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Abstract

Dansk resumé.
Denne afhandling handler om aspekter af den matematiske disciplin kaldet
topologisk kvantefeltteori (TQFT). Udviklingen heraf blev startet i 1989–1990
af Fieldsmedaljevinderen, Ed Witten og Abelprisvinderen, Michael Atiyah.
Ideen bag TQFT er affødt af fysik, eller mere præcist, fænomenet geometrisk
kvantisering. – Man starter med et vanskeligt forståeligt geometrisk objekt,
og ved at tænke på det som faserum for et fysisk system, kan man imitere
kvantiseringsprocessen af sådanne, hvorved der fremkommer et meget mere
velforstået objekt, et vektorrum, indeholdende information om strukturen af
det oprindelige objekt.
Afhandlingen præsenterer en konstruktion af en struktur på TQFT-vektorrum-
mene som repræsentation af nogle bestemte endelige grupper.

Abstract in English

This thesis is associated to the area of mathematics known as topological quantum
field theory.

In ultra-brief, the purpose of topological quantum field theory is to build
invariants of three manifolds by constructing certain functors from a cobordism
category of three manifolds to vector spaces. A well-known way to do this is to
construct so-called modular functors, associating vector spaces to closed, oriented
surfaces.

The thesis is concerned with an aspect of the gauge theoretic approach to the
construction of modular functors. -More specifically, with a natural structure of
the TQFT vector spaces as representations of certain finite groups.

However, whilst being motivated and inspired by both gauge theory and
topological quantum field theory, the main body of work in the thesis is alge-
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viii Abstract

braic geometric by nature.
In order to define the representations, a thorough understanding is needed

of the natural action of torsion subgroups of the Jacobian variety of a Riemann
surface on the moduli spaces of semistable vector bundles on that surface.

In particular, the geometry of the fixed point varieties of the action is studied,
with emphasis on intersection properties. The outcome of this study is used
to define certain groups of lifts, acting on the determinant line bundles on the
moduli spaces.
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Introduction

1.1 Motivation and perspectives

Let Σ denote a complete, non-singular algebraic curve over C (in other words,
a compact Riemann surface) of genus g ≥ 2. Let n ≥ 2 be an integer and let
d ∈ {0, 1, . . . , n− 1}.

The moduli space,M(n,∆), of semistable holomorphic bundles on Σ of rank
n and a fixed determinant ∆ of degree d is a projective algebraic variety, of
dimension (n2 − 1)(g − 1). According to work of Narasimhan and Seshadri [9],
its underlying topological space is identified with Hom(π1(Σ), SU(n))/SU(n).
As explained by Drezet and Narasimhan in [8], the Picard group of M(n,∆) is
isomorphic to Z with a canonical ample generator, L. 1

For k ≥ 1, the complex vector spaces Zk(n,∆) of algebraic sections of L⊗k

have been subject to great interest, because they appear as an important ingre-
dient in the gauge theoretic approach to 2+1 dimensional topological quantum
field theory (TQFT), as originally suggested by Witten [19]. In brief, the outlines
of the gauge theoretic approach are as follows:

Given a compact, oriented surface S of genus g, the spaces Zk(n,∆) (for
fixed n, ∆ and k) constitute a vector bundle over the Teichmüller space, TS . It is
becoming popular to refer to this bundle as the Verlinde bundle ([3]).

Hitchin and Axelrod, Della Pietra and Witten have shown that the Verlinde
bundle allows a projectively flat connection ([16] and [18]), inducing a projective
representation of the mapping class group on the space of covariantly constant
projective sections.

1We will use slightly different notation for this in the thesis.

1



2 Chapter 1. Introduction

It has long been expected that the projective ambiguity in the above can be
circumvented by changing the bundle on Teichmüller space slightly, allowing
the action of the mapping class group to be replaced by an action of a central
extension. This way, a genuinely flat connection would be possible, enabling a
modular functor to be defined as the space of covariantly constant sections in
the new, modified Verlinde bundle.

The task of completing the above construction entirely within the gauge the-
oretic setting has not yet been accomplished. There is, however, a closely related
approach arising from conformal field theory (CFT). In this theory, another vec-
tor bundle on Teichmüller space and a projectively flat connection have been
developed [22]. Laszlo has shown that this construction is equivalent to the
gauge theoretic one ([20]). Recent work by Andersen and Ueno performs the
modification mentioned above within the setting of CFT and proves that the
construction yields a modular functor (a notion originally invented within CFT
by Segal [23]). Since any modular functor can be extended to a full TQFT (this
is due to Walker – see also [15]), the work of Andersen and Ueno completes the
program of constructing TQFT’s from the spaces Zk(n,∆).

In a completely different approach, Reshetikhin and Turaev have described
in the early 90’s how TQFT’s can be constructed from quantum groups by con-
structing modular tensor categories. This has led to the celebrated Reshetikhin-
Turaev quantum invariants for 3-manifolds [21].

Blanchet, Habegger, Masbaum and Vogel have shown how the modular ten-
sor category corresponding to sl2(C) can be constructed in a simple way, using
the Kauffman bracket. In their paper, certain groups of involutions on the TQFT
vector spaces arose and were used to decompose the vector space into direct
summands [14].

In the paper [1], Andersen and Masbaum pursued the idea that the invo-
lutions from [14] should have an analogy in the gauge theoretic setting. They
found that involutions do exist on Zk(2,∆) as well. They are induced by certain
lifts to L(n,∆) of the natural action of J (2)(Σ) on M(2,∆), and they constitute
central extensions of J (2)(Σ). Andersen and Masbaum were able to identify the
involutions with the ones from Blanchet et al. Furthermore, they determined
the characters of the representations, leading to the conclusion that Zk(2,∆) are
isomorphic, as representations of the groups of involutions, to the TQFT vector
spaces constructed in [14].

According to Blanchet, constructions similar to those of [14] exist for sln(C)
(n ∈ N). The TQFT functors associated to the resulting modular tensor cat-
egories (denoted by Blanchet as HSU(n,k)) also come with certain unipotent
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group actions and corresponding splittings into direct summands. (See e.g.
[11].)

It has long been believed, and is currently becoming known ([6]), that the
TQFT vector spaces arising from sln(C) are the same as the gauge theoretic
ones. For instance, the dimension of the (complexified) vector space which the
Reshetikhin-Turaev TQFT associates to S at level k is known to be equal to the
dimension of Zk(n,O). Both are given by the amazing Verlinde formula:

dn,k(g) = ((n+ k)n−1n)g−1
∑

λ∈Γn,k

∏

1≤i<j≤n

(2 sin(λi − i− λj + j)
π

n+ k
)2−2g

– where Γn,k = {λ = (λ1, . . . , λn), k ≥ λ1 ≥ . . . ≥ λn−1 ≥ λn = 0}. (See e.g. [11]
for the topological version and [13] for a version in algebraic geometry.)

This thesis generalises the idea of Andersen and Masbaum to ranks greater
than 2, aiming to ”rediscover” the group representations on the Verlinde spaces
in the gauge theoretic setting. In the process, a wealth of structure on the moduli
spaces becomes apparent.

1.2 Notational conventions

Throughout this thesis, a “bundle” on a Riemann surface will mean a holo-
morphic vector bundle. Similarly, a “bundle” on a complex algebraic variety
will mean an algebraic vector bundle. By a “bundle map” I will mean a holo-
morphic (resp. algebraic), fibrewisely linear map between the total spaces of
two bundles, which does not necessarily induce the identity on the base space.
The terms “homomorphism”, “endomorphism” and “automorphism” will be
reserved for basepoint preserving maps. (I.e. sections in the derived bundles
Hom, End and Aut respectively.)

Furthermore, the following symbols will be used without further introduc-
tion.

SET : The category of sets
VAR : The category of (not necessarily irreducible) C-varieties
µn : The group of n’th roots of unity in C

ζn : e2πi/n (Or the reader’s favourite generator of µn)

A
◦

⊆ B : “A is an open subset of B”



4 Chapter 1. Introduction

1.3 Outline and main results

The thesis is organised as follows:

Chapter 1

-Is this introduction to the thesis.

Chapter 2

The second chapter gathers some fundamental technical results needed in the
thesis. In particular, in lack of proper reference, a detailed account is given on
the correspondence between the Weil pairing and the intersection pairing on
a compact Riemann surface. (Proposition 2.16). Furthermore, a very general
technique is introduced for determining when maps between moduli spaces are
actually morphisms. (Proposition 2.31).

Chapter 3

The third chapter is a study of the action, and notably the fixed points, of a
single torsion element, α in the Jacobian J(Σ) on the moduli space, M(n,∆d) of
semistable bundles with fixed rank n and determinant ∆d of degree d.

The exposition involves the extension and application of some theory of
Narasimhan and Ramanan, leading to the following main result (theorem 3.33
in the thesis):

Theorem 1. Given a primitive α ∈ J (n), the fixed point variety |M(n,∆d)|α of the
action of α on M(n,∆d) has r = (n, d) connected components, each of which is iso-
morphic to the quotient of the Prym variety Pα under the action of µq , q = n

(n,d) .

If n is odd, the set of connected components is canonically identified with µr.

If n is even, this set is canonically identified with (µr ×
α
2 )/∼.

Here α
2 denotes the set of elements a ∈ J (2n) with 2a = α, and (ζ1, a1) ∼ (ζ2, a2)

if and only if ζ1 = λqζ2, where λ = λ2n(a1, a2) ∈ {±1} is the Weil pairing.

In both cases, the identification maps are given by definitions 3.36 and 3.37.

Finally, a generalisation to the case of non-primitive elements (theorem 3.44)
is presented.
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Chapter 4

The fourth chapter contains an examination of the relative positions of the fixed
point varieties corresponding to different torsion elements. The main results
include a criterion for when and how the fixed point varieties of independent,
primitive torsion elements intersect (corollary 4.7 and proposition 4.9 in the the-
sis):

Theorem 2. Given primitive, independent elements α and β in J (n), the fixed point
varieties |M(n,∆d)|α and |M(n,∆d)|β intersect if and only if λn(α, β) ∈ µn is of
order q = n

(n,d) .

When they do intersect, the intersection is evenly divided into a finite number of
so-called ”layers” (i.e. orbits of the action of J (n)/〈α, β〉). In each of these layers, every
component of |M(n,∆d)|α intersects each component of |M(n,∆d)|β in finitely many
points, giving rise to a picture similar to the one in figure 4.1 (and the front page).

Furthermore, in the case of odd ranks, a complete description is given of how
individual components of the fixed point varieties for three torsion elements
with certain relations intersect (theorem 4.17):

Theorem 3. Assume n is odd. Let r = (n, d) and q = n
r . Suppose α, β ∈ J (n) are

primitive elements with 〈α〉 ∩ 〈β〉 = 0 and ord(λn(α, β)) = q. Let γ = α + β. For
each triple ζ, ζ′, ζ′′ ∈ µr we have:

|M(n,∆d)|
ζ,ζ′,ζ′′

α,β,γ 6= ∅ ⇔
ζ′′

ζζ′
= 1.

–Here, |M(n,∆d)|
ζ,ζ′,ζ′′

α,β,γ denotes the intersection of the fixed point components
of α, β and γ, corresponding to the roots of unity ζ, ζ′ and ζ′′, respectively, under
the identification mentioned in theorem 1.

Finally, two partial results are presented in the case of even ranks, including
the following (theorem 4.28):

Theorem 4. Assume n = 2ñ, where ñ is odd. Suppose α, β ∈ J (n) are primitive

elements with 〈α〉 ∩ 〈β〉 = 0 and λn(α, β) = 1. Let a ∈ α
2 , b ∈ β

2 , and define
γ = α+ β and c = a+ b. For each triple ζ, ζ′, ζ′′ ∈ µn, we have:

|M(n,O)|ζ,ζ
′,ζ′′

a,b,c 6= ∅ ⇔

(
ζ′′

ζζ′

)
= λ2n(a, b)

n
2 .

–Here |M(n,O)|ζ,ζ
′,ζ′′

a,b,c denotes the intersection of the fixed point components
of α, β and γ, corresponding to the pairs (ζ, a), (ζ′, b) and (ζ′′, c), respectively,
under the identification mentioned in theorem 1.
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Chapter 5

The fifth chapter recollects the notion of elementary modification and introduces
the Hecke correspondence in degrees zero and one. Furthermore, some auxil-
iary results for use in chapter 6 are given.

Chapter 6

The sixth chapter introduces certain lifts of the action to the determinant line
bundle on the moduli spaces.

In the case of n being odd, the group of lifts is generated by elements: ρα,d,
(α ∈ J (n)), uniquely determined by the demand that ρα,d act trivially on fibres
above the connected component of |M(n,∆d)|α corresponding to 1 ∈ µr (r =
(n, d)). (In the case d = 0, it is the component containing the bundle:

⊕n
i=1 L

⊗i
α ,

where Lα is the line bundle corresponding to α.)
In the case of n being even, the group of lifts is generated by elements: ρa,d,

(a ∈ J (2n)), uniquely determined by the demand that ρa,d act trivially on fibres
above the connected component of |M(n,∆d)|α corresponding to (1, a) ∈ µr×

α
2 .

(α = 2a and r = (n, d)). (In the case d = 0, it is the component containing the

bundle:
⊕n

i=1 L
⊗(2i−1)
a , where La is the line bundle corresponding to a.)

In both cases, the group of lifts constitute a central extension of J (n).
The main results of the chapter include a determination of the bilinear form

of the central extension induced by the group of lifts in degree zero (proposition
6.13 in the thesis):

Theorem 5. When d = 0, the alternating form of the central extension consisting of
the lifts is the Weil pairing. In other words:

For α, β ∈ J (n), we have when n is odd,

ρα,0ρβ,0(ρα,0)
−1(ρβ,0)

−1 = λn(α, β).

For a, b ∈ J (2n), α = 2a, β = 2b, we have when n is even,

ρa,0ρb,0(ρa,0)
−1(ρb,0)

−1 = λn(α, β).

Finally, a result about the complete presentation of the group of lifts, in terms
of generators and relations, is given in the special case where n is an odd prime
(conjecture 6.14). It is ”almost” a theorem, in the sense that a proof existed until
an error was located in one of the technical lemmas, during the final hours of
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writing. Hence the result has been downgraded to a conjecture, giving the par-
tial proof and stressing what remains for the proof to be complete. It is strongly
believed that the problems can be sorted out. In case they are solved, an erra-
tum will be made available as soon as possible, turning the conjecture into a
theorem.

Conjecture 6. Assume n is an odd prime. We have for all α, β ∈ J (n):

ρα,dρβ,d = ρα+β,d , d 6= 0

and
ρα,0ρβ,0 = λn(α, β)

n+1
2 · ρα+β,0

Chapter 7

The seventh and final chapter puts the whole work of the thesis into the broader
perspective of topological quantum field theory. The chapter contains no new
material, but serves mainly as a survey over the construction of (2 + 1)-dimen-
sional TQFT from the gauge theoretic approach, and how the project of the thesis
relates to this construction.





2

Preliminaries

This chapter covers some of the background material needed in the rest of the
thesis. Most of the contents are already treated very well elsewhere, and are
listed mainly for the sake of easy reference. Further details can be found in
[31], [30], [28], [24], and [27]. Also included are proofs of some “well known”
facts for which I have not been able to find suitable references, as well as some
fundamental technical results concerning moduli spaces. Finally, the section
also serves to fix notation.

Throughout the chapter, Σ will denote a compact Riemann surface of genus
g ≥ 2.

2.1 The Picard group, divisors and the Jacobian

The set of isomorphism classes of holomorphic line bundles on Σ constitute a
group, Pic(Σ) with tensoring and dualisation as its operations. Once in a while,
working with an element L ∈ Pic(Σ) requires picking a bundle representing it.
I will often use the same symbol to denote both the bundle and its isomorphism
class, sometimes not even mentioning the choice of representative. Of course,
this is only done when the conclusions are independent of the choices made.

The group of divisors (i.e. finitely supported maps Σ → Z) is denoted
Div(Σ). The degree of a divisor is the sum of its values, and the subgroup of
degree zero divisors is denoted Div0(Σ). Any nonzero meromorphic function g
on Σ defines a divisor (g), whose value at x ∈ Σ is the order of the first non-zero
term in a Laurant series expansion of g around x. Divisors arising in this way
are called principal and the subgroup of principal divisors is denoted Divpr(Σ).

9



10 Chapter 2. Preliminaries

Notice that principal divisors are always of degree zero by the residue theorem.
The Jacobian variety of Σ is defined by: J(Σ) = H1(Σ,O)/H1(Σ,Z), where

O is the sheaf of holomorphic functions on Σ. By Serre duality, it is isomorphic
toH0(Σ,Ω)∗/H1(Σ,Z) (where the inclusion ofH1(Σ,Z) inH0(Σ,Ω)∗ is given by
integration along cycles). It is a complex torus of dimension equal to the genus
of Σ.

There are several identifications between the groups introduced above, all
of which will be used frequently throughout the thesis. I shall summarise them
below for the sake of easy reference.

Lemma 2.1. Pic(Σ) ∼= H1(Σ,O∗).

Proof. Given a line bundle L on Σ, choose a covering (Ui)i∈I of Σ with local triv-
ialisations of L. On each intersection, Ui ∩ Uj , the coordinate-change function
hij is holomorphic and non-zero. Clearly, (hij) is a cocycle. The induced coho-
mology class in H1(Σ,O∗) depends only on the isomorphism class of L and is
independent of the choice of trivialisations. Conversely, the line bundle may be
reconstructed (up to isomorphism) by gluing trivial bundles on eachUi together,
using the non-zero holomorphic functions as gluing functions on overlaps.

Lemma 2.2. Div(Σ) ∼= H0(Σ,M∗/O∗).

Proof. The map going to the right is given by choosing small neighbourhoods
Ux around each x ∈ Supp(D) and meromorphic functions gx on Ux with (gx) =
D|Ux

. These, along with the constant function 1 on Σ \ Supp(D), generate an
element in H0(Σ,M∗/O∗). The map is clearly an isomorphism.

Notice that the principal divisors correspond, under this identification, to
the image of H0(Σ,M∗) → H0(Σ,M∗/O∗) in the long exact sequence induced
by 0 → O∗ → M∗ → M∗/O∗ → 0.

Lemma 2.3. Div(Σ)/Divpr(Σ) ∼= H1(Σ,O∗).

Proof. This follows from 2.2 and the long exact sequence induced by the short
exact sequence: 0 → O∗ → M∗ → M∗/O∗ → 0. The map is induced by the
degree zero Bockstein map. It is surjective, because H1(Σ,M∗) = 0. (See for
instance p.215-216 in [25]).

Lemma 2.4. Div(Σ)/Divpr(Σ) ∼= Pic(Σ).

Proof. This is simply composing 2.1 with 2.3.
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Remark 2.5. Given a divisor D on Σ the corresponding element in Pic(Σ) is
denoted by [D]. It is given explicitly as follows: Choose a covering Ui of Σ
and meromorphic functions gi on Ui such that (gi) = D|Ui

. Now, for each i, j,
gj

gi
∈ O∗(Ui ∩ Uj), and hence they define an element of H1(Σ,O∗). Gluing triv-

ial bundles on the Ui together with the
gj

gi
as coordinate-change functions gives

[D]. Notice that the gi piece together to give a meromorphic section in [D] with
divisor D. This section gives an isomorphism between the sheaf of holomorphic
sections of [D] and the sheaf OD of meromorphic functions g with (g) ≥ −D.

For an element L = [D] ∈ Pic(Σ), we define the degree of L as the degree of
D. The subgroup of degree zero elements in Pic(Σ) is denoted Pic0(Σ). This is
of course isomorphic to Div0(Σ)/Divpr(Σ).

Lemma 2.6. J(Σ) ∼= Pic0(Σ).

Proof. The long exact sequence induced by the exponential short exact sequence:

0 → Z → O
exp
−→ O∗ → 0 yields (since the induced mapH0(Σ,O)

exp
−→ H0(Σ,O∗)

is surjective):

0 → H1(Σ,Z) → H1(Σ,O) → H1(Σ,O∗) → H2(Σ,Z).

The kernel of the rightmost map corresponds to degree zero divisors under
the map from Lemma 2.3, and hence to Pic0(Σ) under the map from Lemma 2.1.
In fact, the map associates to a line bundle its first Chern class, and it can be
shown that for a divisor D on Σ: c1([D]) = deg(D), when using the identifica-
tion: H2(Σ,Z) ∼= Z, given by the orientation of Σ. (See section 3.4 in [31]).

Remark 2.7. Given an element α ∈ J(Σ), the corresponding element in Pic0(Σ)
is denoted by Lα.

Given n ∈ N, the subgroups of n-torsion elements in J(Σ) is denoted by
J (n)(Σ), or sometimes simply J (n). It is abstractly isomorphic to Z2g

n . In fact, we
have canonically:

J (n)(Σ) ∼= H1(Σ,Z)/(n ·H1(Σ,Z)) ∼= H1(Σ,Zn) ∼= Hom(H1(Σ,Z),Zn) (2.1)

For later use, I note the following explicit isomorphism: Let α ∈ J (n)(Σ). Let Lα
be the corresponding element in Pic0(Σ) and Dα ∈ Div(Σ) such that [Dα] = Lα.
The fact that α is n-torsion means that nDα is principal, so choose fα ∈ M(Σ)
such that (fα) = nDα.
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Lemma 2.8. The map: φ : J (n)(Σ) → Hom(H1(Σ,Z), µn), sending α to (γ 7→

exp( 1
n

∫
γ
dfα

fα
)), is a well defined isomorphism.

Proof. First of all, notice that exp( 1
n

∫
γ
dfα

fα
) is an n’th root of unity for every γ ∈

H1(Σ,Z). This is because locally and away from the poles and zeros of fα, we

have: dfα

fα
= d log fα for any choice of logarithm. So, integrating is just a matter

of summing differences between local logarithms, i.e. integer multiples of 2πi.
Furthermore, fα is determined by α up to multiplication by an n’th power

of a non-zero meromorphic function, say h. But this simply adds n · dhh to dfα

fα
,

and hence an integer multiple of n · 2πi to the integral. This shows that the map
is well defined.

Since φ is clearly a group homomorphism, it remains only to show that the
kernel is trivial. Suppose α ∈ Ker(φ). Choose a point p0 ∈ Σ and define g ∈
M(Σ) by:

g(p) = exp

(
1

n

∫ p

p0

dfα
fα

)
.

The assumption assures that this is independent of the path chosen for the in-
tegration. Locally (in a neighbourhood around p̃ where fα has a logarithm),
g(p) = g(p̃) · exp( 1

n (log f(p) − log f(p̃))). Hence g is meromorphic, and gn is a
scalar multiple of fα. Thus, nDα = (fα) = n(g). This shows thatDα is principal,
i.e. α = 0.

Remark 2.9. Since J(Σ) is a complex torus, it possible, for any α ∈ J(Σ) and
any k ∈ N \ 0 to find an α̃ ∈ J(Σ) with kα̃ = α. J (k)(Σ) then acts freely and
transitively on the set of such α̃.

Notation 2.10. For each α ∈ J(Σ), and every k ∈ N \ 0 denote:

α

k
= {α̃ ∈ J(Σ) | kα̃ = α}.

2.2 The Weil pairing

The Weil pairing plays an important role in the project. This section recollects
the definition and some basic properties.

Let f be a non-zero meromorphic function on Σ. LetD =
∑
njxj be a divisor

on Σ with nj = 0 whenever xj is a pole or a zero of f . We define:

f(D) =
∏

f(xj)
nj ∈ C \ {0}.
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Let f, g ∈ M(Σ) and D,D′ be divisors on Σ.

Lemma 2.11. Let f, g ∈ M(Σ), D,D′ ∈ Div(Σ), and φ an automorphism of Σ. We
have the following, whenever both sides of the equations are defined:

• fg(D) = f(D)g(D)

• f(D +D′) = f(D)f(D′)

• f(φ∗(D)) = (φ−1)∗(f)(D)

Weil reciprocity is the statement that whenever f and g are meromorphic
functions on Σ and the set of poles and zeros of f is disjoint from the one of g,
then f((g)) = g((f)). (Recall that (f) denotes the divisor, whose value at x is the
order of the first non-zero term in a Laurant series expansion of f around x.)

Remark 2.12. Weil reciprocity is easily derived on CP
1: Suppose f, g ∈ M(CP

1)
have divisors with disjoint support. Chose a homogeneous chart, such that both
f and g are defined and non-zero at infinity. Hence f and g induce mero-
morphic functions on C which are bounded and non-zero near infinity. By
compactness of CP

1, f and g have only finitely many zeros and poles. De-
note these {z1, z2 . . . , zk} for f and {w1, w2, . . . , wl} for g. Let ai = ordzi

(f)
and bi = ordwi

(g). Since f and g both have as many poles as zeros (counted
with multiplicities), h1(z) =

∏
(z − zi)

aif(z) and h2(z) =
∏

(z − wi)
big(z) are

holomorphic and bounded on C and thus constant. Using this, we may write:
f(z) = K1

/∏
i(z − zi)

ai and g(z) = K2

/∏
i(z −wi)

bi , (K1,K2 ∈ C \ {0}). Now:

f((g)) =
K

P
bj

1∏
i,j(wj − zi)aibj

=
1∏

i,j(wj − zi)aibj

g((f)) =
K

P
aj

2∏
i,j(zj − wi)biaj

=
1∏

i,j(zj − wi)biaj

These differ only by a factor
∏
i,j(−1)aibj =

∏
i((−1)ai)

P
bj = 1. This proves

the special case of Weil reciprocity. In fact, the general case can now be derived,
using some easy results of section 2.3 (see remark 2.21).

Now let n ∈ N. The order n Weil pairing on a compact Riemann surface,
Σ, can be defined as follows1: Suppose α, β ∈ J(Σ) ∼= Div0(Σ)/Divpr(Σ) are of
order n. Choose generators Dα and Dβ in Div0(Σ). The fact that α and β are of

1See lemma 2.14, however.



14 Chapter 2. Preliminaries

order n means that nDα and nDβ are principal. Pick fα, fβ ∈ M(Σ) such that
(fα) = nDα and (fβ) = nDβ .

Definition 2.13. The Weil pairing of α and β is λn(α, β) =
fα(Dβ)
fβ(Dα) ∈ µn

Lemma 2.14. The above is independent of all choices made.

Proof. First of all one has to argue that Dα and Dβ can be chosen with disjoint
support. This follows essentially from the Riemann-Roch theorem and corollary
17.16 in [30]:

1. dimH0(Σ,OD) − dimH1(Σ,OD) = 1 − g + deg(D) for all D ∈ Div(Σ).

2. dimH1(Σ,OD) = 0, whenever deg(D) > 2g − 2.

If Dα =
∑N

i=1 aixi represents α, then choosing x ∈ Σ \ {x1, . . . , xN} and putting
B = (2g − 1)x and Ci = (2g − 1)x + 1xi, we may choose elements: fi ∈
H0(Σ,OCi

) \ H0(Σ,OB) (the dimensions of the two spaces being g + 1 resp.
g). In other words, fi has a simple pole in xi, and no other poles, except possi-
bly in x. By adding constants to the fi, ensure that ordxj

(fi) = δi,j . (I.e. that fi is
non-zero at xj for i 6= j.) Hence, by adding or subtracting (fi) to Dβ the desired
result follows.

Finally one must show that λn(α, β) is an n’th root of unity and that it is
independent of the choices made; i.e. that its value does not change when fα
and fβ are multiplied by holomorphic functions (i.e. constants) and when prin-
cipal divisors are added to Dα and Dβ (at least as long as their supports remain
disjoint). These properties all follow from the Weil reciprocity law and the cal-
culational rules stated earlier.

Lemma 2.15. The following properties of the Weil pairing are all consequences of the
definition and the calculational rules mentioned above.

• λn(α+ β, γ) = λn(α, γ)λn(β, γ) for all α, β, γ ∈ J (n)(Σ).

• λn(α, β) = λn(β, α)−1 for all α, β ∈ J (n)(Σ).

• λkn(α, β)k = λn(kα, kβ) for all α, β ∈ J (kn)(Σ), k ∈ N.

• λkn(α, β) = λn(α, β)k for all α, β ∈ J (n)(Σ), k ∈ N.

I conclude the section with a proof of the fundamental property of the Weil
pairing.
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Proposition 2.16. The Weil pairing is a perfect pairing. In other words, the homomor-
phism: J (n)(Σ) → Hom(J (n)(Σ), µn), given by δ 7→ λn(−, δ) is an isomorphism.

More explicitly, we show that under the isomorphism, φ, from lemma 2.8, we get for
α, β ∈ J (n)(Σ):

λn(α, β) = [φ(α), φ(β)]

–Where [−,−] is the perfect pairing, induced on Hom(H1(Σ,Z), µn) by the intersection
pairing.

Proof. First choose a canonical basis γ1, γ2, . . . , γ2g forH1(Σ,Z). The intersection
pairing, given by: γi ∩ γj = δi+g,j when i ≤ g and γi ∩ γj = −δi−g,j when i > g,
induces a perfect pairing on Hom(H1(Σ,Z),Z) defined by:

{ψ1, ψ2} =

g∑

i=1

ψ1(γi)ψ2(γi+g) − ψ1(γi+g)ψ2(γi),

and this, in turn, defines a perfect µn-valued pairing on Hom(H1(Σ,Z), µn)
as follows: Given φ1, φ2 ∈ Hom(H1(Σ,Z), µn), we may choose lifts: ψ1, ψ2 ∈
Hom(H1(Σ,Z),Z), such that φi = exp(2πi

n ψi). We define (independently of that
choice):

[φ1, φ2] = exp(
2πi

n
{ψ1, ψ2}).

Now, let α, β ∈ J (n)(Σ). Choose Dα, Dβ, fα and fβ be as in lemma 2.8.

Clearly, ψα : (γ 7→ 1
2πi

∫
γ
dfα

fα
) and ψβ : (γ 7→ 1

2πi

∫
γ
dfβ

fβ
) are lifts, respectively, of

φ(α) and φ(β) through exp(2πi
n ). (Depending of course on the choice of fα and

fβ). Hence,

[φ(α), φ(β)] = exp

(
2πi

n
{ψα, ψβ}

)
(2.2)

= exp

(
1

n2πi

g∑

i=1

(∫

γi

dfα
fα

∫

γi+g

dfβ
fβ

−

∫

γi+g

dfα
fα

∫

γi

dfβ
fβ

))
.

To see that this is in fact the Weil pairing of α and β, we imitate an argument
made in [29]: Consider the topological representation of Σ as the quotient of an
open polygon ∆ with 4g edges identified with γ1, γ2, γ

−1
1 , γ−1

2 , . . . , γ2g . Further-
more, let x0 be the common base point of the γi, and choose disjoint curves αi,
connecting x0 to each of the zeros and poles pi of fα.
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Now, let ∆′ = ∆ \
⋃
i αi. Since ∆′ is simply connected and fα has neither

zeros nor poles in ∆′, we may choose a holomorphic logarithm, log fα, in ∆′.

Define: φ = log fα
dfβ

fβ
. This is a meromorphic 1-form on ∆′ which has a simple

pole at each pole and zero, q, of fβ , with residue given by: ordq(fβ) · log fα(q).
Consequently, by the residue theorem:

∫

∂∆′

φ = 2πi ·
∑

q∈suppDβ

ordq(fβ) · log fα(q)

(Here,
∫
∂∆′ means integration along a curve in ∆′ running very close along-

side the boundary.)
On the other hand, we may calculate the integral piece by piece as follows.

For points, p ∈ γi, p
′ ∈ γ−1

i on ∂∆′ identified on Σ,

log fα(p′) − log fα(p) =

∫

γi+g

d log fα =

∫

γi+g

dfα
fα

,

whereas by continuity,
dfβ

fβ
(p′) =

dfβ

fβ
(p). Hence,

∫

γi+γ
−1
i

φ =

(∫

γi

dfβ
fβ

)(
−

∫

γi+g

dfα
fα

)
.

Similarly:

∫

γi+g+γ−1
i+g

φ =

(∫

γi+g

dfβ
fβ

)(∫

γi

dfα
fα

)
.

Furthermore, for points p ∈ αi, p
′ ∈ α−1

i on ∂∆′ identified on Σ,

log fα(p) − log fα(p′) = Res(d log fα, pi) = ordpi
(fα),

whereas, again,
dfβ

fβ
(p′) =

dfβ

fβ
(p). Hence,

∫

αi+α
−1
i

φ = 2πi · ordpi
(fα) ·

∫

αi

dfβ
fβ

.

Choosing logarithms of fβ on neighbourhoods of each αi, making sure that they
agree in x0, we get:
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∑

i

∫

αi+α
−1
i

φ = 2πi
∑

i

ordpi
(fα)(log fβ(pi) − log fβ(x0))

= 2πi
∑

p∈suppDα

ordp(fα) · log fβ(p)

Thus, equating the two expressions for
∫
∂∆′ φ shows that the sum in (2.2) above

is equal to:

2πi

( ∑

q∈SuppDβ

ordq(fβ) · log fα(q) −
∑

p∈SuppDα

ordp(fα) · log fβ(p)

)
.

Hence, exponentiating:

[φ(α), φ(β)] =
∏

q∈suppDβ

fα(q)
1
n

ordq(fβ)

/
∏

p∈suppDα

fβ(p)
1
n

ordp(fα) = λn(α, β)

2.3 Holomorphic coverings and the norm map

Suppose that π : Σ′ → Σ is a (branched) covering of compact Riemann surfaces.
There are several maps, called the Norm or Albanese map, associated to π:

Definition 2.17. Nm : M(Σ′) → M(Σ) is defined by

(Nm(f))(x) =
∏

yi∈π−1(x)

f(yi)
ν(yi) (f ∈ M(Σ′)),

where ν(yi) is the multiplicity with which π takes the value x at yi.

It is easy to see that Nm(f) is in fact a well-defined meromorphic function
on Σ: Locally (around a point y ∈ Σ′ and x = π(y)), π is simply the function:
{z ∈ C | |z| < 1} → {z ∈ C | |z| < 1} given by z 7→ zk where k is the multiplicity
of π at y. Hence, it is sufficient to show that for any meromorphic function f on
the disc, the function h =

∏
ζ∈µk

f(ζz) factors through z 7→ zk. But this is indeed
the case, since a Laurant series expansion of h can only contain non-zero terms
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in degrees given by integer multiples of k. (The function z 7→ h(z) − h(ζnz) is
zero.)

The following result can be obtained, using the fact that M(Σ) is “quasi-
algebraically closed.” See [28] for a sketched proof.

Proposition 2.18. Nm : M(Σ′) → M(Σ) is surjective.

Definition 2.19. Nm : Div(Σ′) → Div(Σ) is defined by

(Nm(D))(x) =
∑

yi∈π−1(x)

ν(xi)D(yi) (D ∈ Div(Σ′)),

where ν(yi) is the multiplicity with which π takes the value x at yi.

Notice that for f ∈ M(Σ′), Nm((f)) is equal to (Nm(f)). The following
lemma states that the norm map works well together with pull-backs. (Recall
that evaluation of meromorphic functions on divisors was defined in 2.2.)

Lemma 2.20. For every f ∈ M(Σ), g ∈ M(Σ′), D ∈ Div(Σ), E ∈ Div(Σ′), we have
the following calculational rules:

• Nm(π∗(f)) = fn

• Nm(π∗(D)) = nD

• π∗(f)(E) = f(Nm(E))

• g(π∗(D)) = Nm(g)(D)

Remark 2.21. We can now show the general case of Weil reciprocity: Let f, g ∈

M(Σ). Write f = f̃∗(h) where f̃ : Σ → CP
1 is the induced branched cover-

ing and h ∈ M(CP
1) is the meromorphic function corresponding to 1CP1 . By

Weil reciprocity on CP
1 : f((g)) = f̃∗(h)((g)) = h((Nm(g))) = Nm(g)((h)) =

g((f̃∗(h))) = g((f)).

Except for the remark above, all the coverings appearing in this thesis will
be unbranched Galois coverings. Assume therefore henceforth that π is un-
branched and Galois with finite Galois group, G. In this case, Nm(f) for f ∈
M(Σ′) is simply the function on Σ′/G = Σ induced by the G-invariant function∏
g∈G g

∗f on Σ′. Likewise for divisors.
Notice that Nm restricts to a homomorphism between the multiplicative

groups M(Σ) \ {0} and M(Σ′) \ {0}. In fact, this is how it got its name; Theo-
rems 14.13, 8.3 and 8.12 in [30] show that π∗ : M(Σ) → M(Σ′) is a Galois field
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extension of degree n, with Galois group G (acting by pull-back on M(Σ′)). Ob-
viously, Nm is equal to the norm map defined in Galois theory. For later use, I
state the following result on cyclic Galois extensions:

Theorem 2.22 (Hilbert’s theorem 90). Let k → K be a cyclic Galois extension with
Galois group 〈g〉. For any element x ∈ K \ {0}, Nm(x) = 1 if and only if there exists
an element y ∈ K \ {0} such that g(y) = x−1y.

Proof. See [39].

Finally, since Nm takes principal divisors to principal divisors, it induces a
map: Pic(Σ′) → Pic(Σ). Given L ∈ Pic(Σ′), Nm(L) can be constructed explicitly

using “descent” of the equivariant bundle
⊗

g∈G

g∗L, as described in section 3.3.

2.4 Stable and semistable bundles

As always, let Σ be a compact Riemann surface of genus g ≥ 2. The degree of a
vector bundle E of rank n on Σ is simply the degree of its determinant bundle,
Λn(E). For every line bundle L on Σ, Λn(L ⊗ E) ∼= Λn(E) ⊗ L⊗n. This implies
that the degree is unchanged under tensoring with line bundles of degree zero.
Notice also that tensoring with a line bundle of degree one increases the degree
by n.

We can now introduce the notion of stable and semistable bundles. Whilst
originally arising from Mumford’s geometric invariant theory, the development
of this notion is mainly due to Narasimhan and Seshadri (see [9]).

Definition 2.23. Let E be any holomorphic vector bundle on Σ of positive rank.
The slope of E is:

µ(E) =
deg(E)

rk(E)
.

E is said to be stable if for every proper, non-zero sub-bundle F of E, we have:
µ(F ) < µ(E). E is said to be semistable if for every proper, non-zero sub-bundle
F of E, we have: µ(F ) ≤ µ(E).

Proposition 2.24. We have the following properties:

• A bundleE with deg(E) and rk(E) coprime is stable if and only if it is semistable.

• Line bundles are stable.
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• Every stable bundle E is simple. (I.e. H0(Σ,End(E)) = C). In particular, every
stable bundle is indecomposable.

• If E is (semi-)stable and L is a line bundle, then E ⊗ L is (semi-)stable.

Proof. The first two properties are trivial. The latter two are proven in section 4
of [9].

The semistable bundles with fixed slope, µ ∈ R, constitute an abelian cate-
gory, which is noetherian and artinian. The simple objects in this category are
the stable bundles.

Hence, according to the theorem of Jordan-Hölder, every semistable bundle
E has a filtration:

0 = E0 ⊆ E1 ⊆ · · · ⊆ Es = E

–where the quotients Di = Ei/Ei−1 are all stable with slopes µ(Di) = µ(E).

Furthermore, the bundle: Gr(E) =

s⊕

i=1

Di is uniquely determined by E up to

isomorphism, even though the filtration is not. It is called the graded object or
graded bundle of E.

Definition 2.25. Two semistable bundles E and E′ are said to be S-equivalent if
Gr(E) ∼= Gr(E′).

Due to the the uniqueness of the graded bundle, any direct sum of stable
bundles with equal slopes is isomorphic to its own graded bundle. In particular,
S-equivalence restricts to isomorphism on stable bundles. It also follows that
every semistable bundle is S-equivalent to its own graded bundle. Therefore,
every S-equivalence class has a representative which is the direct sum of stable
bundles with equal slopes, and is unique up to isomorphism. This is called the
graded representative of the S-equivalence class.

The construction of Gr(E) shows that Gr(E) ∼= Gr(E′) whenever E ∼= E′.
(I.e. S-equivalence is weaker than isomorphism). Furthermore, since rk(E) =
rk(Gr(E)) and deg(E) = deg(Gr(E)), both rank and degree are discrete invari-
ants of semistable bundles up to s-equivalence.

Finally, given a line bundle L and a semistable bundle E, Gr(E ⊗ L) ∼=
Gr(E)⊗L. Hence, tensoring with line bundles is well defined on S-equivalence
classes of semistable bundles.
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2.5 Moduli spaces, general theory

In this section, we recollect the abstract notion of moduli spaces and go on prov-
ing a simple category theoretical result, which will be useful for determining
when maps between moduli spaces are in fact morphisms.

A moduli problem consists of the following data:

• A category, A, whose objects we wish to parametrise up to some equiva-
lence. Usually one restricts to fixed values of every discrete invariant of
that equivalence, in order to ensure connectedness of the moduli space.

• The notion of a family of elements in A parametrised by a variety (some-
times more generally; a scheme or a stack) S. For a one-point variety, {x},
a family of elements in A parametrised by {x} must be, canonically, a sin-
gle object of A.

Furthermore, any morphism of varieties, f : S → S′ must give rise to a
pull-back of families parametrised by S′ to families parametrised by S. In
particular, the inclusion of a point s ∈ S induces the notion of “evaluating”
a family parametrised by S at s.

• A notion of equivalence of families, such that the equivalence classes of fam-
ilies parametrised by a variety S constitute a set. The equivalence must be
compatible with pull-backs. In particular we get an equivalence, ∼ on A,
and A/ ∼ is a set.

• The contravariant functor J : VAR → SET, assigning to a variety S the
set of equivalence classes of families parametrised by S, and to an arrow
f : S → S′ the pull back of families by f . This functor is referred to as the
“family functor” of the moduli problem.

Every moduli problem is eventually described by a family functor J . The
aim of moduli theory is to find, in some sense, a universal variety for J . This is
made precise in the following definition:

Definition 2.26. A fine moduli space for a moduli problem with family func-
tor J consists of a variety M together with a natural isomorphism Φ : J .→
Hom(−,M).

Proposition 2.27. The above definition is equivalent to saying that there exists a uni-
versal family parametrised by M . That is, a family U representing an element of
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J (M), such that for each variety S and each F ∈ J (S) there exists a unique mor-
phism f : S →M satisfying that F ∼ f∗U .

Proof. If M is a fine moduli space, simply let U be a representative of Φ−1(1M ).
Then, given S and F , the desired morphism is simply f = Φ(F). Both unique-
ness of f and the fact that F ∼ f∗U follows from chasing U around the diagram
below.

J (M)
Φ //

f∗

��

Hom(M,M)

f∗

��
J (S)

Φ // Hom(S,M)

Conversely, if U is a universal family, this induces a transformation Φ : J →
Hom(−,M). It is seen to be bijective by the same diagram as before. (Only, now
the top vertical map sends U to 1M because of the uniqueness property.) To see
that it is natural, suppose g : S1 → S2 is a morphism and consider the diagram:

J (S2)
ΦS2 //

g∗

��

Hom(S2,M)

g∗

��
J (S1)

ΦS1 // Hom(S1,M)

Let F2 ∈ J (S2) be arbitrary. Let f2 = ΦS2(F2), f1 = f2 ◦ g and F1 =
Φ−1
S1

(f1) = f∗
1 (U). Then: g∗(ΦS2(F2)) = g∗(f2) = f1, whereas ΦS1(g

∗(F2)) =
ΦS1(g

∗(f∗
2 (U))) = ΦS1(f

∗
1 (U)) = ΦS1(F1) = f1.

However, sometimes fine moduli spaces do not exist. In those cases one may
look for a weaker notion:

Definition 2.28. A coarse moduli space for a moduli problem with family func-
tor J consists of a variety M together with a natural transformation Φ : J .→
Hom(−,M), which satisfies the following two conditions:

• Φ({x}) : J ({x}) → Hom({x},M) is bijective for each one-point variety
{x}.

• (M,Φ) is universal in the sense that for every other variety N and every
natural transformation Ψ : J .→ Hom(−, N), there exists a unique natural
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transformation: χ : Hom(−, N) .→ Hom(−,M) such that the following
diagram commutes:

J
Ψ //

Φ

$$J
JJJJJJJJJ Hom(−, N)

Hom(−,M)

χ

OO

(2.3)

Clearly, any fine moduli space is also a coarse moduli space. Furthermore,
both types are unique up to isomorphism of M (together with composition of
Φ with the induced natural isomorphism of Hom(−,M)). Indeed, if (M,Φ) and
(M ′,Φ′) are coarse moduli spaces for J , we get, by the universality, a unique
natural isomorphism: F : Hom(−,M) .→ Hom(−,M ′), satisfying that Φ = F ◦
Φ′. To get the desired isomorphism from M to M ′, we only need to apply the
following two lemmas:

Lemma 2.29 (Yoneda). For every contravariant functor K : VAR → SET and
every variety S, the set of natural transformations Hom(−, S) .→ K is isomorphic to
K(S). The map is given by T 7→ T (1S).

Proof. See section 3.2 in [38] including exercise 2.

Lemma 2.30. In the special case where K = Hom(−, S′) for a variety S′, the map-
ping f = T (1S) ∈ Hom(S, S′) has the property that the induced transformation
f∗ : Hom(−, S) .→ Hom(−, S′), given by (g : V → S) 7→ f ◦ g, is equal to T .

Proof. Let g ∈ Hom(V, S). The naturality of T implies that the following diagram
commutes:

Hom(S, S)
T //

g∗

��

Hom(S, S′)

g∗

��
Hom(V, S)

T // Hom(V, S′)

(2.4)

Therefore f∗(g) = g∗(f) = g∗(T (1S)) = T (g∗(1S)) = T (g).

Both fine and coarse moduli spaces have the property that:

M ∼= Hom({x},M) ∼= J({x}) ∼= A/ ∼

–Canonically, as point sets. Furthermore, the definitions ensure that all ”natu-
rally” constructed maps into and out of J({x}) become morphisms into and out
of M . This statement is made precise in the following proposition:



24 Chapter 2. Preliminaries

Proposition 2.31. Let J1,J2 : VAR → SET be family functors for two moduli
problems. Suppose (Mν ,Φν) are coarse moduli spaces for Jν (ν = 1, 2). Then any
natural transformation from J1 to J2 induces a canonical morphism from M1 to M2.
Moreover, the morphism associated to T : J1

.→ J2 is given by the following mapping
of sets:

M1 = J1({x})
T ({x})// J2({x}) = M2 (2.5)

Proof. Let T : J1 → J2 be a natural transformation. Define T̃ by the following
diagram of natural transformations (using the universality of Φ1):

J1
T //

Φ1

))SSSSSSSSSSSSSSSS J2
Φ2 // Hom(−,M2)

Hom(−,M1)

eT

OO
(2.6)

The naturality of Φ1 and Φ2 actually shows that T 7→ T̃ defines a natural trans-
formation: Nat(J1,J2) → Nat(Hom(−,M1),Hom(−,M2)). By the Yoneda lem-
ma:

Nat(Hom(−,M1),Hom(−,M2)) ∼= Hom(M1,M2)
S 7→ S(1M1)

This shows the first part of the proposition. To see that the induced morphism
agrees with T ({x}) on sets, one has simply to chase 1M1 around the following
diagram for every element x ∈M1:

Hom(M1,M1)

eT (M1)

++

Evx

��

J1(M1)
Φ1(M1)
oo

T (M1)
//

i∗

��

J2(M1)
Φ2(M1)

//

i∗

��

Hom(M1,M2)

Evx

��
M1 J1({x})

∼=oo T ({x})// J2({x})
∼= // M2

(2.7)
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2.6 Moduli spaces of vector bundles

2.6.1 Stable bundles

LetA(n, d) denote the category of stable, holomorphic vector bundles on Σ with
fixed rank, n, and degree, d. The moduli problem ofA(n, d) is defined as follows:

• A family of elements inA(n, d), parametrised by a varietyS, is an algebraic
vector bundle F on S × Σ with the property that its restriction to {s} × Σ
is stable for every s ∈ S. For a morphism f : S → S′, and a family, F ,
parametrised by S′, we define the pull-back of F by f to be simply the
pull-back of vector bundles through f × 1Σ.

• Two families F and F ′, parametrised by a variety S are said to be equiva-
lent if their restrictions to every point s ∈ S are isomorphic. Obviously, the
induced equivalence relation on A(n, d) is isomorphism of bundles. The
demand is equivalent to saying that F , as a bundle on S × Σ, be isomor-
phic to F ′ ⊗ p∗S(L) for some line bundle L on S. (PS being the projection:
S × Σ → S.) (See lemma 5.10 in [24]).

• The induced family functor Jn,d assigning to each variety S the set of equi-
valence classes of families parametrised by S.

For the moduli problem of stable vector bundles on Σ, we have the following
results, all of which can be found in [27]. (See also later in this section for an
outline of the construction.)

Theorem 2.32 (Narasimhan-Seshadri). There exists a coarse moduli space for Jn,d
for each value of n and d. It is denoted Ms(n, d). When n and d are coprime, Ms(n, d)
is actually a fine moduli space. Generally, Ms(n, d) is a smooth, irreducible, quasi-
projective algebraic variety of dimension n2(g − 1) + 1. If n and d are coprime, it is
projective and normal. In particular, Ms(1, 0) is isomorphic to the Jacobian J(Σ).

Remark 2.33. In the case where n and d are coprime, the universal family U
promised by proposition 2.27, is called the Poincaré bundle on Ms(n, d) × Σ. It
is defined up to isomorphism, and has the property that for every bundle E
on Σ representing a point [E] ∈ Ms(n, d), the restriction of U to {[E]} × Σ is
isomorphic to E.

Using the results from the previous section, we now see that the following
maps are in fact morphisms, because they extend to natural maps of family func-
tors.
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Proposition 2.34. The following maps define morphisms of moduli spaces:

• Pull backs by endomorphisms of Σ : Ms(n, d) →Ms(n, d).

• Dualisation: Ms(n, d) →Ms(n,−d).

• The tensor product: Ms(1, d
′) ×Ms(n, d) →Ms(n, n

′d+ nd′)

• In particular, the isomorphisms: Ms(n, d) → Ms(n, d + n), given by tensoring
with a fixed line bundle of degree 1.

• The determinant: Ms(n, d) →Ms(1, d) ∼= Ms(1, 0) ∼= J(Σ).

Proof. It is straightforward to check that all the maps extend to natural trans-
formations of family functors, and hence by proposition 2.31 they define mor-
phisms between the corresponding moduli spaces.

The most complicated case is the one concerning the tensor product: Use the
fact that Hom(−,M ×M ′) is naturally isomorphic to Hom(−,M)×Hom(−,M ′)
to show that J1,d′ ×Jn,d is a family functor with Ms(1, d

′)×Ms(n, d) as a coarse
moduli space, and consider the natural transformation: J1,d′ ×Jn,d

.→ Jn,d+nd′
which takes a pair of vector bundles on Σ × S to their tensor product.

2.6.2 Semistable bundles

The story about semistable bundles is slightly more complicated. There does
not exist a “moduli space of semistable bundles” in the sense of the previous
section. It is not even clear what should be the notion of a family of semistable
bundles, and less so what should be the notion of equivalence between such
families. (Thanks to P.E. Newstead for clearing up this point for me.)

However, the semistable bundles turn interesting in the case where n and d
are not coprime. The reason is that there exists, in this case, a canonical com-
pactification of the moduli space of stable bundles, whose points parametrise
exactly s-equivalence classes of semistable bundles. It is customary to refer to
this compactification as “the moduli space of semistable bundles”, Mss(n, d).

To see that the morphisms defined on Ms(n, d) extend to Mss(n, d), one
needs to understand a bit about the way the two are constructed. In outline,
it goes as follows: (Details and references may be found in [27])
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Definition 2.35. Let n ≥ 2 and d > n(2g − 1) be integers. Let p = d− n(2g − 1)
and P (T ) = p+ nT . Let Op denote the trivial bundle of rank p on Σ.

Let A(P ) denote the category of pairs (F , q) where F is a coherent sheaf on
Σ with Hilbert polynomial P , and q is a surjective morphism: Op → F . The
moduli problem of A(P ) is defined by the following data:

• A family of elements in A(P ), parametrised by a noetherian C-scheme S
is a coherent sheaf F on S ×C Σ, which is flat over Y , together with a
surjective morphism: p∗Σ(Op) → F , such that for each point s ∈ S, the
Hilbert polynomial of Fs is P . For a morphism f : S → S′ and a family
F , parametrised by S′, the pull-back of F by f is simply pull-back under
f × 1Σ.

• Two families, F and F ′, parametrised by a C-scheme S, are said to be
equivalent if there exists an isomorphism of sheaves: g : F → F ′, such
that the following diagram commutes:

p∗X(E) //

Id

��

F

g

��
p∗X(E) // F ′

• The induced family functor JP assigning to each C-scheme, S, the set of
equivalence classes of families parametrised by S.

A deep result by Grothendieck states that there exists a fine moduli space
for this moduli problem for each value of n and d as above. It is a projective
C-scheme, denoted by: QuotPE/Σ/C, or simply Q.

There is an action of PGL(p) on Q. It is given, on the underlying set, simply
as composing the quotient map q of a pair (F , q) with the natural action of a
matrixA ∈ GL(p) on E. Clearly, this is compatible with the equivalence relation
defined above. The action of C∗I ⊂ GL(p) is trivial on equivalence classes,
making the action of PGL(p) well defined.

Furthermore, there is an open subset, R, of Q, which is invariant under the
PGL(p)-action. It it defined, as a set, to be the points [(F , q)] ∈ Q, for which F
is locally free, and q induces an isomorphism: H0(Σ,Op) → H0(Σ,F). It can be
shown that R is a quasi-projective, irreducible and smooth variety.

Also, one can show that every vector bundle of rank n and degree d is a
quotient of Op (i.e. it is the underlying sheaf of an element in R), and two such
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quotients yield isomorphic vector bundles if and only if they are equivalent un-
der the PGL(p)-action. (Lemmas 20 and 22 in [27]).

Geometric invariant theory gives the existence of a good quotient of the sta-
ble (resp. semistable) points in R under the action of PGL(p). These quotients
are by definition Ms(n, d), resp. Mss(n, d). As suggested by the name, stable
(resp. semistable) points correspond exactly to stable (resp. semistable) bundles.
Two semistable points become identified in the good quotient precisely if they
are S-equivalent.

The properties of Mss(n, d) are summarised below:

Theorem 2.36 (Narasimhan-Seshadri). Mss(n, d) is a complete, normal, projective
variety. In the special case, g = 2, n = 2, d = 0, it is smooth. In all other cases,
its singular points are exactly the ones corresponding to non-stable bundles. Moreover,
these points consist of strata of codimension at least 2, leavingMs(n, d) as a dense, open
subset consisting of the smooth points.

One may check that all the maps in proposition 2.34 above extend to natural
transformations of the functors JP , and hence define morphisms between the
appropriate quot-schemes.

Furthermore, it is straightforward to check that all the maps are invariant
under the action of PGL(p), up to equivalence under the PGL(p)-action. Hence
they descent to the good quotient. We summarise this in a proposition:

Proposition 2.37. The following maps define morphisms of moduli spaces:

• Pull backs by endomorphisms of Σ: Mss(n, d) →Mss(n, d).

• Dualisation: Mss(n, d) →Mss(n,−d).

• The tensor product: Mss(1, d
′) ×Mss(n, d) →Mss(n, d+ nd′)

• In particular, the morphisms: Mss(n, d) →Mss(n, d+ nd′), given by tensoring
with a fixed element of Mss(1, d

′).

• The determinant: Mss(n, d) →Mss(1, d) ∼= Mss(1, 0) ∼= J(Σ).

There is one final subtlety that needs to be taken care of. Notice that the quot-
schemes and thus Mss(n, d) were constructed only for sufficiently large values
of d. (Namely, d > n(g − 1).)

However, for d ≤ n(g − 1), denoting by Mss(n, d) simply the set of S-equi-
valence classes of semistable bundles of rank n and degree d, one may use the
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bijections of sets: Mss(n, d) → Mss(n, d + nd′), given by tensoring with a line
bundle of degree d′, to define variety structures on Mss(n, d).

This way the morphisms in proposition 2.37 all extend to morphisms in the
remaining degrees. However, one needs to show that the variety structure is
independent of the choice of large d′. This follows from the following results:

Lemma 2.38. When d > n(g − 1) and d′ > g − 1, the bijection of sets: Mss(n, d) →
Mss(n, d+ nd′) given by tensoring with a line bundle of degree d′ is an isomorphism.

Proof. By (a version of) Zariski’s main theorem (see e.g. Thm. 5.2.8. in [36]), the
map needs only be birational, i.e. an isomorphism between a non-empty open
subsets of Mss(n, d) and Mss(n, d + nd′). But according to proposition 2.34 the
stable partsMs(n, d) andMs(n, d+nd′) constitute exactly such non-empty open
sets.

Corollary 2.39. The bijection of sets, Mss(n, d) → Mss(n, d+ n) given by tensoring
with a line bundle of degree one is an isomorphism.

Notation 2.40. Throughout the thesis, I will denoteMss(n, d) simply byM(n, d).
I will refer to the image of Ms(n, d) under the inclusion into M(n, d) as the stable
part of M(n, d). For every ∆ ∈ Picd(Σ) I denote by M(n,∆), the closed subvari-
ety of M(n, d) given by det−1(∆).

Remark 2.41. As with the Picard groups, it will be convenient to adopt a bit of
notational abuse, using the same notation, sometimes, for a point in the mod-
uli space (i.e. an S-equivalence class of semistable bundles), and some chosen
generator of that class. I.e. sometimes writing E ∈ M(n, d) for a given vector
bundle E.
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The fixed point varieties

I will now turn to the action of J (n)(Σ) on M(n, d).

Definition 3.1. Let n ∈ N and d ∈ {0, 1, . . . , n − 1}. J (n)(Σ) acts on M(n, d)
by tensoring with the associated line bundles. By slight abuse of notation, the
automorphism of M(n, d) induced by α ∈ J (n) is denoted simply by:

α :

{
M(n, d) →M(n, d)
[E] 7→ [E ⊗ Lα]

This chapter will be an investigation of the points fixed by an element α ∈
J (n) = J (n)(Σ). It generalises section 5 in [1], and the methods used are quite
similar. As in [1], the main idea for describing the fixed points is due to Narasim-
han and Ramanan ([7]). However, in some sense the results of Narasimhan and
Ramanan are more general than needed here, allowing me to do a few things
more explicitly. On the other hand, [7] focuses mainly on stable bundles. This
calls for some extra trouble of generalising to semistable bundles.

For the entire chapter, fix an element α ∈ J (n). Let |M(n, d)|α denote the
set of points in M(n, d) fixed by the action of α. The investigation of |M(n, d)|α
begins with a few easy simplifications:

3.1 Simplifications

The first lemma explains why it suffices to consider degrees d ∈ {0, 1, . . . , n−1}.

31
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Lemma 3.2. The isomorphism M(n, d) → M(n, d + n) given by tensoring with a
line bundle of degree 1 commutes with the action of α. In particular, it induces an
isomorphism of the fixed point varieties.

Proof. This is obvious because of the commutativity of tensor products and the
fact that isomorphic bundles are S-equivalent.

Lemma 3.3. For each ∆ ∈ Picd(Σ), the closed subvariety M(n,∆) ⊆ M(n, d) is
invariant under the J (n)-action. Furthermore, given ∆1,∆2 ∈ Picd(Σ), M(n,∆1)
and M(n,∆2) are isomorphic and the isomorphism commutes with the action of J (n).

Proof. The first claim is true because det(E ⊗ L) ∼= det(E) ⊗ L⊗n for any E
representing a point in M(n, d) and any line bundle L. For the second claim,
observe that ∆−1

1 ⊗∆2 ∈ Pic0(Σ) ∼= J(Σ). Since J(Σ) is a complex torus, we may
find an element L ∈ Pic0(Σ) such that L⊗n ∼= ∆−1

1 ⊗∆2. Now, tensoring with L
gives an automorphism of M(n, d), which by the above formula restricts to an
isomorphism between M(n,∆1) and M(n,∆2). It commutes with the action of
α for the same reason as in the previous lemma.

The above lemma shows that the action of α can be studied inside each of
the M(n,∆) and that it suffices to consider one ∆ for each degree. We therefore
introduce the following:

Notation 3.4. Pick a point p ∈ Σ and define for each d ∈ {1, 2, . . . , n− 1}, ∆d =
[d · p]. Denote by |M(n,∆d)|α the intersection |M(n, d)|α ∩M(n,∆d).

The rest of the chapter is devoted to describing |M(n,∆d)|α.

3.2 Primitive torsion points, associated coverings

Assume that α ∈ J (n) is primitive, i.e. ord(α) = n, postponing the issue of
non-primitive elements until section 3.7.

There is a cyclic, n-sheeted Galois covering, πα : Σα → Σ associated to each
primitive element α ∈ J (n). I will construct it explicitly, and then discuss how it
relates to the classification of finite Galois covers.

Recall that Lα denotes the element in Pic(Σ) corresponding to α, as well as
a (chosen) line bundle representing that element. We now take the latter point
of view, and fix an isomorphism: L⊗n

α
∼= OΣ. This will be treated as an equality.

Define (topologically for now):
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Σα = {ξ ∈ Lα | ξ⊗n = (π(ξ), 1) ∈ L⊗n
α = OΣ}

πα = π|Σα

–Where π denotes the projection in Lα. Let φ : Lα|U ∼= U × C be a local triviali-
sation. This induces φ⊗ . . .⊗φ : L⊗n

α |U ∼= (U ×C)⊗n ∼= U ×C and the following
diagram commutes:

Lα|U
φ //

ξ 7→ξ⊗n

��

U × C

(x,λ) 7→(x,λn)

��
OΣ|U

= // L⊗n
α |U

φ⊗...⊗φ
// U × C

(3.1)

–Denote by s, the non-zero holomorphic section induced in the lower rightU×C

by the constant section 1 in OΣ|U . Choosing U small enough, we may assume
that s has an n’th root — i.e. a section s0 in the upper right U × C with sn0 = s.
Composing φwith division by s0 induces a homeomorphism: π−1

α (U) → U×µn.
(Recall that µn denotes the n’th roots of unity in C.) Since πα corresponds to
projection on U under this homomorphism, it is clearly an n-sheeted covering.

Furthermore, the action of µn by multiplication in the fibres of Lα, restricts
to deck transformations on Σα. In the local description above, the action of µn
on π−1

α (U) ∼= U × µn is simply given by multiplication in µn. Clearly, the action
is transitive on each fibre of πα. Hence, the covering is Galois.

In fact, µn is the entire Galois group. This follows from uniqueness of lifts
(of 1Σ) through connected coverings, as soon as we show that Σα is connected.

Lemma 3.5. Σα is path-connected.

Proof. Assume that V ⊆ Σα is a non-empty path connected component (thus
closed and open). It is easy to see that rx = #(V ∩ π−1

α (x)) is independent of
x ∈ Σ. (Σ being path-connected, the curve lifting property assures that rx > 0.
Finding one path between two fibres π−1

α (x1) and π−1
α (x2) and moving it with

the deck-transformations gives a one-to-one correspondence between π−1
α (x1)

and π−1
α (x2), taking V ∩π−1

α (x1) to V ∩π−1
α (x2).) Let r denote its constant value.

Define a section: Σ → L⊗r
α by assigning to each x ∈ Σ the value ξ1⊗ξ2⊗ . . .⊗

ξr where {ξ1, ξ2, . . . , ξr} = V ∩ π−1
α (x). This is well-defined (i.e. independent

of the ordering of the ξi’s) because Lα is a line bundle. (Interchanging the ξi’s
simply amounts to moving around scalars in the tensor product).
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In the local description, π−1
α (U) ∼= U × µn. Being open and closed herein,

V ∩ π−1
α (U) must correspond to U × {ζ1, . . . , ζr} for some ζ1, . . . , ζr ∈ µn.

Using the induced trivialisation; L⊗r
α |U ∼= (U × C)⊗r ∼= U × C, the section

defined above corresponds to the constant, non-zero section ζ1 · · · ζr, which is
holomorphic.

Having defined a global, holomorphic and nowhere zero section in L⊗r
α we

see that r = n, since Lα was of order n. Thus, V = Σα.

Finally, equip Σα with the unique complex structure that makes πα a local
biholomorphism. (see [30] p.22).

Notice that π∗
α(Lα) is trivial. Indeed, a global, non-zero section is given by

mapping each ξ ∈ Σα (say, πα(ξ) = x ∈ Σ) to itself – now seen as an element
of (Lα)x = (π∗

α(Lα))ξ . In fact, this property determines Σα completely in the
following sense:

Lemma 3.6. Consider α as an element of H1(Σ,Zn) ≈ Hom(H1(Σ),Zn). We then
have:

πα∗(H1(Σ
α)) = Ker(α).

Any other cyclic, n-sheeted, path-connected Galois cover: π̃ : Σ̃ → Σ with π̃∗(α) = 0
is (holomorphically) equivalent to πα : Σα → Σ.

Proof. Since the identifications J (n) ≈ H1(Σ,Zn) ≈ Hom(H1(Σ),Zn) are nat-
ural, we have for every x ∈ H1(Σ

α): 0 = π∗
α(α)(x) = α(πα∗(x)), whence

πα∗(H1(Σ
α)) ⊆ Ker(α). Conversely, consider the diagram:

π1(Σ
α)

h //

πα∗

��

H1(Σ
α)

πα∗

��
π1(Σ)

h // H1(Σ)

(3.2)

–where the horizontal maps are the natural, surjective ones with kernel the com-
mutator subgroup of π1(Σ) resp. π1(Σ

α). Proposition 1.39 in [37] states that
πα∗(π1(Σ

α)) ⊆ π1(Σ) is a normal subgroup with cyclic quotient of order n. In
particular, it must contain the commutator of π1(Σ), and hence πα∗(H1(Σ

α)) =
h(πα∗(π1(Σ

α))) must also have cyclic quotient of order n. Since Ker(α) has cyclic
quotient of order n, the inclusion πα∗(H1(Σ

α)) ⊆ Ker(α) must be an equality.
In the above diagram, h sets up a one-to-one correspondence between sub-

groups of H1(Σ) and normal subgroups of π1(Σ) containing [π1(Σ), π1(Σ)] (i.e.
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those with abelian quotient). Thus, the second claim of the lemma follows by
the classification of Galois covers. (proposition 1.37 in [37]).

3.3 Equivariant bundles, direct images

The following is not at all limited to the case of holomorphic or cyclic coverings.
However, since I will not need further generality, I will use the terminology of
the present, rather special case:

An equivariant bundle on Σα is a vector bundle E together with an action of
µn on the total space of E (acting as bundle maps), such that for all ζ ∈ µn the
following diagram commutes:

E
ζ //

πE

��

E

πE

��
Σα

ζ // Σα

(3.3)

An equivariant bundle, E on Σα defines by “descent” a bundle on Σ. The
total space of the descended bundle is simply the quotient of the total space of
E under the action of µn. It is easy to see that this becomes a vector bundle with
projection induced by πα ◦ πE .

Remark 3.7. For every bundle, F on Σ, the pull-back π∗
α(F ) is equivariant. The

action of ζ ∈ µn is defined by (x, ξ) 7→ (ζ(x), ξ) whenever x ∈ Σα, ξ ∈ Fπα(x) =
Fπα(ζ(x)). The descent of π∗

α(F ) is canonically isomorphic to F .

Two equivariant bundles E and E′ on Σα are called isomorphic (understood
“as equivariant bundles” or “equivariantly”) if there is an isomorphism φ : E ∼=
E′ such that φ(ζ(ξ)) = ζ(φ(ξ)) for every ξ ∈ E and ζ ∈ µn.

Remark 3.8. Equivariant bundles define isomorphic bundles by descent if and
only if they are equivariantly isomorphic. Hence, in view of the above, two
bundles on Σ are isomorphic if and only if their pull-backs to Σα are equivari-
antly isomorphic.

Lemma 3.9. Let E be a simple bundle on Σα. If ζ∗n(E) ∼= E, then there exists a bundle
F on Σ, such that π∗

α(F ) ∼= E.

Proof. Let F be the bundle arising from making E into a µn-equivariant bundle
and descending it to Σ. The action of ζn on E is given as follows: Let φ be



36 Chapter 3. The fixed point varieties

the composition of an isomorphism E ∼= ζ∗n(E) with the canonical bundle map
(inducing ζn on the base): ζ∗n(E) → E. Since E is simple, and φn is an auto-
morphism of E, we may assume, by scaling, that φn = 1. Thus φ generates a
group action of µn. The quotient map E → F then defines an isomorphism:
E ∼= π∗

α(F ).

For any holomorphic bundle E on Σα we define its push-down or direct image
πα∗(E) as the descent of the equivariant bundle ⊕ζ′∈µn

ζ′∗(E). The action of ζ ∈
µn on this bundle is given by shifting summands, i.e. (ξζ′)ζ′∈µn

7→ (ξζ·ζ′)ζ′∈µn

whenever the ξζ′ lie in Eζ′(x) for some x ∈ Σα.

Remark 3.10. Another way of describing the push-down πα∗(E), which will be
useful in the proof of theorem 6.14 is the following: Let λ ∈ µn be any generator.
Let A : λ∗(E) → E be the canonical map covering λ on Σα. Then,

πα∗(E) =

(
n−1⊕

i=0

λi∗E

)/〈



0 A 0
...

. . .
. . .

0 . . . 0 A
A 0 . . . 0




〉

Remark 3.11. πα∗E depends only (up to isomorphism) on the isomorphism class
of E.

Remark 3.12. Normally one constructs the push down of a bundle E by identi-
fying E with its (locally free) sheaf of holomorphic sections. One then defines
the sheaf πα∗(E) by: πα∗(E)(U) = E(π−1

α (U)). This is again locally free, i.e. a
vector bundle. It is easy to see that the two constructions agree.

Lemma 3.13. We have the following properties:

• For every bundle E on Σα: π∗
α(πα∗(E)) ∼=

⊕

ζ′∈µn

ζ′∗E equivariantly.

• Given bundles E1, E2, . . . , Ek on Σα: πα∗

k⊕

i=1

Ei ∼=

k⊕

i=1

πα∗Ei.

• If E,E′ are indecomposable bundles on Σα, then πα∗(E) ∼= πα∗(E
′) if and only

if E′ ∼= ζ∗(E) for some ζ ∈ µn.

• For every bundle E on Σα and any line bundle L on Σ: πα∗(E)⊗L ∼= πα∗(E ⊗
π∗
αL).
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Proof. The first two statements are easy consequences of the definition. The
third follows from the first by the theorem of Krull-Remak-Schmidt. The last
statement is known as the pull-push formula. It follows by pulling both sides
back to Σα and noticing that they are equivariantly isomorphic by tracing the
action of ζ ∈ µn through the sequence of isomorphisms:

π∗
α(πα∗(E) ⊗ L) ∼= π∗

α(πα∗(E)) ⊗ π∗
α(L)

∼= (
⊕

ζ′∈µn

ζ′∗E) ⊗ π∗
α(L)

∼=
⊕

ζ′∈µn

ζ′∗(E ⊗ π∗
α(L))

∼= π∗
α(πα∗(E ⊗ π∗

αL)).

As mentioned before, all of the above is valid for any finite, cyclic Galois
covering. Now I will start imposing the special properties of Σα. It has already
been shown that the pull-back of Lα to Σα is trivial. However, as an equivariant
bundle it is not trivial:

Lemma 3.14. π∗
α(Lα) is isomorphic (as an equivariant bundle) to O

(−1)
Σα . I.e. the trivial

bundle with ζ ∈ µn acting by (x, λ) 7→ (ζ(x), ζ−1λ).

Proof. Recall that π∗
α(Lα) has a non-zero holomorphic section, s, given by map-

ping each x ∈ Σα to itself – now seen as an element of (Lα)πα(x). This induces
an isomorphism: π∗

α(Lα) ∼= OΣα given by (x, ξ) 7→ (x, λ) where ξ = λs(x). Since
clearly, s(ζ(x)) = ζ · s(x), it is easily verified that the claimed action of µn on
OΣα makes the following diagram commute:

π∗
α(Lα)

(x,ξ) 7→(ζ(x),ξ) //

∼=

��

π∗
α(Lα)

∼=

��
OΣα

(x,λ) 7→(ζ(x),ζ−1λ)// OΣα

(3.4)

Using this, one can determine exactly which line bundles have trivial pull-
backs:
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Lemma 3.15. The kernel of π∗
α : Pic(Σ) → Pic(Σα) is equal to 〈Lα〉.

Proof. There are only n ways of giving OΣα the structure of a µn-equivariant
bundle, because the action of the generator ζn ∈ µn on OΣα is given by mul-
tiplication with a holomorphic (hence constant) function f on Σα with 1 =

Nmα(f) = fn. Since for any k ∈ Z, π∗
α(L⊗k

α ) ∼= (O−1
Σα)⊗k ∼= O

(−k)
Σα (I.e. the

trivial bundle with ζ ∈ µn acting by (x, λ) 7→ (ζ(x), ζ−kλ), all the structures are
occupied and therefore, any L ∈ Pic(Σ) with π∗

α(L) ∼= OΣα must have π∗
α(L) ∼=

π∗
α(L⊗k

α ) as equivariant bundles for some k, and by descent, L ∼= L⊗k
α .

Lemma 3.16. For any line bundle L on Σ we have:

πα∗(π
∗
αL) ∼=

n−1⊕

i=0

L⊗ L⊗i
α

Proof. By lemma 3.13, πα∗(π
∗
αL) ∼= πα∗(π

∗
α(L) ⊗OΣα) ∼= L ⊗ πα∗(OΣα). Hence,

it suffices to prove that πα∗(OΣα) ∼=
⊕n−1

i=0 Lα
⊗i. Pulling both sides back to Σα

yields O⊕n
Σα . Furthermore, the canonical equivariant actions of ζn ∈ µn are given

respectively by:

ζn : (x, (ξ1, . . . , ξn)) 7→ (ζn.x, A(ξ1, . . . , ξn))

ζn : (x, (ξ1, . . . , ξn)) 7→ (ζn.x, B(ξ1, . . . , ξn))

Where . . .

A =




0 . . . 0 1

1
. . .

... 0
. . . 0

...
0 1 0



, B =




1 0
ζ−1
n

. . .

0 ζ−n+1
n




Since the characteristic polynomial of A is (−T )n + (−1)n−1, diagonalising A
yields B. The invertible matrix C that gives: C−1AC = B induces an automor-
phism C of O⊕n

Σα such that the following diagram commutes:

π∗
α(πα∗(OΣα))

ζn

��

∼= // O⊕n
Σα

A

��

C // O⊕n
Σα

B

��

∼= // π∗
α

⊕n−1
i=0 Lα

⊗i

ζn

��
π∗
α(πα∗(OΣα))

∼= // O⊕n
Σα

C // O⊕n
Σα

∼= // π∗
α

⊕n−1
i=1 Lα

⊗i

(3.5)
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This shows that the two pull-backs are equivariantly isomorphic and hence

by descent: πα∗(OΣα) ∼=
⊕n−1

i=0 Lα
⊗i as desired.

An immediate consequence of the pull-push formula (lemma 3.13, last item)
is that every direct image of a line bundle on Σα is invariant under tensoring
with Lα. This is the fundamental idea of Narasimhan and Ramanan [7], as de-
scribed in the next section. For later use, I note the following explicit isomor-
phism between πα∗(L) and πα∗(L) ⊗ Lα.

Lemma 3.17. The map:
⊕n−1

j=0 ζ
j∗
n (L) →

⊕n−1
j=0 ζ

j∗
n (L) given by multiplication with

the matrix

B =




1 0
ζn

. . .

0 ζn−1
n




defines an equivariant isomorphism: ψ̃ : π∗
α(πα∗(L)) ∼= π∗

α(πα∗(L) ⊗ Lα). Hence, it
descends to an isomorphism: ψ : πα∗(L) → πα∗(L) ⊗ Lα.

Proof. By lemma 3.13 and 3.14, π∗
α(πα∗(L) ⊗ Lα) is equivariantly isomorphic to⊕n−1

j=0 ζ
j∗
n (L) with ζ ∈ µn acting by the usual shifting of summands composed

with multiplication by ζ−1. Hence, the following diagram commutes (where
each of the vertical maps is the canonical action of ζ ∈ µn).

π∗
α(πα∗(L))

��

∼= //
n−1⊕

j=0

ζj∗n (L)

��

B //
n−1⊕

j=0

ζj∗n (L)

��

∼= // π∗
α(πα∗(L) ⊗ Lα)

��
π∗
α(πα∗(L))

∼= //
n−1⊕

j=0

ζj∗n (L) B //
n−1⊕

j=0

ζj∗n (L)
∼= // π∗

α(πα∗(L) ⊗ Lα)

(3.6)

From this, the lemma follows easily.

3.4 Fixed points as direct images

We now aim to apply the ideas of Narasimhan and Ramanan ([7]), describing
the fixed point as direct images under πα. First we need to adapt the notation of
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[7].
Denoting by µ̂n the 1-dimensional characters on µn (i.e. the group of homo-

morphisms µn → C
∗), every element χ ∈ µ̂n gives rise to a line bundle on Σ:

Lχ = (Σα×C)/∼ where (ζ(x), λ) ∼ (x, χ(ζ)λ) for all ζ ∈ µn, x ∈ Σα, λ ∈ C. This
is, in fact a very general construction, which uses the fact that Σα is a principal
bundle on Σ with its structure group, µn acting on C via χ. For details about
principal bundles, see [32].

Now Lχ1 ⊗ Lχ2
∼= Lχ1χ2 for all χ1, χ2 ∈ µ̂n. Denoting elements in Lχ by

[x, λ]χ, an isomorphism is given by [x, λ]χ1 ⊗ [x, γ]χ2 7→ [x, λγ]χ1χ2 ) for all x ∈
Σα, λ, γ ∈ C). This implies that the Lχ are always n-torsion points.

Tensoring with Lχ gives an action of µ̂n on M(n, d). This is the terminology
throughout [7]. Since Lχ0

∼= Lα for the canonical generator χ0 of µ̂n (i.e. the
inclusion µn →֒ C∗) by mapping [x, λ]χ0 7→ λx, this action is exactly the same as
that of 〈Lα〉 ⊆ J (n).

For use in proposition 3.23, I state the following:

Lemma 3.18. Let ψreg denote the regular representation over C of µn (ζ ∈ µn acting on
C[µn] by multiplication on the group elements). Composing ψreg with the determinant
yields a 1-dimensional character χreg. The associated line bundle Lχreg is trivial when

n is odd and isomorphic to L
⊗n/2
α when n is even.

Proof. Choosing the ordered basis (1, ζn, ζ
2
n, . . . , ζ

n−1
n ) for C[µn], we see that

χreg(ζn) = det
(




0 . . . 0 1

1
. . .

... 0
. . . 0

...
0 1 0




)
= (−1)n−1.

Thus, for n odd, χreg and hence Lχreg is trivial. For n even, χreg = χ
n/2
0 proving

that Lχreg
∼= L

⊗n/2
α .

Now, importing some results from [7], yields:

Proposition 3.19. Let E be a bundle on Σα.

• deg(πα∗(E)) = deg(E) and rk(πα∗(E)) = n · rk(E).

• πα∗(E) is semistable if and only if E is semistable.
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• πα∗(E) is stable if and only if E is both stable and no two of the bundles ζ∗(E)
(ζ ∈ µn) are isomorphic.

Proof. See [7]

Since πα∗ extends naturally to family functors, the previous proposition com-
bined with the methods in 2.5 and lemma 3.13 shows that πα∗ induces a mor-
phism: Picd(Σ

α) → |M(n, d)|α. The key result is the following:

Proposition 3.20. πα∗ : Picd(Σ
α) → |M(n, d)|α is surjective.

Proof. It is shown in [7] that every simple bundleE of rank n on Σ withE⊗Lα ∼=
E is isomorphic to the direct image of a line bundle. In particular, every stable
point of |M(n, d)|α lies within the image of πα∗.

Assume thatE = ⊕sj=0Ej is the graded representative of any semistable, but
not stable, fixed point (s ≥ 1). The assumption that E is a fixed point implies
that E ∼= ⊕sj=0Ej ⊗ Lα (both being their own graded bundles).

Define r = rk(E0) and q = min{q′ ∈ N\0 | E0⊗L⊗q′

α
∼= E0}. Since det(E0) ∼=

det(E0 ⊗ L⊗q
α ) ∼= det(E0) ⊗ L⊗qr

α , we see that L⊗qr
α

∼= OΣ, whence n | qr. On
the other hand, the assumption E ∼= E ⊗ Lα ∼= . . . ∼= L⊗q−1

α ⊗ E combined
with the fact that Ei ⊗ L⊗j

α is stable and hence indecomposable for every i, j
shows by the theorem of Krull-Remak-Schmidt that for each j ∈ {1, . . . , q − 1},
E0⊗L⊗j

α
∼= Ei for some i. Since by minimality of q, E0, E0⊗Lα, . . . , E0⊗L⊗q−1

α

are pairwise non-isomorphic, we may rearrange the Ei’s to get: Ei ∼= E0 ⊗ L⊗i
α

for i ∈ {1, . . . , q − 1}. Considering ranks, we get qr ≤ n, which combined with
the above gives qr = n. All in all, we have:

E ∼=

q−1⊕

j=0

E0 ⊗ L⊗j
α

Case 1: r = 1

In this case E0 is a line bundle, and by lemma 3.16: E ∼=
⊕q−1

j=0 E0 ⊗ L⊗j
α

∼=
πα∗(π

∗
α(E0)). Thus, E ∈ Im(πα∗).

Case 2: r > 1

In this case, notice that E0 ∈ M(r, deg(E0)) is fixed by α̃ = qα ∈ J (r) of order r.
We may use section 3.2 on α̃ instead of α, to get πα̃ : Σα̃ → Σ with Galois group
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µr. For simplicity, choose L⊗q
α to be the line bundle representing α̃ in Pic(Σ) and

use the identification L⊗r
α̃ = L⊗n

α = OΣ when constructing Σα̃. There is a map
π : Σα → Σα̃ taking ξ ∈ Σα ⊆ Lα into ξ⊗q ∈ Σα̃ ⊆ Lα̃ = L⊗q

α . Clearly, the
following diagram commutes:

Σα
π //

πα
  A

AA
AA

AA
A Σα̃

πα̃
~~}}

}}
}}

}}

Σ

(3.7)

Locally (Lα being trivial over U ), Σα and Σα̃ are homeomorphic to U × µn and
U × µr, respectively. It is easy to check that under these homeomorphisms,
π corresponds to the mapping (x, ζ) 7→ (x, ζq). This shows that π is in fact a
Galois covering with Galois group µq ⊂ µn. Since locally, π is a composition of
biholomorphisms, it is holomorphic. Since π∗(π∗

α̃Lα) is trivial, lemma 3.6 shows
that π is in fact the covering that corresponds to π∗

α̃(Lα). Furthermore, since the
action of ζ ∈ µn on Σα covers the action of ζq ∈ µr on Σα̃, it is easy to show that
πα∗ = πα̃∗ ◦ π∗.

Since E0 is stable, [7] shows that there exists a line bundle L on Σα̃ with
πα̃∗(L) = E0. Hence, using lemma 3.16 for the covering π corresponding to
πα̃(Lα) and lemma 3.13 for πα̃, we get:

πα∗(π
∗(L)) ∼= πα̃∗π∗(π

∗(L)) ∼= πα̃∗

q−1⊕

j=0

L⊗ π∗
α̃(Lα)⊗j

∼=

q−1⊕

j=0

πα∗(L) ⊗ L⊗j
α

∼= E

The calculations in the above proof also show another important fact:

Addendum 3.21. For any two line bundles L,L′ on Σα, πα∗(L) is S-equivalent
to πα∗(L

′) if and only if πα∗(L) ∼= πα∗(L
′). In particular, µn acts transitively (by

pull back) on every fibre of πα∗ : Picd(Σ
α) → |M(n, d)|α.

Proof. I claim that for any line bundle L on Σα, πα∗(L) ∼= Gr(πα∗(L)). Clearly,
this will prove the first part of the addendum.
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Let L be a line bundle on Σα. Let r = min{r′ ∈ N \ 0 | ζr
′∗
n (L) ∼= L}. If

r = n, then by proposition 3.19, πα∗(L) is stable and hence isomorphic to its
graded bundle. If r 6= n, then by minimality, r | n (say, n = qr). In this case, L is
isomorphic to the pull back of a line bundle L′ on Σqα, according to lemma 3.9.

By the minimality of r and the fact that ζ∗π∗(L′) = π∗ζq∗(L′) for each ζ ∈

µn, we see that L′, ζq∗n (L′), . . . , ζ
q(r−1)∗
n (L′) are non-isomorphic and hence, by

proposition 3.19, πqα∗(L
′) is stable.

The calculations in the proof of proposition 3.20 then show that

πα∗(L) ∼=

q−1⊕

i=0

πqα∗(L
′) ⊗ Lα

⊗i

which is isomorphic to its graded bundle.
Finally, the second statement follows by proposition 3.13.

The next obvious question is: How does πα∗ behave with respect to the par-
tition into the closed subvarieties |M(n,∆d)|α? To answer this, we need the
following:

Definition 3.22. For L ∈ Pic(Σα), define ϑα(L) = det(πα∗(L)).

Proposition 3.23.

ϑα(L) =

{
Nmα(L) , n odd

Nmα(L) ⊗ L
⊗n/2
α , n even

(3.8)

Proof. Since the determinant is a fibrewise construction, det(πα∗(L)) can be cal-
culated as the descent of the equivariant bundle:

det
( ⊕

ζ′∈µn

ζ′∗(L)
)
∼=
⊗

ζ′∈µn

ζ′∗(L) ∼=
( ⊗

ζ′∈µn

ζ′∗(L)
)
⊗OΣα . (3.9)

Identifying the fibres of
⊕

ζ′∈µn
ζ′∗(L) with C[µn], notice that the action of µn

is simply the regular representation, together with the moving of fibres. Hence,
the action on the left hand side of (3.9) multiplies with the determinant of the
regular representation.

Therefore, the action on the right hand side of (3.9) that makes the isomor-
phism equivariant is the natural one on

⊗
ζ′∈µn

ζ′∗(L) tensored with the action
on OΣα induced by the regular character, χreg.
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Descent commutes with (equivariant) tensor products. Hence det(πα∗(L)) is
given by the descent of

⊗
ζ′∈µn

ζ′∗(L) (with the natural action) tensored with
the descent of Σα × C (with the action induced by the regular character). The
first yields Nmα(L). The latter yields Lχreg . (Following the notation introduced
in the beginning of section 3.4.) The proposition follows by lemma 3.18.

Corollary 3.24. For each d ∈ {0, 1, . . . , n− 1}, the subvariety ϑ−1
α (∆d) ⊆ Picd(Σ

α)
is isomorphic to Nm−1

α (OΣ). An isomorphism is obtained by choosing an element
L0 ∈ ϑ−1

α (∆d) (this will be done explicitly in section 3.6) and restricting the morphism
Pic0(Σ

α) → Picd(Σ
α) : L 7→ L⊗ L0 to Nm−1

α (OΣ).

Proof. One only has to check that Nm−1
α (OΣ) ⊗ L0 = ϑ−1

α (∆d). Both inclusions
follow directly from proposition 3.23.

3.5 The kernel of Nmα

By now, it is clear that a detailed description of Nm−1
α (OΣ) is necessary. The case

n = 2 is treated in a sequence of exercises in appendix B of [28]. The general case
is “well known”, but I have been unable to find a reference for it in the literature.

The description resembles the one given by Hilbert’s theorem 90 of the kernel
of Nmα : M(Σα) → M(Σ). Not surprisingly, it starts with an application of that
theorem.

Proposition 3.25. There exists a meromorphic function gα ∈ M(Σα) \ {0} such
that ζ∗n(gα) = ζ−1

n · gα. In particular, its divisor (gα) is invariant under pull-back
with ζn. Furthermore, (gα) = π∗

α(C) for some C ∈ Div(Σ). This divisor satisfies
[C] = Lα ∈ Pic(Σ).

Proof. Apply theorem 2.22 to the constant function ζn ∈ M(Σα) to get gα. It
follows that (gα) is invariant and hence given as π∗

α(C) for some C ∈ Div(Σ).
It remains to show that [C] = Lα. Let L be a line bundle representing [C].
According to section 2.1 L has a meromorphic section with divisor equal to C.
Pulling this back to Σα gives a meromorphic section s in π∗

α([L]) with divisor
equal to (gα) and with s(ζ(x)) = s(x) ∈ Lπα(x) for every x ∈ Σα and ζ ∈ µn.
Notice that s/gα is a nonzero holomorphic section, inducing an isomorphism:
φ : π∗

α(L) → OΣα by mapping an element (x, ξ) into (x, λ) where λ ∈ C satisfies
ξ = λ · s(x)/gα(x).
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It is easy to see that the equivariant action of ζ ∈ µn on OΣα that makes φ
an equivariant isomorphism is (x, λ) 7→ (ζ(x), ζ−1λ). Hence, both π∗

α(Lα) and

π∗
α(L) are equivariantly isomorphic to O

(−1)
Σα , and by descent: L ∼= Lα.

Definition 3.26. For each k ∈ Z, the functions Φkα : Pick(Σ
α) → Pic0(Σ

α) are
defined by Φkα(L) = ζ∗n(L) ⊗ L−1.

Lemma 3.27. For every k ∈ Z, ImΦkα = ImΦk+nα .

Proof. Pick a point x ∈ Σ. Tensoring with L0 = π∗
α[x] ∈ Picn(Σ

α) gives a bijec-
tion between Pick(Σ

α) and Picn+k(Σ
α) satisfying: Φk+nα (L ⊗ L0) = Φkα(L) for

every L ∈ Pick(Σ
α)

Proposition 3.28. The kernel of Nmα : Pic(Σα) → Pic(Σ) has the following compo-
sition into connected components:

Nm−1
α (OΣ) =

n−1⋃

k=0

ImΦkα (3.10)

Proof. Identifying Pick(Σ
α) = Pic0(Σ

α) = J(Σα) as complex varieties, the re-
sults in 2.6 ensures that the Φkα are morphisms. J(Σα) being complete and con-
nected, it follows that the ImΦkα are connected and closed. This leaves only to
show that the union in (3.10) is disjoint and yields Nm−1

α (OΣ).
For the inclusion to the right, assume that L ∈ Nm−1

α (OΣ) is represented by
a divisor D ∈ Div(Σα). Denote by {x1, x2, . . . , xm} the image of the support of
D under πα and denote π−1

α (xi) = {xi1, xi2, . . . , xin} for each i ∈ {1, 2, . . . ,m}.
Choose the numbering such that ζn(xij) = xi(j+1). 1

Write D =
∑

i,j aijxij (aij ∈ Z). The assumption means that Nmα(D) =∑
i,j aijxi is principal. Pick f ∈ M(Σ) such that

∑
i,j aijxi = (f). Using

proposition 2.18, pick f̃ ∈ M(Σα) such that Nmα(f̃) = f . Subtracting the

divisor of f̃ from D gives another representative for L, D̃ =
∑
i,j ãijxij , sa-

tisfying Nmα(D′) = 0. This implies that for each i,
∑

j ãij = 0, which is a
sufficient condition for solving the equations bi(j+1) − bij = ãij , (bij ∈ Z).

Doing that, L̄ = [
∑

i,j bijxij ] ∈ Pic(Σα) satisfies Φkα(L̄) = ζ∗n(L̄) ⊗ L̄−1 =

[
∑

i,j(bi(j+1) − bij)xij ] = L. It follows from lemma 3.27 that L ∈ ImΦkα for
some k ∈ {0, 1, . . . , n− 1}.

1(j + 1) is to be calculated modulo n.
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The inclusion to the left being trivial, it remains only to show that the union
is disjoint. Assume therefore that Φk1α (L1) = Φk2α (L2) for kν ∈ Z and Lν ∈
Pickν

(Σα) (ν = 1, 2). We need to show that k1 ≡ k2 mod n. Rewriting the
assumption gives: ζ∗n(L1 ⊗ L−1

2 ) ⊗ (L1 ⊗ L−1
2 )−1 ∼= OΣα .

Let D ∈ Divk1−k2(Σ
α) be such that [D] = L1 ⊗ L−1

2 . The assumption then
implies that there exists an f ∈ M(Σα) such that ζ∗n(D) −D = (f). Let gα and
C be as in proposition 3.25. Adjusting D with a principal divisor as in lemma
2.14, we may assume that D and (gα) have disjoint support. Then, since (gα)
is invariant under ζn, its support is also disjoint from the support of ζ∗n(D) and
hence the one of ζ∗n(D) −D = (f). Weil reciprocity gives:

1 =
f((gα))

gα((f))
=
f((gα))gα(D)

gα(ζ∗n(D))
(3.11)

Now, (Nmα(f)) = Nmα(ζ∗n(D)−D) = 0 means that Nmα(f) is holomorphic and
hence constant. Since also n · deg(C) = deg((gα)) = 0, f((gα)) = f(π∗

α(C)) =
Nmα(f)(C) = zdeg(C) = 1 (where z 6= 0 is the constant value of Nmα(f)).

At the same time:

gα(D) =
∏

D(x′) 6=0

gα(x′)D(x′)

=
∏

D(ζn(x′)) 6=0

gα(ζn(x
′))D(ζn(x′))

=
∏

ζ∗n(D)(x′) 6=0

(ζ−1
n gα(x′))ζ

∗
n(D)(x′) = ζ−deg(D)

n gα(ζ∗n(D)).

Putting everything into (3.11) yields 1 = ζ
−deg(D)
n = ζk2−k1n proving that

k1 ≡ k2 mod n.

The component of Nm−1
α (OΣ) containing OΣα (i.e. ImΦ0

α) is called the gener-
alised Prym variety Pα associated to α. Any subgroup of µn acts on Pα by pull-
back. The quotients are called generalised Kummer varieties.

The remaining components of Nm−1
α (OΣ) are simply translations of Pα. In-

deed, for any L ∈ ImΦkα and any k′ ∈ Z, we have: L ⊗ ImΦk
′

α = ImΦk+k
′

α The
enumeration by k ∈ {0, 1, . . . , n− 1} depends, however, on the choice of ζn. The
following gives a more natural characterisation of the components.

Lemma 3.29. For any L ∈ Pick′(Σ
α), the bundle ζk∗n L⊗ L−1 lies in ImΦkk

′

α .

Proof. We have: ζk∗n L⊗ L−1 ∼= Φkk
′

α (ζ
(k−1)∗
n L⊗ ζ

(k−2)∗
n L⊗ . . .⊗ L).
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Definition 3.30. For each ζ ∈ µn let P ζα be the component of Nm−1
α (OΣ) con-

taining ζ∗(L) ⊗ L−1 for each L ∈ Pic1(Σ
α).

Proposition 3.31. We have the following properties:

• P
ζk

n
α = ImΦkα.

• The connected components of Nm−1
α (OΣ) are P ζα , (ζ ∈ µn).

• For L ∈ P ζα and ζ′ ∈ µn, we have L⊗ P ζ
′

α = P ζζ
′

α .

• For L ∈ Pick(Σ
α) and ζ ∈ µn, we have ζ∗(L) ⊗ L−1 ∈ P ζ

k

α

• Conversely, whenever ζ ∈ µn is primitive and L ∈ P ζ
k

α for some k, there exist a
K ∈ Pick(Σ

α) such that L ∼= ζ∗(K) ⊗K−1.

Proof. This is just a reformulation of the above, save for the last claim. To prove

this, assume that ζ = ζin and ζn = ζj . Then for L ∈ P ζ
k

α = P
ζik

n
α = ImΦikα , there

exists a K̃ ∈ Picik(Σ
α) with L ∼= ζ∗n(K̃)⊗K̃−1 ∼= (ζj)∗(K̃)⊗K̃−1 ∼= ζ∗(K)⊗K−1,

where K = K̃ ⊗ ζ∗(K̃) ⊗ . . . ⊗ ζ(j−1)∗(K̃) ∈ Picjik(Σ
α). Now, jik ≡ k mod n.

Hence, as in the proof of lemma 3.27 we may adjust K with a pull-back bundle
from Σ to achieve that deg(K) = k.

Given another element β ∈ J (n), then Nmα(π∗
α(Lβ)) ∼= L⊗n

β
∼= OΣ. This

means that π∗
α(Lβ) ∈ Nm−1

α (OΣ). One may ask in which component it lies. This
is where the Weil pairing enters the scene.

Proposition 3.32. Let β ∈ J (n). We then have:

π∗
α(Lβ) ∈ Pλn(α,β)

α

Proof. By proposition 3.28, π∗
α(Lβ) ∈ ImΦkα = P

ζk
n
α , for some k. We need to show

that ζkn = λn(α, β).
Let C be the divisor on Σ with π∗

α(C) = (gα) and hence nC = (Nmα(gα))
and [C] = Lα (see proposition 3.25).

Pick B ∈ Div(Σ) such that [B] = Lβ and adjust it with principal divisors
until B and C have disjoint support.

Choose L ∈ Pick(Σ
α) such that ζ∗n(L) ⊗ L−1 ∼= π∗

α(Lβ). Pick D ∈ Divk(Σ
α)

such that [D] = L and adjust it untilD and (gα) have disjoint support. Since (gα)
is invariant, this implies that ζ∗n(D) − D and (gα) have disjoint support. Now,
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π∗
α(B) and ζ∗n(D)−D represent the same element in Pic(Σα), so they differ only

by a principal divisor. Pick h ∈ M(Σα) such that π∗
α(B) = ζ∗n(D) − D + (h).

Taking norms on both sides gives: nB = (Nmα(h)).
The Weil pairing can now be calculated as follows:

λn(α, β) =
Nmα(gα)(B)

Nmα(h)(C)
=
gα(π∗

α(B))

h(π∗
α(C))

= gα(ζ∗n(D) −D)
gα((h))

h((gα))

As in the proof of proposition 3.28, gα(ζ∗n(D) − D) = ζ
deg(D)
n = ζkn. Finally, by

Weil reciprocity: λn(α, β) = ζkn.

3.6 Description of the fixed point varieties

The aim of this section is to prove the following theorem:

Theorem 3.33. Given a primitive α ∈ J (n), the fixed point variety |M(n,∆d)|α of the
action of α on M(n,∆d) has exactly r = (n, d) connected components, each of which is
isomorphic to the quotient of the Prym variety Pα under the action of µq, q = n

(n,d) .

If n is odd, the set of connected components is canonically identified with µr.
If n is even, this set is canonically identified with (µr ×

α
2 )/∼ where α

2 denotes the

set of elements a ∈ J (2n) with 2a = α, and (ζ1, a1) ∼ (ζ2, a2) if and only if ζ1 = λqζ2,
where λ = λ2n(a1, a2) ∈ {±1}.

In both cases, the identification maps are given by definitions 3.36 and 3.37.

The starting point is the following:

Proposition 3.34.

ϑ−1
α (∆d)/µn ∼= |M(n,∆d)|α

Proof. By proposition 3.20 and addendum 3.21, πα∗ : ϑ−1
α (∆d) → |M(n,∆d)|α is

surjective, and µn acts transitively on its fibres.
By (a very simply case of) geometric invariant theory, the action of µn on

ϑ−1
α (∆d) gives rise to a good quotient. By definition of good quotients, πα∗ de-

scends to an isomorphism.

Definition 3.35. For each d ∈ {0, 1, . . . , n − 1} let r = (n, d) and q = n
r . Recall

from section 3.1 that ∆d = [d · p] for some p ∈ Σ. Now pick a point pα ∈ Σα with
πα(pα) = p, and define:
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Dα
d =

∑

ζ∈µr

d

r
· ζ(pα) ∈ Divd(Σ

α).

∆α
d = [Dα

d ] ∈ Picd(Σ
α).

Notice that Nmα(∆α
d ) ∼= ∆d and that ζ∗∆α

d
∼= ∆α

d for each ζ ∈ µr ⊆ µn.
Furthermore, if n is even, choose an element a ∈ α

2 .
By propositions 3.23 and 3.28, we have the following partition into connected

components:

ϑ−1
α (∆d) =





⋃

ζ∈µn

∆α
d ⊗ π∗

α(La) ⊗ P ζα , n even

⋃

ζ∈µn

∆α
d ⊗ P ζα , n odd

(3.12)

Next choose β ∈ J (n) with λn(α, β) = ζn. By proposition 3.32, π∗
α(Lkβ) ∈ P

ζk
n
α

for every k ∈ {0, 1, . . . , n − 1}. Furthermore, by proposition 3.31, for every

ζ ∈ µn: ζ∗(∆α
d )⊗ (∆α

d )−1 ∈ P ζ
d

α . Hence: ζj∗n (∆α
d )⊗π∗

α(Lkβ)⊗P 1
α = ∆α

d ⊗P
ζjd+k

n
α .

This gives another description:

ϑ−1
α (∆d) =





r−1⋃

k=0

q−1⋃

j=0

ζj∗n ∆α
d ⊗ π∗

α(La+kβ) ⊗ P 1
α , n even

r−1⋃

k=0

q−1⋃

j=0

ζj∗n ∆α
d ⊗ π∗

α(Lkβ) ⊗ P 1
α , n odd

(3.13)

From (3.13), it is obvious how µn acts on ϑ−1
α (∆d). Indeed,

ϑ−1
α (∆d)/µn ∼=





r−1⋃

k=0

∆α
d ⊗ π∗

α(La+kβ) ⊗ (P 1
α/µq) , n even

r−1⋃

k=0

∆α
d ⊗ π∗

α(Lkβ) ⊗ (P 1
α/µq) , n odd

(3.14)

In particular, |M(n,∆d)|α has r components, each of which is isomorphic to the
generalised Kummer variety Pα/µq.

When n is odd, the components are canonically indexed by µn/µq ∼= µr.
Namely, for each ζ ∈ µr, by picking a q’th root ζ′ ∈ µn of ζ (or equivalently
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picking a generator for the class in µn/µq) and associating to ζ the compo-

nent containing the image under πα∗ of ∆α
d ⊗ P ζ

′

α . (This is independent of
the choice of ζ′, since any other choice is given by ξdζ′, (ξ ∈ µn), and then:

∆α
d ⊗ P ξ

dζ′

α = ξ∗(∆α
d ⊗ P ζ

′

α ).) In other words, to ζkqn ∈ µr we associate the
component corresponding to k in the description (3.14).

When n is even, the description depends on the choice of a ∈ J (2n). But hav-
ing chosen this, we may still associate to ζkqn ∈ µr the component corresponding

to k in (3.14). I.e. the one containing πα∗(∆
α
d ⊗π∗

α(La)⊗P ζ
′

α ) for any (and hence
all) ζ′ ∈ µn with (ζ′)q = ζ. To sum up:

Definition 3.36. When n is odd, for every ζ ∈ µr denote by |M(n,∆d)|ζα the

component of |M(n,∆d)|α given by πα∗(∆
α
d⊗P

ζ′

α ) for any ζ′ ∈ µn with (ζ′)q = ζ.
We then have:

|M(n,∆d)|α =
⋃

ζ∈µr

|M(n,∆d)|
ζ
α

Definition 3.37. When n is even, for every ζ ∈ µr and every a ∈ α
2 denote by

|M(n,∆d)|ζa the component of |M(n,∆d)|α given by πα∗(∆
α
d ⊗π

∗
α(La)⊗P ζ

′

α ) for
any ζ′ ∈ µn with (ζ′)q = ζ. We then have for each a ∈ α

2 :

|M(n,∆d)|α =
⋃

ζ∈µr

|M(n,∆d)|
ζ
a

Remark 3.38. Notice that the construction of ∆α
d depended on a choice of pα ∈

Σα with πα(pα) = p, making ∆α
d only canonically defined up to pull-back by

ξ ∈ µn. This ambiguity does not affect the above definitions, though: According

to proposition 3.31, ξ∗(∆α
d ) ⊗ (∆α

d )−1 ∈ P ξ
d

α , and hence for each ζ′ ∈ µn:

ξ∗(∆α
d ) ⊗ P ζ

′

α = ∆α
d ⊗ ξ∗(∆α

d ) ⊗ (∆α
d )−1 ⊗ P ζ

′

α = ∆α
d ⊗ P ζ

′·ξd

α

(Again using proposition 3.31 in the last equality.) But (ζ′ · ξd)q = (ζ′)q , and
hence definitions 3.36 and 3.37 remain the same when ∆α

d is replaced by ξ∗(∆α
d ).

In the case when n is even, we also need to know how the definitions depend
on the choice of a ∈ α

2 . First we need a tiny calculation, which is surprisingly
tricky to show directly from the definitions, because of the assumption that di-
visors need to be disjoint in order to calculate the Weil pairing.

Lemma 3.39. Assume n is even. Let a1, a2 ∈ J (2n). If 2a1 = 2a2 = α, then:

λn(α, a1 − a2) = λ2n(a1, a2).
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Proof. Let b = a1 − a2 ∈ J (2). Pick b̃ ∈ J (4) ⊆ J (2n), such that 2b̃ = b. We then
have, using lemma 2.15:

λ2n(a1, a2) = λ2n(b, a2) = λ2n(b̃, a2)
2 = λn(2b̃, 2a2) = λn(α, a1 − a2).

–Where the last equality is due to the fact that λn(a1 − a2, α) ∈ {±1}.

Proposition 3.40. Assume that n is even and let a1, a2 ∈ α
2 . Let r = (n, d), q = n

r
and λ = λ2n(a1, a2). Then for each ζ ∈ µr :

|M(n,∆d)|
ζ
a1

= |M(n,∆d)|
λqζ
a2

Proof. Let ζ ∈ µr. Choose ζ′ ∈ µn with (ζ′)q = ζ. Since a1 − a2 ∈ µ2 ⊆ µn,
proposition 3.32 and lemma 3.31 show that:

∆α
d ⊗ π∗

α(La1) ⊗ P ζ
′

α = ∆α
d ⊗ π∗

α(La2) ⊗ π∗
α(La1−a2) ⊗ P ζ

′

α

= ∆α
d ⊗ π∗

α(La2) ⊗ Pλζ
′

α .

–Where λ = λn(α, a1 − a2) = λ2n(a1, a2). By definition 3.37, the image under
πα∗ of the first is equal to |M(n,∆d)|ζa1

and the image of the latter is equal to

|M(n,∆d)|
λqζ
a2

.

Corollary 3.41. Assume that n is even. Let q = n
(n,d) . If q is even (for instance,

whenever d and hence r is odd), the component |M(n,∆d)|ζa is independent of the
choice of a. If q is odd, two choices a1 and a2 yield the same component if and only
if λ2n(a1, a2) = 1.

Proof. This is obvious, since λ2n(a1, a2) = ±1.

Finally, we address the question of how the action of the remaining elements
in J (n) behaves on the fixed point set for α.

Proposition 3.42. Let δ ∈ J (n). The action of δ on M(n,∆d) induces a permutation
on the set of connected components in |M(n,∆d)|α. Denote r = (n, d) and q = n

r .
When n is odd, we have for ζ ∈ µr:

Lδ ⊗ |M(n,∆d)|
ζ
α = |M(n,∆d)|

λn(α,δ)qζ
α

When n is even, we have for ζ ∈ µr and a ∈ α
2 :

Lδ ⊗ |M(n,∆d)|
ζ
a = |M(n,∆d)|

λn(α,δ)qζ
a
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Proof. Since J(Σ) is commutative, the action of δ on M(n,∆d) restricts to an
automorphism of |M(n,∆d)|α, hence permuting its components. By the pull-
push formula, the automorphism lifts through πα∗ to tensoring with π∗

α(Lδ) on
ϑ−1
α (∆d).

2 As in the previous proof, by proposition 3.32 and lemma 3.31, we get
for any ζ = (ζ′)q ∈ µr when n is odd:

π∗
α(Lδ) ⊗ ∆α

d ⊗ P ζ
′

α = ∆α
d ⊗ Pλn(α,δ)ζ′

α

And similarly when n is even.

The above result has a nice corollary that will be useful later:

Corollary 3.43. Suppose k ∈ {1, 2, . . . , n − 1} has (k, n) = 1. Then kα is primitive
and has the same fixed points as α. When n is odd, we have for all ζ ∈ µr:

|M(n,∆d)|
ζ
α = |M(n,∆d)|

ζk

kα

When n is even, and a ∈ α
2 , we have for all ζ ∈ µr:

|M(n,∆d)|
ζ
a = |M(n,∆d)|

ζk

ka

Proof. Assume n is odd. Clearly, since Σα is equivalent to Σkα by lemma 3.6
(only the actions of µn are different), we may assume that πα∗(∆

α
d ) ∼= πkα∗(∆

kα
d ).

This shows that

|M(n,∆d)|
1
α = |M(n,∆d)|

1
kα

When n is even, notice that since k must be odd, L
n
2
α

∼= L
n
2

kα, and hence:

πα∗(π
∗
α(La) ⊗ ∆α

d ) ∼= L
n
2
α ⊗ πα∗(∆

α
d ) ∼= πkα∗(π

∗
kα(Lka) ⊗ ∆kα

d ),

showing that:

|M(n,∆d)|
1
a = |M(n,∆d)|

1
ka

In both cases, for each ζ ∈ µn, choose δ ∈ J (n) with λn(α, δ) = ζ. Then,
λn(kα, δ) = ζk, and the corollary follows from proposition 3.42.

2This will be the fundamental observation in the next chapter.
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3.7 Non-primitive torsion points

When α is of orderm < n, the geometry of the fixed point varieties inM(n,∆d),
under the action of α, becomes much more complicated.

However, we may prove the following generalisation of theorem 3.33).

Theorem 3.44. Given an element α ∈ J (n) of order m | n, the fixed point variety,

|M(n,∆d)|α has exactly r̃ = (m, d̃) connected components, where d̃ = d
/
(d, nm ).

If n is odd, the set of connected components is canonically identified with µr̃. If n is
even, the set of connected components is canonically identified with (µr̃×

α
2 )/ ∼. Here,

α
2 = {a ∈ J (2m) | 2a = α}, and (ζ1, a1) ∼ (ζ2, a2) if and only if ζ1 = λsq̃ζ2, where
λ = λ2m(a1, a2) ∈ {±1}, s = n

m and q̃ = m
r̃ .

Remark 3.45. Notice that whenever sq̃ is even (including the case when m di-
vides n

2 — in particular when m is odd, and the case when q̃ is even — in parti-

cular when m is even and d̃ is odd, the relation ∼ is simply equality in the roots
of unity, so that (µr̃ ×

α
2 )
/
∼ is simply µr̃ in this case.

Most of the proof is very similar to the one given in the primitive case. Of
course, we may construct the m-sheeted cyclic Galois covering πα : Σα → Σ,
with ker(π∗

α : J(Σ) → J(Σα)) = 〈Lα〉, and construct fixed points as push down
of vector bundles on Σα of rank n

m . In other words, according to proposition
3.19, we get a map: πα∗ : Mα( nm , d) → |M(n, d)|α. (Where Mα( nm , d) denotes the
moduli space of semistable vector bundles on Σα of rank n

m and degree d.)
Narasimhan and Ramanan ([7]) show that every fixed point in M(n,∆d),

represented by a simple bundle is isomorphic to the direct image of a bundle on
Σα. As before, it is possible to extend that result to the following:

Proposition 3.46. πα∗ : Mα( nm , d) → |M(n, d)|α is surjective.

Proof. The technique required is the same as in proposition 3.20. However,
graded representatives of semistable fixed points are now generally of the form:

E =

s−1⊕

i=0

qi−1⊕

j=0

Ei ⊗ L⊗j
α

where each Ei is stable of rank ri and qi is minimal such that Lqi
α ⊗ Ei ∼= Ei.

By minimality, qi | m. Now, for each i ∈ {0, . . . s − 1}, Ei is stable and fixed by
qi · α, and therefore the direct image of a bundle on Σqi·α. Pulling this further
back to Σα (using the diagram (3.7)) gives a stable bundle Fi, with πα∗(Fi) ∼=⊕qi−1

j=0 Ljα ⊗ Ei, and hence E ∼= πα∗(
⊕

i Fi).
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As with proposition 3.20, the proof shows another important fact:

Addendum 3.47. Any indecomposable bundleE on Σα has πα∗(E) ∼= Gr(πα∗E).
In particular, for any two indecomposable bundles E,E′ on Σα, πα∗(E) is S-
equivalent to πα∗(E

′) if and only if πα∗(E) ∼= πα∗(E
′).

Proof. One may repeat the proof of addendum 3.21, word by word, with L re-
placed by E, and n replaced by m.

Corollary 3.48. If E is the graded representative of a point in M( nm , d), then πα∗(E)
is isomorphic to its graded bundle. In particular, if E and E′ are graded representatives
of points in M( nm , d) and πα∗(E) is S-equivalent to πα∗(E

′), then πα∗(E) ∼= πα∗(E
′).

Proof. Suppose E =
⊕s

i=1 Ei, where Ei are stable with slope µ(E). This means
that πα∗(E) ∼=

⊕s
i=1 πα∗(Ei)

∼=
⊕s

i=1Gr(πα∗(Ei)), which is isomorphic to its
graded bundle.

We may define:

Definition 3.49. For E ∈Mα( nm , d), let ϑα(E) = det(πα∗(E)).

We then have the following generalisation of proposition 3.23, at the same
time correcting a minor imprecision in lemma 3.4 of [7]. 3

Proposition 3.50.

ϑα(E) =

{
Nmα(det(E)) , m odd

Nmα(det(E)) ⊗ L
⊗n/2
α , m even

(3.15)

Proof. Again, the proof is more or less the same as the one for 3.23, only substi-
tuting the calculation:

det
( ⊕

ζ′∈µm

ζ′∗(E)
)
∼=
⊗

ζ′∈µm

ζ′∗(det(E)) ∼=
( ⊗

ζ′∈µm

ζ′∗(det(E))
)
⊗OΣα .

Identifying the fibres of
⊕

ζ′∈µm
ζ′∗(E) with C

n
m [µm] = C[µm]⊕

n
m , notice that

the action of µm is simply n
m copies of the regular representation, together with

the moving of fibres. Hence, the action on the left hand side multiplies with the
n
m ’th power of the determinant of the regular representation.

3Whether or not there is a mistake in [7] depends on how ”regular representation” is interpreted.
It might seem that the authors forget the power n

m
arising in the present proof.
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And so the action on the right hand side that makes the isomorphism equi-
variant, is the natural one on

⊗
ζ′∈µm

ζ′∗(detE) tensored with the action on OΣα

induced by (χreg)
n
m .

Consequently, det(πα∗(E)) is given by the descent of
⊗

ζ′∈µm
ζ′∗(detE) (with

the natural action) tensored with the descent of Σα×C (with the action induced

by χ
n
m
reg). The former yields Nmα(detE). The latter yields L

⊗ n
m

χreg . The proposition
follows by lemma 3.18.

Remark 3.51. Notice that wheneverm divides n
2 , L

⊗n/2
α is trivial, and hence some

of the precautions taken in the following are in fact completely vacuous. How-
ever, for the sake of simplicity, I will not distinguish this situation from the gen-
eral one.

Proposition 3.46 shows that: |M(n,∆d)|α = πα∗(ϑ
−1
α (∆d)). Introducing propo-

sition 3.50, together with the description of the kernel of Nmα in proposition
3.31, we have, choosing a ∈ α

2 when m is even, the following disjoint union:

ϑ−1
α (∆d) =





det−1
( ⋃

ζ∈µm

∆α
d ⊗ P ζα

)
, m odd

det−1
( ⋃

ζ∈µm

∆α
d ⊗ π∗

α(La)
⊗ n

m ⊗ P ζα

)
, m even

(3.16)

where det denotes the determinant map: Mα( nm , d) → Picd(Σ
α).

The following general result implies that the above is actually a composition
into connected components.

Lemma 3.52. Let det : Mα( nm , d) → Picd(Σ
α) be the determinant map. For any

path-connected subset U ⊆ Picd(Σ
α), the inverse image, det−1(U) is path-connected.

Proof. The key element in the proof is the fact that the map: J(Σα) → J(Σα)
given by L 7→ L⊗k is a branched covering for any k ∈ N. This implies that
any curve γ : [0, 1] → J(Σα) can be lifted to a curve γ̃ : [0, 1] → J(Σα) with
γ̃(t)⊗k = γ(t).

First we show that the fibres det −1(∆) are connected. Given E0 and E1 in
det−1(∆), choose a curve γ : [0, 1] → Mα( nm , d) with γ(ν) = Eν , ν = 0, 1.
Consider the curve γ̄ : [0, 1] → J(Σα) given by γ̄(t) = det (γ(t))−1 ⊗∆, and let γ̃
be a lift of γ̄ as described above, with k = n

m . Now δ : [0, 1] →Mα( nm , d) defined
by δ(t) = γ(t) ⊗ γ̃(t) is a curve in det−1(∆), connecting E0 and E1.
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Finally, given E0 and E1 in det−1(U), choose a curve γ : [0, 1] → U with
γ(ν) = det (Eν). Again, let γ̃ : [0, 1] → J(Σα) be such that γ̃(t)⊗

n
m = γ(t) ⊗

γ(0)−1. Then, δ(t) = E0 ⊗ γ̃(t) is a curve in det−1(U), connecting E0 to a point
with the same determinant as E1. So, by the above, we connect this point to E1

with another curve running inside det−1(det(E1)).

Definition 3.53. When n is odd, for each ζ ∈ µm, denote:

Bζα = det −1
(
∆α
d ⊗ P ζα

)
.

When m is even, for each ζ ∈ µm and each a ∈ α
2 , denote:

Bζa = det−1
(
∆α
d ⊗ π∗

α(La)
⊗ n

m ⊗ P ζα
)
.

Remark 3.54. Notice the sudden change of division into cases. In view of the
previous, it would seem more obvious to distinguish between whether or not m
is odd. However, if n is odd, so is m. And if n is even, andm happens to be odd,
m divides n

2 , and we have: π∗
α(La)

n
m ∼= OΣα .

So, in all cases we see by the previous results that when n is odd:

πα∗(
⋃

ζ∈µm

Bζα)

and when n is even and a ∈ α
2 :

πα∗(
⋃

ζ∈µm

Bζa)

Remark 3.55. The only obstacle left towards identifying the components of the
fixed point variety lies in the fact that µm no longer acts transitively on the fibres
of πα∗. For instance, if n = 4 and m = 2, we may have line bundles L1 and L2

on Σα with equal degrees d ∈ {0, 1}, πα∗(L1) and πα∗(L2) stable, but ζ∗L1 being
non-isomorphic to L2 for any ζ ∈ µr. Then πα∗(L1 ⊕ L2) ∼= πα∗(ζ

∗L1 ⊕ L2) ∈
|M(4, 2d)|α.

This phenomenon sometimes causes the images of the Bζa to intersect, even
if one is not the pull-back of the other. In the particular case mentioned above,
det(ζ∗L1 ⊕ L2) = det(L1 ⊕ L2) ⊗ ζ∗L1 ⊗ L−1

1 . If d = 0, ζ∗L1 ⊗ L−1
1 lies in P 1

α,
whence ζ∗L1⊕L2 lies in the same component of det−1(Nm−1

α (OΣα)) as L1⊕L2.
Hence πα∗(L1 ⊕ L2) does not give rise to an intersection between otherwise
disjoint components. On the other hand, if d = 1, ζ∗L1 ⊗L−1

1 lies in P ζα , causing
the images of all the Bζa to intersect in πα∗(L1 ⊕ L2).
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The above remark actually concludes the proof of theorem 3.44 in the case
n = 4 upon observing that the case m = 1 is trivial. For general values of n, one
needs to consider all possible gradings of a semistable bundle in ϑ−1

α (∆d).

Proposition 3.56. Let d̃ = d
(d, n

m
) . Let r̃ = (m, d̃) and q̃ = m

r̃ .

When n is odd, for ζ1, ζ2 ∈ µm:

πα∗(B
ζ1
α ) ∩ πα∗(B

ζ2
α ) 6= ∅ ⇔

ζ1
ζ2

∈ µq̃

When n is even, for a ∈ α
2 and ζ1, ζ2 ∈ µm:

πα∗(B
ζ1
a ) ∩ πα∗(B

ζ2
a ) 6= ∅ ⇔

ζ1
ζ2

∈ µq̃

Proof. The proof is exactly the same in both cases, except for the difference in
notation. We will do it for n odd.

Suppose first thatE1 ∈ Bζ1α ,E2 ∈ Bζ2α and πα∗(E1) is S-equivalent to πα∗(E2).
We may assume without loss of generality thatE1 andE2 are isomorphic to their
graded bundles, and hence by corollary 3.48, πα∗(E1) ∼= πα∗(E2).

Suppose Ei =
⊕si

j=1 Ei,j , where Ei,j is stable and has the same slope as Ei.
Since πα∗(E1) ∼= πα∗(E2), we get by pulling back to Σα that:

⊕

ζ∈µm

s1⊕

j=1

ζ∗(E1,j) ∼=
⊕

ζ∈µm

s2⊕

j=1

ζ∗(E2,j)

Consequently, by the theorem of Krull-Remak-Schmidt, each of the E1,j is
isomorphic to a pull back of one of the E2,j . We may assume (handling the
general situation recursively) that E1,1

∼= ζ∗(E2,1) and E1,j
∼= E2,j for j > 1.

Now,

det(E1) =
s⊗

j=1

det(E1,j) ∼= ζ∗(det(E2,1)) ⊗ det(E2,1)
−1 ⊗ det(E2)

Suppose deg(E2,1) = d1, rk(E2,1) = r1. Since E2,1 has the same slope as E2,
we have:

d1 = r1
d
n
m

= r1

( n
m

(d, nm )

)−1
d

(d, nm)

which can be any integer multiple of d̃ = d
(d, n

m
) .
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By proposition 3.31, ζ∗(det(E2,1)) ⊗ det(E2,1)
−1 ∈ P ζ

d1

α , and hence: ζ1 =

ζd1ζ2. It remains only to realize that ζd1 ∈ (µm)d̃ = µq̃.

Conversely, using the considerations above, given ζ1, ζ2 ∈ µm with ζ1
ζ2

∈ µq̃ ,

it is straightforward to construct one’s own bundles Ei ∈ Bζi
α with πα∗(E1) ∼=

πα∗(E2), by applying the considerations above.

Definition 3.57. Let ζ ∈ µr̃. When n is odd, denote by |M(n,∆d)|ζα the com-

ponent of |M(n,∆d)|α that contains πα∗(B
ζ′

α ) for any (and hence all) ζ′ ∈ µm
with ζ′q̃ = ζ. Similarly, when n is even, denote by |M(n,∆d)|ζa the component of

|M(n,∆d)|α that contains πα∗(B
ζ′

a ) for any (and hence all) ζ′ ∈ µm with ζ′q̃ = ζ.

To prove theorem 3.44, it remains only to examine how the definitions de-
pend on the choice of a, when m is even.

Proposition 3.58. Assume that n is even and let a1, a2 ∈ α
2 . Let s = n

m , r̃ = (m, d̃)

and q̃ = m
r̃ , where d̃ = d

(d, n
m

) . Furthermore, let λ = λ2m(a1, a2) ∈ µ2.

Then for each ζ ∈ µr̃:

|M(n,∆d)|
ζ
a1

= |M(n,∆d)|
λsq̃ζ
a2

.

Proof. By proposition 3.32, π∗
α(L⊗s

a1−a2
) ∈ Pλ

s

α , where λ = λm(α, a1 − a2) =

λ2m(a1, a2). This shows that for ζ′ ∈ µm: Bζ
′

a1
= Bλ

sζ′

a2
.

Finally, most applications, including the way in which the remaining ele-
ments of J (n) permute the components, become clear from the following obser-
vation.

Proposition 3.59. Let α ∈ J (n) be primitive and k ∈ {0, 1, . . . , n−1}. Let r = (n, d),

q = n
r . Let m = ord(kα), and d̃, r̃, q̃ as before. Finally, let k̃ = q̃k

q .

If n is odd, we have for all ζ ∈ µr:

|M(n,∆d)|
ζ
α ⊆ |M(n,∆d)|

ζk̃

kα.

If n is even, we have for all ζ ∈ µr and all a ∈ α
2 :

|M(n,∆d)|
ζ
a ⊆ |M(n,∆d)|

ζk̃

ka.
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Proof. First of all, we may assume that k divides n. (Indeed, in the general case,
k = k

(n,k) (n, k), and k
(n,k) being prime to n, corollary 3.43 reduces the statement

of the proposition to the one with α replaced by k
(n,k)α and k replaced by (n, k).)

Let α̃ = kα, which is of order n
k . Consider the diagram of coverings:

Σα
π //

πα
  A

AA
AA

AA
A Σα̃

πα̃
~~}}

}}
}}

}}

Σ

(3.17)

where π is the k-sheeted covering associated to π∗
α̃(Lα). Recall from the discus-

sion in the proof of proposition 3.20 that the action of ζ ∈ µn on Σα covers the

action of ζk on Σα̃.This implies that Nm(P ζα) = P ζ
k

α̃ where Nm is the norm map
associated to π. Furthermore, we may arrange that Nm(∆α

d ) ∼= ∆α̃
d .

Thus, in the case where n is odd, given ζ ∈ µn, for any L ∈ ∆α
d ⊗P

ζ
α we have:

πα∗(L) ∈ |M(n,∆d)|
ζq

α

where q = n
(n,d) . But at the same time, πα∗(L) ∼= πα̃∗(π∗(L)), where

det(π∗(L)) ∼= Nm(L) ∈ ∆α̃
d ⊗ P ζ

k

α̃ .

This shows that πα∗(L) ∈ |M(n,∆d)|
ζq̃k

kα = |M(n,∆d)|
(ζq)k̃

kα .
In the case where n is even, and a ∈ α

2 , we may do almost the same: Given
ζ ∈ µn, for any L ∈ π∗

α(La) ⊗ ∆α
d ⊗ P ζα we have:

πα∗(L) ∈ |M(n,∆d)|
ζq

a

where q = n
(n,d) . But at the same time, πα∗(L) ∼= πα̃∗(π∗(L)), where

det(π∗(L)) ∼= Nm(L) ∈ π∗
α̃(La)

k ⊗ ∆α̃
d ⊗ P ζ

k

α̃ ,

if k is odd, and

det(π∗(L)) ∼= Nm(L) ⊗ π∗
α̃(Lα)

k
2 ∈ π∗

α̃(La)
2k ⊗ ∆α̃

d ⊗ P ζ
k

α̃ ,

if k is even.
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Since π∗
α̃(La)

k ∼= π∗
α̃(Lka)

k , when k is odd, and π∗
α̃(La)

2k ∼= OΣα̃
∼= π∗

α̃(Lka)
k,

when k is even, we get in both cases that

πα∗(L) ∈ |M(n,∆d)|
ζq̃k

ka = |M(n,∆d)|
(ζq)k̃

ka .

Corollary 3.60. Let α̃, δ ∈ J (n), such that ord(α̃) = m. The action of δ on M(n,∆d)
induces a permutation on the set of connected components in |M(n,∆d)|α̃. Denote
r̃ = (m, d) and q̃ = m

r̃ . When n is odd, we have for ζ ∈ µr̃:

Lδ ⊗ |M(n,∆d)|
ζ
α̃ = |M(n,∆d)|

λn(α̃,δ)q̃ζ
α̃

When n is even, we have for ζ ∈ µr and a ∈ α̃
2 :

Lδ ⊗ |M(n,∆d)|
ζ
a = |M(n,∆d)|

λn(α̃,δ)q̃ζ
a

Proof. Choose α ∈ J (n) primitive, such that α̃ = kα for k = n
m .

Now, for E ∈ |M(n,∆d)|ζα ⊆ |M(n,∆d)|
ζk̃

kα, we have by proposition 3.42

that Lδ ⊗ E lies in |M(n,∆d)|λ
qζ
α ⊆ |M(n,∆d)|

(λqζ)k̃

kα = |M(n,∆d)|
λkq̃ζk̃

kα , where
λ = λn(α, δ), and hence λk = λn(α̃, δ).

Finally, as an apology for the notation, I supply an overview of the values
of the different variables in the some particular cases. In each case, assuming
α̃ = kα, where α ∈ J (n) is primitive, and applying the results of the section to
α̃, which is of order m = n

(n,k) .

Remark 3.61. We have in the following cases:

m = n: d̃ = d, r̃ = r, q̃ = q, and k̃ = k.

d = 0: d̃ = 0, r̃ = m, q̃ = 1 = q, and k̃ = k.

(n, d) = 1: d̃ = d, r̃ = 1 = r, q̃ = m, and k̃ = mk
n .

n = 4, d = 2, m = 2: d̃ = 1, r̃ = 1, q̃ = 2, k̃ = k.

n = 6, d = 4, m = 3, (2 | k): d̃ = 2, r̃ = 1, q̃ = 3, k̃ = k.

n = 6, d = 4, m = 2, (3 | k): d̃ = 4, r̃ = 2, q̃ = 1, k̃ = k
3 .



4

Intersections of fixed point
varieties

Given different elements in J (n)(Σ), how do their fixed point varieties inter-
sect? In the cases where the fixed point varieties are not connected, how do
the individual components intersect? These questions are addressed below. We
immediately restrict our attention to primitive torsion elements. The results
generalise the ones of section 6 in [1].

4.1 Pairwise intersections

Suppose α, β ∈ J (n) are both of order n. Assume furthermore, for simplicity,
that 〈α〉 ∩ 〈β〉 = {0}.

Notation 4.1. Define: |M(n,∆d)|α,β = |M(n,∆d)|α ∩ |M(n,∆d)|β

Notice that the action of β preserves |M(n,∆d)|α. In fact, the pull-push for-
mula states that the following diagram is commutative:

ϑ−1
α (∆d)

⊗π∗
α(Lβ) //

πα∗

��

ϑ−1
α (∆d)

πα∗

��
|M(n,∆d)|α

⊗Lβ // |M(n,∆d)|α

(4.1)

61
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This, combined with proposition 3.20 and its addendum gives the following
description:

|M(n,∆d)|α,β = πα∗(
⋃

ζ∈µn

{L ∈ ϑ−1
α (∆d) | L⊗ π∗

α(Lβ) ∼= ζ∗(L)}) (4.2)

Remark 4.2. Notice that |M(n,∆d)|α,β is contained in the stable part of M(n, d).
Indeed, suppose L⊗π∗

α(Lβ) ∼= ζ∗(L) for some L ∈ ϑ−1
α (∆d) and ζ ∈ µn. Then for

every j ∈ {0, 1, . . . , n−1}, we have ζj∗(L) ∼= L⊗π∗
α(Lβ)

⊗j . Since the right-hand
sides of these equations are non-isomorphic (by lemma 3.15 and the assumption
that 〈α〉 ∩ 〈β〉 = 0), ζ must be of order n and proposition 3.19 shows that πα∗(L)
is stable.

Definition 4.3. Define:

A(α, β, d) = {ζ ∈ µn | 〈ζ〉 = µn, ζ
d = λn(α, β)}.

a(α, β, d) = #A(α, β, d).

Remark 4.4. Notice the following properties:

• a(α, β, n− d) = a(α, β, d) for d ∈ {1, . . . , n− 1}

•
n−1∑

d=0

a(α, β, d) = ϕ(n), where ϕ is Euler’s phi-function.

• a(α, β, 0) =

{
ϕ(n) if λn(α, β) = 1

0 if λn(α, β) 6= 1

• a(α, β, 1) =

{
1 if λn(α, β) generates µn.
0 if λn(α, β) does not generate µn.

Definition 4.5. For each ζ ∈ µn, define:

Iζ = {L ∈ ϑ−1
α (∆d) | L⊗ π∗

α(Lβ) ∼= ζ∗(L)}.

Proposition 4.6. The intersection |M(n,∆d)|α,β consists of a(α, β, d) disjoint sets,
henceforth called ”layers”, namely:

|M(n,∆d)|α,β =
⋃

ζ∈A(α,β,d)

πα∗(Iζ)

On each of these layers, the quotient group, J (n)/〈α, β〉 acts freely and transitively. In
particular, |M(n,∆d)|α,β has a(α, β, d) · n2g−2 elements.
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Proof. Clearly, the Iζ are disjoint (according to the discussion in remark 4.2 and
invariant under pull-back by any ζ′ ∈ µn. Hence, their images under πα∗ are
disjoint. By (4.2) these images constitute a partition of |M(n,∆d)|α,β into “lay-
ers”. We need only show that Iζ 6= ∅ if and only if ζ ∈ A(α, β, d).

Assume first that L ∈ Iζ for some L ∈ ϑ−1
α (∆d) and ζ ∈ µn. By remark

4.2, this implies that ζ is of order n. Combining propositions 3.31 and 3.32,

π∗
α(Lβ) ∼= ζ∗n(L) ⊗ L−1 implies that P

λn(α,β)
α = P ζ

d

α and thus, ζd = λn(α, β). All
in all we get, ζ ∈ A(α, β, d).

Conversely, assume that ζ ∈ A(α, β, d). Propositions 3.31 and 3.32 immedi-

ately give an L ∈ Picd(Σ
α) with ζ∗(L) ⊗ L−1 ∼= π∗

α(Lβ). Pick an L̃ ∈ Pic0(Σ)
with

L̃⊗n ∼= ∆d ⊗ ϑα(L)−1

Now, by proposition 3.23, π∗
α(L̃) ⊗ L lies in ϑ−1

α (∆d), and it has the same trans-

formation property as L. All in all, π∗
α(L̃) ⊗ L ∈ Iζ .

Finally, we prove that J (n)/〈α〉 acts freely and transitively on each Iζ , (ζ ∈
A(α, β, d)). (The class generated by γ ∈ J (n) acts by tensoring with π∗

α(Lγ).)
Indeed, the action is free by lemma 3.15. It is transitive because if L1, L2 ∈ Iζ ,
then L1 ⊗ L−1

2 = π∗
α(L) for some L ∈ Pic(Σ). Proposition 3.23 gives: L⊗n ∼=

Nmα(L1 ⊗ L−1
2 ) ∼= ϑα(L1) ⊗ ϑα(L2)

−1 ∼= OΣ. Thus, L = Lγ for some γ ∈ J (n).
Since the action of β is transitive on the fibres of πα∗, J (n)/〈α, β〉 acts freely and
transitively on each layer.

Corollary 4.7. |M(n,∆d)|α,β is non-void if and only if λn(α, β) = ζd for some gener-
ator ζ of µn. This criterion is, in turn, equivalent to λn(α, β) being of order q = n

(n,d) .

Next, we will examine how the individual components of the fixed point
varieties intersect.

Notation 4.8. When n is odd and ζ, ζ′ ∈ µr, denote by |M(n,∆d)|
ζ,ζ′

α,β the inter-

section |M(n,∆d)|ζα ∩ |M(n,∆d)|
ζ′

β .

When n is even, a ∈ α
2 , b ∈ β

2 and ζ, ζ′ ∈ µr, denote by |M(n,∆d)|
ζ,ζ′

a,b the

intersection |M(n,∆d)|ζa ∩ |M(n,∆d)|
ζ′

b .

Proposition 4.9. Assume that |M(n,∆d)|α,β 6= ∅. If n is odd, |M(n,∆d)|α,β is the

disjoint union of the component-intersections |M(n,∆d)|
ζ,ζ′

α,β where ζ, ζ′ ∈ µr. If n

is even, and a ∈ α
2 , b ∈ β

2 , |M(n,∆d)|α,β is the disjoint union of the component-
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intersections |M(n,∆d)|
ζ,ζ′

a,b where ζ, ζ′ ∈ µr. In both cases, each of the component-

intersections has n2g−2

r2 elements in each of the a(α, β, d) layers.

Proof. Only the last statement is non-trivial. For this let ζ and ζ′ be any two
elements of µr. Choose δ, δ′ ∈ J (n) with λn(α, δ) = ζ, λn(β, δ

′) = ζ′ and
λn(α, δ′) = λn(β, δ) = 1. (This uses proposition 2.16.) By proposition 3.42, ten-

soring with Lδ+δ′ defines a bijection between |M(n,∆d)|
1,1
α,β and |M(n,∆d)|

ζ,ζ′

α,β

(resp. |M(n,∆d)|
1,1
a,b and |M(n,∆d)|

ζ,ζ′

a,b ). Since the bijection respects the partition
into layers, the claim follows from proposition 4.6.

Example 4.10. One should have the picture in figure 4.1 in mind. It illustrates
the case n = 4, d = 2, λn(α, β) = (ζ4)

2 = −1. In this case, the fixed point
varieties have r = 2 components each, and the number of layers is equal to 2.

|M(4,∆2)|
−1
β

|M(4,∆2)|
1
β|M(4,∆2)|

−1
α

|M(4,∆2)|
1
α

Figure 4.1: Structure of the component intersections.

4.2 The covering associated to a pair

Before studying triple intersections, we need to introduce some auxiliary defi-
nitions and a couple of technical results.

Given primitive elements, α, β ∈ J (n), with 〈α〉 ∩ 〈β〉 = {0}, there is an

associated Galois covering, π̃ : Σ̃ → Σ, which is determined by the demand that

the kernel of π̃∗ : J(Σ) → J(Σ̃) be equal to 〈α, β〉. As in section 3.2, I will give
an explicit construction in terms of Lα and Lβ . Define:

Σ̃ = {(ξ, η) ∈ Lα ⊕ Lβ | ξ⊗n = η⊗n = 1 ∈ OΣ}
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π̃ = π|Σ̃

where π is the projection in Lα ⊕ Lβ .

By the same method as presented in lemma 3.5, one may show that this
yields a connected, holomorphic Galois covering with Galois group µn × µn.
The projection maps from Lα ⊕Lβ to Lα, Lβ and Lα ⊗Lβ ∼= Lα+β induce maps
πα, πβ and πγ such that the following diagram commutes:

Σ̃
πα

~~||
||

||
||

πβ

��

πγ

  B
BB

BB
BB

B

Σα

πα

!!C
CC

CC
CC

C Σβ

πβ

��

Σγ

πγ

}}{{
{{

{{
{{

Σ

-where γ denotes α + β. (Notice that γ is primitive, because of the assumption
that 〈α〉 ∩ 〈β〉 = {0}.)

In fact, πα is isomorphic (as a covering of Σα) to the cyclic, Galois covering
associated to π∗

α(Lβ), as described in section 3.2. Similarly for πβ and πγ . This
follows from the uniqueness property in lemma 3.6.

Since by now µn is the Galois group of at least six different coverings, we
need to introduce more precise notation for the actions of µn on the different
covering spaces.

Notation 4.11. For ζ ∈ µn, let ζα, ζβ and ζγ denote the deck-transformations of
Σα, Σβ and Σγ , respectively, given by multiplication with ζ in the the fibres of

Lα, Lβ and Lγ . Furthermore, let ζα, ζβ and ζγ denote the three maps: Σ̃ → Σ̃
given by restriction of the following three automorphisms of Lα ⊕ Lβ :

ζα : (ξ, η) 7→ (ξ, ζη)
ζβ : (ξ, η) 7→ (ζξ, η)
ζγ : (ξ, η) 7→ (ζ−1ξ, ζη) = ζα ◦ (ζβ)−1

Notice that ζα, ζβ and ζγ generate the Galois groups of the coverings πα,
πβ and πγ respectively. Furthermore, notice that the following diagrams are
commutative:
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Σ̃
ζβ ,(ζγ)−1

//

πα

��

Σ̃

πα

��

Σ̃
ζα,ζγ

//

πβ

��

Σ̃

πβ

��

Σ̃
ζα,ζβ

//

πγ

��

Σ̃

πγ

��
Σα

ζα // Σα Σβ
ζβ // Σβ Σγ

ζγ // Σγ

Lemma 4.12. Suppose L1, L2 and L3 are line bundles on Σα, Σβ and Σγ , respectively,
such that πα∗(L1) ∼= πβ∗(L2) ∼= πγ∗(L3). Then πα∗(L1) ∼= πβ∗(L2) ∼= πγ∗(L3).

Proof. Let E ∈ |M(n,∆d)|α,β,γ be the point represented by πα∗(L1) ∼= π∗(L2) ∼=
π∗(L3). By the description of the pairwise intersections in section 4.1, ζα

∗(L1) ∼=
L1 ⊗ π∗

α(Lβ) for some generator ζ ∈ µn. Hence,

π̃∗(E) ∼= π∗
α(

n−1⊕

i=0

ζi∗L1) ∼= π∗
α(

n−1⊕

i=0

L1 ⊗ π∗
α(Lβ)

⊗i) ∼= πα∗(L1)
⊕n.

Similarly, π̃∗(E) ∼= πβ∗(L2)
⊕n ∼= πγ∗(L3)

⊕n. Since line bundles are simple,
the desired result follows but the theorem of Krull-Remak-Schmidt.

Denoting by Nmα, Nmβ and Nmγ the norm maps corresponding to πα, πβ

and πγ , recall definition 3.35 of Dα
d . We may construct, similarly, Dβ

d and Dα
d .

Notice that

Nmγ(πβ∗(Dβ
d )) ∼= π∗

γ(Nmβ(D
β
d )) ∼= π∗

γ(d · p)
∼= π∗

γ(Nmα(Dα
d )) ∼= Nmγ(πα∗(Dα

d )).

That means:

πβ∗(Dβ
d ) ⊗ πα∗(Dα

d )−1 ∈ Ker(Nmγ).

-And similarly for any permutation of (α, β, γ). Recall that ζn denotes a fixed,
chosen generator of µn and let r = (n, d) and q = n

r .

Lemma 4.13. With suitable choices of the points pα, pβ and pγ in definition 3.35, there

exists a divisor, F of degree dn(q−1)
2 on Σ̃, such that:

(ζn)γ∗F − F = πβ∗(Dβ
d ) − πα∗(Dα

d )

and

(ζn)
α∗F − F = πβ∗(Dβ

d ) − πγ∗(Dγ
d ).
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Proof. The proof consists of a construction. To avoid obscuring the argument
with unnecessary generality, it is made in the particular case n = 6, d = 2,
(hence, r = 2, q = 3), where the general situation protrudes clearly.

Choosing a point p̃ ∈ Σ̃ with π̃(p̃) = p, we may describe the values of a divi-

sor on Σ̃ in the fibre π̃−1(p) by an n× n matrix, the (i, j)’th entry of which being
the value of the divisor at (ζin)α(ζjn)β(p̃). When stating that a divisor equals an
n × n matrix, we adopt the convention that it is understood to be zero outside
π̃−1(p).

Choosing pα = πα(p̃), pβ = πβ(p̃) and pγ = πγ((ζ−1
n )β(p̃), we have:

πβ∗(Dβ
d ) − πα∗(Dα

d ) =




0 1 1 0 1 1
−1 0 0 −1 0 0
−1 0 0 −1 0 0

0 1 1 0 1 1
−1 0 0 −1 0 0
−1 0 0 −1 0 0




πβ∗(Dβ
d ) − πγ∗(Dγ

d ) =




1 1 0 1 1 0
0 −1 0 0 −1 0

−1 0 0 −1 0 0

1 1 0 1 1 0
0 −1 0 0 −1 0

−1 0 0 −1 0 0




-Furthermore, pull-back by ζαn and ζβn , respectively, corresponds to shifting
rows upward and columns to the left. Hence, one may check easily that the
following matrix describes a divisor F with the desired properties. Clearly:

deg(F ) = r2 · dr ·
q(q−1)

2 = dn(q−1)
2 .

F =




0 0 0 0 0 0
1 1 0 1 1 0
1 0 0 1 0 0

0 0 0 0 0 0
1 1 0 1 1 0
1 0 0 1 0 0
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Addendum 4.14. Divisor F from lemma 4.13 furthermore satisfies:

(ζ−1
n )β∗(ζα∗n F ) − (ζα∗n F ) = πγ∗(Dγ

d) − πα∗(Dα
d ).

With different choices of pα, pβ and pγ , there exists a (different) divisor, F on

Σ̃ of degree dn(q−1)
2 on Σ̃, such that:

(ζn)α∗F − F = πβ∗(Dβ
d ) − πγ∗(Dγ

d )

and
(ζn)β∗F − F = πα∗(Dα

d ) − πγ∗(Dγ
d ).

Proof. For the first claim, simply observe that:

πγ∗(Dγ
d ) − πα∗(Dα

d ) = πβ∗(Dβ
d ) − πα∗(Dα

d ) − (πβ∗(Dβ
d ) − πγ∗(Dγ

d ))
= ζγ∗n F − F − ζα∗n F + F
= (ζ−1

n )β∗(ζα∗n F ) − (ζα∗n F )

For the second claim, proceed in the proof of lemma 4.13, only this time
letting pα = πα(p̃), pβ = πβ(p̃) and pγ = πγ(p̃). Then put

F =




0 0 0 0 0 0
0 1 1 0 1 1
0 1 0 0 1 0

0 0 0 0 0 0
0 1 1 0 1 1
0 1 0 0 1 0
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Assume for the entire section that α, β ∈ J (n) are primitive with 〈α〉 ∩ 〈β〉 = 0.

Notation 4.15. Let γ ∈ J (n). Denote:

|M(n,∆d)|α,β,γ = |M(n,∆d)|α ∩ |M(n,∆d)|β ∩ |M(n,∆d)|γ

For n odd and for ζ, ζ′, ζ′′ ∈ µr, r = (n, d), denote:

|M(n,∆d)|
ζ,ζ′,ζ′′

α,β,γ = |M(n,∆d)|
ζ
α ∩ |M(n,∆d)|

ζ′

β ∩ |M(n,∆d)|
ζ′′

γ
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For n even, a ∈ α
2 , b ∈ β

2 and c ∈ γ
2 , and for ζ, ζ′, ζ′′ ∈ µr, r = (n, d), denote:

|M(n,∆d)|
ζ,ζ′,ζ′′

a,b,c = |M(n,∆d)|
ζ
a ∩ |M(n,∆d)|

ζ′

b ∩ |M(n,∆d)|
ζ′′

c

Lemma 4.16. Assume that |M(n,∆d)|α,β 6= ∅. Let γ ∈ J (n). We then have:

|M(n,∆d)|α,β,γ 6= ∅ ⇔ γ ∈ 〈α, β〉.

In the affirmative case, |M(n,∆d)|α,β,γ = |M(n,∆d)|α,β .

Proof. Suppose that |M(n,∆d)|α∩|M(n,∆d)|β∩|M(n,∆d)|γ 6= ∅. The first claim
follows because J (n)/〈α, β〉 acts freely on |M(n,∆d)|α,β according to proposi-
tion 4.6. The second claim is trivial.

The next obvious question is: When γ = α + β, how do the components of
|M(n,∆d)|α, |M(n,∆d)|β and |M(n,∆d)|γ intersect?

Notice that the results about |M(n,∆d)|α apply to |M(n,∆d)|β and |M(n,∆d)|γ
as well. Moreover, λn(α, β) = λn(α, γ) = λn(γ, β). Hence, the above description
of the pairwise intersections applies to each of the three pairs.

4.3.1 Component intersections, odd rank

When n is odd, there is a complete answer to the question of which triple com-
ponent intersection are non-empty.

Theorem 4.17. Assume n is odd. Let r = (n, d) and q = n
r . Suppose α, β ∈ J (n) are

primitive elements with 〈α〉 ∩ 〈β〉 = 0 and ord(λn(α, β)) = q. Let γ = α + β. For
each triple ζ, ζ′, ζ′′ ∈ µr we have:

|M(n,∆d)|
ζ,ζ′,ζ′′

α,β,γ 6= ∅ ⇔
ζ′′

ζζ′
= 1.

Proof. Given ζ, ζ′, ζ′′ ∈ µr, we may choose δ ∈ J (n) such that λn(α, δ)q = ζ−1

and λn(β, δ)q = (ζ′)−1. Then, by proposition 3.42 we have:

E ∈ |M(n,∆d)|
ζ,ζ′,ζ′′

α,β,γ ⇔ Lδ ⊗ E ∈ |M(n,∆d)|
1,1, ζ′′

ζζ′

α,β,γ .

Hence it suffices to prove the seemingly weaker statement that for each ζ ∈ µr,

|M(n,∆d)|
1,1,ζ
α,β,γ 6= ∅ ⇔ ζ = 1.
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Furthermore, since the assumptions ensure that |M(n,∆d)|
1,1
α,β 6= ∅, it is enough

to show that any E ∈ |M(n,∆d)|
1,1
α,β must lie in |M(n,∆d)|1γ .

Let E ∈ |M(n,∆d)|
1,1
α,β . Suppose E ∈ |M(n,∆d)|ζγ . According to section 3.6

we may find line bundles L1, L2 and L3 on Σα,Σβ and Σγ respectively, such that
E ∼= πα∗(L1) ∼= πβ∗(L2) ∼= πγ∗(L3). By proposition 3.31 and definition 3.36,
there exist line bundles K1 on Σα and K2 on Σβ , both of degree zero, such that:

L1
∼= ∆α

d ⊗ (ζ−1
n )∗α(K1) ⊗K−1

1

L2
∼= ∆β

d ⊗ (ζn)∗β(K2) ⊗K−1
2

Now define:
K̃3 = πα∗(K1)

−1 ⊗ πβ∗(K2) ⊗ [F ]

where F is the divisor from lemma 4.13. Notice that:

(ζn)γ∗(K̃3) ∼= πα∗((ζ−1
n )∗α(K1))

−1 ⊗ πβ∗((ζn)∗β(K2)) ⊗ [(ζn)γ∗F ]

∼= K̃3 ⊗ πα∗(L−1
1 ⊗ ∆α

d ) ⊗ πβ∗(L2 ⊗ (∆β
d )

−1) ⊗ [(ζn)γ∗F − F ]

∼= K̃3

–Where the last step used lemma 4.12 as well as the first property of F .

The above calculation implies that K̃3
∼= πγ∗(K3) for some line bundle K3

on Σγ . Notice that deg(K3) = 1
ndeg(K̃3) = 1

ndeg(F ) = d(q−1)
2 .

Now let L = ∆γ
d ⊗ (ζ−1

n )∗γ(K3) ⊗K−1
3 . We have:

πγ∗(L) ∼= πγ∗(∆γ
d) ⊗ (ζn)α∗(K̃3) ⊗ K̃−1

3

∼= πγ∗(∆γ
d) ⊗ (ζn)α∗πβ∗(K2) ⊗ πβ∗(K2)

−1 ⊗ [(ζn)α∗F − F ]

∼= πβ∗(∆β
d ⊗ (ζn)∗β(K2) ⊗K−1

2 )

∼= πβ∗(L2)
∼= πγ∗(L3)

–where we used the second property of F as well as lemma 4.12 in the last two
steps.

Since Ker(πγ∗) = 〈π∗
γ(Lβ)〉, we get for some j ∈ {0, 1, . . . n− 1}:

L ∼= L3 ⊗ π∗
γ(Lβ)

⊗j .
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Hence, since E ∈ |M(n,∆d)|α,β,γ :

πγ∗(L) ∼= πγ∗(L3 ⊗ π∗
γ(Lβ)

⊗j) ∼= E ⊗ L⊗j
β

∼= E.

But by proposition 3.31, L ∈ ∆γ
d ⊗ P

ζ−deg(K3)
n
γ , and hence: E ∼= πγ∗(L) ∈

|M(n,∆d)|ζγ , where

ζ = (ζ−deg(K3)
n )q = ζ

− dq(q−1)
2

n = 1

– since n and thereby q is odd, and n | dq.

4.3.2 Component intersections, even rank

When n is even, the situation is somewhat more complicated. In the general case
we only show a partial result, which is complete in the case where (n, d) = 2,
thus generalising the important case n = 2, d = 0 treated in [1].

Subsequently we propose a method for treating values of n that are twice an
odd number. Unfortunately, it is not clear how to generalise to greater powers
of 2, leaving the case n = 4 still a partial mystery.

Proposition 4.18. Assume that both n and d are even. Let r = (n, d) and q = n
r .

Suppose α, β ∈ J (n) are primitive elements with 〈α〉∩〈β〉 = 0 and ord(λn(α, β)) = q.

Let a ∈ α
2 , b ∈ β

2 , and define γ = α+ β and c = a+ b. For each triple ζ, ζ′, ζ′′ ∈ µr,
we have:

|M(n,∆d)|
ζ,ζ′,ζ′′

a,b,c 6= ∅ ⇒

(
ζ′′

ζζ′

) r
2

= (−1)
d(q−1)

2 λ2n(a, b)
n
2 .

Proof. Suppose E ∼= πα∗(L1) ∼= πβ∗(L2) ∼= πγ∗(L3) ∈ |M(n,∆d)|
ζ,ζ′,ζ′′

a,b,c . By
proposition 3.31 and definition 3.37, we may pick line bundles K1, K2 and K3

on Σα, Σβ and Σγ respectively, such that:

L1
∼= ∆α

d ⊗ π∗
α(La) ⊗ (ζn)∗αK1 ⊗K−1

1 , (ζn)deg(K1)·q = ζ

L2
∼= ∆β

d ⊗ π∗
β(Lb) ⊗ (ζn)∗βK2 ⊗K−1

2 , (ζn)deg(K2)·q = ζ′

L3
∼= ∆γ

d ⊗ π∗
γ(Lc) ⊗ (ζn)∗γK3 ⊗K−1

3 , (ζn)deg(K3)·q = ζ′′.
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Pick divisors Ei with [Ei] = Ki, (i = 1, 2, 3). Furthermore, pick divisors Da,
Db and Dc on Σ, representing La, Lb and Lc, respectively. Define:

D1 = Dα
d + π∗

α(Da) + (ζn)∗αE1 − E1

D2 = Dβ
d + π∗

β(Db) + (ζn)∗βE2 − E2

D3 = Dγ
d + π∗

γ(Dc) + (ζn)∗γE3 − E3

I.e. Li ∼= [Di]. Now, lemma 4.12 implies the existence of meromorphic func-

tions h1 and h2 on Σ̃, such that:

πα∗(D1) + (h1) = πβ∗(D2) + (h2) = πγ∗(D3).

For the sake of readability as well as later reference, the rest of the proof is
divided into lemmas.

Lemma 4.19. Let gα, gβ and gγ denote the meromorphic functions on Σα, Σβ and Σγ ,
given by proposition 3.25.

We may choose Da, Db and Dc so that π∗
α(2Da) = (gα), π∗

β(2Db) = (gβ) and
π∗
γ(2Dc) = (gγ).

Proof. Let Σa denote the 2n-sheeted covering associated to a. Let ga be the mero-
morphic function, given by lemma 3.25 applied to a. Consider the diagram:

Σa

πa

  A
AA

AA
AA

A

π // Σα

πα
~~||

||
||

||

Σ

Let Nm denote the norm map associated to π, and notice that for ζ ∈ µ2n:
(ζ2)∗α(Nm(ga)) = Nm(ζ∗a(ga)) = Nm(ζ−1 ·ga) = (ζ2)−1 ·Nm(ga). This shows that
we may use Nm(ga) as gα. Thus, choosing Da such that π∗

a(Da) = (ga), we get:
π∗
α(2Da) = Nm(π∗(π∗

α(Da))) = Nm((ga)) = (gα).
Similarly for b and c.

Lemma 4.20. We may assume without loss of generality that Nmα(h2) = (gα)
n
2 ,

Nmβ(h1) = (gβ)
n
2 and Nmγ(h1

h2
) = (gγ)

n
2 .

Furthermore, for ζ ∈ µn letting kA(ζ) = ζα∗h1

h1
, kB(ζ) = ζβ∗h2

h2
and k(ζ) = kA(ζ)

kB(ζ) ,

then k(ζ) is constant, and k(ζ)n = ζ−
n
2 ∈ {±1}
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Proof. For the first claim, notice that

(πα∗(Nmα(h2))) = πα∗(Nmα(πγ∗(D3) − πβ∗(D2))

= π̃∗(Nmγ(D3) − Nmβ(D2))

= π̃∗(Nmγ(D
γ
d ) + nDc − Nmβ(D

β
d ) − nDb)

= πα∗(π∗
α(nDa))

= πα∗(
n

2
(gα))

-where we used lemma 4.19 in the last step. This shows that Nmα(h2) and (gα)
n
2

have the same divisors. Hence, after scaling h2, we may assume that Nmα(h2) =
(gα)

n
2 . Similarly in the other two cases.

For the final claim, we calculate:

(k(ζ)) = (kA(ζ)) − (kB(ζ))

= ζα∗(πγ∗(D3) − πα∗(D1)) − (πγ∗(D3) − πα∗(D1))

−ζβ∗(πγ∗(D3) − πβ∗(D2)) + (πγ∗(D3) − πβ∗(D2))

= ζα∗(πγ∗(D3)) − ζβ
∗

(πγ∗(D3))

= πγ∗(ζ∗γ (D3) − ζ∗γ(D3))

= 0

This shows that k(ζ) is constant. To see that it is a root of unity:

k(ζ)n = Nmβ(k(ζ)) = Nmβ(
ζα∗(h1)

h1
) =

(
ζ∗β(gβ)

gβ

)n
2

= ζ−
n
2 = ±1

Lemma 4.21. λ2n(a, b)
n
2 = (−1)

d(q−1)
2

(
ζ′′

ζζ′

) r
2

Proof. Since by lemma 4.19, 2nDa = (Nmα(gα)) and 2nDb = (Nmβ(gβ)), we
may calculate: (Using lemma 4.20 in the second equality.)
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λ2n(a, b)
n
2 =

(
Nmα(gα)(Db)

Nmβ(gβ)(Da)

)n
2

=
Ñm(h2)(Db)

Ñm(h1)(Da)

=
h2(π̃

∗Db)

h1(π̃∗Da)

=
h2(π̃

∗Dc − π̃∗Da)

h1(π̃∗Dc − π̃∗Db)

=
h2(π

γ∗(D3 −Dγ
d − (ζn)∗γE3 + E3) − πα∗(D1 −Dα

d − (ζn)∗αE1 + E1))

h1(πγ∗(D3 −Dγ
d − (ζn)∗γE3 + E3) − πβ∗(D2 −Dβ

d − (ζn)∗βE2 + E2))

= X · Y · Z

–Here (by Weil reciprocity):

X =
h2(π

γ∗D3 − πα∗D1)

h1(πγ∗D3 − πβ∗D2)
=
h2(h1)

h1(h2)
= 1.

And:

Y =
h2(π

α∗(Dα
d ) − πγ∗Dγ

d ))

h1(πβ∗(Dα
d ) − πγ∗(Dγ

d ))
=
h2((ζn)β∗(F ) − F )

h1((ζn)α∗(F ) − F )
=

(ζ−1
n )β∗h2

h2
(F )

(ζ−1
n )α∗h1

h1
(F )

–where F is the divisor from addendum 4.14. So, by the last part of lemma 4.20,
and using the assumption that d is even:

Y = k(ζ−1
n )(F ) = k(ζ−1

n )deg(F ) = k(ζ−1
n )n

d(q−1)
2 = (−1)

d(q−1)
2 .

And finally:
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Z =
h2(π

α∗((ζn)∗αE1 − E1) − πγ∗((ζn)∗γE3 − E3))

h1(πβ∗((ζn)∗βE2 − E2) − πγ∗((ζn)∗γE3 − E3))

=
Nmα(h2)((ζn)∗αE1 − E1)

Nmβ(h1)((ζn)∗βE2 − E2)
Nmγ(

h2

h1
)((ζn)∗γE3 − E3)

=

(
gα((ζn)∗αE1 − E1)

gβ((ζn)∗βE2 − E2) · gγ((ζn)∗γE3 − E3)

)n
2

=

(
ζ
deg(E1)
n

ζ
deg(E2)
n ζ

deg(E3)
n

)n
2

=

(
ζ
deg(K3)·q
n

ζ
deg(K1)·q
n ζ

deg(K2·q)
n

) n
2q

=

(
ζ′′

ζζ′

) r
2

–Where we used the assumption that d is even, and hence q | n
2 , again in the

second but last equality.

Corollary 4.22. With the assumptions in proposition 4.18, if (n, d) = 2, we have:

|M(n,∆d)|
ζ,ζ′,ζ′′

a,b,c 6= ∅ ⇔
ζ′′

ζζ′
= (−1)

d(q−1)
2 λ2n(a, b)

n
2 .

Proof. The arrow to the right comes from proposition 4.18. Conversely, given
ζ, ζ′, ζ′′ such that the right hand statement is true, the assumptions ensure by
proposition 4.9 and lemma 4.16 that

|M(n,∆d)|
ζ,ζ′,ξ
a,b,c 6= ∅

for some ξ ∈ µr, but then the implication to the right gives that

ξ = ζζ′(−1)
d(q−1)

2 λ2n(a, b)
n
2 = ζ′′
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Finally, we seek to strengthen the result of proposition 4.18 in the special case
where d = 0 and n is twice an odd number. Assume throughout the investiga-
tion that n = 2ñ, where ñ is odd, let α ∈ J (n) be primitive, and denote:

α1 = 2α ∈ J (ñ)

α2 = ñα ∈ J (2)

Lemma 4.23. If E1 ∈ |M(ñ,O)|α1 and E2 ∈ |M(2,O)|α2 , then:

E1 ⊗ E2 ∈ |M(n,O)|α

Proof. Observe that

Lα ∼= L−ñ
α ⊗ (L2

α)
ñ+1
2 ∼= L−1

α1
⊗ L

ñ+1
2

α2 .

Hence, if E1 ∈ |M(ñ,O)|α1 and E2 ∈ |M(2,O)|α2 , then:

(E1 ⊗ E2) ⊗ Lα ∼= (E1 ⊗ L−1
α1

) ⊗ (E2 ⊗ L
ñ+1
2

α2 ) ∼= E1 ⊗ E2.

Next, introduce the coverings Σα1 , Σα2 and Σα, and notice that we have the
following commutative diagram:

Σα

πα2

""E
EE

EE
EE

E
πα1

||yy
yy

yy
yy

πα

��

Σα1

πα1 ""E
EE

EE
EE

E Σα2

πα2||yy
yy

yy
yy

Σ

–where πα1 is the 2-sheeted covering associated to π∗
α1

(Lα) and πα2 is the ñ-
sheeted covering associated to π∗

α2
(Lα).

Assume that β ∈ J (n) is primitive, with 〈α〉 ∩ 〈β〉 = 0 and λn(α, β) = 1.
Denote:

β1 = 2β ∈ J (ñ)

β2 = ñβ ∈ J (2)
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Lemma 4.24. Suppose that

E1
∼= πα1∗(L1) ∈ |M(ñ,O)|α1,β1

and
E2

∼= πα2∗(L2) ∈ |M(2,O)|α2,β2

Then:
E1 ⊗ E2

∼= πα∗(π
α1∗(L1) ⊗ πα2∗(L2))

Proof. By lemma 4.23, E1 ⊗ E2 ∈ |M(n,O)|α,β . Hence, by proposition 4.6, we
may find some line bundle L on Σα with πα∗(L) ∼= E1 ⊗ E2. Pulling E1 ⊗ E2

back to Σα then yields:

π∗
α(E1 ⊗ E2) ∼= π∗

α(πα∗(L)) ∼=
⊕

ζ∈µn

ζ∗L ∼=

n⊕

i=1

L⊗ π∗
α(Lβ)

⊗i (4.3)

Where the last isomorphism is because L ∈ Iζ for some primitive ζ ∈ µn by
proposition 4.6.

On the other hand,

π∗
α(E1 ⊗ E2) ∼= π∗

α(E1) ⊗ π∗
α(E2)

∼= πα1∗(
⊕

ζ∈µñ

ζ∗(L1)) ⊗ πα2∗(
⊕

ζ∈µ2

ζ∗(L2))

∼= πα1∗(

ñ⊕

i=1

L1 ⊗ π∗
α1

(Lβ1)
⊗i) ⊗ πα2∗(

2⊕

i=1

L2 ⊗ π∗
α2

(Lβ2)
⊗i)

∼= πα1∗(L1) ⊗ πα2∗(L2) ⊗

n
2⊕

i=1

2⊕

j=1

π∗
α(Lβ)

2i+ n
2 j

∼= (πα1∗(L1) ⊗ πα2∗(L2)) ⊗
n⊕

i=1

π∗
α(Lβ)

i (4.4)

Putting (4.3) and (4.4) together, the theorem of Krull-Remak-Schmidt gives
that πα1∗(L1) ⊗ πα2∗(L2) ∼= L⊗ π∗

α(Lβ)
⊗i for some i, and hence:

πα∗(π
α1∗(L1) ⊗ πα2∗(L2)) ∼= πα∗(L) ⊗ L⊗i

β
∼= E1 ⊗ E2.
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Remark 4.25. So far we have silently assumed that E1 ⊗E2 is semistable and has
the right determinant. (Only through the choice of notation, though. -We have
not used it otherwise.)

Notice that it now follows from the above lemma in our special case, where
Ei is a fixed point under the action of αi as well as βi.

As explained in the proof of proposition 3.20, the action of ζ ∈ µn on Σα

covers the action of ζ2 on Σα1 as well as the action of ζ
n
2 on Σα2 , µ2 ⊆ µn and

µñ ⊆ µn being the Galois groups for the coverings πα1 and πα2 respectively.

Lemma 4.26. The map: |M(ñ,O)|α1,β1 × |M(2,O)|α2,β2 → |M(n,O)|α,β given by
(E1, E2) 7→ E1 ⊗ E2 is bijective.

Proof. To prove surjectivity, assume that E ∈ |M(n,O)|α,β . By proposition 4.6,
we may pick a line bundle L on Σα with πα∗(L) ∼= E and ζ∗(L) ∼= π∗

α(Lβ) for
some primitive element ζ ∈ µn. Thus, for all i ∈ {1, 2, . . . , n}:

(ζi)∗(L) ∼= π∗
α(Lβ)

⊗i.

Now let L1 = (Nmα1(L) ⊗ π∗
α1

(Lα))⊗
ñ+1
2 and L2 = Nmα2(L)−1.

First observe that:

πα1∗(L1) ⊗ πα2∗(L2) ∼=

(
2⊗

i=1

(ζñi)∗L

) ñ+1
2

⊗

(
ñ⊗

i=1

(ζ2i)∗L

)−1

∼=

(
2⊗

i=1

L⊗ π∗
α(Lβ)

ñi

) ñ+1
2

⊗

(
ñ⊗

i=1

L⊗ π∗
α(Lβ)

2i

)−1

∼= L2· ñ+1
2 ⊗ L−ñ ⊗

(
2⊗

i=1

π∗
α(Lβ)

ñi

) ñ+1
2

⊗

(
ñ⊗

i=1

π∗
α(Lβ)

2i

)−1

∼= L⊗ π∗
α(Lβ)

k

∼= (ζk)∗(L)

–for some k ∈ {1, 2, . . . , n}. Consequently,

πα1∗(L1) ⊗ πα2∗(L2) ∼= πα∗(π
α1∗(L1) ⊗ πα2∗(L2)) ∼= πα∗(L) ∼= E.



4.3 Triple intersections 79

One needs to check that πα1∗(L1) and πα2∗(L2) have the right determinants.
For this, observe that since OΣ

∼= det(πα∗(L)) ∼= Nmα(L) ⊗ L⊗ñ
α (by propo-

sition 3.23), we get: (Using proposition 3.23 with the covering πα1 in the first
step)

det(πα1∗(L1)) ∼= Nmα1(L1)

∼=
(
Nmα(L) ⊗ Lñα

) ñ+1
2

∼=
(
Lñα ⊗ Lñα

) ñ+1
2

∼= OΣ

And also: (Using proposition 3.23 with the covering πα2 .)

det(πα2∗(L2)) ∼= Nmα2(L2) ⊗ Lα2

∼= Nmα(L)−1 ⊗ Lñα
∼= OΣ

This proves surjectivity. Finally, by proposition 4.6 the number of elements
in |M(n,O)|α,β is:

a(α, β, 0) · n2g−2 = φ(n) · n2g−2.

–Whereas |M(ñ,O)|α1,β1 has φ(ñ) · ñ2g−2 elements, and |M(2,O)|α2,β2 has 22g−2

elements. Hence, the number of elements in |M(ñ,O)|α1,β1 × |M(2,O)|α2,β2 is

φ(ñ) · ñ2g−2 · 22g−2 = φ(n) · n2g−2.

Next, we ask how the map in lemma 4.26 relates the components of the fixed
point varieties.

Lemma 4.27. Suppose a ∈ α
2 . If E1 ∈ |M(ñ,O)|ζ1α1

for some ζ1 ∈ µñ and E2 ∈

|M(2,O)|ζ2ña for some ζ2 ∈ µ2, then E1 ⊗ E2 ∈ |M(n,O)|ζ1·ζ2a .

Proof. Assume
E1

∼= πα1∗(L1) ∈ |M(ñ,O)|ζ1α1

E2
∼= πα2∗(L2) ∈ |M(2,O)|ζ2ña.

This is to say that L1 ∈ P ζ1α1
and L2 ∈ π∗

α2
(Lña) ⊗ P ζ2α2

.
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For all ζ ∈ µn, we have:

ζ∗α ◦ πα1∗ = πα1∗ ◦ (ζ2)∗α1

ζ∗α ◦ πα2∗ = πα2∗ ◦ (ζñ)∗α2

Since pull-back takes Pick(Σ
α1) to Pic2k(Σ

α) and Pick(Σ
α2) to Picñk(Σ

α),
proposition 3.31 shows that:

πα1∗(P ζ1α1
) ⊆ P ζ1α

πα2∗(P ζ2α2
) ⊆ P ζ2α

Consequently, πα1∗(L1) ∈ P ζ1α and πα2∗(L2) ∈ π∗
α(Lña) ⊗ P ζ2α . But

π∗
α(Lña) ∼= π∗

α(La)
⊗ñ ∼= π∗

α(La) ⊗ π∗
α(Lα)⊗

ñ−1
2 ∼= π∗

α(La),

so πα1∗(L1) ⊗ πα2∗(L2) ∈ π∗
α(La) ⊗ P ζ1·ζ2α , and hence:

E1 ⊗ E2 ∈ |M(n,O)|ζ1·ζ2a .

Theorem 4.28. Assume n = 2ñ, where ñ is odd. Suppose α, β ∈ J (n) are primitive

elements with 〈α〉∩〈β〉 = 0 and λn(α, β) = 1. Let a ∈ α
2 , b ∈ β

2 , and define γ = α+β
and c = a+ b. For each triple ζ, ζ′, ζ′′ ∈ µn, we have:

|M(n,O)|ζ,ζ
′,ζ′′

a,b,c 6= ∅ ⇔

(
ζ′′

ζζ′

)
= λ2n(a, b)

n
2 .

Proof. Suppose E ∈ |M(n,O)|ζ,ζ
′,ζ′′

a,b,c for some ζ, ζ′ζ′′ ∈ µn.
Denote α1, α2, β1, β2, γ1, γ2 as in the preceding lemmas. Let a2 = ña, b2 = ñb

and c2 = ñc.
By lemma 4.26, E ∼= E1 ⊗ E2 for some bundles, E1 ∈ |M(ñ,O)|α1,β1 and

E2 ∈ |M(2,O)|α2,β2 .
Suppose that

E1 ∈ |M(ñ,O)|
ζ1,ζ

′
1,ζ

′′
1

α1,β1,γ1

E2 ∈ |M(2,O)|
ζ2,ζ

′
2,ζ

′′
2

a2,b2,c2
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– for certain ζ1, ζ
′
1, ζ

′′
1 ∈ µñ and ζ2, ζ

′
2, ζ

′′
2 ∈ µ2. Then by lemma 4.27, ζ1ζ2 = ζ,

ζ′1ζ
′
2 = ζ′ and ζ′′1 ζ

′′
2 = ζ′′. But by theorem 4.17,

ζ′′1
ζ1ζ′1

= 1

and by corollary 4.22 (or simply theorem 2.3 in [1]),

ζ′′2
ζ2ζ′2

= λ4(a2, b2) = λ4ñ(a, b)ñ = λ2n(a, b)
n
2 .

The converse implication follows in precisely the same manner as in corol-
lary 4.22.





5

The action of J
(n) on the

Hecke correspondence

So far, I have only treated one value of d at a time. There is an important in-
terplay, known as the Hecke correspondence, between the moduli spaces corre-
sponding to different values of d. I will only treat the case of degrees zero and
one. This is done in order to avoid the topic of parabolic semistability. It will
be sufficient as a tool in chapter 6 in most cases, including the ones where n is
prime.

5.1 Elementary modification

Recall that p ∈ Σ was chosen back in section 3.1. Suppose E is a vector bundle
on Σ and F ⊆ Ep a codimension one subspace. Elementary modification of E
at p in the direction of F yields a bundle E′ on Σ. It is constructed as follows:

Definition 5.1. Let Cp denote the skyscraper sheaf on Σ with support at p.
Choose an isomorphism: Ep/F ∼= C. Denote by Γ(E) the sheaf of holomor-
phic sections in E and define the sheaf morphism: λ : Γ(E) → Cp as follows:

Given U
◦

⊆ Σ and a section s on U :

λU (s) =

{
0 , p /∈ U
[s(p)] ∈ Ep/F ∼= C , p ∈ U

83
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The kernel of λ is clearly independent of the chosen isomorphism. According
to the following lemma, it is a locally free sheaf of rank n, and hence that is is
equal to Γ(E′) for some bundleE′ on Σ of rank n. This bundle is the elementary
modification of E in the direction of F .

Lemma 5.2. The kernel of λ in the definition above is a locally free sheaf of rank n.

Proof. On a small neighbourhood U of p, we may choose a coordinate z centred
at p and a holomorphic frame e1, e2, . . . , en of E such that e1(p) /∈ F and ej(p) ∈
F for j 6= 1. This induces identifications: Γ(E)(U) = O(U)⊕n and Ker(λ)(U) =
{(f1, . . . , fn) ∈ E|U | f1(p) = 0}. These are isomorphic (as O(U)-modules)
under multiplication in the first term by z. This shows that Ker(λ) is locally
free.

Lemma 5.3. We have:

det(E′) ∼= det(E) ⊗ [−p].

Proof. The exact sequences below show that det(E′) ∼= det(E) ⊗ det(Cp)
−1 ∼=

det(E′) ⊗O[−p].

0 // Γ(E′) // Γ(E)
λ // Cp // 0

0 // O[−p] // O
Evp // Cp // 0

(5.1)

Remark 5.4. Semistability is not preserved under elementary modification. If for
example E = L ⊕ L′ where L and L′ are line bundles of degree 1 and F = Lp,
then E′ = L ⊕ (L′ ⊗ [−p]), which is not semistable. This is where the notion
of parabolic (semi-)stability would normally enter naturally. However, if E is
assumed to be of degree 1, then (semi-)stability of E ensures stability of E′.

Lemma 5.5. In the above construction, if deg(E) = 1 and E is stable, thenE′ is stable
as well.

Proof. Any sub-bundle F ′ of E′ induces (via the sheaf inclusion E′ → E) a sub-
bundle F of E.
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If Fp is not contained in F , then F ′ is given by elementary modification of F
along F ∩ Fp. In particular, rk(F ) = rk(F ′) and deg(F ) = deg(F ′) + 1. E being
semistable implies:

µ(F ′) =
deg(F ) − 1

rk(F )
≤

deg(E)

rk(E)
−

1

rk(F )
<

deg(E) − 1

rk(E)
= µ(E′).

If Fp is contained in F then the sheaf inclusion E′ → E restricts to an isomor-
phism between F ′ and F . In this case (this is where we need E to be of degree
1):

deg(F ′)rk(E′) = deg(F )rk(E) < deg(E)rk(F ) = 1 · rk(F ) = rk(F ′).

This can only be the case if deg(F ′)rk(E′) ≤ 0 = deg(E′)rk(F ′).

5.2 The Hecke correspondence

The Hecke correspondence (in degrees zero and one) is a pair of morphisms:

P
q0

zzuuuuuuuuu
q1

$$I
IIIIIIII

M(n,∆0) M(n,∆1)

(5.2)

It is constructed in the following way: Let U be a Poincaré bundle (cf. remark
2.33) on Σ ×M(n,∆1) . Denote by Up the restriction of U to {p} ×M(n,∆1),
considered as a bundle on M(n,∆1).

Definition 5.6. Define:
P = Grn−1(Up),

where Grn−1 denote the Grassmann variety of dimension n − 1 subspaces. Let
q1 : P →M(n,∆1) be the projection induced from Up.

Remark 5.7. A point in P is given by an element [E] ∈M(n,∆1) and an (n− 1)-
dimensional subspace F of (Up)|[E]

∼= Ep. In other words, P consists of equi-
valence classes of pairs: [(E,F)] with F ⊆ Ep a codimension one subspace.
Two such pairs (E1,F1) and (E2,F2) are equivalent if there is an isomorphism
E1

∼= E2 which takes F1 to F2.
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Definition 5.8. Let q0 : P → M(n,∆0) be the map that takes a class of pairs
[(E,F)] to the elementary modification of E in the direction of F .

Remark 5.9. Notice that q1 is a CP
n−1-fibration. For later use we note the follow-

ing explicit isomorphism:
Given E ∈ M(n,∆1), the fibre q−1

1 (E) is canonically isomorphic to P(E∗
p).

For ω ∈ E∗
p \ {0}, the isomorphism takes [ω] ∈ P(E∗

p ) to [(E,Ker(ω))] ∈ q−1
1 (E).

Remark 5.10. In fact, P is isomorphic to a moduli space M(χ, a, d) of parabolic
bundles of rank n, sequence of multiplicities χ = (1, (n− 1)), weights a = (0, 0)
and degree d. (See chapter 3 in [27].) Hence the methods of section 2.5 could be
used to show that q0 and q1 are in fact morphisms.

Definition 5.11. There is a natural action of J (n) on P . The action of α ∈ J (n)

maps a class [(E,F)] into [(E ⊗ Lα,F ⊗ Lα)]. By usual abuse of notation, this
map will be denoted simply by α.

Lemma 5.12. With the above definition, both q0 and q1 become J (n)-equivariant.

Proof. It is obvious that q1 becomes equivariant.
As for q0, Let [(E,F)] ∈ P , and let E′ = q0([(E,F)]), such that Γ(E′) =

Ker(λ), with λ as in definition 5.1. Notice that elementary modification ofE⊗Lα
in the direction of F ⊗Lα is equal to Ker(λ̃), where λ̃ : Γ(E⊗Lα) → Cp is given
by

λ̃ : s ∈ ΓU (E ⊗ Lα) 7→

{
0 , p /∈ U
[s(p)] ∈ (E ⊗ Lα)p/(F ⊗ Lα) ∼= C , p ∈ U

Now, Ker(λ̃) = Ker(λ) ⊗ Γ(Lα) = Γ(E′ ⊗ Lα). This means that E′ ⊗ Lα ∼=
q0([(E ⊗ Lα,F ⊗ Lα)]).

Suppose that E ∈M(n,∆1) is fixed by a primitive element, α ∈ J (n). By the
above, α acts on the fibre q−1

1 (E) ∼= P(E∗
p). We will need an explicit description

of this action.
Recall that the construction of ∆α

1 , back in section 3.6 involved picking a
point pα ∈ π−1

α (p) ⊆ (Lα)p. Also recall that πα∗ : ϑ−1
α (∆1) → |M(n,∆1)|α is a

surjective morphism.

Lemma 5.13. Suppose E = πα∗(L). Let ψ : E → E⊗Lα be the explicit isomorphism
constructed in lemma 3.17.
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Define A : Ep → Ep by the following commutative diagram:

Ep
A //

ψp

$$J
JJJJJJJJJ

Ep

Ep ⊗ (Lα)p

φpα

::tttttttttt

(5.3)

– where φpα
is the map: (x⊗ z · pα) 7→ z · x.

We then have the following commutative diagram:

P(E∗
p )

∼=

��

P(AT ) // P(E∗
p )

∼=

��
q−1(E)

α // q−1(E)

–WhereAT is the dual map toA, and the vertical isomorphisms are the one from remark
5.9.

Proof. Let ω ∈ E∗
p . Sending [ω] through the diagram, to the right, and then

down, yields:

[(E,Ker(ω ◦A))].

Sending it down and then to the right yields:

[(E ⊗ Lα,Ker(ω) ⊗ (Lα)p)].

But by (5.3), ψ : E → E ⊗ Lα takes x ∈ Ker(ω ◦ A) to Ax ⊗ pα which lies in
Ker(ω) ⊗ (Lα)p. This shows that the two classes are the same.

Again let α be a primitive element in J (n) and denote by |P|α the subvariety
of P fixed by α. For every L ∈ ϑ−1

α (∆1) the projection induces a canonical
isomorphism:

(
⊕

ζ∈µn

ζ∗L)pα
∼= πα∗(L)p

and thereby specifies an (n − 1) dimensional subspace of πα∗(L)p, namely the
one corresponding to (

⊕
ζ 6=1 ζ

∗(L))pα
.
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Proposition 5.14. Let α ∈ J (n) be primitive. There is a bijection: jpα
: ϑ−1

α (∆1) →
|P|α defined by jpα

(L) = [(πα∗(L), (
⊕

ζ 6=1 ζ
∗(L))pα

)], making the following diagram
commutative:

|P|α

q1 %%KKKKKKKKKK
ϑ−1
α (∆1)

πα∗xxppppppppppp

jpαoo

|M(n,∆1)|α

Proof. Let L ∈ ϑ−1
α (∆1) and denote πα∗(L) by E and (

⊕
ζ 6=1 ζ

∗(L))pα
by F .

From lemma 3.17 we have an isomorphism ψ : E ∼= E ⊗ Lα given by de-

scent of ψ̃, where ψ̃ is induced by the matrix B = diag(1, ζn, . . . , ζ
n−1
n ) mapping⊕n−1

j=0 ζ
j∗
n (L) to itself. Since E is stable and therefore simple, any other such iso-

morphism is given by a non-zero complex scalar times ψ. Thus, jpα
(L) is fixed

by the action of α precisely if ψ takes F to F ⊗ Lα. Clearly, this is always the
case.

If jpα
(L) = jpα

(L′) for L,L′ ∈ ϑ−1
α (∆1), lemma 3.13 implies that L′ ∼= ζ′∗(L)

for some ζ′ ∈ µn. But then, (
⊕

ζ 6=1 ζ
∗(L′))pα

∼= (
⊕

ζ 6=ζ′ ζ
∗(L))pα

. Since this must
be mapped to (

⊕
ζ 6=1 ζ

∗(L))pα
by an automorphism of E (again, those are all

constant), we get that ζ′ = 1. This shows that jpα
is injective.

As for surjectivity, let [(E,F)] ∈ |P|α. Since E ∈ |M(n,∆d)|α, pick L ∈
ϑ−1
α (∆1) with πα∗(L) = E. The fact thatα fixes [(E,F)] implies that F is induced

by an (n−1) dimensional subspace of (
⊕n−1

j=0 ζ
j∗
n (L))pα

, which is invariant under
B. These are all given by (

⊕
ζ 6=ζ′ ζ

∗(L))pα
) for some ζ′ ∈ µn. Hence, [(E′,F)] =

jpα
(ζ′∗(L)).

Remark 5.15. Again, with a little more theory on parabolic bundles, the results
of section 2.5 could be applied to show that jpα

is an isomorphism of varieties.
However, we will only need the fact that it is a bijection.

The map jpα
fits nicely with the other half of the Heche diagram:

Proposition 5.16. For any L ∈ ϑ−1
α (∆1), we have:

q0(jpα
(L)) = πα∗(L⊗ [pα]−1).

Proof. Let L ∈ ϑ−1
α (∆1). Let E = πα∗(L) and F ⊆ Ep the subspace such that

jpα
(L) = [(E,F)]. Let E′ = q0(jpα

(L)).
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Choose an isomorphism: Lpα
∼= C. Using the canonical isomorphism be-

tween Ep and (
⊕

ζ∈µn
ζ∗L)pα

, this gives an isomorphism:

Ep/F ∼= (
⊕

ζ∈µn

ζ∗(L))pα
/(
⊕

ζ 6=1

ζ∗(L))pα
∼= Lpα

∼= C

and hence a map λ : Γ(E) → Cp.

Let E = Γ(E), E ′ = Γ(E′) = Ker(λ), and let Ẽ = Γ(π∗
α(E)) ∼= Γ(

⊕
ζ∈µn

ζ∗(L)).
We have a commutative diagram:

0 // Ẽ ′ // Ẽ
λ̃ // S // 0

0 // E ′ // E
λ //?�

OO

Cp //
?�

OO

0

–where S =
⊕

ζ∈µn
ζ∗(Cpα

), the vertical maps are inclusions of invariant sec-

tions, and λ̃ is given by evaluation of sections in ζ∗(L) in ζ−1(pα) (composed

with the chosen isomorphism Lpα
∼= C). The kernel Ẽ ′ of λ̃ is simply the sheaf

of sections in
⊕

ζ∈µn
ζ∗(L⊗ [pα]−1).

The diagram shows that E ′ is the invariant part of Ẽ ′, and therefore, E′ is
isomorphic to the descent of

⊕
ζ∈µn

ζ∗(L⊗ [pα]−1), i.e. to πα∗(L⊗ [pα]−1).
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Lifting the action

This chapter introduces certain groups of lifts of the action of J (n) on M(n,∆d)
to the canonical ample generator of Pic(M(n,∆d)).

The groups constitute central extensions of J (n), and they turn out to be
defined independently of the complex structure on Σ. In chapter 7 we shall
further see how the lifts induce actions on the Verlinde bundles over Teichmüller
space of the underlying surface of Σ, and thereby become represented on the
Verlinde vector spaces in the construction of topological quantum field theories
from gauge theory and conformal field theory.

During the investigation of the groups we gradually strengthen the assump-
tions, finally giving a complete presentation of the groups of lifts in the special
case where n is an odd prime. (But a priori n ≥ 2 is arbitrary.)

By ongoing abuse of notation, we will make no distinction between elements
α ∈ J (n) and the automorphisms of M(n,∆d) given by the action of α.

6.1 Definition of the lifts

A main result of [8] is that the Picard group of M(n, d) is generated by pull-
backs from J(Σ) (under the determinant map) along with a canonical, ample1

line bundle, Ln,d. Furthermore, each subvariety M(n,∆d) have Picard group
isomorphic to Z with the restriction of Ln,d as its generator. This restriction is of
course still ample and will also be denoted by Ln,d.

1For a brief introduction to ample line bundles, see [35] p.143-156.
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Definition 6.1. By a lift of α to Ln,d, we shall mean an invertible bundle map ρ
from Ln,d to itself, inducing α on the base.

Lemma 6.2. For each α ∈ J (n), there exist lifts of α.

Proof. Pull back by α induces an endomorphism α∗ of Pic(M(n,∆d)) ∼= Z with

(α∗)n=1. Hence α∗(Ln,d) = L
⊗(±1)
n,d . (The option ”−1” being relevant only when

n is even, of course.) But since Ln,d is ample, so is α∗(Ln,d) and by the Kodaira
vanishing theorem, L−1

n,d is not ample. Thus, α∗(Ln,d) ∼= Ln,d.
By choosing an isomorphism Ln,d ∼= α∗(Ln,d) and composing this with the

canonical (invertible) bundle map α∗(Ln,d) → Ln,d (inducing α on the base), we
get a lift of α.

Definition 6.3. Let G(J (n),Ln,d) denote the group consisting of all possible lifts
of elements in J (n).

Lemma 6.4. G(J (n),Ln,d) is a central extension:

{1} → C
∗ → G(J (n),Ln,d) → J (n) → {0} (6.1)

Consequently, a unique lift ρ of a given α ∈ J (n) may be specified by demanding
that ρ act by multiplication with a certain scalar on the fibre of Ln,d over a point x ∈
M(n,∆d) fixed by α.

The specified lift then acts by multiplication with the same scalar in every fibre above
the connected component of |M(n,∆d)|α containing x.

Proof. A lift of 0 ∈ J (n) is simply an algebraic function on M(n,∆d) and hence,
M(n,∆d) being complete, a non-zero constant. This shows that the sequence
(6.1) is a central extension.

Therefore, two different lifts of an element α ∈ J (n) differ only by a scalar.
And since a lift ρ of α multiplies by a non-zero scalar in a fibre of Ln,d over a
point in |M(n,∆d)|α, fixing this scalar determines ρ uniquely.

The final claim is true because ρn is a lift of the identity, and hence constant.
Therefore, the action on fibres above fixed points can vary only by n’th roots of
unity. By continuity, it must be constant on connected components.

Definition 6.5. If n is odd, for each element α ∈ J (n), define ρα,d to be the lift of
α to Ln,d, which acts as the identity on the fibre over each point in |M(n,∆d)|

1
α.

Denote by E(n, d) the subgroup of G(J (n),Ln,d) generated by {ρα,d | α ∈
J (n)}.
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Definition 6.6. If n is even, for each element a ∈ J (2n), define ρa,d to be the
lift of α = 2a to Ln,d, which acts as the identity on the fibre over each point in
|M(n,∆d)|1a.

Denote by E(n, d) the subgroup of G(J (n),Ln,d) generated by {ρa,d | a ∈
J (2n)}.

Remark 6.7. Notice that we suppress the dependence on n of ρα,d and ρa,d in the
notation. This should not cause confusion, since n will always be fixed when
discussing the lifts.

Whenever appropriate, we will also suppress the dependence on d, writing:
ρα,d = ρα and ρa,d = ρa.

6.2 Investigation of the groups of lifts.

We now aim to give a description of the groups E(n, d) in terms of relations
between the generators. We begin with a direct application of previous results.

Lemma 6.8. For odd n, whenever α ∈ J (n) and k ∈ {1, 2 . . . , n}, we have:

ρkα = (ρα)k.

For even n, whenever a ∈ J (2n) and k ∈ {1, 2, . . . n}, we have:

ρka = (ρa)
k.

Proof. The proof is similar in the two cases, so we only do it for n odd.
We may assume without loss of generality that α is primitive. -Otherwise

choose a primitive element β ∈ J (n) with lβ = α for some l and use the state-
ment for primitive elements twice:

ρkα = ρklβ = (ρβ)
kl = ((ρβ)

l)k = (ρα)k.

Notice that ρkα and (ρα)k are both lifts of kα, and thus scalar multiples of
each other. But according to proposition 3.59:

|M(n,∆d)|
1
α ⊆ |M(n,∆d)|

1
kα.

This shows that in fibres of Ln,d over |M(n,∆d)|
1
α, both ρα (and hence (ρα)k)

and ρkα act as the identity. Therefore, being scalar multiples of each other, they
must agree everywhere.
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Using the tools we developed in chapter 5, a very useful property of the
elements in E(n, 0) arises.

Proposition 6.9. Suppose n is odd. Let α ∈ J (n) and ρ = ρα,0 ∈ E(n, 0). Then for
each ζ ∈ µn, ρ acts by multiplication with ζ in the fibres of Ln,0 above the component
|M(n,O)|ζα.

Suppose n is even. Let a ∈ J (2n) and ρ = ρa,0 ∈ E(n, 0). Then for each ζ ∈ µn, ρ
acts by multiplication with ζ in the fibres of Ln,0 above the component |M(n,O)|ζa.

Proof. We begin with some simplifications: First of all, the proof in the two cases
differs only in notation, so we concentrate on the case where n is odd. Second,
it is sufficient to show the theorem in the case where α is primitive. The general
situation then follows by writing α as kα̃ and ρ = ρ̃k, where the claim holds for
the pair (α̃, ρ̃). -Then applying lemma 6.8 and proposition 3.59.

Let E represent a point [E] in |M(n,∆1)|α. By proposition 5.14, the action
of α on the fibre of q1 above [E] has exactly n fixed points. (Namely the ones
corresponding to the fibre of πα∗ under jpα

.)
Let L ∈ ϑ−1

α (∆1) be such that E = πα∗(L). According to proposition 3.34
and equation (3.13) (in this case, r = 1 and q = n), we may fix L uniquely (up to
isomorphism) by demanding that L ∈ ∆α

1 ⊗ P 1
α. Then by proposition 3.31,

ζ∗(L) = L⊗ (ζ∗(L) ⊗ L−1) ∈ ∆α
1 ⊗ P ζα.

Notice that ∆α
1 is simply [pα], so by proposition 5.16 and definition 3.36 (in de-

gree zero):
q0(jpα

(ζ∗(L))) = πα∗([pα]−1 ⊗ L) ∈ |M(n,O)|ζα.

One should have the following picture in mind:

q−1
1 (E) ∼= P(E∗

p)

q1
&&MMMMMMMMMMM

q0
vvnnnnnnnnnnnn

{ζ∗(L) | ζ ∈ µn}
jpαoo

πα∗

xxqqqqqqqqqqqq

|M(n,O)|α {E}

The Poincaré bundle U , used in the construction of P , can be normalised in
such a way that q∗0(Ln,0)|q−1

1 ([E]) is isomorphic to the tautological line bundle

O(1) over q−1
1 ([E]) ∼= P(E∗

p ). (See Lemma 2.3. in [12].)
The action of ρ on Ln,o pulls back to a lift of the action of α to q∗0(Ln,0)|q−1

1 ([E])
∼=

O(1) over q−1
1 ([E]) ∼= P(E∗

p ).



6.2 Investigation of the groups of lifts. 95

The proof will be finished upon showing that this pull-back acts by multipli-
cation with ζ in the fibre above jpα

(ζ∗(L)).
In view of lemma 5.13, one possible lift of the action of α on P(E∗

p) is given
by:

Rα :

{
OP(E∗

p)(1) → OP(E∗
p)(1)

(x, ω) 7→ (P(AT )(x), AT (ω))

–where x ∈ P(E∗
p ) and ω is a non-zero element in the line in E∗

p given by x.
This lift acts by multiplication with ζ in the the fibre above the point in P(E∗

p)
corresponding to jpα

(ζ∗(L)). (See lemma 6.10 for the calculation.)
Since P(E∗

p) is compact, any two lifts of the action of α to q∗0(Ln,0)|q−1
1 ([E])

∼=

O(1) over q−1
1 ([E]) ∼= P(E∗

p) are scalar multiples of each other. Both Rα and
q∗0(ρα,0)|q−1

1 ([E]) being the identity on the fibre above jpα
(L), they must be equal,

and the claim follows.

Lemma 6.10. Under the identification P(E∗
p)

∼= q−1
1 ([E]) from remark 5.9, the liftRα,

defined in the proof above, acts by multiplication with ζ in fibres of OP(E∗
p)(1) above the

point corresponding to jpα
(ζ∗(L)) ∈ q−1

1 ([E]).

Proof. Let ζ ∈ µn. Choose ω̄ζ : (
⊕

ζ′∈µn
ζ′∗(L))pα

→ C, such that Ker(ω̄ζ) =
(
⊕

ζ′ 6=ζ ζ
′∗(L))pα

. Under the canonical isomorphism (
⊕

ζ′∈µn
ζ′∗(L))pα

∼= Ep,
ω̄ζ induces an element ωζ ∈ E∗

p with [(E,Ker(ωζ))] = jpα
(ζ∗(L)). In other

words, ωζ corresponds to jpα
(ζ∗(L)) under the identification from remark 5.9.

For the point ([ωζ ], ωζ) in the fibre of OP(E∗
p)(1) above [ωζ ] ∈ P(E∗

p), we have:

Rα(([ωζ ], ωζ)) = (P(AT )([ωζ ]), A
T (ωζ)) = ([ωζ ◦A], ωζ ◦A)

Under the identification Ep ∼= (
⊕

ζ′∈µn
ζ′∗(L))pα

the map A : Ep → Ep from
lemma 5.13 is given by multiplication with the matrix:

B =




1 0
ζn

. . .

0 ζn−1
n




Therefore, for ξ = (ξζ′)ζ′∈µn
∈ Ep ∼= (

⊕
ζ′∈µn

ζ′∗(L))pα
, we have:

ω̄ζ(Aξ) = ω̄ζ(ζ · ξζ) = ζ · ω̄ζ(ξ).
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And hence ωζ ◦ A = ζ · ωζ , proving that Rα(([ωζ ], ωζ)) = ([ωζ ], ζ · ωζ) =
ζ · ([ωζ ], ωζ).

Remark 6.11. The technique introduced in the proof of proposition 6.9, using a

fixed point in degree 1 to construct a CP
(n−1)-image insideM(n,O), intersecting

each of the fixed point components, will be used again in the proof of theorem
6.14.

Corollary 6.12. If n is even, and a1, a2 ∈ J (2n) are such that 2a1 = 2a2 = α, then:

ρa2,0 = λ2n(a1, a2)ρa1,0

Furthermore:

ρa1,0ρa2,0 = λ2n(a1, a2)ρa1+a2,0

Proof. Notice that 2α = 2(a1 + a2) = 2(2a1) ∈ J ( n
2 ).

Since λ = λ2 n
2
(2a1, a1 + a2) ∈ {±1}, we get from proposition 3.58 (with 2α

playing the role as α, and hence m = n
2 , s = 2, and q̃ = 1):

|M(n,O)|12a1
= |M(n,O)|λ

2

a1+a2
= |M(n,O)|1a1+a2

.

Furthermore, by proposition 3.59,

|M(n,O)|1a1
⊆ |M(n,O)|12a1

,

and by proposition 3.58,

|M(n,O)|1a1
= |M(n,O)|λ2n(a1,a2)

a2
.

Therefore, picking a point in |M(n,O)|1a1
, we see that in the fibre above, ρa1

acts as the identity, and so does ρa1+a2 , whilst ρa2 acts by multiplication with
λ2n(a1, a2), by proposition 6.9.

Consequently, since ρa2ρ
−1
a1

and ρa1ρa2ρ
−1
a1+a2

are both lifts of the identity,
and hence constant, we get:

ρa2ρ
−1
a1

= λ2n(a1, a2),

ρa1ρa2ρ
−1
a1+a2

= λ2n(a1, a2).
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Another immediate consequence is the following.

Proposition 6.13. The alternating form of the central extension (6.1) is the Weil pair-
ing when d = 0. In other words:

For α, β ∈ J (n), we have when n is odd,

ρα,0ρβ,0(ρα,0)
−1(ρβ,0)

−1 = λn(α, β).

For a, b ∈ J (2n), α = 2a, β = 2b, we have when n is even,

ρa,0ρb,0(ρa,0)
−1(ρb,0)

−1 = λn(α, β).

Proof. The two cases differ only in notation, so we assume n is odd. Let m =
ord(α) and λ = λn(α, β) ∈ µm. Pick an element E ∈ |M(n,O)|λα. By proposition
3.60, we have: L−1

β ⊗E ∈ |M(n,O)|1α. Hence, for any ξ in the fibre of Ln,0 above

E, (ρβ,0)
−1(ξ) lies in a fibre above |M(n,O)|1α. Hence:

ρα,0ρβ,0(ρα,0)
−1(ρβ,0)

−1(ξ) = ρα,0ρβ,0(1 · ((ρβ,0)
−1(ξ))) = ρα,0(ξ) = λ · ξ

Since ρα,0ρβ,0(ρα,0)
−1(ρβ,0)

−1 is a lift of the identity, and hence constant, we
get the desired result.

Finally, as promised, we give a complete presentation of the groups E(n, d)
in the cases where n is an odd prime.

Theorem 6.14. Assume n is an odd prime. We have for all α, β ∈ J (n):

ρα,dρβ,d = ρα+β,d , d 6= 0

and
ρα,0ρβ,0 = λn(α, β)

n+1
2 · ρα+β,0

Proof. Denote for the entire proof: α+ β = γ. In both cases, if β = kα, for some
k ∈ {1, 2, . . . , n}, the claim follows by lemma 6.8:

ραρβ = ρα(ρα)k = ρ1+k
α = ρ(1+k)α = ρα+β .

Hence we may assume for the rest of the proof that 〈α〉 ∩ 〈β〉 = 0. We begin
with the case d 6= 0:

If λn(α, β) 6= 1, we have by corollary 4.7 and lemma 4.16 that |M(n,∆d)|α,β,γ
is non-empty. Since each of the fixed point varieties is connected in this case (by
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theorem 3.33), we may choose a point in |M(n,∆d)|
1,1,1
α,β,γ . In the fibre of Ln,d

above this point, we have: ρα = ρβ = ργ = 1. Since ραρβ(ργ)
−1 is a lift of

0 ∈ J (n), and hence constant, we get: ραρβ(ργ)
−1 = 1.

If λn(α, β) = 1, using proposition 2.16 (and the fact that 〈α〉 ∩ 〈β〉 = 0) , we
may pick an element δ ∈ J (n) with λn(α, δ) = λn(β, δ) = ζn.

Then, by the above:
ρβρδ = ρβ+δ.

And since λn(α, β + δ) = λn(α, δ) = ζn:

ραρβ+δ = ρα+β+δ.

And since λn(α+ β + δ,−δ) = (ζn)−2 6= 1:

ρα+β+δρ−δ = ρα+β+δ−δ = ρα+β .

Putting all this together:

ρα+β = (ρα(ρβρδ))ρ−δ = ραρβ .

This leaves the case d = 0.
If λn(α, β) = 1, in this case, theorem 4.17 gives that |M(n,O)|1,1,1α,β,γ 6= ∅, and

hence evaluating in a fibre above a point in there, we get:

ρα,0ρβ,0(ργ,0)
−1 = 1.

Finally, if λn(α, β) 6= 1, a bit more effort is required. This case will take up
the rest of the chapter.

We get from theorem 4.17 that |M(n,∆1)|
1,1,1
α,β,γ 6= ∅. Hence, we can find line

bundles L1, L2 and L3 on Σα, Σβ and Σγ , respectively, such that:

πα∗(L1) ∼= πβ∗(L2) ∼= πγ∗(L3)

represent an element [E] in |M(n,∆1)|
1,1,1
α,β,γ . (Notice that we have not picked the

representative E yet.)
Now consider the Hecke diagram. By pull-back under q0, the lifts ρα, ρβ and

ργ define maps:

q∗0(Ln,0)|q−1
1 ([E]) → q∗0(Ln,0)|q−1

1 ([E])

covering the action of α, β and γ.
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As in the proof of proposition 6.9, the pull-back of ρα can be described ex-
plicitly by letting E = πα∗(L1) and using the induced canonical identification
from remark 5.9:

q∗0(Ln,0)|q−1
1 ([E])

∼= //

��

OP(E∗
p)(1)

��
q−1
1 ([E])

∼= // P(E∗
p)

(6.2)

Indeed, fix L1 uniquely (up to isomorphism) by demanding that L1 ∈ [pα]⊗
P 1
α, and choose a basis (ωζ)ζ∈µn

for E∗
p , such that

Ker(ωζ) = (
⊕

ζ′ 6=ζ

ζ′∗(L1))pα
,

–under the canonical identification Ep ∼= (
⊕

ζ′∈µn
ζ′∗(L1))pα

. Then, by lemma
5.13 and the discussion in the proof of proposition 6.9, under the identification
(6.2), the pull-back of ρα corresponds to the map:

Rα :

{
OP(E∗

p)(1) → OP(E∗
p)(1)

([ω], ω) 7→ ([(Tα)(ω)], Tα(ω))

–where Tα : E∗
p → E∗

p is the transpose of the map A defined in lemma 5.13. It is
characterised by the fact that Tα(ωζ) = ζ ·ωζ . Completely similar remarks apply
to β and γ.

The rest of the proof consists of finding explicit isomorphisms:

πα∗(L1) ∼= πβ∗(L2) ∼= πγ∗(L3)

and showing that under these isomorphisms, the maps Tα, Tβ and Tγ relate as
follows:

Tα ◦ Tβ = λn(α, β)
n+1

2 Tγ

This is done in the following sequence of lemmas, thus completing the proof.

Remark 6.15. An error in the following argument was found during the last
hours of writing. We emphasise in the following which part is missing by turn-
ing one lemma into a conjecture.
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Hence, the final part of the theorem remains a conjecture at the writing. It is
strongly believed that the arguments can be turned into a rigorous proof with a
little extra effort.

Let L1, L2 and L3 be line bundles on Σα, Σβ and Σγ , chosen as described
above. Let λ = λn(α, β), and recall that we are currently assuming that λ is
primitive.

We begin with a simple observation.

Lemma 6.16.

λ∗α(L1) ∼= L1 ⊗ π∗
α(Lβ)

λ∗β(L2) ∼= L2 ⊗ π∗
β(Lα)−1

λ∗γ(L3) ∼= L3 ⊗ π∗
γ(Lα)−1

Proof. Notice that since λn(α, β) = λn(β,−α) = λn(γ,−α) = λ, the description
of the pairwise intersections in proposition 4.6 applies to each pair. In this case,
A(α, β, 1) = A(β,−α, 1) = A(γ,−α, 1) = {λ}.

The next result is an analogue of lemma 4.20, only this time in odd rank.
Using definition 3.36 and proposition 3.31, choose line bundles K1, K2 and

K3 of degree zero on Σα, Σβ and Σγ respectively, such that:

L1
∼= ∆α

1 ⊗ λ∗αK1 ⊗K−1
1

L2
∼= ∆β

1 ⊗ λ∗βK2 ⊗K−1
2

L3
∼= ∆γ

1 ⊗ λ∗γK3 ⊗K−1
3

Pick divisors Ei with [Ei] = Ki, (i = 1, 2, 3). Define:

D1 = pα + λ∗αE1 − E1

D2 = pβ + λ∗βE2 − E2

D3 = pγ + λ∗γE3 − E3

I.e. Li ∼= [Di]. Now introduce the covering Σ̃ from section 4.2. Lemma 4.12

implies the existence of meromorphic functions h1 and h2 on Σ̃, such that:

πα∗(D1) + (h1) = πβ∗(D2) + (h2) = πγ∗(D3).
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Lemma 6.17. We may assume that Nmα(h2) = 1, Nmβ(h1) = 1. Furthermore, for

ζ ∈ µn, letting kA(ζ) = ζα∗(h1)
h1

, kB(ζ) = ζβ∗(h2)
h2

and k(ζ) = kA

kB
, then k(ζ) is

constant, and k(ζ) ∈ µn for all ζ ∈ µn.

Proof. Since

(Nmα(h2)) = Nmα(πγ∗(D3) − πβ∗(D2))

= π∗
α(Nmγ(D3)) − π∗

α(Nmβ(D2))

= π∗
α(p− p) = 0,

–we see that Nmα(h2) is a non-zero constant. Hence, by scaling h2, we may

assume Nmα(h2) = 1. Similarly for Nmβ(h1).

For the last claim, by the exact same argument as in the proof of lemma 4.20,
we see that (k(ζ)) = 0, and hence k must be constant. We may then calculate:

k(ζ)n = Nmβ(k(ζ)) = Nmβ(kA(ζ)) =
ζ∗β(Nmβ(h1))

Nmβ(h1)
= 1

Conjecture 1. With the above, we have: k(λ) = k(λ−1)

Remark 6.18. The conjecture will not be used until the very last sentences of the
proof.

Now let L denote πγ∗(L3). We make an auxiliary definition:

Definition 6.19. For ζ ∈ µn, denote by C(ζ) the canonical bundle map: L → L,
covering the deck transformation, ζγ , of πγ . In mnemonics:

L
C(ζ) //

��

L

��
Σ̃

ζγ

// Σ̃

Furthermore, choose isomorphisms: πα∗(L1) ∼= L and πβ∗(L2) ∼= L, and
define for ζ ∈ µn the bundle maps A(ζ), B(ζ) : L→ L by the following commu-
tative diagrams:
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L
∼= //

A(ζ)

$$

��

πα∗(L1)

��

// πα∗(L1)

��

∼= // L

��
Σ̃

Id // Σ̃
ζα

// Σ̃
Id // Σ̃

L
∼= //

B(ζ)

$$

��

πβ∗(L2)

��

// πβ∗(L2)

��

∼= // L

��
Σ̃

Id // Σ̃
ζβ

// Σ̃
Id // Σ̃

–where the upper vertical maps are, respectively, the chosen isomorphisms (∼=)
and the canonical maps covering ζβ and ζα. These definitions do not depend on
the choice of isomorphism, since any two isomorphisms are scalar multiples of
each other.

Lemma 6.20. The actions defined above are related as follows:

A(ζ) ◦B(ζ)−1 = k(ζ)−1 · C(ζ)

B(ζ)−1 ◦A(ζ) = k(ζ−1) · C(ζ)

In particular:
A(ζ) ◦B(ζ) = κ(ζ) · B(ζ) ◦A(ζ)

–where κ(ζ) = k(ζ−1) · k(ζ) ∈ µn

Proof. Consider the corresponding maps on the sheaves of holomorphic sections
in πα∗(L1) and πβ∗(L2) and L. I.e. the sheaves: Oπα∗(D1), Oπβ∗(D2) and Oπγ∗(D3)

of meromorphic functions on Σ̃ with certain restrictions on their pole orders (cf.
remark 2.5).

On these, the canonical maps covering the deck transformations on Σ̃ are

given as follows: For ζ ∈ µn, the map covering ζα : Σ̃ → Σ̃ takes g ∈ Oπα∗(D1)(U)

into (ζ−1)α∗(g) ∈ Oπα∗(D1)(ζ
α(U)). (And likewise for ζβ and ζγ ).
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Furthermore, there are canonical isomorphisms: Oπγ∗(D3) → Oπα∗(D1) and
Oπγ∗(D3) → Oπβ∗(D2) given by multiplication with h1 and h2 respectively.

Thus, for g ∈ Oπγ∗(D3):

A(ζ)(B(ζ)−1(g)) = h−1
1 · ((ζ−1)α∗(h1 · (h

−1
2 · (ζβ∗(h2 · g)))))

= (ζ−1)α∗(kA(ζ)−1 · kB(ζ) · ζβ∗(g))

= k(ζ)−1 · (ζ−1)γ∗(g)

= k(ζ)−1 · C(ζ)(g)

–where we used the fact that k(ζ) = kA(ζ)
kB(ζ) is constant in the third step.

And similarly:

B(ζ)−1(A(ζ)(g)) = h−1
2 · (ζβ∗(h2 · (h

−1
1 · ((ζ−1)α∗(h1 · g)))))

= kB(ζ) · ζβ∗((ζ−1)α∗(kA(ζ)−1g))

=
kB(ζ)

(ζ−1)γ∗(kA(ζ))
· (ζ−1)γ∗(g)

= ζβ∗
(ζ−1)β∗(kB(ζ))

(ζ−1)α∗(kA(ζ))
· C(g)

= ζβ∗
kA(ζ−1)

kB(ζ−1)
· C(g)

= k(ζ−1) · C(g)

Notice that π∗
α(L1) is equivariantly isomorphic to L with equivariant action

on L defined byA(ζ), (ζ ∈ µn). Hence, since 〈λ〉 = µn, L1
∼= L/〈A(λ)〉. Similarly,

L2
∼= L/〈B(λ)〉, and of course, L3

∼= L/〈C(λ)〉.
Furthermore, by lemma 6.16,

πα∗(λ∗α(L1)) ∼= πα∗(L1 ⊗ π∗
α(Lβ)) ∼= πα∗(L1) ⊗ π̃∗(Lβ).

Now, π̃∗(Lβ) ∼= πβ∗(π∗
β(Lβ)) is equivariantly isomorphic to πβ∗(O

(−1)

Σβ ) ∼=

O
(−1),(0)

Σ̃
, i.e. the trivial bundle on Σ̃ with equivariant structure covering Σα

given by
ζ ∈ µn : (x, ξ) 7→ (ζα(x), ζ−1 · ξ)

and equivariant structure covering Σβ given by

ζ ∈ µn : (x, ξ) 7→ (ζβ(x), ξ).
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This shows that λ∗α(L1) ∼= L/〈λ−1 ·A(λ)〉. More generally we have:

Lemma 6.21.
(λi)∗α(L1) ∼= L/〈λ−i · A(λ)〉 (6.3)

Similarly:
(λi)∗β(L2) ∼= L/〈λi ·B(λ)〉 (6.4)

and
(λi)∗γ(L3) ∼= L/〈λ−i · C(λ)〉 (6.5)

Proof. The general formula (6.3) follows by the same arguments, using lemma
6.16 recursively to show that (λi)∗α(L1) ∼= L1⊗π∗

α(Lβ)
⊗i. Formula (6.4) and (6.5)

follow in the same way. Indeed, by lemma 6.16,

πβ∗(λ∗β(L2)) ∼= πβ∗(L2) ⊗ π̃∗(Lα)−1

and
πγ∗(λ∗γ(L3)) ∼= πγ∗(L3) ⊗ π̃∗(Lα)−1.

Furthermore,
π̃∗(Lα)−1 ∼= O

(0),(+1)

Σ̃

–with equivariant action over Σβ given by:

ζ ∈ µn : (x, ξ) 7→ (ζβ(x), ζ · ξ)

and equivariant action covering Σγ given by:

ζ ∈ µn : (x, ξ) 7→ (ζγ(x), ζ−1 · ξ).

The canonical maps: λ∗α(L1) → L1, λ∗β(L2) → L2 and λ∗γ(L3) → L3 may be
described explicitly as follows.

Lemma 6.22. Let κ = κ(λ). The map B(λ) : L → L defines an equivariant bundle
map:

πα∗((κ−1)∗α(L1)) → πα∗(L1)

covering λβ on Σ̃. In particular, κ−1 = λ, and B(λ) descends to the canonical map

λ∗α(L1) → L1



6.2 Investigation of the groups of lifts. 105

covering λα on Σα. Furthermore,A(λ) : L→ L descends to the canonical bundle maps

λ∗β(L2) → L2

and
λ∗γ(L3) → L3

– covering λβ and λγ , respectively.

Proof. By lemma 6.20, we have the following commutative diagram:

L
B(λ) //

κ·A(λ)

��

L

A(λ)

��
L

B(λ) // L

(6.6)

This shows that B(λ) descends to a bundle map:

L
/
〈κ ·A(λ)〉 → L

/
〈A(λ)〉

covering λα on Σα. By lemma 6.17 we may write κ = λ−i for some i. We then
get by (6.3) a map: (λi)∗α(L1) → L1, covering λα on Σα, and since πα∗(L1) is
stable, pull-backs of L1 are non-isomorphic, hence i = 1.

Finally, such a map is unique up to a non-zero scalar, so by choosing the
isomorphisms (6.3) right, we may assure that it corresponds to the canonical
one.

The claims for L2 and L3 follow in the same way. For L2 one needs only turn
(6.6) upside down:

L
A(λ) //

κ−1·B(λ)

��

L

B(λ)

��
L

A(λ) // L

(6.7)

For L3, one calculates:

C(λ) ◦A(λ) = k(λ)A(λ) ◦B(λ)−1 ◦A(λ)

= k(λ)k(λ−1)A(λ) ◦ C(λ)

= κ(λ)A(λ) ◦ C(λ)
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to get:

L
A(λ) //

κ·C(λ)

��

L

C(λ)

��
L

A(λ) // L

(6.8)

We emphasise the fact that arose during the proof:

Addendum 6.23. κ(λ) = λ−1

Now, by the above we may construct πα∗(L1), πβ∗(L2) and πγ∗(L3) explicitly
as follows: (Keeping in mind remark 3.10.)

πα∗(L1) ∼=

(
n−1⊕

i=0

L

)/
〈X1, Y1〉 (6.9)

–where:

X1 =




A(λ)
λ−1 · A(λ)

. . .

λ−(n−1) ·A(λ)




Y1 =




0 B(λ) 0
...

. . .
. . .

0
. . . B(λ)

B(λ) 0 . . . 0




Similarly,

πβ∗(L2) ∼=

(
n−1⊕

i=0

L

)/
〈X2, Y2〉 (6.10)

– where:

X2 =




B(λ)
λ · B(λ)

. . .

λ(n−1) ·B(λ)
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Y2 =




0 A(λ) 0
...

. . .
. . .

0
. . . A(λ)

A(λ) 0 . . . 0




and

πγ∗(L3) ∼=

(
n−1⊕

i=0

L

)/
〈X3, Y3〉 (6.11)

–where

X3 =




C(λ)
λ−1 · C(λ)

. . .

λ−(n−1) · C(λ)




Y3 =




0 A(λ) 0
...

. . .
. . .

0
. . . A(λ)

A(λ) 0 . . . 0




Remark 6.24. Notice that for each i, Xi and Yi commute, so that the quotients

(6.9), (6.10) and (6.11) are indeed well defined bundles on Σ = Σ̃
/
〈λα, λβ〉.

Lemma 6.25. The automorphisms of
⊕n−1

i=0 L given by the matrices M and N below
descend through the identifications (6.9), (6.10) and (6.11) to isomorphisms:

Φ : πβ∗(L2) → πα∗(L1)

and
Ψ : πγ∗(L3) → πα∗(L1)

We have:

M =




1 1 1 . . . 1
1 λ λ2 . . . λn−1

1 λ2 λ4 . . . λ2n−2

...
...

...
...

1 λn−1 λn−2 . . . λ




(In other words, the (i, j)′th entry in M is λ(i−1)(j−1).)
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Finally, we have: N = DM , where

D = diag(d1, d2, d3, . . . , dn)

–with di = k(λ−1)i−1 · λ−(1+2+···+(i−2)).

Proof. The proof is simply a matter of checking that

MX2 = Y1M , MY2 = X1M

and
NY3 = X1N , Y1N = N(Y3X

−1
3 )

The fist two identities are straightforward computations, using that the rows
and columns in M are ”eigenvectors” of Y1 and Y2. 2

For the third identity, notice that X1 and D commute, so NY3 = D(MY3) =
D(MY2) = D(X1M) = X1(DM). (Not using anything about D, except that it is
diagonal.)

For the last identity we will argue that D−1Y1DM = MY3X
−1
3 . Let

Λ = diag(1, λ, λ, . . . , λn−1).

Furthermore, denote by A(λ) the map given by diag(A(λ), A(λ), . . . , A(λ)), and
similarly for B(λ) and C(λ). Notice that X1 = A(λ)Λ−1, X2 = B(λ)Λ and
X3 = C(λ)Λ−1. Notice also that D has been constructed so that

di+1

di
= k(λ−1) · λ−(i−1)

(and in particular, d1dn
= k(λ−1) · λ). This implies that D−1Y1D = k(λ−1)Λ−1Y1.

We may now calculate:

D−1Y1DM = k(λ−1)Λ−1Y1M

= k(λ−1)Λ−1MX2

= k(λ−1)B(λ)Λ−1MΛ

And on the other hand:

MY3X
−1
3 = MY2X

−1
3

= X1MX−1
3

= A(λ)Λ−1MC(λ)−1Λ

= k(λ−1)B(λ)Λ−1MΛ

2”Eigenvectors” is to be understood in a broad sense, since Y1 and Y2 are not really vector space
automorphisms, because of the moving of fibres involved.
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–where we used the commutator relations from lemma 6.20 in the final step.

Lemma 6.26. Let E = πα∗(L1). The endomorphisms Tα, Tβ and Tγ defined on E∗
p in

the beginning of the proof are related as follows:

Tα ◦ Tβ = k(λ)−1Tγ

If conjecture 1 is true, this concludes the proof of theorem 6.14.

Proof. Let p̃ ∈ Σ̃ be the point with πα(p̃) = pα, πβ(p̃) = pβ and πγ(p̃) = pγ . (No-
tice that this requires a certain choice of pγ , namely pγ = pα ⊗ pβ — considering
the points as elements in Lα, Lβ and Lγ respectively. Since no other restrictions
have been made on the choice of pγ , it is indeed possible.)

Choosing a basis for (
⊕n

i=1 L)p̃ which is consistent with the direct sum, the
dual basis corresponds to the basis (ωαi ) = (ωαλi) for (πα∗(L1))

∗
p introduced in

lemma 6.10. (In lemma 6.10 it was used without the ordering and without the α
in the notation, though.) Hence, Tα corresponds, in this basis, to multiplication
with the matrix Λ introduced in the proof of lemma 6.25 above.

Similar remarks apply to β and γ, giving bases (ωβi ) and ωγi for (πβ∗(L2))
∗
p

and (πγ∗(L3))
∗
p.

Furthermore, in these bases, ΦTp : (πα∗(L1))
∗
p → (πβ∗(L2))

∗
p and ΨT

p : (πα∗(L1))
∗
p →

(πγ∗(L3))
∗
p are given by the matrices MT and NT from lemma 6.25.

Hence, under the isomorphisms Φ and Ψ, Tβ and Tγ induce endomorphisms
of (πα∗(L1))

∗
p) which, along with Tα are given in the basis (ωαi ) as follows:

Tα = Λ

Tβ = (MT )−1ΛMT

Tγ = (NT )−1ΛNT

SinceM is symmetric, the latter two may be calculated easily as follows. No-
tice that multiplying M with Λ from the left is the same as shifting its columns
to the left, i.e. multiplying from the right with the matrix:

B =




0 1
1 0

. . .
. . .

1 0
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Hence,
Tβ = M−1ΛM = M−1MB = B

Notice that

Tα ◦ Tβ = ΛB =




0 1
λ 0

λ2 . . .

. . .
. . .

λn−1 0




Furthermore,

Tγ = D−1M−1ΛMD = D−1BD =




0 dn

d1
d1
d2

0

d2
d3

. . .

. . .
. . .
dn−1

dn
0




=
1

k(λ−1)




0 λ−1

1 0

λ
. . .

. . .
. . .

λn−1 0




= k(λ)




0 1
λ 0

λ2 . . .

. . .
. . .

λn−1 0




–where we used addendum 6.23 in the last step. This proves the claim of the
lemma.

Finally, provided conjecture 1 is true, addendum 6.23 shows that k(λ)−2 = λ.
Since by lemma 6.17, k(λ) ∈ µn, hence:

λ
n+1

2 = k(λ)−2 n+1
2 = k(λ)−1
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Remark 6.27. The groups E(n, d) act on the spacesZk(n,∆d) of algebraic sections
in L⊗k

n,d as follows: An element ρ ∈ E(n, d) takes a section s : M(n,∆d) → L⊗k
n,d

into the section: ρ⊗k ◦ s ◦ α−1.
The spaces Zk(n,∆d) are isomorphic (although not canonically!) to the Ver-

linde Vector spaces of the underlying closed, oriented surface S of Σ, in the
gauge theoretic construction of topological quantum field theories (correspond-
ing to SU(n), in dimension 2+1). In the next chapter we shall see that it is in fact
possible to extend the construction into a natural action on the Verlinde vector
spaces.





7

The action on TQFT
vector spaces

In this chapter we discuss the relevance of the thesis with respect to the gauge
theoretic construction of topological quantum field theories.

We begin by presenting the moduli spaces from the gauge theoretic view-
point and reviewing, briefly, the elements of Alexrod, Della Pietra and Witten’s
[18] and Hitchin’s [16] construction of a projectively flat connection on the Ver-
linde vector bundles over Teichmüller space.

Next, we discuss the group actions on the moduli spaces from the gauge
theoretic viewpoint and how the groups E(n, d) act on the Verlinde bundles.

Eventually, we outline how the action goes through the final stages of the
construction of modular functors, hence inducing a structure on the Verlinde
vector spaces as representations of the groups of lifts.

7.1 Differential geometry of the moduli spaces

I will take a slightly simpler, and more geometric approach to Hitchin’s con-
struction than originally proposed in [18] and [16]. This approach is due to
Andersen. (See e.g. [2]).

Let S be a closed, oriented surface of genus g ≥ 2, and fix p ∈ S. Let n ≥ 2
and d be integers, and let M denote the set:

M = Homd(π1(Σ \ p), SU(n))irr/SU(n),

113
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consisting of conjugacy classes of representations φ : π1(Σ\p) → SU(n) sending
a small, closed loop around p to exp(2πi dn )I 1, and satisfying the irreducibility
criterion that Im(φ) has finite centraliser in SU(n).

M has a natural structure as a smooth manifold of real dimension (g−1)(n2−1).
Furthermore, using holonomy representations of the fundamental group (See
chapter 2.9 in [32]), the elements of M can be identified with gauge equiva-
lence classes of irreducible, flat connections in the trivial SU(n) principal bundle
P = Σ × SU(n).2

From the above identification M inherits the structure of a symplectic mani-
fold. This structure can be described as follows: Fix an invariant inner product
{·, ·} on su(n), the Lie Algebra of SU(n). It can be normalised by demanding
that 1

6{ϑ∧ [ϑ∧ϑ]} yields a generator of the image of the integer cohomology in-
side real cohomology of degree 3 of SU(n). (Here ϑ is the su(n)-valued Maurer
Cartan 1-form on SU(n), and the symbols {· ∧ ·} and [· ∧ ·] denote the maps:

Ωp(SU(n), su(n)) ⊗Ω0(SU(n)),su(n)) Ωq(SU(n), su(n)) → Ωp+q(SU(n), su(n))

given by wedging forms on SU(n) and taking inner product resp. bracket on
coefficients.)

Then, given A a flat connection in P , representing a point [A] in M , the tan-
gent space T[A]M can be canonically identified with H1(Σ, dA), where dA is the
connection and corresponding higher differential induced by A on the adjoint
bundle adP = P ×SU(n) su(n). Hence, for a pair of tangent vectors, represented
by dA-closed 1-forms φ1, φ2 with values in adP , we may define:

ω(φ1, φ2) =

∫

Σ

{φ1 ∧ φ2}.

Furthermore, Freed has constructed a Hermitian line bundle L on M with
a connection ∇, compatible with the symplectic structure in the sense that the
curvature of ∇ is equal to i

2πω. (See [2] for detailed references on this.) The
induced connection on tensor powers of L will be denoted by ∇ as well.

Now, let T denote Teichmüller space of S. For each σ ∈ T , S gets the struc-
ture of a Riemann Surface, which will be denoted Σσ .

This induces a complex structure Iσ on M as follows: The complex structure
on Σσ defines a Hodge ∗-operator on 1-forms on S which, by Hodge theory,

1Notice that this is unchanged under conjugation by SU(n) since exp(2πi d

n
)I is central.

2Since π1(SU(n)) = π2(SU(n)) = 0, any principal SU(n) bundle is in fact trivialisable and may
be used.



7.2 The projectively flat connection 115

gives a decomposition at each [A] ∈M (Again viewingM as the moduli space of
flat connections, and using the same description of the tangent space as above):

T[A]M = H1(Σ, dA) = Ker(dA) ∩ Ker(∗dA∗).

Hence, the ∗-operator acts on T[A]M , with ∗2 = −1, and we may define a
complex structure Iσ = −∗ on M . Narasimhan and Seshadri ([10], see also sec-
tion 2 in [16]) have shown that this in fact gives an integrable complex structure
on M , hence making M into a Kähler manifold, (Mσ, Iσ, ω).

This also induces a structure on L as a holomorphic line bundle (denoted
Lσ), by formally letting ∇0,1 denote the differential operator:

1

2
(1 + iIσ)∇ : C∞(M,L) → Ω0,1(M,L)

and defining a local section s to be holomorphic if ∇0,1s = 0. (See [16] for
details.)

LetMσ
s (n,∆d) andMσ

ss(n,∆d) denote the moduli spaces of stable resp. semi-
stable bundles on Σσ .

Narasimhan and Seshadri ([9]) have shown that (M, Iσ, ω) can be identified
with the underlying Kähler manifold of Mσ

s (n,∆d). Under this identification,
the line bundle Lσ corresponds to Ln,d, the restriction to the stable part of the
ample generator of the Picard group of Mσ

ss(n,∆d).
Since Mσ

ss(n,∆d) has rational singularities, (a version of) Hartog’s theorem
ensures that every algebraic section in L⊗k

n,d over Mσ
s (n,∆d) can be extended

across the singularities to Mσ
ss(n,∆d). Thus, the space Zk of holomorphic sec-

tions in L⊗k
σ is identified with algebraic sections in L⊗k

n,d over Mσ
ss(n,∆d), on

which our groups E(n, d) act naturally.

7.2 The projectively flat connection

Still, let T denote Teichmüller space of S. For k ∈ N, let Ek be the trivial bundle:
T × C∞(M,Lk). Ek contains the subbundle Zk, whose fibre at each σ ∈ T con-
sists of the sections that give holomorphic sections in Lkσ over (Mσ, Iσ, ω). This
is sometimes referred to as the Verlinde bundle of S (”At level k, corresponding
to the given values of n and d.”)

The idea is to construct a connection ∇H inEk which restricts to a connection
in Zk. I.e. such that for each section s : T → Hk with s(σ) ∈ H0(Mσ,Lkσ) for
each σ ∈ T , and for each vector field X on T , we have: ∇0,1(∇H

X(s)) = 0.
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The goal can be achieved by constructing a smooth map u : T (T ) → D(M,Lk),
whereD(M,Lk) denotes the space of differential operators on C∞(M,Lk), such
that for every section s : T → Ek with s(σ) ∈ H0(Mσ,Lkσ) for all σ ∈ T , and for
every tangent vector field X on T , we have:

i

2
X [I]∇1,0(s) + ∇0,1(u(X)(s)) = 0.

(Where X(I) means the derivative of I in the direction of X). Then letting

∇H
v = ∇t

v − u(v),

where ∇t is the trivial connection in Ek, gives a connection with the desired
property. See [2] for the definition of u.

As mentioned before, Hitchin constructs the connection in a rather different
way, using hypercohomology and Kodaira-Spencer deformation theory. How-
ever, he shows, eventually, that the resulting connection is given locally as de-
scribed above (formulas (3.12) in [16]). Hence the two constructions agree, and
we may import the following theorem:

Theorem 7.1 (Hitchin; Axelrod, Della Pietra, Witten). The connection defined
above in Zk(n, d) is projectively flat. I.e. it induces a flat connection in P(Zk(n, d)).

Remark 7.2. Hitchin excludes the case g = 2 in his construction. However, Van
Geemen and De Jong ([17]) have extended the construction to cover g = 2 as
well.

7.3 The group actions from the topological viewpoint

For simplicity we restrict the attention to the case where n is an odd prime, and
d = 0. In this case M(S) consists of conjugacy classes of irreducible representa-
tions of π1(S).

We have for a compact Riemann surface Σ that J (n)(Σ) ∼= Hom(π1(Σ), µn).
An explicit isomorphism, from right to left, is given by mapping a representa-
tion R to the line bundle given by:

Σ̃ ×π1(Σ) C

–where Σ̃ denotes the universal cover of Σ (not to be confused with Σ̃ from chap-

ter 4) and π1(Σ) acts on C via R, and on Σ̃ as the group of deck transformations.
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For a closed, oriented surface S, we may define the action of Hom(π1(S), µn)
on M simply by multiplication. In other words, R ∈ Hom(π1(S), µn) takes a
class [φ] ∈M to R · φ. This is clearly independent of the choice of generator.

Furthermore, the Narasimhan-Seshadri map associates to a class [φ] ∈M the

vector bundle E = Σ̃×π1(S) Cn, where π1(S) acts on Cn via φ. Hence, whenever
S is given a complex structure, the Narasimhan-Seshadri map takes the action
of Hom(π1(S), µn) on M to the action of J (n) on M(n,O).

It then makes sense to define the groups E(n, d), depending only on the
closed, oriented surface S:

Let R ∈ Hom(π1(S), µn). Let |M |1R be the connected component of M con-
taining the element generated by diag(R,R2, . . . , Rn) : π1(Σ) → SU(n). We then
define ρR to be the lift to L acting as the identity in fibres above |M |1R.

The groups E generated by such lifts acts naturally, by conjugation, on sec-
tions in L⊗k. I.e. ρR taking a section s ∈ C∞(M,Lk) to the section ρ⊗kR ◦ s ◦R−1.

For each point σ ∈ T , the identification of M with Mσ
s (n,∆d) takes the lifts

defined above to the ones defined in definition 6.5. This implies by remark 6.27
that the action of ρR preserves the holomorphic sections in Lσ .

Remark 7.3. Of course, the presentation of the groups of lifts given in chapter 6
is far from apparent with this topological definition.

7.4 The action on the TQFT spaces

As described above, the groups E generated by the lifts ρR act on sections in
L⊗k, for each σ ∈ T preserving the holomorphic sections. Thus, they define a
fibrewise (i.e. inducing the identity on the base) action on the Verlinde bundle
Zk over Teichüller space.

Work is in progress by the author to show that this action is compatible with
Hitchin’s connection, in the sense that for any section s : T → Ek , any vector
field X on T and any lift ρR of an element R ∈ Hom(π1(S), µn), we have:

ρR(∇X(ρ−1
R (s))) = ∇X(s)

Remark 7.4. Since the trivial connection ∇t is clearly invariant under the action
(the latter being the identity on the base), it remains only to show that the map
u is invariant.

The final steps of the construction of a modular functor (and hence a topo-
logical quantum field theory) go as follows. (For simplicity we fix a value of k
and remove it from the notation wherever possible.)
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One would like to construct a line bundle L over T with a connection ∇op

having the opposite curvature of ∇H . This would allow a genuinely flat connec-
tion to be defined in the tensor product Zk ⊗ L.

There are obstructions towards doing this, however, in a way that preserves
the action of the mapping class group. But allowing the passage to a central
extension of the mapping class group, such obstructions disappear, and indeed,
by transferring the entire situation to the realm of conformal field theory, An-
dersen and Ueno have recently completed the construction and showed that it
yields a modular functor.

In outline, conformal field theory produces a vector bundle V †, the bundle of
conformal blocks, over Teichmüller space, along with a projectively flat connec-
tion ∇†. (See [22].) It has been shown by Laszlo ([20]) that this construction is
equivalent to the Verlinde vector bundle endowed with Hitchin’s connection.

Within the setting of conformal field theory, Andersen and Ueno have used

a so-called opposite abelian theory to construct of a line bundle L†
ab over T with

a connection ∇†
ab, whose curvature Ω∇ab

satisfies:

Ω∇† =
c

2
Ω∇†

ab

–Where c is a rational number, called the central charge of the conformal field

theory. It is given by: c = (k ·dim(SU(n)))
/
(k+n). The fibre of L†

ab over a point
σ ∈ T is simply det(H1(Σσ,O)).

Now, Teichmüller space being contractible, one may construct the fractional
tensor power

(L†
ab)

⊗−c/2

and endow the bundle:

V † ⊗ (L†
ab)

⊗−c/2

with the genuinely flat connection:

∇ = ∇H ⊗ 1 + 1 ⊗ (∇†
ab)

⊗−c/2

We may thus define Vk to be the space of covariantly constant sections in
this bundle. Doing that, Andersen and Ueno ([5]) have shown, first of all, that
the construction is compatible with the action of the mapping class group on
Teichmüller spaces, ensuring that Vk becomes a representation of a central ex-
tension of the mapping class group.
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Finally, Andersen and Ueno show that the association of Vk to the surface S
satisfies all the axioms for a modular functor, and thus by the work of Walker
and Grove ([15]) gives a topological quantum field theory in dimension 2 + 1,
with V as the TQFT vector spaces associated to S.

The action of the groups E(n, d) goes through this final step easily, simply

tensoring with the identity action on the fractional power of L†
ab. Supposing it

preserves Hitchin’s connection, it then preserves covariantly constant sections,
thus inducing a representation on the TQFT vector spaces.

Remark 7.5. In a way, the representations on the TQFT vector spaces are not new.
From the topological viewpoint (using modular tensor categories to construct
Reshetikhin-Turaev modular functors), Blanchet and others have constructed
similar representations and decompositions of the Verlinde vector spaces. Since
the two constructions are currently being shown to be equivalent ([6]), it would
be interesting to understand the topological realisation of the results in the the-
sis.
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fibrés semi-stables sur les courbes algébriques, Invent. math. 97 (1989), 53–94.

[9] M. S. Narasimhan, C. S. Seshadri, Stable and unitary vector bundles on a com-
pact Riemann surface, Ann.Mat. 82 (1965), 540–67.

[10] M. S. Narasimhan, C. S. Seshadri, Holomorphic vector bundles on a compact
Riemann surface, Math.Ann. 155 (1964), 69–80.

[11] C. Blanchet, A spin decomposition of the Verlinde formulas for type A modular
categories, preprint 2002.

121



122 BIBLIOGRAPHY

[12] A. Beauville, The Verlinde formula for PGLp, alg–geom, 9609017, (1996).

[13] A. Beauville, Conformal Blocks, Fusion Rules and the Verlinde Formula, Israel
Math. Conf. Proc. 9 (1996), 75–96.

[14] C. Blanchet, N. Habegger, G. Masbaum, P. Vogel, Topological quantum field
theories derived from the Kauffman bracket, Topology 34 (1995), 883–927.

[15] J. Grove, Constructing TQFTs from Modular Functors, J.Alg.Geom. 2 (1993),
507–568.

[16] N. Hitchin, Flat Connections and Geometric Quantization, Comm. Math. Phys.
131 (1990), 347–380.

[17] B. Van Geemen, A. J. De Jong, On Hitchin’s connection, J. of Amer. Math.
Soc., 11 (1998), 189–228.

[18] S. Axelrod, S. Della Pietra, E. Witten, Geometric quantization of Chern-Simons
gauge theory., J.Diff.Geom. 33 (1991), 787–902.

[19] E. Witten, Quantum field theory and the Jones polynomial, Comm. Math. Phys.
121 (1989), 351–399.

[20] Y. Laszlo, Hitchin’s and WZW connections are the same, J.Diff.Geom. 49 (1998),
no.3, 547–576.

[21] N. Y. Reshetikhin, V. G. Turaev, Invariants of 3-manifolds via link polynomials
and quantum groups, Invent.Math. 103 (1991), 547–597.

[22] A. Tsushia, K. Ueno, Y. Yamada, Conformal field theory on universal families
of stable curves with gauge symmetries, Advanced Studies in Pure Math. 19
(1989), 459–566.

[23] G. Segal, The definition of conformal field theory, Preprint.

[24] P. E. Newstead, Introduction to moduli problems and orbit spaces,

[25] H.Grauert, R.Remmert, Theorie der Steinschen Räume, Springer-Verlag, 1977.
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