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Introduction

In this introduction, we aim to give a description of the content of the thesis,
intended for the reader with little or no mathematical background. Further-
more, we present results and conjectures, which did not make their way into
any of the papers, and we provide the mathematical terminology needed for
this presentation.

The main topic of this thesis is the study of various characteristics of reflected
stochastic processes, in particular Lévy processes. Apart from its intrinsic
mathematical interest, the study of reflected stochastic processes is motivated,
by the fact that they arise naturally in mathematical models of real-life phe-
nomena, in particular in queueing theory. One of the simplest set-ups in
queueing theory concerns customers arriving at random times to a server, and
upon arrival, presents the server with jobs of random length. We assume the
server handles the requests one at a time. An obvious quantity of interest in
such a system, is the workload, which is the amount of time needed for the
server to clear the system, provided no new customers arrive. This quantity
is also denoted the virtual waiting time as it represents the time needed to
initiate service of a hypothetical customer arriving at time t. As we shall see,
one sometimes imposes the requirement that the workload is restricted to be
less than some K > 0. In this situation, it is natural to think of a buffer of
size K, and that the work which exceeds the buffer size is in some sense lost.
Measuring the size of, and approximating, this loss is the focal point of two of
the included papers Paper B and Paper C. We refer to the case where we
have no restrictions on the workload as the case of an infinite buffer.
The first paper, Paper A, examines the mean value and variance of reflected
processes, which in the context of queueing theory tells us something about
how the workload builds up over time. It is proved that the mean value of the
workload is increasing and concave (its rate of increase is decreasing) both in
the case finite and infinite buffer. These facts are fairly obvious in the infi-
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Introduction

nite buffer case, but not so obvious in the case of a finite buffer, where one
could feasibly imagine the mean workload ”overshoot” the stable mean, which
would lead to a non-increasing function. In Paper A we also prove that the
variance of the workload is increasing in the case of an infinite buffer, a fact
which is also somewhat surprising as one could imagine the variance could
peak in some finite time.
The papers Paper B and Paper C are dedicated to the study of the so-called
loss rate. The loss rate is a measure of the amount of work lost in a finite
buffer system. The background for both papers is the paper Asmussen and
Pihlsg̊ard [7], in which the loss rate is expressed in terms, which are easily
interpretable from a modeling point of view. The expression derived in [7]
is still somewhat inaccessible from a practical point of view, and we derive
asymptotics, which are approximate expressions, for different cases, which are
not covered in the original paper. These derivations takes us through various
results, which are of independent interest.
The paper Paper D concerns an extreme value problem, which is derived
from a parallel computing set-up in which we assume that jobs can fail, and
have to be restarted. This study expands upon the work initiated in Asmussen
et al. [9], where the set-up was examined in case of single processor. Paper
D deals with the case where we imagine the job is distributed to multiple
processors working in parallel, and we examine the mathematical implications
of such a distribution. We quickly see that this leads us to a parameterized
set-up, where some values of the parameters correspond to classical extreme
value theory, while other values takes us beyond.

2



1. Reflected stochastic processes

1 Reflected stochastic processes
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Figure 1: A sample path of a Brownian motion, and its reflected version.

We consider a stochastic process S = {St}t∈T
, and the cases of discrete time

(T = N+) and continuous time (T = [0, T ] or [0,∞)). The reflected version
(at 0 and K > 0) of S is denoted V = {Vt}t∈T

. In the discrete-time case V
is obtained through the recursion

Vn+1 = 0 ∨ [Vn + ∆Sn] ∧K K ∈ (0,∞] (1.1)

with initial value V0 ∈ [0,K] and ∆Sn = Sn − Sn−1. We use the standard
notation a ∨ b = max(a, b) and a ∧ b = min(a, b). We note in passing that
”reflected” is somewhat of a misnomer, and a better term would be ”con-
strained”. However, we adhere to the standard terminology. In the case of
one-sided reflection, i.e. K = ∞, the recursion (1.1) is often referred to as
the ”Lindley recursion”, and in analogy with this, we refer to the case where
K <∞ as the ”two-sided Lindley recursion”.

In continuous time there are different but equivalent approaches. The
reflected process may be defined as part of a Skorokhod Problem or it may
be defined as a path transformation as defined in section 6 in Paper A. We
elaborate on these approaches in section 2. The approaches are equivalent,
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Introduction

and lead to a decomposition

Vt = y + St + L0
t − LKt (1.2)

of the reflected process started at y ∈ [0,K] where
{
L0
t

}
and

{
LKt
}

are the
local times at 0, K respectively (LKt ≡ 0 when K = ∞). In the enclosed
papers, the process S will always a random walk or a Lévy process, unless
explicitly stated. In this case, because of the regenerative structure of the
reflected process, there exists a stationary distribution which satisfies

πK(y) = πK [y,K] = P
(
Sτ [y−K,y) ≥ y

)
, 0 ≤ y ≤ K (1.3)

where τ [u, v) = inf
{
t > 0 | St /∈ [u, v)

}
.

When K = ∞ we make assumptions which ensure S∞ := limt→∞ St = −∞,
and (1.3) still holds in the sense

π∞(y) = P
(
sup
t≥0

St ≥ y
)

= P(τ(y) <∞) (1.4)

where τ(y) = inf{t > 0 : St ≥ y}.
The loss rate is defined as

`K = EπK
LK1 (1.5)

where EπK
refers to the stationary situation.

Lévy processes

We consider a probability space (Ω,F ,P). A Lévy process
{
St
}

is a stochastic
process on R with stationary independent increments which is continuous in
probability with S0 = 0 a.s. Every Lévy process

{
St
}

t≥0
is associated with a

unique characteristic triplet (θ, σ, ν), where θ ∈ R, σ ≥ 0 and ν is a measure,
the Lévy measure, on R, which satisfies

∫∞
−∞(1∧y2)ν(dy) <∞ and ν({0}) = 0.

The Lévy exponent is given by

κ(α) = θα+
σ2α2

2
+

∫ ∞

−∞

[
eαx − 1 − αI(|x| ≤ 1)

]
ν(dx)

and is defined for α in Θ := {α ∈ C | Ee<(α)S1 < ∞}. The Lévy exponent is
the unique function κ satisfying EeαXt = etκ(α) and κ(0) = 0. One is often
interested in Lévy processes which have no negative jumps, since many things
simplify in this case. In terms of the Lévy measure, this is the requirement
that ν((−∞, 0]) = 0, and we refer to such processes as spectrally positive.
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1. Reflected stochastic processes

Spectral positivity implies (−∞, 0] ⊆ Θ, and in this case we prefer to work
with the Laplace exponent, defined by ϕ(α) = κ(−α) for all real α such that
Ee−αS1 < ∞, which by the previous remark includes [0,∞). The function
ϕ(·) is increasing on [0,∞) and hence its inverse, which we denote ψ(·) is
well-defined.

Heavy tails, subexponentiality and integrated tails

We follow the standard definitions of the classes L,S and S∗ of distributions,
that is, if B is a distribution on [0,∞) we have B ∈ L iff

lim
x→∞

B(x+ y)

B(x)
= 1, for all y

where B(x) = 1 −B(x). The class S is defined by the requirement

lim
x→∞

B∗n(x)

B(x)
= n n = 2, 3, · · · ,

where B∗n denotes the nth convolution power of B. A subclass of S is S∗,
where we require that the mean µB of B is finite and

lim
x→∞

∫ x

0

B(x− y)

B(x)
B(y)dy = 2µB.

The classes are related by:

S∗ ⊆ S ⊆ L .

We have the following definitions: For a random variableX with finite negative
mean EX = µ < ∞, we set EX+ = µ+, F (x) = P(X > x) and note µ+ =
∫∞
0 P(X > t)dt. Therefore, the function

Fe(x) :=

{
1
µ+

∫ x
0 P(X > t) dt x ≥ 0

0 x < 0

defines a distribution function, which is absolutely continuous with density
F (x)/µ+. We frequently use the unnormed tail, and therefore define F I :=
µ+F e (the integrated tail). Note that

E(X − x)+ =

∫ ∞

0
P((X − x)+ > t) dt =

∫ ∞

x
P(X > t) dt = FI(x) (1.6)
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Introduction

and by l’Hospital: F (x) ∼ F
∗
(x) ⇒ F I(x) ∼ F

∗
I(x) for distribution functions

F and F ∗.
The notion of heavy-tailedness carries over to Lévy processes through Theorem
1 in Embrechts et al. [16], which states states that if we assume ν is tail
equivalent to a subexponential distribution, that is ν(x) :=

∫∞
x ν(dy) ∼ B(x)

for B ∈ S, then

F (x) ∼ ν(x) (1.7)

where F (x) := P(S1 > x). The main virtue of random walks with heavy-
tailed increments or Lévy processes with heavy-tailed Lévy measure is that
we have an asymptotic relationship for the tail of the overall supremum of
the process, which, because of(1.4) gives us an asymptotic relation for the
stationary distribution in the case of one-sided reflection. Using (1.4),(1.7)
and applying Theorem 4.1 from Maulik and Zwart [41] we have

νI(K) :=

∫ ∞

K
ν(y) dy ∼ |ES1|π∞(K) (1.8)

for Lévy processes if the integrated tail is subexponential, and by Theorem
9.1 p. 296 in [5]

F I(K) ∼ |ES1|π∞(K) (1.9)

for random walks if Fe ∈ S.

The rest of the introduction gives addendum and elaboration on the papers
in the thesis.

Notes

The Lindley recursion appears in a queueing-theory setting in Lindley [39], and
a recursion similar to the two-sided Lindley recursion appears in Daley [14]
in a queueing theory setting. This recursion also appears in connection with
finite capacity dam models, see Moran [42]. The two-sided Lindley recursion
also appear in Phatarfod et al. [43].
The representation (1.3) is implicit in the discussion by Lindley [38] of a paper
by C.B.Winsten (Winsten [55]), it appears explicitly in Ghosal [25], and in
the generality needed for the thesis in Siegmund [50].
The literature on Lévy process is vast. Standard references include Sato [49],
Bertoin [11] and Kyprianou [36]. The fact that spectral positivity implies
(−∞, 0] ⊆ Θ is mentioned in Example 25.11 in Sato [49], and that ϕ(·) is
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2. Structural properties of reflected Lévy processes

increasing on [0,∞) is found in Bertoin [11] chap. VII.
The definitions of the classes of heavy-tailed random variables above are also
standard, and are found in Asmussen [5],Asmussen [6] and Klüppelberg [33].

2 Structural properties of reflected Lévy processes

In Paper A we prove various structural properties of the functions t 7→ EVt
and t 7→ VarVt. Specifically, it is proved that the mean value function is in-
creasing and concave, both in the case of one- and two-sided reflection, and
that the variance function is increasing in the case of one-sided reflection. For
two-sided reflection, the proof relies on a new representation of the two-sided
reflected process, which is of independent interest. Structural properties of
this kind were studied in Kella [29] and Kella and Sverchkov [31] in the case
of one-sided reflection. In [29] the author assumes the Lévy process is spec-
trally positive and proves concavity by examining properties of the Laplace
transform, which is particularly simple in this case. In [31] the authors prove
the same result but in much greater generality, since they only assume that the
involved processes are right-continuous and have stationary increments. The
approach in [31] is based on explicit representations of the reflected process in
terms of the original process. Both approaches are used in Paper A and simi-
larly to the papers [29], [31], we see that we can obtain the most general results
by using an approach based on an explicit representation. The approach using
the Laplace transform is included, because it has a potential to be applicable
in cases where explicit representations are not useful. The Laplace transform
approach uses the concept of complete monotonicity. Complete monotonicity
is defined in Definition 3.1 in Paper A, and the main virtue of this class of
functions, is that they are the functions which can act as Laplace transforms
for positive random variables (if properly normalized). Hence, we can prove
monotonicity properties of functions by proving that the Laplace transforms
of their derivatives are completely monotone. This approach has been success-
fully applied in Es-Saghouani and Mandjes [20]. Various explicit expressions
for Vt in terms of St have appeared in the literature, recently in Kruk et al.
[34] with a slight simplification in Kruk et al. [35]. In [34] the authors give
a detailed description of the connection between their derived expression and
other expressions in the literature.

In the paper Paper A, we prove that the variance of a one-sided reflected
process is increasing. The proof relies on the concept of concordance, which
was introduced by Lehmann [37]. We note that, for the purpose of Paper A,
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Introduction

we could also have referred to Theorem 2.1 in Esary et al. [21], which states
that a finite set of independent random variables X1,X2, · · · ,Xn is associated,
that is

Cov [f(X1,X2, · · · ,Xn), g(X1,X2, · · · ,Xn)] ≥ 0

for every increasing (in each coordinate) function f and g. We note that a
single variable is associated, that is, Cov[f(X), g(X)] ≥ 0 for every increasing
function. This is proved in Hardy et al. [26].

The paper Paper A also concerns the subject of how one should define a
two-sided reflected processes in continuous time. In much of the literature this
is done as a solution to a Skorokhod problem. Given a cadlag process {St} we
say a triplet ({Vt} ,

{
L0
t

}
,
{
LKt
}
) of processes is the solution to the Skorokhod

problem on [0,K] if Vt = St + L0
t − LKt ∈ [0,K] for all t and

∫ T

0
Vt dL

0
t = 0 ∀T and

∫ T

0
(K − Vt) dLKt = 0 ∀T .

That is
{
L0
t

}
can only increase when Vt = 0 and

{
LKt
}

can only increase
when Vt = K. A proof of the uniqueness of such a solution is provided in the
appendix, and the existence was proved in Tanaka [54] for continuous {St} and
in Anulova and Liptser [4] for cadlag {St}. Various explicit expressions appear
in the literature and in Theorem 6.2 in Paper A we provide the following
new expression:

Vt := sup
s∈[0,t]

[

(St − Ss) ∧ inf
u∈[s,t]

(K + St − Su)

]

. (2.1)

In the remainder of this section we give some explicit results, where one can
see the structural properties proved in Paper A. Furthermore, we know that
under suitable stability conditions EVt will converge to EV∞ and we present
a result which measure the rate of this convergence. Finally, we give some
examples showing that the proved structural properties fail to hold under
more general conditions.

Explicit results

We start by giving explicit expressions for EVt in the few cases where these
are available. From Paper A we have the formula

∫ ∞

0
e−ϑtEVtdt = −ϕ

′(0)

ϑ2
+

1

ϑψ(ϑ)
. (2.2)

8



2. Structural properties of reflected Lévy processes

Using formula (2.2), we are able to do calculations in the case where {St} is
a Brownian motion with drift. In this case we have ϕ(α) = −αµ+ 1

2ασ
2, and

ψ(ϑ) = µ/σ +
√

µ2 + 2σ2ϑ/σ2.
According to the formula (2.2) we have:

∫ ∞

0
e−ϑtEVtdt =

µ

ϑ2
+

1

ϑ

(

µ
σ +

√
µ2+2σ2ϑ

σ2

) . (2.3)

Recall the definition of the error function: Erf(t) = (2/π)
∫ t
0 e−u

2
du. Define

κ = µ2/(2σ2). The Laplace transform of the error function is given by

∫ ∞

0
e−ϑtErf

(√
tκ
)

dt =

√
κ

ϑ(κ+ ϑ)
1
2

, (2.4)

and by differentiating w.r.t. ϑ above, we obtain

∫ ∞

0
e−ϑttErf

(√
tκ
)

dt =

√
κ

2ϑ (κ+ ϑ)
3
2

+

√
κ

ϑ2 (κ+ ϑ)
1
2

.

Furthermore, we have:

∫ ∞

0
e−ϑt

√

2t

π
e−tκdt =

1
√

2 (κ+ ϑ)
3
2

.

Using the decomposition:

µ

ϑ2
+

1

ϑ

(

µ
σ +

√
µ2+2σ2ϑ

σ2

)

=
1

2

( µ

ϑ2
+ σ

1
√

2 (κ+ ϑ)
3
2

− µ
( √

κ

2ϑ (κ+ ϑ)
3
2

+

√
κ

ϑ2 (κ+ ϑ)
1
2

)

− σ2

µ

√
κ

ϑ
√
κ+ ϑ

)
,

we may invert the Laplace transform in (2.3) to obtain:

EVt =
1

2

(

µt+ σ

√

2t

π
e−tκ − µtErf

(√
tκ
)

− σ2

µ
Erf
(√

tκ
)
)

= µt+
σ2

2µ
+
σ

2

√

2t

π
e−t

µ2

2σ2 −
(

tµ+
σ2

µ

)

Φ(

√
t|µ|
σ

) , (2.5)

9



Introduction

where Φ(·) is the c.d.f. of the standard normal distribution.
Another case in which in which we can do explicit calculations is the compound
Poisson case with exponential jumps. Consider a Lévy process {St} with
Laplace exponent

ϕ(α) = δ

(
β

β + α
− 1

)

+ α (2.6)

and its reflected version {Vt}. We note that {Vt} is the workload process in
an M/M/1 queue with service intensity β and arrival intensity δ. We may
invert (2.6) to obtain

ψ(ϑ) =
1

2

(

ϑ− β + δ +
√

4ϑβ + (−ϑ+ β − δ)2
)

, (2.7)

and if we define ξ(ϑ) = 1
2β

(

ϑ+ δ + β −
√

(ϑ + β + δ)2 − 4δβ
)

, we may write

1

ψ(ϑ)
=

1

1
2

(

ϑ− β + δ +
√

4ϑβ + (−ϑ+ β − δ)2
)

=
1 − 1

2β

(

ϑ+ δ + β −
√

(ϑ+ β + δ)2 − 4δβ
)

ϑ

=
1 − ξ(ϑ)

ϑ
. (2.8)

Next, we note that by Proposition 8.10 p. 105 in Asmussen [5], or Theorem 7
in Takács [52], ξ(ϑ) is the Laplace transform of the busy period of an M/M/1
queue with with arrival intensity β and service intensity δ, i.e. with the roles
of the parameters reversed compared to above. Furthermore, according to
Corollary 8.7 p. 103 in [5] the density of G is

g(t) = δe−(β+δ)t[I0(2µt) − I2(2µt)] =
ρ−1

t
e−(δ+β)tI1(2µt)

where µ =
√
βδ and ρ = β/δ and

In(x) =

∞∑

k=0

(x/2)n+2k

k!(n + k)!

is the modified Bessel function of integer of integer order n. Using Feller [22]
p. 412 we recognize (2.8) as the Laplace Transform of G(x) :=

∫∞
x g(t)dt. We

also know from Abate and Whitt [1] equation (34) that 1/ψ(ϑ) is the Laplace

10



2. Structural properties of reflected Lévy processes

Transform of t 7→ P (Vt = 0 | V0 = 0), which according to Paper A is equal
to the derivative of EVt. By combining these facts, we obtain:

EVt =

∫ t

0

∫ ∞

x

ρ−1

y
e−(δ+β)yI1(2µy)dydx . (2.9)

Figure 2 displays some mean value functions. Let
{
V 1
t

}
be the reflected version

of a Lévy process with Laplace exponent

ϕ(α) =

(
2

2 + α
− 1

)

+ α+
α2

2
,

that is, a compound Poisson process with an added independent Brownian
term. Furthermore we let

{
V 2
t

}
be the reflected version of the Brownian

motion with unit drift and variance, and let
{
V 3
t

}
be the reflected version of

the compound Poisson process from (2.6) with parameters β = 2 and δ = 1.

1 2 3 4 5

0.2

0.4

0.6

0.8

1

1.2

E@Vt
3D

E@Vt
2D

E@Vt
1D

Figure 2: 3 mean value functions.

We note how the addition of a Brownian term manifests itself as an infinite
derivative at 0.
Instead of using the Laplace transforms as above, one could derive the ex-
pression for the mean value function in the Brownian case, by exploiting the
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Figure 3: Plot of t 7→ Var[Vt]

fact the distribution of the supremum of a Brownian motion with drift is
well-known. In fact:

P( sup
s∈[0,t]

Bs − s ≥ y) = 1 − Φ(
y√
t

+
√
t) + e−2yΦ(− y√

t
+

√
t) , (2.10)

where {Bt} is a standard Brownian motion. From Proposition 3 Chap. VI in
Bertoin [11], we know that sups∈[0,t]Bs − s =D Vt where Vt is the reflection
of {Bs − s} started at 0. We can differentiate the above expression to obtain
the density of Vt:

v(t) =

√
2√
πt

e−
(y+t)2

2t + e−2yΦ(
−y + t√

t
) , (2.11)

and then use the expression above to verify (2.5) in the case of unit mean
and variance, and to obtain an expression for the variance of Vt. We abstain
from writing down the somewhat complicated expression, and provide Figure
3 instead, which shows that the variance function is increasing as it is proved
in Paper A Theorem 4.6.

Time-dependent results for two-sided reflection

As seen in the previous section, there are explicit results available in the case
of one-sided reflection. With one particular exception, this is not the case

12



2. Structural properties of reflected Lévy processes

for two-sided reflection. Not even Brownian motion, for which much is know
in the case of one-sided reflection seems to be tangible. However, below we
give a derivation of the k’th moment for a discrete-time two-sided reflected
process. Since the two-sided reflection has compact support, this determines
the distribution. Furthermore, we see a rate of convergence of the mean which,
although still exponential, is slower than what we see in the case of one-sided
reflection in the following section. This not surprising, since intuitively, the
upper barrier ”pushes down” the process.

Let K > 0 and let X1,X2, . . . be an i.i.d. sequence of r.v.s which are
uniform on [a, b] for a < −K and K < b. For x ∈ [0,K] we have the following
elementary calculation:

E[(0 ∨ (x+X1) ∧K)n] = E[(x+X)n, x+X1 ∈ [0,K]] +Kn
P(X > K − x)

=

∫ K−x

−x
(x+ y)n

1

b− a
dy +Kn (b− (K − x))

b− a

=
Kn+1

(b− a)(n + 1)
+Kn (b− (K − x))

b− a
,

and thus, if we define Gn(x) := E[(0 ∨ (x+X1) ∧K)n] and αn := Kn/(b− a)
and βn := Kn(b+ bn−Kn)/((b− a)(n+ 1)), we have

Gn(x) = αnx+ βn . 0 ≤ x ≤ K

Now, let V1, V2, . . . be the two-sided reflected process started from 0. We find
that

E[Vk+1] = E[0 ∨ (Vk +Xk+1) ∧K] = E[G1(Vk)] = α1E[Vk] + β1 .

Iterating the above equality, using V0 = 0, we find:

E[Vk] = β

k−1∑

i=1

αi = β1
1 − αk1
1 − α1

.

Furthermore, using the above expression, we find:

E[V n
k+1] = E[Gn(Vk)] = αnE[Vk] + βn = αnβ1

1 − αk1
1 − α1

+ βn . (2.12)

Rate of convergence

In this section we examine the rate of convergence of the mean value at
time t towards the mean value in stationarity. Specifically, we consider the

13



Introduction

continuous-time case, as the discrete-time case is already covered by Theorem
2.2 p. 356 in Asmussen [5]. From Paper A we know

lim
t→∞

EVt ↑ EV∞

and we want to asses the rate of this convergence. In the light-tailed spectrally
positive case, we can do this by using the Heaviside Operational Principle (see
Abate and Whitt [2] and Doetsch [15] p. 254) . Using (2.2) and the formula
EV∞ = −ϕ′′(0)/(2ϕ′(0)), we see that the Laplace transform of EV∞ − EVt is

− ϕ′′(0)

2ϕ′(0)ϑ
+
ϕ′(0)

ϑ2
− 1

ϑψ(ϑ)
.

We assume ϕ(α) is the Laplace exponent of a light-tailed Lévy process meaning
that the equation ϕ(α) = 0 has a non-zero solution. Since ϕ is strictly convex,
this implies that the minimum of ϕ(α) is attained between this solution and
0. Define γ0 to be solution of ϕ′(γ0) = 0 and set θ∗ = −ϕ(γ0) and δ =
ϕ′′(γ0)/2. We may expand ϕ in its Taylor series around γ0 by writing ϕ(α) =
−θ∗ + δ(α − γ0)

2 + O((α − γ0)
3), and hence we can expand ψ(ϑ) = γ0 +

δ−1/2
√

(ϑ + θ∗) + O(ϑ + θ∗). The Heaviside Operational Principle relies on
expanding the Laplace Transform around its rightmost singularity, which in
this case is −θ∗. Using the expansion above, we obtain:

∫ ∞

0
e−ϑt(EV∞ − EVt)dt

= − ϕ′′(0)

2ϕ′(0)θ∗
+
ϕ′(0)

θ2
∗

− 1

θ∗(γ0 + δ−1/2
√

(ϑ+ θ∗)) +O(ϑ+ θ∗)

= − ϕ′′(0)

2ϕ′(0)θ∗
+
ϕ′(0)

θ2
∗

− γ0 − δ−1/2
√

(ϑ+ θ∗)

θ∗γ2
0

+ o(ϑ+ θ∗) ,

and we may apply the Heaviside Theorem to obtain

EV∞ − EVt ∼ − e−θ∗t

t
3
2

√
δθ∗γ2

0Γ(−1
2)

=
e−θ∗t

t
3
2 θ∗γ2

0

√
δ2π

. (2.13)

If we compare the asymptotics above to those of Theorem 2.2 Asmussen [5] p.
356 we see very similar rates of convergence - slightly faster than exponential
- but, for obvious reasons, different constants.

14



2. Structural properties of reflected Lévy processes

Counterexamples to structural properties

Paper A deals only with reflected processes started from 0. It is relevant to
investigate if it is possible to prove structural properties when the processes
are started from x > 0. Obviously the processes cannot be increasing for large
enough x, and concavity cannot hold either. The following example shows
that for general starting points, the mean value functions can display quite
irregular behavior. First we note, that the formula (2.2) is easily extended to
a general starting point x ≥ 0 using Thm. IX.3.10 Asmussen [5]:

∫ ∞

0
e−ϑtExVtdt =

−ϕ′(0)
ϑ2

+
x

ϑ
+

e−ψ(ϑ)x

ϑψ(ϑ)
. (2.14)

We notice that the argument on page 43 in Paper A is equally valid for a
general starting point x ≥ 0, and in this case implies the formula

ExVt = −ϕ′(0)t+ x+

∫ t

0
P(Vs = 0 | V0 = x)ds .

Hence, any irregular behavior of t 7→ P(Vt = 0 | V0 = x), will be carried
over to t 7→ ExVt. A particular example of such irregular behavior arises
when one considers the workload process of an M/D/1 queue with arrival
rate 1 and deterministic job size equal to 1/2 started at, say, 1/2. Then
P(Vt = 0 | V0 = 1/2) = 0 for t < 1/2 and P(V1/2 = 0 | V0 = 1/2) = 1 − e−1.
By the remarks above, this implies that t 7→ E[Vt] is not differentiable at 1/2
and as can be seen in Figure 4 below, t 7→ E[Vt] has several local minima.
Note that the apparent jumps are due to numerical issues.
Finally, we note that while we prove in Paper A that the variance function
is increasing in the case of one-sided reflection, this cannot be the case in
general for two-sided reflection. As a counterexample, one can take a Poisson
process with positive drift reflected at 0 and K > 0 and started a 0. Since
this an increasing process, the lower barrier will not play a role, and since
the process will eventually get stuck at the upper barrier, its variance will
converge to 0. However since variance at time 0 is 0 and the variance is
strictly positive for some t > 0, the variance function cannot be increasing.
This is of course a somewhat pathological counterexample, and it appears
reasonable to conjecture that the variance function is increasing provided the
mean of the original process is negative.

Notes

The formula (2.10) is found Chapter 12 in Mandjes [40], and (2.4) is formula
16.2.1 in Roberts and Kaufman [47]. The formula (2.1) is new, but a discrete-
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Figure 4: Plot of t 7→ E[Vt], found by numerical inversion of the Laplace
transform.

time version appears in Phatarfod et al. [43], which however, has been over-
looked in the literature. Explicit expressions for the reflected process of the
type (2.1) have appeared in the literature, see Borovkov [12], Cooper et al.
[13], Kruk et al. [34] and Kruk et al. [35].
Formulas describing transient characteristics of M/M/1 queues tend to be
complicated, involving for example infinite sums of modified Bessel functions
(see e.g. Prabhu [46]). Sometimes integral representations are available, like
the formula given for the mean queue length in Takács [52]. In view of this, the
formula (2.9) is relatively simple. A moment based approach to the workload
process is given in Abate and Whitt [1]. See also Abate and Whitt [3] for an
overview of calculations of such characteristics.

3 Loss rate asymptotics

In the papers Paper B and Paper C we derive various asymptotics for the
loss rate for two-sided reflected Lévy processes. At the heart of both deriva-
tions lies the expression for the loss rate derived in Asmussen and Pihlsg̊ard

16



3. Loss rate asymptotics

[7]:

`K =
ES1

K

∫ K

0
πK(x) dx+

σ2

2K
+

1

2K

∫ K

0
πK(dx)

∫ ∞

−∞
ϕK(x, y)ν(dy), (3.1)

where

ϕK(x, y) =







−(x2 + 2xy) if y ≤ −x
y2 if − x < y < K − x

2y(K − x) − (K − x)2 if y ≥ K − x .

(3.2)

The expression (3.1) is derived in Asmussen and Pihlsg̊ard [7] by using The-
orem 3.1 p. 255 in Asmussen [5] to establish the local martingale property of
a certain stochastic process. The useful result in Theorem 3.1 was originally
found in Kella and Whitt [32], and is also used in Proposition 4.3 in Paper
B to establish a local martingale property. We note that [32] also plays a
fundamental role in the paper Kella [30], which in turn plays an important
role as background for Paper A and thereby establishes a connection between
this paper and Paper B and Paper C.
Asymptotics of the loss rate were derived Jelenković [27] in the discrete-time
case, and we provide a new proof of this result, where we exploit the represen-
tation (1.3). The discrete-time result provide a clue towards what to expect
in the continuous-time case. In this section we collect the comments to the
papers Paper B and Paper C, as both papers concern asymptotics of the
same object, namely the loss rate of a Lévy process reflected in two barriers.

The Scale function

When the involved Lévy processes are spectrally positive, one may apply The-
orem 8 Chap. VII of Bertoin [11] to obtain the stationary distribution, since
the referred theorem may be restated as

Theorem 3.1. Let
{
St
}

be a Lévy process with no negative jumps and char-
acteristic exponent κ(α). Then

πK(y) = 1 − W (y)

W (K)

Where W [0,∞) →W [0,∞) is the unique continuous increasing function sat-
isfying ∫ ∞

0
e−αxW (x) dx =

1

κ(−α)

17
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The function W (·) is called the scale function.
We proceed to prove an interesting consequence of Theorem 8 in [11]. We
consider a spectrally positive Lévy process {St} with finite negative mean. Let
V have the stationary distribution of the one-sided reflected version of {St}
and let V K have the two-sided stationary distribution. Recall that τ [u, v) =
inf
{
t > 0 | St /∈ [u, v)

}
and set τ(y − K, y] := inf

{
t > 0 | St /∈ (u, v]

}
. We

notice that

P(V K ≤ y) = lim
ε↓0

= P(V K < y + ε)

= 1 − lim
ε↓0

P(Sτ [y−K+ε,y+ε) ≥ y + ε) = 1 − P(Sτ(y−K,y] > y) . (3.3)

We know from Corollary 2.8 in [5] that P(V ≥ x) = P(supt≥0 St ≥ x). Let

τ̃ [u, v) = inf
{
t > 0 | −St /∈ [u, v)

}
, and let W̃ (·) denote the scale function

of {−St}. According to the proof of Theorem 8 Chap. VII in [11] we have
P(− inft>0(−St) ≤ x) = cW̃ (x) for some c > 0. Using the representation (1.3)
and (3.3) we find:

P(V K ≤ y) = P(Sτ(y−K,y] ≤ y −K) = P(−Sτ̃ [−y,K−y) ≥ K − y)

=
W̃ (y)

W̃ (K)
=

P(− inft>0(−St) ≤ y)

P(− inft>0(−St) ≤ K)

=
P(V ≤ y)

P(V ≤ K)
= P(V ≤ y | V ≤ K) .

That is: In the spectrally positive case, we can obtain the stationary distribu-
tion of the two-sided reflected process, by conditioning the one-sided stationary
distribution to be below the upper barrier.

Explicit examples

In this section, we calculate the stationary distribution and loss rate for some
stochastic processes. When we are given a Lévy process

{
St
}

with charac-
teristic exponent κ(α) and characteristic triplet (θ, σ, ν), the first task is to
compute the stationary distribution, which, because of (1.3) is a two-sided
exit problem. Once the stationary distribution is obtained, the loss rate can
in principle be calculated using (3.1). In practice, however, it is typically eas-
ier to use the remark in Asmussen and Pihlsg̊ard [7], that if the continuous
part of the local time at 0 or K disappears, then `K is available as the solution
to some linear equations.
For spectrally one-sided processes, we can apply Theorem 3.1. When we have
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3. Loss rate asymptotics

both negative and positive jumps we apply optional stopping of the Wald
martingale {Yt} =

{
eαSt−tκ(α)

}
. Specifically, we find non-zero solutions to

κ(α) = 0 and plug these into the equation 1 = EeαSτ−τκ(α) where τ is an
optional stopping time. We note that in Example 4 and Example 5 we
need to analytically extend the derived equations, from a strip in the complex
plane, to the entire complex plane except singularities.
Example 1
Let us consider a compound Poisson process with exponential Lévy measure:

St :=
Nt∑

i=0

Ui − βt.

Where (Ui) is an i.i.d. sequence, with U1 having an exponential distribution
with parameter γ, and (Nt) is an independent Poisson process with intensity
λ. The parameters satisfy β > λ/γ.
We have

κ(α) =
λα

γ − α
− βα.

Setting ξ := γ − λ/β, we have κ(ξ) = 0 and using optional stopping of the
martingale

{
eξSt

}
with the stopping time τ [y − K, y), which is justified by

Corollary 4.1 in [5], we have for y > 0:

1 = E[eξSτ [y−K,y)]

= πK(y)E[eξSτ [y−K,y) | Sτ [y−K,y) ≥ y] + πK(y)E[eξSτ [y−K,y) | Sτ [y−K,y) < y]

Since the process has no negative jumps, and X =D E(γ) ⇒ X − y | X >
y =D E(γ), we obtain

1 = πK(y)eξy
γ

γ − ξ
+ πK(y)eξ(y−K) .

And since πK(y) + πK(y) = 1, we may isolate πK(y) and obtain:

πK(y) =
e−ξy − e−ξK

γ
γ−ξ − e−ξK

y > 0

or

1 − πK(y) =

γ
γ−ξ − e−ξy

γ
γ−ξ − e−ξK

y > 0 .
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In accordance with Theorem 3.1.
Using (3.1) or (3.4) in Asmussen and Pihlsg̊ard [7] we obtain:

`K =
−ES1e

−ξK

γ
γ−ξ − e−ξK

=

λξ
µ e

λ
β
K

γeγK − λ
β e

λ
β
K
.

If we let β → λ/γ the expression above tends to

`K =
λ

γ2

1
1
γ +K

∼K→∞
λ

γ2

1

K
=

1

2K

∫ ∞

0
y2λγe−γy dy

in accordance with Theorem 3.1 in Paper C.
Example 2
Next, we add an independent Brownian Motion:

St := σBt +

Nt∑

i=0

Ui − βt σ, β, λ, γ > 0, β >
λ

γ
,

where (Bt) is a standard Brownian motion, which is independent of (Ui) and
(Nt), where (Ui) and (Nt) are as in Example 1. Then

κ(α) =
α2σ2

2
+

λα

γ − α
− βα

The non-zero real solutions to the equation κ(α) = 0 are

ξ1 =
2β + γσ2 +

√

4β2 − 4βγσ2 + 8λσ2 + γ2σ4

2σ2

=
β + γσ2

2 +

√
(

β − γσ2

2

)2
+ 2λσ2

σ2

ξ2 =
2β + γσ2 −

√

4β2 − 4βγσ2 + 8λσ2 + γ2σ4

2σ2

=
β + γσ2

2 −
√
(

β − γσ2

2

)2
+ 2λσ2

σ2

and one can check that ξ1, ξ2 > 0. We note that we have the following curious
formula for the mean of the one-sided reflected process:

∫ ∞

0
yπ∞(dy) = −Var(S1)

2ES1
=

σ2 + 2λ
γ2

2
(

β − λ
γ

) =
1

ξ1
+

1

ξ2
− 1

γ
.
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3. Loss rate asymptotics

The stationary distribution and the loss rate are found to be:

1 − πK(y) =

γ
γ−ξ1

− γ
γ−ξ2

− ξ1
γ−ξ1

e−ξ2y + ξ2
γ−ξ2

e−ξ1y

γ
γ−ξ1

− γ
γ−ξ2

− ξ1
γ−ξ1

e−ξ2K + ξ2
γ−ξ2

e−ξ1K
,

`K =
−ES1

(

e−ξ2K ξ1
γ−ξ1

− e−ξ1K ξ2
γ−ξ2

)

γ
γ−ξ1

− γ
γ−ξ2

− ξ1
γ−ξ1

e−ξ2K + ξ2
γ−ξ2

e−ξ1K
.

Example 3
Let (Bt) is a standard Brownian Motion, and we set

St := σBt − βt .

Then ξ := 2β/σ2 solves κ(α) = 0 and we have:

πK(y) =
e−yξ

1 − e−ξs
and `K =

βe−ξK

1 − e−ξK

Example 4
We consider a compound Poisson process with both positive and negative
jumps:

St :=

Nt∑

i=0

Ui −
Ñt∑

i=0

Ti − βt U
D
= E(γ) , Nt

D
= po(tλ) , Ti

D
= E(θ) , Ñt

D
= po(tξ)

where β > λ/γ − ξ/θ . The Lévy exponent is

κ(α) =
λα

γ − α
− ξα

θ + α
− βα

and the solutions of κ(α) = 0 are

ξ1 =
βγ − βθ − λ− ξ +

√

(βγ − βθ − λ− ξ)2 + 4β(βγθ − θλ+ γξ)

2β

ξ2 =
βγ − βθ − λ− ξ −

√

(βγ − βθ − λ− ξ)2 + 4β(βγθ − θλ+ γξ)

2β

And we have, for y > 0

πK(y) =

θ
θ+ξ1

− θ
θ+ξ2

+ e−ξ2(y−K) ξ1
θ+ξ1

− e−ξ1(y−K) ξ2
θ+ξ2

θ
θ+ξ1

− θ
θ+ξ2

+ eξ2K γ
γ−ξ2

ξ1
θ+ξ1

− eξ1K γ
γ−ξ1

ξ2
θ+ξ2
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and

`K =

λ
γ

ξ1
θ+ξ1

ξ2
γ−ξ2

− λ
γ

ξ2
θ+ξ2

ξ1
γ−ξ1

θ
θ+ξ1

− θ
θ+ξ2

+ eξ2K γ
γ−ξ2

ξ1
θ+ξ1

− eξ1K γ
γ−ξ1

ξ2
θ+ξ2

Example 5
The most general example we consider is the compound Poisson process from
Example 4 with an added independent Brownian motion:

St :=

Nt∑

i=0

Ui −
Ñt∑

i=0

Ti + σBt − βt .

In this case the Lévy exponent is

κ(α) =
λα

γ − α
− ξα

θ + α
+
σ2α2

2
− βα .

It is still possible to derive explicit expressions for the stationary distribution
and the loss rate, by solving κ(α) = 0, which now yields 3 non-zero solutions,
and solving 4 equations in 4 unknowns. We shall refrain from stating the
expressions as they become extremely lengthy. Instead, we plot the graphs of
distribution functions for the stationary distribution in the case where λ =
γ = ξ = θ = β = 1, K = 2 for different values of the variance.
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Figure 5: 4 values of the variance
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3. Loss rate asymptotics

Loss rate asymptotics for random walks

In this section we prove a proposition on the loss rate for a reflected random
walk. This result was originally proved in Jelenković [27], but we provide
a shorter proof by taking advantage of the representation of the stationary
distribution provided by (1.3). Proposition 3.1 proved below is the discrete-
time counterpart of Theorem 3.1 which is main theorem of Paper B.

Proposition 3.1. Let X1,X2, · · · be an i.i.d. sequence with mean µ and let
`K be the loss rate at K of the associated random walk, reflected in 0 and K
as defined by (1.5) above. Assume F (x) ∼ B(x) for some distribution B ∈ S∗.
Then

`K ∼
∫ ∞

K
F (y) dy, K → ∞.

Proof. By partial integration as in Pihlsg̊ard [44], we have

`K = E(X −K)+ +

∫ K

0
P(X > K − y)πK(y) dy. (3.4)

Since F I(K) = E(X −K)+, we need to prove that

lim sup
K

∫ K

0

P(X > K − y)πK(y)

F I(K)
dy = 0. (3.5)

For any A > 0 we have:

lim sup
K

∫ A

0

P(X > K − y)πK(y)

F I(K)
dy

≤ lim sup
K

P(X > K −A)

F I(K)

∫ A

0
πK(y) dy = 0

so therefore, for any A > 0:

lim sup
K

∫ K

0

P(X > K − y)πK(y)

F I(K)
dy = lim sup

K

∫ K

A

P(X > K − y)πK(y)

F I(K)
dy .

(3.6)

By Theorem 9.1 in [5], π∞(y)|µ| ∼ F I(y) so that for large A we have for
y > A: π∞(y) ≤ 2F I(y)/|µ| = 2µ+F e(y)/|µ|. Note that Proposition 4.1 in
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Paper B also holds for random walks. Using this, we have:

lim sup
K

∫ K−A

A

P(X > K − y)πK(y)

F I(K)
dy

≤ lim sup
K

∫ K−A

A

P(X > K − y)π∞(y)

F I(K)
dy

≤2 lim sup
K

∫ K−A

A

µ+
P(X > K − y)F e(y)

|µ|F I(K)
dy

=2 lim sup
K

∫ K−A

A

P(X > K − y)F e(y)

|µ|F e(K)
dy

=2 lim sup
K

F
∗2
e (K)

F e(K)

∫ K−A

A

P(X > K − y)F e(y)

|µ|F ∗2e (K)
dy

=4 lim sup
K

∫ K−A

A

P(X > y)F e(K − y)

|µ|F ∗2e (K)
dy .

If we let U and V be independent with U =D V =D Fe and use Lemma 1.2 of
the appendix we obtain:

4 lim sup
K

∫ K−A

A

P(X > y)F e(K − y)

|µ|F ∗2e (K)
dy

lim sup
K

4
µ+

|µ|P(A < U ≤ K −A | U + V > K) =
2µ+

|µ| F e(A) .

By combining the result above with (3.6) we have

lim sup
K

∫ K

0

P(X > K − y)πK(y)

F I(K)
dy (3.7)

≤ 2µ+

|µ| F e(A) + lim sup
K

∫ K

K−A

P(X > K − y)πK(y)

F I(K)
dy . (3.8)

We continue our calculation of the last integral above:

lim sup
K

∫ K

K−A

P(X > K − y)πK(y)

F I(K)
dy

= lim sup
K

∫ A

0

P(X > y)πK(K − y)

F I(K)
dy

≤ lim sup
K

πK(K −A)

F I(K)

∫ A

0
P(X > y) dy .
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3. Loss rate asymptotics

If we define σA = inf{y ≥ 0 | Sy < −A}, Mn = maxk≤n Sk and use (1.3) we
have:

πK(K −A) = P(MσA
> K −A) .

By Theorem 1 of Foss and Zachary [23] we have P(MσA
> K−A) ∼ EσAF (K)

and therefore:

lim sup
K

πK(K −A)

F I(K)

∫ A

0
P(X > y) dy =

lim sup
K

EσA
F (K)

F I(K)

∫ A

0
P(X > y) dy = 0 .

In view of (3.8) we have for large A:

lim sup
K

∫ K

0

P(X > K − y)πK(y)

F I(K)
dy ≤ 2µ+

|µ| F e(A) .

Letting A tend to infinity completes the proof.

The Pollaczek-Khinchine Formula

An important part of Paper B is the formula (3.2) which states that for a
Lévy process {St} with negative mean we have:

E
[
eαV

]
= −

αEπ∞L
c
1 + Eπ∞

[∑

0≤s≤1(1 − e−α∆Ls)
]

κ(α)
, (3.9)

where V is a random variable, which has the stationary distribution of the
one-sided reflected version of {St}, and Lc1 is the continuous part of the local
time evaluated at 1. As it is noted in Paper B, when {St} is spectrally
positive, the jump part in (3.9) disappear have we have the following equation

E
[
eαV

]
= −αEπ∞L1

κ(α)
=
αES1

κ(α)
.

The justification of the second equality is provided in Corollary 3.4 p. 257 in
[5]. Now we assume {St} is a compound Poisson process with a unit drift,
where the jumps have distribution B and with intensity β. Set ρ = βEB
and let B̂ be the moment generating function of B. Then ES1 = ρ − 1 and
κ(α) = βB̂[α] − β − α, and hence, the equation above takes the form

E
[
eαV

]
= (1 − ρ)

α

βB̂[α] − β − α
(3.10)

and we recognize the classic version Pollaczek-Khinchine formula.
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Continuity of the loss rate

A contribution of Paper C is Theorem 3.2 which states that the loss rate
is continuous if considered a function of the Lévy process, when one makes
an assumption of uniform integrability. We notice that the stated assump-

tion cannot be relaxed in general: Let
{
S

(n)
t

}
be a sequence of Lévy pro-

cesses with characteristic triplet (0, 0, ν(n)) where ν(n)({−1}) = 1 − 1/(2n)

and ν(n)({n}) = 1/(2n). Then S
(n)
1

D→ S
(0)
1 where the Lévy measure of S

(0)
1 is

ν(0)({−1}) = 1. If the loss rate were continuous, we should have `K(n) → 0.
However using (3.4) in Pihlsg̊ard [44] we get

`K(n) =

∫ K

0
πK(dx)

∫ ∞

K−x
(x+ y −K)ν(n)(dy) ≥

∫ ∞

K
(y −K)ν(n)(dy) = (n−K)+

1

2n

Letting n tend to infinity we see that lim infn `
K(n) ≥ 1/2.

When proving continuity of the loss rate, we need continuity of stationary
distribution which is proved in Proposition 2.1 in Paper C. The uniform in-
tegrability is not needed for this result, a fact which is not entirely surprising
given that the stationary distributions are uniformly bounded. The corre-
sponding result for one-sided reflection in discrete time is proved in Theorem
6.1 p. 285 in [5] and this result needs an assumption of uniform integrability.
We note that the discrete-time analogue of Theorem 3.2 can be proved using
an approach similar to the one used in paper Paper C. Indeed, let {Sni } be se-

quence of random walks, such that {Sn1 } is uniformly integrable and Sn1
D→ S0

1 .
The reflected process is obtained through the recursion (1.1), and the loss rate
is given by

`K,n =

∫ K

0

∫ ∞

−∞
Ψ(x, y)Fn(dy)πK(dx) , (3.11)

where Fn is the distribution function of Sn1 and Ψ(x, y) = (x+ y−K)+ . The
continuity of the stationary distribution follows precisely as in Proposition 4.1
with the Portmanteau Lemma playing the part of Theorem 13.17 in Kallenberg
[28]. Similarly to the proof of Theorem 3.2 we can split the contribution from
the integral in (3.11) into two parts:

∫

[−a,a]c
Ψ(x, y)Fn(dy) +

∫

[−a,a]
Ψ(x, y)Fn(dy) (3.12)
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for some a > 0, and use uniform integrability to make the contribution from
the first integral arbitrarily small. Define a sequence of functions fn by
fn(x) =

∫

[−a,a] Ψ(x, y)Fn(dy). Equicontinuouity and uniform boundedness

of (fn) now follows, and we can conclude that `K,n → `K,n using the same
reasoning as in the proof of Theorem 3.2.
In Paper C we also provide Theorem 3.3 which gives necessary and suffi-
cient conditions for uniform integrability of a sequence of infinitely divisible
distributions in terms of the characteristic triplet. The result, which does not
seem to appear in the literature, is similar to Theorem 25.3 in Sato [49] which
states that for a Lévy process {St} with Lévy measure ν and a submultiplica-
tive function g, that is a function g satisfying 0 ≤ g(x + y) ≤ ag(x)g(y) for
some a > 0, we have E[g(St)] < ∞ if an only if

∫

[−1,1]c g(y)ν(dy) < ∞. We

observe that for α > 0 we have that x 7→ |x|α∧1 is submultiplicative, and it is
tempting to conjecture that Theorem 3.3 should hold for all submultiplicative
g.

Notes

The result in Theorem 3.1 is derived in Takács [53] using combinatorial meth-
ods and later in Emery [17]. A short proof appear in Rogers [48].
The Pollaczek-Khinchine formula presented in (3.10) in the version based on
moment generating functions. The formula typically refers to the mean steady-
state waiting time in the M/G/1 queue and goes back to Pollaczek [45].
The loss rate considered here is only one of several interesting quantities,
which occur in the context of reflected processes and loss probabilities. Other
such quantities are the steady-state probability that a customer gets partially
rejected (see Bekker and Zwart [10]) or the steady-state probability of a full
buffer, which goes back to the work of Erlang (Erlang [18] and Erlang [19]).

4 Parallel computing, failure recovery, and

extreme values

The paper Paper D concerns extreme value theory, and its content is disjoint
from the rest of the thesis. In the paper we describe a mathematical model
for a computer system, where the jobs have random length and the processor
fails at random times. The specific model in the paper deals with the case
where the processor has to restart from scratch, if the processor fails before the
jobs is completed. We are interested in determining the total time needed to
complete the job. This model was examined in Asmussen et al. [9] where tail
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asymptotics for the total job length were determined. These tail asymptotics
revealed, that under quite natural assumptions, the total job length will be
heavy tailed. This is fairly intuitive - sometimes the job lengths will be large,
and when this happens, the processor will have to restart many times, before
the job can be completed, which leads to a very long total job time. Since the
tail asymptotics were made available in [9], we can use extreme value theory to
determine the behavior of several independent copies of the total job length,
which is a natural object to consider as a model for a parallel computing
set-up, that is, a situation where the job is divided into smaller parts and
then distributed to several processors. In Paper D we assume that the job is
distributed to M processors and we allow the length of the job which is to be
distributed, to depend on M . Our aim is then, to determine the asymptotic
total execution time as M → ∞. If the job length increases at exactly to
the same rate as the number of processors, then the job length faced by each
processor is independent of M , and we are in the setting of classical extreme
value theory. However, in Paper D we also examine cases where the job
length increases slower or faster than M , and this takes us to a triangular
array setting, since the job length faced by each processor will depend on M .
A general triangular array setting was studied in Freitas and Hüsler [24].

5 A conjecture on the stationary distribution of

FBM

Before proceeding to the papers, we present a conjecture on the stationary dis-
tribution of reflected fractional Brownian Motion. We may define the reflected
version of any stochastic process {St} with paths in D[0,∞) by using the map-
ping (6.2) defined Paper A. Provided {St} has stationary increments, there
will still exists a limiting distribution as t tends to infinity, since by Corollary
7.6 in Paper A all moments of the reflected process will be increasing, and
since they are bounded, they will be convergent, which implies the existence
of weak limit of the reflected process.
A process with stationary increments which has drawn much interest in re-
cent years is fractional Brownian motion. We say {St} is a standard fractional
Brownian motion iff it is a centered Gaussian processes with correlation func-
tion

ρ(s, t) = Cov(S2H
s , S2H

t ) =
1

2

(
t2H + s2H − |t− s|2H

)
0 < H < 1

The parameter H is called the Hurst parameter. We can simulate this pro-
cess using the software provided by Ton Dieker. Plotted below are empirical
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distribution functions and qqplots for two values of H namely H = 1/3 and
H = 2/3. Recall that the beta distribution B(s, t) is the distribution on [0, 1]
with density proportional to x 7→ xs−1(1 − x)t−1. The plots below suggest
that the limiting distribution for H = 1/3 is a beta distribution with param-
eters s = t = 2, and the limiting distribution for H = 2/3 is B(1/2, 1/2).
Furthermore, since H = 1/2 corresponds to the standard Brownian motion,
for which we know that the stationary distribution is uniform (B(1, 1)) it ap-
pears reasonable to conjecture that the limiting distribution for general H is
a B(1/H − 1, 1/H − 1) distribution. Since by [8] the representation (1.3) still
holds for processes with stationary increments (in discrete time, for continuous
time see [51]), the truth of the conjecture should in turn imply the following
statement about the two-sided exit probability for fractional Brownian mo-
tion:
Let {St} be a fractional Brownian motion with Hurst parameter H, and set
τ [y − 1, y) = inf

{
t > 0 | St /∈ [y − 1, y)

}
. Furthermore, let B denote the

distribution function of a B(1/H − 1, 1/H − 1) distribution. We conjecture
that

P
(
Sτ [y−1,y) ≥ y

)
= 1 −B(y) .
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Figure 6: Empirical distribution function for simulated values, H = 2/3
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Figure 7: qqplot, H = 2/3
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Figure 8: Empirical distribution function for simulated values, H = 1/3
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Figure 9: qqplot, H = 1/3
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Lévy processes. Stochastic Process. Appl., 116(2):156–177, 2006. ISSN
0304-4149.

[42] P. A. P. Moran. The Theory of Storage. Methuen’s Monographs on
Applied Probability and Statistics. Methuen & Co. Ltd., London, 1959.

[43] R. M. Phatarfod, T. P. Speed, and A. M. Walker. A note on random
walks. J. Appl. Probability, 8:198–201, 1971. ISSN 0021-9002.

[44] M. Pihlsg̊ard. Loss rate asymptotics in a GI/G/1 queue with finite buffer.
Stoch. Models, 21(4):913–931, 2005. ISSN 1532-6349.
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Abstract

This paper considers a number of structural properties of reflected
Lévy processes, where both one-sided reflection (at 0) and two-sided
reflection (at both 0 and K > 0) are examined. With Vt being the
position of the reflected process at time t, we focus on the analysis of
ζ(t) := EVt and ξ(t) := VarVt. We prove that for the one- and two-
sided reflection we have ζ(t) is increasing and concave, whereas for the
one-sided reflection, ξ(t) is increasing. In most proofs we first establish
the claim for the discrete-time counterpart (that is, a reflected random
walk), and then use a limiting argument. A key step in our proofs for
the two-sided reflection is a new representation of the position of the
reflected process in terms of the driving Lévy process.
Keywords Complete monotonicity, Lévy processes, One/Two-sided
reflection, Mean function, Variance function, Stationary increments,
concordance.
Mathematics Subject Classification (2000) Primary 60K25 Sec-
ondary 60F05 90B22
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1 Introduction

In this paper we consider structural properties of reflected Lévy processes,
where both one-sided reflection (at 0) and two-sided reflection (at both 0 and
K > 0) are examined. We assume throughout that the reflected process is
started at 0, and we have that in the case of one-sided reflection, the position
of the reflected process Vt is given by St + Lt, where {St}t≥0 is the driving
Lévy process, and {Lt}t≥0 is the local time at 0, which can be written as
− inf0≤s≤t Ss. In case of two-sided reflection, we have a similar construction in
the sense that Vt can be decomposed as St+Lt− L̄t, with L̄t the local time at
K, given as part of the solution to a Skorokhod problem, but finding explicit
solutions for Vt, in terms of Ss with 0 ≤ s ≤ t, is rather involved; recently,
such expressions have appeared in Kruk et al. [10] and Kruk et al. [11].

More precisely, we focus in this work on the analysis of two objects, viz.
ζ(t) := EVt and ξ(t) := VarVt. Our goal is to prove a number of structural
properties regarding the shape of these two functions. For the one-sided re-
flection, the function ζ(·) was already examined in detail before. In Kella [7]
it was shown that ζ(·) is concave as long as the underlying Lévy process does
not have any positive jumps, relying on martingale techniques. This result
was generalized by Kella and Sverchkov [8] to general Lévy processes (in fact,
even just stationary increments are needed), with an elementary proof that
uses stochastic monotonicity. To our best knowledge, however, there are no
results for the two-sided counterpart, nor any results for the variance function
ξ(·).

The contributions of this paper are the following. In the first part of the
paper we consider the case of one-sided reflection.

• In Section 3 we consider the special case of a spectrally positive Lévy
process, that is, a Lévy process without negative jumps. We present an
elementary proof of the fact that the expected value of the position at
time t is concave in t. Although this result was already covered by [7], we
included it because we believe the proof technique is interesting, and may
be of use in other situations as well. More particularly, the proof relies on
the concept of complete monotonicity to show that the desired property
holds in the special case of a compound Poisson Lévy process, and then
uses a limiting argument (approximating any spectrally positive Lévy
process by a suitable sequence of compound Poisson processes).

• Section 4 focuses on one-sided reflection, but now we treat the case of
general Lévy input, roughly as follows. First we prove the desired result
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for the discrete-time version of the Lévy process (which is a random
walk) by means of an extremely short and insightful argument. Then a
limiting procedure ensures that the concavity is preserved in continuous
time, thus reestablishing the result by [8]. Importantly, the same method
(that is, first proving the desired property for the random walk, and then
a limiting argument) can be followed to prove the new result that the
variance curve, i.e., ξ(t), is increasing in t; the proof relies on the concept
of ‘concordance’.

The second part of the paper concentrates on similar issues, but now in the
setting of a two-sided reflected Lévy process.

• As mentioned above, new explicit formulae for Vt (in terms of Ss for
0 ≤ s ≤ t) have appeared recently. We derive in Section 5 a new explicit
representation, which is similar to the one found in [10], but somewhat
shorter. This alternative representation carries over to continuous time,
as argued in Section 6.

• Relying on the new representation for Vt for the case of two-sided reflec-
tion, as presented in Section 6, in Section 7 we prove the new result that
ζ(t) is an increasing concave function of t. We do this by first proving
the desired result for the discrete-time counterpart, that is, a random
walk reflected at 0 and K, and then we use a limiting argument. We
finish this second part with the observation that the results carry over
to the situation in which we just assume stationary increments (rather
than stationary independent increments).

The paper now continues with a section in which the model and some prelim-
inaries are given.

2 Model, notation, and preliminaries

In this paper we study reflected versions of the Lévy process {St}t≥0. We
distinguish between one-sided and two-sided reflection.

• One-sided reflection (at 0). The reflection of {St}t≥0 at 0, which we
denote by {Vt}t≥0, can be formally introduced as follows (see for instance
[2, Ch. IX]). Define the increasing process {Lt}t≥0 by Lt = − inf0≤s≤t Ss;
this process is commonly referred to as the local time at 0. Then the
reflected process (or: workload process, queueing process) {Vt}t≥0 is
given through

Vt := St + max{Lt, V0};
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observe that Vt ≥ 0 for all t ≥ 0. Throughout this paper the focus lies on
the special case that V0 = 0, and hence Vt = St+Lt. It is straightforward
that ζ(t) increases in t, using Proposition 3 p. 158 in [4].

• Two-sided reflection (at 0 and K > 0). Again starting off at 0, we now
have that the position of the reflected process at time t, i.e. Vt, is given
by Vt = St + Lt − L̄t, with the increasing process {L̄t}t≥0 denoting the
local time at K, given as part of the solution to a Skorokhod problem. In
[10] an explicit expression for Lt and L̄t (in terms of Ss with 0 ≤ s ≤ t)
is given. In particular,

Vt = St − sup
s∈[0,t]

[(

(Ss −K)) ∨ inf
u∈[0,t]

Su

)

∧ inf
u∈[s,t]

Su

]

.

We recall that we denote ζ(t) := EVt and ξ(t) := VarVt.

In Section 3 we consider the case in which the underlying Lévy process
does not have negative jumps (i.e. is spectrally positive), and in which there
is just reflection at 0. Assuming stability (i.e. ES1 < 0), the Laplace expo-
nent ϕ(α) := log Ee−αS1 is given by a function ϕ(·) : [0,∞) 7→ [0,∞) that
is increasing and convex on [0,∞), with slope ϕ′(0) = −ES1 in the origin.
Therefore the inverse ψ(·) of ϕ(·) is well defined on [0,∞). In the sequel we
rule out the trivial case that {St}t≥0 is a (downward) subordinator, i.e., a
monotone (decreasing) process. Throughout, we assume that ϕ′′(0) is finite
(unless stated otherwise).

Important examples of spectrally positive Lévy processes are the following.
(1) Brownian motion with drift, where ϕ(α) = −αµ+ 1

2α
2σ2. (2) Compound

Poisson with drift. Jobs arrive according to a Poisson process of rate λ; the
jobs B1, B2, . . . are i.i.d. samples from a distribution with Laplace transform
β(α) := Ee−αB; the storage system is continuously depleted at a rate −M < 0
(where M is often referred to as the drift). It can be verified that ϕ(α) =
Mα− λ+ λβ(α).

Using [2, Thm. IX.3.10] or [9], it is straightforward to prove that, as long
as the Lévy process is spectrally positive, µV := EV∞ = −ϕ′′(0)/(2ϕ′(0)), and

ρ(ϑ) :=

∫ ∞

0
e−ϑtEVtdt =

∫ ∞

0
e−ϑtζ(t)dt = −ϕ

′(0)

ϑ2
+

1

ϑψ(ϑ)
. (2.1)

3 One-sided reflection: spectrally positive input

This section focuses on establishing a number of structural properties of ζ(·)
for the case of spectrally positive Lévy input. As mentioned above, it is ev-
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3. One-sided reflection: spectrally positive input

ident that ζ(·) is positive and increasing; in this section we prove that it is
concave as well. We do this by extensively using the concept of completely
monotonous functions [3, 13]. The desired result is first proven for the case
of compound Poisson input; then we show how to construct a sequence of
compound Poisson processes approximating any spectrally positive Lévy pro-
cess arbitrarily closely, which allows us to prove the claim. The class C of
completely monotone functions is defined as follows.

Definition 3.1. A function f(α) on [0,∞) is completely monotone if for all n ∈ N

(−1)n
dn

dαn
f(α) ≥ 0.

We write f(α) ∈ C .

The following deep and powerful result is due to Bernstein [3]. It says
that there is equivalence between f(α) being completely monotone, and the
possibility of writing f(α) as a Laplace transform. For more background and
basic properties of completely monotone functions, see [6, pp. 439-442].

Theorem 3.2. [Bernstein] A function f(α) on [0,∞) is the Laplace transform of a
non-negative random variable if and only if (i) f(α) ∈ C , and (ii) f(0) = 1.

In the M/G/1 setting, ψ(ϑ) = λ + ϑ − λπ(ϑ), where π(ϑ) is the Laplace
transform of the busy period, and the deterministic service rate has value 1;
it is assumed that −λβ′(0) < 1. In our decomposition Vt = St + Lt, we have
Lt can increase only when Vt = 0 and then with a unit drift, hence:

Lt =

∫ t

0
I(Vs = 0)ds .

Taking means and using ‘Tonelli’ yields ζ(t) = −ϕ(0)t+
∫ t
0 P(Vs = 0)ds, and

we obtain ζ ′(t) = −ϕ(0) + P(Vs = 0). Furthermore, we observe that ζ ′′(t)
exists: Using Mt := sup0<s≤t Ss =D Vt, and letting ∆t denote the event that
St makes at least on jump in (ε, t+ ε) we obtain:

ε−1 (P(Vt = 0) − P(Vt+ε = 0)) = ε−1 (P(Mt = 0) − P(Mt+ε = 0))

= ε−1
P(Mt = 0,Mt+ε > 0) = ε−1

P(Mt = 0,Mt+ε > 0|∆t)(1 − eλε)

∼ P(Mt = 0,Mt+ε > 0|∆t)λ .

Since ε 7→ P(Mt = 0,Mt+ε > 0|∆t) is decreasing, we obtain that ζ ′′(t) exists.
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Let us consider the transforms of ζ ′(t) and ζ ′′(t). Using integration by
parts, it is readily checked that

∫ ∞

0
e−ϑtζ ′(t)dt = −ϕ

′(0)

ϑ
+

1

ψ(ϑ)
.

Applying integration by parts once again yields that
∫ ∞

0
e−ϑtζ ′′(t)dt = −ζ ′(0) − ϕ′(0) +

ϑ

ψ(ϑ)
= −

(

1 − ϑ

ψ(ϑ)

)

,

using that

ζ ′(0) = lim
ϑ→∞

∫ ∞

0
ϑe−ϑtζ ′(t)dt = 1 − ϕ′(0);

notice that the transform of ζ ′′(t) is only well defined when ϑ/ψ(ϑ) has a finite
limit as ϑ → ∞, which is indeed the case for compound Poisson input. The
transform can further be simplified to

− λ(1 − π(ϑ))

λ(1 − π(ϑ)) + ϑ
. (3.1)

Observe that Lemma 4.1 (item 1) of [13] entails that the negative of (3.1) is
in C , thus proving that indeed in the M/G/1 context ζ ′′(t) is negative, i.e.,
ζ(t) is concave. We have proved the following

Lemma 3.3. ζ(t) is concave for compound Poisson input processes with negative
drift (with one-sided reflection).

We now consider the context of a general spectrally positive Lévy process,
and use Lemma 3.3 to prove that also in this setting ζ(t) is concave. We first
recall that the Laplace exponent ϕ(α) of a spectrally positive Lévy process
can be written as [4, Section VII.1], with M ∈ R, σ2 > 0, and measure Πϕ(·)
such that

∫

(0,∞) min{1, x2}Πϕ(dx) <∞,

ϕ(α) = αM +
1

2
α2σ2 +

∫

(0,∞)
(e−αx − 1 + αx1(0,1))Πϕ(dx).

The idea is now to approximate the spectrally positive Lévy process arbitrarily
closely by a sequence of compound Poisson processes. To this end, let (εn)n∈N

be a sequence of numbers in (0, 1], such that εn ↓ 0. Then we can rewrite
ϕ(α) = ϕn(α) + ϕ̄n(α), with

ϕn(α) =

(

M +

∫ 1

εn

xΠϕ(dx) +
σ2

εn

)

α+
σ2

ε2n

(
e−αεn − 1

)
+

∫ ∞

εn

(
e−αx − 1

)
Πϕ(dx);
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3. One-sided reflection: spectrally positive input

ϕ̄n(α) = σ2

(
1

2
α2 − e−αεn + αεn − 1

ε2n

)

+

∫ εn

0

(
e−αx − 1 + αx

)
Πϕ(dx).

Let ψn(·) denote the inverse of ϕn(·).

Lemma 3.4. (i) For all α ≥ 0, ϕn(α) → ϕ(α) as n→ ∞.
(ii) For all α ≥ 0, ϕ′n(α) → ϕ′(α) as n→ ∞.
(iii) For all n ∈ N, ϕ′n(0) = ϕ′(0).

Proof. Straightforward calculations. 2

It is important to notice that, for any n ∈ N, ϕn(·) can be interpreted as
the Laplace exponent of a compound Poisson process (with negative drift),
say {Sn,t}t≥0. This is seen as follows. The drift term is

(

M +

∫ 1

εn

xΠϕ(dx) +
σ2

εn

)

,

which is positive for n sufficiently large. Then, the term (σ2/ε2n) · (e−αεn − 1)
can be interpreted as the contribution of a Poisson stream (arrival rate σ2/ε2n)
of jobs of deterministic size εn. Also,

∫ ∞

εn

(
e−αx − 1

)
Πϕ(dx) = Πϕ([εn,∞))

∫ ∞

εn

(
e−αx − 1

) Πϕ(dx)

Πϕ([εn,∞))
,

which is the contribution of a Poisson stream (arrival rate Πϕ([εn,∞))) of
jobs, whose sizes are i.i.d. samples from a ‘truncated distribution’ with density
Πϕ(dx)/Πϕ([εn,∞)), for x ≥ εn.

Just as we introduced the reflected version {Vt}t≥0 of {St}t≥0, we can
construct the reflected version {Vn,t}t≥0 of {Sn,t}t≥0. Analogously to ζ(t),
we denote ζn(t) := EVn,t. Note that, due to Lemma 3.4.(iii), the queueing
processes {Vn,t}t≥0 are stable (recall that we assumed ϕ′(0) > 0). From (2.1),
we have that for any n ∈ N,

ρn(ϑ) :=

∫ ∞

0
e−ϑt ζn(t)dt = −ϕ

′(0)

ϑ2
+

1

ϑψn(ϑ)
. (3.2)

Corollary 3.5. For all n ∈ N, ζn(t) is positive (that is, larger than or equal to 0),
increasing (non-strictly), and concave (non-strictly).

Lemma 3.6. For all ϑ ≥ 0, ψn(ϑ) → ψ(ϑ) as n→ ∞.
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Proof. First observe that ϕn(α) → ϕ(α) (Lemma 3.4) entails that, as n→ ∞,

| ψn(ϕ(α)) − ψn(ϕn(α)) | ≤
∣
∣
∣
∣
∣

sup
ϑ≥0

ψ′n(ϑ)

∣
∣
∣
∣
∣
· | ϕ(α) − ϕn(α) | → 0,

where we used that ψn(·) is concave with slope 1/ϕ′(0) in 0. Hence it also
holds that ψn(ϕ(α)) converges, as n → ∞, to α = ψ(ϕ(α)). But as ϕ(α) is a
bijection of [0,∞) onto [0,∞), this proves the claim.

Proposition 3.7. ζ(t) is concave for spectrally positive Lévy processes (with one-
sided reflection).

Proof. Our proof consists of the following steps.

(1) Using (3.2) and Lemma 3.6, we see that, for all ϑ ≥ 0,

lim
n→∞

ρn(ϑ) = ρ(ϑ) =

∫ ∞

0
e−ϑtζ(t)dt.

(2) Realize that, as ζn(·) is positive (that is, larger than or equal to 0), in-
creasing (non-strictly), and concave (non-strictly) due to Lemma 3.3,
limn→∞ ζn(·) (given it exists) inherits these properties.

(3) Because of dominated convergence (use that ζn(t) increases in t, and
that µV,n := ζn(∞) → ζ(∞) = µV as n → ∞; these observations imme-
diately yield an integrable majorizing function),

lim
n→∞

ρn(ϑ) = lim
n→∞

∫ ∞

0
e−ϑtζn(t)dt =

∫ ∞

0
e−ϑt lim

n→∞
ζn(t)dt.

(4) The uniqueness of the Laplace transform, together with Steps (1) and
(3), now implies that we have limn→∞ ζn(t) = ζ(t). Then Step (2) yields
the stated.

This finishes the proof.

4 One-sided reflection: general Lévy input

In this section we prove that for the one-sided reflection we have ζ(t) is in-
creasing and concave, and that ξ(t) is increasing.
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4. One-sided reflection: general Lévy input

Discrete-time case

Let X1,X2, . . . be an i.i.d. sequence of random variables, and define S0 := 0,
Sn := X1 + X2 + · · · + Xn, its associated random walk. Define the convex
function Ψ(x) := max(0, x) = x+ and let {Vn}∞n=0 denote the reflected version
of {Sn}∞n=0, that is, Vn is given by the Lindley recursion Vn+1 := Ψ(Vn+Xn+1),
initialized by V0 := 0. By [2, Cor. III.6.4], Vn =D Mn, where Mn denotes the
‘running maximum’, i.e., max0≤k≤n Sk.

We say a sequence (an)
∞
n=0 is concave if an+2 + an ≤ 2an+1 ∀n, that is,

if an+1 − an is decreasing. We now give an extremely short proof of the fact
that ζ(n) := EVn is a concave sequence.

Proposition 4.1. ζ(n) is concave for random walks (with one-sided reflection).

Proof. According to [2, Prop. VIII.4.5], we have that ζ(n)− ζ(n−1) = ES+
n /n.

Furthermore, using (Xi, Sn) =D (X1, Sn) we have

Sn = E[Sn | Sn] =

n∑

i=1

E[Xi | Sn] =

n∑

i=1

E[X1 | Sn] = nE[X1 | Sn] a.s.

which implies E[X1 | Sn] = Sn/n a.s, which in turn implies E[Sn/n | Sn+1] =
Sn+1/(n+1) a.s. and applying the conditional Jensen’s inequality to the con-
vex function Ψ(·), we conclude

S+
n+1

n+ 1
= Ψ

(

E

[
Sn
n

| Sn+1

])

≤ E

[

Ψ

(
Sn
n

)

| Sn+1

]

= E

[
S+
n

n
| Sn+1

]

a.s.,

and taking means on both sides yields the desired result.

Our next goal is to prove that for the random walk introduced above
ξ(n) = Var(Sn) increases in n. We do so by using the concept of concordance,
cf. the results of [12]. Here, a pair of random variables (X,Y ) or its distribution
function F is said to be positively quadrant dependent if

P(X ≤ x, Y ≤ y) ≥ P(X ≤ x)P(Y ≤ y) ∀x, y.

According to Lemma 3 of [12] it holds that positively quadrant dependence
implies that the covariance between X and Y is non-negative: Cov(X,Y ) ≥ 0.
Furthermore, we define two real-valued functions r, s to be concordant for
the ith coordinate if, considered as functions of the ith coordinate (with all
other coordinates held fixed) they are either both non-decreasing or both non-
increasing. The main result in [12], which we will use below, is the following.
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Theorem 4.2. [Lehmann] Let (X1, Y1), . . . , (Xn, Yn) be independent with distri-
bution functions F1, . . . , Fn. Assume Fi is positively quadrant dependent and let r
and s be concordant for the ith coordinate. Set

X := r(X1, · · · ,Xn), Y := s(Y1, · · · , Yn).

Then (X,Y ) is positively quadrant dependent.

In particular, since (X,X) is positively quadrant dependent, we have

Cov(r(X1,X2, · · · ,Xn), s(X1,X2, · · · ,Xn)) ≥ 0

if the Xi’s are independent and r and s are concordant for all coordinates.
Using this insight, we can prove the following result.

Theorem 4.3. ξ(n) is increasing for random walks (with one-sided reflection).

Proof. Using the identity

Var(X + Y ) = Cov(X,X) + 2Cov(X,Y ) + Cov(Y, Y )

= Cov(X,X) + Cov(2X + Y, Y )

withX ≡Mn−1 and Y ≡ (Sn−Mn−1) ·I(Mn−1 < Sn) (where I(A) is the indi-
cator function of the eventA), we obtain that Var(Mn) equals Var(Mn−1)+jn,
where

jn := Cov(2Mn−1+(Sn−Mn−1)·I(Mn−1<Sn), (Sn−Mn−1)·I(Mn−1<Sn)) ,

and therefore the proof is complete if we can show that jn ≥ 0. For x :=
(x1, · · · , xn) ∈ R

n, we set sn ≡ sn(x) := x1 + · · · + xn and mn ≡ mn(x) =
max(0, s1, · · · , sn), and we define functions

rn(x)=2mn−1+(sn−mn−1)·I(sn>mn−1), tn(x)=(sn−mn−1)·I(sn>mn−1),

so that we have that jn = Cov(rn(X), tn(X)). Hence, we wish to prove that
rn and tn are concordant in all coordinates. We shall show that both func-
tions are increasing in all their coordinates. To this end first rewrite tn(x) as
max(t̂n(x), 0), where

t̂n(x) = min(x1 + · · · + xn−1, x2 + · · · + xn−1, · · · , 0) + xn, (4.1)

which is evidently increasing in all its coordinates. Finally, regarding rn, we
notice that since rn(x) = 2mn−1 + tn(x) and the fact that the term 2mn−1 =
2max(x1 + · · · + xn−1, · · · , 0) is increasing, we see that so is rn, and we are
done.
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4. One-sided reflection: general Lévy input

Continuous-time case

We now consider a Lévy process {St}t≥0, as well as its reflection at 0, denoted
by {Vt}t≥0. We wish to extend Proposition 4.1 and Theorem 4.3 to Lévy
processes, that is, we wish to prove that ζ(·) is concave, and ξ(·) is increasing.
We prove the former by showing that for given 0 ≤ x < y < z we have

ζ(y) − ζ(x)

y − x
≥ ζ(z) − ζ(x)

z − x
,

which is an alternative characterization of concavity. Throughout, we assume
that ES1 < 0 and ES2

1 < ∞, which is a natural assumption, since it implies
that limt→∞ ζ(t) <∞, as proven in [1, Cor. 4.1].

Let 0 ≤ x < y < z be given, and let T ∈ R be any number larger than z.
In the sequel we use bold fonts to denote the corresponding process between 0
and T ; for instance, S := {St}0≤t≤T . Define the one-sided reflection mapping
S : D[0, T ] → D[0, T ] by

S [x](t) := x(t) − inf
s≤t

x(s) for x ∈ D[0, T ].

This means that the value of the reflected process at time t, that is, Vt, is
alternatively written as S [S](t).

We define the sequence Sn := {Snt }t≥0 by Snt = Sbntc/n, n ∈ N, 0 ≤ t ≤ T ,
which, as shown below, approximates the Lévy process S sufficiently well for
our purposes. We also introduce the reflected version V n

t = S [Sn](t) of the
elements of the sequence Sn. Let ζn(·) and ξn(·) be defined in a self-evident
manner as piecewise constant functions.

We prove our claims on ζ(·) and ξ(·) by first showing that S [Sn] converges
weakly to S [S] in the Skorokhod topology, by which we mean the J1-topology
on D[0, T ]; see [15] for background on the J1-topology. This result will be used
to prove uniform convergence of the ζn(·) and ξn(·) functions, which is needed
in order to extend our discrete-time results to continuous time.

Lemma 4.4. V n
t
D→ Vt, as n→ ∞.

Proof. First we prove Sn
D→ S, n → ∞ in D[0, T ] equipped with the Sko-

rokhod topology, under the assumption that ES1 = 0 (which we later gener-
alize to any value of ES1 6= 0). To this end, we need to prove convergence
of the corresponding finite-dimensional distributions, as well as tightness.
We notice that there is pointwise convergence, i.e. Snt = Sbntc/n → St a.s.
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as n → ∞, as a direct consequence of the fact that S is right-continuous.
Furthermore, for s < t,

(Snt − Sts, S
n
s ) = (Sbntc/n − Sbnsc/n, Sbnsc/n)

D→ (St − Ss, Ss),

applying (i) Snt → St a.s., (ii) independence of the components of this random
vector, and (iii) [5, Thm. 3.2]. The case with more than two time points is
dealt with analogously, and we have thus proved convergence of the finite-
dimensional distributions. Regarding tightness, we have, for t1 ≤ t ≤ t2 and
σ2 := Var(S1),

E(Snt − Snt1)
2(Snt2 − Snt )2 =

σ4

n2
(bntc − bnt1c)(bnt2c − bntc) ≤ σ4(t2 − t1)

2 ,

where the last inequality is due to [5, Eqns. (16.4)-(16.5)]. Tightness now fol-
lows as a direct application of [5, Thm. 15.6].

The case where ES1 =: µ 6= 0 follows by defining processes Ŝ
n

through

Ŝnt := Sbntc/n − µbntc
n

,

and using the above to conclude that Ŝ
n D→ Ŝ. Furthermore, µbntc/n →

µt uniformly, and therefore also in the Skorokhod topology. Since {µt} is
continuous, the functions {St + µt} and {µt} have no common discontinuity
points and therefore

Sn =

{

Sbntc/n −
µbntc
n

}

+

{
µbntc
n

}

D→ {St − µt} + {µt} = S.

This completes to proof of the weak convergence Sn
D→ S.

Next, we use the Skorokhod Representation Theorem, i.e. Thm. 3.2.2 in
[15], to construct a sequence of processes

S̃
n

=
{
S̃ns
}

s≥0
n ∈ N ,

with S̃
n

=D S
n such that

lim
n→∞

S̃
n

= S̃ a.s. in the Skorokhod topology on D[0, T ],

where S̃=DS. Since S is continuous in the Skorokhod topology in [15, Thm.
13.5.1], we have

lim
n→∞

{

S [S̃
n
]
}

=
{

S [S̃]
}

a.s.
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Furthermore, since P(∆S [S̃
n
](t) 6= 0) ≤ P(∆S̃t 6= 0) = 0 for all t ≥ 0 we

conclude, relying on [5, p. 121], that S [S̃
n
](t) → S [S̃](t) a.s. as n → ∞ ,

0 ≤ t ≤ T. Since almost sure convergence implies weak convergence, it holds

that S [S̃
n
](t)

D→ S [S̃](t) which together with S̃ =D S implies S [Sn](t)
D→

S [S](t), 0 ≤ t ≤ T, or, in other words, V n
t
D→ Vt for all 0 ≤ t ≤ T .

Lemma 4.5. As n→ ∞,

sup
0≤y<∞

|ζn(y) − ζ(y)| → 0.

As n→ ∞, for a, b ≥ 0,

sup
a≤y≤b

|ξn(y) − ξ(y)| → 0 .

Proof. ζn(t) → ζ(t) follows from Lemma 4.4 and dominated convergence,
using that V n

t ≤ supt≤T St − inft≤T St; here realize that E[supt≤T St] < ∞
(because of the fact that E[supt≤T St] ≤ limt→∞ EVt < ∞), and that we also
have E[− inft≤T St] <∞ (due to [2, Lemma IX.3.3]).

The stated uniform convergence is now a consequence of Corollary 1.7,
after extending the function ζn(t) and ζ(t) to the negative half-line by equat-
ing them to 0 for t < 0, and by noticing that EV n

t ≤ EVt ≤ limt→∞ EVt <∞.
Similarly, the result for ξ(t) is a consequence of Corollary 1.7, after ob-

serving that both E(supt≤T St)
2 and E[(inft≤T St)

2] are finite, as follows from
[2, Lemma IX.3.3].

To prove that the function ζ(·) is concave, we have to circumvent the
difficulty that the functions ζn(·), being piecewise constant, themselves are
not concave. This is done by defining a linear interpolation, which is concave,
see (4.2) below.

Note that, with a slight abuse of notation, from now on we allow the
one-sided reflection mapping to be applied to sequences, so that

S [a](n) = an − min
0≤i≤n

ai a = (ai)
∞
i=0 ∈ R

∞.

Theorem 4.6. ζ(t) is concave, and ξ(t) is increasing for Lévy processes (with one-
sided reflection).

Proof. We begin by proving the claimed concavity of ζ(·). Fix n ∈ N and
consider a sequence of i.i.d. random variables {Y n

i }i=1 such that Y n
1 =D S1/n.

Then

Sn
D
=







bntc
∑

i=1

Y n
i







t≥0

,
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defining empty sums as 0. Now consider the random walk T nm :=
∑m

i=1 Y
n
i ,

and its reflected version (S [T n](k))∞k=1, and set sn(k) := E[S [T n](k)]. We
know from Proposition 4.1 that the sequence (sn(m))∞m=1 is concave, and
hence so is the following function (which linearly interpolates):

ζ̄n(t) := n(sn(bntc + 1) − sn(bntc))t+ (bntc + 1)sn(bntc) − sn(bntc + 1)btnc.
(4.2)

Note that ζ̄n(bntc/n) = sn(bntc) = E[V n
t ] and ζ̄n((bntc + 1)/n) = sn(bntc +

1) = E[V n
t+ 1

n

], the latter being seen by realizing that

sn(bntc + 1) = ES [T n](bntc + 1) = ES [T n](bn(t+ 1/n)c)
= ES [Sn] (t+ 1/n) = E[V n

t+ 1
n

].

By concavity of ζ̄n(·), we have, for x < y < z and any n ∈ N,

ζ̄n(y) − ζ̄n(x)

y − x
≥ ζ̄n(z) − ζ̄n(x)

z − x
.

Since n was arbitrary, we may let n approach infinity to obtain

ζ(y) − ζ(x)

y − x
≥ ζ(z) − ζ(x)

z − x
,

using ζn(t) = ζ̄n(bntc)/n) ≤ ζ̄n(t) ≤ ζ̄n(dnte)/n) = ζn(t + 1/n) and the
uniform convergence established in Lemma 4.5.

Next, we define ξn(t) := VarV n
t , and vn(k) = Var(S [T n]). From Propo-

sition 4.1 we have, for t1 ≤ t2, ξn(t1) = vn(bnt1c) ≤ vn(bnt2c) = ξn(t2), and
letting n tend to infinity and invoking the convergence of ξn, as given by
Lemma 4.5, we conclude that ξ(t1) ≤ ξ(t2).

5 Two-sided reflection: solution of Lindley recursion

in discrete time

Let, as before, X = (Xn)
∞
n=1 ∈ R

∞ be an i.i.d. sequence, and S0 := 0,
Sn = X1 + · · ·Xn, for n ≥ 1. Where the previous sections studied the one-
sided Lindley recursion, we now consider a variant in which there is reflection
at K > 0 as well:

Vn+1 = 0 ∨ (Vn +Xn+1) ∧K;

we say that the random walk has two reflecting barriers, viz. 0 and K. We
write the Vn obtained through this procedure as D [S](n) (analogously to
S [S](n)).
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5. Two-sided reflection: solution of Lindley recursion in discrete time

In the discrete-time, one-sided case, as mentioned before, the Lindley re-
cursion was solved through

S [s](n) = sn − min
0≤i≤n

si,

for s = (si)
∞
i=0 ∈ R

∞. Our first goal is to find the counterpart of this solution
for the case of two-sided reflection. This is done in the following result. We
denote, for a finite index set A,

min
j∈A

(aj, bk) := min
j∈A

aj ∧ bk.

Proposition 5.1. The solution of the two-sided reflection is given by

D [s](n) = max
k∈{0,··· ,n}

(

min
j∈{k,··· ,n}

(sn − sk,K + sn − sj)

)

(5.1)

Proof. We prove the claim by induction. For n = 1 we indeed have

max
k∈{0,1}

( min
j∈{k,1}

(s1 − sk ∧K + s1 − sj))

= max(min(s1,K + s1,K),min(0,K)) = 0 ∨ x1 ∧K = D [s](1).

Now, assume (5.1) holds for some n. We first focus on the case xn+1 ≤ 0.
Then we have that

D [s](n+ 1) = vn+1 = 0 ∨ (vn + xn+1) ∧K = 0 ∨ (vn + xn+1)

= 0 ∨
(

max
k∈{0,··· ,n}

(

min
j∈{k,··· ,n}

(sn − sk,K + sn − sj)

)

+ xn+1

)

=

= 0 ∨
(

max
k∈{0,··· ,n}

(

min
j∈{k,··· ,n}

(sn+1 − sk,K + sn+1 − sj)

))

. (5.2)

Since xn+1 ≤ 0, we have

min
j∈{k,··· ,n+1}

sn+1 − sj = min
j∈{k,··· ,n}

sn+1 − sj ,

so that (5.2) equals

0 ∨
(

max
k∈{0,··· ,n}

(

min
j∈{k,··· ,n+1}

(sn+1 − sk,K + sn+1 − sj)

))

=

= max
k∈{0,··· ,n+1}

(

min
j∈{k,··· ,n+1}

(sn+1 − sk,K + sn+1 − sj)

)

, (5.3)
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as desired. Similarly, when xn+1 > 0 we have:

vn+1 = 0 ∨ (vn + xn+1) ∧K = (vn + xn+1) ∧K

=

(

max
k∈{0,··· ,n}

(

min
j∈{k,··· ,n}

(sn − sk,K + sn − sj)

)

+ xn+1

)

∧K

= max
k∈{0,··· ,n}

(

min
j∈{k,··· ,n}

(sn+1 − sk,K + sn+1 − sj) ∧K
)

,

which equals (5.3) as well, as desired. This finishes the proof.

Remark 5.2. To see why the doubly-reflected process has the particular form
(5.1), we may, for n ≥ k, define wkn to be the value obtained by applying the
recursion wkn+1 = (wkn + xn+1) ∧ K to the increments xk+1, xk+2, . . . , with
wkk = 0. Let vn be the sequence of outcomes of the two-sided reflection.

Then wkn = minj∈{k,··· ,n}(sn − sk,K + sn − sj), and obviously wkn ≤ vn.

But vn has to be one of the wkn for some k ∈ {0, · · · , n}, namely the largest
i such that vi = 0. Therefore vn = maxk∈{0,··· ,n}w

k
n, so that we obtain (5.1).

This explains why this specific expression comes out. ♦

Next, we present an alternative expression for D [s], which we will need
when we treat the continuous-time case.

Proposition 5.3. The solution of the two-sided reflection is given by

D [s](n) = min
k∈{0,...,n}

[(

(sn − sk +K) ∧ max
i∈{0,...,n}

(sn − si)

)

∨ max
i∈{k,...,n}

(sn − si)

]

(5.4)

Proof. The proof is again by induction. The case n = 1 is a matter of straight-
forward verification. Next, assume the stated holds for some n. Then we
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6. Two-sided reflection: solution of Lindley recursion in continuous time

have

= 0 ∨
(

min
k∈{0,...,n}

[(
(sn − sk +K) ∧ max

i∈{0,...,n}
(sn − si)

)

∨ max
i∈{k,...,n}

(sn − si)
]
+ xn+1

)

∧K

= 0 ∨ min
k∈{0,...,n}

[(
(sn+1 − sk +K) ∧ max

i∈{0,...,n}
(sn+1 − si)

)

∨ max
i∈{k,...,n}

(sn+1 − si)
]

∧K

= min
k∈{0,...,n}

[(
(sn+1 − sk +K) ∧ max

i∈{0,...,n}
((sn+1 − si) ∨ 0)

)

∨ max
i∈{k,...,n}

((sn+1 − si) ∨ 0)
]

∧K

= min
k∈{0,...,n}

[(
(sn+1 − sk +K) ∧ max

i∈{0,...,n+1}
(sn+1 − si)

)

∨ max
i∈{k,...,n+1}

(sn+1 − si)
]

∧K. (5.5)

We notice that
(
(sn+1 − sk +K) ∧ max

i∈{0,...,n+1}
(sn+1 − si)

)
∨ max
i∈{k,...,n+1}

(sn+1 − si)

=

{
maxi∈{0,...,n+1}(sn+1 − si) if k = 0;
maxi∈{0,...,n+1}(sn+1 − si) ∧K if k = n+ 1,

so that (5.5) equals

min
k∈{0,...,n+1}

[(
(sn+1 − sk +K) ∧ max

i∈{0,...,n+1}
(sn+1 − si)

)
∨ max
i∈{k,...,n+1}

(sn+1 − si)
]

This proves the claim.

The expressions (5.1) and (5.4) provide two solutions to the two-sided Lind-
ley recursion. Since the latter is a discrete-time analogue of the two-sided
reflection mapping found in [10], Proposition 5.1 suggests an alternative ex-
pression for the two-sided reflection mapping. Our next goal is to formulate
and prove this. We do this in the next section.

6 Two-sided reflection: solution of Lindley recursion

in continuous time

The starting point of two-sided reflection in 0 and K > 0 in the continuous-
time case, is the Skorokhod problem. Given ψ ∈ D[0,∞) there exists a
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functional D [ψ] taking only values in [0,K] and non-decreasing functions η`
and ηu such that D [ψ] = ψ + η` − ηu and

∫ ∞

0
I(D [ψ](s) > 0)dη`(s) = 0,

∫ ∞

0
I(D [ψ](s) < K)dηu(s) = 0.

The triple (D [ψ], η`, ηu) is said to solve the Skorokhod problem for ψ on [0,K],
and we think of D [ψ] as ψ reflected at 0 and K. The existence and uniqueness
of such a triple was established in [14], and explicit solutions were given in
[11] and [10], the simplest of which is

D [ψ](t) = ψ(t) − sup
s∈[0,t]

[(

(ψ(s) −K)) ∨ inf
u∈[0,t]

ψ(u)

)

∧ inf
u∈[s,t]

ψ(u)

]

, (6.1)

where we assume ψ(0) = 0; notice that this is the continuous-time counterpart
of (5.4). In view of Propositions 5.1 and 5.3 it seems reasonable to conjecture
that D = M , where

M [ψ](t) := sup
s∈[0,t]

[

(ψ(t) − ψ(s)) ∧ inf
u∈[s,t]

(K + ψ(t) − ψ(u))

]

. (6.2)

We prove this by first showing that M is Lipschitz-continuous in the J1 topol-
ogy.

Lemma 6.1. The mapping M is Lipschitz-continuous in the uniform and J1 metrics
as a mapping from D[0, T ] for T ∈ [0,∞], with constant 2.

Proof. We follow the proof of Corollary 1.5 in [11] closely. Fix T < ∞. We
begin by proving Lipschitz-continuity in the uniform metric. Define

Rt[ψ](s) :=

[

(−ψ(s)) ∧ inf
u∈[s,t]

(K − ψ(u))

]

; S[ψ](t) := sup
s∈[0,t]

Rt[ψ](s). (6.3)

For ψ1, ψ2 ∈ D[0, T ] we have

S[ψ1](t) − S[ψ2](t) ≤ sup
s∈[0,t]

(Rt[ψ1](s) −Rt[ψ2](s))

≤ sup
s∈[0,t]

[
|−ψ1(s) − (−ψ2(s))| ∨

∣
∣ inf
u∈[s,t]

(K − ψ1(u)) − inf
u∈[s,t]

(K − ψ2(u))
∣
∣
]

≤ ‖ ψ1 −ψ2 ‖T .

The same inequality applies to S[ψ2](t) − S[ψ2](t), so that taking the supre-
mum leads to

‖ S[ψ1] − S[ψ2] ‖T≤‖ ψ1 −ψ2 ‖T ,
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7. Two-sided reflection: structural properties

and this proves Lipschitz-continuity, with constant 2:

‖M [ψ1] − M [ψ2]‖T ≤‖ψ1 −ψ2 ‖ + ‖S[ψ1] − S[ψt]‖T ≤ 2 ‖ψ1 −ψ2 ‖T .

We now turn to the J1-metric, and we let M denote the class of strictly in-
creasing continuous functions from [0, T ] onto itself with continuous inverse.
An elementary verification yields that for ψ ∈ D[0, T ] and λ ∈ M we have
M [ψ ◦ λ] = M [ψ] ◦ λ. With e being the identity, this leads to

dJ1(M [ψ1],M [ψ2]) = inf
λ∈M

{‖ M [ψ1] ◦ λ− M [ψ2] ‖T ∨ ‖ λ− e ‖T }

= inf
λ∈M

{‖ M [ψ1 ◦ λ] − M [ψ2] ‖T ∨ ‖ λ− e ‖T }

≤ inf
λ∈M

{2 ‖ ψ1 ◦ λ−ψ2 ‖T ∨ ‖ λ− e ‖T }

≤ 2dJ1(ψ1,ψ2),

where we used the Lipschitz-continuity in the uniform metric. This proves
Lipschitz-continuity in the J1 metric, again with constant 2; it is valid for
every T <∞ and hence also for T = ∞.

We are now ready to prove that D = M .

Theorem 6.2. For ψ ∈ D[0,∞) we have D [ψ](t) = M [ψ](t).

Proof. Let ψ ∈ D[0,∞) be given, and define γn and ψn by γn(t) := bntc/n,
ψn(t) := ψ(γn(t)). Since γn → e in the uniform topology, we have γn →dJ1

e

and hence (ψ,γn) → (ψ,e) in the strong version of the J1 topology (see p.
83 in [15]). Since e is strictly increasing we may apply Theorem 13.2.2 in
[15] to obtain ψn →dJ1

ψ. Fix t < T , and consider ψ as element of D[0, T ].
Since the image ψn([0, T ]) is finite, we may apply Propositions 5.1 and 5.3, in
conjunction with (6.1), to obtain D [ψn] = M [ψn]. Next, we let n → ∞ and
use the J1-continuity of the D mapping proved in [11], and the J1-continuity
of M proved to obtain Lemma 6.1. We thus establish the stated.

Remark 6.3. LettingK → ∞ yields sups∈[0,t] [(ψ(t) − ψ(s))] ,which is indeed
the standard one-sided reflection, S . ♦

7 Two-sided reflection: structural properties

In this section, we use the results proved in Sections 5−6 to prove that the
mean value of the position of a reflected Lévy process, on which a double
reflection is imposed, is an increasing and concave function. We thus establish
the ‘two-sided counterpart’ of the result presented in [8].
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Lemma 7.1. Let x ∈ R
∞ be a sequence of real numbers, with cumulative sums

s ∈ R
∞. Define, for a given m ∈ N, sm = (sn,m)n≥0, where sn,m := sm+n − sm.

For n ∈ N we have

D [s](m+ n) − D [sm](n) ≥ 0, (7.1)

and for n1, n2 ∈ N ,with n1 ≤ n2,

D [s](m+ n2) − D [sm](n2) ≤ D [s](m+ n1) − D [sm](n1). (7.2)

Proof. By (5.1) we have

D [sm](n) = max
k∈{0,··· ,n}

(

min
j∈{k,··· ,n}

(sn,m − sk,m,K + sn,m − sj,m)

)

= sn+m + max
k∈{0,··· ,n}

(

min
j∈{k,··· ,n}

(−sk+m,K − sj+m)

)

= sn+m + max
k∈{0,··· ,n}

(

min
j∈{k+m,··· ,n+m}

(−sk+m,K − sj)

)

= sn+m + max
m≤k≤n+m

(

min
j∈{k,··· ,n+m}

(−sk,K − sj)

)

,

so that D [s](m+ n) − D [sm](n) equals

max
k∈{0,...,n+m}

( min
j∈{k,...,n+m}

(−sk,K−sj))− max
k∈{m,...,n+m}

( min
j∈{k,...,n+m}

(−sk,K−sj))

≥ 0,

which proves (7.1). Turning to (7.2), we first notice that it is enough to prove
the statement for n2 = n1 + 1, and using the notation vn := D [s](n), vmn :=
D [sm](n) we find

vm+n1+1 − vmn1+1 − (vn1+m − vmn1
)

= 0 ∨ vm+n1 + xm+n1+1 ∧K − 0 ∨ vmn1
+ xm+n+1 ∧K − (vn1+m − vmn1

),
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which equals

−(vn1+m − vmn1
) if vm+n1 +xm+n1+1 < 0

vm+n1 + xm+n1+1 − (0 ∨ vmn1
+ xm+n1+1)

− (vn1+m − vmn1
) = (vmn1

+ xm+n1+1) ∧ 0

}

if vm+n1 +xm+n1+1 ∈ [0,K]

K − ((vmn1
+ xm+n1+1) ∧K) − (vn1+m − vmn1

)

= K + (−(vmn1
− xm+n1+1) ∨ (−K))

− (vn1+m − vmn1
)

= K + (−xm+n1+1 ∨ −K + vmn1
) − vn1+m

= (K − xm+n1+1 ∨ vmn1
) − vn1+m

= (K − xm+n1+1 − vn1+m) ∨ (vmn1
− vn1+m)







if vm+n1 +xm+n1+1 > K.

Now (7.2) follows, since −(vn1+m − vmn1
) ≤ 0.

The results of Lemma 7.1 are easily extended to a class of piecewise con-
stant functions.

Lemma 7.2. Let ψ ∈ D[0,∞) be of the form

ψ(t) =

∞∑

i=0

siI([ai, a(i + 1)))(t)

for s := (si)
∞
i=0 ∈ R

∞, with s0 ≡ 0, a > 0. Define ψr ∈ D[0,∞) by ψr(t) :=
ψ(r + t) − ψ(r). Then

D [ψ](r + t) − D [ψr](t) ≥ 0, (7.3)

and, for t1 ≤ t2,

D [ψ](r + t2) − D [ψr](t2) ≤ D [ψ](r + t1) − D [ψr](t1). (7.4)

Proof. Assume a = 1, and write r = m+ q for q ∈ [0, 1) and m = brc. Recall
from Lemma 7.1 the definition of sm, viz. sn,m := sm+n−sm. Then ψ(t) = sbtc
and

ψr(t)=ψ(br + tc) − ψ(brc)=ψ(bq+tc+m)−ψ(m)=sm+bq+tc−sm=sbt+qc,m ,

so that D [ψ](t) = D [s](btc) and D [ψr](t) = D [sm](bt + qc) where m = brc
(which can be verified by making an elementary picture). Using that br+tc =
brc + bt+ qc, we find that

D [ψ](r + t) − D [ψr](t) = D [s](brc + bt+ qc) − D [sm](bt+ qc) ≥ 0
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and

D [ψ](r + t2) − D [ψr](t2) = D [s](brc + bt2 + qc) − D [sm](bt2 + qc)
≤ D [s](brc + bt1 + qc) − D [sm](bt1 + qc) = D [ψ](r + t1) − D [ψr](t1).

Now choose an a 6= 1 arbitrarily. Define ψ̃(t) := ψ(at). Then ψ̃r(t) = ψar(at),
and D [ψ̃](t) = D [ψ](at), and D [ψ̃r](t) = D [ψar](at). Since (7.3) and (7.4)
hold for ψ̃ for any r, t ≥ 0 we find for the given r ≥ 0, that

D [ψ](r + t) − D [ψr](t) = D [ψ̃](r/a+ t/a) − D [ψ̃r/a](t/a) ≥ 0

and similarly

D [ψ](r + t2) − D [ψr](t2) = D [ψ̃](r/a+ t2/a) − D [ψ̃r/a](t2/a)

≤ D [ψ̃](r/a+ t1/a) − D [ψ̃r/a](t1/a) = D [ψ](r + t1) − D [ψr](t1).

This proves the claim.

We can now prove the continuous-time version of Lemma 7.1.

Lemma 7.3. Let ψ ∈ D[0,∞) and define ψr ∈ D[0,∞) by ψr(t) := ψ(r + t) −
ψ(r). Then

D [ψ](r + t) − D [ψr](t) ≥ 0, (7.5)

and, for t1 ≤ t2,

D [ψ](r + t2) − D [ψr](t2) ≤ D [ψ](r + t1) − D [ψr](t1). (7.6)

Proof. Define γn(t) := bntc/n, and ψn(t) = ψ(γn(t)). Then Lemma 7.2 applies
to ψn, and hence

D [ψn](r + t) − D [ψnr ](t) ≥ 0, (7.7)

D [ψn](r + t2) − D [ψnr ](t2) ≤ D [ψn](r + t1) − D [ψnr ](t1). (7.8)

Using the same argument as in the proof of Theorem 6.2, we haveψn →dJ1
ψ.

We also have ψnr →dJ1
ψr, since ψnr (t) = ψn(t + r) − ψn(r) and we regard

−ψn(r) as a constant function, which converges uniformly, and hence in the
J1-topology as well, to −ψ(r). In general, addition is not continuous in the J1

topology, but since −ψ(r) is a constant function, t 7→ ψ(r+ t) and −ψ(r) have
no common discontinuity points (where both are considered as function of
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t), and we have ψnr →dJ1
ψr. We wish to let n tend to infinity in (7.7) and

(7.8), and we therefore assume that r+t1 and r+t1 are both continuity points
for ψ, which implies that they are continuity points for D [ψ], and also that t1
and t2 are continuity points for D [ψr]. Under this assumption, we let n→ ∞,
and thus obtain (7.5) and (7.6) when r, t1, t2 are continuity points. However,
since D maps càdlàg functions to càdlàg functions, we have that (7.5) and
(7.6) hold for all r, t1, t2 whenever ψ ∈ D[0,∞), as claimed.

We can now prove the main results.

Theorem 7.4. ζ(n) is increasing and concave for random walks (with two-sided
reflection).

Proof. Set S1
n := Sn+1−S1, S1 :=

{
S1
n

}∞

n=0
, and V 1

n = D [S1](n). By stationar-

ity of the increments we have {Sn} =D

{
S1
n

}
and {Vn} =D

{
V 1
n

}
. Using (7.1)

with m = 1 we have Vn+1 − V 1
n ≥ 0, and we see that ζ(n) is increasing by

taking means. Furthermore, by (7.2) we have n 7→ Vn+1 − V 1
n is decreasing,

and taking means implies that ζ(n) is concave.

Theorem 7.5. ζ(t) is increasing and concave for Lévy processes (with two-sided
reflection).

Proof. Define Sr by Srt = St+r − Sr. By the stationary increments we have
Sr =D S and D [Sr] =D D [S]. Set V r

t = D [Sr](t) and Vt = D [S](t). According
to (7.5) and (7.6) we have that Vr+t − V r

t ≥ 0 and also that t 7→ Vr+t − V r
t is

decreasing. Taking means yields the desired result.

The following statement follows immediately from the facts that Vn+1 −
V 1
n ≥ 0 and Vs+t − V s

t ≥ 0.

Corollary 7.6. For any q ≥ 0, we have n 7→ EV q
n and t 7→ V q

t are increasing, both
for random walks and Lévy processes (with two-sided reflection).

Remark 7.7. The reader can verify that in the argumentation of this section,
we did not use that increments are independent — in fact all results, in particular
Thms. 7.4 and 7.5, hold under the assumption of just stationary increments.
We conclude that we have, in passing, extended the result by Kella and Sver-
chkov [8], who considered processes with stationary increments reflected at
0, to the case of two-sided reflection. ♦
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Subexponential Loss Rate Asymptotics
for Lévy Processes

Lars Nørvang Andersen

Abstract

We consider a Lévy process reflected in barriers at 0 and K > 0. The
loss rate is the mean time spent at the upper barrier K at time 1 when
the process is started in stationarity, and is a natural continuous-time
analogue of the stationary expected loss rate for a reflected random
walk. We derive asymptotics for the loss rate when K tends to infinity,
when the mean of the Lévy process is negative and the positive jumps
are subexponential. In the course of this derivation, we achieve a for-
mula, which is a generalization of the celebrated Pollaczeck-Khinchine
formula.
Keywords finite buffer, heavy tails, Lévy process, local times, loss
rate, Pollaczeck-Khinchine formula, reflection, subexponential distri-
butions.
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1 Introduction

In the papers Jelenković [12] and Pihlsg̊ard [17], the authors examine the
loss rate associated with a stochastic process obtained by reflecting a random
walk in two barriers at 0 and K > 0, and derive asymptotic expressions for
the loss rate as K tends to infinity. In particular, Jelenković [12] derives the
asymptotics of the loss rate in the case of heavy tails. The continuous-time
analogue of the loss rate associated with a reflected random walk, is the loss
rate associated with a reflected Lévy process which is examined in Asmussen
and Pihlsg̊ard [3], where an explicit expression for the loss rate in terms of
the characteristic triplet of the Lévy process is provided. Furthermore, [3]
gives the asymptotic behavior of the loss rate as K tends to infinity in the
case where the mean of the Lévy process is positive as well the case where
the mean is negative and the jumps of the process are light-tailed, and in
the Andersen and Asmussen [1] the authors examine loss rate asymptotics for
centered Lévy processes. In this paper we derive asymptotics where the mean
is negative and the process is heavy-tailed.
Reflected processes may be used to model waiting time processes in queues
with finite capacity (Cohen [7], Cooper et al. [8], Bekker and Zwart [4], Daley
[9]).
It may be used to model a finite dam or fluid model (Asmussen [2],Moran [16],
Stadje [20]). Furthermore, it is used in models of network traffic or telecom-
munications systems involving a finite buffer (Jelenković [12], Zwart [21], Kim
and Shroff [13]) and in this context the loss rate can be interpreted as the bit
loss rate in a finite data buffer.
The main contribution of this paper is Theorem 3.1 which provides an asymp-
totic expression for the loss rate in the heavy-tailed case. In the course of
the derivation of this expression, we also obtain a formula, (3.2), which is a
generalization of the celebrated Pollaczeck-Khinchine formula.
The outline of the paper is as follows: In Section 2 we provide the essential
background on Lévy processes, and give the formal definition of the loss rate.
With the definitions and previous results settled we can state the main results
in Section 3. The proofs are given in Section 4.

2 Preliminaries

Lévy Processes and the Loss rate

We consider a probability space (Ω,F ,P). A Lévy process S := {St} is a real-
valued stochastic process on R with stationary independent increments which

66



2. Preliminaries

is continuous in probability and with S0 = 0 P − a.s. Every Lévy process
S is associated with a unique characteristic triplet (θ, σ, ν), where θ ∈ R,
σ ≥ 0 and ν is a measure (the Lévy measure) with

∫∞
−∞(1∧ y2)ν(dy) <∞ and

ν({0}) = 0. The Lévy exponent is given by

κ(α) = θα+
σ2α2

2
+

∫ ∞

−∞

[
eαx − 1 − αI(|x| ≤ 1)

]
ν(dx)

and is defined for α in Θ := {α ∈ C | Ee<(α)S1 < ∞}. The Lévy exponent
is the unique function satisfying EeαXt = etκ(α) and κ(0) = 0. We assume
throughout this paper that E|S1| < ∞. We use the cadlag version of S,
which exists because of stochastic continuity. We note that this implies that
∆St := St − St− is well-defined. Standard references for Lévy processes are
Bertoin [5], Kyprianou [14] and Sato [19].
We are given a Lévy process through its characteristic triplet, and reflect it in
barriers at 0 and K > 0. The reflected process is given as part of the solution
to a Skorokhod problem and is denoted VK. We have a decomposition

V K
t = y + St + L0

t − LKt (2.1)

of the reflected process started at y ∈ [0,K] where L0 := {L0
t } and LK :=

{LKt } are the local times at 0, K respectively. Note that the reflected process
and the local times are cadlag, so that objects such as ∆L0

t := L0
t − L0

t− are
well-defined and by way of being increasing, the local times are of bounded
variation which allow is to decompose them into a continuous part and a
jump part. For more information on Skorokhod problems, see Asmussen [2],
Asmussen and Pihlsg̊ard [3] and Andersen and Asmussen [1].

Because of the independent, identically distributed increments of S, VK

has a regenerative structure which yields a stationary distribution denoted
πK . The stationary distribution satisfies:

πK(y) = πK [y,K] = P
(
Sτ [y−K,y) ≥ y

)
, 0 ≤ y ≤ K (2.2)

where τ [u, v) = inf
{
t > 0 | St /∈ [u, v)

}
. See Asmussen [2] pp. 393-394 for a

derivation of this representation. When K = ∞, we have one-sided reflection
(see Asmussen [2], IX 2a). In this case LKt ≡ 0, and L0

t := (− inf0≤v≤t Sv−y)+,
and we have a result similar to (2.2) of the one-sided stationary distribution
which follows from Cor. 2. IX p. 253 in Asmussen [2]:

π∞(y) = P
(
sup
t≥0

St ≥ y
)

= P(τ(y) <∞) (2.3)
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where τ(y) = inf{t > 0 : St ≥ y}. Furthermore, for notational convenience we
set L0

t := Lt when K = ∞.
We follow the standard definitions of the classes S and S∗ of distribution
functions. The class S is defined by the requirement that F ∗n(x) ∼ nF (x)
(F ∗n = nth convolution power), and S∗ by

lim
x→∞

1

µ

∫ x

0

F (x− y)

F (x)
F (y)dy = 2

where µ is the first moment of F . It is well-known that S∗ ⊆ S and using
(2.3) we may apply Theorem 4.1 from Maulik and Zwart [15] to get

νI(K) :=

∫ ∞

K
ν(y) dy ∼ |ES1|π∞(K) (2.4)

when ES1 < 0 and νI(x) ∼ F (x) for some F ∈ S. The latter condition is
ensured by requiring that ν(x) ∼ F (x) for some F (x) ∈ S∗. .

� � �
The loss rate is defined as

`K = EπK
LK1 , (2.5)

that is, as the mean of LK1 when the process is started in stationarity.
According to Theorem 3.6 in Asmussen and Pihlsg̊ard [3] we have the

following expression of the loss rate, in terms of the characteristic triplet of
the Lévy processes:

`K =
ES1

K

∫ K

0
πK(x) dx+

σ2

2K
+

1

2K

∫ K

0
πK(dx)

∫ ∞

−∞
ϕK(x, y)ν(dy), (2.6)

where

ϕK(x, y) =







−(x2 + 2xy) if y ≤ −x
y2 if − x < y < K − x

2y(K − x) − (K − x)2 if y ≥ K − x .

(2.7)

3 Main results

We start by stating the main results. The first result provides the asymptotics
in the case of heavy tails and negative drift.
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4. Loss rate asymptotics in the case of negative drift and heavy tails

Theorem 3.1. Let S be a Lévy process with Lévy measure ν such that νI(x) ∼ B(x)
for some B ∈ S , and with finite negative mean: ES1 = µ < 0. Define the conditions

(I) ES2
1 <∞ and

∫∞
K νI(y) dy/νI(K) ∈ O(K) .

(II) ν(K) ∼ L(K)K−α where L is a locally bounded slowly varying function and
1 < α < 2.

If either (I) or (II) holds, then

`K ∼
∫ ∞

K
ν(y)dy (3.1)

We remark that the requirement
∫∞
K νI(y) dy/νI(K) ∈ O(K) in Theo-

rem 3.1 is very weak. Indeed, suppose νI(x) ∼ B(x) where B is either
lognormal, Benktander or heavy-tailed Weibull. Then we recognize a(x) :=
∫∞
x B(y) dy/B(x) as the mean-excess function and it is known (see Goldie and

Klüppelberg [11]), that a(x) ∈ o(x). Furthermore, it is easily checked that the
condition is satisfied when B is a Pareto or Burr distribution, provided that
the second moment is finite.

� � �
We also derive the following theorem, giving an expression for the moment
generating function of the stationary distribution in the case of one-sided
reflection. Recall our decomposition of the one-sided reflected process Vt(x) =
x+ St − Lt(x) and that {Lct} is the continuous part of the local time.

Theorem 3.2. Suppose −∞ < µ = ES1 < 0 then V := limt Vt exists in distribu-
tion and for α ∈ Θ with κ(α) <∞ we have:

E
[
eαV

]
= −

αEπ∞L
c
1 + Eπ∞

[∑

0≤s≤1(1 − e−α∆Ls)
]

κ(α)
(3.2)

If S has no negative jumps, the term Eπ∞

[∑

0≤s≤1(1 − e−α∆Ls)
]

disap-
pears, and Eπ∞L

c
1 = Eπ∞L1 = µ, and we see that Theorem 3.2 indeed is

a generalization of Corollary 3.4 in [2] which is itself a generalization of the
Pollaczeck-Khinchine formula.

4 Loss rate asymptotics in the case of negative drift

and heavy tails

In this section we prove Theorem 3.1 and in the pursuit of this, we prove
Theorem 3.2. We first prove Proposition 4.1, which is a set of inequalities
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which allow us to compare the stationary distributions in the cases of one
and two-sided reflection. Next, we prove Proposition 4.2 showing that 1 is
a lower bound for lim infK `

K/νI(K), which is essentially half of Theorem
3.1. Lemma 4.1 and Proposition 4.3 provide a martingale, and using optional
stopping of this martingale yields Theorem 3.2, which gives the m.g.f. E[eαV ].
We differentiate this transform in Corollary 4.1 to give us the mean of V ,
which is needed in the proof of Theorem 3.1.

Proposition 4.1. Let S be a Lévy process, and let πK(y), π∞(y) be the tails of the
reflected (one/two-sided) distributions. Then we have the following inequalities for
x > 0,K > 0

0 ≤ π∞(x) − πK(x) ≤ π∞(K) . (4.1)

Proof. The inequalities are trivial for x > K. Let 0 ≤ x ≤ K . The inequality
πK(x) ≤ π∞(x) follows from the representations (2.2) and (2.3). The inequal-
ity π∞(x)−πK(x) ≤ π∞(K), follows by dividing the sample paths of S which
cross above x into those which do so by first passing below K − x, and those
which stay above K − x. To be precise, define τ(y) := inf{t > 0 : St ≥ y} and
σ(y) := inf{t > 0 : St < y}. Then, since any path which passes below K − x
and then above x must pass an interval of length at least K , we have by the
strong Markov property:

P(σ(x−K) < τ(x) <∞) ≤ P
(
sup
t>0

Sσ(x−K)+t − Sσ(x−K) > K
)

= P(τ(K) <∞) = π∞(K) .

And therefore:

π∞(x) = P(τ(x) <∞) =

P(σ(x−K) < τ(x) <∞) + P(τ(x) < σ(x−K) <∞) ≤
πK(x) + π∞(K) .

In our effort to prove that `K ∼ νI(K) we need to prove that 1 is a lower
bound for lim infK `

K/νI(K) and an upper bound for lim supK `
K/νI(K).

The former holds without any regularity conditions.

Proposition 4.2. For any Lévy process we have

1 ≤ lim inf
K

`K

νI(K)
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4. Loss rate asymptotics in the case of negative drift and heavy tails

Proof. We have

∫ K

0
πk(dx)

∫ ∞

K
(y −K + x)ν(dy) ≤ `K

since the left hand side is the contribution to the local time by the jumps
larger than K . Since

νI(K) ≤
∫ ∞

K
(y −K)ν(dy) +

∫ K

0
xπk(dx)

=

∫ K

0
πk(dx)

∫ ∞

K
(y −K + x)ν(dy)

we are done.

Recall our decomposition Vt(x) = x+St−Lt(x) of the one-sided reflection
of the Lévy process started at x and reflected in 0 and we let Lct(x) and
Ljt(x) denote the continuous and jump parts of the local time respectively.
We suppress the x’s for ease of notation.

Lemma 4.1. For α ∈ Θ and t > 0 we have

E

[ ∑

0≤s≤t

∣
∣1 − e−α∆Ls

∣
∣

]

<∞ (4.2)

Proof. Setting ∆Ls = ∆LsI(Ls ≤ 1) and ∆Ls = ∆LsI(∆Ls > 1) we can split
the sum into the contribution from the jumps of size ≤ 1 and those of size
> 1 by writing

E

[ ∑

0≤s≤t

∣
∣1 − e−α∆Ls

∣
∣

]

= E

[ ∑

0≤s≤t

∣
∣1 − e−α∆Ls

∣
∣

]

+ E

[ ∑

0≤s≤t

∣
∣1 − e−α∆Ls

∣
∣

]

,

and we note that first sum on the r.h.s. is bounded, since there exists a con-
stant c such that |1 − eαx| ≤ c|α|x for x ∈ [0, 1] and therefore

E

[ ∑

0≤s≤t

∣
∣1 − e−α∆Ls

∣
∣

]

≤ c|α|E
[ ∑

0≤s≤t

∆Ls|
]

≤ c|α|ELt <∞,

where the last inequality follows from Lemma 3.3 p. 256 in Asmussen [2].
Since

|1− e−α∆Ls | =
∣
∣I(∆Ls > 0)− e−α∆Ls

∣
∣ ≤ I(∆Ls > 0) + e−<(α)∆LsI(∆Ls > 0)
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we have

E

[ ∑

0≤s≤t

∣
∣1 − e−α∆Ls

∣
∣

]

≤

E

[ ∑

0≤s≤t

I(∆Ls > 0)
]

+ E

[ ∑

0≤s≤t

e−<(α)∆LsI(∆Ls > 0)
]

A jump of size of > 1 at time s of the local time can only occur if the pro-
cess itself makes a negative jump of size > 1, and therefore I(∆Ls > 0) ≤
I(∆Ss < 0), where ∆Ss := ∆SsI(∆Ss < −1), which implies

E

[ ∑

0≤s≤t

I(∆Ls > 0)
]

≤ E

[ ∑

0≤s≤t

I(∆Ss < 0)
]

= t

∫ −1

−∞
ν(dy) <∞

where the last number is finite because E|S1| < ∞. Regarding the remaining
sum, we observe that if <(α) ≥ 0 we have

E

[ ∑

0≤s≤t

e−<(α)∆LsI(∆Ls > 0)
]

≤ E

[ ∑

0≤s≤t

I(∆Ls > 0)
]

and the sum is finite by the inequalities above. If <(α) < 0 we have

E

[ ∑

0≤s≤t

e−<(α)∆LsI(∆Ls > 0)
]

≤ E

[ ∑

0≤s≤t

e<(α)∆SsI(∆Ss < 0)
]

= t

∫ −1

−∞
e<(α)yν(dy) <∞ ,

where the last inequality follows from Theorem 25.3 i Sato [19] and the fact
that α ∈ Θ. Putting everything together we have that (4.2) is finite.

The lemma above is used in the following generalization of Cor. 3.2 p 256
in Asmussen [2].

Proposition 4.3. Consider a Lévy process S, and let V be the process reflected at 0

and let Lc := {Lct} and Lj := Ljt be the continuous and jump part of the local time
L. Then for α ∈ Θ and x ≥ 0

Mt := κ(α)

∫ t

0
eαVs(x) ds+ eαx − eαVt(x) + αLct(x) +

∑

0≤s≤t

(1 − e−α∆Ls(x))

(4.3)

is a martingale.
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4. Loss rate asymptotics in the case of negative drift and heavy tails

Proof. For notational convenience, we write Vs := Vs(x) and Lcs = Lcs(x).
Since the local time is of bounded variation, we may apply Theorem 3.1 p.
255 in Asmussen [2], to obtain that

κ(α)

∫ t

0
eαVs ds+ eαx − eαVt + α

∫ t

0
eαVs dLcs +

∑

0≤s≤t

eαVs(1 − e−α∆Ls)

is a local martingale. Since Lct can only increase when Vt = 0 and ∆Lt > 0 ⇒
Vt = 0, the expression above is equal to Mt, so that Mt is a local martingale.
According to Lemma 3.3 p. 35 of Protter [18] it will be a martingale if we can
prove that E sups≤t |Ms| <∞. But this follows from

E[ sup
0≤s≤t

|Ms|] ≤

κ(α)tE sup
0≤s≤t

|eαVs | + |eαx| + E|eαVt | + |α|E[Lct ] + E

∑

0≤s≤t

|(1 − e−α∆Ls)|

which is finite according to lemma 3.3 of Asmussen [2] and Lemma 4.1 above.

We are now ready to prove Theorem 3.2

Proof. The existence of V follows from Cor. 2.6 p. 253 in Asmussen [2]. Let
V0 be a r.v. independent of S and distributed as V , and set x = V0, t = 1 in
(4.3). Then V is stationary and by taking expectation we get

0 = κ(α)Eπ∞ [

∫ 1

0
eαVs ds] + αEπ∞L

c
1 + Eπ∞

[ ∑

0≤s≤1

(1 − e−α∆Ls)
]

⇒

κ(α)

∫ 1

0
Eπ∞

[
eαV

]
ds+ αEπ∞L

c
1 + Eπ∞

[ ∑

0≤s≤1

(1 − e−α∆Ls)
]

⇒

E
[
eαV

]
= −

αEπ∞[Lc1] + Eπ∞

[∑

0≤s≤1(1 − e−α∆Ls)
]

κ(α)
.

Next, we use the results above to obtain an expression for the mean of the
stationary distribution in the case of one-sided reflection.

Corollary 4.1. If S is square integrable then V is integrable and we have

E[V ] =
Eπ∞[

∑

0≤s≤1 ∆L2
s] − V ar(S1)

2ES1
(4.4)

=

∫∞
−∞ y

2ν(dy) + σ2 −
∫∞
0

∫ −x
−∞(x+ y)2ν(dy)π∞(dx)

2|ES1|
(4.5)
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Proof. Since S1 is non-degenerate, we have by Lemma 4 in Feller [10] that
there exists ε > 0 such that κ(it) 6= 0 for t ∈ (−ε, ε) \ {0}, and we may
use (3.2) to obtain the characteristic function ϕ of V and we wish to show
that ϕ is differentiable at 0. Define g(t) := Eπ∞

[∑

0≤s≤1(1 − e−it∆Ls)
]

and

set `1 := Eπ∞L
c
1. By Doob’s inequality, we have that ES2

1 < ∞ implies
EL2

1 < ∞ and therefore Eπ∞L
2
1 < ∞, and this implies that g is twice differ-

entiable at 0 and we see that g′(0) = iEπ∞
[∑

0≤s≤t ∆Ls
]

= iEπ∞L
j
t , g
′′(0) =

Eπ∞

[∑

0≤s≤t∆L
2
s

]
and i`1 + g′(0) = iEπ∞L1 = −iES1.

Applying Proposition 4.2 and using l’Hospital’s rule twice (see Prop. 4.1 the
in Appendix), we have:

lim
t→0

EeitV − 1

t
= lim

t→0

−ti`1 − g(t) − κ(it)

tκ(it)

= lim
t→0

−i`1 − g′(t) − iκ′(it)

κ(it) + tiκ′(ti)

= lim
t→0

−g′′(t) + κ′′(it)

iκ′(it) + iκ′(ti) − tκ′′(ti)

=
−g′′(0) + κ′′(0)

2iκ′(0)
.

We see that ϕ is differentiable, and since V is positive, we have that V is
integrable (see Prop. 1.2 in the Appendix). The first moment is

EV =
−g′′(0) + κ′′(0)

2(−1)κ′(0)

which is (4.4). We obtain (4.5) by conditioning on the value of the process
prior to a jump.

We are now ready for the proof of Theorem 3.1. The proof has two distinct
cases, depending on whether or not the Lévy process is square integrable. If
this is the case we require only mild regularity conditions. However, if the
Lévy process has infinite variance, we impose stronger regularity conditions.

Proof. Because of Proposition 4.2, we only need to prove

lim sup
K

`K/νI(K) ≤ 1 .
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4. Loss rate asymptotics in the case of negative drift and heavy tails

Define the following:

I1 :=
ES1

K

∫ K

0
xπK(dx)

I2 :=
σ2

2K

I3 :=
1

2K

∫ K

0
πK(dx)

∫ ∞

−∞
ϕK(x, y)ν(dy) .

Then, because of the expression for the loss rate given by (2.6) and the in-
equality from Proposition 4.1 we have the following inequality:

`K ≤ ES1

K

∫ K

0
π∞(x) dx− ES1π∞(K) + I2 + I3 . (4.6)

First, we assume (I) holds. By (2.4) we have

lim
K

−ES1π∞(K)

νI(K)
= 1 , (4.7)

so we will be done, if we can show

lim sup
K

1

νI(K)

[
ES1

K

∫ K

0
π∞(y) dy + I2 + I3

]

= 0 . (4.8)

We start by rewriting the term in the brackets above. Using Cor. 4.1 and the
assumption that ES2

1 <∞ we have that
∫∞
0 π∞(y)dy <∞ and using (4.4)

ES1

K

∫ K

0
π∞(y) dy

=
ES1

K

∫ ∞

0
π∞(y) dy − ES1

K

∫ ∞

K
π∞(y) dy

=
Eπ∞[

∑

0≤s≤1 ∆L2
s] − Var(S1)

2K
+

|ES1|
K

∫ ∞

K
π∞(y) dy .
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Furthermore,

I2 + I3

=
σ2

2K
+

1

2K

∫ K

0
πK(dx)

(∫ −x

−∞
−(x2 + 2xy)ν(dy) +

1

2K

∫ K−x

−x
y2ν(dy)

+
1

2K

∫ ∞

K−x

[
2y(K − x) − (K − x)2

]
ν(dy)

)

=
σ2

2K
+

1

2K

∫ ∞

−∞
y2ν(dy) +

1

2K

∫ K

0
πK(dx)

∫ −x

−∞

[
− (x2 + 2xy) − y2

]
ν(dy)

+
1

2K

∫ K

0
πK(dx)

∫ ∞

K−x

[
2y(K − x) − (K − x)2 − y2

]
ν(dy)

=
σ2

2K
+

1

2K

∫ ∞

−∞
y2ν(dy) − 1

2K

∫ K

0
πK(dx)

∫ −x

−∞
(x+ y)2ν(dy)

− 1

2K

∫ K

0
πK(dx)

∫ ∞

K−x
(y − (K − x))2ν(dy)

=
Var(S1) − EπK

[
∑

0≤s≤1 ∆L2
s]

2K
− 1

2K

∫ K

0
πK(dx)

∫ ∞

K−x
(y − (K − x))2ν(dy).

We note the fact that

Eπ∞[
∑

0≤s≤1

∆L2
s] ≤ EπK

[
∑

0≤s≤1

∆L2
s]

which can be verified using partial integration and (4.1). Using this in the
last equation above, we may continue our calculation and obtain:

I2 + I3 ≤
Var(S1) − Eπ∞[

∑

0≤s≤1 ∆L2
s]

2K

− 1

2K

∫ K

0
πK(dx)

∫ ∞

K−x
(y − (K − x))2ν(dy) .

Comparing the expressions above we see that fractions cancel, and the ex-
pression in the brackets in (4.8) is less than

|ES1|
K

∫ ∞

K
π∞(y) dy − 1

2K

∫ K

0

∫ ∞

K−x
(y − (K − x))2ν(dy)πK(dx) .
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Applying partial integration

|ES1|
K

∫ ∞

K
π∞(y) dy − 1

2K

∫ K

0

∫ ∞

K−x
(y − (K − x))2ν(dy)πK(dx)

=
|ES1|
K

∫ ∞

K
π∞(y) dy − 1

2K

∫ ∞

K
(y −K)2ν(dy)− 1

K

∫ K

0
πK(x)νI(K − x)dx

≤ |ES1|
K

∫ ∞

K
π∞(y) dy − 1

2K

∫ ∞

K
(y −K)2ν(dy)

=
|ES1|
K

∫ ∞

K
π∞(y) dy − 1

K

∫ ∞

K
νI(y) dy.

Returning to (4.8) and applying the results above we get

lim sup
K

1

νI(K)

[
ES1

K

∫ K

0
π∞(y) dy + I2 + I3

]

≤ lim sup
K

1

νI(K)

[ |ES1|
K

∫ ∞

K
π∞(y) dy − 1

K

∫ ∞

K
νI(y) dy

]

= lim sup
K

∫∞
K νI(y) dy

KνI(K)

[∫∞
K |ES1|π∞(y) dy
∫∞
K νI(y) dy

− 1

]

= 0,

where the last equality follows since the term in the brackets tends to 0, and
the fraction outside it is bounded by assumption. This proves that (3.1) holds
under condition (I).
We now assume condition (II)
We start by noticing the following consequences of the assumptions:

∫ ∞

K
ν(y) dy ∼

∫ ∞

K

L(y)

yα
dy ∼ K−α+1L(K)

α− 1
K → ∞ (4.9)

where the last equivalence follows by Proposition 1.5.10 of Bingham et al. [6]
and the fact that α > 1. Since by Proposition 1.3.6 of Bingham et al. [6], we
have K−α+2L(K) → ∞, (4.9) implies KνI(K) → ∞.
The inequality (4.6) still holds, as does the limit in (4.7), so we proceed to

analysis of ES1

∫ K
0 π∞(y)dy/(νI(K)K)

Since KνI(K) → ∞K → ∞ we see that for any A we have

lim
K→∞

ES1

KνI(K)

∫ A

0
π∞(y) dy = 0 . (4.10)

Because of the result above we have for any A

lim
K→∞

ES1

KνI(K)

∫ K

0
π∞(y) dy = lim

K→∞

ES1

KνI(K)

∫ K

A
π∞(y) dy
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and using |ES1|π∞(K) ∼ νI(K) ∼ K−α+1L(K)/(α− 1) we have

lim
K→∞

ES1

KνI(K)

∫ K

A
π∞(y) dy = lim

K→∞
− 1

KνI(K)

∫ K

A
νI(y) dy

= − lim
K→∞

1

KνI(K)

∫ K

A

y−α+1L(y)

(α− 1)
dy

in the sense that if either limit exits so does the other and they are equal.
Furthermore, since −α + 1 > −1 and L is locally bounded, we may apply
Proposition 1.5.8 in Bingham et al. [6] to obtain

− lim
K→∞

1

KνI(K)

∫ K

A

y−α+1L(y)

(α− 1)
dy

= − lim
K→∞

1

KνI(K)

K−α+2L(K)

(−α+ 2)(α − 1)
= − 1

−α+ 2
.

That is, we obtain

lim
K→∞

ES1

KνI(K)

∫ K

0
π∞(y) dy = − 1

−α+ 2
. (4.11)

Returning to (4.6) we have

lim sup
K

`K

νI(K)

= lim sup
K

ES1

KνI(K)

∫ K

0
π∞(y) dy − ES1π∞(K)

νI(K)
+

I2

νI(K)
+

I3

νI(K)

= − 1

−α+ 2
+ 1 + lim sup

K

I2

νI(K)
+

I3

νI(K)
. (4.12)

Since KνI(K) → ∞ we have

I2/νI(K) =
σ2

2KνI(K)
= 0

and we may continue our calculation from (4.12)

− 1

−α+ 2
+ 1 + lim sup

K

I2

νI(K)
+

I3

νI(K)
= − 1

−α+ 2
+ 1 + lim sup

K

I3

νI(K)
(4.13)
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So we turn our attention to I3. First we divide the integral into two:

2KI3 = (4.14)
∫ K

0
πK(dx)

∫ −x

−∞
−(x2 + 2xy)ν(dy) +

∫ 0

−x
y2ν(dy)

︸ ︷︷ ︸

A(K)

(4.15)

∫ K

0
πK(dx)

∫ K−x

0
y2ν(dy) +

∫ ∞

K−x
2(K − x)y − (K − x)2ν(dy)

︸ ︷︷ ︸

B(K)

. (4.16)

We may assume ν is bounded from below, otherwise we may truncate ν at
−L for some L > 0 which is chosen large enough to ensure that the mean of
S1 remains negative. This truncation may increase the loss rate, which is not
a problem, since we are proving an upper bound. Thus, we may assume that
A(K) is bounded:

A(K) ≤
∫ K

0
πK(dx)

∫ 0

−∞
y2ν(dy) ≤

∫ 0

−∞
y2ν(dy) <∞

And therefore, since KνI(K) → ∞, we have

A(K)

2KνI(K)
→ 0 . (4.17)

Turning to B(K), we first perform partial integration

B(K) =

∫ K

0
y2ν(dy) +

∫ ∞

K
2Ky −K2ν(dy)

−
∫ K

0
νI(K − x)πK(x) dx

≤
∫ K

0
y2ν(dy) +

∫ ∞

K
2Ky −K2ν(dy)

=

∫ K

0
2yν(y) dy −K2ν(K) +

∫ ∞

K
2Ky −K2ν(dy)

=

∫ K

0
2yν(y) dy + 2K

∫ ∞

K
ν(y) dy .

Since yν(y) ∼ y−α+1L(y) way may apply Proposition 1.5.8 from [6]:

∫ K

0
2yν(y) dy ∼ 2

L(K)K−α+2

2 − α
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and therefore:

lim
K

1

2KνI(K)

∫ K

0
2yν(y) dy =

α− 1

2 − α
.

Combining this with our inequality for B(K) above, we have:

lim sup
K

B(K)

2KνI(K)
≤ α− 1

2 − α
+ 1 =

1

2 − α
.

Finally, by combining this with (4.12), (4.17) and (4.13) we have get

lim sup
K

`K

νI(K)
≤ 1

and we are done.
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C
Local Time Asymptotics for Centered
Lévy Processes with Two-Sided
Reflection

Lars Nørvang Andersen & Søren Asmussen

Abstract

The present paper is concerned with the local times of a Lévy process
reflected at two barriers 0 and K > 0. The reflected process is de-
composed into the original process plus local times at 0 and K and
a starting condition, and we study `K , the mean rate of increase of
the local time at K when the reflected process is started in stationar-
ity. We derive asymptotics (K → ∞) for `K when the Lévy process
has mean zero. The precise form of the asymptotics depends on the
existence or non-existence of a finite second moment, paralleling the
difference between the normal and the stable central limit theorem.
To achieve the asymptotic results, we prove a uniform integrability
criterion for Lévy processes and a continuity result for `K , which are
of independent interest.

Keywords continuity of the local time, finite buffer, Lévy process,
reflection, loss rate, Skorokhod problem, stable central limit theorem,
stable distribution, uniform integrability.
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1 Introduction

A Lévy process S =
{
St
}

t≥0
is a real-valued stochastic process on R with

stationary independent increments which is continuous in probability and has
S0 = 0 a.s. We reflect the Lévy process at barriers 0 and K > 0. The
reflected process V K =

{
V K
t

}

t≥0
can be constructed as part of the solution

to a two-sided Skorokhod problem, which yields a representation:

V K
t = y + St + L0

t − LKt (1.1)

of the reflected process started at y ∈ [0,K], where L0 =
{
L0
t

}
and LK =

{
LKt
}

are the local times at 0, K respectively. More precisely,
(
V K , L0, LK

)

is a triplet of processes such that V K
t ∈ [0,K] and

∫ T

0
V K
t dL0

t = 0 ∀T and

∫ T

0
(K − V K

t ) dLKt = 0 ∀T . (1.2)

The process V K is regenerative (as a cycle, take e.g. an excursion from
0 to K followed by an excursion from K to 0). Such a cycle clearly has an
absolutely continuous distribution, and it follows by general theory (Asmussen
[3] VI.1) that there exists a unique stationary distribution πK such that the
distribution of V K

t converges to πK weakly and in total variation. The object
of the present paper is to study asymptotic properties as K → ∞ of the
stationary rate of growth `K := EπKLK1 of the local time

Besides its intrinsic probabilistic interest, this problem has a long applied
motivation. Two-sided reflected processes may be used to model waiting time
processes in queues with finite capacity (Bekker and Zwart [5], Cohen [9],
Cooper et al. [10], Daley [11]), or a finite dam or fluid model (Asmussen [3]
, Moran [23], Stadje [28]). Furthermore, they are used in models of network
traffic or telecommunications systems involving a finite buffer (Jelenković [15],
Kim and Shroff [17] , Zwart [31]), and in this context the loss rate can be
interpreted as the bit loss rate in a finite data buffer.

In view of this applied literature, we shall henceforth refer to `K as the loss
rate (at the upper barrier K). In the Lévy process context, it is the object of
study of the recent papers Asmussen and Pihlsg̊ard [4] and Andersen [1]. In
[4], an explicit expression for `K in terms of the characteristic triplet of the
Lévy process is provided and used to derive the asymptotic behavior of `K as
K tends to infinity in the case where the Lévy process is light-tailed and the
mean is either strictly positive or strictly negative. Furthermore, in [4] the
loss rate of a strictly stable Lévy process is explicitly calculated. The case of
negative mean and heavy tails case is treated in Andersen [1]. In this paper
we derive loss rate asymptotics when the mean is zero, i.e. ES1 = 0.
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2. Preliminaries

The main contribution of this paper is Theorem 3.1 which provides an
asymptotic expression as K → ∞ for the loss rate in the zero-mean case. The
basic intuition behind this is simple: ES1 = 0 implies that the Lévy process
after appropriate scaling and time change has a limit which is Brownian motion
in the case of finite variance and (subject to a condition on regular variation)
is stable in the case of infinite variance. For these limits, explicit expressions
for the asymptotic loss rate have been derived in Asmussen and Pihlsg̊ard [4],
so the main technical problems becomes to establish continuity of `K = `K(S)
as function of S. This is of some of independent interest and is formulated in
Theorem 3.2. A uniform integrability property is required, and conditions for
this are given as Theorem 3.3.

The paper is organized as follows: In Section 2, we give some background
on Lévy processes, the Skorokhod problem, and the stationary distribution.
In Section 3 we state the main results of the paper, and the proofs are given
in Sections 4, 5 and 6 .

2 Preliminaries

To every Lévy process S =
{
St
}

t≥0
is associated a unique characteristic triplet

(θ, σ, ν), where θ ∈ R, σ ≥ 0 and ν is a measure (the Lévy measure) with
∫∞
−∞(1 ∧ y2)ν(dy) <∞ and ν({0}) = 0. The Lévy exponent is defined by

κ(s) := θs+
σ2s2

2
+

∫ ∞

−∞

[
esx − 1 − sI(|x| ≤ 1)

]
ν(dx)

and is defined for s in Θ := {s ∈ C | Ee<(s)S1 < ∞}. The Lévy exponent is
the unique function satisfying EesSt = etκ(s) and κ(0) = 0, and we have

ES1 = κ′(0) = θ +

∫

|y|>1
y ν(dy) (2.1)

(the mean is assumed to be well-defined and finite for all Lévy processes
encountered in the paper). We use the cadlag version of {St}, which exists
because of stochastic continuity. Standard references for Lévy processes are
Bertoin [6], Kyprianou [21] and Sato [26].

We will also need weak convergence properties:

Proposition 2.1. Let S0, S1, S2, . . . be Lévy processes with characteristic triplet
(θn, σn, νn) for Sn. Then the following properties are equivalent:

(i) Snt
D→ S0

t for some t > 0;
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(ii) Snt
D→ S0

t for all t;

(iii)
{
Snt
} D→

{
S0
t

}
in D[0,∞);

(iv) ν̃n → ν̃0 weakly, where ν̃n is the bounded measure

ν̃n(dy) := σnδ0(dy) +
y2

1 + y2
νn(dy) (2.2)

and cn → c0 where

cn := θn +

∫ (
y

1 + y2
− yI(|y| ≤ 1)

)

νn(dy)

See e.g. Kallenberg [16] pp. 244–248, in particular Lemma 13.15 and 13.17. If

one of (i)–(iv) hold, we write simply Sn
D→ S0.

The existence and uniqueness of a solution to the Skorokhod problem is
proved in Tanaka [29] and in a more pragmatic manner in Asmussen [3] XIV.3.
Verbally, the condition (1.2) states that

{
L0
t

}
can only increase when Vt = 0

and
{
LKt
}

can only increase when Vt = K, which supports our interpretation
of `K = EπKLK1 as a loss rate in a system where the “free traffic” is modeled
by {St}.

The stationary distribution has the representation

πK(y) = πK [y,K] = P
(
Sτ [y−K,y) ≥ y

)
, 0 ≤ y ≤ K (2.3)

where τ [u, v) = inf
{
t > 0 | St /∈ [u, v)

}
, see Asmussen [3] pp. 393-394 as well

as Lindley [22] and Siegmund [27]. This implies that the Laplace transform of
πK can be found in closed form whenever the scale function of S is explicitly
available. For examples of this, see Hubalek and Kyprianou [14].

From Theorem 3.6 in Asmussen and Pihlsg̊ard [4], we have the following
expression for the loss rate, in terms of the characteristic triplet of the Lévy
process and the stationary distribution:

`K =
ES1

K

∫ K

0
πK(x) dx+

σ2

2K
+

1

2K

∫ K

0
πK(dx)

∫ ∞

−∞
ϕK(x, y)ν(dy), (2.4)

where

ϕK(x, y) =







−(x2 + 2xy) if y ≤ −x
y2 if − x < y < K − x

2y(K − x) − (K − x)2 if y ≥ K − x .

(2.5)
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3. Main Results

Figure 1: The function ϕ(x, y)
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For a graphical illustration, see Fig. 1 that depicts ϕ(x, y) in the region (x, y) ∈
[0,K]×R relevant for (2.4) (note that y is on the horizontal axis and x on the
vertical).

One should note that various explicit expression for L0
t and LKt have been

derived (in part independently) by a number of authors, see Andersen and
Mandjes [2], Borovkov [8], Cooper et al. [10], Kruk et al. [18] and Kruk et al.
[19]. However, they all have a form that is so complicated that they do not
appear to be of use neither for deriving (2.4), (2.5) nor for the present purposes.

3 Main Results

Our main result provides the asymptotics in the case ES1 = 0 of zero drift.

Theorem 3.1.

a) Let {St} be a Lévy process with ES1 = 0 and characteristic triplet (θ, σ, ν) which
satisfies

∫∞
−∞ x

2 ν(dx) < ∞, Then

`K ∼ 1

2K

∫ ∞

−∞
y2ν(dy) +

σ2

2K
, K → ∞ . (3.1)

b) Let {St} be an Lévy process with characteristic triplet (θ, σ, ν). Assume ES1 = 0
and that for some 1 < α < 2, there exists slowly varying functions L0(x), L1(x)
and L2(x) such that for L(x) := L1(x) + L2(x) we have

ν(x) = x−αL1(x) ν(−x) = |x|−αL2(x) (3.2)

lim
x→∞

L2(x)

L(x)
=
β + 1

2
lim
x→∞

L0(x)
αL(x) = 1 (3.3)

Then, setting ρ = 1/2 + (πα)−1 arctan(β tan(πα/2)), d = (β + 1)/2 and c =
(1 − β)/2 we have `K ∼ γ/(Kα−1Lα0 (K)) where

γ =
cB(2 − αρ, αρ) + dB(2 − α(1 − ρ), α(1 − ρ))

B(αρ, α(1 − ρ))(α − 1)(2 − α)
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The parameter ρ defined in Theorem 3.1 is known as the positivity param-
eter as it satisfies ρ = P(St > 0) when S is a strictly α-stable Lévy process,
see Zolotarev [30].

We note incidentally that Theorem 3.1 also gives the asymptotics of `0 =
EπKL0

1 because a balance argument together with (1.1) gives 0 = ES1+`0−`K
so that `0 = `K in the mean zero case ES1 = 0.

To prove Theorem 3.1, we will use the fact that by properly scaling our
Lévy process we may construct a sequence of Lévy processes which converges
weakly to either a Brownian Motion or a stable process. Since `K has been
calculated for both Brownian Motion and stable processes in Asmussen and
Pihlsg̊ard [4], we may use this convergence to obtain loss rate asymptotics in
the case of zero drift, provided that the loss rate is continuous in the sense that
weak convergence (in the sense of Proposition 2.1) of the involved processes
implies convergence of the associated loss rates. To state our result:

Theorem 3.2. Let
{
Sn
}

n=0,1,...
be a sequence of Lévy processes with associated loss

rates `K,n. Suppose Sn
D→ S0 and that the family (Sn1 )∞n=1 is uniformly integrable.

Then `K,n → `K,0 as n→ ∞.

We shall also need:

Theorem 3.3. Let {Xn}n=1,2,... be a sequence of weakly convergent infinitely divis-
ible random variables, with characteristic triplets (θn, σn, νn). Then for α > 0:

lim
a→∞

sup
n

∫

[−a,a]c
|y|ανn(dy) = 0 ⇔ {|Xn|α | n ≥ 1} is uniformly integrable

The result is certainly not unexpected, but does not appear to be in the
literature; the closest we could find is Theorem 25.3 in Sato [26].

4 Proof of Theorem 3.2

We consider a sequence of Lévy process
{
Sn
}

such that Sn
D→ S0 and use

obvious notation like `K,n, πK,n etc. Furthermore, we let τn(A) denote the
first exit time of Sn from A. Here A will always be an interval.

We first show that weak convergence of Sn1 implies weak convergence of
the stationary distributions.

Proposition 4.1. Sn
D→ S0 ⇒ πK,n

D→ πK,0.
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4. Proof of Theorem 3.2

Proof. According to Theorem 13.17 in Kallenberg [16] we may assume ∆n,t :=

supv≤t |Sn(v) − S0(v)| P→ 0. Then

P
(
S0
τ0[y+ε−K,y+ε) ≥ y + ε, τ0[y + ε−K, y + ε) ≤ t

)

≤ P
(
Snτn[y−K,y) ≥ y, τn[y −K, y) ≤ t

)
+ P(∆n,t > ε)

≤ P
(
Snτn[y−K,y) ≥ y

)
+ P(∆n,t > ε) .

Letting first n→ ∞ gives

lim inf
n→∞

πK,n(y) ≥ P
(
S0
τ0[y+ε−K,y+ε) ≥ y + ε, τ0[y + ε−K, y + ε) ≤ t

)
,

and letting next t→ ∞, we obtain

lim inf
n→∞

πK,n ≥ πK,0(y + ε) . (4.1)

Similarly,

P
(
Snτn[y−K,y) ≥ y, τn[y −K, y) ≤ t

)
≤ P

(
S0
τ0[y−ε−K,y−ε) ≥ y

)
+ P(∆n,t > ε) ,

lim sup
n→∞

P
(
Snτn[y−K,y) ≥ y, τn[y −K, y) ≤ t

)
≤ πK,0(y − ε) . (4.2)

However,

P
(
τn[y −K, y) > t

)
≤ P

(
τ0[y − ε−K, y + ε) > t

)
+ P(∆n,t > ε) ,

so that

lim sup
n→∞

P
(
τn[y −K, y) > t

)
≤ P

(
τ0[y − ε−K, y + ε) > t

)
.

Since the r.h.s. can be chosen arbitrarily small, it follows by combining with
(4.2) that

lim sup
n→∞

πK,n(y) = lim sup
n→∞

P
(
Snτn[y−K,y) ≥ y

)
≤ πK,0(y − ε) .

Combining with (4.1) shows that πK,n(y) → πK,0(y) at each continuity point
y of πK,0, which implies convergence in distribution.

We will need the following lemma.

Lemma 4.1. The function ϕ(x, y) is continuous in the region (x, y) ∈ [0,K] × R

and satisfies 0 ≤ ϕ(x, y) ≤ 2y2 ∧ 2K|y|.
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Proof. By elementary calculus. For continuity, check that the expressions for
ϕ(x, y) on the regions x+ y ≤ 0 and x+ y ≥ K equal y2 on the lines x+ y = 0
and x+ y = K . The claimed inequality is clear for 0 ≤ x+ y ≤ K . Consider
x+y < 0. Then ϕ(x, y) ≤ −2xy ≤ 2y2 and ϕ(x, y) ≤ −2xy ≤ 2K|y|. Similarly
for x + y > K , we have ϕ(x, y) ≤ 2y(K − x) which yields ϕ(x, y) ≤ 2y2 and
ϕ(x, y) ≤ −2xy ≤ 2Ky.

We are now ready to prove Theorem 3.2.

Proof. Recall the definition (2.2) of the bounded measure ν̃ and let ϕ̃K(x, y) :=
ϕK(x, y)(1 + y2)/y2 for y 6= 0, ϕ̃K(x, 0) = 1. The continuity of ϕ implies
ϕ(x, y) ∼ y2 as y → 0 and it easily follows that ϕ̃(x, y) is continuous jointly
in x, y. We also get

∫ ∞

−∞
ϕ̃(x, y)ν̃n(dy) = σ2

n +

∫ ∞

−∞
ϕ(x, y)νn(dy)

so that

an := σ2
n +

∫ K

0
πK,n(dx)

∫ ∞

−∞
ϕ(x, y)νn(dy)

=

∫ K

0
πK,n(dx)

∫ ∞

−∞
ϕ̃(x, y)ν̃n(dy) .

Let ν̃1
n, ν̃

2
n denote the restrictions of ν̃n to the sets |y| ≤ a, resp. |y| > a. Then

0 ≤ ϕ(x, y) ≤ 2K|y|, and uniform integrability (Theorem 3.3) imply that we
can choose a such that

0 ≤
∫

[−a,a]c
ϕ̃(x, y)ν̃2

n(dy) < ε

for all x and n (note that ν̃n ≤ νn on R\ {0}). We may also further assume
that a and −a are continuity points of ν0 which implies ν̃1

n → ν̃1
0 weakly. In

particular,

sup
n
ν̃1
n([−a, a]) <∞. (4.3)

Define

fn(x) =

∫ a

−a
ϕ(x, y)νn(dy) + σ2

n =

∫ a

−a
ϕ̃(x, y)ν̃1

ndy

so that fn(x) → f0(x). Being continuous on the compact set [0,K] × [−a, a],
ϕ̃K(x, y) is uniformly continuous. Together with (4.3) this implies that given
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ε1, there exists ε2 such that |fn(x′) − fn(x
′′)| < ε1 for all n whenever |x′ −

x′′| < ε2. I.e., the family (fn)
∞
0 is equicontinuous and uniformly bounded. In

particular, the convergencefn(x) → f0(x) is uniform in x ∈ [0,K]. Together
with

∫
f0 dπK,n →

∫
f0 dπK,0 this implies

∫
fn dπK,n →

∫
f0 dπK,0 (see also

Pollard [24] Example 19 p. 73 for related arguments). Putting this together
with the uniform integrability estimate above and letting ε → 0 gives an →
a0.

By uniform integrability ESn1 → ES0
1 , and further πK,n

D→ πK,0 implies
∫K
0 πK,n →

∫ K
0 πK,0. Remembering an → a0 and inspecting the expression

(2.4) for the loss rate shows that indeed `K,n → `K,0.

5 Proof of Theorem 3.3

The following proposition is standard:

Proposition 5.1. Let p > 0 and let Xn ∈ Lp, n = 0, 1, . . . , such that Xn
D→ X0.

Then E|Xn|p → E|X0|p if and only if the family {|Xn|p}n≥1 is uniformly integrable.

Theorem 3.3 is proved through several preliminary results. First, we prove
Lemma 5.1 which essentially states we may disregard the behavior of the Lévy
measures on the interval [−1, 1] in questions regarding uniform integrability.
It is therefore sufficient to prove Theorem 3.3 for compound Poisson distribu-
tions, which is done in Proposition 5.2 and Proposition 5.3.

We start by examining the case where the Lévy measures have uniformly
bounded support, i.e., there exists A > 0 such that νn([−A,A]c) = 0 for all
n. We know from Lemma 25.6 and Lemma 25.7 in Sato [26] that this implies
the existence of finite exponential moments for Xn and therefore EXm

n exists
and is finite as well for all n,m ∈ N.

Lemma 5.1. Suppose Xn
D→ X0 and the Lévy measures have uniformly bounded

support. Then EXm
n → EXm

0 for m = 1, 2, · · · . In particular (cf. Proposition 5.1)
the family {|Xn|α}n≥1 is uniformly integrable for all α > 0.

Proof. By Lemma 25.6 of [26], the characteristic exponent κn(s) of Xn is de-
fined for all s ∈ C, and we can work with the moment generating function
R 3 t → EetX ∈ R, which the by the Levy-Khinchine representation can be
written as EetXn = eκn(t) where

κn(t) = θnt+ σ2
nt

2/2 +

∫ A

−A

(
ety − 1 − tyI(|y| ≤ 1)

)
νn(dy) (5.1)
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With the aim of applying Lemma 13.15 in Kallenberg [16], we rewrite (5.1) as

κn(t) = cnt+

∫ A

−A

(

ety − 1 − ty

1 + y2

)
1 + y2

y2
ν̃n(dy) (5.2)

where ν̃n is as above and

cn = θn +

∫ A

−A

(
y

1 + y2
− yI(|y| ≤ 1)

)

νn(dy) .

According to Lemma 13.15 in [16], the weak convergence of {Xn}n≥1 implies

cn → c0 and ν̃n
D→ ν̃. Since the integrand in (5.2) is bounded and continuous,

this implies that κn(t) → κ0(t), which in turn implies that all exponential
moments converge. In particular, the family

{
eXn + e−Xn

}

n≥1
is uniformly

integrable, which implies that {|Xn|α}n≥1 is so.

Next, we express the condition of uniform integrability using the tail of the
involved distributions. We will need the following lemma on weakly convergent
compound Poisson distributions.

Lemma 5.2. Let U0, U1, . . . be a sequence of positive random variables such that
Un > 1, and let N0, N1, . . . be Poisson random variables with rates λ0, λ1 . . .
Set Xn :=

∑Nn

1 Ui,n (empty sum = 0) with the Ui,n being i.i.d for fixed n with

Ui,n =D Un. Then Xn
D→ X0 if and only if Un

D→ U0 and λn → λ0.

Proof. We use the continuity theorem for characteristic functions. The char-
acteristic function of Xn is E

isXn = exp
{
λn(E

isUn − 1
}

. From this the ‘if’
part is immediately clear. For the converse, we observe that exp(−λn) →
exp(−λ0) = P(X0 ≤ 1/2) since 1/2 is a continuity point of X0 (note that
P(X0 ≤ x) = P(X0 = 0) for all x < 1). Taking logs yields λn → λ0 and

the necessity of Un
D→ U0 then is obvious from the continuity theorem for

characteristic functions.

Using the previous result, we are ready to prove part of our main result
for a class of compound Poisson distributions:

Proposition 5.2. Let U0, U1, . . . , N0, N1, . . . , and X0,X1, . . . be as in Lemma 5.2.

Assume Xn
D→ X0. Then for α > 0.

lim
a→∞

sup
n

E
[
Xα
n I(Xn > a)

]
= 0 ⇒ lim

a→∞
sup
n

E
[
Uαn I(Un > a)

]
= 0 .
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5. Proof of Theorem 3.3

Proof. LetGn(x) = P(Xn ≤ x),Fn(x) = P(Un ≤ x),Fn(x) = 1−Fn(x),Gn(x) =
1 −Gn(x), and let F ∗mn (x), G∗mn (x) denote the m’th fold convolutions. Then

Gn(x) =
∞∑

m=1

λmn
m!

e−λnF
∗m
n (x) x > 0

which implies Gn(x) ≥ λne
−λnFn(x). Letting β = supn eλn/λn, which is

finite by Lemma 5.2, we get: Fn(x) ≤ βGn(x). Therefore:

E[Uαn I(Un > a)] =

∫ ∞

0
αtα−1

P(Un > a ∨ t)dt

= aαFn(a) + α

∫ ∞

a
tα−1Fn(t)dt

≤ βaαGn(a) + βα

∫ ∞

a
tα−1Gn(t)dt

= βE[Xα
n I(Xn > a)] .

Taking supremum and limits completes the proof.

Next, we prove the converse of Proposition 5.2.

Proposition 5.3. Under the assumptions of Proposition 5.2 we have, for α > 0:

lim
a→∞

sup
n

E
[
Uαn I(Un > a)

]
= 0 ⇒ lim

a→∞
sup
n

E
[
Xα
n I(Xn > a)

]
= 0 .

Proof. We use the notation of Proposition 5.2. By Lemma 5.2 we have F ∗1n
D→

F ∗10 and by the Portmanteau lemma F ∗mn
D→ F ∗m0 . We note that the as-

sumption of uniform integrability of the Uαn implies that E
(∑m

i=1 Ui,n
)α →

E
(∑m

i=1 Ui,0
)α

, since the Ui,n are i.i.d in i and Ui,n =D Un. Fix m ∈ N. Since
(∑m

i=1 Ui,n
)α ≤ mα

∑m
i=1 U

α
i,n and the family

(
mα

∑m
i=1 U

α
i,n

)

n≥1
is uniformly

integrable, we have that also the family
(∑m

i=1 Ui,n
)α

n≥1
is uniformly inte-

grable. As noted above we have
∑m

i=1 Ui,n
D→ ∑m

i=1 Ui,0, so Proposition 5.1
implies E

(∑m
i=1 Ui,n

)α → E
(∑m

i=1 Ui,0
)α

.
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We next show EXα
n → EXα

0 and thereby the assertion of the proposition.
We have:

lim
n

EXα
n = lim

n

∞∑

m=0

E

( m∑

i=1

Ui,n

)αλmn
m!

e−λn

=

∞∑

m=0

lim
n

E

( m∑

i=1

Ui,n

)αλmn
m!

e−λn

=
∞∑

m=0

E

( m∑

i=1

Ui,0

)αλm0
m!

e−λ0 = EXα
0 ,

where we used dominated convergence with the bound

E

( m∑

i=1

Ui,n

)αλmn
m!

e−λn ≤ γmα+1βm/m!

with γ = supn EUαn and β = supn λn.

Proof of Theorem 3.3. Using the Lévy -Khinchine representation, we may
write

Xn = X(1)
n +X(2)

n +X(3)
n (5.3)

where the
(
X

(i)
n

)

n≥1
are sequences of infinitely divisible distributions having

characteristic triplets (0, 0, [ν]{y<−1}) , (θn, σn, [νn]{|y|≤1}) and (0, 0, [νn]{y>1}),
respectively. Assume the family

(
|Xn|α

)

n≥1
is uniformly integrable. We wish

to apply Proposition 5.2 to the family
(
(X

(3)
n )α

)
, and therefore we need to

show that this family is uniformly integrable. First, we we rewrite (5.3) as

Xn − X
(2)
n = X

(1)
n + X

(3)
n and use Lemma 5.1 together with the inequality

|x − y|α ≤ 2α(|x|α + |y|α) to conclude that the family
(
|Xn − X

(2)
n |α

)

n≥1
is

uniformly integrable, which in turn implies that the family
(
|X(1)

n +X
(3)
n |α

)

n≥1
is uniformly integrable.

Assuming w.l.o.g. that 1 is a continuity point of ν0, we have that X
(1)
n is

weakly convergent and therefore tight. This implies that there exists r > 0

such that P
(
|X(1)

n | ≤ r
)
≥ 1/2 for all n, which implies that for all n and for

all t so large that (t1/α − r)α > t/2, we have:

(1/2)P
(
(X(3)

n )α > t
)
≤ P

(
|X(1)

n | ≤ r
)
P
(
X(3)
n > t1/α

)

= P
(
|X(1)

n | ≤ r,X(3)
n > t1/α

)
≤ P

(
X(1)
n +X(3)

n > t1/α − r
)

= P
(
|X(1)

n +X(3)
n |α > (t1/α − r)α

)
≤ P

(
|X(1)

n +X(3)
n |α > t/2

)
.
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6. Proof of Theorem 3.1

This implies that
(
(X

(3)
n )α

)
is uniformly integrable, since

(
|X(1)

n +X
(3)
n |α

)
is

so. Applying Proposition 5.2 yields

lim
a

sup
n

∫ ∞

a
yανn(dy) = 0 (5.4)

Together with a similar relation for
∫ −a
−∞ this gives

lim
a→∞

sup
n

∫

[−a,a]c
|y|ανn(dy) = 0 .

For the converse, we assume lima supn
∫

[−a,a]c |y|ανn(dy) = 0, and return

to our decomposition (5.3). As before, we apply Lemma 5.1 to obtain that the

family
(
X

(2)
n

)
is uniformly integrable. Furthermore, applying Proposition 5.3,

we obtain that the families
(
|X(1)

n |α
)

and
(
|X(3)

n |α
)

are uniformly integrable,
and since |Xn|α ≤ 3α

(
|X1

n|α + |X2
n|α + |X3

n|α
)
, the proof is complete. 2

6 Proof of Theorem 3.1

First we note the effect that scaling and time-changing a Lévy process has on
the loss rate:

Proposition 6.1. Let β, δ > 0 and define Sβ,δt = Sδt/β. Then the loss rate
`K/β(Sβ,δ) for Sβ,δ equals δ/β times the loss rate `K(S) = `K for S.

Proof. It is clear that scaling by β results in the same scaling of the loss rate.
For the effect of δ, note that the loss rate is the expected local time in station-
arity per unit time and that one unit of time for Sβ,δ corresponds to δ units of
time for S.

Proof of Theorem 3.1 a). Define SKt := StK2/K. Then by Proposition 6.1
we have

K`K(S) = `1(SK)

By the central limit theorem we have SK1
D→ N(0, ψ2) as K → ∞, where

ψ2 = Var(S1
1) = σ2 +

∫ ∞

−∞
y2ν(dy) .

By Proposition 2.1, this is equivalent to SK
D→ ψB where B is standard

Brownian motion. We may apply Theorem 3.2, since

E
[
(SK1 )2

]
= Var(S1

1) ,
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that is,
{
SK1
}∞

K=1
is bounded in L2 and therefore uniformly integrable, and

we obtain limK K`
K(S) = limK `

1
(
SK
)

= `1(ψB) = ψ2/2, where the last
equality follows directly from the expression for the loss rate given by (2.4).
2

Proof of Theorem 3.1 b). First we note that the stated conditions implies
that the tails of ν are regularly varying, and therefore they are subexponen-
tial. Then by Embrechts et al. [12] we have that the tails of P (S1 < x) are
equivalent to those of ν and hence we may write P (S1 > x) = x−αL1(x)g1(x),
and P (S1 < −x) = x−αL2(x)g2(x) where limx→∞ gi(x) = 1. i = 1, 2. The
next step is to show that the fact that the tails of the distribution function is
regularly varying allows us to apply the stable central limit theorem. Specifi-
cally, we show that the assumptions of Theorem 1.8.1 in Samorodnitsky and
Taqqu [25] are fulfilled.

We notice that if we define M(x) := L1(x)g1(x) + L2(x)g2(x) then M(x)
is slowly varying and

xα(P (S1 < −x) + P (S1 > x)) = M(x) . (6.1)

Furthermore:

P (S1 > x)

P (S1 < −x) + P (S1 > x)
= L2(x)g2(x)/M(x) ∼ L2(x)/L(x) → β + 1

2
,

(6.2)

as x → ∞ since L(x) ∼ M(x). Let L#
0 (x) denote the de Bruin conjugate of

L0 (cf. Bingham et al. [7] p. 29) and set f(n) := n(1/α)L#
0 (n(1/α)). Let f←

be the generalized inverse of f . By asymptotic inversion of regularly varying
functions (p. 28-29 [7]) we have f←(n) ∼ (nL0(n))α and using (3.3) we have

f←(n)L(n)

nα
∼ (nL0(n))αL(n)

nα
= L0(n)αL(n) → 1

and since f←(f(n)) ∼ n we have

nM(f(n))

f(n)α
∼ nL(f(n))

f(n)α
∼ f←(f(n))L(f(n))

f(n)α
→ 1 (6.3)

and therefore, if we define σ = (−Γ(1 − α) cos(απ/2))1/α .

nM(σ−1f(n))

(σ−1f(n))α
∼ nM(f(n))

(σ−1f(n))α
→ σα (6.4)
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using slow variation of M. By combining (6.1), (6.2) and (6.4) we may apply

the stable CLT Theorem 1.8.1 [25]1 to obtain SK/f(K)
D→ X where X is a

r.v. with c.h.f. ϕ, where

ϕ(t) = exp(−|σt|α(1 − iβ sgn(t) tan(απ/2))

Recalling that κ is the characteristic exponent of S1, this is equivalent to

eκ(t/f(K))K → ϕ(t)

and therefore

eκ(t/f(f←(K)))(KL0(K))α ∼ eκ(t/f(f←(K)))f←(K) → ϕ(t)

that is, for SKt = St(KL0(K))α/f(f←(K)) we have SK1
D→ X. Setting d =

(β + 1)/2 and c = (β − 1)/2 we may use formula (3.37.13) in Hoffmann-
Jørgensen [13] to obtain

− |σt|α(1 − iβ sgn(t) tan(απ/2) = (6.5)

− |σt|α(1 + i(d− c) sgn(t) tan(απ/2) = (6.6)

dα

∫ 0

−∞
(eivt − 1 − ivt)(−t)−α−1 dt+ (6.7)

cα

∫ ∞

0
(eivt − 1 − ivt)t−α−1 dt . (6.8)

That is, the characteristic triplet of X is (τ, 0, ν), where

ν(dt) =

{
αc

(−t)α+1 dt t < 0
αd
tα+1 dt t > 0

(6.9)

and τ is a centering constant. We wish to use Theorem 3.2 and have to prove
uniform integrability. Since f(f←(K)) ∼ K it is enough to prove uniform inte-
grability of S̃K := S(KL0(K))α/K for large enough K. Note that by combining
Proposition 11.10 and Corollary 8.3 in [26], we have that the Lévy measure of
S̃K is νK , where νK(B) = (KL0(K))αν({x : K−1x ∈ B}). Using the assump-
tions in (3.2) this implies νK(a) = (KL0(K))αν(aK) = L0(K)αa−αL1(aK)
and νK(−a) = L0(K)αa−αL2(aK). Using Theorem 3.3, we see that it is
enough to show that

lim
a→∞

sup
K>γ

∫

[−a,a]c
|y|νK(dy) = 0

1Note that the constants there should be replaced by their inverses.
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for some γ > 0, which we specify later.
Using partial integration and the remark above, we find:

∫

[−a,a]c
|y|νK(dy) =

aνK(a) +

∫ ∞

a
νK(t)dt+ aνK(−a) +

∫ −a

−∞
νK(t)dt =

a−α+1L0(K)αL(aK) +

∫ ∞

a
t−αL0(K)αL(tK)dt

Because of assumptions (3.3) we have L0(K)αL(K) is convergent, and in par-
ticular, we have β := supK>γ L0(K)αL(K) <∞. Furthermore, using Potter’s
Theorem (Theorem 1.5.6 in [7]) we have that for δ > 0 such that 1 + δ < α
there exists γ > 0 such that

L(aK)

L(K)
≤ 2max(aδ, a−δ) aK > γ,K > γ

Using these remarks, we see that

lim
a

sup
K>γ

a−α+1L0(K)αL(aK) ≤

β lim
a

sup
K>γ

a−α+1L(aK)

L(K)
≤

2β lim
a
a−α+1 max(aδ, a−δ) = 0

and similarly for the integral:

lim
a

sup
K>γ

∫ ∞

a
t−αL0(K)αL(tK)dt ≤

β lim
a

∫ ∞

a
t−α sup

K>γ

L(tK)

L(K)
dt ≤

2β lim
a

∫ ∞

a
t−αmax(tδ, t−δ)dt = 0 .

We may therefore apply Theorem 3.2 and Proposition 6.1 to obtain

Kα−1L0(K)α`K(S) ∼ Kα−1L0(K)α`f(f←(K)(S) = `1
(
SK
)
.

Letting K → ∞ and using the expression for the loss rate of a stable distri-
bution which is calculated in Example 3.2 in Asmussen and Pihlsg̊ard [4] (see
also Kyprianou [20]), yields the desired result. 2
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Parallel Computing, Failure Recovery,
and Extreme Values

Lars Nørvang Andersen & Søren Asmussen

Abstract

A task of random size T is split into M subtasks of lengths T1, . . . , TM ,
each of which is sent to one out of M parallel processors. Each pro-
cessor may fail at a random time before completing its allocated task,
and then has to restart it from the beginning. If X1, . . . ,XM are the
total task times at the M processors, the overall total task time is
then ZM = max1,...,M Xi. Limit theorems as M → ∞ are given for
ZM , allowing the distribution of T to depend on M . In some cases
the limits are classical extreme value distributions, in others they are
of a different type.
Keywords failure recovery, Fréchet distribution, geometric sums,
Gumbel distribution, heavy tails, logarithmic asymptotics, mixture
distribution, power tail, RESTART, triangular array.
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1 Introduction

Consider a job that ordinarily would take a time T to be executed on some
system (e.g., CPU). If at some time U < T the processor fails, the job may
take a total time X ≥ T to complete. We let F,G be the distributions of T,U
with H = HF,G the distribution of X, which in addition to F,G will depend
on the failure recovery scheme.

Many papers discuss methods of failure recovery and analyze their com-
plexity, like restartable processors in Chlebus et al. [6], or stage checkpointing
in De Prisco et al. [14], etc. There are many specific and distinct failure
recovery schemes, but they can be grouped into three broad classes:

RESUME, also referred to as preemptive resume;
REPLACE, also referred to as preemptive repeat different;
RESTART, also referred to as preemptive repeat identical.

In the RESUME scenario, if there is a processor failure while a job is being
executed, after repair is implemented the job can continue where it left off.
All that is required mathematically is to remember the state of the system
when failure occurred. In the REPLACE situation, if a job fails, it is replaced
by a different job having the same distribution. Here, no details concerning
the previous job are necessary in order to continue.

The analysis of the distribution function H(x) = P(X ≤ x) when the
policy is RESUME or REPLACE was carried out by Kulkarni et al. [10], [11]
(see also Bobbio & Trivedi [4], Castillo & Siewiorek [16] and Chimento &
Trivedi [5]). The RESTART policy had resisted detailed analysis until the
recent papers by Sheahan et al. [15], Asmussen et al. [2], Jelenkovic & Tan [9],
where the tail asymptotics of H was found under a variety of assumptions on
F and G. The setting of [9] is file transfer problems and involves an on-off
model that incorporates what in the present setting corresponds to repairs. In
contrast, [2] has its background in the computer science literature on failure
recovery in the execution of a program on a computer.

For many systems failure is sufficiently rare to be ignored, or dealt with as
an afterthought. For other systems, failure is common enough that the design
choice of how to deal with it may have a significant impact on the performance
of the system. One such example arises in parallel computing, where the
probability of failure of a single processor in isolation may be small, but the
number of processors is so large (in practice, often hundreds or thousands)
that the probability that one or more processors fail cannot be neglected. The
present paper studies the implications of the analysis of [2] for this situation.
To formalize the set-up, assume that the job is split into M parts of lengths
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S1, . . . , SM , which are executed on M parallel processors. The total times on
the processors, including restarts, are denoted X1, . . . ,XM . Thus the total
time for the whole job is Z = maxi=1,...,M Xi. What can then be said about
the distribution of Z? For example, assume there is given a cost function of
the type a + bM + cZM where a is a set-up cost, b a cost per processor and
c the cost per unit time. One would then want to choose M to minimize the
expected cost a+ bM + cEZM (note that one expects EZM to be a decreasing
function of M).

The reason for using parallel processors will often be that the job is large.
For example, the job could consist in generating R replicates of a Monte Carlo
estimator for some large R. On the other hand, there may be situations where
speed is an essential factor when executing a job of small or moderate size,
i.e. the cost function has a large c. For example this could occur in filtering a
noisy signal or in option price calculations based upon high-frequency input.
This suggests considering a general triangular array situation where the total
job size T = TM and hence F = FM , the distribution of the job time faced
by a single processor, varies with the number M of processors. We then write

S
(M)
1 , . . . , S

(M)
M , X

(M)
1 , . . . ,X

(M)
M ,

ZM = max
i=1,...,M

X
(M)
i ,

and HM (x) = P(ZM ≤ x). We will consider two scenarios:

(D) T = TM = tM for some deterministic tM and SM = sM = tM/M ; then
FM is the one-point distribution at sM ;

(Γ) FM is Gamma(αM , λ) with density

fM (t) =
λαM

Γ(αM )
tαM−1e−λt .

Further, S
(M)
1 , . . . , S

(M)
M are independent. Thus the distribution of the total

job size is a Gamma(MαM , λ) distribution.

A random total job size arises in situations where the run length of the
job sent to parallel processing will not be known in advance but is random.
An example is Monte Carlo simulations involving random number generation
by acceptance-rejection or more complicated stopping times such as cycles in
regenerative simulation (see [1]). Note that since for fixed λ, the Gamma(α, λ)
distributions form a convolution semigroup in α, assumption (Γ) is a natu-
ral stochastic extension of the deterministic set-up (D) (αM corresponds to
sM). For example, in the Monte Carlo setting each replication could take a
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Gamma(α, β) time, and each processor would be asked to perform RM repli-
cations. Then αM = βRM . Of course, the Gamma case is only one among
many where the total job size is infinitely divisible, and independence among
subjobs is a reasonable assumption (such independence may certainly fail in
some situations, but we do not consider this possibility here).

In scenario (D), we sometimes assume that tM = t1M
p, i.e. sM = s1M

p−1

for some p ≥ 0. Here p = 1 could be relevant for the Monte Carlo example and
p = 0 for the filtering example, though clearly in both situations intermediate
values could also arise. The cases p < 1, p = 1 and p > 1 are qualitatively
different since in the first sM → 0 and in the third sM → ∞ subject to (D),
whereas sM is constant when p = 1; analogous remarks apply to the Gamma
case with the αM taking the roles of the sM .

We will assume throughout the paper that the failure time distribution G
is independent of M and, except for Section 4, that G is exponential, with
rate parameter µ.

The paper starts in Section 3 by an analysis of the case p = 1. This is
fairly easy, because then S does not depend on M and the Xi,M are i.i.d.
random variables with a distribution not depending on M . Given the results
from [2] on the tail of H, classical extreme value theory ([12]) can therefore
be easily translated into a limit theorem for ZM .

If p 6= 1, the Xi,M have a distribution depending on M , so that we are
beyond classical extreme value theory and have to consider a triangular array
setting. This is carried out in Section 4 for p < 1 and Section 5 for p > 1.
Finally, the Gamma case with αM → ∞ is treated is Section 6 (the case
αM → 0 is non-trivial and is not included here).

2 Preliminaries

We first recall some background material from Asmussen et al. [2] for the
RESTART setting with F independent of M . The key to the analysis in this
work is the fact that given T = t, X is distributed as

t + S(t) where S(t) =

N(t)
∑

i=1

Ui(t) , (2.1)

where the Ui(t) are i.i.d. distributed as U conditioned on U ≤ t, i.e.

P
(
Ui(t) ≤ y

)
=

{

G(y)/G(t) y ≤ t

1 y > t
,
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and N(t) is an independent geometric r.v. with success parameter G(t) =
1 −G(t), that is, P

(
N(t) = n

)
= G(t)G(t)n. The following result plays a key

role in [2] as well as the present paper:

Lemma 2.1. Assume T ≡ t1 and G(t1) > 0. Then

H(x) ∼ C(t1)e
γ(t1)t1e−γ(t1)x (2.2)

where γ(t) > 0 is the solution of
∫ t
0 eγ(t)yG(dy) = 1 and C(t) = G(t)/γ(t)B(t)

where B(t) =
∫ t
0 ye

γ(t)yg(y) dy. Further,

e−γ(t1)x ≤ H(x) ≤ eγ(t1)t1e−γ(t1)x (2.3)

A common terminology refers to (2.2) as the Cramér-Lundberg approxima-
tion and to (2.3) as Lundberg’s inequality.

We shall also use the following obvious consequence of the representation
(2.1) of the conditional distribution of X given T = t:

H(x) =

∫ ∞

0
P
(
t+ S(t) > x

)
F (dt) . (2.4)

For Scenario (Γ), the relevant result from [2] is the following (with some
typos in [2] corrected here):

Lemma 2.2. Consider Scenario (Γ) with αM ≡ α independent of M . Then

H(x) ∼ C
logα−1 x

xλ/µ
x→ ∞, where C =

Γ
(
λ
µ

)

µ
λ
µ

λα

Γ(α)

1

µα
.

We shall also need:

Lemma 2.3. Let K be a distribution function such that MHM

(
aMy + bM

)
→

log−K(y) for all y. Then the distribution of (ZM − bM )/aM converges to K .

The lemma is standard in extreme value theory when HM is independent
of M and follows from the fact that

P
(
(ZM−bM )/aM ≤ y

)
= HM

(
aMy+bM

)M
=
(
1−MHM

(
aMy+bM

)
/M
)M

,

by taking logs and expanding in a Taylor series. The classical limits relevant
for this paper are the Gumbel distribution with K(y) = e−e−y

and the Fréchet

distribution with parameter β > 0 where K(y) = e−y
−β

(a Weibull limit may
also occur in the classical setting, but is not relevant for RESTART because it
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requires bounded support). However, in a triangular setting other types ofK’s
may occur, of which we will later see examples. A general reference on extreme
value theory for triangular arrays is Valente Freitas & Hüsler [7]. However,
this reference basically covers only a neighborhood of classical extreme value
theory (i.e., SM not too varying with M so that non-classical limits are not
covered), and further, it requires a differentiability condition on HM which
fails at sM , 2sM , . . . .

An important feature worth stressing is that extreme value statements
deal with typical values of ZM (of the form bM +aMy in the setting of Lemma
2.3), not with tail behavior.

3 The case p = 1: classical extreme values

Assume that FM does not depend on M .

Proposition 3.1. Consider the case sM ≡ s1 in Scenario (D). Let γ denote the solu-
tion of 1 =

∫ s1
0 eγyµe−µydy and set C = e−µs1/γB, whereB =

∫ s1
0 yeγyµe−µydy.

Then γ
(
ZM − s1) − log(MC) has a limiting Gumbel distribution as M → ∞.

Proof. Note that ZM − s1 is distributed as the maximum of M independent
copies of S(s1) and that

P
(
S(s1) > x

)
∼ Ce−γx , x→ ∞,

by Lemma 2.1. An asymptotic exponential tail is a standard sufficient condi-
tion in extreme value theory for the random variable to be in the maximum
domain of attraction of the Gumbel distribution, and the form of the normal-
izing constants also follows from this theory. A direct proof from Lemmas 2.1
and 2.3 is straightforward: with aM = 1/γ, bM = s1 + log(MC)/γ, one gets

MH
(
aMy + bM

)
∼ MCeγs1e−γ(aM y+bM

)

= e−y .

The implication is that ZM is of order logM/γ. For example, since
− log log 2 is the median in the Gumbel distribution, we obtain the approx-
imation s1 − log log 2/γ + log(MC)/γ for the median of ZM ; note that, as
remarked at the end of Section 2, this is not a tail approximation but telling
information about the typical values of ZM . Similarly, since the Euler constant
ϕ ≈ 0.577 is the mean of the Gumbel distribution, one obtains the approxima-
tion ϕ/γ + s1 + log(MC)/γ for EZM (for verification of the required uniform
integrability, see Pickands [13]).
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Proposition 3.2. Consider Scenario (Γ) with αM ≡ α independent of M , and
define

aM =
Cµ/λ

(λ/µ)(α−1)µ/λ
Mµ/λ log((α−1)µ/λM ,

where C is defined in Lemma 2.2. Then ZM/aM has an approximate Fréchet distri-
bution with parameter β = λ/µ.

Proof. The result again follows from the standard extreme value characteri-
zation of the maximum domain of attraction of the Fréchet distribution and
Lemma 2.2. Again, a direct proof from Lemma 2.3 is easy: with bM = 0, one
gets

MH(aMy) ∼ 1

y
λ
µ

(
log(aMy)

log(M)µλ

)α−1

→ 1

y
λ
µ

, .

Again using the median as an example, the approximation for the median
of ZM becomes aM/ log1/β 2. The mean of the Fréchet distribution is finite if
and only if β > 1 and then equals Γ(1−1/β). This suggests the approximation
aMΓ(1−1/β) for EZM when λ > µ. Since aM is roughly of order Mµ/λ which
increases much faster than the logM occurring in Scenario (D), this shows
the dramatic effect of randomness on the total job size.

4 Scenario (D) with p < 1

We now assume in Scenario (D) that tM = t1M
p for some 0 ≤ p < 1 and

t1 > 0 so that sM = t1M
p−1. We will work with the following condition on G:

G(x) = xαL(x) (4.1)

with α > 0 and L slowly varying at 0, so that limx→∞L((tx)−1)/L(x−1) = 1
t > 0. In particular, this covers a Gamma G where L(x) has a limit as x ↓ 0
(in the exponential set-up, α = 1 and L(x) → µ).

We note the following consequence of (4.1):

lim
M

P(s−1
M U ≤ x | U ≤ sM ) = lim

M

G(sMx)

G(sM )
= lim

M
xα
L(sMx)

L(sM)
= xα, (4.2)

where 0 ≤ x ≤ 1. We define U (α) to be a random variable with distribution
function

P(U (α) ≤ x) =







0 x ≤ 0

xα 0 < x ≤ 1

1 x > 1

,
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and because of (4.2) we have

s−1
M U ≤ x | U ≤ sM

D→ U (α) .

Theorem 4.1.
I) Assume p 6= (kα− 1)/kα for any k ∈ N. Set p∗ = b1/(α(1 − p))c. Then

t−1
1 M1−pZM − 1

P→ p∗ . (4.3)

II) Assume p = (kα − 1)/kα for some k ∈ N, and also that limx↓0 L(x) = γ ∈
(0,∞] exists. Then

t−1
1 M1−pZM − 1

D→ V , (4.4)

where V is distributed as

max
1≤j≤N

(

k − 1,

k∑

i=1

U ji

)

with the U ji being i.i.d. U (α) r.v.’s,N is an independent Poisson r.v. with mean γktαk1

when γ <∞, and N = ∞ a.s. when γ = ∞.

For the proof, we denote by R
(M)
i the number of restarts of the ith pro-

cessor, and let V
(M)
k be the number of processors, with k restarts, so that

V
(M)
k =

M∑

i=1

I(R
(M)
i = k) .

Let ρM = G(sM ) and define

ΘM,k = ρkM (1 − ρM ).

We have I(R
(M)
i = k) =D Bin(1,ΘM,k) and V

(M)
k =D Bin(M,ΘM,k).

As a first step in the proof of Theorem 4.1, we examine the limit possibil-

ities for V
(M)
k :

Proposition 4.1.

I) If k < 1/(α(1 − p)), then, setting σM =
√
MΘM,k(1 − ΘM,k), we have

1

σM

(

V
(M)
k −MΘM,k

)
D→ N(0, 1), M → ∞. (4.5)
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II) If k = 1/
(
α(1 − p)

)
, and limx↓0 L(x) = γ ∈ (0,∞] exists, then

V
(M)
k

D→ Po(tαk1 γk) M → ∞ , (4.6)

where γ = ∞ corresponds to the degenerate case at ∞.
III) If k > 1/

(
α(1 − p)

)
, then

V
(M)
k

P→ 0 , M → ∞. (4.7)

Proof. First we notice that since sM = t1M
p−1, then for all k ∈ N

MΘM,k = M1+kα(p−1)M−kα(p−1)G(sM )k
(
1 −G(sM )

)
(4.8)

∼M1+kα(p−1)L(t1M
p−1)ktαk1 (4.9)

Now, for the proof of I) assume k < 1/
(
α(1 − p)

)
. We need to prove that

MΘM,k → ∞. This is seen by defining H(y) = L(t1/y)
k . Then H is slowly

varying at infinity, and we have:

MΘM,k = M1+kα(p−1)L(t1M
p−1)k = M1+kα(p−1)H(M1−p) .

Substituting xM = M1−p in this expression yields

x
1

1−p
−αk

M H(xM ) ,

which tends to infinity by Proposition 1.3.6(v) in [3]. This implies that σM →
∞, and therefore the normal approximation of the binomial distribution (e.g.
(5.33.1) in [8]) implies

1

σM

M∑

i=1

(

I(R
(M)
i = k) − ΘM,k

)
D→ N(0, 1),

thus proving I).
The proof of III) uses the same calculation as above, where the assump-

tion k > 1/(α(1 − p)) implies MΘM,k → 0 (again, using Proposition 1.3.6

in [3]), that is EV
(M)
k → 0, and since V

(M)
k ≥ 0 we have V

(M)
k → 0 in L1,

which proves III). Regarding II), we see that (4.6) follows from (4.9) and the
Law of Small Numbers if γ ∈ (0,∞). If γ = ∞ then we may use (4.9) to
conclude that MΘM,k → ∞. Using Chebycheff’s inequality we have that

P(VM
k ≤ MΘM,k

2 ) → 0, and therefore limM P(VM
k ≤ x) = 0 for all x, which

proves II).
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Corollary 4.1. If k < 1/
(
α(p− 1)

)
, then limM P(V

(M)
k ≥ x) → 1 for all x.

Proof. Since MΘM,k/σM → ∞

lim
M

P(V
(M)
k ≥ x) = lim

M
P

(

V
(M)
k −MΘM,k

σM
≥ x−MΘM,k

σM

)

→ 1 .

We are now ready to prove Theorem 4.1:

Proof. In order for t−1
1 Mp−1ZM − 1 = s−1

M (ZM − sM) to be greater than p∗, we
must have at least one processor with p∗ + 1 restarts. Using Proposition 4.1
III), we obtain

lim sup
M

P(t−1
1 M1−pZM − 1 > p∗) ≤ lim sup

M
P(Vp∗+1 > 0) = 0 .

Let ε, ε1 > 0 be given. We wish to show that

lim inf
M

P(t−1
1 M1−pZM − 1 ≥ p∗ − ε) ≥ 1 − ε1 .

Let Z∗M denote the random variable similar to ZM , but where we only take
the maximum over the processors with exactly p∗ restarts, that is:

Z∗M = max
1≤i≤M

X
(M)
i I

(
R

(M)
i = p∗

)
.

We see that

t−1
1 M1−pZ∗M − 1 =D max

1≤i≤V
(M)
p∗

p∗
∑

j=1

t−1
1 Mp−1U

(M),i
j

where the U
(M),i
j are independent and distributed as s−1

M U | U < sM . Since

p∗ < 1/
(
α(1 − p)

)
, we have by Corollary 4.1 that V

(M)
p∗

P→ ∞, and therefore,
for any K ∈ N

lim inf
M

P

(

max
1≤i≤V

(M)
p∗

p∗
∑

j=1

t−1
1 M1−pU

(M),i
j ≥ p∗ − ε

)

≥ (4.10)

lim inf
M

P

(

max
1≤i≤K

p∗
∑

j=1

t−1
1 M1−pU

(M),i
j ≥ p∗ − ε

)

. (4.11)
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Furthermore, since

max
1≤i≤K

p∗
∑

j=1

t−1
1 M1−pU

(M),i
j

D→ max
1≤i≤K

p∗
∑

j=1

U ij

where the U ij are i.i.d. and are distributed as Uα, we may complete the proof
of I) by choosing K so large that

P

(

max
1≤i≤K

p∗
∑

j=1

U ij ≥ p∗ − ε
)

≥ 1 − ε1 .

Regarding II), we see that if k = 1/
(
α(1−p)

)
then by (4.6) we have asymp-

totically N processors which have k restarts, where N =D Po(tαk1 γk); by (4.5)
we have infinitely many processors with k − 1 restarts, and by (4.7) we have
0 processors with k + 1 restarts. Define the following r.v.’s:

ZM,1 = max
1≤i≤M

X
(M)
i I(R

(M)
i < k)

ZM,2 = max
1≤i≤M

X
(M)
i I(R

(M)
i = k)

ZM,3 = max
1≤i≤M

X
(M)
i I(R

(M)
i > k)

Then clearly ZM = max(ZM,1, ZM,2, ZM,3) and since t−1
1 M1−pZM,1 − 1

P→
k − 1, t−1

1 M1−pZM,3 − 1
P→ 0 and t−1

1 M1−pZM,2 − 1
D→
∑k

i=1 U
j
i , where (U jj )

is an i.i.d. sequence of r.v.’s distributed as U (α), the proof is complete.

5 Scenario (D) with sM → ∞
We now consider Scenario (D) with sM → ∞ (for example, t = tM = t1M

p

with p > 1; equivalently, M grows with t like t1/p, i.e. at a rate somewhat
slower than t). That is, there is significant but not massive parallelization.
Let γM = γ(sM ) in the notation of Lemma 2.1. We shall prove:

Theorem 5.1. Consider Scenario (D) with sM → ∞. Then µe−µsMZM − logM
has a limiting Gumbel distribution as M → ∞.

This means that ZM is of order eµsM logM/µ = eµtM /M logM/µ.

Lemma 5.1. Let γM = γ(sM ) in the notation of Lemma 2.1. Then γM−µe−µsM =
O
(
sMe−2µsM

)
.
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Proof. Evaluating the integral in the defining equation

1 =

∫ sM

0
eγMyµe−µy dy

explicitly, one gets

1 =
µ

µ− γM

(
1 − e−(µ−γM )sM

)
,

which can be rewritten as

γM = µe−(µ−γM )sM . (5.1)

This shows that γM is of first order µe−µsM (as is shown already in [2]). In
particular, γMsM → 0 so that by Taylor expansion of (5.1),

γM ≈ µe−µsM (1 + γMsM) .

This proves the assertion.

Proof of Theorem 5.1. Let FM denote the distribution of X
(M)
i . Then by Lund-

berg’s inequality,

e−γMx ≤ HM (x) ≤ eγM sM e−γMx .

Let bM = logM/γM , aM = 1/γM . Then

MHM (aMy + bM ) ≥ Me−γM (aMy+bM ) = Me−y+logM = e−y .

Similarly,

MHM (aMy + bM ) ≤ MeγM sM e−γM (aM y+bM ) → 1 · e−y .

Thus MHM (aMy + bM ) → e−y for all y, which implies that

γMZM − logM =
ZM − bM

aM

has a Gumbel limit. It then follows that ZM is roughly of order 1/γM or
equivalently eµsM . To replace γM by µe−µsM in the limit statement for ZM ,
one therefore needs

(γM − µe−µsM )eµsM → 0 ,

which follows by Lemma 5.1.
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6 The Gamma case

We now consider Scenario (Γ) with αM → ∞.

Theorem 6.1. Consider the Gamma case with αM → ∞ and let r = µ/λ. Assume
in addition that αM/ logM → ∞. Then ZM is of logarithmic order erαM in the

sense that logZM/αM
P→ r as M → ∞.

For the proof, define xM = er1αM . We shall show that

MHM (xM ) →
{

∞ if r1 < r

0 if r1 > r.
(6.1)

Indeed, if r1 < r then (6.1) shows that the expected number of processors i
with Xi,M > xM tends to ∞ and hence the probability that one Xi,M > xM
tends to 1. Similarly, if r1 > r then (6.1) shows that the expected number of
processors i with Xi,M > xM tends to 0, and hence so does the probability
that one Xi,M > xM .

Lemma 6.1. Define

IM =

∫ cxM

0
aλ/µ−1e−aϕM (a) da =

∫ cxM

0
a1/r−1e−aϕM (a) da

where 0 < c ≤ µ′ is a constant and

ϕM (a) =
(

1 +
log µ′ − log a

log xM

)αM−1
.

Then IM → µ′1/r1Γ(1/r − 1/r1) as M → ∞ when r1 > r, whereas

lim inf
M→∞

IM

α
1/2
M exp

{
(δ − log δ − 1)αM

} > 0

when r1 < r, where δ = r1/r.

Note that the convexity of the log implies that δ − log δ − 1 > 0 when
δ 6= 1.

Proof. We split IM up into the contributions I ′M and I ′′M from a < µ′ and

µ′ < a < cxM , respectively. For a < µ′, ϕM (a) ↑ µ′1/r1a−1/r1 , and hence by
monotone convergence,

I ′M ↑
∫ µ′

0
a1/r−1/r1−1e−a da .
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When r1 > r, we thus need in addition to show that

I ′′M → µ′
1/r1

∫ ∞

µ′
a1/r−1/r1−1e−a da .

This follows by dominated convergence since ϕM (a) is dominated by 1 on

(µ′,∞) and has the limit µ′1/r1a−1/r1 .
Consider now the case r1 < r. Substituting

y = 1 + (log µ′ − log a)/ log xM = 1 + (log µ′ − log a)/r1αM ,

we have

log a = log µ′ + (1 − y)r1αM ,
1

a
da = −r1αM dy, a = µ′er1αM e−r1αMy .

Thus, bounding e−a below by c1 = e−µ
′

, we get

IM ≥ I ′M ≥ c2αMeδαM

∫ ∞

1
yαM−1e−yδαM dy

= c2e
δαM δ−αMα1−αM

M

∫ ∞

δαM

zαM−1e−z dz .

The last integral divided by Γ(αM ) is the probability that a Gamma(αM , 1)
r.v. exceeds δαM . Since this probability goes to 1 when δ < 1, we get

IM ≥ c3e
δαM δ−αMα1−αM

M Γ(αM ) .

Using Stirling’s approximation

Γ(αM ) ∼ e−αMααM−1
M

√
2παM

completes the proof.

Proof of (6.1). Let first r1 < r. By the Lundberg lower bound, we have for any
µ′ > µ and some t0 that

HM (xM ) ≥
∫ ∞

t0

e−µ
′e−µtxM

λαM

Γ(αM )
tαM−1e−λt dt . (6.2)
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Substituting a = µ′e−µtxM , we have

t =
1

µ
(log µ+ log xM − log a) , dt = − 1

µa
da ,

and thus (6.2) becomes

λαM

Γ(αM )µαMx
λ/µ
M

∫ µ′e−µt0xM

0
aλ/µ−1e−a

(
log µ′ + log xM − log a

)αM−1
da

=
1

Γ(αM )rαMµ′µ/λ
logαM−1 xM

x
1/r
M

∫ µ′e−µt0xM

0
aλ/µ−1e−aϕM (a) da .

By Lemma 6.1, this implies that MHM (xM ) is of larger order than

M
1

Γ(αM )rαM

logαM−1 xM

x
1/r
M

α
1/2
M exp

{
(δ − log δ − 1)αM

}
.

By Stirling’s approximation, this is in turn of order

MeαM

α
1/2
M ααM−1

M rαM

logαM−1 xM

x
1/r
M

=
MeαM

α
1/2
M ααM−1

M rαM

ααM−1
M rαM−1

1 ααM−1
M

e(r1/r)αM
α

1/2
M exp

{
(δ − log δ − 1)αM

}

= M exp
{
(1 − δ + log δ)αM

}
/α

1/2
M · α1/2

M exp
{
(δ − log δ − 1)αM

}

= M → ∞ .

Now let r1 > r. Choose µ′ such that µ′e−µt ≤ γ(t) for t ≥ 1 and let
c4 = µ′ supt≥1 te

−µt. Then by the upper Lundberg bound,

HM (xM ) ≤ P(TM ≤ 1) + c4

∫ ∞

1
e−µ

′e−µtxM
λαM

Γ(αM )
tαM−1e−λt dt .

Here P(TM ≤ 1) goes to 0 at least exponentially fast in αM . Using the same
substitution as when r1 < r, the integral becomes

λαM

Γ(αM )µαMx
λ/µ
M

∫ µ′e−µxM

0
aλ/µ−1e−a

(
log µ′ + log xM − log a

)αM−1
da

=
1

Γ(αM )rαMµ′µ/λ
logαM−1 xM

x
1/r
M

∫ µ′e−µxM

0
aλ/µ−1e−aϕM (a) da. (6.3)
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Here the last integral is O(1) by Lemma 6.1, and using Stirling’s approxima-
tion as above shows that (6.3) is of order

M exp
{
(1 − δ + log δ)αM

}
/α

1/2
M .

Putting these estimates together, recalling that αM/ logM → ∞ and that 1 −
δ + log δ < 0 for all δ 6= 1 we see that MHM (xM ) → 0.
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Appendix

The two-sided Skorokhod problem

In Proposition [1] p.251 we have the one-sided reflected process and local time
characterized as a solution to a Skorokhod problem. The following proposition
implies a similar characterization in the case of two-sided reflection.

Proposition 1.1.

Let
{
L0,∗
t

}
and

{
LK,∗t

}
be any non-decreasing right-continuous processes such that

the process
{
V ∗t
}

given by
{
V ∗0
}

= x, V ∗t = St+L
0,∗
t −LK,∗t satisfies 0 ≤ V ∗t ≤ K

for all t,
∫ T
0 V ∗t dL0,∗

t = 0 ∀T and
∫ T
0 (K − V ∗t ) dLK,∗t = 0 ∀T then L0,∗

t (x) =

L0
t (x), L

K,∗
t (x) = LKt (x) and V ∗t = Vt(x).

Proof. Mimicking the calculation in Proposition 2.2 p. 251 in [1] we set Dt =

L0
t−LKt −

(
L0,∗
t −LK,∗t

)
and using integration-by-parts of this right-continuous

process of bounded variation yields

D2
t = 2

∫ t

0
Ds dDs −

∑

s≤t

(∆Ds)
2

= 2

∫ t

0

(
Vs − V ∗s

)
dDs −

∑

s≤t

(∆Ds)
2

= 2

∫ t

0

(
Vs − V ∗s

)
dL0

t − 2

∫ t

0

(
Vs − V ∗s

)
dLKt

− 2

∫ t

0

(
Vs − V ∗s

)
dL0,∗

s + 2

∫ t

0

(
Vs − V ∗s

)
dLK,∗s −

∑

s≤t

(∆Ds)
2

= −2

∫ t

0
V ∗s dL0

t − 2

∫ t

0

(
K − V ∗s

)
dLKt

− 2

∫ t

0
Vs dL0,∗

s − 2

∫ t

0
(K − Vs) dLK,∗s −

∑

s≤t

(∆Ds)
2 .

Since the right hand side is non-positive we have Dt = 0 and by subtraction,
this implies that Vt = V ∗t . Furthermore

L0,∗
t − L0

t = LKt − LK,∗t ∀t

Since the left hand side can only change when Vt = V ∗t = 0 and the right
hand side can only change when Vt = V ∗t = K , both sides must be constant,
and therefore equal to 0 which proves the statement.
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Miscellaneous results

The following result is used in the proof of Proposition 3.1. A similar result
is found in Proposition 1.2 of [2]

Lemma 1.2. For i.i.d. random variables X,Y , with X ∈ S we have for any A

P(A < X ≤ K −A|X + Y > K) → 1

2
F (A), K → ∞, (1.4)

where F is the c.d.f. of X

Proof. We start by observing that for K > 2A we have:

P(A < X ≤ K −A,X + Y > A) = P(X + Y > K,A < X,X ≤ K −A) =

P(X + Y > K)
︸ ︷︷ ︸

A(K)

−P(X + Y > K,A ≥ X)
︸ ︷︷ ︸

B(A,K)

−P (X + Y > K,X > K −A)
︸ ︷︷ ︸

C(A,K)

and we have

A(K)

P(X + Y > K)
= 1 . (1.5)

Using Proposition 1.2 in [2]:

B(A,K)

P(X + Y > K)
= P(X ≤ A | X + Y > K) → 1

2
F (A) . K → ∞ (1.6)

For C(A,K) we have:

C(A,K) = P
(
X > K − min(A,Y )

)

= P(X > K −A,Y > A) + P(X > K − Y, Y ≤ A)

= P(X > K −A)P(Y > A) + P(X > K − Y, Y ≤ A) .

Using that S is closed under convolution, we have:

C(A,K)

P(X + Y > K)

=
P(X > K −A)

P(X + Y > K)
F (A) + P(Y ≤ A | X + Y > K) →

1

2
F (A) +

1

2
F (A) =

1

2
. K → ∞

The proof is finished by combining the result above with (1.5) and (1.6).
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It is well-known that if the characteristic function of a random variable X
is twice differentiable then EX2 < ∞ but that there exists random variables
with differentiable characteristic function but without finite first moment. The
following result shows that differentiability and EX− <∞ ensures finite first
moment.

Proposition 1.2. Let X be a r.v. with EX− < ∞ and characteristic function ϕ
which is differentiable at 0. Then E|X| <∞

Proof. Assume E|X| = ∞ and let C 3 a := limx→0(ϕX (x)−1)/xwhich exists,
since ϕ is differentiable at 0. Let {Xn}n≥1 be a sequence of i.i.d. random
variables with the same distribution as X. Let Sn :=

∑n
i=1Xi be the partial

sums, and let γ denote the characteristic function of Sn/n. Then we have

γ(t) =
(
ϕ(t/n)

)n
=

(

1 +
n(ϕ( tn ) − 1)

n

)

and since n(ϕX(t/n)−1) = t(ϕ(t/n)−1)/(t/n) →n→∞ atwe have, according
to (5.16.5) of [4] that γ(t) → eat and since |γ(t)| = e<(a)t we must have <(a) =
0 and can therefore write a = ib for b ∈ R. By the continuity theorem this

implies Sn/n
D→ b, but according to the law of large numbers (eg. (4.12.1) in

[4]) we have Sn/n → ∞ almost surely.

Lemma 1.3. Assume that s·, s̃· and x· are functions in D[0,∞) such that t → xt
is increasing, x· ≥ 0 , and st = s̃t − xt for t ≥ 0. Let lKt and l̃Kt denote the local
times at K. Let vK· and ṽK· be the two-sided reflected functions. Then for t ≥ 0 we
have vKt ≤ ṽKt and lKt ≤ l̃Kt .

Proof. First, we note that if vt and ṽt are the one-sided reflected functions and
lt and l̃t is the local time at 0 for the one-sided reflection of s·, s̃t respectively
then vt ≤ ṽt and lt ≥ l̃t. This is immediate, since for v ≥ 0 we have −sv =
−s̃v + xv ⇒ supv≤t−sv ≤ supv≤t−s̃v + xt ⇒ lt ≤ l̃t + xt. Therefore we have

vt = st + lt = s̃t − xt + lt ≤ s̃t + l̃t = ṽt .

Furthermore, the fact that lt ≥ l̃t is immediate from supv≤t−sv ≥ supv≤t s̃v.
So, assume that for some t0 > 0 we have vKt0 > ṽKt0 . Consider u := inf{t >
0 | vKt > ṽKt }, which is finite by assumption, and due to right-continuity, we
have vKu ≥ ṽKu , But vKu > ṽKu is impossible since for t < u we have vKt ≤ ṽKt
so vKu > ṽKu would imply a positive jump of s· which does not correspond
to a jump of s̃·. This contradicts st = s̃t − xt. This implies that vKu = ṽKu ,
and vKt > ṽKt for u < t < u + ε. But this contradicts st = s̃t − xt. By
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defining v := inf{t > 0 | lKt > l̃Kt }, we can reach a contradiction by the same
arguments.

Proposition 1.3. Let
{
St
}

be a Lévy process with associated characteristic triplet
(
θ, σ, ν

)
, and let

{
S∗t
}

be the Lévy process with characteristic triplet (θ, σ, ν[−L,∞)),
L > 0 that is, the Lévy process obtained by restricting the Lévy measure to [−L,∞)
for some L > 0. Then, if `K is the loss rate if

{
St
}

and `K,∗ the loss rate of {S∗t },
we have

`K ≤ `K,∗.

Furthermore, if ES1 < 0, then L can be chosen large enough to ensure that ES∗1 < 0

Proof. Let L > 0 be fixed. We may assume
{
St
}

and
{
S∗t
}

are defined on
the same probability space, and so, by the Lévy -Itô decomposition of [5] we
have

St(ω) = S∗t (ω) +Xt(ω) (1.7)

where
{
Xt

}
is a compound Poisson consisting of the jumps < −L. By apply-

ing Lemma 1.3 we obtain

Lt(ω) ≤ L∗t (ω) (1.8)

for t > 0. The Lévy-Ito decomposition also implies a stochastic ordering be-
tween the stationary distributions, which is seen by using the representation
of the stationary distribution from (1.3) because (1.7) implies

P
(
Sτ [y−K,y) ≥ y

)
≤ P

(
S∗τ [y−K,y) ≥ y

)

so that if V0 and V ∗0 denote the random variables with the stationary distri-
butions of

{
St
}

and
{
S∗t
}

respectively, V0 ≤ V ∗0 . By combining this with (1.8)
we have

`K = EV0L1 ≤ EV ∗0
L1 ≤ EV ∗0

L∗1 = `K,∗ .

The last part of the statement is a simple consequence of the fact that

ES1 =

∫

{|y|>1}
yν(dy) ES∗1 =

∫

{|y|>1,−L>y}
yν(dy) ,

and that
∫

{|y|>1,−L>y}
yν(dy) →

∫

{|y|>1}
yν(dy) < 0 L→ ∞
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so that for L large enough we have
∫

{|y|>1,−L>y}
yν(dy) < 0

Remark 1.4. Because of Proposition 1.3 we have that for any Lévy process with
negative mean and loss rate `K we have `K ≤ `K,∗ where `K,∗ is the loss rate of of a
Lévy process with negative mean and such that the right tail of the Lévy measure is
identical to the right tail of the original Lévy measure, and bounded from below.

Remark 1.5. As it is noted in [3] l’Hospital’s rule does not in general apply to
complex-valued functions, and some care must be taken. The following proposition
covers the case needed in Corollary 4.1.

Proposition 1.4. Assume n(t) = u1(t) + iv1(t) and d(t) = u2(t) + iv2(t) are
complex-valued functions with limt→0 n(t) = 0 and limt→0 d(t) = 0, and assume
ui(t) and vi(t) i = 1, 2 are differentiable for t ∈ (−ε, ε) and the derivatives are
continuous. Then we have

lim
t→0

n(t)

d(t)
=
u′1(0) + iv′1(0)

u′2(0) + iv′2(0)

Proof. We may apply l’Hospital’s rule for real functions to the obtain:

u2(t) + iv2(t)

u1(t)
=
u2(t)

u1(t)
+ i

v2(t)

u1(t)
→t→0

u′2(0)

u′1(0)
+ i

v′2(0)

u′1(0)

u2(t) + iv2(t)

v1(t)
=
u2(t)

v1(t)
+ i

v2(t)

v1(t)
→t→0

u′2(0)

v′1(0)
+ i

v′2(0)

v′1(0)

and therefore

n(t)

d(t)
=

u1(t)

u2(t) + iv2(t)
+ i

v1(t)

u2(t) + iv2(t)
→t→0

u′1(0)

u′2(0) + iv′2(0)
+ i

v′1(0)

u′2(0) + iv′2(0)

The following Lemma is used in Paper A.

Lemma 1.6. Let Fn(·), n = 1, 2, . . ., be a sequence of uniformly bounded increas-
ing functions, such that Fn(x) → F0(x) ∀x ∈ R, where F0 is continuous, and
limx→−∞ F0(x) =: F0(−∞) ≤ Fn(x) and Fn(x) ≤ F (∞) := limx→∞ F0(x) for
all n and x. Then

sup
−∞<y<∞

|Fn(y) − F0(y)| → 0 .
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Proof. Without loss of generality, we may assume that 0 ≤ Fn(x) ≤ 1 for all
x and n. F0 is increasing, so the limits a := F (−∞) and b := F (∞) exist, and
are finite, and we may assume a = 0 and b = 1. Set F−1

0 (y) := inf{x ∈ R |
F (x) = y} for 0 < y < 1 and F−1

0 (0) = −∞ and F−1
0 (1) = ∞. Let k ∈ N, and

set xkj := F−1
0 (j/k) j = 0, 1, . . . k. Then for 0 ≤ j < k and xkj < x < xkj+1

Fn(x
k
j ) − F0(x

k
j ) −

1

k
= Fn(x

k
j ) − F0(x

k
j+1) ≤ Fn(x) − F0(x)

≤ Fn(x
k
j+1) − F0(x

k
j ) = Fn(x

k
j+1) − F0(x

k
j+1) +

1

k
,

since Fn and F are increasing, and F is continuous. Continuing our calcula-
tion, we obtain

|Fn(x) − F (x)| = max(Fn(x) − F0(x), F0(x) − Fn(x))

≤ max
j∈{0,··· ,k−1}

(Fn(x
k
j+1) − F0(x

k
j+1) +

1

k
, F0(x

k
j ) − Fn(x

k
j )) +

1

k
)

=
1

k
+ max
j∈{0,··· ,k−1}

(Fn(x
k
j+1) − F0(x

k
j+1), F0(x

k
j ) − Fn(x

k
j ))

≤ 1

k
+ max
j∈{0,··· ,k}

|Fn(xkj ) − F0(x
k
j )|,

and therefore

sup
−∞<x<∞

|Fn(x) − F (x)| ≤ 1

k
+ max
j∈{0,··· ,k}

|Fn(xkj ) − F0(x
k
j )|.

Using that 0 ≤ limn Fn(−∞) ≤ F (y) for all y ∈ R we see that limn Fn(−∞) =
0, and similarly, that limn Fn(∞) = 1, we obtain

lim
n→∞

sup
−∞≤j≤∞

|Fn(x) − F (x)| ≤ 1

k

Since k was arbitrary, the proof is complete.

Corollary 1.7. Let Fn(·), n = 1, 2, . . ., be a sequence of increasing functions, such
that for some K > 0, a, b ∈ R : supx∈[a,b] |Fn(x)| ≤ K for all n, and Fn(x) →
F0(x) ∀x ∈ [a, b], where F0 is continuous. Then

sup
a≤y≤b

|Fn(y) − F0(y)| → 0
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Proof. Define F̃n for n = 0, 1, . . . by F̃n(t) := Fn(t) for t ∈ [a, b], F̃n(t) = Fn(a)
for t < a, and F̃n(t) = Fn(b) for t > b. By applying Lemma 1.6, we obtain

sup
a≤y≤b

|Fn(y) − F0(y)| = sup
a≤y≤b

|F̃n(y) − F̃0(y)| ≤ sup
−∞≤y≤∞

|F̃n(y) − F̃0(y)| → 0
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