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Dansk resumé

Lad G være en sammenhængende, semisimpel lineær algebraisk gruppe over et al-
gebraisk lukket legeme k. S̊a virker G p̊a dens Lie algebra under den adjungerede
virkning. I afhandlingen betragter vi de nilpotente baner under denne virkning.
Geometrien af de nilpotente baners aflukning er gennem årene blevet undersøgt
nøje, specielt om aflukningerne er normale. Hvis k er af karakteristik nul, er dette
spørgsm̊al tidligere blevet besvaret n̊ar G er af type A,B,C eller D. I 2003 klassi-
ficerede Eric Sommers de nilpotente baner med normal aflukning n̊ar G er af type
E6 og karakteristikken af k er nul. I afhandlingen viser vi at denne klassificering
ogs̊a gælder i god karakteristik n̊ar G er enkeltsammenhængende.

iii





Introduction

Let G be a connected, semi-simple linear algebraic group over an algebraically
closed field k. Then G acts on its Lie algebra g under the adjoint action. An
element x ∈ g is called nilpotent if there exists a closed, unipotent subgroup H of
G such that x belongs to the Lie algebra of H . If x ∈ g is nilpotent and g ∈ G,
then also g.x is nilpotent, hence it makes sense to define nilpotent orbits inside g.

There are only finitely many such nilpotent orbits in g. In characteristic zero
and in characteristic p with p > 3(h− 1) where h is the Coxeter number of G, the
nilpotent orbits have been classified by Bala and Carter in [BC76a] and [BC76b].
The result was extended by Pommerening to good characteristic in [Pom80] in-
cluding some case by case studies. Recently Premet has given a conceptual proof
of the classification, cf. [Pre03].

The geometry of the closures of the nilpotent orbits has been studied for many
years. In particular a great deal of work has been put into deciding whether or
not the closures of the nilpotent orbits are normal. For example all adjoint orbits
have normal closure when G = SLn or G = GLn. When G is of type B, C or D
and the characteristic is zero, the nilpotent orbits with normal closure have been
classified, and it turns out that not all orbits have normal closure. For more results
on normality one should consult the surveys in Section 8.6. in Jantzen’s part of
[JN04] and in Section 7.20 in [Hum95].

In the paper [Som03] Eric Sommers characterizes which nilpotent orbits do
have normal closure and which do not when G is of type E6 and the characteristic
of k is zero. The aim of this thesis is to prove that the result remains valid when
the characteristic of k is a prime number p with p ≥ 5, i.e. when the characteristic
of k is good for G. This is also our main result. In the notation of Bala-Carter the
result is:

Theorem 1. Let G be a connected, simply connected, semi-simple linear algebraic
group over an algebraically closed field k. Suppose G is of type E6, and that the
characteristic of k is good for G. Then the following nilpotent orbits in g have
normal closure: E6, E6(a1), D5, E6(a3), D5(a1), A5, A4 + A1, D4, D4(a1), D4,
2A2 +A1, A2 + 2A1, A2, 3A1, 2A1, 0.

The last five nilpotent orbits do not have normal closure: A4, A3 + A1, A3,
2A2, A2 +A1.

We will use the same method as Eric Sommers in [Som03] to show normality.
The overall idea in Sommers’ paper is to start with the orbits of high dimension
and to work with orbits of lower and lower dimension. To be more precise we have
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vi Introduction

a partial order ≤ on the set of nilpotent orbits: If O and O′ are two nilpotent
orbits, then we define O ≤ O′ if the closure of O is contained in the closure of
O′. Figure 1 shows the partial order on the set of nilpotent orbits in type E6

in good characteristic. If we know that an orbit O has normal closure, we can
sometimes use this to prove that an orbit O′ with O′ ≤ O (i.e. O′ is below O in
the diagram) has normal closure. Often this smaller orbit O′ will be right below O
in the diagram. In the diagram the underlined orbits do not have normal closure,
whereas the rest of the orbits do have normal closure.

A3 + A1

E6

E6(a1)

D5

E6(a3)

D5(a1)

D4

D4(a1)

2A2 + A1

2A2

A2 + A1

A2

3A1

2A1

A1

0

A2 + 2A1

A3

A4

A4 + A1

A5

Figure 1: Orbit diagram, cf. Section 13 in [Car85].

The main ideas in [Som03] can be generalized to good characteristic. This
generalization will be described thoroughly. The tool is to turn the question about
normality into a question concerning cohomology groups where one can apply
various vanishing theorems. However Sommers applies a vanishing theorem by
Broer, Proposition 4 in [Som03], which is not valid in prime characteristic since
it relies on the Grauert-Riemenschneider vanishing theorem. We will avoid this
theorem by using a new method, see Example 3.15, and a vanishing theorem by
Broer which has been improved by H. H. Andersen.
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Summary

The thesis is structured as follows.

Chapter 1: In this chapter we settle the notation and state some well known
facts about algebraic groups. Then we introduce the adjoint orbits and discuss
when the orbit maps are separable. Furthermore we will define the nilpotent orbits
and look at various questions related to these orbits. Finally we introduce Levi
factors.

Chapter 2: We will explain the main method used to prove normality of the
closures of the nilpotent orbits. This is the same method as Sommers uses in
[Som03]. It turns out that a good way to look at the closures of the nilpotent
orbits is to consider certain subspaces V ⊆ g satisfying that G.V is the closure of
a nilpotent orbit. Hence we can work with these subspaces instead of the nilpo-
tent orbits. The next step is to translate the normality question into a question
concerning cohomology groups (which depend on these V ’s) and birationality of
certain morphisms. In Section 2.1 we will therefore describe some conditions under
which these morphisms are birational.

In Section 2.2 we will explain how the main ideas in [Som03] can be generalized
to good characteristic. This generalization will be described in detail. In particular
we will explain how to define some of these V ’s. The V ’s depend on weighted
Dynkin diagrams which are in one to one correspondence with nilpotent orbits.
This is explained in Premet’s paper [Pre03] in good characteristic. We will also
state a new result on birationality which relies on Premet’s work, see Lemma 2.8
and Corollary 2.9.

Let P be a parabolic subgroup of G. Richardson’s dense orbit theorem states
that there exists a unique dense P -orbit in the Lie algebra of the unipotent radical
of P . The complement of this orbit is therefore closed. In Section 2.3 we will
consider the irreducible components of this variety. We will use the results in a
new and easier way to prove that the non special orbit A5 has normal closure. All
the results in this section are new.

Chapter 3: Since the main method of proving normality was reduced to a
question concerning cohomology groups, we need some results about vanishing
cohomology groups. In [Som] Eric Sommers proves a proposition concerning co-
homology groups in characteristic zero, and he also states that the proposition
works in a more general setting, see Proposition 6 in [Som03]. Section 3.1 contains
a detailed proof of the proposition in this more general setting. This also includes
characteristic p > 0, but with a lower bound on p, see Proposition 3.3. The proof
builds on Lemma 3.4 which Eric Sommers proves in characteristic zero. Again his
proof works in characteristic p > 0 with a lower bound on p. Using a method based
on The Strong Linkage Principle as suggested by H. H. Andersen, the lemma has
been improved so it does not require this lower bound on p. This also improves
the bound on p in Proposition 3.3.
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In Section 3.2 we describe how H. H. Andersen has improved a vanishing the-
orem by Broer, Theorem 3.9.(iii) in [Bro94]. We explain a new method to obtain
vanishing cohomology groups using this vanishing theorem, see Example 3.15. Us-
ing the new method we can avoid a vanishing theorem by Broer, Proposition 6 in
[Som03], which is only valid in characteristic zero since it relies on the Grauert-
Riemenschneider vanishing theorem. When we use Example 3.15 in the actual
calculations in Chapter 4, we will do so by using a computer program that we
have developed for this purpose.

Chapter 4: In Chapter 4 we prove normality of orbit closures. The calculations
are quite similar to the calculations in [Som03], however we have included all details
to make the thesis independent of [Som03].

In [Som03] it is proved that the three non special nilpotent orbits A5, 2A2 +A1

and 3A1 have normal closure by using some reductions to SL3 × SL3 × SL2 or to
SL2 × SL2 × SL2. The calculations get very long and tedious, and the method is
probably hard to use if one wants to prove that a non special orbit in a group
of type E7 and E8 has normal closure. In order to avoid these calculations we
have used another method to prove the normality of the closure of A5. The new
method uses that A5 has codimension two in the closure of E6(a3). Since 3A1

has codimension two in the closure of A2, the method will probably also work
for the orbit 3A1. Unfortunately there has not been enough time to finish all the
details for 3A1, and instead the original proof is included. The idea behind the
new method of proving normality of the closure of A5 is due to Eric Sommers.

Chapter 5: Here we will show that the last five nilpotent orbits do not have
normal closure. This result is obtained directly from the result in characteristic
zero by introducing group schemes over Z and making base change.

Appendix A: Here the Java code for the computer program mentioned in the
review of Chapter 3 is presented. Furthermore the code for a program that has
been used for other calculations is included.
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Chapter 1

Preliminaries

In this chapter we have gathered well known results about linear algebraic groups
and nilpotent orbits. The main references are [Spr98], [Hum75], and Nilpotent
Orbits in Representation Theory by Jantzen in [JN04].

1.1 Linear algebraic groups

Let k be an algebraically closed field, and let G be a connected, semi-simple linear
algebraic group over k. Let T be a maximal torus in G and B a Borel subgroup
containing T . Let X∗(T ) respectively X∗(T ) denote the character respectively
cocharacter group of T , and let Φ ⊆ X∗(T ) be the roots of G relative to T .

We have a pairing of characters and cocharacters

〈·, ·〉 : X∗(T ) ×X∗(T ) → Z.

For a root α ∈ Φ we let α∨ ∈ X∗(T ) denote the corresponding coroot. A character
λ ∈ X∗(T ) is called dominant if

〈λ, α∨〉 ≥ 0 for all α ∈ Π.

Now G acts on itself by conjugation, and for g ∈ G we define

Int(g) : G→ G by Int(g)(h) = ghg−1.

Let g denote the Lie algebra of G, and let [−,−] denote the Lie bracket on g. Then
G acts on g under the adjoint action

Ad : G→ GL(g)

where Ad(g) is the differential of Int(g). For g ∈ G and x ∈ g, we will write g.x
for Ad(g)(x). Moreover the differential of Ad is

ad : g → gl(g)

where ad(x) = [x,−] for x ∈ g.

1



2 1. Preliminaries

The Lie algebra g can be written as a direct sum

g = t ⊕
(⊕

α∈Φ

gα

)

where t is the Lie algebra of T , and gα is the root space

gα = {x ∈ g|∀t ∈ T : Ad(t)(x) = t.x = α(t)x}.

Let U denote the unipotent radical of B, and let u denote its Lie algebra. Now
fix the negative roots of Φ to correspond to the T -weights of u. Let Φ− and Φ+

denote the set of negative and positive roots, respectively. Let Π denote the set of
simple (positive) roots.

Given a root α ∈ Φ there exists a unique connected T -stable subgroup Uα
of G having Lie algebra gα. We will call Uα a root group. Then there exists an
isomorphism uα : k → Uα such that tuα(x)t−1 = uα(α(t)x) for all t ∈ T and all
x ∈ k. We call such a map an admissible isomorphism.

Let P be a parabolic subgroup of G, and let uP denote the Lie algebra of the
unipotent radical of P . If I ⊆ Π is a subset of simple roots, we will let PI denote
the corresponding parabolic subgroup containing B. Let ΦI denote the set of roots
which are linear combinations of the roots in I. Then

uPI
=

⊕

α∈Φ−\ΦI

gα.

Now PI normalizes its unipotent radical, and hence uPI
is a PI -stable submodule

of g under the adjoint action.
Let W be the Weyl group of G with respect to T . For α ∈ Φ we let sα ∈ W

denote the corresponding simple reflection in the Weyl group. The Weyl group W
acts on X∗(T ), and we write w(λ) for the action of w ∈ W on λ ∈ X∗(T ). In the
notation with coroots we have

sα(λ) = λ− 〈λ, α∨〉α for α ∈ Φ, λ ∈ X∗(T ).

Now let

ρ =
1

2

∑

α∈Φ+

α,

and define the “dot” action of W on X∗(T ) by

w · λ = w(λ + ρ) − ρ for w ∈W,λ ∈ X∗(T ). (1.1)

The group G is called simple as an algebraic group (or almost simple) if G is
non-commutative and has no closed connected normal subgroups other than itself
and the group consisting of the identity element in G. Note that this is not the
same as being simple as an abstract group. The root system, Φ, of G is irreducible
if and only if G is simple as an algebraic group.



1.2. Induced representations and vector bundles 3

Let H be a closed subgroup in G. For x ∈ g we define the centralizer of x in
H to be the group

ZH(x) = {g ∈ H |Ad(g)(x)x = g.x = x}.

Let h denote the Lie algebra of H , then we also define the centralizer of x in h to
be

zh(x) = {z ∈ h|ad(z)(x) = x}.

By a representation (or module) we will always mean a rational representation.
Let V be an H-representation. Then let V ∗ denote the dual H-representation, let
SnV denote the n’th symmetric power of V and ∧nV the n’th exterior power of
V . We will use the convention SnV = 0 and ∧nV = 0 when n < 0.

Let λ ∈ X∗(T ) = X∗(B). Then λ gives rise to a one dimensional B-represen-
tation with weight λ. This representation will sometimes be denoted λ.

1.2 Induced representations and vector bundles

Let H be a closed subgroup in G. We have the induction functor, IndGH(−), which
to an H-representation gives a G-representation. Let RiIndGH(−) denote the right
derived functor of IndGH(−).

Let P be a parabolic subgroup in G, and let V be a finite dimensional P -
representation. Then P acts on the right on G × V as (g, v)p = (gp, p−1.x) for
p ∈ P , g ∈ G and x ∈ V . Since G → G/P has local sections, the quotient of
G × V/P exists. We will write G ×P V for this quotient. Given (g, x) in G × V
we let [(g, x)] denote the image in G ×P V . Note that G acts on G ×P V via
g.[(g′, x)] = [(gg′, x)].

The morphism

G×P V → G/P given by [(g, x)] 7→ gP

makes G ×P V into a vector bundle over G/P of rank equal to dimV . Let L(V )
denote the associated locally free sheaf of sections on G/P , and let Hi(G/P,L(V ))
denote the i’th cohomology group of L(V ) on G/P . Then

Hi(G/P,L(V )) = RiIndGP (V )

and we will write Hi(G/P, V ) for these cohomology groups. We will use the con-
vention Hi(G/P, V ) = 0 if i < 0.

Assume furthermore that there exists a finite dimensional G-representation Z
such that V is a P -subrepresentation of Z. Let

PV = {(gP, x) ∈ G/P × Z|g−1.x ∈ V }.

Then PV is closed in G/P × Z. Since G/P is projective, it is complete, and the
projection G/P × Z → Z is a closed morphism. Since the image of PV under
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this morphism equals G.V , we get that G.V is closed in Z. Moreover we have an
isomorphism

G×P V → PV given by [(g, x)] 7→ (gP, g.x),

and hence the morphism

G×P V → G.V given by [(g, x)] 7→ g.v (1.2)

is projective. Also note that this morphism is G-equivariant.
IfX is a variety over k, we will let k[X ] denote the set of global regular functions

on X . With this notation we have

k[G×P V ] ≃
⊕

n≥0

H0(G/P, SnV ∗) (1.3)

as G-equivariant graded algebras.

1.3 Separability of orbit maps

Throughout this section G is still semi-simple. For x ∈ g we can define the orbit
Ad(G).x = G.x of the adjoint action of G on g. These adjoint orbits are all even
dimensional. Take a look at the orbit map

G→ G.x ⊆ g

sending g to g.x. Later on we will need these morphisms to be separable and we
will therefore discuss when this is satisfied. By Section 9.1 in [Bor69] the following
are equivalent

1. The orbit map G→ G.x is separable.

2. The induced morphism G/ZG(x) → G.x is an isomorphism.

3. The Lie algebra of ZG(x) equals zg(x).

In characteristic zero these conditions are always satisfied, but in prime charac-
teristic it is not an easy task to decide whether or not the conditions are satisfied.

In order to deal with the separability question and many more issues we will
need the notion of good characteristic for G. First we define the set of bad primes:

p = 2 is bad if the root system of G has a component not of type A.
p = 3 is bad if the root system of G has a component of exceptional type.
p = 5 is bad if the root system of G has a component of type E8.

Then the characteristic char(k) of G is good if it is either zero or not a bad prime
for G.

Now conditions 1-3 above are satisfied under the following “standard hypoth-
esis”, see Section 2.9 in Jantzen’s part of [JN04].

H1 The derived group of G is simply connected.
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H2 The characteristic char(k) is good for G.

H3 The Lie algebra g admits a G-invariant non-degenerate bilinear form.

Since G is semi-simple, the derived group equals G, and H1 is equivalent to G
being simply connected. Now assume that G satisfies the following conditions

i. G is simply connected.

ii. G is simple as an algebraic group and not of type A.

iii. char(k) is good for G.

Then G satisfies the standard hypothesis, and in particular the orbit maps are
separable.

1.4 Nilpotent orbits

In this section we will also assume that G is semi-simple. Now we will define the
nilpotent orbits. An element x ∈ g is called nilpotent if there exists a closed,
unipotent subgroup H of G such that x belongs to the Lie algebra of H , denoted
h. Let g ∈ G. Since H is a closed, unipotent subgroup of G, also gHg−1 is a
closed, unipotent subgroup of G with Lie algebra Ad(g)h = g.h, and therefore
g.x is nilpotent. Now it makes sense to define an orbit G.x to be nilpotent if x is
nilpotent, i.e. if G.x consists of nilpotent elements. Actually there are only finitely
many nilpotent orbits in g.

Let N denote the set of nilpotent elements in g, from above we know that N is
G-stable. We also know that N is closed in g. Remember that U is the unipotent
radical of the Borel subgroup B. Since U is a closed, unipotent subgroup of G, its
Lie algebra u consists of nilpotent elements and u ⊆ N . Therefore also G.u ⊆ N ,
but actually we have G.u = N . This implies that N is irreducible. Also remember
that dimN = 2 dimu.

Notice that since there are only finitely many nilpotent orbits, and since N
is closed and irreducible, there exists a unique dense (and hence open) nilpotent
orbit in N , this orbit is called the regular nilpotent orbit in g and denoted Oreg.
Now we will define a partial ordering ≤ of the nilpotent orbits. Let O and O′ be
nilpotent orbits in g. Then we define O′ ≤ O if the closure of O′ is contained in
the closure of O. For all nilpotent orbits O we have {0} ≤ O ≤ Oreg where {0} is
the orbit consisting only of the point 0 ∈ g.

One of the first normality results for closures of nilpotent orbits is the following
proposition which was proved by Kostant in characteristic zero, and generalized to
characteristic p > 0 by Veldkamp and Demazure. See Proposition 8.5. in Jantzen’s
part of [JN04] for a proof.

Proposition 1.1. Assume that G satisfies the standard hypothesis H1-H3, or
that G is simply connected with char(k) good for G. Then the closure of Oreg is
normal. But since the closure of Oreg equals N , this implies that N is normal.

Now let U denote the set of unipotent elements in G. Then U is a closed
subgroup in G.
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Theorem 1.2. If char(k) is good for G, and G is simply connected, then there
exists a G-equivariant isomorphism between the unipotent variety U and the nilpo-
tent variety N .

With a small modification this is a theorem by Springer, see Remark 6.1 in
Jantzen’s part of [JN04]. Now we can use results about the unipotent orbits in U
to get results about the nilpotent orbits in N and vice versa.

Theorem 1.3 (Richardson’s Dense Orbit Theorem). Let P be a parabolic sub-
group in G. Then there exists a unique dense P -orbit in uP . If x ∈ uP is an element
in this orbit, then

1. The closure of G.x equals G.uP and G.x ∩ uP = P.x.

2. dim(G.x) = 2 dim(uP ).

3. Let ZG(x)0 be the identity component of the centralizer of x in G. Then
ZG(x)0 ⊆ P .

An element x ∈ uP in the dense P -orbit is called a Richardson element.

A proof can be found in Theorem 5.2.3 (including the proof) and Corollary 5.2.4
in [Car85]. In [Car85] it is assumed that the characteristic of k is good for G, but
this is only required to make sure that there are finitely many nilpotent orbits in
g. Since there are only finitely many nilpotent orbits in g in all characteristics, we
do not need this assumption.

Note that if x is a Richardson element for P , then x is nilpotent since x ∈ uP ,
and G.x is a nilpotent orbit.

As written in the introduction the finitely many nilpotent orbits in g have
been classified by Bala and Carter, cf. [BC76a] and [BC76b], when char(k) = 0 or
char(k) = p > 3(h − 1) where h is the Coxeter number of G. This classification
was extended to good characteristic by Pommerening in [Pom80]. He used some
case by case study, but Premet has given a conceptual proof in [Pre03]. The names
of the nilpotent orbits given by this classification are called Bala-Carter labels. In
the calculations in Chapter 4 we will use these names.

1.5 Levi factors

Let G be a connected linear algebraic group with unipotent radical Ru(G). Then
Ru(G) is normal in G. Let L be a reductive, closed subgroup in G. We call L a
Levi factor of G if G is the semidirect product as an algebraic group of L and
Ru(G). In this case L is isomorphic to G/Ru(G), and hence all Levi factors of G
are isomorphic.

If the characteristic of our ground field k is zero, then every connected linear
algebraic group G has a Levi factor, see Section 0.8 and 3.14 in [BT65], also for the
next results. Then also two Levi factors of G are conjugate by a unique element
in Ru(G). Furthermore we can describe the Levi factors of G – they are precisely
the centralizers of the maximal tori in the radical of G, i.e. the Levi factors of G
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are the subgroups of G of the form ZG(T ) where T is a maximal torus in R(G)
where R(G) denotes the radical of G.

Remark: Remember that R(G) is the identity component of the intersection of
the Borel groups inG, and that Ru(G) is the identity component of the intersection
of the unipotent parts of the Borel subgroups of G.

Lemma 1.4. Let π : G → G′ be a surjective morphism of connected linear
algebraic groups, and suppose the characteristic of k is zero. Then π(Ru(G)) =
Ru(G

′), and if L is a Levi factor of G, then π(L) is a Levi factor of G′.

Proof. Since π is surjective, the image of a Borel subgroup in G is a Borel subgroup
in G′. And since all Borel subgroups are conjugate we can obtain every Borel
subgroup in G′ as the image under π of a Borel subgroup in G. Hence – by the
remark above the lemma – we have

π(R(G)) = R(G′) and π(Ru(G)) = Ru(G
′).

Let L be a Levi factor of G. Then L = ZG(T ) for a maximal torus T ⊆ R(G).
But since π : R(G) → R(G′) is surjective, π(T ) is a maximal torus of R(G′), and
ZG′(π(T )) is a Levi factor of G′. Clearly π(ZG(T )) ⊆ ZG′(π(T )). But since ZG(T )
is a Levi factor of G, we have

G′ = π(G) = π(ZG(T )Ru(G)) = π(ZG(T ))Ru(G
′).

Let g ∈ ZG′(π(T )) ⊆ G′. Then

g = hu where h ∈ π(ZG(T )) ⊆ ZG′(π(T )), u ∈ Ru(G
′),

and hence the element h−1g = u belongs to ZG′(π(T )) ∩ Ru(G
′). But since

ZG′(π(T )) is a Levi factor, we get h−1g = 1 = u, and hence g = h ∈ π(ZG(T )),
and we have proved that π(ZG(T )) = ZG′(π(T )).

If the characteristic of k is prime, then Levi factors need not exist, and if they
exist, they need not be conjugate.





Chapter 2

Method

In this section we will in more detail describe a method which can be used to prove
that a nilpotent orbit has normal closure. Similarly we will explain a method which
can be used to prove that the closure of a nilpotent orbit is not normal. Since we
are interested in deciding whether or not the the nilpotent orbits have normal
closure, we will also describe a way to obtain the orbit closures in a different way.

Let V ⊆ u be a closed subspace. If V is P -stable for some parabolic subgroup P
containing B, then G.V is closed in g and hence affine. But V consists of nilpotent
elements, so the elements of G.V are nilpotent. Thus G.V is irreducible, closed and
consists of nilpotent elements, and therefore it must equal the closure of a nilpotent
orbit. In the following we will therefore formulate the theory using “G.V ’s”.

Let V1, V2 ⊆ u be closed subspaces stable under some parabolic subgroups
P1, P2 containing B, respectively. As before G.V1 and G.V2 are affine. Because
V1 ⊆ V2, we have an inclusion i : G.V1 →֒ G.V2 and an injective morphism

j : G×B V1 → G×B V2.

We also have (surjective) morphisms

πi : G×B Vi → G×Pi Vi, i = 1, 2.

We have projective morphisms

pi : G×B Vi → G.Vi, i = 1, 2,

and

p̄i : G×Pi Vi → G.Vi, i = 1, 2,

which are surjective and make the following diagram commutative

G×P1 V1

p̄1

G×B V1

π1 j

p1

G×B V2

p2

π2

G×P2 V2

p̄2

G.V1
i

G.V2

9
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Taking global regular functions, we get a new commutative diagram

k
[
G×P1 V1

] π∗
1

k
[
G×B V1

]
k

[
G×B V2

]j∗

k
[
G×P2 V2

]π∗
2

k [G.V1]

p̄∗1

p∗1

k [G.V2]
i∗

p∗2
p̄∗2

where p∗1, p
∗
2, p̄

∗
1 and p̄∗2 are injective and i∗ is surjective – remember that G.V1 ⊆

G.V2 is closed and that G.V2 is affine, so i∗ is the projection

i∗ : k [G.V2] → k [G.V1] = k [G.V2] /I(G.V1)

where I(G.V1) is the set of functions in k[G.V2] which vanish on G.V1.
Remember that

k
[
G×B Vi

]
=

⊕

n≥0

H0(G/B, SnV ∗
i ), i = 1, 2,

k
[
G×Pi Vi

]
=

⊕

n≥0

H0(G/Pi, S
nV ∗

i ), i = 1, 2,
(2.1)

by (1.3). But since Vi is a Pi-representation,

H0(G/B, SnV ∗
i ) = H0(G/Pi, S

nV ∗
i ) for all n ∈ Z,

and π∗
i is an isomorphism for i=1,2.

Lemma 2.1. If j∗ is injective, then G.V1 = G.V2.

Proof. Assume that G.V1 6= G.V2. Then I(G.V1) 6= 0, so we can choose f ∈
I(G.V1) \ {0}. Then i∗(f) = 0, and hence

0 = p∗1 ◦ i
∗(f) = j∗ ◦ p∗2(f),

but this is a contradiction since j∗ and p∗2 are injective and f 6= 0.

Lemma 2.2. Assume the following:

1. G.V2 is a normal variety.

2. p̄2 is birational.

3. j∗ is surjective.

Then G.V1 is also a normal variety.

Proof. Since p̄2 is birational andG.V2 is normal, we have that p̄∗2 is an isomorphism,
cf. Lemma II.14.5 in [Jan87]. Therefore p∗2 = π∗

2 ◦ p̄∗2 is an isomorphism, p∗1 ◦ i
∗ =

j∗ ◦ p∗2 is surjective, and hence p∗1 is surjective and thereby an isomorphism, i.e.

k
[
G.V1

]
≃ k

[
G×B V1

]
.

But G×B V1 is a non-singular variety, and thus k
[
G×B V1

]
is a normal ring. So

G.V1 is affine and its coordinate ring is normal, hence G.V1 is a normal variety.
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Lemma 2.3. Assume the following:

1. p̄1 is birational.

2. j∗ is not surjective.

Then G.V1 is not normal.

Proof. Assume for contradiction that G.V1 is normal. Then since p̄1 is birational,
we know as before that p̄∗1 is an isomorphism, and hence that p∗1 = π∗

1 ◦ p̄∗1 is an
isomorphism. But since i∗ is surjective, we get that p∗1 ◦ i

∗ = j∗ ◦ p∗2 is surjective,
and therefore j∗ is surjective. But this is a contradiction, and G.V1 cannot be
normal.

When we are going to show that a nilpotent orbit has normal closure, we will
use Lemma 2.2. On the other hand if we want to show that another nilpotent orbit
do not have normal closure, we will use Lemma 2.3.

When we are going to use Lemma 2.2, we will have two orbits O1 and O2 with
closures O1 = G.V1 and O2 = G.V2 where V1 ⊆ V2 as above (then O1 ≤ O2). We
will be in the case where O2 is normal and by using the lemma we will be able to
show that O1 is normal.

Now we will describe how we can prove that j∗ is surjective or injective as
needed in Lemma 2.1 and Lemma 2.2. If we can show that

H0(G/B, SnV ∗
2 ) → H0(G/B, SnV ∗

1 ) (2.2)

is surjective (or injective) for all n, we have that j∗ is surjective (or injective) by
(2.1).

We will show that the map in (2.2) is surjective (or injective) by taking the
short exact sequence of B-representations

0 → V1 → V2 → V3 → 0

where V3 is the cokernel of the inclusion of V1 into V2. We dualize this sequence
and get another short exact sequence of B-representations

0 → V ∗
3 → V ∗

2 → V ∗
1 → 0

If we take the Koszul resolution of this sequence, we get a new exact sequence of
B-representations, cf. [Jan87] Section II.12.12,

· · ·Sn−jV ∗
2 ⊗ ∧jV ∗

3 → · · · → Sn−2V ∗
2 ⊗ ∧2V ∗

3 →

Sn−1V ∗
2 ⊗ V ∗

3 → SnV ∗
2 → SnV ∗

1 → 0

We can split the long exact sequence into short exact sequences. These short exact
sequences gives rise to long exact sequences in cohomology. Observing that some
of these cohomology groups vanish, we can often show that the map in (2.2) is
surjective or an isomorphism (and hence injective). In Chapter 3 we will describe
the different vanishing theorems we are going to use.

In order to use Lemma 2.2 and Lemma 2.3 we need to show that p̄i : G×PiVi →
G.Vi is birational for i = 1 or i = 2.. In the next section the topic is therefore
birationality.
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2.1 Birationality

A morphism f : X → Y of irreducible varieties is called generically one to one if
there exists an open subset U ⊆ Y such that for all y ∈ U the dimension of f−1(y)
is zero and f−1(y) consists of exactly one point.

Theorem 2.4. Let f : X → Y be a dominant morphism of irreducible varieties,
and assume that dimX = dimY . Then f is birational if and only if f is separable
and generically one to one.

Proof. Let k(X) denote the function field of X , and let k(Y ) denote the func-
tion field of Y . Then k(Y ) ⊆ k(X) is a finite algebraic field extension, and from
Theorem 5.1.6 in [Spr98] we know that there exists an open subset U ⊆ Y such
that

1. For all y ∈ U the dimension of f−1(y) is zero.

2. For all y ∈ U the number of points in f−1(y) equals the separable degree,
[k(X) : k(Y )]s, of the extension k(Y ) ⊆ k(X).

Assume that f is birational. Then k(X) = k(Y ) and hence [k(X) : k(Y )]s = 1,
and f is generically one to one. Since k(X) = k(Y ) the extension k(Y ) ⊆ k(X) is
clearly separable generated, and f is separable.

If f is separable and generically one to one, we know that k(Y ) ⊆ k(X) is
separable generated and that [k(X) : k(Y )]s = 1. Since k(Y ) ⊆ k(X) is algebraic
and separable generated, it is algebraic separable and

[k(X) : k(Y )] = [k(X) : k(Y )]s = 1,

and f is birational.

Lemma 2.5. Suppose G satisfies the standard hypothesis on page 4. Let V ⊆ g

be a subspace closed under the action of a parabolic subgroup P ⊆ G. Assume
that there exists an x ∈ V such that

1. dimG×P V = dimG.V .

2. The closure of G.x equals G.V .

3. ZG(x) ⊆ P .

4. G.x ∩ V = P.x.

Then the morphism

π : G×P V → G.V

defined in (1.2) is birational.



2.1. Birationality 13

Proof. By Theorem 2.4 we only need to show that π is separable and generically
one to one because dimG×P V = dimG.V .

We start by proving separability. The orbit map

ϕ : G→ G.x

is separable since G satisfies the standard hypothesis on page 4. Let e denote
the neutral element in G. Since G.x is open in its closure, G.V , the tangent map
dϕe : g = Te(G) → Tx(G.V ) is surjective by Theorem 4.3.7 in [Spr98]. Now define
i : G→ G×P V by g 7→ [(g, x)]. Then ϕ = π ◦ i : G→ G.V , and on tangent spaces
we have dϕe = dπ[(e,x)] ◦ die. Since dϕe is surjective, also dπ[(e,x)] is surjective,
and since G×P V is smooth and x ∈ G.V is a simple point (since G.x is open in
G.V ), this implies that π is separable by Theorem 4.3.6 in [Spr98].

Now we will show that π is generically one to one. Since π is G-equivariant, and
G.x is open in G.V , it is enough to show that π−1(x) consists of exactly one point.
Clearly π([(e, x)]) = e.x = x, and there is at least one point in π−1(x). Now assume
that [(g, y)] ∈ π−1(x). Then x = π([(g, y)]) = g.y, and y = g−1.x ∈ G.x∩V = P.x.
Hence there exists a p ∈ P such that y = p.x, and we have gp.x = g.y = x.
Therefore gp ∈ ZG(x) ⊆ P . Hence g ∈ P , and we get

[(g, y)] = [(e, gp.x)] = [(e, x)],

and π−1(x) consists of exactly one point.

Corollary 2.6. Suppose G satisfies the standard hypothesis. Let P be a parabolic
subgroup in G, and let x ∈ uP be a Richardson element for P . If ZG(x) is con-
nected, then G×P uP → G.uP is birational

Proof. Since x ∈ uP is a Richardson element, we have by Richardson’s dense
orbit theorem that condition 2, 3 and 4 in Lemma 2.5 are satisfied. Furthermore
dimG.uP = 2 dim uP and therefore

dimG×P uP = dimG− dimP + dim uP

= 2 dim uP

= dimG.uP

and condition 1 is satisfied.

Note that we know that the morphism G×P uP → G.uP is birational if P is a
standard parabolic subgroup corresponding to a set of pairwise orthogonal short
simple roots, cf. Lemma 11 in [Tho00]. Here one uses the convention that all roots
are short if only one root length occur.
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2.2 Weighted Dynkin diagrams and Bala-Carter theory

In Section 2 on page 9 we have seen that given a closed subspace V ⊆ u which is
P -stable for some parabolic subgroup P containing B, then G.V equals the closure
of some nilpotent orbit. But if we are given a nilpotent orbit O, we also want to
find a closed subspace V ⊆ u such that

i. V is P -stable for some parabolic subgroup P containing B.

ii. The closure of O equals G.V .

This is done in Premet’s paper [Pre03]. To ensure that the conditions in Sec-
tion 2 in [Pre03] (and in particular in Theorem 2.3 in [Pre03]) are satisfied, we
will throughout Section 2.2 assume that G satisfies the standard hypothesis on
page 4. Since G is semi-simple this assumption implies that G does not contain a
component of type An when char(k) = p > 0 and p divides n; this is exactly the
definition of char(k) being very good for G.

Before going into detail, we will explain what we are going to deal with in the
following sections. In [Pre03] Premet gives a new and uniform proof of the Bala-
Cater theorem in good characteristic and the Bala-Carter theorem gives a bijection
between the set of nilpotent orbits and the set of weighted Dynkin diagrams. Given
a weighted Dynkin diagram ∆, we let O(∆) be the nilpotent orbit corresponding
to ∆ under this bijection. Premet defines a one-parameter subgroup λ∆ ∈ X∗(T )
only depending on ∆. Then he introduces a corresponding parabolic subgroup
P (λ∆) with B ⊆ P (λ∆) and a closed subspace V (λ∆) ⊆ u which is P (λ∆)-stable.
Moreover it turns out that G.V (λ∆) equals the closure of O(∆), and hence V (λ∆)
satisfies condition i and ii above.

In the following sections we will explain Premet’s results. We will also use his
results and Lemma 2.5 to prove that the morphism

G×P (λ∆) V (λ∆) → G.V (λ∆) ⊆ g given by [(g, x)] 7→ g.x (2.3)

is birational. This result on birationality will be used in the calculations in Chap-
ter 4 and Chapter 5 when we are going to use that the morphism p̄ in Lemma 2.2
and Lemma 2.3 is birational.

In Section 2.2.4 we will explain how to generalize characteristic zero results to
good characteristic and this involves more than the work of Premet. In that section
we will also discuss the bijection mentioned above between the set of nilpotent
orbits and the set of weighted Dynkin diagrams.

2.2.1 One-parameter subgroups

Let λ ∈ X∗(G) be a one-parameter subgroup. We assign to λ a grading of the Lie
algebra g = ⊕i∈Zg(λ, i) with

g(λ, i) = {x ∈ g|Ad(λ(t))(x) = λ(t).x = tix for all t ∈ k∗}.

For i0 ∈ Z we also define gi0(λ) = ⊕i≤i0g(λ, i).
Remember that Π denotes the set of simple roots. Let λ ∈ X∗(T ) be a one-

parameter subgroup satisfying 〈α, λ〉 ≥ 0 for all α ∈ Π. Such a one-parameter
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subgroup is called Π-dominant. Now define P (λ) to be the subgroup of G given
by

P (λ) = 〈T, Uα|α ∈ Φ : 〈α, λ〉 ≤ 0〉. (2.4)

Since B = 〈T, Uα|α ∈ Φ−〉, we see that B ⊆ P (λ). In fact P (λ) is the standard
parabolic subgroup containing B corresponding to the subset

I(λ) = {α ∈ Π|〈α, λ〉 = 0}.

Let Z(λ) denote the Levi subgroup of P (λ) containing T , and let U(λ) denote the
unipotent radical of P (λ). Then

Z(λ) = 〈T, Uα|α ∈ Φ : 〈α, λ〉 = 0〉

U(λ) = 〈Uα|α ∈ Φ : 〈α, λ〉 < 0〉

and P (λ) = Z(λ)U(λ). Moreover Z(λ) is the centralizer in G of the image of
λ : k∗ → T . Clearly g(λ, i) is Z(λ)-stable, and gi0(λ) is P (λ)-stable. Let p(λ), z(λ)
and u(λ) be the Lie algebras of P (λ), Z(λ) and U(λ) respectively. Then

p(λ) = t ⊕
(⊕

〈α,λ〉≤0 gα

)
, z(λ) = t ⊕

(⊕
〈α,λ〉=0 gα

)
, u(λ) =

⊕
〈α,λ〉<0 gα.

2.2.2 Chevalley groups

Remember that every connected, semi-simple linear algebraic group is isomorphic
to a Chevalley group (considered as an algebraic group), see [Ste68] p. 61. In order
to explain the theory in [Pre03] we will first make some well known observations
about Chevalley groups. The next paragraphs are mostly taken from Steinberg’s
book [Ste68] and Chapter 27 in [Hum78].

Each Chevalley group can be obtained in the following way. Let gC be a complex
semi-simple Lie algebra with root system Φ. Let tC be a Cartan subalgebra in gC,
and Π be a set of simple roots in Φ. Choose a Chevalley basis

B = {xα|α ∈ Φ} ∪ {hα|α ∈ Π}

with xα ∈ (gC)α and hα ∈ tC. Let V be a finite dimensional faithful gC-represen-
tation

π : gC → gl(V ).

Let M be a corresponding admissible lattice in V and let gZ be its stabilizer in
gC. Then gZ is a lattice in gC with basis {xα|α ∈ Φ} ∪ {h′α|α ∈ Π} where h′α ∈ tC.
Making base change to an algebraically closed field L we get an induced faithful
representation

πL : gZ ⊗Z L→ gl(M ⊗Z L).

Now the Chevalley group is a certain subgroup GL ⊆ GL(M ⊗Z L) generated by
some elements called xα(t) where α ∈ Φ and t ∈ L, [Ste68] p. 21. The morphisms
uα : L→ GL sending t to xα(t) are admissible isomorphisms.
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Let Lie(GL) denote the Lie algebra of GL. Since GL ⊆ GL(M ⊗Z L), we have
Lie(GL) ⊆ gl(M ⊗Z L). It turns out that Lie(GL) is the image of πL. Hence

πL : gZ ⊗Z L→ πL(gZ ⊗Z L) = Lie(GL)

is an isomorphism of Lie algebras, and we can identify Lie(GL) with gZ ⊗Z L.
Under this identification the set

{xα ⊗ 1|α ∈ Φ} ∪ {h′α ⊗ 1|α ∈ Π} ⊆ gZ ⊗Z L = Lie(GL)

is a basis for Lie(GL). Now we can choose a maximal torus TL ⊆ GL such that
the Lie algebra of TL is

Lie(TL) = spanL(h′α ⊗Z 1|α ∈ Π).

Now one can identify the roots of GL with respect to TL with Φ.
Note that if GL is simply connected, then the lattice generated by B is actually

gZ and we may assume that h′α = hα for α ∈ Π, see Section A.2.5 in Borel’s part
of [MR070].

Also notice that if L = C above, then under our identifications we have gC =
gZ ⊗Z C = Lie(GC) and tC = Lie(TC).

2.2.3 Weighted Dynkin diagrams

Now we are finally ready to follow [Pre03]. We keep our notation from the last
section, so gC is the complex semi-simple Lie algebra with root system Φ. Now we
choose a faithful finite dimensional representation

π : gC → gl(V )

such that the corresponding Chevalley groups, GL, are simply connected. If we let
L = k, we observe that our group G can be identified with the Chevalley group
Gk. Then the Lie algebra, g, of G is identified with gZ ⊗Z k. In the following we
will also consider the case L = C, i.e. the Chevalley group GC.

Let x ∈ gC be a nilpotent element. Then by classical theory x is Ad(GC)-
conjugate to an element x′ ∈ gC such that x′ is part of a standard triple {x′, h, y} ⊆
gC with h ∈ tC = Lie(TC) and with rα := α(h) a nonnegative integer for all simple
roots α ∈ Π. It turns out that rα ∈ {0, 1, 2}, see Proposition 5.6.6 in [Car85].
Furthermore we see that h ∈ gZ: Restricting π to the sl2(C)-copy generated by
{x′, h, y}, we see that the eigenvalues of h on V are integers since V is a direct sum
of irreducible sl2(C)-representations, and hence h ∈ gZ. Therefore we can write
h =

∑
α∈Π qαhα with qα ∈ Z.

Now we are ready to define the weighted Dynkin diagram ∆(x) of x. It is
defined to be the Dynkin diagram of Π with the number rα = α(h) attached to
the node corresponding to the simple root α. The weighted Dynkin diagram only
depends on x, see Proposition 5.6.7 in [Car85]. Also ∆(x) = ∆(x′) if and only
if x and x′ are Ad(GC)-conjugate. Let D(Π) denote the set of weighted Dynkin
diagrams.
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Let ∆ be a weighted Dynkin diagram. Then we will define a one-parameter
subgroup λ∆ ∈ X∗(T ) by λ∆ =

∑
α∈Π qαα

∨ where α∨ is the coroot corresponding
to the simple root α ∈ Π, and the qα’s are defined as above. Note that the qα’s
are uniquely determined by ∆, hence λ∆ only depends on ∆. We have 〈α, λ∆〉 =
α(h) = rα for all simple roots α ∈ Π. Hence 〈α, λ∆〉 ≥ 0 for all simple roots α ∈ Π,
so λ∆ is a Π-dominant one-parameter subgroup. Hence we can define the parabolic
subgroup P (λ∆) as in equation (2.4).

Remember that Z(λ∆) is the centralizer of the image of λ∆ : k → T in G.
Since there are only finitely many nilpotent orbits in g it follows that there are
only finitely many Z(λ∆)-orbits in g(λ∆,−2), see Theorem E in [Ric85]. Hence
Z(λ∆) has a unique dense open orbit in g(λ∆,−2). We will call this dense orbit
g(λ∆,−2)reg. Now let O(∆) be the G-orbit G.g(λ∆,−2)reg in g. We know that
g(λ∆,−2) ⊆ u where u is the Lie algebra of the unipotent radical of the Borel
group B. Hence g(λ∆,−2) consists of nilpotent elements, and O(∆) is a nilpotent
orbit.

Since G satisfies the standard hypothesis, Theorem 2.3 in [Pre03] holds. We
state it here:

Theorem 2.7. Let x ∈ g(λ∆,−2)reg. Then the following hold:

(i) The centralizer ZG(x) is contained in P (λ∆).

(ii) Let CG(λ∆, x) = ZG(x) ∩ Z(λ∆). Then CG(λ∆, x) is a reductive group.
Moreover the centralizer ZG(x) is a semidirect product of CG(λ∆, x) and
ZU(λ∆)(x) as algebraic groups, and ZU(λ∆)(x) is the unipotent radical of
ZG(x). Hence CG(λ∆, x) is a Levi factor of ZG(x).

(iii) zg(x) ⊆ p(λ∆) and [p(λ∆), x] = g−2(λ∆).

Actually Premet’s theorem states a bit more, but since we do not need that
part, and since it would require a lot of explanation, we have omitted that state-
ment. Note that McNinch has proved the theorem without the condition that G
satisfies the standard hypothesis, see Proposition 16 in [McN04], but in the fol-
lowing lemma we still need G to satisfy the standard hypothesis since we need the
orbit maps to be separable.

We have a few remarks to the above notation. First note that P (λ∆) is the
parabolic subgroup containing B corresponding to the subset

I(λ∆) = {α ∈ Π|〈α, λ∆〉 = 0}

= {α ∈ Π|rα = 0}.

So given the weighted Dynkin diagram we can directly determine P (λ∆). Next
remember that g−2(λ∆) is P (λ∆)-stable, and that rα is the number in the weighted
Dynkin diagram ∆ attached to the node corresponding to the simple root α.
Finally we notice that uP (λ∆) denotes the Lie algebra of the unipotent radical of
P (λ∆). If rα ∈ {0, 2} for all simple roots α ∈ Π, then

g(λ∆,−2) =
⊕

α∈Φ−\ΦI(λ∆)

gα = uP (λ∆).

Using Premet’s theorem above we can prove the following lemma
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Lemma 2.8. Let x ∈ g(λ∆,−2)reg. Then the following hold:

(i) The orbit P (λ∆).x is open and dense in g−2(λ∆), and the closure of O(∆) =
G.x equals G.g−2(λ∆).

(ii) The dimension of G×P (λ∆) g−2(λ∆) equals the dimension of G.g−2(λ∆).

(iii) G.x ∩ g−2(λ∆) = P (λ∆).x

Proof. (i): First note that G.g−2(λ∆) is closed in g since g−2(λ∆) is P (λ∆)-stable.
Therefore the closure of G.x is contained in G.g−2(λ∆).

We need Theorem 2.7 to prove the other direction. By this theorem we know
that [p(λ∆), x] = g−2(λ∆). Hence the morphism −ad(x) : p(λ∆) → g−2(λ∆) is
surjective. The rest of the proof of (i) follows from the proof of Proposition 5.7.3
in [Car85], but we include it here for completeness.

Since g−2(λ∆) is P (λ∆)-stable, we have a morphism ϕx : P (λ∆) → g−2(λ∆)
given by ϕx(p) = Ad(p)(x) = p.x. The differential of this morphism is the sur-
jective map −ad(x) : p(λ∆) → g−2(λ∆) from above, and by Theorem 4.3.6.(i)
in [Spr98] we know that ϕx is dominant and separable. In particular the orbit
P (λ∆).x is a dense open subset of g−2(λ∆). Consequently g−2(λ∆) is contained in
the closure of G.x, and hence G.g−2(λ∆) is also contained in the closure of G.x.

(ii): Since O(∆) = G.x is dense in G.g−2(λ∆), we have

dimG.g−2(λ∆) = dimO(∆),

but from the proof of Theorem 2.6 in [Pre03] we have

dimO(∆) = dim g − dim(g(λ∆, 0) ⊕ g(λ∆,−1)).

Therefore

dim
(
G×P (λ∆) g−2(λ∆)

)
= dimG− dimP (λ∆) + dim g−2(λ∆)

= dim g − dim p(λ∆) + dim g−2(λ∆)

= dim g − dim(⊕i≤0g(λ∆, i)) + dim(⊕i≤−2g(λ∆, i))

= dimO(∆),

(2.5)

and (ii) is satisfied.
(iii): It is clear that P (λ∆).x ⊆ G.x ∩ g−2(λ∆). Let y ∈ G.x ∩ g−2(λ∆). We

want to show that y ∈ P (λ∆).x. Now y = g.x for some g ∈ G, and G.x = G.y. We
have

dim(P (λ∆).y) = dimP (λ∆) − dimZP (λ∆)(y)

≥ dimP (λ∆) − dimZG(y)

= dimP (λ∆) − dimG+ dimG.y

= dimP (λ∆) − dimG+ dimG.x

= dimP (λ∆) − dimG+ dimO(∆)

= dim g−2(λ∆)
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where the last equality follows by (2.5). But P (λ∆).y ⊆ g−2(λ∆), and therefore

dim(P (λ∆).y) = dim g−2(λ∆),

and the closure of the orbit P (λ∆).y equals g−2(λ∆). Hence P (λ∆).y is open in
g−2(λ∆). But similarly P (λ∆).x is open in g−2(λ∆), and hence the orbits P (λ∆).x
and P (λ∆).y intersects, and y ∈ P (λ∆).x.

A consequence of the lemma is the following corollary.

Corollary 2.9. The morphism

G×P (λ∆) g−2(λ∆) → G.g−2(λ∆) given by [(g, y)] 7→ g.y

is birational.

Proof. This follows from Lemma 2.5, Lemma 2.8 and Theorem 2.7 (i).

Now we are ready to define

V (λ∆) := g−2(λ∆) =
⊕

α∈Φ
〈α,λ∆〉≤−2

gα.

Then P (λ∆), V (λ∆) and O(∆) satisfy condition i and ii on page 14 by Lemma 2.8.
Moreover the morphism in (2.3) is birational by this corollary.

Now return to the case where the weighted Dynkin diagram ∆ only consists
of the numbers 0 and 2. Then we have already seen that g−2(λ∆) = uP (λ∆). By
Lemma 2.8(i) we observe that elements in g(λ∆,−2)reg are Richardson elements
in uP (λ∆) for P (λ∆).

On the other hand if y ∈ g(λ∆,−2) is a Richardson element for P (λ∆), then y
is P (λ∆)-conjugate to an element x ∈ g(λ∆,−2)reg. By definition g(λ∆,−2)reg is a
Z(λ∆)-orbit, and we have g(λ∆,−2)reg = Z(λ∆).x. Since P (λ∆) = Z(λ∆)U(λ∆)
we can write

y = (zu).x with z ∈ Z(λ∆), u ∈ U(λ∆).

Now u.x = x + x′ with x′ ∈ g−3(λ∆). Since g(λ∆, i) is Z(λ∆)-stable, and since
g(λ∆,−2)reg = Z(λ∆).x, this implies that

y = (zu).x = z.x+ z.x′ with z.x ∈ g(λ∆,−2)reg, z.x′ ∈ g−3(λ∆).

But y ∈ g(λ∆,−2), and hence z.x′ = 0. Consequently y = z.x ∈ g(λ∆,−2)reg.

To summarize: We have seen that g(λ∆,−2)reg is exactly the set of Richardson
elements in uP (λ∆) for P (λ∆) which are contained in g(λ∆,−2).

Now if k = C, we see that p(λ∆) is a nice parabolic subalgbra in the sense of
[BW05].
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2.2.4 Why we can use characteristic zero results

Remember that G = Gk is the connected, semi-simple, simply connected linear
algebraic group over k with root system Φ and Lie algebra g = Lie(Gk).

Again we take a look at Premet’s paper. He shows that the map from the
set of weighted Dynkin diagrams to the set of all nilpotent G-orbits in g sending
∆ ∈ D(Π) to the orbit O(∆) is a bijection, see Proposition 2.4, Theorem 2.6 and
Theorem 2.7 in [Pre03]. But the Bala-Carter theorem in good characteristic (which
Premet proves in a new, uniform way, see Theorem 2.6 and Theorem 2.7 in [Pre03]),
assigns to each nilpotent orbit a Bala-Carter label, and hence we get a bijection
between the set of weighted Dynkin diagrams and the set of Bala-Carter labels.
Premet proves that this bijection between the set of weighted Dynkin diagrams
and the set of Bala-Carter labels is independent of our field k, and hence we denote
it by ψ (not indexed by k).

From classical theory over C we already have a bijection between weighted
Dynkin diagrams and nilpotent GC-orbits in gC, and also a bijection between the
set of Bala-Carter labels and nilpotent orbits in gC from the Bala-Carter theorem.
Composing these two maps we get a new bijection between the set of weighted
Dynkin diagrams and the set of Bala-Carter labels. Again following Premet it
turns out that this bijection is equal to the bijection ψ from the last paragraph. In
Chapter 13.1 in [Car85] this bijection is explicitly calculated for each root system,
and consequently we can use these results.

Let ∆ ∈ D(Π) be a weighted Dynkin diagram. Let O(∆) be the corresponding
nilpotent G-orbit in g, and let OC(∆) be the corresponding GC-orbit in gC. Then

dimkO(∆) = dimC OC(∆)

by Theorem 2.6.iv in [Pre03], and hence we can use the dimension results over C

which e.g. can be found in Chapter 8.4 and Corollary 6.1.4 in [CM93].
Let x ∈ O(∆), and let x′ ∈ OC(∆). Then remember that ZG(x) denotes

the centralizer of x in G, and that ZGC
(x′) denotes the centralizer of x′ in GC.

By Theorem 2.7(ii) we know that there exists Levi factors L = CG(λ∆, x) and
LC = CGC

(λ∆, x
′) of ZG(x) and ZGC

(x′) respectively.
In the beginning of Section 2.2 we observed that the characteristic of k is very

good for G since G is semi-simple and satisfies the standard hypothesis. Hence we
can apply the following results from [McN]. Theorem A in [McN] states that the
root datum of L and LC can be identified, in particular L is semi-simple if and only
if LC is semi-simple. Theorem B in [McN] which is an extension of Theorem 36 in
[MS03] shows that the component groups of the centralizers are isomorphic finite
groups, i.e. it tells us that ZG(x)/ZG(x)0 and ZGC

(x′)/ZGC
(x′)0 are isomorphic.

Therefore we can use the results in Chapter 13.1 in [Car85] about the root datum
of LC and the component group ZGC

(x′)/ZGC
(x′)0 to find the root datum of L

and to find the component group ZG(x)/ZG(x)0.
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2.3 The complement of the set of Richardson elements

Let G be a connected linear algebraic group. Let I ⊆ Π be a subset of simple
roots, and let P be the standard parabolic subgroup containing B corresponding
to I. Remember that P acts linearly on the Lie algebra of its unipotent radical
uP . According to Richardson’s Dense Orbit Theorem there exists a unique dense
and open P -orbit in uP , see Theorem 1.3. Let OP denote this P -orbit. Then
the elements in OP are called Richardson elements. Since OP is open in uP , the
complement uP \ OP is closed in uP , and hence an affine variety. Moreover the
dimension of uP \OP is strictly less than the dimension of uP since uP is irreducible.

Since

uP =
⊕

α∈Φ−\ΦI

gα,

we can identify the coordinate ring of uP , denoted k[uP ], with the polynomial ring

k[xα|α ∈ Φ− \ ΦI ]

with the usual grading deg(xα) = 1.

Lemma 2.10. Let V be an irreducible component in uP \ OP , and let I(V ) be
the defining ideal of V in uP . Then I(V ) ⊆ k[uP ] is a homogeneous ideal.

Proof. In addition to the P -action on uP , we also have an action of k∗ on uP
because uP is a k-vector space. Since P acts linearly on uP , the P -action commutes
with the k∗-action.

Let x ∈ OP be a Richardson element, and let t ∈ k∗. Then OP = P.x and

t.OP = t.(P.x) = P.(t.x).

But then t.OP is a P -orbit in uP of the same dimension as OP , but there exists
only one such orbit, and hence t.OP = OP , and OP is k∗-stable.

Now also the complement uP \OP is k∗-stable, and since k∗ is irreducible, the
irreducible components of uP \ OP are k∗-stable too. In particular V is k∗-stable,
and I(V ) is homogeneous with respect to the chosen grading of k[uP ].

We want to study the components in uP \ OP of maximal dimension, i.e. the
components of dimension equal to dim uP −1. Since OP is P -stable, also uP \OP is
P -stable. But P is irreducible, and hence all components in uP \OP are P -stable.
Now let V ⊆ uP \ OP be a component of maximal dimension. Then

I(V ) = 〈f〉 ⊆ k[uP ] for some irreducible element f ∈ k[uP ]

since uP is just affine space. Since P -acts on uP , it also acts on the coordinate ring
k[uP ]. Now V is P -stable, and hence also I(V ) = 〈f〉 is P -stable. Therefore there
exists a P -character λ ∈ X∗(P ) such that

p.f = λ(p)f for all p ∈ P.
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Let k(uP ) denote the function field of uP . Then k(uP ) is just the fraction field
of k[uP ], so P also acts on k(uP ). Now define

k(uP )(P ) = {h ∈ k(uP )|∃λ ∈ X∗(P ) : p.h = λ(p)h for all p ∈ P},

and let k[uP ](P ) = k[uP ] ∩ k(uP )(P ). The elements in k(uP )(P ) are called P -
semistable.

We have seen that given a component in uP \ OP , we can construct an ir-
reducible element in k[uP ](P ) which is unique up to multiplication by scalars in
k∗. On the other hand, given an irreducible element f ∈ k[uP ](P ), then V (f) is
irreducible of dimension equal to dim uP − 1. But since f is P -semistable, V (f) is
P -stable. Therefore if V (f) intersects OP , then OP ⊆ V (f). But since OP is dense
in uP , we get V (f) = uP which is a contradiction. Therefore V (f) ⊆ uP \OP , and
V (f) is a component in uP \OP of dimension equal to dim uP − 1. It is clear that
if we multiply f by a scalar in k∗, we get the same component.

To summarize: We have shown that there is a bijection between the set of
components in uP of dimension dim uP − 1 and the set of irreducible elements in
k[uP ](P ) modulo scalars in k∗.

Let

(
k[uP ](P )

)
0

denote the fraction field of k[uP ](P ).

Lemma 2.11. Now the following are satisfied.

i. If f ∈ k[uP ](P ), then all irreducible components of f belongs to k[uP ](P ).

ii. We have the identity

(
k[uP ](P )

)
0

= (k[uP ]0)
(P )

.

Proof. i: Let f ∈ k[uP ](P )\{0} and assume that f is not a unit. Write f =
∏
i fi as

a product of irreducibles. Then since f is P -semistable, we know that V (f) ⊆ uP is
P -stable. As above we therefore know that V (f) ⊆ uP \P.x. But V (f) = ∪iV (fi),
and V (fi) is irreducible of dimension equal to dim(uP ) − 1. Hence V (fi) is a
component in uP \ P.x, and since P is connected, V (fi) is P -stable. But then
I(V (fi)) = 〈fi〉 is P -stable, and fi is P -semistable.

ii: Clearly
(
k[uP ](P )

)
0
⊆ k(uP )(P ). Let h ∈ k(uP )(P ). Then we can write h = f

g

with f, g ∈ k[uP ], g 6= 0, such that f and g have no common irreducible factors.
Since h is P -semistable, there exists a character λ ∈ X∗(P ) such that p.h = λ(p)h
for all p ∈ P . Hence

λ(p)f
g

= p. f
g

= p.f
p.g

∈ k(uP ),

and we have

λ(p)(p.g)f = (p.f)g ∈ k[uP ].
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Now k[uP ] is a UFD, and f and g have no common factors, hence g divides p.g,
and f divides p.f for all p ∈ P . Let p ∈ P . Then g divides p−1.g, and p−1.g = g′g
for some g′ ∈ k[uP ]. Now we have

g = p.(p−1.g) = p.(g′g) = (p.g′)(p.g),

and p.g divides g. Now since g divides p.g, and p.g divides g for all p ∈ P , we must
have p.g = λ(p)g for some character λ ∈ X∗(P ), and g ∈ k[uP ](P ). Similarly we
can show that f ∈ k[uP ](P ).

Remember that P is the standard parabolic subgroup corresponding to the
subset I ⊆ Π of simple roots. Assume that G is simply connected. Then X∗(P )
is a finitely generated free abelian group, and the set of fundamental weights
corresponding to the simple roots in Π \ I is a basis for X∗(P ). Let x ∈ OP be a
Richardson element. Let ZP (x) denote the centralizer of x in P , and let ZP (x)0

be its identity component. Then ZP (x)0 has finite index in ZP (x).
The inclusions ZP (x)0 ⊆ ZP (x) ⊆ P induces restriction maps between their

character groups

X∗(P )

ϕx

ψx

X∗(ZP (x)0)

X∗(ZP (x))

Since X∗(P ) is a finitely generated free abelian group, also Ker ϕx and Ker ψx
are finitely generated free groups. Clearly we have Ker (ϕx) ⊆ Ker (ψx). Now let
N denote the finite index of ZP (x)0 in ZP (x). Then we claim that NKer (ψx) ⊆
Ker (ϕx):

Let λ ∈ Ker (ψx), then λ(p) = 1 for all p ∈ ZP (x)0. Let q ∈ ZP (x). Then
Nλ(q) = λ(qN ) = 1 since qN ∈ ZP (x)0, and Nλ ∈ Ker (ϕx).

Hence the rank of Ker (ϕx) equals the rank of Ker (ψx).
Also notice that if we choose another Richardson element x′ ∈ OP , then there

exists a p ∈ P , such that x′ = p.x. Hence ZP (x′) = pZP (x)p−1, and

Ker ϕx = Ker ϕx′ and Ker ψx = Ker ψx′ .

Therefore we define Kϕ = Ker ϕx and Kψ = Ker ψx.

Lemma 2.12. The number of components in uP \ OP with dimension equal to
dim(uP ) − 1 is less than or equal to the rank of Kϕ. In particular it is less than
the rank of X∗(P ).

Proof. Let V1, . . . , Vn be the components of dimension dim(uP ) − 1 in uP \ OP .
Then for i = 1, . . . , n we have I(Vi) = 〈fi〉 ⊆ k[uP ] for some irreducible element
fi ∈ k[uP ](P ). So there exist λ1, . . . , λn ∈ X∗(P ) such that for i = 1, . . . , n we have
p.fi = λi(p)fi for all p ∈ P . Notice that since Vi does not intersect OP , we know
that fi(x) 6= 0 for all x ∈ OP . Now choose an element x ∈ OP . Since fi(x) 6= 0, we
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may assume that fi(x) = 1 by multiplying with a scalar. Now for all p ∈ ZP (x)
we have

λi(p) = λi(p)fi(x) = (p.fi)(x) = fi(p
−1.x) = fi(x) = 1

hence λi ∈ Ker ϕx.
Assume that the rank of Kϕ = Ker ϕx is strictly less than n. Then there exist

m1, . . . ,mn ∈ Z such that
∑n

i=1miλi = 0 and not all mi’s are zero. Now look
at the element

∏n
i=1 f

mi

i ∈ k(uP ). Since all fi’s are nonzero on OP , the element∏n

i=1 f
mi

i is a regular function on OP . For all p ∈ P we have

( n∏

i=1

fmi

i

)
(p−1.x) =

n∏

i=1

(p.fi)
mi (x) =

n∏

i=1

(λi(p)
mifmi

i ) (x)

=
n∏

i=1

(λi(p)
mi(fi(x))

mi ) =
n∏

i=1

(λi(p)
mi · 1)

=
( n∑

i=1

miλi

)
(p) = 1,

and

( n∏

i=1

fmi

i

)
(z) = 1 for all z ∈ P.x = OP . (2.6)

Now define

f+ =
∏

i:mi>0

fmi

i ∈ k[uP ], f− =
∏

i:mi<0

f−mi

i ∈ k[uP ].

From (2.6) it follows that f+(z) = f−(z) for all z ∈ OP . But OP is dense in uP ,
and hence f+(z) = f−(z) for all z ∈ uP , i.e.

∏

i:mi>0

fmi

i =
∏

i:mi<0

f−mi

i ∈ k[uP ] (2.7)

Since the fi’s corresponds to different components, we know that for all constants
a ∈ k we have fi 6= afj when i 6= j. But k[uP ] is a UFD, and the fi’s are irreducible,
and hence (2.7) implies that all mi’s must be zero. But this is a contradiction, so
n is less than or equal to the rank of Kϕ.

Lemma 2.13. Let x ∈ OP be a Richardson element. If the orbit map P → P.x =
OP sending p to p.x is separable, then the number of components in uP \OP with
dimension equal to dim(uP ) − 1 equals the rank of Kϕ.

Proof. Let s denote the rank of Kϕ, and let n denote the number of components
in uP \ OP with dimension equal to dim(uP ) − 1. From the preceding lemma we
know that n ≤ s, so we want to show that s ≤ n.

We us the notation from the preceding proof. Again V1, . . . , Vn are the com-
ponents in uP \ OP of dimension dim(uP ) − 1, and I(Vi) = 〈fi〉 ⊆ k[uP ] for some
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irreducible element fi ∈ k[uP ](P ) with fi(x) = 1 for i = 1, . . . , n. Now there exist
λ1 . . . , λn ∈ X∗(P ) such that p.fi = λi(p)fi for all p ∈ P . Now remember that up
to multiplication with scalars in k∗, the fi’s are the only irreducible elements in
k[uP ](P ).

Since the orbit map P → P.x = OP is separable, the induced morphism
P/ZP (x) → OP is an isomorphism. Therefore all µ ∈ Ker ϕx = Kϕ induce mor-
phisms µ̄ : OP → k∗ given by µ̄(p.x) = µ(p−1). Now µ̄ is a non-vanishing regular
function on OP . Since OP is open in uP , we can consider µ̄ as an element in the
function field of uP , i.e. µ̄ ∈ k(uP ). Note that

(p.µ̄)(q.x) = µ̄(p−1.q.x) = µ(q−1p) = µ(p)µ(q−1) = µ(p)µ̄(q.x)

for all p, q ∈ P . In particular p.µ̄ = µ(p)µ̄, and µ̄ ∈ k(uP )(P ).
Now we can choose a basis µ1, . . . , µs for Kϕ. Using the above method we get

induced elements µ̄1, . . . , µ̄s ∈ k(uP )(P ). Since the fi’s are the only irreducible
elements in k[uP ](P ) up to scalars, Lemma 2.11 tells us that we can write

µ̄j = cj

n∏

i=1

f
mi,j

i

for some cj ∈ k and some mj,i ∈ Z. Since p.fi = λi(p)fi for all p ∈ P , we have

p.µ̄j =
( n∑

i=1

mj,iλi

)
(p)µ̄j .

But we also have p.µ̄j = (µj)(p)µ̄j , and hence µj =
∑s

i=1mj,iλi.
As in the proof of the preceding lemma we know that λi ∈ Ker ϕx = Kϕ. But

the set of µj ’s is a basis for Kϕ, and we can write λi =
∑s

j=1 ai,jµj for some
ai,j ∈ Z.

Let A denote the n × s-matrix with entries ai,j ∈ Z, and let M denote the
s× n-matrix with entries mj,i ∈ Z. Let µ be the vector with entries µj , and let λ
denote the vector with entries λi.

We have seen that λ = Aµ and that µ = Mλ. Hence µ = MAµ, but since the
µj ’s are linearly independent in Kϕ, we get that MA = Is where Is is the s × s
identity matrix, and we must have n ≥ s.

Let x ∈ OP . Notice that in characteristic zero the orbit map P → P.x sending
p to p.x is always separable. In the following situation the orbit map P → P.x
is also separable. Suppose G satisfies the standard hypothesis on page 4. We use
the notation of Section 2.2.3. Assume that P = P (λ∆) for some weighted Dynkin
diagram ∆. Since g(λ∆,−2)reg consists of Richardson elements, we know that x is
P -conjugate to an element x′ ∈ g(λ∆,−2)reg. Then ZG(x′) ⊆ P by Theorem 2.7. i,
and since ZG(x) and ZG(x′) are P -conjugate, we have ZG(x) ⊆ P . Therefore
ZG(x) = ZP (x). Since G satisfies the standard hypothesis, the orbit map G→ G.x
is separable, and the induced map G/ZP (x) = G/ZG(x) → G.x is an isomorphism.
Restricting this isomorphism to the closed set P/ZP (x), we get an isomorphism
P/ZP (x) → P.x which is equivalent to P → P.x being separable.
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From now on we will assume that G satisfies the standard hypothesis, and
that P = P (λ∆) for some weighted Dynkin diagram ∆. Then we know from
Theorem 2.7.ii that ZP (x′) = ZG(x′) is a semidirect product of CG(λ∆, x

′) and
ZU(λ∆)(x

′) as algebraic groups where CG(λ∆, x
′) is reductive and ZU(λ∆)(x

′)
equals the unipotent radical of ZP (x′). Let Ru(ZP (x)) denote the unipotent rad-
ical of ZP (x). Then since x is P -conjugate to x′, we get that ZP (x) = ZG(x) is a
semidirect product of a reductive group L and Ru(ZP (x)) where L is P -conjugate
to CG(λ∆, x

′). Now also ZP (x)0 = ZG(x)0 is a semidirect product of the identity
component L0 and Ru(ZG(x)).

Since L0 is reductive and connected, we can write L0 = R(L0)(L0, L0) where
R(L0) is the radical of L0 and (L0, L0) is the commutator subgroup of L0. The
radical R(L0) is a central torus, hence X∗(R(L0)) is a finitely generated free
abelian group.

Lemma 2.14. Let r denote the rank of X∗(R(L0)). Then also X∗(ZP (x)0) is free
abelian of rank r.

Proof. The considerations above imply that

ZP (x)0 = ZG(x)0 = R(L0)(L0, L0)Ru(ZG(x)).

Since R(L0) ⊆ ZP (x)0 we get an induced map

Γ : X∗(ZP (x)0) → X∗(R(L0)).

Since (L0, L0) is commutative, the character group of (L0, L0) is trivial. Since
Ru(ZG(x)) consists of unipotent elements, the character group of Ru(ZG(x)) is
also trivial. Hence Γ is injective, and X∗(ZP (x)0) is free abelian of rank less than
or equal to r.

Now we want to define a group homomorphism

Ψ : X∗(R(L0)) → X∗(ZP (x)0).

Let K be the number of elements in the finite set (L0, L0) ∩ R(L0). Let f ∈
X∗(R(L0)). Let x ∈ ZP (x)0 and write x = x1x2x3 with x1 ∈ R(L0), x2 ∈ (L0, L0)
and x3 ∈ Ru(ZG(x)). Then define Ψ(f)(x) = xK1 . It turns out that this is well
defined and that Ψ becomes a group homomorphism. It is clear that

Γ ◦ Ψ : X∗(R(L0)) → X∗(ZG(x)0) → X∗(R(L0)),

is just multiplication by K, and hence Ψ is injective. It follows that the rank of
X∗(ZG(x)0) equals r.

Corollary 2.15. If L0 is semisimple, then X∗(ZP (x)0) = 0.

Proof. If L0 is semisimple, then R(L0) is trivial, and we have X∗(R(L0)) = 0.
Hence X∗(ZP (x)0) = 0 by Lemma 2.14.

Corollary 2.16. If L0 is semisimple, then the number of components in uP \P.x
with dimension dim(uP ) − 1 is equal to the rank of X∗(P ).
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Proof. Corollary 2.15 and Lemma 2.13

As explained in Section 2.2.4 we can use the results in Chapter 13.1 in [Car85]
to find the root datum of L0 given the root system Φ and the weighted Dynkin
diagram ∆. In particular we can check whether or not L0 is semi-simple.





Chapter 3

Vanishing theorems

We need some vanishing results for cohomology groups, cf. Section 2. The main
theorem used by Eric Sommers is the following theorem by Demazure, found in
[Dem76] in characteristic 0, and e.g. in [Tho00] in characteristic p > 0.

Theorem 3.1. Let α denote a simple root. Let V be a Pα-representation. Let
λ ∈ X∗(T ) and m = 〈λ, α∨〉. Assume that

m ≤ −1 if char(k) = 0
−p− 1 ≤ m ≤ −1 if char(k) = p.

Then there exists an isomorphism of G-representations

Hi(G/B, V ⊗ λ) = Hi−1(G/B, V ⊗ (sα(λ) − α)) for all i ∈ Z.

In particular, if m = −1 all cohomology groups vanish.

Remember that

λ− (m+ 1)α = sα(λ) − α.

Eric Sommers has shown the following proposition, Proposition 3.2, which relies
on Theorem 3.1. We need some notation to be able to explain it.

Let G be of type Al, and label the simple roots α1, α2, . . . , αl such that

〈αi, α
∨
i+1〉 = −1 for all i = 1, 2, . . . , l − 1.

Let ̟1, ̟2, . . .̟l denote the corresponding fundamental weights. Let ui be the
Lie algebra of the unipotent radical of the maximal standard parabolic subgroup
containing B corresponding to all the simple roots except αi.

Proposition 3.2. Let char(k) = 0. Choose m with 1 ≤ m ≤ l, and let m′ =
min {m, l + 1 −m}. If r is an integer satisfying

2m′ − 2 − l ≤ r ≤ 0,

then there exists an isomorphism of G-representations

Hi
(
G/B, Snu∗m ⊗ r̟m

)
= Hi

(
G/B, Sn+rm′

u∗l+1−m ⊗−r̟l+1−m

)

for all i, n ∈ Z.

29
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Eric Sommers gives a proof of the proposition in [Som]. He also states that
the proposition works in a more general setting, Proposition 6 in [Som03]. The
following section contains a detailed proof of the proposition in this more general
setting, also when char(k) = p > 0. However there will be a lower bound on p in
characteristic p.

3.1 Proof and explanation of Proposition 4.4 in [Som03]

Let I ⊆ ∆, and let PI be the corresponding subgroup containing B. Let L be the
Levi subgroup of P containing T . We assume that L is of type Al, i.e. the root
system of L relative to T , ΦI , is a root system of type Al. Let w0 be the longest
element in the Weyl group of L. The Weyl group of L is a subgroup of the Weyl
group, W , of G so we can consider w0 as an element in W .

We now enumerate the simple roots as follows:

• The roots in I are denoted α1, α2, . . . , αl such that 〈αi, αi+1〉 = −1.

• The roots β ∈ ∆ \ I for which there exists an αi satisfying 〈β, α∨
i 〉 < 0 (we

will call β and αi for neighbors), are denoted β1, β2, . . . , βs.

• The rest of the simple roots are denoted γ1, γ2, . . . , γt.

We start by choosing a set of simple roots {γk1 , γk2 , . . . , γku
}, and let Pi be the

parabolic subgroup corresponding to the set

Ii = I ∪ {γk1 , γk2 , . . . , γku
} \ {αi}, 1 ≤ i ≤ l.

Let ui denote the unipotent radical of Pi. Then ui is a Pi-module, and

ui =
⊕

α∈Φ−\Φi

gα,

where Φi is the set of roots which are linear combinations of the roots in Ii.
Note that if λ ∈ X∗(T ) satisfy 〈λ, α∨〉 = 0 for some simple root α, we know

that λ ∈ X∗(Pα) – this will be used in the proof of the following proposition. Also
remember that the one dimensional B-representation with weight λ ∈ X∗(T ) =
X∗(B) is just denoted λ.

Proposition 3.3. Let 1 ≤ m ≤ l and m′ = min{m, l + 1 −m}. Let λ ∈ X∗(T ),
and set r = 〈λ, α∨

m〉. Suppose that

〈λ, α∨
i 〉 = 0 for i = 1, . . . ,m− 1,m+ 1, . . . l

and that 2m′ − 2 − l ≤ r ≤ 0.
If char(k) = 0, or char(k) = p withm′−1 ≤ p, then there exists an isomorphism

of G-modules

Hi(G/B, Snum ⊗ λ) = Hi(G/B, Sn+rm′

ul+1−m ⊗ w0(λ)) for all i, n ∈ Z.

We start by proving the following lemma.
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Lemma 3.4. Let 1 ≤ a ≤ b ≤ l, let J = {αa, αa+1, . . . , αb}, and let Q be a
PJ -module. Let λ ∈ X∗(T ), s = 〈λ, α∨

a 〉, and suppose that

〈λ, α∨
i 〉 = 0 for a < i ≤ b

and that a− b− 1 ≤ s ≤ −1. Then

Hi(G/B,Q⊗ λ) = 0 for all i ∈ Z. (3.1)

This lemma is a generalization of a lemma by Eric Sommers which is valid when
char(k) = 0. If we use his method to prove the lemma when char(k) = p > 0, then
we get a lower bound on p. The following proof, due to H. H. Andersen, has no
bound on p.

Proof. The Grothendieck Spectral Sequence

Ei,j2 = Hi(G/PJ , H
j(PJ/B,Q⊗ λ))

abuts to

Hi+j(G/B,Q⊗ λ)

But since Q is a PJ -module, the generalized tensor identity gives

Hj(PJ/B,Q⊗ λ) = Q⊗Hj(PJ/B, λ) for all j ∈ Z.

If we can show that

Hj(PJ/B, λ) = 0 for all j ∈ Z.

then Ei,j2 = 0 for all i and j, the spectral sequence already collapses at the E2-level,
and (3.1) is satisfied.

Let LJ denote the Levi subgroup of PJ containing T , and let L′ be the com-
mutator subgroup (LJ , LJ). Then L′ is semi-simple and connected with Borel
subgroup B′ = B ∩ L′ and maximal torus T ′ = (T ∩ L′)0. By Remark I.6.13 in
[Jan87] we have

Hj(PJ/B, λ)|L′ = Hj(L′/B′, λ|B′) for all j ∈ Z. (3.2)

Since Hj(PJ/B, λ) equals Hj(PJ/B, λ)|L′ as vector spaces, it is enough to show
that the right hand side of (3.2) vanishes for all j ∈ Z.

Now J is a simple system of roots in the root system ΦJ of L′. We denote the
corresponding fundamental weights

̟a, ̟a+1. . . . , ̟b ∈ X∗(T ′) = X∗(B′).

But

〈λ, α∨
i 〉 = 0 for a < i ≤ b

〈λ, α∨
a 〉 = s,
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and hence λ|B′ = s̟a in X∗(B′). So we need to show

Hj(L′/B′, s̟a) = 0 for all j ∈ Z.

We will show this by using the Strong Linkage Principle. LetWJ be the Weyl group
of L′ with respect to T ′, and let si ∈ WJ be the simple reflections corresponding
to the simple root αi for i = a, . . . , b. We will use the “dot” action defined in (1.1)
in Section 1.1. We want to show that

(sa−s−1sa−s−2 · · · sa) · (s̟a) = −̟a−s−1. (3.3)

Using that αa = 2̟a −̟a+1, we get

sa · (s̟a) = sa(s̟a) − αa

= s̟a − (〈s̟a, α
∨
a 〉 + 1)αa

= s̟a − (s+ 1)αa

= −(s+ 2)̟a + (s+ 1)̟a+1.

Using that αa+i−1 = −̟a+i−2 + 2̟a+i−1 − ̟a+i for 2 ≤ i ≤ b − a, we get by
induction

(sa+i−1sa+i−2 · · · sa) · (s̟a) = −(s+ i+ 1)̟a+i−1 + (s+ i)̟a+i (3.4)

for 1 ≤ i ≤ b− a. If s 6= a− b− 1, we can set i = −s in this equation, obtaining

(sa−s−1sa−s−2 · · · sa) · (s̟a) = −̟a−s−1.

and (3.3) is satisfied if a − b ≤ s ≤ −1. For i = b − a and s = a− b − 1 equation
(3.4) gives

(sb−1sb−2 · · · sa) · (s̟a) = −̟b = −̟a−s−1.

But since

sb · (−̟b) = −̟b − (〈−̟b, α
∨
b 〉 + 1)αb = −̟b,

(3.3) is valid also if s = a− b− 1.
By (3.3) we get

Hj(L′/B′, λ|B′) = Hj(L′/B′, s̟a)

= Hj(L′/B′, (sa−s−1sa−s−2 · · · sa)
−1

· (−̟a−s−1))

for all j ∈ Z. But since 〈̟a−s−1 + ρ, α∨
i 〉 ≥ 0 for i = a, . . . , b, and since there

exists no dominant weight µ ∈ X∗(T ′) with µ ≤ −̟a−s−1 the latter vanishes for
all j ∈ Z by the Strong Linkage Principle, Proposition II.6.13 in [Jan87].

Identically we can prove a symmetric version of Lemma 3.4:
Let 1 ≤ a ≤ b ≤ l, let J = {αa, αa+1, . . . , αb}, and let Q be a PJ -module. Let

λ ∈ X∗(T ). In this symmetric version we let s = 〈λ, α∨
b 〉! Suppose that

〈λ, α∨
i 〉 = 0 for a ≤ i < b

and that a− b− 1 ≤ s ≤ −1. Then

Hi(G/B,Q⊗ λ) = 0 for all i ∈ Z.
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Proof of Proposition 3.3. The proof works in characteristic zero and in character-
istic p if p is “big enough”. Unfortunately we cannot avoid the bound on p using
the Strong Linkage Principle instead of Theorem 3.1 in Step 3 in the following
proof. But the bound on p is still better than without using the Strong Linkage
Principle in the proof of Lemma 3.4.

In this proof we will write Hi(−) instead of Hi(G/B,−).

Step 1: Let V = um∩ul+1−m, and suppose that m ≤ l+1−m. Now assume that
µ ∈ X∗(T ) satisfies 〈µ, α∨

t 〉 = 0 for m < t ≤ l.
We wish to show that

Hi(Snu∗m ⊗ µ) = Hi(SnV ∗ ⊗ µ) for all i, n ∈ Z.

This is obvious if m = l + 1 − m, since in this case V = um. We will therefore
assume that m < l+ 1 −m.

There exists a short exact sequence (U is the kernel)

0 → U → u∗m → V ∗ → 0. (3.5)

Taking the Koszul resolution of the short exact sequence, and tensoring with µ we
get the exact sequence

0 → . . .→ Sn−ju∗m ⊗ ∧jU ⊗ µ→ . . .→ Snu∗m ⊗ µ→ SnV ∗ ⊗ µ→ 0. (3.6)

The weights of U (T -weights) are the the weights of u∗m, which are not weights
of V ∗. The set of weights of u∗m is Φ+ \ Φm, and the set of weights of V ∗ is
Φ+ \ (Φm ∪ Φl+1−m). Thus the set of weights of U is

Φ+ ∩ (Φl+1−m \ Φm)

= {α ∈ Φ+ ∩ Φl+1−m|α has a nonzero coefficient to αm}

= {α ∈ Φ+ ∩ ΦI |α has a nonzero coefficient to αm,

and the coefficient to αl+1−m is zero}

= {αi + αi+1 + . . .+ αk|1 ≤ i ≤ m,m ≤ k < l + 1 −m}.

Here we have used the fact that if α ∈ Φs, it may be written as

α =

l∑

i=1

ciαi +

u∑

j=1

djγkj
, where cs = 0.

Since 〈γkj
, α∨

i 〉 = 0 for all i, j, it follows that either all ci’s are zero or all di’s are
zero. Hence, if α ∈ Φl+1−m has a nonzero coefficient to αm, then all di’s are zero
and α ∈ ΦI .

Thus, if η is a weight of ∧jU , there exists t0 with m < t0 ≤ l + 1 − m,
−m ≤ 〈η, α∨

t0
〉 ≤ −1 and 〈η, α∨

t 〉 = 0 for t0 < t ≤ l.
We can use Lemma 3.4 with Q = Sn−ju∗m ⊗ µ, a = t0, b = l and s = 〈η, α∨

t0
〉

because

a− b− 1 = t0 − l − 1 ≤ −m ≤ 〈η, α∨
t0
〉 ≤ −1,
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and because u∗m is a Pαt
-module for t 6= m, and µ a Pαt

-module for m < t ≤ l.
Hence

Hi(Sn−ju∗m ⊗ µ⊗ η) = 0 for all i, n ∈ Z.

We can filter ∧jU by B-submodules such that the consecutive quotients are one
dimensional with weights equal to the weights of ∧jU , and we get for all 1 ≤ j ≤
dim(U)

Hi(Sn−ju∗m ⊗ µ⊗ ∧jU) = 0 for all i, n ∈ Z,

Splitting the Koszul resolution in (3.6) into short exact sequences and taking long
exact sequences in cohomology, we see that

Hi(Snu∗m ⊗ µ) = Hi(SnV ∗ ⊗ µ) for all i, n ∈ Z.

Identically the proof may be carried out if m ≥ l+1−m and µ ∈ X∗(T ) satisfy
〈µ, α∨

t 〉 = 0 for 1 ≤ t < m.
Thus, if µ ∈ X∗(T ) satisfy 〈µ, α∨

t 〉 = 0 for t 6= m, we have

Hi(Snu∗m ⊗ µ) = Hi(SnV ∗ ⊗ µ) for all i, n ∈ Z.

Step 2: From now on we will assume that m ≤ l+1−m. Let V1 = V ∩um−1, and
V2 = V1 ∩ ul+2−m. If m = 1 we consider um−1 and ul+2−m to be the zero vector
space. Let µ ∈ X∗(T ), and assume that µ satisfy

〈µ, α∨
i 〉 = 0 for i = m+ 1, . . . , l −m, l+ 2 −m, . . . , l,

r′ = 〈µ, α∨
m〉 with 2m− 2 − l ≤ r′ ≤ −1,

〈µ, α∨
l+1−m〉 = 0 if r′ = 2m− 2 − l.

We wish to show that

Hi(SnV ∗
1 ⊗ µ) = 0 for all i, n ∈ Z.

Since V2 ⊆ V1, we have a short exact sequence (U2 is the kernel)

0 → U2 → V ∗
1 → V ∗

2 → 0

Taking the Koszul resolution of this short exact sequence and tensoring with µ,
we get an exact sequence

0 → . . .→ Sn−jV ∗
1 ⊗ ∧jU2 ⊗ µ→ . . .→ SnV ∗

1 ⊗ µ→ SnV ∗
2 ⊗ µ→ 0.

Thus it is enough to show that

Hi(Sn−jV ∗
1 ⊗ ∧jU2 ⊗ µ) = 0 for all i, n ∈ Z

Hi(SnV ∗
2 ⊗ µ) = 0 for all i, n ∈ Z.

Actually it holds that

V2 = um−1 ∩ um ∩ ul+1−m ∩ ul+2−m = um−1 ∩ ul+2−m.



3.1. Proof and explanation of Proposition 4.4 in [Som03] 35

This can be seen by comparing the weights:

(Φ− \ ΦI) ∪ {α ∈ Φ− ∩ ΦI |α has nonzero coefficients to

αm−1, αm, αl+1−m and αl+2−m}

is the set of weights of V2. But this set equals the set

(Φ− \ ΦI) ∪ {α ∈ Φ− ∩ ΦI |α has nonzero coefficients

to αm−1 and αl+2−m},

which is exactly the set of weights of um−1 ∩ ul+2−m. Thus V2 = um−1 ∩ ul+2−m,
and V ∗

2 is a Pαt
-module for t 6= m− 1, l+ 2 −m.

If r′ 6= 2m − l − 2 we can use Lemma 3.4 with Q = SnV ∗
2 , a = m, b = l −m

and s = 〈µ, α∨
m〉 = r′ because a− b − 1 = 2m− 1 − l ≤ r′ ≤ −1, and because V ∗

2

is a Pαt
-module for m ≤ t ≤ l −m. Thus

Hi(SnV ∗
2 ⊗ µ) = 0 for all i, n ∈ Z.

If r′ = 2m− l − 2 we can also use Lemma 3.4, but this time with Q = SnV ∗
2 ,

a = m, b = l+1−m and s = 〈µ, α∨
m〉 = r′ because a−b−1 = 2m−2−l ≤ r′ ≤ −1,

and because V ∗
2 is a Pαt

-module for m ≤ t ≤ l+ 1 −m. Again we have

Hi(SnV ∗
2 ⊗ µ) = 0 for all i, n ∈ Z.

The set of weights of V ∗
1 is

Φ+ \ (Φm−1 ∪ Φm ∪ Φl+1−m),

and
Φ+ \ (Φm−1 ∪ Φm ∪ Φl+1−m ∪ Φl+2−m)

is the set of weights of V ∗
2 . Thus the set of weights of U2 is

Φ+ ∩ (Φl+2−m \ (Φm−1 ∪ Φm ∪ Φl+1−m))

= {α ∈ Φ+ ∩ Φl+2−m|α has a nonzero coefficient to αm−1, αm and αl+1−m}

= {α ∈ Φ+ ∩ ΦI |α has a nonzero coefficient to αm−1, αm and αl+1−m,

and the coefficient to αl+2−m is zero}

= {αi + αi+1 + . . .+ αl+1−m|1 ≤ i ≤ m− 1}.

Hence, if η is a weight of ∧jU2, we have

〈η, α∨
l+2−m〉 = −j,

〈η, α∨
t 〉 = 0 for l + 2 −m ≤ t ≤ l.

Remark that dim(U2) = m − 1. Now we use Lemma 3.4 again. This time with
Q = Sn−jV ∗

1 ⊗ µ, a = l + 2 − m, b = l and s = 〈η, α∨
l+2−m〉 = −j. V ∗

1 is
a Pαt

-module for t 6= m − 1,m, l + 1 − m 1, and µ is a Pαt
-module for t =

1 Actually V ∗

1 is a Pαt -module for t 6= m− 1, l + 1−m since V ∗

1 = um−1 ∩ul+1−m, compare
with the proof of V ∗

2 = um−1 ∩ ul+2−m.
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m+ 1, . . . , l −m, l + 2 −m, . . . , l. Thus Q is a Pαt
-module for l + 2 −m ≤ t ≤ l.

We also have

a− b− 1 = 1 −m ≤ −j ≤ −1

because 1 ≤ j ≤ dim(U2) = m− 1. Therefore

Hi(Sn−jV ∗
1 ⊗ µ⊗ η) = 0 for all i, n ∈ Z

for all weights η of ∧jU2. But filtering ∧jU2 (as in Step 1) gives us

Hi(Sn−jV ∗
1 ⊗ ∧jU2 ⊗ µ) = 0 for all i, n ∈ Z.

Step 3: Suppose µ ∈ X∗(T ) satisfy

〈µ, α∨
i 〉 = 0 for i 6= m, l+ 1 −m,

r′ = 〈µ, α∨
m〉 with 2m− 2 − l ≤ r′ ≤ −1,

〈µ, α∨
l+1−m〉 = 0 if r′ = 2m− 2 − l.

(3.7)

We want to show that

Hi(SnV ∗ ⊗ µ) = Hi(Sn−mV ∗ ⊗ µ+ ν0) for all i, n ∈ Z,

where

ν0 = α1 + 2α2 + . . .+ (m− 1)αm−1 +m(αm + αm+1 + . . .+ αl+1−m)

+ (m− 1)αl+2−m + . . .+ 2αl−1 + αl.
(3.8)

Since V1 ⊆ V , we get a short exact sequence (U1 is the kernel)

0 → U1 → V ∗ → V ∗
1 → 0

Taking the corresponding Koszul resolution and tensoring with µ, we get an exact
sequence

0 → . . .→ Sn−jV ∗ ⊗ ∧jU1 ⊗ µ→ . . .→ SnV ∗ ⊗ µ→ SnV ∗
1 ⊗ µ→ 0 (3.9)

The set of weights of V ∗ is

Φ+ \ (Φm ∪ Φl+1−m),

and the set of weights of V ∗
1 is

Φ+ \ (Φm−1 ∪ Φm ∪ Φl+1−m).

Thus the set of weights of U1 is

Φ+ ∩ (Φm−1 \ (Φm ∪ Φl+1−m))

= {α ∈ Φ+ ∩ Φm−1|α has a nonzero coefficient to αm and αl+1−m}

= {α ∈ Φ+ ∩ ΦI |α has a nonzero coefficient to αm and αl+1−m,

and the coefficient to αm−1 is zero}

= {αm + αm+1 + . . .+ αi|l + 1 −m ≤ i ≤ l}.
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Thus dim(U1) = m, and if η is a weight of ∧jU1, it satisfy

〈η, α∨
m−1〉 = −j,

〈η, α∨
t 〉 = 0 for 1 ≤ t ≤ m− 1.

If j ≤ m−1 we can use the symmetric version of Lemma 3.4 with Q = Sn−jV ∗⊗µ,
a = 1, b = m−1 and s = 〈η, α∨

m−1〉 = −j. Now Q is a Pαt
-module for 1 ≤ t ≤ m−1

because V ∗ and µ are Pαt
-modules for t 6= m, l + 1 −m, and

a− b− 1 = 1 −m ≤ −j ≤ 1.

Thus we get
Hi(Sn−jV ∗ ⊗ µ⊗ η) = 0 for all i, n ∈ Z.

But filtering U1 (as in Step 1), we get

Hi(Sn−jV ∗ ⊗ ∧jU1 ⊗ µ) = 0 for all i, n ∈ Z, (3.10)

when j ≤ m− 1.
We now concentrate on the case j = m. Define

η = m(αm + αm+1 . . .+ αl+1−m) + (m− 1)αl+2−m + . . .+ 2αl−1 + αl.

Then ∧mU1 = η. We wish to use Theorem 3.1 m−1 times. Still, V ∗ and µ are Pαt
-

modules for t 6= m, l + 1 −m, especially for 1 ≤ t ≤ m− 1. Now 〈η, α∨
m−1〉 = −m

and the theorem gives

Hi(Sn−mV ∗ ⊗ µ⊗ ∧mU1) = Hi−1(Sn−mV ∗ ⊗ µ⊗ (m− 1)αm−1 + η)

for all i, n ∈ Z. In characteristic p we will need m− 1 ≤ p. Again 〈(m− 1)αm−1 +
η, α∨

m−2〉 = −m+ 1, so the latter cohomology group equals

Hi−1(Sn−mV ∗ ⊗ µ⊗ (m− 2)αm−2 + (m− 1)αm−1 + η)

by Theorem 3.1 (here m− 2 ≤ p). After m− 1 times we see that

Hi(Sn−mV ∗ ⊗ µ⊗ ∧mU1)

= Hi−(m−1)(Sn−mV ∗ ⊗ µ⊗ α1 + α2 + . . . (m− 1)αm−1 + η) (3.11)

= Hi−m+1(Sn−mV ∗ ⊗ µ⊗ ν0)

for all i, n ∈ Z where we must have m− 3,m− 4, . . . , 1 ≤ p. So all in all we need

m− 1 ≤ p (3.12)

to use Theorem 3.1. We have

Hi(SnV ∗
1 ⊗ µ) = 0 for all i, n ∈ Z (3.13)

using Step 2.
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Splitting the exact sequence in (3.9) into short exact sequences and using (3.10)
and (3.13) we see that

Hi(SnV ∗ ⊗ µ) = Hi+m−1(Sn−mV ∗ ⊗ ∧mU1 ⊗ µ) for all i, n ∈ Z,

which by (3.11) equals

Hi(Sn−mV ∗ ⊗ µ⊗ ν0) for all i, n ∈ Z.

Step 4: We want to show that

Hi(Snu∗m ⊗ λ) = Hi(Sn+rmu∗l+1−m ⊗ λ− rν0) for all i, n ∈ Z.

We will use Step 3 inductively −r times. Since λ + sν0 satisfies (3.7) for 1 ≤ s ≤
−r − 1, we have

Hi(SnV ∗ ⊗ λ) = Hi(Sn−mV ∗ ⊗ λ+ ν0)

= Hi(Sn−2mV ∗ ⊗ λ+ 2ν0)

= . . .

= Hi(Sn−(−r)mV ∗ ⊗ λ+ (−r − 1 + 1)ν0)

for all i, n ∈ Z. But by Step 1 we have

Hi(Snum ⊗ λ) = Hi(SnV ∗ ⊗ λ)

= Hi(Sn+rmV ∗ ⊗ λ− rν0)

= Hi(Sn+rmul+1−m ⊗ λ− rν0)

for all i, n ∈ Z.

Step 5: All that is left to show is that w0(λ) = λ− rν0.
We know that w0 is a product of simple reflections corresponding to the simple

roots α1, α2, . . . , αl. Therefore λ−w0(λ) is a linear combination of α1, α2, . . . , αl.
But rν0 is also a linear combination of α1, α2, . . . , αl. Hence it is enough to show
that

〈λ− w0(λ), α
∨
i 〉 = 〈rν0, α

∨
i 〉, i = 1, 2, . . . , l.

From Planche I, p. 250 [Bou81] we know that w0(αi) = −αl+1−i. Remembering

〈λ, α∨
i 〉 =

{
r if i = m
0 otherwise

we therefore get

〈λ− w0(λ), α
∨
i 〉 = 〈λ, α∨

i 〉 + 〈λ, α∨
l+1−i〉 =

{
r if i = m, l+ 1 −m
0 otherwise

But

〈rν0, α
∨
i 〉 =

{
r if i = m, l+ 1 −m
0 otherwise
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according to (3.8). Hence w0(λ) = λ− rν0.

Step 6: In characteristic p, the limit for p is found in equation (3.12), so we need
m− 1 ≤ p.

All what we have done in Step 2 - 5 may also be done with the assumption
m ≥ l+1−m, so Proposition 3.3 is correct for all m. In general we need m′− 1 ≤
p.
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3.2 A new vanishing method

Whenever Eric Sommers proves that a nilpotent orbit has normal closure, he
applies the following proposition in the calculations. The proposition is a small
extension of a vanishing theorem by Broer in [Bro94].

Proposition 3.5 (Proposition 4 in [Som03]). Suppose char(k) = 0. Let P be a
parabolic subgroup containing B, and let λ ∈ X∗(P ) be a dominant P -character.
Then

1. For all i > 0, n ∈ Z we have

Hi(G/P, Snu∗P ⊗ λ) = Hi(G/B, Snu∗P ⊗ λ) = 0

2. Assume P is the parabolic subgroup with Lie algebra ⊕i≥0gi where gi is the
i-eigenspace for the semi-simple element of an sl2-triple normalized so that
P contains B. Let V = ⊕i≥2gi, and let w = ∧dim(g1)g1. Then

Hi(G/P, SnV ∗ ⊗ w ⊗ λ) = Hi(G/B, SnV ∗ ⊗ w ⊗ λ) = 0

for all i > 0, n ∈ Z.

Broer’s result relies on the Grauert-Riemenschneider vanishing theorem which
is only valid in characteristic zero, hence this proposition is unfortunately only valid
in characteristic zero. However we have found another method to obtain vanishing
cohomology groups. There are two important ingredients in this method. The
first is a vanishing theorem by Broer in characteristic zero, Theorem 3.9.(iii) in
[Bro94], which was generalized to characteristic p > 0 by Thomsen in Theorem 1
in [Tho00] with a lower bound on p. Now H. H. Andersen has given another version
of this theorem without any bound on p, this is the following Theorem 3.11. The
second ingredient in the new method to obtain vanishing cohomology groups is
Example 3.15 where we combine this theorem with Koszul resolutions.

Note that Broer’s/Thomsen’s vanishing theorem would work in the actual cal-
culations in Chapter 4. However, in prime characteristic p > 0 we would need to
require that p ≥ 7 in the proof of normality of the closures of some of the smallest
nilpotent orbits. But 5 is a good prime when G is of type E6, and hence we need
to use Andersen’s result.

In Theorem 3.11 we need a function X∗(T ) → N satisfying some conditions to
make the proof work. This is the motivation for the following definition.

Definition 3.6. Let d : X∗(T ) → N be a function satisfying

1. d(λ) = 0 if λ ∈ X∗(T ) is dominant.

If λ ∈ X∗(T ) is not dominant, there exists a simple root α such that either 2 or 3
is satisfied

2. 〈λ, α∨〉 = −1 and d(sα(λ)) ≤ d(λ).

3. 〈λ, α∨〉 < −1 with d(λ + iα) < d(λ) for all i = 1, 2, . . . ,−〈λ, α∨〉 − 1 and
d(sα(λ)) ≤ d(λ).
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Then we call d a vanishing function since it can be used in the vanishing theorem,
Theorem 3.11.

First we give an example of a vanishing function. In order to do this we need
some notation. Let ≤ denote the partial order on X∗(T ) defined by µ ≤ λ if λ−µ
is a sum of positive roots. For all λ ∈ X∗(T ) there exists a unique dominant weight
λ+ ∈ X∗(T ) in the W -orbit of λ. We know that λ ≤ λ+.

For each weight λ ∈ X∗(T ) there exist a dominant weight λ⋆ ∈ X∗(T ) with
λ ≤ λ⋆ which is minimal in the sense that if µ ∈ X∗(T ) is dominant with λ ≤ µ,
then λ⋆ ≤ µ, see e.g. Proposition 2 in [Tho00].

Now we can define the Chevalley height of λ ∈ X∗(T ) to be the largest integer
r such that there exist dominant weights µ0, µ1, . . . , µr ∈ X∗(T ) with

λ⋆ = µ0 < µ1 < . . . < µr−1 < µr = λ+.

We will let Cht(λ) denote the Chevalley height of λ, and clearly Cht(λ) ∈ N.
The following proposition can be found in [Tho00].

Proposition 3.7. Let λ ∈ X∗(T ) be a character, and let α ∈ Π be a simple root.

1. If 〈λ, α∨〉 = −1 then Cht(λ) = Cht(λ + α).

2. If 〈λ, α∨〉 ≤ −2 then Cht(λ) > Cht(λ + α).

3. If 〈λ, α∨〉 ≤ 0 then Cht(λ) ≥ Cht(sα(λ)).

4. If 〈λ, α∨〉 ≤ −2 then Cht(λ) > Cht(sα(λ) − α).

Corollary 3.8. The function Cht : X∗(T ) → N is a vanishing function.

Proof. If λ ∈ X∗(T ) is dominant, then clearly Cht(λ) = 0, and condition 1 in
Definition 3.6 is satisfied. If λ is not dominant, there exists a simple root α with
〈λ, α∨〉 ≤ −1. If 〈λ, α∨〉 = −1, then Cht(λ) = Cht(λ + α) and condition 2 in
Definition 3.6 is satisfied since in this case sα(λ) = λ+ α. If 〈λ, α∨〉 < −1, then

〈λ+ iα, α∨〉 ≤ −2 for 0 ≤ i ≤ 1
2 (−〈λ, α∨〉 − 2)

and the proposition above gives that

Cht(λ + iα) > Cht(λ+ (i+ 1)α)

Cht(λ + iα) > Cht(sα(λ+ iα) − α) = Cht(λ − (〈λ, α∨〉 + i+ 1)α)

for 0 ≤ i ≤ 1
2 (−〈λ, α∨〉 − 2). This implies that

Cht(λ) > Cht(λ+ jα) for j = 1, 2, . . . ,−〈λ, α∨〉 − 1.

But also Cht(λ) ≥ Cht(sα(λ)) by the above proposition, and hence condition 3 in
Definition 3.6 is satisfied.

Later we will actually define a minimal vanishing function. For λ ∈ X∗(T ) we
define l(λ) to be the number of elements in

{β ∈ Φ+|〈λ, β∨〉 < 0}

We call l(λ) the length of λ.
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Corollary 3.9. Let λ ∈ X∗(T ). If 〈λ, α〉 < 0 for some simple root α, then

l(sα(λ)) = l(λ) − 1.

Proof. Let β ∈ Φ+ be a positive root. Then 〈sα(λ), β∨〉 = 〈λ, (sα(β))∨〉. But since
sα permutes all the positive roots except α, and since sα(α) = −α, the result
follows.

Remember that ρ denotes half the sum of the positive roots, i.e. ρ = 1
2

∑
α∈Φ+ α.

Also remember that 〈ρ, α∨〉 = 1 for all simple roots α ∈ Π.

Corollary 3.10. Let d : X∗(T ) → N be a vanishing function. If d(λ) = 0, then
λ+ ρ is dominant.

Proof. Assume that d(λ) = 0. We will show the corollary by induction in l(λ). If
l(λ) = 0, then λ is dominant and so is λ + ρ. If l(λ) > 0, then since d(λ) = 0,
either λ is dominant (and the result follows), or there exists a simple root α such
that condition 2 in Definition 3.6 is satisfied, i.e.

〈λ, α∨〉 = −1 and d(sα(λ)) ≤ d(λ) = 0.

But l(sα(λ)) = l(λ) − 1 so by induction sα(λ) + ρ = λ + α + ρ is dominant, i.e.
〈λ+ ρ+ α, β∨〉 ≥ 0 for all simple roots β. But for β 6= α we have 〈α, β∨〉 ≤ 0 and
hence

〈λ+ ρ, β∨〉 ≥ 〈λ+ ρ+ α, β∨〉 ≥ 0.

But 〈λ, α∨〉 = −1, and hence 〈λ+ρ, α∨〉 = 0, and we see that λ+ρ is dominant.

Now we are ready to state the vanishing theorem by H. H. Andersen.

Theorem 3.11. Let d : X∗(T ) → N be a vanishing function. Let λ ∈ X∗(T ).
Then if the characteristic of k is good for G we have

Hj(G/B, Snu∗ ⊗ λ) = 0 for all j > d(λ), n ∈ Z.

Proof. We will proof the theorem by induction first on n and then on d(λ). Suppose
n ≤ 0.

Assume that d(λ) = 0. Then we are in condition 1 or 2 of Definition 3.6,
and either λ is dominant or there exists a simple root α with 〈λ, α∨〉 = −1 (and
d(sα(λ)) ≤ d(λ)). If λ is dominant, Kempf’s vanishing theorem (Proposition II.4.5
in [Jan87]) gives us

Hj(G/B, λ) = 0 for all j > 0,

and if 〈λ, α∨〉 = −1, Theorem 3.1 gives us

Hj(G/B, λ) = 0 for all j ∈ Z,

and hence the theorem holds in this case.
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If d(λ) > 0 there exists a simple root α satisfying condition 2 or 3 in Defini-
tion 3.6. If α satisfies condition 2, we have 〈λ, α∨〉 = −1 and again the theorem
holds by Theorem 3.1.

If α is satisfying condition 3 we do the following. Let Pα denote the minimal
parabolic subgroup containing B corresponding to {α}. Then since 〈λ, α∨〉 < −1
we have by Proposition II.5.4 in [Jan87]

Hj(G/B, λ) = Hj−1(G/Pα, H
1(Pα/B, λ))

= Hj−1(G/B,H1(Pα/B, λ))

for all j ∈ N. Now by Proposition II.5.2 in [Jan87] the weights of H1(Pα/B, λ) are

λ+ α, λ+ 2α, . . . , λ+ (−〈λ, α∨〉 − 1)α. (3.14)

We can filter H1(Pα/B, λ) with B-subrepresentations such that the quotients are
one dimensional with the same weights. For any such weight µ we have d(µ) < d(λ)
since α satisfies condition 3 in Definition 3.6. So by our second induction we have

Hj−1(G/B, µ) = 0 for all j − 1 > d(µ),

and hence for all j > d(λ). So for all quotients Q in the filtration of H1(Pα/B, λ)
we have

Hj−1(G/B,Q) = 0 for all j > d(λ).

and hence

Hj(G/B, λ) = Hj−1(G/B,H1(Pα/B, λ)) = 0 for all j > d(λ).

Now suppose that n > 0, and assume that the theorem holds for n − 1. If
λ ∈ X∗(T ) is dominant, the theorem holds by Theorem 2 in [KLT99] since the
characteristic is good for G. If λ is not dominant, there exists a simple root α
satisfying condition 2 or 3 in Definition 3.6. Now let uPα

denote the Lie algebra
of the unipotent radical of Pα. This is a Pα-module, and as a B-module u/uPα

is
just the one dimensional B-module with weight −α. Remember that we denote
this B-module just by −α. With this notation we have a short exact sequence of
B-modules

0 → uPα
→ u → −α→ 0

The Koszul resolution corresponding to the dual sequence is the short exact se-
quence

0 → Sn−1u∗ ⊗ α→ Snu∗ → Snu∗Pα
→ 0

Tensoring with the one dimensional B-module with weight λ we get the short
exact sequence of B-modules

0 → Sn−1u∗ ⊗ (λ + α) → Snu∗ ⊗ λ→ Snu∗Pα
⊗ λ→ 0



44 3. Vanishing theorems

which induces this long exact sequence in cohomology

. . . ,→ Hj(G/B,Sn−1u∗ ⊗ (λ+ α))

→ Hj(G/B, Snu∗ ⊗ λ) → Hj(G/B, Snu∗Pα
⊗ λ) → . . .

(3.15)

If α satisfies condition 2 in Definition 3.6 we have 〈λ, α∨〉 = −1 and

Hj(G/B, Snu∗Pα
⊗ λ) = 0 for all j ∈ Z

by Theorem 3.1, and by the long exact sequence above we get

Hj(G/B, Snu∗ ⊗ λ) = Hj(G/B, Sn−1u∗ ⊗ (λ+ α)) for all j ∈ Z.

By induction on n we know that the latter vanishes for j > d(λ+ α). But since α
satisfies condition 2 in Definition 3.6, we know that

d(λ+ α) = d(sα(λ)) ≤ d(λ).

In particular

Hj(G/B, Snu∗ ⊗ λ) = Hj(G/B, Sn−1u∗ ⊗ (λ+ α)) = 0 for all j > d(λ),

and the theorem holds in this case.
Now assume that α instead satisfies condition 3 in Definition 3.6. Then we have

d(λ+ α) < d(λ), and by induction

Hj(G/B, Sn−1u∗ ⊗ (λ+ α)) = 0 for all j > d(λ+ α),

in particular it holds for j > d(λ). If we can show that

Hj(G/B, Snu∗Pα
⊗ λ) = 0 for all j > d(λ) (3.16)

we are done by (3.15). Now since 〈λ, α∨〉 < −1 we obtain by Proposition II.5.4 in
[Jan87]

Hj(G/B, Snu∗Pα
⊗ λ) = Hj−1(G/Pα, S

nu∗Pα
⊗H1(Pα/B, λ))

= Hj−1(G/B, Snu∗Pα
⊗H1(Pα/B, λ)) (3.17)

for all j ∈ Z. Let µ be a weight of H1(Pα/B, λ), i.e. µ is one of the weights in
(3.14). Then look at the long exact sequence in (3.15) with µ instead of λ. In order
to show (3.16), it is by (3.17) enough to show that

Hj(G/B, Sn−1u ⊗ (µ+ α)) = 0 for all j > d(λ) (3.18)

Hj−1(G/B, Snu∗ ⊗ µ) = 0 for all j > d(λ). (3.19)

By induction on n the first cohomology group vanishes for j > d(µ + α). If
µ 6= λ + (−〈λ, α∨〉 − 1)α, then d(µ + α) < d(λ) by condition 3 in Definition 3.6,
and if µ = λ+ (−〈λ, α∨〉 − 1)α, then µ+ α = sα(λ) and we have d(µ+ α) ≤ d(λ)
again by condition 3. Hence (3.18) is satisfied.

By condition 3 we know that d(µ) < d(λ), and by induction (3.19) is satisfied
for j > d(µ). But then it also holds for j > d(λ), and we are done.
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We know that the Chevalley height, Cht, is a vanishing function, and we can
use it in the above theorem. But Cht is not small enough for our calculations in
Chapter 4, so we will define a minimal vanishing function recursively.

Definition 3.12. We will define a function m : X∗(T ) → N as follows. If λ ∈
X∗(T ) is dominant, we define m(λ) = 0. If λ is not dominant, we may inductively
assume that m(µ) is defined for µ ∈ X∗(T ) satisfying one of the following two
conditions

i. Cht(µ) < Cht(λ)

ii. Cht(µ) = Cht(λ) and l(µ) < l(λ).

Now define

m(λ) = min{mα(λ)|α is a simple root with 〈λ, α〉 ≤ −1}

where mα(λ) is defined for all simple roots α with 〈λ, α∨〉 ≤ −1 as follows:

Suppose 〈λ, α∨〉 = −1: Then λ+ α = sα(λ), and hence

Cht(λ) = Cht(λ+ α) = Cht(sα(λ))

by Proposition 3.7 and l(sα(λ)) < l(λ) by Corollary 3.9. Hence sα(λ) satisfies
condition ii above, and we may assume that m(sα(λ)) is defined. Now define

mα(λ) = m(sα(λ)).

Suppose 〈λ, α∨〉 < −1: Then

Cht(λ) > Cht(λ+ jα) for j = 1, 2, . . . ,−〈λ, α∨〉 − 1

as in the proof of Corollary 3.8, so for these j’s the weights λ + jα satis-
fies condition i above, and we may assume that m(λ + jα) is defined. Now
Cht(λ) ≥ Cht(sα(λ)) by Proposition 3.7, but again l(sα(λ)) < l(λ) by Corol-
lary 3.9, so one of the two conditions i and ii is satisfied, and m(sα(λ)) is
defined. Now we can define

mα(λ) = max{m(sα(λ)),m(λ + jα) + 1|j = 1, 2, . . . ,−〈λ, α∨〉 − 1}

Since a weight λ ∈ X∗(T ) is dominant, if and only if Cht(λ) = 0 and l(λ) = 0,
and since l(λ) ≤ |Φ+| for all λ ∈ X∗(T ), our function m is well defined.

It is clear from the definition that m is a vanishing function, and it is con-
structed as a minimal vanishing function in the following sense.

Lemma 3.13. Let d : X∗(T ) → N be a vanishing function. Then for all λ ∈ X∗(T )
we have

m(λ) ≤ d(λ).
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Proof. We will prove it by induction first on d(λ) and then on l(λ).
Assume d(λ) = 0. Then Corollary 3.10 gives us that λ+ ρ is dominant. If λ is

dominant, then m(λ) = 0. If not, there exists a simple root α with

〈λ, α∨〉 ≤ −1 and m(λ) = mα(λ)

by construction of m. But since λ+ρ is dominant this α must satisfy 〈λ, α∨〉 = −1
and hence m(λ) = mα(λ) = m(sα(λ)). Since l(sα(λ)) < l(λ) by Corollary 3.9, we
have by induction

m(λ) = m(sα(λ)) ≤ d(sα(λ)).

But by condition 2 in Definition 3.6 we know that d(sα(λ)) ≤ d(λ) and therefore

m(λ) = m(sα(λ)) ≤ d(sα(λ)) ≤ d(λ).

Now assume that d(λ) > 0. Then λ is not dominant, and hence there exists a
simple root α such that condition 2 or 3 in Definition 3.6 is satisfied.

If condition 2 is satisfied we have 〈λ, α∨〉 = −1 and d(sα(λ)) ≤ d(λ). Then
l(sα(λ)) < l(λ) so by induction we have

m(sα(λ)) ≤ d(sα(λ)) ≤ d(λ).

But remember that m(λ) ≤ mα(λ) = m(sα(λ)) by construction of m, and we are
done.

If condition 3 is satisfied we know that 〈λ, α∨〉 < −1, and

d(λ+ jα) < d(λ) for j = 1, 2, . . . ,−〈λ, α∨〉 − 1,

d(sα(λ)) ≤ d(λ).

So by induction

m(λ+ iα) ≤ d(λ+ iα) < d(λ) (3.20)

for i = 1, 2, . . . ,−〈λ, α∨〉 − 1, and since l(sα(λ)) < l(λ) we also have

m(sα(λ)) ≤ d(sα(λ)) ≤ d(λ) (3.21)

by induction. But

m(λ) ≤ mα(λ) = max({m(sα(λ))} ∪ {m(λ+ jα) + 1|j = 1, 2, . . . ,−〈λ, α∨〉 − 1})

and hence m(λ) ≤ d(λ) by (3.20) and (3.21).

Another nice property of this minimal vanishing function is that we know
exactly where it vanishes. We will show that it vanishes on the following set

C = {λ ∈ X∗(T )|〈λ, β∨〉 ≥ −1 for all β ∈ Φ+}.

Now assume that λ ∈ C and 〈λ, α∨〉 ≤ 1 for some simple root α. Then sα(λ) ∈ C:
First observe that

〈sα(λ), β∨〉 = 〈λ, (sα(β))∨〉 for all β ∈ Φ+.



3.2. A new vanishing method 47

Since sα permutes all the positive roots except α, and since

〈sα(λ), α∨〉 = 〈λ, (sα(α))∨〉 = −〈λ, α∨〉 ≥ −1,

this implies that sα(λ) ∈ C. We will use this observation in the proof of the
following corollary.

Corollary 3.14. Let λ ∈ X∗(T ). Then m(λ) = 0 if and only if λ ∈ C.

Proof. We will prove the corollary by induction on l(λ).
Assume that λ ∈ C. If l(λ) = 0, then λ is dominant and m(λ) = 0. If on the

other hand l(λ) > 0, then since λ ∈ C, there exists a simple root α with

〈λ, α∨〉 = −1 and m(λ) = mα(λ) = m(sα(λ)).

Hence sα(λ) ∈ C. Since l(sα(λ)) < l(λ) we therefore have by induction m(λ) =
m(sα(λ)) = 0.

Now assume that m(λ) = 0. Then either λ is dominant, or there exists a simple
root α with

〈λ, α∨〉 = −1 and 0 = m(λ) = mα(λ) = m(sα(λ)).

Now l(sα(λ)) < l(λ), and by induction we have sα(λ) ∈ C. Hence we have λ =
sα(sα(λ)) ∈ C.

Example 3.15. We will use Theorem 3.11 in the following setup. Assume that
V ⊆ u is a B-subrepresentation. Let λ ∈ X∗(T ), and let i0 ∈ Z. Suppose we want
to show that

Hi(G/B, SnV ∗ ⊗ λ) = 0 for all i > i0, n ∈ Z. (3.22)

We take the exact sequence of B-modules (W is the cokernel)

0 → V → u →W → 0

If we take the Koszul resolution of the dual of this short exact sequence and tensor
it with λ, we get the exact sequence

0 → Sn−dim(W )u∗ ⊗ ∧dim(W )W ∗ ⊗ λ→ · · · → Sn−ju∗ ⊗ ∧jW ∗ ⊗ λ→

· · · → Sn−1u∗ ⊗W ∗ ⊗ λ→ Snu∗ ⊗ λ→ SnV ∗ ⊗ λ→ 0 (3.23)

We may filter ∧jW ∗ ⊗ λ with B-subrepresentations such that the quotients are
one dimensional with T -weights equal to the T -weights of ∧jW ∗⊗λ counted with
multiplicities. Hence, if we for all these weights µ can show that m(µ) ≤ j + i0,
then Theorem 3.11 gives us

Hi(G/B, Sn−ju∗ ⊗ µ) = 0 for all i > j + i0, n ∈ Z

for all these weights µ. Then all quotients Q in the filtration of ∧jW ∗ ⊗ λ satisfy

Hi(G/B, Sn−ju∗ ⊗Q) = 0 for all i > j + i0, n ∈ Z.
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Hence we get

Hi(G/B, Sn−ju∗ ⊗ ∧jW ∗ ⊗ λ) = 0 for all i > j + i0, n ∈ Z.

If this is satisfied for all j = 0, 1, 2, . . . ,dim(W ), we get, by splitting the exact
sequence in (3.23) into short exact sequences and taking long exact sequences in
cohomology, that

Hi(G/B, SnV ∗ ⊗ λ) = 0 for all i > i0, n ∈ Z.

Remark 3.16. In type E6 we have created a computer program which does the
following. Given λ, i0 and the weights of V , the program checks if m(µ) ≤ j + i0
for all weights µ of ∧jW ∗ ⊗ λ where j = 0, . . . ,dim(W ). If m(µ) ≤ j + i0 for all
appropriate µ we know that (3.22) holds.

Because m is inductively defined it is easy to make a computer program which
calculates it. The code for the computer program can be seen in appendix A.

When we are going to use the method of Example 3.15 to show the vanishing
of a cohomology group in the actual calculations in Chapter 4, we will refer to this
example, meaning that we have used the computer program to get the result.



Chapter 4

Calculations

Throughout this chapter we will assume that G is a connected, simply connected,
semi-simple linear algebraic group of type E6 over an algebraically closed field
k. Moreover we will assume that the characteristic of k is good for G, i.e. either
char(k) = 0 or char(k) = p ≥ 5. Then G satisfies the standard hypothesis on
page 4, and all the results in the preceding chapters apply.

In this chapter we will prove that the orbits E6, E6(a1), D5, E6(a3), D5(a1),
A5, A4 + A1, D4, D4(a1), D4, 2A2 + A1, A2 + 2A1, A2, 3A1, 2A1, 0 all have
normal closure. Before we begin our calculations, we will establish some notation
specifically for type E6.

Let Π = {α1, α2, . . . , α6} be a numbering of the simple roots corresponding to
the Dynkin diagram with vertices numbered as

•
1

•
2

•
3

6

•
4

•
5

•

Let λ =
∑6
i=1 niαi ∈ X∗(T ) be a character. Then we will sometimes use the

notation

{ n1 n2 n3 n4 n5
n6 }

for the character λ and for the one dimensional B-representation with weight λ.
For b1, . . . , b6 ∈ Z we define

[
b1 b2 b3 b4 b5

b6

]
=

⊕

α=
P
niαi∈Φ,P

bini≤−2

gα ⊆ g.

Let I ⊆ Π be a subset of simple roots. Let PI be the standard parabolic subgroup
containing B corresponding to I, and let uPI

be the Lie algebra of the unipotent
radical of PI . Now define

bi =

{
0 if αi ∈ I

2 if αi /∈ I

49
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Then

[
b1 b2 b3 b4 b5

b6

]
=

⊕

α∈Φ−\ΦI

gα = uPI

because

{
∑
niαi ∈ Φ|

∑
bini ≤ −2} = {

∑
niαi ∈ Φ−|

∑
bini ≤ −2}

= {
∑
niαi ∈ Φ−|∃i : bi = 2, ni 6= 0}

= {
∑
niαi ∈ Φ−|∃i : αi /∈ I, ni 6= 0}

= Φ− \ ΦI .

Let u denote the Lie algebra of the unipotent radical of the Borel group B. Then
u consists of nilpotent elements. If all the bi’s are non-negative, then

[
b1 b2 b3 b4 b5

b6

]
⊆ u

is a B-stable subspace of u consisting of nilpotent elements.
In this chapter we will often write Hi(−) instead of Hi(G/B,−).
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4.1 The orbits E6, E6(a1), D5, and E6(a3)

These orbits have normal closure by work of Kostant, Kumar, Lauritzen and
Thomsen.

4.2 The orbit D5(a1)

We will use that the closure of E6(a3) is normal to show that also the closure of
D5(a1) is normal.

Step 1: Let D5(a1) denote the closure of D5(a1). This notation will also be used
for other orbits. We want to show that

D5(a1) = G. [ 0 0 2 2 0
2 ] .

Let ∆ be the weighted Dynkin diagram { 0 0 2 0 0
2 }. Then with the notation of

Section 2.2.3 we have V (λ∆) = g2(λ∆) = [ 0 0 2 0 0
2 ], and because the weighted

Dynkin diagram of D4 is { 0 0 2 0 0
2 }, it follows from Lemma 2.8 that

D4 = G. [ 0 0 2 0 0
2 ] .

Let P = PI be the standard parabolic subgroup corresponding to I = {α1, α2, α5}.
Then uP = [ 0 0 2 2 0

2 ], and dim(G.uP ) = 2 · (36 − 4) = 64, cf. Richardson’s dense
orbit theorem, Theorem 1.3. Since G.uP is the closure of a nilpotent orbit, and
since the only two nilpotent orbits of dimension 64 are A5 and D5(a1) according
to the table p. 129 in [CM93], G.uP must equal the closure of either A5 or D5(a1).
But

[ 0 0 2 0 0
2 ] ⊆ [ 0 0 2 2 0

2 ] = uP ,

hence D4 = G. [ 0 0 2 0 0
2 ] ⊆ G.uP . But D4 is not a subset of A5, cf. Figure 1. Thus

G.uP = D5(a1).

Step 2: We want to show that

D5(a1) = G. [ 0 1 1 2 0
2 ] .

Note that [ 0 1 1 2 0
2 ] ⊆ [ 0 0 2 2 0

2 ]. If we let V denote the cokernel of this inclusion,
we get a short exact sequence of B-modules

0 → [ 0 1 1 2 0
2 ] → [ 0 0 2 2 0

2 ] → V → 0.

Then V is one dimensional with T -weight −α3 =
{

0 0 −1 0 0
0

}
, and the Koszul

resolution for the dual sequence is

0 → Sn−1 [ 0 0 2 2 0
2 ]

∗
⊗ { 0 0 1 0 0

0 } → Sn [ 0 0 2 2 0
2 ]

∗
→ Sn [ 0 1 1 2 0

2 ]
∗
→ 0.

(4.2.1)

Since 〈α3, α
∨
2 〉 = −1, and since uP = [ 0 0 2 2 0

2 ] is a P -module (and in particular a
Pα2 -module), we can use Theorem 3.1 to see that

Hi(Sn−1 [ 0 0 2 2 0
2 ]

∗
⊗ { 0 0 1 0 0

0 }) = 0 for all i, n ∈ Z.
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The short exact sequence in (4.2.1) gives rise to a long exact sequence in cohomol-
ogy. Using this sequence we therefore have

Hi(Sn [ 0 0 2 2 0
2 ]

∗
) = Hi(Sn [ 0 1 1 2 0

2 ]
∗
) for all i, n ∈ Z,

and Lemma 2.1 gives

D5(a1) = G. [ 0 0 2 2 0
2 ] = G. [ 0 1 1 2 0

2 ] .

Step 3: Now remember that we are going to use that E6(a3) has normal closure.
The closure of E6(a3) equals G. [ 0 2 0 2 0

2 ] because the dimension of G. [ 0 2 0 2 0
2 ] is

2 · (36 − 3) = 66 by Richardson’s dense orbit theorem and because the only orbit
of dimension 66 is E6(a3) according to the table p. 129 in [CM93].

Look at the short exact sequence of B-modules (V is the cokernel)

0 → [ 0 1 1 2 0
2 ] → [ 0 2 0 2 0

2 ] → V → 0.

Then V ∗ is 2 dimensional with T -weights

{ 0 1 0 0 0
0 } , { 1 1 0 0 0

0 } .

Thus the Koszul resolution of the dual of the short exact sequence is

0 → Sn−2 [ 0 2 0 2 0
2 ]

∗
⊗ ∧2V ∗ → Sn−1 [ 0 2 0 2 0

2 ]
∗
⊗ V ∗

→ Sn [ 0 2 0 2 0
2 ]

∗
→ Sn [ 0 1 1 2 0

2 ]
∗
→ 0. (4.2.2)

We will show that

Hi(Sn−1 [ 0 2 0 2 0
2 ]

∗
⊗ V ∗) = 0 for all i, n ∈ Z.

There exists a short exact sequence of B-modules

0 → { 0 1 0 0 0
0 } → V ∗ → { 1 1 0 0 0

0 } → 0.

Since [ 0 2 0 2 0
2 ] = uP is a Pα3 -module, and since

〈{ 0 1 0 0 0
0 } , α∨

3 〉 = −1, 〈{ 1 1 0 0 0
0 } , α∨

3 〉 = −1,

Theorem 3.1 gives

Hi(Sn−1 [ 0 2 0 2 0
2 ]

∗
⊗ { 0 1 0 0 0

0 }) = 0 for all i, n ∈ Z

Hi(Sn−1 [ 0 2 0 2 0
2 ]

∗
⊗ { 1 1 0 0 0

0 }) = 0 for all i, n ∈ Z.

Hence
Hi(Sn−1 [ 0 2 0 2 0

2 ]
∗
⊗ V ∗) = 0 for all i, n ∈ Z.

Thus, by splitting the exact sequence in (4.2.2) into short exact sequences and
taking long exact sequences in cohomology, we get

Hi(Ker (Sn [ 0 2 0 2 0
2 ]

∗
→ Sn [ 0 1 1 2 0

2 ]
∗
))

= Hi+1(Sn−2 [ 0 2 0 2 0
2 ]

∗
⊗ ∧2V ∗) for all i, n ∈ Z.
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Step 4: If we can show that

Hi+1(Sn−2 [ 0 2 0 2 0
2 ]

∗
⊗ ∧2V ∗) = 0 for all i ≥ 1, n ∈ Z (4.2.3)

we have the exact sequence

0 → H1(Sn−2 [ 0 2 0 2 0
2 ]

∗
⊗ ∧2V ∗)

→ H0(Sn [ 0 2 0 2 0
2 ]

∗
) → H0(Sn [ 0 1 1 2 0

2 ]
∗
) → 0

for all n ∈ Z, and we are able to prove that D5(A1) has normal closure: Let
J = {α1, α3, α5} ⊆ Π, and let PJ be the corresponding parabolic subgroup. Then
uPJ

= [ 0 2 0 2 0
2 ], and by Lemma 11 in [Tho00] the map

G×PJ [ 0 2 0 2 0
2 ] → G. [ 0 2 0 2 0

2 ]

is birational. Since E6(a3) = G. [ 0 2 0 2 0
2 ], and since E6(a3) has normal closure,

Lemma 2.2 gives that

G. [ 0 1 1 2 0
2 ] = G. [ 0 0 2 2 0

2 ] = D5(a1)

is normal.
Now we are going to show (4.2.3). Remark that ∧2V ∗ = { 1 2 0 0 0

0 } and that
[ 0 2 0 2 0

2 ] is a Pα3 -module, so using Theorem 3.1 with 〈{ 1 2 0 0 0
0 } , α∨

3 〉 = −2, we
get

Hi+1(Sn−2 [ 0 2 0 2 0
2 ]

∗
⊗ ∧2V ∗) = Hi(Sn−2 [ 0 2 0 2 0

2 ]
∗
⊗ { 1 2 1 0 0

0 })

for all i, n ∈ Z.
We now start using Proposition 3.3. We will use the notation from Section 3.1

with the small exception that αi in Section 3.1 here will be denoted α′
i, so the

notation αi is reserved for simple roots in type E6. Let l = 3, m = 2, α′
1 = α3,

α′
2 = α4, α

′
3 = α5, Γ = {α1}. Then

l + 1 −m = 2, m′ = 2, I2 = {α1, α3, α5}

and

〈{ 1 2 1 0 0
0 } , α∨

3 〉 = 0, 〈{ 1 2 1 0 0
0 } , α∨

5 〉 = 0, r = 〈{ 1 2 1 0 0
0 } , α∨

4 〉 = −1,

so by the proposition we get

Hi(Sn−2 [ 0 2 0 2 0
2 ]

∗
⊗ { 1 2 1 0 0

0 })

= Hi(Sn−4 [ 0 2 0 2 0
2 ]

∗
⊗ { 1 2 2 2 1

0 }) for all i, n ∈ Z. (4.2.4)

We use Proposition 3.3 again with l = 2, m = 2, α′
1 = α3, α

′
2 = α6, Γ = {α1, α5}.

Then

l + 1 −m = 1, m′ = 1, I2 = {α1, α3, α5}, I1 = {α1, α5, α6}
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and
〈{ 1 2 2 2 1

0 } , α∨
3 〉 = 0, r = 〈{ 1 2 2 2 1

0 } , α∨
6 〉 = −2,

and the proposition gives

Hi(Sn−4 [ 0 2 0 2 0
2 ]

∗
⊗ { 1 2 2 2 1

0 }) = Hi(Sn−6 [ 0 2 2 2 0
0 ]

∗
⊗ { 1 2 4 2 1

2 }) (4.2.5)

for all i, n ∈ Z. At this point Eric Sommers uses Proposition 3.3 two times, and
then Proposition 3.5 to show that the latter cohomology group vanishes for all
i > 0 in characteristic 0. Instead we obtain by Example 3.15 that

Hi(Sn−6 [ 0 2 2 2 0
0 ]

∗
⊗ { 1 2 4 2 1

2 }) = 0 for all i > 0, n ∈ Z.

Remembering all the isomorphisms of the cohomology groups, we see that (4.2.3)
is satisfied and hence that D5(a1) has normal closure.



4.3. The orbit A5 55

4.3 The orbit A5

We want to show that also the closure of A5 is normal using that the closure
of E6(a3) is normal. As explained in the summary in the introduction, we will
use a method which is different from the one in [Som03]. This new method does
not require as many calculations as the old one, even though the new method is
not easy. The main ingredient is the observation that A5 has codimension two in
E6(a3), see the table on page 129 in [CM93], and remember that we are allowed to
use characteristic zero results as explained in Section 2.2.4. The idea behind the
method is due to Eric Sommers.

The weighted Dynkin diagram of A5 is ∆ = { 2 1 0 1 2
1 }, and since V (λ∆) =

[ 2 1 0 1 2
1 ], we have by Lemma 2.8 that

A5 = G. [ 2 1 0 1 2
1 ] .

Similarly since ∆′ = { 2 0 2 0 2
0 } is the weighted Dynkin diagram of E6(a3), we

know that V (λ∆′) = [ 2 0 2 0 2
0 ], and that

E6(a3) = G. [ 2 0 2 0 2
0 ] .

Let P = P (λ∆′). Then the morphism

p̄ : G×P [ 2 0 2 0 2
0 ] → G. [ 2 0 2 0 2

0 ]

is birational by Corollary 2.9. Note that P is the standard parabolic subgroup
containing B corresponding to J = {α2, α4, α6}.

We know that [ 2 1 0 1 2
1 ] ⊆ [ 2 0 2 0 2

0 ]. We want to show that the closure of
A5 is normal. By Lemma 2.2 it is enough to show that the inclusion [ 2 1 0 1 2

1 ] ⊆
[ 2 0 2 0 2

0 ] induces a surjection on cohomology groups

H0(G/B, Sn [ 2 0 2 0 2
0 ]

∗
) → H0(G/B, Sn [ 2 1 0 1 2

1 ]
∗
) → 0 (4.3.1)

for all n ∈ N because p̄ is birational, and because E6(a3) = G. [ 2 0 2 0 2
0 ] is normal.

The idea is as follows: We will find a normal, irreducible P -stable subvariety

W ⊆ [ 2 0 2 0 2
0 ] (4.3.2)

of codimension one. Let k [ 2 0 2 0 2
0 ] be the coordinate ring of [ 2 0 2 0 2

0 ]. Then we
can identify k [ 2 0 2 0 2

0 ] with the polynomial ring k[xα|α ∈ Φ− \ ΦJ ] graded with
deg(xα) = 1 for all α. Let I(W ) be the defining ideal of W in [ 2 0 2 0 2

0 ]. Then it
turns out that

I(W ) = 〈f〉 ⊆ k [ 2 0 2 0 2
0 ]

for some irreducible, homogeneous element f ∈ k [ 2 0 2 0 2
0 ]

(P )
.

Since f is P -semistable, there exists a P -character λ ∈ X∗(P ) such that p.f =
λ(p)f for all p ∈ P . We also claim that λ = { 0 2 4 2 0

2 }. Since f is homogeneous,
the coordinate ring of W is graded. Let kn[W ] denote the graded piece of degree
n in the coordinate ring of W .



56 4. Calculations

We will show that the inclusion W ⊆ [ 2 0 2 0 2
0 ] induces a short exact sequence

of cohomology groups

0 → H0(G/B, Sn−4 [ 2 0 2 0 2
0 ]

∗
⊗ { 0 2 4 2 0

2 })

→ H0(G/B,Sn [ 2 0 2 0 2
0 ]

∗
)

→H0(G/B, kn[W ]) → 0

(4.3.3)

for all n ∈ N.
Late we will show that P. [ 2 1 0 1 2

1 ] = W , and that the inclusion [ 2 1 0 1 2
1 ] ⊆W

induces an isomorphism

H0(G/B, kn[W ]) ≃ H0(G/B, Sn [ 2 1 0 1 2
1 ]

∗
) (4.3.4)

for all n ∈ N. To prove this, we will need that W is normal. Combining (4.3.3)
and (4.3.4) we get the desired surjection in (4.3.1).

4.3.1 Restricting to a subgroup of type D4

We will define W in (4.3.2) by restricting to a subgroup of type D4.
Let PI be the standard parabolic subgroup containing B corresponding to

the set I = {α2, α3, α4, α6} of simple roots. Let LI be the Levi subgroup of PI
containing T . The commutator group G′ := (LI , LI) is semi-simple and simply
connected (cf. Exercise 8.4.6,6 in [Spr98]) with root system Φ′ := ΦI of type D4.
Then T ′ = (T ∩G′)0 is a maximal torus in G′, and B′ = B∩G′ is a Borel subgroup
in G′ containing T ′. Let P ′ be the standard parabolic subgroup in G′ containing
B′ corresponding to the subset J = {α2, α4, α6} ⊆ Φ′.

Let α =
∑

i=2,3,4,6 aiαi ∈ Φ′ be a root. We will also use the notation

{ a2 a3 a4
a6

} (4.3.5)

for the root α.
Let g′ be the Lie algebra of G′. Then g′ is the subset of g given by

g′ = t′ ⊕
( ⊕

α∈Φ′

gα

)
⊆ g

where t′ is the Lie algebra of T ′. In g′ we define

[
b2 b3 b4
b6

]
=

⊕

α=
P

i=2,3,4,6 niαi∈Φ′,P
bini≤−2

gα ⊆ g′,

and we will consider this as a subspace of g. Let uP ′ denote the Lie algebra of the
unipotent radical of P ′, and note that uP ′ = [ 0 2 0

0 ]. Let OP ′ ∈ uP ′ be the dense,
open P ′-orbit of Richardson elements, and let k[uP ′ ] denote the coordinate ring of
uP ′ . Let ̟3 ∈ X∗(T ′) denote the fundamental weight corresponding to α3. Now
since G′ is simply connected, we have X∗(P ′) = Z̟3. We will use the notation
and results from Section 2.3 in the following lemma.
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Lemma 4.1. The closed set uP ′ \OP ′ has exactly one component V of dimension
equal to dim(uP ′) − 1. Furthermore I(V ) = 〈f〉 where f ∈ k[uP ′ ](P ) and p.f =
2̟3(p)f for all p ∈ P ′.

Proof. Let x ∈ OP ′ be a Richardson element, and let ∆′ be the weighted Dynkin
diagram { 0 2 0

0 }. Then P ′ = P (λ∆′), and by Lemma 2.13 we know that the number
of components in uP ′ \OP ′ of dimension equal to dim(uP ′)− 1 equals the rank of
the kernel of the restriction map

ϕx : X∗(P ′) → X∗(ZP ′(x)).

Remember that X∗(P ′) = Z̟3, and that Ker ϕx is independent of the Richardson
element x, cf. Section 2.3. We will show that Ker ϕx = Z2̟3.

First we show that ̟3 /∈ Ker (ϕ). To do this we will choose a specific Richard-
son element x ∈ OP ′ and an element p0 ∈ ZP ′(x) such that ̟3(p0) 6= 1.

In order to find a Richardson element x ∈ uP ′ and an element p0 ∈ ZP ′(x)
such that ̟3(p0) 6= 1, we are going to use Lemma 4.6 which is stated and proved
in Section 4.3.2.

Let l′ be the rank of G′. Lemma 4.6 gives the existence of a basis

{xα|α ∈ Φ′} ∪ {h′i|i = 1, 2, . . . , l′} (4.3.6)

for g′ with xα ∈ gα and h′i ∈ t′ and the existence of admissible isomorphisms
uα : k → Uα for α ∈ Φ′ such that

Ad(uα(t))(xβ) = xβ +
∑

i≥1
β+iα∈Φ

cα,βi tixβ+iα for all t ∈ k (4.3.7)

where cα,βi are constants with cα,β1 = ±(r + 1) where r ≥ 0 is the greatest integer
satisfying that β − rα is a root.

By Remark 4.7 we can choose the signs of cα,β1 using the process in [Sam69]

page 54. We choose the signs of cα,β1 to positive whenever we use equation (4.3.7)
in the following calculations.

With this notation and the notational convention in (4.3.5) we define

x = xn
−1 −1 −1

−1

o + xn
0 −1 0

0

o ∈ uP ′ .

Then one can directly check that x is a Richardson element in OP ′ . Define

ni = uαi
(1)u−αi

(−1)uαi
(1) ∈ NG′(T ′),

and let n = nα6nα4nα2 . Let L′ be the Levi subgroup of P ′ containing T ′. Since P ′ is
the standard parabolic subgroup containing B′ corresponding to J = {α2, α4, α6},
we see that the image of n in the Weyl group NG′(T ′)/T ′ of G′ is the longest
element in the Weyl group of L′. Let t = α∨

3 (−1) ∈ T ′, and define p0 = tn ∈ P ′.
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Now we are ready to prove that p0 ∈ ZP ′(x):

n2.xn
−1 −1 −1

−1

o = Ad(uα2(1)u−α2(−1)uα2(1))xn
−1 −1 −1

−1

o

= Ad(uα2(1)u−α2(−1))
(
xn

−1 −1 −1
−1

o + xn
0 −1 −1
−1

o
)

= Ad(uα2(1))
(
(1 − 1)xn

−1 −1 −1
−1

o + xn
0 −1 −1
−1

o
)

= Ad(uα2(1))xn
0 −1 −1
−1

o

= xn
0 −1 −1
−1

o

Continuing this way we get

n.xn
−1 −1 −1

−1

o = xn
0 −1 0

0

o

and therefore

p0.xn
−1 −1 −1

−1

o = α∨
3 (−1).xn

0 −1 0
0

o = xn
0 −1 0

0

o (4.3.8)

Now

n2.xn
0 −1 0

0

o = Ad(uα2(1)u−α2(−1)uα2(1))xn
0 −1 0

0

o

= Ad(uα2(1)u−α2(−1))xn
0 −1 0

0

o

= Ad(uα2(1))
(
xn

0 −1 0
0

o − xn
−1 −1 0

0

o
)

= (1 − 1)xn
0 −1 0

0

o − xn
−1 −1 0

0

o

= −xn
−1 −1 0

0

o

and we get

n.xn
0 −1 0

0

o = (−1)3xn
−1 −1 −1

−1

o

Hence

p0.xn
0 −1 0

0

o = α∨
3 (−1)

(
−xn

−1 −1 −1
−1

o
)

= −
(
−xn

−1 −1 −1
−1

o
)

= xn
−1 −1 −1

−1

o

(4.3.9)

Putting (4.3.8) and (4.3.9) together we get p0.x = x, and so p0 ∈ ZP ′(x). Since n
is a product of unipotent elements, we know that ̟3 : P → k∗ satisfies ̟3(n) = 1,
and therefore

̟3(p0) = ̟3(α
∨
3 (−1))̟3(n) = −1 · 1 = −1

and p0 /∈ Ker ϕx.
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Now we need to show that 2̟3 ∈ Ker ϕx. Since P ′ = P (λ∆′), Theorem 2.7. i
gives that ZG′(x) = ZP ′(x) as mentioned on page 25. Hence we have

ZP ′(x)/ZP ′ (x)0 = ZG′(x)/ZG′(x)0.

The latter is isomorphic to Z/2Z by Chapter 13.1 in [Car85] – as described in
Section 2.2.4 we are allowed to use the characteristic zero results. Hence ZP ′(x)0

has index two in ZP ′(x). Let

ψx : X∗(P ) → X∗(ZP ′(x)0).

be the restriction map. As observed in Section 2.3 we have 2Ker ψx ⊆ Ker ϕx,
and we only need to show that ̟3 ∈ Ker ψx.

Let S = Ker (α3)∩Ker (α2 +α3 +α4 +α6) ⊆ T ′. Then S is a two-dimensional
torus, and S ⊆ ZP ′(x). Hence S ⊆ ZP ′(x)0. Also note that ̟3 restricted to S,
denoted ̟3|S , is constantly 1 since ̟3 = (α3) + (α2 + α3 + α4 + α6).

Let Ru(ZG′) be the unipotent radical of ZG′(x). If we can show that ZP ′(x)0 =
ZG′(x)0 is the semidirect product of S and Ru(ZG′) (i.e. if S is a Levi factor for
ZG′(x)0), then ̟3 ∈ Ker ψx since ̟3|S = 1 and since Ru(ZG′(x)) consists of
unipotent elements. So in this case ̟3 ∈ Ker ψx, and we are done.

In Chapter 13.1 in [Car85] we see that if Gad
C

is an adjoint, semi-simple, con-
nected, linear algebraic group of type D4 over the complex numbers, and xC

is a Richardson element for P (λ∆′) where ∆′ is the weighted Dynkin diagram
∆′ = { 0 2 0

0 }, then ZGad
C

(xC)0 has a Levi factor isomorphic to (C∗)2.

Let Gsc
C

be the simply connected, connected, semi-simple linear algebraic group
of type D4 over C. Then we have the surjective morphism π : Gsc

C
→ Gad

C
with

finite fibers and with a differential which is an isomorphism of the Lie algebras of
the two groups. Under this isomorphism xC is also a Richardson element for Gsc

C
.

Now π restricts to a surjective map

π : ZGsc
C

(xC)0 → ZGad
C

(xC)0.

Let Lsc
C

be a Levi factor of ZGsc
C

(xC)0. Then Lsc
C

is connected. Moreover the image

π(Lsc
C

) is a Levi factor of ZGad
C

(xC)0 by Lemma 1.4, and hence π(Lsc
C

) ≃ (C∗)2.
Now

π : Lsc
C → π(Lsc

C ) (4.3.10)

is surjective with finite fibers, and hence dimC L
sc
C

= 2. Let T sc
C

be a maximal torus
in Lsc

C
. Since the morphism in (4.3.10) is surjective, π(T sc

C
) is a maximal torus in

π(Lsc
C

) ≃ (C∗)2. But then dimC T
sc
C

≥ 2. Since Lsc
C

is connected of dimension two,
we can conclude that Lsc

C
= T sc

C
≃ (C∗)2.

Now Theorem 2.7 and Section 2.2.4 tells us that ZG′(x)0 = ZP ′(x)0 has a Levi
factor L with the same root datum as Lsc

C
. Hence L ≃ (k∗)2. Then L is a unique

maximal torus in ZG′(x)0, and since the dimension of S is two, we have S = Lsc
C

.
Therefore S is a Levi factor of ZG′(x)0, and we are done.
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We can identify the coordinate ring k[uP ′ ] with the polynomial ring

k[xα|α ∈ (Φ′)− \ ΦJ ]

where J = {α2, α4, α6}, and we grade it with deg(xα) = 1 for all α.

Corollary 4.2. The element

f ∈ k[uP ′ ] = k[xα|α ∈ (Φ′)− \ ΦJ ]

from Lemma 4.1 is homogeneous of degree 4.

Proof. By Lemma 2.10 f is homogeneous. Since f is homogeneous, irreducible and
P -semistable with p.f = 2̟3(p)f for all p ∈ P ′ and 2̟3 = { 2 4 2

2 }, we see that
the terms of f must be products of two of these four monomials in k[uP ′ ]:

x{ 1 1 1
1 }x{ 0 1 0

0 }, x{ 1 1 1
0 }x{ 0 1 0

1 }, x{ 1 1 0
1 }x{ 0 1 1

0 }, x{ 0 1 1
1 }x{ 1 1 0

0 }.

Since f is homogeneous, the coordinate ring k[V ] = k[uP ′ ]/〈f〉 is graded. Let
kn[V ] denote the degree n graded piece.

We want to prove that the component V from Lemma 4.1 is normal, and we
also want to find a good description of kn[V ]. In order to do this we will prove that
V = P ′. [ 1 0 1

1 ] and that the morphism P ′ ×B
′

[ 1 0 1
1 ] → P ′. [ 1 0 1

1 ] is birational.
First notice that [ 1 0 1

1 ] ⊆ [ 0 2 0
0 ] = uP ′ and therefore P ′. [ 1 0 1

1 ] ⊆ [ 0 2 0
0 ]. Next

observe that P ′. [ 1 0 1
1 ] is closed in [ 0 2 0

0 ] since P ′/B′ is projective, cf. Section 1.2
page 4. Clearly P ′. [ 1 0 1

1 ] is irreducible.

Lemma 4.3. The morphism

Ψ : P ′ ×B
′

[ 1 0 1
1 ] → P ′. [ 1 0 1

1 ]

is birational.

Proof. Let

π : P ′ × [ 1 0 1
1 ] → P ′ ×B

′

[ 1 0 1
1 ]

be the projection, and let U ′ = Uα2Uα4Uα6 . Then U ′ is a subgroup of P ′. Now
π(U ′ × [ 1 0 1

1 ]) is open in P ′ ×B
′

[ 1 0 1
1 ] since

π−1(π(U ′ × [ 1 0 1
1 ])) = U ′B′ × [ 1 0 1

1 ]

and since U ′B′ is open in P ′ by the Bruhat decomposition. Therefore it is enough
to show that

Ψ : π(U ′ × [ 1 0 1
1 ]) → P ′. [ 1 0 1

1 ]

is birational. Since Ψ is dominant, it is by Theorem 2.4 enough to show that Ψ is
generically one to one and separable.
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Consider the composition

Φ = Ψ ◦ π|
U ′×[ 1 0 1

1 ] : U ′ × [ 1 0 1
1 ] → P ′. [ 1 0 1

1 ] .

We will use the same notation as in the proof of Lemma 1.4. First notice that
[ 1 0 1

1 ] is the span of the xα’s where α is one of the following roots

{
−1 −2 −1

−1

}
,

{
−1 −1 −1

−1

}
,

{
0 −1 −1
−1

}
,

{
−1 −1 −1

0

}
,

{
−1 −1 0

−1

}
.

(4.3.11)

Let x̄ ∈ [ 1 0 1
1 ]. Then we can write

x̄ =axn
−1 −2 −1

−1

o + bxn
−1 −1 −1

−1

o + cxn
0 −1 −1
−1

o

+ dxn
−1 −1 −1

0

o + exn
−1 −1 0

−1

o

for some constants a, b, c, d, e ∈ k. Then

Ψ ◦ π (uα2(v2)uα4(v4)uα6(v6), x̄)

=Ad(uα2(v2)uα4(v4)uα6(v6)) (x̄)

=axn
−1 −2 −1

−1

o + bxn
−1 −1 −1

−1

o + (c+ v2b)xn
0 −1 −1
−1

o + (d+ v6b)xn
−1 −1 −1

0

o

+ (e+ v4b)xn
−1 −1 0

−1

o + (v2d+ v6c+ v2v6b)xn
0 −1 −1

0

o

+ (v2e+ v4c+ v2v4b)xn
0 −1 0
−1

o + (v4d+ v6e+ v4v6b)xn
−1 −1 0

0

o

+ (v2v4d+ v2v6e+ v4v6c+ v2v4v6b)xn
0 −1 0

0

o

(4.3.12)

Now we will see that Ψ : π(U ′ × [ 1 0 1
1 ]) → P ′. [ 1 0 1

1 ] is generically one to one. Let
V ′′ be the complement in [ 0 2 0

0 ] = uP ′ of the zero set of the three polynomials

xn
−1 −1 −1

−1

oxn
0 −1 −1

0

o − xn
0 −1 −1
−1

oxn
−1 −1 −1

0

o ∈ k[uP ′ ]

xn
−1 −1 −1

−1

oxn
0 −1 0
−1

o − xn
0 −1 −1
−1

oxn
−1 −1 0

−1

o ∈ k[uP ′ ]

xn
−1 −1 −1

−1

oxn
−1 −1 0

0

o − xn
−1 −1 0

−1

oxn
−1 −1 −1

0

o ∈ k[uP ′ ].

Let V ′ = V ′′ ∩P ′. [ 1 0 1
1 ]. Then by direct calculations using (4.3.12) one can check

that

Φ : (Φ)−1(V ′) → V ′

is injective. Since π : U ′ × [ 1 0 1
1 ] → π(U ′ × [ 1 0 1

1 ]) is bijective, this implies that
Ψ : π(U ′ × [ 1 0 1

1 ]) → P ′. [ 1 0 1
1 ] is generically one to one.

Now we want to show that Ψ is separable. Let ū ∈ U ′ and x̄ ∈ [ 1 0 1
1 ]. We look

at the differential of Φ as a map of tangent spaces

dΦ(ū,x̄) = d(Ψ ◦ π)(ū,x̄) : T(ū,x̄)(U
′ × [ 1 0 1

1 ]) → TΨ◦π(ū,x̄)(P
′. [ 1 0 1

1 ]).
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Using (4.3.12) one can again directly calculate that this differential is surjective
for (ū, x̄) ∈ U ′ ×W where W is the complement in [ 1 0 1

1 ] of the zero set of

xn
0 −1 −1
−1

oxn
−1 −1 −1

0

oxn
−1 −1 −1

0

o ∈ k [ 1 0 1
1 ] .

Hence dΨz is surjective for all z in the open set π(U ′ ×W ). Since Ψ : π(U ′ ×
[ 1 0 1

1 ]) → P ′. [ 1 0 1
1 ] is dominant, this implies by Theorem 4.3.6 in [Spr98] that Ψ

is separable.

Corollary 4.4. Let V be the component given by Lemma 4.1. Then

V = P ′. [ 1 0 1
1 ] .

Proof. From the above lemma we see that

dim(P ′. [ 1 0 1
1 ]) = dim(P ′ ×B

′

[ 1 0 1
1 ])

= (dimP ′ − dimB′) + dim [ 1 0 1
1 ]

= 3 + 5 = 8,

and P ′. [ 1 0 1
1 ] has codimension one in [ 0 2 0

0 ] = uP ′ . Furthermore P ′. [ 1 0 1
1 ] ⊆ uP ′

is closed, irreducible and P ′-stable, and hence P ′. [ 1 0 1
1 ] is a component in uP ′\OP ′

of dimension equal to dim uP ′ − 1. But by Lemma 4.1 V is the only component in
uP ′ \ OP ′ of this dimension, and we have V = P ′. [ 1 0 1

1 ].

Note that in this proof we see that P ′. [ 1 0 1
1 ] is a component in uP ′ \ OP ′ of

dimension dim uP ′ −1. Since X∗(P ′) = Z̟3, there is at most one such component
by Lemma 2.12. We also know that the defining ideal of P ′. [ 1 0 1

1 ] in uP ′ is equal
to 〈f〉 ⊆ k[uP ′ ], and that there exists a character λ ∈ X∗(P ) such that p.f = λ(p)f
for all p ∈ P ′. Now one can ask why we made such an effort to prove Lemma 4.1?
The answer is that we got some extra information from Lemma 4.1, namely the
information that λ = 2̟3. This will be important later.

We will prove that the component V from Lemma 4.1 is normal. In the proof
we need to know that there are only finitely many P ′-orbits in uP ′ = [ 0 2 0

0 ]. To
see this we will use the theorem on page iii in the introduction of [Röh] which is
a generalization of Theorem 1.1 in [HR99]. Actually we could use Theorem 1.1 in
[HR99], but if we wanted to prove normality of 3A1 by the same method we are
now using to prove normality of A5, we would need the generalized version. The
setup is the following:

Let G be a reductive linear algebraic group, and P a parabolic subgroup with
Levi factor LP and unipotent radical UP . Let uP denote the Lie algebra of UP .
Now UP is a nilpotent group, and we define the descending central series of UP :
Let C0(UP ) = UP , and let Ci+1(UP ) be the commutator (Ci(UP ), UP ) for i ≥ 0.
Since UP is nilpotent, we can define l(UP ) to be the smallest integer m such that
Cm(UP ) is trivial.

For G of type Dr we let τ denote the graph automorphism of G of order two.
Suppose G is simple as an algebraic group, and the characteristic is good for

G. Then the generalized theorem in [Röh] states that P acts on uP with a finite
number of orbits if and only if one of the following conditions hold.
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i. l(UP ) ≤ 4.

ii. G is of type Dr, l(UP ) = 5, τP 6= P , and the semi-simple part of LP consists
of two components which are simple as algebraic groups.

iii. G is of type E6, l(UP ) = 5, and P is of type 2A1 +A2 or A3.

iv. G is of type E7, l(UP ) = 5, and P is of type A1 +A5.

A method to compute l(UP ) is given by the formula on page 4 in [Röh]: Let
T be a maximal torus in G. Let Φ be the roots of G with respect to T , and let
Π ⊆ Φ be a set of simple roots. Suppose P is a standard parabolic subgroup
corresponding to the subset I ⊆ Π of simple roots. Let ̺ denote the highest root
in Φ, and write ̺ =

∑
α∈Π nαα as a linear combination of the simple roots. If the

characteristic of G is very good, then the formula is

l(UP ) =
∑

α∈Π\I

nα. (4.3.13)

Now we are ready to prove that V is normal.

Lemma 4.5. The component V from Lemma 4.1 is normal.

Proof. Since V is a hypersurface in uP ′ = [ 0 2 0
0 ], it is by Proposition III.8.2 in

[Mum99] enough to show that the set of singular points in V has codimension at
least two, i.e. it is enough show that the set of singular points in V has dimension
six or less.

Now we want to use the above theorem to conclude that there are only finitely
many P ′-orbits in [ 0 2 0

0 ] = uP ′ . Now G′ is simple as an algebraic group and of
type D4. Since char(k) ≥ 5 is good for G of type E6, it is also good for G′ of type
D4. Then it is also very good for G′, since G′ is not of type A. The highest root
in Φ′ is

̺ = α2 + 2α3 + α4 + α6 = { 1 2 1
1 } .

Since P ′ corresponds to the subset {α2, α4, α6} of simple roots, formula (4.3.13)
gives us that l(UP ′) = 2. Hence Röhrle and Hille’s theorem above tells us, that
there are only finitely many P ′-orbits in uP ′ .

Let O denote the nilpotent G′-orbit in g′ with weighted Dynkin diagram
{ 1 0 1

1 }. According to Corollary 6.1.4 in [CM93] the dimension of O is 16 – as
explained in Section 2.2.4 we are allowed to use the dimension results from char-
acteristic zero. Moreover Corollary 6.1.4 in [CM93] tells us that there are no nilpo-
tent G′-orbits in g′ of dimension 14 (remember that the dimension of an orbit is
always even). We want to conclude that V contains no P ′-orbit of dimension 7:

The main ingredient to prove this is the following result from [Kaw87]. LetH be
a connected, semi-simple, linear algebraic group over an algebraically closed field
of good characteristic. Let D ⊆ H be a one dimensional torus, and let λ ∈ X∗(D)
be a generator for the character group of D. Then λ induces a grading on the Lie
algebra of H , denoted h, defined by

h(i, λ) = {x ∈ h|Ad(t)x = t.x = λ(t)ix ∀t ∈ D}.
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Now let Q ⊆ G be the parabolic subgroup with Lie algebra

⊕

i≤0

h(i, λ).

Formula 3.1.8. in [Kaw87] states that

dim(Q.x) = 1
2 dim(H.x) for all x ∈ h(−1, λ). (4.3.14)

We will for contradiction assume that V contains a P ′-orbit of dimension 7, and
then use Kawanaka’s result to show that there must exist a G′-orbit of dimension
14. Since this is not the case, we have obtained a contradiction.

Now since the fundamental weight ̟3 is actually a root, we can define ̟∨
3 :

k∗ → T ′ to be its coroot. Let D be the image of ̟∨
3 . Then D is a one dimensional

torus with character group X∗(D) ≃ Z and α3 ∈ X∗(D) is a generator for this
group. As described before α3 induces a grading of the Lie algebra g′ given by

g′(i, α3) = {x ∈ g′|Ad(d)x = d.x = (α3(d))
ix ∀d ∈ D}

= {x ∈ g′|̟∨
3 (t).x = (α3(̟

∨
3 (t)))ix = tix ∀t ∈ k∗}.

Hence

g′(i, α3) =
⊕

α∈Φ′∪{0}
〈α,̟∨

3 〉=i

gα =
⊕

α∈Φ′∪{0}
α=

P
j=2,3,4,6 njαj ,n3=i

gα,

and

Lie(P ′) = t′ ⊕
( ⊕

α∈Φ′

α=
P

j
njαj ,n3≤0

gα

)
=

⊕

i≤0

g′(i, α3). (4.3.15)

We have assumed for contradiction that we have a 7-dimensional P ′-orbit con-
tained in V . By Corollary 4.4 we have V = P ′. [ 1 0 1

1 ], and we may assume that
the P ′-orbit is of the form P ′.x for some x ∈ [ 1 0 1

1 ]. In the following we will find
an element b ∈ B′ such that b.x ∈ g′(−1, α3). Then we have P ′.x = P ′.(b.x), and
since b.x ∈ g′(−1, α3) we can use Kawanaka’s result in (4.3.14) to conclude that

dim(G′.x) = 2 dim(P ′.(b.x)) = 2 dim(P ′.x) = 14

which is a contradiction.
Now we are going to find the above element b ∈ B′. We use the same notation

as we used in the proof of Lemma 4.1. In particular we use the basis for g′ given
in (4.3.6) and the formula for the action of the root groups given in (4.3.7). This

time we do not care about the signs of the constants cα,β1 .
Remember that [ 1 0 1

1 ] is the span of the xα’s where α is one of the roots in
(4.3.11), and notice that

[ 1 0 1
1 ] = g′(−1, α3) ⊕ g′(−2, α3).
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The element x ∈ [ 1 0 1
1 ] can be written

x =
∑

α:gα⊆[ 1 0 1
1 ]

aαxα, with aα ∈ k

where the sum is taken over all α ∈ Φ′ such that gα ⊆ [ 1 0 1
1 ] (i.e. where α is one

of the roots in (4.3.11)). If a
−{ 1 2 1

1 } = 0, then x ∈ g′(−1, α3) and we are done,

so we may assume that

a
−{ 1 2 1

1 } 6= 0.

Since g′(2, α3) = kx
−{ 1 2 1

1 } is P ′-stable, and P ′.x is 7-dimensional, we have

x /∈ g′(2, α3). Hence at least one of the coefficients

a
−{ 1 1 1

1 }, a
−{ 1 1 0

1 }, a
−{ 1 1 1

0 }, a
−{ 0 1 1

1 }

is nonzero. Using (4.3.7) we get

u−α3(t).x =
∑

α:gα⊆g′(−1,α3)

aαxα +
(
±ta

−{ 1 1 1
1 } + a

−{ 1 2 1
1 }

)
x
−{ 1 2 1

1 }.

(4.3.16)

Now assume that a−{ 1 1 1
1 } 6= 0. Then letting

t = ±
a
−{ 1 2 1

1 }

a
−{ 1 1 1

1 }

(with an appropriate sign) the last term in (4.3.16) vanishes and we get

u−α3

(
±
a
−{ 1 2 1

1 }

a
−{ 1 1 1

1 }

)
.x =

∑

α:gα⊆g′(−1,α3)

aαxα ∈ g′(−1, α3).

And since U−α3 ⊆ B′ we are done.
If on the contrary we have a

−{ 1 1 1
1 } = 0, then one of the three coefficients

a−{ 1 1 0
1 }, a−{ 1 1 1

0 }, a−{ 0 1 1
1 }

is nonzero. By symmetry we may assume that a
−{ 1 1 0

1 } 6= 0. Then choosing

appropriate signs and using (4.3.7) again, we see that the coefficient to x−{ 1 2 1
1 }

in

(
u−α2

(
±
a−{ 1 2 1

1 }

a−{ 1 1 0
1 }

)
u−α3(±1)

)
.x

is zero, and hence the above element belongs to g′(−1, α3). Also U−α3U−α2 ⊆ B′,
so we are done.
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4.3.2 The adjoint action of a root group on the root spaces

In this section we will prove Lemma 4.6 which we have used many times in Sec-
tion 4.3.3.

Let G be a connected, semi-simple linear algebraic group of rank l with root
system Φ, and let Lie(G) be its Lie algebra. Let T be a maximal torus with Lie
algebra Lie(T ), and let Φ be the root system of G with respect to T . For α ∈ Φ
let Lie(G)α be the root space with weight α, and let Uα be the corresponding
root group, i.e. Uα is the unique T -stable subgroup of G with Lie algebra Lie(G)α.
We know that there exist admissible isomorphisms uα : k → Uα. An admissible
isomorphism uα : k → Uα is unique up to a scalar factor, i.e. up to choosing a
basis for Lie(G)α.

Lemma 4.6. There exists a basis

{xα|α ∈ Φ} ∪ {h′i|i = 1, 2, . . . , l}

for Lie(G), and there exist admissible isomorphisms uα : k → Uα such that

Ad(uα(t))(xβ) = xβ +
∑

i≥1
β+iα∈Φ

cα,βi tixβ+iα for all t ∈ k (4.3.17)

where cα,βi are constants with cα,β1 = ±(r + 1) where r ≥ 0 is the greatest integer
satisfying that β − rα is a root. Furthermore xα ∈ Lie(G)α and h′i ∈ Lie(T ).

Sketch of proof. Since every semi-simple linear algebraic group is isomorphic to a
Chevalley group (considered as an algebraic group), see [Ste68] p. 61, it is enough
to show the lemma for Chevalley groups.

We will use the notation and results about Chevalley groups in Section 2.2.2,
so G = Gk with this notation. Remember that πk : gZ ⊗Z k → Lie(G) is an
isomorphism. By abuse of notation we will let xα denote πk(xα ⊗ 1) ∈ Lie(G) for
α ∈ Φ and h′i denote πk(h

′
i ⊗ 1) ∈ Lie(G) for i = 1, 2, . . . , l. Then

{xα|α ∈ Φ} ∪ {h′i|i = 1, 2, . . . , l}

is a basis for Lie(G). Let uα = x̄α : k → Uα be the admissible isomorphism. Then
duα : k → Lie(G)α, and it turns out that

xα = πk(xα ⊗ 1) = duα(1). (4.3.18)

We will try to calculate Ad(uα(t))(xβ) for all t ∈ k. Therefore consider the com-
position

θ = Int(uα(t)) ◦ uβ : k → G.

This is given by θ(u) = uα(t)uβ(u)(uα(t))−1. According to Chevalley’s commuta-
tor formula we have

uα(t)uβ(u)(uα(t))−1(uβ(u))
−1 =

∏

i,j≥1
iα+jβ∈Φ

uiα+jβ(cα,βi,j t
iuj)
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where the product is taken in some fixed order over the roots iα + jβ ∈ Φ and
where cα,βi,j ∈ k are constants depending on α, β and the chosen ordering, but not
on t and u. Now consider the xβ ’s as elements in gC. Then the xβ ’s are part of the

Chevalley basis, so we know that when α+β is a root then cα,β1,1 equals the constant

Nα,β that satisfies [xα, xβ ] = Nα,βxα+β ∈ gC. Hence cα,β1,1 = ±(r + 1) where r ≥ 0
is the largest integer such that β − rα is a root. Now we have a formula for θ(u)

θ(u) = uα(t)uβ(u)(uα(t))−1 =
∏

i,j≥1
iα+jβ∈Φ

uiα+jβ(cα,βi,j t
iuj)uβ(u).

The differential dθ = Ad(uα(t)) ◦ duβ : k → Lie(G) can be calculated. For all
a, t ∈ k we get

Ad(uα(t))(uβ(a)) = dθ(a) =
∑

i≥1
iα+β∈Φ

cα,βi,1 t
iduα+β(a) + duβ(a)

= duβ(a) +
∑

i≥1
β+iα∈Φ

cα,βi,1 t
iduα+β(a).

Letting a = 1 in the this equation and using (4.3.18), we get

Ad(uα(t))(xβ) = xβ +
∑

i≥1
β+iα∈Φ

cα,βi,1 t
ixα+β

for all t ∈ k, and we are done.

Remark 4.7. Remember that the xα’s considered as elements in gC are part of a
Chevalley basis for gC. Hence it is possible to choose the xα’s such that the signs
of the Nα,β’s can be chosen by the process in [Sam69] p. 54.

Therefore we can choose the basis for Lie(G) and the admissible isomorphisms

as described in the lemma such that the signs of cα,β1 = Nα,β can be chosen by
the process in [Sam69].

4.3.3 Using the D4-case to show the general case

We will use the results from Section 4.3.1 in the D4-case to obtain similar results
in our original setup. First notice that

uP = [ 0 2 0
0 ] ⊕

( ⊕

α∈Φ−\ΦI

gα

)
= uP ′ ⊕

( ⊕

α∈Φ−\ΦI

gα

)
.

Next remember the identifications

k [ 0 2 0
0 ] = k[xα|α ∈ (Φ′)− \ ΦJ ], k [ 2 0 2 0 2

0 ] = k[xα|α ∈ Φ− \ ΦJ ].

This gives us an inclusion

i : k [ 0 2 0
0 ] → k [ 2 0 2 0 2

0 ]
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with i(xα) = xα for all α ∈ (Φ′)− \ ΦJ , or written differently

i
(
x{ a1 a2 a3

a4
}

)
= xn

0 a1 a2 a3 0
a4

o.

Now let V ⊆ uP ′ = [ 0 2 0
0 ] be the component given by Lemma 4.1, and define

W = V ×
⊕

α∈Φ−\ΦI

gα ⊆ [ 2 0 2 0 2
0 ] = uP .

By Lemma 4.1 and Lemma 4.5 we know that V is a normal, irreducible, affine
subvariety of codimension one in [ 0 2 0

0 ]. Hence W is a normal, irreducible, affine
subvariety of codimension one in [ 2 0 2 0 2

0 ] = uP . Since I(V ) = 〈f〉 ⊆ k [ 0 2 0
0 ]

where f ∈ k [ 0 2 0
0 ] is the element from Lemma 4.1, we see that the defining ideal

of W is given by

I(W ) = 〈i(f)〉 ⊆ k [ 2 0 2 0 2
0 ] .

If h ∈ k [ 0 2 0
0 ] is T ′-semistable with T ′-weight { a1 a2 a3

a4
}, then i(h) is T -

semistable with T -weight
{

0 a1 a2 a3 0
a4

}
. Since f is P ′-semistable with T ′-weight

2̟3 = { 2 4 2
2 } by Lemma 4.1, the element i(f) is T -semistable with weight

{ 0 2 4 2 0
2 }. As in Lemma 4.3 and Corollary 4.4 it is possible to show that

P ×B [ 2 1 0 1 2
1 ] → P. [ 2 1 0 1 2

1 ]

is birational and that W = P. [ 2 1 0 1 2
1 ]. In particular W is P -stable, and i(f) is

P -semistable with p.f = λ(p)f where λ = { 0 2 4 2 0
2 } (since f was T -semistable

with this weight).
SinceW is P -stable, it is certainlyB-stable, hence we get a short exact sequence

of B-modules

0 k [ 2 0 2 0 2
0 ]

φ
k [ 2 0 2 0 2

0 ]
ψ

k [ 2 0 2 0 2
0 ] /〈i(f)〉 0 (4.3.19)

where φ(h) = hi(f) for h ∈ k [ 2 0 2 0 2
0 ] and ψ is the projection.

Also note that

k[W ] = k [ 2 0 2 0 2
0 ] /〈i(f)〉

and that

k [ 2 0 2 0 2
0 ] =

⊕

n≥0

Sn [ 2 0 2 0 2
0 ]

∗
.

Since f ∈ k [ 0 2 0
0 ] is homogeneous of degree four by Corollary 4.2, also i(f) ∈

k [ 2 0 2 0 2
0 ] is homogeneous of degree four. In particular k[W ] is graded. Let kn[W ]

denote the degree n graded piece.
Remember that { 0 2 4 2 0

2 } also denotes the one dimensional B-module with
weight { 0 2 4 2 0

2 }. Moreover remember that i(f) is homogeneous of degree four,
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and that the weight of i(f) is λ = { 0 2 4 2 0
2 }. Therefore, investigating each degree

of the sequence in (4.3.19) we get the following exact sequence

0 Sn−4 [ 2 0 2 0 2
0 ]

∗
⊗ { 0 2 4 2 0

2 }
eφ

Sn [ 2 0 2 0 2
0 ]

∗
eψ

kn[W ] 0

(4.3.20)

for all n ∈ Z. Here φ̃(h ⊗ a) = a · h · i(f) for all h ∈ Sn−4 [ 2 0 2 0 2
0 ]

∗
and all

a ∈ { 0 2 4 2 0
2 }.

Using Theorem 3.1 three times gives

Hi(G/B, Sn−4 [ 2 0 2 0 2
0 ]

∗
⊗ { 0 2 4 2 0

2 })

= Hi+3(G/B, Sn−4 [ 2 0 2 0 2
0 ]

∗
⊗ { 0 1 4 1 0

1 })

for all i ∈ Z and all n ∈ Z. By Example 3.15 we know that

Hj(G/B, Sn−4 [ 2 0 2 0 2
0 ]

∗
⊗ { 0 1 4 1 0

1 }) = 0 for all j > 3.

Hence we have

Hi(G/B, Sn−4 [ 2 0 2 0 2
0 ]

∗
⊗ { 0 2 4 2 0

2 }) = 0 for all i > 0. (4.3.21)

Now the long exact sequence in cohomology arising from (4.3.20) gives us the
following short exact sequence for all n ∈ Z

0 → H0(G/B, Sn−4 [ 2 0 2 0 2
0 ]

∗
⊗ { 0 2 4 2 0

2 })

→ H0(G/B,Sn [ 2 0 2 0 2
0 ]

∗
)

→H0(G/B, kn[W ]) → 0

which is exactly (4.3.3).
In order to prove that A5 has normal closure, it now remains to show that the

inclusion

[ 2 1 0 1 2
1 ] ⊆ P. [ 2 1 0 1 2

1 ] = W

of B-modules induces an isomorphism

H0(G/B, Sn [ 2 1 0 1 2
1 ]

∗
) ≃ H0(G/B, kn[W ])

for all n ∈ Z, cf. the discussion on page 55. Remember the birational morphism

Ψ : P ×B [ 2 1 0 1 2
1 ] → P. [ 2 1 0 1 2

1 ] = W

Let O
P×B[ 2 1 0 1 2

1 ] and OW denote the structure sheaves of P ×B [ 2 1 0 1 2
1 ] and

W respectively. Now Ψ is clearly surjective and projective, and since W is normal,
Lemma II.14.5 in [Jan87] gives us that Ψ induces an isomorphism of sheaves

ϕ∗O
P×B [ 2 1 0 1 2

1 ] ≃ OW .
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Hence the two sets of global regular functions are isomorphic, i.e.

k[W ] ≃ k[P ×B [ 2 1 0 1 2
1 ]].

But by (2.1) the latter equals

H0(P/B,⊕n≥0S
n [ 2 1 0 1 2

1 ]
∗
),

and we get

Hi(G/B, k[W ]) = Hi(G/B,H0(P/B,⊕n≥0S
n [ 2 1 0 1 2

1 ]
∗
))

= Hi(G/P,H0(P/B,⊕n≥0S
n [ 2 1 0 1 2

1 ]
∗
)). (4.3.22)

Take a look at the Grothendieck spectral sequence

Ei,j2 = Hi(G/P,Hj(P/B,⊕n≥0S
n [ 2 1 0 1 2

1 ]
∗
)).

We know that it abuts to

Hi+j(G/B,⊕n≥0S
n [ 2 1 0 1 2

1 ]
∗
).

But by Example 3.15 we see that

Hj(P/B,⊕n≥0S
n [ 2 1 0 1 2

1 ]
∗
) = 0 for all j > 0.

Hence Ei,j2 = 0 for j > 0, and the spectral sequence already collapses at the
E2-term. Therefore we get

Hi(G/P,H0(P/B,⊕n≥0S
n [ 2 1 0 1 2

1 ]
∗
)) = Ei,02 = Hi+0(G/B,⊕n≥0S

n [ 2 1 0 1 2
1 ]

∗
)

for all i ∈ Z. Combining this with (4.3.22) we get the desired isomorphism (in
(4.3.4))

Hi(G/B, k[W ]) = Hi(G/B,⊕n≥0S
n [ 2 1 0 1 2

1 ]
∗
) for all i ∈ Z.

Now we have proved (4.3.3) and (4.3.4), and hence we have finally proved that
the closure of A5 is normal.
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4.4 The orbit A4 + A1

A4 + A1 is the only nilpotent orbit of dimension 62 according to the table on p.
129 in [CM93], and the dimension of G. [ 0 0 2 2 0

0 ] is also 62, cf. Richardson’s dense
orbit theorem, Theorem 1.3, hence

A4 +A1 = G. [ 0 0 2 2 0
0 ] .

We have proved that the closure of D5(a1) is normal. We will use this to show
that also the closure of A4 + A1 is normal. In Step 1 in Section 4.2 we observed
that D5(a1) = G. [ 0 0 2 2 0

2 ]. Consider the short exact sequence of B-modules (V
is the cokernel)

0 → [ 0 0 2 2 0
0 ] → [ 0 0 2 2 0

2 ] → V → 0.

Then V ∗ is one dimensional with T -weight { 0 0 0 0 0
1 }, and the Koszul resolution

of the dual sequence is

0 → Sn [ 0 0 2 2 0
2 ]

∗
⊗ { 0 0 0 0 0

1 } → Sn [ 0 0 2 2 0
2 ]

∗
→ Sn [ 0 0 2 2 0

0 ]
∗
→ 0.

Taking the long exact sequence in cohomology and observing that

Hi(Sn [ 0 0 2 2 0
2 ]

∗
⊗ { 0 0 0 0 0

1 }) = 0 for all i > 0, n ∈ Z (4.4.1)

by Example 3.15, we get a short exact sequence

0 → H0(Sn [ 0 0 2 2 0
2 ]

∗
⊗ { 0 0 0 0 0

1 })

→ H0(Sn [ 0 0 2 2 0
2 ]

∗
) → H0(Sn [ 0 0 2 2 0

0 ]
∗
) → 0 (4.4.2)

for all n ∈ Z. Now let x ∈ [ 0 0 2 2 0
2 ] be a Richardson element. By Richardson’s

dense orbit theorem, Theorem 1.3, we get

G.x = G. [ 0 0 2 2 0
2 ] = D5(a1)

and hence G.x = D5(a1), and x belongs to the orbit D5(a1). But for all elements
y in the orbit D5(a1) we know that ZG(y) = ZG(y)0, cf. the table on pp. 428-429
in [Car85], since we are allowed to us the characteristic zero result as described in
Section 2.2.4. Now Lemma 2.6 gives that

G×P{α1,α2,α5} [ 0 0 2 2 0
2 ] → G. [ 0 0 2 2 0

2 ]

is birational. Since D5(a1) = G. [ 0 0 2 2 0
2 ] is normal this implies by Lemma 2.2

(and by (4.4.2)) that A4 +A1 = G. [ 0 0 2 2 0
0 ] is normal.

Note that Eric Sommers uses Proposition 3.3 three times and then Proposi-
tion 3.5 to get the vanishing in (4.4.1).
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4.5 The orbit D4

Step 1: The weighted Dynkin diagram ofD4 is ∆ = { 0 0 2 0 0
2 } and since V (λ∆) =

[ 0 0 2 0 0
2 ] we have by Lemma 2.8

D4 = G. [ 0 0 2 0 0
2 ] .

Again we will use that D5(a1) is normal. By Richardson’s dense orbit theorem,
Theorem 1.3, we know that G. [ 0 0 2 0 2

2 ] has dimension 2(36 − 4) = 64 so it must

equal D5(a1) or A5, cf. the table p. 129 in [CM93]. But

D4 = G. [ 0 0 2 0 0
2 ] ⊆ G. [ 0 0 2 0 2

2 ] ,

and D4 is not contained in A5. Hence D5(a1) = G. [ 0 0 2 0 2
2 ].

Step 2: Look at the short exact sequence (V is the cokernel)

0 → [ 0 0 2 0 0
2 ] → [ 0 0 2 0 2

2 ] → V → 0.

V ∗ has dimension two with T -weights

{ 0 0 0 0 1
0 } , { 0 0 0 1 1

0 } .

We take the Koszul resolution of the dual sequence and get the exact sequence

0 → Sn−2 [ 0 0 2 0 2
2 ]

∗
⊗ ∧2V ∗ → Sn−1 [ 0 0 2 0 2

2 ]
∗
⊗ V ∗

→ Sn [ 0 0 2 0 2
2 ]

∗
→ Sn [ 0 0 2 0 0

2 ]
∗
→ 0

for all n ∈ Z. In the following two steps we will show that

Hi(Sn−2 [ 0 0 2 0 2
2 ]

∗
⊗ ∧2V ∗) = 0 for all i > 1, n ∈ Z

Hi(Sn−1 [ 0 0 2 0 2
2 ]

∗
⊗ V ∗) = 0 for all i > 0, n ∈ Z.

For a moment we assume this. Then splitting the Koszul resolution into short
exact sequences, and taking long exact sequences in cohomology, we get the short
exact sequence

0 → H0(Ker (Sn [ 0 0 2 0 2
2 ]

∗
→ Sn [ 0 0 2 0 0

2 ]
∗
))

→ H0(Sn [ 0 0 2 0 2
2 ]

∗
) → H0(Sn [ 0 0 2 0 0

2 ]
∗
) → 0.

Let x ∈ [ 0 0 2 0 2
2 ] be a Richardson element. By Richardson’s dense orbit theorem,

Theorem 1.3, we have

G.x = G. [ 0 0 2 0 2
2 ] = D5(a1)

and hence G.x = D5(a1), and x belongs to the orbit D5(a1). But we just observed
that for all elements y in the orbitD5(a1) we have ZG(y) = ZG(y)0, and Lemma 2.6
gives that

G×P{α1,α2,α4} [ 0 0 2 0 2
2 ] → G. [ 0 0 2 0 2

2 ]
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is birational. Since D5(a1) = G. [ 0 0 2 0 2
2 ] is normal, this implies that D4 =

G. [ 0 0 2 0 0
2 ] is normal by Lemma 2.2.

Step 3: We want to show that

Hi(Sn−2 [ 0 0 2 0 2
2 ]

∗
⊗ ∧2V ∗) = 0 for all i > 1, n ∈ Z.

We know that ∧2V ∗ is one dimensional with T -weight { 0 0 0 1 2
0 }. We will use

Proposition 3.3 with l = 4, m = 3, α′
i = αi for i = 1, 2, 3, 4 and Γ = ∅. Then

l + 1 −m = 2, m′ = 2, I2 = {α1, α3, α4}, I3 = {α1, α2, α4},

and

〈{ 0 0 0 1 2
0 } , α∨

i 〉 = 0 i = 1, 2, 4, r = 〈{ 0 0 0 1 2
0 } , α∨

3 〉 = −1,

and the proposition gives

Hi(Sn−2 [ 0 0 2 0 2
2 ]

∗
⊗ { 0 0 0 1 2

0 })

= Hi(Sn−4 [ 0 2 0 0 2
2 ]

∗
⊗ { 1 2 2 2 2

0 }) for all i, n ∈ Z.

But Example 3.15 gives that the latter vanishes for i > 1 and for all n ∈ Z, and we
are done. Here Eric Sommers has to use Proposition 3.3 before he gets vanishing
by Proposition 3.5.

Step 4: We want to show that

Hi(Sn−1 [ 0 0 2 0 2
2 ]

∗
⊗ V ∗) = 0 for all i > 0, n ∈ Z.

Since [ 0 0 2 0 2
2 ] is a Pα4 -representation and 〈{ 0 0 0 0 1

0 } , α∨
4 〉 = −1, we have by

Theorem 3.1

Hi(Sn−1 [ 0 0 2 0 2
2 ]

∗
⊗ V ∗) = Hi(Sn−1 [ 0 0 2 0 2

2 ]
∗
⊗ { 0 0 0 1 1

0 }) for all i, n ∈ Z.

Consider the short exact sequence of B-modules (W is the cokernel)

0 → [ 0 0 2 0 2
2 ] → [ 0 0 2 2 2

2 ] →W → 0.

Then W ∗ is one dimensional with T -weight { 0 0 0 1 0
0 }. Taking the Koszul resolu-

tion of the dual sequence and tensoring with { 0 0 0 1 1
0 }, we get the short exact

sequence

0 → Sn−1 [ 0 0 2 2 2
2 ]

∗
⊗ { 0 0 0 2 1

0 } → Sn [ 0 0 2 2 2
2 ]

∗
⊗ { 0 0 0 1 1

0 }

→ Sn [ 0 0 2 0 2
2 ]

∗
⊗ { 0 0 0 1 1

0 } → 0.

Using Example 3.15 we have

Hi(Sn [ 0 0 2 2 2
2 ]

∗
⊗ { 0 0 0 1 1

0 }) = 0 for all i > 0, n ∈ Z. (4.5.1)
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Proposition 3.3 with l = 3, m = 3, α′
i = αi for i = 1, 2, 3 and Γ = ∅ gives

Hi(Sn−1 [ 0 0 2 2 2
2 ]

∗
⊗ { 0 0 0 2 1

0 })

= Hi(Sn−2 [ 2 0 0 2 2
2 ]

∗
⊗ { 2 2 2 2 1

0 }) for all i, n ∈ Z. (4.5.2)

Using Example 3.15 we see that the latter vanish for all i > 1 and all n ∈ Z. Hence

Hi(Sn [ 0 0 2 0 2
2 ]

∗
⊗ { 0 0 0 1 1

0 }) = 0 for all i > 0, n ∈ Z,

and we are done.
Eric Sommers uses Proposition 3.3 three times more and then Proposition 3.5

before he obtains the vanishing in (4.5.1). Similarly he gets the desired vanishing
of (4.5.2).
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4.6 The orbit D4(a1)

By Richardson’s Dense Orbit Theorem, Theorem 1.3, we know that G. [ 0 0 2 0 0
0 ]

has dimension 58, and the only orbit of dimension 58 is D4(a1), cf. the table p.
129 in [CM93], hence

D4(a1) = G. [ 0 0 2 0 0
0 ] . (4.6.1)

In the last section we observed that D4 = G. [ 0 0 2 0 0
2 ] is normal. We study the

following short exact sequence (V is the cokernel)

0 → [ 0 0 2 0 0
0 ] → [ 0 0 2 0 0

2 ] → V → 0

where V ∗ is one dimensional with T -weight { 0 0 0 0 0
1 }. The Koszul resolution of

the dual sequence is

0 → Sn−1 [ 0 0 2 0 0
2 ]

∗
⊗ { 0 0 0 0 0

1 } → Sn [ 0 0 2 0 0
2 ]

∗
→ Sn [ 0 0 2 0 0

0 ]
∗
→ 0.

But

Hi(Sn−1 [ 0 0 2 0 0
2 ]

∗
⊗ { 0 0 0 0 0

1 }) = 0 for all i > 0, n ∈ Z

by Example 3.15, so we have the short exact sequence

0 → H0(Sn−1 [ 0 0 2 0 0
2 ]

∗
⊗ { 0 0 0 0 0

1 })

→ H0(Sn [ 0 0 2 0 0
2 ]

∗
) → H0(Sn [ 0 0 2 0 0

0 ]
∗
) → 0

for all n ∈ Z. Remember that the weighted Dynkin diagram of D4 is ∆ =
{ 0 0 2 0 0

2 }. Then V (λ∆) = [ 0 0 2 0 0
2 ], and by Corollary 2.9 the morphism

G×P (λ∆) [ 0 0 2 0 0
2 ] → G. [ 0 0 2 0 0

2 ] = D4

is birational. Since D4 is normal, this implies by Lemma 2.2 that D4(a1) =
G. [ 0 0 2 0 0

0 ] is normal.
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4.7 The orbit 2A2 + A1

Now we will prove that 2A2 +A1 has normal closure by using the normality of the
closure of D4(a1).

Step 1: The weighted Dynkind diagram of D4(a1) is ∆′ = { 0 0 2 0 0
0 }, and by

Lemma 2.8

D4(a1) = G.V (λ∆) = G. [ 0 0 2 0 0
0 ] .

Let P = P (λ∆′) . Then P is the standard parabolic subgroup containing B corre-
sponding to the subset {α1, α2, α4, α5, α6} of simple roots. The morphism

p̄ : G×P [ 0 0 2 0 0
0 ] → G. [ 0 0 2 0 0

0 ]

is birational by Corollary 2.9.
Assume we can find a closed B-stable subspace U ⊆ [ 0 0 2 0 0

0 ] such that
2A2 +A1 = G.U , and such that the inclusion U ⊆ [ 0 0 2 0 0

0 ] induces a surjec-
tion

H0(G/B, Sn [ 0 0 2 0 0
0 ]

∗
) → H0(G/B, SnU∗) → 0

Then since D4(a1) = G. [ 0 0 2 0 0
0 ] is normal, and since p̄ is birational, Lemma 2.2

gives us that G.U = 2A2 +A1 is normal.

Step 2: In this step we define U from above, and see that G.U = 2A2 +A1.
Since the weighted Dynkin diagram of 2A2 + A1 is ∆ = { 1 0 1 0 1

0 }, we know
by Lemma 2.8 that

2A2 +A1 = G.V (λ∆) = G. [ 1 0 1 0 1
0 ] .

Define U ′ to be the direct sum of the root spaces in [ 1 0 1 0 1
0 ] except the two root

spaces gα and gβ where

α =
{

−1 −1 −1 0 0
0

}
and β =

{
0 0 −1 −1 −1

0

}
.

Then U ′ is B-stable and we have the short exact sequence of B-modules (W is the
cokernel)

0 → U ′ → [ 1 0 1 0 1
0 ] →W → 0

where W ∗ is two dimensional with T -weights

{ 1 1 1 0 0
0 } and { 0 0 1 1 1

0 } . (4.7.1)

Taking the Koszul resolution of the dual sequence, we get for all n ∈ Z the exact
seqeuence

0 → Sn−2 [ 1 0 1 0 1
0 ]

∗
⊗ ∧2W ∗ → Sn−1 [ 1 0 1 0 1

0 ]
∗
⊗W ∗

→ Sn [ 1 0 1 0 1
0 ]

∗
→ Sn(U ′)∗ → 0
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Note that [ 1 0 1 0 1
0 ] is P{α2,α4,α6}-stable. Since the weight of ∧2W ∗ is { 1 1 2 1 1

0 },
and since 〈{ 1 1 2 1 1

0 } , α∨
2 〉 = −1, we have by Theorem 3.1 that

Hi(G/B, Sn−2 [ 1 0 1 0 1
0 ]

∗
⊗ ∧2W ∗) = 0 for all i, n ∈ Z.

We can filter W ∗ by B-submodules such that the quotients are one dimensional
with weights equal to the weights of W ∗, i.e. the weights in (4.7.1). Since these
weights satisfies 〈{ 1 1 1 0 0

0 } , α∨
4 〉 = −1 and 〈{ 0 0 1 1 1

0 } , α∨
2 〉 = −1, we therefore

have by Theorem 3.1

Hi(G/B, Sn−1 [ 1 0 1 0 1
0 ]

∗
⊗W ∗) = 0 for all i, n ∈ Z.

Splitting the Koszul resolution into short exact sequences and taking long exact
sequences in cohomology we therefore have

Hi(G/B, Sn [ 1 0 1 0 1
0 ]

∗
) = Hi(G/B, Sn(U ′)∗) for all i, n ∈ Z.

By Lemma 2.1 we see that

2A2 +A1 = G. [ 1 0 1 0 1
0 ] = G.U ′.

Now let

U = U ′ ⊕ gα ⊆ u, where α =
{

0 −1 −1 −1 0
−1

}
,

and notice that U is B-stable. Taking the Koszul resolution of the dual of the short
exact sequence of the inclusion U ′ ⊆ U of B-modules we get the exact sequence

0 → Sn−1U∗ ⊗ { 0 1 1 1 0
1 } → SnU∗ → Sn(U ′)∗ → 0

Actually U is P{α3}-stable, and since 〈{ 0 1 1 1 0
1 } , α∨

3 〉 = −1 we have by Theo-
rem 3.1 that

Hi(G/B, SnU∗) = Hi(G/B, Sn(U ′)∗) for all i, n ∈ Z.

Hence

2A2 +A1 = G.U ′ = G.U

again by Lemma 2.1

Step 3: Now look at the short exact sequence of B-modules

0 → U → [ 0 0 2 0 0
0 ] → V → 0 (4.7.2)

where V is the cokernel. Then V ∗ is of dimension nine with the following T -weights

{ 0 0 1 0 0
0 } , { 0 1 1 0 0

0 } , { 0 0 1 0 0
1 } , { 0 0 1 1 0

0 } , { 1 1 1 0 0
0 } ,

{ 0 1 1 0 0
1 } , { 0 1 1 1 0

0 } , { 0 0 1 1 0
1 } , { 0 0 1 1 1

0 } .
(4.7.3)
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The Koszul resolution of the dual sequence in (4.7.2) is

0 → Sn−11 [ 0 0 2 0 0
0 ]

∗
⊗ ∧11V ∗ → · · · → Sn−1 [ 0 0 2 0 0

0 ]
∗
⊗ V ∗

→ Sn [ 0 0 2 0 0
0 ]

∗
→ SnU∗ → 0

Our goal is to show that if j = 1, 2, . . . , 8, j 6= 6, then

Hi(G/B, Sn−j [ 0 0 2 0 0
0 ]

∗
⊗ ∧jV ∗) = 0 for all i, n ∈ Z, (4.7.4)

and to show that

Hi(G/B, Sn−6 [ 0 0 2 0 0
0 ]

∗
⊗ ∧6V ∗) = Hi(G/B, Sn−6 [ 0 0 2 0 0

0 ]
∗
⊗ { 1 2 6 2 1

1 })
(4.7.5)

for all i, n ∈ Z. Before we are going to prove this, we will show why it is enough
to prove the normality of the closure of 2A2 +A1.

Let πn denote the map

Sn [ 0 0 2 0 0
0 ]

∗ πn

SnU∗ (4.7.6)

from the Koszul resolution. Let Kn = Ker πn. Now we split the Koszul resolution
into short exact sequences, take long exact sequences in cohomology and use (4.7.4)
and (4.7.5). This gives rise to a long exact sequence

· · · → Hi+7(G/B, Sn−9 [ 0 0 2 0 0
0 ]

∗
⊗ ∧9V ∗)

→ Hi+5(G/B, Sn−6 [ 0 0 2 0 0
0 ]

∗
⊗ { 1 2 6 2 1

1 })

→ Hi(G/B,Kn) → Hi+8(G/B, Sn−9 [ 0 0 2 0 0
0 ]

∗
⊗ ∧9V ∗) → · · ·

(4.7.7)

But

Hi+5(G/B, Sn−6 [ 0 0 2 0 0
0 ]

∗
⊗ { 1 2 6 2 1

1 })

= Hi(G/B, Sn−6 [ 0 0 2 0 0
0 ]

∗
⊗ { 2 4 6 4 2

4 })

by Theorem 3.1 used five times, and by Example 3.15 the latter vanishes for all
i > 0 and all n ∈ Z. Also

Hi+7(G/B, Sn−9 [ 0 0 2 0 0
0 ]

∗
⊗ ∧9V ∗)

= Hi+7(G/B, Sn−9 [ 0 0 2 0 0
0 ]

∗
⊗ { 1 4 9 4 1

3 })

= Hi(G/B, Sn−9 [ 0 0 2 0 0
0 ]

∗
⊗ { 3 6 9 6 3

5 })

by Theorem 3.1 used seven times, and again the latter vanishes for all i > 0 and
all n ∈ Z by Example 3.15. But then we get from (4.7.7) that

Hi(G/B,Kn) = 0 for all i, n ∈ Z,

and thus we have the desired surjection

0 → H0(G/B,Ker πn) → H0(G/B, Sn [ 0 0 2 0 0
0 ]

∗
) → H0(G/B, SnU∗) → 0

induced from (4.7.6).
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4.7.1 The easy terms in the Koszul resolution

For j 6= 1, 2, 4, 5, 7, 8 it is easy to prove (4.7.4). We simply filter ∧jV ∗ by B-
submodules such that the quotients are one dimensional with the same weights as
in ∧jV ∗. Then it is enough to show that for all the weights, λ, in ∧jV ∗ we have

Hi(G/B, Sn−j [ 0 0 2 0 0
0 ]

∗
⊗ λ) = 0 for all i, n ∈ Z. (4.7.8)

Remembering that [ 0 0 2 0 0
0 ] = uP is the unipotent radical of the parabolic sub-

group P (from page 76), we can prove (4.7.8) by using Theorem 3.1 – sometimes
several times for each weight λ. This is very easy calculations, but since we have
to check this for so many weights, we have constructed a computer program that
can do the calculations for us, see Appendix A, Section A.3.

4.7.2 The seventh term in the Koszul resolution

In this section we will prove (4.7.4) for j = 3, i.e. we will prove that

Hi(G/B, Sn−3 [ 0 0 2 0 0
0 ]

∗
⊗ ∧3V ∗) = 0 for all i, n ∈ Z. (4.7.9)

Look at the Grothendieck spectral sequence

Ei,j2 = Hi(G/P,Hj(P/B, Sn−3 [ 0 0 2 0 0
0 ]

∗
⊗ ∧3V ∗)).

We know it abuts to

Hi+j(G/B, Sn−3 [ 0 0 2 0 0
0 ]

∗
⊗ ∧3V ∗).

If we can show that

Hj(P/B, Sn−3 [ 0 0 2 0 0
0 ]

∗
⊗ ∧3V ∗) = 0 for all j ∈ Z,

then Ei,j2 = 0 for all i and j and hence it already collapses at the E2-term and
(4.7.9) is satisfied.

Since [ 0 0 2 0 0
0 ] = uP , it is a P -module, and we have by the generalized tensor

identity

Hj(P/B, Sn−3 [ 0 0 2 0 0
0 ]

∗
⊗ ∧3V ∗) = Sn−3 [ 0 0 2 0 0

0 ]
∗
⊗Hj(P/B,∧3V ∗).

So it is enough to show that

Hj(P/B,∧3V ∗) = 0 for all j ∈ Z. (4.7.10)

We will do this by restricting even more.
Let L denote the Levi subgroup of P containing T . Let L′ = (L,L). Then L′

is semi-simple with Borel group B′ = B ∩ L′ and maximal torus T ′ = (T ∩ L′)0.
Since Hj(P/B,∧3V ∗) equals Hj(P/B,∧3V ∗)|L′ as vectorspaces, it is enough to
show that the latter vanishes for all j ∈ Z. But according to Remark I.6.13 in
[Jan87] we have

Hj(P/B,∧3V ∗)|L′ = Hj(L′/B′, (∧3V ∗)|B′). (4.7.11)
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Remember that P = PI where I = {α1, α2, α4, α5, α6}. Now L′ is connected
and semi-simple with rootsystem A2 ×A2 ×A1. But since G is simply connected,
also L′ is simply connected, cf. Exercise 6, Section 8.4.6 in [Spr98]. Hence L′ is
isomorphic to SL3 × SL3 × SL2 by the isomorphism theorem of algebraic groups,
see e.g. Theorem 9.6.2 in [Spr98].

For i = 2, 3 let Bi denote a Borel subgroup in SLi, and let Ti ⊆ Bi be a
maximal torus in SLi. Now we identify L′ with SL3 × SL3 × SL2 in such a way
that B′ is identified with B3 × B3 × B2, and T ′ is identified with T3 × T3 × T2.
Moreover we may asume that the fundamental weights ̟1, ̟2 are identified with
the fundamental weights of the first SL3-factor, the fundamental weights ̟4, ̟5

are identified with the fundamental weights of the second SL3-factor, and ̟6 is
identified with the fundamental weight of the SL2-factor.

Let V std
SLi

denote the standard SLi-module for i = 2, 3, and let V ′ be the SL3 ×

SL3 × SL2-module V std
SL3

⊗ V std
SL3

⊗ V std
SL2

where the first SL3-factor acts on the first

V textstdSL3
-factor etc. We will show that (V |B′)∗ is the B′-submodule of V ′ given by

the direct sum of the weight spaces corresponding to the T ′-weights

−̟2 −̟4 −̟6, −̟1 +̟2 −̟4 −̟6, −̟2 −̟4 +̟6,

−̟2 +̟4 −̟5 −̟6, ̟1 −̟4 −̟6, −̟1 +̟2 −̟4 +̟6,

−̟1 +̟2 +̟4 −̟5 −̟6, −̟2 +̟4 −̟5 +̟6, −̟2 +̟5 −̟6.

(4.7.12)

Once we have proved this, Lemma 4.8 (which we will state and prove later) gives
us that Hi(L′/B′, (∧3V ∗)|B′) = 0 for all i ∈ Z.

Let Z be the direct sum of the rootspaces corresponding to the roots where
the coefficient to α3 is −1, i.e.

Z =
⊕

α∈Φ−

α=
P6

j=1 njαj ,n3=−1

gα

Then Z is clearly L′-stable, and Z ⊆ [ 0 0 2 0 0
0 ]. Remember our short exact se-

quence of B-modules, cf. (4.7.2),

0 → U → [ 0 0 2 0 0
0 ] → V → 0

Considering this sequence as a sequence of B′-modules, we have the commutative
diagram of B′-modules

0 Z ∩ U⊆ Z⊆ Ṽ 0

0 U [ 0 0 2 0 0
0 ] V 0

where Ṽ is the cokernel of the first row. Notice that it is also a diagram of T -
modules. Since the two rows are exact, we get an injective map of B′-modules and
T -modules from Ṽ to V . But since

dimV = 9 and dim(Ṽ ) = dimZ − dim(Z ∩ U) = 9,
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it must be an isomorphism, and therefore Ṽ and V are isomorphic as B′- and
T -modules. Hence we have V ∗|B′ ≃ (Ṽ )∗ ⊆ Z∗.

Now we are going to show that Z∗ is actually isomorphic to V std
SL3

⊗V std
SL3

⊗V std
SL2

and that (Ṽ )∗ is the B′-subrepresentation with weights as in (4.7.12).
The T -weights of Z∗ are (written as usual in the basis of the simple roots)

{ 0 0 1 0 0
0 } , { 0 1 1 0 0

0 } , { 0 0 1 0 0
1 } , { 0 0 1 1 0

0 } , { 0 1 1 0 0
1 } , { 1 1 1 0 0

0 } ,

{ 0 1 1 1 0
0 } , { 0 0 1 1 1

0 } , { 0 0 1 1 0
1 } , { 1 1 1 1 0

0 } , { 0 1 1 1 1
0 } , { 0 1 1 1 0

1 } ,

{ 1 1 1 0 0
1 } , { 0 0 1 1 1

1 } , { 1 1 1 1 1
0 } , { 1 1 1 1 0

1 } , { 0 1 1 1 1
1 } , { 1 1 1 1 1

1 } .

and hence the T ′-weights of Z∗ are the weights in (4.7.12) together with the
following weights

̟1 +̟4 −̟5 −̟6, −̟1 +̟2 +̟5 −̟6, −̟1 +̟2 +̟4 −̟5 +̟6,

̟1 −̟4 +̟6, −̟2 +̟5 +̟6, ̟1 +̟5 −̟6, ̟1 +̟4 −̟5 +̟6,

−̟1 +̟2 +̟5 +̟6, ̟1 +̟5 +̟6.

Now let k̟1+̟5+̟6 denote the one dimensional B′-module with T ′-weight
̟1 +̟5 +̟6. Then the projection map

Z∗ → k̟1+̟5+̟6

is a map of B′-modules. By Fronbenius reciprocity we have

HomB′(Z∗, k̟1+̟5+̟6) ≃ HomL′(Z∗, H0(L′/B′, k̟1+̟5+̟6))

and hence we get a nonzero map of L′-modules

φ : Z∗ → H0(L′/B′, k̟1+̟5+̟6) (4.7.13)

Now

H0(L′/B′, k̟1+̟5+̟6) = H0(SL3 × SL3 × SL2/B3 ×B3 ×B2, k̟1+̟5+̟6)

= H0(SL3/B3 × SL3/B3 × SL2/B2, k̟1 ⊗ k̟5 ⊗ k̟6)

Since ̟1 ∈ X∗(T3), ̟5 ∈ X∗(T3) and ̟6 ∈ X∗(T2) are dominant we know that

Hi(SL3/B3, k̟1) = 0 for i > 0,

Hi(SL3/B3, k̟5) = 0 for i > 0,

Hi(SL2/B2, k̟6) = 0 for i > 0,

according to Kempf’s vanishing theorem (Proposition II4.5 in [Jan87]). Hence we
have by the Künneth fomula that

H0(SL3/B3 × SL3/B3 × SL2/B2, k̟1 ⊗ k̟5 ⊗ k̟6)

= H0(SL3/B3, k̟1) ⊗H0(SL3/B3, k̟5) ⊗H0(SL2/B2, k̟6)
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We want to show that this module is irreducible and isomorphic to the module
V ′ = V std

SL3
⊗ V std

SL3
⊗ V std

SL2
. To prove this we need to use a corollary to the Borel-

Bott-Weil theorem, but in order to use this corollary we need a bit of notation.
For i = 2, 3 let Φ+

i denote the set of positive roots in X∗(Ti), and let ρi denote
half the sum of the positive roots, i.e. ρi = 1

2

∑
α∈Φ+

i
α. For i = 2, 3 define

CZ,i = {λ ∈ X∗(Ti)|0 ≤ 〈λ+ ρi, β
∨〉 for all β ∈ Φ+

i }

if char(k) = 0, and

CZ,i = {λ ∈ X∗(Ti)|0 ≤ 〈λ+ ρi, β
∨〉 ≤ p for all β ∈ Φ+

i }

if char(k) = p > 0.
Now ̟1 ∈ CZ,3, and ̟1 is dominant. Therefore the module H0(SL3/B3, k̟1)

is an irreducible SL2-module with highest weight ̟1 by Corollary II.5.6 in [Jan87],
and H0(SL3/B3, k̟1) is the standard SL3-representation V std

SL3
. Similarly

H0(SL3/B3, k̟5) = V std
SL3

and H0(SL2/B2, k̟6) = V std
SL2

, (4.7.14)

and these modules are irreducible. Therefore

H0(SL3/B3 × SL3/B3 × SL2/B2, k̟1 ⊗ k̟5 ⊗ k̟6) ≃ V std
SL3

⊗ V std
SL3

⊗ V std
SL2

= V ′,

and this module is irreducible. Hence the map φ from (4.7.13) must be surjective
since it is nonzero. But dimZ∗ = 18 and

dim(V std
SL3

⊗ V std
SL3

⊗ V std
SL2

) = 3 · 3 · 2 = 18

and hence φ is an isomorphism and Z∗ is isomorphic to V ′ = V std
SL3

⊗ V std
SL3

⊗ V std
SL2

.

We have seen that V ∗|B′ ≃ (Ṽ )∗ is a B′-submodule of Z∗, and it is easy to see
from (4.7.3) that the T ′-weights of (Ṽ )∗ are the ones listed in (4.7.12).

Now we are ready to apply Lemma 4.8. We get

Hj(L′/B′, (∧3V ∗)|B′) = Hj(SL3 × SL3 × SL2/B3 ×B3 ×B2,∧
3(Ṽ )∗) = 0

for all j ∈ Z, and by (4.7.11) we have proved (4.7.10) and hence (4.7.9) which was
the goal of this section. Now it only remains to prove the following lemma.

Lemma 4.8. Let G = SL3 × SL3 × SL2, let B = B3 × B3 × B2 be a Borel
subgroup in G, and let T = T3 × T3 × T2 be a maximal torus contained in B. Let
̟i, i = 1, 2, 4, 5, 6 be the fundamental weights as described on page 80.

Let U be the G-module V std
SL2

⊗ V std
SL2

⊗V std
SL2

, and let U ′ be the B-submodule of
U given by the T -weights in (4.7.12). Then

Hj(G/B,∧3U ′) = 0 for all j ∈ Z

Proof. We will compute Hj(G/B,∧3U ′) by making a filtration of ∧3U ′ with B-
modules and computing the cohomology groups of the quotients in the filtration.

Remember that the T -weights of U ′ are the ones written down in (4.7.12). In
the next diagram we will write the coefficients of these weights in the ordered basis
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(̟1, ̟2, ̟4, ̟5, ̟6). Here the arrows indicate how the root groups U−αi
⊆ B acts

on U ′.

λ5

=

(1, 0, −1, 0, −1)

U−α1

λ6
=

(−1, 1, −1, 0, 1)

U−α6
U−α2

λ7

=

(−1, 1, 1, −1, −1)

U−α4
U−α2

λ8

=

(0, −1, 1, −1, 1)

U−α4
U−α6

λ9

=

(0, −1, 0, 1, −1)

U−α5

λ2

=

(−1, 1, −1, 0, −1)

U−α2

λ3
=

(0, −1, −1, 0, 1)

U−α6

λ4

=

(0, −1, 1, −1, −1)

U−α4

λ1

=

(0, −1, −1, 0, −1)

(4.7.15)

Let vi ∈ U ′ be a nonzero weight vector in U ′ of weight λi, and let

vs,t,u = vs ∧ vt ∧ vu ∈ ∧3U ′.

Then

{vs,t,u|1 ≤ s < t < u ≤ 9}

is a basis for ∧3U ′. Also define

λs,t,u = λs + λt + λu for 1 ≤ s < t < u ≤ 9.

Then the weight of vs,t,u is exactly λs,t,u. We say that vs,t,u is of the form [a, b, c]
where a, b, c ∈ {1, 2, 3}, if λs can be found in row number a (counted from below)
in diagram (4.7.15), and if λt can be found in row b, and λu in row c. For example
v1,8,9 is of the form [1, 3, 3].

Now we are ready to describe the filtration 0 = V0 ⊆ V1 ⊆ · · · ⊆ ∧3U ′ of
B-submodules of ∧3U ′. Define

V0 = 0, V1 = kv1,2,3, V2 = V1 ⊕ kv1,2,4, V3 = V2 ⊕ kv1,3,4, V4 = V3 ⊕ kv2,3,4.

Then the quotients Ql = Vl/Vl−1, l = 1, 2, 3, 4 are one dimensional with T -weights
µi that satisfies 〈µl, α∨

m〉 = −1 for m = 1, 2, 4, 5 or 6. Hence Hj(G/B,Qi) = 0 for
all j ∈ Z by Theorem 3.1. Remark that there are only 14 vs,t,u’s with weight λs,t,u
which do not satisfy 〈λs,t,u, α∨

m〉 = −1 for m = 1, 2, 4, 5 or 6. They are

v1,2,5, v1,4,9, v1,5,9, v3,4,8, v2,3,6, v2,4,7, v2,5,9,

v4,5,7, v4,5,9, v2,7,9, v3,5,6, v3,8,9, v6,7,8, v5,7,9.
(4.7.16)

Let

V5 = V4 ⊕ kv1,2,5, V6 = V5 ⊕ kv1,4,9.
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Now we construct the next parts of the filtration such that the quotients are
one dimensional with weights of the form [1, 2, 3]. All weights of this form occur
however we omit the two weights λ1,2,5 and λ1,4,9 (since we allready have quotients
with these weigths). All these quotients have vanishing cohomology by Theorem 3.1
since they are not in the list (4.7.16).

The next B-modules in the filtrations are chosen such that the quotients are
one dimensional with weights of the form [2, 2, 3]. Again all weights of this form
occur except the three weights λ2,4,7, λ2,3,6 and λ3,4,8. Again these quotients have
vanishing cohomology by Theorem 3.1.

Now we take B-modules with quotients of dimension one with all the weights
of the form [1,3,3] except λ1,5,9. These quotients have vanishing cohomology by
the same argument.

Let VN be the last B-module we constructed, and define the B-modules

VN+1 = VN ⊕ kv3,5,6 ⊕ kv2,3,6, VN+2 = VN+1 ⊕ kv2,7,9 ⊕ kv2,4,7,

VN+3 = VN+2 ⊕ kv3,8,9 ⊕ kv3,4,8, VN+4 = VN+3 ⊕ kv1,5,9 ⊕ kv2,5,9.

The next B-modules in the filtration are again constructed such that the quo-
tients are one dimensional with all the weights of the form [2, 3, 3] except λ3,5,6,
λ2,7,9, λ3,8,9 and except λ4,5,7 and λ4,5,9. Again all these quotients have vanishing
cohomology by Theorem 3.1.

Let again VM be the last module constructed, and define

VM+1 = VM ⊕ kv4,5,7, VM+2 = VM+1 ⊕ kv4,5,9 ⊕ kv5,7,9

VM+3 = VM+2 ⊕ v6,7,8

Now the next modules in the filtration are again one dimensional with all the
weights of the form [3, 3, 3] omitting the weights λ5,7,9 and λ6,7,8. This finishes the
filtration of ∧3U ′.

Let Ql = Vl/Vl−1 denote the quotients of the filtration. The only quotients
with non vanishing cohomology are Q5, Q6, QN+1, QN+2, QN+3, QN+4, QM+1,
QM+2 and QM+3. We will study these quotients a bit.

Note that QN+1, QN+2, QN+3, QN+4 and QM+2 are two dimensional. The
two weights of QN+1 are λ3,5,6 = { 1 2 3 0 0

2 } and λ2,3,6 = { 0 2 3 0 0
2 }. Note that

λ3,5,6 = α1 + λ2,3,6, and that

〈λ2,3,6, α
∨
1 〉 = 〈{ 0 2 3 0 0

2 } , α∨
1 〉 = −2,

Hence Lemme 1 in [Dem77] gives that

Hj(G/B,QN+1) = 0 for all j ∈ Z.

Similarly QN+2, QN+3, QN+4 and QM+2 have vanishing cohomology.
We will use the Borel-Bott-Weil Theorem to show that Q5, Q6, QM+1 and

QM+3 has only one non vanishing cohomology group which is either in degree two
or three. Remember that Q5 is one dimensional with weight

λ1,2,5 = −3̟4 − 3̟6
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Hence

Hj(G/B,Q5) = Hj(G/B, k−3̟4−3̟6)

= Hj(SL3/B3 × SL3/B3 × SL2/B2, k0 ⊗ k−3̟4 ⊗ k−3̟6)
(4.7.17)

To calculate this cohomology group we will use the Künneth formula, so we need
to compute

Hj(SL3/B3, k0), Hj(SL3/B3, k−̟4), and Hj(SL2/B2, k−3̟6).

First notice that 0 ∈ X∗(T3) is dominant, so according to Kempf’s vanishing
theorem (Proposition II.4.5 in [Jan87]) we have

Hj(SL3/B3, k0) = 0 for j > 0.

Also notice that k0 is the one dimensional B3-module with T3-weight 0. Hence k0

is the one dimensional trivial B3-module, and therefore H0(SL3/B3, k0) is the one
dimensional trivial SL3-module which we will denote k. With this notation

Hj(SL3/B3, k0) =

{
k for j = 0

0 for j 6= 0

Remember the “dot” action defined in (1.1), and notice that sα5sα4 · (−3̟4) = 0
and that 0 ∈ CZ,3 is dominant (CZ,3 is defined on page 82). By the Borel-Bott-Weil
theorem (Corollary II.5.5 in [Jan87]) we therefore know that

Hj(SL3/B3, k−3̟4) =

{
H0(SL3/B3, k0) = k for j = 2

0 for j 6= 2

Since sα6 · (−3̟6) = ̟6, and since ̟6 ∈ CZ,2 is dominant, we get by the Borel-
Bott-Weil theorem

Hj(SL2/B2, k−3̟6) =

{
H0(SL2/B2, k̟6) = V std

SL2
for j = 1

0 for j 6= 1

where we remember that H0(SL2/B2, k̟6) = V std
SL2

, cf. (4.7.14). Let W denote

G-representation k⊗k⊗V std
SL2

where the first SL3-factor acts on the first k trivially
etc. Also notice that W is an irreducible G-representation – we will need it later.
Using all these cohomology results we get by the Künneth formula applied to
(4.7.17)

Hj(G/B,Q5) =

{
W for j = 3

0 for j 6= 3
(4.7.18)

Similarly we can calculate that

Hj(G/B,Q6) =

{
W for j = 3

0 for j 6= 3

Hj(G/B,QM+1) = Hj(G/B,QM+3) =

{
W for j = 2

0 for j 6= 2

(4.7.19)
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Since all the quotients in the filtration of ∧3U ′ only has non vanishing cohomology
groups in degree two and three the same must be true for ∧3U ′, i.e.

Hj(G/B,∧3U ′) = 0 when j 6= 2, 3. (4.7.20)

Now we need to prove that H2(G/B,∧3U ′) = 0 andH3(G/B,∧3U ′) = 0. Consider
the short exact sequence of B-modules

0 → U ′ → U → U/U ′ → 0

and the corresponding Koszul resolution with five terms

0 → ∧3U ′ → ∧2U ′ ⊗ U → U ′ ⊗ S2U → S3U → S3(U/U ′) → 0

Again we notice that

Hi(G/B,∧2U ′) = 0 for all i ∈ N

Hi(G/B,U ′) = 0 for all i ∈ N

by Theorem 3.1 just as we proved (4.7.4) for j = 1, 2, cf. Section 4.7.1. Since U is
a G-representation this implies by the generalized tensor identity that

Hi(G/B,∧2U ′ ⊗ U) = 0 for all i ∈ N

Hi(G/B,U ′ ⊗ S2U) = 0 for all i ∈ N

and therefore

H2(G/B,∧3U ′) = Ker (H0(G/B, S3U) → H0(G/B, S3(U/U ′)))

But again since U is a G-representation we have H0(G/B, S3U) = S3U and we
see that H2(G/B,∧3U ′) is a G-submodule in S3U . We will use this to show that
Hj(G/B,∧3U ′) = 0 for j = 2, 3.

Remember our filtration 0 = V0 ⊆ V1 ⊆ · · · ⊆ ∧3U ′. This gives us the following
short exact sequences

0 → Vl−1 → Vl → Ql → 0

Remember that for l 6= 5, 6,M + 1,M + 3 we have Hj(G/B,Ql) = 0 for all j ∈ N.
Hence taking long exact sequences in cohomology corresponding to these short
exact sequences and using the results about the cohomology groups Hj(G/B,Ql)
for l = 5, 6,M + 1,M + 3 in (4.7.18) and (4.7.19), we get three exact sequences

0 →W → H3(G/B, VM ) →W → 0

0 → H2(G/B, VM+2) →W → H3(G/B, VM ) → H3(G/B, VM+2) → 0

and

0 → H2(G/B, VM+2) →H2(G/B,∧3U ′)

→W → H3(G/B, VM+2) → H3(G/B,∧3U ′) → 0
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Remember that H2(G/B,∧3U ′) ⊆ S3U is a G-submodule. We will show that
W is not a submodule of S3U . For a moment assume this. Then we are ready to
show that Hi(G/B,∧3U ′) = 0 for all i ∈ N.

Since W is irreducible, we get that

H2(G/B, VM+2) = W or H2(G/B, VM+2) = 0

by the second short exact sequence. If H2(G/B, VM+2) = W , then by the third
exact sequence W is a submodule of H2(G/B,∧3U ′) which is a submodule of S3U
and we have reached a contradiction. Therefore H2(G/B, VM+2) = 0.

But then by the third exact sequence H2(G/B,∧3U ′) is a submodule of W .
Again W is irreducible so either

H2(G/B,∧3U ′) = W or H2(G/B,∧3U ′) = 0

But since W is not a submodule of S2U by assumption, and since H2(G/B,∧3U ′)
is a submodule of S2U , we are in the case where H2(G/B,∧3U ′) = 0.

Now the dimension of W is two, and hence H3(G/B, VM ) has dimension four
according to the first short exact sequence. But then the second short exact se-
quence gives that the dimension of H3(G/B, VM+2) is two, and the third exact
sequence shows that H3(G/B,∧3U ′) = 0. Now we have proved the lemma under
the assumption that W is not a submodule of S3U .

In order to show that W is not a G-submodule of S3U we will prove that
S3U has a good filtration, i.e. a filtration with quotients of the form H0(G/B, kλ)
with λ ∈ X∗(T ) dominant. We will also find the quotients in a good filtration
(remember that the quotients are independent of the actual filtration).

Remember that U = V std
SL3

⊗V std
SL3

⊗V std
SL2

. Using the earlier methods to compute
cohomology – remember for example how we computed Hj(G/B,Q5) – we see
that

U = H0(SL3/B3, k̟1) ⊗H0(SL3/B3, k̟5) ⊗H0(SL2/B2, k̟6)

= H0(G/B, k̟1+̟5+̟6).

But ̟1 + ̟5 +̟6 is dominant, and therefore U is itself a good filtration of U .
But then U ⊗ U also admits a good filtration, cf. Proposition II.4.19 in [Jan87].
Now S3U is a quotient of U ⊗ U , and we have a spitting

S3U → U ⊗ U

given by

f1 ⊗ f2 ⊗ f3 7→ 1
6

∑

σ∈S3

fσ(1) ⊗ fσ(2) ⊗ fσ(3)

where S3 is the symmetric group on three letters. Thus S3U is a direct summand
of U ⊗ U , and it has a good filtration, cf. Proposition II.4.16 in [Jan87].

We can compute that

W = k ⊗ k ⊗ V std
SL2

= H0(G/B, k̟6).
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Now notice that ̟6 is dominant. Hence, in order to show that W is not a sub-
module of S3U , it is enough to observe that H0(G/B, k̟6 ) does not occur as a
quotient in a good filtration of S3U . Now we will find these quotients.

Let λ1, . . . , λm ∈ X∗(T ) be dominant weights such that the quotients in a good
filtration of S3U are of the form H0(G/B, kλi

). Then

S3U ≃
m⊕

i=1

H0(G/B, kλi
)

as T -representations. We want to find the λi’s.
We know all the weights of S3U counted with multiplicities. The weight 3̟1 +

3̟5 + 3̟6 is a highest weight of S3U , and hence one of the λi’s must be equal to
3̟1 + 3̟5 + 3̟6. By reordering the λi’s we may assume that λm = 3̟1 + 3̟5 +
3̟6. Now

S3U/H0(G/B, k3̟1+3̟5+3̟6) ≃
m−1⊕

i=1

H0(G/B, kλi
) (4.7.21)

as T -representations.
There are many ways to find the weights of H0(G/B, k3̟1+3̟5+3̟6) counted

with multiplicities. One can for example use Kostant’s multiplicity formula (see e.g.
Theorem 24.2 in [Hum78]), and one can reduce to the SL3- or SL2-case by Kempf’s
vanishing theorem and the Künneth formula as described in the calculation of
Hj(G/B,Q5). Hence we can find the weights of

S3U/H0(G/B, k3̟1+3̟5+3̟6).

We see that ̟1 +̟2 +̟4 +̟5 + 3̟6 is a highest weight of this module, and by
(4.7.21) we may assume that λm−1 = ̟1 +̟2 +̟4 +̟5 + 3̟6.

Continuing this way we can find all the λi’s and hence the quotients in a good
filtration of S3U . They are

H0(G/B, k3̟1+3̟5+3̟6), H0(G/B, k̟1+̟2+̟4+̟5+3̟6),

H0(G/B, k3̟6), H0(G/B, k3̟1+̟4+̟5+̟6),

H0(G/B, k̟1+̟2+3̟5+̟6), H0(G/B, k̟1+̟2+̟4+̟5+̟6).

But W = H0(G/B, k̟6) is not one of these modules, and hence W is not a
submodule of S3U .

4.7.3 The fourth term in the Koszul resolution

In this section we will prove (4.7.5), i.e. we will prove that

Hi(G/B, Sn−6 [ 0 0 2 0 0
0 ]

∗
⊗ ∧6V ∗) = Hi(G/B, Sn−6 [ 0 0 2 0 0

0 ]
∗
⊗ { 1 2 6 2 1

1 })
(4.7.22)

for all i ∈ Z and all n ∈ Z. We will do this using the same method as in the last
section, but with a little twist.
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Let Q be the B-submodule of ∧6V ∗ corresponding to the T -weights λ of ∧6V ∗

that satisfies 〈λ, α∨
6 〉 ∈ {−4,−6}. Then we have a short exact sequence of B-

modules

0 → Sn−6 [ 0 0 2 0 0
0 ]

∗
⊗Q→ Sn−6 [ 0 0 2 0 0

0 ]
∗
⊗ ∧6V ∗

→ Sn−6 [ 0 0 2 0 0
0 ]

∗
⊗ (∧6V ∗/Q) → 0

The idea is to show that

Hi(G/B, Sn−6 [ 0 0 2 0 0
0 ]

∗
⊗Q) = Hi(G/B, Sn−6 [ 0 0 2 0 0

0 ]
∗
⊗ { 1 2 6 2 1

1 })
(4.7.23)

for all i ∈ Z, and to show that

Hi(G/B, Sn−6 [ 0 0 2 0 0
0 ]

∗
⊗ (∧6V ∗/Q)) = 0 (4.7.24)

for all i ∈ Z.
It is easiest to show (4.7.23). As in the last section we can filter Q with B-

modules 0 ⊆ V0 ⊆ V1 ⊆ . . . ⊆ VN = Q with quotients Qs = Vs/Vs−1 such that all
the quotients except one (call it Qs0) satisfies

Hj(P/B,Qs) = 0

for all j ∈ Z. This vanishing is obtained by observing that either Qs can be chosen
to be one dimensional with vanishing cohomology by Theorem 3.1, or to be two
dimensional with vanishing cohomology by Lemme 1 in [Dem77]. We can make
the filtration such that Qs0 is one dimensional with T -weight { 1 2 6 2 1

1 }. Take a
look at the Grothendick spectral sequence

Ei,j2 (Qs) = Hi(G/P,Hj(P/B, Sn−6 [ 0 0 2 0 0
0 ]

∗
⊗Qs)).

We know it abuts to

Hi+j(G/B, Sn−6 [ 0 0 2 0 0
0 ]

∗
⊗Qs).

The generalized tensor identity gives that

Hj(P/B, Sn−6 [ 0 0 2 0 0
0 ]

∗
⊗Qs)) = Sn−6 [ 0 0 2 0 0

0 ]
∗
⊗Hj(P/B,Qs).

Since Hj(P/B,Qs) = 0 for all j ∈ Z when s 6= s0, we know that Ei,j2 (Qs) = 0 for
all i and j. Hence

Hi(G/B, Sn−6 [ 0 0 2 0 0
0 ]

∗
⊗Qs) = 0 (4.7.25)

for all i ∈ Z and all s 6= s0. This implies the desired equation (4.7.23).
Section 4.7.2 was devoted to show that

Hi(G/B, Sn−3 [ 0 0 2 0 0
0 ]

∗
⊗ ∧3V ∗) = 0

for all i ∈ Z and all n ∈ Z. We will use the same method to show (4.7.24), but
since Section 4.7.2 is quite long we will not include all details this time. We will
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use the same notation as in Section 4.7.2. Again we restrict to L′ = (L,L) ≃
SL3 × SL3 × SL2 and observe that it is enough to show that

Hj(L′/B′, (∧6V ∗/Q)|B′) = 0 (4.7.26)

for all j ∈ N in order to prove (4.7.24). Let Q′ = Q|B′ . Again we show the
vanishing result by showing the following Lemma.

Lemma 4.9. Let G = SL3×SL3×SL2, let B = B3×B3×B2 be a Borel subgroup
in G, and let T = T3×T3×T2 be a maximal torus ofG contained in B. Let U be the
G-module V std

SL3
⊗ V std

SL3
⊗std

SL3
, and let U ′ be the B-module described in Lemma 4.8.

Furthermore let Q′ denote the B-submodule of ∧6U ′ arising as above. Then

Hj(G/B, (∧6U ′)/Q′) = 0 for all j ∈ Z.

Proof. Again we proceed by making a filtration of ∧6U ′/Q′ with B-submodules.
This time we find a filtration

0 = U0 ⊆ U1 ⊆ U2 ⊆ . . . ⊆ UM = ∧6U ′/Q′

with quotients Pi = Ui/Ui−1. Now we can find i1 < i2 < i3 < i4 such that if
i 6= i1, . . . , i4, then

Hj(G/B,Pi) = 0

for all j ∈ Z. Again this result is obtained by using Theorem 3.1 and Lemme 1 in
[Dem77]. Now the Pij ’s are one dimensional with T -weight λij where

λi1 = −3̟1 − 3̟5 − 2̟6, λi2 = −3̟1 − 2̟4 − 2̟5,

λi3 = −2̟1 +̟2 − 2̟4 − 2̟5, λi4 = −3̟1 +̟4 − 2̟5 − 2̟6.

Let k denote the trivial G-representation. Again one can calculate that

Hj(G/B,Pi1 ) = Hj(G/B,Pi2 ) =

{
k for j = 5

0 for j 6= 5

Hj(G/B,Pi3 ) = Hj(G/B,Pi4 ) =

{
k for j = 4

0 for j 6= 4

and hence Hj(G/B,∧6U ′/Q′) = 0 for all j 6= 4, 5. Furthermore we obtain the
following exact sequences in cohomology

0 → k → H5(G/B,U2) → k → 0

0 → H4(G/B,U3) → k → H5(G/B,U2) → H5(G/B,U3) → 0

0 → H4(G/B,U3) → H4(G/B,∧6U ′/Q′)

→ k → H5(G/B,U3) → H5(G/B,∧6U ′/Q′) → 0
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This implies that the trivial G-module k is a submodule of H4(G/B,∧6U ′/Q′) or
that

H4(G/B,∧6U ′/Q′) = H5(G/B,∧6U ′/Q′) = 0. (4.7.27)

Therefore we just need to show that k is a not submodule of H4(G/B,∧6U ′/Q′).
To prove this we will use the Koszul resolution with eight terms induced by

the inclusion U ′ ⊆ U :

0 → ∧6U ′ → U ⊗ ∧5U ′ → · · · → S5U ⊗ U ′ → S6U → S6(U/U ′) → 0

Notice that Hj(G/B,∧tU ′) = 0 for all j ∈ Z when t = 1, 2, . . . , 5. For t 6= 3 this is
shown by using Theorem 3.1 just as we proved (4.7.4) and for t = 3 it follows from
Lemma 4.8. Since U is a G-module this implies by the generalized tensor identity
that

Hj(G/B, S6−tU ⊗ ∧tU ′) = 0

for all j ∈ Z and for t = 1, . . . , 5. Therefore

Hj(G/B,∧6U ′) = 0

for j = 0, 1, . . . , 4, and hence the short exact sequence

0 → Q′ → ∧6U ′ → ∧6U ′/Q′ → 0

induces this exact sequence in cohomology

0 → H4(G/B,∧6U ′/Q′) → H5(G/B,Q′)

→ H5(G/B,∧6U ′) → H5(G/B,∧6U ′/Q′) → · · ·

But using the filtration of Q′ on page 89 we can show that H5(G/B,Q′) =
H5(G/B, k−3̟2−3̟4−4̟6) which is irreducible of dimension three. Therefore the
trivial G-module k cannot be a submodule of H4(G/B,∧6U ′/Q′) and (4.7.27) is
satisfied.

Now we have proved (4.7.22) and hence (4.7.5) which was the missing result
in order to prove that the closure of 2A2 +A1 is normal.



92 4. Calculations

4.8 The orbit A2 + 2A1

Step 1: We are going to use that 2A2+A1 has normal closure in order to show that
A2 + 2A1 has normal closure. By Richardson’s dense orbit theorem, Theorem 1.3,
the dimension ofG. [ 0 0 0 2 0

0 ] is = 50, and the only orbit of dimension 50 isA2+2A1

by the table p. 129 in [CM93]. Therefore

A2 + 2A1 = G. [ 0 0 0 2 0
0 ] .

The weighted Dynkin diagram of 2A2 + A1 is ∆ = { 1 0 1 0 1
0 }, and V (λ∆) =

[ 1 0 1 0 1
0 ]. Therefore Lemma 2.8 gives

2A2 +A1 = G. [ 1 0 1 0 1
0 ] .

Let U be the B-subrepresentation of [ 1 0 1 0 1
0 ] obtained by omitting the two root

spaces

gn
−1 −1 −1 0 0

0

o, gn
−1 −1 −1 0 0

−1

o.

We will show that G. [ 0 0 0 2 0
0 ] = G.U . Look at the short exact sequence (U1 is

the cokernel)

0 → U → [ 0 0 0 2 0
0 ] → U1 → 0. (4.8.1)

Then U∗
1 is six dimensional with T -weights

{ 0 0 0 1 0
0 } , { 0 0 1 1 0

0 } , { 0 0 0 1 1
0 } , { 0 0 1 1 0

1 } , { 0 1 1 1 0
0 } , { 0 1 1 1 0

1 } .

We look at the first six terms of the Koszul resolution of the dual sequence. Ap-
plying Theorem 3.1 several times we get

Hi(Sn−j [ 0 0 0 2 0
0 ]

∗
⊗ ∧jU∗

1 ) = 0 for all i, n ∈ Z, j = 1, 2, . . . , 6.

In practice the calculations were done using the computer program in Appendix A,
Section A.3. Hence

Hi(Sn [ 0 0 0 2 0
0 ]

∗
) = Hi(SnU∗) for all i, n ∈ Z,

and A2 + 2A1 = G. [ 0 0 0 2 0
0 ] = G.U by Lemma 2.1.

Step 2: Look at the short exact sequence of B-modules (defining V )

0 → U → [ 1 0 1 0 1
0 ] → V → 0.

Then V ∗ is two dimensional with weights

{ 1 1 1 0 0
0 } , { 1 1 1 0 0

1 } .

We take the Koszul resolution of the dual sequence

0 → Sn−2 [ 1 0 1 0 1
0 ]

∗
⊗ ∧2V ∗ → Sn−1 [ 1 0 1 0 1

0 ]
∗
⊗ V ∗

→ Sn [ 1 0 1 0 1
0 ]

∗
→ SnU∗ → 0. (4.8.2)
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Theorem 3.1 gives that

Hi(Sn−1 [ 1 0 1 0 1
0 ]

∗
⊗ { 1 1 1 0 0

0 }) = 0 for all i, n ∈ Z

Hi(Sn−1 [ 1 0 1 0 1
0 ]

∗
⊗ { 1 1 1 0 0

1 }) = 0 for all i, n ∈ Z

because [ 1 0 1 0 1
0 ] is a Pα4 -representation. Hence

Hi(Ker (Sn [ 1 0 1 0 1
0 ]

∗
→ SnU∗)) = Hi+1(Sn−2 [ 1 0 1 0 1

0 ]
∗
⊗ ∧2V ∗)

for all i, n ∈ Z. If we can show that the latter vanishes for all i > 0, we have the
short exact sequence

0 → H1(Sn−2 [ 1 0 1 0 1
0 ]

∗
⊗ ∧2V ∗) → H0(Sn [ 1 0 1 0 1

0 ]
∗
) → H0(SnU∗) → 0

for all n ∈ Z. We assume this for a moment. Remember that ∆ = { 1 0 1 0 1
0 } is

the weighted Dynkin diagram for 2A2 +A1 and V (λ∆) = [ 1 0 1 0 1
0 ]. Then

G×P (λ∆) [ 1 0 1 0 1
0 ] → G. [ 1 0 1 0 1

0 ] = 2A2 +A1

is birational by Corollary 2.9. Since 2A2 +A1 is normal, Lemma 2.2 gives that
A2 + 2A1 = G.U is normal.

Step 3: We need to show that

Hi+1(Sn−2 [ 1 0 1 0 1
0 ]

∗
⊗ ∧2V ∗) = 0 for all i > 0, n ∈ Z.

We know that ∧2V ∗ is one dimensional with T -weight { 2 2 2 0 0
1 }, and by Theo-

rem 3.1 we get

Hi+1(Sn−2 [ 1 0 1 0 1
0 ]

∗
⊗ { 2 2 2 0 0

1 })

= Hi(Sn−2 [ 1 0 1 0 1
0 ]

∗
⊗ { 2 2 2 1 0

1 }) for all i, n ∈ Z.

By symmetry

Hi(Sn−2 [ 1 0 1 0 1
0 ]

∗
⊗ { 2 2 2 1 0

1 })

= Hi(Sn−2 [ 1 0 1 0 1
0 ]

∗
⊗ { 0 1 2 2 2

1 }) for all i, n ∈ Z.

We tensor the exact sequence of (4.8.2) (writing n−2 instead of n) with { 0 1 2 2 2
1 }

and obtain the following exact sequence

0 → Sn−2 [ 1 0 1 0 1
0 ]

∗
⊗ ∧2V ∗ ⊗ { 0 1 2 2 2

1 }

→ Sn−1 [ 1 0 1 0 1
0 ]

∗
⊗ V ∗ ⊗ { 0 1 2 2 2

1 }

→ Sn [ 1 0 1 0 1
0 ]

∗
⊗ { 0 1 2 2 2

1 } → SnU∗ ⊗ { 0 1 2 2 2
1 } → 0

Using Theorem 3.1 two times we get

Hi(Sn−3 [ 1 0 1 0 1
0 ]

∗
⊗ V ∗ ⊗ { 0 1 2 2 2

1 }) = 0 for all i, n ∈ Z.
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In Step 4 we will show that

Hi(Sn−2U∗ ⊗ { 0 1 2 2 2
1 }) = 0 for all i, n ∈ Z.

Assuming this, we have

Hi(Sn−2 [ 1 0 1 0 1
0 ]

∗
⊗ { 0 1 2 2 2

1 })

= Hi+1(Sn−4 [ 1 0 1 0 1
0 ]

∗
⊗ ∧2V ∗ ⊗ { 0 1 2 2 2

1 })

= Hi+1(Sn−4 [ 1 0 1 0 1
0 ]

∗
⊗ { 2 3 4 2 2

2 })

= Hi(Sn−4 [ 1 0 1 0 1
0 ]

∗
⊗ { 2 3 4 3 2

2 })

for all i, n ∈ Z where we use Theorem 3.1 to get the last equality. But the latter
vanishes for all i > 0 by Example 3.15, and since

Hi+1(Sn−2 [ 1 0 1 0 1
0 ]

∗
⊗ ∧2V ∗) = Hi(Sn−2 [ 1 0 1 0 1

0 ]
∗
⊗ { 0 1 2 2 2

1 })

for all i, n ∈ Z, we are done.

Step 4: We will now show that

Hi(Sn−2U∗ ⊗ { 0 1 2 2 2
1 }) = 0 for all i, n ∈ Z.

Take a look at the Koszul resolution of the dual sequence of (4.8.1) (writing n− 2
instead of n). Then tensor this sequence with { 0 1 2 2 2

1 }. Using Theorem 3.1 several
times – i.e. using the computer program in Appendix A, Section A.3 – we observe
that

Hi(Sn−2−j [ 0 0 0 2 0
0 ]

∗
⊗ ∧jU∗

1 ⊗ { 0 1 2 2 2
1 }) = 0 for all i, n ∈ Z, j = 1, 2, . . . , 6

where 6 = dim(U∗
1 ). Hence

Hi(Sn−2U∗ ⊗ { 0 1 2 2 2
1 }) = Hi(Sn−2 [ 0 0 0 2 0

0 ]
∗
⊗ { 0 1 2 2 2

1 }) for all i, n ∈ Z.

But the latter vanishes for all i, n ∈ Z by Theorem 3.1, and we are done.
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4.9 The orbit A2

Step 1: We are going to use that the closure of A2 + 2A1 is normal to prove that
A2 has normal closure. The weighted Dynkin diagram of A2 is ∆ = { 0 0 0 0 0

2 } and
V (λ∆) = [ 0 0 0 0 0

2 ], and by Lemma 2.8 we have

A2 = G. [ 0 0 0 0 0
2 ] .

The weighted Dynkin diagram of A2 + 2A1 is ∆′ = { 0 1 0 1 0
0 }. Similarly we have

V (λ∆′) = [ 0 0 0 0 0
2 ] and

A2 + 2A1 = [ 0 1 0 1 0
0 ] .

Let

U = [ 0 0 0 0 0
2 ] ∩ [ 0 1 0 1 0

0 ] . (4.9.1)

We will show that A2 = G.U . We study the short exact sequence of B-modules
(V is the cokernel)

0 → U → [ 0 0 0 0 0
2 ] → V → 0.

The dimension of V ∗ is 6, and its T -weights are

{ 0 0 0 0 0
1 } , { 0 0 1 0 0

1 } , { 0 1 1 0 0
1 } , { 0 0 1 1 0

1 } , { 1 1 1 0 0
1 } , { 0 0 1 1 1

1 } .

We take the Koszul resolution of the dual sequence, and observe that

Hi(Sn−j [ 0 0 0 0 0
2 ]

∗
⊗ ∧jV ∗) = 0 for all i, n ∈ Z, j = 1, 2, . . . , 6 = dim(V ∗)

by Theorem 3.1 used several times, again we have used the computer program in
Appendix A, Section A.3 for the calculations. Therefore we get

Hi(Sn [ 0 0 0 0 0
2 ]

∗
) = Hi(SnU∗) for all i, n ∈ Z, (4.9.2)

and A2 = G. [ 0 0 0 0 0
2 ] = G.U by Lemma 2.1.

Step 2: Look at the short exact sequence (W is the cokernel)

0 → U → [ 0 1 0 1 0
0 ] →W → 0 (4.9.3)

Then W ∗ is four dimensional with weights

{ 0 1 1 1 0
0 } , { 1 1 1 1 0

0 } , { 0 1 1 1 1
0 } , { 1 1 1 1 1

0 } .

We take the Koszul resolution of the dual sequence and observe that

Hi(Sn−j [ 0 1 0 1 0
0 ]

∗
⊗ ∧jW ∗) = 0 for all i, n ∈ Z, j = 1, 2 (4.9.4)

by using Theorem 3.1 repeatedly. We also observe that

Hi(Sn−3 [ 0 1 0 1 0
0 ]

∗
⊗ λ) = 0 for all i, n ∈ Z
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for all weights λ in ∧3W ∗ except for λ = { 2 3 3 3 2
0 }. Filtering ∧3W ∗ by one

dimensional B-modules we therefore have

Hi(Sn−3 [ 0 1 0 1 0
0 ]

∗
⊗ ∧3W ∗) = Hi(Sn−3 [ 0 1 0 1 0

0 ]
∗
⊗ { 2 3 3 3 2

0 }) (4.9.5)

for all i, n ∈ Z. The last part of the Koszul resolution is here

· · · → Sn−1 [ 0 1 0 1 0
0 ]

∗
⊗W ∗ → Sn [ 0 1 0 1 0

0 ]
∗ πn→ SnU∗ → 0

Let Kn = Ker πn. Splitting the Koszul resolution into short exact sequences,
taking long exact sequences in cohomology and using (4.9.4) and (4.9.5), we get
the long exact sequence

. . .→ Hi+2(Sn−4 [ 0 1 0 1 0
0 ]

∗
⊗ ∧4W ∗) → Hi+2(Sn−3 [ 0 1 0 1 0

0 ]
∗
⊗ { 2 3 3 3 2

0 })

→ Hi(Kn) → Hi+3(Sn−4 [ 0 1 0 1 0
0 ]

∗
⊗ ∧4W ∗) → . . .

Thus, if we can show

Hi+3(Sn−4 [ 0 1 0 1 0
0 ]

∗
⊗ ∧4W ∗) = 0 for all i > 0, n ∈ Z

Hi+2(Sn−3 [ 0 1 0 1 0
0 ]

∗
⊗ { 2 3 3 3 2

0 }) = 0 for all i > 0, n ∈ Z

we get Hi(Kn) = 0 for all i > 0 and all n ∈ Z. Then we have the short exact
sequence

0 → H0(Kn) → H0(Sn [ 0 1 0 1 0
0 ]

∗
) → H0(SnU∗) → 0

Now remeber that ∆′ = { 0 1 0 1 0
0 } is the weighted Dynkin diagram of the orbit

A2 + 2A1. Hence the morphism

G×P (λ∆′) [ 0 1 0 1 0
0 ] → G. [ 0 1 0 1 0

0 ] = A2 + 2A1

is birational by Corollary 2.9. Since A2 + 2A1 is normal, all the conditions of
Lemma 2.2 are satisfied, and A2 = G.U is normal.

We know that ∧4W ∗ = { 2 4 4 4 2
0 }. Using Theorem 3.1 we get

Hi+3(Sn−4 [ 0 1 0 1 0
0 ]

∗
⊗ { 2 4 4 4 2

0 })

= Hi+2(Sn−4 [ 0 1 0 1 0
0 ]

∗
⊗ { 2 4 4 4 2

3 })

= Hi+1(Sn−4 [ 0 1 0 1 0
0 ]

∗
⊗ { 2 4 6 4 2

3 }) for all i, n ∈ Z.

The latter vanishes for all i > 0 and all n ∈ Z by Example 3.15.
Theorem 3.1 also gives

Hi+2(Sn−3 [ 0 1 0 1 0
0 ]

∗
⊗ { 2 3 3 3 2

0 })

= Hi+1(Sn−3 [ 0 1 0 1 0
0 ]

∗
⊗ { 2 3 3 3 2

2 }) for all i, n ∈ Z.

Again the latter vanishes for all i > 0 and all n ∈ Z by Example 3.15. The last two
vanishing results given by Example 3.15 are difficult to obtain for Eric Sommers,
so Example 3.15 sometimes gives strong vanishing results.
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4.10 The orbit 3A1

We have just shown that the closure of A2 is normal. We can use this result to
prove that also 3A1 has normal closure.

Step 1: The weighted Dynkin diagram of A2 is ∆ = { 0 0 0 0 0
2 } and since V (λ∆) =

[ 0 0 0 0 0
2 ] we have by Lemma 2.8 that

A2 = G. [ 0 0 0 0 0
2 ] .

Now we let P = P (λ∆), i.e. P is the standard parabolic subgroup containing B cor-
responding to the subset I = {α1, α2, α3, α4, α5} of simple roots. By Corollary 2.9
the morphism

p̄ : G×P [ 0 0 0 0 0
2 ] → G. [ 0 0 0 0 0

2 ]

is birational. Now we know that A2 = G. [ 0 0 0 0 0
2 ] is normal, and p̄ is birational.

Therefore, if we can find a closed B-stable subspace W ⊆ [ 0 0 0 0 0
2 ] such that

G.W = 3A1 and such that the inclusion W ⊆ [ 0 0 0 0 0
2 ] induces a surjection

H0(G/B, Sn [ 0 0 0 0 0
2 ]

∗
) → H0(G/B, SnW ∗) → 0 (4.10.1)

for all n ∈ N, then 3A1 has normal closure by Lemma 2.2.

Step 2: In this step we find the desired W and show that G.W = 3A1. Since the
weighted Dynkin diagram of 3A1 is { 0 0 1 0 0

0 } we have by Lemma 2.8 that

3A1 = G. [ 0 0 1 0 0
0 ] .

Let W1 be the B-submodule of [ 0 0 1 0 0
0 ] obtained by omitting the root space gα

where

α =
{

0 −1 −2 −1 0
−1

}
,

and let W be the Pα2,α3,α4 -module obtained from W1 by adding the root space gβ
where

β =
{

−1 −1 −1 −1 −1
−1

}
.

We will show that G. [ 0 0 1 0 0
0 ] = G.W . Consider the short exact sequence (W2 is

the cokernel)

0 →W1 → [ 0 0 1 0 0
0 ] →W2 → 0

Then W2 is one dimensional with T -weight
{

0 −1 −2 −1 0
−1

}
.

Looking at the Koszul resolution of the dual sequence and observing that by
Theorem 3.1 we have

Hi(G/B, Sn−1 [ 0 0 1 0 0
0 ]

∗
⊗ { 0 1 2 1 0

1 }) = 0 for all i, n ∈ Z,
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we get that

Hi(G/B, Sn [ 0 0 1 0 0
0 ]

∗
) = Hi(G/B, SnW ∗

1 ) for all i, n ∈ Z.

From Lemma 2.1 we see that 3A1 = G. [ 0 0 1 0 0
0 ] = G.W1.

Similarly the short exact sequence defined by the inclusion W1 ⊆W gives rise
to a Koszul resolution of its dual. And again since W is a Pα2,α3,α4-module we get
by Theorem 3.1 that

Hi(G/B, Sn−1W ∗ ⊗ { 1 1 1 1 1
1 }) = 0 for all i, n ∈ Z.

Hence

Hi(G/B, SnW ∗) = Hi(G/B, SnW ∗
1 ) for all i, n ∈ N,

and again Lemma 2.1 tells us that G.W = G.W1 = 3A1.

Step 3: In this step we will begin proving that W ⊆ [ 0 0 0 0 0
2 ] induces a

surjection

H0(G/B, Sn [ 0 0 0 0 0
2 ]

∗
) → H0(G/B, SnW ∗) → 0

for all n ∈ Z as in (4.10.1). First let

U = [ 0 0 0 0 0
2 ] ∩ [ 0 1 0 1 0

0 ]

as in (4.9.1). In Section 4.9, cf. (4.9.2), we proved that the inclusion U ⊆ [ 0 0 0 0 0
2 ]

induced an isomorphism

Hi(G/B, Sn [ 0 0 0 2 0
0 ]

∗
) = Hi(G/B, SnU∗) for all i, n ∈ Z.

Hence it is enough to prove that the inclusion W ⊆ U induces a surjection

H0(G/B, SnU∗) → H0(G/B, SnW ∗) → 0 (4.10.2)

for all n ∈ Z. Consider the short exact sequence of B-modules (V is the cokernel)

0 →W → U → V → 0. (4.10.3)

Then V ∗ is four dimensional with T -weights

{ 0 1 1 1 0
1 } , { 1 1 1 1 0

1 } , { 0 1 1 1 1
1 } , { 0 1 2 1 0

1 } . (4.10.4)

Take a look at the Koszul resolution of the dual sequence

0 → Sn−4U∗ ⊗ ∧4V ∗ → · · · → Sn−1U∗ ⊗ V ∗ → SnU∗ → SnW ∗ → 0 (4.10.5)

and notice that U is a Pα1,α3,α5 -module. By Theorem 3.1 used several times we
know that

Hi(G/B, Sn−jU∗ ⊗ λ) = 0 for all i, n ∈ Z
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for all weights λ in ∧jV ∗ when j = 1, 3. By filtering V ∗ and ∧3V ∗ by appropriate
B-submodules we therefore get

Hi(G/B, Sn−jU∗ ⊗ ∧jV ∗) = 0 for all i, n ∈ Z

when j = 1, 3.
In the next section we will prove that

Hi(G/B, Sn−2U∗ ⊗ ∧2V ∗) = 0 for all i, n ∈ Z (4.10.6)

using the same method as in Section 4.7.2 and Section 4.7.3. Assume this for a
moment. By splitting the Koszul resolution in (4.10.5) into short exact sequences
and taking long exact sequences in cohomology we obtain the following long exact
sequence using all the above vanishing results

· · · → Hi+3(G/B, Sn−4U∗ ⊗ ∧4V ∗) → Hi(G/B, SnU∗)

→ Hi(G/B, SnW ∗) → Hi+3(G/B, Sn−4U∗ ⊗ ∧4V ∗) → · · ·

Note that ∧4V ∗ is the one dimensional B-module with T -weight { 1 4 5 4 1
4 }. Using

Theorem 3.1 three times we get

Hi+3(G/B, Sn−4U∗ ⊗ ∧4V ∗) = Hi+3(G/B, Sn−4U∗ ⊗ ∧4 { 1 4 5 4 1
4 })

= Hi(G/B, Sn−4U∗ ⊗ ∧4 { 2 4 6 4 2
4 })

for all i, n ∈ Z. But the latter vanishes for j > 0 by Example 3.15, and we get a
short exact sequence

0 → H0(G/B, Sn−4U∗ ⊗ ∧4 { 2 4 6 4 2
4 })

→ H0(G/B, SnU∗) → H0(G/B, SnW ∗) → 0

and (4.10.2) is satisfied.

4.10.1 The third term in the Koszul resolution

In order to know that the closure of 3A1 is normal, it only remains to prove (4.10.6)
which states that

Hi(G/B, Sn−2U∗ ⊗ ∧2V ∗) = 0 for all i, n ∈ Z. (4.10.7)

We will use the same method as in Section 4.7.2 and Section 4.7.3 to prove this
vanishing result.

Let P = Pα1,α3,α5 . The Grothendieck spectral sequence

Ei,j2 = Hi(G/P,Hj(P/B, Sn−2U∗ ⊗ ∧2V ∗))

abuts to

Hi+j(G/B, Sn−2U∗ ⊗ ∧2V ∗).



100 4. Calculations

If we can show that

Hj(P/B, Sn−2U∗ ⊗ ∧2V ∗) = 0 for all j ∈ Z,

then Ei,j2 = 0 for all i, j and the spectral sequence collapses allready at the E2-
term. Hence (4.10.7) is satisfied.

Since U is a P -module, the generalized tensor identity gives us that

Hj(P/B, Sn−2U∗ ⊗ ∧2V ∗) = Sn−2U∗ ⊗Hj(P/B,∧2V ∗),

so it is enough to show that

Hj(P/B,∧2V ∗) = 0 for all j ∈ Z. (4.10.8)

Let L denote the Levi subgroup of P containing T , and let L′ be the commu-
tator subgroup of L. Then L′ is semi-simple and connected with Borel subgroup
B′ = B ∩ L′ and maximal torus T ′ = (T ∩ L′)0. According to Remark I.6.13 in
[Jan87] we know that

Hj(P/B,∧2V ∗)|L′ = Hj(L′/B′, (∧2V ∗)|B′),

so in order to prove (4.10.8), it is enough to prove

Hj(L′/B′, (∧2V ∗)|B′) = 0 for all j ∈ Z. (4.10.9)

Since P = Pα1,α3,α5 , we know that the root system of L′ is of type A1 ×A1 ×A1.
But G is simply connected, and hence also L′ is simply connected by Exercise 6
in Section 8.4.6 in [Spr98]. Therefore L′ is isomorphic to SL2 × SL2 × SL2 by the
isomorphism theorem of algebraic groups, see e.g. Theorem 9.6.2 in [Spr98].

Let B2 denote a Borel subgroup in SL2, and let T2 ⊆ B2 be a maximal torus in
SL2. Now we identify L′ with SL2 × SL2 × SL2 in such a way that B′ is identified
with B2×B2×B2, and T ′ is identified with T2×T2×T2. Moreover we may assume
that the fundamental weight ̟1 is identified with the fundamental weight of the
first SL2-factor, the fundamental weight ̟3 is identified with the fundamental
weight of the second SL2-factor, and ̟5 is identified with the fundamental weight
of the third SL2-factor.

Let V std
SL2

denote the standard SL2-module, and let V ′ be the SL2 × SL2 × SL2-

module V std
SL2

⊗ V std
SL2

⊗ V std
SL2

where the first SL2-factor acts on the first V std
SL2

-factor
etc. We will prove that V ∗|B′ is the B′-submodule of V ′ given by the T ′-weights

−̟1 −̟3 −̟5, −̟1 −̟3 +̟5, −̟1 +̟3 −̟5, ̟1 −̟3 −̟5.
(4.10.10)

When we have proved this result, equation (4.10.9) follows from Lemma 4.10 which
we will state and prove later.

Now define Z to be the direct sum of the root spaces gα ⊆ W which satisfies
α =

∑6
i=1 niαi and ni ≥ −1 for i = 2, 4, 6, i.e. where α equals one of the following

roots (written in the basis of simple roots)
{

0 −1 −1 −1 0
−1

}
,

{
−1 −1 −1 −1 0

−1

}
,

{
0 −1 −1 −1 −1

−1

}
,

{
0 −1 −2 −1 0

−1

}
,

{
−1 −1 −1 −1 −1

−1

}
,

{
−1 −1 −2 −1 0

−1

}
,

{
0 −1 −2 −1 −1

−1

}
,

{
−1 −1 −2 −1 −1

−1

}
.

(4.10.11)
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Note that Z is L′-stable and in particular B′-stable.
Remember the short exact sequence of B-modules, cf. (4.10.3),

0 →W → U → V → 0

Considering this as a sequence of B′-modules, we have the following commutative
diagram of B′-modules (Ṽ is the cokernel)

0 Z ∩W⊆ Z⊆ Ṽ 0

0 W U V 0

Since the two rows are exact, we have an induced injective map Ṽ → V of B′-
modules. But since the dimension of V equals the dimension of Ṽ (they are both
four), the B′-mdoules Ṽ and V are isomorphic. Hence

V ∗|B′ ≃ Ṽ ∗ ⊆ Z∗.

Now we will show that Z∗ is actually isomorphic to V ′ = V std
SL2

⊗ V std
SL2

⊗ V std
SL2

and that Ṽ ∗ is the B′-submodule of Z∗ given by the T ′-weights in (4.10.10). The
T -weights of Z are given in (4.10.11), and therefore the T ′-weights of Z∗ are the
four weights in (4.10.10) together with the four T ′-weights

−̟1 +̟3 +̟5, ̟1 −̟3 +̟5, ̟1 +̟3 −̟5, ̟1 +̟3 +̟5.

Let k̟1+̟3+̟5 denote the one dimensional B′-module with T ′-weight ̟1 +̟3 +
̟5. Then the projection map

Z∗ → k̟1+̟3+̟5

is a map of B′-modules. By Frobenius reciprocity we have

HomB′(Z∗, k̟1+̟3+̟5) ≃ HomL′(Z∗, H0(L′/B′, k̟1+̟3+̟5))

and hence we get a nonzero map of L′-modules

φ : Z∗ → H0(L′/B′, k̟1+̟3+̟5).

Just as in Section 4.7.2, page 81, we get that

H0(L′/B′, k̟1+̟3+̟5)

is irreducible and isomorphic to V ′ = V std
SL2

⊗ V std
SL2

⊗ V std
SL2

. Hence Z∗ ≃ V ′. Since

the T -weights of V ∗ are the weights listed in (4.10.4), and since V ∗|B′ ≃ Ṽ ∗,
the T ′-weights of Ṽ ∗ are the ones listed in (4.10.10). Hence V ∗|B′ is the desired
B′-submodule of Z∗ ≃ V ′.

Now

Hj(L′/B′, (∧2V ∗)|B′) = Hj(SL2 × SL2 × SL2/B2 ×B2 ×B2,∧
2Ṽ ∗),

and by the following lemma the latter vanishes for all j ∈ Z, and (4.10.9) is
satisfied. Then also (4.10.7) is satisfied, and we can conclude that it only remains
to prove Lemma 4.10 in order to prove the normality of the closure of 3A1.



102 4. Calculations

Lemma 4.10. Let G = SL2 × SL2 × SL2, let B = B2 × B2 × B2 be a Borel
subgroup in G, and let T = T2 × T2 × T2 be a maximal torus contained in B. Let
̟i, i = 1, 3, 5 be the fundamental weights as described on page 100.

Let U be the G-module V std
SL2

⊗ V std
SL2

⊗V std
SL2

, and let U ′ be the B-submodule of
U given by the T -weights

−̟1 −̟3 −̟5, −̟1 −̟3 +̟5, −̟1 +̟3 −̟5, ̟1 −̟3 −̟5.

Then

Hj(G/B,∧2U ′) = 0 for all j ∈ Z.

Proof. The idea of the proof is to filter ∧2U ′ withB-submodules and then calculate
the cohomology groups of the corresponding quotients.

Let

λ1 = −̟1 −̟3 −̟5 λ2 = −̟1 −̟3 +̟5

λ3 = −̟1 +̟3 −̟5 λ4 = ̟1 −̟3 −̟5.

For s = 1, 2, 3, 4 let vs ∈ U ′ be a nonzero weight vector of weight λs. Then

{vs ∧ vt ∈ ∧2U ′|1 ≤ s < t ≤ 4}

is a basis for ∧2U ′. Define the filtration

0 = V0 ⊆ V1 ⊆ · · · ⊆ V4 = ∧2U ′

of B-submodules by

V1 = k(v1 ∧ v2)

V2 = V1 ⊕ k(v1 ∧ v3) ⊕ k(v2 ∧ v3)

V3 = V2 ⊕ k(v1 ∧ v4) ⊕ k(v2 ∧ v4).

Define the quotients Ql = Vl/Vl−1 for l = 1, 2, 3, 4. Then Q2 is two dimensional
with weights λ1 + λ3 = −2̟1 − 2̟3 and λ2 + λ3 = −2̟1. Since λ2 + λ3 =
(α3) + (λ1 + λ3), and

〈−2̟1 − 2̟3, α
∨
3 〉 = −2,

Lemme 1 in [Dem77] gives that

Hj(G/B,Q2) = 0 for all j ∈ Z. (4.10.12)

Similarly

Hj(G/B,Q3) = 0 for all j ∈ Z. (4.10.13)

Now consider Q1 and Q4. They are both of dimension one with weights λ1 +
λ2 = −2̟1 − 2̟3 and λ3 + λ4 = −2̟5 respectively, i.e.

Q1 = k−2̟1−2̟3 , and Q4 = k−2̟5 .
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Now

Hj(G/B,Q1) = Hj(G/B, k−2̟1−2̟3)

= Hj(SL2/B2 × SL2/B2 × SL2/B2, k−2̟1 ⊗ k−̟3 ⊗ k0).

(4.10.14)

To calculate this cohomology group we will use the Künneth formula, so we need
to compute

Hj(SL2/B2, k−2̟1) = Hj(SL2/B2, k−2̟3) and Hj(SL2/B2, k0).

By Kempf’s vanishing theorem, see e.g. Proposition I.4.5 in [Jan87], we have

Hj(SL2/B2, k0) = 0 for all j > 0

since 0 ∈ X∗(T2) is a dominant weight. But k0 is the one dimensional B2-
module with weight 0, so it is just the trivial one dimensional B2-module. Hence
H0(SL2/B2, k0) is the one dimensional trivial SL2-module which we will denote
k. Hence

Hj(SL2/B2, k0) =

{
k for j = 0

0 for j 6= 0

To compute Hj(SL2/B2, k−2̟) we will use the Borel-Bott-Weil theorem, see
e.g. Corollary II.5.5 in [Jan87]. Now remember the “dot” action defined in (1.1).
Since sα1 ·(−2̟1) = 0, and since 0 ∈ X∗(T2) is dominant with 0 ∈ CZ,2 (remember
the definition of CZ,2 on page 82), we have

Hj(SL2/B2, k−2̟1) =

{
H0(SL2/B2, k0) = k for j = 1

0 for j 6= 1

Now we can us the Künneth formula on the cohomology group in (4.10.14)
using the above cohomology results. We get

Hj(G/B,Q1) =

{
k for j = 2

0 for j 6= 2
(4.10.15)

where k is the trivial one dimensional G-module obtained as the tensor product
of three trivial one dimensional SL2-modules. Similarly we see that

Hj(G/B,Q4) =

{
k for j = 1

0 for j 6= 2
(4.10.16)

Now look at the short exact sequences

0 → Vl−1 → Vl → Ql → 0
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Taking long exact sequences in cohomology and using the results in (4.10.12),
(4.10.13), (4.10.15) and (4.10.16) we see that

Hj(G/B,∧2U ′) = 0 for j 6= 1, 2,

and that we have an exact sequence

0 → H1(G/B,∧2U ′) → k → k → H2(G/B,∧2U ′) → 0

Now we just have to show that

H1(G/B,∧2U ′) = 0 and H2(G/B,∧2U ′) = 0.

But either

H1(G/B,∧2U ′) = 0 or H1(G/B,∧2U ′) = k.

If H1(G/B,∧2U ′) = 0, then also H2(G/B,∧2U ′) = 0, and hence it is enough to
show that H1(G/B,∧2U ′) 6= k.

Now consider the short exact sequence of B-modules

0 → U ′ → U → U/U ′ → 0

and take the the corresponding Koszul resolution with four terms

0 → ∧2U ′ → U ⊗ U ′ → S2U → S2(U/U ′) → 0

Since U is a G-module, we have by the generalized tensor identity

Hj(G/B,U ⊗ U ′) = U ⊗Hj(G/B,U ′). (4.10.17)

Now U ′ can be filtered by B-submodules such that the quotients in the filtration
are one dimensional with vanishing cohomology by Theorem 3.1, and hence

Hj(G/B,U ′) = 0 for all j ∈ Z.

But then also the cohomology group in (4.10.17) vanishes for all j ∈ Z. Splitting
the Koszul resolution into short exact sequences and taking long exact sequences
in cohomology, we therefore get

H1(G/B,∧2U ′) = Ker (H0(G/B, S2U) → H0(G/B, S2(U/U ′))).

Since U is a G-module, we have H0(G/B, S2U) = S2U , and we see that the G-
module H1(G/B,∧2U ′) is a submodule of S2U . Now it is enough to show that
the trivial one dimensional G-module, k, is not a submodule of S2U . We will do
this by proving that S2U admits a good filtration without k = H0(G/B, k0) as a
quotient.

Remember that U is the standard representation of SL2 tensored with itself
three times. But H0(SL2/B2, k̟i

), i = 1, 3, 5, equals the standard representation
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of SL2 as seen in (4.7.14) in Section 4.7.2. Since ̟i ∈ X∗(T2) is dominant, Kempf’s
vanishing theorem tells us that

Hj(SL2/B2, k̟i
) = 0 for j > 0,

for i = 1, 3, 5, so by the Künneth formula we have

U = H0(SL2 × SL2 × SL2/B2 ×B2 ×B2, k̟1 ⊗ k̟3 ⊗ k̟5)

= H0(G/B, k̟1+̟3+̟5).

But ̟1 +̟3 +̟5 ∈ X∗(T ) is dominant, and therefore U is itself a good filtration
of U . But then U ⊗ U also admits a good filtration, cf. Proposition II.4.19 in
[Jan87]. Now S2U is a quotient of U ⊗ U , and we have a spitting

S2U → U ⊗ U

given by

f ⊗ g 7→ 1
2 (f ⊗ g + g ⊗ f).

Thus S2U is a direct summand of U ⊗ U , and it has a good filtration, cf. Propo-
sition II.4.16 in [Jan87].

Now we will find the quotients in a good filtration of S2U . Let λ1, . . . , λm ∈
X∗(T ) be dominant weights such that the quotients in a good filtration of S2U
are of the form H0(G/B, kλi

). Then

S2U ≃
m⊕

i=1

H0(G/B, kλi
)

as T -representations. We want to find the λi’s.
The dimension of S2U is 36, and we know all the weights of S2U counted with

multiplicities. The weight 2̟1 + 2̟3 + 2̟5 is a highest weight of S2U , and hence
one of the λi’s must be equal to 2̟1 + 2̟3 + 2̟5. By reordering the λi’s we may
assume that λm = 2̟1 + 2̟3 + 2̟5. Now

S2U/H0(G/B, k2̟1+2̟3+2̟5) ≃
m−1⊕

i=1

H0(G/B, kλi
) (4.10.18)

as T -representations.
But H0(G/B, k2̟1+2̟3+2̟5) is 27 dimensional, and we can find its weights

counted with multiplicities for example by Kostant’s multiplicity formula (see e.g.
Theorem 24.2 in [Hum78]). Then we see that the weights of

S2U/H0(G/B, k2̟1+2̟3+2̟5)

becomes

2̟1, 2̟3, 2̟5, 0, 0, 0, −2̟1, −2̟3, −2̟5
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counted with multiplicities, and that 2̟1, 2̟3 and 2̟5 are highest weights. By
(4.10.18) we may assume that λm−1 = 2̟1, λm−2 = 2̟3 and λm−3 = 2̟5. Now
the module in (4.10.18) is of dimension 36 − 27 = 9, and H0(G/B, k2̟j

) is of
dimension 3 for j = 1, 3, 5. Hence m = 4, and the quotients in a good filtration of
S2U are

H0(G/B, k2̟1+2̟3+2̟5), H0(G/B, k2̟1), H0(G/B, k2̟3), H0(G/B, k2̟5).

Since k = H0(G/B, k0) is not one of these modules, it cannot be a subrepresenta-
tion of S2U . Hence Hi(G/B,∧2U ′) = 0 for all i ∈ Z.
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4.11 The orbit 2A1

We will use the normality of 3A1 to show that 2A1 has normal closure. Since the
weighted Dynkin diagram of 2A1 is ∆ = { 1 0 0 0 1

0 }, and since V (λ∆) = [ 1 0 0 0 1
0 ],

we have

2A1 = G. [ 1 0 0 0 1
0 ]

by Lemma 2.8. Similarly the weighted Dynkin diagram of 3A1 is ∆′ = { 0 0 1 0 0
0 },

and we have

3A1 = G. [ 0 0 1 0 0
0 ] .

Define now

U = [ 1 0 0 0 1
0 ] ∩ [ 0 0 1 0 0

0 ] .

We want to show that 2A1 = G.U . We have a short exact sequence (V is the
cokernel)

0 → U → [ 1 0 0 0 1
0 ] → V → 0

where V ∗ is two dimensional with T -weights

{ 1 1 1 1 1
0 } , { 1 1 1 1 1

1 } .

Hence the Koszul resolution of the dual sequence is

0 → Sn−2 [ 1 0 0 0 1
0 ]

∗
⊗ ∧2V ∗ → Sn−1 [ 1 0 0 0 1

0 ]
∗
⊗ V ∗

→ Sn [ 1 0 0 0 1
0 ]

∗
→ SnU∗ → 0

Theorem 3.1 gives that

Hi(G/B, Sn−2 [ 1 0 0 0 1
0 ]

∗
⊗ ∧2V ∗) = 0

Hi(G/B, Sn−1 [ 1 0 0 0 1
0 ]

∗
⊗ V ∗) = 0

for all i ∈ N and all n ∈ Z, so by Lemma 2.1 we have

2A1 = G. [ 1 0 0 0 1
0 ] = G.U

Now we are ready to show that 2A1 = G.U is normal using that 3A1 is normal.
Consider the short exact sequence of B-modules (W is the cokernel)

0 → U → [ 0 0 1 0 0
0 ] →W → 0

Then W ∗ is five dimensional with T -weights

{ 0 1 2 1 0
1 } , { 1 1 2 1 0

1 } , { 0 1 2 1 1
1 } , { 1 2 2 1 0

1 } , { 0 1 2 2 1
1 } .
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Again we take a look at the Koszul resolution for the dual sequence

0 →Sn−5 [ 0 0 1 0 0
0 ]

∗
⊗ ∧5W ∗ →

. . .→ Sn−j [ 0 0 1 0 0
0 ]

∗
⊗ ∧jW ∗ → . . .→ Sn [ 0 0 1 0 0

0 ]
∗
→ SnU∗ → 0

Let Kn denote the kernel of

Sn [ 0 0 1 0 0
0 ]

∗
→ SnU∗ → 0 (4.11.1)

Remeber that ∆′ = [ 0 0 1 0 0
0 ] is the weighted Dynkin diagram of the orbit 3A1.

Then the morphism

G×P (λ∆′) [ 0 0 1 0 0
0 ] → G. [ 0 0 1 0 0

0 ]

is birational by Corollary 2.9. In order to show that 2A1 = G.U is normal, it
follows from Lemma 2.2 that we just have to show that the morphism in (4.11.1)
induces a surjection in cohomology since 3A1 = G. [ 0 0 1 0 0

0 ] is normal.
Filtering ∧jW ∗ by one dimensional B-modules and using Theorem 3.1 several

times we get

Hi(G/B, Sn−j [ 0 0 1 0 0
0 ]

∗
⊗ ∧jW ∗) = 0

for alle i ∈ N and all n ∈ Z when j 6= 3. Hence

Hi(G/B,Kn) = Hi+2(G/B, Sn−3 [ 0 0 1 0 0
0 ]

∗
⊗ ∧3W ∗)

for all i ∈ N and all n ∈ Z, and we just need to show that

Hi+2(G/B, Sn−3 [ 0 0 1 0 0
0 ]

∗
⊗ ∧3W ∗) = 0 for all i > 0, n ∈ Z. (4.11.2)

But now we filter ∧3W ∗ by B-submodules such that the quotients are one di-
mensional with the same weights as the weights of ∧3W ∗. Using Theorem 3.1 we
can show that the quotients have vanishing cohomology except the quotients with
weights of this form

{ 2 4 6 3 0
3 } , { 0 3 6 4 2

3 } , { 1 4 6 4 1
3 } , { 2 4 6 4 1

3 } , { 1 4 6 4 2
3 }

But by Theorem 3.1 we see that

Hi(G/B, Sn−3 [ 0 0 1 0 0
0 ]

∗
⊗ { 2 4 6 4 2

3 })

= Hi+2(G/B, Sn−3 [ 0 0 1 0 0
0 ]

∗
⊗ { 2 4 6 3 0

3 })

= Hi+2(G/B, Sn−3 [ 0 0 1 0 0
0 ]

∗
⊗ { 0 3 6 4 2

3 })

= Hi+2(G/B, Sn−3 [ 0 0 1 0 0
0 ]

∗
⊗ { 1 4 6 4 1

3 })

= Hi+1(G/B, Sn−3 [ 0 0 1 0 0
0 ]

∗
⊗ { 2 4 6 4 1

3 })

= Hi+1(G/B, Sn−3 [ 0 0 1 0 0
0 ]

∗
⊗ { 1 4 6 4 2

3 })

so in order to show (4.11.2), it is enough to show that

Hi(G/B, Sn−3 [ 0 0 1 0 0
0 ]

∗
⊗ { 2 4 6 4 2

3 }) = 0 for all i > 0, n ∈ Z.

But this is satisfied by Example 3.15, and hence we have proved that 2A1 is normal.
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4.12 The orbits A1 and 0

The orbit A1 is the minimal orbit with closure equal to the union of A1 and 0.
Since G is semisimple, simply connected and simple as an algebraic group, the
orbit A1 has normal closure, see e.g. Remark 1 in Section 8.13 in Jantzen’s part
of [JN04].

The orbit 0 is clearly closed and normal since it consists of the single point
0 ∈ g.





Chapter 5

The orbits without normal closure

As in Chapter 4 we let G denote a connected, simply connected, semi-simple linear
algebraic group over k of type E6 where k is an algebraically closed field of good
characteristic for G. In this chapter we will show that the nilpotent G-orbits in
the Lie algebra g with Bala-Carter labels A4, A3 + A1, A3, 2A2 and A2 + A1 do
not have normal closure. We will prove it by using that this is the case over C as
shown by Eric Sommers, cf. Theorem 1 in [Som03].

The idea of the proof is to connect the characteristic zero case with the charac-
teristic p > 0 case by defining everything over Z and making base change. Before
we start discussing the question of normality, we need quite a lot of notation. The
notation with definitions etc. is taken from [Jan87] mainly from Section II.1.

For each algebraically closed field L let GL be a semi-simple, simply connected,
connected linear algebraic group over L of type E6. By the theory of Chevalley
groups 1 there exists a split, connected, reductive algebraic Z-group, GZ, which is
flat over Z, such that for each algebraically closed field L we get GL as the fibered
product

GL = GZ ×Spec(Z) Spec(L).

Furthermore GZ can be chosen with a split maximal torus TZ, i.e.

TZ ≃ Spec(Z[T1, T
−1
1 , . . . , Tr, T

−1
r ]).

Now we can define

TL = TZ ×Spec(Z) Spec(L),

and TL is a maximal torus in GL.
In general let R be an integral domain, and define

GR = GZ ×Spec(Z) Spec(R), TR = TZ ×Spec(Z) Spec(R).

Let X∗(TR) be the character group of TR. Then X∗(TR) is a free abelian group of
rank r, and X∗(TR) identifies with X∗(TZ). Let X∗(TR) be the cocharacter group

1See e.g. Theorem 5.6 in [Ste68] and Borel’s Section A.3.4-A.3.5, A.4 in [MR070].

111
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of TR, then also X∗(TR) can be identified with X∗(TZ). Let

〈·, ·〉 : X∗(TR) ×X∗(TR) → Z

denote the pairing of characters and cocharacters.
Now let gR denote the Lie algebra of GR and remember that GR acts on gR

by the adjoint action. Now

gR = gZ ⊗Z R

and we have a direct decomposition into root spaces

gR = tR ⊕
⊕

α∈Φ

(gR)α (5.1)

where tR denotes the Lie algebra of TR, and Φ are the roots of GR with respect
to TR. Since the roots of GR with respect to TR can be identified with the roots
of GZ with respect to TZ, the set of roots Φ in (5.1) does not depend on R. For all
roots α ∈ Φ we have

(gR)α = (gZ)α ⊗Z R.

Let xα ∈ (gZ)α \ {0}, and define

xα,R = xα ⊗ 1 ∈ (gZ)α ⊗Z R = (gR)α.

Let Φ− be a negative system of roots in Φ.
Let Uα,R be the root subgroup of GR corresponding to α ∈ Φ. Also notice that

Uα,R = Uα,Z ×Spec(Z) Spec(R).

Let UR be the closed subgroup of GR generated by all Uα,R with α ∈ Φ−. Now
we can define a Borel subgroup BR as the semidirect product of TR and UR. We
identify BR with the image of this product in GR and write BR = TRUR.

If MR is a TR-module, then there is a direct decomposition into weight spaces

MR =
⊕

λ∈X∗(TR)

(MR)λ

If furthermore MR is a TRUα,R-module, then we have

Uα,R.(MR)λ ⊆
⊕

n≥0

(MR)λ+nα. (5.2)

Now we turn to the more specific setting. Let L be one of the Bala-Carter labels
A4, A3 + A1, A3, 2A2 or A2 + A1, and let ∆L be the weighted Dynkin diagram
corresponding to this Bala-Carter label. Let λ∆L

∈ X∗(TZ) = X∗(TR) denote the
cocharacter defined in Section 2.2.3.

Now define

uR =
⊕

α∈Φ−

(gR)α and V (λ∆L
)R =

⊕

α∈Φ−

〈α,λ∆
L
〉≤−2

(gR)α,
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and note that the sets

{xα,R|α ∈ Φ−} and {xα,R|α ∈ Φ−, 〈α, λ∆L
〉 ≤ −2} (5.3)

are bases of uR and V (λ∆L
)R respectively. Also note that

uR = uZ ⊗Z R, V (λ∆L
)R = V (λ∆L

)Z ⊗Z R.

Since gR is a GR-module under the adjoint action, it is also a BR-module, and by
(5.2) we see that uR and V (λ∆L

)R are BR-submodules of gR.
Now look at the inclusion of BR-modules V (λ∆L

)R ⊆ uR and at the induced
surjection Sn(uR)∗ → Sn(V (λ∆L

)R)∗ of BR-modules. Let KR,n denote the kernel
of this surjection. Then we have a short exact sequence of BR-modules

0 → KR,n → Sn(uR)∗ → Sn(V (λ∆L
)R)∗ → 0

Using the bases of uR and V (λ∆L
)R in (5.3) we see that the above short exact

sequence arises from the one over Z by tensoring with R, and that KR,n is a finitely
generated free R-module. The short exact sequence above gives rise to a long exact
sequence in cohomology

0 → H0(GR/BR,KR,n) → H0(GR/BR, S
n(uR)∗)

→ H0(GR/BR, S
n(V (λ∆L

)R)∗) → H1(GR/BR,KR,n) → · · ·

Notice that since k is the ground field of G, we have G = Gk and g = gk.
Let OL

k denote the nilpotent Gk-orbit in gk with Bala-Carter label L, and let OL
C

denote the nilpotent GC-orbit in gC with Bala-Carter label L. We know that OL
C

does not have normal closure, and we want to show that also OL
k does not have

normal closure. Note that GC.uC is the closure of the regular orbit E6 (GC.uC is
the full nilpotent variety), and hence it is normal. By Corollary 2.9 the morphism

GC ×BC uC → GC.uC

is birational. Since OL
C

does not have normal closure, Lemma 2.2 therefore gives
that there exists a number n ∈ N such that

H0(GC/BC, S
n(uC)∗) → H0(GC/BC, S

n(V (λ∆L
)C)∗)

is not surjective, and hence

H1(GC/BC,KC,n) 6= 0.

But by Proposition I.4.13 in [Jan87] we have (since C is a flat Z-module)

H1(GZ/BZ,KZ,n) ⊗Z C = H1(GC/BC,KC,n). (5.4)

NowGZ/BZ is projective by Section II.1.8 in [Jan87], and sinceKZ,n is a finitely ge-
nerated Z-module, the module H1(GZ/BZ,KZ,n) is a finitely generated Z-module
by Proposition I.5.12 in [Jan87]. But then (5.4) shows that H1(GZ/BZ,KZ,n) is
not a torsion module over Z.
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Since Z is a Dedekind domain, and KZ,n is a finitely generated free Z-module
(and hence a flat Z-module), Proposition I.4.18 in [Jan87] gives an injective map

H1(GZ/BZ,KZ,n) ⊗Z k →֒ H1(Gk/Bk,Kk,n)

and since H1(GZ/BZ,KZ,n) is not a torsion Z-module, we know that

H1(GZ/BZ,KZ,n) ⊗Z k 6= 0,

and hence H1(Gk/Bk,Kk,n) 6= 0. But since H1(Gk/Bk, S
n(uk)

∗) = 0 by Theo-
rem 2 in [KLT99] the morphism

H0(Gk/Bk, S
n(uk)

∗) → H0(Gk/Bk, S
n(V (λ∆L

)k)
∗) (5.5)

is not surjective. Let P (λ∆L
)k be the parabolic subgroup in Gk defined in Sec-

tion 2.2.3. Then the morphism

Gk ×
P (λ∆

L
)k V (λ∆L

)k → Gk.V (λ∆L
)k

is birational by Corollary 2.9, and since the map in (5.5) is not surjective, we get

by Lemma 2.3 that OL
k = Gk.V (λ∆L

)k is not normal.
This finishes the proof of Theorem 1.



Appendix A

Computer programs

This appendix contains the Java code for the computer programs mentioned in
the thesis. Note that the programs only work for groups of type E6. The two basic
classes are

• Vaegt.java

• Wedge.java

The main programs are

• MindsteAfunktionTensorListe.java

• PTensorListe.java

A.1 MindsteAfunktionTensorListe.java – the program
from Remark 3.16

This section contains the Java code for the main program mentioned in Exam-
ple 3.15 and Remark 3.16. The idea behind the program is explained in Exam-
ple 3.15, so we will only mention the setup.

Let V ⊆ u be a B-subrepresentation. Let λ ∈ X∗(T ), and let i0 ∈ N. Using
Theorem 3.11 we want to show that

Hi(G/B, SnV ∗ ⊗ λ) = 0 for all i > i0, n ∈ Z. (A.1)

Let λ1, . . . , λl be the T -weights of u which are not weights of V .

Input: The λi’s, then λ and at last i0.

Output: If the program prints

Vi kan desvaerre ikke sige noget, oev!

we know that we cannot make the conclusion in (A.1) by the method de-
scribed in Example 3.15.

If the program prints

115
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H^i(S^n[bla] tensor lambda) = 0 for i > i_0

then (A.1) is satisfied.

1 import java.io.*;

2 import java.util.*;

3

4 class MindsteAfunktionTensorListe {

5

6 /* We use the above notation */

7 public static void main(String[] args) {

8 int antal = args.length2; // The number of weights in V^*

9 int cohgraense = Integer.valueOf(args[args.length1]).intValue();

10 // cohgraense is the number i_0

11 Vaegt tensor = new Vaegt(args[args.length2]); // The weight lambda

12 Vaegt[] vaegte = new Vaegt[antal]; // The weights in V^*

13 for (int i=0;i<antal;++i) {

14 vaegte[i]= new Vaegt(args[i]);

15 }

16 Wedge wedge = new Wedge(tensor, vaegte ,cohgraense);

17 // See Wedge.java for comments

18 boolean cohErNul = wedge.erCohNulMindsteA(0,0);

19 if (cohErNul) { // The cohomology is zero

20 System.out.println("H^i(S^n[bla] tensor " +tensor.n(0) +

tensor.n(1) + tensor.n(2) + tensor.n(3) + tensor.n(4) +

tensor.n(5) + ") = 0 for i >" + cohgraense);

21 } else { // The cohomology is not necessarily zero

22 System.out.println("Vi kan desvaerre ikke sige noget, oev!");

23 }

24 }

25 }

A.2 Wedge.java – the wedge class

1 class Wedge{

2

3 /* This class is only used from MindsteAfunktionTensorListe. Hence

4 * we will use the notation from Section A.1. Moreover let u be

5 * the Lie algebra of the unipotent radical of the Borel. Let

6 * W=u/V */

7

8 Vaegt v; // This v will be a weight in \wedge^j W^* \otimes \lambda.

To

9 // begin with we have v = \lambda.

10 Vaegt[] liste; // The weights of W^*
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11 int cohgraense; // i_0

12 int antalvaegte; // The number of weights in W^*

13

14 // Constructor

15 public Wedge(Vaegt tensorVaegt, Vaegt[] vaegtListe, int cohGraense){

16 cohgraense = cohGraense;

17 v = tensorVaegt;

18 antalvaegte = vaegtListe.length;

19 liste = vaegtListe;

20 }

21

22 /* Let m be the minimal vanishing function from Section

23 3.2. Inductively we check if H^l(G/B, S^{ni} u* \otimes \mu) =

24 0 for l > i+i_0 where \mu is a Tweight in \wedge^i W^* \otimes

25 \lambda. By Theorem 3.11 this is satisfied if m(\mu) =<

26 i+i_0. See example 3.15 for more details. The i below equals

27 the i above. */

28 public boolean erCohNulMindsteA(int i, int j) {

29 boolean tmp1 = true;

30 boolean tmp2 = true;

31 int mindsteA;

32 if (j<antalvaegte) {

33 tmp1 = erCohNulMindsteA(i,j+1);

34 v.plus(liste[j]);

35 tmp2 = erCohNulMindsteA(i+1,j+1);

36 v.minus(liste[j]);

37 return (tmp1 && tmp2);

38 } else {

39 mindsteA = v.mindsteA();

40 if (mindsteA > cohgraense +i) { // m(\mu) > i+i_0

41 v.print();

42 }

43 return (mindsteA < cohgraense + i + 1); // m(\mu) =< i+i_0

44 }

45 }

46

47 }

A.3 PTensorListe.java – the program that checks for
vanishing cohomology using Theorem 3.1

This section contains the Java code for the program which is used for example in
Section 4.7.1.

Let I ⊆ Π be a subset of the simple roots. Let U ⊆ u be a PI -module, and let
V ⊆ U be a B-submodule. The inclusion V ⊆ U induces a short exact sequence
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of B-modules

0 → V → U → U/V → 0

Take the Koszul resolution of the dual short exact sequence, and tensor it with the
one dimensional B-module with weight λ ∈ X∗(T ). Then we obtain the following
exact sequence

0 → · · · → Sn−jU∗ ⊗ ∧jV ∗ ⊗ λ→ · · · → Sn−1U∗ ⊗ V ∗ ⊗ λ

→ SnU∗ ⊗ λ→ Sn(U/V )∗ ⊗ λ→ 0

Using Theorem 3.1 we want to show that

Hi(G/B, Sn−jU∗ ⊗ ∧jV ∗ ⊗ λ) = 0 for all i, n ∈ Z. (A.2)

for some j’s.
In the program we use Theorem 3.1 on cohomology groups of the form

Hi(G/B, Sn−jU∗ ⊗ µ)

where µ is a T -weight of ∧jV ∗⊗λ. We can use Theorem 3.1 again on the resulting
cohomology group if this group is not zero. In the program we have to specify how
many times we will at most repeat this process, we call this number N .

Input: The weights in V ∗; the subset I; the number N ; the weight λ.

Output: Now the program prints something like

Dimension 0

Dimension 1

01410

1

Dimension 2

and so forth. Finally it prints

Vi må kræve at p >= n

If no weights are printed between“Dimension j” and“Dimension j+1”, then
(A.2) holds for this j in characteristic zero and in characteristic p > 0 when
p ≥ n.

On the contrary if a weight is printed, then we cannot conclude that (A.2)
holds for this j.

1 import java.io.*;

2 import java.util.*;

3

4 class PTensorListe {

5
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6 /* We will use the notation above */

7

8 public static void main(String[] args) {

9 int antal = args.length3; // The number of weights in V^*

10 int lgd = Integer.valueOf(args[args.length2]).intValue();

11 Vaegt tensor = new Vaegt(args[args.length1]); // lambda

12 Vaegt[] vores = new Vaegt[antal]; // The weights in V^*

13 for (int i=0;i<antal;++i) {

14 vores[i]= new Vaegt(args[i]);

15 }

16 int antalgodkendte = args[antal].length(); // The number of

17 // simple roots in I

18 int[] godkendte = new int[antalgodkendte]; // The simple roots

19 // in I

20 for (int i=0;i<antalgodkendte;++i) {

21 godkendte[i] =

Integer.valueOf(args[antal].substring(i,i+1)).intValue();

22 }

23 int[] hvilke = new int[antal];

24 int[] hvilketmp = new int[antal];

25 int sidste1 = 0;

26 Vaegt vaegt;

27 Vector liste = new Vector();

28 Vector listetmp = new Vector();

29 int[] svar = new int[2];

30 int pgraense = 0; // The limit we should put on p in

31 // characteristic p

32 System.out.println("Dimension 0"); // We check if

33 // H^i(G/B, S^nU^* \otimes \lambda)=0 for all i

34 svar = tensor.pErCohomologi0(godkendte, lgd, 0);

35 if(svar[0] == 1) { // The cohomology is not 0 by Theorem 3.1

36 // of Demazure

37 tensor.print();

38 } else { // The cohomology is 0 by Theorem 3.1, and we have a

39 // new limit for p in characteristic p.

40 pgraense = Math.max(pgraense, svar[1]);

41 }

42 System.out.println("Dimension 1"); // We check if

43 // H^i(G/B, S^{n1}U^* \otimes V^* \otimes \lambda)=0 for all i

44 for (int i=0;i<antal;++i) {

45 hvilke = new int[antal];

46 hvilke[i]=1;

47 liste.add(hvilke);

48 vores[i].plus(tensor);

49 svar = vores[i].pErCohomologi0(godkendte, lgd, 0);

50 if (svar[0] == 1) { // The cohomology is not 0 by Theorem 3.1

51 vores[i].print();
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52 } else { // The cohomology is 0 by Theorem 3.1, and we have a

53 // new limit for p in characteristic p.

54 pgraense = Math.max(pgraense, svar[1]);

55 }

56 vores[i].minus(tensor);

57 }

58 hvilke = new int[antal];

59 for (int i=1;i<antal;++i) {

60 System.out.println("Dimension "+(i+1)); // We check if

61 // H^l(G/B, S^{n{i+1}}U^* \otimes \wedge^{i+1}V^* \otimes

\lambda)=0 for all l

62 for (int j=0;j<liste.size();++j) {

63 hvilke = (int[]) liste.get(j);

64 for (int m=0;m<antal;++m) {

65 if (hvilke[m] == 1) {

66 sidste1 = m+1;

67 }

68 }

69 for (int m=sidste1;m<antal;++m) {

70 hvilketmp = new int[antal];

71 for (int k=0; k<antal;++k) {

72 hvilketmp[k] = hvilke[k];

73 }

74 hvilketmp[m]=1;

75 listetmp.add(hvilketmp);

76 vaegt = Vaegt.nyvaegt(vores,hvilketmp);

77 vaegt.plus(tensor);

78 svar = vaegt.pErCohomologi0(godkendte, lgd, 0);

79 if (svar[0] == 1) { // The cohomology is not 0 by

80 // Theorem 3.1

81 vaegt.print();

82 } else { // The cohomology is 0 by Theorem 3.1,

83 // and we have a new limit for p in

84 // characteristic p.

85 pgraense = Math.max(pgraense, svar[1]);

86 }

87 vaegt.minus(tensor);

88 }

89 hvilke = new int[antal];

90 }

91 // We do not need liste anymore, only the new listetmp.

92 liste = listetmp;

93 listetmp = new Vector();

94 }

95 System.out.println("Vi må kræve at p >= " + pgraense);

96 }

97 }
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A.4 Vaegt.java – the class of weights

1 import java.io.*;

2 import java.util.*;

3 import java.math.*;

4

5 public class Vaegt

6 {

7 int[] vaegt; // Write a Tweight as a linear combination of simple

8 // roots. Then the integers here are the coefficients

9 // to the simple roots. We will call "vaegt" for "this

10 // weight" in the following.

11

12 // Constructor

13 public Vaegt(String a){

14 vaegt = new int[6];

15 for (int i=0;i<6;i++){

16 vaegt[i] = Integer.valueOf(a.substring(i,i+1)).intValue();

17 }

18 }

19

20 // Constructor

21 public Vaegt(int[] a){

22 vaegt = new int[6];

23 for (int i=0;i<6;i++){

24 vaegt[i] = a[i];

25 }

26 }

27

28 // Makes a copy of the weight

29 public Vaegt kopi(){

30 Vaegt nyvaegt = new Vaegt(vaegt);

31 return nyvaegt;

32 }

33

34 // This method prints the weight

35 public void print() {

36 System.out.println(n(0)+" "+n(1)+" "+n(2)+" "+n(3)+" "+n(4));

37 System.out.println(" "+n(5));

38 }

39

40 // If the weight is written as a linear combination of simple

41 // roots, then this method returns the coefficient to the i’th

42 // simple root

43 public int n(int i) {

44 return vaegt[i];
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45 }

46

47

48 // Adds a weight v to this weight

49 public void plus(Vaegt v) {

50 for (int i=0;i<6;++i) {

51 vaegt[i] = n(i) +v.n(i);

52 }

53 }

54

55

56 // Adds the simple root alpha_i to this weight

57 public void plusAlfa(int i) {

58 vaegt[i] = vaegt[i]+1;

59 }

60

61 // Subtracts the simple root alpha_i from this weight

62 public void minusAlfa(int i) {

63 vaegt[i] = vaegt[i]1;

64 }

65

66

67 // Subtract the weight v from this weight

68 public void minus(Vaegt v) {

69 for (int i=0;i<6;++i) {

70 vaegt[i] = n(i)  v.n(i);

71 }

72 }

73

74

75 /* Input: An array of weights, liste. An array of 0’s and 1’s,

76 hvilke. The lists should be of the same size. */

77 /* Output: The sum over i of the weights liste[i] where i

78 satisfies that hvilke[i]=1. I.e. we sum over some of the

79 weights in the list, liste. */

80 public static Vaegt nyvaegt(Vaegt[] liste, int[] hvilke) {

81 Vaegt ny = new Vaegt("000000");

82 for (int i=0;i<hvilke.length;i++){

83 if (hvilke[i] == 1){

84 ny.plus(liste[i]);

85 }

86 }

87 return ny;

88 }

89

90

91 // Output: True, if this weight is dominant. Else false.
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92 public boolean erDominant() {

93 boolean retur = true;

94 if (firkant(1) < 0) {

95 retur = false;

96 }

97 if (firkant(2) < 0) {

98 retur = false;

99 }

100 if (firkant(3) < 0) {

101 retur = false;

102 }

103 if (firkant(4) < 0) {

104 retur = false;

105 }

106 if (firkant(5) < 0) {

107 retur = false;

108 }

109 if (firkant(6) < 0) {

110 retur = false;

111 }

112 return retur;

113 }

114

115 /* Let alpha_i be the i’th simple root. Then we let alpha_i^v

116 * denote the corresponding coroot */

117

118 /* Returns the pairing of this weight and alpha_i^v, i.e.

119 <this weight, alpha_i^v >, i = 1,2,3,4,5,6 */

120 public int firkant(int i) {

121 if (i==1) {

122 return 2 * n(0)  n(1);

123 }

124 else if (i==2) {

125 return 2 * n(1)  n(0)  n(2);

126 }

127 else if (i==3) {

128 return 2 * n(2)  n(1)  n(3)  n(5);

129 }

130 else if (i==4) {

131 return 2 * n(3)  n(2)  n(4);

132 }

133 else if (i==5) {

134 return 2 * n(4)  n(3);

135 }

136 else {

137 return 2 * n(5)  n(2);

138 }
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139 }

140

141 /* Returns the pairing of this weight and alpha_i^v, i.e.

142 <this weight, alpha_i^v >, i = 0,1,2,3,4,5. */

143 public int firkant0(int i) {

144 if (i==0) {

145 return 2 * n(0)  n(1);

146 }

147 else if (i==1) {

148 return 2 * n(1)  n(0)  n(2);

149 }

150 else if (i==2) {

151 return 2 * n(2)  n(1)  n(3)  n(5);

152 }

153 else if (i==3) {

154 return 2 * n(3)  n(2)  n(4);

155 }

156 else if (i==4) {

157 return 2 * n(4)  n(3);

158 }

159 else {

160 return 2 * n(5)  n(2);

161 }

162 }

163

164

165 /* Let m be the minimal vanishing function from Chapter 3.2. This

166 * method returns the value of m on this weight.*/

167 public int mindsteA() {

168 if (this.erDominant() ) { // If this weight is dominant, m is

169 // zero on this weight.

170 return 0;

171 }

172 int mindsteA = 1; // This will eventually be the value of m

173 // on this weight

174 int mindsteAtmp = 1;

175 int firkant = 0;

176 Vaegt v;

177 for (int i=0;i<6;i++) {

178 firkant = firkant0(i);

179 if ( firkant == 1) { // 1: <this weight, alpha_i^v>=1

180 // See the definition of m.

181 this.plusAlfa(i);

182 mindsteAtmp = this.mindsteA();

183 this.minusAlfa(i);

184 }

185 if ( firkant < 1) { // 2: <this weight, alpha_i^v><1,
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186 // Se the definition of m.

187 v = this.kopi();

188 mindsteAtmp = 1;

189 for (int j=0; j<firkant1; ++j) {

190 v.plusAlfa(i); // Now v = this weight + r*alpha_i

191 // where 0 <= r <= <this weight, alpha_i^v> 1.

192 mindsteAtmp = Math.max(mindsteAtmp,v.mindsteA()+1);

193 }

194 v.plusAlfa(i); // Now v = s_alpha_i(this weight), where

195 // s_alpha_i is the reflection in the

196 // Weyl group corresponding to alpha_i

197 mindsteAtmp = Math.max(mindsteAtmp,v.mindsteA());

198 }

199 if (mindsteA==1) {

200 mindsteA = mindsteAtmp;

201 } else {

202 mindsteA = Math.min(mindsteA,mindsteAtmp); // m is the

203 // minimum over all i with <this weight, alpha_i^v> of

204 // mindsteAtmp in either 1 or 2. See the definition of m.

205 }

206 }

207 return mindsteA;

208 }

209

210 /* In the following, godkendte, is the number such that

211 alpha_{godkendte1} is the simple root use in Theorem 3.1. The method

212 changes this weight to be s_alpha_{godkendt1}(this

213 weight)alpha_{godkendt1}, see Theorem 3.1. The method returns

214 how big p should be in characteristic p in order to use Theorem 3.1

215 with this weight.*/

216 public int pCohVaegt(int godkendt) {

217 int firkant = firkant(godkendt);

218 vaegt[godkendt1] +=  (firkant+1); // this weight =

219 // s_alpha_{godkendt1}(this weight)alpha_{godkendt1},

220 // see Theorem 3.1.

221 if (firkant < 0) {

222 return (firkant1);

223 } else {

224 return (firkant1);

225 }

226 }

227

228 /* We want to see if H^i(G/B, V \otimes (this weight))=0 by using

229 Theorem 3.1 by Demazure. Let P_alpha_i be the minimal standard

230 parabolic subgroup corresponding to alpha_i. Let p the

231 characteristic, if it is not 0. */

232 /* Input: godkendte: An array of numbers j_0, ... , j_k satisfying
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233 that V is a P_alpha_{j_k}module.

234 lgd: The number of times we should apply Theorem 3.1 in a

235 row.

236 n: The number that counts how big p should be in order to

237 use Theorem 3.1. */

238 /* Output: An array with two numbers. The first number is 0 if we

239 can conclude H^i()=0 by Theorem 3.1. Else it is 1. If the

240 first number is 0, the second number, s, tells us that Hi()=0

241 if p>=s */

242 public int[] pErCohomologi0(int[] godkendte, int lgd, int n) {

243 int[] retur = new int[2];

244 for (int i=0;i<godkendte.length;i++) {

245 if (firkant(godkendte[i]) == 1) { // Since

246 // <this weight, alpha_{godkendte[i]}^v>=1, Theorem 3.1.

247 // tells us that H^i()=0.

248 retur[0] = 0;

249 retur[1] = n;

250 return retur;

251 }

252 }

253 Vaegt tmpv;

254 if (lgd > 0) {

255 for (int i=0;i<godkendte.length;i++) {

256 tmpv = kopi();

257 n = Math.max(n,tmpv.pCohVaegt(godkendte[i]));

258 retur = tmpv.pErCohomologi0(godkendte, lgd 1,n);

259 if (retur[0]==0) { // H^i()=0 for all i

260 return retur;

261 }

262 }

263 }

264 retur[0]=1; // H^i() is not necessarily zero

265 retur[1]=n;

266 return retur;

267 }

268

269

270 }
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