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Introdution 5IntrodutionThe free loop spae LX of a spae X is the spae of ontinuous maps from
S1 to X. The irle group S1 ats on LX by rotation, and we study thespae of homotopy orbits, LXhS1 = ES1×S1 LX, sometimes alled the Borelonstrution. The main method for understanding this spae will be Morsetheory on the energy funtional, whih to a losed urve assoiates its en-ergy. This version of Morse theory has been studied by W. Klingenberg in[Klilngenberg1℄. As one would expet, the ritial points of this funtional arethe losed geodesis of X, so knowing those will be an important ingredientin understanding LXhS1 via Morse theory.In this paper we study LXhS1 for a partiular spae, namely the projetivespae X = FP r, where F = C or F = H. The goal is to determine theohomology of LHP r

hS1 and the omplex K-theory of LCP r
hS1. This isalled S1-equivariant ohomology (or K-theory) of LFP r. In general, we geta map

ES1 ×S1 LX −→ BS1by projetion on the �rst fator. For a ohomology theory h∗, we therefore geta map h∗(BS1) −→ h∗(LXhS1), so h∗(LXhS1) beomes a h∗(BS1)-module.The methods of Morse theory require the use of Thom isomorphism, whihdestroys the produt struture, so we annot hope to alulate h∗(LFP r
hS1) asa ring. But the h∗(BS1)-module struture is preserved by the Morse theorymahinery, so the aim is to alulate h∗(LFP r

hS1) as an h∗(BS1)-module,where h∗ is either singular ohomology H∗ or omplex K-theory K∗.We will now outline our main results. For X = HP r, we study theohomology with Fp-oe�ients of LXhS1, where Fp = Z/pZ, and obtain aomplete desription as an H∗(BS1; Fp) = Fp[u]-module:Theorem 1. As a graded H∗(BS1; Fp) = Fp[u]-module, H∗(LHP r
hS1; Fp) isisomorphi to

Fp[u]⊕
⊕

2k∈IF
Fp[u]f2k ⊕

⊕

2k∈IF
Fp[u]f2k−1 ⊕

⊕

2k∈IT
(Fp[u]/ 〈u〉) t2k−1.Here the lower index denotes the degree of the generator, and the index sets

IF and IT are known disjoint subsets of {(4r + 2)i+ 4j | 0 ≤ j ≤ r, i ≥ 0}.In partiular, there is at most one generator in eah degree.For X = CP r, we study the omplex K-theory of LCP r
hS1, and obtainTheorem 2. As a K∗(BS1) = Z[[t]]-module,

K0(LCP r
hS1) = K0(BS1) = Z[[t]] .As an abelian group, K1(LCP r
hS1) is torsion-free.



6 IntrodutionThis is one of the �rst alulations of K∗(LMhS1) for a non-trivial mani-foldM . The result is quite surprising when ompared toH∗(LCP r
hS1), whihhas a lot of torsion aording to [Bökstedt-Ottosen℄.Unfortunately, we have not been able to determine K1(LCP r
hS1) as a

K∗(BS1)-module. As a partial result in this diretion, we haveTheorem 3. There is a spetral sequene of K∗(BS1) = Z[[t]]-modules on-verging strongly to K∗(LCP r
hS1), whih has E1 page,

E0,j
1 =

{
Z[[t]]⊗Z Z[h]/ 〈hr〉 , j even;
0, j odd.

En,j
1 =

{
Z[[t]](n) ⊗R(S1) Z[x, y]/ 〈Qr, Qr+1〉, j odd;
0, j even.The �rst di�erential d1 is given by d1(p(t) ⊗ hj) = p(t) ⊗ (xj − yj), where

p(t) ∈ Z[[t]].Theorem 2 states thatK0(LCP r
hS1) is (almost) trivial, whileK1(LCP r

hS1)is free abelian. This is rather similar to the well-known ase of K0(BG) asthe ompletion of the representation ring R(G) for a ompat Lie group G,while K1(BG) = 0. This is a lassial result of M. Atiyah. One an alsoompare to e.g. [Freed-Hopkins-Teleman℄, who �nd K∗τ (LBG) as the om-pletion of ertain representations of the loop group LG, although it shouldbe remarked that they onsider K-theory twisted by a ohomology lass τ ,and not S1-equivariant K-theory as we do. Still, this prompts the followingConjeture. The exists a �representation theory� type group, suh that
K1(LCP r

hS1) is a ompletion of this group.The outline of this paper is as follows: The paper onsists of two mainparts, eah divided in three setions. The �rst setion of eah part treats thegeneral theory needed and investigates the relevant spaes and strutures,while the next two setions are more omputational and deal, respetively,with the ohomology for F = H, and the K-theory for F = C.Setion 1 investigates FP r and its geodesis, obtaining some useful �-brations. We onsider both the spae of parametrized and unparametrizedgeodesis; the latter being the quotient of the former under the ation of S1by rotation.Setion 2 alulates the ohomology of the above spaes using Serre'sspetral sequene for the �brations found in setion 1. We then turn to
S1-equivariant ohomology of the spae of parametrized geodesis, via two�brations and the non-equivariant ohomology results from the previous se-tion.



Introdution 7Setion 3 obtains similar results for K-theory. We use the Atiyah-Hirzebruh spetral sequene along with the known ohomology results for
CP r to determine the K-theory of the spae of unparametrized geodesis.The S1-equivariant K-theory is determined using the same �brations as forohomology, but the method is di�erent, employing the result of Atiyah about
K-theory of lassifying spaes.Setion 4 studies of the free loop spae, LFP r

hS1. First we explain theworkings of Morse theory in this setting, then we apply this to LFP r and
LFP r

hS1 to get the so-alled Morse spetral sequene.Setion 5 is dediated to proving Theorem 1. The method is loselybased upon a similar alulation by M. Bökstedt and I. Ottosen in their paperString Cohomology Groups of Complex Projetive Spaes, [Bökstedt-Ottosen℄.We extrat a lot of information about the Morse spetral sequene, its size,its di�erentials, and the relation between the equivariant and non-equivariantase. All this information is brought together to prove the Main Theoremfor ohomology, Theorem 1 above. But even then, it is neessary to turnto other soures of information to omplete the proof. One is loalization,the other is omparison with the Serre spetral sequene also onverging to
H∗(LHP r

hS1).Setion 6 is dediated to proving Theorem 2. The methods here are quitedi�erent, relying on the fat that the Morse spetral sequene in Theorem3 has a rather speial on�guration, whih implies that all its non-trivialdi�erentials start from the zeroth olumn. A very important point is thealulation of the �rst di�erential d1. The entral idea is then to twist therotation ation of S1 with a positive integer, whih gives new Morse spetralsequenes related to the standard one. This gives enough information toprove Theorem 2.For the reader's onveniene, we have assembled a table of notation atthe end of this doument.Aknowledgements. Finally, it is a pleasure to thank my advisor, MarelBökstedt, for his help through innumerable fruitful disussions, whih addedmany new insights and ideas to this projet. Also, I would like to thankJørgen Tornehave for his time and valuable input when standing in as myadvisor for one year.



8 1 Projetive spae and geodesis1 Projetive spae and geodesis1.1 The quaternionsI start by introduing the quaternions, H, as an assoiative algebra of realdimension 4, generated by 1, i, j, k with the following multipliation rules:
i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j.It should be stressed, even though it is obvious from the above relations, that

H is not ommutative. If one wants to be onrete, one an realize H as asubalgebra of M2(C) generated over R by (in the matrix entries, i =
√
−1):

i =

[
i 0
0 −i

]
, j =

[
0 1
−1 0

]
, k =

[
0 i
i 0

]
.It is straightforward to hek the above multipliation rules. Similar to om-plex onjugation, there is an R-linear map, also alled onjugation,

H
∗−→ H

z = x0 + x1i+ x2j + x3k 7→ z∗ = x0 − x1i− x2j − x3k,satisfying the usual rule (zw)∗ = w∗z∗. In the matrix desription, this ispreisely the usual ∗-operation of taking the onjugate transpose. This anbe used to de�ne an inner produt 〈z, w〉H = w∗z, whose real part is the usualinner produt on R4. Noting that 〈z, z〉H ∈ R we an then de�ne a norm
|z| =

√
〈z, z〉H. This satis�es |zw| = |z| |w| and |z∗| = |z|. The unit spherein H is usually denoted Sp(1) = {z ∈ H | |z| = 1}, and this is anoniallyidenti�ed with S3. Finally we note that if z 6= 0 then z is invertible � thisis most easily seen by using the matrix desription, whih gives an expliitinverse, and heking that this belongs to H.We an take the diret produt of H with itself to form Hr. The operations

〈·, ·〉H and |·| from H are extended to Hr in the usual way: For z = (z1, . . . , zr)and w = (w1, . . . , wr), we set
〈z, w〉H =

r∑

j=1

〈zj, wj〉H, |z| =
√
|z1|2 + . . .+ |zr|2.1.2 Spaes of geodesisLet F denote either C or H. To ease the notation we denote the unit sphere in

F by S(F). We de�ne the projetive spae FP r as the set of all 1-dimensional



1.2 Spaes of geodesis 9
F-subspaes zF of Fr+1, for z ∈ Fr+1. We de�ne the projetion map

π : Fr+1 \ {0} −→ FP r (1)
z = (z0, . . . , zr) 7→ [z0, . . . , zr] = zF,so π(z) = zF is the subspae spanned by z. Note that for F = H it is im-portant that we speify whih side we multiply on; I have hosen to multiplyfrom the right. We give FP r the quotient topology from π. To show that

FP r is a smooth manifold of real dimension 2r (resp. 4r) for F = C (resp.
F = H), we display the expliit harts

hj : Uj = {[z0, . . . , zr] ∈ FP r | zj 6= 0} −→ Fr,

hj([z0, . . . , zr]) = (z0zj
−1, . . . , ẑjzj−1, . . . , zrzj

−1),where the hat denotes omission; the harts have inverses
h−1
j (w1, . . . , wr) = [w1, . . . , 1, . . . , wr],with the 1 at the jth plae.Example 1.1. We will show HP 1 is di�eomorphi to S4. This an be seenby stereographi projetion. Think of S4 ⊆ R5 = R × H with north pole

p+ = (1, 0) and south pole p− = (−1, 0). Stereographi projetion are themaps
ψ± : S4 \ {p±} −→ H,whih takes a point (t, z) in S4 to the intersetion of the line through (t, z)and p± with 0×H. This is easily omputed:

ψ+(t, z) =
z

1− t , ψ−(t, z) =
z

1 + t
,and are learly smooth maps. Now we want to ompose ψ+ and ψ− with the

h−1
j to get two maps to HP 1. When we do this, we would like the two mapsto agree when t ∈]− 1, 1[. To ahieve this, we replae ψ+ with its onjugate
ψ∗+(t, z) = z∗

1−t . Doing this, we get maps,
S4 \ {p+}

ψ∗+−→ H
h−1
0−→ HP 1, S4 \ {p−}

ψ−−→ H
h−1
1−→ HP 1,given by

(t, z) 7→
[
1,

z∗

1 + t

]
, (t, z) 7→

[
z

1− t , 1
]
.By multiplying the �rst expression from the right by z

1−t and using that
1 = |(t, z)| = t2 + |z|2 = t2 + z∗z, we see that these two maps agree when
t ∈]− 1, 1[, so they ombine to a di�eomorphism S4 −→ HP 1.



10 1 Projetive spae and geodesisWe an modify the projetion map π in (1) to a map
π : S(Fr+1) −→ FP rwhere S(Fr+1) ⊆ Fr+1 is the unit sphere. This an be used to desribe thetangent bundle of FP r. Spei�ally for z ∈ S(Fr+1) there is an F-linearisometry,

tz : (zF)⊥ ⊆ TzS(Fr+1)
π∗−→ Tπ(z)FP

r,where (zF)⊥ = {w ∈ Fr+1 | 〈w, z〉F = 0}. This map satis�es
tzλ(wλ) = tz(w) for λ ∈ S(F). (2)The above properties of FP r are rather elementary, and the reader ansee e.g. [Madsen-Tornehave℄ Chapter 14 for proofs of the results in the aseof CP r.Consider the Riemannian metri on FP r given by the real part of theinner produt on Fr+1. This is the standard metri on FP r, and we willuse a metri g whih is a salar multiple of this metri. Take the uniqueonnetion on T (FP r) ompatible with this metri, alled the Levi-Civitaonnetion. We now de�ne G(r) = G(FP r) as the spae of parametrized,simple, losed geodesis f : [0, 1] −→ FP r with respet to this onnetion.The salar determining g is spei�ed by requiring that suh a geodesi haslength 1 with respet to g. Note that every geodesi in FP r is losed: Thegroup of F-orthogonal matries (U(r + 1) or Sp(r + 1), respetively) atstransitively on HP r, so it is only neessary to hek it for one geodesi, e.g.on FP 1 ⊆ FP r, and sine CP 1 ∼= S2 and HP 1 ∼= S4, all geodesis on FP 1 areknown to be losed.We also onsider the set of n times iterated geodesis Gn(r) for everyinteger n ≥ 1, whose elements γ : [0, 1] −→ FP r are given by γ(t) = f(nt)for some f ∈ G(r), where we make the obvious identi�ation of the intervals

[j− 1, j] with [0, 1] for j = 2, . . . , n. There is an ation on Gn(r) by S1 givenby rotation; expliitly,
S1 ×Gn(r) −→ Gn(r)

(e2πiθ, f(t)) 7→ f(t− θ).We an twist the rotation ation on G(r) by an integer n ≥ 1, and we denotethe resulting S1-spae G(r)(n):
S1 ×G(r)(n) −→ G(r)(n) (3)
(e2πiθ, f(t)) 7→ f(t− nθ).



1.2 Spaes of geodesis 11This ation is the rotation ation preomposed with the nth power map
Pn : S1 −→ S1, Pn(z) = zn in omplex notation. Then Gn(r) and G(r)(n)are isomorphi as S1-spaes via the obvious map G(r)(n) −→ Gn(r) given by
f(t) 7→ f(nt), so from now on, we will hie�y use G(r)(n) instead of Gn(r).We also onsider the quotient ∆(r) = S1 \ G(r) under the rotation ation,whih is the spae of oriented, unparametrized, simple, losed geodesis on
FP r.We now want to get a more onrete desription of G(r) and ∆(r), fol-lowing [Bökstedt-Ottosen℄, �2. Let V2 = V2(Fr+1) be the Stiefel manifold of
F-orthonormal 2-frames in Fr+1, so

V2 =
{
(v, w) ∈ Fr+1 × Fr+1 | ‖v‖ = ‖w‖ = 1, 〈v, w〉F = 0

}
,and let PV2 be the quotient manifold by the right diagonal S(F) ation,

(v, w) ∗ z = (vz, wz). On V2 we have a left ation of S1 by rotation by anangle θ: For θ ∈ R, the ation is (v
w

)
7→ R(θ)

(
v
w

), where
R(θ) =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]For eah n ∈ N, we an de�ne an ation of S1 on PV2, and we denote theresulting S1-spae by PV (n)
2 :

S1 × PV (n)
2 −→ PV

(n)
2 ; e2πiθ ∗ [x, y] = [R(nπθ)(x, y)].This gives a well-de�ned S1-ation on PV2, beause we multiply the matrix

R on the left, while PV2 = V2/diagS(F), where we multiply on the right. Wean now make an S1-equivariant di�eomorphism
ϕ1 : PV

(n)
2 −→ G(r)(n) (4)

[x, y] 7→ π ◦ c(x, y)where π : S(Fr+1) −→ FP r is the projetion, and c(x, y) is the simple losedgeodesi starting at x in diretion y; expliitly,
c(x, y)(t) = cos(πt)x+ sin(πt)y, for t ∈ [0, 1].This is well-de�ned, and a bijetion beause every geodesi on FP r is losed.Clearly, ϕ1 is a di�eomorphism, and it is straightforward to hek that it is

S1-equivariant, using the trigonometri formulas.Another very useful model for G(r) is S(τ) = S(T (HP r)), the spherebundle of the tangent bundle τ of FP r. There is a di�eomorphism
ψ : PV2 −→ S(τ)

[x, y] 7→ tx(y) ∈ Tπ(x)FP
r



12 1 Projetive spae and geodesisThis is well-de�ned beause of (2), and we an give an expliit inverse:Given y ∈ Tπ(x)FP r, ψ−1(y) = [x, t−1
x (y)]. Thus we an give S(T (FP r))a rotation ation of S1, namely the ation that makes this di�eomorphism

S1-equivariant. Combining this with (4), we have an S1-equivariant di�eo-morphism
ψ−1 ◦ ϕ1 : S(τ) −→ G(r). (5)The last desription only works for CP r. Going bak to PV2(Cr+1), we�rst hange oordinates as follows

ϕ2 : PV2(C
r+1) −→ P̃ V 2(C

r+1), [x, v] 7→
[
x+ iv√

2
,
x− iv√

2

]
.Here P̃ V 2 is PV2 equipped the S1-ation indued from this hange of oordi-nates. It is easily omputed that the ation of θ ∈ [0, 1] is θ ∗ [a, b] = [za, zb]where z = eπiθ ∈ S1.We are interested in ∆(CP r), i.e. we divide out the rotation ation.Therefore we now onsider the following spae: Let γ2 be the standard 2-dimensional bundle over the Grassmannian Gr2(Cr+1) of 2-planes in Cr+1,and let p : P(γ2) −→ Gr2(Cr+1) be the assoiated projetive bundle. Then

P(γ2) = {V1 ⊆ V2 ⊆ Cr+1 | dimC(Vj) = j}. We an make a di�eomorphism,
ϕ3 : S1 \ P̃ V 2(C

r+1) −→ P(γ2), [a, b] 7→ spanC {a} ⊆ spanC {a, b} .This is well-de�ned, but only for F = C. In onlusion we get a omposite
S1-equivariant di�eomorphism

ϕ : ∆(CP r)
ϕ−1

1 // S1 \ PV2(Cr+1)
ϕ2 // S1 \ P̃ V2(Cr+1)

ϕ3 // P(γ2). (6)1.3 Fibrations involving spaes of geodesisWe are going to ompute the ohomology and K-theory of the spaes G(r)and ∆(r). In ohomology, our most important tool will be Serre's spe-tral sequene. I will write down the most important part; for the ompleteformulation and proof, see e.g [Hather2℄ Thm 1.14 pp.Theorem 1.2 (Serre's Spetral Sequene). Let F −→ X −→ B be a �-bration, with B a path-onneted CW omplex, and π1(B) ating triviallyon H∗(F ;G). Then there is a spetral sequene {Ep,q
r , dr} onverging to

H∗(X;G) with
Ep,q

2
∼= Hp(B;Hq(F ;G)).



1.3 Fibrations involving spaes of geodesis 13If G = R is a ring, then there is a produt Ep,q
r × Es,t

r −→ Ep+s,r+t
r , and thedi�erentials are derivations, i.e. d(xy) = (dx)y + (−1)p+qx(dy). For r = 2the produt is (−1)qs times the standard up produt. The produt strutureon E∞ oinide with that indued by the up produt on H∗(X;R).For the de�nition of a �bration, and the useful fat that �ber bundles are�brations, see [Hather1℄, p. 375 and Prop. 4.48.There is a similar result for a �bration in K-theory, but I am hie�y goingto use the important speial ase where the �bration is ∗ −→ X −→ X, alledthe Atiyah-Hirzebruh spetral sequene, see [Atiyah-Hirzebruh℄:Theorem 1.3 (Atiyah-Hirzebruh Spetral Sequene). Let X be a �nite CWomplex. Then there is a spetral sequene {Ep,q

r , dr} onverging to K∗(X)with
Ep,q

2
∼= Hp(X;Kq(∗)).We will need a way to build �brations from other �brations, and this isprovided by the following theorem.Theorem 1.4. Let F −→ X −→ B be a �bration, and assume that the group

G ats freely on X. Then,
(i) If the G-ation preserves the �bres, F/G −→ X/G −→ B is a �bration.

(ii) If G ats freely on B, then F −→ X/G −→ B/G is a �bration.Proof. This follows from the fat that G −→ X −→ X/G is a �bration,whih is a onsequene of the �slie theorem�, [Bredon℄ Thm. 5.4.To apply the spetral sequenes, we must know some �brations involvingthe spaes of geodesis. First by de�nition we have the �bration
S1 −→ G(r) −→ ∆(r). (7)For the appliation of Serre's spetral sequene, note that the base is 1-onneted. This an be seen from the long exat sequene of homotopygroups, using that G(r) ∼= S(τ) is 1-onneted.Then there is the map
PV2(F

r+1) −→ Gr2(Fr+1)indued by the map V2(Fr+1) −→ Gr2(Fr+1), (x, y) 7→ {xλ+ yµ | λ, µ ∈ F},whih is well-de�ned on PV2. The �bre is PV2(F2). By the di�eomorphism(4), this means we have the �bration
G(1) −→ G(r) −→ Gr2(Fr+1).



14 1 Projetive spae and geodesisSine the left S1 ation on the total spae is free and preserves the �bres, wean divide by it in the total spae and �bre, by Theorem 1.4 (i) obtainingthe �bration
∆(1) −→ ∆(r) −→ Gr2(Fr+1). (8)Again we note that the base is 1-onneted.1.4 Homotopy orbits of spaes of geodesisIn this setion we are going to study the so-alled homotopy orbits of thespaes of geodesis we have studied so far. For this de�nition we need thefollowing onepts: Let G be a group, and suppose we have a ontratiblespae with a free G ation. It turns out that all suh spaes are homotopyequivalent, so we an de�ne EG to be any suh spae. We an then de�ne

BG = EG/G to be the lassifying spae of G. Note that this is a �working�de�nition; atually BG is de�ned for a ategory, but this is all I will need.For G = S1 we �nd ES1 ≃ S∞, sine this is ontratible. Thus we get
BS1 ≃ S∞/S1 = CP∞.De�nition 1.5. Let X be a topologial spae with a (left) ation of S1. Wede�ne the spae of homotopy orbits of X by

XhS1 = ES1 ×S1 X = ES1 ×X/
{
(e, tx) ∼ (et, x), t ∈ S1

}
.Projetion on the �rst fator gives a map XhS1 −→ BS1, and for a oho-mology theory h∗ (we onsider ohomology and K-theory), we get an induedmap

h∗(BS1) −→ h∗(XhS1).As explained in the introdution, this gives h∗(XhS1) the struture of an
h∗(BS1)-module.Reall that G(r) is the spae of simple parametrized geodesis with thefree left ation of S1 given by rotation. The spae of n-times iteratedgeodesis, Gn(r), we have identi�ed as an S1-spae with G(r)(n), whih is
G(r) with the rotation ation twisted by the nth power map Pn : S1 −→ S1,see (3).Proposition 1.6. In the following ommutative diagram, the vertial and



1.4 Homotopy orbits of spaes of geodesis 15horizontal maps are �brations with 1-onneted base spaes:
G(r)

��
BCn // ES1 ×S1 G(r)(n) //

��

∆(r)

��
BS1

BPn // BS1Here Cn ⊆ S1 denotes the group of nth roots of unity.Proof. To see that the vertial map is a �bration, use the produt bundle
G(r)(n) −→ ES1 ×G(r)(n) pr1−→ ES1, and divide out by the free ation of S1on both total spae and base, aording to Theorem 1.4 (ii). Using the longexat homotopy sequene for the �bration S1 −→ ES1 −→ BS1 shows thatthe base BS1 is 1-onneted.The horizontal �bration is built up in steps: We start with the produt�bre bundle,

ES1 −→ ES1 ×G(r)(n) pr2−→ G(r)(n).Clearly, Cn ⊆ S1 ats freely on ES1 × G(r)(n), preserving the �bres. So byTheorem 1.4 (i), dividing out by Cn in the total spae and �bre yields the�bration:
BCn −→ ES1 ×Cn

G(r)(n) −→ G(r)(n).We get ES1/Cn = BCn beause ES1 is a ontratible spae upon whih Cnats freely, and so ES1 ≃ ECn. Now onsider the quotient group S1/Cn,whih is isomorphi to S1 by the n'th power map. Sine Cn ats trivially on
G(r)(n), we have an ation of S1/Cn on G(r)(n). By de�nition, this ats on
G(r)(n) exatly as S1 ats on G(r), so (S1/Cn) \ G(r)(n) ∼= S1 \ G(r). ByTheorem 1.4 (ii), dividing out by this free ation in the total and base spaesgives us the �bration

BCn −→
(
ES1 ×Cn

G(r)(n)
)
/(S1/Cn) −→ S1 \G(r).Now (ES1 ×Cn

G(r)(n)
)
/(S1/Cn) ∼= ES1×S1G(r)(n), by the de�nition of theations, so we get the desired �bration. As noted in Setion 1.3, the base is

1-onneted.To get the ommutative square, note that we have the homotopy equiv-alene pr2 : ES1 × G(r) −→ G(r), sine ES1 is ontratible. Sine thisis an S1 map and S1 ats freely on both spaes, we an use [tomDiek℄Prop. 2.7 to onlude that ES1 ×S1 G(r) −→ S1 \ G(r) = ∆(r) is also a



16 1 Projetive spae and geodesishomotopy equivalene. The upper vertial map in the square is de�ned aspr2 : ES1×S1 G(r) −→ ∆(r) using this homotopy equivalene. For the iden-ti�ation S1/Cn with S1 above, we used the nth power map Pn : S1 −→ S1,so for the diagram to ommutate, the lower horizontal map BS1 −→ BS1must also be the one indued by Pn. Note: This is well-de�ned on BS1beause S1 is ommutative.Remark 1.7. If we let n = 1, the vertial �bration beomes G(r) −→
ES1×S1G(r) −→ BS1. As noted in the proof, ES1×S1G(r) −→ S1\G(r) isa homotopy equivalene. So, up to homotopy, we have in pratie a �bration

G(r) −→ ∆(r) −→ BS1. (9)



172 Cohomology of spaes of geodesis in HP r2.1 The parametrized geodesisIn this setion we �nd the ohomology of the spae of parametrized geodesison HP r, G(r) = G(HP r), followed by some Lemmas neessary to determinethe spae of oriented, unparametrized geodesis, ∆(r) = ∆(HP r) = S1\G(r).Theorem 2.1. As a graded ring,
H∗(G(HP r); Z) ∼= Z[y, τ ]/

〈
(r + 1)yr, yr+1, τ 2

〉
,where y ∈ H4(G(HP r); Z) and τ ∈ H4r+3(G(HP r); Z).Let p be a prime number. Then

H∗(G(HP r); Fp) ∼=
{

Fp[y, σ]/ 〈yr+1 = 0, σ2 = 0〉 , p | r + 1;
Fp[y, τ ]/ 〈yr = 0, τ 2 = 0〉 , p ∤ r + 1.where y ∈ H4(G(HP r); Fp), σ ∈ H4r−1(G(HP r); Fp), τ ∈ H4r+3(G(HP r); Fp).Proof. We use the di�eomorphism from (5), G(r) ∼= S(τ), where S(τ) is thesphere bundle of the tangent bundle,

S4r−1 −→ S(τ) −→ HP r.Sine HP r is 1-onneted, we an use Serre's spetral sequene,
Hp(HP r;Hq(S4r−1))⇒ Hp+q(S(τ)) (10)(here the oe�ients will be Z at �rst, and Fp to prove the last part) whihhas the following E2 page:

4r−1 σ yσ y2σ yrσ

0 1 y y2 yr

0 4 8 . . . 4rWe an see for dimensional reasons that there an only be one non-trivialdi�erential, namely d4r(σ). For the sphere bundle, it is a general theorem thatthis di�erential is multipliation by the Euler harateristi of the manifold,here HP r, so d4r(σ) = (r + 1)yr. This is proved in [Milnor-Stashe�℄, Cor.



18 2 Cohomology of spaes of geodesis in HP r11.12 and Thm. 12.2. This is an injetive map Z −→ Z, so when passing tothe E4r+1 page, the result is
4r−1 0 yσ y · yσ yr−2 · yσ yr−1 · yσ

0 1 y y2 yr−1 yr

0 4 8 . . . 4r−4 4rAs mentioned, there are no other non-trivial di�erentials, so this is E∞. Also,there are no extension problems sine there is at most one non-trivial group oneah diagonal p+q = n, so yσ de�nes a lass in H4r+3(S(τ); Z) whih we all
τ . We an then read o� the lasses y ∈ H4(S(τ); Z) and τ ∈ H4r+3(S(τ); Z)with the relations yr+1 = 0, (r + 1)yr = 0, and τ 2 = 0.To prove the result with Fp oe�ients, we use the same spetral sequene(10), now with Fp-oe�ients. In ase p | r + 1, d2(σ) = 0, so there are nonon-trivial di�erentials, and E∞ = E2. As above, there are no extensionproblems, and σ de�nes an element in H4r−1(S(τ); Fp). So we an read o�the desired result. In ase p ∤ r+1, r+1 is a unit in Fp, so d2 : Fpσ −→ Fpyris an isomorphism. So when passing to the E4r+1 page, these two groupsdisappear. The result follows.Now we an deal with the smallest ase, HP 1, whih we have shown inExample 1.1 is di�eomorphi to S4. This is going to be useful, sine we havethe �bration ∆(HP 1) −→ ∆(HP r) −→ Gr2(Hr+1) from (8).Lemma 2.2.

H∗(∆(HP 1); Z) ∼= Z[x, t]/
〈
2t− x2, t2

〉
,where x ∈ H2(∆(HP 1); Z) and t ∈ H4(∆(HP 1); Z).Proof. We use the �bration S1 −→ G(HP 1) −→ ∆(HP 1) from the S1 ation.Here we know the ohomology of the �bre and the total spae, the latter fromTheorem 2.1,

Hn(G(HP 1)) =





Z, n = 0, 7;
Z/2Z, n = 4;
0, else.We an use the Serre's spetral sequene,

Hp(∆(HP 1);Hq(S1; Z))⇒ Hp+q(G(HP 1); Z),to �nd the ohomology of the base. Let σ ∈ H1(S1) denote a generator.The E2 page has only two non-zero rows. We see that the only possible



2.1 The parametrized geodesis 19non-trivial di�erentials are d2, so E3 = E∞. We know the total spae hasnothing in degree 1, so there must be zero at (1, 0) sine this annot bekilled by anything. So H1(∆(HP 1)) = 0, whih means there is zero at (1, 1),too. Also, σ must be killed by an outgoing di�erential, so d0,1
2 is injetive.Atually it must be an isomorphism, otherwise something would survive indegree 2, and there is nothing. So we have a H2(∆(HP 1); Z) ∼= Z generated,say, by x = d2(σ). Let us take a look at the E2 page as we know it now:

1 σ 0 σx ? ? ? ? ? ? · · ·
0 1 0 x ? ? ? ? ? ? · · ·

0 1 2 3 4 5 6 7 8 · · ·Continuing in this fashion we see there is zero at (3, 0) sineH3(G(HP 1); Z) =
0, and so also at (3, 1). Likewise, there are zeroes at (5, 0) and (5, 1). Nowonsider d2,1

2 . This must be injetive, sine it starts in degree 3, where thetotal spae has nothing. Also, d2,1
2 ends at (4, 0), and must be suh that weget H4(G(HP 1); Z) = Z/2Z when taking the okernel of it. This means itmust be multipliation by ±2; we might as well say 2 for onreteness. So

H4(∆(HP 1); Z) ∼= Z generated by some t, whih we an hoose suh that
d2(σx) = 2t. A quik summary:

1 σ 0 σx 0 σt 0 ? ? ? · · ·
0 1 0 x 0 t 0 ? ? ? · · ·

0 1 2 3 4 5 6 7 8 · · ·Now we have gotten something at (4, 1), but the total spae has zero in degree5, so σt must be killed by the outgoing di�erential d4,1
2 . Again it must be anisomorphism. Note that by the derivation property of d2,

d(σt) = d(σ)t− σd(t) = d(σ)t = xtso xt is a generator of H6(∆(HP 1); Z). This gives us a Z at (6, 1) generatedby σxt. Now to see what further happens, we note that ∆(HP 1) is at most
7-dimensional, sine G(HP 1) = S(T (HP 1)) is a 7-manifold. So we knowthat H∗(∆(HP 1); Z) is zero above degree 7. This means that σxt annotbe killed, so it survives to E∞, meaning there an be nothing else in degree
7. So from olumn 7 and onwards there are zeroes in the E2 page. Now weknow the full story:

1 σ 0 σx 0 σt 0 σxt 0 0 · · ·
0 1 0 x 0 t 0 xt 0 0 · · ·

0 1 2 3 4 5 6 7 8 · · ·



20 2 Cohomology of spaes of geodesis in HP rTo get to the bottom of the multipliative struture we alulate:
2t = d(σx) = d(σ)x− σd(x) = d(σ)x = x2.For dimensional reasons t2 = 0, and all other relations ome from these two(e.g. x3 = x2 · x = 2xt). This proves the result.We now turn to the general ase of ∆(r). We have the �bration from (8),

∆(HP 1) −→ ∆(HP r) −→ Gr2(Hr+1).So in order to apply Serre's spetral sequene, we need to know the oho-mology of Gr2(Hr+1). This is taken are of by the following Lemma, whihis the quaternion version of [Bökstedt-Ottosen℄ Thm. 3.1:Lemma 2.3. For r ≥ 1,
H∗(Gr2(Hr+1); Z) ∼= Z[p1, p2]/ 〈ϕr, ϕr+1〉 ,where p1, p2 are the Pontryagin lasses of the standard bundle γ2 ց Gr2(Hr+1),and ϕi = ϕi(p1, p2) is the polynomial given indutively by

ϕ0 = 1, ϕ1 = p1, ϕi = −p1ϕi−1 − p2ϕi−2, for i ≥ 2.Proof. We use a result of Borel, [Borel℄ Prop. 31.1. Let γ2 ց Gr2(Hr+1)denote the standard 2-dimensional bundle, i.e. the �bre over V ⊆ Hr+1is V . Let pi, i ≥ 0 be the Pontryagin lasses, pi ∈ H4i(Gr2(Hr+1), whihsatisfy pi = 0 for i > 2, sine γ2 is 2-dimensional. Let γ̄r−1 denote its
(r − 1)-dimensional orthogonal omplement, i.e. the �bre over V ⊆ Hr+1 is
V ⊥ ⊆ Hr+1. Denote the Pontryagin lasses of this bundle by p̄j , j ≥ 0, p̄j ∈
H4j(Gr2(Hr+1)), and note that p̄j = 0 for j > r − 1. Then γ2 ⊕ γ̄r−1

∼= εr+1,the trivial bundle of dimension r+1. The sum formula for Pontryagin lassesgives the relations
∑

i+j=k

pip̄j = p̄k + p̄k−1p1 + p̄k−2p2 = 0, for k > 0 (11)Borel's theorem states that H∗(Gr2(Hr+1); Z) is generated by the Pontryaginlasses of γ2 and γ̄r−1, subjet to the relations mentioned above:
H∗
(Gr2(Hr+1); Z

) ∼= Z[pi, p̄j | i, j > 0]/〈{pi}i>2 , {p̄j}j>r−1 ,
( ∑

i+j=k

pip̄j
)
k>0
〉.By (11) we see that we an indutively express p̄k as a polynomial in p1 and

p2. Call that polynomial ϕk, so p̄k = ϕk(p1, p2), and we get from (11)
ϕ0 = 1, ϕ1 = p1, ϕi = −p1ϕi−1 − p2ϕi−1, i ≥ 2.



2.2 The unparametrized geodesis 21Then we get
H∗(Gr2(Hr+1); Z) ∼= Z[p1, p2, p̄j | j > 0]/

〈
{p̄j}j>r−1 ,

( ∑

i+j=k

pip̄j

)
k>0

〉

∼= Z[p1, p2, p̄1, p̄2, . . .]/
〈
{p̄j}j>r−1 , {p̄k − ϕk(p1, p2)}k>0

〉

∼= Z[p1, p2]/ 〈ϕk | k ≥ r〉 .From the indutive formula for ϕk it is seen that 〈ϕk | k ≥ r〉 = 〈ϕr, ϕr+1〉,and this proves the lemma.2.2 The unparametrized geodesisReall H∗(BS1) ∼= H∗(CP∞) ∼= Z[u] where u has degree 2; a fat that anbe dedued from H∗(CP n) ∼= Z[u]/ 〈un+1〉.Theorem 2.4. The spae of unparametrized oriented geodesis, ∆(HP r),has the following ohomology:
H∗(∆(HP r); Z) ∼= Z[x, t]/ 〈Qr, Qr+1〉 ,where x ∈ H2(∆(HP r); Z) is the image of the generator u ∈ H∗(BS1) ∼= Z[u]and t ∈ H4(∆(HP r); Z). Qk for k ∈ N is a polynomial in x and t indutivelygiven by

Q0 = 1, Q1 = 2t− x2, Qs = (2t− x2)Qs−1 − t2Qs−2, for s ≥ 2.Note that Lemma 2.2 is a speial ase of this with r = 1: Q1 = 2t− x2,and Q2 = (2t−x2)Q1−t2 ≡ t2 (mod Q1). The proof of Theorem 2.4 for HP ris not at all like the CP r ase, sine ∆(HP r) is not isomorphi to P(γ2), andthe proof will take quite some time. First we show that the ohomology is apolynomial algebra generated by lasses x and t as in the Theorem, moduloertain relations. It will follow from Lemma 2.3 that the polynomials Qr,
Qr+1 are among these relations. Then we use a purely algebrai ountingargument to show that there an be no further relations.Proposition 2.5 (Theorem 2.4, Part 1). There is a surjetive map

Z[x, t]/ 〈Qr, Qr+1〉։ H∗(∆(HP r); Z).Proof of Theorem 2.4, Part 1. We write down the E2 page of the Serre'sspetral sequene for the �bration ∆(HP 1) −→ ∆(HP r) −→ Gr2(Hr+1),



22 2 Cohomology of spaes of geodesis in HP rusing Lemma 2.2 and the above Lemma 2.3:
4 t

...
2 x xp1 · · ·
0 1 p1 p2

0 2 4 6 8We see there an be no di�erentials for dimension reasons, so E2 = E∞. Sine
x is the only element of degree 2 in E∞, it de�nes a lass x ∈ H2(∆(HP r)); Z).We also have pi ∈ H4i(∆(HP r); Z) for i = 1, 2: the image of pi underthe map indued by ∆(HP r) −→ Gr2(Hr+1). But t is only de�ned upto higher �ltration. That is, we an hoose t̄ ∈ H4(∆(HP r)) whih hits
t ∈ H4(∆(HP 1)), but for any m ∈ Z, t̄ + mp1 also hits t. As an abeliangroup, H4(∆(HP r); Z) ∼= Zp1 ⊕ Zt̄, so there must be a relation

x̄2 = ap1 + bt̄. (12)We will show that we an hoose t̄ a representative for t in H4(∆(HP r); Z)in suh a way that p1 = x̄2 − 2t̄.To get more information about H∗(∆(HP r)), we use Serre's spetral se-quene for the �bration from Remark 1.7, G(HP r) −→ ∆(HP r) −→ BS1.By Theorem 2.1, the E2 page has only one non-trivial group in total degree2, namely a Z generated by u from H∗(BS1) ∼= Z[u]. As x̄ also generates
H2(∆(HP r)), we must have x̄ = ±u. We an simply hoose x̄ to be the im-age of u. Also, u2 generates a Z in H4(∆(HP r); Z) ∼= Z⊕Z, so in partiular,
x̄2 is not divisible by 2, whih we will need shortly.We an make the following diagram where the middle is H4(∆(HP r); Z):

Zx2

�� ##F
F

F
F

F
F

F
F

F

0 // Zp1
// Z⊕ Z // Zt // 0Sine, in the �bre, we have the relation x2 = 2t, the diagonal map sends x2 to

2t. This implies that b = 2 in (12). So we now have x̄2 = ap1 +2t̄. Changing
t̄ by adding an integer multiple of p1 yields that we an obtain either of thetwo relations

x̄2 = p1 + 2t̄, or x̄2 = 2t̄,depending on whether a is odd or even. As noted, x̄2 annot be divisible by
2, so we an hoose t as desired.Now I will drop the bar, and simply refer to these lasses as x, t, p1 and
p2. We have found the relation p1 = x2 − 2t in H4(∆(HP r)), and sine
H4 ∼= Z⊕ Z, there an be no further relations in degree 4.



2.2 The unparametrized geodesis 23Lemma 2.6. In the above setting, p2 = t2.Proof. Reall the notation from setion 1.2,
V2(H

r+1) =
{
(v, w) ∈ Hr+1 ×Hr+1 | ‖v‖ = ‖w‖ = 1, 〈v, w〉H = 0

}
.Also reall from (5) that

G(HP r) ∼= PV2(H
r+1) = V2(H

r+1)/diagS3,identifying the unit sphere in H with S3. We also have a right S1 ationon V2, simply by restriting the S3 ation to S1. Now we mod out by theleft S1 ation of rotation �rst, de�ning Y2(Hr+1) = S1 \ V2(Hr+1). As thetwo ations are on the right and left, respetively, they learly ommute. So
Y2(Hr+1)/S3 ∼= ∆(HP r). In order to investigate p2, we rely on the results for
CP r, so we also onsider V2(Cr+1) and de�ne Y2(Cr+1) = S1 \ V2(Cr+1). Wethen onsider the following diagram:

∆(CP r) ∼= Y2(Cr+1)/S1

pC

��

i // Y2(Hr+1)/S1 q // Y2(Hr+1)/S3 ∼= ∆(HP r)

pH

��Gr2(Cr+1)
h // Gr2(Hr+1) (13)All maps are the obvious ones: pC and pH are the standard maps taking thepair of vetors to their span, i is indued by the inlusion C ⊆ H, and q isthe quotient map. The map h sends a 2-dimensional omplex subspae V to

V ⊗C H. Clearly, the diagram is ommutative.We investigate this diagram on ohomology. First note that Serre's spe-tral sequene for the �bration S2 −→ Y2(Hr+1)/S1 q−→ Y2(Hr+1)/S3 has allnon-trivial groups in even total degree, so there are no di�erentials, and wesee that the indued map q∗ on ohomology is injetive. The map i is de-�ned on representatives, so we an look at the orresponding map ĩ on V2.Now V2(Cr+1) �ts into the �bration S2r−1 −→ V2(Cr+1) −→ S2r+1 (similarfor V2(Hr+1)), by hoosing a unit vetor v and then a unit vetor w in v'sorthogonal omplement. So these V2-spaes are at least (2r − 2)-onneted.Thus ĩ on V2 is highly onneted. When dividing by the S1 ations, right andthen left, we note that they are free ations. So we an apply e.g. [tomDiek℄II.2.7 to onlude that i in the diagram is as highly onneted. Thus i∗ is anisomorphism on ohomology in degrees less than 2r − 2.The idea is to obtain a relation in H∗(∆(CP r)) by going around thediagram (13). To �nd (pC)∗, we will use the omputation from the omplexase, and the results are found in [Bökstedt-Ottosen℄, Thm. 3.2 and Cor.



24 2 Cohomology of spaes of geodesis in HP r3.3. From here we get H∗(∆(CP r)) ∼= Z[x1, x2]/relations, where x1, x2 are indegree 2, and (pC)∗ is given by c1 7→ x1 + x2 and c2 7→ x1x2, ci denoting the
ith Chern lass in H∗(Gr2(Cr+1)).To relate p2 to the other lasses in H∗(∆(HP r)), we must know theirimages in H∗(∆(CP r)) under j∗ = (q ◦ i)∗. The lasses p1, p2 ome fromthe Pontryagin lasses in H∗(Gr2(Hr+1)), and we an use Cor. 15.5 from[Milnor-Stashe�℄ whih relates the Pontryagin and Chern lasses to �nd
h∗(p1) = c 2

1 −2c2 and h∗(p2) = c 2
2 in H∗(Gr2(Cr+1)). As noted, x is the lassoming from the generator u ∈ H∗(BS1), and aording to [Bökstedt-Ottosen℄page 13, u maps to x1 − x2. As we have the relation p1 = x2 − 2t in

H∗(∆(HP r)), we get j∗(2t) = j∗(x2) − j∗p1 in H∗(∆(CP r)). So we anompute all our lasses in terms of x1 and x2:
j∗p1 = (pC)∗(c 2

1 − 2c2) = (x1 + x2)
2 − 2x1x2 = x 2

1 + x 2
2 ,

j∗p2 = (pC)∗(c 2
2 ) = (x1x2)

2,
j∗x = x1 − x2,
j∗(2t) = j∗(x2)− j∗(p1) = (x1 − x2)

2 − x 2
1 − x 2

2 = −2x1x2.Sine H∗(∆(CP r)) is torsion-free, we see j∗t = −x1x2, and thus j∗(t2) =
j∗(p2). This implies t2 = p2 in H∗(∆(HP r)), sine q∗ is injetive and i∗ isan isomorphism on ohomology in degree 8, when r is large (r > 5). Bynaturality, it is enough to onsider large r, sine the lasses pull bak underthe inlusion HP r −→ HP r+1.To reapitulate, H∗(∆(HP r)) ∼= Z[x, t]/relations, and the lasses p1 and
p2 oming from H∗(Gr2(Hr+1)) are related to x and t by p1 = x2 − 2t and
p2 = t2. By Lemma 2.3, in H∗(Gr2(Hr+1)) we have the relations ϕr, ϕr+1,whih are polynomials in p1 and p2. Substituting the expressions for p1 and
p2, we obtain the following relations Qr and Qr+1 in H∗(∆(HP r)), where Qsis the polynomial in x and t given by:
Qs(x, t) = ϕs(x

2−2t, t2) = −(x2−2t)ϕs−1−t2ϕs−2 = (2t−x2)Qs−1−t2Qs−2.This ends Part 1 of the proof.I now investigate the Q-polynomials in order to omplete the proof ofTheorem 2.4. Qs is a polynomial in x and t, where x has degree 2 and t hasdegree 4. It is given indutively by:
Q0 = 1, Q1 = 2t− x2, Qr = (2t− x2)Qr−1 − t2Qr−2 for r ≥ 2. (14)Note that Qr is a homogenous polynomial when taking into aount that xhas degree 2 and t has degree 4. It then has degree 4r. It will be useful toknow an expliit formula, and this is provided by the following lemma:



2.2 The unparametrized geodesis 25Lemma 2.7. For any r ≥ 0,
Qr =

r∑

k=0

(−1)k
(
r + k + 1

r − k

)
tr−kx2k.Proof. Not surprisingly, this is proved by indution in r. It is learly true for

r = 0 and r = 1. Let us denote the oe�ient of tlxm in Qs by asl,m. Thenwe an write the oe�ient of tr−kx2k in Qr = (2t− x2)Qr−1 − t2Qr−2 as:
arr−k,2k = 2ar−1

r−k−1,2k − ar−1
r−k,2k−2 − ar−2

r−k−2,2k

= 2ar−1
r−1−k,2k − ar−1

r−1−(k−1),2(k−1) − ar−2
r−2−k,2k.By indution we an substitute ass−k,2k by (−1)k

(
s+k+1
s−k

) if s < r. So:
arr−k,2k = 2(−1)k

(
r − 1 + k + 1

r − 1− k

)
− (−1)k−1

(
r − 1 + k

r − 1− k + 1

)

−(−1)k
(
r − 2 + k + 1

r − 2− k

)

= (−1)k
(

2

(
r + k

r − k − 1

)
+

(
r + k − 1

r − k

)
−
(
r + k − 1

r − k − 2

))
.All we need to show is that

2

(
r + k

r − k − 1

)
+

(
r + k − 1

r − k

)
−
(
r + k − 1

r − k − 2

)
=

(
r + k + 1

r − k

)
,and this is easily done by three times applying the Pasal's triangle formula,(

m−1
j−1

)
+
(
m−1
j

)
=
(
m
j

).Part 2 of the proof of Theorem 2.4 onsists in to showing that the tworings Z[x, t]/ 〈Qr, Qr+1〉։ H∗(∆(HP r); Z) have the same size, and deduingthat the map must be an isomorphism. This will be done in the followinglemmas.Lemma 2.8. The map
Qr +Qr+1 : Z[x, t]4r ⊕ Z[x, t]4r−4 −→ Z[x, t]8r,given by (f, g) 7→ fQr + gQr+1, is surjetive.Proof. Let Mr ⊆ Z[x, t]8r denote the image of Qr +Qr+1. Reall that x hasdegree 2, t has degree 4, and the degree of Qs is 4s, so Mr is generated over

Z by
Qrt

r−kx2k, k = 0, . . . , r; Qr+1t
r−1−kx2k, k = 0, . . . , r − 1. (15)



26 2 Cohomology of spaes of geodesis in HP rWe use indution in r. The indution start, r = 1, is easy:
t2 = (2t− x)Q1 −Q2,

x2t = 2t2 − tQ1,

x4 = Q2 − 4x2t+ 3t2.Now assume r ≥ 2. Now let us rewrite the generators of Mr in (15), tryingto bring into play the indutive de�nition of the Q-polynomials:
Qr+1 = (2t− x2)Qr − t2Qr−1.We an add the generators as follows for k = 0, . . . , r − 1:

Qrt
r−(k+1)x2(k+1) +Qr+1t

r−1−kx2k − 2Qrt
r−kx2k

= tr−1−kx2k(Qr+1 + x2Qr − 2tQr) = −t2 ·Qr−1t
r−1−kx2kFurthermore, we have the ones involving Qr, slightly rewritten:

t2 ·Qrt
r−k−2x2k, k = 0, . . . , r − 2.Now, indutively we assume that Mr−1 = Z[x, t]8(r−1). This means thateverything in Z[x, t]8(r−1) an be expressed as Z-linear ombinations of

Qr−1t
r−1−kx2k, k = 0, . . . , r − 1; Qrt

r−2−kx2k, k = 0, . . . , r − 2.We see that, if multiplied by t2, these are exatly the elements we have foundin Mr ⊆ Z[x, t]8r. This means by indution that every generator for Z[x, t]8rwhih is divisible by t2 is in Mr.All we are missing are the generators x4r and tx4r−2. Using Lemma 2.7,we see that:
Qrtx

2r−2 = (−1)rtx4r−2 +
r−1∑

k=0

(−1)k
(
r + k + 1

r − k

)
tr−k+1x2k+2r−2

︸ ︷︷ ︸divisible by t2 .So tx4r−2 ∈ Mr, sine elements divisible by t2 are in Mr. Similarly, writingout Qrx
2r, we get x4r ∈ Mr as desired. This aounts for all the generatorsin Z[x, t]8r and ends the proof of surjetivity.I now ompute the size of the ring Z[x, t]/ 〈Qr, Qr+1〉. For the formulationof the lemma below, it will be onvenient to use the notational tool of thePoinaré series. This is simply a short way of expressing the ranks of a graded

R-module A =
⊕

mAm. (In order for the rank to be well-de�ned, we anassume R is ommutative; mostly we will have R = Z.) The Poinaré seriesof A is then the formal expression PA(t) =
∑

m rank(Am)tm.



2.2 The unparametrized geodesis 27Lemma 2.9. Write A = Z[x, t]/ 〈Qr, Qr+1〉. Then A is torsion free, and thePoinaré series of the graded ring A is given by
P (t) = (1 + t2) · 1− t

4r

1− t4 ·
1− t4(r+1)

1− t4 .Remark 2.10. This gives that the ranks of A in eah degree are as follows:
0 2 4 6 8 · · · 4r−6 4r−4 4r−2 4r 4r+2 4r+4 · · · 8r−4 8r−2

1 1 2 2 3 · · · r − 1 r r r r r − 1 · · · 1 1where the degree is in the top row. Eah rank is repeated twie, inreasingby one from 1 to r up to the vertial line, and then dereasing by one from
r to 1. For this, see the start of the proof below.Proof. Let us try to write the Poinaré series di�erently. We alulate
1− t4r
1− t4 ·

1− t4(r+1)

1− t4 =

(
r−1∑

i=0

t4i

)(
r∑

j=0

t4j

)
=

2r−1∑

k=0

(
∑

i+j=k

t4k

)
=

2r−1∑

k=0

akt
4k,where

ak =

{
k + 1, k < r;
2r − k, k ≥ r.simply by ounting the number of ways to write k as a sum of i and j. Sowe must show that the Poinaré series is

(1 + t2)

2r−1∑

k=0

akt
4k, where ak =

{
k + 1, k < r;
2r − k, k ≥ r.

(16)Let As ⊆ Z[x, t]s denote the homogeneous polynomials in A of degree s. Sine
Qr has degree 4r, we must have As = Z[x, t]s for s < 4r, sine there are norelations. So As is torsion-free for s < 4r. The generators of Z[x, t]s are: For
s = 4k, {tk−jx2j | j = 0, . . . , k

} and for s = 4k+2, {tk−jx2j+1 | j = 0, . . . , k
},so the rank is k + 1 in both ases. From this, the Poinaré series of Z[x, t] is

(1 + t2)
∑∞

k=0(k + 1)t4k, so it is lear that ak = k + 1 for k < r as laimed in(16).Now we handle degrees 4r and 4r+2. Here the only relations are Qr and
xQr, respetively. By Lemma 2.7, the oe�ient of x2r (resp. x2r+1) in Qr(resp. xQr) is ±1, we get exatly one generator less than in Z[x, t]4r (resp.
Z[x, t]4r+2), whih had rank r+1. This means A4r and A4r+2 are torsion-free,and the rank is r in both ases, as (16) laims.



28 2 Cohomology of spaes of geodesis in HP rWe now show that the A4r+2m is torsion-free for 2 ≤ m ≤ 2r. To do this,assume there was a torsion element a ∈ Z[x, t]4r+2m, i.e. na = Qrf +Qr+1gfor some n ∈ Z. Multiplying by x2r−m gives
nax2r−m = Qrfx

2r−m +Qr+1gx
2r−m ∈ Z[x, y]8r. (17)Now, ax2r−m ∈ Z[x, y]8r, so sine Qr + Qr+1 is onto this by Lemma 2.8, wehave

ax2r−m = Qrf
′ +Qr+1g

′, for some f ′, g′. (18)Multiplying this by n and omparing with (17) we get
(fx2r−m − nf ′)Qr = (−gx2r−m + ng′)Qr+1. (19)Sine Qr+Qr+1 is surjetive onto Z[x, y]8r, Qr and Qr+1 are relatively prime.We then onlude from (19) that x2r+m divides f ′ and g′. So we an divideby x2r+m in (18) and obtain the relation a = Qrf

′′ + Qr+1g
′′. So a = 0 in

A4r+2m, and there is no torsion.For the last part, the surjetivity result of Lemma 2.8 implies As = 0for s ≥ 8r, as the Poinaré series states. We already alulated the rank of
Z[x, t]4s to be s + 1, so we see that both Z[x, t]4r ⊕ Z[x, t]4r−4 and Z[x, t]8rhave rank 2r + 1. Sine we have shown A is torsion-free, this means thatthe map Qr +Qr+1 : Z[x, t]4r ⊕ Z[x, t]4r−4 ։ Z[x, t]8r must also be injetive.This implies that for any m suh that 2 ≤ m ≤ 2r, the map

Qr +Qr+1 : Z[x, t]2m ⊕ Z[x, t]2m−4 −→ Z[x, t]4r+2mis also injetive, sine we an multiply a relation Qrf + Qr+1g = 0 in
Z[x, t]4r+2m by x2r−m, and get a similar relation in Z[x, t]8r, where Qr +Qr+1is injetive. Therefore,rank(A4r+2m) = rankCok(Qr +Qr+1)

= rankZ[x, t]4r+2m − rank (Z[x, t]2m ⊕ Z[x, t]2m−4) .These ranks we already know. If m = 2l or m = 2l+ 1 we get in either ase:rank(A4r+2m) = r + l + 1− (l + 1)− l = r − l, for 2 ≤ m ≤ 2rwhih, substituting k = r + l, is 2r − k, as laimed in (16).Now we an �nish the proof of Theorem 2.4:



2.2 The unparametrized geodesis 29Proof of Theorem 2.4, Part 2. Piking up where we left in Part 1, we have asurjetive map
Z[x, t]/ 〈Qr, Qr+1〉։ H∗(∆(HP r); Z). (20)By Lemma 2.9 and 2.8 we have omputed the ranks of the free, graduated

Z-module Z[x, t]/ 〈Qr, Qr+1〉. It has the Poinaré series
PZ[x,t]/〈Qr,Qr+1〉(t) = (1 + t2) · 1− t

4r

1− t4 ·
1− t4(r+1)

1− t4 .If H∗(∆(HP r); Z) has the same Poinaré series, the surjetive map (20) mustbe an isomorphism. We ompute the ranks via the spetral sequene of the�bration (8), ∆(HP 1) −→ ∆(HP r) −→ Gr2(Hr+1). We see that the non-trivial part of the E2 page sits in even total degree, so E∞ = E2, and we anompute the Poinaré series of the total spae,
PH∗(∆(HP r))(t) = PH∗(∆(HP 1))(t) · PH∗(Gr2(Hr+1))(t).Here we know by Lemma 2.2

Hn(∆(HP 1); Z) ∼=
{

Z, n = 0, 2, 4, 6;
0, otherwise.so its Poinaré series is PH∗(∆(HP 1))(t) = 1 + t2 + t4 + t6 = (1− t8)/(1− t2).Also by Lemma 2.3

H∗(Gr2(Hr+1); Z) ∼= Z[p1, p2]/ 〈ϕr, ϕr+1〉 .To ompute the Poinaré series, one proeeds as in Lemmas 2.8 and 2.9.Lemma 2.9 does not over the Grassmannian ase, for when I tried statingand proving a more general lemma that ould handle both ases, everythinggot extremely ompliated. So I simply state the result for the Grassmannian,the proof of whih is just like Lemma 2.9:
PH∗(Gr2(Hr+1))(t) =

1− t4r+4

1− t4 · 1− t
4r

1− t8 .Then
PH∗(∆(HP r))(t) = PH∗(∆(HP 1))(t) · PH∗(Gr2(Hr+1))(t)

=
1− t8
1− t2 ·

1− t4r+4

1− t4 · 1− t
4r

1− t8

= (1 + t2) · 1− t
4r+4

1− t4 · 1− t
4r

1− t4 = PZ[x,t]/〈Qr,Qr+1〉(t).This �nishes the proof.



30 2 Cohomology of spaes of geodesis in HP r2.3 Equivariant ohomology of spaes of geodesisUsing our previous omputations (Theorems 2.1 and 2.4) and Serre's spetralsequene, we will be able to ompute the equivariant ohomology of the spaeof geodesis, G(HP r)(n).We �rst onsider the ase p ∤ n, sine this is the easiest. We show:Proposition 2.11. For p ∤ n:
Hm(BCn; Fp) = 0, for m > 0.Proof. We are going to use that ECn −→ BCn is a overing, sine Cn isdisrete. In general, given a k-sheet overing π : E −→ B (assume B on-neted), one an onstrut a so-alled transfer map. By baryentri sub-division one knows that it is enough to onsider very small simplies in

B. Therefore, given a simplex in B we an assume it is ontained in aneighborhood U suh that π−1(U) is a disjoint union of open sets mappedhomeomorphially to U by π. Then we an pull the simplex in U bakby π, yielding k opies of the simplex in E, whih we formally add, giv-ing a hain map τ : Cm(B) −→ Cm(E). This indues the transfer map
τ ∗ : Hm(E) −→ Hm(B) on ohomology. From the de�nition, π♯ ◦ τ ismultipliation by k, and so τ ∗π∗ is also multipliation by k. In our ase,
ECn −→ BCn is an n-sheet overing, and so the omposition

Hm(BCn; Fp)
τ∗−→ Hm(ECn; Fp)

π∗−→ Hm(BCn; Fp)is multipliation by n. Sine we are using Fp-oe�ients and p ∤ n, this is anisomorphism. On the other hand, for m > 0, the middle term is zero, sine
ECn is ontratible. Thus Hm(BCn; Fp) = 0 for m > 0.With this we an prove:Theorem 2.12. For p ∤ n, the equivariant ohomology with Fp oe�ientsof the n-twisted spae of geodesis on HP r is

H∗((G(HP r)(n))hS1; Fp) ∼= Fp[x, t]/ 〈Qr, Qr+1〉 ,where x has degree 2, and t has degree 4, and x is the image of the generator
u ∈ H2(BS1) under the map ∆(HP r) −→ BS1 in (9).Proof. We use the Serre's spetral sequene of the �bration from Prop. 1.6:

BCn −→ ES1 ×S1 G(r)(n) −→ ∆(r).Proposition 2.11 above now immediately implies that
H∗((G(r)(n))hS1; Fp) = H∗(ES1 ×S1 G(r)(n); Fp) ∼= H∗(∆(r); Fp)The theorem is now proved by our omputation in Theorem 2.4.



2.3 Equivariant ohomology of spaes of geodesis 31The ase p | n requires more work, and one needs to take into aountwhether or not p | r + 1. But �rst we need a omputation of H∗(BCn; Fp):Proposition 2.13. For p | n,
H∗(BCn; Fp) ∼= Fp[u, e]/

〈
e2
〉
.Proof. Use Theorem 1.4 (i) on the �bration S1 −→ ES1 −→ BS1 to divideout the ation of Cn ⊆ S1, and obtain a �bration

S1 −→ BCn −→ BS1. (21)Here we have identi�ed the quotient group S1/Cn with S1 itself via the nthpower map z 7→ zn. We will apply Serre's spetral sequene.First, though, we will �nd H1(BCn; Fp). Sine Cn is disrete, ECn −→
BCn is the universal overing. From overing spae theory, π1(BCn) ∼= Cn,and sine this is abelian, it follows that H1(BCn; Z) ∼= Z/nZ. Using theUniversal Coe�ient theorem, we an ompute H1(BCn; Fp). Note that
H0(BCn) = Z, so Ext(H0(BCn),Fp) = 0, and therefore, sine p | n:

H1(BCn; Fp) ∼= Hom(H1(BCn),Fp) ∼= Hom(Z/nZ,Z/pZ) ∼= Fp,Now we turn to Serre's spetral sequene for the �bration (21), with
Ep,q

2 = Hp(BS1;Hq(S1; Fp)) = Hp(BS1,Fp) ⊗ Hq(S1; Fp). Note that theonly possible non-trivial di�erential is d2, sine the E2 page has only twonon-zero rows. Knowing that H1(BCn; Fp) ∼= Fp, we onlude that the �rstdi�erential d0,1
2 must be a map Fp −→ Fp with kernel isomorphi to Fp. Thisfores d2(e) = 0, where e generates H(S1; Fp). Using the derivation property:

d(euj) = d(e)uj ± ed(uj) = 0.So all di�erentials are zero, the spetral sequene ollapses, and E∞ = E2.There are no extension problems, sine eah diagonal p + q = ∗ ontains atmost one non-zero group, so H∗(BCn; Fp) = E∞, as desired.Theorem 2.14. Let p be a prime number and n ∈ N suh that p | n. As
Fp[u]-modules, the following holds:

(i) Suppose p ∤ r + 1. Then
H∗
((
G(HP r)(n)

)
hS1 ; Fp

) ∼= Fp[u]
{
1, y, y2, . . . , yr−1, τ, τy, . . . , τyr−1

}
.

(ii) Suppose p | r + 1. Then
H∗
((
G(HP r)(n)

)
hS1 ; Fp

) ∼= Fp[u]
{
1, y, y2, . . . , yr, σ, σy, . . . , σyr

}
.



32 2 Cohomology of spaes of geodesis in HP rwhere y has degree 4, τ has degree 4r + 3 and σ has degree 4r − 1.Proof. In the beginning, the proofs of the two ases are the same. Considerthe spetral sequene for the �bration from Prop. 1.6
G(r) −→ ES1 ×S1 G(r)(n) −→ BS1. (22)Aording to our omputation of the ohomology of the �bre in Theorem2.1, neither the �bre nor the base has anything in ohomology of degree 1.This means that H1((G(r)(n))hS1) = 0. We an use this when onsideringthe spetral sequene for the other �bration from Prop. 1.6:
BCn −→ ES1 ×S1 G(r)(n) −→ ∆(r).Aording to Prop. 2.13, Eq,s

2 = Hq(∆(r);Hs(BCn; Fp) looks as follows:
3 ue uex uex2, uet . . .
2 u ux ux2, ut
1 e ex ex2, et . . .
0 1 x x2, t

0 1 2 3 4 · · ·

(23)Let us denote the two lower rows of the E2 page by F . Then the next tworows (rows 2 and 3) onsists of uF , the next two are u2F , et. Consider thedi�erential d2 as a map d2 : eH∗(∆(r)) −→ H∗(∆(r)) from row 1 to row0. Then, using the derivation property of the di�erentials we see that d2 ismultipliation with d2(e). When passing from the E2 to the E3 page, F willbe replaed by two rows, Cok d2 and Ker d2, uF will be replaed by uCok d2and uKer d2, et.So to determine the E3 page, we need to �nd d2(e). As noted, the totalspae has H1 = 0, so d0,1
2 : E0,1

2 −→ E2,0
2 must be an injetive map, hene anisomorphism. This fores d2(e) = unit ·x; we might as well say d2(e) = x. So

d2 is multipliation by x, and we must determine Cok(x) and Ker(x). UsingTheorem 2.4, we see thatCok(x) ∼= Fp[x, t]/ 〈x,Qr, Qr+1〉 ∼= Fp[t]/ 〈Qr(0, t), Qr+1(0, t)〉 . (24)Now by Lemma 2.7, Qr(0, t) = (r + 1)tr and Qr+1(0, t) = (r + 2)tr+1. Thisis where we must distinguish between the two ases.But let us �rst investigate the kernel. I have tried to diagram the dimen-sions of Fp[x, t]/ 〈Qr, Qr+1〉 using Remark 2.10, with boldfae indiating thedegrees where, for dimension reasons, the kernel must be non-trivial. Thedegrees are in the top row:
0 2 4 6 8 · · · 4r 4r+2 4r+4 4r+6 4r+8 4r+10 4r+12 · · ·
1 1 2 2 3 · · · r r r − 1 r − 1 r − 2 r − 2 r − 3 · · ·



2.3 Equivariant ohomology of spaes of geodesis 33The pattern is (hopefully) lear: There must be a part of the kernel in degrees
4(r + i) − 2 for i = 1, ..., r. In partiular, the dimension is at least r. Now,for the rest of the proof, we need to handle the two ases separately.Case (i): p ∤ r + 1. In this ase, r + 1 is a unit in Fp, so (24) beomesCok(x) ∼= Fp[t]/ 〈tr〉. In partiular, the dimension of Cok(x) is r, generatedby 1, t, . . . , tr−1.Sine dimKer(x) = dimCok(x) = r, we have determined above that thekernel is in degrees 4(r + i)− 2 for i = 1, ..., r. In eah degree, the kernel isone-dimensional, say generated by ϕi in degree 4(r+ i)− 2. So we an writedown the E3 page:

3 uϕ1 uϕ2 · · · uϕr
2 u ut ut2 · · · utr−1

1 ϕ1 ϕ2 · · · ϕr
0 1 t t2 · · · tr−1

0 2 4 6 8 . . . 4r−4 4r−2 4r 4r+2 4r+4 4r+6 . . . 8r−2Beause there are no further di�erentials on t and u, and the di�erentialssatisfy the derivation property, we see that the spetral sequene ollapsesfrom the E3 page. Now let us ompare this to the spetral sequene for the�bration G(r) −→ ES1 ×S1 G(r)(n) −→ BS1 from (22) onsidered in thebeginning, whih also onverges to H∗((G(r)(n))hS1; Fp). Sine
H∗(G(r); Fp) ∼= Fp[y, τ ]/

〈
yr = 0, τ 2 = 0

〉
,where y has degree 4 and τ has degree 4r + 3, we get the E2 page,

E∗,∗2
∼= Fp[y, τ ]/

〈
yr = 0, τ 2 = 0

〉
⊗ Fp[u]Comparing this to the E3 page above, we see that we have in eah ase

2r generators whih are multiplied by 1, u, u2, et. This means, sine the�rst spetral sequene ollapses, that this seond one must also ollapse.Consequently we an read o� that H∗(G(r)
(n)

hS1; Fp) as an Fp[u]-module isgenerated by {
1, y, y2, . . . , yr−1, τ, τy, . . . , τyr−1

}Case (ii): p | r+ 1. In this ase, r + 1 is zero in Fp, but r+ 2 is a unit, so(24) beomes: Cok(x) ∼= Fp[t]/t
r+1.In partiular, the dimension of Cok(x) is r + 1, generated by 1, t, . . . , tr.



34 2 Cohomology of spaes of geodesis in HP rConsequently, dimKer(x) = r+1, so we need to �nd an additional elementin the kernel. By Lemma 2.7, Qr is the polynomial
Qr = (r + 1)tr −

(
r + 2

r − 1

)
tr−1x2 + · · · ± x2r,so x divides Qr in Fp[x, t]. This means we have an element ϕ0 = Qr/x indegree 4r − 2 whih is in the kernel of x. So together with the elements

ϕ1, . . . , ϕr from before, we have found generators of the kernel.As in Case (i), we see that the spetral sequene ollapses from the E3page. Comparing with the E2 page of the �bration (22), and using that sine
p | r + 1,

H∗(G(r); Fp) ∼= Fp[y, σ]/
{
yr+1 = 0, σ2 = 0

}
,we onlude as above that H∗(G(r)

(n)

hS1; Fp) as an Fp[u] module is generatedby {
1, y, y2, . . . , yr, σ, σy, . . . , σyr

}
.Corollary 2.15. For the Serre spetral sequene of the �bration

G(HP r) −→ G(HP r)
(n)

hS1 −→ BS1the following holds: If p | n, it ollapses from the E2 page. If p ∤ n theinlusion of the �bre indues a surjetive map on even degree ohomology
H2∗(G(HP r)

(n)
hS1; Fp) −→ H2∗(G(HP r); Fp)Proof. The ase p | n follows diretly from the proof of Theorem 2.14 above.For the ase p ∤ n, we must hek that the lasses yj from Theorem 2.1 are inthe image of the inlusion of the �bre. To do this, we onsider the E2 pageof the spetral sequene, and must show that the lasses yj survive to E∞.Sine the di�erentials are derivations, ds(yj) = jyj−1ds(y), and so it su�esto show y survives. Clearly it does, sine any di�erential starting at y endsin total degree 5, and there are no non-trivial lasses in total degree 5.



353 K-theory of spaes of geodesis in CP rLet G(r) = G(CP r) be the spae of simple, losed, parametrized geodesisin CP r, and let ∆(r) = S1 \ G(r) be the quotient spae under the rotationation. In this hapter we obtain K-theoreti analogues of the results forohomology from the previous hapter.By K-theory we mean omplex K-theory, i.e. K0(X) for a CW-omplex
X is the group ompletion of the semi-group of omplex vetor bundles withbase spae X. De�ne K∗(X) for a general spae X as follows: Chose anyCW omplex Y weakly equivalent to X, put K(X) = K(Y ). This is wellde�ned, sine two hoies of Y will be homotopy equivalent, and K-theoryis homotopy invariant. We most often employ the Z/2Z-grading from Bott-periodiity, writing K∗(X) = K0(X)⊕K1(X).3.1 The unparametrized geodesisReall the model for ∆(r) from the end of setion 1.2. We had γ2, thestandard 2-dimensional bundle over the Grassmannian Gr2(Cr+1) and p :
P(γ2) −→ Gr2(Cr+1) the assoiated projetive bundle. Then we had a om-posite map (6), whih is an S1-equivariant di�eomorphism

ϕ : ∆(r) −→ P(γ2)Take the standard line bundle γ1 over P(γ2). The pullbak ϕ∗(γ1) of γ1under ϕ is a line bundle we will denote X. We onsider also the onjugateline bundle γ⊥1 to γ1 over P(γ2), i.e. γ1 ⊕ γ⊥1 = p∗γ2. The pullbak ϕ∗(γ⊥1 )of this bundle to ∆(r) we will denote Y . In K0(∆(r)) we de�ne the lasses
x = [X]− 1 and y = [Y ]− 1.Theorem 3.1. Let x, y ∈ K0(∆(r)) be the lasses de�ned above. Then

K0(∆(r)) ∼= Z[x, y]/ 〈Qr, Qr+1〉 ,
K1(∆(r)) = 0,where Qs for s ∈ N is the homogeneous polynomial in x, y given by

Qs(x, y) =

s∑

j=0

xjys−j.Note that these polynomials are not the same is in the ohomology ase,but I use the same notation, sine they play preisely the same role.



36 3 K-theory of spaes of geodesis in CP rProof. We apply the Atiyah-Hirzebruh spetral sequene, Theorem 1.3
H∗(∆(r);K∗(∗))⇒ K∗(∆(r)). (25)Sine we know the ohomology of ∆(r) from [Bökstedt-Ottosen℄,

H∗(∆(r)) ∼= Z[x1, x2]/ 〈Qr, Qr+1〉 ,and x1, x2 have degree 2, we see that all di�erentials in (25) are trivial, sothat
E∞ = E2

∼= Z[x1, x2]/ 〈Qr, Qr+1〉 ⊗ Z[β, β−1],where β denotes the Bott element. This shows that K1(∆(r)) = 0, and
K0(∆(r)) is free abelian of the same rank as H∗(∆(r)).We use the Chern harater,h : K0(X) −→ H∗(X; Q),whih is a ring homomorphism. By onstrution, x1 = c1(X) and x2 = c1(Y )are the �rst Chern lasses of X and Y , f. [Bökstedt-Ottosen℄ Thm. 3.2, sosine X, Y are line bundles, we geth(x) = h(X)− 1 = exp(c1(X))− 1 = exp(x1)− 1,h(y) = h(Y )− 1 = exp(c1(Y ))− 1 = exp(x2)− 1.There is a relation between the Chern harater h and the Atiyah-Hirzebruhspetral sequene, by [Atiyah-Hirzebruh℄ Cor. 2.5. We see that h(xiyj) =h(x)ih(y)j = xi1x

j
2 + higher terms, where �higher terms� means terms inhigher �ltration, whih in this ase is equivalent to higher total degree in

x1, x2. By (iii) in the orollary, this shows that the ring homomorphism
Z[x, y] −→ K∗(∆(r)) is surjetive.This means we an use x, y as polynomial generators for K∗(X), and itremains to determine the relations. Again we use the Chern harater, thistime after tensoring with Q:h : K0(X)⊗Q −→ H∗(X,Q)whih is then a ring isomorphism. We now want to prove that h(x) andh(y) satisfy the relations Qr, Qr+1. If we an prove this, we are done: Sinethe Chern harater is an isomorphism after tensoring with Q, and the groupsare torsion-free, there an be no further relations in K0(S(τ)/S1), sine thishas the same rank as H∗(S(τ)/S1) ∼= Z[x1, x2]/ 〈Qr, Qr+1〉.So we need to prove that Qs(exp(x1)−1, exp(x2)−1) = 0 ifQs(x1, x2) = 0for s = r, r + 1. Realling that the ideals 〈Qr, Qr+1〉 and 〈Qr, x

r+1
1 , xr+1

2

〉



3.1 The unparametrized geodesis 37oinide, we �rst get that (exp(xi) − 1)r+1 = xr+1
i (1 + higher terms) = 0.Consider the quotient map

R = Q[x1, x2]/
〈
xr+1

1 , xr+1
2

〉
−→ Q[x1, x2]/ 〈Qr, Qr+1〉 = S,whih has kernel I = 〈Qr〉. Given a power series without onstant term,

g(z) = a1z + a2z
2 + · · · , we an de�ne g∗ : R −→ R by xi 7→ g(xi) for

i = 1, 2. In our ase, g(z) = exp(z) − 1. If we an prove that g∗I ⊆ I, themap g∗ will be well-de�ned as a map S −→ S, as shown below:
0 // I //

g∗
��

R //

g∗
��

S //

��

0

0 // I // R // S // 0We will show I = Ker(x1 − x2). Consider a homogeneous polynomial f ∈ Rof degree m. It su�es to take m ≥ r, for if f had lower degree, it ould notbe in I = 〈Qr〉, sine Qr has degree r. Then, using xr+1
1 = xr+1

2 = 0, we anwrite
f =

r∑

i=m−r
cix

i
1x

m−i
2 ⇒ (x1 − x2)f =

r∑

i=m−r+1

(ci−1 − ci)xi1xm−i2 .By [Bökstedt-Ottosen℄ Lemma 3.4, f ∈ I if and only if cm−r = . . . = cr, andwe onlude I = Ker(x1 − x2). This implies g∗I ⊆ Ker(g∗x1 − g∗x2). So wealulate
g∗x1 − g∗x2 =

∑

i≥1

ai(x
i
1 − xi2) = (x1 − x2)

∑

i

ai

(
i−1∑

k=0

xk1x
i−k−1
2

)
.This shows g∗I ⊆ Ker(g∗x1 − g∗x2) ⊆ Ker(x1 − x2) = I, as desired.Remark 3.2. Let M = K∗(∆(r)) = Z[x, y]/ 〈Qr, Qr+1〉. We often use�ltration arguments, so let us �x the notation now. Let Mj ⊆ M bethe group generated by monomials in x, y of total degree at least j, i.e.

Mj = Z[x, y]≥j/ 〈Qr, Qr+1〉. This makes sense sine Qr, Qr+1 are homoge-neous. Then 0 = M2r ⊆ M2r−1 ⊆ · · · ⊆ M1 ⊆ M0 = M is a �ltration of
M .



38 3 K-theory of spaes of geodesis in CP r3.2 Equivariant K-theory of spaes of geodesisReall the ommutative diagram of �brations from Prop. 1.6,
S(τ)

��
BCn // ES1 ×S1 G(r)(n) //

��

∆(r)

��
BS1

BPn // BS1Here the map BPn : BS1 −→ BS1 is indued by the nth power map Pn :
S1 −→ S1, z 7→ zn, and Cn ⊆ S1 denotes the group of nth roots of unity.Taking the K-theory gives the ommutative square

K∗(ES1 ×S1 G(r)(n)) K∗(∆(r))oo

K∗(BS1)

OO

K∗(BS1)
BPnoo

OO
(26)

We see we will need to know the K-theory of lassifying spaes in order toproeed, and lukily there is a general theorem due to Atiyah about this,whih I will now explain and use. So let G be a ompat Lie group. Therepresentation ring R(G) is de�ned as the Groethendiek group ompletionof the semigroup of representations of G under diret sum. This beomes aring via the tensor produt. We an de�ne a map
R(G) −→ K0(BG), (27)

V 7→ {EG×G V ց BG} ;and extend by the Groethendiek onstrution. De�ne the augmentationideal, I = I(G) ⊆ R(G) by
I = Ker{R(G)

dim−→ Z
}
.We de�ne the ompletion to be the inverse limit,

R̂(G)I = lim←−
k

R(G)/Ik,and an now state the theorem, se [Atiyah2℄ Thm. 7.2 for G a �nite group,and [Atiyah-Hirzebruh℄ Thm. 4.6 for G a onneted ompat Lie group:



3.2 Equivariant K-theory of spaes of geodesis 39Theorem 3.3 (Atiyah). Let G be a ompat Lie group. Then
(i) K0(BG) ∼= R̂(G)I ,

(ii) K1(BG) = 0.I will now use this theorem to determine K∗(BS1) and K∗(BCn).Lemma 3.4. Let T : S1 →֒ C∗ be the natural 1-dimensional representationof S1, and let t = [T ]− 1 ∈ K0(BS1). Then
R(S1) = Z[T, T−1], I = 〈T − 1〉 , K0(BS1) ∼= R̂(S1)I = Z[[t]].Proof. First note that a representation ρ : S1 −→ GLn(C) an be onjugatedto ρ : S1 −→ U(n), by hoosing an inner produt on Cn (all of whih areonjugate) whih is S1-invariant. So it su�es to look at representations

ρ : S1 −→ U(n). Now ρ(t) ∈ U(n) (for t ∈ [0, 2π]) is diagonizable, ρ(t) ∼diag(eiθ1 , . . . , eiθn). This also diagonalizes ρ(kt), k ≥ 1, so if we hoose trationally independent of π, this diagonalization works for a dense subset of
S1. So by ontinuity we an diagonalize ρ(t) for all t simultaneously, and so
ρ is given by diag(ρ1(t), . . . , ρn(t)), where ρk : S1 −→ S1 is a homomorphism.This means ρk(z) = zmk , mk ∈ Z. Using the natural representation T : z 7→
z, and its inverse T−1 : z 7→ z−1, we an reformulate this by saying that everyrepresentation of S1 has the form ∑N

i=−N niT
i, ni ≥ 0. The Groethendiekonstrution yields

R(S1) =

{
N∑

i=−N
niT

i | ni ∈ Z

}
= Z[T, T−1].Now to the augmentation ideal. By de�nition

I =

{
N∑

i=−N
niT

i |
N∑

i=−N
ni = 0

}
.Clearly, T − 1 ∈ I, and also, ∑N

i=−N niT
i ∈ I is divisible by T − 1, beausethe sum of the oe�ients is zero. So I = 〈T − 1〉. Now Ik =

〈
(T − 1)k

〉,and R(S1)/Ik has generators 1, T −1, (T −1)2, . . . , (T −1)k−1. Consequently,putting t = [T ]− 1, we get
K0(BS1) ∼= R̂(S1)I = Z[[t]].



40 3 K-theory of spaes of geodesis in CP rLemma 3.5. Let n ∈ N be a number with prime fatorisation n =
∏

p|n p
i(p).Then

K0(BCn) ∼= Z⊕
⊕

p|n
(Ẑp)

pi(p)−1,where Ẑp denotes the p-adi integers.Proof. Let W be the natural 1-dimensional representation of Cn ⊆ C∗. Asin the proof of Lemma 3.4 above, we only need look at representations
ρ : Cn −→ U(m) and diagonalize, so that ρ = diag(ρ1, . . . , ρm). Here eah
ρj : Cn −→ S1 is a group homomorphism, and so is a power of W , withthe relation W n = 1. Consequently R(Cn) = Z[W ]/ 〈W n − 1〉. The aug-mentation ideal is I = 〈W − 1〉 for the same reason as before, and we mustompute the inverse limit lim←−

k

R(Cn)/I
k. This we propose to do in two steps:First assume n = pi. Then Cpi is a p-group, and aording to [Atiyah2℄the I-adi and p-adi topologies on I = I(Cpi) are equivalent, so that

K0(BCpi) ∼= R̂(Cpi)
I

= Z⊕ Î(Cpi)
I
∼= Z⊕ Î(Cpi)

p
.To alulate this, let w = W − 1, and note that I(Cpi) = 〈w〉 in the ring

Z[w]/
〈
(w + 1)p

i

= 1
〉, and so I(Cpi) ∼= Zpi−1. Thus Î(Cpi)

p
∼= (Ẑp)

pi−1.Now take any n ∈ N. Observe that Cpi(p), where n = pi(p)m with
gcd(p,m) = 1, are exatly the Sylow p subgroups of Cn. Then by [Atiyah2℄Prop. 4.10, there is an injetive map

K0(BCn) −→
⊕

p|n
K0(BCpi(p)),and in partiular

Î(Cn)I(Cn) −→
⊕

p|n

̂I(Cpi(p))
I(C

pi(p) )is injetive. By using that Cn ∼= ∏p|nCpi(p) by the Chinese Remainder The-orem, it is easily seen that this map is an isomorphism, so that
K0(BCn) ∼= Z⊕

⊕

p|n

̂I(Cpi(p)) ∼= Z⊕
⊕

p|n
(Ẑp)

pi(p)−1,by the result for pi above.



3.2 Equivariant K-theory of spaes of geodesis 41With these results, let us �rst take a look at the K∗(BS1)-module stru-ture on K∗(XhS1), where X is an S1-spae, as desribed in Setion 1.4. Fol-lowing the notation in Lemma 3.4, we have the anonial representation Tof S1, whih by (27) gives a bundle over BS1, whih we also all T . On K-theory, T de�nes a lass in K∗(BS1), and K∗(BS1) = Z[[t]], where t = T −1.Using the projetion pr1 : XhS1 −→ BS1, we get lasses pr∗1(T ) and pr∗1(t) in
K∗(XhS1). We will suppress the map pr1 from the notation, and simply allthese lasses T and t again.We an now determine theK∗(BS1) module struture on ∆(r) ≃ G(r)hS1:Lemma 3.6. The K∗(BS1) = Z[[t]] module struture on K(∆(r)) is givenby t 7→ (x− y)/(y + 1). In partiular, t2r ats as 0.Proof. We use the results from ohomology, where the H∗(BS1) = Z[u]module struture on H∗(G(r)/S1) = Z[x1, x2]/ 〈Qr, Qr+1〉 is given by u 7→
x1−x2, f. [Bökstedt-Ottosen℄ Cor. 3.7. Reall that x = [X]−1, y = [Y ]−1,where x1 = c1(X) and x2 = c1(Y ) are the �rst Chern lasses. Also u = c1(T ).The �rst Chern lass gives a group isomorphism from omplex line bundlesover ∆(r) to H2(∆(r)), so sine

c1(T ⊗ Y ) = c1(T ) + c1(Y ) = u+ x2 = x1 = c1(X).we get T ⊗ Y = X. Then we alulate
(T − 1)⊗ (Y − 1) = T ⊗ Y − Y − T + 1 = (X − 1)− (Y − 1)− (T − 1)Isolating T − 1 gives

(T − 1) = ((X − 1)− (Y − 1))⊗ Y −1.In K∗(∆(r)) this equality gives t = (x − y)(y + 1)−1, as desired. Sine in
K(∆(r)) ∼= Z[x, y]/ 〈Qr, Qr+1〉 all non-zero elements have a total degree in
x, y whih is less than 2r, we see that t2r = (x− y)2r(y + 1)−2r = 0.Now we prove the main Theorem of this setion, but �rst we introduea bit of notation: We write K∗hS1(X) for K∗(ES1 ×S1 X), when X is an
S1-spae. Reall the diagram (26)

K∗hS1(G(r)(n)) K∗(∆(r))oo

K∗(BS1)

OO

K∗(BS1)
BPnoo

OO



42 3 K-theory of spaes of geodesis in CP rThis gives a map
K∗(BS1)(n) ⊗K∗(BS1) K

∗(∆(r)) −→ K∗hS1(G(r)(n))where the K∗(BS1)(n) denotes that the map BPn should be applied in thetensor produt, as the diagram indiates.Theorem 3.7. Let n ∈ N. Then the map
K∗(BS1)(n) ⊗R(S1) K

∗(∆(r)) −→ K∗hS1(G(r)(n))is an isomorphism of rings. In partiular, K1
hS1(G(r)(n)) = 0.To �x the notation and avoid long, umbersome expressions, put

R = R(S1) = Z[U,U−1], R̂ = K0(BS1) = Z[[u]], u = U − 1.

S = R(S1) = Z[T, T−1], Ŝ = K0(BS1) = Z[[t]], t = T − 1.

M = K∗(∆(r)) = Z[x, y]/ 〈Qr, Qr+1〉 .Here S is an R-module by the map U 7→ T n, and likewise Ŝ is an R̂-moduleby u 7→ (t+1)n−1. By Lemma 3.6,M is an R̂-module by u 7→ (x−y)/(1+y),and thus an R-module by U 7→ (x− y)/(1 + y) + 1.The Theorem says that Ŝ(n) ⊗R M ∼= KhS1(G(r)(n)). The reason forrestriting to R instead of R̂ is given by the following lemma, whih alsoshows that for the isomorphism, this restrition does not matter.Lemma 3.8. Ŝ is a �at R-module, and
Ŝ ⊗R̂ N ∼= Ŝ ⊗R N.for any �nitely generated R̂-module N where um ats as 0 on N for some m.In partiular this holds for the �ltration modules Mj from Remark 3.2, for

M = M2r+1, and for the quotients Mj/Mj+1.Proof. Clearly, S is a free R-module (with basis {1, U, . . . , Un−1}), so S is�at over R. Sine S is Noetherian, Ŝ is �at over S, see [Atiyah-MaDonald℄,Prop. 10.14. By the natural isomorphism, for any R-module M ,
Ŝ ⊗RM ∼= Ŝ ⊗S S ⊗R M,we see that Ŝ is �at over R.Take N as in the lemma. Then the ompletion by the ideal I = 〈u〉 ⊆ R̂gives
N̂ = lim

←

k

N/ukN = N.



3.2 Equivariant K-theory of spaes of geodesis 43Also by [Atiyah-MaDonald℄, Prop. 10.13, sine R is Noetherian and Nis �nitely generated, N̂ ∼= R̂ ⊗R N . Combining these two fats yields theisomorphism
Ŝ ⊗R̂ N ∼= Ŝ ⊗R̂ N̂ ∼= Ŝ ⊗R̂ (R̂⊗R N) ∼= Ŝ ⊗R N.Now onsider the R̂-module Mj . Sine u ats as (x − y)/(1 + y), and Mjonsists of polynomials degree at least j, u2r+1 ats as zero. For the quotient

Mj/Mj+1, u itself ats as zero. So the requirements of N holds for thesemodules.We will use the �ltration Mj of M to prove the Theorem, so we need aLemma whih proves the Theorem in the ase M = Z:Lemma 3.9. The following map is an isomorphism:
K∗(BS1)⊗R(S1) Z −→ K∗(BCn).Proof. Let A = S ⊗R Z and B = Ŝ ⊗R Z, and let A −→ B be the mapindued by the ompletion S −→ Ŝ. We now de�ne another map

A −→ R(Cn) = Z[W ]/ 〈W n − 1〉 , T 7→ W.This is learly an isomorphism, and preserves the augmentation ideal. Con-sider the diagram:
B

��

Aoo
∼= //

��

R(Cn)

��

B̂ Âoo
∼=// K0(BCn)Here the vertial arrows denote ompletion with respet to the augmentationideals; respetively tB, (T − 1)A, and 〈W − 1〉). To prove the Lemma, wemust show B ∼= Â. First note that Â −→ B̂ is an isomorphism, sine for any

k, the map given by T 7→ t+ 1, is an isomorphism:
A/(T − 1)k = Z[T ]/

〈
T n − 1, (T − 1)k

〉
−→ Z[t]/

〈
(t+ 1)n − 1, tk

〉
= B/tkB.Next we show that B −→ B̂ is an isomorphism. To show this, onsider theexat sequene given by multipliation by u− 1 ∈ R,

0 // R
u−1 // R // Z // 0 .Sine Ŝ is �at over R, we obtain a new exat sequene,

0 // Ŝ ⊗R R
1⊗(u−1) // Ŝ ⊗R R // Ŝ ⊗R Z // 0 ,



44 3 K-theory of spaes of geodesis in CP rwhih, after applying the natural isomorphism, beomes
0 // Ŝ

(t+1)n−1 // Ŝ // Ŝ ⊗R Z // 0 . (28)Completing this with respet to the ideal 〈t〉, whih is an exat funtor, weobtain yet another exat sequene
0 // lim

←
Ŝ/
〈
tk
〉 (t+1)n−1 // lim

←
Ŝ/
〈
tk
〉

// lim
←

(Ŝ ⊗R Z)/
〈
tk
〉

// 0 .Reall Ŝ = Z[[t]]. After applying the isomorphism lim← Ŝ/
〈
tk
〉 ∼= Ŝ, we getthe exat sequene,

0 // Ŝ
(t+1)n−1 // Ŝ // lim←(Ŝ ⊗R Z)/

〈
tk
〉

// 0 . (29)Comparing (28) and (29), we see that B ∼= B̂. As already noted, this meansthat Â ∼= B, and this proves the result.Now we an prove the main Theorem 3.7:Proof of Theorem 3.7. First we laim that the map
K∗(BS1)⊗Z K

∗
hS1(G(r)) −→ K∗hS1(G(r)(n)) (30)is surjetive. To see this, we �rst note that the map K∗(BCn) −→ K∗(BS1)is surjetive. This follows from the fat that the map of representation rings,

R(Cn) −→ R(S1) is surjetive, sine any representation of Cn an be ex-tended to a representation of S1. Now to prove surjetivity of (30), we use a�ltration argument in the spetral sequene
H∗(∆(r);K∗(BCn))⇒ K∗hS1(G(r)(n)).This ollapses, sine everything sits in even degrees. As in the proof ofTheorem 3.1, we now use Cor. 2.5 of [Atiyah-Hirzebruh℄, so let A denotethe image of K∗(BS1) ⊗Z K

∗
hS1(G(r)) in K∗hS1(G(r)(n)). In �ltration degree0 we have K∗(BCn). As already shown K∗(BS1) is surjetive onto this,so the lowest �ltration an be hit. Anything else in H∗(∆(r);K∗(BCn)) isgenerated by monomials xi1xj2, and we have xiyj ∈ A with h(xiyj) = xi1x

j
2 +higher terms. This shows that A = K∗hS1(G(r)(n)), so (30) is surjetive.Now we show that the map is injetive. We will use a �ltration argument,where we �lter M = K0(S(τ)/S1) as in Remark 3.2. We look at the exatsequene,

0 −→Mi+1 −→Mi −→Mi/Mi+1 −→ 0.



3.2 Equivariant K-theory of spaes of geodesis 45As Ŝ is �at over R by Lemma 3.8, we get the exat sequene
0 −→ Ŝ ⊗RMi+1 −→ Ŝ ⊗R Mi −→ Ŝ ⊗RMi/Mi+1 −→ 0. (31)We �rst apply this to K-theory with Fp = Z/pZ oe�ients. For the �eld

Fp, we have by the Universal Coe�ient Theorem, K∗(X; Fp) ∼= K∗(X)⊗Fp.Clearly the �ltration M ′i = Mi ⊗ Fp works for Fp oe�ients, so we anuse the result above. But sine Fp is a �eld, the exat sequene (31) splits,so we an do a ounting argument quite easily. Observe that M ′i/M ′i+1 =
Fp[x, y]i/ 〈Qr, Qr−1〉 = (Fp)ni, where ni ∈ N. By Lemma 3.9, we know

Ŝ ⊗RM ′i/M ′i+1
∼= (K0(BCn; Fp))

ni. (32)and in addition, K0(BCn; Fp) is a �nite number of opies of Fp, so it makessense to ount them. Also M ′2r−1 = Fp, so Ŝ ⊗R M ′2r−1
∼= K0(BCn; Fp). Soindutively, sine M ⊗ Fp is a graded ring with a total of r(r + 1) opies of

Fp, then
Ŝ ⊗RM ⊗ Fp ∼= (K0(BCn; Fp))

r(r+1).We ompare this with K∗(G(r)(n); Fp) via the spetral sequene for the ver-tial �bration in Prop. 1.6:
E2 = H∗(∆(r);K∗(BCn; Fp))⇒ K∗(G(r)(n); Fp).We see everything sits in even degrees in E2, so there are no di�erentials, and,working over a �eld Fp, we an simply ount the dimension of K0(G(r)(n); Fp)as the sum of the dimensions of Em,n

2 on the diagonal m + n = 0. Sine
H∗(∆(r); Fp) ∼= Fp[x, y]/ 〈Qr, Qr+1〉 also has a total of r(r + 1) opies of Fp,again by Lemma 3.5, we get,

K0(G(r)n; Fp) ∼= (K0(BCn; Fp))
r(r+1).So the map of Fp-vetor spaes

Ŝ ⊗R M ⊗ Zp = K0(BS1)⊗R(S1) K
0(S(τ)/S1; Zp) −→ K0(S(τ)

(p)

hS1; Zp)is a surjetion between spaes of the same dimension, and is thus an isomor-phism, and this holds for every prime number p.Now we ompare Z- and Fp-oe�ients (for a prime p) by the diagram
K0(∆(r)) // K0(G(r)(n); Fp)

Ŝ ⊗RM //

ϕ

OO

Ŝ ⊗RM ⊗ Fp

∼=

OO
(33)



46 3 K-theory of spaes of geodesis in CP rAssume a ∈ Ŝ ⊗R F is in the kernel of ϕ. Then, by the diagram, a reduedmod p is zero, so a = p · a1 for some a1. But then, sine K0(∆(r)) is torsionfree, a1 ∈ ker(ϕ), so a1 = p · a2, et. Consequently, if a ∈ ker(ϕ), then ais divisible by p in�nitely often. Reall that this holds for any prime p, andthus also for n, so a is in�nitely often divisible by n.Now take a look at the �ltration again
0 −→ Ŝ ⊗R Mi−1 −→ Ŝ ⊗R Mi −→ Ŝ ⊗RMi/Mi−1 −→ 0. (34)If a ∈ Ŝ ⊗RMi is divisible by n in�nitely often, then the image in

Ŝ ⊗RMi/Mi−1
∼= ZN ⊕

⊕

p|n
(Ẑp)

Npis zero (the isomorphism is Lemma 3.5 and Lemma 3.9). So a omes from
a′ in Ŝ ⊗R Mi−1 and a′ is also in�nitely often divisible by n. So indutively
a omes from a0 ∈ Ŝ ⊗R F0

∼= Z ⊕⊕p|n(Ẑp)
pi−1, and a0 is divisible by nin�nitely often, and so a0 = 0, whih implies a = 0.This shows that the kernel of ϕ is zero, and thus the map

ϕ : K0(BS1)⊗R(S1) K
0(S(τ)/S1) −→ K0(S(τ)

(p)

hS1) (35)is an isomorphism.



474 The free loop spae and Morse theoryNow we turn to study the free loop spae L(FP r), where as usual F = C or
F = H. First a de�nition:De�nition 4.1. Let X be a topologial spae. The spae

LX = {f : [0, 1] −→ X | f(0) = f(1), f is ontinuous} ,with the ompat-open topology, is alled the free loop spae of X.We are going to use Morse theory to study LM for a smooth manifold
M , where we will take M = FP r. It is a fat that it does not hange thehomotopy type of LM if we require all f ∈ LM to be di�erentiable, or evensmooth, so we do that.Now let us onsider how one ould do Morse theory on the free loopspae LM as well the spae of homotopy orbits LMhS1 , where M denotesa ompat n-dimensional manifold. For details, I refer to [Klilngenberg1℄,and [Bökstedt-Ottosen℄, espeially hapters 7 and 8. LM is not a �nite-dimensional manifold, but one an make a model of LM whih is a so-alledHilbert manifold, f. [Klilngenberg1℄ �1.2, meaning there are harts on LMmaking it loally homeomorphi to a Hilbert spae. The tangent spae ofa loop f ∈ LM is the spae Γ(f) of vetor �elds along f . Let 〈·, ·〉 denotethe Riemannian metri on M . Now the tangent spae TfLM arries thestruture of a Hilbert spae via

〈ξ, η〉c =

∫

S1

(
〈ξ(t), η(t)〉+ c〈∇ξ(t),∇η(t)〉

)
dt, (36)where ξ, η ∈ TfLM are vetor �elds along f in LM , and ∇ denotes theovariant derivative along f . The onstant c ∈ R makes the inner produtvary. This is neessary to ensure that the n-fold iteration map, Pn, beomesan isometry

P∗n = Df(Pn) : TfLM −→ TPnfLM, P∗n(ξ(z)) = ξ(zn)sine 〈P∗nξ,P∗nη〉1 = 〈ξ, η〉n2, see [Bökstedt-Ottosen℄ �7.We are going to do Morse theory via the energy funtion
E : LM −→ R, f 7→

∫

S1

|f ′(t)|2 dt.For eah a ∈ R, we set F(a) = E−1 (]−∞, a]) ⊆ LM . The ritial points of
E are the losed geodesis on M . We shall assume that the ritial points



48 4 The free loop spae and Morse theoryare olleted on ompat submanifolds, eah of whih satisfy the Bott non-degeneray ondition. This strong ondition is needed for the Morse theorymahinery, and it is satis�ed forM = FP r, and more generally for symmetrispaes, [Ziller℄. Call the ritial values 0 = λ0 < λ1 < . . ., and onsider the�ltration
F(λ0) ⊆ F(λ1) ⊆ · · · ⊆ LM. (37)This �ltration is equivariant with respet to the S1 ation. This means itindues a �ltration of LMhS1 ,

F(λ0)hS1 ⊆ F(λ1)hS1 ⊆ · · · ⊆ LMhS1 . (38)The non-degeneray ondition ensure that eah ritial submanifold N(λ) =
E−1(λ) is �nite-dimensional, and the tangent bundle T (LM)|N(λ) ⊆ T (LM)splits S1-equivariantly:

T (LM)|N(λ)
∼= µ−(λ)⊕ µ0(λ)⊕ µ+(λ),into the bundles of negative, zero-, and positive diretions, respetively, andthe negative bundle µ−(λ) is �nite-dimensional. To ease the notation, write

Fn = F(λn) and µ−n = µ−(λn). The main result of Morse theory in thissetting is proved by Klingenberg in [Klilngenberg1℄, �2.4: There is an S1-equivariant homotopy equivalene
Fn)/Fn−1 ≃ Th(µ−n ). (39)We want a similar result for (LM)hS1 , so we onsider the quotients of the�ltration (38):

ES1 ×S1 Fn/ES1 ×S1 Fn−1
∼= ES1

+ ∧S1 Fn/Fn−1,where ES1
+ ∧S1 X = (ES1

+ ∧ X)/S1 is the smash produt modded out bythe diagonal S1 ation. The obvious map de�ned on representatives is ahomeomorphism. Thus by the Morse theorem in (39),
ES1 ×S1 Fn/ES1 ×S1 Fn−1 ≃ ES1

+ ∧S1 Th(µ−n ).We an use [Bökstedt-Ottosen℄ Lemma 5.1 to �nd that
(Fn)hS1/(Fn−1)hS1 ≃ ES1

+ ∧S1 Th(µ−n ) ∼= Th((µ−n )hS1) (40)where for an S1-vetor bundle ξ given by a projetion map p : E −→ B wedenote by ξhS1 the bundle with projetion id×p : ES1×S1E −→ ES1×S1B.This means we also have a Morse theorem for the S1-equivariant �ltration.



4.1 The negative bundle 494.1 The negative bundleIn [Bökstedt-Ottosen℄ Lemma 5.1, it is shown that the negative bundle
(µ−n )hS1 is an oriented vetor bundle if µ−n is. But to use the Thom iso-morphism in K-theory we need to know that the negative bundle is omplex,or more preiselyProposition 4.2. The negative bundle µ−n for the energy �ltration of LCP ran be written as ε ⊕ ν, where ε is a trivial real S1-line bundle, and ν is aomplex S1 vetor bundle. Consequently, the negative bundle (µ−n )hS1 for theenergy �ltration of LCP r

hS1 an also be written as ε⊕ νhS1.Proof. There is a Hermitian inner produt 〈·, ·〉C on TCP r, and the Rieman-nian metri is 〈·, ·〉 = Re(〈·, ·〉C). The tangent spae TfLCP r is a omplexvetor spae, and it arries the struture of a Hilbert spae via
〈ξ, η〉 =

∫

S1

(〈ξ(t), η(t)〉+ 〈∇ξ(t),∇η(t)〉)dt,where ξ, η ∈ TfLCP r are vetor �elds along f in LCP r, and ∇ denotes theovariant derivative along f . Sine 〈·, ·〉 = Re(〈·, ·〉C), we get
〈zξ, zη〉 = 〈ξ, η〉 for z ∈ S1. (41)If f is a ritial point of the energy funtional E (a geodesi), then thetangent spae of LCP r splits as

TfLCP r = Γ(Rf ′)⊕ Γ(Rif ′)⊕ Γ((f ′)⊥) (42)where e.g. Γ(Rf ′) ⊆ Γ(f) denotes the vetor �elds ξ along f with ξ(t) ∈
Rf ′(t) ⊆ Tf(t)CP r. We an use the inner produt to represent the Hessian
H = D2E of E by a linear operator A = Af on TfLCP r, by requiring
〈Aξ1, ξ2〉 = H(ξ1, ξ2). Then we get by (41) that z̄Az = A for z ∈ S1, whihimplies that A is omplex linear.Aording to Klingenberg, [Klilngenberg1℄ Thm. 2.4.2,

Af = id− (1−∇2)−1 ◦ (K̃f + 1),where
K̃f(ξ)(t) = R(ξ(t), f ′(t))f ′(t)

= π2 (f ′(t)〈ξ(t), f ′(t)〉 − 2f ′(t)〈f ′(t), ξ(t)〉+ ξ(t)〈f ′(t), f ′(t)〉)Note the fator π2; it appears beause our metri on CP r is saled so that the�irumferene� is 1, not π. This gives us the following eigenvalue equation
Aξ = λξ:

(λ− 1)∇2ξ = (K̃f + λ)ξ (43)



50 4 The free loop spae and Morse theoryThe negative bundle onsists of solutions to this equation with λ < 0. Notiethat by the formula for A, it preserves the deomposition (42), sine ovariantderivative ommutes with the omplex struture on TCP r. Thus we an solve(43) in the three spaes separately.
(i) ξ ∈ Γ(Rf ′): Then ξ(t) = g(t)f ′(t) where g : [0, 1] −→ R is a smoothfuntion with g(0) = g(1). Then K̃f(t) = 0, and equation (43) beomes

(λ− 1)g′′ = λg ⇔ g′′ = λ
λ−1

g ⇒ g = 0sine λ < 0 and g must be periodi. So we have no non-trivial solutions.
(ii) ξ ∈ Γ((f ′)⊥): Sine (f ′)⊥ is a omplex vetor spae, and A is omplexlinear as noted, we see that Aξ = λξ implies A(iξ) = λ(iξ). So thisspae of solutions has a omplex struture.

(iii) ξ ∈ Γ(Rif ′): Then ξ(t) = g(t)if ′(t), where g : [0, 1] −→ R is a smoothfuntion with g(0) = g(1). Then K̃f (t) = 4π2 ‖f ′(t)‖2 ξ(t) = 4π2n2ξ(t),sine f is a geodesi of length n. The equation (43) then beomes
(λ− 1)g′′ = (4π2n2 + λ)g ⇔ g′′ =

4π2n2 + λ

λ− 1
gTo get a periodi solution g, we must have 4π2n2+λ

λ−1
≤ 0, i.e. λ ≥

−4π2n2. For λ = −4π2n2 we must have g onstant, and this gives thetrivial real line bundle ε. If −4π2n2 < λ < 0 we have the solution setspanned over R by
gK1 (t) = cos(K · 2πt), and gK2 (t) = sin(K · 2πt), t ∈ [0, 1]where

K =

√
−4π2n2 + λ

2π(λ− 1)
, and K ∈ N,sine the funtions must be periodi with period 1. This happens ifand only if

λ =
4π2(K2 − n2)

4π2K2 + 1
,so for a �xed n we get solutions with λ < 0 for K = 1, . . . , n − 1.This spae of solutions an be given a omplex struture J by rotating

t 7→ t− 1
4K

, where t ∈ [0, 1], i.e.
J(gK1 ) = gK2 , J(gK2 ) = −gK1 .and extending linearly. Clearly J satis�es J2 = −id.



4.2 The power map 51This gives the bundle ν, whih is learly an S1 bundle, with the S1 ationgiven by rotation.Now let us see that the result for µ−n implies that for (µ−n )hS1. The bundle
(µ−n )hS1 is de�ned so that the pullbak of (µ−n )hS1 agrees with pr∗(µ−n ) in thefollowing diagram,

µ−n

��

pr∗(µ−n )

��

//oo (µ−n )hS1

��
Gn(r) ES1 ×Gn(r) //proo ES1 ×S1 Gn(r)where Gn(r) denotes the spae of n-times iterated geodesis. Sine µ−n = ε⊕νis a deomposition in S1-bundles, we automatially get the deomposition for

(µ−n )hS1.4.2 The power mapWe onsider the nth power map Pn : LFP r −→ LFP r, whih iterates a loop
n times: For f : S1 −→ LFP r, Pn(f)(z) = f(zn) for z ∈ S1 ⊆ C. Whenrestriting to the energy �ltration, we get Pn : Fi −→ Fni, whih givesdiagrams

Fi //

Pn

��

Fi+1
//

Pn

��

Fi+1/Fi
Pn

��
Fni // Fn(i+1)

// Fn(i+1)/FniWe now ompare this to the n-twisted ation of S1 on Fi. We see that weget an S1-equivariant map Pn : F (n)
i −→ Fni, and onsequently a diagram of

S1-maps
F (n)
i

//

Pn

��

F (n)
i+1

//

Pn

��

F (n)
i+1/F (n)

i

Pn

��
Fni // Fn(i+1) // Fn(i+1)/Fni

(44)
In partiular when i = 0, sine the ation on F0 is trivial, we get a map

Pn : F (n)
1 /F0 −→ Fn/F0. (45)We an ompose with the inlusion map Fn −→ F∞ to get

Pn : F (n)
1 /F0 −→ F∞/F0. (46)This will be very useful in setion 6.



52 4 The free loop spae and Morse theory4.3 The Morse theory spetral sequeneTo avoid exessive use of parentheses, write LFP r
hS1 for (L(FP r))hS1. Toprove onvergene of the Morse spetral sequenes, we will need the following:Lemma 4.3. Given k, there is m suh that the inlusions Fm −→ LFP rand (Fm)hS1 −→ LFP r

hS1 indue isomorphism on πj and Hj, for all j ≤ k.Proof. First we show that the homology groups of LM and LMhS1 are �nitelygenerated in eah degree whenM = FP r (we say LM and LMhS1 are of �nitetype): By Serre's spetral sequene for the �bration ΩM −→ PM −→ Mwe see that ΩM is of �nite type, and then the spetral sequene for the�bration ΩM −→ LM −→M shows that LM is of �nite type. The �bration
LM −→ LMhS1 −→ BS1 then shows LMhS1 is of �nite type. For the�ltration spaes Fm, (Fm)hS1, we an use the same �brations if we restrit thespaes LM , ΩM , PM to urves of maximal energy m2. The same argumentworks for homotopy groups, using the long exat sequene for a �brationinstead of Serre's spetral sequene.We �rst show the lemma for homology groups. WriteX0 ⊆ X1 ⊆ · · · ⊆ Xto over both situations, Fi ⊆ LFP r and (Fi)hS1 ⊆ LFP r

hS1. Let k be given,and onsider numbers m, M with k ≤ m ≤ M , and with the followingproperties:
(i) Hk(Xm) −→ Hk(X) is surjetive.

(ii) Ker(Hk(Xm) −→ Hk(X)) = Ker(Hk(Xm) −→ Hk(XM)).A simplex ∆k −→ X is ompat, so it has �nite energy. Take m suh that
m2 is bigger than the maximum energy over the �nitely many generators of
Hk(X), then the inlusion Xm −→ X indues a surjetive map on Hk. Wesee we an hose m as in (i). Given this m, we onsider Ker(Hk(Xm) −→
Hk(X)), whih is �nitely generated, sine Hk(Xm) is. Suh a generator isa formal sum of simplies ∆k −→ Xm, whih, when inluded in X, is theboundary of some formal sum of (k + 1)-simplies. Again by ompatness,these have �nite energy, and we an hoose M ≥ m as desired.Consider a pair (Xi+1, Xi) in the hain Xm −→ Xm+1 −→ · · · −→ XM .By Morse theory we know the quotient Xi+1/Xi is homotopy equivalent tothe Thom spae of a bundle of dimension at least 2ri, and suh a Thom spaean be given the ell struture with one 0-ell, and all other ells of dimensionat least 2ri. So by ellular homology, the relative homology groups satisfy:

Hj(Xi+1, Xi) = 0, for j < 2ri. (47)



4.3 The Morse theory spetral sequene 53Then by the long exat sequene for homology groups, the maps Hk(Xi) −→
Hk(Xi+1) are isomorphisms, sine k ≤ m ≤ 2ri − 2 for i ≥ m. This means
Hk(Xm)

∼=−→ Hk(XM), so by (ii), the map Hk(Xm) −→ Hk(X) is injetive,and thus by (i) an isomorphism.To show the Lemma for homotopy groups, do the same for πj in plae of
Hj. Use Hurewiz on (47) to get πj(Xi+1, Xi) = 0 for j < 2ri, then onludeas above.We now state the result about Morse spetral sequenes. In ohomology,we need both the S1-equivariant and the non-equivariant ase, but in K-theory we need only the S1-equivariant ase:Theorem 4.4. There are onvergent spetral sequenes in ohomology,

En,q
s (M)(LHP r) ⇒ Hn+q(LHP r)

En,q
s (M)(LHP r

hS1) ⇒ Hn+q(LHP r
hS1)with E1 pages given by, for n ≥ 1, respetively,

En,q
1
∼= H̃n+q(Th(µ−n )) ∼= Hn+q−(4r+2)n+4r−1(Gn(HP

r)),

En,q
1
∼= H̃n+q(Th(µ−n )hS1) ∼= Hn+q−(4r+2)n+4r−1(Gn(HP

r)),and for n = 0, E0,q = Hq(HP r) and E0,q = Hq(BS1 ×HP r), respetively.There is a strongly onvergent spetral sequene in K-theory,
En,q
s (M)(LCP r

hS1)⇒ Kn+q(LCP r
hS1)with E1 page given by E0,q

1 = Kq(BS1)⊗Kq(CP r), and
En,q

1
∼= K̃n+q(Th(µ−n )hS1) ∼= Kn+q−2r(n−1)−1(Gn(CP

r)hS1), for n ≥ 1,where Gn(FP r) denotes the spae of geodesis of length n for n ≥ 1.Proof. A losed, simple geodesi has energy 1, and when iterated n times hasenergy n2. So the ritial values are 0 < 12 < 22 < 32 < . . ., and we denote
F(n2) by Fn. Using the energy �ltrations (37) and (38), respetively, wemake an exat ouple via the long exat sequenes for the pair (Fn,Fn−1),and ((Fn)hS1, (Fn−1)hS1), respetively. For details about this proess, thereader an see e.g. [Hather2℄, �1.1. This gives rise to a spetral sequene
{Ep,q

r (M)}r, whih we all a Morse spetral sequene. The proess whihonstruts a spetral sequene from the exat pairs works for any ohomologytheory, so we get spetral sequenes in both ohomology and K-theory. By



54 4 The free loop spae and Morse theoryonstrution together with the homotopy equivalenes from Morse theory,(39) and (40), the E1 page is given by, for n ≥ 1,
En,q

1 (M)(LM) = H̃n+q(Fn/Fn−1) ∼= H̃n+q(Th(µ−n ));

En,∗
1 (M)(LMhS1) = H̃∗((Fn)hS1/(Fn−1)hS1) ∼= H̃∗(Th(µ−n )hS1);and similar for K-theory. The negative bundle µ−n is a bundle over theritial submanifold N(n2), whih is the spae Gn(r) of geodesis of length

n. It follows that (µ−n )hS1 is a bundle over Gn(FP r)hS1.For n = 0, F0 is spae of loops of energy zero, i.e. the onstant loops, so
F0 = FP r itself, and the S1 ation is trivial, so ES1 ×S1 F0 = BS1 × FP r.The result follows for n = 0.Now let n ≥ 1, and onsider �rst HP r. The negative bundle µ−n is foundin [Bökstedt-Ottosen2℄, Thm. 6.2, and here one an see it is oriented and hasdimension (4r+ 2)n− 4r + 1. By [Bökstedt-Ottosen℄ Lemma 5.2, (µ−n )hS1 isalso oriented. So we an use the Thom isomorphism, whih gives:
En,q

1 (M)(LHP r) ∼= H̃n+q(Th(µ−n )) ∼= Hn+q−(4r+2)n+4r−1(Gn(HP
r));

En,q
1 (M)(LHP r

hS1) ∼= H̃n+q(Th(µ−n )hS1) ∼= Hn+q−(4r+2)n+4r−1(Gn(HP
r)hS1);Similarly for K-theory, but here we use Prop. 4.2 to get that the bundles

µ−n and (µ−n )hS1 are both the sum of a trivial real line bundle with a omplexbundle. This means we an use the Thom isomorphism for K-theory. From[Bökstedt-Ottosen2℄ Thm. 6.1, we see that the negative bundles µ−n and
(µ−n )hS1 have dimension 2r(n− 1) + 1 for n ≥ 1.For the onvergene, note that the ohomology Morse spetral sequene isa �rst quadrant spetral sequene. By [Hather2℄ Prop. 1.2 the riterion foronvergene is that the inlusions Fn →֒ LHP r, resp. (Fn)hS1 →֒ LHP r

hS1,indue isomorphism on Hq(−; Fp) if n is large enough ompared to q. By theuniversal oe�ient theorem it su�es to show this on Hq(−; Fp), and thisis proved in Lemma 4.3.The K-theory Morse spetral sequene is not �rst quadrant, so the on-vergene question is more subtle. Note that, if we take a �nite �ltration
(F0)hS1 ⊆ · · · ⊆ (Fn)hS1, the orresponding Morse spetral sequene on-verges to K∗((Fn)hS1). The Morse spetral sequene then determines theinverse limit of the K∗((Fn)hS1). There is a surjetive map

K∗(LCP r
hS1) −→ lim←−

n

K∗((Fn)hS1),and we say say the spetral sequene onverges strongly, if this map is anisomorphism. This requires some work, and will be shown in the lemmasbelow.



4.3 The Morse theory spetral sequene 55To show onvergene of the Morse spetral sequene in K-theory, let
X0 ⊂ X1 ⊂ . . . , and X = ∪Xi. We want to �nd onditions that ensure

i : K∗(X)
∼=−→ lim←−

i

K∗(Xi) (*)whenX = LCP r
hS1. As mentioned in the proof above, the map is i surjetive,so the question is injetivity.Lemma 4.5. Let X = ES1 ×S1 LCP r. Let Xn denote the n-skeleton of X.Then (∗) holds.Proof. First note that the lemma is equivalent to saying that the Atiyah-Hirzebruh spetral sequene for X onverges strongly. We have K0(X) =

[X,Z × BU ] and K1(X) = [X,U ], so a lass in K-theory an be onsidereda (homotopy lass of a) map from X to either Y = Z × BU or Y = U . Alass in the kernel of i is then a map X −→ Y whose restrition to eah Xnis null-homotopi. Suh a map is alled a phantom map, and we denote byPh(X, Y ) the set of homotopy lasses of phantom maps X −→ Y . Theirexistene is studied in [MGibbon-Roitberg℄, who give the following riterion(Thm. 1): The following are equivalent:
(i) Ph(X, Y ) = 0 for every Y with �nitely generated homotopy groups.

(ii) There exists a map from ΣX to a wedge of spheres that indues anisomorphism in rational homology.A map as in (ii) we all a rational equivalene. Note that Z×BU and U have�nitely generated homotopy groups. Let us apply this to X = ES1 ×S1 Z,where we will speialize to Z = LCP r.First we onsider the bundle ξ = p∗T over X, the pullbak of the standardline bundle T −→ BS1 under the map p : ES1 ×S1 Z −→ BS1. We use theo�ber sequene
S(ξ) −→ D(ξ) −→ Th(ξ) −→ ΣS(ξ). (48)We laim it su�es to show the result for Th(ξ) instead of X: K∗(X) ∼=

K∗(Th(ξ)) by Thom isomorphism, and the ell struture on X gives rise toa natural ell struture on Th(ξ) ց X, where n-ells in X orrespond to
(n+ 2)-ells in Th(ξ). So we also get an isomorphism of the inverse systems
{K∗(Xn)} and {K∗(Th(ξ)n)} suh that the obvious diagram ommutes:

K∗(X)

∼=
��

i // lim
←−

K∗(Xn)

∼=
��

K∗(Th(ξ)) i // lim
←−

K∗(Th(ξ)n)



56 4 The free loop spae and Morse theorySo we investigate (48). We have of ourse D(ξ) ≃ X = ES1 ×S1 Z, andwe will show that S(ξ) ∼= ES1 × Z: First note
S(ξ) =

{
([e, z], t) ∈ ES1 ×S1 Z × T | ‖e‖ = 1, ‖t‖ = 1, t ∈ spanCe

}
,where we onsider e ∈ ES1 = S∞ ⊆ C∞ and t ∈ T ⊆ C∞, by viewing

BS1 = CP∞ as omplex lines in C∞. For ([e, z], t) ∈ S(ξ), we see that thereis s ∈ S1 with es = t. We an then onstrut a homeomorphism
F : S(ξ) −→ ES1 × Z, F ([e, z], t) = (t, s−1z). (49)This is well-de�ned, with inverse G(t, z) = ([t, z], t).Now let Z = LCP r. By [Bökstedt-Ottosen2℄ Theorem 6.1, there is a ho-motopy equivalene ΣLCP r −→ Σ(CP r)∨∨i ΣTh(µ

−
i ), whih is the splittingresult for the non-equivariant ase. So learly, the Atiyah-Hirzebruh spe-tral sequene onverges in this ase, i.e. there are no phantom maps from

LCP r, so by the riterion, there is rational equivalene from ΣLCP r to awedge of spheres. Sine S(ξ) ∼= ES1×LCP r ≃ LCP r, we see that we have arational equivalene f2 from ΣS(ξ) to a wedge of spheres. By (48) this givesa map from Th(ξ) to a wedge of spheres,
Th(ξ)

f1 // Σ(ξ)
f2 //
∨
i S

ni . (50)Let us onsider the inlusion LCP r −→ ES1 ×S1 LCP r. One an in-vestigate this map on rational ohomology using Serre's spetral sequenefor the �bration LCP r −→ ES1 ×S1 LCP r −→ BS1. This is done in[Bökstedt-Ottosen℄ Prop. 15.2, and it emerges that E∞ = E3 with all non-trivial groups in either E0,∗
3 ⊆ E0,∗

2 = H∗(LCP r; Q) or E∗,03 = H∗(BS1; Q).This implies that the ombined map
H̃∗(LCP r; Q)⊕ H̃∗(BS1; Q) −→ H̃∗(ES1 ×S1 LCP r; Q) (51)is surjetive.In (48), use the homotopy equivalenes S(ξ) ∼= ES1×LCP r and D(ξ) ≃

ES1 ×S1 LCP r, and projet on the �rst fator to get
S(ξ) //

��

D(ξ) //

��

Th(ξ)

��

ES1 // BS1 // BS1/ES1 ≃ BS1whih gives a map g1 : Th(ξ) −→ BS1. Note that the Atiyah-Hirzebruhspetral sequene for BS1 onverges, so by the riterion, there is a rationalequivalene g2 : ΣBS1 −→ ∨
j S

nj .



4.3 The Morse theory spetral sequene 57Combining with (50), we an make a omposite map
ϕ : ΣTh(ξ)

∆ // ΣTh(ξ) ∨ ΣTh(ξ)
f1∨g1 // Σ2S(ξ) ∨ ΣBS1 f2∨g2 //

∨
k S

nkHere f2∨g2 is a rational equivalene, and by (51), ∆∗ ◦ (f1∨f2)
∗ is surjetiveon redued ohomology with rational oe�ients. So the omposite map ϕ∗is surjetive on rational ohomology, and by ollapsing some of the spheres,we an ensure it beomes injetive. We have onstruted the desired rationalequivalene.Lemma 4.6. If Xi is a sequene of subomplexes of the CW omplex X =

LCP r
hS1, and if for every k there is an m suh that the k-skeleton Skk(X) ⊆

Xm, then ondition (∗) applies.Proof. We must show that the map
K∗(X) −→ lim←−

i

K∗(Xi)is injetive. Let a be in the kernel of this map. Beause of our onditionon the �ltration, a will restrit trivially to eah skeleton. Then Lemma 4.5shows that a vanishes.Now onsider the general ase. By Lemma 4.3, the ondition on πj issatis�ed for X = LCP r
hS1.Lemma 4.7. If Xi is a sequene of subspaes of X as above, and if for every

k there is an m suh that πj(Xm) → πj(X) is an isomorphism for j ≤ k,then ondition (∗) applies.Proof. Using relative CW approximation (see [Hather1℄ Prop. 4.13), we anindutively onstrut a sequene of CW omplexes Yi suh that the followingladder ommutes,
Y0

��

// Y1
//

��

. . .

X0
// X1

// . . .and suh that the vertial maps are weak homotopy equivalenes. Fur-thermore, for a given k we have by assumption that there is m suh that
πj(Xm)→ πj(X) is an isomorphism for j ≤ k, and this means we an ensurethat all Yn for n ≥ m are onstruted from Yn−1 by adding ells of dimensiongreater than k. So letting Y = ∪iYi, we have that for eah k there is an msuh that Skk(Y ) ⊆ Y m.The map Y → X is a weak homotopy equivalene. Noting that a weakhomotopy equivalene preserves K-theory, the lemma follows from the pre-vious one.



58 5 S1-equivariant ohomology of LHP r5 S1-equivariant ohomology of LHP r5.1 The Morse spetral sequenesFor LHP r
hS1, the Morse spetral sequene is as follows:Theorem 5.1. The Morse spetral sequene E∗,∗r (M)(LHP r

hS1) is a spetralsequene of H∗(BS1; Fp) = Fp[u]-modules, and it has the following E1 page:Assume p | r + 1. Then
E0,∗

1 = Fp[u, y]/ 〈yr+1〉 ;
Epm+k,∗

1 = αpm+kFp[u, t]/ 〈Qr, Qr+1〉 , for m ≥ 0, 1 < k < p− 1;
Epm,∗

1 = αpmFp[u] {1, y, . . . , yr, σ, . . . , σyr} for m ≥ 1.Assume p ∤ r + 1. Then
E0,∗

1 = Fp[u, y]/ 〈yr+1〉 ;
Epm+k,∗

1 = αpm+kFp[u, t]/ 〈Qr, Qr+1〉 , for m ≥ 0, 1 < k < p− 1;
Epm,∗

1 = αpmFp[u] {1, y, . . . , yr+1, τ, . . . , τyr+1} for m ≥ 1.In �ltration n = pm+ k, the element αpm+ku
itj has total degree (4r + 2)n−

4r + 2i + 4j + 1. In �ltration n = pm, the generators are free Fp[u]-modulegenerators, whih have the following degrees:Class Case Total degree
αpmy

i p | r + 1, 0 ≤ i ≤ r (4r + 2)pm− 4r + 4i+ 1
αpmy

i p ∤ r + 1, 0 ≤ i ≤ r − 1 (4r + 2)pm− 4r + 4i+ 1
αpmy

iσ p | r + 1, 0 ≤ i ≤ r (4r + 2)pm+ 4i
αpmy

iτ p ∤ r + 1, 0 ≤ i ≤ r − 1 (4r + 2)pm+ 4i+ 4Note that the olumns Epm,∗
1 , m ≥ 0, are in�nite, while the lass αpm+ku

itjin Epm+k,∗
1 is zero when i ≥ 4r or j ≥ 2r.Remark 5.2. The symbol αn refers to the Thom isomorphism. The notation

αnx et. denotes the up produt with the Thom lass of µ−n in the ritialsubmanifold N(n2). The produt is not de�ned in the spetral sequene, andso it is a bit of abuse of notation. But it is a very pratial way of keepingtrak of the dimension shift and should be read as suh.Proof. The Morse spetral sequene is desribed in Theorem 4.4. We use o-homology with Fp oe�ients. First take �ltration n = 0. ThenG0(HP r)hS1 =
HP r

hS1 itself, and the S1 ation is trivial. Thus
E0,∗

1 (M)(LHP r
hS1) ∼= H∗(HP r

hS1; Fp) = H∗(BS1 ×HP r; Fp)
∼= H∗(BS1; Fp)⊗H∗(HP r; Fp) ∼= Fp[u]⊗ Fp[x]/ 〈xr〉 .



5.1 The Morse spetral sequenes 59Now take n ≥ 1. From Theorem 4.4,
En,∗

1 (M)(LHP r
hS1) ∼= Hn+∗−((4r+2)n−4r+1)(G(HP r)

(n)

hS1; Fp).Now we an use the previous results about the spaes of geodesis, Theorems2.12 and 2.14. For the ase n = pm + k we know from Theorem 2.12 that
u maps to x, and so the Fp[u]-module struture is that multipliation by uequals multipliation by x. This is inorporated in the notation by writing
u for the lass previously named x. The last part of the theorem is Lemma2.9.The next Lemma is based upon [Bökstedt-Ottosen℄, Lemma 9.8:Lemma 5.3. In the Morse spetral sequene for LHP r

hS1, all di�erentialsstarting in odd total degree are trivial.Proof. This is mostly seen for dimensional reasons. Using the table in The-orem 5.1, we see that elements of odd total degree in the spetral sequenehave the form αny
iuj or αnuitj . Beause of the derivation property of thedi�erentials, it is enough to onsider the Fp[u] generators, i.e. αpmy

i and
αpm+kt

j for m ≥ 0.So let us prove that ds(αpmyi) is trivial (s ≥ 1). This has total degree
(4r+2)pm−4r+4i+2 and �ltration degree pm+s. By the table in Theorem5.1, observe that a non-trivial lass of �ltration n and even total degree existsif and only if p | n. Furthermore, in ase p | n we an determine the lass of�ltration n with lowest total degree. If p | (r + 1), this lass is αnσ of totaldegree (4r+2)n, and if p ∤ n this lass is αnτ of total degree (4r+2)n+4. Soif ds(αpmyi) is non-trivial, its total degree must be at least the total degreementioned above. That is,

(4r + 2)pm− 4r + 4i+ 2 ≥
{

(4r + 2)(pm+ s), p | (r + 1);
(4r + 2)(pm+ s) + 4, p ∤ (r + 1).Suppose p | r + 1. Then we an redue the inequality to

−4r + 4i+ 2 ≥ (4r + 2)s ⇔ (−4r + 2)(s+ 1) + 4i ≥ 0.This is easier to satisfy if s is small and i is large, so we try s = 1 (minimum)and i = r (maximum), obtaining the equality 2(−4r+2)+4r = −4r+4 ≥ 0,whih only holds for r = 1. In this ase we have equality. If s > 1 or
i < r, there are no solutions. So the question is whether d1(αpmy) an be anon-trivial lass of even total degree in �ltration n = pm+ 1, and it annot,sine then, as noted earlier, p should divide pm+ 1. If p ∤ r + 1 there are nosolutions at all.



60 5 S1-equivariant ohomology of LHP rNow take the ase αpm+kt
j . Then ds(αpm+kt

j) has �ltration degree pm+
k+ s and total degree (4r+ 2)(pm+ k)− 4r+ 4j + 2, whih is even. By thesame observation as before, if ds(αpm+kt

j) were to be non-trivial, its totaldegree must satisfy
(4r + 2)(pm+ k)− 4r + 4j + 2 ≥

{
(4r + 2)(pm+ s+ k), p | (r + 1);
(4r + 2)(pm+ s+ k) + 4, p ∤ (r + 1).Like before, we redue for p | r + 1:

−4r + 4j + 2 ≥ (4r + 2)s ⇔ (4r + 2)(s+ 1)− 4 ≤ 4jReall s ≥ 1, so to satisfy this, j ≥ 2r. But then the lass αpm+kt
j is zero,aording to the last part of Theorem 5.1. Likewise for p | r+1. This provesthe Lemma.We are going to need an overview of the size of the E1 page of the Morsespetral sequene.Lemma 5.4. The Poinaré series P (t) of E1(L(HP r)hS1) is given by for

p ∤ r + 1:
1− t4r+4 + t3

1−t4r+2 (1− t4r)(1− t4r+4) + tp(4r+2)−4r+1

1−tp(4r+2) (1− t4r)(t4r+3 + t4r+4)

(1− t2)(1− t4) .and for p | r + 1,
1− t4r+4 + t3

1−t4r+2 (1− t4r)(1− t4r+4) + tp(4r+2)−4r+1

1−tp(4r+2) (1− t4r+4)(t4r−1 + t4r)

(1− t2)(1− t4) .Proof. I only prove this for p ∤ r+1. The other ase is exatly the same. We�rst �nd the Poinaré series for En,∗
1 .

• n = 0: By Theorem 5.1, sine E0,∗
1 is a free Fp[u]-module,

P (E0,∗
1 )(t) = P (Fp[u]) · P (Fp[x]/ 〈xr〉) =

1

1− t2 ·
1− t4(r+1)

1− t4 .

• p ∤ n: By Theorem 5.1
P (En,∗

1 )(t) = t4r(n−1)+2n+1 · P (Fp[t, u]/ 〈Qr, Qr+1〉)

= t4r(n−1)+2n+1(1 + t2) · 1− t
4r

1− t4 ·
1− t4(r+1)

1− t4

= t4r(n−1)+2n+1 (1− t4r)(1− t4r+4)

(1− t2)(1− t4) ,using Lemma 2.9 to �nd P (Fp[t, u]/ 〈Qr, Qr+1〉).
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• p | n: Aording to Theorem 5.1, we obtain

P (En,∗
1 )(t) = t4r(n−1)+2n+1 · P (Fp[u]

{
1, y, . . . , yr+1, τ, . . . , τyr+1

}
)

= t4r(n−1)+2n+1 1

1− t2 ·
(1− t4r)(1 + t4r+3)

1− t4 .sine y has degree 4 and τ has degree 4r + 3.We must sum over n ≥ 1 to alulate P (E1)(t). Only the fator t4r(n−1)+2n+1depends on n, so we sum that �rst, in the two ases p | n and p ∤ n:
∑

n≥1,p|n
t4r(n−1)+2n+1 =

∑

m≥1

t4r(mp−1)+2mp+1 =
tp(4r+2)−4r+1

1− tp(4r+2)
.Using this, we an ompute

∑

n≥1, p∤n

t4r(n−1)+2n+1 =
∑

n≥1

t4r(n−1)+2n+1−t
p(4r+2)−4r+1

1− tp(4r+2)
=

t3

1− t4r+2
−t

p(4r+2)−4r+1

1− tp(4r+2)
.Combining the results above and summing over n ≥ 1 then yields:

P (E1)(t) = P (E0,∗
1 )(t) +

∑

n≥1, p|n
P (En,∗

1 )(t) +
∑

n≥1, p∤n

P (En,∗
1 )(t)

=
1

(1− t2)(1− t4) ·
(

1− t4(r+1) +
tp(4r+2)−4r+1

1− tp(4r+2)
(1− t4r)(1 + t4r+3)

+

(
t3

1− t4r+2
− tp(4r+2)−4r+1

1− tp(4r+2)

)
(1− t4r)(1− t4r+4)

)
=

1− t4r+4 + t3

1−t4r+2 (1− t4r)(1− t4r+4) + tp(4r+2)−4r+1

1−tp(4r+2) (1− t4r)(t4r+3 + t4r+4)

(1− t2)(1− t4) .Remark 5.5. Later we are going to need the odd and even parts of E1, i.e.
Eodd

1 =
⊕

p+q oddEp,q
1 , and likewise for Eeven

1 . Notie that
K(t) :=

tp(4r+2)−4r+1

1− tp(4r+2)has odd degree. Then we get from the above Lemma that for p ∤ r + 1,
P (Eeven

1 )(t) =
1− t4r+4 +K(t)(1− t4r)t4r+3

(1− t2)(1− t4) ;

P (Eodd
1 )(t) =

1− t4r
(1− t2)(1− t4)

(
(1− t4r+4)t3

1− t4r+2
+K(t)t4r+4

)
.



62 5 S1-equivariant ohomology of LHP rSimilarly for p | r + 1,
P (Eeven

1 )(t) =
1− t4r+4

(1− t2)(1− t4)
(
1 +K(t)t4r−1

)
;

P (Eodd
1 )(t) =

1− t4r+4

(1− t2)(1− t4)

(
(1− t4r)t3
1− t4r+2

+K(t)t4r
)
.For omparison purposes we are also going to need the non-equivariantase, H∗(LHP r).Theorem 5.6. Let E∗,∗s = E∗,∗s (M)(LHP r). Assume p | r + 1. Then

E0,∗
1 = Fp[y]/ 〈yr+1〉 ;

En,∗
1 = αnFp[y, σ]/ 〈yr+1, σ2〉 for n ≥ 1.Assume p ∤ r + 1. Then
E0,∗

1 = Fp[y]/ 〈yr+1〉 ;
En,∗

1 = αnFp[y, τ ]/ 〈yr, τ 2〉 for n ≥ 1.where |x| = 4, |σ| = 4r − 1,|τ | = 4r + 3,|αn| = (4r + 2)n− 4r + 1.This spetral sequene ollapses from the E1 page. This determinesH∗(LHP r; Fp)as an abelian group, and it has the following Poinaré series: For p ∤ r + 1,
PH∗(LHP r)(t) =

1− t4r+4

1− t4 +
(1− t4r)(1 + t4r+3)t3

(1− t4)(1− t4r+2)
;and for p | r + 1,

PH∗(LHP r)(t) =
1− t4r+4

1− t4 +
(1− t4r+4)(1 + t4r−1)t3

(1− t4)(1− t4r+2)
.The map indued by inlusion

i∗ : En,odd−n
1 (M)(LHP r

hS1) −→ En,odd−n
1 (M)(LHP r)is surjetive.Proof. The omputation of E1 via Morse theory is just like the proof of theequivariant ase, Theorem 5.1. That the spetral sequene ollapses followsfrom a splitting result for LHP r. Suh a result an be found in [Ziller℄.



5.1 The Morse spetral sequenes 63For the omputation of the Poinaré series, sine the spetral sequeneollapses, we an ompute PH∗(LHP r) = PE∞ = PE1. We reuse the omputa-tions from the proof of Lemma 5.4. Consider the ase p ∤ r + 1. (The ase
p | r + 1 is similar.) In �ltration n > 0 we have,

P (En,∗
1 )(t) = t4r(n−1)+2n+1 · 1− t

4r

1− t4 (1 + t4r+3).And so
P (E1)(t) =

1− t4r+4

1− t4 +
∑

n>0

(
t4r(n−1)+2n+1 · 1− t

4r

1− t4 (1 + t4r+3)

)

=
1− t4r+4

1− t4 +
(1− t4r)(1 + t4r+3)t3

(1− t4)(1− t4r+2)
.For the surjetivity, we prove for every n ∈ N that the map

En,odd−n
1 (M)(LHP r

hS1) −→ En,odd−n
1 (M)(LHP r)is surjetive. For n = 0 the target spae is zero, so the result is trivial. For

n > 0, the degree of the Thom lass αn is odd, so by the formula for the E1page, the question is whether i∗ : Heven(G(HP r)
(n)
hS1) −→ Heven(G(HP r)(n))is surjetive. This follows from Corollary 2.15.Remark 5.7. We also need the odd and even parts, so I will do that om-putation now. For p ∤ r + 1,

P odd
H∗(LHP r)(t) =

(1− t4r)t3
(1− t4)(1− t4r+2)

;and
P even
H∗(LHP r)(t) =

1− t4r+4

1− t4 +
(1− t4r)t4r+6

(1− t4)(1− t4r+2)
(52)

= 1 +
(1− t4r)t4

(1− t4)(1− t4r+2)
.Note that

t · P (Hodd(LHP r))(t) = P (Heven(LHP r))(t)− 1, (53)and that
P odd
H∗(LHP r)(t) = t3(1 + t4 + · · ·+ t4r−4)

∞∑

n=0

tn(4r+2) (54)



64 5 S1-equivariant ohomology of LHP rhas all oe�ients equal to 0 or 1, and the di�erene in degree between the1-oe�ients is at least four. We have the same properties when p | r + 1,and for future referene, when p | r + 1,
P odd
H∗(LHP r)(t) =

(1− t4r+4)t3

(1− t4)(1− t4r+2)
= t3(1 + t4 + · · ·+ t4r)

∞∑

n=0

tn(4r+2) (55)Corollary 5.8. For the energy �ltration F0 ⊆ F1 ⊆ · · · ⊆ Fn ⊆ · · · ⊆ LHP r,the dimension of Hodd(Fm) as an Fp vetor spae is as follows:
dimHodd(Fm) =

{
m(r + 1), p | r + 1;
mr, p ∤ r + 1.Proof. The Morse spetral sequene {E∗,∗s } = {E∗,∗s (M)(LHP r)} indued bythe energy �ltration of LHP r ollapses from the E1 page by Theorem 5.6above. This means that E∞ = E1. Comparing with the spetral sequene

{Es(Fm)} of the �nite �ltration F0 ⊆ F1 ⊆ · · · ⊆ Fm we see that its E1page is the same as E1(M)(LHP r) up to �ltrationm. So by naturality, bothspetral sequenes ollapse from the E1 page, and E∞(Fm) equals E∞(LHP r)up to �ltration m. So we an alulate the dimension of Hodd(Fm) as an Fpvetor spae:
dimHodd(Fm) = dimEm,odd−m

∞ (Fm) + · · ·+ dimE1,odd−1
∞ (Fm)

=

{
m(r + 1), p | r + 1;
mr, p ∤ r + 1.Here the last equality is from (54) and (55).To squeeze the last information out of the Morse spetral sequenes, weare going to use loalization. The general setup is as follows: Given an Rmodule M and a multipliative set U ⊆ R (i.e. if u, v ∈ U then uv ∈ U), wede�ne M loalized away from U as

M [U−1] =
{m
u
| m ∈M,u ∈ U

}
/ ∼where m

u
∼ m′

u′
if there is v ∈ U suh that vu′m = vum′. It is an elementaryalgebrai fat that loalization away from U ⊆ R is an exat funtor on

R-modules.We are going to use U = {un | n ∈ N} ⊆ Fp[u], where u as usually de-notes our generator u ∈ H2(BS1; Fp), suh that H∗(BS1; Fp) ∼= Fp[u]. Themain loalization result here is [Bökstedt-Ottosen℄ Theorem 8.3, whih I statewithout proof:



5.2 The Main Theorem 65Theorem 5.9. There is an isomorphism of spetral sequenes
E∗(M)(LHP r

hS1)

[
1

u

]
∼= E∗(M)(LHP r)⊗ Fp[u, u

−1].when re-indexing the olumns: �ltration pm goes to �ltration m for m ∈ N.Note: This implies that the loalized spetral sequene E∗(M)(LHP r
hS1)

[
1
u

]ollapses from the Ep page, sine E∗(M)(LHP r) ollapses from the E1 page.5.2 The Main TheoremTo prove the Main Theorem, we follow the method used in [Bökstedt-Ottosen℄�13, adopting the strategy and proofs to the quaternion ase. We need allthe information that we have hitherto dedued from the Morse spetral se-quenes. For onveniene, we ollet the neessary strutural fats below:SF(1) Classes of even total degree only our in Epm,∗
∗ (M)(LHP r

hS1), m ≥ 0.SF(2) Epm,∗
∗ (M)(LHP r

hS1) is a free Fp[u]-module. If p ∤ n, En,∗
∗ (M)(LHP r

hS1)is a �nite dimensional Fp vetor spae.SF(3) Non-trivial di�erentials in E∗(M)(LHP r
hS1) start in even total degree.SF(4) The inlusion j : (Fn)hS1 −→ LHP r

hS1 indues a surjetive map onohomology, j∗ : Hodd(LHP r
hS1) −→ Hodd((Fn)hS1).SF(5) En,2i+1−n

1 (M)(LHP r) = 0 if one of the following hold: p | r + 1 and
i > (2r + 1)n, or p ∤ r + 1 and i > (2r + 1)n− 2.SF(6) The map i∗ : Hodd(LHP r

hS1) −→ Hodd(LHP r) is surjetive.Proof. SF(1) and SF(2) is Theorem 5.1. SF(3) is Lemma 5.3. For SF(4), weonsider the map between the two Morse spetral sequenes onverging to
H∗(LHP r

hS1; Fp) resp. H∗((Fn)hS1; Fp) indued by the two energy �ltrations.By SF(3) every di�erential starting in odd total degree is trivial, so the mapis seen to be surjetive on Hodd.To prove SF(5), we use Theorem 5.6 to �nd the maximal degree of anon-trivial element of odd total degree in �ltration n. We get:
p | r + 1 : |αnxr| = (4r + 2)n− 4r + 1 + 4r = (4r + 2)n+ 1
p ∤ r + 1 : |αnxr−1| = (4r + 2)n− 4r + 1 + 4(r − 1) = (4r + 2)n− 3It follows that En,2i+1−n

1 (M)(LHP r) = 0 if
p | r + 1 : 2i+ 1 > (4r + 2)n + 1 ⇐⇒ i > (2r + 1)n,
p ∤ r + 1 : 2i+ 1 > (4r + 2)n− 3 ⇐⇒ i > (2r + 1)n− 2.



66 5 S1-equivariant ohomology of LHP rTo prove SF(6), we �rst reall that by Theorem 5.6, the indued map
i∗ : Eodd

1 (M)(LHP r
hS1) −→ Eodd

1 (M)(LHP r) is surjetive. Sine every dif-ferential in Es(M)(LHP r
hS1) starting in odd total degree is trivial, the map

i∗ : Eodd
∞ (M)(LHP r

hS1) −→ Eodd
∞ (M)(LHP r) is also surjetive. It is a gen-eral fat for spetral sequenes that the indued map on their limits is thenalso surjetive, and this is easily seen by a �ltration argument. This meansthat i∗ : Hodd(LHP r

hS1) −→ Hodd(LHP r) is surjetive.We �rst prove the Main Theorem for the odd part of the ohomology.There are two kinds of Fp[u] generators, torsion and free, and we need touse the S1 transfer map τ to �nd the �rst kind. Let i : LHP r −→ ES1 ×S1

LHP r = LHP r
hS1 be the inlusion. Then it follows from [Bökstedt-Ottosen℄Thm. 14.1 that the S1 ation di�erential d is omposed as follows
H∗+1(LHP r)

τ

((QQQQQQQQQQQQQ

d // H∗(LHP r)

H∗(LHP r
hS1)

i∗
66nnnnnnnnnnnn

(56)
In general, for a spae X with an ation µ : S1 × X −→ X, the map d isgiven by

Hn+1(X) −→ Hn+1(S1 ×X) −→ Hn+1(X)⊕Hn(X)
a 7→ µ∗(a) 7→ (a, d(a))where the last map is the Künneth formula. For ease of referene, in theLemma below I have olleted all the fats I need about the ation di�erential.First some notation:

IF = IF(r, p) = {(4r + 2)i+ 4j | δ ≤ j ≤ r, 0 ≤ i, p | (r + 1)i+ j} \ {0} ,
IT = IT (r, p) = {(4r + 2)i+ 4j | δ ≤ j ≤ r, 0 ≤ i, p ∤ (r + 1)i+ j} ;where

δ =

{
1, p ∤ r + 1;
0, p | r + 1.Set IA = IF ∪ IT . Then de�ne power series by

PI(t) =

∞∑

n=0

ant
n, where an =

{
1, n ∈ I(r, p);
0, n /∈ I(r, p). (57)for I = IF , IT , IA. By [Bökstedt-Ottosen℄ Lemma 11.4, IF ∩ IT = ∅, sowe get PIA = PIF + PIT . Also note that by (54),

PHodd(LHP r)(t) =
1

t
PIA(t). (58)



5.2 The Main Theorem 67The following Lemma on the ation di�erential is proved in [Bökstedt-Ottosen℄lemma 11.6.Lemma 5.10 (The Ation Di�erential). Put H∗ = H∗(LHP r) and let k ∈ N.
(i) Ker(d : H2k −→ H2k−1) is either a trivial or a 1-dimensional vetorspae. It is non-trivial if and only if 2k ∈ IF(r, p).
(ii) Im(d : H2k −→ H2k−1) is either a trivial or a 1-dimensional vetorspae. It is non-trivial if and only if 2k ∈ IT (r, p).
(iii) The okernel of the map

d :
⊕

0≤k≤(2r+1)mp−δ
H2k+2 −→

⊕

0≤k≤(2r+1)mp−δ
H2k+1has dimension rm if p ∤ r + 1, and dimension (r + 1)m if p | r + 1.The next two Lemmas speify the Fp[u] generators for H∗(LHP r

hS1; Fp):Lemma 5.11. There is a graded subgroup T ∗ ⊆ Hodd(LHP r
hS1) suh that

(i) uT ∗ = 0.
(ii) The restrited inlusion map i∗|T ∗ : H∗(LHP r

hS1)|T ∗ −→ H∗(LHP r) isinjetive.
(iii) The image i∗(T ∗) ⊆ H∗(LHP r) equals the image d(H∗+1(LHP r)) ⊆

H∗(LHP r).Proof. We use property (iii) to onstrut T ∗. We hoose a graded subgroup
T ∗ ⊆ H∗+1(LHP r), suh that d maps T ∗ isomorphially onto Im d. This wean do simply by lifting eah generator of Im d ⊆ H∗(LHP r) toH∗+1(LHP r).Now we put T ∗ = τ(T ∗). Then (iii) follows by onstrution, sine i∗(T ∗) =
i∗ ◦ τ ∗(T ∗) = d(T ∗) by the diagram (56). Also (ii) holds, sine i∗ restritedto T ∗ orresponds to i∗ ◦ τ = d restrited to T ∗, and we hose T ∗ suh that
d was an isomorphism of T ∗ onto its image. As for property (i), this holdsbeause uτ = 0 aording to [Bökstedt-Ottosen℄ Thm. 14.1. This is beausethe transfer map τ appears right after multipliation by u in the Gysin exatsequene.Remark 5.12. By de�nition of T ∗ it follows from Lemma 5.10 (ii) that thenon-trivial part of T ∗ sits in degree 2k−1 if and only if 2k ∈ IT (r, p). Usingthe notation in (57), we an write down the Poinaré series of T ∗:

PT ∗(t) =
1

t
PIT (t).



68 5 S1-equivariant ohomology of LHP rLemma 5.13. There is a graded subgroup U∗ ⊆ Hodd(LHP r
hS1) suh that

(i) The omposition
T ∗ ⊕ U∗ � � // Hodd(LHP r

hS1)
i∗ // Hodd(LHP r)is an isomorphism.

(ii) The restrition
U2i+1 // H2i+1(LHP r

hS1)
j∗ // H2i+1((Fpm)hS1)is trivial if either p | r + 1 and i > (2r + 1)pm, or p ∤ r + 1 and

i > (2r + 1)pm− 2.Proof. Again we �rst speify a subgroup U∗ ⊆ Hodd(LHP r), by demandingthat it must be a omplementary subgroup of i∗(T ∗), so that we have the Fpvetor spae isomorphism Hodd(LHP r) ∼= i∗(T ∗) ⊕ U∗. The idea is to �nd
U∗ ⊆ H∗(LHP r

hS1) suh that i∗ maps it isomorphially to U ∗. This an bedone sine i∗ is surjetive by SF(6).We now use the Gysin sequene, see [Bökstedt-Ottosen℄ Thm. 14.1, tomake the following diagram with exat rows:
H2i−1(LHP r

hS1)
·u //

j∗
����

H2i+1(LHP r
hS1)

j∗
����

i∗ // // H2i+1(LHP r)

��
H2i−1((Fpm)hS1)

·u // H2i+1((Fpm)hS1) // H2i+1(Fpm)

(59)
The vertial maps j∗ are surjetive aording to SF(4). By SF(6), the upperhorizontal map i∗ is surjetive.Under the assumption in (ii), we get from SF(5) that H2i+1(Fn,Fn−1) =
En,2i+1−n

1 = 0 for 0 ≤ n ≤ pm. Using the long exat sequene for the pair
(Fn,Fn−1) for n = 0, 1, . . . , pm gives a series of injetive maps,

H2i+1(Fpm) →֒ H2i+1(Fpm−1) →֒ · · ·H2i+1(F0) →֒ H2i+1(F−1) = 0.This means H2i+1(Fpm) = 0. So U 2i+1 is in the kernel of the right vertialmap. To ensure that U2i+1 is also in the kernel of the middle vertial map
j∗, we use diagram hase. The image j∗(U2i+1) maps to zero, so it omesfrom H2i−1(Fpm). The left j∗ map is onto this, so we an lift it, map it into
H2i+1(LHP r), and subtrat it from the original U2i+1. This gives a hoie of
U2i+1 that satis�es both (i) and (ii).



5.2 The Main Theorem 69Remark 5.14. By property (i) of U∗, we an alulate its Poinaré series
PU∗(t) = PHodd(LHP r)(t)− PT ∗(t) =

1

t
(PIA(t)− PIT (t)) =

1

t
PIF(t),where we have used Remark 5.12 and (58).Remark 5.15. We will need the dimension of parts of U∗. As T ∗ ⊕ U∗ i∗∼=

Hodd(LHP r), and i∗(T ∗) = Im d ⊆ Hodd(LHP r), we an ompute the di-mension of U∗ as the dimension of the okernel of the ation di�erential d.For this we an use Lemma 5.10 (iii) and (iv), and get
p ∤ r + 1 : dim

( ⊕

k≤(2r+1)mp−1

U2k−1
)

= rm,

p | r + 1 : dim
( ⊕

k≤(2r+1)pm

U2k−1
)

= (r + 1)m.Now we an prove the Main Theorem for the odd degree ohomology:Theorem 5.16. The map of Fp[u]-modules,
h1 ⊕ h2 : (Fp[u]⊗ U∗)⊕ T ∗ −→ Hodd(LHP r

hS1)indued by the inlusions of U∗ and T ∗, is an isomorphism of Fp[u]-modules.Expressed in terms of generators, Hodd(LHP r
hS1) is isomorphi as agraded Fp[u]-module to

⊕

2k∈IF
Fp[u]f2k−1 ⊕

⊕

2k∈IT
(Fp[u]/ 〈u〉) t2k−1,where the lower index denotes the degree of the generators.Proof. From Lemma 5.11 (i) we see that T ∗ is atually an Fp[u]-submoduleof Hodd(LHP r

hS1), and so the inlusion h2 : T ∗ −→ Hodd(LHP r
hS1) is an

Fp[u]-linear map. On the ontrary we just onsider U∗ as a subgroup, andmake the Fp[u]-module Fp[u]⊗U∗. There is then a unique way to extend theinlusion of U∗ to an Fp[u]-linear map h1 : Fp[u]⊗ U∗ −→ Hodd(LHP r
hS1).First we remark that h1 ⊕ h2 is surjetive. To see this we use part of theGysin exat sequene, see (59), where the rightmost zero is SF(6):

H2i−1(LHP r
hS1)

u−→ H2i+1(LHP r
hS1)

i∗−→ H2i+1(LHP r) −→ 0.This is a sequene of Fp vetor spaes, so it su�es to show that we an hitthe image u(H2i−1(LHP r
hS1)) and the okernel H2i+1(LHP r

hS1)/ ker(i∗) ∼=
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H2i+1(LHP r). The okernel an be hit aording to (i) in Lemma 5.13. Wenow use indution in the degree 2i + 1. The indution start is trivial. Weget indutively that the image u(H2i−1(LHP r
hS1)) an be hit by u((Fp[u]⊗

U∗)⊕T ∗
)
⊆ (Fp[u]⊗U∗)⊕T ∗, where the last inlusion follows from Lemma5.11. So it remains to show that h1 ⊕ h2 is injetive.The idea of the proof is now to show that map h1 ⊕ h2 loalized awayfrom u, whih we denote (h1 ⊕ h2)[

1
u
], is injetive. Again by Lemma 5.11 (i)we see that when loalizing away from u, T ∗ vanishes. So we look at h1, andby Lemma 5.13 there is a ommutative diagram,

Fp[u]⊗
⊕

i U2i+1 h1 //id⊗proj
��

Hodd(LHP r
hS1)

j∗

����
Fp[u]⊗

⊕
i≤(2r+1)pm−δ U2i+1 h1 // Hodd((Fpm)hS1)

(60)
where

δ =

{
1, p ∤ r + 1;
0, p | r + 1.The map j∗ is surjetive aording to SF(4).Loalizing away from u an be done by tensoring with Fp[u, u−1] over

Fp[u]. Sine h1 ⊕ h2 is surjetive, and loalization is exat, (h1 ⊕ h2)[
1
u
] isalso surjetive. As noted, h2 vanishes when loalizing away from u, so weonlude that

h1[
1

u
] : Fp[u, u

−1]⊗ U∗ −→ Hodd(LHP r
hS1)[

1

u
]is surjetive. When loalizing, we onlude from the diagram (60) that

h1[
1

u
] : Fp[u, u

−1]⊗
⊕

0≤i≤(2r+1)pm−δ
U2i+1 −→ Hodd((Fpm)hS1)[

1

u
]is also surjetive.To show h1[

1
u
] as injetive, we will prove that the domain and targetspaes are isomorphi as abstrat modules. So we �rst study the domainof h1[

1
u
]. The dimension of the U∗ part is alulated in Remark 5.15, andtensoring with Fp[u, u−1] we obtain the rank:rank(Fp[u, u

−1]⊗
⊕

0≤i≤(2r+1)pm−δ
U2i+1

)
=

{
(r + 1)m, p | r + 1;
rm, p ∤ r + 1.Turning to the target spae of h1[

1
u
], Hodd((Fpm)hS1)[ 1

u
], we use Theorem 5.9:

Hodd((Fpm)hS1)[
1

u
] ∼= Hodd(Fm)⊗ Fp[u, u

−1] (61)



5.2 The Main Theorem 71Consequently, by Corollary 5.8 we an alulate the rank as an Fp[u]-module:rankHodd((Fpm)hS1)[
1

u
] =

{
m(r + 1), p | r + 1;
mr, p ∤ r + 1.So h1[

1
u
] is a surjetive map between two free Fp[u, u−1]-modules of thesame rank. Then h1[

1
u
] must also be injetive.All that remains is to show that h1 ⊕ h2 is injetive. Atually it will beenough to show that h1⊕h2 is injetive for eah m, sine a given element willbe in the domain of h1 ⊕ h2 for a large enough m. So onsider an element

(a, t) ∈ Fp[u] ⊗
⊕

i≤(2r+1)pm−δ U2i+1 ⊕ T ∗ in the kernel of h1 ⊕ h2. Whenloalizing, t vanishes, so c loalized must be in the kernel of h1 loalized,whih we have shown is injetive. This means c loalized is zero. But theloalization map on Fp[u]⊗ U∗,
Fp[u]⊗ U∗ loalization−→ Fp[u, u

−1]⊗Fp[u] (Fp[u]⊗ U∗) ∼= Fp[u, u
−1]⊗ U∗is injetive, so c is zero itself. This means t is in the kernel of h1. And byLemma 5.11, h1 is injetive, so t is zero.The expression with generators follows diretly from the isomorphism

Hodd(LHP r
hS1) ∼= (Fp[u] ⊗ U∗) ⊕ T ∗ together with the omputation of thePoinaré series in Remarks 5.12 and 5.14.We an now prove the general Main Theorem, giving a omplete desrip-tion of H∗(LHP r

hS1; Fp):Theorem 5.17. As a graded Fp[u]-module, H∗(LHP r
hS1 ; Fp) is isomorphito

Fp[u]⊕
⊕

2k∈IF
Fp[u]f2k ⊕

⊕

2k∈IF
Fp[u]f2k−1 ⊕

⊕

2k∈IT
(Fp[u]/ 〈u〉) t2k−1.Here the lower index denotes the degree of the generator, and their namesare meant to suggest free and torsion generators.Proof. First, note that when taking the odd part, we have already provedthis in Theorem 5.16. So it remains to show that Heven(LHP r; Fp) is a free

Fp[u]-module with generators in the stated degrees.First I argue why Heven(LHP r
hS1; Fp) is free, using the Morse spetral se-quene, E∗,∗s = E∗,∗s (M)(LHP r

hS1). By SF(1) and SF(2), Eeven
1 is a free Fp[u]-module, whih is onentrated in Epm,∗

1 . Sine by SF(3) all non-trivial di�er-entials start in even degrees, Eeven
∞ is a submodule of Eeven

1 . Note that Epm,∗
1 isa �nitely generated Fp[u]-module. Sine Fp[u] is a prinipal ideal domain, the



72 5 S1-equivariant ohomology of LHP rsubmodule E(pm,∗)even
∞ of the free Fp[u]-module E(pm,∗)even

1 is also free. Sinethe spetral sequene Es onverges to H∗(LHP r
hS1; Fp), Heven(LHP r

hS1; Fp)is �ltered by free Fp[u] modules and is thus free itself. The generators arethe generators of Eeven
∞ .Now we must �nd the degrees of the generators. We will ompute Eeven

∞in terms of Poinaré series, and dedue the generator degrees from this. TheMorse spetral sequene alone does not provide enough information, so weompare with Serre's spetral sequene for the �bration
LHP r −→ LHP r

hS1 −→ BS1,that is,
H∗(BS1;H∗(LHP r,Fp))⇒ H∗(LHP r

hS1; Fp).Denote this spetral sequene by E∗,∗s (S). Then E∗,∗2 (S) = H∗(LHP r; Fp)⊗
Fp[u]. Aording to (54) and (53), H∗(LHP r; Fp) has the following form: thenon-trivial part is one-dimensional in eah degree, and, apart from degreezero, sits in degrees that ome in pairs of odd-even, with at least 2 zero-rowsbetween the pairs. I have tried to diagram what this might look like below,a star indiating a non-trivial group.

E2(S) 8 ∗ ∗ ∗ · · ·
7 ∗ ∗ ∗ · · ·

4 ∗ ∗ ∗ · · ·
3 ∗ ∗ ∗ · · ·

0 ∗ ∗ ∗ · · ·
0 1 2 3 4 5 ...

E3(S) 8 ∗ ∗ ∗ · · ·
7 ∗ ∗ ∗ · · ·

4 · · ·
3 ∗ · · ·

0 ∗ ∗ ∗ · · ·
0 1 2 3 4 5 ...We also see the only non-trivial d2 di�erentials must be from the even tothe odd row in the odd-even pairs. What happens when we pass to E3(S)depends on whether d2 is zero or an isomorphism (the only possibilities). If d2is zero, the odd-even row pair will survive to E3, and if d2 is an isomorphism,only the odd group in �ltration 0 will survive to E3, as indiated above.Here we an use a shortut: The di�erential d2 an be determined geo-metrially; it is atually given by the ation di�erential. By Lemma 5.10 (i)we then see that d0,2k

2 = 0 if and only if 2k ∈ IF . Then we an write downthe Poinaré series of the E3 page:
P (E3(S))(t) =

1

1− t2 + P (Hodd(LHP r))(t) +
PIF(t)

1− t2 +
tPIF(t)

1− t2 . (62)



5.2 The Main Theorem 73This might not look very helpful, but if we use (52) to alulate
P (Eeven

3 (S))(t)− 1

t
P (Eodd

3 (S))(t) =
1

1− t2 +
1

t
P (Hodd(LHP r))(t) =

1

1− t2 −
t2(1− t4r)

(1− t4)(1− t4r+2)
=

1− t4r+4

(1− t4)(1− t4r+2)
(63)we get a quantity that does not depend on PIF(t).Let us return to the Morse spetral sequene. Using Remark 2.10, we anompute the same quantity for the E1(M) page. For p ∤ r + 1 this yields

P (Eeven
1 (M))(t)− 1

t
P (Eodd

1 (M))(t)

=
1− t4r+4 +K(t)(1− t4r)t4r+3

(1− t2)(1− t4)

− 1− t4r
(1− t2)(1− t4)

(
(1− t4r+4)t2

1− t4r+2
+K(t)t4r+3

)

=
1− t4r+4

(1− t2)(1− t4)

(
1− (1− t4r)t2

1− t4r+2

)
=

1− t4r+4

(1− t4)(1− t4r+2)
. (64)Using the formulas for p | r+ 1, though slightly di�erent, also give the samequantity. As we wanted to ompute E∞(M), we really want to know thisquantity for E∞(M). Sine by SF(3), all non-trivial di�erentials in E∗(M)goes from even to odd total degree, we have

dimE2n+1
∞ + dim

(
⊕

k≥1;i+j=2n+1

Im(dk : Ei−k,j−k+1
k −→ Ei,j

k )

)
= dimE2n+1

1 .From this we dedue
dimE2n

∞ = dimE2n
1 − dim

(
⊕

k≥1;i+j=2n+1

Im(dk : Ei−k,j−k+1
k −→ Ei,j

k )

)

= dimE2n
1 − dimE2n+1

1 + dimE2n+1
∞ .Expressing this by Poinaré series yields

P (Eeven
∞ )(M)− 1

t
P (Eodd

∞ )(M) = P (Eeven
1 )(M)− 1

t
P (Eodd

1 )(M)Now by (63) and (64) we an onlude
P (Eeven

∞ )(M)− 1

t
P (Eodd

∞ )(M) = P (Eeven
3 )(S)− 1

t
P (Eodd

3 )(S)



74 5 S1-equivariant ohomology of LHP rTo onlude P (Eeven
∞ )(M) = P (Eeven

3 )(S), we must show P (Eodd
∞ )(M) =

P (Eodd
3 )(S). We an ompute P (Eodd

∞ )(M) by Theorem 5.16:
P (Eodd

∞ )(M) = P (Hodd(LHP r
hS1)) = P ((Fp[u]⊗ U∗)⊕ T ∗)

=
1

1− t2PU∗(t) + PT ∗(t) =
1

t(1− t2)PIF(t) +
1

t
PIT (t),where I have used Remarks 5.12 and 5.14. Now by Lemma 5.10 (i),

P (Eodd
3 (S))(t) = P (Hodd(LHP r))(t) +

tPIF(t)

1− t2

=
1

t
PIA(t) +

t

1− t2PIF(t) =
1

t(1− t2)PIF(t) +
1

t
PIT (t).This allows us to onlude that P (Eeven

∞ )(M) = P (Eeven
3 )(S), and we anompute by (62),

P (Eeven
∞ )(M) = P (Eeven

3 )(S) =
1

1− t2 +
PIF(t)

1− t2 ,as stated in the Theorem.



756 S1-equivariant K-theory of LCP rReall that the Morse spetral sequene omes from the S1-equivariant energy�ltration
CP r = F0 ⊆ F1 ⊆ · · · ⊆ Fn ⊆ · · · ⊆ F∞ = LCP r, (65)whih onsequently gives a �ltration {(Fn)hS1}n of LCP r

hS1. The Morsespetral sequene E∗(M)(LCP r
hS1) in K-theory has the following struture,Theorem 6.1. The Morse spetral sequene E∗,∗r (M)(LCP r

hS1) onvergingto K∗(LCP r
hS1) is a spetral sequene of K∗(BS1) = Z[[t]]-modules, and ithas the following E1 page, using the Z/2Z grading of K-theory:

E0,j
1 =

{
Z[[t]]⊗Z Z[h]/ 〈hr〉 , j even;
0, j odd.

En,j
1 =

{
0, j even;
Z[[t]](n)⊗RZ[x, y]/ 〈Qr, Qr+1〉 , j odd. for n ≥ 1.Here, R = R(S1) = Z[U,U−1], and Z[[t]](n) denotes the R-module struture

U 7→ (t + 1)n on Z[[t]]. The R-module struture on Z[x, y]/ 〈Qr, Qr+1〉 is
U 7→ (x− y)/(1 + y) + 1.Proof. The method is exatly as in Theorem 5.1. The Morse spetral se-quene is Theorem 4.4, and we use Theorem 3.7 whih gives K∗hS1(G(r)(n)),with the module strutures stated just below the Theorem. Finally, usingthe Z/2Z-grading from Bott-periodiity, we suppress the Thom isomorphism,and simply get a shift from even to odd degree when n ≥ 1.Remark 6.2. Note that when n = 1, the S1-ation is free on G(r), so
G(r)hS1 ≃ ∆(r). So E1,odd ∼= K0(∆(r)) ∼= Z[x, y]/ 〈Qr, Qr+1〉, with Z[[t]]-module struture t 7→ (x− y)/(1 + y).We an depit the Morse spetral sequene shematially as follows, wherean empty spae denotes zero, and a ∗ denotes a non-trivial module:

3 ∗ ∗
2 ∗ ∗ ∗ ∗
1 ∗ ∗
0 ∗ ∗ ∗ ∗
−1 ∗ ∗
−2 ∗ ∗ ∗ ∗
−3 ∗ ∗
−4 ∗ ∗ ∗ ∗



76 6 S1-equivariant K-theory of LCP rFrom the on�guration of this spetral sequene, we an immediately estab-lish a number of strutural fats. Reall the notation K∗hS1(X) = K∗(XhS1),when X is an S1-spae.Proposition 6.3. The Morse spetral sequene onverging to K∗hS1(LCP r)has the following properties:
(i) The only possible non-trivial di�erentials start from olumn 0.

(ii) K0
hS1(LCP r) is a submodule of K0

hS1(F0) = K0(BS1)⊗ZK
0(CP r), andin partiular it is a free abelian group.

(iii) The spetral sequene for the �ltration {Fi/F0}i has K∗(point) in ol-umn 0, and thus it ollapses. So K̃0
hS1(F∞/F0) = 0, and K1

hS1(F∞/F0)is free abelian.We will also need the twisted ase, i.e the Morse spetral sequene for the
(n)-twisted �ltration F0 = F (n)

0 ⊆ F (n)
1 ⊆ · · · ⊆ (LCP r)(n), where we haveLemma 6.4. For the (n)-twisted �ltration F (n)

0 ⊆ F (n)
1 ⊆ · · · ⊆ (LCP r)(n),the following holds: K̃0

hS1(F (n)
1 /F0) = 0, and

K̃1
hS1(F (n)

1 /F0) ∼= Z[[t]](n)⊗RZ[x, y]/ 〈Qr, Qr+1〉 .Proof. Morse theory says that F1/F0 ≃ Th(µ−1 ) as S1-spaes, sine the �l-tration is S1-equivariant. As a onsequene,
F (n)

1 /F0 = (F1/F0)
(n) ≃ (Th(µ−1 ))(n) = Th((µ−1 )(n)),where the last equality is lear from the de�nition Th(ξ) = D(ξ)/S(ξ). Soby Thom isomorphism, K̃1

hS1(F (n)
1 /F0) ∼= K0

hS1(G(r)(n)), whih by Theorem3.7 is isomorphi to Z[[t]](n)⊗RZ[x, y]/ 〈Qr, Qr+1〉. Likewise for K̃0
hS1.6.1 The �rst di�erentialWe want to determine the �rst di�erential d1 : E0,∗

1 −→ E1,∗
1 in the Morsespetral sequene onverging to K∗hS1(LCP r). Using Remark 6.2, we have aonrete desription of the E1 term, and we get the following expliit formulafor d1:Theorem 6.5. The �rst di�erential d1 in E∗(M)(LCP r

hS1) is the Z[[t]]-module homomorphism
d1 : Z[[t]]⊗ Z[h]/hr+1 −→ Z[x, y]/ 〈Qr, Qr+1〉given by d1(h

j) = xj − yj for j = 0, 1, . . . , r.



6.1 The �rst di�erential 77Proof. The �rst di�erential is indued by the boundary map δ below:
(F0)hS1 // (F1)hS1 // (F1)hS1/(F0)hS1

δ // Σ((F0)hS1)where Σ denotes the (redued) suspension. From Morse theory (40) we have
(F1)hS1/(F0)hS1 ≃ Th((µ−1 )hS1), where µ−1 is the negative bundle over X =
G(r), and we have the diagram

S((µ−1 )hS1) //

��

D((µ−1 )hS1) //

��

Th((µ−1 )hS1) //

∼=
��

ΣS((µ−1 )hS1)

��
(F0)hS1 // (F1)hS1 // (F1)hS1/(F0)hS1

δ // Σ((F0)hS1)The vertial maps from the sphere- and dis bundles are given by the �ow ofthe energy funtional; we return to them later. First, sine µ−1 is an S1-vetorbundle, we an assume that the Riemmanian metri on it is S1-invariant, sothat S((µ−1 )hS1) = ES1×S1 S(µ−1 ), and D((µ−1 )hS1) = ES1×S1 D(µ−1 ). Then
Th((µ−1 )hS1) ∼= ES1

+ ∧S1 Th(µ−1 ), see [Bökstedt-Ottosen℄ Lemma 5.2, and weget the diagram
ES1 ×S1 S(µ−1 ) //id×(f+⊔f−)

��

ES1 ×S1 D(µ−1 ) //

��

ES1
+ ∧S1 Th(µ−1 )

∼=
��

ES1 ×S1 F0
// ES1 ×S1 F1

// ES1
+ ∧S1 F1/F0This means we an simply ignore the ES1-fator, and onsider the diagram

S(µ−1 ) //

f+⊔f−
��

D(µ−1 ) //

��

Th(µ−1 ) //

∼=
��

ΣS(µ−1 )

Σf+∨Σf−
��

F0
// F1

// F1/F0
δ // ΣF0By the proof of Prop. 4.2, µ−1 is a trivial real line bundle, and over a geodesi

γ ∈ X, we an parametrize µ−1 as Riγ′. Therefore the sphere bundle S(µ−1 ) =
X+⊔X− is a disjoint union of two opies of the base spae X, where the �beris (X+)γ = +iγ′ and (X−)γ = −iγ′. The map f± : X± −→ F0 is given by the�ow of the energy funtional: For a geodesi γ ∈ X, f±(γ) gives the endpointin F0 = CP r for the �owlines in diretion ±iγ′. Sine µ−1 is 1-dimensional,the Thom spae Th(µ−1 ) is just the suspension ΣX of the base spae X, and
ΣS(µ−1 ) = ΣX+∨ΣX−. The map δ : F1/F0 −→ ΣF0 is now the omposition

δ : F1/F0

∼= // Σ(X) // ΣX+ ∨ ΣX−
Σf+∨Σf− // ΣF0. (66)



78 6 S1-equivariant K-theory of LCP rHere, the last map folds the two summands in the wedge.We now investigate the maps f± : G(r) −→ CP r. Reall from (4) thatthe simple losed geodesi γ in CP r determined by [v, w] ∈ PV2 is given bythe map
PV2 −→ G(r), [v, w] 7→ q ◦ c(x, v),where c(x, v)(t) = cos(πt)x + sin(πt)v for t ∈ [0, 1], and q : S2r+1 −→ CP ris the projetion. Suh a γ is a geodesi on a CP 1 = P {v, w} ⊆ CP r, andwe an give P {v, w} homogeneous oordinates, [av, aw] = q(avv + aww), andmap

P {v, w} −→ C ∪ {∞} , [av, aw] 7→ av
aw
.We see that γ under this map is the urve t 7→ cos(πt)

sin(πt)
= 1

tan(πt)
∈ C ∪ {∞}for t ∈ [0, 1], i.e. the real line traversed in the �negative� diretion, from

+∞ to −∞. It is now lear that the �ow in diretion +iγ′ will end in
−i ∈ C ∪ {∞}, or homogeneous oordinates 1√

2
[1, i] ∈ P {v, w}, so f+(γ) =

1√
2
[1, i] ∈ P {v, w}. The �ow in diretion −iγ′ ends in i ∈ C ∪ {∞}, so

f−(γ) = 1√
2
[1,−i] ∈ P {v, w}.Having determined f±, we an now alulate the indued map f ∗± on

K0(CP r) ∼= Z[h]/ 〈hr〉, so we need only determine f ∗±(h), where h = [H ]− 1and H ց CP r is the standard line bundle. We do this by determiningthe pullbak f ∗±(H). From the preeding paragraph we see that the �ber of
f ∗+(H) over a simple losed geodesi γ determined by [v, w] ∈ PV2 is exatlyall the points on the line given by 1√

2
(v + iw). Reall that the line bundle

X was de�ned as the pullbak of the standard bundle γ1 ց P(γ2) under theomposite
G(r) −→ PV2 −→ P̃ V 2 −→ P(γ2),
γ 7→ [v, w] 7→ 1√

2
[v + iw, v − iw] 7→ C(v + iv) ⊆ Cv ⊕ CwIt follows that f ∗+(H) = X, so f ∗+(h) = x. Likewise we get f ∗−(h) = y,beause Y is the pullbak of the omplement of γ1 in γ2. Sine f ∗± is a ringhomomorphism, we get f ∗+(hj) = xj , and f ∗−(hj) = yj. From (66), we an nowompute d1(h

j). When folding the maps, the seond suspension in the wedge
ΣX+ ∨ΣX− has the orientation reversed, so we obtain d1(h

j) = xj − yj.In the Morse spetral sequene E∗(M)((LCP r)
(n)

hS1) for the (n)-twisted�ltration, the �rst di�erential is a map d(n)
1 : K∗hS1(ΣF0) −→ K̃∗hS1(F (n)

1 /F0),f. Lemma 6.4.



6.2 The Main Theorem for r > 1 79Lemma 6.6. The �rst di�erential in E∗(M)((LCP r)
(n)
hS1) is the map of

Z[[t]]-modules given by
d

(n)
1 : Z[[t]]⊗ Z[h]/

〈
hr+1

〉
−→ Z[[t]](n)⊗RZ[x, y]/ 〈Qr, Qr+1〉 ,

d
(n)
1 (hj) = xj − yj, for j = 0, 1, . . . , r.Proof. Using the same diagram as in the proof of Theorem 6.5 above, we seethat the geometry of this situation is exatly the same, so the �ow map isidential to the one omputed before.From (44), the power map Pj gives a map of the following exat sequenes,giving a ommutative diagram:

F0
//id

��

F (j)
1

//

Pj

��

F (j)
1 /F0

δ
(j)
1 //

Pj

��

ΣF0id
��

F0
// F∞ // F∞/F0

δ // ΣF0where δ(j)
1 denotes the boundary map whih indues the �rst di�erential d(j)

1in the Morse spetral sequene E∗(M)((LCP r)
(j)
hS1). So the di�erential d(j)

1determined in Lemma 6.6 an also be written as the omposite map
d

(j)
1 : K1

hS1(ΣF0)
δ−→ K̃1

hS1(F∞/F0)
P∗j−→ K̃1

hS1(F (j)
1 /F0). (67)6.2 The Main Theorem for r > 1Again reall the notation K∗hS1(X) = K∗(XhS1). Now we introdue somemore notation: For an S1-spae X with a onneted set F of �xed points forthe S1-ation, let x ∈ F be some �xed point. The inlusion of x in X givesan S1-equivariant map i = ix : ∗ −→ X. (Sine F is onneted, any two suhinlusions ix and iy, x, y ∈ F , are homotopi.) Sine i is S1-equivariant, weobtain a map

BS1 = ES1 ×S1 ∗ −→ ES1 ×S1 X = XhS1.Thus we an onsider the relative group K∗(XhS1, BS1), and we use thenotation K∗hS1(X, ∗) := K∗(XhS1, BS1). Note that sine the omposition
∗ i−→ X −→ ∗ is the identity, we get

K∗hS1(∗) −→ K∗hS1(X)
i∗−→ K∗hS1(∗)



80 6 S1-equivariant K-theory of LCP ris the identity. This gives a anonial splittingK∗hS1(X) = K∗(BS1)⊕Ker(i∗),and we see that K∗hS1(X, ∗) = Ker(i∗).In this setion, we will investigate K∗hS1(LCP r). The idea is to twist the�ltration with an integer. First we need a tehnial lemma:Lemma 6.7. Let f ∈ Z[[t]], and let qi : Z[[t]] −→ Z[[t]](i)⊗R Z be the naturalmap, where R = Z[U,U−1], Z[[t]](i) is Z[[t]] with the R-module struture
U 7→ (t+ 1)i, and Z has the module struture U 7→ 1. Then:

(i) If qi(f) ∈ n · Z[[t]](i)⊗R Z for all i ∈ N, then f ∈ n · Z[[t]].
(ii) If qi(f) = 0 for all i ∈ N, then f = 0 in Z[[t]].Proof. First note that (ii) follows from (i): If qi(f) = 0 for all i ∈ N, then
qi(f) ∈ n · Z[[t]](i)⊗R Z for all i and all n. By (i) we get f ∈ n · Z[[t]] for all
n ∈ N, and sine only 0 in Z[[t]] is divisible by any n, this implies that f = 0in Z[[t]].So we must prove (i). By prime fatoring n, we an assume n = ps where
p is a prime number. Assume qi(f) ∈ n · Z[[t]](i)⊗R Z for all i ∈ N.We have an injetive map ip : Z[[t]] →֒ Ẑp[[t]], and we laim: If ip(f) ∈
psẐp[[t]], then f ∈ psZ[[t]]. Writing f =

∑
j cjt

j we have f ∈ psZ[[t]] if andonly if ps | cj for all j. By assumption we know ps | ip(cj) for all j. Thismeans that the image of cj under the omposition
Z

ip−→ Ẑp = lim←−
m

Z/pm −→ Z/ps,is zero. But the omposition is learly the natural map Z −→ Z/ps, so ps | cjfor any j. This proves the laim.Knowing this, it su�es to show that ip(f) ∈ psẐp[[t]]. We apply theisomorphism
ε : Ẑp[[t]]

∼=−→ lim←−
m

Ẑp[Cpm]f [Lang℄, Thm. 1.1, where Ck denotes the kth roots of unity, to make thefollowing diagram for any i ∈ N:
Z[[t]]

q
pi

//

ip
��

Z[[t]](p
i)⊗R Z

∼=ϕ

��

Ẑp[[t]]

ε∼=
��

Z⊕ Ẑp {V } ⊕ · · · ⊕ Ẑp{V pi−1}
� _

��
lim←−
m

Ẑp[Cpm] pri // Ẑp[Cpi]

(68)



6.2 The Main Theorem for r > 1 81Here the map pri denotes the natural projetion on the ith term in theinverse limit, and the isomorphism ϕ is Lemma 3.9 and 3.5. This diagram isommutative by the de�nitions of the maps. Let g = ε(ip(f)) ∈ lim Ẑp[Cpm ].It is lear that if g satis�es pri(g) ∈ ps·Ẑp[Cpi] for all i, then g is divisible by ps.Together with the ommutativity of (68), this proves that ip(f) ∈ psẐp[[t]],and we are done.We will prove the followingTheorem 6.8. The map
δ : K1

hS1(ΣF0, ∗) −→ K̃1
hS1(F∞/F0)is injetive.Proof. We restrit the di�erential d(j)

1 : K1
hS1(ΣF0) −→ K̃1

hS1(F (j)
1 /F0) to thesummand K1

hS1(ΣF0, ∗); it is zero on K0
hS1(∗). By (67) this di�erential is theomposition,

d
(j)
1 : K1

hS1(ΣF0, ∗) δ−→ K̃1
hS1(F∞/F0)

P∗j−→ K̃1
hS1(F (j)

1 /F0).Thus we an make a ombined map, all it d,
d : K1

hS1(ΣF0, ∗) δ−→ K̃1
hS1(F∞/F0) −→

∐

j

K̃1
hS1(F (j)

1 /F0).To prove that δ is injetive, it su�es to show that d is injetive. So let
a ∈ K1

hS1(ΣF0, ∗) with d(i)
1 (a) = 0 for all i. We must prove a = 0. Reall byLemma 6.4,

K̃1
hS1(F (i)/F0) = Z[[t]](i)⊗RM,where M = K0(∆(r)) = Z[x, y]/ 〈Qr, Qr+1〉. Let Mj ⊆ M be the �ltra-tion from Remark 3.2. Then Z[[t]](i)⊗RMj gives a �ltration of Z[[t]](i)⊗R

M . Similarly, let Lj ⊆ Z[h]/ 〈hr+1〉 be generated by {hj, . . . , hr}. Then
K1
hS1(ΣF0, ∗) = Z[[t]]⊗Z L1.Write a = f1(t)h + f2(t)h

2 + . . . + fr(t)h
r, where fj(t) ∈ Z[[t]]. For thepurpose of indution, onsider aj = fj(t)h

j + fj+1(t)h
j+1 + . . .+ fr(t)h

r, andassume d(i)
1 (aj) = 0 for all i. This holds for j = 1. Then aj ∈ Z[[t]]⊗Lj , andwe onsider the image of under d(i)

1 , see Lemma 6.6:
Z[[t]]⊗ Lj

d
(i)
1−→ Z[[t]](i)⊗RMj ,

fjh
j + . . .+ frh

r 7→ fj(x
j − yj) + . . .+ fr(x

r − yr).



82 6 S1-equivariant K-theory of LCP rBy assumption, 0 = d
(i)
1 (aj) = fj(x

j − yj) + . . . + fr(x
r − yr) for all i. Nowwe use the projetion πj : Mj −→Mj/Mj+1, whih indues a map

Z[[t]](i)⊗RMj
πj−→ Z[[t]](i)⊗RMj/Mj+1.Then 0 = πj(d

(i)
1 (aj)) = fj(x

j−yj) in Z[[t]](i)⊗RMj/Mj+1 for all i. Note that
Mj/Mj+1 = Zxj ⊕Zxj−1y⊕ · · ·⊕Zyj. Construt a map q : Mj/Mj+1 −→ Z,by

q(xj) = 1, q(xj−1y) = −1, q(xj−kyk) = 0, for k > 1. (69)This is well-de�ned: If j < r the monomials are independent, and if j = rwe have in Mj/Mj+1 the relation Qr = 0, and the map satis�es q(Qr) = 0.So we get a map
q : Z[[t]](i)⊗RMj/Mj+1 −→ Z[[t]](i)⊗R Z. (70)If j > 1 we get q(fj(xj − yj)) = fj , and if j = 1 we get q(f1(x − y)) = 2f1,but we also have q(fj(xj − yj)) = q(πj(d

(i)
1 (aj))) = 0. The onlusion is inboth ases that fj(t) = 0 in Z[[t]](i)⊗R Z for all i. By Lemma 6.7 this implies

fj(t) = 0 in Z[[t]]. Sine aj = fj(t)x
j +aj+1, indutively we get d(i)

1 (aj+1) = 0for all i. This �nishes the indution step. This indution shows that a = 0in K1
hS1(ΣF0, ∗).As a orollary, we obtainMain Theorem 6.9. As K∗(BS1)-modules,

K0
hS1(LCP r) = K0(BS1) = Z[[t]] .Proof. It su�es to show that K0

hS1(LCP r, ∗) = 0. We use the long exatsequene for F0 −→ F∞ −→ F∞/F0 −→ ΣF0,
0 −→ K̃0

hS1(F∞/F0) −→ K0
hS1(F∞) −→

K1
hS1(ΣF0)

δ−→ K̃1
hS1(F∞/F0) −→ K1

hS1(F∞) −→ 0 (71)By the Morse spetral sequene, we know that K̃0
hS1(F∞/F0) = 0, see Prop.6.3. We an write part of (71) as follows:

0 −→ K0
hS1(F∞, ∗)⊕KhS1(∗) −→ K1

hS1(ΣF0, ∗)⊕KhS1(∗) δ−→ K̃1
hS1(F∞/F0)Theorem 6.8 tells us that δ : K1

hS1(ΣF0, ∗) −→ K1
hS1(F∞/F0) is injetive, sowhen we split o� the summand KhS1(∗), we get that K0

hS1(F∞, ∗) = 0.



6.2 The Main Theorem for r > 1 83Having determined K0
hS1(LCP r), we now move on to K1

hS1(LCP r). Re-grettably, we are only able to determine this as an abelian group, not a
K∗(BS1)-module.Main Theorem 6.10. K1

hS1(LCP r) is a free abelian group.In this setion we prove the Theorem in all ases exept one:Theorem 6.11. If (r, n) 6= (1, 2), then K1
hS1(LCP r) has no n-torsion.The essential part of the proof is the following proposition:Proposition 6.12. Let a ∈ K1

hS1(ΣF0, ∗), and assume that for all i ≥ 1,
d

(i)
1 (a) ∈ nK̃1

hS1(F (i)
1 /F0). Then,

(i) If r > 1, then a ∈ nK1
hS1(ΣF0, ∗).

(ii) If r = 1 and n > 2, then 2a ∈ nK1
hS1(ΣF0, ∗).Proof that Theorem 6.11 follows from Prop. 6.12. Assume b ∈ K1

hS1(F∞) with
nb = 0 for some n ∈ Z. We will show b is not n-torsion. By the exat se-quene

K1
hS1(ΣF0, ∗) δ−→ K̃1

hS1(F∞/F0) −→ K1
hS1(F∞) −→ 0,we an lift b to b̄ ∈ K̃1

hS1(F∞/F0), and there is a ∈ K1
hS1(ΣF0, ∗) with image

δ(a) = nb̄. Sine d(i)
1 is the omposition,

d
(i)
1 : K1

hS1(ΣF0, ∗) δ−→ K̃1
hS1(F∞/F0) −→ K̃1

hS1(F (i)/F0),and δ(a) = nb̄, we see that d(i)
1 (a) ∈ nK̃1

hS1(F (i)
1 /F0) for all i. So we anapply the proposition. In ase (i) we get a ∈ nK1

hS1(ΣF0, ∗), so a = na′.Then in K̃1
hS1(F∞/F0), nδ(a′) = nb̄. But K̃1

hS1(F∞/F0) is torsion-free byProp. 6.3, so δ(a′) = b̄, whih implies b = 0. This proves the laim in ase
(i). In ase (ii), we get 2a = na′, so nδ(a′) = 2nb̄ in K̃1

hS1(F∞/F0) whih istorsion-free, so δ(a′) = 2b̄, i.e. 2b = 0. Sine n > 2, b is not n-torsion.Proof of Proposition 6.12. Let a ∈ K1
hS1(ΣF0, ∗), and assume n | d(i)

1 (a) forall i. This proof is similar to the proof of Theorem 6.8.Let M = Z[x, y]/ 〈Qr, Qr+1〉, and let Mj ⊆ M be the �ltration fromRemark 3.2. Then Z[[t]](i)⊗RMj gives a �ltration of Z[[t]](i)⊗RM . Similarly,let Lj ⊆ Z[x]/ 〈xr+1〉 be generated by {xj , . . . , xr}. Then K1
hS1(ΣF0, ∗) =

Z[[t]] ⊗ L1. Write a = f1(t)x + f2(t)x
2 + . . . + fr(t)x

r, where fj(t) ∈ Z[[t]].For the purpose of indution, onsider aj = fj(t)x
j + f2(t)x

2 + . . .+ fr(t)x
r,



84 6 S1-equivariant K-theory of LCP rand assume n | d(i)
1 (aj) for all i. This holds for j = 1. Then aj ∈ Z[[t]]⊗ Lj,and we onsider the image of under d(i)

1 :
Z[[t]]⊗R Lj

d
(i)
1−→ Z[[t]](i)⊗RMj ,

fjx
j + . . .+ frx

r 7→ fj(x
j − yj) + . . .+ fr(x

r − yr).By assumption, fj(xj − yj) + . . .+ fr(x
r − yr) = nb for some b. Now we usethe projetion πj : Mj −→Mj/Mj+1, whih indues a map

Z[[t]](i)⊗RMj
πj−→ Z[[t]](i)⊗RMj/Mj+1,

fj(x
j − yj) + . . .+ fr(x

r − yr) = nb 7→ fj(x
j − yj) = n · πj(b).We wish to map Mj/Mj+1 −→ Z. For now, assume r > 1. If j > 1, we usethe map q from (69), (70). Sine q(xj − yj) = 1 for j > 1, we get

Z[[t]](i)⊗RMj/Mj+1
q−→ Z[[t]](i) ⊗R Z,

fj(x
j − yj) = n · πj(b) 7→ fj = n · qπj(b). (72)If j = 1, we use the well-de�ned map q1(x) = 1, q1(y) = 0, and get the sameresult. The onlusion is that fj(t) ∈ n · Z[[t]](i) ⊗R Z for all i. By Lemma6.7 this implies fj(t) ∈ nZ[[t]]. Sine aj = fj(t)x

j + aj+1, indutively we get
n | d(i)

1 (aj+1) for all i. This �nishes the indution step. This indution showsthat n | fj(t) for all j = 1, . . . , r, so a ∈ nK1
hS1(ΣF0, ∗).Now take r = 1. Then j = 1. We use the map q : M1/M2 −→ Z from(69). Then in (72), we get instead 2f1(t) ∈ n · Z[[t]] ⊗R Z. By Lemma 6.7,

2f1(t) ∈ nZ[[t]], and 2a ∈ nK1
hS1(ΣF0, ∗).6.3 The Main Theorem for r = 1In this setion we show the result of Main Theorem 6.10 in the ase r = 1:Theorem 6.13. K1

hS1(LCP 1) has no 2-torsion.First reall by Theorem 6.1 and Lemma 6.4 that when r = 1,
K̃1
hS1(F (k)

1 /F0) ∼= K̃1
hS1(Fk/F0) ∼= Z[[t]](k)⊗RM, where M = Z[x]/x2.This is beause M = Z[x, y]/ 〈Q1, Q2〉, and Q1 = x + y, so y = −x, whihwhen substituting in Q2 = x2 + xy + y2 gives x2 = 0.In the proof we will need the S1 transfer map on K-theory:



6.3 The Main Theorem for r = 1 85Lemma 6.14. There is an S1 transfer map τ on K-theory, whih �ts intothe following exat sequene,
−→ K0(X)

τ−→ K1
hS1(X)

ϕ−→ K1
hS1(X)

q−→ K1(X)
τ−→ K0

hS1(X) −→where K∗(BS1) = Z[[t]], and the map ϕ is multipliation by −t.Proof. Let T −→ BS1 denote the standard omplex line bundle, as usual.Let p : ES1×S1X −→ BS1, be projetion on the �rst fator, and let ξ = p∗Tdenote the pullbak. As in (48), we use the o�ber sequene,
S(ξ) −→ D(ξ) −→ Th(ξ).As shown in (49), S(ξ) ∼= ES1 × X ≃ X. The long exat sequene on

K-theory beomes, using the Thom isomorphism, f. [Atiyah℄ Cor. 2.7.3,
K∗−1(X)

δ−→ K∗(ES1 ×S1 X)
ϕ−→ K∗(ES1 ×S1 X) −→ K∗(X)

δ−→The map ϕ is given by multipliation with Λ−1(T ) = 1− T = −t, sine T isa line bundle. We de�ne the S1 transfer map τ to be the boundary map δ inthe long exat sequene.By exatness, Im(τ) = Ker(ϕ), and so we will need the kernel of t:Lemma 6.15. The kernel of the map given by multipliation by t,
t : Z[[t]](k)⊗RZ[x]/x2 −→ Z[[t]](k)⊗RZ[x]/x2is Zpk−1(t)x, where (t+ 1)k − 1 = tpk−1(t).Proof. First we relate the kernel of t to the kernel of u : M −→M (this partholds for all r). Reall R = R(S1) = Z[U,U−1], and let u = U − 1. Then

M is an R-module by u 7→ (x − y)/(1 + y), and Z[[t]](k) is an R-module by
u 7→ (t+ 1)k − 1. Consider the exat sequene

0 // Z[[t]]
t // Z[[t]] // Z // 0.Tensoring with M over R yields the exat sequene

0 // TorR1 (Z,M) // Z[[t]](k)⊗RM
t // Z[[t]](k)⊗RMTo ompute Ker(t) ∼= TorR1 (Z,M), we use the following free resolution of Zover R:

0 // R
u // R // Z // 0.



86 6 S1-equivariant K-theory of LCP rAgain, we tensor over R with M and �nd
0 // TorR1 (Z,M) // R⊗RM u // R⊗RM // Z[[t]](k)⊗R Z // 0.so TorR1 (Z,M) ∼= Ker(u). All we need to know is how to translate fromKer(u) to Ker(t). The following diagram,

0 // Ker(u) //

��

R⊗RM u //

pk−1(t)⊗id
��

R⊗RM //

��

Z[[t]](k)⊗R Zid
��

0 // Ker(t) // Z[[t]](k)⊗RM
t // Z[[t]](k)⊗RM // Z[[t]](k)⊗R Zis ommutative, sine tpk−1(t) = (t+ 1)k− 1 = u. From this diagram, we seethat Ker(t) = pk−1(t)Ker(u).So all that remains is to determine Ker(u). This an be done for any r,but it is espeially easy when r = 1, and M = Z[x]/x2, where u1 = 2x and

ux = 0. Clearly Ker(u) = Zx, and so Ker(t) = Zpk−1(t)x.We an now prove the Main Theorem in ase r = 1:Proof of Theorem 6.13. By the exat sequene
K1
hS1(ΣF0, ∗) δ−→ K̃1

hS1(F∞/F0) −→ K1
hS1(F∞) −→ 0,we see that K1

hS1(LCP 1) = K1
hS1(F∞) is isomorphi to the okernel Cok(δ)of δ. Sine r = 1, K1

hS1(ΣF0, ∗) = Z[[t]] · h, so let f(t) ∈ Z[[t]] be given, andassume that δ(f(t)h) is divisible by 2. We will show that this implies f(t) isdivisible by 2, meaning that there is no 2-torsion in Cok(δ).For ontradition, assume that f(t) is not divisible by 2. Then, withoutloss of generality, f(t) has the form tlg(t), where g(t) = 1 + tp(t) for some
p(t) ∈ Z[[t]]. Here l is the �rst exponent in f(t) with an odd oe�ient, andso 2 | δ(f(t)h) if and only if 2 | δ(tlg(t)h). Then g(t) is a unit in Z[[t]], so sine
δ is a Z[[t]]-module homomorphism, 2 | δ(tlg(t)h) if and only if 2 | δ(tlh).We have shown that if δ(f(t)h) is divisible by 2, but f(t) is not divisible by
2, then δ(tN−1h) is also divisible by 2 for all N > l.We will now show that this leads to a ontradition if N = 2n > l.Consider the omposite map, whih we all d(N)

2 ,
K1
hS1(ΣF0, ∗) δ // K̃1

hS1(F∞/F0) // K̃1
hS1(F2N/F0)

P ∗N // K̃1
hS1(F (N)

2 /F0)



6.3 The Main Theorem for r = 1 87Then d
(N)
2 (tN−1h) is divisible by 2, sine δ(tN−1h) is. We will investigate

d
(N)
2 (tN−1h) via the following diagram:

ΣF0 (F1/F0)
(2N)oo

�� ''OOOOOOOOOOO

(F1/F0)
(N) //

OO

(F2/F0)
(N) //

ggOOOOOOOOOOOOO

(F2/F1)
(N)The maps into ΣF0 are the ones induing the various di�erentials in theMorse spetral sequenes. The map (F1/F0)

(2N) −→ (F2/F1)
(N) is simplythe omposite of the two other maps in the triangle

(F1/F0)
(2N)

P(N)
2 // (F2/F0)

(N) // (F2/F1)
(N) .On S1-equivariant K-theory this beomes

K1
hS1(ΣF0)

d
(2N)
1 //

d
(N)
1

��

d
(N)
2

))SSSSSSSSSSSSSSS

K̃1
hS1((F1/F0)

(2N))

K̃1
hS1((F1/F0)

(N)) K̃1
hS1((F2/F0)

(N))
ioo

k

OO

K̃1
hS1((F2/F1)

(N))
joo

EN

iiSSSSSSSSSSSSSSS

(73)
with the lower row short exat (i surjetive and j injetive). When N = 2n,we have

pN−1(t) = t−1((t+ 1)2n − 1) = tN−1 + 2q(t),for some polynomial q(t), sine all binomial oe�ients (2n

j

) are divisible by
2 for j 6= 0, 2n. Sine we have dedued that d(N)

2 (tN−1h) is divisible by 2, wetherefore get d(N)
2 (pN−1(t)h) is also divisible by 2, say d(N)

2 (pN−1(t)h) = 2afor some a in K̃1
hS1((F2/F0)

(N)). By Lemma 5.3 we see that d(N)
1 (pN−1(t)h) =

2pN−1(t)x. Sine the diagram (73) is ommutative, we get i(a) = pN−1(t)x,sine the group K̃1
hS1((F1/F0)

(N)) is torsion-free, see Lemma 6.4.We now use the S1 transfer, see Lemma 6.14. We an hoose a transferlass e ∈ K1(F1/F0), suh that τ(e) = pN−1(t)x by Lemma 6.15. We anlift this transfer lass to ē ∈ K1(F2/F0), so i(τ(ē)) = τ(e) = pN−1(t)x. Thuswe have an element w = a − τ(ē) ∈ K̃1
hS1((F2/F0)

(N)) with i(w) = 0. Byexatness of the lower row in (73), there is an element z ∈ K̃1
hS1((F2/F1)

(N))with j(z) = w. By ommutativity of (73), we get
EN (z) = k(w) = k(a− τ(ē)) = k(a)− k(τ(ē)),so let us ompute this. Sine 2a = d

(N)
2 (pN−1h), we see that k(2a) =

d
(2N)
1 (pN−1h) = 2pN−1x, and sine K̃1

hS1((F1/F0)
(2N)) is torsion-free, k(a) =
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pN−1x. But k(τ(ē)) is in the image of the transfer map, so by Lemma 6.15,
k(τ(ē)) = mp2N−1(t)x for some m ∈ Z. In onlusion,

EN(z) = k(w) = (pN−1(t)−mp2N−1(t))x. (74)To investigate this equality, we will need to use F2-oe�ients, and to deter-mine the map EN . This is done in the following lemmas:Lemma 6.16. As K∗(BS1) = Z[[t]]-modules,
K̃1
hS1((F1/F0)

(2k); F2) ∼= (F2[t]/t
2k

)1⊕ (F2[t]/t
2k

)x.Proof. As explained in the beginning,
K̃1
hS1((F1/F0)

(2k); F2) ∼= Z[[t]](2
k)⊗RM ⊗Z F2,whereM = Z[x]/x2, and u1 = 2x, ux = 0. So we see thatM⊗Z F2 = F2⊕F2is trivial as an R = Z[U,U−1]-module. So

Z[[t]](2
k)⊗RM ⊗Z F2 = (Z[[t]](2

k)⊗RF2)1⊕ (Z[[t]](2
k)⊗RF2)x.On Z[[t]](2

k), u ats as (t+1)2k−1 ≡ t2
k

(mod 2). Therefore, Z[[t]](2
k)⊗RF2 =

F2[t]/t
2k . This shows the Lemma.Lemma 6.17. The map EN is multipliation by 1− (t+ 1)N .Proof. We must determine the map indued by (F1/F0)

(2N) −→ (F2/F1)
(N),whih is the (N)-twisting of the omposite map

(F1/F0)
(2) P2−→ F2/F0 −→ F2/F1.We will �rst study this untwisted ase. The indued map, all it E, is givenas follows:

K̃1
hS1(F2/F1)

∼= //

��

K̃1
hS1(Th(µ

−
2 ))

Φ2 //

��

K0
hS1(G2(r))

E
��

K̃1
hS1((F2/F1)

(2))
∼= // K̃1

hS1(Th((µ
−
1 )(2)))

Φ1 // K0
hS1(G(r)(2))where the �rst isomorphisms are Morse theory, and the Φj denote the Thomisomorphisms (the index indiates whih negative bundle). Also, G2(r) isthe geodesis of length 2, whih as an S1-spae is isomorphi to G(r)(2), the

(2)-twisted spae of simple losed geodesis of length 1.



6.3 The Main Theorem for r = 1 89This is a speial ase of the following general situation: For a bundle anda subbundle, ξ ⊆ η, over a spae X, the following diagram ommutes
K̃∗(Th(η)) // K̃∗(Th(ξ))

K∗(X)

Φη ∼=
OO

Λ // K∗(X)

Φξ ∼=
OO

The vertial maps are the Thom isomorphisms. Then the indued map on
K-theory of the base spae is given by multipliation by the Euler lass
Λ = Λ−1(η − ξ) of the bundle η − ξ, i.e. the (orthogonal) omplement of ξinside η.So we need the negative bundle µ−2 = ε2 ⊕ ν2 over G2(r), see Proposition4.2. I have given ε and ν an index, so one an distinguish between them for
µ−2 and µ−1 . Now (µ−1 )(2) is not a priori a subbundle of µ−2 , but sine µ−1 = ε1where the S1 ation is trivial on the �bers, we see that (µ−1 )(2) = ε2 as bundlesover G(r)(2) ∼= G2(r), so that µ−2 − (µ−1 )(2) = ν2 = ν, where ν is the omplexbundle found in the proof of Proposition 4.2. From here, we know that for ageodesi f of length 2, parametrized as f(t) for t ∈ [0, 1], the �ber of ν over
f is given by g(t)if ′(t) for t ∈ [0, 1], where g ∈ spanR {cos(2πt), sin(2πt)}.The rotation ation of S1 is given by, for θ ∈ [0, 1]:

θ ∗ (f(t), cos(2πt)if ′(t)) = (f(t− θ), cos(2πt− 2πθ)if ′(t− θ))and similarly for sin(2πt). The omplex struture J found in the proof ofProposition 4.2 is J(cos(2πt)) = sin(2πt).Now let us ompare this to the bundle T , i.e. the bundle oming from thestandard representation of S1. Ignoring the S1 ation, T is just a produtbundle G2(r)×C. The S1 ation of θ ∈ [0, 1] is given by
θ ∗ (f(t), c) = (f(t− θ), e2πiθc), for t ∈ [0, 1].We will now onstrut a map ϕ : T −→ ν, given by

ϕ(f, c)(t) = (f(t), c cos(2πt)if ′(t)).We hek that this is S1-equivariant, i.e. that the following diagram om-mutes (it su�es to hek c = 1):
T

ϕ //

θ∗
��

ν

θ∗
��

(f(t), 1) � ϕ //
_

θ∗
��

(f(t), cos(2πt)if ′(t))
_

θ∗ ?
���
�

�

T
ϕ // ν (f(t− θ), e2πiθ) � ϕ // (f(t− θ), e2πiθ cos(2πt)if ′(t− θ))



90 6 S1-equivariant K-theory of LCP rThis ommutes, sine e2πiθ = cos(2πθ) + i sin(2πθ) is multiplied on cos(2πt)as
e2πiθ cos(2πt) = cos(2πθ) cos(2πt) + sin(2πθ)J(cos(2πt))

= cos(2πθ) cos(2πt) + sin(2πθ) sin(2πt)

= cos(2π(t− θ))by the trigonometri formula. So ϕ is S1-equivariant. Then ϕ de�nes anisomorphism of S1 bundles, sine it is learly an isomorphism on the �bers.We have shown µ−2 − (µ−1 )(2) = ν ∼= T .Now let us look at the (N)-twisted ase. We get again (µ−1 )(2N) = ε2N ,and so (µ−2 )(N) − (µ−1 )(2N) = ν(N) ∼= T (N), by the above isomorphism. Now,
T (N) is the bundle with S1 ation of θ ∈ [0, 1] given by

θ ∗ (f(t), c) = (f(t− θ), (e2πit)Nc), for t ∈ [0, 1].This shows that this is the same bundle as TN , so the map EN is multi-pliation by the Euler lass of TN , and sine this is a line bundle, we get
Λ−1(T

N) = 1− TN = 1− (t+ 1)N .Using the previous two lemmas, we an now investigate equation (74)in K̃1
hS1((F1/F0)

(2N); F2), where N = 2n. As already noted, pN−1(t) ≡
tN−1(mod 2), and so the left-hand side of (74) is (tN−1 − mt2N−1)x mod-ulo 2. The right-hand side is EN (z) = (1 − (t + 1)2n

)z ≡ −t2n

z(mod 2).So
(tN−1 −mt2N−1)x = −tNz ∈ (Z[t]/t2N )1⊕ (Z[t]/t2N )xClearly, this is impossible, sine the term tN−1x annot be anelled by −tNzin (Z[t]/t2N )1 ⊕ (Z[t]/t2N )x. This gives a ontradition, so the given f westarted with must be divisible by 2. This proves the Theorem.



Notation 91NotationIn this table an be found some of the frequently used notation in this paper:
≃ (between topologial spaes): homotopy equivalent.
F C or H.
G(r) The spae of simple parametrized losed geodesis on FP r.Sometimes written G(HP r) or G(CP r) to be spei�.
Gn(r) The spae of parametrized losed geodesis of length n,an be obtained by iterating n times the elements of G(r).
∆(r) The quotient S1 \G(r) under the rotation ation of S1.
EG A ontratible spae with a free ation of the group G;unique up to homotopy.
BG EG/G, the lassifying spae of G.
XhS1 ES1 ×S1 X, where X is an S1-spae.
K∗hS1(X) K∗(XhS1).
K∗hS1(X, ∗) The relative group K∗(XhS1, BS1).
T The standard omplex line bundle over BS1 = CP∞, or itspullbak to XhS1 under the map pr1 : ES1 ×S1 X −→ BS1.Also used for the lass of this bundle in K-theory.
t the lass T − 1, see T .
Fn E−1(]−∞, n2]), the nth term in the Morse �ltration.
µ−n the negative bundle for the ritial manifold Gn(r).



92 REFERENCESReferenes[Atiyah℄ M. Atiyah, K-theory, Benjamin, New York, 1967.[Atiyah2℄ M. Atiyah, Charaters and ohomology of �nite groups, Publ.Math. Institut des Hautes Études Sienti�ques, Paris (1961), 247-289.[Atiyah-Hirzebruh℄ M. Atiyah, F. Hirzebruh,Vetor bundles and homoge-neous spaes, Proeedings of Symposium in Pure Mathematis, Vol 3,Amer. Math. So., 1961.[Atiyah-MaDonald℄ M. Atiyah, I. MaDonald, Introdution to ommutativeAlgebra, Addison-Wesley, 1969.[Bökstedt-Ottosen℄ M. Bökstedt, I. Ottosen, String Cohomology Groups ofComplex Projetive Spaes, University of Aarhus, Preprint Series no8, 2006.[Bökstedt-Ottosen2℄ M. Bökstedt, I. Ottosen, The Suspended Free LoopSpae of a Symmetri Spae, University of Aarhus, Preprint Seriesno 18, 2004.[Borel℄ A. Borel, Sur la ohomologie des espaes �brés prinipaux et des es-paes homogènes de groupes de Lie ompats. Ann. Math. 57, 1953,p. 115-207.[Bredon℄ G. Bredon, Introdution to Compat Transformation Groups, Aa-demi Press, 1972.[Freed-Hopkins-Teleman℄ D. Freed, M. Hopkins, C. Teleman, Twisted equiv-ariant K-theory with omplex oe�ients, Journal of Topology 20081(1), 16-44.[Hather1℄ A. Hather, Algebrai Topology, Cambridge University Press,2002.[Hather2℄ A. Hather, Spetral Sequenes in Algebrai Topology, A.Hather's home page (www.math.ornell.edu/∼hather/).[Klilngenberg1℄ W. Klingenberg, Letures on losed geodesis, Grundlehrender Math. Wiss. 230, Springer Verlag, 1978.[Klingenberg2℄ W. Klingenberg, The spae of losed urves on a projetivespae, Quart. J. Math. Oxford Ser(2) 20 (1969), 11-31.



REFERENCES 93[Lang℄ S. Lang, Cylotomi Fields, Graduate Texts in Mathematis 59,Springer-Verlag, 1978.[Madsen-Tornehave℄ I. Madsen, J. Tornehave, From Calulus to Cohomology,Cambridge University Press, 1997.[MGibbon-Roitberg℄ C. MGibbon, J. Roitberg, Phantom maps and ratio-nal equivalenes, Amerian Journal of Mathematis 116 (1994), 1365-1379.[Milnor-Stashe�℄ J. Milnor, J. Stashe�, Charateristi Classes, Annals ofMathematis Studies 76, Prineton University Press, 1974.[tomDiek℄ T. tom Diek, Transformation Groups, de Gruyter studies inMathematis 8, 1987.[Ziller℄ W. Ziller, The free loop spae of globally symmetri spaes, Invent.Math. 41 (1977) 1-22.


