ROTATIONAL CROFTON FORMULAE
 FOR FLAGGED INTRINSIC VOLUMES

Jérémy Auneau-CognacQ

PhD Thesis
Department of Mathematical Sciences
Aarhus University

Acknowledgements

I wish to thank my supervisor Eva B. Vedel Jensen for originally encouraging me to initiate the PhD study and introducing me to rotational integral geometry. I also wish to thank Jan Rataj for his hospitality and kind advice during my visit at Charles University. I am also grateful to Lars 'Daleif' Madsen, who helped me tremendously with the final layout of this thesis.

Finally, I would like to show my deep gratitude to my dear friends Anne Mette Maarup, Michael Petersen and Rune Thorbek for their inestimable support.

Preface

The present thesis consists of four papers, which constitute the result of my PhD study at the Department of Mathematical Sciences, Aarhus University. This study has been conducted under the supervision of Eva B. Vedel Jensen from February 2007 to July 2010.

Summary

The study of stereology can be traced back to the 18 th century with the celebrated Buffon's needle problem, which was posed for the first time by the Comte de Buffon and can be described as a method for estimating π by throwing needles on a parquet floor. More generally, stereology is the study of intrinsic geometrical properties of a set through measurements made on lower dimensional sections of that set. For practical reasons, we may require that those sections go through a fixed point in space, instead of being randomly positioned. The study of geometrical properties in that particular set-up is called local stereology, the foundations of which were laid by Eva B. Vedel Jensen in 1998, cf. [8].

The focus of interest of the present thesis is integral geometric identities of the type

$$
\beta(X)=\int \alpha(X \cap L) \mathrm{d} L
$$

where α and β are geometrical quantities of a set X, such as its volume, surface area or, more generally, intrinsic volume, and the integration is over all sections containing the fixed point origo. Our main result is a local stereological analogue to the well-known Crofton formula. More precisely, we derive throughout Paper A, B and C integral geometric formulae that relate new flagged intrinsic volumes of a set X with the flagged intrinsic volumes of its sections, $X \cap L$. The development of a potential local stereological analogue of the famous principal kinematic formula will also be discussed. In the last paper, Paper D, we present many new integral geometrical identities that were useful, if not indispensable, for the formulation of our main Theorem. Hopefully, these formulae will prove valuable to the further study of local stereology.

Accompanying papers

[A] Auneau-Cognacq, J., Rataj, J. and Jensen, E.B.V. (2010): Closed form of the rotational Crofton formula. Earlier version appeared as Thiele Research Report 2008-13, Department of Mathematical Sciences, University of Aarhus. Submitted.
[B] Auneau, J. and Jensen, E.B.V. (2010): Expressing intrinsic volumes as rotational integrals. Adv. Appl. Math. 45, 1-11.
[C] Auneau-Cognacq, J. (2010): A rotational Crofton formula for flagged intrinsic volumes of sets of positive reach. To be published as a CSGB preprint.
[D] Auneau-Cognacq, J. (2010): Integral geometric formulae. Manuscript.

Contents

Acknowledgements i
Preface iii
Contents V
1 Introduction 1
2 Results 5
2.1 Closed form of the weight functions 5
2.2 Expressing intrinsic volumes as rotational integrals 6
2.3 A rotational Crofton formula for flagged intrinsic volumes of sets of positive reach 7
2.4 Integral geometric formulae 8
2.5 Discussion on a rotational kinematic formula 10
3 References 13
Paper A - Closed form of the rotational Crofton formula 15
By Jérémy Auneau-Cognacq, Jan Rataj and Eva B.V. Jensen
1 Introduction 17
2 Preliminaries 19
3 The closed form of $\omega_{I, j, k}$ 21
4 Further simplifications 23
5 The rotational average as valuation on convex bodies 24
6 An open question 26
7 Proof of Theorem 1 27
Appendix 32
Acknowledgements 34
References 34
Paper B - Expressing intrinsic volumes as rotational integrals 37
By Jérémy Auneau-Cognacq and Eva B.V. Jensen
1 Introduction 40
2 The general solution 40
3 The case $k=j$ 42
4 The case $k<j$ 42
Appendix 44
References 48
Paper C - A rotational Crofton formula for flagged intrinsic volumes of sets of positive reach. 49
By Jérémy Auneau-Cognacq
1 Introduction 51
2 Preliminaries 52
3 A generalized solution 53
4 Integral representation of the generalized solution 55
5 Proofs 59
Acknowledgements 71
References 71
Paper D - Integral geometric formulae 73
By Jérémy Auneau-Cognacq
1 Introduction 75
2 Notation and definitions 75
3 Preliminary integral transformations 77
4 Integration over subspaces 79
5 Integration over spheres 80
References 106

1 Introduction

Imagine an object in space, e.g. a potato. How can we estimate the volume of the potato by placing sticks through it, as shown in Figure 1.1? Is it possible to estimate the surface area of the potato by proceeding similarly? These are some of the questions that can be answered by stereology.

More generally, stereology makes it possible to draw inference on quantitative properties of spatial structures from measurements on randomly positioned and orientated sections through the structure. Consequently, an important role is played by the integral geometric section formulae

$$
\beta(X)=\int \alpha(X \cap T) \mathrm{d} T
$$

where α and β are geometric quantities and $X \subseteq \mathbb{R}^{d}$ is the spatial object of interest. The integration is over all possible positions of the probe T. In the potato example, the probes are one-dimensional sticks in \mathbb{R}^{3}.

An important example of such a section formula is the Crofton formula, where α and β are intrinsic volumes,

$$
\begin{equation*}
c_{d, j, k} V_{d-j+k}(X)=\int_{\mathcal{F}_{j}^{d}} V_{k}\left(X \cap F_{j}\right) \mathrm{d} F_{j}^{d} . \tag{1.1}
\end{equation*}
$$

Here, X is a d-dimensional subset of $\mathbb{R}^{d}, \mathcal{F}_{j}^{d}$ denotes the space of j-dimensional affine subspaces of $\mathbb{R}^{d}, \mathrm{~d} F_{j}^{d}$ is its motion invariant measure, V_{k} is the k th intrinsic volume and $c_{d, j, k}$ is a known constant of proportionality, $0 \leq k \leq j \leq d$. For specific values of k, the intrinsic volumes have simple interpretations, e.g. $V_{d}(X)$ is the volume of $X, 2 V_{d-1}(X)$ is its surface area and $V_{0}(X)$ is the Euler-Poincaré characteristic. As a useful example, with $d=3, j=k=1$, the Crofton formula shows how to calculate the volume of a potato using sticks

$$
2 \pi \text { volume }(\text { potato })=\int \text { length }(\text { potato } \cap \text { stick }) \text { dstick. }
$$

Other practical applications of classical stereology can be found in [5] and [8]. In the literature, intrinsic volumes are also called Minkowski functionals or quermass integrals.

Figure 1.1: Sectioning a spatial object with randomly orientated and positioned linear probes.

Assuming that the boundary of X is sufficiently smooth, the k th intrinsic volume of X is then given by a simple boundary integral, for all $k=0, \ldots, d-1$,

$$
\begin{equation*}
V_{k}(X):=\frac{1}{\sigma_{d-k}} \int_{\partial X} c_{k}(X, x) \mathcal{H}^{d-1}(\mathrm{~d} x) \tag{1.2}
\end{equation*}
$$

where \mathcal{H}^{k} denotes the k-dimensional Hausdorff measure, σ_{d-k} is the surface area of the unit ball in \mathbb{R}^{d-k} and

$$
\begin{equation*}
c_{k}(X, x):=\sum_{\substack{I \subseteq\{1, \ldots, d-1\} \\|I|=d-1-k}} \prod_{i \in I} \kappa_{i}(x) \tag{1.3}
\end{equation*}
$$

is the k th symmetric function of the principal curvatures $\kappa_{i}(x)$ of ∂X at $x, i=1, \ldots, d-1$, cf. [10].

The characterization theorem of Hadwiger states that motion invariant measures on the family of convex bodies in \mathbb{R}^{d} can be written as a linear combination of the intrinsic volumes V_{0}, \ldots, V_{d}, cf. [7], [11, 14.4.6]. This important result can be used to prove Crofton's formula and the well-known kinematic formula for convex bodies X and Y,

$$
\begin{equation*}
\int_{\mathcal{G}_{d}} V_{j}(X \cap g Y) \mathrm{d} g=\sum_{k=j}^{d} k_{d, j, k} V_{k}(X) V_{d-k+j}(Y) \tag{1.4}
\end{equation*}
$$

where \mathcal{G}_{d} is the group of rigid motions in $\mathbb{R}^{d}, \mathrm{~d} g$ is the element of its normalized Haar measure and $k_{d, j, k}$ is a known constant for $j=0, \ldots, d$, cf. [11].

Note that the Crofton formula requires integration over all j-dimensional affine sections of X. For applications, e.g. in microscopy, random affine sections may not be optimal. As an example, by sectioning a biological cell through a centrally placed nucleus, one obtains images with better contrast than in the case of peripheral sections, cf. [9] and the references therein.

In local stereology, the focus is on integral geometric identities involving sections through a fixed point, i.e. formulae of the form

$$
\begin{equation*}
\beta(X)=\int_{\mathcal{L}_{j}^{d}} \alpha\left(X \cap L_{j}\right) \mathrm{d} L_{j}^{d} \tag{1.5}
\end{equation*}
$$

where integration is over the set \mathcal{L}_{j}^{d} of all j-dimensional linear subspaces of \mathbb{R}^{d} and $\mathrm{d} L_{j}^{d}$ is the element of the rotation invariant measure on \mathcal{L}_{j}^{d}. As opposed to classical stereology, no equivalent of the Crofton formula, where both α and β in (1.5) are intrinsic volumes, exist in local (or rotational) stereology. Nevertheless, as we shall see, rotational version of the Crofton formula can be derived, in particular when either α or β are intrinsic volumes.

A well-known classical result in local stereology is the Blashcke-Petkantschin formula, cf. [8]. Under mild assumptions, the following formula holds for any non-negative measurable function $g: \mathbb{R}^{d} \times \mathcal{L}_{j}^{d} \rightarrow \mathbb{R}_{+}$,

$$
\begin{equation*}
\int_{\partial X} \int_{\mathcal{L}_{j(1)}^{d}} g\left(x, L_{j}\right) \mathrm{d} L_{j(1)}^{d} \mathcal{H}^{d-1}(\mathrm{~d} x)=\int_{\mathcal{L}_{j}^{d}} \int_{\partial X \cap L_{j}} g\left(x, L_{j}\right) \frac{|x|^{d-j}}{\mathcal{G}\left(\operatorname{Tan}(X, x), L_{j}\right)} \mathcal{H}^{j-1}(\mathrm{~d} x) \mathrm{d} L_{j}^{d} \tag{1.6}
\end{equation*}
$$

cf. [8, Lemma 5.5] and [11, Section 7.2]. Here, $\mathcal{L}_{j(1)}^{d}$ denotes the set of j-dimensional subspaces containing the line through the origin spanned by x and $\mathrm{d} L_{j(1)}^{d}$ is the element of

Figure 1.2: (Left) Arbitrary line transects of a liver cell. (Right) Line transects passing through a fixed point of the liver cell.
the rotation invariant measure keeping this line fixed. For any two linear subspaces L and $L^{\prime}, \mathcal{G}\left(L, L^{\prime}\right)$ can be regarded as a generalized sinus of the angle between L and L^{\prime}. A precise definition of \mathcal{G} is provided in Paper A. Recalling the definition of the k th intrinsic volume in (1.2) and inserting $g\left(x, L_{j}\right)=c_{k}\left(X \cap L_{j}, x\right) \frac{\mathcal{G}\left(\operatorname{Tan}(X, x), L_{j}\right)}{|x|^{d-j}}$ in the Blaschke-Petkantschin formula, we obtain an identity involving the rotational average $\int_{\mathcal{L}_{j}^{d}} V_{k}\left(X \cap L_{j}\right) \mathrm{d} L_{j}^{d}$,

$$
\begin{align*}
\int_{\mathcal{L}_{j}^{d}} & V_{k}\left(X \cap L_{j}\right) \mathrm{d} L_{j}^{d} \\
& =\frac{1}{\sigma_{d-k}} \int_{\partial X} \frac{1}{|x|^{d-j}} \int_{\mathcal{L}_{j(1)}^{d}} c_{k}\left(X \cap L_{j}, x\right) \mathcal{G}\left(\operatorname{Tan}(X, x), L_{j}\right) \mathrm{d} L_{j(1)}^{d} \mathcal{H}^{d-1}(\mathrm{~d} x) . \tag{1.7}
\end{align*}
$$

However, both sides of the equality are expressed in terms of curvatures measured on the j-dimensional linear sections of X - this fact renders the above identity unsatisfactory from a stereological point of view. Recently in [9], Jensen and Rataj made a new step toward finding a rotational version of the Crofton formula. When the boundary of X is sufficiently smooth and under mild assumptions on the choice of origo, the rotational average takes the following form,

$$
\begin{equation*}
\int_{\mathcal{L}_{j}^{d}} V_{k}\left(X \cap L_{j}\right) \mathrm{d} L_{j}^{d}=\int_{\partial X} \sum_{\substack{I \subseteq\{1, \ldots, d-1\} \\|I|=j-1-k}} w_{I, j, k}^{d}(x) \prod_{i \in I} \kappa_{i}(x) \mathcal{H}^{d-1}(\mathrm{~d} x), \tag{1.8}
\end{equation*}
$$

where $w_{I, j, k}$ is a non-negative function defined on ∂X. Note that the right-hand side involves curvatures measured on the original object X, as opposed to the representation given in (1.7) by the Blaschke-Petkantschin formula. Also, it was shown in [9] that the weight functions $w_{I, j, k}^{d}$ are given by

$$
\begin{equation*}
w_{I, j, k}^{d}(x)=\frac{1}{\sigma_{j-k}|x|^{d-j}} \int_{\mathcal{L}_{j(1)}^{d}} \frac{\mathcal{G}\left(A_{I}, L_{j}\right)^{2}}{\left|p\left(n \mid L_{j}\right)\right|^{I I+1}} \mathrm{~d} L_{j(1)}^{d}, \tag{1.9}
\end{equation*}
$$

where $n=n(x)$ is the outer unit normal to ∂X at x and $A_{I}(x)$ is the linear subspace spanned by the principal directions of curvature $a_{i}(x)$ with $i \notin I$. A closed form of $\omega_{I, j, k}^{d}$ was derived in [9] for the particular cases $|I|=0$ and $|I|=d-2$.

In the present thesis, we will derive a closed form of the weight functions $\omega_{I, j, k}^{d}$, valid for all possible I, j and k (Paper A), address the 'opposite' problem of expressing intrinsic volumes as rotational averages (Paper B), define flagged intrinsic volumes that can be espressed as rotational averages of flagged intrinsic volumes defined on sections (Paper C) and present a number of integral geometric formulae that have proved useful in the development of the results in the previous papers (Paper D).

2 Results

The purpose of the present chapter is to give an overview of the main results obtained in this thesis.

2.1 Closed form of the weight functions

In Paper A, we derive an explicit expression for the weight functions $\omega_{I, j, k}^{d}$ valid for all possible values of the indices j and k. The expression involves hypergeometric functions (or Gauss hypergeometric series) defined for $a, b, c \in \mathbb{R}$ and $z \in[-1,1]$ as

$$
F(a, b ; c ; z)=F(b, a ; c ; z):=\sum_{k=0}^{\infty} \frac{(a)_{k}(b)_{k}}{(c)_{k}} \frac{z^{k}}{k!}
$$

where $(x)_{k}$ is the rising sequential product or Pochhammer symbol defined for a nonnegative integer k and $x \in \mathbb{R}$ by

$$
(x)_{k}:= \begin{cases}\frac{\Gamma(x+k)}{\Gamma(x)} & \text { if } x>0 \\ (-1)^{k} \frac{\Gamma(-x+1)}{\Gamma(-x-k+1)} & \text { if } x \leq 0 .\end{cases}
$$

For all integers $0 \leq k<j<d, j \geq 2$, it is shown in Paper A, using extensive geometric measure theory, that $\omega_{I, j, k}^{d}$ can be expressed as

$$
\begin{equation*}
\omega_{I, j, k}^{d}(x)=C_{d, k, j}|x|^{j-d}\left[f_{1}(\beta(x))+f_{2}(\beta(x)) \cos ^{2} \alpha_{I}(x)\right] \tag{2.1}
\end{equation*}
$$

where $C_{d, k, j}$ is a known constant, $\alpha_{I}(x)=\angle\left(x, A_{I}(x)\right)$ and $\beta(x)=\angle(x, n)$. Whenever x and n are in general position, f_{1} and f_{2} are defined as

$$
f_{1}(\beta(x))=(d+k-j) F\left(\frac{j-k}{2}, \frac{d-j}{2} ; \frac{d+1}{2} ; \sin ^{2} \beta(x)\right)
$$

and

$$
\begin{aligned}
f_{2}(\beta(x))=(j & \left.-d-(d-1) \cot ^{2} \beta\right) F\left(\frac{j-k}{2}, \frac{d-j}{2} ; \frac{d+1}{2} ; \sin ^{2} \beta(x)\right) \\
& +(d-1) \cot ^{2} \beta F\left(\frac{j-k}{2}, \frac{d-j}{2} ; \frac{d-1}{2} ; \sin ^{2} \beta(x)\right)
\end{aligned}
$$

In other particular cases, e.g. when $j \leq 2$ or when x and n are perpendicular or parallel, the expression (2.1) becomes even simpler, cf. Paper A. Moreover, when extra assumptions are made on the shape of the body X, the rotational integral (1.8) can be simplified even more. At locally spherical boundary points $x \in \partial X$, where $\kappa_{i}(x)=\kappa(x), i=1, \ldots, d-1$, the integrand of (1.8) is equal to

$$
\kappa(x)^{j-1-k} \sum_{\substack{I \subseteq\{1, \ldots, d-1\} \\|I|=j-1-k}} w_{I, j, k}^{d}(x) .
$$

In Paper A, it was shown that the above sum has a surprisingly simple expression

$$
\sum_{\substack{I \subseteq\{1, \ldots, d-1\} \\|I|=j-1-k}} w_{I, j, k}(x)=\frac{c_{d-1, j-1}}{\sigma_{j-k}}\binom{j-1}{k}|x|^{j-d} F\left(\frac{j-k-2}{2}, \frac{d-j}{2} ; \frac{d-1}{2} ; \sin ^{2} \beta(x)\right)
$$

Figure 2.1: The special case where X is a disjoint union of spheres.
where $c_{d-1, j-1}$ is a known constant. Thus, whenever X is a disjoint union of spheres, the rotational average over all j-dimensional sections becomes

$$
\begin{aligned}
& \int_{\mathcal{L}_{j}^{d}} V_{k}\left(X \cap L_{j}\right) \mathrm{d} L_{j}^{d} \\
& \quad=\int_{\partial X} \frac{c_{d-1, j-1}}{\sigma_{j-k}}\binom{j-1}{k}|x|^{j-d} F\left(\frac{j-k-2}{2}, \frac{d-j}{2} ; \frac{d-1}{2} ; \sin ^{2} \beta\right) \kappa(x)^{j-1-k} \mathcal{H}^{d-1}(\mathrm{~d} x) .
\end{aligned}
$$

However, a more insightful representation of the weight functions $\omega_{I, j, k}^{d}$ first became apparent under the study of the 'opposite' problem of finding functionals whose rotational averages are equal to intrinsic volumes.

2.2 Expressing intrinsic volumes as rotational integrals

As we have seen, the rotational average $\int_{\mathcal{L}_{j}^{d}} V_{k}\left(X \cap L_{j}\right) \mathrm{d} L_{j}^{d}$ is a complicated geometric measure depending on the principal curvatures and their principal directions of the set X. In contrast to Crofton's classical formula, it has no simple interpretation as an intrinsic volume of X in general.

In Paper B, we address the problem of finding functionals defined on $X \cap L_{j}$ with rotational average equal to the intrinsic volumes of X. More specifically, the problem is to find, for each $j=0,1, \ldots, d$ and $k=0,1, \ldots, j$, a functional $\alpha_{d, k}^{j}$ satisfying the geometric equation

$$
\begin{equation*}
\int_{\mathcal{L}_{j}^{d}} \alpha_{d, k}^{j}\left(X \cap L_{j}\right) \mathrm{d} L_{j}^{d}=V_{d-k}(X) . \tag{2.2}
\end{equation*}
$$

Once again, the Blashcke-Petkantschin formula suggests a solution to this equation. By inserting $g\left(x, L_{j}\right)=c_{k}(X, x)$ in formula (1.6) and combining with (1.2), we obtain

$$
\sigma_{d-k} c_{d-1, j-1} V_{k}(X)=\int_{\mathcal{L}_{j}^{d}} \int_{\partial X \cap L_{j}} \frac{|x|^{d-j}}{\mathcal{G}\left(\operatorname{Tan}(X, x), L_{j}\right)} c_{k}(X, x) \mathcal{H}^{j-1}(\mathrm{~d} x) \mathrm{d} L_{j}^{d} .
$$

Sadly, the inner integral in the last expression depends on information outside the intersecting subspace L_{j} and therefore, it cannot be considered, from a stereological perspective, as a viable solution to (2.2). We showed in Paper B that a more satisfactory solution to (2.2) is the functional $\alpha_{d, k}^{j}$ defined for all $j=0,1, \ldots, d, k=0,1, \ldots, j$, by

$$
\begin{equation*}
\alpha_{d, k}^{j}(Y)=\frac{1}{c_{d, j-1, j-k-1}} \int_{\mathcal{F}_{j-1}^{j}} V_{j-k-1}\left(Y \cap F_{j-1}\right) d\left(O, F_{j-1}\right)^{d-j} \mathrm{~d} F_{j-1}^{j} \tag{2.3}
\end{equation*}
$$

Here, Y is a compact subset of \mathbb{R}^{j} satisfying some regularity conditions and d is the distance function. Furthermore, in Paper B, a more explicit expression of $\alpha_{j, k}$ was obtained for $k=0$,

$$
\alpha_{d, 0}^{j}(Y)=\frac{1}{c_{d-1, j-1}} \int_{Y}|z|^{d-j} \mathrm{~d} z^{j}
$$

and for $k=1$,

$$
\begin{equation*}
\alpha_{d, 1}^{j}(Y)=\frac{1}{2 c_{d-1, j-1}} \int_{\partial Y}|z|^{d-j} F\left(-\frac{1}{2},-\frac{d-j}{2} ; \frac{j-1}{2} ; \sin ^{2}(n, z)\right) \mathcal{H}^{j-1}(\mathrm{~d} z) . \tag{2.4}
\end{equation*}
$$

Motivated by the results obtained in Paper B for $\alpha_{d, 0}^{j}$ and $\alpha_{d, 1}^{j}$, our new goal was to derive, for all $\alpha_{d, k}^{j}$, the corresponding integral representation over the boundary of X.

2.3 A rotational Crofton formula for flagged intrinsic volumes of sets of positive reach

In Paper C, we give an explicit expression for $\alpha_{d, k}^{j}(X)$ as an integral over the boundary of the section $X \cap L_{j}$, for all $1 \leq k<j$, or, as an integral over $X \cap L_{j}$, when $k=0$. If the boundary of X is smooth, we obtain, under mild assumptions on the choice of origo,

$$
\begin{equation*}
\alpha_{d, k}^{j}\left(X \cap L_{j}\right)=\int_{\partial X \cap L_{j}} \sum_{\substack{I \subseteq\{1, \ldots, j-1\} \\|I|=k-1}} w_{I, d, d-k}^{j}(x) \prod_{i \in I} \kappa_{i}(x) \mathcal{H}^{j-1}(\mathrm{~d} x) \tag{2.5}
\end{equation*}
$$

where the weight functions $w_{I, d, d-k}^{j}$ are similar to those found above. This connection between (1.8) and (2.5) led us to define flagged intrinsic volumes.

Flagged intrinsic volumes: Let $Y \in \mathbb{R}^{r}$ be a compact set with smooth boundary. Define for all $k=1, \ldots, r, r \geq 1$ and $j \geq k$,

$$
\alpha_{j, 0}^{r}(Y):=\frac{1}{c_{j-1, r-1}} \int_{Y}|x|^{j-r} \mathrm{~d} y^{r}
$$

and

$$
\alpha_{j, k}^{r}(Y):=K_{j, k}^{r} \int_{\partial Y}|x|^{j-r} \sum_{\substack{|I|=k-1 \\ I \subset\{1, \ldots, r-1\}}} \prod_{i \in I} \kappa_{i}(x, n) Q_{j, k}^{r}\left(x, n, A_{I}\right) \mathcal{H}^{r-1}(\mathrm{~d} x)
$$

where

$$
\begin{aligned}
Q_{j, k}^{r}\left(x, n, A_{I}\right):= & F\left(-\frac{j-r}{2}, \frac{k}{2} ; \frac{r+1}{2} ; \sin ^{2}(x, n)\right) \\
& +\frac{(j-r)(r-k+1)}{r+1} \frac{\cos ^{2}\left(x, A_{I}\right)}{r-k} F\left(-\frac{j-r}{2}+1, \frac{k}{2} ; \frac{r+3}{2} ; \sin ^{2}(x, n)\right)
\end{aligned}
$$

and

$$
K_{j, k}^{r}:=\frac{1}{\sigma_{k} c_{j-1, r-1}} \frac{\Gamma(r-k+1) \Gamma(j)}{\Gamma(r) \Gamma(j-k+1)}
$$

Here, $A_{I}=\operatorname{span}\left\{a_{i}: i \notin I\right\}$ and, for the special case $r=k$, we set $\frac{\cos ^{2}\left(x, A_{\{1, \ldots, r-1\}}\right)}{0}:=1$. Note that $c_{j-1, r-1}:=\frac{1}{c_{r-1, j-1}}$ for $j<r$.

The appellation 'flagged intrinsic volumes' is motivated by the concept of flag spaces, cf. [11], and the fact that flagged intrinsic volumes are identical to classical intrinsic volumes for particular values of their indices:

$$
\alpha_{r, k}^{r}(Y)=\frac{1}{\sigma_{k}} \int_{\partial Y} \sum_{\substack{|J|=k-1 \\ J \subset\{1, \ldots, r-1\}}} \prod_{j \in J} \kappa_{j} \mathrm{~d} \mathcal{H}^{r-1}=V_{r-k}(Y),
$$

for $k=1, \ldots, r$, and

$$
\alpha_{r, 0}^{r}(Y)=\int_{Y} \mathcal{H}^{r}(\mathrm{~d} x)=V_{r}(Y),
$$

for any compact set $Y \in \mathbb{R}^{r}$ with smooth boundary. Note that in Paper C, our results are formulated and proved in the more general setup of sets having positive reach. As a consequence, the combination of the two key results (1.8) and (2.5) yields the following proposition, under mild assumptions on the choice of origo.

Rotational Crofton Formula: Let $X \subset \mathbb{R}^{d}$ be a compact subset of positive reach. Then,

$$
\alpha_{j, k}^{d}(X)=c_{d-r, j-r} \int_{\mathcal{L}_{r}^{d}} \alpha_{j, k}^{r}\left(X \cap L_{r}\right) \mathrm{d} L_{r},
$$

for all $0 \leq k<r \leq j \leq d$.

Notice that the last statement is a natural generalization of the results obtained in [9] and in Paper B.

2.4 Integral geometric formulae

The resolution of the geometric problems mentioned above involves computation of complicated geometric integrals, and the task of expressing those integrals in explicit forms is indispensable for making the formulae manageable for applications. Moreover, the complexity of the integral formulae obtained makes it difficult and time-consuming to check their validity. With that in mind, we have developed integral geometric tools that have proved useful for deriving the results in Paper A, B and C. Paper D contains several such useful original identities, involving the area and co-area formulae. One of the main results is a relation between integrals over the unit sphere contained in different linear subspaces of \mathbb{R}^{d}. It is formulated below.

Let $B_{p} \in \mathcal{L}_{p}^{d}$ and $A_{q} \in \mathcal{L}_{q}^{d}$ such that $A_{q} \cap\left(B_{p}^{\perp} \cap A_{q}\right)^{\perp}=p$. Define the mapping

$$
\begin{gathered}
\psi: S^{q-1}\left(A_{q}\right) \rightarrow S^{p-1}\left(B_{p}\right) \\
x \mapsto \frac{p\left(x \mid B_{p}\right)}{\left|p\left(x \mid B_{p}\right)\right|}=x_{0}
\end{gathered}
$$

Let a_{1}, \ldots, a_{d-q} be an orthonormal basis of A_{q}^{\perp}. Then, for almost all $x \in S^{q-1}\left(A_{q}\right)$, the ($p-1$)-dimensional Jacobian of ψ is

$$
J_{p-1} \psi(x)=\frac{\prod_{i=1}^{d-q} \sqrt{\sin ^{2} \theta_{i}+\cos ^{2} \theta_{i} \cos ^{2}\left(\pi\left(x \mid B_{p}\right), \pi\left(a_{i} \mid B_{p}\right)\right)}}{\left|p\left(u \mid B_{p}\right)\right|^{p-1}}
$$

where $\theta_{i}=\angle\left(a_{i}, B_{p}\right) \quad\left(\right.$ set $\angle\left(\pi\left(x \mid B_{p}\right), \pi\left(a_{i} \mid B_{p}\right)\right)=0$ when $\left.a_{i} \perp B_{p}\right)$.

This result is a general formulation of several integral geometric identities which were used extensively in [9] and also in Paper A. The second important result in Paper D is again an integral geometric formula, which has been the key to our boundary integral representation of a solution to the aforementioned 'opposite' problem, cf. Paper B.

Let $x, y \in S^{d-1}$ and $m, n \in \mathbb{N}$. Then,

$$
\begin{aligned}
\int_{S^{d-1}} & {\sqrt{1-(x \cdot \omega)^{2}}}^{m}|y \cdot \omega|^{n} \mathrm{~d} \omega \\
& =\sigma_{d-1} B\left(\frac{n+1}{2}, \frac{m}{2}+\frac{d-1}{2}\right) F\left(-\frac{m}{2},-\frac{n}{2} ; \frac{d-1}{2} ; \sin ^{2} \angle(x, y)\right) .
\end{aligned}
$$

Later, we found a generalized version that proved to be an indispensable tool for the definition of the flagged intrinsic volumes.

Let x, y and z be unit vectors in \mathbb{R}^{d} with $y \perp z$ and let $a, b, c \in \mathbb{Z}$. Then, if $x \neq y$ and $x \notin y^{\perp}$, the following identity holds,

$$
\begin{aligned}
& \int_{S^{d-1}}|x \cdot \omega|^{a}{\sqrt{1-(y \cdot \omega)^{2}}}^{b}|z \cdot \omega|^{c} \mathrm{~d} \omega^{d-1} \\
& =\sigma_{d-2}|x \cdot y|^{a} B\left(\frac{a}{2}+\frac{1}{2}, \frac{b+c+d-1}{2}\right) B\left(\frac{c}{2}+\frac{1}{2}, \frac{d-2}{2}\right) \\
& \quad \times \sum_{s=0}^{\infty} \frac{\left(-\frac{a}{2}\right)_{s}\left(\frac{b+c+d-1}{2}\right)_{s}}{\left(\frac{c+d-1}{2}\right)_{s}} \frac{(-1)^{s}}{s!} \tan ^{2 s}(x, y) F\left(-s,-\frac{c}{2} ; \frac{1}{2} ; \frac{\cos ^{2}(x, z)}{\sin ^{2}(x, y)}\right)
\end{aligned}
$$

whenever both sides of the equation converge.

2.5 Discussion on a rotational kinematic formula

As mentioned earlier, a well-known result of classical integral geometry, the kinematic formula, states, for any two convex bodies K and M, that

$$
\begin{equation*}
\int_{\mathcal{G}_{d}} V_{j}(K \cap g M) \mathrm{d} g=\sum_{k=j}^{d} k_{d, j, k} V_{k}(K) V_{d-k+j}(M) \tag{2.6}
\end{equation*}
$$

where \mathcal{G}_{d} is the group of rigid motions in \mathbb{R}^{d} and $k_{d, j, k}$ is a known constant. The kinematic formula can easily be proven using the Crofton formula and Hadwiger's characterization theorem. Is it possible to derive a rotational kinematic formula? A characterization theorem such as the one formulated by Hadwiger does not yet exist in rotational integral geometry, even though Alesker came very close to such a result in [2] and the erratum to match, cf. [3]. Thus, for the time being, other strategies must be employed in order to prove a potential rotational kinematic formula. For the rest of this section, we derive such a formula in two special cases.

Let K and M be d-dimensional compact convex sets in \mathbb{R}^{d}. We shall examine integrals of the type

$$
\begin{equation*}
\int_{\mathrm{SO}_{d}} V_{k}(K \cap \rho M) \mathrm{d} \rho, \tag{2.7}
\end{equation*}
$$

where SO_{d} is the group of rotations in \mathbb{R}^{d}. For simplicity, we set the total measure of SO_{d} to be 1. In the special case $k=d$, a simple expression for (2.7) can be derived. First, note that

$$
\int_{S O_{d}} V_{d}(K \cap \rho M) \mathrm{d} \rho=\int_{S O_{d}} \int_{\mathbb{R}^{d}} 1_{K \cap \rho M}(x) \mathrm{d} x^{d} \mathrm{~d} \rho=\int_{\mathbb{R}^{d}} 1_{K}(x) \int_{S O_{d}} 1_{\rho M}(x) \mathrm{d} \rho \mathrm{~d} x^{d}
$$

Recalling that the group of rotations acts transitively on the unit sphere and that the surface area of a d-dimensional convex body is $2 V_{d-1}$, we obtain

$$
\begin{aligned}
\int_{S O_{d}} & 1_{\rho M}(x) \mathrm{d} \rho=\int_{S O_{d}} 1_{M}\left(\rho^{-1} x\right) \mathrm{d} \rho \\
& =\int_{S O_{d}} 1_{\frac{1}{|x|} M \cap S^{d-1}}\left(\rho \frac{x}{|x|}\right) \mathrm{d} \rho \\
& =2|x|^{-(d-1)} V_{d-1}\left(M \cap|x| S^{d-1}\right),
\end{aligned}
$$

Hence,

$$
\int_{S O_{d}} V_{d}(K \cap \rho M) \mathrm{d} \rho=2 \int_{K}|x|^{-(d-1)} V_{d-1}\left(M \cap|x| S^{d-1}\right) \mathrm{d} x^{d}
$$

and an application of the coarea formula with $g(x)=|x|$ yields

$$
\begin{align*}
\int_{S O_{d}} V_{d}(K \cap \rho M) \mathrm{d} \rho & =2 \int_{0}^{\infty} \int_{K \cap g^{-1}(r)}|x|^{-(d-1)} V_{d-1}\left(M \cap|x| S^{d-1}\right) \mathrm{d} x^{d-1} \mathrm{~d} r \\
& =4 \int_{0}^{\infty} r^{-(d-1)} V_{d-1}\left(K \cap r S^{d-1}\right) V_{d-1}\left(M \cap r S^{d-1}\right) \mathrm{d} r \tag{2.8}
\end{align*}
$$

Assuming $\partial K \cap \rho M$ has ($d-1$)-dimensional Hausdorff measure 0 for almost all $\rho \in \mathrm{SO}_{d}$, a similar result can be obtained in the case $k=d-1$. We find

$$
\begin{aligned}
\int_{S O_{d}} V_{d-1}(K \cap \rho M)= & \int_{S O_{d}}\left[\int_{\partial K \cap \rho M} \mathrm{~d} x^{d-1}+\int_{\partial M \cap \rho^{-1} K} \mathrm{~d} x^{d-1}\right] \mathrm{d} \rho \\
= & 2 \int_{\partial K}|x|^{-(d-1)} V_{d-1}\left(M \cap|x| S^{d-1}\right) \mathrm{d} x^{d-1} \\
& +2 \int_{\partial M}|x|^{-(d-1)} V_{d-1}\left(K \cap|x| S^{d-1}\right) \mathrm{d} x^{d-1} .
\end{aligned}
$$

and, once again, the coarea formula implies

$$
\begin{align*}
\int_{S O_{d}} V_{d-1}(K \cap \rho M)=4 & \int_{0}^{\infty} r^{-(d-1)}\left[V_{d-2}\left(\partial K \cap r S^{d-1}\right) V_{d-1}\left(M \cap r S^{d-1}\right)\right. \\
& \left.+V_{d-2}\left(\partial M \cap r S^{d-1}\right) V_{d-1}\left(K \cap r S^{d-1}\right)\right] \mathrm{d} r \tag{2.9}
\end{align*}
$$

Thus, in the very special case $d=2$,

$$
\int_{S O_{2}} V_{1}(K \cap \rho M) \mathrm{d} \rho=4 \int_{0}^{\infty} \frac{\chi\left(\partial K \cap r S^{1}\right) V_{1}\left(M \cap r S^{1}\right)+\chi\left(\partial M \cap r S^{1}\right) V_{1}\left(K \cap r S^{1}\right)}{r} \mathrm{~d} r
$$

Similar formulae for $k<d-1$ remain to be studied. Notice that the two identities (2.8) and (2.9) suggest that results from spherical integral geometry may be helpful in such an endeavour, cf. [11, Section 6.5].

3 References

[1] Abramowitz, A. and Stegun, I.A. (1968): Handbook of Mathematical Functions. Dover Publications, New York.
[2] Alesker, S. (1999): Continuous rotation invariant valuations on convex sets. Ann. Math. 149, 977-1005.
[3] Alesker, S. (2007): Erratum: "Continuous rotation invariant valuations on convex sets". Ann. Math. 166, 947-948.
[4] Auneau-Cognacq, J., Jensen, E.B.V. and Rataj, J. (2010): Closed form of the rotational Crofton formula. Submitted.
[5] Baddeley, A.J. and Jensen, E.B.V. (2005): Stereology for Statisticians. Monographs on Statistics and Applied Probability 103. Chapman \& Hall/CRC, Boca Raton.
[6] Gual-Arnau, X. and Cruz-Orive, L.M. (2009): A new expression for the density of totally geodesic submanifolds in space forms, with stereological applications. Differential Geom. Appl. 27, 124-128.
[7] Hadwiger, H. (1957): Vorlesungen über Inhalt, Oberfläche und Isoperimetrie. Springer, Berlin.
[8] Jensen, E.B.V. (1998): Local Stereology. World Scientific Publishing, Singapore.
[9] Jensen, E.B.V. and Rataj, J. (2008): A rotational integral formula for intrinsic volumes. Adv. Appl. Math. 41, 530-560.
[10] Santaló, L.A. (1976): Integral Geometry and Geometric Probability. Addison-Wesley, Reading, Massachusetts.
[11] Schneider, R. and Weil, W. (2008): Stochastic and Integral Geometry. Springer, Heidelberg.

Paper A

Closed form of the rotational Crofton formula

Jérémy Auneau-Cognacq, Jan Rataj and Eva B.V. Jensen

Submitted

Closed form of the rotational Crofton formula

Jérémy Auneau-Cognacq*, Jan Rataj**, Eva B. Vedel Jensen*
*Centre for Stochastic Geometry and Advanced Bioimaging
Department of Mathematical Sciences, University of Aarhus
Ny Munkegade, DK-8000 Aarhus C, Denmark
**Charles University, Faculty of Mathematics and Physics
Sokolovsk 83 , 18675 Praha 8, Czech Republic

Abstract

The closed form of a rotational version of the famous Crofton formula is derived. In the case where the sectioned object is a compact d-dimensional C^{2} manifold with boundary, the rotational average of intrinsic volumes measured on sections passing through a fixed point can be expressed as an integral over the boundary involving hypergeometric functions. In the more general case of a compact subset of \mathbb{R}^{d} with positive reach, the rotational average also involves hypergeometric functions. For convex bodies, we show that the rotational average can be expressed as an integral with respect to a natural measure on supporting flats. It is an open question whether the rotational average of intrinsic volumes studied in the present paper can be expressed as a limit of polynomial rotation invariant valuations.

Keywords: Geometric measure theory, hypergeometric functions, integral geometry, intrinsic volume, stereology

MSC: 60D05; 53C65; 52A22

1 Introduction

Local stereology is a collection of sampling designs based on sections through a reference point of the structure under study, cf. [14]. The majority of the local stereological methods has been derived in the eighties and the nineties, including methods of estimating number, length, surface area and volume. These methods have found numerous applications, in particular in the microscopic analysis of tissue samples, cf. $[8,13,15,16,20,26,28]$ and references therein. As pointed out in [11], local stereology is closely related to geometric tomography, especially to central concepts of the dual Brunn-Minkowski theory, see also [10]. Up-to-date monographs on stereology are Baddeley and Jensen [6] and Beneš and Rataj [7].

Rotational integral formulae are the fundamental tool of local stereology. A theory of rotational integral geometry, dual to the theory of translative integral geometry [25], has evolved, including rotational integral formulae for number, length, surface area and volume [14]. A basic tool in these developments has been the generalized Blaschke-Petkantschin formula, see [17] and [31]. Only very recently, rotational integral formulae have been derived for intrinsic volumes in general, cf. [4, 12, 18]. These new formulae open up the possibility for developing local stereological methods of estimating curvature (for instance, integral of mean curvature).

One of these formulae shows how rotational averages of intrinsic volumes measured on sections are related to the geometry of the sectioned object $X \subset \mathbb{R}^{d}$. The rotational average considered is of the following form

$$
\begin{equation*}
\int_{\mathcal{L}_{j}^{d}} V_{k}\left(X \cap L_{j}\right) \mathrm{d} L_{j}^{d} \tag{1}
\end{equation*}
$$

$0 \leq k \leq j \leq d$, where \mathcal{L}_{j}^{d} is the set of j-dimensional linear subspaces in \mathbb{R}^{d}, V_{k} is the k th intrinsic volume and $\mathrm{d} L_{j}^{d}$ is the element of the rotation invariant measure on \mathcal{L}_{j}^{d} with total measure

$$
\int_{\mathcal{L}_{j}^{d}} \mathrm{~d} L_{j}^{d}=c_{d, j}
$$

Here,

$$
c_{d, j}=\frac{\sigma_{d} \sigma_{d-1} \cdots \sigma_{d-j+1}}{\sigma_{j} \sigma_{j-1} \cdots \sigma_{1}}
$$

where $\sigma_{k}=2 \pi^{\frac{k}{2}} / \Gamma\left(\frac{k}{2}\right)$ is the surface area of the unit sphere in \mathbb{R}^{k}.
The rotational average (1) is an example of a rotational invariant valuation. Such valuations have been studied in recent years by Alesker [2] among others. For $k=j$, (1) is the j th dual elementary mixed volume, cf. e.g. [19], and we have

$$
\int_{\mathcal{L}_{j}^{d}} V_{j}\left(X \cap L_{j}\right) \mathrm{d} L_{j}^{d}=c_{d-1, j-1} \int_{X}|x|^{-(d-j)} \mathrm{d} x^{d}
$$

where $\mathrm{d} x^{d}$ is the element of the d-dimensional Lebesgue measure, cf. e.g. [18, (9)].
The situation is more complicated for $k<j$. Assume (for simplicity) that $X \subset \mathbb{R}^{d}$ is a compact d-dimensional C^{2} manifold with boundary. For a boundary point $x \in \partial X$, let $n(x)$ be the unit outer normal vector to X at x, let $\kappa_{i}(x), i=1, \ldots, d-1$, be the principal curvatures at $x \in \partial X$ and $a_{i}(x), i=1, \ldots, d-1$, the corresponding principal directions. In [18], it was shown under mild regularity conditions $(O \notin \partial X$ and for almost all $L_{j} \in \mathcal{L}_{j}^{d}$, there is no $x \in \partial X \cap L_{j}$ with $\left.n(x) \perp L_{j}\right)$ that the rotational average (1) is of the following form

$$
\begin{equation*}
\int_{\mathcal{L}_{j}^{d}} V_{k}\left(X \cap L_{j}\right) \mathrm{d} L_{j}^{d}=\int_{\partial X} \sum_{\substack{I \subseteq\{1, \ldots, d-1\} \\|I|=j-1-k}} w_{I, j, k}(x) \prod_{i \in I} \kappa_{i}(x) \mathcal{H}^{d-1}(\mathrm{~d} x) \tag{2}
\end{equation*}
$$

provided the integral exists. In (2), \mathcal{H}^{k} denotes the k-dimensional Hausdorff measure. The weight functions $w_{I, j, k}$ are non-negative functions defined on ∂X. The function $w_{I, j, k}(x)$ depends on the linear subspace spanned by the principal directions $a_{i}(x), i \in I$.

If X is a ball, the function $w_{I, j, k}$ is constant and the rotational average is therefore proportional to the $(d-j+k)$ th intrinsic volume of X which has the following integral representation

$$
V_{d-j+k}(X)=\frac{1}{\sigma_{j-k}} \int_{\partial X} \sum_{|I|=j-1-k} \prod_{i \in I} \kappa_{i}(x) \mathcal{H}^{d-1}(\mathrm{~d} x),
$$

cf. [24, Section 13.6] or [27, Section V.3].
In the present paper, we derive a simple closed form expression of $w_{I, j, k}$, involving hypergeometric functions. We show that $w_{I, j, k}(x)$ depends on the norm of x and of two angles: the angle $\beta(x)$ formed by x and $n(x)$, and the angle $\alpha_{I}(x)$ formed by x and
$\operatorname{span}\left\{a_{i}(x): i \notin I\right\}$. This expression allows us to understand the geometric structure of the rotational average and derive a simplified form of the integrand at the right-hand side of (2) at locally spherical boundary points. Furthermore, it will be shown that for convex bodies the rotational average can be expressed as an integral with respect to a natural measure on supporting $(j-1-k)$-dimensional flats. This result gives new insight concerning the question of characterizing rotation invariant valuations [2, 3].

The paper is organized as follows. In Section 2, we provide background knowledge on hypergeometric functions and angles of subspaces. In Section 3, the closed form expression of $w_{I, j, k}$ is presented. The proof of the result is deferred to the Section 7. In Section 4, further simplifications are derived for locally spherical boundary points. In Section 5, a reformulation of (2) is derived in terms of an integral with respect to a natural measure on supporting flats. In Section 6, we discuss the possibilities for expressing the rotation average as a limit of polynomial rotation invariant valuations.

2 Preliminaries

2.1 Hypergeometric functions

A hypergeometric function can be represented by a series of the following form

$$
F(a, b ; c ; z)=\frac{\Gamma(c)}{\Gamma(a) \Gamma(b)} \sum_{k=0}^{\infty} \frac{\Gamma(a+k) \Gamma(b+k)}{\Gamma(c+k)} \frac{z^{k}}{k!}
$$

When $a=0$ or $b=0$, the hypergeometric function is identically equal to 1 . The series converges absolutely for $|z|<1$. In case $0<b<c$, we can also represent the hypergeometric series by an integral

$$
\begin{equation*}
F(a, b ; c ; z)=\frac{1}{B(b, c-b)} \int_{0}^{1}(1-z y)^{-a} y^{b-1}(1-y)^{c-b-1} \mathrm{~d} y \tag{3}
\end{equation*}
$$

Here $B(s, t)=\Gamma(s) \Gamma(t) / \Gamma(s+t)$ is the Beta function. When $z=1$, the extra assumption $c-a-b>0$ is necessary. Transformation formulae for hypergeometric functions are often useful. In particular, we shall use the following formulae, cf. [1, (15.2.17), (15.2.20) and (15.2.24)],

$$
\begin{align*}
& (c-a-1) F(a, b ; c ; z)+a F(a+1, b ; c ; z)=(c-1) F(a, b ; c-1 ; z) \tag{4}\\
& c(1-z) F(a, b ; c ; z)+(c-b) z F(a, b ; c+1 ; z)=c F(a-1, b ; c ; z) \tag{5}\\
& b F(a, b+1 ; c ; z)=(c-1) F(a, b ; c-1 ; z)-(c-b-1) F(a, b ; c ; z) \tag{6}
\end{align*}
$$

We shall also use the following integral representation which can be obtained from (3), using the substitution $y=r^{2} /\left(1+r^{2}\right)$

$$
\begin{equation*}
\int_{0}^{\infty}\left(1-z+\frac{z}{1+r^{2}}\right)^{-a}\left(r^{2}\right)^{b-\frac{1}{2}}\left(1+r^{2}\right)^{-c} \mathrm{~d} r=\frac{1}{2} B(b, c-b) F(a, b ; c ; z) \tag{7}
\end{equation*}
$$

This integral representation is valid under the same assumptions as in (3).

2.2 Angle of subspaces

For $x_{1}, \ldots, x_{p} \in \mathbb{R}^{d}, p \leq d$, we let $P\left(x_{1}, \ldots, x_{p}\right)$ be the parallelotope spanned by x_{1}, \ldots, x_{p},

$$
P\left(x_{1}, \ldots, x_{p}\right)=\left\{\lambda_{1} x_{1}+\cdots+\lambda_{p} x_{p}: 0 \leq \lambda_{i} \leq 1, i=1, \ldots, p\right\} .
$$

We denote its p-dimensional volume by

$$
\nabla_{p}\left(x_{1}, \ldots, x_{p}\right)=\mathcal{H}^{p}\left(P\left(x_{1}, \ldots, x_{p}\right)\right)
$$

This quantity equals the norm of the corresponding p-vector $x_{1} \wedge \cdots \wedge x_{p}$.
Definition [30, p. 532]. Let $L_{p} \in \mathcal{L}_{p}^{d}$ and $L_{q} \in \mathcal{L}_{q}^{d}$. Choose an orthonormal basis of $L_{p} \cap L_{q}$ and extend it to an orthonormal basis of L_{p} and an orthonormal basis of L_{q}. Then, $\mathcal{G}\left(L_{p}, L_{q}\right)$ is the d-dimensional volume of the parallelotope spanned by these vectors.

For any two linear subspaces L_{p} and $L_{q}, \mathcal{G}\left(L_{p}, L_{q}\right)$ can be regarded as a generalized sinus of the angle between L_{p} and L_{q}. In particular, for $d=3$ and $0<p, q<d$, it is easy to show that $\mathcal{G}\left(L_{p}, L_{q}\right)$ is simply $|\sin \alpha|$ where α is the angle between L_{p} and L_{q}.

If $\operatorname{dim}\left(L_{p}+L_{q}\right)<d$ then $\mathcal{G}\left(L_{p}, L_{q}\right)=0$. In the case $\operatorname{dim}\left(L_{p}+L_{q}\right)=d$ and either $p=0$ or $q=0$, then $\mathcal{G}\left(L_{p}, L_{q}\right)=1$. Finally, if $\operatorname{dim}\left(L_{p}+L_{q}\right)=d$ and $0<p, q<d$, we can choose orthonormal bases for

$$
\begin{aligned}
& L_{p} \cap L_{q}: a_{1}, \ldots, a_{p+q-d} \\
& L_{p} \cap\left(L_{p} \cap L_{q}\right)^{\perp}: b_{1}, \ldots, b_{d-q} \\
& L_{q} \cap\left(L_{p} \cap L_{q}\right)^{\perp}: c_{1}, \ldots, c_{d-p} .
\end{aligned}
$$

Then,

$$
\begin{aligned}
& \mathcal{G}\left(L_{p}, L_{q}\right)=\nabla_{d}\left(a_{1}, \ldots, a_{p+q-d}, b_{1}, \ldots, b_{d-q}, c_{1}, \ldots, c_{d-p}\right) \\
& \quad=\nabla_{d-q}\left(p\left(b_{1} \mid L_{q}^{\perp}\right), \ldots, p\left(b_{d-q} \mid L_{q}^{\perp}\right)\right) \\
& \quad=\nabla_{d-p}\left(p\left(c_{1} \mid L_{p}^{\perp}\right), \ldots, p\left(c_{d-p} \mid L_{p}^{\perp}\right)\right),
\end{aligned}
$$

cf. [14, Proposition 2.13 and 2.14].
If both L_{p} and L_{q} are contained in a subspace L_{r} of \mathbb{R}^{d}, we can consider the \mathcal{G}-function relatively in L_{r}. This will be denoted by $\mathcal{G}^{\left(L_{r}\right)}\left(L_{p}, L_{q}\right)$. If $L_{p} \perp x\left(x \in \mathbb{R}^{d}, x \neq O\right)$, then the following identity holds, cf. [14, Proposition 5.1],

$$
\begin{equation*}
\mathcal{G}\left(L_{p}, L_{q}\right)=\cos \angle\left(x, L_{q}\right) \mathcal{G}^{\left(x^{\perp}\right)}\left(L_{p}, L_{q} \cap x^{\perp}\right) \tag{8}
\end{equation*}
$$

where x^{\perp} is the orthogonal complement to the linear subspace spanned by x.
The integral over the whole Grassmannian of the squared \mathcal{G}-function is constant

$$
\begin{equation*}
\int_{\mathcal{L}_{i}^{d}} \mathcal{G}\left(L_{i}, L_{j}\right)^{2} \mathrm{~d} L_{i}^{d}=K_{i j}^{d} c_{d, i}, \tag{9}
\end{equation*}
$$

where $K_{i j}^{d}=\frac{i!j!}{d!(i+j-d)!}$ if $i+j \geq d$ and 0 otherwise, see e.g. [21, Lemma 4.3].

3 The closed form of $w_{I, j, k}$

We shall formulate the main result, the closed form of $w_{I, j, k}$, for a compact set X with positive reach, in order to cover both important applications, convex bodies and sets with C^{2} smooth boundary. The reader can for his/her convenience always imagine one of these two particular cases.

Let $X \subset \mathbb{R}^{d}$ be a compact set with positive reach and let nor X denote its unit normal bundle. Let $\kappa_{1}(x, n), \ldots, \kappa_{d-1}(x, n)$ be the principal curvatures and $a_{1}(x, n), \ldots, a_{d-1}(x, n)$ the corresponding principal directions defined almost everywhere on $(x, n) \in$ nor X, see [18] for further details. If X is smooth, then the unit normal $n=n(x)$ is a function of $x \in \partial X$ and

$$
\operatorname{nor} X=\{(x, n(x)): x \in \partial X\}
$$

Hence, all the functions defined on the unit normal bundle nor X can be considered as functions on ∂X.

In [18, Theorem], it was shown for $0 \leq k<j \leq d$ that, under the following assumptions
(A1) $O \notin \partial X$,
(A2) for almost all $L_{j} \in \mathcal{L}_{j}^{d}$, there is no $(x, n) \in \operatorname{nor} X$ with $x \in L_{j}$ and $n \perp x$,
the rotational integral equals

$$
\begin{align*}
\int_{\mathcal{L}_{j}^{d}} & V_{k}\left(X \cap L_{j}\right) \mathrm{d} L_{j}^{d} \\
& =\int_{\operatorname{nor} X} \sum_{\substack{I \subseteq\{1, \ldots, d-1\} \\
|I|=j-1-k}} w_{I, j, k}(x, n) \frac{\prod_{i \in I} \kappa_{i}(x, n)}{\prod_{i=1}^{d-1} \sqrt{1+\kappa_{i}^{2}(x, n)}} \mathcal{H}^{d-1}(\mathrm{~d}(x, n)) \tag{10}
\end{align*}
$$

provided that the integral exists. Here,

$$
\begin{equation*}
w_{I, j, k}(x, n)=\sigma_{j-k}^{-1}|x|^{j-d} Q_{j}\left(x, n, A_{I}(x, n)\right), \tag{11}
\end{equation*}
$$

where

$$
A_{I}(x, n)=\operatorname{span}\left\{a_{i}(x, n): i \notin I\right\} \in \mathcal{L}_{d-1-|I|}^{d}
$$

For $A_{q} \in \mathcal{L}_{q}^{d}$, the function Q_{j} is defined as the following integral

$$
\begin{equation*}
Q_{j}\left(x, n, A_{q}\right)=\int_{\mathcal{L}_{j(1)}^{d}} \frac{\mathcal{G}\left(L_{j}, A_{q}\right)^{2}}{\left|p\left(n \mid L_{j}\right)\right|^{d-q}} \mathrm{~d} L_{j(1)}^{d}, \tag{12}
\end{equation*}
$$

where $\mathcal{L}_{j(1)}^{d}$ is the set of j-dimensional subspaces containing the line spanned by x and $p\left(\cdot \mid L_{j}\right)$ indicates orthogonal projection onto L_{j}. If $j=1$ and $x \perp n$ we set $Q_{j}\left(x, n, A_{q}\right):=$ 0 . In the case where X is smooth, (10) reduces to (2) with $w_{I, j, k}(x)=w_{I, j, k}(x, n(x))$ and $\kappa_{i}(x)=\kappa_{i}(x, n(x))$.

Our main result formulated in Theorem 1 below follows from an expression of Q_{j} as a linear combination of hypergeometric functions. We use the notation

$$
\beta(x, n):=\angle(x, n) \in[0, \pi], \quad \alpha_{I}(x, n):=\angle\left(x, A_{I}(x, n)\right) \in[0, \pi / 2] .
$$

Note that $x \neq O$ if $(x, n) \in$ nor X by (A1). The proof of Theorem 1 is deferred to Section 7. The cases $j=1$ and $j=d$ are treated separately in Remark 1 below.

Theorem 1. Let $0 \leq k<j<d, j \geq 2$ and let I be a subset of $\{1, \ldots, d-1\}$ with $|I|=j-1-k$ elements. Let $X \subset \mathbb{R}^{d}$ be a set with positive reach. If (A1) and (A2) are satisfied, then (10) holds with

$$
\left.w_{I, j, k}(x, n)=C_{d, k, j}|x|^{j-d}\left[f_{1}(\beta(x, n))+f_{2}(\beta(x, n)) \cos ^{2} \alpha_{I}(x, n)\right)\right]
$$

and

$$
C_{d, k, j}=\sigma_{j-k}^{-1} c_{d-1, j-1} \frac{(j-1)!(d+k-j-1)!}{(d-1)!k!}
$$

The functions f_{1} and f_{2}, defined on $[0, \pi]$, are given by

$$
\begin{aligned}
& f_{1}(\beta)=(d+k-j) F\left(\frac{j-k}{2}, \frac{d-j}{2} ; \frac{d+1}{2} ; \sin ^{2} \beta\right), \\
& f_{2}(\beta)= \begin{cases}0, & \beta=0, \pi \\
(j-d) F\left(\frac{j-k}{2}, \frac{d-j}{2} ; \frac{d+1}{2} ; 1\right), & \beta=\frac{\pi}{2}, \\
\left(j-d-(d-1) \cot ^{2} \beta\right) F\left(\frac{j-k}{2}, \frac{d-j}{2} ; \frac{d+1}{2} ; \sin ^{2} \beta\right) \\
\quad+(d-1) \cot ^{2} \beta F\left(\frac{j-k}{2}, \frac{d-j}{2} ; \frac{d-1}{2} ; \sin ^{2} \beta\right), & \beta \neq 0, \frac{\pi}{2}, \pi\end{cases}
\end{aligned}
$$

Remark 1. Note that if $j=1$ then, necessarily, $k=0, I=\emptyset$ and $Q_{1}\left(x, n, n^{\perp}\right)=$ $|\cos \beta(x, n)|$; hence, $w_{\emptyset, 1,0}(x, n)=\frac{1}{2}|x|^{1-d}|\cos \beta(x, n)|$. If $j=d$ then no integration is carried out in (1) and we have $w_{I, d, k}=\sigma_{d-k}^{-1}$. These two particular cases are not included in Theorem 1.

Two special cases were already derived in [18]. Let $k=0$ and $j=d-1$. Let $A_{I}(x, n)=\operatorname{span}\{a\}$. Assume that $\alpha_{I}(x, n)=\angle(x, a)>0$ and $0<\beta(x, n)=\angle(x, n)<\pi$. Let $\theta(x, n)$ be the angle formed by the projections $p\left(n \mid x^{\perp}\right)$ and $p\left(a \mid x^{\perp}\right)\left(\cos \theta=\frac{\cos \alpha \cos \beta}{\sin \alpha \sin \beta}\right.$, see the end of Section 7). Then, we find, using (6),

$$
\begin{align*}
w_{I, d-1,0}(x, n)=\frac{1}{2(d-1)}|x|^{-1} & \sin ^{2} \alpha_{I}(x, n)[\\
& \sin ^{2} \theta(x, n) F\left(\frac{d-1}{2}, \frac{1}{2} ; \frac{d+1}{2} ; \sin ^{2} \beta(x, n)\right) \tag{13}\\
& \left.+\cos ^{2} \theta(x, n) F\left(\frac{d-1}{2}, \frac{3}{2} ; \frac{d+1}{2} ; \sin ^{2} \beta(x, n)\right)\right]
\end{align*}
$$

This agrees with the result presented in [18, Section 4.2].
When $k=j-1$, we have $I=\emptyset, A_{I}(x, n)=\operatorname{span}\left\{a_{i}(x, n): i=1, \ldots, d-1\right\}=n^{\perp}$ and $\angle\left(x, A_{I}(x, n)\right)=\frac{\pi}{2}-\angle(x, n)$; hence, $\cos \alpha_{I}(x, n)=\sin \beta(x, n)$. Then, by applying (5), we obtain

$$
\begin{equation*}
w_{I, j, j-1}(x, n)=\frac{c_{d-1, j-1}}{2}|x|^{-(d-j)} F\left(-\frac{1}{2}, \frac{d-j}{2} ; \frac{d-1}{2} ; \sin ^{2} \beta(x, n)\right) \tag{14}
\end{equation*}
$$

Combining (2) and (14), we find in case of C^{2} smooth boundary (cf. [18, Section 4.1])

$$
\begin{aligned}
& \int_{\mathcal{L}_{j}^{d}} V_{j-1}\left(X \cap L_{j}\right) \mathrm{d} L_{j}^{d} \\
& \quad=\frac{c_{d-1, j-1}}{2} \int_{\partial X}|x|^{-(d-j)} F\left(-\frac{1}{2}, \frac{d-j}{2} ; \frac{d-1}{2} ; \sin ^{2} \beta(x)\right) \mathrm{d} x^{d-1} .
\end{aligned}
$$

4 Further simplifications

At locally spherical boundary points, the rotational formula may be further simplified. First, we derive a simple expression for the sum of $w_{I, j, k}(x, n)$.

Lemma 1. For $0 \leq k<j \leq d$,

$$
\begin{aligned}
& \sum_{\substack{I \subseteq\{1, \ldots, d-1\} \\
|I|=j-1-k}} w_{I, j, k}(x, n) \\
& \quad=\frac{c_{d-1, j-1}}{\sigma_{j-k}}\binom{j-1}{k}|x|^{-(d-j)} F\left(\frac{j-k-2}{2}, \frac{d-j}{2} ; \frac{d-1}{2} ; \sin ^{2} \beta(x, n)\right) .
\end{aligned}
$$

Proof. Recall that $A_{I}(x, n)=\operatorname{span}\left\{a_{i}(x, n): i \notin I\right\}$ and $\alpha_{I}(x)=\angle\left(x, A_{I}(x, n)\right)$. We find

$$
\begin{aligned}
\sum_{|I|=j-1-k} \cos ^{2} \alpha_{I}(x, n) & =\sum_{|I|=j-1-k}\left|p\left(x \mid A_{I}(x, n)\right)\right|^{2}=\sum_{|I|=j-1-k} \sum_{i \notin I}\left(x \cdot a_{i}(x, n)\right)^{2} \\
& =\sum_{|I|=d-j+k} \sum_{i \in I}\left(x \cdot a_{i}(x, n)\right)^{2}=\sum_{i=1}^{d-1}\binom{d-2}{d-j+k-1}\left(x \cdot a_{i}(x, n)\right)^{2} \\
& \left.=\binom{d-2}{j-k-1} \right\rvert\, p\left(x\left|\operatorname{span}\left\{a_{1}(x, n), \ldots, a_{d-1}(x, n)\right\}\right|^{2}\right. \\
& =\binom{d-2}{j-k-1}\left|p\left(x \mid n^{\perp}\right)\right|^{2}=\binom{d-2}{j-k-1} \sin ^{2} \beta(x, n) .
\end{aligned}
$$

Using Theorem 1 and (5), we arrive at the following formula

$$
\begin{aligned}
& \sigma_{j-k}|x|^{d-j} \sum_{|I|=j-1-k} w_{I, j, k}(x, n) \\
& =c_{d-1, j-1} \frac{(j-1)!(d+k-j-1)!}{(d-1)!k!}\binom{d-2}{j-k-1} \\
& \quad \times\left[(j-1) \sin ^{2} \beta(x, n) F\left(\frac{j-k}{2}, \frac{d-j}{2} ; \frac{d+1}{2} ; \sin ^{2} \beta(x, n)\right)\right. \\
& \left.\quad+(d-1) \cos ^{2} \beta(x, n) F\left(\frac{j-k}{2}, \frac{d-j}{2} ; \frac{d-1}{2} ; \sin ^{2} \beta(x, n)\right)\right] \\
& =c_{d-1, j-1}\binom{j-1}{k} F\left(\frac{j-k-2}{2}, \frac{d-j}{2} ; \frac{d-1}{2} ; \sin ^{2} \beta(x, n)\right) .
\end{aligned}
$$

In case $k=0$ and $j=d-1$, the expression above reduces to the one in [18], namely

$$
\sum_{|I|=d-2} w_{I, d-1,0}(x, n)=\frac{c_{d-1, d-2}}{\sigma_{d-1}}|x|^{-1} F\left(\frac{d-3}{2}, \frac{1}{2} ; \frac{d-1}{2} ; \sin ^{2} \beta(x, n)\right) .
$$

Let us look at the simplifications of the rotational formula implied by Lemma 1 in the case where X is a compact d-dimensional C^{2} manifold with boundary. In this case, there is a unique unit normal $n(x)$ at each $x \in \partial X$. The weight functions $w_{I, j, k}$ and the curvatures κ_{i} can be regarded as functions of x only.

It follows from Lemma 1 that at locally spherical boundary points $x \in \partial X$ where $\kappa_{i}(x)=\kappa(x), i=1, \ldots, d-1$, the integrand of (2) simplifies to

$$
\begin{aligned}
& \sum_{\substack{I \subseteq\{1, \ldots, d-1\} \\
|I|=j-1-k}} w_{I, j, k}(x) \prod_{i \in I} \kappa_{i}(x) \\
& \quad=\frac{c_{d-1, j-1}}{\sigma_{j-k}}\binom{j-1}{k}|x|^{-(d-j)} F\left(\frac{j-k-2}{2}, \frac{d-j}{2} ; \frac{d-1}{2} ; \sin ^{2} \beta(x)\right) \kappa(x)^{j-1-k}
\end{aligned}
$$

For $k=j-2$, this hypergeometric function is identically equal to 1 . If almost all boundary points are locally spherical, we get

$$
\int_{\mathcal{L}_{j}^{d}} V_{j-2}\left(X \cap L_{j}\right) \mathrm{d} L_{j}^{d}=\frac{(j-1) c_{d-1, j-1}}{2 \pi} \int_{\partial X}|x|^{-(d-j)} \kappa(x) \mathrm{d} x^{d-1}
$$

Unfortunately, locally spherical boundary points are rare unless X is a finite union of disjoint balls.

5 The rotational average as valuation on convex bodies

In this section, we will show for convex bodies that the rotational averages of intrinsic volumes can be represented as integrals with respect to natural measures on supporting flats.

For this purpose, let X be a convex body in \mathbb{R}^{d}. For convenience, we introduce the following short notation for the rotational average

$$
\Phi_{k, j}(X):=\int_{\mathcal{L}_{j}^{d}} V_{k}\left(X \cap L_{j}\right) \mathrm{d} L_{j}^{d}
$$

$0 \leq k<j \leq d$. According to [18, Proposition 2], $\Phi_{k, j}(X)<\infty$ whenever X is a convex body. Clearly, $\Phi_{k, j}$ is a valuation which is continuous with respect to the Hausdorff metric on convex bodies and $O(d)$-invariant (see [2]).

We shall find an expression of $\Phi_{k, j}$ as an integral with respect to a certain measure $\Gamma_{d+k-j}(X ; \cdot)$ associated with the convex body X. This measure is supported by $(j-$ $k-1$)-dimensional affine subspaces "locally colliding" with X. The measure has been introduced by Firey [9], see also Weil [29], and, independently, and in different settings, in connection with absolute curvature measures by Baddeley [5] for smooth bodies and by Rother and Zähle [23] for sets with positive reach.

Given a convex body X and $0 \leq i \leq d-1$, let

$$
\mathcal{F}_{i}^{d}(X)=\left\{\left(x, n, L_{i}\right):(x, n) \in \operatorname{nor} X, L_{i} \in \mathcal{L}_{i}^{d-1}\left(n^{\perp}\right)\right\}
$$

Note that for $\left(x, n, L_{i}\right) \in \mathcal{F}_{i}^{d}(X), x+L_{i}$ is an i-dimensional affine subspace that supports X at x. The projection

$$
f:\left(x, n, L_{i}\right) \mapsto\left(p\left(x \mid L_{i}^{\perp}\right), L_{i}\right)
$$

maps $\mathcal{F}_{i}^{d}(X)$ into the set of i-dimensional affine subspaces in \mathbb{R}^{d} supporting X. The image of f will be denoted by $\mathcal{A}_{i}^{d}(X)$. Consider the following natural invariant measure $\mu_{i}(X ; \cdot)$ on $\mathcal{A}_{i}^{d}(X)$, defined by the following equation for an arbitrary nonnegative measurable function on $\mathcal{A}_{i}^{d}(X)$,

$$
\int_{\mathcal{A}_{i}^{d}(X)} h\left(z, L_{i}\right) \mu_{i}\left(X ; \mathrm{d}\left(z, L_{i}\right)\right)=\int_{\mathcal{L}_{i}^{d}} \int_{\left\{z:\left(z, L_{i}\right) \in \mathcal{A}_{i}^{d}(X)\right\}} h\left(z, L_{i}\right) \mathcal{H}^{d-i-1}(\mathrm{~d} z) \mathrm{d} L_{i}^{d}
$$

Then, the measure $\Gamma_{d-1-i}(X ; \cdot)$ on $\mathcal{F}_{i}^{d}(X)$ is defined as

$$
\begin{aligned}
& \int_{\mathcal{F}_{i}^{d}(X)} g\left(x, n, L_{i}\right) \Gamma_{d-1-i}\left(X ; \mathrm{d}\left(x, n, L_{i}\right)\right) \\
&= \int_{\mathcal{A}_{i}^{d}(X)} \sum_{\left(x, n, L_{i}\right) \in f^{-1}\left(z, L_{i}\right)} g\left(x, n, L_{i}\right) \mu_{i}\left(X ; \mathrm{d}\left(z, L_{i}\right)\right)
\end{aligned}
$$

where g is now any nonnegative measurable function on $\mathcal{F}_{i}^{d}(X)$.
The following integral representation for $\Gamma_{d-1-i}(X ; \cdot)$ was derived in [23]

$$
\begin{align*}
& \int_{\mathcal{F}_{i}^{d}(X)} g\left(x, n, L_{i}\right) \Gamma_{d-1-i}\left(X ; \mathrm{d}\left(x, n, L_{i}\right)\right) \tag{15}\\
&=\binom{d-1}{i} \sigma_{i+1}^{-1} \int_{\operatorname{nor} X} \sum_{|I|=i} \frac{\prod_{i \in I} \kappa_{i}(x, n)}{\prod_{i=1}^{d-1} \sqrt{1+\kappa_{i}^{2}(x, n)}} \\
& \quad \times \int_{\mathcal{L}_{i}^{d-1}\left(n^{\perp}\right)} g\left(x, n, L_{i}\right) \mathcal{G}^{\left(n^{\perp}\right)}\left(L_{i}, A_{I}(x, n)\right)^{2} \mathrm{~d} L_{i}^{d-1} \mathcal{H}^{d-1}(\mathrm{~d}(x, n)) .
\end{align*}
$$

The result of this section follows:
Theorem 2. Let X be a convex body in \mathbb{R}^{d} with $O \notin \partial X$. If $0 \leq k<j<d, j \geq 2$, then

$$
\Phi_{k, j}(X)=\int_{\mathcal{F}_{j-1-k}^{d}(X)} g\left(x, n, L_{j-1-k}\right) \Gamma_{d+k-j}\left(X ; \mathrm{d}\left(x, n, L_{j-1-k}\right)\right)
$$

with

$$
g\left(x, n, L_{j-1-k}\right)=C_{d, k, j}^{\prime}|x|^{j-d}\left[g_{1}(\beta(x, n))+g_{2}(\beta(x, n))\left|p\left(\bar{x} \mid L_{j-1-k}\right)\right|^{2}\right] .
$$

Here $\bar{x}=x /|x|$,

$$
\begin{aligned}
C_{d, k, j}^{\prime} & =C_{d, k, j} \sigma_{j-k}\binom{d-1}{j-1-k}^{-1}, \\
g_{2}(\beta) & =\frac{1}{M_{j-1-k}^{d-1}-N_{j-1-k}^{d-1}} f_{2}(\beta)
\end{aligned}
$$

and

$$
g_{1}(\beta)=\frac{\binom{d-1}{j-1-k}}{c_{d-1, d+k-j}}\left(f_{1}(\beta)-\frac{N_{j-1-k}^{d-1}}{M_{j-1-k}^{d-1}-N_{j-1-k}^{d-1}} \sin ^{2} \beta f_{2}(\beta)\right) .
$$

The functions f_{1} and f_{2} are given in Theorem 1 while the constants M_{j-1-k}^{d-1} and N_{j-1-k}^{d-1} are given in Lemma 4 in the Appendix.

Proof. Let us decompose \bar{x} as

$$
\bar{x}=p\left(\bar{x} \mid A_{I}\right)+p(\bar{x} \mid \operatorname{span}\{n\})+p\left(\bar{x} \mid A_{I}^{\perp} \cap n^{\perp}\right) .
$$

If $x \not \perp A_{I}$, i.e. if $\alpha \neq \pi / 2$, we can write $p\left(\bar{x} \mid A_{I}\right)=(\cos \alpha) \pi\left(\bar{x} \mid A_{I}\right)$, with the spherical projection

$$
y:=\pi\left(\bar{x} \mid A_{I}\right)=p\left(\bar{x} \mid A_{I}\right) /\left|p\left(\bar{x} \mid A_{I}\right)\right| .
$$

(Note that we can use this identity even when $\alpha=\pi / 2$, choosing any unit vector for y.) Analogously, we denote $z=\pi\left(\bar{x} \mid A_{I}^{\perp} \cap n^{\perp}\right)$ and we get

$$
\bar{x}=(\cos \alpha) y+(\cos \beta) n+\sqrt{1-\cos ^{2} \alpha-\cos ^{2} \beta} z .
$$

For $L=L_{j-1-k} \perp n$, we have

$$
\begin{aligned}
|p(\bar{x} \mid L)|^{2}= & \cos ^{2} \alpha|p(y \mid L)|^{2}+\left(1-\cos ^{2} \alpha-\cos ^{2} \beta\right)|p(z \mid L)|^{2} \\
& +2 \cos \alpha \sqrt{1-\cos ^{2} \alpha-\cos ^{2} \beta} p(y \mid L) \cdot p(z \mid L) .
\end{aligned}
$$

Integrating with respect to $\mathrm{d} L_{j-1-k}^{d-1}$, the last summand vanishes. Thus, we get, using Lemma 4,

$$
\begin{align*}
& \int_{\mathcal{L}_{j-1-k}^{d-1}\left(n^{\perp}\right)}\left|p\left(\bar{x} \mid L_{j-1-k}\right)\right|^{2} \mathcal{G}^{\left(n^{\perp}\right)}\left(L_{j-1-k}, A_{I}(x, n)\right)^{2} \mathrm{~d} L_{j-1-k}^{d-1} \tag{16}\\
& \quad=\cos ^{2} \alpha M_{j-1-k}^{d-1}+\left(1-\cos ^{2} \alpha-\cos ^{2} \beta\right) N_{j-1-k}^{d-1} \\
& =\cos ^{2} \alpha\left(M_{j-1-k}^{d-1}-N_{j-1-k}^{d-1}\right)+\sin ^{2} \beta N_{j-1-k}^{d-1}
\end{align*}
$$

Omitting for brevity the indexes at M and N, we get from (15), (9) and (16)

$$
\begin{array}{rl}
\int g & \mathrm{~d} \Gamma_{j-1-k}(X, \cdot) \\
& =C_{d, k, j}|x|^{j-d}\left[c_{d-1, j-1-k} K_{j-k-1, d+k-j}^{d-1} g_{1}+\left((M-N) \cos ^{2} \alpha+N \sin ^{2} \beta\right) g_{2}\right]
\end{array}
$$

The proof is finished by comparing the last expression with Theorem 1. Note that the assumptions (A1) and (A2) of Theorem 1 are fulfilled. In particular, (A2) is fulfilled for convex bodies, as shown in [18, Proposition 1].

6 An open question

An $O(d)$-invariant valuation Φ on the set of convex bodies is called polynomial if $x \mapsto$ $\Phi(K+x)$ is a polynomial for any convex body K. Alesker [2] showed for $d \geq 3$ that any continuous polynomial $O(d)$-invariant valuation Φ can be expressed in the form

$$
\Phi(X)=\sum_{i=0}^{d-1} \int_{\text {nor } X} p_{i}\left(|x|^{2}, x \cdot n\right) \Theta_{i}(X, \mathrm{~d}(x, n)),
$$

where p_{1}, \ldots, p_{d-1} are polynomials in two variables and $\Theta_{i}(X, \cdot)$ are the (extended) curvature measures of X defined as

$$
\begin{aligned}
& \int h(x, n) \Theta_{i}(\mathrm{~d}(x, n)) \\
& \quad=\sigma_{d-i}^{-1} \int_{\operatorname{nor} X} h(x, n) \sum_{|I|=d-1-i} \frac{\prod_{i \in I} \kappa_{i}(x, n)}{\prod_{i=1}^{d-1} \sqrt{1+\kappa_{i}^{2}(x, n)}} \mathcal{H}^{d-1}(\mathrm{~d}(x, n)) .
\end{aligned}
$$

He also showed that any continuous $O(d)$-invariant valuation is a locally uniform limit of continuous polynomial $O(d)$-invariant valuations, but he later found a gap in the proof (see [3]) and the validity of this assertion remained open. It seems plausible to expect that if this conjecture was true, then every continuous $O(d)$-invariant valuation could be expressed as an integral over the unit normal bundle. The valuations $\Phi_{k, j}$ given by rotational integrals are expressed as integrals over the larger flag manifolds $\mathcal{F}_{j-1-k}^{d}(X)$ and we doubt that they could be given as integrals over nor X if $k<j-1$. This leads us to conjecture that these continuous $O(d)$-invariant valuations cannot be approximated by polynomial valuations.

7 Proof of Theorem 1

Let X be a set with positive reach fulfilling assumptions (A1) and (A2), let $(x, n) \in \operatorname{nor} X$, $0 \leq k<j<d, j \geq 2$, and let A_{q} be a subspace perpendicular to n and of dimension

$$
q=d-1-(j-1-k)=d-j+k
$$

(Note that $j+q \geq d$.) We will derive a closed form of $Q_{j}\left(x, n, A_{q}\right)$ from (12) that will prove Theorem 1.

We first rewrite the integrand in (12), using subspaces in x^{\perp}. We use here and in the following the notation $\mathcal{L}_{r}^{s}(M)$ for the set of r-dimensional linear subspaces contained in $M \in \mathcal{L}_{s}^{d}$. Recall that $\beta=\beta(x, n)=\angle(x, n)$ and $\alpha=\angle\left(x, A_{q}\right)$.

Lemma 2. Let $A_{q} \in \mathcal{L}_{q}^{d-1}\left(n^{\perp}\right)$ and let $L_{j}=L_{j-1} \oplus \operatorname{span}\{x\}$, where $L_{j-1} \in \mathcal{L}_{j-1}^{d-1}\left(x^{\perp}\right)$. Then,

$$
\begin{equation*}
\mathcal{G}\left(L_{j}, A_{q}\right)^{2}=\sin ^{2} \alpha \mathcal{G}^{\left(x^{\perp}\right)}\left(L_{j-1}, p\left(A_{q} \mid x^{\perp}\right)\right)^{2}+\cos ^{2} \alpha \mathcal{G}^{\left(x^{\perp}\right)}\left(L_{j-1}, A_{q} \cap x^{\perp}\right)^{2} \tag{17}
\end{equation*}
$$

Proof. If $\alpha=\pi / 2$ then $A_{q} \perp x, p\left(A_{q} \mid x^{\perp}\right)=A_{q}$ and (17) is obvious. If $\alpha=0$ then (17) follows from (8). It is thus sufficient to consider the case $0<\alpha<\pi / 2$.

Consider first the case $j+q=d$. Then,

$$
\operatorname{dim}\left(L_{j-1}+A_{q} \cap x^{\perp}\right)<d-1
$$

and the second summand of (17) vanishes because $\mathcal{G}^{\left(x^{\perp}\right)}\left(L_{j-1}, A_{q} \cap x^{\perp}\right)=0$. In order to prove (17) in the case $j+q=d$, first notice that if $\operatorname{dim}\left(L_{j}+A_{q}\right)<d$, then left- and right-hand sides of (17) are both zero. If $\operatorname{dim}\left(L_{j}+A_{q}\right)=d$, we can proceed as follows. Let $\left\{a_{1}, \ldots, a_{q}\right\}$ be an orthonormal basis of A_{q} such that $a_{1}=\pi\left(x \mid A_{q}\right)$ and $a_{i} \perp x, i=2, \ldots, q$. Then we have

$$
\begin{aligned}
\mathcal{G}\left(L_{j}\right. & \left., A_{q}\right)=\nabla_{q}\left(p\left(a_{1} \mid L_{j}^{\perp}\right), p\left(a_{2} \mid L_{j}^{\perp}\right), \cdots, p\left(a_{q} \mid L_{j}^{\perp}\right)\right) \\
& =\nabla_{q}\left(p\left(p\left(a_{1} \mid x^{\perp}\right) \mid L_{j}^{\perp}\right), p\left(a_{2} \mid L_{j}^{\perp}\right), \cdots, p\left(a_{q} \mid L_{j}^{\perp}\right)\right) \\
& =\left|p\left(a_{1} \mid x^{\perp}\right)\right| \nabla_{q}\left(p\left(\pi\left(a_{1} \mid x^{\perp}\right) \mid L_{j}^{\perp}\right), p\left(a_{2} \mid L_{j}^{\perp}\right), \cdots, p\left(a_{q} \mid L_{j}^{\perp}\right)\right) \\
& =\left|p\left(a_{1} \mid x^{\perp}\right)\right| \nabla_{q}\left(p\left(\pi\left(a_{1} \mid x^{\perp}\right) \mid L_{j-1}^{\perp}\right), p\left(a_{2} \mid L_{j-1}^{\perp}\right), \cdots, p\left(a_{q} \mid L_{j-1}^{\perp}\right)\right) \\
& =\left|\sin \angle\left(x, A_{q}\right)\right| \mathcal{G}^{\left(x^{\perp}\right)}\left(L_{j-1}, p\left(A_{q} \mid x^{\perp}\right)\right) .
\end{aligned}
$$

Let now $j+q>d$ and choose an orthonormal basis $\left\{u_{1}, \ldots, u_{j-1}\right\}$ of L_{j-1}. Given an index set $I \subseteq\{1, \ldots, j-1\}$, we shall write L_{I} for the linear hull of $\left\{u_{i}: i \in I\right\}$. We have by [18, Lemma 1],

$$
\mathcal{G}\left(L_{j}, A_{q}\right)^{2}=\sum_{|I|=d-q} \mathcal{G}\left(L_{I}, A_{q}\right)^{2}+\sum_{|I|=d-q-1} \mathcal{G}\left(L_{I}+\operatorname{span}\{x\}, A_{q}\right)^{2}
$$

By applying (8) to each summand in the first sum and by repeating the above procedure from the case $q+j=d$ to each summand of the second sum, we obtain

$$
\begin{aligned}
\mathcal{G} & \left(L_{j}, A_{q}\right)^{2} \\
& =\sum_{|I|=d-q} \cos ^{2} \alpha \mathcal{G}^{\left(x^{\perp}\right)}\left(L_{I}, A_{q} \cap x^{\perp}\right)^{2}+\sum_{|I|=d-q-1} \sin ^{2} \alpha \mathcal{G}^{\left(x^{\perp}\right)}\left(L_{I}, p\left(A_{q} \mid x^{\perp}\right)\right)^{2} \\
& =\cos ^{2} \alpha \mathcal{G}^{\left(x^{\perp}\right)}\left(L_{j-1}, A_{q} \cap x^{\perp}\right)^{2}+\sin ^{2} \alpha \mathcal{G}^{\left(x^{\perp}\right)}\left(L_{j-1}, p\left(A_{j-1} \mid x^{\perp}\right)\right)^{2} .
\end{aligned}
$$

The case $x \| n$ will be treated separately, hence, we assume that $\beta=\beta(x, n) \in(0, \pi)$.
We introduce a function of a unit vector and a linear subspace in $\mathbb{R}^{d-1} \cong x^{\perp}$ which will be needed for the computation of Q_{j}. Let $d-j \leq p \leq d-1, B_{p} \in \mathcal{L}_{p}^{d-1}$ and $m \in S^{d-2}$. Define

$$
\begin{equation*}
I_{j-1}^{d-1}\left(m, B_{p}\right)=\int_{\mathcal{L}_{j-1}^{d-1}} \frac{\mathcal{G}\left(L_{j-1}, B_{p}\right)^{2}}{\left(\cos ^{2} \beta+\left|p\left(m \mid L_{j-1}\right)\right|^{2} \sin ^{2} \beta\right)^{\frac{d-q}{2}}} \mathrm{~d} L_{j-1}^{d-1} . \tag{18}
\end{equation*}
$$

Note that using Lemma 2, we have by (12)

$$
\begin{equation*}
Q_{j}\left(x, n, A_{q}\right)=\sin ^{2} \alpha I_{j-1}^{d-1}\left(m, p\left(A_{q} \mid x^{\perp}\right)\right)+\cos ^{2} \alpha I_{j-1}^{d-1}\left(m, A_{q} \cap x^{\perp}\right), \tag{19}
\end{equation*}
$$

where $m=\pi\left(n \mid x^{\perp}\right)$. We thus need to evaluate the integral (18) which is done in the following lemma. Recall that the constants $K_{i, j}^{d}$ are defined after (9).

Lemma 3. Let p, q, B_{p}, m, β be as above, and denote $\theta=\angle\left(m, B_{p}\right)$. If $\beta \neq \pi / 2$ then,

$$
\begin{aligned}
I_{j-1}^{d-1}\left(m, B_{p}\right)=\frac{1}{p} c_{d-1, j-1} K_{j-1, p}^{d-1}[& \left(p-(d-1) \cos ^{2} \theta\right) F\left(\frac{d-q}{2}, \frac{d-j}{2} ; \frac{d+1}{2} ; \sin ^{2} \beta\right) \\
& \left.+(d-1) \cos ^{2} \theta F\left(\frac{d-q}{2}, \frac{d-j}{2} ; \frac{d-1}{2} ; \sin ^{2} \beta\right)\right] .
\end{aligned}
$$

If $\beta=\theta=\pi / 2$ then

$$
I_{j-1}^{d-1}\left(m, B_{p}\right)=c_{d-1, j-1} K_{j-1, p}^{d-1} F\left(\frac{d-q}{2}, \frac{d-j}{2} ; \frac{d+1}{2} ; 1\right) .
$$

Proof. We shall treat only the case $\beta \in(0, \pi / 2) \cup(\pi / 2, \pi)$; the case $\beta=\theta=\pi / 2$ is similar but simpler.

The first step will be to transform the integral over a Grassmannian into an integral over a sphere. To achieve this, we apply the coarea formula to the mapping $g: L_{j-1} \mapsto$ $\pi\left(m \mid L_{j-1}^{\perp}\right)$ defined on $\mathcal{L}_{j-1}^{d-1} \cap\{L: m \notin L\}$ with Jacobian $J_{d-2} g\left(L_{j-1}\right)=\tan ^{d-j-1} \zeta$, where $\zeta=\angle\left(m, L_{j-1}^{\perp}\right)=\angle(m, u)$ and $u=\pi\left(m \mid L_{j-1}^{\perp}\right)$ (cf. [21, Lemma 4.2]; note that $L_{j-1} \mapsto$ L_{j-1}^{\perp} is an isometry). The range of g is the semisphere $S_{+}^{d-2}:=\left\{y \in S^{d-1}: y \cdot m>0\right\}$. Using that

$$
g^{-1}(u)=\left\{L_{j-2} \oplus \operatorname{span}\{v\}: L_{j-2} \in \mathcal{L}_{j-2}^{d-3}\left(v^{\perp} \cap m^{\perp}\right)\right\}, \quad u \in S_{+}^{d-2},
$$

where $v=\pi\left(m \mid L_{j-1}\right)$, we get

$$
\begin{aligned}
& I_{j-1}^{d-1}\left(m, B_{p}\right) \\
& = \\
& =\int_{S_{+}^{d-2}} \int_{S_{+}^{d-2}(v)} \frac{\mathcal{G}\left(L_{j-1}, B_{p}\right)^{2}}{\left(\cos ^{2} \beta+\sin ^{2} \zeta \sin ^{2} \beta\right)^{\frac{d-q}{2}}} \frac{1}{{\left(\cos ^{2} \beta+\sin ^{2} \zeta \sin ^{2} \beta\right)^{\frac{d-q}{2}} \tan ^{d-j-1} \zeta\left(L_{j-1}\right)}^{\tan ^{d-3}} L_{j-2}^{d-3} \mathcal{H}^{d-2}(\mathrm{~d} u)} \\
& \quad \quad \times \int_{\mathcal{C}_{j-2}^{d-3}\left(v^{\perp} \cap m^{\perp}\right)} \mathcal{G}\left(L_{j-2} \oplus \operatorname{span}\{v\}, B_{p}\right)^{2} \mathrm{~d} L_{j-2}^{d-3} \mathcal{H}^{d-2}(\mathrm{~d} u) .
\end{aligned}
$$

In order to evaluate the inner integral, we first apply (8):

$$
\mathcal{G}\left(L_{j-1}, B_{p}\right)^{2}=\cos ^{2} \angle\left(u, B_{p}\right) \mathcal{G}^{\left(u^{\perp}\right)}\left(L_{j-1}, B_{p} \cap u^{\perp}\right)^{2},
$$

and then, we use Lemma 2 for the decomposition of $\mathcal{G}^{\left(u^{\perp}\right)}\left(L_{j-1}, B_{p} \cap u^{\perp}\right)^{2}$:

$$
\begin{aligned}
\mathcal{G}^{\left(u^{\perp}\right)}\left(L_{j-1}, B_{p} \cap u^{\perp}\right)^{2}= & \sin ^{2} \angle\left(v, B_{p} \cap u^{\perp}\right) \mathcal{G}^{\left(u^{\perp} \cap v^{\perp}\right)}\left(L_{j-2}, p\left(B_{p} \cap u^{\perp} \mid v^{\perp}\right)\right)^{2} \\
& +\cos ^{2} \angle\left(v, B_{p} \cap u^{\perp}\right) \mathcal{G}^{\left(u^{\perp} \cap v^{\perp}\right)}\left(L_{j-2}, B_{p} \cap u^{\perp} \cap v^{\perp}\right)^{2} .
\end{aligned}
$$

Note that the second term vanishes when $d=p+j$. Using now the identity (9), we obtain

$$
\begin{aligned}
& \int_{\mathcal{L}_{j-2}^{d-3}} \mathcal{G}\left(L_{j-2} \oplus \operatorname{span}\{v\}, B_{p}\right)^{2} \mathrm{~d} L_{j-2}^{d-3}=\cos ^{2} \angle\left(u, B_{p}\right) \\
& \times\left(\sin ^{2} \angle\left(v, B_{p} \cap u^{\perp}\right) c_{d-3, j-2} K_{j-2, p-1}^{d-3}+\cos ^{2} \angle\left(v, B_{p} \cap u^{\perp}\right) c_{d-3, j-2} K_{j-2, p-2}^{d-3}\right) \\
&= \cos ^{2} \angle\left(u, B_{p}\right) c_{d-3, j-2} K_{j-2, p-1}^{d-3}\left(1-\frac{d-j-1}{p-1} \cos ^{2} \angle\left(v, B_{p} \cap u^{\perp}\right)\right) .
\end{aligned}
$$

Due to the definitions of u and v, we can write

$$
m=p(m \mid v)+p\left(m \mid v^{\perp}\right)=v \sin \zeta+u \cos \zeta
$$

hence

$$
\cos ^{2} \angle\left(v, B_{p} \cap u^{\perp}\right)=\frac{\left|p\left(m \mid B_{p} \cap u^{\perp}\right)\right|^{2}}{\sin ^{2} \zeta}
$$

Consequently, we obtain

$$
\begin{equation*}
I_{j-1}^{d-1}\left(m, B_{p}\right)=c_{d-3, j-2} K_{j-2, p-1}^{d-3}\left(G_{1}-\frac{d-j-1}{p-1} G_{2}\right) \tag{20}
\end{equation*}
$$

where

$$
\begin{equation*}
G_{1}=\int_{S_{+}^{d-2}} \frac{\left|p\left(u \mid B_{p}\right)\right|^{2}}{\left(\cos ^{2} \beta+\sin ^{2} \zeta \sin ^{2} \beta\right)^{\frac{d-q}{2}} \tan ^{d-j-1} \zeta} \mathcal{H}^{d-2}(\mathrm{~d} u) \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
G_{2}=\int_{S_{+}^{d-2}} \frac{\left|p\left(m \mid B_{p} \cap u^{\perp}\right)\right|^{2}\left|p\left(u \mid B_{p}\right)\right|^{2} \cos ^{d-j-1} \zeta}{\left(\cos ^{2} \beta+\sin ^{2} \zeta \sin ^{2} \beta\right)^{\frac{d-q}{2}} \sin ^{d-j+1} \zeta} \mathcal{H}^{d-2}(\mathrm{~d} u) . \tag{22}
\end{equation*}
$$

Using the coarea formula with $\varphi: S_{+}^{d-2} \backslash \operatorname{span}(m) \rightarrow S^{d-3}\left(m^{\perp}\right)$ defined by $\varphi(u)=$ $\pi\left(u \mid m^{\perp}\right)=: u_{0}$ and with $J_{d-3} \varphi(u)=(\sin \angle(u, m))^{-(d-3)}$, we obtain (recall that $\zeta=$ $\angle(u, m))$

$$
\begin{aligned}
G_{1} & =\int_{S^{d-3}\left(m^{\perp}\right)} \int_{\varphi^{-1}\left(u_{0}\right)} \frac{\left|p\left(u \mid B_{p}\right)\right|^{2} J_{d-3}^{-1} \varphi(u)}{\left(\cos ^{2} \beta+\sin ^{2} \zeta \sin ^{2} \beta\right)^{\frac{d-q}{2}} \tan ^{d-j-1} \zeta} \mathcal{H}^{1}(\mathrm{~d} u) \mathcal{H}^{d-3}\left(\mathrm{~d} u_{0}\right) \\
& =\int_{S^{d-3}\left(m^{\perp}\right)} \int_{\varphi^{-1}\left(u_{0}\right)} \frac{\left|p\left(u \mid B_{p}\right)\right|^{2} \cos ^{d-j-1} \zeta \sin ^{j-2} \zeta}{\left(\cos ^{2} \beta+\sin ^{2} \zeta \sin ^{2} \beta\right)^{\frac{d-q}{2}}} \mathcal{H}^{1}(\mathrm{~d} u) \mathcal{H}^{d-3}\left(\mathrm{~d} u_{0}\right)
\end{aligned}
$$

Define $\xi: \mathbb{R}_{+} \rightarrow \varphi^{-1}\left(u_{0}\right)$ by $\xi(r)=\frac{u_{0}+r m}{\left|u_{0}+r m\right|}=u$ with $J_{1} \xi(r)=\frac{1}{1+r^{2}}$. Note that $\cos ^{2} \zeta=$ $\cos ^{2} \angle(\xi(r), m)=\frac{r^{2}}{1+r^{2}}$ and $\sin ^{2} \zeta=\frac{1}{1+r^{2}}$. The area formula implies

$$
G_{1}=\int_{S^{d-3}\left(m^{\perp}\right)} \int_{0}^{\infty} \frac{\left|p\left(\xi(r) \mid B_{p}\right)\right|^{2}\left(\frac{r^{2}}{1+r^{2}}\right)^{\frac{d-j-1}{2}}\left(\frac{1}{1+r^{2}}\right)^{\frac{j-2}{2}}}{\left(\cos ^{2} \beta+\frac{\sin ^{2} \beta}{1+r^{2}}\right)^{\frac{d-q}{2}}} \frac{\mathrm{~d} r}{1+r^{2}} \mathcal{H}^{d-3}\left(\mathrm{~d} u_{0}\right)
$$

We now use that

$$
\left|p\left(\xi(r) \mid B_{p}\right)\right|^{2}=\frac{\left|p\left(u_{0} \mid B_{p}\right)\right|^{2}+r^{2}\left|p\left(m \mid B_{p}\right)\right|^{2}+2 r p\left(u_{0} \mid B_{p}\right) \cdot p\left(m \mid B_{p}\right)}{1+r^{2}}
$$

which, using the equality $\int_{S^{d-3}\left(m^{\perp}\right)} p\left(u_{0} \mid B_{p}\right) \cdot p\left(m \mid B_{p}\right) \mathcal{H}^{d-3}\left(d u_{0}\right)=0$ and (7), lead us to the following expression

$$
\begin{align*}
G_{1}= & \int_{S^{d-3}\left(m^{\perp}\right)} \int_{0}^{\infty} \frac{\left(\left|p\left(u_{0} \mid B_{p}\right)\right|^{2}+r^{2}\left|p\left(m \mid B_{p}\right)\right|^{2}\right)\left(r^{2}\right)^{\frac{d-j-1}{2}}}{\left(\cos ^{2} \beta+\frac{1}{1+r^{2}} \sin ^{2} \beta\right)^{\frac{d-q}{2}}\left(1+r^{2}\right)^{\frac{d+1}{2}}} \mathrm{~d} \mathcal{H}^{d-3}\left(\mathrm{~d} u_{0}\right) \\
= & \frac{1}{2} B\left(\frac{d-j}{2}, \frac{j+1}{2}\right) F\left(\frac{d-q}{2}, \frac{d-j}{2} ; \frac{d+1}{2} ; \sin ^{2} \beta\right) H_{1} \tag{23}\\
& +\frac{1}{2} B\left(\frac{d-j+2}{2}, \frac{j-1}{2}\right) F\left(\frac{d-q}{2}, \frac{d-j+2}{2} ; \frac{d+1}{2} ; \sin ^{2} \beta\right)\left|p\left(m \mid B_{p}\right)\right|^{2} \sigma_{d-2}
\end{align*}
$$

with

$$
H_{1}=\int_{S^{d-3}\left(m^{\perp}\right)}\left|p\left(u_{0} \mid B_{p}\right)\right|^{2} \mathcal{H}^{d-3}\left(\mathrm{~d} u_{0}\right) .
$$

The convergence criterion in (7) is satisfied since $1<j<d$ and $0<\beta<\frac{\pi}{2}$ by assumption.
Note that the differences between G_{1} and G_{2} are the extra terms $\sin ^{2} \zeta$ and

$$
\left|p\left(m \mid B_{p} \cap u^{\perp}\right)\right|^{2}=\left|p\left(m \mid B_{p}\right)\right|^{2} \frac{\left|p\left(u \mid B_{p} \cap m^{\perp}\right)\right|^{2}}{\left|p\left(u \mid B_{p}\right)\right|^{2}} .
$$

Hence, G_{2} can be rewritten as

$$
G_{2}=\left|p\left(m \mid B_{p}\right)\right|^{2} \int_{S_{+}^{d-2}} \frac{\left|p\left(u \mid B_{p} \cap m^{\perp}\right)\right|^{2} \cos ^{d-j-1} \zeta}{\left(\cos ^{2} \beta+\sin ^{2} \zeta \sin ^{2} \beta\right)^{\frac{d-q}{2}} \sin ^{d-j+1} \zeta} \mathcal{H}^{d-2}(\mathrm{~d} u) .
$$

By applying the area formula for the mappings $\varphi: u \mapsto \pi\left(u \mid m^{\perp}\right)$ and $\xi: r \mapsto \frac{u_{0}+r m}{\left|u_{0}+r m\right|}$, the integral above becomes

$$
\begin{aligned}
& \int_{S^{d-3}\left(m^{\perp}\right)} \int_{\varphi^{-1}\left(u_{0}\right)} \frac{\left|p\left(u \mid B_{p} \cap m^{\perp}\right)\right|^{2} \cos ^{d-j-1} \zeta \sin ^{j-4} \zeta}{\left(\cos ^{2} \beta+\sin ^{2} \zeta \sin ^{2} \beta\right)^{\frac{d-q}{2}}(\mathrm{~d} u) \mathcal{H}^{d-3}\left(\mathrm{~d} u_{0}\right)} \\
& \quad=\int_{S^{d-3}\left(m^{\perp}\right)}\left|p\left(u_{0} \mid B_{p} \cap m^{\perp}\right)\right|^{2} \int_{0}^{\infty} \frac{\left(r^{2}\right)^{\frac{d-j-1}{2}}\left(1+r^{2}\right)^{-\frac{d-1}{2}}}{\left(\cos ^{2} \beta+\frac{\sin ^{2} \beta}{1+r^{2}}\right)^{\frac{d-q}{2}}} \mathrm{~d} r \mathcal{H}^{d-3}\left(\mathrm{~d} u_{0}\right),
\end{aligned}
$$

where we used $\left|p\left(\xi(r) \mid B_{p} \cap m^{\perp}\right)\right|^{2}=\frac{\left|p\left(u_{0} \mid B_{p} \cap m^{\perp}\right)\right|^{2}}{1+r^{2}}$ for the last equality. Using (7), we obtain

$$
\begin{equation*}
G_{2}=\frac{\left|p\left(m \mid B_{p}\right)\right|^{2}}{2} B\left(\frac{d-j}{2}, \frac{j-1}{2}\right) F\left(\frac{d-q}{2}, \frac{d-j}{2} ; \frac{d-1}{2} ; \sin ^{2} \beta\right) H_{2} \tag{24}
\end{equation*}
$$

with

$$
H_{2}=\int_{S^{d-3}\left(m^{\perp}\right)}\left|p\left(u_{0} \mid B_{p} \cap m^{\perp}\right)\right|^{2} \mathcal{H}^{d-3}\left(\mathrm{~d} u_{0}\right)
$$

Note that $\left|p\left(u_{0} \mid B_{p} \cap m^{\perp}\right)\right|^{2}=\mathcal{G}\left(u_{0}^{\perp}, B_{p} \cap m^{\perp}\right)^{2}$ and, since the integration over $S^{d-3}\left(m^{\perp}\right)$ is, up to a factor 2 , the integration over the Grassmannian $\mathcal{L}_{d-3}^{d-2}\left(m^{\perp}\right)$, we can apply (9) and obtain

$$
\begin{equation*}
H_{2}=\sigma_{d-3} K_{d-3, p-1}^{d-2}=\omega_{d-2}(p-1), \tag{25}
\end{equation*}
$$

where $\omega_{k}=\sigma_{k} / k$ is the volume of the unit ball in \mathbb{R}^{k}. In order to calculate H_{1}, we use the decomposition

$$
\left|p\left(u_{0} \mid B_{p}\right)\right|^{2}=\left|p\left(u_{0} \mid B_{p} \cap m^{\perp}\right)\right|^{2}+\left(u_{0} \cdot m_{0}\right)^{2}
$$

where $m_{0}=\pi\left(m \mid B_{p}\right)$. We have $u_{0} \cdot m_{0}=\sin \theta\left(u_{0} \cdot m_{1}\right)$ with $m_{1}=\pi\left(m_{0} \mid m^{\perp}\right)$. Since, again by (9),

$$
\int_{S^{d-3}\left(m^{\perp}\right)}\left(u_{0} \cdot m_{1}\right)^{2} \mathcal{H}^{d-3}\left(\mathrm{~d} u_{0}\right)=\omega_{d-2}
$$

we get

$$
\begin{equation*}
H_{1}=\omega_{d-2}(p-1)+\sin ^{2} \theta \omega_{d-2}=\omega_{d-2}\left(p-\cos ^{2} \theta\right) \tag{26}
\end{equation*}
$$

By inserting (26) into (23) and (25) into (24) we get

$$
\begin{aligned}
G_{1}= & \frac{\omega_{d-2}\left(p-\cos ^{2} \theta\right)}{2} B\left(\frac{d-j}{2}, \frac{j+1}{2}\right) F\left(\frac{d-q}{2}, \frac{d-j}{2} ; \frac{d+1}{2} ; \sin ^{2} \beta\right) \\
& +\frac{\sigma_{d-2} \cos ^{2} \theta}{2} B\left(\frac{d-j+2}{2}, \frac{j-1}{2}\right) F\left(\frac{d-q}{2}, \frac{d-j+2}{2} ; \frac{d+1}{2} ; \sin ^{2} \beta\right),
\end{aligned}
$$

and

$$
G_{2}=\frac{\omega_{d-2}(p-1) \cos ^{2} \theta}{2} B\left(\frac{d-j}{2}, \frac{j-1}{2}\right) F\left(\frac{d-q}{2}, \frac{d-j}{2} ; \frac{d-1}{2} ; \sin ^{2} \beta\right)
$$

which, in combination with (20), implies

$$
\begin{aligned}
& I_{j-1}^{d-1}\left(m, B_{p}\right)=\frac{1}{2} c_{d-3, j-2} K_{j-2, p-1}^{d-3} \omega_{d-2} B\left(\frac{d-j}{2}, \frac{j-1}{2}\right) \\
& \times\left[\left(p-\cos ^{2} \theta\right) \frac{j-1}{d-1} F\left(\frac{d-q}{2}, \frac{d-j}{2} ; \frac{d+1}{2} ; \sin ^{2} \beta\right)\right. \\
& +(d-2) \cos ^{2} \theta \frac{d-j}{d-1} F\left(\frac{d-q}{2}, \frac{d-j+2}{2} ; \frac{d+1}{2} ; \sin ^{2} \beta\right) \\
& \left.-\frac{(d-j-1)}{p-1}(p-1) \cos ^{2} \theta F\left(\frac{d-q}{2}, \frac{d-j}{2} ; \frac{d-1}{2} ; \sin ^{2} \beta\right)\right] \text {. }
\end{aligned}
$$

Applying (6) to the middle hypergeometric function, the expression above can be rewritten

$$
\begin{aligned}
& I_{j-1}^{d-1}\left(m, B_{p}\right)=\frac{1}{2} c_{d-3, j-2} K_{j-2, p-1}^{d-3} \omega_{d-2} B\left(\frac{d-j}{2}, \frac{j-1}{2}\right) \\
& \times\left[\frac{j-1}{d-1}\left(p-\cos ^{2} \theta-(d-2) \cos ^{2} \theta\right) F\left(\frac{d-q}{2}, \frac{d-j}{2} ; \frac{d+1}{2} ; \sin ^{2} \beta\right)\right. \\
& \left.\quad+(j-1) \cos ^{2} \theta F\left(\frac{d-q}{2}, \frac{d-j}{2} ; \frac{d-1}{2} ; \sin ^{2} \beta\right)\right] .
\end{aligned}
$$

Use

$$
\frac{1}{p} c_{d-1, j-1} K_{j-1, p}^{d-1}=\frac{(j-1) c_{d-3, j-2} K_{j-2, p-1}^{d-3} \omega_{d-2} B\left(\frac{d-j}{2}, \frac{j-1}{2}\right)}{2(d-1)}
$$

and the proof is complete.
Proof of Theorem 1. If $\beta=0$ or π then $x \| n, \alpha=\pi / 2, p\left(A_{q} \mid x^{\perp}\right)=A_{q}, p\left(n \mid L_{j}\right)=n$ and Q_{j} can be obtained by using Lemma 2:

$$
Q_{j}\left(x, n, A_{q}\right)=\int \mathcal{G}^{\left(x^{\perp}\right)}\left(L_{j-1}, A_{q}\right) \mathrm{d} L_{j-1}^{d-1}
$$

The result is then obtained using (9).
In the case $\beta=\pi / 2$ we have $m=n$, hence, $\theta=\pi / 2$, and the result follows using (19) and Lemma 3.

Assume in the following that $\beta \in(0, \pi / 2) \cup(\pi / 2, \pi)$. We use the form of $Q_{j}=$ $Q_{j}\left(x, n, A_{q}\right)$ given in (19). In the first summand in (19) we have a factor of the form
$I_{j-1}^{d-1}\left(m, B_{p}\right)$ with $p=\operatorname{dim} p\left(A_{q} \mid x^{\perp}\right)=q$, unless $\alpha=0$. Assume thus that $\alpha>0$. Let $\theta:=\angle\left(m, p\left(A_{q} \mid x^{\perp}\right)\right)$. We shall show that

$$
\begin{equation*}
\cos \theta=\frac{\cos \alpha \cos \beta}{\sin \alpha \sin \beta} . \tag{27}
\end{equation*}
$$

Since

$$
m=\frac{n-p(n \mid x)}{\left|p\left(n \mid x^{\perp}\right)\right|}=\frac{1}{\sin \beta}\left(n-\frac{\cos \beta}{|x|} x\right),
$$

we have

$$
p\left(m \mid p\left(A_{q} \mid x^{\perp}\right)\right)=\frac{1}{\sin \beta} p\left(n \mid p\left(A_{q} \mid x^{\perp}\right)\right) .
$$

If $\alpha=\pi / 2$ then $p\left(A_{q} \mid x^{\perp}\right)=A_{q} \perp n$ and we get $\cos \theta=0$, verifying (27) in this particular case. Assume now that $\alpha \in(0, \pi / 2)$. By using the decomposition $A_{q}=\operatorname{span}\{a\} \oplus\left(A_{q} \cap x^{\perp}\right)$, where $a=\pi\left(x \mid A_{q}\right)$, and that $n \perp A_{q}$, we get

$$
p\left(n \mid p\left(A_{q} \mid x^{\perp}\right)\right)=p\left(n \mid \pi\left(a \mid x^{\perp}\right)\right),
$$

where

$$
\pi\left(a \mid x^{\perp}\right)=\frac{a-p(a \mid x)}{\left|p\left(a \mid x^{\perp}\right)\right|}=\frac{1}{\sin \alpha}\left(a-\cos \alpha \frac{x}{|x|}\right) .
$$

Since $n \perp a$, we obtain

$$
\cos \theta=\left|p\left(m \mid p\left(A_{q} \mid x^{\perp}\right)\right)\right|=\frac{\left|\pi\left(a \mid x^{\perp}\right) \cdot n\right|}{\sin \beta}=\frac{1}{\sin \alpha \sin \beta}\left(\cos \alpha \frac{x \cdot n}{|x|}\right),
$$

verifying (27) again.
In the second summand we have a similar factor with $p=\operatorname{dim}\left(A_{q} \cap x^{\perp}\right)=q-1$ and $\theta=\frac{\pi}{2}$, i.e $\cos \theta=0$. Lemma 3 together with the identity

$$
K_{j-1, q-1}^{d-1}=\frac{j+q-d}{q} K_{j-1, q}^{d-1}
$$

imply

$$
\begin{aligned}
Q_{j}=\frac{c_{d-1, j-1} K_{j-1, q}^{d-1}}{q}\{ & \sin ^{2} \alpha\left[\left(q-(d-1) \cos ^{2} \theta\right) F\left(\frac{d-q}{2}, \frac{d-j}{2} ; \frac{d+1}{2} ; \sin ^{2} \beta\right)\right. \\
& \left.+(d-1) \cos ^{2} \theta F\left(\frac{d-q}{2}, \frac{d-j}{2} ; \frac{d-1}{2} ; \sin ^{2} \beta\right)\right] \\
& \left.+\cos ^{2} \alpha \frac{j+q-d}{q-1}(q-1) F\left(\frac{d-q}{2}, \frac{d-j}{2} ; \frac{d+1}{2} ; \sin ^{2} \beta\right)\right\} .
\end{aligned}
$$

The result now follows by using (27).

Appendix

The following lemma gives the values of the constants appearing in Theorem 2.
Lemma 4. Let $A \in \mathcal{L}_{d-i}^{d}, y \perp A, z \in A,|y|=|z|=1$. Then

$$
\begin{aligned}
M_{i}^{d} & :=\int \mathcal{G}\left(A, V_{i}\right)^{2}\left|p\left(y \mid V_{i}\right)\right|^{2} \mathrm{~d} V_{i}^{d}=\frac{c_{d-1, i-1}}{2 \sigma_{d-i}}\binom{d-1}{i-1}^{-1} B\left(\frac{i+4}{2}, \frac{d-i}{2}\right), \\
N_{i}^{d} & :=\int \mathcal{G}\left(A, V_{i}\right)^{2}\left|p\left(z \mid V_{i}\right)\right|^{2} \mathrm{~d} V_{i}^{d}=c_{d, i}\binom{d}{i}^{-1}-M_{d, d-i} .
\end{aligned}
$$

Proof. First, we apply the coarea formula with

$$
\varphi: V_{i} \mapsto \pi\left(y \mid V_{i}\right)=: v, \quad J_{d-1} \varphi\left(V_{i}\right)=\tan ^{i-1} \gamma
$$

with $\gamma:=\angle(y, v)=\angle\left(y, V_{i}\right)$ (cf. the beginning of the proof of Lemma 3). We get

$$
\begin{equation*}
M_{i}^{d}=\int_{S_{+}^{d-1}} \frac{\cos ^{2} \gamma}{\tan ^{i-1} \gamma} \int_{\varphi^{-1}\{v\}} \mathcal{G}\left(A, V_{i}\right)^{2} \mathrm{~d} V_{i}^{d} \mathcal{H}^{d-1}(\mathrm{~d} v) \tag{28}
\end{equation*}
$$

$\left(S_{+}^{d-1}=\left\{v \in S^{d-1}: v \cdot y>0\right\}\right)$. Since $y \perp A$ and $v \perp V_{i} \cap y^{\perp}$, we obtain using twice (8):

$$
\begin{aligned}
\mathcal{G}\left(A, V_{i}\right)^{2} & =\cos ^{2} \gamma \mathcal{G}^{\left(y^{\perp}\right)}\left(A, V_{i} \cap y^{\perp}\right)^{2} \\
& =\cos ^{2} \gamma|p(v \mid A)|^{2} \mathcal{G}^{\left(y^{\perp} \cap v^{\perp}\right)}\left(A \cap v^{\perp}, V_{i} \cap y^{\perp}\right)^{2} .
\end{aligned}
$$

Further, $\varphi^{-1}\{v\}=\left\{V_{i-1}^{\prime} \oplus \operatorname{span}\{v\}: V_{i-1}^{\prime} \in \mathcal{L}_{i-1}^{d-2}\left(y^{\perp} \cap v^{\perp}\right)\right\}$, thus

$$
\begin{aligned}
\int_{\varphi^{-1}\{v\}} \mathcal{G}\left(A, V_{i}\right)^{2} \mathrm{~d} V_{i} & =\cos ^{2} \gamma|p(v \mid A)|^{2} \int \mathcal{G}^{\left(y^{\perp} \cap v^{\perp}\right)}\left(A \cap v^{\perp}, V_{i} \cap y^{\perp}\right)^{2} \mathrm{~d} V_{i-1}^{d-2} \\
& =\cos ^{2} \gamma|p(v \mid A)|^{2} c_{d-2, i-1}\binom{d-2}{i-1}^{-1}
\end{aligned}
$$

by (9). Inserting this into (28), we get

$$
M_{i}^{d}=c_{d-2, i-1}\binom{d-2}{i-1}^{-1} \int_{S_{+}^{d-1}} \frac{\cos ^{i+3} \gamma}{\sin ^{i-1} \gamma}|p(v \mid A)|^{2} \mathcal{H}^{d-1}(\mathrm{~d} v)
$$

We apply now the coarea formula with $\psi: v \mapsto v \cdot y, J_{1} \psi(v)=\sin \gamma, \psi^{-1}\{r\} \cong$ $\sqrt{1-r^{2}} S^{d-2}$:

$$
M_{i}^{d}=c_{d-2, i-1}\binom{d-2}{i-1}^{-1} \int_{0}^{1} \frac{r^{i+3}}{\left(1-r^{2}\right)^{i / 2}} \int_{\psi^{-1}\{r\}}|p(v \mid A)|^{2} \mathcal{H}^{d-2}(\mathrm{~d} v) \mathrm{d} r
$$

where

$$
\begin{aligned}
\int_{\psi^{-1}\{r\}} & |p(v \mid A)|^{2} \mathcal{H}^{d-2}(\mathrm{~d} v)=\left(1-r^{2}\right)^{(d-2) / 2} \int_{S^{d-2}}|p(v \mid A)|^{2} \mathrm{~d} v \\
\quad= & \left(1-r^{2}\right)^{(d-2) / 2} \int_{S^{d-2}} \mathcal{G}\left(A, v^{\perp}\right)^{2} \mathrm{~d} v \\
& =\left(1-r^{2}\right)^{(d-2) / 2} \sigma_{d-1} K_{d-1, d-i-1}^{d-i, d-2} \\
\quad= & \sigma_{d-1} \frac{d-i}{d-1}\left(1-r^{2}\right)^{(d-2) / 2}
\end{aligned}
$$

(we used (9) in the last but one equality). Hence,

$$
M_{i}^{d}=c_{d-2, i-1} \sigma_{d-1}\binom{d-2}{i-1}^{-1} \frac{d-i}{d-1} \int_{0}^{1} r^{i+3}\left(1-r^{2}\right)^{(d-i-2) / 2} \mathrm{~d} r
$$

After routine calculation of the integral we finally arrive at

$$
M_{i}^{d}=\frac{c_{d-1, i-1}}{\sigma_{d-i}}\binom{d-2}{i-1}^{-1} B\left(\frac{i+4}{2}, \frac{d-i}{2}\right) .
$$

For the second integral, we use:

$$
\begin{aligned}
N_{i}^{d} & =\int \mathcal{G}\left(A^{\perp}, V_{i}^{\perp}\right)\left(1-\left|p\left(z \mid V_{i}^{\perp}\right)\right|^{2}\right) \mathrm{d} V_{i}^{\perp} \\
& =\int \mathcal{G}\left(A^{\perp}, V_{i}^{\perp}\right)^{2} \mathrm{~d} V_{i}^{\perp}-\int \mathcal{G}\left(A^{\perp}, V_{i}^{\perp}\right)^{2}\left|p\left(z \mid V_{i}^{\perp}\right)\right|^{2} \mathrm{~d} V_{i}^{\perp} \\
& =c_{d, i}\binom{d}{i}^{-1}-M_{i}^{d} .
\end{aligned}
$$

Acknowledgements

This work was supported by the Danish Natural Science Research Council, by Centre for Stochastic Geometry and Advanced Bioimaging, funded by a grant from The Villum Foundation, and by the grants MSM 0021620839 and GAČR 201/10/J039.

References

[1] A. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions, Fifth edition (Dover Publications, New York, 1968).
[2] S. Alesker, Ann. Math. 149, 977-1005 (1999).
[3] S. Alesker, Ann. Math. 166, 947-948 (2007).
[4] J. Auneau and E.B.V. Jensen, Adv. Appl. Math. 45, 1-11 (2010).
[5] A.J. Baddeley, Math. Proc. Camb. Phil. Soc. 88, 45-58 (1980).
[6] A.J. Baddeley and E.B.V. Jensen, Stereology for Statisticians, Monographs on Statistics and Applied Probability 103, edited by V. Isham, N. Keiding, T. Louis, N. Ried, R. Tibshirani, and H. Tong (Chapman \& Hall/CRC, Boca Raton, 2005).
[7] V. Beneš and J. Rataj, Stochastic Geometry: Selected Topics (Kluwer, Boston, 2004).
[8] L.M. Cruz-Orive, J. Microsc. 145, 121-142 (1984).
[9] W.J. Firey, Mathematika 19, 205-212 (1972).
[10] R.J. Gardner, Geometric Tomography, Second edition (Cambridge University Press, New York, 2006).
[11] R.J. Gardner, E.B.V. Jensen, and A. Volčič, Adv. Appl. Math. 30, 397-423 (2003).
[12] X. Gual-Arnau, L.M. Cruz-Orive, and J.J. Nuño-Ballesteros, Adv. Appl. Math. 44, 298-308 (2010).
[13] H.J.G. Gundersen, J. Microsc. 151, 3-21 (1988).
[14] E.B.V. Jensen, Local Stereology (World Scientific, New York, 1998).
[15] E.B. Jensen and H.J.G. Gundersen, J. Microsc. 153, 249-267 (1989).
[16] E.B.V. Jensen and H.J.G Gundersen, J. Microsc. 170, 35-44 (1993).
[17] E.B.V. Jensen and K. Kiêu, Math. Nachr. 156, 57-74 (1992).
[18] E.B.V. Jensen and J. Rataj, Adv. Appl. Math. 41, 530-560 (2008).
[19] D.A. Klain, Adv. Math. 121, 80-101 (1996).
[20] R.E. Miles, J. Microsc. 138, 115-125 (1985).
[21] J. Rataj, Math. Nachr. 197, 89-101 (1999).
[22] J. Rataj and M. Zähle, Ann. Glob. Anal. Geom. 20, 1-21 (2001).
[23] W. Rother. and M. Zähle, Geom. Dedicata 41, 229-240 (1991).
[24] L.A. Santaló, Integral Geometry and Geometric Probability (Addison-Wesley, Reading, Massachusetts, 1976).
[25] R. Schneider and W. Weil, Stochastic and Integral Geometry (Springer, Heidelberg, 2008).
[26] D.C. Sterio, J. Microsc. 134, 127-136 (1984).
[27] R. Sulanke and P. Wintgen, Differentialgeometrie and Faserbündel (Basel, 1972).
[28] T. Tandrup, H.J.G. Gundersen, and E.B.V. Jensen, J. Microsc. 186, 108-120 (1997).
[29] W. Weil, Result. Math. 4, 84-101 (1981).
[30] W. Weil, Math. Z. 205, 531-549 (1990).
[31] M. Zähle, Math. Nachr. 149, 325-340 (1990).

Paper
 B

Expressing intrinsic volumes as rotational integrals

Jérémy Auneau-Cognacq and Eva B.V. Jensen
Published in Adv. Appl. Math. 45, 1-11

Expressing intrinsic volumes as rotational integrals

Jérémy Auneau-Cognacq and Eva B. Vedel Jensen
Centre for Stochastic Geometry and Advanced Bioimaging
Department of Mathematical Sciences, University of Aarhus
Ny Munkegade, DK-8000 Aarhus C, Denmark

Abstract

A new rotational formula of Crofton type is derived for intrinsic volumes of a compact subset $X \subset \mathbb{R}^{d}$ of positive reach. The formula provides a functional defined on the section of X with a j-dimensional linear subspace with rotational average equal to the intrinsic volumes of X. Simplified forms of the functional are derived in special cases.

Keywords:Geometric measure theory; Integral geometry; Rotational integral; Grassmann manifold; Intrinsic volume; Set of positive reach; Stereology

MSC: 60D05; 53C65; 52A22

1 Introduction

For a compact subset X of \mathbb{R}^{d}, satisfying certain regularity conditions, the classical Crofton formula relates integrals of intrinsic volumes defined on j-dimensional affine subspaces to intrinsic volumes of X,

$$
\int_{\mathcal{F}_{j}^{d}} V_{k}\left(X \cap F_{j}\right) \mathrm{d} F_{j}^{d}=c_{d, j, k} V_{d-j+k}(X)
$$

$j=0,1, \ldots, d, k=0,1, \ldots, j$. Here, \mathcal{F}_{j}^{d} is the set of j-dimensional affine subspaces and $\mathrm{d} F_{j}^{d}$ is the element of the motion invariant measure on j-dimensional affine subspaces in \mathbb{R}^{d}. Furthermore, $V_{k}(X), k=0,1, \ldots, d$, are the intrinsic volumes of X. Finally, $c_{d, j, k}$ is a known constant.

Motivated by applications in local stereology, a rotational version of the Crofton formula has recently been derived, cf. [8]. This formula shows how rotational averages of intrinsic volumes measured on sections passing through a fixed point are related to the geometry of the sectioned object. More specifically, for a compact subset $X \subset \mathbb{R}^{d}$ of positive reach, the functionals $\beta_{j, k}$, satisfying

$$
\int_{\mathcal{L}_{j}^{d}} V_{k}\left(X \cap L_{j}\right) \mathrm{d} L_{j}^{d}=\beta_{j, k}(X)
$$

$j=0,1, \ldots, d, k=0,1, \ldots, j$, have been determined in [8]. For $k=j, \beta_{j, j}(X)$ is a simple integral while in the case $k<j, \beta_{j, k}(X)$ is a complicated integral over the unit normal bundle of X, involving principal curvatures and hypergeometric functions.

In the present paper, we address the 'opposite' problem of finding functionals $\alpha_{j, k}$, satisfying the following rotational integral equation

$$
\begin{equation*}
\int_{\mathcal{L}_{j}^{d}} \alpha_{j, k}\left(X \cap L_{j}\right) \mathrm{d} L_{j}^{d}=V_{d-j+k}(X) \tag{1}
\end{equation*}
$$

$j=0,1, \ldots, d$ and $k=0,1, \ldots, j$. The solution of the problem is inspired by some recent work reported in [3] and [4].

2 The general solution

The main tools for deriving solutions to (1) are the classical Crofton formula and a wellknown geometric measure decomposition from integral geometry.

The motion invariant measure on j-dimensional affine subspaces can be decomposed as follows. For $F_{j}=x+L_{j}$, where L_{j} is a j-dimensional linear subspace and $x \in L_{j}^{\perp}$, we have $\mathrm{d} F_{j}^{d}=\mathrm{d} x^{d-j} \mathrm{~d} L_{j}^{d}$ where $\mathrm{d} L_{j}^{d}$ is the element of the rotation invariant measure on \mathcal{L}_{j}^{d}, the set of j-dimensional linear subspaces and, for given $L_{j} \in \mathcal{L}_{j}^{d}, \mathrm{~d} x^{d-j}$ is the element of the Lebesgue measure in L_{j}^{\perp}. The total mass of $\mathrm{d} L_{j}^{d}$ is chosen to be

$$
\int_{\mathcal{L}_{j}^{d}} \mathrm{~d} L_{j}^{d}=c_{d, j}
$$

where

$$
\begin{equation*}
c_{d, j}=\frac{\sigma_{d} \sigma_{d-1} \cdots \sigma_{d-j+1}}{\sigma_{j} \sigma_{j-1} \cdots \sigma_{1}} \tag{2}
\end{equation*}
$$

and $\sigma_{k}=2 \pi^{k / 2} / \Gamma(k / 2)$ is the surface area of the unit sphere in \mathbb{R}^{k}. With this choice, the constant in the classical Crofton formula becomes

$$
\begin{equation*}
c_{d, j, k}=c_{d, j} \cdot \frac{\Gamma\left(\frac{j+1}{2}\right) \Gamma\left(\frac{d+k-j+1}{2}\right)}{\Gamma\left(\frac{k+1}{2}\right) \Gamma\left(\frac{d+1}{2}\right)} . \tag{3}
\end{equation*}
$$

The geometric measure decomposition used in the derivation of solutions to (1) concerns the motion invariant measure on r-dimensional affine subpaces in \mathbb{R}^{d}. According to Gual-Arnau and Cruz-Orive [4], we have for $r=0,1, \ldots, d-1$ that

$$
\begin{equation*}
\mathrm{d} F_{r}^{d}=d\left(O, F_{r}\right)^{d-r-1} \mathrm{~d} F_{r}^{r+1} \mathrm{~d} L_{r+1}^{d}, \tag{4}
\end{equation*}
$$

where $\mathrm{d} F_{r}^{r+1}$ is the element of the motion invariant measure on r-dimensional affine subspaces in L_{r+1} and $d\left(O, F_{r}\right)$ denotes the distance from F_{r} to the origin O. Note that for $r=0$, (4) reduces to the standard polar decomposition of Lebesgue measure

$$
\mathrm{d} x^{d}=|x|^{d-1} \mathrm{~d} x^{1} \mathrm{~d} L_{1}^{d}
$$

We formulate the main result of this paper in the proposition below.
Proposition 1. Let X be a compact subset of \mathbb{R}^{d} of positive reach. Assume that for almost all $L_{j} \in \mathcal{L}_{j}^{d}$

$$
\begin{equation*}
(x, n) \in \operatorname{nor} X, x \in L_{j} \Rightarrow n \not \perp L_{j}, \tag{5}
\end{equation*}
$$

where nor X is the unit normal bundle of X. Then,

$$
\int_{\mathcal{L}_{j}^{d}} \alpha_{j, k}\left(X \cap L_{j}\right) \mathrm{d} L_{j}^{d}=V_{d-j+k}(X)
$$

$j=1, \ldots, d, k=1, \ldots, j$, where

$$
\begin{equation*}
\alpha_{j, k}\left(X \cap L_{j}\right)=\frac{1}{c_{d, j-1, k-1}} \int_{\mathcal{F}_{j-1}^{j}} d\left(O, F_{j-1}\right)^{d-j} V_{k-1}\left(\left(X \cap L_{j}\right) \cap F_{j-1}\right) \mathrm{d} F_{j-1}^{j} \tag{6}
\end{equation*}
$$

Proof. The condition (5) of the proposition ensures that $X \cap L_{j}$ is of positive reach for almost all $L_{j} \in \mathcal{L}_{j}^{d}$, cf. [8, p. 550]. Using the Crofton formula and the measure decomposition (4), we find that

$$
\begin{aligned}
& \int_{\mathcal{L}_{j}^{d}} \alpha_{j, k}\left(X \cap L_{j}\right) \mathrm{d} L_{j}^{d} \\
&=\frac{1}{c_{d, j-1, k-1}} \int_{\mathcal{L}_{j}^{d}} \int_{\mathcal{F}_{j-1}^{j}} d\left(O, F_{j-1}\right)^{d-j} V_{k-1}\left(X \cap L_{j} \cap F_{j-1}\right) \mathrm{d} F_{j-1}^{j} \mathrm{~d} L_{j}^{d} \\
&=\frac{1}{c_{d, j-1, k-1}} \int_{\mathcal{L}_{j}^{d}} \int_{\mathcal{F}_{j-1}^{j}} d\left(O, F_{j-1}\right)^{d-(j-1)-1} V_{k-1}\left(X \cap F_{j-1}\right) \mathrm{d} F_{j-1}^{j} \mathrm{~d} L_{j}^{d} \\
&=\frac{1}{c_{d, j-1, k-1}} \int_{\mathcal{F}_{j-1}^{d}} V_{k-1}\left(X \cap F_{j-1}\right) \mathrm{d} F_{j-1}^{d} \\
&=V_{d-j+k}(X) .
\end{aligned}
$$

$3 \quad$ The case $k=j$

For $k=j$, Proposition 1 provides a functional with rotational average equal to the volume $V_{d}(X)$. This functional can be simplified considerably, as shown in the proposition below. We use here and in the following the notation $p\left(x \mid L_{r}\right)$ for the orthogonal projection of $x \in \mathbb{R}^{d}$ onto $L_{r} \in \mathcal{L}_{r}^{d}$.

Proposition 2. Let the situation be as in Proposition 1 and suppose that $k=j$. Then,

$$
\alpha_{j, j}\left(X \cap L_{j}\right)=\frac{1}{c_{d-1, j-1}} \int_{X \cap L_{j}}|z|^{d-j} \mathrm{~d} z^{j}
$$

Proof. Using that $F_{j-1}=L_{j-1}+x$, where $x \in L_{j-1}^{\perp}$, we find

$$
\begin{aligned}
& \alpha_{j, j}(Y)=\frac{1}{c_{d, j-1, j-1}} \int_{\mathcal{F}_{j-1}^{j}} d\left(O, F_{j-1}\right)^{d-j} V_{j-1}\left(Y \cap F_{j-1}\right) \mathrm{d} F_{j-1}^{j} \\
& \quad= \frac{1}{c_{d, j-1, j-1}} \int_{\mathcal{L}_{j-1}^{j}} \int_{L_{j-1}^{\perp}}|x|^{d-j} V_{j-1}\left(Y \cap\left(L_{j-1}+x\right)\right) \mathrm{d} x^{1} \mathrm{~d} L_{j-1}^{j} \\
& \quad= \frac{1}{c_{d, j-1, j-1}} \int_{\mathcal{L}_{j-1}^{j}} \int_{L_{j-1}^{\perp}} \int_{Y \cap\left(L_{j-1}+x\right)}|x|^{d-j} \mathrm{~d} y^{j-1} \mathrm{~d} x^{1} \mathrm{~d} L_{j-1}^{j} \\
& \quad=\frac{1}{c_{d, j-1, j-1}} \int_{\mathcal{L}_{j-1}^{j}} \int_{Y}\left|p\left(z \mid L_{j-1}^{\perp}\right)\right|^{d-j} \mathrm{~d} z^{j} \mathrm{~d} L_{j-1}^{j} \\
& \quad=\frac{1}{c_{d, j-1, j-1}} \int_{Y}|z|^{d-j}\left(\int_{\mathcal{L}_{j-1}^{j}} \frac{\left|p\left(z \mid L_{j-1}^{\perp}\right)\right|^{d-j}}{|z|^{d-j}} \mathrm{~d} L_{j-1}^{j}\right) \mathrm{d} z^{j} \\
& \quad=\frac{1}{c_{d, j-1, j-1}} \int_{Y}|z|^{d-j}\left(\frac{c_{j, j-1}}{B\left(\frac{1}{2}, \frac{j-1}{2}\right)} \int_{0}^{1} y^{\frac{d-j-1}{2}}(1-y)^{\frac{j-3}{2}} \mathrm{~d} y\right) \mathrm{d} z^{j}
\end{aligned}
$$

At the last equality sign, we have used [7, Proposition 3.9]. The result now follows immediately, using (2) and (3).

4 The case $k<j$

It is also possible to make the expression of the functional $\alpha_{j, k}$ more explicit for $k<j$. We will concentrate on the case where X is the compact closure of an open subset of \mathbb{R}^{d} and ∂X is a $(d-1)$-dimensional manifold of class C^{2}. For $k=0,1, \ldots, d-1$, the k th intrinsic volume has the following integral representation

$$
\begin{equation*}
V_{k}(X)=\frac{1}{\sigma_{d-k}} \int_{\partial X} \sum_{|I|=d-1-k} \prod_{i \in I} \kappa_{i}(x) \mathcal{H}^{d-1}(\mathrm{~d} x) \tag{7}
\end{equation*}
$$

where $\kappa_{i}(x), i=1, \ldots, d-1$, are the principal curvatures of ∂X at $x \in \partial X$ and \mathcal{H}^{d-1} denotes the $(d-1)$-dimensional Hausdorff measure. We will assume that for all $j=$ $1, \ldots, d$, almost all $z \in \partial X$ and almost all $L_{j} \in \mathcal{L}_{j}^{d}$

$$
\begin{equation*}
x \in(\partial X) \cap\left(L_{j}+z\right) \Rightarrow n(x) \not \perp L_{j} . \tag{8}
\end{equation*}
$$

For an affine subspace $F_{j}=L_{j}+z$, satisfying (8), we have, cf. [5, p. 59 and 60],

$$
\partial\left(X \cap F_{j}\right)=(\partial X) \cap F_{j}
$$

and $\partial\left(X \cap F_{j}\right)$ is a $(j-1)$-dimensional manifold of class C^{2}. The principal curvatures of $\partial\left(X \cap F_{j}\right)$ at $x \in \partial\left(X \cap F_{j}\right)$ are denoted by $\kappa_{F_{j}, i}(x), i=1, \ldots, j-1$.

The proposition below gives a more explicit expression for $\alpha_{j, k}$ for $k<j$ than the one given in (6).

Proposition 3. Let the situation be as in Proposition 1 and let $k<j$. Suppose that X is the compact closure of an open subset of \mathbb{R}^{d} and ∂X is a $(d-1)$-dimensional manifold of class C^{2} for which (8) is satisfied. Then,

$$
\begin{aligned}
& c_{d, j-1, k-1} \sigma_{j-k} \alpha_{j, k}\left(X \cap L_{j}\right) \\
& \quad=\int_{\partial\left(X \cap L_{j}\right)} \int_{\mathcal{L}_{j-1}^{j}} \kappa\left(z ; L_{j-1}+z\right)\left|p\left(n(z) \mid L_{j-1}\right)\right|\left|p\left(z \mid L_{j-1}^{\perp}\right)\right|^{d-j} \mathrm{~d} L_{j-1}^{j} \mathcal{H}^{j-1}(\mathrm{~d} z)
\end{aligned}
$$

where $n(z)$ is the unit normal of $\partial\left(X \cap L_{j}\right)$ at z and

$$
\kappa\left(z ; F_{j-1}\right)= \begin{cases}1 & \text { if } k=j-1 \\ \sum_{|I|=j-k-1} \prod_{i \in I} \kappa_{F_{j-1}, i}(z) & \text { if } k<j-1\end{cases}
$$

Proof. Note that the condition (8) ensures that for almost all $L_{j} \in \mathcal{L}_{j}^{d}, z \in \partial\left(X \cap L_{j}\right)$ and $L_{j-1} \in \mathcal{L}_{j-1}^{j}, \partial\left(X \cap L_{j}\right) \cap\left(L_{j-1}+z\right)$ is a $(j-2)$-dimensional manifold of class C^{2}. This can be seen by first noting that

$$
\begin{aligned}
\partial\left(X \cap L_{j}\right) \cap\left(L_{j-1}+z\right) & =(\partial X) \cap L_{j} \cap\left(L_{j-1}+z\right) \\
& =(\partial X) \cap\left(L_{j-1}+z\right),
\end{aligned}
$$

and then combining (8) with [7, Proposition 5.4]. The function $\kappa\left(z ; L_{j-1}+z\right)$ is well-defined when $\partial\left(X \cap L_{j}\right) \cap\left(L_{j-1}+z\right)$ is a $(j-2)$-dimensional manifold of class C^{2}.

Letting $Y=X \cap L_{j}$, we have according to (6)

$$
\begin{aligned}
\alpha_{j, k}(Y) & =\frac{1}{c_{d, j-1, k-1}} \int_{\mathcal{F}_{j-1}^{j}} d\left(O, F_{j-1}\right)^{d-j} V_{k-1}\left(Y \cap F_{j-1}\right) \mathrm{d} F_{j-1}^{j} \\
& =\frac{1}{c_{d, j-1, k-1}} \int_{\mathcal{L}_{j-1}^{j}} \int_{L_{j-1}^{\perp}}|x|^{d-j} V_{k-1}\left(Y \cap\left(L_{j-1}+x\right)\right) \mathrm{d} x^{1} \mathrm{~d} L_{j-1}^{j} .
\end{aligned}
$$

Using the integral representation (7) of intrinsic volumes, the expression above becomes

$$
\begin{aligned}
& c_{d, j-1, k-1} \alpha_{j, k}(Y) \\
&=\frac{1}{\sigma_{(j-1)-(k-1)}} \int_{\mathcal{L}_{j-1}^{j}} \int_{L_{j-1}^{\perp}}|x|^{d-j} \int_{\partial Y \cap\left(L_{j-1}+x\right)} \kappa\left(y ; L_{j-1}+x\right) \mathcal{H}^{(j-1)-1}(\mathrm{~d} y) \mathrm{d} x^{1} \mathrm{~d} L_{j-1}^{j} \\
&=\frac{1}{\sigma_{j-k}} \int_{\mathcal{L}_{j-1}^{j}} \int_{L_{j-1}^{\perp}} \int_{\partial Y \cap\left(L_{j-1}+x\right)}\left|p\left(y \mid L_{j-1}^{\perp}\right)\right|^{d-j} \kappa\left(y ; L_{j-1}+y\right) \mathcal{H}^{j-2}(\mathrm{~d} y) \mathrm{d} x^{1} \mathrm{~d} L_{j-1}^{j} .
\end{aligned}
$$

At the first equality sign we have used that $\partial\left(Y \cap F_{j-1}\right)=\partial Y \cap F_{j-1}$ for almost all F_{j-1}. Using [7, Propositions 2.10 and 5.2] and Fubini, we finally get

$$
\begin{aligned}
& c_{d, j-1, k-1} \alpha_{j, k}(Y) \\
&=\frac{1}{\sigma_{j-k}} \int_{\mathcal{L}_{j-1}^{j}} \int_{\partial Y}\left|p\left(n(z) \mid L_{j-1}\right)\right| \quad\left|p\left(z \mid L_{j-1}^{\perp}\right)\right|^{d-j} \kappa\left(z, L_{j-1}+z\right) \mathcal{H}^{j-1}(\mathrm{~d} z) \mathrm{d} L_{j-1}^{j} \\
&=\frac{1}{\sigma_{j-k}} \int_{\partial Y} \int_{\mathcal{L}_{j-1}^{j}} \kappa\left(z, L_{j-1}+z\right)\left|p\left(n(z) \mid L_{j-1}\right)\right| \quad\left|p\left(z \mid L_{j-1}^{\perp}\right)\right|^{d-j} \mathrm{~d} L_{j-1}^{j} \mathcal{H}^{j-1}(\mathrm{~d} z) .
\end{aligned}
$$

For $k=j-1$, the expression for $\alpha_{j, k}(Y)$ given in Proposition 3 can be further simplified, using the following proposition. The proof is deferred to the Appendix.
Proposition 4. Let $L_{j} \in \mathcal{L}_{j}^{d}, j=1, \ldots, d$. Let x and y be unit vectors in L_{j}. Then, for all $m, n \in \mathbb{N}$,

$$
\begin{aligned}
\int_{\mathcal{L}_{j-1}^{j}} & \left|p\left(x \mid L_{j-1}\right)\right|^{m}\left|p\left(y \mid L_{j-1}^{\perp}\right)\right|^{n} \mathrm{~d} L_{j-1}^{j} \\
& =\frac{\sigma_{j-1}}{2} B\left(\frac{n+1}{2}, \frac{m}{2}+\frac{j-1}{2}\right) F\left(-\frac{m}{2},-\frac{n}{2} ; \frac{j-1}{2}, \sin ^{2} \angle(x, y)\right)
\end{aligned}
$$

Using Proposition 4 with $m=1$ and $n=d-j$, we find

$$
\alpha_{j, j-1}(Y)=\frac{1}{2 c_{d-1, j-1}} \int_{\partial Y}|z|^{d-j} F\left(-\frac{1}{2},-\frac{d-j}{2} ; \frac{j-1}{2} ; \sin ^{2} \angle(n(z), z)\right) \mathcal{H}^{j-1}(\mathrm{~d} z) .
$$

Appendix

In this appendix, we will prove Proposition 4. Without loss of generality, we assume that $x \cdot y>0$. For simplicity, we write $\mathrm{d} z^{j}$ instead of $\mathcal{H}^{j}(\mathrm{~d} z)$.

The Gauss hypergeometric series or hypergeometric function is defined for $a, b, c \in \mathbb{R}$ and $z \in[-1,1]$ as

$$
F(a, b ; c ; z)=F(b, a ; c ; z)=\sum_{k=0}^{\infty} \frac{(a)_{k}(b)_{k}}{(c)_{k}} \frac{z^{k}}{k!}
$$

where $(x)_{k}$ is the rising sequential product or Pochhammer symbol defined for a nonnegative integer k and $x \in \mathbb{R}$ by

$$
(x)_{k}= \begin{cases}\frac{\Gamma(x+k)}{\Gamma(x)} & \text { if } x>0 \\ (-1)^{k} \frac{\Gamma(-x+1)}{\Gamma(-x-k+1)} & \text { if } x \leq 0\end{cases}
$$

Note that $(x)_{k}=0$ whenever $x \in\{0,-1,-2, \ldots\}$ and $k>-x$.
An application of [7, Propositions 3.2 and 3.3] gives

$$
\begin{align*}
\int_{\mathcal{L}_{j-1}^{j}} & \left|p\left(x \mid L_{j-1}\right)\right|^{m}\left|p\left(y \mid L_{j-1}^{\perp}\right)\right|^{n} \mathrm{~d} L_{j-1}^{j} \\
& =\int_{\mathcal{L}_{1}^{j}}\left|p\left(x \mid L_{1}^{\perp}\right)\right|^{m}\left|p\left(y \mid L_{1}\right)\right|^{n} \mathrm{~d} L_{1}^{j} \\
& =\frac{1}{2} \int_{S^{j-1}}\left|p\left(x \mid \operatorname{span}\{\omega\}^{\perp}\right)\right|^{m}|p(y \mid \operatorname{span}\{\omega\})|^{n} \mathrm{~d} \omega^{j-1} \\
& =\frac{1}{2} \int_{S^{j-1}}{\sqrt{1-(x \cdot \omega)^{2}}}^{m}|y \cdot \omega|^{n} \mathrm{~d} \omega^{j-1} \\
& =\frac{1}{2} \sum_{k=0}^{\infty}\binom{\frac{m}{2}}{k}(-1)^{k} \int_{S^{j-1}}|x \cdot \omega|^{2 k}|y \cdot \omega|^{n} \mathrm{~d} \omega^{j-1} \tag{9}
\end{align*}
$$

Now note that

$$
\begin{align*}
\int_{S^{j-1}} & |x \cdot \omega|^{2 k}|y \cdot \omega|^{n} \mathrm{~d} \omega^{j-1} \\
& =\int_{S^{j-1}}|p(p(\omega \mid x \oplus y) \mid x)|^{2 k}|p(p(\omega \mid x \oplus y) \mid y)|^{n} \mathrm{~d} \omega^{j-1} \tag{10}
\end{align*}
$$

In order to compute (10), we will use the following lemma.

Lemma 1. Let $B_{p} \in \mathcal{L}_{p}^{d}$. Then, for any non-negative measurable function $g: \mathbb{R}^{d} \rightarrow \mathbb{R}$,

$$
\int_{S^{d-1}} g\left(p\left(x \mid B_{p}\right)\right) \mathrm{d} x^{d-1}=\frac{\sigma_{d-p}}{2} \int_{S^{p-1}\left(B_{p}\right)} \int_{0}^{1} g\left(t^{\frac{1}{2}} x_{0}\right) t^{\frac{p-2}{2}}(1-t)^{\frac{d-p-2}{2}} \mathrm{~d} t \mathrm{~d} x_{0}^{p-1}
$$

where $S^{p-1}\left(B_{p}\right)$ is the unit sphere in B_{p}.
Proof. First, we use the co-area formula with

$$
\begin{aligned}
\psi: & S^{d-1} \backslash B_{p}^{\perp} \rightarrow S^{p-1}\left(B_{p}\right) \\
& x \rightarrow \pi\left(x \mid B_{p}\right):=p\left(x \mid B_{p}\right) /\left|p\left(x \mid B_{p}\right)\right| .
\end{aligned}
$$

The $(p-1)$-dimensional Jacobian of ψ is given by

$$
J_{p-1} \psi\left(x, S^{d-1}\right)=\left|p\left(x \mid B_{p}\right)\right|^{-(p-1)}
$$

Hence, the co-area formula yields

$$
\begin{align*}
\int_{S^{d-1}} g\left(p\left(x \mid B_{p}\right)\right) \mathrm{d} x^{d-1} & =\int_{S^{d-1}} g\left(\left|p\left(x \mid B_{p}\right)\right| \pi\left(x \mid B_{p}\right)\right) \mathrm{d} x^{d-1} \\
& =\int_{S^{p-1}\left(B_{p}\right)} \int_{\psi^{-1}\left\{x_{0}\right\}} g\left(\left|p\left(x \mid B_{p}\right)\right| x_{0}\right)\left|p\left(x \mid B_{p}\right)\right|^{p-1} \mathrm{~d} x^{d-p} \mathrm{~d} x_{0}^{p-1} \tag{11}
\end{align*}
$$

Next, let $x_{0} \in S^{p-1}\left(B_{p}\right)$ be fixed and apply the area formula with

$$
\begin{aligned}
\xi: & B_{p}^{\perp} \rightarrow \psi^{-1}\left\{x_{0}\right\} \\
\omega & \mapsto \frac{\omega+x_{0}}{\left|\omega+x_{0}\right|}
\end{aligned}
$$

The $(d-p)$-dimensional Jacobian of ξ is

$$
J_{d-p} \xi\left(\omega, B_{p}^{\perp}\right)=\left(\frac{1}{1+|\omega|^{2}}\right)^{\frac{d-p+1}{2}}
$$

Hence, since ξ maps B_{p}^{\perp} bijectively onto $\psi^{-1}\left\{x_{0}\right\}$ and $\left|p\left(\xi(\omega) \mid B_{p}\right)\right|=\frac{1}{\left|\omega+x_{0}\right|}=\left(\frac{1}{1+|\omega|^{2}}\right)^{\frac{1}{2}}$, we have

$$
\begin{aligned}
& \int_{\psi^{-1}\left\{x_{0}\right\}} g\left(\left|p\left(x \mid B_{p}\right)\right| x_{0}\right)\left|p\left(x \mid B_{p}\right)\right|^{p-1} \mathrm{~d} x^{d-p} \\
&= \int_{\psi^{-1}\left\{x_{0}\right\}} g\left(\left|p\left(x \mid B_{p}\right)\right| x_{0}\right)\left|p\left(x \mid B_{p}\right)\right|^{p-1} \mathrm{~d} x^{d-p} \\
&= \int_{\psi^{-1}\left\{x_{0}\right\}} g\left(\left(\frac{1}{1+\left|\xi^{-1}(x)\right|^{2}}\right)^{\frac{1}{2}} x_{0}\right)\left(\frac{1}{1+\left|\xi^{-1}(x)\right|^{2}}\right)^{\frac{p-1}{2}} \mathrm{~d} x^{d-p} \\
&= \int_{B_{p}^{\perp}} g\left(\left(\frac{1}{1+|x|^{2}}\right)^{\frac{1}{2}} x_{0}\right)\left(\frac{1}{1+|x|^{2}}\right)^{\frac{p-1}{2}}\left(\frac{1}{1+|x|^{2}}\right)^{\frac{d-p+1}{2}} \mathrm{~d} x^{d-p} \\
&= \int_{B_{p}^{\perp}} g\left(\left(\frac{1}{1+|x|^{2}}\right)^{\frac{1}{2}} x_{0}\right)\left(\frac{1}{1+|x|^{2}}\right)^{\frac{d}{2}} \mathrm{~d} x^{d-p}
\end{aligned}
$$

Using [7, Proposition 2.8], we get

$$
\begin{align*}
\int_{B_{p}^{\perp}} & g\left(\left(\frac{1}{1+|x|^{2}}\right)^{\frac{1}{2}} x_{0}\right)\left(\frac{1}{1+|x|^{2}}\right)^{\frac{d}{2}} \mathrm{~d} x^{d-p} \\
& =\sigma_{d-p} \int_{0}^{\infty} g\left(\left(\frac{1}{1+t^{2}}\right)^{\frac{1}{2}} x_{0}\right)\left(\frac{1}{1+t^{2}}\right)^{\frac{d}{2}} t^{d-p-1} \mathrm{~d} t \tag{12}
\end{align*}
$$

Substitution with $s=\frac{1}{1+t^{2}}$ yields

$$
\begin{aligned}
\int_{0}^{\infty} & g\left(\left(\frac{1}{1+t^{2}}\right)^{\frac{1}{2}} x_{0}\right)\left(\frac{1}{1+t^{2}}\right)^{\frac{d}{2}} t^{d-p-1} \mathrm{~d} t \\
& =\frac{1}{2} \int_{0}^{1} g\left(s^{\frac{1}{2}} x_{0}\right) s^{\frac{p-2}{2}}(1-s)^{\frac{d-p-2}{2}} \mathrm{~d} s
\end{aligned}
$$

The last equation combined with (11) and (12) implies

$$
\int_{S^{d-1}} g\left(p\left(x \mid B_{p}\right)\right) \mathrm{d} x^{d-1}=\frac{\sigma_{d-p}}{2} \int_{S^{p-1}\left(B_{p}\right)} \int_{0}^{1} g\left(t^{\frac{1}{2}} x_{0}\right) t^{\frac{p-2}{2}}(1-t)^{\frac{d-p-2}{2}} \mathrm{~d} t \mathrm{~d} x_{0}^{p-1}
$$

Applying Lemma 1 with $B=\operatorname{span}\{x, y\}$, we get

$$
\begin{align*}
\int_{S^{j-1}} & |p(p(\omega \mid x \oplus y) \mid x)|^{2 k}|p(p(\omega \mid x \oplus y) \mid y)|^{n} \mathrm{~d} \omega^{j-1} \\
& =\frac{\sigma_{j-2}}{2} \int_{S^{1}(B)} \int_{0}^{1} t^{k}\left|p\left(\omega_{0} \mid x\right)\right|^{2 k} t^{n / 2}\left|p\left(\omega_{0} \mid y\right)\right|^{n} t^{\frac{2-2}{2}}(1-t)^{\frac{j-2-2}{2}} \mathrm{~d} t \mathrm{~d} \omega_{0}^{1} \\
& =\frac{\sigma_{j-2}}{2} \int_{S^{1}(B)}\left|p\left(\omega_{0} \mid y\right)\right|^{n}\left|p\left(\omega_{0} \mid x\right)\right|^{2 k} \mathrm{~d} \omega_{0}^{1} \int_{0}^{1} t^{\frac{n+2 k}{2}}(1-t)^{\frac{j-4}{2}} \mathrm{~d} t \\
& =\frac{\sigma_{j-2} B\left(\frac{n}{2}+k+1, \frac{j-2}{2}\right)}{2} \int_{S^{1}(B)}\left|p\left(\omega_{0} \mid y\right)\right|^{n}\left|p\left(\omega_{0} \mid x\right)\right|^{2 k} \mathrm{~d} \omega_{0}^{1} \tag{13}
\end{align*}
$$

Successive application of [7, Proposition 3.2] and [6, Corollary 4.2] yield

$$
\begin{aligned}
& \int_{S^{1}(B)}\left|p\left(\omega_{0} \mid y\right)\right|^{n}\left|p\left(\omega_{0} \mid x\right)\right|^{2 k} \mathrm{~d} \omega_{0}^{1}=2 \int_{\mathcal{L}_{1}^{2}(B)}\left|p\left(x \mid L_{1}\right)\right|^{2 k}\left|p\left(y \mid L_{1}\right)\right|^{n} \mathrm{~d} L_{1}^{2} \\
& =2 \int_{-1}^{1} \int_{S^{1}(B) \cap y^{\perp}}\left(1-t^{2}\right)^{\frac{2-1-2}{2}}\left|p\left(x \mid t y+\sqrt{1-t^{2}} \omega\right)\right|^{2 k}\left|p\left(y \mid t y+\sqrt{1-t^{2}} \omega\right)\right|^{n} \mathrm{~d} \omega \mathrm{~d} t \\
& =2 \int_{-1}^{1} \int_{S^{1}(B) \cap y^{\perp}}\left(1-t^{2}\right)^{\frac{2-1-2}{2}}|t|^{n}\left|t(y \cdot x)+\sqrt{1-t^{2}}(x \cdot \omega)\right|^{2 k} \mathrm{~d} \omega \mathrm{~d} t \\
& =2 \int_{-1}^{1}\left(1-t^{2}\right)^{\frac{2-1-2}{2}}|t|^{n}\left(\left|t(y \cdot x)+\sqrt{1-t^{2}} \sqrt{1-(y \cdot x)^{2}}\right|^{2 k}\right. \\
& \\
& \left.\quad+\left|t(y \cdot x)-\sqrt{1-t^{2}} \sqrt{1-(y \cdot x)^{2}}\right|^{2 k}\right) \mathrm{d} t
\end{aligned}
$$

Using the binomial formula, the last expression becomes

$$
\begin{aligned}
& 2 \sum_{l=0}^{2 k}\binom{2 k}{l} \int_{-1}^{1}\left(\left(1-t^{2}\right)^{\frac{2-1-2}{2}}|t|^{n} t^{l}(y \cdot x)^{l}\left(1-t^{2}\right)^{\frac{2 k-l}{2}}{\sqrt{1-(x \cdot y)^{2}}}^{2 k-l}\right. \\
&\left.+(-1)^{l}\left(1-t^{2}\right)^{\frac{2-1-2}{2}}|t|^{n} t^{l}(y \cdot x)^{l}\left(1-t^{2}\right)^{\frac{2 k-l}{2}}{\sqrt{1-(x \cdot y)^{2}}}^{2 k-l}\right) \mathrm{d} t \\
&= 4 \sum_{l=0}^{k}(x \cdot y)^{2 l}\left(1-(x \cdot y)^{2}\right)^{k-l}\binom{2 k}{2 l} \int_{0}^{1}\left(1-t^{2}\right)^{k-l-\frac{1}{2}} t^{n+2 l} \mathrm{~d} t \\
&= 2 \sum_{l=0}^{k}(x \cdot y)^{2 l}\left(1-(x \cdot y)^{2}\right)^{k-l}\binom{2 k}{2 l} B\left(\frac{n}{2}+l+\frac{1}{2}, k-l+\frac{1}{2}\right) .
\end{aligned}
$$

Applying the duplication formula for the Gamma function,

$$
\Gamma(2 z)=\Gamma(z) \Gamma\left(z+\frac{1}{2}\right) \pi^{-\frac{1}{2}} 2^{2 z-1},
$$

we obtain

$$
\begin{aligned}
2 \sin ^{2 k} & \angle(x, y) B\left(\frac{n}{2}+\frac{1}{2}, k+\frac{1}{2}\right) \sum_{l=0}^{k} \frac{(-k)_{l}\left(\frac{n}{2}+\frac{1}{2}\right)_{l}}{\left(\frac{1}{2}\right)_{l}} \frac{\left(-\tan ^{-2} \angle(x, y)\right)^{l}}{l!} \\
& =2 \sin ^{2 k} \angle(x, y) B\left(\frac{n}{2}+\frac{1}{2}, k+\frac{1}{2}\right) F\left(-k, \frac{n}{2}+\frac{1}{2} ; \frac{1}{2} ;-\tan ^{-2} \angle(x, y)\right) .
\end{aligned}
$$

According to [1, (15.3.4)] with $z=\cos ^{2} \angle(x, y)$,

$$
\sin ^{2 k} \angle(x, y) F\left(-k, \frac{n}{2}+\frac{1}{2} ; \frac{1}{2} ;-\tan ^{-2} \angle(x, y)\right)=F\left(-k,-\frac{n}{2} ; \frac{1}{2} ; \cos ^{2} \angle(x, y)\right) .
$$

By insertion in (13), we get

$$
\begin{aligned}
& \int_{S^{j-1}}|x \cdot \omega|^{2 k}|y \cdot \omega|^{n} \mathrm{~d} \omega^{j-1} \\
& \quad=\sigma_{j-2} B\left(\frac{n}{2}+k+1, \frac{j-2}{2}\right) B\left(k+\frac{1}{2}, \frac{n}{2}+\frac{1}{2}\right) F\left(-k,-\frac{n}{2} ; \frac{1}{2} ; \cos ^{2} \angle(x, y)\right) .
\end{aligned}
$$

Hence, (9) becomes

$$
\begin{aligned}
& \int_{\mathcal{L}_{j-1}^{j}}\left|p\left(x \mid L_{j-1}\right)\right|^{m}\left|p\left(y \mid L_{j-1}^{\perp}\right)\right|^{n} \mathrm{~d} L_{j-1}^{j} \\
&=\frac{\sigma_{j-2}}{2} \sum_{k=0}^{\infty}\binom{\frac{m}{2}}{k}(-1)^{k} B\left(\frac{n}{2}+k+1, \frac{j-2}{2}\right) \\
& \times B\left(\frac{n+1}{2}, k+\frac{1}{2}\right) F\left(-k,-\frac{n}{2} ; \frac{1}{2} ; \cos ^{2} \angle(x, y)\right) .
\end{aligned}
$$

Since

$$
\begin{aligned}
& \frac{\sigma_{j-2}}{2}\binom{\frac{m}{2}}{k}(-1)^{k} B\left(\frac{n}{2}+k+1, \frac{j-2}{2}\right) B\left(\frac{n+1}{2}, k+\frac{1}{2}\right) \\
& \quad=\frac{\sigma_{j-1}}{2} B\left(\frac{j-1}{2}, \frac{n+1}{2}\right) \frac{\left(-\frac{m}{2}\right)_{k}}{k!} \frac{\left(\frac{1}{2}\right)_{k}}{\left(\frac{n+j}{2}\right)_{k}},
\end{aligned}
$$

we now have

$$
\begin{aligned}
\int_{\mathcal{L}_{j-1}^{j}} & \left|p\left(x \mid L_{j-1}\right)\right|^{m}\left|p\left(y \mid L_{j-1}^{\perp}\right)\right|^{n} \mathrm{~d} L_{j-1}^{j} \\
\quad & =\frac{\sigma_{j-1}}{2} B\left(\frac{j-1}{2}, \frac{n+1}{2}\right) \sum_{k=0}^{\infty} \frac{\left(-\frac{m}{2}\right)_{k}\left(\frac{1}{2}\right)_{k}}{\left(\frac{n+j}{2}\right)_{k}} \frac{F\left(-k,-\frac{n}{2} ; \frac{1}{2} ; \cos ^{2} \angle(x, y)\right)}{k!} .
\end{aligned}
$$

Using the power series expansion of the hypergeometric function, then expanding the polynomial $\left(1-\sin ^{2} \angle(x, y)\right)^{k}$ and applying the identities

$$
\frac{\binom{k+l}{l}}{(k+l)!}=\frac{1}{l!} \frac{1}{k!} \quad \text { and } \quad(a)_{k+l}=(a)_{l}(a+l)_{k}
$$

it is straightforward to prove that the last expression equals

$$
\frac{\sigma_{j-1}}{2} B\left(\frac{n+1}{2}, \frac{m}{2}+\frac{j-1}{2}\right) F\left(-\frac{m}{2},-\frac{n}{2} ; \frac{j-1}{2} ; \sin ^{2} \angle(x, y)\right) .
$$

The proof is complete.

References

[1] A. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions, Dover Publications, New York, 1968. Fifth edition.
[2] A.J. Baddeley, E.B.V. Jensen, Stereology for Statisticians, Monogr. Statist. Appl. Probab., vol 103, Chapman \& Hall/CRC, Boca Raton, FL, 2005.
[3] L.M. Cruz-Orive, A new stereological principle for test lines in three-dimensional space, J. Microsc. 219 (2005) 18-28.
[4] X. Gual-Arnau, L.M. Cruz-Orive, A new expression for the density of totally geodesic submanifolds in space forms, with stereological applications, Diff. Geom. Appl. 27 (2009) 124-128.
[5] V. Guillemin, A. Pollack, Differential Topology, Prentice-Hall, Englewood Cliffs, NJ, 1974.
[6] D. Hug, R. Schneider, R. Schuster, Integral geometry of tensor valuations, Adv. Appl. Math. 41 (2008) 482-509.
[7] E.B.V. Jensen, Local Stereology, World Scientific Publishing, Singapore, 1998.
[8] E.B.V. Jensen, J. Rataj, A rotational integral formula for intrinsic volumes, Adv. Appl. Math. 41 (2008) 530-560.

Paper

A rotational Crofton formula for flagged intrinsic volumes of sets of positive reach.

Jérémy Auneau-Cognacq
To be published as a CSGB preprint

A rotational Crofton formula for flagged intrinsic volumes of sets of positive reach

Jérémy Auneau-Cognacq
Centre for Stochastic Geometry and Advanced Bioimaging
Department of Mathematical Sciences, University of Aarhus
Ny Munkegade, DK-8000 Aarhus C, Denmark

Abstract

A rotational Crofton formula is derived relating the flagged intrinsic volumes of a compact set of positive reach with the flagged intrinsic volumes measured on sections passing through a fixed point. In particular cases, the flageed intrinsic volumes defined in the present paper are identical to the classical intrinsic volumes. The tight connection between our main result and other recent rotational integral formulae involving intrinsic volumes is pointed out.

Keywords: Crofton formula; Geometric measure theory; Grassmann manifold; Integral geometry; Intrinsic volume; Rotational integral; Set with positive reach; Unit normal bundle

1 Introduction

In classical stereology, the well-known Crofton formula relates the intrinsic volumes of a compact subset X of \mathbb{R}^{d} with the intrinsic volumes of its affine sections

$$
\begin{equation*}
c_{d, r, k} V_{d-r+k}(X)=\int_{\mathcal{F}_{r}^{d}} V_{k}\left(X \cap F_{r}\right) \mathrm{d} F_{r}^{d}, \tag{1}
\end{equation*}
$$

$r=0, \ldots, d, k=0 \ldots, r$. Here, \mathcal{F}_{r}^{d} is the set of r-dimensional affine subspaces in \mathbb{R}^{d} and $\mathrm{d} F_{r}^{d}$ is the element of its motion invariant measure. The k th intrinsic volume of X is denoted by $V_{k}(X), k=0, \ldots, d$. Finally, $c_{d, r, k}$ is a known constant. In local stereology, the focus of interest is instead on integral geometric relations of the type

$$
\begin{equation*}
\beta(X)=\int_{\mathcal{L}_{r}^{d}} \alpha\left(X \cap L_{r}\right) \mathrm{d} L_{r}^{d}, \tag{2}
\end{equation*}
$$

where α and β are functionals, \mathcal{L}_{r}^{d} denotes the set of r-dimensional subspaces in \mathbb{R}^{d} and $\mathrm{d} L_{r}^{d}$ is the element of its rotation invariant measure. In the special case where α is an intrinsic volume of a compact set X of positive reach, i.e. for relations of the type

$$
\begin{equation*}
\beta(X)=\int_{\mathcal{L}_{r}^{d}} V_{k}\left(X \cap L_{r}\right) \mathrm{d} L_{r}^{d}, \tag{3}
\end{equation*}
$$

Jensen and Rataj proved in [8] that β can be expressed as a certain integral over the unit normal bundle of X. In the same paper, the problem was raised of finding functionals α
satisfying the integral equation (2) in the particular case where β is an intrinsic volume of X,

$$
\begin{equation*}
V_{d-k}(X)=\int_{\mathcal{L}_{r}^{d}} \alpha\left(X \cap L_{r}\right) \mathrm{d} L_{r}^{d} \tag{4}
\end{equation*}
$$

Recently, a solution to this problem was given independently in [3] and [6]. It was shown, for all $0 \leq k<r \leq d$ and for any compact set Y of positive reach contained in L_{r}, that the functional α given by

$$
\begin{equation*}
\alpha(Y)=\frac{1}{c_{d, r-1, r-k-1}} \int_{\mathcal{F}_{r-1}^{r}} V_{r-k-1}\left(Y \cap F_{r-1}\right) d\left(F_{r-1}, O\right)^{d-r} \mathrm{~d} F_{r-1}^{d}, \tag{5}
\end{equation*}
$$

where d is the distance function, is a solution to (4). In the present paper, we shall demonstrate that solutions to (4) can be expressed as an integral over the unit normal bundle of the section $X \cap L_{r}$, for all $1 \leq k<r$, or, as an integral over $X \cap L_{r}$, when $k=0$. It appears that the functionals α and β in (3) and (4) share the same integral representation, $\alpha_{r, k}^{d}$, parametrized by three integers. This family of functionals generalizes the classical intrinsic volumes and in fact, $\alpha_{d, k}^{d}(X)=V_{d-k}(X)$, for any d-dimensional set X of positive reach. As a main result of the present paper, a rotational Crofton formula shall be derived,

$$
\alpha_{j, k}^{d}(X)=c_{d-r, j-r} \int_{\mathcal{L}_{r}^{d}} \alpha_{j, k}^{r}\left(X \cap L_{r}\right) \mathrm{d} L_{r}^{d},
$$

which turns formula (3) and (4) into special cases. Here, $c_{d-r, j-r}$ is a known constant, see Section 2 below.

The paper is organized as follows. In Section 2, we present the notation and some background knowledge. Section 3 shows that the solution (5) can be expressed as an integral with respect to a q-dimensional affine subspace in L_{r}. In Section 4, the solution is given a more explicit expression as an integral over a unit normal bundle and the rotational Crofton formula for flagged intrinsic volumes is presented. Proofs are deferred to Section 5.

2 Preliminaries

In this section, we shall fix the conventions used in this paper. For any compact set $X \subseteq \mathbb{R}^{d}$ of positive reach, we define its k th intrinsic volume by

$$
V_{k}(X)=\frac{1}{\sigma_{d-k}} \int_{\text {nor } X} \sum_{\substack{|J|=d-k-1 \\ J \subset\{1, \ldots, d-1\}}} \frac{\prod_{j \in J} \kappa_{j}(x, n)}{\prod_{j=1}^{d-1} \sqrt{1+\kappa_{j}^{2}(x, n)}} \mathcal{H}^{d-1}(\mathrm{~d}(x, n)),
$$

where $\kappa_{j}(x, n)$ denotes the j th (generalized) principal curvature at $(x, n) \in$ nor X and $\sigma_{d-k}=2 \pi^{\frac{d-k}{2}} / \Gamma\left(\frac{d-k}{2}\right)$ is the surface area of the unit sphere in \mathbb{R}^{d-k}. An r-dimensional affine subspace $F_{r} \in \mathcal{F}_{r}^{d}$ can be written uniquely as $F_{r}=L_{r}+x$, where $L_{r} \in \mathcal{L}_{r}^{d}$ and $x \in L_{r}^{\perp}$. The corresponding measure decomposition is

$$
\begin{equation*}
\mathrm{d} F_{r}^{d}=\mathrm{d} x^{d-r} \mathrm{~d} L_{r}^{d} \tag{6}
\end{equation*}
$$

Here, $\mathrm{d} x^{d-r}$ is a shortcut notation for the Hausdorff (Lebesgue) measure $\mathcal{H}^{d-r}(\mathrm{~d} x)$. Moreover, since the superscript in $\mathrm{d} F_{r}^{d}$ and $\mathrm{d} L_{r}^{d}$ is often superfluous, we shall write $\mathrm{d} L_{r}$ and $\mathrm{d} F_{r}$, when the context allows it. The total mass of \mathcal{L}_{r}^{d} is chosen to be

$$
\int_{\mathcal{L}_{r}^{d}} \mathrm{~d} L_{r}=c_{d, r}
$$

where

$$
c_{d, r}=\frac{\sigma_{d} \sigma_{d-1} \cdots \sigma_{d-r+1}}{\sigma_{r} \sigma_{r-1} \cdots \sigma_{1}} .
$$

With this convention, the constant in the classical Crofton formula is given by

$$
c_{d, r, k}=c_{d, r} \frac{\Gamma\left(\frac{r+1}{2}\right) \Gamma\left(\frac{d+k-r+1}{2}\right)}{\Gamma\left(\frac{k+1}{2}\right) \Gamma\left(\frac{d+1}{2}\right)} .
$$

The Gauss hypergeometric series or hypergeometric function is defined for $a, b, c \in \mathbb{R}$ and $z \in[-1,1]$ as

$$
F(a, b ; c ; z)=F(b, a ; c ; z)=\sum_{k=0}^{\infty} \frac{(a)_{k}(b)_{k}}{(c)_{k}} \frac{z^{k}}{k!}
$$

where $(x)_{k}$ is the rising sequential product or Pochhammer symbol defined for a nonnegative integer k and $x \in \mathbb{R}$ by

$$
(x)_{k}= \begin{cases}\frac{\Gamma(x+k)}{\Gamma(x)} & \text { if } x>0 \\ (-1)^{k} \frac{\Gamma(-x+1)}{\Gamma(-x-k+1)} & \text { if } x \leq 0\end{cases}
$$

cf. [1, Chapter 15]. Note that $(x)_{k}=0$ whenever $x \in\{0,-1,-2, \ldots\}$ and $k>-x$. The Gamma function is defined on \mathbb{R}_{+}as $\Gamma(z)=\int_{0}^{\infty} t^{z-1} e^{-t} \mathrm{~d} t$ and it has an analytic continuation on $\mathbb{C} \backslash\{0,-1,-2, \ldots\}$. Standard formulae for the Gamma function can be found in [1, Chapter 6]. In particular, the duplication formula,

$$
\begin{equation*}
\Gamma(2 z)=\Gamma(z) \Gamma\left(z+\frac{1}{2}\right) \pi^{-\frac{1}{2}} 2^{2 z-1} \tag{7}
\end{equation*}
$$

will be useful in the present paper.

3 A generalized solution

From the 1936 paper [9] by Petkantschin, a particular measure decomposition can be employed to slightly generalize the solution α, derived in [3] and [6], to the integral equation (4).

Proposition 1. Let $Y \subseteq L_{r}$ be a compact subset of positive reach in some fixed linear subspace $L_{r} \in \mathcal{L}_{r}^{d}$. The functional

$$
\alpha_{d, k}^{r}(Y)=\frac{1}{c_{d, r, q, k}} \int_{\mathcal{F}_{q}^{r}} V_{q-k}\left(Y \cap F_{q}\right) d\left(F_{q}, O\right)^{d-r} \mathrm{~d} F_{q}
$$

solves the integral equation

$$
V_{d-k}(X)=\int_{\mathcal{L}_{r}^{d}} \alpha_{d, k}^{r}\left(X \cap L_{r}\right) \mathrm{d} L_{r}
$$

for all $0 \leq k \leq q<r \leq d$. Here, $c_{d, r, q, k}=c_{d-q-1, r-q-1} c_{d, q, q-k}$.

Proof. We shall use the following integral decomposition formula

$$
\begin{equation*}
\int_{\mathcal{F}_{q}^{d}} f\left(F_{q}\right) \mathrm{d} F_{q}=\frac{1}{c_{d-q-1, r-q-1}} \int_{\mathcal{L}_{r}^{d}} \int_{\mathcal{F}_{q}^{r}} f\left(F_{q}\right) d\left(F_{q}, O\right)^{d-r} \mathrm{~d} F_{q} \mathrm{~d} L_{r}, \tag{8}
\end{equation*}
$$

which holds for all $0 \leq q<r \leq d$ and any integrable function f, cf. [9] and [11, p. 285]. Let us assume that $X \subseteq \mathbb{R}^{d}$ is a compact set of positive reach. The Crofton formula for sets of positive reach, cf. [10], and an application of (8) yield, for all $0 \leq k \leq q<r \leq d$,

$$
\begin{aligned}
& c_{d, q, q-k} V_{d-k}(X)=\int_{\mathcal{F}_{q}^{d}} V_{q-k}\left(X \cap F_{q}\right) \mathrm{d} F_{q} \\
& \quad=\frac{1}{c_{d-q-1, r-q-1}} \int_{\mathcal{L}_{r}^{d}} \int_{\mathcal{F}_{q}^{r}} V_{q-k}\left(X \cap F_{q}\right) d\left(F_{q}, O\right)^{d-r} \mathrm{~d} F_{q} \mathrm{~d} L_{r} \\
& \quad=\frac{1}{c_{d-q-1, r-q-1}} \int_{\mathcal{L}_{r}^{d}} \int_{\mathcal{F}_{q}^{r}} V_{q-k}\left(\left(X \cap L_{r}\right) \cap F_{q}\right) d\left(F_{q}, O\right)^{d-r} \mathrm{~d} F_{q} \mathrm{~d} L_{r} .
\end{aligned}
$$

The proof is complete.
Remark 1. The constant appearing on the right-hand side of formula (8) is not given explicitly in [11], but only referred to as a constant depending on d, q and r. In order to compute this constant, we set $f\left(F_{q}\right)=V_{0}\left(B^{d} \cap F_{q}\right)$, where $V_{0}=\chi$ is the Euler-Poincaré characteristic and B^{d} is the unit ball in \mathbb{R}^{d}. By computing both side of (8) separately, we obtain

$$
\begin{equation*}
\int_{\mathcal{F}_{q}^{d}} f\left(F_{q}\right) \mathrm{d} F_{q}=\int_{\mathcal{L}_{q}^{d}} \int_{L_{q}^{\perp} \cap B^{d}} \mathrm{~d} z^{d-q} \mathrm{~d} L_{q}=\omega_{d-q} c_{d, q}, \tag{9}
\end{equation*}
$$

where $\omega_{d-q}=(d-q) \sigma_{d-q}$ is the volume of the unit ball in \mathbb{R}^{d-q}, and

$$
\begin{equation*}
\int_{\mathcal{L}_{r}^{d}} \int_{\mathcal{F}_{q}^{r}} f\left(F_{q}\right) d\left(F_{q}, O\right)^{d-r} \mathrm{~d} F_{q} \mathrm{~d} L_{r}=\frac{1}{d-q} \sigma_{r-q} c_{d, r} c_{r, q} \tag{10}
\end{equation*}
$$

Division of (9) by (10) yields the constant appearing in formula (8).
Proposition 2. For all $0 \leq k \leq q<r \leq d$, the functional $\alpha_{d, k}^{r}$, defined in Proposition 1, does not depend on q.

The proof of Proposition 2 is deferred to the last section. In spite of Proposition 2, the uniqueness of the solution, $\alpha_{d, k}^{r}$, to the integral equation (4) remains open.
Remark 2. Two representations of $\alpha_{d, k}^{r}$ are particularly interesting for our purposes. For $q=k$, we have

$$
\begin{equation*}
\alpha_{d, k}^{r}(Y)=\frac{1}{c_{d, r, k, k}} \int_{\mathcal{F}_{k}^{r}} \chi\left(Y \cap F_{k}\right) d\left(F_{k}, O\right)^{d-r} \mathrm{~d} F_{k} \tag{11}
\end{equation*}
$$

and, for $q=r-1$,

$$
\begin{equation*}
\alpha_{d, k}^{r}(Y)=\frac{1}{c_{d, r-1, r-1-k}} \int_{\mathcal{F}_{r-1}^{r}} V_{r-k-1}\left(Y \cap F_{r-1}\right) d\left(F_{r-1}, O\right)^{d-r} \mathrm{~d} F_{r-1} \tag{12}
\end{equation*}
$$

Combining (11) and the identity $\mathrm{d} F_{0}^{r}=\mathrm{d} x^{r}$, we obtain, for $k=0$,

$$
\begin{equation*}
\alpha_{d, 0}^{r}(Y)=\frac{1}{c_{d-1, r-1}} \int_{\mathbb{R}^{r}} \chi(Y \cap\{x\})|x|^{d-r} \mathrm{~d} x^{r}=\frac{1}{c_{d-1, r-1}} \int_{Y}|x|^{d-r} \mathrm{~d} x^{r} . \tag{13}
\end{equation*}
$$

Furthermore, using (12), we have shown in [3] that for $k=1$,

$$
\begin{equation*}
\alpha_{d, 1}^{r}(Y)=\frac{1}{2 c_{d-1, r-1}} \int_{\partial Y}|x|^{d-r} F\left(-\frac{1}{2},-\frac{d-r}{2} ; \frac{r-1}{2} ; \sin ^{2}(n(x), x)\right) \mathrm{d} x^{r-1} \tag{14}
\end{equation*}
$$

whenever Y is a C^{2}-manifold with boundary. Here, $n(x)$ is the vector normal to the surface at x.

Motivated by the integral representation (14), we shall now prove that the functional $\alpha_{d, k}^{r}(Y)$ can be expressed as an integral over the normal bundle of Y for all $k=1, \ldots, r-1$ and $r=2, \ldots, d$.

4 Integral representation of the generalized solution

Let $X \subseteq \mathbb{R}^{d}$ be a compact set of positive reach and assume for now that the section $Y=X \cap L_{r}$, for some fixed $L_{r} \in \mathcal{L}_{r}^{d}$, also has positive reach. For the necessary background in multilinear algebra, current theory and sets of positive reach, the reader is referred to [4] and [5].

Let N_{Y} be the $(r-1)$-dimensional current on $\mathbb{R}^{r} \times \mathbb{R}^{r}$ given by

$$
\begin{equation*}
N_{Y}=\left(\mathcal{H}^{r-1}\llcorner\operatorname{nor} Y) \wedge a_{Y}\right. \tag{15}
\end{equation*}
$$

i.e.

$$
N_{Y}(\phi)=\int_{\operatorname{nor} Y}\left\langle a_{Y}(x, n), \phi(x, n)\right\rangle \mathcal{H}^{r-1}(\mathrm{~d}(x, n))
$$

for all $(r-1)$-forms ϕ on $\mathbb{R}^{r} \times \mathbb{R}^{r}$. Here, a_{Y} is a unit $(r-1)$-dimensional vectorfield orienting nor Y given explicitly by

$$
\begin{equation*}
a_{Y}(x, n)=\bigwedge_{i=1}^{r-1}\left(\frac{1}{\sqrt{1+\kappa_{i}(x, n)^{2}}} a_{i}(x, n), \frac{\kappa_{i}(x, n)}{\sqrt{1+\kappa_{i}(x, n)^{2}}} a_{i}(x, n)\right) \tag{16}
\end{equation*}
$$

where $\kappa_{i}(x, n)$ is the i th principal curvature and $a_{i}(x, n)$ the corresponding principal direction at $(x, n) \in$ nor Y for $i=1, \ldots, r-1$, cf. [8, (27)] and [12]. We apply the usual convention $\frac{\infty}{\sqrt{1+\infty^{2}}}=1$ and $\frac{1}{\sqrt{1+\infty^{2}}}=0$ at points where some of the principal curvatures are infinite. Assume that the principal directions are ordered in such a way that

$$
a_{1}(x, n), \ldots, a_{r-1}(x, n), n
$$

constitute an orthonormal basis of \mathbb{R}^{r}. The Lipschitz-Killing curvature form ϕ_{k} on $\mathbb{R}^{r} \times \mathbb{R}^{r}$ of order $k=0, \ldots, r-1$ is defined by

$$
\begin{equation*}
\left\langle\left(u_{0}^{1}, u_{1}^{1}\right) \wedge \cdots \wedge\left(u_{0}^{r-1}, u_{1}^{r-1}\right), \phi_{k}(x, n)\right\rangle=\frac{1}{\sigma_{r-k}} \sum_{\substack{\epsilon_{i}=0,1 \\ \epsilon_{1}+\cdots+\epsilon_{r-1}=r-1-k}}\left\langle u_{\epsilon_{1}}^{1} \wedge \cdots \wedge u_{\epsilon_{r-1}}^{r-1} \wedge n, \Omega_{r}\right\rangle, \tag{17}
\end{equation*}
$$

where Ω_{r} is the volume r-form in R^{r}. Note that the right-hand side in (17) is strictly positive whenever the number of non-zero principal curvatures at (x, n) is at least $r-1-k$ or, alternatively, when the number of infinite principal curvatures is at most $r-1-k$. For any compact set Y with positive reach, the k th intrinsic volume of Y can be expressed as

$$
V_{k}(Y)=N_{Y}\left(\phi_{k}\right)
$$

for $k=0, \ldots, r-1$, cf. [12].
Two sets Y and F with positive reach touch, when there exists a pair $(y, n) \in \operatorname{nor} Y$ such that $(y,-n) \in$ nor F, cf. [13]. In the particular case where $F=L+z$ is an affine subspace, Y and F do not touch, whenever the following condition is satisfied

$$
\begin{equation*}
(y, n) \in \operatorname{nor} Y \quad \wedge \quad y \in F \quad \Longrightarrow \quad n \notin L^{\perp} . \tag{18}
\end{equation*}
$$

Remark 3. The subset of j-dimensional affine subspaces in \mathbb{R}^{r} that do touch Y has finite $(r-1+j(r-1-j))$-dimensional measure, cf. [10, (1)]. Hence, in the special case where $j=r-1$, the set of $(r-1)$-dimensional affine subspaces touching Y has finite $(r-1)$ dimensional measure, i.e. Y is not touched by \mathcal{H}^{r} almost all $F \in \mathcal{F}_{r-1}^{r}$. Whenever Y and F do not touch, their intersection $Y \cap F$ has local positive reach, cf. [13] or [4, Theorem 4.10]. By the compactness of nor Y and the continuity of the reach function, we conclude that
if Y has positive reach, then $Y \cap F$ has positive reach for almost all $F \in \mathcal{F}_{r-1}^{r}$.
Furthermore, for a compact subset $X \subseteq \mathbb{R}^{d}$ of positive reach, it is shown in [8] that for \mathcal{H}^{d}-a.a. choices of origo, the sets X and L do not touch for almost all $L \in \mathcal{L}_{r}^{d}$. In other words, whenever X has positive reach, we may choose origo such that

$$
\begin{equation*}
X \cap L \text { has positive reach for almost all } L \in \mathcal{L}_{r}^{d} \tag{19}
\end{equation*}
$$

For those reasons, the assumption, which was made at the beginning of this section on the positive reach of $Y=X \cap L_{r}$, is mild.

Definition 1 (Flagged intrinsic volumes). Let $Y \in \mathbb{R}^{r}$ be a compact set of positive reach. Define for all $s=1, \ldots, r, r \geq 1$ and $j \geq s$,

$$
\alpha_{j, 0}^{r}(Y):=\frac{1}{c_{j-1, r-1}} \int_{Y}|x|^{j-r} \mathrm{~d} y^{r}
$$

$$
\alpha_{j, s}^{r}(Y):=K_{j, s}^{r} \int_{\text {nor } Y}|x|^{j-r} \sum_{\substack{|I|=s-1 \\ I \subset\{1, \ldots, r-1\}}} \frac{\prod_{i \in I} \kappa_{i}(x, n)}{\prod_{i=1}^{r-1} \sqrt{1+\kappa_{i}(x, n)^{2}}} Q_{j, s}^{r}\left(x, n, A_{I}\right) \mathcal{H}^{r-1}(\mathrm{~d}(x, n)),
$$

where

$$
\begin{aligned}
Q_{j, s}^{r}\left(x, n, A_{I}\right):= & F\left(-\frac{j-r}{2}, \frac{s}{2} ; \frac{r+1}{2} ; \sin ^{2}(x, n)\right) \\
& +\frac{(j-r)(r-s+1)}{r+1} \frac{\cos ^{2}\left(x, A_{I}\right)}{r-s} F\left(-\frac{j-r}{2}+1, \frac{s}{2} ; \frac{r+3}{2} ; \sin ^{2}(x, n)\right)
\end{aligned}
$$

and

$$
K_{j, s}^{r}:=\frac{1}{\sigma_{s} c_{j-1, r-1}} \frac{\Gamma(r-s+1) \Gamma(j)}{\Gamma(r) \Gamma(j-s+1)} .
$$

Here, $A_{I}=\operatorname{span}\left\{a_{i}: i \notin I\right\}$ and, for the special case $r=s$, we set $\frac{\cos ^{2}\left(x, A_{\{1, \ldots, r-1\}}\right)}{0}:=1$. Note that $c_{j-1, r-1}:=\frac{1}{c_{r-1, j-1}}$ for $j<r$.

Remark 4. In the special case $j=r, K_{r, s}^{r}=\frac{1}{\sigma_{s}}$ and $Q_{r, s}^{r}=1$. Consequently,

$$
\alpha_{r, s}^{r}(Y)=\frac{1}{\sigma_{s}} \int_{\operatorname{nor} Y} \sum_{\substack{|J|=s-1 \\ J \subset\{1, \ldots, r-1\}}} \frac{\prod_{j \in J} \kappa_{j}(x, n)}{\prod_{j=1}^{r-1} \sqrt{1+\kappa_{j}^{2}(x, n)}} \mathcal{H}^{r-1}(\mathrm{~d}(x, n))=V_{r-s}(Y)
$$

and

$$
\alpha_{r, 0}^{r}(Y)=\int_{Y} \mathrm{~d} \mathcal{H}^{r}=V_{r}(Y),
$$

for any compact set $Y \subseteq \mathbb{R}^{r}$ of positive reach.
The functionals defined above are identical to those given in Proposition 1. This result is formulated in the proposition below. The proof is deferred to the next section.

Proposition 3. The flagged intrinsic volumes presented in Definition 1 are identical to the functional $\alpha_{d, s}^{r}$ given in Proposition 1 for all $s=0, \ldots, r-1, r=1, \ldots, d$. As a consequence, when origo is chosen such that condition (19) is satisfied, the functional $\alpha_{d, s}^{r}$ from Definition 1 satisfies the integral equation,

$$
V_{d-s}(X)=\int_{\mathcal{L}_{r}^{d}} \alpha_{d, s}^{r}\left(X \cap L_{r}\right) \mathrm{d} L_{r}
$$

for all $0 \leq s<r \leq d$.
Remark 5. Since $\cos ^{2}\left(x, A_{\emptyset}\right)=\sin ^{2}(x, n)$, the hypergeometric identity (34) implies

$$
Q_{d, 1}^{r}\left(x, n, A_{\emptyset}\right)=F\left(-\frac{d-r}{2},-\frac{1}{2} ; \frac{r-1}{2} ; \sin ^{2}(x, n)\right)
$$

and with

$$
K_{d, 1}^{r}=\frac{1}{\sigma_{1} c_{d-1, r-1}} \frac{\Gamma(r) \Gamma(d)}{\Gamma(r) \Gamma(d)}=\frac{1}{2 c_{d-1, r-1}}
$$

we conclude that

$$
\alpha_{d, 1}^{r}(Y)=\frac{1}{2 c_{d-1, r-1}} \int_{\text {nor } Y}|x|^{d-r} F\left(-\frac{d-r}{2},-\frac{1}{2} ; \frac{r-1}{2} ; \sin ^{2}(x, n)\right) \mathcal{H}^{r-1}(\mathrm{~d}(x, n)),
$$

i.e. a generalization of (14) to sets of positive reach.

Remark 6. Applying the hypergeometric identity (35) with $z=\sin ^{2}(x, n)>0$, we obtain

$$
\begin{aligned}
& \frac{(j-d)(d-j+k+1)}{d+1} F\left(\frac{d-j}{2}+1, \frac{j-k}{2} ; \frac{d+3}{2} ; \sin ^{2}(x, n)\right) \\
& =\left(j-d-(d-1) \cot ^{2}(x, n)\right) F\left(\frac{d-j}{2}, \frac{j-k}{2} ; \frac{d+1}{2} ; \sin ^{2}(x, n)\right) \\
& +(d-1) \cot ^{2}(x, n) F\left(\frac{d-j}{2}, \frac{j-k}{2} ; \frac{d-1}{2} ; \sin ^{2}(x, n)\right),
\end{aligned}
$$

or, in other terms,

$$
(d-j+k) Q_{j, j-k}^{d}(x, n)=f_{1}(\angle(x, n))+f_{2}(\angle(x, n)) \cos ^{2} \alpha_{I}(x, n)
$$

where the right-hand side is written in the notation of [2, Theorem 3.1]. Since $\frac{1}{d-j+k} K_{j, j-k}^{d}$ is equal to the constant $C_{d, j, k}$ defined in [2], (recall that $c_{j-1, d-1}:=\frac{1}{c_{d-1, j-1}}$), we conclude that

$$
|x|^{j-d} K_{j, j-k}^{d} Q_{j, j-k}^{d}(x, n)=\omega_{I, j, k}(x, n),
$$

where the functional $\omega_{I, j, k}$ given in [2, Theorem 3.1] satisfies the integral equation

$$
\begin{equation*}
\int_{\mathcal{L}_{j}^{d}} V_{k}\left(X \cap L_{j}\right) \mathrm{d} L_{j}=\int_{\operatorname{nor} X} \sum_{\substack{|I|=j-1-k \\ I \subset\{1, \ldots, d-1\}}} \omega_{I, j, k} \frac{\prod_{i \in I} \kappa_{i}}{\prod_{i=1}^{d-1} \sqrt{1+\kappa_{i}^{2}}} \mathrm{~d} \mathcal{H}^{r-1}=\alpha_{j, j-k}^{d}(X), \tag{20}
\end{equation*}
$$

for all $0 \leq k<j \leq d$, whenever $X \subseteq \mathbb{R}^{d}$ is a set of positive reach and the origin is chosen such that condition (19) is satisfied, cf. Remark 3.

Having made these two important remarks, the following Theorem can be proven easily.
Theorem 1 (Rotational Crofton Formula). Let $X \subset \mathbb{R}^{d}$ be a compact subset of positive reach and assume origo is chosen such that condition (19) is satisfied. Then,

$$
\alpha_{j, k}^{d}(X)=c_{d-r, j-r} \int_{\mathcal{L}_{r}^{d}} \alpha_{j, k}^{r}\left(X \cap L_{r}\right) \mathrm{d} L_{r},
$$

for all $0 \leq k<r \leq j \leq d$.
Remark 7. With Remark 4 in mind, we notice that [8, Theorem] and Proposition 1 are special cases of Theorem 1 for $r=j$ and $d=j$, respectively. The case $r=k$ is not covered by Theorem 1. Nevertheless, for $r=j=k$, formula (20) implies

$$
\alpha_{r, r}^{d}(X)=\int_{\mathcal{L}_{r}^{d}} V_{0}\left(X \cap L_{r}\right) \mathrm{d} L_{r}=c_{d-r, r-r} \int_{\mathcal{L}_{r}^{d}} \alpha_{r, r}^{r}\left(X \cap L_{r}\right) \mathrm{d} L_{r} .
$$

Proof of Theorem 1. On the one hand, we have, according to Remark 6 and under the mild assumption on the choice of origo,

$$
\alpha_{j, k}^{d}(X)=\int_{\mathcal{L}_{j}^{d}} V_{j-k}\left(X \cap L_{j}\right) \mathrm{d} L_{j}
$$

for all $0<k \leq j \leq d$. The case $k=0$ follows from the Blaschke-Petkantschin formula, cf. [7, Proposition 4.5],

$$
\int_{\mathcal{L}_{j}^{d}} V_{j}\left(X \cap L_{j}\right) \mathrm{d} L_{j}=\int_{\mathcal{L}_{j}^{d}} \int_{X \cap L_{j}} \mathrm{~d} x^{j} \mathrm{~d} L_{j}=c_{d-1, j-1} \int_{X}|x|^{j-d} \mathrm{~d} x^{d}=\alpha_{j, 0}^{d}(X) .
$$

On the other hand, Proposition 1 and [7, (3.17)] imply

$$
\begin{aligned}
\int_{\mathcal{L}_{j}^{d}} V_{j-k}\left(X \cap L_{j}\right) \mathrm{d} L_{j} & =\int_{\mathcal{L}_{j}^{d}} \int_{\mathcal{L}_{r}^{j}} \alpha_{j, k}^{r}\left(X \cap L_{j} \cap L_{r}\right) \mathrm{d} L_{r} \mathrm{~d} L_{j} \\
& =c_{d-r, j-r} \int_{\mathcal{L}_{r}} \alpha_{j, k}^{r}\left(X \cap L_{r}\right) \mathrm{d} L_{r}
\end{aligned}
$$

for all $0 \leq k<r \leq j \leq d$.

5 Proofs

Proof of Proposition 2. If $k=r-1$, there is only one possible choice for q satisfying $r>q \geq k$ and the proof is complete. Assume that $r>q>k \geq 0$. Crofton's formula for sets of positive reach and the measure decomposition (6) imply

$$
\begin{aligned}
& c_{q, q-1, q-k-1} \int_{\mathcal{F}_{q}^{r}} V_{q-k}\left(Y \cap F_{q}\right) \mathrm{d}\left(F_{q}, O\right)^{d-r} \mathrm{~d} F_{q} \\
& =c_{q, q-1, q-k-1} \int_{\mathcal{L}_{q}^{r}} \int_{L_{q}^{\perp}} V_{q-k}\left(Y \cap\left(L_{q}+x\right)\right)|x|^{d-r} \mathrm{~d} x^{r-q} \mathrm{~d} L_{q} \\
& =\int_{\mathcal{L}_{q}^{r}} \int_{L_{q}^{\perp}}|x|^{d-r} \int_{\mathcal{F}_{q-1}^{q}} V_{q-k-1}\left((Y-x) \cap L_{q} \cap F_{q-1}\right) \mathrm{d} F_{q-1} \mathrm{~d} x^{r-q} \mathrm{~d} L_{q} \\
& =\int_{\mathcal{L}_{q}^{r}} \int_{L_{q}^{\perp}}|x|^{d-r} \int_{\mathcal{L}_{q-1}^{q}} \int_{L_{q-1}^{\perp} \cap L_{q}} V_{q-k-1}\left(Y \cap\left(L_{q-1}+x+y\right)\right) \mathrm{d} y^{1} \mathrm{~d} L_{q-1} \mathrm{~d} x^{r-q} \mathrm{~d} L_{q} .
\end{aligned}
$$

An application of the measure transformation $\mathrm{d} L_{q-1}^{q} \mathrm{~d} L_{q}^{r}=\mathrm{d} L_{q(q-1)}^{r} \mathrm{~d} L_{q-1}^{r}$, cf. [7, (3.15)], and of the orthogonal decomposition $L_{q-1}^{\perp}=L_{q}^{\perp} \oplus\left(L_{q-1}^{\perp} \cap L_{q}\right)$, turns the last expression into

$$
\begin{aligned}
& \int_{\mathcal{L}_{q-1}^{r}} \int_{\mathcal{L}_{q(q-1)}^{r}} \int_{L_{q}^{\perp}}|x|^{d-r} \int_{L_{q-1}^{\perp} \cap L_{q}} V_{q-k-1}\left(Y \cap\left(L_{q-1}+x+y\right)\right) \mathrm{d} y^{1} \mathrm{~d} x^{r-q} \mathrm{~d} L_{q(q-1)} \mathrm{d} L_{q-1} \\
& \quad=\int_{\mathcal{L}_{q-1}^{r}} \int_{L_{q-1}^{\perp}} V_{q-k-1}\left(Y \cap\left(L_{q-1}+z\right)\right) \int_{\mathcal{L}_{q(q-1)}^{r}}\left|p\left(z \mid L_{q}^{\perp}\right)\right|^{d-r} \mathrm{~d} L_{q(q-1)} \mathrm{d} z^{d-q+1} \mathrm{~d} L_{q-1}
\end{aligned}
$$

It can be shown, as we shall see in Remark 11, that

$$
\begin{equation*}
\int_{\mathcal{L}_{q(q-1)}^{r}}\left|p\left(z \mid L_{q}^{\perp}\right)\right|^{d-r} \mathrm{~d} L_{q(q-1)}=|z|^{d-r} \frac{\sigma_{r-q}}{2} B\left(\frac{1}{2}, \frac{d-q}{2}\right) \tag{21}
\end{equation*}
$$

whenever $z \in L_{q-1}^{\perp}$. Thus,

$$
\begin{aligned}
\int_{\mathcal{L}_{q-1}^{r}} \int_{L_{q-1}^{\perp}} V_{q-k-1} & \left(Y \cap\left(L_{q-1}+z\right)\right) \int_{\mathcal{L}_{q(q-1)}^{r}}\left|p\left(z \mid L_{q}^{\perp}\right)\right|^{d-r} \mathrm{~d} L_{q(q-1)} \mathrm{d} z^{d-q+1} \mathrm{~d} L_{q-1} \\
& =\frac{\sigma_{r-q}}{2} B\left(\frac{1}{2}, \frac{d-q}{2}\right) \int_{\mathcal{F}_{q-1}^{r}} V_{q-k-1}\left(Y \cap F_{q-1}\right) d\left(F_{q-1}, O\right)^{d-r} \mathrm{~d} F_{q-1}
\end{aligned}
$$

Since $c_{q, q-1, q-k-1}=\frac{\sigma_{q+1}}{2 B\left(\frac{q-k}{2}, \frac{1}{2}\right)}$, we conclude that

$$
\begin{aligned}
& \int_{\mathcal{F}_{q}^{r}} V_{q-k}\left(Y \cap F_{q}\right) d\left(F_{q}, O\right)^{d-r} \mathrm{~d} F_{q} \\
&=\frac{\sigma_{r-q} B\left(\frac{1}{2}, \frac{d-q}{2}\right) B\left(\frac{q-k}{2}, \frac{1}{2}\right)}{\sigma_{q+1}} \int_{\mathcal{F}_{q-1}^{r}} V_{q-k-1}\left(Y \cap F_{q-1}\right) d\left(F_{q-1}, O\right)^{d-r} \mathrm{~d} F_{q-1}
\end{aligned}
$$

for all $0 \leq k<q<r$. A routine calculation shows that

$$
\frac{\sigma_{r-q} B\left(\frac{1}{2}, \frac{d-q}{2}\right) B\left(\frac{q-k}{2}, \frac{1}{2}\right)}{\sigma_{q+1} c_{d-q-1, r-q-1} c_{d, q, q-k}}=\frac{1}{c_{d-(q-1)-1, r-(q-1)-1} c_{d, q-1, q-1-k}}
$$

therefore,

$$
\alpha_{r, k}(Y)=\frac{1}{c_{d-(q-1)-1, j-(q-1)-1} c_{d, q-1, q-1-k}} \int_{\mathcal{F}_{q-1}^{r}} V_{q-1-k}\left(Y \cap F_{q-1}\right) d\left(F_{q-1}, O\right)^{d-r} \mathrm{~d} F_{q-1}
$$

Hence, in the definition of $\alpha_{d, k}^{r}$, the variable q can be replaced by $q-1$. A recursive argument implies that $\alpha_{d, k}^{r}$ is independent of q.

Proof of Proposition 3. Without loss of generality, we will use the representation (12) of $\alpha_{d, s}^{r}$ (i.e. $q=r-1$). Let $L_{r} \in \mathcal{L}_{r}^{d}$ be a fixed r-dimensional subset of \mathbb{R}^{d} and let $Y \subset L_{r}$ be a compact set of positive reach. The case $s=0$ holds by definition, cf. formula (13). Assume that $0<s<r-1$. According to (12),

$$
c_{d, r, r-1, s} \alpha_{d, s}^{r}(Y)=\int_{\mathcal{F}_{r-1}^{r}} V_{r-s-1}\left(Y \cap F_{r-1}\right) d\left(F_{r-1}, O\right)^{d-r} \mathrm{~d} F_{r-1}=\int_{\mathcal{L}_{r-1}^{r}} \mathcal{I}\left(L_{r-1}\right) \mathrm{d} L_{r-1}
$$

where

$$
\mathcal{I}\left(L_{r-1}\right)=\int_{L_{r-1}^{\perp}} V_{r-s-1}\left(Y \cap\left(L_{r-1}+x\right)\right)|x|^{d-r} \mathrm{~d} x^{1}
$$

Note that $c_{d, r, r-1, s}=c_{d-r, 0} c_{d, r-1, r-s-1}=c_{d, r-1, r-s-1}$. Let $L_{r-1} \in \mathcal{L}_{r-1}^{r}$ be a fixed $(r-1)$ dimensional subspace of L_{r} and let ω_{1} be a unit vector st. $\operatorname{span}\left\{\omega_{1}\right\}=L_{r-1}^{\perp}$. Let ω_{r-1} be a simple unit $(r-1)$-vector orienting L_{r-1} such that $\left\langle\omega_{1} \wedge \omega_{r-1}, \Omega_{r}\right\rangle=1$. We define the two volume forms, Ω_{1} and Ω_{r-1}, to be the dual vectors of ω_{1} and ω_{r-1}, respectively. Define

$$
\begin{gathered}
f: \operatorname{nor} Y \backslash\left\{(x, n) \mid n \perp L_{r-1}\right\} \rightarrow \mathbb{R}^{r} \times S^{r-2}\left(L_{r-1}\right) \\
f(x, n)=\left(x, \pi\left(n \mid L_{r-1}\right)\right)
\end{gathered}
$$

and

$$
\begin{gathered}
g: \operatorname{nor} Y \rightarrow L_{r-1}^{\perp} \\
g(x, n)=\left\langle x, \omega_{1}\right\rangle \omega_{1}=p\left(x \mid L_{r-1}^{\perp}\right) .
\end{gathered}
$$

Since the differential of the spherical projection $\pi_{L}: n \mapsto \pi(n \mid L)$ is

$$
D \pi_{L}(n) v=\frac{p\left(v \mid L \cap n^{\perp}\right)}{|p(n \mid L)|}
$$

cf. [8, Lemma 2], we have

$$
D_{(x, n)} f(u, v)=\left(u, \frac{p\left(v \mid L_{r-1} \cap n^{\perp}\right)}{\left|p\left(n \mid L_{r-1}\right)\right|}\right)
$$

and the linearity of g implies

$$
D_{(x, n)} g(u, v)=g(u, v)=\langle u, \mathbf{e}\rangle \mathbf{e}=p\left(u \mid L_{r-1}^{\perp}\right)
$$

for all $(u, v) \in \operatorname{Tan}(\operatorname{nor} Y,(x, n))$. Next, we show that for almost all $z \in L_{r-1}^{\perp}$, the point $(x, n) \in \operatorname{nor} Y$ is uniquely determined by the projection $f(x, n)=\left(x, n_{0}\right)$ for \mathcal{H}^{r-2}-a.a. $\left(x, n_{0}\right) \in f\left(g^{-1}(z)\right)$.
Lemma 1. For almost all $L_{r-1} \in \mathcal{L}_{r-1}^{r}$ and \mathcal{H}^{1}-almost all $z \in L_{r-1}^{\perp}$,

$$
\mathcal{H}^{r-2}\left(\left\{\left(x, n_{0}\right) \in f\left(g^{-1}(z)\right): \operatorname{card} f^{-1}\left\{\left(x, n_{0}\right)\right\}>1\right\}\right)=0
$$

Remark 8. Let $f^{(z)}$ be the restriction of f to $g^{-1}(z)$. Note that f is well defined on the set $g^{-1}(z)$ only when $L_{r-1}+z$ and Y do not touch, which is the case for almost all pairs $\left(L_{r-1}, z\right)$. When Y and $L_{r-1}+z$ do not touch, there is no point $(y, n) \in \operatorname{nor} Y$ such that $y \in L_{r-1}+z$ and $n \in L_{r-1}^{\perp}$, i.e f is well-defined at all points $(y, n) \in \operatorname{nor} Y$ with $y \in L_{r-1}+z$. Since the normal bundle, nor Y, is compact, the function f can be extended to a locally Lipschitz (differentiable!) function on an open set containing $g^{-1}(z) \backslash\left\{(y, n) \mid n \perp L_{r-1}\right\}$. Thus, the assumptions for the area and coarea formulae are satisfied, cf. [5].

Proof. Assume that $L_{r-1}+z$ and nor Y are do not touch, i.e. that (18) is satisfied. Then, $f(x, n)$ is well-defined for all $(x, n) \in$ nor $Y \cap\left(L_{r-1}+z\right) \times \mathbb{R}^{d}$. Let N be the subset of nor Y where f is well-defined but not injective. More precisely N is the set of all $(x, n) \in \operatorname{nor} Y$ with $n \notin L_{r-1}^{\perp}$ such that there exist $n^{\prime} \neq n$ with $\left(x, n^{\prime}\right) \in$ nor Y and $n^{\prime} \notin L_{r-1}^{\perp}$ and $f(x, n)=f\left(x, n^{\prime}\right)$. It is enough to show that

$$
\mathcal{H}^{r-2}\left(f\left(N \cap g^{-1}(z)\right)\right) \leq \int_{N \cap g^{-1}(z)} J_{r-2} f^{(z)} \mathrm{d} \mathcal{H}^{r-2}=0
$$

for almost all $z \in L_{r-1}^{\perp}$, cf. $[5,(3.2 .3)]$. Using the coarea formula, $[5,(3.2 .22)]$, we obtain

$$
\int_{L_{r-1}^{\perp}} \int_{N \cap g^{-1}(z)} J_{r-2} f^{(z)} \mathrm{d} \mathcal{H}^{r-2} \mathrm{~d} z=\int_{N} J_{r-2} f^{(z)}(x, n) J_{1} g(x, n) \mathcal{H}^{r-1}(\mathrm{~d}(x, n))
$$

Without loss of generality, assume that $\operatorname{Tan}(Y,(x, n))$ is the $(r-1)$-dimensional subspace given by (16), cf. [5, (3.2.19)]. Note that

$$
\operatorname{ker} D_{(x, n)} g=\left(L_{r-1} \times \mathbb{R}^{r}\right) \cap \operatorname{Tan}(Y,(x, n))=\operatorname{Tan}\left(g^{-1}(z),(x, n)\right)
$$

If dim $\operatorname{ker} D_{(x, n)} g \geq r-1$, then $J_{1} g(x, n)$ must be equal to zero. Let us assume that dim ker $D_{(x, n)} g \leq r-2$. Since the domain of $D_{(x, n)} f^{(z)}$ is equal to ker $D_{(x, n)} g$, the $(r-2)$ dimensional Jacobian of $f^{(z)}$ is zero if there exists a point $(u, v) \in \operatorname{Tan}\left(g^{-1}(z),(x, n)\right)$ such that $D_{(x, n)} f^{(z)}(u, v)=0$. Note that $\left(x, n_{t}\right):=\left(x, \frac{\sin (1-t) \theta}{\sin \theta} n+\frac{\sin t \theta}{\sin \theta} n^{\prime}\right) \in g^{-1}(z)$ for all $t \in[0,1]$, where $\theta=\angle\left(n, n^{\prime}\right)$. By definition of the tangent cone, we have

$$
\left(0, \pi\left(n-n^{\prime} \mid n^{\perp}\right)\right)=\lim _{t \downarrow 0} \frac{\left(x, n_{t}\right)-(x, n)}{\left|\left(x, n_{t}\right)-(x, n)\right|} \in \operatorname{Tan}\left(g^{-1}(z),(x, n)\right)
$$

Since, $p\left(n^{\prime} \mid L_{r-1} \cap n^{\perp}\right)=p\left(p\left(n^{\prime} \mid L_{r-1}\right) \mid L_{r-1} \cap n^{\perp}\right)=p\left(n \mid L_{r-1} \cap n^{\perp}\right)=0$, we deduce that $D_{(x, n)} f^{(z)}\left(0, \pi\left(n-n^{\prime} \mid n^{\perp}\right)\right)=0$ and therefore, $J f^{(z)}(x, n)=0$.

Given a subspace $L_{j} \in \mathcal{L}_{j}^{r}$ and $y \in L_{j}^{\perp}$ such that $L_{j}+y$ and Y do not touch, the restriction of the normal bundle of $Y \cap\left(L_{j}+y\right)$ to $L_{j}+y$ is given by

$$
\begin{equation*}
\operatorname{nor}^{(j)}\left(Y \cap\left(L_{j}+y\right)\right)=\left\{\left(x, \pi\left(n, L_{j}\right)\right) \mid x \in Y \cap\left(L_{j}+y\right) \text { and }(x, n) \in \operatorname{nor} Y\right\} \tag{22}
\end{equation*}
$$

i.e. the intersection of nor $Y+\operatorname{nor}\left(L_{j}+y\right)$ with $\left(L_{j}+y\right) \times S^{r-1}$, see [4, Theorem 4.10]. The corresponding orienting unit vectorfield $a_{Y \cap\left(L_{j}+x\right)}$ will be computed later.
Lemma 2. Let $Y \subseteq \mathbb{R}^{r}$ be a compact set with positive reach and let $L_{r-1} \in \mathcal{L}_{r-1}^{r}$. Then,

$$
N_{Y \cap\left(L_{r-1}+z\right)}=f_{\sharp}\left\langle N_{Y}, g, z\right\rangle
$$

for almost all $z \in L_{r-1}^{\perp}$, whenever Y and $L_{j}+z$ do not touch.

Proof. Applying [5, Section 4.3 .8 and 4.3.13] (with $n=1$ and $m=r-1$) to the integral current (15), we get

$$
\begin{equation*}
\left\langle N_{Y}, g, z\right\rangle=\left(\mathcal{H}^{r-1-1}\left\llcorner g^{-1}(z)\right) \wedge \zeta\right. \tag{23}
\end{equation*}
$$

for almost all $z \in L_{j-1}^{\perp}$. Here, ζ is the $(r-2)$-vectorfield such that

$$
\begin{equation*}
\zeta(x, n)=\frac{a_{Y}(x, n)\left\llcorner\left\langle\Omega_{1}, \bigwedge^{1} D g(x, n)\right\rangle\right.}{J_{1} g(x, n)}=a_{Y}(x, n)\left\llcorner\left\langle\Omega_{1}, \bigwedge^{1} D g(x, n)\right\rangle\right. \tag{24}
\end{equation*}
$$

(because $J_{1} g(x, n)=\sqrt{\operatorname{det}\left(D g(x, n) D g(x, n)^{t}\right)}=1$). Applying the area formula for currents [5, Section 4.1.30] to (23), we obtain

$$
f_{\sharp}\left\langle N_{Y}, g, z\right\rangle=\left(\mathcal{H}^{r-2}\left\llcorner f\left(g^{-1}\{z\}\right)\right) \wedge \eta,\right.
$$

with unit vector field

$$
\begin{equation*}
\eta(x, v)=\frac{\left(\bigwedge_{r-2} D f\left(f^{-1}(x, v)\right)\right) \zeta\left(f^{-1}(x, v)\right)}{J_{r-2} f\left(f^{-1}(x, v)\right)} \tag{25}
\end{equation*}
$$

for $\mathcal{H}^{2 r-3}$-almost all $(x, v) \in g^{-1}(z) \times S^{r-2}\left(L_{r-1}\right)$. Whenever nor Y and $L_{r-1}+z$ do not touch, then $f\left(g^{-1}(z)\right)$ is equal to the normal bundle nor ${ }^{(r-1)}\left(Y \cap\left(L_{r-1}+z\right)\right)$. Hence, in order to prove the lemma, it is enough to check that the orientation of the respective orienting vectorfields, $a_{X \cap\left(L_{r-1}+z\right)}$ and η, have the same orientation. By convention, the orientation of $a_{X \cap\left(L_{r-1}+z\right)}$ is chosen such that $\left\langle a_{X \cap\left(L_{r-1}+z\right)}(x, n), \varphi_{k(x, n)}^{(r-1)}(n)\right\rangle>0$, where $k(x, n)$ is the number of principal curvatures at (x, n) that are 0 . Hence, we have to check that $\left\langle\eta(x, n), \varphi_{k(x, n)}^{(r-1)}(n)\right\rangle>0$. By combining (25) and (24), we see that η is proportional to $\bigwedge_{r-2} D f\left(a_{Y \cap\left(L_{r-1}+z\right)}\left\llcorner g^{\#} \Omega_{1}\right)\right.$ with some strictly positive proportionality constant λ. Thus,

$$
\lambda\left\langle\eta(x, n), \varphi_{k(x, n)}^{(r-1)}(x, n)\right\rangle=\lambda\left\langle a_{Y \cap\left(L_{r-1}+z\right)}(x, n), g^{\#} \Omega_{1} \wedge f^{\#} \varphi_{k(x, n)}^{(r-1)}(x, n)\right\rangle \geq 0
$$

and the inequality is strict when $k(x, n)$ is the number of zero principal curvatures at (x, n), cf. (29) below.

Using the normal current of $Y \cap\left(L_{r-1}+|x|\right)$, the integral $\mathcal{I}\left(L_{r-1}\right)$ can be written as $\mathcal{I}\left(L_{j-1}\right)=\int_{L_{r-1}^{\perp}} V_{r-s-1}\left(Y \cap\left(L_{r-1}+x\right)\right)|x|^{d-r} \mathrm{~d} x^{1}=\int_{L_{r-1}^{\perp}} N_{Y \cap\left(L_{r-1}+x\right)}\left(\phi_{r-s-1}^{(r-1)}\right)|x|^{d-r} \mathrm{~d} x^{1}$.

By applying Lemma 2 and the coarea formula for currents, [5, Section 4.3.13], we obtain

$$
\begin{aligned}
\mathcal{I}\left(L_{r-1}\right) & =\int_{L_{r-1}^{\perp}}|x|^{d-r} N_{Y \cap\left(L_{r-1}+x\right)}\left(\phi_{r-s-1}^{(r-1)}\right) \mathrm{d} x^{1} \\
& =\int_{L_{r-1}^{\perp}}|x|^{d-r} f_{\sharp}\left\langle N_{Y}, g, x\right\rangle\left(\phi_{r-s-1}^{(r-1)}\right) \mathrm{d} x^{1} \\
& =\int_{L_{r-1}^{\perp}}|x|^{d-r}\left\langle N_{Y}, g, x\right\rangle\left(f^{\sharp} \phi_{r-s-1}^{(r-1)}\right) \mathrm{d} x^{1} \\
& =N_{Y}\left\llcorner g^{\sharp}\left(q \cdot \Omega_{1}\right)\left(f^{\sharp} \phi_{r-s-1}^{(r-1)}\right)\right. \\
& =\int_{\text {nor } Y}\left\langle a_{Y}, g^{\sharp}\left(q \cdot \Omega_{1}\right) \wedge f^{\sharp} \phi_{r-s-1}^{(r-1)}\right\rangle \mathrm{d} \mathcal{H}^{r-1},
\end{aligned}
$$

where $q(x)=|x|^{d-r}, x \in \mathbb{R}^{r}$. Using the shuffle formula, [5, Section 1.4.2], the integrand can be written

$$
\begin{align*}
& \left\langle a_{Y}, g^{\sharp}\left(q \cdot \Omega_{1}\right) \wedge f^{\sharp} \phi_{r-s-1}^{(r-1)}\right\rangle \\
& =\sum_{i=1}^{r-1}(-1)^{i+1}\left\langle\left(u_{i}, v_{i}\right), g^{\sharp}\left(q \cdot \Omega_{1}\right)\right\rangle \cdot\left\langle\left(u_{1}, v_{1}\right) \wedge \cdots \wedge \widehat{\left(u_{i}, v_{i}\right)} \wedge \cdots \wedge\left(u_{r-1}, v_{r-1}\right), f^{\sharp} \phi_{r-s-1}^{(r-1)}\right\rangle . \tag{26}
\end{align*}
$$

The second term can we expressed more explicitly (for the definition of the push-forward, the reader is referred to [5, Section 4.1.6]),

$$
\begin{align*}
& \left\langle\left(u_{1}, v_{1}\right) \wedge \cdots \wedge \overline{\left(u_{i}, v_{i}\right)} \wedge \cdots \wedge\left(u_{r-1}, v_{r-1}\right), f^{\sharp} \phi_{r-s-1}^{(r-1)}(x, n)\right\rangle \\
& =\left\langle\left[\bigwedge_{r-2} D f(x, n)\right]\left(u_{1}, v_{1}\right) \wedge \cdots \wedge \widehat{\left(u_{i}, v_{i}\right)} \wedge \cdots \wedge\left(u_{r-1}, v_{r-1}\right), \phi_{r-s-1}^{(r-1)} \circ f(x, n)\right\rangle \\
& = \\
& =\left\langle\bigwedge_{j \in\{1, \ldots, r-1\} \backslash\{i\}}\left(u_{j}, \frac{p\left(v_{j} \mid L_{r-1} \cap n^{\perp}\right)}{\left|p\left(n \mid L_{r-1}\right)\right|}\right), \phi_{r-s-1}^{(r-1)}\left(\pi\left(n \mid L_{r-1}\right)\right)\right\rangle \\
& = \\
& =\frac{1}{\sigma_{s}} \sum_{\substack{J \subset\{1, \ldots, r-1\} \backslash\{i\} \\
\mid}}(\operatorname{sgn} J)\left\langle\left.\bigwedge_{j \in J} u_{j} \wedge \bigwedge_{j \in J^{c}}\left(\frac{p\left(v_{j} \mid L_{r-1} \cap n^{\perp}\right)}{\left|p\left(n \mid L_{r-1}\right)\right|^{s}}\right) \wedge \pi\left(n \mid L_{r-1}\right) \right\rvert\,, \Omega_{r-1}\right\rangle \tag{27}\\
& \quad \times \sum_{\substack{|J|=r-s-1 \\
J \subset\{1, \ldots, r-1\} \backslash\{i\}}}(\operatorname{sgn} J)\left\langle\bigwedge_{j \in J} u_{j} \wedge \bigwedge_{j \in J^{c}} p\left(v_{j} \mid L_{r-1} \cap n^{\perp}\right) \wedge p\left(n \mid L_{r-1}\right), \Omega_{r-1}\right\rangle
\end{align*}
$$

for all $(x, n) \in$ nor Y. Here, $\operatorname{sgn} J$ is the number of permutations needed to map $J \cup J^{c}$ into $(1, \ldots, r-1) \backslash\{i\}$, where J and J^{c} are sorted in increasing order. The first term in (26) can be expressed as

$$
\begin{align*}
\left\langle\left(u_{i}, v_{i}\right), g^{\sharp}\left(q \cdot \Omega_{1}(x, n)\right)\right\rangle & =\left\langle D g(x, n)\left(u_{i}, v_{i}\right), q \circ g(x, n) \cdot \Omega_{1} \circ g(x, n)\right\rangle \\
& =\left|p\left(x \mid L_{r-1}^{\perp}\right)\right|^{d-r}\left\langle p\left(u_{i} \mid L_{r-1}^{\perp}\right), \Omega_{1}\right\rangle . \tag{28}
\end{align*}
$$

By inserting into (27) and (28) the explicit representation of a_{Y} given in (16), we can write (26) as

$$
\begin{aligned}
& \left\langle a_{Y}, g^{\sharp}\left(q \cdot \Omega_{1}\right) \wedge f^{\sharp} \phi_{r-s-1}^{(r-1)}\right\rangle \\
& \qquad \sum_{i=1}^{r-1} \sum_{\substack{|J|=r-s-1 \\
J \subset\{1, \ldots, r-1\} \backslash\{i\}}} \frac{(-1)^{i+1}(\operatorname{sgn} J)\left|p\left(x \mid L_{r-1}^{\perp}\right)\right|^{d-r}}{\sigma_{s}\left|p\left(n \mid L_{r-1}\right)\right|^{s}} \frac{\prod_{l \in J^{c} \kappa_{l}}}{\prod_{l=1}^{r-1} \sqrt{1+\kappa_{l}^{2}}} \\
& \quad \times\left\langle p\left(a_{i} \mid L_{r-1}^{\perp}\right), \Omega_{1}\right\rangle\left\langle\bigwedge_{j \in J} a_{j} \wedge \bigwedge_{j \in J^{c}} p\left(a_{j} \mid L_{r-1} \cap n^{\perp}\right) \wedge p\left(n \mid L_{r-1}\right), \Omega_{r-1}\right\rangle .
\end{aligned}
$$

Note that $(-1)^{i+1}(\operatorname{sgn} J)$ is the sign of the permutation necessary to order $\{i\} \cup J \cup J^{c}$ increasingly. Moreover, orthogonal projections are orientation preserving (eigenvalues are
either 0 or 1), therefore,

$$
\begin{aligned}
(-1)^{i+1}(\operatorname{sgn} J)\left\langle p\left(a_{i} \mid L_{r-1}^{\perp}\right), \Omega_{1}\right\rangle\left\langle\bigwedge_{j \in J} a_{j} \wedge\right. & \left.\bigwedge_{j \in J c} p\left(a_{j} \mid L_{r-1} \cap n^{\perp}\right) \wedge p\left(n \mid L_{r-1}\right), \Omega_{r-1}\right\rangle \\
& =(-1)^{i+1}(\operatorname{sgn} J)\left\langle p\left(a_{i} \mid L_{r-1}^{\perp}\right), \Omega_{1}\right\rangle\left\langle\bigwedge_{j \in J \cup J c} p\left(a_{j} \mid L_{r-1} \cap n^{\perp}\right) \wedge p\left(n \mid L_{r-1}\right), \Omega_{r-1}\right\rangle \\
& =\left\langle\bigwedge_{j=1}^{i-1} p\left(a_{j} \mid L_{r-1} \cap n^{\perp}\right) \wedge p\left(a_{i} \mid L_{r-1}^{\perp}\right) \wedge \bigwedge_{j=i+1}^{r-1} p\left(a_{j} \mid L_{r-1} \cap n^{\perp}\right) \wedge p\left(n \mid L_{r-1}\right), \Omega_{r}\right\rangle>0,
\end{aligned}
$$

where we used the decomposition

$$
a_{j}=p\left(a_{j} \mid L_{r-1} \cap n^{\perp}\right)+p\left(a_{j} \mid \pi\left(n \mid L_{r-1}\right)\right)+p\left(a_{j} \mid L_{r-1}^{\perp}\right)
$$

for the first equality. Thus,

$$
\begin{aligned}
& \left\langle a_{Y}, g^{\sharp}\left(q \cdot \Omega_{1}\right) \wedge f^{\sharp} \phi_{r-s-1}^{(r-1)}\right\rangle \\
& =\frac{1}{\sigma_{s}} \sum_{i=1}^{r-1} \sum_{\substack{|J|=r-s-1 \\
J \subset\{1, \ldots, r-1\} \backslash i\}}} \frac{\left|p\left(x \mid L_{r-1}^{\perp}\right)\right|^{d-r}}{\left|p\left(n \mid L_{r-1}\right)\right|^{s}} \frac{\prod_{l \in J^{c}} \kappa_{l}}{\prod_{l=1}^{r-1} \sqrt{1+\kappa_{l}^{2}}} \\
& \quad \times\left|\left\langle p\left(a_{i} \mid L_{r-1}^{\perp}\right), \Omega_{1}\right\rangle\right|\left|\left\langle\bigwedge_{j \in J \cup J^{c}} p\left(a_{j} \mid L_{r-1} \cap n^{\perp}\right) \wedge p\left(n \mid L_{r-1}\right), \Omega_{r-1}\right\rangle\right| \\
& =\frac{1}{\sigma_{s}} \sum_{i=1}^{r-1} \sum_{\substack{|J|=r-s-1 \\
J \subset\{1, \ldots, r-1\} \backslash\{i\}}} \frac{\left|p\left(x \mid L_{r-1}^{\perp}\right)\right|^{d-r}\left|p\left(a_{i} \mid L_{r-1}^{\perp}\right)\right|^{2}}{\left|p\left(n \mid L_{r-1}\right)\right|^{s}} \frac{\prod_{l \in J^{c}} \kappa_{l}}{\prod_{l=1}^{r-1} \sqrt{1+\kappa_{l}^{2}}},
\end{aligned}
$$

where the last equality follows from [7, Proposition 5.2]. Applying the re-indexing identity

$$
\sum_{i=1}^{r-1} \sum_{\substack{|J|=r-s-1 \\ J \subset\{1, \ldots, r-1\} \backslash\{i\}}} \frac{\prod_{l \in J^{c}} \kappa_{l}}{\prod_{l=1}^{r-1} \sqrt{1+\kappa_{l}^{2}}}\left|p\left(a_{i} \mid L_{r-1}^{\perp}\right)\right|^{2}=\sum_{\substack{|J|=s-1 \\ J \subset\{1, \ldots, r-1\}}} \frac{\prod_{l \in J^{\prime}} \kappa_{l}}{\prod_{l=1}^{r-1} \sqrt{1+\kappa_{l}^{2}}} \sum_{i \in J^{c}}\left|p\left(a_{i} \mid L_{r-1}^{\perp}\right)\right|^{2},
$$

we conclude that

$$
\begin{align*}
& c_{d, r-1, r-s-1} \alpha_{d, s}^{r}(Y)=\int_{\mathcal{L}_{r-1}^{r}} \mathcal{I}\left(L_{r-1}\right) \mathrm{d} L_{r-1} \\
&=\int_{\mathcal{L}_{r-1}^{r}} \int_{\operatorname{nor} Y}\left\langle a_{Y}, g^{\sharp}\left(q \cdot \Omega_{1}\right) \wedge f^{\sharp} \phi_{r-s-1}^{(r-1)}\right\rangle \mathrm{d} \mathcal{H}^{r-1} \mathrm{~d} L_{r-1} \\
&=\int_{\operatorname{nor} Y} \int_{\mathcal{L}_{r-1}^{r}}\left\langle a_{Y}, g^{\sharp}\left(q \cdot \Omega_{1}\right) \wedge f^{\sharp} \phi_{r-s-1}^{(r-1)}\right\rangle \mathrm{d} L_{r-1} \mathrm{~d} \mathcal{H}^{r-1} \\
&=\frac{1}{\sigma_{s}} \int_{\text {nor } Y}|x|^{d-r} \sum_{\substack{|J|=s-1 \\
J \subset\{1, \ldots, r-1\}}} \frac{\prod_{j \in J} \kappa_{j}}{\prod_{j=1}^{r-1} \sqrt{1+\kappa_{j}^{2}}} \widetilde{Q}_{r, s}^{d}\left(x, n, A_{J}\right) \mathrm{d} \mathcal{H}^{r-1}, \tag{29}
\end{align*}
$$

where

$$
\widetilde{Q}_{d, s}^{r}\left(x, n, A_{J}\right)=\int_{\mathcal{L}_{r-1}^{r}} \frac{\left|p\left(x /|x| \mid L_{r-1}^{\perp}\right)\right|^{d-r}}{\left|p\left(n \mid L_{r-1}\right)\right|^{s}} \sum_{i \in J c}\left|p\left(a_{i} \mid L_{r-1}^{\perp}\right)\right|^{2} \mathrm{~d} L_{r-1} .
$$

In the remainder of this section, we shall prove that the above expression for $\widetilde{Q}_{d, s}^{r}$ can be written in terms of two hypergeometric series.

The hypergeometric series and the Gamma function have been introduced earlier. The Beta function, $B(a, b)=B(b, a)$, is defined for all $a, b>0$ as

$$
B(a, b)=\int_{0}^{1} t^{a-1}(1-t)^{b-1} \mathrm{~d} t
$$

and is often expressed in terms of the Gamma function as

$$
B(a, b)=\frac{\Gamma(a) \Gamma(b)}{\Gamma(a+b)}
$$

Lemma 3. Let $\alpha, \beta \in[0,1]$ with $\alpha+\beta=1$. Then, for all $k>0, a \in \mathbb{R}, b>-\frac{1}{k}$ and $c>-1$,

$$
\begin{equation*}
\int_{0}^{1}\left(\alpha+\beta t^{k}\right)^{-a}\left(t^{k}\right)^{b}\left(1-t^{k}\right)^{c} \mathrm{~d} t=\frac{1}{k} B\left(b+\frac{1}{k}, c+1\right) F\left(a, c+1 ; c+b+\frac{1}{k}+1 ; \beta\right) \tag{30}
\end{equation*}
$$

When $\beta=1$, the extra assumption $b+\frac{1}{k}>a$ is necessary.
Proof. According to [1, 15.3.1], the analytic continuation of the hypergeometric function is given by

$$
F(a, b ; c ; \beta)=\frac{1}{B(b, c-b)} \int_{0}^{1}(1-\beta s)^{-a}(1-s)^{c-b-1} s^{b-1} \mathrm{~d} s
$$

whenever $c>b>0$. Hence, a substitution by $s=1-r^{k}$ proves the Lemma.
Remark 9. In the special case where $a=0$ and $k=2$, Lemma 3 yields the identity

$$
\int_{-1}^{1}\left(t^{2}\right)^{b}\left(1-t^{2}\right)^{c} \mathrm{~d} t=B\left(b+\frac{1}{2}, c+1\right) .
$$

Lemma 4. Let $x, z \in S^{d-1}, m, n \in \mathbb{N}$. Then,

$$
\begin{align*}
& \int_{S^{d-1}}|x \cdot \omega|^{m}|z \cdot \omega|^{n} \mathrm{~d} \omega^{d-1} \\
& \quad=\sigma_{d-2} B\left(\frac{n+m+2}{2}, \frac{d-2}{2}\right) B\left(\frac{m+1}{2}, \frac{n+1}{2}\right) F\left(-\frac{m}{2},-\frac{n}{2} ; \frac{1}{2} ; \cos ^{2}(x, z)\right) . \tag{31}
\end{align*}
$$

Proof. This Lemma was proven in [3] for any even natural number n. The exact same procedure as the one in the proof of Proposition 4 below, in particular the use of Lemma 6 , shows that (31) also holds when n is odd. The details are omited here. In order to prove the main results of the present paper, the special case where $n=2$ is sufficient, though.

Remark 10. Let L_{d-1} be a ($d-1$)-dimensional subspace of \mathbb{R}^{d}, with $z \in L_{d-1}$ and $x \notin L_{d-1}^{\perp}$. Then, for all $m, n \in \mathbb{N}$,

$$
\begin{aligned}
\int_{S^{d-2}\left(L_{d-1}\right)}|x \cdot \omega|^{m}|z \cdot \omega|^{n} \mathrm{~d} \omega^{d-1}= & \sigma_{d-3} B\left(\frac{n+m+2}{2}, \frac{d-3}{2}\right) B\left(\frac{m+1}{2}, \frac{n+1}{2}\right) \\
& \times \cos ^{m}\left(x, L_{d-1}\right) F\left(-\frac{m}{2},-\frac{n}{2} ; \frac{1}{2} ; \cos ^{2}\left(\pi\left(x \mid L_{d-1}\right), z\right)\right)
\end{aligned}
$$

Recall that the binomial coefficient $\binom{a}{k}$ is defined for all $a \in \mathbb{R}$ and all $k \in \mathbb{N}$ by

$$
\binom{a}{k}=\frac{(-a)_{k}(-1)^{k}}{k!}= \begin{cases}\frac{\Gamma(a+1)}{\Gamma(a-k+1) \Gamma(k+1)} & \text { for } a>0 \\ \frac{\Gamma(a+k)(-1)^{k}}{\Gamma(a) \Gamma(k+1)} & \text { for } a<0 \\ 0 & \text { for } a=0\end{cases}
$$

Lemma 5. For all $a \in \mathbb{R}$ and all $s \in \mathbb{N}$,

$$
\binom{a}{2 s}=\frac{\binom{\frac{a}{2}}{s}\binom{\frac{a-1}{2}}{s}}{\binom{2 s}{s}} 2^{2 s}
$$

Proof. A routine calculation yields

$$
\binom{a}{2 s}=\frac{\Gamma(a+1)}{\Gamma(2 s+1) \Gamma(a-2 s+1)}=\binom{\frac{a}{2}}{s}\binom{\frac{a-1}{2}}{s} \frac{\Gamma\left(\frac{1}{2}\right) \Gamma\left(\frac{s+1}{2}\right)}{\Gamma\left(s+\frac{1}{2}\right)}=\frac{\binom{\frac{a}{2}}{s}\binom{\frac{a-1}{2}}{s}}{\binom{2 s}{s}} 2^{2 s} .
$$

For the second equality, we applied the duplication formula on each Gamma function appearing in the second term, and for the third equality, we applied the duplication formula to $\Gamma(2 s+1)$.

Lemma 6. For all $a \in \mathbb{R}$ and any function f, the following identity holds,

$$
\sum_{k=0}^{\infty}\binom{\frac{a}{2}}{k} \sum_{l=0}^{k}\binom{k}{l} 2^{k-l} f(k+l)=\sum_{s=0}^{\frac{a}{2}}\binom{a}{2 s} f(2 s),
$$

where the double sum on the l.h.s. is over k and l with the same parity only.
Proof. Substition of $k+l$ by $2 s$ yields

$$
\sum_{k=0}^{\infty}\binom{\frac{a}{2}}{k} \sum_{l=0}^{k}\binom{k}{l} 2^{k-l} f(k+l)=\sum_{s=0}^{\infty} \sum_{l=0}^{s}\binom{\frac{a}{2}}{2 s-l}\binom{2 s-l}{l} 2^{2 s-2 l} f(2 s)
$$

Applying the duplication formula to $\Gamma(2 s-2 l+1)$, we get

$$
\begin{gathered}
\binom{\frac{a}{2}}{2 s-l}\binom{2 s-l}{l} 2^{2 s-2 l}=\frac{\Gamma\left(\frac{a}{2}+1\right)}{\Gamma\left(\frac{a}{2}-2 s+l+1\right)} \frac{2^{2 s-2 l}}{\Gamma(l+1) \Gamma(2 s-2 l+1)} \\
\quad=\frac{\Gamma\left(\frac{a}{2}+1\right)}{\Gamma\left(\frac{a}{2}-2 s+l+1\right)} \frac{\Gamma\left(\frac{1}{2}\right)}{\Gamma(l+1) \Gamma(s-l+1) \Gamma\left(s-l+\frac{1}{2}\right)} \\
\quad=\binom{\frac{a}{2}}{s}\binom{s-\frac{1}{2}}{l}\binom{\frac{a-1}{2}-\left(s-\frac{1}{2}\right)}{s-l} \frac{\Gamma\left(\frac{1}{2}\right) \Gamma(s+1)}{\Gamma\left(s+\frac{1}{2}\right)} .
\end{gathered}
$$

Then, the well-known identity, $\sum_{l=0}^{k}\binom{m}{l}\binom{n-m}{k-l}=\binom{n}{k}$, valid for any complex numbers m and n, and the duplication formula applied to $\Gamma(2 s+1)$ imply

$$
\sum_{l=0}^{s}\binom{\frac{a}{2}}{2 s-l}\binom{2 s-l}{l} 2^{2 s-2 l}=\frac{\binom{\frac{a}{2}}{s}\binom{\frac{a-1}{2}}{s}}{\binom{2 s}{s}} 2^{2 s}
$$

Thanks to Lemma 5, the proof is complete.

Proposition 4. Let x, y and z be unit vectors in \mathbb{R}^{d} with $y \perp z$ and let $a, b, c \in \mathbb{Z}$. Then, if $x \neq y$ and $x \notin y^{\perp}$, the following identity holds,

$$
\begin{aligned}
& \int_{S^{d-1}}|x \cdot \omega|^{a}{\sqrt{1-(y \cdot \omega)^{2}}}^{b}|z \cdot \omega|^{c} \mathrm{~d} \omega^{d-1} \\
& \quad=\sigma_{d-2}|x \cdot y|^{a} B\left(\frac{a}{2}+\frac{1}{2}, \frac{b+c+d-1}{2}\right) B\left(\frac{c}{2}+\frac{1}{2}, \frac{d-2}{2}\right) \\
& \\
& \quad \times \sum_{s=0}^{\infty} \frac{\left(-\frac{a}{2}\right)_{s}\left(\frac{b+c+d-1}{2}\right)_{s}}{\left(\frac{c+d-1}{2}\right)_{s}} \frac{(-1)^{s}}{s!} \tan ^{2 s}(x, y) F\left(-s,-\frac{c}{2} ; \frac{1}{2} ; \frac{\cos ^{2}(x, z)}{\sin ^{2}(x, y)}\right)
\end{aligned}
$$

whenever both sides of the equation converge. Moreover, for $x= \pm y$,

$$
\begin{aligned}
& \int_{S^{d-1}}|y \cdot \omega|^{a}{\sqrt{1-(y \cdot \omega)^{2}}}^{b}|z \cdot \omega|^{c} \mathrm{~d} \omega^{d-1} \\
& \quad=\sigma_{d-2} B\left(\frac{a}{2}+\frac{1}{2}, \frac{b+c+d-1}{2}\right) B\left(\frac{c}{2}+\frac{1}{2}, \frac{d-2}{2}\right)
\end{aligned}
$$

and, for $x \perp y$,

$$
\begin{aligned}
& \int_{S^{d-1}}|x \cdot \omega|^{a}{\sqrt{1-(y \cdot \omega)^{2}}}^{b}|z \cdot \omega|^{c} \mathrm{~d} \omega^{d-1} \\
&=\sigma_{d-3} B\left(\frac{a+b+c+d-1}{2}, \frac{1}{2}\right) B\left(\frac{a+c+2}{2}, \frac{d-3}{2}\right) \\
& \quad \times B\left(\frac{a+1}{2}, \frac{c+1}{2}\right) F\left(-\frac{a}{2},-\frac{c}{2} ; \frac{1}{2} ; \cos ^{2}(x, z)\right) .
\end{aligned}
$$

Proof. The mapping

$$
\begin{gathered}
f: S^{d-1} \rightarrow[-1,1] \\
\omega \mapsto \omega \cdot y=t
\end{gathered}
$$

has 1-dimensional Jacobian $J_{1} f(\omega)=\sqrt{1-(\omega \cdot y)^{2}}$ for all $\omega \in S^{d-1} \backslash\{y\}$. The coarea formula implies

$$
\int_{S^{d-1}} h(\omega) \mathrm{d} \omega^{d-1}=\int_{-1}^{1} \int_{S^{d-1} \cap f^{-1}(t)} \frac{1}{\sqrt{1-t^{2}}} h(\omega) \mathrm{d} \omega^{d-2} \mathrm{~d} t
$$

for any positive, \mathcal{H}^{d-1}-measurable function $h: S^{d-1} \rightarrow \mathbb{R}$. Then, an application of the area formula with the injective mapping (whenever $t \in(-1,1)$)

$$
\begin{aligned}
g: S^{d-1} & \cap f^{-1}(t) \rightarrow S^{d-2}\left(y^{\perp}\right) \\
\omega & \mapsto \pi\left(\omega \mid y^{\perp}\right)
\end{aligned}
$$

with $(d-2)$-dimensional Jacobian $J_{d-2} g(\omega)={\sqrt{1-(\omega \cdot y)^{2}}}^{2-d}$, yields

$$
\int_{S^{d-1}} h(\omega) \mathrm{d} \omega^{d-1}=\int_{-1}^{1} \int_{S^{d-2}\left(y^{\perp}\right)}{\sqrt{1-t^{2}}}^{d-3} h\left(t y+\sqrt{1-t^{2}} \omega\right) \mathrm{d} \omega^{d-2} \mathrm{~d} t
$$

Therefore,

$$
\begin{aligned}
& \int_{S^{d-1}}|x \cdot \omega|^{a}{\sqrt{1-(y \cdot \omega)^{2}}}^{b}|z \cdot \omega|^{c} \mathrm{~d} \omega^{d-1} \\
& \quad=\int_{-1}^{1} \int_{S^{d-2}\left(y^{\perp}\right)}{\sqrt{1-t^{2}}}^{d+b+c-3}\left|x \cdot\left(t y+\sqrt{1-t^{2}} \omega\right)\right|^{a}|z \cdot \omega|^{c} \mathrm{~d} \omega^{d-2} \mathrm{~d} t
\end{aligned}
$$

and by a double application of the binomial formula, the last expression becomes

$$
\begin{aligned}
& \sum_{k=0}^{\infty}\binom{\frac{a}{2}}{k} \int_{-1}^{1}{\sqrt{1-t^{2}}}^{d+b+c-3} \\
& \times \int_{S^{d-2}\left(y^{\perp}\right)}\left(t^{2}(x \cdot y)^{2}\right)^{\frac{a}{2}-k}\left(\left(1-t^{2}\right)(x \cdot \omega)^{2}+2 t \sqrt{1-t^{2}}(x \cdot y)(x \cdot \omega)\right)^{k} \mathrm{~d} \omega^{d-2} \mathrm{~d} t \\
&=\sum_{k=0}^{\infty}\binom{\frac{a}{2}}{k} \sum_{l=0}^{k}\binom{k}{l} 2^{k-l}|x \cdot y|^{a-2 k}(x \cdot y)^{k-l} \int_{-1}^{1}|t|^{a-2 k} t^{k-l}{\sqrt{1-t^{2}}}^{d+k+l+b+c-3} \mathrm{~d} t \\
& \times \int_{S^{d-2}\left(y^{\perp}\right)}(x \cdot \omega)^{2 l}(x \cdot \omega)^{k-l}|z \cdot \omega|^{c} \mathrm{~d} \omega^{d-2}
\end{aligned}
$$

Notice that both integrals are non-zero only if k an l have the same parity. Then, using Remark 9 and Lemma 4, we get

$$
\begin{aligned}
& \int_{S^{d-1}}|x \cdot \omega|^{a} \sqrt{1-(y \cdot \omega)^{2}}|z \cdot \omega|^{c} \mathrm{~d} \omega^{d-1} \\
& =\sigma_{d-3}|x \cdot y|^{a} \sum_{k=0}^{\infty}\binom{\frac{a}{2}}{k} \sum_{l=0}^{k}\binom{k}{l} 2^{k-l} \tan ^{k+l}(x, y) \\
& \quad \times B\left(\frac{a}{2}-\frac{k+l}{2}+\frac{1}{2}, \frac{d}{2}+\frac{k+l}{2}+\frac{b+c}{2}-\frac{1}{2}\right) B\left(\frac{c}{2}+\frac{k+l}{2}+1, \frac{d-3}{2}\right) \\
& \quad \times B\left(\frac{k+l}{2}+\frac{1}{2}, \frac{c}{2}+\frac{1}{2}\right) F\left(-\frac{k+l}{2},-\frac{c}{2} ; \frac{1}{2} ; \cos ^{2}\left(x_{1}, z\right)\right)
\end{aligned}
$$

where $x_{1}=\pi\left(x \mid y^{\perp}\right)$ and the double sum is over k and l with the same parity only. Finally, an application of Lemma 6 yields

$$
\begin{aligned}
& \int_{S^{d-1}}|x \cdot \omega|^{a} \sqrt{1-(y \cdot \omega)^{2}}|z \cdot \omega|^{c} \mathrm{~d} \omega^{d-1} \\
& =2 \sigma_{d-2}|x \cdot y|^{a} \sum_{s=0}^{\infty}\binom{a}{2 s} B\left(\frac{a}{2}-s+\frac{1}{2}, \frac{d}{2}+s+\frac{b+c}{2}-\frac{1}{2}\right) \\
& \quad \times \tan ^{2 s}(x, y) B\left(\frac{c}{2}+s+1, \frac{d-3}{2}\right) B\left(s+\frac{1}{2}, \frac{c}{2}+\frac{1}{2}\right) F\left(-s,-\frac{c}{2} ; \frac{1}{2} ; \cos ^{2}\left(x_{1}, z\right)\right)
\end{aligned}
$$

Using the duplication formula for the Gamma function, the following identity can be derived,

$$
\begin{aligned}
\sigma_{d-3}\binom{a}{2 s} & B\left(\frac{a}{2}-s+\frac{1}{2}, \frac{d}{2}+s+\frac{b+c}{2}-\frac{1}{2}\right) B\left(\frac{c}{2}+s+1, \frac{d-3}{2}\right) B\left(s+\frac{1}{2}, \frac{c}{2}+\frac{1}{2}\right) \\
& =\sigma_{d-2} B\left(\frac{a}{2}+\frac{1}{2}, \frac{b+c+d-1}{2}\right) B\left(\frac{c}{2}+\frac{1}{2}, \frac{d-2}{2}\right) \frac{\left(-\frac{a}{2}\right)_{s}\left(\frac{b+c+d-1}{2}\right)_{s}}{\left(\frac{c+d-1}{2}\right)_{s}} \frac{(-1)^{s}}{s!}
\end{aligned}
$$

The proof of the first identity is complete. The two remaining identities are easily proven by a slight modification of the above argument.

Remark 11. Alternatively, the three identities in Proposition 4 can be written as

$$
\begin{aligned}
& \int_{S^{d-1}}|x \cdot \omega|^{a}{\sqrt{1-(y \cdot \omega)^{2}}}^{b}|z \cdot \omega|^{c} \mathrm{~d} \omega^{d-1} \\
& \quad=\sigma_{d-2} B\left(\frac{a}{2}+\frac{1}{2}, \frac{b+c+d-1}{2}\right) B\left(\frac{c}{2}+\frac{1}{2}, \frac{d-2}{2}\right) \\
& \quad \times \sum_{s=0}^{\infty} \frac{\left(-\frac{a}{2}\right)_{s}\left(-\frac{c}{2}\right)_{s}\left(\frac{b+c+d-1}{2}\right)_{s}}{\left(\frac{1}{2}\right)_{s}\left(\frac{c+d-1}{2}\right)_{s}} \frac{\cos ^{2 s}(x, z)}{s!} F\left(-\frac{a}{2}+s,-\frac{b}{2} ; \frac{c+d-1}{2}+s ; \sin ^{2}(x, y)\right) .
\end{aligned}
$$

Then, for $b=0$, it is easy to check that Proposition 4 is Lemma 4, exactly. For $a=0$ or $c=0$, Proposition 4 is equivalent to [3, Proposition 4], i.e.

$$
\begin{align*}
& \int_{S^{d-1}}|x \cdot \omega|^{a}{\sqrt{1-(y \cdot \omega)^{2}}}^{b} \mathrm{~d} \omega^{d-1} \\
& \quad=\sigma_{d-1} B\left(\frac{a}{2}+\frac{1}{2}, \frac{b+d-1}{2}\right) F\left(-\frac{a}{2},-\frac{b}{2} ; \frac{d-1}{2} ; \sin ^{2}(x, y)\right) . \tag{32}
\end{align*}
$$

Recall the identity (21) in the proof of Proposition 2. Using [7, Proposition 3.5], we notice that

$$
\begin{aligned}
2 \int_{\mathcal{L}_{q(q-1)}^{j}}\left|p\left(z \mid L_{q}^{\perp}\right)\right|^{d-j} \mathrm{~d} L_{q(q-1)} & =\int_{S^{j-q}\left(L_{q-1}^{\perp}\right)}\left|p\left(z \mid\left(L_{q-1} \oplus \omega\right)^{\perp}\right)\right|^{d-j} \mathrm{~d} \omega^{j-q} \\
& =|z|^{d-j} \int_{S^{j-q}\left(L_{q-1}^{\perp}\right)} \sqrt{1-\left(\frac{z}{|z|} \cdot \omega\right)^{2}}{ }^{d-j} \mathrm{~d} \omega^{j-q}
\end{aligned}
$$

where we used $z \in L_{q-1}^{\perp}$ for the second equality. An application of (32) with $a=0$ yields (21).

In the special case where $c=2$, it is easily seen using Remark 11, that

$$
\begin{align*}
& \int_{S^{d-1}}|x \cdot \omega|^{a} \sqrt{1-(y \cdot \omega)^{2}}{ }^{b}|z \cdot \omega|^{2} \mathrm{~d} \omega^{d-1} \\
&=\frac{\sigma_{d-1}}{d-1} B\left(\frac{a}{2}+\frac{1}{2}, \frac{b+d+1}{2}\right)\left[F\left(-\frac{a}{2},-\frac{b}{2} ; \frac{d+1}{2} ; \sin ^{2}(x, y)\right)\right. \\
&\left.\quad+\frac{a(b+d+1)}{d+1} \cos ^{2}(x, z) F\left(-\frac{a}{2}+1,-\frac{b}{2} ; \frac{d+3}{2} ; \sin ^{2}(x, y)\right)\right] \tag{33}
\end{align*}
$$

When $(x, n) \in$ nor Y and $a_{i}(x, n)$ is the i 'th principal direction at (x, n), we have, thanks to formula (33),

$$
\begin{aligned}
\widetilde{Q}_{d, s}^{r}\left(x, n, A_{J}\right) & =\int_{\mathcal{L}_{r-1}^{r}} \frac{\left|p\left(x /|x| \mid L_{r-1}^{\perp}\right)\right|^{d-r}}{\left|p\left(n \mid L_{r-1}\right)\right|^{s}} \sum_{i \in J^{c}}\left|p\left(a_{i} \mid L_{r-1}^{\perp}\right)\right|^{2} \mathrm{~d} L_{r-1} \\
& =\frac{1}{2} \int_{S^{r-1}}|x \cdot \omega|^{d-r} \sqrt{1-(n \cdot \omega)^{2}}-s \sum_{i \in J^{c}}\left|a_{i} \cdot \omega\right|^{2} \mathrm{~d} \omega^{r-1} \\
& =\frac{(r-s) \sigma_{r-1}}{2(r-1)} B\left(\frac{d-r}{2}+\frac{1}{2}, \frac{r-s+1}{2}\right) Q_{d, s}^{r}
\end{aligned}
$$

where

$$
\begin{aligned}
Q_{d, s}^{r}:=F\left(-\frac{d-r}{2}\right. & \left., \frac{s}{2} ; \frac{r+1}{2} ; \sin ^{2}(x, n)\right) \\
& \quad+\frac{(d-r)(r-s+1)}{r+1} \frac{\cos ^{2}\left(x, A_{J}\right)}{r-s} F\left(-\frac{d-r}{2}+1, \frac{s}{2} ; \frac{r+3}{2} ; \sin ^{2}(x, n)\right) .
\end{aligned}
$$

Combining with (29), we obtain

$$
\alpha_{d, s}^{r}(X)=K_{d, s}^{r} \int_{\operatorname{nor} Y}|x|^{d-r} \sum_{\substack{|J|=s-1 \\ J \subset\{1, \ldots, r-1\}}} \frac{\prod_{j \in J} \kappa_{j}}{\prod_{j=1}^{r-1} \sqrt{1+\kappa_{j}^{2}}} Q_{d, s}^{r}\left(x, n, A_{J}\right) \mathrm{d} \mathcal{H}^{r-1}
$$

with

$$
\begin{aligned}
K_{d, s}^{r} & :=\frac{(r-s) \sigma_{r-1} B\left(\frac{d-r}{2}+\frac{1}{2}, \frac{r-s+1}{2}\right)}{2(r-1) c_{d, r-1, r-s-1} \sigma_{s}} \\
& =\frac{(r-s) \sigma_{r-1} \sigma_{d-r+1}}{2(r-1) \sigma_{s} \sigma_{d} c_{d-1, r-1}} \frac{\Gamma\left(\frac{d-r+1}{2}\right) \Gamma\left(\frac{r-s+1}{2}\right) \Gamma\left(\frac{r-s}{2}\right) \Gamma\left(\frac{d+1}{2}\right)}{\Gamma\left(\frac{r}{2}\right) \Gamma\left(\frac{d-s+1}{2}\right) \Gamma\left(\frac{d-s+2}{2}\right)} \\
& =\frac{r-s}{(r-1) \sigma_{s} c_{d-1, r-1}} \frac{\Gamma\left(\frac{r-s}{2}\right) \Gamma\left(\frac{r-s+1}{2}\right)}{\Gamma\left(\frac{r-1}{2}\right) \Gamma\left(\frac{r}{2}\right)} \frac{\Gamma\left(\frac{d}{2}\right) \Gamma\left(\frac{d+1}{2}\right)}{\Gamma\left(\frac{d-s+1}{2}\right) \Gamma\left(\frac{d-s+2}{2}\right)} \\
& =\frac{1}{\sigma_{s} c_{d-1, r-1}} \frac{\Gamma(r-s+1)}{\Gamma(r)} \frac{\Gamma(d)}{\Gamma(d-s+1)} .
\end{aligned}
$$

The proof of Proposition 3 is now complete.
Lemma 7 (Two hypergeometric identities). For all $d>0, r \in \mathbb{R}$ and $z \in[-1,1]$,

$$
\begin{align*}
& (r+1)(r-1) F\left(-\frac{d-r}{2},-\frac{1}{2} ; \frac{r-1}{2} ; z\right) \\
& =(r+1)(r-1) F\left(-\frac{d-r}{2}, \frac{1}{2} ; \frac{r+1}{2} ; z\right)-r(d-r) z F\left(-\frac{d-r}{2}+1, \frac{1}{2} ; \frac{r+3}{2} ; z\right) . \tag{34}
\end{align*}
$$

If $z \neq 0,1,-1$, then, for all $j, k \in \mathbb{R}$,

$$
\begin{align*}
& -\frac{(d-j)(d-j+k+1)}{d+1} F\left(\frac{d-j}{2}+1, \frac{j-k}{2} ; \frac{d+3}{2} ; z\right) \\
& \quad=(d-1) \frac{1-z}{z} F\left(\frac{d-j}{2}, \frac{j-k}{2} ; \frac{d-1}{2} ; z\right) \\
& \quad \times\left[(j-d)-(d-1) \frac{1-z}{z}\right] F\left(\frac{d-j}{2}, \frac{j-k}{2} ; \frac{d+1}{2} ; z\right) \tag{35}
\end{align*}
$$

Proof. First, apply [1, (15.2.17)] with $a=-\frac{1}{2}, b=-\frac{d-r}{2}$ and $c=\frac{r+1}{2}$ to obtain

$$
\begin{aligned}
\frac{r-1}{2} & F\left(-\frac{d-r}{2},-\frac{1}{2} ; \frac{r-1}{2} ; z\right) \\
& =\frac{r}{2} F\left(-\frac{d-r}{2},-\frac{1}{2} ; \frac{r+1}{2} ; z\right)-\frac{1}{2} F\left(-\frac{d-r}{2}, \frac{1}{2} ; \frac{r-1}{2} ; z\right) .
\end{aligned}
$$

Then, an application of $[1,(15.2 .15)]$ to the first term of the r.h.s. with $a=-\frac{d-r}{2}, b=\frac{1}{2}$ and $c=\frac{r+1}{2}$ yields

$$
\begin{aligned}
& \frac{r}{2} F\left(-\frac{d-r}{2},-\frac{1}{2} ; \frac{r+1}{2} ; z\right) \\
& \quad=\frac{d}{2} F\left(-\frac{d-r}{2}, \frac{1}{2} ; \frac{r+1}{2} ; z\right)-\frac{d-r}{2}(1-z) F\left(-\frac{d-r}{2}+1, \frac{1}{2} ; \frac{r+1}{2} ; z\right) .
\end{aligned}
$$

Furthermore, we can transform the second term of the r.h.s. of the last expression using $[1,(15.2 .20)]$ with $a=-\frac{d-r}{2}+1, b=\frac{1}{2}$ and $c=\frac{r+1}{2}$,

$$
\begin{aligned}
\frac{r+1}{2} & (1-z) F\left(-\frac{d-r}{2}+1, \frac{1}{2} ; \frac{r+1}{2} ; z\right) \\
& =\frac{r+1}{2} F\left(-\frac{d-r}{2}, \frac{1}{2} ; \frac{r+1}{2} ; z\right)-\frac{r}{2} z F\left(-\frac{d-r}{2}+1, \frac{1}{2} ; \frac{r+3}{2} ; z\right) .
\end{aligned}
$$

Hence, combining the three identities above, we obtain (34). Note that in (34), the three hypergeometric series are absolute convergent on the circle of convergence, $|z|=1$, whenever $d>0$, cf. [1, (15.1.1)].

According to $[1,(15.2 .20)]$ with $a=\frac{d-j}{2}+1, b=\frac{j-k}{2}$ and $c=\frac{d+1}{2}$, we have

$$
\begin{aligned}
& -\frac{d-j+k+1}{2} z F\left(\frac{d-j}{2}+1, \frac{j-k}{2} ; \frac{d+3}{2} ; z\right) \\
& \quad=\frac{d+1}{2}(1-z) F\left(\frac{d-j}{2}+1, \frac{j-k}{2} ; \frac{d+1}{2} ; z\right)-\frac{d+1}{2} F\left(\frac{d-j}{2}, \frac{j-k}{2} ; \frac{d+1}{2} ; z\right) .
\end{aligned}
$$

The first term on the r.h.s. can be re-written using [1, (15.2.17)] with $a=\frac{d-j}{2}, b=\frac{j-k}{2}$ and $c=\frac{d+1}{2}$,

$$
\begin{aligned}
& \frac{d-j}{2} F\left(\frac{d-j}{2}+1, \frac{j-k}{2} ; \frac{d+1}{2} ; z\right) \\
& \quad=\frac{d-1}{2} F\left(\frac{d-j}{2}, \frac{j-k}{2} ; \frac{d-1}{2} ; z\right)-\frac{j-1}{2} F\left(\frac{d-j}{2}, \frac{j-k}{2} ; \frac{d+1}{2} ; z\right) .
\end{aligned}
$$

Combining the last two identities, we obtain identity (35). Note that in (35), the absolute convergence of $F\left(\frac{d-j}{2}, \frac{j-k}{2} ; \frac{d-1}{2} ; z\right)$ on the circle $|z|=1$ requires that $k>1$, cf. [1, (15.1.1)].

Acknowledgements

This work was supported by Centre for Stochastic Geometry and Advanced Bioimaging, funded by a grant from the Villum Foundation.

References

[1] Abramowitz, A. and Stegun, I.A. (1968): Handbook of Mathematical Functions. Dover Publications, New York.
[2] Auneau-Cognacq, J., Jensen, E.B.V. and Rataj, J. (2010): Closed form of the rotational Crofton formula. Submitted.
[3] Auneau, J. and Jensen, E.B.V. (2010): Expressing intrinsic volumes as rotational integrals. Adv. Appl. Math. 45, 1-11.
[4] Federer, H. (1959): Curvature measures. Trans. Amer. Math. Soc. 93, 418-491.
[5] Federer, H. (1969): Geometric Measure Theory. Springer, Berlin.
[6] Gual-Arnau, X. and Cruz-Orive, L.M. (2009): A new expression for the density of totally geodesic submanifolds in space forms, with stereological applications. Differential Geom. Appl. 27, 124-128.
[7] Jensen, E.B.V. (1998): Local Stereology. World Scientific Publishing, Singapore.
[8] Jensen, E.B.V. and Rataj, J. (2008): A rotational integral formula for intrinsic volumes. Adv. Appl. Math. 41, 530-560.
[9] Petkantschin, B. (1936): Integralgeometrie 6. Zusammenhänge zwischen den Dichten der linearen Unterräume im n-dimensionalen Raum. Abh. Math. Sem. Univ. Hamburg 11, 249-310.
[10] Rother, W. and Zähle, M. (1992): Absolute curvature measures, II. Geom. Dedicata 41, 229-240.
[11] Schneider, R. and Weil, W. (2008): Stochastic and Integral Geometry. Springer, Heidelberg.
[12] Zähle, M. (1986): Integral and current representation of Federer's curvature measures. Arch. Math. 46, 557-567.
[13] Zähle, M. (1999): Non-osculating sets of positive reach. Geom. Dedicata 76, 183-187.

Paper D

Integral geometric formulae

Jérémy Auneau-Cognacq
Manuscript

Integral geometric formulae

Jérémy Auneau-Cognacq

Centre for Stochastic Geometry and Advanced Bioimaging

Department of Mathematical Sciences, University of Aarhus
Ny Munkegade, DK-8000 Aarhus C, Denmark

1 Introduction

The aim of this paper is to collect a number of integral geometric identities that were frequently used during the redaction of [2], [3] and [4]. In the literature, those results are often applied in a specialized version, e.g. in lower dimensions or with special values of the parameters. In practice, those computations are rather time-consuming and the validity of a result involving integrals over complicated spaces is often difficult to check, especially when we are working in higher dimensions. Nonetheless, expressing integrals in explicit forms is indispensable in order to make the formulae manageable for applications. We hope that the present paper will prove helpful for future research in applied integral geometry.

2 Notation and definitions

The Gauss hypergeometric series is defined for $a, b, c \in \mathbb{R}$ and $z \in[-1,1]$ as

$$
F(a, b ; c ; z)=F(b, a ; c ; z)=\sum_{k=0}^{\infty} \frac{(a)_{k}(b)_{k}}{(c)_{k}} \frac{z^{k}}{k!}
$$

where $(a)_{k}$ is the rising sequential product or Pochhammer symbol,

$$
(x)_{k}=x(x+1)(x+2) \cdots(x+k-1)
$$

for all $x \in \mathbb{R}, k \in \mathbb{N}$, cf. [1, Chapter 15] Note that $(x)_{k}=\frac{\Gamma(x+k)}{\Gamma(x)}$ and

$$
\begin{aligned}
(-x)_{k} & =(-x)(-(x-1))(-(x-2)) \cdots(-(x-k+1)) \\
& =(-1)^{k} x(x-1)(x-2) \cdots(x-k+1) \\
& =(-1)^{k} \frac{\Gamma(x+1)}{\Gamma(x-k+1)}
\end{aligned}
$$

for $x>0$. Moreover, $(x)_{k}=0$ whenever $x \in\{0,-1,-2, \ldots\}$ and $k>-x$. The Gamma function is defined on \mathbb{R}_{+}as $\Gamma(z)=\int_{0}^{\infty} t^{z-1} e^{-t} \mathrm{~d} t$ and it has an analytic continuation on $\mathbb{C} \backslash\{0,-1,-2, \ldots\}$. Standard formulae for the Gamma function can be found in $[1$, Chapter 6]. In particular, the duplication formula,

$$
\begin{equation*}
\Gamma(2 z)=\Gamma(z) \Gamma\left(z+\frac{1}{2}\right) \pi^{-\frac{1}{2}} 2^{2 z-1} \tag{1}
\end{equation*}
$$

is often useful. The Beta function, $B(a, b)=B(b, a)$, is defined for all $a, b>0$ as

$$
B(a, b)=\int_{0}^{\infty} \frac{t^{a-1}}{(1+t)^{a+b}} \mathrm{~d} t
$$

or, alternatively,

$$
B(a, b)=\int_{0}^{1} t^{a-1}(1-t)^{b-1} \mathrm{~d} t
$$

The Beta function is often expressed in terms of the Gamma function as

$$
B(a, b)=\frac{\Gamma(a) \Gamma(b)}{\Gamma(a+b)}
$$

In the following, we shall denote the surface area of the $(d-1)$-dimensional unit sphere in \mathbb{R}^{d} by

$$
\sigma_{d}=\int_{S^{d-1}} \mathrm{~d} x^{d-1}=\frac{2 \pi^{\frac{d}{2}}}{\Gamma\left(\frac{d}{2}\right)}
$$

and the volume of the unit ball in \mathbb{R}^{d} by

$$
\omega_{d}=\frac{\pi^{\frac{d}{2}}}{\Gamma\left(\frac{d}{2}+1\right)}
$$

Definition 1 ([5], chap. 2). Let $X \subseteq \mathbb{R}^{d}$ and $Y \subseteq \mathbb{R}^{n}$ be differentiable manifolds of dimension p and q, respectively. Moreover, let $f: X \rightarrow Y$ be a differential mapping and let $D f(x)$ be the $n \times d$ matrix of partial derivatives

$$
(D f(x))_{i, j}=\frac{\partial f_{i}}{\partial x_{j}}(x), \quad i=1, \ldots, n, j=1, \ldots, d
$$

Let ker $D f(x)$ be the kernel of $D f(x)$ and denote the tangent space of X at x by $\operatorname{Tan}(x, X)$. Then, $J_{p} f(x ; X)$ is non-zero if and only if the dimension of

$$
\begin{equation*}
\operatorname{Tan}(x, X) \cap(\operatorname{ker} D f(x) \cap \operatorname{Tan}(x, X))^{\perp} \tag{2}
\end{equation*}
$$

is equal to q. If (2) has dimension q, then the p-dimensional Jacobian can be calculated as

$$
J_{p} f(x ; X)=\sqrt{\operatorname{det}\left(D f(x ; X) D f(x ; X)^{t}\right)}
$$

where $D f(x ; X)$ is a $q \times n$-matrix,

$$
D f(x ; X)=D f(x) B
$$

and B is a matrix whose columns form an orthonormal basis for (2). Important special cases are

$$
\begin{array}{lll}
J_{p} f(x ; X)=\sqrt{\operatorname{det}\left(D f(x)^{t} D f(x)\right)} & \text { when } & p=d<n, \\
J_{p} f(x ; X)=\sqrt{\operatorname{det}\left(D f(x) D f(x)^{t}\right)} & \text { when } & p=n<d
\end{array}
$$

and

$$
J_{p} f(x ; X)=|\operatorname{det}(D f(x))| \quad \text { when } \quad p=n=d
$$

Theorem 2 (Coarea formula). Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{n}$ be Lipschitz, $d \geq n$, and let $A \subseteq \mathbb{R}^{d}$ be Lebesgue measurable. Then, for any non-negative λ^{d}-measurable function h on A,

$$
\int_{A} h(x) J_{n} f(x) \mathrm{d} x^{d}=\int_{\mathbb{R}^{n}} \int_{A \cap f^{-1}(z)} h(x) \mathrm{d} x^{d-n} \mathrm{~d} z^{n}
$$

Theorem 3 (Area formula). Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{n}$ be Lipschitz, $d \leq n$, and let $A \subseteq \mathbb{R}^{d}$ be Lebesgue measurable. Then, for any non-negative λ^{d}-measurable function h on A,

$$
\int_{A} h(x) J_{d} f(x) \mathrm{d} x^{d}=\int_{\mathbb{R}^{n}} \sum_{x \in A \cap f^{-1}(z)} h(x) \mathrm{d} z^{d}
$$

3 Preliminary integral transformations

Lemma 4. For all $c>b>0, a \in \mathbb{R}$ and $z \in[-1,1]$, the following integral representation of the hypergeometric function holds,

$$
F(a, b, c ; z)=\frac{1}{B(b, c-b)} \int_{0}^{1}(1-t z)^{-a} t^{b-1}(1-t)^{c-b-1} \mathrm{~d} t
$$

When $z=1$, the extra assumption $a+b-c>0$ is necessary. In particular,

$$
F(a, b ; c ; 1)=\frac{\Gamma(c) \Gamma(c-a-b)}{\Gamma(c-b) \Gamma(c-a)}
$$

Proof. See [1, (15.1.20) and (15.3.1)].
Lemma 5. Let $\alpha, \beta \in[0,1]$ with $\alpha+\beta=1$. Then, for all $k>0, a \in \mathbb{R}$ and $0<b+\frac{1}{k}<c$,

$$
\int_{0}^{\infty}\left(\alpha+\frac{\beta}{1+r^{k}}\right)^{-a}\left(r^{k}\right)^{b}\left(1+r^{k}\right)^{-c} \mathrm{~d} r=\frac{1}{k} B\left(b+\frac{1}{k}, c-b-\frac{1}{k}\right) F\left(a, b+\frac{1}{k} ; c ; \beta\right)
$$

When $\beta=1$, the extra assumption $c>a+b+\frac{1}{k}$ is required.
Proof. Successive substitutions with $s=r^{k}, t=\frac{1}{1+s}$ and $u=1-t$ yield

$$
\begin{aligned}
\int_{0}^{\infty} & \left(\alpha+\frac{\beta}{1+r^{k}}\right)^{-a}\left(r^{k}\right)^{b}\left(1+r^{k}\right)^{-c} \mathrm{~d} r \\
& =\frac{1}{k} \int_{0}^{\infty}\left(\alpha+\frac{\beta}{1+s}\right)^{-a} s^{b+\frac{1}{k}-1}(1+s)^{-c} \mathrm{~d} s \\
& =\frac{1}{k} \int_{0}^{1}(\alpha+\beta t)^{-a}(1-t)^{b+\frac{1}{k}-1} t^{c-\left(b+\frac{1}{k}\right)-1} \mathrm{~d} t \\
& =\frac{1}{k} \int_{0}^{1}(1-\beta u)^{-a} u^{b+\frac{1}{k}-1}(1-u)^{c-\left(b+\frac{1}{k}\right)-1} \mathrm{~d} t \\
& =\frac{1}{k} B\left(b+\frac{1}{k}, c-b-\frac{1}{k}\right) F\left(a, b+\frac{1}{k} ; c ; \beta\right)
\end{aligned}
$$

For the last equality, we used Lemma 4.
Lemma 6. For all $k>0, a \in \mathbb{R}, b>-\frac{1}{k}$ and $c>a+b+\frac{1}{k}$,

$$
\int_{0}^{\infty}\left(\frac{1}{1+r^{k}}\right)^{-a}\left(r^{k}\right)^{b}\left(1+r^{k}\right)^{-c} \mathrm{~d} r=\frac{1}{k} B\left(c-a-b-\frac{1}{k}, b+\frac{1}{k}\right)
$$

Proof. Use Lemma 5 with $\beta=1$ and the identity $F(a, b ; c ; 1)=\frac{\Gamma(c) \Gamma(c-a-b)}{\Gamma(c-a) \Gamma(c-b)}$,

$$
\begin{aligned}
\int_{0}^{\infty} & \left(\alpha+\frac{\beta}{1+r^{k}}\right)^{-a}\left(r^{k}\right)^{b}\left(1+r^{k}\right)^{-c} \mathrm{~d} r \\
& =\frac{1}{k} \frac{\Gamma\left(b+\frac{1}{k}\right) \Gamma\left(c-\left(b+\frac{1}{k}\right)\right)}{\Gamma(c)} \frac{\Gamma(c) \Gamma\left(c-a-\left(b+\frac{1}{k}\right)\right)}{\Gamma(c-a) \Gamma\left(c-\left(b+\frac{1}{k}\right)\right)} \\
& =\frac{1}{k} \Gamma\left(b+\frac{1}{k}\right) \frac{\Gamma\left(c-a-\left(b+\frac{1}{k}\right)\right)}{\Gamma(c-a)} \\
& =\frac{1}{k} B\left(c-a-b-\frac{1}{k}, b+\frac{1}{k}\right) .
\end{aligned}
$$

Lemma 7. Let $\alpha, k>0, q>-\frac{1}{k}$ and $p>\frac{q+1}{k}$,

$$
\int_{0}^{\infty}\left(\frac{1}{\alpha+r^{k}}\right)^{p} r^{q} \mathrm{~d} r=\frac{1}{k} \alpha^{\frac{q+1}{k}-p} B\left(\frac{q+1}{k}, p-\frac{q+1}{k}\right) .
$$

Proof. Substitution by $s=\frac{r^{k}}{\alpha}$ implies

$$
\begin{aligned}
& \int_{0}^{\infty}\left(\frac{1}{\alpha+r^{k}}\right)^{p} r^{q} \mathrm{~d} r=\alpha^{-p+\frac{q}{k}} \int_{0}^{\infty}\left(\frac{1}{1+\frac{r^{k}}{\alpha}}\right)^{p}\left(\frac{r^{k}}{\alpha}\right)^{\frac{q}{k}} \mathrm{~d} r \\
& \quad=\frac{1}{k} \alpha^{-p+\frac{q}{k}+\frac{1}{k}} \int_{0}^{\infty}\left(\frac{1}{1+s}\right)^{p} s^{\frac{q}{k}-1+\frac{1}{k}} \mathrm{~d} s \\
& \quad=\frac{1}{k} \alpha^{\frac{q+1}{k}-p} B\left(\frac{q+1}{k}, p-\frac{q+1}{k}\right) .
\end{aligned}
$$

Lemma 8. Let $\alpha, \beta \in[0,1]$ with $\alpha+\beta=1$. Then, for all $k>0, a \in \mathbb{R}, b>-\frac{1}{k}$ and $c>-1$,

$$
\int_{0}^{1}\left(\alpha+\beta r^{k}\right)^{-a}\left(r^{k}\right)^{b}\left(1-r^{k}\right)^{c} \mathrm{~d} r=\frac{1}{k} B\left(b+\frac{1}{k}, c+1\right) F\left(a, c+1 ; c+b+\frac{1}{k}+1 ; \beta\right)
$$

When $\beta=1$, the extra assumption $b+\frac{1}{k}>a$ is necessary.
Proof. Substitution with $s=r^{k}$ yields

$$
\begin{aligned}
\int_{0}^{1} & \left(\alpha+\beta r^{k}\right)^{-a}\left(r^{k}\right)^{b}\left(1-r^{k}\right)^{c} \mathrm{~d} r \\
\quad & =\frac{1}{k} \int_{0}^{1}(\alpha+\beta s)^{-a} s^{b+\frac{1}{k}-1}(1-s)^{c} \mathrm{~d} s \\
\quad & =\frac{1}{k} B\left(b+\frac{1}{k}, c+1\right) F\left(a, c+1 ; c+b+\frac{1}{k}+1 ; \beta\right)
\end{aligned}
$$

For the last equality, we used a substitution by $t=1-s$.
Lemma 9. Let $k>0, b>-\frac{1}{k}$ and $a>-1$. Then,

$$
\int_{0}^{1}\left(1-t^{k}\right)^{a}\left(t^{k}\right)^{b} \mathrm{~d} t=\frac{1}{k} B\left(a+1, b+\frac{1}{k}\right) .
$$

Proof. Use Lemma 8 with $\alpha=0$.

4 Integration over subspaces

In the following, we denote by \mathcal{L}_{p}^{d} the space of p-dimensional linear subspaces of \mathbb{R}^{d} with the element of rotation invariant measure $\mathrm{d} L_{p}^{d}$.

Lemma 10. Let $B_{p} \in \mathcal{L}_{p}^{d}$ and let

$$
\begin{aligned}
f: B_{p} \backslash\{0\} & \rightarrow S^{p-1}\left(B_{p}\right) \\
x & \mapsto \frac{x}{|x|} .
\end{aligned}
$$

The $(p-1)$-dimensional Jacobian of f is given by

$$
J_{p-1} f(x)=|x|^{-(p-1)}
$$

Proof. Use the proof of [5, Proposition 2.8] with a suitable basis.
Proposition 11. Let $B_{p} \in \mathcal{L}_{p}^{d}$ and let $g: B_{p} \rightarrow \mathbb{R}$ be a non-negative measurable function. Then,

$$
\int_{B_{p}} g(x)|x|^{-(p-1)} \mathrm{d} x^{p}=\int_{S^{p-1}\left(B_{p}\right)} \int_{f^{-1}(x)} g(y) \mathrm{d} y^{1} \mathrm{~d} x^{p-1},
$$

where f is the mapping from Proposition 10.
Proof. The statement is equivalent to [5, Proposition 2.8] with a suitable basis. Alternatively, use Lemma 10 and apply the coarea formula.

Lemma 12. Let $B_{1}=\operatorname{span}\{b\}$ be a 1-dimensional subspace of \mathbb{R}^{d} and let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a non-negative measurable function. Then,

$$
\int_{B_{1}} g(|x|) \mathrm{d} x^{1}=2 \int_{0}^{\infty} g(r) \mathrm{d} r
$$

Proof. By using the co-area formula with $f: \mathbb{R}^{d} \rightarrow \mathbb{R}, f(x)=|x|^{2}=x \cdot x$ and

$$
J_{1} f(x)=\sqrt{\operatorname{det}\left(D f(x) D f(x)^{t}\right)}=\sqrt{4|x|^{2}}=2|x|
$$

(because $k=n=1$) we get

$$
\int_{B_{1}} g(|x|) \mathrm{d} x^{1}=\int_{0}^{\infty} \int_{B_{1} \cap f^{-1}(r)} \frac{g(|x|)}{J_{1} f(x)} \mathrm{d} x \mathrm{~d} r=2 \int_{0}^{\infty} \frac{g(\sqrt{r})}{J_{1} f(\sqrt{r} b)} \mathrm{d} r=2 \int_{0}^{\infty} \frac{g(\sqrt{r})}{2 \sqrt{r}} \mathrm{~d} r .
$$

Substitution by $s=\sqrt{r}$ completes the proof.
Proposition 13. Let $B_{p} \in \mathcal{L}_{p}^{d}$ and let $g: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be a non-negative measurable function. Then,

$$
\int_{B_{p}} g(|x|) \mathrm{d} x^{p}=\sigma_{p} \int_{0}^{\infty} g(t) t^{p-1} \mathrm{~d} t
$$

Proof. Combine Lemma 12 and Proposition 11,

$$
\int_{B_{p}} g(|x|) \mathrm{d} x^{p}=\int_{S^{p-1}\left(B_{p}\right)} \mathrm{d} x^{p-1} \int_{0}^{\infty} g(t) t^{p-1} \mathrm{~d} t=\sigma_{p} \int_{0}^{\infty} g(t) t^{p-1} \mathrm{~d} t
$$

Proposition 14. Let $B_{p} \in \mathcal{L}_{p}^{d}$ and let $g: B_{p} \rightarrow \mathbb{R}_{+}$be given by

$$
g(x)=\left(\alpha+\frac{\beta}{1+|x|^{m}}\right)^{-a}\left(|x|^{m}\right)^{b}\left(1+|x|^{m}\right)^{-c}
$$

for some $m>0$ and $a, b, c \in \mathbb{R}$ with $c>b+\frac{p}{m}>0$. Then,

$$
\int_{B_{p}} g(x) \mathrm{d} x^{p}=\frac{\sigma_{p}}{m} B\left(b+\frac{p}{m}, c-b-\frac{p}{m}\right) F\left(a, b+\frac{p}{m} ; c ; \beta\right) .
$$

When $\beta=1$, the additional condition $c-a-b-\frac{1}{k}>0$ is necessary.
Proof. By combining Lemma 5 and Proposition 13, we obtain

$$
\begin{aligned}
\int_{B_{p}} g(x) \mathrm{d} x^{p} & =\sigma_{p} \int_{0}^{\infty}\left(\alpha+\frac{\beta}{1+t^{m}}\right)^{-a}\left(1+t^{m}\right)^{-c}\left(t^{m}\right)^{b}\left(t^{m}\right)^{\frac{p}{m}-\frac{1}{m}} \mathrm{~d} t \\
& =\frac{\sigma_{p}}{m} B\left(b+\frac{p}{m}, c-b-\frac{p}{m}\right) F\left(a, b+\frac{p}{m} ; c ; \beta\right) .
\end{aligned}
$$

Proposition 15. Let $B_{p} \in \mathcal{L}_{p}^{d}$. Then, for all $m>0$ and $k>\frac{p}{m}$,

$$
\int_{B_{p}}\left(\frac{1}{1+|x|^{m}}\right)^{k} \mathrm{~d} x^{p}=\frac{\sigma_{p}}{m} B\left(k-\frac{p}{m}, \frac{p}{m}\right) .
$$

Proof. Apply Proposition 13 and Lemma 7,

$$
\begin{aligned}
\int_{B_{p}}\left(\frac{1}{1+|x|^{m}}\right)^{k} \mathrm{~d} x^{p} & =\sigma_{p} \int_{0}^{\infty}\left(\frac{1}{1+t^{m}}\right)^{k} t^{p-1} \mathrm{~d} t \\
& =\frac{\sigma_{p}}{m} B\left(k-\frac{p}{m}, \frac{p}{m}\right)
\end{aligned}
$$

5 Integration over spheres

For any p-dimensional linear subspace B_{p} of \mathbb{R}^{d}, the orthogonal projection of $x \in \mathbb{R}^{d}$ onto B_{p} is denoted by $p\left(x \mid B_{p}\right)$. By $\pi\left(x \mid B_{p}\right)$ we shall denote the spherical projection of x onto B_{p}, i.e. $\pi\left(x \mid B_{p}\right)=\frac{p\left(x \mid B_{p}\right)}{\left|p\left(x \mid B_{p}\right)\right|}$. Furthermore, for any q-dimensional subspace B_{q} of \mathbb{R}^{d}, we define the \mathcal{G}-function as

$$
\mathcal{G}\left(B_{p}, B_{q}\right)= \begin{cases}\sqrt{\operatorname{det}\left(A^{t} A\right)} & \text { if } q<d \text { and } \operatorname{dim}\left(B_{p} \cap\left(B_{q} \cap B_{p}\right)^{\perp}\right)=d-q \tag{3}\\ 1 & \text { if } q=d \\ 0 & \text { otherwise. }\end{cases}
$$

Here, $A=\left[p\left(b_{1} \mid B_{q}^{\perp}\right), \ldots, p\left(b_{d-q} \mid B_{q}^{\perp}\right)\right]$, where b_{1}, \ldots, b_{d-q} is an orthonormal basis of the linear subspace $B_{p} \cap\left(B_{q} \cap B_{p}\right)^{\perp}$. The \mathcal{G}-function is symmetric in its arguments and can be regarded as a generalized sinus of the angle between the subspaces B_{p} and B_{q}. For any subspace B of $\mathbb{R}^{d}, \mathcal{G}^{(B)}$ is the function \mathcal{G} considered relatively in B.

Proposition 16. Let $e \in S^{d-1}$. Then, the mapping

$$
\begin{gathered}
f: S^{d-1} \rightarrow[0,1] \\
x \mapsto(e \cdot x)^{2}
\end{gathered}
$$

has the following 1-dimensional Jacobian

$$
J_{1} f\left(x ; S^{d-1}\right)=2|e \cdot x| \sqrt{1-(e \cdot x)^{2}}
$$

Proof. See the proof of [5, Proposition 2.11].
Proposition 17. Let $e \in S^{d-1}$ and let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a non-negative measurable function. Then,

$$
\int_{S^{d-1}} g\left((e \cdot x)^{2}\right) \mathrm{d} x^{d-1}=\sigma_{d-1} \int_{0}^{1} g(t) t^{-\frac{1}{2}}(1-t)^{\frac{d-1}{2}-1} d t .
$$

Proof. See [5, Proposition 2.11].
Proposition 18. Let $e \in S^{d-1}$ and let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a non-negative measurable function. Then, for all $k>0$,

$$
\int_{S^{d-1}} g\left(|e \cdot x|^{k}\right) \mathrm{d} x^{d-1}=\sigma_{d-1} \int_{0}^{1} g\left(t^{\frac{k}{2}}\right) t^{-\frac{1}{2}}(1-t)^{\frac{d-1}{2}-1} d t .
$$

Proof. See Proposition 17.
Proposition 19. Let $e \in S^{d-1}$ and let $n \in \mathbb{N}$. Then,

$$
\int_{S^{d-1}}|e \cdot x|^{n} \mathrm{~d} x^{d-1}=B\left(\frac{n+1}{2}, \frac{d-1}{2}\right) \sigma_{d-1}
$$

Proof. Use Proposition 18,

$$
\begin{aligned}
\int_{S^{d-1}}|e \cdot x|^{n} \mathrm{~d} x^{d-1} & =\sigma_{d-1} \int_{0}^{1} t^{\frac{n+1}{2}-1}(1-t)^{\frac{d-1}{2}-1} d t \\
& =\sigma_{d-1} B\left(\frac{n+1}{2}, \frac{d-1}{2}\right)
\end{aligned}
$$

Proposition 20. Let $e \in S^{d-1}$. Then,

$$
\int_{S^{d-1}}(e \cdot x)^{2} \mathrm{~d} x^{d-1}=\omega_{d}
$$

Proof. Use Proposition 19 with $n=2$.
Proposition 21. Let $e \in S^{d-1}, \beta \in[-1,1]$ and $a \in \mathbb{R}$. Then,

$$
\int_{S^{d-1}}\left(1-\beta(e \cdot x)^{2}\right)^{-a} \mathrm{~d} x^{d-1}=\sigma_{d-1} B\left(\frac{1}{2}, \frac{d-1}{2}\right) F\left(a, \frac{1}{2} ; \frac{d}{2} ; \beta\right)
$$

Proof. Use Proposition 17 with $g(t)=(1-\beta t)^{-a}$,

$$
\begin{array}{rl}
\int_{S^{d-1}} & g\left((e \cdot x)^{2}\right) \mathrm{d} x^{d-1}=\sigma_{d-1} \int_{0}^{1} g(t) t^{-\frac{1}{2}}(1-t)^{\frac{d-1}{2}-1} \mathrm{~d} t \\
& =\sigma_{d-1} \int_{0}^{1}(1-\beta t)^{-a} t^{\frac{1}{2}-1}(1-t)^{\frac{d}{2}-\frac{1}{2}-1} \mathrm{~d} t \\
& =\sigma_{d-1} B\left(\frac{1}{2}, \frac{d-1}{2}\right) F\left(a, \frac{1}{2} ; \frac{d}{2} ; \beta\right) .
\end{array}
$$

Lemma 22. Let $h: S^{d-1} \rightarrow \mathbb{R}$ be a non-negative measurable function and let $y \in S^{d-1}$. Then,

$$
\int_{S^{d-1}} h(\omega) \mathrm{d} \omega^{d-1}=\int_{-1}^{1} \int_{S^{d-2}\left(y^{\perp}\right)}{\sqrt{1-t^{2}}}^{d-3} h\left(t y+\sqrt{1-t^{2}} \omega\right) \mathrm{d} \omega^{d-2} \mathrm{~d} t
$$

Proof. The mapping

$$
\begin{gathered}
f: S^{d-1} \rightarrow[-1,1] \\
\omega \mapsto \omega \cdot y=t
\end{gathered}
$$

has 1-dimensional Jacobian $J_{1} f(\omega)=\sqrt{1-(\omega \cdot y)^{2}}$ for all $\omega \in S^{d-1} \backslash\{y\}$. The coarea formula implies

$$
\int_{S^{d-1}} h(\omega) \mathrm{d} \omega^{d-1}=\int_{-1}^{1} \int_{S^{d-1} \cap f^{-1}(t)} \frac{1}{\sqrt{1-t^{2}}} h(\omega) \mathrm{d} \omega^{d-2} \mathrm{~d} t
$$

An application of the area formula with the injective mapping (whenever $t \in(-1,1)$)

$$
\begin{aligned}
g: S^{d-1} \cap f^{-1}(t) & \rightarrow S^{d-2}\left(y^{\perp}\right) \\
\omega & \mapsto \pi\left(\omega \mid y^{\perp}\right)
\end{aligned}
$$

with $(d-2)$-dimensional Jacobian $J_{d-2} g(\omega)={\sqrt{1-(\omega \cdot y)^{2}}}^{2-d}$, yields

$$
\int_{S^{d-1}} h(\omega) \mathrm{d} \omega^{d-1}=\int_{-1}^{1} \int_{S^{d-2}\left(y^{\perp}\right)}{\sqrt{1-t^{2}}}^{d-3} h\left(t y+\sqrt{1-t^{2}} \omega\right) \mathrm{d} \omega^{d-2} \mathrm{~d} t
$$

Lemma 23. Let $B_{p} \in \mathcal{L}_{p}^{d}$ and let $x_{1} \in B_{p}^{\perp}$. The mapping

$$
\begin{aligned}
\xi: B_{p} & \rightarrow S^{p}\left(B_{p} \oplus \operatorname{span}\left(x_{1}\right)\right) \\
x & \mapsto \frac{x_{1}+x}{\left|x_{1}+x\right|}
\end{aligned}
$$

has p-dimensional Jacobian

$$
J_{p} \xi(x)=\frac{\left|x_{1}\right|}{\left(\left|x_{1}\right|^{2}+|x|^{2}\right)^{\frac{p+1}{2}}}
$$

Proof. The kernel of

$$
D \xi(x)=\frac{p\left(\cdot \mid \operatorname{span}\left(x_{1}+x\right)^{\perp}\right)}{\left|x_{1}+x\right|}
$$

is

$$
\operatorname{ker} D \xi(x)=\operatorname{span}\left(x_{1}+x\right) \nsubseteq B_{p}
$$

Since $\operatorname{Tan}\left(x, B_{p}\right)=B_{p}$, the orthogonal complement of ker $D \xi(x)$ in $\operatorname{Tan}\left(B_{p}, x\right)$ is

$$
\operatorname{Tan} \cap(\text { ker } \cap \operatorname{Tan})^{\perp}=B_{p} \cap\left(\operatorname{span}\left(x_{1}+x\right) \cap B_{p}\right)^{\perp}=B_{p}
$$

Let e_{1}, \ldots, e_{p} be an orthonormal basis of B_{p} such that $e_{1}=\pi\left(x_{1}+x \mid B_{p}\right)=x /|x|$ and $e_{2}, \ldots, e_{p} \perp\left(x_{1}+x\right)$. Then, by Definition 1 ,

$$
\begin{aligned}
D \xi\left(x, B_{p}\right) & =\left(\begin{array}{c}
e_{1}^{*} \\
\vdots \\
e_{d-p}^{*}
\end{array}\right)^{*} D \xi(x)^{*}=\frac{1}{\left|x_{1}+x\right|}\left(\begin{array}{c}
p\left(e_{1} \mid \operatorname{span}\left(x_{1}+x\right)^{\perp}\right)^{*} \\
\vdots \\
p\left(e_{p} \mid \operatorname{span}\left(x_{1}+x\right)^{\perp}\right)^{*}
\end{array}\right) \\
& =\left(\frac{1}{\left|x_{1}\right|^{2}+|x|^{2}}\right)^{\frac{1}{2}}\left(\begin{array}{c}
|x|^{-1} p\left(x \mid \operatorname{span}\left(x_{1}+x\right)^{\perp}\right)^{*} \\
e_{2}^{*} \\
\vdots \\
e_{p}^{*}
\end{array}\right)
\end{aligned}
$$

Hence,

$$
J_{p} \xi(x)^{2}=\left(\frac{1}{\left|x_{1}\right|^{2}+|x|^{2}}\right)^{p} \frac{1}{|x|^{2}}\left|p\left(x \mid \operatorname{span}\left(x_{1}+x\right)^{\perp}\right)\right|^{2}
$$

An easy computation yields $\frac{1}{|x|^{2}}\left|p\left(x \mid \operatorname{span}\left(x_{0}+x\right)^{\perp}\right)\right|^{2}=\frac{\left|x_{1}\right|^{2}}{\left|x_{1}\right|^{2}+|x|^{2}}$ and, as a consequence,

$$
J_{p} \xi(x)=\frac{\left|x_{1}\right|}{\left(\left|x_{1}\right|^{2}+|x|^{2}\right)^{\frac{p+1}{2}}}
$$

Lemma 24. Let $\psi(x)=\pi\left(x \mid B_{p}\right)$ be defined on S^{d-1}. Then, for all $x_{0} \in S^{p-1}\left(B_{p}\right)$ and all $k \geq 0$,

$$
\int_{\psi^{-1}\left(x_{0}\right)}\left|p\left(x \mid B_{p}\right)\right|^{k} \mathrm{~d} x^{d-p}=\frac{\sigma_{d-p}}{2} B\left(\frac{d-p}{2}, \frac{k+1}{2}\right) .
$$

Proof. Note that $\psi^{-1}\left(x_{0}\right)=S^{d-p}\left(\operatorname{span}\left(x_{0}\right) \oplus B_{p}^{\perp}\right)$. Define the mapping

$$
\begin{aligned}
\xi: B_{p}^{\perp} & \rightarrow \psi^{-1}\left(x_{0}\right) \\
x & \mapsto \frac{x_{0}+x}{\left|x_{0}+x\right|} .
\end{aligned}
$$

According to Lemma 23, the $(d-p)$-dimensional Jacobian of ξ is

$$
J_{d-p} \xi(x)=\left(\frac{1}{1+|x|^{2}}\right)^{\frac{d-p+1}{2}}
$$

Since ξ is bijective, the area formula implies

$$
\begin{aligned}
& \int_{\psi^{-1}\left(x_{0}\right)}\left|p\left(x \mid B_{p}\right)\right|^{k} \mathrm{~d} x^{d-p}=\int_{\psi^{-1}\left(x_{0}\right)} \sum_{y \in \xi^{-1}(x)}\left|p\left(\xi(y) \mid B_{p}\right)\right|^{k} \mathrm{~d} x^{d-p} \\
& \quad=\int_{\psi^{-1}\left(x_{0}\right)} \sum_{y \in \xi^{-1}(x)} \frac{1}{\left|x_{0}+y\right|^{k}} \mathrm{~d} x^{d-p} \\
& =\int_{B_{\bar{p}}^{\perp}}\left(\frac{1}{1+|x|^{2}}\right)^{\frac{k}{2}}\left(\frac{1}{1+|x|^{2}}\right)^{\frac{d-p+1}{2}} \mathrm{~d} x^{d-p} \\
& =\int_{B_{\bar{p}}^{\perp}}\left(\frac{1}{1+|x|^{2}}\right)^{\frac{k+d-p+1}{2}} \mathrm{~d} x^{d-p}
\end{aligned}
$$

Using Proposition 15, we conclude that

$$
\begin{aligned}
\int_{B_{p}^{\perp}}\left(\frac{1}{1+|x|^{2}}\right)^{\frac{k+d-p+1}{2}} \mathrm{~d} x^{d-p} & =\frac{\sigma_{d-p}}{2} B\left(\frac{d-p}{2}, \frac{k+d-p+1}{2}-\frac{d-p}{2}\right) \\
& =\frac{\sigma_{d-p}}{2} B\left(\frac{d-p}{2}, \frac{k+1}{2}\right)
\end{aligned}
$$

Lemma 25. Let A_{q} and B_{p} be q-and p-dimensional linear subspaces of \mathbb{R}^{d}, respectively. Define the spherical projection

$$
\begin{gathered}
\psi: S^{q-1}\left(A_{q}\right) \rightarrow S^{p-1}\left(B_{p}\right) \\
x \mapsto \pi\left(x \mid B_{p}\right) .
\end{gathered}
$$

The ($p-1$)-dimensional Jacobian of ψ is given by

$$
J_{p-1} \psi\left(x, S^{q-1}\left(A_{q}\right)\right)=\frac{\mathcal{G}\left(A_{q} \cap x^{\perp},\left(B_{p} \cap x^{\perp}\right)^{\perp}\right)}{\left|p\left(x \mid B_{p}\right)\right|^{p-1}}
$$

Note that the Jacobian is non-zero at x only if

$$
\operatorname{dim}\left(A_{q} \cap x^{\perp} \cap\left[\left(B_{p} \cap x^{\perp}\right)^{\perp} \cap\left(A_{q} \cap x^{\perp}\right)\right]^{\perp}\right)=p-1
$$

or $\operatorname{dim}\left(B_{p} \cap x^{\perp}\right)=0$, cf. definition (3).
Proof. The kernel of

$$
D \psi(x)=\frac{p\left(\cdot \mid x^{\perp} \cap B_{p}\right)}{\left|p\left(x \mid B_{p}\right)\right|}
$$

is

$$
\operatorname{ker} D \psi(x)=\left(x^{\perp} \cap B_{p}\right)^{\perp}
$$

Since $\operatorname{Tan}\left(x, S^{d-1}\right)=x^{\perp} \cap A_{q}$, we may define an orthonormal basis

$$
\operatorname{Tan} \cap(\operatorname{ker} \cap \operatorname{Tan})^{\perp}=\operatorname{span}\left\{e_{1}, \ldots, e_{p-1}\right\}
$$

whenever $\operatorname{dim}^{\left(x^{\perp}\right)}\left(A_{q} \cap\left(A_{q} \cap B_{p}^{\perp}\right)^{\perp}\right)=p-1$. Note that the $(p-1)$-dimensional Jacobian of ψ is zero when this dimensional assumption is not satisfied. Applying the differential of ψ to the orthonormal basis e_{1}, \ldots, e_{p-1}, we obtain

$$
D \psi\left(x, S^{q-1}\left(A_{q}\right)\right)=\left|p\left(x \mid B_{p}\right)\right|^{-1}\left(\begin{array}{c}
p\left(e_{1} \mid x^{\perp} \cap B_{p}\right)^{*} \\
\vdots \\
p\left(e_{p-1} \mid x^{\perp} \cap B_{p}\right)^{*}
\end{array}\right)
$$

and

$$
J_{p-1} \psi\left(x, S^{q-1}\left(A_{q}\right)\right)=\left|p\left(x \mid B_{p}\right)\right|^{-(p-1)} \mathcal{G}\left(\operatorname{Tan}\left(x, S^{d-1}\right),\left(x^{\perp} \cap B_{p}\right)^{\perp}\right)
$$

cf. (3). Note that the \mathcal{G} function is non-zero only if

$$
\operatorname{dim}\left(\operatorname{Tan}\left(x, S^{d-1}\right) \cap\left[\left(x^{\perp} \cap B_{p}\right)^{\perp} \cap \operatorname{Tan}\left(x, S^{d-1}\right)\right]^{\perp}\right)=d-(d-p-1)=p-1
$$

when $\operatorname{dim}\left(x^{\perp} \cap B_{p}\right)>0$ and \mathcal{G} is equal to 1 whenever $\operatorname{dim}\left(x^{\perp} \cap B_{p}\right)=0$.
Remark 26. In the special case $p=1$, set $B_{1}=\operatorname{span}\{b\}$ and note that the 0 -dimensional Jacobian of ψ is given by $J_{0} \psi\left(x, S^{q-1}\left(A_{q}\right)\right)=1$. A combined application of the coarea formula and Lemma 24 yields

$$
\begin{aligned}
& \int_{S^{q-1}\left(A_{q}\right)}|x \cdot b|^{k} \mathrm{~d} x^{q-1}=\int_{S^{0}\left(B_{1}\right)} \int_{\psi^{-1}\left\{x_{0}\right\}}|x \cdot b|^{k} \mathrm{~d} x^{q-1} \mathrm{~d} x_{0}^{0} \\
& \quad=2 \cos ^{k}\left(b, A_{q}\right) \int_{\psi^{-1}\{b\}}\left|x \cdot \pi\left(b \mid A_{q}\right)\right|^{k} \mathrm{~d} x^{q-1} \\
& \quad=\sigma_{q-1} B\left(\frac{q-1}{2}, \frac{k+1}{2}\right) \cos ^{k}\left(b, A_{q}\right) .
\end{aligned}
$$

This identity is also derived in Remark 32 and Proposition 38.
Lemma 27. Let $B_{p} \in \mathcal{L}_{p}^{d}$ be fixed and define the mapping

$$
\begin{aligned}
\psi: S^{d-1} & \rightarrow S^{p-1}\left(B_{p}\right) \\
x & \mapsto \pi\left(x \mid B_{p}\right)
\end{aligned}
$$

The ($p-1$)-dimensional Jacobian of ψ is given by

$$
J_{p-1} \psi\left(x, S^{d-1}\right)=\left|p\left(x \mid B_{p}\right)\right|^{-(p-1)}
$$

Proof. Use Lemma 25 with $A_{q}=\mathbb{R}^{d}$. Then [5, Proposition 5.2] implies

$$
\mathcal{G}\left(x^{\perp},\left(B_{p} \cap x^{\perp}\right)^{\perp}\right)=\left|p\left(x \mid\left(B_{p} \cap x^{\perp}\right)^{\perp}\right)\right|=|x|=1
$$

Remark 28. According to Lemma 27 and the co-area formula,

$$
\begin{aligned}
\int_{S^{d-1}}\left|p\left(x \mid B_{p}\right)\right|^{k-p+1} \mathrm{~d} x^{d-1} & =\int_{S^{d-1}}\left|p\left(x \mid B_{p}\right)\right|^{k} J_{p-1} \psi(x) \mathrm{d} x^{d-1} \\
& =\int_{S^{p-1}\left(B_{p}\right)} \int_{\psi^{-1}\left(x_{0}\right)}\left|p\left(x \mid B_{p}\right)\right|^{k} \mathrm{~d} x^{d-p} \mathrm{~d} x_{0}^{p-1}
\end{aligned}
$$

An application of Lemma 24 to the inner integral implies

$$
\int_{S^{d-1}}\left|p\left(x \mid B_{p}\right)\right|^{k-p+1} \mathrm{~d} x^{d-1}=\frac{\sigma_{p} \sigma_{d-p}}{2} B\left(\frac{d-p}{2}, \frac{k+1}{2}\right) .
$$

Proposition 38 yields the same result.
Lemma 29. Let $B_{p} \in \mathcal{L}_{p}^{d}$ and $m \in S^{d-1}$ such that $m \notin B_{p}$. Define

$$
\begin{gathered}
\psi: S^{d-2}\left(m^{\perp}\right) \rightarrow S^{p-1}\left(B_{p}\right) \\
x \mapsto \pi\left(x \mid B_{p}\right)=x_{0} .
\end{gathered}
$$

Then, for almost all $x \in S^{d-2}\left(m^{\perp}\right)$, the $(p-1)$-dimensional Jacobian of ψ is

$$
J_{p-1} \psi(x)=\frac{\sqrt{\sin ^{2} \theta+\cos ^{2} \theta \cos ^{2}\left(x_{0}, m_{0}\right)}}{\left|p\left(x \mid B_{p}\right)\right|^{p-1}},
$$

where $\theta=\angle\left(m, B_{p}\right), x_{0}=\pi\left(u \mid B_{p}\right)$ and $m_{0}=\pi\left(m \mid B_{p}\right)\left(\right.$ set $\angle\left(x_{0}, m_{0}\right)=0$ when $m \perp B_{p}$, in accordance with Lemma 27).

Proof. Use Lemma 25 with $A_{q}=m^{\perp}$. The ($p-1$)-dimensional Jacobian of ψ is given by

$$
J_{p-1} \psi\left(x, S^{d-2}\left(m^{\perp}\right)\right)=\frac{\mathcal{G}\left(m^{\perp} \cap x^{\perp},\left(B_{p} \cap x^{\perp}\right)^{\perp}\right)}{\left|p\left(x \mid B_{p}\right)\right|^{p-1}} .
$$

Applying [6, Lemma 4.1], [5, Proposition 5.2] and $x \perp m$, we obtain

$$
\begin{aligned}
& \mathcal{G}\left(m^{\perp}\right.\left.\cap x^{\perp},\left(B_{p} \cap x^{\perp}\right)^{\perp}\right)^{2}=\mathcal{G}^{\left(x^{\perp}\right)}\left(m^{\perp} \cap x^{\perp},\left(B_{p} \cap x^{\perp}\right)^{\perp} \cap x^{\perp}\right)^{2} \\
&=\left|p\left(\pi\left(m \mid x^{\perp}\right) \mid\left(B_{p} \cap x^{\perp}\right)^{\perp} \cap x^{\perp}\right)\right|^{2} \\
&=\left|p\left(m \mid\left(B_{p} \cap x^{\perp}\right)^{\perp}\right)\right|^{2} \\
& \quad=1-\left|p\left(m \mid B_{p} \cap x^{\perp}\right)\right|^{2} \\
& \quad=1-\left|p\left(m \mid B_{p}\right)\right|^{2}\left|p\left(\pi\left(m \mid B_{p}\right) \mid B_{p} \cap x^{\perp}\right)\right|^{2} \\
&=1-\left|p\left(m \mid B_{p}\right)\right|^{2}\left(1-\left|p\left(\pi\left(m \mid B_{p}\right) \mid \pi\left(x \mid B_{p}\right)\right)\right|^{2}\right) \\
&=\left(1-\left|p\left(m \mid B_{p}\right)\right|^{2}\right)+\left|p\left(m \mid B_{p}\right)\right|^{2}\left|p\left(\pi\left(m \mid B_{p}\right) \mid \pi\left(x \mid B_{p}\right)\right)\right|^{2} \\
&=\sin ^{2} \theta+\cos ^{2} \theta \cos ^{2}\left(x_{0}, m_{0}\right) .
\end{aligned}
$$

Lemma 30. Let $B_{p} \in \mathcal{L}_{p}^{d}$ and $A_{q} \in \mathcal{L}_{q}^{d}$ such that $A_{q} \cap\left(B_{p}^{\perp} \cap A_{q}\right)^{\perp}=p$. Define

$$
\begin{aligned}
\psi: & S^{q-1}\left(A_{q}\right) \rightarrow S^{p-1}\left(B_{p}\right) \\
& x \mapsto \pi\left(x \mid B_{p}\right)=x_{0} .
\end{aligned}
$$

Let a_{1}, \ldots, a_{d-q} be an orthonormal basis of A_{q}^{\perp}. Then, for almost all $x \in S^{q-1}\left(A_{q}\right)$, the ($p-1$)-dimensional Jacobian of ψ is

$$
J_{p-1} \psi(x)=\frac{\prod_{i=1}^{d-q} \sqrt{\sin ^{2} \theta_{i}+\cos ^{2} \theta_{i} \cos ^{2}\left(\pi\left(x \mid B_{p}\right), \pi\left(a_{i} \mid B_{p}\right)\right)}}{\left|p\left(u \mid B_{p}\right)\right|^{p-1}},
$$

where $\theta_{i}=\angle\left(a_{i}, B_{p}\right)\left(\right.$ set $\angle\left(\pi\left(x \mid B_{p}\right), \pi\left(a_{i} \mid B_{p}\right)\right)=0$ when $a_{i} \perp B_{p}$, in accordance with Lemma 29.

Proof. Using Lemma 25 with $A_{q}=a_{1}^{\perp} \cap \cdots \cap a_{d-q}^{\perp}$, the Jacobian of ψ can be calculated as $J \psi\left(x, S^{q-1}\left(A_{q}\right)\right)=\frac{\mathcal{G}\left(\cap_{i=1}^{d-q} a_{i}^{\perp} \cap x^{\perp},\left(B_{p} \cap x^{\perp}\right)^{\perp}\right)}{\left|p\left(x \mid B_{p}\right)\right|^{p-1}}=\frac{\mathcal{G}^{\left(x^{\perp}\right)}\left(\cap_{i=1}^{d-q} a_{i}^{\perp} \cap x^{\perp},\left(B_{p} \cap x^{\perp}\right)^{\perp} \cap x^{\perp}\right)}{\left|p\left(x \mid B_{p}\right)\right|^{p-1}}$.
Without loss of generality, assume that the a_{i} s are orthogonal to neither $\left(B_{p} \cap x^{\perp}\right)^{\perp}$ nor to its complement. According to [6, Lemma 4.1], we have

$$
\begin{aligned}
\mathcal{G}^{\left(x^{\perp}\right)} & \left(\cap_{i=1}^{d-q} a_{i}^{\perp} \cap x^{\perp},\left(B_{p} \cap x^{\perp}\right)^{\perp} \cap x^{\perp}\right) \\
& =\mathcal{G}^{\left(x^{\perp} \cap a_{d-q}^{\perp}\right)}\left(\cap_{i=1}^{d-q} a_{i}^{\perp} \cap x^{\perp},\left(B_{p} \cap x^{\perp}\right)^{\perp} \cap a_{d-q}^{\perp} \cap x^{\perp}\right)\left|p\left(a_{d-q} \mid\left(B_{p} \cap x^{\perp}\right)^{\perp} \cap x^{\perp}\right)\right| \\
& =\mathcal{G}^{\left(x^{\perp} \cap a_{d-q}^{\perp}\right)}\left(\cap_{i=1}^{d-q} a_{i}^{\perp} \cap x^{\perp},\left(B_{p} \cap x^{\perp}\right)^{\perp} \cap a_{d-q}^{\perp} \cap x^{\perp}\right)\left|p\left(a_{d-q} \mid\left(B_{p} \cap x^{\perp}\right)^{\perp}\right)\right| .
\end{aligned}
$$

Using that $x \perp a_{i}$, the same procedure as in the proof of Lemma 29 yields

$$
\begin{aligned}
& \mathcal{G}^{\left(x^{\perp}\right)}\left(\cap_{i=1}^{d-q} a_{i}^{\perp} \cap x^{\perp},\left(B_{p} \cap x^{\perp}\right)^{\perp} \cap x^{\perp}\right) \\
&= \mathcal{G}^{\left(\cap_{i=2}^{d-q} a_{i}^{\perp} \cap x^{\perp}\right)}\left(\cap_{i=1}^{d-q} a_{i}^{\perp} \cap x^{\perp},\left(B_{p} \cap x^{\perp}\right)^{\perp} \cap x^{\perp} \cap_{i=2}^{d-1} a_{i}^{\perp}\right) \\
& \times \prod_{i=2}^{d-q} \sqrt{\sin ^{2} \theta_{i}+\cos ^{2} \theta_{i} \cos ^{2}\left(x_{0}, a_{i}^{0}\right)} \\
&= \prod_{i=1}^{d-q} \sqrt{\sin ^{2} \theta_{i}+\cos ^{2} \theta_{i} \cos ^{2}\left(x_{0}, a_{i}^{0}\right)} .
\end{aligned}
$$

Proposition 31. Let B_{p} be a p-dimensional subspace of \mathbb{R}^{d} and let A_{q} be a q-dimensional subspace of \mathbb{R}^{d} such that $A_{q} \cap\left(A_{q} \cap B_{p}^{\perp}\right)^{\perp}=p$. Moreover, let a_{1}, \ldots, a_{d-q} be an orthonormal basis for A_{q}^{\perp} and define the $(d-q) \times(d-q)$-matrix A as

$$
A_{i, j}=\left\langle\pi\left(a_{j} \mid B_{p}^{\perp}\right), a_{i}\right\rangle
$$

Then,

$$
\begin{aligned}
& \int_{S^{q-1}\left(A_{q}\right)}\left|p\left(x \mid B_{p}\right)\right|^{k} \mathrm{~d} x^{q-1}=\frac{\sigma_{q-p}}{2} B\left(\frac{q-p}{2}, \frac{p+k}{2}\right) \\
& \quad \times \int_{S^{p-1}\left(B_{p}\right)} \frac{\left(\frac{1}{1+\beta^{2}}\right)^{(p+k) / 2}}{\prod_{i=1}^{d-q} \sqrt{\sin ^{2} \theta_{i}+\cos ^{2} \theta_{i} \cos ^{2}\left(x_{0}, \pi\left(a_{i} \mid B_{p}\right)\right)}} \mathrm{d} x_{0}^{p-1}
\end{aligned}
$$

Here,

$$
\beta=\left|\alpha_{1} \pi\left(a_{1} \mid B_{p}^{\perp}\right)+\ldots+\alpha_{d-q} \pi\left(a_{d-q} \mid B_{p}^{\perp}\right)\right|
$$

where $\alpha=\left(\alpha_{1}, \ldots, \alpha_{d-q}\right) \in \mathbb{R}^{d-q}$ solves the system of equations

$$
A\left(\alpha_{1}, \ldots, \alpha_{d-q}\right)=\left(-x_{0} \cdot a_{1},-x_{0} \cdot a_{2}, \ldots,-x_{0} \cdot a_{d-q}\right)
$$

Proof. Define the mapping

$$
\begin{gathered}
\psi: S^{q-1}\left(A_{q}\right) \rightarrow S^{p-1}\left(B_{p}\right) \\
x \mapsto \pi\left(x \mid B_{p}\right)=x_{0}
\end{gathered}
$$

and apply the coarea formula together with Lemma 30,

$$
\begin{align*}
& \int_{S^{q-1}\left(A_{q}\right)}\left|p\left(x \mid B_{p}\right)\right|^{k} \mathrm{~d} x^{q-1} \\
& \quad=\int_{S^{p-1}\left(B_{p}\right)} \int_{\psi^{-1}\left(x_{0}\right)}\left|p\left(x \mid B_{p}\right)\right|^{k} J_{p-1} \psi\left(x, S^{q-1}\left(A_{q}\right)\right)^{-1} \mathrm{~d} x^{q-p} \mathrm{~d} x_{0}^{p-1} \\
& \quad=\int_{S^{p-1}\left(B_{p}\right)} \int_{\psi^{-1}\left(x_{0}\right)}\left|p\left(x \mid B_{p}\right)\right|^{k+p-1} \mathrm{~d} x^{q-p} \frac{\mathrm{~d} x_{0}^{p-1}}{\prod_{i=1}^{d-q} \sqrt{\sin ^{2} \theta_{i}+\cos ^{2} \theta_{i} \cos ^{2}\left(x_{0}, a_{i}^{0}\right)}}, \tag{4}
\end{align*}
$$

where a_{1}, \ldots, a_{d-q} is an orthonormal basis of A_{q}^{\perp} and $a_{i}^{0}=\pi\left(a_{i} \mid B_{p}\right), i=1, \ldots, d-q$. Note that $A_{q} \cap\left(A_{q} \cap B_{p}^{\perp}\right)^{\perp}=p$ implies $A_{q} \cap B_{p}^{\perp}=q-p$ and define the bijective mapping

$$
\begin{aligned}
\xi: & A_{q} \cap B_{p}^{\perp} \rightarrow \psi^{-1}\left(x_{0}\right) \\
\omega & \mapsto \frac{x_{0}+\beta x_{1}+\omega}{\left|x_{0}+\beta x_{1}+\omega\right|}
\end{aligned}
$$

where $\beta \in \mathbb{R}$ and $x_{1}=x_{1}\left(x_{0}\right) \in S^{d-p-q}\left(p\left(A_{q}^{\perp} \mid B_{p}^{\perp}\right)\right)$ are uniquely chosen s.t. $x_{0}+\beta x_{1} \in A_{q}$ (see below for a more explicit expression). According to Lemma 23, the ($q-p$)-dimensional Jacobian of ξ is given by

$$
J_{q-p} \xi(\omega)=\frac{\sqrt{1+\beta^{2}}}{\left(1+\beta^{2}+|\omega|^{2}\right)^{\frac{q-p+1}{2}}} .
$$

Hence, the area formula yields

$$
\begin{align*}
& \int_{\psi^{-1}\left(x_{0}\right)}\left|p\left(x \mid B_{p}\right)\right|^{k+p-1} \mathrm{~d} x^{q-p} \\
&= \int_{\psi^{-1}\left(x_{0}\right)} \sum_{y \in \xi^{-1}(x)}\left|p\left(\xi(y) \mid B_{p}\right)\right|^{k+p-1} \mathrm{~d} x^{q-p} \\
&= \int_{\psi^{-1}\left(x_{0}\right)} \sum_{y \in \xi^{-1}(x)} \frac{1}{\left|x_{0}+\beta x_{1}+y\right|^{k+p-1}} \mathrm{~d} x^{q-p} \\
&= \int_{A_{q} \cap B_{p}^{\perp}} \frac{1}{\left(1+\beta^{2}+|x|^{2}\right)^{\frac{k+p-1}{2}}} \frac{\sqrt{1+\beta^{2}}}{\left(1+\beta^{2}+|x|^{2}\right)^{\frac{q-p+1}{2}}} \mathrm{~d} x^{q-p} \\
&= \int_{A_{q} \cap B_{\bar{p}}^{\perp}} \frac{\sqrt{1+\beta^{2}}}{\left(1+\beta^{2}+|x|^{2}\right)^{\frac{q+k}{2}}} \mathrm{~d} x^{q-p} \tag{5}
\end{align*}
$$

According to Proposition 13 and Lemma 7,

$$
\begin{align*}
\int_{A_{q} \cap B_{p}^{\perp}} \frac{\sqrt{1+\beta^{2}}}{\left(1+\beta^{2}+|x|^{2}\right)^{\frac{q+k}{2}}} \mathrm{~d} x^{q-p} & =\sigma_{q-p} \int_{0}^{\infty} \frac{\sqrt{1+\beta^{2}}}{\left(1+\beta^{2}+r^{2}\right)^{\frac{q+k}{2}}} r^{q-p-1} \mathrm{~d} r \\
& =\frac{\sigma_{q-p}}{2}\left(\frac{1}{1+\beta^{2}}\right)^{(p+k-1) / 2} B\left(\frac{q-p}{2}, \frac{p+k}{2}\right) \tag{6}
\end{align*}
$$

Then, by combining (4), (5) and (6),

$$
\begin{aligned}
& \int_{S^{q-1}\left(A_{q}\right)}\left|p\left(x \mid B_{p}\right)\right|^{k} \mathrm{~d} x^{q-1} \\
& \quad=\int_{S^{p-1}\left(B_{p}\right)} \int_{\psi^{-1}\left(x_{0}\right)}\left|p\left(x \mid B_{p}\right)\right|^{k+p-1} \mathrm{~d} x^{q-p} \frac{\mathrm{~d} x_{0}^{p-1}}{\prod_{i=1}^{d-q} \sqrt{\sin ^{2} \theta_{i}+\cos ^{2} \theta_{i} \cos ^{2}\left(x_{0}, a_{i}^{0}\right)}} \\
& \quad=\frac{\sigma_{q-p}}{2} B\left(\frac{q-p}{2}, \frac{p+k}{2}\right) \int_{S^{p-1}\left(B_{p}\right)} \frac{\left(\frac{1}{1+\beta^{2}}\right)^{(p+k-1) / 2}}{\prod_{i=1}^{d-q} \sqrt{\sin ^{2} \theta_{i}+\cos ^{2} \theta_{i} \cos ^{2}\left(x_{0}, a_{i}^{0}\right)}} \mathrm{d} x_{0}^{p-1} .
\end{aligned}
$$

We need to express β and x_{1} in a more explicit way. Define the $(d-q) \times(d-q)$ matrix A by

$$
A_{i, j}=\pi\left(a_{j} \mid B_{p}^{\perp}\right) \cdot a_{i}
$$

Let a_{1}, \ldots, a_{d-1} be an orthonormal basis for A_{q}^{\perp}. The orthogonal decomposition of \mathbb{R}^{d} into $B_{p} \oplus B_{p}^{\perp}$ ensures the existence of scalars $\alpha_{1}, \ldots, \alpha_{d-q}$ such that

$$
\begin{equation*}
x_{0}+\sum_{j=1}^{d-q} \alpha_{j} \pi\left(a_{j} \mid B_{p}^{\perp}\right) \in A_{q} \tag{7}
\end{equation*}
$$

In other words, $\alpha_{1}, \ldots, \alpha_{d-q}$ solve the following system of equations

$$
\begin{aligned}
0 & =x_{0} \cdot a_{1}+\sum_{j=1}^{d-q} \alpha_{j} \pi\left(a_{j} \mid B_{p}^{\perp}\right) \cdot a_{1} \\
0 & =x_{0} \cdot a_{2}+\sum_{j=1}^{d-q} \alpha_{j} \pi\left(a_{j} \mid B_{p}^{\perp}\right) \cdot a_{2} \\
& \vdots \\
0 & =x_{0} \cdot a_{d-q}+\sum_{j=1}^{d-q} \alpha_{j} \pi\left(a_{j} \mid B_{p}^{\perp}\right) \cdot a_{d-q}
\end{aligned}
$$

Whenever A is invertible, the solution to this system is given by

$$
\alpha=A^{-1}\left(-x_{0} \cdot a_{1},-x_{0} \cdot a_{2}, \ldots,-x_{0} \cdot a_{d-q}\right)
$$

Now, set

$$
\beta=\left|\alpha_{1} \pi\left(a_{1} \mid B_{p}^{\perp}\right)+\ldots+\alpha_{d-q} \pi\left(a_{d-q} \mid B_{p}^{\perp}\right)\right|
$$

and

$$
x_{1}=\frac{\alpha_{1} \pi\left(a_{1} \mid B_{p}^{\perp}\right)+\ldots+\alpha_{d-q} \pi\left(a_{d-q} \mid B_{p}^{\perp}\right)}{\left|\alpha_{1} \pi\left(a_{1} \mid B_{p}^{\perp}\right)+\ldots+\alpha_{d-q} \pi\left(a_{d-q} \mid B_{p}^{\perp}\right)\right|}
$$

Hence, (7) implies $x_{0}+\beta x_{1} \in A_{q}$ and the mapping ξ is well-defined.
Remark 32. Let us consider Proposition 31 in the special case $p=1$. Let $B_{1}=\operatorname{span}(b)$. Then,

$$
A_{i j}=\pi\left(a_{j} \mid b^{\perp}\right) \cdot a_{i}=\frac{a_{i} \cdot a_{j}-\left(a_{j} \cdot b\right)\left(a_{i} \cdot b\right)}{\sqrt{1-\left(a_{j} \cdot b\right)}}= \begin{cases}\frac{1-\left(a_{i} \cdot b\right)^{2}}{\sqrt{1-\left(a_{i} \cdot b\right)^{2}}}, & j=i \\ \frac{-\left(a_{i} \cdot b\right)^{2}}{\sqrt{1-\left(a_{i} \cdot b\right)^{2}}}, & j \neq i\end{cases}
$$

Since $x_{0}=\pi(x \mid b)=b$, the vector $\alpha=\left(\alpha_{1}, \ldots, \alpha_{d-q}\right)$ is a solution to the system of $d-q$ linear equations

$$
\begin{gathered}
A_{1} \cdot \alpha_{1}=\frac{\alpha_{1}}{\sqrt{1-\left(a_{1} \cdot b\right)^{2}}}-\left(a_{1} \cdot b\right) \sum_{j=1}^{d-q} \frac{\alpha_{j}\left(a_{j} \cdot b\right)}{\sqrt{1-\left(a_{j} \cdot b\right)^{2}}}=-a_{1} \cdot b \\
\vdots \\
A_{d-q} \cdot \alpha_{d-q}=\frac{\alpha_{d-q}}{\sqrt{1-\left(a_{d-q} \cdot b\right)^{2}}}-\left(a_{d-q} \cdot b\right) \sum_{j=1}^{d-q} \frac{\alpha_{j}\left(a_{j} \cdot b\right)}{\sqrt{1-\left(a_{j} \cdot b\right)^{2}}}=-a_{d-q} \cdot b,
\end{gathered}
$$

where A_{i} is the i th row of the matrix A. One can easily check that

$$
\alpha=\left(-\frac{\left(a_{j} \cdot b\right) \sqrt{1-\left(a_{j} \cdot b\right)^{2}}}{1-\sum_{i}\left(a_{i} \cdot b\right)^{2}}\right)_{j=1, \ldots, d-q}
$$

is a solution to that system. Hence, for all $j=1, \ldots, d-q$,

$$
\alpha_{j} \pi\left(a_{j} \mid b^{\perp}\right)=\alpha_{j} \frac{a_{j}-\left(a_{j} \cdot b\right) b}{\sqrt{1-\left(a_{j} \cdot b\right)^{2}}}
$$

and

$$
\beta^{2}=\left|\sum_{j=1}^{d-q} \alpha_{j} \pi\left(a_{j} \mid b\right)\right|^{2}=\left(\frac{1}{1-\sum_{i}\left(a_{i} \cdot b\right)^{2}}\right)^{2}\left|\sum_{j}\left(a_{j} \cdot b\right) a_{j}-b \sum_{j}\left(a_{j} \cdot b\right)^{2}\right|^{2}
$$

Noting that $\sum_{i}\left(a_{i} \cdot b\right)^{2}=\cos ^{2}\left(b, A_{q}^{\perp}\right)$, we deduce that

$$
\beta^{2}=\frac{1}{\sin ^{4}\left(b, A_{q}^{\perp}\right)}\left(\cos ^{2}\left(b, A_{q}^{\perp}\right)+\cos ^{4}\left(b, A_{q}^{\perp}\right)-2 \cos ^{2}\left(b, A_{q}^{\perp}\right) \cos ^{2}\left(b, A_{q}^{\perp}\right)\right)=\frac{\cos ^{2}\left(b, A_{q}^{\perp}\right)}{\sin ^{2}\left(b, A_{q}^{\perp}\right)}
$$

or in other terms,

$$
\frac{1}{1+\beta^{2}}=\sin ^{2}\left(b, A_{q}^{\perp}\right)
$$

Having computed the nominator on the right-hand side of Proposition 31, we note that the denominator is equal to 1 since $\cos ^{2}\left(x_{0}, \pi\left(a_{i} \mid B_{1}\right)\right)=\cos ^{2}(b, b)=1$. Thus,

$$
\begin{equation*}
\int_{S^{q-1}\left(A_{q}\right)}|x \cdot b|^{k} \mathrm{~d} x^{q-1}=\sigma_{q-1} B\left(\frac{q-1}{2}, \frac{1+k}{2}\right) \sin ^{k}\left(b, A_{q}^{\perp}\right) . \tag{8}
\end{equation*}
$$

Notice that this identity can also be derived using Proposition 38 below, with $d=q$ and $p=1$,

$$
\begin{aligned}
\int_{S^{q-1}\left(A_{q}\right)}|x \cdot b|^{k} \mathrm{~d} x^{q-1} & =\cos ^{k}\left(b, A_{q}\right) \int_{S^{q-1}\left(A_{q}\right)}\left|x \cdot \pi\left(b \mid A_{q}\right)\right|^{k} \mathrm{~d} x^{q-1} \\
& =\sigma_{q-1} B\left(\frac{q-1}{2}, \frac{1+k}{2}\right) \cos ^{k}\left(b, A_{q}\right)
\end{aligned}
$$

Proposition 33. Let $B_{p} \in \mathcal{L}_{p}^{d}$ be fixed. Let m be a unit vector in \mathbb{R}^{d} and assume that $m \notin B_{p}$. Then,

$$
\begin{aligned}
& \int_{S^{d-2}\left(m^{\perp}\right)}\left|p\left(x \mid B_{p}\right)\right|^{k} \mathrm{~d} x^{d-2} \\
& \quad=\frac{\sigma_{d-p-1} \sigma_{p} B\left(\frac{d-p-1}{2}, \frac{p+k}{2}\right)}{2} \sin ^{p+k-1}\left(m, B_{p}\right) F\left(\frac{p+k}{2}, \frac{p-1}{2} ; \frac{p}{2} ; \cos ^{2}\left(m, B_{p}\right)\right)
\end{aligned}
$$

Proof of Proposition 33. Using Proposition 31 with $A_{q}=m^{\perp}, A=\pi\left(m \mid B_{p}^{\perp}\right) \cdot m$ and $a_{1}=m$, we obtain

$$
\alpha_{1}=-\frac{x_{0} \cdot m}{\pi\left(m \mid B_{p}^{\perp}\right) \cdot m}=-\frac{\cos \left(m, B_{p}\right)\left(x_{0} \cdot \pi\left(m \mid B_{p}\right)\right)}{\sin \left(m, B_{p}\right)}
$$

and

$$
\beta=\left|\alpha_{1} \pi\left(m \mid B_{p}^{\perp}\right)\right|=\alpha_{1} .
$$

Hence,

$$
\begin{aligned}
\frac{1}{1+\beta^{2}} & =\frac{1}{1+\frac{\cos ^{2}\left(m, B_{p}\right)\left(x_{0} \cdot \pi\left(m \mid B_{p}\right)\right)^{2}}{\sin ^{2}\left(m, B_{p}\right)}} \\
& =\frac{\sin ^{2}\left(m, B_{p}\right)}{\sin ^{2}\left(m, B_{p}\right)+\cos ^{2}\left(m, B_{p}\right)\left(x_{0} \cdot \pi\left(m \mid B_{p}\right)\right)^{2}}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& \frac{\sigma_{d-p-1} B\left(\frac{d-p-1}{2}, \frac{p+k}{2}\right)}{2} \int_{S^{d-2}\left(m^{\perp}\right)}\left|p\left(x \mid B_{p}\right)\right|^{k} \mathrm{~d} x^{d-2} \\
& =\int_{S^{p-1}\left(B_{p}\right)} \frac{\left(\frac{\sin ^{2}\left(m, B_{p}\right)}{} \frac{1}{\sin ^{2}\left(m, B_{p}\right)+\cos ^{2}\left(m, B_{p}\right)\left(x_{0} \cdot \pi\left(m \mid B_{p}\right)\right)^{2}}\right)^{(p+k-1) / 2}}{\sqrt{\sin \left(m, B_{p}\right)+\cos ^{2}\left(m, B_{p}\right) \cos ^{2}\left(x_{0}, \pi\left(m \mid B_{p}\right)\right)}} \mathrm{d} x_{0}^{p-1} \\
& =\sin ^{p+k-1}\left(m, B_{p}\right) \int_{S^{p-1}\left(B_{p}\right)} \frac{1}{\left(\sin ^{2}\left(m, B_{p}\right)+\cos ^{2}\left(m, B_{p}\right) \cos ^{2}\left(x_{0}, \pi\left(m \mid B_{p}\right)\right)^{(p+k) / 2}\right.} \mathrm{d} x_{0}^{p-1} .
\end{aligned}
$$

The last integral is of the form

$$
\int_{S^{p-1}\left(B_{p}\right)} g\left(\left(x_{0} \cdot \pi\left(m \mid B_{p}\right)\right)^{2}\right) \mathrm{d} x_{0}^{p-1}
$$

with $g(t)=\frac{1}{\left(\sin ^{2}\left(m, B_{p}\right)+\cos ^{2}\left(m, B_{p}\right) t\right)^{(p+k) / 2}}$. Hence, using Proposition 17 and Lemma 8,

$$
\begin{aligned}
& \int_{S^{p-1}\left(B_{p}\right)} g\left(\left(x_{0} \cdot \pi\left(m \mid B_{p}\right)\right)^{2}\right) \mathrm{d} x_{0}^{p-1}=\sigma_{p-1} \int_{0}^{1} g(t) t^{-\frac{1}{2}}(1-t)^{\frac{p-1}{2}-1} \mathrm{~d} t \\
& \quad=\sigma_{p-1} \int_{0}^{1} \frac{1}{\left(\sin ^{2}\left(m, B_{p}\right)+\cos ^{2}\left(m, B_{p}\right) t\right)^{(p+k) / 2}} t^{-\frac{1}{2}}(1-t)^{\frac{p-1}{2}-1} \mathrm{~d} t \\
& =\sigma_{p-1} B\left(\frac{1}{2}, \frac{p-1}{2}\right) F\left(\frac{p+k}{2}, \frac{p-1}{2} ; \frac{p}{2} ; \cos ^{2}\left(m, B_{p}\right)\right) \\
& =\sigma_{p} F\left(\frac{p+k}{2}, \frac{p-1}{2} ; \frac{p}{2} ; \cos ^{2}\left(m, B_{p}\right)\right)
\end{aligned}
$$

Remark 34. Note that for $p=1$, $\operatorname{span}(b)=B_{1}$, Proposition 33 yields

$$
\int_{S^{d-2}\left(m^{\perp}\right)}|x \cdot b|^{k} \mathrm{~d} x^{d-2}=\sigma_{d-2} B\left(\frac{d-2}{2}, \frac{k}{2}\right) \sin ^{k}(b, m)
$$

i.e. the same expression as the one obtained in Remark 32 with $q=d-1$. Moreover, in the special case $k=0$, Proposition 33 yields, for all p,

$$
\begin{aligned}
\int_{S^{d-2}\left(m^{\perp}\right)} \mathrm{d} x^{d-2} & =\frac{\sigma_{d-p-1} \sigma_{p} B\left(\frac{d-p-1}{2}, \frac{p}{2}\right)}{2} \sin ^{p-1}\left(m, B_{p}\right) F\left(\frac{p}{2}, \frac{p-1}{2} ; \frac{p}{2} ; \cos ^{2}\left(m, B_{p}\right)\right) \\
& =\sigma_{d-1}
\end{aligned}
$$

as was expected. The second equality follows from $[1,(15.1 .8)]$.
Proposition 35. Let $B_{p} \in \mathcal{L}_{p}^{d}$ be fixed. Then, for any non-negative measurable function $g: \mathbb{R}^{d} \rightarrow \mathbb{R}$,

$$
\int_{S^{d-1}} g\left(p\left(x \mid B_{p}\right)\right) \mathrm{d} x^{d-1}=\frac{\sigma_{d-p}}{2} \int_{S^{p-1}\left(B_{p}\right)} \int_{0}^{1} g\left(t^{\frac{1}{2}} x_{0}\right) t^{\frac{p-2}{2}}(1-t)^{\frac{d-p-2}{2}} \mathrm{~d} t \mathrm{~d} x_{0}^{p-1}
$$

Proof. First, we use the co-area formula with

$$
\begin{aligned}
\psi: S^{d-1} & \rightarrow S^{p-1}\left(B_{p}\right) \\
x & \mapsto \pi\left(x \mid B_{p}\right)
\end{aligned}
$$

According to Lemma 27, the $(p-1)$-dimensional Jacobian of ψ is given by

$$
J_{p-1} \psi\left(x, S^{d-1}\right)=\left|p\left(x \mid B_{p}\right)\right|^{-(p-1)}
$$

Hence, the co-area formula yields

$$
\begin{array}{rl}
\int_{S^{d-1}} & g\left(p\left(x \mid B_{p}\right)\right) \mathrm{d} x^{d-1}=\int_{S^{d-1}} g\left(\left|p\left(x \mid B_{p}\right)\right| \pi\left(x \mid B_{p}\right)\right) \mathrm{d} x^{d-1} \\
& =\int_{S^{p-1}\left(B_{p}\right)} \int_{\psi^{-1}\left(x_{0}\right)} g\left(\left|p\left(x \mid B_{p}\right)\right| x_{0}\right)\left|p\left(x \mid B_{p}\right)\right|^{p-1} \mathrm{~d} x^{d-p} \mathrm{~d} x_{0}^{p-1} \tag{9}
\end{array}
$$

Let $x_{0} \in S^{p-1}\left(B_{p}\right)$ be fixed and apply the area formula with

$$
\begin{aligned}
\xi: B_{p}^{\perp} & \rightarrow \psi^{-1}\left(x_{0}\right) \\
\omega & \mapsto \frac{\omega+x_{0}}{\left|\omega+x_{0}\right|}
\end{aligned}
$$

According to Lemma 23, the $(p-1)$-dimensional Jacobian of ξ is

$$
J_{d-p} \xi\left(\omega, S^{d-1}\right)=\left(\frac{1}{1+|\omega|^{2}}\right)^{\frac{d-p+1}{2}}
$$

Hence, since ξ maps B_{p}^{\perp} bijectively onto $\psi^{-1}\left(x_{0}\right)$ and $\left|p\left(\xi(\omega) \mid B_{p}\right)\right|=\frac{1}{\left|\omega+x_{0}\right|}=\left(\frac{1}{1+|\omega|^{2}}\right)^{\frac{1}{2}}$,

$$
\begin{aligned}
& \int_{\psi^{-1}\left(x_{0}\right)} g\left(\left|p\left(x \mid B_{p}\right)\right| x_{0}\right)\left|p\left(x \mid B_{p}\right)\right|^{p-1} \mathrm{~d} x^{d-p} \\
& \quad=\int_{\psi^{-1}\left(x_{0}\right)} \sum_{\omega \in \xi^{-1}(x)} g\left(\left|p\left(\xi(\omega) \mid B_{p}\right)\right| x_{0}\right)\left|p\left(\xi(\omega) \mid B_{p}\right)\right|^{p-1} \mathrm{~d} x^{d-p} \\
& \quad=\int_{\psi^{-1}\left(x_{0}\right)} \sum_{\omega \in \xi^{-1}(x)} g\left(\left(\frac{1}{1+|\omega|^{2}}\right)^{\frac{1}{2}} x_{0}\right)\left(\frac{1}{1+|\omega|^{2}}\right)^{\frac{p-1}{2}} \mathrm{~d} x^{d-p} \\
& =\int_{B_{\bar{p}}^{1}} g\left(\left(\frac{1}{1+|x|^{2}}\right)^{\frac{1}{2}} x_{0}\right)\left(\frac{1}{1+|x|^{2}}\right)^{\frac{p-1}{2}}\left(\frac{1}{1+|x|^{2}}\right)^{\frac{d-p+1}{2}} \mathrm{~d} x^{d-p} \\
& =\int_{B_{\bar{p}}^{\frac{1}{p}}} g\left(\left(\frac{1}{1+|x|^{2}}\right)^{\frac{1}{2}} x_{0}\right)\left(\frac{1}{1+|x|^{2}}\right)^{\frac{d}{2}} \mathrm{~d} x^{d-p} .
\end{aligned}
$$

Using Proposition 13, we get

$$
\begin{align*}
\int_{B_{p}^{\frac{1}{p}}} & g\left(\left(\frac{1}{1+|x|^{2}}\right)^{\frac{1}{2}} x_{0}\right)\left(\frac{1}{1+|x|^{2}}\right)^{\frac{d}{2}} \mathrm{~d} x^{d-p} \\
& =\sigma_{d-p} \int_{0}^{\infty} g\left(\left(\frac{1}{1+t^{2}}\right)^{\frac{1}{2}} x_{0}\right)\left(\frac{1}{1+t^{2}}\right)^{\frac{d}{2}} t^{d-p-1} \mathrm{~d} t . \tag{10}
\end{align*}
$$

Substitution with $s=\frac{1}{1+t^{2}}$ yield

$$
\int_{0}^{\infty} g\left(\left(\frac{1}{1+t^{2}}\right)^{\frac{1}{2}} x_{0}\right)\left(\frac{1}{1+t^{2}}\right)^{\frac{d}{2}} t^{d-p-1} \mathrm{~d} t=\frac{1}{2} \int_{0}^{1} g\left(s^{\frac{1}{2}} x_{0}\right) s^{\frac{p-2}{2}}(1-s)^{\frac{d-p-2}{2}} \mathrm{~d} s .
$$

The last equation combined with (9) and (10) implies

$$
\int_{S^{d-1}} g\left(p\left(x \mid B_{p}\right)\right) \mathrm{d} x^{d-1}=\frac{\sigma_{d-p}}{2} \int_{S^{p-1}\left(B_{p}\right)} \int_{0}^{1} g\left(t^{\frac{1}{2}} x_{0}\right) t^{\frac{p-2}{2}}(1-t)^{\frac{d-p-2}{2}} \mathrm{~d} t \mathrm{~d} x_{0}^{p-1}
$$

Remark 36. Note that Proposition 35 generalizes Proposition $17(p=1)$.
Proposition 37. Let $B_{p} \in \mathcal{L}_{p}^{d}$. Then,

$$
\int_{S^{d-1}} g\left(\left|p\left(x \mid B_{p}\right)\right|\right) \mathrm{d} x^{d-1}=\frac{\sigma_{d-p} \sigma_{p}}{2} \int_{0}^{1} g\left(t^{\frac{1}{2}}\right) t^{\frac{p-2}{2}}(1-t)^{\frac{d-p-2}{2}} \mathrm{~d} t .
$$

Proof. Use Proposition 35.
Proposition 38. Let $B_{p} \in \mathcal{L}_{p}^{d}$. Then,

$$
\int_{S^{d-1}}\left|p\left(x \mid B_{p}\right)\right|^{k} \mathrm{~d} x^{d-1}=\frac{\sigma_{p} \sigma_{d-p}}{2} B\left(\frac{d-p}{2}, \frac{k+p}{2}\right) .
$$

Proof. Use Proposition 37 with $g(t)=t^{k}$.

Proposition 39. Let $B_{p} \in \mathcal{L}_{p}^{d}$ be fixed. Then,

$$
\int_{S^{d-1}} g\left(\pi\left(x \mid B_{p}\right)\right) \mathrm{d} x^{d-1}=\frac{\sigma_{d-p} B\left(\frac{p}{2}, \frac{d-p}{2}\right)}{2} \int_{S^{p-1}\left(B_{p}\right)} g\left(x_{0}\right) \mathrm{d} x_{0}^{p-1} .
$$

Proof. Use Proposition 35.

For the remainder of this section, recall that the binomial coefficient $\binom{a}{k}$ is defined for all $a \in \mathbb{R}$ and all $k \in \mathbb{N}$ by

$$
\binom{a}{k}=\frac{(-a)_{k}(-1)^{k}}{k!}= \begin{cases}\frac{\Gamma(a+1)}{\Gamma(a-k+1) \Gamma(k+1)} & \text { for } a>0 \\ \frac{\Gamma(a+k)(-1)^{k}}{\Gamma(a) \Gamma(k+1)} & \text { for } a<0 \\ 0 & \text { for } a=0\end{cases}
$$

Lemma 40. For all $a, n \in \mathbb{R}$ and $k \in \mathbb{N}$,

$$
\binom{n}{2 k} B\left(a+k+\frac{1}{2}, \frac{n}{2}-k+\frac{1}{2}\right)=B\left(\frac{n}{2}+\frac{1}{2}, a+\frac{1}{2}\right) \frac{\left(-\frac{n}{2}\right)_{k}\left(a+\frac{1}{2}\right)_{k}}{\left(\frac{1}{2}\right)_{k}} \frac{(-1)^{k}}{k!} .
$$

Proof. The duplication formula (1) implies

$$
\begin{aligned}
\frac{\Gamma\left(\frac{n}{2}-k+\frac{1}{2}\right)}{\Gamma(n-2 k+1)} & =\frac{\pi^{\frac{1}{2}} 2^{-(n-2 k)}}{\Gamma\left(\frac{n}{2}-k+1\right)}=\frac{(-1)^{k}\left(-\frac{n}{2}\right)_{k} \pi^{\frac{1}{2}} 2^{-(n-2 k)}}{\Gamma\left(\frac{n}{2}+1\right)} \\
\frac{1}{\Gamma(2 k+1)} & =\frac{\pi^{\frac{1}{2}} 2^{-2 k}}{\Gamma\left(k+\frac{1}{2}\right) k!}=\frac{2^{-2 k}}{\left(\frac{1}{2}\right)_{k} k!}
\end{aligned}
$$

and

$$
\Gamma(n+1)=\Gamma\left(\frac{n+1}{2}\right) \Gamma\left(\frac{n}{2}+1\right) \pi^{-\frac{1}{2}} 2^{n} .
$$

The result now follows by insertion.
Lemma 41. For all $a, n \in \mathbb{R}$ and $k \in \mathbb{N}$,

$$
\binom{n}{2 k} B\left(k+\frac{1}{2}, a+\frac{n}{2}-k+\frac{1}{2}\right)=B\left(a+\frac{n}{2}+\frac{1}{2}, \frac{1}{2}\right) \frac{\left(-\frac{n}{2}+\frac{1}{2}\right)_{k}\left(-\frac{n}{2}\right)_{k}}{\left(-a-\frac{n}{2}+\frac{1}{2}\right)_{k}} \frac{(-1)^{k}}{k!} .
$$

Proof. Left to the reader.

Lemma 42. For all $a, b, c \in \mathbb{R}$ and $z \in[0,1]$,

$$
F(a, b ; c ; z)=\frac{\Gamma(c-a-b) \Gamma(c)}{\Gamma(c-a) \Gamma(c-b)} F(a, b ; a+b-c+1 ; 1-z) .
$$

Proof.

$$
\begin{aligned}
& F(a, b ; c ; z)=\sum_{k=0}^{\infty} \frac{(a)_{k}(b)_{k}}{(c)_{k}} \frac{(1-(1-z))^{k}}{k!} \\
&=\sum_{k=0}^{\infty} \sum_{l=0}^{k}\binom{k}{l}(-1)^{l} \frac{(a)_{k}(b)_{k}}{(c)_{k}} \frac{(1-z)^{l}}{k!} \\
&=\sum_{l=0}^{\infty} \sum_{k=l}^{\infty}\binom{k}{l}(-1)^{l} \frac{(a)_{k}(b)_{k}}{(c)_{k}} \frac{(1-z)^{l}}{k!} \\
&=\sum_{l=0}^{\infty} \sum_{k=0}^{\infty}\binom{k+l}{l}(-1)^{l} \frac{(a)_{k+l}(b)_{k+l}}{(c)_{k+l}} \frac{(1-z)^{l}}{(k+l)!} .
\end{aligned}
$$

Note that

$$
\frac{\binom{k+l}{l}}{(k+l)!}=\frac{1}{l!} \frac{1}{k!}
$$

and

$$
(a)_{k+l}=\frac{\Gamma(a+k+l)}{\Gamma(a)} \frac{\Gamma(a+l)}{\Gamma(a+l)}=(a)_{l}(a+l)_{k}
$$

for all $k, l \in \mathbb{N}$ and all $a \in \mathbb{R}$ (when a is negative, use the corresponding definition of the rising sequential product). Thus,

$$
\begin{aligned}
F(a, b ; c ; z) & =\sum_{l=0}^{\infty} \sum_{k=0}^{\infty}\binom{k+l}{l}(-1)^{l} \frac{(a)_{k+l}(b)_{k+l}}{(c)_{k+l}} \frac{(1-z)^{l}}{(k+l)!} \\
& =\sum_{l=0}^{\infty}(-1)^{l} \frac{(a)_{l}(b)_{l}}{(c)_{l}} \frac{(1-z)^{l}}{l!} \sum_{k=0}^{\infty} \frac{(a+l)_{k}(b+l)_{k}}{(c+l)_{k}} \frac{1}{k!}
\end{aligned}
$$

Since

$$
\begin{equation*}
\sum_{k=0}^{\infty} \frac{(a+l)_{k}(b+l)_{k}}{(c+l)_{k}} \frac{1}{k!}=F(a+l, b+l ; c+l ; 1)=\frac{\Gamma(c+l) \Gamma(c-a-b-l)}{\Gamma(c-a) \Gamma(c-b)} \tag{11}
\end{equation*}
$$

we get

$$
\begin{aligned}
& F(a, b ; c ; z)=\sum_{l=0}^{\infty}(-1)^{l} \frac{(a)_{l}(b)_{l}}{(c)_{l}} \frac{(1-z)^{l}}{l!} \frac{\Gamma(c+l) \Gamma(c-a-b-l)}{\Gamma(c-a) \Gamma(c-b)} \\
& \quad=\frac{\Gamma(c)}{\Gamma(c-a) \Gamma(c-b)} \sum_{l=0}^{\infty}(-1)^{l}(a)_{l}(b)_{l} \frac{(1-z)^{l}}{l!} \Gamma(c-a-b-l) \\
& \quad=\frac{\Gamma(c) \Gamma(c-a-b)}{\Gamma(c-a) \Gamma(c-b)} \sum_{l=0}^{\infty} \frac{(a)_{l}(b)_{l}}{(a+b-c+1)_{l}} \frac{(1-z)^{l}}{l!}
\end{aligned}
$$

where we used that

$$
\begin{equation*}
(-1)^{l} \Gamma(c-a-b-l)=(-1)^{l} \frac{\Gamma(c-a-b-l)}{\Gamma(c-a-b)} \Gamma(c-a-b)=(a+b-c+1)_{l} \Gamma(c-a-b) . \tag{12}
\end{equation*}
$$

Hence,

$$
F(a, b ; c ; z)=\frac{\Gamma(c) \Gamma(c-a-b)}{\Gamma(c-a) \Gamma(c-b)} F(a, b ; a+b-c+1 ; 1-z)
$$

Lemma 43. Let $a, b, c \in \mathbb{R}$ and $z \in[0,1]$. Then,

$$
\sum_{k=0}^{\infty} \frac{(a)_{k}(b)_{k}}{(c)_{k}} \frac{F(-k, d ; b ; z)}{k!}=\frac{\Gamma(c) \Gamma(c-a-b)}{\Gamma(c-a) \Gamma(c-b)} F(a, d ; a+b-c+1 ; z)
$$

Proof.

$$
\begin{aligned}
& \sum_{k=0}^{\infty} \frac{(a)_{k}(b)_{k}}{(c)_{k}} \frac{F(-k, d ; b ; z)}{k!}=\sum_{k=0}^{\infty} \sum_{l=0}^{k} \frac{(a)_{k}(b)_{k}}{(c)_{k}} \frac{1}{k!} \frac{(-k)_{l}(d)_{l}}{(b)_{l}} \frac{z^{l}}{l!} \\
&=\sum_{k=0}^{\infty} \sum_{l=0}^{k} \frac{(a)_{k}(b)_{k}}{(c)_{k}} \frac{1}{k!}(-1)^{l}\binom{k}{l} \frac{(d)_{l}}{(b)_{l}} z^{l} \\
&=\sum_{l=0}^{\infty}(-1)^{l} \frac{(d)_{l}}{(b)_{l}} z^{l} \sum_{k=0}^{\infty} \frac{(a)_{k+l}(b)_{k+l}}{(c)_{k+l}} \frac{1}{(k+l)!}\binom{k+l}{l} \\
& \quad=\sum_{l=0}^{\infty}(-1)^{l} \frac{(d)_{l}}{(b)_{l}} \frac{(a)_{l}(b)_{l}}{(c)_{l}} \frac{z^{l}}{l!} \sum_{k=0}^{\infty} \frac{(a+l)_{k}(b+l)_{k}}{(c+l)_{k}} \frac{1}{k!} \\
& \quad=\sum_{l=0}^{\infty}(-1)^{l} \frac{(d)_{l}(a)_{l}}{(c)_{l}} \frac{z^{l}}{l!} \sum_{k=0}^{\infty} \frac{(a+l)_{k}(b+l)_{k}}{(c+l)_{k}} \frac{1}{k!}
\end{aligned}
$$

Applying (11) and (12), we obtain

$$
\begin{gathered}
\sum_{k=0}^{\infty} \frac{(a)_{k}(b)_{k}}{(c)_{k}} \frac{F(-k, d ; b ; z)}{k!}=\frac{1}{\Gamma(c-a) \Gamma(c-b)} \sum_{l=0}^{\infty}(-1)^{l} \frac{(d)_{l}(a)_{l}}{(c)_{l}} \frac{z^{l}}{l!} \Gamma(c+l) \Gamma(c-a-b-l) \\
=\frac{\Gamma(c) \Gamma(c-a-b)}{\Gamma(c-a) \Gamma(c-b)} \sum_{l=0}^{\infty} \frac{(d)_{l}(a)_{l}}{(a+b-c+1)_{l}} \frac{z^{l}}{l!} \\
=\frac{\Gamma(c) \Gamma(c-a-b)}{\Gamma(c-a) \Gamma(c-b)} F(a, d ; a+b-c+1 ; z)
\end{gathered}
$$

Lemma 44. Let $a, b, c, d, e \in \mathbb{R}$ and $z \in[-1,1]$. Then,

$$
\sum_{k=0}^{\infty} \frac{(a)_{k}(b)_{k}}{(c)_{k}} \frac{z_{1}^{k}}{k!} F\left(-k, d, e, z_{2}\right)=\sum_{k=0}^{\infty} \frac{(a)_{k}(b)_{k}(d)_{k}}{(c)_{k}(e)_{k}} \frac{(-1)^{k} z_{1}^{k} z_{2}^{k}}{k!} F\left(a+k, b+k ; c+k ; z_{1}\right)
$$

Proof. First, note that

$$
\begin{aligned}
\sum_{k=0}^{\infty} \frac{(a)_{k}(b)_{k}}{(c)_{k}} \frac{z_{1}^{k}}{k!} F\left(-k, d, e, z_{2}\right) & =\sum_{k=0}^{\infty} \frac{(a)_{k}(b)_{k}}{(c)_{k}} \frac{z_{1}^{k}}{k!} \sum_{j=0}^{k} \frac{(-k)_{j}(d)_{j}}{(e)_{j}} \frac{z_{2}^{j}}{j!} \\
& =\sum_{j=0}^{\infty} \frac{(d)_{j}}{(e)_{j}} \frac{z_{2}^{j}}{j!} \sum_{k=j}^{\infty} \frac{(a)_{k}(b)_{k}(-k)_{j}}{(c)_{k}} \frac{z_{1}^{k}}{k!}
\end{aligned}
$$

Then, using the identities $(-k)_{j}=(-1)^{j} \frac{k!}{(k-j)!}$ and $(a)_{k+j}=(a)_{j}(a+j)_{k}$, the last expression becomes

$$
\begin{aligned}
\sum_{j=0}^{\infty} \frac{(d)_{j}}{(e)_{j}} \frac{(-1)^{j} z_{2}^{j}}{j!} \sum_{k=j}^{\infty} \frac{(a)_{k}(b)_{k}}{(c)_{k}} \frac{z_{1}^{k}}{(k-j)!} & =\sum_{j=0}^{\infty} \frac{(d)_{j}}{(e)_{j}} \frac{(-1)^{j} z_{2}^{j}}{j!} \sum_{k=0}^{\infty} \frac{(a)_{k+j}(b)_{k+j}}{(c)_{k+j}} \frac{z_{1}^{j+k}}{k!} \\
& =\sum_{j=0}^{\infty} \frac{(a)_{j}(b)_{j}(d)_{j}}{(c)_{j}(e)_{j}} \frac{(-1)^{j} z_{1}^{j} z_{2}^{j}}{j!} \sum_{k=0}^{\infty} \frac{(a+j)_{k}(b+j)_{k}}{(c+j)_{k}} \frac{z_{1}^{k}}{k!}
\end{aligned}
$$

Proposition 45. For all $m, n \in \mathbb{N}$, it holds that

$$
\begin{aligned}
& B\left(\frac{n+1}{2}, \frac{d-1}{2}\right) \sum_{k=0}^{\infty} \frac{\left(-\frac{m}{2}\right)_{k}\left(\frac{1}{2}\right)_{k}}{\left(\frac{n+d}{2}\right)_{k}} \frac{F\left(-k,-\frac{n}{2} ; \frac{1}{2} ; \cos ^{2}(x, y)\right)}{k!} \\
& \quad=B\left(\frac{n+1}{2}, \frac{m}{2}+\frac{d-1}{2}\right) F\left(-\frac{m}{2},-\frac{n}{2} ; \frac{d-1}{2} ; \sin ^{2}(x, y)\right) .
\end{aligned}
$$

Remark 46. In the particular case when $(x, y)=0$, two successive applications of $[1$, (15.1.20)] yield

$$
B\left(\frac{n+1}{2}, \frac{d-1}{2}\right) \sum_{k=0}^{\infty} \frac{\left(-\frac{m}{2}\right)_{k}\left(\frac{1}{2}\right)_{k}}{\left(\frac{n+d}{2}\right)_{k}} \frac{F\left(-k,-\frac{n}{2} ; \frac{1}{2} ; \cos ^{2}(x, y)\right)}{k!}=B\left(\frac{n+1}{2}, \frac{d+m-1}{2}\right) .
$$

This is the statement in Proposition 45, since $F(a, b ; c ; 0)=1$.
Proof of Proposition 45. According to Lemma 42, we have

$$
\begin{align*}
& F\left(-\frac{m}{2},-\frac{n}{2} ; \frac{d-1}{2} ; \sin ^{2}(x, y)\right) \\
& \quad=\frac{\Gamma\left(\frac{d-1}{2}\right) \Gamma\left(\frac{d-1}{2}+\frac{m}{2}+\frac{n}{2}\right)}{\Gamma\left(\frac{d-1}{2}+\frac{m}{2}\right) \Gamma\left(\frac{d-1}{2}+\frac{n}{2}\right)} F\left(-\frac{m}{2},-\frac{n}{2} ;-\frac{m}{2}-\frac{n}{2}-\frac{d-1}{2}+1 ; \cos ^{2}(x, y)\right) . \tag{13}
\end{align*}
$$

Moreover, by applying Lemma 43, we get

$$
\begin{align*}
\sum_{k=0}^{\infty} & \frac{\left(-\frac{m}{2}\right)_{k}\left(\frac{1}{2}\right)_{k}}{\left(\frac{n+d}{2}\right)_{k}} \frac{F\left(-k,-\frac{n}{2} ; \frac{1}{2} ; \cos ^{2}(x, y)\right)}{k!} \\
& =\frac{\Gamma\left(\frac{n+d}{2}\right) \Gamma\left(\frac{n+d}{2}+\frac{m}{2}-\frac{1}{2}\right)}{\Gamma\left(\frac{n+d}{2}+\frac{m}{2}\right) \Gamma\left(\frac{n+d}{2}-\frac{1}{2}\right)} F\left(-\frac{m}{2},-\frac{n}{2},-\frac{m}{2}+\frac{1}{2}-\frac{n+d}{2}+1 ; \cos ^{2}(x, y)\right) \tag{14}
\end{align*}
$$

Comparing (13) and (14), Proposition 45 follows from the identity

$$
B\left(\frac{n+1}{2}, \frac{m}{2}+\frac{d-1}{2}\right) \frac{\Gamma\left(\frac{d-1}{2}\right)}{\Gamma\left(\frac{d+m-1}{2}\right)}=B\left(\frac{n+1}{2}, \frac{d-1}{2}\right) \frac{\Gamma\left(\frac{n+d}{2}\right)}{\Gamma\left(\frac{n+d+m}{2}\right)} .
$$

Lemma 47. For all $a \in \mathbb{R}$ and all $s \in \mathbb{N}$,

$$
\binom{a}{2 s}=\frac{\binom{\frac{a}{2}}{s}\left(\frac{a-1}{s}\right)}{\binom{2 s}{s}} 2^{2 s}
$$

Proof. A routine calculation yields

$$
\binom{a}{2 s}=\frac{\Gamma(a+1)}{\Gamma(2 s+1) \Gamma(a-2 s+1)}=\binom{\frac{a}{2}}{s}\binom{\frac{a-1}{2}}{s} \frac{\Gamma\left(\frac{1}{2}\right) \Gamma\left(\frac{s+1}{2}\right)}{\Gamma\left(s+\frac{1}{2}\right)}=\frac{\binom{\frac{a}{2}}{s}\left(\frac{a-1}{s}\right)}{\binom{s}{s}} 2^{2 s} .
$$

For the second equality, we applied the duplication formula on each Gamma function appearing in the second term, and for the third equality, we applied the duplication formula to $\Gamma(2 s+1)$.

Lemma 48. For all $a \in \mathbb{R}$ and any function f, the following identity holds,

$$
\sum_{k=0}^{\infty}\binom{\frac{a}{2}}{k} \sum_{l=0}^{k}\binom{k}{l} 2^{k-l} f(k+l)=\sum_{s=0}^{\frac{a}{2}}\binom{a}{2 s} f(2 s)
$$

where the double sum on the left-hand side is over k and l with the same parity only. Proof. Substition of $k+l$ by $2 s$ yields

$$
\sum_{k=0}^{\infty}\binom{\frac{a}{2}}{k} \sum_{l=0}^{k}\binom{k}{l} 2^{k-l} f(k+l)=\sum_{s=0}^{\infty} \sum_{l=0}^{s}\binom{\frac{a}{2}}{2 s-l}\binom{2 s-l}{l} 2^{2 s-2 l} f(2 s)
$$

Applying the duplication formula to $\Gamma(2 s-2 l+1)$, we get

$$
\begin{gathered}
\binom{\frac{a}{2}}{2 s-l}\binom{2 s-l}{l} 2^{2 s-2 l}=\frac{\Gamma\left(\frac{a}{2}+1\right)}{\Gamma\left(\frac{a}{2}-2 s+l+1\right)} \frac{2^{2 s-2 l}}{\Gamma(l+1) \Gamma(2 s-2 l+1)} \\
\quad=\frac{\Gamma\left(\frac{a}{2}+1\right)}{\Gamma\left(\frac{a}{2}-2 s+l+1\right)} \frac{\Gamma\left(\frac{1}{2}\right)}{\Gamma(l+1) \Gamma(s-l+1) \Gamma\left(s-l+\frac{1}{2}\right)} \\
\quad=\binom{\frac{a}{2}}{s}\binom{s-\frac{1}{2}}{l}\binom{\frac{a-1}{2}-\left(s-\frac{1}{2}\right)}{s-l} \frac{\Gamma\left(\frac{1}{2}\right) \Gamma(s+1)}{\Gamma\left(s+\frac{1}{2}\right)} .
\end{gathered}
$$

Then, the well-known identity, $\sum_{l=0}^{k}\binom{m}{l}\binom{n-m}{k-l}=\binom{n}{k}$, valid for any complex numbers m and n, and the duplication formula applied to $\Gamma(2 s+1)$ imply

$$
\sum_{l=0}^{s}\binom{\frac{a}{2}}{2 s-l}\binom{2 s-l}{l} 2^{2 s-2 l}=\frac{\binom{\frac{a}{2}}{s}\binom{\frac{a-1}{2}}{s}}{\binom{2 s}{s}} 2^{2 s}
$$

Thanks to Lemma 47, the proof is complete.
Lemma 49. Let $m, n \in \mathbb{N}$. Then,

$$
\int_{S^{1}(x \oplus y)}|\omega \cdot x|^{m}|\omega \cdot y|^{n} \mathrm{~d} \omega^{1}=2 B\left(\frac{m}{2}+\frac{1}{2}, \frac{n}{2}+\frac{1}{2}\right) F\left(-\frac{n}{2},-\frac{m}{2} ; \frac{1}{2} ; \cos ^{2}(x, y)\right)
$$

Proof. According to Lemma 22, we have

$$
\int_{S^{1}(x \oplus y)}|\omega \cdot x|^{m}|\omega \cdot y|^{n} \mathrm{~d} \omega^{1}=\int_{-1}^{1} \int_{S^{1} \cap x^{\perp}}\left(1-t^{2}\right)^{\frac{-1}{2}}|t|^{m}\left|t(y \cdot x)+\sqrt{1-t^{2}}(y \cdot \omega)\right|^{n} \mathrm{~d} \omega^{0} \mathrm{~d} t .
$$

Applying twice a binomial expansion, we obtain

$$
\begin{aligned}
& \int_{-1}^{1} \int_{S^{1} \cap x^{\perp}}\left(1-t^{2}\right)^{-\frac{1}{2}}|t|^{m}\left|t^{2}(y \cdot x)^{2}+\left(1-t^{2}\right)(y \cdot \omega)^{2}+2 t \sqrt{1-t^{2}}(y \cdot x)(y \cdot \omega)\right|^{\frac{n}{2}} \mathrm{~d} \omega^{0} \mathrm{~d} t \\
& =\sum_{k=0}^{\infty}\binom{\frac{n}{2}}{k} \int_{-1}^{1} \int_{S^{1} \cap x^{\perp}}\left(1-t^{2}\right)^{-\frac{1}{2}}|t|^{m}\left(t^{2}(y \cdot x)^{2}\right)^{\frac{n}{2}-k} \\
& \quad \times\left(\left(1-t^{2}\right)(y \cdot \omega)^{2}+2 t \sqrt{1-t^{2}}(y \cdot x)(y \cdot \omega)\right)^{k} \mathrm{~d} \omega^{0} \mathrm{~d} t \\
& =\sum_{k=0}^{\infty}\binom{\frac{n}{2}}{k} \sum_{l=0}^{k}\binom{k}{l} 2^{k-l}|x \cdot y|^{n-2 k}(x \cdot y)^{k-l} \\
& \quad \times \int_{-1}^{1}|t|^{m+n-2 k} t^{k-l}{\sqrt{1-t^{2}}}^{k+l-1} \mathrm{~d} t \int_{S^{1} \cap x^{\perp}}|y \cdot \omega|^{k+l} \mathrm{~d} \omega^{0} \\
& =2 \sum_{k=0}^{\infty}\binom{\frac{n}{2}}{k} \sum_{l=0}^{k}\binom{k}{l} 2^{k-l}|x \cdot y|^{n-2 k}(x \cdot y)^{k-l} \sin ^{k+l}(x, y) \int_{-1}^{1}|t|^{m+n-2 k} t^{k-l}{\sqrt{1-t^{2}}}^{k+l-1} \mathrm{~d} t .
\end{aligned}
$$

Notice that the terms in the double sum are non-zero only if k and l have the same parity. In that case, according to Lemma 9 and Lemma 48, we have

$$
\begin{gathered}
2|x \cdot y|^{n} \sum_{k=0}^{\infty}\binom{\frac{n}{2}}{k} \sum_{l=0}^{k}\binom{k}{l} 2^{k-l} \tan ^{k+l}(x, y) B\left(\frac{m+n}{2}-\frac{k+l}{2}+\frac{1}{2}, \frac{k+l}{2}+\frac{1}{2}\right) \\
=2|x \cdot y|^{n} \sum_{k=0}^{\infty}\binom{n}{2 k} \tan ^{2 k}(x, y) B\left(\frac{m+n}{2}-k+\frac{1}{2}, k+\frac{1}{2}\right),
\end{gathered}
$$

where the double sum on the left-hand side is over k and l with the same parity. By applying Lemma 41 with $a=\frac{m}{2}$, we get

$$
\binom{n}{2 k} B\left(\frac{m+n}{2}-k+\frac{1}{2}, k+\frac{1}{2}\right)=\frac{\left(-\frac{n}{2}\right)_{k}\left(-\frac{n-1}{2}\right)_{k}}{\left(-\frac{m+n}{2}+\frac{1}{2}\right)_{k}} \frac{(-1)^{k}}{k!} B\left(\frac{m+n}{2}+\frac{1}{2}, \frac{1}{2}\right) .
$$

Hence, we have attained the following expression

$$
\begin{aligned}
& 2|x \cdot y|^{n} B\left(\frac{m+n}{2}+\frac{1}{2}, \frac{1}{2}\right) \frac{\left(-\frac{n}{2}\right)_{k}\left(-\frac{n-1}{2}\right)_{k}}{\left(-\frac{m+n}{2}+\frac{1}{2}\right)_{k}} \sum_{k=0}^{\frac{n}{2}} \frac{\left(-\tan ^{-2}(x, y)\right)^{k}}{k!} \\
& \quad=2|x \cdot y|^{n} B\left(\frac{m+n}{2}+\frac{1}{2}, \frac{1}{2}\right) F\left(-\frac{n}{2},-\frac{n}{2}+\frac{1}{2} ;-\frac{m+n}{2}+\frac{1}{2} ;-\tan ^{2}(x, y)\right) .
\end{aligned}
$$

According to $[1,(15.3 .4)]$ with $z=\cos ^{2}(x, y)$,

$$
\begin{gathered}
2|x \cdot y|^{n} B\left(\frac{m+n}{2}+\frac{1}{2}, \frac{1}{2}\right) F\left(-\frac{n}{2},-\frac{n}{2}+\frac{1}{2} ;-\frac{m+n}{2}+\frac{1}{2} ;-\tan ^{2}(x, y)\right) \\
=2 B\left(\frac{m+n}{2}+\frac{1}{2}, \frac{1}{2}\right) F\left(-\frac{n}{2},-\frac{m}{2} ;-\frac{m+n}{2}+\frac{1}{2} ; \sin ^{2}(x, y)\right) .
\end{gathered}
$$

An application of Lemma 42 with $c=\frac{1}{2}$ completes the proof.
Remark 50. By using an alternative binomial expansion (or Lemma 42), the identity in Lemma 49 becomes

$$
\begin{equation*}
\int_{S^{1}(x \oplus y)}|\omega \cdot x|^{m}|\omega \cdot y|^{n} \mathrm{~d} \omega^{1}=2 B\left(\frac{m+n+1}{2}, \frac{1}{2}\right) F\left(-\frac{n}{2},-\frac{m}{2} ;-\frac{m+n-1}{2} ; \sin ^{2}(x, y)\right) . \tag{15}
\end{equation*}
$$

(The hypergeometric function is well-defined but can only be expressed as a finite series for non-negative odd integers m, cf. $[1,(15.4 .2)]$). Moreover, when $m=0$, (15) becomes, cf. $[1,(15.1 .8)]$,

$$
\int_{S^{1}(x \oplus y)}|\omega \cdot y|^{n} \mathrm{~d} \omega^{1}=2 B\left(\frac{n+1}{2}, \frac{1}{2}\right)
$$

which is also the result in Proposition 19, since $\sigma_{1}=2$. For $m=1,[1,(15.1 .8)]$ also offers a reduction,

$$
\int_{S^{1}(x \oplus y)}|\omega \cdot x||\omega \cdot y|^{n} \mathrm{~d} \omega^{1}=2 B\left(\frac{n+1}{2}, \frac{1}{2}\right) \cos (x, y) .
$$

Comparing with the identity in Lemma 49, we now have

$$
B\left(1, \frac{n+1}{2}\right) F\left(-\frac{n}{2},-\frac{1}{2} ; \frac{1}{2} ; \cos ^{2}(x, y)\right)=B\left(\frac{n}{2}+1, \frac{1}{2}\right) \cos (x, y)
$$

Proposition 51. Let $x, y \in S^{d-1}, m, n \in \mathbb{N}$. Then,

$$
\begin{aligned}
& \int_{S^{d-1}}|x \cdot \omega|^{m}|y \cdot \omega|^{n} \mathrm{~d} \omega \\
& \quad=\sigma_{d-2} B\left(\frac{n+m+2}{2}, \frac{d-2}{2}\right) B\left(\frac{m}{2}+\frac{1}{2}, \frac{n}{2}+\frac{1}{2}\right) F\left(-\frac{n}{2},-\frac{m}{2} ; \frac{1}{2} ; \cos ^{2}(x, y)\right) .
\end{aligned}
$$

Proof. First, note that

$$
\begin{aligned}
& \int_{S^{d-1}}|x \cdot \omega|^{m}|y \cdot \omega|^{n} \mathrm{~d} \omega^{d-1} \\
& \quad=\int_{S^{d-1}}|p(p(\omega \mid x \oplus y) \mid x)|^{m}|p(p(\omega \mid x \oplus y) \mid y)|^{n} \mathrm{~d} \omega^{d-1} .
\end{aligned}
$$

Then, we apply Proposition 35 with $B_{p}=\operatorname{span}\{x, y\}$,

$$
\begin{aligned}
\int_{S^{d-1}} & |p(p(\omega \mid x \oplus y) \mid x)|^{m}|p(p(\omega \mid x \oplus y) \mid y)|^{n} \mathrm{~d} \omega^{d-1} \\
& =\frac{\sigma_{d-2}}{2} \int_{S^{p-1}\left(B_{p}\right)} \int_{0}^{1} t^{m / 2}\left|p\left(\omega_{0} \mid x\right)\right|^{m} t^{n / 2}\left|p\left(\omega_{0} \mid y\right)\right|^{n} t^{\frac{2-2}{2}}(1-t)^{\frac{d-2-2}{2}} \mathrm{~d} t \mathrm{~d} \omega_{0}^{p-1} \\
& =\frac{\sigma_{d-2}}{2} \int_{S^{p-1}\left(B_{p}\right)}\left|p\left(\omega_{0} \mid y\right)\right|^{n}\left|p\left(\omega_{0} \mid x\right)\right|^{m} \mathrm{~d} \omega_{0}^{p-1} \int_{0}^{1} t^{\frac{n+m}{2}}(1-t)^{\frac{d-4}{2}} \mathrm{~d} t \\
& =\frac{\sigma_{d-2} B\left(\frac{n+m+2}{2}, \frac{d-2}{2}\right)}{2} \int_{S^{p-1}\left(B_{p}\right)}\left|p\left(\omega_{0} \mid y\right)\right|^{n}\left|p\left(\omega_{0} \mid x\right)\right|^{m} \mathrm{~d} \omega_{0}^{p-1} .
\end{aligned}
$$

Using Lemma 49 we get

$$
\begin{aligned}
& \int_{S^{d-1}}|x \cdot \omega|^{m}|y \cdot \omega|^{n} \mathrm{~d} \omega^{d-1} \\
& \quad=\sigma_{d-2} B\left(\frac{n+m+2}{2}, \frac{d-2}{2}\right) B\left(\frac{m}{2}+\frac{1}{2}, \frac{n}{2}+\frac{1}{2}\right) F\left(-\frac{n}{2},-\frac{m}{2} ; \frac{1}{2} ; \cos ^{2}(x, y)\right) .
\end{aligned}
$$

Lemma 52. Let $m, n \in \mathbb{N}$ and let $x, y \in S^{d-1}$. Then,

$$
\int_{S^{1}(x \oplus y)}{\sqrt{1-|\omega \cdot x|^{2}}}^{m}|\omega \cdot y|^{n} \mathrm{~d} \omega^{1}=2 B\left(\frac{n}{2}+\frac{1}{2}, \frac{m}{2}+\frac{1}{2}\right) F\left(-\frac{m}{2},-\frac{n}{2} ; \frac{1}{2} ; \sin ^{2}(x, y)\right) .
$$

Proof. A binomial expansion of the square root and an application of Lemma 49 yield

$$
\left.\begin{array}{rl}
\int_{S^{1}(x \oplus y)} & \sqrt{1-|\omega \cdot x|^{2}} \\
\\
= & \sum_{k=0}^{\infty}|\omega \cdot y|^{n} \mathrm{~d} \omega^{1} \\
\frac{m}{2} \\
k
\end{array}\right)(-1)^{k} \int_{S^{1}(x \oplus y)}|\omega \cdot x|^{2 k}|\omega \cdot y|^{n} \mathrm{~d} \omega^{1}, ~=2 \sum_{k=0}^{\infty} \frac{\left(-\frac{m}{2}\right)}{k!} B\left(\frac{n+1}{2}, k+\frac{1}{2}\right) F\left(-k,-\frac{n}{2} ; \frac{1}{2} ; \cos ^{2}(x, y)\right) .
$$

According to Lemma 43, the last expression is equal to

$$
=2 B\left(\frac{n+1}{2}, \frac{1}{2}\right) F\left(-\frac{m}{2},-\frac{n}{2} ;-\frac{m+n}{2}+\frac{1}{2} ; \cos ^{2}(x, y)\right) .
$$

Finally, using Lemma 42 with $c=\frac{1}{2}$, we obtain the alternative representation

$$
\int_{S^{1}(x \oplus y)}{\sqrt{1-|\omega \cdot x|^{2}}}^{m}|\omega \cdot y|^{n} \mathrm{~d} \omega^{1}=2 B\left(\frac{n}{2}+\frac{1}{2}, \frac{m}{2}+\frac{1}{2}\right) F\left(-\frac{m}{2},-\frac{n}{2} ; \frac{1}{2} ; \sin ^{2}(x, y)\right) .
$$

Proposition 53. Let $x, y \in S^{d-1}$ and $m, n \in \mathbb{N}$. Then,

$$
\begin{aligned}
\int_{S^{d-1}} & {\sqrt{1-(x \cdot \omega)^{2}}}^{m}|y \cdot \omega|^{n} \mathrm{~d} \omega \\
& =\sigma_{d-1} B\left(\frac{n+1}{2}, \frac{m}{2}+\frac{d-1}{2}\right) F\left(-\frac{m}{2},-\frac{n}{2} ; \frac{d-1}{2} ; \sin ^{2}(x, y)\right) .
\end{aligned}
$$

Proof. A binomial expansion followed by an application of Proposition 51 implies

$$
\begin{aligned}
& \int_{S^{d-1}}{\sqrt{1-(x \cdot \omega)^{2}}}^{m}|y \cdot \omega|^{n} \mathrm{~d} \omega \\
&= \sum_{k=0}^{\infty}\binom{\frac{m}{2}}{k}(-1)^{k} \int_{S^{d-1}}|\omega \cdot x|^{2 k}|\omega \cdot y|^{n} \mathrm{~d} \omega \\
&= \sigma_{d-2} \sum_{k=0}^{\infty}\binom{\frac{m}{2}}{k}(-1)^{k} B\left(k+\frac{n}{2}+1, \frac{d-2}{2}\right) B\left(\frac{n+1}{2}, k+\frac{1}{2}\right) \\
& \quad \times F\left(-k,-\frac{n}{2} ; \frac{1}{2} ; \cos ^{2}(x, y)\right) .
\end{aligned}
$$

Since

$$
\begin{aligned}
\sigma_{d-2} & \binom{\frac{m}{2}}{k}(-1)^{k} B\left(k+\frac{n}{2}+1, \frac{d-2}{2}\right) B\left(\frac{n+1}{2}, k+\frac{1}{2}\right) \\
& =\sigma_{d-2} \frac{\Gamma\left(\frac{d-2}{2}\right) \Gamma\left(\frac{n+1}{2}\right) \Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{n+d}{2}\right)} \frac{\left(-\frac{m}{2}\right)_{k}}{k!} \frac{\left(\frac{1}{2}\right)_{k}}{\left(\frac{n+d}{2}\right)_{k}} \\
& =\sigma_{d-1} B\left(\frac{d-1}{2}, \frac{n+1}{2}\right) \frac{\left(-\frac{m}{2}\right)_{k}}{k!} \frac{\left(\frac{1}{2}\right)_{k}}{\left(\frac{n+d}{2}\right)_{k}}
\end{aligned}
$$

we have

$$
\begin{aligned}
\int_{S^{d-1}} & {\sqrt{1-(x \cdot \omega)^{2}}}^{m}|y \cdot \omega|^{n} \mathrm{~d} \omega \\
& =\sigma_{d-1} B\left(\frac{d-1}{2}, \frac{n+1}{2}\right) \sum_{k=0}^{\infty} \frac{\left(-\frac{m}{2}\right)_{k}\left(\frac{1}{2}\right)_{k}}{\left(\frac{n+d}{2}\right)_{k}} \frac{F\left(-k,-\frac{n}{2} ; \frac{1}{2} ; \cos ^{2}(x, y)\right)}{k!}
\end{aligned}
$$

According to Proposition 45, the last expression is equal to

$$
\sigma_{d-1} B\left(\frac{n+1}{2}, \frac{m}{2}+\frac{d-1}{2}\right) F\left(-\frac{m}{2},-\frac{n}{2} ; \frac{d-1}{2} ; \sin ^{2}(x, y)\right)
$$

and the proof is complete.

Remark 54. In the special case where $n=0$, Proposition 53 states

$$
\int_{S^{d-1}}{\sqrt{1-(x \cdot \omega)^{2}}}^{m} \mathrm{~d} \omega^{d-1}=\sigma_{d-1} B\left(\frac{1}{2}, \frac{d-1}{2}\right) F\left(-\frac{m}{2}, \frac{1}{2} ; \frac{d}{2} ; 1\right) .
$$

Hence, when $n=0$, Proposition 53 is equivalent to Proposition 21.
Proposition 55. Let a, b and c be natural numbers. Let x, y and z be unit vectors with $y \perp z, x \neq y$ and $x \notin y^{\perp}$. Then,

$$
\begin{aligned}
& \int_{S^{2}}|x \cdot \omega|^{a}|y \cdot \omega|^{b}|z \cdot \omega|^{c} \mathrm{~d} \omega^{2}=2|x \cdot y|^{a} B\left(\frac{a+b}{2}+1, \frac{c}{2}+\frac{1}{2}\right) B\left(\frac{a+b}{2}+\frac{1}{2}, \frac{1}{2}\right) \\
& \times \sum_{s=0}^{\infty} \frac{\left(-\frac{a}{2}\right)_{s}\left(-\frac{a-1}{2}\right)_{s}}{\left(-\frac{a+b}{2}+\frac{1}{2}\right)_{s}} \frac{(-1)^{s}}{s!} \tan ^{2 s}(x, y) F\left(-s,-\frac{c}{2} ; \frac{1}{2} ; \frac{\cos ^{2}(x, z)}{\sin ^{2}(x, y)}\right) .
\end{aligned}
$$

Proof. Lemma 22 with $d=3$ implies

$$
\begin{aligned}
& \int_{S^{2}}|x \cdot \omega|^{a}|y \cdot \omega|^{b}|z \cdot \omega|^{c} \mathrm{~d} \omega^{2} \\
& =\int_{-1}^{1} \int_{S^{2}\left(y^{\perp}\right)}\left|x \cdot\left(t y+\sqrt{1-t^{2}} \omega\right)\right|^{a}\left|y \cdot\left(t y+\sqrt{1-t^{2}} \omega\right)\right|^{b}\left|z \cdot\left(t y+\sqrt{1-t^{2}} \omega\right)\right|^{c} \mathrm{~d} \omega^{1} \mathrm{~d} t \\
& \left.=\int_{-1}^{1} \int_{S^{2}\left(y^{\perp}\right)} \mid\left(t^{2}(x \cdot y)^{2}+\left(1-t^{2}\right)(x \cdot \omega)^{2}+2 t \sqrt{1-t^{2}}(x \cdot y)(x \cdot \omega)\right)^{2}\right)^{\frac{a}{2}} \\
& \\
& \quad \times|t|^{b} \sqrt{1-t^{2}}{ }^{c}|z \cdot \omega|^{c} \mathrm{~d} \omega^{1} \mathrm{~d} t .
\end{aligned}
$$

Applying the binomial formula twice, we obtain

$$
\begin{aligned}
& \int_{S^{2}}|x \cdot \omega|^{a}|y \cdot \omega|^{b}|z \cdot \omega|^{c} \mathrm{~d} \omega^{2} \\
&= \sum_{k=0}^{\infty} \sum_{l=0}^{k}\binom{\frac{a}{2}}{k}\binom{k}{l} \int_{-1}^{1} \int_{S^{2}\left(y^{\perp}\right)}\left(t^{2}(x \cdot y)^{2}\right)^{\frac{a}{2}-k}\left(1-t^{2}\right)^{l}(x \cdot \omega)^{2 l} \\
& \times\left(2 t \sqrt{1-t^{2}}(x \cdot y)(x \cdot \omega)\right)^{k-l}|t|^{b}{\sqrt{1-t^{2}}}^{c}|z \cdot \omega|^{c} \mathrm{~d} \omega^{1} \mathrm{~d} t
\end{aligned} \quad \begin{aligned}
= & \sum_{k=0}^{\infty} \sum_{l=0}^{k}\binom{\frac{a}{2}}{k}\binom{k}{l}|x \cdot y|^{a-(k+l)} 2^{k-l} \\
& \int_{-1}^{1}|t|^{a+b-2 k} t^{k-l}{\sqrt{1-t^{2}}}^{c+k+l} \mathrm{~d} t \\
& \times \int_{S^{2}\left(y^{\perp}\right)}|x \cdot \omega|^{2 l}(x \cdot \omega)^{k-l}|z \cdot \omega|^{c} \mathrm{~d} \omega^{1}
\end{aligned}
$$

Note that both the first and second integral are non zero only if k and l have the same parity. The first integral can be computed using Lemma 9,

$$
2 \int_{0}^{1}\left(t^{2}\right)^{\frac{a+b}{2}-\frac{k+l}{2}}\left(1-t^{2}\right)^{\frac{c}{2}+\frac{k+l}{2}} \mathrm{~d} t=B\left(\frac{a+b}{2}-\frac{k+l}{2}+\frac{1}{2}, \frac{c}{2}+\frac{k+l}{2}+1\right) .
$$

Using Lemma 49 together with the decomposition $x=\sin (x, y) x_{1}+\cos (x, y) y$, where $x_{1}=\pi\left(x \mid y^{\perp}\right)$, the second integral can be written in terms of a hypergeometric function

$$
\begin{gathered}
\int_{S^{2}\left(y^{\perp}\right)}|x \cdot \omega|^{a-(k+l)}|z \cdot \omega|^{c} \mathrm{~d} \omega^{1}=\sin ^{k+l}(x, y) \int_{S^{2}\left(y^{\perp}\right)}\left|x_{1} \cdot \omega\right|^{a-(k+l)}|z \cdot \omega|^{c} \mathrm{~d} \omega^{1} \\
=2 \sin ^{k+l}(x, y) B\left(\frac{k+l}{2}+\frac{1}{2}, \frac{c}{2}+\frac{1}{2}\right) F\left(-\frac{k+l}{2},-\frac{c}{2} ; \frac{1}{2} ; \cos ^{2}\left(x_{1}, z\right)\right) .
\end{gathered}
$$

Thus,

$$
\begin{aligned}
& \int_{S^{2}}|x \cdot \omega|^{a}|y \cdot \omega|^{b}|z \cdot \omega|^{c} \mathrm{~d} \omega^{2} \\
& =2|x \cdot y|^{a} \sum_{k=0}^{\infty} \sum_{l=0}^{k}\binom{\frac{a}{2}}{k}\binom{k}{l} 2^{k-l} B\left(\frac{a+b}{2}-\frac{k+l}{2}+\frac{1}{2}, \frac{c}{2}+\frac{k+l}{2}+1\right) \\
& \quad \times \tan ^{k+l}(x, y) B\left(\frac{k+l}{2}+\frac{1}{2}, \frac{c}{2}+\frac{1}{2}\right) F\left(-\frac{k+l}{2},-\frac{c}{2} ; \frac{1}{2} ; \cos ^{2}\left(x_{1}, z\right)\right),
\end{aligned}
$$

where the double sum on the right-hand side is over k and l with $(-1)^{k+l}=1$ only. We apply Lemma 48 and conclude

$$
\begin{aligned}
& \int_{S^{2}}|x \cdot \omega|^{a}|y \cdot \omega|^{b}|z \cdot \omega|^{c} \mathrm{~d} \omega^{2} \\
& =2|x \cdot y|^{a} \sum_{s=0}^{\infty}\binom{a}{2 s} B\left(\frac{a+b}{2}-s+\frac{1}{2}, \frac{c}{2}+s+1\right) B\left(s+\frac{1}{2}, \frac{c}{2}+\frac{1}{2}\right) \\
& \\
& \quad \times \tan ^{2 s}(x, y) F\left(-s,-\frac{c}{2} ; \frac{1}{2} ; \cos ^{2}\left(x_{1}, z\right)\right)
\end{aligned}
$$

Note that $\cos ^{2}\left(x_{1}, z\right)=\frac{p\left(x \mid y^{\perp}\right) \cdot z}{\left|p\left(x \mid y^{\perp}\right)\right|}=\frac{(x-p(x \mid y)) \cdot z}{\sin (x, y)}=\frac{\cos (x, z)}{\sin (x, y)}$, because $y \perp z$. Using the identity

$$
\begin{aligned}
& B\left(\frac{a+b}{2}-s+\frac{1}{2}, \frac{c}{2}+s+1\right) B\left(s+\frac{1}{2}, \frac{c}{2}+\frac{1}{2}\right) \\
& \quad=B\left(\frac{a+b}{2}+1, \frac{c}{2}+\frac{1}{2}\right) B\left(\frac{a+b}{2}-s+\frac{1}{2}, s+\frac{1}{2}\right)
\end{aligned}
$$

together with Lemma 41, we obtain

$$
\begin{aligned}
\int_{S^{2}}|x \cdot \omega|^{a}|y \cdot \omega|^{b} \mid z & \left.\cdot \omega\right|^{c} \mathrm{~d} \omega^{2}=2|x \cdot y|^{a} B\left(\frac{a+b}{2}+1, \frac{c}{2}+\frac{1}{2}\right) B\left(\frac{a+b}{2}+\frac{1}{2}, \frac{1}{2}\right) \\
& \times \sum_{s=0}^{\infty} \frac{\left(-\frac{a}{2}\right)_{s}\left(-\frac{a-1}{2}\right)_{s}}{\left(-\frac{a+b}{2}+\frac{1}{2}\right)_{s}} \frac{(-1)^{s}}{s!} \tan ^{2 s}(x, y) F\left(-s,-\frac{c}{2} ; \frac{1}{2} ; \frac{\cos (x, z)}{\sin (x, y)}\right)
\end{aligned}
$$

Remark 56. In the particular case where $c=0$, Proposition 55 combined with [1, (15.3.4)] and Lemma 42 yield

$$
\begin{aligned}
\int_{S^{2}} \mid & \left.x \cdot \omega\right|^{a}|y \cdot \omega|^{b} \mathrm{~d} \omega^{2} \\
= & 2|x \cdot y|^{a} B\left(\frac{a+b}{2}+1,+\frac{1}{2}\right) B\left(\frac{a+b}{2}+\frac{1}{2}, \frac{1}{2}\right) \\
& \quad \times \sum_{s=0}^{\infty} F\left(-\frac{a}{2},-\frac{a-1}{2} ;-\frac{a+b}{2}+\frac{1}{2} ;-\tan ^{2}(x, y)\right) \\
& =2 B\left(\frac{a}{2}+\frac{1}{2}, \frac{b}{2}+\frac{1}{2}\right) B\left(\frac{a+b}{2}+1, \frac{1}{2}\right) F\left(-\frac{a}{2},-\frac{b}{2} ; \frac{1}{2} ; \cos ^{2}(x, y)\right) .
\end{aligned}
$$

The same result is obtain, using Proposition 51 with $d=3$. Also in the case $a=0$ and $c=0$, Proposition 55 and Proposition 51 are equivalent.

Proposition 57. Let a, b and c be natural numbers. Let x, y and z be unit vectors with $y \perp z, x \neq y$ and $x \notin y^{\perp}$. Then,

$$
\begin{aligned}
& \int_{S^{2}}|x \cdot \omega|^{a}|y \cdot \omega|^{b}|z \cdot \omega|^{c} \mathrm{~d} \omega^{2} \\
& \quad=2 \frac{\Gamma\left(\frac{a+1}{2}\right) \Gamma\left(\frac{b+1}{2}\right) \Gamma\left(\frac{c+1}{2}\right)}{\Gamma\left(\frac{a+b+c}{2}+\frac{3}{2}\right)} \sum_{s=0}^{\infty} \frac{\left(-\frac{a}{2}\right)_{s}\left(-\frac{c}{2}\right)_{s}}{\left(\frac{1}{2}\right)_{s}} \frac{\cos ^{2 s}(x, z)}{s!} F\left(-\frac{a}{2}+s,-\frac{b}{2} ; \frac{1}{2} ; \cos ^{2}(x, y)\right) .
\end{aligned}
$$

Proof. Combining Proposition 55 and Lemma 44, we get

$$
\begin{array}{rl}
\int_{S^{2}}|x \cdot \omega|^{a}|y \cdot \omega|^{b}|z \cdot \omega|^{c} \mathrm{~d} \omega^{2} \\
=2 \mid x & \left.x y\right|^{a} B\left(\frac{a+b}{2}+1, \frac{c}{2}+\frac{1}{2}\right) B\left(\frac{a+b}{2}+\frac{1}{2}, \frac{1}{2}\right) \sum_{s=0}^{\infty} \frac{\left(-\frac{a}{2}\right)_{s}\left(-\frac{a-1}{2}\right)_{s}\left(-\frac{c}{2}\right)_{s}}{\left(-\frac{a+b}{2}+\frac{1}{2}\right)_{s}\left(\frac{1}{2}\right)_{s}} \\
& \quad \times \frac{\cos ^{2 s}(x, z)}{\cos ^{2 s}(x, y)} \frac{F\left(-\frac{a}{2}+s,-\frac{a-1}{2}+s ;-\frac{a+b}{2}+\frac{1}{2}+s ;-\tan ^{2}(x, y)\right)}{s!} .
\end{array}
$$

Successive application of $[1,(15.3 .4)]$ and Lemma 42 yield

$$
\begin{aligned}
F(& \left.-\frac{a}{2}+s,-\frac{a-1}{2}+s ;-\frac{a+b}{2}+\frac{1}{2}+s ;-\tan ^{2}(x, y)\right) \\
& =|x \cdot y|^{-a+2 s} F\left(-\frac{a}{2}+s,-\frac{b}{2} ;-\frac{a+b}{2}+\frac{1}{2}+s ; \sin ^{2}(x, y)\right) \\
& =|x \cdot y|^{-a+2 s} \frac{\Gamma\left(\frac{a+1}{2}-s\right) \Gamma\left(\frac{b+1}{2}\right)}{\Gamma\left(\frac{a+b+1}{2}-s\right) \Gamma\left(\frac{1}{2}\right)} F\left(-\frac{a}{2}+s,-\frac{b}{2} ; \frac{1}{2} ; \cos ^{2}(x, y)\right) .
\end{aligned}
$$

Thus,

$$
\begin{gathered}
\int_{S^{2}}|x \cdot \omega|^{a}|y \cdot \omega|^{b}|z \cdot \omega|^{c} \mathrm{~d} \omega^{2}=2 B\left(\frac{a+b}{2}+1, \frac{c}{2}+\frac{1}{2}\right) B\left(\frac{a+b}{2}+\frac{1}{2}, \frac{1}{2}\right) \\
\times \sum_{s=0}^{\infty} \frac{\left(-\frac{a}{2}\right)_{s}\left(-\frac{a-1}{2}\right)_{s}\left(-\frac{c}{2}\right)_{s}}{\left(-\frac{a+b}{2}+\frac{1}{2}\right)_{s}\left(\frac{1}{2}\right)_{s}} \frac{\Gamma\left(\frac{a+1}{2}-s\right) \Gamma\left(\frac{b+1}{2}\right)}{\Gamma\left(\frac{a+b+1}{2}-s\right) \Gamma\left(\frac{1}{2}\right)} \\
\times \frac{\cos ^{2 s}(x, z)}{s} F\left(-\frac{a}{2}+s,-\frac{b}{2} ; \frac{1}{2} ; \cos ^{2}(x, y)\right)
\end{gathered}
$$

The final reduction is straightforward.

Remark 58. It is easily checked, whenever $a=0, b=0$ or $c=0$, that Proposition 57 is equivalent to Proposition 51.

Proposition 59. Let a, b and c be natural numbers. Let x, y and z be unit vectors with $y \perp z, x \neq y$ and $x \notin y^{\perp}$. Then,

$$
\begin{aligned}
& \int_{S^{2}}|x \cdot \omega|^{a} \sqrt{1-|y \cdot \omega|^{2}}{ }^{b}|z \cdot \omega|^{c} \mathrm{~d} \omega^{2}=2 B\left(\frac{a}{2}+\frac{1}{2}, \frac{b+c}{2}+1\right) B\left(\frac{c}{2}+\frac{1}{2}, \frac{1}{2}\right) \\
& \quad \times \sum_{s=0}^{\infty} \frac{\left(-\frac{a}{2}\right)_{s}\left(-\frac{c}{2}\right)_{s}\left(\frac{b+c}{2}+1\right)_{s}}{\left(\frac{1}{2}\right)_{s}\left(\frac{c}{2}+1\right)_{s}} \frac{\cos ^{2 s}(x, z)}{s!} F\left(-\frac{a}{2}+s,-\frac{b}{2} ; \frac{c}{2}+s+1 ; \sin ^{2}(x, y)\right) .
\end{aligned}
$$

Proof. A binomial expansion of the square root yields

$$
\begin{equation*}
\int_{S^{2}}|x \cdot \omega|^{a}{\sqrt{1-|y \cdot \omega|^{2}}}^{b}|z \cdot \omega|^{c} \mathrm{~d} \omega^{2}=\sum_{k=0}^{\infty} \frac{\left(-\frac{b}{2}\right)_{k}}{k!} \int_{S^{2}}|x \cdot \omega|^{a}|y \cdot \omega|^{2 k}|z \cdot \omega|^{c} \mathrm{~d} \omega^{2} \tag{16}
\end{equation*}
$$

Then, applying Proposition 57 and the identity

$$
\frac{\Gamma\left(\frac{a+1}{2}\right) \Gamma\left(k+\frac{1}{2}\right) \Gamma\left(\frac{c+1}{2}\right)}{\Gamma\left(\frac{a+c}{2}+k+\frac{3}{2}\right)}=\frac{\Gamma\left(\frac{a+1}{2}\right) \Gamma\left(\frac{c+1}{2}\right) \Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{a+c}{2}+\frac{3}{2}\right)} \frac{\left(\frac{1}{2}\right)_{k}}{\left(\frac{a+c}{2}+\frac{3}{2}\right)_{k}},
$$

we can write (16) as

$$
\begin{align*}
2 \frac{\Gamma\left(\frac{a+1}{2}\right) \Gamma\left(\frac{c+1}{2}\right) \Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{a+c}{2}+\frac{3}{2}\right)} & \sum_{s=0}^{\infty} \frac{\left(-\frac{a}{2}\right)_{s}\left(-\frac{c}{2}\right)_{s}}{\left(\frac{1}{2}\right)_{s}} \frac{\cos ^{2 s}(x, z)}{s!} \\
& \times \sum_{k=0}^{\infty} \frac{\left(-\frac{b}{2}\right)_{k}\left(\frac{1}{2}\right)_{k}}{\left(\frac{a+c}{2}+\frac{3}{2}\right)_{k}} \frac{1}{k!} F\left(-k,-\frac{a}{2}+s ; \frac{1}{2} ; \cos ^{2}(x, y)\right) . \tag{17}
\end{align*}
$$

Finally, an application of Lemma 43 followed by an application of Lemma 42 yield

$$
\begin{align*}
\sum_{k=0}^{\infty} & \frac{\left(-\frac{b}{2}\right)_{k}\left(\frac{1}{2}\right)_{k}}{\left(\frac{a+c}{2}+\frac{3}{2}\right)_{k}} \frac{1}{k!} F\left(-k,-\frac{a}{2}+s ; \frac{1}{2} ; \cos ^{2}(x, y)\right) \\
& =\frac{\Gamma\left(\frac{a+c}{2}+\frac{3}{2}\right) \Gamma\left(\frac{a+b+c}{2}+1\right)}{\Gamma\left(\frac{a+b+c}{2}+\frac{3}{2}\right) \Gamma\left(\frac{a+c}{2}+1\right)} F\left(-\frac{a}{2}+s,-\frac{b}{2} ;-\frac{a+b+c}{2} ; \cos ^{2}(x, y)\right) \\
& =\frac{\Gamma\left(\frac{a+c}{2}+\frac{3}{2}\right)}{\Gamma\left(\frac{a+b+c}{2}+\frac{3}{2}\right)} \frac{\Gamma\left(\frac{b+c}{2}+s+1\right)}{\Gamma\left(\frac{c}{2}+s+1\right)} F\left(-\frac{a}{2}+s,-\frac{b}{2} ; \frac{c}{2}+s+1 ; \sin ^{2}(x, y)\right) \tag{18}
\end{align*}
$$

Hence, by inserting (18) in (17), we obtain

$$
\begin{aligned}
& \int_{S^{2}}|x \cdot \omega|^{a}{\sqrt{1-|y \cdot \omega|^{2}}}^{b}|z \cdot \omega|^{c} \mathrm{~d} \omega^{2}=2 B\left(\frac{a}{2}+\frac{1}{2}, \frac{b+c}{2}+1\right) B\left(\frac{c}{2}+\frac{1}{2}, \frac{1}{2}\right) \\
& \quad \times \sum_{s=0}^{\infty} \frac{\left(-\frac{a}{2}\right)_{s}\left(-\frac{c}{2}\right)_{s}\left(\frac{b+c}{2}+1\right)_{s}}{\left(\frac{1}{2}\right)_{s}\left(\frac{c}{2}+1\right)_{s}} \frac{\cos ^{2 s}(x, z)}{s!} F\left(-\frac{a}{2}+s,-\frac{b}{2} ; \frac{c}{2}+s+1 ; \sin ^{2}(x, y)\right) .
\end{aligned}
$$

Proposition 60. Let a, b and c be natural numbers. Let x, y and z be unit vectors with $y \perp z, x \neq y$ and $x \notin y^{\perp}$. Then,

$$
\begin{aligned}
& \int_{S^{d-1}}|x \cdot \omega|^{a}{\sqrt{1-|y \cdot \omega|^{2}}}^{b}|z \cdot \omega|^{c} \mathrm{~d} \omega^{2} \\
& =\sigma_{d-2} B\left(\frac{a}{2}+\frac{1}{2}, \frac{b+c+d-1}{2}\right) B\left(\frac{c}{2}+\frac{d-2}{2}, \frac{1}{2}\right) \\
& \quad \times \sum_{s=0}^{\infty} \frac{\left(-\frac{a}{2}\right)_{s}\left(-\frac{c}{2}\right)_{s}\left(\frac{b+c+d-1}{2}\right)_{s}}{\left(\frac{1}{2}\right)_{s}\left(\frac{c+d-1}{2}\right)_{s}} \frac{\cos ^{2 s}(x, z)}{s!} F\left(-\frac{a}{2}+s,-\frac{b}{2} ; \frac{c+d-1}{2}+s ; \sin ^{2}(x, y)\right) .
\end{aligned}
$$

Proof. Use Proposition 59 and follow the same method as the one leading from Lemma 49 to Proposition 51.

Remark 61. In the special case where $x= \pm y$ or $x \perp y$, the identities obtained in Proposition 57,59 and 60 can be reduced further, cf. [4].

References

[1] Abramowitz, A. and Stegun, I.A. (1968): Handbook of Mathematical Functions. Dover Publications, New York.
[2] Auneau-Cognacq, J., Rataj, J. and Jensen, E.B.V. (2010): Closed form of the rotational Crofton formula. Earlier version appeared as Thiele Research Report 2008-13, Department of Mathematical Sciences, University of Aarhus. Submitted.
[3] Auneau, J. and Jensen, E.B.V. (2010): Expressing intrinsic volumes as rotational integrals. Adv. Appl. Math. 45, 1-11.
[4] Auneau-Cognacq, J. (2010): A rotational Crofton formula for flagged intrinsic volumes of sets of positive reach. Manuscript.
[5] Jensen, E.B.V. (1998): Local Stereology. World Scientific Publishing, Singapore.
[6] Rataj, J. (1999): Translative and kinematic formulae for curvature measures of flat sections. Math. Nachr. 197, 89-101.

