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Preface

The functioning of the human brain is a mystery that has intrigued scientists
for centuries. Research within the field has exploded in the last decades with
the development of techniques such as functional magnetic resonance imaging
which enable non-invasive in vivo recording of brain activation. This PhD
thesis is a contribution to the research of the functioning of the human brain
with focus on the modelling techniques for the mapping of brain functions.

The thesis consists of a review together with four independently written
papers and is submitted to the Faculty of Science, University of Aarhus. The
review provides an introduction to the field of functional magnetic resonance
imaging with emphasis on the mapping of brain functions. The results of the
accompanying papers are introduced and connections to related work within
the field are discussed. The core of the thesis is the enclosed papers which
present new approaches to the modelling of brain activation and an investiga-
tion of the clinical potential of brain mapping.

This work was supported by a grant from the Helga Jónsdóttir and Sig-
urliði Kristjánsson Memorial Fond and I thank the board of the fond for their
support. There are several people to whom I owe my deepest gratitude for
their inspiration, guidance, and support throughout my PhD studies. First
of all, I would like to express my appreciation to my supervisor Eva B. Vedel
Jensen for the excellent supervision and invaluable support on both profes-
sional and personal level. Her energy and profound commitment to research
has been a great inspiration. My medical supervisor Hans Stødkilde-Jørgensen
is also entitled to gratitude for sharing his insight into the medical aspects of
the project and for his great help with data acquisition and other issues related
to the MR scanner. I am deeply grateful to Klaus B. Bærentsen for sharing
his psychological knowledge, insight, and vision. His contagious enthusiasm
together with his vision of brain function has been highly inspirational for the
work presented in this thesis. I had the fortune of visiting Steffen L. Lauritzen
at the Department of Statistics, University of Oxford for one term during my
PhD studies. I wish to thank him for his kind hospitality and guidance during
my stay. I would also like to thank my colleagues, especially Markus E. H.
Kiderlen and Anders C. Green, for sharing their knowledge.
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Summary

The functioning of the human brain has fascinated scientists for centuries. It is
though only in the last decades that systematic investigation of the phenomena
has been made possible with the development of techniques which enable
non-invasive in vivo recording of brain activation. One of these techniques
is functional magnetic resonance imaging (fMRI). With fMRI, time series of
images showing the changing blood flow in the brain associated with neural
activation are acquired.

The analysis of images of this kind has allowed scientists to map a wide
variety of brain functions to specific locations in the brain and to investigate
the functional connectivity of different brain areas. The objectives of such ex-
periments range from simple motor, visual, or cognitive tasks such as moving
the fingers or watching a blinking light to more complex phenomena such as
maternal and romantic love (Bartels and Zeki, 2004). The data is, however, a
realisation of a complex spatio-temporal process with many sources of varia-
tion, both biological and technical. In order to model the activation of interest,
it is therefore usually necessary to use highly controlled set of stimuli where
the stimuli is repeated several times with resting periods in between. The aim
of the analysis is then to find those areas of the brain showing increased or
decreased activation during the epochs of stimuli.

One experiment of this type is presented in the thesis. Here, the aim is
to investigate the brain activation during repetitive pelvic floor muscle con-
traction in women. We compare the brain activation in healthy women and
in women suffering from stress urinary incontinence before and after physical
therapy treatment.

With the success of experiments of this type, there is a growing interest
within the neuroscience community to extend the experimental paradigm to
more complex and more natural stimuli. Examples of the questions asked
here are what happens in the brain during rest, meditation, or the viewing of
a motion picture? Data of this type is to date usually analysed using simple
correlation analysis or data driven methods such as independent component
analysis. This type of analysis will though not reveal the more complicated
interaction structure of the activation. For instance, a particular region of the
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Summary

brain may only be active if a collection of other regions are active. It may also
be of interest to investigate whether the duration and extend of activation
may depend on the particular region of the brain studied. Activation struc-
ture of this type may be investigated using the spatio-temporal point process
modelling approach introduced in this thesis. Here, the activation is modelled
as a marked spatio-temporal point process where for each point, the location
in space defines the centre of the given activation, the location in time defines
the starting time of the activation, and the mark describes the duration and
spatial extension. Modelling framework of this type allows for simultaneous
uncertainty about both the time points and locations of activation and per-
mits great flexibility in both the experimental design and the type of inference
questions asked.

Further work presented here is a Bayesian procedure for removing noise
from images that can be viewed as noisy realisations of random sets in the
plane. This procedure is based on recent advances in configuration theory
and assumptions on the mean normal measure of the set are used to obtain
prior probabilities of observing the different boundary configurations. Within
fMRI data analysis, mixture models of similar type are used to model the
spatial pattern of the brain activation once temporal modelling has been used
to model the activation in each voxel independently.

The thesis consists of a review and four independently written papers.
One paper has already been published and further two have been accepted for
publication. The co-authors of the papers are my supervisors Eva B. Vedel
Jensen from the Department of Mathematical Sciences, University of Aarhus
and Hans Stødkilde-Jørgensen from the MR Research Centre, University of
Aarhus.
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1. Introduction

The technology that allows us to investigate the functioning of the active hu-
man brain has developed immensely in the last decades. One of the most pop-
ular brain imaging method is functional magnetic resonance imaging (fMRI)
which is based on the different magnetic properties of oxygenated and deoxy-
genated haemoglobin. With the method, images of the changing blood flow in
the brain associated with neural activation are acquired. FMRI based on this
blood oxygenation level dependent (BOLD) effect has, since first reported by
Ogawa et al. (1990), been widely adopted by the neuroscience research com-
munity for basic studies of brain function. The main advantages of fMRI over
other brain imaging methods are its non-invasive nature without involving ex-
posure to ionising radiation, as well as its good spatial resolution of about two
to three millimetres. The method has, however, a rather poor temporal reso-
lution of a few seconds. This is though mainly because of the poor temporal
resolution of the BOLD effect, not because of the MR technique itself.

The data obtained with fMRI are a realisation of a complex spatio-temporal
process with many sources of variation, both biological and technical. Careful
mathematical modelling is needed to extract the components related to neural
activation of interest from the remaining variation in the data. In order to
achieve this, most conventional experiments use a controlled and highly con-
strained set of stimuli specifically designed to activate only a specific subset
of regions at predefined times (Bartels and Zeki, 2005). With the success of
experiments of this kind, there has been a growing interest in recent years to
investigate the functioning of the brain under more natural conditions, such
as during rest (Biswal et al., 1995; De Luca et al., 2006; Fox et al., 2005)
or during free viewing of a motion picture (Bartels and Zeki, 2005; Hasson
et al., 2004). During such experiments, a complicated network of brain areas
is activated and there is uncertainty about both the position and the timing of
activation. Most conventional modelling methods have difficulties extracting
the activation components of interest from data acquired under such an un-
constrained experimental setup. The main contribution of this thesis is a new
and more flexible modelling approach based on spatio-temporal point process
theory that allows for simultaneous uncertainty in the position and the timing
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I n troduct i on

of brain activation. This modelling approach is presented in Paper A and
Paper B.

FMRI has had a huge impact on the understanding of the healthy human
brain. It has, however, had much less impact in clinical neuroscience or clinical
practise. The clinical potential of brain mapping using MRI is the subject
of this years special issue of the Journal of Magnetic Resonance Imaging, see
Jezzard and Buxton (2006). The editors of this special issue conclude that one
of the challenges here is the lack of well-controlled trials that test fMRI against
other more accepted diagnostic and therapeutic measures. Paper C presents
an on-going work where this is investigated for stress urinary incontinence in
women. Here, we compare the brain activation during pelvic floor exercises
in healthy women, incontinent women before physical therapy treatment, and
incontinent women after treatment. Further analysis is planned, where the
functional imaging data will be compared to MR images of the pelvic floor
muscle during relaxation and straining for the same subjects.

In Paper D, we present a Bayesian procedure for removing noise from bi-
nary images that can be viewed as noisy realisations of random sets in the
plane. The inspiration for this work comes from spatial mixture modelling
of fMRI data, more precisely a paper by Hartvig and Jensen (2000). In con-
ventional analysis of fMRI data, the temporal part of the analysis is often
performed independently for each voxel. This gives a test statistic for the ac-
tivation in each voxel. In Hartvig and Jensen (2000), the posterior probability
for a voxel being activated is calculated based on a test statistic depending
on a small neighbourhood around the voxel. Here, the posterior probability
depends on the number of activated voxels in the neighbourhood. We have
extended this method, using configuration theory, to take into account the
spatial pattern of the activations within the neighbourhood. This seems ap-
propriate if the resolution of the true image is good enough so that the patches
of activations are larger than the neighbourhood used for the restoration pro-
cedure. Further, we have chosen to present the method in the more general
framework of random sets in the plane.

This review is organised as follows. In Chapter 2, we discuss the challenges
of modelling neural activation in the brain using fMRI data both due to the
quality of the data and the nature of the experiments performed. A review of
some of the most common existing methods for fMRI data analysis is given
in Chapter 3. Further, the statistical methods used for the analysis in Paper
C are discussed in more detail than in the paper. An introduction to the
theory of spatio-temporal point processes and to the modelling framework
described in Paper A and Paper B is given in Chapter 4. Future work and
further extensions of the model are also discussed. Finally, Chapter 5 gives
an introduction to the work presented in Paper D.
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2. FMRI data and the human brain

During a functional MR scan, the scanner records a time series of an image
of an axial slice through the brain of thickness 3-8 mm. The image consists
of 64 × 64 or 128 × 128 voxels (volume elements) with in-plane resolution
1.5-4 mm. In most studies, a collection of equi-distant slices is combined to
form a pseudo 3D image of the brain. The disposition of the slices and the
coordinate system used is explained in Figure 2.1. During a whole brain scan,
such a volume of images may be obtained within two or three seconds, while
only about one hundred milliseconds are needed for a single slice. There is,
however, a trade-off between spatial and temporal resolution; images with
large voxels can be acquired more quickly than images with small voxels.

Figure 2.1: Scout MR images used to place the slices for the functional scan. Axial
section (left), saggital section (middle), and coronal section (right) through approx-
imately the centre of the brain. In xyz-coordinates, the xy-plane is parallel to the
ground, the x-axis going front and back, the y-axis passing left and right, and the
z-axis going up and down. Note that the orientation of the axial section is radiologi-
cal, the subject’s right is on the left side of the image as if the subject were standing
in front of and facing the observer. The images acquired during functional scans are
usually axial sections through the whole brain taken at an angle of 100◦−110◦ to the
z-axis in order to minimise the number of slices needed to cover the whole brain.

In Paper C we analyse images consisting of 64 × 64 voxels of size 3.75 ×
3.75 × 3 mm with 1 mm gap between the slices, so that approximately 30
slices are needed to cover the whole brain. It takes the scanner three seconds
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FMRI data and the human bra i n

to obtain one pseudo 3D image and the whole scan lasts three minutes. We
have thus roughly 120 thousand voxels in the dataset and for each voxel, we
have information from 60 time points. The number of voxels can, however,
be reduced somewhat as voxels located outside the brain may be discarded.
We are interested in making inference about the populations from which our
subjects are drawn and have thus repeated the experiment for several subjects
from each population. One of the obstacles facing every analysis approach is
hence the excessive amount of data, whereof only a very small part contains
effects of interest.

For readers unfamiliar with the anatomy of the human brain, some of
the main regions of the brain discussed in the following are outlined in Fig-
ure 2.2. For a more detailed information we refer to the classical book
Anatomy of the Human Body, the 1918 edition of which is available on-line at
http://www.bartleby.com/107 (Gray, 1918).

Figure 2.2: Regions of the brain: lateral surface of left hemisphere, viewed from the
side. Modified from Gray (1918).

As this thesis focuses on the modelling aspect of fMRI data and the map-
ping of brain function, we will not discuss the MRI technique and how the
signal is retrieved. For this, we refer the reader to Haacke et al. (1999). Fur-
ther, we will not address details of the underlying biological processes and the
brain metabolism. However closely related to the interpretation of the data
and thus important in this context, these very complicated processes are bet-
ter left to the experts of neuroscience to discuss, see e.g. Raichle and Mintun
(2006) and references therein.
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2.1. The haemodynam i c re s pon s e

2.1 The haemodynamic response

The MRI signal changes in activated regions of the brain, the BOLD effect,
results from changes in oxygenation, blood volume and flow. This effect, also
called the haemodynamic response, changes the MRI signal as follows: approx-
imately 2 seconds after neural activity begins, the signal begins to increase
and plateaus after about 6 to 10 seconds, remaining elevated while the activ-
ity continues. The signal then returns to baseline about 8 to 11 seconds after
activity ends. Transient signal changes have also been described, including a
decrease below baseline within the first two seconds of activation and the more
commonly reported decrease below baseline for 10 to 40 seconds after activity
ends (Bandettini and Ungerleider, 2001). Examples of simple models for the
haemodynamic response are shown in Figure 2.3, see Paper A for more details.
There are though a few disadvantages of using the haemodynamic response
as a measure for neural brain activation. One difficulty is that the dynamics,
location, and magnitude of the signal can be influenced by the vasculature in
each voxel. If a voxel happens to capture large vessel effects, the magnitude
of the signal may be larger than usual, the timing a bit more delayed than on
average, and the location of the signal up to a centimetre away from the true
origin of activation (Bandettini et al., 2005).
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Figure 2.3: Examples of models for the haemodynamic response function. The re-
sponse starts at time zero and the duration of activation is l time units. Left: Gaussian
response function κ (dashed) and the corresponding integrated response function g
(solid). Right: Gamma response function κ (dashed) and the corresponding inte-
grated response function g (solid). The parameters p1 and p2 must be estimated
from data. See Paper A for more details.

The precise connection between the haemodynamic response and the un-
derlying neural activity is also not satisfactorily known. In a first approxi-
mation, the haemodynamic responses and neural responses have been shown
to have a linear relationship for stimulus presentations of short duration (Lo-
gothesis, 2003), but the question remains whether it is the input to neurons

5



FMRI data and the human bra i n

as reflected in the local field potentials that primarily drives the changes in
the MRI signal or whether it is the output of neurons as manifested by their
spiking activity (Raichle and Mintun, 2006). See Logothetis et al. (2001) and
Logothetis and Wandell (2004) for reports supporting the former theory and
Mukame et al. (2005) for a report supporting the latter. It would therefore be
desirable to possess a technique which could directly detect the neural activity
with MR imaging. For a recent review of the work that been performed in
this direction, see Bandettini et al. (2005).

Another possibility is to combine the MRI technique with an imaging tech-
nique that has a much better temporal resolution than fMRI but lacks the
good spatial resolution. Possible candidates here are magnetoencephalogra-
phy (MEG) and electroencephalography (EEG). MEG measures the magnetic
field produced by electrical activity in the brain using a few hundred extremely
sensitive devices that are situated around the head. EEG, on the other hand,
measures the electrical activity in the brain by recording from electrodes sit-
uated on the scalp. For a discussion of the different methods used for data
comparison, see Horwitz and Poeppel (2002). The pioneering study of Ives
et al. (1993) showed that it is possible to record EEG signals within the MR
scanner and this method has gained popularity even though the time varying
magnetic field during the fMRI scanning completely obscures the EEG signal.
See e.g. Wan et al. (2006) and references therein for methods to remove the
MR related artifacts from the EEG signal.

In our work, we have concentrated on the modelling of fMRI data acquired
using the BOLD effect even though the method is not flawless. As of today,
there is no alternative method that outperforms it in both spatial and temporal
resolution and improvements are being made in the methodology to reduce
the vasculature related variation. Further, a combination of different methods
still requires careful modelling of each method separately.

2.2 Resting state activation

The unprocessed MRI signal is quite noisy. Some of the noise is created by
such uninteresting, yet troublesome, sources as scanner electronics, subject
movement, respiration, and variations in systematic cardiovascular dynamics
(Raichle and Mintun, 2006). See also Triantafyllou et al. (2005) for a detailed
investigation of the noise for different magnetic field strengths. There is,
however, a considerable fraction of the low frequency variation that appears
to reflect fluctuating neural activation. Biswal et al. (1995) were the first to
notice that these spontaneous fluctuations in the signal in one area of the
motor cortex were correlated with the fluctuations in other areas within the
motor cortex. Their initial observation has since been replicated and extended
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2.2. Re st i ng state act i vat i on

to reports of several distinct resting state networks, including visual, auditory,
and language processing networks, see Greicius et al. (2003), Beckmann et al.
(2005), De Luca et al. (2006), and Fox et al. (2005). The networks have
been reported to show increased activation during rest (De Luca et al., 2006),
as well as decreased activation during attention demanding cognitive tasks
(Fox et al., 2005). These findings are, so far, mainly of theoretical interest
to enhance our understanding of the functioning of the human brain. There
are though reports indicating that resting activation can be used for clinical
purposes such as to distinguish Alzheimer’s disease in its early stages from
healthy ageing, see Greicius et al. (2004).

An example of such resting data, earlier analysed in Beckmann et al.
(2005), is shown in Figure 2.4. The dataset consists of a time series of a
single axial slice chosen to intersect the sensory motor cortices bilaterally. In
Figure 2.4, the MR signal intensity is shown at 12 equidistant time points
during the scan. Even though the subject is not imposed to stimuli, changes
in the MR signal over time appear, some of which show covariation in different
regions of the brain. This will be made more clear in the following, where we
show some analysis results for this dataset, see also Paper A and Paper B
where the dataset is analysed using the spatio-temporal point process model
introduced in Chapter 4. Note that the images shown here have been prepro-
cessed in order to correct for movement related artifacts and to enhance the
signal changes so that they can be observed with the naked eye.

−100

0

100

Figure 2.4: Development of the MR signal activity over time in a single slice through
the human brain. From left to right and top to bottom: the activity at time t =
12, 30, 48, . . . , 210 seconds.

Estimating the temporal and the spatial characteristics of these low fre-
quency fluctuations in the MR signal represents a formidable challenge to ana-
lytical techniques. In most existing studies of the phenomena, the resting state
networks are inferred by either simple correlation analysis or the data driven
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FMRI data and the human bra i n

method of independent component analysis (ICA). For a detailed discussion of
the methods, see Section 3.3. In the correlation analysis, the voxel-wise time
series are usually correlated against a reference time course from secondary
recording such as EEG, or the time series from a seed voxel which is believed
to be of functional relevance. Here, a very specific hypothesis about the tem-
poral structure of the activation is tested and a more flexible model would be
advantageous. The spatio-temporal point process model presented in Paper
A and Paper B is a candidate for such a modelling framework, as it allows for
uncertainty about both the time points and locations of activation.

When analysing resting state activations, it is necessary to impose some
constrains in order to be able to distinguish between the actual resting state
activations and other sources of variation such as respiration related activa-
tion which is fundamentally quite similar. It is, however, not quite clear how
to define useful and unambiguous constrains that will not eliminate any ac-
tivation of interest. In this connection, it would be of interest to investigate
datasets where the subjects are imposed to natural stimuli involving several
distinct networks of brain activation. An example of this are experiments
where the subjects watch a movie sequence during the scan (Bartels and Zeki,
2005; Hasson et al., 2004). An fMRI experiment will always be an approxi-
mation to a natural condition given the constraints of the experimental setup,
but film viewing should provide natural conditions at least for the visual and
auditory system. The authors use well known movies (Bartels and Zeki (2005)
have chosen the James Bond movie Tomorrow Never Dies, while Hasson et al.
(2004) preferred the cowboy film The Good, the Bad, and the Ugly) that are
complicated enough in nature so that specific hypotheses about the timing and
location of brain activation cannot be posed. It would thus be of interest to
put this type of experiments within a modelling framework where the movie,
though very complicated in character, could act as the natural constraint that
is missing when analysing resting state data.
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3. A review of fMRI data analysis

Every year, hundreds of papers covering research on functional magnetic res-
onance imaging are published (Jezzard and Buxton, 2006). It is thus impossi-
ble to give a comprehensive review of the methods used to analyse fMRI data
within the scope of this overview. Instead, we will focus on the most pop-
ular methods, those used to analyse resting state data, and models that are
related to our own work or have been inspirational for us. For a comparison
of some of the different methods used to analyse fMRI data, see e.g. Poline
et al. (2006) where results from the Functional Imaging Analysis Contest held
in connection with the 11th Annual Meeting of the Organisation for Human
Brain Mapping in Toronto in 2005 are summarised.

As mentioned above, the data from an fMRI experiment constitute a col-
lection of time series

Ztx, t = t1, . . . , tm,

x ∈ X . Here, Ztx is the MR signal intensity at time t and voxel x. The
time points t1, . . . , tm are usually equidistant and belong to the interval [0, T ],
where T is the length of the experiment. The set X is a finite subset of R2 or
R3 with N elements, or voxels, representing a two dimensional slice or a three
dimensional volume of the brain.

Before the data is analysed for activation of interest, it is preprocessed in
a variety of ways in order to facilitate or improve the subsequent analysis. It
is, for instance, essential to correct for head movement during the scan as one
wants to assume that a given anatomical location is represented by the same
voxel of every image of the time series, see Oakes et al. (2005). When com-
paring activation across subjects, the data is usually mapped onto a template
that already conforms to some standard anatomical space such as Talairach
and Tournoux (1988) and an inhomogeneity correction is performed, see e.g.
Frackowiak et al. (2003, Ch. 33-34) and Jenkinson (2003). Furthermore, the
data is often subjected to spatial and/or temporal smoothing with Gaussian
kernels, see Friston et al. (1995) and Friston et al. (2000). The main effect
of smoothing is that it increases the signal to noise ratio and decreases inter-
subject inhomogeneity. Other preprocessing such as artifact detection and
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A rev i ew of fMRI data analy s i s

removal is often included in the modelling phase and will be discussed further
in the following.

3.1 Conventional modelling

Here, we consider the problem of finding the brain activations during a con-
trolled set of stimuli where the timing of the activation is known. The most
widely used strategy for this type of analysis is to use a two-stage approach.
In the first stage, the temporal activation is modelled using a linear model for
each voxel independently. The second stage then focuses on identifying those
areas of the brain that were activated by the stimuli based on the results from
the first stage.

Temporal modelling

Most models used to model the temporal activation profile are regression mod-
els of the type

Ztx = Ytαx +Wtβx + εtx, (3.1)

where the columns of Yt model effects of interest, the columns of Wt model
effects of no interest that are considered confounds, such as temporal drift,
and εtx denotes the noise.

The general linear model implemented in the SPM5 program (for more
information about the program, see http://www.fil.ion.ucl.ac.uk/spm/) is by
far the most popular model used in fMRI data analysis. There are two main
reasons for its popularity. Its user-friendly graphical interface allows the user
to perform all the processing steps needed to go from the raw scanner data
to the colourful activation images without much need for statistical expertise.
The authors of the program are also very effective in correcting errors and
adding extensions. In addition, the method performs quite well on the problem
it is intended to solve: to find the brain activations during a controlled set
of stimuli where the timing of the activation is known. We have used this
program for the data analysis in Paper C, where the data is of this type.

Several different ways of defining and estimating models of the type (3.1)
are implemented in SPM5. In Paper C, we have chosen the following clas-
sical inference method: the effects of interest, the haemodynamic response,
is modelled using the canonical haemodynamic response function shown in
Figure 3.1. Here, the user can choose whether to include the time derivative
which allows the peak response to vary by plus minus a second and the dis-
persion derivative which allows the width of the response to vary by a similar
amount. Other models for the response include Gamma functions and Fourier
basis sets, see Frackowiak et al. (2003, Ch. 40). The matrix Yt also includes
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3.1. Convent i onal model l i ng

a constant column which models the baseline. The drift is modelled using a

0  
−0.2

0

0.2

0.4

0.6

0.8

1

l

Figure 3.1: The canonical haemodynamic response function model
used in SPM5 (solid), together with its time derivative (dotted)
and dispersion derivative (dashed). The activation shown starts
at time 0 and its duration is l time units.

high-pass filter which is implemented by a discrete cosine transform set with
harmonic periods up to a cutoff set by the user. Finally, the noise is modelled
using an AR(1)+white noise model

εtx = τtx + ηtx,

where
τtx = exp(−1)τt,x−1 + ωtx,

ηtx ∼ N(0, σ2
1x), and ωtx ∼ N(0, σ2

2x). The additional white noise component
ηtx contributes to the zero-lag autocorrelation, which in turn allows the AR(1)
model to capture better the shape of the autocorrelation for longer lags.

The parameters of the model, αx, βx, σ1x, and σ2x, are estimated using
an iterative restricted maximum likelihood algorithm, see Frackowiak et al.
(2003, Ch. 39 and 47). In order to increase the speed of the algorithm, the
assumption is made that the ratio of σ1x and σ2x is stationary over voxels.

Bayesian methods for the temporal modelling have also become popular
in recent years. In Genovese (2000), the author presented a fully Bayesian
approach for the temporal modelling of the activation. At the time, this was
a fundamentally new approach. The model is given by

Ztx = µx(1 + at(γx, θx)) + dtx + εtx, εtx ∼ N(0, σ2
x),

where µx is the baseline mean, at is the activation profile, and dtx denotes the
drift term. The parameter γx = (γx1, . . . , γxK) specifies the amplitude of the
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signal change associated with each of K different stimulation conditions and
θx is an 8-dimensional parameter describing the shape of the haemodynamic
response. More precisely, the activation profile at is given by

at(γ, θ) =
∑

i

γki
b(t− ti; θ),

where ti is the starting time and ki is the type of the stimuli of the i’th
stimulation epoch. The function b(t; θ) describes the haemodynamic response
of a single stimulation epoch. It is constructed from cubic splines and its
shape follows the description of the haemodynamic response in Section 2.1.
The drift term is also modelled by cubic splines, but constrained to be smooth.

As the author uses a fully Bayesian approach, he defines prior distributions
for all parameters. The model is over parameterised which is compensated
for by including prior information from previous fMRI studies, see Genovese
(2000) for details. In the inference, sub models obtained by assuming that
only subsets of {γxk} are different from zero are considered. The posterior
probabilities of the different sub models are estimated using either posterior
maximisation or MCMC sampling. Note that unlike many other models, the
activation is here defined as a fraction of the baseline level. An alternative to
this is to assume an additive model for log-transformed data, as in Hartvig
(2002).

Spatial modelling

Once the parameters of the temporal model in (3.1) have been estimated,
statistics, typically t or F statistics, are calculated that reflect the compo-
nents of the response under study. For example, we might calculate the t
statistic under the null hypothesis H0 : αi

x = 0 with alternative hypothesis
H1 : αi

x > 0 for all x ∈ X , where i is the column of Yt containing the canoni-
cal haemodynamic response function. The values of the statistic can then be
plotted spatially as a statistics image. In the fMRI literature, this image is
called a statistical parametric map (hence the name of the program SPM5).
An example of such an image is shown in Figure 3.2. The aim of the spatial
modelling is then to analyse images of this type to reveal the areas of the brain
activated by the stimuli in question.

One popular method for the spatial modelling is based on thresholding at
a single level. The aim is to choose a significant level for each test such that
the family wise error rate, the probability of making one or more type I errors
among all the hypotheses, is controlled at some prespecified level. This induces
a multiple comparison problem that is further complicated by the correlations
that exists between the tests due to the spatial arrangement of the voxels
(Marchini and Presanis, 2004). In Worsley et al. (1992), the authors model the
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Figure 3.2: An example of a statistical parametric map used in the analysis in Paper
C. The location of the four axial slices is shown on the saggital view (right).

statistics image as a good lattice representation of an underlying d-dimensional
random field G(r), r ∈ Ω ⊆ Rd, for a compact set Ω and d ∈ {2, 3}. The
random field G is assumed to be strictly stationary, continuous, and smooth.
The probability that G(r) exceeds a given threshold u is approximated by the
expected value of the Euler characteristic χu of the field. If u is close to the
maximum of random field Gmax we get

P(reject H0|H0 true) = P(Gmax > u) ≈ P(χu > 0) ≈ E(χu)

and the family wise error rate can be controlled through knowledge of the
expected Euler characteristic. It is usually assumed that the random field
is Gaussian but results for t, F , and χ2 fields have also been published, see
Worsley (1994).

The assumption that the statistics map is a "good enough" lattice rep-
resentation of an underlying Gaussian random field is questionable for single
subject datasets with standard spatial resolution. This can be improved by
spatially smoothing the data with Gaussian bell functions prior to the analysis,
see Friston et al. (1995) and Worsley and Friston (1995). Spatial smoothing
will, however, deteriorate the fine spatial resolution of the data and this way,
the data is being fitted to the theory when surely it would be better to fit the
theory to the data (Marchini and Presanis, 2004).

Another method to handle the multiple comparison problem is to con-
trol the false discovery rate, the expected proportion of false positives among
those voxels declared positive. This method was developed by Benjamini and
Hochberg (1995) and adopted to the analysis of fMRI data by Genovese et al.
(2002). The procedure is extremely simple to implement: select a false dis-
covery rate α between 0 and 1. Calculate the uncorrected p-value for each
voxel and order them from smallest to largest, p1 ≤ p2 ≤ . . . ≤ pN . Let r be
the largest i for which

pi ≤
i

N

α

c(N)
,

13
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where c(N) is a predetermined constant defined as c(N) = 1 or c(N) =
∑

i 1/i.
Finally, threshold the image of the test statistics at the value corresponding to
the p-value pr. The choice of the constant c(N) depends on the assumptions
about the joint distribution of the p-values across voxels. The choice c(N) =∑

i 1/i applies for any distribution, while c(N) = 1 holds when the p-values
at the different voxels are independent and under a technical condition that
holds when the noise in the data is Gaussian with nonnegative correlation
across voxels.

An alternative Bayesian approach is based on using mixture models for
levels of activation. This method is discussed in detail in Section 5.2 as it is
closely related to the work in Paper D. A more detailed discussion of the differ-
ent methods for the spatial modelling can be found in Marchini and Presanis
(2004) where comparison analysis of the different methods is performed. Both
methods described above are implemented in SPM5. We have chosen to use
the family wise error rate for our analysis in Thorarinsdottir and Stødkilde-
Jørgensen (2006). In the analysis of our data, this method gives a slightly
more conservative results than the method based on false discovery rate. As
we in general get a very high level of activation in the data, it seems appealing
to choose the more conservative method.

3.2 Spatio-temporal models

When conventional analysis of fMRI data as described in the previous section
is extended within a Bayesian framework, hierarchical Bayesian approaches
can be used to simultaneously incorporate temporal and spatial dependencies
between the pixels in the model formulation. Different aspects of classical and
Bayesian inference in neuroimaging is discussed in Friston et al. (2002b) and
Friston et al. (2002a). Spatio-temporal Bayesian extensions of models of the
type (3.1) are introduced in e.g. Gössl et al. (2001) and Woolrich et al. (2004).

In Hartvig (2002), the author uses quite a different approach in that he
formulates a spatio-temporal stochastic geometry model for fMRI data in a
Bayesian framework. This model is closely related to the model introduced in
Paper A and Paper B. The fundamental assumption is that space and time
are separable, in the sense that the temporal activation profile is the same in
each voxel, only the magnitude changes from voxel to voxel. For simplicity, we
only describe a two-dimensional model for a single slice of data, see Hartvig
(2002) for extensions to three dimensions. The spatial activation pattern is
denoted by a marked point process Ψ = {[xi;mi]}n

i=1, with xi ∈ X ⊆ R2

and mi = (aj , dj , rj , θ), where the marks describe respectively the magnitude,
area, eccentricity, and angle of the activation centre located in voxel xi.

The prior distribution of Ψ has density with respect to the unit rate Poisson
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process of the form

p(ψ) ∝
∏

i

β(xi)
( ∏

i<j

γ
(
[xi;mi], [xj ;mj ]

)) ∏
j

[
p(aj)p(dj)p(rj)

]
.

Here, β(·) is an intensity function where prior knowledge about the location
of activation can be incorporated, without such knowledge, β(·) is given a
constant value. γ(·, ·) is a pairwise interaction function which discourages
activation centres to fall on top of each other. The mark parameters ai and di

are given inverted Gamma priors, while the prior for ri is a Beta distribution.
The magnitude of activation {Ax}x∈X is assumed to be a sum of Gaussian

functions
Ax(Ψ) =

∑
i

h(x; [xi;mi]),

where

h(x; [xi;mi]) = ai exp
(
− π log 2

di

(
(y1)2

ri/(1− ri)
+

(y2)2

(1− ri)/ri

))
and y = (y1, y2) = R(−θi)(x−xi) and R(θ) is a rotation with angle θ. A linear
trend is removed from each time series prior to the analysis so that it can be
assumed that non-activated voxels have mean 0. The observed intensity Ztx

at voxel x and time t is modelled as

Ztx =
(
Ax(Ψ) + ηx

)
ϕt + εtx,

where {εtx} ∼ N|X |×n(0, σ2Γ⊗Λ) and ηx ∼ N|X |(0, τ2I|X |). Here, | · | denotes
number and ⊗ denotes the Kronecker product. The haemodynamic response
ϕt at time t is modelled with a general state space model

ϕt = λt + νt,

where λt is a fixed convolution model for the haemodynamic response and
{νt} is a random walk.

Inference in the model is centred on the posterior distribution of (Ψ, ϕ).
An MCMC algorithm is used to simulate the point process Ψ given the data
{Ztx} and the temporal response ϕ. The posterior distribution of ϕ given the
data {Ztx} and the point process Ψ is a simple normal distribution which may
be simulated directly using Kalman smoother recursion.

3.3 When the time course of activation is unknown

The models discussed in the previous sections can not be used directly when
the time course of activation is unknown as is the case for e.g. resting state

15



A rev i ew of fMRI data analy s i s

data. Instead, authors use correlation analysis or data driven methods, among
which independent component analysis (ICA) is the preferred method. Note
that the methods described here can also be used to analyse conventional
experiments where the time course of the stimuli is known.

Correlation analysis

In Fox et al. (2005), the functional connectivity in the resting brain is studied
by a simple correlation analysis. A seed region X0 ⊂ X is selected and the
correlation between the average time series for this region

Z̄tX0 =
1
|X0|

∑
x∈X0

Ztx, t = t1, . . . , tm

and the time series of any other brain voxel is calculated in order to find
regions X1 interacting with X0. Here, | · | indicates number. Similarly, in
Greicius et al. (2003), the average time series is used as explanatory variable
in a regression type of analysis of the time variation in other regions of the
brain. Software packages such as SPM5 can be used for this kind of analysis.
This analysis is attractive because it is simple. It does, however, require an a
priori expectation of the network pattern and the detection of new, unknown
networks is hardly likely.

Hasson et al. (2004) also use correlation analysis to retrieve their results on
brain activation during free viewing of a motion picture. The analysis is done
in two steps. In the first step, the authors search for inter-subject correlation
by comparing the time course of a given voxel in a given subject to the time
course of the same voxel in other subjects. In a second step of the analysis,
a reverse-correlation approach is used to compare the movie sequence to the
time course of voxels showing high inter-subject correlation. The advantage
here is that the results from the first step of the analysis can be used to
predict in which areas the MR signal fluctuation is related to the stimuli, as
the fluctuations in these areas should be correlated between subjects. This
can, on the other hand, not be expected for resting state data where the
subjects are instructed to "let the mind drift and not think about anything
specific or systematic".

Independent component analysis

ICA is an exploratory analysis, closely related to factor analysis and discrim-
inant analysis. It is based on a model of the type

Ztx = µx +
K∑

k=1

AtkBkx + σεtx. (3.2)
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Here, µx is the baseline signal at voxel x which can vary by a factor of 2-3
across the brain and the number K of components is unknown. The rows
of the matrix B = {Bkx} represent component maps and the columns of
the matrix A = {Atk} represent time courses of the respective component
maps. Furthermore, some independence assumptions are made regarding the
components. In spatial ICA it is assumed that the rows of B are statistically
independent process, whereas in temporal ICA the columns of A are assumed
independent. Spatial ICA is usually used for fMRI data analysis. A general
introduction to ICA is Hyvärinen and Oja (2000), while a good introduction
to ICA for fMRI analysis can be found in McKeown et al. (2003). This paper
also contains a comprehensive list of references with specific guidance to the
literature.

An ICA analysis results in estimates of temporal activation profiles {A?k}
and spatial activation profiles {Bk?} for each k, where the estimated numberK
of components may be quite large, or usually about 30 for a whole brain analy-
sis. The estimated temporal profiles are shown together with their associated
power spectra. Only frequency components of a certain bandwidth are re-
garded as having neuronal origin. High frequency components may be caused
by cardiac or respiratory activities, while very low frequency components are
considered to be drift. Software packages performing ICA are available, e.g.
the program FSL (available at http://www.fmrib.ox.ac.uk/fsl/) presented in
Smith et al. (2004). An example of such estimated components are shown in
Figure 3.3, where we have performed ICA on the data from Figure 2.4 using
FSL. The dataset consists of a time series of images of an axial slice through
the sensory motor cortex. The time series has 2000 time points with 120 ms
between the images, the scan thus lasted 240 seconds. In Figure 3.3, we only
show the first 25 seconds of the temporal activation profiles so that the pattern
of the activation can clearly be seen.

It should be noted, however, that if spatial ICA is used to detect func-
tionally connected networks of regions, as is the case for resting state data,
it should be complemented by alternative methods such as correlation analy-
sis, especially if the noise model is not accurate enough. This is because the
spatial ICA applies the independence criterion only to the spatial activation
profiles, which does not exclude the possibility that voxels of different spatial
activation profiles might be temporally correlated, even though at a reduced
level. An example of this is when both left and right hemisphere are activated
simultaneously, but with slightly different temporal responses. This could
cause the method to cluster the response into two different spatial maps, see
Bartels and Zeki (2005) and Beckmann and Smith (2004).

The original version of ICA had several shortcomings. The assumption of
complete independence in time or space is physiologically not very plausible,
the unknown number of sources underlying the original signal causes difficul-
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Figure 3.3: Independent component analysis of the data from Figure 2.4 using FSL.
Three spatial activation profiles are shown together with the corresponding temporal
profile for the first 25 seconds of the scan. Top: Low frequency activation component
with significant activation in the motor cortex, middle: physiological artifact compo-
nent induced by the respiratory circle, and bottom: physiological artifact component
induced by the cardiac cycle.

ties, and in its original version, Equation 3.2 had no noise term. Furthermore,
the methods do not provide statistical measure for inference at a single-subject
or group level (Bartels and Zeki, 2005). Several groups have since improved
different aspects of the method. One special variant is called probabilistic
independent component analysis (PICA), cf. Beckmann and Smith (2004),
which is the method behind the FSL program. Here, the noise in (3.2) is as-
sumed to be Gaussian and in order to avoid over-fitting, estimation of the true
dimensionality of the data, i.e., the number of activation and non-Gaussian
noise sources is inferred from the covariance matrix with Bayesian methods.
Further, mixture models are used to infer on the individual spatial activation
profiles {Bk?} once they have been transformed into Z-statistic maps. The
use of mixture models for inference is motivated by the work of Hartvig and
Jensen (2000) which is discussed in Chapter 5.

In Beckmann and Smith (2005), the authors extended their method to
allow for analysis of group data. The extended version is called Tensor PICA
and is derived from parallel factor analysis. Equation 3.2 now becomes

Zi
tx = µx +

K∑
k=1

CikAtkBkx + σεtx,
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where i = 1, . . . , I is an index over subjects or sessions. The activation pro-
files are essentially estimated in a similar way as for PICA, where the block
structure of the data is used to separate the temporal profiles {A?k} and the
session/subject specific profiles {C?k}.

There were some early critiques of ICA, see Friston (1998), but it seems
now to be generally recognised in the neuroscience community that ICA is a
powerful nonparametric tool for analysing data in cases with uncertainty about
the position and timing of activation. A number of interesting findings relating
to specific resting state networks have been reported using ICA, see Beckmann
et al. (2005); Greicius and Menon (2004); Greicius et al. (2004)). Further, in
Bartels and Zeki (2005), the two authors review their approach to map the
human cerebral cortex into distinct subdivisions using both traditional visual
stimuli and a James Bond movie. They used ICA to identify voxels belonging
to distinct functional subdivisions based on their temporal activation profile.

Recently, there has been some criticism of ICA because the results from
the analysis refer to a "product brain". A particular type of activity in the
brain is decomposed into a spatial activation map showing regions of the brain
activated during the experiment and a temporal activation graph showing
when the brain is activated during the experiment. Instead of this product
decomposition, a more dynamic type of analysis is asked for in order to be able
to reveal more complicated interaction phenomenon. For instance, a particular
region of the brain may only be active if a collection of other regions are active.
An example of this is the visual system which seems to have a very strong
hierarchical structure, see Hochstein and Ahissar (2002). It may also be of
interest to investigate whether the duration and extend of activation may
depend on the particular region of the brain studied. As discussed in the next
chapter, this criticism can be met by using a spatio-temporal point process
modelling approach.
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4. Spatio-temporal point process modelling

A spatio-temporal point process is a random collection of points where each
point represents the time and the location of an event. Examples of such events
include incidence of disease, sightings or births of species, or the occurrences of
fires, earthquakes, tsunamis, or volcanic eruptions (Schoenberg et al., 2002).
The points of a point process are generally assumed to be indistinguishable
besides their different times and locations. There is though often additional
information available to be stored with the information on time and location.
The dataset could, for instance, contain information about several different
strains of the same disease or members of different species. Such processes
are called marked spatio-temporal point processes, i.e. a random collection of
points in time and space where each point has associated with it one or more
further random variables describing the additional information. The vector of
these additional random variables is called a mark.

Much of the theory of spatio-temporal point processes is based on the the-
ory for spatial point processes. See the books by Diggle (2003) and Møller
and Waagepetersen (2004) for many examples and theoretical developments
of spatial point processes. Several approaches have been developed for the
analysis of spatio-temporal point process data, usually motivated by a partic-
ular application. See Sahu and Mardia (2005) and Møller and Waagepetersen
(2004, Section 2.4) for a comprehensive list of references.

4.1 Theory

A spatio-temporal point process Φ = {[ti, xi]} is defined as a locally finite set
of points in a region R × X of time-space. The set X is usually a bounded
subset of R2 or R3. In this framework, Φ(A) is the number of points [ti, xi]
in A, where A ∈ B(R × X ), the Borel σ−algebra on R × X . Usually, we
restrict our attention to points on a finite time interval [T0−, T0+]. The point
process Φ is made into a marked point process by attaching an attribute to
each point of the process. We denote the marked point process on R× X by
Ψ = {[ti, xi;mi]} where the marks are in M⊆ Rd. In our model, we consider

21



Spat i o - t emporal po i nt proce s s mode l l i ng

functions of the marked point process Ψ = {[ti, xi;mi]} of the type∑
i

ftx(ti, xi;mi), (4.1)

where t ∈ [T0−, T0+] for some T0−, T0+ ∈ R and x ∈ X .

Poisson point processes

The simplest and the most important random point patterns are the Poisson
point processes. They serve as a tractable model class for "no interaction"
in point patterns and they also serve as reference processes when summary
statistics are studied and when more advanced point process models are de-
fined (Møller and Waagepetersen, 2004). A Poisson process is a point pro-
cess which satisfies two conditions: the number of events in any bounded set
A ∈ B(R × X ) follows a Poisson distribution with mean λνk(A), where νk is
the k-dimensional Lebesgue measure, and the constant λ is the intensity, or
mean number of events per unit area; and the number of events in disjoint
bounded Borel sets are independent. It follows that, conditional on the num-
ber of events in any bounded Borel set A, the locations of the events form an
independent random sample for the uniform distribution on A (Stoyan et al.,
1995).

Moment relations

The various distributions of random variables are described by the means of
such features as moments, particularly mean and variance, and generating
functions. Point process theory has analogous tools for this. Here, numerical
means and variances are replaced by moment measures. A more detailed
description of the features discussed below can be found in Daley and Vere-
Jones (2003) and Stoyan et al. (1995).

The intensity measure, or the first order moment measure, of Φ is denoted
by Λ and given by

Λ(A) = EΦ(A).

Further, if Ψ(A × B) denotes the number of marked points [ti, xi;mi] with
[ti, xi] ∈ A and mi ∈ B, A ∈ B(R×X ) and B ∈ B(M), the intensity measure
of the marked point process is defined by

Λm(A×B) = EΨ(A×B).

Since Λm(· × B) << Λ, there exists for each (u, y) ∈ R × X a probability
distribution Pu,y on (M,B(M)) such that

Λm(A×B) =
∫

A
Pu,y(B)Λ(du, dy),

22



4.1. Theory

see also Stoyan et al. (1995, p. 108). Note that Pu,y can be interpreted as the
distribution of the mark at (u, y).

The covariance structure of the unmarked point process is determined by
the second-order factorial moment measure for Φ. It is defined for A,A′ ∈
B(R×X ) by

α(2)(A×A′) = E
∑
i6=i′

1{[ti, xi] ∈ A, [ti′ , xi′ ] ∈ A′}.

The first order properties we derive in Paper A are independent of the un-
derlying point process model. In contrast to this, the covariance structure
depends on the specific choice of point process model. For a marked point
process Ψ = {[ti, xi;mi]} with conditionally independent marks, such that
given Φ = {[ti, xi]}, {mi} are independent and mi ∼ Pti,xi , the covariances
can be expressed as follows. Let A,A′ ∈ B(R×X ) and B,B′ ∈ B(M),

Cov(Ψ(A×B),Ψ(A′ ×B′))

=
∫

A∩A′
Pu,y(B ∩B′)Λ(du, dy)

+
∫

A

∫
A′
Pu,y(B)Pu′,y′(B′)

[
α(2)(du, dy, du′, dy′)− Λ(du, dy)Λ(du′, dy′)

]
.

The second-order factorial moment measure α(2) is equal to Λ × Λ if Φ is a
Poisson point process, cf. Stoyan et al. (1995, p. 44). The covariance structure
above thus has the following interpretation: if

α(2)(du, dy, du′, dy′)− Λ(du, dy)Λ(du′, dy′) > 0,

then pairs of activations are more likely to occur jointly at (u, y) and (u′, y′)
than for a Poisson point process with intensity measure Λ.

Campbell-Mecke theorem

The Campbell-Mecke theorem (Mecke, 1967) simplifies calculations involv-
ing expectations of functions of point processes. We state the theorem for
functions of the type (4.1), which is a slightly simplified form of the general
Campbell-Mecke theorem for marked point processes, see Stoyan et al. (1995,
p. 125). The theorem says that for Ψ = {[ti, xi;mi]} and any nonnegative
measurable function f

E
( ∑

i

f(ti, xi;mi)
)

=
∫

R×X

∫
M
f(u, y;m)Pu,y(dm)Λ(du, dy). (4.2)
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Separability

The process Ψ is called separable if

(i) The intensity measure for the unmarked point process Φ fulfils

Λ = Λ1 × Λ2,

where Λ1 is a measure on (R,B(R)) and Λ2 is a measure on (X ,B(X )).

(ii) For m = (m1,m2) ∈M1×M2, Mi ⊆ Rdi , say, i = 1, 2, the distribution
of the mark can be written as

Pu,y = P 1
u × P 2

y ,

where P 1
u is a probability measures on (M1,B(M1)) and P 2

y is a proba-
bility measure on (M2,B(M2)). We call m1 the temporal mark and m2

the spatial mark.

This embodies the notion that the temporal behaviour of the process is in-
dependent of the spatial behaviour. Note, however, that the values of the
temporal marks can still depend on location and the values for the spatial
marks can similarly still depend on time.

When this is applied in Paper A, we further assume that the function of
the point process considered is separable. That is, we assume that the function
in (4.1) can be written in the form

ftx(u, y;m) = g(t− u;m1)h(x− y;m2),

4.2 Model for fMRI data

In contrast to many point process datasets, we do not observe the points of the
process, the starting times and spatial origins of activation, directly. Instead,
we observe the activation in the brain, which are quite complicated in nature.
A neuronal activation at location y and time u will contribute to the observed
MR signal intensity at y at the later time t > u by an amount proportional to

g(t− u)

where the function g describes the haemodynamic response, see Section 2.1.
An activation in voxel y is expected to affect the signal at neighbour voxels in
a similar way but with less intensity. An activation at location y and time u
will affect the signal at voxel x and time t > u by

g(t− u)h(x− y),
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where h(z) is a decreasing function of ‖z‖, the norm of z. The resulting model
for the contribution to the observed MR signal intensity at voxel x at time t
caused by a neuronal activation at voxel y at time u becomes

ftx(u, y;m) = g(t− u;m1)h(x− y;m2)

where m = (m1,m2) and m1 and m2 are model parameters describing the
shape of the temporal and the spatial activation, respectively. An illustration
of this basic set up is shown in Figure 4.1.

br
ai

n

space

time
0 T

Figure 4.1: Illustration of the spatio-temporal point process model. Each ellipse
illustrates the set of (t, x) ∈ [0, T ] × X , affected by the activation in the leftmost
point (ti, xi) of the ellipse. The mark mi determines the shape and size of the ellipse.

The haemodynamic response and its modelling have been intensively stud-
ied, see e.g. Buxton et al. (2004) and references therein. We adopt a fairly
simple but well known model from Friston et al. (1995) where the response
is modelled as a Gaussian distributed random variable with mean 6 sec (the
delay) and variance 9 sec2. This model is shown in Figure 2.3 (left). The
function g takes the form

g(u;m1) =
∫ m1

0
κ(u− v)dv,

25



Spat i o - t emporal po i nt proce s s mode l l i ng

where m1 is the temporal duration of the activation and

κ(t) =
1√
2π3

exp
(
− (t− 6)2

18

)
.

The spatial activation function is modelled by a Gaussian bell function

h(y;m2) = θ1 exp
(
−‖y‖

2

2θ2

)
,

where m2 = (θ1, θ2).
In resting state fMRI data, the activations occur at random time points

that are unknown to the experimenter. It is natural to describe the activations
by a marked point process Ψ = {[ti, xi;mi]} on R × X with marks mi =
(m1

i ,m
2
i ) ∈ R3

+. The resulting model for the observed MR signal intensity at
time t and voxel x becomes

Ztx = µx +
∑

i

ftx(ti, xi;mi) + σεtx, (4.3)

where µx is the baseline signal at voxel x and εtx is an error term with mean
0 and variance 1. The errors are expected to be correlated, see Lund et al.
(2006) and Woolrich et al. (2004). It can be shown that this spatio-temporal
model is closed under local smoothing, cf. Paper A.

Since the person being scanned is not subjected to systematic stimuli dur-
ing the scanning, an activation can start in a given area at any time. It is
therefore natural to assume (investigate) that the marked point process Ψ is
time stationary in the sense that

Ψt = {[ti + t, xi;mi]}

has the same distribution as Ψ for all t ∈ R. Then, the intensity measure Λ
of the unmarked point process is of the form

Λ = cν1 × Λ2,

where c > 0, ν1 is the Lebesgue measure on R and Λ2 is the intensity measure
for the spatial point process {xi}. Furthermore, time stationarity implies that
the mark distribution does not depend on the particular time point considered
but it may still depend on the location.

Under the resting state network hypothesis, the spatio-temporal point pro-
cess Ψ will show long-distance dependencies, see Fox et al. (2005) and De Luca
et al. (2006). Recall that each marked point [ti, xi;mi] may be considered as
a centre of activation at location xi ∈ X starting at time ti and with the
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4.2. Model for fMRI data

temporal and the spatial shape of the activation described by mi. If two re-
gions of the brain X0 and X1 interact, it is expected that activations occur
almost simultaneously in X0 and X1. Such interactions may be revealed using
a Bayesian analysis as discussed below. The earlier modelling of a "prod-
uct brain" corresponds to the use of independent spatial and temporal point
processes such that

Ψ = {[ti, xj ;m1
i ,m

2
j ]}, (4.4)

where Ψ1 = {[ti;m1
i ]} and Ψ2 = {[xj ;m2

j ]} are independent. If the inten-
sity measure of Ψ2 is very concentrated in X0 and X1, then activations will
appear simultaneously in the two regions. This type of modelling of the de-
pendency may appear somewhat simplistic and a model based on conditional
independence may be more natural. Here,

Ψ = {[ti, xij ;m1
i ,m

2
ij ]}, (4.5)

where, given Ψ1 = {[ti;m1
i ]}, Ψ2i = {[xij ;m2

ij ]} are independent and identi-
cally distributed with an intensity measure concentrated in X0 and X1, say.
Examples of point processes fulfilling (4.4) and (4.5) are shown in Figure 4.2.

time
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e

time
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e

Figure 4.2: An example of a process fulfilling (4.4) with independent spatial and
temporal Poisson processes (left) and an example of a process fulfilling (4.5) with
conditionally independent Poisson processes (right). The associated intensity func-
tions are shown in grey scale.

Classical inference

Here, we discuss within the framework of a separable model, the estimation of
the intensity measure Λ2 of the spatial point process under the resting state
hypothesis. More general results and inference for conventional experiments
with repeated stimuli are given in Paper A. We will consider the estimation
of Λ2 under the assumption that Λ2 is a discrete measure concentrated in
yj , j = 1, . . . , N, with masses λ2(yj) = Λ2({yj}), j = 1, . . . , N . Here, N may
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be chosen as the number of voxels. Further, we assume that the marks are
identical for all points in which case

EZtx = µx + αtβx,

where
αt = c

∫
R
g(t− u;m1)du

and
βx =

∫
X
h(x− y;m2)Λ2(dy).

The method to be described is related to finding the regression estimate
in linear regression. It can only be applied if the baseline intensity µx can
be regarded as known. This is because the baseline intensity can vary by a
factor of 2-3 across the brain, due to variation in the brain tissue as well as
variations in the scanner. We can thus not assume that the baseline intensity
is constant over voxels which means that we cannot distinguish between the
baseline intensity and increased intensity due to activation in the relation

EZtx = µx + cα1(m1)βx,

where
α1(m1) =

∫
R
g(u;m1)du.

If, however, µx can be regarded as known, we can let µx = 0. Further,
let {u1, . . . , uM} be the time points in the data and assume that they are
equidistant with ∆ := |uk − uk−1| for all k = 2, . . . ,M . This assumption is
usually fulfilled for fMRI data. The spatial intensity function {λ2(yj)}N

j=1 may
be estimated for each fixed c,m1, and m2 by minimising

N∑
i=1

[
Z̄·yi − cα1(m1)

N∑
j=1

h(yi − yj ;m2)λ2(yj)
]2 /

VZ̄·yi ,

where

Z̄·yi =
1
M

M∑
k=1

Zukyi .

VZ̄·yi depends on both the data and the underlying point process, its precise
form is given in Section 7.1 in Paper A.

This estimation method is simple, but requires that µx is known from ex-
ternal sources. If this is not feasible, one may try to get information about
the intensity measure Λ2 of the spatial point process from Cov(Ztx, Zt′,x′) in-
stead. The covariances do not depend on the µxs. This approach, however,
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4.2. Model for fMRI data

depends on a specific point process model. As an example, let us consider the
model for a non-stimulus experiment with both temporal and spatial processes
Poisson. Irrespectively of whether the processes are independent or condition-
ally independent, (4.4) or (4.5), the mean value of the empirical covariance
estimate

σ̂x,x′ =
1

M − 1

M∑
k=1

(Zukx − Z̄·x)(Zukx′ − Z̄·x′),

can be approximated for x, x′ with large mutual distance by

E(σ̂x,x′) ≈ cγ(m1)βxβx′ ,

where

γ(m1) = α2(0;m1)− 2
M(M − 1)

M−1∑
k=1

(M − k)α2(k∆;m1),

with
α2(t;m1) =

∫ ∞

−∞
g(v;m1)g(v + t;m1)dv.

Assume that an activation centre X0 ⊂ X with N0 points is known. Then, for
x′ with large mutual distance from all points x ∈ X0,

E
( 1
N0

∑
x∈X0

σ̂x,x′

)
≈ cγ(m1)β̄·

N∑
i=1

h(x′ − xi;m2)λ2(xi),

where
β̄· =

1
N0

∑
x∈X0

βx.

This expression is linear in λ2 if we regard β̄· as an unknown constant. We
can thus use least squares methods to estimate λ2(x) for x ∈ X \ X0 up to a
constant, as above. Examples of this type of inference are given in Section 8
of Paper A.

Bayesian inference

We will now discuss Bayesian inference of the spatio-temporal point process
model (4.3) and its parameters. A related model for repeated stimulus exper-
iments has been developed in Hartvig (2002), see also Gössl et al. (2001). As
before, µx requires a special treatment. When considering Bayesian methods
we may simply replace Ztx by Ztx − Z̄·x and ftx by ftx − f̄·x. The new data
have µx = 0 and the same correlation structure as the original data if M is
large.

29



Spat i o - t emporal po i nt proce s s mode l l i ng

We concentrate on the case where mi = m and σ2
x = σ2 are known. We

then need to specify a prior density of the point process Φ and its parameters.
The prior distribution of Φ will be chosen as Poisson with intensity function λ.
Note that there is no interaction between points in the prior distribution. In-
teraction found in the posterior distribution of the point process will therefore
be "caused" by the data. We consider the restriction

Φ0 = Φ ∩ ([T0−, T0+]×X )

of Φ to a time interval [T0−, T0+] containing [0, T ]. The interval [T0−, T0+]
is chosen such that it is very unlikely that a point from Φ\Φ0 will affect an
MR signal observed in [0, T ]. The density of Φ0 with respect to the unit rate
Poisson process on [T0−, T0+]×X becomes

p(φ0|c, π) = exp(−
∫

[T0−,T0+]×X
[λ(t, x)− 1]dtdx)

∏
[u,y]∈φ0

λ(u, y)

The intensity function of Φ is assumed to be of the following form

λ(t, x) =
k∑

l=1

λl1{x ∈ Xl},

where the sets Xl ⊆ X are disjoint. Their union may be the whole brain
X but need not be. The sets Xl should be specified by the experimenter
while the parameters λl are unknown. We can write the intensity function
as λ(t, x) = cλ2(x) where c > 0 and

∫
X λ2(x)dx = 1. Note that λ2 is on the

following form

λ2(x) =
k∑

l=1

πl
1{x ∈ Xl}

|Xl|
,

where πl > 0 and
∑k

l=1 πl = 1. Non-informative priors are used for the
parameters c and π = (π1, . . . , πk).

Let the data be denoted by

z = {zux : u = u1, . . . , uM , x ∈ X}.

Then, the conditional density of z given c, π, and φ0 is

pm,σ2(z|φ0) = [2πσ2]−NT/2 exp(− 1
2σ2

‖z − f(φ0;m)‖2), (4.6)

where
‖z − f(φ0;m)‖2 =

∑
u,x

(
zux −

∑
[ti,xi]∈φ0

fux(ti, xi;m)
)2
.
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This is the simplest choice of model, see also Lund et al. (2006) and references
therein. Note that (4.6) does not depend on c and π.

The posterior density will be of the form

p(c, π, σ2, φ0|z) ∝ p(c)p(π)p(σ2)p(φ0|c, π)p(z|φ0, σ).

For the simulation from the posterior density we use a fixed scan Metropolis
within Gibbs algorithm where in each scan c, π, and φ0 are updated in turn.
For a detailed description of algorithms of this kind, see Robert and Casella
(2004). The full conditional for c is a Gamma distribution with restricted
range while for k > 2 the full conditional of π is a Dirichlet distribution.
Finally, we need to simulate from

p(φ0|c, π, z) ∝ cn(φ0)
k∏

l=1

π
nl(φ0)
l exp

(
− 1

2σ2
‖z − f(φ0)‖2

)
.

Note that this is in fact a pairwise interaction density. The point process is
simulated using a birth, death and move algorithm as described in Chapter 7
of Møller and Waagepetersen (2004).

Results for this type of analysis for simulated data can be found in Paper
A and results for the dataset discussed earlier, see Figure 2.4 and 3.3, are
given in Paper A and Paper B.

4.3 Extensions

The model and the inference described in the last section refer to the analysis
performed in Paper A and Paper B. This can be extended in several ways,
some of which are discussed in the following. A more detailed discussion can
be found in Paper A. There is, however, a clear trade-off between precision in
the modelling and computational complexity. It is thus important to try to
find the right balance between the two, especially with models as complex in
structure as our model.

Extended Bayesian inference

The Bayesian inference discussed above can be extended to include the re-
maining parameters, the mark m and the variance σ2. A typical point will
here be written as [t, x; (θ0, θ1, θ2)] ∈ R×X ×R3

+, for convenience, so we write
here θ0 instead of m1 for the temporal duration of the neuronal activation. As
before, we write m2 = (θ1, θ2). The intensity function of Ψ is now assumed to
be of the form

λΨ(t, x; θ0, θ1, θ2) = λ(t, x)
2∏

i=0

1{θi ∈ [ai, bi]},
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where ai, bi, i = 0, 1, 2, are known positive constants. The simulation will run
as above but with some extra steps in the algorithm. If we give σ2 a non-
informative prior, its full conditional becomes an inverse Gamma distribution.
Updating σ2 by simulation a new value from that distribution should thus be
added to each scan of the Metropolis within Gibbs algorithm. Further, the
birth, death, and move algorithm for the simulation of the point process must
be changed to account for varying marks. That is, the marks for a new point
in a birth step should be drawn from the corresponding distribution and in a
move step, new values of the marks should be suggested for the chosen point.

Models for the haemodynamic response

In the present work, we have mainly used the simple model based on a Gaus-
sian density function for the temporal activity, as described in the previous
section. One reason for this is that we want to focus on the spatial modelling.
This model is also very simple in that it only has one unknown parameter,
the duration of the activation. A slightly more complicated and maybe more
realistic model is to use the difference of two Gamma functions, see Figure 2.3
(right). Here, one Gamma function is used to capture the main response and
the other to capture the late undershoot. That is, the response function is
modelled by

g(u;m1) =
∫ l

0
κ(u− v)dv,

where l describes the duration of the activation and

κ(t) =
[(

t

p1

)a1

exp
(
− t− p1

b1

)
− c

(
t

p2

)a2

exp
(
− t− p2

b2

)]
1{t > 0}.

Here, t is the time in seconds and pj = ajbj is the time to the peak. In our for-
mulation, this means that the markm1 is now given bym1 = {a1, a2, b1, b2, c, l}.
Different models for the haemodynamic response function are reviewed in Gen-
ovese (2000), including a model based on splines which the author uses in his
analysis.

The noise in the data

In fMRI experiments, data may have a more complicated noise structure that
the one predicted by our model, cf. e.g. Hartvig (2002). An extension of the
model will most likely include a drift component dtx

Ztx = µx + dtx +
∑

i

ftx(ti, xi;mi) + σxεtx,
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cf. Genovese (2000). This component describes the slow drifts in the static
magnetic field during the experiment and residual motion not accounted for
by prior motion correction. Often, the drift is removed using filtering, before
any further analysis of the data, cf. Friston et al. (2000), or included in a
general linear model, cf. Friston et al. (1995). Artifacts of this kind can also
be detected in the data using ICA, see Beckmann et al. (2000).

We have assumed that the errors {εtx} are mutually independent. It is
here important to consider more general error models. In particular, the noise
is often autocorrelated in time, as emphasised in Worsley (2000). A more
general model for the errors is the multivariate Gaussian model,

ε ∼ N|X |×T (0,Σ). (4.7)

For a standard whole brain analysis, the covariance model Σ will be very
large, e.g. |X | × T = 10000 × 100 = 106. It is therefore necessary to make
some simplifications of the model to make it computationally feasible. In
Woolrich et al. (2004), this type of noise models is investigated in Bayesian
settings. The authors propose the use of a space-time simultaneously specified
autoregressive model,

εtx =
∑

y∈Nx

βxyε(t−1)y +
3∑

s=1

αsxε(t−s)x + ηtx,

where Nx is a neighbourhood of the voxel x, βxy is the spatial autocorrelation
between voxel x and y at a time lag of one with βxy = βyx, αsx is the temporal
autocorrelation between time point t and t − s at voxel x, and {ηtx} are
independent noise variables with distribution

ηtx ∼ N(0, σ2
η).

Multiple point processes

In accordance with the emerging belief of the existence of more than one
resting state network, it is natural to consider a point process model of the
type Ψ =

⋃K
k=1 Ψk where Ψk, k = 1, . . . ,K, are independent and refer to

activities in the K networks. If

Ψk = (Ψk1,Ψk2)

where Ψk1 = {[tki;m1
ki]} and Ψk2 = {[xkj ;m2

kj ]} are independent, then we
obtain the following model equation

Ztx = µx +
K∑

k=1

AtkBkx + σεtx, (4.8)
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where
Atk =

∑
i

g(t− tki;m1
ki) and Bkx =

∑
j

h(x− xkj ;m2
kj).

Note that (4.8) is actually an ICA model. The model may be analysed by first
performing an ICA analysis and then analysing the estimated components,
using point process theory.
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5. Reconstruction of binary images

We now turn the discussion to the subject of noise removal for binary images.
In fMRI analysis, mixture models of the type discussed below are used to
identify the activated voxels from the statistical parametric map. This method
is an alternative to the methods used in SPM, where the activated voxels are
identified using the properties of some null distribution, see Section 3.1. We
have chosen to discuss the matter within the general framework of noisy binary
images of random sets in the plane.

Let Ξ be a stationary random set in R2 with values in the extended convex
ring. The extended convex ring is the family of all closed subsets H ∈ R2 such
that for all compact convex sets K ∈ R2, H ∩K is a finite union of compact
convex sets. A digitisation (or discretisation) of Ξ is the intersection of Ξ with
a scaled lattice. For a fixed scaling factor t > 0, we consider Ξ ∩ tL, where

L := Z2 = {(i, j) : i, j ∈ Z}

is the usual lattice of points with integer coordinates. The lattice square

Ln :=
{

(i, j) : i, j = −n− 1
2

, . . . ,
n− 1

2

}
consists of n2 points (n ≥ 3, n odd). Here, we follow the notation in Hartvig
and Jensen (2000) and place the lattice square around a centre pixel. This
should not cause any conflicts in the notation, as we only consider lattice
squares with odd number of points.

Further, let X ⊂ tZ2 for some t > 0. A binary image on a finite set X is
a function f : X → {0, 1}. Here, f is given by f(x) = 1{x ∈ Ξ} and f is thus
a random function due to the randomness of the set Ξ. A certain pattern of
the values of f on a n× n grid is called a configuration. It is denoted by Cn

t ,
where t > 0 is the resolution of the grid, as in the definition of a lattice above.
The elements of the configuration are numbered to match the numbering of
the elements in the lattice square Ln. For n = 3 we have

C3
t =

 c−1,1 c0,1 c1,1

c−1,0 c0,0 c1,0

c−1,−1 c0,−1 c1,−1


t

,
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and similarly for other allowed values of n. We will omit the index n if the
size of the configuration is clear from the context. Some examples of 3 × 3
configurations are [ • ◦ ◦

• ◦ ◦
• • ◦

]
t

[ • ◦ ◦
• ◦ •
• • ◦

]
t

[ ◦ • •
• ◦ •
• • ◦

]
t

where • means that f(x) = 1 or equivalently ξ ∩ {x} 6= ∅, while ◦ means that
f(x) = 0 or equivalently ξ ∩ {x} = ∅. Here, ξ is the realisation of the random
set Ξ observed in the image f .

The noisy binary image is denoted by F : X → {0, 1} for a finite set
X ⊂ tZ2 and t > 0. Note that the randomness in F is two-fold. First, the
noise free image is random due to the randomness of the set Ξ. Second, a
random noise is added to the image.

5.1 Restoration with configurations

In Paper D, we propose a Bayesian restoration model where the prior is based
on results from configuration theory, see Jensen and Kiderlen (2003) and
Kiderlen and Jensen (2003). The authors relate the probability of observing a
given configuration in the image to the so-called mean normal measure of the
set Ξ. The mean normal measure can be used for detecting and quantifying
anisotropy of Ξ, its normalised version can be interpreted as the distribution
of the outer normal at a "typical" boundary point of Ξ. If we assume the
set Ξ to be isotropic, this relation is, under some regularity conditions for the
structure of Ξ, given by

lim
t→0+

1
t
P
(
Ξ ∩ t(Ln + x) = Ct

)
= k

∫ 2π

0
min

{
〈a, (cos θ, sin θ)〉+ , 〈b, (cos θ, sin θ)〉+

}
dθ, (5.1)

where k > 0 is a constant and the vectors a, b ∈ R2 depend on the configuration
Ct. The vectors a and b can be calculated explicitly for each configuration.
They are non-zero only if there exists a line passing through at least two
points of the configuration, separating the black and the white points, and only
hitting points of one colour. Configurations of this type are called informative
configurations.

We assume that the resolution of the image is good enough, so that Equa-
tion 5.1 can be used to estimate the marginal probability of each informative
configuration up to a constant of proportionality. In the case n = 3 we get,
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for x ∈ X,

P
(
Ξ∩(tL3+x) = Ct

)
=



p0, Ct =
[ ◦ ◦ ◦
◦ ◦ ◦
◦ ◦ ◦

]
t

p1, Ct =
[ • • •
• • •
• • •

]
t

p2, Ct ∈ R
([ • ◦ ◦

• ◦ ◦
• ◦ ◦

]
t
,
[ • • ◦
• • ◦
• • ◦

]
t

)
p3, Ct ∈ R

([ ◦ ◦ ◦
• ◦ ◦
• • ◦

]
t
,
[ • ◦ ◦
• • ◦
• • •

]
t

)
p4, Ct ∈ R

([ • • ◦
• • •
• • •

]
t
,
[ ◦ ◦ ◦
◦ ◦ ◦
• ◦ ◦

]
t

)
p5, Ct ∈ R

([ • ◦ ◦
• ◦ ◦
• • ◦

]
t
,
[ • ◦ ◦
• • ◦
• • ◦

]
t
,
[ • • ◦
• • ◦
• • •

]
t
,
[ ◦ ◦ ◦
• ◦ ◦
• ◦ ◦

]
t

)
0, otherwise,

(5.2)
where R(·) is the set of all possible rotations and reflections. The probabilities
p2, . . . , p5 are determined from (5.1) up to a multiplicative constant c, which
is given by

c =
1− p0 − p1

16
.

Here, the parameters p0 and p1 must be estimated from the data. The prior
for n = 5 is given in a similar way, see Paper D.

This prior will favour informative boundary configurations, such as[ • ◦ ◦
• ◦ ◦
• • ◦

]
t

[ ◦ ◦ ◦
• • ◦
• • •

]
t

[ ◦ ◦ ◦
◦ ◦ ◦
• • •

]
t

while discourage non-informative configurations such as[ • ◦ ◦
• ◦ •
• • ◦

]
t

[ ◦ • •
• ◦ •
• • ◦

]
t

[ ◦ • ◦
◦ ◦ ◦
• • •

]
t

which are more likely to be incorrect or noisy if the set Ξ is fairly regular and
the resolution of the image is good.

For the restoration procedure, we assume that the values F (xi) and F (xj)
of the noisy image at xi and xj are conditionally independent given Ξ for all
xi, xj ∈ X, and that the conditional distribution of F (x) given Ξ only depends
on Ξ ∩ {x} for all x ∈ X. By Bayes rule we thus get, for x ∈ X and a given
configuration Ct,

P
(
Ξ ∩ (tLn + x) = Ct|F (tLn + x)

)
∝ P

(
Ξ ∩ (tLn + x) = Ct

) n2∏
k=1

p
(
F (yk)|Ξ ∩ {yk} = {ck}

)
,

where {yk}n2

k=1 = tLn + x and {ck}n2

k=1 = Ct.
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By summing over the neighbouring states, we obtain the probability of Ξ
hitting a single point x ∈ X,

P
(
Ξ∩{x} 6= ∅|F (tLn + x)

)
∝

∑
{Ct:c00=•}

P
(
Ξ ∩ (tLn + x) = Ct

) n2∏
k=1

p
(
F (yk)|Ξ ∩ {yk} = {ck}

)
=: S1(x).

The probability of Ξ not hitting a single point x ∈ X is obtained in a similar
way. It is given by

P
(
Ξ∩{x} = ∅|F (tLn + x)

)
∝

∑
{Ct:c00=◦}

P
(
Ξ ∩ (tLn + x) = Ct

) n2∏
k=1

p
(
F (yk)|Ξ ∩ {yk} = {ck}

)
=: S2(x).

As the probabilities above sum to one, we only need to compare S1(x) and
S2(x) for determining the restored value of the image for a pixel x. The
restored value is 1 if S1(x) > S2(x) and 0 otherwise.

We consider the alt and pepper model for the noise. That is, a black point
is replaced by a white point with probability q, and vice versa. More precisely,

p
(
F (x)|Ξ ∩ {x}

)
= qF (x)(1− q)1−F (x)

1
{
Ξ ∩ {x} = ∅

}
+ (1− q)F (x)q1−F (x)

1
{
Ξ ∩ {x} 6= ∅

}
,

for some 0 ≤ q ≤ 1. The parameter q will be estimated from the data.
The three unknown parameters p0, p1, and q are estimated by first max-

imising the contrast function of a single voxel,

γm(p0, p1, q) =
∑
x∈X

log p
(
F (x); p0, p1, q

)
,

where p
(
F (x); p0, p1, q

)
is the marginal density of the point x. That infor-

mation is subsequently used to maximise the contrast function of a whole
neighbourhood,

γ(p0, p1, q) =
∑
x∈X

log p
(
F (tLn + x); p0, p1, q

)
,

where p
(
F (tLn + x); p0, p1, q

)
is the marginal density of an n× n neighbour-

hood, on a grid of values. In this way, we get a global estimation of the
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parameters which is related to maximum likelihood estimation. If done pre-
cisely, this will give unbiased estimators that are consistent and asymptotically
normal under mild regularity conditions on the spatial correlation of the pro-
cess (Hartvig, 2000). The approximation of using only a grid of values is
performed in order to reduce the computation time and seems to work quite
well, see Paper D.

5.2 Mixture models

In Hartvig and Jensen (2000), the authors proposed three different prior mod-
els for a similar type of reconstruction method as is described in the previous
section. These models also reflect the idea, that pixels of one colour tend to
cluster, rather than appear as single isolated pixels. They, however, do not
take the actual spatial pattern of the neighbourhood into account.

Let s(Ct) :=
∑n2

k=1 1{ck = •}. The prior for the simplest model is, for
x ∈ X, given by

P
(
Ξ ∩ (tLn + x) = Ct

)
=

{
p0, if s(Ct) = 0,
p1, if s(Ct) > 0.

(5.3)

Since all configurations with at least one • have the same probability, this is
in a way an uninformative prior, which neither favours isolated black pixels,
nor large groups of black pixels. An extension of this model is

P
(
Ξ ∩ (tLn + x) = Ct

)
=

{
p0, if s(Ct) = 0,
αβs(Ct)−1, if s(Ct) > 0.

(5.4)

The third prior model is more symmetric with respect to black and white
pixels and more similar to our prior model in (5.2). It is given by

P
(
Ξ ∩ (tLn + x) = Ct

)
=


p0, if s(Ct) = 0,
α1β

s(Ct)−1
1 + α2β

s(Ct)−n2

2 , if 1 ≤ s(Ct) ≤ n2,
p1, if s(Ct) = n2.

(5.5)
In a previous work, Everitt and Bullmore (1999), considered the same basis

model as above, but without using any spatial information. Their approach is
equivalent to the prior model in (5.4) with the restriction that α = β/(β+1)n2 .
This corresponds to assuming that all the pixels are spatially independent.
Spatial information seems, however, to be very important for obtaining a good
estimate of the underlying noise-free image and Hartvig and Jensen (2000)
showed that their method outperforms the method of Everitt and Bullmore
(1999) substantially when the objective is to identify activated voxels from a
statistical parametric map in fMRI data analysis.
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5.3 Markov random field models

In Besag (1986), the author presented an iterative method for image recon-
struction where the local characteristics of the underlying true image are repre-
sented by a non-degenerate Markov random field. The author calls his method
iterated conditional modes (ICM). The prior models here are of the type

p
(
{f(x)}x∈X

)
∝ exp

( ∑
xi∈X

Gi

(
f(xi)

)
+

∑
xi,xj∈X

Gij

(
f(xi), f(xj)

))
, (5.6)

for some functions Gi and Gij . To ensure the Markov property, one assumes
that Gij ≡ 0 unless xi and xj are neighbours. As the name of the method
indicates, the estimation under the model is performed iteratively where the
possible parameters of the model and the reconstructed point pattern are
updated in turn. This method is very flexible, as the functions Gi and Gij can
be chosen arbitrarily, and has a natural extension to multicolour settings. It
can, however, be computationally quite intensive and depends on a smoothing
parameter that cannot be directly estimated from the data.

An extension of this method is the maximum a posteriori (MAP) method
proposed in Greig et al. (1989). The authors concentrate on a special case of
(5.6) and define their prior model by

p
(
{f(x)}x∈X

)
∝ exp

(1
2

∑
xi,xj∈X

βij1
{
f(xi) = f(xj)

})
,

where βii = 0 and βij = βji ≥ 0 with βij > 0 only if xi and xj are neighbours.
In the actual analysis, this is simplified somewhat to

p
(
{f(x)}x∈X

)
∝ exp(βν), (5.7)

where β > 0 is a parameter in the model and ν is the number of neighbour
pairs with the same colour. The MAP estimate is the estimate for {f(x)}x∈X

providing a maximal value of the posterior density. The authors show that
finding the estimate is equivalent to finding the minimum cut in a network, a
problem for which there exists an efficient algorithm. The multicolour setting
can though not be directly dealt with by this method and there is still the
problem of the smoothness parameter β which cannot be directly estimated
from data.

5.4 Comparison of methods

For comparison of the models described above, we have used our model to
reconstruct noisy versions of the image of an "A" from Greig et al. (1989).
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Figure 5.1: The 64 × 64 binary image of an "A" by Greig et al. (1989) (a), the
same image corrupted with salt and pepper noise with parameter q = 0.25 (b), the
estimated true image using the model described in Section 5.1 with n = 3 (c), and
the estimate using the same model, but with n = 5 (d).

The true image and an example of a noisy version are shown in Figure 5.1 (a)
and (b), respectively, and the corresponding reconstructed images are shown
in Figure 5.1 (c) for n = 3 and in Figure 5.1 (d) for n = 5. The same image
has been used as an example in Greig et al. (1989), where it was reconstructed
using the prior from (5.7) for both ICM and MAP for several values of the
smoothing parameter β, and in Hartvig and Jensen (2000).

Table 5.1: Estimated classification errors for the models described above based on
five independent reconstructions of noisy versions of the image in Figure 5.1 (a). The
results are given in percentage, standard errors are given in parentheses. The models
are denoted by the equation number where they are defined in the text above. All
results except for the model defined in (5.2) are reproduced from Hartvig and Jensen
(2000) and Greig et al. (1989).

Model Class. error

(5.2), 3× 3 7.7 (0.4)
(5.2), 5× 5 4.7 (0.3)
(5.3), 3× 3 10.0 (0.3)
(5.3), 5× 5 9.4 (0.2)
(5.4), 3× 3 7.6 (0.3)
(5.4), 5× 5 5.9 (0.8)
(5.5), 3× 3 7.6 (0.3)
(5.5), 5× 5 6.1 (0.3)
ICM 6.3 (0.4)
MAP 5.2 (0.2)

We have reproduced the results from Greig et al. (1989) and Hartvig and
Jensen (2000) in Table 5.1, which also shows the results from the reconstruc-
tion with our model. For ICM and MAP, we only show the classification error
for the value of β which gave the best results. The classification error has in
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all cases been calculated from five independent simulations of the degraded
image with the noise parameter q = 0.25. The table shows that our model
performs better or equally good as the other methods for n = 5 and the results
for n = 3 are comparable to the results from Hartvig and Jensen (2000) for
n = 3, even though the "random" set here is far from being isotropic which is
assumed in the prior in (5.2).
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Abstract

Functional magnetic resonance imaging (fMRI) is a technique for studying the active
human brain. During the fMRI experiment, a sequence of MR images is obtained,
where the brain is represented as a set of voxels. The data obtained are a realization
of a complex spatio-temporal process with many sources of variation, both biological
and technical. Most current model-based methods of analysis are based on a two-step
procedure. The initial step is a voxel-wise analysis of the temporal changes in the
data while the spatial part of the modeling is done separately as a second step in the
analysis. We present a spatio-temporal point process model approach for fMRI data
where the temporal and spatial activation are modeled simultaneously. This modeling
framework allows for more flexibility in the experimental design than most standard
methods. It is also possible to analyze other characteristics of the data than just the
locations of active brain regions, such as the interaction between the active regions.
In this paper, we discuss both classical statistical inference and Bayesian inference in
the model. We analyze simulated data without repeated stimuli both for location of
the activated regions and for interactions between the activated regions. An example
of analysis of fMRI data, using this approach, is presented.

1 Introduction

Functional Magnetic Resonance Imaging (fMRI) is a non-invasive imaging
technique that has been available for about ten years. Cognitive psycholo-
gists and neuroscientists have shown an enormous interest in fMRI because it
is believed that fMRI can reveal the human brain in action. There is a com-
prehensive literature on the topic, mainly in Human Brain Mapping, Magnetic
Resonance in Medicine and NeuroImage, reporting various empirical findings
and new methods of analysis.

During a typical fMRI experiment, the subject is asked to perform specific
behavioral tasks (like finger-tapping or calculations) or the subject is exposed
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to passive stimulus (like flashing light). The experiment is carefully designed
with periods of rest (‘off periods’) between periods of stimuli (‘on periods’).
The brain is scanned during the experiment and represented as a set of voxels.
At each voxel a time series is recorded, showing the local brain activity during
the experiment. An informative introduction for statisticians to the design of
fMRI experiments can be found in the paper by Genovese (2000).

The analysis of fMRI data is usually aimed at localizing the activated or de-
activated parts of the brain during the experiment. The initial analysis is often
performed voxel-wise, using the time series available at each voxel. The varia-
tion in the local signal intensity is analyzed using a temporal model, involving
the known design of the experiment and the hemodynamic response function.
Using this technique, local activation estimates based on level changes dur-
ing on and off periods are assessed. Spatial modeling of fMRI data is usually
done after the image of voxel-wise activation estimates (for instance an image
of p−values for activation tested by t−tests) is obtained. The most common
approach is to use Gaussian random field theory for this part of the modeling,
see Friston et al. (1995) and Cao and Worsley (1999). The approach is not
without problems since the threshold value will depend on the search volume.
This type of procedure, involving generalized linear models, has been imple-
mented in the SPM (Statistical Parametric Mapping) software package. The
package has been developed by members and collaborators of the Wellcome
Department of Imaging Neuroscience, UCL, UK.

In Genovese (2000), a fully Bayesian analysis of fMRI data is discussed,
see also Friston (2002), Friston et al. (2002a), and Friston et al. (2002b). The
model still only involves one voxel at a time but is very heavy computationally.
In the comments to Genovese (2000), see Worsley (2000), it is suggested to
try to spatially link the voxel-wise models. In recent times, ICA (independent
component analysis) has become quite popular, cf. Stone (2002), McKeown
et al. (2003), and Beckmann and Smith (2005). See also the early critical
comments in Friston (1998). Techniques for detecting functional clusters have
been described in Tonini et al. (1998).

Especially amongst psychologists there has been some criticism of the lo-
calization paradigm. They argue that psychological processes are probably not
realized as static constellations. Also, it is believed that the repeated stimulus
experiments are artificial. In Greicius et al. (2003), the functional connectivity
in the resting brain is studied. In particular, the hypothesis of a default mode
network is examined. Regions of interest, being deactivated during a cogni-
tive task, are found to be interacting during periods of rest without particular
stimulus. This finding is obtained, using an unconventional, but natural type
of analysis. The average time series from one region is used as an explanatory
variable in the analysis of the time variation in other regions of the brain. It
is here of interest to try to develop models that can justify this type of data
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analysis.
In a way, these developments are a consequence of the fact that fMRI

is a more mature field now. Instead of seeking the locations of active brain
regions, the focus is on the interaction between the active regions. This change
of paradigm has consequences for the choice of appropriate method of analysis.
Instead of looking for changes in level it seems to be more promising to study
the covariation between the time series.

A first attempt to provide a modeling framework for experiments without
repeated stimuli is outlined in the present paper. Such an experiment will be
called a non-stimulus experiment. A simple simulated example of the experi-
mental situation we have in mind is shown in Figure 1. Here, the MR signal
intensity is observed in a two-dimensional slice of the ‘brain’ in the time inter-
val (arbitrary units) [0,100]. In Figure 1, the development of the activity over
time is shown, from t = 5 (upper left) to t = 95 (lower right) in jumps of 10
time units. Note that three regions of the brain simultaneously light up. The
crucial point is that the random time points of activation is unknown to the
experimenter. The aim of the analysis of the experiment is to find the areas
of the brain that are simultaneously activated.

Figure 1: Development of the activity over time. From left to right and top to bottom:
the activity at time t = 5, 15, . . . , 95.

Our modeling approach is based on spatio-temporal point processes. Purely
spatial processes have earlier been used in Taskinen (2001) and Hartvig (2002).
Here, the spatial activation is modeled by Gaussian bell functions centered
around the points from a spatial point process. As an example, the model
studied in Hartvig (2002) is in its simplest form as follows

Ztx =
∑

j

h(x− xj)ϕt + σεtx

where Ztx is the observed MR signal intensity at time t and voxel x, {xj} is a
point process defined on the brain, h is a Gaussian density function with mean
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0 and independent components, ϕt is a regression variable, containing infor-
mation about the repeated stimulus experiment, and εtx ∼ N(0, 1) represents
the noise. For a non-stimulus experiment it seems obvious to replace ϕt with
a stationary stochastic process {Ft}. One possibility is to consider stimuli at
random time points such that

Ft =
∑

i

g(t− ti),

where {ti} is a Poisson point process on the real line and g is a hemodynamic
response function.

The general model to be described in the present paper is specified, using
marked point process theory. The classical repeated stimulus experiments
can also be dealt with, using this modeling approach, but this is not our
primary objective. Various methods of analyzing the model will be discussed,
with increasing degree of computational complexity. Inference based on mean
values, variances and covariances is relatively easy from a computationally
point of view while likelihood or Bayesian methods are more demanding.

In Section 2, the suggested spatio-temporal model is described. Models for
the temporal and spatial parts of the activation profile are discussed in Sec-
tion 3 while Section 4 describes the underlying spatio-temporal point process.
First and second order properties of Ztx are expressed in terms of correspond-
ing properties of the underlying spatio-temporal point process in Section 5
while specific point process models are discussed in Section 6. Section 7 de-
scribes statistical inference based on mean value and covariance relations as
well as Bayesian analysis. A simulation study is presented in Section 8 while
an analysis of real data can be found in Section 9. Future work and perspec-
tives are outlined in Section 10. A summary of the main features of the new
approach may be found in Section 11.

2 The spatio-temporal model

Our general model has the form

Ztx = µx +
∑

i

ftx(ti, xi;mi) + σxεtx, (1)

where µx is the baseline signal at voxel x and Ψ = {[ti, xi;mi]} is a marked
spatio-temporal point process on R×X with marks in M⊆ Rd. The observa-
tion period of the fMRI experiment is [0, T ]. The set X is a bounded subset of
R2 or R3, representing a two dimensional slice or a three dimensional volume
of the brain. Furthermore, εtx is the error term with Eεtx = 0 and Vεtx = 1. It
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is assumed that {εtx} are mutually independent. Various models for correlated
noise are discussed in Section 10.

According to (1), the activation profile is described by the marked point
process Ψ. Each marked point [ti, xi;mi] may be considered as a center of
activation at location xi ∈ X . The center is activated at time ti and its
duration and extension are described by the mark mi ∈ M. In what follows,
we let mi = (m1

i ,m
2
i ) ∈ M1 × M2, Mi ⊆ Rdi , say, i = 1, 2, where m1

i

describes the duration and m2
i the spatial extension of the ith activation. If

two regions X0 and X1 of the brain interact, it is expected that activations
occur simultaneously in X0 and X1. Specific point process models with such
long-distance dependencies will be described in Section 6. An illustration of
the basic set-up may be found in Figure 2.

br
ai

n

space

time
0 T

Figure 2: Illustration of the spatio-temporal point process model. Each ellipse illus-
trates the set of (t, x) ∈ [0, T ] × X , affected by the activation in the leftmost point
(ti, xi) of the ellipse. The mark mi determines the shape and size of the ellipse. In
the illustration, an example of simultaneous activation in two different places of the
brain is seen, as well as activation of the same place of the brain at different time
points.

In the analysis of fMRI data, spatial smoothing is often performed to reduce
the noise of the data. The model (1) is closed under linear smoothing. Thus,
suppose the data is smoothed by replacing Ztx with Z̃tx =

∑
z∈Xx

ωz−xZtz,
where Xx is a neighborhood around x. We suppose that Xx = X0 + x. Fur-
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thermore, ωy, y ∈ X0, satisfy ωy ≥ 0 and
∑

y∈X0
ωy = 1. If {Ztx} follow (1),

then
Z̃tx = µ̃x +

∑
i

f̃tx(ti, xi;mi) + σ̃xε̃tx

where

µ̃x =
∑
u∈X0

ωuµx+u, f̃tx =
∑
u∈X0

ωuft,x+u, σ̃2
x =

∑
u∈X0

ω2
uσ2

x+u.

Our model is therefore closed under smoothing, except for the fact that smooth-
ing introduces correlated errors.

3 Activation profile

Most current fMRI studies rely on the blood oxygenation level dependent
(BOLD) effect (Ogawa et al. 1992) to detect changes in the MR signal intensity.
Neural activity initiates a localized inflow of oxygenated blood to the active
area, a hemodynamic response. This response is detectable in the MR signal
due to different magnetic properties of oxygenated and deoxygenated blood.
The biological processes behind the hemodynamic response are not known in
detail, but the general structure of the temporal behavior has been described
and reproduced in many studies. The hemodynamic response lags the neuronal
activation with several seconds; it increases slowly to a peak value at about
4−7 seconds after a neuronal impulse, and then returns to baseline again a few
seconds after the neuronal impulse ceases. Often a late undershoot is reported
as well, in the sense that when the signal drops after the peak value, it drops
below baseline for a period before it returns to the baseline value.

Several different methods for modeling the hemodynamic response function
have been introduced. Perhaps the most precise models are input-state-output
models such as the Balloon model (see Buxton et al. (2004) and references
therein for more details). These models are computationally very complex.
The simpler models described below are considered to give a fairly good ap-
proximation to empirical studies of the HRF, see Friston et al. (1995) and
Glover (1999). In these models, g is of the following form

g(u;m1) =
∫ l

0
κ(u− v)dv, (2)

where l is the temporal duration of the activation. The mark m1 includes l
and possibly other parameters describing the function κ. As discussed above,
κ(t) ≈ 0 for t ≤ 0, κ increases in the interval from 0 to about 4 − 7 seconds
and then decreases to 0, possibly with a drop below 0 before returning to the
value 0.
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In the spatio-temporal point process model, each marked point [ti, xi;mi]
represents an activation centered around xi and starting at time ti, with du-
ration and extension specified by m1

i and m2
i , respectively. Using the above

established results, all voxels x around a voxel xi activated at time ti will con-
tribute to the MR signal intensity with a hemodynamic response proportional
to the one observed in xi. We will here assume that the constant of propor-
tionality depends on x and xi only via x − xi. The resulting model for the
activation profile becomes

ftx(u, y;m) = g(t− u;m1)h(x− y;m2). (3)

In the fMRI literature, g is called the hemodynamic response function (HRF)
and h is the spatial activation function (SAF). For a recent use of (3) in
repeated stimulus experiments, see the seminal paper Hartvig (2002).

The modeling of the HRF and SAF is discussed below.

3.1 Temporal activation

3.1.1 HRF as an integral of Gaussian densities

Based on empirical studies, Friston et al. (1995) modeled the delay and dis-
persion of the hemodynamic response by a Gaussian density with mean 6 sec
and variance 9 sec2 as impulse response. In our formulation, this gives

κ(t) =
1√
2π3

exp(−(t− 6)2

18
), (4)

cf. Figure 3.

0

1
g

l6

κ

Figure 3: Gaussian response function κ (dashed) and the corre-
sponding integrated response function g (solid).

This model assumes that the temporal activation pattern is the same for
all activations during the experiment, which is a rather strong assumption. It

7



Jensen and Thorarinsdottir (2006)

is not complicated to make (4) slightly more general, by allowing the mean
and the variance of the Gaussian density to vary for each activation. That
information would then be included in the mark m1. The response function
would though still not be able to account for a hemodynamic response with
a late undershoot. A natural extension to improve this is to linearly combine
(4) with its derivatives with respect to different parameters as in Friston et al.
(1998).

3.1.2 HRF as an integral of gamma functions

Other empirical studies (Glover 1999) have shown that gamma functions may
be more appropriate than Gaussian densities to capture the shape of the HRF.
Glover uses the difference of two gamma functions, one to capture the main
response and the other to capture the late undershoot. That is, the HRF is
modeled by

κ(t) =
[(

t

p1

)a1

exp
(
− t− p1

b1

)
− c

(
t

p2

)a2

exp
(
− t− p2

b2

)]
1{t > 0},

where t is the time in seconds and pj = ajbj is the time to the peak. In
repeated stimulus experiments, κ(t) is then convolved with the time course
of the stimuli. This model can be made more flexible by expanding κ(t) as
a Taylor series and convolve the time course with −κ(t) − t∂κ(t)/∂t instead
(Worsley 2000).

This means that the mark m1 is now given by m1 = {a1, a2, b1, b2, c, l},
where l describes the duration of the activation. The number of unknown
parameters in the mark can be reduced by using the results from Glover (1999).
For auditory response, the parameters were fit to a1 = 6, a2 = 12, b1 = b2 = 0.9
and c = 0.35. Motor response gave the result a1 = 5, a2 = 12, b1 = 1.1, b2 = 0.9
and c = 0.4. An example is shown in Figure 4.

0

1

g

lp
2

p
1

κ

Figure 4: Gamma response function κ (dashed) and the corre-
sponding integrated response function g (solid).
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3.2 Spatial activation

The simplest model for the spatial activation is a symmetric Gaussian bell
function

h(y;m2) = θ1 exp
(
−‖y‖

2

2θ2

)
, (5)

where m2 = (θ1, θ2), θ1, θ2 > 0 and ‖ · ‖ is the Euclidean norm in X .
This can be extended as follows. Let m2 = (θ1,Θ2) where θ1 > 0 and Θ2

is a p× p positive definite matrix (p = 2 or 3). The spatial activation function
now becomes

h(y;m2) = θ1 exp
(
−1

2
yT Θ−1

2 y

)
, (6)

where y is assumed to be a column vector and (·)T stands for transpose, see
also Hartvig (2002).

4 The underlying spatio-temporal point process

The unmarked point process will be denoted by Φ = {[ti, xi]} and its intensity
measure by Λ. For A ∈ B(R×X ), the Borel σ−algebra on R×X , Φ(A) is the
number of unmarked points [ti, xi] in A. Then,

Λ(A) = EΦ(A).

If Ψ(A× B) denotes the number of marked points [ti, xi;mi] with [ti, xi] ∈ A
and mi ∈ B, A ∈ B(R × X ) and B ∈ B(M), the intensity measure of the
marked point process is defined by

Λm(A×B) = EΨ(A×B).

Since Λm(· × B) << Λ, there exists for each (u, y) ∈ R × X a probability
distribution Pu,y on (M,B(M)) such that

Λm(A×B) =
∫

A
Pu,y(B)Λ(du, dy),

see also (Stoyan et al. 1995, p. 108). Note that Pu,y can be interpreted as the
distribution of the mark at (u, y).

Example 4.1 (The repeated stimulus experiment). The standard repeated
stimulus experiment has earlier been described using this framework, cf. Hartvig
(2002). In such an experiment we have k activation periods with known start-
ing times ti and known durations li, i = 1, . . . , k, cf. Figure 5. The activation
centers in the brain is described in Hartvig (2002) by a marked spatial point
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process {[xj ;m2
j ]} where m2

j represents the spatial extension of the activation
around xj . The activation profile is specified as

n∑
j=1

h(x− xj ;m2
j )ϕt, (7)

where ϕt is of the form

ϕt =
∫ ∞

−∞
πuκ(t− u)du,

πu = 1 if u ∈ ∪k
i=1[ti, ti + li] and κ is the response function for an activation

at time 0. The expression (7) can be rewritten as

k∑
i=1

∑
j

ftx(ti, xj ;m1
i ,m

2
j ),

where ftx satisfies (3) with g of the form (2). It follows that the model can be
described by a marked spatio-temporal process

Ψ = {[ti, xj ; (m1
i ,m

2
j )]},

where ti and m1
i = li are known. Note that for this process the intensity

measure Λ satisfies
Λ = Λ1 × Λ2,

where Λ1 and Λ2 are measures on (R,B(R)) and (X ,B(X )), respectively, and
Λ1 is a discrete measure with weight 1 in ti, i = 1, . . . , k. �

l
1

l
2

l
k

t
k

t
2

t
1

Figure 5: Repeated stimulus experiment.

Example 4.2 (The non-stimulus experiment). During a non-stimulus experi-
ment, the brain is not subjected to systematic stimuli but activated at random
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time points unknown to the experimenter. We will formalize this in the fol-
lowing fashion. The marked point process Ψ is assumed to be time stationary
in the sense that

Ψt = {[ti + t, xi;mi]}

has the same distribution as Ψ for all t ∈ R. As a consequence, the intensity
measure Λ is of the form

Λ = cν1 × Λ2,

where c > 0 and ν1 is the Lebesgue measure on R. Furthermore, time sta-
tionarity implies that the mark distribution Pu,y does not depend on the time
point u. �

5 Moment relations

In this section, we derive moment relations for the observed MR signal Ztx, un-
der various assumptions on the spatio-temporal point process Ψ = {[ti, xi;mi]}.

5.1 The mean value relation

Using the Campbell-Mecke theorem for marked point processes, we find

EZtx = µx +
∫

R×X

∫
M

ftx(u, y;m)Pu,y(dm)Λ(du, dy).

The mean value relation can be further simplified if Ψ is separable.

Definition 5.1 The spatio-temporal point process Ψ is called separable if the
activation profile is on the product form (3),

Λ = Λ1 × Λ2 (8)

and
Pu,y = P 1

u × P 2
y . (9)

Here, Λ1 and Λ2 are measures on (R,B(R)) and (X ,B(X )) while P 1
u and P 2

y

are probability measures on (M1,B(M1)) and (M2,B(M2)), respectively. �

Note that (8) is satisfied for the repeated stimulus and non-stimulus ex-
periments discussed in Example 4.1 and 4.2, respectively. The assumption (9)
is trivially satisfied if the marks are nonrandom.

For a separable model, we have

EZtx = µx + αtβx, (10)

11
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where
αt =

∫
R

∫
M1

g(t− u;m1)P 1
u (dm1)Λ1(du)

and
βx =

∫
X

∫
M2

h(x− y;m2)P 2
y (dm2)Λ2(dy).

The parameters αt can be further simplified for repeated stimulus and non-
stimulus experiments, respectively.

Example 4.1 (continued). The measure Λ1 is here a discrete measure with
weight 1 in ti, i = 1, . . . , k, and

αt =
k∑

i=1

∫
M1

g(t− ti;m1)P 1
ti(dm1). (11)

In particular, if P 1
ti is concentrated in li, the known duration of the ith acti-

vation, then

αt =
k∑

i=1

g(t− ti;m1
i ) (12)

is known. The mean value specification (10) is a linear regression. �

Example 4.2 (continued). Since Λ1 = cν1 and P 1
u does not depend on

u ∈ R, we have

αt = c

∫
R

∫
M1

g(t− u;m1)P 1
u (dm1)du

= c

∫
M1

∫
R

g(t− u;m1)duP 1(dm1)

= cEα1(M1),

where
α1(m1) =

∫
R

g(v;m1)dv

and M1 is a random mark, distributed according to P 1. Accordingly, the
parameter αt does not depend on t and the same is true for EZtx. �

5.2 The covariance structure

In contrast to first-order properties, the covariance structure of Ztx depends
on the specific choice of point process model. The covariance can be expressed
in terms of the so-called second-order factorial moment measure, see Stoyan
et al (1995, p. 111 and onwards).
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Let us here study the case of a marked point process Ψ = {[ti, xi;mi]} with
conditional independent marks, such that conditionally on Φ = {[ti, xi]}, {mi}
are independent and mi ∼ Pti,xi . Then,

E
( ∑

i,i′

ftx(ti, xi;mi)ft′x′(ti′ , xi′ ;mi′)
)

=
∫

R×X

∫
M

ftx(u, y;m)ft′x′(u, y;m)Pu,y(dm) Λ(du, dy)

+
∫

R×X

∫
R×X

∫
M

∫
M

ftx(u, y;m)ft′x′(u′, y′;m′)Pu,y(dm)Pu′,y′(dm′)

× α(2)(du, dy, du′, dy′),

where α(2) is the second-order factorial moment measure for Φ, which is defined
for A,A′ ∈ B(R×X ) by

α(2)(A×A′) = E
∑
i6=i′

1{[ti, xi] ∈ A, [ti′ , xi′ ] ∈ A′}.

It follows that

Cov(Ztx, Zt′,x′)

=
∫

R×X

∫
M

ftx(u, y;m)ft′x′(u, y;m)Pu,y(dm) Λ(du, dy)

+
∫

R×X

∫
R×X

∫
M

∫
M

ftx(u, y;m)ft′,x′(u′, y′;m′)Pu,y(dm)Pu′,y′(dm′)

× [α(2)(du, dy, du′, dy′)− Λ(du, dy)Λ(du′, dy′)]

+ 1{(t, x) = (t′, x′)}σ2
x. (13)

The second-order factorial moment measure α(2) is equal to Λ × Λ if Φ is
a Poisson point process, cf. Stoyan et al (1995, p. 44). If

α(2)(du, dy, du′, dy′)− Λ(du, dy)Λ(du′, dy′) > 0,

then pairs of activations are more likely to occur jointly at (u, y) and (u′, y′)
than for a Poisson point process with intensity measure Λ.

6 Specific point process models

In this section, we give two examples of spatio-temporal point process models
that can exhibit the desired long-distance dependence. Under such a model,
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brain regions far apart may interact in the sense that if one of the regions is
activated at time t then it is likely that the other regions are also activated at
time t.

Example 6.1 (Independent spatial and temporal point patterns). Suppose
that Ψ = {[ti, xj ;m1

i ,m
2
j ]} where Ψ1 = {[ti;m1

i ]} and Ψ2 = {[xj ;m2
j ]} are

independent. This model is separable. An example with Ψ1 and Ψ2 Poisson
is shown in Figure 6, left. We have

Ztx = µx + AtBx + σxεtx,

where
At =

∑
i

g(t− ti;m1
i ) and Bx =

∑
j

h(x− xj ;m2
j ) (14)

are independent. The covariance is of the form

Cov(Ztx, Zt′x′) = Cov(At, At′) Cov(Bx, Bx′) + Cov(At, At′)βxβx′

+ αtαt′ Cov(Bx, Bx′) + 1{(t, x) = (t′, x′)}σ2
x.

For a repeated stimulus experiment, At is deterministic and the expression
for the covariance reduces to

Cov(Ztx, Zt′x′) = αtαt′ Cov(Bx, Bx′) + 1{(t, x) = (t′, x′)}σ2
x,

where αt takes the form (11) or (12), depending on the specific assumption on
the HRF. A model of this type has already been considered in Hartvig (2002).

In a non-stimulus experiment, Ψ is time stationary and Cov(At, At′) only
depends on |t − t′|. In particular, if the temporal process {ti} is Poisson and
conditionally on {ti}, {m1

i } are independent and m1
i ∼ P 1, we have

Cov(At, At′) =
∫

R

∫
M1

g(t− u;m1)g(t′ − u;m1)P 1(dm1)Λ1(du) = ρt,t′ ,

say. Since Λ1(du) = cdu, we get

ρt,t′ = c

∫
R

∫
M1

g(t− u;m1)g(t′ − u;m1)P 1(dm1)du

= c

∫
M1

∫ ∞

−∞
g(v;m1)g(v + |t′ − t|;m1)dvP 1(dm1)

= cEα2(|t′ − t|;M1),

say, where

α2(t;m1) =
∫ ∞

−∞
g(v;m1)g(v + t;m1)dv
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and M1 is a random mark distributed according to P 1. If the spatial process
is Poisson with conditionally independent marking

Cov(Bx, Bx′) =
∫
X

∫
M2

h(x− y;m2)h(x′ − y;m2)P 2
y (dm2)Λ2(dy) = τx,x′ ,

say. The parameter τx,x′ will be small if Λ2 is concentrated around x and x′

but the distance between x and x′ is large. If both processes are Poisson with
conditionally independent marking, we thus have

Cov(Ztx, Zt′x′) = ρt,t′τx,x′ + ρt,t′βxβx′ + αtαt′τx,x′ + 1{(t, x) = (t′, x′)}σ2
x.
(15)

More generally, if both processes {ti} and {xj} have conditionally inde-
pendent marking, {ti} is Poisson and {xj} is a general point process with
second-order factorial moment measure α(2), then

Cov(Ztx, Zt′x′) = [ρt,t′ + αtαt′ ][τx,x′ + δx,x′ ]

+ ρt,t′βxβx′ + 1{(t, x) = (t′, x′)}σ2
x, (16)

where

δx,x′ =
∫
X

∫
X

∫
M2

∫
M2

h(x− y;m2)h(x′ − y′;m2′)P 2
y (dm2)P 2

y′(dm2′)

× [α(2)(dy, dy′)− Λ2(dy)Λ2(dy′)].

Note that δx,x′ = 0 if {xj} is Poisson. �

Example 6.2 (Conditional independent spatial processes). The spatio-tem-
poral process is given by Ψ = {[ti, xij ;m1

i ,m
2
ij ]}. Conditionally on the tem-

poral process Ψ1 = {[ti;m1
i ]}, the spatial processes Ψ2i = {[xij ;m2

ij ]} are
independent and identically distributed with second-order factorial moment
measure α(2). It is not difficult to show that if (3) is satisfied, then Ψ is
separable.

Under this model, the covariance is of the form

Cov(Ztx, Zt′x′) = Cov(At, At′)βxβx′ + ρt,t′ Cov(Bx, Bx′)

+ 1{(t, x) = (t′, x′)}σ2
x,

with the notation of the previous example. For a repeated stimulus experiment,
cf. Example 4.1, At is deterministic and the expression for the covariance
reduces to

Cov(Ztx, Zt′,x′) = ρt,t′ Cov(Bx, Bx′) + 1{(t, x) = (t′, x′)}σ2
x.
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If instead the temporal process is Poisson, we have an example of a non-
stimulus experiment, cf. Example 4.2, and the covariance is of the form

Cov(Ztx, Zt′x′) = ρt,t′ [τx,x′ + δx,x′ + βxβx′ ] + 1{(t, x) = (t′, x′)}σ2
x, (17)

again with the notation of the previous example. An example with Ψ1 and Ψ2

Poisson is shown in Figure 6, right. �

time
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e

time
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e

Figure 6: Independent spatial and temporal Poisson processes (left) and conditionally
independent Poisson processes (right). The associated intensity functions are shown
in gray scale.

7 Statistical inference

In this section, we discuss statistical inference based on moment relations. We
also briefly touch upon Bayesian inference.

7.1 Inference based on the mean value relation

In this subsection, we will discuss within the framework of a separable model,
the estimation of the intensity measure Λ2 of the spatial point process, using
the general mean value relation (10). We will assume that the marks are
identical for all points in which case

EZtx = µx + αtβx,

where
αt =

∫
R

g(t− s;m1)Λ1(ds)

and
βx =

∫
X

h(x− y;m2)Λ2(dy).
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In what follows, we let α̃t = αt in a repeated stimulus experiment (see
(12)) while α̃t = 1 in a non-stimulus experiment. Note that for fixed m1 the
parameters α̃t are known. Likewise, we let Λ̃2 = Λ2 in a repeated stimulus
experiment and Λ̃2 = cα1(m1)Λ2 in a non-stimulus experiment where

α1(m1) =
∫

R
g(u;m1)du.

The method to be described can be applied if the baseline intensity µx

can be regarded as known. The baseline intensity can vary by a factor of 2-3
across the brain, due to variations in the brain tissue as well as variations in
the scanner. The baseline µx is well determined from data in repeated stimulus
experiments, otherwise additional data is needed.

If µx can be regarded as known, we can let µx = 0. The mean value relation
can then be written as

EZtx = α̃tβ̃x,

where
β̃x =

∫
X

h(x− y;m2)Λ̃2(dy).

We will consider the estimation of Λ2 (or equivalently Λ̃2) under the as-
sumption that Λ2 is a discrete measure concentrated in yj , j = 1, . . . , N, with
masses λ2(yj) = Λ2({yj}), j = 1, . . . , N . Here, N may be chosen as the
number of voxels. Let us suppose that we have discretely observed data in
time with spacing ∆

{Zi∆,x : i = i0 + 1, . . . , i0 + n, x ∈ X},

where all time points are free of edge effects. A simple estimation procedure
is to estimate β̃x by the regression estimate

Z̃x =
n∑

i=1

α̃(i0+i)∆Z(i0+i)∆,x/
n∑

i=1

α̃2
(i0+i)∆

and for each m1 and m2 minimize

N∑
i=1

[
Z̃yi −

N∑
j=1

h(yi − yj ;m2)λ̃2(yj)
]2

(18)

with respect to {λ̃2(yj)}, subject to the condition λ̃2(yj) ≥ 0 for all j. Note
that in a non-stimulus experiment, Λ2 and c cannot be separated, using this
estimation procedure.
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The variance of Z̃x may, however, depend on x. As an example, let us
consider a repeated stimulus experiment with Poisson distributed activation
centers as described in Example 6.1. Then,

VZ̃x = τx,x +
1∑n

1 α2
(i0+i)∆

σ2
x.

An unbiased estimate of σ2
x is

σ̂2
x =

1
n− 1

n∑
i=1

(Z(i0+i)∆,x − α(i0+i)∆Z̃x)2.

Furthermore, a discrete version of τx,x is

τx,x =
N∑

j=1

h(x− yj ;m2)2λ2(yj).

The unweighted sum of squares may then be replaced by

N∑
i=1

[
Z̃yi −

N∑
j=1

h(yi − yj ;m2)λ2(yj)
]2

/VZ̃yi ,

where we insert the derived form of VZ̃yi and the estimate σ̂2
yi

. This sum of
squares should be minimized with respect to λ2 for fixed m1 and m2.

As another example, let us consider a non-stimulus experiment with inde-
pendent temporal and spatial Poisson point processes. Then,

Z̃x = Z̄·x =
1
n

n∑
i=1

Z(i0+i)∆,x

and, using (15), we find

VZ̄·x =
c

n2

[
nα2(0;m1) + 2

n−1∑
i=1

(n− i)α2(i∆; m1)
] [

τx,x + β2
x

]
+ c2α1(m1)2τx,x +

1
n

σ2
x.

The empirical variance

σ̂x,x =
1

n− 1

n∑
i=1

(Z(i0+i)∆,x − Z̄·x)2

18
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can be used to estimate σ2
x but it is important to correct for bias in this

estimate caused by correlations inside the time series. We will now derive the
bias of the estimate.

Generally, if Cov(Ztx, Ztx′) only depend on t and t′ via |t− t′|,

Cov(Ztx, Zt′,x′) = σx,x′(|t− t′|),

say, then the estimate

σ̂x,x′ =
1

n− 1

n∑
i=1

(Z(i0+i)∆,x − Z̄·x)(Z(i0+i)∆,x′ − Z̄·x′), (19)

is a biased estimate of σx,x′ = σx,x′(0). We thus have

E(σ̂x,x′) = σx,x′ −
2

n(n− 1)

n−1∑
i=1

(n− i)σx,x′(i∆). (20)

Using (15), (19) and (20), we find that

E(σ̂x,x) = c
[
α2(0;m1)− 2

n(n− 1)

n−1∑
i=1

(n− i)α2(i∆; m1)
] [

τx,x + β2
x

]
+ σ2

x.

The variance of Z̄·x can therefore be written as

VZ̄·x =
1
n

E(σ̂x,x) + c2α1(m1)2τx,x +
2c

n(n− 1)

n−1∑
i=1

(n− i)α2(i∆; m1)[τx,x + β2
x].

The unweighted sum of squares may be replaced by

N∑
i=1

[
Z̄·yi − cα1(m1)

N∑
j=1

h(yi − yj ;m2)λ2(yj)
]2 /

VZ̄·yi

and minimized with respect to {λ2(yj)} for each fixed c, m1 and m2.

7.2 Inference based on covariances

The method described in the previous section is simple but requires, for a
non-stimulus experiment, that µx is known from external sources. If this is
not feasible, one may try to get information about the intensity measure Λ2

of the spatial point process from Cov(Ztx, Zt′,x′) instead. The covariances do
not depend on the µxs.

This approach depends on a specific point process model. As an example,
let us consider the model for a non-stimulus experiment with both temporal
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and spatial processes Poisson. Irrespectively of whether the processes are in-
dependent or conditionally independent (Example 6.1 or 6.2), the mean value
of the empirical covariance estimate (19) can be approximated for x, x′ with
large mutual distance by

E(σ̂x,x′) ≈ cγ(m1)βxβx′ ,

where

γ(m1) = α2(0;m1)− 2
n(n− 1)

n−1∑
i=1

(n− i)α2(i∆; m1),

cf. (15), (17), (19) and (20). Assume that an activation center X0 ⊂ X with
N0 points is known. Then, for x′ with large mutual distance from all points
x ∈ X0,

E
( 1

N0

∑
x∈X0

σ̂x,x′

)
≈ cγ(m1)β̄·

N∑
i=1

h(x′ − xi;m2)λ2(xi), (21)

where
β̄· =

1
N0

∑
x∈X0

βx.

This expression is linear in λ2 if we regard β̄· as an unknown constant. We
can thus use least squares methods to estimate λ2(x) for x ∈ X \ X0 up to a
constant, as in the previous section.

Another relevant question is what kind of information about the model
parameters can be gained from the covariances under a less specified model,
for instance if we relax the assumption that the spatial point process is Pois-
son. Let us concentrate on the conditional independent processes, presented in
Example 6.2. We consider a non-stimulus experiment with a Poisson process
as temporal process. Then, cf. (17),

Cov(Ztx, Zt′,x′) = cα2(|t′ − t|;m1)

×
[
τx,x′ +

∫
X

∫
X

h(x− y;m2)h(x′ − y′;m2)α(2)(dy, dy′)
]

+ 1{(t, x) = (t′, x′)}σ2
x.

In particular, for x, x′ with large mutual distance

Cov(Ztx, Zt′,x′) ≈ cα2(0;m1)
∫
X

∫
X

h(x− y;m2)h(x′ − y′;m2)α(2)(dy, dy′).

The slope of the regression of Zt,x′ on Ztx,

Cov(Ztx, Ztx′)/VZtx,
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is thus for fixed x and varying x′ proportional to∫
X

∫
X

h(x− y;m2)h(x′ − y′;m2)α(2)(dy, dy′).

If h(u;m2) is concentrated around u = 0, a plot of the slopes will reveal x′ ∈ X
for which α(2)(dx, dx′) is large. Recall that α(2)(dx, dx′) can be interpreted as
the probability of having simultaneously an activation at x and x′.

In Greicius et al. (2003), the average time series from one brain region
is used as explanatory variable in the analysis of the time variation in other
regions of the brain. Under the model specified above, Greicius’ analysis leads
to a study of the second-order factorial moment measure of the spatial point
process.

7.3 Bayesian inference

In this subsection, we will briefly discuss Bayesian inference. A more complete
treatment of this approach is planned to appear elsewhere. As earlier, µx

requires a special treatment. When considering Bayesian methods we may
simply replace Ztx by Ztx − Z̄·x and ftx by ftx − f̄·x. The new data have
µx = 0 and the same correlation structure as the original data if T is large.
For brevity, we write Z = {Ztx}.

7.3.1 Prior distributions

We concentrate on the case where mi = m and σx = σ are known. We then
need to specify a prior density of the point process Φ and its parameters. We
assume that the intensity function of Φ is of the following form

λ(t, x) =
k∑

l=1

λl1{x ∈ Xl},

where the sets Xl ⊆ X are disjoint. Their union may be the whole brain X
but need not be. The sets Xl should be specified by the experimenter while
the parameters λl are unknown.

It turns out to be a good idea to transform the parameters. Thus, we let
c =

∑
λl|Xl| and πl = λl|Xl|/

∑
λl|Xl|. Note that the πl’s satisfy

πl ≥ 0,

k∑
l=1

πl = 1.
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The new parameters have nice interpretations. Thus,

c =
1
T

∫
[0,T ]×X

λ(t, x)dtdx

=
1
T

EΦ([0, T ]×X )

is the expected number of activations per time unit while

πl =
∫

[0,T ]×Xl

λ(t, x)dtdx/

∫
[0,T ]×X

λ(t, x)dtdx

= EΦ([0, T ]×Xl)/EΦ([0, T ]×X )

is the expected fraction of all activations that occur in Xl. Note that

λ(t, x) = cλ2(x), (22)

where

λ2(x) =
k∑

l=1

πl
1{x ∈ Xl}

|Xl|
, (23)

satisfies ∫
X

λ2(x)dx = 1.

The prior distribution of Φ will be chosen as Poisson with intensity function
λ. Note that there is no interaction between points in the prior distribution.
Interaction found in the posterior distribution of the point process will there-
fore be ‘caused’ by the data z. We consider the restriction

Φ0 = Φ ∩ ([T0−, T0+]×X )

of Φ to a time interval [T0−, T0+] containing [0, T ]. The interval [T0−, T0+] is
chosen such that it is very unlikely that a point from Φ\Φ0 will affect an MR
signal observed in [0, T ]. Using (22) and (23), the density of Φ0 with respect
to the distribution ν of a unit rate Poisson process on [T0−, T0+]×X becomes

p(φ0|c, π) = exp(−
∫

[T0−,T0+]×X
[λ(t, x)− 1]dtdx)

∏
[u,y]∈φ0

λ(u, y)

= exp(−(T0+ − T0−)(c− |X |))cn(φ0)
∏

l

(
πl

|Xl|
)nl(φ0),

where n(φ0) is the number of points in φ0 and nl(φ0) is the number of these
points falling in Xl.
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We will use non-informative priors for c and π = (π1, . . . , πk). The prior
density of c will be specified as

p(c) =
1

cmax
1{c < cmax},

where cmax is a large known constant while the prior density of π is

p(π) =
1

vol(D)
1{π ∈ D},

where
D = {π : πl > 0,

∑
πl = 1}.

7.3.2 Posterior simulation

The complete posterior density is

pm,σ2(c, π, φ0|z) ∝ p(c)p(π)p(φ0|c, π)pm,σ2(z|φ0), (24)

since the conditional density of z given c, π, φ0

pm,σ2(z|φ0) = [2πσ2]−NT/2 exp(− 1
2σ2

‖z − f(φ0;m)‖2).

only depends on φ0. Here,

‖z − f(φ0;m)‖2 =
∑
t,x

(
ztx −

∑
[ti,xi]∈φ0

ftx(ti, xi;m)
)2

For simulation from the posterior density we use a fixed scan Metropolis
within Gibbs algorithm where in each scan c, π and φ0 are updated in turn.
The full conditional for c is a Gamma distribution

c|π, φ0, z ∼ Γ(n(φ0) + 1, T0+ − T0−), (25)

with the constraint that c < cmax. We use (25) as proposal where φ0 is the
current state, and sample from Γ(n(φ0) + 1, T0+ − T0−) until the constraint is
satisfied.

The density of the full conditional distribution of π takes the form

p(π|c, φ0, z) ∝ p(π)p(φ0|c, π)

∝
∏

π
nl(φ0)
l

with the constraint π ∈ D. For k = 1, this step can be omitted as D = {1}.
For k = 2,

π|c, φ0, z ∼ Beta
(
n1(φ0) + 1, n2(φ0) + 1

)
.
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while for k > 2 we have

π|c, φ0, z ∼ Dirichlet
(
n1(φ0) + 1, n2(φ0) + 1, . . . , nk(φ0) + 1

)
.

We sample a π from the appropriate distribution, using the current value of
φ0.

The last step is to simulate from

p(φ0|c, π, z) ∝ cn(φ0)
∏

l

π
nl(φ0)
l exp(− 1

2σ2
‖z − f(φ0;m)‖2).

The point process is simulated using a birth, death, and move algorithm as
described in Chapter 7 in Møller and Waagepetersen (2004). The starting
value of the simulation is a Poisson process. In each iteration we then propose
one of the following steps: deleting a uniformly chosen point from the current
point pattern, moving a uniformly chosen point in the current point pattern
to a new random location (in time and space), or adding a new point in a
random location. The different proposals are selected with equal probability.
We use the current values of c and π to calculate the acceptance ratio for the
suggested change in the point pattern.

8 A simulation study

We have simulated data from the model in (1) with independent spatial and
temporal Poisson point patterns as in Example 6.1. The object of the sim-
ulation study was the analysis of a non-stimulus experiment. Thus, we gave
the temporal intensity function a constant value, λ1(t) = c for all t ∈ [0, 100],
while the spatial activation pattern comprised activated areas of various sizes,
shapes and peak intensity. The HRF was given by an integral (sum) of Gaus-
sian densities as in Section 3.1.1 with m1 = l = 5 and the spatial activation
was modeled by a symmetric Gaussian bell function as in Section 3.2 with
m2 = (θ1, θ2) = (4, 4). Further, the errors were standard Gaussian distributed,
εtx ∼ N(0, 1), and we set σ2

x to be equal to 40% of the baseline signal. The
standard deviation σx is roughly three times larger than the maximum inten-
sity of an activation center.

The activation pattern is shown in Figure 7, with the realization of the
temporal activity left and the arranged spatial activity right. Two time series
from the simulation are shown in Figure 8, one is from an activated area and
one from an area with no activation. The activation pattern in the former
clearly follows the temporal activation pattern shown in Figure 7 (left). The
development of the activation over time has also been shown in Figure 1.

We have estimated the spatial intensity function λ2, using the three differ-
ent methods outlined in Section 7. In Section 8.1, we used the method based
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Figure 7: The realization of the temporal activity used in the simulation (left) and the
spatial activity (right). The HRF was modeled by a sum of Gaussian functions with
mark m1 = 5 and the SAF was modeled by a Gaussian bell function with m2 = (4, 4).
See the main text for more details.
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Figure 8: Illustration of time series data from the simulation. Left: simulated data
at time t = 20. Right: time series of respectively an active (top) and a nonactive
(bottom) voxel.

on the general mean value relation as described in Section 7.1. In Section 8.2,
we assumed one of the activated areas, X0 ⊂ X , to be known and we searched
for other areas in X , functionally connected to X0. That is, we estimated λ2

in X \X0 using covariances. This method is similar to the inference discussed
in Section 7.2. Finally, in Section 8.3, we use Bayesian inference.

8.1 Estimation of λ2 using mean value relations

We used the method described in Section 7.1 and, for fixed m1 and m2, min-
imized (18). This method gave us an estimate λ̂2 of λ2 up to a constant of
proportionality. We scaled λ̂2 such that 0 ≤ λ̂2(yi) ≤ 1 for all i = 1, . . . , N ,
with yi being the midpoint of each voxel (pixel). The estimated activation
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pattern was determined at each x ∈ X as
N∑

i=1

h(x− yi;m2)λ̂2(yi).

Figure 9 shows the estimated activation pattern for m1 = 5 and m2 = (4, 4)
(right) together with the true activation pattern (left). The method gives an
estimate of the correct activation pattern, up to multiplication with a constant.
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Figure 9: The true spatial activation pattern (left) and the estimated spatial activa-
tion pattern (right) with marks m1 = 5 and m2 = (4, 4).

8.2 Estimation of λ2 using covariances

We assume that we have given an activated area, X0, in X and wish to find
other areas with functional connection to X0, using analysis based on covari-
ances. Following Section 7.2 we calculate the slope of the regression of Ztx′ on
Ztx for the simulated data, where x is the point in X with maximum intensity.
This approach gives a first estimate of the spatial intensity function.

We can also estimate the spatial activation, using the covariances. We
supposed the upper middle activation center in Figure 7 (right) to be known.
We then used (21) to obtain an estimate λ̂2(x) of λ̃2(x) = cγ(m1)β̄·λ2(x)
for all x ∈ X \ X0. Given the estimate of the spatial intensity function, the
spatial activation was reconstructed as in the previous section. The results
for m1 = 5 and m2 = (4, 4) are shown in Figure 11. As before, the method
finds the correct activation areas, but the intensities are only known up to a
multiplication with a constant.

8.3 Bayesian inference

We analyzed the simulated data in two different ways with the method de-
scribed in Section 7.3. In the first case, we have restricted our attention to
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Figure 10: The slope of the regression of Ztx′ on Ztx for a fixed point x ∈ X and all
x′ ∈ X . The point x, shown as a star in the figure, is the point in X with maximum
intensity.

5

10

15

20

2

4

6

8

Figure 11: The true spatial activation pattern (left) and the estimated spatial ac-
tivation pattern (right) for the marks m1 = 5 and m2 = (4, 4). The upper middle
activation center in Figure 7, denoted by X0 in the text above, is not shown, as it is
assumed known and thus not estimated.

two regions of the brain, the high intensity region X1 and the low intensity
region X2. The areas of these two regions are 51 and 49 pixels, respectively.
We assumed there is no activation in X \(X1∪X2), and so we used the method
in Section 7.3 with k = 2. In the second case, we have set k = 1 with the
region of interest equal to X . The area of X is 1245 pixels. Figure 12 shows
plots of the log posterior density, log pm,σ2(c, π, φ0|z), as a function of iteration
number. The normalization constant for the posterior density is unknown, cf.
(24), so we only know the log posterior density up to addition with a constant.
This is, however, irrelevant when the plots are used to study the convergence
of the algorithm.

When the algorithm had converged, we sampled point processes {Φj}M
j=1

from the posterior and used them to estimate the activation pattern. The
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Figure 12: The log posterior density as a function of iteration number for k = 2 (left)
and k = 1 (right). Note that the log posterior density is only know up to a constant,
cf. (24). The values on the y-axis are thus only correct up to an additive constant.

estimated spatial activation pattern was determined at each x ∈ X as

1
M

M∑
j=1

∑
yi∈Φj

h(x− yi;m2).

In Figure 13, the resulting estimates of the activation pattern are shown to-
gether with the true activation pattern. Note that for comparison the true
activation pattern shown in Figure 13, left, has been multiplied with 13, the
number of time points of activation in the true pattern.
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Figure 13: The true spatial activation pattern (left), the estimated spatial activation
pattern for k = 2 (middle), and the estimated spatial activation pattern for k = 1
(right). The marks have values m2 = (4, 4) in all the figures.
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The simulated point processes give us information about the temporal ac-
tivation as well as the spatial activation. We estimate the temporal activation
in the same manner as the spatial activation by

1
M

M∑
j=1

∑
si∈Φj

g(t− si;m1)

for each t ∈ [0, T ]. The resulting estimates are shown in Figure 14 together
with the true activation pattern. Note that for comparison the true activation
pattern shown in Figure 14 (solid line) has been multiplied with 30, the number
of activation centers in space in the true pattern.
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Figure 14: The true temporal activation pattern (solid), the estimated temporal
activation pattern for k = 2 (dashed), and the estimated temporal activation pattern
for k = 1 (dotted). The mark has value m1 = 5.

In order to explain the higher level of activation obtained for k = 1, we
have divided X into two parts and estimated the temporal activation pattern
for k = 1 in each part separately. The first part, X̃1, consists of the areas that
were used in the analysis for k = 2, along with those voxels in X \ (X1 ∪ X2)
influenced by voxels in X1 ∪ X2. Thus,

X̃1 = {x ∈ X | ∃y ∈ X1 ∪ X2 : h(x− y;m2) ≥ 2}.

The threshold chosen equals half the maximum of the function h. The esti-
mated temporal activation pattern for X̃1 is shown as a dotted line in Figure 15.
The second part, X̃2, consists of the remaining voxels in X , X̃2 = X \ X̃1. The
estimated temporal activation pattern for X̃2 is shown by a dash-dotted line
in Figure 15. The estimated temporal activation pattern for X̃1 is close to the
true pattern, while the estimated pattern for X̃2 is approximately uniform in
time apart from an edge effect in the beginning. The higher level of the tem-
poral activation pattern for k = 1 in Figure 14 can thus be explained by extra
points, uniformly distributed in time, in the simulated point process outside
the activated areas.
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Figure 15: The true temporal activation pattern (solid), the estimated temporal
activation pattern for k = 1 in activated areas (dotted), and the estimated temporal
activation pattern for k = 1 in non-activated areas (dash-dotted). The mark has
value m1 = 5.

9 An example of analysis of fMRI data

The data we consider here are from a larger investigation of the resting state
network, cf. Beckmann et al. (2005). The data have an exceptional high time
resolution with 120 ms between neighboring time points. Such high resolution
enables the investigator to distinguish neural effects from non-neural physio-
logical effects such as aliased cardiac or respiratory cycles. An independent
component analysis of these data revealed a resting state network involving
the sensory-motor cortices bilaterally, cf. Beckmann et al. (2005). A Fourier
analysis of the estimated temporal activation pattern of the network showed a
dominating period of approximately 15-20 s.

The data are from a single slice through an axial plane that intersects
the sensory-motor cortices bilaterally. The number of time points is 2000,
corresponding to a total duration of the experiment of 4 min. After masking
the data, in order to remove non-brain voxels, it consists of 932 voxels. We
analyze this data under our model using Bayesian inference for one area, the
whole slice, with l = 5s, θ1 = 100 and θ2 = 2. Initially, we performed band-
pass filtration with limits of 1 s and 60 s in order to remove low frequency drift
as well as some of the effects relating to cardiac and respiratory cycles. We
have used the program FSL for the preprocessing of the data, see Smith et al.
(2004) for an overview of FSL.

The resting state network found in Beckmann et al. (2005) involves three
regions of interest, the middle region X1, the left motor cortex X2, and the
right motor cortex X3 as shown in Figure 16. A Bayesian analysis supports
such a network. In Figure 17 samples from the posteriori density of time
points of activation in the three regions of interest are shown. Clearly, the
three temporal point processes are positively correlated. Examples of observed
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and estimated time series are shown in Figure 18 while the estimated spatial
activation pattern in the three regions can be found in Figure 19.

1
23

Figure 16: Delineation of the three regions of interest, X1, a middle
region, X2 that includes the left motor cortex, and X3 that includes
the right motor cortex.
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Figure 17: Samples from the posterior density of time points of activation for region
X1 (top), X2 (middle), and X3 (bottom). Each bar represents 3 seconds.
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Figure 18: Examples of time series from the three regions after preprocessing (solid)
together with the estimated temporal activation (dashed). The top figure shows a
time series from X1, the middle figure shows a time series from X2, and the bottom
figure shows a time series from X3.
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Figure 19: The estimated spatial activation pattern in the three
regions cumulated over time.
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10 Discussion

In fMRI experiments, data may have a more complicated structure than the
one predicted by our model, cf. e.g. Hartvig (2002). An extended model will
most likely include a drift component dtx

Ztx = µx + dtx +
∑

i

ftx(ti, xi;mi) + σxεtx, (26)

cf. Genovese (2000). This component describes the slow drifts in the static
magnetic field during the experiment and residual motion not accounted for
by prior motion correction. Often, the drift is removed using filtering, before
any further analysis of the data, cf. Friston el al. (2000), or included in a
general linear model, cf. Friston et al. (1995). It should also be part of an
initial analysis to examine whether the data should be transformed. In Hartvig
(2002), log-transformed signal intensities are analyzed by a model as in (26)
with σ2

x = σ2. Note that the variance of the untransformed intensities will
then depend on t and x.

In the present paper we have mainly used the simple model described in
Section 3.1.1 for the temporal activity, one reason being that we want to focus
on the spatial modeling. In Genovese (2000), models for the HRF are reviewed,
including a model based on splines. In Purdon et al. (2001), a new model for
a physiologically based hemodynamic response is described.

We have assumed that the errors {εtx} are mutually independent. It is here
important to consider more general error models. In particular, the noise is
often autocorrelated in time, as emphasized in Worsley (2000). A more general
model for the errors is the multivariate Gaussian model,

ε ∼ N|X |×T (0,Σ). (27)

For a standard whole brain analysis, the covariance model Σ will be very large,
e.g. |X | × T = 10000 × 100 = 106. It is therefore necessary to make some
simplifications of the model to make it computationally feasible. In Woolrich
et al. (2004), this type of noise models is investigated in Bayesian settings. The
authors propose the use of a space-time simultaneously specified autoregressive
model,

εtx =
∑

y∈Nx

βxyε(t−1)y +
3∑

s=1

αsxε(t−s)x + ηtx,

where Nx is a neighborhood of the voxel x, βxy is the spatial autocorrelation
between voxel x and y at a time lag of one with βxy = βyx, αsx is the tempo-
ral autocorrelation between time point t and t − s at voxel x, and {ηtx} are
independent noise variables with distribution

ηtx ∼ N(0, σ2
η).
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It still remains to study more systematically explicit point process models
that can describe how activities in different regions of the brain are related.
The regions may either be activated simultaneously or some regions may be
activated with delay compared to other regions. For modeling the spatial point
process {xi}, Taskinen (2001) has suggested a cluster point process. Note also
that the point process term ∑

i

ftx(ti, xi;mi)

of (26) has the form of the random intensity field of a shot noise Cox process
if Ψ is Poisson, see e.g. Møller (2003).

From an applied point of view, an important next step is to design non-
stimulus experiments along the lines described in Greicius et al. (2003) and
analyze the data, using the modeling framework presented in this paper. In the
examples considered until now, we have assumed that the marks are identical
for all activations. The common value m has been treated as an unknown
parameter. It will be interesting to include the distribution of the temporal
duration of the activation in a Bayesian analysis.

One further possibility for extending the model is to consider K indepen-
dent marked spatio-temporal point processes Ψk, k = 1, . . . ,K, instead of
just one spatio-temporal point process. In the particular case of independent
spatial and temporal point processes where

Ψk = (Ψk1,Ψk2),

and Ψk1 = {[tki;m1
ki]} and Ψk2 = {[xkj ;m2

kj ]} are independent, we obtain the
following model equation

Ztx = µx +
K∑

k=1

AktBxk + σxεtx,

where
Akt =

∑
i

g(t− tki;m1
ki) and Bxk =

∑
j

h(x− xkj ;m2
kj).

Note that {Ak∗} are independent corresponding to a temporal ICA model and
{B∗k} are independent corresponding to a spatial ICA model, respectively,
cf. McKeown et al. (2003). The resulting model may be analyzed by first
performing an ICA analysis and then analyzing the estimated components,
using point process theory.

11 Summary

In the present paper, we have suggested a new modeling framework for non-
stimulus experiments, using point process theory. The key idea is to replace
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the controlled on-off activation times from repeated stimulus experiments with
random activation times from a stationary point process. Bayesian analysis of
the model provides an estimate of the posterior distribution of the spatio-
temporal point process of activations. Such dynamic output (including the
posterior density of time points of activation) is not provided by the standard
methods available for analysis. The model may be used for an exploratory
analysis of the whole brain or a more detailed analysis of parts of the brain
that have been spotted as regions of special interest in earlier analyses. Since
knowledge of the activation profile is used in the model, it is expected that the
new approach will give a more clear picture of what is going on in the brain
than nonparametric analysis like Greicius’ regression method. The model offers
a way of further analyzing output from ICA analysis.
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Modelling resting state networks
in the human brain

Thordis L. Thorarinsdottir and Eva B. Vedel Jensen
University of Aarhus

Abstract

In the present paper, we show how spatio-temporal point process models for func-
tional magnetic resonance imaging (fMRI) data can be used in the study of resting
state networks in the human brain. The model explicitly includes knowledge of the
hemodynamic response to neuronal activation. Fully Bayesian analysis of the model
is described and an example of analysis of a fMRI data set is given. Other methods
of analysis of resting state networks are also discussed.

Keywords: Bayesian inference, fMRI, hemodynamic response function, Markov chain
Monte Carlo, spatio-temporal point processes

1 Introduction

Cognitive psychologists and neuroscientists are presently very interested in the
functioning of the human brain during rest. One of the reasons is that analyses
of data obtained by functional magnetic resonance imaging (fMRI) indicate the
existence of resting state networks of regions in the human brain, cf. [3, 7, 8, 15]
and references therein. See also the collection of papers presented in the special
issue of Phil. Trans. R. Soc. from 2005 on ’Multimodal neuroimaging of brain
connectivity’. Changes of these networks under aging or disease have been
reported ([5], [15]).

During an fMRI experiment the brain is scanned and represented as a set
of voxels. At each voxel a time series of MR signal intensities is recorded,
showing the local brain activity during the experiment. Time series from re-
gions far apart may show similar variation during rest, indicating the presence
of a resting state network. An example of such data, earlier analyzed in [3],
is shown in Fig. 1. At each voxel of a slice through the human brain, the MR
signal intensity is shown at 12 equidistant time points of the scanning experi-
ment. The person being scanned here has not received any particular stimuli
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Figure 1: Development of the MR signal intensity over time in a single axial slice
through the human brain. From left to right and top to bottom: the activity at time
t = 12, 30, 48, . . . , 210 seconds.

during the experiment but still covariation between activities in different re-
gions of the brain may appear. As we shall see, there is evidence of covariation
between activities in the three regions shown in Fig. 3 below, but this is not
immediate from Fig. 1. We will return to this example at the end of the paper.
Generally, modelling and statistical analysis of such data constitute a major
challenge because of a high level of noise and no prior knowledge of time points
of activation. Another complication is possible aliasing with respiratory and
cardiac cycles. The difficulties faced in such non-stimulus experiments are
much more serious than those met in more traditional experimental designs of
fMRI experiments with known periods of stimuli (‘on periods’) between peri-
ods of rest (‘off periods’). Recently, experiments with a more continuous but
known type of stimulus has also been tried out, cf. [1, 2]. A good statistical
review on design of fMRI experiments may be found in [10].

The aim of this paper is to show how spatio-temporal point process models
for functional magnetic resonance imaging (fMRI) data can be used in the
study of resting state networks in the human brain. A more detailed account
will be published elsewhere [19].

2 Correlation analysis

The data from an fMRI experiment constitute a collection of time series

Ztx, t = t1, . . . , tm,

x ∈ X . Here, Ztx is the MR signal intensity at time t and voxel x. The
time points t1, . . . , tm are usually equidistant and belong to the interval [0, T ],
where T is the length of the experiment. The set X is a finite subset of R2 or
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R3 with N elements, called voxels, representing a two dimensional slice or a
three dimensional volume of the brain.

In [8], the functional connectivity in the resting brain is studied by a simple
correlation analysis. A seed region X0 ⊂ X is selected and the correlation
between the average time series for this region

Z̄tX0 =
1
|X0|

∑
x∈X0

Ztx, t = t1, . . . , tm

and the time series of any other brain voxel is calculated in order to find regions
X1 interacting with X0. Here, | · | indicates number. Similarly, in [13], the aver-
age time series is used as explanatory variable in a regression type of analysis
of the time variation in other regions of the brain. The software package SPM
(Statistical Parametric Mapping), developed by the Wellcome Department of
Imaging Neuroscience, UCL, UK, can be used for such an analysis.

This analysis is attractive because it is simple. It does, however, require
an a priori expectation of the network pattern.

3 Independent component analysis

Independent component analysis (ICA) has become a very popular technique
for analyzing data from fMRI experiments without specific stimuli. A number
of interesting findings relating to specific resting state networks have been
reported using ICA ([3, 14, 15]). A special variant of the technique is called
probabilistic independent component analysis (PICA), cf. [7]. There were
some early critiques of ICA, see [9], but it seems now to be generally recognized
in the neuroscience community that ICA is a powerful nonparametric tool for
studying resting state networks. A good introduction to ICA can be found in
[21]. This paper also contains a comprehensive list of references with specific
guidance to the literature. Analysis of groups of individuals by ICA is discussed
in [4].

ICA is an explorative analysis, closely related to factor analysis and dis-
criminant analysis. The analysis is based on a model of the following type

Ztx = µx +
K∑
k=1

AtkBkx + σεtx.

Here, µx is the baseline signal at voxel x which can vary by a factor of 2-3
across the brain. The number K of components is unknown. Furthermore,
(A?k, Bk?), k = 1, . . . ,K, are assumed to be independent. Software packages
performing ICA are available, e.g. the program FSL presented in [25]. An ICA
analysis results in estimates of temporal activation profiles {A?k} and spatial
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activation profiles {Bk?} for each k. The estimated temporal profiles are shown
together with their associated power spectra. Only frequency components of
a certain bandwidth are regarded as having neuronal origin. High frequence
components may be caused by cardiac or respiratory activities, while very low
frequence components are considered to be drift. In an actual application, the
estimated number K of components may be quite large.

4 A model based on spatio-temporal point
processes

Especially amongst psychologists, there has recently been some criticism of
ICA analysis because such an analysis decomposes a particular type of activity
in the brain into a spatial activation map showing regions of the brain activated
during the experiment and a temporal activation graph showing when the brain
is activated during the experiment. They are not particularly fond of this type
of ‘product brain’. Instead, a more dynamic type of analysis is asked for in
order to be able to reveal more complicated interaction phenomenon. For
instance, a particular region of the brain may only be active if a collection of
other regions are active. An example of this is the visual system which seems
to have a very strong hierarchical structure, see [17]. It may also be of interest
to investigate whether the duration and extend of activation may depend on
the particular region of the brain studied. As we shall see, this criticism can
be met by using a spatio-temporal point process modelling approach.

The model to be presented depends on well established knowledge on the
hemodynamic response which is a localized inflow of oxygenated blood to a
region of the brain with neural activity. This response causes an increase of the
MR signal intensity in the region in question. Its general temporal form has
been reproduced in many studies. First, the hemodynamic response increases
to a peak value at about 4–7 seconds after a neuronal response and then it
returns to baseline again a few seconds after the neuronal impulse has ceased.

A neuronal activation at location y and time u will therefore contribute to
the observed MR signal intensity at y at the later time t > u by an amount
proportional to

g(t− u)

where g is a function with the properties described above. In particular, g(v)
increases to a maximal value for v equal to 4-7 seconds and then decreases to
0 after the neuronal activation has stopped. A neuronal activity in voxel y is
expected to affect the activity at neighbour voxels in a similar way but less
intensely. For a voxel x, an activation at location y and time u will contribute
to the observed MR signal intensity at x at the later time t > u by the following
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amount
g(t− u)h(x− y),

where h(z) is a decreasing function of ‖z‖. The resulting model for the con-
tribution to the observed MR signal intensity at voxel x at time t caused by a
neuronal activation at voxel y at time u becomes

ftx(u, y;m) = g(t− u;m1)h(x− y;m2)

where m = (m1,m2) and m1 and m2 are model parameters, describing the
duration of a neuronal activation and its spatial extent.

The actual modelling of the hemodynamic response function g has been
studied intensively in the fMRI literature, see [6] and references therein. We
will here adopt a fairly simple but well-known model where the response is a
Gaussian distributed random variable with mean 6 sec (the delay) and variance
9 sec2. Accordingly, the function g takes the form

g(u;m1) =
∫ m1

0
κ(u− v)dv,

where m1 is the temporal duration of the neuronal activation and

κ(t) =
1√
2π3

exp
(
− (t− 6)2

18

)
.

The spatial activation function is modelled by a Gaussian bell function

h(y;m2) = θ1 exp
(
−‖y‖

2

2θ2

)
,

where m2 = (θ1, θ2).
In Fig. 2, we show the effect of superposition of three such activations.

Here, X is a digitized circular disc. The activation profile

{ 3∑
i=1

ftx(ti, xi;m) : x ∈ X
}

is shown for 12 equidistant time points. The time points and positions of the
three activations (ti, xi), i=1, 2, 3, are indicated in the legend of Fig. 2. The
duration m1 and the spatial extent m2 are the same for all three activations.

In an fMRI experiment without specific stimuli, the activations occur at
random time points not known to the experimenter. It is natural to describe
the activations by a marked point process Ψ = {[ti, xi;mi]} on R × X with
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Figure 2: Development of the activity over time in simulated data. From left to right
and top to bottom: the activity at time t = 2, 4, . . . , 24 time units. The activity starts
at times t = 1, 6, 8, clockwise from the top, and the marks are given by m1 = 5 time
units and m2 = (10, 10) voxel units. The diameter of the circular disc is 40 voxel
units. For more details, see the text.

marks mi = (m1
i ,m

2
i ) ∈ R3

+. The resulting model for the observed MR signal
intensity at time t and voxel x becomes

Ztx = µx +
∑
i

ftx(ti, xi;mi) + σεtx, (1)

where µx is the baseline signal at voxel x as above and εtx is an error term
with mean 0 and variance 1. The errors are expected to be correlated, see
[20, 26]. It can be shown that this spatio-temporal model is closed under local
smoothing, cf. [19].

Since the brain is not subjected to systematic stimuli under the fMRI
experiment, it is natural to assume (investigate) that the marked point process
Ψ is time stationary in the sense that

Ψt = {[ti + t, xi;mi]}

has the same distribution as Ψ for all t ∈ R. Then, the intensity measure Λ of
the unmarked point process is of the form

Λ = cν1 × Λ2,

where c > 0, ν1 is the Lebesgue measure on R and Λ2 is the intensity measure
for the spatial point process {xi}. Furthermore, time stationarity implies that
the mark distribution does not depend on the particular time point considered
but it may still depend on the location.

Under the resting state network hypothesis, the spatio-temporal point pro-
cess Ψ will show long-distance dependencies. Recall that each marked point
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[ti, xi;mi] may be considered as a center of activation at location xi ∈ X start-
ing at time ti and with temporal and spatial duration described by mi. If
two regions of the brain X0 and X1 interact, it is expected that activations
occur almost simultaneously in X0 and X1. Such interactions may be revealed,
using a ayesian analysis, see Section 5 below. The earlier modelling of a ‘prod-
uct brain’ corresponds to the use of independent spatial and temporal point
processes such that

Ψ = {[ti, xj ;m1
i ,m

2
j ]},

where Ψ1 = {[ti;m1
i ]} and Ψ2 = {[xj ;m2

j ]} are independent. If the inten-
sity measure of Ψ2 is very concentrated in X0 and X1, then activations will
appear simultaneously in the two regions. This type of modelling of the de-
pendency may appear somewhat simplistic and a model based on conditional
independence may be more natural. Here,

Ψ = {[ti, xij ;m1
i ,m

2
ij ]},

where, given Ψ1 = {[ti;m1
i ]}, Ψ2i = {[xij ;m2

ij ]} are independent and identi-
cally distributed with an intensity measure concentrated in X0 and X1, say.

In accordance with the emerging belief of the existence of more than one
resting state network, it is natural to consider a point process model of the type
Ψ =

⋃K
k=1 Ψk where Ψk, k = 1, . . . ,K, are independent and refer to activities

in the K networks. If

Ψk = (Ψk1,Ψk2)

where Ψk1 = {[tki;m1
ki]} and Ψk2 = {[xkj ;m2

kj ]} are independent, then we
obtain the following model equation

Ztx = µx +
K∑
k=1

AtkBkx + σεtx, (2)

where

Atk =
∑
i

g(t− tki;m1
ki) and Bkx =

∑
j

h(x− xkj ;m2
kj).

Note that (2) is actually an ICA model. The model may be analyzed by first
performing an ICA analysis and then analyzing the estimated components,
using point process theory.

In the next section we will discuss Bayesian inference of the spatio-temporal
point process model (1) and its parameters. A related model for repeated
stimulus experiments has been developed in [16], see also [12].
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5 Bayesian inference

5.1 Prior distributions

Without loss of generality we can set µx = 0 in the following. The prior
distribution of Ψ will be that of a Poisson point process. A typical point will,
for convenience, be written as [t, x; (θ0, θ1, θ2)] ∈ R×X ×R3

+ so we write here
θ0 instead of m1 for the temporal duration of the neuronal activation. The
intensity function of Ψ is assumed to be of the form

λΨ(t, x; θ0, θ1, θ2) = λ(t, x)
2∏
i=0

1{θi ∈ [ai, bi]},

where ai, bi, i = 0, 1, 2, are known positive constants. Note that there is no
interaction between points in this prior distribution so interactions will appear
in the posterior distribution if they are present in the data.

We consider the restriction Ψ0 of Ψ to

Y = [T0−, T0+]×X ×
2∏
i=0

[ai, bi],

where the interval [T0−, T0+] has been chosen such that an activation occurring
outside this interval is very unlikely to affect the MR signal observed in [0, T ].
The density of Ψ0 with respect to the unit rate Poisson point process on Y
becomes

p(ψ0|λ, a∗, b∗) = exp
(
−

2∏
i=0

(bi − ai)
∫

[T0−,T0+]×X
[λ(t, x)− 1]dtdx

)
×

∏
[u,y;θ0,θ1,θ2]∈ψ0

[
λ(u, y)

2∏
i=0

1{θi ∈ [ai, bi]}
]
.

We will model the function λ by a piecewise constant function only de-
pending on location, i.e.

λ(t, x) =
K∑
l=1

λl1{x ∈ Xl}.

Here, the disjoint sets Xl are supposed to be specified by the experimenter
while the parameters λl are unknown. The union of the sets Xl need not be
the whole brain. We can write the intensity function as

λ(t, x) = cλ2(x)
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where c > 0 and ∫
X
λ2(x)dx = 1.

Note that λ2 is on the following form

λ2(x) =
k∑
l=1

πl
1{x ∈ Xl}

|Xl|

where πl > 0 and
∑k

l=1 πl = 1.
We will use non-informative priors for c, π = (π1, . . . , πk) and the error

variance σ2. The prior density of c will be specified as

p(c) =
1

(c+ − c−)
1{c ∈ [c−, c+]}

while the prior density of π is

p(π) =
1

vol(D)
1{π ∈ D},

where

D =
{
π ∈ Rk : πl > 0,

k∑
l=1

πl = 1
}
.

The prior density of σ2 will be of the form

p(σ2) =
1

(σ+ − σ−)
1{σ ∈ [σ−, σ+]}.

5.2 The likelihood model

Let the data be denoted by

z = {ztx : t = t1, . . . , tm, x ∈ X}.

Then, the conditional density of z given c, π, ψ0 and σ is

p(z|ψ0, σ) = [2πσ2]−Nm/2 exp
(
− 1

2σ2
‖z − f(ψ0)‖2

)
, (3)

where

‖z − f(ψ0)‖2 =
∑
t,x

(
ztx −

∑
[ti,xi;θi0,θi1θi2]∈ψ0

ftx(ti, xi; θi0, θi1, θi2)
)2
.

This is the simplest choice of model, see also [20] and references therein.
Note that (3) does not depend on c and π.
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5.3 Posterior simulation

The posterior density will be of the following form

p(c, π, σ, ψ0|z) ∝ p(c)p(π)p(σ2)p(ψ0|c, π)p(z|ψ0, σ)

since the conditional density of ψ0 given c, π and σ only depends on c and π
and the conditional density of z given the remaining variables only depends
on ψ0 and σ. For the simulation from the posterior density we use a fixed
scan Metropolis within Gibbs algorithm where in each scan c, π, σ and ψ0

are updated in turn. For a detailed description of algorithms of this kind, see
[24]. The full conditional for c is a Gamma distribution with restricted range
while for k > 2 the full conditional of π is a Dirichlet distribution. The full
conditional of σ2 is an inverse Gamma distribution with restricted range.

Finally, we need to simulate from

p(ψ0|c, π, z) ∝ cn(ψ0)
k∏
l=1

π
nl(ψ0)
l exp

(
− 1

2σ2
‖z − f(ψ0)‖2

)
.

Note that this is in fact a pairwise interaction density. The point process is
simulated using a birth, death and move algorithm as described in Chapter 7
of [23].

5.4 An example

We consider here shortly a Bayesian analysis of a fMRI data set analyzed in [3]
by ICA analysis and illustrated in Fig. 1. In the Bayesian analysis performed
here, the values of θ? and σ2 were fixed and equal to empirically assessed
values. In [3], evidence was found of a resting state network involving three
regions of the brain slice, the left and right motor cortices and a middle region.
Those regions are delineated in Fig. 3. In Fig. 4, we show the estimated two-
dimensional posterior density of time points of activation for pairs of regions
from Fig. 3. All estimated correlations are positive and significantly different
from zero. In Fig. 5, we show examples of observed time series and their
estimated temporal activation.
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1
23

Figure 3: Delineation of the three regions of interest,
X1, a middle region, X2 that includes the left motor
cortex, and X3 that includes the right motor cortex.
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Figure 4: Two-dimensional posterior densities of time points of activation for pairs of
regions delineated in Fig. 3. Regions X1 and X2 are shown in (a), X1 and X3 in (b)
and X2 and X3 in (c). Each point represents a time interval of 4 seconds.

50 100 150 200

−150

0

150

50 100 150 200

−150

0

150

50 100 150 200

−150

0

150

50 100 150 200

−150

0

150

50 100 150 200

−150

0

150

50 100 150 200

−150

0

150

50 100 150 200

−150

0

150

50 100 150 200

−150

0

150

50 100 150 200

−150

0

150

Figure 5: Time series from nine neighbouring voxels from the left motor cortex. In
each plot, the thick line is the true, preprocessed time series for that voxel and the
thin line is the estimated time series for the same voxel. The units on the x-axis are
given in seconds.
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Abstract

In this paper, we develop a Bayesian procedure for removing noise from images that
can be viewed as noisy realisations of random sets in the plane. The procedure
utilises recent advances in configuration theory for noise free random sets, where the
probabilities of observing the different boundary configurations are expressed in terms
of the mean normal measure of the random set. These probabilities are used as prior
probabilities in a Bayesian image restoration approach. Estimation of the remaining
parameters in the model is outlined for salt and pepper noise. The inference in the
model is discussed in detail for 3 × 3 and 5 × 5 configurations and examples of the
performance of the procedure are given.

1 Introduction

The comparison of neighbouring grid points in a discrete realisation of a ran-
dom closed set Z in R2 has been used for decades to make inference on various
characteristics of the random set. A classical result, cf. Serra (1982), states
that the information obtained by comparing pairs of neighbouring grid points
can be used to estimate the mean length of the total projection of the bound-
ary of the random set in directions associated with the digitisation. This, in
turn, yields certain information about the directional properties of the bound-
ary. Larger configurations, such as grid squares of size 2 × 2 or 3 × 3, were
used in Ohser et al. (1998) and Ohser and Mücklich (2000) to estimate the
area density, length density, and density of the Euler number of Z.

In Jensen and Kiderlen (2003) and Kiderlen and Jensen (2003), the authors
use grid squares of size n × n, n ≥ 2, to estimate the mean normal measure
of the random set Z. The knowledge of this can then be used to quantify the
anisotropy of Z. Events of type tB ⊂ Z, tW ⊂ R2 \Z are observed, where tB
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and tW are finite subsets of the scaled standard grid tZ2. The probability of
such events,

P(tB ⊂ Z, tW ⊂ R2 \ Z),

can effectively be estimated by filtering the discrete image. In digitised images,
B usually stands for “black” points and W for “white” points. Here, we use
the notion point for the mid-point of a pixel in the digitised image. We will
not distinguish between a pixel and its mid-point and we use both notions in
the following.

Another interesting aspect in the analysis of discrete planar random sets is
the restoration of the random set from a noisy image. If the mean normal mea-
sure of the random set Z is known, the method in Kiderlen and Jensen (2003)
and Jensen and Kiderlen (2003) can be reversed to obtain the prior probabili-
ties for a Bayesian restoration procedure. The fundaments for Bayesian image
analysis were developed by Ulf Grenander, see Grenander (1981), while the
method itself was developed and popularised mainly by Geman and Geman
(1984). For further readings on the subject, see e.g. Winkler (1995).

Hartvig and Jensen (2000a) introduce a spatial mixture modelling approach
to the Bayesian image restoration. They consider n×n neighbourhoods around
each pixel in the image, where n ≥ 3 is an odd number. The prior probability
of a certain constellation or pattern to be observed in the neighbourhood then
depends on the number of black points in the given configuration. In other
words, every two configurations with equal number of black points have the
same prior probability. If, however, the restored image represents a random
closed set Z that fulfils some regularity conditions and the resolution of the
image is “good enough”, the following configurations should not have equal
prior probabilities:

We use the theory from Jensen and Kiderlen (2003) and Kiderlen and
Jensen (2003) to specify new prior probabilities for the spatial mixture model
of Hartvig and Jensen (2000a). Here, a black and white configuration has a
positive prior probability if and only if there exists a line going through the
centre of at least two pixels that separates the black and the white points and
hits only points of one colour.

The paper is organised as follows. Preliminaries concerning convex ge-
ometry, random sets, and image analysis are given in Section 2. The prior
probabilities based on configuration theory are presented in Section 3. In
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Section 4, we specify the posterior probabilities for noisy images and discuss
parameter estimation under the model. Three examples are given in Section
5. Finally, there are some concluding remarks in Section 6.

2 Preliminaries

A compact convex subset of R2 is called a convex body and we denote by K
the family of convex bodies in R2. The convex ring, R, is the family of finite
unions of convex bodies while the extended convex ring is the family of all
closed subsets F ∈ R2 such that F ∩K ∈ R for all K ∈ K. Further, we denote
by L(K, ·) the normal measure of K ∈ R on the unit circle S1. For a Borel set
A ∈ B(S1), L(K,A) is the length of the part of the boundary of K with outer
normal in A. L is thus a Borel measure on S1 and the total mass L(K,S1) is
just the boundary length L(K) of K. The normal measure is sometimes called
the first surface area measure and then denoted by S1(K, ·), cf. Schneider
(1993, p. 214-218).

Now, let Z be a stationary random set in R2 with values in the extended
convex ring. We assume in the following that Z satisfies the integrability
condition

E2N(Z∩K) < +∞ (1)

for all K ∈ K. Here, N(U) is the minimal k ∈ N such that U = ∪k
i=1Ki with

Ki ∈ K if U 6= ∅ and N(∅) = 0. This condition is stricter than most standard
integrability conditions, but it guarantees that the realisations of Z do not
become too complex in structure. The mean normal measure of Z is defined
by

L̄(Z, ·) = lim
r→+∞

EL(Z ∩ rK, ·)
ν2(rK)

,

where ν2 is the Lebesgue measure on R2. See e.g. Schneider and Weil (2000)
for more details.

A digitisation (or discretisation) of Z is the intersection of Z with a scaled
lattice. For a fixed scaling factor t > 0, we consider Z ∩ tL, where

L := Z2 = {(i, j) : i, j ∈ Z}

is the usual lattice of points with integer coordinates. The lattice square

Ln :=
{

(i, j) : i, j = −n− 1
2

, . . . ,
n− 1

2

}
consists of n2 points (n ≥ 3, n odd). Here, we follow the notation in Hartvig
and Jensen (2000a) and place the lattice square around a centre pixel. As we
only consider lattice squares with odd number of points, this should not cause
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any conflicts in the notation. A line passing through at least two points of Ln

will be called an n-lattice line.
Let X ⊂ tZ2 be a finite set and t > 0. A binary image on X is a function

f : X → {0, 1}. Here, f is given by f(x) = 1{x ∈ Z∩X} so that f is a random
function due to the randomness of the set Z. We call a certain pattern of the
values of f on a n×n grid a configuration. We denote it by Cn

t , where t > 0 is
the resolution of the grid, as in the definition of a lattice above. The elements
of the configuration are numbered to match the numbering of the elements in
the lattice square Ln. For n = 3 this gives

C3
t =

 c−1,1 c0,1 c1,1

c−1,0 c0,0 c1,0

c−1,−1 c0,−1 c1,−1


t

,

and similarly for other allowed values of n. If the size of the configuration is
clear from the context, we will omit the index n. Examples of 3 × 3 configu-
rations are [ • ◦ ◦

• ◦ ◦
• • ◦

]
t

[ • ◦ ◦
• ◦ •
• • ◦

]
t

[ ◦ • •
• ◦ •
• • ◦

]
t

where • means that f(x) = 1 or equivalently z ∩ {x} 6= ∅, while ◦ means that
f(x) = 0 or equivalently z ∩ {x} = ∅. Here, z is the realisation of the random
set Z observed in the image f .

3 Configuration probabilities

Let f : X → {0, 1} be an image as before and let Z be a stationary random
set that fulfils (1). In Kiderlen and Jensen (2003), the authors show that for
n > 0, a given x ∈ X, and a given configuration Ct,

lim
t→0+

1
t
P
(
Z ∩ t(Ln + x) = Ct

)
=

∫
S1

h(−v)L̄(Z, dv). (2)

The function h is given by

h(·) =
[
min
x∈B

〈x, ·〉 −max
x∈W

〈x, ·〉
]+
,

where (tB, tW ) = Ct is the partitioning of the configuration Ct in “black” and
“white” points, that is, tB ⊂ Z and tW ⊂ R2 \ Z. Here, g+ := max{g, 0}
denotes the positive part of the function g and 〈x, y〉 denotes the usual inner
product of the vectors x and y. A configuration Ct with non-identically zero
h is called an informative configuration. Ct is informative if and only if there
exists a n-lattice line separating tB and tW not hitting both of them. More
precisely, Ct = (tB, tW ) is informative if and only if there exists an n-lattice
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line g such that tB is on one side of g, tW is on the other side of g and all the
lattice points on g are either all black or all white.

Furthermore, it is shown in Jensen and Kiderlen (2003) that for a given
informative configuration Ct, there exist vectors a, b ∈ R2 such that

h(−v) = min{〈a, v〉+, 〈b, v〉+}

for all v ∈ S1. These results are then used to obtain estimators for the mean
normal measure L̄(Z, ·) based on observed frequencies of the different types
of configurations. If we, on the other hand, assume we have a discrete noisy
image in R2, where the underlying image is a realisation of a stationary random
closed set Z with a known mean normal measure L(Z, ·), (2) provides prior
probabilities in a Bayesian restoration procedure.

As an example, let us assume that Z is isotropic. Then, the mean normal
measure L̄(Z, ·) is, up to a positive constant of proportionality, the Lebesgue
measure on [0, 2π). Equation (2) thus becomes

lim
t→0+

1
t
P
(
Z ∩ t(Ln + x) = Ct

)
= k

∫ 2π

0
min

{
〈a, (cos θ, sin θ)〉+ , 〈b, (cos θ, sin θ)〉+

}
dθ, (3)

where k > 0 is a constant. For t > 0 small enough, such that only informative,
all black, and all white configurations have positive probability, this gives the
marginal probability of each informative configurations up to a constant of
proportionality.

For n = 3, the vectors a and b are given in Jensen and Kiderlen (2003).
We can thus insert those values without further effort into the right hand side
of (3). For x ∈ X, this gives

P
(
Z∩(tL3+x) = Ct

)
=



p0, Ct =
[ ◦ ◦ ◦
◦ ◦ ◦
◦ ◦ ◦

]
t

p1, Ct =
[ • • •
• • •
• • •

]
t

p2, Ct ∈ R
([ • ◦ ◦

• ◦ ◦
• ◦ ◦

]
t
,
[ • • ◦
• • ◦
• • ◦

]
t

)
p3, Ct ∈ R

([ ◦ ◦ ◦
• ◦ ◦
• • ◦

]
t
,
[ • ◦ ◦
• • ◦
• • •

]
t

)
p4, Ct ∈ R

([ • • ◦
• • •
• • •

]
t
,
[ ◦ ◦ ◦
◦ ◦ ◦
• ◦ ◦

]
t

)
p5, Ct ∈ R

([ • ◦ ◦
• ◦ ◦
• • ◦

]
t
,
[ • ◦ ◦
• • ◦
• • ◦

]
t
,
[ • • ◦
• • ◦
• • •

]
t
,
[ ◦ ◦ ◦
• ◦ ◦
• ◦ ◦

]
t

)
0, otherwise,
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where R(·) is the set of all possible rotations and reflections. The probabilities
p2, . . . , p5 are determined from (3) up to a multiplicative constant c. They are
given by

p2 = c
[
5 sin(atan(2))− 4

]
,

p3 = c
[
5 sin(atan(2))− 3

√
2
]
,

p4 = c
[
2−

√
2
]
,

p5 = c
[
1 +

√
2− 5

2
sin(atan(2))

]
.

As the total probability is 1, we can express c in terms of the other unknown
probabilities,

c =
1− p0 − p1

16
.

For n = 5, we have used the methods described in Jensen and Kiderlen
(2003) to determine the informative 5×5 configurations and the vectors a and
b for each configuration. We have then calculated the prior probabilities in
the same manner as described above for 3×3 configurations. The results from
this can be found in Appendix A.

Knowledge of the mean normal measure of Z will not give us information
about the probability of observing all white and all black configurations, as the
mean normal measure is a property of the boundary of the set. The remaining
parameters, p0 and p1 must thus be estimated from the data. This problem is
treated in the next section.

4 Restoration of a noisy image

Let F : X → {0, 1} be a binary image on a finite set X ⊂ tZ2 for t > 0 and
such that F can be viewed as a realisation of an isotropic stationary random
set Z with noise. Note that the randomness in the image F is two-fold. First,
the noise free image is random due to the randomness of the set Z. Second, a
random noise is added to the image. By Bayes rule we have, for x ∈ X and a
given configuration Ct,

P
(
Z ∩ (tLn + x) = Ct|F (tLn + x)

)
∝ P

(
Z ∩ (tLn + x) = Ct

)
p
(
F (tLn + x)|Z ∩ (tLn + x) = Ct

)
.

We assume that F (xi) and F (xj) are conditionally independent given Z for all
xi, xj ∈ X, and that the conditional distribution of F (x) given Z only depends
on Z ∩ x for all x ∈ X. Under these conditions, we get

p
(
F (tLn + x)|Z ∩ (tLn + x) = Ct

)
=

n2∏
k=1

p
(
F (yk)|Z ∩ {yk} = {ck}

)
,
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where {yk}n2

k=1 = tLn + x and {ck}n2

k=1 = Ct.
By summing over the neighbouring states, we obtain the probability of Z

hitting a single point x ∈ X,

P
(
Z ∩ {x} 6= ∅|F (tLn + x)

)
∝

∑
{Ct:c00=•}

P
(
Z ∩ (tLn + x) = Ct

) n2∏
k=1

p
(
F (yk)|Z ∩ {yk} = {ck}

)
(4)

=: S1(x).

The probability of Z not hitting a single point x ∈ X is obtained in a similar
way. It is given by

P
(
Z ∩ {x} = ∅|F (tLn + x)

)
∝

∑
{Ct:c00=◦}

P
(
Z ∩ (tLn + x) = Ct

) n2∏
k=1

p
(
F (yk)|Z ∩ {yk} = {ck}

)
(5)

=: S2(x).

As the probabilities in (4) and (5) sum to one, we only need to compare S1(x)
and S2(x) for determining the restored value of the image for a pixel x. The
restored value is 1 if S1(x) > S2(x) and 0 otherwise.

To compare S1(x) and S2(x), we need to determine the densities p
(
F (x)|Z∩

{x}
)

which depend on the distribution of the noise. As an example, we consider
salt and pepper noise. That is, a black point is replaced by a white point with
probability q, and vice versa. More precisely,

p
(
F (x)|Z ∩ {x}

)
= qF (x)(1− q)1−F (x)

1
{
Z ∩ {x} = ∅

}
+ (1− q)F (x)q1−F (x)

1
{
Z ∩ {x} 6= ∅

}
,

for some 0 ≤ q ≤ 1. This noise model has one unknown parameter, q, which
must be estimated from the data.

Further, we need to determine the marginal probability P
(
Z ∩ (tLn +x) =

Ct

)
of observing a given configuration, Ct. A method to obtain the prior

probabilities of observing the different types of boundary configurations, that
is configurations that contain both black and white points, is given in the
previous section. We still lack information about the prior probabilities of
observing configurations that are all black or all white, that is

p0 = P
(
Z ∩ (tL3 + x) =

[ ◦ ◦ ◦
◦ ◦ ◦
◦ ◦ ◦

]
t

)
and

p1 = P
(
Z ∩ (tL3 + x) =

[ • • •
• • •
• • •

]
t

)
7
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if n = 3 and similarly for larger n.
We use the parameter estimation approach introduced in Hartvig and

Jensen (2000a) which is related to maximum likelihood estimation. Within
the model, we can calculate the marginal density of an n× n neighbourhood.
It is given by

p
(
F (tLn + x); p0, p1, q

)
=

∑
Ct

p
(
F (tLn + x)|Z ∩ (tLn + x) = Ct; q

)
P
(
Z ∩ (tLn + x) = Ct; p0, p1

)
= p0q

P
F (yk)(1− q)n2−

P
F (yk) + p1q

n2−
P

F (yk)(1− q)
P

F (yk)

+
1− p0 − p1

A(n)

∑
Ct inform.

B(Ct)
n2∏

k=1

[
qF (yk)(1− q)1−F (yk)

1{Z ∩ {yk} = ∅}

+ q1−F (yk)(1− q)F (yk)
1{Z ∩ {yk} 6= ∅}

]
,

where the constant B(Ct) is given by the integral on the right hand side of (3)
and A(n) =

∑
Ct inform.B(Ct). We have A(3) = 16 and A(5) = 32.

A possibility for estimating the parameters p0, p1, and q is to maximise the
contrast function

γ(p0, p1, q) =
∑
x∈X

log p
(
F (tLn + x); p0, p1, q

)
. (6)

This is, however, computationally a very demanding task. We have therefore
used a simplified version of the approach. The probability that a single point
x ∈ X is in the set Z is

P
(
Z ∩ {x} 6= ∅

)
=

∑
{Ct:c00=•}

P
(
Z ∩ (tLn + x) = Ct

)
=

1− p0 − p1

2
+ p1

=
1− p0 + p1

2
,

as exactly half of the boundary configurations have a black mid-point. The
marginal density of a single point is thus given by

p
(
F (x); p0, p1, q

)
= P

(
Z ∩ {x} 6= ∅; p0, p1

)
p
(
F (x)|Z ∩ {x} 6= ∅; q

)
+ P

(
Z ∩ {x} = ∅; p0, p1

)
p
(
F (x)|Z ∩ {x} = ∅; q

)
=

1
2

[
(1− p0 + p1)q1−F (x)(1− q)F (x) + (1 + p0 − p1)qF (x)(1− q)1−F (x)

]
.
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The corresponding contrast function

γm(p0, p1, q) =
∑
x∈X

log p
(
F (x); p0, p1, q

)
,

can easily be differentiated with repect to the parameters p0, p1, and q. The
differentiation yields that the maximum of γm is obtained when

p1 = p0 +
2

∑
F (x)− |X|

|X|(1− 2q)
,

where |X| denotes the number of points in X. In the examples in Sec-
tion 5, we have inserted this into (6) and maximised γ on a grid with q ∈
[0.05, 0.1, . . . , 0.45, 0.49] and p0 ∈ [0.05, 0.1, . . . , 0.9] under the constraints

2p0 +
2

∑
F (x)− |X|

|X|(1− 2q)
< 1, p0 +

2
∑
F (x)− |X|

|X|(1− 2q)
≥ 0.

5 Examples

We illustrate the method by applying it to two synthetic datasets and one
real data set. We use the salt and pepper noise model and isotropic priors for
the configuration probabilities in all three examples. The method can not be
used directly to restore the values on the edge of an image. In the examples
below, we have therefore a one-pixel-wide edge of white (background) pixels
in each restored image for n = 3 and a two-pixel-wide edge of white pixels
in each restored image for n = 5. Another possibility here would be to add
either a one-pixel-wide boundary of white pixels for n = 3, or a two-pixel-wide
boundary of white pixels for n = 5, around the noisy image before restoration.
This will, however, lead to a slight underestimate of black pixels on the edge.
We will quantify the results by the classification error. The classification error
is estimated as the percentage of misclassified pixels (either type I or type II
errors). The results given for the classification error are based on those pixels
from the interior of each image where there are no edge effects.

Example 1 (Boolean model with isotropic grains). The first example is based
on digitisation of a simulated Boolean model, see Schneider and Weil (2000).
Boolean models are widely used as simple geometric models for random sets.
The simulation of a Boolean model is a two-step procedure. First, independent
uniform points are simulated in a sampling window. Second, a random grain
is attached to each point. The grains are independent from one another and
from the points. In order to avoid edge effects, the sampling window must
be larger than the target window. Here, the target window is the unit square

9



Thorarinsdottir (2006)

and the grains are circular discs with random radii. The radius of each grain
is a uniform number from the interval [0.0375, 0.15]. Figure 1 (left) shows a
realisation of this model. We have then digitised the image with t = 0.01
which gives a resolution of 100× 100. The digitised image is shown in Figure
1 (right).

Figure 1: Boolean model with circular grains. Left: a realisation of the model on the
unit square. Right: a digitised image of the realisation with resolution 100× 100.

The digitised realisation of the Boolean model from Figure 1 (right) is
now our original image. We have added salt and pepper noise to it for three
different values of the noise parameter q. The noisy images are shown in
Figure 2 (top row). In the leftmost image we have q = 0.25, in the middle
image q = 0.33, and in the rightmost image q = 0.4. We have restored the
original image from the noisy images using both 3×3 configurations and 5×5
configurations as described in the previous section. The resulting images for
3× 3 configurations are shown in the middle row of Figure 2 and the resulting
images for 5× 5 configurations are shown in the bottom row of Figure 2. The
parameter estimates and the classification errors for the restoration are given
in Table 1.

Table 1: Parameter estimates, true parameter values, and classification errors for
the restoration of a Boolean model with isotropic grains. The parameter estimates
are based on five independent simulations of the degraded image. The standard
errors of the estimates are given in parentheses. The classification errors are given in
percentage.

n× n q q̂ p0 p̂0 p1 p̂1 Class. error

3× 3 0.25 0.25(0) 0.30 0.31(0.02) 0.45 0.45(0.01) 8.98(0.55)
5× 5 0.25 0.25(0) 0.20 0.21(0.02) 0.35 0.35(0.01) 5.11(0.39)
3× 3 0.33 0.32(0.03) 0.30 0.33(0.08) 0.45 0.48(0.10) 17.79(0.01)
5× 5 0.33 0.33(0.03) 0.20 0.22(0.07) 0.35 0.37(0.09) 10.61(0.32)
3× 3 0.40 0.40(0) 0.30 0.31(0.08) 0.45 0.45(0.06) 29.19(0.77)
5× 5 0.40 0.40(0) 0.20 0.22(0.06) 0.35 0.36(0.05) 21.20(1.02)
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Figure 2: Restoration of the digitised realisation of the Boolean model with isotropic
grains. Top row: the original image disturbed with salt and pepper noise for q equal to
0.25, 0.33, and 0.4. Middle row: estimates of the true image using 3×3 configurations.
Bottom row: estimates of the true image using 5× 5 configurations.

Example 2 (Boolean model with non-isotropic grains). The grains in the
Boolean model are here the right half of circular discs with random radii. The
radius of each grain is a uniform number from the interval [0.0375, 0.15] and
the target window is again the unit square. A realisation of this model is shown
in Figure 3 (left). As before, we have digitised the image with t = 0.01 which
gives a resolution of 100×100. The digitised image is shown in Figure 3 (right).
We have proceeded exactly as in the previous example. The noisy images are
shown in Figure 4 (top row). In the leftmost image we have q = 0.25, in the
middle image q = 0.33, and in rightmost image q = 0.4. The restored images
for 3 × 3 configurations are shown in the middle row of Figure 4 and the
restored images for 5×5 configurations are shown in the bottom row of Figure
4. Further, Table 2 shows the parameter estimates and the classification errors

11
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for the restoration.

Figure 3: Boolean model with non-isotropic grains. Left: a realisation of the model on
the unit square. Right: a digitised image of the realisation with resolution 100× 100.

Figure 4: Restoration of the digitised realisation of the non-isotropic Boolean model.
Top row: the original image disturbed with salt and pepper noise for q equal to
0.25, 0.33, and 0.4. Middle row: estimates of the true image using 3×3 configurations.
Bottom row: estimates of the true image using 5× 5 configurations.
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Table 2: Parameter estimates, the true parameter values, and classification errors
for the restoration of the non-isotropic Boolean model. The parameter estimates
are based on five independent simulations of the degraded image. The standard
errors of the estimates are given in parentheses. The classification errors are given in
percentage.

n× n q q̂ p0 p̂0 p1 p̂1 Class. error

3× 3 0.25 0.25(0) 0.48 0.47(0.03) 0.31 0.30(0.03) 9.03(0.15)
5× 5 0.25 0.25(0) 0.39 0.39(0.02) 0.22 0.22(0.01) 5.05(0.29)
3× 3 0.33 0.35(0) 0.48 0.55(0) 0.31 0.36(0.02) 18.27(0.88)
5× 5 0.33 0.35(0) 0.39 0.44(0.02) 0.22 0.25(0.03) 10.72(0.60)
3× 3 0.40 0.40(0) 0.48 0.48(0.03) 0.31 0.35(0.04) 29.06(0.52)
5× 5 0.40 0.40(0) 0.39 0.36(0.04) 0.22 0.23(0.04) 20.62(0.74)

Example 3 (Image from steel data). Our last example is an image showing
the micro-structure of steel. The image is from Ohser and Mücklich (2000),
where it has been analysed to estimate the mean normal measure, see also
Jensen and Kiderlen (2003). The thresholded, binary image of the data is
shown in Figure 5. We have used Otsu’s method for the thresholding. This
method minimises the intraclass variance of the black and the white pixels, see
Otsu (1979). The resolution of the image is 896× 1280 pixels.

Figure 5: Binary image of rolled stainless steel in a longitudinal section. The
light phase is ferrite, the black phase is austenite. From Osher and Mücklich
(2000).

We have added salt and pepper noise to the binary image for q = 0.25
and q = 0.33. The noisy images can be seen in Figure 6 (top row). We have
used the method described in the previous section for the restoration of the
noisy images, using isotropic priors for the informative configurations. The
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resulting images can be seen in Figure 6 (middle row) for 3× 3 configurations
and in Figure 6 (bottom row) for 5× 5 configurations. Further, the parameter
estimates and the classification errors for the estimates are shown in Table 3.

Figure 6: Restoration of the steel data image. Top row: the original binary image
disturbed with salt and pepper noise for q = 0.25 (left) and q = 0.33 (right). Middle
row: estimates of the true image using 3 × 3 configurations. Bottom row: estimates
of the true image using 5× 5 configurations.
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Table 3: Parameter estimates, the true parameter values, and classification errors for
the restoration of the steel data image. The parameter estimates are based on five
independent simulations of the degraded image. The standard errors of the estimates
are given in parentheses. The classification errors are given in percentage.

n× n q q̂ p0 p̂0 p1 p̂1 Class. error

3× 3 0.25 0.25(0) 0.34 0.35(0) 0.45 0.46(0.002) 8.92(0.03)
5× 5 0.25 0.25(0) 0.25 0.25(0) 0.35 0.36(0.002) 4.90(0.03)
3× 3 0.33 0.35(0) 0.34 0.40(0) 0.45 0.53(0.003) 17.74(0.03)
5× 5 0.33 0.35(0) 0.25 0.30(0) 0.35 0.43(0.003) 10.71(0.05)

6 Discussion

In the two first examples we have images of a similar type, the only difference
is the mean normal measure of the boundary of the objects. In Example 1,
the grains have isotropic boundaries which means that the model is using the
correct prior probabilities for the configurations. In Example 2, on the other
hand, there are some configurations that have much higher probability than
suggested in the prior. The configurations[ ◦ • •

◦ • •
◦ • •

]
t

and
[ ◦ ◦ •
◦ ◦ •
◦ ◦ •

]
t

are, for instance, more likely to occur in the image than the configurations[ ◦ ◦ ◦
• • •
• • •

]
t

and
[ ◦ ◦ ◦
◦ ◦ ◦
• • •

]
t
.

According to the isotropic prior, however, these configurations are all equaly
likely to occur. If we compare the results in Table 1 and Table 2, we see
that the classification error in Example 2 is very similar to the classification
error in Example 1 for the same amount of noise and the same type of model.
This suggests that it is not necessary to know the mean normal measure of
the boundary of the object precisely for our model to perform in a close to
optimal way.

It is also clear from the results in the previous section that the model using
5× 5 configurations is superior to the model using 3× 3 configurations. This
is not surprising since the true images are quite regular with large patches
of either black or white pixels. One might suspect that the model using 3 ×
3 configurations would be more appropriate for images where the object Z
consists of relatively small, disconnected components. Another consideration
here is whether it is of interest to consider larger configurations than 5 × 5
configurations. As one can see from Appendix A, the model is already quite
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complicated if we use 5 × 5 configurations. We think, therefore, that it is
computationally not feasible to consider larger configurations. Further, and
maybe more importantly, very large configurations will tend to remove any
finer details in the original image.

The model presented in this paper is very local in nature. The estimated
restored value in a given pixel only depends on the image values in a small
neighbourhood around that pixel. For this reason, there is no obvious way
how to derive the joint posterior distribution over the entire image from the
posterior distribution of the marginals in the small neighbourhoods and it is
the former that is needed for estimating the unknown global parameters in the
model. We have chosen to use the contrast function from Hartvig and Jensen
(2000a), as this seems a sensible choice with a close relation to maximum like-
lihood estimation. As noted in Woolrich et al. (2005), the difference between
the parameter estimates using this contrast function and those that could be
obtained if the joint posterior were available is not known. Our method seems,
however, not very sensitive towards small changes in the parameter estimates.
We can also see from Table 1 - 3 that we get fairly good parameter estimates
by maximising the contrast function if the noise in the image is moderate,
especially for the larger image in Example 3. For higher levels of noise, the
accuracy in the parameter estimates seems to depend on the accuracy of the
prior for the informative configurations. Furthermore, note that the noise pa-
rameter q is estimated very accurately if the correct value of the parameter
is available on the grid. The accuracy of the remaining estimates of the prior
probabilities of all black and all white configurations, p0 and p1, depends on
how well the noise parameter is estimated. It might therefore be of interest to
use a finer grid for the estimation of q.
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A Informative 5× 5 configurations

Using the methods described in Jensen and Kiderlen (2003), we have con-
structed all informative 5× 5 configurations and calculated the vectors a and
b which are needed for the calculation of the prior probabilities of the config-
urations, see Section 3. The results are given in Table 4. We have omitted
both the index for the resolution of the grid and the index for the size of the
configuration to save space in the table.

In the examples in Section 5, we have used an isotropic prior for the bound-
ary configurations. For x ∈ X, the prior probabilities for 5× 5 configurations
are in this case given by

P
(
Z ∩ (tL5 + x) = Ct

)
=



p0, Ct =
[ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

]
t

p1, Ct =
[ • • • • •
• • • • •
• • • • •
• • • • •
• • • • •

]
t

p2, Ct in group nr. 1, . . . , 4
p3, Ct in group nr. 5, . . . , 8
p4, Ct in group nr. 9, . . . , 12
p5, Ct in group nr. 13, . . . , 20
p6, Ct in group nr. 21, . . . , 24
p7, Ct in group nr. 25, . . . , 32
p8, Ct in group nr. 33, . . . , 36
p9, Ct in group nr. 37, . . . , 44
p10, Ct in group nr. 45, . . . , 52
p11, Ct in group nr. 53, . . . , 60
p12, Ct in group nr. 61, . . . , 68
p13, Ct in group nr. 69, . . . , 76
p14, Ct in group nr. 77, . . . , 84
p15, Ct in group nr. 85, . . . , 92
0, otherwise.

The prior probabilities for the informative configurations are ordered in a de-
creasing order. They can be calculated up to a multiplicative constant c by
inserting the vectors a and b in Table 4 into the right hand side of (3). The
unknown constant c can be expressed in terms of p0 and p1 by

c =
1− p0 − p1

32
.
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Table 4: The 92 groups of informative 5× 5 configurations.

No. Config. Twin Config. Twin a b

1
[ • • • • ◦
• • • • •
• • • • •
• • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦

] (
1
0

) (
0
−1

)
2

[ ◦ • • • •
• • • • •
• • • • •
• • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ •

] (
0
−1

) (
−1
0

)
3

[ • • • • •
• • • • •
• • • • •
• • • • •
◦ • • • •

] [ ◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] (
0
1

) (
−1
0

)
4

[ • • • • •
• • • • •
• • • • •
• • • • •
• • • • ◦

] [ • ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] (
1
0

) (
0
1

)
5

[ • ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦

] [ • • • • ◦
• • • • ◦
• • • • ◦
• • • • ◦
• • • • ◦

] [ • • ◦ ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦

] [ • • • ◦ ◦
• • • ◦ ◦
• • • ◦ ◦
• • • ◦ ◦
• • • ◦ ◦

] (
1
4

) (
1
−4

)
6

[ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
• • • • •
• • • • •
• • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
• • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
• • • • •
• • • • •
• • • • •

] (
4
−1

) (
−4
−1

)
7

[ ◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •

] [ ◦ • • • •
◦ • • • •
◦ • • • •
◦ • • • •
◦ • • • •

] [ ◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ ◦ • •

] [ ◦ ◦ • • •
◦ ◦ • • •
◦ ◦ • • •
◦ ◦ • • •
◦ ◦ • • •

] (
−1
4

) (
−1
−4

)
8

[ • • • • •
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
• • • • •
• • • • •
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
• • • • •
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] (
4
1

) (
−4
1

)
9

[ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• • ◦ ◦ ◦

] [ • • • ◦ ◦
• • • • ◦
• • • • •
• • • • •
• • • • •

] (
2
1

) (
−1
−2

)
10

[ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ •
◦ ◦ ◦ • •

] [ ◦ ◦ • • •
◦ • • • •
• • • • •
• • • • •
• • • • •

] (
1
−2

) (
−2
1

)
11

[ ◦ ◦ ◦ • •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
• • • • •
◦ • • • •
◦ ◦ • • •

] (
1
2

) (
−2
−1

)
12

[ • • ◦ ◦ ◦
• ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
• • • • •
• • • • ◦
• • • ◦ ◦

] (
2
−1

) (
−1
2

)
13

[ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦

] [ • • • • ◦
• • • • ◦
• • • • •
• • • • •
• • • • •

] (
1
1

) (
0
−1

)
14

[ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
• • ◦ ◦ ◦

] [ • • • ◦ ◦
• • • • •
• • • • •
• • • • •
• • • • •

] (
1
0

) (
−1
−1

)
15

[ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ • •

] [ ◦ ◦ • • •
• • • • •
• • • • •
• • • • •
• • • • •

] (
1
−1

) (
−1
0

)
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Table 4: The 92 groups of informative 5× 5 configurations (continued).

No. Config. Twin Config. Twin a b

16
[ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •

] [ ◦ ◦ • • •
• • • • •
• • • • •
• • • • •
• • • • •

] (
0
−1

) (
−1
1

)
17

[ ◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
• • • • •
◦ • • • •
◦ • • • •

] (
0
1

) (
−1
−1

)
18

[ ◦ ◦ ◦ • •
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
• • • • •
• • • • •
◦ ◦ • • •

] (
1
1

) (
−1
0

)
19

[ • • ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
• • • • •
• • • • •
• • • ◦ ◦

] (
1
0

) (
−1
1

)
20

[ • ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
• • • • •
• • • • ◦
• • • • ◦

] (
1
−1

) (
0
1

)
21

[ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • • ◦ ◦

] [ • • ◦ ◦ ◦
• • • ◦ ◦
• • • • ◦
• • • • •
• • • • •

] (
3
2

) (
−2
−3

)
22

[ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ •
◦ ◦ ◦ • •
◦ ◦ • • •

] [ ◦ ◦ ◦ • •
◦ ◦ • • •
◦ • • • •
• • • • •
• • • • •

] (
2
−3

) (
−3
2

)
23

[ ◦ ◦ • • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
◦ • • • •
◦ ◦ • • •
◦ ◦ ◦ • •

] (
2
3

) (
−3
−2

)
24

[ • • • ◦ ◦
• • ◦ ◦ ◦
• ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
• • • • ◦
• • • ◦ ◦
• • ◦ ◦ ◦

] (
3
−2

) (
−2
3

)
25

[ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• • ◦ ◦ ◦

] [ • • • ◦ ◦
• • • • ◦
• • • • ◦
• • • • •
• • • • •

] (
1
1

) (
−1
−3

)
26

[ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• • • ◦ ◦

] [ • • ◦ ◦ ◦
• • • • ◦
• • • • •
• • • • •
• • • • •

] (
3
1

) (
−1
−1

)
27

[ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ •
◦ ◦ • • •

] [ ◦ ◦ ◦ • •
◦ • • • •
• • • • •
• • • • •
• • • • •

] (
1
−1

) (
−3
1

)
28

[ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ • •

] [ ◦ ◦ • • •
◦ • • • •
◦ • • • •
• • • • •
• • • • •

] (
1
−3

) (
−1
1

)
29

[ ◦ ◦ ◦ • •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
◦ • • • •
◦ • • • •
◦ ◦ • • •

] (
1
3

) (
−1
−1

)
30

[ ◦ ◦ • • •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
• • • • •
◦ • • • •
◦ ◦ ◦ • •

] (
1
1

) (
−3
−1

)
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Table 4: The 92 groups of informative 5× 5 configurations (continued).

No. Config. Twin Config. Twin a b

31
[ • • • ◦ ◦
• ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
• • • • •
• • • • ◦
• • ◦ ◦ ◦

] (
3
−1

) (
−1
1

)
32

[ • • ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
• • • • ◦
• • • • ◦
• • • ◦ ◦

] (
1
−1

) (
−1
3

)
33

[ ◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • • ◦ ◦
• • • • ◦

] [ • ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • • ◦ ◦
• • • • ◦
• • • • •

] (
4
3

) (
−3
−4

)
34

[ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ •
◦ ◦ ◦ • •
◦ ◦ • • •
◦ • • • •

] [ ◦ ◦ ◦ ◦ •
◦ ◦ ◦ • •
◦ ◦ • • •
◦ • • • •
• • • • •

] (
3
−4

) (
−4
3

)
35

[ ◦ • • • •
◦ ◦ • • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦

] [ • • • • •
◦ • • • •
◦ ◦ • • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ •

] (
3
4

) (
−4
−3

)
36

[ • • • • ◦
• • • ◦ ◦
• • ◦ ◦ ◦
• ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • ◦
• • • ◦ ◦
• • ◦ ◦ ◦
• ◦ ◦ ◦ ◦

] (
4
−3

) (
−3
4

)
37

[ • ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦

] [ • • • ◦ ◦
• • • ◦ ◦
• • • • ◦
• • • • ◦
• • • • ◦

] [ • • ◦ ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦
• • • ◦ ◦
• • • ◦ ◦

] [ • • ◦ ◦ ◦
• • ◦ ◦ ◦
• • • ◦ ◦
• • • ◦ ◦
• • • ◦ ◦

] (
1
2

) (
0
−1

)
[ • • • ◦ ◦
• • • ◦ ◦
• • • ◦ ◦
• • • • ◦
• • • • ◦

] [ • ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦

] [ • • • • ◦
• • • • ◦
• • • • ◦
• • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦

]
38

[ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
• • • ◦ ◦
• • • • •
• • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
• • • ◦ ◦
• • • • •
• • • • •

] (
1
0

) (
−2
−1

)
[ ◦ ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • • • •
• • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
• • • ◦ ◦
• • • • •

] [ • • ◦ ◦ ◦
• • • • •
• • • • •
• • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
• • • ◦ ◦

]
39

[ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ • • •
• • • • •
• • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ • •
• • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ • • •
• • • • •
• • • • •

] (
2
−1

) (
−1
0

)
[ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ • •
• • • • •
• • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ • • •
• • • • •

] [ ◦ ◦ ◦ • •
• • • • •
• • • • •
• • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ • • •

]
40

[ ◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ • •
◦ ◦ ◦ • •

] [ ◦ ◦ • • •
◦ ◦ • • •
◦ • • • •
◦ • • • •
◦ • • • •

] [ ◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ • • •
◦ ◦ • • •

] [ ◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ • • •
◦ ◦ • • •
◦ ◦ • • •

] (
0
−1

) (
−1
2

)
[ ◦ ◦ • • •
◦ ◦ • • •
◦ ◦ • • •
◦ • • • •
◦ • • • •

] [ ◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ ◦ • •

] [ ◦ • • • •
◦ • • • •
◦ • • • •
• • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •

]
41

[ ◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •

] [ ◦ • • • •
◦ • • • •
◦ • • • •
◦ ◦ • • •
◦ ◦ • • •

] [ ◦ ◦ • • •
◦ ◦ • • •
◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ ◦ • •

] [ ◦ ◦ • • •
◦ ◦ • • •
◦ ◦ • • •
◦ ◦ ◦ • •
◦ ◦ ◦ • •

] (
0
1

) (
−1
−2

)

20



Paper C

Table 4: The 92 groups of informative 5× 5 configurations (continued).

No. Config. Twin Config. Twin a b[ ◦ • • • •
◦ • • • •
◦ ◦ • • •
◦ ◦ • • •
◦ ◦ • • •

] [ ◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •

] [ • • • • •
• • • • •
◦ • • • •
◦ • • • •
◦ • • • •

] [ ◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

]
42

[ • • • • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
• • • • •
◦ ◦ • • •
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
◦ ◦ • • •
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] (
2
1

) (
−1
0

)
[ • • • • •
• • • • •
• • • • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ ◦

] [ • • • • •
◦ ◦ • • •
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
• • • • •
• • • • •
◦ ◦ ◦ • •

] [ ◦ ◦ • • •
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

]
43

[ • • • • •
• • ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
• • • • •
• • • ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
• • ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
• • • ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] (
1
0

) (
−2
1

)
[ • • • • •
• • • • •
• • • • •
• • ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
• • • • •
• • • • •
• • ◦ ◦ ◦

] [ • • • ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

]
44

[ • • ◦ ◦ ◦
• • ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦

] [ • • • • ◦
• • • • ◦
• • • • ◦
• • • ◦ ◦
• • • ◦ ◦

] [ • • • ◦ ◦
• • • ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦

] [ • • • ◦ ◦
• • • ◦ ◦
• • • ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦

] (
1
−2

) (
0
1

)
[ • • • • ◦
• • • • ◦
• • • ◦ ◦
• • • ◦ ◦
• • • ◦ ◦

] [ • • ◦ ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
• • • • ◦
• • • • ◦
• • • • ◦

] [ • ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

]
45

[ • ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦
• • • ◦ ◦

] [ • • ◦ ◦ ◦
• • • ◦ ◦
• • • ◦ ◦
• • • • ◦
• • • • ◦

] [ ◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦

] [ • • • ◦ ◦
• • • ◦ ◦
• • • • ◦
• • • • ◦
• • • • •

] (
2
3

) (
−1
−3

)
[ • • ◦ ◦ ◦
• • ◦ ◦ ◦
• • • ◦ ◦
• • • ◦ ◦
• • • • ◦

] [ • ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦
• • • ◦ ◦
• • • ◦ ◦

]
46

[ • • • • •
◦ • • • •
◦ • • • •
◦ ◦ • • •
◦ ◦ • • •

] [ ◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦

] [ ◦ • • • •
◦ ◦ • • •
◦ ◦ • • •
◦ ◦ ◦ • •
◦ ◦ ◦ • •

] [ ◦ ◦ • • •
◦ ◦ • • •
◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ •

] (
1
3

) (
−2
−3

)
[ ◦ • • • •
◦ • • • •
◦ ◦ • • •
◦ ◦ • • •
◦ ◦ ◦ • •

] [ ◦ ◦ • • •
◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •

]
47

[ • ◦ ◦ ◦ ◦
• • • ◦ ◦
• • • • •
• • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • • • ◦

] [ ◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• • • ◦ ◦
• • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • • • ◦
• • • • •

] (
3
1

) (
−3
−2

)
[ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• • • ◦ ◦
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • • • ◦
• • • • •
• • • • •

]
48

[ • • • • •
◦ ◦ • • •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
◦ • • • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
◦ ◦ • • •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦

] [ • • • • •
◦ • • • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] (
3
2

) (
−3
−1

)
[ • • • • •
• • • • •
• • • • •
◦ ◦ • • •
◦ ◦ ◦ ◦ •

] [ ◦ • • • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

]
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Table 4: The 92 groups of informative 5× 5 configurations (continued).

No. Config. Twin Config. Twin a b

49
[ ◦ ◦ ◦ ◦ •
◦ ◦ • • •
• • • • •
• • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ • •
◦ • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ •
◦ ◦ • • •
• • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ • •
◦ • • • •
• • • • •

] (
3
−2

) (
−3
1

)
[ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ •
◦ ◦ • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ • •
◦ • • • •
• • • • •
• • • • •

]
50

[ • • • • •
• • • ◦ ◦
• ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
• • • • ◦
• • ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
• • • ◦ ◦
• ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • ◦
• • ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] (
3
−1

) (
−3
2

)
[ • • • • •
• • • • •
• • • • •
• • • ◦ ◦
• ◦ ◦ ◦ ◦

] [ • • • • ◦
• • ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

]
51

[ • • ◦ ◦ ◦
• • ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • ◦
• • • • ◦
• • • ◦ ◦
• • • ◦ ◦

] [ • • • ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦

] [ • • • • ◦
• • • • ◦
• • • ◦ ◦
• • • ◦ ◦
• • ◦ ◦ ◦

] (
2
−3

) (
−1
3

)
[ • • • ◦ ◦
• • • ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦
• ◦ ◦ ◦ ◦

] [ • • • • ◦
• • • ◦ ◦
• • • ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦

]
52

[ ◦ ◦ • • •
◦ ◦ • • •
◦ • • • •
◦ • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ • •
◦ ◦ ◦ • •

] [ ◦ ◦ ◦ • •
◦ ◦ • • •
◦ ◦ • • •
◦ • • • •
◦ • • • •

] [ ◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ • • •

] (
1
−3

) (
−2
3

)
[ ◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ • • •
◦ ◦ • • •
◦ • • • •

] [ ◦ ◦ ◦ ◦ •
◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ • • •
◦ ◦ • • •

]
53

[ • • • • •
◦ • • • •
◦ ◦ • • •
◦ ◦ • • •
◦ ◦ ◦ • •

] [ ◦ ◦ • • •
◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
◦ • • • •
◦ ◦ • • •
◦ ◦ • • •

] [ ◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] (
1
2

) (
−1
−1

)
[ ◦ • • • •
◦ ◦ • • •
◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ •

] [ ◦ • • • •
◦ ◦ • • •
◦ ◦ • • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ •

] [ ◦ ◦ • • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦

] [ • • • • •
◦ • • • •
◦ • • • •
◦ ◦ • • •
◦ ◦ ◦ • •

]
54

[ • ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • • • ◦
• • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• • • ◦ ◦
• • • • ◦

] [ ◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • • • ◦
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• • • ◦ ◦
• • • • ◦
• • • • •

] (
2
1

) (
−1
−1

)
[ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • • • ◦

] [ • ◦ ◦ ◦ ◦
• • • ◦ ◦
• • • • ◦
• • • • •
• • • • •

] [ • • ◦ ◦ ◦
• • • ◦ ◦
• • • • •
• • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • • ◦ ◦

]
55

[ ◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • • ◦ ◦

] [ • • ◦ ◦ ◦
• • • ◦ ◦
• • • • ◦
• • • • ◦
• • • • •

] [ • ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦
• • • ◦ ◦
• • • • ◦

] [ • ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • • ◦ ◦
• • • ◦ ◦
• • • • ◦

] (
1
1

) (
−1
−2

)
[ • • • ◦ ◦
• • • ◦ ◦
• • • • ◦
• • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦

] [ • • ◦ ◦ ◦
• • • ◦ ◦
• • • ◦ ◦
• • • • ◦
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦
• • • ◦ ◦

]
56

[ ◦ ◦ ◦ • •
◦ ◦ • • •
• • • • •
• • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ • •
◦ ◦ • • •

] [ ◦ ◦ ◦ ◦ •
◦ ◦ ◦ • •
◦ • • • •
• • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ •
◦ ◦ • • •
◦ • • • •

] (
1
−1

) (
−2
1

)
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Paper C

Table 4: The 92 groups of informative 5× 5 configurations (continued).

No. Config. Twin Config. Twin a b[ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ •
◦ ◦ ◦ • •
◦ • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ •
◦ ◦ • • •
◦ • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ •
◦ ◦ ◦ • •
◦ • • • •

] [ ◦ ◦ ◦ ◦ •
◦ ◦ • • •
◦ • • • •
• • • • •
• • • • •

]
57

[ • • • • ◦
• • ◦ ◦ ◦
• ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
• • • • ◦
• • • ◦ ◦
• ◦ ◦ ◦ ◦

] [ • • • • •
• • • • ◦
• • ◦ ◦ ◦
• ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • ◦
• • • ◦ ◦
• ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] (
2
−1

) (
−1
1

)
[ • • • • •
• • • • •
• • • • ◦
• • ◦ ◦ ◦
• ◦ ◦ ◦ ◦

] [ • • • • ◦
• • • ◦ ◦
• ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
• • • • •
• • • ◦ ◦
• • ◦ ◦ ◦

] [ • • • ◦ ◦
• • ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

]
58

[ • • • • •
• • • • •
• • • • •
◦ ◦ • • •
◦ ◦ ◦ • •

] [ ◦ ◦ • • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ ◦ • • • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
◦ • • • •
◦ ◦ • • •
◦ ◦ ◦ ◦ •

] (
1
1

) (
−2
−1

)
[ • • • • •
◦ • • • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦

] [ • • • • •
◦ • • • •
◦ ◦ • • •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
◦ • • • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ •

] [ ◦ • • • •
◦ ◦ • • •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

]
59

[ ◦ ◦ • • •
◦ ◦ • • •
◦ • • • •
• • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ •
◦ ◦ ◦ • •
◦ ◦ ◦ • •

] [ ◦ ◦ ◦ • •
◦ ◦ • • •
◦ ◦ • • •
◦ • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ •
◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ • • •

] (
1
−2

) (
−1
1

)
[ ◦ ◦ ◦ ◦ •
◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ • • •
◦ • • • •

] [ ◦ ◦ ◦ ◦ •
◦ ◦ ◦ • •
◦ ◦ • • •
◦ ◦ • • •
◦ • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ • •
◦ ◦ • • •

] [ ◦ ◦ ◦ • •
◦ ◦ • • •
◦ • • • •
◦ • • • •
• • • • •

]
60

[ • • • ◦ ◦
• • ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • ◦
• • • • ◦
• • • ◦ ◦
• • ◦ ◦ ◦

] [ • • • • ◦
• • • ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦
• ◦ ◦ ◦ ◦

] [ • • • • ◦
• • • ◦ ◦
• • • ◦ ◦
• • ◦ ◦ ◦
• ◦ ◦ ◦ ◦

] (
1
−1

) (
−1
2

)
[ • • • • •
• • • • ◦
• • • ◦ ◦
• • • ◦ ◦
• • ◦ ◦ ◦

] [ • • • ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦
• ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
• • • • ◦
• • • ◦ ◦
• • • ◦ ◦

] [ • • ◦ ◦ ◦
• • ◦ ◦ ◦
• ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

]
61

[ • ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• • ◦ ◦ ◦

] [ • • • ◦ ◦
• • • • ◦
• • • • ◦
• • • • ◦
• • • • ◦

] [ • • ◦ ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦
• • • ◦ ◦

] [ • • ◦ ◦ ◦
• • • ◦ ◦
• • • ◦ ◦
• • • ◦ ◦
• • • ◦ ◦

] (
1
3

) (
0
−1

)
[ • • • ◦ ◦
• • • ◦ ◦
• • • ◦ ◦
• • • ◦ ◦
• • • • ◦

] [ • ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦

] [ • • • • ◦
• • • • ◦
• • • • ◦
• • • • ◦
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦

]
62

[ • • • • •
◦ • • • •
◦ • • • •
◦ • • • •
◦ • • • •

] [ ◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦

] [ ◦ • • • •
◦ ◦ • • •
◦ ◦ • • •
◦ ◦ • • •
◦ ◦ • • •

] [ ◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ •

] (
0
1

) (
−1
−3

)
[ ◦ ◦ • • •
◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ ◦ • •

] [ ◦ ◦ • • •
◦ ◦ • • •
◦ ◦ • • •
◦ ◦ • • •
◦ ◦ ◦ • •

] [ ◦ ◦ ◦ • •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •

] [ ◦ • • • •
◦ • • • •
◦ • • • •
◦ • • • •
◦ ◦ • • •

]
63

[ • ◦ ◦ ◦ ◦
• • • • •
• • • • •
• • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
• • • • ◦

] [ ◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• • • • •
• • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
• • • • ◦
• • • • •

] (
1
0

) (
−3
−1

)
[ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
• • • • ◦
• • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
• • • • ◦
• • • • •
• • • • •
• • • • •

]
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Table 4: The 92 groups of informative 5× 5 configurations (continued).

No. Config. Twin Config. Twin a b

64
[ • • • • •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
• • • • •
◦ • • • •
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
◦ • • • •
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] (
3
1

) (
−1
0

)
[ • • • • •
• • • • •
• • • • •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦

] [ • • • • •
◦ • • • •
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
• • • • •
• • • • •
◦ ◦ ◦ ◦ •

] [ ◦ • • • •
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

]
65

[ ◦ ◦ ◦ ◦ •
• • • • •
• • • • •
• • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ •
• • • • •
• • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ • • • •
• • • • •

] (
3
−1

) (
−1
0

)
[ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ •
• • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ • • • •
• • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ • • • •
• • • • •
• • • • •
• • • • •

]
66

[ • • • • •
• ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
• • • • •
• • • • ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
• ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
• • • • ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] (
1
0

) (
−3
1

)
[ • • • • •
• • • • •
• • • • •
• ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
• • • • •
• • • • •
• ◦ ◦ ◦ ◦

] [ • • • • ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

]
67

[ ◦ • • • •
◦ • • • •
◦ • • • •
◦ • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •

] [ ◦ ◦ • • •
◦ ◦ • • •
◦ ◦ • • •
◦ ◦ • • •
◦ • • • •

] [ ◦ ◦ ◦ ◦ •
◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ ◦ • •

] (
0
−1

) (
−1
3

)
[ ◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ • • •

] [ ◦ ◦ ◦ • •
◦ ◦ • • •
◦ ◦ • • •
◦ ◦ • • •
◦ ◦ • • •

] [ ◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ • •

] [ ◦ ◦ • • •
◦ • • • •
◦ • • • •
◦ • • • •
◦ • • • •

]
68

[ • • ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦

] [ • • • • ◦
• • • • ◦
• • • • ◦
• • • • ◦
• • • ◦ ◦

] [ • • • ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦

] [ • • • ◦ ◦
• • • ◦ ◦
• • • ◦ ◦
• • • ◦ ◦
• • ◦ ◦ ◦

] (
1
−3

) (
0
1

)
[ • • • • ◦
• • • ◦ ◦
• • • ◦ ◦
• • • ◦ ◦
• • • ◦ ◦

] [ • • ◦ ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦
• ◦ ◦ ◦ ◦

] [ • • • • •
• • • • ◦
• • • • ◦
• • • • ◦
• • • • ◦

] [ • ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

]
69

[ • • • • •
◦ • • • •
◦ • • • •
◦ • • • •
◦ ◦ • • •

] [ ◦ ◦ ◦ • •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦

] [ ◦ • • • •
◦ ◦ • • •
◦ ◦ • • •
◦ ◦ • • •
◦ ◦ ◦ • •

] [ ◦ ◦ • • •
◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ •

] (
1
4

) (
−1
−2

)
70

[ • ◦ ◦ ◦ ◦
• • • • ◦
• • • • •
• • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• • • • ◦

] [ ◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• • • • ◦
• • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• • • • ◦
• • • • •

] (
4
1

) (
−2
−1

)
71

[ ◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• • ◦ ◦ ◦

] [ • • • ◦ ◦
• • • • ◦
• • • • ◦
• • • • ◦
• • • • •

] [ • ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦
• • • ◦ ◦

] [ • • ◦ ◦ ◦
• • • ◦ ◦
• • • ◦ ◦
• • • ◦ ◦
• • • • ◦

] (
1
2

) (
−1
−4

)
72

[ • • • • ◦
• ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
• • • • •
• • • • ◦
• ◦ ◦ ◦ ◦

] [ • • • • •
• • • • ◦
• ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
• • • • ◦
• ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] (
4
−1

) (
−2
1

)
73

[ • • ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • ◦
• • • • ◦
• • • • ◦
• • • ◦ ◦

] [ • • • ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦
• ◦ ◦ ◦ ◦

] [ • • • • ◦
• • • ◦ ◦
• • • ◦ ◦
• • • ◦ ◦
• • ◦ ◦ ◦

] (
1
−2

) (
−1
4

)
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Table 4: The 92 groups of informative 5× 5 configurations (continued).

No. Config. Twin Config. Twin a b

74
[ ◦ ◦ • • •
◦ • • • •
◦ • • • •
◦ • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ • •

] [ ◦ ◦ ◦ • •
◦ ◦ • • •
◦ ◦ • • •
◦ ◦ • • •
◦ • • • •

] [ ◦ ◦ ◦ ◦ •
◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ • • •

] (
1
−4

) (
−1
2

)
75

[ ◦ • • • •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
• • • • •
◦ • • • •
◦ ◦ ◦ ◦ •

] [ • • • • •
◦ • • • •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
◦ • • • •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦

] (
2
1

) (
−4
−1

)
76

[ ◦ ◦ ◦ ◦ •
◦ • • • •
• • • • •
• • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ •
◦ • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ •
◦ • • • •
• • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ •
◦ • • • •
• • • • •

] (
2
−1

) (
−4
1

)
77

[ • ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • • ◦ ◦
• • • ◦ ◦

] [ • • ◦ ◦ ◦
• • ◦ ◦ ◦
• • • ◦ ◦
• • • • ◦
• • • • ◦

] (
3
4

) (
−1
−2

)
78

[ • • • • •
◦ ◦ • • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
◦ ◦ • • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ ◦

] (
4
3

) (
−2
−1

)
79

[ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ • •
◦ ◦ • • •
• • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ • •
◦ ◦ • • •
• • • • •

] (
4
−3

) (
−2
1

)
80

[ • • • ◦ ◦
• • • ◦ ◦
• • ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦

] [ • • • • ◦
• • • • ◦
• • • ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦

] (
3
−4

) (
−1
2

)
81

[ ◦ • • • •
◦ • • • •
◦ ◦ • • •
◦ ◦ ◦ • •
◦ ◦ ◦ • •

] [ ◦ ◦ • • •
◦ ◦ • • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •

] (
1
2

) (
−3
−4

)
82

[ ◦ ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • • ◦ ◦
• • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • • ◦ ◦
• • • • •

] (
2
1

) (
−4
−3

)
83

[ • • • • •
• • • ◦ ◦
• • ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
• • • ◦ ◦
• • ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] (
2
−1

) (
−4
3

)
84

[ ◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ • • •
◦ • • • •
◦ • • • •

] [ ◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ • •
◦ ◦ • • •
◦ ◦ • • •

] (
1
−2

) (
−3
4

)
85

[ • ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • • ◦ ◦
• • • • ◦

] [ • ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • • ◦ ◦
• • • • ◦
• • • • ◦

] [ • • ◦ ◦ ◦
• • ◦ ◦ ◦
• • • ◦ ◦
• • • • ◦
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • • ◦ ◦
• • • ◦ ◦

] (
1
1

) (
−2
−3

)
86

[ • • • • •
◦ • • • •
◦ ◦ • • •
◦ ◦ ◦ • •
◦ ◦ ◦ • •

] [ ◦ ◦ • • •
◦ ◦ • • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦

] [ ◦ • • • •
◦ ◦ • • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •

] [ ◦ • • • •
◦ • • • •
◦ ◦ • • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ •

] (
2
3

) (
−1
−1

)
87

[ • ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • • ◦ ◦
• • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • • ◦ ◦
• • • • ◦

] [ ◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • • ◦ ◦
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • • ◦ ◦
• • • • ◦
• • • • •

] (
3
2

) (
−1
−1

)
88

[ • • • • •
◦ ◦ • • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦

] [ • • • • •
◦ • • • •
◦ ◦ • • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
◦ ◦ • • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ •

] [ ◦ • • • •
◦ ◦ • • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] (
1
1

) (
−3
−2

)
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Table 4: The 92 groups of informative 5× 5 configurations (continued).

No. Config. Twin Config. Twin a b

89
[ ◦ ◦ ◦ ◦ •
◦ ◦ ◦ • •
◦ ◦ • • •
• • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ • •
◦ ◦ • • •
◦ • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ •
◦ ◦ ◦ • •
◦ ◦ • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ • •
◦ ◦ • • •
◦ • • • •
• • • • •

] (
1
−1

) (
−3
2

)
90

[ • • • • •
• • • ◦ ◦
• • ◦ ◦ ◦
• ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • ◦
• • • ◦ ◦
• • ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
• • • ◦ ◦
• • ◦ ◦ ◦
• ◦ ◦ ◦ ◦

] [ • • • • ◦
• • • ◦ ◦
• • ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] (
3
−2

) (
−1
1

)
91

[ ◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ • • •
◦ • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ •
◦ ◦ ◦ • •
◦ ◦ • • •
◦ ◦ • • •

] [ ◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ • •
◦ ◦ • • •
◦ • • • •

] [ ◦ ◦ ◦ ◦ •
◦ ◦ ◦ • •
◦ ◦ • • •
◦ • • • •
◦ • • • •

] (
2
−3

) (
−1
1

)
92

[ • • • • ◦
• • • ◦ ◦
• • ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦

] [ • • • • ◦
• • • • ◦
• • • ◦ ◦
• • ◦ ◦ ◦
• ◦ ◦ ◦ ◦

] [ • • • • •
• • • • ◦
• • • ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦

] [ • • • ◦ ◦
• • • ◦ ◦
• • ◦ ◦ ◦
• ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] (
1
−1

) (
−2
3

)
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Functional imaging of pelvic floor muscle
control

Thordis L. Thorarinsdottir and Hans Stødkilde-Jørgensen
University of Aarhus

Abstract

Stress urinary incontinence (SUI) is defined as an involuntary loss of urine during
exertion, or on sneezing or coughing. It is the most common form of incontinence
in women and is often a consequence of weakness of the pelvic floor. Treatment of
SUI includes pelvic floor muscle training, where contraction exercises are performed
in order to strengthen the pelvic floor. Using functional magnetic resonance imaging
(fMRI), we compared the brain activation in healthy women, in women suffering from
SUI before any kind of treatment, and in women suffering from SUI after months of
regular pelvic floor muscle training during repetitive pelvic floor muscle contraction.
In the group of healthy women, we found activation in premotor cortex, parietal
lobe, superior temporal cortex, and insula. The activation in patients with SUI before
treatment was somewhat less focused, no significant activation was found in the insula
while additional activation was found in primary and supplementray motor cortex,
post-central gyrus, and lentiform nucleus. Statistical comparison of the activation in
the two groups revealed that only the activation in lentiform nucleus is significantly
different between the groups. Preliminary analysis indicates that the activation in
patients with SUI decreases with regular pelvic floor muscle training and that the
activation is more focused than in the group of healthy women. More data is, however,
needed in order to confirm this result.

1 Introduction

Stress urinary incontinence (SUI) is the most common form of incontinence in
women. It is defined as incontinence caused by coughing, laughing, sneezing,
exercising or other movements that increase intra-abdominal pressure and thus
increase pressure on the bladder. SUI in women is often caused by physical
changes resulting from pregnancy and childbirth. The urethra is supported by
fascia of the pelvic floor. If the fascia support is weakened, as can be the case

1



Thorarinsdottir and Stødkilde-Jørgensen (2006)

during pregnancy and childbirth, the urethra can move downwards at times
of increased abdominal pressure, resulting in stress incontinence. The most
commonly recommended physical therapy treatment for women who suffer
from SUI are contraction exercises of the pelvic floor muscle, see Freemann
(2004). This may also be combined with electrical stimulation or biofeedback.

Several reports concerning brain activation and different aspects of mic-
turition control have been published in the last decade. In a PET study on
adult healthy females, Blok et al. (1997) investigated brain activation dur-
ing repetitive pelvic floor contraction, sustained pelvic floor contraction, and
sustained abdominal straining. The authors found activation in the supero-
medial precentral gyrus, the most medial portion of the motor cortex, during
repetitive pelvic floor straining. Additional activity was also found in the cere-
bellum, supplementary motor cortex, and thalamus. In a more recent work,
Zhang et al. (2005) used fMRI to investigate brain activation during repeated
pelvic floor muscle contraction in healthy males during empty-bladder condi-
tion and full-bladder condition. By subtracting the brain activation during
the two conditions, the authors were interested in observing the brain activity
during voluntary control of voiding. They reported activation mainly in the
medial premotor cortex, basal ganglia, and cerebellum. Seseke et al. (2006)
used functional imaging to measure the brain activation induced by relaxing
or contracting the pelvic floor muscle in an event-related manner in healthy
adult women with full bladder. Relaxation and contraction of pelvic floor mus-
cles induced strong and similar activations patterns including frontal cortex,
sensory motor cortex, cerebellum and basal ganglia.

Changes in the brain activation due to pelvic floor muscle training in
women suffering from SUI has been investigated by Di Gangi Herms et al.
(2006). The authors investigated the neuroplastic changes induced by 12 weeks
of pelvic floor muscle training with EMG-biofeedback using functional imag-
ing. After the training, a more focused brain activation during repetitive pelvic
floor muscle contraction exercises was reported. Reduction in activation was
found in the supplementary motor area, insula, anterior singular cortex, su-
perior medial frontal gyrus, middle frontal gyrus, and putamen. Further, a
statistical evaluation of the number of activated voxels between pre- and post-
measurements revealed fewer activated voxels after the training period.

The aim of this study is to investigate the brain activation during repet-
itive activation of the pelvic floor muscle, both in healthy adult women and
in women suffering from SUI. There are two different aspects to be investi-
gated here. Firstly, it is of interest to compare the brain activation in healthy
adult women and in stress incontinent women before physical therapy or other
form of treatment. The hypothesis here is that it it easier for the healthy
women to perform the repetitive contraction of the pelvic floor muscle than
for the women suffering from SUI. The second aim of the study is to compare
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the brain activation during repetitive pelvic floor contraction before and after
physical therapy treatment for women suffering from SUI. During the physi-
cal therapy treatment, the women perform regular pelvic floor muscle training
under professional supervision which should enable them to develop a routine
for performing this kind of exercises. It is, however, not known how these
differences between the groups affect the brain activation.

2 Materials and methods

2.1 Subjects

Thirteen female subjects (mean age 53 years ± 9 (SD), range 32-65 years) with
a history of SUI were included in the study. None of the subjects had undergone
pelvic surgery, was taking any form for medication for incontinence or other
bowel or bladder problems, or gone through physiotherapy for incontinence.
All subjects were without history of neurological or psychiatric illness, were
right handed, and were included in the study after written informed consent.

Each subject participated in a fMRI recording as she entered the study. She
then enrolled in a physical therapy treatment that lasted five to six months.
During the treatment, the subjects performed regular pelvic floor muscle train-
ing under the supervision of a professional physical therapist. At the end of
the physical therapy treatment, the subjects participated in another fMRI
recording. We will in the following refer to this group of subjects as group
one.

Further, eleven female health care professionals (mean age 36 years ± 7
(SD), range 27-51 years) with no history of urological symptoms or prolapse
participated in the study. All subjects were without history of neurological
or psychiatric illness, were right handed, and were included in the study after
written informed consent. In the following, we refer to this group of subjects
as group two.

2.2 FMRI

All participants were given precise instructions regarding the experimental
procedure prior to the fMRI recording. All individuals were asked to void
before entering the scanner. Subjects were explicitly asked to concentrate on
pelvic floor contraction and not to move other body parts.

Each session consisted of three task periods, each lasting 30 seconds, with
30 seconds of rest after each task period. During task periods, the subjects were
asked to contract the pelvic floor muscles repeatedly in a rhythmic manner
for one and a half second with one and a half second of rest between the
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contractions. The subjects were informed of the switch between a task period
and a resting period with a tap on the leg. After the fMRI recording, the
subjects were asked whether they had had problems performing the task. All
subjects reported that there had been no difficulties in performing the task.
The data was preliminary analysed during the acquisition using the built-in
software of the scanner. Sessions showing movement artifacts unrelated to the
pelvic floor muscle were excluded from the later analysis. After this exclusion
procedure, the whole dataset consisted of one to three sessions of data from
each subject from each fMRI recording. From group one, there are thirteen
fMRI recordings made before physical therapy treatment with two repetitions
in each recording. Seven of the subjects have also been scanned after the
treatment, giving five recording with two repetitions in each, one recording
with three repetitions, and one recording with one repetition only. Of the
data from subjects in group two, there are seven fMRI recordings with two
repetitions, one recording with three repetitions, and three recordings with
one repetition.

The MR images were acquired at 1.5 T (GE Sigma Twin Gradient, Aarhus,
Denmark) using quadrature field head coil. Initially, an anatomical T1-weighted
MRI dataset covering the whole brain was acquired (min. full, TR = 750ms,
FOV = 24×24cm, NEX = 1.5, size of acquisition matrix = 256×192 voxels).
21 to 32 slices of 3mm thickness with 1mm gap between the slices were ac-
quired. Functional imaging was performed using a T2*-sensitive gradient echo
EPI technique (nr. shots = 1, TE = 50.2ms, TR = 3000ms, FOV = 24×24cm,
flip angle = 90◦, size of acquisition matrix = 64×64 voxels). As before, 21
to 32 slices of 3mm thickness with 1mm gap between the slices, covering the
whole brain, were acquired.

2.3 Data analysis

All data pre-processing and data analysis were performed using SPM5 (avail-
able at http://www.fil.ion.ucl.ac.uk/spm/software/spm5/). Before spatial pre-
processing, the data was converted from DICOM format to NIFTI format.

The results from the statistical analysis are shown either using glass brain
views or mapped on the canonical T1-weighted single-subject anatomical image
that is provided with SPM5. In order to obtain the anatomical locations of
activity, the MNI space coordinates given by SPM5 are mapped to Talairach
space coordinates using the algorithm by Brett (2002). The Talairach Daemon
Client, see Lancaster et al. (2000), was then used to associate the Talairach
coordinates of the peaks of activation to the nearest grey matter location in
the brain.
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Spatial pre-processing

The data was motion-corrected by realigning the time series of images using a 6
parameter (rigid body) spatial transformation. The images were subsequently
resliced and unwarped with respect to out-of-plane rotations (i.e. pitch and
roll). The data was normalised to MNI space using the EPI template provided
with SPM5. In the final step of the spatial pre-processing, the normalised data
was smoothed with a Gaussian kernel with full width at half maximum equal
to 8 mm. The scans from one subject from group one were discarded at this
stage. This subject had only been scanned before treatment.

Analysis of individual activation

The data from those subjects in group one where we have both pre- and post-
measurements was analysed on individual basis. Here, we used two repetitions
from each of the two fMRI recordings from five subjects (data from one sub-
ject was discarded as it showed high artifact-related activity and data from
another subject was discarded as it contained only one repetition from the
second fMRI recording). Each session was modelled separately with a general
linear model using the canonical haemodynamic response function as a basis
function. The data was further filtered with a high-pass filter with cutoff at
128 seconds and serial correlations in the time series were accounted for using
an autoregressive AR(1) model. Inference was performed using a one-sided
t-test with null hypothesis of no activation during task periods and an alterna-
tive hypothesis of higher activation during task periods than during rest. The
statistical threshold was set at p = 0.05 and multiple comparison correction
was done using family-wise error correction, see Nichols and Hayasaka (2003)
The same analysis was performed on two repetitions of data from each of eight
subjects from group two.

Group comparison using random effects analysis

The data from group two was compared to the pre-measurements from group
one using random effects analysis. The post-measurements from group one
were not included in this comparison due to insufficient amount of data in
that category. With data from only seven subjects, the outcome of a random
effects analysis will presumably be inaccurate. The data for each group was
analysed with a general linear model where the activity in each session was
modelled using the canonical haemodynamic response function with its tem-
poral and dispersion derivatives. The time derivative allows the peak response
to vary by plus minus a second and the dispersion derivative allows the width
of the response to vary by a similar amount. Filtering and correction for se-
rial correlations was performed as before. Statistical parametric maps were
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computed for each subject using one-sided t-tests with null hypothesis of no
accumulated effect of the basis function in question over all sessions from that
subject and an alternative hypothesis of positive effect of the same basis func-
tion over all sessions from that subject. The contrast images from these tests
were then entered in a second level analysis. The second level analysis was a
one-way ANOVA analysis with one factor consisting of three levels (the three
basis functions) where the different levels of the factor were assumed to be
correlated. Here, we performed an one-sided t-test with null hypothesis of no
effects of the haemodynamic response function and an alternative hypothesis
of positive effect of the same function. The statistical threshold was set at
p = 0.05 and family-wise error correction used.

Further, the data from the two groups was compared using a two-way
ANOVA model for the statistical parametric maps from each subject. This
model had two factors, one with two independent levels describing the groups
of subjects and another with three correlated levels describing the three basis
functions. The tests of interest under this model are the t-tests for different
effects of the haemodynamic response function on the two groups. That is, the
t-test for equal effects with an alternative hypothesis of more effect in group
one and the t-test for equal effects with an alternative hypothesis of more
effect in group two. Both tests were performed with the statistical threshold
set at p = 0.05 and family-wise error correction, as well as with the statistical
threshold at set p = 0.001 and no multiple comparison correction.

Group comparison using conjunction analysis

In a third step in the statistical analysis, conjunction analysis was performed
on each of the three categories of data: pre-measurements from subjects in
group one, post-measurements from subjects in group one, and measurements
from subjects in group two. From group one, we have five subjects with
two sessions of data from each measurements. We have thus, for similarity,
only used five of the eight datasets from group two. These were chosen at
random. The ten sessions from each category were analysed together in one
general linear model with the canonical haemodynamic response function to
model the activation. Further, filtering and modelling of serial correlations
were performed as described above. Inference was then performed using a
minimum statistic test for conjunction analysis, see Friston et al. (1999). This
test compares the minimum t-statistic to the null distribution of a minimum
t-statistic. The null hypothesis here is that there is no activation in any of
the sessions during on-periods. The alternative hypothesis is thus that there
is activation in at least one of the sessions during on-periods. As before, the
statistical threshold was set at p = 0.05 and multiple comparison correction
was done using family-wise error correction.
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3 Results

3.1 Individual activation

The individual brain activation during repetitive pelvic floor contraction for
the healthy subjects is shown in Figure 1. Figure 2 shows the type of acti-
vation revealed in both pre- and post-measurements for five subjects suffering
from SUI. We see that the activation in the data is very heterogeneous be-
tween subjects while rather similar between repetitions within the same fMRI
recording.
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Figure 1: Glass brain views showing the individual results for the eight subjects from
group two. The glass brains show significant activation during task periods compared
to baseline with statistical threshold p = 0.05 and family-wise error correction. From
left to right and top to bottom: results for session one for subject one, session two
for subject one, session one for subject two, session two for subject two and so on.
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Figure 2: Glass brain views showing the individual results for subjects from group
one. The glass brains show significant activation in on-periods compared to baseline
with statistical threshold p = 0.05 and family-wise error correction. From top to
bottom: results for subject one to subject five. From left to right: results for session
one before treatment, session two before treatment, session one after treatment, and
session two after treatment for each subject.

The dispersion of the numbers of activated voxels in the whole brain for
each of the three categories of data is embodied in Figure 3. The mean number
of activated voxels for pre-measurements in group one is 5585 voxels, the mean
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number of activated voxels for post-measurements in group one is 1313 voxels,
and the mean number of activated voxels in data from group two is 2706 voxels.
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Figure 3: The dispersion of the number of activated voxels in the whole brain in the
images shown in Figure 2 and Figure 1. Each box has lines at the lower quartile,
the median, and the upper quartile values. Outliers are denoted with a plus (+).
Left: Results for the 10 pre-measurements from group one. Middle: Results for the
10 post-measurements from group one. Right: Results for the 16 measurements from
group two.

3.2 Random effects analysis

Random effects analysis of the data from subjects suffering from SUI reveals
task-related activation in the motor areas, the precentral gyrus, and the pari-
etal lobe in both left and right cerebrum. Further activation is also detected
in the right temporal lobe, as well as in the left and right lentiform nucleus.
For healthy subjects, same type of an analysis reveals significant task-related
activation in left motor areas, left precentral gyrus, right parietal lobe, and
the right insula. Glass brain views of the task-related activation for the two
groups is shown in Figure 4, while Figure 5 shows the activation projected
on coronal slices of a T1-weighted anatomical image. These images indicate
some difference in the activation between the two groups. Further statistical
comparison reveals, however, that most of the difference in the activation is
not statistically significant. This is demonstrated in Figure 6. Testing for
difference in the activation between the two groups at statistical threshold of
p = 0.05 and using family-wise error correction reveals no voxels with signifi-
cant difference. We have therefore used uncorrected p-values with threshold at
p = 0.001 in the images shown in Figure 6. At this level, group two shows sig-
nificantly higher activation in the right lentiform nucleus than group one. No
voxels showing higher activation in group one than in group two were detected.
The Talairach coordinates, anatomical location, Brodmann area labelling, T
values, and cluster size of the activation for the two groups is given in Table 1.
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Figure 4: Glass brain views showing activation during task periods in the group data
from the random effect analysis. The statistical threshold was set at p = 0.05 and
family-wise error correction was used. Left: positive effects of the haemodynamic
response function in pre-measurements from group one. Right: positive effects of the
haemodynamic response function in measurements from group two.

Table 1: Anatomical location of activation in pre-measurements of subjects in group
one and measurements of subjects in group two as shown in Figure 4. Only clusters of
size larger than four voxels are shown. Location of the peak of activation is indicated
in millimetres in coordinates x, y, and z in Talairach space. The Brodmann area
labelling of the anatomical locations is given in parenthesis.

Brain lobe Anatomical location Talairach T Cluster
coord. value size

Pre-measurements in group one
right frontal lobe middle frontal gyrus (BA6) 2 -7 57 8.46 1646
left frontal lobe middle frontal gyrus (BA6) -38 -8 56 7.09 45
right frontal lobe precentral gyrus (BA6) 50 0 46 7.24 45
right frontal lobe precentral gyrus (BA4) 55 -16 36 6.50 7
left frontal lobe precentral gyrus (BA44) -48 4 7 8.85 386
right parietal lobe postcentral gyrus (BA43) 51 -7 19 6.72 11
left parietal lobe postcentral gyrus (BA43) -53 -13 19 6.55 9
right parietal lobe inferior parietal lobule (BA40) 59 -22 25 7.77 180
left parietal lobe inferior parietal lobule (BA40) -51 -24 25 7.61 187
right temporal lobe superior temporal gyrus (BA22) 50 6 5 8.48 281
right sub-lobar lentiform nucleus, globus pallidus 26 -14 -4 6.79 26
left sub-lobar lentiform nucleus, globus pallidus -24 -8 -3 6.69 31
Measurements in group two

left frontal lobe superior frontal gyrus (BA6) -6 -6 65 9.46 2005
left frontal lobe precentral gyrus (BA6) -42 -5 52 6.83 103
left frontal lobe precentral gyrus (BA44) -51 2 9 6.97 73
right parietal lobe inferior parietal lobule (BA40) 63 -33 37 6.25 5
right temporal lobe superior temporal gyrus (BA22) 51 4 5 7.72 294
right sub-lobar insula 34 16 3 7.16 34
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Figure 5: Positive effect of the haemodynamic response function during task periods
as revealed by random effects analysis in pre-measurements in group one (left) and
in group two (right). Activations are projected on coronal sections through the brain
from posterior to anterior, starting at y = −46mm and ending at y = 22mm in MNI
space, with increment of 4mm between sections. The image used is the canonical
Tl-weighted single-subject anatomical image provided with SPM5. The activations
shown are those with statistical threshold p < 0.05 under family-wise error correction.
The T-value of the activity is given in the adjacent colour scale.

Figure 6: Areas that are more active during task periods in pre-measurements from
group one than during task periods in measurements from group two. Left: Glass
brain view showing the results for statistical threshold at p = 0.001 without multiple
comparison correction. Right: The same result mapped on the canonical T1-weighted
single-subject anatomical image provided with SPM5. The blue cursor indicates the
location of the global maximum. It is located at (24,−14,−4) in Talairach coordinates
which is in the right lentiform nucleus. The cluster size is 15 voxels.
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3.3 Conjunction analysis

The group results from the conjunction analysis are shown in Figure 7. As
for the random effects analysis, the activation is similar for group one before
treatment and for group two, with slightly less activation in the healthy control
subjects. The results for the post-measurements in group one show, on the
other hand, much less activation than in the two other categories. Here, we ob-
tain significant activation in the left superior frontal gyrus, the right superior
temporal gyrus, the left inferior parietal lobe, the left fusiform gyrus, and the
claustrum. The Talairach coordinates of the peaks of activation, anatomical
locations, Brodmann area labelling, T values, and cluster size of the activa-
tion is given in Table 2. Comparing the results in Table 2 to the results in
Table 1, we see that there is activation at the first three locations mentioned
above, Brodmann areas 6, 22, and 40, for all categories of data. The random
effects analysis, however, does not reveal activation in the left fusiform gyrus,
Brodmann area 19, or the left claustrum. Further analysis of the activation
shown in Figure 7 (not stated explicitly here) though reveals that, under con-
junction analysis, all three categories of data show significant activation in the
left claustrum and significant activation in the left fusiform gyrus can also be
found in the data from group two.

Figure 7: Glass brain views showing areas where there is significant activation in at
least one session from one subject during on-periods as given by conjunction analysis.
We have set the statistical threshold to p = 0.05 and used family-wise error correction.
Left: Activation in pre-measurements from five subjects from group one. Middle:
Activation in post-measurements from five subjects from group one. Right: Activation
in data from five subjects from group two. The five subjects were chosen at random
from the group of eight subjects and their individual activations are the ten first
images shown in Figure 1.

Conjunction analysis reveals activation that is present in at least one sub-
ject from the group by comparing the minimum t-statistic to a null distribution
of minimum t-statistics. An additional session with very low activation will
thus influence the total result much more than an additional session with high
activation. An inspection of the individual results shown in Figure 2 shows that
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Table 2: Activation sites during post-measurements of subjects in group two as re-
vealed by conjunction analysis with statistical threshold set at p = 0.05 and family
wise error correction. Only clusters of size larger than four voxels are shown. Loca-
tion of the peak of activation is indicated in millimetres in coordinates x, y, and z in
Talairach space. The Brodmann area labelling of the anatomical locations is given in
parenthesis.

Brain lobe Anatomical location Talairach T Cluster
coord. value size

left frontal lobe superior frontal gyrus (BA6) -10 -1 65 1.31 19
right parietal lobe inferior parietal lobule (BA40) 59 -29 49 1.00 17
right temporal lobe superior temporal gyrus (BA22) 50 6 3 1.22 75
left occipital lobe fusiform gyrus (BA19) -44 -71 -18 1.39 8
left sub-lobar claustrum -24 -18 19 1.10 45

there is very low activation in few of the sessions, in fact there are no signifi-
cant voxels at all in two of the sessions for the threshold used. It is therefore
not surprising that we, for incontinent women after treatment, obtain only
fragments of the amount of activation obtained in the scans before training.
As an example of this feature of the conjunction analysis, we have repeated
the test shown in Figure 7, now without Subject 5 from Figure 2. Among the
five subjects, this subject shows the highest activation before physical therapy
treatment and the lowest activation after the treatment. The results are shown
in Figure 8. We see that the activation image for the post-measurements now
shows much higher activation than the corresponding image in Figure 7 while
the difference between the pre-measurement activation images is not that sub-
stantial.

Figure 8: Glass brain views showing areas with positive activation during on-periods
in at least one session from one subject as given by conjunction analysis. The sta-
tistical threshold is set at p = 0.05 and family-wise error correction is used. Left:
Activation in pre-measurements from four subjects from group one. Right: Activa-
tion in post-measurements from four subjects from group one. The subject discarded
in this test is Subject 5 in Figure 2.
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4 Discussion

The aim of this study is two-fold. Firstly, we are interested in comparing the
brain activation during repetitive pelvic floor contraction in women suffering
from stress urinary incontinence and in healthy adult women. The second
factor of interest are possible changes in the brain activity during repetitive
pelvic floor contraction induced by several months of intense physical therapy
treatment for women suffering from stress urinary incontinence.

4.1 Effects of physical therapy treatment

We have used conjunction analysis to investigate the effects of physical ther-
apy treatment, as we lack more data from women suffering from SUI that have
finished the physical therapy treatment in order to be able to perform random
effects analysis. Figure 7 and Figure 8 show that the activation during repeti-
tive pelvic floor contraction seems to become more focused for women suffering
from SUI after months of regular training with contraction exercises. An in-
spection of the results shown in Figure 2 also reveals that, for each subject,
the activation after treatment is usually lower than before treatment. From
the data that we have available, there are thus strong indications that the
brain activation during repetitive pelvic floor contraction in stress incontinent
women decreases with regular training of the pelvic floor muscle, which gives
the women certain routine in performing the exercises. This is coherent with
the results in Di Gangi Herms et al. (2006) where the authors report more fo-
cused activation during pelvic floor muscle contraction with EMG-biofeedback
in women suffering from SUI after 12 weeks of training. There is further indi-
cation that the activation for stress incontinent women after regular training
is more focused than the activation for healthy women during task periods, cf.
Figure 7 (right) vs. Figure 7 (middle) and Figure 8 (right). One should, how-
ever, be careful in concluding that the difference is as severe as indicated by
the results in Figure 7. It is here important to extend the study by including
more subjects so that we can get sound results for this part of the analysis.

4.2 Effects of SUI

Concerning the other aim of the study, we see in Figure 5 that women with
stress incontinence show more widespread brain activation during repetitive
pelvic floor contraction than healthy women. This difference reveals itself in
that while women with stress incontinence usually have mirrored activation
in right and left cerebrum, healthy women often show significant activation
in only one of the two. This is, for instance, the case for the frontal gyrus,
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the precentral gyrus, and the inferior parietal lobe. Further, women with
stress incontinence have activations in the postcentral gyrus and the lentiform
nucleus, not present in the data from healthy women. The healthy women, on
the other hand, show significant activation in the right insula. Under statistical
comparison, however, only the difference in activation in the lentifrom nucleus
is significant. This suggests that one can not tell from brain imaging alone
whether a subject suffers from SUI.

4.3 Activated areas

We will now discuss in more detail each of the areas reported in Table 2. The
results from the conjunction analysis will not be discussed in detail, as an
extended analysis is planned when more data will be available. When we refer
to results from group one in the following, we thus mean the results obtained
from scans acquired before physical therapy treatment.

Motor areas

The primary motor cortex, Brodmann area 4, is located along the precentral
gyrus in the frontal lobe. It is important for the generation of neural impulses
that control the exertion of movement. The secondary motor areas include
the premotor cortices and the supplementary motor area, which together form
Brodmann area 6. The latter is regarded as the main motor planning area
which is involved in complex movements while the premotor cortices are im-
portant for the sensory guidance of movements (Seseke et al. 2006). Blok et al.
(1997) reported activation in the primary motor cortex during repetitive pelvic
floor contraction in healthy women when compared with rest while Zhang et
al. (2005) found activation in supplementary motor area in their investigation
of voluntary voiding control in men but no activation in the primary motor
cortex. Seseke et al. (2006), on the other hand, observed activation in both
primary motor cortex and supplementary motor area during relaxation and
contraction of the pelvic floor muscle in healthy women with full bladder. The
activation in primary motor cortex was stronger during contraction while ac-
tivation in the supplementary motor area was stronger during relaxation. In
their investigation of SUI, Di Gangi Herms et al. (2006) found activation in
all three motor areas in measurements of pelvic floor contraction before treat-
ment but only in the primary motor cortex after 12 weeks of training. Our
results are similar, in that we found activation in all three areas for group
one. For healthy subjects, our results are similar to the results in Zhang et
al. (2005) as we found activation in premotor and supplementary motor cor-
tex during repetitive pelvic floor contraction but no significant activation in
primary motor cortex.
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Frontal areas

The frontal lobes are considered to be emotional control centre. They are
involved in motor function, problem solving, spontaneity, memory, language,
initiation, judgement, impulse control, and social and sexual behaviour (Seseke
et al. 2006). The activation reported in connection with micturition in the
frontal areas of the brain is quite heterogeneous. Blok et al. (1997) reported
activation in right superior and medial frontal cortex, Brodmann area 8 and
9, during repetitive pelvic floor straining minus rest in healthy women. Seseke
et al. (2006) found higher activity during contraction than during relaxation
bilaterally in the inferior frontal gyrus for healthy women with full bladder.
Further, Di Gangi Herms et al. (2006) observed activation in the middle frontal
gyrus, Brodmann area 46, when subtracting activation after training from
activation observed before training in women with SUI. We observed activation
in the right precentral gyrus, Brodmann area 44, for both groups of subjects.

Parietal areas

The parietal lobe plays a role in integrating sensory information and takes part
in visuo-motor integration. Seseke et al. (2006) observed activation in the infe-
rior parietal lobe which they suspect might be related to the visual commands
in their paradigm rather than micturition process itself. Others have though
also reported parietal activation in micturition related experiments, Athwal et
al. (2001) found bilateral activation in parietal cortex during bladder filling
while in Zhang et al. (2005), the right side seems more dominant. Our results
include bilateral activation in the parietal lobe for women with SUI and acti-
vation in the right parietal lobe for healthy women. Note that the subjects in
our experiment were notified of the switch between task periods and rest with
a tap on the leg, so that no visual commands are used.

Temporal lobe

The temporal lobe is usually put in connection with high-level auditory pro-
cessing including speech. We observed activation in the right superior temporal
gyrus during task periods for both group one and group two. Similar results
are reported in Blok et al. (1997) and Di Gangi Herms et al. (2006). These
results include though only the data acquired after training in Di Gangi Herms
et al. (2006).

Basal ganglia

The basal ganglia are a group of nuclei usually involved with regulation of
cortically initiated motor activity. There is further evidence that these areas
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might also play a role in cognition and emotion processes, see Seseke et al.
(2006). We found significant bilateral activation in the globus pallidus is pre-
measurements from group two. Nour et al. (2000) also found activation in
the same area during micturition in men. Several publications have reported
related activation in the putamen, another part of the basal ganglia. Zhang et
al. (2005) found bilateral activation during pelvic floor muscle contraction in
full bladder but not in empty bladder condition when scanning male subjects
and Seseke et al. (2006) confirmed these findings with reports of activation in
putamen both during relaxation and contraction of the pelvic floor muscle in
healthy women with full bladder. Furthermore, Di Gangi Herms et al. (2006)
reported activation in the putamen when subtracting pre-measurements from
post-measurements in their investigation of pelvic floor muscle training with
biofeedback in women with SUI.

Insula

The insula is a part of the para-limbic system and is involved in viscero-motor
control and in viscero-sensory functions (Kavia et al. 2005). We observed ac-
tivation in the right insula during repetitive pelvic floor contraction compared
to rest for healthy women only. In Seseke et al. (2006), activation in the insula
is reported for relaxation of the pelvic floor with full bladder. Further, Di
Gangi Herms et al. (2006) found activation in the right insula for both pre-
and post-measurements. Activation in the insula can be related to activation
in the temporal lobe, Brodmann area 22, as discussed in Di Gangi Herms et
al. (2006).

Acknowledgements

The work presented here is a part of a larger project on female urinary in-
continence. The authors wish to thanks their collaborators, especially Jens
Christian Djurhuus, Karl Møller Bek, John Bugge Nielsen, Katie Leabourn,
Lise Enemark, and Chantale Dumoulin. Further, many thanks to Eva B. Vedel
Jensen for sharing her knowledge.

17



Thorarinsdottir and Stødkilde-Jørgensen (2006)

Bibliography

Athwal, B.S, Berkley, K.J., Hussain, I., Brennan, A., Craggs, M., Sakakibara,
R., Frackowiak, R.S., Fowler, C.J. (2001): Brain responses to changes in
bladder volume and urge to void in healthy men. Brain 124 369-377.

Bharat, R., Kavia, C., Dasgupta, R., and Fowler, C.J. (2005): Functional
imaging and the central control of the bladder. The Journal of Compara-
tive Neurology 493 27-32.

Blok, B.F.M., Sturms, L.M., and Holstege, G. (1997): A PET study on cortical
and subcortical control of pelvic floor musculature in women. The Journal
of Comparative Neurology 389 535-544.

Brett, M. (2002): The MNI brain and the Talairach atlas. http://www.mrc-
cbu.cam.ac.uk/Imaging/Common/mnispace.shtml

Di Gangi Herms, A.M.R., Veit, R., Reisenauer, C., Herms, A., Grodd, W.,
Enck, P., Stenzl, A., and Birbaumer, N. (2006): Functional imaging of
stress urinary incontinence. NeuroImage 29 267-275.

Freemann, R.M. (2004): The role of pelvic floor muscle training in urinary
incontinence. BJOG: an International Journal of Obstetrics and Gynae-
cology 111 37-40.

Friston, K., Holmes, A., Price, C., Büchel, C., and Worsley, K. (1999): Multi-
subject fMRI studies and conjunction analysis. NeuroImage 10 385-396.

Kavia, R.B.C., Dasgupta, R., and Fowler, C.J. (2005): Functional imaging and
the central control of the bladder. The Journal of Comparative Neurology
493 27-32.

Lancaster, J.L., Woldorff, M.G., Parson, L.M., Liotti, M., Freitas, C.S.,
Rainey, L., Kochunov, P.V., Nickerson, D., Mikiten, S.A., and Fox, P.T.
(2000): Automated Talairach Atlas labels for functional brain mapping.
Human Brain Mapping 10 120-131.

Nichols, T. and Hayasaka, S. (2003): Controlling the familywise error rate
in functional neuroimaging: a comparative review. Statistical Methods in
Medical Research 12 419-446.

Nour, S., Svarer, C., Kristensen, J., Paulsen, O., and Law, I. (2000): Cerebral
activation during micturition in normal men. Brain 123 781-789.

Seseke, S., Baudewig, J., Kallenberg, K, Ringert, R.-H., Seseke, F., and
Dechent, P. (2006): Voluntary pelvic floor muscle control - An fMRI study.
NeuroImage In Press

18



Paper D

Zhang, H., Reitz, A., Kollias, S., Summers, P., Curt, A., and Schurch, B.
(2005): An fMRI study of the role of suprapontine brain structures in the
voluntary voiding control induced by pelvic floor contraction. NeuroImage
24 174-180.

19


