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Summary 5SummaryMy ph.d. thesis onsists of my two artiles:(I) S. Boldsen, Improved homologial stability for the mapping lass groupwith integral or twisted oe�ients, (59 pages), submitted for publia-tion to Journal of Topology and available at arXiv:0904.3269.(II) S. Boldsen, Di�erent versions of mapping lass groups of surfaes, (18pages), will soon be available at arXiv.Both papers investigate the properties of the mapping lass group of sur-faes. Mapping lass groups are entral to many areas of mathematis; mostprominently to algebrai geometry, di�erential geometry and topology. Italso plays a role in various �eld theories from mathematial physi, and ingeometri group theory.Let Fg,r denote the ompat oriented surfae of genus g with r boundaryirles, then the assoiated mapping lass group, Γg,r, is
Γg,r = π0Di�+(Fg,r; ∂),the omponents of the group of orientation-preserving di�eomorphisms of

Fg,r keeping the boundary pointwise �xed.The paper (I) has as its starting point a never published manusript ofJ. Harer, [Harer2℄, from 1993. This manusript states an improved stabilityrange for the homology of the mapping lass group, but it rests upon ertainunproven statements. My goal from the outset was to prove these statements.We ompare di�erent mapping lass groups using the maps indued bygluing a pair of pants onto one or two boundary irles, and extending thedi�eomorphism by the identity on the pair of pants,
Σ0,1 : Γg,r −→ Γg,r+1, Σ1,−1 : Γg,r −→ Γg+1,r−1Homology stability means these maps indue isomorphism on homology inertain degrees. We now state our main results. The �rst result is:Theorem 1. The map Hn(Γg,r) −→ Hn(Γg+l,r+m) indued by Σl,m satis�es:

(i) Σ0,1 is an isomorphism for 2g ≥ 3n, when r ≥ 1

(ii) Σ1,−1 is surjetive for 2g ≥ 3n−1, and an isomorphism for 2g ≥ 3n+2,when r ≥ 2.



6 SummaryWhile Harer got his result only for homology with rational oe�ients, wehave integer oe�ients. Theorem 1 only holds for surfaes with boundary.To get a result for losed surfaes, we use the map indued by gluing on adisk to a boundary omponent, and obtainTheorem 2. The map Hk(Γg,1) −→ Hk(Γg) is surjetive for 2g ≥ 3k − 1,and an isomorphism for 2g ≥ 3k + 2.This was not onsidered by Harer, but N. Ivanov has shown how to deduesuh a result from the one for surfaes with boundary.We wish to obtain suh a stability result, not only for trivial oe�ientsbut also for so-alled oe�ients systems of a �nite degree. A oe�ientsystem is a funtor V from C to the ategory of abelian groups withoutin�nite division. If the funtor is onstant, we say V has degree 0. Wethen de�ne a oe�ient system of degree k indutively, by requiring that themaps V (F )−→V (Σi,jF ) are split injetive and their okernels are oe�ientsystems of degree k − 1, see De�nition 4.4. As an example, the funtor
H1(F ; Z) is a oe�ients system of degree 1, and its kth exterior power
ΛkH1(F ; Z), onsidered in [Morita1℄, has degree k.Theorem 3. Let F be a surfae of genus g, and let V be a oe�ient systemof degree k. Then the map

Hn(Γ(F );V (F )) −→ Hn(Γ(Σl,mF );V (Σl,mF ))indued by Σl,m satis�es:
(i) Σ0,1 is an isomorphism for 2g ≥ 3n+ k.

(ii) Σ1,−1 is surjetive for 2g ≥ 3n + k − 1, and an isomorphism for 2g ≥
3n+ k + 2.Note that for the result for the integers is a speial ase of this. One reasonto study oe�ient systems is that we an then alulate the homology of thespae of surfaes mapping into a bakground spae X from [Cohen-Madsen℄:

Sg,r(X, γ) =
{
(Fg,r, ϕ, f) | Fg,r ⊆ R∞ × [a, b], ϕ : ⊔S1 −→ ∂Fg,r is a para-metrization, f : Fg,r −→ X is ontinuous with f ◦ ϕ = γ}De�ne the oe�ient system V X

n (F ) = Hn(Map(F/∂F,X)). Let Sg,r(X, γ)•denote the onneted path omponent orresponding to the trivial lass 0 ∈
π2(X), and similarly for Ω∞(CP∞−1 ∧X+)•. Then



Summary 7Theorem 4. Let X be a simply onneted spae suh that V X
m is withoutin�nite division for all m. Then for 2g ≥ 3n + 3 and r ≥ 1 we get anisomorphism

Hn(Sg,r(X, γ)•) ∼= Hn(Ω
∞(CP∞−1 ∧X+)•).In this paper, we �rst prove Theorem 1 for onstant integral oe�ients,

V = Z. Our proof of Theorem 1 in this ase is muh inspired by Harer'smanusript [Harer2℄. The rational stability results laimed by Harer are �onedegree better� than what is obtained here with integral oe�ients. Beforedisussing the disrepany it is onvenient to ompare the stability withFaber's onjeture.LetMg be Riemann's moduli spae; reall that H∗(Mg; Q) ∼= H∗(Γg; Q).From above we have maps
H∗(Γg; Q) −→ H∗(Γg,1; Q)←− H∗(Γ∞,1; Q)and by [Madsen-Weiss℄,

H∗(Γ∞,1; Q) = Q[κ1, κ2, . . .]. (1)The lasses κi ∈ H2i(Γg,r) for r ≥ 0 are the standard lasses de�ned byMiller, Morita and Mumford (κi is denoted ei by Morita).The tautologial algebra R∗(Mg) is the subring of H∗(Γg; Q) generatedmultipliatively by the lasses κi. Faber onjetured in [Faber℄ the ompletealgebrai struture of R∗(Mg). Part of the onjeture asserts that it is aPoinaré duality algebra (Gorenstein) of formal dimension 2g − 4, and thatit is generated by κ1, . . . , κ[g/3], where [g/3] denotes g/3 rounded down. Thelatter statement was proved by Morita (f. [Morita1℄ prop 3.4).It follows from our theorems above that κ1, . . . , κ[g/3] are non-zero in
H∗(Γg; Q) when ∗ ≤ 2[g

3
] − 2. More preisely, if g ≡ 1, 2 (mod 3) thenour results show that

H∗(Γg; Q) ∼= H∗(Γ∞,1; Q) for ∗ ≤ 2[g
3
], (2)but if g ≡ 0 (mod 3), our result only show the isomorphism for ∗ ≤ 2[g

3
]− 1.In ontrast, [Harer2℄ asserts the isomorphism for ∗ ≤ 2[g

3
] for all g. We notethat is follows from (3) and Morita's result that the best possible stabilityrange for H∗(Γg; Q) is ∗ ≤ 2[g

3
]. We are �one degree o�� when g ≡ 0 (mod 3).The stability of [Harer2℄ is based on three unproven assertions that I havenot been able to verify. I will disuss two of them below, and the third insetion 3.1.



8 SummaryBoundary onneted sum of surfaes with non-empty boundary de�nesa group homomorphism Γg,r × Γh,s −→ Γg+h,r+s−1, and hene a produt inhomology
H∗(Γg,r)⊗H∗(Γh,s) −→ H∗(Γg+h,r+s−1), r, s > 0.The lasses κi are primitive with respet to this homology produt, in thesense that 〈κi, a · b〉 = 0 if both a and b have positive degree [Morita2℄. Harerproves in [Harer3℄ that H2(Γ3,1; Q) = Q {κ1}. Let κ̌1 ∈ H2(Γ3,1; Q) be thedual to κ1, and let κ̌ n

1 be the n'th power under the multipliation
H2(Γ3,1)

⊗n −→ H2n(Γ3n,1).Then 〈κ n
1 , κ̌

n
1 〉 = n!, so κ̌ n

1 6= 0 in H2n(Γ3n,1; Q), f. part (i) of Theorem 1.Dehn twist around the (r+1)st boundary irle yields a group homomorphism
Z −→ Γ1,r+1, and hene a lass τr+1 ∈ H1(Γ1,r+1).We an now formulate two of Harer's three assertions one needs in orderto improve the rational stability result by �one degree� when g ≡ 0 (mod 3),i.e. from ∗ ≤ 2[g

3
]− 1 to ∗ ≤ 2[g

3
]. The assertions are:

(i) κ̌ n
1 = 0 in H2n(Γg,r; Q) for g < 3n.

(ii) τr+1·κ̌
n
1 is non-zero in Coker(H2n+1(Γ3n+1,r; Q) −→ H2n+1(Γ3n+1,r+1; Q).The short paper (II) is about the onnetion between the topologialgroups of either di�eomorphisms, homeomorphisms or homotopy equiva-lenes of a surfae. The main result is that these groups have the sameonneted omponents. This is basially a result that dates bak to Baer inthe 1920ies, but it is hard to �nd in the written literature; there is no goodreferene. This paper gives a short, self-ontained exposition of this resultand its proof.As de�ned above, the mapping lass group of a surfae F is Γ(F ) =

π0(Di�+(F, ∂F )). We now also onsider the group Di�(F, {∂F}) of di�eo-morphisms mapping ∂F to itself as a set. We ompare the groups of dif-feomorphisms to the orresponding groups of homeomorphisms, Top(F, ∂F ),and homotopy equivalenes, hAut(F, ∂F ). Part (4) of the Theorem belowshows that it does not matter whether one onsiders di�eomorphisms, home-omorphisms, or even homotopy equivalenes, when working in the mappinglass group.Theorem 5. Let F be a ompat surfae and not a sphere, a disk, a ylinder,a Möbius band, a torus, a Klein bottle, or RP 2. Then there are bijetions
(1) π0(Di�(F, {∂F}))

∼=
−→ π0(Top(F, {∂F}))

∼=
−→ π0(hAut(F, {∂F}))



Summary 9
(2) π0(Di�(F, ∂F ))

∼=
−→ π0(Top(F, ∂F ))

∼=
−→ π0(hAut(F, ∂F )),

(3) π0(Di�+(F, {∂F}))
∼=
−→ π0(Top+(F, {∂F}))

∼=
−→ π0(hAut+(F, {∂F})),

(4) π0(Di�+(F, ∂F ))
∼=
−→ π0(Top+(F, ∂F ))

∼=
−→ π0(hAut+(F, ∂F )).The proof uses mostly elementary topologial tools, suh as overingspaes, tubular neighborhoods, and transversality. The main method is ut-ting up the surfae in elementary piees, proving the results for those, andarefully gluing them bak together. This requires a few heavier tools, mostimportantly the lassi�ation of surfaes, and a result of Smale that any dif-feomorphism of the dis, whih is identity on the boundary, is isotopi to theidentity relative to the boundary.Referenes[Cohen-Madsen℄ R. Cohen and I. Madsen, Surfaes in a bakgroundspae and the homology of the mapping lass groups, arXivmath.GT/0601750 (2006).[Faber℄ C. Faber, A onjetural desription of the tautologial ring of themoduli spae of urves, Aspets Math 33, vieweg 1999.[Harer1℄ J. L. Harer, Stability of the homology of the mapping lass group oforientable surfaes, Ann. of Math. Vol 121 (1985) 215-249.[Harer2℄ J. L. Harer, Improved homology stability for the homology of themapping lass groups of surfaes, preprint (1993).[Harer3℄ J. L. Harer, The third homology group of the moduli spae of urves,Duke Math. J. Volume 63, Number 1 (1991), 25-55.[Morita1℄ S. Morita, Generators for the tautologial algebra of the modulispae pf urves, Topology 42 (2003) 787-819.[Morita2℄ S. Morita, Charateristi Classes of surfae Bundles, Inv. Math.90, No 3 (1987) 551-577.



Part IImproved homologial stabilityfor the mapping lass group withintegral or twisted oe�ients



Introdution 11IntrodutionLet Fg,r denote the ompat oriented surfae of genus g with r boundaryirles, and let Γg,r be the assoiated mapping lass group,
Γg,r = π0Di�+(Fg,r, ∂Fg,r),the omponents of the group of orientation-preserving di�eomorphisms of

Fg,r keeping the boundary pointwise �xed. Gluing a pair of pants onto oneor two boundary irles indue maps
Σ0,1 : Γg,r −→ Γg,r+1, Σ1,−1 : Γg,r −→ Γg+1,r−1whose omposite Σ1,0 := Σ1,−1 ◦ Σ0,1 orresponds to adding to Fg,r a genusone surfae with two boundary irles. Using the mapping one of Σi,j ,

(i, j) = (0, 1), (1,−1) or (1, 0) we get a relative homology group, whih �tsinto the exat sequene
. . . −→ Hn(Σi,jΓg,r) −→ Hn(Σi,jΓg,r,Γg,r) −→ Hn−1(Γg,r) −→ . . .Homology stability results for the mapping lass group an then be derivedfrom the vanishing the relative group (in some range).We wish to show suh a stability result for not only for trivial oe�ientsbut also for so-alled oe�ients systems of a �nite degree. For this, we workin Ivanov's ategory C of marked surfaes, f. [Ivanov1℄ and §4.1 below fordetails. The maps Σ1,0 and Σ0,1 are funtors on C, and Σ1,−1 is a funtor ona subategory.A oe�ient system is a funtor V from C to the ategory of abeliangroups without in�nite division. If the funtor is onstant, we say V has de-gree 0. We then de�ne a oe�ient system of degree k indutively, by requir-ing that the maps V (F )−→V (Σi,jF ) are split injetive and their okernelsare oe�ient systems of degree k − 1, see De�nition 4.4. As an example,the funtor H1(F ; Z) is a oe�ients system of degree 1, and its kth exteriorpower ΛkH1(F ; Z), onsidered in [Morita1℄, has degree k. To formulate ourstability result, we onsider relative homology group with oe�ients in V ,

RelVn (Σl,mF, F ) = Hn(Σl,mΓ(F ),Γ(F );V (Σl,mF ), V (F )).These groups again �t into a long exat sequene. Our main result isTheorem 1. For F a surfae of genus g with at least 1 boundary omponent,and V a oe�ient system of degree kV , we have
RelVn (Σ1,0F, F ) = 0 for 3n ≤ 2g − kV ,



12 Introdution
RelVn (Σ0,1F, F ) = 0 for 3n ≤ 2g − kV .Moreover, if F has at least 2 boundary omponents, we have

RelVq (Σ1,−1F, F ) = 0 for 3q ≤ 2g − kV + 1.As a orollary, we obtain that Hn(Γg,r;V (Fg,r)) is independent of g and
r for 3n ≤ 2g − kV − 2 and r ≥ 1. For a more preise statement, seeTheorem 4.17. This uses that Σ0,1 is always injetive, sine the omposition
Γg,r

Σ0,1

−→ Γg,r+1
Σ0,−1

−→ Γg,r is an isomorphism, where Σ0,−1 is the map gluing adisk onto a boundary omponent.The proof of Theorem 1 with twisted oe�ients uses the setup from[Ivanov1℄. His ategory of marked surfaes is slightly di�erent from ours,sine we also onsider surfaes with more than one boundary omponent andthus get results for Σ0,1 and Σ1,−1.For onstant oe�ients, V = Z, we also onsider the map Σ0,−1 : Γg,1 −→
Γg indued by gluing a disk onto the boundary irle, where our result is:Theorem 2. The map

Σ0,−1 : Hk(Γg,1; Z) −→ Hk(Γg; Z)is surjetive for 2g ≥ 3k − 1, and an isomorphism for 2g ≥ 3k + 2.The proof of Theorem 2 follows [Ivanov1℄, where a stability result forlosed surfaes is dedued from a stability theorem on surfaes with boundary.We get an improved result, beause Theorem 1 has a better bound thanIvanov's stability theorem (whih has isomorphism for g > 2k).In this paper, we �rst prove Theorem 1 for onstant integral oe�ients,
V = Z. Our proof of Theorem 1 in this ase is muh inspired by Harer'smanusript [Harer2℄, whih was never published. Harer's manusript is aboutrational homology stability. The rational stability results laimed in [Harer2℄are �one degree better� than what is obtained here with integral oe�ients.Before disussing the disrepany it is onvenient to ompare the stabilitywith Faber's onjeture.LetMg be Riemann's moduli spae; reall that H∗(Mg; Q) ∼= H∗(Γg; Q).From above we have maps

H∗(Γg; Q) −→ H∗(Γg,1; Q)←− H∗(Γ∞,1; Q)and by [Madsen-Weiss℄,
H∗(Γ∞,1; Q) = Q[κ1, κ2, . . .]. (3)



Introdution 13The lasses κi ∈ H2i(Γg,r) for r ≥ 0 are the standard lasses de�ned byMiller, Morita and Mumford (κi is denoted ei by Morita).The tautologial algebra R∗(Mg) is the subring of H∗(Γg; Q) generatedmultipliatively by the lasses κi. Faber onjetured in [Faber℄ the ompletealgebrai struture of R∗(Mg). Part of the onjeture asserts that it is aPoinaré duality algebra (Gorenstein) of formal dimension 2g − 4, and thatit is generated by κ1, . . . , κ[g/3], where [g/3] denotes g/3 rounded down. Thelatter statement was proved by Morita (f. [Morita1℄ prop 3.4).It follows from our theorems above that κ1, . . . , κ[g/3] are non-zero in
H∗(Γg; Q) when ∗ ≤ 2[g

3
] − 2. More preisely, if g ≡ 1, 2 (mod 3) thenour results show that

H∗(Γg; Q) ∼= H∗(Γ∞,1; Q) for ∗ ≤ 2[g
3
], (4)but if g ≡ 0 (mod 3), our result only show the isomorphism for ∗ ≤ 2[g

3
]− 1.In ontrast, [Harer2℄ asserts the isomorphism for ∗ ≤ 2[g

3
] for all g. We notethat is follows from (3) and Morita's result that the best possible stabilityrange for H∗(Γg; Q) is ∗ ≤ 2[g

3
]. We are �one degree o�� when g ≡ 0 (mod 3).The stability of [Harer2℄ is based on three unproven assertions that I havenot been able to verify. I will disuss two of them below, and the third insetion 3.1.Boundary onneted sum of surfaes with non-empty boundary de�nesa group homomorphism Γg,r × Γh,s −→ Γg+h,r+s−1, and hene a produt inhomology

H∗(Γg,r)⊗H∗(Γh,s) −→ H∗(Γg+h,r+s−1), r, s > 0.The lasses κi are primitive with respet to this homology produt, in thesense that 〈κi, a · b〉 = 0 if both a and b have positive degree [Morita2℄. Harerproves in [Harer3℄ that H2(Γ3,1; Q) = Q {κ1}. Let κ̌1 ∈ H2(Γ3,1; Q) be thedual to κ1, and let κ̌ n
1 be the n'th power under the multipliation

H2(Γ3,1)
⊗n −→ H2n(Γ3n,1).Then 〈κ n

1 , κ̌
n
1 〉 = n!, so κ̌ n

1 6= 0 in H2n(Γ3n,1; Q), f. part (i) of Theorem 1.Dehn twist around the (r+1)st boundary irle yields a group homomorphism
Z −→ Γ1,r+1, and hene a lass τr+1 ∈ H1(Γ1,r+1).We an now formulate two of Harer's three assertions one needs in orderto improve the rational stability result by �one degree� when g ≡ 0 (mod 3),i.e. from ∗ ≤ 2[g

3
]− 1 to ∗ ≤ 2[g

3
]. The assertions are:

(i) κ̌ n
1 = 0 in H2n(Γg,r; Q) for g < 3n.

(ii) τr+1·κ̌
n
1 is non-zero in Coker(H2n+1(Γ3n+1,r; Q) −→ H2n+1(Γ3n+1,r+1; Q).The third assertion one needs is stated in Remark 3.5.
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151 Homology of groups and spetral sequenes1.1 Relative homology of groupsFor a group G, and Z[G]-modulesM and M ′, left and right modules, respe-tively, we have the bar onstrution:
Bn(M

′, G,M) = M ′ ⊗ (Z[G])⊗n ⊗M,with the di�erential
dn(m

′ ⊗ g1 ⊗ · · · ⊗ gn ⊗m) = (m′g1)⊗ g2 ⊗ · · · ⊗ gn ⊗m

+
n−1∑

i=1

(−1)im′ ⊗ g1 ⊗ · · · ⊗ gigi+1 ⊗ · · · ⊗ gn ⊗m

+ (−1)nm′ ⊗ g1 ⊗ · · · ⊗ gn−1 ⊗ (gnm).If either M or M ′ are free Z[G]-modules, B∗(M ′, G,M) is ontratible. If
M ′ = Z with trivial G-ation, we write B∗(G,M). Then the nth homologygroup of G with oe�ients in M is de�ned to be

Hn(G;M) = Hn(B∗(G,M)) ∼= TorZGn (Z,M).There is a relative version of this. Suppose f : G −→ H is a group ho-momorphism and ϕ : M −→ N is an f -equivariant map of Z[G]-modules.One de�nes the relative homology H∗(H,G;N,M) to be the homology of thealgebrai mapping one of
(f, ϕ)∗ : B∗(G,M) −→ B∗(H,N),so that there is a long exat sequene

· · · → Hn(G;M)→ Hn(H ;N)→ Hn(H,G;M,N)→ Hn−1(G;M)→ · · ·1.2 Spetral sequenes of group ationsSuppose next that X is a onneted simpliial omplex with a simpliialation of G. Let C∗(X) be the ellular hain omplex of X. Given a Z[G]-module M , de�ne the hain omplex
C†n(X;M) =





0, n < 0;
M, n = 0;
Cn−1(X)⊗Z M, n ≥ 1; (5)



16 1 Homology of groups and spetral sequeneswith di�erential ∂†n de�ned to be ∂n−1 ⊗ idM for n > 1, and equal to theaugmentation ε ⊗ idM for n = 1. Note if X is d-onneted for some d ≥ 1,or more generally, if the homology Hi(X) = 0 for 1 ≤ i ≤ d, then C†∗(X;M)is exat for ∗ ≤ d+ 1. This is used below in the spetral sequene.Again there is a relative version. Let f : G −→ H , ϕ : M −→ N beas above, and let X ⊆ Y be a pair of simpliial omplexes with a simpliialation of G and H , respetively, ompatible with f in the sense that theinlusion i : X −→ Y is f -equivariant. Assume in addition that the induedmap on orbits,
i♯ : X/G

∼= // Y/H (6)is a bijetion.De�nition 1.1. With G, M and X as above, let σ be a p-ell of X. Let Gσdenote the stabiliser of σ, and let Mσ = M , but with a twisted Gσ-ation,namely
g ∗m =

{
gm, if g ats orientation preservingly on σ;
−gm, otherwise.Theorem 1.2. Suppose X and Y are d- onneted and that the orbit map(6) is a bijetion. Then there is a spetral sequene {

En
r,s

}
n
onverging tozero for r + s ≤ d+ 1, with

E1
r,s
∼=

⊕

σ∈∆̄r−1

Hs(Hσ, Gσ;Nσ,Mσ).Here ∆̄p = ∆̄p(X) denotes a set of representatives for the G-orbits of the
p-simplies in X.Proof. Consider the double omplex with hain groups

Cn,m = Fn(H)⊗Z[H] C
†
m(Y,N)⊕ Fn−1(G)⊗Z[G] C

†
m(X,M),where Fn(G) = Bn(G,Z[G]), and di�erentials (supersripts indiate horizon-tal and vertial diretions)

dhm = id⊗ ∂Ym ⊕ id⊗ ∂Xm
dvn = ∂Hn ⊗ id⊕ (

f∗ ⊗ (i, ϕ)∗ + ∂Gn−1 ⊗ id) . (7)Standard spetral sequene onstrutions give two spetral sequenesboth onverging to H∗(TotC), where TotC is the total omplex of C∗,∗,



1.2 Spetral sequenes of group ations 17
(TotC)k =

⊕

n+m=k

Cn,m and dTot = dh + dv. The vertial spetral sequene(indued by dv) has E1 page:
E1
r,s = Hr(Cs,∗)

= Hr

(
Fs(H)⊗Z[H] C

†
∗(Y ;N)

)
⊕Hr

(
Fs−1(G)⊗Z[G] C

†
∗(X;M)

)
.Sine the resolutions F∗ are free, this is zero where C†∗(X;M) and C†∗(Y ;N)are exat, i.e. for r ≤ d + 1. So this spetral sequene onverges to zerowhere r + s ≤ d+ 1, and we onlude that H∗(TotC) = 0 for ∗ ≤ d+ 1.The horizontal spetral sequene, whih onsequently also onverges tozero in total degrees ≤ d+ 1, has E1 page

E1
r,s = Hs

(
F∗(H)⊗Z[H] C

†
r(Y,N)⊕ F∗−1(G)⊗Z[G] C

†
r(X,M)

)
. (8)For r ≥ 1 we have

C†r(X,M) = Cr−1(X)⊗Z[G] M ∼=
⊕

σ∈∆r−1(X)

Z[G · σ]⊗Z[G] M

∼=
⊕

σ∈∆̄r−1

Z[G]⊗Z[Gσ ] Mσ =
⊕

σ∈∆̄r−1

IndGGσ
Mσ, (9)where ∆p(X) denotes the p-ells in X, and where ∆̄p ⊆ ∆p(X) is a set ofrepresentatives for the G-orbits. Finally, IndGGσ

Mσ = Z[G]⊗Z[Gσ ] Mσ.By assumption (6), the image of ∆̄r−1 under i also works as representa-tives for the H-orbits of (r − 1)-ells in Y . Therefore we also have:
C†r(Y,N) ∼=

⊕

σ∈∆̄r−1

IndHHσ
Nσ. (10)We insert (9) and (10) into the formula (8) to get for r ≥ 1:

E1
r,s = Hs

(
F∗(H)⊗Z[H] C

†
r(Y,N)⊕ F∗−1(G)⊗Z[G] C

†
r(X,M)

)

∼= Hs


F∗(H)⊗Z[H]

⊕

σ∈∆̄r−1

IndHHσ
Nσ ⊕ F∗−1(G)⊗Z[G]

⊕

σ∈∆̄r−1

IndGGσ
Mσ




∼=
⊕

σ∈∆̄r−1

Hs

(
F∗(H)⊗Z[H] IndHHσ

Nσ ⊕ F∗−1(G)⊗Z[G] IndGGσ
Mσ

)

∼=
⊕

σ∈∆̄r−1

Hs

(
F∗(H)⊗Z[Hσ ] Nσ ⊕ F∗−1(G)⊗Z[Gσ ] Mσ

)

∼=
⊕

σ∈∆̄r−1

Hs(Hσ, Gσ, Nσ,Mσ). (11)



18 1 Homology of groups and spetral sequenesThe �nal isomorphism above uses that F∗(H) is also a Z[Hσ]-module. For
r = 0,

E1
0,s = Hs(H,G;N,M).Thus we set Hσ = H when σ ∈ ∆̄−1 = {∅}.For appliation in the proof of Theorem 4.15, we need to relax the on-dition (6) to the situation where i♯ is only injetive:Theorem 1.3. With the assumptions of Theorem 1.2, but with i♯ : X/G −→

Y/H is only injetive, there is a spetral sequene {
En
r,s

}
n
onverging to zerofor r + s ≤ d+ 1, and

E1
r,s
∼=

⊕

σ∈Σr−1(X)

Hs(Hσ, Gσ;Nσ,Mσ)⊕
⊕

σ∈Γr−1(Y )

Hs(Hσ, Nσ).Here Σp(X) denotes a set of representatives for the G-orbits of the p-ells in
X, and Γn(Y ) denotes a set of representatives for those H-orbits whih donot ome from n-ells in X under i♯.Proof. We an hoose Σn(Y ) = i(Σn(X)) ∪ Γn(Y ). In this ase we obtain:

E1
r,s
∼=

⊕

σ∈Σr−1

Hs(Hσ, Gσ, Nσ,Mσ)⊕
⊕

σ∈Γr−1(Y )

Hs(Hσ, Nσ).The �rst diret sum is obtained in the same way as in the bijetive ase. Theseond onsists of absolute homology, sine the ells of Γn(Y ) are not in orbitwith ells from X.We are primarily going to use the absolute ase, Y = ∅:Corollary 1.4. For a group G ating on a d-onneted simpliial omplex
X, and a G-module M , there is a spetral sequene onverging to zero for
r + s ≤ d+ 1, with

E1
r,s =

⊕

σ∈∆̄r−1

Hs(Gσ,Mσ),where ∆̄r−1 is a set of representatives of the G-orbits of (r − 1)-ells in X.In our appliations, we often have a rotation-free group ation, in thefollowing sense:De�nition 1.5. A simpliial group ation of G on X is rotation-free if foreah simplex σ of X, the elements of Gσ �xes σ pointwise.



1.3 The �rst di�erential 19Corollary 1.6. For rotation-free ations, the spetral sequene of Thm. 1.2takes the form:
E1
r,s
∼=

⊕

σ∈∆̄r−1

Hs(Hσ, Gσ, N,M)in the relative ase, and
E1
r,s
∼=

⊕

σ∈∆̄r−1

Hs(Gσ,M)in the absolute ase.Proof. The extra assumption implies that eah g ∈ Gσ preserves the orien-tation of σ. Thus g ats on Mσ in the same way as on M , so Mσ and M areidential as Gσ-modules. The same applies to N .Remark 1.7. In some of our appliations of the absolute version of thespetral sequene, G ats both transitively and rotation-freely on the n-simplies of X. In this ase there is only one G-orbit, so we get
E1
r,s
∼= Hs(Gσ;M),where σ is any (r − 1)-ell in X.1.3 The �rst di�erentialWe will need a formula for the �rst di�erential d1

r,s : E1
r,s −→ E1

r−1,s. Fromthe onstrution of the spetral sequenes of a double omplex, d1 is induedfrom the vertial di�erentials dv on homology. In the absolute version of thespetral sequene, assuming that G ats rotation-freely on X,
E1
r,s
∼=

⊕

σ∈∆̄r−1

Hs(Gσ,M).and it is not hard to se that the di�erential
d1
r,s :

⊕

σ∈∆̄r−1

Hs(Gσ,M) −→
⊕

τ∈∆̄r−2

Hs(Gτ ,M).has the following desription (see e.g. [Brown℄, Chapter VII, Prop 8.1.) Let
σ be an (r − 1)-simplex of X and τ an (r − 2)-dimensional fae of σ. Wehave the boundary operator

∂ : Cr−1(X,M) −→ Cr−2(X,M)



20 2 Ar omplexes and permutationsand we denote its (σ, τ)th omponent by ∂στ : M −→M . This is a Gσ-map,so together with the inlusion Gσ −→ Gτ it indues a map
uστ : H∗(Gσ,M) −→ H∗(Gτ ,M).Up to a sign uστ is the inlusion, beause X is a simpliial omplex. Conse-quently
∂(σ) =

r−1∑

j=0

(−1)j(jth fae of σ).So if τ is the ith fae of σ, then uστ = (−1)i. For σ ∈ ∆̄r−1, we annot besure that τ ∈ ∆̄r−2, but there is a g(τ) ∈ G suh that g(τ)τ = τ0 ∈ ∆̄r−2.The onjugation, g 7→ g(τ)gg(τ)−1, indues a map from Gτ to Gτ0 and henean isomorphism,
cg(τ) : H∗(Gτ ,M)

∼=
−→ H∗(Gτ0 ,M).Now d1 is given by

d1 |H∗(Gσ ,M)=
∑

τ fae of σ uστcg(τ). (12)Denoting the ith fae of σ by τi, this an be written:
d1|H∗(Gσ ,M) =

r−1∑

i=0

(−1)icg(τi). (13)2 Ar omplexes and permutationsWe write Fg,r for a ompat oriented surfae of genus g with r boundaryomponents.De�nition 2.1. Let F be a surfae with boundary. The mapping lass group
Γ(F ) = π0(Di�+(F, ∂F ))is the onneted omponents of the group of orientation-preserving di�eomor-phisms whih are the identity on a small ollar neighborhood of the boundary.We write Γg,r = Γ(Fg,r).To establish stability results about the homology of Γg,r, we will makeextensive use of utting along ars in Fg,r. These ars will be the verties insimpliial omplexes, the so-alled ar omplexes. The mapping lass groupat on these ar omplexes, and we an use the spetral sequenes of setion1.2. The di�erentials in the spetral sequenes are losely related to thehomomorphisms of Theorem 1 and Theorem 2 from the introdution.



2.1 De�nitions and basi properties 212.1 De�nitions and basi propertiesLet F be a surfae with boundary. To de�ne the ordering of the verties usedin the ar omplexes, we will need the orientation of ∂F . An orientation at apoint p ∈ ∂F is determined by a tangent vetor vp to the boundary irle at
p. Let wp be tangent to F at p, perpendiular to vp and pointing into F . Weall the orientation of ∂F at p determined by vp inoming if the pair (vp, wp)is positively oriented, and outgoing if (vp, wp) is negatively oriented, and usethe same terminology for the onneted omponent of ∂F that ontains p.De�nition 2.2. Given a surfae F with non-empty boundary. Fix two points
b0 and b1 in ∂F . If b0 and b1 are on the same boundary omponent, the aromplex we de�ne is denoted C∗(F ; 1). If b0 and b1 are on two di�erentboundary omponents of F , the resulting ar omplex is denoted C∗(F ; 2).
• A vertex of C∗(F ; i) is the isotopy lass rel endpoints of an ar (image ofa urve) in F starting in b0 and ending in b1, whih has a representativethat meets ∂F transversally and only in b0 and b1.
• An n-simplex α in C∗(F ; i) (alled an ar simplex) is set of n+1 verties,suh that there are representatives meeting eah other transversally in
b0 and b1 and not interseting eah other away from these two points.We further require that the omplement of the n+1 ars be onneted.The set of ars is ordered by using the inoming orientation of ∂F atthe starting point b0, and we write α = (α0, . . . , αn).
• Let ∆n(F ; i) denote the set of n-simplies, and let C∗(F, i) be the hainomplex with hain groups Cn(F ; i) = Z∆n(F ; i) and di�erentials d :
Cn(F ; i) −→ Cn−1(F ; i) given by:

d(α) =

n∑

j=1

(−1)j∂j(α), where ∂j(α) = (α0, . . . , α̂j , . . . , αn).The mapping lass group Γ(F ) ats on ∆n(F ; i) (by ating on the n + 1ars representing an n-simplex), and thus on Cn(F ; i). This ation is obvi-ously ompatible with the di�erentials d : Cn(F ; i) −→ Cn−1(F ; i), so we anonsider the quotient omplex with hain groups Cn(F ; i)/Γ(F ).To apply the spetral sequene of the ation of Γg,r on C∗(Fg,r; i), we needto know that the omplex is highly-onneted:Theorem 2.3 ([Harer1℄). The hain omplex C∗(Fg,r; i) is (2g − 3 + i)-onneted.



22 2 Ar omplexes and permutationsDe�nition 2.4. Given an ar simplex α in C∗(F ; i), we denote by N(α)the union of a small, open normal neighborhood of α with an open ollarneighborhood of the boundary omponent(s) of F ontaining b0 and b1. Thenthe ut surfae Fα is given by
Fα = F \N(α).For a surfae S, let ♯∂S denote the number of boundary omponents of

S. Then we have the following
♯∂(Fα) = ♯∂N(α) + r − 2i. (14)Lemma 2.5. Given an n-simplex α in C∗(F ; i), the Euler harateristi ofthe ut surfae Fα is
χ(Fα) = χ(F ) + n + 1Proof. We prove the formula indutively by removing one ar α0 at a time,so it su�es to show that χ(Fα0

) = χ(F ) + 1. Give F the struture of aCW omplex with α0 as a 1-ell (glued onto the 0-ells b0 and b1). When weut along α0, we get two opies of α0; that is, an additional 1-ell and twoadditional 0-ells. Using the standard formula for the Euler harateristi ofa CW omplex, we see that it inreases by 1.2.2 PermutationsLet Σn+1 denote the group of permutations of the set {0, 1, . . . , n}. I willwrite a permutation σ ∈ Σn as σ = [σ(0) σ(1) . . . σ(n)]; e.g. [0 2 1] in Σ3 isthe permutation �xing 0 and interhanging 1 and 2.To eah n-ar simplex α in one of the ar omplexes C∗(F ; i) we as-sign a permutation P (α) in Σn+1 as follows: Reall that the ars in α =
(α0, α1, . . . , αn) are ordered using the inoming orientation of ∂F at the start-ing point b0. We use the outgoing orientation in the end point b1 to read o�the positions of the n+1 ars at b1: αj is the σ(j)'th ar at b1, for j = 0, . . . , n.In other words, the ars at b1 will be ordered (ασ−1(0), ασ−1(1), . . . , ασ−1(n)).This gives the permutation σ = P (α). See Example 2.6 below.So we have a map P : ∆n(F ; i) −→ Σn+1. Sine γ ∈ Γ(F ) keeps a smallneighborhood of ∂F �xed, this indues a well-de�ned map

P : ∆n(F ; i)/Γ(F ) −→ Σn+1.There are several reasons why it is useful to look at the permutation P (α)of an ar simplex α. One is that P (α) determines the number of boundary



2.2 Permutations 23omponents of the ut surfae Fα, as we shall see below. Before explainingthis, we will need a few preliminary remarks.Let α be an ar in C∗(F ; i). We orient it from b0 to b1, and let tp(α) bethe (positive) tangent vetor at p ∈ α. A normal vetor vp to α at p is alledpositive if (vp, tp(α)) is a positive basis of TpF . We say that the right-handside of α is the part of the normal tube given by the positive normal vetors.When drawing pitures to aid the geometri intuition, we always indi-ate the orientation of F and ∂F (with arrows). Also, the orientation of
F will always be the same, namely the orientation indued by the standardorientation of this paper. This has the advantage that orientation-dependingproperties like the right-hand side will be onsistent throughout the piture,even if we draw two di�erent areas of one surfae.Example 2.6. Let α = (α0, α1, α2) be a 2-simplex in C∗(Fg,r; 1), with per-mutation P (α) = [1 2 0]. Close to b0 and b1 we see the situation depited onFigure 1, with the orientations of ∂F at b0 and b1 used for determining thepermutation as indiated.

r rb0 b1F 	−→ ←−
�

�
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@

�
�

�

@
@

@
α0 α1 α2 α1 α0 α2Figure 1: An ar with permutation [1 2 0] in C∗(F ; 1).We want to �nd the number of boundary omponents of Fα. This goes asfollows. Pik an ar, say α0, at b0 and start oloring the right-hand side of it(here, we olor it dark grey), following the ar all the way to b1. See Figure 2.Here, ontinue to the left-hand side of the next ar; in our ase it is α2. Notethat in general this means going from ασ−1(j) to ασ−1(j−1) (see the de�nition);in this example j = 1. Color the left-hand side of α2, reahing b0 again andontinuing to the right-hand side of the ar next to α2. In this algorithm theboundary omponent(s) ontaining b0 and b1 also ounts as ars, as shownin the �gure. Continue in this fashion until you get bak where you started(i.e. the right-hand side of α0). This losed, dark grey loop onstitutes oneboundary omponent of Fα. Start over again with a di�erent olor (herelight grey) at another ar, and you get a piture as in Figure 2. So there are

2 + (r − 1) = r + 1 boundary omponents of (Fg,r)α for α ∈ C∗(F ; 1) with
P (α) = [1 2 0].We ould onsider the same permutation in C∗(Fg,r; 2), and we would geta di�erent piture (Figure 3). So there are 3 + (r − 2) = r + 1 boundary



24 2 Ar omplexes and permutations
r rb0 b1F 	−→ ←−
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@
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@
α0 α1 α2 α1 α0 α2Figure 2: Boundary omponents of Fα for α in C∗(F ; 1).omponents of (Fg,r)α for α ∈ C∗(F ; 2) with P (α) = [1 2 0].

r rb0 b1F 	−→ ←−
�
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@

�
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@
@

@
α0 α1 α2 α1 α0 α2Figure 3: Boundary omponents of Fα for α in C∗(F ; 2).The method of the above example gives a formula � albeit a rather um-bersome one � for ♯∂N(α), and thus by (14) for the number of boundaryomponents of Fα in terms of P (α):Proposition 2.7. Let ♯∂S denote the number of boundary omponents in S,and let σk ∈ Σk be given by σk = [1 2 · · · k−1 0]. Then

(i) If α ∈ Cn−1(F ; 1) then ♯∂N(α) = Cy(σn+1P̂ (α)
−1

σ−1
n+1P̂ (α)

)
+ 1.

(ii) If α ∈ Cn−1(F ; 2) then ♯∂N(α) = Cy(σnP (α)−1σ−1
n P (α)

)
+ 2,Here Cy : Σk → N denotes the number of disjoint yles in the given per-mutation, and for τ ∈ Σk, τ̂ ∈ Σk+1 is given by τ̂ = [0, τ + 1], that is

τ̂ (j) =

{
0, j = 0,
τ(j − 1) + 1, i = 1, . . . , k.In partiular, ♯∂N(α) depends only on P (α).Proof. This is simply a way to formulate the method desribed in Example2.6. Let us look at C∗(F ; 2) �rst, so b0 and b1 are in di�erent boundaryomponents. As in the example, we start on the right-hand side of oneof the ars at b0, follow it (using P (α)), then at b1 we go left to the nextar (using σ−1). Now we follow the right side of that ar (using P (α)−1)



2.2 Permutations 25ending at b0, and we must now go left to the next ar (using σ). Thus thepermutation P (α)σ−1P (α)−1σ aptures how the boundary of N(α) behaves,and a boundary omponent in ∂N(α) learly orresponds to a yle in thepermutation. Remembering the two extra omponents orresponding to theomponents of ∂N(α) ontaining b0 and b1, this proves (ii).For C∗(F ; 1), b0 and b1 lie on the same boundary omponent. We wishto use (ii), so we onsider a new surfae F̂ and a new ar simplex, α̂ =
(α̂0, α̂1, . . . , α̂n) in C∗(F̂ , 2), whih are onstruted from F and α as follows.

q qb0 b1
F �

��
@

@@
�

��
@

@@
α0 α1 α2 α1 α0 α2

 q qb0 b1
F̂�

��
@

@@
�

��
@

@@
α̂1 α̂2 α̂3 α̂2 α̂1 α̂3

α̂0

Figure 4: Construting F̂ and α̂ from F and α.We take the boundary omponent of F ontaining b0 and b1, and lose uppart of it between b0 and b1 so we get two boundary omponents, f. Figure 4.Then α̂0 will be the ar from b0 to b1 onsisting of the part of the old boundaryomponent whih was �rst (i.e. right-most) in the inoming ordering at b0(f. Figure 4), and α̂j = αj−1 for 1 ≤ j ≤ n. By this onstrution, ♯∂N(α) =

♯∂N(α̂)− 1, sine we ount two boundary omponents for α̂ ∈ C∗(F̂ ; 2), andwe should ount only one. Clearly P (α̂) = P̂ (α), and the result now followsfrom (ii).I would like to thank my brother, Jens Boldsen, for help with the aboveproposition.Proposition 2.8. The permutation map
P : ∆n(F ; i)/Γ(F ) −→ Σn+1is injetive.Proof. We have to show that given two n-ar simplies α and β with P (α) =

P (β), there exists γ ∈ Γ suh that γα = β. Consider the ut surfaes Fαand Fβ . Sine the permutations are the same, Fα and Fβ have the samenumber of boundary omponents, by Prop. 2.7 above. Now sine we haveparameterizations of the boundary omponents and the urves α0, . . . , αnthis gives a di�eomorphism ϕ : ∂(Fα) −→ ∂(Fβ). The Euler harateristi of
Fα and Fβ are also the same, aording to Lemma 2.5. This implies that Fαand Fβ have the same genus. By the lassi�ation of surfaes with boundary,
Fα ∼= Fβ via an orientation preserving di�eomorphism Φ extending ϕ. Gluing



26 2 Ar omplexes and permutationsboth Fα and Fβ up again gives a di�eomorphism Φ̄ : F −→ F taking α to
β. Thus α and β are onjugate under γ =

[
Φ̄

] in the mapping lass group
Γ(F ).Whether P is surjetive depends on the genus g, f. Corollary 2.17 below.Remark 2.9. The proof of this proposition also shows that the ation of
G(F ) on C∗(F ; i) is rotation-free, f. Def. 1.5. For given α ∈ ∆n(F ; i) and
γ = [ϕ] ∈ Γα,2.3 GenusDe�nition 2.10 (Genus). To an ar simplex α we assoiate the number
S(α) = genus(N(α)), f. Def. 2.4. We all S(α) the genus of α.Note that Harer alls this quantity the speies of α.Lemma 2.11. For α ∈ ∆n(F ; i), we have

χ(N(α)) = −(n + 1)Proof. In C∗(F ; 1), N(α) has α∪b0,b1S1 as a retrat. Now there is a homotopytaking b1 to b0 along S1, so up to homotopy, this is a wedge of n + 2 opiesof S1 oming from α0, . . . , αn and from the boundary omponent. This givesthe result. For C∗(F ; 2) the argument is similar.Proposition 2.12. Let ♯∂S denote the number of boundary omponents in asurfae S. Let i = 1, 2. Then for any α ∈ ∆n(Fg,r; i), the following relationshold:
(i) S(α) = 1

2

(
n+ 3− ♯∂N(α)

),
(ii) ♯∂(Fα) = r + n− S(α) + 3− 2i,

(iii) genus(Fα) = g + S(α)− (n+ 2− i),Proof. (i) As S(α) is the genus of N(α), we an derive this from the Eulerharateristi of N(α), whih by Lemma 2.11 is −(n+1). Using the formula
χ(N(α)) = 2− 2S(α)− ♯∂N(α) gives the result.
(ii) This follows from (i) and (14).



2.3 Genus 27
(iii) As in (i) we use the onnetion between Euler harateristi, genusand number of boundary omponents, together with (i) and (ii):genus(Fα) = 1

2

(
− χ(Fα)− ♯∂(Fα) + 2

)

= 1
2

(
− (2− 2g − r)− (n+ 1)− (♯∂N(α) + r − 2i) + 2

)

= 1
2

(
2g + (n + 1− ♯∂N(α) + 2) + 2i− 2− 2(n + 1)

)

= g + S(α)− (n+ 2− i)Consequently all information about Fα an be extrated from ♯∂(Fα), soit is important that we an ompute this quantity:Lemma 2.13. Given α ∈ ∆n(F ; i) be given, and let ν ∈ ∆0(F ; i) be an arsuh that α′ = α ∪ ν is an (n+ 1)-simplex. Consider α′ ∈ C∗(Fα; i). Then:
♯∂(Fα′) =

{
♯∂(Fα) + 1, if ν ∈ ∆0(Fα; 1);
♯∂(Fα)− 1, if ν ∈ ∆0(Fα; 2).Proof. Let k = ♯∂(Fα). Sine all boundary omponents in Fα′ not interset-ing ν orrespond to boundary omponents in Fα, it is enough to onsiderthe situation lose to ν. There are two possibilities: Either ν will start andend on two di�erent boundary omponents of Fα, so ν ∈ ∆0(Fα; 2), or ν willstart and end on the same boundary omponent of Fα, so ν ∈ ∆0(Fα; 1). Cf.Figure 5, where the boundary omponents of Fα are indiated as in Example2.6.
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28 2 Ar omplexes and permutationsCombining Lemma 2.13 and Prop. 2.12, we have proved,Corollary 2.14. For α ∈ ∆0(F ; i), let α′ = α∪ ν as in Lemma 2.13. Then:
S(α′) =

{
S(α), if ν ∈ ∆0(Fα; 1);
S(α) + 1, if ν ∈ ∆0(Fα; 2).and genus(Fα′) =

{ genus(Fα)− 1, if ν ∈ ∆0(Fα; 1);genus(Fα), if ν ∈ ∆0(Fα; 2).Lemma 2.15. Let α ∈ ∆0(F ; i). Then S(α) = 0 if and only if
(i) for i = 1, P (α) = id.

(ii) for i = 2, P (α) is a yli permutation, i.e. one of the following:id, [1 2 · · ·n 0], [2 3 · · ·n 0 1], · · · , [n 0 1 · · ·n−1].Proof. We prove �only if�. The onverse is lear, e.g. by Prop. 2.7 and Prop.2.12 (i).By Cor. 2.14, any subsimplex of α has genus equal to or lower than
S(α) = 0, so any subsimplex of α must have genus 0. If α ∈ ∆n(F ; 1), thismeans all 1-subsimplies must have permutation equal to the identity, andthis fores P (α) = id. If α ∈ ∆n(F ; 2) the ondition on 1-subsimplies isvauous, but for a 2-subsimplex β of α, we see by Cor. 2.14 that S(β) = 0implies that P (β) is either id, [1 2 0], or [2 0 1]. For this to hold for any2-subsimplex of α, P (α) must be as stated in (ii).2.4 More about permutationsBy Prop. 2.7, given α ∈ ∆n(F ; i), the number ♯∂N(α) is a funtion onlyof P (α) and i. By Prop. 2.12(i), the same is true for S(α). Thus, given apermutation σ ∈ Σn+1, we an alulate these quantities and simply de�nethe numbers ♯∂N(σ) and S(σ) by the formulas of Prop. 2.7 and 2.12(i).Now we are going to see that given a permutation σ ∈ Σn+1, there exists
α ∈ ∆n(Fg,r; i) with P (α) = σ if at all possible, that is, provided the formula
(iii) of Prop. 2.12 for the genus of Fα gives a non-negative result. Rearrang-ing this onditions we have the following lemma, also stated in [Harer2℄:Lemma 2.16. Given a permutation σ ∈ Σn+1, let s = S(σ) as above. Thereexists α ∈ ∆0(F ; i) with P (α) = σ if and only if

s ≥ n− g + 2− i. (15)



2.4 More about permutations 29Proof. Given a permutation σ, one an try to onstrut an ar simplex αindutively with P (α) = σ by �rst hoosing an ar α0 ∈ ∆0(F ; i) from b0to b1, and utting F up along it. This will give us two opies of b0 and b1,respetively, one to the left of our ar and one to the right. The permutationdetermines from whih opy of b0 and b1 a new ar will join.Suppose we have onstruted k+1 ≤ n+1 ars as above, i.e. a k-simplex
β = (α0, . . . , αk), and onsider the ut surfae Fβ. Indutively we assumethat Fβ is onneted. Now we must verify that when adding a new ar, ν,as in Lemma 2.13, the ut surfae (Fβ)ν is onneted. If this holds, β ∪ ν isa (k + 1)-simplex, and we have ompleted the indution step.There are two ases. First assume that ν must join two di�erent boundaryomponents of Fβ. Then (Fβ)ν is onneted, no matter how we hoose ν, sine
Fβ is onneted.Seondly, if ν onnets two points on the same boundary omponent of
Fβ, we hoose ν so that it winds around a genus-hole in Fβ. This ensuresthat (Fβ)ν is onneted, so we must prove that genus(Fβ) ≥ 1. From Prop.2.12, we know that genus(Fβ) = g+S(β)− (k+2− i), and we want to prove

S(β)− k ≥ s− n + 1. (16)Using this, we an omplete the indution step:genus(Fβ) = g + S(β)− k − 2 + i ≥ g + s− n− 1 + i ≥ 1by assumption (15).To prove (16), reall that S(β) only depends on P (β), not on the surfae
F . So onsider another surfae F ′ with genus g′ > n. We an onstrut
β ′ ∈ ∆k(F

′, i) with P (β ′) = P (β), as above. We an further onstrut
α′ ∈ ∆n(F

′, i) with β ′ as a subsimplex and P (α′) = σ, simply by adding
n − k new ars to β ′ whih eah wind around a genus-hole in F ′. This ispossible beause g′ > n. We laim

S(α′) ≤ S(β ′) + n− k − 1. (17)Applying Cor. 2.14 n−k times to β ′, we obviously get S(α′) ≤ S(β ′)+n−k.We get the extra −1, beause the �rst time we add an ar ν ′ to β ′ we have
ν ′ ∈ ∆0(F

′
β′; 1), sine ν ∈ ∆0(Fβ , 1) by assumption. This proves (17). Sine

P (β ′) = P (β) and P (α′) = σ, (17) implies s = S(σ) ≤ S(β) + n − k − 1.This proves (16).Combining Prop. 2.8 and Lemma 2.16 we have proved,



30 2 Ar omplexes and permutationsCorollary 2.17. The permutation map
P : ∆n(F ; i)/Γ(F ) −→ Σn+1is bijetive if n ≤ g − 2 + i.Lemma 2.18 ([Harer4℄). For F = Fg,b with g ≥ 2, the sequene

Cp+1(F ; i)/Γ(F )
d1
−→ Cp(F ; i)/Γ(F )

d1
−→ Cp−1(F ; i)/Γ(F )is split exat for 1 ≤ p ≤ g − 2 + i.Proof. Let ZΣ∗ denote the hain omplex with hain groups ZΣn, n ≥ 1,and di�erentials

∂ : ZΣn+1 −→ ZΣngiven as follows: For σ = [σ(0) · · ·σ(n)] ∈ Σn+1, let
∂j(σ) = [σ(0) · · ·σ(j − 1) σ(j + 1) . . . σ(n)],where the set {0, 1, . . . , n} \ {σ(j)} is identi�ed with {0, 1, . . . , n− 1} bysubtrating 1 from all numbers exeeding σ(j). Then we de�ne ∂(σ) =∑n

j=0(−1)j∂j(σ) and extend linearly. Extending the permutation map Plinearly leads to the ommutative diagram
Cn(F ; i)/Γ(F ) d //

P
��

Cn−1(F ; i)/Γ(F )

P
��

ZΣn+1
∂ // ZΣn

(18)
i.e. a hain map C∗(F ; i)/Γ(F ) −→ ZΣ∗. By Prop. 2.8, P is injetive, so
C∗(F ; i)/Γ(F ) is isomorphi to a subomplex of ZΣ∗, namely the subomplexgenerated by permutations σ ∈ Σn+1 with S(σ) satisfying the requirementsof Lemma 2.16. In partiular, for n ≤ g− 2+ i, the hain groups of ZΣ∗ andof C∗(F ; i)/Γ(F ) are identi�ed.De�ne D : ZΣn −→ ZΣn+1 by

D(σ) = σ̂ = [0 σ(0)+1 σ(1)+1 · · · σ(n)+1]. (19)It is an easy onsequene of the de�nitions that D∂ + ∂D = 1, so Dis a ontrating homotopy and ZΣ∗ is split exat. By the diagram (18),
C∗(F ; i)/Γ(F ) is also split exat in the range where

D ◦ P
(
Cn(F ; i)/Γ(F )

)
⊆ P

(
Cn+1(F ; i)/Γ(F )

)
, (20)



2.4 More about permutations 31sine D lifts to a ontrating homotopy D̄ of C∗(F ; i)/Γ(F ).We will �rst onsider C∗(F ; 1)/Γ(F ). By Cor. 2.17, P is bijetive for
n ≤ g−1, so (20) is satis�ed for n ≤ g−2. It remains to onsider the degree
n = g − 1. We have the ommutative diagram,

Cg(F ; i)/Γ(F ) d //
� _

P
��

Cg−1(F ; i)/Γ(F ) d //

P∼=
��

Cg−2(F ; i)/Γ(F )

P∼=
��

ZΣg+1
∂ // ZΣg

∂ // ZΣg−1with the bottom sequene exat. We must show that
P ◦ d(Cg(F ; i)/Γ(F )) = ∂(ZΣg+1).Aording to Cor. 2.17, P : Cg(F ; 1)/Γ(F ) −→ ZΣg+1 hits everything exeptwhat is generated by permutations σ with S(σ) = 0. Thus we must show

∂(σ) ∈ Im(P ◦ d) = Im(∂ ◦ P ) for all σ ∈ Σg+1 with S(σ) = 0. From Lemma2.15 we know that the only suh permutation is the identity. As
∂([0 1 · · · g]) =

g∑

j=0

(−1)j [0 1 · · · g−1] =

{
0, if g is odd,id, if g is even,we are done if g is odd, and the desired ontrating homotopy D̄ is obtainedby lifting D when S(α) > 0 and setting by D̄(α) = 0 when S(α) = 0.If g is even, onsider τ = [2 0 1 3 4 · · · g] ∈ Σg+1. Then by Lemma 2.15

S(τ) > 0, and
∂(τ) = [0 1 2 · · · g−1]− [1 0 2 3 · · · g−1] + [1 0 2 3 · · · g−1]

+

g∑

j=3

(−1)j [2 0 1 3 4 · · · g−1] = [0 1 2 · · · g−1] = ∂[0 1 2 · · · g].Thus we an obtain a ontrating homotopy D̄ by taking D̄(α) = P−1(τ)when S(α) = 0.For C∗(F ; 2)/Γ(F ), Cor. 2.17 gives that P is bijetive for n ≤ g, so we areleft with j = g, where we use exatly the same method as above. We mustshow that ∂(σ) ∈ Im(∂ ◦P ) for all σ ∈ Σg+2 with S(σ) = 0. We only need toonsider σ ∈ Im(D), beause Im∂ = Im(∂◦D) by the equation ∂D+D∂ = 1.The only σ ∈ Σg+2 with S(σ) = 0 and P ∈ ImD is the identity, aordingto Lemma 2.15. Now we are in the same situation as above, so we an use
τ = [2 0 1 3 4 · · · g g+1] ∈ Σg+2 whih has genus S(τ) > 0 in C∗(F ; 2), sine
g ≥ 2.



32 3 Homology stability of the mapping lass group3 Homology stability of the mapping lass groupLet F be a surfae with boundary. Given F we an glue on a �pair of pants�,
F0,3, to one or two boundary omponents. We denote the resulting surfae by
Σi,jF , the subsripts indiating the hange in genus and number of boundaryomponents, respetively.F FFigure 6: Σ0,1F and Σ1,−1F .These two operations indue homomorphisms between the mapping lassgroups after extending a mapping lass by the identity on the pair of pants;

Σi,j : Γ(F ) −→ Γ(Σi,jF ).Given a surfae F , applying Σ0,1 and then adding a disk at one of the pantlegs gives a surfae di�eomorphi to F (with a ylinder glued onto a boundaryomponent). It is easily seen that the indued omposition
Γ(F ) −→ Γ(Σ0,1F ) −→ Γ(F )is the identity, so Σ0,1 indues an injetion on homology
Hn(Γ(F )) →֒ Hn(Γ(Σ0,1F )). (21)For the proof of the stability theorems, the opposite operation is essential:One expresses the surfae F as the result of utting Σ0,1F or Σ1,−1F alongan ar representing a 0-simplex in one of the ar omplexes of de�nition 2.2:

F ∼= (Σ0,1F )α, and F ∼= (Σ1,−1F )β,for α ∈ ∆0(Σ0,1F, 2) and β ∈ ∆0(Σ1,−1F, 1) as indiated belowF ��) α F
QQk
βFigure 7: α and β.A di�eomorphism of Fα that �xes the points on the boundary pointwiseextends to a di�eomorphism of F by adding the identity on N(α), and thisde�nes an inlusion Γ(Fα) −→ Γ whose image is the stabilizer Γα.



3.1 The spetral sequene 333.1 The spetral sequene for the ation of the mappinglass groupIn this setion, F = Fg,r with g ≥ 2 and Γ = Γ(F ). We shall onsider thespetral sequenes En
p,q = En

p,q(F ; i) from setion 1.2 assoiated to the ationof Γ on the ar omplexes C∗(F ; i) for i = 1, 2. By Cor. 1.6 and Thm. 2.3,we have E1
0,q = Hq(Γ) and
E1
p,q =

⊕

α∈∆̄p−1

Hq(Γα)⇒ 0, for p+ q ≤ 2g − 2 + i, (22)where ∆p−1 ⊆ ∆p−1(F ; 1) is a set of representatives of the Γ-orbits of∆p−1(F ; i)in C∗(F ; i).The permutation map
P : ∆p−1(F ; i)/Γ −→ Σpis injetive by Prop. 2.8. Let Σp be the image, and T : Σp

∼
−→ ∆p−1 →֒

∆p−1(F ; i) a setion, P ◦ T = id. Then
E1
p,q =

⊕

σ∈Σp

E1
p,q(σ), E1

p,q(σ) = Hq(ΓT (σ)). (23)The �rst di�erential, d1
p,q : E1

p,q −→ E1
p−1,q, is desribed in setion 1.3.The diagrams

∆p(F ; i)
∂j //

��

∆p(F ; i)

��

Σp+1

∂j // Σp j = 0, . . . , pommute, where ∂j omits entry j as in Def. 2.2 and the vertial arrowsdivide out the Γ ation and ompose with P . Thus for eah σ ∈ Σp+1, thereis gj ∈ Γ suh that
gj · ∂jT (σ) = T (∂jσ), (24)and onjugation by gj indues an isomophism cgj

: Γ∂jT (σ) −→ ΓT (∂jσ). Theindued map on homology is denoted ∂j again, i.e.
∂j : Hq(ΓT (σ))

inl∗ // Hq(Γ∂jT (σ))
(cgj

)∗
// Hq(ΓT (∂jσ)) . (25)



34 3 Homology stability of the mapping lass groupNote that (cgj
)∗ does not depend on the hoie of gj in (46): Another hoie

g′j gives cg′j = cg′jg
−1

j
cgj

, and g′jg−1
j ∈ ΓT (∂jσ) so cg′jg−1

j
indues the identity on

Hq(ΓT (∂jσ)). Then
d1 =

p−1∑

j=0

(−1)j∂j . (26)The proof of the main stability Theorem depends on a partial alulationof the spetral sequene (22). More spei�ally, the �rst di�erential d1 :
E1

1,q −→ E1
0,q is equivalent to a stability map Hq(Γα) −→ Hq(Γ), so thequestion beomes whether d1 is an isomorphism resp. an epimorphism. In arange of dimensions the spetral sequene onverges to zero, so that d1 mustbe an isomorphism unless other (higher) di�erentials interfere. The nextthree lemma are the key elements that give su�ient hold of the spetralsequene. The �rst lemma gives the general indution step. The next twolemmas about d1 : E1

p,q −→ E1
p−1,q for p = 3, 4 are neessary for the improvedstability.Lemma 3.1. Let i = 1, 2, and let k, j ∈ N with k ≤ g − 3 + i. For any

α ∈ ∆p−1(F ; i) and all q ≤ k − j, assume that
Hq(Γα)

∼=

→ Hq(Γ) is an isomorphism if p+ q ≤ k + 1, (27)
Hq(Γα)։ Hq(Γ) is surjetive if p+ q = k + 2. (28)Then E2

p,q(F ; i) = 0 for all p, q with p+ q = k + 1 and q ≤ k − j.Proof. Let Cn(F ; i) = Cn(F ; i)/Γ. By (22) and the assumptions, we get for
q ≤ k − j:

E1
p,q
∼= Cp−1(F ; i)⊗Hq(Γ) if p + q ≤ k + 1, (29)

E1
p,q ։ Cp−1(F ; i)⊗Hq(Γ) if p+ q = k + 2.Now we have the following ommutative diagram, for a �xed pair p, q with

q ≤ k − j and p+ q = k + 1:
E1
p−1,q

∼=
��

E1
p,q

d1oo

∼=
��

E1
p+1,q

d1oo

����

Cp−2(F ; i)⊗Hq(Γ) Cp−1(F ; i)⊗Hq(Γ)
d̄1oo Cp(F ; i)⊗Hq(Γ)

d̄1oo

(30)
Using the formula (48) for d̄1, (cgj

)∗(ω) = ω for ω ∈ H∗(Γ), sine onjugationindues the identity in H∗(Γ). Thus the bottom row of diagram (30) is just



3.1 The spetral sequene 35the sequene from Lemma 2.18, tensored with Hq(Γ). Sine p ≤ k + 1 ≤
g − 2 + i that sequene is split exat, so the bottom row of (30) is exat.We onlude that E2

p,q = 0 for all p, q with q ≤ k − j and p + q = k + 1, asdesired.We next examine the hain omplex
. . . d1 // E1

3,q(F, i)
d1 // E1

2,q(F, i)
d1 // E1

1,q(F, i)
d1 // E1

0,q(F, i)assoiated with C(F ; i), but �rst we need an easy geometri proposition.Reall from de�nition 2.4, that for α ∈ ∆p(F ; i) we write Fα = F \N(α) forthe surfae ut along the ars of α.Proposition 3.2. Let α ∈ ∆n(F ; i) with permutation P (α) = σ, and assumethere is k, l < n suh that σ(k) = l + 1 and σ(k + 1) = l. Then there exists
f ∈ Γ(F ) with f(αk+1) = αk, f(αi) = αi for i /∈ {k, k + 1} and f |Fα

= idFα
.Proof. A (right) Dehn twist in an annulus in F is an element of Γ(F ) givenby performing a full twist to the right inside the annulus, and extendingby the identity outside the annulus. Figure 8 shows a Dehn twist γ in anannulus, and its e�et on a urve β interseting the annulus.

r rβ

γβFigure 8: A Dehn twist γ in an annulus.Consider the urves αk and αk+1. Take an annulus as depited on Figure 9below (in grey). By the requirements of the proposition it is easy to onstrutthe annulus so that it only intersets α in αk and αk+1. Let f be the Dehntwist in this annulus. Sine f is the identity outside the annulus, we have
f(αi) = αi for all i /∈ {k, k + 1} and f |Fα

= idFα
. By Figure 9 it is easy tosee that f(αk+1) = αk.The stabilizer Γα of α ∈ ∆p(F ; i) depends up to onjugation only on theorbit Γα, i.e. on P (α) ∈ Σp+1. So when onjugation is of no importanewe shall for σ ∈ Σp+1 write Γσ for any of the onjugate subgroups Γα with

P (α) = σ. If τ ∈ Σp is a fae of σ ∈ Σp+1 then Γσ is onjugate to a subgroupof Γτ , and there is a homomorphism
Hq(Γσ) −→ Hq(Γτ ),well-determined up to isomorphism of soure and target.



36 3 Homology stability of the mapping lass group

s
b0

sb1

←αk→αk+1

Figure 9: The Dehn twist f .Lemma 3.3. Let c1 and c2 be the isomorphism lasses
c1 : Hq(Γ[0 2 1]) −→ Hq(Γ[1 0]), c2 : Hq(Γ[1 2 0]) −→ Hq(Γ[0 1])

(i) If c1 and c2 are surjetive, then d1
3,q : E1

3,q −→ E1
2,q is surjetive, and

E2
2,q = 0.

(ii) If c1 and c2 are injetive, then
d1

3,q : E1
3,q([0 2 1])⊕ E1

3,q([1 2 0]) −→ E1
2,qis injetive.Proof. The target of d1 is E1

2,q = E1
2,q([0 1])⊕E1

2,q([1 0]), and we �rst examinethe omponent
d1

3,q : E1
3,q([0 2 1]) −→ E1

2,q([0 1]). (31)If β = T ([0 2 1]) with β = (β0, β1, β2), let γ ∈ Γ satisfy (γβ0, γβ1) = T ([0 1]),and write α = γβ. Then
(cg)∗ : E1

3,q([0 2 1])
∼=
−→ Hq(Γα),and the E1

2,q([0 1])-omponent of d1
3,q ◦ (cg)∗ is the di�erene of

∂2 : Hq(Γα) −→ Hq(Γ(α0,α1)) (32)
∂1 : Hq(Γα) −→ Hq(Γ(α0,α2)) −→ Hq(Γ(α0,α1))



3.1 The spetral sequene 37where f · (α0, α2) = (α0, α1). By the previous proposition 3.2 we may hoose
f suh that f |Fα

= idFα
. It follows that cf : Γ −→ Γ restrits to the identityon Γα, and hene that the two maps in (32) are equal. Thus the omponentof d1

3,q in (31) is zero. On the other hand, the omponent
d1

3,q : E1
3,q([0 2 1]) −→ E1

2,q([1 0])is equal to ∂0, so it belongs to the isomorphism lass c1. Thus it is surjetiveresp. injetive under the assumptions (i) resp. (ii).The restrition of d1
3,q to E1

3,q([1 2 0]),
d1

3,q : E1
3,q([1 2 0]) −→ E1

2,q([0 1])⊕ E1
2,q([1 0]),is treated in a similar fashion. This time there are two terms with oppositesigns in E1

2,q([1 0]) whih anel by Prop. 3.2, and the omponent
d1

3,q : E1
3,q([1 2 0]) −→ E1

2,q([0 1])is in the isomorphism lass of c2. This proves the lemma.We next onsider the situation of Lemma 3.3(ii) where c1 and c2 areinjetive. If we further assume that g(F ) ≥ 3, then Σ3 = Σ3 and Σ4 =
Σ4 \ {id}. We onsider the maps

c3 : Hq(Γ[1 2 3 0]) −→ Hq(Γ[1 2 0])

c4 : Hq(Γ[0 3 2 1]) −→ Hq(Γ[2 1 0]) (33)
c5 : Hq(Γ[0 2 1 3]) −→ Hq(Γ[1 0 2])

c6 : Hq(Γ[0 3 1 2]) −→ Hq(Γ[2 0 1])Lemma 3.4. Let g ≥ 3 and assume that c1 and c2 of Lemma 3.3 are injetiveand that the four maps in (33) are surjetive. Then E2
3,q(F ; i) = 0 for i = 1, 2.Proof. The group E1

3,q deomposes into six summands sine Σ3 = Σ3. ByLemma 3.3, to show that E2
3,q = 0 under the above onditions, it su�es tohek that d1

4,q maps onto the four omponents not onsidered in Lemma 3.3.More preisely, let
Ẽ1

3,q = E1
3,q([0 1 2])⊕ E1

3,q([2 1 0])⊕E1
3,q([1 0 2])⊕ E1

3,q([2 0 1]).We must show that the omposition
d̄1 : E1

4,q
d1
−→ E1

3,q

proj
−→ Ẽ1

3,q



38 3 Homology stability of the mapping lass groupis surjetive. the argument is quite similar to the proof of Lemma 3.3, usingProp. 3.2 to anel out elements. Then the omponents of d̄1 an be desribedas follows:
d̄1 = −∂3 : E1

4,q([1 2 3 0]) −→ E1
3,q([0 1 2]),

d̄1 = ∂0 : E1
4,q([0 3 2 1]) −→ E1

3,q([2 1 0]),

d̄1 = ∂0 : E1
4,q([0 2 1 3]) −→ E1

3,q([1 0 2]),

d̄1 = (∂0,−∂3) : E1
4,q([0 3 1 2]) −→ E1

3,q([2 0 1])⊕ E1
3,q([0 1 2]).It follows from the surjetions in (33) that d̄1 is surjetive, and hene that

E1
3,q(F ; i) = 0.Remark 3.5. Now we an state Harer's third assertion needed to improveour main stability Theorem by �one degree� (f. the Introdution). It is easyto show that d1

2,2n[1 0] is the zero map for all n. Then the homology lass
[κ̌ n

1 ] of κ̌ n
1 with respet to d1 is an element of E2

2,2n. The assertion is
(iii) d2

2,2n([κ̌
n
1 ]) = x · [κ̌ n

1 ] for some Dehn twist x around a simple losedurve in F . Here, · denotes the Pontryagin produt in group homology.3.2 The stability theorem for surfaes with boundaryIn this setion we prove the �rst of the two stability theorems listed in theintrodution. Our proof is strongly inspired by the 15 year old manusript[Harer2℄, but with two hanges. We work with integral oe�ients, and weavoid the assertions made in [Harer2℄ disussed in the introdution. Thetheorem we prove isTheorem 3.6 (Main Theorem). Let Fg,r be a surfae of genus g with rboundary omponents.
(i) Let r ≥ 1 and let i = Σ0,1 : Γg,r −→ Γg,r+1. Then

i∗ : Hk(Γg,r) −→ Hk(Γg,r+1)is an isomorphism for 2g ≥ 3k.
(ii) Let r ≥ 2 and let j = Σ1,−1 : Γg,r −→ Γg+1,r−1. Then

j∗ : Hk(Γg,r) −→ Hk(Γg+1,r−1)is surjetive for 2g ≥ 3k − 1, and an isomorphism for 2g ≥ 3k + 2.Proof. The proof is by indution in the homology degree k. For k = 0 theresults are obvious, sine H0(G,Z) = Z for any group G. So assume now
k > 0 and that the theorem holds for homology degrees less than k.



3.2 The stability theorem for surfaes with boundary 39The ase Σ0,1In this ase we know from (21) that Σ0,1 is injetive, so to prove that it is anisomorphism it is enough to show surjetivity.Assume 2g ≥ 3k and write Γ = Γg,r+1. We use that Γg,r is the stabilizer
Γα for α ∈ ∆0(Fg,r+1;2 as on Figure 7, Γg,r = Γα. Now we use the spetralsequene (22) assoiated with the ation of Γ on C∗(Fg,r+1; 2), and we re-ognize the map i∗ : Hk(Γα) −→ Hk(Γ) as the di�erential d1 : E1

1,k −→ E1
0,k.The spetral sequene onverges to zero at En

0,k. So it su�es to show that
E2
p,k+1−p is zero for all p ≥ 2.We begin by proving E2

2,k−1 = 0 using Lemma 3.3 (i), noting that g ≥ 2,sine k ≥ 1. We must verify that c1 and c2 are surjetive, and we will do thisindutively. Prop. 2.7 (or Example 2.6) and Prop. 2.12 alulate the genusand the number of boundary omponents of Γσ. The �gures below show therelevant simplies σ ∈ ∆∗(Fg,r+1; 2) so that the method in Example 2.6 aneasily be applied. The irles are the boundary omponents ontaining b0and b1.
rr�

��
�
��

Γ[1 0] = Γg−1,r+1, rr�
��

�
��

Γ[0 2 1] = Γg−1,r,

rr�
��

�
��

Γ[0 1] = Γg−1,r+1, rr�
��

�
��

Γ[1 2 0] = Γg−2,r+2.We see that
c1 = (Σ0,1)∗ : Hk−1(Γg−1,r) −→ Hk−1(Γg−1,r+1), and
c2 = (Σ1,−1)∗ : Hk−1(Γg−2,r+2) −→ Hk−1(Γg−1,r+1)are both surjetive by indution. So E2

2,k−1 = 0.We now show that E2
p,q = 0 for p + q = k + 1 and p > 2, i.e. q ≤ k − 2,using Lemma 3.1, so we must verify (27) and (24). By Prop. 2.12 we have

Γα = Γg−p+s+1,r+p−2s−1, for α ∈ ∆p−1 of genus s. So for q ≤ k − 2, we willshow by indution:
Hq(Γg−p+s+1,r+p−2s−1) ∼= Hq(Γg,r+1), for p+ q ≤ k + 1 (34)
Hq(Γg−p+s+1,r+p−2s−1)։ Hq(Γg,r+1), for p+ q = k + 2. (35)The maps in (34) and (30) are indued from the omposition

Γg−p+s+1,r+p−2s−1
(Σ0,1)s+1

// Γg−p+s+1,r+p−s
(Σ1,−1)p−s−1

// Γg,r+1 .The result follows by indution if
2(g − p+ s+ 1) ≥ 3q and 2(g − p+ s+ 1) ≥ 3q + 2; for q ≤ k − 2.



40 3 Homology stability of the mapping lass groupLet us prove (34). We know that 2g ≥ 3k, and we have p + q ≤ k + 1.Let q be �xed. Sine more ars (greater p) and smaller genus of α impliesa smaller genus of the ut surfae Fα, it su�es to show the inequality for
p+ q = k + 1 and s = 0. In this ase

2(g − p+ 1) = 2(g − k − 1 + q + 1) ≥ 3k − 2k + 2q = 2q + k ≥ 3q + 2.where in the last inequality we have used the assumption q ≤ k − 2. Theproof of (31) is similar. Now by Lemma 3.1, E2
p,q = 0 for all p + q = k + 1with q ≤ k − 2. This proves that d1

1,k = (Σ0,1)∗ is surjetive.Surjetivity in the ase Σ1,−1Assume 2g ≥ 3k − 1, and write Γ = Γg+1,r−1. Then Γ(Fg,r) = Γβ for
β ∈ ∆0(Fg+1,r−1; 1) as on Figure 7. In the spetral sequene (22) assoiatedwith the ation of Γ on C∗(Fg+1,r−1; 1), we reognize the map (Σ1,−1)∗ :
Hk(Γg,r) −→ Hk(Γg+1,r−1) as the di�erential d1

1,k : E1
1,k −→ E1

0,k. It su�esto show that E2
p,q = 0 for p+ q = k + 1 and q ≤ k − 1.We �rst show that E2

2,k−1 = 0 using Lemma 3.3. As before, the �guresbelow show the relevant simplies in ∆∗(Fg+1,r−1; 1), and the oval is theboundary omponent ontaining b0 and b1.
rr

�
�

�
�Γ[1 0] = Γg,r−1, rr

�
�

�
�Γ[0 2 1] = Γg−1,r,

rr
�
�

�
�Γ[0 1] = Γg−1,r+1, rr

�
�

�
�Γ[1 2 0] = Γg−1,r.We see that

c1 = (Σ1,−1)∗ : Hk−1(Γg−1,r) −→ Hk−1(Γg,r−1), and
c2 = (Σ0,1)∗ : Hk−1(Γg−1,r) −→ Hk−1(Γg−1,r+1)

(36)are both surjetive by indution. So E2
2,k−1 = 0.Next we show that E2

3,k−2 = 0 using Lemma 3.4. To verify the onditions,we alulate as before,
Γ[0 1 2] = Γg−2,r+2,
Γσ = Γg−1,r for σ ∈ Σ3 the remaining 3 permutations in (33)
Γσ = Γg−2,r+1 for σ ∈ Σ4 the remaining 4 permutations in (33).We see that
c3 = (Σ0,1)∗ : Hk−2(Γg−2,r+1) −→ Hk−2(Γg−2,r+2), and
cj = (Σ1,−1)∗ : Hk−2(Γg−2,r+1) −→ Hk−2(Γg−1,r) for j = 4, 5, 6.

(37)



3.2 The stability theorem for surfaes with boundary 41Indutively we an verify that these four maps are surjetive. The maps c1and c2 we alulated in (36), and we see by indution that they are injetivein homology degree k − 2. So by Lemma 3.4, E2
3,k−2 = 0.Finally we prove that E2

p,q = 0 for p + q = k + 1 and q ≤ k − 3 usingLemma 3.1. This is done as in The ase Σ0,1 so we'll skip the alulations,and just show the �nal inequality:
2(g − p+ 1) = 2g − 2(k + 1− q) + 2 ≥ 3k − 1− 2k + 2q

= k + 2q − 1 ≥ q + 3 + 2q − 1 = 3q + 2.So by Lemma 3.1, E2
p,q = 0 for p + 1 = k + 1 and q ≤ k − 3. We onludethat (Σ1,−1)∗ = d1

1,k is surjetive.Injetivity in the ase Σ1,−1Assume 2g ≥ 3k + 2 and let as in the above ase Γ = Γg+1,r−1 and En
p,q =

En
p,q(Fg+1,r−1; 1). We will show that (Σ1,−1)∗ = d1

1,k is injetive. Sine En
1,konverges to 0, it su�es to show that all di�erentials with target En

1,k aretrivial. This holds if we an show that E2
p,q = 0 for all p + q = k + 2 with

q ≤ k − 1 and that d1
2,k : E1

2,k −→ E1
1,k is trivial.We �rst prove that d1

2,k : E1
2,k −→ E1

1,k is trivial by proving that d1
3,k :

E1
3,k −→ E1

2,k is surjetive, using Lemma 3.3. We have already alulated c1and c2, f. (36):
c1 = (Σ1,−1)∗ : Hk(Γg−1,r) −→ Hk(Γg,r−1), and
c2 = (Σ0,1)∗ : Hk(Γg−1,r) −→ Hk(Γg−1,r+1)In this ase we annot use indution, sine the homology degree is k, butwe an use the surjetivity result for Σ0,1 and Σ1,−1 sine we have alreadyproved this. So by Theorem 3.6 (ii), c1 and c2 are surjetive.Next we prove that E2

3,k−1 = 0, using Lemma 3.4. We have alreadyalulated cj for j = 1, 2, 3, 4, 5, 6 in the proof of surjetivity of (Σ1,−1)∗, f.(36) and (37), and in this ase we get
c1 = (Σ1,−1)∗ : Hk−1(Γg−1,r) −→ Hk−1(Γg,r−1),
c2 = (Σ0,1)∗ : Hk−1(Γg−1,r) −→ Hk−1(Γg−1,r+1)
c3 = (Σ0,1)∗ : Hk−1(Γg−2,r+1) −→ Hk−1(Γg−2,r+2), and
cj = (Σ1,−1)∗ : Hk−1(Γg−2,r+1) −→ Hk−1(Γg−1,r) for j = 4, 5, 6.Indutively we an verify that c1 and c2 are injetive, and that cj for j =

3, 4, 5, 6 are surjetive. So by Lemma 3.4, E2
3,k−1 = 0.Finally we prove that E2

p,q = 0 for p + q = k + 1 and q ≤ k − 2 usingLemma 3.1. As before we skip the alulations, and the �nal inequality isthe same as in Surjetivity in the ase Σ1,−1.



42 3 Homology stability of the mapping lass groupRemark 3.7. Another possibility for proving the above result is to use an-other ar omplex. Inspired by [Ivanov1℄ we onsider a subomplex of C(F ; i)onsisting of all n-simplies with a given permutation σn, n ≥ 0. Ivanov takes
σ = id, whih means the ut surfaes Fα have minimal genus. For the in-dutive assumption, it would be better to have maximal genus, whih an beahieved by taking σn = [n n−1 · · · 1 0]. Potentially, this ould give a betterstability range, but it is not known how onneted this subomplex is, whihmeans that the proof above annot be arried through.3.3 The stability theorem for losed surfaesIn this setion we study l = Σ0,−1 : Γg,1 −→ Γg, the homomorphism induedby gluing on a disk to the boundary irle. The main result isTheorem 3.8.

l∗ : Hk(Γg,1) −→ Hk(Γg)is surjetive for 2g ≥ 3k − 1, and an isomorphism for 2g ≥ 3k + 2.The proof we give is modelled on [Ivanov1℄. See also [Cohen-Madsen℄.De�nition 3.9. Let F be a surfae, possibly with boundary. The ar om-plex D∗(F ) has isotopy lasses of losed, non-trivial, oriented, embeddedirles as verties, and n + 1 distint verties (n ≥ 0) form an n-simplex ifthey have representatives (α0, . . . αn) suh that:
(i) αi ∩ αj = ∅ and αi ∩ ∂(F ) = ∅,

(ii) F \ (
⋃n
i=0 αi) is onneted.We note that
(Fg,r)α ∼= Fg−1,r+2, for eah vertex α in D(Fg,r). (38)Indeed, for a vertex α, Fα := F \N(α) has two more boundary omponentsthan F , but the same Euler harateristi, sine F = F \N(α)∪∂N(α) N(α),and χ(N(α)) = 0 = χ(∂N(α)). Then (38) follows from χ(Fg,r) = 2− 2g− r.We need the following onnetivity result, whih we state without proof:Theorem 3.10 ([Harer1℄). The ar omplex D∗(Fg,r) is (g − 2)-onneted,and Γg,r ats transitively in eah dimension.We an now prove the stability theorem for losed surfaes:



3.3 The stability theorem for losed surfaes 43Proof of Theorem 3.8. We use the unaugmented spetral sequenes assoi-ated with the ation of Γ(Fi) on D∗(Fi), where Fi = Fg,i for i = 0, 1. Theyonverge to the homology of Γ(Fi) in degrees less than or equal to g − 2.Sine Γ(Fi) ats transitively on the set of n-simplies,
E1
p,q(Fi)

∼= Hq(Γ(Fi)α,Zα)⇒ Hp+q(Γ(Fi)), for i = 0, 1; (39)where α is p-simplex in Dp(F1), by identifying α with its image in Dp(F0)under the inlusion l : F1 −→ F0.We use Moore's omparison theorem for spetral sequenes, f. [Cartan℄:If l∗ : Hq(Γ(F1)α,Zα) −→ Hq(Γ(F0)α,Zα) is an isomorphism for p + q ≤ mand surjetive for p + q ≤ m + 1, then l∗ : Hk(Γ(F1)) −→ Hk(Γ(F0)) is aisomorphism for k ≤ m and surjetive for k ≤ m+ 1. To apply this, we willompare Hq(Γ(Fi)α,Zα) and Hq(Γ((Fi)α)) for a �xed p-simplex α.First we need to analyse Γ(Fi)α for i = 0, 1, and to ease the notation weall the surfae F and write Γ = Γ(F ). Unlike for C∗(F ; i), the stabilizer Γαis not Γ(Fα). For γ ∈ Γα,
(i) γ need not stabilize α pointwise and an thus permute the irles of α;

(ii) γ an hange the orientation of any irle in α;
(iii) γ an rotate eah irle α in α.In order to take are of (i) and (ii), onsider the exat sequene,

1 −→ Γ̃α −→ Γα −→ (Z/2)p+1 ⋉ Σp+1 −→ 1. (40)Here Γ̃α ⊆ Γα onsists of the mapping lasses in Γα �xing eah vertex of αand its orientation. We now ompare Γ̃α and Γ(Fα),
0 −→ Zp+1 −→ Γ(Fα) −→ Γ̃α −→ 1. (41)We must explain the map Zp+1 −→ Γ(Fα). Let α = (α0, . . . , αp), then theut surfae Fα has two boundary omponents, α+

i and α−i , for eah irle αi.Then the standard generator ej = (0, . . . , 0, 1, 0, . . . , 0) ∈ Zp+1, j = 0, . . . , p,maps to the mapping lass making a right Dehn twist on α+
j and a leftDehn twist on α−j , and identity everywhere else. This is extended to a grouphomomorphism, i.e. −ej makes a left Dehn twist on α+

j and a right Dehntwist on α−j .Let us see that (41) is exat. The hard part is injetivity of Zp+1 −→
Γ(Fα), so we only show this. Assume m 6= n ∈ Zp+1, and say m0 6= n0.For p ≥ 1, the surfae Fα has at least four boundary omponents. Two of



44 3 Homology stability of the mapping lass groupthem ome from utting up along the irle α0, all one of these S. If p = 0,then α = α0, and Fα has genus g − 1 ≥ 2 by (38), sine 2g ≥ 3k + 3 ≥ 6.In both ases, there is a non-trivial loop γ in Fα starting on S whih doesnot ommute with the Dehn twist f around S in π1(Fα). Sine Fα hasboundary, π1(Fα) is a free group, so the subgroup 〈γ, f〉 is also free. Theation of m ∈ Zp+1 on γ is fm0γf−m0, and sine f and γ does not ommute,
fm0γf−m0 6= fn0γf−n0 when n0 6= m0.Consider l∗ : Γ((F1)α) −→ Γ((F0)α). Both surfaes (Fi)α have non-emptyboundary, so we an use Main Theorem 3.6. We must relate l∗ to the maps
Σ0,1 and Σ1,−1, so let F̂ denote a surfae suh that Σ0,1(F̂ ) = (F1)α. Then F̂has one less boundary omponents than (F1)α, so F̂ and (F0)α are isomorphi.This gives the diagram:

H∗(Γ(F̂ ))
∼= //

(Σ0,1)∗ ''OOOOOOOOOOO
H∗(Γ((F0)α))

H∗(Γ((F1)α))

l∗

66mmmmmmmmmmmmmWe see that l∗ is always surjetive. By Theorem 3.6, (Σ0,1)∗ : Hs(Γ(F̂ )) −→
Hs(Γ((F1)α)) is an isomorphism for 3s ≤ 2(g − p− 1), so the same holds for
l∗. The Lynden-Serre spetral sequene of (41) for F is

Ē2
s,t(F ) ∼= Hs(Γ̃α, Ht(Z

p+1))⇒ Hs+t(Γ(Fα)). (42)We showed above that l∗ : Hs+t(Γ((F1)α)) −→ Hs+t(Γ((F0)α)) is an isomor-phism for 3(s+ t) ≤ 2(g − p− 1) and surjetive always. Note that Zp+1 liesin the enter of Γ(Fα), sine the Dehn twists an take plae as lose to theboundary of Fα as desired. By the Künneth formula, we have an isomorphism
Ē2
s,t(F ) ∼= Ē2

s,0(F )⊗ Ē2
0,t(F ) = Hs(Γ̃α)⊗Ht(Z

p+1)Now sine l∗ : Hs+t(Γ((F1)α)) −→ Hs+t(Γ((F0)α)) is an isomorphism for
3(s+ t) ≤ 2(g− p− 1) and always surjetive, it follows by an easy indutiveargument that l∗ : Hs(Γ̃(F0)α) −→ Hs(Γ̃(F1)α) is an isomorphism for 3s ≤
2(g − p− 1) and surjetive for 3s ≤ 2(g − p− 1) + 3.The Lynden-Serre spetral sequene of (40) is

Ẽ2
r,s(F ) ∼= Hr

(
(Z/2)p+1 ⋉ Σp+1;Hs(Γ̃α; Zα)

)
⇒ Hr+s(Γα; Zα). (43)Sine Γ̃α preserves the orientation of the simplies, we an drop the loaloordinates to obtain

Ẽ2
r,s(F ) ∼= Hr

(
(Z/2)p+1 × Σp+1, Hs(Γ̃α)⊗ Zα

)
.



3.3 The stability theorem for losed surfaes 45It follows from the above that l∗ : Ẽ2
r,s(F1) −→ Ẽ2

r,s(F0) is an isomorphismfor 3s ≤ 2(g − p − 1) and surjetive for 3s ≤ 2(g − p − 1) + 3. Then byMoore's omparison theorem,
l∗ : Hq(Γ(F1)α; Zα) −→ Hq(Γ(F0)α; Zα)is an isomorphism for 3q ≤ 2(g−p−1) and surjetive for 3q ≤ 2(g−p−1)+3.Then in partiular, it is an isomorphism for 3(p+ q) ≤ 2g− 2 and surjetivefor 3(p + q) ≤ 2g − 2 + 3. Now a �nal appliation of Moore's omparisontheorem on the spetral sequene in (39) gives the desired result, as explainedin the beginning of the proof.



46 4 Stability with twisted oe�ients4 Stability with twisted oe�ients4.1 The ategory of marked surfaesDe�nition 4.1. The ategory of marked surfaes C is de�ned as follows: Theobjets are triples F, x0, (∂1F, ∂2F, . . . , ∂rF ), where F is a ompat onnetedorientable surfae with non-empty boundary ∂F = ∂1F ∪ · · ·∂rF , with anumbering (∂1F, . . . , ∂rF ) of the boundary omponents of F , and x0 ∈ ∂1Fis a marked point.A morphism (ψ, σ) between marked surfaes (F, x0) and (G, y0) is an am-bient isotopy lass of an embedding ψ : F −→ G, where eah boundaryomponent of F is either mapped to the inside of G or to a boundary om-ponent of G. If ψ(x0) ∈ ∂G then ψ(x0) = y0, else there is a embedded ar σin G onneting x0 and y0.The objets of C is an be groupedObC =
∐

g,r

ObCg,r,where Cg,r onsists of the surfaes with genus g and r boundary omponents.De�nition 4.2. The morphisms Σ1,0, Σ0,1 in C are the embeddings Σi,j :
F −→ Σi,jF given by gluing onto ∂1F a torus with 2 disks ut out, or a pairof pants, respetively, as on Figure 10. The embedded ar σ is also shownhere. The boundary omponents of Σ0,1F are numbered suh that the newboundary omponent from the pair of pants is ∂r+1(Σ0,1F ).The morphism Σ1,−1 in the subategory of ∐

r≥2 ObCg,r is the embeddinggiven by gluing a pair of pants onto ∂1(F ) and ∂2(F ), as on Figure 10. Thenumbering is that ∂j(Σ1,−1F ) = ∂j−1F for j > 1.
F

s σ s
Σ1,0F

F

s s
Σ0,1F

σ

∂r+1Σ0,1F

↓ F

s s
Σ1,−1F

σ∂2FFigure 10: The morphisms Σ1,0, Σ0,1F , and Σ1,−1F .In the �gure, the blak retangles are boundary omponents of F or
Σi,jF , and the outer boundary omponent is always ∂1F with the marked



4.2 Coe�ient systems 47point indiated. On the �gure of Σ1,−1F the grey �tube� is a ylinder gluedonto ∂2F .Now we will see how Σi,j an be made into funtors. First we de�nethe subategory C(2) of C to be the ategory with objets ∐
r≥2 ObCg,r andwhose morphisms ϕ : F −→ S must restrit to an orientation-preservingdi�eomorphism ϕ : ∂2F −→ ∂2S. Note that Σ1,0 and Σ0,1 are morphisms inthis ategory.

Σ1,0 and Σ0,1 are funtors from C to itself, and Σ1,−1 is a funtor from C(2)to C in the following way: Given a morphism ϕ : F −→ S we must speifythe morphism Σi,j(ϕ), and this is done on the following diagram (drawn inthe ase of Σ1,0). Here, the grey line shows how Σ1,0 is embedded in Σ0,1Sby Σ1,0(ϕ). Notie how the ar σ determines the embedding.
F r -Σ1,0 F r r

?
ϕ

?
Σ1,0(ϕ)

F r r
S

-Σ1,0 F r r
S

rFigure 11: The funtor Σ1,0.Similar diagrams an be drawn for Σ0,1 and Σ1,−1. In the latter ase
Σ1,−1(ϕ) exists beause when ϕ ∈ C(2), ϕ : F −→ S has not done anythingto ∂2(F ), so that Σ1,−1F an be embedded in Σ1,−1S just as on Figure 11.4.2 Coe�ient systemsWe now de�ne the oe�ient systems we are interested in. We say thatan abelian group G is without in�nite division if the following holds for all
g ∈ G: If n | g for all n ∈ Z, then g = 0. By n | g we mean g = nh forsome h ∈ G. Note that �nitely generated abelian groups are without in�nitedivision.De�nition 4.3. A oe�ient system is a funtor from C to Abwid, the ate-gory of abelian groups without in�nite division.



48 4 Stability with twisted oe�ientsWe say that a onstant oe�ient system has degree 0 and make thegeneralDe�nition 4.4. [Ivanov1℄ A oe�ient system V has degree ≤ k if themap V (F )−→V (Σi,jF ) is split injetive for (i, j) ∈ {(1, 0), (0, 1), (1,−1)},and the okernel ∆i,jV is a oe�ient system of degree ≤ k − 1 for (i, j) ∈
{(1, 0), (0, 1)}. The degree of V is the smallest suh k.Example 4.5. (i) V (F ) = H1(F, ∂F ) is a oe�ient system of degree 1.
(ii) V ∗k (F ) = Hk(Map((F/∂F ), X). This is the oe�ient system used in[Cohen-Madsen℄. It has degree ≤ ⌊k

d
⌋ if X is d-onneted, whih willbe proved in Theorem 5.3.We write Σi,jV for the funtor F  V (Σi,jF ), where (i, j) ∈ {(1, 0), (0, 1)}.Lemma 4.6 (Ivanov). Let V be a oe�ient system of degree ≤ k. Then

Σ1,0V and Σ0,1V are oe�ient systems of degree ≤ k.Proof. See [Ivanov1℄ for Σ1,0V . The ase Σ0,1V an be handled similarly.4.3 The indutive assumptionBelow I will use the following notational onventions: F denotes a surfae in
C, and unless otherwise spei�ed, g is the genus of F . Σl,m refers to any of
Σ1,0, Σ0,1, Σ1,−1.De�nition 4.7. Given a morphism ψ : F −→ S, Φ will denote a �niteomposition of Σ0,1 and Σ1,−1 suh that Φ(ψ) is de�ned, i.e. makes thefollowing diagram omutative

F
Φ //

ψ

��

Φ(F )

Φ(ψ)
���
�

�

S
Φ // Φ(S)By a �nite omposition we mean Φ = Σi1,j1 ◦ · · · ◦ Σis,js for some s ≥ 0,where (ik, jk) ∈ {(0, 1), (1,−1)} for eah k = 1, . . . , s. We say that suh a Φis ompatible with ψ : F −→ S.To prove our main stability result for twisted oe�ients, we will studyertain relative homology groups:



4.3 The indutive assumption 49De�nition 4.8. Let ψ : F −→ S be a morphism of surfaes, and let Φ beompatible. Let V be a oe�ient system. Then we de�neRelV,Φn (S, F ) = Hn(Γ(S),Γ(F );V (Φ(S)), V (Φ(F ))).If Φ = id, we write RelVn (G,F ) for RelV,idn (G,F ).Theorem 4.9 (Ivanov, Madsen-Cohen). For su�iently large g:
(i) RelVq (Σ1,0F, F ) = 0.

(ii) RelVq (Σ0,1F, F ) = 0.

(iii) RelVq (Σ1,−1F, F ) = 0.Proof. For (i), see [Ivanov1℄. For (ii), see [Cohen-Madsen℄. Their proof onlyrequires that the groups V (·) are without in�nite division.To prove (iii), we use the following long exat sequene,
Hq(F, V (F )) −→ Hq(Σ1,−1F, V (Σ1,−1F )) −→ RelVq (Σ1,−1F, F ) −→

Hq−1(F, V (F )) −→ Hq−1(Σ1,−1F, V (Σ1,−1F ))Thus to see that RelVq (Σ1,−1F, F ) = 0 all we have to do is to see that the�rst map is surjetive and that the last map is injetive. Both of these mapsare Σ1,−1, so they �t into the following diagram, for k ∈ {q, q − 1}:
Hk(F, V (F ))

Σ1,−1 // Hk(F, V (F ))

Hk(S, V )

Σ0,1

OO
Σ1,0

66mmmmmmmmmmmmwhere S is a surfae with Σ0,1S = F . Now by (i) and (ii), if g is su�ientlylarge, both the diagonal and the vertial map is an isomorphism, so Σ1,−1 isalso an isomorphism.De�ne εl,m by
εl,m =

{
1, if (l,m) = (1,−1);
0, if (l,m) = (1, 0) or (0, 1).Indutive Assumption 4.10. The indutive assumption Ik,n is the follow-ing: For any oe�ient system W of degree kW , any surfae F of genus g,and any Φ ompatible with Σl,m : F −→ Σl,mF , we haveRelW,Φq (Σl,mF, F ) = 0 for 2g ≥ 3q + kW − εl,m,if either kW < k, or kW = k and q < n.



50 4 Stability with twisted oe�ientsIn the rest of this setion I am going to assume Ik,n. Note that Ik,m forall m ∈ N is equivalent to Ik+1,0. Thus the goal is to prove Ik,n+1. Let V bea given oe�ient system of degree k.Lemma 4.11 (Ivanov). Let F be a surfae of genus g. If 2g ≥ 3q+k−1−εl,mthen for (i, j) ∈ {(1, 0), (0, 1)}RelV,Φq (Σl,mF, F ) −→ RelV,Σi,jΦ
q (Σl,mF, F )is surjetive.Proof. Sine RelV,Σi,jΦ

q (Σl,mF, F ) = RelΣi,jV,Φ
q (Σl,mF, F ) we have the follow-ing long exat sequene :RelV,Φq (Σl,mF, F ) −→ RelV,Σi,jΦ

q (Σl,mF, F ) −→ Rel∆i,jV,Φ
q (Σl,mF, F )Sine ∆i,jV is a oe�ient system of degree k−1, the assumption Ik,n impliesthat Rel∆i,jV,Φ

q (Σl,mF, F ) = 0, and the result follows.Theorem 4.12. Assume that h satis�es 2h ≥ 3n+ k− 1− εl,m and that themaps below are injetive for all surfaes F of genus g ≥ h and Φ ompatiblewith Σl,m : F −→ Σl,mF ,RelV,ΦΣ1,−1

n (Σl,mF, F ) −→ RelV,Φn (Σl,mΣ1,−1F,Σ1,−1F ),RelΣ0,1V
n (Σl,mF, F ) −→ RelVn (Σl,mΣ0,1F,Σ0,1F ).Then for any ompatible Φ, RelV,Φn (Σl,mF, F ) = 0 for g ≥ h.Proof. Assume 2g ≥ 3n + k − 1− εl,m. Write Φ = Σi1,j1 ◦ · · · ◦ Σis,js, where

(ik, jk) ∈ {(1,−1), (0, 1)}. Observe that we an write Φ = Φ′ ◦ (Σ1,−1)
d forsome d, where Φ′ = Σλ1,µ1

◦ · · · ◦ Σλt,µt
with (λk, µk) ∈ {(1, 0), (0, 1)}. Thenby the �rst assumption in the theorem, we get by indution in d:RelV,Φn (Σl,mF, F ) −→ RelV,Φ′

n (Σl,m(Σ1,−1)
dF, (Σ1,−1)

dF )is injetive. Thus it su�es to show RelV,Φ′

n (Σl,m(Σ1,−1)
dF, (Σ1,−1)

dF ) = 0.Sine genus((Σ1,−1)
dF ) ≥ g ≥ h, it is ertainly enough to show RelV,Φ′

n (Σl,mF, F ) =
0, where Φ′ is a �nite omposition of Σ1,0 and Σ0,1. By Lemma 4.11, we getindutively that RelVn (Σl,mF, F ) −→ RelV,Φ′

n (Σl,mF, F )is surjetive, so it su�es to show that RelVn (Σl,mF, F ) = 0. Now by theseond assumption in the Theorem, we knowRelΣ0,1V
n (Σl,mF, F ) −→ RelVn (Σl,mΣ0,1F,Σ0,1F )



4.4 The main theorem for twisted oe�ients 51is injetive. Sine V is a oe�ient system of degree k, V (F ) −→ V (Σ0,1F )and V (F ) −→ V (Σ1,−1F ) are split injetive, so the omposition,RelVn (Σl,mF, F ) −→ RelΣ0,1V
n (Σl,mF, F ) −→ RelVn (Σl,mΣ0,1F,Σ0,1F )

−→ RelΣ1,−1V
n (Σl,mΣ0,1F,Σ0,1F ) −→ RelVn (Σl,mΣ1,0F,Σ1,0F )is injetive, where the seond and the last maps are the maps in the assump-tion and thus injetive. Iterating this, we get an injetive mapRelVn (Σl,mF, F ) −→ RelVn (Σl,m(Σ1,0)

dF, (Σ1,0)
dF )for any d ∈ N. But genus((Σ1,0)

dF ) = g+d, so by Theorem 4.9, RelVn (Σl,mF, F )injets into zero. This proves RelV,Φn (Σl,mF, F ) = 0.4.4 The main theorem for twisted oe�ientsIn the proof of stability for relative homology groups, we will use the relativeversion of the spetral sequene, f. Theorem 1.2, E1
p,q = E1

p,q(Σi,jF ; 2 − i)assoiated with the ation of Γ(Σi,jF ) on the ar omplex C∗(Σi,jF ; 2 − i)and the ation of Γ(Σl,mΣi,jF ) on the ar omplex C∗(Σl,mΣi,jF ; 2− i). Let
b0, b1 be the points in the de�nition of C∗(Σi,jF ; 2 − i); and b̃0, b̃1 be theorresponding points for C∗(Σl,mΣi,jF ; 2 − i). We demand that b0, b̃0 lie inthe 1st boundary omponent, but is di�erent from the marked point. Tode�ne the spetral sequene, Σl,m must indue a map

Σl,m : C∗(Σi,jF ; 2− i) −→ C∗(Σl,mΣi,jF ; 2− i), (44)whih we now de�ne: If i = 0, b0 and b1 lie in di�erent boundary omponents,and the map is given on α ∈ ∆k(Σi,jF ) by a simple path γ from b̃0 ∈
Σl,mΣi,jF to b0 ∈ Σi,jF inside Σl,mΣi,jF \ Σi,jF . Then the ars of α areextended by parallel opies of γ that all start in b̃0. Note that in this ase
b̃1 = b1, so no extension is neessary here. If i = 1, b0 and b1 lie on thesame boundary omponent, and we hoose disjoint paths for them to thenew marked boundary omponent, and extend as for i = 0.Now the spetral sequene (typially) has E1 page:

E1
p,q =

⊕

σ∈Σp

E1
p,q(σ)

E1
p,q(σ) = Hq(Γ(Σi,jΣl,mF )Σl,mT (σ),Γ(Σi,jF )T (σ);

V (ΦΣi,jΣl,mΣs,t(F )), V (ΦΣi,jΣs,t(F )))

= RelV,Φσ

q ((Σi,jΣl,mF )Σl,mT (σ), (Σi,jF )T (σ)) (45)



52 4 Stability with twisted oe�ientsHere, Φσ : (Σi,jF )T (σ) →֒ Σi,jF is the inlusion, whih is a �nite ompositionofΣ0,1 and Σ1,−1. Furthermore, Γσ denotes the stabilizer of the (p−1)-simplex
σ in Γ. The diret sum is over the orbits of (p−1)-simplies σ in C∗(Σi,jF ; 2−
i), whose images under Σl,m are also (p−1)-simplies in C∗(Σl,mΣi,jF ; 2− i).In most ases, Σl,m indues a bijetion on the representatives of orbits of
(p−1)-simplies. Also reall that the set of orbits are in 1−1 orrespondenewith a subset Σp of the permutation group Σp. Lemma 2.16 haraterizes Σp.As a general remark, note that if a permutation is represented in C∗(F ; 2−i),then it is also represented in C∗(Σl,mF ; 2−i), sine genus(Σl,mF ) ≥ genus(F ).So we will only hek the ondition for C∗(F, 2− i).In ertain ases we will either not have Σl,m induing bijetion on therepresentatives of orbits of (p − 1)-simplies, or they will not inlude thepermutation used in the standard proof. All suh ases will be found inLemma 4.13 below and taken are of in the Indutive start setion at the endof the proof.The �rst di�erential, d1

p,q : E1
p,q −→ E1

p−1,q, is desribed in setion 1.3.The diagrams
∆p(F ; i)

∂j //

��

∆p(F ; i)

��

Σp+1

∂j // Σp j = 0, . . . , pommute, where ∂j omits entry j as in Def. 2.2 and the vertial arrowsdivide out the Γ ation and ompose with P . Thus for eah σ ∈ Σp+1, thereis gj ∈ Γ suh that
gj · ∂jT (σ) = T (∂jσ), (46)and onjugation by gj indues an injetion cgj

: ΓT (σ) →֒ ΓT (∂jσ). The induedmap on homology is denoted ∂j again, i.e.
∂j : Hq(Γ(Σi,jΣl,mF )Σl,mT (σ),Γ(Σi,jF )T (σ);V) →֒

Hq(Γ(Σi,jΣl,mF )Σl,m∂jT (σ),Γ(Σi,jF )∂jT (σ);V)
(cgj

)∗
−→ (47)

Hq(Γ(Σi,jΣl,mF )Σl,mT∂j(σ),Γ(Σi,jF )T∂j(σ);V)Note that (cgj
)∗ does not depend on the hoie of gj in (46): Another hoie

g′j gives cg′j = cg′jg
−1

j
cgj

, and g′jg−1
j ∈ ΓT (∂jσ) so cg′jg−1

j
indues the identity onthe homology. Then

d1 =

p−1∑

j=0

(−1)j∂j . (48)



4.4 The main theorem for twisted oe�ients 53Lemma 4.13. Let n ≥ 1. The subset Σp ⊆ Σp, whih is in 1− 1 orrespon-dene with a set of representatives of the orbits of ∆p−1(Σi,jF ; 2− i), has thefollowing properties:Surjetivity of Σ0,1: Assume 2g ≥ 3n+ k − 2− εl,m. Then
Σp = Σp for 2 ≤ p ≤ n + 1 and for p = n + 2 = 3, unless:
• (l,m) 6= (1,−1), n = 1, g = 1, k = 0, 1, or
• (l,m) = (1,−1), n = 1, g = 0, k = 0, or
• (l,m) = (1,−1), n = 1, g = 1, k = 0, 1, 2.Surjetivity of Σ1,−1: Assume 2g ≥ 3n+ k − 3− εl,m. Then

Σp = Σp for 2 ≤ p ≤ n+ 1, and σ ∈ Σp if S(σ) ≥ 1 for p = n+ 2 ≤ 4,unless:
• (l,m) 6= (1,−1), n = 1, g = 0, k = 0, or
• (l,m) = (1,−1), n = 1, g = 0, k = 0, 1, or
• (l,m) = (1,−1), n = 2, g = 1, k = 0.Injetivity of Σ1,−1: Assume 2g ≥ 3n+ k − εl,m. Then

Σp = Σp for 2 ≤ p ≤ n+ 2, and σ ∈ Σp if S(σ) ≥ 1 for p = n+ 3 = 4,unless:
• (l,m) = (1,−1), n = 1, g = 1, k = 0.Proof. We only prove the �rst of the three ases, as the other two are om-pletely analogous. So assume 2g ≥ 3n + k − 2 − εl,m, and let σ ∈ Σp be agiven permutation of genus s. Let 2 ≤ p ≤ n+ 1. By Lemma 2.16, σ ∈ Σp ifand only if s ≥ p−1−g. This inequality is ertainly satis�ed if p−1−g ≤ 0.The hardest ase is p = n + 1, so we must show n− g ≤ 0. By assumption,

2(n− g) ≤ 2n− (3n+ k − 2 + εl,m) = −n− k + 2 + εl,m
?

≤ 0,For n ≥ 3 this holds. If n = 2, the assumption 2g ≥ 3n+ k − 2− εl,m fores
g ≥ 2, so n − g ≤ 0. For n = 1 and (l,m) 6= (1,−1), we have εl,m = 0, so
g ≥ 1, whih means n− g ≤ 0. Last for n = 1 and (l,m) = (1,−1), we have
εl,m = 1, so we get one exeption, g = k = 0.Now let p = n + 2 = 3, so n = 1. The requirement in Lemma 2.16 is
p− 1− g ≤ 0, i.e. g ≥ 2. By assumption 2g ≥ 3n+ k − 2− εl,m, so if g = 1,we have k − εl,m − 1 ≤ 0. Now for (l,m) 6= (1,−1), the only exeptions are
k = 0, 1, and for (l,m) = (1,−1), the only exeptions are k = 0, 1, 2. If
g = 0, we have k− εl,m+ 1 ≤ 0, so the only exeption is (l,m) = (1,−1) and
k = 0. This �nishes the proof.



54 4 Stability with twisted oe�ientsProposition 4.14. Let α denote a simplex either in ∆1(F ; 1) with P (α) =
[1 0], or in ∆2(F ; 2) with P (α) = [2 1 0]. Let g be the genus of Fα, and let Φbe ompatible with Σl,m : F −→ Σl,mF . Then if 2g ≥ 3q+ kW − 1− εl,m, themaps ∂0 = ∂1 are equal as maps from

RelV,Φα

n ((Σl,mF )Σl,mα, Fα).Proof. Write σ = P (α). First note that ∂0 and ∂1 have the same target,sine ∂0(σ) = ∂1(σ) =: τ by assumption. We an assume T (σ) = α and
T (τ) = ∂0α. Then we an hoose the element g = g1 from (46), whihmust satisfy g · ∂1α = ∂0α, to be as in Prop. 3.2. Then g ommutes withthe stabilizers Γ(Σl,mF )α0∪α1

, Γ(F )α0∪α1
and thus also with Γ(Σl,mF )α and

Γ(F )α.We now extend the ars of α to ars in ΦF as follows: If α ∈ ∆1(F ; 1)we use (44) to obtain α̃ = Φ(α) ∈ ∆1(ΦF ; 1). If α ∈ ∆2(F ; 2), we extend,if possible, the 1-simplex α0 ∪ α1 to a 1-simplex α̃ ∈ ∆1(ΦF ; 1), i.e. theextended ars start and end on the same boundary omponent in ΦF . If thisis not possible, we extend α to α̃ ∈ ∆2(ΦF ; 2). These extensions must satisfythe same requirements as (44) does. Then we make the same extensions for
β := Σl,mα to β̃ in ΦΣl,mF . Now the onjugation (cg)∗ ats as the identityon

Hn(Γ(Σl,mF )β,Γ(F )α;V ((ΦΣl,mF )β̃), V ((ΦF )α̃))If we are in the ase α̃∆1(ΦF ; 1), then the inlusion map on the oe�-ients,
i∗ : Hn(Γ(Σl,mF )β,Γ(F )α;V ((ΦΣl,mF )β̃), V ((ΦF )α̃)) −→ (49)

Hn(Γ(Σl,mF )β,Γ(F )α;V (ΦΣl,mF ), V (ΦF )) = RelV,Φα

n ((Σl,mF )Σl,mα, Fα)equals Σ1,0 on the oe�ient systems, and by Lemma 4.11 it is surjetivesine 2g ≥ 3n + k − 1 − εl,m by assumption. Now as i∗ is surjetive and
(cg)∗ ◦ i∗ = i∗ we see that (cg)∗ is the identity on RelV,Φα

n (Σl,mFα, Fα), andthus ∂1 = (cg)∗∂0 = ∂0. For α̃ ∈ ∆2(ΦF ; 2) we do the same, exept that weuse α instead of only α0 ∪ α1. In this ase i∗ in (49) is going to be Σ1,0Σ0,1on the oe�ient systems, whih again by Lemma 4.11 is surjetive.By Theorem 4.12, to prove Ik,n+1 it is enough to prove:Theorem 4.15. The map indued by Σi,j,RelV,ΦΣi,j

n (Σl,mF, F ) −→ RelV,Φn (Σi,jΣl,mF,Σi,jF )satis�es:
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(i) For Σi,j = Σ0,1, it is surjetive for 2g ≥ 3n+k−2−εl,m, and if Φ = idit is an isomorphism for 2g ≥ 3n+ k− 1− εl,m. For k = 0 it is alwaysinjetive.

(ii) For Σi,j = Σ1,−1, it is surjetive for 2g ≥ 3n + k − 3 − εl,m, and anisomorphism for 2g ≥ 3n + k − εl,m.Proof. We prove the theorem by indution in the homology degree n. Assume
n ≥ 1. The indution start n = 0 will be handled separately below, alongwith all exeptional ases from Lemma 4.13. This means that in the mainproof, any permutation is represented by an ar simplex (in some speialases only if its genus is ≥ 1).Surjetivity for Σ0,1:Assume 2g ≥ 3n + k − 2 − εl,m. We use the spetral sequene E1

p,q =
E1
p,q(Σ0,1F ; 2), and laim that E1

p,q = 0 for p + q = n + 1 with p ≥ 3. Notethat Γ(Σ0,1F )σ = Γ(Σ0,1Fσ), and genus(Σ0,1Fσ) = g−p+1+S(σ) ≥ g−p+1.We will use the assumption Ik,n, and must show 2(g− p+ 1) ≥ 3q+ k− εl,mfor p ≥ 3. These inequalities follows from the one for p = 3, whih is
2(g − 2) ≥ 3(n− 2) + k − εl,m, and this holds by assumption.Now all we need is to show that E2

2,n−1 = 0. We onsider
E1

2,n−1 = E1
2,n−1([0 1])⊕ E1

2,n−1([1 0])We wish to show that d1 : E1
3,n−1 −→ E1

2,n−1 is surjetive and thus E1
2,n−1 =

0. We look at E1
3,n−1(τ) indexed by the permutation τ = [2 1 0]. We willshow that d1 restrited to E1

3,n−1(τ) surjets onto E1
2,n−1([1 0]) without hitting

E1
2,n−1([0 1]). Sine S(τ) = 1, Σ0,1Fτ is Fg−1,r, and thus by Proposition 4.14,

∂0 = ∂1. We then see
d1 = ∂0 − ∂1 + ∂2 = ∂2and ∂2 : E1

3,n−1(τ) −→ E1
2,n−1[1 0] equals Σ0,1 and so is surjetive by indu-tion, sine 2(g − 1) ≥ 3(n − 1) + k − 2 − εm,l. All that remains is to hit

E1
2,n−1([0 1]) surjetively, regardless of E1

2,n−1([1 0]). Consider the followingomponent of d1:
∂0 : E1

3,n−1([2 0 1]) −→ E1
2,n−1([0 1]).This is the map indued by Σ1,−1. By indution this map is surjetive, sine

2(g−2) ≥ 3(n−1)+k−3−εl,m by assumption. This proves that E2
2,n−1 = 0.



56 4 Stability with twisted oe�ientsInjetivity for Σ0,1:Assume 2g ≥ 3n + k − 1 − εl,m. For this proof we take another approah.Consider the following omposite map,RelVq (Σl,mF, F ) −→ RelΣ0,1V
q (Σl,mF, F )

Σ0,1

−→ RelVq (Σl,mΣ0,1F,Σ0,1F )
p∗
−→ RelVq (Σ0,−1Σl,mΣ0,1F,Σ0,−1Σ0,1F )

= RelVq (Σl,mF, F ) (50)Here p : Fg,r −→ Fg,r−1 is the map that glues a disk onto a the unmarkedboundary irle reated by Σ0,1. Sine the omposite map (50) is indued bygluing on a ylinder to the marked boundary irle of Σl,mF and F , it is anisomorphism. Now by Lemma 4.11, sine 2g ≥ 3n+k−1−εl,m, the �rst mapis surjetive, so Σ0,1 is fored to be injetive. Note with onstant oe�ients(k = 0), the �rst map is the identity, so here Σ0,1 is always injetive.Surjetivity for Σ1,−1:Assume 2g ≥ 3n + k − 3 − εl,m. We use the spetral sequene E1
p,q =

E1
p,q(Σ1,−1F ; 1). We show E1

p,q = 0 if p+ q = n+ 1 and p ≥ 4, using assump-tion Ik,n. We know Γ(Σ1,−1F )σ = Γ((Σ1,−1F )σ), and genus((Σ1,−1F )σ) =
g−p+1+S(σ) ≥ g−p+1. So we must show 2(g−p+1) ≥ 3q+k−εl,m forall p+ q = n + 1, p ≥ 4. This follows if we show it for p = 4, whih is easy:

2(g − 3) = 2g − 6 ≥ 3n+ k − 3− εm,l − 6 = 3(n− 3) + k − εm,l.To show that the map d1 : E1
1,n −→ E1

1,n is surjetive, we thus only need toshow that E2
2,n−1 = 0 and E2

3,n−2 = 0. Consider E1
2,n−1:

E1
2,n−1 = E1

2,n−1([0 1])⊕ E1
2,n−1([1 0]).For σ = [1 0], sine S(σ) = 1, we have genus((Σ1,−1F )σ) = g−p+1+S(σ) = g.Thus by Ik,n, E1

2,n−1([1 0]) = 0, sine 2g ≥ 3n+k−1−εm,l = 3(n−1)+k+2−
εl,m. Now onsider the summand in E1

3,n−1 indexed by τ = [2 0 1] whih hasgenus 1. Then (Σ1,−1F )τ = Fg−1,r, so d1 on this summand is exatly the mapindued by Σ0,1 (sine d1 has 3 terms, only one of whih hit E1
2,n−1([0 1])).To show this is surjetive onto E1

2,n−1, we use indution, and must hek that
2(g−1) ≥ 3(n−1)+k−εl,m, whih follows by assumption. So d1 is surjetiveonto E1

2,n−1, whih implies that E2
2,n−1 = 0.Consider E1

3,n−2. As above, by Ik,n, all summands are zero, exept forthe one indexed by id = [0 1 2]. Consider E1
4,n−2(τ

′) indexed by τ ′ = [3 0 1 2],



4.4 The main theorem for twisted oe�ients 57whih has genus 1. Restriting d1 to this summand, only one term hits
E1

3,n−2([0 1 2]). As above, one heks that this restrition of d1 is exatly themap indued by Σ0,1, so by indution it is surjetive.Injetivity for Σ1,−1:Assume 2g ≥ 3n+ k+ 2− εl,m. We use the same spetral sequene as in thesurjetivity of Σ1,−1. We laim E1
p,q = 0 if p + q = n + 2 and p ≥ 4. Again,

Γ(Σ1,−1F )σ = Γ(Σ1,−1Fσ), and genus(Σ1,−1Fσ) = g−p+1+S(σ) ≥ g−p+1.So we must show 2(g− p+ 1) ≥ 3q+ k+ 2− εm,l for all p+ q = n+ 2, p ≥ 4,and this follows from 2g ≥ 3n+ k + 2− εm,l, as above.To show that the map d1 : E1
1,n −→ E1

0,n is injetive, we thus only needto show that E2
3,n−1 = 0 and d1 : E1

2,n −→ E1
1,n is the zero-map. That

E2
3,n−1 = 0 is proved preisely as for E2

3,n−2 in surjetivity for Σ1,−1, so weomit it. To show d1 : E1
2,n −→ E1

1,n is the zero-map, note that E1
2,n has twosummands, E1

2,n([0 1]) and E1
2,n([1 0]). We get that d1 is zero on E1

2,n([1 0]),sine d1 = ∂0 − ∂1 = 0 by Proposition 4.14. Next we onsider d1 : E1
3,n −→

E1
2,n. If we an show this is surjetive onto E1

2,n([0 1]), we are done. Againwe use the summand E1
3,n(τ), where τ = [2 0 1]. The restrited di�erential

d1 : E1
3,n(τ) −→ E1

2,n([0 1]) is exatly the map indued by Σ0,1, so we anshow it is surjetive, sine we have already proved the Theorem for Σ0,1. Therelevant inequality is 2(g−1) ≥ 3n+k−εl,m, whih holds by assumption. So
d1 : E1

2,n −→ E1
1,n is the zero-map, and we have shown that d1 : E1

1,n −→ E1
1,nis injetive.Indution start and speial ases:Here we handle the the indutive start n = 0, along with the ases missingin the general argument above, namely the exeptions from Lemma 4.13.The indution start n = 0. For n = 0 and k = 0, we always getRelV,Φ0 (Σl,mF, F ) = 0 sine H0(F, V (F )) −→ H0(Σl,mF, V (Σl,mF )) is an iso-morphism when the oe�ients are onstant. So the theorem holds in thisase. Now let n = 0 and let k be arbitrary. By onsidering the spetralsequene, see Figure 12, we see that Σi,j is automatially surjetive, sinethe spetral sequene always onverges to zero at (0, 0).

-
6r r r) )Σi,j d1Figure 12: The spetral sequene for n = 0.



58 4 Stability with twisted oe�ientsFor the sake of the ase n = 1, note that the surjetivity argument for
Σ0,1 when n = 0 also works for any k when using the spetral sequene forabsolute homology for the ation of Γ(F0,r+1) on C∗(F0,r+1; 2).For Σ0,1, the injetivity argument used above holds for all n. So we mustshow that Σ1,−1 is injetive. For g ≥ 1, the argument from above works,sine there are ar simplies representing all the permutations used above.The problem is thus g = 0, whih means k = 0, 1, but we will also show theresult for k = 2 sine we will need in the ase n = 1 below.As the omplex we use, C∗(F1,r−1; 1), is onneted, the spetral sequeneonverges to 0 for p + q ≤ 1, so we an apply that spetral sequene.We must show that d1 = d1

2,0 in Figure 12 is the zero map. We on-sider (l,m) ∈ {(1, 0), (1,−1)} and (l,m) = (0, 1) separately. For Σ0,1,
E1

2,0 = E1
2,0([1 0]), sine the permutation [0 1] has genus 0 and is by Lemma2.16 neither represented in C∗(F1,r−1; 1) nor C∗(Σ0,1F1,r−1; 1). Now the argu-ment used to show injetivity of Σ1,−1 in general works here, too.For Σ1,0 or Σ1,−1, E1

2,0 = E1
2,0([1 0]) ⊕ Ẽ1

2,0([0 1]) where Ẽ1
2,0([0 1]) is theabsolute homology group,

Ẽ1
2,0([0 1]) = H0(Γ(Σl,mF1,r−1)T ([0 1]);V (Σl,mF1,r−1)),sine [0 1] is represented in C∗(Σ1,−1F1,r−1; 1) and C∗(Σ1,0F1,r−1; 1), but notin C∗(F1,r−1; 1), see Theorem 1.3. For E1

2,0([1 0]), the general argument forinjetivity of Σ1,−1 shows that d1
2,0([1 0]) is zero. That d1 : Ẽ1

2,0([0 1]) is thezero map will follow if we show that Ẽ1
3,0 hits Ẽ1

2,0([0 1]) surjetively. But the
d1-omponent Ẽ1

3,0([2 0 1]) −→ Ẽ1
2,0([0 1]) is just Σ0,1 in the absolute ase for

n = 0, g = 0 and k ≤ 2. This d1-omponent is surjetive onto Ẽ1
2,0([0 1]), bythe remark on surjetivity for n = 0.Surjetivity when n = 1. Now let n = 1 and k ≤ 2. Consider therelative spetral sequene, as depited in Figure 13. If we show that the map

d2
2,0 : E2

2,0 −→ E2
0,1 is zero, we have shown surjetivity. We will show that

E1
2,0 = 0. Reall by Theorem 1.3, E1

2,0 = E1
2,0([0 1])⊕E1

2,0([1 0]), where
E1

2,0(σ) =





RelV,Φσ

0 (Γ(Fg+i+l,r+j+m)Σm,lσ,Γ(Fg+i,r+j)σ), if σ ∈ Σ
l,m

1 ∩ Σ1;
H0(Γ(Fg+i+l,r+j+m)Σm,lσ;V (Γ(Fg+i+l,r+j+m))), if σ ∈ Σ

l,m

1 \ Σ1;
0, if σ /∈ Σ

l,m

1 . (51)and Σ1, Σ
l,m

1 are the subsets of Σ1 in 1− 1 orrespondene with the orbits of
∆1(Σi,jF ; 2− i) and ∆1(Σl,mΣi,jF ; 2− i), respetively.
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HHHHY
Σi,j

d2Figure 13: The spetral sequene for n = 1.Surjetivity of Σ1,−1 when n = 1. Assume (l,m) = (0, 1), g = 0 and
k = 0. Then by Lemma 2.16 only [1 0] is represented as an ar simplex, andby (51) above, E1

2,0 is a relative homology group of degree 0 with onstantoe�ients, so E1
2,0 = 0.The remaining exeptions are (l,m) 6= (0, 1), g = 0 and k ≤ 1. ByLemma 2.16, [1 0] is represented as an ar simplex in both F1+l,r+m and

F1,r−1, so E1
2,0([1 0]) = 0 by Theorem 4.12. Now [0 1] is only representedin F1+l,r+m, so by (51), E1

2,0([1 0]) is an absolute homology group. To killit, onsider E1
3,0([2 0 1]),. whih is also an absolute homology group. Therestrited di�erential and d1 : E1

3,0([2 0 1]) −→ E1
2,0([0 1]) equals Σ0,1, so itis surjetive by the ase n = 0, whih as remarked also holds for absolutehomology group.Surjetivity of Σ0,1 when n = 1. First assume g = 1. The possiblepermutations [0 1] and [1 0] are by Lemma 2.16 represented as 1-simpliesin both ar omplexes. Thus E1

2,0 is a diret sum of two relative homologygroups in degree 0 with oe�ients of degree k ≤ 2. Then by the Indutionstart n = 0, Σ0,1 and Σ1,−1 are injetive for g ≥ 0, so by Theorem 4.12,
E1

2,0 = 0.For (m, l) = (1,−1), we have the speial ase g = k = 0. We willshow H1(Γ1,r,Γ0,r+1) = 0, by showing Σ1,−1 : H1(Γ0,r+1; Z) −→ H1(Γ1,r; Z) issurjetive, and thus that any map into H1(Γ1,r,Γ0,r+1) is surjetive. We use[Harer3℄, Lemma 1.1 and 1.2, whih give sets of generators for H1(Γ0,r+1; Z)and H1(Γ1,r; Z), as follows. Let τi be the Dehn twist around eah boundaryomponent ∂iF1,r, for i = 1, . . . , r, and let x be the Dehn twist on any non-separating simple losed urve γ in F1,r. Then H1(Γ1,r; Z) is generated by
τ2, . . . , τr, x. We remark that Harer states this for Q-oe�ients, but in H1his proof also holds for Z-oe�ients. We an hoose the urve γ as the imageof ∂2F0,r+1 under Σ1,−1. Similarly in Γ0,r+1, we have Dehn twists τ ′i aroundeah boundary omponent ∂iF0,r+1, and these are among the generators for
H1(Γ0,r+1; Z). Then Σ1,−1 maps τ ′i+1 7→ τi for i = 2, . . . , r by onstrution of
Σ1,−1, and τ ′2 7→ x by the hoie of γ. So Σ1,−1 : H1(Γ0,r+1; Z) −→ H1(Γ1,r; Z)is surjetive.



60 4 Stability with twisted oe�ientsInjetivity of Σ1,−1 when n = 1. The only exeption is (l,m) = (1,−1),
g = 1 and k = 0. For this we will use a di�erent argument, drawing on thestability Theorem for Z-oe�ients. Consider the following exat sequene:

H1(Γ1,r;V )։ H1(Γ2,r−1;V ) −→ RelV1 (Γ2,r−1,Γ1,r)

−→ H0(Γ1,r;V )
∼=
−→ H0(Γ2,r−1;V ) (52)Sine k = 0 we have onstant oe�ients, so we an use Theorem 3.6.Sine 2 · 1 ≥ 3 · 1 − 1, the �rst map in (52) is surjetive, and the last mapis an isomorphism. Thus RelV1 (Γ2,r−1,Γ1,r) = 0 and any map from it is thusinjetive. This �nishes the speial ases when n = 1.Surjetivity of Σ1,−1 when n = 2. Again we have only one exeption,namely (l,m) = (1,−1), g = 1 and k = 0. It su�es to show E2

2,1 = 0and E2
3,0 = 0. For E2

2,1 the argument in Surjetivity of Σ1,−1 works sineall the permutations used there are in Σ2. So onsider E2
3,0. Here for allpermutations τ exept [0 1 2] we have τ ∈ Σ3 ∩ Σl,m

3 (for this notation, see(51). Thus for these τ we know that E1
3,0(τ) = 0, sine it is a relativehomology group in degree 0 with onstant oe�ients. But [0 1 2] ∈ Σ

1,−1

3 \Σ3,so E1
3,0([0 1 2]) is an absolute homology group. However, this group is hitsurjetively by E1

4,0[3 0 1 2], sine the restrited di�erential equals Σ0,1 (seethe remark for n = 0). Thus E2
3,0 = 0, as desired.Remark 4.16. As a Corollary to this result, we an be a bit more spei�about what happens when stability with Z-oe�ients fails, f. Theorem 3.6.More preisely,

(i) The okernels of the maps
Σ0,1 : H2n+1(Γ3n+1,r) −→ Hk(Γ3n+1,r+1)

Σ0,1 : H2n+2(Γ3n+2,r) −→ Hk(Γ3n+2,r+1)are independent of r ≥ 1.
(ii) Let r ≥ 2. Then the okernel of the map

Σ1,−1 : H2n+1(Γ3n,r) −→ Hk(Γ3n+1,r−1)is independent of r.Proof. Sine Σ0,1 is always injetive, it �ts into the following long exatsequene,
H2n+1(Γ3n+1,r) −→ H2n+1(Γ3n+1,r+1) −→ RelZ2n+1(F3n+1,r+1, F3n+1,r) −→ 0.



4.4 The main theorem for twisted oe�ients 61Sine 2(3n + 2) ≥ 3(2n + 2) − 2, we get by Theorem 4.15 that the okernelis independent of r. The other ase is similar. For (ii) we get
Hq(Γ3n,r)

Σ1,−1//

��

Hq(Γ3n+1,r−1) //

��

RelZq (F3n+1,r−1, F3n,r) //

∼=
��

Hq−1(Γ3n,r)

∼=

��
Hq(Γ3n,r+1)

Σ1,−1 // Hq(Γ3n+1,r) // RelZq (F3n+1,r, F3n,r+1) // Hq−1(Γ3n,r+1)(We have written q = 2n + 1 to save spae.) As the last two vertial mapsare isomorphisms, the okernels of the �rst map in the top and bottom rowsare equal.The above Theorem �nishes the indutive proof of the assumption In,k.The reason for proving the indutive assumption is that we now get thefollowing Main Theorem for homology stability with twisted oe�ients:Theorem 4.17. Let F be a surfae of genus g, and let V be a oe�ientsystem of degree k. Let (l,m) = (1, 0), (0, 1) or (1,−1). Then the map
Hn(F ;V (F )) −→ Hn(Σl,mF ;V (Σl,mF ))indued by Σl,m satis�es:

(i) For Σl,m = Σ0,1, it is an isomorphism for 2g ≥ 3n+ k.
(ii) For Σl,m = Σ1,0 or Σ1,−1, it is surjetive for 2g ≥ 3n+ k− εl,m, and anisomorphism for 2g ≥ 3n + k + 2.Proof. Consider the following exat sequeneRelVn+1(Σl,mF, F ) −→ Hn(F ;V ) −→ Hn(Σl,mF ; Σl,mV ) −→ RelVn (Σl,mF, F ).To show surjetivity, we must prove that RelVn (Σl,mF, F ) = 0. By Ik,n+1 thisis the ase when 2g ≥ 3n+k. To show injetivity, we �rst note that as usual,

Σ0,1 is always injetive. For Σ1,−1, we get by Ik,n+2 that RelVn+1(Σl,mF, F ) = 0when 2g ≥ 3(n+ 1) + k+ 2. Finally, Σ1,0 = Σ1,−1Σ0,1 and thus also injetivewhen 2g ≥ 3(n+ 1) + k + 2.



62 5 Stability of the spae of surfaes5 Stability of the spae of surfaesIn [Cohen-Madsen℄, Cohen and Madsen onsider the following type of oef-�ients
V X
n (F ) := Hn(Map(F/∂F,X))for X a �xed topologial spae.Lemma 5.1. Let K = K(G; k) be an Eilenberg-MaLane spae with k ≥ 2.Assume H∗(K) is without in�nite division. Then V K

n is a oe�ient systemof degree ≤ ⌊ n
k−1
⌋.Proof. To prove V K
n is a oe�ient system of degree ≤ ⌊ n

k−1
⌋, we must provethat the groups V K

n (F ) are without in�nite division, and that V K
n has theright degree.We onsider the degree �rst, and the proof is by indution on n. Take

Σ = Σ1,0, the other ases are similar. We have the following homotopyo�bration:
S1 ∧ S1 −→ ΣF/∂ΣF −→ F/∂FTaking Map(−, K) leads to the following �bration:Map(F/∂F,K) −→ Map(ΣF/∂ΣF,K) −→ Ω(K)× Ω(K) (53)Sine K = K(G, k) is an in�nite loop spae it has a multipliation, and on-sequently so has eah spae in the �bration (64) above. Thus the total spaeis up to homotopy the produt of the base and the �ber. Using Künneth'sformula, we get:

V K
n (ΣF ) =

n⊕

i=0

V K
n−i(F )⊗Hi(Ω(K)× Ω(K)) (54)Note for n = 0 this says that Σ indues an isomorphism, so V K

0 (F ) has degree
0. This was the indution start.Now sine Ω(K) = K(G, k−1) is (k−2)-onneted and k ≥ 2, H0(Ω(K)×
Ω(K)) = Z and Hj(Ω(K) × Ω(K)) = 0 for j ≤ k − 2. This means that theokernel of Σ is:

∆(V K
n (F )) =

n⊕

i=k−1

V K
n−i(F )⊗Hi(Ω(K)× Ω(K))Sine the degree of a diret sum is the maximum of the degrees of its om-ponents, we get by indution that the degree of ∆(V K

n (F )) is ≤ ⌊n−(k−1)
k−1

⌋ =

⌊ n
k−1
⌋ − 1. This shows that the degree of V K

n is ≤ ⌊ n
k−1
⌋.



63It remains to show that V K
n (F ) is an abelian group without in�nite divi-sion for any surfae F . To prove this, we use a double indution in n and F .There are two base ases.First onsider n = 0, F any surfae. From (54) we see that V K

0 does notdepend on the surfae F . So we an alulate V K
0 (F ) using F = D a disk:

V K
0 (F ) = H0(Map(D/∂D,K)) = Z[π2(K)] =

{
Z, k > 2;
Z[G], k = 2.This is an abelian group without in�nite division.Seondly, let F = D be a disk, and n any natural number. We see

V K
n (D) = Hn(Map(D/∂D,K)) = Hn(Map(S2, K))

= Hn(Map(S0,Ω2(K)) = Hn(Ω
2(K))and aording to our assumptions on H∗(K), this is without in�nite division.The general ase now follows from indution using (54) and its ounter-part for Σ = Σ0,1, along with the fat that any surfae F with boundary anbe obtained from a disk D using Σ1,0 and Σ0,1 �nitely many times.To prove the next theorem we need a ouple of lemmas:Lemma 5.2. Let V and W be oe�ient systems of degrees ≤ s and ≤ t,respetively. Then V ⊗W is a oe�ient system of degree ≤ s+t, and V ⊕Wis a oe�ient system of degree ≤ max(s, t).Proof. Sine V is a oe�ient system, we have the split exat sequene:

0 −→ V (F ) −→ V (ΣF ) −→ ∆(V (F )) −→ 0.Likewise for W . Then for the tensor produt we get the split exat sequene:
0 −→ V (F )⊗W (F ) −→ V (ΣF )⊗W (ΣF )

−→ ∆(V (F ))⊗W (F )⊕ V (F )⊗∆(W (F )) −→ 0.Theorem 5.3. Let X be a k-onneted spae, k ≥ 1. If V X
n (F ) is withoutin�nite division for any surfae F , then V X

n is a oe�ient system of degree
≤ ⌊n

k
⌋.Proof. First note: If we prove the assertion onerning the degree as in Def.4.4 (not inluding without in�nite division), then sine V X

n is assumed with-out in�nite division, the okernels ∆i,j(V
X
n ) (and their okernels, et) are



64 5 Stability of the spae of surfaesautomatially without in�nite division, sine they are diret summands of
V X
n .The proof uses Postnikov towers and Lemma 5.1 above. The Postnikovtower of X is a sequene {Xm −→ Xm−1}m≥k with eah term a �bration

K(πm(X), m) −→ Xm −→ Xm−1. (55)The proof is by indution in m, so assume for l < m that V Xl
n is a oe�-ient system of degree ≤ ⌊n

k
⌋. To make the indution work, we also assumeindutively that the splitting sl we then have by de�nition,

0 // V Xl
n

// ΣV Xl
n

// ∆(V Xl
n )

slrr // 0is a natural transformation from ∆(V Xl
n ) to ΣV Xl

n .Now we take the indution step. Let F be a surfae. Then usingMap(F,−) on (55) yields a new �brationMap(F,K(πm(X), m)) −→ Map(F,Xm) −→ Map(F,Xm−1).Serre's spetral sequene for this �bration has E2-term:
E2
s,t(F ) = Hs(Map(F,Xm−1))⊗Ht(Map(F,K(πm(X), m))

= V Xm−1

s (F )⊗ V
K(πm(X),m)
t (F ). (56)NowXm−1 is k-onneted, sineX is, andK(πm(X), m) is at least k-onneted.Then by indution and Lemma 5.2, E2

s,t is a oe�ient system of degree
≤ ⌊ s

k
⌋+ ⌊ t

k
⌋ ≤ ⌊ s+t

k
⌋.We now want to prove that Er

s,t is a oe�ient system of degree ≤ ⌊s+t
k
⌋for all r ≥ 2, by indution in r. Let V1

d
−→ V

d
−→ V2 be groups in the

Er term of the spetral sequene, where d denotes the rth di�erential, andsay V has degree ≤ q. We assume by indution in r that the splittings for
V , V1 and V2 (see (57)) are natural transformations. For r = 2 this holdsaording to (56) by indution in m and by (54) (the Eilenberg-MaLanespae ase). We want to show that the homology of V with respet to d,
H(V ), is a oe�ient system of degree ≤ q, and that the splitting for H(V )is also natural. Suppose by another indution that this holds for oe�ientsystems of degrees < q.Then onsider the following diagram, where Σ as usual denotes either



65
Σ1,0 or Σ0,1.

0 // V1
Σ //

d
��

ΣV1
//

d
��

∆1
//

d
��

ss
0

0 // V
Σ //

d
��

ΣV //

d
��

∆ //

d
��

ss
0

0 // V2
Σ // ΣV2

// ∆2
//ss
0

(57)
We know ΣV = V ⊕ ∆, and similarly for V1 and V2. By our indutionhypothesis in r we get that the splittings in the right-most squares aboveommute with d. Then the homology with respet to d satis�es H(ΣV ) =
H(V )⊕H(∆), and the splitting for H(V ) is again natural. This shows thatthe okernel ∆(H(V )) of Σ is H(∆). Sine ∆ is a oe�ient system of degree
≤ q − 1, we get by indution in the degree that H(V ) is a oe�ient systemof degree ≤ q. For the degree-indution start, if V is onstant, H(V ) is alsoonstant.To �nish the indution in m we must prove that the splitting sm :
∆(V Xm

n ) −→ ΣV Xm
n is a natural transformation. By the above, Er

s,t is aoe�ient system of degree ≤ ⌊s+t
k
⌋ for all r, so the same is true for E∞s,t.Sine the spetral sequene onverges to V Xm

n (F ) for n = s + t, we get that
V Xm
n (F ) is a oe�ient system of degree ≤ ⌊n

k
⌋.The inverse limit of the Postnikov tower lim←Xm is weakly homotopyequivalent to X, and the result follows.The spae of surfaes mapping into a bakground spae X with boundaryonditions γ is de�ned as follows: Let X be a spae with base point x0 ∈ X,and let γ :

∐
S1 −→ X be r loops in X. Then

Sg,r(X, γ) =
{
(Fg,r, ϕ, f) | Fg,r ⊆ R∞ × [a, b], ϕ : ⊔S1 −→ ∂Fg,r is a para-metrization, f : Fg,r −→ X is ontinuous with f ◦ ϕ = γ}Assume now X is simply-onneted. Then we observe that the homotopytype of Sg,r(X, γ) does not depend on γ: For onsider the spae of surfaeswith no boundary onditions, all it Sg,r(X). The restrition map to theboundary of the surfaes,
Sg,r(X, γ) −→ Sg,r(X) −→ (LX)ris a Serre �bration. Here, LX = Map(S1, X) is the free loop spae, so as Xis simply-onneted, (LX)r is onneted, so the �ber is independent of thehoie of γ ∈ (LX)r. So when X is simply-onneted, we use the abbreviatednotation Sg,r(X) = Sg,r(X, γ) for any hoie of γ.



66 5 Stability of the spae of surfaesTheorem 5.4. Let X be a simply-onneted spae suh that V X
m is withoutin�nite division for all m ≤ n. Then

Hn(Sg,r(X))is independent of g and r for 2g ≥ 3n+ 3 and r ≥ 1.Proof. Let Σ be either Σ1,0 or Σ0,1. From the de�nition we observe that
Sg,r(X) ∼= Emb(Fg,r,R

∞)×Di�(Fg,r ,∂) Map(Fg,r, X),and sine Emb(Fg,r,R∞) is ontratible, we get
Sg,r(X) ∼= E(Di�(Fg,r, ∂))×Di�(Fg,r ,∂) Map(Fg,r, X).So there is an obvious �bration sequeneMap(Fg,r, X) −→ Sg,r(X) −→ B(Di�(Fg,r, ∂),and thus we an apply Serre's spetral sequene, whih has E2 term:

E2
s,t = Hs(B(Di�(Fg,r, ∂);Ht(Map(Fg,r, X)))where the oe�ients are loal. The path omponents of Di�(Fg,r, ∂) areontratible, so we get an isomorphism
E2
s,t
∼= Hs(Γ(Fg,r);Ht(Map(Fg,r, X))) (58)Consider the map indued by Σ on this spetral sequene

Σ∗ : Hs(Γ(Fg,r);Ht(Map(Fg,r, X))) −→ Hs(Γ(ΣFg,r);Ht(Map(ΣFg,r, X)))By Theorem 5.3 and 4.17, we know that this map is surjetive for 2g ≥ 3s+t,and an isomorphism for 2g ≥ 3s+t+2. We use Zeeman's omparison theoremto arry the result to E∞. To get the optimum stability range, we must �ndthe maximal N = N(g) ∈ Z suh that for t ≥ 1,
s+ t ≤ N ⇒ 2g ≥ 3s+ t+ 2 (isomorphism)

s+ t = N + 1 ⇒ 2g ≥ 3s+ t (surjetivity)Zeeman's omparison theorem then says that Σ∗ indues isomorphism on
E∞s,t for s+ t ≤ N(g) and a surjetion for s+ t = N(g)+1. Sine the spetralsequene onverges to Hn(Sg,r(X)), we get stability for n ≤ N(g).Clearly, the hardest requirement is t = 0 (surjetivity), where we get theinequality 2g ≥ 3N + 3. One heks that this satis�es all the other ases. So
Hn(Sg,r(X)) is independent of g, r for 2g ≥ 3n+ 3.
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70 Introdution6 Di�erent versions of mapping lass groups ofsurfaes6.1 IntrodutionLet F be a ompat onneted smooth surfae, possibly with boundary andnot neessarily oriented. The objets of study in this paper areDi�(F, {∂F}) = {ϕ : (F, ∂F ) −→ (F, ∂F ) | ϕ is a di�eomorphism} ,Top(F, {∂F}) = {ϕ : (F, ∂F ) −→ (F, ∂F ) | ϕ is a homeomorphism} ,hAut(F, {∂F}) = {ϕ : (F, ∂F ) −→ (F, ∂F ) | ϕ is a homotopy equivalene} .The main theorem of this paper is the following:Theorem 6.1. Let F be a ompat surfae and not a sphere, a disk, a ylin-der, a Möbius band, a torus, a Klein bottle, or RP 2. Then
π0(Di�(F, {∂F}))

∼=
−→ π0(Top(F, {∂F}))

∼=
−→ π0(hAut(F, {∂F}))are bijetions.This result is far from new, but this paper will present a thorough andself-ontained proof of the following bijetion

π0(Di�(F, {∂F}))
∼=
−→ π0(hAut(F, {∂F})). (59)To get the Main Theorem from this result, we will use the result of [Epstein℄Thm 6.4 without proof.We onsider slightly di�erent versions of the groups, where we assume Fis oriented in the last two groups:Di�(F, ∂F ) = {ϕ ∈ Di�(F, {∂F}) | ϕ|∂F = id} ,Di�+(F, {∂F}) = {ϕ ∈ Di�(F, {∂F}) | ϕ is orientation-preserving} ,Di�+(F, ∂F ) = Di�(F, ∂F ) ∩ Di�+(F, {∂F}),and similar for Top and hAut. By orientation-preserving we mean that theorientation lass [F, ∂F ] ∈ H2(F, ∂F ) is preserved by ϕ∗. From the MainTheorem we easily dedueTheorem 6.2. Let F be a ompat surfae and not a sphere, a disk, a ylin-der, a Möbius band, a torus, a Klein bottle, or RP 2. Then there are bijetions

(1) π0(Di�(F, ∂F ))
∼=
−→ π0(Top(F, ∂F ))

∼=
−→ π0(hAut(F, ∂F )),
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(2) π0(Di�+(F, {∂F}))

∼=
−→ π0(Top+(F, {∂F}))

∼=
−→ π0(hAut+(F, {∂F})),

(3) π0(Di�+(F, ∂F ))
∼=
−→ π0(Top+(F, ∂F ))

∼=
−→ π0(hAut+(F, ∂F )).The standard de�nition of the mapping lass group of a surfae F is

Γ(F ) = π0(Di�+(F, ∂F )). The last part of Theorem 6.2 shows that it does notmatter whether one onsiders di�eomorphisms, homeomorphisms, or even ho-motopy equivalenes, when working in the mapping lass group.It is a pleasure to thank Jørgen Tornehave for many fruitful disussions andhelp during my work on this paper.6.2 PreliminariesDe�nition 6.3. An isotopy ψ of F is a path in Top(F, {∂F}), i.e. ψ :
F × I −→ F is ontinuous map suh that ψt = ψ(−, t) : F −→ F is ahomeomorphism for all t ∈ I, and we say that ψ0 and ψ1 are isotopi.An isotopy is smooth if we an exhange homeomorphism with di�eomor-phism in the above. We then say that ψ0 and ψ1 are smoothly isotopi.Lemma 6.4. Let f : S1 −→ S1 an orientation preserving di�eomorphism.Then f is smoothly isotopi to the identity via a smooth isotopy ft : S1×I −→
S1 suh that the funtion F : S1 × I −→ S1 × I given by F (z, t) = (ft(z), t)is a di�eomorphism, and

ft(z) =

{
f(z), for 0 ≤ t < ε,
z, for 1− ε < t ≤ 1.Proof. Sine f is smooth it de�nes a smooth funtion f̃ : R −→ R by lifting

f under the universal overing exp : R −→ S1. Now take a smooth bumpfuntion ρ : I −→ I satisfying
ρ(t) =

{
0, t ≤ ε,
1, t ≥ 1− ε.Let F̃ : R× I −→ R be given by F̃ (x, t) = ρ(t)f̃(x) + (1− ρ(t))x. This nowde�nes an isotopy from f̃ to the identity, and F (exp(x), t) = (exp(F̃ (x, t)), t)is a di�eomorphism.The idea of the following proof is due to J. Alexander.Lemma 6.5. Let D be a disk and N a ollar neighborhood of the boundary.Suppose f : D −→ D is a homotopy equivalene whih restrits to an ori-entation preserving di�eomorphism of N of the form f(z, t) = (f(z), t) for
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(z, t) ∈ N . Then f is homotopi to a di�eomorphism relative to a smallerollar neighborhood.Proof. We an assume f : D −→ D, where D = {z ∈ R2 | |z| ≤ 1 + ε},and N = {z ∈ D | 1− ε < |z| ≤ 1 + ε}. The tubular oordinates on N are
s ∈ [0, 2π] and t ∈ (−ε, ε]. We �rst onstrut a homotopy ϕx, x ∈ [0, 1], whihis onstant in x outside N , from f to a funtion g suh that g(s, 0) = (s, 0)in tubular oordinates. We use the isotopy fx(s) from Lemma 6.4, and set

ϕx(s, t) = (fx(1− 1

ε
|t|)(s), t), t ∈ (−ε, ε]in tubular oordinates. Then ϕ0 = f and ϕ1(s, 0) = (s, 0), and ϕx is theidentity on a ollar neighborhood of ∂D by Lemma 6.4.We now make a homotopy ψx, x ∈ [0, 1], from g to the funtion h satis-fying

h(z) =

{
g(z), |z| > 1;
z, |z| ≤ 1.Let D′ = {z ∈ D | |z| ≤ 1}, and de�ne the solid one

C = {(z, x) ⊆ D × I| |z| ≤ 1− x}with bottom D′ × {0} and top (0, 1), and set
ψx(z) =





(1− x)f( z
1−x

), (z, x) ∈ C,
z, (z, x) ∈ (D′ × I) \ C,
g(z), (z, x) ∈ (D \D′)× I.This is learly ontinuous and onstitutes a homotopy from g to h throughmaps whih are the identity on a ollar neighborhood of ∂D, sine g is.We laim h : D −→ D is a di�eomorphism. Clearly, h : D′ −→ D′ is adi�eomorphism, and by Lemma 6.4, h is smooth on D, and for |z| > 1, h = gis a di�eomorphism D \D′ −→ D \D′.A result we will use repeatedly is the following smooth version of theShön�ies urve theorem.Lemma 6.6. Let f : S1 −→ F be a smoothly embedded simple losed urvehomotopi to zero in a surfae F . Then the losure of the interior of f(S1)is a smoothly embedded disk in F .Proof. By Thm 1.7 in [Epstein℄ we know that f separates F into two ompo-nents, and that one of them (all it D′) is homeomorphi to a disk D2. Thus

D′ is a onneted orientated smooth 2-manifold with 1 boundary omponentand with Euler harateristi χ(D′) = 1. Now by the lassi�ation of smoothsurfaes, D′ is a smooth disk.



6.3 Surjetivity 73De�nition 6.7. Let α be a smoothly embedded 1-submanifold in a surfae
F . By the surfae ut up along α, denoted F \ α, we will mean the surfaewith boundary F \N(α), where N(α) is a tubular neighborhood of α in F .Lemma 6.8. Let α : (I, ∂I) −→ (F, ∂F ) be a simple urve in a surfae
F . If the ut-up surfae F \ α(I) is disonneted, then the indued map
α∗ : H1(I, ∂I) −→ H1(F, ∂F ) is the zero map.Proof. Let ᾱ = α(I) ⊆ F , and onsider the long exat sequene for the triple
(∂F, ᾱ ∪ ∂F, F ):
H1(ᾱ ∪ ∂F, ∂F )

i∗ // H1(F, ∂F )
j∗ // H1(F, ᾱ ∪ ∂F ) // H0(ᾱ ∪ ∂F, ∂F )Here H0(α ∪ ∂F, ∂F ) = 0, so j∗ is surjetive. Also H1(F, ∂F ) ∼= Z2g+r−1 for

F = Fg,r. Sine F \ ᾱ is not onneted, we an write F \ ᾱ = F1 ⊔ F2, andby exision,
H1(F, ᾱ ∪ ∂F ) ∼= H1(F1 ⊔ F2, ∂F1 ⊔ ∂F2) ∼= H1(F1, ∂F1)⊕H1(F2, ∂F2)

∼= Z2g1+r1−1 ⊕ Z2g2+r2−1.Here g = g1 + g2 and r + 1 = r1 + r2, so sine j∗ is surjetive, we onludethat j∗ is an isomorphism. Thus i∗ = 0, and the following diagram showsthat α∗ = 0:
H1(I, ∂I)

α∗

��

α∗ // H1(F, ∂F )

H1(ᾱ ∪ ∂F, ∂F )

i∗
66mmmmmmmmmmmmm

6.3 SurjetivityIn this setion we will prove that the map in (59) is surjetive, i.e. a homotopyequivalene of a surfae F is homotopi to a di�eomorphism. We �rst provethis for surfaes with non-empty boundary, and then use this to obtain theproof for losed surfaes. The result for surfaes with non-empty boundaryis strongly inspired by [Hempel℄.Theorem 6.9. Let F and G be ompat surfaes with non-empty boundaries.Suppose π1(F ) is non-trivial. Let f : (F, ∂F ) −→ (G, ∂G) be a map suhthat f∗ : π1(F ) −→ π1(G) is injetive and f |∂F : ∂F −→ ∂G is a smoothembedding. Then there is a homotopy ft : (F, ∂F ) −→ (G, ∂G) with f0 = fand f1 : F −→ G a di�eomorphism.



74 6 Di�erent versions of mapping lass groups of surfaesProof. First onsider eah boundary omponent J of F , and K of G where
f(J) ⊆ K. We an assume eah J and K has a ollar neighborhood ofthe form J × [0, ε] and K × [0, ε], where the map f has the form f(x, t) =
(f |J(x), t), by gluing on small ylinders, extending f as desired, and smooth-ing out. Sine f is ontinuous, it is homotopi to a smooth map, and we anhoose the homotopy to be onstant on the ollar neighborhoods, so we anassume that f is smooth an embedding on a neighborhood of ∂F .We are going to ut up G by a non-separating ar α (i.e. an embeddedonneted 1-manifold with boundary) onneting two boundary omponentsof G in the image of f . We would like to ut up F by f−1(α). To do this wemust ensure that f−1(α) is also an embedded 1-manifold. This holds if f istransverse to α. By Thom's transversality theorem, f an be approximatedby a smooth map g transverse to α arbitrarily lose to f . Even better, gan be hosen suh that g|A = f |A for a losed subset A ⊆ F on whih thetransversality ondition on f is already satis�ed. If we hoose the ar α tohave the form α = (x0, t), t ∈ [0, ε] on the ollars K × [0, ε] for some x0 ∈ K,then learly we an take A =

⋃
J∈π0(F ) J × [0, ε] in the above. Sine thetransverse map g is arbitrarily lose to f , they are homotopi, and we anassume f is transverse to α.Sine f |∂F : ∂F −→ ∂G is an embedding we an see that f−1(α) mustonsist of one ar in F and possibly a number of embedded irles, and as

F is ompat, there is a �nite number of irles. Sine f∗ is injetive, theirles must be null-homotopi in F , thus they must eah bound a disk D0 in
F . Taking a slightly larger disk D ⊇ D0, then f(∂D) must be ontained ina tubular neighborhood of α. Sine ∂D is disjoint from f−1(α), all of f(∂D)is to the same side of α in the tubular neighborhood.Now D is a disk and f(∂D) is ontained in a disk E ⊆ G on one side of
α in the tubular neighborhood. Thus we an make a map h : D −→ G with
h(D) ⊆ E and suh that f |∂D = h|∂D. This gives a map H : S2 −→ G bymapping the lower hemisphere by f and the upper hemisphere by h. Sine
G is not S2 or RP 2, we know π2(G) = 0, so the map H an be extended toa map D3 −→ G, thus giving a homotopy from f to h. This will redue thenumber of irles in the preimage, and we an thus assume that f−1(α) isjust an ar in F . By transversality we an assume that we have a tubularneighborhood of f−1(α) mapping to a tubular neighborhood of α.We an now ut F along f−1(α) and G along α, to obtain F̂ and Ĝ.After utting up F and G along an ar, we will atually have manifolds withorners, F̂ and Ĝ. But learly we an smooth out these orners inside theollar neighborhoods where f : F̂ −→ Ĝ is smooth.Now we would like to show that the proess will not separate F . Considerthe situation when we ut up along a non-separating ar α in G. We an



6.3 Surjetivity 75parametrise α and think of it as a funtion α : (I, ∂I) −→ (G, ∂G). Thisindues a map α∗ : H1(I, ∂I; Z2) −→ H1(G, ∂G; Z2). The ondition that αis nonseparating translates as α∗ 6= 0. By the above we an assume that
f−1(α) is a single ar, whih we parametrize as α̃ : (I, ∂I) −→ (F, ∂F ):

(I, ∂I)
α̃

yysssssssss
α

%%KKKKKKKKK

(F, ∂F )
f // (G, ∂G)On homology this indues the ommutative diagram

H1(I, ∂I; Z2)
α̃∗

vvmmmmmmmmmmmmm
α∗

((QQQQQQQQQQQQQ

H1(F, ∂F ; Z2)
f∗ // H1(G, ∂G; Z2)But sine α∗ 6= 0 we get α̃∗ 6= 0 and thus by Lemma 6.8, α̃ ⊆ F is nonsepa-rating.Now we show that f∗ : π1(F̂ ) → π1(Ĝ) is still injetive after utting up.We use that F is homotopi to F̂ ∪ I, where I is a small interval onnetingtwo points b0, b1 ∈ ∂F̂ . Using that F̂ is onneted we hoose a path Jin F̂ from b0 to b1, suh that I ∪ J form a loop. Now F ≃ F̂ ∨ S1 (byontrating J in F̂ to a point). Then i∗ : π1(F̂ ) −→ π1(F ) is injetive, sine

i∗ : π1(F̂ ) −→ π1(F ) = π1(F̂ ) ∗ Z is just the inlusion in the �rst fator byvan Kampen's theorem. Now it follows from the ommutative diagram
π1(F̂ )

� � i∗ //

f̂∗
��

π1(F )
� _

f∗

��

π1(Ĝ)
i∗ // π1(G)that f̂∗ : π1(F̂ ) −→ π1(Ĝ) is also injetive.It remains to show that by utting up F and G they have to beomedisks at the same time. Firstly if G is a disk, then f∗ : π1(F ) −→ {1} isinjetive, so π1(F ) = {1}, and this implies that F is also a disk (sine Fis a surfae with boundary). Conversely, if G is not a disk then neither is

F , sine given a non-separating ar α in G we have shown above that thereexists a non-separating ar in F .We are down to the ase where f is a map from a disk to a disk that issmooth in a ollar of the boundary, and this ase is handled by Lemma 6.6.We an glue the resulting smooth maps on the piees together again, sine



76 6 Di�erent versions of mapping lass groups of surfaesthe ollar neighborhoods of the boundary of eah piee (where the map issmooth) are �xed by the homotopy from Lemma 6.6. So we are done.Corollary 6.10. Let F and G be ompat surfaes with non-empty bound-aries. Suppose π1(F ) is non-trivial. Let f : (F, ∂F ) −→ (G, ∂G) be a mapsuh that f∗ : π1(F ) −→ π1(G) is injetive and f |N(∂F ) : N(∂F ) −→ N(∂G)is a smooth embedding, where N(−) denotes a neighborhood. Then there isa homotopy ft : (F, ∂F ) −→ (G, ∂G) with f0 = f and f1 : F −→ G adi�eomorphism, suh that ft = f0 on a neighborhood of ∂F .Proof. Use the proof above, but skip the �rst part whih proves that f |N(∂F ) :
N(∂F ) −→ N(∂G) an be made into a smooth embedding.Lemma 6.11. Let f0, f1 : S1 −→ F be disjoint non-trivial two-sided embed-dings in the surfae F . Assume there exist m,n ∈ Z+ suh that fn0 and fm1represent the same free homotopy lass in F . Then there is an embedding
ϕ : S1 × I −→ F suh that ϕ|S1×{i} = fi for i = 0, 1, so f0 and f1 bound aylinder.Proof. This is a speial ase of [Epstein℄, Lemma 2.4.We start by utting F up along f0 and then gluing a disk onto eahof the two new boundary omponents; let M be the onneted omponentontaining f1 in the resulting surfae. Sine f0 is null-homotopi in M , thenso is fn0 and thus fm1 . Now we will show that f1 is null-homotopi in M , sothat it bounds a disk in M . First if ∂M 6= ∅, then π1(M) is a free groupand thus if fm1 = 1 then f1 = 1. Else π1(M) is a free group modulo therelation ∂ = Πg

i=1[ai, bi] ∈ π1(M) (oriented ase) or ∂ = Πg
i=1a

2
i ∈ π1(M)(unoriented ase). If fm1 = 1 but f1 6= 1, π1(M) will have torsion, and by[Lyndon-Shupp℄ Prop. 5.18, the only ase that allows for torsion is theunoriented ase with g = 1. Then the omponent of M ontaining f1 is an

RP 2, but then there are no non-trivial two-sided embeddings of S1. So therean be no torsion, and f1 = 1 in π1(M).The disk in M bounded by f1 ontains either one or two of the disksglued onto f0 to form M , sine f1 was non-trivial in F . If the disk boundedby f1 in M ontains just one glued-on disk, then f0 and f1 together bound adisk blown up at one point; a ylinder in F . In partiular, if f0 is separating,then the disk bounded by f1 in M ontains just one glued-on disk, so weare done. Now if the disk bounded by f1 in M ontains two of the glued-ondisks, then f1 was separating in F , sine we obtain F from M by removingthe glued-on disks and gluing up along their boundaries. The ylinder anthus be obtained if we interhange f0 and f1.



6.3 Surjetivity 77The ondition in the preeding Theorem 6.9 about the map f being anembedding on the boundary is not essential if f is a homotopy equivalene,as we show next:Lemma 6.12. Suppose f : (F, ∂F ) −→ (G, ∂G) indues an isomorphism
f∗ : π1(F ) −→ π1(G), and suppose F is ompat with ∂F 6= ∅ and is neithera disk, a ylinder nor a Möbius band. Then the following holds:

(i) For all boundary omponents J ⊆ ∂F andK ⊆ ∂G suh that f(J) ⊆ K,the omposite Z ∼= π1(J)
f
−→ π1(K) ∼= Z is multipliation by ±1,and no two di�erent boundary omponents in F are taken to the sameboundary omponent in G.

(ii) f is homotopi to a map g : (F, ∂F ) −→ (G, ∂G) with g|∂F : ∂F −→ ∂Gan embedding.Proof. Let J ⊆ F be a boundary omponent, and letK ⊆ G be the boundaryomponent with f(J) ⊆ K. We have a ommutative diagram,
π1(J) � �

(f |J )∗
//

� _

��

π1(K)

��
π1(F )

∼=

f∗
// π1(G)

(60)
Here, the vertial map π1(J) −→ π1(F ) is injetive, sine it is a non-zeromap (as F is not a disk) from π1(J) ∼= Z into the free group π1(F ). Then
(f |J)∗ is multipliation by an integer n 6= 0.If F has more than 1 boundary omponent, we an hoose generators for
π1(F ) suh that the generator of π1(J) goes to a generator of π1(F ) underthe left vertial map in (60). Sine f∗ is an isomorphism, it takes generatorsto generators, and thus it follows by ommutativity that n = ±1.If F only has the one boundary omponent J , then the generator α of
π1(J) maps to either ∂ = Πg

i=1[ai, bi] ∈ π1(F ) (oriented ase) or ∂ = Πg
i=1a

2
i ∈

π1(F ) (unoriented ase). If f∗(α) = xn for a generator x of π1(K), we getby ommutativity that f∗(∂) ∈ π1(G) would be an nth power of something.Sine f∗ : π1(F ) −→ π1(G) is an isomorphism, ∂ itself would be an nth powerof some element. In ase ∂ = a2
1, F is a Möbius band, so this annot happen.In all other ases we get n = ±1.We have shown that (f |J)∗ : π1(J) −→ π1(K) is an isomorphism. Thus wean homotope f in a ollar neighborhood around J suh that f |J : J −→ Kis a di�eomorphism. We do this for every boundary omponent of F .All that is left is to hek that no two boundary omponents J1, J2 of

F map to the same boundary omponent K in G. If that were the ase,



78 6 Di�erent versions of mapping lass groups of surfaesthe elements of π1(F ) generating π1(J1) and π1(J2) would both map to agenerator of π1(K), i.e. would oinide up to a sign, sine f∗ : π1(F ) −→
π1(G) is an isomorphism. Then by Lemma 6.11, F would be a ylinder,whih it is not.Theorem 6.13. Let F and G be ompat surfaes, and let f : F −→ G be ahomotopy equivalene. Assume neither F nor G is a disk, a sphere, a ylin-der, a Möbius band, a torus, a Klein bottle, or RP 2. Then f is homotopi toa di�eomorphism.Proof. If F and G have non-empty boundary, Lemma 6.12 and Theorem 6.9give the result. So assume that F and G are losed surfaes.Let B ⊆ G be a non-separating, 2-sided simple losed urve in G. Sine fis homotopi to a smooth map whih is transverse to B, we an assume that
f is smooth and transverse to B. Consider the omponents of f−1(B). Bytransversality and ompatness, this is a �nite set of disjoint 1-submanifoldsof F . As in the proof of Theorem 6.9, we an homotope f so that no om-ponent in f−1(B) bounds a disk. For any 1-sided simple losed urve γ in
f−1(B), take a small tubular neighborhood M of γ suh that f(M) ⊆ N ,where N is a tubular neighborhood of B. Sine M \ γ is onneted and
f(M \ γ) ⊆ N \B, it follows that M \ γ maps to the same side of the 2-sidedurve B under f . This implies that we an homotope f in M to a funtionnot hitting B. So we an assume that no omponent of f−1(B) is a 1-sidedsimple losed urve.Now let H0, H1 be two omponents of f−1(B), and let h0, h1 : S1 −→ Fbe parametrizations of H0 and H1, respetively. Then

Z ∼= π1(Hi)
f
−→ π1(B) ∼= Zis multipliation by some mi ∈ Z. Note that mi 6= 0 sine hi is nontrivial in

F and f is injetive on π1(F ). This gives that f∗(hm1

0 ) = f∗(h
m0

1 ) ∈ π1(G),and sine f is injetive on π1(F ), hm1

0 = hm0

1 ∈ π1(F ). Then by Lemma6.11 they bound a ylinder (if h0 and h̄1 bound a ylinder then so do h0 and
h1). This ylinder might ontain omponents of f−1(B), but sine there are�nitely many suh omponents, we an take a ylinder whose intersetionwith f−1(B) is preisely its ends, all them h0 and h1 again.Now the ylinder gives a homotopy c : S1 × I −→ F from h0 to h1, andthus f ◦ c : S1 × I −→ G is a homotopy in G, with f(c(S1×]0, 1[)) ∩ B = ∅.Thus we get a ontinuous map f̃ ◦ c : S1×I −→ G\B into the ut-up surfae
G\B. This is a homotopy between non-zero powers of boundary omponentsofG\B. Now by Lemma 6.11, if these two boundary omponents are distint,
G \B would be a ylinder. But this is impossible, sine G is neither a torus



6.4 Injetivity 79nor a Klein bottle. This implies that both ends of the ylinder is mappedto the same boundary omponent in G \ B, and thus we an hange f bya homotopy to remove h0 and h1 from f−1(B) without hanging f−1(B)otherwise. We an now assume that f−1(B) is a single losed urve, sine
f−1(B) = ∅ implies that f∗ : π1(F ) −→ π1(G) fators through π1(G \ B)but π1(G \ B) −→ π1(G) is not surjetive. We an �nally see that theurve f−1(B) is non-separating by Lemma 6.8, sine B is non-separating and
f∗ : H1(F ) −→ H1(G) is a group homomorphism.Consider f | : N(f−1(B)) −→ N(B), whereN(−) denotes a tubular neigh-borhood. Then, using a method as in the proof of Lemma 6.4 on f−1(B) anda bump funtion to extend to N(f−1(B)), one an see that f is homotopito a map g with g−1(B) = f−1(B), suh that g|N(g−1(B)) is a smooth overingmap (the number of sheets will be the degree of f : f−1(B) −→ B). So nowwe assume that f is a smooth overing map on a neighborhood of f−1(B).Sine f∗ : π1(F \ f

−1(B)) −→ π1(G \ B) is injetive ([Lyndon-Shupp℄prop 5.1), we an hoose a overing ρ : G̃ \B −→ G \B and lift f as in thediagram,
G̃ \B

ρ

��
F \ f−1(B)

f̃
99rrrrrrrrrr

f // G \B

(61)
suh that f̃∗ : π1(F \ f

−1(B)) ∼= π1(G̃ \B). Moreover, ρ is a �nite-sheetovering, sine f maps (a parametrization of) f−1(B) to a non-zero multipleof (a parametrization of) B, and the number of sheets is loally onstant. So
G̃ \B is ompat.Now in a neighborhood of the boundary of F\f−1(B), f̃ is a overing map,and f̃∗ is an isomorphism on π1. So f̃ is an embedding on a neighborhood ofthe boundary. By Corollary 6.10 on f̃ : F \f−1(B) −→ G̃ \B, f̃ is homotopito a di�eomorphism, relative to a neighborhood of the boundary. Glue upthis di�eomorphism to a map g : F −→ G whih will be homotopi to f , andbe both a homotopy equivalene and a smooth overing map. The last twoimply that g is a di�eomorphism F −→ G.6.4 InjetivityIn this setion we will prove that the map in (59) is injetive, i.e. if adi�eomorphism is homotopi to the identity, it is smoothly isotopi to theidentity.



80 6 Di�erent versions of mapping lass groups of surfaesDe�nition 6.14. Let f, g : I −→ F be smooth embeddings into a surfae
F . We say that f and g form an �eye� if the following is satis�ed:

(i) f(I) ∪ g(I) bounds a disk in F .
(ii) f |[0,ε[ = g|[0,ε[, f |]1−ε,1] = g|]1−ε,1], and f is disjoint from g on ]ε, 1− ε[.Lemma 6.15. Let f, g : I −→ F be two smooth embeddings into a surfae Fwhih form an �eye�. Then there is a smooth isotopy ϕt of F with ϕ0 = idFand ϕ1 ◦ g = f . Furthermore, there is a small neighborhood N of the diskbounded by f and g for whih ϕt is the identity outside N for all t.Proof. Let Nf be a tubular neighborhood of f(I), given by a normal vetor�eld ξf to Nf . Let also Ng be a tubular neighborhood of g(I) given by anormal vetor �eld ξg, suh that Nf ∪Ng is an annulus. This is possible sine
f(I) ∪ g(I) bounds a disk in F .There is a di�eomorphism ψf : Nf −→ Vf ⊆ R2 suh that ψf ◦ f is thestandard embedding I −→ R× {0}. We an take Vf = I×]− ε, ε[. We wantto extend ψf to a di�eomorphism ψfg : Nf ∪Ng →֒ R2, i.e. ψfg|Nf

= ψf .First we note that inside Vf = I×]− ε, ε[ we have the image
G = ψf (g(I) ∩Nf).By taking ε small, we an ensure that G is the graph {(t, h(t))} of a smoothfuntion h : [0, δ[∪]1 − δ, 1] −→ [0,∞[. We an extend ψf to a map ψ̃fgde�ned on Nf ∪ g(I) suh that ψ̃fg ◦ g : I −→ R2 is smooth, using bumpfuntions et as usual, suh that the image GI = ψ̃fg ◦ g(I) is the graph

{(t, h(t)} of a funtion h : I −→ [0,∞[, see Figure 6.4.

Figure 14: The tubular neighborhood Vf and the graph GI of h in R2.We de�ne a tubular neighborhood of G using the vetor �eld ηG =
(ψf)∗(ξg|Nf∩Ng

). Sine ψf is a di�eomorphism, ηG is a transverse vetor �eld,and so de�nes a tubular neighborhood NG of G inside Vf . Now we shrink Vf



6.4 Injetivity 81to I×] − ε′, ε′[ where ε′ < ε (thus also shrinking Nf). Then we over GI bytwo open sets in R2, U1 overing GI \G, and U2 whose intersetion with U1lie in NG and outside Vf , see Figure 6.4. Then we take a partition of unity
ρ1, ρ2 with respet to U1, U2.

Figure 15: Neighborhoods U1 and U2 of GI .Let ηI be the standard normal vetor �eld to GI , de�ned on GI \ G.Then we make a new vetor �eld ρ1ηI + ρ2ηG. Sine ρ1ηI + ρ2ηG is never 0or tangent to G, this de�nes a tubular neighborhood Vg of GI . This tubularneighborhood oinides with NG on Vf , and thus gives a di�eomorphism
ψfg : Nf ∪Ng −→ Vf ∪ Vg whih extends ψ̃fg.The inner boundary irle C of the annulusNf∪Ng bounds a diskD′ ⊆ F ,and so the image ψfg(C) also bounds a disk DR2 ⊆ R2. Then we an extend
ψfg|C to a map D′ −→ DR2 , whih is neessarily a homotopy equivalene,so by Lemma 6.6 we an replae it by a di�eomorphism ψD′ : D′ −→ DR2 ,suh that ψD′ |C = ψfg|C . The we an glue ψD′ and ψfg along C to obtain adi�eomorphism Ψ from D = D′ ∪Nf ∪Ng onto a disk in R2.Now we an use a vertial �ow in D′ ∪ Ng ∪ Nf (i.e. a pullbak under
Ψ of the obvious vertial �ow in R2) to make Im(g) = Im(f), and lastly ahorizontal �ow in Nf to make g = f .Lemma 6.16. Given two smoothly embedded ars f, g : I −→ F satisfying
f({0, 1}) ∩ g(I) = f(I) ∩ g({0, 1}) = ∅. Then there is a smooth isotopy ϕtof id|F suh that ϕ1 ◦ f and g interset transversally. Moreover ϕt is theidentity outside a tubular neighborhood of f .Proof. Take an open tubular neighborhood of f , Nf , of onstant radius,where r : Nf −→ f(I) is the retration. Inside Nf take a losed tubularneighborhood of f of onstant radius, N c

f . We over g(I) ∩ N c
f with setsof the form Nf (a, b) = {x ∈ Nf | f

−1(r(x)) ∈]a, b[}, where a < b ∈ I, and
f(a), f(b) is outside g(I). Sine g(I) ∩ N c

f is ompat, we an assume thatit is a �nite overing, Nf (ai, bi), i = 1, . . . , N , where a1 < a2 < · · · < aN .



82 6 Di�erent versions of mapping lass groups of surfaesFor eah x ∈ F where f and g interset non-transversally, x ∈ Nf (ai, bi)for some i. Now take the �rst suh i. Then we an hoose another ar
g̃ : I −→ Nf(ai, bi) suh that g and g̃ form an �eye� and g̃ and f intersettransversally for all x ∈ g̃(I) ∩ f(I) ⊆ Nf (ai, bi). Now by Lemma 6.15 thereis an isotopy from g to g̃ in Nf(ai, bi), whih is the identity outside Nf (ai, bi).Doing this for eah i, we obtain in �nitely many steps an isotopy whih isthe identity outside Nf , making f and g interset transversally.Lemma 6.17. Let F be a ompat surfae with F 6= RP 2, S2, and let f bea di�eomorphism of F .

(i) Let αi : S1 −→ F \∂F be a �nite family of disjoint, non-trivial, pairwisenon-homotopi two-sided simple losed urves, with f ◦ αi ≃ αi for all
i. Then there is an smooth isotopy ft of F suh that f0 = f and
f1 ◦ αi = αi and the identity extends to tubular neighborhoods.

(ii) Let αi : I −→ F be a �nite family of simple urves, disjoint exeptpossibly at endpoints, with f ◦αi ≃ αi and f ◦αi = αi near the endpointsfor all i. Let A ⊆ F be a union of disjoint non-trivial losed urves,with f |A = id and αi(I)∩A = αi(∂I) for all i. Then there is an smoothisotopy ft of F , suh that f0 = f , f1 ◦ αi = αi and the identity extendsto tubular neighborhoods. Furthermore ft|A = id for all t.Proof. (i) and (ii) an be proved by the same methods, so we handle thetwo ases as one initially. But we will also use (i) to prove (ii). First, inboth ases we have a losed subset A ⊆ F with f |A = id (in ase (i), Astarts as ∅). Consider a single urve α = α1. We will make an isotopy ft of
F suh that f0 = f , f1 ◦ α = α, and ft|A = id for all t. Then we an let
A1 = A∪α(I), and use the result for f1 and A1 on α2, ompleting the proofin a �nite number of steps. So onsider a urve α as in (i) or (ii), and let
β = f ◦ α be the image urve. By assumption, β ≃ α.In ase (ii), there are small neighborhoods N0 and N1 of the start andend points where α and β agree. Inside N0 and N1 we an make an isotopy of
f whih perturbs β slightly, so that α and β agree near the start/end point,and then beome disjoint. By shrinking N0 and N1 we an assume that αand β are disjoint on ∂N0 and ∂N1. Our goal is now to make α and β disjointoutside N0 and N1. From now on, we will ignore N0 and N1 in the proof,and only work with α and β outside them.By Lemma 6.16 we an assume α and β are transverse to eah other.Then α and β have �nitely many intersetion points by ompatness. Toget an isotopy of F taking β to α, we will �rst ensure that α and β have nointersetion points. To do this, onsider the universal overing π : F̃ −→ F .We an model F̃ as an open disk in R2. Take a �xed lift β̃ of β.



6.4 Injetivity 83We onsider all the onneted omponents of π−1(α) that interset β̃.There are �nitely many suh omponents, all them α̃k, sine α and β have�nitely many intersetion points. The α̃k are also transverse to β̃. Now welook for a pair of intersetion points between β̃ and an α̃i, suh that the partof the two urves between these points (a losed urve, all it σ) bounds adisk whose interior does not ontain any points on β̃ or α̃k for any k. So σ isa simple losed urve in F̃ bounding a disk. Projeting onto F , we get π ◦ σ(the parts of α and of β between two intersetion points) also a simple losedurve, whih is null-homotopi, so aording to Lemma 6.6, π ◦ σ bounds adisk in F . We an hoose a urve β ′ whih form an �eye� with β and whihdoes not interset α in a neighborhood of the disk bounded by π◦σ. Then bylemma 6.15 we an isotope β to β ′, so that there are two fewer intersetionpoints between α and β ′. Sine there are �nitely many intersetion points,this proedure terminates.But we must show why we an always �nd suh a σ in F̃ . Sine α̃k isa onneted omponent of π−1(α), eah α̃k separates F̃ . So if β̃ rosses α̃ione, it must ross it again (let us hoose the �rst time it does so), as itis transverse to α̃i. Now F̃ ⊆ R2, so the part of β̃ and α̃i between thesetwo intersetion points will bound a disk. If this disk ontains parts of β̃or α̃k's, there will be a smaller disk inside whih satis�es the requirements,sine there are �nitely many intersetion points. In this way we an isotope
β to a urve whih does not interset α (in ase (ii), exept in N0 and N1).In ase (i), we now have two homotopi disjoint simple losed urves αand β. Then aording to Lemma 1.4, they bound a ylinder. Reall thatthe set A (�xed by f) onsists of the urves already handled, i.e. a union ofnon-trivial losed urves, none of whih are homotopi to α, and thus not to
β, either. Thus A annot interset the ylinder bounded by α and β (in fat,
A annot interset a small open neighborhood of the ylinder). Then learlythere is an isotopy ft of F , whih is the identity on A, taking β to α.In ase (ii), the two urves α and β are homotopi and form a simplelosed urve, so again they bound a disk. Reall that A originally onsistedof non-trivial losed urves, so none of these an be inside the disk. As weadd urves to A, the irles get onneted by ars. None of these an interset
α, sine they were assumed to be disjoint from the start. As f is the identityon A, they annot interset β = f ◦ α, either. Thus A annot ross theboundary of the disk, so A and the disk are disjoint. Thus by lemma 6.15 wean make an isotopy ft of F , whih is the identity on A, so that f1 ◦ α = α.Now we extend the result to tubular neighborhoods of the urves. Wemake a tubular neighborhood M0 of α, and by ompatness identify it with
S1×]−ε, ε[ in ase (i) and I×]−ε, ε[ in ase (ii). Now for (x, t) in a smallerneighborhoodM1 ⊂M0 of α, the projetion the seond oordinate prtfx(t) :=



84 6 Di�erent versions of mapping lass groups of surfaesprt(f(x, t)) has positive di�erential, and thus for all x the image of fx(t),
{(x′, t′) | (x′, t′) = fx(t) for some t ∈]−ε, ε[} is the graph of a funtion hx(t′) =
x′. Now we an make tubular neighborhood M2 suh that M2 ⊂ f(M1) andby possibly shrinking it assume that M2 = I×]−δ, δ[ or M2 = S1×]−δ, δ[.For de�niteness, say M2 = I×]−δ, δ[. Choose a smooth bump funtion ρ(t)with ρ(t) = 1 for |t| ≤ 1

2
δ and ρ(t) = 0 for |t| = δ. Let

gs(x, t) =

{ (
(1−s)hx(t

′)+s
(
ρ(t′)x+(1−ρ(t′))hx(t

′)
)
, t′

) for (x, t)∈ f−1(M2)
f(x, t) otherwise.where t′ is the seond oordinate of f(x, t) as above. Then gs de�nes anisotopy from f to a funtion g1 with the property that g1(x, t) = (x, t′) for

t′ ∈]− δ
2
, δ

2
[. Now by strething the parameter t′ in eah interval {x}×]−δ, δ[,we an assume that f is the identity on a (smaller) neighborhood.Corollary 6.18. If we in addition to the requirements in lemma 6.17 requirethat f is the identity on ∂F , then the isotopy an be assumed also to be theidentity on ∂F .Proof. All the steps in the proof an be done away from the boundary.Theorem 6.19. Let F 6= S2,RP 2 and let f, g ∈ Di�(F, ∂F ) be homotopi.Then f and g are smoothly isotopi.To prove this I use the following result from [Smale℄ without proof.Theorem 6.20 (Smale). Let f ∈ Di�(D2, ∂D2). Then f is smoothly isotopito the identity, and if f is the identity on the boundary then so is the isotopy.Proof of Theorem 6.19. If we prove that f−1g is smoothly isotopi to theidentity, we will have a smooth isotopy from g to f . Thus we an restrit ourattention to the ase f ≃ id.Choose a pair of pants/annular deomposition of the surfae F , i.e. aolletion of disjoint simple losed urves αi : I −→ F, i = 1, . . . , n, in F . ByLemma 6.17 (i), f is smoothly isotopi to a map g, whih is the identity ona tubular neighborhood of the αi. In eah pair of pants P , hose two urvesthat ut P up into a disk (for eah annulus, hoose one urve). By Lemma6.17 (ii), there is an isotopy of F , whih is the identity on the αi, from g to amap h �xing a tubular neighborhood of the two urves in eah pair of pants.Then we an use Smale's Theorem 6.20 on eah disk, getting an isotopy tothe identity.Corollary 6.21. In addition to the requirements of Theorem 6.19, assumethat f and g are the identity on ∂F . Then we an hoose the isotopy to bethe identity on ∂F .



6.5 Proof of the Main Theorem 85Proof. This is done as in theorem 6.19, exept that we use Corollary 6.18instead of Lemma 6.17, and in addition use that the isotopy in theorem 6.20an be hosen to be the identity on boundary.6.5 Proof of the Main TheoremAs explained in the introdution, we will use a result of Epstein to prove thestatement about Top(F, {∂F}):Theorem 6.22 (Epstein). Let F a ompat surfae and let f : F −→ Fbe a homeomorphism homotopi to the identity. Then f is isotopi to theidentity.Proof. This is a part of [Epstein℄ Thm 6.4, whih states exatly this result,but for maps preserving a basepoint. And learly, by an isotopy we anassume that f preserves any given point x0, and then f will be homotopito the identity through maps preserving x0.Now we are ready to prove the bijetions of the Main Theorem 1.1:
π0(Di�(F, {∂F}))

∼=
−→ π0(Top(F, {∂F}))

∼=
−→ π0(hAut(F, {∂F}))Proof of Theorem 6.1. Suppose F is not a sphere, a disk, a ylinder, a Möbiusband, a torus, a Klein bottle, or RP 2. Consider the omposite map from (59),

π0(Di�(F, {∂F})) −→ π0(hAut(F, {∂F})). (62)Aording to Theorem 6.13, the map is surjetive, and by Theorem 6.19, itis injetive. Now all that is left is to show that
π0(Top(F, {∂F})) −→ π0(hAut(F, {∂F}))is injetive. But that is Theorem 6.22.We now dedue Theorem 6.2:Proof of Theorem 6.2. Suppose F is not a sphere, a disk, a ylinder, a Möbiusband, a torus, a Klein bottle, or RP 2.Similar to the proof of Theorem 6.1, we onsider the omposite
π0(Di�(F, ∂F )) −→ π0(hAut(F, ∂F )).We an assume ∂F 6= ∅, otherwise this is the Main Theorem. By Cor. 6.10,it is surjetive, and by Cor. 6.21 it is injetive. To prove the result, it su�esto show that
π0(Di�(F, ∂F )) −→ π0(Top(F, ∂F )) (63)
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