
Department of Mathematical Sciences
University of Aarhus

January 31, 2010

The Dynamics of Stochastic Processes

Andreas Basse-O’Connor

<basse@imf.au.dk>

PhD Dissertation.
Supervisor: Jan Pedersen



Contents

Contents ii

Preface iv

Introduction 1
1 Fundamental classes of stochastic processes . . . . . . . . . . . . . . . . . 1
2 The semimartingale property . . . . . . . . . . . . . . . . . . . . . . . . . 6
3 The semimartingale property of moving averages . . . . . . . . . . . . . . 8
4 Integrability of seminorms . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5 Martingale-type processes indexed by R . . . . . . . . . . . . . . . . . . . 12
6 Quasi Ornstein-Uhlenbeck processes . . . . . . . . . . . . . . . . . . . . . 12
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

A Representation of Gaussian semimartingales with application to the
covariance function 16
by Andreas Basse-O’Connor

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2 Preliminary results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3 General properties of Gaussian semimartingales . . . . . . . . . . . . . . . 21
4 Representation of Gaussian semimartingales . . . . . . . . . . . . . . . . . 22
5 The covariance function of Gaussian semimartingales . . . . . . . . . . . . 29
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

B Spectral representation of Gaussian semimartingales 36
by Andreas Basse-O’Connor

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2 Notation and random measures . . . . . . . . . . . . . . . . . . . . . . . . 38
3 Preliminary results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

C Gaussian moving averages and semimartingales 51
by Andreas Basse-O’Connor

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2 Notation and Hardy functions . . . . . . . . . . . . . . . . . . . . . . . . . 53
3 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4 Functions with orthogonal increments . . . . . . . . . . . . . . . . . . . . 59
5 Proofs of main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6 The spectral measure of stationary semimartingales . . . . . . . . . . . . . 68
7 The spectral measure of semimartingales with stationary increments . . . 72
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

ii



Contents

D Lévy driven moving averages and semimartingales 75
by Andreas Basse-O’Connor and Jan Pedersen

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5 The two-sided case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

E Path and semimartingale properties of chaos processes 98
by Andreas Basse-O’Connor and Svend-Erik Graversen

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
3 Path properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4 Semimartingales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5 The semimartingale property of moving averages . . . . . . . . . . . . . . 111
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

F Integrability of seminorms 117
by Andreas Basse-O’Connor

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
2 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
3 Two proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

G Martingale-type processes indexed by R 132
by Andreas Basse-O’Connor, Svend-Erik Graversen and Jan Pedersen

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
3 Martingales and increment martingales . . . . . . . . . . . . . . . . . . . . 136
4 Stochastic integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

H Quasi Ornstein-Uhlenbeck processes 153
by Ole E. Barndorff-Nielsen and Andreas Basse-O’Connor

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
2 Langevin equations and QOU processes . . . . . . . . . . . . . . . . . . . 154
3 A Fubini theorem for Lévy bases . . . . . . . . . . . . . . . . . . . . . . . 162
4 Moving average representations . . . . . . . . . . . . . . . . . . . . . . . . 165
5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

iii



Preface

This dissertation constitutes the result of my PhD studies at the Department of Mathe-
matical Science, Aarhus University. These studies have been carried out from February
1, 2006 to January 31, 2010 under the supervision of Jan Pedersen (Aarhus University).

Main problems

The present dissertation focuses primarily on the dynamics (i.e. the evolution over time)
of different kinds of stochastic processes. In particular the semimartingale property
will be important to us, but also path properties such as p-variation, continuity and
integrability of seminorms will be considered. The dynamics of solutions to ordinary
stochastic differential equations, as in e.g. Protter [8], are always semimartingales and
hence most of their probabilistic properties, as e.g. path properties, are well understood.
However, for more complicated models such as stochastic fractional differential equations
(see [2, 1]), stochastic partial differential equations (see [3, 9]), stochastic delay equations
(see [5]) or stochastic Volterra equations (see [6, 7]), the solution is in general not a
semimartingale and it is only in special cases that the dynamics of such processes is
known. Moreover, many phenomenons, e.g. in finance and turbulence, are well described
by stationary or stationary increment processes; an important subclass herein is moving
averages. Both in theory and applications it is crucial to know the dynamics of such
processes; but this remains an open problem except in simple cases, see e.g. Barndorff-
Nielsen and Schmiegel [4]. In addition to the above problems we will also be interested
in properties of stationary solutions to the Langevin equation driven by a stationary
increment process, and a development of an applicable martingale theory for processes
indexed R.

About the Dissertation

The dissertation consists of the following eight manuscripts:

Manuscript A: Representation of Gaussian semimartingales with application to the covariance
function. Stochastics: An International Journal of Probability and Stochastic
Processes , (2009), 21 pages. In Press.

Manuscript B: Spectral representation of Gaussian semimartingales. Journal of Theoretical
Probability 22 (4), (2009), 811–826.

Manuscript C: Gaussian moving averages and semimartingales. Electronic Journal of Proba-
bility 13, no. 39, (2008), 1140–1165.

Manuscript D: Lévy driven moving averages and semimartingales (with J. Pedersen). Stochas-
tic Processes and their Applications 119 (9), (2009), 2970–2991.

Manuscript E: Path and semimartingale properties of chaos processes (with S.-E. Gra-
versen). Stochastic Processes and their Applications, (2009), 19 pages. doi:
10.1016/j.spa.2009.12.001.
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Manuscript F: Integrability of seminorms, (2009), 18 pages. Submitted.

Manuscript G: Martingale-type processes indexed by R (with S.-E. Graversen and J. Peder-
sen), (2009), 24 pages. Submitted.

Manuscript H: Quasi Ornstein-Uhlenbeck processes (with O. E. Barndorff-Nielsen), (2009),
25 pages. Submitted.

Manuscripts A–C are written during the first two years of the PhD program, where
after I obtained the masters degree. Manuscripts D–H are written during the last two
years of the PhD program. In addition to the above manuscripts the dissertation consists
of a summary chapter, which sets the stage for the manuscripts and provides an overview
of some of the results obtained in them.
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Introduction

The purpose of the present chapter is to (1) introduce some of the problems addressed in
the dissertation, (2) describe some of the main results obtained, and (3) briefly relate the
dissertation to the literature. Section 1 introduces our basic setting. In Section 2 we are
concerned with Gaussian semimartingales and we will primarily focus on representations,
the covariance function, the spectral measure and expansions of filtrations. It summarizes
results from Manuscripts A, C and E. Section 3 is mainly about the semimartingale
property of moving averages. Our focus is primarily on Gaussian, infinitely divisible
and chaos processes and we will study the semimartingale property in three different
filtrations. This part relies on results from Manuscripts C–E. We conclude this section
with a brief review on the results obtained in Manuscript B on the spectral representation
of Gaussian semimartingales. The results in Manuscript E rely on an integrability result
for seminorms obtained in Manuscript F, which generalizes, in a natural way, a result
by X. Fernique [22]. Manuscripts G and H have a slightly different focus, although they
are still concerned with the dynamics of stochastic processes. Indeed, in Manuscript G
we study martingale-type processes indexed by the real numbers; see Section 5 below.
Finally, we study stationary solutions to the Langevin equation driven by a stationary
increments process in Manuscript H; see Section 6. Throughout this chapter (Ω,F ,P)
will be a complete probability space on which all random variables are defined.

1 Fundamental classes of stochastic processes

In this section we will introduce some classes of stochastic processes studied in the dis-
sertation. We will start by introducing semimartingales and then proceed with some
properties of stationary processes. We conclude the section with some properties of two
natural generalizations of Gaussian processes; namely, infinitely divisible processes and
chaos processes.

1.1 Semimartingales

By a filtration F = (Ft)t≥0 we mean an increasing family of sub σ-algebras of F satisfying
the usual conditions of completeness and right-continuity. Given a process X = (Xt)t≥0
we let FX = (FX

t )t≥0 denote the least filtration to which X is adapted. Similarly, for a

process X = (Xt)t∈R indexed by R, we let FX,∞ = (FX,∞
t )t≥0 denote the least filtration

to which (Xt)t≥0 is adapted and that satisfies σ(Xs : s ∈ (−∞, 0]) ⊆ FX,∞
0 . A stochastic

process M = (Mt)t≥0 is called a local martingale with respect to a filtration F if there
exists an increasing sequence of F -stopping times (τn)n≥1 such that τn ↑ ∞ a.s. and for
all n ≥ 1, the stopped process M τn = (Mt∧τn)t≥0 is a martingale with respect to F . A

1



1. Fundamental classes of stochastic processes

function f : R+ → R is said to be of bounded variation if V(f)t <∞ for all t > 0, where

V(f)t = sup
π

n∑

i=1

|f(ti)− f(ti−1)|, (1.1)

and the sup is taken over all finite subdivisions π = {t0, . . . , tn} where n ≥ 1 and
0 = t0 < · · · < tn = t.

Given a filtration F , a processes X = (Xt)t≥0 is said to be a semimartingale with
respect to F , if it has a decomposition as

Xt = X0 +Mt +At, t ≥ 0, (1.2)

where (At)t≥0 is a càdlàg F -adapted process of bounded variation starting at 0, (Mt)t≥0
is a càdlàg F -local martingale starting at 0, and X0 is F0-measurable. (Càdlàg means
right-continuous with left-hand limits). We will use the notation SM(F ) to denote
the space of all F -semimartingales. Moreover, X is called a special semimartingale if
there exists a decomposition (1.2) with A predictable; in this case the decomposition
with A predictable is unique and it is called the canonical decomposition of X. For each
p ≥ 1, let Hp denote the space of all special semimartingales X = X0 + A + M for

which E[V(A)pt + [M ]
p/2
t ] < ∞ for all t < ∞. Let G = (G)t≥0 and F = (Ft)t≥0 be

two filtrations such that Gt ⊆ Ft for all t ≥ 0, then by a theorem of Stricker [46], all
semimartingales with respect to F are also semimartingales with respect to G provided
they are G -adapted. We refer to [16], [25] and [36] for surveys of semimartingale theory.

In what follows we will recall some results from stochastic integration theory. For a
fixed filtration F = (Ft)t≥0, P will denote the predictable σ-algebra on R+ × Ω, i.e.,
P is the σ-algebra generated by (s, t] × A where 0 ≤ s < t and A ∈ Fs, and {0} × A
where A ∈ F0. We will say that H = (Ht)t≥0 is a simple predictable process if for some
n ≥ 1, H is of the form

Ht = Y01{0}(t) +

n∑

i=1

Yi1(ti,ti+1](t), t ≥ 0, (1.3)

where 0 ≤ t1 < · · · < tn+1 < ∞ and for all i = 0, . . . , n, Yi is a bounded Fti -measurable
random variable. Let sP be the space of all simple predictable processes H = (Ht)t≥0
equipped with the sup norm ‖H‖ = sup(s,ω)∈R+×Ω|Hs(ω)|. For each càdlàg process Z
and H ∈ sP of the form (1.3) define for all t ≥ 0,

∫ t

0
Hs dZs =

n∑

i=1

Yi−1(Zti∧t − Zti−1∧t). (1.4)

The following theorem, shown independently by Bichteler [7, 8] and Dellacherie [15],
states that semimartingales is the largest class of processes for which the stochastic
integral depends continuously on the integrand.

Theorem 1.1 (Bichteler-Dellacherie). Let Z = (Zt)t≥0 be a càdlàg and F -adapted pro-
cess. Then for all t > 0 the map

IZ : (H ∈ sP) 7→
(∫ t

0
Hs dZs ∈ L0

)
, (1.5)

is continuous if and only if Z is a semimartingale with respect to F .
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1. Fundamental classes of stochastic processes

As usual, L0 is equipped with the topology corresponding to convergence in probabil-
ity. In the case where Z is a semimartingale, we can immediately extend the stochastic
integral

∫ t
0 Hs dZs, by continuity, to all bounded predictable processes H. Indeed, let bP

denote the space of all bounded predictable processes equipped with sup norm. Then,
IZ is a bounded linear operator on sP and hence it extends uniquely, by continuity,
to a bounded operator on the closure of sP, which is bP. Moreover, this extension,
also to be denoted

∫ ·
0Hs dZs, is a semimartingale. In fact, we can extend the stochastic

integral in a reasonable way to a much larger class of predictable processes H such that
the integral process still is a semimartingale; see e.g. [44].

In mathematical finance a discounted price process is an F -adapted càdlàg process
X, and a simple strategy π is a pair (x,H) where x ∈ R and H ∈ sP. For all simple
strategies π = (x,H) define the discounted capital process V π as

V π
t = x+

∫ t

0
Hs dXs, t ≥ 0. (1.6)

Thus the Bichteler-Dellacherie Theorem shows that the capital process V π depends con-
tinuously on the strategy π if and only if X is a semimartingale with respect to F .
This is just one of the reasons why semimartingales is one of the basic model classes in
continuous time mathematical finance.

1.2 Stationary and related processes

In this subsection we will recall some results about stationary and stationary increment
processes. Recall that a process X = (Xt)t∈R is said to be stationary if for all s ∈ R,
(Xt)t∈R has the same finite dimensional distributions as (Xs+t)t∈R. Moreover, X =
(Xt)t∈R is said to have stationary increments if for all s ∈ R, (Xt − X0)t∈R has the
same finite dimensional distributions as (Xt+s − Xs)t∈R. Two important examples are
Lévy processes and the fractional Brownian motion (fBm). We shall say that a process
X = (Xt)t∈R is a moving average if it has a representation of the form

Xt =

∫R [φ(t− s)− ψ(−s)] dZs, t ∈ R, (1.7)

where φ,ψ : R→ R are two real-valued functions and Z = (Zt)t∈R is a suitable process
with stationary increments to be specified later on. For all reasonable triplets (φ,ψ,Z),
the corresponding moving average X has stationary increments and in fact, moving av-
erages are a very important subclass of stationary increment processes. Furthermore, if
ψ ≡ 0 then X is stationary and if ψ = φ then X0 = 0. When ψ ≡ 0 and φ is zero
on (−∞, 0) then X given by (1.7) is called a backward moving average. Theorem 1.2
below shows that all second-order stationary processes with absolutely continuous spec-
tral measure satisfying an integrability condition is a backward moving average. In
this dissertation we will primarily focus on moving averages where Z is a Lévy process
or of the form dZt = σt dBt, where σ is a stationary process and B is a Brownian
motion. Moving averages of the latter type are closely related to ambit processes, in-
duced in Barndorff-Nielsen and Schmiegel [5, 3], and are used e.g. in modeling of tur-
bulence. When Z is a Lévy process, X is infinitely divisible (to be defined in the next
subsection) and when Z is a Brownian motion, X is Gaussian. Two examples of mov-
ing averages are the Ornstein-Uhlenbeck type process, which corresponds to ψ = 0,
φ = e−βt1R+(t) and Z a Lévy process with E[log+|Z1|] <∞, and the fBm, which corre-
sponds to φ(t) = ψ(t) = tH−1/21R+(t) for some H ∈ (0, 1) and Z a Brownian motion.

3



1. Fundamental classes of stochastic processes

A square-integrable process X is said to be second-order stationary if its covariance
function Cov(Xt,Xu) only depends on t− u and its mean-value function E[Xt] does not
depend on t. Let X = (Xt)t∈R be an L2-continuous second-order stationary process, and
let FX denote its spectral measure, i.e., FX is the unique finite and symmetric measure
on R satisfying

Cov(Xt,Xu) =

∫R ei(t−u)x FX(dx), t, u ∈ R. (1.8)

Moreover, let F ′X denote the density of the absolutely continuous part of FX . For each
t ∈ R let

Xt = span{Xs : s ≤ t}, X−∞ = ∩t∈RXt, X∞ = span{Xs : s ∈ R}, (1.9)

(span denotes the L2-closure of the linear span). Following Karhunen [30], X is called
deterministic if X−∞ = X∞ and purely non-deterministic if X−∞ = {0}. (Note that
deterministic does not mean that X is non-random). The next theorem, which is given
in [30, Satz 5–6] (cf. also [18]), provides a decomposition of a stationary process as a
sum of a deterministic process and a purely non-deterministic process; in fact, the purely
non-deterministic process is decomposed as a backward moving average.

Theorem 1.2 (Karhunen). Let X be an L2-continuous second-order stationary process
with spectral measure FX . If

∫R |log F ′X(x)|
1 + x2

dx <∞ (1.10)

then there exists a unique decomposition of X as

Xt =

∫ t

−∞
φ(t− s) dZs + Vt, t ∈ R, (1.11)

where φ : R → R is a Lebesgue square-integrable deterministic function, and Z is a
process with second-order stationary and orthogonal increments satisfying E[|Zu−Zs|2] =
|u − s| for all u, t ∈ R, and for all t ∈ R, Xt = span{Zs − Zu : −∞ < u < s ≤ t}, and
V is a deterministic second-order stationary process.

Moreover, if FX is absolutely continuous and satisfies (1.10) then V ≡ 0 and hence
X is a backward moving average. Finally, the integral in (1.10) is infinite if and only if
X is deterministic.

The integral of φ with respect to Z in (1.11) is defined in L2-sense; see e.g. [18]. Note
also that if X is Gaussian then the process Z in (1.11) is a standard Brownian motion.
Note finally that also stationary increment processes have a spectral measure; see e.g.
Section 7 in Manuscript C for the precise definition.

1.3 Infinitely divisible processes

In this subsection we will recall some properties and characteristics of infinitely divisible
processes. A probability measure µ on Rn is called infinitely divisible (ID) if for all k ≥ 1
there exists a probability measure µk on Rn such that µ = µ∗kk , where µ∗kk is the k-fold
convolution of µk; see e.g. [43]. Similarly, an Rn-valued random vector X is called ID if
its law, PX , is an ID probability measure on Rn. Key examples of ID distributions are
Gaussian, α-stable, gamma and Poisson. Let T denote a non-empty set. Then a process

4



1. Fundamental classes of stochastic processes

X = (Xt)t∈T is called an ID process if for all n ≥ 1 and t1, . . . , tn ∈ T , (Xt1 , . . . ,Xtn)
is an Rn-valued ID random vector. A key example of an ID process is a Lévy process.
Recall that (Zt)t≥0/(Zt)t∈R is said to be a Lévy process indexed by R+/R if it has
independent, stationary increments, càdlàg sample paths and Z0 = 0.

Let S be a non-empty set equipped with a δ-ring S, i.e., S is a family of subsets of S
which is closed under union, countable intersection and set difference. We will say that
Λ = {Λ(A) : A ∈ S} is an ID independently scattered random measure (random measure,
for short) if for all pairwise disjoint set (An)n≥1 ⊆ S we have that {Λ(An) : n ≥ 1} are
independent ID random variables, and if ∪∞n=1An ∈ S, we have that

Λ (∪∞n=1An) =

∞∑

n=1

Λ(An) a.s. (1.12)

As usual assume also that S is σ-finite, that is, there exists (Sn)n≥1 ⊆ S such that
∪n≥1Sn = S. We will equip S with the σ-algebra σ(S).

Given a random measure Λ, there exists a positive measurable function σ2 : S → R+,
a measurable function a : S → R, a measurable parametrization of Lévy measures on R
ν(dx, s), and a σ-finite measure m on S such that for all A ∈ S,

E[eiyΛ(A)] = exp

(∫

A
K(y, s)m(ds)

)
, y ∈ R, (1.13)

where for y ∈ R, s ∈ S and τ(x) = x1{|x|≤1} + sign(x)1{|x|>1},

K(y, s) = iya(s)− σ2(s)y2/2 +

∫R (eiyx − 1− iyτ(x)
)
ν(dx, s), (1.14)

see Proposition 2.4 in Rajput and Rosiński [37]. Furthermore, m is called the control
measure of Λ. A measurable function f : S → R is said to be Λ-integrable if there exists
a sequence (fn)n≥1 of simple functions such that limn fn = f m-a.s. and for all A ∈ S
the limit limn

∫
A fn(s)Λ(ds) exists in probability. In this case the stochastic integral of

f with respect to Λ is defined as
∫

S
f(s)Λ(ds) = lim

n→∞

∫

S
fn(s)Λ(ds) in probability. (1.15)

We refer to Theorem 2.7 in [37] for necessary and sufficient conditions on f, a, σ2, ν and m
for existence of the stochastic integral

∫
S f(s)Λ(ds). Note that integration with respect

to a centered Gaussian random measures is particularly simple since in this case the
integral can be constructed through an L2-isometry. Let Z be a Lévy process indexed
by R+ or R then there exists a unique random measure on respectively (R+,Bb(R+)) or
(R,Bb(R)) which for a < b is given by Λ((a, b]) = Zb − Za. (For A ⊆ R, Bb(A) denotes
the δ-ring of bounded Borel subsets of A).

Let S and T be separable and complete metric spaces, e.g. [0, 1] orR, and assume that
S is uncountable. Let (Xt)t∈T be an ID process separable in probability. Then, under
minimal conditions, Theorem 4.11 in [37] ensures that there exists a random measure Λ
on S, and Λ-integrable functions f(t, ·) : S → R for all t ∈ T such that

(Xt)t∈T
D
=

(∫

S
f(t, s)Λ(ds)

)

t∈T

, (1.16)

where
D
= denotes equality in finite dimensional distributions. Such a representation is

called a spectral representation of X, and when X is α-stable for some α ∈ (0, 2], we
may choose the random measure Λ to be α-stable as well.
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2. The semimartingale property

We conclude this subsection with the following two results concerning spectral rep-
resentations: Assume that X = (Xt)t∈T has spectral representation (1.16) with σ2 ≡ 0.
If the sample paths of X belong to a closed vector space V of RT a.s. then by Rosiński
[41] it follows that t 7→ ft(s) belongs to V for m-a.a. s ∈ S. That is, X inherits all the
properties of the functions t 7→ ft(s). Using zero-one laws Rosiński [40] shows that for
an α-stable process with α ∈ (0, 2) the sample paths of X belong to V if and only if
t 7→ ft(s) belongs to V for m-a.a. s ∈ S.

1.4 Chaos processes

We refer to Manuscripts E–F for the general definition of chaos process and some of their
properties, and to Janson [27] for a nice introduction to different aspects of the Gaussian
case. Let us here briefly recall the definition of a Gaussian chaos process. To do so, let G
be a vector space of Gaussian random variables and for all d ≥ 1 let Π

d
G be the L2-closure

of the random variables of the form

p(Z1, . . . , Zn) (1.17)

where for n ≥ 1, p : Rn → R is polynomial of degree at most d and Z1, . . . , Zn ∈ G. A
stochastic process (Xt)t∈T is called a Gaussian chaos process of order d if for all t ∈ T ,

Xt ∈ Π
d
G . When G = {

∫ 1
0 h(s) dBs : h ∈ L2([0, 1])} a result by Itô [24] shows that Π

d
G is

exactly the space of multiple Wiener-Itô integrals with respect to B, that is, the random
variables of the form

d∑

k=0

∫

[0,1]k
fk(s1, . . . , sk) dBs1 · · · dBsk , (1.18)

where fk ∈ L2([0, 1]k) for all k = 0, . . . , d.

2 The semimartingale property

In this chapter we will discuss the semimartingale and related properties of Gaussian
and related processes. Jain and Monrad [26] show that the bounded variation and mar-
tingale components of a Gaussian quasimartingale both are Gaussian processes. Relying
on a classical result by Fernique [22], Stricker [45] extends this result to cover all Gaus-
sian semimartingales X = (Xt)t≥0 and obtains moreover that X ∈ Hp for all p ≥ 1.
This shows, in particular, that a Gaussian semimartingale is special. The key idea is
to approximate the bounded variation component similarly to K. M. Rao’s [38] proof of
the Doob-Meyer decomposition. Emery [20] shows that the covariance function ΓX of
a Gaussian semimartingale X is of bounded variation; moreover, he obtains a charac-
terization of the semimartingale property of X in terms of integrals with respect to the
Lebesgue-Stieltjes measure on R2

+ induced by ΓX ; see the Introduction in Manuscript A
for further details. For a stationary Gaussian process X = (Xt)t∈R, Jeulin and Yor
[29, Proposition 19] have characterized the spectral measure of X for (Xt)t≥0 to be an
FX,∞-semimartingale.

In Theorem 4.5 in Manuscript A we extend a representation result due to Stricker [45],
from Gaussian processes of the form Xt = Bt +

∫ t
0 Zs ds where B is a Brownian motion,

to general Gaussian semimartingales. This result shows that the bounded variation
component A of a Gaussian semimartingale X = X0 +M +A can represented as

At =

∫ t

0

(∫ r

0
Ψr(s) dMs

)
µ(dr) +

∫ t

0
Yr µ(dr) (2.1)
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2. The semimartingale property

where Ψ: R2
+ → R is a deterministic kernel, µ is a Radon measure on R+, and Y is a

Gaussian process which is independent by M . So, in particular, A is decomposed into
an FM -adapted component and a component which is independent of M . This result
relies on a result by Jeulin [28], which shows that if a Gaussian process Y is of bounded
variation then almost surely it is absolutely continuous with respect to the Lebesgue-
Stieltjes measure induced by the mapping t 7→ E[V(Y )t]. Furthermore, in Theorem 5.2,
Manuscript A, we use decomposition (2.1) to characterize the covariance function of
Gaussian semimartingales. This is an alternative to the result obtained by Emery [20]
mentioned above. In Manuscript A our characterization is then used to study properties
of the Lebesgue-Stieltjes measure onR2

+ induced by the covariance function of a Gaussian
semimartingale.

Next we will consider some extensions to chaos processes. The following results
are given in Manuscript D. Extending results by Jain and Monrad [26] and Jeulin [28]
from the Gaussian case, we show in Theorem 3.1, Manuscript D, that if a Gaussian chaos
process X is of bounded variation then it is necessarily absolutely continuous with respect
to µX , which is the Lebesgue-Stieltjes measure induced by the mapping t 7→ E[V(X)t].
Using this result we show in Proposition 3.5, Manuscript D, that if a chaos process X
is of bounded p-variation for some p ≥ 1 then it has almost surely continuous paths if
and only if it is continuous in probability. Thereafter, extending a result by Stricker [45],
mentioned above, we show in Theorem 4.1, Manuscript D, that if a chaos process is a
semimartingale then both its martingale and bounded variation components are chaos
processes and X ∈ Hp for all p ≥ 1; recall the definition of Hp from Subsection 1.1.
Likewise, in Proposition 4.2, Manuscript D, the canonical decomposition of Dirichlet
processes is characterized as well.

Let us return to the Gaussian case. Consider a Gaussian process X = (Xt)t∈R
which is either stationary or has stationary increments and X0 = 0. In both cases the
distribution of X is uniquely determined by its spectral measure; see Section 1.2. In
Manuscript C, Theorems 6.4 and 7.1, we characterize the FX,∞-semimartingale prop-
erty of (Xt)t≥0 in terms of its spectral measure. (Recall the definition of FX,∞ from
Section 1.1). Theorem 6.4 gives an alternative to Jeulin and Yor [29, Proposition 19]. To
state Theorem 7.1 let (Xt)t∈R be a Gaussian process with stationary increments, X0 = 0
and spectral measure FX = F sX + F ′X dλ, where F sX and F ′X dλ are respectively the sin-
gular and absolute continuous component of FX . Then Theorem 7.1, Manuscript C, says
that (Xt)t≥0 is an FX,∞-semimartingale if and only if F sX is a finite measure and there
exist α ∈ R and h ∈ L2(λ) which is zero on (−∞, 0) if α 6= 0 such that

f = |α+ ĥ|2. (2.2)

When X is a fBm of index H ∈ (0, 1) we have F sX = 0 and f(s) = cH |s|1−2H . In this
case it is easily seen that f is of the form (2.2) if and only if H = 1/2, which then
gives a different proof of the well-known fact that the fBm is an FX,∞-semimartingale
if and only if H = 1/2. Theorem 7.1 relies heavily on complex function theory, in
particular a decomposition result for Hardy functions due to Beurling [6]; see Chapter 2,
Manuscript C, for a brief survey on Hardy functions. These functions will also be crucial
for some of the results discussed in Subsection 3.2.

As above assume that X = (Xt)t∈R is a Gaussian process which is either stationary
or has stationary increments and X0 = 0. It is of interest to consider the relationship
between being a semimartingale with respect to FX,∞ or FX . Since FX

t ⊆ FX,∞
t for

all t ≥ 0 it follows by Stricker’s Theorem, see Subsection 1.1, that it is a weaker property
to be an FX -semimartingale than being an FX,∞-semimartingale. Let X = (Xt)t≥0
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3. The semimartingale property of moving averages

is a Gaussian FX -semimartingale with canonical decomposition X = X0 + M + A.
Theorem 4.8(i–iii), Manuscript A, studies the canonical decomposition of X, and in
particular Theorem 4.8(iii) gives the following expansion of filtration result: (Xt)t≥0 is
an FX,∞-semimartingale if and only if t 7→ E[V(A)t] is Lipschitz continuous on R+.

3 The semimartingale property of moving averages

Let us first warm up with some preliminary observations concerning the semimartingale
property and then afterwards, in Subsection 3.2, we go into a deeper study of this and
related properties.

3.1 Preliminary observations

Let Z = (Zt)t≥0 be an F -semimartingale and H be a predictable process. Recall from
Subsection 1.1 that if the integral

Xt =

∫ t

0
Hs dZs, t ≥ 0, (3.1)

exists, then X is a semimartingale with respect to F . But what happens when the
integrand H depends on t also? The simplest case is when instead of Hs we integrate
φ(t − s) where φ : R+ → R is a deterministic function, and then X is the stochastic
convolution between φ and Z, given by

Xt = (φ ∗ Z)t =
∫ t

0
φ(t− s) dZs, t ≥ 0. (3.2)

By use of a stochastic Fubini result, see e.g. [36, Chapter IV, Theorem 65], one can
show that X is an F -semimartingale if φ is absolutely continuous with a locally square-
integrable density, i.e., there exists a function φ′ ∈ L2

loc(R+, λ) (where λ denotes the
Lebesgue measure) and α ∈ R such that

φ(t) = α+

∫ t

0
φ′(s) ds, t ≥ 0. (3.3)

If for some β > 0 we let φ(t) = e−βt for t ≥ 0 then φ is of the above type and in this
case the stochastic convolution X = φ ∗ Z is the Ornstein-Uhlenbeck process driven by
Z which starts at 0. On the other hand, if φ = 1[0,1] then Xt = Zt − Z(t−1)∨0 and if
e.g. Z is a Brownian motion then X is not a semimartingale in any filtration. Thus,
there are simple examples of φ’s for which the stochastic convolution X = φ ∗ Z is a
semimartingale, and for which it is not.

3.2 Characterization of the semimartingale property

In this subsection we will discuss the semimartingale property of stochastic convolutions
of the form (3.2) and of moving averages of the form

Xt =

∫ t

−∞
[φ(t− s)− ψ(−s)] dZs, t ∈ R. (3.4)

For a moving average (Xt)t≥0 of the form (3.4) there are at least three filtrations in
which it is natural to consider the semimartingale property; namely FX , FX,∞ and
FZ,∞ (recall their definitions from Section 1.1). Note that these filtrations satisfy

FX
t ⊆ FX,∞

t ⊆ FZ,∞
t , t ≥ 0, (3.5)
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3. The semimartingale property of moving averages

and hence by Stricker’s Theorem we have

SM(FZ,∞) ⊆ SM(FX,∞) ⊆ SM(FX ), (3.6)

i.e., it is easiest to be a semimartingale in FX and hardest in FZ,∞. In the below table
we gather some results characterizing the semimartingale property of X; vertical is the
filtration and horizontal is the driving process Z.

filtration\Z Brownian motion Lévy process Chaos process

FZ,∞ Knight [31], Manuscript D Manuscript E
(∗)

FX,∞ Jeulin and Yor [29], — —
Manuscript A

FX Manuscript B — —

(∗): Cherny [14], Cheridito [12], Manuscript B.

Let us discuss some of the results mentioned in this table. The first necessary and
sufficient conditions on (φ,ψ) for X = (Xt)t≥0 to be a semimartingale are due to Frank
B. Knight. To discuss these and related results let us, as long as not mentioned oth-
erwise, assume that Z is a Brownian motion and that X is a moving average of the
form (3.4). Note that since φ and ψ are deterministic, X is then a Gaussian process. By
using the result of Stricker [45] on Gaussian semimartingales discussed in Section 2, it is
shown by Knight [31] that X is an FZ,∞-semimartingale if and only if φ is absolutely
continuous with a square-integrable density. Cheridito [12] extends this, using Novikov’s
condition, by showing that if X is an FZ,∞-semimartingale then it is locally equivalent
to a Brownian motion, i.e., for each finite T > 0 the law of (c0Xt)t∈[0,T ] is equivalent to

the Wiener measure on C([0, T ];R), where c0 = 1/E[X2
1 ]

1/2. The first characterization
of the FX,∞-semimartingale property of X is due to Jeulin and Yor [29]. They used
Knight’s result together with a result on Hardy functions to obtain necessary and suffi-
cient conditions in terms of |φ̂|2 for X to be a semimartingale with respect to FX,∞. (φ̂
denotes the Fourier transform of φ).

Let S1 be the unit circle in the complex field C, i.e., S1 = {z ∈ C : |z| = 1}, λ
be the Lebesgue measure on R and assume for simplicity that ψ = φ. Theorem 3.2,
Manuscript C, shows that X = (Xt)t≥0 is an FX,∞-semimartingale if and only if φ can
be decomposed as

φ(t) = β + αf̃(t) +

∫ t

0
f̂ ĥ(s) ds, λ-a.a. t ∈ R, (3.7)

where α, β ∈ R, f : R→ S1 is a measurable function such that f = f(−·), and h ∈ L2R(λ)
is 0 on R+ when α 6= 0. Furthermore, f̃ : R→ R is the ∼-transform of f , given by

f̃(t) = lim
a→∞

∫ a

−a

eits − 1[−1,1](s)

is
f(s) ds (3.8)

where the limit is in λ-measure. This new transform, which shares some properties with
the Fourier transform, is studied in detail in Manuscript C. Key ingredients in the proof of
(3.7) are again decompositions of Hardy functions and the result by Knight. Furthermore,
our result generalizes Knight’s result in the sense that we may choose f ≡ 1 if and only if
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3. The semimartingale property of moving averages

X is an FZ,∞-semimartingale. Thus, we have given necessary and sufficient conditions
for an FX,∞-semimartingale to be an FZ,∞-semimartingale. In this context recall also
Theorem 4.8(iii), Manuscript A, which characterizes when an FX -semimartingale is an
FX,∞-semimartingale; see the end of Section 2 of the present chapter.

Let us mention that the above result gives a constructive way to obtain decompo-
sitions of the Brownian motion and the following is an example of this: Let (Xt)t≥0
be a stationary Ornstein-Uhlenbeck process driven by a Brownian motion B, in short
dXt = −Xt dt+ dBt. Then Y = (Yt)t≥0, given by

Yt = Bt − 2

∫ t

0
Xs ds, t ≥ 0, (3.9)

is a Brownian motion in its natural filtration; see the end of Section 3, Manuscript C.
Moreover, in Proposition 6.3, Manuscript C, we provide necessary and sufficient con-
ditions for the FX -Markov property of a moving average X; this result relies on a
characterization of the Ornstein-Uhlenbeck process due to Doob [17]. In particular, if X
is an FX -Markov process then Proposition 6.3 shows that X is an FX,∞-semimartingale
and gives necessary and sufficient conditions for X to be an FZ,∞-semimartingale.

All results mentioned above are concerned with the case where the driven process Z
is a Brownian motion. Next we will consider more general processes; we will start with
the case where Z is a Lévy process. Consider a stochastic convolution X = (Xt)t≥0 of
the form

Xt =

∫ t

0
φ(t− s) dZs, t ≥ 0, (3.10)

where φ : R+ → R is a deterministic function and Z = (Zt)t≥0 is a Lévy process. The
main result in Manuscript D, Theorem 3.1, provides necessary and sufficient conditions on
φ forX to be an FZ -semimartingale. As an example, when Z is an α-stable Lévy process
and α ∈ (1, 2], these conditions show that X is an FZ -semimartingale if and only if φ is
absolutely continuous on R+ with a locally α-integral density, i.e.,

∫ t
0 |φ′(s)|

α ds <∞ for
all t > 0. The proof of Theorem 3.1 relies mainly on various results by J. Rosiński and
co-authors, in particular the moment estimates in [35] and the integrability of seminorm
result in [42]. As a special case, Theorem 3.1 provides necessary and sufficient conditions
for X to be of bounded variation, hereby generalizing results by Doob [18] and Ibragimov
[23] from the Gaussian case. Manuscript D is concluded with a study of moving averages
X of the form (3.4) where Z = (Zt)t∈R is a Lévy process. A complete characterization of
the semimartingale property is in this case still missing. However, some further extensions
were obtained joint with Jan Rosiński, under a visit at the University of Tennessee, USA,
in April, 2009. This work is still in progress and not included in the dissertation.

Manuscript E, Section 5, uses the results on the semimartingale property of chaos
processes, mentioned in Section 2, to extend the result of Knight [31] from the case where
Z is a Brownian motion to where it is a chaos process. We consider both moving averages
of the form (3.4) and stochastic convolutions of the form (3.10). For example, assume
B = (Bt)t≥0 is a Brownian motion, σ = (σt)t≥0 is a Gaussian chaos process which is,
say, left-continuous in probability and φ : R+ → R a deterministic function such that

Xt =

∫ t

0
φ(t− s)σs dBs, t ≥ 0, (3.11)

is well-defined. Then Corollary 5.4, Manuscript E, shows thatX is an FZ -semimartingale
if and only if φ is absolutely continuous with a locally square-integrable density.
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4. Integrability of seminorms

The spectral decomposition of, say, centered Gaussian processes, generalizes moving
averages and stochastic convolutions driven by the Brownian motion in a natural way to
non-stationary processes. Recall from Subsection 1.3 that each centered Gaussian process
X, continuous in probability, has a spectral decomposition in distribution of the form
(1.16). In Manuscript B the semimartingale property is characterized in terms of spectral
representation and hereby we answer a question raised by Knight [31], about extending
his result on moving averages to non-stationary Gaussian processes; see Manuscript B,
Theorem 4.6. The semimartingale property is studied both in the natural filtration
of X, i.e. in FX , (see Theorem 4.1, Manuscript B) and in the filtration spanned by
the background measure Λ (see Theorem 4.6, Manuscript B). Our set-up includes, in
particular, processes of the form

(∗) Xt =

∫ t

0
f(t, s) dBs and (∗∗) Xt =

∫

[0,t]×Rd

f(t− s, x)Λ(ds,dx), (3.12)

that occur as solutions to fractional and partial stochastic differential equations; see
[2, 1, 4, 48]. (In (3.12) B is a Brownian motion and Λ is a centered Gaussian random
measure on R+ ×Rd). For example, if X of the form (3.12)(∗), then by Theorem 4.6,
Manuscript B, X is an FB-semimartingale if and only if f is of the form

f(t, s) = g(s) +

∫ t

0
Ψr(s)µ(dr), t, s ∈ R+, (3.13)

where g ∈ L2
loc(R+, λ), µ is a Radon measure on R+ and Ψ: R2

+ → R is a measurable
function satisfying ‖Ψr(·)‖L2(λ) = 1 for all r ≥ 0. In the case where f(t, s) = φ(t − s),

a minor extension of Knight’s result shows that X is an FB-semimartingale if and only
if φ is absolutely continuous on R+ with a locally square-integrable density; that is, g is
constant, µ is the Lebesgue measure and Ψr(s) depends only on r − s.

4 Integrability of seminorms

When studying the dynamic of stochastic processes it is often important to have have
integrability and moment estimates of functionals of the process of interest. For example
all the classical continuity results for Gaussian processes due to Dudley [19], Fernique
[21] and Talagrand [47] rely on very precise moment estimates for functionals of the pro-
cess. However, our main motivation is due to the fact that such integrability results are
a crucial tool when studying the semimartingale property as in Section 2. The following
classical result by Fernique [22] covers the Gaussian case: Let T be a countable set,
X = (Xt)t∈T be a Gaussian process and N : RT → [0,∞] be a measurable seminorm onRT such that N(X) < ∞ a.s. Then there exists an ǫ > 0 such that E[eǫN(X)2 ] < ∞.
A key example of N is N(f) = supt∈T |f(t)| for all f ∈ RT . We refer to Manuscript E,
Section 1.2, for a survey of results providing integrability of seminorms. A general defi-
nition of chaos processes is introduced in Manuscript E which includes infinitely divisible
processes (see Section 1.3), Gaussian chaos processes (see Section 1.4) and linear pro-
cesses. Manuscript E partly unifies and partly extends known results, and in particular
Theorem 2.7, Manuscript E, shows that chaos processes provide a setting in which the
above result of Fernique extends in a natural way; further, this theorem gives explicit
constants for equivalence of Lp-norms. For example, if X = (Xt)t∈T is a symmetric
normal inverse Gaussian process and N is a seminorm on RT such that N(X) <∞ a.s.
then Theorem 2.7, Manuscript E, shows that E[N(X)p] <∞ for all p ∈ (0, 1). Moreover,
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5. Martingale-type processes indexed by R
Proposition 2.9, Manuscript E, provides a simple proof of a result on Gaussian chaos pro-
cesses due to Borell [9]. Our proofs rely strongly on results from probability in Banach
spaces, in particular those on hypercontractivity properties mainly due to Borell [10, 11]
and Krakowiak and Szulga [32, 33].

5 Martingale-type processes indexed by R
The theory of martingales M = (Mt)t≥0 indexed by R+ is very well developed. However,
stationary processes are always indexed by R. Hence the question raises: What is the
right definition of martingales indexed by R and what are their properties? We shall say
that a process M = (Mt)t∈R is a martingale if E[Mt|Fs] =Ms for all s, t ∈ R with s ≤ t
and an increment martingale if for all s ∈ R, (Mt+s −Ms)t≥0 is a martingale (in the
usual sense). Observe that increment martingales are a more general type of processes
than martingales and that e.g. a Brownian motion B = (Bt)t∈R indexed by R is not a
martingale but only an increment martingale. The object of Manuscript G is to study
the basic properties of increment martingales such as their relationship to martingales,
their behavior at −∞ but also their Doob-Meyer decompositions. Two such results are
the following in which M = (Mt)t∈R is an increment martingale. By Proposition 3.9,
Manuscript G, we have that M−∞ exists a.s. and M −M−∞ is a martingale if and only
if {M0 − Mt : t ∈ (−∞, 0]} is uniformly integrable. Next assume that M is square-
integrable, then we have by Theorem 3.14, Manuscript G that there exists a predictable
and increasing process 〈M〉 = (〈M〉t)t∈R such that limt→−∞〈M〉t = 0 a.s. and M2−〈M〉
is a martingale if and only if M−∞ exists a.s. and M − M−∞ is a square-integrable
martingale.

6 Quasi Ornstein-Uhlenbeck processes

Let λ > 0 be a positive real number and N = (Nt)t∈R be a measurable process with
stationary increments. In Manuscript H we study stationary solutions X = (Xt)t∈R to
the Langevin equation

dXt = −λXt dt+ dNt. (6.1)

Such solutions are called quasi Ornstein-Uhlenbeck (QOU) processes. The existing liter-
ature has mainly focused on the classical case where N has independent increments (see
[39]) or where it is a fBm (see [13]). However, Maejima and Yamamoto [34] study the
case where N is a linear fractional α-stable motion. In Theorem 2.4, Manuscript H, we
show that if N has finite first-moments then there exists a unique in law QOU process
X = (Xt)t∈R, and this is given by

Xt = Nt − λe−λt
∫ t

−∞
eλsNs ds, t ∈ R. (6.2)

By this result we show, in particular, existences of the linear fractional α-stable motion
for all α ∈ (1, 2] and H ∈ (0, 1), which on page 4 in Maejima and Yamamoto [34]
is conjectured not to exist. Let X be a QOU process and RX be its autocovariance
function, that is,

RX(t) = Cov(Xt,X0), t ∈ R. (6.3)

In Manuscript H, the asymptotic behavior of the autocovariance function is studied for
the limits 0 and ∞. Assuming that N0 = 0 a.s. and with VN (t) = Var(Nt) denoting
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the variance function of N , we show in particular that under minor conditions on N , we
have for t→ ∞ that

RX(t) ∼
(

1

2λ2

)
V′′N (t). (6.4)

Manuscript H is concluded with a specialization to the case where N is a moving
average. To be able to handle this case we show and apply a stochastic Fubini re-
sult in Manuscript H (Theorem 3.1), which generalizes earlier results from literature
and Manuscript A (Lemma 3.2), Manuscript B (Lemma 3.4(ii)) and Manuscript D
(Lemma 4.9).
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to the covariance function
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Abstract

The present paper is concerned with various aspects of Gaussian semi-
martingales. Firstly, generalizing a result of (Stricker, 1983, Semi-
martingales gaussiennes—application au problème de l’innovation. Z.
Wahrsch. Verw. Gebiete 64 (3)), we provide a convenient representation
of Gaussian semimartingalesX = X0+M+A as an FM -semimartingale
plus a process of bounded variation which is independent of M. Sec-
ondly, we study stationary Gaussian semimartingales and their canon-
ical decomposition. Thirdly, we give a new characterisation of the co-
variance function of Gaussian semimartingales which enable us to char-
acterize the class of martingales and the processes of bounded variation
among the Gaussian semimartingales. We conclude with two applica-
tions of the results.
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1. Introduction

1 Introduction

Recently, there has been renewed interest in some of the fundamental properties of Gaus-
sian processes, such as the semimartingale property and the existence of quadratic vari-
ation; see e.g. Barndorff-Nielsen and Schmiegel [1].

Knight [13], Jeulin and Yor [12], Cherny [6], Cheridito [5] and Basse [2] studied the
semimartingale property of a certain class of Gaussian processes with stationary incre-
ments (or of a deterministic transformation of such processes). In Basse and Pedersen
[3] some of these results are extended in to a class of infinitely divisible processes. Jain
and Monrad [10] studied, among other topics, certain properties of Gaussian process of
bounded variation. A good review of the literature about Gaussian semimartingales can
be found in Liptser and Shiryayev [14].

Stricker [19, Théorème 2] showed the following. Let (Xt)t≥0 be a Gaussian semi-
martingale with canonical decomposition Xt =Wt+

∫ t
0 Zs ds, where (Wt)t≥0 is a Brown-

ian motion. Then there exists a Gaussian process (Yt)t≥0 which is independent of (Wt)t≥0
and a deterministic function (r, s) 7→ Ψr(s) such that

Xt =Wt +

∫ t

0

(∫ r

0
Ψr(s) dWs

)
dr +

∫ t

0
Yr dr. (1.1)

One of the purposes of the present paper is to generalize this result. Indeed, we show
that a Gaussian process (Xt)t≥0 is a semimartingale if and only if it can be decomposed
as

Xt = X0 +Mt +

∫ t

0

(∫ r

0
Ψr(s) dMs

)
µ(dr) +

∫ t

0
Yr µ(dr), (1.2)

where (Mt)t≥0 is a Gaussian martingale, (Yt)t≥0 is a Gaussian process which is inde-
pendent of (Mt)t≥0, µ is a Radon measure on R+ and (r, s) 7→ Ψr(s) is a deterministic
function. As a part of this we study Gaussian processes of bounded variation.

A second purpose of the paper is to study the canonical decomposition of stationary
Gaussian semimartingales. Let (Xt)t∈R be a stationary Gaussian process such that
(Xt)t≥0 is a semimartingale. We study the canonical decomposition of (Xt)t≥0 and

give a necessary and sufficient condition for (Xt)t≥0 to be an (FX,∞
t )t≥0-semimartingale,

where FX,∞
t := σ(Xs : s ∈ (−∞, t]) for t ≥ 0.

In the last section of the paper we study the the covariance structure of Gaussian
semimartingales. Let (Xt)t∈R be a stationary Gaussian process. Then, Proposition 19 in
Jeulin and Yor [12] gives a necessary and sufficient condition on the spectral measure of
(Xt)t∈R for (Xt)t∈R to be a semimartingale. Emery [8] showed that a Gaussian process
(Xt)t≥0 is a semimartingale if and only if the mean-value function and the covariance
function Γ of (Xt)t≥0 are of bounded variation and there exists an right-continuous in-
creasing function F such that for each 0 ≤ s < t and each elementary function u 7→ fs(u)
with fs(u) = 0 for u > s we have

∣∣∣
t∫

s

s∫

0

fs(v) Γ(du,dv)
∣∣∣

√√√√√
s∫

0

s∫

0

fs(u)fs(v) Γ(du,dv)

≤ F (t)− F (s). (1.3)

However, based on the decomposition (1.2) we provide a new alternative characterisation
of the covariance function (see Theorem 5.2). Some applications will be given as well.
For example, we study the fractional Brownian motion.
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1. Introduction

The paper is organised as follows. Section 2 contains some preliminary results. We
show that Gaussianity is preserved under various operations on a Gaussian semimartin-
gale. Moreover, a suitable version of Fubini’s Theorem is provided. Section 3 contains
some representation results for Gaussian semimartingales. First, extending a result of
Jeulin [11], we characterize Gaussian process of bounded variation. Afterwards the de-
composition (1.2) is provided. In section 4 the covariance function of Gaussian semi-
martingales is considered. We conclude with a few examples.

1.1 Notation

Let (Ω,F ,P) be a complete probability space. By a filtration we mean an increasing
family (Ft)t≥0 of σ-algebras satisfying the usual conditions of right-continuity and com-
pleteness. If (Xt)t≥0 is a stochastic process we denote by (FX

t )t≥0 the least filtration to
which (Xt)t≥0 is adapted.

A separable subspace G of L2(P) which contains all constants, is called a Gaussian
space if (X1, . . . ,Xn) follows a multivariate Gaussian distribution whenever n ≥ 1 and
X1, . . . ,Xn ∈ G. Let G denote a Gaussian space and (Ft)t≥0 be a filtration. Then we
say that G is (Ft)t≥0-stable if X ∈ G implies E[X|Ft] ∈ G for all t ≥ 0. A typical
example is G := span{Xt : t ≥ 0} for a càdlàg Gaussian process (Xt)t≥0 (span denotes
the L2(P)-closure of the linear span) and (Ft)t≥0 = (FX

t )t≥0.
We say that a stochastic process (Xt)t≥0 has stationary increments if for all n ≥ 1,

0 ≤ t0 < · · · < tn and 0 < t we have

(Xt1 −Xt0 , . . . ,Xtn −Xtn−1)
D
= (Xt1+t −Xt0+t, . . . ,Xtn+t −Xtn−1+t), (1.4)

where
D
= denotes equality in distribution.

Let µ be a σ-finite measure on R and f : R+ → R be a function. Then f is said
to be absolutely continuous w.r.t. µ if f is of bounded variation and the total variation
measure of f is absolutely continuous w.r.t. µ. A stochastic process (Xt)t≥0 starting at
0 is said to be absolutely continuous w.r.t. µ if almost all sample paths of (Xt)t≥0 are
absolutely continuous w.r.t. µ. Moreover for a locally µ-integrable function f we define∫ b
a f dµ :=

∫
(a,b] f dµ for all 0 ≤ a < b.

Let (Ft)t≥0 be a filtration. Recall that an (Ft)t≥0-adapted càdlàg process (Xt)t≥0 is
said to be an (Ft)t≥0-semimartingale, if there exists a decomposition of (Xt)t≥0 as

Xt = X0 +Mt +At, (1.5)

where (Mt)t≥0 is a càdlàg (Ft)t≥0-local martingale starting at 0 and (At)t≥0 is a càdlàg
(Ft)t≥0-adapted process of finite variation starting at 0. We say that (Xt)t≥0 is a semi-
martingale if it is an (FX

t )t≥0-semimartingale. Moreover (Xt)t≥0 is called a special
(Ft)t≥0-semimartingale if it is an (Ft)t≥0-semimartingale such that (At)t≥0 in (1.5) can
be chosen (Ft)t≥0-predictable. In this case the representation (1.5) with (At)t≥0 (Ft)t≥0-
predictable is unique and is called the canonical decomposition of (Xt)t≥0. From Liptser
and Shiryayev [14, Chapter 4, Section 9, Theorem 1] it follows that if (Xt)t≥0 is an
(Ft)t≥0-semimartingale then it is also an (FX

t )t≥0-semimartingale.
If (At)t≥0 is a right-continuous Gaussian process of bounded variation then (At)t≥0 is

of integrable variation (see Stricker [19, Proposition 4 and 5]) and we let µA denote the
Lebesgue-Stieltjes measure induced by the mapping t 7→ E[Vt(A)]. For every Gaussian
martingale (Mt)t≥0 let µM denote the Lebesgue-Stieltjes measure induced by the mapping
t 7→ E[M2

t ].

18



2. Preliminary results

2 Preliminary results

In the following µ denotes a Radon measure on R+ and (E, E , ν) is a σ-finite measure
space.

Lemma 2.1. Let Ψt ∈ L2(ν) for t ≥ 0 and define S := span{Ψt : t ≥ 0}. Assume S is a
separable subset of L2(ν) and t 7→

∫
Ψt(s)g(s) ν(ds) is measurable for g ∈ S. Then, there

exists a measurable mapping R × E ∋ (t, s) 7→ Ψ̃t(s) ∈ R such that Ψ̃t = Ψt ν-a.s. for
t ≥ 0.

Proof. Since S is a separable normed space, the Borel σ-algebra on S induced by the
norm-topology equals the σ-algebra induced by the mappings S ∋ f 7→

∫
fg dν ∈ R for

g ∈ S. Therefore t 7→ Ψt is Bochner measurable, and thus a uniform limit of elements
of the form Ψn

t (s) =
∑

k≥1 f
n
k (s)1An

k
(t) where fnk ∈ L2(ν) for n, k ≥ 1 and (Ank )k≥1 are

disjoint B(R+)-measurable sets for n ≥ 1. Reducing if necessary to a subsequence we
may assume that

sup
t∈R+

‖Ψn
t −Ψt‖L2(ν) ≤ 2−n, n ≥ 1. (2.1)

Let B := {(t, s) ∈ R+ ×E : lim supn→∞|Ψn
t (s)| <∞} and define

Ψ̃t(s) := lim sup
k→∞

Ψn
t (s)1B((t, s)), (t, s) ∈ R+ × E. (2.2)

Then (t, s) 7→ Ψ̃t(s) is measurable. Moreover by (2.1) it follows that Ψ̃t = Ψt ν-a.s. for
t ∈ R+, which completes the proof.

Let L2,1(ν, µ) denote the space of all measurable mappings R+×E ∋ (t, s) 7→ Ψt(s) ∈R satisfying Ψt ∈ L2(ν) for t ≥ 0 and

∫ t

0
‖Ψr‖L2(ν) µ(dr) <∞, t > 0. (2.3)

Furthermore BV(ν) denotes the space of all measurable mappings R+×E ∋ (t, s) 7→
Ψt(s) ∈ R for which Ψt ∈ L2(ν) for all t ≥ 0 and there exists a right-continuous increasing
function f such that ‖Ψt −Ψu‖L2(ν) ≤ f(t)− f(u) for 0 ≤ u ≤ t.

Lemma 2.2. Let Ψ ∈ L2,1(ν, µ). Then r 7→ Ψr(s) is locally µ-integrable for ν-a.a. s ∈ E
and by setting

∫ t
0 Ψr(s)µ(dr) = 0 if r 7→ Ψr(s) is not locally µ-integrable we have

(t, s) 7→
∫ t

0
Ψr(s)µ(dr) ∈ BV(ν). (2.4)

If in addition S is a closed subspace of L2(ν) such that Ψr ∈ S for all r ∈ [0, t], then

s 7→
∫ t

0
Ψr(s)µ(dr) ∈ S. (2.5)

Proof. Let t ≥ 0 be given. Tonelli’s Theorem and Cauchy-Schwarz’ inequality imply

∫ ( ∫ t

0
|Ψr(s)|µ(dr)

)2
ν(ds) (2.6)

=

∫ t

0

∫ t

0

(∫
|Ψr(s)Ψv(s)| ν(ds)

)
µ(dr)µ(dv) ≤

(∫ t

0
‖Ψr‖L2(ν) µ(dr)

)2
<∞. (2.7)
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This shows that r 7→ Ψr(s) is locally µ-integrable for ν-a.a. s ∈ E. By setting
∫ t

0
Ψr(s)µ(dr) = 0 if r 7→ Ψr(s) is not locally µ-integrable, (2.8)

we have that (t, s) 7→
∫ t
0 Ψr(s)µ(dr) is measurable and s 7→

∫ t
0 Ψr(s)µ(dr) ∈ L2(ν).

Calculations as in (2.6) show that

∥∥∥
∫ t

0
Ψr µ(dr)−

∫ u

0
Ψr µ(dr)

∥∥∥
L2(ν)

≤
∫ t

u
‖Ψr‖L2(ν) µ(dr) (2.9)

=

∫ t

0
‖Ψr‖L2(ν) µ(dr)−

∫ u

0
‖Ψr‖L2(ν) µ(dr), (2.10)

which yields (2.4). To show (2.5) fix t ≥ 0. By the Projection Theorem it is enough to
show 〈∫ t

0
Ψr µ(dr), g

〉
L2(ν)

= 0 for g ∈ S⊥. (2.11)

Fix g ∈ S⊥. Tonelli’s Theorem and Cauchy-Schwarz’ inequality shows that
∫∫ t

0
|Ψr(s)g(s)|µ(dr) ν(ds) ≤ ‖g‖L2(ν)

∫ t

0
‖Ψr‖L2(ν) µ(dr) <∞. (2.12)

Thus Fubini’s Theorem shows that
〈∫ t

0
Ψr µ(dr), g

〉
L2(ν)

=

∫ t

0
〈Ψr, g〉L2(ν) µ(dr) = 0, (2.13)

which completes the proof.

For Ψ ∈ L2,1(ν, µ) we always define (t, s) 7→
∫ t
0 Ψr(s)µ(dr) as in the above lemma.

Lemma 2.3. For every Ψ ∈ BV(ν) there exists a measurable mapping (t, s) 7→ Ψ̃t(s) such
that t 7→ Ψ̃t(s) is right-continuous and of bounded variation for s ∈ E and Ψt = Ψ̃t ν-a.s.
for t ≥ 0.

Proof. Define D := {i2−n : n ≥ 1, i ≥ 0}. We first show that (At)t∈D has finite upcross-
ing over each finite interval P -a.s. by showing that (Ψt)t∈D∩[0,N ] is of bounded variation
ν-a.s. for all N ≥ 1. Fix N ≥ 1. We have

∫
sup
n≥1

N2n∑

i=1

|Ψi2−n −Ψ(i−1)2−n | dν =

∫
lim inf
n→∞

N2n∑

i=1

|Ψi2−n −Ψ(i−1)2−n |dν (2.14)

≤ lim inf
n→∞

N2n∑

i=1

∫
|Ψi2−n −Ψ(i−1)2−n | dν (2.15)

≤ lim inf
n→∞

N2n∑

i=1

‖Ψi2−n −Ψ(i−1)2−n‖L2(ν) <∞, (2.16)

where the last inequality follows since Ψ ∈ BV(ν). Since (Ψt)t∈D has finite upcrossing
over each finite interval ν-a.s.

Ψ̃t := lim
u↓t, u∈D

Ψu, t ≥ 0, (2.17)

is a well-defined càdlàg process. Moreover, since Ψ ∈ BV(ν), t 7→ Ψt ∈ L2(ν) is right-
continuous. This implies that Ψ̃t = Ψt ν-a.s. for t ≥ 0 and so Ψ̃ ∈ BV(ν). Thus it follows
from calculations as above that (Ψ̃t)t≥0 is of integrable variation. This completes the
proof.
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3 General properties of Gaussian semimartingales

Our next result shows that the Gaussian property is preserved under various
operations on a Gaussian semimartingale.

Lemma 3.1. Let (Ft)t≥0 be a filtration and G denote an (Ft)t≥0-stable Gaussian space.
We have the following.

(i) Let (Xt)t≥0 ⊆ G be an (Ft)t≥0-semimartingale. Then (Xt)t≥0 is a special (Ft)t≥0-
semimartingale. Let Xt = Mt + At + X0 be the (Ft)t≥0-canonical decomposition
of (Xt)t≥0. Then, (At)t≥0, (Mt)t≥0 ⊆ G and (Mt)t≥0 is a (true) (Ft)t≥0-martingale
which is independent of X0.

(ii) Let (Mt)t≥0 ⊆ G be a Gaussian martingale starting at 0. Then

{
∫ t

0
f(s) dMs : f ∈ L2(µM )} = span{Mu : u ≤ t}, t ≥ 0. (3.1)

In particular if Y ∈ G is an FM
t -measurable random variable with mean zero then

there exists an f ∈ L2(µM ) such that

Y =

∫ t

0
f(s) dMs. (3.2)

Proof. (i) follows by Stricker [19, Proposition 4 and 5].
(ii): Fix t ≥ 0. To show the inclusion ’⊆’ let f ∈ L2(µM ) be given. Since

∫ t
0 f(s) dMs is

the L2(P)-limit of
∫ t
0 fn(s) dMs where the fn’s are step functions such that fn → f in

L2(µM ), it follows that

∫ t

0
f(s) dMs ∈ span{Mu : u ≤ t}. (3.3)

Since Mu =
∫ t
0 1(0,u](s) dMs for u ∈ [0, t] and the left-hand side of (3.1) is closed the

’⊇’ inclusion follows and thus we have shown (3.1). Now assume that Y ∈ G is an
FM
t -measurable random variable with mean zero. Let (an)n≥1 be a dense subset of [0, t]

containing t. By Lévy’s Theorem it follows that

E[Y |Ma1 , . . . ,Man ] → E[Y |FM
t ] = Y in L2(P). (3.4)

Since (Y,Ma1 , . . . ,Man) is simultaneously Gaussian for every n ≥ 1 the left-hand side of
(3.4) belongs to the linear span of {Mai : 1 ≤ i ≤ n}. This shows that Y ∈ span{Mu :

u ≤ t}, which by (3.1) completes the proof of (ii).

Let (Mt)t≥0 denote a càdlàg Gaussian martingale and (t, s) 7→ Ψt(s) be a measurable
mapping satisfying Ψt ∈ L2(µM ) for t ≥ 0. Then we may and do choose (

∫
Ψt(s) dMs)t≥0

jointly measurable in (t, ω). To see this note that S := span{Mt : t ≥ 0} is a separable
subspace of L2(P). Moreover Lemma 3.1 (ii) shows that each element in S is on the form∫
f(s) dMs for such f ∈ L2(µM ). Thus for

∫
f(s) dMs ∈ S we have

E
[∫

Ψt(s) dMs

∫
f(s) dMs

]
=

∫
Ψt(s)f(s)µM (ds), (3.5)

which shows that t 7→ E[
∫
Ψt(s) dMs

∫
f(s) dMs] is measurable. Hence by Lemma 2.1

there exists a measurable modification of (
∫
Ψt(s) dMs)t≥0.
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4. Representation of Gaussian semimartingales

Lemma 3.2 (Stochastic Fubini result). Let µ be a σ-finite measure on R+, (Mt)t≥0 be
a càdlàg Gaussian martingale and Ψ ∈ L2,1(µM , µ). Then t 7→

∫
Ψt(s) dMs is locally

µ-integrable P-a.s. and

∫ t

0

( ∫
Ψr(s) dMs

)
µ(dr) =

∫ (∫ t

0
Ψr(s)µ(dr)

)
dMs, t ≥ 0. (3.6)

Proof. We have

E
[∫ t

0

∣∣∣
∫

Ψr(s) dMs

∣∣∣µ(dr)
]
≤
∫ t

0
‖Ψr‖L2(µM ) µ(dt) <∞, (3.7)

which shows that r 7→
∫
Ψr(s) dMs is locally µ-integrable P-a.s. Thus both sides of (3.6)

are well-defined. The right-hand side belongs to span{Mt : t ≥ 0} and so does the left-
hand side by Lemma 2.2. From Lemma 3.1 (ii) it follows that all elements in span{Mt :

t ≥ 0} are on the form
∫
g(s) dMs for a g ∈ L2(µM ). Fix

∫
g(s) dMs ∈ span{Mt : t ≥ 0}.

We have

E
[∫

g(s) dMs

∫ (∫ t

0
Ψr(s)µ(dr)

)
dMs

]
=

∫
g(s)

∫ t

0
Ψr(s)µ(dt)µM (ds). (3.8)

Moreover, it follows from Fubini’s Theorem that

E
[ ∫

g(s) dMs

∫ t

0

(∫
Ψr(s) dMs

)
µ(dr)

]
=

∫ t

0
E
[∫

g(s) dMs

∫
Ψr(s) dMs

]
µ(dr)

(3.9)

=

∫ t

0

∫
g(s)Ψr(s)µM (ds)µ(dr) =

∫ ∫ t

0
g(s)Ψt(s)µ(dr)µM (ds). (3.10)

Hence, the left- and the right-hand side of (3.6) have the same inner product with all
elements of span{Mt : t ≥ 0} which means that they are equal. This completes the
proof.

4 Representation of Gaussian semimartingales

Proposition 4.1. Let (Ft)t≥0 be a filtration and G be a Gaussian space. Moreover let
(At)t≥0 ⊆ G be (Ft)t≥0-adapted, right-continuous and of bounded variation. Then there
exists an (Ft)t≥0-optional process (Yt)t≥0 ⊆ G such that ‖Yt‖L2(P) ≤ 3 for t ≥ 0 and

At =

∫ t

0
Ys µA(ds), t ≥ 0. (4.1)

If (At)t≥0 is (Ft)-predictable then (Yt)t≥0 can be chosen (Ft)t≥0-predictable and if (At)t≥0
is a centered process we have ‖Yr‖L2(P) =

√
π/2 for r ≥ 0.

Proof. It follows from Jeulin [11, Proposition 2] that (At)t≥0 is absolutely continuous
w.r.t. µA. By Jacod and Shiryaev [9, Proposition 3.13] there exists an (Ft)t≥0-optional
process (Zt)t≥0 such that At =

∫ t
0 Zs µA(ds) for t ∈ R+. Define

Zns :=

n2n∑

i=1

Ai2−n −A(i−1)2−n

µA(((i − 1)2−n, i2−n])
1((i−1)2−n ,i2−n](s), s ≥ 0, (4.2)
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4. Representation of Gaussian semimartingales

where 0/0 := 0. By reducing to probability measures we get from Dellacherie and Meyer
[7, page 50] that for almost all ω ∈ Ω, Zn· (ω) converges to Z·(ω) µA-a.s. Thus, Tonelli’s
Theorem shows that there exists a measurable µA-null set N such that for t /∈ N, we
have Znt converges to Zt P-a.s. For t ≥ 0 define Yt := Zt1Nc(t). Then (Yt)t≥0 is (Ft)t≥0-
optional, (Yt)t≥0 ⊆ G and (Yt)t≥0 satisfies (4.1). For all Gaussian random variables X
we have ‖X‖L2(P) ≤ 3‖X‖L1(P). Now it follows

µA((0, t]) = E[

∫ t

0
|Ys|µA(ds)] ≥ 1/3

∫ t

0
‖Ys‖L2(P) µA(ds), (4.3)

by which we conclude that ‖Yt‖L2(P) ≤ 3 for µA-a.a. t ≥ 0.
If (At)t≥0 is (Ft)t≥0-predictable Jacod and Shiryaev [9, Proposition 3.13] shows that

the above (Zt)t≥0 can be chosen (Ft)t≥0-predictable and therefore (Yt)t≥0 will be (Ft)t≥0-
predictable as well.

The above result characterizes Gaussian processes of bounded variation. Indeed it
follows from Proposition 4.1 and Lemma 2.2 that (At)t≥0 is a Gaussian process which is
right-continuous and of bounded variation if and only if

At =

∫ t

0
Yr µ(dr) t ≥ 0, (4.4)

for a Radon measure µ on R+ and a measurable Gaussian process (Yt)t≥0 which is
bounded in L2(P).

Recall the definition of µM on page 18. Moreover, recall (e.g. from Rogers and
Williams [17]) the definition of the dual predictable projection of non-adapted processes.

Proposition 4.2. Let µ be Radon measure on R+, (Mt)t≥0 be a càdlàg Gaussian mar-
tingale and Ψ ∈ L2,1(µM , µ). Define

At :=

∫ t

0

( ∫
Ψr(s) dMs

)
µ(dr), t ≥ 0. (4.5)

Then the dual (Ft)t≥0-predictable projection of (At)t≥0 is for t ≥ 0 given by

Ap

t =

∫ t

0

(∫ t

s
Ψr(s)µ(dr)

)
dMs =

∫ t

0

( ∫
1(0,r)(s)Ψr(s) dMs

)
µ(dr). (4.6)

In particular (At)t≥0 is (FM
t )t≥0-predictable if and only if Ψt(s) = 0 for µM ⊗ µ-a.a.

(s, t) with s ≥ t.

Proof. Since Ψ ∈ L2,1(µM , µ) Lemma 2.2 shows that (t, s) 7→
∫ t
0 Ψr(s)µ(dr) ∈ BV(µ).

Now Lemma 3.2 and Lemma 4.3 below shows that

Ap
t =

∫ t

0

(∫ t

s
Ψr(s)µ(dr)

)
dMs, t ≥ 0. (4.7)

The last identity in (4.6) follows from Lemma 3.2.
To conclude we note that (At)t≥0 is (FM

t )t≥0-predictable if and only if At = Ap
t for

all t ≥ 0. From (4.6) this is the case if and only if for P⊗ µ-a.a. (ω, r) we have
∫

1(0,r)(s)Ψr(s) dMs(ω) =

∫
Ψr(s) dMs(ω). (4.8)

which by the isometric property of the integral corresponds to 1(0,r)(s)Ψr(s) = Ψr(s) for
µM ⊗ µ-a.a. (s, r).
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4. Representation of Gaussian semimartingales

Lemma 4.3. Let (Mt)t≥0 be a càdlàg Gaussian martingale and let Ψ ∈ BV(µM ) satisfy
that t 7→ Ψt(s) is càdlàg for s ≥ 0. Then s 7→ Ψs(s) is locally µM -square integrable. Let
furthermore (At)t≥0 be a modification of (

∫
Ψt(s) dMs)t≥0 which is right-continuous and

of bounded variation. (Such a modification exists according to Lemma 2.3). Then the
dual (FM

t )t≥0-predictable projection of (At)t≥0 exists and is given by

Ap

t =

∫ t

0

(
Ψt(s)−Ψs(s)

)
dMs, t ≥ 0. (4.9)

In particular, (At)t≥0 is (FM
t )t≥0-predictable if and only if for t ≥ 0 we have Ψt(s) = 0

for µM -a.a. s ∈ [t,∞).

Proof. Fix t ≥ 0. General theory shows that for t ≥ 0 we have

1

h

∫ t

0
E[Au+h −Au|FM

u ] du→ Ap
t in the σ(L1, L∞)-topology, as h ↓ 0, (4.10)

see e.g. Dellacherie and Meyer [7, Theorem 21.1]. Thus from Gaussianity the convergence
also takes place in the σ(L2, L2)-topology. We have

1

h

∫ t

0
E[Au+h −Au|FM

u ] du =
1

h

∫ t

0

( ∫ u

0

(
Ψu+h(s)−Ψu(s)

)
dMs

)
du (4.11)

=

∫ t

0

(1
h

∫ t

s

(
Ψu+h(s)−Ψu(s)

)
du
)
dMs, (4.12)

where the second equality follows from Lemma 3.2 since Ψ ∈ BV(µM ) ⊆ L2,1(µM , λ)
(λ denotes the Lebesgue measure on R). Thus (4.10) implies that there exists an ft ∈
L2(µM ) such that

1[0,t](s)
1

h

∫ t

s

(
Ψu+h(s)−Ψu(s)

)
du −−→

h↓0
ft(s) in the σ(L2, L2) (4.13)

and Ap
t =

∫ t
0 ft(s) dMs. Fix s ∈ [0, t]. The right-continuity of t 7→ Ψt(s) implies that

1

h

∫ t

s

(
Ψu+h(s)−Ψu(s)

)
du (4.14)

=
1

h

∫ t+h

t
Ψu(s) du− 1

h

∫ s+h

s
Ψu(s) du→ Ψt(s)−Ψs(s), as h ↓ 0. (4.15)

This shows ft(s) = Ψt(s)−Ψs(s) for µM -a.a. s ∈ [0, t] and the proof of (4.9) is complete.
Since (At)t≥0 is (FM

t )t≥0-predictable if and only if At = Ap
t for t ≥ 0 the last part of

the result is immediate.

Remark 4.4. By writing s 7→ Ψs(s) as a telescoping sum of the functions s 7→ Ψt(s) it
can also be seen directly that s 7→ Ψs(s) is locally µM -square integrable.

We are now ready to state and prove one of the main results of the paper which
describes the bounded variation component of a Gaussian semimartingale and generalizes
a result of Stricker [19].

Theorem 4.5. (Xt)t≥0 is a Gaussian semimartingale if and only if for t ≥ 0 we have

Xt = X +Mt +
( ∫ t

0

( ∫
Ψr(s) dMs

)
µ(dr) +

∫ t

0
Yr µ(dr)

)
, (4.16)
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4. Representation of Gaussian semimartingales

where µ is a Radon measure, (Mt)t≥0 is a Gaussian martingale starting at 0, Ψ is a
measurable mapping such that (Ψr)r≥0 is bounded in L2(µM ) and Ψt(s) = 0 for µM ⊗µ-
a.a. (s, t) with s ≥ t, (Yt)t≥0 is a measurable process which is bounded in L2(P) and X
is a random variable such that {Yt,X : t ≥ 0} is Gaussian and independent of (Mt)t≥0.

In this case, (Xt)t≥0 is (in addition) an (Ft)t≥0-semimartingale, where Ft := FM
t ∨

σ(X,Ys : s ≥ 0) for t ≥ 0 and (4.16) is the (Ft)t≥0-canonical decomposition of (Xt)t≥0.

Remark 4.6. We actually prove the following. Let (Ft)t≥0 be a filtration and G be
an (Ft)t≥0-stable Gaussian space. Assume that (Xt)t≥0 ⊆ G and that (Xt)t≥0 is an
(Ft)t≥0-semimartingale with (Ft)t≥0-canonical decomposition Xt = X0 +Mt+At. Then
(Xt)t≥0 can be decomposed as in (4.16) with µ = µA, (Yt)t≥0 (Ft)t≥0-predictable and
(Mt)t≥0, (Yt)t≥0 ⊆ G.

Theorem 4.5 also shows the following.

Remark 4.7. A Gaussian semimartingale (Xt)t≥0 with martingale component (Mt)t≥0
can be decomposed asXt = Zt+Bt, where (Zt)t≥0 is a Gaussian (FM

t )t≥0-semimartingale
and (Bt)t≥0 is a Gaussian (FX

t )t≥0-predictable process independent of (Mt)t≥0 which is
right-continuous and of bounded variation. In particular FX

t = FM
t ∨ FB

t .

Proof of Theorem 4.5. Only if : We prove the more general result stated in Remark 4.6.
Thus let (Ft)t≥0 be a filtration and G be an (Ft)t≥0-stable Gaussian space. Assume
(Xt)t≥0 ⊆ G and that (Xt)t≥0 is an (Ft)t≥0-semimartingale with (Ft)t≥0-canonical de-
composition Xt = X0+Mt+At. It follows from Lemma 3.1 (i) that (At)t≥0, (Mt)t≥0 ⊆ G,
and since (At)t≥0 is of bounded variation, Proposition 4.1 shows that there exists an
(Ft)t≥0-predictable process (Zt)t≥0 ⊆ G such that ‖Zr‖L2(P) ≤ 3 for r ≥ 0 and

At =

∫ t

0
Zs µA(ds), t ≥ 0. (4.17)

Let (pZt)t≥0 denote the (FM
t )t≥0-predictable projection of (Zt)t≥0. The definition of

(pZt)t≥0 shows that for t ≥ 0 we have pZt = E[Zt|FM
t− ]. From Gaussianity it follows that

pZt is the projection of Zt on span{Ms : s < t} and thus pZt ∈ G for t ≥ 0. This means
that ‖Zs‖L2(P) ≥ ‖pZs‖L2(P) for r ≥ 0. Define Yt := Zt− pZt for t ≥ 0. Then (Yt)t≥0 ⊆ G

is bounded in L2(P). We claim that

E[YuMt] = 0 for t, u ≥ 0. (4.18)

Since pZu is the projection of Zu on span{Mv : v < t}, (4.18) is obviously true for
0 ≤ t < u. Moreover since (Mt)t≥0 is an (Ft)t≥0-martingale it remains to be shown
E[YuMu] = 0 for u ≥ 0. Fix u ≥ 0. We have

E[YuMu] = E[YuE[Mu|Fu−]] = E[YuMu−] = 0, (4.19)

where the first equality follows since Yu is Fu− measurable and the second equality follows
since (Mt)t≥0 is an (Ft)t≥0-martingale. This completes the proof of (4.18).

Since (Yt)t≥0 and (Mt)t≥0 both are subsets of G and (Mt)t≥0 is a centered processes,
(4.18) implies that (Yt)t≥0 is independent of (Mt)t≥0. It follows from
Lemma 3.1 (ii) and Lemma 2.1 that pZt = E[pZt]+

∫
Ψt(s) dMs for t ≥ 0 and some mea-

surable mapping Ψ such that (Ψr)r≥0 is bounded in L2(µM ). Since (pZt)t≥0 is (FM
t )t≥0-

predictable, Proposition 4.2 shows Ψt(s) = 0 for µM ⊗ µA-a.a. (s, t) with s ≥ t. This
completes the proof of (4.16), by using Ỹt := Yt + E[pZt] instead of (Yt)t≥0.
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4. Representation of Gaussian semimartingales

If : Assume conversely that (4.16) is satisfied. By Lemma 4.2

∫ t

0

( ∫
Ψr(s) dMs

)
µ(dr), t ≥ 0, (4.20)

is (FM
t )t≥0-predictable. Hence, (Xt)t≥0 is an (Ft)t≥0-semimartingale (Ft := FM

t ∨
σ(X,Ys : s ≥ 0)) and the (Ft)t≥0-canonical decomposition of (Xt)t≥0 is (4.16). Since
(Xt)t≥0 is an (Ft)t≥0-semimartingale, Stricker’s Theorem (see Protter [15, Chapter 2,
Theorem 4]) shows that (Xt)t≥0 in particular is a semimartingale, that is an (FX

t )t≥0-
semimartingale. This completes the proof.

In the following we study the canonical decomposition of a Gaussian semimartingales.
For a stochastic process (Xt)t∈R we let (FX,∞

t )t≥0 denote the least filtration for which

Xs is FX,∞
t -measurable for t ≥ 0 and s ∈ (−∞, t].

Theorem 4.8. Let (Xt)t∈R be Gaussian process which either is stationary or has station-
ary increments and satisfies X0 = 0. Assume (Xt)t≥0 is a semimartingale with canonical
decomposition Xt = X0 +Mt +At. Then we have

(i) (Mt)t≥0 is a Wiener process and hence µM equals the Lebesgue measure up to a
scaling constant. Moreover µA is absolutely continuous with increasing density.

(ii) (At)t≥0 has stationary increments if and only if (Mt)t≥0 is independent of (Xt)t≤0.

(iii) (Xt)t≥0 is an (FX,∞
t )t≥0-semimartingale if and only if µA has a bounded density.

Proof. The stationary increments of (Xt)t≥0 imply that (Xt)t≥0 has no fixed points of
discontinuity. Since in addition (Xt)t≥0 is a Gaussian semimartingale, it is continuous
(see Stricker [19, Proposition 3]). By continuity of (Xt)t≥0 it follows that (At)t≥0 is
continuous as well.

(i): Since (At)t≥0 is continuous we have [M ]t = [X]t for t ≥ 0. (For a process (Zt)t≥0,
[Z]t denotes the quadratic variation of (Zt)t≥0 on [0, t].) By the stationary increments
of (Xt)t≥0, it follows that [X]t = Kt for all t ≥ 0 and some constant K ∈ R+. Thus by
Gaussianity it follows that (Mt)t≥0 has stationary increments and therefore is a Wiener
process with parameter K.

Let v ≥ 0 be given and define FX,v
t := FX

t ∨ σ(Xs : s ∈ [−v, 0]) for t ≥ 0. In the
following we shall use that for 0 ≤ t0 < t1 < · · · < tn we have

(E[Xti+v −Xti−1+v|FX
ti−1+v])

n
i=1

D
= (E[Xti −Xti−1 |FX,v

ti−1
])ni=1. (4.21)

In the case where (Xt)t∈R has stationary increments and satisfies X0 = 0 this is due to

(
Xti+v −Xti−1+v, (Xs)s∈[0,ti−1+v]

)n
i=1

D
=
(
Xti −Xti−1 , (Xs −X−v)s∈[−v,ti−1]

)n
i=1

, (4.22)

and σ(Xs−X−v : s ∈ [−v, ti−1]) = FX,v
ti−1

for i = 1, . . . , n. In the stationary case it follows
since

(
Xti+v −Xti−1+v, (Xs)s∈[0,ti−1+v]

)n
i=1

D
=
(
Xti −Xti−1 , (Xs)s∈[−v,ti−1]

)n
i=1
. (4.23)

From (4.21) it follows that (Xt)t≥0 is an (FX,v
t )t≥0-local quasimartingale and there-

fore also an (FX,v
t )t≥0-special semimartingale. Let (Avt )t≥0 be the bounded variation
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4. Representation of Gaussian semimartingales

component of (Xt)t≥0 in the filtration (FX,v
t )t≥0. For 0 ≤ u ≤ t we have

At −Au = lim
n→∞

[t2n]∑

i=1

E[Xi/2n −X(i−1)/2n |FX
(i−1)/2n ] (4.24)

= lim
n→∞

[t2n]∑

i=1

E[Avi/2n −Av(i−1)/2n |FX
(i−1)/2n ] in L2(P), (4.25)

which shows

‖At −Au‖L1(P) ≤ lim
n→∞

[t2n]∑

i=[u2n]+1

‖Avi/2n −Av(i−1)/2n‖L1(P) = µAv((u, t]). (4.26)

From (4.21) it follows that (the limits are in L2(P))

Avt −Avu = lim
n→∞

[t2n]∑

[u2n]+1

E[Xi/2n −X(i−1)/2n |FX,v
(i−1)/2n ] (4.27)

D
= lim
n→∞

[t2n]∑

[u2n]+1

E[Xi/2n+v −X(i−1)/2n+v|FX
(i−1)/2n+v] = At+v −Au+v, (4.28)

and hence µAv((u, t]) = µA((u+ v, t+ v]). Thus by (4.26) we conclude that

µA((u, t]) ≤ µA((u+ v, t+ v]), 0 ≤ u ≤ t, 0 ≤ v. (4.29)

Define f(t) := µA((0, t]) for t ≥ 0 and let T ≥ 0 be given. Choose a t0 ≥ T such that f
is differentiable at t0. Moreover let t, h ≥ 0 satisfy t+ h ≤ T. Then

µA((t, t+ h]) = f(t+ h)− f(t) =

n∑

i=1

f(t+ ih/n)− f(t+ (i− 1)h/n) (4.30)

≤
n∑

i=1

f(t0 + h/n)− f(t0) = h
f(t0 + h/n)− f(t0)

h/n
−−−→
n→∞

hf ′(t0), (4.31)

which shows f is locally Lipschitz continuous and hence µA is absolutely continuous.
From (4.29) it follows that µA has an increasing density.

(ii): Assume (At)t≥0 has stationary increments. For t ≥ 0 (4.21) shows

At
D
=At+v −Av = lim

n→∞

[t2n]∑

i=1

E[Xi/2n+v −X(i−1)/2n+v|FX
(i−1)/2n+v] (4.32)

D
= lim
n→∞

[t2n]∑

i=1

E[Xi/2n −X(i−1)/2n |FX,v
(i−1)/2n ] =: Avt in L2(P). (4.33)

By the rules of successive conditioning it follows that E[AtA
v
t ] = E[A2

t ]. Since in addition
At

D
= Avt this shows that

E[(At −Avt )
2] = E[(Avt )

2]− E[A2
t ] = 0, (4.34)
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and hereby

At = lim
n→∞

[t2n]∑

i=1

E[Xi/2n −X(i−1)/2n |FX,v
(i−1)/2n ] in L2(P). (4.35)

This yields

Mt = lim
n→∞

[t2n]∑

i=1

Xi/2n −X(i−1)/2n − E[Xi/2n −X(i−1)/2n |FX,v
(i−1)/2n ] in L2(P), (4.36)

which implies that Mt is independent of Xu for u ∈ [−v, 0]. Since v, t ∈ R+ were
arbitrarily chosen, we conclude that (Mt)t≥0 is independent of (Xt)t≤0.

Assume conversely that (Mt)t≥0 is independent of (Xt)t≤0 and hence (Xt)t≥0 is an

(FX,∞
t )t≥0-semimartingale with (FX,∞

t )t≥0-canonical decomposition given by Xt = X0+
At +Mt. For 0 ≤ u ≤ t and 0 ≤ v we have

At+v −Au+v = lim
n→∞

[t2n]∑

i=[u2n]+1

E[Xi/2n+v −X(i−1)/2n+v|FX,∞
(i−1)/2n+v] in L2(P) (4.37)

from which we conclude that (At)t≥0 has stationary increments.

(iii): Let (Xt)t≥0 be an (FX,∞
t )t≥0-semimartingale and let (Bt)t≥0 denote the (FX,∞

t )t≥0-
bounded variation component of (Xt)t≥0. By arguments as above it follows that (Bt)t≥0
has stationary increments and hence E[|Bt − Bu|] ≤ K(t − u) for 0 ≤ u ≤ t and some
constant K ∈ R+. For t ≥ 0 we have

At = lim
n→∞

[t2n]∑

i=1

E[Bi/2n −B(i−1)/2n |FX
(i−1)/2n ] in L2(P), (4.38)

and hence

E[|At −Au|] ≤ lim
n→∞

[t2n]∑

i=[u2n]+1

E[|E[Bi/2n −B(i−1)/2n |FX
(i−1)/2n ]|] ≤ K(t− u), (4.39)

which shows µA has a bounded density.
Assume conversely that µA has a bounded density and let K ∈ R+ be a constant

dominating the density. For 0 ≤ u ≤ t we have

E[|E[Xt −Xu|FX,∞
u ]|] = lim

n→∞
E[|E[Xt −Xu|FX,n

u ]|] (4.40)

= lim
n→∞

E[|E[Xt+n −Xu+n|FX
u+n]|] = lim

n→∞
E[|E[At+n −Au+n|FX

u+n]|] (4.41)

≤ lim
n→∞

µA((u+ n, t+ n]) ≤ K(t− u). (4.42)

This shows (Xt)t≥0 is an (FX,∞
t )t≥0-quasimartingale on bounded intervals and hence an

(FX,∞
t )t≥0-semimartingale.

Let (Xt)t≥0 be a stationary Gaussian semimartingale with covariance function γ(t) :=
Cov(Xu+t,Xu) = E[XtX0]−E[X2

0 ] for t ≥ 0. Then γ is locally Lipschitz continuous and

Lipschitz continuous if (Xt)t≥0 is an (FX,∞
t )t≥0-semimartingale.
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5. The covariance function of Gaussian semimartingales

To show this, let (At)t≥0 be the bounded variation component of (Xt)t≥0. For 0 ≤ u, t
we have

|γ(t+ u)− γ(u)| = |E[(At+u −Au)X0]| ≤ ‖At −Au‖L2(P)‖X0‖L2(P), (4.43)

and the statement thus follows from Theorem 4.8.
We believe that among the stationary Gaussian processes (Xt)t≥0, the class of (FX

t )t≥0-

semimartingales is strictly larger than the class of (FX,∞
t )t≥0-semimartingales. However,

we haven’t found an example of an (FX
t )t≥0-semimartingale which isn’t an (FX,∞

t )t≥0-
semimartingale. This is equivalent (according to Theorem 4.8 (iii)) to finding a station-
ary Gaussian semimartingale (Xt)t≥0 for which µA has an unbounded density ( (At)t≥0
denotes the bounded variation component of (Xt)t≥0).

5 The covariance function of Gaussian semimartingales

If (Xt)t≥0 is a Gaussian process we let ΓX denote the corresponding covariance function,
i.e. ΓX(t, s) := E[(Xt − E[Xt])(Xs − E[Xs])] for all s, t ≥ 0. We need the following.

Condition 5.1. A function G : R2
+ → R satisfies Condition 5.1, if G is symmetric,

positive semi-definite and there exists a right-continuous increasing function f such that
for all 0 ≤ s ≤ t √

G(t, t) +G(s, s)− 2G(s, t) ≤ f(t)− f(s). (5.1)

Recall that G is positive semi-definite if

n∑

i,j=1

aiG(ti, tj)aj ≥ 0 (5.2)

for all n ≥ 1, a1, . . . , an ∈ R and t1, . . . , tn ∈ R+.
Assume that G satisfies Condition 5.1 and denote by (At)t≥0 a centered Gaussian

process satisfying ΓA = G. Then by Lemma 2.3 there exists a modification of (At)t≥0
which is right-continuous and of bounded variation. Conversely, if (At)t≥0 is a right-
continuous Gaussian process of bounded variation, then ΓA satisfies Condition 5.1 with
f(t) = E[Vt(A)] for t ≥ 0 since (At)t≥0 is of integrable variation.

Thus G satisfies Condition 5.1 if and only if G = ΓA for some right-continuous
Gaussian process (At)t≥0 of bounded variation.

A measurable mapping R2
+ ∋ (t, s) 7→ Ψt(s) ∈ R is said to be a Volterra type kernel if

Ψt(s) = 0 for all s > t. (A Volterra kernel is often assumed to be an L2(λ)-kernel see e.g.
Baudoin and Nualart [4] and Smithies [18]. However, the latter assumption is not needed
here.) Let 1 denote the Volterra type kernel given by R2

+ ∋ (t, s) 7→ 1t(s) = 1[0,t](s).
The next result is a new characterization of the covariance function of Gaussian

semimartingales. The result is only formulated for centered Gaussian processes. This is
no restriction since a Gaussian process (Xt)t≥0 is a semimartingale if and only if t 7→ E[Xt]
is right-continuous and of bounded variation and (Xt−E[Xt])t≥0 is a semimartingale. To
see this it is enough to show that the mean-value function of a Gaussian semimartingale is
of bounded variation. Let (Xt)t≥0 be a Gaussian semimartingale with bounded variation
component (At)t≥0. For 0 ≤ u ≤ t we have

|E[Xt]− E[Xu]| = |E[At]− E[Au]| ≤ E[Vt(A)]− E[Vu(A)], (5.3)

by which we conclude that the mean-value function of (Xt)t≥0 is of bounded variation.
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5. The covariance function of Gaussian semimartingales

Theorem 5.2. Let (Xt)t≥0 be a centered Gaussian process. Then the following conditions
are equivalent:

(i) (Xt)t≥0 is a semimartingale.

(ii) There exists a Radon measure µ on R+, a Volterra type kernel Φ such that Φ−1 ∈
BV(µ), and a function G satisfying Condition 5.1 such that

ΓX(t, u) = G(t, u) +

∫
Φt(s)Φu(s)µ(ds), u, t ≥ 0. (5.4)

(iii) There exist Radon measures µ and ν on R+, a function G satisfying Condition 5.1
and a Volterra type kernel Ψ such that (Ψr)r≥0 is bounded in L2(ν) and such that
for 0 ≤ u, t we have

ΓX(t, u) = G(t, u) + ν((0, t ∧ u]) +
∫ t

0

∫ u

0
Ψr(s) ν(ds)µ(dr) (5.5)

+

∫ t

0

∫ u

0
Ψr(s)µ(dr)ν(ds) +

∫ t

0

∫ u

0
〈Ψr,Ψv〉L2(ν) µ(dr)µ(dv). (5.6)

Proof. We show (iii) ⇒ (ii) ⇒ (i) ⇒ (iii).
Assume (iii) is satisfied. Equation (5.5) can be written as

ΓX(t, u)

= G(t, u) +

∫ (1t(s) + ∫ t

0
Ψr(s)µ(dr)

)(1u(s) + ∫ u

0
Ψr(s)µ(dr)

)
ν(ds). (5.7)

By Lemma 2.2, (t, s) 7→
∫ t
0 Ψr(s)µ(dr) ∈ BV(ν) which shows (ii).

Assume (ii) is satisfied. To show that (Xt)t≥0 is a semimartingale it is enough to show
that there exists a Gaussian semimartingale (Zt)t≥0 such that (Zt)t≥0 is distributed as
(Xt)t≥0. Indeed, assume that (Zt)t≥0 has been constructed. Then since (Zt)t≥0 is a
càdlàg process, (Xt)t≥0 is càdlàg through the rational numbers, and since (Xt)t≥0 is
right-continuous in L2(P), is it possible to choose a càdlàg modification of (Xt)t≥0. For
all 0 ≤ s ≤ t we have

E[|E[Zt − Zs|FZ
s ]|] = E[|E[Xt −Xs|FX

s ]|]. (5.8)

Since a Gaussian process is a semimartingale if and only if it is quasimartingale on [0, T ]
for all T > 0 according to Liptser and Shiryayev [14] [Chapter 4, Section 9, Corollary of
Theorem 1] and [Chapter 2, Section 1, Theorem 4], equation (5.8) shows that (Xt)t≥0 is
a semimartingale.

To construct (Zt)t≥0, note that since G satisfies Condition 5.1 there exist two in-
dependent processes (At)t≥0 and (Mt)t≥0, with the properties that (Mt)t≥0 is a càdlàg
centered Gaussian martingale with µM = µ for all t ≥ 0 and (At)t≥0 is a right-continuous
centered Gaussian process of bounded variation such that ΓA = G. Let Θ := Φ− 1 and

Zt :=Mt +

∫
Θt(s) dMs +At. (5.9)

Then (Zt)t≥0 is a well-defined centered Gaussian process. Since Θ ∈ BV(µ), Lemma 2.3
implies that (

∫
Θt(s) dMs)t≥0 can be chosen right-continuous and of bounded variation.

Moreover, since Θ is a Volterra type kernel, (
∫
Θt(s) dMs)t≥0 is (FM

t )t≥0-adapted. Hence,
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5. The covariance function of Gaussian semimartingales

since (At)t≥0 is independent of (Mt)t≥0, (Zt)t≥0 is a semimartingale. Since ΓX = ΓZ ,
Gaussianity implies that (Xt)t≥0 is distributed as (Zt)t≥0, which completes the proof
of (i).

Assume finally (i) is satisfied i.e. that (Xt)t≥0 is a semimartingale. Choose, according
to Remark 4.6, (Mt)t≥0, (Yt)t≥0,Ψ and µA such that for t ≥ 0 we have

Xt =Mt +

∫ t

0

(∫
Ψr(s) dMs

)
µA(dr) +

∫ t

0
Yr µA(dr) +X0. (5.10)

Since
( ∫ t

0 Yr µA(dr)
)
t≥0

is a Gaussian process of bounded variation, it follows that

G(t, u) := E[
( ∫ t

0
Yr µA(dr) +X0

)( ∫ u

0
Yr µA(dr) +X0

)
], t, u ≥ 0 (5.11)

satisfies Condition 5.1. Since {(Mt)t≥0, (Yt)t≥0,X0} are centered simultaneously Gaus-
sian random variables and (Mt)t≥0 is independent of {X0, (Yt)t≥0}, it follows that (5.5)
is satisfied. This completes the proof.

The following definitions are taken from Jain and Monrad [10]. Let f : R2
+ → R. For

0 ≤ s1 ≤ s2 and 0 ≤ t1 ≤ t2 define

∆f((s1, t1); (s2, t2)) := f(s2, t2)− f(s1, t2)− f(s2, t1) + f(s1, t1) (5.12)

and

Vs,t(f) := sup
∑

i,j

∣∣∆f((si−1, tj−1); (si, tj))
∣∣+
∑

j

|f(0, tj)− f(0, tj−1)| (5.13)

+
∑

i

|f(si, 0)− f(si−1, 0)| + |f(0, 0)|, (5.14)

where the sup is taken over all subdivisions 0 = s0 < · · · < sp = s and 0 = t0 < · · · <
tq = t of [0, s]× [0, t]. We say f is of bounded variation if Vs,t(f) <∞ for all s, t > 0.

From the representation (5.5) it is easily seen that the covariance function of a Gaus-
sian semimartingale is of bounded variation (a direct proof can be found e.g. in Liptser
and Shiryayev [14]). Thus if (Xt)t≥0 is a Gaussian semimartingale, ΓX induces a Radon
signed measure λΓX

on R2
+ satisfying

λΓX
((0, t] × (0, s]) = ΓX(t, s)− ΓX(0, s)− ΓX(t, 0) + ΓX(0, 0), t, s ≥ 0. (5.15)

A function f : R2
+ → R of bounded variation is said to be absolutely continuous if

(s, t) 7→ Vs,t(f) is the restriction to R2
+ of the distribution function of a measure onR2 which is absolutely continuous w.r.t. λ2 (the planar Lebesgue measure). This is

equivalent to the existence of three locally integrable functions h1, h2 and g such that

f(s, t) =

∫ s

0

∫ t

0
g(u, v) dudv +

∫ s

0
h1(u) du+

∫ t

0
h2(v) dv + f(0, 0). (5.16)

If µ is a Radon measure on R+ let µ∆µ denote the measure on R2
+ for which

(µ∆µ)(A × B) = µ(A ∩ B) for all A,B ∈ B(R). Let ∆ := {(x, y) ∈ R2 : x = y}
denote the diagonal of R2

+ and note that µ∆µ is concentrated on ∆.

Corollary 5.3. Let (Xt)t≥0 be a continuous Gaussian semimartingale with martingale
component (Mt)t≥0. Then the restriction of λΓX

to ∆ equals µM∆µM .
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5. The covariance function of Gaussian semimartingales

Proof. Let Xt = X0+Mt+At be the canonical decomposition of (Xt)t≥0 and let (At)t≥0
be decomposed as in Remark 4.6. For 0 ≤ u, t Fubini’s Theorem shows

ΓX(t, u) =Cov
[
Mt +

∫ t

0

∫
Ψr(s) dMs µA(dr),Mu +

∫ u

0

∫
Ψr(s) dMs µA(dr)

]
(5.17)

+Cov
[
X0 +

∫ t

0
Yr µA(dr),X0 +

∫ u

0
Yr µA(dr)

]
(5.18)

=µM ((0, t ∧ u]) +
∫ t

0

∫ u

0
Ψr(s)µM (ds)µA(dr) +

∫ t

0

∫ u

0
Ψr(s)µA(dr)µM (ds)

(5.19)

+

∫ t

0

∫ u

0
〈Ψr,Ψv〉L2(µM ) µA(dr)µA(dv) +

∫ t

0

∫ u

0
E[YrYv]µA(dr)µA(dv)

(5.20)

+

∫ t

0
E[X0Yr]µA(dr) +

∫ u

0
E[X0Yr]µA(dr) + E[X2

0 ]. (5.21)

Since (Xt)t≥0 is a continuous semimartingale, µM and µA are nonatomic measures onR. Hence, (5.18) shows that there exists a nonatomic measure µ on R and a measurable
function f : R2 → R such that for 0 ≤ u, t we have

λΓX
((0, t]× (0, u]) = µM∆µM ((0, u] × (0, t]) +

∫ t

−∞

∫ u

−∞
f dµ⊗ µ. (5.22)

Since µ is nonatomic it follows that µ⊗ µ has no mass on ∆, which together with (5.22)
completes the proof.

Note that the distribution of a Gaussian martingale (Mt)t≥0 is uniquely determined
by µM . Moreover Corollary 5.3 shows that for a continuous Gaussian semimartingale
(Xt)t≥0 with martingale component (Mt)t≥0 we have

µM ((0, t]) = λΓX
((s1, s2) ∈ R2

+ : s1 = s2 ≤ t), t ≥ 0. (5.23)

Thus it is easy to find the distribution of the martingale component (Mt)t≥0 from ΓX .
The following result characterizes the Gaussian martingales and Gaussian processes of
bounded variation among the Gaussian semimartingales.

Corollary 5.4. Let (Xt)t≥0 be a Gaussian semimartingale with canonical decomposition
Xt = X0+Mt+At. Assume µA and µM are absolutely continuous. Then λΓX

−µM∆µM
is absolutely continuous. In particular we have the following for all T ≥ 0.

(i) (Xt)t≥T is a martingale if and only if

∂2ΓX
∂u∂t

= 0 λ2-a.s. on [T,∞)2 and
∂ΓX
∂t

(0, t) = 0 for λ-a.a. t ≥ T. (5.24)

(ii) (Xt)t≥T is of bounded variation if and only if ΓX is absolutely continuous on
[T,∞)2.

Remark 5.5. We have µA and µM are absolutely continuous if and only if (At)t≥0 and
([X]t)t≥0 are absolutely continuous. This is in particular satisfied if (Xt)t≥0 is stationary
or has stationary increments and X0 = 0 (see Theorem 4.8 (i)).

Proof. Calculations as in (5.18) show (u, t) 7→ ΓX(u, t) − µM ((0, u ∧ t]) is absolutely
continuous.
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5. The covariance function of Gaussian semimartingales

(i): Let (Xt)t≥T be a martingale. Then ΓX(u, t) = µM ((0, u ∧ t]), which implies that
(5.24) is satisfied. Assume conversely that (5.24) is satisfied. Since (u, t) 7→ ΓX(u, t) −
µM ((0, u ∧ t]) is absolutely continuous and ΓX satisfies (5.24), we have that ΓX(u, t) =
µM ((0, u ∧ t]) + E[X2

0 ] for all u, t ≥ T, which implies that (Xt)t≥T is a martingale.

(ii): Assume that ΓX is absolutely continuous on [T,∞)2. Since (u, t) 7→ ΓX(u, t) −
µM ((0, u ∧ t]) is absolutely continuous we have that µM ∧ µM is absolutely continuous.
But µM ∧ µM is concentrated on the diagonal of R2

+ and thereby singular to λ2, which
implies that µM = 0. This shows that (Xt)t≥T is of bounded variation. Assume conversely
that (Xt)t≥T is of bounded variation. Then a calculation as in (5.18) shows that ΓX is
absolutely continuous on [T,∞)2.

The following two examples are applications of Corollary 5.4.

Example 5.6. The fractional Brownian Motion (fBm) with Hurst parameter H ∈ (0, 1)
is a centered Gaussian processes (Xt)t≥0 with covariance function

ΓX(t, u) =
1

2
(t2H + u2H − |t− u|2H). (5.25)

Let ǫ > 0 be given. We prove that fBm is a semimartingale on [0, ǫ] only if H = 1/2, i.e.
(Xt)t∈[0,ǫ] is a semimartingale only if it is a Brownian Motion. Let H ∈ (0, 1/2)∪ (1/2, 1)
and assume (for contradiction) that (Xt)t∈[0,ǫ] is a semimartingale. Since (Xt)t≥0 has
stationary increments and satisfies X0 = 0, it follows from Theorem 4.8 (i) (which also
applies on bounded intervals) that µM and µA are absolutely continuous. Using (5.25)
it follows that ∫ t

0

∫ u

0

∂2ΓX
∂s∂v

dλ2 = ΓX(t, u), t, u ≥ 0, (5.26)

which shows ΓX is absolutely continuous. By Corollary 5.4 (ii) we conclude that (Xt)t∈[0,ǫ]
is of bounded variation on [0, ǫ] and hence of integrable variation. But this contradicts
that

‖Xt −Xu‖L1(P) =
√

2/π |t− u|H , t, u ≥ 0, (5.27)

and therefore (Xt)t∈[0,ǫ] can not be a semimartingale. For H = 1/2, we have
∂2ΓX
∂s∂v = 0 λ2-a.s. and hence (5.26) doesn’t hold. ♦

Example 5.7. Let (Wt)t≥0 be a canonical Brownian Motion and define (Xt)t≥0 :=
(Wt+1 −Wt)t≥0. We show (Xt)t∈[0,1+ǫ] is not a semimartingale for any ǫ > 0. We have

ΓX(t, u) = (1− |t− u|)1[0,1](|t− u|), t, u ≥ 0. (5.28)

Assume that (Xt)t∈[0,1+ǫ] is a semimartingale. Since

∂2ΓX
∂u∂t

= 0 λ2-a.s. and ΓX(t, 0) = 0 for all t ≥ 1, (5.29)

and (Xt)t≥0 is a stationary process, it follows from Corollary 5.4 (i) that (Xt)t∈[1,1+ǫ] is
a martingale. This contradicts that ΓX does not depend only on t∧u for t, u ∈ [1, 1+ ǫ].

Even though (Xt)t≥0 is not a semimartingale on R+, we now show that on [0, 1] it
is. By Yor [20], (Wt +W1)t∈[0,1] is a semimartingale with canonical decomposition

(
Wt −

∫ t

0

W1 −Ws

1− s
ds
)
+

∫ t

0

W1 −Ws

1− s
ds+W1. (5.30)
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Let

Ft := σ(Ws+1 −W1 : s ∈ [0, t]) ∨ σ(Ws : s ∈ [0, t]) ∨ σ(W1), t ≥ 0. (5.31)

Then (5.30) shows that (Xt)t∈[0,1] is a (Ft)t∈[0,1]-semimartingale with (Ft)t∈[0,1]-canonical
decomposition given by

Xt =
[
Wt+1 −W1 −Wt +

∫ t

0

W1 −Ws

1− s
ds
]
−
∫ t

0

W1 −Ws

1− s
ds+X0, (5.32)

where the term in the first bracket is the martingale component. By forming the dual
(FX

t )t∈[0,1]-predictable projection on the bounded variation component of (5.32) it follows

that the (FX
t )t∈[0,1]-canonical decomposition of (Xt)t∈[0,1] is given by

Xt =
(
Wt+1−W1−Wt+

∫ t

0

W1 − E[Ws|FX
s ]

1− s
ds
)
−
∫ t

0

W1 − E[Ws|FX
s ]

1− s
ds+X0. (5.33)

Note that, even though (Xt)t≥0 is not a semimartingale on R+ the quadratic variation
of (Xt)t≥0 does exist, and it is given by [X]t = 2t for all t ≥ 0. ♦

It is known that the processes in Example 5.6 and 5.7 not are semimartingales (for
the fBm case see Rogers [16]). However, the proofs presented here are new and indicate
the usefulness of the results in this paper.
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Spectral representation of Gaussian

semimartingales

Andreas Basse-O’Connor

Abstract

The aim of the present paper is to characterize the spectral represen-
tation of Gaussian semimartingales. That is, we provide necessary and
sufficient conditions on the kernel K for Xt =

∫
Kt(s) dNs to be a

semimartingale. Here, N denotes an independently scattered Gaussian
random measure on a general space S. We study the semimartingale
property ofX in three different filtrations. First the FX -semimartingale
property is considered and afterwards the FX,∞-semimartingale prop-
erty is treated in the case where X is a moving average process and
FX,∞

t = σ(Xs : s ∈ (−∞, t]). Finally we study a generalization of Gaus-
sian Volterra processes. In particular we provide necessary and sufficient
conditions on K for the Gaussian Volterra process

∫ t

−∞
Kt(s) dWs to

be an FW,∞-semimartingale (W denotes a Wiener process). Hereby we
generalize a result of Knight (Foundations of the Prediction Process,
1992) to the non-stationary case.

Keywords: semimartingales; Gaussian processes; Volterra processes;
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1. Introduction

1 Introduction

Recently there has been major interest in Gaussian Volterra processes. That is, processes
(Xt)t≥0 given by

Xt =

∫ t

−∞
Kt(s) dWs, t ≥ 0, (1.1)

where (Wt)t∈R is a Wiener process with parameter space R and s 7→ Kt(s) is a square
integrable function for t ≥ 0. Knight [10, Theorem 6.5], Cherny [5], Cheridito [4] and
Jeulin and Yor [9] studied Gaussian Volterra processes with K on the form Kt(s) =
k(t− s)+ f(s) (such processes are called moving average processes). They characterized
the set of K’s for which (Xt)t≥0 is an (FW,∞

t )t≥0-semimartingale, where FW,∞
t := σ(Ws :

s ∈ (−∞, t]). In the case where Kt(s) = k(t− s) Jeulin and Yor [9, Proposition 19] gave
a condition on the Fourier transform of k for (Xt)t≥0 to an (FX,∞

t )t≥0-semimartingale
by using complex function theory (in particular Hardy theory).

A fractional Brownian motion (fBm) with Hurst parameter H ∈ (0, 1) is an example
of a Gaussian Volterra process (it is in fact a moving average process). In this case K is
given by

Kt(s) = ((t− s)+)H−1/2 − ((−s)+)H−1/2. (1.2)

It is well-known (see Rogers [15]) that the fBm is a semimartingale if and only if H = 1/2,
i.e. it is a Brownian motion. Inspired by the fBm there has been developed (using Malli-
avin calculus) an integral for some Gaussian Volterra processes which are not semimartin-
gales, see Alòs et al. [1], Decreusefond [6] and Marquardt [12]. This integral lacks some
of the usual properties of the semimartingale integral by the characterization of semi-
martingales as stochastic integrators (the Bichteler-Dellacherie Theorem), see Protter
[13, Chapter 3, Theorem 43]. Hence it is important to characterize the set of K’s for
which (Xt)t≥0 is a semimartingale.

According to Kuelbs [11] every centered Gaussian process (Xt)t≥0, which is right-
continuous in probability, has a spectral representation in distribution, i.e. (Xt)t≥0 is
distributed as (

∫
Kt(s) dNs)t≥0, where N is an independently scattered centered Gaus-

sian random measure and (t, s) 7→ Kt(s) is a deterministic function. The semimartingale
property of Gaussian processes is determined by the distribution of the process. Hence,
(Xt)t≥0 is a semimartingale if and only if (

∫
Kt(s) dNs)t≥0 has this property. The purpose

of this paper is to characterize the spectral representation of Gaussian semimartingales,
that is we characterize the family of kernels K for which

(∫
Kt(s) dNs

)
t≥0

(1.3)

is a semimartingale. Note that the processes on the form (1.3) constitute a generaliza-
tion of the Gaussian Volterra processes. We study the semimartingale property with
respect to the natural filtration and with respect to two larger filtrations. In partic-
ular we characterize the K’s for which a Gaussian Volterra process (Xt)t≥0 given by

(1.1) is an (FX
t )t≥0-semimartingale or an (FW,∞

t )t≥0-semimartingale (the latter condi-
tion is strongest). Hereby we generalize results of Cheridito [4], Knight [10, Theorem 6.5]
and Cherny [5]. Our setting also covers Ambit processes with deterministic volatility,
see Barndorff-Nielsen and Schmiegel [2]. Moreover, we characterize the functions k for
which (Xt)t∈R = (

∫
k(t− s) dWs)t∈R is an (FX,∞

t )t≥0-semimartingale.
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2. Notation and random measures

The paper is organised as follows. Section 2 contains notation and preliminary results
about Gaussian random measures. Section 3 contains measure-theoretic and Gaussian
results. In section 4 we characterize the spectral representation of Gaussian semimartin-
gales.

2 Notation and random measures

Let (Ω,F ,P) be a complete probability space. By a filtration we mean an increasing
family (Ft)t≥0 of σ-algebras satisfying the usual conditions of right-continuity and com-
pleteness. If (Xt)t≥0 is a stochastic process we denote by (FX

t )t≥0 the least filtration to
which (Xt)t≥0 is adapted. Let T equal R+ or R. Then (Xt)t∈T is said to have stationary
increments if for all n ≥ 1, t0 < · · · < tn and 0 < t we have

(Xt1 −Xt0 , . . . ,Xtn −Xtn−1)
D
= (Xt1+t −Xt0+t, . . . ,Xtn+t −Xtn−1+t), (2.1)

where
D
= denotes equality in distribution.

Let (Ft)t≥0 be a filtration. Recall that an (Ft)t≥0-adapted càdlàg process (Xt)t≥0 is
said to be an (Ft)t≥0-semimartingale, if there exists a decomposition of (Xt)t≥0 as

Xt = X0 +Mt +At, t ≥ 0, (2.2)

where (Mt)t≥0 is a càdlàg (Ft)t≥0-local martingale starting at 0 and (At)t≥0 is a càdlàg
(Ft)t≥0-adapted process of finite variation starting at 0. We say that (Xt)t≥0 is a semi-
martingale if it is an (FX

t )t≥0-semimartingale. Moreover (Xt)t≥0 is called a special
(Ft)t≥0-semimartingale if it is an (Ft)t≥0-semimartingale such that (At)t≥0 in (2.2) can
be chosen (Ft)t≥0-predictable. In this case the representation (2.2) with (At)t≥0 (Ft)t≥0-
predictable is unique and is called the canonical decomposition of (Xt)t≥0. From Stricker’s
Theorem (see Protter [13, Chapter 2, Theorem 4]) it follows that if (Xt)t≥0 is an (Ft)t≥0-
semimartingale then it is also an (FX

t )t≥0-semimartingale.
For each function f : R+ → R of bounded variation, Vt(f) denotes the total variation

of f on [0, t] for t ≥ 0. If (At)t≥0 is a right-continuous Gaussian process of bounded
variation then (At)t≥0 is of integrable variation (see Stricker [16]) and we let µA denote
the Lebesgue-Stieltjes measure induced by the mapping t 7→ E[Vt(A)]. For every Gaussian
martingale (Mt)t≥0 let µM denote the Lebesgue-Stieltjes measure induced by the mapping
t 7→ E[M2

t ].
A process (Wt)t∈R is said to be a Wiener process if for all n ≥ 1 and t0 < · · · < tn,

Wt1 −Wt0 , . . . ,Wtn −Wtn−1 (2.3)

are independent, for −∞ < s < t <∞ Wt−Ws follows a centered Gaussian distribution
with variance t− s, and W0 = 0.

We now give a short survey of properties of independently scattered centered Gaussian
random measures. Let S denote a non-empty set and A be a family of subsets of S. Then
A is called a ring if for every pair of sets in A the union, intersection and set difference
are also in A. A ring A is called a δ-ring if (An)n≥1 ⊆ A implies ∩An ∈ A. If A is a
δ-ring and there exists a sequence (An)n≥1 ⊆ A satisfying ∪An = S then A is said to be
σ-finite. Throughout the paper let A denote a σ-finite δ-ring on a nonempty set S.
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3. Preliminary results

A family N = {N(A) : A ∈ A} of random variables is said to be an independently
scattered centered Gaussian random measure if

1. For every sequence (An)n≥1 ⊆ A of pairwise disjoint sets with ∪An ∈ A,∑n
i=1N(Ai)

converges to N(∪∞i=1Ai) in probability as n tends to infinity.

2. For all n ≥ 1 and all disjoint sets A1, . . . , An ∈ A, N(A1), . . . , N(An) are indepen-
dent centered Gaussian random variables.

For a general treatment of independently scattered random measures, see
Rajput and Rosiński [14]. Let N denote an independently scattered centered Gaussian
random measure. It is readily seen that there is a σ-finite measure ν on (S, σ(A))
such that N(A) has a centered Gaussian distribution with variance ν(A) for all A ∈ A.
Following Rajput and Rosiński [14], ν is called the control measure of N. Throughout
the paper N denotes a independently scattered centered Gaussian random measure with
control measure ν. We shall assume in addition that L2(ν) is separable.

Let f =
∑n

i=1 αi1Ai be a simple function. That is, n ≥ 1, α1, . . . , αn ∈ R and
A1, . . . , An ∈ A. Define

∫
f(s) dNs :=

∑n
i=1 αiN(Ai). By a standard argument the inte-

gral
∫
f(s) dNs can be defined through the isometry

‖
∫
f(s) dNs‖L2(P) = ‖f‖L2(ν) (2.4)

for all f ∈ L2(S, σ(A), ν).
If S = R+, N could be the independently scattered random measure induced by a

Brownian motion. More generally, if S = Rd
+, N could be the independently scattered

random measure induced by a d-parameter Brownian sheet. In this case ν is the Lebesgue
measure on Rd

+ and we can choose A to be the bounded Borel sets of Rd
+. Another

example is when S = R and N is the independently scattered random measure induced
by a Brownian motion (Wt)t∈R with parameter space R.
3 Preliminary results

In this section we collect some measure-theoretical and Gaussian results. We let (E, E ,m)
be a σ-finite measure space and µ be a Radon measure on R+. If H is a normed space
and A ⊆ H, then spanA denotes the closure of the linear span of A. For each mappingR+ × E ∋ (t, s) 7→ Ψt(s) ∈ R we denote by Ψt the mapping s 7→ Ψt(s) for t ≥ 0. The
following Lemma 3.1 – 3.2 are taken from Basse [3].

Lemma 3.1. Let Ψt ∈ L2(ν) for t ≥ 0 and define V := span{Ψt : t ≥ 0}. Assume V
is a separable subset of L2(m) and t 7→

∫
Ψt(s)g(s)m(ds) is measurable for g ∈ V. Then

there exists a measurable mapping R+ × E ∋ (t, s) 7→ Ψ̃t(s) ∈ R such that Ψ̃t = Ψt

m-a.s. for t ≥ 0.

For a locally µ-integrable function f we define
∫ b
a f dµ :=

∫
(a,b] f dµ for 0 ≤ a < b.

Let BV(m) denote the space of all measurable mappings R+ × S ∋ (r, s) 7→ Ψr(s) ∈ R
for which Ψr ∈ L2(m) for r ≥ 0 and there exists a right-continuous increasing function
f such that ‖Ψt −Ψu‖L2(m) ≤ f(t)− f(u) for 0 ≤ u ≤ t.
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3. Preliminary results

Lemma 3.2. Let (r, s) 7→ Ψr(s) be a measurable mapping for which (Ψr)r≥0 is bounded
in L2(m). Then r 7→ Ψr(s) is locally µ-integrable for m-a.a. s ∈ E and by setting∫ t
0 Ψr(s)µ(dr) := 0 for t ≥ 0 if r 7→ Ψr(s) is not locally m-integrable we have

(t, s) 7→
∫ t

0
Ψr(s)µ(dr) ∈ BV(m). (3.1)

If in addition V is a closed subspace of L2(m) such that Ψr ∈ V for all r ∈ [0, t] then

s 7→
∫ t

0
Ψr(s)µ(dr) ∈ V. (3.2)

For a measurable mapping (r, s) 7→ Ψr(s) for which (Ψr)r≥0 is bounded in L2(m) we
always define the mapping (t, s) 7→

∫ t
0 Ψr(s)µ(dr) as in the above lemma.

Lemma 3.3. Let (Ft)t≥0 be a filtration and (Yt)t≥0 ⊆ L1(P) be a measurable process
with locally µ-integrable sample paths. Define

At :=

∫ t

0
Yr µ(dr), t ≥ 0. (3.3)

Then (At)t≥0 is (Ft)t≥0-predictable if and only if Yt is Ft−-measurable for µ-a.a. t ≥ 0.

Proof. Assume (At)t≥0 is (Ft)t≥0-predictable. Then there exists an (Ft)t≥0-predictable
process (Zt)t≥0 with locally µ-integrable sample paths such that At =

∫ t
0 Zr µ(dr) for

t ≥ 0, see Jacod and Shiryaev [8, Proposition 3.13]. Hence Yt = Zt P-a.s. for µ-a.a. t ≥ 0
and we conclude that Yt is Ft−-measurable for µ-a.a. t ≥ 0.

Assume conversely that Yt is Ft−-measurable for µ-a.a. t ≥ 0 and let (pYt)t≥0 denote
the (Ft)t≥0-predictable projection of (Yt)t≥0. Since Yt is Ft−-measurable for µ-a.a. t ≥ 0
it follows that pYt = Yt P-a.s. for µ-a.a. t ≥ 0. Thus

At =

∫ t

0

pYs µ(ds), t ≥ 0, (3.4)

and it follows that (At)t≥0 is (Ft)t≥0-predictable. This completes the proof.

Recall that N denotes an independently scattered centered Gaussian random measure
with control measure ν. Let R+×S ∋ (r, s) 7→ Ψr(s) be a measurable mapping for which
Ψr ∈ L2(ν) for r ≥ 0. Then we may and do choose (

∫
Ψt(s) dNs)t≥0 jointly measurable

in (t, ω). To see this note that V := span{N(A) : A ∈ A} is a separable subspace of
L2(P) and

V = {
∫
f(s) dNs : f ∈ L2(ν)}. (3.5)

Hence for each element
∫
f(s) dNs ∈ V we have

E[

∫
Ψt(s) dNs

∫
f(s) dNs] =

∫
Ψt(s)f(s) ν(ds), (3.6)

which shows t 7→ E[
∫
Ψt(s) dNs

∫
f(s) dNs] is measurable. The existence of a measurable

modification of (
∫
Ψt(s) dNs)t≥0 now follows from Lemma 3.1.

Lemma 3.4. We have the following.
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3. Preliminary results

(i) Let (Yt)t≥0 be a measurable process such that (Yt)t≥0 ⊆ span{N(A) : A ∈ A}. Then
there exists a measurable mapping R+ × S ∋ (t, s) 7→ Ψt(s) ∈ R with Ψt ∈ L2(ν)
for t ≥ 0 and such that Yt =

∫
Ψt(s) dNs for t ≥ 0.

(ii) Let (r, s) 7→ Ψr(s) be a measurable mapping for which (Ψr)r≥0 is bounded in L2(ν).
Then r 7→

∫
Ψr(s) dNs is locally µ-integrable P-a.s. and for t ≥ 0 we have

∫ t

0

(∫
Ψr(s) dNs

)
µ(dr) =

∫ (∫ t

0
Ψr(s)µ(dr)

)
dNs. (3.7)

(iii) Let Kt ∈ L2(ν) for t ≥ 0 and (Xt)t≥0 be a right-continuous process satisfying
Xt =

∫
Kt(s) dNs for t ≥ 0. Then for 0 ≤ u ≤ t we have

E[Xt|FX
u ] =

∫ (
PuKt

)
(s) dNs, (3.8)

where PuKt denotes the L2(ν)-projection of Kt on span{Kv : v ∈ [0, u]}.

(iv) Let (Ft)t≥0 be a filtration and (At)t≥0 be an (Ft)t≥0-predictable centered Gaussian
process which is right-continuous and of bounded variation. Then there exists an
(Ft)t≥0-predictable process (Yt)t≥0 ⊆ span{At : t ≥ 0} satisfying ‖Yt‖L2(P) = 1 for
t ≥ 0 and

At =

∫ t

0
Yr µ(dr), t ≥ 0, (3.9)

where µ :=
√

2/πµA.

Proof. (i): For t ≥ 0 there exists, by (3.5), a Φt ∈ L2(ν) such that Yt =
∫
Φt(s) dNs.

Moreover for f ∈ L2(ν), t 7→
∫
Φt(s)f(s) ν(ds) is measurable since

E[Yt

∫
f(s) dNs] =

∫
Φt(s)f(s) ν(ds). (3.10)

Hence it follows from Lemma 3.1 that there exists a Ψ as stated in (i).
(ii): Since for t ≥ 0 we have

E[

∫ t

0
|
∫

Ψr(s) dNs|µ(dr)] ≤
∫ t

0
‖Ψr‖L2(ν) µ(ds) <∞, (3.11)

the mapping r 7→
∫
Ψr(s) dNs is locally µ-integrable P-a.s. Thus both sides of (3.7)

are well-defined. The right-hand side belongs to span{N(A) : A ∈ A} and so does the
left-hand side by Lemma 3.2. Fix Y =

∫
g(s) dNs in span{N(A) : A ∈ A}. We have

E[Y

∫ (∫
f(t, s)µ(dt)

)
dNs] =

∫
g(s)

∫
f(t, s)µ(dt) ν(ds). (3.12)

Moreover from Fubini’s Theorem we have

E[Y

∫ ( ∫
f(t, s) dNs

)
µ(dt)] =

∫
E[Y

∫
f(t, s) dNs]µ(dt) (3.13)

=

∫ ∫
g(s)f(t, s) ν(ds)µ(dt) =

∫ ∫
g(s)f(t, s)µ(dt) ν(dt). (3.14)

Hence, the left- and right-hand side of (3.7) have the same inner product with all ele-
ments of span{N(A) : A ∈ A}, from which equality follows.
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4. Main results

(iii): From Gaussianity it follows that E[Xt|FX
u ] is the L2(P)-projection ofXt on span{Xv :

v ≤ u} and therefore (3.5) shows

E[Xt|FX
u ] =

∫
f(s) dNs, (3.15)

for some f ∈ L2(ν). Since L2(ν) ∋ g 7→
∫
g(s) dNs ∈ L2(P) is an isometry it is readily

seen that f = PuKt.
(iv) is an immediate consequence of Basse [3, Proposition 4.1].

4 Main results

In this section we characterize the spectral representation of Gaussian semimartingales
(Xt)t≥0. We study three different filtrations. First we consider the natural filtration
of (Xt)t≥0. Then we assume (Xt)t∈R is a moving average process and the filtration is

(FX,∞
t )t≥0, where (FX,∞

t )t≥0 is the least filtration for which Xs is FX,∞
t -measurable for

t ≥ 0 and s ∈ (−∞, t]. Finally the filtration is generated by the background driving
random measure N. Recall that ν is the control measure of N.

Theorem 4.1. Let R+ ∋ t 7→ Kt ∈ L2(ν) be a right-continuous mapping and (Xt)t≥0 be
given by Xt =

∫
Kt(s) dNs for t ≥ 0. Then the following three conditions are equivalent:

(i) (Xt)t≥0 is a semimartingale (in its natural filtration).

(ii) For t ≥ 0 we have

Kt(s) = K0(s) +Ht(s) +

∫ t

0
Ψr(s)µ(dr), ν-a.a. s ∈ S, (4.1)

where R+ ∋ t 7→ Ht ∈ L2(ν) is a right-continuous mapping satisfying H0 = 0 and

∫ (
Ht(s)−Hu(s)

)
Kv(s) ν(ds) = 0, 0 ≤ v ≤ u ≤ t, (4.2)R+ × S ∋ (r, s) 7→ Ψr(s) ∈ R is a measurable mapping such that ‖Ψr‖L2(ν) = 1

and Ψr ∈ span{Kv : v < r} for r ≥ 0, and µ is a Radon measure.

(iii) There exists a right-continuous increasing function f : R+ → R such that

‖PuKt −Ku‖L2(ν) ≤ f(t)− f(u), 0 ≤ u ≤ t, (4.3)

where PuKt denotes the L2(ν)-projection of Kt on span{Kv : v ≤ u}.

The decomposition (4.1) is unique and if K is represented as in (4.1) then the canonical
decomposition of (Xt)t≥0 is given by

Xt = X0 +

∫
Ht(s) dNs +

∫ t

0

(∫
Ψr(s) dNs

)
µ(dr). (4.4)

Proof of Theorem 4.1. (i)⇒ (ii): Assume (Xt)t≥0 is a semimartingale. By Stricker [16,
Théorème 1] (Xt)t≥0 is a special semimartingale with bounded variation component
(At)t≥0 ⊆ span{Xt : t ≥ 0}. Hence by Lemma 3.4 (iv) there exists an (FX

t )t≥0-predictable
process (Zt)t≥0 ⊆ span{Xt : t ≥ 0} with ‖Zr‖L2(P) = 1 such that At =

∫ t
0 Zr µ(dr) for
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t ≥ 0, where µ =
√

2/πµA. Moreover Lemma 3.4 (i) shows that there exists a measurable
mapping (r, s) 7→ Ψr(s) satisfying Ψr ∈ L2(ν) and Zr =

∫
Ψr(s) dNs for r ≥ 0. Since Zr

is FX
r−-measurable, it follows from Gaussianity that Ψr ∈ span{Kv : v < r} for r ≥ 0.

From Lemma 3.4 (ii) we have

At =

∫ (∫ t

0
Ψr(s)µ(dr)

)
dNs, t ≥ 0. (4.5)

Due to the fact that (Mt)t≥0 ⊆ span{Xt : t ≥ 0}, Lemma 3.4 (i) shows that for all t ≥ 0,
Mt =

∫
Ht(s) dNs for some Ht ∈ L2(ν). The mapping t 7→ Ht ∈ L2(ν) is right-continuous

since (Mt)t≥0 is right-continuous. Stricker [16, Théorème 1] shows that (Mt)t≥0 is a true
(FX

t )t≥0-martingale and hence

0 = E[(Mt −Mu)Xv ] =

∫ (
Ht(s)−Hu(s)

)
Kv(s) ν(ds), 0 ≤ v ≤ u ≤ t. (4.6)

This completes the proof of (4.1).
(ii)⇒ (i): Assume (4.1) is satisfied. We show that (Xt)t≥0 is a semimartingale with
canonical decomposition given by (4.4). For t ≥ 0 define

Mt :=

∫
Ht(s) dNs and At :=

∫ ( ∫ t

0
Ψr(s)µ(dr)

)
dNs. (4.7)

Note Xt = X0 +Mt +At. Lemma 3.4 (ii) shows that

At =

∫ t

0

( ∫
Ψr(s) dNs

)
µ(dr), t ≥ 0, (4.8)

which implies that (At)t≥0 is right-continuous and of bounded variation. Let r ≥ 0.
Since Ψr ∈ span{Kv : v < r},

∫
Ψr(s) dNs is FX

r−-measurable and hence it follows from
Lemma 3.3 that (At)t≥0 is (FX

t )t≥0-predictable.
The only thing left to show is that (Mt)t≥0 is a càdlàg (FX

t )t≥0-martingale. Since
Mt = Xt − X0 − At, (Mt)t≥0 is (FX

t )t≥0-adapted. Equation (4.2) shows that E[(Mt −
Mu)Xv ] = 0 for 0 ≤ v ≤ u ≤ t and hence from Gaussianity it follows that Mt −Mu is
independent of Xv . The (FX

t )t≥0-martingale property of (Mt)t≥0 therefore follows by the
L2(P) right-continuity of (Mt)t≥0. Since (FX

t )t≥0 satisfies the usual conditions we can
choose a càdlàg modification of (Mt)t≥0. Thus (Xt)t≥0 is a semimartingale with canonical
decomposition given by (4.4).
(i)⇔ (iii): From Stricker [16, Théorème 1] it follows that (Xt)t≥0 is a semimartingale if
and only if it is a quasimartingale on each bounded interval. That is, for t ≥ 0 we have

sup
n∑

i=1

E[|E[Xti −Xti−1 |FX
ti−1

]|] <∞, (4.9)

where the sup is taken over all finite partitions 0 = t0 < · · · < tn = t of [0, t]. This is
equivalent to the existence of a right-continuous and increasing function f satisfying

E[|E[Xt −Xu|FX
u ]|] ≤ f(t)− f(u), 0 ≤ u ≤ t. (4.10)

The function f can be chosen to be the left-hand side of (4.9). Moreover Lemma 3.4 (iii)
shows that

‖PuKt −Ku‖L2(ν) = ‖E[Xt −Xu|FX
u ]‖L2(P) =

√
π

2
E[|E[Xt −Xu|FX

u ]|], (4.11)
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which implies that (i) and (iii) are equivalent.
Decompose K as in (4.1). We show that this decomposition is unique. In the proof

of "(ii)⇒ (i)"we showed that (4.4) is the canonical decomposition of (Xt)t≥0 and since
this is unique we have that R+ ∋ t 7→ Ht ∈ L2(ν) is unique. Let (At)t≥0 be the bounded
variation component of the semimartingale (Xt)t≥0. We have

E[Vt(A)] = E[

∫ t

0
|
∫

Ψr(s) dNs|µ(dr)] =
∫ t

0
E[|
∫

Ψr(s) dNs|]µ(dr) (4.12)

=

√
2

π

∫ t

0
‖Ψr‖L2(ν) µ(dr) =

√
2

π
µ((0, t]), (4.13)

and hence µ is uniquely determined and it follows that (t, s) 7→ Ψt(s) is uniquely deter-
mined µ⊗ ν-a.s. This completes the proof.

The functions t 7→ Ht(s) can behave very differently for different H in the above
theorem. An example of such an H is Ht(s) = 1(0,t](s). In this case t 7→ Ht(s) is
constant except at s where it has a jump of size one. But there are also examples of H
for which t 7→ Ht(s) is continuous and nowhere differentiable (and hence of unbounded
variation).

We now apply Theorem 4.1 on an example.

Example 4.2. Let g, h ∈ C1(R) be two strictly increasing functions such that 0 ≤ g < h
and g(∞) = ∞ and let f : R → R be a continuous function such that f > 0. Define
Kt(s) = 1[g(t),h(t)](s)f(s) and let (Wt)t≥0 be a Wiener process. We show that (Xt)t≥0
given by

Xt =

∫
Kt(s) dWs =

∫ h(t)

g(t)
f(s) dWs, t ≥ 0, (4.14)

is not a semimartingale.
Choose (a, b) ⊆ R+ such that h(0) ≤ g(x) ≤ h(a) for x ∈ (a, b) and let u, t ∈ (a, b)

with u ≤ t be given. Moreover choose c, d ≥ 0 satisfying c ≤ d ≤ u, h(c) = g(u) and
h(d) = g(t) and define ψ := Kd −Kc = (1[g(u),g(t)] − 1[g(c),g(d)])f. Let Pu respectively Pψ
denote the projection on span{Kv : v ∈ [0, u]} respectively span{ψ}, where the closure
is in L2(λ) (λ denotes the Lebesgue measure). We have that

‖PuKt −Ku‖L2(λ) = ‖Puf1[g(u),g(t)]‖L2(λ) ≥ ‖Pψf1[g(u),g(t)]‖L2(λ), (4.15)

and by choosing K1,K2 ∈ (0,∞) such that K1 ≤ f2(s) ≤ K2 for s ∈ [0, g(t)], we get

|Pψf1[g(u),g(t)]| =
∣∣∣
〈ψ, f1[g(u),g(t)]〉

〈ψ,ψ〉 ψ
∣∣∣ ≥ K1(g(t)− g(u))

K2(g(t) − g(u) + g(d)− g(c))
|ψ|. (4.16)

Thus, by setting φ = g ◦ h−1 ◦ g, it follows that

‖PuKt −Ku‖L2(λ) ≥ K1K
−1
2

g(t) − g(u)

g(t)− g(u) + g(d)− g(c)
‖ψ‖L2(λ) (4.17)

≥ K
3/2
1 K−12

g(t)− g(u)

g(t)− g(u) + g(d)− g(c)

√
g(t)− g(u) + g(d)− g(c) (4.18)

= K
3/2
1 K−12

g(t)− g(u)√
g(t)− g(u) + φ(t)− φ(u)

≥ K
√
t− u, (4.19)

for some K > 0. Hence we conclude, by Theorem 4.1, that (Xt)t≥0 is not a semimartin-
gale. ♦
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Let (Wt)t∈R be a given Wiener process and k and f be measurable functions satisfying
k(t−·)−f(−·) ∈ L2(λ) for t ∈ R (λ denotes the Lebesgue measure on R). Then (Xt)t∈R
is said to be a (Wt)-moving average process with parameter (k, f) if

Xt =

∫R k(t− s)− f(−s) dWs, t ∈ R. (4.20)

For short we say (Xt)t∈R is a (Wt)-moving average process. Note that we do not assume
k and f are 0 on (−∞, 0). It is readily seen that all (Wt)-moving average processes
have stationary increments. By Doob [7, page 533] it follows that an L2(P)-continuous,
stationary and centered Gaussian process has absolutely continuous spectral measure if
and only if it is a (Wt)-moving average process with parameter (k, 0), for some Wiener
process (Wt)t∈R and function k. Recall the definition of the filtration (FX,∞

t )t≥0 on
page 42.

Lemma 4.3. Let (Ft)t≥0 be a filtration and (Xt)t∈R be a (Wt)-moving average. If
(Xt)t≥0 is an (Ft)t≥0-semimartingale and either the martingale component or the bounded
variation component of (Xt)t≥0 is a (Wt)-moving average process, then (Xt)t≥0 is an

(FX,∞
t )t≥0-semimartingale.

Proof. Let (Xt)t∈R be a process given by Xt =
∫
k(t−s)−f(−s) dWs and assume (Xt)t≥0

is an (Ft)t≥0-semimartingale where the martingale or the bounded variation component
is a (Wt)-moving average. In either case the martingale component of (Xt)t≥0 is given
by Mt =

∫
h(t− s)−h(−s) dWs for t ≥ 0 for some measurable function h. For t, v ∈ R+

we have

E[MtX−v] = E[Mt(X−v −X0)] (4.21)

=

∫ (
h(t− s)− h(−s)

)(
k(−v − s)− k(−s)

)
ds (4.22)

=

∫ (
h(t+ v − s)− h(v − s)

)(
k(−s)− k(v − s)

)
ds (4.23)

= E[(Mt+v −Mv)(X0 −Xv)] = 0, (4.24)

and it follows from Gaussianity that (Mt)t≥0 is independent of (Xt)t≤0. This shows that
(Xt)t≥0 is an (Ft ∨ G)t≥0-semimartingale, where G := σ(Xs : s ∈ (−∞, 0)), and hence in

particular an (FX,∞
t )t≥0-semimartingale.

Theorem 4.4. Let (Xt)t∈R be a (Wt)-moving average process with parameters (k, 0).
Then (Xt)t≥0 is an (FX,∞

t )t≥0-semimartingale if and only if

k(t) = h(t) +

∫ t

0
ψ(r) dr, λ-a.a. t ∈ R, (4.25)

where h and ψ are measurable functions satisfying h(t− ·)− h(−·) ∈ L2(λ) for t ≥ 0,
∫ (

h(t− s)− h(u− s)
)
k(v − s) ds = 0, 0 ≤ v ≤ u ≤ t, (4.26)

and
ψ(t− ·) ∈ span{k(v − ·) : v ∈ (−∞, t]} ⊆ L2(λ), 0 ≤ t. (4.27)

The above k and h are uniquely determined and the (FX,∞
t )t≥0-canonical decomposition

of (Xt)t≥0 is given by

Xt = X0 +

∫
h(t− s)− h(−s) dWs +

∫ t

0

(∫
ψ(r − s) dWs

)
dr, (4.28)
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and the martingale and the bounded variation component of (Xt)t≥0 are (Wt)-moving
average processes.

For each function g : R→ R and u ∈ R, we let θug denote the function s 7→ g(s−u).

Proof of Theorem 4.4. Let Kt(s) := k(t− s) for t, s ∈ R.
Assume (Xt)t≥0 is an (FX,∞

t )t≥0-semimartingale. By the stationary increments,
(Xt)t≥0 has no fixed points of discontinuity. Moreover since (Xt)t≥0 is a Gaussian semi-
martingale it follows from Stricker [16, Proposition 3] that (Xt)t≥0 is a continuous pro-

cess. Let Xt = X0 +Mt +At be the (FX,∞
t )t≥0-canonical decomposition of (Xt)t≥0. For

u ∈ R+, let Pu : L2(λ) → L2(λ) denote the projection on span{Kv : v ∈ (−∞, u]} and
note that Pv+uKt+u = θuPvKt for v ≤ t and 0 ≤ u. Standard theory shows that for
t ≥ 0 we have

At = lim
n→∞

[t2n]∑

i=1

E[Xi/2n −X(i−1)/2n |FX,∞
(i−1)/2n ] (4.29)

= lim
n→∞

∫ [t2n]∑

i=1

(
P(i−1)/2nKi/2n(s)−K(i−1)/2n(s)

)
dWs in L2(P), (4.30)

where the second equality follows from Lemma 3.4 (iii). Thus with

Gt := lim
n→∞

[t2n]∑

i=1

(
P(i−1)/2nKi/2n −K(i−1)/2n

)
in L2(λ), (4.31)

we have At =
∫
Gt(s) dWs. For t, u ∈ R+ it follows that

Gt+u −Gu = lim
n→∞

[(t+u)2n]∑

i=[u2n]+1

P(i−1)/2n
(
Ki/2n −K(i−1)/2n

)
(4.32)

= lim
n→∞

[t2n]∑

i=1

P(i−1)/2n+u

(
Ki/2n+u −K(i−1)/2n+u

)
(4.33)

= lim
n→∞

[t2n]∑

i=1

θuP(i−1)/2n
(
Ki/2n −K(i−1)/2n

)
= θuGt in L2(λ). (4.34)

Which shows (At)t≥0 has stationary increments and therefore µA equals the Lebesgue
measure up to a scaling constant. Arguments as in the prove of ’(i) ⇒ (ii)’ in Theorem 4.1
shows that

At =

∫ (∫ t

0
Ψr(s) dr

)
dWs, t ≥ 0, (4.35)

for some measurable mapping (t, s) 7→ Ψt(s) satisfying that t 7→ ‖Ψt‖L2(λ) is constant

and Ψt ∈ span{Ku : u ∈ (−∞, t]} for t ≥ 0. Hence Gt(s) =
∫ t
0 Ψr(s) dr for λ-a.a. s ∈ R

for t ≥ 0. For t, u ∈ R+, (4.33) yields

∫ t

0
Ψr+u(s) dr =

∫ t+u

u
Ψr(s) dr = θu

∫ t

0
Ψr(s) dr =

∫ t

0
θuΨr(s) dr, (4.36)

for λ-a.a. s ∈ R, which implies that Ψr+u = θuΨr λ-a.s. Thus there exists a ψ ∈ L2(λ)
such that for r ≥ 0, Ψr(s) = ψ(r−s) for λ-a.a. s ∈ R. By setting h(t) = k(t)−

∫ t
0 ψ(r) dr
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for t ∈ R, it follows that h(t− ·)− h(−·) ∈ L2(λ) and Mt =
∫
h(t− s)− h(−s) dWs for

t ≥ 0. The (FX,∞
t )t≥0-martingale property of (Mt)t≥0 shows that h satisfies (4.26). This

completes the proof of the only if statement.
Assume conversely k is on the form (4.25). By approximating k with continuous

functions with compact support it is readily seen that

lim
t→0

∫ (
k(t− s)− k(−s))2 ds = 0. (4.37)

Since (Xt)t≥0 is a stationary process, (4.37) shows that it is L2(P)-continuous. For t ≥ 0
define

Mt :=

∫
h(t− s)− h(−s) dWs and At :=

∫ t

0

(∫
ψ(r − s) dWs

)
dr. (4.38)

By Lemma 3.4 (ii) we have that

At =

∫ (∫ t

0
ψ(r − s) dr

)
dWs, t ≥ 0, (4.39)

which shows Xt = X0 +Mt +At for t ≥ 0. Since ψ(r − ·) ∈ span{Kv : v ∈ (−∞, r]} for
r ≥ 0 it follows that

∫
ψ(r− s) dWs is FX,∞

r -measurable for r ≥ 0 and therefore (At)t≥0
is (FX,∞

t )t≥0-adapted and hence by continuity (FX,∞
t )t≥0-predictable.

Equation (4.26) and the translation invariancy of the Lebesgue measure shows
∫ (

h(t− s)− h(u− s)
)
k(v − s) ds = 0, −∞ < v ≤ u ≤ t. (4.40)

This yields E[(Mt −Mu)Xv] = 0 for −∞ < v ≤ u ≤ t where 0 ≤ u and it follows by
Gaussianity that Mt − Mu is independent of Xv. Since Mt = Xt − X0 − At, (Mt)t≥0
is continuous in L2(P). Moreover since (Mt)t≥0 is a centered process we conclude that

(Mt)t≥0 is an (FX,∞
t )t≥0-martingale. Since (FX,∞

t )t≥0 satisfies the usual conditions,
(Mt)t≥0 has a càdlàg modification. Hence (Xt)t≥0 is an semimartingale with canonical
decomposition given by (4.28).

We finally show that h and k are uniquely determined. Thus assume (4.25) is satisfied
for k, h and k̃, h̃. By the uniqueness of the (FX,∞

t )t≥0-decomposition of (Xt)t≥0 is follows
from (4.28) and Lemma 3.4 (ii) that

∫ t

0
ψ(r − s) dr =

∫ t

0
ψ̃(r − s) dr, λ-a.a. s ∈ R, all t ≥ 0, (4.41)

which shows ψ(r − s) = ψ̃(r − s) for λ-a.a. r ≥ 0 and λ-a.a. s ∈ R and hence ψ = ψ̃
λ-a.s. Hereby it follows from (4.25) that h = h̃ λ-a.s. and the proof is complete.

As a consequence of Lemma 4.3 and Theorem 4.4 we have the following.

Corollary 4.5. Let (Xt)t∈R be a (Wt)-moving average process with parameter (k, 0).
Then (Xt)t≥0 is an (FX,∞

t )t≥0-semimartingale if and only if there exists a filtration in
which (Xt)t≥0 is a semimartingale with a martingale component which is a (Wt)-moving
average process.

For a (Wt)-moving average process on the form

Xt =

∫ t

−∞
k(t− s) dWs, t ∈ R, (4.42)
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Knight [10, Theorem 6.5] proved that (Xt)t≥0 is an (FW,∞
t )t≥0-semimartingale if and

only if k(t) = α+
∫ t
0 g(s) ds for λ-a.a. t ≥ 0, where α ∈ R and g ∈ L2(λ). After proving

this result he wrote "an interesting project for further research might be to test the
present methods in the non-stationary Gaussian case". The following result generalizes
his theorem to the non-stationary Gaussian case, but uses a different approach.

Let (Ct)t≥0 be a family of increasing σ(A)-measurable sets satisfying

⋂

u∈(t,∞)

Cu = Ct, t ≥ 0. (4.43)

Let (FN
t )t≥0 be the smallest filtration satisfying N(A) is FN

t -measurable for A ∈ A with
A ⊆ Ct, and let (Xt)t≥0 be given by Xt =

∫
Ct
Kt(s) dNs for t ≥ 0.

Theorem 4.6. Let (Xt)t≥0 and (FN
t )t≥0 be given as above. Then (Xt)t≥0 is an (FN

t )t≥0-
semimartingale if and only if for t ≥ 0 we have

Kt(s) = g(s) +

∫ t

0
Ψr(s)µ(dr), ν-a.a. s ∈ Ct, (4.44)

where g : S → R is square integrable w.r.t. ν on Ct for t ≥ 0, µ is a Radon measure onR+ and R+ × S ∋ (t, s) 7→ Ψt(s) ∈ R is a measurable mapping satisfying ‖Ψr‖L2(ν) = 1
and Ψr(s) = 0 for ν-a.a. s /∈ ∪u<rCu.

The decomposition (4.44) is unique and if K is represented as in (4.44), then the
(FN

t )t≥0-canonical decomposition of (Xt)t≥0 is given by

Xt = X0 +

∫

Ct\C0

g(s) dNs +

∫ t

0

( ∫
Ψr(s) dNs

)
µ(dr). (4.45)

Proof. Assume (Xt)t≥0 is an (FN
t )t≥0-semimartingale with (FN

t )t≥0-canonical decom-
position Xt = X0 + Mt + At. From Stricker [16, Proposition 4 and 5] it follows that
(Mt)t≥0 ⊆ span{Xt : t ≥ 0}. Thus for each t ≥ 0 there exists an Ht ∈ L2(ν) such
that Mt =

∫
Ct
Ht(s) dNs. Let 0 ≤ u ≤ t be given. The (FN

t )t≥0-martingale property of
(Mt)t≥0 implies

0 = E[
(
E[Mt −Mu|FN

u ]
)2
] (4.46)

= E[
( ∫

Cu

Ht(s)−Hu(s) dNs

)2
] =

∫

Cu

(
Ht(s)−Hu(s)

)2
ν(ds), (4.47)

which shows Ht(s) = Hu(s) for ν-a.a. s ∈ Cu. Thus there exists a measurable function
g : S → R which equals Ht ν-a.s. on Ct for t ≥ 0. By Lemma 3.4 (iv) there exists
a Radon measure µ and an (FN

t )t≥0-predictable process (Yt)t≥0 ⊆ span{At : t ≥ 0}
satisfying ‖Yr‖L2(P) = 1 for r ≥ 0 and

At =

∫ t

0
Yr µA(dr), t ≥ 0. (4.48)

In particular Yr is FN
r− measurable for r ≥ 0. Thus by Lemma 3.4 (i) there exists a

measurable mapping (r, s) 7→ Ψr(s) satisfying Ψr(s) = 0 for ν-a.a. s /∈ ∪u<rCu and
Yr =

∫
Ψr(s) dNs. From Lemma 3.4 (ii) it follows that

Xt =

∫

Ct

(
g(s) +K0(s)

)
dNs +

∫ (∫ t

0
Ψr(s)µ(dr)

)
dNs, (4.49)
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which shows (4.44).
Assume conversely (4.44) is satisfied. We show that (Xt)t≥0 is an (FN

t )t≥0-semi-
martingale with canonical decomposition given by (4.45). From Lemma 3.4 (ii) it follows
that

Xt = X0 +

∫

Ct\C0

g(s) dNs +

∫ (∫ t

0
Ψr(s)µ(dr)

)
dNs (4.50)

= X0 +

∫

Ct\C0

g(s) dNs +

∫ t

0

( ∫
Ψr(s) dNs

)
µ(dr). (4.51)

Since (
∫
Ct\C0

g(s) dNs)t≥0 is a martingale with respect to (FN
t )t≥0 it is enough to show

that
∫ t
0

( ∫
Ψr(s) dNs

)
µ(dr) is an (FN

t )t≥0-predictable process. But this follows from

Lemma 3.3 since
∫
Ψr(s) dNs is FN

r−-measurable for r ≥ 0.
To conclude the proof assume that K is decomposed as in (4.44). By uniqueness of

the martingale component of (Xt)t≥0 it follows that g is determined uniquely ν-a.s. on
∪t≥0Ct. Using once more that ‖Ψr‖L2(ν) = 1 for r ≥ 0, we have that µ = (2/π)1/2µA
where (At)t≥0 is the bounded variation component of (Xt)t≥0, and hence µ is uniquely
determined and it follows from (4.44) that Ψ is uniquely determined up to µ ⊗ ν-null
sets. This completes the proof.

Let the setting be as in Theorem 4.6 and assume that (Xt)t≥0 is an (FN
t )t≥0-

semimartingale. Then Theorem 4.6 in particular shows that Kt = K̃t ν-a.s. on Ct, where
(t, s) 7→ K̃t(s) is a measurable mapping satisfying that t 7→ K̃t(s) is right-continuous and
of bounded variation for s ∈ S.

If (Xt)t∈R is given by

Xt =

∫ t

−∞
k(t− s) dWs, t ∈ R, (4.52)

then (Xt)t≥0 satisfies the following relations

(FW,∞
t )t≥0-semimartingale ⇒ (FX,∞

t )t≥0-semimartingale ⇒ (FX
t )t≥0-semimartingale.

(4.53)

Hence the assumptions on (Xt)t≥0 are strongest in Theorem 4.6, weaker in Theorem 4.4
and weakest in Theorem 4.1.
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Gaussian moving averages and

semimartingales

Andreas Basse-O’Connor

Abstract

In the present paper we study moving averages driven by a Wiener pro-
cess and with a deterministic kernel. Necessary and sufficient conditions
on the kernel are provided for the moving average to be a semimartin-
gale in its natural filtration. Our results are constructive - meaning that
they provide a simple method to obtain kernels for which the moving
average is a semimartingale or a Wiener process. Several examples are
considered. In the last part of the paper we study general Gaussian pro-
cesses with stationary increments. We provide necessary and sufficient
conditions on spectral measure for the process to be a semimartingale.

Keywords: semimartingales; Gaussian processes; stationary processes;
moving averages; stochastic convolutions; non-canonical representations
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1. Introduction

1 Introduction

In this paper we study moving averages, that is processes (Xt)t≥0 on the form

Xt =

∫
(φ(t− s)− ψ(−s)) dWs, t ∈ R, (1.1)

where (Wt)t≥0 is a Wiener process and φ and ψ are two locally square integrable func-
tions such that s 7→ φ(t − s) − ψ(−s) ∈ L2R(λ) for all t ∈ R (λ denotes the Lebesgue
measure). We are concerned with the semimartingale property of (Xt)t≥0 in the filtration

(FX,∞
t )t≥0, where FX,∞

t := σ(Xs : s ∈ (−∞, t]) for all t ≥ 0.
The class of moving averages includes many interesting processes. By Doob [10,

page 533] the case ψ = 0 corresponds to the class of centered Gaussian L2(P)-continuous
stationary processes with absolutely continuous spectral measure. Moreover, (up to scal-
ing constants) the fractional Brownian motion corresponds to φ(t) = ψ(t) = (t∨0)H−1/2,
and the Ornstein-Uhlenbeck process to φ(t) = e−βt1R+(t) and ψ = 0. It is readily seen
that all moving averages are Gaussian with stationary increments. Note however that in
general we do not assume that φ and ψ are 0 on (−∞, 0). In fact, Karhunen [16, Satz 5]
shows that a centered Gaussian L2(P)-continuous stationary process has the representa-
tion (1.1) with ψ = 0 and φ = 0 on (−∞, 0) if and only if it has an absolutely continuous
spectral measure and the spectral density f satisfies

∫
log(f(u))

1 + u2
du > −∞. (1.2)

In the case where ψ = 0 and φ is 0 on (−∞, 0), it follows from Knight [17, Theo-
rem 6.5] that (Xt)t≥0 is an (FW,∞

t )t≥0-semimartingale if and only if

φ(t) = α+

∫ t

0
h(s) ds, t ≥ 0, (1.3)

for some α ∈ R and h ∈ L2R(λ). Related results, also concerning general ψ, are found in

Cherny [7] and Cheridito [6]. Knight’s result is extended to the case Xt =
∫ t
−∞Kt(s) dWs

in Basse [3, Theorem 4.6].
The results mentioned above are all concerned with the semimartingale property in

the (FW,∞
t )t≥0-filtration. Much less is known when it comes to the (FX

t )t≥0-filtration or

the (FX,∞
t )t≥0-filtration (FX

t := σ(Xs : 0 ≤ s ≤ t)). In particular no simple necessary
and sufficient conditions, as in (1.3), are available for the semimartingale property in these
filtrations. Let (Xt)t≥0 be given by (1.1) and assume it is (FW,∞

t )t≥0-adapted; it is then

easier for (Xt)t≥0 to be an (FX,∞
t )t≥0-semimartingale than an (FW,∞

t )t≥0-semimartingale
and harder than being an (FX

t )t≥0-semimartingale. It follows from Basse [2, Theorem 4.8,
iii] that when ψ equals 0 or φ and (Xt)t≥0 is an (FX

t )t≥0-semimartingale with canonical

decomposition Xt = X0+Mt+At, then (Xt)t≥0 is an (FX,∞
t )t≥0-semimartingale as well

if and only if t 7→ E[Var[0,t](A)] is Lipschitz continuous on R+ (Var[0,t](A) denotes the
total variation of s 7→ As on [0, t]). In the case ψ = 0, Jeulin and Yor [15, Proposition 19]
provides necessary and sufficient conditions on the Fourier transform of φ for (Xt)t≥0 to

be an (FX,∞
t )t≥0-semimartingale.

In the present paper we provide necessary and sufficient conditions on φ and ψ for
(Xt)t≥0 to be an (FX,∞

t )t≥0-semimartingale. The approach taken relies heavily on Fourier
theory and Hardy functions as in Jeulin and Yor [15]. Our main result can be described

52



2. Notation and Hardy functions

as follows. Let S1 denote the unit circle in the complex plane C. For each measurable
function f : R→ S1 satisfying f = f(−·), define f̃ : R→ R by

f̃(t) := lim
a→∞

∫ a

−a

eits − 1[−1,1](s)

is
f(s) ds, (1.4)

where the limit is in λ-measure. For simplicity let us assume ψ = φ. We then show that
(Xt)t≥0 is an (FX,∞

t )t≥0-semimartingale if and only if φ can be decomposed as

φ(t) = β + αf̃(t) +

∫ t

0
f̂ ĥ(s) ds, λ-a.a. t ∈ R, (1.5)

where α, β ∈ R, f : R → S1 such that f = f(−·), and h ∈ L2R(λ) is 0 on R+ when

α 6= 0. In this case (Xt)t≥0 is in fact a continuous (FX,∞
t )t≥0-semimartingale, where the

martingale component is a Wiener process and the bounded variation component is an
absolutely continuous Gaussian process. Several applications of (1.5) are provided.

In the last part of the paper we are concerned with the spectral measure of (Xt)t≥0,
where (Xt)t≥0 is either a stationary Gaussian semimartingale or a Gaussian semimartin-
gale with stationary increments and X0 = 0. In both cases we provide necessary and
sufficient conditions on the spectral measure of (Xt)t≥0 for (Xt)t≥0 to be an (FX,∞

t )t≥0-
semimartingale.

2 Notation and Hardy functions

Let (Ω,F ,P) be a complete probability space. By a filtration we mean an increasing
family (Ft)t≥0 of σ-algebras satisfying the usual conditions of right-continuity and com-

pleteness. For a stochastic process (Xt)t≥0 let (FX,∞
t )t≥0 denote the least filtration

subject to σ(Xs : s ∈ (−∞, t]) ⊆ FX,∞
t for all t ≥ 0.

Let (Ft)t≥0 be a filtration. Recall that an (Ft)t≥0-adapted càdlàg process (Xt)t≥0 is
said to be an (Ft)t≥0-semimartingale if there exists a decomposition of (Xt)t≥0 such that

Xt = X0 +Mt +At, t ≥ 0, (2.1)

where (Mt)t≥0 is a càdlàg (Ft)t≥0-local martingale which starts at 0 and (At)t≥0 is a
càdlàg (Ft)t≥0-adapted process of finite variation which starts at 0.

A process (Wt)t≥0 is said to be a Wiener process if for all n ≥ 1 and t0 < · · · < tn

Wt1 −Wt0 , . . . ,Wtn −Wtn−1 (2.2)

are independent, for −∞ < s < t <∞ Wt −Ws follows a centered Gaussian distributed
with variance σ2(t− s) for some σ2 > 0, and W0 = 0. If σ2 = 1, (Wt)t≥0 is said to be a
standard Wiener process.

Let f : R → R. Then (unless explicitly stated otherwise) all integrability matters of
f are with respect to the Lebesgue measure λ on R. If f is a locally integrable function
and a < b, then

∫ a
b f(s) ds should be interpreted as −

∫ b
a f(s) ds = −

∫
1[a,b](s)f(s) ds.

For t ∈ R let τtf denote the function s 7→ f(t− s).

Remark 2.1. Let f : R→ R be a locally square integrable function satisfying τtf−τ0f ∈
L2R(λ) for all t ∈ R. Then t 7→ τtf − τ0f is a continuous mapping from R into L2R(λ).
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A similar result is obtained in Cheridito [6, Lemma 3.4]. However, a short proof is
given as follows. By approximation with continuous functions with compact support it
follows that t 7→ 1[a,b](τtf − τ0f) is continuous for all a < b. Moreover, since τtf − τ0f =
limn 1[−n,n](τtf − τ0f) in L2R(λ), the Baire Characterization Theorem (or more precisely
a generalization of it to functions with values in abstract spaces, see e.g. Rĕınov [21] or
Stegall [23]) states that the set of continuity points C of t 7→ τtf − τ0f is dense in R.
Furthermore, since the Lebesgue measure is translation invariant we obtain C = R and
it follows that t 7→ τtf − τ0f is continuous.

For measurable functions f, g : R → R satisfying
∫
|f(t− s)g(s)| ds < ∞ for t ∈ R,

we let f ∗ g denote the convolution between f and g, that is f ∗ g is the mapping

t 7→
∫
f(t− s)g(s) ds. (2.3)

A locally square integrable function f : R → R is said to have orthogonal increments
if τtf − τ0f ∈ L2R(λ) for all t ∈ R and for all −∞ < t0 < t1 < t2 < ∞ we have that
τt2f − τt1f is orthogonal to τt1f − τt0f in L2R(λ).

We now give a short survey of Fourier theory and Hardy functions. For a comprehen-
sive survey see Dym and McKean [11]. The Hardy functions will become an important
tool in the construction of the canonical decomposition of a moving average. Let L2R(λ)
and L2C(λ) denote the spaces of real and complex valued square integrable functions fromR. For f, g ∈ L2C(λ) define their inner product as 〈f, g〉L2C(λ) := ∫ fg dλ, where z denotes

the complex conjugate of z ∈ C. For f ∈ L2C(λ) define the Fourier transform of f as

f̂(t) := lim
a↓−∞, b↑∞

∫ b

a
f(x)eixt dx, (2.4)

where the limit is in L2C(λ). The Plancherel identity shows that for all f, g ∈ L2C(λ) we

have 〈f̂ , ĝ〉L2C(λ) = 2π〈f, g〉L2C(λ). Moreover, for f ∈ L2C(λ) we have that
ˆ̂
f = 2πf(−·).

Thus, the mapping f 7→ f̂ is (up to the factor
√
2π) a linear isometry from L2C(λ) onto

L2C(λ). Furthermore, if f ∈ L2C(λ), then f is real valued if and only if f̂ = f̂(−·).
Let C+ denote the open upper half plane of the complex plane C, i.e. C+ := {z ∈C : ℑz > 0}. An analytic function H : C+ → C is a Hardy function if

sup
b>0

∫
|H(a+ ib)|2 da <∞. (2.5)

Let H2
+ denote the space of all Hardy functions. It can be shown that a function

H : C+ → C is a Hardy function if and only if there exists a function h ∈ L2C(λ)
which is 0 on (−∞, 0) and satisfies

H(z) =

∫
eizth(t) dt, z ∈ C+. (2.6)

In this case limb↓0H(a+ ib) = ĥ(a) for λ-a.a. a ∈ R and in L2C(λ).
Let H ∈ H2

+ with h given by (2.6). Then H is called an outer function if it is
non-trivial and for all a+ ib ∈ C+ we have

log(|H(a+ ib)|) = b

π

∫
log(|ĥ(u)|)

(u− a)2 + b2
du. (2.7)

An analytic function J : C+ → C is called an inner function if |J | ≤ 1 on C+ and with
j(a) := limb↓0 J(a + ib) for λ-a.a. a ∈ R we have |j| = 1 λ-a.s. For H ∈ H2

+ (with h
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given by (2.6)) it is possible to factor H as a product of an outer function Ho and an
inner function J. If h is a real function, J can be chosen such that J(z) = J(−z) for all
z ∈ C+.

3 Main results

By S1 we shall denote the unit circle in the complex field C, i.e. S1 = {z ∈ C : |z| = 1}.
For each measurable function f : R→ S1 satisfying f = f(−·) we define f̃ : R→ R by

f̃(t) := lim
a→∞

∫ a

−a

eits − 1[−1,1](s)

is
f(s) ds, (3.1)

where the limit is in λ-measure. The limit exists since for a ≥ 1 we have

∫ a

−a

eits − 1[−1,1](s)

is
f(s) ds =

∫ 1

−1

eits − 1

is
f(s) ds+

∫ a

−a
eits1[−1,1]c(s)f(s)(is)

−1 ds, (3.2)

and the last term converges in L2R(λ) to the Fourier transform of

s 7→ 1[−1,1]c(s)f(s)(is)
−1. (3.3)

Moreover, f̃ takes real values since f = f(−·). Note that f̃(t) is defined by integrating
f(s) against the kernel (eits − 1[−1,1](s))/is, whereas the Fourier transform f̂(t) occurs
by integration of f(s) against eits.

For u ≤ t we have

f̃(t+ ·)− f̃(u+ ·) = ̂̂1[u,t]f, λ-a.s. (3.4)

Using this it follows that f̃ has orthogonal increments. To see this let t0 < t1 < t2 < t3
be given. Then

〈f̃(t3 − ·)− f̃(t2 − ·), f̃ (t1 − ·)− f̃(t0 − ·)〉L2C(λ) (3.5)

= 2π〈1̂[t2,t3]f, 1̂[t0,t1]f〉L2C(λ) = 〈1̂[t2,t3], 1̂[t0,t1]〉L2C(λ) = 〈1[t2,t3], 1[t0,t1]〉L2C(λ) = 0, (3.6)

which shows the result.
In the following let t 7→ sign(t) denote the signum function defined by sign(t) =

−1(−∞,0)(t) + 1(0,∞)(t). Let us calculate f̃ in three simple cases.

Example 3.1. We have the following:

(i) if f ≡ 1 then f̃(t) = πsign(t),

(ii) if f(t) = (t+ i)(t− i)−1 then f̃(t) = 4π(e−t − 1/2)1R+(t),

(iii) if f(t) = isign(t) then f̃(t) = −2(γ + log|t|), where γ denotes Euler’s constant.

(i) follows since
∫ x
0

sin(s)
s ds → π/2 as x → ∞. Let f be given as in (ii). Then for all

t ∈ R we have

∫ a

−a

eits − 1[−1,1](s)

is
f(s) ds = 4

∫ a

0

cos(ts)− 1[0,1](s)

s2 + 1
ds+ 2

∫ a

0

sin(ts)

s

s2 − 1

s2 + 1
ds, (3.7)
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which converges to
{
4π4 (2e

−t − 1) + 2π2 (2e
−t − 1) = 2π(2e−t − 1), t > 0,

4π4 (2e
−t − 1)− 2π2 (2e

−t − 1) = 0, t < 0,
(3.8)

as a→ ∞. This shows (ii).
Finally let f(t) = isign(t). For t > 0 and a ≥ 1,

∫ a

−a

eits − 1[−1,1](s)

is
f(s) ds =

∫ a

−a

cos(ts)− 1[−1,1](s)

is
f(s) ds (3.9)

= 2

∫ at

0

cos(s)− 1[0,t](s)

is
f(s/t) ds = 2

( ∫ at

0

cos(s)− 1[0,1](s)

s
ds− log(t)

)
, (3.10)

which shows (iii) since f̃(−t) = f̃(t). ♦

Let (Wt)t≥0 be a standard Wiener process and φ,ψ : R → R be two locally square
integrable functions such that φ(t−·)−ψ(−·) ∈ L2R(λ) for all t ∈ R. In the following we
let (Xt)t≥0 be given by

Xt =

∫
(φ(t− s)− ψ(−s)) dWs, t ∈ R. (3.11)

Now we are ready to characterize the class of (FX,∞
t )t≥0-semimartingales.

Theorem 3.2. (Xt)t≥0 is an (FX,∞
t )t≥0-semimartingale if and only if the following two

conditions (a) and (b) are satisfied:

(a) φ can be decomposed as

φ(t) = β + αf̃(t) +

∫ t

0
f̂ ĥ(s) ds, λ-a.a. t ∈ R, (3.12)

where α, β ∈ R, f : R → S1 is a measurable function such that f = f(−·), and
h ∈ L2R(λ) is 0 on R+ when α 6= 0.

(b) Let ξ :=
̂

f ̂(φ− ψ). If α 6= 0 then

∫ r

0

( |ξ(s)|√∫∞
s ξ(u)2 du

)
ds <∞, ∀ r > 0, (3.13)

where 0
0
:= 0.

In this case (Xt)t≥0 is a continuous (FX,∞
t )t≥0-semimartingale where the martingale

component is a Wiener process with parameter σ2 = (2πα)2 and the bounded variation
component is an absolutely continuous Gaussian process. In the case X0 = 0 we may
choose α, β, h and f such that the (FX,∞

t )t≥0-canonical decomposition of (Xt)t≥0 is given
by Xt =Mt +At, where

Mt = α

∫ (
f̃(t− s)− f̃(−s)

)
dWs and At =

∫ t

0

(∫
f̂ ĥ(s − u) dWu

)
ds. (3.14)

Furthermore, when α 6= 0 and X0 = 0, the law of ( 1
2παXt)t∈[0,T ] is equivalent to the

Wiener measure on C([0, T ]) for all T > 0. ♦
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The proof is given in Section 5. Let us note the following:

Remark 3.3.

1. The case X0 = 0 corresponds to ψ = φ. In this case condition (b) is always satisfied
since we then have ξ = 0.

2. When f ≡ 1, (a) and (b) reduce to the conditions that φ is absolutely continuous
on R+ with square integrable density and φ and ψ are constant on (−∞, 0). Hence
by Cherny [7, Theorem 3.1] an (FX,∞

t )t≥0-semimartingale is an (FW,∞
t )t≥0-semi-

martingale if and only if we may choose f ≡ 1.

3. The condition imposed on ξ in (b) is the condition for expansion of filtration in
Chaleyat-Maurel and Jeulin [5, Theoreme I.1.1].

Corollary 3.4. Assume X0 = 0. Then (Xt)t≥0 is a Wiener process if and only if
φ = β+αf̃ , for some measurable function f : R→ S1 satisfying f = f(−·) and α, β ∈ R.

The corollary shows that the mapping f 7→ f̃ (up to affine transformations) is onto
the space of functions with orthogonal increments (recall the definition on page 54).
Moreover, if f, g : R→ S1 are measurable functions satisfying f = f(−·) and g = g(−·)
and f̃ = g̃ λ-a.s. then (3.4) shows that for u ≤ t we have

1̂[u,t]f = 1̂[u,t]g, λ-a.s. (3.15)

which implies f = g λ-a.s. Thus, we have shown:

Remark 3.5. The mapping f 7→ f̃ is one to one and (up to affine transformations) onto
the space of functions with orthogonal increments.

For each measurable function f : R→ S1 such that f = f(−·) and for each h ∈ L2R(λ)
we have

∫ t

0
f̂ ĥ(s) ds = 〈1[0,t], f̂ ĥ〉L2C(λ) = 〈1̂[0,t], (fĥ)(−·)〉L2C(λ) (3.16)

= 〈1̂[0,t]f, ĥ(−·)〉L2C(λ) = 〈̂̂1[0,t]f, h〉L2C(λ) = ∫ (f̃(t+ s)− f̃(s)
)
h(s) ds, (3.17)

which gives an alternative way of writing the last term in (3.12).
In some cases it is of interest that (Xt)t≥0 is (FW,∞

t )t≥0-adapted. This situation is
studied in the next result. We also study the case where (Xt)t≥0 is a stationary process,
which corresponds to ψ = 0.

Proposition 3.6. We have

(i) Assume ψ = 0. Then (Xt)t≥0 is an (FX,∞
t )t≥0-semimartingale if and only if φ

satisfies (a) of Theorem 3.2 and t 7→ α +
∫ t
0 h(−s) ds is square integrable on R+

when α 6= 0.

(ii) Assume ψ equals 0 or φ and (Xt)t≥0 is an (FX,∞
t )t≥0-semimartingale. Then (Xt)t≥0

is (FW,∞
t )t≥0-adapted if and only if we may choose f and h of Theorem 3.2 (a)

such that f(a) = limb↓0 J(−a + ib) for λ-a.a. a ∈ R, for some inner function J ,
and h is 0 on R+. In this case there exists a constant c ∈ R such that

φ = β + αf̃ + (f̃ − c) ∗ g, λ-a.s. (3.18)

where g = h(−·).
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According to Beurling [4] (see also Dym and McKean [11, page 53]), J : C+ → C is
an inner function if and only if it can be factorized as:

J(z) = Ceiαz exp
( 1

πi

∫
1 + sz

s− z
F (ds)

)∏

n≥1

ǫn
zn − z

zn − z
, (3.19)

where C ∈ S1, α ≥ 0, (zn)n≥1 ⊆ C+ satisfies
∑

n≥1 ℑ(zn)/(|zn|2+1) <∞ and ǫn = zn/zn
or 1 according as |zn| ≤ 1 or not, and F is a nondecreasing bounded singular function.
Thus, a measurable function f : R → S1 with f = f(−·) satisfies the condition in
Proposition 3.6 (ii) if and only if

f(a) = lim
b↓0

J(−a+ ib), λ-a.a. a ∈ R, (3.20)

for a function J given by (3.19). If f : R→ S1 is given by f(t) = isign(t), then according
to Example 3.1, f̃(t) = −2(γ + log|t|). Thus this f does not satisfy the condition in
Proposition 3.6 (ii).

In the next example we illustrate how to obtain (φ,ψ) for which (Xt)t≥0 is an

(FX,∞
t )t≥0-semimartingale or a Wiener process (in its natural filtration). The idea is

simply to pick a function f : R→ S1 satisfying f = f(−·) and calculate f̃ . Moreover, if
one wants (Xt)t≥0 to be (FW,∞

t )t≥0-adapted one has to make sure that f is given as in
(3.20).

Example 3.7. Let (Xt)t≥0 be given by

Xt =

∫
(φ(t− s)− φ(−s)) dWs, t ∈ R. (3.21)

(i) If φ is given by φ(t) = (e−t−1/2)1R+(t) or φ(t) = log |t| for all t ∈ R, then (Xt)t≥0
is a Wiener process (in its natural filtration).

(ii) If φ is given by

φ(t) = log |t|+
∫ t

0
log
∣∣∣s− 1

s

∣∣∣ds, t ∈ R, (3.22)

then (Xt)t≥0 is an (FX,∞
t )t≥0-semimartingale.

(i) is a consequence of Corollary 3.4 and Example 3.1 (ii)-(iii). To show (ii) let f(t) =
isign(t) as in Example 3.1 (iii). According to Theorem 3.2 it is enough to show

f̂ ĥ(t) = log
∣∣∣t− 1

t

∣∣∣, t ∈ R, (3.23)

for some h ∈ L2R(λ) which is 0 on R+. Let h(t) = 1[−1,0](t). Due to the fact that

ĥ(t) = 1−cos(t)
it + sin(t)

t , we have

∫ a

−a
eitsĥ(s)f(s) ds = 2

( ∫ a

0

cos(ts)− (cos(ts) cos(s) + sin(ts) sin(s))

s
ds
)

(3.24)

= 2

∫ a

0

cos(ts)− cos((t− 1)s)

s
ds (3.25)

= 2

∫ ta

0

cos(s)− cos(s(t− 1)/t)

s
ds→ 2 log

∣∣∣t− 1

t

∣∣∣ (3.26)

as a → ∞, for all t ∈ R \ {0, 1}. This shows that h/2 satisfies (3.23) and the proof of
(ii) is complete. ♦
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As a consequence of Example 3.7 (i) we have the following: Let (Xt)t≥0 be the
stationary Ornstein-Uhlenbeck process given by

Xt = X0 −
∫ t

0
Xs ds+Wt, t ≥ 0, (3.27)

where (Wt)t≥0 is a standard Wiener process and X0
D
= N(0, 1/2) is independent of

(Wt)t≥0. Then (Bt)t≥0, given by

Bt :=Wt − 2

∫ t

0
Xs ds, t ≥ 0, (3.28)

is a Wiener process (in its natural filtration). Representations of the Wiener process
have been extensively studied by Lévy [18], Cramér [8], Hida [13] and many others. One
famous example of such a representation is

Bt =Wt −
∫ t

0

1

s
Ws ds, t ≥ 0, (3.29)

see Jeulin and Yor [14].
Let Xt =

∫
(φ(t−s)−φ(−s)) dWs for t ∈ R. Then φ has to be continuous on [0,∞) (in

particular bounded on compacts of R) for (Xt)t≥0 to be an (FW,∞
t )t≥0-semimartingale.

This is not the case for the (FX,∞
t )t≥0-semimartingale property. Indeed, Example 3.7

shows that if φ(t) = log|t| then (Xt)t≥0 is an (FX,∞
t )t≥0-martingale, but φ is unbounded

on [0, 1].

4 Functions with orthogonal increments

In the following we collect some properties of functions with orthogonal increments. Let
f : R→ R be a function with orthogonal increments. For t ∈ R we have

‖τtf − τ0f‖2L2R(λ) (4.1)

= ‖τtf − τt/2f‖2L2R(λ) + ‖τt/2f − τ0f‖2L2R(λ) = 2‖τt/2f − τ0f‖2L2R(λ). (4.2)

Moreover, since t 7→ ‖τtf − τ0f‖2L2R(λ) is continuous by Remark 2.1 (recall that f by

definition is locally square integrable), equation (4.1) shows that ‖τtf−τ0f‖2L2R(λ) = K|t|,
where K := ‖τ1f − τ0f‖2L2R(λ). This implies that ‖τtf − τuf‖2L2R(λ) = K|t−u| for u, t ∈ R.
For a step function h =

∑k
j=1 aj1(tj−1,tj ] define the mapping

∫
h(u) dτuf :=

k∑

j=1

aj(τtjf − τtj−1f). (4.3)

Then v 7→ (
∫
h(u) dτuf)(v) is square integrable and

√
K‖h‖L2R(λ) = ‖

∫
h(u) dτuf‖L2R(λ). (4.4)

Hence, by standard arguments we can define
∫
h(u) dτuf through the above isometry for

all h ∈ L2R(λ) such that h 7→
∫
h(u) dτuf is a linear isometry from L2R(λ) into L2R(λ).
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Assume that g : R2 → R is a measurable function, and µ is a finite measure such
that ∫ ∫

g(u, v)2 duµ(dv) <∞. (4.5)

Then (v, s) 7→ (
∫
g(u, v) dτuf)(s) can be chosen measurable and in this case we have

∫ (∫
g(u, v) dτuf

)
µ(dv) =

∫ (∫
g(u, v)µ(dv)

)
dτuf. (4.6)

Lemma 4.1. Let g : R→ R be given by

g(t) =

{
α+

∫ t
0 h(v) dv t ≥ 0

0 t < 0,
(4.7)

where α ∈ R and h ∈ L2R(λ). Then, g(t− ·)− g(−·) ∈ L2R(λ) for all t ∈ R.
Let f be a function with orthogonal increments.

(i) Let φ be a measurable function. Then there exists a constant β ∈ R such that

φ(t) = β + αf(t) +

∫ ∞

0

(
f(t− v)− f(−v)

)
h(v) dv, λ-a.a. t ∈ R, (4.8)

if and only if for all t ∈ R we have

τtφ− τ0φ =

∫
(g(t− u)− g(−u)) dτuf, λ-a.s. (4.9)

(ii) Assume g is square integrable. Then there exists a β ∈ R such that λ-a.s.

∫
g(−u) dτuf = β + αf(−·) +

∫ ∞

0

(
f(−u− ·)− f(−u)

)
h(u) du. (4.10)

Proof. From Jensen’s inequality and Tonelli’s Theorem it follows that

∫ ( ∫ t−s

−s
h(u) du

)2
ds ≤ t

∫ (∫ t−s

−s
h(u)2 du

)
ds = t2

∫
h(s)2 du <∞, (4.11)

which shows g(t− ·)− g(−·) ∈ L2R(λ).
(i): We may and do assume that h is 0 on (−∞, 0). For t, u ∈ R we have

g(t− u)− g(−u) =
{
α1(0,t](u) +

∫ t−u
−u h(v) dv, t ≥ 0,

−α1(t,0](u)−
∫ −u
t−u h(v) dv, t < 0,

(4.12)

which by (4.6) implies that for t ∈ R we have λ-a.s.

∫
(g(t− u)− g(−u)) dτuf = α(τtf − τ0f) +

∫
(τt−vf − τ−vf)h(v) dv. (4.13)

First assume (4.9) is satisfied. For t ∈ R it follows from (4.13) that

τtφ− τ0φ = α(τtf − τ0f) +

∫
(τt−vf − τ−vf)h(v) dv, λ-a.s. (4.14)
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Hence, by Tonelli’s Theorem there exists a sequence (sn)n≥1 such that sn → 0 and such
that

φ(t− sn) = φ(−sn)− αf(sn) + αf(t− sn) (4.15)

+

∫
(f(t− v − sn)− f(−v − sn)) h(v) dv, ∀n ≥ 1, λ-a.a. t ∈ R.

(4.16)

From Remark 2.1 it follows that φ(· − sn) − φ(·) and f(· − sn) − f(·) converge to 0 in
L2R(λ) and

∫ (
f(t−v−sn)−f(−v−sn)

)
h(v) dv →

∫
[f(t−v)−f(−v)]h(v) dv, t ∈ R. (4.17)

Thus we obtain (4.10) by letting n tend to infinity in (4.15).
Assume conversely (4.8) is satisfied. For t ∈ R we have

τtφ− τ0φ = α(τtf − τ0f) +

∫
(τt−vf − τ−vf)h(v) dv, λ-a.s. (4.18)

and hence we obtain (4.9) from (4.13).
(ii): Assume in addition that g ∈ L2R(λ). By approximation we may assume h has

compact support. Choose T > 0 such that h is 0 outside (0, T ). Since g ∈ L2R(λ), it

follows that α = −
∫ T
0 h(s) ds and therefore g is on the form

g(t) = −1[0,T ](t)

∫ T

t
h(s) ds, t ∈ R. (4.19)

From (4.6) it follows that

∫
g(−u) dτuf =

∫ (∫
−1(−u,T ](s)1[0,T ](−u)h(s) ds

)
dτuf (4.20)

=

∫ (∫
−1(−u,T ](s)1[0,T ](−u)h(s) dτuf

)
ds =

∫ T

0
−h(s)

(∫ 0

−s
dτuf

)
ds (4.21)

=

∫ T

0
−h(s) (τ0f − τ−sf) ds = ατ0f +

∫ T

0
h(s)τ−sf ds. (4.22)

Thus, if we let β :=
∫ T
0 h(s)f(−s) ds, then

∫
g(−u) dτuf = β + αf(−·) +

∫
h(s) (f(−s− ·)− f(−s)) ds, (4.23)

which completes the proof.

Let f : R→ R be a function with orthogonal increments and let (Bt)t≥0 be given by

Bt =

∫
(f(t− s)− f(−s)) dWs, t ∈ R. (4.24)

Then it follows that (Bt)t≥0 is a Wiener process and

∫
q(s) dBs =

∫ (∫
q(u) dτuf

)
(s) dWs, ∀ q ∈ L2R(λ). (4.25)
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This is obvious when q is a step function and hence by approximation it follows that
(4.25) is true for all q ∈ L2R(λ).

Let f : R→ S1 denote a measurable function satisfying f = f(−·). Then

∫
q(u) dτuf̃ = (̂q̂f)(−·), ∀ q ∈ L2R(λ). (4.26)

To see this assume first q is a step function on the form
∑k

j=1 aj1(tj−1,tj ]. Then

(∫
q(u) dτuf̃

)
(s) =

k∑

j=1

aj

(
f̃(tj − s)− f̃(tj−1 − s)

)
(4.27)

=

∫ k∑

j=1

aj
eitju − eitj−1u

iu
f(u)e−isu du =

∫
q̂(u)f(u)e−isu du = (̂q̂f)(−s), (4.28)

which shows that (4.26) is valid for step functions and hence the result follows for general
q ∈ L2R(λ) by approximation. Thus, if (Bt)t≥0 is given by Bt =

∫
(f̃(t− s)− f̃(−s)) dWs

for all t ∈ R, then by combining (4.25) and (4.26) we have

∫
q(s) dBs =

∫
(̂q̂f)(−s) dWs, ∀ q ∈ L2R(λ). (4.29)

Lemma 4.2. Let f : R → S1 be a measurable function such that f = f(−·). Then f̃ is
constant on (−∞, 0) if and only if there exists an inner function J such that

f(a) = lim
b↓0

J(−a+ ib), λ-a.a. a ∈ R. (4.30)

Proof. Assume f̃ is constant on (−∞, 0) and let t ≥ 0 be given. We have ̂̂1[0,t]f(−s) = 0

for λ-a.a. s ∈ (−∞, 0) due to the fact that ̂̂1[0,t]f(−s) = f̃(s) − f̃(−t + s) for λ-a.a.

s ∈ R and hence 1̂[0,t]f ∈ H2
+. Moreover, since 1̂[0,t]f has outer part 1̂[0,t] we conclude

that f(a) = limb↓0 J(a+ ib) for λ-a.a. a ∈ R and an inner function J : C+ → C.
Assume conversely (4.30) is satisfied and fix t ≥ 0. Let G ∈ H2

+ be the Hardy function
induced by 1[0,t]. Since J is an inner function, we obtain GJ ∈ H2

+ and thus

G(z)J(z) =

∫
eitzκ(t) dt, z ∈ C+, (4.31)

for some κ ∈ L2R(λ) which is 0 on (−∞, 0). The remark just below (2.6) shows

1̂[0,t](a)f(a) = lim
b↓0

G(a+ ib)J(a + ib) = κ̂(a), λ-a.a. a ∈ R, (4.32)

which implies

f̃(s)− f̃(−t+ s) = ̂̂1[0,t]f(−s) = ˆ̂κ(−s) = 2πk(s), (4.33)

for λ-a.a. s ∈ R. Hence, we conclude that f̃ is constant on (−∞, 0) λ-a.s.
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5 Proofs of main results

Let (Xt)t≥0 denote a stationary Gaussian process. Following Doob [10], (Xt)t≥0 is called
deterministic if span{Xt : t ∈ R} equals span{Xt : t ≤ 0} and when this is not the
case (Xt)t≥0 is called regular. Let φ ∈ L2R(λ) and let (Xt)t≥0 be given by Xt =

∫
φ(t −

s) dWs for all t ∈ R. By the Plancherel identity (Xt)t≥0 has spectral measure given
by (2π)−1|φ̂|2 dλ. Thus according to Szegö’s Alternative (see Dym and McKean [11,
page 84]), (Xt)t≥0 is regular if and only if

∫
log|φ̂|(u)
1 + u2

du > −∞. (5.1)

In this case the remote past ∩t<0σ(Xs : s < t) is trivial and by Karhunen [16, Satz 5]
(or Doob [10, Chapter XII, Theorem 5.3]) we have

Xt =

∫ t

−∞
g(t− s) dBs, t ∈ R and (FX,∞

t )t≥0 = (FB,∞
t )t≥0, (5.2)

for some Wiener process (Bt)t≥0 and some g ∈ L2R(λ). However, we need the following
explicit construction of (Bt)t≥0.

Lemma 5.1 (Main Lemma). Let φ ∈ L2R(λ) and (Xt)t≥0 be given by Xt =
∫
φ(t−s) dWs

for t ∈ R, where (Wt)t≥0 is a Wiener process.

(i) If (Xt)t≥0 is a regular process then there exist a measurable function f : R → S1

with f = f(−·), a function g ∈ L2R(λ) which is 0 on (−∞, 0) such that we have the
following: First of all (Bt)t≥0 defined by

Bt =

∫ (
f̃(t− s)− f̃(−s)

)
dWs, t ∈ R, (5.3)

is a Wiener process. Moreover,

Xt =

∫ t

−∞
g(t− s) dBs, t ∈ R, (5.4)

and finally (FX,∞
t )t≥0 = (FB,∞

t )t≥0.

(ii) If φ is 0 on (−∞, 0) and φ 6= 0, then (Xt)t≥0 is regular and the above f is given by
f(a) = limb↓0 J(−a+ ib) for λ-a.a. a ∈ R, where J is an inner function.

Proof. (i): Due to the fact that |φ̂|2 is a positive integrable function which satisfies (5.1),
Dym and McKean [11, Chapter 2, Section 7, Exercise 4] shows there is an outer Hardy

function Ho ∈ H2
+ such that |φ̂|2 = |ĥ0|2 and ĥo = ĥo(−·), where h0 is given by (2.6).

Additionally, Ho is given by

Ho(z) = exp
( 1

πi

∫
uz + 1

u− z

log|φ̂|(u)
u2 + 1

du
)
, z ∈ C+. (5.5)

Define f : R → S1 by f = φ̂/ĥo and note that f = f(−·). Let (Bt)t≥0 be given by
(5.3), then (Bt)t≥0 is a Wiener process due to the fact that f̃ has orthogonal increments.

Moreover, by definition of f we have τ̂thof = τ̂tφ, which shows that

̂
(τ̂thof) = 2πτtφ(−·). (5.6)
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Thus if we let g := (2π)−1ho, then g ∈ L2R(λ) and (5.4) follows by (4.29) and (5.6).
Furthermore, since Ho is an outer function we have (FX,∞

t )t≥0 = (FB,∞
t )t≥0 according

to page 95 in Dym and McKean [11].
(ii): Assume φ ∈ L2R(λ) is 0 on (−∞, 0) and φ 6= 0. By definition (Xt)t≥0 is clearly

regular. Let ho, f and (Bt)t≥0 be given as above (recall that f = f(−·)). It follows by
Dym and McKean [11, page 37] that J := H/Ho is an inner function and by definition
of J , f(−a) = limb↓0 J(a+ ib) for λ-a.a. a ∈ R, which completes the proof.

The following lemma is related to Hardy and Littlewood [12, Theorem 24] and hence
the proof is omitted.

Lemma 5.2. Let κ be a locally integrable function and let ∆tκ denote the function

s 7→ t−1(κ(t + s)− κ(s)), t > 0. (5.7)

Then (∆tκ)t>0 is bounded in L2R(λ) if and only if κ is absolutely continuous with square
integrable density.

The following simple, but nevertheless useful, lemma is inspired by Masani [19] and
Cheridito [6].

Lemma 5.3. Let (Xt)t≥0 denote a continuous and centered Gaussian process with sta-
tionary increments. Then there exists a continuous, stationary and centered Gaussian
process (Yt)t≥0, satisfying

Yt = Xt − e−t
∫ t

−∞
esXs ds and Xt −X0 = Yt − Y0 +

∫ t

0
Ys ds, (5.8)

for all t ∈ R, and FX,∞
t = σ(X0) ∨ FY,∞

t for all t ≥ 0.
Furthermore, if (Xt)t≥0 is given by (3.11),

κ(t) :=

∫ 0

−∞
eu
(
φ(t)− φ(u+ t)

)
du, t ∈ R, (5.9)

is a well-defined square integrable function and (Yt)t≥0 is given by Yt =
∫
κ(t − s) dWs

for t ∈ R.

The proof is simple and hence omitted.

Remark 5.4. A càdlàg Gaussian process (Xt)t≥0 with stationary increments has P-
a.s. continuous sample paths. Indeed, this follows from Adler [1, Theorem 3.6] since
P(∆Xt = 0) = 1 for all t ≥ 0 by the stationary increments.

Proof of Theorem 3.2. If: Assume (a) and (b) are satisfied. We show that (Xt)t≥0 is an

(FX,∞
t )t≥0-semimartingale.
(1): The case α 6= 0. Let (Bt)t≥0 denote the Wiener process given by

Bt :=

∫ (
f̃(t− s)− f̃(−s)

)
dWs, t ∈ R, (5.10)

and let g : R→ R be given by

g(t) =

{
α+

∫ t
0 h(−u) du t ≥ 0

0 t < 0.
(5.11)
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Since φ satisfies (3.12) it follows by (3.16), Lemma 4.1 and (4.25) that

Xt −X0 =

∫
(τtφ(s)− τ0φ(s)) dWs =

∫
(g(t− s)− g(−s)) dBs, t ∈ R. (5.12)

From Cherny [7, Theorem 3.1] it follows that (Xt−X0)t≥0 is an (FB,∞
t )t≥0-semimartin-

gale with martingale component (αBt)t≥0. Let k = (2π)−2ξ ∈ L2R(λ) (ξ is given in (b)).

Since
̂̂
kf = φ − ψ it follows by (4.29) that X0 =

∫
k(s) dBs. Moreover, since k satisfies

(3.13) it follows from Chaleyat-Maurel and Jeulin [5, Theoreme I.1.1] that (Bt)t≥0 is
an (FB

t ∨ σ(
∫∞
0 k(s) dBs))t≥0-semimartingale and since FB

t ∨ σ(
∫∞
0 k(s) dBs) ∨ σ(Bu :

u ≤ 0) = FB,∞
t ∨ σ(X0), (Bt)t≥0 is also an (FB,∞

t ∨ σ(X0))t≥0-semimartingale. Thus

we conclude that (Xt)t≥0 is an (FB,∞
t ∨ σ(X0))t≥0-semimartingale and hence also an

(FX,∞
t )t≥0-semimartingale, since FX,∞

t ⊆ FB,∞
t ∨ σ(X0) for all t ≥ 0.

(2): The case α = 0. Let us argue as in Cherny [7, page 8]. Since φ is absolutely
continuous with square integrable density, Lemma 5.2 implies

E[(Xt −Xu)
2] =

∫ (
φ(t− s)− φ(u− s)

)2
ds ≤ K|t− u|2, t, u ≥ 0, (5.13)

for some constant K ∈ R+. The Kolmogorov-C̆entsov Theorem shows that (Xt)t≥0 has a
continuous modification and from (5.13) it follows that this modification is of integrable
variation. Hence (Xt)t≥0 is an (FX,∞

t )t≥0-semimartingale.

Only if: Assume conversely that (Xt)t≥0 is an (FX,∞
t )t≥0-semimartingale and hence

continuous, according to Remark 5.4.
(3): First assume (in addition) that (Xt)t≥0 is of unbounded variation. Let κ and

(Yt)t≥0 be given as in Lemma 5.3. Since

Yt = Xt − e−t
∫ t

−∞
esXs ds, t ≥ 0, and (FY,∞

t ∨ σ(X0))t≥0 = (FX,∞
t )t≥0, (5.14)

we deduce that (Yt)t≥0 is an (FY,∞
t )t≥0-semimartingale of unbounded variation. This

implies that FY,∞
0 6= FY,∞

∞ and we conclude that (Yt)t≥0 is regular. Now choose f and g
according to Lemma 5.1 (with (φ,X) replaced by (κ, Y )) and let (Bt)t≥0 be given as in
the lemma such that

Yt =

∫ t

−∞
g(t− s) dBs, t ∈ R, and (FY,∞

t )t≥0 = (FB,∞
t )t≥0. (5.15)

Since (Yt)t≥0 is an (FB,∞
t )t≥0-semimartingale, Knight [17, Theorem 6.5] shows that

g(t) = α+

∫ t

0
ζ(u) du, t ≥ 0, (5.16)

for some α ∈ R \ {0} and some ζ ∈ L2R(λ) and the (FB,∞
t )t≥0-martingale component of

(Yt)t≥0 is (αBt)t≥0. Equation (5.14) shows that (Yt)t≥0 is an (FY,∞
t ∨ σ(X0))t≥0-semi-

martingale, and since (FY,∞
t )t≥0 = (FB,∞

t )t≥0, (Yt)t≥0 is an (FB,∞
t ∨ σ(X0))t≥0-semi-

martingale. Hence (Bt)t≥0 is an (FB,∞
t ∨ σ(X0))t≥0-semimartingale. As in (1) we have

X0 =
∫
k(s) dBs where k := (2π)−2ξ. Since (Bt)t≥0 is an (FB,∞

t ∨σ(X0))t≥0-semimartin-

gale and FB
t ∨ σ(

∫∞
0 k(s) dBs) ⊆ FB,∞

t ∨ σ(X0), (Bt)t≥0 is also a semimartingale with
respect to (FB

t ∨ σ(
∫∞
0 k(s) dBs))t≥0. Thus according to Chaleyat-Maurel and Jeulin [5,
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Theoreme I.1.1] k satisfies (3.13) which shows condition (b). From this theorem it fol-
lows that the bounded variation component is an absolutely continuous Gaussian process
and the martingale component is a Wiener process with parameter σ2 = (2πα)2. Let
η := ζ + g and let ρ be given by

ρ(t) = α+

∫ t

0
η(u) du, t ≥ 0, and ρ(t) = 0, t < 0. (5.17)

For all t ∈ R we have

Xt −X0 = Yt − Y0 −
∫ t

0
Yu du = Yt − Y0 −

∫ (∫ t

0
g(u − s) du

)
dBs (5.18)

=

∫ (
g(t− s)− g(−s) +

∫ t−s

−s
g(u) du

)
dBs =

∫
(ρ(t− s)− ρ(−s)) dBs, (5.19)

where the second equality follows from Protter [20, Chapter IV, Theorem 65]. Thus from
(4.25) we have

τtφ− τ0φ =

∫
(ρ(t− u)− ρ(−u)) dτuf̃ , λ-a.s. ∀t ∈ R, (5.20)

which by Lemma 4.1 (i) implies

φ(t) = β + αf̃(t) +

∫ ∞

0

(
f̃(t− v)− f̃(−v)

)
η(v) dv, λ-a.a. t ∈ R, (5.21)

for some β ∈ R. We obtain (3.12) (with h = η(−·)) by (3.16). This completes the proof
of (a).

Let us study the canonical decomposition of (Xt)t≥0 in the case X0 = 0. For t ≥ 0
we have

Xt−X0 = αBt+

∫ (∫ t−s

−s
f̂ ĥ(u) du

)
dWs = αBt+

∫ t

0

(∫
f̂ ĥ(s − u) dWu

)
ds, (5.22)

and by (4.29) we have

∫
f̂ ĥ(s− u) dWu =

∫
h(u− s) dBu. (5.23)

Recall that (FX,∞
t )t≥0 = (FB,∞

t )t≥0. From (5.23) it follows that the last term of (5.22) is

(FB,∞
t )t≥0-adapted and hence the canonical (FX,∞

t )t≥0-decomposition of (Xt)t≥0 is given
by (5.22). Furthermore, by combining (5.22) and (5.23), Cheridito [6, Proposition 3.7]
shows that the law of ( 1

2παXt)t∈[0,T ] is equivalent to the Wiener measure on C([0, T ]) for
all T > 0, when X0 = 0.

(4) : Assume (Xt)t≥0 is of bounded variation and therefore of integrable variation (see
Stricker [24]). By Lemma 5.2 we conclude that φ is absolutely continuous with square
integrable density and hereby on the form (3.12) with α = 0 and f ≡ 1. This completes
the proof.

Proof of Proposition 3.6. To prove (ii) assume that ψ equals 0 or φ and (Xt)t≥0 is an

(FX,∞
t )t≥0-semimartingale.

Only if : Assume (Xt)t≥0 is (FW,∞
t )t≥0-adapted. By studying (Xt −X0)t≥0 we may

and do assume that ψ = φ. Furthermore, it follows that φ is constant on (−∞, 0) since
(Xt)t≥0 is (FW,∞

t )t≥0-adapted. Let us first assume that (Xt)t≥0 is of bounded variation.
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By arguing as in (4) in the proof of Theorem 3.2 it follows that φ is on the form (3.12)
where h is 0 on R+ and f ≡ 1 (these h and f satisfies the additional conditions in (ii)).
Second assume (Xt)t≥0 is of unbounded variation. Proceed as in (3) in the proof of
Theorem 3.2. Since φ is constant on (−∞, 0) it follows by (5.9) that κ is 0 on (−∞, 0).
Thus according to Lemma 5.1 (ii), f is given by f(a) = limb↓0 J(−a+ ib) for some inner
function J and the proof of the only if part is complete.

If : According to Lemma 4.2, f̃ is constant on (−∞, 0) λ-a.s. and from (3.16) it follows
that (recall that h is 0 on R+)

∫ t

0
f̂ ĥ(s) ds =

∫ 0

−∞

(
f̃(t+ s)− f̃(s)

)
h(s) ds, t ∈ R. (5.24)

This shows that φ is constant on (−∞, 0) λ-a.s. and hence (Xt)t≥0 is (FW,∞
t )t≥0-adapted

since ψ equals 0 or φ.
To prove (3.18) assume that φ is represented as in (3.12) with f(a) = limb↓0 J(−a+b)

for λ-a.a. a ∈ R for some inner function J and h is 0 on R+. Lemma 4.2 shows that
there exists a constant c ∈ R such that f̃ = c λ-a.s. on (−∞, 0). Let g := h(−·). By
(3.16) we have

∫ t

0
f̂ ĥ(s) ds =

∫ (
f̃(t− s)− f̃(−s)

)
g(s) ds (5.25)

=

∫ (
f̃(t− s)− c

)
g(s) ds =

(
(f̃ − c) ∗ g

)
(t), (5.26)

where the third equality follows from the fact that g only differs from 0 on R+ and on
this set f̃(−·) equals c. This shows (3.18).

To show (i) assume ψ = 0.
Only if : We may and do assume that (Xt)t≥0 is an (FX,∞

t )t≥0-semimartingale of
unbounded variation. We have to show that we can decompose φ as in (a) of Theorem 3.2
where α+

∫ ·
0 h(−s) ds is square integrable on R+. However, this follows as in (3) in the

proof of Theorem 3.2 (without referring to Lemma 5.3).
If : Assume (a) of Theorem 3.2 is satisfied with α, β, h and f and that g defined by

g(t) =

{
α+

∫ t
0 h(−v) dv t ≥ 0

0 t < 0,
(5.27)

is square integrable. From Lemma 4.1 (ii) it follows that there exists a β̃ ∈ R such that

∫
g(−u) dτuf̃ = β̃ + αf̃(−·) +

∫ (
f̃(−v − ·)− f̃(−v)

)
h(−v) dv, λ-a.s. (5.28)

which by (3.12) and (3.16) implies

∫
g(−u) dτuf̃ = β̃ − β + φ(−·), λ-a.s. (5.29)

The square integrability of φ shows β̃ = β and by (4.26) it follows that
̂̂
φf = (2π)2g(−·).

Since g(−·) is zero on R+ this shows that condition (b) in Theorem 3.2 is satisfied and
hence it follows by Theorem 3.2 that (Xt)t≥0 is an (FX,∞

t )t≥0-semimartingale.
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6 The spectral measure of stationary semimartingales

For t ∈ R, let Xt =
∫ t
−∞ φ(t − s) dWs where φ ∈ L2R(λ). In this section we use Knight

[17, Theorem 6.5] to give a condition on the Fourier transform of φ for (Xt)t≥0 to be an

(FW,∞
t )t≥0-semimartingale. In the case where (Xt)t≥0 is a Markov process we use this to

provide a simple condition on φ̂ for (Xt)t≥0 to be an (FW,∞
t )t≥0-semimartingale. In the

last part of this section we study a general stationary Gaussian process (Xt)t≥0. As in
Jeulin and Yor [15] we provide conditions on the spectral measure of (Xt)t≥0 for (Xt)t≥0
to be an (FX,∞

t )t≥0-semimartingale.

Proposition 6.1. Let (Xt)t≥0 be given by Xt =
∫
φ(t − s) dWs, where φ ∈ L2R(λ) and

(Wt)t≥0 is a Wiener process. Then (Xt)t≥0 is an (FW,∞
t )t≥0-semimartingale if and only

if

φ̂(t) =
α+ ĥ(t)

1− it
, λ-a.a. t ∈ R, (6.1)

for some α ∈ R and some h ∈ L2R(λ) which is 0 on (−∞, 0).

The result follows directly from Knight [17, Theorem 6.5], once we have shown the
following technical result.

Lemma 6.2. Let φ ∈ L2R(λ). Then φ is on the form

φ(t) =

{
α+

∫ t
0 h(s) ds t ≥ 0

0 t < 0,
(6.2)

for some α ∈ R and some h ∈ L2R(λ) if and only if

φ̂(t) =
c+ k̂(t)

1− it
, (6.3)

for some c ∈ R and some k ∈ L2R(λ) which is 0 on (−∞, 0).

Proof. Assume φ satisfies (6.2). By square integrability of φ we can find a sequence
(an)n≥1 converging to infinity such that φ(an) converges to 0. For all n ≥ 1 we have

∫ an

0
φ(s)eits ds =

∫ an

0
αeitsds+

∫ an

0

(∫ s

0
h(u) du

)
eits ds (6.4)

=
α(eiant − 1)

it
+

∫ an

0
h(u)

(∫ an

u
eitsds

)
du (6.5)

=
α(eiant − 1)

it
+

∫ an

0
h(u)

(
eiant − eiut

it

)
du (6.6)

=
1

it

(
eiant

(
α+

∫ an

0
h(u)du

)
− α−

∫ an

0
h(u)eitu du

)
(6.7)

=
1

it

(
eiantφ(an)− α−

∫ an

0
h(u)eitudu

)
. (6.8)

Hence by letting n tend to infinity it follows that φ̂(t) = −(it)−1(α+ ĥ(t)) and we obtain
(6.3).

Assume conversely that (6.3) is satisfied and let e(t) := e−t1R+(t) for t ∈ R. We have

φ̂(t) =
c+ k̂

1− it
= cê(t) + k̂(t)ê(t). (6.9)
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Note that k ∗ e is square integrable and k̂ ∗ e = k̂ê. Thus from (6.9) it follows that
φ = ce+ k ∗ e λ-a.s. This shows in particular that φ is 0 on (−∞, 0) and k(t)− k ∗ e(t) =
ce(t) + k(t)− φ(t) =: f(t), which implies that

h(t)− h(0) = f(t)− f(0)−
∫ t

0
f(s) ds, (6.10)

and hence

φ(t) =

{
φ(0) +

∫ t
0 (φ(s)− k(s)) ds t ≥ 0

0 t < 0.
(6.11)

This completes the proof of (6.2).

Let (Xt)t≥0 be given by Xt =
∫ t
−∞ φ(t − s) dWs for some φ ∈ L2R(λ). Below we

characterize when (Xt)t≥0 is an (FX
t )t≥0-Markov process by means of two constants and

an inner function. Moreover, we provide a simple condition on the inner function for
(Xt)t≥0 to be an (FW,∞

t )t≥0-semimartingale. Finally, this condition is used to construct

a rather large class of φ’s for which (Xt)t≥0 is an (FX,∞
t )t≥0-semimartingale but not an

(FW,∞
t )t≥0-semimartingale. Cherny [7, Example 3.4] constructs a φ for which (Xt)t≥0

given by (3.11) (with ψ = φ) is an (FX
t )t≥0-Wiener process but not an (FX,∞

t )t≥0-
semimartingale.

Proposition 6.3. Let (Xt)t≥0 be given by Xt =
∫
φ(t − s) dWs, for t ∈ R, where

φ ∈ L2R(λ) is non-trivial and 0 on (−∞, 0).

(i) (Xt)t≥0 is an (FX
t )t≥0-Markov process if and only if φ is given by

φ̂(t) =
cj(t)

θ − it
, t ∈ R, (6.12)

where J is an inner function satisfying J(z) = J(−z), j(a) = limb↓0 J(a + ib) and

c, θ > 0. In this case (Xt)t≥0 is an (FX,∞
t )t≥0-semimartingale, and an (FW,∞

t )t≥0-
semimartingale if and only if J − α ∈ H2

+ for some α ∈ {−1, 1}.

(ii) In particular, let φ be given by (6.12), where J is a singular inner function, i.e. on
the form

J(z) = exp
(−1

πi

∫
sz + 1

s− z

1

1 + s2
F (ds)

)
, z ∈ C+, (6.13)

where F is a singular measure which integrates s 7→ (1 + s2)−1, and assume F is
symmetric, concentrated on Z, (F ({k}))k∈Z is bounded and

∑
k∈Z F ({k})2 = ∞.

Then (Xt)t≥0 is an (FX
t )t≥0-Markov process, an (FX,∞

t )t≥0-semimartingale and

(FW,∞
t )t≥0-adapted, but not an (FW,∞

t )t≥0-semimartingale.

Proof. Assume (Xt)t≥0 is an (FX
t )t≥0-Markov process and let J denote the inner part

of the Hardy function induced by φ. Note that J(z) = J(−z). Since (Xt)t≥0 is an
L2(P)-continuous, centered Gaussian (FX

t )t≥0-Markov process it follows by Doob [9,
Theorem 1.1] that (Xt)t≥0 is an Ornstein-Uhlenbeck process and hence

|φ̂(t)|2 = c

θ + t2
, λ-a.a. t ∈ R, (6.14)

for some θ, c > 0. This implies that the outer part of φ̂ is z 7→ c/(θ − iz) and thus φ
satisfies (6.12). Assume conversely that φ is given by (6.12). It is readily seen that φ is
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a real function which is 0 on (−∞, 0). Moreover, since |φ̂|2 = c2/(θ2 + t2) it follows that
(Xt)t≥0 is an Ornstein-Uhlenbeck process and hence an (FX

t )t≥0-Markov process and

an (FX,∞
t )t≥0-semimartingale. According to Proposition 6.1, (Xt)t≥0 is an (FW,∞

t )t≥0-
semimartingale if and only if

φ̂(t) =
α+ ĥ(t)

θ − it
, λ-a.a. t ∈ R, (6.15)

for some α ∈ R and h ∈ L2R(λ) which is 0 on (−∞, 0), which by (6.12) is equivalent to
J − α/c = H/c, where H is the Hardy function induced by h. This completes the proof
of (i).

To prove (ii), note first that J(z) = J(−z) since F is symmetric. Moreover,

|J(a+ ib)| = exp
(∫ −b

π((s − a)2 + b2)
F (ds)

)
. (6.16)

If f : R → R is a bounded measurable function then f ∈ L2R(λ) if and only if ef − 1 ∈
L2R(λ). We will use this on

f(a) :=

∫ −b
π((s − a)2 + b2)

F (ds), a ∈ R. (6.17)

The function f is bounded since k 7→ F ({k}) is bounded. Moreover, f /∈ L2R(λ) since
∫

|f(a)|2 da =
( b
π

)2 ∫ (∑

j∈Z F ({j})
(j − a)2 + b2

)2
da (6.18)

≥
( b
π

)2 ∫ ∑

j∈Z( F ({j})
(j − a)2 + b2

)2
da =

( b
π

)2∑

j∈Z∫ ( F ({j})
(j − a)2 + b2

)2
da (6.19)

=
( b
π

)2∑

j∈Z∫ (F ({j})a2 + b2

)2
da =

( b
π

)2 ∫ ( 1

a2 + b2

)2
da
∑

j∈Z[F ({j})]2 = ∞, (6.20)

where the first inequality follows from the fact that the terms in the sum are positive. It
follows that ef − 1 /∈ L2R(λ). Let α ∈ {−1, 1}. Then

|J(a+ ib)− α| ≥ ||J(a+ ib)| − 1| = ef(a) − 1, (6.21)

which shows that J−α /∈ H2
+ and hence (Xt)t≥0 is not an (FW,∞

t )t≥0-semimartingale.

Let (Xt)t≥0 denote an L2(P)-continuous centered Gaussian process. Recall that the
symmetric finite measure µ satisfying

E[XtXu] =

∫
ei(t−u)s µ(ds), ∀ t, u ∈ R, (6.22)

is called the spectral measure of (Xt)t≥0. The proof of the next result is quite similar to
the proof of Jeulin and Yor [15, Proposition 19].

Proposition 6.4. Let (Xt)t≥0 be an L2(P)-continuous stationary centered Gaussian pro-
cess with spectral measure µ = µs + f dλ (µs is the singular part of µ). Then (Xt)t≥0 is

an (FX,∞
t )t≥0-semimartingale if and only if

∫
t2 µs(dt) <∞ and

f(t) =
|α+ ĥ(t)|2

1 + t2
, λ-a.a. t ∈ R, (6.23)

for some α ∈ R and some h ∈ L2R(λ) which is 0 on (−∞, 0) when α 6= 0. Moreover,
(Xt)t≥0 is of bounded variation if and only if α = 0.

70



6. The spectral measure of stationary semimartingales

Proposition 6.4 extends the well-known fact that an L2(P)-continuous stationary
Gaussian process is of bounded variation if and only if

∫
t2 µ(dt) <∞.

Proof of Proposition 6.4. Only if: If (Xt)t≥0 is of bounded variation then
∫
t2 µ(dt) <∞

and therefore µ is on the stated form. Thus, we may and do assume (Xt)t≥0 is an

(FX,∞
t )t≥0-semimartingale of unbounded variation. It follows that (Xt)t≥0 is a regular

process and hence it can be decomposed as (see e.g. Doob [10])

Xt = Vt +

∫ t

−∞
φ(t− s) dWs, t ∈ R, (6.24)

where (Wt)t≥0 is a Wiener process which is independent of (Vt)t∈R and Wr − Ws is

FX,∞
t -measurable for s ≤ r ≤ t. The process (Vt)t∈R is stationary Gaussian and Vt is

FX,∞
−∞ -measurable for all t ∈ R, where

FX,∞
−∞ :=

⋂

t∈RFX,∞
t . (6.25)

Moreover, (Vt)t∈R respectively (Xt − Vt)t∈R has spectral measure µs respectively f dλ.
For 0 ≤ u ≤ t we have

E[|Vt − Vu|] = E[|E[Vt − Vu|FV,∞
u ]|] = E[|E[Xt −Xu|FV,∞

u ]|] (6.26)

≤ E[|E[Xt −Xu|FX,∞
u ]|], (6.27)

which shows that (Vt)t≥0 is of integrable variation and hence
∫
t2 µs(dt) < ∞. The fact

that (Vt)t≥0 is (FX,∞
t )t≥0-adapted and of bounded variation implies that

(∫ t

−∞
φ(t− s) dWs

)
t≥0

(6.28)

is an (FX,∞
t )t≥0-semimartingale and therefore also an (FW,∞

t )t≥0-semimartingale. Thus,
by Proposition 6.1 we conclude that

f(t) = |φ̂(t)|2 = |α+ ĥ(t)|2
1 + t2

, λ-a.a. t ∈ R, (6.29)

for some α ∈ R and some h ∈ L2R(λ) which is 0 on (−∞, 0).

If : If
∫
t2 µ(dt) <∞, then (Xt)t≥0 is of bounded variation and hence an (FX,∞

t )t≥0-
semimartingale. Thus, we may and do assume

∫
t2f(t) dt = ∞. We show that (Xt)t≥0

is an (FX,∞
t )t≥0-semimartingale by constructing a process (Zt)t≥0 which equals (Xt)t≥0

in distribution and such that (Zt)t≥0 is an (FZ,∞
t )t≥0-semimartingale. By Lemma 6.2

there exists a β ∈ R and a g ∈ L2R(λ) such that with φ(t) = β +
∫ t
0 g(s) ds for t ≥ 0 and

φ(t) = 0 for t < 0, we have |φ̂|2 = f. Define (Zt)t≥0 by

Zt = Vt +

∫ t

−∞
φ(t− s) dWs, t ∈ R, (6.30)

where (Vt)t∈R is a stationary Gaussian process with spectral measure µs and (Wt)t≥0 is
a Wiener process which is independent of (Vt)t∈R. The processes (Xt)t≥0 and (Zt)t≥0 are
identical in distribution due to the fact that they are centered Gaussian processes with the
same spectral measure and hence it is enough to show that (Zt)t≥0 is an (FZ,∞

t )t≥0-semi-
martingale. It is well-known that (Vt)t≥0 is of bounded variation since

∫
t2 µs(dt) < ∞

and by Knight [17, Theorem 6.5] the second term on the right-hand side of (6.30) is an
(FW,∞

t )t≥0-semimartingale. Thus we conclude that (Zt)t≥0 is an (FZ,∞
t )t≥0-semimartin-

gale.
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7 The spectral measure of semimartingales with stationary

increments

Let (Xt)t≥0 be an L2(P)-continuous Gaussian process with stationary increments such
that X0 = 0. Then there exists a unique positive symmetric measure µ on R which
integrates t 7→ (1 + t2)−1 and satisfies

E[XtXu] =

∫
(eits − 1)(e−ius − 1)

s2
µ(ds), t, u ∈ R. (7.1)

This µ is called the spectral measure of (Xt)t≥0. The spectral measure of the fractional
Brownian motion (fBm) with Hurst parameter H ∈ (0, 1) is

µ(ds) = cH |s|1−2H ds, (7.2)

where cH ∈ R is a constant (see e.g. Yaglom [25]). In particular the spectral measure of
the Wiener process (H = 1/2) equals the Lebesgue measure up to a scaling constant.

Theorem 7.1. Let (Xt)t≥0 be an L2(P)-continuous, centered Gaussian process with sta-
tionary increments such that X0 = 0. Moreover, let µ = µs+ fdλ be the spectral measure
of (Xt)t≥0. Then (Xt)t≥0 is an (FX,∞

t )t≥0-semimartingale if and only if µs is a finite
measure and

f = |α+ ĥ|2, λ-a.s. (7.3)

for some α ∈ R and some h ∈ L2R(λ) which is 0 on (−∞, 0) when α 6= 0. Moreover,
(Xt)t≥0 is of bounded variation if and only if α = 0.

Proof. Assume (Xt)t≥0 is an (FX,∞
t )t≥0-semimartingale. Let (Yt)t≥0 be the stationary

centered Gaussian process given by Lemma 5.3, that is

Xt = Yt − Y0 +

∫ t

0
Ys ds, t ∈ R, (7.4)

and let ν denote the spectral measure of (Yt)t≥0, that is ν is a finite measure satisfying

E[YtYu] =

∫
ei(t−u)a ν(da), t, u ∈ R. (7.5)

By using Fubini’s Theorem it follows that

E[XtXu] =

∫ (
eits − 1

)(
e−ius − 1

)

s2
(1 + s2) ν(ds), t, u ∈ R. (7.6)

Thus, by uniqueness of the spectral measure of (Xt)t≥0 we obtain µ(ds) = (1+s2) ν(ds).

Since (Xt)t≥0 is an (FX,∞
t )t≥0-semimartingale (7.4) implies that (Yt)t≥0 is an (FY,∞

t )t≥0-
semimartingale and hence Proposition 6.4 shows that the singular part νs of ν satisfies∫
t2 ν(dt) <∞ and the absolute continuous part is on the form

|α+ ĥ(s)|2(1 + s2)−1 ds, (7.7)

for some α ∈ R, and some h ∈ L2R(λ) which is 0 on (−∞, 0) when α 6= 0. This completes
the only if part of the proof.
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Conversely assume that µs is a finite measure and f = |α + ĥ|2 for an α ∈ R and
an h ∈ L2R(λ) which is 0 on (−∞, 0) when α 6= 0. Let (Yt)t≥0 be a centered Gaussian
process such that

E[YtYu] =

∫
ei(t−u)af(a)

1 + a2
da, t, u ∈ R. (7.8)

By Proposition 6.4 it follows that (Yt)t≥0 is an (FY,∞
t )t≥0-semimartingale. Thus, (Zt)t∈R

defined by

Zt := Yt − Y0 +

∫ t

0
Ys ds, t ∈ R, (7.9)

is an (FY,∞
t )t≥0-semimartingale and therefore also an (FZ,∞

t )t≥0-semimartingale. More-
over, by calculations as in (7.6) it follows that (Zt)t∈R is distributed as (Xt)t≥0, which

shows that (Xt)t≥0 is an (FX,∞
t )t≥0-semimartingale. This completes the proof.

Let (Xt)t≥0 denote a fBm with Hurst parameter H ∈ (0, 1) (recall that the spectral

measure of (Xt)t≥0 is given by (7.2)). If (Xt)t≥0 is an (FX,∞
t )t≥0-semimartingale then

Theorem 7.1 shows that cH |s|1−2H = |α + ĥ(s)|, for some α ∈ R and some h ∈ L2R(λ)
which is 0 on (−∞, 0) when α 6= 0. This implies H = 1/2. It is well-known from Rogers
[22] that the fBm is not a semimartingale (even in the filtration (FX

t )t≥0) when H 6= 1/2.
However, the proof presented is new and illustrates the usefulness of the theorem. As a
consequence of the above theorem we also have:

Corollary 7.2. Let (Xt)t≥0 be a Gaussian process with stationary increments. Then
(Xt)t≥0 is of bounded variation if and only if (Xt −X0)t∈R has finite spectral measure.
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The aim of the present paper is to study the semimartingale property of
continuous time moving averages driven by Lévy processes. We provide
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1. Introduction

1 Introduction

The present paper is concerned with the semimartingale property of moving averages
(also known as stochastic convolutions) which are driven by Lévy processes. More pre-
cisely, let (Xt)t≥0 be a moving average of the form

Xt =

∫ t

0
φ(t− s) dZs, t ≥ 0, (1.1)

where (Zt)t≥0 is a Lévy process and φ : R+ → R is a deterministic function for which
the integral exists. We are interested in the question whether (Xt)t≥0 is an (FZ)t≥0-
semimartingale, where (FZ)t≥0 denotes the natural filtration of (Zt)t≥0. In addition,
two-sided moving averages (see (1.6)) are studied as well.

According to Doob [13, page 533], a stationary process is a moving average if and only
if its spectral measure is absolutely continuous. Key examples of moving averages are the
Ornstein-Uhlenbeck process, the fractional Brownian motion, and their generalizations,
the Ornstein-Uhlenbeck type process (see [31]) and the linear fractional stable motion
(see [37]). Moving averages occur naturally in many different contexts, e.g. in stochastic
Volterra equations (see [26]), in stochastic delay equations (see [30]), and in turbulence
(see [1]). Moreover, to capture the long-range dependence of log-returns in financial
markets it is natural to consider the fractional Brownian motion instead of the Brownian
motion in the Black-Scholes model (see Biagini et al. [6, Part III]), and to capture also
heavy tails one is often led to more general moving averages.

It is often important that the process of interest is a semimartingale, and in particular
the following two properties are crucial: Firstly, if (Xt)t≥0 models an asset price which
is locally bounded and satisfies the No Free Lunch with Vanishing Risk condition then
(Xt)t≥0 has to be an (FZ)t≥0-semimartingale (see Delbaen and Schachermayer [11, The-
orem 7.2]). Secondly, it is possible to define a "reasonable" stochastic integral

∫ t
0 Hs dXs

for all locally bounded (FZ)t≥0-predictable processes (Ht)t≥0 if and only if (Xt)t≥0 is
an (FZ)t≥0-semimartingale due to the Bichteler-Dellacherie Theorem (see Bichteler [7,
Theorem 7.6]). In view of the numerous applications of moving averages it is thus natural
to study the semimartingale property of these processes.

Let (Zt)t≥0 denote a general semimartingale, φ : R+ → R be absolutely continuous
with a bounded density and let (Xt)t≥0 be given by (1.1). Then by a stochastic Fubini
result it follows that (Xt)t≥0 is an (FZ)t≥0-semimartingale, see e.g. Protter [26, Theo-
rem 3.3] or Reiß et al. [30, Theorem 5.2]. In the case where (Zt)t∈R is a two-sided Wiener
process, φ ∈ L2(R+, λ) (λ denotes the Lebesgue measure) and (Xt)t≥0 is given by

Xt =

∫ t

−∞
φ(t− s) dZs, t ≥ 0, (1.2)

Knight [19, Theorem 6.5] shows that (Xt)t≥0 is an (FZ,∞
t )t≥0-semimartingale if and only

if φ is absolutely continuous with a square integrable density (FZ,∞
t := σ(Zs : −∞ < s ≤

t)). Related results can be found in Cherny [10], Cheridito [9] and Basse [3]. Moreover,
results characterizing when (Xt)t≥0 is an (FX,∞

t )t≥0-semimartingale are given in Jeulin
and Yor [17] and Basse [2].

The above presented results only provide sufficient conditions on φ or are only con-
cerned with the Brownian case. In the present paper we study the case where (Zt)t≥0 is
a Lévy process and we provide necessary and sufficient conditions on φ for (Xt)t≥0, given
by (1.1), to be an (FZ)t≥0-semimartingale. Assume (Zt)t≥0 is of unbounded variation
and has characteristic triplet (γ, σ2, ν). Our main result is the following:
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(Xt)t≥0 is an (FZ)t≥0-semimartingale if and only if φ is absolutely continuous on R+

with a density φ′ satisfying

∫ t

0

∫

[−1,1]

(
|xφ′(s)|2 ∧ |xφ′(s)|

)
ν(dx) ds <∞, ∀t > 0, if σ2 = 0, (1.3)

∫ t

0
|φ′(s)|2 ds <∞, ∀t > 0, if σ2 > 0. (1.4)

In the case where (Zt)t≥0 is a symmetric α-stable Lévy process, (1.3) corresponds to
φ′ ∈ Lα([0, t], λ) for all t > 0 when α ∈ (1, 2) and to |φ′| log+(|φ′|) ∈ L1([0, t], λ) for all
t > 0 when α = 1.

Assume (Zt)t≥0 is of unbounded variation. If (Xt)t≥0 is an (FZ)t≥0-semimartingale
it can be decomposed as

Xt = φ(0)Zt +

∫ t

0

( ∫ u

0
φ′(u− s) dZs

)
du, t ≥ 0. (1.5)

As a corollary of (1.5) it follows that (Xt)t≥0 is càdlàg and of bounded variation if and
only if it is absolutely continuous, which is also equivalent to φ is absolutely continuous
on R+ with a density satisfying (1.3)–(1.4) and φ(0) = 0.

Finally we study two-sided moving averages, i.e. where (Xt)t≥0 is given by

Xt =

∫ t

−∞
(φ(t− s)− ψ(−s)) dZs, t ≥ 0, (1.6)

(Zt)t∈R is a two-sided Lévy process and φ,ψ : R → R are deterministic functions for
which the integral exists. Note that in this case (Xt)t≥0 has stationary increments,
and when ψ = 0 it is a stationary process. Several examples, including fractional Lévy
processes and hence also the linear fractional stable motion, are given in Section 5.

The conditions on φ from the one-sided case translate into necessary conditions in the
two-sided case. That is, if (Zt)t∈R is of unbounded variation and (Xt)t≥0 is an (FZ,∞

t )t≥0-
semimartingale then φ is absolutely continuous on R+ with a density satisfying (1.3)–
(1.4). Moreover, Knight [19, Theorem 6.5] is extended from the Gaussian case to the
α-stable case with α ∈ (1, 2].

The paper is organized as follows. In Section 2 we collect some preliminary results.
The main results are presented in Section 3. All proofs are given in Section 4. The
two-sided case is considered in Section 5.

2 Preliminaries

Throughout the paper (Ω,F ,P) denotes a complete probability space. Let (Zt)t≥0 denote
a Lévy process with characteristic triplet (γ, σ2, ν), that is for t ≥ 0, E[eiθZt ] = etκ(θ) for
all θ ∈ R, where

κ(θ) = iγθ − σ2θ2/2 +

∫ (
eiθs − 1− iθs1{|s|≤1}

)
ν(ds), θ ∈ R. (2.1)

For a general treatment of Lévy processes we refer to [38], [5] or [27]. Let f : R → R
denote a measurable function. Following Rajput and Rosiński [28, page 460] we say
that f is Z-integrable if there exists a sequence of simple functions (fn)n≥1 such that
fn → f λ-a.s. and limn

∫
A fn(s) dZs exists in probability for all A ∈ B([0, t]) and all
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t > 0 (recall that λ denotes the Lebesgue measure). In this case we define
∫ t
0 f(s) dZs as

the limit in probability of
∫ t
0 fn(s) dZs. By Rajput and Rosiński [28, Theorem 2.7], f is

Z-integrable if and only if the following three conditions are satisfied for all t > 0:

∫ t

0
f(s)2σ2 ds <∞, (2.2)

∫ t

0

∫ (
|xf(s)|2 ∧ 1

)
ν(dx) ds <∞, (2.3)

∫ t

0

∣∣∣f(s)
(
γ +

∫
x(1{|xf(s)|≤1} − 1{|x|≤1}) ν(dx)

)∣∣∣ds <∞. (2.4)

In this case
∫ t
0 f(s) dZs is infinitely divisible with characteristic triplet (γf , σ

2
f , νf ) given

by

γf =

∫ t

0
f(s)

(
γ +

∫
x(1{|xf(s)|≤1} − 1{|x|≤1}) ν(dx)

)
ds, (2.5)

σ2f =

∫ t

0
f(s)2σ2 ds, (2.6)

νf (A) = (ν × λ)((x, s) ∈ R× [0, t] : xf(s) ∈ A \ {0}), A ∈ B(R). (2.7)

If f is locally square integrable it is easily shown that (2.2)–(2.4) are satisfied and hence∫ t
0 f(s) dZs is well-defined for all t ≥ 0. Note also that (2.4) is satisfied if (Zt)t≥0 is

symmetric. Recall that (Zt)t≥0 is a symmetric α-stable Lévy process with α ∈ (0, 2] if
γ = σ2 = 0 and ν has density s 7→ c|s|−1−α for some c > 0 when α ∈ (0, 2), and ν = 0
and γ = 0 when α = 2. In this case (2.2)–(2.4) reduce to f ∈ Lα([0, t], λ) for all t > 0.

A function f : R+ → R is said to be of bounded variation if on each finite interval
[0, t] the total variation of f is finite, that is

Vart(f) := sup

n∑

i=1

|f(ti)− f(ti−1)| <∞, (2.8)

where the sup is taken over all partitions 0 = t0 < · · · < tn = t, n ≥ 1 of [0, t]. Note
that a Lévy process (Zt)t≥0 is of bounded variation if and only if

∫
[−1,1]|s| ν(ds) < ∞

and σ2 = 0 (see e.g. Sato [38, Theorem 21.9]). Let I denote an interval and f : I → R.
Then f is said to be absolutely continuous if there exists a locally integrable function h
such that

f(t)− f(u) =

∫ t

u
h(s) ds, u, t ∈ I, u ≤ t, (2.9)

and in this case h is called the density of f . If f : I → R and g : R+ → R+ are two
measurable functions, then f is said to have locally g-moment if

∫ t

u
g(|f(s)|) ds <∞, u, t ∈ I, u ≤ t. (2.10)

If (2.10) is satisfied with g(x) = xα for some α > 0 then f is said to have locally
α-moment.

An increasing family of σ-algebras (Ft)t≥0 is called a filtration if it satisfies the usual
conditions of right-continuity and completeness. For each process (Yt)t≥0 we let (FY

t )t≥0
denote its the natural filtration, i.e. (FY

t )t≥0 is the least filtration for which (Yt)t≥0 is
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(FY
t )t≥0-adapted. Let (Ft)t≥0 denote a filtration. We say that (Xt)t≥0 is an (Ft)t≥0-

semimartingale if it admits the following representation

Xt = X0 +Mt +At, t ≥ 0, (2.11)

where (Mt)t≥0 is a càdlàg local (Ft)t≥0-martingale starting at 0 and (At)t≥0 is (Ft)t≥0-
adapted, càdlàg, of bounded variation and starting at 0, andX0 is F0-measurable. (Recall
that càdlàg means right-continuous with left-hand limits).

We need the following standard notation: For functions f, g : R → (0,∞) we write
f(x) ≈ g(x) as x → ∞ if f/g is bounded above and below on some interval (K,∞),
where K > 0. Furthermore we write f(x) = o(g(x)) as x → ∞ if f(x)/g(x) → 0 as
x→ ∞. A similar notation is used as x→ 0.

Assume ν has positive mass on [−1, 1]. Similar to [23] we let ξ : [0,∞) → [0,∞) be
given by

ξ(x) =

∫

[−1,1]

(
|sx|2 ∧ |sx|

)
ν(ds), x ≥ 0. (2.12)

Note that ξ is 0 at 0, continuous and increasing and satisfies:

(i) ξ(x)/x→
∫
[−1,1]|s| ν(ds) ∈ (0,∞] as x→ ∞,

(ii) If
∫
[−1,1]|s|

α ν(ds) <∞ for α ∈ (1, 2] then ξ(x) = o(xα) as x→ ∞.

To show (i)–(ii) let

H(x) = x

∫

x−1≤|s|≤1

|s| ν(ds) and K(x) = x2
∫

|s|<x−1

s2 ν(ds), (2.13)

and note that ξ(x) = H(x) +K(x) for x > 1. We have
∫

x−1≤|s|≤1

|s| ν(ds) ≤ ξ(x)x−1 ≤
∫

[−1,1]

|s| ν(ds), x > 1, (2.14)

where the first inequality follows from H ≤ ξ and the second from (2.12) since |xs|2 ∧
|xs| ≤ |xs|. Hence by (2.14) and monotone convergence (i) follows. To show (ii) assume∫
[−1,1]|s|

α ν(ds) <∞ for some α ∈ (1, 2]. For all ǫ > 0 we have

lim sup
x→∞

H(x)x−α ≤
∫

[−ǫ,ǫ]

|s|α ν(ds), (2.15)

and

K(x)x−α ≤
∫

|s|<x−1

|s|α ν(ds), (2.16)

which shows ξ(x)x−α → 0 as x→ ∞ and completes the proof of (ii).
Assume ν is absolutely continuous in a neighborhood of zero with a density f satis-

fying f(x) ≈ |x|−α−1 as x→ 0 for some α ∈ (0, 2) (this is satisfied in the α-stable case).
An easy calculation shows:

(1) ξ(x) ≈ xα as x→ ∞ if α ∈ (1, 2),

(2) ξ(x) ≈ x log(x) as x→ ∞ if α = 1,

(3)
∫
[−1,1]|s| ν(ds) <∞ if α ∈ (0, 1).
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3 Main results

Let (Zt)t≥0 denote a nondeterministic Lévy process with characteristic triplet (γ, σ2, ν)
and φ : R+ → R be a measurable function which is Z-integrable (see (2.2)–(2.4)).
Throughout this section we let (Xt)t≥0 be the moving average

Xt =

∫ t

0
φ(t− s) dZs, t ≥ 0. (3.1)

Theorem 3.1 below is the main result of the paper. It provides a complete characterization
of when (Xt)t≥0 is an (FZ)t≥0-semimartingale. Recall the definition of the function ξ in
(2.12).

Theorem 3.1. Assume (Zt)t≥0 is of unbounded variation. Then (Xt)t≥0 is an (FZ)t≥0-
semimartingale if and only if φ is absolutely continuous on R+ with a density φ′ which
is locally square integrable when σ2 > 0 and has locally ξ-moment when σ2 = 0 (that is,
φ′ satisfies (1.3)–(1.4)).

Assume (Zt)t≥0 is of bounded variation. Then (Xt)t≥0 is an (FZ)t≥0-semimartin-
gale if and only if it is of bounded variation which is also equivalent to φ is of bounded
variation.

In particular, if σ2 = 0,
∫
[−1,1]|x|

α ν(dx) <∞ for some α ∈ (1, 2] and φ is absolutely

continuous on R+ with a density having locally α-moment then it follows by (ii) on
page 79 and the above theorem that (Xt)t≥0 is an (FZ)t≥0-semimartingale. In the case
where (Xt)t≥0 is a semimartingale the next proposition provides a useful representation
of this process.

Proposition 3.2. Assume (Zt)t≥0 is of unbounded variation and (Xt)t≥0 is an (FZ)t≥0-
semimartingale. Then

Xt = φ(0)Zt +

∫ t

0

( ∫ u

0
φ′(u− s) dZs

)
du, t ≥ 0, (3.2)

where φ′ denotes the density of φ and (
∫ u
0 φ
′(u− s) dZs)u≥0 is chosen measurable.

Hence we obtain the following corollary.

Corollary 3.3. Assume (Zt)t≥0 is of unbounded variation. Then the following four
statements are equivalent:

(a) (Xt)t≥0 is càdlàg and of bounded variation,

(b) (Xt)t≥0 is absolutely continuous,

(c) (Xt)t≥0 is an (FZ)t≥0-semimartingale and φ(0) = 0,

(d) φ is absolutely continuous with a density satisfying (1.3)–(1.4) and φ(0) = 0.

In the symmetric α-stable case with α ∈ (1, 2) the equivalence between (b) and (d)
follows by Rosiński [32, Theorem 6.1]. [8] study, among other things, processes (Yt)t≥0
on the form Yt =

∫ t
0 f(t, s) dZs, where (Zt)t≥0 is a symmetric Lévy process and f is a

deterministic function. Their Theorem 5.1 provides necessary and sufficient conditions
on f(t, s) for (Xt)t≥0 to be absolutely continuous. In [24] and [20] necessary and sufficient
conditions on φ are obtained for (Xt)t≥0 to have locally bounded or continuous sample
paths.

The next corollary follows by Theorem 3.1 and the estimates on ξ given in (1)–(3)
on page 79.
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Corollary 3.4. Assume σ2 = 0 and ν is absolutely continuous in a neighborhood of zero
with a density f satisfying f(x) ≈ |x|−α−1 as x→ 0 for some α ∈ (0, 2) (this is satisfied
in the α-stable case with α ∈ (0, 2)). Then (Xt)t≥0 is an (FZ)t≥0-semimartingale if and
only if

(i) φ is absolutely continuous with a density having locally α-moment when α ∈ (1, 2),

(ii) φ is absolutely continuous with a density having locally x log+(x)-moment when
α = 1,

(iii) φ is of bounded variation when α ∈ (0, 1).

Here log+ denotes the positive part of log, i.e. log+(x) = log(x) for x ≥ 1 and 0
otherwise.

In the following let (Xt)t≥0 be the Riemann-Liouville fractional integral given by

Xt =

∫ t

0
(t− s)τ dZs, t ≥ 0, (3.3)

where τ is such that the integral exists. If (Zt)t≥0 is a Wiener process and τ > −1/2,
(Xt)t≥0 is called a Lévy fractional Brownian motion (see Mandelbrot and Van Ness [22,
page 424]). Assume (Zt)t≥0 has no Brownian component (i.e. σ2 = 0). Using (2.2)–
(2.4) it follows that for (Xt)t≥0 to be well-defined one of the following (I)–(III) must be
satisfied:

(I) τ > −1/2,

(II) τ = −1/2 and
∫
[−1,1] x

2|log|x|| ν(dx) <∞,

(III) τ < −1/2 and
∫
[−1,1]|x|

−1/τ ν(dx) <∞.

Condition (I) is also sufficient for (Xt)t≥0 to be well-defined and when (Zt)t≥0 is sym-
metric, the conditions (I)–(III) are both necessary and sufficient for (Xt)t≥0 to be well-
defined. When τ = 0, (Xt)t≥0 = (Zt)t≥0; thus let us assume τ 6= 0. As a consequence of
Theorem 3.1 we have the following.

Corollary 3.5. Let (Xt)t≥0 be given by (3.3) and assume (Zt)t≥0 has no Brownian
component. Then (Xt)t≥0 is an (FZ)t≥0-semimartingale if and only if one of the following
(1)–(3) is satisfied:

(1) τ > 1/2,

(2) τ = 1/2 and
∫
[−1,1] x

2|log|x|| ν(dx) <∞,

(3) τ ∈ (0, 1/2) and
∫
[−1,1]|x|

1/(1−τ) ν(dx) <∞.

Note that 1/(1 − τ) ∈ (1, 2) when τ ∈ (0, 1/2). Let us in particular consider

Xt =

∫ t

0
(t− s)H−1/α dZs, t ≥ 0, (3.4)

where (Zt)t≥0 is a symmetric α-stable Lévy process with α ∈ (0, 2] and H > 0 (note
that (Xt)t≥0 is well-defined). To avoid trivialities assume H 6= 1/α. As a consequence of
Corollary 3.5 (α ∈ (0, 2)) and Theorem 3.1 (α = 2) it follows that (Xt)t≥0 is an (FZ)t≥0-
semimartingale if and only if H > 1 when α ∈ [1, 2] or H > 1/α when α ∈ (0, 1).
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4 Proofs

Throughout this section (Xt)t≥0 is given by (3.1). We extend φ to a function from R
into R by setting φ(s) = 0 for s ∈ (−∞, 0). For any function f : R→ R, let ∆tf denote
the function s 7→ t(f(1/t+ s)− f(s)) for all t > 0. We start by the following extension
of Hardy and Littlewood [15, Theorem 24].

Lemma 4.1. Let I be either R+ or R, f : I → R be locally integrable and g : R+ → R+

be an increasing convex function satisfying g(x)/x → ∞ as x → ∞ and let (rk)k≥1 be
a sequence satisfying rk → ∞. Then f is absolutely continuous with a density having
locally g-moment if and only if (g(|∆rkf |))k≥1 is bounded in L1([a, b], λ) for all a, b ∈ I
with a < b. In this case {g(|∆tf |) : t > ǫ} is bounded in L1([a, b], λ) for all a, b ∈ I with
a < b and all ǫ > 0.

If (Zt)t≥0 is of unbounded variation the above lemma can be applied with ξ playing
the role of g (ξ is given by (2.12)), since in this case ξ satisfies all the conditions imposed
on g except ξ is not convex. But h, defined by h(x) = x21{x≤1} + (2x− 1)1{x>1}) for all
x ≥ 0, is convex and if we let

g(x) =

∫

[−1,1]

h(|xs|) ν(ds), x ≥ 0, (4.1)

then g satisfies all the conditions in the lemma and g/2 ≤ ξ ≤ g. Thus, if f : I → R is
locally integrable then f is absolutely continuous with a density having locally ξ-moment
if and only if (ξ(|∆rkf |))k≥1 is bounded in L1([a, b], λ) for all a, b ∈ I with a < b.

Proof. Note that g is continuous and x 7→ g(|x|) is a convex function from R into R,
since g is increasing and convex. Let a, b ∈ I satisfying a < b be given and assume
(g(|∆rkf |))k≥1 is bounded in L1([a, b], λ). Since g(x)/x → ∞ as x→ ∞, {∆rkf : k ≥ 1}
is uniformly integrable and hence weakly sequentially compact in L1([a, b], λ) (see e.g.
Dunford and Schwartz [14, Chapter IV.8, Corollary 11]). Choose a subsequence (nk)k≥1
of (rk)k≥1 and an h ∈ L1([a, b], λ) such that ∆nk

f → h in the weak L1([a, b], λ)-topology.
For all c, d ∈ [a, b] with c < d we have

∫ d

c
∆nk

f dλ→
∫ d

c
hdλ, for k → ∞. (4.2)

Moreover,

∫ d

c
∆nk

f dλ = nk

( ∫ d+1/nk

c+1/nk

f dλ−
∫ d

c
f dλ

)
(4.3)

= nk

∫ d+1/nk

d
f dλ− nk

∫ c+1/nk

c
f dλ→ f(d)− f(c), for k → ∞, (4.4)

for λ× λ-a.a. c < d. Thus, we conclude that f is absolutely continuous with density h.
Since ∆nk

f → h in the weak L1([a, b], λ)-topology we may choose a sequence (κn)n≥1
of convex combinations of (∆nk

f)k≥1 such that κn → h in L1([a, b], λ), see Rudin [36,
Theorem 3.13]. By convexity and continuity of g we have

∫ b

a
g(|h|) dλ ≤ lim inf

n→∞

∫ b

a
g(|κn|) dλ ≤ sup

k≥1

∫ b

a
g(|∆nk

f |) dλ <∞, (4.5)
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which shows that h has g-moment on [a, b]. This completes the proof of the if -part.
Assume conversely that f is absolutely continuous with a density, h, having locally

g-moment. For all t > ǫ, we have by Jensen’s inequality that

∫ b

a
g
(∣∣∣t
∫ s+1/t

s
h(u) du

∣∣∣
)
ds ≤

∫ b

a

(
t

∫ 1/t

0
g(|h(u+ s)|) du

)
ds (4.6)

= t

∫ 1/t

0

∫ b

a
g(|h(u+ s)|) ds du ≤

∫ b+1/ǫ

a
g(|h(s)|) ds <∞, (4.7)

which shows that {g(|∆tf |) : t > ǫ} is bounded in L1([a, b], λ) and completes the proof.

In following we are going to use two Lévy-Itô decompositions of (Zt)t≥0 (see e.g. Sato
[38, Theorem 19.2]).

(a) Decompose (Zt)t≥0 as Zt = Z1
t +Z

2
t , where (Z1

t )t≥0 and (Z2
t )t≥0 are two independent

Lévy processes with characteristic triplets (0, σ2, ν1) respectively (γ, 0, ν2), where
ν1 = ν|[−1,1] and ν2 = ν|[−1,1]c. (Z1

t )t≥0 and (Z2
t )t≥0 are (FZ)t≥0-adapted. Moreover,

when φ is locally bounded we let

X1
t =

∫ t

0
φ(t− s) dZ1

s , and X2
t =

∫ t

0
φ(t− s) dZ2

s , t ≥ 0. (4.8)

(b) Decompose (Zt)t≥0 as Zt = Wt + Yt, where (Wt)t≥0 is a Wiener process with vari-
ance parameter σ2 and (Yt)t≥0 is a Lévy process with characteristic triplet (γ, 0, ν).
(Wt)t≥0 and (Yt)t≥0 are independent and (FZ)t≥0-adapted. Moreover, let

XW
t =

∫ t

0
φ(t− s) dWs, and XY

t =

∫ t

0
φ(t− s) dYs, t ≥ 0. (4.9)

If σ2 = 0 and (Xt)t≥0 is càdlàg it follows by Rosiński [33, Theorem 4] and a symmetriza-
tion argument that by modification on a set of Lebesgue measure 0, we may and do
choose φ càdlàg.

The following lemma is closely related to Knight [19, Theorem 6.5].

Lemma 4.2. We have the following:

(i) (Xt)t≥0 is an (FZ)t≥0-semimartingale if φ is absolutely continuous on R+ with a
locally square integrable density.

(ii) Assume (Zt)t≥0 is a Wiener process. Then φ is absolutely continuous on R+ with
a locally square integrable density if (Xt)t≥0 is an (FZ)t≥0-semimartingale.

Proof. (i): Decompose (Zt)t≥0 and (Xt)t≥0 as in (a) above. Since both φ and (Z2
t )t≥0

are càdlàg and of bounded variation, (X2
t )t≥0 is càdlàg and of bounded variation as well.

Hence, it is enough to show (X1
t )t≥0 is an (FZ)t≥0-semimartingale. Since

X1
t =

∫ t

0
(φ(t− s)− φ(0)) dZ1

s + φ(0)Z1
t , t ≥ 0, (4.10)

we may and do assume φ(0) = 0. Then, φ is absolutely continuous on R with locally
square integrable density and hence for all T > 0, ‖∆tφ‖L2([−T,T ],λ) ≤ K for some
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constant K > 0 and all t > 1/T by Lemma 4.1 with g(x) = x2. By letting c = E[|Z1
1 |2]

we have (recall that φ is zero on (−∞, 0))

E[(X1
t −X1

u)
2] = c‖φ(t−·)−φ(u−·)‖2L2([0,t],λ) ≤ cK2(t−u)2, ∀ 0 ≤ u ≤ t ≤ T, (4.11)

which by the Kolmogorov-C̆entsov Theorem (see Karatzas and Shreve [18, Chapter 2,
Theorem 2.8]) shows that (X1

t )t≥0 has a continuous modification (also to be denoted
(X1

t )t≥0). Moreover, for all 0 = t0 < · · · < tn = T we have

E
[ n∑

i=1

|X1
ti −X1

ti−1
|
]
≤

n∑

i=1

‖X1
ti −X1

ti−1
‖L2(P) ≤

√
cKT, (4.12)

which shows that (X1
t )t≥0 is of integrable variation and hence an (FZ)t≥0-semimartingale.

To show (ii) assume (Zt)t≥0 is a standard Wiener process and (Xt)t≥0 is an (FZ)t≥0-
semimartingale. Since (Xt)t≥0 is a Gaussian process, Stricker [39, Proposition 4+5]
entails that (Xt)t≥0 is an (FZ)t≥0-quasimartingale on each compact interval [0, N ]. For
0 ≤ u ≤ t we have

E[|E[Xt −Xu|FZ
u ]|] = E[|

∫ u

0

(
φ(t− s)− φ(u− s)

)
dZs|] (4.13)

=

√
2

π
‖
∫ u

0

(
φ(t− s)− φ(u− s)

)
dZs‖L2(P) (4.14)

=

√
2

π

(∫ u

0

(
φ(t− s)− φ(u− s)

)2
ds
)1/2

(4.15)

=

√
2

π

(∫ u

0

(
φ(t− u+ s)− φ(s)

)2
ds
)1/2

, (4.16)

where the second equality follows by Gaussianity, which implies that

nN∑

i=1

E[|E[Xi/n −X(i−1)/n|FZ
(i−1)/n]|] ≥

Nn√
π2

(∫ N/2

0

(
φ(1/n + s)− φ(s)

)2
ds
)1/2

. (4.17)

Since (Xt)t≥0 is an (FZ)t≥0-quasimartingale on [0, N ], the left-hand side of (4.17) is
bounded in n (see Dellacherie and Meyer [12, Chapter VI, Definition 38]), showing that
(∆nφ)n≥1 is bounded in L2([0, N/2], λ). By Lemma 4.1 with g(x) = x2 this shows that
φ is absolutely continuous on R+ with a locally square integrable density.

Lemma 4.3. If (Xt)t≥0 is an (FZ)t≥0-semimartingale then (X1
t )t≥0 is an (FZ1

t )t≥0-
semimartingale.

Proof. Assume (Xt)t≥0 is an (FZ)t≥0-semimartingale, fix T > 0 and let

A := {∆Z2
t = 0 ∀t ∈ [0, T ]}. (4.18)

Note that P(A) > 0 and (Z1
t )t≥0 is P-independent of A. Let QA denote the probability

measure given by QA(B) := P(B∩A)/P(A). (Xt)t≥0 is an (FZ)t≥0-semimartingale under
QA, since QA is absolutely continuous with respect to P. Moreover, since (Zt)t≥0 and

(Z1
t )t≥0 are QA-indistinguishable it follows that (X1

t )t≥0 is an (FZ1

t )t≥0-semimartingale
under QA and since A is independent of (Z1

t )t≥0 this is also true under P.

In the next lemma we study the jump structure of (Xt)t≥0.
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Lemma 4.4. Assume σ2 = 0 and (Xt)t≥0 is càdlàg. Then (∆Xt1{∆Zt 6=0})t≥0 and
(φ(0)∆Zt)t≥0 are indistinguishable.

Before proving the lemma we note the following:

Remark 4.5.

(a) Let (Xt)t≥0 and (Yt)t≥0 denote two independent càdlàg processes such that P(∆Xt =
0) = P(∆Yt = 0) = 1 for all t ≥ 0. Then as a consequence of Tonelli’s Theorem we
have P(∆Xt∆Yt = 0, ∀t ≥ 0) = 1.

(b) If ν is concentrated on [−1, 1] then the mapping t 7→
∫ t
0 φ(t − s) dZs is continuous

from R+ into L1(P). This follows by approximating φ with continuous functions.

Proof of Lemma 4.4. SinceXt =
∫ t
0 (φ(t−s)−1) dZs+Zt we may and do assume φ(0) 6= 0.

Recall from page 83 that φ is chosen càdlàg; moreover ∆φ(0) = φ(0).
First we show the lemma in the case where ν is a finite measure. Let τn denote the

time of the nth jump of (Zt)t≥0 ((τn+1 − τn)n≥1 is thus an i.i.d. sequence of exponential
distributions) and let (σn)n≥1 ⊆ [0,∞) denote the jump times of φ. Note that the event

B := {∃ (j, k) 6= (j′, k′) : τj + σk = τj′ + σk′}, (4.19)

has probability zero. Since (Zt)t≥0 only has finitely many jumps on each compact interval
we may regard (Xt)t≥0 as a pathwise Lebesgue-Stieltjes integral and hence it follows that

(∆Xt)t≥0 =
(∑

k≥1

∆Zt−σk∆φ(σk)
)
t≥0

. (4.20)

Let us show that on Bc the series
∑

k≥1∆Zt−σk∆φ(σk) has at most one term which
differs from zero for all t ≥ 0. Indeed, to see this assume that ∆Zt−σk∆φ(σk) and
∆Zt−σk′∆φ(σk′) both differ from zero, where k 6= k′. Then there exist n, n′ ≥ 1 such
that τn = t − σk and τn′ = t − σk′ which implies τn + σk = τn′ + σk′ , and hence we
have a contradiction. In particular, if ∆Zt 6= 0 then ∆Zt∆φ(0) 6= 0 and thus ∆Xt =
∆Zt∆φ(0) = φ(0)∆Zt.

Now let (Zt)t≥0 be a general Lévy process for which σ2 = 0. For each n ≥ 1, decom-
pose (Zt)t≥0 as Zt = Y n

t +Unt , where (Y n
t )t≥0 and (Unt )t≥0 are two independent Lévy pro-

cesses with characteristic triplets (0, 0, ν|[−1/n,1/n]) respectively (0, 0, ν|[−1/n,1/n]c). More-
over, set

XY n

t =

∫ t

0
φ(t− s) dY n

s and XUn

t =

∫ t

0
φ(t− s) dUns . (4.21)

Since (Unt )t≥0 has piecewise constant sample paths the second integral is a pathwise
Lebesgue-Stieltjes integral. Hence (XUn

t )t≥0 is càdlàg and it follows that (XY n

t )t≥0 is
càdlàg as well. Set

C :=
⋂

n≥1

{∆XY n

t ∆Unt = 0, ∀t ≥ 0}, (4.22)

D :=
⋂

n≥1

{∆XUn

t 1{∆Un
t 6=0} = φ(0)∆Unt , ∀t ≥ 0}. (4.23)

From Remark 4.5 (b) it follows that P(∆XY n

t = 0) = 1 for all t ≥ 0 which together
with Remark 4.5 (a) shows that C has probability one. Moreover, from the first part
of the proof it follows that D has probability one. When ∆Zt 6= 0, choose n ≥ 1
such that |∆Zt| > 1/n. Thus, ∆Unt 6= 0, and hence ∆XY n

t = 0 on C, which shows
∆Xt = ∆XUn

t = φ(0)∆Unt = φ(0)∆Zt on C ∩D and completes the proof.
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Lemma 4.6. Assume σ2 = γ = 0, ν is concentrated on [−1, 1] and (Xt)t≥0 is a special
(FZ)t≥0-semimartingale. Then (φ(0)Zt)t≥0 is the martingale component of (Xt)t≥0.

Proof. Let Xt = Mt + At denote the canonical decomposition of (Xt)t≥0. Since (Zt)t≥0
is a Lévy process, it is quasi-left-continuous (see Jacod and Shiryaev [16, Chapter II,
Corollary 4.18]) and thus there exists a sequence of totally inaccessible stopping times
(τn)n≥1 which exhausts the jumps of (Zt)t≥0. On the other hand, since (At)t≥0 is pre-
dictable there exists a sequence of predictable times (σn)n≥1 which exhausts the jumps of
(At)t≥0. From the martingale representation theorem for Lévy processes (see Jacod and
Shiryaev [16, Chapter III, Theorem 4.34]) it follows that (Mt)t≥0 is a purely discontinuous
martingale which jumps only when (Zt)t≥0 does. Furthermore, since

P(∃n, k ≥ 1 : τn = σk <∞) = 0, (4.24)

Lemma 4.4 shows

φ(0)∆Zτn = ∆Xτn = ∆Mτn +∆Aτn = ∆Mτn , P-a.s. on {τn <∞} ∀n ≥ 1. (4.25)

Hence (∆Mt)t≥0 and (φ(0)∆Zt)t≥0 are indistinguishable which implies that (Mt)t≥0 and
(φ(0)Zt)t≥0 are indistinguishable since they both are purely discontinuous martingales
(see Jacod and Shiryaev [16, Chapter I, Corollary 4.19]). This completes the proof.

The following lemma is concerned with the bounded variation case and it relies on
an inequality by Marcus and Rosiński [23].

Lemma 4.7. Assume γ = σ2 = 0, ν is concentrated on [−1, 1] and (Zt)t≥0 is of un-
bounded variation. Then (Xt)t≥0 is càdlàg and of bounded variation if and only if φ is
absolutely continuous on R+ with a density having locally ξ-moment and φ(0) = 0.

Recall the definition of ∆tφ on page 82 and of Vart(f) in (2.8).

Proof. Let N ≥ 1 be given. We start by showing the following (i) and (ii) under the
assumptions stated in the lemma:

(i) If (Xt)t≥0 is of bounded variation then E[VarN (X)] <∞ for all N ≥ 1.

(ii) For all N ≥ 1,

N

8
sup
n≥1

{(∫ N/2

−N/2
ξ(|∆2nφ(s)|) ds

)
∧
(∫ N/2

−N/2
ξ(|∆2nφ(s)|) ds

)1/2}
(4.26)

≤ E[VarDN (X)] ≤ 3N sup
n≥1

{∫ N

−N
ξ(|∆2nφ(s)|) ds+ 1

}
, (4.27)

where for each f : R+ → R we let

VarDN (f) = sup
n≥1

2nN∑

i=1

|f(i/2n)− f((i− 1)/2n)|. (4.28)

To show (i) assume (Xt)t≥0 is of bounded variation. By Rosiński [33, Theorem 4], φ(·−s)
is of bounded variation for λ-a.a. s ∈ R+; in particular there exists an s ∈ R+ such that
φ(· − s) is of bounded variation. Hence φ is of bounded variation. Let T := [0, N ] ∩Q,
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X : Ω → RT denote the canonical random element induced by (Xt)t∈T and let µ be given
by

µ(A) = (λ× ν) ((s, x) ∈ [0, t0]×R : xφ(· − s) ∈ A \ {0}) , A ∈ B(RT ). (4.29)

For all t1, . . . , tn ∈ T , (Xt1 , . . . ,Xtn) is infinitely divisible with Lévy measure µ ◦p−1t1,...,tn ,

where pt1,...,tn(f) = (f(t1), . . . , f(tn)) for all f ∈ RT . For f ∈ RT let q(f) denote the total
variation of f on T . Then q : RT → [0,∞] is clearly a lower-semicontinuous pseudonorm
on RT (see Rosiński and Samorodnitsky [35, page 998]). Since ν has compact support
and φ is of bounded variation there exists an r0 > 0 such that µ(f ∈ RT : q(f) > r0) = 0
and hence by Lemma 2.2 in [35], E[eǫq(X)] < ∞ for some ǫ > 0. In particular (Xt)t≥0 is
of integrable variation on [0, N ].

(ii): From Marcus and Rosiński [23, Corollary 1.1] we have

1/4min(ai,n, a
1/2
i,n ) ≤ E[|2n(Xi/2n −X(i−1)/2n)|] ≤ 3max(ai,n, a

1/2
i,n ), (4.30)

where

ai,n :=

∫ (i−1)/2n

−1/2n
ξ(|∆2nφ(s)|) ds. (4.31)

By monotone convergence we have

E[VarDN (X)] = sup
n≥1

1

2n

2nN∑

i=1

E[|2n(Xi/2n −X(i−1)/2n )|], (4.32)

and hence

N

2
sup
n≥1

inf
2nN/2<i≤2nN

E[|2n(Xi/2n −X(i−1)/2n)|] ≤ E[VarD0,N (X)] (4.33)

≤ N sup
n≥1

sup
1≤i≤2nN

E[|2n(Xi/2n −X(i−1)/2n)|], (4.34)

which by (4.30) shows (4.26).
Assume (Xt)t≥0 is càdlàg and of bounded variation and hence by (i) of integrable

variation. From (ii) it follows that (ξ(∆2nφ))n≥1 is bounded in L1([−a, a], λ) for all a > 0.
Conversely, if (ξ(∆2nφ))n≥1 is bounded in L1([−a, a], λ) for all a > 0, (ii) shows that
E[VarDN (X)] < ∞; in particular VarDN (X) <∞ P-a.s. Since in addition (Xt)t≥0 is right-
continuous in probability by Remark 4.5 (b) it has a has a càdlàg modification (also to be
denoted (Xt)t≥0), which is of bounded variation since VarN (X) = VarDN (X) <∞ P-a.s.

Finally, the discussion just below Lemma 4.1 completes the proof, since (Zt)t≥0 is of
unbounded variation.

We have the following consequence of the Bichteler-Dellacherie Theorem.

Lemma 4.8. Let (Yt)t≥0, (Ut)t≥0, (Ỹt)t≥0 and (Ũt)t≥0 denote four processes such that

(Yt)t≥0 is (FU
t )t≥0-adapted, (Ỹt)t≥0 is (F Ũ

t )t≥0-adapted and (Y·, U·)
D
= (Ỹ·, Ũ·). If (Yt)t≥0

is an (FU
t )t≥0-semimartingale then (Ỹt)t≥0 has a modification which is an (F Ũ

t )t≥0-semi-
martingale.

Proof. Since (Yt)t≥0, by assumption, is càdlàg and (Yt)t≥0
D
= (Ỹt)t≥0 we may choose a

càdlàg modification of (Ỹt)t≥0 (also to be denoted (Ỹt)t≥0). By the Bichteler-Dellacherie
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Theorem (see Dellacherie and Meyer [12, Theorem 80]) we must show that for all t > 0
the set of random variables given by

{ n∑

i=1

H̃ti−1(Ỹti − Ỹti−1) : n ≥ 1, 0 ≤ t0 < · · · < tn ≤ t, H̃ti ∈ F Ũ
ti , |H̃ti | ≤ 1

}
(4.35)

is bounded in L0(P). Since each H̃s ∈ F Ũ
s satisfying |H̃s| ≤ 1 is given by

H̃s = lim
n→∞

Fn((Ũu)u≤s+1/n) P-a.s., (4.36)

for some Fn : R[0,s+1/n] → [−1, 1] which is B(R)[0,s+1/n]-measurable, our assumptions
imply that for each random variable in the above set there exist Hti ∈ FU

ti satisfying
|Hti | ≤ 1 for i = 0, . . . , n− 1 such that

n∑

i=1

H̃ti−1(Ỹti − Ỹti−1)
D
=

n∑

i=1

Hti−1(Yti − Yti−1). (4.37)

Thus since (Yt)t≥0 is an (FU
t )t≥0-semimartingale, another application of the Bichteler-

Dellacherie Theorem shows that the set given in (4.35) is bounded in L0(P).

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. We prove the result in the following three steps (1)–(3). Recall
(a) and (b) on page 83.

(1) Let σ2 > 0.
Assume (Xt)t≥0 is an (FZ)t≥0-semimartingale. Let Z̃t = Yt −Wt and X̃t =

∫ t
0 φ(t−

s) dZ̃s. We have FZ
t = FW

t ∨ FY
t = F−Wt ∨ FY

t = F Z̃
t and since (X·, Z·)

D
= (X̃·, Z̃·),

Lemma 4.8 shows that (X̃t)t≥0 is an (FZ)t≥0-semimartingale. Therefore (XW
t )t≥0 :=

(Xt − X̃t)/2)t≥0 is an (FZ
t )t≥0-semimartingale and thus an (FW

t )t≥0-semimartingale,
and by Lemma 4.2 (ii) we conclude that φ is absolutely continuous on R+ with a locally
square integrable density.

On the other hand, if φ is absolutely continuous with a locally square integrable
density it follows by Lemma 4.2 (i) that (Xt)t≥0 is an (FZ)t≥0-semimartingale.

(2) Let σ2 = 0 and (Zt)t≥0 be of unbounded variation.
Assume (Xt)t≥0 is an (FZ)t≥0-semimartingale. By Lemma 4.3 it follows that (X1

t )t≥0
is an (FZ1

t )t≥0-semimartingale. Let T = Q ∩ [0, t], q(f) = sups∈T |f(s)| for all f ∈ RT

and µ be given by (4.29) with ν replaced by ν1. Since ν1 has compact support and φ is
locally bounded (recall from page 83 that φ is chosen càdlàg) there exists an r0 > 0 such
that µ(f ∈ RT : q(f) ≥ r0) = 0 and hence, according to Rosiński and Samorodnitsky
[35, Lemma 2.2], E[sups∈[0,t]|X1

s |] < ∞. This shows that (X1
t )t≥0 is a special (FZ1

t )t≥0-

semimartingale. Let X1
t = Mt + At denote the canonical (FZ1

t )t≥0-decomposition of
(X1

t )t≥0. Then Lemma 4.6 yields (Mt)t≥0 = (φ(0)Z1
t )t≥0 and hence (At)t≥0, given by

At =

∫ t

0
ψ(t− s) dZ1

s , t ≥ 0, (4.38)

where ψ(t) = φ(t) − φ(0) for t ≥ 0, is of bounded variation. Thus, by Lemma 4.7 we
conclude that ψ, and hence also φ, is absolutely continuous on R+ with a density having
locally ξ-moment.

Assume conversely that φ is absolutely continuous with a density having locally ξ-
moment. Since φ and (Z2

t )t≥0 are càdlàg and of bounded variation it follows that (X2
t )t≥0
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is càdlàg and of bounded variation as well. Let (At)t≥0 be given by (4.38). By Lemma 4.7
it follows that (At)t≥0 is càdlàg and of bounded and hence (X1

t )t≥0 = (φ(0)Z1
t +At)t≥0 is

an (FZ)t≥0-semimartingale and we have shown that (Xt)t≥0 is an (FZ)t≥0-semimartin-
gale.

(3) Let (Zt)t≥0 be of bounded variation.
Assume (Xt)t≥0 is an (FZ)t≥0-semimartingale. By arguing as in (2) it follows that

(At)t≥0 given by (4.38) is of bounded variation. Hence Rosiński [33, Theorem 4] and a
symmetrization argument shows that ψ, and hence also φ, is of bounded variation.

Assume conversely that φ is of bounded variation. Since (Zt)t≥0 is càdlàg and of
bounded variation it follows that (Xt)t≥0 is càdlàg and of bounded variation and hence
an (FZ)t≥0-semimartingale.

To show Proposition 3.2 we need the following Fubini type result.

Lemma 4.9. Let T > 0, µ denote a finite measure on R+ and let f : R2
+ → R be a

measurable function such that either (i) or (ii) are satisfied, where

(i) σ2 = 0, ξ(|f(t, ·)|) ∈ L1([0, T ], λ) for all t ≥ 0 and ξ(|f |) ∈ L1(R+ × [0, T ], µ × λ).

(ii) σ2 > 0, f(t, ·) ∈ L2([0, T ], λ) for all t ≥ 0, and f ∈ L2(R+ × [0, T ], µ × λ).

Then (
∫ T
0 f(t, s) dZs)t≥0 can be chosen measurable and in this case

∫ (∫ T

0
f(t, s) dZs

)
µ(dt) =

∫ T

0

(∫
f(t, s)µ(dt)

)
dZs P-a.s. (4.39)

Proof. Assume (i) is satisfied. To show (4.39) we may and do assume that (Zt)t≥0 has
characteristic triplet (0, 0, ν) where ν is concentrated on [−1, 1]. Let g be given by (4.1).
Since g is 0 at 0, symmetric, increasing, convex, limx→∞ g(x) = ∞ and g(2x) ≤ 4g(x)
for all x ≥ 0, g is a Young function satisfying the ∆2-condition (see Rao and Ren [29,
page 5+22]). Let Lg([0, T ], λ) denote the Orlicz space of measurable functions with finite
g-moment on [0, T ] equipped with the norm

‖h‖g = inf{c > 0 :

∫ T

0
g(c−1h(s)) ds ≤ 1}. (4.40)

According to Chapter 3.3, Theorem 10, and Chapter 3.5, Theorem 1, in [29], Lg([0, T ], λ)
is a separable Banach space. Let ft := f(t, ·) for all t ≥ 0. Since ξ(|ft|) ∈ L1([0, T ], λ)

for all t ≥ 0, it is easy to check that ft satisfies (2.2)–(2.4) and hence Yt :=
∫ T
0 ft(s) dZs

is well-defined for all t ≥ 0. We show that (Yt)t≥0 has a measurable modification. Since
Lg([0, T ], λ) is separable and t 7→ ‖ft−h‖g is measurable for all h ∈ Lg([0, T ], λ) it follows
that t 7→ ft is a measurable mapping from R+ into Lg([0, T ], λ). Furthermore, since
Lg([0, T ], λ) is separable there exists (hnk)n,k≥1 ⊆ Lg([0, T ], λ) and disjoint measurable
sets (Ank)k≥1 for all n ≥ 1 such that with

fnt (s) =
∑

k≥1

hnk(s)1An
k
(t), (4.41)

we have ‖ft − fnt ‖g ≤ 2−n for all t ≥ 0. Set Y n
t =

∑
k≥1

∫ T
0 hnk(s) dZs1An

k
(t) for all t ≥ 0

and n ≥ 1. Then (Y n
t )t≥0 is a measurable process and by Marcus and Rosiński [23,

Theorem 2.1] it follows that

‖Y n
t − Yt‖L1(P) ≤ 3‖fnt − ft‖g ≤ 3× 2−n, ∀t ≥ 0, ∀n ≥ 1. (4.42)
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5. The two-sided case

For all t ≥ 0 and ω ∈ Ω let Ỹt(ω) = limn Y
n
t (ω) when the limit exists in R and zero

otherwise. Then (Ỹt)t≥0 is measurable and for all t ∈ R, Ỹt = Yt P-a.s. by (4.42). Thus
we have constructed a measurable modification of (Yt)t≥0.

Let us show that both sides of (4.39) are well-defined. Since g/2 ≤ ξ ≤ g and
ξ(ax) ≤ (a+ 1)2ξ(x) for all x, a > 0, it follows by Jensen’s inequality that

∫ T

0
ξ
(∫

|f(t, s)|µ(dt)
)
ds ≤ 2(µ(R) + 1)2

µ(R)

∫ T

0

∫
ξ(|f(t, s)|)µ(dt) ds <∞. (4.43)

Thus, the right-hand side of (4.39) is well-defined. The left-hand side is well-defined as
well since

E
[ ∫ ∣∣∣

∫ T

0
f(t, s) dZs

∣∣∣µ(dt)
]

(4.44)

≤ 3

∫ ( ∫ T

0
ξ(|ft(s)|) ds

)
∨
(∫ T

0
ξ(|ft(s)|) ds

)1/2
µ(dt) <∞, (4.45)

where the first inequality follows by Marcus and Rosiński [23, Corollary 1.1]. Further-
more, (4.39) is obviously true for simple f on the form

f(t, s) =

n∑

i=1

αi1(si−1,si](t)1(ti−1,ti](s). (4.46)

If f is a given function satisfying (i) we can choose a sequence of simple (fn)n≥1 converging
to f and satisfying |fn| ≤ |f |. We have

∫ (∫ T

0
fn(u, s) dZu

)
µ(ds) =

∫ T

0

( ∫
fn(u, s)µ(ds)

)
dZu, (4.47)

and by estimates as above it follows that we can go to the limit in L1(P) in (4.47), which
shows (4.39).

The case (ii) follows by a similar argument. In this case we have to work in L2([0, T ], λ)
instead of Lg([0, T ], λ).

Proposition 3.2 is an immediate consequence of Theorem 3.1 and Lemma 4.9, since

φ(t− s) = φ(0) +

∫ t−s

0
φ′(u) du = φ(0) +

∫ t

0
1{s≤u}φ

′(u− s) du, s ∈ [0, t]. (4.48)

5 The two-sided case

Let (Xt)t≥0 be given by

Xt =

∫ t

−∞
(φ(t− s)− ψ(−s)) dZs, t ≥ 0, (5.1)

where (Zt)t∈R is a (two-sided) nondeterministic Lévy process with characteristic triplet
(γ, σ2, ν) and φ,ψ : R → R are measurable functions for which the integral exists (still
in the sense of Rajput and Rosiński [28, page 460]). Also assume that φ and ψ are 0 on
(−∞, 0) and let (FZ,∞

t )t≥0 denote the least filtration for which σ(Zs : −∞ < s ≤ t) ⊆
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5. The two-sided case

FZ,∞
t for all t ≥ 0. From Rajput and Rosiński [28, Theorem 2.8] it follows that (Xt)t≥0

is well-defined if and only if

X1
t =

∫ t

0
φ(t− s) dZs, and X2

t =

∫ 0

−∞
(φ(t− s)− ψ(−s)) dZs, (5.2)

are well-defined. Similar to Lemma 4.8 we have the following.

Lemma 5.1. Let (Yt)t≥0, (Ut)t∈R, (Ỹt)t≥0 and (Ũt)t∈R denote four processes such that

(Yt)t≥0 is (FU,∞
t )t≥0-adapted, (Ỹt)t≥0 is (F Ũ ,∞

t )t≥0-adapted and (Y·, U·)
D
= (Ỹ·, Ũ·). If

(Yt)t≥0 is an (FU,∞
t )t≥0-semimartingale then (Ỹt)t≥0 has a modification which is an

(F Ũ ,∞
t )t≥0-semimartingale.

Lemma 5.2. Assume (Zt)t∈R is symmetric. Then (Xt)t≥0 is an (FZ,∞
t )t≥0-semimartin-

gale if and only if (X1
t )t≥0 is an (FZ)t≥0-semimartingale and (X2

t )t≥0 is càdlàg and of
bounded variation.

Proof. The if -part is trivial. To show the only if -part assume (Xt)t≥0 is an (FZ,∞
t )t≥0-

semimartingale. Let X̃t = X1
t − X2

t and let Z̃t = Zt for t ≥ 0 and Z̃t = −Zt when
t < 0. Since (Zt)t∈R is symmetric (X·, Z·)

D
= (X̃·, Z̃·) and from Lemma 5.1 it follows

that (X̃t)t≥0 is an (F Z̃,∞
t )t≥0-semimartingale and hence an (FZ,∞

t )t≥0-semimartingale

since (F Z̃,∞
t )t≥0 = (FZ,∞

t )t≥0. Thus, (X1
t )t≥0 = ((Xt + X̃t)/2)t≥0 is an (FZ,∞

t )t≥0-semi-

martingale and hence an (FZ)t≥0-semimartingale. Moreover, (X2
t )t≥0 is an (FZ,∞

t )t≥0-

semimartingale and hence càdlàg and of bounded variation since X2
t is FZ,∞

0 -measurable
for all t ≥ 0.

We have the following consequence of Lemma 5.2 and Theorem 3.1.

Proposition 5.3. Let (Xt)t≥0 be given by (5.1) and assume it is an (FZ,∞
t )t≥0-semi-

martingale.
If (Zt)t∈R is of unbounded variation then φ is absolutely continuous on R+ with a

density φ′ satisfying (1.3)–(1.4).
If (Zt)t∈R is of bounded variation then (Xt)t≥0 is of bounded variation and φ is of

bounded variation as well.

Proof. Let Z̃t = Zt−Z ′t where (Z ′t)t∈R is an independent copy of (Zt)t∈R and let (X ′t)t≥0
be given by

X ′t =

∫ t

−∞
(φ(t− s)− ψ(−s)) dZ ′s, t ≥ 0. (5.3)

By Lemma 5.1, (X ′t)t≥0 is an (FZ′,∞
t )t≥0-semimartingale, which by independence of fil-

trations shows that (X̃t)t≥0 := (Xt−X ′t)t≥0 is a semimartingale in the (FZ,∞
t ∨FZ′,∞

t )t≥0-

filtration and hence in the (F Z̃,∞
t )t≥0-filtration. Since (Z̃t)t∈R is symmetric Lemma 5.2

shows that (X̃1
t )t≥0 is an (F Z̃

t )t≥0-semimartingale and since (Z̃t)t≥0 has characteris-
tic triplet (0, 2σ2, ν̃) where ν̃(A) = ν(A) + ν(−A), the proposition follows by Theo-
rem 3.1.

Let (Xt)t≥0 denote a fractional Lévy motion, that is

Xt =

∫ t

−∞
((t− s)τ − (−s)τ+) dZs, t ≥ 0, (5.4)
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5. The two-sided case

where τ is such that the integral exists and x+ := x ∨ 0 for all x ∈ R. In the following
let us assume (Zt)t∈R has no Brownian component. Recall the definition of X2

t in (5.2).
From Rajput and Rosiński [28, Theorem 2.8] it follows that it is necessary (and sufficient
when (Zt)t≥0 is symmetric) that

∫ ∞

0

∫ (
|x((t+ s)τ − sτ )|2 ∧ 1

)
ν(dx) ds <∞ (5.5)

for X2
t to be well-defined. A simple calculation shows that (5.5) is satisfied if and only if

τ < 1/2 and

∫

[−1,1]c
|x|1/(1−τ) ν(dx) <∞. (5.6)

Thus it is necessary that (5.6) and (I)–(III) on page 81 are satisfied for (Xt)t≥0 to be well-
defined, and when (Zt)t∈R is symmetric these conditions are also sufficient. [25] studies
processes of the form (5.4) under the assumptions that σ2 = 0,

∫
[−1,1]c|x|

2 ν(dx) < ∞,

γ = −
∫
[−1,1]c x ν(dx) and 0 < τ < 1/2. See also [4] for a study of the well-balanced case.

To avoid trivialities assume τ 6= 0. As an application of Proposition 5.3 and Corol-
lary 3.5 we have the following.

Corollary 5.4. Assume (Zt)t∈R has no Brownian component and let (Xt)t≥0 be an

(FZ,∞
t )t≥0-semimartingale given by (5.4). Then

∫
[−1,1]|x|

1/(1−τ) ν(dx) < ∞ and τ ∈
(0, 1/2).

In particular let (Xt)t≥0 denote a linear fractional stable motion with indexes α ∈
(0, 2] and H ∈ (0, 1), that is

Xt =

∫ t

−∞

(
(t− s)H−1/α − (−s)H−1/α+

)
dZs, t ≥ 0, (5.7)

where (Zt)t∈R is a symmetric α-stable Lévy process (see Samorodnitsky and Taqqu [37,
Definition 7.4.1]). For α = 2, (Xt)t≥0 is a fractional Brownian motion (fBm) with Hurst
parameter H (up to a scaling constant). From Corollary 5.4 it follows that (Xt)t≥0 is an

(FZ,∞
t )t≥0-semimartingale if and only if H = 1/α.

* * *
Let (Xt)t≥0 be given by (5.1) and assume (Zt)t∈R is a symmetric α-stable Lévy process

with α ∈ (1, 2]. If (Xt)t≥0 is an (FZ,∞
t )t≥0-semimartingale it follows by Proposition 5.3

and (1) on page 79 that φ is absolutely continuous on R+ with a density having locally
α-moment. The next result shows that this condition is actually necessary and sufficient
for (Xt)t≥0 to be an (FZ,∞

t )t≥0-semimartingale if we delete “locall”. Thus, extending
Knight [19, Theorem 6.5] from α = 2 to α ∈ (1, 2] we have the following.

Proposition 5.5. Let (Xt)t≥0 be given by (5.1) and assume (Zt)t∈R is a symmetric

α-stable Lévy process with α ∈ (1, 2]. Then (Xt)t≥0 is an (FZ,∞
t )t≥0-semimartingale if

and only if φ is absolutely continuous on R+ with a density in Lα(R+, λ).

Let B denote a Banach space (not necessarily separable) and assume there exists a
countable subset D of the unit ball of B′ (the topological dual space of B) such that

‖x‖ = sup
F∈D

|F (x)|, ∀x ∈ B. (5.8)

Following Ledoux and Talagrand [21, page 133], a B-valued random elementX is called α-
stable if

∑n
i=1 aiFi(X) is a real-valued α-stable random variable for all n ≥ 1, F1, . . . , Fn ∈

D and a1, . . . , an ∈ R.
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5. The two-sided case

Let T denote an interval in R+ and let B denote the subspace of RT containing all
functions which are càdlàg and of bounded variation. Then B is a Banach space in the
total variation norm (but not separable) and since the unit ball of B′ consists of F of
the form

F (f) =

n∑

i=1

ai(f(ti)− f(ti−1)), f ∈ B, (5.9)

where (ai)
n
i=1 ⊆ [−1, 1] and (ti)

n
i=0 is an increasing sequence in T , it follows that B

satisfies (5.8).

Proof of Proposition 5.5. For α = 2 the result follows by Cherny [10, Theorem 3.1]; thus
let us assume α ∈ (1, 2).

Assume (Xt)t≥0 is an (FZ,∞
t )t≥0-semimartingale. According to Lemma 5.2 (X2

t )t≥0
is càdlàg and of bounded variation. Consider (X2

t )t≥0 as an α-stable random element
with values in the Banach space consisting of functions which are càdlàg and of bounded
variation equipped with the total variation norm. Hence from Ledoux and Talagrand
[21, Proposition 5.6] it follows that (X2

t )t≥0 is of integrable variation on each compact
interval. Moreover, by Marcus and Rosiński [23, Corollary 1.1] we have

E[|n(X2
i/n −X2

(i−1)/n)|] ≥ 1
4

(
ai,n ∧

√
ai,n
)
, i, n ≥ 1, (5.10)

where

ai,n :=

∫ ∞

(i−1)/n
ξ̃(|∆nφ(s)|) ds, and ξ̃(x) :=

∫
(|xs|2 ∧ |xs|) ν(ds). (5.11)

Since i 7→ ai,n is decreasing it follows that

E[Var1(X
2)] ≥ sup

n≥1

n∑

i=1

E[|X2
i/n −X2

(i−1)/n|] ≥ sup
n≥1

1

4

(
an,n ∧

√
an,n

)
. (5.12)

By (5.12) we conclude that (an,n)n≥1 is bounded and hence (ξ̃(|∆nφ|))n≥1 is bounded
in L1([1,∞), λ). A straightforward calculation shows ξ̃(x) = c1x

α for all x ≥ 0 for
some constant c1 > 0, which implies that (∆nφ)n≥1 is bounded in Lα([1,∞), λ). Since
α > 1, a sequence in Lα([1,∞), λ) is bounded if and only if it is weakly sequentially
compact (see Dunford and Schwartz [14, Chapter IV.8, Corollary 4]). Thus, by arguing
as in Lemma 4.1 it follows that φ is absolutely continuous with a density in Lα([1,∞), λ).
Furthermore, since (X1

t )t≥0 is an (FZ)t≥0-semimartingale it follows by Corollary 3.4 that
φ is absolutely continuous on R+ with a density locally in Lα(R+, λ). This shows the
only if -part.

Assume conversely φ is absolutely continuous on R+ with a density in Lα(R+, λ).
By Corollary 3.4 (X1

t )t≥0 is an (FZ)t≥0-semimartingale. Thus it is enough to show that
(X2

t )t≥0 is càdlàg and of bounded variation. Since φ is absolutely continuous on R+ with
a density in Lα(R+, λ) it follows by arguing as in Lemma 4.1 that ‖φ(t − ·) − φ(u −
·)‖Lα((−∞,0),λ) ≤ c(t − u) for some c > 0 and all 0 ≤ u ≤ t. For all p ∈ [1, α) and all
u, t ≥ 0 we have

‖X2
t −X2

u‖Lp(P) = Kp,α‖φ(t− ·)− φ(u− ·)‖Lα((−∞,0),λ) ≤ Kp,αc|t− u|, (5.13)

for some constant Kp,α > 0 only depending on p and α. By letting p ∈ (1, α), (5.13)

and the Kolmogorov-C̆entsov Theorem show that (X2
t )t≥0 has a continuous modification.

Moreover, by letting p = 1 (5.13) shows that this modification is of integrable variation
on each compact interval. This completes the proof.
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5. The two-sided case

Motivated by Lemma 5.2 we study in the following proposition infinitely divisible
processes (Xt)t≥0 of bounded variation, where (Xt)t≥0 is on the form Xt =

∫R f(t, s) dZs.
Assume (Xt)t≥0 is càdlàg and of bounded variation. Rosiński [33, Theorem 4] shows that
t 7→ f(t, s) is of bounded variation for λ-a.a. s ∈ R. Extending this we show that the
total variation of f(·, s) must satisfy an integrability condition which is equivalent to
the existence of

∫RVart(f(·, s)) dZs for all t > 0 when (Zt)t∈R is symmetric and has no
Brownian component.

Proposition 5.6. Let f : R+ × R → R denote a measurable function such that Xt =∫R f(t, s) dZs is well-defined for all t ≥ 0. If (Xt)t≥0 is càdlàg and of bounded variation
then ∫ ∫ (

1 ∧ |xVart(f(·, s))|2
)
ν(dx) ds <∞, ∀t > 0. (5.14)

Let (ǫi)i≥1 denote a Rademacher sequence, i.e. (ǫi)i≥1 is an i.i.d. sequence such that
P(ǫ1 = −1) = P(ǫ1 = 1) = 1/2. It is well-known that if (αi)i≥1 ⊆ R then

∑∞
i=1 ǫiαi

converges P-a.s. if and only if
∑∞

i=1 α
2
i < ∞. Let B denote a Banach space satisfy-

ing (5.8). Following Ledoux and Talagrand [21, page 99], a B-valued random element
X is called a vector-valued Rademacher series if there exists a sequence (xi)i≥1 in B
such that

∑∞
i=1 F

2(xi) < ∞ for all F ∈ D, and for all n ≥ 1 and all F1, . . . , Fn ∈ D
(F1(X), . . . , Fn(X)), and (

∑∞
i=1 ǫiF1(xi), . . . ,

∑∞
i=1 ǫiFn(xi)) has the same distribution.

Proof of Proposition 5.6. By a symmetrization argument we may and do assume that
σ2 = 0 and (Zt)t∈R is symmetric. Define

Yt =

∞∑

j=1

ǫjCjf(t, Uj), t ≥ 0, (5.15)

where (ǫj)j≥1 is a Rademacher sequence, (τj)j≥1 are the partial sums of i.i.d. standard
exponential random variables and (Uj)j≥1 are i.i.d. standard normal random variables
with density ρ, and (ǫj)j≥1, (τj)j≥1 and (Uj)j≥1 are independent. Let ν← : R+ → R+

denote the right-continuous inverse of the mapping x 7→ ν((x,∞)), that is, ν←(s) =
inf{x > 0 : ν((x,∞)) ≤ s}, and let Cj := ν←(τjρ(Uj)) for all j ≥ 1. By Rosiński
[33, Proposition 2], the series (5.15) converges P-a.s. and (Yt)t≥0 has the same finite
dimensional distributions as (Xt)t≥0. Thus, (Yt)t≥0 has a càdlàg modification of locally
bounded variation. Hence we may and do assume (Xt)t≥0 is given by (5.15). Moreover we
may define (ǫj)j≥1 on a probability space (Ω′,F ′,P′), (τj)j≥1 and (Uj)j≥1 on a probability
space (Ω′′,F ′′,P′′) and (Xt)t≥0 on the product space. Let T = [0, t] denote a compact
interval in R+ and let B denote the subspace of RT consisting of functions which are
càdlàg and of bounded variation. Inspired by [24] let us fix ω′′ ∈ Ω′′ and consider
X = (Xt)t∈T as a B-valued Rademacher series under P′. From Ledoux and Talagrand

[21, Theorem 4.8] it follows that E′[eα‖X‖
2
] < ∞ for all α > 0, which in particular

shows that (Xt)t∈T is of P′-integrable variation. By Khinchine’s inequality there exists
a constant c > 0 such that E′[|Xt −Xu|] ≥ c‖Xt −Xu‖L2(P′) for all u, t ≥ 0. Together

with the triangle inequality in l2 this shows that

E′
[ n∑

i=1

|Xti −Xti−1 |
]
≥ c

n∑

i=1

( ∞∑

j=1

C2
j (f(ti, Uj)− f(ti−1, Uj))

2
)1/2

(5.16)

≥ c
( ∞∑

j=1

( n∑

i=1

|Cj(f(ti, Uj)− f(ti−1, Uj))|
)2)1/2

(5.17)
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References

= c
( ∞∑

j=1

(
|Cj|

n∑

i=1

|f(ti, Uj)− f(ti−1, Uj)|
)2)1/2

. (5.18)

Thus, by monotone convergence we conclude

E′[Vart(X)] ≥ c
( ∞∑

j=1

(
CjVart(f(·, Uj))

)2)1/2
, (5.19)

and in particular (CjVart(f(·, Uj))j≥1 ∈ l2. Hence,
∑∞

j=1 ǫjCjVart(f(·, Uj)) converges
P-a.s. and from Theorem 2.4 and Proposition 2.7 in [34] it follows that

∫ ∞

0

∫ (
1 ∧H(u, v)2

)
ρ(v) dv du <∞, (5.20)

where H(u, v) = ν←(uρ(v))Vart(f(·, v)). Furthermore, (5.20) equals

∫ ∫ (
1 ∧ (ν←(u)Vart(f(·, v)))2

) 1

ρ(v)
du ρ(v) dv (5.21)

=

∫ ∫ (
1 ∧ (uVart(f(·, v))2

)
ν(du) dv, (5.22)

which shows (5.14).
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1. Introduction

1 Introduction

The present paper is concerned with various properties of chaos processes. Chaos pro-
cesses includes processes for which all coordinates belongs to a Wiener chaos of a fixed
finite order, infinitely divisible processes, Rademacher processes, linear processes and
more general processes which are limits of tetrahedral polynomials; see Section 2 for
more details. In Rosiński et al. [29] continuity and zero-one laws are derived for some
classes of chaos processes. Houdré and Pérez-Abreu [11] and Janson [16] provides good
surveys on various aspects of chaos processes.

In the first part we extend important results for Gaussian to chaos processes. In
particular that of Jain and Monrad [15] saying that if a separable Gaussian process is of
bounded variation then the L2-expansion converge in total variation norm to the process.
Together with the observation by Jeulin [17] that the process in this case is absolutely
continuous with respect to a deterministic measure. Likewise the characterization of a
stationary Gaussian processes of bounded variation, Ibragimov [12], and the canonical
decomposition of a Gaussian quasimartingale, Jain and Monrad [15], together with the
extension to Gaussian semimartingales, Stricker [30], are generalized. Extensions of the
result on Gaussian Dirichlet processes obtained by Stricker [31] are also given. Further-
more we prove that chaos processes admitting a p-variation for some p ≥ 1 are almost
surely continuous except on an at most countable set, generalizing a result of Itô and
Nisio [13].

In the second part we study moving averages X = φ ∗ Y also known as stochastic
convolutions. When Y is a Brownian motion, Knight [19] has characterized those kernels
φ for which X is an FY -semimartingale, and Jeulin and Yor [18] and Basse [2] those φ for
which X is an FX -semimartingale. Basse and Pedersen [4] have characterized those φ for
which X is an FY -semimartingale in the case where Y is Lévy process. Moreover, Basse
[1] extends Knight’s result to the spectral representation of general Gaussian processes.
Using the obtained decomposition results we provide necessary and sufficient conditions
on φ for X to be an FY -semimartingale. This result covers in particular the case where
dYt = σt dWt and σ is Gaussian chaos process associated with the Brownian motion W .

2 Preliminaries

Let (Ω,B,P) denote a complete probability space equipped with a filtration F = (Ft)t∈[0,T ]
satisfying the usual conditions. T > 0 is here a fixed positive number. A càdlàg F-
adapted process X = (Xt)t∈[0,T ] is called an F-semimartingale if it admits a representa-
tion

Xt = X0 +At +Mt, t ∈ [0, T ], (2.1)

where M is a càdlàg F-local martingale starting at 0 and A is a càdlàg process of bounded
variation starting at 0. Furthermore, X is called a special F-semimartingale if A in (2.1)
can be chosen predictable and in this case the decomposition is unique. A special F-
semimartingale X with canonical decomposition X = X0 +M +A, is said to belong to

Hp for p ≥ 1 if E[[M ]
p/2
T + VA(T )

p] < ∞. VA(t) denotes the total variation of s 7→ As
on [0, t] and [M ]t the quadratic variation of M on [0, t]. For each càdlàg process X set
DX = {t ∈ [0, T ] : P(Xt = Xt−) < 1}. Then as it is well-known DX is at most countable
and DX is empty if and only if X is continuous in probability.
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2. Preliminaries

Variation of processes will be important. To simplify the notation we set for each
p ≥ 1, X = (Xt)t∈[0,T ] and τ = {0 ≤ t0 < · · · < tn ≤ T}

|τ | = max
1≤i≤n

|ti − ti−1| and V p,τ
X =

n∑

i=1

|Xti −Xti−1 |p. (2.2)

We say that X admits a p-variation if there exists a right-continuous process [X](p)

such that for all t ∈ [0, T ] V p,τ
X → [X]

(p)
t in probability as |τ | → 0, where τ runs

through all subdivisions of [0, t]. Furthermore, X is said to be of bounded p-variation if
{V p,τ

X : τ subdivision of [0, T ]} is bounded in L0. If p = 2 we use the short-hand notation

[X] for the quadratic variation of X, that is [X] = [X](2). Observe that VX(t) = [X]
(1)
t ,

if VX(T ) <∞ a.s.
If X admits a p-variation then it is also of bounded p-variation. Likewise if X is

of bounded p-variation it is also of bounded q-th variation for all q ≥ p since p 7→
(
∑n

i=1|ai|p)1/p is decreasing. If X is càdlàg and τn are subdivisions of [0, T ] such that
|τn| → 0 then

lim inf
n→∞

V p,τn
X ≥

∑

0<s≤T

|∆Xs|p, a.s. (2.3)

Thus using

P(lim inf
n→∞

V p,τn
X > x) ≤ sup

n≥1
P(V p,τn

X > x), for all x > 0, (2.4)

we have that
∑

0<s≤T |∆Xs|p <∞ a.s. if X is of bounded p-variation.
Throughout the following I denotes a set and for all i ∈ I, Hi is a family of indepen-

dent random variables. Set H = {Hi}i∈I . For each Banach space F and i ∈ I let Pd
Hi

(F )
denote the set of variables p(Z1, . . . , Zn) where n ≥ 1, Z1, . . . , Zn different elements in
Hi and p is an F -valued tetrahedral polynomial of order d. Recall that p : Rn → F is
called an F -valued tetrahedral polynomial of order d if there exist x0, xi1,...,ik ∈ F such
that

p(z1, . . . , zn) = x0 +

d∑

k=1

∑

1≤i1<···<ik≤n

xi1,...,ik

k∏

j=1

zij . (2.5)

Let Pd
H(F ) denote the closure in distribution of ∪i∈IPd

Hi
(F ), that is, Pd

H(F ) is the set of

all F -valued random elements X for which there exists a sequence (Xk)k≥1 ⊆ ∪i∈IPd
Hi

(F )
converging weakly to X.

The following two conditions on H will be important:

(a) For q ∈ (0,∞) there exists β1, β2 > 0 such that for all Z ∈ ∪i∈IHi there exists cZ > 0
satisfying

P(|Z| ≥ cZ) ≥ β1 and E[|Z|q, |Z| > s] ≤ β2s
qP(|Z| > s) s ≥ cZ . (2.6)

(b)
⋃

i∈I

Hi ⊆ L1 and sup
i∈I

sup
Z∈Hi

(‖Z − E[Z]‖∞
‖Z − E[Z]‖2

)
= β3 <∞. (2.7)

Notation, chaos processes. A real-valued stochastic process X = (Xt)t∈U is said to be

a chaos process of order d if (Xt1 , . . . ,Xtn) ∈ Pd
H(Rn) for all n ≥ 1 and t1, . . . , tn ∈ U .

Furthermore X is said to be a chaos process if it is a chaos process of order d for some
d ≥ 1. A chaos process X is said to satisfy Cq for 0 < q <∞, if the associated H satisfies
(a) for the given q and if d ≥ 2 all Z ∈ ∪i∈IHi are symmetric. Moreover, X is said to
satisfy C∞ if H satisfies (b).
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2. Preliminaries

Following Fernique [9] a mapping N , from a vector space V into [0,∞], is called a
pseudo-seminorm if for all θ ∈ R and x, y ∈ V we have

N(θx) = |θ|N(x) and N(x+ y) ≤ N(x) +N(y). (2.8)

The following result, which is taken from Basse [3, Theorem 2.7], is crucial for this paper.
Here d ≥ 1 and q > 0 are given numbers.

Theorem 2.1. Let U denote a countable set, X = (Xt)t∈U a chaos process of order d
satisfying Cq and N a lower semi-continuous pseudo-seminorm on RU equipped with the
product topology such that N(X) < ∞ a.s. Then for all finite p ≤ q there exists a real
constant kp,q,d,β, only depending on p, q, d and the β’s from (a) and (b), such that

‖N(X)‖q ≤ kp,q,d,β‖N(X)‖p <∞. (2.9)

Three important examples of chaos processes satisfying Cq are given as follows:

(1): Let G denote a vector space of Gaussian random variables, and for d ≥ 1 Pd
G

be the closure in probability of all random variables of the form p(Z1, . . . , Zn), where
n ≥ 1, Z1, . . . , Zn ∈ G and p : Rn → R is a polynomial of degree at most d (not

necessarily tetrahedral). X = (Xt)t∈U satisfying {Xt : t ∈ U} ⊆ Pd
G is then called a

Gaussian chaos process of order d, and it is in particular a chaos process satisfying C∞
(see Basse [3]); in fact we may chose I = {0} and H0 to be a Rademacher sequence.
Recall that a Rademacher sequence is an independent, identically distributed sequence
(Zn)n≥1 such that P(Z1 = ±1) = 1

2 . The key example of a Gaussian vector space G is

G =

{∫ ∞

0
h(s) dWs : h ∈ L2(R+, λ)

}
, (2.10)

where W is a Brownian motion and λ is the Lebesgue measure. In this case X is a
Gaussian chaos process of order d if and only if it has the following representation in
terms of multiple Wiener-Itô integrals

Xt =

d∑

k=0

∫Rk
+

fk,t(s1, . . . , sk) dWs1 · · · dWsk , t ∈ U, (2.11)

where fk,t ∈ L2(Rk
+). Processes of the form (2.11) appear as weak limits of U -statistics,

see Janson [16, Chapter 11] and de la Peña and Giné [7]. For a detailed survey on
Gaussian chaos processes and expansions, see Janson [16], Nualart [25] and Houdré and
Pérez-Abreu [11].

(2): Let X = (Xt)t∈U be given by

Xt =

∫

S
f(t, s)Λ(ds), t ∈ U, (2.12)

where Λ is an independently scattered infinitely divisible random measure (or random
measure for short) on some non-empty space S equipped with a δ-ring S, and s 7→ f(t, s)
are Λ-integrable deterministic functions in the sense of Rajput and Rosiński [28]. The
associated H = {Hi}i∈I is here described by

Hi = {Λ(A1), . . . ,Λ(An)}, i ∈ I, (2.13)

for I denoting the set of all finite collections {A1, . . . , An} where A1, . . . , An are disjoint
sets in S. In this case X is a chaos process of order 1. For example if X is a symmetric
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3. Path properties

α-stable process separable in L0, then X has a representation of the form (2.12) and
hence it follows that it is a chaos process of order 1 satisfying Cq for all q < α. For
further examples of random measures Λ for which X given by (2.12) satisfies Cq see
Basse [3].

(3): Assume that (Zn)n≥1 is a sequence of independent, identically distributed ran-
dom variables and x(t), xi1,...,ik(t) ∈ R are real numbers such that

Xt = x(t) +

d∑

k=1

∑

1≤i1<···<ik<∞

xi1,...,ik(t)

k∏

j=1

Zij , (2.14)

exists in probability for all t ∈ U , then X = (Xt)t∈U is a chaos process of order d
associated to I = {0} and H0 = {Zn : n ≥ 1}. If for some α > 0, x 7→ P(|Z1| > x)
is regularly varying with index −α then H satisfies (a) for all q ∈ (0, α); see Bingham
et al. [5, Theorem 1.5.11]. In particular, if Z1 follows a symmetric α-stable distribution
for some α ∈ (0, 2) then H satisfies (a) for all q ∈ (0, α). If the common distribution is
Poisson, exponential, gamma or Gaussian then H satisfies (a) for all q > 0. Finally, H
satisfies (b) if and only if Z1 is a.s. bounded.

3 Path properties

For all p ≥ 0 and all subset A of Lp denote by spanLpA the Lp-closure of the linear span
of A. Let X = (Xt)t∈[0,T ] be a square-integrable process for which spanL2{Xt : t ∈ [0, T ]}
is a separable Hilbert space with orthonormal basis (Ui)i≥1. Let X

(n)
t denote the n-th

order L2-expansion of Xt given by

X
(n)
t =

n∑

j=1

fj(t)Uj , (3.1)

where fj(t) = E[UjXt] for j ≥ 1. Note that for t ∈ [0, T ], limnX
(n)
t = Xt in L2. The

above separability assumption is always satisfied if X is a càdlàg process satisfying Cq
for some q ∈ [2,∞].

If X is càdlàg and of integrable variation µX denotes the Lebesgue–Stieltjes measure
on [0, T ] induced by t 7→ E[VX(t)]. In this context we have the following extension of Jain
and Monrad [15, Theorem 1.2] and Jeulin [17] in the Gaussian case. Here BV ([0, T ])
denotes the Banach space {f ∈ R[0,T ] : f càdlàg and Vf (T ) < ∞} equipped with the
norm ‖f‖BV = Vf (T ) + |f(0)|.
Theorem 3.1. Let X = (Xt)t∈[0,T ] denote a càdlàg process of bounded variation satis-

fying Cq for some q ∈ [2,∞]. Then there exists a subsequence (nk)k≥1 such that X(nk)

converges a.s. to X in BV ([0, T ]) and X is a.s. absolutely continuous with respect to µX .

For an α-stable process X of the form (2.12) with 1 < α < 2, it is shown in Pérez-Abreu
and Rocha-Arteaga [26, Theorem 4(b)] that if X is of bounded variation and satisfies
some additional assumption then it is absolutely continuous with respect to µX . This
situation is not covered by Theorem 3.1 since for such processes only Cq for q ∈ (0, α) is
satisfied. If the sample paths of X are contained in a separable subspace of BV ([0, T ])
Theorem 3.1 follows by Basse [3, Corollary 2.11]. On the other hand, Theorem 3.1 insures
that almost all sample paths of X do belong to a separable subspace of BV ([0, T ]), more
precisely to the space of functions which are absolutely continuous with respect to µX .

Theorem 3.1 is a direct consequence of Theorem 2.1 and the following lemma, in
which X, X(n) and fj are as above.
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3. Path properties

Lemma 3.2. Assume that X = (Xt)t∈[0,T ] is a càdlàg process of integrable variation
such that ‖Xs −Xu‖2 ≤ c‖Xs −Xu‖1 for all 0 ≤ s < u ≤ T and some c > 0. Then each
fj is absolutely continuous with respect to µX and limn E[VX−X(n)(T )] = 0.

Proof. For j ≥ 1 and 0 ≤ s < u ≤ T we have

|fj(s)− fj(u)| ≤ ‖Uj‖2‖Xs −Xu‖2 ≤ c‖Xs −Xu‖1, (3.2)

which shows that each fj is absolutely continuous with respect to µX . Let ψj denote the
density of fj with respect to µX . We have

E[VX−X(n)(T )] ≤ sup
k≥1

ak∑

i=1

( ∞∑

j=n+1

(fj(t
k
i )− fj(t

k
i−1))

2
)1/2

, (3.3)

where τk = {0 = tk0 < · · · < tkak = T} are nested subdivisions of [0, T ] satisfying |τk| → 0.
By Jeulin [17, Lemme 3] the right-hand side of (3.3) equals

∫ T

0

( ∞∑

j=n+1

ψj(s)
2
)1/2

µX(ds). (3.4)

Another application of Jeulin [17, Lemme 3] yields

∫ T

0

( ∞∑

j=1

ψj(s)
2
)1/2

µX(ds) (3.5)

= sup
k≥1

ak∑

i=1

( ∞∑

j=1

(fj(t
k
i )− fj(t

k
i−1))

2
)1/2

≤ cE[VX(T )] <∞. (3.6)

Thus by Lebesgue’s dominated convergence theorem, limn E[VX−X(n)(T )] = 0. This
completes the proof.

The equivalence of the L1- and L2-norms of the increments of X is crucial for
Lemma 3.2 to be true. For example if X is a Poisson process with parameter λ > 0
then µX is proportional to the Lebesgue measure but all paths are step functions.

Corollary 3.3. Let X = (Xt)t∈[0,T ] be as in Theorem 3.1. Then for every Radon measure
µ on [0, T ] there exists a unique decomposition Xt = Yt + At of X, where Y and A are
càdlàg processes of bounded variation such that Y is absolutely continuous with respect
to µ and A is singular to µ and {Yt, At : t ∈ [0, T ]} ⊆ spanL0{Xt : t ∈ [0, T ]}.

Proof. Let S0 = spanL0{Xt : t ∈ [0, T ]}. Since S0 is L2-closed the Un’s in (3.1) belong
to S0. For each j ≥ 1, decompose fj in (3.1) as fj = gj + hj , where gj , hj are càdlàg
functions of bounded variation, gj being absolutely continuous with respect to µ and hj
singular to µ. Set

Y
(n)
t =

n∑

j=1

gj(t)Uj and A
(n)
t =

n∑

j=1

hj(t)Uj , t ∈ [0, T ]. (3.7)

For all n, k ≥ 1,

VX(n)−X(k)(T ) = VY (n)−Y (k)(T ) + VA(n)−A(k)(T ). (3.8)
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3. Path properties

By Theorem 3.1 there exists a subsequence (nk)k≥1 such that limkX
(nk) = X in the

total variation norm on [0, T ] and so by completeness (3.8) implies that limk Y
(nk) and

limk A
(nk) exist in total variation norm a.s. Calling these limit processes Y and A we

have for all t ∈ [0, T ]

lim
k→∞

Y
(nk)
t = Yt and lim

k→∞
A

(nk)
t = At, a.s., (3.9)

showing that Yt, At ∈ S0. Moreover since the sets of functions which are absolutely
continuous with respect to µ respectively singular to µ are closed in BV ([0, T ]) the proof
of the corollary is complete.

Lemma 3.4. Let X denote a càdlàg process process of bounded p-th variation. Then X
admits an q-variation for all q > p and

[X]
(q)
t =

∑

0<s≤t

|∆Xs|q <∞, 0 ≤ t ≤ T. (3.10)

Proof. Fixed q > p and set for 0 ≤ t ≤ T and n ≥ 1

Xn
t =

∑

0<s≤t

∆Xs1{|∆Xs|>1/n}, St =
∑

0<s≤t

|∆Xs|q. (3.11)

Recall that St <∞ a.s. since X is of bounded q-variation. For all n ≥ 1 Xn has piecewise
constant sample paths and so Xn admits a q-variation and

[Xn]
(q)
t =

∑

0<s≤t

|∆Xs|q1{|∆Xs|>1/n} −−−→
n→∞

St a.s., t ∈ [0, T ]. (3.12)

Therefore it reduces to show

lim
n→∞

lim sup
|τ |→0

P(
∣∣V q,τ
X − V q,τ

Xn

∣∣ > ǫ) = 0 for all ǫ > 0. (3.13)

Writing X̃n
t for Xt −Xn

t we have for all n ≥ 1, t ∈ [0, T ] and subdivisions τ = {0 = t0 <
· · · < tk = t}

∣∣V q,τ
X − V q,τ

Xn

∣∣ ≤
k∑

i=1

∣∣|Xti −Xti−1 |q − |Xn
ti −Xn

ti−1
|q
∣∣ ≤ q

k∑

i=1

Cq−1i |X̃n
ti − X̃n

ti−1
|, (3.14)

for some Ci’s between |Xn
ti −Xti−1 | and |X̃n

ti − X̃ti−1 |, and hence by Hölder’s inequality

∣∣V q,τ
X − V q,τ

Xn

∣∣ ≤ q
( k∑

i=1

Cqi

)(q−1)/q( k∑

i=1

|X̃n
ti − X̃n

ti−1
|q
)1/q

(3.15)

≤ q
(
V q,τ
X + V q,τ

Xn

)(q−1)/q(
max
1≤i≤k

|X̃n
ti − X̃n

ti−1
|q−pV p,τ

X̃n

)1/q
(3.16)

≤ q2p/q
(
V q,τ
X + V q,τ

Xn

)(q−1)/q(
V p,τ
X + V p,τ

Xn

)1/q
max
1≤i≤k

|X̃n
ti − X̃n

ti−1
|(q−p)/q. (3.17)

Using that max1≤i≤k|X̃n
ti − X̃n

ti−1
| < 2n−1 for |τ | sufficiently small we have

lim sup
|τ |→0

P(
∣∣V q,τ
X − V q,τ

Xn

∣∣ > ǫ) (3.18)

≤ lim sup
|τ |→0

P
(
q2p/q(V q,τ

X + St)
(q−1)/q(V p,τ

X + S
p/q
t )1/q2n−1 >

ǫ

2

)
, (3.19)

which implies (3.13) since {V p,τ
X : τ} is bounded in L0.
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3. Path properties

Proposition 3.5. Let X denote a càdlàg process. Assume that it admits a p-variation
and satisfies Cq for some q ∈ [2p,∞] or that it is of bounded p-variation and satisfies Cq
for some q ∈ (2p,∞]. Then a.s. X is discontinuous only on DX , and hence X is a.s.
continuous if and only if it is continuous in probability.

In the proof we need the following two remarks concerning any càdlàg process X:

(i) If X is of integrable variation then µX({t}) > 0 if and only if t ∈ DX .

(ii) If X admits a p-variation then ∆[X](p) = |∆X|p.

To prove (i) let t > 0 and choose (tn)n≥1 ⊆ [0, t) such that tn ↑ t. By Lebesgue’s
dominated convergence theorem we have

µX({t}) = lim
n→∞

E[VX(t)− VX(tn)] = E
[
lim
n→∞

(VX(t)− VX(tn))
]
= E[|∆Xt|], (3.20)

which shows (i). For p = 2 (ii) follows by Jacod [14, Lemme 3.11]. The general case can
be proved by imitating Jacod’s proof.

Proof of Proposition 3.5. We may assume that X admits a p-variation. Indeed, if X is of
bounded p-variation and satisfies Cq for some q ∈ (2p,∞] then according to Lemma 3.4
it admits a q

2 -variation.
Assume therefore that X admits a p-variation and satisfies Cq for a q ∈ [2p,∞]. Let

0 ≤ u < t ≤ T and choose subdivisions τn of [u, t] such that

lim
n→∞

V p,τn
X = [X]

(p)
t − [X](p)u , almost surely. (3.21)

For f ∈ R[0,T ] let
N(f) = lim sup

n→∞
(V p,τn
f )1/p. (3.22)

Then N is a lower semicontinuous pseudo-seminorm, and since ([X]
(p)
t − [X]

(p)
u )1/p =

N(X) a.s. it follows by Theorem 2.1 that

‖[X]
(p)
t − [X](p)u ‖2 = ‖N(X)‖p2p ≤ kpp,2p‖N(X)‖pp = kpp,2p‖[X]

(p)
t − [X](p)u ‖1 <∞. (3.23)

For u = 0 this gives that [X](p) is integrable and since it is increasing it is also of integrable
variation. Hence by Lemma 3.2 [X](p) is a.s. absolutely continuous with respect to µ[X](p)

and so by (i) [X](p) is continuous on Dc
[X](p)

. Finally, by applying (ii) it follows that X

is continuous on Dc
X . Therefore, X has continuous sample paths if and only if DX is

empty, that is if X is continuous in probability.

For f : R→ R, let Wf : R→ [0,∞] denote its oscillation function given by

Wf (t) = lim
n→∞

sup
u,s∈[t−1/n,t+1/n]

|f(s)− f(u)|, t ∈ R. (3.24)

Itô and Nisio [13, Theorem 1] show that each separable Gaussian process which is con-
tinuous in probability has a deterministic oscillation function. By Marcus and Rosen
[22, Theorem 5.3.7] this is also true for Rademacher processes. Furthermore, Camba-
nis et al. [6] show that a very large class of infinitely divisible processes also have this
property. Thus for such processes Proposition 3.5 holds even without the assumption
of being of bounded p-variation. On the other hand the following example shows that
Gaussian chaos processes do not in general have deterministic oscillation functions. Let
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(Yt)t≥0 denote a Gaussian process which is continuous in probability and has oscillation
function t 7→ α(t) ∈ (0,∞) and such that Y0 is non-deterministic. Then X, given by
Xt = Y0Yt, is a separable second-order Gaussian chaos process continuous in probability
with oscillation function t 7→ |Y0|α(t).

3.1 The stationary increment case

According to e.g. Doob [8], a centered and L2-continuous process X = (Xt)t∈R with
stationary increments has a spectral measuremX , which is the unique symmetric measure
integrating s 7→ (1 + s2)−1 and satisfying

ΓX(t, u) := E[(Xt −X0)(Xu −X0)] =

∫R (eits − 1)(e−ius − 1)

s2
mX(ds). (3.25)

Furthermore set vX(t) = ΓX(t, t), and if X is stationary denote by RX its auto covariance
function, and by nX the unique finite and symmetric measure satisfying

RX(t) = E[XtX0] =

∫R eits nX(ds), t ∈ R. (3.26)

Proposition 3.6. Assume that X is an L2-continuous process with stationary increments
satisfying condition Cq for some q ∈ [2,∞]. Then the following five conditions are
equivalent:

(i) X has a.s. càdlàg paths of bounded variation,

(ii) X has a.s. absolutely continuous paths,

(iii) mX(R) <∞, (iv) ΓX ∈ C2(R2;R), (v) vX ∈ C2(R;R).

If X is stationary then (i)-(v) are also equivalent to
∫R t2 nX(dt) <∞ or RX ∈ C2(R;R).

The Gaussian case is covered by Ibragimov [12, Theorem 12]. See also Doob [8, page 536]
for general results about mean-square differentiability. A Hermite process X with pa-
rameter (d,H) ∈ N × (12 , 1) is a Gaussian chaos process of order d with stationary
increments and the same covariance function as the fractional Brownian motion with
Hurst parameter H; see Maejima and Tudor [21] for a precise definition. The corre-
sponding spectral measure is mX(ds) = cH |s|1−2H ds, that is a non-finite measure, and
so by Proposition 3.6 X is not of bounded variation.

Proof. Assume (i), that is X has càdlàg paths of bounded variation. The stationary
increments implies that µX equals the Lebesgue measure up to a scaling constant. Thus
(i)⇒(ii) since by Theorem 3.1 X is absolutely continuous with respect to µX . (ii)⇒(i)
is obvious. Furthermore if X is càdlàg and of bounded variation then by Proposition 3.7
below we have

∞ > sup
n≥1

(
n2vX(1/n)

)
≥ sup

n≥1

∫R (sin(s/n)s/n

)2
mX(ds). (3.27)

Hence by Fatou’s lemma mX(R) <∞ and so (i)⇒(iii). (iii)⇒(iv)⇒(v) are easy. To see
that (v) implies (i) assume vX ∈ C2(R;R). Since vX is symmetric and vX(0) = 0 we have
v′X(0) = 0. Thus vX(t) = O(t2) as t→ 0 and hence by Proposition 3.7 X is of bounded
1-variation. To show that a.a. sample paths of X are càdlàg and of bounded variation let
τn be nested subdivisions of [a, b] such that |τn| → 0. Using that an increasing sequence
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4. Semimartingales

which is bounded in L0 is a.s. bounded, supn≥1 V
1,τn
X < ∞ a.s. Since X has sample

paths of bounded variation through ∪n≥1τn and is L2-continuous we may choose a right-
continuous modification of X. This modification will then have càdlàg paths of bounded
variation, showing (i). The stationary case follows by similarly arguments.

Proposition 3.7. Let p ≥ 1 and assume that X is an L2-continuous process with station-
ary increments and satisfies Cq for some q ∈ [p,∞]. Then X is of bounded p-variation
if and only if vX(t) = O(t2/p) as t → 0. Furthermore, X admits a p-variation zero, i.e.

[X]
(p)
t ≡ 0, if and only if vX(t) = o(t2/p) as t→ 0.

Proof. Assume that X is of bounded p-variation. For all r ≤ v ≤ q there exists, according
to Theorem 2.1, a constant kr,v such that for all subdivisions τ

‖(V p,τ
X )1/p‖v ≤ kr,q‖(V p,τ

X )1/p‖r <∞. (3.28)

Since {(V p,τ
X )1/p : τ} is bounded in L0, (3.28) and Krakowiak and Szulga [20, Corol-

lary 1.4] shows that supτ‖(V p,τ
X )1/p‖v <∞. In particular for v = p

∞ > sup
τ

E[V p,τ
X ] = sup

τ

k∑

i=1

E
[
|Xti −Xti−1 |p

]
, (3.29)

where τ = {0 = t0 < · · · < tk = T}. Using the equivalence of moments of X, see
Theorem 2.1, it now follows that X is of bounded p-variation if and only if

sup
τ

k∑

i=1

vX(ti − ti−1)
p/2 <∞. (3.30)

This proves the first part of the statement since (3.30) is equivalent to vX(t) = O(t2/p).
Similar arguments show that X admits a p-variation zero if and only if

lim
|τ |→0

k∑

i=1

vX(ti − ti−1)
p/2 = 0. (3.31)

Thus by observing that (3.31) is satisfied if and only if vX(t) = o(t2/p) the proof is
complete.

By definition vX(t) = t2H for a Hermite process X with parameters (d,H). Thus by
Proposition 3.7 X is of bounded p-variation if and only if p ≥ 1

H . Moreover, X has
p-variation zero if and only if p > 1

H . If X is Gaussian such that vX is concave and

α := limt→0 vX(t)/t
2/p exists in R for some p ≥ 2 it is possible to show that X admits a p-

variation; see Marcus and Rosen [22, Theorem 10.2.3]. The special case α = 0 is included
in the above Proposition 3.7, however a generalization to α > 0 is not straightforward
since the proof here relies on Borell’s isoperimetric inequality in which the Gaussian
assumption is crucial.

4 Semimartingales

In this section we characterize the canonical decomposition of chaos semimartingales,
and in the next section this characterization is used to study when a moving average is
a semimartingale.
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4. Semimartingales

The canonical decomposition of Gaussian quasimartingales are characterized in Jain
and Monrad [15] and their result is extended to Gaussian semimartingales in Stricker [30].
Theorem 2.1 allows us to generalize this to a much larger setting. The proof by Stricker
[30] relies on the fact that a càdlàg Gaussian process X, and in particular Gaussian
semimartingales, only has jumps on DX . If X is a chaos process satisfying Cq for some
q ∈ [4,∞] admitting a quadratic variation we know by Proposition 3.5 that X has only
jumps on DX , allowing us to proceed as in Stricker [30]. However, in the case q ∈ [1, 4)
we need a result by Meyer [23].

We shall need the following notation: Given a filtration F , a process X is said to
be (F , q)-stable if (E[Xt|Fs])s,t∈[0,T ] is a chaos process satisfying Cq. In this case set
PC = spanL0{E[Xt|Fs] : s, t ∈ [0, T ]}.
Theorem 4.1. Let X = (Xt)t∈[0,T ] denote an (F , q)-stable chaos process for some q ∈
[1,∞]. If X is an F-semimartingale then X ∈ Hp for all finite p ∈ [1, q] and {At,Mt :

t ∈ [0, T ]} ⊆ PC, where X = X0 +M + A is the F-canonical decomposition of X. In
particular A and M are chaos processes satisfying Cq.

Let Md and M c denote, respectively, the purely discontinuous and continuous martin-
gale component of M and Ac, Asc and Ad the absolutely continuous, singular continuous
respectively discrete component of A. If q ∈ [4,∞] then X has a.s. only jumps on DX and
has therefore a.s. continuous paths if and only if it is continuous in probability. Moreover,
{M c

t ,M
d, Act , A

sc, Adt : t ∈ [0, T ]} ⊆ PC, and for each t ∈ [0, T ] we have

Md
t =

∑

s∈(0,t]∩DX

∆Ms and Adt =
∑

s∈(0,t]∩DX

∆As, (4.1)

where both sums converge in Lp for all finite p ≤ q and the second converges also abso-
lutely a.s.

Proof. Consider subdivisions τn = {0 = tn0 < · · · < tn2n = T} where tni = T i2−n for
i = 0, . . . , 2n. By passing to a subsequence we may assume that limn→∞ V

2,τn
X exists a.s.

For f : [0, T ] ∩Q→ R define

Φ(f) := sup
n≥1

√
V 2,τn
f . (4.2)

Then Φ is a lower semicontinuous pseudo-seminorm on R[0,T ]∩Q and Φ(X) < ∞ a.s.
Since X is a chaos process satisfying Cq Theorem 2.1 shows that E[Φ(X)p] < ∞ for all
finite p ≤ q. In particular Φ(X) is integrable and hence by Meyer [23] X is a special
F-semimartingale. Denoting by A its bounded variation component Meyer [23] shows
moreover that

SXn :=
2n∑

i=1

E[Xti −Xti−1 |Fti−1 ] −−−→n→∞
AT in the weak L1-topology. (4.3)

Since PC is L1-closed, (4.3) shows that AT ∈ PC. Similar arguments show that {As :

s ∈ [0, T ]} ⊆ PC and hence also {Ms : s ∈ [0, T ]} ⊆ PC. Since X is (F , q)-stable this
shows that A and M are chaos processes satisfying Cq. Thus by arguing as above we

have E[[M ]
p/2
T ] <∞ for all finite p ≤ q. Moreover define for f : [0, T ] ∩Q→ R

Ψ(f) := sup
n≥1

V 1,τn
f . (4.4)

Then Ψ is a lower semicontinuous pseudo-seminorm on R[0,T ]∩Q and Ψ(A) < ∞ a.s..
Hence by Theorem 2.1, E[VA(T )

p] <∞ for all finite p ≤ q implying that X ∈ Hp for all
finite p ≤ q.
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4. Semimartingales

To prove the second part assume q ≥ 4. By Corollary 3.3, Ac, Asc, Ad ⊆ PC, since
A ⊆ PC. We claim that DA ⊆ DX . Assume on the contrary there exists a number
t ∈ DA \DX . Then

∆At = E[∆At|Ft−] = −E[∆Mt|Ft−] = 0, a.s. (4.5)

contradicting the assumption that t ∈ DA. Hence DA and therefore also DM are con-
tained in DX . By Proposition 3.5, A and M are continuous on Dc

A respectively Dc
M ,

implying that they are continuous on Dc
X . This shows that Ad is of the form (4.1). Set

(Yt)t∈[0,T ] =

(∫ t

0
1Dc

X
(s) dMs

)

t∈[0,T ]

and (Ut)t∈[0,T ] =

(∫ t

0
1DX

(s) dMs

)

t∈[0,T ]

.

(4.6)
Since (∆Yt)t∈[0,T ] = (1Dc

X
(t)∆Mt)t∈[0,T ] and M is continuous on Dc

X , Y is a continuous
martingale. On the other hand for every continuous bounded martingale N we have

〈U,N〉t =
∫ t

0
1DX

(s) d〈M,N〉s = 0, (4.7)

since 〈M,N〉 is continuous and DX is countable. Thus U is a purely discontinuous
martingale, and so U and Y are the purely discontinuous respectively the continuous
martingale component of M . Finally, since DX is countable,

Ut =
∑

s∈(0,t]∩DX

∆Ms, (4.8)

where the sum converges in probability and therefore also in Lp for all finite p ≤ q
according to Theorem 2.1.

Essentially due to Föllmer [10] a process X is called an F-Dirichlet processes if it can
be decomposed as

X = Y +A, (4.9)

where Y is an F-semimartingale and A is F-adapted, continuous and has quadratic
variation zero. A Dirichlet process X is said to be special if it has a decomposition X =
Y +A where Y is a special semimartingale. In this case X has a unique decomposition

X = X0 +M +Ac +Ad, (4.10)

where M is a local martingale, Ad is a predictable pure jump process of bounded varia-
tion and Ac is a continuous process of quadratic variation zero. We have the following
extension of Stricker [31, Theorem 1]:

Proposition 4.2. Let X denote an (F , q)-stable chaos process for some q ∈ [4,∞]. If
X is an F-Dirichlet process then it is special, has almost surely only jumps on DX and
Mt, A

d
t , A

c
t ∈ PC for all t ∈ [0, T ]. Furthermore, M is a true martingale belonging to Hp

for all finite p ≤ q and Ad is a pure jump process of integrable variation having almost
surely only jumps on DX . Finally, Ac is of zero energy, that is lim|τ |→0 E

[
V 2,τ
Ac

]
= 0.

Proof. Let Φ be given as in (4.2). Arguing as in Theorem 4.1 it follows that E[Φ(X)p] <
∞ for all finite p ≤ q. Hence by Stricker [31, Theorem 1] X is special and SXn → AT in
the weak L1-topology, where At = Adt +A

c
t . Since PC is L1-closed we have AT ∈ PC and
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4. Semimartingales

similar Mt, At ∈ PC for all t ∈ [0, T ]. Assume there exists t ∈ DA \DX . Due to the fact
that A is F-predictable we have

∆At = E[∆At|Ft−] = −E[∆Mt|Ft−] = 0, a.s. (4.11)

which contradicts t ∈ DA and so DA ⊆ DX . Furthermore, since A admits a quadratic
variation, Proposition 3.5 implies that A has a.s. only jumps on the countable set DA ⊆
DX . Using moreover that Ad is a pure jump process of bounded variation and Ac is
continuous we have that

Adt =
∑

0<s≤t

∆Ads =
∑

0<s≤t

∆As =
∑

s∈DX∩(0,t]

∆As, (4.12)

and we conclude that Adt ∈ PC. The rest of the proof is now a straightforward conse-
quence of Theorem 2.1.

Remark 4.3.

(i) X is (F , q)-stable if

Xt =

∫ T

0
f(t, s) dMs, t ∈ [0, T ], (4.13)

where M is a càdlàg F-martingale being also a chaos process satisfying Cq for some
q ∈ [1,∞], and f(t, ·) are deterministic functions for which the integrals exist. The
(F , q)-stability follows easily since for u, t ∈ [0, T ]

E[Xt|Fu] =
∫ u

0
f(t, s) dMs ∈ spanL0 {Ms : s ∈ [0, T ]} . (4.14)

(ii) The (F , q)-stability of X is not automatic even when X is a Gaussian chaos process
of order d. However, if G is given by (2.10) then X is (FW ,∞)-stable and more
generally this is true if each Fs is generated by elements in G; see Nualart et al. [24]
for related results. Thus for d = 1 X is always (FX ,∞)-stable, but when d ≥ 2
this may fail as the following example shows.

Example 4.4. Assume G is given by (2.10) for some Wiener process (Wt)t∈[0,3]. Let
X = (Xt)t∈[0,3] be the second-order Gaussian chaos process

Xt =
(
W 2

1 +W1

)
1[1,2)(t) +W21[2,3](t), t ∈ [0, 3]. (4.15)

Then (E[Xt|FX
s ])s,t∈[0,3] is not a Gaussian chaos process. In fact, X is a special FX -

semimartingale but the FX -bounded variation component of X is not a Gaussian chaos
process.

To see this, note that X is a special FX -semimartingale since it is of integrable
variation. Moreover, the FX -bounded variation component of X is

At = E[∆X1|FX
1−]1[1,3](t) + E[∆X2|FX

2−]1[2,3](t) (4.16)

= 1[1,3](t) +
(
W 2

1 +W1 − E[W1|W 2
1 +W1]

)
1[2,3](t). (4.17)

So to show that A is not a Gaussian chaos process it is enough to show Y := E[W1|W 2
1 +

W1] /∈ ∪∞d=1P
d
G . For each integrable random variable U , which is absolutely continuous

with density f > 0, we have

E
[
U
∣∣|U |

]
= |U |f(|U |)− f(−|U |)

f(|U |) + f(−|U |) . (4.18)
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5. The semimartingale property of moving averages

Applying (4.18) with U =W1 + 1/2, we get

Y = − 1/2 + E[W1 + 1/2
∣∣|W1 + 1/2|] (4.19)

= − 1/2 + |W1 + 1/2| tanh
(
|W1 + 1/2|/2

)
, (4.20)

where tanh(x) = (ex − e−x)/(ex + e−x). Since x 7→ ex
2/4 is convex we have

E[eY
2/4] ≤ E[E[eW

2
1 /4|W 2

1 +W1]] = E[eW
2
1 /4] <∞. (4.21)

For contradiction assume Y ∈ ∪∞d=1P
d
G . By (4.21) and Janson [16, Theorem 6.12] this

implies Y ∈ P1
G = G + R. Moreover, (4.20) shows that Y ≥ −1/2 and hence Y is

constant. This contradict (4.20) and gives Y /∈ ∪∞d=1P
d
G . ♦

5 The semimartingale property of moving averages

This section is concerned with the semimartingale property of moving averages (also
known as stochastic convolutions). In Subsection 5.1 we treat the one-sided case and in
Subsection 5.2 the two-sided case is considered.

5.1 The one-sided case

In this subsection (Ft)t≥0 denotes a filtration and (Mt)t≥0 a square-integrable càdlàg
(Ft)t≥0-martingale. Set γM (t) = E[M2

t ] for t ≥ 0 and note that γM is càdlàg and
increasing and hence γ′M exists Lebesgue a.s. Let X = (Xt)t≥0 be given by

Xt =

∫ t

0
φ(t− s) dMs, t ≥ 0, (5.1)

where φ is a measurable deterministic function for which all the integrals exist, i.e.
φ(t − ·) ∈ L2(γM ) for all t ≥ 0. In this set up we have the following theorem where all
locally integrability conditions are with respect to the Lebesgue measure λ.

Theorem 5.1. Assume that M is a chaos process satisfying Cq for some q ∈ [2,∞] such
that γ′M is bounded away from zero on some non-empty open interval. Then X defined
by (5.1) is an F-semimartingale if and only if φ is absolutely continuous on R+ with a
locally square-integrable density.

Extensions to q < 2 is not possible. To see this let M denote an α-stable motion with
α ∈ (1, 2). Then M is an FM -martingale satisfying Cq for all q < α, but Basse and
Pedersen [4, Theorem 3.1] yields that X given by (5.1) is an FM -semimartingale if and
only if φ is absolutely continuous with an α-integrable density.

The proof of Theorem 5.1 relies on two lemmas. Here for each f : R→ R and h > 0
∆hf denotes the function t 7→ (f(t+ h)− f(t))/h.

Lemma 5.2 (Hardy and Littlewood). Let f : R→ R denote a locally integrable function.
Then (∆ 1

n
f)n≥1 is bounded in L2([a, b], λ) for all 0 ≤ a < b if and only if f is absolutely

continuous on R+ with a locally square-integrable density.
For every a ≥ 0 (∆ 1

n
f)n≥1 is bounded in L2([a,∞), λ) if and only if f is absolutely

continuous on [a,∞) with a square-integrable density.
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5. The semimartingale property of moving averages

Lemma 5.3. Let F denote a filtration, Y an F-semimartingale and X be given by

Xt =

∫ t

0
φ(t− s) dYs, t ≥ 0, (5.2)

where φ is absolutely continuous on R+ with a locally square-integrable density. Then X
is an F-semimartingale.

Proof. For fixed t > 0 we have

Xt = φ(0)Yt +

∫ t

0

(∫ t−s

0
φ′(u) du

)
dYs (5.3)

= φ(0)Yt +

∫ t

0

(∫ t

0
1[s,t](u)φ

′(u− s) du
)
dYs. (5.4)

Since R+ ∋ s 7→
√∫ t

s
|φ′(u− s)|2 du =

√∫ t−s

0
|φ′(u)|2 du (5.5)

is locally bounded, Protter [27, Chapter IV, Theorem 65] shows that

Xt = φ(0)Yt +

∫ t

0

(∫ t

0
1[s,t](u)φ

′(u− s) dYs

)
du (5.6)

= φ(0)Yt +

∫ t

0

(∫ u

0
φ′(u− s) dYs

)
du, a.s. (5.7)

Thus X has a modification which is an F-semimartingale.

Proof of Theorem 5.1. AssumeX is an F-semimartingale. By assumption there exists an
interval (a, b) ⊆ R+ and an ǫ > 0 such that γ′M ≥ ǫ λ-a.s. on (a, b). By Remark 4.3(i) X
is (F , q)-stable and since q ≥ 1 it follows by Theorem 4.1 that X is an F-quasimartingale
on each compact interval and in particular

sup
n≥1

Nn∑

i=1

E[|E[Xi/n −X(i−1)/n|F(i−1)/n]|] <∞, for all N ≥ 1. (5.8)

By Theorem 2.1 there exists a constant C > 0 such that C‖U‖2 ≤ ‖U‖1 < ∞ for all
U ∈ PC. Moreover, for all a < u ≤ t we have

E[|E[Xt −Xu|Fu]|] = E
[∣∣∣
∫ u

0
(φ(t− s)− φ(u− s)) dMs

∣∣∣
]

(5.9)

≥ C
∥∥∥
∫ u

0
(φ(t− s)− φ(u− s)) dMs

∥∥∥
2

(5.10)

= C

∫ u

0

(
φ(t− s)− φ(u− s)

)2
γM (ds) (5.11)

≥ C

∫ u

0

(
φ(t− s)− φ(u− s)

)2
γ′M (s) ds (5.12)

= C

∫ u

0

(
φ(t− u+ s)− φ(s)

)2
γ′M (u− s) ds (5.13)

≥ Cǫ

∫ u−a

(u−b)∨0

(
φ(t− u+ s)− φ(s)

)2
ds. (5.14)
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Put δ = (b − a)/4 and set lx = x + (b + 3a)/4 and rx = x + (5b − a)/4 for x > 0. By
(5.8) and (5.14) we have

sup
n≥1

[rxn]+1∑

i=[lxn]+2

√∫ x+δ

(x−δ)∨0
(φ(1/n + s)− φ(s))2 ds <∞, (5.15)

showing that

sup
n≥1

n

√∫ x+δ

(x−δ)∨0
(φ(1/n + s)− φ(s))2 ds <∞. (5.16)

Thus {∆ 1
n
φ : n ≥ 1} is bounded in L2([(x − δ) ∨ 0, x + δ], λ) and so by Lemma 5.2 we

need only show that φ is locally integrable. But this follows immediately from φ(t− ·) ∈
L2([0, t], γM ) for all t ≥ 0 and γ′M ≥ ǫ λ-a.s. on (a, b). The reverse implication follows
by Lemma 5.3.

Let us rewrite Theorem 5.1 in the Gaussian chaos case. Define G by

G =

{∫ ∞

0
h(s) dWs : h ∈ L2(R+, λ)

}
, (5.17)

for some Wiener process W and let X be given by

Xt =

∫ t

0
φ(t− s)σs dWs, t ≥ 0, (5.18)

where σ is FW -progressively measurable and not the zero-process, and φ is a measurable
deterministic function such that all the integrals exist. We have the following corollary
to Theorem 5.1:

Corollary 5.4. Let X be given by (5.18), where σ is a Gaussian chaos process which is
right- or left-continuous in probability. Then X is an FW -semimartingale if and only if
φ is absolutely continuous on R+ with a locally square-integrable density.

5.2 Two-sided case

Let now M = (Mt)t∈R denote a two-sided square-integrable F-martingale, in the sense
that F = (Ft)t∈R is an increasing family of σ-algebras, M is a square-integrable càdlàg
process such that for all −∞ < u ≤ t we have E[Mt −Mu|Fu] = 0 and Mt −Mu is
Ft-measurable. Let γM (t) = sign(t)E[(Mt −M0)

2] for all t ∈ R and note that γM is
increasing and càdlàg. Let X be given by

Xt =

∫ t

−∞

(
φ(t− s)− ψ(−s)

)
dMs, t ≥ 0, (5.19)

where φ and ψ are deterministic functions for which all the integrals are well-defined,
that is φ(t − ·) − ψ(−·) is square-integrable with respect to the measure γM . Assume
there exists an interval (−∞, c) on which γM is absolutely continuous with

0 < lim inf
t→−∞

γ′M (t) ≤ lim sup
t→−∞

γ′M (t) <∞ and inf
t∈(a,b)

γ′M (t) > 0, (5.20)

for some 0 ≤ a < b. Note that when M has stationary increments, and therefore
γM (t) = κt for some κ > 0, the conditions are trivially satisfied.
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5. The semimartingale property of moving averages

Theorem 5.5. Let the setting be as just described and assume that M is a chaos process
satisfying Cq for some q ∈ [2,∞]. Then X given by (5.19) is an F-semimartingale if
and only if φ is absolutely continuous on R+ with a square-integrable density.

Proof. Assume that X is an F-semimartingale. Since γ′M is bounded away from 0 on
some interval of R+, it follows (just as in the proof of Theorem 5.1) that φ is absolutely
continuous on R+ with a locally square-integrable density. Choose ǫ > 0 and c̃ < 0 such
that ǫ ≤ γ′M on (−∞, c̃]. As in the proof of Theorem 5.1 {∆ 1

n
φ : n ≥ 1} is bounded

in L2([−c̃ + 1,∞), λ) which by Lemma 5.2 implies that φ is absolutely continuous on
[−c̃ + 1,∞) with a square-integrable density. This completes the proof of the only if -
implication.

Assume now φ is absolutely continuous on R+ with a square-integrable density and
choose C > 0 and c̃ < 0 such that γ′M ≤ C on (−∞, c̃]. Let

Yt =

∫ t

c̃
(φ(t− s)− ψ(−s)) dMs, t ≥ 0. (5.21)

By the same argument as in Lemma 5.3 it follows that Y is an F-semimartingale. Thus
it is enough to show that

Ut =

∫ c̃

−∞
(φ(t− s)− ψ(−s)) dMs, t ≥ 0, (5.22)

is of bounded variation. For 0 ≤ u ≤ t we have

E[|Ut − Uu|] ≤ ‖Ut − Uu‖2 =
(∫ c̃

−∞
(φ(t− s)− φ(u− s))2 γM (ds)

)1/2
(5.23)

≤ C
(∫ c̃

−∞
(φ(t− s)− φ(u− s))2 ds

)1/2
= C

(∫ ∞

−c̃+u
(φ(t− u+ s)− φ(s))2 ds

)1/2
.

(5.24)

According to Lemma 5.2 this shows that U is of integrable variation on each compact
interval and the proof is complete.

Again we rewrite the result in a Gaussian the setting. More precisely consider the
following: Let G = {

∫R h(s) dWs : h ∈ L2(R, λ}, where W = (Wt)t∈R is a two-sided
Wiener process with W0 = 0. Let

FW
t =

{
σ(Ws : s ∈ (−∞, t]) t ≥ 0

σ(Wt −Ws : s ∈ (−∞, t]) t < 0.
(5.25)

Consider a process X of the form

Xt =

∫ t

−∞

(
φ(t− s)− ψ(−s)

)
σs dWs, t ≥ 0, (5.26)

where σ is (Ft)t∈R-progressively measurable Gaussian chaos process satisfying

0 < lim inf
t→−∞

E[σ2t ] ≤ lim sup
t→−∞

E[σ2t ] <∞ and inf
t∈(a,b)

E[σ2t ] > 0, (5.27)

for some 0 ≤ a < b. Theorem 5.5 now gives the following corollary:

Theorem 5.6. X is an FW -semimartingale if and only if φ is absolutely continuous onR+ with a square-integrable density.
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We study integrability and equivalence of Lp-norms of polynomial chaos
elements. Relying on known results for Banach space valued polyno-
mials, a simple technique is presented to obtain integrability results for
random elements that are not necessarily limits of Banach space valued
polynomials. This enables us to prove integrability results for a large
class of seminorms of stochastic processes and to answer, partially, a
question raised by C. Borell (1979, Séminaire de Probabilités, XIII ,
1–3).
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1. Introduction

1 Introduction

Let T denote a countable set, X = (Xt)t∈T a stochastic process and N a seminorm onRT . This paper focuses on integrability and equivalence of Lp-norms of N(X) in the
case where X is a weak chaos process; see Definition 1.1. Of particular interest is the
supremum and the p-variation norm given by

N(f) = sup
t∈T

|f(t)| and N(f) = sup
n≥1

( kn∑

i=1

|f(tni )− f(tni−1)|p
)1/p

, p ≥ 1, (1.1)

for f ∈ RT . In the p-th variation case we assume moreover T = [0, 1]∩Q and πn = {0 =
tn0 < · · · < tnkn = 1} are nested subdivisions of T satisfying ∪∞n=1πn = T . Note that if N

is given by (1.1), B = {x ∈ RT : N(x) < ∞} and ‖x‖ = N(x) for x ∈ B, then (B, ‖ · ‖)
is a non-separable Banach space when T is infinite.

Our results partly unify and partly extend known results in this area. For relations
to the literature see Subsection 1.2. We note, however, that in the setting of the present
paper we are able to treat Rademacher chaos processes of arbitrary order as well as
infinitely divisible integral processes as in (1.4) below.

1.1 Chaos Processes and Condition Cq

Let (Ω,F ,P) denote a probability space. When F is a topological space, a Borel mea-
surable mapping X : Ω → F is called an F -valued random element, however when
F = R, X is, as usual, called a random variable. For each p > 0 and random vari-
able X we let ‖X‖p := E[|X|p]1/p, which defines a norm when p ≥ 1; moreover, let
‖X‖∞ := inf{t ≥ 0 : P(|X| ≤ t) = 1}. When F is a Banach space, Lp(P;F ) denotes
the space of all F -valued random elements, X, satisfying ‖X‖Lp(P;F ) = E[‖X‖p]1/p <∞.
Throughout the paper I denotes a set and for all ξ ∈ I, Hξ is a family of independent
random variables. Set H = {Hξ : ξ ∈ I}. Furthermore, d ≥ 1 is a natural number and
F is a locally convex Hausdorff topological vector space (l.c.TVS) with dual space F ∗.
Following Fernique [11], a map N from F into [0,∞] is called a pseudo-seminorm if for
all x, y ∈ F and λ ∈ R, we have

N(λx) = |λ|N(x) and N(x+ y) ≤ N(x) +N(y). (1.2)

For ξ ∈ I let Pd
Hξ

(F ) denote the set of p(Z1, . . . , Zn) where n ≥ 1, Z1, . . . , Zn are
different elements in Hξ and p is an F -valued tetrahedral polynomial of order d. Recall
that p : Rn → F is called an F -valued tetrahedral polynomial of order d if there exist
x0, xi1,...,ik ∈ F such that

p(z1, . . . , zn) = x0 +

d∑

k=1

∑

1≤i1<···<ik≤n

xi1,...,ik

k∏

j=1

zij . (1.3)

Moreover, let Pd
H(F ) denote the closure in distribution of ∪ξ∈IPd

Hξ
(F ), that is, Pd

H(F ) is

the set of all F -valued random elements X for which there exists a sequence (Xk)k≥1 ⊆
∪ξ∈IPd

Hξ
(F ) converging weakly to X. Inspired by Ledoux and Talagrand [19] we intro-

duce the following definition:

Definition 1.1. An F -valued random element X is said to be a weak chaos ele-
ment of order d associated with H if for all n ≥ 1 and all (x∗i )

n
i=1 ⊆ F ∗ we have
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1. Introduction

(x∗1(X), . . . , x∗n(X)) ∈ Pd
H(Rn), and in this case we write X ∈ weak-Pd

H(F ). Simi-
larly, a real-valued stochastic process (Xt)t∈T is said to be a weak chaos process of order

d associated with H if for all n ≥ 1 and (ti)
n
i=1 ⊆ T we have (Xt1 , . . . ,Xtn) ∈ Pd

H(Rn).

An important example of a weak chaos process of order one is (Xt)t∈T of the form

Xt =

∫

S
f(t, s)Λ(ds), t ∈ T, (1.4)

where Λ is an independently scattered infinitely divisible random measure (or random
measure for short) on some non-empty space S equipped with a δ-ring PC, and s 7→ f(t, s)
are Λ-integrable deterministic functions in the sense of [23]. To obtain the associated
H let I be the set of all ξ given by ξ = {A1, . . . , An} for some n ≥ 1 and disjoint sets
A1, . . . , An in PC, and let

Hξ = {Λ(A1), . . . ,Λ(An)} and H = {Hξ}ξ∈I . (1.5)

Then, by definition of the stochastic integral (1.4) as the limit of integrals of simple
functions, (Xt)t∈T is a weak chaos process of order one associated with H.

Another example is where (Zn)n≥1 is sequence of independent random variables and
x(t), xi1,...,ik(t) ∈ R are real numbers for which

Xt = x(t) +
d∑

k=1

∑

1≤i1<···<ik<∞

xi1,...,ik(t)
k∏

j=1

Zij , (1.6)

exists in probability for all t ∈ T ; then X = (Xt)t∈T is a weak chaos process of order d
associated with I = {0}, H0 = {Zn : n ≥ 1} and H = {H0}.

In what follows we shall need the next conditions:
Notation, Condition Cq

• For q ∈ (0,∞), H is said to satisfy Cq if there exists β1, β2 > 0 such that for all
Z ∈ ∪ξ∈IHξ there exists cZ > 0 with P(|Z| ≥ cZ) ≥ β1 and

E[|Z|q, |Z| > s] ≤ β2s
qP(|Z| > s), s ≥ cZ . (1.7)

• H is said to satisfy C∞ if ∪ξ∈IHξ ⊆ L1 and

sup
ξ∈I

sup
Z∈Hξ

(‖Z − E[Z]‖∞
‖Z − E[Z]‖2

)
= β3 <∞. (1.8)

Remark 1.2. If H satisfies Cq for some q <∞ then for all p ∈ (0, q) we have

sup
ξ∈I

sup
Z∈Hξ

‖Z‖q
‖Z‖p

≤ (β2 ∨ 1)1/qβ
−1/p
1 <∞. (1.9)

This follows by the next two estimates:

E[|Z|q] = E[|Z|q, |Z| > cZ ] + E[|Z|q, |Z| ≤ cZ ] (1.10)

≤ β2c
q
ZP(|Z| > cZ) + cqZP(|Z| ≤ cZ) ≤ (β2 ∨ 1)cqZ (1.11)

and

cpZβ1 ≤ cpZP(|Z| ≥ cZ) ≤ E[|Z|p]. (1.12)
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For example, when all Z ∈ ∪ξ∈IHξ have the same distribution, H satisfies Cq for all
q ∈ (0, α) for α > 0 if x 7→ P(|Z| > x) is regularly varying with index −α, by Kara-
mata’s Theorem; see Bingham et al. [4, Theorem 1.5.11]. In particular, if the common
distribution is symmetric α-stable for some α ∈ (0, 2) then H satisfies Cq for all q ∈ (0, α).
If the common distribution is Poisson, exponential, Gamma or Gaussian then Cq is sat-
isfied for all q > 0. Finally H satisfies C∞ if and only if the common distribution has
compact support.

As we shall see in Section 2, Cq is crucial in order to obtain integrability results and
equivalence of Lp-norms, so let us consider some cases where the important example (1.4)
does or does not satisfy Cq. For this purpose let us introduce the following distributions:
The inverse Gaussian distribution IG(µ, λ) with µ, λ > 0 is the distribution on R+ with
density

f(x;µ, λ) =

[
λ

2πx3

]1/2
e−λ(x−µ)

2/(2µ2x), x > 0. (1.13)

Moreover, the normal inverse Gaussian distribution NIG(α, β, µ, δ) with µ ∈ R, δ ≥ 0,
and 0 ≤ β ≤ α, is symmetric if and only if β = µ = 0, and in this case it has the following
density

f(x;α, δ) =
αeδα

π
√
1 + x2δ−2

K1

(
δα(1 + x2δ−2)1/2

)
, x ∈ R, (1.14)

where K1 is the modified Bessel function of the third kind and index 1 given by K1(z) =
1
2

∫∞
0 e−z(y+y

−1)/2 dy for z > 0.
For each finite number t0 > 0, a random measure Λ is said to be induced by a Lévy

process Y = (Yt)t∈[0,t0] if S = [0, t0], PC = B([0, t0]) and Λ(A) =
∫
A dYs for all A ∈ PC.

Proposition 1.3. Let t0 ≥ 1 be a finite number, Λ a random measure induced by a Lévy
process Y = (Yt)t∈[0,t0] and H be given by (1.5).

(i) If Y1 has an IG-distribution, then H satisfies Cq if and only if q ∈ (0, 12).

(ii) If Y1 has a symmetric NIG-distribution, then H satisfies Cq if and only if q ∈ (0, 1).

(iii) If Y is non-deterministic and has no Gaussian component, then H does not satisfy
Cq for any q ≥ 2. In fact, for all square-integrable non-deterministic Lévy processes
Y with no Gaussian component we have that limt→0‖Yt‖2/‖Yt‖1 = ∞.

By the scaling property it is not difficult to show that if Λ is a symmetric α-stable random
measure with α ∈ (0, 2], then H satisfies Cq for all q > 0 when α = 2 and for all q < α
when α < 2. For α < 2 we have the following minor extension: Assume Λ is induced by
a Lévy process Y with Lévy measure ν(dx) = f(x) dx where f is a symmetric function
satisfying c1|x|−1−α ≤ f(x) ≤ c2|x|−1−α for some c1, c2 > 0, then H satisfies Cq if and
only if q < α. Proposition 1.3 gives some insight about when Cq is satisfied; however,
it would be interesting to develop more general conditions. We postpone the proof of
Proposition 1.3 to Section 3.

1.2 Results on Integrability of Seminorms

Let T denote a countable set, X = (Xt)t∈T a real-valued stochastic process and N a
measurable pseudo-seminorm on RT such that N(X) < ∞ a.s. For X Gaussian [10]
shows that eǫN(X)2 is integrable for some ǫ > 0. This result is extended to Gaussian
chaos processes by Borell [5, Theorem 4.1]. Moreover, if X is α-stable for some α ∈ (0, 2),
de Acosta [8, Theorem 3.2] shows that N(X)p is integrable for all p < α. When X is
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2. Main results

infinitely divisible [25] provide conditions on the Lévy measure ensuring integrability of
N(X). See also Hoffmann-Jørgensen [12] for further results.

Given a sequence (Zn)n≥1 of independent random variables, Borell [7] studies, under
the condition

sup
n≥1

‖Zn − E[Zn]‖q
‖Zn − E[Zn]‖2

<∞, q ∈ (2,∞], (1.15)

integrability of Banach space valued random elements which are limits in probability of
tetrahedral polynomials associated with (Zn)n≥1. For q = ∞, (1.15) is C∞ but when
q < ∞ (1.15) is weaker than C∞, at least when (Zn)n≥1 are centered random variables.
As shown in Borell [7], (1.15) implies equivalence of Lp-norms for Hilbert space valued
tetrahedral polynomials for p ≤ q, but not for Banach space valued tetrahedral polynomi-
als except in the case q = ∞. Under the assumption that (Zn)n≥1 are symmetric random
variables satisfying Cq, Kwapień and Woyczyński [18, Theorem 6.6.2] show that we have
equivalence of Lp-norms in the above setting. Contrary to Borell [7], [18] and others, we
consider random elements which are not necessarily limits of tetrahedral polynomials,
and also more general spaces are considered. This enables us to obtain our integrability
results for seminorms of stochastic processes.

Weak chaos processes appear in the context of multiple integral processes; see e.g.
Krakowiak and Szulga [17] for the α-stable case. Rademacher chaos processes are applied
repeatedly when studying U -statistics; see de la Peña and Giné [9]. They are also used
to study infinitely divisible chaos processes; see Marcus and Rosiński [20], Rosiński and
Samorodnitsky [26], Basse and Pedersen [3] and others. Using the results of the present
paper, [2] extend some results on Gaussian semimartingales (e.g. Jain and Monrad [14]
and Stricker [28]) to a large class of chaos processes.

2 Main results

The next lemma, which is a combination of several results, is crucial for this paper.

Lemma 2.1. Let F denote a Banach space and X an F -valued tetrahedral polynomial of
order d in the independent random variables Z1, . . . , Zn. Assume that H = {H0} satisfies
Cq for some q ∈ (0,∞], where H0 = {Z1, . . . , Zn}; if d ≥ 2 and q <∞ assume moreover
that Z1, . . . , Zn are symmetric. Then for all 0 < p < r ≤ q with r <∞ we have that

‖X‖Lr(P;F ) ≤ kp,r,d,β‖X‖Lp(P;F ) <∞, (2.1)

where kp,r,d,β depends only on p, q, d and the β’s from Cq. If q = ∞ and p ≥ 2 we may

choose kp,r,d,β = Adβ
2drd/2 with Ad = 2d

2/2+2d.

For q < ∞ and d = 1, Lemma 2.1 is a consequence of Kwapień and Woyczyński [18,
Corollary 2.2.4]. Furthermore, for q ∈ (1,∞) and d ≥ 2 it is taken from the proof of [18,
Theorem 6.6.2] and using [18, Remark 6.9.1] the result is seen to hold also for q ∈ (0, 1].
For q = ∞, Lemma 2.1 is a consequence of Borell [7, Theorem 4.1]. In [7] the result is
only stated for 2 ≤ p < r, however, a standard application of Hölder’s inequality shows
that it is valid for all 0 < p < r; see e.g. Pisier [21, Lemme 1.1]. Finally, in [7] there
are no explicit expression for Ad; this can, however, be obtained by applying the next
Lemma 2.2 in the proof of [7, Theorem 4.1].
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Lemma 2.2. Let V denote a vector space, N a seminorm on V , ǫ ∈ (0, 1) and x0, . . . , xd ∈
V .

If N
( d∑

k=0

λkxk

)
≤ 1 for all λ ∈ [−ǫ, ǫ] then N

( d∑

k=0

xk

)
≤ 2d

2/2+dǫ−d. (2.2)

The proof of Lemma 2.2 is postponed to Section 3.
An F -valued random element X is said to be a.s. separably valued if P(X ∈ A) = 1

for some separable closed subset A of F . We have the following result:

Theorem 2.3. Let F denote a metrizable l.c.TVS, X ∈ weak-Pd
H(F ) an a.s. separably

valued random element and N a lower semicontinuous pseudo-seminorm on F such that
N(X) <∞ a.s. Assume that H satisfies Cq for some q ∈ (0,∞] and if q <∞ and d ≥ 2
that all elements in ∪ξ∈IHξ are symmetric. Then for all finite 0 < p < r ≤ q we have

‖N(X)‖r ≤ kp,r,d,β‖N(X)‖p <∞, (2.3)

where kp,r,d,β depends only on p, q, d and the β’s from Cq. Furthermore, in the case q = ∞
we have that E[eǫN(X)2/d ] <∞ for all ǫ < d/(e2d+5β43‖N(X)‖2/d2 ).

For q = ∞, Theorem 2.3 answers in the case where the pseudo-seminorm is lower semi-
continuous a question raised by Borell [6] concerning integrability of pseudo-seminorms
of Rademacher chaos elements. This additional assumption is satisfied in most examples,
in particular in the examples in (1.1). Using the equivalence of norms in Theorem 2.3
we have by Krakowiak and Szulga [16, Corollary 1.4] the following corollary:

Corollary 2.4. Let F and H be as in Theorem 2.3 and N be a continuous seminorm on

F . Then given (Xn)n≥1 ⊆ weak-Pd
H(F ) all a.s. separably valued such that limnXn = 0

in probability we have ‖N(Xn)‖p → 0 for all finite p ∈ (0, q].

Theorem 2.3 relies on the following two lemmas together with an application of
Lemma 2.1 on the Banach space ln∞, that is Rn equipped with the sup norm. First,
arguing as in Fernique [11, Lemme 1.2.2] we have:

Lemma 2.5. Assume F is a strongly Lindelöf l.c.TVS. Then a pseudo-seminorm N on
F is lower semicontinuous if and only if there exists (x∗n)n≥1 ⊆ F ∗ such that N(x) =
supn≥1|x∗n(x)| for all x ∈ F .

Proof. The if -implication is trivial. To show the only if -implication let A := {x ∈ F :

N(x) ≤ 1}. Then A is convex and balanced since N is a pseudo-seminorm and closed
since N is lower semicontinuous. Thus by the Hahn-Banach theorem, see Rudin [27,
Theorem 3.7], for all x /∈ A there exists x∗ ∈ F ∗ such that |x∗(y)| ≤ 1 for all y ∈ A and
x∗(y) > 1, showing that

Ac =
⋃

x∈Ac

{y ∈ F : |x∗(y)| > 1}. (2.4)

Since F is strongly Lindelöf, there exists (xn)n≥1 ⊆ Ac such that

Ac =
∞⋃

n=1

{y ∈ F : |x∗n(y)| > 1}, (2.5)

implying that A = {y ∈ F : supn≥1|x∗n(y)| ≤ 1}. Thus by homogeneity we have N(y) =
supn≥1|x∗n(y)| for all y ∈ F .
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Lemma 2.6. Let n ≥ 1, 0 < p < q and C > 0 be given such that

‖X‖Lq(P;ln
∞
) ≤ C‖X‖Lp(P;ln

∞
) <∞, X ∈ Pd

Hξ
, ξ ∈ I. (2.6)

Then, for all (X1, . . . ,Xn) ∈ Pd
H(Rn) we have that

‖ max
1≤k≤n

|Xk|‖q ≤ C‖ max
1≤k≤n

|Xk|‖p <∞. (2.7)

Proof. Let X ∈ Pd
H(Rn) and choose (ξk)k≥1 ⊆ I and Xk ∈ Pd

Hξk
(Rn) for k ≥ 1 such that

Xk
D→ X. Moreover, let Uk = ‖Xk‖ln

∞

and U = ‖X‖ln
∞

. Then, Uk
D→ U showing that

(Uk)k≥1 is bounded in L0, and by (2.6) and Krakowiak and Szulga [16, Corollary 1.4],
{Upk : k ≥ 1} is uniformly integrable. This shows that

‖U‖q ≤ lim inf
k→∞

‖Uk‖q ≤ C lim inf
k→∞

‖Uk‖p = C‖U‖p <∞, (2.8)

and the proof is complete.

Proof of Theorem 2.3. Since X is a.s. separably valued we may and will assume that F
is separable. Hence according to Lemma 2.5 there exists (x∗n)n≥1 ⊆ F ∗ such that N(x) =
supn≥1|x∗n(x)| for all x ∈ F . For n ≥ 1, let Xn := x∗n(X) and Un = sup1≤k≤n|Xk|. Then
(Un)n≥1 converges almost surely to N(X). For finite 0 < p < r ≤ q let C = kp,r,d,β.
Combining Lemmas 2.1 and 2.6 show ‖Un‖q ≤ C‖Un‖p < ∞ for all n ≥ 1. This implies
that {Upn : n ≥ 1} is uniformly integrable and hence we have that

‖N(X)‖r ≤ lim inf
n→∞

‖Un‖r ≤ C lim inf
n→∞

‖Un‖p = C‖N(X)‖p <∞. (2.9)

Finally, the exponential integrability under C∞ follows by the last part of Lemma 2.1
since

E[eǫN(X)2/d ] ≤ 1 +
d∑

k=1

‖N(X)‖2k/d2k/d +
∞∑

k=d+1

(
ǫ2d+5β43‖N(X)‖2/d2 /d

)k kk
k!
. (2.10)

This completes the proof.

Let T denote a countable set and F = RT equipped with the product topology. F
is then a separable and locally convex Fréchet space and all x∗ ∈ F ∗ are of the form
x 7→ ∑n

i=1 αix(ti), for some n ≥ 1, t1, . . . , tn ∈ T and α1, . . . , αn ∈ R. Thus for

X = (Xt)t∈T we have that X ∈ weak-Pd
H(F ) if and only if X is a weak chaos process of

order d. Rewriting Theorem 2.3 in the case F = RT we obtain the following result:

Theorem 2.7. Assume H satisfies Cq for some q ∈ (0,∞] and if q <∞ and d ≥ 2 that
all elements in ∪ξ∈IHξ are symmetric. Let T denote a countable set, (Xt)t∈T a weak
chaos process of order d and N a lower semicontinuous pseudo-seminorm on RT such
that N(X) <∞ a.s. Then for all finite 0 < p < r ≤ q we have

‖N(X)‖r ≤ kp,r,d,β‖N(X)‖p <∞, (2.11)

and in the case q = ∞ that E[eǫN(X)2/d ] <∞ for all ǫ < d/(e2d+5β43‖N(X)‖2/d2 ).
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For example, let T = [0, 1] ∩Q, (Xt)t∈T be of the form Xt =
∫ 1
0 f(t, s) dYs where Y is

a symmetric normal inverse Gaussian Lévy process, and N : RT → [0,∞] is given by
(1.1). Then, N is a lower semicontinuous pseudo-seminorm and X is weak chaos process
of order one satisfying Cq for all q < 1 according to Proposition 1.3. Thus, if N(X) <∞
a.s. then E[N(X)p] <∞ for all p < 1, according to Theorem 2.7.

Let G denote a vector space of Gaussian random variables and Π
d
G(R) be the closure

in probability of the random variables p(Z1, . . . , Zn), where n ≥ 1, Z1, . . . , Zn ∈ G and
p : Rn → R is a polynomial of degree at most d (not necessary tetrahedral).

Lemma 2.8. Let F be a l.c.TVS and X an F -valued random element such that x∗(X) ∈
Π
d
G(R) for all x∗ ∈ F ∗; then X ∈ weak-Pd

H(F ) where H = {H0} and H0 is a Rademacher
sequence.

Recall that a sequence of independent, identically distributed random variables (Zn)n≥1
such that P(Z1 = ±1) = 1/2 is called a Rademacher sequence.

Proof. Let n ≥ 1, x∗1, . . . , x
∗
n ∈ F ∗ and W = (x∗1(X), . . . , x∗n(X)). We need to show that

W ∈ Pd
H(Rn). For all k ≥ 1 we may choose polynomials pk : Rk → Rn of degree at

most d and Y1,k, . . . , Yk,k independent standard normal random variables such that with
Yk = (Y1,k, . . . , Yk,k) we have limk pk(Yk) = W in probability. Hence it suffices to show

pk(Yk) ∈ Pd
H(Rn) for all k ≥ 1. Fix k ≥ 1 and let us write p and Y for pk and Yk.

Reenumerate H0 as k independent Rademacher sequences (Zi,m)i≥1 m = 1, . . . , k and
set

Uj =
1√
j

j∑

i=1

(Z1,i, . . . , Zk,i), j ≥ 1. (2.12)

Then, by the central limit theorem Uj
D→ Y and hence p(Uj)

D→ p(Y ). Due to the fact
that all Zi,m only takes on the values ±1, p(Uj) ∈ Pd

H0
(Rn) for all j ≥ 1, showing that

p(Y ) ∈ Pd
H(Rn).

The H in Lemma 2.8 trivially satisfies C∞ with β3 = 1 and hence a combination of
Theorem 2.3 and Lemma 2.8 shows:

Proposition 2.9. Let F be a l.c.TVS and X an a.s. separably valued random element

in F such that x∗(X) ∈ Π
d
G(R) for all x∗ ∈ F ∗. Then, for all lower semicontinuous

pseudo-seminorms N on F satisfying N(X) <∞ a.s. we have

‖N(X)‖r ≤ 2d
2/2+d

(
r − 1

p− 1

)d/2
‖N(X)‖p <∞, (2.13)

and E[eǫN(X)2/d ] <∞ for all ǫ < d/(e2d+5‖N(X)‖2/d2 ).

The integrability of eǫN(X)2/d for some ǫ > 0 is a consequence of the seminal work Borell
[5, Theorem 4.1]. However, the above provides a very simple proof of this result and
gives also equivalence of Lp-norms and explicit constants. When F = RT for some
countable set T , Proposition 2.9 covers processes X = (Xt)t∈T , where all time variables
have the following representation in terms of multiple Wiener-Itô integrals with respect
to a Brownian motion W ,

Xt =

d∑

k=0

∫Rk
+

f(t, k; s1, . . . , sk) dWs1 · · · dWsk , t ∈ T. (2.14)
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The next result is known from Arcones and Giné [1, Theorem 3.1] for general Gaussian
polynomials.

Proposition 2.10. Assume that H = {H0} satisfies Cq for some q ∈ [2,∞] and H0

consists of symmetric random variables. Let F denote a Banach space and X an a.s.

separably valued random element in F with x∗(X) ∈ Pd
H(R) for all x∗ ∈ F ∗. Then there

exists x0, xi1,...,ik ∈ F and {Zn : n ≥ 1} ⊆ H0 such that for all finite p ≤ q

X = lim
n→∞

(
x0 +

d∑

k=1

∑

1≤i1<···<ik≤n

xi1,...,ik

k∏

j=1

Zij

)
a.s. and in Lp(P;F ). (2.15)

Proof. We follow Arcones and Giné [1, Lemma 3.4]. Since X is a.s. separably valued
we may and do assume F is separable, which implies that F ∗1 := {x∗ ∈ F ∗ : ‖x∗‖ ≤ 1}
is metrizable and compact in the weak*-topology by the Banach-Alaoglu theorem; see
Rudin [27, Theorem 3.15+3.16]. Moreover, the map x∗ 7→ x∗(X) from F ∗1 into L0 is
trivially weak*-continuous and thus a weak*-continuous map into L2 by Corollary 2.4.
This shows that {x∗(X) : x∗ ∈ F ∗1 } is compact in L2 and hence separable. By definition

of Pd
H(R), this implies that there exists a countable set {Zn : n ≥ 1} ⊆ H0 such that

x∗(X) =
∑

A∈Nd

a(A, x∗)ZA, in L2, (2.16)

for some a(A, x∗) ∈ R, where Nd = {A ⊆ N : |A| ≤ d} and ZA =
∏
i∈A Zi for A ∈ Nd.

For A ∈ Nd, the map x∗ 7→ a(A, x∗) from F ∗ into R is linear and weak*-continuous and
hence there exists xA ∈ F such that a(A, x∗) = x∗(xA), showing that

x∗(X) = lim
n→∞

x∗
( ∑

A∈Nn
d

xAZA

)
, in L2, (2.17)

where Nn
d = {A ∈ Nd : A ⊆ {1, . . . , n}}. Since F is separable, (2.17) and Kwapień and

Woyczyński [18, Theorem 6.6.1] show that

lim
n→∞

∑

A∈Nn
d

xAZA = X a.s. (2.18)

By Corollary 2.4 the convergence also takes place in Lp(P;F ) for all finite p ≤ q, which
completes the proof.

The above proposition gives rise to the following corollary:

Corollary 2.11. Assume that H = {H0} satisfies Cq for some q ∈ [2,∞] and H0 consists
of symmetric random variables. Let T denote a set, V (T ) ⊆ RT a separable Banach space
where the map f 7→ f(t) from V (T ) into R is continuous for all t ∈ T , and X = (Xt)t∈T

a stochastic process with sample paths in V (T ) satisfying Xt ∈ Pd
H(R) for all t ∈ T .

Then there exists x0, xi1,...,ik ∈ V (T ) and {Zn : n ≥ 1} ⊆ H0 such that

X = lim
n→∞

(
x0 +

d∑

k=1

∑

1≤i1<···<ik≤n

xi1,...,ik

k∏

j=1

Zij

)
(2.19)

a.s. in V (T ) and in Lp(P;V (T )) for all finite p ≤ q.
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Proof. For t ∈ T , let δt : V (T ) → R denote the map f 7→ f(t). Since V (T ) is a separable
Banach space and {δt : t ∈ T} ⊆ V (T )∗ separate points in V (T ) we have

(i) the Borel σ-field on V (T ) equals the cylindrical σ-field σ(δt : t ∈ T ),

(ii) {∑n
i=1 αiδti : αi ∈ R, ti ∈ T, n ≥ 1} is sequentially weak*-dense in V (T )∗,

see e.g. Rosiński [24, page 287]. By (i) we may regard X as a random element in V (T )

and by (ii) it follows that x∗(X) ∈ Pd
H(R) for all x∗ ∈ V (T )∗. Hence the result is a

consequence of Proposition 2.10.

Borell [7, Theorem 5.1] shows Corollary 2.11 assuming (1.15), T is a compact metric
space, V (T ) = C(T ) and X ∈ Lq(P;V (T )). By assuming Cq instead of the weaker
condition (1.15) we can omit the assumption X ∈ Lq(P;V (T )). Note also that by The-
orem 2.7 the last assumption is satisfied under Cq. When H0 consists of symmetric
α-stable random variables and d = 1, Corollary 2.11 is known from Rosiński [24, Corol-
lary 5.2]. The separability assumption on V (T ) in Corollary 2.11 is crucial. Indeed, for
all p > 1, Jain and Monrad [15, Proposition 4.5] construct a separable centered Gaus-
sian process X = (Xt)t∈[0,1] with sample paths in the non-separable Banach space Bp
of functions of finite p-variation on [0, 1] such that the range of X is a non-separable
subset of Bp and hence the conclusion in Corollary 2.11 can not be true. However, for
the non-separable Banach space B1 a result similar to Corollary 2.11 is shown in [14] for
Gaussian processes, and extended to weak chaos processes in [2].

3 Two proofs

Let us start by proving Proposition 1.3.

Proof of Proposition 1.3. Assume that Λ is a random measure induced by a Lévy process
Y = (Yt)t∈[0,T ]. For arbitrary A ∈ PC let Z = Λ(A).

To prove the if -implication of (i) let q ∈ (0, 12 ) and assume that Y1
D
= IG(µ, λ).

Then Z
D
= IG(m(A)µ,m(A)2λ), where m is the Lebesgue measure, and hence with

cZ = m(A)2λ we have that Z/cZ
D
= IG(µ/(λm(A)), 1), which has a density which on

[1,∞) is bounded from below and above by constants (not depending on x) times gZ(x),
where

gZ : R+ → R+, x 7→ x−3/2 exp[−x(λm(A))2/(2µ2)]. (3.1)

Thus there exists a constant c > 0, not depending on A or s, such that

E[|Z/cZ |q, |Z/cZ | > s]

sqP(|Z/cZ | > s)
≤ c sup

u>0

( ∫∞
u xq−3/2e−x dx

uq
∫∞
u x−3/2e−x dx

)
s ≥ 1. (3.2)

Using e.g. l’Hôpital’s rule it is easily seen that (3.2) is finite, showing (1.7). Therefore
Cq follows by the inequality

P(Z/cZ ≥ 1) ≥ e−1/2√
2π

∫ ∞

1
x−3/2 exp[−x(λT )2/(2µ2)] dx. (3.3)

To show the only if -implication of (i) note that n2Y1/n
D→ X as n→ ∞, where X follows

a 1
2 -stable distribution on R+. Assume that H satisfies Cq for some q ≥ 1/2. Then, by
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Remark 1.2 there exists c > 0 such that ‖Yt‖1/2 ≤ c‖Yt‖1/4 for all t ∈ [0, 1], and since

{n2Y1/n : n ≥ 1} is bounded in L0 it is also bounded in L1/2. But this contradicts

∞ = ‖X‖1/2 ≤ lim inf
n→∞

‖n2Y1/n‖1/2, (3.4)

and shows that H does not satisfy Cq.
To show the if -implication of (ii) assume that Y1

D
= NIG(α, 0, 0, δ). Then, Z

D
=

NIG(α, 0, 0,m(A)δ) and with cZ = m(A)δ we have that Z/cZ
D
= ǫU

1/2
Z , where UZ and ǫ

are independent, UZ
D
= IG(1/(m(A)δα), 1) and ǫ

D
= N(0, 1). For q ∈ (0, 1),

E[|Z/cZ |q, |Z/cZ | > s] =
√
2π−1

( ∫ s

0
E[|xU1/2

Z |q, |xU1/2
Z | > s]e−x

2/2 dx (3.5)

+

∫ ∞

s
E[|xU1/2

Z |q, |xU1/2
Z | > s]e−x

2/2 dx
)
. (3.6)

Using the above (i) on UZ and q/2, there exists a constant c1 > 0 such that

∫ s

0
E[|xU1/2

Z |q, |xU1/2
Z | > s]e−x

2/2 dx ≤ c1s
q

∫ s

0
P
(
UZ > (s/x)2

)
e−x

2/2 dx (3.7)

≤ c1s
q

∫ ∞

0
P
(
xU

1/2
Z > s

)
e−x

2/2 dx = c1
√
π2−1sqP(|Z/cZ | > s). (3.8)

Furthermore, it well known that there exists a constant c2 > 0 such that for all s ≥ 1

∫ ∞

s
E[|xU1/2

Z |q, |xU1/2
Z | > s]e−x

2/2 dx (3.9)

≤ E[U
q/2
Z ]

∫ ∞

s
xqe−x

2/2 dx ≤ c2s
qE[U

q/2
Z ]

∫ ∞

s
e−x

2/2 dx. (3.10)

Since UZ has a density given by (1.13) it is easily seen that

E[U
q/2
Z ] ≤ 1 +

1√
2π

∫ ∞

1
xq/2−3/2 dx. (3.11)

Moreover, using that Z/cZ
D
= NIG(m(A)αδ, 0, 0, 1) and that K1(z) ≥ e−z/z for all z > 0,

it is not difficult to show that there exists a constant c3, not depending on s and A, such
that

∫ ∞

s
e−x

2/2 dx ≤ c3P(|Z/cZ | > s), for all s ≥ 1. (3.12)

By combining the above we obtain (1.7) and by (3.12) applied on s = 1, Cq follows. The
only if -implication of (ii) follows similar to the one of (i), now using that (n−1Y1/n)n≥1
converge weakly to a symmetric 1-stable distribution. (iii) is a consequence of the next
lemma.

The following lemma is concerned with the dynamics of the first and second moments
of Lévy processes, and it has Proposition 1.3 (iii) as a direct consequence.

Lemma 3.1. Let Y denote a non-deterministic and square-integrable Lévy process with
no Gaussian component. Then ‖Yt‖1 = o(t1/2) and ‖Yt‖2 ∼ t1/2

√
E[(Y1 − E[Y1])2] as

t→ 0.
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Proof. We have

E[Y 2
t ] = V ar(Yt) + E[Yt]

2 = V ar(Y1)t+E[Y1]
2t2, (3.13)

which shows that ‖Yt‖2 ∼ t1/2V ar(Y1)
1/2 as t→ 0.

To show that ‖Yt‖1 = o(t1/2) as t → 0 we may assume that Y is symmetric. Indeed
let µ = E[Y1], Y

′ an independent copy of Y and Ỹt = Yt − Y ′t . Then Ỹ is a symmetric
square-integrable Lévy process and

‖Yt‖1 ≤ ‖Yt − µt‖1 + |µ| ≤ ‖Yt − µt− (Y ′t − µt)‖1 + |µ|t = ‖Ỹt‖1 + |µ|t. (3.14)

Hence assume that Y is symmetric. Recall, e.g. from Hoffmann-Jørgensen [13, Exer-
cise 5.7], that for any random variable U we have

‖U‖1 =
1

π

∫
1−ℜφU(s)

s2
ds, (3.15)

where φU denotes the characteristic function of U . Using the inequalities 1− e−x ≤ 1∧x
and 1− cos(x) ≤ 4(1 ∧ x2) for all x ≥ 0 it follows that with ψ(s) := 4

∫
(1 ∧ |sx|2) ν(dx)

we have

‖Yt‖1 ≤
1

π

∫
1− e−tψ(s)

s2
ds ≤ 1

π

∫ |tψ(s)| ∧ 1

s2
ds. (3.16)

Note that ψ(s) <∞ since Y is square-integrable. By substitution we get

∫ |tψ(s)| ∧ 1

s2
ds ≤ 2t1/2

∫ ∞

0

|tψ(t−1/2s)| ∧ 1

s2
ds. (3.17)

Hence to complete the proof we need only to show that

lim
t→0

∫ ∞

0

|tψ(t−1/2s)| ∧ 1

s2
ds = 0. (3.18)

Setting c = 4
∫
x2 ν(dx) we have for all ǫ > 0

lim sup
t→0

∫ ∞

0

|tψ(t−1/2s)| ∧ 1

s2
ds (3.19)

≤ lim sup
t→0

∫ ǫ/c

0

|tψ(t−1/2s)| ∧ 1

s2
ds+ lim sup

t→0

∫ ∞

ǫ/c

|tψ(t−1/2s)| ∧ 1

s2
ds. (3.20)

Using that ψ(x) ≤ cx2 for x ≥ 0 we get

lim sup
t→0

∫ ǫ/c

0

|tψ(t−1/2s)| ∧ 1

s2
ds ≤ ǫ. (3.21)

On the other hand, Lebesgue’s dominated convergence theorem shows that

ψ(x)x−2 = 4

∫
(x−2 ∧ s2) ν(dx) −−−→

x→∞
0, (3.22)

implying that tψ(t−1/2s) → 0 as t → 0 for all s ≥ 0. Thus another application of
Lebesgue’s dominated convergence theorem yields

lim sup
t→0

∫ ∞

ǫ/c

|tψ(t−1/2s)| ∧ 1

s2
ds = 0, (3.23)

which by (3.20) and (3.21) shows (3.18).
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3. Two proofs

Let us proceed with the proof of Lemma 2.2.

Proof of Lemma 2.2. Assume first that x0, . . . , xd ∈ R. By induction in d, let us show:

If
∣∣∣

d∑

k=0

λkxk

∣∣∣ ≤ 1 for all λ ∈ [−ǫ, ǫ] then
∣∣∣
d∑

k=0

xk

∣∣∣ ≤ 2d
2/2+dǫ−d. (3.24)

For d = 1, 2 (3.24) follows by a straightforward argument, so assume d ≥ 3, (3.24) holds
for d− 1 and that the left-hand side of (3.24) holds for d. We have

∣∣∣
d∑

k=0

λk(ǫkxk)
∣∣∣ ≤ 1, for all λ ∈ [−1, 1], (3.25)

which by Pólya and Szegö [22, Aufgabe 77] shows that |xdǫd| ≤ 2d and hence |xd| ≤ 2dǫ−d.
For λ ∈ [−ǫ, ǫ], the triangle inequality yields

∣∣∣
d−1∑

k=0

λkxk

∣∣∣ ≤ 1 + 2d, and hence
∣∣∣
d−1∑

k=0

λk
xk

1 + 2d

∣∣∣ ≤ 1. (3.26)

The induction hypothesis implies

∣∣∣
d−1∑

k=0

xk

∣∣∣ ≤ ǫ−(d−1)2(d−1)
2+(d−1)(1 + 2d), (3.27)

and hence another application of the triangle inequality shows that

∣∣∣
d∑

k=0

xk

∣∣∣ ≤ ǫ−d2d + ǫ−(d−1)2(d−1)
2/2+(d−1)(1 + 2d) (3.28)

≤ ǫ−d2d
2/2+d

(
2−d

2/2 + 2−1/2−d + 2−1/2
)
, (3.29)

which is less than or equal to ǫ−d2d
2/2+d since d ≥ 3. This completes the proof of (3.24).

Now let x0, . . . , xd ∈ V . Since N is a seminorm, Hahn-Banach theorem (see Rudin
[27, Theorem 3.2]) shows that there exists a family Λ of linear functionals on V such that

N(x) = sup
F∈Λ

|F (x)|, for all x ∈ V. (3.30)

Assuming that the left-hand side of (2.2) is satisfied we have

∣∣∣
d∑

k=0

λkF (xk)
∣∣∣ ≤ 1, for all λ ∈ [−ǫ, ǫ] and all F ∈ Λ, (3.31)

which by (3.24) shows

∣∣∣F
( d∑

k=0

xk

)∣∣∣ =
∣∣∣

d∑

k=0

F (xk)
∣∣∣ ≤ 2d(d−1)ǫ−d, for all F ∈ Λ. (3.32)

This completes the proof.
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Abstract

Some classes of increment martingales, and the corresponding localised
classes, are studied. An increment martingale is indexed by R and its
increment processes are martingales. We focus primarily on the behav-
ior as time goes to −∞ in relation to the quadratic variation or the
predictable quadratic variation, and we relate the limiting behaviour to
the martingale property. Finally, integration with respect to an incre-
ment martingale is studied.
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1. Introduction

1 Introduction

Stationary processes are widely used in many areas, and the key example is a moving
average, that is, a process X of the form

Xt =

∫ t

−∞
ψ(t− s) dMs, t ∈ R, (1.1)

where M = (Mt)t∈R is a process with stationary increments. A particular example is a
stationary Ornstein-Uhlenbeck process which corresponds to the case ψ(t) = e−λt1[0,∞)(t)
and M is a Brownian motion indexed by R. See [6] for second order properties of moving
averages and [1] for applications of them in turbulence.

Integration with respect to a local martingale indexed by R+ is well-developed and
in this case one can even allow the integrand to be random. However, when trying to
define a stochastic integral from −∞ as in (1.1) with random integrands, the class of
local martingales indexed by R does not provide the right framework for M = (Mt)t∈R;
indeed, in simple cases, such as when M is a Brownian motion, M is not a martingale
in any filtration. Rather, it seems better to think of M as a process for which the
increment (Mt+s − Ms)t≥0 is a martingale for all s ∈ R. It is natural to call such a
process an increment martingale. Another interesting example within this framework is
a diffusion on natural scale started in ∞ (cf. Example 3.17); indeed, if ∞ is an entrance
boundary then all increments are local martingales but the diffusion itself is not. Thus,
the class of increment (local) martingales indexed by R is strictly larger than the class
of (local) martingales indexed by R and it contains several interesting examples. We
refer to Subsection 1.1 for a discussion of the relations to other kinds of martingale-type
processes indexed by R.

In the present paper we introduce and study basic properties of some classes of
increment martingales M = (Mt)t∈R and the corresponding localised classes. Some of
the problems studied are the following. Necessary and sufficient conditions for M to be
a local martingale up to addition of a random variable will be given when M is either
an increment martingale or an increment square integrable martingale. In addition, we
give various necessary and sufficient conditions for M−∞ = limt→−∞Mt to exist P-a.s.
and M − M−∞ to be a local martingale expressed in terms of either the predictable
quadratic variation 〈M〉 or the quadratic variation [M ] for M , where the latter two
quantities will be defined below for increment martingales. These conditions rely on a
convenient decomposition of increment martingales, and are particularly simple when M
is continuous. We define two kinds of integrals with respect to M ; the first of these is
an increment integral φ

in• M , which we can think of as process satisfying φ
in• Mt − φ

in•
Ms =

∫
(s,t] φu dMu; i.e. increments in φ

in• M correspond to integrals over finite intervals.
The second integral, φ•M , is a usual stochastic integral with respect to M which we can
think of as an integral from −∞. The integral φ •M exists if and only if the increment
integral φ

in• M has an a.s. limit, φ
in• M−∞, at −∞ and φ

in• M − φ
in• M−∞ is a local

martingale. Thus, φ
in• M−∞ may exists without φ •M being defined and in this case we

may think of φ
in• M−∞ as an improper integral. In special cases we give necessary and

sufficient conditions for φ
in• M−∞ to exist.

The present paper relies only on standard martingale results and martingale integra-
tion as developed in many textbooks, see e.g. [8] and [7]. While we focus primarily on
the behaviour at −∞, it is also of interest to consider the behaviour at ∞; we refer to
[5], and references therein, for a study of this case for semimartingales, and to [12], and
references therein, for a study of improper integrals with respect to Lévy processes when
the integrand is deterministic.
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2. Preliminaries

1.1 Relations to other martingale-type processes

Let us briefly discuss how to define processes with some kind of martingale structure
when processes are indexed by R. There are at least three natural definitions:

(i) E[Mt|FM
s ] =Ms for all s ≤ t, where FM

s = σ(Mu : u ∈ (−∞, s]).

(ii) E[Mt −Mu|FIM
v,s ] =Ms −Mv for all u ≤ v ≤ s ≤ t, where FM

v,s = σ(Ms −Mu : v ≤
u ≤ t ≤ s).

(iii) E[Mt −Ms|FIM
s ] = 0 for all s ≤ t, where FIMs = σ(Mt −Mu : u ≤ t ≤ s).

(The first definition is the usual martingale definition and the third one corresponds to
increment martingales). Both (i) and (iii) generalise the usual notion of martingales
indexed by R+, in the sense that if (Mt)t∈R is a process with Mt = 0 for t ∈ (−∞, 0],
then (Mt)t≥0 is a martingale (in the usually sense) if and only if (Mt)t∈R is a martingale
in the sense of (i), or equivalently in the sense of (iii). Definition (ii) does not generalise
martingales indexed by R+ in this manner. Note moreover that a centered Lévy process
indexed by R (cf. Example 3.3) is a martingale in the sense of (ii) and (iii) but not in the
sense of (i). Thus, (iii) is the only one of the above definitions which generalise the usual
notion of martingales on R+ and is general enough to allow centered Lévy processes to
be martingales. Note also that both (i) and (ii) imply (iii).

The general theory of martingales indexed by partially ordered sets (for short, posets)
does not seem to give us much insight about increment martingales since the research
in this field mainly has a different focus; indeed, one of the main problems has been to
study martingales M = (Mt)t∈I in the case where I = [0, 1]2; see e.g. [4, 3]. However,
below we recall some of the basic definitions and relate them to the above (i)–(iii).

Consider a poset (I,≤) and a filtration F = (Ft)t∈I , that is, for all s, t ∈ I with s ≤ t
we have that Fs ⊆ Ft. Then, (Mt)t∈I is called a martingale with respect to ≤ and F ,
if for all s, t ∈ I with s ≤ t we have that E[Mt|Fs] = Ms. Let M = (Mt)t∈R denote a
stochastic process. Then, definition (i) corresponds to I = R with the usually order. To
cover (ii) and (iii) let I = {(a1, a2] : a1, a2,∈ R, a1 < a2}, and for A = (a1, a2] ∈ I let
MA =Ma2 −Ma1 , FM

A = σ(MB : B ∈ I, B ⊆ A). Furthermore, for all A = (a1, a2], B =
(b1, b2] ∈ I we will write A ≤2B if A ⊆ B, and A ≤3B if a1 = b1 and a2 ≤ b2. Clearly,
≤2 and ≤3 are two partial orders on I. Moreover, it is easily seen that (Mt)t∈R satisfies
(ii)/(iii) if and only if (MA)A∈I is a martingale with respect to ≤2/≤3 and FM . Recall
that a poset (I,≤) is called directed if for all s, t ∈ I there exists an element u ∈ I such
that s ≤ u and t ≤ u. Note that (I,≤2) is directed, but (I,≤3) is not; and in particular
(I,≤3) is not a lattice. We refer to [9] for some nice considerations about martingales
indexed by directed posets.

2 Preliminaries

Let (Ω,F ,P) denote a complete probability space on which all random variables ap-
pearing in the following are defined. Let F· = (Ft)t∈R denote a filtration in F , i.e. a
right-continuous increasing family of sub σ-algebras in F satisfying N ⊆ Ft for all t,
where N is the collection of all P-null sets. Set F−∞ := ∩t∈RFt and F∞ := ∪t∈RFt.
The notation

D
= will be used to denote identity in distribution. Similarly,

P
= will de-

note equality up to P-indistinguishability of stochastic processes. When X = (Xt)t∈R
is a real-valued stochastic process we say that lims→−∞Xs exists P-a.s. if Xs converges
almost surely as s→ −∞, to a finite limit.

134



2. Preliminaries

Definition 2.1. A stopping time σ is a mapping σ : Ω → (−∞,∞] satisfying {σ ≤ t} ∈
Ft for all t ∈ R. A localising sequence (σn)n≥1 is a sequence of stopping times satisfying
σ1(ω) ≤ σ2(ω) ≤ · · · for all ω, and σn → ∞ P-a.s.

Let P(F·) denote the predictable σ-algebra on R×Ω. That is, the σ-algebra generated
by the set of simple predictable sets, where a subset of R × Ω is said to be simple
predictable if it is of the form B × C where, for some t ∈ R, C is in Ft and B is a
bounded Borel set in ]t,∞[. Note that the set of simple predictable sets is closed under
finite intersections.

Any left-continuous and adapted process is predictable. Moreover, the set of pre-
dictable processes is stable under stopping in the sense that whenever α = (αt)t∈R is
predictable and σ is a stopping time, the stopped process ασ := (αt∧σ)t∈R is also pre-
dictable.

By an increasing process we mean a process V = (Vt)t∈R (not necessarily adapted)
for which t 7→ Vt(ω) is nondecreasing for all ω ∈ Ω. Similarly, a process V is said to be
càdlàg if t 7→ Vt(ω) is right-continuous and has left limits in R for all ω ∈ Ω.

In what follows increments of processes play an important role. Whenever X =
(Xt)t∈R is a process and s, t ∈ R define the increment of X over the interval (s, t], to be
denoted sXt, as

sXt := Xt −Xt∧s =

{
0 if t ≤ s

Xt −Xs if t ≥ s.
(2.1)

Set furthermore sX = (sXt)t∈R. Note that

(sX)σ = s(Xσ) for s ∈ R and σ a stopping time. (2.2)

Moreover, for s ≤ t ≤ u we have
t(sX)u = tXu. (2.3)

Definition 2.2. Let A(F·) denote the class of increasing adapted càdlàg processes.
Let A1(F·) denote the subclass of A(F·) consisting of integrable increasing càdlàg

adapted processes; LA1(F·) denotes the subclass of A(F·) consisting of càdlàg increasing
adapted processes V = (Vt)t∈R for which there exists a localising sequence (σn)n≥1 such
that V σn ∈ A1(F·) for all n.

Let A0(F·) denote the subclass of A(F·) consisting of increasing càdlàg adapted
processes V = (Vt)t∈R for which limt→−∞ Vt = 0 P-a.s. Set A1

0(F·) := A0(F·) ∩ A1(F·)
and LA1

0(F·) := A0(F·) ∩ LA1(F·).
Let IA(F·) (resp. IA1(F·), ILA1(F·)) denote the class of càdlàg increasing processes

V for which sV ∈ A(F·) (resp. sV ∈ A1(F·), sV ∈ LA1(F·)) for all s ∈ R. We emphasize
that V is not assumed adapted.

Motivated by our interest in increments we say that two càdlàg processesX = (Xt)t∈R
and Y = (Yt)t∈R have identical increments, and write X

in
= Y , if sX

P
= sY for all s ∈ R.

In this case also Xσ in
= Y σ whenever σ is a stopping time.

Remark 2.3. Assume X and Y are càdlàg processes with X
in
= Y . Then by definition

Xt −Xs = Yt − Ys for all s ≤ t P-a.s. for all t and so by the càdlàg property Xt −Xs =
Yt−Ys for all s, t ∈ R P-a.s. This shows that there exists a random variable Z such that
Xt = Yt + Z for all t ∈ R P-a.s., and thus sXt =

sYt for all s, t ∈ R P-a.s.

For any stochastic process X = (Xt)t∈R we have

sXt +
tXu = sXu for s ≤ t ≤ u. (2.4)
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3. Martingales and increment martingales

This leads us to consider increment processes, defined as follows. Let I = {sI}s∈R with
sI = (sIt)t∈R be a family of stochastic processes. We say that I is a consistent family of
increment processes if the following three conditions are satisfied:

(1) sI is an adapted process for all s ∈ R, and sIt = 0 P-a.s. for all t ≤ s.

(2) For all s ∈ R and ω ∈ Ω the mapping t 7→ sIt(ω) is càdlàg.

(3) For all s ≤ t ≤ u we have sIt +
tIu = sIu P-a.s.

Whenever X is a càdlàg process such that sX is adapted for all s ∈ R, the family
{sX}s∈R of increment processes is then consistent by equation (2.4). Conversely, let I
be a consistent family of increment processes. A càdlàg process X = (Xt)t∈R is said to
be associated with I if sX

P
= sI for all s ∈ R. It is easily seen that there exists such a

process; for example, let

Xt =





0It for t ≥ 0

−tI0 for t = −1,−2, . . . ,

X−n +
−nIt for t ∈ (−n,−n+ 1) and n = 1, 2, . . .

Thus, consistent families of increment processes correspond to increments in càdlàg pro-
cesses with adapted increments. If X = (Xt)t∈R and Y = (Yt)t∈R are càdlàg processes
associated with I then X

in
= Y and hence by Remark 2.3 there is a random variable Z

such that Xt = Yt + Z for all t P-a.s.

Remark 2.4. Let I be a consistent family of increment processes, and assume X is
a càdlàg process associated with I such that X−∞ := limt→−∞Xt exists in probabil-
ity. Then, (Xt − X−∞)t∈R is adapted and associated with I. Indeed, Xt − X−∞ =
lims→−∞

sXt in probability for t ∈ R and since sXt =
sIt (P-a.s.) is Ft-measurable, it

follows that Xt − X−∞ is Ft-measurable. In this case, (Xt − X−∞)t∈R is the unique
(up to P-indistinguishability) càdlàg process associated with I which converges to 0 in
probability as time goes to −∞. If, in addition, sI is predictable for all s ∈ R then
(Xt − X−∞)t∈R is also predictable. To see this, choose a P-null set N and a sequence
(sn)n≥1 decreasing to −∞ such that Xsn(ω) → X−∞(ω) as n → ∞ for all ω ∈ N c. For
ω ∈ N c and t ∈ R we then have Xt(ω)−X−∞(ω) = limn→∞

snXt(ω), implying the result
due to inheritance of predictability under pointwise limits.

3 Martingales and increment martingales

Let us now introduce the classes of (square integrable) martingales and the corresponding
localised classes.

Definition 3.1. Let M = (Mt)t∈R denote a càdlàg adapted process.
We call M an F·-martingale if it is integrable and for all s < t, E[Mt|Fs] =Ms P-a.s.

If in addition Mt is square integrable for all t ∈ R then M is called a square integrable
martingale. Let M(F·) resp. M2(F·) denote the class of F·-martingales resp. square
integrable F·-martingales. Note that these classes are both stable under stopping.

We call M a local F·-martingale if there exists a localising sequence (σn)n≥1 such
that Mσn ∈ M(F·) for all n. The definition of a locally square integrable martingale is
similar. Let LM(F·) resp. LM2(F·) denote the class of local martingales resp. locally
square integrable martingales. These classes are stable under stopping.
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3. Martingales and increment martingales

Remark 3.2. (1) The backward martingale convergence theorem shows that if M ∈
M(F·) then Mt converges P-a.s. and in L1(P) to an F−∞-measurable integrable random
variable M−∞ as t → −∞ (cf. Chapter II, Theorem 2.3 in [6]). In this case we may
consider (Mt)t∈[−∞,∞) as a martingale with respect to the filtration (Ft)t∈[−∞,∞). If
M ∈ M2(F·) then Mt converges in L2(P) to M−∞.

(2) Let M ∈ LM(F·) and choose a localising sequence (σn)n≥1 such that Mσn ∈
M(F·) for all n. From (1) follows that there exists an F−∞-measurable integrable random
variable M−∞ (which does not depend on n) such that for all n we have Mσn

t → M−∞
P-a.s. and in L1(P) as t → −∞, and Mt → M−∞ P-a.s. Thus, defining Mσn

−∞ := M−∞
it follows that for all n the process (Mt)

σn
t∈[−∞,∞) can be considered a martingale with

respect to (Ft)t∈[−∞,∞), and consequently (Mt)t∈[−∞,∞) is a local martingale. (Note,
though, that σn is not allowed to take on the value −∞.) In the case M ∈ LM2(F·)
assume (σn)n≥1 is chosen such that Mσn ∈ M2(F·) for all n; then Mσn

t → M−∞ in
L2(P).

(3) The preceding shows that a local martingale indexed by R can also be regarded
as a local martingale indexed by [−∞,∞), where localising stopping times, however, are
not allowed to take on the value −∞. Let us argue that the latter restriction is of minor
importance. Thus, call σ : Ω → [−∞,∞] an R̄-valued stopping time if {σ ≤ t} ∈ Ft
for all t ∈ [−∞,∞), and call a sequence of nondecreasing R̄-valued stopping times
σ1 ≤ σ2 ≤ · · · an R̄-valued localising sequence if σn → ∞ P-a.s. as n → ∞. Then we
claim that a càdlàg adapted process M = (Mt)t∈R is a local martingale if and only if
M−∞ := lims→−∞Ms exists P-a.s and there is an R̄-valued localising sequence (σn)n≥1
such that (Mσn

t )t∈[−∞,∞) is a martingale. We emphasize that the latter characterisation
is the most natural one when considering the index set [−∞,∞), while the former is
better when considering R. Note that the only if part follows from (2). Conversely,
assume M−∞ := lims→−∞Ms exists P-a.s and let (σn)n≥1 be an R̄-valued localising
sequence such that (Mσn

t )t∈[−∞,∞) is a martingale, and let us prove the existence of
a localising sequence (τn)n≥1 such that M τn is a martingale for all n. Since M−∞ is
integrable it suffices to consider Mt −M−∞ instead of Mt; consequently we may and do
assume M−∞ = 0. In this case, (τn)n≥1 = (τ ∨σn)n≥1 will do if τ is a stopping time such
that M τ is a martingale. To construct this τ set Znt = E[|Mσn

t ||F−∞] for t ∈ [−∞,∞).
Then Zn is F−∞-measurable and can be chosen non-decreasing, càdlàg and 0 at −∞.
Therefore

ρn = inf{t ∈ R : Znt
2
> 1} ∧ 0

is real-valued, F−∞-measurable and Znρn ≤ 1. Define

τ = ρn ∧ σn on An = {σ1 = · · · = σn−1 = −∞ and σn > −∞}

and set τ = 0 on (∪n≥1An)c. Then τ is a stopping time since the An’s are disjoint and
F−∞-measurable. Furthermore, ∪n≥1An = Ω P-a.s. Thus, for all t > −∞,

E[|Mt∧τ |] =
∞∑

n=1

E[|Mσn∧ρn∧t|1An ] =
∞∑

n=1

E[|Znρn∧σn∧t|1An ] ≤ 1,

implying

E[Mτ∧t|Fs] =
∞∑

n=1

E[Mσn∧ρn∧t|Fs]1An =

∞∑

n=1

Mσn∧τn∧s1An =Mτ∧s

for all −∞ < s < t; thus, M τ is a martingale.
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3. Martingales and increment martingales

Example 3.3. A càdlàg process X = (Xt)t∈R is called a Lévy process indexed by R if it
has stationary independent increments; that is, whenever n ≥ 1 and t0 < t1 < · · · < tn,
the increments t0Xt1 ,

t1Xt2 , . . . ,
tn−1Xtn are independent and sXt

D
= uXv whenever s < t

and u < v satisfy t − s = v − u. In this case (sXs+t)t≥0 is an ordinary Lévy process
indexed by R+ for all s ∈ R.

Let X be a Lévy process indexed by R. There is a unique infinitely divisible dis-
tribution µ on R associated with X in the sense that for all s < t, sXt

D
= µt−s. When

µ = N(0, 1), the standard normal distribution, X is called a (standard) Brownian motion
indexed by R. If Y is a càdlàg process with X

in
= Y , it is a Lévy process as well and µ

is also associated with Y ; that is, Lévy processes indexed by R are determined by the
infinitely divisible µ only up to addition of a random variable.

Note that (X(−t)−)t∈R (where, for s ∈ R, Xs− denotes the left limit at s) is again
a Lévy process indexed by R and the distribution associated with it is µ− given by
µ−(B) := µ(−B) for B ∈ B(R). Since this process appears by time reversion of X, the
behaviour of X at −∞ corresponds to the behaviour of (X(−t)−)t∈R at ∞, which is well
understood, cf. e.g. [11]; in particular, lims→−∞Xs does not exist (in any reasonable
sense) except when X is constant. Thus, except in nontrivial cases X is not a local
martingale in any filtration.

This example clearly indicates that we need to generalise the concept of a martingale.

Definition 3.4. Let M = (Mt)t∈R denote a càdlàg process, in general not assumed
adapted.

We say that M is an increment martingale if for all s ∈ R, sM ∈ M(F·). This
is equivalent to saying that for all s < t, sMt is Ft-measurable, integrable and satisfies
E[sMt|Fs] = 0 P-a.s. If in addition all increments are square integrable, then M is
called a increment square integrable martingale. Let IM(F·) and IM2(F·) denote the
corresponding classes.

M is called an increment local martingale if for all s, sM is an adapted process and
there exists a localising sequence (σn)n≥1 (which may depend on s) such that (sM)σn ∈
M(F·) for all n. Define an increment locally square integrable martingale in the obvious
way. Denote the corresponding classes by ILM(F·) and ILM2(F·).

Obviously the four classes of increment processes are
in
= -stable and by (2.2) stable

under stopping. Moreover, M(F·) ⊆ IM(F·) and M2(F·) ⊆ IM2(F·) with the following
characterizations

M(F·) = {M = (Mt)t∈R ∈ IM(F·) :M is adapted and integrable} (3.1)

M2(F·) = {M ∈ IM2(F·) :M is adapted and square integrable}. (3.2)

Likewise, LM(F·) ⊆ ILM(F·) and LM2(F·) ⊆ ILM2(F·). But no similar simple
characterizations as in (3.1)–(3.2) of the localised classes seem to be valid. Note that
LIM(F·) ⊆ ILM(F·), where the former is the set of local increment martingales, i.e.
the localising sequence can be chosen independent of s. A similar statement holds for
ILM2(F·).

When τ is a stopping time, we define τM in the obvious way as τMt =Mt−Mt∧τ for
t ∈ R.

Proposition 3.5. Let M = (Mt)t∈R ∈ IM(F·) and τ be a stopping time. Then τM ∈
M(F·) if

{
M0 −Mτ∨(−n)∧0 : n ≥ 1

}
is uniformly integrable.

If τ is bounded from below then the above set is always uniformly integrable.
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3. Martingales and increment martingales

Proof. Assume first that τ is bounded from below, that is, there exists an s0 ∈ (0,−∞)
such that τ ≥ s0. Then, since (τMt)t∈R = (s0Mt − s0Mτ∧t)t∈R, τM is a sum of two
martingales and hence a martingale. Assume now that

{
M0 −Mτ∨(−n)∧0 : n ≥ 1

}
is

uniformly integrable. Then, with τn = τ ∨ (−n) we have

{τnMt : n ≥ 1} is uniformly integrable for all t ∈ R. (3.3)

Moreover, τnMt → τMt a.s. and hence in L1(P) by (3.3). For all n ≥ 1, τn is bounded from
below and hence τnM is a martingale, implying that τM is an L1(P)-limit of martingales
and hence a martingale.

Example 3.6. Let X = (Xt)t∈R denote a Lévy process indexed by R. The filtration
generated by the increments of X is FIX· = (FIXt )t∈R, where

FIXt = σ(sXt : s ≤ t) ∨ N = σ(sXu : s ≤ u ≤ t) ∨ N , for t ∈ R,
and we recall that N is the set of P-null sets. Using a standard technique it can be verified
that FIX· is a filtration. Indeed, we only have to verify right-continuity of FIX· . For
this, fix t ∈ R and consider random variables Z1 and Z2 where Z1 is bounded and FIXt -
measurable, and Z2 is bounded and measurable with respect to σ(sXu : t + ǫ < s < u)
for some ǫ > 0. Then

E[Z1Z2|FIXt+ ] = Z1E[Z2] = E[Z1Z2|FIXt ] P-a.s.

by independence of Z2 and FIXt+ . Applying the monotone class lemma it follows that
whenever Z is bounded and measurable with respect to FIX∞ we have E[Z|FIXt+ ] =
E[Z|FIXt ] P-a.s., which in turn implies right-continuity of FIX· . It is readily seen that
X ∈ IM(FIX· ) if X has integrable centered increments.

Increment martingales are not necessarily integrable. But for M = (Mt)t∈R ∈
IM(F·), Mt ∈ L1(P) for all t ∈ R if and only if Mt ∈ L1(P) for some t ∈ R. Likewise
(Ms)s≤t is uniformly integrable for all t if and only if (Ms)s≤t is uniformly integrable
for some t. Similarly, for M ∈ IM2(F·) we have Mt ∈ L2(P) for all t ∈ R if and only
if Mt ∈ L2(P) for some t ∈ R, and (Ms)s≤t is L2(P)-bounded for some t if and only if
(Ms)s≤t is L2(P)-bounded for some t. For integrable elements of IM(F·) we have the
following decomposition.

Proposition 3.7. Let M = (Mt)t∈R ∈ IM(F·) be integrable. Then M can be decom-
posed uniquely up to P-indistinguishability as M = K +N where K = (Kt)t∈R ∈ M(F·)
and N = (Nt)t∈R ∈ IM(F·) is an integrable process satisfying

E[Nt|Ft] = 0 for all t ∈ R and lim
t→∞

Nt = 0 P-a.s. and in L1(P). (3.4)

If M is square integrable then so are K and N , and E[KtNt] = 0 for all t ∈ R. Thus
E[M2

t ] = E[K2
t ] + E[N2

t ] for all t and moreover t 7→ E[N2
t ] is decreasing.

Proof. The uniqueness is evident. To get the existence set Kt = E[Mt|Ft]. Then K is
integrable and adapted and for s < t we have

E[Kt|Fs] = E[Mt|Fs] = E[Ms|Fs] + E[sMt|Fs] = Ks.

Thus, K ∈ M(F·) and therefore N := M −K ∈ IM(F·). Clearly, N is integrable and
E[Nt|Ft] = 0 for all t ∈ R. Take s ≤ t. Then sNt = E[sNt|Ft], giving

sNt = E[Nt −Ns|Ft] = −E[Ns|Ft], (3.5)
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3. Martingales and increment martingales

that is Nt = Ns − E[Ns|Ft], proving that limt→∞Nt = 0 P-a.s. and in L1(P). If M is
square integrable then so are K and N and they are orthogonal. Furthermore for s ≤ t

E[Ns(Nt −Ns)] = E[(Nt −Ns)E[Ns|Ft]]
= E[(Nt −Ns)E[(Ns −Nt)|Ft]] = −E[(Nt −Ns)

2]

implying
E[N2

t ] = E[N2
s ]− E[(Nt −Ns)

2]. (3.6)

As a corollary we may deduce the following convergence result for integrable increment
martingales.

Corollary 3.8. Let M = (Mt)t∈R ∈ IM(F·) be integrable.

(a) If (Ms)s≤0 is uniformly integrable then M−∞ := lims→−∞Ms exists P-a.s. and in
L1(P) and (Mt −M−∞)t∈R is in M(F·).

(b) If (Ms)s≤0 is bounded in L2(P) then M−∞ := lims→−∞Ms exists P-a.s. and in
L2(P) and (Mt −M−∞)t∈R is in M2(F·).

Proof. Write M = K+N as in Proposition 3.7. As noticed in Remark 3.2 the conclusion
holds for K. Furthermore (Ns)s≤0 is uniformly integrable when this is true for M so we
may and will assume M = N . That is, M satisfies (3.4). By uniform integrability we
can find a sequence sn decreasing to −∞ and an M̃ ∈ L1(P) such that Msn → M̃ in
σ(L1, L∞). For all t we have by (3.5)

Mt =Msn − E[Msn |Ft] for sn < t

and thus
Mt = M̃ − E[M̃ |Ft] for all t,

proving part (a). In (b) the martingale part K again has the right behaviour at −∞.
Likewise, (Ns)s≤0 is bounded in L2(P) if this is true for M . Thus we may assume that M
satisfies (3.4). The a.s. convergence is already proved and the L2(P)-convergence follows
from (3.6) since t 7→ E[Mt] is decreasing and sups<0 E[M

2
s ] <∞.

Observe that (Mt −Mt0)t∈R is in IM(F·) and is integrable for every t0 ∈ R and
every M ∈ IM(F·). Since a similar result holds in the square integrable case, Corollary
3.8 implies the following result relating convergence of an increment martingale to the
martingale property.

Proposition 3.9. Let M = (Mt)t∈R be a given càdlàg process. The following are equiv-
alent:

(a) M−∞ := lims→−∞Ms exists P-a.s. and (Mt −M−∞)t∈R is in M(F·).

(b) M ∈ IM(F·) and (sM0)s<0 is uniformly integrable.

Likewise, the following are equivalent:

(c) M−∞ := lims→−∞Ms exists P-a.s. and (Mt −M−∞)t∈R is in M2(F·)

(d) M ∈ IM2(F·) and sups:s≤0 E[(
sM0)

2] <∞.
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3. Martingales and increment martingales

Proof. Assuming M ∈ IM(F·)/IM2(F·), (b) ⇒ (a) and (d) ⇒ (c) follow by using
Corollary 3.8 on (Mt −M0)t∈R. The remaining two implications follow from standard
martingale theory and the identity sM0 = (M0 −M−∞)− (Ms −M−∞).

Let M ∈ LM(F·) with M−∞ = 0. It is well-known that there exists a unique (up
to P-indistinguishability) process [M ] called the quadratic variation for M satisfying
[M ] ∈ A0(F·), (∆M)2t = ∆[M ]t for all t ∈ R P-a.s., and M2 − [M ] ∈ LM(F·). We have

s[M ]
P
= [sM ] for s ∈ R and [M ]σ

P
= [Mσ] when σ is a stopping time. (3.7)

If, in addition, M ∈ LM2(F·), there is a unique predictable process 〈M〉 ∈ LA1
0(F·)

satisfying M2 − 〈M〉 ∈ LM(F·), and we shall call this process the predictable quadratic
variation for M . In this case,

s〈M〉 P
= 〈sM〉 for s ∈ R and 〈M〉σ P

= 〈Mσ〉 when σ is a stopping time. (3.8)

Definition 3.10. Let M ∈ ILM(F·). We say that an increasing process V = (Vt)t∈R
is a generalised quadratic variation for M if

V ∈ IA(F·) (3.9)

(∆M)2t = ∆Vt for all t ∈ R, P-a.s. (3.10)

(sM)2 − sV ∈ LM(F·) for all s ∈ R. (3.11)

We say that V is quadratic variation for M if, instead of (3.9), V ∈ A0(F·).
Let M ∈ ILM2(F·). We say that an increasing process V = (Vt)t∈R is a generalised

predictable quadratic variation for M if

V ∈ ILA1(F·) (3.12)
sV is predictable for all s ∈ R (3.13)

(sM)2 − sV ∈ LM(F·) for all s ∈ R. (3.14)

We say that V is a predictable quadratic variation for V if, instead of (3.12), V ∈ LA1
0(F·).

Remark 3.11. (1) Let M ∈ ILM(F·) and V denote a generalised quadratic variation
for M such that V−∞ := lims→−∞ Vs exists P-a.s. From Remark 2.4 it follows that
(Vt − V−∞)t∈R is a quadratic variation for M .

Similarly, let M ∈ ILM2(F·) and V denote a generalised predictable quadratic
variation for M such that V−∞ := lims→−∞ Vs exists P-a.s. Then (Vt − V−∞)t∈R is a
predictable quadratic variation for M . Indeed, by [8], Lemma I.3.10, (Vt − V−∞)t∈R is a
predictable process in LA1

0(F·). (Strictly speaking, this lemma only ensures the existence
of an R̄-value localising sequence (σn)n≥1 (cf. Remark 3.2 (3)) such that (Vt − V−∞)σn

is in A1
0(F·); this problem can, however, be dealt with as described in Remark 3.2).

(2) If M ∈ LM(F·) with M−∞ = 0 then the usual quadratic variation [M ] for M
is, by (3.7), also a quadratic variation in the sense of Definition 3.10, and similarly,
if M ∈ LM2(F·) then the usual predictable quadratic variation 〈M〉 is a predictable
quadratic variation also in the sense defined above.

(3) (Existence of generalised quadratic variation). Let M ∈ ILM(F·). Then V is
a generalised quadratic variation for M if and only if we have (3.9)–(3.10) and V is
associated with the family {[sM ]}s∈R. By Section 2, existence and uniqueness (up to
addition of random variables) of the generalised quadratic variation is thus ensured once
we have shown that the latter family is consistent. In other words, we must show for
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s ≤ t ≤ u that [sM ]u = [sM ]t + [tM ]u P-a.s. Equivalently, t([sM ])u = [tM ]u P-a.s. This
follows, however, from (3.7) and (2.2).

(4) (Existence of generalised predictable quadratic variation). Similarly, let M ∈
ILM2(F·). Then V is a generalised predictable quadratic variation for M if and only if
we have (3.12)–(3.13) and V is associated with {〈sM〉}s∈R. Moreover, the latter family
is consistent, ensuring existence and uniqueness of the generalised predictable quadratic
variation up to addition of random variables.

(5) By Remark 2.4, the quadratic variation and the predictable quadratic variation
are unique up to P-indistinguishability when they exist.

(6) Generalised compensators and predictable compensators are
in
=-invariant, i.e. if

for example M,N ∈ IM(F·) with M
in
= N then V is a generalised compensator for M if

and only if it is a generalised compensator for N .

When M ∈ ILM(F .) we use [M ]g to denote a generalised quadratic variation for M ,
and [M ] denotes the quadratic variation when it exists. For M ∈ ILM2(F .), 〈M〉g de-
notes a generalised quadratic variation for M , and 〈M〉 denotes the predictable quadratic
variation when it exists. Generalising (3.7)–(3.8) we have the following.

Lemma 3.12. Let σ denote a stopping time and s ∈ R. If M ∈ ILM(F·) then

([M ]g)σ
in
= [Mσ]g and s([M ]g)

P
= [sM ]. (3.15)

If M ∈ ILM2(F·) then

(〈M〉g)σ in
= 〈Mσ〉g and s(〈M〉g) P

= 〈sM〉.

Proof. We only prove the part concerning the quadratic variation. As seen above, [M ]g

is associated with {[sM ]}s∈R, which implies the second statement in (3.15).
To prove the first statement in (3.15) it suffices to show that ([M ]g)σ is associated

with {[sMσ]}s∈R. Note that, by (2.2) and (3.7),

s(([M ]g)σ)
P
= (s[M ]g)σ

P
= [sM ]σ

P
= [sMσ].

Example 3.13. Let τ1 and τ2 denote independent absolutely continuous random vari-
ables with densities f1 and f2 and distribution functions F1 and F2 satisfying Fi(t) < 1
for all t and i = 1, 2. Set

N i
t = 1[τi,∞)(t), A

i
t =

∫ t∧τi

−∞

fi(u)

1− Fi(u)
du, Nt = (N1

t , N
1
t ) and Ft = σ(Ns : s ≤ t) ∨ N

for t ∈ R. From [2], A2 T26, follows that (Ft)t∈R is right-continuous and hence a
filtration in the sense defined in the present paper. It is well-known that M i defined
by M i

t = N i
t − Ait is a square integrable martingale with 〈M i〉t = Ait, and M1M2 is a

martingale. Assume, in addition,

∫ t

−∞

ufi(u)

1− Fi(u)
du = −∞ for all t ∈ R.

(This is satisfied if, for example, Fi(s) equals a constant times (1 + |s| log(|s|))−1 when
s is small.) Let Bi ∈ IA1(F·) satisfy

sBi
t =

∫

(s,t]
udAiu =

∫ t∧τi

s∧τi

ufi(u)

1− Fi(u)
du
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for s < t and set Xi
t = τiN

i
t −Bi

t . Then

lim
s→−∞

Xi
s = − lim

s→−∞
Bi
s = ∞ pointwise,

implying that Xi is not a local martingale. However, since for s < t,

sXi
t =

∫

(s,t]
udM i

u

it follows that sXi is a square integrable martingale. That is, Xi ∈ ILM2(F·).
The quadratic variations, [Xi] resp. [X1 − X2], of Xi resp. X1 − X2 do exist and

are [Xi]t = (τi)
2N i

t resp. [X1 −X2]t = (τ1)
2N1

t + (τ2)
2N2

t . Moreover, up to addition of
random variables,

lim inf
s→−∞

(X1
s −X2

s ) = lim inf
s→−∞

(B2
s −B1

s ) = lim inf
s→−∞

∫ 0

s
u(

f2(u)

1− F2(u)
− f1(u)

1− F1(u)
) du

lim sup
s→−∞

(X1
s −X2

s ) = lim inf
s→−∞

(B2
s −B1

s ) = lim sup
s→−∞

∫ 0

s
u(

f2(u)

1− F2(u)
− f1(u)

1− F1(u)
) du.

If τ1 and τ2 are identically distributed then X1
s −X2

s converges pointwise. In other cases
we may have lim sups→−∞(X

1
s −X2

s ) = − lim infs→−∞(X
1
s −X2

s ) = ∞ pointwise.
To sum up, we have seen that even if the quadratic variation exists, the process may

or may not converge as time goes to −∞.

The next result shows in particular that for increment local martingales with bounded
jumps, a.s. convergence at −∞ is closely related to the local martingale property.

Theorem 3.14. Let M ∈ ILM2(F·). The following are equivalent.

(a) There is a predictable quadratic variation 〈M〉 for M .

(b) M−∞ = lims→−∞Ms exists P-a.s. and (Mt −M−∞)t∈R ∈ LM2(F·).

Remark 3.15. Let M in ILM(F·) have bounded jumps; then, M ∈ ILM2(F·) as well.
In this case (b) is satisfied if and only if M−∞ := lims→−∞Ms exists P-a.s. Indeed, if
the limit exists we define

σn = inf{t ∈ R : |Mt −M−∞| > n}.

Then (Mσn
t −M−∞)t∈R is a bounded and adapted process in ILM(F·) and hence in

IM2(F·). By Proposition 3.9, (Mσn
t −M−∞)t∈R is in M2(F·).

Proof. (a) implies (b): Choose a localising sequence (σn)n≥1 such that

E[〈M〉σnt ] <∞, for all t ∈ R and all n ≥ 1.

Since s〈M〉σn = 〈sMσn〉, it follows in particular that

E[〈sMσn〉t] ≤ E[〈M〉σnt ] <∞

for all s ≤ t and n. Therefore, for all s and n we have sMσn ∈ M2(F·), and

E[(sMσn
t )2] ≤ E[〈M〉σnt ] <∞
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for all s ≤ t. Using Proposition 3.9 on Mσn it follows that M−∞ := lims→−∞M
σn
s exists

P-a.s. (this limit does not depend on n) and (Mσn
t −M−∞)t∈R is a square integrable

martingale.
(b) implies (a): Let 〈M−M−∞〉 denote the predictable quadratic variation for (Mt−

M−∞)t∈R which exists since this process is a locally square integrable martingale. Since
M

in
= (Mt −M−∞)t∈R, 〈M −M−∞〉 is a predictable quadratic variation for M as well.

We have seen that a continuous increment local martingale is a local martingale if it
converges almost surely as time goes to −∞. A main purpose of the next examples is to
study the behaviour at −∞ when this is not the case.

Example 3.16. In (2) below we give an example of a continuous increment local mar-
tingale which converges to zero in probability as time goes to −∞ without being a local
martingale. As a building block for this construction we first consider a simple example
of a continuous local martingale which is nonzero only on a finite interval.

(1) Let B = (Bt)t≥0 denote a standard Brownian motion and τ be the first visit to
zero after a visit to k, i.e.

τ = inf{t > 0 : Bt = 0 and there is an s < t such that Bs > k}, (3.16)

where k > 0 is some fixed level. Then τ is finite with probability one, the stopped process
(Bt∧τ )t≥0 is a square integrable martingale, and Bt∧τ = 0 when t ≥ τ . Let a < b be
real numbers and φ : [a, b) → [0,∞) be a surjective, continuous and strictly increasing
mapping and define Y = (Yt)t∈R as

Yt =





0 if t < a

Bφ(t)∧τ if t ∈ [a, b)

0 if t ≥ b.

(3.17)

Note that t 7→ Yt is continuous P-a.s. and that with probability one Yt = 0 for t 6∈ [a, b].
Define, with N denoting the P-null sets,

Ft = σ(Bu : u ≤ φ(t)) ∨ N for t ∈ R, (3.18)

where we let φ(t) = 0 for t ≤ a and φ(t) = ∞ for t ≥ b. Interestingly, Y is a local
martingale. To see this, define the “canonical” localising sequence (σn)n≥1 as σn = inf{t ∈R : |Yt| > n}. Since (Y σn

t )t∈[a,b) is a deterministic time change of (Bt∧τ )t≥0 stopped at
σn, it is a bounded, and hence uniformly integrable, martingale. By continuity of the
paths and the property Y σn

t = Y σn
b for t ≥ b it thus follows that (Y σn

t )t∈R is a bounded
martingale.

(2) For n = 1, 2, . . . let Bn = (Bn
t )t≥0 denote independent standard Brownian mo-

tions, and define Y n = (Y n
t )t∈R as in (3.17) with a = −n and b = −n + 1, and Y

resp. B replaced by Y n resp. Bn. Let (Fn
t )t∈R be the corresponding filtration defined

as in (3.18), and (θn)n≥1 denote a sequence of independent Bernoulli variables that are
independent of the Brownian motions as well and satisfy P(θn = 1) = 1−P(θn = 0) = 1

n
for all n. Let Xn

t = θnY
n
t for t ∈ R.

Define Xt =
∑∞

n=1X
n
t for t ∈ R, which is well-defined since Xn

t = 0 for t 6∈ [−n,−n+
1], and set Ft = ∨∞n=1(Fn

t ∨ σ(θn)) for t ∈ R. For s ∈ [−n,−n + 1] and n = 1, 2, . . .,
sXt =

∑n
m=1

sXm
t , and since it is easily seen that each (Xm

t )t∈R is a local martingale
with respect to (Ft)t∈R, it follows that sX is a local martingale as well; that is, X
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3. Martingales and increment martingales

is an increment local martingale. By Borel-Cantelli, infinitely many of the θn’s are 1
P-a.s., implying that Xs does not converge P-a.s. as s → −∞. On the other hand,
P(Xt = 0) ≥ n−1

n for t ∈ [−n,−n + 1], which means that Xs → 0 in probability as
s→ −∞.

From (3.1) it follows that if a process in IM(F·) is adapted and integrable then it is
in M(F·). By the above there is no such result for ILM(F·); indeed, X is both adapted
and p-integrable for all p > 0 but it is not in LM(F·).

Example 3.17. Let X = (Xt)t≥0 denote the inverse of BES(3), the three-dimensional
Bessel process. It is well-known (see e.g. [10]) that X is a diffusion on natural scale and
hence for all s > 0 the increment process (sXt)t≥0 is a local martingale. That is, we may
consider X as an increment martingale indexed by [0,∞). By [10], ∞ is an entrance
boundary, which means that if the process is started in ∞, it immediately leaves this
state and never returns. Since we can obviously stretch (0,∞) into R, this shows that
there are interesting examples of continuous increment local martingales (Xt)t∈R for
which limt→−∞Xt = ±∞ almost surely.

Using the Dambis-Dubins-Schwartz theorem it follows easily that any continuous
local martingale indexed by R is a time change of a Brownian motion indexed by R+. It
is not clear to us whether there is some analogue of this result for continuous increment
local martingales but there are indications that this it not the case; indeed, above we saw
that a continuous increment local martingale may converge to ∞ as time goes to −∞; in
particular this limiting behaviour does not resemble that of a Brownian motion indexed
by R+ as time goes to 0 or of a Brownian motion indexed by R as time goes to −∞.

Let M ∈ LM(F·). It is well-known that M can be decomposed uniquely up to P-
indistinguishability as Mt =M−∞+M c

t +M
d
t where M c = (M c

t )t∈R, the continuous part
of M , is a continuous local martingale with M−∞ = 0, and Md, the purely discontinuous
part of M , is a purely discontinuous local martingale with Md

−∞ = 0, which means that
MdN is a local martingale for all continuous local martingales N . Note that for s ∈ R,

(sM)c = s(M c) and (sM)d = s(Md). (3.19)

We need a further decomposition of Md so let µM = {µM (ω; dt,dx) : ω ∈ Ω} denote the
random measure on R× (R \ {0}) induced by the jumps of M ; that is,

µM (ω; dt,dx) =
∑

s∈R δ(s,∆Ms(ω))(dt,dx),

and let νM = {νM (ω; dt,dx) : ω ∈ Ω} denote the compensator of µM in the sense of [8],
II.1.8. From Proposition II.2.29 and Corollary II.2.38 in [8] it follows that (|x| ∧ |x|2) ∗
νM ∈ LA1

0(F·) and Md P
= x ∗ (µM − νM ), implying that for arbitrary ǫ > 0, M can be

decomposed as

Mt =M−∞ +M c
t +Md

t =M−∞ +M c
t + x ∗ (µM − νM )t

=M−∞ +M c
t + (x1{|x|≤ǫ}) ∗ (µM − νM )t + (x1{|x|>ǫ}) ∗ µMt − (x1{|x|>ǫ}) ∗ νMt .

Recall that when M is quasi-left continuous we have

νM (·; {t} × (R \ {0})) = 0 for all t ∈ R P-a.s. (3.20)

Finally, for s ∈ R, µ
sM (·; dt,dx) = 1(s,∞)(dt)µ

M (·; dt,dx) and thus

ν
sM (·; dt,dx) = 1(s,∞)(dt)ν

M(·; dt,dx). (3.21)
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3. Martingales and increment martingales

Now consider the case M ∈ ILM(F·). Denote the continuous resp. purely discon-
tinuous part of sM by sM c resp. sMd. By (3.19), {sM c}s∈R and {sMd}s∈R are consistent
families of increment processes, and M is associated with {sM c + sMd}s∈R. Thus, there
exist two processes, which we call the continuous resp. purely discontinuous part of M ,
and denote M cg and Mdg, such that M cg is associated with {sM c}s∈R and Mdg is asso-
ciated with {sMd}s∈R, and

Mt =M cg
t +Mdg

t for all t ∈ R, P-a.s. (3.22)

Once again these processes are unique only up to addition of random variables. In view
of (3.21) we define the compensator of µM , to be denoted {νM (ω; dt,dx) : ω ∈ Ω}, as
the random measure on R× (R \ {0}) satisfying that for all s ∈ R,

1(s,∞)(dt)ν(ω; dt,dx) = ν
sM (ω; dt,dx),

where, noticing that sM is a local martingale, the right-hand side is the compensator of
µ

sM in the sense of [8], II.1.8.

Theorem 3.18. Let M ∈ ILM(F·).

(1) The quadratic variation [M ] for M exists if and only if there is a continuous mar-
tingale component M cg with M cg ∈ LM(F·) and M cg

−∞ = 0, and for all t ∈ R,∑
s≤t(∆Ms)

2 <∞ P-a.s. In this case

[M ]t = 〈M cg〉t +
∑

s≤t

(∆Ms)
2.

(2) We have that M−∞ := lims→−∞Ms exists P-a.s. and (Mt −M−∞)t∈R ∈ LM(F·)
if and only if the quadratic variation [M ] for M exists and [M ]

1
2 ∈ LA1

0(F·).

(3) Assume (3.20) is satisfied and there is an ǫ > 0 such that

lim
s→−∞

∫

(s,0]

∫

|x|>ǫ
xνM (·; du,dx) (3.23)

exists P-a.s. Then, lims→−∞Ms exists P-a.s. if and only if [M ] exists.

Note that the conditions in (3) are satisfied if νM can be decomposed as νM (·; dt ×
dx) = F (·; t,dx)µ(dt) where F (·; t,dx) is a symmetric measure for all t ∈ R and µ does
not have positive point masses.

Proof. (1) For s ≤ t we have

s[M ]gt = [sM ]t =
∑

u:s<u≤t

(∆Mu)
2 + 〈sM c〉t

=
∑

u:s<u≤t

(∆Mu)
2 + 〈s(M cg)〉t

=
∑

u:s<u≤t

(∆Mu)
2 + s〈M cg〉gt

=
∑

u:s<u≤t

(∆Mu)
2 + 〈M cg〉gt − 〈M cg〉gs, (3.24)
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3. Martingales and increment martingales

where the first equality is due to the fact that [M ]g is associated with {[sM ]}s∈R, the
second is a well-known decomposition of the quadratic variation of a local martingale,
the third equality is due to M cg being associated with {sM c}s∈R and the fourth is
due to 〈M cg〉g being associated with {〈sM cg〉}s∈R. By Remark 3.11 (1), the quadratic
variation [M ] exists if and only if [M ]gs converges P-a.s. as s→ −∞, which, by the above,
is equivalent to convergence almost surely of both terms in (3.24). By Theorem 3.14,
〈M cg〉gs converges P-a.s. as s→ −∞ if and only ifM cg

−∞ exists P-a.s. and (M cg
t −M cg

−∞)t∈R
is a continuous local martingale. If the quadratic variation exists, we may replace M cg

by (M cg
t −M cg

−∞)t∈R and Mdg by (Mdg
t +M cg

−∞)t∈R, thus obtaining a continuous part
of M which starts at 0.

(2) First assume that M−∞ exists and (Mt − M−∞)t∈R ∈ LM(F·). Since M
in
=

(Mt−M−∞)t∈R, the quadratic variation for M exists and equals the quadratic variation

for (Mt −M−∞)t∈R. It is well-known that since the latter is a local martingale, [M ]
1
2 ∈

LA1
0(F·).
Conversely assume that [M ] exists and [M ]

1
2 ∈ LA1

0(F·). Choose a localising sequence

(σn)n≥1 such that [Mσn ]
1
2 ∈ A1

0(F·). Since s[Mσn ]0 ≤ [Mσn ]0 if follows from Davis’
inequality that for some constant c > 0,

E[ sup
u:s≤u≤0

|sMσn
0 |] ≤ cE[[Mσn ]

1
2
0 ] <∞

for all s ≤ 0, implying that (sMσn
0 )s<0 is uniformly integrable. The result now follows

from Proposition 3.9.
(3) By (3.21), the three families of increment processes {(x1{|x|≤ǫ})∗(µ

sM −νsM}s∈R,

{(x1{|x|>ǫ})∗µ
sM}s∈R and {(x1{|x|>ǫ})∗ν

sM}s∈R are all consistent. Choose X = (Xt)t∈R,
Y = (Yt)t∈R and Z = (Zt)t∈R associated with these families such that Xt + Yt − Zt =

Mdg
t ; in particular we then have M

P
= M cg + X + Y − Z. Since Z is associated with

{(x1{|x|>ǫ}) ∗ ν
sM}s∈R we have

Z0 − Zs =

∫ 0

s

∫

|x|>ǫ
x νM(·; du,dx) for all s ∈ R with probability one,

implying that s 7→ Zs is continuous by (3.20) and lims→−∞Zs exists P-a.s. by (3.23).
By (3.20) it also follows that (∆Xs)s∈R P

= (∆Ms1{|∆Ms|≤ǫ})s∈R, implying that X is an
increment local martingale with jumps bounded by ǫ in absolute value and

∑

s:s≤t

(∆Ms)
2 =

∑

s:s≤t

(∆Xs)
2 +

∑

s:s≤t

(∆Ys)
2 for all t ∈ R with probability one. (3.25)

If [M ] exists then by (1)M cg
−∞ exists P-a.s. and (3.25) is finite for all t with probability

one. Since Y is piecewise constant with jumps of magnitude at least ǫ, it follows that
Ys is constant when s is small enough almost surely. In addition, since the quadratic
variation of the increment local martingale X exists and X has bounded jumps it follows
from (2) that, up to addition of a random variable, X is a local martingale and thus
lims→−∞Xs exists as well; that is, lims→−∞Ms exists P-a.s.

If, conversely, lims→−∞Ms exists P-a.s., there are no jumps of magnitude at least ǫ
in M when s is small enough; thus there are no jumps in Ys when s is sufficiently small
P-a.s., implying that lims→−∞(M

cg
s +Xs) exists P-a.s. Combining Theorem 3.14, (3.25)

and (1) it follows that [M ] exists.
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4. Stochastic integration

4 Stochastic integration

In the following we define a stochastic integral with respect to an increment local mar-
tingale. Let M ∈ LM(F·) and set

LL1(M)

:= {φ = (φt)t∈R : φ is predictable and
(( ∫

(−∞,t]
φ2s d[M ]s

)1
2
)
t∈R ∈ LA1

0(F·)}.

Since in this case the index set set can be taken to be [−∞,∞), it is well-known, e.g.
from [7], that the stochastic integral of φ ∈ LL1(M) with respect to M , which we denote
(
∫
(−∞,t] φs dMs)t∈R or φ •M = (φ •Mt)t∈R, does exist. All fundamental properties of

the integral are well-known so let us just explicitly mention the following two results that
we are going to use in the following: For σ a stopping time, s ∈ R and φ ∈ LL1(M) we
have

(φ •M)σ
P
= (φ1(−∞,σ]) •M P

= φ • (Mσ) (4.1)

and
s(φ •M)

P
= φ • (sM)

P
= (φ1(s,∞)) •M. (4.2)

Next we define and study a stochastic increment integral with respect an increment
local martingale. For M ∈ ILM(F·) set

LL1(M) := {φ : φ is predictable and
(( ∫

(−∞,t]
φ2s d[M ]gs

)1
2
)
t∈R ∈ LA1

0(F·)}

ILL1(M) := {φ : φ ∈ LL1(sM) for all s ∈ R}.

As an example, if M ∈ ILM2(F·) then a predictable φ is in LL1(M) resp. in ILL1(M) if
(but in general not only if)

∫
(−∞,t] φ

2
s d〈M〉gs <∞ for all t ∈ R P-a.s. resp.

∫
(s,t] φ

2
u d〈M〉gu <

∞ for all s < t P-a.s. If M ∈ ILM2(F·) is continuous then

LL1(M) = {φ : φ is predictable and

∫

(−∞,t]
φ2s d〈M〉gs <∞ P-a.s. for all t}

ILL1(M) = {φ : φ is predictable and

∫

(s,t]
φ2u d〈M〉gu <∞ P-a.s. for all s < t}.

Let M ∈ ILM(F·). The stochastic integral φ • (sM) of φ in ILL1(M) exists for all
s ∈ R; in addition, {φ • (sM)}s∈R is a consistent family of increment processes. Indeed,
for s ≤ t ≤ u we must verify

(φ • (sM))u = (φ • (sM))t + (φ • (tM))u, P-a.s.

or equivalently
t(φ • (sM))u = (φ • (tM))u P-a.s.,

which follows from (2.3) and (4.2). Based on this, we define the stochastic increment
integral of φ with respect to M , to be denoted φ

in• M , as a càdlàg process associated
with the the family {φ • (sM)}s∈R. Note that the increment integral φ

in• M is uniquely
determined only up to addition of a random variable and it is an increment local mar-
tingale. For s < t and φ ∈ ILL1(M) we think of φ

in• Mt − φ
in• Ms as the integral of φ

with respect to M over the interval (s, t] and hence use the notation
∫

(s,t]
φu dMu := φ

in• Mt − φ
in• Ms for s < t. (4.3)
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When φ
in• M−∞ := lims→−∞ φ

in• Ms exists P-a.s. we define the improper integral of φ
with respect to M from −∞ to t for t ∈ R as

∫

(−∞,t]
φu dMu := φ

in• Mt − φ
in• M−∞. (4.4)

Put differently, the improper integral (
∫
(−∞,t] φu dMu)t∈R is, when it exists, the unique,

up to P-indistinguishability, increment integral of φ with respect to M which is 0 in −∞.
Moreover, it is an adapted process.

The following summarises some fundamental properties.

Theorem 4.1. Let M ∈ ILM(F·).

(1) Whenever φ ∈ ILL1(M) and s < t we have s(φ
in• M)t = (φ • (sM))t P-a.s.

(2) φ
in• M ∈ ILM(F·) for all φ ∈ ILL1(M).

(3) If φ,ψ ∈ ILL1(M) and a, b ∈ R then (aφ+ bψ)
in• M in

= a(φ
in• M) + b(ψ

in• M).

(4) For φ ∈ ILL1(M) we have

∆φ
in• Mt = φt∆Mt, for t ∈ R, P-a.s. (4.5)

s[φ
in• M ]gt =

∫

(s,t]
φ2u d[M ]gs for s ≤ t P-a.s. (4.6)

In particular [φ
in• M ] exists if and only if

∫
(−∞,t] φ

2
s d[M ]gs <∞ for all t ∈ R P-a.s.

(5) If σ a stopping time and φ ∈ ILL1(M) then

(φ
in• M)σ

in
= (φ1(−∞,σ])

in• M in
= φ

in• (Mσ).

(6) Let φ ∈ ILL1(M) and ψ = (ψt)t∈R be predictable. Then ψ ∈ ILL1(φ
in• M) if and

only if φψ ∈ ILL1(M), and in this case ψ
in• (φ

in• M)
in
= (ψφ)

in• M .

(7) Let φ ∈ ILL1(M). Then φ
in• M−∞ := lims→−∞ φ

in• Ms exists P-a.s. and
(
∫
(−∞,t] φu dMu)t∈R ∈ LM(F·) if and only if φ ∈ LL1(M).

Remark 4.2. (a) When M is continuous it follows from Theorem 3.14 that (7) can be
simplified to the statement that φ

in• M−∞ = lims→−∞ φ
in• Ms exists P-a.s. if and only if

φ ∈ LL1(M), and in this case (
∫
(−∞,t] φu dMu)t∈R ∈ LM(F·).

(b) Result (7) above gives a necessary and sufficient condition for the improper inte-
gral to exist and be a local martingale; however, improper integrals may exist without
being a local martingale (but as noted above they are always increment local martin-
gales). For example, assume M is purely discontinuous and that the compensator νM

of the jump measure νM can be decomposed as νM(·; dt × dx) = F (·; t,dx)µ(dt) where
F (·; t,dx) is a symmetric measure and µ({t}) = 0 for all t ∈ R. Then by Theorem 3.18
(3), φ

in• M−∞ exists P-a.s. if and only if the quadratic variation [φ
in• M ] exists; that is,

∑

s≤0

φ2s(∆Ms)
2 <∞ P-a.s.
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Proof. Property (1) is merely by definition, and (2) is due to the fact that s(φ
in• M)

P
=

φ • sM , which is a local martingale.
(3) We must show that a(φ

in• M)+b(ψ
in• M) is associated with {(aφ+bψ)•(sM)}s∈R,

i.e. that s
(
a(φ

in• M) + b(ψ
in• M)

) P
= (aφ + bψ) • (sM). However, by definition of the

stochastic increment integral and linearity of the stochastic integral we have

a s
(
φ

in• M
)
+ b s

(
ψ

in• M
) P
= a

(
φ • (sM)

)
+ b
(
ψ • (sM)

) P
= (aφ+ bψ) • (sM).

(4) Using that s(φ
in• M) = φ • (sM) and ∆φ • (sM)

P
= φ∆(sM), the result in (4.5)

follows. By definition, [φ
in• M ]g is associated with {[s(φ in• M)]}s∈R = {[φ • (sM)]}s∈R.

That is, for s ∈ R we have, using that [M ]g is associated with {[sM ]s}s∈R,

s[φ
in• M ]gt = [φ • (sM)]t =

∫

(s,t]
φ2u d[

sM ]u

=

∫

(s,t]
φ2u d(

s[M ]g)u =

∫

(s,t]
φ2u d[M ]gu for s ≤ t P-a.s.,

which yields (4.6). The last statement in (4) follows from Remark 3.11 (1).
The proofs of (5) and (6) are left to the reader.
(7) Using (4) the result follows immediately from Theorem 3.18.

Let us turn to the definition of a stochastic integral φ •M of a predictable φ with
respect to an increment local martingale M . Thinking of φ •Mt as an integral from −∞
to t it seems reasonable to say that φ •M (defined for a suitable class of predictable
processes φ) is a stochastic integral with respect to M if the following is satisfied:

(1) limt→−∞ φ •Mt = 0 P-a.s.

(2) φt •Mt − φ •Ms =
∫
(s,t] φu dMu P-a.s. for all s < t

(3) φ •M is a local martingale.

By definition of
∫
(s,t] φu dMu, (2) implies that φ •M must be an increment integral of

φ with respect to M . Moreover, since we assume φ • M−∞ = 0, φ • M is uniquely
determined as (φ •Mt)t∈R P

= (
∫
(−∞,t] φu dMu)t∈R, i.e. the improper integral of φ. Since

we also insist that φ •M is a local martingale, Theorem 4.1 (7) shows that LL1(M) is
the largest possible set on which φ •M can be defined. We summarise these findings as
follows.

Theorem 4.3. Let M ∈ ILM(F·). Then there exists a unique stochastic integral φ •M
defined for φ ∈ LL1(M). This integral is given by

φ •Mt =

∫

(−∞,t]
φu dMu for t ∈ R (4.7)

and it satisfied the following.

(1) φ •M ∈ LM(F·) and φ •M−∞ = 0 for φ ∈ LL1(M).

(2) The mapping φ 7→ φ •M is, up to P-indistinguishability, linear in φ ∈ LL1(M).

(3) For φ ∈ LL1(M) we have

∆φ •Mt = φt∆Mt, for t ∈ R, P-a.s.

[φ •M ]t =

∫

(−∞,t]
φ2s d[M ]gs for t ∈ R, P-a.s.
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(4) For σ a stopping time, s ∈ R and φ ∈ LL1(M) we have

(φ •M)σ
P
= (φ1(−∞,σ]) •M P

= φ • (Mσ)

and s(φ •M)
P
= φ • (sM).

Example 4.4. Let X ∈ ILM(F·) be continuous and assume there is a positive con-
tinuous predictable process σ = (σt)t∈R such that for all s < t, s[X]gt =

∫ t
s σ

2
u du. Set

B = σ−1
in• X and note that by Lévy’s theorem B is a standard Brownian motion indexed

by R, and X is given by X
in
= σ

in• B.

Example 4.5. As a last example assume B = (Bt)t∈R is a Brownian motion indexed byR and consider the filtration FIB· generated by the increments of B cf. Example 3.6. In
this case a predictable φ is in LL1(B) resp. ILL1(B) if and only if

∫ t
−∞ φ

2
u du < ∞ for

all t P-a.s. resp.
∫ t
s φ

2
u du < ∞ for all s < t P-a.s. Moreover, if M ∈ ILM(FIB· ) then

there is a φ ∈ ILL1(B) such that
M

in
= φ

in• B (4.8)

and if M ∈ LM(FIB· ) then there is a φ ∈ LL1(B) such that

M
P
=M−∞ + φ •B. (4.9)

That is, we have a martingale representation result in the filtration FIB· . To see that
this is the case, it suffices to prove (4.8). Let s ∈ R and set H = FIBs . Since FIBt =
H ∨ σ(Bu − Bs : s ≤ u ≤ t) for t ≥ s it follows from [8], Theorem III.4.34, that there
is a φs in LL1(sB) such that sM

P
= φs • (sB). If u < s then by (2.3) and (4.2) we have

sM = φu • (sB); thus, there is a φ in ILL1(B) such that sM
P
= φ• (sB) for all s and hence

M
in
= φ

in• B by definition of the increment integral.
The above generalises in an obvious way to the case where instead of a Brownian

motion B we have, say, a Lévy process X with integrable centred increments. In this
case, we have to add an integral with respect to µX −νX on the right-hand sides of (4.8)
and (4.9).
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Abstract

The question of existence and properties of stationary solutions to
Langevin equations driven by noise processes with stationary incre-
ments is discussed, with particular focus on noise processes of pseudo
moving average type. On account of the Wold-Karhunen decomposi-
tion theorem such solutions are in principle representable as a moving
average (plus a drift like term) but the kernel in the moving average is
generally not available in explicit form. A class of cases is determined
where an explicit expression of the kernel can be given, and this is used
to obtain information on the asymptotic behavior of the associated au-
tocorrelation functions, both for small and large lags. Applications to
Gaussian and Lévy driven fractional Ornstein-Uhlenbeck processes are
presented. As an element in the derivations a Fubini theorem for Lévy
bases is established.
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1. Introduction

1 Introduction

This paper studies existence and properties of stationary solutions to Langevin equations
driven by a noise process with, in general, stationary dependent increments. We shall
refer to such solutions as quasi Ornstein-Uhlenbeck (QOU) processes. Of particular
interest are the cases where the noise process is of the pseudo moving average (PMA)
type. In wide generality the stationary solutions can, in principle, be written in the
form of a Wold-Karhunen type representation, but it is relatively rare that an explicit
expression for the kernel of such a representation can be given. When this is possible it
often provides a more direct and simpler access to the character and properties of the
process, for instance concerning the autocovariance function.

The structure of the paper is as follows. Section 2 defines the concept of quasi
Ornstein-Uhlenbeck processes and provides conditions for existence and uniqueness of
stationary solutions to the Langevin equation. The form of the autocovariance function
of the solutions is given and its asymptotic behavior for t→ ∞ is discussed. As a next,
intermediate, step a Fubini theorem for Lévy bases is established in Section 3. In Section 4
explicit forms of Wold-Karhunen representations are derived and used to analyze the
asymptotics, under more specialized assumptions, of the autocovariance functions, both
for t → ∞ and for t → 0. The results are applied in particular to the case of Gaussian
and Lévy driven fractional Ornstein-Uhlenbeck processes. Section 5 concludes.

2 Langevin equations and QOU processes

Let N = (Nt)t∈R be a measurable process with stationary increments and let λ > 0
be a positive number. By a quasi Ornstein-Uhlenbeck (QOU) process X driven by N
and with parameter λ, we mean a stationary solution to the Langevin equation dXt =
−λXt dt+ dNt, that is, X = (Xt)t∈R is a stationary process which satisfies

Xt = X0 − λ

∫ t

0
Xs ds+Nt, t ∈ R, (2.1)

where the integral is a pathwise Lebesgue integral. For all a < b we use the notation∫ a
b

:= −
∫ b
a . Recall that a process Z = (Zt)t∈R is measurable if (t, ω) 7→ Zt(ω) is

(B(R) ⊗ F ,B(R))-measurable, and that Z has stationary increments if for all s ∈ R,
(Zt − Z0)t∈R has the same finite distributions as (Zt+s − Zs)t∈R. For p ≥ 0 we will
say that a process Z has finite p-moments if E[|Zt|p] < ∞ for all t ∈ R. Moreover for
t → 0 or ∞, we will write f(t) ∼ g(t), f(t) = o(g(t)) or f(t) = O(g(t)) provided that
f(t)/g(t) → 1, f(t)/g(t) → 0 or lim supt|f(t)/g(t)| <∞, respectively. For each process Z
with finite second-moments, let VarZ(t) = Var(Zt) denote its variance function. When Z,
in addition, is stationary, let RZ(t) = Cov(Zt, Z0) denote its autocovariance function, and
R̄X(t) = RX(0) − RX(t) =

1
2E[(Xt −X0)

2] its complementary autocovariance function.
Before discussing the general setting further we recall some well known cases. The

stationary solution X to (2.1) where Nt = µt+ σBt, and B is a Brownian motion is of
particular interest in finance; here X is the Gaussian Ornstein-Uhlenbeck process, µ/λ
is the mean level, λ is the speed of reversion and σ is the volatility. When N is a Lévy
process the corresponding QOU process, X, exists if and only if E[log+|N1|] < ∞ or,
equivalently, if

∫
{|x|>1} log |x| ν(dx) < ∞ where ν is the Lévy measure of N ; see [30].

In this case X is called an Ornstein-Uhlenbeck type process; for applications of such
processes in financial economics see [5, 6].
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2. Langevin equations and QOU processes

2.1 Auxiliary continuity result

Let (E, E , µ) be a σ-finite measure space, and φ : R → R+ an even and continuous
function which is non-decreasing on R+, with φ(0) = 0. Assume there exists a constant
C > 0 such that φ(2x) ≤ Cφ(x) for all x ∈ R (that is, φ satisfies the ∆2-condition). Let
L0 = L0(E, E , µ) denote the space of all measurable functions from E into R, and let Φ
denote the modular on L0 given by

Φ(g) =

∫

E
φ(g) dµ, g ∈ L0, (2.2)

and Lφ = {g ∈ L0 : Φ(g) < ∞} the corresponding modular space. Furthermore, for
g ∈ L0 define

ρ(g) = inf {c > 0 : Φ(g/c) ≤ c} , and ‖g‖φ = inf {c > 0 : Φ(g/c) ≤ 1} . (2.3)

Then ρ is an F -norm on Lφ, and when φ is convex, the Luxemburg norm ‖ · ‖φ is a norm

on Lφ; see e.g. [20]. If not explicitly said otherwise, Lφ will be equipped with the metric
dφ(f, g) = ρ(f − g).

Theorem 2.1. Let f : R × E → R denote a measurable function satisfying that ft =
f(t, ·) ∈ Lφ for all t ∈ R, and

dφ(ft+u, fv+u) = dφ(ft, fv), for all t, u, v ∈ R. (2.4)

Then, (t ∈ R) 7→ (ft ∈ Lφ) is continuous. Moreover, if φ is convex, then there exist
α, β > 0 such that ‖ft‖φ ≤ α+ β|t| for all t ∈ R.

To prove Theorem 2.1 we shall need the following lemma.

Lemma 2.2. Let f : R × E → R denote a measurable function, such that ft ∈ Lφ for
all t ∈ R. Then, (t ∈ R) 7→ (ft ∈ Lφ) is Borel measurable and has a separable range.

Recall that f : E → F has a separable range, if f(E) is a separable subset of F .

Proof. We will use a Monotone Class Lemma argument to prove this result, so let M2

be the set of all functions f for which Lemma 2.2 holds, and M1 the set of all functions
f of the form

ft(s) =

n∑

i=1

αi1Ai(t)1Bi(s), t ∈ R, s ∈ E, (2.5)

where for n ≥ 1, A1, . . . , An are measurable subsets of R, B1, . . . , Bn are measurable
subsets of E of finite µ-measure, and α1, . . . , αn ∈ R. Then, Ψf : (t ∈ R) 7→ (ft ∈ Lφ) has
separable range, and since t 7→ dφ(ft, g) is measurable for all g ∈ Lφ, Ψf is measurable.
This shows that M1 ⊆ M2. Note that the set bM2 of bounded elements from M2 is a
vector space with 1 ∈ bM2, and that (fn)n≥1 ⊆ bM2 with 0 ≤ fn ↑ f ≤ K implies that
f ∈ bM2. Moreover, since M1 is stable under pointwise multiplication the Monotone
Class Lemma, see e.g. Chapter II, Theorem 3.2 in [31], shows that

bM(B(R)×F) = bM(σ(M1)) ⊆ bM2. (2.6)

(For a family of functions M, σ(M) denotes the least σ-algebra for which all the functions
are measurable, and for each σ-algebra E , bM(E) denotes the space of all bounded E-

measurable functions). For a general function f define f (n) by f
(n)
t = ft1{|ft|≤n}. For

all n ≥ 1, f (n) is a bounded measurable function and hence Ψf(n) is a measurable map

with a separable range. Moreover, limnΨf(n) = Ψf pointwise in Lφ, showing that Ψf is
measurable and has a separable range.
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2. Langevin equations and QOU processes

Proof of Theorem 2.1. Let Ψf denote the map (t ∈ R) 7→ (ft ∈ Lφ), and for fixed
ǫ > 0 and arbitrary t ∈ R, consider the ball Bt = {s ∈ R : dφ(ft, fs) < ǫ}. By
Lemma 2.2, Ψf is measurable, and hence Bt is a measurable subset of R for all t ∈ R.
According to Lemma 2.2 Ψf has a separable range, and therefore there exists a countable
set (tn)n≥1 ⊆ R such that the range of Ψf is included in ∪n≥1B(ftn , ǫ), implying thatR = ∪n≥1Btn . (Here, B(g, r) = {h ∈ Lφ : dφ(g, h) < r}). In particular, there exists an
n ≥ 1 such that Btn has strictly positive Lebesgue measure. By the Steinhaus Lemma,
see Theorem 1.1.1 in [11], there exists a δ > 0 such that (−δ, δ) ⊆ Btn −Btn . Note that
by (2.4) it is enough to show continuity of Ψf at t = 0. For |t| < δ there exists, by
definition, s1, s2 ∈ R such that dφ(ftn , fsi) < ǫ for i = 1, 2, showing that

dφ(ft, f0) ≤ dφ(ft, fs1) + dφ(ft, fs2) < 2ǫ, (2.7)

which completes the proof of the continuity part.
To show the last part of the theorem assume that φ is convex. For each t > 0 choose

n = 0, 1, 2, . . . such that n ≤ t < n+ 1. Then,

‖ft − f0‖φ ≤
n∑

i=1

‖fi − fi−1‖φ + ‖ft − fn‖φ (2.8)

≤ n‖f1 − f0‖φ + ‖ft−n − f0‖φ ≤ tβ + a, (2.9)

where β = ‖f1 − f0‖φ and a = sups∈[0,1]‖fs − f0‖φ. We have already shown that t 7→ ft
is continuous, and hence a < ∞. Since ‖f−t − f0‖φ = ‖ft − f0‖φ for all t ∈ R, (2.9)
shows that ‖ft − f0‖φ ≤ a + β|t| for all t ∈ R, implying that ‖ft‖φ ≤ α + β|t| where
α = a+ ‖f0‖φ.

For (E, E , µ) = (Ω,F ,P) and φ(t) = |t|p for p > 0 or φ(t) = |t| ∧ 1 for p = 0, we have
the following corollary to Theorem 2.1.

Corollary 2.3. Let p ≥ 0 and X = (Xt)t∈R be a measurable process with stationary
increments and finite p-moments. Then, X is continuous in Lp. Moreover if p ≥ 1, then
there exist α, β > 0 such that ‖Xt‖p ≤ α+ β|t| for all t ∈ R.

Note that in Corollary 2.3 the reversed implication is also true; in fact, all stochas-
tic processes X = (Xt)t∈R that are continuous in L0 have a measurable modification
according to Theorem 2 in [14].

The idea by using the Steinhaus Lemma to prove Theorem 2.1 is borrowed from [35],
where Corollary 2.3 is shown for p = 0. Furthermore, when µ is a probability measure
and φ(t) = |t| ∧ 1, Lemma 2.2 is known from [14].

2.2 Existence and uniqueness of QOU processes

The next result shows existence and uniqueness for the stationary solution X to the
Langevin equation dXt = −λXt dt+dNt, in the case where the the noise N is integrable.
That is, we show existence and uniqueness of QOU processes X, and moreover provide
an explicit form of the solution which is used to calculate the mean and variance of X.

Theorem 2.4. Let N be a measurable process with stationary increments and finite
first-moments, and let λ > 0 be a positive real number. Then, X = (Xt)t∈R given by

Xt = Nt − λe−λt
∫ t

−∞
eλsNs ds, t ∈ R, (2.10)

156



2. Langevin equations and QOU processes

is a QOU process driven by N with parameter λ (the integral is a pathwise Lebesgue
integral). Furthermore, any other QOU process driven by N and with parameter λ equals
X in law. Finally, if N has finite p-moments, p ≥ 1, then X has also finite p-moments
and is continuous in Lp.

Remark 2.5. It is an open problem to relax the integrability of N in Theorem 2.4, e.g.
is it enough that N has finite log-moments? Recall that when N is a Lévy process, finite
log-moments is a necessary and sufficient condition for the existence of the corresponding
QOU process.

Proof. Existence: Let p ≥ 1 and assume that N has finite p-moments. Choose α, β > 0,
according to Corollary 2.3, such that ‖Nt‖p ≤ α + β|t| for all t ∈ R. By Jensen’s
inequality,

E

[(∫ t

−∞
eλs|Ns|ds

)p]
≤ (eλt/λ)p−1

∫ t

−∞
eλsE[|Ns|p] ds (2.11)

≤ (eλt/λ)p−1
∫ t

−∞
eλs(α+ β|s|)p ds <∞, (2.12)

which shows that the integral in (2.10) exists almost surely as a Lebesgue integral and
that Xt, given by (2.10), is p-integrable. Using substitution we obtain from (2.10),

Xt = λ

∫ 0

−∞
eλu(Nt −Nt+u) du, t ∈ R. (2.13)

By Corollary 2.3 N is Lp-continuous and therefore it follows that the right-hand side
of (2.13) exists as a limit of Riemann sums in Lp. Hence the stationarity of the in-
crements of N implies that X is stationary. Moreover, using integration by parts on
t 7→

∫ t
−∞ e

λsNs(ω) ds, we get

∫ t

0
Xs ds = e−λt

∫ t

−∞
eλsNs ds−

∫ 0

−∞
eλsNs ds, (2.14)

which shows that X satisfies (2.1), and hence X is a QOU process driven by N with
parameter λ.

Since X is a measurable process with stationary increments and finite p-moments,
Proposition 2.3 shows that it is continuous in Lp.

To show uniqueness in law, let L(V ) denote law of a random vector V , and by
limk L(Vk) = L(V ) we mean that, (Vk)k≥1 are random vectors converging in law to V .
Let Y be a QOU process driven by N with parameter λ > 0, that is, Y is a stationary
process which satisfies (2.1). For all t0 ∈ R we have with Zt = Nt −Nt0 + Yt0 that

Yt = Zt − λ

∫ t

t0

Ys ds, t ≥ t0. (2.15)

Solving (2.15) pathwise, it follows that for all t ≥ t0,

Yt = Zt − λe−λt
∫ t

t0

eλsZs ds (2.16)

= Nt − λe−λt
∫ t

t0

eλsNs ds+ (Yt0 −Nt0)e
−λ(t−t0). (2.17)
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2. Langevin equations and QOU processes

Note that limt→∞(Yt0 −Nt0)e
−λ(t−t0) = 0 a.s., thus for all n ≥ 1 and t0 < t1 < · · · < tn,

the stationarity of Y implies that

L(Yt1 , . . . , Ytn) = lim
k→∞

L(Yt1+k, . . . , Ytn+k) (2.18)

= lim
k→∞

L
(
Nt1+k − λe−λ(t1+k)

∫ t1+k

t0

eλsNs ds, (2.19)

. . . , Ntn+k − λe−λ(tn+k)
∫ tn+k

t0

eλsNs ds
)
. (2.20)

This shows that the distribution of Y only depends on N and λ, and completes the
proof.

Proposition 2.1 in [35] and Proposition 2.1 in [23] provide also existence results for
stationary solutions to Langevin equations. However, these results do not cover The-
orem 2.4. The first result considers only Bochner type integrals and the second result
requires, in particular, that the sample paths of N are Riemann integrable.

Let B = (Bt)t∈R denote an F-Brownian motion indexed by R and σ = (σt)t∈R be a
predictable process, that is, σ is measurable with respect to

P = σ((s, t]×A : s, t ∈ R, s < t, A ∈ Fs). (2.21)

Assume that for all u ∈ R, (σt, Bt)t∈R has the same finite distributions as (σt+u, Bt+u−
Bu)t∈R and that σ0 ∈ L2. Then N given by

Nt =

∫ t

0
σs dBs, t ∈ R, (2.22)

is a well-defined continuous process with stationary increments and finite second-moments.
(Recall that for t < 0,

∫ t
0
:= −

∫ 0
t ).

Corollary 2.6. Let N be given by (2.22). Then, there exists a unique in law QOU
process X driven by N with parameter λ > 0, and X is given by

Xt =

∫ t

−∞
e−λ(t−s)σs dBs, t ∈ R. (2.23)

Proof. Since N is a measurable process with finite second-moments it follows by Theo-
rem 2.4 that there exists a unique in law QOU process X, and it is given by

Xt = Nt − λe−λt
∫ t

−∞
eλsNs ds = λ

∫ 0

−∞
eλs (Nt −Nt+s) ds (2.24)

= λ

∫ 0

−∞

(∫R 1(t+s,t](u)e
λsσu dBu

)
ds. (2.25)

By a minor extension of Theorem 65, Chapter IV in [28] we may switch the order of
integration in (2.25) and hence we obtain (2.23).

Let us conclude this section with formulas for the mean and variance of a QOU process
X. In the rest of this section let N be a measurable process with stationary increments
and finite first-moments, and let X be a QOU process driven by N with parameter λ > 0
(which exists by Theorem 2.4). Since X is unique in law it makes sense to consider the
mean and variance function of X. Let us assume for simplicity that N0 = 0 a.s. The
following proposition gives the mean and variance of X.
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2. Langevin equations and QOU processes

Proposition 2.7. Let N and X be given as above. Then,

E[X0] =
E[N1]

λ
, and Var(X0) =

λ

2

∫ ∞

0
e−λsVarN(s) ds. (2.26)

In the part concerning the variance of X0, we assume moreover that N has finite second-
moments.

Note that Proposition 2.7 shows that the variance of X0 is λ/2 times the Laplace
transform of VarN . In particular, if Nt = µt+ σBH

t where BH is a fractional Brownian
motion (fBm) of index H ∈ (0, 1), then E[N1] = µ and VarN(s) = σ2|s|2H , and hence
by Proposition 2.7 we have that

E[X0] =
µ

λ
, and Var(X0) =

σ2Γ(1 + 2H)

2λ2H
. (2.27)

For H = 1/2, (2.27) is well-known, and in this case Var(X0) = σ2/(2λ).
Before proving Proposition 2.7 let us note that E[Nt] = E[N1]t for all t ∈ R. Indeed,

this follows by the continuity of t 7→ E[Nt] (see Corollary 2.3) and the stationarity of the
increments of N .

Proof. Recall that by Corollary 2.3, we have that E[|Nt|] ≤ α + β|t| for some α, β > 0.
Hence by (2.10) and Fubini’s theorem we have that

E[X0] = E

[
−λ
∫ 0

−∞
eλsNs ds

]
= −λ

∫ 0

−∞
eλsE[Ns] ds (2.28)

= − λE[N1]

∫ 0

−∞
eλss ds = E[N1]/λ, (2.29)

where in the third equality we have used that E[Ns] = E[N1]s. This shows the part
concerning the mean of X0.

To show the last part assume that N has finite second-moments. By using E[X0] =
E[N1]/λ, (2.10) shows that with Ñt := Nt − E[N1]t, we have

Var(X0) = E[(X0 − E[X0])
2] = E

[(
λ

∫ 0

−∞
eλsÑs ds

)2
]
. (2.30)

Since ‖Ñt‖2 ≤ α+ β|t| for some α, β > 0 by Corollary 2.3, Fubini’s theorem shows

Var(X0) = λ2
∫ 0

−∞

∫ 0

−∞

(
eλseλuE[ÑsÑu]

)
ds du, (2.31)

and since E[ÑsÑu] =
1
2 [VarN(s) + VarN(u)−VarN(s − u)] we have

Var(X0) =
λ2

2

∫ 0

−∞

∫ 0

−∞

(
eλseλu(VarN(s) + VarN(u)−VarN(s− u))

)
ds du (2.32)

= λ

∫ 0

−∞
eλsVarN(s) ds− λ2

2

∫ 0

−∞
eλu

(∫ −u

−∞
eλ(s+u)VarN(s) ds

)
du. (2.33)
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2. Langevin equations and QOU processes

Moreover,

λ2

2

∫ 0

−∞
eλu

(∫ −u

−∞
eλ(s+u)VarN(s) ds

)
du (2.34)

=
λ2

2

∫RVarN(s)eλs

(∫ (−s)∧0

−∞
e2λu du

)
ds (2.35)

=
λ2

2

(∫ 0

−∞
VarN(s)eλs

(∫ 0

−∞
e2λu du

)
ds+

∫ ∞

0
VarN(s)eλs

(∫ −s

−∞
e2λu du

)
ds

)

(2.36)

=
λ

4

(∫ 0

−∞
VarN(s)eλsds+

∫ ∞

0
VarN(s)eλs

(
e−2λs

)
ds

)
(2.37)

=
λ

2

∫ ∞

0
e−λsVarN(s) ds, (2.38)

which by (2.33) gives the expression for the variance of X0.

2.3 Asymptotic behavior of the autocovariance function

The next result shows that the autocovariance function of a QOU process X driven by N
with parameter λ has the same asymptotic behavior at infinity as the second derivative
of the variance function of N divided by 2λ2.

Proposition 2.8. Let N be a measurable process with stationary increments, N0 = 0
a.s., and finite second-moments, and let X be a QOU process driven by N with parameter
λ > 0.

(i) Assume there exists a β > 0 such that VarN ∈ C3((β,∞);R), and for t → ∞ we
have that V′′N (t) = O(e(λ/2)t), e−λt = o(V′′N (t)) and V′′′N (t) = o(V′′N (t)). Then, for
t→ ∞, we have RX(t) ∼ ( 1

2λ2
)V′′N (t).

(ii) Assume for t→ 0 that t2 = o(VarN(t)), then for t→ 0 we have R̄X(t) ∼ 1
2VarN(t).

More generally, let p ≥ 1 and assume that N has finite p-moments and t = o(‖Nt‖p)
as t→ 0. Then, for t→ 0, we have ‖Xt −X0‖p ∼ ‖Nt‖p.

Note that by Proposition 2.8(ii) the short term asymptotic behavior of R̄X is not
influence by λ.

Proof. (i): Let t0 = β + 1, and let us show that t ≥ t0 and for t→ ∞,

RX(t) =
e−λt

4λ

∫ t

t0

eλuV′′N (u) du+
eλt

4λ

∫ ∞

t
e−λuV′′N (u) du+O(e−λt). (2.39)

If we have shown (2.39), then by using that e−λt = o(V′′N (t)), V′′′N (t) = o(V′′N (t)) and
l’Hôpital’s rule, (i) follows.

Similar to the proof of Proposition 2.7 let Ñt = Nt − E[N1]t. To show (2.39), recall
that by Corollary 2.3 we have ‖Ñt‖2 ≤ α+ β|t| for some α, β > 0. Hence by (2.10) and
Fubini’s theorem, we find that

RX(t) = E[(Xt − E[Xt])(X0 − E[X0])] = g(t)− λe−λt
∫ t

−∞
eλsg(s) ds, (2.40)
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where

g(t) = − λ

∫ 0

−∞
eλsE[ÑsÑt] ds, t ∈ R. (2.41)

Since E[ÑsÑt] =
1
2 [VarN(t) + VarN(s)−VarN(s− t)] we have that

g(t) = − λ

2

∫ 0

−∞
eλs[VarN(t) + VarN(s)−VarN(t− s)] ds (2.42)

= − 1

2

(
VarN(t)− λeλt

∫ ∞

t
e−λsVarN(s) ds

)
− λ

2

∫ 0

−∞
eλsVarN(s) ds. (2.43)

From (2.43) it follows that g ∈ C1((β,∞);R) and hence, using partial integration on
(2.40), we have for t ≥ t0,

RX(t) = e−λt
∫ t

t0

eλsg′(s) ds+ e−λt
(
eλt0g(t0)− λ

∫ t0

−∞
eλsg(s) ds

)
. (2.44)

Moreover, from (2.43) and for t ≥ t0 we find

g′(t) = −1

2

(
V′N (t)− λ2eλt

∫ ∞

t
e−λsVarN(s) ds+ λVarN(t)

)
. (2.45)

For t → ∞ we have, by assumption, that V′′N (t) = O(e(λ/2)t), and hence also V′N (t) =
O(e(λ/2)t). Thus, from (2.45) and a double use of partial integration we obtain that

g′(t) =
eλt

2

∫ ∞

t
e−λsV′′N (s) ds, t ≥ t0. (2.46)

Using (2.46), Fubini’s theorem and that V′′N (t) = O(e(λ/2)t) we have for t ≥ t0,

e−λt
∫ t

t0

eλsg′(s) ds = e−λt
∫ t

t0

eλs
(
eλs

2

∫ ∞

s
e−λuV′′N (u) du

)
ds (2.47)

= e−λt
∫ ∞

t0

e−λuV′′N (u)

(∫ t∧u

t0

1

2
e2λs ds

)
du (2.48)

= e−λt
∫ ∞

t0

e−λuV′′N (u)

(
1

4λ
(e2λ(t∧u) − e2λt0)

)
du (2.49)

=
e−λt

4λ

∫ t

t0

eλuV′′N (u) du+
eλt

4λ

∫ ∞

t
e−λuV′′N (u) du− e−λt

(
e2λt0

4λ

∫ ∞

t0

e−λuV′′N (u) du

)
.

(2.50)

Combining this with (2.44) we obtain (2.39), and the proof of (i) is complete.
(ii): Using (2.1) we have for all for t > 0 that

‖Xt −X0‖p ≤ ‖Nt‖p + λ

∫ t

0
‖Xs‖p ds = ‖Nt‖p + λt‖X0‖p. (2.51)

On the other hand,

‖Xt −X0‖p ≥ ‖Nt‖p − λ

∫ t

0
‖Xs‖p ds = ‖Nt‖p − λt‖X0‖p, (2.52)

which shows that

1− λ‖X0‖p
t

‖Nt‖p
≤ ‖Xt −X0‖p

‖Nt‖p
≤ 1 + λ‖X0‖p

t

‖Nt‖p
. (2.53)

A similar inequality is available when t < 0, and hence for t → 0 we have that ‖Xt −
X0‖p ∼ ‖Nt‖p if limt→0(t/‖Nt‖p) = 0.
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When N is a fBm of index H ∈ (0, 1) then VarN(t) = |t|2H , and hence

V′′N (t) = 2H(2H − 1)t2H−2, t > 0. (2.54)

The conditions in Proposition 2.8 are clearly fulfilled and thus we have the following
corollary.

Corollary 2.9. Let N be a fBm of index H ∈ (0, 1), and let X be a QOU process
driven by N with parameter λ > 0. For H ∈ (0, 1) \ {1

2} and t → ∞, we have RX(t) ∼
(H(2H − 1)/λ2)t2H−2. For H ∈ (0, 1) and t→ 0, we have R̄X(t) ∼ 1

2 |t|2H .

The above result concerning the behavior of RX for t → ∞ when N is a fBm has
been obtained previously, via a different approach, by [13], see their Theorem 2.3.

A square-integrable stationary process Y = (Yt)t∈R is said to have long-range depen-
dence of order α ∈ (0, 1) if RY is regulary varying at ∞ of index −α. Recall that a
function f : R→ R is regulary varying at ∞ of index β ∈ R, if for t→ ∞, f(t) ∼ tβl(t)
where l is slowly varying, which means that for all a > 0, limt→∞ l(at)/l(t) = 1. Many
empirical observations have shown evidence for long-range dependence in various fields,
such as finance, telecommunication and hydrology; see e.g. [17]. Let X be a QOU process
driven by N , then Proposition 2.8(i) shows that X has long-range dependence of order
α ∈ (0, 1) if and only if V′′N is regulary varying at ∞ of order −α.

3 A Fubini theorem for Lévy bases

Let Λ = {Λ(A) : A ∈ S} denote a centered Lévy basis on a non-empty space S equipped
with a δ-ring S. (A Lévy basis is an infinitely divisible independently scattered random
measure. Recall also that a δ-ring on S is a family of subsets of S which is closed under
union, countable intersection and set difference). As usual we assume that S is σ-finite,
meaning that there exists (Sn)n≥1 ⊆ S such that ∪n≥1Sn = S. All integrals

∫
S f(s)Λ(ds)

will be defined in the sense of [29]. We can now find a measurable parameterization of
Lévy measures ν(du, s) on R, a σ-finite measure m on S, and a positive measurable
function σ2 : S → R+, such that for all A ∈ S,

E[eiyΛ(A)] = exp

(∫

A

[
−σ2(s)y2/2 +

∫R(eiyu − 1− iyu) ν(du, s)

]
m(ds)

)
, y ∈ R,

(3.1)
see [29]. Let φ : R× S 7→ R be given by

φ(y, s) = y2σ2(s) +

∫R[(uy)21{|uy|≤1} + (2|uy| − 1)1{|uy|>1}] ν(du, s), (3.2)

and for all measurable functions g : S → R define

‖g‖φ = inf

{
c > 0 :

∫

S
φ(c−1g(s), s)m(ds) ≤ 1

}
∈ [0,∞]. (3.3)

Moreover, let Lφ = Lφ(S, σ(S),m) denote the Musielak-Orlicz space of measurable func-
tions g with

∫

S

[
g(s)2σ2(s) +

∫R (|ug(s)|2 ∧ |ug(s)|
)
ν(du, s)

]
m(ds) <∞, (3.4)

equipped with the Luxemburg norm ‖g‖φ. Note that g ∈ Lφ if and only if ‖g‖φ < ∞,
since φ(2x, s) ≤ Cφ(x, s) for some C > 0 and all s ∈ S, x ∈ R. We refer to [26] for the
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3. A Fubini theorem for Lévy bases

basic properties of Musielak-Orlicz spaces. When σ2 ≡ 0 and g ∈ Lφ, Theorem 2.1 in
[24] shows that

∫
S g(s)Λ(ds) is well-defined, integrable and centered and

c1‖g‖φ ≤ E

[∣∣∣∣
∫

S
g(s)Λ(ds)

∣∣∣∣
]
≤ c2‖g‖φ, (3.5)

and we may choose c1 = 1/8 and c2 = 17/8. Hence for general σ2 it is easily seen that
for all g ∈ Lφ,

∫
S g(s)Λ(ds) is well-defined, integrable and centered and

E

[∣∣∣∣
∫

S
g(s)Λ(ds)

∣∣∣∣
]
≤ 2c2‖g‖φ. (3.6)

Let T denote a complete separable metric space, and Y = (Yt)t∈T be given by

Yt =

∫

S
f(t, s)Λ(ds), t ∈ T, (3.7)

for some measurable function f(·, ·) for which the integrals are well-defined. Then we can
and will choose a measurable modification of Y . Indeed, the existence of a measurable
modification of Y is equivalent to measurability of (t ∈ T ) 7→ (Yt ∈ L0) according to
Theorem 3 and the Remark in [14]. Hence, since f is measurable, the maps (t ∈ T ) 7→
(‖f(t, ·) − g(·)‖φ ∈ R) for all g ∈ Lφ, are measurable. This shows that (t ∈ R) 7→
(f(t, ·) ∈ Lφ) is measurable since Lφ is a separable Banach space. Hence by continuity
of (f(t, ·) ∈ Lφ) 7→ (Yt ∈ L0), see [29], it follows that (t ∈ T ) 7→ (Yt ∈ L0) is measurable.

Assume that µ is a σ-finite measure on a complete and separable metric space T ,
then we have the following stochastic Fubini result extending Rosiński [33, Lemma 7.1],
Pérez-Abreu and Rocha-Arteaga [27, Lemma 5] and Basse and Pedersen [10, Lemma 4.9].
Stochastic Fubini type results for semimartingales can be founded in [28] and [18], how-
ever the assumptions in these results are too strong for our purpose.

Theorem 3.1 (Fubini). Let f : T ×S 7→ R be an B(T )⊗σ(S)-measurable function such
that

fx = f(x, ·) ∈ Lφ, for x ∈ T, and

∫

E
‖fx‖φ µ(dx) <∞. (3.8)

Then f(·, s) ∈ L1(µ) for m-a.a. s ∈ S and s 7→
∫
T f(x, s)µ(dx) belongs to Lφ, all of the

below integrals exist and
∫

T

(∫

S
f(x, s)Λ(ds)

)
µ(dx) =

∫

S

(∫

T
f(x, s)µ(dx)

)
Λ(ds) a.s. (3.9)

Remark 3.2. If µ is a finite measure then the last condition in (3.8) is equivalent to
∫

T

[ ∫

S
f(x, s)2σ2(s) +

∫R (|uf(x, s)|2 ∧ |uf(x, s)|
)
ν(du, s)

]
m(ds)µ(dx) <∞. (3.10)

Before proving Theorem 3.1 we will need the following observation:

Lemma 3.3. For all measurable functions f : T × S → R we have
∥∥∥∥
∫

T
|f(x, ·)|µ(dx)

∥∥∥∥
φ

≤
∫

T
‖f(x, ·)‖φ µ(dx). (3.11)

Moreover, if f : T × S → R is a measurable function such that
∫
T ‖f(x, ·)‖φ µ(dx) < ∞,

then for m-a.a. s ∈ S, f(·, s) ∈ L1(µ) and s 7→
∫
T f(x, s)µ(dx) is a well-defined function

which belongs to Lφ.
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Proof. Let us sketch the proof of (3.11). For f of the form

f(x, s) =

k∑

i=1

gi(s)1Ai(x), (3.12)

where k ≥ 1, g1, . . . , gk ∈ Lφ and A1, . . . , Ak are disjoint measurable subsets of T of
finite µ-measure, (3.11) easily follows. Hence by a Monotone Class Lemma argument it
is possible to show (3.11) for all measurable f . The second statement is a consequence
of (3.11).

Recall that if (F, ‖ · ‖) is a separable Banach space, µ is a measure on T , and
f : T → F is a measurable map such that

∫
T ‖f(x)‖µ(dx) < ∞, then the Bochner inte-

gral B
∫
T f(x)µ(dx) exists in F and ‖B

∫
T f(x)µ(dx)‖ ≤

∫
T ‖f(x)‖µ(dx). Even though

(Lφ, ‖ · ‖φ) is a Banach space, this result does not cover Lemma 3.3.

Proof of Theorem 3.1. For f of the form

f(x, s) =

n∑

i=1

αi1Ai(x)1Bi(s), x ∈ T, s ∈ S, (3.13)

where n ≥ 1, A1, . . . , An are measurable subsets of T of finite µ-measure, B1, . . . , Bn ∈ S,
and α1, . . . , αn ∈ R, the theorem is trivially true. Thus for a general f , as in the theorem,
choose fn for n ≥ 1 of the form (3.13) such that

∫
T ‖fn(x, ·)−f(x, ·)‖φ µ(dx) → 0. Indeed,

the existence of such a sequence follows by an application of the Monotone Class Lemma.
Let

Xn =

∫

E

( ∫

S
fn(x, s)Λ(ds)

)
µ(dx), X =

∫

E

(∫

S
f(x, s)Λ(ds)

)
µ(dx), (3.14)

and let us show that X is well-defined and Xn → X in L1. This follows since

E

[∫

E

∣∣∣∣
∫

S
f(x, s)Λ(ds)

∣∣∣∣ µ(dx)
]
≤ 2c2

∫

E
‖f(x, ·)‖φ µ(dx) <∞, (3.15)

and

E[|Xn −X|] ≤ 2c2

∫

E
‖fn(x, ·) − f(x, ·)‖φ µ(dx). (3.16)

Similarly, let

Yn =

∫

S

(∫

E
fn(x, s)µ(dx)

)
Λ(ds), Y =

∫

S

( ∫

E
f(x, s)µ(dx)

)
Λ(ds), (3.17)

and let us show that Y is well-defined and Yn → Y in L1. By Remark 3.3, s 7→∫
E f(x, s)µ(dx) is a well-defined function which belongs to Lφ, which shows that Y

is well-defined. By (3.6) and (3.11) we have

E[|Yn − Y |] ≤ 2c2

∫

E
‖fn(x, ·)− f(x, ·)‖φ µ(dx), (3.18)

which shows that Yn → Y in L1. We have therefore proved (3.9), since Yn = Xn a.s.,
Xn → X and Yn → Y in L1.
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Let Z = (Zt)t∈R denote an integrable and centered Lévy process with Lévy measure ν
and Gaussian component σ2. Then Z induces a Lévy basis Λ on S = R and S = Bb(R),
the bounded Borel sets, which is uniquely determined by Λ((a, b]) = Zb − Za for all
a, b ∈ R with a < b. In this case m is the Lebesgue measure on R and

φ(y, s) = φ(y) = σ2 +

∫R (|uy|21{|uy|≤1} + (2|uy| − 1)1{|uy|>1}

)
ν(du). (3.19)

We will often write
∫
f(s) dZs instead of

∫
f(s)Λ(ds). Note that,

∫R f(s) dZs exists and
is integrable if and only if f ∈ Lφ, i.e.,

∫R(f(s)2σ2 + ∫R (|uf(s)|2 ∧ |uf(s)|
)
ν(dx)

)
ds <∞. (3.20)

Moreover, if Z is a symmetric α-stable Lévy process, α ∈ (0, 2], then Lφ = Lα(R, λ),
where Lα(R, λ) is the space of α-integrable functions with respect to the Lebesgue mea-
sure λ.

4 Moving average representations

In wide generality, if X is a continuous time stationary processes then it is representable,
in principle, as a moving average (MA), i.e.

Xt =

∫ t

−∞
ψ(t− s) dΞs (4.1)

where φ is a deterministic function and Ξ has stationary and orthogonal increments, at
least in the second order sense. (For a precise statements, see the beginning of Subsec-
tion 4.1 below). However, an explicit expression for φ is seldom available.

We show in Subsection 4.2 below that an expression can be found in cases where the
process X is the stationary solution to a Langevin equation for which the driving noise
process N is a pseudo moving average (PMA), i.e.

Nt =

∫R (f(t− s)− f(−s)) dZs, t ∈ R, (4.2)

where Z = (Zt)t∈R is a suitable process specified later on and f : R→ R a deterministic
function for which the integrals exist.

In Subsection 4.3, continuing the discussion from Subsection 2.3, we use the MA rep-
resentation to study the asymptotic behavior of the associated autocovariance functions.
Subsection 4.4 comments on a notable cancellation effect. But first, in Subsection 4.1 we
summarize known results concerning Wold-Karhunen type representations of stationary
continuous time processes.

4.1 Wold-Karhunen type decompositions

Let X = (Xt)t∈R be a second-order stationary process of mean zero and continuous
in quadratic-mean. Let FX denote the spectral measure of X, i.e., FX is a finite and
symmetric measure on R satisfying

E[XtXu] =

∫R ei(t−u)x FX(dx), t, u ∈ R, (4.3)
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and let F ′X denote the density of the absolutely continuous part of FX . For each t ∈ R
let Xt = span{Xs : s ≤ t}, X−∞ = ∩t∈RXt and X∞ = span{Xs : s ∈ R} (span denotes
the L2-closure of the linear span). Then X is called deterministic if X−∞ = X∞ and
purely non-deterministic if X−∞ = {0}. The following result, which is due to Satz 5–6
in [19] (cf. also [16]), provides a decomposition of stationary processes as a sum of a
deterministic process and a purely non-deterministic process.

Theorem 4.1 (Karhunen). Let X and FX be given as above. If

∫R |log F ′X(x)|
1 + x2

dx <∞ (4.4)

then there exists a unique decomposition of X as

Xt =

∫ t

−∞
ψ(t− s) dΞs + Vt, t ∈ R, (4.5)

where φ : R → R is a Lebesgue square-integrable deterministic function, and Ξ is a
process with second-order stationary and orthogonal increments, E[|Ξu − Ξs|2] = |u− s|
and for all t ∈ R Xt = span{Ξs − Ξu : −∞ < u < s ≤ t}, and V is a deterministic
second-order stationary process.

Moreover, if FX is absolutely continuous and (4.4) is satisfied then V ≡ 0 and hence
X is a backward moving average. Finally, the integral in (4.4) is infinite if and only if
X is deterministic.

The results in [19] are formulated for complex-valued processes, however if X is real-
valued (as it is in our case) then one can show that all the above processes and functions
are real-valued as well. Note also that if X is Gaussian then the process Ξ in (4.5) is
a standard Brownian motion. If σ is a stationary process with E[σ20] = 1 and B is a
Brownian motion, then dΞs = σsdBs is of the above type.

A generalization of the classical Wold-Karhunen result to a broad range of non-
Gaussian infinitely divisible processes was given in [32].

4.2 Explicit MA solutions of Langevin equations

Assume initially that Z is an integrable and centered Lévy process, and recall that Lφ is
the space of all measurable functions f : R → R satisfying (3.20). Let f : R → R be a
measurable function such that f(t− ·)− f(−·) ∈ Lφ for all t ∈ R, and let N be given by

Nt =

∫R (f(t− s)− f(−s)) dZs, t ∈ R. (4.6)

Proposition 4.2. Let N be given as above. Then there exists an unique in law QOU
process X driven by N with parameter λ > 0, and X is a MA of the form

Xt =

∫R ψf (t− s) dZs, t ∈ R, (4.7)

where ψf : R→ R belongs to Lφ, and is given by

ψf (t) =

(
f(t)− λe−λt

∫ t

−∞
eλsf(s) ds

)
, t ∈ R. (4.8)
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Proof. Since (t, s) 7→ f(t− s)− f(−s) is measurable we may choose a measurable mod-
ification of N , see Section 3, and hence, by Theorem 2.4, there exists a unique in law
QOU process X driven by N with parameter λ. For fixed t ∈ R, we have by (2.10) and
with hu(s) = f(t− s)− f(t+ u− s) for all u, s ∈ R and µ(du) = 1{u≤0}e

λu du that

Xt = λ

∫ 0

−∞
eλu(Nt −Nt+u) du =

∫ 0

−∞

(∫R hu(s) dZs)µ(du). (4.9)

By Theorem 2.1 there exist α, β > 0 such that ‖hu‖φ ≤ α+ β|t| for all u ∈ R, implying

that
∫R‖hu‖φ µ(du) < ∞. By Theorem 3.1, (u 7→ hu(s)) ∈ L1(µ) for Lebesgue almost

all s ∈ R, which implies that
∫ t
−∞|f(u)|eλu du < ∞ for all t > 0, and hence ψf , defined

in (4.8), is a well-defined function. Moreover by Theorem 3.1, ψf ∈ Lφ(R, λ) and

Xt =

∫R(∫ 0

−∞
h(u, s)µ(du)

)
dZs =

∫R ψf (t− s) dZs, t ∈ R, (4.10)

which completes the proof.

Note that for f = 1R+, we have Nt = Zt and ψf (t) = e−λt1R+(t). Thus, in this case
we recover the well-known result that the QOU process X driven by Z with parameter
λ > 0 is a MA of the form Xt =

∫ t
−∞ e

−λ(t−s) dZs.
Let us use the notation x+ := x1{x≥0}, and let cH be given by

cH =

√
2H sin(πH)Γ(2H)

Γ(H + 1/2)
. (4.11)

A PMA N of the form (4.2), where Z is an α-stable Lévy process with α ∈ (0, 2] and f is

given by t 7→ cHt
H−1/α
+ is called a linear fractional α-stable motion of index H ∈ (0, 1);

see [34]. Moreover, PMAs with f(t) = tα for α ∈ (0, 12) and where Z is a square-integrable
and centered Lévy process is called fractional Lévy processes in [25].

A QOU process driven by a linear fractional α-stable motion is called a fractional
Ornstein-Uhlenbeck process. For previous work on such processes see [23], where α ∈
(1, 2), and [13], where α = 2.

Corollary 4.3. Let α ∈ (1, 2] and N be a linear fractional α-stable motion of index
H ∈ (0, 1). Then there exists a unique in law QOU process X driven by N with parameter
λ > 0, and X is a MA of the form

Xt =

∫ t

−∞
ψα,H(t− s) dZs, t ∈ R, (4.12)

where ψα,H : R+ → R is given by

ψα,H(t) = cH

(
tH−1/α − λe−λt

∫ t

0
eλuuH−1/α du

)
, t ≥ 0. (4.13)

For t → ∞, we have ψα,H(t) ∼ (cH(H − 1/α)/λ)tH−1/α−1, and for t → 0, ψα,H(t) ∼
cH t

H−1/α.

Remark 4.4. For H ∈ (0, 1/α) the existence of the stationary solution to the Langevin
equation is somewhat unexpected due to the fact that the sample paths of the linear
fractional α-stable motion are unbounded on each compact interval, cf. page 4 in [23]
where nonexistence is surmised.
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In the next lemma we will show a special property of ψf , given by (4.8); namely that∫∞
0 ψf (s) ds = 0 whenever f tends to zero fast enough. This property has a great impact

on the behavior of the autocovariance function of QOU processes. We will return to this
point in Section 4.4.

Lemma 4.5. Let α ∈ (−∞, 0), c ∈ R and f : R → R be a locally integrable function
which is zero on (−∞, 0) and satisfies that f(t) ∼ ctα for t→ ∞. Then,

∫∞
0 ψf (s) ds = 0.

Proof. For t > 0,

∫ t

0

(
λe−λs

∫ s

0
eλuf(u) du

)
ds (4.14)

=

∫ t

0

(∫ t

u
λe−λs ds

)
eλuf(u) du =

∫ t

0
f(u) du− e−λt

∫ t

0
eλuf(u) du, (4.15)

and hence by l’Hôpital’s rule we have that

∫ ∞

0
ψf (s) ds = lim

t→∞

∫ t

0
ψf (s) ds = lim

t→∞

(
e−λt

∫ t

0
eλuf(u) du

)
= 0. (4.16)

Proposition 4.2 carries over to a much more general setting. E.g. if N is of the form

Nt =

∫R×V [f(t− s, x)− f(−s, x)] Λ (ds,dx) , t ∈ R, (4.17)

where Λ is a centered Lévy basis on R×V (V is a non-empty space) with control measure
m(ds,dx) = ds n(dx) and a(s, x), σ2(s, x) and ν(du, (s, x)), from (3.1), do not depend
on s ∈ R, and f(t−·, ·)−f(−·, ·) ∈ Lφ for all t ∈ R, then using Theorem 2.1, 2.4 and 3.1
the arguments from Proposition 4.2 show that there exists a unique in law QOU process
X driven by N with parameter λ > 0, and X is given by

Xt =

∫R×V ψf (t− s, x)Λ(ds,dx), t ∈ R, (4.18)

where

ψf (s, x) = f(s, x)− λe−λs
∫ s

−∞
f(u, x)eλu du, s ∈ R, x ∈ V. (4.19)

We recover Proposition 4.2 when V = {0} and n = δ0 is the Dirac delta measure at 0.

4.3 Asymptotic behavior of the autocovariance function

The representation, from the previous section, of QOU processes as moving averages
enables us to calculate the autocovariance function in case it exists. In Section 4.3.1
we calculate the autocovariance function for general MAs. By use of these results Sec-
tion 4.3.2 relates the asymptotic behavior of the kernel of the noise N to the asymptotic
behavior of the autocovariance function of the QOU process X driven by N .
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4. Moving average representations

4.3.1 Autocovariance function of general MAs

Let ψ be a Lebesgue square-integrable function and Z a centered process with stationary
and orthogonal increments, and assume for simplicity that Z0 = 0 a.s. and VarZ(t) = t.
Let X = ψ ∗ Z = (

∫ t
−∞ ψ(t − s) dZs)t∈R be a backward moving average and RX its

autocovariance function, i.e.

RX(t) = E[XtX0] =

∫ ∞

0
ψ(t+ s)ψ(s) ds, t ∈ R, (4.20)

and let R̄X(t) = RX(0) − RX(t) = 1
2E[(Xt − X0)

2]. The behavior of RX at 0 or ∞
corresponds in large extent to the behavior of the kernel ψ at 0 or ∞, respectively.

Indeed, we have the following result, in which kα and jα are constants given by

kα = Γ(1 + α)Γ(−1− 2α)Γ(−α)−1, α ∈ (−1,−1/2), (4.21)

jα = (2α + 1) sin(π(α + 1/2))Γ(2α + 1)Γ(α+ 1)−2, α ∈ (−1/2, 1/2). (4.22)

Proposition 4.6. Let the setting be as described above.

(i) For t → ∞ and α ∈ (−1,−1
2 ), ψ(t) ∼ ctα implies RX(t) ∼ (c2kα)t

2α+1 provided
|ψ(t)| ≤ c1t

α for all t > 0 and some c1 > 0.

(ii) For t → ∞ and α ∈ (−∞,−1), ψ(t) ∼ ctα implies RX(t)/t
α → c

∫∞
0 ψ(s) ds, and

hence RX(t) ∼ (c
∫∞
0 ψ(s) ds)tα provided

∫∞
0 ψ(s) ds 6= 0.

(iii) For t→ 0 and α ∈ (−1
2 ,

1
2), ψ(t) ∼ ctα implies R̄X(t) ∼ (c2jα/2)|t|2α+1 provided ψ

is absolutely continuous on (0,∞) with density ψ′ satisfying |ψ′(t)| ≤ c2t
α−1 for all

t > 0 and some c2 > 0.

Recall that a function f : R → R is said to be absolutely continuous on (0,∞) if
there exists a locally integrable function f ′ such that for all 0 < u < t

f(t)− f(u) =

∫ t

u
f ′(s) ds. (4.23)

Proof. (i): Let α ∈ (−1,−1
2 ) and assume that ψ(t) ∼ ctα as t→ ∞ and |ψ(t)| ≤ c1t

α for
t > 0, then

RX(t) =

∫ ∞

0
ψ(t+ s)ψ(s) ds = t

∫ ∞

0
ψ(t(s + 1))ψ(ts) ds (4.24)

= t2α+1

∫ ∞

0

ψ(t(1 + s))ψ(ts)

(t(1 + s))α(ts)α
(1 + s)αsα ds (4.25)

∼ t2α+1c2
∫ ∞

0
(1 + s)αsα ds as t→ ∞. (4.26)

Since ∫ ∞

0
(1 + s)αsα ds =

Γ(1 + α)Γ(−1− 2α)

Γ(−α) = kα, (4.27)

(4.26) shows that RX(t) ∼ (c2kα)t
2α+1 for t→ ∞.

(ii): Let α ∈ (−∞,−1) and assume that ψ(t) ∼ ctα for t → ∞. Note that ψ ∈
L1(R+, λ) and for some K > 0 we have for all t ≥ K and s > 0 that |ψ(t + s)|/tα ≤
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4. Moving average representations

2|c|(t+ s)α/tα ≤ 2|c|. Hence by applying Lebesgue’s dominated convergence theorem we
obtain,

RX(t) = tα
∫ ∞

0

(
ψ(t+ s)

tα
ψ(s)

)
ds ∼ tαc

∫ ∞

0
ψ(s) ds for t→ ∞. (4.28)

(iii): By letting

ft(s) :=
ψ(t(s + 1)) − ψ(ts)

tα
t > 0, s ∈ R, (4.29)

we have

E[(Xt −X0)
2] = t

∫
[(ψ(t(s + 1))− ψ(ts)]2 ds = t2α+1

∫
|ft(s)|2 ds. (4.30)

As t→ 0, we find

ft(s) =
ψ(t(s + 1))

(t(s+ 1))α
(s+ 1)α − ψ(ts)

(ts)α
sα → c((s + 1)α+ − sα+). (4.31)

Choose δ > 0 such that |ψ(x)| ≤ 2xα for x ∈ (0, δ). By our assumptions we have for all
s ≥ δ that

|ft(s)| = t−α

∣∣∣∣∣

∫ t(1+s)

ts
ψ′(u) du

∣∣∣∣∣ ≤ t−α+1 sup
u∈[st,t(s+1)]

|ψ′(u)| (4.32)

≤ c2t
−α+1 sup

u∈[st,t(s+1)]
|u|α−1 = c2t

−α+1|ts|α−1 = c2s
α−1, (4.33)

and for s ∈ [−1, δ), |ft(s)| ≤ 2c[(1 + s)α + sα+]. This shows that there exists a function
g ∈ L2(R+, λ) such that |ft| ≤ g for all t > 0, and thus, by Lebesgue’s dominated
converging theorem, we have

∫
|ft(s)|2 ds −−→

t→0
c2
∫ (

(s+ 1)α+ − sα+
)2

ds = c2jα. (4.34)

Together with (4.30), (4.34) shows that R̄X(t) ∼ (c2jα/2)t
2α+1 for t → 0.

Remark 4.7. It would be of interest to obtain a general result covering Proposition 4.6(ii)
in the case

∫∞
0 ψ(s) ds = 0. Recall that for ψf given by (4.8) we often have that∫∞

0 ψf (s) ds = 0, according to Lemma 4.5.

Example 4.8. Consider the case where ψ(t) = tαe−λt for α ∈ (−1
2 ,∞) and λ > 0.

For t → 0, ψ(t) ∼ tα, and hence R̄X(t) ∼ (jα/2)t
2α+1 for t → 0 and α ∈ (−1

2 ,
1
2), by

Proposition 4.6(iii) (compare with [3]).

Note that if X = ψ ∗ Z is a moving average, as above, then by Proposition 4.6(i)
and for t → ∞, RX(t) ∼ c1t

−α with α ∈ (0, 1), provided that ψ(t) ∼ c2t
−(α+1)/2 and

|ψ(t)| ≤ c3t
−(α+1)/2. This shows that X has long-range dependence of order α.

Let us conclude this subsection with a short discussion of when a MA X = ψ ∗Z is a
semimartingale. It is often very important that the process of interest is a semimartingale,
especially in finance, where the semimartingale property the asset price is equivalent to
that the capital process depends continuously on the chosen strategy, see e.g. Section 8.1.1
in [15]. In the case where Z is a Brownian motion, Theorem 6.5 in [21] shows that
X is an FZ -semimartingale if and only if ψ is absolutely continuous on [0,∞) with a
square-integrable density. (Here FZ

t := σ(Zs : s ∈ (−∞, t])). For a further study to
the semimartingale property of pseudo moving averages and more general processes see
[7, 8, 9] in the Gaussian case, and [10] for the infinitely divisible case.
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4. Moving average representations

4.3.2 QOU processes with PMA noise

Let us return to the case of a QOU process driven by a PMA, so let Z be a centered
Lévy process, f : R → R be a measurable function which is 0 on (−∞, 0) and satisfies
that f(t− ·)− f(−·) ∈ Lφ for all t ∈ R, and let N be given by

Nt =

∫R [f(t− s)− f(−s)] dZs, t ∈ R. (4.35)

First we will consider the relationship between the behavior of the kernel of the noise N
and that of the kernel ψf of the corresponding moving average X.

Proposition 4.9. Let N be given by (4.35), and X be a QOU process driven by N with
parameter λ > 0.

(i) Let α ∈ (−1,−1
2 ) and assume that for some β ≥ 0 and c 6= 0, f ∈ C1((β,∞);R)

with f ′(t) ∼ ctα for t → ∞. Then, for t → ∞, we have RX(t) ∼ ( c
2kα
λ2

)t2α+1,
provided |f(t)| ≤ rtα for all t > 0 and some r > 0.

(ii) Let α ∈ (−1
2 ,

1
2 ) and f(t) ∼ ctα for t → 0. Then, for t → 0, we have R̄X(t) ∼

(c2jα/2)|t|2α+1, provided there exists a β ≥ 0 such that f ∈ C2((β,∞);R) with
f ′′(t) = O(tα−1) for t → ∞, and that f is absolutely continuous on (0,∞) with
density f ′ satisfying supt∈(0,to)|f ′(t)|t1−α <∞ for all t0 > 0.

Proof. (i): By partial integration, we have for t ≥ β,

ψf (t) = e−λt
(
eλaf(a)− λ

∫ a

−∞
eλsf(s) ds

)
+ e−λt

∫ t

a
eλsf ′(s) ds, (4.36)

showing that ψf (t) ∼ ( cλ)t
α for t → ∞. Choose k > 0 such that |ψf (t)| ≤ (2c/λ)tα for

all t ≥ k. By (4.8) we have that supt∈[0,k]|ψf (t)t−α| < ∞ since supt∈[0,k]|f(t)t−α| < ∞,
and hence there exists a constant c1 > 0 such that |ψf (t)| ≤ c1t

α for all t > 0. Therefore,
(i) follows by Proposition 4.6(i).

(ii): Since f ∈ C2((β,∞);R), it follows by (4.36) and partial integration that for
t > β and t→ ∞,

ψ′f (t) = f ′(t)− λψf (t) = f ′(t)− λe−λt
∫ t

β
eλsf ′(s) ds+O(e−λt) (4.37)

= e−λt
∫ t

β
eλsf ′′(s) ds+O(e−λt) = O(tα−1), (4.38)

where we in the last equality have used that f ′′(t) = O(tα−1) for t → ∞. Using that
|ψ′f (t)| ≤ |f ′(t)| + λ|ψf (t)| and supt∈(0,t0)|f ′(t)t1−α| < ∞ for all t0 > 0, it follows that

there exists a c2 > 0 such that |ψ′f (t)| ≤ c1t
α−1 for all t > 0. Moreover, for t → 0, we

have that ψf (t) ∼ ctα. Hence, (ii) follows by Proposition 4.6(iii).

Now consider the following set-up: Let Z = (Zt)t∈R be a centered and square-
integrable Lévy process, and for H ∈ (0, 1), r0 6= 0, δ ≥ 0, let

f(t) = r0(δ ∨ t)H−1/2, and NH,δ
t =

∫R [f(t− s)− f(−s)] dZs. (4.39)

Note that when δ = 0 and Z is a Brownian motion then NH,δ is a constant times the
fBm of index H, and when δ > 0 then NH,δ is a semimartingale. We have the following
corollary to Proposition 4.9:
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4. Moving average representations

Corollary 4.10. Let NH,δ be given by (4.39), and let XH,δ be a QOU process driven by
NH,δ with parameter λ > 0. Then, for H ∈ (12 , 1) and t→ ∞,

RXH,δ(t) ∼ (r20kH−3/2(H − 1/2)/λ2)t2H−2, δ ≥ 0, (4.40)

and for H ∈ (0, 1) and t→ 0,

R̄XH,δ(t) ∼
{
(r20δ

2−1/2)|t|, δ > 0,

(r20jH−1/2/2)|t|2H , δ = 0.
(4.41)

Proof. For H ∈ (12 , 1), let β = δ. Then, f ∈ C1((β,∞);R) and for t > β, f ′(t) = ctα

where α = H − 3/2 ∈ (−1,−1
2 ) and c = r(H − 1/2). Moreover, |f(t)| ≤ rδtα. Thus,

Proposition 4.9(i) shows that

RXH,δ(t) ∼ (c2kα/λ
2)t2α+1 = (r2(H − 1/2)2kH−3/2/λ

2)t2H−2. (4.42)

To show (4.41) assume that H ∈ (0, 1). For t → 0, we have f(t) ∼ ctα, where c = r0
and α = H − 1/2 ∈ (−1

2 ,
1
2) when δ = 0, and c = r0δ

H−1/2 and α = 0 when δ > 0.

For β = δ, f ∈ C2((β,∞);R) with f ′′(t) = r0(H − 1/2)(H − 3/2)tH−5/2, showing that
f ′′(t) = O(tα−1) for t → ∞ (both for δ > 0 and δ = 0). Moreover, f is absolutely
continuous on (0,∞) with density f ′(t) = r0(H − 1/2)tH−3/21[δ,∞)(t). This shows that
supt∈(0,t0)|f ′(t)t1−α| <∞ for all t0 > 0 (both for δ > 0 and δ = 0). Hence (4.41) follows
by Proposition 4.9(ii).

4.4 Stability of the autocovariance function

Let N be a PMA of the form (4.2), where Z is a centered square-integrable Lévy process

and f(t) = cH t
H−1/2
+ where H ∈ (0, 1). (Recall that if Z is a Brownian motion, then N

is a fBm of index H). Let X be a QOU process driven by N with parameter λ > 0, and
recall that by Proposition 4.2, X is a MA of the form

Xt =

∫ t

−∞
ψH(t− s) dZs, t ∈ R, (4.43)

where

ψH(t) = cH

(
tH−2/2 − λe−λt

∫ t

0
eλuuH−1/2 du

)
, t ≥ 0. (4.44)

Below we will discus some stability properties for the autocovariance function under
minor modification of the kernel function.

For all bounded measurable functions f : R+ → R with compact support let Xf
t =∫ t

−∞ (ψH(t− s)− f(t− s)) dZs. We will think of Xf as a MA where we have made a

minor change of X’s kernel. Note that if we let Y f
t = Xt −Xf

t =
∫ t
−∞ f(t− s) dZs, then

the autocovariance function RY f (t), of Y f , is zero whenever t is large enough, due to the
fact that f has compact support.

Corollary 4.11. We have the following two situations, in which c1, c2, c3 6= 0 are non-
zero constants.

(i) For H ∈ (0, 12) and
∫∞
0 f(s) ds 6= 0, we have for t→ ∞,

RXf (t) ∼ c2RX(t)t
1/2−H ∼ c1t

H−3/2. (4.45)
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5. Conclusion

(ii) For H ∈ (12 , 1), we have for t→ ∞,

RXf (t) ∼ RX(t) ∼ c3t
2H−2. (4.46)

Thus forH ∈ (0, 12 ), the above shows that the behavior of the autocovariance function
at infinity is changed dramatically by making a minor change of the kernel. In particular,
if f is a positive function, not the zero function, then RXf (t) behaves as t1/2−HRX(t)
at infinity. On the other hand, when H ∈ (12 , 1) the behavior of the autocovariance
function at infinity doesn’t change if we make a minor change to the kernel. That is,
in this case the autocovariance functions has a stability property, contrary to the case
where H ∈ (0, 12 ).

Remark 4.12. Note that the dramatic effect appearing from Corollary 4.11(i) is asso-
ciated to the fact that

∫∞
0 ψH(s) ds = 0, as shown in Lemma 4.5.

Proof of Corollary 4.11. By Corollary 4.3 we have for t → ∞ that ψH(t) ∼ ctα where
c = cH(H − 1/2)/λ and α = H − 3/2. To show (i) assume that H ∈ (0, 12), and
hence α ∈ (−∞,−1). According to Lemma 4.5 we have that

∫∞
0 ψH(s) ds = 0 and

hence
∫∞
0 [ψH(s) − f(s)] ds 6= 0 since

∫∞
0 f(s) ds 6= 0 by assumption. From Proposi-

tion 4.6(ii) and for t → ∞ we have that RXf (t)(t) ∼ c1t
2α+1 = c1t

H−3/2, where c1 =
c
∫∞
0 [ψH(s)−f(s)] ds. On the other hand, by Corollary 2.9 we have that RX(t) ∼ (H(H−

1/2)/λ2)t2H−2 for t→ ∞, and hence we have shown (i) with c2 = c1λ
2/(H(H−1/2). For

H ∈ (12 , 1) we have that α ∈ (−1,−1
2 ), and hence (ii) follows by Proposition 4.6(i).

5 Conclusion

In recent applications of stochastics, particularly in finance and in turbulence, modifica-
tions of classic noise processes by time change or by volatility modifications are of central
importance, see for instance [6] and [2] and references given there. Prominent examples
of such processes are dNt = σt dBt where B is Brownian motion and σ is a predictable
stationary process (cf. [5]), and Nt = LTt , where L is a Lévy process and T is a time
change process with stationary increments (cf. [12]). The theory discussed in the present
paper applies to processes of this type (cf. Corollary 2.6). In the applications mentioned
the processes are mostly semimartingales. However there is a growing interest in non-
semimartingale processes, see [1], [3, 4], and the results above covers also such cases. An

example in point is Nt =
∫
X B

(x)
t m(dx) where the processes B

(x)
· are Brownian motions

in different filtrations and m is a measure on some space X .
Moreover, extensions of the theory to wider settings would be of interest, for instance

to generalized Langevin equations

Xt = X0 − λ

∫ t

0
(X ∗ k)(s) ds+Nt (5.1)

where k is a deterministic function and (X ∗ k)(s) =
∫ s
−∞Xuk(s − u) du denotes the

convolution between k and X, as occurring in statistical mechanics and biophysics, see
[22] and references given there. We hope to discuss this in future work.
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