank-account as numeraire and QZT
is the currency ¢ martingale measure with the time 7' maturity zero-coupon bond as
numeraire.

According to Heath, Jarrow and Morton (1992) we can represent the random evolution
of the bonds and the exchange rate in such a framework by the system of stochastic
differential equations

IP(t.T) |

AP T) |t + ai(t, T)Wi(t)
Pi(t, T) )
dS(t)
SO (ro(t) — r1(t))dt + o5 (t)dWo(t)

where  {o5(t)},5p is a | well-behaved (1 x d)-dimensional  processes,

milies of well-behaved (1 x d)-dimensional pro-

{a-O(t7T)v“1(t»T)}—0§t§T are far
(t.T) ?} 0, and W; is a d-dimensional standard
t

cesses, with the property that «;

Brownian motion under Q;.
As derived in Andreasen (1995) the relation between the Brownian motions under the

two martingale measures Qy and
dWh (
and Brownian motions under QF
awi(

fort < T.

We now turn to the issue of cont

volatility terms are deterministic.

Contingent Claim Pri

The following lemma states the p
contingent claims under the martin
for the prices of the underlying as

Q; is given by
t) = dWo(t) — os(t)'dt 5)
are related to the Brownian motions under Q; by

) = dWi(t) — ai(t, T)dt (6)

ingent claim pricing under the assumption that the

cing under Deterministic Volatilities

ricing equation for domestic currency denominated
igale measure Qf and gives integral representations
sets under this probability measure.




Lemma 0: European Style Cont

Suppose a European style continge

of

ingent Claim Pricing

nt claim promises a time t domestic currecny payment

F(t;5(t), Po(t,T1), -, Po(t, Tag), Pilt, Taggn)s - - - Pu(t, Tv)) (7
with Ty...., Ty > t. Then the initial price of the claim is
F(0) = Po(0,)ER[F(5; )] ®)
where
S(0)Py(0, t -1 f llax (wt)+os (u)—ao(u)*dut [ (a1(w,t)+os(u)—ao(u,t))dWE (u)
S(t) = L1 o
Py(0,1)
Py(0, T) -1 f {|ao(uT —ao(ut)*du+ [ (a1 (u,T)—ao(u,t))dWe (u)
Py(t. T
1) = 5y °
P1(0,T) —%f (Hlar (. T)+os (w)—ao(wt) " ~lax (wt)+os (u) ~ao(wt)||* )du
Pi(t.!
(8. T) = Pl(O t)e
f (a1 (w.T)=ax (u,t))dW ()
X €0 9)

By translating the pay-offs, using t
foreign currency denominated clai
We now restrict ourselves to determ
following assumptions on our input

rate, and the initial term structures:

Al: The volatilities ag(-,-), a
continuous differentiable fu
A2: The initial term structures
differentiable in the maturi

The deterministic volatility assump
1s stated in the following lemma.

Lemma 1: Hedging under Deter:

Redefine the pay-off function consic

F(t; ) = g(s(t)7P0(t7T1)v ceey

and let g;(-) be the partial derivativ

g(z—j,") = g(z1, ...
09i(z—j,€) |

gi(z—5,8) = oz

1

IR

7 Li—1, " Tj41y:- -,

7é-'1"1

e exchange rate, we can also use Lemma O to price
ms.

inistic volatility structures. Specifically we make the
data, the volatilities of the bonds and the exchange
>.

-),0s(+) are deterministic, and a;(¢,-) is a
inction for all ¢ and ¢ = 0, 1.

of bond prices {P;(0,T)}y~, are continuous
ty date. B

tion implies an interesting result for hedging which

ministic Volatility

Jered in Lemma O so that
Po(t,tar), S(O)PL(t, Tarr), SE)PL(t, Tn))  (10)

e of g(-) with respect to the (j + 1)’th argument. If
xN) is not differentiable in the point x; define!

+6(§ — z;)(9(z—j, zj+) — 9(z—j, ;=) (A1)

fe=) = lim f(z - |¢]).

Here 1,4 denotes the indicator function on th

e set A, &(-) is the Dirac-Delta function, f(z+) = elin}) f(z + le]) and




in the neighboorhood of ;rj.z
Then a self-financing hedge portfo

E< [90(-)] foreign zero-coupor
Forj=1.....M: B [g;()
Forj =\ +1.....N: B2’
The remaining amount in dom

The result is a generalization of th
Markovian term structure model
necessarily need the continuity or
obtained because we use step func
of differentiability.
Lemma 1 states a “natural” way o

lio is given by

1 bonds maturing at time t.

domestic zero-coupon bonds with maturity T).

g;(+)] foreign zero-coupon bonds with maturity T;.
estic zero-coupon bonds maturing at time 1.

e result derived by Babbs (1990) for a single factor
and continuous pay-off functions. Here we do not
a finite dimensional Markov representation. This is
tions and Dirac Delta functions to extend the notion

f composing the hedge portfolio in a term structure

model, namely to use the underlying instruments directly. Also, the composition of the

hedge portfolio is intuitive in the
the pay-off function as weights.
The distribution of the exchange r3
bonds is now jointly lognormal ur
and the zero-coupon bonds of diff
Lemma, it is in general possible to
style claims with domestic or fore

where k1, k2 are constants and x., y

and/or exchange rates. The trick is
into two components, and make u

factors x and y from the two com

To illustrate this let us consider a

sense that we use the expected partial derivatives of

ite and any basket of different currency zero-coupon
1der the martingale measures with the bank-account
‘erent currencies as numeraires and by applying the
come up with closed form formulas for all European
ign currency pay-offs of the form

(k1z — kay)™

are products of powers of zero-coupon bond prices
basically to apply Lemma 0, decompose the pay-off
se of a change of measure to eliminate the random
ponents of the pay-off.

couple of examples. Let us first consider the price

(12)

of a European call option on an exchange rate futures price. Suppose that the futures

contract’s maturity is date 7', that the option expires at time ¢ < T, and the strike is A,

then the price of the option at tin
0)/K

e 0 is given by

0)/K)+nu

Py(0,1) [F(O)e”@ (m (F(

v

llai(w, T) + og(u) — a

= ai(u,T) + og(u) — ag

)+“+%y) —K@(ln(F(

-3)

v

o(u, T) | du

u, T))ao(u, t) du (13)

-
J

2

are well-defined.

This definition does not apply to any pay-off funcnon but for most realistic pay-off functions, the functions {g; (- )} i=0,.

N



where F(s) is the time s futures

&) =—p 6D

As another example let us conside

the two currencies, i.e. a contract

S(s)Pi(s.T)

—€

price

T
- [ (a1(u.T)+0s(w)—ao(u.T))ag(u.T) du

s

(14)

r an option on the spread of time ¢ simple rates of

that at time ¢ pays a domestic currency amount of

(Ry(t,T) — Ro(t.T))" (15)
where I
— . -1 —_
| RﬁJU_TTAR@T) 1) (16)
The time 0 value of this contract|is given by
Po(0.8) f Pi(0.8) slprprtor) g, 0(0.-) _a, }
= {PI(O,T)G b)) — (O 77¢"2(z0) (17)
where
t
- / ”a‘i(uv T) - ai(uvt)]lzdu
0
t
o= [ llaa(uv) + o5(0) — ao(u )P
0
: _
= /(al(u,T) —a1(u, 1)) (ao(u, T) — ag(u, t)) du (18)
0

i
V= / ||a1(u,T) —al

(u,t) — ao(u, T) + ag(u. t)||*du

) P(0,8)/P(0,T) 1, . 3
oo [1 B0 BIR0.T) * 5(“T ) ¢ 29"]

1], ROA/RO.T) 1
2= e R * 3l )+ - 50

The derivations of the pricing form

or by use of Lemma 1.
For more complicated claims it is g
solutions and numerical computatio
on a domestic currency coupon bo

wlas can be found in the Appendix.
Hedge ratios for these types of clai

ms can be found by differentiation of the formulas

senerally not possible to come up with closed form

n is hard. Consider for example a European option

nd, i.e. a pay-off of the form

M +
(Z a;iPo(t, Ti) — K)
i=1

(19)



where a1, ....0p7, K are constants. Since there is not necessarily a finite dimensional
Markov representation of the yield curves, calculating the price of the option involves
numerical evaluation of an M -dirrrensional integral over the pay-off multiplied by the
joint density of the zero-coupon bonds under the martingale measure with the domestic
t maturity bond as numeraire.

We will now present a volatility ?tructure that admits a d-dimensional representation
of the bond prices of the two-currencies and the exchange rate. Under this structure
all European style contingent claims can be evaluated by numerically evaluating a d-
dimensional integral. For simplicirE/ we make the assumption

A3: The Brownian motion driving the uncertainty of the economy has dimension
three, i.e. d = 3.

Let ¢; be the ’th row of the 3 x B identity matrix.

Definition: The Gaussian Volatility Structure

Let
T.6: [0, 00[— R**3 (20)

be continuous matrix functions, with
Bo(t)=(1 -1 0) (21)

for all t.

Define the matrix function
D : [0, co[— R3*3 (22)

as the unique solution to the differential equation

Ca(1) = p(1)2(1) , 2(0) =1 (23)

and assume that ® is always non-singular.

I
T
ai(t, T) = —1,, / B(y)dy| B()T'S(E) ,i=0,1 o)
t

os(t) = 55(t)

forall 0 <t < T < oo, we will say that the volatility structure is Gaussian, and we will
term ¢ the mean reversion parameter.

It will now become clear why we term ¢ the mean-reversion parameter and why this
class of deterministic volatilities are denoted Gaussian.



Result 1: Term Structure and Exchange Rate Representation

under the Gaussian Volatility S

1. Under the Gaussian volatility

the following representation

_ S(0)P1(0,¢)
() = Py(0,t)

where

B(t.T) =

t

At) = /
0

¢

x(t) =/
0

11.

ri(t) = ri(t, x(t)

1il.

The interest rates are given by

If the volatility structure is Gau,
and the SDE can be written ot

tructure

structure, the bond prices and the exchange rate have

—%—LIIB(t,T)fl(t)B(t,T)ILl +¢i B, T)z(t)

—2 (G B(t.T)+258(t))A(t) B(t,T) 12+, B(t,T)z(t)

18V

(25)

e~ 3 B(AM)B(E) s +5 B (1) (1)

— | ®(y)dy

/

@(u)—ls(u)z(u)’(@(u)—l)'du 26)

B () " S (w)dWE (u)

y

9l Py(0,7)
oT

= ey 1 B(t)z(t)

27)

ssian, the system (19, 71,10 .S) is a Gaussian process,
n the form

7'0(t) 'To(t)
dl ri(t) | =[6()+6(t)| ri(2) dt + Z(t)dWpy(t) (28)
In S(%) ' In S(t)

where 6(-) is a three dimension

iv. Suppose the system (o9, r1,1n S

ing the arbitrage restriction Etg"

structure of the bonds and the

1al deterministic function.
is a Gaussian process under Qy, as in (28), satisfy-
[dS(t)/S(t)] = (r1(t) — ro(t))dt. Then the volatility

exchange rate is Gaussian.

Result 1 is derived in the Appen

We see how the Gaussian volatilit
follow three-dimensional Gaussian
of the spot rates and X define their 1
(21) has to be satisfied in order a

X.

structure relate to the property that the spot rates
process. The matrix ¢ relates to the mean reversion
bcal covariance structure. We also see that condition
void arbitrage. The relation between the volatility

8



structure and the mean-reversion parameter is given by the differential equation (23).
For constant ¢ we get that®
X in
o) =e* =) —o" (29)
—n

This matrix function can be determined in closed form after we have identified the
eigenvalues and eigenvectors of @J As an example consider the mean-reversion matrix

0
0 30)
0
where k1, ko are positive constants. This mean-reversion matrix corresponds to a
volatility structure defined by
| ekt 0 0
d(t) = e = 0 e~kt 0 (31)
1—e~F1t k2t
3 s

and the local covariance matrix S(£)S(t)’.

The exponential affine representation in (i.) and (ii.) is valid under any of the martingale
measures Q;, Q;fr. This is due to the fact that the Brownian motions of the martingale
measures are related by integrals off deterministic functions as stated in (5) and (6). This
also goes for (iii.) of Result 1; th‘e joint process of the spot rates becomes Gaussian
under any of the measures Q;, Q; .

Result 1 is in essence an extension of the results by Babbs (1990) and Jamshidian (1991)
to the multicurrency case. The result states that the Gaussian volatility structure obtains
if and only if the spot rates are a Gaussian vector process, in which case the model
becomes a multidimensional extended version of the Vasicek (1977) model or rather
the Hull and White (1990) model, because this model automatically fits the initial term
structures.

The affine representation of bond prices and the exchange rate obtained in Result 1
makes it easier to compute contingent claim prices. For European style claims we have
the following result.

Result 2: European Style Contingent Claim Prices under
the Gaussian Volatility Structurﬁ

Suppose the volatility structure is Gaussian. Then a European style contingent claim as
the one considered in Lemma 0, has a pay-off that can be written as

F(t;-) = F(t,z(t)) (32)

3 If A is a square matrix we define A™ = A - - A forn > 1 and let A? be equal to the identity matrix.

|
N
(n‘)



and its time 0 price is given by*

F(0) = Py(0

where ¥/(z) = w(z1,22,23) is the n

If we define g as in Lemma I and w
the weights of the replicating portfo

B2 (go((T))] = / o (A0

R3
B9 [o,(e(T)] = [ 95(4)5
R3
B2 (g, = [ g5 (4t
RS

This makes us able to calculate any
ratios by numerically evaluating (n
efficient routine for numerical integr

)13+ A()/?

B(t.T;) 12 + ®(t)13) + A(t)

naximum) three dimensional integrals.

,t)/F(t;A(z‘)l/Qz)w(:)d: (33)
R3
ormal density function:
e~ 3=l
) = (34)

rite g(-) = g(x(¢)), g;(-) = gj(z(t)) we obtain that
lio of Lemma 1 are given by

A

~

)u(2)d

(6 T) 0 + A1)z )u(z)dz (35)

1/2 .

)U(:)d:

European style contingent claim prices and hedge
Using an
ation one can obtain these prices and hedge ratios

rather fast. Practical experiments suggest that penny accuracy can be reached within

seconds.
For general contingent claims we ha

ve the partial differential equation stated below.

Result 3: The Fundamental Partial Differential Equation

Assume the volatility structure is Ge
continuous dividend stream of

wussian and consider a contingent claim paying a

a(t; S(t), Po(t, Th), - ., Po(t, Tag), Pi(t, Taggr), - - -, Pi(t. T)) (36)
on [0,T] and terminal value
F(T;5(t), Po(t, Th), - .., Po(t, Tag), Pi(t, Taggn), - - -, PL(t, T)) (37)
We can write
Fah) = R )

4 If A is a covariance matrix then there exists an

'orthogonal matrix © and a diagonal matrix A = Diag({A»}) with non-

negative elements, so that A = OA®'. In this case define A1/2 = ODiag({\/ An })

10



and under assumption of sufficient

regularity we have that the price at time t € [0,T]

satisfies the partial differential equation’

ro(t,z)G — alt,z) = Gy + zllq)(t)A(

subject to the boundary condition

Finite difference algorithms can be
tial equation. One possibility is to
and Griffiths (1980).

I~y
L7

1
)Gy + =tr (39)

5 [A(t)c;u}

(T.x)=F(T,z) (40)

applied to numerical solution of the partial differen-
use the implicit ADI method described in Mitchell

Conclusion

We have described a class of deterministic bond and exchange rate volatilities that lead
to a finite dimensional Markov representation of the yield curves of the two currencies by
a Gaussian vector process for the spot rates of the economy. The paper thereby extends

the results of Babbs (1990) and Ja

The resulting model is tractable an
pricing of derivatives with very cg

mshidian (1991) to a multicurrency framework.
d at the same time sufficiently general to handle the

mplicated pay-off structures.

5 Note that A = dA/dt = $~15%/ (¢~ 1)’

11



P

The pricing equation (8) follows d
ot
=0-

The pricing equation implies that

P() (’lL

Appendix

roof of Lemma 0

rectly from the definition of the martingale measure

under Qf the forward prices

T) Sw)h(u,T)

Py(u,t)’ Py(u,t) @D
are martingales. This means that
Po(w,T) _PR(uT), t
R Py(u, t) - Po('u.,t) (ao(w, T') — ao(u, t))dWy(u) @)
S(u)Py(w,T)  S(u)Pi(u,T) o ¢
d Bl - Po(ul) (a1(u,T) + os(u) — ao(u, t))dW(u)

Integration and division now yield

Pr

Let u < ¢ and consider self-financin
weights {m;(u)},_, , ordered as

the results.

oof of Lemma 1

1g portfolio with domestic currency value V' (u) and
in Lemma 1. Using the proof of Lemma O this

portfolio value evovles according to
Viu) S(u)Py(u,t Po(u, Tj)
O AL =Ny ZTJ (Wdp )
S(u)Pl(u,Tj)
+ m;i(u)d e a4
j= %—I—l ’ u (u7t)
= Wo(u)S—(;i()J—(l?l—(u)’—t) a1(u,t) + os(u) — ag(u, t))dWi(u) (43)
+ Z Jjgouu 1;)) ao(u, Tj) = ao(u, t))dW{(u)
+ Z 50 2 T 0y 73) + 50 — aof, ) )
We can write
preys = EPla(fotu)en ., flew) @4)

12



where

S(w)Pi(ud) =0
Po(u.t) | J=
P u,Tj - 1
filu) = { it j=1,....M
S(u)Py(u,T;) -
SEnnY JEMAL)
Z(a1(-t) +os(-) —ao(,t)) .j=0 (45)
& =< Z(ao(-, Tj) + ao(-,1)) g=1.... M
Z(ar1(t) +os(-) —ap(-,t)) ,7=M+1,...,N
_ =3 [ v (o)llds+ [ v(s)dWg(u)
=(v(:)=e = .

If ¢g(-) is a function for which th
are well-defined, then F'(u)/Py(u,
for all u < t. Using that F(u)/P,
of {£;} is independent of the leve
and Ito expansion yield

N

e partial derivatives {g;(-)} interpretated as in (11)
t) is at least twice continuous differentiable in f;(u)
o(u,?) is a Qf-martingale, that the joint distribution
of the yield curves or the exchange rate combined,

F o
P >~ (ESlas s Su(w)eme]) o)
= (B 190()) folw) (@ (u. 1) + o5 (xx) — ao(u. 1))dW(w)
Moo (46)
+ 3 (B 60]) ataou, ) ~ aofu 1))
j=1
N 7,
+ Z (Eg1 [gj(-)])fj(u)(al(u, T;) + os(u) — ao(u, t))dWi(u)
J=M+1

The second equality obtains because of the relations (5) and (6) and the Girsanov

Theorem. Comparing to (43) yielc

Derivation

Using Cox, Ingersoll and Ross (19

the futures price is given by

F(u) = EZ[S(T)]

Is the result if V' (0) = F(0).

of Equations (13) and (14)

81), Lemma O, and the definition of Wg yields that

T
r) ——fao(s,T)(a1(s,T)+crs(s)—a0(s,T))ds “47)

—€ u

_ S(u)Pi(u, ]

Po(u, T)
Hence dF( )
U

F_(u)— = (a1(u,T)+ o

= (a1(u,T) + a‘s(u) —ag(u, T)) (dWé(u) + ao(u, t)'du)

s(u) — ag(u, T))dWo(u) (48)
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and thereby that the option price |
Po(0,1)F(0)e*E2 {e #

The result now obtains almost im
Girsanov factor that defines a new

dW(u) — (ay

Deriva

s given by

F(t)

F(o) 7 tbf\] Po(0.)E% [Lp(yys 1] (49)

mediately after observing that e #F(¢)/F(0) is a
Brownian motion given by

(u,T) + os(u) — ag(u, T)) du (50)

tion of Equation (17)

We note that the price of the claim can be written as

Po(0, t)E2 [(Rl(t, T

) - Ro(t,T))"]

_ 0D g [(Pl(t, T)! - Py, T)‘l)j 51)

T—t

_ I’M{EQS [Pl(t’ T)"llA] _E [Po(t., T)—llA] }

T—t

where A = {Pl(t, ) ' Ry(t, T)™

1}. From Lemma O we have that

—500= [ (a0(w.T)~ao(u,t))dWs (u)

P
Po(t, T)! “PO(OL;) %e o
—301— | (a1(u,T)~a1(u,t))dWs(u)
Pl(t T) P1(0 t) %(“T—'u,t+01)e 3% { ai ay(u olu
' - P(0,T)
Making use of the probability measures with Brownian motions given by
t
1 - t
AW3(u) + (aou, T) = ao(u,t))d 53

dWi(u) + (a1(u, T) — ay(u,t))dt

yields the result.

Proof of Resuit 1

i. The representation of the domestic bond prices follows directly from Lemma 0. To
obtain the relation for the foreign currency bonds and the exchange rate we observe that

, d

L3d—t¢(t)

By integration we get:

= i30()B(t) = (11 — 12)'B(t) (54)

1 ®(t) =15

bwruu—@x/wm@ (55)
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Hence, we have that

a1(u, T) + og(u) — ag

= (qu)(u) + (11 — 12)

T
= (5B(t) — &y | B
—

Inserting this in Lemma 0, yields

(u.t)
t

T
/ O(y)dy — t»é/@(y)dy)@(U)_IS(U)
¢

il. Using (i.) and the definition of the spot interest rates yields the result.

iii. From (ii.) we. obtain that
021n“f§(0,
ot?
Using the definition of 2 and the E

dri(t) =

Inserting this in the above stochas

u (56)
-1l¢

dy)®(u) ' S(u)

the result.

th + 1 B 2(t)dt + by ®(t)dz(t) (57

3rownian motion under Qf we obtain

IS dWo(t) + AR)B(E) 1 (58)

tic differential equation and using (i.) and (ii.) to

represent z(t) as an affine function of (rg, r1,1n S)(¢) yields the desired SDE for (rg, r1).
Applying Ito’s lemma to the logarithm of exchange rate yields

dnS(0) = (~2 4= +

This concludes the proof of (iii.).

To ()
1 —1 0)| m() ))dt+LgS(t)dWO(t) (59)
(lnS(t)

iv. Assume that (ro(t),r1(¢),In.S(¢)) follows the stochastic differential equation of

(iv.). Observe that

To(S)
Tl(S)
In S(s)

7 ®(u) " 0(u)du + s@(u)_lE(u)dWO(u)
z / )

(60)

S

t
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Using

T
‘ — [ ri(s)ds

P(t.T)=EZ|e 61)

we obtain
T
~tit1 (f <I>(s)ds> (1) z(t)
Pi(t,T) = g;(t, T)e : (62)
where g;(-,-) is some deterministic function and = = (rg, 71,10 S). Ito expansion now

yields the result.

Result 1 implies that

roof of Result 2

E(t-) = F(t; (1)) (63)
Using that _
2(t) 5: N(0, A(?)) 64)

yields the first result. The result for the hedging portfolio holdings obtains by use of
(5), (6), (56), and the definitions of Result 1.

P

roof of Result 3

From the definition of x and the probability measure Qf we have that

dz(t) = A(t)S

The Markov property of z under ¢

B(t) s1dt + B(t) T S()dWo () (65)

)o implies that the time ¢ price is given by

- T
_g%| [ _owzlw) . F(T:2(T))
Gt =By / Bo(w)/Bo(® ™" " Bo(w)/Bo(?)
- 66
_poo| [ _alustw) L FTa@) | “
) o(p)/Bo(t) Bo(u)/Bo(t)
= G(t,z(t))
Observing that
t
G(t a(u; z(u))
5o + / AR 67)

is a Qo-martingale, applying Ito’s| lemma and using the Martingale Representation

Theorem yields the partial differen

tial equation.
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