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Preface

Spatio-temporal modelling of biological systems is a field of mathematical biology
which has received a great deal of attention in recent years. This PhD thesis is a
contribution to this field with focus on modelling of biological growth patterns.

The thesis consists of a review together with five independent papers and is sub-
mitted to the Faculty of Science, University of Aarhus. The review provides an in-
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main results of the accompanying papers. Finally, it contains a short introduction to
non-stationary spatial survival analysis, which was the topic of my studies during a
stay at School of Mathematics and Statistics, University of Western Australia.
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Summary

Growth is a fundamental property of biological systems, occurring at the level of
populations, individual animals and plants, as well as within organisms. An overview
of spatio-temporal modelling of biological growth can be found in Chaplain et al.
(1999), a monograph from the conference On Growth and Form held in 1998 in honour
of D’Arcy Thompson (1960-1948) and his famous book on the subject, cf. Thompson
(1917). Examples of biological growth phenomena include tumour growth, bacterial
growth, spread of diseases, growth of year rings of a tree, growth of plant populations,
just to name a few. The main aim of the modelling is to capture various spatio-
temporal interactions in an observed growth pattern and try to relate the suggested
model to specific biological entities. Models do of course not tell the truth about the
biological phenomena, but they may provide a deeper understanding of it.

Tumour growth patterns have been intensively studied in recent years. The ma-
jority of the models considered are deterministic. Problems concerning the pattern
formation and progression of the tumour are important, as well as shape. Different
tumour types have specific characteristics and it is of importance to find a realistic
modelling framework to try to understand the underlying dynamics. Models can also
serve as a support for grading the malignancy of the tumour. The roughness of the
tumour boundary can for example serve as in indicator of the malignancy of the tu-
mour. Being able to describe the morphology of the boundary of the tumour, a useful
tool is obtained, to help classifying and determining the malignancy. A part of this
thesis concerns stochastic spatio-temporal models which describe how the boundary
of a star-shaped object expands in time. These models are characterised as supracel-
lular models. Two different approaches are used to describe the morphology of the
boundary. The first approach is based on ideas from shape theory. The boundary of
an expanding object is modelled in discrete time, by representing the object at present
time as a transformation of the object at the immediate past. The main aim of this
approach is to capture the important features of the transformation such as global and
local shape deviations, using few model parameters. The parametric model suggested
is inspired by the p-order model which has been used to model the shape of featureless
objects. The second approach is based on recent advances in Lévy theory which has
recently been used with success in the development of spatio-temporal models for tur-
bulence. The ideas of Lévy based modelling originate from modelling of turbulence.
The models are based on Lévy bases and integration with respect to those. A great
advantage of these models is the possibility to control the spatio-temporal correlation
structure of the expanding object and therefore to characterise the morphology of the
boundary of the expanding object. Accordingly, the models can be a valuable tool for
monitoring the dynamics of growth patterns.
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Summary

The main characteristic of the supracellular models is that only the macroscopic
level of the observed patterns is modelled. It is, however, of importance to construct
models with known relation between the microscopic and the macroscopic level of the
biological growth pattern. A step forward in this direction are the socalled cellular
models, discussed in this thesis. The cellular models are based on spatio-temporal
point processes. Growth of plant populations, earthquake occurrences, and spread of
diseases are among the phenomena that can be modelled using spatio-temporal point
processes. Tumour growth has also been modelled using cellular models.

The thesis contains further studies of shape and point processes, relating to stere-
ological variance estimation and non-stationary spatial survival analysis.

The thesis consists of a review and five independently written papers. One of
the papers has already been published. Three of the papers are submitted or will be
submitted in the nearest future. The co-authors of the papers are my supervisor Eva
B. Vedel Jensen, Ole E. Barndorff-Nielsen, and Jürgen Schmiegel, all from University
of Aarhus, Asger Hobolth, North Carolina State University, and Lars M. Hoffman,
University of Karlsruhe.
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1 Introduction

The first main group of models to be described is the supracellular models. Here, the
entity modelled is the boundary of a full-dimensional star-shaped object expanding in
time. The boundary of a star-shaped object is completely determined by its radius
vector function. Therefore the model can be expressed in terms of the radius vector
function. The supracellular models do not give any information about the interior
of the object. The second group of models, the cellular models, can provide such
information. They are based on spatio-temporal point processes. We focus on models
for inhomogeneous spatial point patterns and their extension to a spatio-temporal
framework. Dynamic random compact sets are also discussed.

The review is organised as follows. In Section 2, supracellular models are presented
using shape theory and Lévy theory. In Section 3, two applications of the supracellu-
lar models are presented, dealing with tumour growth and growth of year rings of a
tree, respectively. Section 3 concludes with an application to model-based stereology.
Section 4 gives a short review on spatio-temporal point processes. Spatio-temporal
extensions of recent models for inhomogeneous spatial point patterns are discussed, as
well as models for dynamic random compact sets. The review concludes with a discus-
sion of non-stationary spatial survival analysis, a topic that can be read independently
of other material in this review.
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2 Supracellular models

Consider a compact object Yt ⊂ R2 which is star-shaped with respect to a specific
point z ∈ R2 for all t ≥ 0. Then the boundary of Yt can be determined by its radius
vector function Rt = {Rt(φ) : φ ∈ [−π, π)} with respect to z, where

Rt(φ) = max{r : z + r(cosφ, sinφ) ∈ Yt}, φ ∈ [−π, π).

In the following we will describe two different approaches to model the object Yt using
the radius vector function Rt. First a dynamic version of the deformable template
model is discussed, cf. Hobolth et al. (2001) and Hobolth et al. (2003). The model is
formulated in discrete time, using Gaussian stochastic processes. The second and more
general model type is the Lévy based growth models introduced in Jónsdóttir et al.
(2006b). The Lévy based growth models describe how the boundary of the object Yt

expands in continuous time. The strength of the Lévy based growth models is that
they allow analytical control of the covariance structure of the radius vector function
in time and space in accordance with experimental results.

The two approaches discussed in this section only describe how the boundary of
the object moves in time and does not give any information about the interior of the
object. The models are, however, expected to be a useful empirical tool for monitoring
growth patterns.

It should be noted that both model types can easily be extended to three dimen-
sions. This issue will not be discussed further here.

2.1 The template approach and the p-order growth
model

Several different representations of the shape of featureless objects have been suggested
in recent years. The deformable template representation has played an important role.
Here, an observed object is represented as a deformation of an underlying template. For
a more detailed description of the method, see Grenander et al. (1991) and Grenander
and Miller (1994). In Hobolth et al. (2001), the authors use non-circular templates
for such models, while circular templates are discussed in Hobolth et al. (2003). They
only consider star-shaped objects.

A star-shaped object Y with radius vector function R is said to be a deformation
of a known template object Y 0 with radius vector function R0, if

R(φ) = R0(φ) + U0(φ), φ ∈ [−π, π), (2.1)

3



Suprace l lu lar model s

where U0 = {U0(φ) : φ ∈ [−π, π)} is a zero mean cyclic stochastic process.
This representation can be used to describe an object with size and shape changing

over time, by letting the object at time t + 1 be represented as a stochastic transfor-
mation of the object at time t, such that

Rt+1(φ) = Rt(φ) + Vt(φ), φ ∈ [−π, π), (2.2)

where Vt = {Vt(φ) : φ ∈ [−π, π)} is a cyclic stochastic process. The focus is on
modelling the transformation, i.e. the increments Vt = Rt+1 −Rt.

The initial object Y0 is assumed to be known with radius vector function r0. The
stochastic process Vt is assumed to be of the form

Vt(φ) = µt + Ut(φ), φ ∈ [−π, π),

where µt ∈ R represents a constant radial addition and Ut is a cyclic stochastic process
with mean zero. In this way one can say that the object Yt+1 is a stochastic deformation
of the expanded object Yt ⊕ b(0, µt) with radius vector function Rt + µt, where b(0, r)
denotes the circular disc in R2 with radius r centred at the origin and ⊕ denotes the
Minkowski sum

A⊕B = {a+ b : a ∈ A, b ∈ B},

cf. Figure 2.1. Note that if the series of increment processes {Vt} is assumed to be
independent, the conditional distribution of Rt+1 given Rt, . . . , R0 depends only on
Rt. The model in (2.2) is thus Markovian in discrete time. The model described in
Cressie and Hulting (1992) possesses a similar Markov property. See also Section 4.3.

Figure 2.1: The object Yt+1 is a stochastic deformation of the object Yt ⊕ b(0, µt)
(dashed). The object Yt is shown grey.

The p-order growth model, introduced in Jónsdóttir and Jensen (2005), is a para-
metric model for the increment processes {Vt}. It is inspired by the p-order model
for a non-dynamic object Y described by (2.1), cf. Hobolth et al. (2003), where the
stochastic fluctuation U0 around the template is a zero-mean cyclic stationary Gaus-
sian process with an attractive covariance structure.

Cyclic stationary Gaussian processes on [−π, π) have an interesting geometric in-
terpretation in connection with shape, as we shall see now.

A stochastic process U0 is a cyclic stationary Gaussian process on [−π, π) with
mean µ and covariance function σ(φ) if and only if there exists λk ≥ 0, k = 0, 1, . . . ,
such that

U0(φ) = A0 +
∞∑

k=1

(Ak cos(kφ) +Bk sin(kφ)), φ ∈ [−π, π),

4



2.1. The template approach and the p - o rder growth model

where A0, Ak, Bk, k = 1, 2, . . . are all independent, A0 ∼ N(µ, λ0), Ak ∼ Bk ∼
N(0, λk), k = 1, 2, . . . . Furthermore, the covariance function of U0 is

σ(φ) =
∞∑

k=0

λk cos(kφ), φ ∈ [−π, π),

and the Fourier coefficients of U0 are given by

A0 =
1
2π

∫ π

−π
U0(φ)dφ,

Ak =
1
π

∫ π

−π
U0(φ) cos(kφ)dφ,

Bk =
1
π

∫ π

−π
U0(φ) sin(kφ)dφ.

The Fourier coefficient A0 determines the average of U0. The lower order Fourier
coefficients determine the global fluctuation of U0, whereas the higher order Fourier
coefficients determine the local fluctuations of U0. These observations are important
in shape theory, as the global and local fluctuations determine the global and local
deformation of Y 0. In Hobolth et al. (2001) and Hobolth et al. (2003), the stochastic
process U0 is modelled by the p-order model which is defined by letting A0 = A1 =
B1 = 0 and

Ak ∼ Bk ∼ N(0, λk), λk = (α+ β(k2p − 22p))−1,

for k = 2, 3, . . . . The parameters α and β determine the local and global shape of Y ,
respectively. The parameter p determines the smoothness of the deformation U0 and
it can be shown that U0 is k − 1 times differentiable where k is the integer satisfying
p ∈ (k − 1

2 , k + 1
2 ]. The coefficients A1 and B1 are set to zero, since large values of

these coefficients will imply asymmetry of Y with respect to Y 0.
The covariance structure of the p-order model is used to model the increment

processes {Vt} = {µt+Ut}. We let {Ut} be a series of independent stochastic processes,
where Ut follows a p-order model with time dependent parameters, t = 0, 1, . . . . Then

Vt(φ) = µt +
∞∑

k=2

(Ak,t cos(kφ) +Bk,t sin(kφ)), φ ∈ [−π, π), (2.3)

where the Fourier coefficients are all independent, Ak,t ∼ Bk,t ∼ N(0, λk,t), for k =
2, 3, . . . , t = 0, 1, . . . , and

λk,t = (αt + βt(k2p − 22p))−1.

The parameters satisfy µt ∈ R, αt, βt > 0 and p > 1
2 . We write Vt ∼ Gp(µt, αt, βt) if Vt

is on the form (2.3) and say that {Vt} follows a p-order growth model. This approach
can be generalised to three dimensions, cf. Jónsdóttir and Jensen (2005).

The overall growth from Yt to Yt+1 is determined by the radial addition parameter
µt. The parameter p determines the smoothness of the deformation of the expanded
object Yt ⊕ b(0, µt) to Yt+1. The parameters αt and βt, which are also called the
shape parameters, determine the global and local deformation of the expanded object,
respectively. Therefore they determine the appearance of the growth at time t.

5



Suprace l lu lar model s

An interesting subclass of the p-order growth model is obtained by letting the shape
parameters be proportional, i.e. αt = γβt. Under this model we can write

Vt = µt + τtXt,

where X = {Xt} is a series of independent and identically distributed stochastic
processes with distribution Gp(0, α, β). Note that γ = α

β , τt =
√

βt

β and Zt(φ) ∼
N(0, τ2

t σ
2), where

σ2 =
∞∑

k=2

(α+ β(k2p − 22p))−1.

The parameters µt and τt can be chosen arbitrarily, resulting in a variety of different
growth patterns for different choices of these parameters. The limiting shape of the
object Yt when t → ∞ may be circular, but there are many other possibilities. In
Figure 2.2 and 2.3 two simulated growth patterns are shown as well as the normalised
objects of the pattern, which represent the shape of the object. In Figure 2.2 we have
µt = µ and τt = 1 for all t and the object becomes more circular as t → ∞, whereas
in Figure 2.3 we have τt =

∑t
i=0 µi and the object becomes more irregular as t→∞.

Figure 2.2: Left: Simulated growth pattern under a second-order growth model with
proportional shape parameters, µt = µ and τt = 1 for all t. Right: The corresponding
normalised profiles, representing the shape of the object.

Other stochastic processes than Gaussian can also be used to model the increment
processes V = {Vt}. The Fourier coefficients of Vt can for example be modelled by
Gamma distributed random variables or Vt could by modelled by a log-Gaussian pro-
cess. It might also be more natural to define the model in terms of the logarithm of
the radius vector function, i.e.

logRt+1(φ) = logRt(φ) + Vt(φ), φ ∈ [−π, π),

where Vt is a cyclic Gaussian stochastic process, resulting in a multiplicative model
for the radius-vector function

Rt+1(φ) = Rt(φ)Ṽt(φ), φ ∈ [−π, π),

where Ṽt(φ) is a log-Gaussian stochastic process.
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2.1. The template approach and the p - o rder growth model

Figure 2.3: Left: Simulated growth pattern under the second-order growth model with
proportional shape parameters, τt =

∑t
i=0 µt. Right: The corresponding normalised

profiles, representing the shape of the object.

The estimation of parameters in the p-order growth model is not difficult, since the
series V = {Vt} is assumed to be independent. Let us assume that the data consists
of the increments

vt

(2πi
nt

)
, i = 0, 1, . . . , nt − 1,

in nt direction, equidistant in angle, t = 0, 1, . . . , T . The increments are measured
from a reference point z which usually will be taken to be the centre of mass of Y0.

Since the stochastic process Vt is stationary under the p-order growth model, the
size parameter µt can be estimated by the average observed increment at time t,

µt =
1
nt

nt−1∑
i=0

vt

(2πi
nt

)
.

The shape parameters {(αt, βt)}T
t=0 can be estimated by maximising the likelihood

function

L({(αt, βt)}T
t=0) =

T∏
t=0

Lt(αt, βt),

where Lt(αt, βt) is the likelihood function based on the Fourier coefficients At,k and
Bt,k of Vt of order k = 2, . . . ,Kt. The likelihood Lt(αt, βt) is of the same type as the
likelihood used for estimation under the p-order model, cf. Hobolth et al. (2001) and
Hobolth et al. (2003), i.e.

Lt(αt, βt) =
Kt∏
k=2

(αt + βt(k2p − 22p)) exp

(
−
a2

t,k + b2t,k
2

(αt + βt(k2p − 22p))

)
,

where at,k and bt,k are the discrete versions of the integrals

At,k =
1
π

∫ π

−π
Vt(φ) cos kφdφ, Bt,k =

1
π

∫ π

−π
Vt(φ) sin kφdφ,

7



Suprace l lu lar model s

k = 2, 3, . . . . Note that the choice of the cut-off value Kt is important. It must not
be too large in order to avoid that the estimates are influenced by digitisation effects.
If Kt is too small, however, information about the growth pattern may be lost. In
practise, we may choose the value of Kt for which our estimates are stable and judge
whether the specific choice of Kt is appropriate from visual inspection of simulated
growth patterns under the estimated model.

2.1.1 Extensions

The series {Vt} of the stochastic deformation processes is assumed to be independent
under the p-order growth model. For many applications this is a severe restriction. In
Section 3.1 below, an example of the growth of year rings of a tree is given. It can be
seen that the increment processes {Vt} are strongly correlated. This is usually assumed
in dendrochronology, cf. Kronborg (1981). If the number of increments observed is
not too small it is possible to model the dependency in the series {Vt}. A model for
the dependency, based on time series, is proposed in Jónsdóttir and Jensen (2005).

The time series extension concerns the subclass of p-order growth models with
proportional parameters

Vt = µt + τtXt.

Instead of assuming that the series X = {Xt} is independent and identically dis-
tributed, we assume that X = {Xt} is a stationary time series of cyclic Gaussian
processes satisfying an ARMA model. Let W = {Wt} be a sequence of indepen-
dent and identically distributed stationary Gaussian processes on [−π, π), such that
Wt ∼ Gp(0, α, β). Then we assume that the series X = {Xt} satisfies the ARMA(r, s)
model

Xt − φ1Xt−1 − · · · − φrXt−r = Wt − ψ1Wt−1 − · · ·ψsWt−s.

The Fourier coefficients of X of a given order k will follow an ordinary ARMA(r, s)
model under this extended p-order growth model, with white noise parameter equal
to (α+ β(k2p − 22p))−1.

A special case of the ARMA(r, s) model is the MA(s) model. Under this model
we have that φ1 = · · · = φr = 0 and the marginal distribution of Vt is of Gp(µt, αt, βt)
distribution, where

αt =
α

τ2
t (1 + ψ2

1 + · · ·ψ2
s)
, βt =

β

τ2
t (1 + ψ2

1 + · · ·ψ2
s)
.

Accordingly, shape parameters are proportional. Note that Vt and Vt′ are independent
here if |t− t′| > s.

2.2 Lévy based models

The Lévy based growth models proposed in Jensen et al. (2006) and Jónsdóttir et al.
(2006b) describe how the boundary of the object Yt expands in continuous time. The
models are based on Lévy theory, in particular Lévy bases and integration with respect
to those. The disadvantage of the p-order growth model, discussed in the last section,
is that the temporal correlation structure of the transformation processes {Vt} is quite
restrictive. The Lévy based growth models, on the contrary, have the advantage that

8



2.2. Lévy ba s ed model s

the temporal correlation structure can be controlled in an elegant way by using the
cumulant function of the radius vector function. In the following we let C(λ ‡ X) =
log E(eiλX) denote the cumulant function of a random variable X.

Let R = S ×R, where S = [−π, π) and let A be the Borel σ-algebra of R. Further,
let L be an independently scattered random measure on R with cumulant function
represented in Lévy-Khintchine form

C(λ ‡ L(A)) = iλa(A)− 1
2
b(A) +

∫
R
(eiλu − 1− iλu1[−1,1](u))U(du,A),

where a is a signed measure on R, b is a positive measure on R and U(du,A) is a Lévy
measure on R for fixed A ∈ A and a measure on A for fixed du. Then L is said to be a
Lévy basis with characteristics (a, b, U). Assume that U(du, dξ) = V (du, ξ)µ(dξ) and
that the measures a and b are absolutely continuous with respect to µ with densities
ã and b̃, respectively. It can be shown that the cumulant function of

f • L =
∫
R
f(ξ)L(dξ),

is given by

C(λ ‡ f • L) =
∫
R
C(λf(ξ) ‡ L′(ξ))µ(dξ). (2.4)

Here, L′(ξ) is a random variable with cumulant function

C(λ ‡ L′(ξ)) = iλã(ξ)− 1
2
λ2b̃(ξ) +

∫
R
(eiλu − 1− iλu1[−1,1](u))V (du, ξ).

Note that if L′(ξ) does not depend on ξ, the densities ã and b̃ are constants.
The most common types of Lévy bases are the Gaussian, Poisson, Gamma and

Inverse Gaussian Lévy bases. In the case where the random variable L′(ξ) does not
depend on ξ, we get that

L(A) ∼ N(νµ(A), σ2µ(A)), if L is Gaussian,
L(A) ∼ Pois(µ(A)), if L is Poisson,
L(A) ∼ Γ(βµ(A), α), if L is Gamma,
L(A) ∼ IG(ηµ(A), γ), if L is Inverse Gaussian,

where ν ∈ R and σ, β, α, η, γ are positive parameters.
Two types of Lévy based models are introduced in Jensen et al. (2006) and Jóns-

dóttir et al. (2006b), the linear Lévy growth model and the exponential Lévy growth
model. The linear Lévy growth model is defined by the equation

Rt(φ) = µt(φ) +
∫

At(φ)
ft(ξ;φ)L(dξ), φ ∈ [−π, π),

where At(φ) ⊂ S × [0, t] and ft(ξ;φ) and µt(φ) are deterministic functions, all defined
cyclically such that the radius vector function is cyclic. In the following all angular
operations will be regarded as cyclic. The set At(φ), called the ambit set associated
with the point (t, φ), describes the dependency of the past. Its form is usually taken
to be

At(φ) = {(θ, s) ∈ R : θ ∈ ∆s(φ), s ≤ t},

9



Suprace l lu lar model s

where ∆s(φ) ⊂ S is a neighbourhood of φ, consisting of those angles at time s in-
fluencing the radius vector function at time t and angle φ. The deterministic weight
function ft(ξ;φ) is assumed to be suitable for the integral to exist. Moreover, the four
ingredients of the model must be chosen such that Rt(φ) > 0 almost surely.

Using equation (2.4), the cumulant function of the radius vector function Rt(φ) can
be obtained for all (φ, t) ∈ R. The cumulant function can then be used to calculate
the mean value and covariances of the radius vector function

E(Rt(φ)) = µt(φ) +
∫

At(φ)
ft(ξ;φ)E(L′(ξ))µ(dξ), (2.5)

Cov(Rt(φ), Rt′(φ′)) =
∫

At(φ)∩At′ (φ
′)
ft(ξ;φ)ft′(ξ;φ′)V(L′(ξ))µ(dξ), (2.6)

(φ, t), (φ′, t′) ∈ R. If the random variable L′(ξ) = L does not depend on ξ and the
weight functions are constants, ft(ξ;φ) ≡ f , the covariance only depends on the µ-
measure of the intersection of the two ambit sets up to a constant, i.e.

Cov(Rt(φ), Rt′(φ′)) ∝ µ(At(φ) ∩At′(φ′)).

The exponential Lévy growth model is defined by the equation

Rt(φ) = exp
(
µt(φ) +

∫
At(φ)

ft(ξ;φ)L(dξ)
)
, φ ∈ [−π, π),

where the four ingredients are as in the linear Lévy growth model above. This definition
ensures that the radius vector function is always positive.

If Rt(φ) follows an exponential Lévy growth model, it is possible to get an explicit
expression for n-point correlations

E(Rt1(φ1) · · ·Rtn(φn)),

using equation (2.4). Usually, 2-point correlators are used to model a specific cor-
relation structure if Rt(φ) follows an exponential Lévy growth model. The 2-point
correlators are defined by

Corr
(
Rt(φ), Rt′(φ′)

)
=

E
(
Rt(φ)Rt′(φ′)

)
E
(
Rt(φ)

)
E
(
Rt′(φ′)

) .
It can be shown that

Corr
(
Rt(φ), Rt′(φ′)

)
= exp

(∫
At(φ)∩At′ (φ

′)
log
(

Corr
(
eft(ξ;φ)L′(ξ), eft′ (ξ;φ

′)L′(ξ)
))
µ(dξ)

)
,

where the integrand can be calculated using the the cumulant function of L′(ξ). As
in the linear case, the correlators become much more simple in the case where the
random variable L′(ξ) = L does not depend on ξ and the weight functions are constant
ft(ξ;φ) = f . Then,

Corr
(
Rt(φ), Rt′(φ′)

)
= exp

(
C̃µ(At(φ) ∩At′(φ′))

)
,

where C̃ = C(−2if ‡L′)−2C(−if ‡L′). Higher order correlations can also be expressed
through different overlaps of ambit sets under these assumptions.

10
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Other formulations of the Lévy growth models can be considered, e.g. models for
the time derivative of Rt(φ) or ln(Rt(φ)). In these cases the induced model for the
radius vector function is again a Lévy growth model. A model for the time derivative
can also be extended by using a more complicated stochastic representation of the
ambit set. If the stochastic time transformation t → Rt(φ) is non-decreasing almost
surely for all φ ∈ S, the stochastic ambit set can be represented by

Ãt(φ) = {(s cos θ, s sin θ) : (θ, u) ∈ At(φ), Ru(θ) = s}.

This random set is a subset of Yt. Ambit sets of this type depend on the radius vector
function itself and therefore the model equation

R′t(φ) =
∫

Ãt(φ)
ft(ξ;φ)Z(dξ), (2.7)

becomes a stochastic differentiable equation. This stochastic differential equation has
a geometric intuitive meaning in some applications and a connection to cellular models,
described in Section 4. In the simple case where Z is a Poisson measure, the model
equation (2.7) can be written on the form

R′t(φ) =
∑

(x,y)∈N∩Ãt(φ)

ft((x, y);φ),

where N is a Poisson point process on R2. The points of N lying within Yt can be
thought of as cells, all contributing to the growth at time t. Under this model, the
cells in Ãt(φ) ⊂ Yt determine the growth rate at time t and angle φ. In relation
to tumour growth, the intensity function of the Poisson point process N could, for
example, determine the concentration of cells.

Various growth dynamics for the stochastic object Yt can be obtained under this
model setup. The four ingredients, the Lévy basis L, the ambit sets At(φ), the weight
functions ft(ξ;φ) and the function µt(φ) determine the growth dynamics. For example,
the local and global fluctuations of the boundary of Yt can be controlled by the size of
the ambit sets. The weight function ft(ξ;φ) may also control the direction of growth
by letting the weight function ft(ξ;φ) depend on the angle φ. In the next section,
some examples of the induced covariance structure for the radius vector function are
given.

Different choices of Lévy bases can result in different appearance of growth. Given
means and variances of the radius vector function, different growth patterns can be
produced without changing the ambit sets and weight functions, simply by changing
the underlying Lévy basis.

As a more concrete example, consider a Gaussian Lévy model given by

Rt(φ) = µt +
∫

At(φ)
ft(ξ;φ)Z(dξ),

where Z(A) ∼ N(0, σ2µ(A)), A ∈ A and an Inverse Gaussian Lévy model given by

R̃t(φ) = µ̃t +
∫

At(φ)
ft(ξ;φ)Z̃(dξ),

11
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where Z̃(A) ∼ IG(ηµ(A), γ), A ∈ A. Furthermore assume that∫
At(φ)

ft(ξ;φ)µ(dξ)

does not depend on φ. If the mean and the variance of Rt(φ) and R̃t(φ) are the same
for all (φ, t) ∈ R, then

µ̃t = µt −
η

γ

∫
At(0)

ft(ξ; 0)µ(dξ),

σ2 =
η

γ3
.

For a fixed value of σ2, different choices of the parameters of the Inverse Gaussian
basis can be chosen and therefore different appearances of the growth pattern can be
obtained. Figure 2.4 shows a density plot for two different Inverse Gaussian variables
IG(η, γ) where the parameters η and γ fulfil η

γ3 = 1. One of the distributions has a
heavy right tail while the other is approximately symmetric.
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Figure 2.4: The density of two Inverse Gaussian variables IG(η, γ), where η and γ fulfil
η
γ3 = 1.

2.2.1 The induced covariance structure

We will now give some examples of the different covariance structures that can be
obtained by choosing special forms of the ambit sets and weight functions. We will
concentrate on the linear Lévy growth model in this section but remind that the results
will hold for the logarithm of the radius vector function if it follows an exponential
Lévy model.

We will now assume that the random object Yt is statistically isotropic in the sense
that

{Rt(φ) : φ ∈ [−π, π)} ∼ {Rt(φ+ φ0) : φ ∈ [−π, π)},

for all φ0 ∈ [−π, π). Under this assumption estimates can be obtained using spatial
averaging, even when we observe only one growth pattern.

Let us consider a linear Lévy growth model where

V(L′(ξ))µ(dξ) = g(s)dsdθ,

12
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the ambit sets have full angular range

At(φ) = [−π, π)× [t− T (t), t]

for all (φ, t) ∈ R and weight functions are on the form

ft(ξ;φ) = at
0(s) +

∞∑
k=1

at
k(s) cos(k(φ− θ)).

Here, ξ = (θ, s). Under these assumptions it can be shown that the spatial covariances
of the radius vector function Rt are given by

Cov(Rt(φ), Rt(φ′)) = 2λt
0 +

∞∑
k=1

λt
k cos(k(φ− φ′)),

where

λt
k = π

∫ t

t−T (t)
(at

k(s))
2g(s)ds, k = 0, 1, . . . ,

and the temporal covariances of R(φ) are given by

Cov(Rt(φ), Rt′(φ)) = 2τ0(t, t′) +
∞∑

k=1

τk(t, t′),

where
τk(t, t′) = π

∫
t∩t′

at
k(s)a

t′
k (s)g(s)ds,

and

t∩ t′ =

{
[max(t− T (t), t′ − T (t′)),min(t, t′)] if max(t− T (t), t′ − T (t′)) ≤ min(t, t′)
∅ otherwise.

Note that the spatial covariance only depends on the distance between the angles φ
and φ′, whereas the temporal covariances do not depend on the angle φ.

If the Fourier coefficients of the weight function are of the form at
k(s) = at

k, then
the correlation function ρt of the stochastic process Rt is completely determined by
the weight function

ρt(φ) =
Cov(Rt(0), Rt(φ))√
V(Rt(0))V(Rt(φ))

=
2(at

0)
2 +

∑∞
k=1(a

t
k)

2 cos(kφ)
2(at

0)2 +
∑∞

k=1(a
t
k)

2
.

Moreover, if at
k = btck, then ρt(φ) does not depend on t and the correlation function

of R(φ) = {Rt(φ) : t ≥ 0} is determined by the temporal extension T (t) of the ambit
set at time t and the function g,

ρ(t, t′) =
Cov(Rt(φ), Rt′(φ))√
V(Rt(φ))V(Rt′(φ))

=

∫
t∩t′ g(s)ds√∫ t

t−T (t) g(s)ds
∫ t′

t′−T (t′) g(s)ds
.

A dynamic version of the p-order model described in Hobolth et al. (2003) can
be obtained under the above assumptions, by letting at

0(s) = at
1(s) = 0 and at

k(s) =

13
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(αt + βt(k2p − 22p))−
1
2 , for all k = 2, 3, . . . . This will induce a specific temporal

covariance structure. A dynamic model of this type was discussed in Section 2.1.
There, the increment process {Vt} was modelled by a dynamic p-order model where it
was assumed that {Vt} was independent.

As mentioned earlier, the shape of the object at any specific time point is important
in many applications. For a Lévy growth model of the type considered above the
Fourier coefficients will also follow a linear Lévy growth model. Moreover, if L is a
Gaussian Lévy basis, we get that

Rt(φ) = At
0 +

∞∑
k=1

(At
k cos(kφ) +Bt

k sin(kφ)), φ ∈ [−π, π), (2.8)

where A0 = {At
0}t≥0, Ak = {At

k}t≥0 and Bk = {Bt
k}t≥0, k = 1, 2, . . . are independent

Gaussian stochastic processes. The process A0 has covariance function 2τ0(t, t′) and
the processes Ak ∼ Bk have covariance functions τk(t, t′), k = 1, 2, . . . . Likelihood
based inference is quite simple in this case. Assume that the stochastic processes A0,
Ak and Bk, k = 1, 2, . . . ,K are observed at n time points, t1, . . . , tn. These n(2K + 1)
variables can by separated into 2K+1 mutually independent classes, where in each class
we have n dependent random variables. By suitable reorganisation of the variables we
can write down the covariance matrix for the collection of Gaussian random variables.
The covariance matrix will be on the form

Σ = diag(2Σ0, I2 ⊗ Σ1, I2 ⊗ Σ2, . . . , I2 ⊗ ΣK),

where Σk = {τk(ti, tj)} is a n × n covariance matrix, I2 is the 2 × 2 identity matrix
and A⊗B denotes the Kronecker product of the matrices A and B.

A different approach to study the covariance structure is to consider constant
weight functions and more complicated ambit sets. In the case where the random vari-
able L′(ξ) does not depend on ξ, it can for example be shown that a special type of an
extended p-order model can be obtained under this set-up, cf. Jónsdóttir et al. (2006b).

Unless the underlying Lévy basis is Gaussian, likelihood based inference does not
seem to be feasible. Usually, inference based on mean and either covariances or two-
point correlators is used, depending on which type of Lévy growth model is being
studied.

14



3 Applications

In this section we will give examples of applications of the models considered in Section
2. We study three different biological growth patterns, cf. Figure 3.1. In Figure 3.1
(a) a growth pattern of human breast cancer cell islands is represented. This data set
was studied originally by Cressie (1991a). Figure 3.1 (b) shows a growth pattern of
year rings of a tree and Figure 3.1 (c) shows a growth pattern of brain tumour cell
islands, cf. Brú et al. (1998).

(a) (b) (c)

Figure 3.1: Growth patterns. (a) Contours of human breast cancer cell islands, cf.
Cressie and Hulting (1992). (b) Year rings from a Danish pine tree. (c) Contours of
brain tumour cell islands, cf. Brú et al. (1998).

We will also give an example of how the p-order model discussed in Section 2.1
can be used for improving statistical methods for analysing data based on circular
systematic sampling in stereology.

3.1 The p-order growth model

The data sets in Figure 3.1 (a) and 3.1 (b) have been studied using the second-order
growth model. The analysis of the human breast cancer cell islands was presented
in Jónsdóttir and Jensen (2005). The parameters of the second-order growth model
µt, αt and βt were estimated and the model fitted the data well, according to the
model control procedures developed in Jónsdóttir and Jensen (2005). Simulation based
methods were used to evaluate the hypothesis of independent increments, i.e. whether
the Vt’s are independent. The results are shown in Figure 3.2 for the tumour growth
data shown in Figure 3.1 (a). The second row shows conditional simulations under
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the second-order growth model with µt, αt and βt replaced by its estimates µ̂t, α̂t and
β̂t. The simulations are conditional in the sense that when simulating Rt+1 we use
the observed rt and then simulate Vt according to the distribution G2(µ̂t, α̂t, β̂t). The
third row shows simulations under the second-order growth model with independent
increments. The data set and the simulations in the second and third row in Figure
3.2 look very similar, indicating that the hypothesis of independent increments is likely
to be accepted. In the case where the number of observed increments is large, a more
sophisticated test of the hypothesis can be constructed, e.g. using a runs test.

Figure 3.3 shows simulations for the year rings data of the same kind as shown in
Figure 3.2 for the tumour growth data. The difference between the simulations under
the second-order growth model with independent increments and the data indicates
that the assumption of independent increments may not hold. If the number of ob-
served increments had been larger, the dependency in the series {Vt} could have been
studied by e.g. using the extensions of the p-order model suggested in Section 2.1.1.

It does not seem feasible to describe the growth pattern in Figure 3.1 (c) by the
p-order growth model since the profiles are very irregular on a local scale. Also,
sudden outburst of the profiles are present which is impossible to model using Gaussian
processes with covariance structures based on a p-order model.

3.2 Lévy based growth models

The data set in Figure 3.1 (c) has been analysed in Schmiegel (2005) and Jónsdóttir
et al. (2006b), using an exponential Lévy based growth model. The model was defined
by

Rt(φ) = exp
(
µt + α(t)

∫ t−t0(t)

t−T (t)

∫ π

−π
cos(θ − φ)L(ds× dθ)

+ β(t)
∫ t

t−t0(t)

∫ φ+ht(s−t+t0(t))

φ−ht(s−t+t0(t))
L(ds× dθ)

)
, (3.1)

where ht : [0, t0(t)] → R is a deterministic and decreasing function with ht(t0(t)) = 0
and L is a Gaussian Lévy basis. Accordingly, the ambit set is on the following form

At(φ) = Ct ∪Bt(φ),

where Ct and Bt(φ) are the following disjoint sets

Ct = [−π, π)× [t− T (t), t− t0(t)),
Bt(φ) = {(θ, s) : |θ − φ| ≤ ht(s− t+ t0(t)), s ∈ [t− t0(t), t]},

and

ft((s, θ);φ) =

{
α(t) cos(θ − φ), if (s, θ) ∈ Ct,

β(t), if (s, θ) ∈ Bt(φ).

Note that Bt(φ) concerns the immediate past while Ct concerns the more distant past.
The concrete analysis was done by using a linear function ht on the form

ht(s) =
φ0(t)

2
− φ0(t)

2t0(t)
s, s ∈ [0, t0(t)],
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Figure 3.2: The human breast cancer cell islands. The data set (top), conditional
simulations under the second-order growth model with µt, αt and βt replaced by the
maximum likelihood estimates (second row) and simulations under the second-order
growth model with independent increments and µt, αt and βt replaced by the maximum
likelihood estimates (third row).

Figure 3.3: The year rings of a tree. The data set (top), conditional simulations under
the second-order growth model with µt, αt and βt replaced by the maximum likeli-
hood estimates (second row) and simulations under the second-order growth model
with independent increments and µt, αt and βt replaced by the maximum likelihood
estimates (third row).
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and the parameters of the model were estimated using mean and covariance estimation
for three time points, t = 21, 25, 55. The data and the simulation under the model
using the estimated parameters are shown in Figure 3.4. Notice that even though the
overall appearance is similar for the data and the simulation, sudden outbursts are
present in the data set which are not seen for the simulated profiles.

Figure 3.4: Top: The data from Brú et al. (1998) at time points t = 21, 25, 51. Bottom:
Simulations of the model (3.1) for time points t = 21, 25, 51, using a Gaussian Lévy
basis.

For this reason we tried in Jónsdóttir et al. (2006b) to use Gamma and Inverse
Gaussian bases instead of the Gaussian, since these distributions are known to have
heavier tails than the Gaussian. The parameters of the underlying basis are chosen
such that the mean and variance of Rt(φ) are the same as when the Gaussian basis
was used. As mentioned in Section 2.2, there are a lot of possibilities. Two simulations
using different Inverse Gaussian bases are shown in Figure 3.5. The first row shows a
simulation very similar to the Gaussian simulation, but more outbursts are observed
in the second row. The difference is due to the fact that the two Inverse Gaussian
bases chosen have very different right tails.

3.3 Circular systematic sampling using the p-order
model

It turns out that shape modelling, using the p-order model, has an important appli-
cation in a quit different area, error prediction in circular systematic sampling, cf.
Hobolth and Jensen (2002) and Jónsdóttir et al. (2006a). Hobolth and Jensen (2002)
also discusses recent design-based approaches, cf. Gual-Arnau and Cruz-Orive (2000)
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Figure 3.5: Simulations of the model (3.1) for time points t = 21, 25, 51, using two
different types of Inverse Gaussian Lévy basis.

and Cruz-Orive and Gual-Arnau (2002), where a global polynomial model for the
covariogram is used for variance estimation.

The model-based setting discussed here concerns the estimation of an integral

Q =
1
2π

∫ π

−π
F (φ)dφ,

where F = {F (φ) : φ ∈ [−π, π)} is a cyclic stationary stochastic process with mean µ
and covariance function

σ(φ) = λ0 + 2
∞∑

k=1

λk cos(kφ).

It is assumed that the process F is square integrable and piecewise continuous. The
integral Q could for example be a geometric property of an object, such as boundary
length or area. The estimator of Q to be studied, based on n observations of F , is of
the form

Q̂(F, φ, n) =
1
n

n−1∑
j=0

F

(
2π
(
φ+

j

n

))
,

where φ ∈ [0, 1) and the aim is to estimate the prediction error

E(Q̂(F, φ, n)−Q)2 = 2
∞∑

k=1

λkn,

using likelihood-based methods, given that F follows a specific parametric model.
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Assume that F is a cyclic stationary Gaussian process. As mentioned in Section
2.1 the coefficients λk determine the global fluctuations of F for small k, whereas for
large k they determine the local fluctuations of F . Hobolth and Jensen (2002) discuss
a parametric model where the Fourier coefficients of σ are given by

λk =
(2p)!
k2p

β, k = 1, 2, . . . , (3.2)

λ0 = β0 − 2
∞∑

k=1

λk,

where p is a positive integer and the remaining parameters are chosen such that λk ≥ 0
for k = 0, 1, . . . . The prediction error under this model will only depend on the
parameter β and as shown in Hobolth and Jensen (2002) the maximum likelihood
estimator of β is unbiased with minimum variance, given the n observations of F . The
prediction error can then be estimated by

(−1)p−1(2π)2pB2p
1
n2p

β̂,

where B2p is a Bernoulli number and β̂ is the maximum likelihood estimator of β.
This parametric model is inspired by the design-based approach of Gual-Arnau and

Cruz-Orive (2000), where the above parametrisation of the covariance function is used
to model the Fourier coefficients of the covariogram of a realisation of F . The model
defined by (3.2) is a special case of the more general model of p-order type, where the
Fourier coefficients of σ are given by

λ0 ≥ 0, λk = (α̃+ β̃k2p)−1, k = 1, 2, . . . , (3.3)

where β̃ > 0, α̃ + β̃ > 0 and p > 1
2 . As mentioned in Section 2.1, p determines the

smoothness of F , whereas the parameters α̃ and β̃ determine the global and local
fluctuations of F , respectively.

If the variable Q determines the area of a star-shaped object Y with radius vector
function R with respect to a point z ∈ R2, we can take F = R2. Note that small values
of α̃ imply large global fluctuations of F , implying that the object Y is expected to
have some deviations from circular shape on a global scale. Also it should be noted
that large values of λ1 will produce an object Y which is asymmetric with respect to
z. The model given by (3.2) can be obtained by letting α̃ = 0 and β̃ = ((2p)!β)−1 and
using the intuitive interpretation of the parameters α̃ and β̃ in the case where F = R2,
it seems natural to include the extra parameter α̃ in the model.

We suggest using a p-order model as described in Section 2.1, with the following
reparametrisation

λ0 ≥ 0, λ1 = 0

λk = (α̃+ β̃(k2p − 22p))−1, k = 2, 3, . . . , (3.4)

where α̃, β̃ > 0. For a fixed p and given n observations of F , µ can be estimated by
the empirical mean of the observations and the parameters α̃ and β̃ can be estimated
using maximum likelihood estimation of the same type as discussed in Section 2.1. See
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also Hobolth et al. (2003). If the estimates are denoted by α̂ and β̂, the prediction
error can be estimated by

2
∞∑

k=1

(α̂+ β̂((kn)2p − 22p))−1. (3.5)

The parameter p can also be estimated using maximum likelihood estimation.
In Jónsdóttir et al. (2006a) a simulation study is presented to assess the statistical

properties of the estimator (3.5) of the prediction error compared to earlier design
based predictions of Gual-Arnau and Cruz-Orive (2000) and Cruz-Orive and Gual-
Arnau (2002). The preliminary conclusions are that (3.5) is superior.
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4 Cellular models

This section contains a discussion of models based on spatio-temporal point processes.
A short review of recent models for inhomogeneous point patterns will be given and it
will be shown how these models can be extended to a spatio-temporal framework. A
short discussion of dynamic random compact sets will follow.

A number of applications fit into the spatio-temporal cellular models discussed
in this section. This includes e.g. modelling of plant populations, occurrences of
earthquakes, fires and diseases. It should be noted that many spatial point patterns
analysed, using purely spatial models, are indeed cumulative point patterns. It is
therefore of interest to identify spatio-temporal point process model for which the
cumulative spatial point process has specified properties like a given intensity function.

The potential of formulating tumour growth models via spatio-temporal processes
has been shown as early as in Cressie and Hulting (1992).

4.1 Spatio-temporal point processes

Let χ be a bounded subset of Rd, with positive volume |χ|. Consider a spatio-temporal
point process Z = {(ξj , tj)} on S = χ × R+ and let Zt be the restriction of Z to
St = χ× (0, t], i.e.

Zt = {(ξj , tj) ∈ Z : ti ≤ t}.

Assume that the projections of Z on χ and R+ are both simple processes. Since the
projection on R+ is simple, there exists a natural ordering of the time points of {tj},

t1 < t2 < · · · < tn < · · · .

We use this ordering later on. Furthermore, we use the short notation ξ(n), t(n) for the
first n points, (ξ1, t1), . . . , (ξn, tn), of the process Z.

The projections of Z and Zt on χ, are given by

X = {ξj : (ξj , tj) ∈ Z}, Xt = {ξj : (ξj , tj) ∈ Zt},

respectively, and are also called the cumulative spatial point processes. Note that the
random set Xt is growing in time since Xt ⊆ Xt′ for t ≤ t′.

The distribution of Zt can be specified by simply writing down the density of Zt

with respect to the unit rate Poisson process on St. An alternative and a more natural
way is to specify the distribution by two families of conditional probability densities.
The first family

{pn(t|ξ(n−1), t(n−1)) : n ∈ N}
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describes the arrival times of Z, while the second family

{fn(ξ|ξ(n−1), t(n−1), tn) : n ∈ N},

describes the spatial positions of Z. More precisely, the density pn(·|ξ(n−1), t(n−1))
describes the distribution of the n-th time point given the first n − 1 points of the
process Z and has support (tn−1,∞). The density fn(·|ξ(n−1), t(n−1), tn), on the other
hand, describes the distribution of the spatial point at the arrival time tn given the
first n−1 points of the process Z and the n-th time point tn. This density has support
χ. Daley and Vere-Jones (2002) treat in detail spatio-temporal point processes defined
using this mechanism.

Let Sn(·|ξ(n−1), t(n−1)) be the survival function and hn(·|ξ(n−1), t(n−1)) be the haz-
ard rate of pn(·|ξ(n−1), t(n−1)). For convenience we define

λg(t) = hn(t|ξ(n−1), t(n−1)), if tn−1 < t ≤ tn, (4.1)

f?(ξ|t) = fn(ξ|ξ(n−1), t(n−1), tn), if tn−1 < t ≤ tn. (4.2)

It can be shown that the density of Zt can be written as

gZt(z) = exp(t|χ|)gn(z)Sn+1(t|ξ(n), t(n)),

where

gn(z) =
n∏

j=1

pj(tj |ξ(j−1), t(j−1))fj(ξj |ξ(j−1), t(j−1), tj).

By using the functions λg(t) and f?(ξ|t), we obtain an alternative expression for the
density,

gZt(z) = exp
(
−
∫

St

(λg(s)f?(η|s)− 1)dηds
) n∏

j=1

λg(tj)f?(ξj |tj). (4.3)

Note that λg(t)f?(ξ|t)dξdt can be interpreted as the conditional probability of observ-
ing a point at (ξ, t) given the previous history of the process and a waiting time for
the n-th point at least up till t.

The simplest example of a spatio-temporal point process is the Poisson process
with intensity function λ. This process has density function

gZt(z) = exp
(
−
∫

St

(λ(η, s)− 1)dηds
) n∏

i=1

λ(ξi, ti).

Assume that ∫ ∞

t

∫
χ
λ(η, s)dηds = ∞ for all t ≥ 0.

Then

λg(t) =
∫

χ
λ(η, t)dη,

f?(ξ|t) =
λ(ξ, tn)
λg(tn)
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and the conditional distribution of the n-th time point is given by

pn(t|ξ(n−1), t(n−1)) = λg(t) exp

(
−
∫ t

tn−1

λg(s)ds

)
, t > tn−1.

If the intensity function is on the form λ(ξ, t) = λ(ξ), we get that given the history
(ξ(n−1), t(n−1)), the waiting time to the n-th time point Tn, Tn− tn−1, is exponentially
distributed with parameter

∫
χ λ(η)dη. More generally, given (ξ(n−1), t(n−1)),∫ Tn

tn−1

λg(s)ds

is exponential distributed with parameter 1. Note that the density of the n-th spatial
position is proportional to λ(ξ, tn). The distribution of the cumulative process Xt is
also Poisson with intensity function

λt(ξ) =
∫ t

0
λ(ξ, s)ds.

Furthermore, for all t′ < t, Xt′ can be obtained via thinning of Xt, using the retaining
probability

pt′,t(ξ) =
λt′(ξ)
λt(ξ)

. (4.4)

Cox processes are an important tool describing clustered point patterns. A spatio-
temporal Cox process on S is simply a spatio-temporal Poisson point process with
random intensity function Λ, i.e. its intensity function is λ(ξ, t) = E(Λ(ξ, t)). The
cumulative process Xt is also a Cox process driven by the random intensity function

Λt(ξ) =
∫ t

0
Λ(ξ, s)ds,

i.e. its intensity is given by λt(ξ) = E(Λt(ξ)). As for the spatio-temporal Poisson
processes, Xt′ can be obtained from Xt if t′ < t. This is done in the same manner as
before, via independent thinning with retaining probability given by (4.4).

A large class of spatio-temporal Cox processes can be obtained by modelling the
random intensity function by a Lévy based spatio-temporal model, cf. Jónsdóttir et al.
(2006b). Assume that L is a positive Lévy basis on (S,B(S)) with characteristics
(a, 0, U), where B(S) is the Borel σ-algebra of S. Let Z be a spatio-temporal Cox
process with random intensity function

Λ(ξ, t) = m(ξ, t) +
∫

S
ft((η, s); ξ)L(ds× dη), (ξ, t) ∈ S,

where m(ξ, t) and ft((η, s); ξ) are deterministic functions, chosen such that Λ(ξ, t) ≥ 0
and (ξ, t) → Λ(ξ, t) is locally integrable, almost surely. Using the Lévy-Ito representa-
tion for positive Lévy basis, we can write

Λ(ξ, t) = m(ξ, t) + a0(S) +
∑

(u,η)∈N

uft(η; ξ),
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where N is a Poisson process on R+ × S with intensity measure U and

a0(S) =
∫

S
ft((η, s); ξ)a(dη × ds)−

∫
S

∫ 1

0
uft((η, s); ξ)U(du, dη × ds).

There are enormous possibilities of defining different Cox processes using this repre-
sentation. As an example, let m(ξ, t) = −a0(S) and ft((η, s), ξ) = k((η, s), (t, ξ)),
where k((η, s), ·) is a probability density on S. Then Z is a spatio-temporal shot noise
Cox process. As mentioned above, the cumulative spatial processes will also be Cox
processes, but not necessarily shot-noise Cox processes. For more details on spatial
shot noise Cox processes, cf. Møller (2003). Brix (1998), Brix (1999) and Brix and
Chadoeuf (2002) study an important type of shot-noise Cox processes, the shot-noise
G Cox processes, to model weed data.

Another example, using Lévy based spatio-temporal models, is a Cox process Z
with random intensity

Λ(ξ, t) = exp
(
m(ξ, t) +

∫
S
ft((η, s); ξ)L(ds× dη)

)
,

where L is a Gaussian Lévy basis on S, i.e. L(A) ∼ N(a(A), b(A)) for all A ∈ B(S).
Here, the functions m(ξ, t) and ft((η, s); ξ) are chosen such that the random field
(ξ, t) → Λ(ξ, t) is locally integrable almost surely. This type of process is called a
log-Gaussian spatio-temporal Cox process. Møller et al. (1998) and Brix and Møller
(2001) use a special type of log-Gaussian Cox processes to study weed data.

Note that the intensity function and the pair correlation function of a spatio-
temporal Cox process can easily be calculated using the cumulant function of Λ(ξ, t),
i.e.

C(λ ‡ Λ(ξ, t)) = log
(

E
(
exp(iλΛ(ξ, t))

))
,

if Λ(ξ, t) follows a spatio-temporal Lévy model. For more details on spatio-temporal
Lévy models, see Jónsdóttir et al. (2006b).

4.2 Extensions of inhomogeneous spatial point processes

Models for inhomogeneous point processes have been studied quite intensively in recent
years. Most of these models introduce inhomogeneity into a homogeneous template
point process. Ogata and Tanemura (1986) and Stoyan and Stoyan (1998) suggest
to introduce inhomogeneity into Gibbs and Markov models by location dependent
first order interaction. Quite different approaches are inhomogeneity by independent
location dependent thinning and transformation of the template process, cf. Baddeley
et al. (2000) and Jensen and Nielsen (2000). Inhomogeneity may also be constructed
such that the resulting inhomogeneous process is a locally scaled version of the template
process, cf. Hahn et al. (2003).

A spatial point process X is said to be a pairwise interaction point process if its
density is on the form

fX(x) ∝
∏
ξ∈x

φ(ξ)
∏

{ξ,η}⊂x

φ({ξ, η}), (4.5)
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where φ is an interaction function, i.e. φ is a nonnegative function such that the right
hand side of (4.5) is integrable with respect to the unit rate Poisson point process on
χ. The range of interaction is defined by

R = inf{r > 0 : for all {ξ, η} ⊂ S, φ({ξ, η} = 1 if |ξ − η| > r}.

A simple way of constructing a spatio-temporal extension of a pairwise interaction
process is to write down its density. Let

z = {(ξ1, t1), . . . , (ξn, tn)} and x = {ξ1, . . . , ξn}.

An obvious suggestion of a density for the spatio-temporal extension would be

fZt(z) ∝
∏

(ξ,t)∈z

λ(ξ, t)
∏

{ξ,η}⊂x

φ({ξ, η}),

if the interactions are purely spatial. Such processes are applicable if the spatial
interaction does not change in time.

If the first-order interaction function is on the form

λ(ξ, t) = λ1(ξ)λ2(t),

then it can be shown that the cumulative process Xt is a pairwise interaction point
process with density

fXt(x) ∝
∏
ξ∈x

a(t)λ1(ξ)
∏

{ξ,η}⊂x

φ({ξ, η})

with respect to the unit rate Poisson point process on χ, where

a(t) =
∫ t

0
λ2(s)ds.

It can further be shown that if t′ < t, the cumulative point process Xt′ can be obtained
by independent thinning of Xt.

More generally, any given point process X on χ can be used to construct a spatio-
temporal point process model using backwards temporal thinning. Assume that X
has intensity function λ. We can define a spatio-temporal point process based on X
by letting

Z = {(ξ, Tξ) : ξ ∈ X},

where conditionally on X, {Tξ}ξ∈X are independent and Tξ has probability density pξ.
The cumulative process Xt has intensity function

λt(ξ) = λ(ξ)
∫ t

0
pξ(s)ds,

and for all t′ < t, Xt′ can be obtained from Xt using independent location dependent
thinning, with retention probability

pt′,t(ξ) =

∫ t′

0 pξ(s)ds∫ t
0 pξ(s)ds

.
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A backwards temporal thinning of this type implies that for small t, Xt may look like
a realisation of a Poisson point process. Note also that the inhomogeneous version of
the K-function defined in Baddeley et al. (2000) will be the same for all Xt, t > 0.

An alternative procedure for extending inhomogeneous spatial point processes to
a spatio-temporal framework is to extend expressions for the Papangelou conditional
intensity, used in a purely spatial context, to expressions for the conditional intensity
λg(·)f?(·|·) of the spatio-temporal point process. In Jensen et al. (2006), this approach
and the approach based on backwards thinning have been tried out in the case where
the purely spatial point process is a locally scaled Strauss process, cf. Hahn et al.
(2003). Simulated processes can be seen in Figure 4.1 and 4.2.
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Figure 4.1: Result of a simulation of a backwards thinning of a locally scaled Strauss
process on [−1, 1]2. The figure shows the cumulative point patterns at time points
t = 2, 4, 8, 12.

4.3 Dynamic random compact sets

Spatio-temporal point processes may be used to construct models for growing objects
Yt ⊂ Rd. One approach is to let the object at time t consist of the union of some
random compact sets centred at the points born at time t or before. More precisely,
let Z be a spatio-temporal point process. The object at time t is then

Yt =
⋃

(ξ,s)∈Z,s≤t

(ξ ⊕ Ξξ), (4.6)

where conditionally on Z, {Ξξ} is a series of independent and identically distributed
random compact sets centred at the origin with distribution Q. Here ⊕ denotes the
Minkowski sum,

ξ ⊕ Ξξ = {ξ + η : η ∈ Ξξ}.
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Figure 4.2: Result of a simulation on [−1, 1]2 of the spatio-temporal extension us-
ing conditional intensities and probabilities. The figure shows the cumulative point
patterns at time point t = 2, 4, 8, 12.

The object Yt is clearly increasing in time in the sense that Yt′ ⊂ Yt if t′ < t. In the
case where the point process Z is Poisson, the model (4.6) is a dynamic version of the
well known Boolean model. For a detailed discussion on Boolean models and random
compact sets, see Molchanov (2005).

A more general model for Yt can be obtained by letting the series of random
compact sets be independent, but with distribution depending on the spatial position
ξ and/or the birth time of ξ. This means that

Yt =
⋃

(ξ,s)∈Z,s≤t

(ξ ⊕ Ξ(ξ,s)),

where conditionally on Z, {Ξ(ξ,s)} is a series of independent random compact sets
centred at the origin, where Ξ(ξ,s) has distribution Q(ξ,s).

Deijfen (2003) studies a model similar to the model in (4.6) with the random set
Ξξ = b(0, Rξ) for all ξ. Here, the Rξ’s are independent and identically distributed and
b(0, Rξ) denotes the sphere in Rd with radius Rξ centred at the origin. The asymptotic
shape of the object Yt is shown to be circular. This is also the case for many stochastic
models for tumour growth, cf. Richardson (1973), Schruger (1979), Bramson and
Griffeath (1980), Bramson and Griffeath (1981) and Durret and Ligget (1981).

In Cressie and Laslett (1987), Cressie (1991a), Cressie (1991b), and Cressie and
Hulting (1992) a Boolean model is used to model tumour growth patterns. Their
model is a discrete time model of Markov type defined by

Yt =
⋃

ξ∈Yt−1∩Π

b(ξ,Rξ),
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where Π is a homogeneous Poisson process on χ and conditionally on Π, {Rξ} are
independent and identically distributed variables with support R+. They also consider
other point processes than Poisson and other random compact sets than balls and
establish in that way a relation to interacting particle systems, cf. Ligget (1986).

Another type of cellular models are the cellular automaton models. A cellular
automaton model is a discrete model on a regular grid of cells defined on χ. The
models are discrete time models and the state of the cells at time t is a function of its
neighbouring cells at the previous time, where different neighbouring relations can be
used. A cell at time t is updated according to a predefined rule based on its neighbour
cells. Qi et al. (1993) and Kansal et al. (2000) study cellular automaton models in
relation to tumour growth.
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5 Non-stationary spatial
survival analysis

This section contains further results on modelling of random sets. They have conse-
quences for the modelling and analysis of non-stationary point processes. The results
have not yet been put into a spatio-temporal framework. First, we need to recall some
material on spatial survival analysis.

Consider a stationary random compact set Y in Rd observed within a compact and
regular window W . The empty space function F for the random set Y is given by the
distribution function of the distance from the origin to the random set Y , i.e.

F (r) = P(ρ(0, Y ) ≤ r), r > 0,

where
ρ(ξ, Y ) = inf{|ξ − η| : η ∈ Y }.

The survival function of ρ(0, Y ) is defined by S(r) = 1 − F (r). If the empty space
function is differentiable for all r > 0, we let f be the derivative of F and define the
hazard rate of ρ(0, Y ) by

λ(r) =
f(r)
S(r)

, r > 0,

which implies that

S(r) = exp
(
−
∫ r

0
λ(s)ds

)
, r > 0.

Given the information Y ∩W and W , estimates of these functions can be used
to check for complete randomness of the spatial pattern. This is done by comparing
the estimated function to its theoretical counterpart of a completely random spatial
pattern.

One of the most simple estimators for the empty space function F is based on minus
sampling. This estimator is called the reduced-sample estimator. It is unbiased, but
has the disadvantage that it is not necessarily a distribution function.

The distance from a fixed point to the nearest point of the random set is censored by
the distance to the observation window. Based on the analogy with censored survival
data, Baddeley and Gill (1997) propose a Kaplan-Meier type estimator of F

F̂ (r) = 1− |Y \W |k
|W |k

exp
(
−
∫ r

0
λ̂(s)ds

)
,
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where λ̂ is the ratio-unbiased estimate of λ,

λ̂(r) =
|∂(Y⊕r) ∩W	|k−1

|W	r \ Y⊕r|k
.

Here, ∂(Y ) denotes the boundary of Y , | · |k is the k-dimensional Lebesgue measure,

A⊕r = {ξ ∈ Rd : ρ(ξ,A) ≤ r},
A	r = {ξ ∈ Rd : ρ(ξ,Ac) > r},

and c denotes the compliment. This estimator is known to be more efficient than the
reduced-sample estimator.

Let us now consider the case where Y is not necessarily stationary. Then, we need
a local version of the empty space function defined by

Fξ(r) = P(ρ(ξ, Y ) ≤ r), r > 0,

i.e. the distribution function of the random variable ρ(ξ, Y ). The local version of
the survival function is Sξ(r) = 1 − Fξ(r) and if the local empty space function is
differentiable for all ξ ∈ Rd and r > 0, we let fξ be the derivative of Fξ and define the
local hazard rate by

λξ(r) =
fξ(r)
Sξ(r)

, r > 0.

The question is now whether we can find some non-parametric or semi-parametric
methods to analyse non-stationary data sets using methods from classical survival
analysis as has been done in the stationary case.

5.1 Hazard rate models

The classical Cox proportional hazard model and accelerated lifetime model for hazard
rates are popular models in classical survival analysis. These models describe how
the survival distributions depend on known covariates. The Cox proportional hazard
model is defined by

λξ(r) = g(β, s(ξ))λ(r),

where λ is some baseline hazard rate, g(β, s(ξ)) is a positive function independent of
r which can incorporate the effect of a vector valued covariate s : Rd → Rk and β is a
k-dimensional vector of parameters. The accelerated lifetime model is defined by

λξ(r) = g(β, s(ξ))λ(g(β, s(ξ))),

where g and β are as above, but the baseline hazard is assumed to come from some
class of parametric distributions. Different forms of g can be used, but we will consider
the exponential form g(β, s(ξ)) = exp(β · s(ξ)) which is the most commonly used.

These methods can be adapted to spatial statistics, where the covariates are a
known or an observed function of ξ, e.g. temperature, soil type or altitude at position
ξ, or a function derived from another spatial pattern.

Hazard rate models of this type have an interesting intuitive appeal in spatial
statistics. Consider a stationary random closed set with empty space function F and
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hazard rate λ. A union Y ? of n independent copies of the stationary random closed
set Y will have empty space function and hazard rate

F ?(r) = 1− (1− F (r))n, λ?(r) = nλ(r), r > 0,

respectively. If Y ? is a scaled version of Y , Y ? = cY , c > 0, the empty space function
and hazard rate of Y ? will be

F ?(r) = F
(r
c

)
, λ?(r) =

1
c
λ
(r
c

)
, r > 0,

respectively. These types of transformations of the hazard rate occur in the Cox
proportional hazard model and the accelerate lifetime model and the two models have
therefore the intuitive appeal of describing non-stationary change of intensity and scale,
respectively.

Typically, the properties of the local empty space function can not be obtained
for known models for non-stationary random closed sets. As an example, it seems
impossible to explicitly calculate the empty space function for the models for inho-
mogeneous point patterns discussed in Section 4.2. Until now, we have not been able
to find any random compact set such that the local hazard rate fulfils the accelerated
lifetime model. A special class of germ-grain models for non-stationary random com-
pact sets, however, fulfils a Cox proportional hazard model for the local hazard rate
with s(ξ) = ξ. This model is defined by letting

Y =
⋃
ξ∈X

{ξ ⊕ Ξξ},

where X is a non-stationary Poisson process on Rd with a log-linear intensity function

γ(ξ) = α exp(β · ξ), α > 0, β ∈ Rd

and {Ξξ}ξ∈X is a sequence of independent and identically distributed, random compact
sets that are independent of the process X and have distribution Q. The local empty
space function and the local hazard rate of Y are given by

Fξ(r) = 1− (1− F0(r))exp(β·ξ), λξ(r) = exp(β · ξ)λ0(r),

respectively, where F0 and λ0 are the empty space function and hazard rate at 0.
A special case of this germ-grain model is the non-stationary Poisson process with

intensity function γ. In this case, explicit equations can be obtained for the local
empty space function and hazard rate

Fξ(r) = 1− exp
(
−2πrα exp(β · ξ)

|β|
I1(r|β|)

)
,

λξ(r) = 2π exp(β · ξ)αrI0(r|β|),

where Iν is the modified Bessel function of the first kind of order ν.
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5.2 Estimation methods

The partial likelihood is usually used to estimate the parameters in the Cox propor-
tional hazard model and non-parametric methods are used to estimate the baseline
hazard. Like in survival analysis we define failure times and censoring indicators by

t(ξ) = min{ρ(ξ, Y ), ρ(ξ, ∂W )}, d(ξ) = 1[ρ(ξ, Y ) ≤ ρ(ξ, ∂W )],

respectively. Observing (t(ξ), d(ξ)) for some points ξ in a regular lattice L on W , we
use the standard methods to estimate β and λ0. This estimation method is, however,
quite fragile. The standard partial likelihood estimation holds for independent survival
times. This is, on the other hand, not the case for spatial data. Note that (t(ξ), d(ξ))
can be observed at every point ξ ∈W . Therefore, a continuous analogue of the partial
likelihood estimation method is needed. The discrete version of the partial likelihood
method will, however, probably always be used in practise. This involves a number of
open questions concerning the dependence of the data and asymptotic properties of
the estimators.

The Cox proportional hazard model only includes the parameter β and therefore an
estimator of α is missing. If the observed random compact set is modelled by a germ-
grain model and the grains do not intersect, a reasonable estimator of the parameter
α can be found by solving the equation

E(n(Y ∩W )) = α

∫
W

exp(β̂ · η)dη

for α, where n(x) denotes the cardinality of x and β̂ is the estimate of β. This implies
that the estimator of α is

α̂ = nW

(∫
W

exp(β̂ · η)dη
)−1

,

where nW is the observed number of grains in the window W . Clearly, this will hold
if Y is a point process.

5.3 Application to non-stationary point processes

Assume that Y is a non-stationary point process and consider fitting a Cox proportional
hazard model to its local hazard rate. A test for complete randomness of the point
process Y can be performed by comparing the estimated baseline hazard rate λ̂0 to
the hazard rate λ0 of the Poisson process with intensity function γ(y) = α̂ exp(β̂ · y),
where α̂ and β̂ are the estimated parameters under the model. The deviations between
the two hazard rates can give an indication of clustering or regularity. At least for
small values of r, λ̂0(r) ≤ λ0(r) indicates clustering while λ̂0(r) ≥ λ0(r) indicates
regularity. The estimation method described in the last section was used to fit a Cox
proportional hazard model to data simulated from a Poisson point process on the unit
square window with intensity function γ(x, y) = 300 exp(−2x). Figure 5.1 shows the
estimated local hazard rate (0.5, 0.5) (full line) and the local hazard rate at (0.5, 0.5)
of a Poisson process with intensity α̂ exp(β̂ · ξ) (dotted line), where α̂ and β̂ are the
estimators of α and β. The figure indicates that the non-stationary Poisson process is
a good fit to the simulated data, as expected.
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Figure 5.1: The estimated local hazard rate λ̂(0.5,0.5) for the simulated data (full line)
and the local hazard rate of an inhomogeneous Poisson process with intensity α̂ exp(β̂ ·
(0.5, 0.5)) (dotted line).

We also fitted the Cox proportional hazard model to real data. The data is a subset
of a larger data set which has been analysed in e.g. Cressie (1991b) and consists of
location of adult Longleaf Pine trees in a 200× 200 metre region, see Figure 5.2 (left).
Figure 5.2 (right) shows a plot of the estimated local hazard rate λ̂(100,100) for the data
(full line) and the local hazard rate at (100, 100) of a Poisson process with intensity
α̂ exp(β̂ · ξ) (dotted line), where α̂ and β̂ are the estimators of α and β. Note that
the estimated local hazard rate cannot be interpreted for large values of r due to the
finite size of the window. By comparing the two hazard rates for smaller values of r,
one can see an indication of clustering of the trees.
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Figure 5.2: Left: The locations of adult Longleaf Pine trees. Right: A plot of the
estimated local hazard rate for the adult Longleaf Pine tree data at (100, 100) (full
line) and the local hazard rate at (100, 100) of an inhomogeneous Poisson process with
intensity α̂ exp(β̂ · ξ) (dotted line).
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6 Conclusions

In this thesis, we have studied two classes of spatio-temporal models that can be used
in the modelling of growing patterns. The first model class is the supracellular models
describing the movement of the boundary of the growing object. Important tools are
here the theory of Lévy bases and the p-order models from shape theory. Growing
cancer cell islands and growth patterns of tree year rings are analysed, using these
models. The second model class is the cellular models, based on spatio-temporal point
processes. Here, a main issue is extension of existing models for spatial point processes
to a spatio-temporal framework. The thesis also contains further results on modelling
of random sets, using spatial survival analysis.

37





Bibliography

Baddeley, A. J. and Gill, R. D. (1997). Kaplan–Meier estimators of interpoint distance
distributions for spatial processes. Ann. Statist., 25:263–292.

Baddeley, A. J., Møller, J., and Waagepetersen, R. P. (2000). Non- and semiparametric
estimation of interaction in inhomogeneous point patterns. Statistica Neerlandica,
54:329–350.

Bramson, M. and Griffeath, D. (1980). The Asymptotic Behaviour of a Probabilistic
Model for Tumour Growth. In Jager, W., Rost, H., and Tautu, P., editors, Biological
Growth and Spread, number 38 in Springer Lecture Notes in Biomathematics, pages
165–172.

Bramson, M. and Griffeath, D. (1981). On the Williams-Bjerknes tumour growth
model, I. Ann. Prob., 9:173–185.

Brix, A. (1998). Spatial and Spatio-temporal Models for Weed Abundance. PhD thesis,
Royal Veterinity and Agricultural University, Copenhagen.

Brix, A. (1999). Generalized gamma measures and shot-noise Cox processes. Adv.
Appl. Prob., 31:929–953.

Brix, A. and Chadoeuf, J. (2002). Spatio-temporal modelling of weeds by shot-noise
G Cox processes. Biom. J., 44:83–99.

Brix, A. and Møller, J. (2001). Space-time multitype log Gaussian Cox processes with
a view to modelling weeds. Scand. J. Statist., 28:471–488.

Brú, A., Pastor, J. M., Fernaud, I., Brú, I., Melle, S., and Berenguer, C. (1998).
Super-rough dynamics of tumour growth. Physical Review Letters, 81:4008–4011.

Chaplain, M. A. J., Singh, G. D., and McLachlan, J. C. (1999). On Growth and Form:
Spatio-temporal Pattern Formation in Biology. Wiley, Chichester.

Cressie, N. (1991a). Modelling growth with random sets. In Possolo, A. and Hay-
ward, C., editors, Spatial Statistics and Imaging, pages 31–45. IMS Lecture Notes.
Proceedings of the 1988 AMS-IMS-SIAM Joint Summer Research Conference.

Cressie, N. (1991b). Statistics for Spatial Data. John Wiley & Sons, New York.

Cressie, N. and Hulting, F. L. (1992). A spatial statistical analysis of tumor growth.
J. Amer. Statist. Assoc., 87:272–283.

39



B ib l i ography

Cressie, N. and Laslett, G. M. (1987). Random set theory and problems of modelling.
SIAM Review, 87:272–283.

Cruz-Orive, L. M. and Gual-Arnau, X. (2002). Precision of circular systematic sam-
pling. J. Microsc., 207:225–242.

Daley, D. J. and Vere-Jones, D. (2002). An Introduction to the Theory of Point Pro-
cesses. Volume I: Elementary Theory and Methods. Springer, New York, second
edition.

Deijfen, M. (2003). Asymptotic shape in a continuum growth model. Adv. Appl. Prob.
(SGSA), 35:303–318.

Durret, L. and Ligget, T. (1981). The shape of the limit set in Richardsons growth
model. Ann. Prob., 9:186–193.

Grenander, U., Chow, Y., and Keenan, D. M. (1991). Hands: A Pattern Theoretic
Study of Biological Shapes. Research notes on Neural Computing. Springer, Berlin.

Grenander, U. and Miller, M. (1994). Representations of knowledge in complex systems
(with discussion). J.R. Statist. Soc. B, 56:549–603.

Gual-Arnau, X. and Cruz-Orive, L. M. (2000). Systematic sampling on the circle and
on the sphere. Adv. Appl. Prob. (SGSA), 34:484–490.

Hahn, U., Jensen, E. B. V., van Lieshout, M. N. M., and Nielsen, L. S. (2003). Inho-
mogeneous point processes by location dependent scaling. Adv. Appl. Prob. (SGSA),
35(2):319–336.

Hobolth, A. and Jensen, E. B. V. (2002). A note on design-based versus model-based
variance estimation in stereology. Adv. Appl. Prob. (SGSA), 34:484–490.

Hobolth, A., Pedersen, J., and Jensen, E. B. V. (2001). A deformable template model,
with special reference to elliptical templates. Research report no. 17, Laboratory for
Computational Stochastics, University of Aarhus.

Hobolth, A., Pedersen, J., and Jensen, E. B. V. (2003). A continuous parametric shape
model. Ann. Inst. Statist. Math., 55:227–242.

Jensen, E. B. V., Jónsdóttir, K. Ý., Schmiegel, J., and Barndorff-Nielsen, O. E. (2006).
Spatio-temporal modelling – with a view to biological growth. To appear in Statis-
tics of Spatio-Temporal Systems, Monographs on Statistics and Applied Probability,
Chapman & Hall/CRC.

Jensen, E. B. V. and Nielsen, L. S. (2000). Inhomogeneous Markov point processes by
transformation. Bernoulli, 6:761–782.

Jónsdóttir, K. Ý., Hoffmann, L. M., Hobolth, A., and Jensen, E. B. V. (2006a). On
error prediction in circular systematic sampling. To appear in J. Microsc.

Jónsdóttir, K. Ý. and Jensen, E. B. V. (2005). Gaussian radial growth. Image Analysis
& Stereology, 24:117–26.

40



B ib l i ography

Jónsdóttir, K. Ý., Schmiegel, J., and Jensen, E. B. V. (2006b). Lévy based growth
models. To appear as Thiele Research Report.

Kansal, A. R., Torquato, S., Harsh, G. R., Chiocca, E. A., and Deisboeck, T. S.
(2000). Simulated brain tumor growth dynamics using a three-dimensional cellular
automaton. J. Theor. Biol., 203:367–382.

Kronborg, D. (1981). Distribution of crosscorrelations in two-dimensional time se-
ries, with application to dendrochronology. Research report no. 72, Department of
Theoretical Statistics, Institute of Mathematics, University of Aarhus.

Ligget, T. M. (1986). Interacting Particle Systems. Springer, New York.

Molchanov, I. S. (2005). Theory of Random Sets. Springer, London.

Møller, J. (2003). Shot noise Cox processes. Adv. Appl. Prob. (SGSA), 35:614–640.

Møller, J., Syversveen, A. R., and Waagepetersen, R. P. (1998). Log Gaussian Cox
processes. Scand. J. Statist., 25:451–482.

Ogata, Y. and Tanemura, M. (1986). Likelihood estimation of interaction potentials
and external fields of inhomogeneous spatial point patterns. In Francis, I. S., Manly,
B. F. J., , and C., L. F., editors, Proc. Pacific Statistical Congress, pages 150–154.
Elsevier.

Qi, A. S., Zheng, X., Du, C. Y., and An, B. S. (1993). A cellular automaton model of
cancerous growth. J. Theor. Biol., 161:1–12.

Richardson, D. (1973). Random growth in a tessellation. Proc. Camb. Phil. Soc.

Schmiegel, J. (2005). Self-scaling tumor growth. To appear in Physica A.

Schruger, K. (1979). On the asymptotic geometrical behaviour of a class of contact
interaction processes with a monotone infection rate. Zeitschrift für Wahrschein-
lichkeitstherorie und verwandte Gebiete, 48:35–48.

Stoyan, D. and Stoyan, H. (1998). Non homogeneous Gibbs process models for forestry
– a case study. Biometrical Journal, 40:521–531.

Thompson, D. W. (1917). On Growth and Form. Cambridge University Press, Cam-
bridge.

41





Paper

A

Jónsdóttir, K.Ý. and Jensen, E.B.V. (2005).
Gaussian radial growth.
Image Analysis & Stereology, 24:117–26.





Gaussian radial growth

Kristjana Ýr Jónsdóttir and Eva B. Vedel Jensen

University of Aarhus

Abstract

The growth of planar and spatial objects is often modelled using one-dimensional

size parameters, e.g. volume, area or average width. We take a more detailed ap-

proach and model how the boundary of a growing object expands in time. We

mainly consider star-shaped planar objects. The model can be regarded as a

dynamic deformable template model. The limiting shape of the object may be

circular but this is only one possibility among a range of limiting shapes. An ap-

plication to tumour growth is presented. A 3D version of the model is presented

and an extension of the model, involving time series, is briefly touched upon.

Keywords: Fourier expansion, Gaussian process, growth pattern, periodic station-

ary, radius vector function, shape, star-shaped objects, transformation

1 Introduction

Modelling of biological growth patterns is a rapidly developing field of mathematical
biology. Its state-of-the-art was explored at the successful conference On Growth and
Form, held in 1998 in honour of D’Arcy Thompson (1860-1948) and his famous book, cf.
Thompson (1917). Out of the conference grew a monograph which contains substantial
biological material and an overview of mathematical modelling of spatio-temporal sys-
tems, cf. Chaplain et al. (1999). Examples of growth mechanisms studied are growth
of capillary networks, skeletal growth and tumour growth.

Modelling of tumour growth has attracted particular interest in recent years. Tu-
mour growth was one of the high priority topics of the recent multidisciplinary confer-
ence arranged by the European Society for Mathematical and Theoretical Biology in
July 2002. More than 500 scientists from a wide range of disciplines participated. One
of the subjects discussed was pattern formation problems, relating to tumour formation
and progression, in particular the question of tumour shape.

The models suggested for tumour growth are either continuous or discrete. In
Murray (2003), the continuous approach is explained in relation to brain tumours.
The simplest models involve only total number of cells in the tumour, with growth of
the tumour usually assumed to be exponential, Gompertzian or logistic (Swan (1987);
Marusic et al. (1994)). More powerful deterministic models describe the change of the
spatial arrangement of the cells under tumour growth. The discrete models are most
often cellular automaton models, cf. Qi et al. (1993) and Kansal et al. (2000).

The growth literature contains very few examples of statistical modelling and anal-
ysis of growth patterns. An exception is the paper by Cressie and Hulting (1992).
Growth of a planar star-shaped object is here modelled, using a sequence of Boolean
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models. The object Yt+1 at time t + 1 is the union of independent random compact
sets placed at uniform random positions inside the object Yt at time t. More formally,

Yt+1 = ∪{Z(xi) : xi ∈ Yt},

where {xi} is a homogeneous Poisson point process in the plane and Z(xi) is a ran-
dom compact set with position xi. Note that this model is Markov since Yt+1 only
depends on the previous objects via Yt. The model is applied to describe the growth
pattern of human breast cancer cell islands. Practical methods of estimating the model
parameters, using the information of the complete growth pattern, are devised. A re-
lated continuous model has recently been discussed in Deijfen (2003). The object Yt is
here a connected union of randomly sized Euclidean balls, emerging at exponentially
distributed times. It is shown that the asymptotic shape is spherical.

In the present paper, we propose a Gaussian radial growth model for star-shaped
planar objects. The model is a dynamic version of the p−order shape model introduced
in Hobolth et al. (2003). The object at time t+ 1 is a stochastic transformation of the
object at time t such that the radius vector function of the object fulfils

Rt+1(θ) = Rt(θ) + Zt(θ), θ ∈ [0, 2π),

where Zt is a cyclic Gaussian process. The coefficients of the Fourier series of Zt

Zt(θ) = µt +
∞
∑

k=1

[At,k cos(kθ) +Bt,k sin(kθ)], (1)

θ ∈ [0, 2π), have important geometric interpretations relating to the growth process.
The overall growth from time t to t + 1 is determined by the parameter µt. The
coefficients At,1 and Bt,1 determine the asymmetry of growth from time t to t + 1,
while At,k and Bt,k affect how the growth appears globally for small k ≥ 2 and locally
for large k ≥ 2. Under the proposed p-order growth model

At,k ∼ Bt,k ∼ N(0, λt,k), k = 2, 3, . . . ,

At,k, Bt,k, k = 2, 3, . . . , independent, where the variances satisfy the following regres-
sion model

λ−1
t,k = αt + βt(k

2p − 22p), k = 2, 3, . . . .

In Section 2 we introduce the Gaussian radial growth model. In Section 3, we study
the induced distributions of object size and shape under the model. An application to
tumour growth is discussed in Section 4. An extension of the model, involving time
series, is briefly described in Section 5 and a 3D version of the Gaussian radial growth
model is presented in Section 6.

2 The Gaussian radial growth model

Consider a planar bounded and topologically closed object with size and shape changing
over time. The object at time t is denoted by Yt ⊂ R

2, t = 0, 1, 2, . . . . We suppose that
Yt is star-shaped with respect to a point z ∈ R

2 for all t. Then, the boundary of Yt can
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be determined by its radius vector function Rt = {Rt(θ) : θ ∈ [0, 2π)} with respect to
z, where

Rt(θ) = max{r : z + r(cos θ, sin θ) ∈ Yt},
θ ∈ [0, 2π). In Hobolth et al. (2003), a deformable template model is introduced,
describing a random planar object as a stochastic deformation of a known star-shaped
template, see also the closely related models described in Hobolth and Jensen (2000),
Kent et al. (2000) and Hobolth et al. (2002). We use this approach here and describe
the object at time t+1 as a stochastic transformation of the object at time t, such that

Rt+1(θ) = Rt(θ) + Zt(θ), θ ∈ [0, 2π). (2)

Here, {Zt} is a series of independent stationary cyclic Gaussian processes with Zt
short for {Zt(θ) : θ ∈ [0, 2π)}. The process Zt is stationary if the distribution of
Zt(θ + θ0) − Zt(θ) does not depend on θ, while the process is said to be cyclic if
Zt(θ + 2πk) = Zt(θ), for all k ∈ Z. The initial value R0 of the radius vector function
is assumed to be known.

Note that Yt is used as a template in the stochastic transformation, resulting in
Yt+1. The increment process Zt can be written as

Zt(θ) = µt + Ut(θ), θ ∈ [0, 2π),

where µt ∈ R represents a constant radial addition at time t and Ut a stochastic
deformation with mean zero of the expanded object with radius vector function Rt+µt,
cf. Figure 1. (The object with radius vector function Rt+µt is in geometric tomography
known as the radial sum of Yt and a circular disc of radius µt, cf. Gardner (1995).)
Because of the independence of the Zts, the model is Markov in time, in the sense that

Figure 1: The object Yt+1 is a stochastic transformation of the object Yt (grey), using a constant
radial addition (shown stippled) followed by a deformation.

it uses information about the object at the immediate past to describe the object at
the present time. More specifically, under (2) the conditional distribution of Rt+1 given
Rt, . . . , R0 depends only on Rt. The model suggested in Cressie and Hulting (1992)
possesses a similar Markov property.

If Yt is non-circular, it can be natural to extend the model (2), using an increasing
time change function Γt : [0, 2π] → [0, 1] such that Zt ◦ Γ−1

t is a stationary stochastic
process on [0, 1]. If the boundary length of Yt is finite, one possibility is to choose

Γt(θ) =
Lt(θ)

Lt(2π)
, (3)

where Lt(θ) is the distance travelled along the boundary of Yt between the points
indexed by 0 and θ. Note, however, that if R0 ≡ 0, then the boundary of Yt is expected
to be approximately circular, since E(Zt(θ)) = µt does not depend on θ ∈ [0, 2π).
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The following result is important for the construction of parametric models in the
framework of model (2). The result also implies a simple simulation procedure for a
stationary cyclic Gaussian process on [0, 2π).

Proposition 2.1. The process Zt is a stationary cyclic Gaussian process on [0, 2π) with
mean µt ∈ R if and only if there exist λt,k ≥ 0, k = 0, 1, 2, . . . , such that

∑

∞

k=0 λt,k <∞
and

Zt(θ) = At,0 +
∞

∑

k=1

[At,k cos(kθ) +Bt,k sin(kθ)],

θ ∈ [0, 2π), where At,0, At,k, Bt,k, k = 1, 2, . . . , are all independent, At,0 ∼ N(µt, λt,0)
and At,k ∼ Bt,k ∼ N(0, λt,k).

The proof of Proposition 2.1 is not complicated. Given a stationary cyclic Gaussian
process Zt on [0, 2π) with mean µt, consider the stochastic Fourier expansion of Zt.
Then, simple calculations involving the stochastic Fourier coefficients give the result.
The other assertion is trivial.

Note that in Proposition 2.1, the λt,ks are allowed to be zero, meaning that At,k ≡ 0,
almost surely.

The Fourier coefficients

At,0 =
1

2π

∫ 2π

0
Zt(θ) dθ,

At,k =
1

π

∫ 2π

0
Zt(θ) cos(kθ) dθ, (4)

Bt,k =
1

π

∫ 2π

0
Zt(θ) sin(θk) dθ, (5)

k = 1, 2, . . ., have interesting geometric interpretations relating to the growth process.
It is clear that the coefficient At,0 determines the overall growth from Yt to Yt+1. The
Fourier coefficients At,1 and Bt,1 play also a special role. Numerically large values of
the coefficients will imply an asymmetric growth from Yt to Yt+1. In order to interpret
geometrically the remaining Fourier coefficients At,k and Bt,k, k = 2, 3, . . ., let us
consider an increment process for which all Fourier coefficients except those of order 0
and k are zero,

Zt(θ) = At,0 +At,k cos(kθ) +Bt,k sin(kθ),

θ ∈ [0, 2π). Such a process exhibits k-fold symmetry, i.e.

Zt

(

θ +
2πi

k

)

, i = 0, 1, . . . , k − 1,

θ ∈ [0, 2π), does not depend on i. Therefore, At,k and Bt,k affect how the growth
appears globally for small k and locally for large k. The variances λt,k control the
magnitude of the spread of the Fourier coefficients.

Since the zero- and first-order Fourier coefficients play a special role in relation
to the growth process and may in applications well depend on explanatory variables,
we shall desist from specific modelling of these coefficients. In the following we will
assume that At,0 = µt is deterministic. Furthermore, we suppose that At,1 = Bt,1 = 0
or, equivalently, we concentrate on modelling

Zt(θ) −At,1 cos θ −Bt,1 sin θ, θ ∈ [0, 2π).
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A special case of the Gaussian radial growth model is the p-order growth model.
This model is inspired by the p-order model described in Hobolth et al. (2003), where
the stochastic deformation process is a stationary Gaussian process with an attractive
covariance structure, described below. The model is called p-order because it can be
derived as a limit of discrete p-order Markov models defined on a finite, systematic set
of angles θ, cf. Hobolth et al. (2002).

Definition 2.2. A stochastic process Y = {Y (θ) : θ ∈ [0, 2π)} follows a p-order model
with p > 1

2 , if there exist µ ∈ R, α, β > 0, such that

Y (θ) = µ+

∞
∑

k=2

[Ak cos(kθ) +Bk sin(kθ)],

θ ∈ [0, 2π), where Ak ∼ Bk ∼ N(0, λk) are all independent and

λ−1
k = α+ β(k2p − 22p), k = 2, 3, . . . .

If Y follows a p−order model, we will write Y ∼ Gp(µ, α, β). Clearly, µ is the mean
of Y . Furthermore, the covariance function of Y is of the form

σ(θ) = Cov(Y (0), Y (θ)) =

∞
∑

k=2

λk cos(kθ)

=

∞
∑

k=2

cos(kθ)

α+ β(k2p − 22p)
,

θ ∈ [0, 2π). The parameters α and β determine the variance of lower order and higher
order Fourier coefficients, respectively. Furthermore, p determines the smoothness of
the curve Y . In fact, the curve Y is k − 1 times continuously differentiable where k is
the unique integer satisfying p ∈ (k − 1

2 , k + 1
2 ] (Hobolth et al. (2003)). Note that the

first Fourier coefficients of Y are set to zero.
We can now give the definition of the p−order growth model.

Definition 2.3. The series Z = {Zt} follows a p−order growth model if the Zts are
independent and Zt ∼ Gp(µt, αt, βt) for all t.

The parameters αt and βt determine, respectively, the global and local appearance
of growth from Yt to Yt+1. As before, p determines the smoothness of the curves Zt.
The overall growth pattern is specified by the µts. Their actual form depends on the
specific application. Tumour growth has often been described by a Gompertz growth
pattern

κt = κ0 exp
[η

γ
(1 − exp(−γt))

]

,

where κt is the average radius at time t and η and γ are positive parameters determining
the growth, implying that

µt = κt

(

exp
[η

γ
exp(−γt)(1 − exp(−γ))

]

− 1
)

.

For more details, see e.g. Steel (1977).
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Note that the p-order growth model allows for negative values of Rt(θ). However,
the parameters µt, αt and βt will be chosen such that this will practically never occur.

Figure 2 shows simulations of the increment process Zt from time t to t + 1 for
different values of αt and βt under the second-order growth model, i.e. p = 2. A
large value of αt gives increments that are fairly constant while a small value of αt
provides a more irregular growth on a global scale. The parameter βt controls the local
appearance of the increment process, the smaller βt the more pronounced irregularity
on a local scale.

Figure 2: Simulated objects under the second-order growth model. The object at time t is fixed while
the object at time t + 1 is simulated under the indicated values of αt and βt.

3 Distributional results

In this section, we study the induced distribution of object size and shape under the
p-order growth model. The limiting shape may be circular but, as we shall see, there
is a whole range of possibilities.

Unless otherwise explicitly stated, we assume that R0 ≡ 0. We then have for θ ∈
[0, 2π)

RT (θ) = ρT +
∞

∑

k=2

[ATk cos(kθ) +BT
k sin(kθ)], (6)

where ATk ∼ BT
k ∼ N(0, λTk ) are all independent,

ρT =

T−1
∑

t=0

µt, (7)

and

λTk =
T−1
∑

t=0

λt,k. (8)

6
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The shape of the object at time T will be represented by its normalised radius vector
function

RT
E(RT (0))

=
RT
ρT

,

which can be regarded as a continuous analogue of the standardised vertex transfor-
mation vector in shape theory, cf. Hobolth et al. (2002).

Under the assumption of independent increments, the distribution of the area of
the object at time T , A(YT ), is known, provided that the radius-vector function RT is
positive.

Proposition 3.1. Assume that the radius vector function RT of the object YT is
positive and that it satisfies (6)–(8). Then,

A(YT ) ∼ πρ2
T + π

∞
∑

k=2

λTk Vk,

where Vk, k = 2, 3, . . . , are mutually independent exponentially distributed random
variables with mean 1.

Proof. The area of the object at time T is

A(YT ) =
1

2

∫ 2π

0
RT (θ)2dθ.

Note that since
∞
∑

k=2

(ATk )2 + (BT
k )2 <∞, almost surely,

we have that A(YT ) < ∞, almost surely. Using equation (6) and Parseval’s equation,
we get that

A(YT ) = πρ2
T +

π

2

∞
∑

k=2

[(ATk )2 + (BT
k )2]

= πρ2
T + π

∞
∑

k=2

λTk Vk,

where Vk, k = 2, 3, . . . , are mutually independent exponentially distributed random
variables with mean 1.

The distribution of the area of YT is thus a sum of independent Gamma distributed ran-
dom variables. The saddlepoint approximation of such a distribution is easily derived,
cf. Jensen (1992).

It does not seem possible to get a correspondingly simple result for the distribu-
tion of the boundary length of YT . This seems apparent from the expression for the
boundary length of YT

∫ 2π

0

√

R′

T (θ)2 +RT (θ)2dθ,

which is valid in the case where RT is differentiable.
As we shall see now, the class of p-order growth models is quite rich in the sense that

the shape of the limiting object, represented by its normalised radius vector function,

7
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may be distributed according to any p-order model Gp(1, α, β) with mean 1. For large
values of α and β, the shape is close to circular.

Let us consider the p-order growth model with proportional parameters, i.e. αt =
γβt. Equivalently, we assume that there exists a sequence {τt} of positive real numbers
such that

Zt = µt + τtXt (9)

and {Xt} are independent and identically Gp(0, α, β) distributed. If σ2 = Var(Xt(θ)),
then Zt(θ) ∼ N(µt, τ

2
t σ

2) under (9).
Examples of choices of τt are τt = 1,

√
µt or ρt+1, cf. (7). If τt = 1, the variance of

the increment Zt(θ) is constant in time. If τt =
√
µt, we obviously need that µt ≥ 0 for

all t and we have that Var(Zt(θ)) ∝ E(Zt(θ)) such that the variance of the increment
Zt(θ) is proportional to the average increase in the radius at time t. If τt = ρt+1, then
the distribution of the shape of the object defined by the radius vector function

{ρt + Zt(θ) : θ ∈ [0, 2π)}
is constant in time, i.e. the distribution of

ρt + Zt(θ)

E(ρt + Zt(θ))

does not depend on t.
In the proposition below, we show that under (9) the shape of Yt is distributed

according to a p-order model.

Proposition 3.2. Suppose that Z = {Zt} satisfies (9) where Xt, t = 0, 1, 2, . . . ,
are independent and identically Gp(0, α, β)−distributed. Then, the normalised radius
vector function of YT is distributed as

RT
E(RT (0))

∼ Gp(1, ᾱT , β̄T )

where

ᾱT = αρ2
T /

T−1
∑

t=0

τ2
t , β̄T = βρ2

T /
T−1
∑

t=0

τ2
t .

Proof. It suffices to show that

Cov(RT (0), RT (θ))

[E(RT (0))]2
=

∞
∑

k=2

cos(kθ)

ᾱT + β̄T (k2p − 22p)
.

Using (6) and (9), we find

Cov(RT (0), RT (θ))

[E(RT (0)]2]

=
1

ρ2
T

∞
∑

k=2

λTk cos(kθ)

=
1

ρ2
T

∞
∑

k=2

T−1
∑

t=0

τ2
t

cos(kθ)

α+ β(k2p − 22p)

=
∞
∑

k=2

cos(kθ)

ᾱT + β̄T (k2p − 22p)
.

8
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Below, we study examples of different limiting shapes under the model (9).

Example 3.3. (Constant increment growth) Let the situation be as in Proposition
3.2 with µt = µ and τt = 1 in (9). The increment processes Zt are thereby independent
and identically distributed. It follows from Proposition 3.2 that

RT
ERT (0)

∼ Gp(1, ᾱT , β̄T ),

where ᾱT = Tµ2α and β̄T = Tµ2β. Since ᾱT → ∞ and β̄T → ∞ for T → ∞, the
boundary of the object becomes more circular and smooth as T increases. An example
is shown in Figure 3. The limiting object has circular shape.

Figure 3: Right: Simulated growth pattern under the constant increment second-order growth model.
Left: The corresponding normalised profiles, representing the shape of the object.

Example 3.4. (Wiener growth) Let the situation be as in Proposition 3.2 with µt
arbitrary and τt =

√
µt in (9). This special case is called a Wiener growth model since

Var(RT ) ∝ E(RT ). If µt = µ such that ρT = Tµ, the process is called a Wiener process
with linear drift. If ρT = δTψ for some δ, ψ > 0, then RT − ρT satisfies

Rat − ρat ∼ aH(Rt − ρt), a ≥ 0, (10)

with parameter H = ψ
2 , which is a discrete analogue of self-similarity, cf. Sato (1999).

Notice that
RT

ERT (0)
∼ Gp(1, αρT , βρT ).

If ρT → ρ < ∞, the limiting object can have any stochastic shape determined by
Gp(1, αρ, βρ).

Example 3.5. Let the situation be as in Proposition 3.2 with µt arbitrary and τt = ρt+1

in (9). The normalised radius vector function is distributed as

RT
ERT (0)

∼ Gp(1, α
ρ2
T

∑T
t=1 ρ

2
t

, β
ρ2
T

∑T
t=1 ρ

2
t

).

If ρ2
T /

∑T
t=1 ρ

2
t → 0 as T → ∞, the objects become more irregular both globally and

locally as T increases. An example is shown in Figure 4.

9



Jón sdótt i r and Jen s en ( 2 0 0 5 )

Figure 4: Right: Simulated growth pattern under the model described in Example 3.5. Left: The
corresponding normalised profiles, representing the shape of the object.

4 An application

For illustrative purposes, we consider a data set consisting of human breast cancer cell
islands, which have been observed in vitro in a nutrient medium on a flat dish. This
data set has earlier been analysed in Cressie and Hulting (1992). Three profiles of
cancer cell islands are available. The data set is presented in the upper left corner of
Figure 5.

Figure 5: The tumour growth data (upper left corner) and simulations under the second-order growth
model with µt, αt and βt replaced by the maximum likelihood estimates.

The centre of mass of Y0 is used as reference point. The data consist of increments

zt

(2πi

nt

)

, i = 0, 1, . . . , nt − 1,

in nt directions, equidistant in angle, t = 0, 1. For convenience, zt is normalised with
the average radius of Y0. Only digitised images are available. As nt, we have used
approximately 25% of the number of pixels on the boundary of the digitised image of
Yt, t = 0, 1.

Under the p-order growth model, the mean value parameters µt can be estimated by
the average observed increment at time t. The variance parameters can be estimated

10
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using the likelihood function

L(α0, β0, α1, β1) =
∏

t=0,1

Lt(αt, βt),

where Lt(αt, βt) is the likelihood function based on the Fourier coefficients At,k and
Bt,k of Zt of order k ≤ Kt, say. Since At,k ∼ Bt,k ∼ N(0, λt,k) are all independent and

λ−1
t,k = αt + βt(k

2p − 22p), k = 2, 3, . . . ,

the likelihood becomes

Lt(αt, βt) =

Kt
∏

k=2

[αt + βt(k
2p − 22p)] exp(−ct,k[αt + βt(k

2p − 22p)]), (11)

where ct,k = [a2
t,k + b2t,k]/2 are the observed phase amplitudes. In applications, at,k and

bt,k are replaced by discrete versions of the integrals in (4).
The choice of the cut-off value Kt is very important. Clearly, Kt must not be too

large in order to avoid that the estimates are influenced by the digitisation effects.
On the other hand, if the cut-off value Kt is too small information about the growth
pattern is lost. The choice of Kt should be an intermediate value for which the estimate
of the local parameter βt is stable. Whether a specific choice of Kt is appropriate can
also be judged from visual inspection of simulated growth patterns under the estimated
model.

For the two increments z0 and z1, we used (n0,K0) = (60, 25) and (n1,K1) =
(120, 30), respectively. The maximum likelihood estimates under the second-order
growth model are

µ̂0 = 1.04, log(α̂0) = 5.29, log(β̂0) = −1.88,

µ̂1 = 2.53, log(α̂1) = 3.18, log(β̂1) = −3.54.

The estimated regression curves

λ̂t,k =
1

α̂t + β̂t(k4 − 24)
, t = 0, 1 k = 2, 3, . . .

are shown in Figure 6, together with 95% confidence limits for the logarithm of the
phase amplitudes. The model fits the data well which can also be seen from the fractile
diagrams (QQ plots) for the normalised Fourier coefficients, also shown in Figure 6.

Simulations under the second-order growth model with µt, αt and βt replaced by
the maximum likelihood estimates are shown in Figure 5.

Since the data set only contains two increments, it is not meaningful to try to
evaluate the Markov assumption. Note also that the Zts are assumed independent but
not necessarily identically distributed. If

αt = γβt, (12)

we have that
√

βt(Zt − µt) ∼ Gp(0, γ, 1)

are independent and identically distributed. Thus, under the assumption (12) of pro-
portionality and with sufficient number T of time points, we can examine the indepen-
dence of

√

βt(Zt(θ) − µt), t = 0, 1, . . . , T − 1,

for selected values of θ ∈ [0, 2π), using a runs test, for instance.

11
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Figure 6: The two upper figures show the observed phase amplitudes (full-drawn lines) together
with the estimated regression curves (stippled) and 95% confidence limits, t = 0, 1. The two lower

figures show fractile diagrams (QQ plots) for the normalised Fourier coefficients at,k/
q

λ̂t,k, bt,k/
q

λ̂t,k

together with 95% confidence limits, t = 0, 1.

5 A time series extension

Let us suppose that

Zt = µt + τtXt,

where X = {Xt} is a stationary time series of cyclic Gaussian processes satisfying the
ARMA model equation

Xt − φ1Xt−1 − · · · − φrXt−r = Wt − ψ1Wt−1 − · · · − ψsWt−s. (13)

We assume that W = {Wt} is a sequence of i.i.d. stationary cyclic Gaussian processes
on [0, 2π) with

Wt ∼ Gp(0, α, β).

If φi = 0, i = 1, . . . , r, and ψj = 0, j = 1, . . . , s, Z follows the p-order growth model
with independent increments, treated in the previous sections.

Under the general ARMA model (13), the Fourier coefficients of X and W of a
given order follow a one-dimensional ARMA model. Furthermore, for fixed θ ∈ [0, 2π),
Xt(θ) follows a one-dimensional ARMA model. Aspects of this time series approach
has earlier been discussed in Alt (1999). An early example concerning year ring widths
is discussed in Kronborg (1981).

Note that in the special case of a MA model (φ1 = · · · = φr = 0), the marginal
distribution of Zt belongs to the class of p-order models

Zt ∼ Gp(µt, αt, βt),

12
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where

αt =
α

τ2
t [1 + ψ2

1 + · · · + ψ2
s ]
,

βt =
β

τ2
t [1 + ψ2

1 + · · · + ψ2
s ]
.

Note also that in this case Zt and Zt′ are independent if |t− t′| > s.

6 Extension to three dimensions

The p-order growth model for planar objects can easily be extended to three dimensions.
Consider a spatial compact object Yt ⊂ R

3 which is star-shaped for all t with respect
to z ∈ R

3. Clearly the boundary of the object can be determined by

{z +Rt(θ, ϕ) : θ ∈ [0, 2π), ϕ ∈ [0, π]},

where Rt(θ, ϕ) is the distance from z to the boundary of Yt in direction

ω(θ, ϕ) = (sinϕ cos θ, sinϕ sin θ, cosϕ).

In the same way as in the planar case we let the object Yt+1 be a stochastic transfor-
mation of the object Yt, such that

Rt+1(θ, ϕ) = Rt(θ, ϕ) + Zt(θ, ϕ),

θ ∈ [0, 2π), ϕ ∈ [0, π], where {Zt} is a time series of Gaussian processes on [0, 2π)×[0, π].
Writing the stochastic process Zt in terms of its Fourier-Legendre series expansion we
get, cf. Hobolth (2003),

Zt(θ, ϕ) =

∞
∑

n=0

m=n
∑

m=−n

At,n,mφn,m(θ, ϕ),

where φn,m are the spherical harmonics and At,n,m are random coefficients. Using a
similar reasoning as in Hobolth (2003) it can be seen that At,0,0 determines the overall
growth from Yt to Yt+1. The coefficients At,1,m, m = −1, 0, 1, control the asymmetry of
growth, and the remaining coefficients At,n,m for n ≥ 2, m = −n, . . . , n, affect how the
growth appears globally for small n and locally for large n. A p-order growth model
can be defined by assuming that At,0,0 = µt, At,1,m = 0 for m = −1, 0, 1 and

At,n,m ∼ N(0, λt,n),

n = 2, 3, . . . , m = −n, . . . , n, independent, where

λ−1
t,n = αt + βt(n

2p − 22p).

As in the planar case, the increment processes may be chosen to be normal after a
transformation. A simulation from such a model, where {Zt} is a series of log-Gaussian
processes, is shown in Figure 7.

13
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Figure 7: Simulation from a 3D log-Gaussian radial growth model.

7 Discussion

The p−order growth model has mainly been suggested as a general tool for analysing
observed radial growth patterns. The model may, however, also be of interest as a
building block in other modelling situations, for instance in models for tessellations
where cells are created by radial growth from each point of a point process.

The p−order growth model can be extended in various ways. It is obviously easy
to modify the model such that the increments are Gaussian after a transformation. An
example is log-Gaussian increments. If the number of increments observed is not too
small it is also of interest to try to model the dependency in the series Z = {Zt}. We
have discussed a time series approach. Another alternative is to look at Lévy based
models,

Zt(θ) =

∫

At(θ)
ht(a; θ)Z(da),

At(θ) ∈ B, where B is the Borel field of [0, 2π)×R and Z is a Lévy basis on [0, 2π)×R.
A detailed study of the Lévy based growth models is ongoing research in our group, cf.
Schmiegel et al. (2005). These models can also be formulated in continuous time.

The likelihood used in the application is correct if the increments are independent.
If the marginal distributions of the Zts belong to the class of p-order models but the
Zts are dependent, the likelihood may still be used as a pseudo-likelihood.

In relation to tumour growth in particular, it will also be of interest in the future to
try to embed specific mathematical models in a stochastic framework. A starting point
could here be a study of dynamic point process models with a specified time-dependent
intensity function.
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1 Introduction

Modelling of biological growth patterns is a field of mathematical biology that has
attracted much attention in recent years, see e.g. Chaplain et al. (1999) and Capasso
et al. (2002). The biological systems modelled are diverse and comprise growth of plant
populations, year rings of trees, capillary networks, bacteria colonies, and tumours.
This chapter deals with spatio-temporal models for such random growing objects,
using spatio-temporal point processes or the theory of Lévy bases. For both type of
models, the Poisson process will play a key role, either as a reference process or more
directly in the model construction.

The first main group of models to be discussed are based on spatio-temporal point
processes. We let Z = {(ti, ξi)} be a spatio-temporal point process on S = R+ × X
where X is a bounded subset of R

d with positive volume |X |. The object at time t is
given by

Xt = {ξi ∈ X : (ti, ξi) ∈ Z, ti ≤ t}.

Note that Xt′ ⊆ Xt for t′ ≤ t. The object Xt is called the cumulative spatial point
process at time t. Figure 1 shows an example of a growth pattern that may be modelled
using this framework. The data come from an experiment on a Danish barley field
and show the development in a subregion of the field of a particular type of weed
plant (Trifolium, clover) at six different dates. Such point patterns show clustering
compared to a Poisson pattern and have been the inspiration for developing important
new models of Cox type, cf. Brix (1998, 1999), Brix and Diggle (2001), Brix and Møller
(2001), Møller (2003) and references therein. The points ξi may also be used as centres
of ‘cells’ Ξ(ξi) ⊂ R

d, modelled as random compact sets, see Molchanov (2005). An
important early example of such a model, describing tumour growth, can be found in
Cressie and Hulting (1992), see also Cressie and Laslett (1987) and Cressie (1991a,b).

A second main group of models describes how the boundary of a full-dimensional
object expands in time. We will mainly discuss growth models based on Lévy bases, cf.
Barndorff-Nielsen et al. (2003), Barndorff-Nielsen and Schmiegel (2004) and references
therein. One example of such a model describes the growth of a star-shaped object,
using its radial function. In the planar case, the radial function of an object Yt at time
t gives the distance Rt(φ) from a reference point z to the boundary of Yt in direction

1
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Figure 1: The development of a particular type of weed plant (Trifolium, clover) at six different time
points. See Brix (1998, 1999) and Brix and Møller (2001).

φ ∈ [−π, π). For such objects, we study model specifications of the type

Rt(φ) = exp

(

∫

At(φ)
ft(ξ, φ)Z(dξ)

)

,

where Z is a factorisable or a normal Lévy basis, At(φ) is an ambit set (a concept
introduced in Barndorff-Nielsen and Schmiegel (2004)) and ft(ξ, φ) is a deterministic
weight function. As we shall see, it is possible for such a model to derive an explicit
expression for

Cov(Rt(φ), Rt′(φ
′))

in terms of the three components of the model. Figure 2 shows an example of a growth
pattern that may be modelled using this framework. These data are part of a larger
data set that has been discussed in Brú et al. (1998). Notice that the boundary of the
growing tumour cell island is very irregular.

In Section 2, models based on spatio-temporal point processes are presented while
models based on Lévy bases are dealt with in Section 3. Basic results for spatio-
temporal point processes are briefly reviewed in Appendix A.

2 Models based on spatio-temporal point processes

We will start by giving a short and fairly self-contained introduction to the theory
of spatio-temporal point processes. For a more detailed treatment, cf. Daley and
Vere-Jones (2002). Expositions with emphasis on purely spatial point processes can
be found in Stoyan et al. (1995), Van Lieshout (2000), Diggle (2003), and Møller and
Waagepetersen (2003).

2.1 Set-up

Let Z = {(ti, ξi)} be a spatio-temporal point process on S = R+ × X . We assume
that the projections of Z on X and R+ are both simple point processes (no multiple
points). In the following we let

Zt = {(ti, ξi) ∈ Z : ti ≤ t}
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Figure 2: Contours of a brain tumour cell island at nine different time points. See Brú et al. (1998).

be the restriction of Z to St = (0, t] × X . Note that since Z is locally finite and St

is bounded, Zt is a finite random subset of St. The corresponding cumulative spatial
processes are denoted

X = {ξi : (ti, ξi) ∈ Z}, Xt = {ξi : (ti, ξi) ∈ Zt}.
Note that X and Xt are the projections of Z and Zt, respectively, on X , see also Figure
3.

space

time
t

X

Figure 3: An illustration of the set-up. The points constitute the spatio-temporal point process Z and
the dashed lines indicate the projections on X of points arrived before or at time t. The projected
points in X constitute Xt.

Since the projection of Z on R+ is simple, the temporal part of the process gives a
natural ordering of the points that does not exist in general for a spatial point process.
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This feature will be used at various places in the following. Unless stated otherwise,
the numbering of the points of Z is such that

t1 < t2 < · · · < tn < · · · .

It will be assumed that Zt has a density gZt with respect to the unit rate Poisson
point process on St. Because of the natural ordering of the time axis, there are also
alternative and perhaps more natural ways of specifying the distribution of Z. Thus,
the process can be defined by two families of conditional probability densities

{

pn(t | t(n−1), ξ(n−1)) : n ∈ N
}

(1)

and
{

fn(ξ | t(n−1), ξ(n−1), tn) : n ∈ N
}

(2)

with respect to the Lebesgue measure on R and R
d, respectively. Here and in what

follows we use the short notation t(n), ξ(n) for

(t1, ξ1), . . . , (tn, ξn).

The density pn(· | t(n−1), ξ(n−1)) describes the distribution of the n-th time point
given the history of the whole process up to time tn−1, whereas the density fn(· |
t(n−1), ξ(n−1), tn) describes the distribution of the spatial point at time tn given the
history up to time tn−1 and the arrival time of the n-th point. The density pn(· |
t(n−1), ξ(n−1)) has support (tn−1,∞) while the density fn(· | t(n−1), ξ(n−1), tn) has sup-
port X .

In Appendix A, it is shown for a general spatio-temporal point process how the
density of the process Zt can be expressed in terms of conditional densities. A proof
of this well-known result can be found in Daley and Vere-Jones (2002) on conditional
intensities and likelihoods for marked point processes. An alternative proof may be
found in Appendix A. Here, we just present the result. The density of Zt with respect
to the unit rate Poisson point process on St can be expressed as

gZt(z) = exp(t|X |)
n
∏

i=1

[pi(ti | t(i−1), ξ(i−1))fi(ξi | t(i−1), ξ(i−1), ti)]

× Sn+1(t | t(n), ξ(n)),

where
z = {(t1, ξ1), . . . , (tn, ξn)}, t1 < · · · < tn.

Here

Sn+1(t | t(n), ξ(n)) =

∫ ∞

t

pn+1(u | t(n), ξ(n))du, t > tn,

is the survival function of pn+1(· | t(n), ξ(n)).
For spatio-temporal point processes it is of particular interest to study the condi-

tional intensities. For a sequence {(ti, ξi)} with

0 = t0 < t1 < · · · < tn < · · · ,

the conditional intensity is

λ⋆(t, ξ) = λg(t)f
⋆(ξ | t), if tn−1 < t ≤ tn,
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where

λg(t) =
pn(t | t(n−1), ξ(n−1))

Sn(t | t(n−1), ξ(n−1))
, if tn−1 < t ≤ tn,

f⋆(ξ | t) = fn(ξ | t(n−1), ξ(n−1), t), if tn−1 < t ≤ tn.

The conditional intensity λ⋆ has a simple intuitive interpretation. Thus,

λ⋆(t, ξ)dtdξ

can be interpreted as the conditional probability of observing a point at (t, ξ) given
the previous history of the process and a waiting time for the n−th point at least up
till t. It can be shown that the density of Zt can be written as

gZt(z) = exp

(

−
∫

St

[λ⋆(s, ξ) − 1]dsdξ

) n
∏

i=1

λ⋆(ti, ξi), (3)

where
z = {(t1, ξ1), . . . , (tn, ξn)}, t1 < · · · < tn.

For further details, see Appendix A.

2.2 The Poisson case

The process Z is Poisson with intensity function λ if the number Z(A) of points falling
in any Borel subset A ∈ B(S) is Poisson distributed with parameter

∫

A

λ(s, ξ)dsdξ.

For a Poisson process, Z(A1) and Z(A2) are independent if A1 and A2 are disjoint.
If Z is Poisson, the conditional intensity function λ⋆ is equal to the unconditional

intensity function λ, and the density of Zt with respect to the unit rate Poisson point
process on St is given by

gZt(z) = exp(−
∫

St

[λ(s, ξ) − 1]dξds)

n
∏

i=1

λ(ti, ξi).

The distribution of the cumulative spatial process Xt is also Poisson with intensity
function

λt(ξ) =

∫ t

0
λ(s, ξ)ds.

If the intensity function can be written as λ(t, ξ) = λ1(t)λ2(ξ), then

λt(ξ) = a(t)λ2(ξ),

where

a(t) =

∫ t

0
λ1(s)ds.

Thus, if the intensity function is of product form, the cumulative point pattern at time
t is a scaled version of a spatial template Poisson point process with intensity function
λ2(ξ).

5
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In the Poisson case, the conditional densities (1) and (2) are

pn(t | t(n−1), ξ(n−1)) = λg(t) exp(−
∫ t

tn−1

λg(s)ds), t > tn−1,

and

fn(ξ | t(n−1), ξ(n−1), tn) =
λ(tn, ξ)

λg(tn)
, ξ ∈ X ,

where

λg(t) =

∫

X
λ(t, ξ)dξ.

These results hold under the assumption

∫ ∞

t

λg(s)ds = ∞ for all t ≥ 0.

The conditional densities can be given simple interpretations. Thus, let Tn be the
arrival time of the n−th point. Then, given (t(n−1), ξ(n−1)),

∫ Tn

tn−1

λg(s)ds

is exponentially distributed with parameter 1. The density of the position Ξn of the
n−th point, given (t(n−1), ξ(n−1), tn), is proportional to λ(tn, ·).

Poisson point processes play a fundamental role in stochastic geometry, see Stoyan
et al. (1995) and references therein. In relation to growth modelling, an important
model class is the class of Boolean models. In a purely spatial context, a Boolean
model is defined by

Y = ∪iΞ(ηi),

where {ηi} is a Poisson point process on X and {Ξ(ηi)} is a sequence of independent
and identically distributed random sets, independent of the points {ηi} and centred at
the points of the point process. In particular, Boolean models have been used in the
modelling of tumour growth by Cressie and coworkers, see Cressie and Laslett (1987),
Cressie (1991a,b) and Cressie and Hulting (1992). Their model can be described as
a sequence of Boolean models such that the tumour Yt at time t is a union of balls
placed at uniform random positions inside the tumour Yt−1 at time t − 1. Formally
this means

Yt = ∪{Bd(ξi, R) : ξi ∈ Yt−1},

where {ξi} is a homogeneous Poisson point process in X . They also consider more
regular point patterns than Poisson and, in the planar case, rectangular cells instead
of circular cells in the growth process and establish the relation to interacting particle
systems. Suitable transformations are introduced in order to be able to model a higher
growth rate at parts of the boundary with higher curvature.

More recently, Deijfen (2003) has studied a random object Yt defined as a connected
union of randomly sized balls constructed from a spatio-temporal Poisson point process.
It is shown that the asymptotic shape of the object is spherical. Other stochastic
models of tumour growth also have asymptotic spherical growth, cf. Richardson (1973),

6
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Schurger (1979), Bramson and Griffeath (1980), Bramson and Griffeath (1981) and
Durret and Liggett (1981).

The model suggested in Cressie and Hulting (1992) has been the inspiration for the
discrete Markov growth model studied recently in Jónsdóttir and Jensen (2005). The
increments follow a cyclic Gaussian p−order process on the circle, see also Hobolth
et al. (2003).

2.3 Cox processes

A spatio-temporal Cox process Z on S is a spatio-temporal Poisson point process with
a random intensity function Λ, cf. Cox (1955), Møller and Waagepetersen (2003) and
references therein. Such a process exhibits clustering between the points. The intensity
function of a spatio-temporal Cox process is given by λ(t, ξ) = EΛ(t, ξ) and the pair
correlation function by

ρ((t, ξ), (s, η)) =
E(Λ(t, ξ)Λ(s, η))

EΛ(t, ξ)EΛ(s, η)
.

Note that

ρ((t, ξ), (s, η))EΛ(t, ξ)EΛ(s, η)dtdξdsdη

can be interpreted as the probability that Z contains points simultaneously in two
infinitesimal regions around (t, ξ) and (s, η).

It is clear that Zt is a spatio-temporal Cox process on St driven by the restriction
Λt of Λ to St. The cumulative spatial process Xt is a Cox process on X driven by

Λt(ξ) =

∫ t

0
Λ(s, ξ)ds.

The intensity function of Xt is λt(ξ) = EΛt(ξ). It can be shown that for t′ ≤ t, Xt′

has the same distribution as a process obtained by independent thinning of the points
in Xt with retention probability for a point located at ξ ∈ X given by

pt′,t(ξ) =
λt′(ξ)

λt(ξ)
.

A spatio-temporal Cox process with log-Gaussian intensity function has been used
with success in the analysis of weed data of the type shown in Figure 1, see Møller
et al. (1998) or Brix and Møller (2001). More specifically, the model considered is of
the following form

log Λ(t, ξ) = m(t, ξ) + W (ξ),

where m is a mean function satisfying

m(t′, ξ) ≤ m(t, ξ) for t′ ≤ t, ξ ∈ X ,

and W is a zero mean Gaussian process on X . In fact, a bivariate model of Cox type is
considered for the modelling of two types of weed plants. An extension of this approach,
involving an Ornstein-Uhlenbeck stochastic differential equation, is discussed in Brix
and Diggle (2001).

7



Jen s en et a l . ( 2 0 0 6 )

Another important class of spatio-temporal Cox processes is the class of spatio-
temporal shot noise Cox processes. As an example, consider a Cox process Z driven
by

Λ(t, ξ) =
∑

(u,c,γ)∈Φ

γk((u, c), (t, ξ)),

where k((u, c), ·) is a kernel (i.e. a probability density on S) and Φ is a Poisson point
process on S×R+. A comprehensive treatment of the purely spatial case can be found
in Møller (2003). See also the recent paper by Møller and Torrisi (2005). The process
can be viewed as a cluster process since

Z|Φ ∼ ∪(u,c,γ)∈ΦUu,c,γ,

where Uu,c,γ, (u, c, γ) ∈ Φ, are independent spatio-temporal Poisson processes with
intensity functions

γk((u, c), (·, ·)).
The cumulative spatial process Xt is also a cluster process of Cox-type since

Xt|Φ ∼ ∪(u,c,γ)∈ΦVu,c,γ,

where Vu,c,γ, (u, c, γ) ∈ Φ, are independent Poisson point processes on X with intensity
function

γ

∫ t

0
k((u, c), (s, ·))ds.

Another important model class is that of shot noise G Cox processes, also suggested
for the analysis of the weeds data, cf. Brix (1998, 1999) and Brix and Chadoeuf (2002).
These processes are defined through the class of G−measures, which originates from the
so-called G−family of probability distributions, extending gamma and inverse Gaussian
distributions.

2.4 Markov point processes

In recent years, Markov models for inhomogeneous spatial point processes have been
studied quite intensively, see Stoyan and Stoyan (1998), Baddeley et al. (2000), Jensen
and Nielsen (2000), Hahn et al. (2003) and references therein. The majority of the
inhomogeneous models has been constructed by introducing inhomogeneity into a ho-
mogeneous Markov point process X, defined on a bounded subset X of R

d. In this
section, we will discuss extensions of these inhomogeneous point process models to
a spatio-temporal framework. Extensions can be constructed in an empirical fash-
ion, writing down a density for the spatio-temporal point pattern or in a mechanistic
fashion, using conditional intensities.

We start by giving a short review of recently suggested inhomogeneous spatial
Markov point processes. It should be noted that Markov models are primarily appro-
priate for describing inhibition between the points.

2.4.1 Inhomogeneous spatial point processes

In principle, any given homogeneous template point process can be turned into an
inhomogeneous point process by independent thinning with a retention probability
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p(ξ) that depends on the location ξ ∈ X . As Baddeley et al. (2000) show, second
order functions such as Ripley’s K-function can be defined for thinned point processes
such that they are identical to the corresponding second order functions of the original
process. However, thinning changes the interaction structure. Thus, if a very regular
point process is subjected to inhomogeneous thinning, regions of low intensity seem
to exhibit almost no interaction and look similar to a realisation of a Poisson process
while regions with high intensity will show the original very regular pattern.

Another method that is applicable to any template process is to generate inhomo-
geneity by a nonlinear transformation of the spatial coordinates. Jensen and Nielsen
(2000) prove that the process resulting from transformation of a Markov point process
is again Markov. Transformation does in general not preserve (local) isotropy of the
template process. See also Jensen and Nielsen (2004).

Ogata and Tanemura (1986) and Stoyan and Stoyan (1998) suggest to introduce
inhomogeneity into Markov or Gibbs models by location dependent first order inter-
actions. As an example, consider a Strauss template X on X with parameters β > 0,
γ ∈ [0, 1] and R > 0, which is defined by a density

fX(x) ∝ βn(x)γs(x), s(x) =
∑

{η,ξ}⊆x

1[0,R](‖η − ξ‖), (4)

with respect to the unit rate Poisson process on X . In (4), the sum is over all pairs of
different points in x. The resulting inhomogeneous process has density

fX(x) ∝
∏

η∈x

β(η)γs(x), s(x) =
∑

{η,ξ}⊆x

1[0,R](‖η − ξ‖) (5)

with respect to the unit rate Poisson process on X . For such an inhomogeneous process,
the degree of regularity in the resulting process depends on the intensity as in the case
of thinning, described above.

An approach that preserves locally the geometry of the template model, in partic-
ular the degree of regularity and also isotropy, was introduced in Hahn et al. (2003). It
can be applied to models that are specified by a density with respect to the unit rate
Poisson process. The idea of the approach is that a location dependent scale factor
c(ξ) > 0 changes the local specification of the model such that in a neighbourhood of
any point ξ ∈ X , the inhomogeneous process behaves like the template process scaled
by the factor c(ξ). This is achieved by defining the locally scaled process Xc by a den-

sity f
(c)
Xc

with respect to an inhomogeneous Poisson process of rate c(ξ)−d. The density

f
(c)
Xc

is obtained (up to a normalising constant) from the template density fX by replac-

ing all k-dimensional volume measures νk, k = 0, 1, . . . , d, that occur in the definition
of fX by their locally scaled counterparts νk

c , where νk
c (A) :=

∫

A
c(u)−kνk(du) for all

A ∈ Bd. Note that according to previous notation νd(·) = | · |.
A locally scaled version of the Strauss process has thereby the density

f
(c)
Xc

(x) ∝ βn(x)γsc(x), sc(x) =
∑

{η,ξ}⊆x

1[0,R](ν
1
c ([η, ξ])), (6)

where

ν1
c ([η, ξ]) :=

∫

[η,ξ]
c(u)−1ν1(du)

9
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is the locally scaled length of the segment [η, ξ]. This modification applies to all Markov
point processes where the higher order interaction is a function of pairwise distances.
The resulting inhomogeneous point process is again Markov, now with respect to the
neighbour relation

η ∼ ξ ⇐⇒ ν1
c ([η, ξ]) ≤ R.

Since evaluation of the integral in the locally scaled length measure may be compu-
tationally expensive in the general case, the scaled distance of two points may be
approximated by

ν1
c ([η, ξ]) ≈ ‖η − ξ‖

(c(η) + c(ξ))/2
. (7)

Using (7) in (6), and adjusting the first order term in (6), we get the density fXc of
Xc with respect to the unit rate Poisson process as

fXc(x) ∝ βn(x)γsc(x)
∏

η∈x

c(η)−d, sc(x) =
∑

{η,ξ}⊆x

1
[0,

c(η)+c(ξ)
2

R]
(‖η − ξ‖). (8)

As shown in Hahn et al. (2003), if the scaling function is slowly varying compared to
the interaction radius, the local intensity in a point ξ of such a locally scaled process
is in good approximation proportional to c(ξ)−d. Figure 4 and 5 show realisations of
locally scaled Strauss processes. Notice that locally these processes look like a scaled
version of a homogeneous Strauss process.

The statistical analysis of local scaling models is discussed in Prokesova et al.
(2005).

Figure 4: (Left) Homogeneous template Strauss process X on [−1, 1]2 with parameters β = 200,
γ = 0.1, R = 0.1. (Right) Inhomogeneous Strauss process Xc with c(ξ) = ‖ξ‖2 + 0.1. (Reprinted from
Hahn et al. (2003).)

2.4.2 Spatio-temporal extensions

How can we construct spatio-temporal extensions of these inhomogeneous Markov
point processes? An empirical approach is to write down an expression for the density
gZt of Zt with respect to the unit rate Poisson point process on St. If the interactions
are purely spatial, an obvious suggestion is

gZt(z) ∝
n
∏

i=1

λ(ti, ξi) ·
∏

y⊆2x

ϕ(y),

10
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Figure 5: Inhomogeneous Strauss process obtained by local scaling. The value of the interaction
parameter is γ = 0, corresponding to a hardcore model. To each point ξ, a circular disc of radius
c(ξ)
2

R is attached.

where

z = {(t1, ξ1), . . . , (tn, ξn)},
x = {ξ1, . . . , ξn},

and ⊆2 indicates that only subsets with at least two elements are considered. If

λ(t, ξ) = λ1(t)λ2(ξ),

then it can be shown that the density of Xt is of the form

fXt(x) ∝ a(t)n(x)
∏

ξ∈x

λ2(ξ)
∏

y⊆2x

ϕ(y),

where

a(t) =

∫ t

0
λ1(s)ds.

Furthermore, Xt′ can be obtained from Xt by independent thinning, t′ ≤ t.

Inspired by these results, we may consider backwards temporal thinning of a spatial
Markov point process X with intensity function λ, say. Let the resulting spatio-
temporal point process be denoted by

Z = {(Tξ, ξ) : ξ ∈ X}.

If, conditionally on X,

Tξ, ξ ∈ X,

are independent and Tξ has density pξ, then the cumulative process Xt has intensity
function

λt(ξ) = λ(ξ)

∫ t

0
pξ(s)ds.

11
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Furthermore, for all t′ ≤ t, Xt′ can be obtained from Xt by independent thinning, with
retention probability for a point located at ξ given by

pt′,t(ξ) =

∫ t′

0
pξ(s)ds/

∫ t

0
pξ(s)ds.

Note that the special K−function defined in Baddeley et al. (2000) will be the same
for all processes Xt. Note also that the thinning, backwards in time, implies that Xt

may look Poisson-like for small t.

Below, we study thinning of a locally scaled Strauss process.

Example 2.1 Temporal thinning of a locally scaled Strauss process. Let c1 : R+ → R

and c2 : R
d → R be positive and bounded local scaling functions for time and space,

respectively. Let the density of X be a locally scaled Strauss process

fX(x) ∝ βn(x)γsc2 (x)
∏

η∈x

c2(η)−d,

where

sc2(x) =
∑

{η,ξ}⊆x

1[0,R](ν
1
c2

([η, ξ])).

A birth time at ξ is distributed with a density which does not depend on ξ

pξ(t) ∝ c1(t)
−1, (9)

if t ∈ [0, T ], and pξ(t) = 0, otherwise.

Figure 6 shows the result of a simulation of a temporal thinning of such a locally
scaled Strauss process on [−1, 1]2 with β = 100, γ = 0.01, R = 0.1 and local scaling
function c2(ξ) = 0.2 + 4‖ξ‖2. The birth times have density given in (9) with c1(t) =
0.2+0.05t and T = 12. The figure shows the corresponding cumulative point patterns
Xt′ for t′ = 2, 4, 8, 12. Note that for small t′, Xt′ appears Poisson-like.

Another possibility is specification of a spatio-temporal point process model in
terms of conditional intensities, see e.g. Hawkes (1971) or Schoenberg et al. (2002)
and references therein. This approach could be characterised as mechanistic. Here,
the form of the conditional intensity may be motivated by the form of the Papangelou
conditional intensity for a purely spatial point process. A local scaling example is given
below.

Example 2.2 Let c1 : R+ → R and c2 : R
d → R be positive and bounded scaling

functions for time and space, respectively. We define the spatio-temporal point process
Z by its conditional intensities,

λ⋆(t, ξ) =
βγsc2(ξ|ξ(n−1))

c1(t)c2(ξ)d
, tn−1 < t ≤ tn, ξ ∈ X ,

where

sc2(ξ | ξ(n−1)) =
n−1
∑

i=1

1[0,R](ν
1
c2

([ξ, ξi])).
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Figure 6: Result of a simulation of a backwards thinning of a locally scaled Strauss process on [−1, 1]2.
For details, see Example 2.1.

In this case, the density of Zt is of the following form

gZt(z) = exp
(

−
n
∑

i=1

∫ ti

ti−1

∫

X

(βγsc2 (ξ|ξ(i−1))

c1(t)c2(ξ)d
− 1
)

dtdξ
)

n
∏

i=1

βγsc2 (ξi|ξ(i−1))

c1(ti)c2(ξi)d

= exp
(

−
n
∑

i=1

∫ ti

ti−1

∫

X

(βγsc2 (ξ|ξ(i−1))

c1(t)c2(ξ)d
− 1
)

dtdξ
)

βn(z)γ
Pn

i=1 sc2(ξi|ξ(i−1))

×
n
∏

i=1

1

c1(ti)c2(ξi)d
.

Figure 7 shows the result of a simulation on [−1, 1]2 of this type of spatio-temporal
extension of the locally scaled Strauss process, with β = 3.61, γ = 0.01, R = 0.1,
c1(t) = 0.2+0.05t and c2(ξ) = 0.2+4‖ξ‖2. The parameter values are thereby identical
to those chosen in the previous example, except for the value of β which has been
chosen so that the number of points are expected to be the same in the two examples.

3 Lévy based growth models

In this section, we will discuss an alternative approach to modelling of random growing
objects. We will concentrate on the case of random planar star-shaped objects. The
model describes how the boundary of the growing object expands in time. The basic
notion of this approach is that of Lévy bases.

3.1 Set-up

This subsection provides a very brief overview of the theory of Lévy bases, in particular,
the theory of integration with respect to a Lévy basis. For a more detailed account,

13
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Figure 7: Result of a simulation on [−1, 1]2 of the spatio-temporal extension of the locally scaled
Strauss process described in Example 2.2. For details, see the text.

see Barndorff-Nielsen and Schmiegel (2004) and references therein. We will use the
following notation for the cumulant function of a random variable X,

C{λ ‡ X} = log E(eiλX).

Let (R,A) be a measurable space. In what follows, we will assume that R is
a Borel subset of R

n. Let A = B(R) be the σ−algebra of Borel subsets of R and
let Ab denote the class of bounded elements of A. A collection of random variables
Z = {Z(A) : A ∈ A} or Z = {Z(A) : A ∈ Ab} is said to be an independently scattered
random measure, if for every sequence {An} of disjoint sets in A, respectively Ab, the
random variables Z(An) are independent and Z(

⋃

An) =
∑

Z(An) a.s., where in case
Z = {Z(A) : A ∈ Ab} we furthermore require ∪An ∈ Ab. If, in addition, Z(A) is
infinitely divisible for all A ∈ A, Z will be called a Lévy basis. (The need to distinguish
between the two cases A and Ab comes from the possible difficulty in controlling the
countable sum

∑

Z(An) if Z can take both positive and negative values. When that is
the case Z should strictly speaking be referred to as an independently scattered signed
random measure.)

When Z is a Lévy basis, the cumulant function of Z(A) can be written as

C{λ ‡ Z(A)} = iλa(A) − 1

2
λ2b(A) +

∫

R

(eiλx − 1 − iλx1[−1,1](x))U(dx,A), (10)

where a is a signed measure on A or Ab, b is a positive measure on A or Ab, U(dx,A)
is a Lévy measure on R for fixed A and a measure on A or Ab for fixed dx. The Lévy
basis is said to have characteristic triplet (a, b, U) and the measure U is referred to as
the generalised Lévy measure.

14
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The cumulant function (10) can also be expressed in an infinitesimal form

C{λ ‡ Z(dξ)} = iλa(dξ) − 1

2
λ2b(dξ) +

∫

R

(eiλx − 1 − iλx1[−1,1](x))U(dx,dξ).

Without essential loss of generality we can assume that the measure U factorises as

U(dx,dξ) = V (dx, ξ)µ(dξ),

where µ is some measure on R and V (dx, ξ) is a Lévy measure for fixed ξ. A Lévy
basis is called factorisable, if the Lévy measure V (·; ξ) does not depend on ξ. If a Lévy
basis is factorisable, then one can write

C{λ ‡ Z(dξ)} = iλa(dξ) − 1

2
λ2b(dξ) + C{λ ‡ Z ′}µ(dξ),

where Z ′ is an infinitely divisible random variable with cumulant function

C{λ ‡ Z ′} =

∫

R

(eiλx − 1 − iλx1[−1,1](x))V (dx).

We will now give examples of Lévy bases.

Example 3.1 Poisson Lévy basis. The Poisson basis has characteristic triplet (µ, 0, U),
where U(dx,dξ) = δ1(dx)µ(dξ) and δ1 is Dirac’s delta function at 1, so Z is factoris-
able. Clearly the cumulant function of Z(A) is

C{λ ‡ Z(A)} = (eiλ − 1)µ(A).

We have Z(A) ∼ Pois(µ(A)). The Poisson point process was dealt with in more detail
in Section 2.2. �

Example 3.2 Normal Lévy basis. The normal Lévy basis has characteristic triplet
(αµ, σ2µ, 0) and the cumulant function is

C{λ ‡ Z(A)} = iλαµ(A) − 1

2
λ2σ2µ(A).

Note that Z(A) ∼ N(αµ(A), σ2µ(A)). �

Example 3.3 Gamma Lévy basis. The gamma Lévy basis has characteristic triplet
(a, 0, U) where

a(dξ) =
1 − e−α(ξ)

α(ξ)
µ(dξ),

U(dx,dξ) = 1R+(x)x−1e−α(ξ)xdxµ(dξ),

and α(ξ) > 0. If α(ξ) does not depend on ξ, α(ξ) = α, say, Z(A) ∼ G(µ(A), α), A ∈ A.
�

15
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Example 3.4 Inverse Gaussian Lévy basis. When Z has characteristic triplet (a, 0, U)
where

a(dξ) =
1√
2π

∫ 1

0
u− 1

2 e−
1
2
γ2(ξ)uduµ(dξ),

U(dx,dξ) =
1√
2π

1R+(x)x− 3
2 e−

1
2
γ2(ξ)xdxµ(dξ),

and γ(ξ) > 0, Z constitutes an inverse Gaussian Lévy basis. If γ(ξ) does not depend
on ξ, γ(ξ) = γ, say, then Z(A) ∼ IG(µ(A), γ), A ∈ A. �

The Poisson, gamma and inverse Gaussian Lévy bases are examples of the random
G−measures introduced in Brix (1999). These measures are purely discrete and can
be represented as

Z(A) = a0(A) +

∫ ∞

0
yZ̃(A × dy),

where Z̃ is a Poisson measure on R× [0,∞). This result is an example of a Lévy-Ito
representation.

The usefulness of the definitions above becomes clear in connection with the inte-
gration of measurable functions f with respect to a Lévy basis Z. We consider the
integral of a measurable function f on R with respect to a factorisable Lévy basis
Z. For simplicity we denote this integral by f • Z. For the theory of integration
with respect to independently scattered random measures, see Kallenberg (1989) and
Kwapien and Woyczynski (1992). A key result for many calculations is (subject to
minor regularity conditions)

C{λ ‡ f • Z} = iλ(f • a) − 1

2
λ2(f2 • b) +

∫

R
C{λf(ξ) ‡ Z ′}µ(dξ). (11)

Similarly, for the logarithm of the Laplace transform of f • Z,

K{λ ‡ f • Z} = C{−iλ ‡ f • Z},

we have

K{λ ‡ f • Z} = λ(f • a) +
1

2
λ2(f2 • b) +

∫

R
K{λf(ξ) ‡ Z ′}µ(dξ). (12)

If Z is a normal Lévy basis, Z(A) ∼ N(αµ(A), σ2µ(A)), we have

C{λ ‡ f • Z} =

∫

R
C{λf(ξ) ‡ Z ′}µ(dξ), (13)

and

K{λ ‡ f • Z} =

∫

R
K{λf(ξ) ‡ Z ′}µ(dξ), (14)

where Z ′ ∼ N(α, σ2). Note that (13) and (14) also hold for a factorisable Lévy basis
with a ≡ b ≡ 0.

16
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3.2 Lévy based growth models

Let us consider a planar compact object with size and shape changing over time, where
the object at time t is denoted by Yt ⊂ R

2. In the following we will assume that Yt is
star-shaped with respect to a point z ∈ R

2 for all t. Then the boundary of the object
Yt can be determined by its radial function Rt = {Rt(φ) : φ ∈ [−π, π)}, where

Rt(φ) = max{r : z + r(cos φ, sin φ) ∈ Yt}, φ ∈ [−π, π).

In the following we will let

R = [−π, π) × [0,∞)

and A the Borel σ-algebra of R. The idea behind the following definitions is based
on the intuitive picture of an ambit set At(φ), associated to each point (φ, t), which
defines the causal correlation cone. The ambit set satisfies

At(φ) ⊆ [−π, π) × [0, t].

Examples are shown in Figure 8. The radial process Rt(φ) is defined as the integral of
some weight function over the attached ambit set, with respect to a positive factorisable
Lévy basis or as the exponential of such an integral with respect to a factorisable or
normal Lévy basis.

Figure 8: Examples of ambit sets At(φ) and At′(φ
′), respectively. Their intersection (shown hatched)

determines the dependence structure of the growth process.

Definition 3.5 Let Z be a factorisable positive Lévy basis on R. The field of radial
functions R = {Rt(φ)} follows a linear Lévy growth model if

Rt(φ) =

∫

At(φ)
ft(ξ;φ)Z(dξ).

The ambit set At(φ) ∈ A and the positive deterministic weight function ft(ξ;φ), which
is assumed to be suitable for the integral to exist, must be defined cyclically such that
Rt(·) is cyclic.

17
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Definition 3.6 Let Z be a factorisable or normal Lévy basis. The field of radial
functions R = {Rt(φ)} follows an exponential Lévy growth model if

Rt(φ) = exp

(

∫

At(φ)
ft(ξ;φ)Z(dξ)

)

.

The ambit set At(φ) ∈ A and the deterministic weight function ft(ξ;φ), assumed to be
suitable for the integrals to exist, must be defined cyclically such that Rt(·) is cyclic.

There are many interesting problems to study within this model framework. Ba-
sically, it is the Lévy basis Z, the ambit sets At(φ) and the weight functions ft(ξ;φ),
which determine the growth dynamics. These three ingredients can be chosen arbi-
trarily so that a great variety of different growth dynamics can be obtained.

Below, we study linear and exponential growth models separately.

3.2.1 Linear Lévy growth models

Let us assume that R follows a linear Lévy growth model and that the Lévy basis has
no Gaussian part, i.e. b ≡ 0. Using the key relation (12), we get that

E(Rt(φ)) =

∫

At(φ)
ft(ξ;φ)a(dξ) + E(Z ′)

∫

At(φ)
ft(ξ;φ)µ(dξ) (15)

V(Rt(φ)) = V(Z ′)

∫

At(φ)
ft(ξ;φ)2µ(dξ), (16)

where V is the notation used for variance. Using (16) and the independence properties
of a Lévy basis, we furthermore have

Cov(Rt(φ), Rt′(φ
′)) = V(Z ′)

∫

At(φ)∩At′ (φ
′)

ft(ξ;φ)ft′(ξ;φ
′)µ(dξ). (17)

The proof of (17) goes as follows. Let A = At(φ) and A′ = At′(φ
′). Then,

Cov(Rt(φ), Rt′(φ
′))

= Cov

(
∫

A

ft(ξ;φ)Z(dξ),

∫

A′

ft′(ξ;φ
′)Z(dξ)

)

= Cov

(
∫

A∩A′

ft(ξ;φ)Z(dξ),

∫

A∩A′

ft′(ξ;φ
′)Z(dξ)

)

=
1

2

[

V

(
∫

A∩A′

(ft(ξ;φ) + ft′(ξ;φ
′))Z(dξ)

)

− V

(
∫

A∩A′

ft(ξ;φ)Z(dξ)

)

− V

(
∫

A∩A′

ft′(ξ;φ
′)Z(dξ)

)]

.

Modelling of a given covariance structure reduces to solving (17) for the weight-
function f and the shape and size of the ambit sets At(φ). In practise this might
be a complicated task, but for special applications it is possible. Equation (17) also
provides some useful geometric interpretation of the covariance structure. This can
most easily be seen for the simple case of a constant weight-function ft(ξ;φ) ≡ f for
all ξ, (φ, t) ∈ R. In this case (17) reduces to

Cov(Rt(φ), Rt′(φ
′)) ∝ µ(At(φ) ∩ At′(φ

′)). (18)

18
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For a constant weight function the modelling of spatio-temporal covariances thus re-
duces to the problem of finding ambit sets At(φ) whose measure of overlap

µ(At(φ) ∩ At′(φ
′))

fulfills (18) (see Figure 8 for an illustration). Note that only the measure of the overlap
is involved and not the shape of the overlap.

In some growth examples it might be more natural to specify the model in terms
of the time derivative of Rt(φ). For instance, as

R′
t(φ) =

∫

At(φ)
ft(ξ;φ)Z(dξ).

The induced model for Rt(φ) is again a linear Lévy growth model. We thus have

Rt(φ) =

∫ t

0

∫

R
1As(φ)(ξ)fs(ξ;φ)Z(dξ)ds

=

∫

R

∫ t

0
1As(φ)(ξ)fs(ξ;φ)dsZ(dξ)

=

∫

Āt(φ)
f̄t(ξ;φ)Z(dξ), (19)

where

Āt(φ) = ∪0≤s≤tAs(φ)

and

f̄t(ξ;φ) =

∫ t

0
1As(φ)(ξ)fs(ξ;φ)ds.

The representation (19) is, of course, not unique. If the ambit sets are of the form

At(φ) = Bt ∩ Cφ,

where Bt ⊆ [−π, π) × [0, t], we may instead choose

Āt(φ) = Cφ ∩ ([−π, π) × [0, t])

and

f̄t(ξ;φ) =

∫ t

0
1Bs(ξ)fs(ξ;φ)ds.

3.2.2 Exponential Lévy growth models

In the following we will assume that we have a factorisable Lévy basis with b ≡ 0 or a
normal Lévy basis. Equation (14) allows us to calculate arbitrary n-point correlations
in an exponential Lévy growth model. If we assume the correlations are finite, i.e.
E{Rt1(φ1) · . . . · Rtn(φn)} < ∞, we have

E{
∏n

j=1 Rtj (φj)}
∏n

j=1 E{Rtj (φj)}
=

exp
{

∫

R K
{

∑n
j=1 ftj(ξ, φj)1Atj

(φj)(ξ) ‡ Z ′
}

µ(dξ)
}

exp
{

∑n
j=1

∫

R K
{

ftj(ξ, φj)1Atj
(φj)(ξ) ‡ Z ′

}

µ(dξ)
} . (20)

19



Jen s en et a l . ( 2 0 0 6 )

In the proof of (20) the following reformulation can be used

E

{ n
∏

j=1

Rtj (φj)

}

= E exp

{
∫

R

[ n
∑

j=1

ftj(ξ;φj)1Atj
(φj)(ξ)

]

Z(dξ)

}

= exp

(

K

{

1 ‡
∫

R

[ n
∑

j=1

ftj (ξ;φj)1Atj
(φj)(ξ)

]

Z(dξ)

})

.

For a constant weight function ft(ξ;φ) ≡ f for all ξ, (φ, t) ∈ R, it follows that

E{Rt1(φ1)Rt2(φ2)}
E{Rt1(φ1))E(Rt2(φ2)}

=exp{K µ(At1(φ1) ∩ At1(φ2))} (21)

where K = K{2f ‡ Z ′} − 2K{f ‡ Z ′}.
In some cases, it may be natural to formulate a linear model for the time derivative

of ln Rt(φ)

(ln Rt(φ))′ =

∫

At(φ)
ft(ξ;φ)Z(dξ).

The resulting model for Rt(φ) is an exponential Lévy growth model

Rt(φ) = exp(

∫

Āt(φ)
f̄t(ξ;φ)Z(dξ)),

where Āt(φ) and f̄t(ξ;φ) are specified as in the previous subsection.

Figure 9a shows a simulation from an exponential Lévy growth model with

At(φ) = {(θ, s) : t − T (t) ≤ s ≤ t, |θ − φ| ≤ Θ(s)},

(φ, t) ∈ R, ft(ξ;φ) = f and Z a normal Lévy basis. Here, T (t) and Θ(s) represent
the temporal and spatial dependencies, respectively. The similarities between the
simulation and the observed in vitro growth pattern in Figure 9b are striking. A
detailed analysis of these data will be presented elsewhere.

It still remains to fully explore the flexibility of the Lévy growth models. In partic-
ular, relations like (18) and (21) describe the correlation structure as a function of the
measure of overlap between pairs of ambit sets. These relations can be used to create
covariance models for processes defined on the circle. On the other hand, it will be
interesting to investigate if a given covariance model can be obtained using the ambit
set approach.
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(a) (b)

Figure 9: Comparison of a simulation of a log-normal model (a) with in vitro tumour growth (b) at
times t = 25, 45, 51 (arbitrary units). Parameters of the simulation are µ = 0.11, σ = 0.01, T (t) = t/20,
Θ(φ) = π/90 and ft(φ) = 1. For details, see the text.

Appendix A: Conditional densities and conditional inten-

sities

Let Π be the unit rate Poisson point process on S and Πt the restriction of Π to St.
We let Ω be the set of all locally finite subsets of S and Ωt the set of finite subsets of
St. On Ωt, we use the σ−algebra At generated by

{z ∈ Ωt : n(z ∩ B) = k}, k ∈ N0, B ∈ Bt,

where Bt is the Borel σ-algebra on St.

We will first state the following basic result for the Poisson point process.

Lemma A.1 Let πt be the distribution of Πt and gt : (Ωt,At) → (R,B(R)) be a Borel
function. Then

∫

Ωt

gt(z)πt(dz) (22)

=
∞
∑

n=0

exp(−t|X |)
∫

X
· · ·
∫

X

∫ t

0

∫ t

t1

· · ·
∫ t

tn−1

gt({(t1, ξ1), . . . , (tn, ξn)})

× dtn · · · dt1dξn · · · dξ1,

where |·| denotes the Lebesgue measure on R
d.

Proof of Lemma A.1. For the restriction Πt of the unit rate Poisson point process to
St, the number N of points (ti, ξi) in St is Poisson distributed with parameter t|X |
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and conditionally on N = n, Πt is distributed as

{(t1, ξ1), . . . , (tn, ξn)}

where (ti, ξi), i = 1, . . . , n, are independent and uniform in St. It follows that

∫

Ωt

gt(z)πt(dz)

=
∞
∑

n=0

exp(−t|X |)(t|X |)n
n!

∫

X
· · ·
∫

X

∫ t

0
· · ·
∫ t

0
g({(t1, ξ1), . . . , (tn, ξn)})

× 1

(t|X |)n dtn · · · dt1dξn · · · dξ1

=
∞
∑

n=0

exp(−t|X |)
∫

X
· · ·
∫

X

∫ t

0

∫ t

t1

· · ·
∫ t

tn−1

g({(t1, ξ1), . . . , (tn, ξn)})

× dtn · · · dt1dξn · · · dξ1.

�

If Zt has density

gZt(z), z ∈ Ωt

with respect to the unit rate Poisson point process Πt on St, then for A ∈ At,

P(Zt ∈ A) =

∫

A

gZt(z)πt(dz) =

∫

Ωt

1[z ∈ A]gZt(z)πt(dz)

and Lemma A.1 can be used to calculate the integral.

The density of Zt can be expressed in terms of the two families of conditional
densities (1) and (2) presented in the main text, see the proposition below.

Proposition A.2 Let

gn(t(n), ξ(n)) =
n
∏

i=1

pi(ti | t(i−1), ξ(i−1))fi(ξi | t(i−1), ξ(i−1), ti)

be the density of the first n points of Z. Then, the density of Zt with respect to Πt is

gZt(z) = exp(t|X |)gn(t(n), ξ(n))Sn+1(t | t(n), ξ(n)), (23)

if z ∈ Ωt is of the form

z = {(t1, ξ1), . . . , (tn, ξn)}, t1 < · · · < tn.

Here

Sn+1(t | t(n), ξ(n)) =

∫ ∞

t

pn+1(u | t(n), ξ(n))du, t > tn,

is the survival function of pn+1(· | t(n), ξ(n)).

22



Paper B

Proof of Proposition A.2. For A ∈ At, we find

P(Zt ∈ A)

=

∞
∑

n=0

P(Zt ∈ A,n(Zt) = n)

=

∞
∑

n=0

∫

R+×X
· · ·
∫

R+×X
1[{(t1, ξ1), . . . , (tn, ξn)} ∈ A]1[tn+1 > t]

gn+1(t(n+1), ξ(n+1))dtn+1dξn+1 · · · dt1dξ1

=

∞
∑

n=0

∫

X
· · ·
∫

X

∫ t

0

∫ t

t1

· · ·
∫ t

tn−1

1[{(t1, ξ1), . . . , (tn, ξn)} ∈ A]gn(t(n), ξ(n))

Sn+1(t | t(n), ξ(n))dtn · · · dt1dξn · · · dξ1.

Now Lemma A.1 implies the result. �

Another possibility is specification of the model in terms of the conditional inten-
sities. For an increasing sequence

(t1, ξ1), . . . , (tn, ξn), . . . , t1 < · · · < tn < · · · , (24)

we define the conditional intensity at (t, ξ) by

hn(t, ξ | t(n−1), ξ(n−1)) =
pn(t | t(n−1), ξ(n−1))fn(ξ | t(n−1), ξ(n−1), t)

Sn(t | t(n−1), ξ(n−1))
, (25)

for tn−1 < t ≤ tn (t0 = 0). Note that the conditional intensity hn is the product of the
hazard function

pn(t | t(n−1), ξ(n−1))

Sn(t | t(n−1), ξ(n−1))

for the n-th time point given the history (t(n−1), ξ(n−1)) and the density

fn(ξ | t(n−1), ξ(n−1), t)

of the n-th spatial point given the history (t(n−1), ξ(n−1)) and the n-th time point t.
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Abstract

We introduce a class of spatio-temporal models based on Lévy theory, in par-
ticular on Lévy bases and integration with respect to those. We will focus on how
these models can be used to describe how the boundary of a star-shaped planar
object expands in time, using its radius vector function Rt at time t ≥ 0. We
study both linear and exponential Lévy based models, i.e.

Rt(φ) = µt(φ) +

∫

At(φ)

ft(ξ; φ)Z(dξ), φ ∈ [−π, π),

and

Rt(φ) = exp

(

µt(φ) +

∫

At(φ)

ft(ξ; φ)Z(dξ)

)

, φ ∈ [−π, π),

where Z is a Lévy basis, At(φ) is a so-called ambit set, ft(ξ; φ) is a determin-
istic weight function and µt(φ) a deterministic function. A great advantage of
these models is the possibility of controlling the spatial and temporal correlation
structure, since it is possible to derive explicit expression for

Cov(Rt(φ), Rt′(φ
′)),

in terms of the components of the model. An application to tumour growth will
be presented.

Keywords: Lévy basis, spatio-temporal modelling, growth models, tumor growth.

1 Introduction

Stochastic spatio-temporal modelling is of great importance in a variety of disciplines
of the natural sciences, including biology ( Cantalapiedra et al. (2001), Brix and Cha-
doeuf (2002), Fewster (2003) and Gratzer et al. (2004)), image analysis (Feideropoulou
and Pesquet-Popescu (2004)), atmospheric sciences (Pérez-Muñuzuri et al. (2003)),
geophysics (Calder (1986), Lovejoy et al. (1992) and Sornette and Ouillon (2005))
and turbulence (Barndorff-Nielsen et al. (2006)), just to name a few. In particular,
modelling of tumour growth dynamics has been a very active research area in recent
years (Delsanto et al. (2000), Peirolo and Scalerandi (2004), Pang and Tzeng (2004),
Schmiegel (2006)).

The purpose of the present paper is to study growth modelling in a Lévy based
framework, i.e. stochastic spatio-temporal modelling based on the integration with re-
spect to a Lévy basis. The paper is thereby a natural continuation of the work initiated

1
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in Schmiegel (2006) which was mainly directed towards an audience of physicists. The
advantage of a Lévy based growth modelling approach is that the resulting models are
at the same time flexible and mathematically tractable. This type of modelling has
earlier been used with success in the field of turbulence, cf. Barndorff-Nielsen et al.
(2006) and references therein.

The organisation of the paper is as follows. Section 2 provides some background on
Lévy basis which is the essential component in our approach. In Section 3, Lévy based
spatio-temporal models are discussed in general. In Section 4, Lévy based growth
models for star-shaped planar objects are introduced and some qualitative examples
of different growth dynamics are given. Section 5 contains a description of different
covariance structures which can be obtained under the Lévy growth models. Finally,
Section 6 contains an application of the Lévy based growth models to tumour growth.

2 Background

This section provides a brief overview of the theory of Lévy bases, in particular, the
theory of integration with respect to a Lévy basis.

We focus on results which are prerequisites for subsequent sections, without proofs.
For a more detailed study of independently scattered random measures and their inte-
gration, cf. Kallenberg (1989), Rajput and Rosinski (1989), Kwapien and Woyczynski
(1992) and Barndorff-Nielsen and Schmiegel (2003). We will use the following notation
C(λ ‡ X) = log E(eiλX) for the cumulant function of a random variable X .

2.1 Basic definitions

Let (R,A) be a measurable space. A collection of random variables Z = {Z(A) : A ∈
A} on (R,A) is said to be an independently scattered random measure, if for every
sequence {An} of disjoint sets in A, the random variables Z(An) are independent and
Z(
⋃

An) =
∑

Z(An) a.s. Moreover, if Z(A) is infinitely divisible for all A ∈ A, Z is
called a Lévy basis.

When Z is a Lévy basis, the cumulant function of Z(A) can be written as

C(λ ‡ Z(A)) = iλa(A) − 1

2
λ2b(A) +

∫

R

(eiλu − 1 − iλu1[−1,1](u))U(du,A), (1)

where a is a signed measure on A, b is a positive measure on A, U(du,A) is a Lévy
measure on R for fixed A ∈ A and a measure on A for fixed du. The result (1) is the fa-
mous Lévy-Khintchine representation. The Lévy basis Z is said to have characteristics
(a, b, U). The measure U is referred to as the generalised Lévy measure.

It may be useful to express the cumulant function (1) in infinitesimal form

C(λ ‡ Z(dξ)) = iλa(dξ) − 1

2
λ2b(dξ) +

∫

R

(eiλu − 1 − iλu1[−1,1](u))U(du, dξ).

In this paper, we will consider Lévy bases with characteristics (a, b, U), where the
measure U factorises as

U(du, dξ) = V (du, ξ)µ(dξ).

2
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Here, µ is some measure on A and V (du, ξ) is a Lévy measure for fixed ξ. Furthermore,
the measures a and b are absolutely continuous with respect to the measure µ and
satisfy

a(dξ) = ã(ξ)µ(dξ), b(dξ) = b̃(ξ)µ(dξ).

Under these assumptions we may think of

C(λ ‡ Z ′(ξ)) = iλã(ξ) − 1

2
λ2b̃(ξ) +

∫

R

{eiλu − 1 − iλu1[−1,1](u)}V (du, ξ),

as a cumulant function of a random variable Z ′(ξ) satisfying

C(λ ‡ Z(dξ)) = C(λ ‡ Z ′(ξ))µ(dξ). (2)

If ã(ξ), b̃(ξ) and the Lévy measure V (·; ξ) do not depend on ξ, we call Z a factoris-

able Lévy basis and then Z ′(ξ) = Z ′ does also not depend on ξ. If, moreover, R = R
n

and µ is proportional to the Lebesgue measure, then Z is called a homogeneous Lévy
basis.

Let us now consider the integral of a measurable function f on R with respect
to a Lévy basis Z. For simplicity we denote this integral by f • Z. Key results
for many calculations are the following equations for the cumulant function of the
stochastic integral f •Z (subject to minor regularity conditions, cf. Barndorff-Nielsen
and Thorbjørnsen (2003)). Using equation (2) we get

C(λ ‡ f • Z) =

∫

C(λf(ξ) ‡ Z ′(ξ))µ(dξ). (3)

A similar result holds for the logarithm of the Laplace transform of f • Z,

K(λ ‡ f • Z) = C(−iλ ‡ f • Z),

i.e.

K(λ ‡ f • Z) =

∫

K(λf(ξ) ‡ Z ′(ξ))µ(dξ). (4)

We will now give a few examples of Lévy bases. Here we assume that R = R
n and

A = B(Rn).

Example 1. (Gaussian Lévy basis) If Z is a Lévy basis on R, such that Z(A) ∼
N(a(A), b(A)), where a is a signed measure on R and b is a positive measure on R,
we call Z a Gaussian Lévy basis. The Gaussian Lévy basis has characteristics (a, b, 0)
and the cumulant function is

C(λ ‡ Z(A)) = iλa(A) − 1

2
λ2b(A).

We have that Z ′(ξ) ∼ N(ã(ξ), b̃(ξ)), i.e. C(λ ‡ Z ′(ξ)) = iλã(ξ) − 1
2λ2b̃(ξ). Then

C(λ ‡ f • Z) =

∫

C(λf(ξ) ‡ Z ′(ξ))µ(dξ) = iλ(f • a) − 1

2
λ2(f2 • b), (5)

where µ is a positive measure. Note that f • Z ∼ N(f • a, f2 • b). �
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V (du, ξ) ã(ξ)

Poisson δ1(du) 1

Gamma 1R+
(u)βu−1e−α(ξ)du β

(

1 − e−α(ξ)

α(ξ)

)

Inverse Gaussian
η√
2π

1R+
(u)u− 3

2 e−
1

2
γ2(ξ)udu

η√
2π

∫ 1

0
u− 1

2 e−
1

2
γ2(ξ)udu

Table 1: The definition of three Lévy jump bases, the Poisson basis, the Gamma basis
and the Inverse Gaussian basis.

Z ′(ξ) C(λ ‡ Z ′(ξ)) E(Z ′(ξ)) V(Z ′(ξ))

Poisson Po(1) (eiλ − 1) 1 1

Gamma Γ(β, α(ξ)) −β log

(

1 − iλ

α(ξ)

)

β

α(ξ)

β

α2(ξ)

Inverse Gaussian IG(η, γ(ξ)) ηγ(ξ)

(

1 −
√

1 − 2iλ

γ2(ξ)

)

η

γ(ξ)

η

γ3(ξ)

Table 2: Distribution of Z ′(ξ), with the corresponding cumulant function, mean and
variance.

Example 2. (Lévy jump basis) A Lévy basis is called a Lévy jump basis if the
characteristics of the basis is (a, 0, U). In Table 1 we give three examples of Lévy jump
bases, the Poisson basis, the Gamma basis and the Inverse Gaussian basis.

The distribution of the random variable Z ′(ξ), its cumulant function, mean and
variance are given in Table 2, for the three types of Lévy bases. Note that if Z is a
Poisson basis, Z(A) ∼ Po(µ(A)), for all A ∈ A. If α(ξ) ≡ α, γ(ξ) ≡ γ, then we have
for all A ∈ A, that Z(A) ∼ Γ(βµ(A), α) and Z(A) ∼ IG(ηµ(A), γ), respectively. �

Note that any Lévy basis Z is the sum of a Lévy jump basis Z1 and an independent
Gaussian basis Z2 such that

C(λ ‡ f • Z) = C(λ ‡ f • Z1) + C(λ ‡ f • Z2).

Finally, we would like to mention an important representation of positive Lévy
bases, the Lévy-Ito representation,

Z(A) = a0(A) +

∫

R+

xN(dx,A), (6)

where N is a Poisson basis on R+ ×R, with intensity measure U and

a0(A) = a(A) −
∫ 1

0
xU(dx,A).
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Note that equation (6) can also be written as

Z(A) = a0(A) +
∑

(u,ξ)∈N

u1A(ξ), (7)

where N is a Poisson point process on R+ × R with intensity measure U . If f is a
measurable function on R with respect to the Lévy basis Z, we get that

f • Z = f • a0 +
∑

(u,ξ)∈N

uf(ξ).

2.2 Extension to multivariate Lévy bases

The above theory can easily be extended to higher dimensions. If Z = (Z1, . . . , Zm) is
a multivariate Lévy basis, the Lévy-Khintchine representation takes the form

C(λ ‡ Z(A)) = i〈a(A), λ〉 − 1

2
〈λb(A), λ〉 +

∫

Rm

{ei〈λ,u〉 − 1 − i〈λ, u〉1E(u)}U(du,A),

where 〈·, ·〉 is the vector product in R
m, E = [−1, 1]m, λ is a m-dimensional vector, a

is a m-dimensional measure and b is a m×m matrix valued measure. In Sato (1999),
the theory of multivariate Lévy processes is discussed in details.

3 Lévy based spatio-temporal models

Let us consider a random variable Xt(σ), depending on time t and a position in space
σ. In the following we will assume that (σ, t) ∈ R = S × R, i.e. R is a product of the
space S ⊂ R

d and the time space R. We let A be the Borel σ-algebra of R.
We will consider models for the spatio-temporal process X = {Xt(σ) : (σ, t) ∈ R}

based on the theory of Lévy bases and integration with respect to those, discussed in
Section 2.

The idea behind the following definitions is based on the intuitive picture of an
ambit set At(σ) associated with each point (σ, t) ∈ R, which defines the dependency
on the past at time t and position σ. The ambit set At(σ) is of the following form

At(σ) = {(ρ, s) ∈ R : ρ ∈ ∆s(σ), s ≤ t},

where ∆s(σ) ⊆ S is a neighbourhood of σ, consisting of the set of positions at time s
that influence the process at position σ and time t, cf. Figure 1. The spatio-temporal
process X = {Xt(σ) : (σ, t) ∈ R} is then defined as

Xt(σ) =

∫

At(σ)
ft(ξ;σ)Z(dξ), (8)

where Z is a Lévy basis and ft(ξ;σ) is a deterministic weight function (assumed to be
suitable for the integral to exist). We will refer to the spatio-temporal process

X = {Xt(σ) : (σ, t) ∈ R}

as a linear spatio-temporal Lévy model and to

X̃ = {exp(Xt(σ)) : (σ, t) ∈ R}

5
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σ

t

s

At(σ)

∆s(σ)

Figure 1: The ambit set At(σ).

as an exponential spatio-temporal Lévy model.

There are many interesting problems to study within this framework, both theo-
retical and in connection with various applications of spatio-temporal processes. In
this paper we focus on spatio-temporal processes modelling growth, cf. Section 4 and
onwards. The main application has until now been in spatio-temporal modelling of
turbulence, cf. Barndorff-Nielsen and Schmiegel (2003), Barndorff-Nielsen et al. (2003)
and Schmiegel et al. (2004).

3.1 Linear spatio-temporal Lévy models

Let us assume that X follows a linear spatio-temporal Lévy model. Using the key
relation (4), we get that

E(Xt(σ)) =

∫

At(σ)
ft(ξ;σ)E(Z ′(ξ))µ(dξ) (9)

V(Xt(σ)) =

∫

At(σ)
ft(ξ;σ)2V(Z ′(ξ))µ(dξ).

It is also clear that the covariances are of the form

Cov(Xt(σ),Xt′ (σ
′)) =

∫

At(σ)∩At′ (σ
′)

ft(ξ;σ)ft′(ξ;σ
′)V(Z ′(ξ))µ(dξ). (10)

If the weight function is constant, ft(ξ;σ) ≡ f and if the Lévy basis Z is factorisable,
then (10) reduces to

Cov(Xt(σ),Xt′ (σ
′)) = fV(Z ′)µ(At(σ) ∩ At′(σ

′)). (11)

In this case the covariance structure only depends on the µ-measure of the intersection
of the two ambit sets.

The mean value and covariance structure of the linear spatio-temporal Lévy models,
using the different underlying Lévy jump bases given in Example 2 of the previous
section, can easily be obtained using Table 2. For an underlying Gaussian basis we
refer to Example 1.
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3.2 Exponential spatio-temporal Lévy models

Let us assume that X̃ follows an exponential spatio-temporal Lévy model. Equation
(4) enables us to calculate arbitrary n-point correlations. Here n-point correlations for
arbitrary spatial positions σ1, . . . , σn and times t1, . . . , tn are defined as

mn(σ1, t1; . . . ;σn, tn) ≡ E

(

X̃t1(σ1) · . . . · X̃tn(σn)
)

.

If we assume that the correlations are finite, i.e. E(X̃t1(σ1) · . . . · X̃tn(σn)) < ∞, we get
from (4) the expression

mn(σ1, t1; . . . ;σn, tn) = exp





∫

R
K(

n
∑

j=1

ftj (ξ;σj)1Atj
(σj)(ξ) ‡ Z ′(ξ))µ(dξ)



 . (12)

Given an underlying Lévy basis, (12) gives an explicit expression of the n-point corre-
lations mn(σ1, t1; . . . ;σn, tn) in terms of weight functions and ambit sets.

Now let us consider 2-point correlators of the form

Corr(Y1, Y2) =
E(Y1Y2)

E(Y1)E(Y2)
,

where Y1 and Y2 are some random variables. An attractive geometric interpretation of
the 2-point correlators can be obtained by using equation (12). We get that

ct,t′(σ, σ′) := Corr(X̃t(σ), X̃t′(σ
′))

= exp

(

∫

At(σ)∩At′ (σ
′)

log
(

Corr(eft(ξ;σ)Z′(ξ), eft′ (ξ;σ
′)Z′(ξ))

)

µ(dξ)

)

. (13)

Note that

log Corr(eft(ξ;σ)Z′(ξ), eft′ (ξ;σ
′)Z′(ξ))

= K((ft(ξ;σ) + ft′(ξ;σ
′)) ‡ Z ′(ξ)) − K(ft(ξ;σ) ‡ Z ′(ξ)) − K(ft′(ξ;σ

′) ‡ Z ′(ξ)).

In the simple case where the weight functions are constant, i.e. ft(ξ;σ) ≡ f for all
(σ, t) ∈ R and where the underlying Lévy basis is factorisable, Z ′(ξ) = Z ′, we get that

ct,t′(σ, σ′) = exp
(

Kµ(At(σ) ∩ At′(σ
′))
)

(14)

where K = K(2f ‡ Z ′) − 2K(f ‡ Z ′). For a factorisable Lévy basis Z and a constant
weight function, one can express the higher order correlators in terms of different
overlaps of the corresponding ambit sets.

We refer to Example 1 and Table 2, to obtain the mean value and covariance struc-
ture for the exponential spatio-temporal models using the different types of underlying
Lévy bases.

4 Lévy based growth models

From now on we will study how the Lévy setup can be used to construct flexible
stochastic models for growing objects. We focus on planar objects but generalisations

7
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to higher dimensions are straight forward. We denote the object at time t by Yt ⊂ R
2

and we will assume that Yt is compact and star-shaped with respect to a point z ∈ R
2

for all t. For the cancer growth data discussed in Section 6, this is essentially no
restriction. The boundary of a star-shaped object Yt can be determined by its radius
vector function Rt = {Rt(φ) : φ ∈ [−π, π)}, where

Rt(φ) = max{r : z + r(cos φ, sin φ) ∈ Yt}, φ ∈ [−π, π),

cf. Figure 2. We will consider both linear and exponential spatio-temporal Lévy

z

φ

Rt(φ)

Yt

Figure 2: The star-shaped object Yt is determined by its radius-vector function Rt at
time t.

models for the radius vector function. The underlying Lévy basis is a random measure
on R = S × R, where S = [−π, π). In order to obtain enough flexibility in the
modelling, we allow for arbitrary adjustment in the mean value of the radius vector
function. The linear Lévy growth model is then defined by the following equation

Rt(φ) = µt(φ) +

∫

At(φ)
ft(ξ;φ)Z(dξ). (15)

We assume that the ingredients of the model have been chosen such that Rt(φ) > 0
almost surely. Under an exponential Lévy growth model, the radius vector function
satisfies the following equation

Rt(φ) = exp

(

µt(φ) +

∫

At(φ)
ft(ξ;φ)Z(dξ)

)

. (16)

For both model types, the weight functions ft(ξ;φ) and the ambit sets At(φ) are
assumed to be suitable for the integral to exist. Furthermore, the weight functions
and ambit sets must be defined cyclically such that the radius-vector function Rt(φ)
is cyclic. In the following, all angular calculations are regarded as cyclic.

One can also consider models for the time derivative of Rt(φ), i.e.

∂

∂t
Rt(φ) = µt(φ) +

∫

At(φ)
ft(ξ;φ)Z(dξ). (17)

If ∂
∂tRt(φ) > 0, then the boundary of Yt will always expand. This may not be the case

for the earlier specified models but the ingredients of the earlier models may be chosen
such that strict growth is present with very high probability. Under (17), the induced

8
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model for Rt(φ) will also be a linear Lévy growth model since

Rt(φ) = r0(φ) + µ̄t(φ) +

∫ t

0

∫

As(φ)
fs(ξ;φ)Z(dξ)ds

= r0(φ) + µ̄t(φ) +

∫

Āt(φ)
f̄t(ξ;φ)Z(dξ),

where r0 is the radius-vector function at time t = 0,

µ̄t(φ) =

∫ t

0
µs(φ)ds,

Āt(φ) = ∪0≤s≤tAs(φ),

and

f̄t(ξ;φ) =

∫ t

0
1As(φ)(ξ)fs(ξ;φ)ds.

In Barndorff-Nielsen and Schmiegel (2003), a model of this type is discussed in relation
to turbulence. A discrete version of (17) with a Gaussian Lévy basis is discussed in
detail in Jónsdóttir and Jensen (2005).

In some cases it might be more natural to formulate the model in terms of the time
derivative of ln(Rt(φ)),

∂

∂t
(ln(Rt(φ)) = µt(φ) +

∫

At(φ)
ft(ξ;φ)Z(dξ).

In this case the induced model is an exponential Lévy growth model of the type

Rt(φ) = r0(φ) exp

(

µ̄t(φ) +

∫

Āt(φ)
f̄t(ξ;φ)Z(dξ)

)

.

The choice of the Lévy basis Z, the ambit sets At(φ), the weight functions ft(ξ;φ)
and µt(ξ;φ) completely determines the growth dynamics. These four ingredients can
be chosen arbitrarily and independently which results in a great variety of different
growth dynamics. We will now give a number of examples.

Example 3. The size of the ambit sets plays an important role in the control of the
local and global fluctuations of the boundary of the object Yt. As an example, let us
consider a linear Lévy growth model with µt(φ) ≡ µt and ft(ξ;φ) ≡ 1 such that

Rt(φ) = µt + Z(At(φ)). (18)

The ambit set

At(φ) = {(θ, s) :| θ − φ |≤ Θ(t), t − T (t) ≤ s ≤ t}

has angular extension 2Θ(t) and temporal extension T (t). In Figure 3, simulations are
shown under this model, using a normal Lévy basis with

Z(A) ∼ N(0, σ2µ(A)), A ∈ A,

9
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and µ equal to the Lebesgue measure on R. The simulations are based on a discreti-
sation of Z on a grid with ∆t = 1 and ∆φ = 2π

1000 . The upper and lower row of Figure
3 show simulations for two choices of angular extension of the ambit set at three dif-
ferent time points. The angular extension of the ambit set is Θ(t) = π

100 for the upper
row, while Θ(t) = π

5 for the lower row. For the smaller angular extension we observe
localised fluctuations of the profiles, but the global appearance appears circular. For
the larger angular extension the fluctuations are on a much larger scale and the global
appearance is more variable. �

Figure 3: Simulation of the linear Lévy growth model (18) at time points t = 20, 45, 80,
using a Gaussian Lévy basis. The upper row and lower row show simulations of two
choices of the angular extension of the ambit set Θ(t) = π

100 and Θ(t) = π
5 , respectively.

Otherwise the parameters of the simulation are µ20 = 16, µ45 = 24, µ80 = 32, σ2 = 1
and T (t) = t/5.

Example 4. In this example, we study a model as the one described in Example 3,
but now with a Gamma Lévy basis. The model equation is

Rt(φ) = µ̃t + Z(At(φ)), (19)

where At(φ) is defined as in Example 3,

Z(A) ∼ Γ(βµ(A), α), A ∈ A,

and µ is the Lebesgue measure on R. Note that µ(At(φ)) does not depend on φ. The
parameters α, β and µ̃t are chosen such that E(Rt(φ)) and V(Rt(φ)) are the same as

10
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in the previous example. Accordingly, the parameters are chosen such that

µ̃t = µt − σ
√

βµ(At(0)),

α =

√

β

σ2
.

The resulting simulations for β = 1 are shown in the upper and lower row of Figure 4
for the two choices of angular extension of the ambit set, Θ(t) = π

100 and Θ(t) = π
5 ,

respectively. Note that more sudden outbursts are seen compared to the previous
example. �

Figure 4: Simulation of the linear Lévy growth model (19) at time points t = 20, 45, 80,
using a Gamma Lévy basis. The upper row and lower row show simulations of two
choices of the angular extension of the ambit set Θ(t) = π

100 and Θ(t) = π
5 , respectively.

Otherwise, β = 1 and the remaining parameters are specified as in Example 3.

Example 5. In Figure 5, we show simulations from the linear growth model

Rt(φ) = f(φ)
(

µt + Z(At(φ))
)

, (20)

where µt, At(φ) and Z are specified as in Example 3 and

ft(φ) = 0.35 exp(
| φ − π |

π
).

Clearly the growth of the object is asymmetric. The weight function puts more weight
on the angle φ0 = 0. �

11
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Figure 5: Simulation of the model (20) at time points t = 20, 45, 80, using a Gaussian

Lévy basis. The weight function is given by ft(φ) = 0.35 exp( |φ−π|
π ).

Example 6. Consider a linear Lévy growth model for the time derivative of the radius
vector function

∂

∂t
Rt(φ) = Z(At(φ)),

where Z is a Poisson basis with intensity measure

µ(A) = λ0

∫

A
sdsdθ.

The ambit set is of the form

At(φ) = {(θ, s) : |θ − φ| ≤ Θ

s
,max(0, t − T ) ≤ s ≤ t}.

We can write the ambit set as

At(φ) = Bt ∩ Cφ,

where
Bt = {(θ, s) : max(0, t − T ) ≤ s ≤ t},

and

Cφ =

{

(θ, s) : s ≥ Θ

π
, |θ − φ| ≤ Θ

s

}

∪
{

(θ, s) : 0 ≤ s ≤ Θ

π

}

.

The induced model for Rt(φ) is

Rt(φ) =

∫

Āt(φ)
f̄t(ξ)Z(dξ),

where
Āt(φ) = Cφ ∩ ([−π, π) × [0, t])

and

f̄t(ξ) =

∫ t

0
1Bs(ξ)ds

=

{

t − s, if t ≤ T or (t > T, s > t − T )
T, if t > T, s ≤ t − T.

12
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Here, ξ = (θ, s). The simulations shown in Figure 6 have been performed with λ0 = 10,
T = 1 and Θ = 1/2. �

Figure 6: Simulation of a Lévy growth model for the derivative of the radius vector
function. The underlying Lévy basis is Poisson.

5 The induced covariance structure

In this section we will derive expressions for Cov(Rt(φ), Rt′ (φ
′)) under various assump-

tions on the Lévy basis Z, the ambit sets At(φ) and the weight functions ft(ξ;φ). We
will concentrate on linear Lévy growth models. The covariance structure of Rt(φ) is
then given by

Cov(Rt(φ), Rt′ (φ)) =

∫

At(φ)∩At′ (φ
′)

ft(ξ;φ)ft′(ξ
′;φ)V(Z ′(ξ))µ(dξ). (21)

For exponential growth models, (21) holds for the log-transformed radius vector func-
tion. Throughout the section, we will assume that

At(φ) = (φ, 0) + At(0),

ft(ξ;φ) = ft((|θ − φ|, s); 0),
V(Z ′(ξ))µ(dξ) = g(s)dsdθ

(22)

for all ξ = (θ, s) ∈ R and (φ, t) ∈ R. These conditions ensure that Cov(Rt(φ), Rt′(φ))
only depends on the cyclic difference between φ and φ′.

We will first consider the case where the angular extension of the ambit set is the
full angular space but the weight functions are quite arbitrary. Secondly, we consider
the case of constant weight functions but quite arbitrary ambit sets.

5.1 Ambit sets with full angular range

In this subsection we consider ambit sets of the form

At(φ) = [−π, π) × [t − T (t), t].

In order to make the formulae as compact as possible, we use in the proposition below
the notation t ∩ t′ for the time points shared by At(·) and At′(·), i.e.

t ∩ t′ =

{

[t̃1, t̃2] if t̃1 ≤ t̃2
∅ otherwise,

13
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where
t̃1 = max(t − T (t), t′ − T (t′)) and t̃2 = min(t, t′).

Proposition 7. Let us assume that the ambit set is of the form At(φ) = [−π, π) ×
[t − T (t), t] for all (φ, t) ∈ R and let

ft(ξ;φ) = at
0(s) +

∞
∑

k=1

at
k(s) cos(k(θ − φ)), (23)

where ξ = (θ, s), be the Fourier expansion of the weight function. Then, the spatial
covariances are

Cov(Rt(φ), Rt(φ
′)) = 2λt

0 +

∞
∑

k=1

λt
k cos k(φ − φ′), (24)

where

λt
k = π

∫ t

t−T (t)
(at

k(s))
2g(s)ds, k = 0, 1, . . . .

Furthermore, the temporal covariances are given by

Cov(Rt(φ), Rt′ (φ)) = 2τ0(t, t
′) +

∞
∑

k=1

τk(t, t
′), (25)

where

τk(t, t
′) = π

∫

t∩t′
at

k(s)a
t′

k (s)g(s)ds.

Proof. The proof is straightforward. First note that the actual form (23) of the Fourier
expansion is a consequence of (22). We get that

Cov(Rt(φ), Rt(φ
′))

=

∫

At(φ)∩At(φ′)
ft(ξ;φ)ft(ξ;φ

′)Var(Z ′(ξ))µ(dξ)

= π

[

2

∫

t−T (t)
(at

0(s))
2g(s)ds +

∞
∑

k=1

(

∫ t

t−T (t)
(at

k(s))
2g(s)ds) cos k(φ − φ′)

]

,

and

Cov(Rt(φ), Rt′(φ))

=

∫

At(φ)∩At′ (φ)
ft(ξ;φ)ft′(ξ;φ)Var(Z ′(ξ))µ(dξ)

= π

[

2

∫

t∩t′
ak(t)ak(t

′)g(s)ds +

∞
∑

k=1

∫

t∩t′
ak(t)ak(t

′)g(s)ds

]

.

Note that the angular covariance Cov(Rt(φ), Rt(φ
′)) only depends on |φ − φ′| and

the temporal covariance Cov(Rt(φ), Rt′(φ)) does not depend on the angle φ at all.
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Corollary 8. Let the assumptions be as in Proposition 7. Assume that at
k(s) = at

k.
Then, the spatial correlations are determined by the weight function f

ρ(Rt(φ), Rt(φ
′)) =

2(at
0)

2 +
∑∞

k=1(a
t
k)

2 cos k(φ − φ′)

2(at
0)

2 +
∑∞

k=1(a
t
k)

2
.

If, in addition, at
k = btck, then ρ(Rt(φ), Rt(φ

′)) does not depend on t, while the tem-
poral correlations are determined by T (t) and the function g,

ρ(Rt(φ), Rt′(φ)) =

∫

t∩t′
g(s)ds/

[

∫ t

t−T (t)
g(s)ds ·

∫ t′

t′−T (t′)
g(s)ds

]1/2

.

�

Example 9. A dynamic version of the p-order model described in Hobolth et al. (2003)
is easily obtained, using this framework. We let

at
k(s) =

[

αt + βt(k
2p − 22p)

]−1/2
, k = 2, 3, . . . ,

and at
0(s) = at

1(s) = 0. If αt and βt are proportional, the simplifying assumptions of
Corollary 8 is fulfilled. In Jónsdóttir and Jensen (2005), this model has been used for
the time derivative of the radius vector function. Only Gaussian Lévy bases are con-
sidered and neighbour time points are assumed to be so far apart that the increments
can be regarded as independent. �

In some applications of growth where the shape of the object at any specific time
is important, Fourier expansions of the radius-vector function is useful, cf. Alt (1999)
and Jónsdóttir and Jensen (2005). Let us consider the Fourier coefficients of Rt(φ),

At
0 =

1

2π

∫ π

−π
Rt(φ)dφ,

At
k =

1

π

∫ π

−π
Rt(φ) cos(kφ)dφ,

Bt
k =

1

π

∫ π

−π
Rt(φ) sin(kφ)dφ,

k = 1, 2, . . . , and consider the Fourier expansion

Rt(φ) = At
0 +

∞
∑

k=1

(At
k cos(kφ) + Bt

k sin(kφ)).

Under the assumptions of Proposition 7 it can be shown that

At
k =

∫ π

−π

∫ t

t−T (t)
at

k(s) cos(kθ)Z(dθ × ds), Bt
k =

∫ π

−π

∫ t

t−T (t)
bt
k(s) sin(kθ)Z(dθ × ds),

for k = 0, 1, . . . , so the Fourier coefficients follow also a linear Lévy model. It can also
be shown that for k 6= j, t, t′ ≥ 0,

Cov(At
k, At′

j ) = Cov(Bt
k, B

t′
j ) = Cov(At

k, B
t′
j ) = 0,

15
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and
Cov(At

k, A
t′

k ) = Cov(Bt
k, B

t′

k ) = τk(t, t
′), Cov(At

0, A
t′
0 ) = 2τ0(t, t

′),

k = 1, 2, . . . , where τk(t, t
′) is given in Proposition 7.

In the case where Z is a Gaussian Lévy basis, this means that A0 = {At
0}t∈R+

,
Ak = {At

k}t∈R+
and Bk = {Bt

k}t∈R+
, k = 1, 2, . . . , are all independent Gaussian

stochastic processes. A0 has covariance function 2τ0(t, t
′) and Ak ∼ Bk has covariance

function τk(t, t
′), k = 1, 2, . . . . If one observes At

k and Bt
k, for some time points

t = t1, . . . , tn, k = 1, . . . ,Kt, the likelihood function is very tractable.

5.2 Constant weight functions

In this subsection, we consider the case of constant weight functions. Without loss of
generality, we assume that ft(ξ;φ) ≡ 1 and (21) reduces to

Cov(Rt(φ), Rt′(φ
′)) =

∫

At(φ)∩At′ (φ
′)

V(Z ′(ξ))µ(dξ)

= V(Z ′)µ(At(φ) ∩ At′(φ
′)), (26)

where the last equality holds if the Lévy basis is factorisable.
It is not difficult (but sometimes tedious) to find explicit expressions for Cov(Rt(φ), Rt′(φ

′))
for specific sets. In the Appendix, ambit sets of the form

At(φ) = Bt ∩ Cφ,

where

Bt = {(θ, s) : max(0, t − T (t)) ≤ s ≤ t},
Cφ = {(θ, s) :| φ − θ |≤ Θ(s)},

are considered.
Evidently, (26) implies that Cov(Rt(φ), Rt′(φ

′)) ≥ 0 which is a severe restriction for
the spatial covariances. In the proposition below, the spatial covariances are expressed
in terms of the function delimiting the ambit set. We assume here that µ is the
Lebesgue measure on R.

Proposition 10. Let us suppose that there exists a continuous function gt : [−π, π) →
R+ with the properties

gt(φ) = gt(−φ)

gt is decreasing on [0, π]

gt(0) = t

(27)

such that
At(0) = {(θ, s) : gt(π) ≤ t′ ≤ gt(φ

′)}.
Then, if the Fourier expansion of gt is (gt(φ) = gt(−φ))

gt(φ) =
∞
∑

k=0

γt
k cos(kφ), (28)
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then

µ(At(0) ∩ At(φ)) =

∞
∑

k=0

λt
k cos(kφ), (29)

where

λt
0 =

∑

k odd

[π − 8

πk2
]γt

k − π
∑

k even

γt
k

λt
j =

16

π

∑

k odd

1

(2j)2 − k2
γt

k, j = 1, 2, . . . .

�

Proof. It is not difficult to show that

µ(At(0) ∩ At(φ)) = 2

∫ −π+ φ

2

−π
gt(θ)dθ + 2

∫ π

φ

2

gt(θ)dθ − πgt(π), φ ∈ [0, π). (30)

Using (28), we find the following alternative expression for the intersection areas

µ(At(0)∩At(φ)) =

{

−4
∑

k odd
γt

k

k sin(k φ
2 ) + π

∑

k odd γt
k − π

∑

k even γt
k if φ ∈ [0, π]

4
∑

k odd
γt

k

k sin(k φ
2 ) + π

∑

k odd γt
k − π

∑

k even γt
k if φ ∈ [−π, 0].

The result is now obtained by deriving a Fourier expansion of the latter expression
and comparing with (29).

Example 11. In the particular case where

gt(φ) = γt
0 + γt

1 cos φ

we find

λt
0 = [π − 8

π
]γt

1 − πγt
0

λt
j =

16

π

1

(2j)2 − 1
γt
1, j = 1, 2, . . . .

It follows that

(λt
j)

−1 = αt + βtj
2, j = 1, 2, . . . , (31)

where αt = −π/(16γt
1) and βt = π/(4γt

1). Under the assumption of a normal Lévy
basis, (31) is a special case of the p−order model considered in Jónsdóttir and Jensen
(2005) with p = 1 and α proportional to β. Note that the requirements (27) implies
that γt

0 = t − γt
1 and γt

1 > 0. It does not seem to be possible to obtain p-order models
with p > 1, using this approach. �
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Figure 7: Profiles of a growing brain tumor in vitro at time points t = 21, 25, 55.

6 An application to cancer growth

In Schmiegel (2006), snapshots of a growing brain tumor in vitro have been analysed,
using the approach described in this paper. The data were first studied in Brú et al.
(1998). The data are reproduced in Figure 7 for time points t = 21, 25, 55.

A detailed initial analysis showed negative spatial covariances and a need for mod-
elling both small and large scale fluctuations in the growth process. The model used
was an exponential Lévy growth model of the form

Rt(φ) = exp

(

µt + α(t)

∫ t−t0(t)

t−T (t)

∫ π

−π
cos(φ − θ)Z(ds × dθ)

+ β(t)

∫ t

t−t0(t)

∫ φ+ht(s−t+t0(t))

φ−ht(s−t+t0(t))
Z(ds × dθ)

)

. (32)

Here ht is a deterministic and monotonically decreasing function defined on [0, t0(t)],
satisfying ht(t0(t)) = 0. Accordingly, the weight function is on the form

ft(ξ;φ) = α(t) cos(φ − θ)1[t−T (t),t−t0(t)](s) + β(t)1[t−t0(t),t](s)1[0,ht(s−t+t0(t))](|φ − θ|).

The associated ambit set is shown in Figure 8. In Schmiegel (2006), a Gaussian Lévy

t

t′

t − t0(t)

t − T (t)

φφ−π φ+πφ−φ0(t)/2 φ+φ0(t)/2 φ′

-

6

h(t)

a(t) cos(φ − φ′)

•��

��
φ + gt(t

′ − t + t0(t))

rt(φ)

Figure 8: The ambit set At(σ) for the model defined by (32).
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basis has been used and the function ht was assumed to be of the form

ht(s) =
φ0(t)

2
− φ0(t)

2t0(t)
s, s ∈ [0, t0(t)].

The estimated parameters are given in Table 3 and a simulation under the model is
shown in Figure 9.

t T (t) t0(t) α(t) β(t) φ0(t)

21 21 19 0.04 −0.033 0.19
25 25 17 0.02 −0.033 0.19
55 18 4 0.01 −0.067 0.23

Table 3: The estimated parameters for the model (32), using a Gaussian Lévy basis.

Figure 9: Simulation of the model (32) for time points t = 21, 25, 51, using a Gaussian
Lévy basis.

Here we have studied the use of Gamma and Inverse Gaussian bases. Simulations
under the latter basis are shown in Figure 10. The Inverse Gaussian Lévy basis is
chosen such that E(Rt(φ)) and V(Rt(φ)) are the same as in the case where a Gaussian
basis is used. This means that if Z(A) ∼ IG(ηµ(A), γ), where µ is the Lebesgue
measure, we get that η = γ3. The upper row shows simulations where η = 316 and
the lower row shows a simulation where η = 5. For η = 316 the Inverse Gaussian basis
provides fits of a similar quality as the normal basis but for η = 5, more outburst are
observed as is the case for the data. The difference is due to the fact that the Inverse
Gaussian distribution has heavier right tails for the latter choice of parameters.

It should be noted that all the profiles simulated under the model (32) using the
Lévy basis mentioned in this section show somewhat more fluctuations on a local scale
than the observed profiles. At present, it is not known whether this feature is caused
by non-perfect model selection and estimation of parameters or artefacts due to the
discretisation in the simulation procedure.

7 Appendix

In this appendix we will assume that the measure µ is on the form

µ(dθ, ds) = g(s)dθds.
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Figure 10: Simulations of the model (32) for time points t = 21, 25, 51, using two
different types of Inverse Gaussian Lévy basis.

We will study intersections of ambit sets

At(φ) = Bt ∩ Cφ,

where

Bt = {(θ, s) : max(0, t − ∆1(t)) ≤ s ≤ t},
Cφ = {(θ, s) :| φ − θ |≤ ∆2(s)},

so the size and shape of At(φ) does not depend on φ. This implies that the measure of
the intersection µ(At(φ)∩At′(φ

′)) only depends on the angles via the cyclic difference
between t and t′. We therefore focus on studying

µ(At(0) ∩ At(φ)) and µ(At(0) ∩ At+u(0)),

where u ≥ 0, concentrating on the spatial and temporal covariances/correlations, re-
spectively.

Let t, u ≥ 0 and assume that ∆1(t + u) − ∆1(t) ≤ u, then if u ≤ ∆1(t + u),

µ(At(0) ∩ At+u(0)) =

{

2
∫ t
t∗ ∆2(s)g(s)ds if u ≤ ∆1(t + u),

0 else,

where t∗ = max(0, t + u − ∆1(t + u)). In this case one can get various covari-
ance/correlations structure, depending on the choice of ∆1, ∆2 and g. A few examples
are given in Table 4.
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Parameters 2∆2(s)g(s) µ(At(0) ∩ At+u(0)

c > 0 c (constant) c(∆1(t + u) − u)

a, b > 0 ae−bs ae−bt

b
(e−b(u−∆1(t+u)) − 1)

a > 0, α > 1 asα (α − 1)−1(tα+1 − (t + u − ∆1(t + u))α+1)

Table 4: The table shows the explicit expression for the integral µ(At(0) ∩ At+u(0))
for different choices of g(s)∆2(s).

Let us now study the covariance relating to angular replacements. We get that

µ(At(0) ∩ At(φ)) =

∫ t

t∗
1[0,2∆2(s)](|φ|) (2∆2(s) − min(|φ|, 2π − 2∆2(s))) g(s)ds, (33)

where t∗ = max(0, t − ∆1(t)). Here, the integral depends on the separate choices of
∆2 and g. Note that in the simple case where ∆2(s) ≡ ∆2, then

µ(At(0) ∩ At(φ)) = 0, for |φ| ≥ 2∆2,

which e.g. implies that for a linear Lévy growth model, the radius-vector function at
a fixed time t and different angles φ and φ′ are uncorrelated if |φ − φ′| ≥ 2∆2. Let us
instead give an example where ∆1(t) = t, ∆2(s) = ∆2

s and g(s) = s. For t ≥ 2∆2

π , we
get

µ(At(0) ∩ At(φ)) =

{

1
2

(2∆2)2

2π−|φ| +
(

2∆2 − |φ|t
2

)

t, if | φ |≤ 2∆2

t

(2∆2)
2 π
|φ|(2π−|φ|) , if 2∆2

t <| φ ≤ π.

Note that for a linear Lévy growth model E(Rt(φ)) ∝ 2∆2t, so the covariance Cov(Rt(0), Rt(φ))
depends for fixed t on |φ| via |φ|t for small |φ|t, which is proportional to the distance
between to points in directions 0 and φ on the boundary of a disc with radius E(Rt(φ)).
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Abstract

An extended covariogram model is discussed for estimating the precision of
circular systematic sampling. The extension is motivated by recent developments
in shape analysis of featureless planar objects. Preliminary simulation results
indicate that it is important to consider the extended covariogram model.

Keywords: Covariogram, error prediction, shape, stereology, stochastic processes,
systematic sampling, variance estimation.

1 Introduction

Recently, the precision of systematic sampling on the circle has been discussed in
Gual-Arnau & Cruz-Orive (2000) and Cruz-Orive & Gual-Arnau (2002). In particular,
variance estimation formulae based on a global polynomial model for the covariogram
have been developed. In Hobolth & Jensen (2002), this approach is discussed both in
a design-based and a model-based setting, and an alternative model-based method of
estimating the parameter of the covariogram is described.

In this note, we summarise these developments and argue that it may be natural to
consider an extension of the polynomial covariogram model, see also the discussion in
Hobolth & Jensen (2002). We explain the geometric interpretation of the parameters
of the proposed extended model and report preliminary simulation results.

2 A global polynomial covariogram model

In this note, we will focus on the model-based approach to error prediction in circular
systematic sampling. In a model-based setting, the aim is to predict an integral of the
form

Q =
∫ 1

0
F (2πt)dt,

where
F = {F (2πt) : 0 ≤ t < 1}
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is a stationary periodic non-negative stochastic process of bounded variation, square
integrable and piecewise continuous. Since F is stationary, the mean EF (2πt) does
not depend on t and equals µ, say, and the covariance

Cov(F (2πh), F (2π(h + t))), (1)

0 ≤ h, t < 1, does not depend on h and will be denoted σ(t). In (1), we use a periodic
extension of F . The covariance function satisfies σ(t) = σ(1 − t) and therefore, its
Fourier expansion takes the form

σ(t) = λ0 + 2
∞∑

k=1

λk cos(2πkt),

0 ≤ t < 1. The predictor of Q to be considered is of the form

Q̂(F, φ, n) =
1
n

n−1∑
j=0

F

(
2π

(
φ +

j

n

))
,

where φ ∈ [0, 1/n[. Note that the distribution of Q̂(F, φ, n) does not depend on φ, due
to the stationarity of F . The prediction error of using Q̂(F, φ, n) as a predictor of Q
can be expressed in terms of the Fourier coefficients λk of the covariance function. We
thus have

E(Q̂(F, φ, n)−Q)2 = 2
∞∑

k=1

λkn. (2)

Note that the prediction error only depends on Fourier coefficients of order n and
higher.

In Hobolth & Jensen (2002), a parametric model for the covariance function is
considered,

λ0 = β0 − 2
∞∑

k=1

λk,

λk =
(2p)!
k2p

β, k = 1, 2, . . . , (3)

where p is a positive integer and the other model parameters β0 and β are chosen such
that λk ≥ 0 for k = 0, 1, . . . . Under (3), the prediction error only depends on β

E(Q̂(F, φ, n)−Q)2 = 2
∞∑

k=1

λkn

=
1

n2p
(−1)p−1(2π)2pB2pβ, (4)

where B2p is a Bernoulli number. For more details on Bernoulli numbers and the
associated Bernoulli polynomials, see Abramovitz & Stegun (1965).

Hobolth & Jensen (2002) suggest to estimate the parameter β using maximum
likelihood estimation. It is shown that if F is assumed to be a Gaussian process,
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there exists a unique unbiased estimator β̂ of β with minimum variance. If we have n
systematic observations of F ,

F

(
2π

(
φ +

j

n

))
, j = 0, 1, . . . , n− 1,

φ ∈ [0, 1/n[, then

β̂ =
1

n− 1

n−1∑
j=1

λ̂j

κ̃j
,

where for j = 1, . . . , n− 1

λ̂j =
1
n2

n−1∑
l,m=0

cos(2πj(l −m)/n)

× F

(
2π

(
φ +

l

n

))
F
(
2π
(
φ +

m

n

))
(5)

κ̃j =
∑
k∈Z

(2p)!
(j + nk)2p

.

Using this maximum likelihood estimate of β we can estimate the prediction error (4)
by

(−1)p−1(2π)2pB2p
1

n2p
β̂. (6)

The parametric model (3) for the covariance function has originally been suggested
in a design-based setting by Gual-Arnau & Cruz-Orive (2000, page 635). They provide
an alternative estimator of the prediction error (4) based on the empirical covariogram
ĝ at 0 and 1/n

1
n2p

ĝ(0)− ĝ( 1
n)

1−B2p( 1
n)/B2p

, (7)

where B2p(t) is a Bernoulli polynomial of order 2p and

ĝ
(k

n

)
=

1
n

n−1∑
j=0

F
(
2π
(
φ +

j

n

))
F
(
2π
(
φ +

j + k

n

))
,

k = 0, 1, . . . , n− 1. Note that

ĝ(0)− ĝ
( 1

n

)
=

1
2n

n−1∑
j=0

(
F
(
2π
(
φ +

j

n

))
− F

(
2π
(
φ +

j + 1
n

)))2

. (8)

It can be shown that for n = 2 and n = 3, (6) and (7) coincide.
The estimator (7) only uses the empirical covariogram ĝ near the origin. In Cruz-

Orive & Gual-Arnau (2002), they suggest a modified estimator

1
n2p

1
[n
2 ]

[n
2
]∑

k=1

ĝ(0)− ĝ( k
n)

1−B2p( k
n)/B2p

, (9)

using more values of the empirical covariogram. The estimators (6), (7) and (9) are
all unbiased under the model (3).

3
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3 An extension of the global covariogram model

The model (3) and its design-based analogue have the nice property that analytic
expressions of the estimators are available. It turns out, however, that it is natural
from a geometric point of view to consider an extension of this model. In a model-
based setting, the extended model is known as the p−order model (Hobolth et al. 2002;
Hobolth et al., 2003). The covariance function of the extended model is determined
by Fourier coefficients of the form

λ0 ≥ 0, λ−1
k = α̃ + β̃k2p, k = 1, 2 . . . , (10)

where α̃+β̃ > 0, β̃ > 0 and p > 1
2 . It can be shown that p determines the smoothness of

the stochastic process F . In fact, if we assume that F is a Gaussian process, F is m−1
times continuously differentiable where m is the integer satisfying p ∈]m− 1

2 ,m + 1
2 ].

For fixed p, α̃ and β̃ determine the global and local fluctuations of the stochastic
process F , respectively. Small values of α̃ provide large fluctuations of the process on
a global scale, while large values give smaller fluctuations. Also, the smaller β̃, the
more fluctuations of F on a local scale.

In particular, if F = R, where R is the radial function of a planar object K,
star-shaped relative to z ∈ K,

R(2πt) = max{r : z + r(cos(2πt), sin(2πt)) ∈ K},

0 ≤ t < 1, then p determines the smoothness of the boundary of the object K and
for fixed p, α̃ and β̃ determine the global and local shape of the object, respectively.
If α̃ is small, the global shape of the object K is expected to deviate from circular
shape. A small value of β̃ is expected to provide an object boundary with many local
fluctuations. Typically, in addition, the parameter λ1 is set to zero if the point z is
approximately the center of mass of the object K. For more details, see Hobolth et al.
(2003).

As mentioned above the model described in (3) is a special case of the p-order
model. It is obtained by choosing p as a positive integer and

α̃ = 0, β̃ = ((2p)!β)−1. (11)

It seems natural to include an additional parameter α̃ to allow for more flexibility.
The estimator (6) of the prediction error provided under the restricted model (11)

appears, however, to work well under the general model (10) if n is large and F is a
Gaussian process. A heuristic argument goes as follows. In Hobolth & Jensen (2002),
it is shown for a Gaussian process with a general covariance function that

n−1∑
j=1

λ̂j

λ̃j

∼ χ2(n− 1),

where λ̂j is given in (5) and

λ̃j =
∞∑

k=−∞
λj+nk.

4
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For large n, we have under (10) that

λ̃j ≈
κ̃j

β̃(2p)!
.

Accordingly, the estimator (6) is approximately γnX where

γn = (−1)p−1(2π)2pB2p
1

n2p

1
β̃(2p)!

and X ∼ χ2(n−1)/(n−1). Note that for n large, the prediction error is approximated
by γn since

E(Q̂(F, φ, n)−Q)2 = 2
∞∑

k=1

1
α̃ + β̃(nk)2p

≈ 2
1
β̃

1
n2p

∞∑
k=1

1
k2p

= γn.

4 Preliminary simulation results

Throughout this section, the squared radial function of the simulated objects relative
to the origin is given by

F (2πt) = 1 +
√

2
∞∑

k=1

(Ak cos(2πkt) + Bk sin(2πkt)), (12)

0 ≤ t < 1, where all Ak ∼ Bk ∼ N(0, λk) are mutually independent. In fact, if F is a
stationary periodic Gaussian process, F is distributed as in (12). Note that since F is
the squared radial function,

π

∫ 1

0
F (2πt)dt

is the area of the simulated object.
We concentrate on objects with z approximately equal to the centre of mass so λ1

is set to zero. The remaining Fourier coefficients follow (10). It is natural to use a
reparametrisation of the model (Hobolth et al., 2003),

λ0 ≥ 0, λ1 = 0,

λ−1
k = α + β(k2p − 22p), k = 2, 3, . . . , (13)

such that α determines λk for small k ≥ 2 while β determines λk for large k. Through-
out the study, we use p = 2. As a consequence, the object boundary is continuously
differentiable.

Figure 1 shows, for selected values of α and β, simulated objects and a log-log
plot of the true prediction error (2) together with the estimated prediction errors (6),
(7) and (9) calculated from measurements on the shown objects. As supported by the
reasoning in Section 3, the estimate (6) seems to perform well for not too small values of
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n. The other estimates are somewhat below the true prediction error. For small values
of n neither of the estimators delivers satisfying results. It should be emphasised that
in Figure 1 the simulated objects follow the model (13) but the estimators examined
refer to the model (3).

In Hobolth et al. (2003), it is suggested to use the low frequency Fourier coefficients
to estimate the parameters of the model (13). When F is a Gaussian process we can
use the likelihood function

L(λk; ck) =
K∏

k=2

λ−1
k e−λ−1

k ck (14)

to find estimates of α, β and p through standard numerical methods. Here,

ck =
a2

k + b2
k

2

is the k’th phase amplitude, where ak and bk are the observed values of the Fourier
coefficients Ak and Bk from (12). We used values of K approximately equal to n/3.
For details about the choice of K, see Hobolth et al. (2003). In this paper, it is also
shown that the estimation of p is not critical. For convenience, we used p = 2, but
estimated α and β by maximising L as a function of α and β. For this purpose, we used
the fminsearch-function in Matlab which uses the simplex search method of Lagarias
et al. (1998).

Since the prediction error is given by

2
∞∑

k=1

λnk (15)

and
λ−1

k = α + β(k2p − 22p)

for k ≥ 2, we can use the estimated values of α and β to obtain an estimate of the
prediction error. In the log-log plots of Figure 2, we show the true prediction error
(solid curve) as a function of n, together with the estimated prediction errors (6) and
(7) and the prediction error obtained by inserting the estimated values of α and β into
(15). The estimates are based on measurements on the shown objects. The estimate
(7) lies somewhat below the other estimates which are quite close to the true prediction
error. One should note, though, that the parameters in the model (13) are difficult
to estimate if n is smaller then ten (Hobolth et al., 2003). The reason is that the
Fourier coefficients ak and bk are determined as discretised Fourier integrals based on
n measurements of the radial function.

All these results call for a closer investigation of the model (13) and its use in
assessment of the precision of circular systematic sampling.
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Legends to figures

Figure 1
Simulations under the model (13) with (logα, logβ) = (3.5,−0.5), (7.5,−0.5) and
(7.5, 3.5) in the upper, middle and lower row, respectively. The true prediction error
(solid curve) is shown in a log-log plot as a function of n, together with the estimated
prediction errors (6), (7) and (9) shown as �, ? and ◦, respectively. The simulated
objects are shown in the lower left corners of the plots.

Figure 2
Simulations under the model (13) with (logα, logβ) = (3.5,−0.5), (7.5,−0.5) and
(7.5, 3.5) in the upper, middle and lower row, respectively. In the log-log plots, the true
prediction error (solid curve) is shown as a function of n, together with the estimated
prediction errors (6) and (7), shown as � and ◦, and the estimate obtained by plugging
in estimates of α and β into (15), shown as ?. The simulated objects are shown in the
lower left corners of the plots.
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Figure 1
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Figure 2

10



Paper

E

Jónsdóttir, K.Ý. (2006).
Non-stationary spatial survival analysis.
To appear as a Thiele Research report.





Non-stationary spatial survival analysis

Kristjana Ýr Jónsdóttir
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Abstract

In this report we introduce some basic ideas of how classical tools from sur-
vival analysis can be used to study non-stationary spatial data. We will focus on
the definition of a local version of the empty space function of a non-stationary
random compact set and its hazard rate and an estimation method under the well
known Cox proportional hazard model. We will give some concrete examples of
applying the estimation method, using both real and simulated data. Finally we
will summarise the open questions within this area and discuss some of the further
investigations needed to assess how useful the suggested methods are.

1 Introduction

In Baddeley and Gill (1993, 1997) methods from survival analysis are used to estimate
characteristics for spatial point processes based on interpoint distances. They study
estimators of Kaplan-Meier type based on the analogy with censored survival data.
The distance from a fixed point to the nearest point of the process is censored by its
distance to the boundary of the observation window. In Baddeley and Gill (1994) and
Hansen et al. (1996, 1999) a Kaplan-Meier estimator of the first contact distribution of
a random compact set is introduced and analysed under certain regularity condition.
These papers only consider estimation of statistics of stationary spatial data. It is of
interest to try to use analogues from survival analysis to estimate statistics of non-
stationary spatial data, since the standard analysis cannot be applied in this case.
The question is whether we can find some non-parametric or semi-parametric methods
to analyse non-stationary data sets using methods from classical survival analysis. In
this report, we will mainly focus on the local version of the empty space function of a
non-stationary random compact set X

Fξ(r) = P(X ∩ b(ξ, r) 6= ∅),

and the local version of its hazard rate,

λξ(r) =
fξ(r)

1 − Fξ(r)
,

where b(ξ,R) is the sphere in Rd with radius r centred at ξ ∈ Rd and fξ is the derivative
of Fξ (if it exists).

We will start by summarising some known methods to estimate the empty space
function for stationary data, including methods using tools from survival analysis. In
Section 3 we will define a local version of the empty space function of a non-stationary

1
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random compact set and its hazard rate. We will introduce some ideas of how known
methodology from survival analysis, i.e. the Cox proportional hazard model and the
accelerated lifetime model, can be used for semi-parametric estimation. Examples of
application to real and simulated data will be given. Finally we will discuss the open
problems within this area and try to highlight the most important further investigations
which need to be done.

2 Stationary spatial survival analysis

We assume that we have a realisation of a stationary random closed set X in Rd

observed within a compact and regular window W . Thus the data consists of X ∩W
and W . Even though W could also be regarded as a random set, all analysis will
be conditionally on W . Based on this data, we want to study some properties of the
spatial pattern X by using the empty space function and its hazard function as defined
below.

The empty space function F is defined as

F (r) = P(X ∩ b(0, r) 6= ∅), r ≥ 0, (1)

where b(ξ, r) denotes the sphere in Rd with radius r centred at ξ ∈ Rd. The empty
space function is also known as the first contact distribution of X with respect to the
test set b(0, r). An alternative definition of the empty space function is given by

F (r) = P(ρ(0,X) ≤ r), r ≥ 0, (2)

where
ρ(ξ,X) = inf{|ξ − a| : a ∈ X}, (3)

is the distance from ξ to the the random set X ⊂ Rd. The survival function of ρ(0,X)
will be denoted by S(r) = 1 − F (r). If the empty space function is differentiable for
all r ∈ R+

0 , then we let f be the derivative (or density) of F and we define the hazard
rate of X by

λ(r) =
f(r)

1 − F (r)
= −

d

dr
log(1 − F (r)), r > 0, (4)

which implies that

F (r) = 1 − exp(−

∫ r

0
λ(s)ds).

For more details cf. Baddeley and Gill (1994) and Hansen et al. (1996, 1999).
It is useful to compare the estimated empty space function and/or hazard rate

of some spatial pattern to its theoretical counterpart of a completely random spatial
pattern. Below we will give two important examples of completely random spatial
patterns.

Example 2.1. If the random set X is a Poisson point process in R2 with intensity α
we have that

F (r) = 1 − exp(−απr2) and λ(r) = 2απr.

Moreover, an indicator of clustering or regularity of the point process can be seen by
comparing the estimated hazard rate λ̂ to the hazard rate of a Poisson process. At
least for small values of r, λ̂(r) ≤ λ(r) indicates clustering or aggregation, whereas
λ̂(r) ≥ λ(r) is a indication of regularity.

2
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Example 2.2. If X is a Boolean model in R2 with convex grains, then

F (r) = 1 − exp(−α(a+ b+ πr2)) and λ(r) = α(b + 2πr),

where a and b are the mean area and boundary length of the typical convex grain,
respectively. In the special case where the grains are random discs b(0, Ri), where the
Ris are positive independent and identically distributed random variables, Ri ∼ R,
then

F (r) = 1 − exp(−απE(R+ r)2) and λ(r) = 2απ(E(R) + r).

�

Different estimators for the empty space function have been suggested in the lit-
erature. The most simple one is the reduced-sample estimator which is easily derived
using classical minus sampling. This estimator is given by

F̂ rs(r) =
|W⊖r ∩X⊕r|k

|W⊖r|k
, (5)

where | · |k denotes the k-dimensional Lebesgue measure,

A⊕r = {ξ ∈ Rd : ρ(ξ,A) ≤ r},

A⊖r = {ξ ∈ Rd : ρ(ξ,Ac) > r},

and c denotes the compliment. This estimate is unbiased, but note that F̂ rs(r) is not
necessarily a distribution function. For more details, cf. Stoyan et al. (1995).

A more efficient estimator is the so-called Kaplan-Meier estimator proposed by
Baddeley and Gill (1997):

F̂ (r) = 1 −
|W \X|k
|W |k

exp(−

∫ r

0
λ̂(s)ds), (6)

where λ̂ is the ratio-unbiased estimator of λ,

λ̂(r) =
|∂(X⊕r) ∩W⊖r|k−1

|W⊖r \X⊕r|k
, (7)

and ∂(X) denotes the boundary of X. In practise the sampling window W will be
discretised on a regular lattice and as the lattice becomes finer, the discrete Kaplan-
Meier estimator converges to F̂ . For more details, cf. Baddeley and Gill (1994) and
Hansen et al. (1996, 1999).

3 Non-stationary spatial survival analysis

Now we assume that we have a realisation of a non-stationary random set X in Rd

observed within a compact and regular window W . In non-stationary spatial statistics,
a counterpart of the empty space function in the stationary case is the local empty
space function Fξ at a position ξ ∈ Rd, defined as

Fξ(r) = P(X ∩ b(ξ, r) 6= ∅)

= P(ρ(ξ,X) ≤ r),

3
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where r ≥ 0 and the local survival function of ρ(ξ,X) by Sξ(r) = 1 − Fξ(r). If the
empty space function is differentiable for all (ξ, r) ∈ Rd × R+

0 , then we let fξ be the
derivative (or density) of Fξ and we define the local hazard rate of X by

λξ(r) =
fξ(r)

1 − Fξ(r)
= −

d

dr
log(1 − Fξ(r)), r > 0, (8)

which implies that

Fξ(r) = 1 − exp(−

∫ r

0
λξ(s)ds) and Sξ(r) = exp(−

∫ r

0
λξ(s)ds). (9)

The aim is now to try to find some methods to estimate the local empty space function
and its hazard rate by using non-parametric or semi-parametric methods.

A popular method in classical survival analysis is to fit semi-parametric models to
the hazard rates. This means that one studies the relationship of survival distributions
to some known covariates, e.g. one can try to fit a Cox proportional hazards model

λξ(r) = eβ·s(ξ)λ(r), (10)

or an accelerated life time model

λξ(r) = eβ·s(ξ)λ(eβ·s(ξ)r), (11)

where λ is some baseline hazard rate, β is k-dimensional vector of parameters and
s : Rd → Rk is a vector valued covariate. The baseline does not need to have a special
form and can be estimated non-parametrically. These methods can easily be adapted
to non-stationary spatial statistics, where the covariates are known or an observed
function of ξ. The function s(ξ) could e.g. represent soil type or altitude at position
ξ or a function derived from another spatial pattern.

The two models above also have an interesting intuitive appeal. If we have a union
X⋆ of n independent copies of a stationary random closed set X with empty space
function F and hazard rate λ, then the union X⋆ has hazard rate λ⋆(r) = nλ(r),
corresponding to the transformation occurring in the Cox proportional hazard model.
On the other hand if one considers a scaled version of X, X⋆ = cX, c > 0, X⋆ has
hazard rate λ⋆(r) = c−1λ(c−1r). This corresponds to the transformation occurring
in the accelerated life time model. Therefore, the models in (10) and (11) have the
intuitive appeal of describing non-stationary change of intensity and non-stationary
change of scale, respectively.

It is important to study the properties of the local empty space function of some
known models for inhomogeneous spatial patterns. The majority of inhomogeneous
models for point processes has been constructed by introducing inhomogeneity into
a homogeneous template point process. This includes e.g. independent location de-
pendent thinning (cf. Baddeley et al. (2000)) and transformation of the homogeneous
process, (cf. Jensen and Nielsen (2000)). Also, one can define an inhomogeneous point
process as a locally scaled version of the homogeneous template process, cf. Hahn
et al. (2003). Other examples, as first-order inhomogeneous Markov point processes,
introduce the inhomogeneity by allowing non-constant first-order terms in the density
of the process with respect to the unit rate Poisson process, c.f. Stoyan and Stoyan
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(1998). Some Cox point processes are also important in the description of inhomoge-
neous point patterns, c.f. Møller et al. (1998) and Brix and Møller (2001). However,
there does not seem to exist any simple way of studying the properties of the local
empty space functions for these models. In Section 4 we will study a more tractable
model, then the models mentioned above.

4 Cox proportional hazard model

A special class of inhomogeneous germ-grain models for non-stationary random com-
pact sets in Rd, is a Cox proportional hazard model for the local hazard rate with
s(ξ) = ξ, see (10).

4.1 The germ-grain model

The definition of the model is as follows. Let

X = ∪y∈Y {y + Zy},

where Y is an inhomogeneous Poisson process on Rd with a log-linear intensity function

γ(y) = α exp(β · y), α > 0, β ∈ Rd

and {Zy}y∈Y is a sequence of independent and identically distributed random compact
sets in Rd that are independent of the Poisson process Y . We will assume that Zy ∼ Z

for all y ∈ Y , where Z has the distribution Q. The random compact set X can also be
regarded as a marked Poisson point process {y, Zy} with points in Rd and mark space
K, where K denotes the class of compact sets in Rd. A germ-grain model of this type
can e.g. be used to model data with a spatial trend along a specific axis.

Denote

n(F) =
∑

y∈Y

1{y + Zy ∈ F}, F ∈ K′,

where K′ = B(K \ {∅}). Then the intensity measure of the random compact set X is
given by

Λ(F) = E{n(F)} =

∫

Rd

∫

K
1{y + Z ∈ F}γ(y)dQ(Z)dy

where F ∈ K′. Now define the hitting distribution TX of the random compact set by

TX(K) = P{X ∩K 6= ∅}, K ∈ K.

It is clear that

TX(K) = P{X ∩K 6= ∅} = 1 − P{X ∩K = ∅}

= 1 − P{n(FK) = 0} = 1 − exp(−Λ(FK)),

where K ∈ K and FK = {F ∈ K : F ∩K 6= ∅}. The local empty space function of the
random compact set X at position ξ is given by

Fξ(r) = TX(b(ξ, r)) = 1 − exp(−Λ(Fb(ξ,r))).

5
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We have that

Λ(Fb(ξ,r)) =

∫

Rd

∫

K
1{y + Z ∈ Fb(ξ,r)}γ(y)dQ(Z)dy

=

∫

Rd

∫

K
1{(y + Z) ∩ b(ξ, r) 6= ∅}γ(y)dQ(Z)dy

= EQ

{

∫

b(ξ,r)⊕Ž

γ(y)dy
}

= EQ

{

∫

b(0,r)⊕Ž

γ(y + ξ)dy
}

= exp(β · ξ)EQ

{

∫

b(0,r)⊕Ž

γ(y)dy
}

= exp(β · ξ)Λ(Fb(0,r)),

where Ž = {−z : z ∈ Z} and thus

Fξ(r) = 1 − exp
(

exp(β · ξ) log(1 − F0(r))
)

= 1 − (1 − F0(r))
exp(β·ξ),

Sξ(r) = (S0(r))
exp(β·ξ).

It follows that the local hazard rate of the random compact set X at ξ fulfils

λξ(r) = exp(β · ξ)λ0(r),

and the model is therefore a special type of the Cox proportional hazard model, see
(10).

4.2 The Poisson point process

A special case of the germ-grain model described above is the Poisson point process
with log-linear intensity function γ(ξ) = α exp(β · ξ), i.e. Zy = ∅. The following
relations for the local empty space function, local hazard rate and the local survival
function of X were found above,

Fξ(r) = 1 − (1 − F0(r))
exp(β·ξ), (12)

Sξ(r) = S0(r)
exp(β·ξ), (13)

λξ(r) = exp(β · ξ)λ0(r). (14)

Using the specific form of the intensity function one gets that

S0(r) = exp

(

−
2πrα

|β|
I1(r|β|)

)

, (15)

λ0(r) = 2παrI0(r|β|), (16)

where Iν is the modified Bessel function of the first kind of order ν. The calculations
can be found in the Appendix.

Since the Cox proportional hazard model only includes the parameter β, we need
an estimation method for the parameter α. This can be done by solving the equation

E(n(X ∩W )) = α

∫

W

exp(β̂ · η)dη,

for α, where n(x) denotes the cardinality of x and β̂ is an estimate of β. This implies
that we can estimate α by

α̂ = nW

(

∫

W

exp(β̂ · η)dη
)−1

, (17)

6
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where nW is the observed number of points in the window W.
The fitted model can be used to check for complete randomness of a point pro-

cess, by comparing the estimated baseline hazard rate λ̂0 to the hazard rate λ0 of an
inhomogeneous Poisson process with intensity γ(ξ) = α exp(β · ξ), replacing α and β

with its estimates. The deviations of the estimated hazard rate to the hazard rate
of the Poisson process can also give an indication of clustering or regularity as in the
stationary case. λ̂0(r) ≤ λ0(r) indicates clustering or aggregation and λ̂0(r) ≥ λ0(r)
indicates regularity, at least for small r. In addition, the estimated survival function
can be compared to the survival function of the inhomogeneous Poisson point process.

4.3 Estimation method for the Cox proportional hazard model

In this section we will explain how the parameter β can be estimated in the Cox
proportional hazard model.

Our data consists of the local empty space distances

ρ(ξ,X ∩W ) = inf{|ξ − a| : a ∈ X ∩W},

and the local distances to the observation window

ρ(ξ, ∂W ) = inf{|ξ − a| : a ∈ ∂W}.

The true distance ρ(ξ,X) is censored by the distance to the boundary ρ(ξ, ∂W ), since

ρ(ξ,X) ∧ ρ(ξ, ∂W ) = ρ(ξ,X ∩W ) ∧ ρ(ξ, ∂W ),

where a ∧ b = min{a, b}. Like in survival analysis we therefore define the ”observed
failure times”

t(ξ) = ρ(ξ,X ∩W ) ∧ ρ(ξ, ∂W ),

and a censoring indicator

d(ξ) = 1[ρ(ξ,X) ≤ ρ(ξ, ∂W )] = 1[ρ(ξ,X ∩W ) ≤ ρ(ξ, ∂W )].

We suggest calculating (t(ξ), d(ξ)) for some points ξ in a regular lattice L on W , having
observations {(t(ξ), d(ξ))}ξ∈L and then fitting a Cox proportional hazard model

λξ(r) = exp(β · ξ)λ0(r), (18)

with parameter β ∈ Rd, using the standard methods from survival analysis to estimate
β, i.e. the partial likelihood function

L(β) =
∏

ξ∈L

(

exp(β · ξ)
∑

η∈R(ξ) exp(β · η)

)d(ξ)

,

where R(ξ) = {η ∈ L : t(η) ≥ t(ξ)}. Then non-parametric methods are used to
estimate the baseline hazard rate λ0. For more details see cf. Andersen and Gill
(1982).

One should note that using this estimation method, the observations on the lattice
L are treated as independent which is clearly not the case for spatial patterns. It is
also clear that we can actually observe continuous data, since the (t(ξ), d(ξ)) could be
observed for all ξ ∈ W . We postpone a more detailed discussion of these issues to
Section 6.

7
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4.4 Examples

In this section we will apply the estimation method discussed in Section 4.3 to a
simulated data set and real data set describing the location of adult Longleaf Pine
trees.

Example 4.1. (Simulated data) We have simulated a Poisson point pattern on the
unit square window with intensity

γ(x, y) = 300 exp(−2x).

Figure 1 shows the simulated point pattern. When we fit a Cox proportional hazard

Figure 1: A simulated inhomogeneous Poisson point pattern on the unit square window.
The intensity is given by ρ(x, y) = 300 exp(−2x).

model using the observed failure times and censoring indicators of the simulated data
and, by using the coxph function in R, we get estimates β̂ = (−1.858,−0.692) and
using equation (17) we get α̂ = 424.07. Now using the survfit function in R we get
an estimate of the survival function at the point ξ0 = (0.5, 0.5), Ŝξ0(r) and using the

function D1ss we get an estimate of the local hazard rate λ̂ξ0 . These estimates can now
be compared with the survival function and the local hazard at ξ0 of an inhomogeneous
Poisson process with intensity γ(ξ) = α̂ exp(β̂ · ξ). Figure 2 shows the estimated local
hazard rate λ̂ξ0(r) and the local hazard rate of the inhomogeneous Poisson process

with intensity α̂ exp(β̂ · ξ) for r < 0.14. Equation (14) and (16) are used to calculate
the local hazard rate of the inhomogeneous Poisson process.

In Figure 3, a log-plot of the estimated survival function Ŝξ0(r) is shown against

the survival function of the inhomogeneous Poisson process with intensity α̂ exp(β̂ · ξ).
Equations (13) and (15) are used to calculate the survival function of the inhomoge-
neous Poisson process.

The plotted line in Figure 3 coincides with the line x = y. In Figure 4, a plot
of the estimated baseline survival function at ξ0 and the survival function at ξ0 of an
inhomogeneous Poisson process with intensity α̂ exp(β̂ · ξ) are shown.

8
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Figure 2: The estimated local hazard rate λ̂ξ0 for the simulated data (full line) and

the local hazard rate of an inhomogeneous Poisson process with intensity α̂ exp(β̂ · ξ)
(dotted line). The plot shows only the values for r < 0.14.
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Figure 3: A log-plot of the estimated baseline survival function for the simulated data
at ξ0 = (0.5, 0.5) vs. the survival function at ξ0 of an inhomogeneous Poisson process
with intensity α̂ exp(β̂ · ξ)

9
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All these figures indicate that the inhomogeneous Poisson process is a good fit to
the simulated data, as expected.
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Figure 4: A plot of the estimated baseline survival function for the simulated data at
ξ0 = (0.5, 0.5) (full line) and the survival function at ξ0 of an inhomogeneous Poisson
process with intensity α̂ exp(β̂ · ξ) (dotted line).

Example 4.2. (Adult Longleaf Pine tree data ) The data in Figure 5 show the
locations of adult Longleaf Pine trees (trees of diameter greater or equal than 30 cm),
in a 200 × 200 metre region. The data is a subset of a larger data-set which has been
analysed in e.g. Cressie (1993). Note that this data set shows a clear spatial trend
along the x-axis, suggesting a log-linear intensity.

Let us fit the Cox proportional hazard model

λξ(r) = exp(β · ξ)λ0(r),

where λξ(r) is the local hazard function of the distribution of ρ(ξ,X) and X is the

observed point pattern. This gives us the following β̂ = (−7.2974 · 10−3 , 1.4481 · 10−5).
We want to see if there is some evidence of deviation from an inhomogeneous Poisson
model with intensity γ(ξ) = α exp(β · ξ). We get an estimate α̂ = 0.013007 using
equation (17). Using the same estimation procedure as in the last example we compare
the estimated hazard rate and the estimated survival function at ξ0 = (100, 100) with
their theoretical values, using the above estimates of α and β. The plots are shown in
Figures 6-8. The plots indicate some clustering of the trees.

Note that the estimated local hazard rate can not be interpreted for large values
of r due to the finite size of the sampling window.
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Figure 5: The locations of adult Longleaf Pine trees.
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Figure 6: A plot of the estimated local hazard rate for the adult Longleaf Pine tree
data at ξ0 = (100, 100) (full line) and the local hazard rate at ξ0 of an inhomogeneous
Poisson process with intensity α̂ exp(β̂ · ξ) (dotted line).
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Figure 7: A plot of the estimated baseline survival function adult Longleaf Pine tree
data at ξ0 = (100, 100) (full line) and the survival function at ξ0 of an inhomogeneous
Poisson process with intensity α̂ exp(β̂ · ξ) (dotted line).
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Figure 8: A log-plot of the estimated baseline survival function adult Longleaf Pine
tree data at ξ0 = (100, 100) vs. the survival function at ξ0 of an inhomogeneous Poisson
process with intensity α̂ exp(β̂ · ξ)
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5 Accelerated lifetime model

We will now look at the spatial analogue of the accelerated lifetime model for the local
hazard rate. Until now, we have not been able to find a random compact set such that
the local hazard rate fulfils an accelerated lifetime model. Intuitively, a prominent
candidate would be a germ-grain model, where the germs are a locally scaled Poisson
process with scaling function s(ξ) and the grains are independent but a scaled version
of each other with scaling function s. However, this type of germ-grain model does not
fulfil an accelerated lifetime model as seen below.

Let
X = ∪y∈Y {y + Zy},

where Y is a locally scaled Poisson process on Rd with scaling function

s(y) = α exp(β · y),

i.e. with intensity function γ(y) = s(y)−d, {Zy}y∈Y is a sequence of independent
random compact sets in Rd which are independent of Y and Zy ∼ s(y)Z, where Z is
a random compact set with distribution Q. The counting measure is of the form

n(F) =
∑

y∈Y

1{y + s(y)Z ∈ F}, F ∈ K′,

and the intensity measure Λ of the random compact set X is given by

Λ(F) = E{n(F)} =

∫

Rd

∫

K
1{y + s(y)Z ∈ F}γ(y)dQ(Z)dy,

where F ∈ K′. As in Section 4, the hitting distribution TX can be calculated by

TX(K) = 1 − exp(−Λ(FK)), K ∈ K,

and the local empty space function of X at position ξ is

Fξ(r) = 1 − exp(−λ(Fb(ξ,r))).

We have that

Λ(Fb(ξ,r)) =

∫

Rd

∫

K
1{(y + s(y)Z) ∩ b(ξ, r) 6= ∅}s(y)−ddQ(Z)dy,

and if we make the substitution t = y−ξ

eβ·ξ , so dy = (eβ·ξ)ddt and y = ξ + teβ·ξ, we get

Λ(Fb(ξ,r)) =

∫

Rd

∫

K
1{(ξ+teβ·ξ+s(ξ+teβ·ξ)Z)∩b(ξ, r) 6= ∅}s(ξ+teβ·ξ)−d(eβ·ξ)ddQ(Z)dt.

Since

s(ξ + teβ·ξ) =
s(ξ)s(teβ·ξ)

α
,

we get that

Λ(Fb(ξ,r)) =

∫

Rd

∫

K
1

{

(

ξ + teβ·ξ +
s(ξ)s(teβ·ξ)

α
Z
)

∩ b(ξ, r) 6= ∅

}

s(teβ·ξ)−ddQ(Z)dt

=

∫

Rd

∫

K
1{(t+ s(teβ·ξ)Z) ∩ b(0, e−β·ξr) 6= ∅}s(teβ·ξ)−ddQ(Z)dt

= Λ̃(Fb(0,e−β·ξr)),

13
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where Λ̃ is the intensity measure of a random compact set X̃ of the local scaling type
defined above, but with scaling function s̃ξ(t) = s(teβ·ξ). Thus

Fξ(r) = F̃0,ξ(exp(−β · ξ)r),

λξ(r) = exp(−β · ξ)λ̃0,ξ(exp(−β · ξ)r),

where F̃ and λ̃ are the local empty space function and local hazard rate at position ξ
of the random compact set X̃, respectively. Since the hazard rate λ̃0,ξ depends on ξ,
we do not have an accelerated lifetime model.

6 Discussion

In this section we will try to summarise the open questions within this area and discuss
the possible problems with the methods used.

One of the problems arising in this report is the question of the existence of λξ.
Existence is ensured if Fξ is differentiable for all ξ ∈W . It is needed to try to find some
regularity conditions on the random compact set X, such that Fξ(r) is differentiable
for all ξ ∈W and r > 0.

Another possibly problematic issue is the question of existence of a random compact
set X with a local hazard rate fulfilling a given Cox proportional hazard model or an
accelerated lifetime model. This problem could possibly be solved by using a similar
strategy as proposed by Zimmerman (1991).

In Section 4.3 we proposed a method of estimating β based on the partial likelihood
in the Cox proportional hazard model (18) and a non-parametric method to estimate
λ0. The observations are functions of distances ρ(ξ,X) and ρ(ξ, ∂W ) from points ξ in
a lattice L. One should note that these observations are heavily dependent since

|ρ(ξ,X) − ρ(η,X)| ≤ |η − ξ|. (19)

Fitting the model (18), using the suggested methods, means ignoring this spatial de-
pendence.

Another problem concerning the estimation methods is the fact that the obser-
vations ρ(ξ,X) and ρ(ξ, ∂W ) can be observed at every point ξ of the observation
window W . Therefore a very interesting problem is to find a continuous analogue of
the partial likelihood estimation method and investigate its properties. In practise, one
would however probably always use the discrete version of the likelihood. This involves
a number of open questions concerning the asymptotic properties of the estimators.
One could e.g. study asymptotic results concerning the size of the window W and size
of the lattice used.

As mentioned in Section 4.2, the Cox proportional hazard model only includes the
parameter β. This means that using the suggested estimation methods we need an
estimate for α. If the observed random set is such that the grains do not intersect,
one can find reasonable estimates of the parameter α, using similar considerations as
in Section 4.2,

α̂ = nW

(

∫

W

exp(β̂ · η)dη
)−1

, (20)

where nW is the number of observed grains in the observation window W . One can
also use the empirical distribution of the shapes of the grains as an estimate of the
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distribution Q and simulate the theoretical local hazard rates and survival functions
using this estimate and the estimates of the parameters determining the intensity
function. This involves calculating

EQ

{

∫

b(0,r)⊕Ž

γ(y)dy
}

,

where the parameters in the intensity are the estimated α and β. If the grains overlap,
the estimation of α will be more complicated.

Many distance and size variables in stochastic geometry can be considered as gener-
alisations of one-dimensional waiting times. This suggests that statistics and functions
in spatial statistics can be estimated and/or analysed by using methods from survival
analysis. One could try to use the ideas suggested here for other first contact distance
functions then the empty space function, using different test sets. This could perhaps
be used to investigate anisotropy of non-stationary random compact sets. It is also
of interest to look at local versions of other functions based on interpoint distances,
e.g. the G and J function and try to find analogues from survival analysis to estimate
these functions.
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Appendix: Calculation of the hazard rate and the survival

function for a non-stationary Poisson point process at ξ

Let X be a Poisson point process with intensity function γ(y) = α exp(β · ξ). It is easy
to see that the local survival function is given by

Sξ(r) = exp
(

−

∫

b(ξ,r)
γ(η)dη

)

,

implying that the local empty space function is given by

Fξ(r) = 1 − exp
(

−

∫

b(ξ,r)
γ(η)dη

)

,

and the local hazard rate is given by

λξ(r) =

∫

∂b(ξ,r)
α exp(β · η)dη = α exp(β · ξ)

∫

∂b(0,r)
exp(β · η)dη.

Letting

ψ = arcsin

(

β1

|β|

)

= arccos

(

β2

|β|

)

,

15
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then

∫

∂b(0,r)
exp(β · η)dη = r

∫ 2π

0
exp(rβ1 cos θ + rβ2 sin θ)dθ

= r

∫ 2π

0
exp(r|β|(sinψ cos θ + cosψ sin θ))dθ

= r

∫ 2π

0
exp(r|β| sin(ψ + θ))dθ

= 2πrI0(r|β|),

where Iν is the modified Bessel function of the first kind of order ν. Note that

∫

b(0,r)
exp(β · η)dη =

∫ r

0

∫

∂b(0,s)
exp(β · η)dηds

=

∫ r

0
2πsI0(s|β|)ds

=
2π

|β|2

∫ r|β|

0
wI0(w)dw =

2πr

|β|
I1(r|β|).

Using equation (9), we get that

Sξ(r) = exp
(

−α

∫

b(ξ,r)
exp(β · η)dη

)

= exp
(

−α exp(β · ξ)

∫

b(0,r)
exp(β · η)dη

)

= exp(−α exp(β · ξ)) exp

(

2πr

|β|
I1(r|β|)

)

,

and

Fξ(r) = 1 − exp((−α exp(β · ξ)) exp

(

2πr

|β|
I1(r|β|)

)

.
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