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Introduction

This thesis presents the results of my four years as a PhD student at the Depart-
ment of Mathematical Sciences at Aarhus University. The topic of the thesis is limit
phenomena of random partitions of integers, specifically the viewpoint of statistical
mechanics introduced by Vershik. The probability distributions under consideration
depend only on the size of a partition, so that asymptotic properties are governed by
entropy. A variety of models for such distributions exist, differing in the restrictions
placed on partitions. In keeping with the tradition in the field, our focus is on the
scaling regimes of limit shapes and fluctuation processes.

Chapter 1 reviews the basic theory of the statistical mechanics of partitions, and
introduces the models of unbounded, semibounded and bounded partitions. Our
main focus is the latter model, where partitions are bounded both in the number of
summands and the size of summands, corresponding to confining Young diagrams
to a rectangle. This is the topic of Chapter 2, where we prove limit shape and
fluctuation theorems for such partitions. The limit shape is known in the literature,
while the fluctuations have not previously been studied. The fluctuation process is
shown to converge to an Ornstein-Uhlenbeck bridge. We give detailed proofs of both,
using asymptotics of the Gaussian binomials describing the partition function. In
Chapter 3 we compare the results from three models, which turn out to be very
closely related. The connection between the limit shapes has been noted elsewhere,
but the connections between the fluctuations were, as far as the author is aware, not
described earlier. Partitions are identified with continuous piecewise linear curves,
which seems to provide the right setting for identifying the connections between the
models. The appendix contains a short overview of the theory of weak convergence of
probability measures, which is the framework for our convergence results, as well as
a section detailing the various Ornstein-Uhlenbeck processes that play a role in the
exposition.

Working with a subject having both a simple graphical representation and ran-
dom elements involved, it was natural to do some numerical experiments. The effort
resulted in a simple piece of software to sample Young diagrams from various distri-
butions. Several figures in the text were created using the program.

I wish to thank my advisors Nicolai Reshetikhin and Henning Haahr Andersen

iii
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for their support on the mathematical and personal level. I am grateful to Nicolai
Reshetikhin for introducing me to the fascinating subject of random partitions. Also,
a warm thanks to Cedric Boutillier and Nathanaël Enriquez for sharing their time
and wisdom and for taking good care of me on my visits to Paris. Thanks to the
Department of Mathematical Sciences for providing an inspiring work environment
over the past eight years, and thanks to Niels and Magnus for making life at A4.32
so very enjoyable. Finally, thanks to my family and friends for being there when I
need them and a special thanks to my girlfriend for her patience with me during the
writing of this thesis.

Dan Beltoft
Århus, July 2010







Chapter 1

Random Partitions

This chapter contains a brief exposition of Vershik’s theory of multiplicative statistics
of partitions. The concept of a limit shape is introduced and some classical limit
shape results are presented. For the reader who needs to refresh his knowledge of
weak convergence of probability measures, a brief tour of the subject can be found in
the appendix (p. 49).

1.1 · Partitions and Young Diagrams

A partition of a non-negative integer n is a finite non-increasing sequence of positive
integers

ω = (ω1, ω2, . . . , ωb),

with ω1 + · · ·+ ωb = n. The notation ω `n or |ω| = n indicates that ω is a partition
of n. The number of summands b is called the length of the partition and is denoted
`(ω). We denote the set of partitions of n by Pn, while Pnb is the subset of Pn of
partitions into exactly b summands. Let P =

⋃∞
n=0 Pn be the set of all partitions.

The number of partitions of n is denoted p(n), while p(n, b) = #Pnb denotes the
number of partitions of n with exactly b summands. Note that p(0) = 1: the empty
sequence is a partition of zero, and the only one at that.

The study of partitions goes back to Euler in the 18th century. He discovered,
among many other things, the classical generating function for the numbers p(n):

∞∏
k=1

1

1− qk
=

∞∑
n=0

p(n)qn. (1.1)

An argument for the validity of this equality goes as follows. Expand each factor on
the left as a geometric series:

(1 + q + q2 + q3 + · · · )(1 + q2 + q4 + q6 + · · · )(1 + q3 + q6 + q9 + · · · ) · · ·

1



2 Chapter 1 – Random Partitions

The coefficient of qn in this product is the number of ways to pick a term from each
parenthesis such that their product is qn. This is exactly the number of ways to
partition n into a sum of positive integers, with the term from the first parenthesis
representing the 1’s, the term from the second representing the 2’s and so on.

A convenient graphical representation of a partition is its Young diagram. The
Young diagram associated to a partition ω = (ω1, ω2, . . . , ωb) is the (closure of the)
subset of the (x, y)-plane defined by 0 ≤ y ≤ ωdxe, 0 < x ≤ b. The Young diagram
obviously has area n. The ‘jagged’ part of the boundary connecting (0, ω1) and (b, 0)
is called the interface of the diagram. See figure 1.1. There are varying traditions
regarding the preferred rotation and reflection of a Young diagram. Our choice is
apparently a mix of the ‘French’ and ‘Russian’ styles.

In the present text, we are concerned with asymptotic aspects of random parti-
tions, and no matter the convention, Young diagrams are very useful in this regard.
Convergence theorems are naturally expressed in terms of some form of convergence
of a suitable rescaling of the interface. Suppose that we have for each n ∈ N a prob-
ability measure µn on Pn. The question is: Is it possible to normalize the Young
diagrams in such a way that the sequence (µn), seen as a measure on some suitable
space of generalized Young diagrams, has a weak limit as n→∞?

Figure 1.1: The Young diagram for the partition (8, 7, 7, 5, 4, 3, 3, 2, 2, 1) of n = 42. The
interface of the diagram is the colored curve.

1.2 · Multiplicative Statistics and Limit Shapes
In [19], Vershik introduced a family of probability measures on partitions known as
multiplicative statistics. These measures are inspired by the statistical physics of a
quantum ideal gas: a partition of n represents a collection of particles (summands)
with total energy n. The number of particles with a specific energy is

rk(ω) = #{j | ωj = k}.

These are called the occupation numbers. The idea is to assign weights to each value
of each occupation number, in such a way that the occupation numbers become
independent variables in a sense to be made precise below. The reader is referred to
[18] for an in-depth discussion of the connection to statistical physics.

Vershik’s Young diagrams are transposed compared to the definition above: the
horizontal part of the interface is the graph of the function

ϕω(t) =
∑
k≥t

rk(ω). (1.2)
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Diagrams are rescaled along the ordinate axis to have unit area, and a scaling param-
eter γn > 0 is introduced to compensate:

ϕ̄ω(t) =
γn
n
ϕω(γnt), γn > 0. (1.3)

The map Pn 3 ω 7→ ϕ̄ω is denoted τγn . Obviously ϕ̄ω is a non-negative non-increasing
function on (0,∞) with

∫∞
0
ϕ̄ω(t) dt = 1. Let D denote the space of all such functions,

and endow D with the topology of uniform convergence on compacts. The space of
generalized diagrams considered in [19] and [18] is enlarged to include atoms at 0 and
∞, allowing for escape of probability mass related to Bose-Einstein condensation, but
that will not be needed here.

If µn is a probability measure on Pn, the question is whether there exists a se-
quence γ = (γn) such that the pushforward measures τ∗γµn = µn ◦ τ−1

γn converge
weakly to a limit measure on D. If such a limit measure exists and is singular, ie.
is a δ-measure on some element L ∈ D, then L is called the limit shape. From the
physics point of view, the limit shape describes a limit distribution of the energies
of particles, answering questions like, what fraction of the total energy is bound in
particles with energies exceeding some given level.

The class of probability measures under consideration is that of multiplicative
statistics. Such a measure is defined by a sequence of functions s = (sk), with
sk : N0 → R+. Define Fs : P → R+ by

Fs(ω) =

∞∏
k=1

sk(rk(ω))

and let

µn(ω) =
Fs(ω)

Zn
,

where Zn =
∑
ω `n Fs(ω) is the normalizing factor known as the partition function.

The trick is to combine all the measures µn into a single measure on P, depending
on a parameter q > 0. In a way, this corresponds to regarding the number being
partitioned as a random variable itself. Generalizing the right hand side of (1.1), we
set F(q) =

∑∞
n=0 Znq

n, assuming that the sum is convergent when 0 ≤ q < q0, and
define

µq(ω) =
q|ω|Fs(ω)

F(q)
.

A mathematician will say that the measure has been poissonized, while a physicist
will speak of it as the measure on the macrocanonical ensemble, ie. the set P (as
compared to the canonical ensemble Pn). Once the scaling γ = (γn) is chosen, τγ
maps P into D, and we can ask whether the measures τ∗γµq have a weak limit as q ↑ q0.
This question will be answered shortly. The measure µq is a convex combination of
the measures µn:

µq =
1

F(q)

∞∑
n=0

qnZnµ
n,

so restricting µq to Pn returns the measure µn (scaled by µq(Pn)). The generalization
of the left hand side of (1.1) involves the functions Fk(y) =

∑∞
r=0 sk(r)yr. By the
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same argument that proved (1.1), we have

F(q) =

∞∑
n=0

∑
ω `n

qn
∞∏
k=1

sk(rk(ω))

=

∞∑
n=0

∑
ω `n

∞∏
k=1

qkrk(ω)sk(rk(ω))

=

∞∏
k=1

∞∑
r=0

sk(r)qrk =

∞∏
k=1

Fk(qk),

(1.4)

using the fact that n = |ω| =
∑
k krk(ω). The generating function F(q) together

with the decomposition (1.4) completely determines the family µq. Restricting the
sum over ω `n in (1.4) to partitions with a fixed number of summands equal to some
k′, ie. rk′(ω) = r′, has the effect of replacing the factor Fk′(qk

′
) in the product on

the right by sk′(r′)qr
′k′ (pick the term qr

′k′ from parenthesis number k′). Thus, the
total probability of partitions with rk′ = r′ is

µq(rk′(ω) = r′) =
sk′(r

′)qr
′k′

Fk′(qk′)
. (1.5)

Restricting several of the rk’s at the same time, we get the product of expressions as
above, showing that the occupation numbers rk : P → N0 are independent random
variables. In fact, any family of measures µq on P satisfying (i) the occupation
numbers are independent, and (ii) the restriction to Pn does not depend on q, is of
the form (1.4) (see [18]). In [4], where a uniform distribution on Pn is considered,
the independence of the occupation numbers is the starting point for the derivation
of a large deviation principle, to which we briefly return in Section 3.4.

Vershik provides several examples of multiplicative statistics where F(q) has one
of the forms

F(q) =

∞∏
k=1

1

(1− qk)bkβc
(1.6)

or

F(q) =

∞∏
k=1

(1 + qk)bk
βc, (1.7)

with β ≥ 0 a constant related to the dimension of the physical problem (ideal gas)
under consideration. For such measures, he proves a trinity of convergence theorems:

(i) Adopting the scaling γn = n1/(2+β), the measures τ∗γµq have a nontrivial weak
limit as q → 1−.

(ii) The limit measure is singular.

(iii) The sequence τ∗γµn is weakly convergent as n→∞ and

lim
n→∞

τ∗γµ
n = lim

q→1−
τ∗γµq.

This last property is traditionally known in statistical physics as the equivalence
of the canonical and the macrocanonical ensemble. Note that since µq is a convex
combination of the µn, it is clear that if the limit on the left exists, then so does the
limit on the right, and the two agree.
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A limit shape theorem for a sequence of measures is an equivalent of the weak law
of large numbers: weak convergence with a deterministic limit. Once a limit shape
has been found, one can ask about the fluctuations, in an intermediate scaling, of
the random interfaces around the limit shape: if the rescaled interfaces ϕ̄ω converge
to a limit shape L, consider a sequence of the form γ′n(ϕ̄ω − L), for some suitably
chosen scaling (γ′n). One can then hope to prove weak convergence of this sequence
to some stochastic process. This is an equivalent of the central limit theorem. We
will return to fluctuations in the next chapters and content ourselves with limit shape
phenomena for now.

1.3 · Examples of Multiplicative Statistics
A number of limit shape formulas given in [19] have been derived in greater detail
in other papers. In this section we introduce some of these models and their limit
shapes. The simplest case is when F(q) is given by (1.1), ie. β = 0 in (1.6) or sk ≡ 1
for all k, so that µn is the uniform measure on Pn. This is known to physicists as
the Bose-Einstein statistics. The scaling is γn =

√
n and the limit shape is

exp
(
− π√

6
x
)

+ exp
(
− π√

6
y
)

= 1, (1.8)

originally presented in [21]. We will call this Vershik’s curve. The figure opposite
the beginning of this chapter shows samples from this distribution and a plot of the
limit shape. We have been unable to find a treatment of the fluctuations of this
process in the literature. In Section 3.1 we rederive the limit shape and calculate
the covariance of the fluctuations in a slightly different coordinate system, using the
methods developed in Chapter 2.

The case β = 0 in (1.7) corresponds to the uniform measure on so-called strict
partitions of n, ie. partitions where all summands are different. The function (1.7)
is the generating function for the numbers of strict partitions of n. To physicists,
this model is known as the Fermi-Dirac statistics. It applies to particles satisfying
the Pauli exclusion principle: no two particles can occupy the same state at the same
time. The limit shape is the curve

exp
(

π√
12
y
)
− exp

(
− π√

12
x
)

= 1.

The papers [20] and [24] deal with this case in more detail, including the fluctuations
around the limit shape.

Another type of restriction is to bound the number of summands `(ω), the basic
case being the uniform measure on partitions of n into exactly b positive summands.
In this case, a second variable z is introduced in the generating function to count the
number of summands:

Fk(q, z) =
1

1− zqk

so that

F(q, z) =

∞∏
k=1

Fk(q, z) =
∑
n,b

p(n, b)qnzb.

When q and z are such that the sum converges, we get the measure µq,z on P given
by

µq,z(ω) =
q|ω|z`(ω)

F(q, z)
.
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A limit result for n, b → ∞ depends on a choice of the growth of b relative to n. In
[23], Vershik and Yakubovich consider the case b = α

√
n as well as sub-squareroot

power growth. Also, one must specify how to rescale the diagrams, and there are two
natural options: scale by `(ω) so that ϕ̄ω(0) = 1 for all ω, or take a uniform scaling
by
√
n. We will focus on the latter case, since this is the one related to the bounded

partitions of Chapter 2. In this case, the limit shape is the curve

e−y
√

Li2(zα) + zαe
−x
√

Li2(zα) = 1, (1.9)

where Li2(z) =
∑∞
k=1

zk

k2 is the dilogarithm function and zα ∈ (0, 1) is chosen de-
pending on the scaling factor α to ensure that the subgraph of the curve has unit
area. The proof uses the technique of finding the limit as q → 1 of µq,z, while fixing
z at a cleverly chosen value to ensure that the expected length of a diagram agrees
with that prescribed by α. Also, since the scaling is based on the value of n, relations
between q and n, b are needed to ensure that the scalings coincide. We return to this
model in Section 3.1.

A last variant is when both the number of summands and the size of summands
is bounded. Say `(ω) ≤ b and all ωi ≤ a, then the Young diagram is contained in
the box [0, b]× [0, a]. The model was presented and the limit shape given in [19]. In
[15], Petrov proves that the limit shapes arising in this way are simply restrictions
of the curve (1.8), chosen according to the geometry of the bounding box and the
prescribed area of diagrams. This model is the topic of Chapter 2, where we derive the
limit shape and fluctuations in full detail using asymptotic estimates of the partition
function.

1.4 · The Plancherel Measure
Let us give an example of a limit shape theorem for random partitions which is not
a multiplicative statistic. The complex irreducible representations of the symmetric
group Sn are indexed by partitions of n. Let dimω denote the dimension of the
representation corresponding to ω. The Plancherel measure on Pn is the measure

µPl(ω) =
(dimω)2

n!
. (1.10)

The number dimω is also the number of chains of partitions

∅ = ω(0) / ω(1) / · · · / ω(n−1) / ω(n) = ω (1.11)

where the notation ω / λ means that λ is obtained by adding one cell to ω. One
can think of such a chain as a path in the Young graph (Figure 1.3) from ∅ to ω,
or as a standard tableau on the Young diagram of ω, ie. a numbering of the cells by
1, 2, . . . , n that is increasing to the right and up. The classic hook formula ([8], see
also [9] and [10]) is a convenient way to calculate dimω:

dimω =
n!∏
c∈ω hc

,

where the product extends over the cells of ω and hc is the hook length of the cell c,
the number of cells to the right of and above c, including c itself.

Consider the space of inifinite chains as in (1.11), and equip it with the inverse
limit µ̄ of the measures µn. In [22] and [21] (see also [13]), Vershik and Kerov prove
that for almost all infinite chains with respect to µ̄, the rotated and rescaled interfaces
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Figure 1.2: On the left, a Young diagram rotated by 45◦. The interface is considered to
extend left and right as the graph of |x|. On the right, a diagram with 500 cells sampled
from the Plancherel distribution, together with a plot of the limit shape Ω.

of the diagrams (by an angle of 45◦ and a factor of
√
n) converge uniformly to the

curve

Ω(t) =

{
2
π (t arcsin t+

√
1− t2) |t| ≤ 1

|t| |t| > 1
(1.12)

See Figure 1.2.

∅

Figure 1.3: The first few levels of the Young graph





Chapter 2

Diagrams in a Box

This chapter contains the material of the paper [2] by C. Boutillier, N. Enriquez
and the author of the present text. We study the probability measure on the set of
partitions with at most b parts, each part no greater then a, where a partition of n
has a probablility proportional to some parameter q to the nth power. This model
is different from the multiplicative statistics of Chapter 1, in that the occupation
numbers are no longer independent. On the other hand, the partition function can
be expressed as a Gaussian binomial coefficient, and the asymptotics of these lead to
limit shape and fluctuation results.

It is easy to see that if the parameter q remains fixed while the box grows, the
system degenerates in the limit. Thus, the first task is to choose a suitable sequence
of q’s, depending on the size of the box.

The limit shapes we find are restrictions of Vershik’s curve, the limit shape of
unbounded partitions under the same distribution. The fluctuations of the interfaces
around the limit shape turn out to be an Ornstein-Uhlenbeck bridge, which is also
related to the fluctuations in the unbounded case. This angle is explored in Chapter 3.

We make use of big-O and little-o notation. When α ∈ R, the equality f(n) =

O(nα) signifies that f(n)
nα is bounded as n → ∞, while g(n) = o(nα) signifies that

g(n)
nα → 0 as n→∞.

2.1 · Young Diagrams in Boxes

Given positive integers a, b we let Pa,b be the set of all partitions with at most b
parts, each no greater than a. To each such partition corresponds a unique Young
diagram contained in the rectangle [0, b]× [0, a]. We will make no effort to distinguish
between a partition and its Young diagram.

Fixing a real number q > 0, we define a probability measure on Pa,b by assigning
to each partition ω the probability

Pqa,b[ω] =
q|ω|

Za,b(q)
, (2.1)

9



10 Chapter 2 – Diagrams in a Box

a

b

Figure 2.1: A Young diagram in a box.

where |ω| is the number of cells of ω and Za,b(q) is the partition function, the sum
of q|ω| over ω ∈ Pa,b. It is a classical result that the partition function is a Gaussian
binomial coefficient (or q-binomial coefficient).

Definition 2.1. Fix q > 0. If n,m ∈ N0, the q-integer (n)q is given by

(n)q =
1− qn

1− q
,

the q-factorial n!q is given by

n!q =

n∏
j=1

(j)q =

n∏
j=1

1− qj

1− q
,

and the q-binomial coefficient
(
n
m

)
q
is given by

(
n

m

)
q

=
n!q

(n−m)!qm!q
=

m∏
j=1

1− qn−m+j

1− qj
. (2.2)

Lemma 2.2. For all integers a, b ≥ 1, and all q > 0,

Za,b(q) =

(
a+ b

a

)
q

=

(
a+ b

b

)
q

. (2.3)

Proof. With the natural convention that Za,b(q) equals 1 if either of a or b is zero
(only the empty diagram fits in the empty box), (2.3) holds in this case. When
a, b ≥ 1, we observe that the diagrams in Pa,b fall into two subsets: those with at
least one summand equal to a, and those with all summands smaller than a. Hence
Za,b(q) satisfies

Za,b(q) = qaZa,b−1(q) + Za−1,b(q). (2.4)

Using induction in a + b, we need only show that the q-binomial coefficients also
satisfy this recurrence relation, ie. that(

a+ b

b

)
q

= qa
(
a+ b− 1

b− 1

)
q

+

(
a− 1 + b

b

)
q

. (2.5)

Factoring out common factors, the right hand side equals a+b−1!q
b!qa!q

(qa(b)q + (a)q), and
since (a)q + qa(b)q = 1 + q + · · ·+ qa−1 + qa(1 + q + · · ·+ qb−1) = (a+ b)q, we arrive
at the left hand side of the equation. �
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Forgetting for the moment all we know about multiplicative statistics, this formula
for the partition function gives information on the scaling properties of the problem.
Assume 0 < q < 1 and let c = − log q. Consider the expected area of a Young
diagram:

Eqa,b
[
|ω|
]

=
1

Za,b(q)

∑
ω

q|ω||ω| = q

Za,b(q)

∂Za,b(q)

∂q
= −∂ logZa,b(e

−c)

∂c
.

It is not difficult to show that this quantity remains bounded as a, b→∞, when q is
fixed. Hardy and Ramanujan’s asymptotic formula for p(n),

p(n) ∼ 1

4
√

3n
exp
(
π
√

2n
3

)
as n→∞ (2.6)

does the trick, for example. If such a tool is considered too advanced, one can apply
the lemma together with the Euler-Maclaurin summation formula

b∑
k=a

f(k) =

∫ b

a

f(t) dt+ 1
2

[
f(b) + f(a)

]
+

∫ b

a

B1(t)f ′(t) dt, (2.7)

when f is a C1 function and a < b are integers. The function B1(t) = t − btc − 1/2
is the first periodic Bernoulli polynomial. The formula is easily proved by applying
integration by parts to the integral∫ k

k−1

f(t)
d

dt
(t− k + 1

2 ) dt,

rearranging a few terms and summing over k. Using the lemma,

logZa,b(q) = log

a∏
i=1

1− qb+i

1− qi
=

a∑
i=1

log(1− e−c(b+i))− log(1− e−ci),

so if fc(t) = d
dc log(1− e−ct) = t

ect−1 , we have

Eqa,b
[
|ω|
]

=

a∑
i=1

fc(i)− fc(b+ i), (2.8)

and after applying (2.7), the limit as a, b→∞ is easily seen to be finite. Thus, if we
rescale the diagrams to keep the bounding box a fixed size, we would get a degenerate
limit in this case when q is fixed. With this pedestrian approach, we arrive at the
recipe from the previous chapter: let q → 1 while rescaling the box.

We consider a sequence of boxes and q’s. Fix c ∈ R and define for n ∈ N

q = qn = e−
c
n . (2.9)

This is the scaling of [23], the case of diagrams bounded on one side. The limiting
behavior of the bounding box is governed by a parameter ρ ∈ (0, 1): For each n ∈ N,
pick positive integral dimensions an, bn such that

an + bn = 2n and ρn =
an
2n
→ ρ as n→∞. (2.10)

It turns out to be useful to assume that ρn = ρ+ O( 1
n ), so we adopt this additional

assumption. Then, for each n ∈ N, (2.1) defines a probability measure Pqnan,bn on
Pan,bn . Note that c = 0 corresponds to the uniform probability measure. The results
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Figure 2.2: Samples of random diagrams in a 10×15, 50×75 and 100×150 box, respectively.

we present essentially don’t depend on the sign of c, but since almost all formulas do,
we will assume c > 0 for convenience.

A Young diagram is determined by its interface, the jagged part of the boundary,
and our approach is to view the interface as a random continuous function by tilting
the bounding box by 45◦. In the following, by a box we will mean any rectangle in
the (s, x)-plane having sides of slope ±1. The shape parameter of a box B is the
ratio ρ = a

a+b , where a and b are the lengths of the sides of B. We say that a box is
spanned by its leftmost and righmost corners.

We take the nth bounding box to be the box spanned by the origin and the
point (2n, bn − an), ie. scaled by

√
2. A partition ω ∈ Pan,bn corresponds to a

Young diagram contained in the bounding box, which we encode as a lattice path
X(n)(ω) =

(
X

(n)
m (ω)

)
0≤m≤2n

with X0 = 0, X2n = bn−an and Xm+1 = Xm±1 for all
m = 0, 1, . . . , 2n − 1. See Figure 2.3. The probability measure on such lattice paths
induced by Pqnan,bn is denoted Pn = Pρn,cn .

2n

−an

bn

m

Xm

Figure 2.3: A partition encoded as a lattice path.

2.2 · Computing Probabilities

Fortunately, this is straightforward. A lattice path passing through (m,Xm) is com-
posed of a path from (0, 0) to (m,Xm) and a path from (m,Xm) to (2n, bn−an). See
Figure 2.4. Since the lattice path has steps of ±1, it is suficient from the perspective
of limit phenomena to consider the behavior at even times, and since it will simplify
a few formulas later on we give specific formulas for the marginal probability in case
of even and odd times.
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Proposition 2.3. The 1-dimensional marginal of (Xm)0≤m≤2n under Pn is given
by

Pn
[
X2k = 2i

]
=
q(k+i)(an−k+i)

Zan,bn(q)
Zk−i,k+i(q)Zan−k+i,bn−k−i(q) (2.11)

and

Pn
[
X2k+1 = 2i+ 1

]
=
q(k+i+1)(an−k+i)

Zan,bn(q)
Zk−i,k+i+1(q)Zan−k+i,bn−k−i−1(q) (2.12)

The proof is by picture: Figure 2.4 explains (2.11). The 2-dimensional marginal at
even times follows a formula similar to the 1-dimensional marginal. See Figure 2.5.

an

k − i

k + i

bn

an − k + i

bn − k − i2k

2i

Figure 2.4: Illustration of (2.11).

Proposition 2.4. The 2-dimensional marginal of (X2k)0≤k≤n under Pn is given by

Pn
[
X2k = 2i, X2` = 2j

]
= Zk+i,k−i(q)Zj+`−i−k,`+i−k−j(q)Zan−`+j,bn−`−j(q)

· q
(an−k+i)(k+i)+(`+j−k−i)(an−`+j)

Zan,bn(q)
(2.13)

for all 0 ≤ k ≤ ` ≤ n.

At this point it is also clear that (Xm) is a Markov chain with transition probability

Pn
[
Xm+1 = p+ 1

∣∣ Xm = p
]

= qan−
m−p

2

Zan−m−p2 ,bn−m+p
2 −1(q)

Zan−m−p2 ,bn−m+p
2

(q)

=
qan−

m−p
2 − q2n−m

1− q2n−m .

(2.14)

Our next observation is the following unimodality result for the 1-dimensional
marginal, which will be useful throughout the chapter.

Lemma 2.5. The function i 7→ Pn
[
X2k = 2i

]
is unimodal: there exists an integer

L]n(k) such that
Pn
[
X2k = 2(i+ 1)

]
Pn
[
X2k = 2i

] ≤ 1 ⇐⇒ i ≥ L]n(k). (2.15)
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an

k − i

k + i

bn `− j − k + i

`+ j − k − i

an − `+ j

bn − `− j
2k

2i

2`

2j

Figure 2.5: Illustration of (2.13).

Proof. Using (2.11) we find (after much cancellation)

Pn
[
X2k = 2(i+ 1)

]
Pn
[
X2k = 2i

] = qan+2i+1 (1− qk−i)(1− qbn−k−i)
(1− qk+i+1)(1− qan−k+i+1)

(2.16)

which is smaller than 1 if and only if

(1− qk−i)(1− qbn−k−i)qan+2i+1 ≤ (1− qk+i+1)(1− qan−k+i+1).

Rearranging a few terms, this is equivalent to

q2n+1 − 1 ≤ qan+1(q − 1)q2i +
(
qk+1(qan − 1) + qan−k+1(qbn − 1)

)
qi,

where both terms on the right hand side are increasing continuous functions of i.
This proves the existence of an integer L]n(k) with the asserted property. �

2.3 · Asymptotics of q-Factorials
To study the limiting behavior of the random interface X(n), we need to find the
asymptotic behavior of the q-factorial. Define the function

Sc(α) =

∫ α

0

log
(

1−e−cx
c

)
dx,

defined for α, c ≥ 0, with S0(α) = α(logα − 1). This is related to the dilogarithm
function Li2(z) =

∑∞
k=1

zk

k2 , by Sc(α) = 1
c Li2(e−αc)− π2

6c − α log c.

Proposition 2.6 (q-Stirling’s Formula). Let c > 0 and fix ε > 0. In the limit
when n goes to infinity, with q = e−

c
n , the following asymptotics hold for all ` ≥ εn

`!q =
√

2πn

√
1
c (e

c`
n − 1)n` exp(nSc(

`
n ))
(
1 +O( 1

n )
)
. (2.17)

In particular, there exist constants m,M > 0 such that for all n, and all ` between 1
and 2n,

m <
`!q

√
2πn

√
1
c (e

c`
n − 1)n` exp(nSc(

`
n ))

< M.
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Proof. Consider the logarithm

log `!q =
∑̀
k=1

log
(

1−e−
ck
n

c

)
− ` log

(
1−e−

c
n

c

)
.

By the Euler-Maclaurin formula, we have

log `!q =

∫ `

1

log
(

1−e−
c
n
t

c

)
dt+

1

2

[
log
(

1−e−
c`
n

c

)
+ log

(
1−e−

c
n

c

)]
+

∫ `

1

B1(t)
c

n

1

e
c
n t − 1

dt− ` log
(

1−e−
c
n

c

)
.

(2.18)

The first term is∫ `

1

log
(

1−e−
c
n
t

c

)
dt = nSc(

`
n )−

∫ 1

0

log
(

1−e−
c
n
t

c

)
dt

= nSc(
`
n ) + 1 + log n+O( 1

n ).

(2.19)

Next, the terms involving log
(

1−e−
c
n

c

)
:

−(`− 1
2 ) log

(
1−e−

c
n

c

)
= (`− 1

2 ) log n+ c`
2n +O( 1

n ) (2.20)

For the second integral in (2.18), we add and subtract 1
t to get

∫ `

1

B1(t)
c

n

1

e
c
n t − 1

dt =

∫ `

1

B1(t) 1
t dt+ c

∫ `
n

1
n

B1(nt)

(
1

ect − 1
− 1

ct

)
dt (2.21)

The first term is ∫ `

1

B1(t) 1
t dt = `− 1− (`+ 1

2 ) log `+ log `!

= −1 + 1
2 log 2π +O( 1

` )

(2.22)

by the classical Stirling approximation `! =
√

2π`
(
`
e

)`(
1 + O( 1

` )
)
. Since ` > εn, the

O( 1
` ) term is of the order O( 1

n ).
Turning to the second term of (2.21), we note first that the derivative of the

function f(t) = 1
et−1 −

1
t is positive, bounded above by 1, and of the order O( 1

t2 ) as
t→∞. On the interval [k−1

n , kn ], the function B1(nt) is given by B1(nt) = nt− k+ 1
2

and has the antiderivative

B̄n,k(t) =
n

2
t2 − (k − 1

2 )t+
k(k − 1)

2n

with B̄n,k(k−1
n ) = B̄n,k( kn ) = 0. The integral of this is over [k−1

n , kn ] is some constant
times 1

n2 . Assuming ` > n, we apply partial integration:

c

∣∣∣∣∣
∫ `

n

1
n

B1(nt)f(ct) dt

∣∣∣∣∣ ≤ c2
n∑
k=1

∫ k+1
n

k
n

|B̄n,k(t)| dt+ c2
`−1∑

k=n+1

n2

k2

∫ k+1
n

k
n

|B̄n,k(t)| dt,

and note that both sums are of the order O( 1
n ).
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Combining (2.19), (2.20) and (2.22) and the term 1
2 log

(
1−e−

c`
n

c

)
from (2.18), we

get

log `!q = nSc(
`
n ) + (`+ 1

2 ) log n− (`+ 1
2 ) log c

+ 1
2 log

(
1−e−

c`
n

c

)
+ c`

2n + 1
2 log 2π +O( 1

n ),

which yields (2.17) when exponentiated. �

From the proof it is clear that if A > 0 is fixed, the constant hidden in the O( 1
n )

error term can be chosen to be uniformly valid when c ranges over [0, A].
We can now derive the asymptotics of the 1- and 2-dimensional marginals of X

under Pn. Define

fc(u, v) = Sc(u+ v)− Sc(u)− Sc(v), u, v ≥ 0

and

hc(u, v) =

√
c(ec(u+v) − 1)

(ecu − 1)(ecv − 1)
, u, v > 0.

Letting u = `
n and v = k

n , and substituting (2.17) into (2.11), we get the asymptotics
of the q-binomial coefficient:(

`+ k

`

)
q

=
1√
2πn

hc(u, v) exp(nfc(u, v))
(
1 +O( 1

n )
)
, (2.23)

with the caveat that u, v ≥ ε for some fixed ε. From this we can find the asymptotics of
the 1-dimensional marginal distributions using Proposition 2.3. Define the functions

F (1)
ρ,c (s, x) = −c(2ρ− s+ x)(s+ x) + fc(s− x, s+ x)

+ fc(2ρ− s+ x, 2− 2ρ− s− x)− fc(2ρ, 2− 2ρ)
(2.24)

and

H(1)
ρ,c (s, x) =

hc(s+ x, s− x)hc(2ρ− s+ x, 2− 2ρ− s− x)

hc(2ρ, 2− 2ρ)
.

The domain of F (1)
ρ,c is the box Bρ spanned by the origin and the point (1, 1 − 2ρ),

while H(1)
ρ,c is defined on the interior of Bρ and tends to infinity near the boundary.

The minimum value of H(1) is attained at the center of Bρ, (s, x) = ( 1
2 ,

1
2 − ρ), and

H(1) is bounded away from zero uniformly in ρ, c. From now on, we will not attempt
to specify the exact ranges of the arguments when these functions are involved – it is
always implicitly assumed that (s, x) is in Bρ or its interior as needed.

The condition u, v ≥ ε in (2.23) translates to the condition that each of s + x,
s − x, 2ρ − s + x and 2 − 2ρ − s − x are greater than ε, which has the geometric
interpretation that the point (s, x) is at a distance of at least ε√

2
from the boundary

of Bρ:
d
(
(s, x), ∂Bρ

)
≥ ε√

2
. (2.25)

In particular, ρ is bounded away from 0 and 1. If A > 0 is fixed, then the partial
derivatives of F (1)

ρ,c and H(1)
ρ,c with respect to ρ, s and x are bounded on the compact

set described by (2.25), uniformly for c ∈ [0, A]. By the mean value theorem, we
conclude that if s′ = s+O(nα), x′ = x+O(nα) and ρ′ = ρ+O(nα) as n→∞, where
α < 0 and s′, x′ and ρ′ also satisfy (2.25), then

F
(1)
ρ′,c(s

′, x′) = F (1)
ρ,c (s, x) +O(nα) (2.26)
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and similarly

H
(1)
ρ′,c(s

′, x′) = H(1)
ρ,c (s, x)

(
1 +O(nα)

)
, (2.27)

where we have used the fact that H(1) is bounded away from zero.

Corollary 2.7. Fix ε > 0. Then, if s = k
n and x = i

n ,

Pn
[
X2k = 2i

]
=

1√
2πn

H(1)
ρ,c (s, x) exp

(
nF

(1)
an
2n ,c

(s, x)
)(

1 +O( 1
n )
)
,

whenever (s, x) satisfies (2.25) both for ρ and ρn = an
2n . Furthermore, there exists a

constant M > 0 such that for all n, k and i,

Pn
[
X2k = 2i

]
≤M 1√

2πn
H(1)
ρ,c (s, x) exp

(
nF (1)

ρ,c (s, x)
)
.

Proof. This is an immediate consequence of Proposition 2.3 and (2.23), except that an2n

has been replaced with ρ in the indices of H(1) in the first equality, and in both H(1)

and F (1) in the second. According to (2.27), the error coming from the substitution in
H(1) is absorbed in the factor (1+O( 1

n )), since we are assuming an
2n = ρ+O( 1

n ). Mak-
ing the same substitution in the indices of F (1) changes the multiplicative constant
in the asymptotics, which is not a problem for the second statement. �

The same arguments lead to the asymptotics of the 2-dimensional marginals, which
involve the functions

F (2)
ρ,c (s, t, x, y) = −c

(
(2ρ− s+ x)(s+ x) + (t− s+ y − x)(2ρ− t+ y)

)
+ fc(s− x, s+ x) + fc(t− s+ y − x, t− s− y + x)

+ fc(2ρ− t+ y, 2− 2ρ− t− y)− fc(2ρ, 2− 2ρ)

and

H(2)
ρ,c (s, t, x, y)

=
hc(s+ x, s− x)hc(t− s+ y − x, t− s− y + x)hc(2ρ− t+ y, 2− 2ρ− t− y)

hc(2ρ, 2− 2ρ)
,

derived from Proposition 2.4. These functions have properties similar to (2.26) and
(2.27) whenever s, t, x, y and ρ satisfy a condition similar to (2.25).

Corollary 2.8. Fix ε > 0. Then, if s = k
n , t = `

n , x = i
n and y = j

n , where s < t,
we have

Pn
[
X2k = 2i,X2` = 2j

]
=

1

2πn
H(2)
ρ,c (s, t, x, y) exp

(
nF

(2)
an
2n ,c

(s, t, x, y)
)(

1 +O( 1
n )
)
,

whenever all of s+ x, s− x, t− s+ y− x, t− s− y+ x, 2ρ− t+ y and 2− 2ρ− t− y
as well as an

n − t+ y and 2− an
n − t− y are greater than ε.
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2.4 · The Limit Shape
Obviously the probability measures on lattice paths we have been working with so
far are not very well suited to make limit statements – we need to rescale. First, we
associate to the lattice path (Xm)0≤m≤2n the continuous piecewise linear function
u 7→ Xu defined on [0, 2n], which coincides with Xm when u = m. The graph of the
function X is the interface of the random Young diagram. We can then rescale to the
unit interval: define for t ∈ [0, 1]

X̄t = X̄
(n)
t = 1

2nX2nt. (2.28)

Let C = C[0, 1], the space of continuous functions on the unit interval equipped with
the uniform metric, then X̄(n) : Pan,bn → C is a random function. Our aim is to prove
that X̄(n) converges in probability to a deterministic curve, the limit shape. The limit
is the curve Lρ,c, defined on [0, 1] by

Lρ,c(t) = 1− 2ρ+
1

c
log

sinh(ct) + ec(2ρ−1) sinh(c(1− t))
sinh c

. (2.29)

When c→ 0, Lρ,c becomes the straight line t 7→ (1− 2ρ)t. Note that in the case of a
square box (ρ = 1

2 ), the expression for Lρ,c boils down to

L 1
2 ,c

(t) =
1

c
log

cosh(c(t− 1
2 ))

cosh c
2

.

The term limit shape will be used freely to designate the function or its graph. Fig-
ure 2.6 shows a few plots of the limit shape for different values of c.

Figure 2.6: Limit shapes for various values of c. The concave curve corresponds to a
negative value of c.

Before we get to the proof of convergence, we need a couple of lemmas. The first
gives the properties of the function F (1), which are obviously key to determining the
limiting behavior of the random Young diagrams.

Lemma 2.9. Let c > 0. The function F (1)
ρ,c has the following properties:

(a) The partial derivatives of F (1)
ρ,c with respect to ρ, s and x all vanish when x =

Lρ,c(s).

(b) For all s, ρ ∈ (0, 1), F (1)
ρ,c (s, Lρ,c(s)) = 0.

(c) For all s, ρ ∈ (0, 1), the function x 7→ F
(1)
ρ,c (s, x) is concave.
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(d) For all s, x, the function ρ 7→ F
(1)
ρ,c (s, x) is concave.

(e) Given A > 0, there exists a constant C > 0 such that

F (1)
ρ,c (s, Lρ,c(s) + y) ≤ −Cy2

s(1− s)
(2.30)

for all s, ρ ∈ (0, 1), all c ∈ [0, A] and all y.

Proof. For (a), we have for example

∂F
(1)
ρ,c

∂x
= −c+ log

sinh( c2 (s− x)) sinh( c2 (2− 2ρ− s− x))

sinh( c2 (s+ x)) sinh( c2 (2ρ− s+ x))
, (2.31)

and substituting x = Lρ,c(s) yields zero after much cancellation. The other two
statements are proved by similar computations. For (b), we apply the chain rule
and (a) to get

∂F
(1)
ρ,c (s, Lρ,c(s))

∂s
= 0,

and since F (1)
ρ,c (0, 0) = 0 this implies (b). For (c), we have S′′c (u) = c

ecu−1 and

∂2F
(1)
ρ,c

∂x2
= − c

ec(s+x) − 1
− c

ec(s−x) − 1
− c

ec(2ρ−s+x) − 1
− c

ec(2−2ρ−s−x) − 1
−2c, (2.32)

which is clearly negative. For (d), note that

∂2F
(1)
ρ,c (s, x)

∂ρ2
=

4c

e2cρ − 1
− 4c

ec(2ρ−s+x) − 1
+

4c

ec(2−2ρ) − 1
− 4c

ec(2−2ρ−s−x) − 1
,

and the sum of the first and second terms is non-positive since s−x ≥ 0 and similarly
with the third and fourth term since s+x ≥ 0. For (e), we note that, by (a) and (b),
it is enough to bound (2.32) away from 0 for all s, x, ρ and c. For the first two terms
we have

− c

ec(s+x) − 1
− c

ec(s−x) − 1
≤ −c
ecs − 1

≤ −C
s
,

since the first term on the left obeys the bound in case x ≤ 0, and otherwise the
second term does. By the same argument,

− c

ec(2ρ−s+x) − 1
− c

ec(2−2ρ−s−x) − 1
≤ −c
ec(1−s) − 1

≤ − C

1− s
,

where the distinction is whether x ≤ 1− 2ρ or not. �

The next lemma estimates the proximity between the value of the function Lρ,c
and the most probable value for X2k which we denoted L]n(k) in Lemma 2.5.

Lemma 2.10. For all n and all k ≤ n,∣∣∣ 1
nL

]
n(k)− Lρ,c( kn )

∣∣∣ ≤ 1
n + 2

∣∣an
2n − ρ

∣∣.
Consequently, in the limit when n→∞ and an

2n → ρ,∣∣∣ 1
nL

]
n(k)− Lρ,c( kn )

∣∣∣→ 0, (2.33)

uniformly in k.
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Proof. Consider the ratio of probabilities (2.16) which was used to define L]n(k):

Qa,b,c(k, `) =
Pn
[
X2k = 2(`+ 1)

]
Pn
[
X2k = 2`

] =
(1− qk−`)(1− qb−k−`)

(1− qk+`+1)(1− qa−k+`+1)
qa+2`+1. (2.34)

Were it not for the ‘+1’s in the denominator, Qa,b,c(k, `) could be rewritten in terms
of the function

Rρ,c(t, x) = exp

(
∂Fρ,c(t, x)

∂x

)
= e−c

sinh( c2 (t− x)) sinh( c2 (2− 2ρ− t− x))

sinh( c2 (t+ x)) sinh( c2 (2ρ− t+ x))
, (2.35)

namely as R a
2n ,c

( kn ,
`
n ). Instead we observe that

R an
2n ,c

(
k
n ,

`+1
n

)
≤ Qan,bn,c(k, `) ≤ Qan,bn,c(k, `− 1) ≤ R an

2n ,c

(
k
n ,

`−1
n

)
(2.36)

for all k and `. By definition of L]n(k), we have

Qan,bn,c(k, L
]
n(k)) ≤ 1 ≤ Qan,bn,c(k, L]n(k)− 1), (2.37)

so from (2.36) we conclude that

R an
2n ,c

(
k
n ,

L]n(k)+1
n

)
≤ 1 ≤ R an

2n ,c

(
k
n ,

L]n(k)−1
n

)
(2.38)

On the other hand, from Lemma 2.9 (b) we know that for each t ∈ [0, 1], the equation

Rρ,c(t, x) = 1

has the solution x = Lρ,c(t). Since x 7→ Rρ,c(t, x) is decreasing, we conclude that∣∣∣ 1
nL

]
n(k)− Lan

2n ,c
( kn )
∣∣∣ ≤ 1

n (2.39)

for all n and k. Differentiating Lρ,c with respect to ρ, we find that∣∣∣∣∂Lρ,c∂ρ
(t)

∣∣∣∣ ≤ 2

for all t, and so by the mean value theorem,∣∣∣Lan
2n ,c

( kn )− Lρ,c( kn )
∣∣∣ ≤ 2

∣∣∣an
2n
− ρ
∣∣∣ (2.40)

for all k ≤ n. From (2.39), (2.40) and the triangle equality, we get (2.33). �

Theorem 1. Let c > 0 and ρ ∈ (0, 1). The sequence
(
X̄(n)

)
describing the boundary

of a random Young diagram converges in probability in C to the curve Lρ,c: for every
ε > 0,

lim
n→0

Pn

[
sup
t∈[0,1]

∣∣X̄(n)
t − Lρ,c(t)

∣∣ > ε

]
= 0.

Proof. Fix ε > 0. For t ≤ ε
2 or t ≥ 1 − ε

2 , the difference
∣∣X̄t − Lρ,c(t)

∣∣ is always
smaller than ε. We have to control what happens for t ∈

(
ε
2 , 1 −

ε
2

)
. The slope of

Lρ,c(t) = L(t) is between ±1, so∣∣L( 1
nbtnc

)
− L(t)

∣∣ ≤ 1

n
,
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and the same is true of
∣∣X̄t − 1

2nX2btnc
∣∣. Thus, to control the supremum over [0, 1],

it is sufficient to control what happens at points of the form t = k
n :

Pn

[
sup

t∈( ε2 ,1−
ε
2 )

∣∣X̄t − L(t)
∣∣ > ε

]
≤

∑
k∈Z∩n( ε2 ,1−

ε
2 )

Pn

[
X2k > 2n

(
L( kn ) + ε

)]
+ Pn

[
X2k < 2n

(
L( kn )− ε

)]
(2.41)

From (2.33) it follows that for n sufficiently large, 2n
(
L( kn ) + ε

)
≥ 2L]n(k) for all

k ≤ n, and we can appeal to unimodality of the law of X2k (Lemma 2.5) to get

Pn

[
X2k > 2n

(
L( kn ) + ε

)]
=

∑
i>n(L( kn )+ε)

Pn
[
X2k = 2i

]
≤ n · Pn

[
X2k = 2

⌈
n
(
L( kn ) + ε

)⌉]
.

By decreasing ε we can ensure that, for all sufficiently large n and all k ∈ Z∩n( ε2 , 1−
ε
2 ), the point

(
k
n ,

1
n

⌈
n
(
L( kn ) + ε

)⌉)
satisfies the conditions of Corollary 2.7. We

conclude that the above probability is bounded above by

nM√
2πn

H(1)
ρ,c

(
k
n ,

1
n

⌈
n
(
L( kn ) + ε

)⌉)
exp
(
nF (1)

ρ,c

(
k
n , L( kn ) + ε

))
.

Since H(1)
ρ,c (s, x) is bounded above by, say, K when (s, x) is bounded away from the

boundary of the bounding box, we get from Lemma 2.9 (e) the bound

nMK√
2πn

exp(−nCε2),

and the theorem is proved. �

From the proof and Lemma 2.10, we see that the theorem holds uniformly for a
family of sequences {(an, bn)}, so long as the convergence an

2n = ρ+O( 1
n ) is uniform

for the family.

2.5 · Fluctuations
We now turn to the fluctuations of the interface around the limit shape. The goal of
this and the last two sections is to prove that the fluctuation process converges weakly
to the stochastic process known as the Ornstein-Uhlenbeck bridge. The appendix
(p. 49) contains the definition and some properties of this process, as well as a quick
overview of those parts of the theory of weak convergence of probability measures
which are needed for the statement and proof of the theorem. The rather technical
proof of tightness occupies a major part of the remainder of the chapter.

The fluctuations of the random interface are described by the process defined for
n ∈ N and t ∈ [0, 1] by

X̃t = X̃
(n)
t =

√
n
(
X̄t − Lρ,c(t)

)
=

1
2X2nt − nLρ,c(t)√

n
. (2.42)

Then X̃(n) : Pan,bn → C is a random function. Figure 2.7 shows a few samples.
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Figure 2.7: Samples of fluctuations in a 25×25, a 100×100 and a 400×400 box, respectively.

To get the exact covariance structure of the Ornstein-Uhlenbeck bridge, it turns
out we must tweak the process by dividing by the function

g(s) = gρ,c(s) =
1√
2

√
(e2cρ − 1)(1− e−2c(1−ρ))

sinh cs+ ec(2ρ−1) sinh(c(1− s))
, s ∈ [0, 1]. (2.43)

Note that in the case of a square (ρ = 1
2 ), the expression of g simplifies drastically to

g(s) =
1√

2 cosh
(
c(s− 1

2 )
) .

In Section 3.2, we provide some explanation of the role of this function. For now, we
state our second main result:

Theorem 2. The sequence of random functions
(

1
g X̃

(n)
)
converges weakly in C to

the Ornstein-Uhlenbeck bridge (Yt)0≤t≤1, which is the Gaussian process on [0, 1] with
mean zero and covariance

E[YsYt] =
sinh(cs) sinh(c(1− t))

c sinh(c)

for 0 ≤ s < t ≤ 1.

Note that of our two parameters c and ρ, the limiting Ornstein-Uhlenbeck bridge
depends only on c. The ‘drift’ controlled by ρ becomes deterministic in the limit.

The proof of the theorem consists of checking the criterion on p. 51: prove
convergence of the finite-dimensional marginals, and prove tightness. But first we
need to get a few technical points out of the way. The following lemma describes the
relation of the limit shape in a subbox to the full limit shape.

Lemma 2.11. Let 0 ≤ r < s < t ≤ 1. The limit shape L satisfies the relations

Lρ,c(r) = sLρ′,c′
(
r
s

)
(2.44)

and

Lρ,c(t)− Lρ,c(s) = (1− s)Lρ′′,c′′
(
t−s
1−s
)
, (2.45)

where

ρ′ =
s− Lρ,c(s)

2s
, c′ = sc (2.46)

and

ρ′′ =
2ρ− s+ Lρ,c(s)

2(1− s)
, c′′ = (1− s)c (2.47)

The situation is illustrated in Figure 2.8.
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Proof. The relations can be checked analytically. A less computational argument
for (2.44) goes as follows (the same strategy applies to (2.45)). Fix s ∈ (0, 1) and
consider the subbox Bleft spanned by the origin and the point (s, Lρ,c(s)), having
shape parameter ρ′. Theorem 1 states that, given sequences (an), (bn) as in (2.10),
the random interface X̄(n) converges in probability to Lρ,c. As a consequence, the
restriction of X̄(n) to Bleft, must converge in probability to the restriction of Lρ,c.
However, if we rescale Bleft by a factor of 1

s , we get a version of the original problem
with appropriate sequences (a′n) and (b′n) satisfying a′n + b′n = 2ns and a′n

2ns = ρ′ (for
the sake of clarity, we ignore the fact that ns may not be an integer). Since the value
of q remains the same and is coupled to the value of n, we have q = e−c/n = e−

c′
ns ,

from which we get c′ = sc. Theorem 1 then asserts the convergence in probability of
the rescaling of X̄(n) to Lρ′,c′ , which must therefore coincide with the restriction of
Lρ,c in the sense of (2.44). �

sr t 1

Figure 2.8: On the left and right are the ‘full scale’ versions of the limit shapes in the
subboxes, cf. Lemma 2.11.

Lemma 2.12. Let 0 ≤ r < s < t ≤ 1. The functions F (1) and F (2) satisfy the
relations

F (2)
ρ,c (r, s, x, y) = F (1)

ρ,c (s, y) + sF
(1)
ρ′,c′(

r
s ,

x
s ) (2.48)

and
F (2)
ρ,c (s, t, y, z) = F (1)

ρ,c (s, y) + (1− s)F (1)
ρ′′,c′′(

t−s
1−s ,

z−y
1−s ) (2.49)

where ρ′, c′, ρ′′ and c′′ are given by (2.46) and (2.47) with y in place of Lρ,c(s).

Proof. Again, the relations can be checked analytically. It is easier, however, to note
that (2.48) follows from the identity

P
[
X2k = 2i,X2` = 2j

]
= P

[
X2` = 2j

]
P
[
X2k = 2i

∣∣ X2` = 2j
]

and Corollary 2.7 by scaling arguments akin to those used in the proof of the previous
lemma. For (2.49), condition instead on X2k. �

Corollary 2.13. Let c > 0. The function F (2)
ρ,c has the following properties:

(a) The partial derivatives of F (2)
ρ,c with respect to ρ, s, t, x and y all vanish at

x = Lρ,c(s) and y = Lρ,c(t).

(b) For all 0 < s < t < 1 and all ρ ∈ (0, 1), F (2)
ρ,c (s, t, Lρ,c(s), Lρ,c(t)) = 0.



24 Chapter 2 – Diagrams in a Box

Proof. The statements are immediate consequences of Lemma 2.9, upon application

of Lemma 2.12 and Lemma 2.11. For example, to see that ∂F (2)
ρ,c

∂t = 0, we apply the
chain rule to (2.49), substitute (2.45) and invoke Lemma 2.9 (a). �

2.6 · Convergence of Marginals
To prove convergence of the marginal distribution to a Gaussian variable, we apply
a saddle-point method. The previous corollary shows that F (2) has a critical point
‘on the limit shape’, and that it attains its maximal value of 0 at this point. The
Taylor expansion of F (2) will provide the covariance matrix for the limiting Gaussian
distribution.

Proposition 2.14. Let m ∈ N and let 0 < t1 < · · · < tm < 1. The random vector
(X̃

(n)
t1 , . . . , X̃

(n)
tm ) converges weakly to(

g(t1)Yt1 , . . . , g(tm)Ytm
)
, (2.50)

where (Yt)0≤t≤1 is the Ornstein-Uhlenbeck bridge (see p. 52).

Proof. Write L for Lρ,c and let ρn = an
2n . Set t′i = bntic

n , i = 1, . . . ,m. We apply the
two results mentioned at the end of Section A.1. Since |X̃u − X̃v| ≤ 2

√
n|u − v| for

all u, v ∈ [0, 1], we have∥∥∥(X̃t′1
, . . . , X̃t′m

)
−
(
X̃t1 , . . . , X̃tm

)∥∥∥ < 2

√
m

n
, (2.51)

and it is sufficient to prove that
(
X̃t′1

, . . . , X̃t′m

)
converges weakly to (2.50). This

random vector takes values on the lattice

Λn =
(

1√
n
Z−
√
nL(t′1)

)
× · · · ×

(
1√
n
Z−
√
nL(t′m)

)
, (2.52)

and our task is to show that if (x(n)) is any sequence with x(n) ∈ Λn for all n and
x(n) → x for n→∞, then

√
n
m
Pn

[(
X̃t′1

, . . . , X̃t′m

)
= x(n)

]
→ Pt1···tm(x), (2.53)

where Pt1···tm is the density function of (2.50). We begin with the case m = 2, with
fixed times 0 < s < t < 1. Then Ps,t is given by

Ps,t(x1, x2) =
1

2π
√

det Σ
exp

(
− 1

2 (x1, x2)Σ−1(x1, x2)T
)
, (2.54)

where Σ is the covariance matrix

Σ =
1

c sinh c
G(s, t)

(
sinh cs sinh c(1− s) sinh cs sinh c(1− t)
sinh cs sinh c(1− t) sinh ct sinh c(1− t)

)
G(s, t) (2.55)

with G(s, t) = diag(g(s), g(t)). The matrix in the middle together with the factor
1

c sinh c is the covariance matrix of the Ornstein-Uhlenbeck bridge (cf. (A.12)). The
left hand side of (2.53) is

nPn

[
X2ns′ = 2nL(s′) + 2

√
nx

(n)
1 , X2nt′ = 2nL(t′) + 2

√
nx

(n)
2

]
. (2.56)
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Since x(n) is convergent and the slope of the limit shape L is bounded away from ±1
and ρn = ρ+O( 1

n ), we can pick ε > 0 such that for n sufficiently large, the restrictions
on the sizes of the subboxes in Corollary 2.8 are satisfied. Using the equivalent of
(2.27) for H(2), the corollary shows that (2.56) is equal to

1

2π
H(2)
ρ,c

(
s, t, L(s), L(t)

)
exp
(
nF (2)

ρn,c

(
s′, t′, L(s′) +

x
(n)
1√
n
, L(t′) +

x
(n)
2√
n

))(
1 + o(1)

)
.

A computation reveals that

H(2)
ρ,c (s, t, L(s), L(t)) =

1√
det(Σ)

(2.57)

since both sides equal

c

g(s)g(t)

√
sinh c

sinh cs sinh c(t− s) sinh c(1− t)
,

and it is left to show that the exponential factor converges. To this end, we expand
the function (x, y) 7→ F

(2)
ρn,c

(
s′, t′, x, y

)
around the point (L(s′), L(t′)):

nF (2)
ρn,c

(
s′, t′, L(s′) +

x
(n)
1√
n
, L(t′) +

x
(n)
2√
n

)
= nF (2)

ρn,c +
∂F

(2)
ρn,c

∂x

√
nx

(n)
1 +

∂F
(2)
ρn,c

∂y

√
nx

(n)
2

+
1

2

∂2F
(2)
ρn,c

∂x2

(
x

(n)
1

)2
+

1

2

∂2F
(2)
ρn,c

∂y2

(
x

(n)
2

)2
+
∂2F

(2)
ρn,c

∂x∂y
x

(n)
1 x

(n)
2

+O( 1√
n

)

(2.58)

where everything is evaluated at (s′, t′, L(s′), L(t′)). By Corollary 2.13, the first term
on the right has limit zero. Since the components of (s′, t′, L(s′), L(t′)) deviate only
on the scale O( 1

n ) from the critical point of F (2), and the partial derivatives of F (2)

satisfy a condition similar to (2.26), the second and third terms on the right also tend
to zero as n → ∞. This shows that the left hand side of (2.53) converges, and it
remains only to check that the limit is as claimed in (2.54) and (2.55). The second
partial derivatives at (s, t, L(s), L(t)) are given by

∂2F
(2)
ρ,c

∂x2
(s, t, L(s), L(t)) =

−c sinh ct

g(s)2 sinh cs sinh c(t− s)
,

∂2F
(2)
ρ,c

∂y2
(s, t, L(s), L(t)) =

−c sinh c(1− s)
g(t)2 sinh c(1− t) sinh c(t− s)

∂2F
(2)
ρ,c

∂x∂y
(s, t, L(s), L(t)) =

c

g(s)g(t) sinh c(t− s)

The first two can be calculated by using Lemma 2.12 to express ∂F (2)

∂x and ∂F (2)

∂y in

terms of ∂F
(1)

∂x and the limit shapes in subboxes from Lemma 2.11. This way we only
need to plug the expression (2.29) for Lρ,c into (2.32) and reduce. The covariance
matrix Σ is the negative of the inverse of the Hessian matrix containing the derivatives
above. This completes the proof of the case m = 2.

The general case follows from the above by using the Markov property of the
proces X̃: If 0 ≤ r < s < t ≤ 1, then conditional on the value of X̃s, the variables X̃r
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and X̃t are independent. If P (n)
s,t (x, y) denotes the transition kernel of this Markov

chain, ie.
P

(n)
s,t (y, z) = Pn

[
X̃t = z

∣∣ X̃s = y
]
,

then the left hand side of (2.53) equals

√
n
m
P

(n)
0,t′1

(
0, x

(n)
1

)
P

(n)
t′1,t
′
2

(
x

(n)
1 , x

(n)
2

)
· · ·P (n)

t′m−1,t
′
m

(
x

(n)
m−1, x

(n)
m

)
. (2.59)

The case m = 2 implies the convergence of each
√
nP

(n)
t′i,t
′
i+1

(
x

(n)
i , x

(n)
i+1

)
to the condi-

tional density of g(ti+1)Yti+1
given g(ti)Yti , and so (2.59) converges to the value of

the density of (2.50) at x. �

2.7 · Tightness
We need to show that the sequence of probability measures (Pn) is tight, which
amounts to verifying condition (ii) of the criterion on p. 51. The proof builds on a
few technical lemmas, which all revolve around the following concept.

Definition 2.15 (ε-parallelogram). Let B be a box with shape parameter ρ and
let 0 < ε < 2ρ ∧ (2− 2ρ). The ε-parallelogram of B is the unique parallelogram that
shares a diagonal with B and has sides of slope 1 − ε and ε − 1. The interior of
the ε-parallelogram is called the ε-interior and is denoted Bε. The complement of the
ε-interior in B is called the ε-boundary.

See Figure 2.9. Recall that Bρ is the box spanned by the origin and (1, 1 − 2ρ).
For s0 ∈ (0, 1), the sides of the ε-parallelogram of the box Bρ intersect the straight
line s = s0 in two points. We denote the ordinates of these two points by g+

ε (s0),
respectively g−ε (s0).

Bερ

s0 1

1− 2ρ

g−ε (s0)

g+
ε (s0)

Figure 2.9: The ε-parallelogram of the box Bρ.

The ε-parallelograms have the following useful property:

Lemma 2.16. Let δ ∈ (0, 1) and A > 0. There exists an ε > 0, such that for all
ρ ∈ [δ, 1− δ] and all c ∈ [0, A], the limit shape Lρ,c lies in the ε-interior of Bρ (except
the endpoints).
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Proof. It is enough to bound the slope at both ends of the curve. Here we have

dLρ,c(t)

dt

∣∣∣∣
t=0

= e−2cρ − 2e−cρ
cosh(c) sinh(cρ)

sinh(c)

and
dLρ,c(t)

dt

∣∣∣∣
t=1

=
cosh(c)− e−c(1−2ρ)

sinh(c)
,

which are bounded away from ±1 for c ∈ [0, A] and ρ ∈ [δ, 1− δ]. �

The ε-parallelogram provides the following bounds on the functions F (1) andH(1).

Lemma 2.17. Let δ ∈ (0, 1) and A > 0. Take ε as in Lemma 2.16. Then there
exists a positive constant C such that for all ρ ∈ [δ, 1− δ] and all c ∈ [0, A],

F (1)
ρ,c (s, x) ≤ −Cs(1− s) for all (s, x) in the ε-boundary of Bρ

and

H(1)
ρ,c (s, x) ≤ C√

s(1− s)
for all (s, x) in the ε-interior of Bρ.

Proof. For fixed ρ, c and s, the function x 7→ F
(1)
ρ,c (s, x) is concave with maximum at

x = Lρ,c(s), and the point (s, Lρ,c(s)) is inside the ε-interior of the box Bρ. Therefore

F (1)
ρ,c (s, x) ≤ max

{
F (1)
ρ,c (s, g+

ε (s)), F (1)
ρ,c (s, g−ε (s))

}
.

In a neighborhood of 0, we have g−ε (s) = (ε− 1)s. We must show that F (1)
ρ,c (s,(ε−1)s)

s
is bounded away from zero as ρ, c and s vary. This is increasing as a function of c,
and by Lemma 2.9 (d) and our choice of ε, it is also increasing as a function of ρ. By
compactness, it is then left to check that the limit

lim
s→0+

F
(1)
1−δ,A(s, (ε− 1)s)

s
= −2cερ+ log 4− ε log ε− (2− ε) log(2− ε)

− 2 log(1− e−2c) + ε log(1− e−2c(1−ρ))

+ (2− ε) log(1− e−2cρ)

(2.60)

is negative. It turns out the above expression vanishes exactly when ε − 1 is equal
to the slope of Lρ,c at t = 0. This is excluded by our choice of ε, and we con-
clude that (2.60) must be negative. The same arguments yield similar bounds in a
neighbourhood of s = 1 and for g+

ε .
For the bound on H(1), note that there is a K > 0 such that hc(x, y) ≤ K

√
x+y
xy

for all x and y and all c ∈ [0, A]. Therefore

Hρ,c(s, x) ≤ K ′
√
ρ(1− ρ)

√
s

(s+ x)(s− x)

√
1− s

(2ρ− s+ x)(2− 2ρ− s− x)
. (2.61)

The factor
√
ρ(1− ρ) is bounded. The next factor is of order 1√

s
in a neighborhood of

(0, 0) in the ε-interior of the box. A simple change of variable (s, x) 7→ (1−s, 1−2ρ−x)
interchanges this and the last factor, which shows that the last factor is of order 1√

1−s
in a neigborhood of (1, 1− 2ρ) in the ε-interior of the box. �
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The next lemma controls the probability of large values of X̃ while the path
remains inside the ε-interior.

Lemma 2.18. Let δ ∈ (0, 1) and A > 0. Take ε as in Lemma 2.16. There exists
a constant M > 0 such that for all n ≥ 1, all ρ ∈ 1

2nZ ∩ [δ, 1 − δ], all c ∈ [0, A], all
s ∈ 1

nZ ∩ (0, 1) and all λ > 0,

Pn

[
X̃s 6∈ [−λ, λ], (s, X̄s) ∈ Bε

]
≤M s2(1− s)2

λ4
(2.62)

Proof. Combining the bound in Corollary 2.7 with Lemma 2.9 (e) and the bound on
H(1) in Lemma 2.17 gives positive constants K and κ such that

Pn

[
X2ns = 2

⌊
nLρ,c(s) + y

√
n
⌋]
≤ K√

n

1√
2πκs(1− s)

exp
(
− y2

2κs(1− s)

)
(2.63)

whenever
(
s, 1
nbnLρ,c(s) + y

√
nc
)
∈ Bερ. Note that the integer part introduces a

deviation of the order O( 1
n ) from nL(s)+y

√
n, which, after squaring and multiplying

by n, is of the order y√
n
, which is at most s(1 − s) (the height of the bounding box

at time s), and so contributes only to the constant K. The probability on the left in
(2.62) is bounded by the sum over y ∈ 1√

n
Z −

√
nLρ,c(s) with |y| > λ of the right

hand side of (2.63). This constitutes a Riemann sum for the integral∫
R\[−λ,λ]

1√
2πκs(1− s)

exp
(
− y2

2κs(1− s)

)
dy = P

[
|N | > λ√

κs(1−s)

]
, (2.64)

where N is a standard Gaussian variable. By Markov’s inequality for the fourth
moment P [|X| > α] ≤ E[X4]

α4 , (2.64) is bounded above by the right hand side of
(2.62). �

It remains to bound the probability that the path leaves the ε-interior. The last
lemma takes care of this.

Lemma 2.19. Let δ ∈ (0, 1) and A > 0, and take ε ∈ (0, 1) as in Lemma 2.16.
There exists a constant M > 0 such that: for all c ∈ [0, A], all n ≥ 1, all ρ ∈
1

2nZ ∩ [δ, 1− δ], and all s ∈ 1
nZ ∩ (0, 1),

Pn
[
(s, X̄s) /∈ Bερ

]
≤ M

(ns(1− s))2
(2.65)

Proof. We need to apply both bounds from Lemma 2.17, one concerning points in
the ε-boundary, and the other concerning points in the ε-interior. Fix ε′ ∈ (0, ε).
Then, as long as ns(1 − s) ≥ 1

ε−ε′ , there are possible positions for the lattice path
(s, x±s,ε) ∈ (Bρ \ Bερ) ∩ Bε

′

ρ immediately above, respectively below, the ε-interior. In
the opposite case, (2.65) is automatically satisfied, as long as M ≥ 1

(ε−ε′)2 .
Since there are at most 16ns(1− s) possible locations for the lattice path at time

s, unimodality of the distribution of X̄s together with Corollary 2.7 and Lemma 2.17
shows that

Pn
[
(s, X̄s) /∈ Bε

]
≤ 16ns(1− s)Pn

[
X̄s = x±s,ε

]
≤M ′ns(1− s)√

n
Hρ,c(s, x

±
s,ε) exp(nFρ,c(s, x

±
s,ε))

≤M ′′
√
ns(1− s) exp(−nCs(1− s)).

Since the function u 7→
√
u exp(−Cu) is bounded on (0,∞) by 1

u2C5/2 , we get the
bound in (2.65). �
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We are now set to verify the tightness criterion in the setup of Section 2.1: c > 0
and 0 < ρ < 1 are fixed, (an) and (bn) are sequences of positive integers such that
an + bn = 2n and ρn = an

2n = ρ+O( 1
n ) as n→∞.

Lemma 2.20. There exists a constant K > 0 such that for all n > 0, for all 0 ≤
r ≤ s ≤ t ≤ 1, for all λ > 0,

Pn
[
|X̃s − X̃r| ≥ λ, |X̃t − X̃s| ≥ λ

]
≤ K(t− r)2

λ4
. (2.66)

Proof. The proof proceeds in a number of steps, according to a decomposition of the
event on the left of (2.66). The basic idea is to condition on the value of X̃s and apply
Lemma 2.18 to the subpaths on the left and right, respectively. There are two main
complications: to verify the extra assumption (s, X̄s) ∈ Bερn needed in Lemma 2.18
and to translate the ‘tolerance’ λ in (2.66) into the corresponding tolerance for the
subpaths. To begin with, we will assume that r, s, t ∈ 1

nZ ∩ [0, 1]. Once we have
proved (2.66) for such r, s, t, we can tackle generic r, s, t ∈ [0, 1].

Step 1: Subboxes and conditional probability. Fix δ > 0 such that ρn ∈ [δ, 1− δ] for
all n. From Lemma 2.16 with A = c and this δ, we get ε > 0 such that all the lemmas
hold for all ρn. For every n ≥ 1, every s ∈ 1

nZ∩ (0, 1) and every value of the random
variable X̄s, we have two subboxes: Bleft is the box spanned by the origin and the
point (s, X̄s), while Bright is the box spanned by the points (s, X̄s) and (1, 1− 2ρn).
The conditional probability measure on paths in the left subbox is equivalent to the
probability measure Pleft = P

ρ′,c′

n′ with n′ = ns, ρ′ = 1
2

(
1− X̄s

s

)
and c′ = sc:

Pn
[
X̄r = x

∣∣ X̄s

]
= Pleft

[
X̄ ′r

s
= x

s

]
,

where X̄ ′u = 1
2n′X

′
2n′u is the random interface defined by the parameters c′, ρ′ and

n′. In the right subbox we have Pright = P
ρ′′,c′′

n′′ with n′′ = n(1− s), ρ′′ = 2ρn−s+X̄s
2(1−s)

and c′′ = (1− s)c:

Pn
[
X̄t = z

∣∣ X̄s

]
= Pright

[
X̄ ′′t−s

1−s
= z−X̄s

1−s

]
,

where X̄ ′′u = 1
2n′′X

′′
2n′′u.

As long as (s, X̄s) ∈ Bερn , the boxes Bleft and Bright have shape parameters in the
interval ( ε2 , 1−

ε
2 ). From Lemma 2.16 with δ = ε

2 and A = c, we get η(ε) > 0 such that
the limit shapes in Bleft and Bright stay within the η(ε)-interiors. See Figure 2.10. We
denote by Eεr,s,t the event

{
(s, X̄s) ∈ Bερn

}
∩
{

(r, X̄r) ∈ Bη(ε)
left

}
∩
{

(t,Xt) ∈ Bη(ε)
right

}
.

Step 2: The sticking condition. Next, we look at the conditional probability measure
for the fluctuations of the subpaths on the left and right. Let u 7→ Lleft(u) = Lρ′,c′(u)
be the limit shape corresponding to the parameters in the left subbox, and define
Lright similarly. Then a quick calculation shows that

Pn
[
X̃r = x

∣∣ X̃s

]
= Pleft

[
X̃ ′r

s
= x√

s
+
√
n√
s

(
Lρ,c(r)− sLleft(

r
s )
)]
,

where X̃ ′r
s
on the right hand side is defined with respect to the parameters in the left

subbox, ie. X̃ ′u =
√
ns
(
X̄ ′u − Lleft(u)

)
. Similarly we have in Bright:

Pn
[
X̃t = z

∣∣ X̃s

]
= Pright

[
X̃ ′′t−s

1−s
= z√

1−s +
√
n√

1−s

(
Lρ,c(t)− X̄s − (1− s)Lright(

t−s
1−s )

)]
,
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Bερn
s 1

X̄s

B
η(ε)
left

B
η(ε)
right

Figure 2.10: The ε-interiors Bε
ρn , B

η(ε)
left and B

η(ε)
right.

where X̃ ′′u =
√
n(1− s)(X̄ ′′u −Lright(u)) is defined by the parameters in Bright. With

these observations, we have

Pn

[∣∣X̃s − X̃r

∣∣ ≥ λ ∣∣∣ X̃s

]
= Pn

[
X̃r /∈

(
X̃s − λ, X̃s + λ

) ∣∣∣ X̃s

]
= Pleft

[
X̃ ′r

s
/∈ 1√

s
(−λ, λ) + 1√

s
X̃s +

√
n√
s

(
Lρ,c(r)− sLleft(

r
s )
)]
,

and if the value of X̃s is close to
√
n
(
sLleft(

r
s )−Lρ,c(r)

)
(note that the signs are neces-

sarily the same – see Figure 2.11), this probability can be bounded using Lemma 2.18.
We call this the ‘sticking condition’ on X̃s relative to Lleft:∣∣∣X̃s +

√
n
(
Lρ,c(r)− sLleft(

r
s )
)∣∣∣ ≤ λ

2
. (2.67)

Similarly, we have in Bright:

Pn

[∣∣X̃s − X̃t

∣∣ ≥ λ ∣∣∣ X̃s

]
= Pn

[
X̃t /∈

(
X̃s − λ, X̃s + λ

) ∣∣∣ X̃s

]
= Pright

[
X̃ ′′t−s

1−s
/∈ 1√

1−s (−λ, λ) +
√
n√

1−s

(
Lρ,c(t)− Lρ,c(s)− (1− s)Lright(

t−s
1−s )

)]
,

which gives rise to the sticking condition on X̃s relative to Lright:

√
n
∣∣∣Lρ,c(t)− Lρ,c(s)− (1− s)Lright(

t−s
1−s )

∣∣∣ ≤ λ

2
. (2.68)

Note that the apparent absence of X̃s from the above expression is a trick of the
notation: Lright depends on X̃s through ρ′′.

Denote by Sleft the event that (2.67) is satisfied, and by Sright the event that (2.68)
is satisfied. If Aλr,s =

{
|X̃s − X̃r| ≥ λ

}
, then Aλr,s ∩ Aλs,t is the event in the tightness

condition (2.66) and we have the following decomposition:

Pn
[
Aλr,s ∩Aλs,t

]
≤ Pn

[
Aλr,s ∩ E ∩ Sleft

]
+ Pn

[
Aλs,t ∩ E ∩ Sright

]
+ Pn

[
E ∩ Sc

left ∩ Sc
right

]
+ Pn

[
Ec
]
,

(2.69)
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sr t 1

Bρn

Bleft
Bright

(1) (2)

(3)

Figure 2.11: Limit shapes in the box Bρn and the subboxes Bleft and Bright. The double
arrow (2) represents the deviation X̄s − Lρ,c(s), while (1) represents the difference of Lρ,c
and the limit shape in Bleft at time r, ie. sLleft(

r
s
) − Lρ,c(r). The difference of (1) and

(2) appears in the left sticking condition (2.67). The arrow (3) represents the quantity
X̄s + (1− s)Lright(

t−s
1−s )−Lρ,c(t). The difference of (1) and (3) appears in the right sticking

condition (2.68).

where E = Eεr,s,t. We need to show that each term in (2.69) is bounded by (t−r)2
λ4

times some constant depending only on c, δ and ε.

Step 3: Fluctuations of the subpaths. The first term of (2.69) can be rewritten by
conditioning on X̃s:

Pn
[
Aλr,s ∩ E ∩ Sleft

]
=
∑
y

Pn
[
X̃s = y

]
Pn

[{∣∣X̃s − X̃r

∣∣ ≥ λ} ∩ E ∣∣∣ X̃s = y
]
, (2.70)

where y runs over those possible values of X̃s which satisfy the sticking condition
(2.67). When (2.67) is satisfied,

1√
s
(−λ, λ) + 1√

s
X̃s +

√
n√
s

(
Lρ,c(r)− sLleft(

r
s )
)
⊇
(
− λ

2
√
s
, λ

2
√
s

)
and Lemma 2.18 yields

Pn

[{∣∣X̃s − X̃r

∣∣ ≥ λ} ∩ E ∣∣∣ X̃s

]
≤ Pleft

[
X̃ r

s
/∈
(
− λ

2
√
s
, λ

2
√
s

)
,
(
r
s , X̄ r

s

)
∈ Bη(ε)

left

]
≤M

(
r
s (1− r

s )
)2(

λ
2
√
s

)4 ≤ 24M
(t− r)2

λ4
.

The same arguments show that, when Sright is satisfied,

Pn

[{∣∣X̃s − X̃t

∣∣ ≥ λ} ∩ E ∣∣∣ X̃s

]
≤M

(
t

1−s (1− t
1−s )

)2(
λ

2
√

1−s

)4 ≤ 24M
(t− r)2

λ4
.

Substituting these bounds into (2.70) gives the bound on the first two terms in (2.69).
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Step 4: When the sticking conditions fail. It is enough to bound the probability that
(2.67) fails. Using (2.44) in Lemma 2.11, we replace Lρ,c(r) in (2.67) by

sL 1
2−

1
2sLρ,c(s),sc

(
r
s

)
and get the condition∣∣∣∣X̃s + s

√
n
(
L 1

2−
1
2sLρ,c(s),sc

(
r
s

)
− Lρ′,sc

(
r
s

))∣∣∣∣ ≤ λ

2
(2.71)

Applying the mean value theorem to the function ρ 7→ Lρ,sc(
r
s ) yields a ρ0 between

ρ′ = 1
2 −

1
2sX̄s and 1

2 −
1
2sLρ,c(s) such that

s
√
n
(
L 1

2−
1
2sLρ,c(s),sc

(
r
s

)
− Lρ′,sc

(
r
s

))
= s
√
n 1

2s

(
X̄s − Lρ,c(s)

)∂Lρ,sc( rs )

∂ρ

∣∣∣∣
ρ=ρ0

=
X̃s

2

∂Lρ,sc(
r
s )

∂ρ

∣∣∣∣
ρ=ρ0

Differentiating Lρ,c(u) with respect to ρ, for generic values of ρ, c, u yields

0 ≤ 1 +
1

2

∂Lρ,c(u)

∂ρ
=

ec(2ρ−1) sinh(c(1− u))

sinh(cu) + ec(2ρ−1) sinh(c(1− u))

≤ 1 ∧ ec(2ρ−1) sinh(c(1− u))

sinh(cu)

≤ 1 ∧K 1− u
u

with a constant K that works for all c ∈ [0, A], all ρ ∈ (0, 1), and all u ∈ (0, 1).
Therefore, the probability that (2.67) is not satisfied is less than

Pn

[∣∣X̃s

∣∣(1 ∧K s−r
r

)
> λ

2

]
which, by Lemma 2.18 (the additional condition (s, X̄s) ∈ Bερn is assumed to be
satisfied in the present case, according to (2.69)) is bounded by

M
s2(1− s)2

λ4

(
1 ∧K4( s−rr )4

)
. (2.72)

Finally, we can show that this has the upper bound K ′ (s−r)
2

λ4 ≤ K ′ (t−r)
2

λ4 . Suppose
first that K s−r

r > 1. Then r ≤ K
K+1s and

s(1− s)
s− r

≤ s(1− s)
s− K

K+1s
= (K + 1)(1− s) ≤ K + 1

so that s2(1 − s)2 ≤ (K + 1)2(s − r)2. In the opposite case r ≥ K
K+1s and since

(2.72) is a decreasing function of r, we can again substitute K
K+1s for r and obtain

the bound (K + 1)2(s− r)2. We have proved the bound on the third term in (2.69).

Step 5: When the path leaves the ε-interior. It remains to bound the probability
that Eεr,s,t fails. Note that we have for all n and all u, v:

|X̃u − X̃v| ≤ 2
√
n|u− v|.
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Hence we can immediately assume that

λ ≤ 2
√
n ((s− r) ∧ (t− s)) . (2.73)

Isolating
√
n and substituting into the bound from Lemma 2.19,

Pn
[
(s, X̄s) /∈ Bερn

]
≤ M

(ns(1− s))2

≤ 16M
(s− r)4 ∧ (t− s)4

λ4s2(1− s)2

≤ 64M
(s− r)2 ∧ (t− s)2

λ4

≤ 64M
(t− r)2

λ4
,

(2.74)

where we used the observation (s− r)2 ∧ (t− s)2 ≤ s2 ∧ (1− s)2 ≤ 4s2(1− s)2. The
weaker condition n ≥ λ2

s2∧(1−s)2 yields

Pn
[
(s, X̄s) /∈ Bερn

]
≤M s2 ∧ (1− s)2

λ4
. (2.75)

As noted above, we have ρ′, ρ′′ ∈ ( ε2 , 1 −
ε
2 ), and invoking Lemma 2.19 with δ = ε

2
and A = c, we get a constant M ′ > 0 that is valid in both subboxes. To repeat the
above calculation we need also an assumption similar to (2.73):

r ≥ λ

4
√
n

and 1− t ≥ λ

4
√
n
. (2.76)

If (2.76) is satisfied, we combine it with (2.73) and find that

ns ≥ 1

42

(λ/
√
s)

2(
r
s ∧

s−r
s

)2 and n(1− s) ≥ 1

42

(λ/
√
s)

2(
t−s
1−s ∧

1−t
1−s

)2 . (2.77)

Then, by the same argument that yielded (2.75), we have

Pn

[
(r, X̄r) /∈ Bη(ε)

left

∣∣∣ X̄s

]
= Pleft

[
( rs , X̄

′
r
s
) /∈ Bη(ε)

ρ′

]
≤M ′

(
r
s

)2 ∧ ( s−rs )2(
λ/
√
s
)4

≤M ′ (s− r)
2

λ4

(2.78)

and

Pn

[
(t, X̄t) /∈ Bη(ε)

right

∣∣∣ X̄s

]
= Pright

[
( t−s1−s , X̄

′′
t−s
1−s

) /∈ Bη(ε)
ρ′′

]
≤M ′

(
t−s
1−s
)2 ∧ ( 1−t

1−s
)2(

λ/
√

1− s
)4

≤M ′ (t− s)
2

λ4
.

(2.79)
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If the first inequality in (2.76) fails, ie. r < λ
4
√
n
, then

∣∣X̃r

∣∣ ≤ 2r
√
n < λ

2 and

Pn

[∣∣X̃s − X̃r

∣∣ ≥ λ, ∣∣X̃t − X̃s

∣∣ ≥ λ]
≤ Pn

[∣∣X̃s − X̃r

∣∣ ≥ λ]
≤ Pn

[∣∣X̃s

∣∣ ≥ λ
2

]
≤ Pn

[∣∣X̃s

∣∣ ≥ λ
2 , (s, X̄s) ∈ Bερn

]
+ Pn

[
(s, X̄s) 6∈ Bερn

]
,

(2.80)

where the last term is bounded by M (t−r)2
λ4 according to (2.74). Moreover, according

to Lemma 2.18, there is a constant M ′′ > 0 such that

Pn

[∣∣X̃s

∣∣ ≥ λ
2 , (s, X̄s) ∈ Bερn

]
≤M ′′ s

2(1− s)2

λ4
≤M ′′ s

2

λ4
,

and using r < λ
4
√
n
< s

2 , we get s < 2(s− r) and

Pn

[∣∣X̃s

∣∣ ≥ λ
2 , (s, X̄s) ∈ Bερn

]
≤ 4M ′′

(s− r)2

λ4
≤ 4M ′′

(t− r)2

λ4
.

Thus both terms on the right in (2.80) obey the required bound, and the tightness
condition (2.66) is satisfied. By completely analogous arguments we can show tight-
ness when the second inequality in (2.76) fails, ie. in the case 1 − t < λ

4
√
n
. This

completes the proof of the bound on the last term in (2.69).

Step 6: Generic values of r, s, t. Assume that K ≥ 256. From (2.73) we see that
the right hand side of the tightness condition (2.66) is greater than K

24n2
1

(s−r)2∧(t−s)2 ,
which is greater than 1 in case (s− r) ∧ (t− s) ≤ 4

n . We can therefore assume that

(s− r) ∧ (t− s) ≥ 4

n
. (2.81)

In turn, this shows that the right hand side of (2.66) is greater than 16K
n2λ4 , which is

greater than 1 if λ ≤ 8√
n
. We can therefore assume that

λ ≥ 8√
n

(2.82)

Defining u′ = 1
nbnuc, we apply the triangle inequality:∣∣X̃s − X̃r

∣∣ ≤ ∣∣X̃s − X̃s′
∣∣+
∣∣X̃s′ − X̃r′

∣∣+
∣∣X̃r′ − X̃r

∣∣
≤ 2
√
n(s− s′) +

∣∣X̃s′ − X̃r′
∣∣+ 2

√
n(r − r′)

≤
∣∣X̃s′ − X̃r′

∣∣+
4√
n
.

Since λ− 4√
n
≥ λ

2 according to (2.82), we get the bound

Pn
[∣∣X̃s − X̃r

∣∣ ∧ ∣∣X̃s − X̃t

∣∣ ≥ λ] ≤ Pn[∣∣X̃s′ − X̃r′
∣∣ ∧ ∣∣X̃s′ − X̃t′

∣∣ ≥ λ
2

]
≤ 24K

(t′ − r′)2

λ4
≤ 24K

4(t− r)2

λ4
.

This completes the proof of Lemma 2.20. �







Chapter 3
Links with Related Models

In the first two sections of this chapter we take a new look at Vershik’s unbounded
partitions and partitions bounded on one side, and obtain results connecting them
to the bounded partitions of Chapter 2. Section 3.3 covers another variant of the
bounded model, where we restrict to diagrams containing some predefined part of the
bounding box. The last section briefly covers the large deviation principle in the case
of random partitions, a possible refinement of the limit shape theorem.

3.1 · Vershik’s Curve Revisited
We sketch a proof of the limit shape theorem for the macrocanonical ensemble P using
the techniques of the previous chapter. See [19, Theorem 4.4] for Vershik’s original
statement and proof. We keep the parameter c > 0 from Chapter 2 as well as the
convention q = e−

c
n . The probability measure P∞n on P is defined by P∞n [ω] = q|ω|

Z∞(q) ,
where

Z∞(q) =
∑
ω∈P

q|ω| =

∞∏
i=1

1

1− qi
(3.1)

is the partition function. We will refer to this case as the unbounded model. A
partition is encoded as an infinite lattice path (or piecewise linear function) (Xu)u∈Z,
with Xu = |u| for |u| sufficiently large. To compute probabilities, we need the ‘one-
dimensional’ limit of the Gaussian binomial coefficient. Define

Za,∞(q) = lim
b→∞

(
a+ b

a

)
q

=

a∏
i=1

1

1− qi
. (3.2)

We then have the formula

P∞n
[
X2k = 2i

]
=
q(i−k)(i+k)Zi−k,∞(q)Zi+k,∞(q)

Z∞(q)
, (3.3)

see Figure 3.1. From the relation Sc(α) = 1
c Li2(e−αc)− π2

6c − α log c we have

lim
v→∞

fc(u, v) = −Sc(u)− u log c. (3.4)

37
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This gives the asymptotics of both Za,∞(q) and Z∞(q) using (2.23):

Za,∞(q) =

√
c

2πn

1√
1− e−ca/n

exp
(
−n(Sc(

a
n ) + a

n log c)
)
(1 +O( 1

n )) (3.5)

Z∞(q) =

√
c

2πn
exp
(
nπ

2

6c

)
(1 +O( 1

n )), (3.6)

and thereby that of the marginal probability in terms of the functions

F (1)
∞,c(s, x) = −c(x− s)(x+ s)− Sc(x− s)− Sc(x+ s)− 2x log c− π2

6c , (3.7)

and

H(1)
∞,c(s, x) =

1√
(1− e−c(x−s))(1− e−c(x+s))

, (3.8)

namely

P∞n
[
X2k = 2i

]
=

√
c

2πn
H(1)
∞,c(s, x) exp(nF (1)

∞,c(s, x))(1 +O( 1
n )), (3.9)

where s = k
n and x = i

n .

i− k
i+ k

2i

2k

Figure 3.1: Illustration of (3.3).

The limit shape of the rescaled process s 7→ X̄
(n)
s = 1

2nX2ns is Vershik’s curve in the
rotated coordinates, given by

L∞c (s) = 1
c log(2 cosh cs), (3.10)

and satisfying the equation e−c(x−s) + e−c(x+s) = 1. Convergence in probability of
X̄(n) to Vershik’s curve can be proved as follows. First note that since

L∞c − |t| → 0 when |t| → ∞, (3.11)

we can pick K > 0 such that L∞c (t) − |t| < ε for |t| ≥ K. Then, for |t| > K, the
interface can only deviate by ε when it is above the limit shape, and if this happens,
then 1

2nX2nK also deviates by ε, since the interface has slope ±1. Hence it is enough
to look at |t| < K, where the proof of Theorem 1 can be copied, with the following
minor modification to take into account the infinitely many possible positions of the



3.1 · Vershik’s Curve Revisited 39

lattice path. Statements analogous to Lemma 2.5 and Lemma 2.10 hold in this case
as well: The 1-dimensional marginal distribution is unimodal and the mode is within
a distance of 1

n from the limit shape. The function x 7→ F
(1)
∞,c(s, x) has a critical point

and a value of zero at L∞c (s), and its second derivative is bounded above by −2c.
Thus, F∞,c(s, L∞c (s) + y) ≤ −2cy2, and for example

P∞n [X2nt > 2n(L∞,c(t) + ε)] ≤
∑
i≥0

M
√

c
2πn exp

(
−2nc(ε+ i

n )2
)

= M

√
c

2πn

e−2ncε2

1− e−4cε
,

and after summing over the the O(n) integer times in [−2nK, 2nK], this can still be
made arbitrarily small by taking n large.

In a similar fashion, we can derive the limit shape in the model with diagrams
bounded only on one side, say ωi ≤ an for all i. Here (an) is a sequence of positive
integers with an

2n → ρ > 0 for n → ∞. This model will be referred to as the semi-
bounded case. For each n we have the probability measure P◦n = µq on the set of
partitions with summands no greater than an, given explicitly by P◦n[ω] = q|ω|

Zan,∞(q) .
We place the infinitely long bounding box with its left corner at the origin in the
(s, x)-plane, see Figure 3.2 and Figure 3.4. The rescaling is as usual by a factor of 2n.
The limit shape L◦ρ,c is the curve (1.9) from [23], and using methods as above, it is
straightforward to rederive it, for instance L◦ρ,c(s) is the critical point of the function
F (1) in this setup. We find that it is given by

L◦ρ,c(s) = s− 2ρ+ 1
c log(1 + e−2cs(e2cρ − 1)). (3.12)

Figure 3.2 shows a few plots of these curves for different values of c. The curve
satisfies the equation

e−c(2ρ−s+x) + (1− e−2cρ)e−c(s+x) = 1.

Thus, if α = 2ρ and zα = 1−e−2cρ, where c satisfies the equation
√

Li2(1− e−2cρ) = c,
then this is exactly Vershik and Yakubovich’s curve (1.9) in the rotated coordinates.

s

L◦(s)

2ρ− s+ L◦(s) s+ L◦(s)

Figure 3.2: Limit shapes for different values of c in the semibounded case.



40 Chapter 3 – Links with Related Models

3.2 · Relations Between the Models
In this section we look at the relations between the models of unbounded, semi-
bounded and bounded partitions, both on limit shape scale and for fluctuations. The
basic idea is illustrated in Figure 3.3: Two fixed times s0 < s1 define a (macroscopic)
bounding box spanned by (s0, L

∞
c (s0)) and (s1, L

∞
c (s1)). As noted by Petrov in [15],

it turns out that the limit shape for the bounded problem in this box (for a suitably
modified value of c) is just the restriction of Vershik’s curve. This fits well with the
observation in Lemma 2.11 that the limit shapes in subboxes agree with the full limit
shape. The unbounded limit shape L∞c is related to the bounded limit shape Lρ,c by
the relation

Lρ̄,c̄(t) =
L∞c (ts1 + (1− t)s0)− L∞c (s0)

s1 − s0
, (3.13)

where
ρ̄ =

1

2

(
1− L∞c (s1)− L∞c (s0)

s1 − s0

)
and c̄ = c(s1 − s0). (3.14)

Similar relations hold with the semibounded limit shape:

L◦ρ0,c(t) = L∞c (s0 + t)− L∞c (s0), (3.15)

where ρ0 = 1
2 (L∞c (s0) − s0) defines the value of ρ for the semibounded box defined

by the point (s0, L
∞
c (s0)) and the diagonal line x = s. The relation between the

semibounded curve and the bounded curve is defined by a fixed s2 > 0, and is given
by

Lρ′,c′(t) =
L◦ρ,c(ts2)

s2
, (3.16)

where ρ′ = 1
2 (1− 1

s2
L◦ρ,c(s2)) and c′ = cs2. Figure 3.3 shows a graphical representation

of the relations.

s0 s1

Figure 3.3: A fixed s0 ∈ R defines an infinite bounding box for the semibounded model.
Fixing another point s1 > s0 defines a bounding box for the bounded case. The limit shape
in each case is simply the restriction of the unbounded limit shape, when c is chosen properly.

The similarities between the models extend also to the fluctuations, which turn
out to be given essentially by Ornstein-Uhlenbeck processes in both the unbounded
and semibounded cases. Note that our results here are not fully compatible with
those obtained in [23] – we study fluctuations ‘along the diagonal’ compared to the
coordinates in Chapter 1.

The fluctuations can be calculated exactly as in Section 2.6, and the proof of
convergence of the marginal distributions translates directly to the present cases.
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The covariance matrix for the Gaussian limit of the joint distribution at two times
s < t is given by the negative of the inverse of the Hessian matrix of the function
F (2), evaluated at (s, t, L(s), L(t)). In the unbounded case, this function is given by

F (2)
∞,c(s, t, x, y) = −c(x− s)(x+ s)− c(t+ y − x− s)(y − t)− Sc(x+ s)

− (x+ s) log c− Sc(y − t)− (y − t) log c

+ fc(x− s− y + t, t+ y − x− s)− π2

6c ,

while in the semibounded case we have

F
(2)
◦,ρ,c(s, t, x, y) = −c(2ρ− s+ x)(s+ x)− c(t+ y − s− x)(2ρ− t+ y)

+ fc(s+ x, s− x) + fc(y + t− s− x, t− y − s+ x)

− Sc(2ρ− t+ y)− (2ρ− t+ y) log c+ Sc(2ρ) + 2ρ log c.

Figure 3.4 shows the microscopic justification for the latter function.

an

k − i

k + i

`− j − k + i

`+ j − k − i

2k
2i

2`

2j

Figure 3.4: The two-dimensional marginal in the semibounded case.

Calculating the second partial derivatives and inverting the Hessian, we get the
covariance matrix in the unbounded model:

1

2c

(
g∞c (s)

g∞c (t)

)(
1 e−c(t−s)

e−c(t−s) 1

)(
g∞c (s)

g∞c (t)

)
, (3.17)

where the central matrix together with the factor 1
2c is the covariance matrix for the

Ornstein-Uhlenbeck process on (−∞,∞), while the correcting factor is the function

g∞c (s) =
1√

2 cosh cs
. (3.18)

Apparently, the fluctuations in the unbounded model are an Ornstein-Uhlenbeck pro-
cess ‘dampened’ by hyperbolic cosine. In the semibounded case, the correction func-
tion is

g◦ρ,c(s) =

√
2(e2cρ − 1)

ecs − e−cs + ec(2ρ−s)
, (3.19)

and the two-point covariance matrix is

1

2c

(
g◦ρ,c(s)

g◦ρ,c(t)

)(
1− e−2cs 2e−ct sinh cs

2e−ct sinh cs 1− e−2ct

)(
g◦ρ,c(s)

g◦ρ,c(t)

)
(3.20)
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The central matrix together with the factor 1
2c is the covariance matrix for the

Ornstein-Uhlenbeck process on [0,∞) with initial value 0. From the description
of the Ornstein-Uhlenbeck processes in the appendix, we can say that one gets the
fluctuations of the semibounded and bounded models by conditioning the process on
(−∞,∞) to be zero at the appropriate times. We have not attempted a proof of
tightness in the unbounded and semibounded models.

Analogous to the limit shape relations (3.13), (3.15) and (3.16), there exist rela-
tions between the correction factors g, g◦ and g∞:

gρ̄,c̄(t) = g∞c (s0 + t(s1 − s0)) (3.21)
g◦ρ0,c(t) = g∞c (s0 + t) (3.22)

gρ′,c′(t) = g◦ρ,c(ts2) (3.23)

The first relation reveals the nature of the somewhat complicated correction factor
we encountered in Chapter 2. It is simply the dampening factor of hyperbolic cosine
from the unbounded model, expressed in the coordinates of the bounded case.

3.3 · Cutting a Corner Off

We consider now a variation on the model of bounded Young diagrams where we
restrict to diagrams containing a predetermined rectangular diagram. Alternatively
one can say that we cut a corner off of the bounding box. Keep the parameters ρ, c,
(an), (bn) and ρn = an

2n from before, and introduce new parameters as follows. Fix a
point (s1, x1) ∈ Bρ and let kn = bs1nc and in = bx1nc for each n ≥ 1. We assume that
(knn ,

in
n ) ∈ Bρn , ie. that 2in is a possible location for X(n) at time 2kn. The corner we

are cutting off is the rectangular Young diagram λ̂n = [0, an − kn + in]× [0, kn + in].
The top figure opposite the beginning of this chapter shows a sample of diagrams
from this distribution. We will get to the other two figures in a moment.

Let P̂an,bn denote the subset of Pan,bn of partitions whose Young diagrams contain
λ̂n, ie. those with X(n)

2kn
≥ 2in. Let P̂n denote be the probability measure on C that

is the rescaled restriction of Pn, and denote the partition function by Ẑn(q), ie.

Ẑn(q) =
∑

ω∈P̂an,bn

q|ω|.

Note that ratios of probabilities are unchanged compared to Pn. The partition func-
tion could be computed as a sum of terms resembling (2.11) over all possible values
of X2kn . However, the asymptotics of such an expression is not easily computed, and
as it turns out, we can get some way with Lemma 2.5 and Theorem 1: The marginal
distribution is unimodal and the probability mass concentrates in diagrams close to
the limit shape. These two facts are all we need to derive a limit shape result in this
model.

The point is that if the ‘free’ limit shape Lρ,c does not touch the corner we cut off,
the new process has the same limit shape: the probability concentrates in diagrams
that contain the corner anyway. On the other hand, if Lρ,c(s1) ≤ x1, we are removing
the principal part of the probability mass, and of the remaining lattice paths, those
passing close to the point (s1, x1) contribute most to the partition function. Passing
to the limit, the interfaces will converge to a limit shape passing through the point
(s1, x1) and on either side of this point, consists of a copy of Lρ,c with the parameters



3.3 · Cutting a Corner Off 43

of the subboxes, given in this case by

ρj =
1

2

(
1− xj+1 − xj

sj+1 − sj

)
(3.24)

and
cj = c(sj+1 − sj), (3.25)

for j = 0, 1, where s0 = 0, s2 = 1 and x0 = 0, x2 = 1− 2ρ = Lρ,c(1).

Proposition 3.1. Under the distribution P̂n, the process X̄(n) converges in proba-
bility in C. The limit shape depends on the value of Lρ,c(s1):

(a) If Lρ,c(s1) > x1, the limit shape is Lρ,c.

(b) If Lρ,c(s1) < x1, the limit shape is the curve

t 7→ L̂(t) =

{
s1Lρ0,c0( t

s1
) 0 ≤ t ≤ s1

(1− s1)Lρ1,c1( t−s11−s1 ) + x1 s1 < t ≤ 1
(3.26)

Proof. Take 0 < ε < L(s1) − x1. If supt∈[0,1]

∣∣X̄t − Lρ,c(t)
∣∣ ≤ ε, then in particular

X2kn ≥ 2in (at least when n is sufficiently large). Therefore,

P̂n

[
sup
t

∣∣X̄t − Lρ,c(t)
∣∣ ≤ ε] =

Zn(q)

Ẑn(q)
Pn

[
sup
t

∣∣X̄t − Lρ,c(t)
∣∣ ≤ ε] (3.27)

since the two sides represent the same sum over partitions. Since Zn(q) ≥ Ẑn(q) and,
according to Theorem 1, the probability on the right tends to 1 as n→∞, the same
holds for the left hand side.

To prove case (b), we first need to prove that the lattice path stays close to the
point (2kn, 2in) with a high probability. Let 0 < γ < 1. We will prove that

lim
n→∞

P̂n

[
1

2nX2kn ≥ x1 + nγ−1
]

= 0. (3.28)

As remarked above, the ratios of probabilities are unchanged from the original case,
so (2.34) holds for P̂n. Setting i = in and taking the limit n→∞, (2.36) shows that

lim
n→∞

P̂n
[
X2kn = 2(in + 1)

]
P̂n
[
X2kn = 2in

] = Rρ,c(s1, x1) < 1,

where Rρ,c is the function from (2.35). The last bound comes from the fact that
x1 > Lρ,c(s1) and x 7→ Rρ,c(s1, x) is decreasing and takes the value 1 at x = Lρ,c(s1).
We conclude that there is a positive constant K < 1 such that

P̂n
[
X2kn = 2(i+ 1)

]
≤ K · P̂n

[
Y2kn = 2i

]
for all sufficiently large n and all i ≥ in. By iteration, this implies that

P̂n

[
1

2nX2kn ≥ x1 + nγ−1
]

=
∑

i≥nx1+nγ

P̂n
[
X2kn = 2i

]
≤ n · P̂n

[
X2kn = 2dnx1 + nγe

]
≤ nK2dnx1+nγe−2inP̂n

[
X2kn = 2in

]
≤ nK2nγ+4,
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proving (3.28). We rewrite the probability that the path deviates by more than ε by
conditioning on the value of X2kn :

P̂n

[
sup
t

∣∣X̄t − L̂(t)
∣∣ > ε

]
=
∑
j≥0

P̂n

[
sup
t

∣∣X̄t − L̂(t)
∣∣ > ε, X2kn = 2in + 2j

]
,

Now (3.28) allows us to ignore the terms with j ≥ nγ−1. A typical remaing term is
bounded above by the corresponding conditional probability

P̂n

[
sup
t

∣∣X̄t − L̂(t)
∣∣ > ε

∣∣∣∣ X2kn = 2in + 2j

]
. (3.29)

The conditioning implies that events in the left and right subbox are independent. In
each subbox we have a version of the original problem with the appropriately modified
parameters in (3.24) and (3.25). The bound j ≤ nγ−1 ensures that the side lengths of
the subboxes for the various j converge uniformly, as specified in the remark following
Theorem 1. We conclude that (3.29) decays exponentially, uniformly for j smaller
than nγ−1, which proves case (b). �

A generalization of this model is to consider m points (s1, x1), . . . , (sm, xm) ∈ Bρ
and require the lattice path to have X2nsj ≥ 2nxj for all j. In this case we conjecture
that the limit shape is given as follows (see Figure 3.5). For every 0 < s < 1, the
function R 3 c 7→ Lρ,c(s) is continuous and decreasing. Hence, for each j there is
a unique cj such that Lρ,cj (sj) = xj . If cj > c for all j, then the ‘free’ limit shape
Lρ,c evades the region that we cut out, and the limit shape in the restricted model
is the same. Otherwise, there is a j0 with minimal cj0 . The limit shape will pass
through the point (sj0 , xj0), and the limit shapes on either side can be constructed by
repeating the above with the new values of the parameters ρ and c given by (3.24) and
(3.25). The result is a piecewise smooth curve as depicted on the right in Figure 3.5.

Figure 3.5: Construction of the limit shape when a macroscopic diagram is cut out of the
bounding box.

As a further generalization, we take a sequence of partitions (λn) with λn ∈
Pan,bn , such that the interfaces X̄(n)(λn) converge uniformly to some smooth curve
s 7→ Γ(s), with |Γ′(s)| < 1 for all s, connecting the origin and the right corner of the
bounding box. At each step n, we consider the usual probability measure restricted to
diagrams containing the diagram of λn, and once again we can ask for a description
of the limit shape (and a proof of its existence). A natural conjecture is that it
follows a description similar to case above. Consider the family of limit shapes Lρ,c
parametrized by c ∈ R. If we assume there is a c such that Lρ,c(s) > Γ(s) for all
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s ∈ (0, 1), then we can find a minimal c such that the two curves are tangent at some
time s0. As c increases, the limit shape will agree with Γ on some interval containing
s0, and this interval will grow. At the endpoints of the interval, the two curves will
be tangent. Other such intervals will emerge and grow as c tends towards +∞. See
Figure 3.6. If we allow Γ to be only piecewise smooth, cusps as in Figure 3.5 would
correspond to 1-point intervals that are fixed as c→∞.

Figure 3.6: Simulation of partitions for a large value of n. A diagram approximating a
smooth curve has been cut out of the bounding box. The parameter c increases from the
left to the right picture.

3.4 · The Large Deviation Principle
A possible refinement of theorem 1 on the convergence to the limit shape is to prove
a large deviation principle for the process X̄(n). Let S be a complete and separable
metric space. The large deviation principle describes the limiting behavior of a se-
quence of probability measures on the Borel σ-algebra of S in terms of a rate function,
a map I : S → [0,∞] such that for all M ≥ 0, the preimage I−1

(
[0,M ]

)
is closed. If

all these preimages are in fact compact, I is called a good rate function, and it attains
its infimum on any nonempty closed set.

Let (αn) be a sequence of positive real numbers with limn αn = ∞. A sequence
of probability measures (Pn) on S is said to satisfy the large deviation principle with
rate function I and speed (αn) if

(i) for each closed subset F ⊆ S,

lim sup
n→∞

1

αn
logPn[F ] ≤ − inf

x∈F
I(x) (3.30)

(ii) for each open subset G ⊆ S,

lim inf
n→∞

1

αn
logPn[G] ≥ − inf

x∈G
I(x). (3.31)

These conditions can be compared to those for weak convergence in the Portmanteau
lemma, see p. 50. Taking F = S in (3.30) shows that infx∈S I(x) = 0, so if I is a
good rate function, there is at least one x0 ∈ S with I(x0) = 0.

Suppose the measure Pn is the distribution of a random element Xn. In this
case, the large deviation principle is equivalent to a condition known as the Laplace
principle (see [7]): for every bounded, continuous function h : S → R,

lim
n→∞

1

αn
logE

[
exp(−αnh(Xn))

]
= − inf

x∈S
{h(x) + I(x)}. (3.32)
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This formula should be compared with the classical Laplace method for studying the
asymptotics of certain integrals on R. Say h is a bounded continuous real function
on [0, 1], then

lim
n→∞

1

n
log

∫ 1

0

exp(−nh(x)) dx = − min
x∈[0,1]

h(x). (3.33)

Analogous to the concept of tightness we used to prove weak convergence of the fluc-
tuations of the interface of random Young diagrams, there is the notion of exponential
tightness related to the large deviation principle. The sequence of probability mea-
sures (Pn) is said to be exponentially tight if for each M > 0 there is a compact
subset K ⊆ S such that

lim sup
n→∞

1

n
logPn[Kc] ≥ −M. (3.34)

Exponential tightness, together with the existence of the limit on the left of (3.32)
for all bounded continuous h, implies the large deviation principle for Pn, with an
explicitly given rate function ([7, Theorem 1.3.8]).

In the world of random partitions, a large deviation principle for the cases of
uniformly distributed partitions, respectively strict partitions, of n has been proved
by Vershik, Dembo and Zeitouni in [4]. Let D(0,∞) denote the space of real functions
on (0,∞) that are left-continuous and have right limits, and let DF be the subspace
of non-increasing functions with limt→∞ f(t) = 0. Let D̂F denote the collection of all
non-increasing functions g that agree almost everywhere with some function in DF ,
and equip D̂F with the topology of pointwise convergence. The uniform probability
measure on partitions of n induces a probability measure Pn on D̂F via the map τγ
taking a partition ω to the rescaled Young diagram ϕ̄ω in (1.3). As the scaling γ, take
γn =

√
n. The sequence Pn satisfies the large deviation principle in D̂F with speed√

n and good rate function I defined as follows. A function f ∈ DF corresponds to a
measure µf on (0,∞) by the relation f(t) = µf ([t,∞)). The Lebesgue decomposition
of this measure into an absolutely continuous measure and a singular measure (with
respect to Lebesgue measure) yields the decomposition f = fac + fs, which can be
extended to f ∈ D̂F . The rate function I is then given by

I(f) = 2π√
6
−
∫ ∞

0

f ′ac(t) log(−f ′ac(t)) + (1− f ′ac(t)) log(1− f ′ac(t)) dt (3.35)

if
∫∞

0
−t dµf ≤ 1 and I(f) = ∞ otherwise. A similar theorem for the bounded

partitions of Chapter 2 would be of great interest. Given the close relation between the
unbounded and bounded models exhibited in Section 3.2, it is natural to conjecture
that the large deviations are described by the same rate function, but proving this
will be a job for someone else.







Appendix

This short appendix consists of two sections, the first containing the definition and a
few results from the theory of weak convergence of probability measures, based on the
exposition in [3]. In particular, the concept of tightness and the criterion used to prove
weak convergence of the fluctuations of bounded partitions around the limit shape
can be found here. The second section introduces the various Ornstein-Uhlenbeck
processes referenced in the text.

A.1 · Weak Convergence of Probability Measures
Let (S, d) be a metric space. A probability measure on S is a non-negative countably
additive set function P on the Borel σ-algebra of S, with P[S] = 1. A sequence (Pn)
of probability measures on S is said to converge weakly to P, written Pn ⇒n P, if for
every bounded, continuous function f : S → R,∫

S

f dPn →
∫
S

f dP as n→∞. (A.1)

The concept of weak convergence can also be expressed in terms of random elements
of S: A (measurable) map X from a probability space (Ω,F ,P) to S is called a
random element of S. It induces the pushforward probability measure PX = P◦X−1

on S, called the distribution of X. We say then that a sequence of random elements
(Xn) converges weakly to X if PXn ⇒n PX . If the limit X happens to be constant,
then this is equivalent to the concept of convergence in probability :

∀ε > 0, lim
n→∞

P[d(Xn, X) > ε] = 0. (A.2)

Example. Two well-known examples of weak convergence are the weak law of large
numbers and the central limit theorem. The weak law of large numbers states that
if (Xi) are independent, identically distributed random variables with E(Xi) = µ
and finite variance σ2 > 0, then the sample average X̄n = 1

n

∑n
i=1Xi converges in

probability to the constant variable µ. Centering the sequence and rescaling by
√
n,

the central limit theorem states that the sequence X̃n =
√
n(X̄n − µ), converges

weakly to a centered Gaussian variable with variance σ2. �
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Example. Let (Xn) be a sequence in S converging to some element X0. Denote by
δX the unit mass at X, the probability measure given by δX(A) = 1A(X). Then, if
f is continuous on S,∫

S

f d(δXn) = f(Xn)→ f(X0) =

∫
S

f d(δX0),

and δXn ⇒n δX0 . If Xn 6→ X0, then, if ε > 0 is such that d(Xn, X0) > ε for infinitely
many n, (A.1) fails when f is the positive part of the function y 7→ (1− 1

εd(y,X0)).
Therefore, Xn → X0 if and only if δXn ⇒n δX0 . �

The Portmanteau lemma lists conditions equivalent to weak convergence:

(i) lim supnPn[F ] ≤ P[F ] for all closed subsets F ⊆ S.

(ii) lim infnPn[G] ≥ P[G] for all open subsets G ⊆ S.

(iii) Pn[A] → P[A] for all Borel sets A ⊆ S with P[∂A] = 0 (these are called
P-continuity sets).

To prove weak convergence it is often enough to prove Pn[A] → P[A] for some nice
subclass of Borel sets. For example, if S = Rk, it is enough to show convergence on
closed rectangles ([3, Example 2.3]).

The random elements Xn need not be defined on the same probability space.
This is the case for the random Young diagrams in Chapter 2, where the underlying
probability spaces are the sets Pa,b of partitions with at most b parts, each at most a,
while S is the space C = C[0, 1] of continuous functions on the unit interval, equipped
with the uniform metric

d(X,Y ) = sup
t∈[0,1]

|Xt − Yt|.

Each k-tuple 0 ≤ t1 < t2 < · · · < tk ≤ 1 defines a (continuous) natural pro-
jection πt1···tk from C to Rk by πt1···tk(X) = (Xt1 , . . . , Xtk). The random vector
(Xt1 , . . . , Xtk) is called a finite dimensional marginal of X. Knowing the distribution
of all marginals of X is enough to specify the distribution over C of X itself (in the
terminology of [3], the family

{
π−1
t1···tkU

}
with k ∈ N, 0 ≤ t1 < · · · < tk ≤ 1 and U

ranging over Borel subsets of Rk, constitutes a separating class of subsets of C).
A necessary condition for the weak convergence of a sequence (Xn) in C is that

all finite-dimensional marginals converge. This is a consequence of the continuous
mapping theorem: a continuous image of a weakly convergent sequence is weakly
convergent. However, as the following simple example shows, marginal convergence
is not sufficient – weak convergence in C is stronger than convergence of all marginal
distributions.

Example. Let (Xn) be a sequence of real functions on [0, 1] converging pointwise
but not uniformly to X0, and let Pn = δXn . The typical marginal distribution
is the unit mass at the point (Xn

t1 , . . . , X
n
tk

) ∈ Rk, and pointwise convergence and
Example 2 show that the finite dimensional marginals of Xn converge weakly to those
of X0. However, the opposite implication in Example 2 shows that δXn 6⇒n δX0 , since
Xn 6→ X0 in C. �

Fortunately, there exists an additional condition to ensure that convergence of the
marginal distributions implies weak convergence. A sequence of probability measures
(Pn) is said to be tight if for every ε > 0 there exists a compact subset K ⊆ S such
that Pn[K] > 1 − ε for all n. While this condition may not be particularly easy to
apply as is, it can be reworked into a more useful criterion: [3, Theorem 13.5]
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A sequence of random functions (Xn) converges weakly in C to X provided that

(i) (Xn
t1 , . . . , X

n
tk

)⇒n (Xt1 , . . . , Xtk) for all k and all k-tuples t1, . . . , tk ∈ [0, 1].

(ii) There exist constants α > 1
2 , β ≥ 0 and a non-decreasing, continuous function

F on [0, 1] such that

P
[
|Xn

s −Xn
r | ∧ |Xn

s −Xn
t | ≥ λ

]
≤ 1

λ4β
[F (t)− F (r)]

2α (A.3)

for all n ∈ N, all 0 ≤ r ≤ s ≤ t ≤ 1 and all λ > 0.

The main points of the translation from tightness of probability measures on C
to condition (ii) above are as follows. Compactness in C is characterized by the
Arzelà-Ascoli theorem, which states that a subset A ⊆ C is relatively compact (ie.
its closure is compact) if and only if (1) the set

{
|X(0)|

∣∣ X ∈ A} is bounded, and
(2) the functions in A are uniformly equicontinuous, ie. limδ→0 supX∈A wX(δ) = 0,
where wX(d) = sup|s−t|<δ|X(s)−X(t)| is the modulus of continuity. This translates
tightness of a sequence of probability measures into conditions on the probability
of events of the types

{
|X(0)| > a

}
and

{
wX(δ) > ε

}
. The assumption of weak

convergence of Xn
0 takes care of the first condition. The probability of the latter event

is related to that in (A.3) by a so-called maximal inequality, ie. a universal inequality
giving an upper bound for the probability of an event of the type

{
supt|Xt| ≥ λ

}
in

terms of the probability of an event similar to the one in (A.3).
Apart from the above criterion, we make use of two other results that we include

here for completeness. The first ([3, Theorem 3.1]) says that if (Xn, Y n) is a random
element of S × S, and if Xn ⇒n X and d(Xn, Y n)⇒n 0, then Y n ⇒n X.

The other ([3, Theorem 3.3]) states conditions under which a local limit, ie. a limit
of density functions, can be translated into an integral limit, ie. weak convergence.
Let n ∈ N, let δ(n) = (δ1(n), . . . , δk(n)) ∈ Rk be a vector with positive coordinates
and let α(n) = (α1(n), . . . , αk(n)) be any point of Rk. Define the lattice

Λn = (Zδ1 − α1)× · · · × (Zδk − αk).

A point x = (x1, . . . , xk) ∈ Λn defines the cell{
y ∈ Rk

∣∣ x1 − δi(n) < yi ≤ xi, i = 1, . . . , k
}
,

which has volume vn = δ1(n) · · · δk(n), and Rk is the countable union of these cells.
Now suppose (Pn) is a sequence of probability measures on Rk such that Pn is
supported on Λn, and that P is a probability measure on Rk which has density p
with respect to Lebesgue measure. For x ∈ Λn, let pn(x) denote the Pn-mass at x.
If the conditions

(i) max{δ1(n), . . . , δk(n)} → 0 for n→∞, and

(ii) for any sequence (xn) with xn ∈ Λn for all n and xn → x,

pn(xn)

vn
→ p(x),

are satisfied, then Pn ⇒n P.
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A.2 · The Ornstein-Uhlenbeck Bridge
The Ornstein-Uhlenbeck bridge is an example of a continuous Gaussian random pro-
cess, ie. an element X of C whose finite-dimensional marginal distributions are Gaus-
sian. The distribution over C of such an element is completely specified by the mean
values E

[
Xt

]
together with all E

[
XsXt

]
, since these are enough to determine the

finite-dimensional marginal distributions, which in turn determine the distribution
of X. Perhaps the best known example of a Gaussian process is Brownian motion
(Bt)t≥0, with E

[
Bt
]

= 0 and E
[
BsBt

]
= s ∧ t.

The Ornstein-Uhlenbeck process (from now on O-U process) was originally intro-
duced in [17] as a modification of the model of Brownian motion for describing the
movement of a particle subjected to random pushes from the molecules of a surround-
ing fluid. In [6], Doob characterizes an O-U process (Ut)t∈R as a stationary Gaussian
process with continuous sample paths defined by the expectation and covariance

E[Ut] = µ and E[(Us − µ)(Ut − µ)] = σ2
0e
−c|t−s| (A.4)

for all s, t ∈ R. Stationary means that the distributional properties of the process are
unchanged under translations of time. This process comes up as the fluctuations of
the interfaces of unbounded partitions in Section 3.1.

Restricting to the positive axis [0,∞), the O-U process can also be defined as the
solution to the stochastic differential equation

dUt = c(µ− Ut) dt+ σ dBt, (A.5)

where c, σ > 0 and µ ∈ R are parameters. We can safely assume that µ = 0, so let
us adopt this assumption. Solving the equation requires that an initial value U0 be
given. Using Itō’s lemma, the equation is not difficult to solve, and the solution can
be represented as a stochastic integral

Ut = e−ctU0 + σe−ct
∫ t

0

ecs dBs, (A.6)

or as a scaled and time-transformed Brownian motion:

Ut = e−ctU0 + σe−ctB∫ t
0
ecs ds = e−ctU0 + σe−ctB e2ct−1

2c

(A.7)

(see e.g. [14, Corollary 8.16] for the step from (A.6) to (A.7)). This representation
shows that the expectation is

E
[
Ut
]

= e−ctU0 (A.8)

and, assuming that U0 is stochastically independent of B, the covariance is

Cov
[
UsUt

]
= e−c(s+t)

(
Var[U0] + σ2 e

2cs − 1

2c

)
, s < t. (A.9)

From this we see first that if U0 has a centered Gaussian distribution with variance
σ2

2c , then (Ut) has the covariance of the double-sided version in (A.4) with σ2
0 = σ2

2c .
On the other hand, if U0 = 0, then

Cov
[
UsUt

]
= σ2e−ct

sinh(cs)

c
. (A.10)

This O-U process is the weak limit of the so-called Bernoulli-Laplace urn model :
Take 2n balls, n red and n blue, and distribute them randomly in two urns A and B,
with n balls in each urn. Now draw a ball from each urn at random, and put the ball
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from urn A in urn B and vice versa. Let Wn
k denote the number of red balls in urn

A after k draws, and define the process (U
(n)
t ) by Wn

bntc = 1
2 (n + U

(n)
t

√
n). In [11],

Jacobsen proves that if m0 ∈ R is fixed, and the initial value of Wn is given by

Wn
0 =

⌊
1
2 (n+m0

√
n)
⌋

(for n sufficiently large so that this is a legal value of Wn
0 ), then the sequence (U (n))

converges weakly in the Skorohod space D[0,∞) of right-continuous paths with left
limits to the O-U process with parameters c = 2, σ =

√
2 and initial value U0 = m0.

The limit process found in Chapter 2 is a modification of the O-U process with
initial value zero and ‘tied down’ to also have a fixed value of zero at time t = 1. It is
appropriately named the Ornstein-Uhlenbeck bridge. The process can be constructed
as follows. Set

h(t) =
sinh(ct)

sinh c

and define
Yt = Ut − h(t)U1. (A.11)

Observe that, for 0 ≤ t ≤ 1,

E
[
YtU1

]
= E

[
UtU1 − h(t)U2

1

]
= e−c

sinh(ct)

c
− sinh(ct)

sinh c
e−c

sinh c

c
= 0,

showing that Yt is independent of U1. Now let f be any test function and consider

E
[
f(Ut)

∣∣ U1 = 0
]

= E
[
f(Yt + h(t)U1)

∣∣ U1 = 0
]

= E
[
f(Yt)

∣∣ U1 = 0
]

= E
[
f(Yt)

]
,

where the last equality is a consequence of the independence just proved. Thus, the
process (Yt) has the probability law of the O-U process conditional on U1 = 0. Its
covariance is

E[YsYt] = E [Ys(Ut − h(t)U1)] = E[YsUt]

= E[UsUt]− h(s)E[U1Ut] =
sinh(cs)

c sinh(c)

(
e−ct sinh c− e−c sinh(ct)

)
=

sinh(cs) sinh(c(1− t))
c sinh(c)

,

(A.12)

cf. the middle matrix in (2.55).
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