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Preface

The present thesis encompasses three different papers, “Regularity of eig-
enstates in regular Mourre theory”, [MW11], “Characterisation of the quasi-
stationary state of an impurity driven by monochromatic light I - The
effective theory”, [BPW11a], including a chapter on the construction of
time dependent C–Liouvilleans and “Towards a dynamical renormalisa-
tion group”, [BMW11], as well as an overview. We refer to the different
parts by [MW11], [BPW11a] and [BMW11], respectively.

The overview is organised as follows. We first provide a general con-
text for the three projects [MW11], [BPW11a] and [BMW11] in Chapter 1
and explain their conceptual relations from a wider perspective. Chap-
ter 2 is devoted to the more specific mathematical framework used in the
several projects, to present our results and to relate it to the literature. In
the Sections 2.1,2.2 and 2.3 we also expand on the conceptual relations
between [MW11], [BPW11a] and [BMW11]. For each of the four parts of
the present thesis, the references can be found in the last section of the
corresponding part.
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Chapter 1
Introduction

A classical problem in dynamical systems is the relation between the evo-
lution of semigroups and the behaviour of the resolvents of their gener-
ators near critical points. One relation between the two is established by
the Laplace transform. Our main interest here is the long time dynamics
of quantum systems which are in constant interaction with the environ-
ment. These systems are called open (quantum) systems and they are said
to be closed if there is no interaction with the environment. Open systems
are usually modelled by closed systems consisting of two parts, a large
subsystem, which describes the environment, and a small subsystem en-
coding the degrees of freedom one is interested in. The open system is
then the (effective) evolution of the small subsystem. The long time dy-
namics for open quantum systems is quite different from the long time
dynamics in the context of scattering theory. In scattering theory one con-
siders timescales (or distances), which are large compared to the scale of
interaction.

The problems addressed in our work do not take into account the back–
reaction of the small subsystem onto the large subsystem, i.e., fluctuations
are not considered. Nevertheless, there have been recent results in this
direction, [DRM08]. We consider small subsystems with finitely many
energy levels. Even though this is a strong simplification as compared to
more realistic models for the small subsystem, it does yield important con-
sequences, which are relevant even for physical experiments. For example,
the Nd:YAG laser is a crystal doped with neodymium atoms, which cor-
respond to the impurities in [BPW11a]. In such a situation our model is
the state–of–the–art model and provides useful insights. The environment
is typically modelled by a quantised boson or fermion field.

The three projects [MW11], [BPW11a] and [BMW11], involve a closed
or even selfadjoint operator H, on a Hilbert space H and a selfadjoint
operator A. Depending on the regularity of

t 7→ eitA (z− H)−1 e−itA, (1.1)

our results provide information on the long time behaviour of the dynam-
ics of the subsystem. The framework in [MW11] is abstract, whereas in
[BMW11] we consider a spin boson type model at zero temperature. In

3



4 Chapter 1. Introduction

[BPW11a] we study the effective dynamics, which results from a fermion–
impurity interaction in presence of an external monochromatic light source.
The mechanism we rely on to obtain the long time dynamics is second
order perturbation theory. In case of [MW11], we derive abstract, non–
perturbative results, which can be used as an input to second order per-
turbation theory, but these results are of interest beyond second order
perturbation theory. In [BPW11a] and [BMW11] we directly analyse the
dynamics of specific models.

We first define in Section 1.1 the closed quantum systems underlying
the analysis of [MW11] and [BPW11a]. In Section 1.2 we explain the rela-
tion between second order perturbation theory and long time dynamics,
which is amplified in the more specific discussion of Chapter 2.

1.1 Definition of Models

Unlike in classical physical theories, like Newtonian mechanics, not all
objects in quantum theory correspond to measurable quantities. For in-
stance, the physicists notion of “wave functions”, which are elements of a
Hilbert space H, do not have a direct physical meaning in the sense, that
it cannot be measured directly in an experiment. On the other hand, the
measured quantities in physical experiments are the so–called observables.
Observables are well described by elements of a C∗–algebra, V , which is
called algebra of observables. The states of the physical system are imple-
mented by positive linear functionals on V , with norm one. For any given
state ω, one may use the GNS construction to obtain a ∗–representation
(Hω, πω, Ωω), consisting of a Hilbert space Hω, generated by the cyclic
vector Ωω, such that

ω (A) = (Ωω, πω (A) Ωω)Hω
, ∀A ∈ V .

This construction suggests to consider the algebra of observables to be the
central object of the theory and that the Hilbert space is then constructed
after specification of the initial state of the system. In systems with in-
finitely many degrees of freedom this point of view is even necessary. For
instance, models involving boson fields, to be defined in a moment, turn
out to have inequivalent representations for equilibrium states at different
temperatures. In the context of relativistic quantum field theory Haag’s
Theorem, [Haa55], states that the so–called vacuum representation of the
free field is not unitarily equivalent to the vacuum representation of an
interacting theory.

The dynamics of a closed physical system is described by a one–param-
eter group of ∗–automorphisms, {τt}{t∈R}, on V . The representation
above naturally induces a one–parameter group of ∗–automorphisms,
{τω

t }{t∈R}, with

ω (τt (A)) = (Ωω, τω
t (πω (A)) Ωω)Hω

, ∀t ∈ R, ∀A ∈ V .

The represented dynamics, {τω
t }{t∈R}, is in general only defined on a

dense set in the Hilbert space Hω, but extends by continuity to the en-
tire space and will be denoted by the same symbol. In order to associate
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{τω
t }{t∈R} with the flow of an equation of motion, one needs to specify

the topology in which it is continuous. The two most prominent examples
are the C∗–dynamical systems, which are strongly continuous in the norm–
topology of V and πω (V) ⊆ B (Hω), respectively, and the W∗–dynamical
systems, defined on the von Neumann algebra πω (V)′′ ⊆ B (Hω), which
are continuous in the weak operator topology. We denote with πω (V)′′

the bi–commutant of πω (V). In the present work we encounter both sit-
uations. The projects [BMW11, MW11] address situations where the dy-
namics form a W∗–dynamical system, but we use the Fock space represen-
tation at zero temperature, where the group {τω

t }{t∈R} is unitarily imple-
mented, i.e., there is a strongly continuous unitary one–parameter group,
{Uω (t)}{t∈R}, such that

τω
t (πω (A)) = U∗ω (t) πω (A) Uω (t) , ∀t ∈ R, ∀A ∈ V .

Then, we study the object {Uω (t)}{t∈R} instead of {τω
t }{t∈R}. In [BPW11a]

the dynamics of the closed physical system is a C∗–dynamical system.
We start with the definition of the type of Hamiltonians considered in
[BMW11].

1.1.1 Spin–Boson Type Models

As already explained, open quantum systems are typically modelled by
system composed of a “big” and a “small” subsystem, along with an in-
teraction between the two subsystems. The small system is described as
follows. Let N ∈ N, and define the Hilbert space of the atom as

Hat := CN .

The Hamiltonian describing the energy levels of the atom is given by a
selfadjoint operator,

Hat = H∗at ∈ B (Hat) = CN ×CN .

The eigenvalues {E1, . . . , EN} ⊂ R, Ej ≤ E`, for 1 ≤ j ≤ ` ≤ N, of Hat,
represent the energy levels of the atom.

We now turn to the definition of the boson free field on the Hilbert space
of its vacuum representation, the bosonic Fock space. These constructions
are standard and may for instance be found in [RS80b, DG99, HH08]. Let h
be a separable complex Hilbert space and denote the n–fold tensor product
of h by

h�n := h � · · ·� h︸ ︷︷ ︸
n times

, n ∈ N.

The tensor product is to be understood as the closure of the algebraic
tensor product with respect to the induced Hilbert space norm on h�n.
Moreover, we set h�0 := C.

Remark 1.1. We stress that whenever we consider tensor products of Hil-
bert spaces they will be understood as the closure of the algebraic tensor
product, unless one of the Hilbert spaces is the domain of an unbounded
closed operator, which is then specified in the text. In the latter case we
understand the tensor product as the algebraic tensor product.
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For any n ∈ N we denote with Sn the orthogonal projection onto the
totally symmetric tensors, i.e. for ϕj ∈ h, j = 1, . . . , n,

Sn (ϕ1 � · · ·� ϕn) := ∑
σ∈Sym(n)

ϕσ(1) � · · ·� ϕσ(n),

where Sym (n) denotes the symmetric group of {1, . . . , n}.We define the
bosonic Fock space as

F+ := Γ (h) :=
∞⊕

n=0
F+

n , F+
n := Sn

(
h�n) , ∀n ∈ N∪ {0} =: N0,

where S0
(
h�0) := C, By definition, ψ ∈ F+ is a sequence

(
ψ(n)

)
n∈N

,

with ψ(n) ∈ F+
n , such that

∞

∑
n=0

∥∥∥ψ(n)

∥∥∥2
< ∞.

The sequence Ω := (1, 0, 0, . . . ) ∈ F+ is called the vacuum vector or short
vacuum. The Fock space renders a situation where the particle number, to
be defined in a moment, is not a conserved quantity, i.e. creation and
annihilation of particles are possible. The Hilbert space h is called one–
particle Hilbert space and for later use we define the subspace of finitely many
particles as

Ffin :=
{

ψ ∈ F+∣∣ψ(n) = 0 except for finitely many n ∈ N
}

.

Let A be a densely defined operator on h with domainD (A) ⊆ h. Assume,
that

A � 1 � · · ·� 1 + 1 � A � · · ·� 1 + · · ·+ 1 � 1 � · · ·� A

defined on Sn (�nD (A)) is closable for any n ∈ N and denote its closure
by A(n). We then define the second quantisation, dΓ (A), of A by

(dΓ (A) ψ)(n) := A(n)ψ(n),

for all ψ ∈ D (dΓ (A)), where

D (dΓ (A)) :=

{
ψ ∈ F+

∣∣∣∣∣ψ(n) ∈ D
(

A(n)

)
,

∞

∑
n=0

∥∥∥A(n)ψ(n)

∥∥∥2
< ∞

}
.

If A is selfadjoint on D (A), then dΓ (A) is selfadjoint on D (dΓ (A)). For
h ∈ h define the annihilation operator a (h) by

a (h) Sn (ϕ1 � · · ·� ϕn) := n−
1
2Sn−1

(
n

∑
`=1

(h, ϕ`) ϕ1 � · · ·� ϕ̂` � · · ·� ϕn

)
,

(1.2)
where ϕ̂` means that ϕ` is omitted in the product, and extend to a dense set
of F+ by taking the closure, see [RS80b, Chapter X.7]. We set a (h) Ω = 0.
The creation operator is its adjoint, a∗ (h) := (a (h))∗ and on Ffin given by

(a∗ (h) ψ)(n) := (n + 1)
1
2 Sn+1

(
h � ψ(n)

)
. (1.3)
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The creation operator defined on Ffin is also closable. The annihilation
and the creation operator satisfy the canonical commutation relations (CCR),
i.e. for f , h ∈ h [

a] ( f ) , a] (h)
]

= 0, [a ( f ) , a∗ (h)] = ( f , h) ,

a] (·) = a (·) , a∗ (·), as identities on Ffin. The field operator is defined as

φ (h) :=
1√
2

(a (h) + a∗ (h)) , (1.4)

on the dense set Ffin. Note, that φ (h) is symmetric and hence closable. Its
closure will also be denoted by φ (h).

In the sequel we in particular consider semigroups which arise from
semigroups on h. Let A be the generator of the contraction C0–semigroup
{T (t)}t∈R+ . We use the following convention in this chapter, as well as in
[BMW11]:

R+
0 := [0, ∞) , R+ := (0, ∞) .

Then, we lift this contraction semigroup to F+, by extension of linear
combinations of

Γ (T (t)) Sn (ϕ1 � · · ·� ϕn) := Sn (T (t) ϕ1 � · · ·� T (t) ϕn) ,

for any ϕ` ∈ h, 1 ≤ ` ≤ n. We have

Γ (T (t)) = etdΓ(A), ∀t ∈ R+,

and this construction readily carries over to contractive groups, like uni-
tary one–parameter groups.

From now on we choose for this chapter h := L2
(
Rd,Cp

)
, with d, p ∈

N. The number operator is defined as

N := dΓ (1) ,

where 1 is associated with the function Rd 3 k 7→ 1 and clearly, (Nψ)(n) =
nψ(n), for any ψ ∈ Ffin. Let ω : Rd → R+ be a measurable function, which
is non–zero almost everywhere. This function defines a multiplication
operator on h, which we again denote with ω. We define the free field
energy as

Hf := dΓ (ω) ,

which is selfadjoint on D (dΓ (ω)). We occasionally use the Hilbert space

hω :=
{

h ∈ h

∣∣∣∣ ‖h‖2
ω := ‖h‖2 +

∥∥∥ω−
1
2 h
∥∥∥2

< ∞
}

.

For p = 1, the Hilbert space of the compound system is given by

H := Hat �F+

and the free Hamiltonian defined as

H0 := Hat � 1 + 1 � Hf. (1.5)
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Let G ∈ L2
(
Rd,CN×N

)
and g ≥ 0. We define the Hamiltonian of the full

system by
Hg := H0 + φ (gG) , (1.6)

on the set CN � (Ffin ∩D (Hf)). Since φ (h) is relatively H1/2
f –bounded for

any h ∈ hω, it follows that it is infinitesimally Hf–bounded and hence Hg
is selfadjoint for any g ∈ R, by the Kato–Rellich theorem. Even though
“spin” usually refers to models with N = 2, we refer to all models of the
type (1.6) as spin-boson models.

1.1.2 Few Level Atoms and Fermion Fields

Models involving fermion fields instead of boson fields are more regular,
and it is possible to construct a dynamics on the level of the algebra of
observables as a C∗–dynamical system. For this standard construction
consult for instance [BR96].

Observables of the reservoir are selfadjoint elements of the fermion C∗–
algebra Vf, which is defined as follows. Let h be a separable and complex
Hilbert space, e.g. L2

(
Rd,C

)
, d ∈ N. The fermionic Fock space is defined as

F− :=
∞⊕

n=0
h∧n,

where ∧ denotes the wedge product, i.e. for ϕ` ∈ h, 1 ≤ ` ≤ n ∈ N,

ϕ1 ∧ · · · ∧ ϕn := ∑
σ∈Sym(n)

sgn (σ) ϕσ(1) � · · ·� ϕσ(n).

sgn (σ) denotes the signum of the permutation σ, which is 1 if σ is even
and −1 if it is odd. For any f ∈ h, we define the fermionic annihilation and
creation operators, a( f ) and a∗( f ) := (a( f ))∗, respectively, by (1.2) and (1.3),
with only replacing the symmetric tensor product with the wedge prod-
uct. These operators implement the canonical anti-commutation relations
(CAR):

a( f )a∗(h) + a∗(h)a( f ) = ( f , h) , (1.7)

a]( f )a](h) + a](h)a]( f ) = 0,

which yield the boundedness of a( f ) and a∗( f ):

‖a∗( f )‖B(F−) = ‖a( f )‖B(F−) = ‖ f ‖h, f ∈ h. (1.8)

The algebra of fermion observables, Vf, is defined as the C∗–algebra gener-
ated by annihilation operators {a( f )} f∈h. The free fermion dynamics is
implemented by a Bogoliubov automorphism,

τf
t (a ( f )) := a

(
eitω f

)
, ∀t ∈ R, ∀ f ∈ h, (1.9)

where ω is defined as in the previous subsection. Equation (1.8) gives
directly the strong continuity of

{
τf

t

}
{t∈R}

and hence
{
Vf, τf

t

}
is a C∗–

dynamical system. Its generator, δf, is a symmetric derivation, i.e., the
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domain D (δf) of the generator δf is a dense ∗–sub-algebra of Vf and for
all A, B ∈ D (δf),

δf(A)∗ = δf(A∗), δf(AB) = δf(A)B + Aδf(B). (1.10)

The algebra of observables of the few level atom is B (Hat) = CN×N , with
Hat := CN . The Hamiltonian of the free atom is some selfadjoint matrix,
0 6= Hat = H∗at ∈ B (Hat). Its dynamics is the continuous automorphism
group

τat
t (A) := eitHat Ae−itHat , ∀A ∈ B (Hat) , ∀t ∈ R,

generated by the symmetric derivation

δat (·) := i [Hat, · ] .

We define the compound system’s algebra of observables as

V := B (Hat) � Vf,

where the meaning of the tensor product is unambiguous as Vf is already
realised as an operator algebra of the Fock space and B (Hat) is finite-
dimensional. The induced free dynamics is given by

τt := τat
t � τf

t, ∀t ∈ R. (1.11)

A simple interaction between the fermions and the atom is the bounded
symmetric derivation

δint (·) := i [Q � Φ( f ), · ] ,

where f ∈ h and Q = Q∗ ∈ B (Hat). The dynamics,
{

τ
(λ,0)
t

}
{t∈R}

, is

generated by the symmetric derivation

δ(λ,0) (·) := δat (·) + δf (·) + λδint (·) , 0 6= λ ∈ R,

with domain D
(

δ(λ,0)
)

:= Hat � D (δf), is again a C∗–dynamical sys-
tem, see [BR87]. We introduced the coupling constant λ, measuring the
interaction between fermions and the atom. In [BPW11a] we consider a
situation where the dynamics

{
τ

(λ,0)
t

}
{t∈R}

is perturbed by an external

force, acting on the atomic degrees of freedom, only. Mathematically, this
is implemented by

δP (·) := i [HP, · ] ,

where HP ∈ B (Hat) is a selfadjoint matrix, multiplied with cos (vt), for
a certain frequency v ∈ R. In [BPW11a] we require that HP maps the
eigenspace of the biggest eigenvalue of Hat to the eigenspace of the low-
est eigenvalue and vice versa, and is zero otherwise. Moreover, v has to
satisfy a resonance condition, namely it is assumed to equal the energy dif-
ference of the biggest and the lowest eigenvalue. Thus we define the full
generator of the dynamics for any t ∈ R as

δ
(λ,µ)
t (·) := δ(λ,0) (·) + µ cos (vt) δP (·) , 0 6= µ ∈ R,
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which is a closed symmetric derivation on D
(

δ
(λ,µ)
t

)
= D

(
δ(0,0)

)
, ∀t ∈ R.

Finally, we specify the initial states of the system.
Thermal equilibrium states of the free atom are Gibbs states gat for any

inverse temperature β ∈ (0, ∞), given by the density matrix

ρg :=
e−βHat

TrCd
(
e−βHat

) . (1.12)

However, in presence of interactions with the pump or the reservoir, the
state ω of the atom is generally far from any Gibbs state gat. For any state
ωat on B(Cd), there is a unique trace–one positive operator ρat on Cd, the
so–called density matrix of ωat, such that

ωat(A) = TrCd (ρat A) , A ∈ B(Cd).

Thermal equilibrium states of the reservoir are defined through the boun-
ded positive operators

dR :=
1

1 + eβh1
(1.13)

acting on h1 for all (inverse temperatures) β ∈ (0, ∞). Indeed, the so–called
symbol dR uniquely defines a (faithful) quasi–free state

ωR := ωdR (1.14)

on the fermion algebra VR, by the following well known result:

Lemma 1.2 (Two-point correlation functions and quasi–free states).
Let d be any bounded operator on h1 satisfying 0 ≤ d ≤ 1. Then the correlation
functions

ωd(1R) := 1 (1.15)

ωd (a∗( f1) . . . a∗( fm)a(g1) . . . a(gn)) := δmn det
(
[〈 f j, dgk〉]j,k

)
(1.16)

for all
{

f j
}n

j=1 ,
{

gj
}n

j=1 ⊂ h1 define a functional which is the unique bounded
linear extension to the algebra VR is a state ωd. The operator d is called the
symbol of ωd.

We call ωR the thermal state of the reservoir at inverse temperature β. The
initial state, ω0 is defined as

ω0 := ωat � ωR, (1.17)

for some state ωat on B(Cd). The evolution of the full system acting on
the initial state (1.17) is given by

ωt := ω0 ◦ τ
(λ,η)
t,0 = (ωat � ωR) ◦ τ

(λ,η)
t,0 , t ∈ R+

0 .

This state reduced to the atomic part only yields a state

ωat (t) (A) := ωt(A � 1R), A ∈ B(Cd), (1.18)

for any t ∈ R+
0 .
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1.2 Long–Time Behaviour of Non-Relativistic Matter
Coupled to Quantised Fields

Now, we relate the projects of the present thesis, [BMW11, BPW11a, MW11].
We are interested in the long–time behaviour of quantum systems coupled
to quantum fields, which serve as “reservoirs”. In [MW11] we establish
a result on regularity of eigenstates of an abstract selfadjoint operator H,
which is useful as an ingredient to prove the existence of metastable states,
see Section 2.1.3 and estimate their decay in context of regular Mourre the-
ory, see Section 2.1.2. Although the analysis of [BMW11, BPW11a] is based
on direct estimates of the dynamics, spectral theory enters as an important
tool. More specifically, the asymptotic behaviour of the dynamics of the
full system restricted to the atomic degrees of freedom is linked to the
behaviour of the resolvent close to certain parts of the spectrum.

This is related to a classical problem of dynamical systems. Namely
consider the (autonomous) Cauchy problem (aCP),

(aCP)

{
d
dt u (t) = Au (t) (t ∈ R+) ,
u (0) = x,

where A is a closed operator on a Banach space X and x ∈ X. (aCP) is
mildly well posed, i.e. for any x ∈ X there is a unique mild solution, if and
only if A generates a C0–semigroup, which is equivalent to the resolvent
of A,

R (z, A) := (z− A)−1 ,

being a Laplace transform, [ABHN01, Sect. 3.1]. If u (t) converges in an
appropriate sense as t → ∞, then û (λ) λ converges as λ → 0, where
û (·) is the Laplace transform of u (·). Results about this implication are
known as Abelian theorems. Our main interest lies however in the converse
implication, i.e. to determine the long time behaviour based on spectral
information. These type of results are customarily called Tauberian theo-
rems. We analyse the behaviour of û (·) close to the real axis to determine
the long time behaviour. Theorems of this type are usually referred to as
complex Tauberian theorems.

1.2.1 Long–Time Dynamics and 2nd–Order Perturbation Theory

In this section we discuss the relation of long time behaviour of quan-
tum systems with second order perturbation theory, more specifically with
Fermi’s golden rule and thereby use [DF06]. Consider, for simplicity, a
spin-boson model (1.6), with the C0 unitary group, Y (t) := exp (−itH0)
on H. Moreover, we define the C0 unitary group,

X (t) := e−itHg , t ∈ R+.

For a selfadjoint operator L, x ∈ R and bounded operators A, B ∈ B (H),
we define

A (x± i0− L)−1 B := lim
ε↘0

A (x± iε− L)−1 B,
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provided the right hand side exists in norm. In this case the principal value
of (x− L)−1,

AP (x− L)−1 B :=
1
2

(
A (x + i0− L)−1 B + A (x− i0− L)−1 B

)
,

and the delta function of (x− L)−1,

Aδ (x− L) B :=
i

2π

(
A (x + i0− L)−1 B− A (x− i0− L)−1 B

)
are well defined. Let

P` := 1 [Hat = E`] � 1 [Hf = 0] , P` := 1− P`,

where 1 [·] denotes a spectral projection. Note that for these projections
P`φ (G) P` = 0. If

M` := P`φ (G) P`

(
(E` + i0) P` − H0P`

)−1 P`φ (G) P`

:= lim
ε↘0

P`φ (G) P`

(
(E` + iε) P` − H0P`

)−1 P`φ (G) P`,

exists for ` = 1, . . . , N, we define the level shift operator (LSO), as

M := −i
N

∑
`=1

P`φ (G) P`

(
(E` + i0) P` − H0P`

)−1 P`φ (G) P`. (1.19)

There are several notions of Fermi golden rule (FGR), depending on the
problem one has in mind. In the following definition we give a local
version of Fermi golden rule. “Local” means that one considers only a
spectral region close to a particular spectral value E`.

Definition 1.3 (Fermi golden rule). The (local) Fermi golden rule (FGR) holds
iff M` exists for an ` ∈ {1, . . . , N} and Im (M`) 6= 0.

Remark 1.4. If Fermi’s golden rule holds, then the eigenvalue E` is unsta-
ble if the perturbation is switched on.

Provided FGR holds and the resolvent of Hg is sufficiently regular, see
Sections 2.1,2.3.3, then one can determine the evolution of

(ψ`, f (Hg)e−itHg ψ`) = e−iλgt + o
(

g2
)

,

where f is some compactly supported regular function, with support close
to E` and ψ` is an eigenstate of H0 corresponding to E`. For a discussion
of these type of results see Sections 2.1.3,2.3. For open quantum systems
however, one is more interested to find an effective evolution for the entire
“small system”, i.e. the atom. The results of the literature, discussed in
Sections 2.1.3,2.3 do not address eigenstates of Hg and in particular not
the ground state. Following [DF06], there are three “non–local” types of
FGR involving the LSO:
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1. Analytic Fermi golden rule: H0P + g2M, P := ∑N
`=1 P`, predicts up

to an error o
(

g2) the location and multiplicity of the resonances and
eigenvalues of Hg in a neighbourhood of the spectrum of H0, σ (H0),
for small |g|.

2. Spectral Fermi golden rule: The intersection

σ
(

H0P + g2M
)
∩R,

predicts the possible location of eigenvalues of Hg, for small |g| 6= 0.

3. Dynamical Fermi golden rule: The semigroup{
exp

(
−it

(
H0P + g2M

))}
t≥0

,

describes approximately the reduced dynamics PX (t) P, for small
|g|.

The dynamical Fermi golden rule has first been rigorously established by
Davies, [Dav74, Dav75, Dav76] in form of a weak coupling limit (WCL).
Davies proved under mild assumptions

lim
g→0

eiτg−2 H0PPe−iτg−2 Hg P = e−iτM. (1.20)

Note, that the time has been subject to a rescaling, i.e. the weak coupling
limit refers to a timescale where

τ = tg2, (1.21)

which is sometimes referred to as the van Hove timescale. Results beyond
this timescale are scarce, but see [Kos00] for the analysis of an explicitly
solvable model.

In the context of positive temperature and operators with a high degree
of regularity, namely translation analytic models, Jaksic and Pillet developed
a powerful method to compute the asymptotics as

(Ψ, e−itHg Φ) = (AΨ, e−it(Hat+∑∞
n=1 g2n M(2n))BΦ) +O

(
e−ct) ,

known as Jaksic–Pillet glueing, see [JP96a, Thm. 2.5]. Due to fundamental
obstacles, this method cannot extended to the zero temperature case. In
this case, one expects that the WCL cannot be extended to the original
timescale, but one rather has to find “higher order” LSO’s M(n), for a
given timescale τn = tgn+ε, ε ∈ [0, 1), n ∈ N, n ≥ 2. That is the eventual
goal of [BMW11].





Chapter 2
Mathematical Framework and

Results

The present chapter is devoted to a discussion of the mathematical frame-
work used in the projects, [BMW11, BPW11a, MW11] and the relation of
the results to the literature. We remark, that the notation is chosen in ac-
cordance with the notation of the different projects. This naturally leads to
a situation where a symbol is used in different meanings in the different
Sections 2.1,2.2,2.3, but we prefer this over introducing new notations.

2.1 Regularity of Eigenstates

The setup for this section is abstract, i.e. not dependent on a particular
model. [MW11] contains results proving a certain regularity of eigenstates,
Ψ, of an abstract selfadjoint operator H. More precisely, there is a second
selfadjoint operator A, such that H and A have a positive commutator
locally around the eigenvalue appertaining to Ψ. Then we prove that

R 3 t 7→ e−itAΨ

is either Ck (R) or extends to an analytic map around the real axis, pro-
vided H is in a certain sense regular w.r.t. A. Thus we first introduce the
class of operators, Ck (A), then positive commutators, also called Mourre
estimate and finally state our results and relate them to second order per-
turbation theory, which is based on a work of Cattaneo, Graf, and Hun-
ziker, [CGH06].

2.1.1 Ck–Regularity

The notions and results presented in this section may be found in [GGM04,
Sect. 2], which contains also a refinement of the class C1 (A). For a general
account on the subject one may consult [AdMG96]. Let A be a densely
defined closed operator on a Hilbert spaceH. Note that then the adjoint of
A, denoted by A∗, is also a densely defined closed operator. If B ∈ B (H),

15
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then we define the sesquilinear form [B, A] by

(ϕ, [B, A] ψ) := (B∗ϕ, Aψ)− (A∗ϕ, Bψ) , ∀ϕ ∈ D (A∗) ∀ψ ∈ D (A) .
(2.1)

Definition 2.1 (The linear space C1 (A)). An operator B ∈ B (H) is said
to be of class C1 (A) iff the sesquilinear form [B, A] is continuous in the
topology of H×H. In this case, we denote the unique bounded operator
associated with [B, A] by adA (B) and moreover introduce the linear space

C1 (A) :=
{

B ∈ B (H)| B is of class C1 (A)
}

. (2.2)

It can be shown that B ∈ B (H) is in C1 (A) iff B preserves the domain of
A. For k ≥ 1 one could define a class Ck (A) by iterating (2.1), i.e. first
replacing B with adA (B) and assuming continuity of [adA (B) , A] in the
topology of H×H to obtain a unique adA (adA (B)) ∈ B (H), associated
with [adA (B) , A] and proceed iteratively. However, for the applications
we have in mind, A is selfadjoint which allows to give a more practical
definition of the class Ck (A). From now on we shall assume that A is a
selfadjoint operator on H.

Definition 2.2 (Ck (A) class for selfadjoint A). Let k ∈ N. A bounded
operator B ∈ B(H) is said to be of class Ck(A), in short B ∈ Ck(A), if

R 3 t 7→ eitABe−itA (2.3)

is strongly in Ck(R). A (possibly unbounded) self-adjoint operator S is
said to be of class Ck(A) iff (i− S)−1 ∈ Ck(A).

As indicated earlier, this notion coincides with Definition 2.1 if k = 1.
Namely for all t ∈ R, B ∈ B(H) and ψ, ϕ ∈ D (A), holds

(
ϕ, eitABe−itA − Bψ

)
=

t∫
0

ds
d
ds

(
e−isA ϕ, Be−isAψ

)

= −i
t∫

0

ds
(

e−isA ϕ, [B, A] e−isAψ
)

. (2.4)

Thus, if B ∈ C1 (A) then one observes using (2.4) that B is of class C1 (A)
in the sense of Definition 2.2. Conversely, if B is of class C1 (A) in the
sense of Definition 2.2, then taking the derivative of (2.4) at t = 0 yields
B ∈ C1 (A). Similarly, one observes that B being of class C2 (A) implies
adA (B) ∈ C1 (A). Thus one may construct iteratively

adk
A (A) := adA

(
adk−1

A (B)
)

, ad0
A (B) := B, (2.5)

if B being of class Ck (A), for k ∈ N. In concrete situations one has to work
with commutators involving two possibly unbounded selfadjoint opera-
tors H and A. In general they will not extend to bounded operators on H
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and the definition of the quadratic form [H, A] requires further restrictions
on its domain. Thus we denote by [H, A] the form

(ϕ, [H, A]ψ) := (Hϕ, Aψ)− (Aϕ, Hψ), ∀ϕ, ψ ∈ D(A) ∩D(H). (2.6)

If (i− H)−1 ∈ C1(A), then D(A) ∩ D(H) is dense in D(H) in the graph
norm of H and [H, A] extends to an H-form bounded quadratic form,
which in turn defines a unique element of B(D(H),D(H)∗) denoted by

adA(H) : D(H)→ D(H)∗, (2.7)

see [GGM04]. The space D(H)∗ is the dual of D(H) in the sense of rigged
Hilbert spaces.

Our result on the analyticity of eigenvectors of H with respect to A
requires a construction of multiple commutators of H and A which are
bounded as maps from D(H) to H in the graph norm of H. The construc-
tion is as follows: Let H ∈ C1(A) and assume adA(H) ∈ B(D(H),H).
Then, [adA(H), A] is defined as

(ϕ, [adA(H), A]ψ) := (− adA(H)ϕ, Aψ)− (Aϕ, adA(H)ψ), (2.8)

for all ϕ, ψ ∈ D(A)∩D(H). Here we used, that adA(H) is skew-symmetric
on the domain D(A) ∩ D(H). Assume that this form extends in graph
norm of H to a form which is implemented by an element ad2

A(H) ∈
B(D(H),H). Proceeding iteratively, we construct adk

A(H) ∈ B(D(H),H).
One may show, [MW11], that if H ∈ C1(A) and adj

A(H) ∈ B(D(H),H)
for 0 ≤ j ≤ k, then H ∈ Ck(A).

2.1.2 Positive Commutators and Results

Let again H and A be selfadjoint operators on some Hilbert space H.
Denote with I ⊆ R an interval and with 1I(H) the spectral projections
of H onto the the spectral subspace pertaining to I. A positive commutator,
or Mourre estimate, is an inequality of the type

1I(H)i[H, A]1I(H) ≥ C01I(H)− K, (2.9)

where C0 > 0 and K is a compact operator. Mourre estimates with K = 0
are called strict Mourre estimates. The Mourre estimate in the form cast
here goes back to a fundamental paper of Mourre, [Mou81], where it has
been used to prove absence of singular continuous spectrum in I. In the
context of regular Mourre theory, i.e. where the commutator of H and A
is relatively H bounded, these concepts have been developed further by
many authors, see for instance [PSS81, Mou83, JMP84, AdMG96, Sah97].
We use a more recent form of the Mourre estimate. Namely, let λ ∈ R be
the eigenvalue w.r.t. the eigenstate Ψ of H and let h be a bounded smooth
function with

h′ (0) = 1, h (0) = 0,

and
sup
t∈R

∣∣∣h(k)(t)〈t〉k
∣∣∣ < ∞.
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Moreover, assume that h is real analytic in a ball about 0. Set hλ(s) :=
h(s−λ) and assume hλ(H) ∈ C1(A) and that there is a floc ∈ C∞

0 (R, [0, 1]),
such that

floc(λ) = 1, and h′λ(x) > 0, ∀x ∈ supp( floc).

Definition 2.3 (Smooth Mourre estimate). We say H and A admit a smooth
Mourre estimate w.r.t. λ, if there are C0, C1 > 0 and a compact operator K,
such that

i adA(hλ(H)) ≥ C0 − C1 f 2
loc,⊥(H)− K, (2.10)

where floc,⊥ is defined as floc,⊥ := 1− floc.

Remark 2.4. If H is of class C1 (A), then the two formulations, (2.9), (2.10),
are equivalent in the vicinity of λ, see [MW11] for details.

We are now prepared to formulate our results.

Theorem 2.5 (Finite regularity). Let H, A be selfadjoint operators on the Hil-
bert spaceH and Ψ be an eigenvector of H with eigenvalue λ. Assume that H and
A admit a smooth Mourre estimate w.r.t. λ and hλ(H) ∈ Ck+1(A), for some k ∈
N. Then Ψ ∈ D

(
Ak
)

and there exists ck > 0, only depending on supp( floc),

C0, C1, K, ‖ ad`
A( floc(H))‖, ‖ adj

A(hλ(H))‖, 1 ≤ ` ≤ k, 1 ≤ j ≤ k + 1, such
that ∥∥∥AkΨ

∥∥∥ ≤ ck ‖Ψ‖ . (2.11)

Remark 2.6. If one requires hλ ∈ Ck(A) only, it is shown in [FMS11a], that
the statement of this theorem is false in general. Therefore, the result is
optimal concerning integer values of k. Above result is intimately related
to a result proven in [FMS11a] in the context of singular Mourre theory.
In contrast to the result obtained there, the bounds derived in [MW11] are
however explicit, which allows to prove that Ψ is an analytic vector of H
if a natural growth condition on the multiple commutators is required.

Theorem 2.7 (Analyticity). Let H, A be self-adjoint operators on the Hilbert
space H and Ψ be an eigenvector of H with eigenvalue λ. Assume that H and A
admit a smooth Mourre estimate w.r.t. λ and that H is of class C1(A). If there
exists a v > 0, such that, for all k ∈ N,

‖ adk
A(H)(i− H)−1‖ ≤ k!v−k, (2.12)

then the map
R 3 θ 7→ eiθAΨ ∈ H (2.13)

extends to an analytic function in a strip around the real axis.

The applications of Theorem 2.5 and its connection to second order per-
turbation theory are discussed in Section 2.1.3. Theorem 2.7 reproduces a
result due to Balslev and Combes, [BC71, Thm. 1] on non-threshold eigen-
states of Schrödinger operators with dilation analytic interaction. Our
result is abstract and, as such, allows for new results of the type of Balslev
and Combes, [BC71, Thm. 1]. We close this section with an application of
Theorem 2.7, which is beyond the scope of [BC71]:



2.1. Regularity of Eigenstates 19

Let Hg be the Hamiltonian of a spin-boson model (1.6). Define the
coupling between atom and field by

G (k) = Bv (k) , ∀k ∈ Rd,

with a complex N × N matrix B. The function v is given by

v(k) :=
e−

k2

Λ2

ω(k)
1
2

, ∀k ∈ R3

and
ω(k) :=

√
k2 + m2, m > 0,

i.e. we assume the model to be massive. The constant Λ > 0 plays the role
of an ultraviolet cutoff. Define

α :=
i
2

(∇k · k + k · ∇k) .

This operator is symmetric and densely defined on L2(R3) as it is the
well-known generator of the strongly continuous unitary group

(u(t)ψ) (k) := e−
3
2 tψ

(
e−tk

)
.

Then, take A := dΓ (α). From [DG99] we may infer a Mourre estimate for
our model. Dereziński and Gérard use a different generator of dilations,
namely

αω := i
2
(
(∇kω)(k) · ∇k +∇k · (∇kω)(k)

)
.

It is also possible to prove a Mourre estimate using their techniques if ω(k)
is radially increasing, ω(k) > 0, ∀k ∈ R3 and 0 is the only critical point of
ω. One can prove, [MW11], that Hg is of class C1 (A) for all g ∈ R and that
(2.12) is satisfied for all k ∈ N. Thus, for all g ∈ R any eigenvector of Hg
pertaining to an embedded non-threshold eigenvalue is an analytic vector
with respect to A. In the fundamental paper of Balslev and Combes on
spectral theory of dilation analytic models [BC71] and an extension due
to Simon [Sim72] it is proved that, for N-body Schrödinger operators with
dilation analytic potentials, there are no excited eigenstates. The proof
is based on an indirect argument using the fact that any non–threshold
eigenstate would be an analytic vector w.r.t. to the generator of dilations.

2.1.3 Resonance Theory based on Mourre Theory

In many physical problems excited eigenvalues which are embedded in
the continuous spectrum become unstable when a perturbation is switched
on. We refer to such unstable eigenvalues as resonances. The correspond-
ing eigenstates are called metastable states. Cattaneo, Graf and Hunziker
develop in [CGH06] a mathematical theory of resonances based on posi-
tive commutators using the following condition.

Condition 2.8 (CGH). Let Hg := H0 + V, where H0 is selfadjoint, λ is an
eigenvalue of H0 with eigenprojection P. The interaction V is symmetric
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and H0-bounded. There is a selfadjoint operator A such that H0 and V
are of class C1 (A) and for ν ∈ N the multiple commutators adk

A (H0),
adk

A (V) ∈ B (D (H0) ,H), for k = 0, . . . ν. H0 and A satisfy a Mourre
estimate (2.9), with some open interval I 3 λ.

Using this condition the authors obtain the following result on the regu-
larity of the resolvent, which in particular implies a LAP.

Theorem 2.9 (CGH ’06). Let Condition 2.8 be satisfied for ν = n + 3 and let ∆
be a compact subset of I. For s > n− 1, g small enough and

z ∈ ∆±a := { x + iy ∈ R+ iR| x ∈ ∆, 0 < |y| ≤ a} ,

define
R (z, g) := (i− A)−s (z− P̄Hg P̄

)−1 (i− A)−s ,

where P̄ := 1− P. Then, there a constants c1, c2 > 0 such that for k = 0, . . . , n−
1, ∥∥∥∥∥ dk

dzk R (z, g)

∥∥∥∥∥ ≤ c1

and ∥∥∥∥ dn−1

dzn−1 R (z, g)− dn−1

dzn−1 R
(
z′, g

)∥∥∥∥ ≤ c2
∣∣z− z′

∣∣ 2s−2n+1
2s−2n+2sn+1 .

Moreover, derivatives and boundary value limits, both w.r.t. the operator norm,
may be interchanged.

This result implies a decay of metastable states, which is the content of the
next theorem. The regularity of the resolvents of the previous result are
directly related to the polynomial decay in time.

Theorem 2.10 (CGH ’06). Let Condition 2.8 be satisfied for ν = n + 5 and λ be
a simple eigenvalue of H0. Moreover, assume that the Fermi Golden Rule holds,
i.e.,

γ

2
:= Im (Ψ, V (λ + i0− P̄H0P̄) VΨ) < 0. (2.14)

Then, there is a f ∈ C∞
0 (I), with f (x) ≡ 1 for x close to λ, such that

(Ψ, f (Hg)e−itHg Ψ) = a(g)e−iλgt + b(t, g),

with a (g) = 1 +O
(

g2),
|b(t, g)| ≤ cg2| log(g)|(1 + t)−n

and

λg = λ + g (Ψ, VΨ) + g2 (Ψ, V (λ + i0− P̄H0P̄) VΨ) + o
(

g2
)

.

In particular, Im
(
λg
)

< 0.

The two preceding results are a main ingredient for the following result.
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Theorem 2.11 (CGH ’06). Let Condition 2.8 be satisfied for ν = n + 2, then

ran (P) ⊂ D (An) .

Our result improves on this by reducing the requirement to ν = n + 1,
thus improving the Theorems 2.9 and 2.10. The limiting absorption prin-
ciple can be deduced assuming H is of class C2 (P̄AP̄). This implies in
particular that ran(P) ⊆ D

(
A2), i.e. ψ ∈ D

(
A2). Even by the improve-

ment of our result we would still need H to be of class C3 (A) in order to
verify this property. This would for example preclude application to the
model considered in [Ras10, Chapt. 2]. In [FMS11b] the authors prove the
Fermi Golden Rule (2.14) directly, bypassing the general limiting absorp-
tion theorems, assuming only ψ ∈ D(A). Combined with Theorem 2.5 this
establishes the existence of the limit in the Fermi Golden Rule abstractly
under a C2 (A) condition. Moreover, the Theorem 2.11 does neither apply
to φ4

2–models nor to Pauli–Fierz models below the ionisation threshold,
[FGS08], whereas our result applies to both.

2.2 A Pumping Scheme for Solid State Lasers

Before we start with the precise mathematical description of the frame-
work and our results, we first explain heuristically the phenomenology
and the purpose of our work.

For a pumping scheme we have in mind a setup consisting of an atom,
a reservoir and an external light source, we call also pump. In solid state
lasers, the atom is an impurity in a crystal, where the electrons of the
latter serve as the reservoir. The pump is tuned such that it is resonant
with respect to the largest difference of energy levels of the impurity. If
there is no pump, then the atom evolves to its thermal equilibrium, which
is effectively given by the Gibbs state. In this state, excited energy levels
become strictly monotonously decreasingly populated as one goes from
lower to higher energy levels. Thus for long times, a higher energy level
less populated than a lower one. Therefore it cannot be used as a source
for the creation of a coherent light beam, which is the laser. As soon as
the pump is switched on, it pumps electrons from the lowest level to the
highest. If the pump is strong enough to compensate for the relaxation to
the thermal equilibrium due to the interaction with the reservoir, one may
obtain even for long times a higher population of an excited level than for
instance in the ground state. This effect is called inversion of population. If
the pump becomes much stronger than the reservoir–impurity interaction,
the system starts oscillating. These oscillations are customarily called Rabi
oscillations. We aim at a situation where Rabi oscillations are not dominant.

The evolution of the population of the energy levels is phenomenolog-
ically described by a differential equation, called Pauli Equation, [AL07],

d
dt

n (t) = (A + B) n (t) , (2.15)

where A and B are generators of completely positive semigroups, and n (t) :=
(n1 (t) , . . . , nN (t)) consists of the populations, n` (t), ` = 1, . . . , N, apper-
taining to the energy level E`. The operatorA encodes the transition rates
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between the different energy levels due to the interaction with the reser-
voir. The Markov chain generated by A is called spontaneous process. The
operator B encodes the transition rates due to the pump and the generated
Markov chain is called stimulated process. It is known that B is proportional
to the intensity of the pump. Note that (2.15) is an autonomous differential
equation. We prove in [BPW11a] the following:

1. The phenomenological Pauli Equation can be rigorously be derived
from an evolution generated by a time–dependent Lindbladian, which
in turn is associated to a microscopic Hamiltonian dynamics. The
derivation is not restricted to certain timescales, but holds uniformly
in t.

2. Under certain conditions, most importantly the requirement that the
Lindbladian satisfies a non–commutative analogue of the irreducibil-
ity of Markov chains, there is a unique stationary population, n (∞), such
that n (t)→ n (∞) as t→ ∞. The evolution described by (2.15) is not
the physical one. Our derivation of the effective dynamics of the
population leads to an integro–differential equation which generates
an evolution that converges to n (∞). However, as memory effects
are important, this state is attained in a different way than predicted
by (2.15).

3. We analyse the structure of A and B and find necessary conditions
for A, B to be satisfied. As (A + B) n (∞) = 0, this implies necessary
conditions on the stationary population n (∞).

We proceed now as follows. First we establish in Section 2.2.1 a link be-
tween the algebraic dynamics and a non–autonomous evolution family on
a GNS Hilbert space which is well–suited for our purpose. This evolution
family can be reformulated as a semigroup on a larger Hilbert space, e.g.
L2 (R+

0 , H
)
, see Section 2.2.2. Then, we introduce the notions of complete

positivity and detailed balance condition, Section 2.2.3. Finally, we present
in Section 2.2.4 a simplified version of our results in [BPW11a].

2.2.1 Algebraic Dynamics and Tomita–Takesaki Modular
Theory

We are interested in the dynamics of the atom originating from the micro-
scopic automorphic evolution of the full system and intend to explain how
this is related to objects which may be analysed by spectral theory. It is
expected that this dynamics is described by an effective (generally dissipa-
tive) completely positive (CP) semigroup whose generator, the so–called
Lindbladian, is given by second order perturbation theory.

To this end, the GNS representation of the initial state ω0 of the system
is the natural framework to use because it provides a Hilbert space struc-
ture which enables powerful tools of spectral analysis. This observation is
well–known, see, e.g., [BFS00, JP02]. The present section is an extract of
the chapter about time dependent C–Liouvilleans, [BPW11b], to which we
refer for the details.
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Assume that the initial state ω0 is of the form

ω0 = gat � ωR, (2.16)

i.e., ωat = gat is the Gibbs state. Let (H, π, Ωg) be its GNS representation.
Note that H := Hat � HR, π := πat � πR and Ωg := Ωat,g � ΩR, where
(Hat, πat, Ωat,g) and (HR, πR, ΩR) are the GNS representation of gat and
ωR, respectively. An important property of the initial state is that ω0 is
faithful. In particular, π is injective.

For simplicity, π (A) and π (V) are denoted by A and V , respectively.
Moreover, the cyclic vector Ωg of the GNS representation is in this case
separating for M, i.e., AΩg = 0 implies A = 0. Indeed, ω0 is a (β, τ)–KMS
state, where {τt}t∈R is the one–parameter group of ∗–automorphisms on
V defined by (1.11), see also [BR87, Corollary 5.3.9]. The weak closure
of the C∗–algebra π (V) is a von Neumann algebra denoted by M := V ′′.
The state ω0 on V uniquely extends to a normal state on the von Neumann
algebra M and {τt}t∈R also extends uniquely to a σ–weakly continuous
∗–automorphism group on M, see [BR87, Corollary 5.3.4]. Both exten-
sions are again denoted by ω0 and {τt}t∈R, respectively. Because ω0 is,
in this case, invariant with respect to {τt}t∈R, there is a unique unitary
representation {Ut}t∈R of {τt}t∈R, i.e.,

∀t ∈ R, A ∈M : τt (A) = Ut AU∗t ,

such that UtΩg = Ωg. As t 7→ τt is σ–weakly continuous, the map t 7→ Ut
is strongly continuous. Therefore, the unitary group {Ut}t∈R is generated
by a selfadjoint operator L, Ut = eitL. In particular, Ωg ∈ Dom(L) and L
annihilates Ωg, i.e. LΩg = 0. Moreover, L is related to the generator δ of
the group {τt}t∈R by the following relations: We have

{AΩ : A ∈ Dom (δ)} ⊂ Dom (L) ⊂ H (2.17)

and
∀A ∈ Dom (δ) : L (AΩ) = δ (A) Ω. (2.18)

Now, if the faithful state ωat is not the Gibbs state gat in (2.16) then the
GNS representation of ω0 is also given by (H, π, Ω) where Ω = Ωat � ΩR
for some Ωat ∈ Hat. In other words, the von Neumann algebra M, the
corresponding extension of the ∗–automorphism group {τt}t∈R does not
depend on the initial state ωat of the atom. So, we assume from now on
that

ω0 := ωat � ωR

for any faithful state ωat.
The (Tomita–Takesaki) modular objects of the pair (M, Ωg) are impor-

tant for our further analysis. We write ∆, J, and

P := {AJAΩg : A ∈M}

respectively for the modular operator, the modular conjugation and the
natural positive cone of the pair (M, Ωg). Observe that Ω = AJAΩg ∈ P
with

A = ρ1/4
at ρ−1/4

g � 1HR ,
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where ρg is the density matrix (1.12) of the Gibbs state gat. Additionally,
Ω is a cyclic vector for any faithful initial state ωat of the atom and hence,
by [BR87, Proposition 2.5.30], it is also separating for M.

Standard results from Tomita–Takesaki theory (cf. [BR87, Corollary
2.5.32] and [BR96, Chapt. 5]) show that the generator L of the unitary
group {Ut}t∈R satisfies

∀t ∈ R : LJ + JL = 0, eitLP ⊂ P , ∆ = e−βL. (2.19)

Here, L refers to as the standard Liouvillean of the ∗–automorphism group
{τt}t∈R.

In our setting, however, the free dynamics is perturbed by the pump
and the atom–reservoir interaction. Altogether, this leads to a perturbation
Wt of the standard Liouvillean L. For time independent perturbations of
the generator δ of the dynamics {τt}t∈R (on V) of the form i[W, ·] with
some bounded selfadjoint W ∈ V , one has

∀t ∈ R : τW
t (A) = eit(L+W)Ae−it(L+W) ∈M, A ∈ V , (2.20)

where {τW
t }t∈R is the strongly continuous ∗–automorphism group on V

generated by δ + i[W, ·]. Analogously as above, {τW
t }t∈R defines a σ–

weakly continuous group on whole M. In general, the operator L + W
neither annihilates Ωg nor satisfies

(L + W) J + J (L + W) = W J + JW = 0.

It is known, [BR87, Corollary 2.5.32], that there is an operator LW , the stan-
dard Liouvillean of the dynamics {τW

t }t∈R, satisfying [LW , J] = 0 together
with

∀t ∈ R : τW
t (A) = eitLW Ae−itLW , A ∈M ,

use [BR87, Corollary 2.5.32] and the σ–weakly continuity of the map t 7→
τW

t . Indeed, LW equals L + W up to an element of the commutant M
′
=

JMJ of the von Neumann algebra M. To determine it explicitly, it suffices
to solve the equation

[W + JAJ, J] = 0 (2.21)

for A ∈ M. Straightforward computations show that A = W is a solution
of (2.21). Additionally using the uniqueness of the standard Liouvillean
LW , one concludes that

LW = L + W − JW J ,

is the only solution of (2.21).
The operator LW does not necessarily annihilate Ωg or some prescribed

vector Ω ∈ P . In general, LW only annihilates ΩW ∈ P , the vector repre-
senting the unique (β, τW)–KMS state normal to ω0. In other words, the
standard Liouvillean LW anti-commutes with the modular conjugation J,
but has the drawback of not having Ωg in its kernel. A way to bypass
this problem is presented in [JP02, Section 2.2] where the notion of C–
Liouvilleans, L, is introduced. It is constructed such that LΩ = 0 for any
fixed Ω ∈ P . In our case, we face the problem that the dynamics is non–
autonomous and the standard Liouvillean LWt is time dependent. Using
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the C–Liouvilleans construction of [JP02, Section 2.2] we can design the
time depending Liouvillean of the non-autonomous dynamics such that
LtΩ = 0. This is a very useful property for the analysis of the dynamics.

Therefore, we now extend the definition of C–Liouvilleans [JP02, Sec-
tion 2.2] to non-autonomous evolutions. First, the time dependent, boun-
ded, selfadjoint perturbation {Wt}t∈R ⊂ V should define a family of sym-
metric derivations

δWt := δ + i[Wt, ·]
for all t ∈ R, which generates a strongly continuous two–parameter family
{τt,s}t≥s of automorphisms of V , similar to the autonomous case (2.20).

The time dependent C–Liouvillean is defined by

Lt := L + Wt − J∆1/2Wt∆−1/2 J (2.22)

for any t ∈ R.
Note that the term

Vt := Wt − J∆1/2Wt∆−1/2 J (2.23)

implements the commutator [Wt, ·] for any t ∈ R, i.e. for any A ∈ V ,

[Wt, A] Ω = Wt AΩ− (Wt A∗)∗Ω (2.24)

and using J∆1/2 AΩ = A∗Ω we also deduce that

J∆1/2Wt∆−1/2 JAΩ = (Wt A∗)∗Ω.

In particular,
∀t ∈ R : LtΩ = 0. (2.25)

We have the following result.

Proposition 2.12 (Time-dependent C–Liouvilleans).
Assume that {Wt}t≥0∈ C1(R,V) and {Vt}t≥0 ∈ C1(R,B (H)). Then, there is
an evolution family {Ut,s}t≥s ⊂ B (H) solving on Dom (L) the non–autonomous
evolution equations

∀t > s : ∂tUt,s = iLtUt,s , ∂sUt,s = −iUt,sLs , Us,s := 1.

Moreover, for any t ≥ s, Ut,s possesses a bounded inverse U−1
t,s . If {Wt}t∈R is

periodic with period T > 0, then

∀t ≥ s, k ∈ Z : Ut,s = Ut+kT,s+kT .

The evolution family satisfies Ut,sΩ = Ω and

∀t ≥ s, A ∈ V : τt,s (A) = Ut,s AU−1
t,s

In particular, {τt,s}t∈R also extends uniquely to a σ–weakly continuous ∗–auto-
morphism evolution family on M.

The use of C–Liouvilleans is advantageous because of the presence of only
one evolution family in the dynamics described by

∀A ∈M : Ut,s AUs,tΩ = Ut,s AΩ.

In particular, it establishes a direct relation to the Lindbladian, which is an
operator defined on the von Neumann algebra M. Observe also that Lt is
not selfadjoint anymore and may thus be dissipative.
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2.2.2 Evolution Semigroups

In the previous section we identified an evolution family, {Ut,s}t≥s, which
implements the algebraic dynamics. In the present section we explain how
this is related to objects which may be analysed by spectral theory. To this
end, we represent this non–autonomous evolution as an autonomous dy-
namics on an enlarged Hilbert space emerging through an additional de-
gree of freedom, which is a new time variable denoted by α. This method
enables a long–time analysis of the non-autonomous dynamics via a spec-
tral analysis of the generator of the associated evolution semigroup.

The enlarged Hilbert space is defined as

Hevo := L2(Tv, Hat), Tv := R/ 2π
v Z

, (2.26)

of time–dependent 2πv−1–periodic functions with images in H. The scalar
product on Hevo is naturally defined, for all f , g ∈ Hevo, by

〈 f , g〉evo :=
v

2π

∫ 2π
v

0
〈 f (t) , g (t)〉H dt.

Then, there is a strongly continuous one–parameter semigroup {Tα}α≥0,
called evolution semigroup, such that, for all α ≥ 0 and f ∈ Hevo,

∀t ∈ Tv a.e. : Tα ( f ) (t) = Ut,t−α f (t− α) .

The evolution semigroup is generated by

G := − d
dt

+ Levo, D (G) , (2.27)

where Levo is the bounded operator defined, for all f ∈ Hevo, by

∀t ∈ Tv a.e. : Levo( f ) (t) := Lt( f (t)).

In [BPW11a] we analyse an effective dynamics, which approximates the
two–parameter family {Ut,s}t≥s in a certain sense uniformly in time. This
dynamics gives also rise to an evolution semigroup, but the operator Levo

is bounded, see Section 2.2.4, and hence D (G) = D
(

d
dt

)
in this case.

2.2.3 Completely Positive Markov Semigroups and Balance
Conditions

In open quantum systems, one usually studies the restricted dynamics
on the small quantum system of the time evolution of the full, composite
system that typically is a small quantum object in interaction with macro-
scopic systems, i.e., reservoirs. This restriction on the time evolution for-
mally defines at any fixed time a map C within the set of density matrices
of the small system. This is pedagogically explained in [AL07, Section
1.2.1]. As explained in [AL07, Section 1.2.2], such maps usually share sim-
ilar mathematical properties, which refer to completely positive maps defined
below. In some situations, for instance if the system evolves to a thermal
equilibrium, there is a balance condition for the generator of the effective
dynamics of the small subsystem, namely the (quantum) detailed balance
condition. We start with the definition CP maps and semigroups.
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Definition 2.13 (Completely positive maps).
A positive map C ∈ B (B (X )) acting on the set B (X ) of bounded opera-
tors on a Hilbert space X is called completely positive (CP) if the extended
map C � 1B(Cn) is positive for any n ∈ N. If C is unital, i.e., C (1X ) = 1X ,
then the operator C is called a Markov map.

Completely positive semigroups are simply semigroups which are CP
maps for all times.

Definition 2.14 (Completely positive semigroups).
A semigroup {Ct}t≥0 ⊂ B (B (X )), with X being a Hilbert space, is CP
if the map Ct is CP for any t ∈ R+. If Ct is unital for any t ∈ R+, then
{Ct}t≥0 is called Markov.

From now on until the end of this section, X is always a n–dimensional
Hilbert space. We denote by B2 (X ) ≡ B (X ) the Hilbert space of Hilbert–
Schmidt operators with scalar product

〈A, B〉B2(X ) := TrX (A∗B), A, B ∈ B2 (X ) .

In the special case where a semigroup {Ct}t≥0 ⊂ B (B2 (X )) acts on
B2 (X ), we can define the (unique) adjoint semigroup {C†

t }t≥0 ⊂ B (B2 (X ))
via the equations

∀t ≥ 0 : 〈C†
t (A) , B〉B2(X ) = 〈A, Ct (B)〉B2(X ), A, B ∈ B2 (X ) .

Note that a Markov CP and C0 semigroup {Ct}t≥0 defines a C0 semigroup
{C†

t }t≥0 which preserves the trace. In this case, {C†
t }t≥0 is also called a

Markov CP and C0 semigroup. Generators of Markov CP and C0 semi-
groups {Ct}t≥0 and {C†

t }t≥0 can then be characterised in the finite dimen-
sional case (cf. [DF06, Sect. 4.3]):

Theorem 2.15 (Generators of (CP) Markov semigroups, dimX = n).
An operator M ∈ B (B (X )) is the generator of a CP semigroup iff there is a
completely positive map Ξ ∈ B (B (X )) and an operator ∆ ∈ B (X ) such that

M = ∆−→+ ∆∗←−+ Ξ. (2.28)

M ∈ B (B (X )) the generator of a CP Markov semigroup iff it is the generator of
a CP semigroup and

M = i
[

1
2

(∆ + ∆∗) , ·
]
− 1

2

(
Ξ (1)
−−→

+ Ξ (1)
←−−

)
+ Ξ. (2.29)

Remark 2.16. We use in Theorem2.15 the left and right multiplication,
∆−→A := ∆A and ∆∗←−A := A∆∗, ∀A ∈ B (X ), respectively. Operators of
the form (2.28) are usually called Lindblad-, Lindblad–Kossakowski generator,
or short Lindbladian, [GKS76, Lin76]. We will use Lindbladian.

Let {Γt}t∈R+ , Γt ∈ B (B (H)) be a continuous Markov CP semigroup
and ω be a stationary state, i.e. ω = ω ◦ Γt, ∀t ∈ R+, w.r.t. {Γt}t∈R+ .
Assume that ω is a faithful state of the C∗-algebra B (H) and denote the
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corresponding GNS representation with (Hω, πω, Ωω). There exists a con-
tinuous contraction semigroup

{
e−itL}

t∈R+ on Hω such that

πω (Γt (A)) Ωω = eitLπω (A) Ωω.

The following definition of the detailed balance condition is due to [FGKV77,
FGKV78], but we formulate it as presented in [Ali76].

Definition 2.17 (Detailed Balance Condition). We say that L satisfies the
detailed balance condition (DBC) iff it is a normal operator w.r.t. the scalar
product of Hω.

Remark 2.18. Let L = LRe + iLIm be the unique decomposition with re-
spect to the scalar product of Hω, such that LRe, LIm are self-adjoint opera-
tors. If L satisfies the DBC one can show, [Ali76, Lemma 4], that LΩω = 0.
Define by

πω (αt (A)) Ωω = eitLRe πω (A) Ωω

a continuous group {αt}t∈R of automorphisms of the C∗-algebra B (H).
Moreover, the detailed balance condition implies that

πω (ζt (A)) Ωω = e−tLIm πω (A) Ωω

defines a Markov CP continous semigroup {ζt}t∈R+
0

, [FGKV77], and

LRe (Ωω) = 0 = LIm (Ωω) .

We conclude this section with a short illustration of the DBC for Markov
chains with some finite state space which is not necessarily related to Hω.
Consider

d
dt

nj (t) =
N

∑
`=1

(
Aj`n` (t)− A`jnj (t)

)
, Aj,` ≥ 0, j, ` = 1, . . . , N. (2.30)

This Markov chain satisfies the DBC w.r.t. ñ = (ñ1, . . . , ñN), if

Aj`ñ` = A`jñj, j, ` = 1, . . . , N.

In case of thermal equilibrium, when n` is associated to the population of
the `th atomic energy level, the relation between Aj` and A`j is given by
the Boltzmann factor exp

(
−β

(
E` − Ej

))
.

2.2.4 Results

In the present section we present a simplified version of the results of
[BPW11a]. We analyse the atomic dynamics resulting from the restric-
tion on B(Cd) of the full dynamics generated by the symmetric derivation
δ
(λ,η)
t . This corresponds to study the family of states {ωat (t)}t∈R+

0
defined

by (1.18) or, equivalently, to study the corresponding family {ρat (t)}t∈R+
0

of density matrices. We are more precisely interested in the time behaviour
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of observables related to atomic levels only, and not to correlations be-
tween different levels. Mathematically, this amounts to study the orthog-
onal projection PD (ρat (t)) of the density matrix ρat (t) on the subspace

D = D(Hat) := B(H1) � · · ·� B(HN) ⊂ Hat. (2.31)

In other words, we analyse the density matrix

PD (ρat (t)) =
N

∑
k=1

1 [Hat = Ek] ρat (t) 1 [Hat = Ek]

for any t ∈ R+
0 . The density matrix ρat (t) is approximated by the solution

of an effective non-autonomous initial value problem in B(Cd) called the
effective atomic master equation, see [BPW11a, BPW11b]. Its generator is
a time–dependent Lindbladian L

(λ,η)
t , i.e. it generates for any t ∈ R a

completely positive group. This Lindbladian L
(λ,η)
t ∈ B(Hat) is defined by

the following sum:

L
(λ,η)
t (ρ) := Lat(ρ) + η cos(vt)Lp(ρ) + λ2LR(ρ), ρ ∈ Hat. (2.32)

The first term is the Lindbladian of the free atomic dynamics which is the
anti–selfadjoint operator defined by

Lat(ρ) := −i[Hat, ρ] = −L∗at(ρ), ρ ∈ Hat. (2.33)

Similarly, the second term of (2.32) corresponds to the Lindbladian

Lp(ρ) := −i[Hp, ρ] = −L∗p(ρ), ρ ∈ Hat. (2.34)

The third term includes a dissipative part Ld ∈ B(Hat), i.e., LR ∈ B(Hat)
is not anti–selfadjoint, which results from the Markov approximation of
atom–reservoir interaction. More precisely, the Lindbladian LR equals

LR(ρ) := −i[HLamb, ρ] + Ld(ρ), ρ ∈ Hat. (2.35)

The so–called atomic Lamb shift HLamb and effective atomic dissipation Ld
encode the influence of the electron field-impurity interaction on the dy-
namics. For the explicit form of Ld and HLamb in terms of quantities of the
underlying microscopic dynamics, we refer to [BPW11a]. Here, we focus
on the structural properties.

We define now the effective atomic master equation as the initial value
problem

∀t ≥ 0 :
d
dt

ρ(t) = L
(λ,η)
t (ρ(t)), ρ(0) = ρat (0) ≡ ρat. (2.36)

This evolution equation has a unique solution, since Hat is finite dimen-
sional. We denote the two parameter family solving (2.36) by {τ̂(λ,η)

t,s }t≥s.
Let {Tα}α≥0 be the evolution semigroup on Hevo := L2 (Tv, Hat) associated
to {τ̂(λ,η)

t,s }t≥s. The generator of {Tα}α≥0 is given by

G(λ,η) := − d
dt

+ L
(λ,η)
evo , D

(
G(λ,µ)

)
= D

(
d
dt

)
,
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where L
(λ,η)
evo is the bounded operator defined for any f ∈ Hevo as

∀t ∈ Tv a.e. : L
(λ,η)
evo ( f ) (t) := L

(λ,η)
t ( f (t)).

For each ε ∈ σ(i[Hat, ·]),

H
(λ,η)
ε := P(λ,η)

ε Hevo

is an invariant, finite dimensional subspace (see [Kat76, Chapter II]) of the
evolution semigroup {Tα}α≥0 and

P(λ,η)
ε :=

1
2πi

∮
|z−ε|= R

4

(
z− G(λ,η)

)−1
dz (2.37)

is the Kato projection. Here, we choose R and λ small enough to ensure
that the Kato projection, P(λ,η)

ε , is well–defined. The restriction of G(λ,η)

onto the space H
(0,0)
0 is denoted by

Λ(λ,η) := P(0,0)
0 G(λ,η)P(0,0)

0 . (2.38)

In [BPW11a] we construct a unitary operator

U : H
(0,0)
0 → H̃

(0,0)
0 ,

such that, for
Λ̃(λ,η) (ρ) :=

η

2
Lp(ρ) + λ2LR(ρ),

we find
Λ̃(λ,η) = UΛ(λ,η)U∗.

Under certain technical assumptions, we prove the following result.

Theorem 2.19 (Bru–Pedra–W. ’11).
(i) For any ε ∈ (0, 1), any state ρ ∈ D ⊂ Hat, with ρ = ρ(0), and any

observable A ∈ B(Cd) ≡ Hat, the unique solution {ρ(t)}t≥0 of the effective
atomic master equation (2.36) satisfies the bound∣∣∣〈PD (ρ(α)) , A〉at −

〈
exp

(
αΛ(λ,η)

)
ρ, A

〉
evo

∣∣∣
≤ C ‖A‖

(
|λ|2(1−ε) +

|λ|(1 + |λ|)
v

)
.

Here C is a finite constant independent of ρ, A, λ, η, v, and α.
(ii) There is a unique density matrix ρ̃∞ ∈ H̃

(0,0)
0 such that Λ̃(λ,η) (ρ̃∞) = 0.

Moreover, for all ρ ∈ Hat and any ε ∈ (0, 1),

lim sup
α→∞

‖PD (ρ (α))− PD (ρ̃∞)‖ ≤ C
(
|λ|2(1−ε) +

|λ|(1 + |λ|)
v

)
, (2.39)

where C is a finite constant independent of ρ, A, λ, η, v, and α.
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Remark 2.20. We stress, that our analysis does note require a rotating wave
approximation (RWA), which would amount to replacing HP cos (vt) by a
matrix of the type 

0 · · · 0 aeitv

...
. . . . . . 0

0
. . . . . .

...
āe−itv 0 · · · 0

 .

The RWA suppresses certain “rapidly oscillating” terms in the “interac-
tion picture” of the equation (2.36), i.e. the evolution equation obtained by
conjugating

{
τ̂

(λ,µ)
t,s

}
t≥s

with the one parameter group
{

τ̂
(0,0)
t,0

}
t∈R

. This

approximation is physically meaningful if the detuning, ∆, is small com-
pared to the sum of the frequencies of the external light source, v, and
the energy difference of the atomic levels which are coupled i.e. ∆ :=
|v− (EN − E1)| � v + (EN − E1). In our setting, we even have ∆ = 0, i.e.
a resonant pump.

Having established the existence of a stationary state, we still need to de-
rive a Pauli equation, for which n (∞) = PD (ρ̃∞). Denoting P⊥D := 1− PD

we find the following integro–differential equation:

Theorem 2.21 (The pre–master equation).
The family {ρD (α)}α≥0 of density matrices defined by

ρD (α) := PD

(
exp

(
αΛ(λ,η)

)
ρ
)

,

for any initial density matrix ρ ∈ Hat, obeys the integro–differential equation

d
dα

ρD (α) = λ2LR (ρD (α))

+
η2

4λ2

αλ−2∫
0

PDLpP⊥DesLRP⊥DLpPD

(
ρD

(
α− sλ−2

))
ds,

called here the pre–master equation. Moreover,

B :=
∞∫

0

PDLpP⊥DesLRP⊥DLpPDds ∈ B(Hat),

where the integral exists in norm.

Now we introduce

B :=
η2

4λ2 B

and
A := λ2LRPD.
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Since D is an invariant space of LR and B, we can define the Pauli Equa-
tion

∀t ∈ R+ :
d
dt

n (t) := (A + B) n (t) , n (0) ∈ D.

It has a unique solution which converges to n (∞) := PD (ρ̃∞). Note, the
following two facts:

1. The generator of the stimulated process, B, is indeed proportional to
η2, which measures the strength of the pump, i.e., its intensity.

2. The operator B is a depends on LR, whose “diagonal entries”, i.e.,
the part of LR which acts non–trivially on D, defining the sponta-
neous process generated by A.

We refer to [BPW11a] for a discussion of the relation of A and B to the
well-known “Einstein coefficients”. Those coefficients are known to satisfy
several restrictions and we derive analogues for the present setup.

2.3 Towards a Dynamical Renormalisation Group

In [BMW11], we study the long time dynamics of an open quantum sys-
tem consisting of a two–level atom which is weakly coupled to the en-
vironment. The environment is modelled by a massless boson field at
zero temperature. Assuming dilation analyticity of the Hamiltonian, we
derive an effective generator for the evolution of the atomic- and low en-
ergy photon degrees of freedom and provide quantitative errors in the
coupling constant. In the weak coupling limit our result reproduces the
well known results of Davies, [Dav74, Dav75, Dav76], for our model. As
already explained in Section 1.2, one expects for the type of model we
investigate, that the weak coupling limit in the sense of Davies cannot be
extended to times beyond the van Hove timescale. Our approach is a first
step to develop a renormalisation group analysis that provides for a given
timescale τn = tgn an effective generator Hat + T

(n)
g (Hf) for the evolution

of atomic- and low energy field degrees of freedom, as well as quantitative
error bounds. The effective operator is obtained as the unique solution of
an implicit equation.

We explain in Section 2.3.1 the isospectral Feshbach map, which is an
important tool in our analysis. In Section 2.3.2, we present a standard
result on C0–semigroups, which expresses a C0–semigroups in terms of
the resolvent of its generator. This is the starting point for our analysis in
[BMW11]. Then, deformation analyticity and in particular dilation analyt-
icity are defined in Section 2.3.3. Finally, our main result is presented in
Section 2.3.4. In Section 2.3.4 we also discuss the relation of our work to
results on resonances and metastable states.

2.3.1 The Isospectral Feshbach Map

We present here a new variant of the the Feshbach map for matrices, which
has been introduced in [BCFS03], namely the smooth Feshbach map. In
[BMW11] we use in fact the conventional Feshbach map, but as smooth
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Feshbach map can easily be related to the conventional one, and has
proven to provide significant simplifications in the renormalisation group
analysis of singular perturbation theory, [BFS98b, BCFS03], we believe it is
of interest for the reader. We also use [GH08], where some assumptions
of [BCFS03] connected to the isospectrality could be generalised. Let H be
a separable Hilbert space and χ and χ be commuting, non–zero bounded
operators on H and satisfying

χ2 + χ2 = 1. (2.40)

Let
H, T : D (H) = D (T)→ H,

be closed operators and set W := H − T. Moreover, we use the abbrevia-
tions

Wχ := χWχ, Wχ := χWχ,
Hχ := T + Wχ, Hχ := T + Wχ,

where all operators are defined on D (T). Then, we have the following
definition.

Definition 2.22 (Feshbach pair). The pair of operators (H, T) is called Fes-
hbach pair for χ, χ, or short Feshbach pair, iff
(i) χT ⊆ Tχ and χT ⊆ Tχ,
(ii) T, Hχ : D (T) ∩ ran (χ) → ran (χ) are bijections with bounded in-
verse
(iii) χH−1

χ χWχ : D (T)→ H is a bounded operator.

At several stages inverse operators on subspaces are considered. We say
A : D (A) → H is bounded invertible on a subspace V, if its restriction to V
is bounded invertible. Note that

χWχH−1
χ χ = χHχH−1

χ χ− χTχH−1
χ χ

is bounded by (i) and (ii).

Definition 2.23 (Smooth Feshbach map). Let χ and χ be commuting, non–
zero bounded operators on H and satisfying (2.40) and (H, T) be a Fesh-
bach pair. The Feshbach map is defined as

Fχ (H, T) := Hχ − χWχH−1
χ χWχ.

It is also useful to introduce the following auxiliary operators

Qχ := χ− χH−1
χ χWχ

Q]
χ := χ− χWχH−1

χ χ.

With these prerequisites, we have the following theorem.

Theorem 2.24 (Feshbach isospectrality). Let χ and χ be commuting, non–
zero bounded operators on H and satisfying (2.40) and (H, T) be a Feshbach pair.
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Then, the following holds:
(i) Let V be a subspace with ran (χ) ⊆ V and T : D (T) ∩ V → V,
χT−1χV ⊆ V, then H is bounded invertible iff Fχ (H, T) : D (T) ∩ V → V
is bounded invertible in V. Moreover,

H−1 = QχFχ (H, T)−1 Q]
χ + χH−1

χ χ,

Fχ (H, T)−1 = χH−1χ + χT−1χ.

(ii) χker (H) ⊆ ker (Fχ (H, T)) and Qχker (Fχ (H, T)) ⊆ ker (H) . More-
over,

χ : ker (H) → ker (Fχ (H, T)) ,
Qχ : ker (Fχ (H, T)) → ker (H) ,

are linear isomorphisms and inverse to each other.

It remains to relate the smooth Feshbach map to the original Feshbach
map, [BFS98a, BFS98b], where χ = P and P is an orthogonal projection,
i.e. P2 = P and P∗ = P. In this case, we may set T := PHP + PHP, where
P := 1− P, and obtain

PFP (H, T) P = PHP− PHP
(

PHP
)−1 PHP =: FP (H) ,

where FP (H) is the original Feshbach map.

2.3.2 An Inverse Laplace Transform

The starting point of our analysis in [BMW11] is the following result on
C0–semigroups. It is in fact the inverse Laplace transform of the resolvent
of the generator, [ABHN01, Thm. 3.12.2].

Theorem 2.25. Let X be a Hilbert space and {T (t)}t∈R+
0

be a C0–semigroup
with generator A and

‖T (t)‖ ≤ Meω(T )t, M > 0, ω (T ) ∈ R.

Then, for all t > 0, x ∈ X, ω > ω (T ), we have

T (t) x = lim
k→∞

1
2π

k∫
−k

e(ω+is) (ω + is− A)−1 x. (2.41)

Remark 2.26. (i) The preceding theorem is not valid for general Banach
spaces. However, if one replaces the assumption x ∈ X by x ∈ D (A), then
an analogue statement is true for Banach spaces.

(ii) Even though (2.41) is an expression for positive t, a representation
for unitary groups can be obtained by means of Stone’s Formula, [RS80a,
Thm. VII.13].

(iii) If the spectrum of A is contained in a sector of angle < π, the
integration (2.41) can be deformed to an appropriately chosen contour.
This has the advantage, that one can get rid of the “symmetric limit”,
limk→∞

1
2π

∫ k
−k . . . , and several parts of the contour may be discussed sep-

arately. In [BMW11] we just do that in order to obtain Theorem 2.30.
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2.3.3 Dilation Analyticity

Complex deformation techniques have first been used by Balslev and Com-
bes in the context of N-body Schrödinger operators, [BC71]. The interac-
tion is usually assumed to be relatively compact with respect to the free
Hamiltonian, which is not the case for our model. I.e. let

H = H0 + V,

where H0 is selfadjoint and Vis relatively compact. If the complex de-
formed V, Vξ is relatively compact w.r.t. the complex deformed H0, de-
noted by H0,ξ , then one can conclude by Weyl’s Theorem, [RS78, Thm.
XIII.14], that the essential spectrum of the deformed Hamiltonian Hξ =
H0,ξ + Vξ equals the essential spectrum of the deformed “free” Hamilto-
nian, i.e.

σess
(

Hξ

)
= σess

(
H0,ξ

)
.

In particular, if the essential spectrum of H0,ξ is only in one half plane,
then this also holds for Hξ . In our model, the interaction φ (G) of the
quantised boson field is not relatively compact with respect to the free
energy. Therefore, the essential spectrum can in general be spread in the
lower and upper half plane. In view of (2.41) this means that we pick up
exponential growth in those regions.

Next we define the complex deformation relevant for our application.
It is useful to introduce the following notion.

Definition 2.27 (Type A families). For some open subset B ⊆ C, a family{
Hξ

}
ξ∈B of closed operators defined on a Banach space X is of said to be

of type A iff D
(

Aξ

)
= Y ⊆ X for all ξ ∈ B and the map

B 3 ξ 7→ Hξ x

is analytic for all x ∈ Y.

We have the following well-known result on type A families, see [Kat76,
Sect. VII.2, Thm. 1.3].

Lemma 2.28 (Resolvents of type A families). Let
{

Hξ

}
ξ∈B be a type A fam-

ily and z ∈ $
(

Hξ0

)
, where $

(
Hξ0

)
is the resolvent set of Hξ0

and ξ0 ∈ B. Then,

ξ 7→
(
z− Hξ

)−1 (2.42)

is analytic in some neighbourhood of ξ0.

Lemma 2.28 implies that the resolvent set of Hξ0
is preserved in the vicinity

of the given ξ0. In applications, we usually have a–priori knowledge on
the resolvent set for the free Hamiltonian for any ξ0 ∈ B. In our situation,
we are lead to stronger statements than Lemma 2.28, where analyticity of
(2.42) is even true for some strip around the real axis.

Let now Hg be defined as in (1.6), N = 2, d = 3, and ω (k) := |k|,
∀k ∈ R3. Let f ∈ h and define the unitary strongly continuous one-
parameter group of dilations, u(·), on the space h by (u(α) f ) (r, Ω) :=
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e−
3
2 α f (e−αr, Ω), using polar coordinates, (r, Ω). Its second quantised ana-

logue is denoted by U(α) := Γ (u(α)). U leaves the domain of H0, D (H0),
invariant and one easily computes

H0,α = Hat + e−α Hf, ∀α ∈ R. (2.43)

For any ξ ∈ C,
H0,ξ = Hat + e−ξ Hf,

is a closed and even normal operator on Hat � D (Hf), as Hat is finite
dimensional. Moreover,

{
H0,ξ

}
ξ∈C is a family of type A. From

1(
z− e−ξ x− E`

) =
eξ(

eξ z− x− eξ E`

) ,

it follows by functional calculus of the selfadjoint operator Hf, that z ∈
$
(

H0,ξ
)

iff

eξz ∈ C\
(

eξ {E0, E1}+R+
0

)
,

and hence
σ
(

H0,ξ
)

= {E0, E1}+ eξR+
0 .

We introduce now a condition on the coupling functions, which insures
that the full Hamiltonian gives rise to a family of type A. For matrix–
valued functions, we use the convention that the norm is the operator
norm on B

(
C2) and we write again ‖G‖hω

instead of ‖G‖hω�C2×2 if G is
matrix–valued.

Condition 2.29 (Coupling functions). Let ξ0 ∈
(
0, π

2
)

and the coupling
function, G, be an element of L2 (R3, B (Hat)

)
. The map R 3 α 7→ Gα :=

u(α)G extends to an analytic function in the strip I (ξ0) := R+ i(−ξ0, ξ0)
and

sup
|θ|<ξ0

‖Gα+iθ‖hω
< ∞. (2.44)

Moreover,

G (k) = G (|k|) , (G (k))`` = 0, ∀k ∈ R3, ` = 0, 1. (2.45)

There is a c2.29 ∈ R+, such that

‖G (k)‖ ≤ c2.29√
|k|

, ∀k ∈ R3. (2.46)

Finally, assume that ‖G (k)‖ → 0 sufficiently rapid, as |k| → ∞. We refer
to the sufficiently fast convergence ‖G (k)‖ → 0 as the ultraviolet cutoff.

Finally, on the domain Hat �Ffin we define for ξ ∈ I (ξ0),

φ̌
(
Gξ

)
:=

1√
2

(
a
(

Gξ̄

)
+ a† (Gξ

))
. (2.47)

Note, that we used ξ̄ for the annihilation operator, a (·), since it is anti-
linear in the argument. On the domain Hat �D (Hf), we define the closed
operator

Hg,ξ := H0,ξ + φ̌
(

gGξ

)
. (2.48)

As φ̌
(
Gξ

)
is infinitesimally Hf bounded, it follows that Hg,ξ is a family of

type A.
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2.3.4 Main Result and Resonance Theory

We distinguish two different problems of perturbation theory of eigenval-
ues, the regular perturbation theory, where the eigenvalue to be localised is
an element of the discrete spectrum of the unperturbed operator and the
singular perturbation theory, where the eigenvalue is in the essential spec-
trum. More specifically, let

Hg := H0 + gW,

where H0 is assumed to be selfadjoint, W is a relatively H0–bounded per-
turbation of H0. Then, assume that λ is an eigenvalue of H0 with multi-
plicity m ∈ N. If λ ∈ σdisc (H0), or if there is a complex deformation1 H0,ξ ,
of H0, such that λ ∈ σdisc

(
H0,ξ

)
one can analyse the spectrum by means

of the Riesz projection,

P (λ) :=
−1
2πi

∮
γ

dz
(

Hg,ξ − z
)−1 , (2.49)

for sufficiently small g. Here, γ is a contour in the resolvent set of H0,ξ
which encloses λ as the only spectral point of H0,ξ and Hg,ξ is the “com-
plex deformed” Hg. We have already seen in Section 2.1.3 that excited
eigenvalues may be unstable and it is possible to estimate the decay of
matrix elements

(ψ, f (Hg)e−itHg ψ) =
(

1 +O
(

g2
))

e−itλ(g) + b (t, g) , Im (λ (g)) > 0,

|b (t, g)| ≤ o
(

g2
)

(1 + t)−N , ∀N ∈ N, t ≥ 0, (2.50)

provided Fermi Golden Rule holds and the resolvent,
(

Hg − z
)−1, is suffi-

ciently regular with respect to some auxiliary operator A. In Section 2.3.3
we consider the case where A is selfadjoint and the resolvent is even an-
alytic in a strip around the real axis with respect to the conjugation with
the group generated by A. In the context of regular perturbation theory
there are strong results on the decay rate of the resonances. These results
do usually assume a deformation analyticity of the Hamiltonian Hg, in
order to separate the essential form the discrete spectrum, but they to not
require a Mourre estimate. The first result which provided rigorous esti-
mates on the decay law of resonances states is due to Hunziker, [Hun90].
He proves a result with the same consequences as in Theorem 2.10, but the
error term b (t, g) decays as (1 + t)−n for any n ∈ N, instead of some fixed
n related to the regularity of the resolvent. Both results, [CGH06] and
[Hun90], depend on the function f (·), which localises the group e−itHg

to a small interval around the eigenvalue λ. For a different choice of f ,
namely assuming that f is of Gevrey class, Rama and Klein proved re-
cently, [KR10], that for an abstract dilation analytic model that b (t, g) is
almost exponentially decaying,

|b (t, g)| ≤ o
(

g2
)

e−Ct
1
a , C ≤ ac

1
a ,

1See Section 2.3.3.
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for any a > 1, c > 0 and g sufficiently small. Finally, in the case of
finite temperature, Jaksic and Pillet developed in [JP95, JP96a, JP96b] a
complex deformation technique, a complex translation, which allows to
deform Liouvilleans such that the discrete spectrum is separated from the
essential spectrum, even if the reservoir arises from a massless field. In
this vein the problem becomes tractable by regular perturbation theory,
whereas this is not possible for the generator of dilations.

In the context of singular perturbation theory, more specifically in
massless quantum field theoretic models, resonances have first been anal-
ysed by Bach, Fröhlich and Sigal, [BFS98a]. Their analysis is based on the
isospectral Feshbach map. The Feshbach map has as an intrinsic feature a
reduction of state space. An iteration based on an repeated decimation of
the state space lead to the construction of a renormalisation group analysis,
which provides an algorithm to localise the resonance to arbitrary pre-
cision, [BFS98b, BCFS03]. The first result to determine the decay rate of
(2.50) for dilation analytic, massless, quantum field theoretic models has
been established in [BFS99], using a single step Feshbach map analysis.
The result proved there is of the same type than the result by Hunziker,
[Hun90]. In a more recent paper Hasler, Herbst and Huber proved also a
lower bound on the decay rate of (2.50). Their analysis is also based on the
Feshbach map, see [HHH08].

In [BMW11] we provide a detailed analysis of the dynamics generated
by a two level spin boson model, with a dispersion relation ω (k) = |k|,
restricted to low field energies. More precisely, let Hg be defined by (1.6),
with N = 2 and eigenvalues of Hat, E1 > E0. We prove for the complex
deformed operator, Hg,ξ , see Section 2.3.3, a result, which we present here
in a simplified version.

Theorem 2.30 (Bach–Møller–W. ’11). Let

Xg,ξ (t) := e−itHg,ξ

and ρ = gµ, µ ∈ (0, 2), and pick ν ∈
(

0, min
(

1, µ−1 − 1
2

))
. There is a bounded

operator, Ξg,ξ (Hf), with
[
Ξg,ξ (Hf) , H0,ξ

]
= 0, such that for any t ∈ R+,∥∥∥1 [Hf < ρ] Xg,ξ (t) 1 [Hf < ρ]− e−itΞg,ξ (Hf)

∥∥∥
≤ C

(
e−tc2 + ec1g2ρνt

(
ρ

1−ν
2 + g

1
2 ρ−

1
2 (ν+ 1

2 )
))

,

for some C, c0, c1, c2 ∈ R+, which are independent of g. Moreover, for ` = 0, 1,
r ∈ [0, ρ] and Pat,` := 1 [Hat = E`] � 1 [Hf < ρ],

Ξg,ξ (r) Pat,` =
(

E` + e−ξr− g2Λ̃`` (0, E`)
)

Pat,` +O
(

g2ρ
)

.

Here, we used for ` = 0, 1 the abbreviation

Λ̃`` (0, E`) :=
∞∫

0

dk
e−3ξk2

∣∣∣(G)(1−`)`
(
e−ξ k

)∣∣∣2
E1−` − E` + e−ξ k

.
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Remark 2.31. (i) It is possible to relate Λ̃`` (0, E`) to objects which are ξ
independent. For the ground state, ` = 0, this yields a correction in sec-
ond order of g with vanishing imaginary part = 0. For the excited state,
` = 1, the obtained correction has a negative imaginary part, provided
Fermi Golden Rule holds.
(ii) To our knowledge, the evolution of the ground state has previously
not been addressed in singular perturbation theory. Note, that the error
contains an exponentially growing factor, ec1g2ρνt, which is due to contri-
butions of the ground state. This exponential growth is however of a mild
type, as it becomes constant on the van Hove timescale, where tg2 = const.
as g→ 0.
(iii) The optimal choice of µ depends on the value of t. If one chooses

µ = 2
3 , then ρ

1−ν
2 = g

1
2 ρ−

1
2 (ν+ 1

2 ).
(iv) Our result reproduces Davies results in the weak coupling limit, but
also provides quantitative bounds.
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Chapter 3
Regularity of Eigenstates in

Regular Mourre Theory

J. S. Møller and M. Westrich

Abstract

The present paper gives an abstract method to prove that possibly
embedded eigenstates of a self-adjoint operator H lie in the domain
of the kth power of a conjugate operator A. Conjugate means here
that H and A have a positive commutator locally near the relevant
eigenvalue in the sense of Mourre. The only requirement is Ck+1(A)
regularity of H. Regarding integer k, our result is optimal. Under
a natural boundedness assumption of the multiple commutators we
prove that the eigenstate ‘dilated’ by exp(iθA) is analytic in a strip
around the real axis. In particular, the eigenstate is an analytic vector
with respect to A. Natural applications are ‘dilation analytic’ systems
satisfying a Mourre estimate, where our result can be viewed as an
abstract version of a theorem due to Balslev and Combes, [BC71]. As
a new application we consider the massive Spin-Boson Model.

3.1 Introduction and main results

In this paper we study regularity of eigenstates ψ of a self-adjoint opera-
tor H, with respect to an auxiliary operator A for which i[H, A] satisfies
a so-called Mourre estimate near the associated eigenvalue λ. Our results
are partly an extract of a recent work of Faupin, Skibsted and one of us
[FlS10a], and partly an improvement of a result of Cattaneo, Graf and
Hunziker [CGH06]. We consider in the present work the case of regular
Mourre theory, where the derivation of the bounds on Akψ is simpler com-
pared to [FlS10a]. In fact we derive explicit bounds which are independent
of proof technical constructions. The bounds are good enough to formu-
late a natural condition on the growth of norms of multiple commutators
which ensures that eigenstates are analytic vectors with respect to A. We
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discuss how these growth conditions may be checked in concrete exam-
ples and illustrate this for dilation analytic N-body Hamiltonians and the
massive Spin-Boson Model.

The general strategy in this paper, as well as in [CGH06] and [FlS10a],
is to implement a Froese-Herbst type argument, [FH82], in an abstract
setting. In a formal computation the Mourre estimate suffices to extract
results of the type presented here but to make the argument rigorous one
has to impose enough conditions on the pair of operators H and A to en-
able a calculus of operators. This is usually done by requiring a number
of iterated commutators between H and A to exist and be controlled by
operators already present in the calculus. The type of conditions imposed
is typically guided by a set of applications that the authors have in mind.
Most examples, like many-body quantum systems with or without exter-
nal classical fields, have been possible to treat using natural extensions of
conditions originally introduced by Mourre in [Mou81]. The same goes for
a number of models in non-relativistic QED like confined massive Pauli-
Fierz models and massless models, with A being the generator of dilations.
These are the type of conditions used in [CGH06].

Over the last 10 years a number of models that fall outside the scope of
Mourre’s original conditions, and hence not covered by [CGH06], have ap-
peared. We split them into two types. The first type are models that, while
not covered by Mourre type conditions on iterated commutators, still sat-
isfy weaker conditions developed over some years by Amrein, Boutet de
Monvel, Georgescu and Sahbani [AdMG96, Sah97]. These conditions play
the same role as Mourre’s original conditions in that they enable the same
type of calculus of the operators H and A. We call this setting for reg-
ular Mourre theory. Examples of models that fall in this category but
are not covered by Mourre type conditions as in [CGH06], are: P(φ)2-
models [DG00] (with P(ϕ) 6= ϕ4), the renormalised massive Nelson model
[Amm00], Pauli-Fierz type models without confining potential [FGS01],
the standard model of non-relativistic QED near the ground state energy,
where only local Ck conditions are available [FGS08], and the translation
invariant massive Nelson model [MR10].

The second type of models we wish to highlight are those for which
the commutator H′ = i[H, A] is not comparable to H (or A). Here one
views the commutator as a new operator in the calculus and impose as-
sumptions of mixed iterated commutators between the three possibly un-
bounded operators H, A and H′. This type of analysis goes back to [Ski98]
and was further developed in [MS04] and [GGM04a]. This situation we
call singular Mourre theory and is the topic considered in [FlS10a]. There
are two examples where this type of analysis is natural. The first is mass-
less Pauli-Fierz models with A being the generator of radial translations
[DJ01, GGM04b, FlS10a, FlS10b, Ski98, Gol09] and the second is many-
body systems with time-periodic pair-potentials, in particular AC-Stark
Hamiltonians [MS04, FlS10a]. The technical complications arising from
having to deal with a calculus of three unbounded operators are signifi-
cant.

Part of the motivation of this work is to extract the essence of [FlS10a]
in the context of regular Mourre theory, where the technical overhead is
more manageable.
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A second motivating factor is drawn from the paper [FlS10b], which
is in fact intimately connected to [FlS10a]. We remind the reader of the
Fermi Golden Rule (FGR) which we now formulate. Let P denote the
orthogonal projection onto the span of the eigenvector ψ, and abbreviate
P̄ = I − P. The FGR states that a, for simplicity isolated and simple,
embedded eigenvalue is unstable under a perturbation W provided

Im
(

lim
ε→0+

〈Wψ, P̄(H̄ − λ− iε)−1P̄Wψ〉
)
6= 0. (3.1)

Here H̄ = P̄HP̄ is an operator on the range of P̄. In the above statement
the existence of the limit is of course implicitly assumed. Due to the pres-
ence of the projection P̄, the operator H̄ has purely continuous spectrum
near the eigenvalue λ, and the existence of the limit can thus be inferred
from the limiting absorption principle (LAP). The LAP can be deduced using
positive commutator estimates, see e.g. [AdMG96], provided there exists
an auxiliary operator A such that H and A satisfy a Mourre estimate near
λ and (H̄ − i)−1 admits two bounded commutators with A, or more pre-
cisely H is of class C2(P̄AP̄) (see the next subsection). This implies in par-
ticular that ran(P) ⊆ D(A2), i.e. ψ ∈ D(A2). Even by the improvement
of [FlS10a], and in turn this paper, we would still need H to be of class
C3(A) in order to verify this property. This would for example preclude
application to the model considered in [MR10]. In [FlS10b] the authors
study the limit in (3.1) directly, bypassing the general limiting absorption
theorems, albeit applying the same differential inequality technique, and
prove existence of the limit assuming only ψ ∈ D(A). Combined with
[FlS10a] (or this paper) this establishes the existence of the limit in the
Fermi Golden Rule [FlS10b] abstractly under a C2(A) condition. The price
to pay is that one needs a priori control of the norm ‖Aψ‖ locally uni-
formly in possibly existing perturbed eigenstates. While it is clear that
such a locally uniform bound does hold, provided all the input in [FlS10a]
is controlled locally uniformly in the perturbation, it is however imprac-
tical due to the complexity of the setup to extract such bounds in closed
form. In this paper we do just that in the simpler context of regular Mourre
theory.

As a last motivation, we had in mind a consequence of having good ex-
plicit bounds on the norms ‖Akψ‖. Namely, provided one imposes natural
conditions on the norms of all iterated commutators, we show as a conse-
quence of our explicit bounds on ‖Akψ‖ that the power series ∑k=1

(iθA)k

k! ψ
has a positive radius of convergence, thus establishing that ψ is an ana-
lytic vector for A. Here however, we have to work with conditions of the
type considered in [CGH06]. Having established analyticity of the map
θ 7→ exp(iθA)ψ in a ball around 0 one may observe that this map is actu-
ally analytic in a strip around the real axis, and thus this result reproduces
a result of Balslev and Combes [BC71, Thm.1] on analyticity of dilated
non-threshold eigenstates. As an example of a new result, we prove for
the massive Spin-Boson Model that non-threshold eigenstates are analytic
vectors with respect to the second quantised generator of dilations.
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3.1.1 Commutator Calculus

We pause to introduce the commutator calculus of [AdMG96] before for-
mulating our main results. Let A be a self-adjoint operator with domain
D(A) in a Hilbert space H. We denote with B(X, Y) the set of bounded
operators on the normed space X with images in the normed space Y and
B(X) := B(X, X).

Definition 3.1. A bounded operator B ∈ B(H) is said to be of class Ck(A),
in short B ∈ Ck(A), if

R 3 t 7→ eitABe−itA (3.2)

is strongly in Ck(R). A possibly unbounded self-adjoint operator S is said
to be of class Ck(A) if (i− S)−1 ∈ Ck(A).

The property, that B ∈ B(H) is of class C1(A) is equivalent to the state-
ment that

(φ, [B, A]χ) := (B∗φ, Aχ)− (Aφ, Bχ), ∀φ, χ ∈ D(A)

extends to a bounded form on H×H, which in turn is implemented by
a bounded operator, adA(B), see e.g. [GGM04b]. If B ∈ C2(A), then
an argument using Duhamel’s formula shows adA(B) ∈ C1(A) and thus
there exists a bounded extension of the form [adA(B), A]. This allows to
construct iteratively the bounded operator adk

A(B) := adA(ad(k−1)
A (B)),

for B ∈ Ck(A). We set ad0
A(B) := B.

Commutators involving two possibly unbounded self-adjoint operators
H and A will in general not extend to bounded operators on H and the
definition of the quadratic form [H, A] requires further restrictions on its
domain. Thus we denote by [H, A] the form

(φ, [H, A]χ) := (Hφ, Aχ)− (Aφ, Hχ), ∀φ, χ ∈ D(A) ∩D(H).

If H ∈ C1(A), then D(A) ∩ D(H) is dense in D(H) in the graph norm
of H and [H, A] extends to an H-form bounded quadratic form, which in
turn defines a unique element of B(D(H),D(H)∗) denoted by

adA(H) : D(H)→ D(H)∗,

see [GGM04a]. The space D(H)∗ is the dual of D(H) in the sense of rigged
Hilbert spaces.

Our result on the analyticity of eigenvectors of H with respect to A
requires a construction of multiple commutators of H and A which are
bounded as maps from D(H) to H in the graph norm of H. The construc-
tion is as follows: Let H ∈ C1(A). We assume that adA(H) ∈ B(D(H),H).
Then, [adA(H), A] is defined as

(ψ, [adA(H), A]φ) := (− adA(H)ψ, Aφ)− (Aψ, adA(H)φ), (3.3)

for all ψ, φ ∈ D(A)∩D(H). Here we used, that adA(H) is skew-symmetric
on the domain D(A) ∩ D(H). Assume that this form extends in graph
norm of H to a form which is implemented by an element ad2

A(H) ∈
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B(D(H),H). Proceeding iteratively, we construct adk
A(H) ∈ B(D(H),H).

Lemma 3.2. Let H, A be self-adjoint operators on the Hilbert space H and as-
sume H ∈ C1(A). If adj

A(H) ∈ B(D(H),H) for 0 ≤ j ≤ k, then H ∈ Ck(A).

The proof of this lemma may be found in Section 3.5.
In several places we need an appropriate class of functions to regularise

the self-adjoint operators H, A, defined on D(H),D(A) respectively, and
enable a calculus for them.

Definition 3.3. Define B :=
{

r ∈ C∞
b (R,R)

∣∣r′(0) = 1, r(0) = 0, ∀k ∈ N :
supt∈R |rk(t)〈t〉k| < ∞, r is real analytic in some ball around 0

}
.

Let h ∈ B. For λ 6= 0 redefine hλ(x) := h(x − λ). In the following
we will drop the index λ as well as the argument of hλ(H) and other
regularisations of H and A, if the context is clear. The following condition
is a local C1(A) condition, as in [Sah97], plus a Mourre estimate.

Condition 3.4. Let H, A be self-adjoint operators on H and λ ∈ R. There
exist an h ∈ B, hλ(s) := h(s − λ), with hλ(H) ∈ C1(A) and an floc ∈
C∞

0 (R, [0, 1]), such that floc(λ) = 1 and h′λ(x) > 0 for all x ∈ supp( floc).
Assume there is a smooth Mourre estimate, i.e. ∃C0, C1 > 0 and a compact
operator K, such that

i adA(hλ(H)) ≥ C0 − C1 f 2
loc,⊥(H)− K. (3.4)

floc,⊥ is defined as floc,⊥ := 1− floc.

Remark 3.5. 1. The requirement h′λ(x) > 0, ∀x ∈ supp( floc), implies
floc ∈ Ck(A) if hλ ∈ Ck(A) for k ∈ N, since hλ is smoothly invertible
(on each connected component of supp( floc)) and floc may be written
as a smooth function of hλ.

2. The assumption of K being compact is not necessary. In fact we could
replace this by the requirement that 1|A|≥ΛK, where 1|A|≥Λ denotes
the spectral projection on [Λ, ∞), can be made arbitrarily small.

3. For a comparison of the ‘local’ Mourre estimate (3.4) with the stan-
dard form of the Mourre estimate see Section 3.6.

Theorem 3.6 (Finite regularity). Let H, A be self-adjoint operators on the Hilbert
space H and ψ be an eigenvector of H with eigenvalue λ. Assume Condition
3.4 to be satisfied with respect to λ and hλ(H) ∈ Ck+1(A) for some k ∈ N.
There exists ck > 0, only depending on supp( floc), C0, C1, K, ‖ ad`

A( floc(H))‖,
‖ adj

A(hλ(H))‖, 1 ≤ ` ≤ k, 1 ≤ j ≤ k + 1, such that∥∥∥Akψ
∥∥∥ ≤ ck ‖ψ‖ . (3.5)

Remark 3.7. In [FlS10a, Ex. 1.4] it is shown, that the statement of Theorem
3.6 is false in general if one requires hλ ∈ Ck(A) only. Therefore, the result
is optimal concerning integer values of k.
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Condition 3.8. The self-adjoint operator H is of class C1(A) and there ex-
ists a v > 0, such that for all k ∈ N

‖ adk
A(H)(i− H)−1‖ ≤ k!v−k. (3.6)

Theorem 3.9 (Analyticity). Let H, A be self-adjoint operators on the Hilbert
space H and ψ be an eigenvector of H with eigenvalue λ. Assume Condition 3.4
to be satisfied with respect to λ and that Condition 3.8 holds. Then, the map

R 3 θ 7→ eiθAψ ∈ H (3.7)

extends to an analytic function in a strip around the real axis.

3.2 Applications

The applications of our result on ‘finite regularity of eigenstates’ are well
known and discussed in the literature [SAS89, CGH06, HS00, MS04, FlS10b].
In contrast results on the analyticity of eigenvalues in regular Mourre the-
ory are to our knowledge unknown. Even though the condition under
which our result holds appears difficult to verify in concrete situations,
we will illustrate for some deformation analytic models that it is strikingly
simple to check the assumptions of Theorem 3.9.

Let H be a self-adjoint operator on the Hilbert space H and U(t) :=
exp(itA) a strongly continuous one parameter group of unitary operators
U(t). The self-adjoint operator A is the generator of this group. Assume
that U(t) b-preserves D(H), i.e.

U(t)D(H) ⊆ D(H), ∀t ∈ R and sup
t∈[−1,1]

‖U(t)φ‖D(H) < ∞, ∀φ ∈ D(H),

where ‖ψ‖D(H) denotes the graph norm of H.

Remark 3.10. Observe that the following are equivalent:

• U(t) b-preserves D(H).

• There exist µ0 > 0 and C > 0 such that for all µ ∈ R with |µ| ≥ µ0,
we have (A− iµ)−1 : D(H)→ D(H) and

‖(A− iµ)−1‖B(D(H),H) ≤ C|µ|−1.

By [GGM04a, Lemma 2.33] one observes that U◦(·) := U(·) �D(H) is a
C0-group in the topology of D(H).

Proposition 3.11. Let H, A be self-adjoint operators and U(t) := exp(itA).
Assume that U(·) b-preserves D(H). Then for any k ∈ N the following state-
ments are equivalent.

1. H admits k H-bounded commutators with A, denoted by adj
A(H), j =

1, . . . , k.
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2. The map t 7→ I(t) = (ϕ, U(t)HU(t)∗ψ) ∈ Ck([−1, 1]), for all ψ, ϕ ∈
D(H) ∩ D(A). There exist H-bounded operators H(j)(0), j = 1, . . . , k,
such that dj

dtj I(t)|t=0 = (ϕ, H(j)(0)ψ), for j = 1, . . . , k and all ψ, ϕ ∈
D(H) ∩D(A).

3. t 7→ ψ(t) := U(t)HU(t)∗ψ ∈ Ck([−1, 1];H) for all ψ ∈ D(H), and
there exist H-bounded operators H(j)(0), j = 1, . . . , k, with the property
that dj

dtj ψ(t)|t=0 = H(j)(0)ψ, for all j = 1, . . . , k and ψ ∈ D(H).

If one of the three statements holds, then the pertaining H-bounded operators are
uniquely determined and we have

ij adj
A(H) = (−1)j H(j)(0), j = 1, . . . , k. (3.8)

Proof. Assume the commutator form [H, A] has an extension from D(H)∩
D(A) to an H-bounded operator. Then an argument of Mourre [Mou81,
Prop.II.2], keeping Remark 3.10 in mind, implies that (H + i)−1 : D(A)→
D(A). Hence, it follows that (H + i)−1 is of class C1(A). A consequence of
this is that D(A) ∩D(H) is dense in D(H) (as well as in D(A)). (Alterna-
tively use Remark 3.10 backwards in conjunction with Nelson’s theorem
[RS75, Thm. X.49].) This remark implies that any extension of the com-
mutator form [H, A] to an H-bounded operator is necessarily unique.

(1) ⇒ (2): A consequence of the above observation is that adj
A(H),

for j = 1, . . . , k, is symmetric for j even and anti-symmetric for j odd.
Compute first for ϕ, ψ ∈ D(H) ∩D(A)

d
dt

I(t) = −(ϕ, U(t)i[H, A]U(t)∗ψ) = −(ϕ, U(t)i adA(H)U(t)∗ψ).

If we evaluate at t = 0 we observe that H(1)(0) = −i adA(H) can be used
as a weak derivative on D(H) ∩D(A). Iteratively we now conclude that

dk

dtk I(t) = (−1)k(ϕ, U(t)ik[adk−1
A (H), A]U(t)∗ψ)

= (−1)k(ϕ, U(t)ik adk
A(H)U(t)∗ψ).

Taking t = 0 implies (2). The computation here also establishes the for-
mula connecting adj

A(H) and H(j)(0).
(2)⇒ (3): From the computation of I’s first derivative above, evaluated

at 0, we observe that [H, A] extends from the intersection domain to an
H-bounded operator. Hence this extension is unique, and indeed all the
derivatives H(j)(0), j = 1, . . . , k are unique extensions by continuity. In
particular H(j)(0) are symmetric operators on D(H) and, for j = 1, . . . , k
and ϕ, ψ ∈ D(H) ∩D(A),

dj

dtj I(t) = (ϕ, U(t)i[A, H(j−1)(0)]U(t)∗ψ) = (ϕ, U(t)H(j)(0)U(t)∗ψ).

That ψ(t) := U(t)HU(t)∗ψ is itself continuous is a consequence of U◦

being a C0-group on D(H). We assume inductively that ψ(t) is an element
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of Ck−1([−1, 1];H) and

dk−1

dtk−1 ψ(t) = U(t)H(k−1)(0)U(t)∗ψ.

Assume now ψ, ϕ ∈ D(A) ∩D(H) and compute

1
t− s

(
(ϕ,

dk−1

dtk−1 ψ(t))− (ϕ,
dk−1

dtk−1 ψ(s))
)
− (ϕ, U(t)H(k)(0)U(t)∗ψ)

=
1

t− s

∫ t

s

(
ϕ, (U(r)H(k)(0)U(r)∗ −U(t)H(k)(0)U(t)∗)ψ

)
dr.

This identity now extends by continuity to ϕ ∈ H and ψ ∈ D(H). We can
furthermore estimate (for s < t)∥∥∥ 1

t− s

( dk−1

dtk−1 ψ(t)− dk−1

dtk−1 ψ(s)
)
−U(t)H(k)(0)U(t)∗ψ

∥∥∥
≤ 1

t− s

∫ t

s

∥∥(U(r)H(k)(0)U(r)∗ −U(t)H(k)(0)U(t)∗
)
ψ
∥∥dr.

That the right-hand side converges to zero when s→ t (from the left) now
follows from the strong continuity of U◦ on D(H). A similar argument
works for s > t.

(3)⇒ (1): Compute for ϕ, ψ ∈ D(H) ∩D(A)

dj

dtj (ϕ, ψ(t))|t=0 = (ϕ, H(j)(0)ψ).

Conversely one can compute the jth derivative in terms of iterated com-
mutators, and hence (1) follows. Note again, that the very first step in
particular ensures that extensions are unique. �

Examples

1. N-body Schrödinger operators. Consider the operator

H = −1
2

∆ +
1,...,N

∑
i<j

Vij(xi − xj),

with Coulomb pair potentials Vij(x) := cik/(|xi − xj|), cik ∈ R, on L2(X),
where

X :=
{

x = (x1, . . . , xN) ∈ R3N |xj ∈ R3, 1 ≤ j ≤ N,
N

∑
j=1

xj = 0
}

,

[HS00]. As a shorthand we write x = (x1, . . . , xN). The unitary group of
dilations, U(·) is defined by

(U(t)ψ)(x) := et 3(N−1)
2 ψ

(
etx
)
,

and U(t) = exp(itA) for the generator of dilations A. From Proposition
3.11 infer for some C > 0

‖ adk
A(H)‖B(D(p2),H) ≤ C2k.
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It is well known, that there is a Mourre estimate for a much more gen-
eral class than the Coulomb N-body Hamiltonian, including the following
example [HS00]. This enables Theorem 3.9.

Another example for N-body Schrödinger operators to which Theorem
3.9 is applicable is defined with Yukawa pair potentials. The pair potentials
Vik are now given by

Vij(x) :=
cike−µ|xi−xj |

|xi − xj|
, cik ∈ R, µ > 0.

Observe the estimate∣∣∣∣∣ dk

dtk
e−t

r
eµret

∣∣∣∣∣∣∣t=0

≤ k!ak, r := |xi − xj|,

for some a > 0. The r-dependent functions on the right-hand side of this
inequality are infinitesimally p2-bounded, which again shows the appli-
cability of Theorem 3.9. Hence non-threshold eigenvectors are analytic
vectors with respect to A. This reproduces known results of [BC71].

2. The Spin-Boson Model. The ‘matter’ Hamiltonian is defined as

Hat := εσ3, ε > 0,

with the 2× 2 Pauli-matrices σ1, σ2, σ3. The corresponding Hilbert space
is Hat := C2. We briefly list the definition of the quantised bosonic field,
but for the details of second quantisation we refer to [DG99]. The Hilbert
space of the bosonic field is the bosonic Fock space,

F+ :=
∞⊕

n=0
Snh�n, h := L2(R3, d3k),

where Sn denotes the orthogonal projection onto the totally symmetric
n-particle wave functions. We denote for k ∈ R with a(k) and a†(k) the
annihilation and creation operator, respectively. The energy of the free field,
Hf, is defined as

Hf =
∫
R3

a†(k)ω(k)a(k)d3k, ω(k) :=
√

k2 + m2, m > 0.

The Hilbert space of the compound system is

H := Hat �F .

We define the coupling between atom and field by

Φ(v) :=
1√
2

∫
R3

v(k){G � a†(k) + G∗ � a(k)}d3k,

with a complex 2× 2 matrix G. The function v is given by

v(k) :=
e−

k2

Λ2

ω(k)
1
2

, ∀k ∈ R3.
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The constant Λ > 0 plays the role of an ultraviolet cutoff. We define the
Hamiltonian of the compound system, H, as

H := Hat � 1 + 1 � Hf + Φ(v).

Define,

α :=
i
2

(∇k · k + k · ∇k) .

This operator is symmetric and densely defined on L2(R3) as it is the
well-known generator of the strongly continuous unitary group

(u(t)ψ) (k) := e−
3
2 tψ

(
e−tk

)
.

We will denote the second-quantised operators of α and u(t) by A :=
dΓ(α) and U(t) := Γ(u(t)), respectively. A is the generator of the strongly
continuous unitary group U(t). Observe that

i` ad`
A(H) = dΓ(i` ad`

α(ω)) + (−1)`+1Φ
(
(iα)`v

)
and

‖Φ
(
(iα)`v

)
(Hf + 1)−

1
2 ‖ ≤ ‖ω−

1
2 (iα)`v‖L2 . (3.9)

Since (iα)`v = d`

dt`
(
eiαtv

) ∣∣
t=0, we have to estimate the multiple derivatives.

Consider the map

B
(

0,
π

4

)
3 z 7→

(
k2e−2z + m2

) 1
2 = ω

(
e−zk

)
, k ∈ R3,

where B
(
0, π

4
)

denotes the closed ball of radius π/4, centred at 0. Ob-
serve, that

m ≤ |ω
(
e−zk

)
| ≤ e

π
4 ω(k) (3.10)

where the lower bound implies that z 7→ ω (e−zk)−
1
2 is holomorphic in

B
(
0, π

4
)
, for all k ∈ R3. The upper bound ensures that D(1 � Hf) is b-

stable with respect to U(·). Below, we will also show that adA(H) ∈
B(D(H),H), which implies by Proposition 3.11 that H ∈ C1(A). Analo-
gously we define the holomorphic map

B
(

0,
π

4

)
3 z 7→ e−e−z k2

Λ2

ω(e−zk)
1
2

= v
(
e−zk

)
, k ∈ R3.

We may compute by Cauchy’s formula,

d`

dz`

(
v(e−zk)e−

3
2 z
)∣∣

z=0

=
`!
(

π
4
)−`

2π

2π∫
0

e−
3
2 γ(ϕ)v

(
e−γ(ϕ)k

)
e−i`ϕdϕ,

γ(ϕ) := (π/4)eiϕ, ϕ ∈ [0, 2π). Using the estimate∣∣∣∣∣ d`

dz`
(v(e−zk)e−

3
2 z)∣∣

z=0

∣∣∣∣∣ ≤ m−
1
2 e

3π
8 e−e−

π
2 k2

Λ2 `!
(π

4

)−`
, ∀k ∈ R3,
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one finds together with (3.9)

‖Φ
(
(iα)`v

)
(H f + 1)−

1
2 ‖ ≤ `!R−`,

for some R > 0. Analogously, we get from (3.10)∣∣∣∣∣ d`

dz`
(ω(e−zk))∣∣

z=0

∣∣∣∣∣ ≤ `!
(π

4

)−`
e

π
4 ω(k),

so that ∥∥∥dΓ(i` ad`
α(ω))(Hf + 1)−1

∥∥∥ ≤ ‖i` ad`
α(ω)ω−1‖∞ ≤ `!c−`,

for some c > 0. From [DG99] we may infer a Mourre estimate for our
model. Dereziński and Gérard use a different generator of dilations, name-
ly

αω := i
2
(
(∇kω)(k) · ∇k +∇k · (∇kω)(k)

)
.

It is also possible to prove a Mourre estimate using their techniques if
ω(k) is radially increasing, ω(k) > 0, ∀k ∈ R3 and 0 is the only critical
point of ω. Thus, we conclude by Theorem 3.9 and Proposition 3.11 that
any eigenstate pertaining to an embedded non-threshold eigenvalue is an
analytic vector with respect to A.

3.3 Preliminaries

In what follows, we need some regularisation techniques from operator
theory. It is convenient to perform calculations involving multiple commu-
tators by using the so-called Helffer-Sjöstrand functional calculus. Part and
parcel of this calculus are certain extensions of a subclass of the smooth
functions on R, the almost analytic extensions. The following proposition
allows us to define such extensions.

Proposition 3.12. Consider a family of continuous functions ( fn)n∈N ⊂ C∞(R),
for which there is an m ∈ R, such that 〈x〉k−m f (k)

n is uniformly bounded for all
n ≥ 0. There exists a family of functions ( f̃n)n∈N, with f̃n �R= fn �R for any
n ∈ N, such that

1. supp( f̃n) ⊂ {z ∈ C|Re z ∈ supp( fn) and | Im z| ≤ 〈Re z〉}.

2. |∂̄ f̃n(z)| ≤ CN〈z〉m−N−1| Im z|N for all N ≥ 0.

The constant CN does not depend on n.

For a proof of this statement see [Møl00].

Remark 3.13. We will call these extensions for almost analytic extensions,
because ∂̄ f̃n vanishes approaching the real axis.

Let ε > 0. For any self-adjoint operator L and any f ∈ C∞(R) with

sup
t∈R
| f (k)(t)〈t〉k+ε| (3.11)
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we may define a bounded operator f (L), by

f (L) :=
1

2πi

∫
C

∂̄ f̃ (z)(z− L)−1dz ∧ dz̄. (3.12)

The integral on the right-hand side converges in operator norm. It is well
known that this definition coincides with the operator defined by func-
tional calculus. Concerning the class B however, we cannot directly apply
this definition. Inspired by a construction in [MS04] we consider the fol-
lowing instead.

Lemma 3.14. Let r ∈ B. There is an almost analytic extension of t 7→ r(t)/t =:
ρ(t), which satisfies due to Proposition 3.12 the bounds

|∂̄ρ̃(z)| ≤ CN〈z〉−N−2| Im(z)|N . (3.13)

Proof. Since r is real analytic around 0 we observe

sup
|t|≤1

∣∣ρ(k)(t)〈t〉k+1∣∣ < ∞.

On the other hand, the Leibniz rule yields r(k)(t) = ρ(k)(t)t + kρ(k−1)(t)
and thus by induction

sup
|t|≥1

∣∣∣ρ(k)(t)〈t〉k+1
∣∣∣ < ∞. �

For any r ∈ B, set rn(t) := nr(t/n), ρ(t) := r(t)/t, ∀t ∈ R and define
rn(A) by functional calculus. If we require ρ̃(z) = ρ̃(z̄) the well-known
formula

rn(t) =
1

2πi

∫
C

∂̄ρ̃(z)
t

z− t
n

dz ∧ dz̄ (3.14)

may be recovered. Observe, that

t
z− t

n
= −n

(
1− z

z− t
n

)
. (3.15)

The first term on the right-hand side is constant and vanishes when com-
puting commutators. Although we cannot use the formula (3.14) directly
as a representation of rn(A) on H, it is possible to use it on the domain of
A; a fact which is useful in the next lemma.

Lemma 3.15. Let B ∈ C1(A), where B ∈ B(H). For any r ∈ B we have

[B, rn(A)] = r′n(A) adA(B) + R(rn, B), (3.16)

with

R(rn, B) :=
1

n2πi

∫
C

∂̄ρ̃(z)zJ2
n(z)[adA(B), A]Jn(z)dz ∧ dz̄, (3.17)

where Jn(z) := n(nz− A)−1 and the integral being norm convergent. Moreover,
there is a c > 0

s-lim
n→∞

R(rn) = 0, and ‖R(rn, B)‖ ≤ c‖ adA(B)‖. (3.18)
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If B ∈ C2(A), we have for any n ∈ N and some α, β > 0

‖AR(rn, B)‖ ≤ α‖ ad2
A(B)‖, ‖R(rn, B)‖ ≤ β

n
‖ ad2

A(B)‖. (3.19)

In addition,
s-lim
n→∞

AR(rn, B) = 0. (3.20)

Proof. Let first B ∈ C1(A). If we consider [rn(A), B] as a form on D(A)×
D(A), the commutator may be represented using (3.14) with t replaced by
A, more precisely for all ψ, φ ∈ D(A)

(φ, [B, rn(A)]ψ) =
1

2πi

∫
C

∂̄ρ̃(z)
{
(Aφ, Jn(z)Bψ)− (φ, BJn(z)Aψ)

}
dz ∧ dz̄.

Observe, that the sum in the integrand is by definition

(Aφ, Jn(z)Bψ)− (φ, BJn(z)Aψ) = (φ, [AJn(z), B]ψ).

But since B ∈ C1(A), we obtain using (3.15)

(φ, [AJn(z), B]ψ) = (φ, [nzJn(z), B]ψ)
= (φ, zJn(z) adA(B)Jn(z)ψ)

=
(

φ, zJ2
n(z) adA(B)ψ

)
+
(

φ,
z
n

J2
n(z)[adA(B), A]Jn(z)ψ

)
.

There is an almost analytic extension ρ̃(z) such that

|∂̄ρ̃(z)| |z||y|2 ≤ CN |y|N−2〈z〉−N−1, (3.21)

with z = x + iy, x, y ∈ R. Choose N = 2 and observe that the integral

1
2πi

∫
C

∂̄ρ̃(z)zJ2
n(z)dz ∧ dz̄ (3.22)

converges in norm. Moreover,

|∂̄ρ̃(z)| |z|
2

|y|3 ≤ C3〈z〉−3.

Thus from r′(t) = ρ(t) + ρ′(t)t we may infer that the integral in (3.22)
equals r′n(A). Estimate (3.21) shows that the integral (3.17) converges in
norm. Since

s-lim
n→∞

A
n

Jn(z) = 0, (3.23)

the Theorem of Dominated Convergence implies (3.18).
Let now B ∈ C2(A). Choose in (3.13) N = 3, replace in (3.17) the

commutator [adA(B), A] with ad2
A(B) and observe that the integrand of

AR(gn, h)(B) is point-wise bounded by a constant times 〈z〉−3. The term
R(gn, h)(B) is point-wise bounded by a constant times 〈z〉−4. Both func-
tions are in L1(R2) and hence the bounds follow. Eq. (3.20) is a conse-
quence of (3.17), (3.23) and an application of the Theorem of Dominated
Convergence. �
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Lemma 3.16. Let r ∈ B and k ∈ N. If B ∈ Ck(A), then

s-lim
n→∞

adk
rn(B) = adk

A(B).

Proof. For k = 1 the statement follows from Lemma 3.15. Let k ∈ N and
assume

s-lim
n→∞

adk−1
rn (B) = adk−1

A (B).

The first term on the right-hand side of

adrn(adk−1
rn (B)) = adk−1

rn (adrn(B)) = r′n adk−1
rn (adA(B)) + adk−1

rn (R(rn, B))

converges strongly by the induction hypothesis and Lemma 3.15 since
adA(B) ∈ Ck−1(A). R(rn, adk−1

rn (B)) is a sum of two integrals:

adk−1
rn (R(rn, B)) =

1
2πi

∫
C

∂̄ρ̃(z)z
A
n

J2
n(z) adk−1

rn (adA(B))Jn(z)dz ∧ dz̄

− 1
2πi

∫
C

∂̄ρ̃(z)zJ2
n(z) adk−1

rn (adA(B))
A
n

Jn(z)dz ∧ dz̄.

Observe, that

s-lim
n→∞

A
n

Jn(z) = s-lim
n→∞

A(nz− A)−1 = 0.

The integrands are strongly convergent by the uniform boundedness prin-
ciple and converge to the product of the strong limits. Lemma 3.15 and
the Theorem of Dominated Convergence imply that we may exchange in-
tegration with the strong limit n→ ∞. �

We use of the following expansion formula for commutators.

Lemma 3.17. Let K, L ∈ B(H). Then, for any k ∈ N,

[K, Lk] =
k

∑
j=1

(
k
j

)
Lk−j adj

L(K). (3.24)

It is convenient to regularise the operator A such that we may use the
Helffer-Sjöstrand calculus and have sufficient flexibility in the proof. Let
g ∈ C∞

c (R,R) be such that

g(t) = t ∀t ∈ [−1, 1], g(t) = 2 ∀t ≥ 3, g(t) = −2 ∀t ≤ −3, g′ ≥ 0, (3.25)

and that tg′(t)/g(t) has a smooth square root; clearly g ∈ B. We set
gn(t) := ng(t/n) and define gn(A) by functional calculus. Observe, that

n 7→ g2
n(t) (3.26)

is monotonously increasing for all t ∈ R. Set γ(t) := g(t)/t, for the
function g defined in (3.25). We may pick an almost analytic extension of
γ, denoted by γ̃, such that γ̃ satisfies, up to a possibly different constant
CN , the same bounds as ρ̃ in (3.13).
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3.4 Finite Regularity of Eigenstates

Proof (Proof of Theorem 3.6). Using the convention A0 = 1, the statement is
correct for k = 0. Let now be k ∈ N and assume ψ ∈ D(Ak−1). The
starting point for the proof is

0 = (ψ, i[h, gk
ngmgk

n]ψ), (3.27)

which may be rewritten as

0 = (ψ(k)
n , i adgm(h)ψ(k)

n )+ 2 Re(ψ, gmi[h, gk
n]ψ(k)

n )+ 2 Re(ψ, [i[h, gk
n], gm]ψ(k)

n ),
(3.28)

where we introduced the notation ψ
(k)
n := gk

nψ. We abbreviate

I0(n, m) := (ψ(k)
n , i adgm(h)ψ(k)

n ), (3.29)

I1(n, m) := 2 Re(ψ, gmi[h, gk
n]ψ(k)

n ) (3.30)

and

I2(n, m) := 2 Re(ψ, [i[h, gk
n], gm]ψ(k)

n ) = 2 Re(ψ, i[[h, gm], gk
n]ψ(k)

n ). (3.31)

We organise the proof in three steps. In the first step we extract from I1 a
term I′0 which is of a similar type as I0. Then, starting with (3.28) upper
bounds to I0, I′0 are established. Finally, using Mourre’s estimate we find
lower bounds to I0, I′0, from which we conclude ψ ∈ D(Ak).

Step 1. By an application of Lemma 3.17 we rewrite I1(n, m) as

I1(n, m) = 2 Re
(

i
k

∑
j=2

(
k
j

)
E1(j, k, n, m)

)
+ 2k Re

(
i(ψ(k−1)

n , gmR(gn, h)ψ(k)
n )
)

+ 2k Re
(
i(ψ(k−1)

n , gmg′n adA(h)ψ(k)
n )
)
, (3.32)

where
E1(j, k, n, m) := (ψ

(k−j)
n , gm adj

gn(h)ψ(k)
n )

and
2k Re(i(ψ(k−1)

n , gmR(gn, h)ψ(k)
n ))

are present if k ≥ 2 only, in which case ψ ∈ D(A) by induction hypothesis.
We discuss the term in the last line of (3.32) first. One computes

2k Re
(
i(ψ(k−1)

n , gmg′n adA(h)ψ(k)
n )
)

= 2k Re
(
i(ψ(k)

n , γm p2
n adA(h)ψ(k)

n )
)

= 2k Re
(
i(ψ(k)

n , γm pn adA(h)pnψ(k)
n )
)

+2k Re
(
i(ψ(k)

n , γm pn[pn, adA(h)]ψ(k)
n )
)
,

with γm being the operator γm(A) and

p(t) :=

√
tg′(t)
g(t)

, pn(t) := p(t/n).
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Hence, with

E1(j, k, n) := lim
m→∞

E1(j, k, n, m) = (Aψ
(k−j)
n , adj

gn(h)ψ(k)
n ), k ≥ j ≥ 2,

we obtain

I1(n) := lim
m→∞

I1(n, m)

= 2 Re
(

i
k

∑
j=2

(
k
j

)
E1(j, k, n)

)
+ 2k Re

(
i(ψ(k−1)

n , AR(gn, h)ψ(k)
n )
)

+ 2k Re
(
i(ψ(k)

n , pn[pn, adA(h)]ψ(k)
n )
)
+ 2k(ψ(k)

n , pni adA(h)pnψ(k)
n ).

(3.33)

Set

I′0(n) := 2k(ψ(k)
n , pni adA(h)pnψ(k)

n ), I′1(n) := I1(n)− I′0(n). (3.34)

Step 2. First note that by an application of Lemma 3.16

I2(n) := lim
m→∞

I2(n, m) = 2 Re(ψ, i[adA(h), gk
n]ψ(k)

n )

= 2 Re
(

i
k

∑
j=1

(
k
j

)
E2(j, k, n)

)
,

with
E2(j, k, n) := (ψ

(k−j)
n , adj

gn(adA(h))ψ(k)
n ), k ≥ j ≥ 1.

Eq. (3.28) may be rewritten as

I0(n) + I′0(n) = −I′1(n)− I2(n). (3.35)

In order to find an upper bound for the right-hand side, we first estimate
E1(j, k, n), E2(j, k, n) by

2|E1(j, k, n)| ≤ ε−1
jk ‖ adj

gn(h)gk−j
n Aψ‖2 + εjk‖ψ(k)

n ‖
2,

2|E2(j, k, n)| ≤ µ−1
jk ‖ adj

gn(adA(h))ψ
(k−j)
n ‖2 + µjk‖ψ

(k)‖2,

for all µjk, εjk > 0. The terms

‖ adj
gn(h)gk−j

n Aψ‖, ‖ adj
gn(adA(h))ψ

(k−j)
n ‖

are uniformly bounded in n by Lemma 3.16, h ∈ Ck+1(A) and the induc-
tion hypothesis. For the remaining terms in (3.33) we have

2k|(ψ(k−1)
n , AR(gn, h)ψ(k)

n )| ≤ k
(

δ−1‖R(gn, h)Aψ(k−1)‖2 + δ‖ψ(k)‖2
)

,

2k|(ψ(k)
n , pn[pn, adA(h)]ψ(k)

n )| ≤ k(ν−1‖[pn, i adA(h)]gnψ(k−1)
n ‖2 + ν‖ψ(k)

n ‖
2).



3.4. Finite Regularity of Eigenstates 61

R(gn, h)A is uniformly bounded in virtue of Lemma 3.15. The function
t 7→ p(t) is by assumption smooth. Note that

[pn, i adA(h)]gn = [pn, i adA(h)]Aγn.

Further, since p ∈ C∞
c (R), an application of Proposition 3.12 together with

[pn, adA(h)]A =
−1
2πi

∫
C

∂̄ p̃(z)Jn(z) ad2
A(h)

A
n

Jn(z)dz ∧ dz̄

shows the uniform boundedness of [pn, adA(h)]gn. For 1 ≤ j ≤ k − 1 is
(ψ

(j)
n )n∈N convergent in norm to Ajψ and hence (‖ψj

n‖)n∈N is bounded.

Choose now µjk := (k
j)
−1

k−1C0/12, εjk := (k
j)
−1

(k − 1)−1C0/12, ν :=
C0/(12k) =: δ and observe

I0(n) + I′0(n)− C0

3
≤ I3(n), (3.36)

where (I3(n))n∈N is a bounded sequence.

Step 3. Note, that we may assume floc(x) = χ(h(x)), ∀x ∈ R, for some
compactly supported smooth function χ because h is chosen to be in-
vertible on the support of floc. This implies floc(H) ∈ Ck+1(A), since
h ∈ Ck+1(A), see [GGM04a, Prop.2.23]. Inserting the Mourre estimate
from Condition 3.4 yields

(ψ(k)
n , i[h, A]ψ(k)

n ) ≥ C0‖ψ(k)
n ‖

2 − C1‖ floc,⊥ψ(k)
n ‖

2 − (ψ(k)
n , Kψ(k)

n ).

The second term is evaluated by

floc,⊥gk
nψ = −

k

∑
l=1

(
k
l

)
(−1)l adl

gn( floc)gk−l
n ψ,

where we used, that ψ is an eigenstate and an adjoint version of (3.24).
Thus, the contributions from this term are uniformly bounded in n by
Lemma 3.16 and the induction hypothesis. The spectral projection 1|A|≤Λ(A)
defines a partition of unity, 1 = 1|A|≤Λ(A) + 1|A|>Λ(A). Hence we write

(ψ(k)
n , Kψ(k)

n ) = (ψ(k)
n , 1|A|≤Λ(A)Kψ(k)

n ) + (ψ(k)
n , 1|A|>Λ(A)Kψ(k)

n ).

Furthermore, we may estimate

|(ψ(k)
n , 1|A|≤Λ(A)Kψ(k)

n )| ≤ 1
2

‖K1|A|≤Λ(A)ψ
(k)
n ‖2

ν
+ ν‖ψ(k)

n ‖
2


and

|(ψ(k)
n , 1|A|>Λ(A)Kψ(k)

n )| ≤ 1
2

(
‖1|A|>Λ(A)K‖2

δ
+ δ

)
‖ψ(k)

n ‖
2.



62 Chapter 3. Regularity of Eigenstates

Observe that since K is compact and s-limΛ→∞ χ|A|>Λ = 0 we have

∀ε > 0 ∃Λε > 0 : ‖χ|A|>Λε
K‖ < ε,

but this implies ∀Λ ≥ Λε

‖1|A|>Λ(A)K‖ = ‖1|A|>Λ(A)1|A|>Λε
(A)K‖ ≤ ε.

Thus, we may choose ν = C0/9, δ = C0/9 and pick then a Λ > 0 big
enough, such that

2‖1|A|>Λ(A)K‖2 ≤ C2
0/(9)2, (3.37)

i.e. C0 − ν− δ− ε = C0/3. Thus we arrive at

I0(n)+
9‖K1|A|≤Λ(A)ψ

(k)
n ‖2

2C0
+ C1

∥∥∥∥ k

∑
l=1

(
k
l

)
adl

gn( floc)gk−l
n ψ

∥∥∥∥2

≥ 2C0

3
‖ψk

n‖
2.

The left-hand side is bounded in n by Step 2 and the induction hypothesis.
Analogously, one finds for I′0(n)

I′0(n) + bn ≥
C0

3
‖pnψ(k)

n ‖
2,

for some bn ≥ 0, n ∈ N and supn∈N bn < ∞. Let

I4(n) := bn +
9‖K1|A|≤Λ(A)ψ

(k)
n ‖2

2C0
+ C1

∥∥∥∥ k

∑
l=1

(
k
l

)
adl

gn( floc)gk−l
n ψ

∥∥∥∥2

.

Finally, this gives with (3.36)

C0
3

(
‖pnψ(k)

n ‖
2 + ‖ψ(k)

n ‖
2
)
≤ I3(n) + I4(n),

where the right-hand side is bounded in n. By definition of g the result is
now a consequence of the Theorem of Monotone Convergence applied to
the left-hand side. �

3.5 Eigenstates as analytic vectors

To obtain explicit bounds, independent of the regularisations of A, we
apply Lemma 3.16 and use (3.35) as a starting point.

Proposition 3.18. Let k ∈ N, hλ(H) ∈ Ck+1(A) and Condition 3.4 be satisfied.
Then, for any eigenstate ψ of H with eigenvalue λ ∈ supp( floc) and Λ ≥ 0 being
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chosen as in (3.37) we have

‖Akψ‖2 ≤
27‖K1|A|≤Λ(A)Akψ‖2

C2
0

+
6C1

C0

∥∥∥∥ k

∑
l=1

(
k
l

)
adl

A( floc)Ak−lψ

∥∥∥∥2

+
96

((1 + 2k)C0)2

(
‖ adk+1

A (h)ψ‖2 + k2‖ ad2
A(h)Ak−1ψ‖2

)
+

12
(1 + 2k)C0

k−1

∑
j=2

(
k + 1
j + 1

)(
|(Ak+1−jψ, adj+1

A (h)Ak−1ψ)|

+ |(Ak−jψ, adj+2
A (h)Ak−1ψ)|

)
. (3.38)

Remark 3.19. The bounds derived in this proposition make the locally
uniform boundedness of Akψ in the sense of Condition 1.10 of [FlS10b]
apparent.

Proof. Note that ψ ∈ D(Ak) by Theorem 3.6. We observe

lim
n→∞

[pn, adA(h)] = lim
n→∞

−1
n2πi

∫
C

∂̄ p̃(z)Jn(z) ad2
A(h)Jn(z)dz ∧ dz̄ = 0,

since ∂̄ p̃ has compact support and h ∈ Ck+1(A). Further with ψ(l) := Alψ,
for 0 ≤ l ≤ k,

lim
n→∞

E1(j, k, n) = (ψ(k+1−j), adj
A(h)ψ(k)) =: E1(j, k), k ≥ j ≥ 2,

lim
n→∞

E2(j, k, n) = (ψ(k−j), adj+1
A (h)ψ(k)) =: E2(j, k), k ≥ j ≥ 1.

Note that E1(j + 1, k) = E2(j, k) for k− 1 ≥ j ≥ 1. Thus, Eq. (3.35) reads
after taking the limit n→ ∞

(1 + 2k)(ψ(k), i adA(h)ψ(k)) = 2 Re
(

i
k−1

∑
j=1

(
k + 1
j + 1

)
E2(j, k)

)
+ 2 Re iE2(k, k).

The term E2(k, k) is singular in the sense that one cannot commute one
power of A to the left-hand side and the estimate for E2(1, k) does not
improve under such a manipulation. To estimate E2(1, k) we note

−2 Re(ψ(k−1), i ad2
A(h)ψ(k)) ≤ 1

ε‖ ad2
A(h)ψ(k−1)‖2 + ε‖ψ(k)‖2.

We pick up a combinatorial factor (k + 1)k/2 and thus choose

ε =
(1 + 2k)C0

(k + 1)k
2−3.

For E2(k, k), the combinatorial factor is 1 and we estimate

−2 Re(ψ, i adk+1
A (h)ψ(k)) ≤ 1

µ‖ adk+1
A (h)ψ‖2 + µ‖ψ(k)‖2.

Choose now
µ = (1 + 2k)C02−4.
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This gives with (k + 1)k/2 ≤ k2 the inequality

(ψ(k), i adA(h)ψ(k))− C02−3‖ψ(k)‖2 ≤ 2
1 + 2k

k−1

∑
j=2

(
k + 1
j + 1

)
|E2(j, k)|

+
16

(1 + 2k)2C0

(
‖ adk+1

A (h)ψ‖2 + k2‖ ad2
A(h)ψ(k−1)‖2

)
.

Note, that the upper bounds are modified as compared to the bounds in
Step 2 of the proof of Theorem 3.6. Namely we use for 2 ≤ j ≤ k− 1,

E2(j, k) = (ψ(k+1−j), adj+1
A (h)ψ(k−1)) + (ψ(k−j), adj+2

A (h)ψ(k−1)).

Next, lower bounds are established using an analogous argument as in
Step 3 of the proof of Theorem 3.6. Observe that

(ψ(k), i adA(h)ψ(k)) +
9‖K1|A|≤Λ(A)ψ(k)‖2

2C0

+ C1

∥∥∥∥ k

∑
l=1

(
k
l

)
adl

A( floc)ψ(k−l)
∥∥∥∥2

− C02−3‖ψ(k)‖2 ≥ C0

6
‖ψ(k)‖2.

Finally, we arrive at

C0

6
‖ψ(k)‖2 ≤

9‖K1|A|≤Λ(A)Akψ‖2

2C0
+ C1

∥∥∥∥ k

∑
l=1

(
k
l

)
adl

A( floc)Ak−lψ

∥∥∥∥2

+
16

(1 + 2k)2C0

(
‖ adk+1

A (h)ψ‖2 + k2‖ ad2
A(h)Ak−1ψ‖2

)
+

2
1 + 2k

k−1

∑
j=2

(
k + 1
j + 1

)
|E2(j, k)|,

which implies (3.38). �

Lemma 3.20. Let K, L ∈ B(H) and J(z) := (z− K)−1 for z ∈ ρ(K). Then,

adk
L(J(z)) = ∑

a∈C(k)

k!
a1! · · · · · ana !

J(z)
na

∏
i=1

adai
L (K)J(z), (3.39)

where C(k) denotes the set of all possible decompositions of k = a1 + · · ·+ ana in
sums of natural numbers and further a := (a1, . . . , ana).

The formula may easily be observed to be correct. For a proof of similar
statement see [Ras10].

Proof (Proof of Lemma 3.2). We proof the statement by establishing the for-
mula (3.39) inductively for K replaced by H and L replaced by A. For k = 1
we observe adA(J(z)) = J(z) adA(H)J(z), since H ∈ C1(A). Assume now
for k− 1 ∈ N, ρ(H),

adk−1
A (J(z)) = ∑

a∈C(k−1)

(k− 1)!
a1! · · · · · ana !

J(z)
na

∏
j=1

ad
aj
A(H)J(z). (3.40)
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Observe, that ad
aj
A(H)J(z) ∈ B(H), for all 1 ≤ j ≤ na. It is well known

that the bounded elements in C1(A) form an algebra. This means that it
suffices to check that each of the operators ad

aj
A(H)J(z) is in C1(A). For

0 ≤ m ≤ k − 1 we consider [adm
A(H)J(z), A]. Let ψ, φ ∈ D(A) ∩ D(H),

then

(ψ, [adm
A(H)J(z), A]φ) = ((−1)m J(z̄) adm

A(H)ψ, Aφ)
+ (Aψ, adm

A(H)J(z)φ)
= (ψ, [adm

A(H), A]J(z)φ)
+ ((−1)m adm

A(A)ψ, J(z) adA(H)J(z)φ),

where in the last line we used

AJ(z)ψ = J(z)Aψ + J(z) adA(H)J(z)ψ, ∀ψ ∈ D(H).

By assumption, [adm
A(H), A] extends to a an element

adm+1
A (H) ∈ B(D(H),H),

which implies that [adm
A(H)J(z), A] extends to a bounded operator for 0 ≤

m ≤ k− 1, i.e. adm
A(H)J(z) ∈ C1(A). Hence H ∈ Ck(A). �

We devote the rest of this section to prove Theorem 3.9.

Proof (of Theorem 3.9). We organise the proof for analyticity in two steps
and, for simplicity, we suppose the eigenvalue λ with respect to H, ψ is 0.
We consider h(x) := x(1 + νx2)−1, for sufficiently small ν > 0, see Section
3.6 and replace floc by fana, defined in (3.48). By assumption and Section
3.6, this h satisfies Condition 3.4. The first step consists of proving that ψ
is an analytic vector for A under the condition

‖ adk
A(h)‖, ‖ adk

A( fana)‖ ≤ k!w−k, ∀k ∈ N, (3.41)

for some w ∈ R+ to be fixed later in the proof. In the second step we prove
(3.41) using Condition 3.8. Note, that it is sufficient to prove analyticity of
the map θ 7→ exp(iθA)ψ =: ψ(θ) in some ball around 0. Namely, if ψ(·) is
analytic in a ball then ψ̃(t + θ) := exp(itA)ψ(θ), t ∈ R defines an analytic
extension of this map to a strip. Alternatively, one observes the bounds
in (3.38) to be invariant under conjugation of H with exp(itA), t ∈ R and
hence ψ(·) extends to an analytic function in a strip around the real axis.

Step 1. Assume Condition (3.41) to be satisfied and abbreviate

α(j, k) :=
12

(1 + 2k)C0

(
k + 1
j + 1

)
|(ψ(k+1−j), adj+1

A (h)ψ(k−1))|,

β(j, k) :=
12

(1 + 2k)C0

(
k + 1
j + 1

)
|(ψ(k−j), adj+2

A (h)ψ(k−1))|.

Motivated by Condition (3.41), we use the ansatz

‖ψ(l)‖ ≤ l!q−l , for 1 ≤ l ≤ k− 1,
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for some q ∈ R+, q < w, independent of l. Employing the assumptions
gives

α(j, k) ≤ k!2q−2k 12
C0wk

(k + 1− j)
( q

w

)j
,

thus

(k!2q−2k)−1
k−1

∑
j=2

α(j, k) ≤ 12
C0w

( q
w

)2 k−3

∑
j=0

( q
w

)j
≤ 12

C0w

( q
w

)2 1
1−

( q
w
) .

Analogously,

β(j, k) ≤ k!2q−2k 12
C0wk

(j + 2)
( q

w

)j+1

and consequently

(k!2q−2k)−1
k−1

∑
j=2

β(j, k) ≤ 24
C0w

( q
w

)3 k−3

∑
j=0

( q
w

)j
≤ 24

C0w

( q
w

)3 1
1−

( q
w
) .

We continue by estimating (3.24),(
6C1

C0

) 1
2
‖ fana,⊥ψ(k)‖ ≤

(
6C1

C0

) 1
2 k

∑
j=1

(
k
j

)
j!(k− j)!

( q
w

)j
q−k

≤ k!q−k
(

6C1

C0

) 1
2 ( q

w

) 1
1−

( q
w
) .

Further,

96k2‖ ad2
A(h)ψ(k−1)‖2

C2
0(1 + 2k)2

≤ 24
C2

0k2w2

( q
w

)2
k!2q−2k,

96‖ adk+1
A (h)ψ‖2

C2
0(1 + 2k)2

≤ 96
C2

0w2

( q
w

)2k
k!2q−2k

and finally

27
C2

0
‖K1|A|≤Λ(A)ψ(k)‖2 ≤ 27‖K‖2(Λq)2k

C2
0k!2

k!2q−2k.

Pick now q sufficiently small, such that all pre-factors of k!2q−2k are less
than 1/6 and observe that this can be done uniformly in k. Then, we obtain
for our specified q

‖ψ(k−1)‖ ≤ (k− 1)!q−(k−1) =⇒ ‖ψ(k)‖ ≤ k!q−k.

This proves that ψ is an analytic vector for A, given condition (3.41).

Step 2. We first compute the multiple commutators of h. For some n0 ∈
N, see Section 3.6, the function

h(x) = − 1
2 ((i− x/n0)−1 + (−i− x/n0)−1)
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and (3.48) satisfy Condition 3.4. It follows from Condition 3.8 and (3.40)
in the proof of Lemma 3.2 that the multiple commutators of h may be
expressed in terms of the multiple commutators of J(z) := (z− H/n0)−1,

adk
A(J(±i)) = n−k

0 ∑
a∈C(k)

k!
a1! · · · · · ana !

J(±i)
na

∏
i=1

adai
A(H)J(±i), (3.42)

for any z in the resolvent set of H. The number of elements in C(k) is given
by 2k − 1, which may be verified by induction. Thus, we may estimate
(3.42) further in virtue of (3.6).

‖ adk
A(J(±i))‖ ≤ k!v−k(2k − 1) ≤ k!w−k

(
2w
v

)k
.

Choose now R 3 w > 0 such that 4w ≤ v and conclude as in Step 1 by
induction that for h, Condition 3.8 implies (3.41) and in particular, h ∈
C∞(A). It is obvious that fana gives the same bounds, which completes
the proof. �

Remark 3.21. 1. If we had used arctan(x) instead of h(x) = x(1 +
x2)−1, we would have encountered the problem that the bounds
(3.41) are easily obtained from (3.6) in graph norm w.r.t. H, only.
In contrast, the decay at infinity of our choice of h allows naturally
for bounds in operator norm.

2. Note, that the first step in the proof uses the relations (3.41) only and
is, abstractly, independent of the stronger assumption (3.6).

3.6 The Mourre estimate in localised form

The Mourre estimate is usually cast in a different form than it is used here.
Let H, A be self-adjoint operators, H ∈ C1(A). Let now C̃0 > 0 and K̃ be
a compact operator. We denote by 1I(H) spectral projections of H for an
interval I ⊂ R. Suppose, that in the sense of quadratic forms on H×H

1I(H)i[H, A]1I(H) ≥ C̃01I(H)− K̃. (3.43)

This inequality is usually referred to as a Mourre estimate. Choose floc ∈
C∞

c (R) such that supp( floc(H)) ⊆ I and floc(λ) = 1. Set floc,⊥ := 1− floc.
Then, multiplying (3.43) from the left and the right with floc(H) yields

floci[H, A] floc ≥ C̃0 + C̃0 f 2
loc,⊥ − 2C̃0 floc,⊥ − K,

where K := flocK̃ floc is compact. As forms we observe ∀ε > 0

2 floc,⊥ ≤ ε + 1
ε f 2

loc,⊥.

Pick ε = 1/4. Therefore, we may rewrite (3.45) as

floci[H, A] floc ≥ C̃0
3
4 − 3C̃0 f 2

loc,⊥ − K. (3.44)
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Let h ∈ B. Set h(t) := h(t − λ). By possibly shrinking the support of
floc we may assume supp( floc) ⊆ supp(hλ). To avoid obscuring the com-
putations notationally, we refrain from writing hλ and use h instead. Set
hn(t) := nh(t/n), ∀t ∈ R and abbreviate Kn(z) := (z− H/n)−1. Then, by
similar arguments as in Lemma 3.15,

floci adA(hn) floc = floch′ni adA(H) floc + R,

where

R :=
1

2πn

∫
C

∂̄

(̃
h
t

)
(z)zKn(z)2 floc[adA(H), H] flocKn(z)dz ∧ dz̄.

Note that
floci adA(H) floc = floc1I(H)i adA(H)1I(H) floc

is a bounded operator onH. Analogue estimates as in the proof of Lemma
3.15 yield

‖R‖ ≤ C
n

,

for a C ≥ 0. This gives

‖ floci adA(H − hn) floc‖ ≤ ‖(1− h′n) floci adA(H) floc‖+
C
n

≤ C′
(
‖(1− h′n)1supp( floc)(H)‖+ 1

n

)
,

for some C′ > 0. Taylor’s theorem implies for positive t ∈ supp( floc)

|1− h′n(t)| ≤

t
n∫

0

|h′′(s)|ds ≤
supt∈supp( floc)

|t|
n

sup
s∈supp( floc)

|h′′(s)|

and analogously for negative t ∈ supp( floc). Thus, there is a C′′ > 0 such
that

floci adA(H − hn) floc ≤
C′′

n
.

Choose n0 ∈ N large enough such that

floci adA(H − hn0) floc ≤
C̃0

4
. (3.45)

Using floc,⊥ = 1− floc we obtain from (3.45), (3.44)

i[hn0 , A] ≥ C̃0
2 − 3C̃0 f 2

loc,⊥ − K− floc,⊥i[hn0 , A] floc,⊥ − 2 Re( floc,⊥i[hn0 , A]),
(3.46)

Note, that all operators appearing in (3.46) are self-adjoint. With

floc,⊥i adA(hn0) floc,⊥ ≤ ‖ adA(hn0)‖ f 2
loc,⊥,

∀δ > 0 : ±2 Re( floc,⊥i adA(hn0)) ≤ δ‖ adA(hn0)‖2 + 1
δ f 2

loc,⊥,
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and a choice of δ such that δ‖ adA(hn0)‖2 ≤ C̃0/4 we find

i[hn0 , A] ≥ C0 − C1 f 2
loc,⊥ − K, (3.47)

where 0 < C0 := C̃0/4. The other constant is C1 := 3C̃0 + δ−1 + ‖ adA(hn0)‖.
We may choose an h which is real analytic and extends to an analytic

function in a strip around the real axis. Thus it is possible to reformulate
inequality (3.47) using analytic functions only; a fact we rely on in the
proof of our analyticity result.

Consider the real analytic function

fana(x) :=
1

1 + (x− λ)2 =
1
2

(
1

1 + i(x− λ)
+

1
1− i(x− λ)

)
, ∀x ∈ R.

(3.48)
Replacing the constant C1 with

C1 sup
x∈R

(
floc,⊥,(x)
fana,⊥(x)

)
,

where fana,⊥ := 1− fana, we may rewrite the Mourre estimate (3.47) as

i[h, A] ≥ C0 − C1 f 2
ana,⊥ − K. (3.49)

We denote the constant in front of f 2
ana,⊥ in a slight abuse of notation again

with C1.

Acknowledgements

M. Westrich thanks Johannes-Gutenberg Universität Mainz, and V. Bach in
particular, for support. Moreover, both authors thank the Erwin Schrödi-
nger Institut (ESI) for hospitality, and in the case of M. Westrich for finan-
cial support in the form of a ‘Junior Research Fellowship’.

3.7 Bibliography

[AdMG96] W. Amrein, A. Boutet de Monvel, and V. Georgescu, C0-groups,
commutator methods, and spectral theory of N-body Hamiltonians,
Birkhäuser, 1996.

[Amm00] Z. Ammari, Asymptotic completeness for a renormalized nonrel-
ativistic Hamiltonian in quantum field theory: The Nelson model,
Math. Phys. Anal. Geom. 3 (2000), 217–285.

[BC71] E. Balslev and J. M. Combes, Spectral Properties of Many-body
Schrödinger Operators with Dilatation-analytic interactions, Com-
mun. Math. Phys. 22 (1971), 280–294.

[CGH06] L. Cattaneo, G. M. Graf, and W. Hunziker, A general reso-
nance theory based on Mourre’s inequality, Ann. Henri Poincaré
7 (2006), 583–601.



70 Chapter 3. Regularity of Eigenstates
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Chapter 4
Characterisation of the

Quasi-Stationary State of an
Impurity Driven by

Monochromatic Light I - The
Effective Theory

J.-B. Bru, W. A. de Siqueira Pedra, M. Westrich

Abstract

We study rigorously a pumping scheme of a solid state laser model
deriving from a microscopical model, which is composed of an im-
purity in a crystal interacting with a monochromatic external light
source. The main purpose of the present work is the analysis of its
effective dynamics and in a companion paper the link to the micro-
scopical model is established. We prove for the effective dynamics
the existence of and relaxation to a quasi-stationary state, which is
a stationary state up to Rabi-Oscillations due to the external light
source. Moreover, we characterise the state in terms of “generalised
Einstein relations” of spontaneous/stimulated emission/absorption,
which are conceptually related to the phenomenological relations de-
rived by Einstein in 1916. Our approach is based on a spectral analysis
of the evolution semigroup pertaining to the non-autonomous Cauchy
problem.

4.1 Introduction

In the present paper and in a companion one [BPW11b], we study the dy-
namics of an impurity in a crystal, which serves as a thermal reservoir,
interacting with an external monochromatic light source. In the corre-
sponding microscopical model, impurity, crystal and external light source
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are described by selfadjoint Hamilton operators. The crystal is modelled
by electrons in thermal equilibrium. By unitarity of the evolution, the com-
pound system does not exhibit dissipation. However, our main interest is
to obtain an effective description of the time-evolution of the population
of the energy levels of the impurity and especially its long-time behaviour.
We derive an effective evolution for the population of the energy levels of
the impurity, which differs from the phenomenological dynamics usually
used in the physical literature, [AL07], in the sense, that the correspond-
ing equation of motion is a integro-differential equation, whereas the phe-
nomenological equation, called Pauli equation, is an autonomous linear
differential equation. The long time behaviour of our equation is in generic
situations however the same as the one predicted by the Pauli equation. It
turns out, that for large time the dynamics attains a quasi-stationary state,
i.e. it is stationary up to an oscillation of a certain frequency. Moreover,
we find conditions on the structure of the quasi-stationary state in terms
of the generator of the large time dynamics. These conditions are are ex-
pressed in terms of certain relations, which are conceptually related to the
famous Einstein relations for spontaneous and stimulated transition rates
of an atom interacting with the radiation field, [Ein16].

Models related to our setup without external light source have been
studied extensively, see for instance [AL07, AJP06a, AJP06b, AJP06c] and
references therein. The most important questions which have been con-
sidered in this context are existence and asymptotic stability of stationary
states, especially asymptotic stability of thermal equilibrium states, the
so-called “return to equilibrium” (RTE), [AJP06a, AJP06b, AJP06c, BFS00,
JP96]. The thermal equilibrium satisfies a balance relation, which is called
detailed balance condition. It states, that the transition rate from level Ej to
level E`, equals the transition rate from E` to Ej times a Boltzmann factor,
exp

(
−β

(
E` − Ej

))
.

RTE typically occurs in models involving one thermal reservoir at a
given temperature T weakly coupled to a confined atom. As soon as there
are several thermal reservoirs at distinct temperature, the system does not
possess a thermal equilibrium state but rather a “non-equilibrium station-
ary state”, (NESS), [JP02, MMS07]. In our setting we certainly do not
expect a thermal equilibrium state to exist. On the other hand it is a ba-
sic model for pumping schemes of doped crystals, [SY68]. For a not too
strong external light source, henceforth called (optical) pump, one expects
for large time a steady emission of photons with frequency corresponding
to a specific energy difference of eigenvalues of the Hamiltonian describ-
ing the impurity. The steady emission is due to a stronger occupation of
a energy level of the impurity with energy E2 as compared to an energy
level E1 < E2. This effect is called “inversion of population” and it is a
central mechanism in lasers. Therefore, we expect a stationary state up
to small oscillations of the density of population of the impurity energy
levels, with a specific frequency, to exist. These oscillations are the “Rabi–
Oscillations”, [AL07, AGF10], which are imposed by the optical pump.

The general strategy of this project this is as follows: In [BPW11b] we
use a reformulation of the two-parameter family of automorphisms de-
scribing the evolution of the compound system using a non-autonomous
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analogue of C-Liouvilleans, introduced by Jaksic and Pillet in [JP02]. The
C-Liouvillean is the generator of a strongly continuous one–parameter
semigroup and in general not selfadjoint, but well suited for the analysis of
systems which do not possess a thermal equilibrium state. We then prove
that the non-autonomous C-Liouvillean dynamics is uniformly in time,
on the impurity’s degrees of freedom, perturbatively close to a dynam-
ics which is generated by a non-autonomous Markovian approximation
of the original dynamics. In the present paper, we start with the Marko-
vian approximation and employ a Floquet analysis of the corresponding
evolution semigroup. This allows us to derive general properties of the
quasi-stationary state without any phenomenological approximations, as
the rotating wave approximation, [AL07]. In this vein, we find a balance
condition of the quasi-stationary state, which represents a natural replace-
ment of the detailed balance condition.

A motivation for this work comes from the following consideration.
The laser effect is based on a phase transition of incoherent light to a di-
rected coherent light beam. To our knowledge there is only one setup
for which this phase transition has been successfully proven, namely for
the Dicke maser/laser model by Hepp and Lieb, . The model consists
in a Hamiltonian approach of a radiation field serving as a reservoir, a
finite number, N, of two-level atoms, finitely many quantised “radiation-
modes” and linear couplings of atoms and reservoir with atoms and atoms
with the radiation modes, [HL73]. The system undergoes a phase transi-
tion in the limit N → ∞ in the sense, that the radiation becomes coher-
ent. More than 20 years later, Alli and Sewell, [AS95], and related to this
Bagarello, [Bag02], proved some generalisations of these results, but in a
weak coupling limit regime. On the other hand, solid state lasers are usu-
ally constructed with weakly doped crystals, [SY68]. Thus a limit of many
particles is not suitable. The present work is in this sense a first step to a
laser model with fixed N, namely to understand its pumping scheme. An
important open problem remains however to find a realistic description of
a cavity. Recent work in this direction is due to Bruneau and Pillet, [BD09].

Another motivation is drawn from the structure of transition rates be-
tween different energy levels of the impurity. These rates derive from rela-
tions which are of a similar form as the famous Einstein relations, [Ein16],
which Einstein derived phenomenologically, assuming essentially only

• Wien’s displacement law,

• that the thermal equilibrium state of the atom, the Gibbs state, is
stationary w.r.t. the interaction with the radiation,

• that the radiation density diverges if the temperature tends to infin-
ity.

The situation he discussed is the interaction of an atom interacting with
the radiation field. The corresponding initial state was assumed to yield
a non-zero radiation density. He found in particular, that the rates for
the stimulated processes are proportional to the radiation density and the
rates of the spontaneous processes. In contrast, we consider a situation
where the initial radiation density is zero, but instead there is an opti-
cal pump. Therefore one can not expect the same relation between the
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stimulated and the spontaneous processes as in Einstein’s work. In our
model we find that the stimulated processes are proportional to the inten-
sity of the radiation as in Einstein’s work and that the matrix for rates of
the stimulated processes are determined by the “off-diagonal part” of the
inverse matrix for the rates of the spontaneous processes, A−1

OD. A recent
work of Berman, Merkli and Sigal, [BMS08], relates the time of decoher-
ence, τdec, which typically measures the time until a quantum statistical
system becomes a classical statistical system, to A−1

OD, i.e. τdec ∼ A−1
OD.

In another recent work of Bach, Merkli, Pedra and Sigal, [BMPS11], the
possibility to control τdec using a special external light source, very much
different form ours, is investigated. In certain situations control of deco-
herence could thus enhance the inversion of the population. On the other
hand, by measuring the threshold of the pump intensity needed for inver-
sion of populations could yield a simple experimental test for control of
decoherence.

In the present paper we focus on the derivation and analysis of the
structure of the quasi-stationary state of the corresponding time-dependent
optical equation for the impurity. To this end, we replace the electron
field–impurity coupling by its Markov–approximation, point-wise in time.
In a companion paper, [BPW11b], we complete the analysis of full micro-
scopic dynamics for translation analytic electron field-impurity couplings.
In particular, the approximation of the dynamics by a time-dependent op-
tical equation is justified for this class of couplings.

We organise the paper as follows. In Section 4.2 we define the micro-
scopic model and specify the initial state of the system. Then, in Section 4.3
we first define the effective master equation and specify its relation to the
microscopic model, see Section 4.3.1. In Section 4.3.2, we reformulate the
non-autonomous effective master equation as a so-called evolution semi-
group in a enlarged Hilbert space, in which the physical time is regarded
as a new degree of freedom. Moreover, a spectral analysis of its generator
yields an optical equation, which in Section 4.4 leads to a characterisation
of the quasi-stationary state in terms of generalised Einstein relations. In
the appendix we gathered some results used in the text for the reader’s
convenience.

4.2 Mathematical description of particle systems in
interaction with a reservoir

4.2.1 The reservoir

We introduce now well know objects and one may for instance consult
[BR87, BR96]. Let h1 := L2(R3,C) be the separable Hilbert space repre-
senting the one–particle space of the reservoir. The one–particle Hamil-
tonian h1 is then defined by using a dispersion relation. Consider some
measurable, rotationally invariant function E : R3,→ R, i.e. E(p) = E(|p|)
and define the multiplication operator h1 = h1(E), f (p) 7→ E(p) f (p) on
h1. Physically, E represents the energy of one particle at momentum p.

In the context of the Markov–approximations, also L2 spaces on Bril-
louin zones, which model crystals in a more realistic way, could also be
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used as one–particle spaces. The results obtained are qualitatively the
same. In particular the rotation symmetry in not essential to the analysis
performed below. As we seek to keep technical aspects as simple as possi-
ble in the sequel, yet maintaining mathematical rigour, we even demand:

Assumption 4.1 (E). E(p) ≡ |p|.

We consider a fermion reservoir which models electrons in thermal equi-
librium interacting with an impurity in a crystal. In the following, we
occasionally say “atom”, instead of “impurity”, especially as indices in
formulas. From physical point of view, this is not an unnatural name. An
interaction of the impurity with bosonic particles like phonons can also be
implemented, but for simplicity we refrain from considering it as it quali-
tatively leads to similar results w.r.t. the dynamics of the atomic state.

Thus, observables of the reservoir are selfadjoint elements of the fermi-
on C∗–algebra VR, which is defined as follows. For any f ∈ h1, let a( f )
and a+( f ) := a( f )∗ be the fermionic annihilation and creation operators
on the antisymmetric Fock space F−(h1). These operators implement the
canonical anti-commutation relations (CAR):

a( f1)a+( f2) + a+( f2)a( f1) = 〈 f1, f2〉, (4.1)

which yield the boundedness of a( f ) and a+( f ):

‖a+( f )‖F−(h1) = ‖a( f )‖F−(h1) = ‖ f ‖h1 , f1, f2 ∈ h1. (4.2)

The fermion algebra

VR := lin
{

1R
}
∪
{

a+( f1) . . . a+( fm)a( fm+1) . . .

. . . a+( fm+n) | f1, . . . , fm+n ∈ h1

}}‖ · ‖B(F−(h1))
(4.3)

is defined as being the C∗–algebra generated by annihilation operators
{a( f )} f∈h1

. Note that VR  B(F−(h1)) is strictly smaller than the C∗–
algebra of all bounded operators B(F−(h1)).

The unperturbed dynamics of the reservoir is defined by a Bogoliubov
automorphism on the algebra VR:

τRt (a( f )) = a(eith1 f ), f ∈ h1, t ∈ R. (4.4)

This condition physically means that the fermionic particles of the reser-
voir do not interact with each other, i.e., they form an ideal Fermi gas.
The latter equality uniquely defines an one–parameter group {τRt }t∈R on
VR. By (4.2), this group is strongly continuous and hence, (VR, τRt ) is a
C∗–dynamical system.

We denote its generator by δR. Generators of C∗–dynamical systems
are symmetric derivations. This means that the domain Dom(δR) of the
generator δR is a dense sub–∗–algebra of VR and, for all A, B ∈ Dom(δR),

δR(A)∗ = δR(A∗), δR(AB) = δR(A)B + AδR(B). (4.5)
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Thermal states of the reservoir are defined through the bounded posi-
tive operators

dR :=
1

1 + eβh1
(4.6)

acting on h1 for all (inverse temperature) β ∈ (0, ∞). Indeed, the so–called
symbol dR uniquely defines a (faithful) quasi–free state

ωR := ωdR (4.7)

on the fermion algebra VR, by the following theorem:

Theorem 4.2 (Two-point correlation functions and quasi–free states).
Let d be any bounded operator on h1 satisfying 0 ≤ d ≤ 1. Then the correlation
functions

ωd(1R) := 1 (4.8)

ωd
(
a+( f1) . . . a+( fm)a(g1) . . . a(gn)

)
:= δmn det

(
[〈 f j, dgk〉]j,k

)
(4.9)

for all
{

f j
}n

j=1 ,
{

gj
}n

j=1 ⊂ h1 define a functional which is the unique bounded
linear extension to the algebra VR is a state ωd. The operator d is called the
symbol of ωd.

We call ωR the thermal state of the reservoir at inverse temperature β.
This definition of thermal states is rather abstract but can physically be
motivated as follows: Confining the particles in a box of side length L
corresponds to the replacement of the momentum space R3 by 2π

L Z
3, i.e.,

L2(R3) by `2( 2π
L Z

3). In particular, the spectrum of HR (and hence of its
fermionic second quantisation dΓ−(HR)) is purely discrete. Moreover, the
operators e−βdΓ−(HR) are trace–class for all side lengths L. Thus we can
define Gibbs states

g
(L)
R (·) :=

Tr( · e−βdΓ−(HR))
Tr(e−βdΓ−(HR))

, (4.10)

which has the thermal state ωR as unique weak–∗ limit when L → ∞. In
particular, it follows that thermal states inherit the KMS property of Gibbs
states, [BR96, Sim93]:

Theorem 4.3 (Thermal states and KMS property).
For any β ∈ (0, ∞) and A, B ∈ VR, there is a continuous function FA,B :
R+ i[0, β]→ C, holomorphic on R+ i(0, β), such that, for all t ∈ R,

FA,B(t) = ωR(AτRt (B)), FA,B(t + iβ) = ωR(τRt (B)A). (4.11)

In particular, the thermal state ωR is stationary.

4.2.2 The atom

The atom is modelled by a finite quantum system, i.e., its observables are
self–adjoint elements of the finite–dimensional C∗–algebra B(Cd) of all
linear (bounded) operators on Cd for d ∈ N.
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In the sequel it is convenient to define left and right multiplication on
B(Cd): For all A ∈ B(Cd) we define linear operators, A−→ and A←−, by

B 7→ A−→B := AB and B 7→ A←−B := BA. (4.12)

The Hamiltonian of the atom is an arbitrary observable Hat = H∗at ∈
B(Cd) representing its total energy. We denote its eigenvalues and cor-
responding eigenspaces respectively by Ek ∈ R and Hk ⊂ Cd for k ∈
{1, . . . , N}. Ek is chosen such that Ej < Ek whenever j < k. In other words,
Ek is the energy of the kth atomic level and vectors of Hk described the
sub–band structure of the corresponding level. The dimension nk of Hk is
the degeneracy of the kth atomic level.

The Hamiltonian Hat defines the free atomic dynamics, i.e., a continu-
ous one–parameter group of ∗–automorphisms {τat

t }t∈R of the C∗–algebra
B(Cd), by

τat
t (A) := eitHat Ae−itHat , A ∈ B(Cd). (4.13)

The thermal states of the free atom are Gibbs states gat for any inverse
temperature β ∈ (0, ∞), given by the density matrix

ρg :=
e−βHat

TrCd
(
e−βHat

) . (4.14)

However, in presence of interactions with the pump or the reservoir, the
state ω of the atom is generally far from any Gibbs state gat.

We thus proceed to consider arbitrary atomic states ωat. For any state
ωat on B(Cd), there is a unique trace–one positive operator ρat on Cd, the
so–called density matrix of ωat, such that

ωat(A) = TrCd (ρat A) , A ∈ B(Cd).

Any state ωat on B(Cd) can be represented as a vector state via its GNS
representation (Hat, πat, Ωat), see for instance [BR87]. If ωat is faithful, then
there is a direct way to construct the representation (Hat, πat, Ωat). The
Hilbert space Hat corresponds to the linear space B(Cd) endowed with the
Hilbert–Schmidt scalar product

〈A, B〉at := Tr(A∗B), A, B ∈ B(Cd).

The representation πat is the left multiplication, i.e.,

πat (A) = A−→, A ∈ B(Cd),

see (4.12) and the cyclic vector of the GNS representation of ωat is given
by

Ωat := ρ1/2
at ∈ Hat, (4.15)

with ρat ∈ B(Cd) denotes the density matrix of ωat. In particular,

ωat (A) =
〈

Ωat, A−→Ωat

〉
at

, A ∈ B(Cd).
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The dynamics of the continuous one–parameter group of ∗–automorph-
isms {τat

t }t∈R of the C∗–algebra B(Cd) defined by (4.13) can be repre-
sented in the Schrödinger picture of Quantum Mechanics through the so–
called (standard) Liouvillean operator

Lat :=
(

Hat−→− Hat←−

)
= [Hat, ·] = L∗at (4.16)

acting on Hat. Indeed, it is easy to check that:

Lemma 4.4 (Schrödinger picture of {τat
t }t∈R).

For all t ∈ R and all A ∈ B(Cd),

ωat
(
τat

t (A)
)

= 〈Ωat (t) , πat(A) Ωat (t)〉at, Ωat (t) := e−itLat Ωat.

4.2.3 The pump

The pump, i.e. monochromatic field interacting with the atom, is described
by the following time–periodic term in the atomic Hamiltonian:

η cos(vt)Hp, v := EN − E1 > 0. (4.17)

Hp = H∗p ∈ B(Cd) is a selfadjoint matrix satisfying the following condi-
tion:

Assumption 4.5 (P). Hp = hp + h∗p, hp ∈ B(Cd), with

ker
(
hp
)⊥ ⊆ ran (1 [Hat = E1]) , ran

(
hp
)
⊆ ran (1 [Hat = EN ]) .

In other words, by (4.17), the pump produces only transitions between the
lowest and the highest atomic levels 1 and N.

From the physical point of view, the time–dependent pump may be
regarded as a partial classical limit of a closed physical system involving a
“quantised pump energy”. The corresponding initial state for this “quan-
tised pump energy” is given by a coherent state and hence, it is not a KMS
state, [Hep74, Wes08].

4.2.4 The reservoir–atom–pump system

Define the C∗–algebra V := B(Cd) � VR. As both C∗–algebras B(Cd)
and VR are already realised as algebras of bounded operators on Hilbert
spaces and since B(Cd) is finite dimensional, we do not have to specify
the meaning of the tensor product. Observables of the reservoir–atom
system are selfadjoint elements of V . Its free dynamics is induced by the
one–parameter group {τt}t∈R of ∗–automorphisms of V defined by

τt := τat
t � τRt , t ∈ R. (4.18)

This tensor product is well–defined and unique because the atomic algebra
B(Cd) is finite dimensional. The generator of the free dynamics τt is the
symmetric derivation δ.
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Let ωat be any initial state of the atom and define the initial state of the
atom–reservoir system by

ω0 := ωat � ωR. (4.19)

Again, the latter is well–defined and unique, by finite dimensionality of
B(Cd). If ωat = gat is the Gibbs state then ω0 is clearly a (β, τ)–KMS
state. Observe also that gat is a faithful state and we assume without loss
of generality that ωat is a faithful state. The set of faithful states is dense
in the set of all states of the atom. Since the quasi–free state ωR of the
reservoir is also faithful, this property carries over to the initial state ω0 of
the composite system.

The atom–reservoir interaction

The interaction between the atom and the reservoir involves fermion field
operators,

Φ( f ) :=
1√
2
(a+( f ) + a( f )) = Φ( f )∗ ∈ B(F−(h1))

defined for all f ∈ h1.
Choose a collection {Q`}

m
`=1 ⊂ B(Cd) of self–adjoint matrices and an

orthonormal system { f`}m
`=1 ⊂ h1, f`(p) = g`(|p|). Here, we assume

again rotation invariance of the functions f`, for technical simplicity. More
general choices lead to results which are qualitatively of the same type
as ours. The atom–reservoir interaction is implemented by the symmetric
derivation

δat,R := i

[
m

∑
`=1

Q
`
� Φ( f`), ·

]
. (4.20)

Note that the orthonormality of the family { f`}m
`=1 does not inflict loss

of generality as for an arbitrary set {Q̃
`
}m̃

`=1 ⊂ B(Cd) of selfadjoint matri-
ces and (possibly not orthonormal) family { f̃`}m̃

`=1 ⊂ h1, there are m ∈ N,
{Q`}

m
`=1 ⊂ B(Cd) and an orthonormal system { f`}m

`=1 ⊂ h1 such that

m

∑
`=1

Q
`
� Φ( f`) =

m̃

∑
`=1

Q̃
`
� Φ( f̃`).

The atom–reservoir-pump dynamics

The full dynamics of the system involves the classical pump described
in Section 4.2.3, which is a perturbation of the free dynamics. It modi-
fies the symmetric derivation δ by adding the time–depending generator
η cos(vt)δat,p with

δat,p := i[Hp � 1R, · ]

and η ∈ R. In other words, the atom–reservoir–pump dynamics is gener-
ated by

δ
(λ,η)
t := δ + η cos(vt)δat,p + λδat,R, t ∈ R. (4.21)
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Here, λ, η ∈ R represent the strength of the atom–reservoir coupling and
the atom–pump coupling, respectively.

As δat,R and δat,p are bounded symmetric derivations, δ
(λ,η)
t is the gen-

erator of a strongly continuous one–parameter group of ∗–automorphisms
of V . As the map

t 7→ δ
(λ,η)
t − δ

(λ,η)
0

is norm–continuous, δ
(λ,η)
t generates a strongly continuous two–parameter

family of automorphisms τ
(λ,η)
t,s of V corresponding to the non–autonom-

ous dynamics of the atom–reservoir–pump system. As η cos(vt)δat,p is

bounded and cos is a smooth function, the two–parameter family τ
(λ,η)
t,s

may be constructed by the Dyson series.
Consequently, the time–dependent state of the full system is given by

ωt := ω0 ◦ τ
(λ,η)
t,0 = (ωat � ωR) ◦ τ

(λ,η)
t,0 , t ∈ R+

0 .

This state reduced to the atomic part only yields a state

ωat (t) (A) := ωt(A � 1R), A ∈ B(Cd), (4.22)

for any t ∈ R+
0 .

We will take later |λ|, |η| � 1. In other words, we will take the atom–
reservoir and atom–pump interactions as a small, but non–vanishing, per-
turbation of the free dynamics. Moreover, we assume that the pump is
moderate w.r.t. the atom–reservoir interaction in the following sense:

Assumption 4.6 (MP). For any λ ∈ R, |η| ≤ cλ2 for some fixed c ∈ (0, ∞).

Actually, it would suffice to impose |η| ≤ c|λ| for some sufficiently small
constant c > 0, but the above condition is technically convenient. In the
opposite situation when |η| >> |λ| and at small (η, λ) ∈ R2, the atomic
populations undergo Rabi oscillations, typically. We are rather interested
in the regime where the evolution of the full system is described (up to
negligibly small oscillations) by some relaxing dynamics in order to see,
for instance, a persisting inversion of population.

As it will be shown below, the contribution of the pump to the final
state of the atom is of order η2/λ4 whereas the contribution of the inter-
action with the reservoir is of order one. Thus imposing |η| ' λ2 means
physically that both the pump and the reservoir contribute in an essential
way to the final state of the atom. Hence, we say in this context that the
pump is weak whenever |η| � λ2.

4.3 The effective atomic master equation

4.3.1 Definitions

The aim of this section is to analyse the atomic dynamics resulting from
the restriction on B(Cd) of the full dynamics generated by the symmetric
derivation δ

(λ,η)
t , see (4.21). This corresponds to study the family of states
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{ωat (t)}t∈R+
0

defined by (4.22) or, equivalently, to study the corresponding
family {ρat (t)}t∈R+

0
of density matrices. We are more precisely interested

in the time behaviour of observables related to atomic levels only, and not
to correlations between different levels. Mathematically, this amounts to
study the orthogonal projection PD (ρat (t)) of the density matrix ρat (t) on
the subspace

D = D(Hat) := B(H1) � · · ·� B(HN) ⊂ Hat. (4.23)

In other words, we analyse the density matrix

PD (ρat (t)) =
N

∑
k=1

1 [Hat = Ek] ρat (t) 1 [Hat = Ek]

for any t ∈ R+
0 . The density matrix ρat (t) is approximated by the solution

of an effective non-autonomous initial value problem in B(Cd) called the
effective atomic master equation. Its generator is a time–dependent Lind-
bladian L

(λ,η)
t , i.e. it generates for any t ∈ R a completely positive group,

see Section 4.5.1.
Similar to (4.21) this Lindbladian L

(λ,η)
t ∈ B(Hat) is defined by the

following sum:

L
(λ,η)
t (ρ) := Lat(ρ) + η cos(vt)Lp(ρ) + λ2LR(ρ), ρ ∈ Hat. (4.24)

The first term is the Lindbladian of the free atomic dynamics which is the
anti–selfadjoint operator defined by

Lat(ρ) := −i[Hat, ρ] = −L∗at(ρ), ρ ∈ Hat. (4.25)

Similarly, the second term of (4.24) corresponds to the Lindbladian

Lp(ρ) := −i[Hp, ρ] = −L∗p(ρ), ρ ∈ Hat. (4.26)

The third term includes a dissipative part Ld ∈ B(Hat), i.e., LR ∈ B(Hat)
is not anti–selfadjoint, which results from the Markov–approximation of
atom–reservoir interaction. More precisely, the Lindbladian LR equals

LR(ρ) := −i[HLamb, ρ] + Ld(ρ), ρ ∈ Hat. (4.27)

The so–called atomic Lamb shift HLamb and effective atomic dissipation Ld
encode, in the weak coupling limit, the influence of the electron field-
impurity interaction on the dynamics of the impurity and are defined as
follows. Denoting the spectrum of any operator A by σ (A), for each

ε ∈ σ(i[Hat, ·]) =
{

Ej − Ek : j, k ∈ {1, 2, . . . N}
}

, (4.28)

we define the sets

tε := {(j, k) : Ej − Ek = ε} ⊂ {1, 2, . . . N} × {1, 2, . . . N}.

Then, for every j, k ∈ {1, 2, . . . N} and any ` ∈ {1, 2, . . . m}, let V(`)
j,k ∈

B(Cd) be defined by

V(`)
j,k := 1

[
Hat = Ej

]
Q` 1 [Hat = Ek] . (4.29)
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Using the family {V(`)
j,k }j,k,` of linear operators, the atomic Lamb shift

HLamb ∈ B(Cd) is the selfadjoint element

HLamb = ∑
ε∈σ(i[Hat,·])\{0}

∑
(j,k)∈tε

m

∑
`=1

d(`)
j,k V(`)

j,k V(`)∗
j,k , (4.30)

where
d(`)

j,k := PP
[

f (β)
`

(
· − (Ej − Ek)

)]
, (4.31)

where

f (β)
` (x) :=

|g`(|x|)|2

1 + e−βx

and PP [ f ] denotes the principal part of the function f . Meanwhile, the
effective atomic dissipation Ld ∈ B(Hat) is defined by

Ld(ρ) :=
1
2 ∑

ε∈σ(Lat)\{0}
∑

(j,k)∈tε

m

∑
`=1

c(`)
j,k L

(`)
j,k (ρ)

=
1
2 ∑

ε∈σ+(Lat)
∑

(j,k)∈tε

m

∑
`=1

c(`)
j,k L

(`)
j,k (ρ)

+
e−βε

2 ∑
ε∈σ+(Lat)

∑
(j,k)∈tε

m

∑
`=1

c(`)
j,k

(
L

(`)
j,k

)∗
(ρ) , (4.32)

with σ+ (Lat) := σ (Lat) ∩R+, for all ρ ∈ Hat, where

L
(`)
j,k (ρ) := 2V(`)

j,k ρV(`)∗
j,k −V(`)∗

j,k V(`)
j,k ρ− ρV(`)∗

j,k V(`)
j,k , (4.33)(

L
(`)
j,k

)∗
(ρ) := 2V(`)∗

j,k ρV(`)
j,k −V(`)

j,k V(`)∗
j,k ρ− ρV(`)

j,k V(`)∗
j,k , (4.34)

and
c(`)

j,k := f (β)
` (Ej − Ek). (4.35)

Note that the second equality in (4.32) follows from

f (β)
` (x) = e−βx f (β)

` (x),
(
L

(`)
j,k

)∗
(ρ) = L

(`)
k,j (ρ) . (4.36)

The terms V(`)
j,k ρV(`)∗

j,k and V(`)∗
j,k ρV(`)

j,k correspond to transitions between the
jth and kth atomic levels, whereas the other terms guarantee the Markov
properties of the evolution, i.e., the preservation of the trace of the density
matrix.

A priori, the family {PD (ρat (t))}t∈R+
0

of density matrices can have
several limits (depending on initial conditions) or even be oscillating, as
t → ∞. We would like to avoid this situation and we thus assume the
following sufficient condition to obtain the uniqueness of the final density
matrix in the limit t→ ∞.
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Assumption 4.7 (B). Denote with M′′ the bi–commutant, of M ⊂ B(Cd).
Then,  ⋃

(j,k,`), c(`)
j,k 6=0

{
V(`)

j,k

}
′′

= B(Cd).

Indeed, this assumption implies that the semigroup generated by LR (or
Ld) is relaxing and 0 is a non–degenerated eigenvalue of LR and Ld, see
Theorem 4.35. The uniqueness of the final density matrix then follows
from Corollary 4.19.

In order to illustrate this condition, consider the following example:
Assume that m = 1 and the degeneracy nk of the kth atomic level equal
nk = 1 for any k ∈ {1, . . . , N = d}. Let {ϕk}

d
k=1 ⊂ C

d be an orthonormal
basis of eigenvectors of Hat with Hat ϕk = Ek ϕk. If

Q1 ϕk =
d

∑
j=1

ϕj, k ∈ {1, . . . , d},

then the family {V(1)
j,k }

d
j,k=1 satisfies V(1)

j,n V(1)
n,k = V(1)

j,k for all j, k, n and forms
an orthonormal basis of Hat. We assume the family of non–negative num-
bers {c(1)

j,k }
d
j,k=1 is irreducible in the sense that, for all j 6= k, there is a

sequence (j1, k1), . . . , (jn, kn) such that c(1)
j1,k1

, . . . , c(1)
jn ,kn
6= 0, j1 = j, kn = k,

and kl = jl+1 for l ∈ {1, 2, . . . k− 1}. Physically speaking it means that any
arbitrary pair of atomic levels is connected by non–vanishing transitions.
By using the commutator identity[

A, V(1)
j,k

]
=
[

A, V(1)
j,n V(1)

n,k

]
= V(1)

j,n

[
A, V(1)

n,k

]
+
[

A, V(1)
j,n

]
V(1)

n,k

for all j, n, k and the irreducibility of the family {c(1)
j,k }

d
j,k=1 one can check

that the commutant  ⋃
(j,k), c(1)

j,k 6=0

{
V(1)

j,k

}
′

= C.1Cd ,

from which Assumption (B) follows. This is in perfect analogy to well–
known results about unicity of invariant states of discrete Markov chains.

Assumption (B) concludes the list of required conditions and from now
on, we assume all of them to be satisfied.

We define now the effective atomic master equation as the initial value
problem

∀t ≥ 0 :
d
dt

ρ(t) = L
(λ,η)
t (ρ(t)), ρ(0) = ρat (0) ≡ ρat. (4.37)

This evolution equation clearly has a unique solution, by finite dimension-
ality. Recall that ρat is the density matrix of the initial state ωat of the atom
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and ρat (t) is the density matrix of the time–dependent state ωat (t) de-
fined by (4.22) for any t ≥ 0. Observe that the initial value problem (4.37)
defines a continuous two–parameter family denoted by {τ̂(λ,η)

t,s }t≥s. Since

τ̂
(λ,η)
t,s preserves positivity and the trace, this family is norm bounded. In-

deed for some finite constant C not depending on λ, η, s, and t,

∀λ, η, s, t ∈ R, t ≥ s : ‖ τ̂
(λ,η)
t,s ‖≤ C. (4.38)

When the atom–pump interaction is absent, the dynamics become au-
tonomous and thus, the family {τ̂(λ,0)

t,s }t≥s corresponds to a one–parameter
semigroup denoted for simplicity by

∀t ≥ 0 : τ̂
(λ,0)
t := τ̂

(λ,0)
t,0 . (4.39)

Under certain technical assumptions of the electron field–impurity cou-
pling the following theorem about the dynamics of the orthogonal projec-
tion PD (ρat (t)) of the density matrix ρat (t) on the subspace D of block–
diagonal density matrix can be proven, see [BPW11b].

Theorem 4.8 (Validity of the Non–Autonomous Master Equation).
The unique solution {ρ(t)}t≥0 of the effective atomic master equation (4.37) and
the atomic density matrix {ρat (t)}t≥0 obey the uniform bound∥∥PD (ρat(t)− ρ(t))

∥∥ ≤ C(λ2 + |λ||v|−1),

for some constant C < ∞ which neither depends on the initial state ωat of the
atom nor on the parameters t, v, λ, and η.

Remark 4.9. The effective atomic master equation, (4.37), may be obtained
as a weak coupling limit, or Markov approximation, of the dynamics
{τ(λ,µ)

t,s }t≥s w.r.t. the fermion degrees of freedom, similar to the results
of Davies, [Dav74, Dav76, Dav75]; see also [DF06] and references therein.
These results cover the autonomous case and one has to control the in-
fluence of the pump while taking the weak coupling limit. As Theorem
4.8 provides a uniform bound in t, i.e. it is not restricted to the van Hove
timescale, tλ2 = const., it contains any weak coupling limit results, which
prove convergence uniformly on compact intervals for tλ2, typically. We
stress, that the weak coupling limit is taken in the GNS representation of
the initial state ω0, taking thermal effects into account.

4.3.2 Evolution Semigroup of the Non–Autonomous Master
Equation

In this subsection we perform a spectral analysis of the evolution semi-
group of the non–autonomous master equation, that is, the initial value
problem (4.37). To this end, we represent this non–autonomous evolu-
tion as an autonomous dynamics on an enlarged Hilbert space emerging
through an additional degree of freedom, which is a new time variable
denoted by α. This method enables a long–time analysis of the non-
autonomous dynamics via a spectral analysis of the generator of the asso-
ciated evolution semigroup.
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We thus proceed by first defining this enlarged space, which is the
Hilbert space

Hevo := L2(Tv, Hat), Tv := R/ 2π
v Z

, (4.40)

of time–dependent 2πv−1–periodic density matrices. The scalar product
on Hevo is naturally defined, for all f , g ∈ Hevo, by

〈 f , g〉evo :=
v

2π

∫ 2π
v

0
〈 f (t) , g (t)〉at dt =

v

2π

∫ 2π
v

0
Tr
(

f (t)∗ g (t)
)

dt.

Then, there is a strongly continuous one–parameter semigroup {Tα}α≥0
such that, for all α ≥ 0 and f ∈ Hevo,

∀t ∈ Tv a.e. : Tα ( f ) (t) = τ̂
(λ,η)
t,t−α f (t− α) ,

where we recall that {τ̂(λ,η)
t,s }t≥s is the continuous two–parameter family

defined from the non–autonomous master equation (4.37). Observe that
{τ̂(λ,η)

t,s }t≥s is periodic in the sense that

τ̂
(λ,η)
t,s = τ̂

(λ,η)
t+2πv−1k,s+2πv−1k (4.41)

for all k ∈ Z and t ≥ s. Therefore, Tα ( f ) ∈ Hevo. Moreover, the semigroup
{Tα}α≥0 is norm bounded, by the norm boundedness of the operator fam-
ily {τ̂(λ,η)

t,s }t≥s. Indeed, for some finite constant C not depending on λ, η,
and α,

∀λ, η ∈ R, α ≥ 0 : ‖ Tα ‖≤ C. (4.42)

The generator of the strongly continuous semigroup {Tα}α≥0 is the
closed operator

G(λ,η) := − d
dt

+ L
(λ,η)
evo , D

(
G(λ,µ)

)
= D

(
d
dt

)
, (4.43)

where L
(λ,η)
evo is the bounded operator defined, for all f ∈ Hevo, by

∀t ∈ Tv a.e. : L
(λ,η)
evo ( f ) (t) := L

(λ,η)
t ( f (t))

The derivative operator is the closed, unbounded operator with domain

D
(

d
dt

)
=

{
∞

∑
k=−∞

akeikvt : ak ∈ Hat,
∞

∑
k=−∞

‖k ak‖2
at < ∞

}
.

Observe that the spectrum of the generator G(0,0) is purely discrete. In the
following we identify all vectors ρ ∈ Hat with constant functions ρ(t) = ρ
of Hevo.

In the next Lemma we show that the scalar products of the form

〈Tα (ρ) , A〉evo

properly describe the time evolution of

〈ρ(α), A〉at := Tr (ρ(α)A)

whenever the pump frequency, v, is sufficiently large.



90 Chapter 4. Characterisation of the Quasi-Stationary State

Lemma 4.10 (Effective behaviour of ρ (t)–I).
For any state ρ ∈ D ⊂ Hat, with ρ = ρ(0), and any observable A ∈ D ⊂
B(Cd) ≡ Hat, the unique solution {ρ(t)}t≥0 of the effective atomic master equa-
tion (4.37) satisfies the bound∣∣〈ρ(α), A〉at − 〈Tα (ρ) , A〉evo

∣∣ ≤ C ‖A‖ |λ|(1 + |λ|)
v

, (4.44)

where C is a finite constant not depending on ρ, A, λ, η, v, and α.

Proof. By Assumption (MP) |η| ≤ cλ2, for some fixed c ∈ (0, ∞). The “vari-
ation of constants formula” provides a relation between the continuous
two–parameter family {τ̂(λ,η)

t,s }t≥s and the semigroup {τ̂(0,0)
t }t≥0, defined

by (4.39), is given by the integral equation

∀s, t∈R, t ≥ s : τ̂
(λ,η)
t,s = τ̂

(0,0)
t−s +

∫ t

s
τ̂

(0,0)
t−v W

(λ,η)
v τ̂

(λ,η)
v,s dv . (4.45)

Here, for any t ≥ 0, the operator

W
(λ,η)
t := L

(λ,η)
t − L

(0,0)
t = η cos(vt)Lp + λ2LR

is the difference between the full Lindbladian L
(λ,η)
t , (4.24), and the free

one L
(0,0)
t ≡ Lat, (4.25). Since

〈ρ(α), A〉at − 〈Tα (ρ) , A〉evo =
v

2π

∫ 2π
v

0

〈(
τ̂

(λ,η)
α,0 − τ̂

(λ,η)
t,t−α

)
(ρ) , A

〉
at

dt,

(4.46)
we proceed by estimating the difference

‖ τ̂
(λ,η)
α,0 − τ̂

(λ,η)
t,t−α ‖

for any α ≥ 0 and t ∈
[
0, 2πv−1). To this end, we choose, for any α ≥ 0,

the parameter r (α) ∈ 2πv−1N0 such that

0 ≤ r (α)− α ≤ 2πv−1.

Since W
(λ,η)
t is periodic with period 2πv−1,

τ̂
(λ,η)
t,s = τ̂

(λ,η)
t+r(α),s+r(α)

(cf. (4.41)) and thus, for any t ∈
[
0, 2πv−1],

τ̂
(λ,η)
α,0 − τ̂

(λ,η)
t,t−α = τ̂

(λ,η)
α,0 − τ̂

(λ,η)
δ+α,δ (4.47)

with
δ := t + r (α)− α ∈

[
0, 4πv−1

]
.

Using the cocycle property satisfied by the two–parameter family {τ̂(λ,η)
t,s }t≥s

together with (4.47),

τ̂
(λ,η)
α,0 − τ̂

(λ,η)
t,t−α = τ̂

(λ,η)
α+δ,δ(τ̂

(λ,η)
δ,0 − 1) + (1−τ̂

(λ,η)
α+δ,α)τ̂

(λ,η)
α,0 (4.48)
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with δ ∈
[
0, 4πv−1]. Note that ‖[Hat, ·]‖ = O(v) and thus we cannot

expect
∥∥∥(1− τ̂

(λ,η)
δ,0 )

∥∥∥ and
∥∥∥(τ̂

(λ,η)
α+δ,α − 1)

∥∥∥ to be small at δ = O(v−1). How-

ever, for ρ, A ∈ D ⊂ B(Cd),
∥∥∥(1− τ̂

(λ,η)
δ,0 )(ρ)

∥∥∥ and
∥∥∥(τ̂

(λ,η)
α+δ,α − 1)∗(A)

∥∥∥ are

indeed small at δ = O(v−1): We infer from the integral equation (4.45)
that, for all s ∈ R and δ ∈

[
0, 4πv−1],

1− τ̂
(λ,η)
s+δ,s = (1− τ̂

(0,0)
δ ) +

∫ s+δ

s
τ̂

(0,0)
s+δ−vW

(λ,η)
v τ̂

(λ,η)
v,s dv.

As
(1− τ̂

(0,0)
δ,0 )(ρ) = (τ̂

(0,0)
α+δ,α − 1)∗(A) = 0,

for all ρ, A ∈ D ⊂ B(Cd), it follows that∥∥∥(1− τ̂
(λ,η)
δ,0 )(ρ)

∥∥∥ ≤ C1
|λ|(1 + |λ|)

v
‖ρ‖ ,∥∥∥(τ̂

(λ,η)
α+δ,α − 1)∗(A)

∥∥∥ ≤ C1
|λ|(1 + |λ|)

v
‖A‖ ,

for all ρ, A ∈ D and some C1 < ∞ not depending on ρ, A, λ and η. On the
other hand, the family {τ̂(λ,η)

t,s }t≥s is uniformly bounded by (4.38). Hence,
it follows that

∀t ∈
[
0, 2πv−1

]
: ‖ τ̂

(λ,η)
α,0 − τ̂

(λ,η)
t,t−α ‖≤ C2

|λ|(1 + |λ|)
v

with C2 < ∞ not depending on ρ, A, λ, η, v, t and α. Combining this with
(4.46), we arrive at the estimate (4.44). �

This lemma allows us to analyse the long–time behaviour of the solu-
tion {ρ(t)}t≥0 of the non–autonomous master equation (4.37) via the au-
tonomous dynamics described by the evolution semigroup {Tα}α≥0.

The semigroup {Tα}α≥0 acts on an infinite dimensional Hilbert space
Hevo, but the initial conditions we are interested in are constant functions,
i.e., elements of Hat ⊂ Hevo. It turns out that Hat is almost parallel to some
invariant finite dimensional subspace of {Tα}α≥0, see (4.51) below. As this
semigroup is bounded (see (4.42)), the restriction of the dynamics onto
this invariant subspace describes – up to small errors – the evolution of
{ρ(t)}t≥0.

More precisely, the invariant, finite dimensional subspace is defined by

H
(λ,η)
inv := span

 ⋃
ε∈σ(i[Hat,·])

H
(λ,η)
ε

 .

Here, for each ε ∈ σ(i[Hat, ·]),

H
(λ,η)
ε := P(λ,η)

ε Hevo

is an invariant, finite dimensional subspace (see [Kat76, Chapter II]) of the
evolution semigroup {Tα}α≥0 and

P(λ,η)
ε :=

1
2πi

∮
|z−ε|= R

4

(
z− G(λ,η)

)−1
dz (4.49)
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is the Kato projection. Here,

R := min
{∣∣ε− ε′

∣∣ : ε, ε′ ∈ σ(i[Hat, ·]), ε 6= ε′
}

> 0 (4.50)

and we assume in the following that λ2 (and thus |η|, by Assumption
(MP)) is small enough such that, for any ε ∈ σ(i[Hat, ·]) and z ∈ C with

|z| = R
4 , we have ε + z /∈ σ

(
G(λ,η)

)
. In other words, we choose R and λ

small enough to ensure that the Kato projection, P(λ,η)
ε , is well–defined.

Next, we study the restriction of the dynamics described by the semi-
group {Tα}α≥0 onto the invariant subspace H

(λ,η)
inv . In particular, if λ, η

are sufficiently small and v is large enough, then we show below that this
restriction describes the time behaviour of {Tα (ρ)}α≥0 provided that the
initial value is a constant function, i.e., an element ρ ∈ Hat. Using Lemma
4.10, it yields

Corollary 4.11 (Effective behavior of ρ (t)–II).
For any ρ ∈ D ⊂ Hat, with ρ = ρ(0), and any observable A ∈ B(Cd) ∩D, the
unique solution {ρ(t)}t≥0 of the effective atomic master equation (4.37) satisfies
the bound ∣∣∣∣∣∣〈ρ(α), A〉at − ∑

ε∈σ(i[Hat,·])

〈
exp

(
α P(λ,η)

ε G(λ,η)P(λ,η)
ε

)
ρ, A

〉
evo

∣∣∣∣∣∣
≤ C ‖A‖

(
λ2 +

|λ|(1 + |λ|)
v

)
,

where C is a finite constant independent of ρ, A, λ, η, v, and α.

Proof. Define the projection

P(λ,η)
inv := ∑

ε∈σ(i[Hat,·])
P(λ,η)

ε

onto the invariant subspace H
(λ,η)
inv . Note that

∀ρ ∈ Hat ⊂ Hevo : P(0,0)
inv ρ = ρ,

whereas, by Kato’s perturbation theory of discrete eigenvalues, there is a
constant C3 < ∞ such that∥∥∥P(λ,η)

inv − P(0,0)
inv

∥∥∥ ≤ C3λ2. (4.51)

Meanwhile, we also observe that the operator families{
exp

(
α P(λ,η)

ε G(λ,η)P(λ,η)
ε

)}
α≥0

,

for all ε ∈ σ(i[Hat, ·]), are bounded semigroups because there are restric-
tions of the bounded semigroup {Tα}α≥0 onto invariant subspaces:

∀α ≥ 0, ε ∈ σ(i[Hat, ·]) : TαP(λ,η)
ε = exp

(
α P(λ,η)

ε G(λ,η)P(λ,η)
ε

)
.
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Hence, using the equality

Tα (ρ) = Tα

((
1− P(λ,η)

inv

)
ρ
)

+ Tα

(
P(λ,η)

inv ρ
)

= Tα

((
P(0,0)

inv − P(λ,η)
inv

)
ρ
)

+ ∑
ε∈σ(i[Hat,·])

exp
(

α P(λ,η)
ε G(λ,η)P(λ,η)

ε

)
ρ

we obtain the upper bound∣∣∣∣∣∣〈Tα (ρ) , A〉evo − ∑
ε∈σ(i[Hat,·])

〈
exp

(
α P(λ,η)

ε G(λ,η)P(λ,η)
ε

)
ρ, A

〉
evo

∣∣∣∣∣∣ ≤ C4 ‖A‖ λ2,

where C4 < ∞ is a constant not depending on ρ, A, λ, η, v, and α. The
assertion follows now from Lemma 4.10. �

As a consequence, we may reduce the dimension of the problem to the
finite–dimensional subspace H

(λ,η)
inv .

Theorem 4.8 only compares the orthogonal projections PD (ρ (t)) and
PD (ρat (t)) of {ρ(t)}t≥0 and the atomic density matrix {ρat (t)}t≥0, respec-
tively (see (4.23)). Therefore, our analysis is restricted to the evolution of
{PD (ρ (t))}t≥0. This quantity is related to the subspace H

(λ,η)
0 as shown

in the following lemma.

Lemma 4.12 (Effective behaviour of PD (ρ (t))–I).
For any ρ ∈ D ⊂ Hat, with ρ = ρ(0), and any observable A ∈ B(Cd) ≡ Hat, the
unique solution {ρ(t)}t≥0 of the effective atomic master equation (4.37) satisfies
the bound ∣∣∣〈PD (ρ(α)) , A〉at −

〈
exp

(
α P(λ,η)

0 G(λ,η)P(λ,η)
0

)
ρ, A

〉
evo

∣∣∣
≤ C ‖A‖

(
λ2 +

|λ|(1 + |λ|)
v

)
,

where C is a finite constant not depending on ρ, A, λ, η, v, and α.

Proof. The orthogonal projection PD on Hat naturally induces an orthog-
onal projection, again denoted by PD, on the Hilbert space Hevo of time–
dependent density matrices by the equalities

∀t ∈ Tv, f ∈ Hevo : PD ( f ) (t) := PD ( f (t)) .

Using this definition we get

∑
ε∈σ(i[Hat,·])

〈
exp

(
α P(λ,η)

ε G(λ,η)P(λ,η)
ε

)
ρ, PD (A)

〉
evo

= ∑
ε∈σ(i[Hat,·])

〈
PD

(
exp

(
α P(λ,η)

ε G(λ,η)P(λ,η)
ε

)
ρ
)

, A
〉

evo
,

since
〈PD (ρ(α)) , A〉at = 〈ρ(α), PD (A)〉at .
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We use now Corollary 4.11 to obtain the bound∣∣∣∣∣∣〈PD (ρ(α)) , A〉at − ∑
ε∈σ(i[Hat,·])

〈
PD

(
P(λ,η)

ε eαG(λ,η)P(λ,η)
ε ρ

)
, A
〉

evo

∣∣∣∣∣∣
≤ C5 ‖A‖

(
λ2 +

|λ|(1 + |λ|)
v

)
(4.52)

with C5 < ∞. For any ε ∈ σ(i[Hat, ·]), note that

PDP(λ,η)
ε = PDP(0,0)

ε + PD(P(λ,η)
ε − P(0,0)

ε ) = δε,0PD + PD(P(λ,η)
ε − P(0,0)

ε ),
(4.53)

with the Kronecker symbol, δε,ε′ . Similar to (4.51), there is a constant
C6 < ∞ such that

max
ε∈σ(i[Hat,·])

∥∥∥P(λ,η)
ε − P(0,0)

ε

∥∥∥ ≤ C6λ2. (4.54)

Therefore, we infer from (4.52)–(4.54) that∣∣∣〈PD (ρ(α)) , A〉at −
〈

PD

(
exp

(
α G(λ,η)P(λ,η)

0

)
ρ
)

, A
〉

evo

∣∣∣
≤ C7 ‖A‖

(
λ2 +

|λ|(1 + |λ|)
v

)
(4.55)

with C7 < ∞. Finally, observe that〈
PD

(
eαG(λ,η)P(λ,η)

0 ρ

)
, A
〉

evo
=

〈
eαG(λ,η)P(λ,η)

0 ρ, PD (A)
〉

evo

=
〈

eαG(λ,η)P(λ,η)
0 ρ, P(0,0)

0 (A)
〉

evo

=
〈

P(0,0)
0

(
eαG(λ,η)P(λ,η)

0 ρ

)
, A
〉

evo
.

Thus, using (4.54) and (4.55) we arrive at the assertion. �

The invariant spaces H
(λ,η)
0 , related to the projectors P(λ,η)

0 , are not explicit
enough for practical purposes. Therefore, the next step is to reduce the
dynamics onto the spaces H

(0,0)
0 , which are explicitly known. To this end,

we denote the restriction of G(λ,η) onto the space H
(0,0)
0 by

Λ(λ,η) := P(0,0)
0 G(λ,η)P(0,0)

0 . (4.56)

It turns out that the dynamics of PD (ρ (t)) is properly described by the
semigroup generated by Λ(λ,η):

Theorem 4.13.
For any ε ∈ (0, 1), there is a constant Cε ∈ (0, ∞) such that,∥∥∥exp

(
αΛ(λ,η)

)
− exp

(
αP(λ,η)

0 G(λ,η)P(λ,η)
0

)∥∥∥ ≤ Cε |λ|2(1−ε) .
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In particular, Lemma 4.12 and Theorem 4.13 directly yield the following
corollary:

Corollary 4.14 (Effective behaviour of PD (ρ (t))–II).
For any ε ∈ (0, 1), any state ρ ∈ D ⊂ Hat, with ρ = ρ(0), and any observable
A ∈ B(Cd) ≡ Hat, the unique solution {ρ(t)}t≥0 of the effective atomic master
equation (4.37) satisfies the bound∣∣∣〈PD (ρ(α)) , A〉at −

〈
exp

(
αΛ(λ,η)

)
ρ, A

〉
evo

∣∣∣
≤ C ‖A‖

(
|λ|2(1−ε) +

|λ|(1 + |λ|)
v

)
,

where C is a finite constant independent of ρ, A, λ, η, v, and α.

The proof of Theorem 4.13 needs some technical preparations. For the
sake of clarity we defer it to Section 4.3.3 and continue our discussion on
the large time behaviour of PD (ρ (t)).

Observe that the Hilbert space H
(0,0)
0 is not a subspace of Hat ⊂ Hevo,

because of oscillating terms present in it. Indeed, by taking any ONB
{e(k)

n }n∈Kk , Kk := {1, . . . , dim (Hk)} ⊂ N, of the eigenspace Hk ⊂ Cd,
k ∈ {1, . . . , N}, of the atomic Hamiltonian Hat (see Section 4.2.2), we define
the family

{W(k′ ,n′)
(k,n) }k,k′∈{1,...,N}, n∈Kk , n′∈Kk′

⊂ Hat ≡ B(Cd)

of vectors by

W(k′ ,n′)
(k,n) e(k′′)

n′′ := δn,n′′δk,k′′ e
(k′)
n′ . (4.57)

Then, the Hilbert space H
(0,0)
0 is equal to

H
(0,0)
0 = span

e−itEkk′W(k′ ,n′)
(k,n) | (k, k′) ∈

⋃
m∈{−1,0,1}

tmv, n ∈ Kk, n′ ∈ Kk′

 ,

where Ekk′ := Ek − Ek′ . We next remove the oscillating terms by defining
a unitary map U from H

(0,0)
0 to the subspace

H̃
(0,0)
0 := span

W(k′ ,n′)
(k,n) | (k, k′) ∈

⋃
m∈{−1,0,1}

tmv, n ∈ Kk, n′ ∈ Kk′

 ⊂ Hat

(4.58)
as follows:

U
(

e−it(Ek−Ek′ )W(k′ ,n′)
(k,n)

)
:= W(k′ ,n′)

(k,n) . (4.59)

The behaviour of PD (ρ (α)) can be studied through the generator Λ(λ,η),
which acts (non–trivially) on H

(0,0)
0 * Hat, see (4.56) and Corollary 4.14. As

far as the large time behaviour of PD (ρ (α)) is concerned, we can analyse
instead the evolution semigroup given by the generator

Λ̃(λ,η) := UΛ(λ,η)U∗ (4.60)
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acting now on the subspace H̃
(0,0)
0 ⊂ Hat. This follows, for any initial

density matrix ρ ∈ Hat, from the equality

PD

(
exp

(
αΛ(λ,η)

)
ρ
)

= PD

(
exp

(
αΛ(λ,η)

)
P(0,0)

0 (ρ)
)

= PD

(
U∗ exp

(
αΛ̃(λ,η)

)
UPD (ρ)

)
= PD

(
exp

(
αΛ̃(λ,η)

)
PD (ρ)

)
=: ρD (α) (4.61)

and Theorem 4.35. We describe this more precisely in the following theo-
rem:

Theorem 4.15 (Long–time behaviour of PD (ρ (t))).
(i) For all ρ ∈ H̃

(0,0)
0 ,

Λ̃(λ,η) (ρ) =
η

2
Lp(ρ) + λ2LR(ρ)

with Lp(ρ) and LR(ρ) defined by (4.26) and (4.27) respectively.

(ii) There is a unique density matrix ρ̃∞ ∈ H̃
(0,0)
0 such that Λ̃(λ,η) (ρ̃∞) = 0.

Moreover, for all ρ ∈ Hat and any ε ∈ (0, 1),

lim sup
α→∞

‖PD (ρ (α))− PD (ρ̃∞)‖ ≤ C
(
|λ|2(1−ε) +

|λ|(1 + |λ|)
v

)
, (4.62)

where C is a finite constant independent of ρ, A, λ, η, v, and α.

Proof. (i) This assertion readily follows from explicit computations.
(ii) Note that Λ̃(λ,η), given by the equality in (i) makes sense for all ρ ∈ Hat

whereas H̃
(0,0)
0 ⊂ Hat is an invariant space of Λ̃(λ,η) ∈ B(Hat). By Theorem

4.35 and Assumption (B), Λ̃(λ,η) ∈ B(Hat) is the generator of a relaxing
Markov CP and C0 semigroup, see Definition 4.34. In particular, there is a
unique density matrix ρ̃∞ ∈ Hat such that, for any density matrix ρ ∈ Hat,

lim
α→∞

(
exp

(
αΛ̃(λ,η)

)
ρ
)

= ρ̃∞. (4.63)

It follows that ρ̃∞ ∈ Hat is the unique density matrix satisfying Λ̃(λ,η) (ρ̃∞) =
0. As H̃

(0,0)
0 is an invariant space of Λ̃(λ,η) ∈ B(Hat) containing density ma-

trices, one then has ρ̃∞ ∈ H̃
(0,0)
0 . Using (4.61)

lim
α→∞

PD

(
exp

(
αΛ(λ,η)

)
ρ
)

= PD (ρ̃∞)

as PD (ρ) ∈ Hat is also a density matrix. The inequality (4.62) then results
from Corollary 4.14 and the finite dimensionality of Hat. �

It now remains to characterise more precisely the density matrix ρ̃∞ ∈
H̃

(0,0)
0 of Theorem 4.15 (ii).

Denote
P⊥D := 1− PD
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and observe that PD(H̃(0,0)
0 ) and P⊥D(H̃(0,0)

0 ) are invariant subspaces of the

Lindbladian LR (4.27), whereas Lp (4.26) maps PD(H̃(0,0)
0 ) to P⊥D(H̃(0,0)

0 ),
and vice versa. These properties allow a characterisation of the density
matrix PD (ρ̃∞) by means of a “pre–master equation” on the (smaller) sub-

space PD(H̃(0,0)
0 ) for the semigroups {exp(αΛ̃(λ,η))}α≥0.

Theorem 4.16 (The pre–master equation).
The family {ρD (α)}α≥0 of density matrices defined by (4.61) for any initial den-
sity matrix ρ ∈ Hat obeys the integro–differential equation

d
dα

ρD (α) = λ2LR (ρD (α))

+
η2

4λ2

αλ−2∫
0

PDLpP⊥DesLRP⊥DLpPD

(
ρD

(
α− sλ−2

))
ds,

called here the pre–master equation.

Proof. The result follows from standard considerations and may for in-
stance be taken from [JZK+03, Chapter 7]. �

By combining (4.63) with the equality Λ̃(λ,η) (ρ̃∞) = 0 (Theorem 4.15 (ii)),
the density matrix ρD (α) must converge to PD (ρ̃∞) as α → ∞ and its
derivative must vanish in the limit α → ∞. Using Theorem 4.20 proven
below, we get that ∥∥∥PDLpP⊥DesLRP⊥DLpPD

∥∥∥ ≤ C7e−sC8 , (4.64)

for some constants C7 < ∞ and C8 > 0. The latter ensures the integrability
of the integrand in the pre–master equation on the whole positive real line
[0, ∞). As a consequence, by Lebesgue’s dominated convergence theorem,
the limit PD (ρ̃∞) satisfies the following balance condition, which is defined
by the equation:

LR (ρ) +
η2

4λ4 B (ρ) = 0 (4.65)

for ρ ∈ Hat and where

B :=
∞∫

0

PDLpP⊥DesLRP⊥DLpPDds ∈ B(Hat).

We note, however, that the balance condition (4.65) might, a priori, have
more than one density matrix as a solution. Next we give a criterion for
B to be associated with a generator of a CP Markov semigroup, which
we use to employ Theorem 4.35 for LR + B in order to obtain a unique
solution. It is useful to introduce the projections

Pjk := 1
[
Hat = Ej

]
−−−−−−−→

1 [Hat = Ek]←−−−−−−−
, (4.66)

for j, k = 1, . . . , N. Note that

1Hat =
N

∑
j,k=1

Pjk.
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Proposition 4.17 (CP criterion for B).

If
PN1LRPN1 = αN1PN1,

for some αN1 ∈ C, then B is the restriction of a generator B̃ ∈ B (Hat) of a
CP Markov semigroup, i.e.

B = B̃ �ran(PD) .

Proof. Note, that since LR is the generator of a completely positive Markov

semigroup, Re
(

αjk

)
≥ 0. By (4.64) follows that

(LP)−1 :=
(

P⊥DLPP⊥D
)−1

=
∞∫

0

ds P⊥DesLRP⊥D

exists, using Theorem 4.20 and that P⊥D is a projection onto an invariant
space of LR. From Assumption (P) follows then for any s ∈ R+

0 ,

PDLpP⊥D (LP)−1 P⊥DLpPD =
N

∑
j,k=1

Bjk,

where the Bjk are given by

BN1 := PNN hP−→P1N (LR)−1 PN1 hP−→P11 − PNN hP−→P1N (LR)−1 P1N h∗P←−
P11

-PNN h∗P←−
PN1 (LR)−1 PN1 hP−→P11 + PNN h∗P←−

PN1 (LR)−1 P1N h∗P←−
P11

B1N := P11 h∗P−→
PN1 (LR)−1 P1N h∗P−→

PNN − P11 h∗P−→
PN1 (LR)−1 PN1 hP←−PNN

-P11 hP←−P1N (LR)−1 P1N h∗P−→
PNN + P11 hP←−P1N (LR)−1 PN1 hP←−PNN

BNN := PNN hP−→P1N (LR)−1 P1N h∗P−→
PNN − PNN hP−→P1N (LR)−1 PN1 hP←−PNN

-PNN h∗P←−
PN1 (LR)−1 P1N h∗P−→

PNN + PNN h∗P←−
PN1 (LR)−1 PN1 hP←−PNN

B11 := P11 h∗P−→
PN1 (LR)−1 PN1 hP−→P11 − P11 h∗P−→

PN1 (LR)−1 P1N h∗P←−
P11

-P11 hP←−P1N (LR)−1 PN1 hP−→P11 + P11 hP←−P1N (LR)−1 P1N h∗P←−
P11,

and Bjk = 0 if j or k is in {2, . . . , N − 1}. Recall that ran
(

Pjk

)
are invariant

spaces of LR and hence

P1N (LR)−1 PN1 = 0 = PN1 (LR)−1 P1N .

Theorem 4.20 implies Re (αN1) < 0. Observe, that

ᾱN1P1N = (PN1LRPN1)
∗ρg = P1NLRP1N =: α1N P1N ,

where (·)∗ρg denotes the adjoint with respect to the scalar product induced
by the Gibbs state ρg,

〈A, B〉ρg
:= Tr

(
ρgA∗B

)
,
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with the inverse temperature β of the reservoir, determined by the choice
of the KMS state ωR. Hence, α := αN1 = ᾱ1N . Thus,

BN1 = −ᾱ−1PNN hP−→P1N h∗P←−
P11 − α−1PNN h∗P←−

PN1 hP−→P11

= −2Re (α)
|α|2

hP−→h∗P←−
,

as one easily checks, using Assumption (P). Similarly one observes

B1N = −2Re (α)
|α|2

h∗P−→
hP←−.

For any ρ ∈ B (Hat) we have

BNN (ρ) = ᾱ−1hPh∗Pρ1 [Hat = EN ] + α−11 [Hat = EN ] ρhPh∗P
B11 (ρ) = α−1h∗PhPρ1 [Hat = E1] + ᾱ−11 [Hat = E1] ρh∗PhP.

Define now the completely positive map

Ξ := B1N + BN1 + B̃NN + B̃11,

with

B̃NN :=
Re (α)
|α|2

(
hP−→h∗P−→

+ hP←−h∗P←−

)
B̃11 :=

Re (α)
|α|2

(
h∗P−→

hP−→+ h∗P←−
hP←−

)
.

Moreover, setting

∆ :=
iIm (α)
|α|2

(hPh∗P − h∗PhP) ,

and observing that ∆ ∈ B (Hat) is anti–selfadjoint we arrive at

B̃ := ∆−→+ ∆∗←−+ Ξ.

Since
Ξ∗1 ≡ Ξ, �

where (·)∗1 is the adjoint with respect to the scalar product 〈·, ·〉at, we
conclude Ξ (1) = 0, and B̃ is thus by Theorem 4.32 a generator of a CP
Markov (semi)group.

Remark 4.18.

1. The assumption in Proposition 4.17 corresponds physically to a fully
resonant pump, i.e. where the reservoir–impurity interaction does
not split the spectral line of the N1–transition. In this case, the N1
decoherence time is a number, not a general operator.
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2. As another criterion to obtain B being associated with the generator
of a CP Markov semigroup we do expect that for a strong decoher-
ence, i.e. the order of magnitude of the real part of LRP⊥D compared
to the real part of LRPD being big, B may be obtained as a weak
coupling limit, where the coupling parameter is given by the ratio
η/λ2. This would then imply that B is a (restriction of) generator of
a CP Markov semigroup, even if the reservoir–impurity interaction
creates a fine–structure splitting of the N1–transition.

3. We only need that the ground state of LR+ η2/λ4B is unique for the
characterisation of the quasi–stationary state. By Kato’s perturbation
theory of discrete eigenvalues this is always true for the weak pump,
i.e. sufficiently small ratio η/λ2.

Using Proposition 4.17 and Theorem 4.35 in combination with Remark
4.31, the solution of (4.65) is uniquely determined in the set of density
matrices of Hat and hence characterises PD (ρ̃∞) completely.

Corollary 4.19 (Characterisation of PD (ρ̃∞) via the balance condition).

Let
PN1LRPN1 = αN1PN1,

for some αN1 ∈ C. Then, PD (ρ̃∞) is the unique density matrix satisfying the
balance condition

LR (PD (ρ̃∞)) +
η2

4λ4 B (PD (ρ̃∞)) = 0.

4.3.3 Proof of Theorem 4.13

In this subsection, it is useful to extend the definition of Λ(λ,η) (4.56), H̃
(0,0)
0

(4.58), U (4.59), and Λ̃(λ,η) (4.60) to all ε ∈ σ(i[Hat, ·]) as follows:

Λ(λ,η)
ε := P(0,0)

ε G(λ,η)P(0,0)
ε .

H̃
(0,0)
ε := span

{
W(k′ ,n′)

(k,n) | (k, k′) ∈ ⋃
m∈{−2,−1,0,1,2}

tε+mv, n ∈ Kk, n′ ∈ Kk′

}
Uε

(
eit(ε−Ek+Ek′)W(k′ ,n′)

(k,n)

)
:= W(k′ ,n′)

(k,n) .

Λ̃(λ,η)
ε := UεΛ(λ,η)

ε U∗ε .
(4.67)

Observe that
H̃

(0,0)
ε ⊂ Hat, H̃

(0,0)
−v = H̃

(0,0)
0 = H̃

(0,0)
v ,

whereas

∀ε ∈ σ(i[Hat, ·])\{−v, 0, v} : H̃
(0,0)
0 ⊥ H̃

(0,0)
ε .

Using these observations we can deduce the structure of the spectrum of
the generators Λ(λ,η)

ε :
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Theorem 4.20 (Spectrum of Λ
(λ,η)
ε ).

For all ε ∈ σ(i[Hat, ·])\{−v, 0, v},

σ(Λ(λ,η)
ε ) ⊂ iR−R+,

i.e., any eigenvalue of Λ(λ,η)
ε , ε ∈ t\{−v, 0, v}, has a strictly negative real

part. Moreover, −v, 0, v are non–degenerated eigenvalues of Λ(λ,η)
−v , Λ(λ,η)

0 , and

Λ(λ,η)
v , respectively.

Proof. Direct computations shows that

Λ̃(λ,η)
ε =

(
−iε +

η

2
Lp + λ2LR

)∣∣∣
H̃

(0,0)
ε

from which we infer

σ(Λ(λ,η)
ε ) = σ(Λ̃(λ,η)

ε ) = −iε + σ
(

Λ̃(λ,η)
∣∣∣
H̃

(0,0)
ε

)
,

where Λ̃(λ,η) ∈ B(Hat) is seen as an operator acting on Hat, see proof of
Theorem 4.15. H̃

(0,0)
ε is an invariant space of Λ̃(λ,η) ∈ B(Hat). By Theorem

4.35 and Assumption (B), 0 is a non–degenerate eigenvalue of Λ̃(λ,η). The
corresponding eigenvector is an element of H̃

(0,0)
ε = H̃

(0,0)
±v . Since Λ̃(λ,η)

generates a relaxing Markov CP and C0 semigroup, all non–zero elements

p ∈ σ( Λ̃(λ,η)
∣∣∣
H̃

(0,0)
ε

)\ {0} have a strictly negative real part Re (p) < 0. �

Lemma 4.21 (Stability of Assumption B under block localisation).
Let H ∈ B(Cd) be selfadjoint and denote by 1ε the spectral projection of [H, ·]
onto the eigenspace corresponding to an eigenvalue ε ∈ σ ([H, ·]). Then, there are

m̃ ∈ N, positive real number c̃( ˜̀)
j,k ∈ R+, and Ṽ( ˜̀)

j,k ∈ B(Cd) such that

∑
ε∈σ([H,·])

1εLd1ε (ρ) =
1
2 ∑

ε∈σ+(Lat)
∑

(j,k)∈tε

m̃

∑
˜̀=1

c̃( ˜̀)
j,k L̃

( ˜̀)
j,k (ρ)

+
e−βε

2 ∑
ε∈σ+(Lat)

∑
(j,k)∈tε

m̃

∑
˜̀=1

c̃( ˜̀)
j,k

(
L̃
( ˜̀)
j,k

)∗
(ρ) ,

with

L̃
( ˜̀)
j,k (ρ) := 2Ṽ( ˜̀)

j,k ρṼ( ˜̀)∗
j,k − Ṽ( ˜̀)∗

j,k Ṽ( ˜̀)
j,k ρ− ρṼ( ˜̀)∗

j,k Ṽ( ˜̀)
j,k ,(

L̃
( ˜̀)
j,k

)∗
(ρ) := 2Ṽ( ˜̀)∗

j,k ρṼ( ˜̀)
j,k − Ṽ( ˜̀)

j,k Ṽ( ˜̀)∗
j,k ρ− ρṼ( ˜̀)

j,k Ṽ( ˜̀)∗
j,k .

Moreover,  ⋃
(j,k, ˜̀),c̃( ˜̀)

j,k 6=0

{
Ṽ( ˜̀)

j,k

}
′′

= B(Cd), (4.68)
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whenever Assumption (B) is satisfied. In particular,

∑
ε∈σ([H,·])

1εLd1ε (ρ)

is the generator of a Markov CP and C0 semigroup satisfying Assumption (B).

Proof. For any V ∈ B(Cd) and all

ε ∈ σ ([H, ·]) =
{

Ẽj − Ẽk : j, k ∈ {1, 2, . . . M}
}

,

we define the matrix Vε ∈ B(Cd) by

Vε := 1ε (V) = ∑
(j,k)∈tε

1
[
H = Ẽk

]
V 1

[
H = Ẽj

]
,

where {Ẽj}M
j=1 are the eigenvalues of H and

tε := {(j, k) : Ẽj − Ẽk = ε} ⊂ {1, 2, . . . M} × {1, 2, . . . M}.
By construction, note that

∑
ε∈σ([H,·])

Vε = V.

In particular, one has

V ∈ span

 ⋃
ε∈σ([H,·])

Vε

 .

Therefore, by defining
Ṽ(`,ε)

j,k := 1ε(V(`)
j,k )

and identifying the finite sets {1, 2, . . . m} × σ ([H, ·]) and {1, 2, . . . m̃}, we
deduce (4.68), by Assumption (B). Furthermore, since, for all eigenvectors
Aε, Bε̃ ∈ B(Cd) of [H, ·] with eigenvalues ε, ε̃ ∈ σ ([H, ·]) respectively, i.e.,
1ε (Aε) = Aε and 1ε̃ (Bε̃) = Bε̃,

AεBε̃ = Cε+ε̃, with 1ε+ε̃ (Cε+ε̃) = Cε+ε̃ , �

we obtain the equalities

∑
ε∈σ([H,·])

1ε (V1ε (ρ) V∗) = ∑
ε∈σ([H,·])

1ε

 ∑
ε̃∈σ([H,·])

Vε̃1ε (ρ) ∑
ε̂∈σ([H,·])

V∗ε̂


= ∑

ε∈σ([H,·])
∑

ε̃∈σ([H,·])
Vε̃1ε (ρ) (V−ε̃)∗

= ∑
ε̃∈σ([H,·])

Vε̃ρV∗ε̃ .

Similarly,

∑
ε∈σ([H,·])

2 1ε (V1ε (ρ) V∗)− 1ε (V∗V1ε (ρ))− 1ε (1ε (ρ) VV∗)

= ∑
ε∈σ([H,·])

2VερV∗ε −V∗ε Vερ− ρV∗ε Vε

which concludes the proof of the lemma.
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Lemma 4.22 (Behaviour of the spectral gap of Λ(λ,η)).
For all (λ, η) ∈ R×R,

min
{
|Re {p}| : p ∈ σ

(
Λ(λ,η)

)
\{0}

}
≥ C4.22λ2,

with C4.22 > 0 being a constant only depending on HLamb, Hp, and Ld.

Proof. We define the function

g(λ, η) := λ−2 min
{
|Re {p}| : p ∈ σ(Λ(λ,η))\{0}

}
on the set R\{0}×R. Observe that g(λ, η) only depends on the ratio η/λ2

and is strictly positive, by Theorems 4.30 and 4.35. Indeed,

g(λ, η) = min

{
|Re {p}| : p ∈ σ

((
η

2λ2 Lp + LR

)∣∣∣∣
H̃

(0,0)
ε

)
\{0}

}

with H̃
(0,0)
ε being an invariant subspace of Λ(λ,η), and LR is the generator

of a Markov CP and C0 semigroup satisfying Assumption (B), whereas
Lp := −i[Hp, ·] (cf. (4.26)) with Hp = H∗p and Tr

(
Hp
)

= 0. Their sum
must be a relaxing Markov CP and C0 semigroup, by Theorems 4.30 and
4.35. By Kato’s perturbation theory, for some constants c, r > 0, g(λ, η) ≥ c
whenever η < rλ2. Using again Kato’s perturbation theory and Theorem
4.35, κ 7→ g(κ− 1

2 , 1) is a strictly positive continuous function on the in-
terval [r, r′] for any finite constant r′ > r. By compactness of the interval
[r, r′], it follows that

min
{

g(κ−
1
2 , 1) |κ ∈ [r, r′]

}
> 0.

So, it remains to prove that g(λ, η) ≥ c′ whenever η > r′λ2 for some
constants c′ > 0 and sufficiently large r′. Note that

σ(Λ(0,η)) = σ
(

Λ̃(0,η)
∣∣∣
H̃

(0,0)
0

)
⊂ iR.

Thus, as H̃
(0,0)
0 is an invariant space of Λ̃(0,η), by Kato’s perturbation theory

for the discrete spectrum, the limit

lim
κ→∞

g(κ−
1
2 , 1) ∈ [0, ∞) (4.69)

exists and satisfies

lim
κ→∞

g(κ−
1
2 , 1) ≥ min

|Re {p}| : p ∈ σ

 ∑
ε∈ η

2 σ([Hp,·])
1εLR1ε

 \{0}
 ,

(4.70)
where 1ε denotes the spectral projection of

[
Hp, ·

]
. They are well defined

as Hp is selfadjoint. By (4.27), we note that

∑
ε∈ η

2 σ([Hp,·])
1εLR1ε = ∑

ε∈ η
2 σ([Hp,·])

1εLd1ε − ∑
ε∈ η

2 σ([Hp,·])
1εi[HLamb, ·]1ε. (4.71)
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Using Lemma 4.21, the first sum on the r.h.s. of this equality is the gen-
erator of a Markov CP and C0 semigroup satisfying Assumption (B). The
second sum is the generator of the continuous one-parameter group

exp

t ∑
ε∈ η

2 σ([Hp,·])
1ε (−i [HLamb, ·]) 1ε


= lim

λ↓0
exp

{
it

η

2λ2

[
Hp, ·

]}
exp

{
−it

(
η

2λ2

[
Hp, ·

]
+ λ2 [HLamb, ·]

)}
,

by Theorem 4.33. As a limit of a product of automorphisms, which are
Markov and CP, the right hand side is also Markov and CP. Thus, the
operator (4.71) is also the generator of a Markov CP and C0 semigroup
satisfying Assumption (B) and, by (4.70) and Theorem 4.35,

lim
κ→∞

g(κ−
1
2 , 1) ∈ (0, ∞).

In other words, for some constants c′ > 0 and sufficiently large r′ > r,
g(λ, η) ≥ c′. �

We now conclude by the proof of Theorem 4.13, that is, for any ε ∈ (0, 1),∥∥∥∥eαΛ(λ,η) − ealphaP(λ,η)
0 G(λ,η)P(λ,η)

0

∥∥∥∥ ≤ Cε |λ|2(1−ε) , (4.72)

where the constant Cε ∈ (0, ∞) does not depend on λ, η, and α.

Corollary 4.23. There are constants D < ∞, C1, C2 > 0 independent of η, λ,
such that, for λ sufficiently small,

lim sup
α̃→∞

∥∥∥eαΛ(λ,η) − eα̃Λ(λ,η)
∥∥∥ ≤ De−αC1λ2

,

lim sup
α̃→∞

∥∥∥∥eαP(λ,η)
0 G(λ,η)P(λ,η)

0 − eα̃P(λ,η)
0 G(λ,η)P(λ,η)

0

∥∥∥∥ ≤ De−αC2λ2
,

(4.73)

and

lim sup
α→∞

∥∥∥exp
(

αΛ(λ,η)
)
− exp

(
αP(λ,η)

0 G(λ,η)P(λ,η)
0

)∥∥∥ ≤ Dλ2

for all α ≥ 0.

Proof. Note that, by Lemma 4.22, for some c ∈ (0, ∞) independent of λ
and η,

exp
(

αΛ(λ,η)
)
− exp

(
α̃Λ(λ,η)

)
= lim

L→∞

L∫
−L

(
e(ix−cλ2)α − e(ix−cλ2)α

) (
ix− cλ2 + Λ(λ,η)

)−1
dx,

exp
(

αP(λ,η)
0 G(λ,η)P(λ,η)

0

)
− exp

(
α̃P(λ,η)

0 G(λ,η)P(λ,η)
0

)
= lim

L→∞

L∫
−L

(
e(ix−cλ2)α − e(ix−cλ2)α

) (
ix− cλ2 + P(λ,η)

0 G(λ,η)P(λ,η)
0

)−1
dx
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and

lim
α̃→∞

exp
(

α̃Λ(λ,η)
)
− exp

(
α̃P(λ,η)

0 G(λ,η)P(λ,η)
0

)
= cλ2

·
1∫

0

e2πix
[(

Λ(λ,η) − cλ2e2πix
)−1
−
(

P(λ,η)
0 G(λ,η)P(λ,η)

0 − cλ2e2πix
)−1

]
dx

Observe that

lim
L→∞

L∫
−L

(e(ix−cλ2)α̃ − e(ix−cλ2)α)(ix− cλ2 + Λ(λ,η))−1dx

= lim
L→∞

L∫
−L

(e(ix−cλ2)α̃ − e(ix−cλ2)α)
(ix− cλ2)2

(ix− cλ2 + Λ(λ,η))−1(Λ(λ,η))2dx

= λ−2 lim
L→∞

L∫
−L

(e(ix−c)λ2α̃ − e(ix−c)λ2α)
(ix− c)2 ((ix− c)λ2 + Λ(λ,η))−1(Λ(λ,η))2dx

and

lim
L→∞

L∫
−L

(e(ix−cλ2)α̃ − e(ix−cλ2)α)(ix− cλ2 + P(λ,η)
0 G(λ,η)P(λ,η)

0 )−1dx

= λ−2 lim
L→∞

L∫
−L

(e(ix−c)λ2α − e(ix−c)λ2α)
(ix− c)2

((ix− c)λ2 + P(λ,η)
0 G(λ,η)P(λ,η)

0 )−1(P(λ,η)
0 G(λ,η)P(λ,η)

0 )2dx.

Hence, as ∥∥∥Λ(λ,η)
∥∥∥ ,
∥∥∥P(λ,η)

0 G(λ,η)P(λ,η)
0

∥∥∥ = O(λ2),

it suffices to show that for some finite constant C not depending on η and
λ,

Cλ−2 ≥
∥∥∥∥((ix− c)λ2 + P(λ,η)

0 G(λ,η)P(λ,η)
0

)−1
∥∥∥∥ , (4.74)

Cλ−2 ≥
∥∥∥∥((ix− c)λ2 + Λ(λ,η)

)−1
∥∥∥∥ ,

C ≥
∥∥∥(−cλ2e2πiy + P(λ,η)

0 G(λ,η)P(λ,η)
0 )−1 − (−cλ2e2πiy + Λ(λ,η))−1

∥∥∥
for all x ∈ R and all y ∈ [0, 1]. Observe that∥∥∥Λ(λ,η) − P(λ,η)

0 G(λ,η)P(λ,η)
0

∥∥∥ = O(λ4). �

Assuming that the inequalities∥∥∥∥(−cλ2e2πiy + P(λ,η)
0 G(λ,η)P(λ,η)

0

)−1
∥∥∥∥ ≤ Cλ−2, (4.75)∥∥∥∥(−cλ2e2πiy + Λ(λ,η)

)−1
∥∥∥∥ ≤ Cλ−2,
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hold, for some C < ∞ and all y ∈ [0, 1], and by using the second resol-
vent equation one gets the third inequality in (4.74). Similarly, by using
Neumann series for perturbations of resolvents and assuming that the first
inequalities in (4.74) and (4.75) hold we obtain the corresponding second
inequalities (up to a pre-factor), if λ is sufficiently small. Thus, it remains
to prove that the third inequalities in (4.74) and (4.75) are satisfied. Note
that these are equivalent to∥∥∥∥(−ce2πiy + LR +κLP

)−1
∥∥∥∥ ≤ C, (4.76)∥∥∥((ix− c) + LR +κLP)−1
∥∥∥ ≤ C,

by using Neumann series for perturbation of resolvents, with by κ := η

λ2

and recalling κ ∈ [−κ0,κ0] for some prefixed, finite κ0, by Assump-
tion (MP). By Lemma 4.22 and by using Neumann series for perturba-
tions of resolvents, the maps g1 : [0, 1]× [−κ0,κ0] → R, g1 : [−N, N] ×
[−κ0,κ0]→ R defined by

g1(y,κ) : =
∥∥∥∥(−ce2πiy + LR +κLP

)−1
∥∥∥∥ ,

g2(x,κ) : =
∥∥∥((ix− c) + LR +κLP)−1

∥∥∥ ,

are continuous. Hence, by compactness, the inequalities (4.76) hold for
some finite constant C depending only on N. Furthermore, for N suffi-
ciently large, from simple arguments Neumann series it follows, finally,
that the second inequality in (4.76) holds for all (x,κ) ∈ (R\[−N, N])×
[−κ0,κ0].

Proof of Theorem 4.13. Note that the semigroups{
exp

(
αΛ(λ,η)

)}
α≥0

and
{

exp
(

αP(λ,η)
0 G(λ,η)P(λ,η)

0

)}
α≥0

are bounded, uniformly in λ, η, as the first one is a CP semigroup and
the second one is the restriction of {Tα}α≥0, see (4.42). Thus, Duhamel’s
formula yields the inequality∥∥∥exp

(
αΛ(λ,η)

)
− exp

(
αP(λ,η)

0 G(λ,η)P(λ,η)
0

)∥∥∥
≤ C10α

∥∥∥P(λ,η)
0 G(λ,η)P(λ,η)

0 −Λ(λ,η)
∥∥∥ (4.77)

for some constant C10 < ∞ independent of λ, η, and α. For some constant
C11 < ∞, observe that∥∥∥P(λ,η)

0 G(λ,η)
∥∥∥ ≤ C11λ2 and

∥∥∥G(λ,η)P(0,0)
0

∥∥∥ ≤ C11λ2,

using P(0,0)
0 G(0,0) = 0. Hence, we combine these last upper bounds with

(4.54) and the triangle inequality to get that∥∥∥P(λ,η)
0 G(λ,η)P(λ,η)

0 −Λ(λ,η)
∥∥∥ =

∥∥∥P(λ,η)
0 G(λ,η)P(λ,η)

0 − P(0,0)
0 G(λ,η)P(0,0)

0

∥∥∥
≤ C12λ4, (4.78)
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with C12 < ∞. By (4.77), it follows that∥∥∥∥eαΛ(λ,η) − eαP(λ,η)
0 G(λ,η)P(λ,η)

0

∥∥∥∥ ≤ C13αλ4 (4.79)

with C13 < ∞. We finally infer from (4.79) and Corollary 4.23 that∥∥∥∥eαΛ(λ,η) − eαP(λ,η)
0 G(λ,η)P(λ,η)

0

∥∥∥∥ ≤ C17 max
{

xλ4, λ2 + e−xC18λ2
}

, (4.80)

for all x ≥ 0, where the constants C18, C17 ∈ (0, ∞) do not depend on λ, η,
and α. Taking

x = |λ|2(1−ε)−4

in (4.80) we obtain (4.72) for sufficiently small λ. 2

4.4 The Generalised Einstein Coefficients

For any initial density matrix ρ ∈ Hat, the final (approximate) density ma-
trix PD (ρ̃∞) of the atom restricted to the block diagonal subspace D of
Hat is attained according to the solution {ρD (α)}α≥0 of the pre–master
equation, see Theorems 4.8, 4.15 (ii), 4.16, and Corollary 4.19, provided
that B is the restriction of a generator of a (CP) Markov semigroup. We
assume this to be the case in this section, either by Proposition 4.17 or
other means, see Remark 4.18. Disregarding this for a moment, we could
have computed this final density matrix as the stationary density matrix of
some “phenomenological Pauli–equation”, similar to the Pauli–equations
found in the literature. The dynamics described by this phenomenological
Pauli–equation is in general quite different from the time evolution of the
density matrix {ρD (α)}α≥0, which corresponds up to small errors to the
real dynamics {PDρat(t)}t≥0 of the atom, see again Theorem 4.8. Nev-
ertheless, both dynamics lead to the same density matrix PD (ρ̃∞) in the
limit t → ∞. The coefficients of such Pauli–equations, called here gener-
alised Einstein coefficients, satisfy strong constrains, named here generalised
Einstein relations, which encode a balance condition for the final density
matrix PD (ρ̃∞), see Corollary 4.19. Therefore, the aim of this section to set
up more precise the notion of Pauli–equation and to analyse the structure
of its generator.

For this purpose, define first the positive cone

D+ := B+(Cd) ∩D = conv

〈
N⋃

k=1

B+(Hk)

〉
of block–diagonal density matrices of the atom. Here B+(h) denotes the
set of positive operators on a Hilbert space h and conv 〈m〉 stands for the
convex hull of the set m. Observe that D+ is an invariant cone of the
semigroup {τ̂(λ,0)

t }t≥0, see (4.39).
We next define the maps Aj,k, Bj,k from B(Hk) to B(Hj), respectively,

by

Bj,k : =
η2

4λ2 Pjj B Pkk,

Aj,k : = λ2 Pjj LR Pkk ,
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with Pjk defined by (4.66). From the proof of Proposition 4.17 we recall
that Bj,k equals Bj,k = 0 for all j ∈ {2, . . . , N − 1} or k ∈ {2, . . . , N − 1},
and

∀ρ ∈ B(H1) : BN,1 (ρ) =
η2

4λ2

(
(LR)−1 (hpρ

)
h∗p + hp (LR)−1

(
ρh∗p
))

,

∀ρ ∈ B(HN) : B1,N (ρ) =
η2

4λ2

(
(LR)−1

(
h∗pρ
)

hp + h∗p (LR)−1 (ρhp
))

,

∀ρ ∈ B(H1) : B1,1 (ρ) = -
η2

4λ2

(
h∗p (LR)−1 (hpρ

)
+ (LR)−1

(
ρh∗p
)

hp

)
,

∀ρ ∈ B(HN) : BN,N (ρ) = -
η2

4λ2

(
hp (LR)−1

(
h∗pρ
)

+ (LR)−1 (ρhp
)

h∗p
)

.

Here, (LR)−1 is the Laplace–Transform

(LR)−1 :=
∞∫

0

P⊥D esLR P⊥D ds .

Physically, the map

A := ∑
j,k

Aj,k = λ2LRPD

from Hat to Hat describes the dynamics of the fermion field–atom system
in absence of an electromagnetic field (pump). In other words, the “coeffi-
cient” Aj,k has to be interpreted as the spontaneous (quantum) transition rate
of populations from the atomic level j to the atomic level k. The second
map

B := ∑
j,k

Bj,k =
η2

4λ2 B

from Hat to Hat describes the contribution of the pump to the final density
matrix and the “coefficient” Bj,k is interpreted as the effective stimulated
transition rate of populations from the atomic level j to the atomic level k
at the final density matrix.

We now remark that Aj,k and Bj,k map the positive cone B+(Hk) to the
positive cone B+(Hj) for all j, k ∈ {1, . . . , N} because A and B generate
CP C0 semigroups. In many situations, for instance, in presence of sym-
metries, it turns out that Aj,k and Bj,k define maps from Kk ⊂ B+(Hk) to
Kj ⊂ B+(Hj) where Kj and Kk are sub-cones. The smaller the dimension
of such cones is, the more classical is the description of the final state via
the transition rates Aj,k and Bj,k. It can even happen that the dimension
of all Kj, j ∈ {1, . . . , N}, can be chosen to be one. In this case we get
the usual classical phenomenological description with parameters given
as functions of microscopic quantities.

Therefore we define a simple notion for invariance of sub-cones {Kk}N
k=1

which ensures that Aj,k and Bj,k map Kk to Kj:
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Definition 4.24 (Invariant family of cones).
A family {Kk}N

k=1 of sub-cones Kk ⊂ B+(Hk) is an invariant family when-
ever

K := conv

〈
N⋃

k=1

Kk

〉
is invariant under the action of the semigroups

{
etA}

t≥0 and
{

etB}
t≥0.

By the Trotter product formula, observe that the subset K defined in this

definition is also invariant under the action of the semigroups
{

et(A+B)
}

t≥0
.

Furthermore, the invariance of the family {Kk}N
k=1 yields

∀j, k ∈ {1, . . . , N} : Aj,k(Kk), Bj,k(Kk) ⊂ Kj.

In other words, Aj,k and Bj,k map, in this case, Kk to Kj. One trivial
example of an invariant family is given by taking Kk = B+(Hk) for all
k ∈ {1, . . . , N}.

The Pauli–equation reads now:

∀t ≥ 0, j ∈ {1, . . . , N} :
d
dt

ρj(t) =
N

∑
k=1

(
Aj,k + Bj,k

)
ρk(t), ρj(0) = ρj ∈ Kj.

(4.81)
The unique solution of this initial value problem satisfies {ρj(t)}t≥0 ⊂ Kj.
Here the initial values {ρj}N

j=1 comes from the initial density matrix ρ ∈
Hat via the definition

∀j ∈ {1, . . . , N} : ρj := 1
[
Hat = Ej

]
ρ 1
[
Hat = Ej

]
.

Remark 4.25.
The discussion above shows that B = η2F(A), i.e., B is proportional to
the intensity of the pumping (monochromatic) light η2 and proportional
to a fixed function F(A) of the spontaneous transition rates A. Einstein
has derived this kind of relation, called here Einstein AB–relations, for an
atom interacting with a (broad–band, i.e., non–monochromatic) radiation
field in his famous paper [Ein16] from phenomenological considerations
about the expected final state of the atomic populations and the asymp-
totics of the light intensity at large wave–numbers (Maxwell distribution).
Note that F strongly depends on the specific setting. Hence, the function
F appearing in the present paper cannot be compared to the one appear-
ing in Einstein’s works. However, the fact that the stimulated coefficients
only depends on light intensity and the spontaneous coefficient, seems to
be universal. We stress that this property is directly derived, here, from a
microscopic quantum mechanical description of the system under consid-
eration in rigorous way and not from phenomenological assumptions.

Einstein gives in his works a relation between the stimulated transition
rates Bj,k and Bk,j: Denoting the degeneracy of the jth atomic level by nj,
he obtained the equations

∀j, k ∈ {1, . . . , N} : nkBj,k = njBk,j,
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called here Einstein BB–relations. Let pj denote the population in the jth
atomic level and define the stimulated flux from the kth to jth atomic level
by f j,k := Bj,k pk. Then the Einstein BB–relations for transition rates reads

∀j, k ∈ {1, . . . , N} : pjnk f j,k − pknj fk,j = 0. (4.82)

Consider the sub-cones

∀j ∈ {1, . . . , N} : K0
j := R+

0 1
[
Hat = Ej

]
⊂ B+(Hj).

In our setting it turns out that a variant of BB–relations (4.82) for fluxes
holds, at least for density matrices in the sub-cone

K0 := conv

〈
N⋃

k=1

K0
k

〉
.

In this context and for any density matrix ρ ∈ Hat, the population in the
jth atomic level is naturally defined to be

pj(ρ) := Tr
(

ρj

)
≥ 0

for all j ∈ {1, . . . , N}. Similarly, for all j, k ∈ {1, . . . , N},

f j,k(ρ) := Tr
(

Bj,k(ρ)
)

= Tr
(

Bj,k(ρk)
)

represents the stimulated flux from the jth to the kth atomic level with
respect to the density matrix ρ ∈ Hat.

Lemma 4.26 (BB–Relations for states in K0).
For any ρ ∈ K0, the Einstein BB–relations for the flux hold:

pj(ρ)nk f j,k(ρ)− pk(ρ)nj fk,j(ρ) = 0.

Proof. Clearly,
njρj = pj(ρ)1

[
Hat = Ej

]
.

Thus the assertion follows from the equation

Tr
(

Bj,k(1 [Hat = Ek])
)

= Tr
(

Bk,j(1
[
Hat = Ej

]
)
)

. �

Let j, k = 1, N, because in the other cases the flux vanishes and there is
nothing to prove. Observe that

B1,N(1 [Hat = EN ]) =
η2

4λ2

(
(LR)−1 (hp

)
h∗p + hp (LR)−1

(
h∗p
))

,

BN,1(1 [Hat = E1]) =
η2

4λ2

(
(LR)−1

(
h∗p
)

hp + h∗p (LR)−1 (hp
))

.

From the cyclicity of the trace,

Tr (B1,N(1 [Hat = EN ])) =
η2

4λ2 Tr
(

hp (LR)−1
(

h∗p
)

+ (LR)−1 (hp
)

h∗p
)

=
η2

4λ2 Tr
(
(LR)−1

(
h∗p
)

hp + h∗p (LR)−1 (hp
))

= Tr (BN,1(1 [Hat = E1])) .
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Observe that for η = 0 the final density matrix PD (ρ̃∞) is an element of the
cone K0. More precisely, it is in this case the Gibbs state of Hat. Thus from
the Lemma above, the uniqueness of PD (ρ̃∞) and Kato’s perturbation the-
ory for non–degenerated eigenvectors the (asymptotic) BB–relations follow
for the NESS at weak pump, in general.

Corollary 4.27 (BB-relations at weak pump).
For some C ∈ (0, ∞) and all (η, λ) ∈ R2,

∣∣∣pj(ρ∞)dk f jk(PD (ρ̃∞))− pk(PD (ρ̃∞))dj fkj(PD (ρ̃∞))
∣∣∣ ≤ C

η2

λ4 .

4.5 Appendix

For the convenience of the reader, we give in Section 4.5.1 a short review
on completely positive (CP) semigroups on Banach spaces, focussing on
the results relevant for our analysis.

4.5.1 Completely positive semigroups

In open quantum systems, one usually studies the restricted dynamics
on the small quantum system of the time evolution of the full, composite
system (the atom and one fermion reservoir in our case), that typically
is, a small quantum object in interaction with macroscopic systems, i.e.,
reservoirs. This restriction on the time evolution formally defines at any
fixed time a map C within the set of density matrices of the small system.
This is pedagogically explained in [AL07, Section 1.2.1]. As explained in
[AL07, Section 1.2.2], such maps usually share similar mathematical prop-
erties, which refer to the so–called completely positive (CP) maps defined as
follows.

Definition 4.28 (Completely positive maps).
A positive map C ∈ B (B (X )) acting on the set B (X ) of bounded opera-
tors on a Hilbert space X is called completely positive (CP) if the extended
map C � 1B(Cn) is positive for any n ∈ N. If C is unital, i.e., C (1X ) = 1X ,
then the operator C is called a Markov map.

Then completely positive CP semigroups are simply semigroups which
are CP maps for all times:

Definition 4.29 (Completely positive semigroups).
A semigroup {Ct}t≥0 ⊂ B (B (X )), with X being a Hilbert space, is CP
if the map Ct is CP for any t ∈ R+. If Ct is unital for any t ∈ R+, then
{Ct}t≥0 is called Markov.

From now on until the end of Section 4.5.1, X is always a n–dimensional
Hilbert space. We denote by B2 (X ) ≡ B (X ) the Hilbert space of Hilbert–
Schmidt operators with scalar product

〈A, B〉B2(X ) := TrX (A∗B), A, B ∈ B2 (X ) .
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In the special case where a semigroup {Ct}t≥0 ⊂ B (B2 (X )) acts on
B2 (X ), we can define its (unique) adjoint semigroup {C†

t }t≥0 ⊂ B (B2 (X ))
as usual via the equations

∀t ≥ 0 : 〈C†
t (A) , B〉B2(X ) = 〈A, Ct (B)〉B2(X ), A, B ∈ B2 (X ) .

Note that a Markov CP and C0 semigroup {Ct}t≥0 defines a C0 semigroups
{C†

t }t≥0 which preserves the trace. In this case, {C†
t }t≥0 is also called a

Markov CP and C0 semigroup. Generators of Markov CP and C0 semi-
groups {Ct}t≥0 and {C†

t }t≥0 can then be characterised in the finite dimen-
sional case (cf. [GKS76, Theorem 2.2]):

Theorem 4.30 (Generators of CP Markov semigroups, dimX = n–I).
The operator L ∈ B (B2 (X )) is the generator of a Markov CP and C0 semigroup
{Ct}t≥0 if and only if

L (A) = i [h, A] +
1
2

n2−1

∑
j,k=1

cj,k
{
[V∗k , A] Vj + V∗k

[
A, Vj

]}
, A ∈ B2 (X ) ,

(4.83)

where h = h∗ ∈ B2 (X ) satisfies TrX (h) = 0,
{

Vj
}n2−1

j=1 ⊂ B2 (X ) is an

orthonormal family
{

Vj
}n2−1

j=1 ⊂ B2 (X ) such that TrX (Vj) = 0 for all j ∈{
1, · · · , n2 − 1

}
, and

{
cj,k

}
1≤j,k≤n2−1

≥ 0 forms a complex positive matrix.

Additionally, the adjoint semigroup {C†
t }t≥0 is the C0 (or C∗0 ), trace preserving

semigroup with generator equal to

L† (A) = −i [h, A] +
1
2

n2−1

∑
j,k=1

cj,k
{[

Vj, AV∗k
]
+
[
Vj A, V∗k

]}
, A ∈ B2 (X ) .

Note that [GKS76, Theorem 2.2] refers to the adjoint generator L† and
not the generator L, which is deduced from L† as in [AL07, Eq. (40)].
Moreover, [GKS76, Theorem 2.2] seems to indicate only one direction in
Theorem 4.30. However, a close look at its proof [GKS76, Proof of theorem
2.2.] shows both directions.

Remark 4.31. Observe that Theorem 4.30 implies that L + i[h̃, ·], with h̃ =
h̃∗ ∈ B2 (X ) satisfying TrX (h̃) = 0 and L being the generator of any
Markov CP and C0 semigroup {Ct}t≥0, generates also a Markov CP and
C0 semigroup. This observation is used several times in the paper.

It is useful to also have a more compact expression of generators of (CP)
and (CP) Markov semigroups. From [DF06, Sect. 4.3] we take

Theorem 4.32 (Generators of CP Markov semigroups, dimX = n–II).

An operator M ∈ B (B (X )) is the generator of a CP semigroup iff there
is a completely positive map Ξ ∈ B (B (X )) and an operator ∆ ∈ B (X )
such that

M = ∆−→+ ∆∗←−+ Ξ. (4.84)
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M ∈ B (B (X )) the generator of a CP Markov semigroup iff it is the gen-
erator of a CP semigroup and M (1) = 0.

We also use a well–known fact about spectral averaging, which has a
close relation to general weak coupling limit results, [Dav74, Dav80]. We
use a special version appropriate for the applications we have in mind.

Theorem 4.33 (Spectral averaging).

Let X be a finite dimensional complex vector space and {exp (itL)}t∈R be
a one–parameter group of isometries. Then, for any X ∈ B (X),

X] := ∑
e∈σ(L)

1 [L = e] X1 [L = e] := lim
t→∞

t−1
t∫

0

ds e−isLXeisL,

and
lim
λ→0

e−
itL
λ ei t(L−iλX)

λ = etX]
,

uniformly on compact intervals [0, T].
A crucial feature of certain Markov CP and C0 semigroups {Ct}t≥0 ⊂

B (B2 (X )) used in our paper is the relaxing property defined as follows:

Definition 4.34 (Relaxing semigroups, dimX = n).
A Markov CP and C0 semigroup {Ct}t≥0 ⊂ B (B2 (X )) is called relaxing if
there is a unique trace–one and positive ρ∞ ∈ B2 (X ), i.e., a density matrix
ρ∞, such that, for any density matrix ρ ∈ B2 (X ),

lim
t→∞
C†

t (ρ) = ρ∞.

In other words, a relaxing, Markov CP and C0 semigroup has a unique
invariant equilibrium state. Moreover, this state can be approximated for
large times via the density matrix C†

t (ρ) for any initial state with density
matrix ρ. Spohn [Spo77, Theorem 2] gave in 1977 a characterisation of
relaxing semigroups which turns out to be pivotal in our study:

Theorem 4.35 (Condition for a Markov CP semigroup to be relaxing).
Let {Ct}t≥0 ⊂ B (B2 (X )) be a Markov CP and C0 semigroup with generator

L given by Theorem 4.30. If
{

Vj
}n2−1

j=1 ⊂ B2 (X ) is a family of self–adjoint
operators on X and the bi–commutant({

Vj
}n2−1

j=1

)′′
= B2 (X ) ≡ B (X ) , (4.85)

then {Ct}t≥0 is relaxing. In particular, 0 is a non–degenerated eigenvalue of L
and

min {Re {w} |w ∈ σ (L) \{0}} > 0.

As explained after Assumption (B), the condition (4.85) is a non–commutative
version of the irreducibility of classical Markov chains.

Let {Γt}t∈R+ , Γt ∈ B (B (H)) be a continuous Markov CP semigroup
and ω be a stationary state, i.e. ω = ω ◦ Γt, ∀t ∈ R+, w.r.t. {Γt}t∈R+ .
Assume that ω is a faithful state of the C∗-algebra B (H) and denote the
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corresponding GNS representation with (Hω, πω, Ωω). There exists a con-
tinuous contraction semigroup

{
e−itL}

t∈R+ on Hω such that

πω (Γt (A)) Ωω = eitLπω (A) Ωω.

We conclude this section with the definition of the detailed balance condition,
see [Ali76, FGKV77, FGKV78].

Definition 4.36 (Detailed Balance Condition). L = LRe + iLIm be the uni-
que decomposition, such that LRe, LIm are selfadjoint operators. {Γt}t∈R+

satisfies the detailed balance condition w.r.t. ω iff

πω (αt (A)) Ωω = eitLRe πω (A) Ωω

defines a continuous group {αt}t∈R of automorphisms of the C∗-algebra
B (H).

Remark 4.37. It can be shown that the detailed balance condition implies
that

πω (ζt (A)) Ωω = e−tLIm πω (A) Ωω

defines a Markov CP continuous semigroup {ζt}t∈R+ , [FGKV77]. In par-
ticular,

LRe (Ωω) = 0 = LIm (Ωω) .



Chapter 5
Time–dependent C–Liouvilleans

This chapter provides the construction of time–dependent C–Liouvilleans,
whose autonomous counterparts have been invented in [JP02]. The con-
struction is a natural extension of the autonomous C–Liouvilleans. How-
ever, it is to our knowledge not contained in the literature. We will make
use of the notions and notations introduced in [BPW11a].

Assume that the initial state ω0 is of the form

ω0 = gat � ωR, (5.1)

i.e., ωat = gat is the Gibbs state. Let (H, π, Ωg) be its GNS representation.
Note that H := Hat � HR, π := πat � πR and Ωg := Ωat,g � ΩR, where
(Hat, πat, Ωat,g) and (HR, πR, ΩR) are the GNS representation of gat and
ωR, respectively. An important property of the initial state is that ω0 is
faithful. In particular, π is injective.

For simplicity, π (A) and π (V) are denoted by A and V , respectively.
Moreover, the cyclic vector Ωg of the GNS representation is in this case
separating for M, i.e., AΩg = 0 implies A = 0. Indeed, ω0 is a (β, τ)–KMS
state, where {τt}t∈R is the one–parameter group of ∗–automorphisms on
V defined by (1.11), see also [BR87, Corollary 5.3.9]. The weak closure
of the C∗–algebra π (V) is a von Neumann algebra denoted by M := V ′′.
The state ω0 on V extends uniquely to a normal state on the von Neumann
algebra M and {τt}t∈R also extends uniquely to a σ–weakly continuous
∗–automorphism group on M, see [BR87, Corollary 5.3.4]. Both exten-
sions are again denoted by ω0 and {τt}t∈R, respectively. Because ω0 is,
in this case, invariant with respect to {τt}t∈R, there is a unique unitary
representation {Ut}t∈R of {τt}t∈R, i.e.,

∀t ∈ R, A ∈M : τt (A) = Ut AU∗t ,

such that UtΩg = Ωg. As t 7→ τt is σ–weakly continuous, the map t 7→ Ut
is strongly continuous. Therefore, the unitary group {Ut}t∈R is generated
by a selfadjoint operator L, Ut = eitL. In particular, Ωg ∈ Dom(L) and L
annihilates Ωg, i.e. LΩg = 0. Moreover, L is related to the generator δ of
the group {τt}t∈R by the following relations: We have

{AΩ : A ∈ Dom (δ)} ⊂ Dom (L) ⊂ H (5.2)

115
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and
∀A ∈ Dom (δ) : L (AΩ) = δ (A) Ω. (5.3)

Now, if the faithful state ωat is not the Gibbs state gat in (5.1) then the
GNS representation of ω0 is also given by (H, π, Ω) where Ω = Ωat � ΩR
for some Ωat ∈ Hat. In other words, the von Neumann algebra M, the
corresponding extension of the ∗–automorphism group {τt}t∈R does not
depend on the initial state ωat of the atom. So, we assume from now on
that

ω0 := ωat � ωR

for any faithful state ωat.
The (Tomita–Takesaki) modular objects of the pair (M, Ωg) are impor-

tant for our further analysis. We write ∆, J, and

P := {AJAΩg : A ∈M}

respectively for the modular operator, the modular conjugation and the
natural positive cone of the pair (M, Ωg). Observe that Ω = AJAΩg ∈ P
with

A = ρ1/4
at ρ−1/4

g � 1HR ,

where ρg is the density matrix (1.12) of the Gibbs state gat. Additionally,
Ω is a cyclic vector for any faithful initial state ωat of the atom and hence,
by [BR87, Proposition 2.5.30], it is also separating for M.

Standard results from Tomita–Takesaki theory (cf. [BR87, Corollary
2.5.32] and [BR96, Chapt. 5]) show that the generator L of the unitary
group {Ut}t∈R satisfies

∀t ∈ R : LJ + JL = 0, eitLP ⊂ P , ∆ = e−βL. (5.4)

Here, L refers to as the standard Liouvillean of the ∗–automorphism group
{τt}t∈R.

In our setting, however, the free dynamics is perturbed by the pump
and the atom–reservoir interaction. Altogether, this leads to a perturbation
Wt of the standard Liouvillean L. For time–independent perturbations of
the generator δ of the dynamics {τt}t∈R (on V) of the form i[W, ·] with
some self–adjoint W ∈ V , one has

∀t ∈ R : τW
t (A) = eit(L+W)Ae−it(L+W) ∈M, A ∈ V , (5.5)

where {τW
t }t∈R is the strongly continuous ∗–automorphism group on V

generated by δ + i[W, ·]. Analogously as above, {τW
t }t∈R defines a σ–

weakly continuous group on whole M. In general, the operator L + W
does neither annihilate Ωg nor satisfies

(L + W) J + J (L + W) = W J + JW = 0.

It is known, [BR87, Corollary 2.5.32], that there is an operator LW , the stan-
dard Liouvillean of the dynamics {τW

t }t∈R, satisfying [LW , J] = 0 together
with

∀t ∈ R : τW
t (A) = eitLW Ae−itLW , A ∈M ,
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use [BR87, Corollary 2.5.32] and the σ–weakly continuity of the map t 7→
τW

t . Indeed, LW equals L + W up to an element of the commutant M
′
=

JMJ of the von Neumann algebra M. To find it explicitly, it suffices to
solve the equation

[W + JAJ, J] = 0

for A ∈ M. Straightforward computations show that A = W is one solu-
tion. Using additionally the uniqueness of the standard Liouvillean LW ,
one can verify that

LW = L + W − JW J ,

is the only solution.
The operator LW does not necessarily annihilate Ωg or some prescribed

vector Ω ∈ P . In general, LW only annihilates ΩW ∈ P , the vector repre-
senting the unique (β, τW)–KMS state normal to ω0. In other words, the
standard Liouvillean LW anti–commutes with the modular conjugation J,
but has the drawback of not having Ωg in its kernel. A way to get around
this problem is presented in [JP02, Section 2.2] where the notion of C–
Liouvilleans, L, is introduced. It is constructed such that LΩ = 0 for any
fixed Ω ∈ P . In our case, we face the problem that the dynamics is non–
autonomous and the standard Liouvillean LWt is time–dependent. Using
the C–Liouvilleans construction of [JP02, Section 2.2] we can design the
time–depending Liouvillean of the non–autonomous dynamics such that
LtΩ = 0. This is a very useful property for the analysis of the dynamics.

Therefore, we now extend the definition of C–Liouvilleans [JP02, Sec-
tion 2.2] to non–autonomous evolutions. First, the time–dependent, self-
adjoint perturbation {Wt}t∈R ⊂ V should define a family of symmetric
derivations

δWt := δ + i[Wt, ·]

for all t ∈ R, which generates a strongly continuous two–parameter fam-
ily {τt,s}t≥s of automorphisms of V , similar to the autonomous case (5.5).
Recall that a symmetric derivation δ is an operator acting on a C∗–algebra
where its domain is a dense sub–∗–algebra and which satisfies on its do-
main

δ(A)∗ = δ(A∗) and δ(AB) = δ(A)B + Aδ(B).

To this end, we use a standard result on non–autonomous Cauchy prob-
lems.

Proposition 5.1 (Non-autonomous dynamics–I).
Let {δt}t∈R be a family of symmetric derivations having the same dense domain
Dom(δt) ≡ D ⊂ V . Assume that, for all A ∈ D, {δt (A)}t∈R ∈ C1(R,V) and
for each t ∈ R, δt generates a strongly continuous one–parameter group of auto-
morphisms. Then, there is a unique evolution family {τt,s}t≥s of automorphisms
solving on D the non–autonomous evolution equations

∀t > s : ∂tτt,s = δtτt,s , ∂sτt,s = −τt,sδs , τs,s := 1 .

If {δt}t∈R is periodic with period T > 0, then

∀t ≥ s, k ∈ Z : τt,s = τt+kT,s+kT .
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Proof. By Theorem 5.11 (iv) there is a unique evolution family {τt,s}t≥s
solving the non–autonomous evolution equations stated in the proposi-
tion. By using the representation in Theorem 5.11 (iii) and the fact that δt
generates a group of automorphisms for any t ∈ R, it follows that {τt,s}t≥s
is also a family of automorphisms. The T–periodicity of {τt,s}t≥s results
from Theorem 5.11 (iii). �

Observe that the conditions of Proposition 5.1 are satisfied by {δWt}t≥0 as
soon as {Wt}t∈R ∈ C1(R,V):

Lemma 5.2 (Non–autonomous C∗–dynamics–II).
Assume that {Wt}t∈R ∈ C1(R+

0 ,V) and Wt = W∗t for all t ∈ R. Then,
{δWt}t∈R is a family of symmetric derivations having the same dense domain

Dom(δWt) = Dom(δ) ⊂ V .

Moreover, for all A ∈ V , {δWt (A)}t∈R ∈ C1(R,V) and for each t ∈ R, δWt
generates a strongly continuous one–parameter group of automorphisms.

Proof. Since {Wt}t∈R ⊂ V , it is clear that {δWt}t≥0 defines a family of
symmetric derivations having the same dense domain Dom(δ). Also, the
assumption {Wt}t∈R ∈ C1(R,V) directly implies {δWt (A)}t∈R ∈ C1(R,V)
for all A ∈ V . Moreover, as δWt is a bounded symmetric derivation, it
generates a ∗–automorphism group {ξWt

r }r∈R for any t ∈ R. Then, using
the Lie–Trotter formula [EN00, Chap. III, Corollary 5.8], for any t ∈ R+

0 ,
the strong limit

∀r ∈ R : τWt
r := s− lim

n→∞

{(
τr/nξWt

r/n

)n}
defines a ∗–automorphism group {τWt

r }r∈R with generator δWt . �

The construction of [JP02, Section 2.2] starts with the definition of the
linear space

O := {AΩ : A ∈ V} ⊂ H.

Let ι be the map from V to O defined by ι (A) := AΩ. This map is an
isomorphism of the linear space V and O because Ω is a separating vector
for M. In particular, ‖AΩ‖∞ := ‖A‖ defines a norm on the space O and
ι is an isometry with respect to this norm. Thus, (O, ‖·‖∞) is a Banach
space. Any element A ∈ V also defines a bounded operator on O by left
multiplication, i.e., A (BΩ) := (AB) Ω. Moreover, we define a strongly
continuous two–parameter family {Tt,s}t≥s acting on O by

∀t ≥ s : Tt,s := ι ◦ τt,s ◦ ι−1. (5.6)

In particular, since {τt,s}t≥s is a family of automorphisms, the operator
Tt,s has a bounded inverse and we observe that

∀t ≥ s : Tt,s (Ω) = Ω and Tt,s AT−1
t,s = τt,s (A) . (5.7)

We would like now to extend the two–parameter family {Tt,s}t,s∈R+
0

to
H. To this end, following [JP02, Eq. 2.5] we directly define the time–
dependent C–Liouvillean as follows:
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Definition 5.3 (Time–dependent C–Liouvillean).
The time–dependent C–Liouvillean is defined by

Lt = L + Wt − J∆1/2Wt∆−1/2 J (5.8)

for any t ∈ R.

Note that the term

Vt := Wt − J∆1/2Wt∆−1/2 J ∈ B (O) (5.9)

implements the commutator [Wt, ·] on O for any t ∈ R, i.e. for any A ∈ V ,

[Wt, A]Ω = Wt AΩ− (Wt A∗)∗Ω (5.10)

and using J∆1/2 AΩ = A∗Ω we also deduce that

J∆1/2Wt∆−1/2 JAΩ = (Wt A∗)∗Ω.

In particular, ∥∥∥J∆1/2Wt∆−1/2 J
∥∥∥
B(O)

= ‖Wt‖ < ∞ (5.11)

and
∀t ∈ R : LtΩ = 0. (5.12)

Note that the topology induced by the norm ‖·‖∞ on O is finer than
the topology w.r.t. the Hilbert space norm on the corresponding subspace
of H. In particular, the boundedness of the operator

J∆1/2Wt∆−1/2 J

as an operator on H is unclear, in spite of (5.11). Therefore, for every t ∈
R, we assume some sufficient conditions on the operator family {Vt}t∈R
like its boundedness, in order to extend later the two–parameter family
{Tt,s}t≥s to the Hilbert space H.

Lemma 5.4 (Extension of {Tt,s}t≥s-I).
Let {Vt}t≥0 ∈ C1(R,B (H)). Then, there is an evolution family {Ut,s}t≥s ⊂
B (H) solving on Dom (L) the non–autonomous evolution equations

∀t > s : ∂tUt,s = iLtUt,s , ∂sUt,s = −iUt,sLs , Us,s := 1.

Moreover, for any t ≥ s, Ut,s possesses a bounded inverse U−1
t,s . If {Wt}t∈R is

periodic with period T > 0, then

∀t ≥ s, k ∈ Z : Ut,s = Ut+kT,s+kT .

Proof. The existence of the evolution family {Ut,s}t≥s solving on Dom (L)
the non–autonomous evolution equation stated in the lemma is a direct
consequence of Theorem 5.11. To prove that Ut,s has a bounded inverse
U−1

t,s , we note that it suffices to prove that U−1
t,s ∈ B (H) exists for small
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times |t− s| > 0, by the cocycle property. To this end, we use Corollary
5.12 together with the observation that ei(t−s)L is unitary and the bound∥∥∥∥∫ t

s
Ut,rVrei(r−s)Ldr

∥∥∥∥ ≤ 1
2

for sufficiently small |t− s| > 0. Therefore, the Neumann series explicitly
gives U−1

t,s ∈ B (H). If {Wt}t∈R is T–periodic, then {Ut,s}t≥s is also T–
periodic, by Theorem 5.11 (iii). �

Combining this with Theorem 5.1 and Lemma 5.2, we deduce that the
evolution family {Ut,s}t≥s is the unique continuous extension of the two–
parameter family {Tt,s}t≥s to the Hilbert space H:

Proposition 5.5 (Extension of {Tt,s}t≥s–II).
Assume that {Wt}t≥0 ∈ C1(R,V) and {Vt}t≥0 ∈ C1(R,B (H)). Then, the
evolution family of Lemma 5.4 satisfies Ut,sΩ = Ω and

∀t ≥ s, A ∈ V : τt,s (A) = Ut,s AU−1
t,s

In particular, {τt,s}t∈R also extends uniquely to a σ–weakly continuous ∗–auto-
morphism evolution family on M.

Proof. Note first that Ut,sΩ = Ω is a direct consequence of (5.12) and
Lemma 5.4. Using the isometry between O and V , {Tt,s (AΩ)}t≥s ∈
C1([s, ∞),O) for any s ∈ R and every A ∈ Dom (δ), as {τt,s (A)}t≥s ∈
C1([s, ∞), Dom (δ)) with respect to the norm on V , by Propositions 5.1
and 5.13. Computing its derivative with respect to t ≥ 0 by using the
non–autonomous evolution equation of Proposition 5.1 together with (5.6),
(5.2)–(5.3), and (5.10) we obtain that

∂tTt,s (AΩ) = δWt (τt,s (A)) Ω = iLt (Tt,s (AΩ)) (5.13)

for all t > s and A ∈ Dom (δ). Meanwhile, since

∀A ∈ V : ‖AΩ‖ ≤ ‖A‖ = ‖AΩ‖∞ , (5.14)

{Tt,s (AΩ)}t≥s ∈ C1([s, ∞), Dom (L)) with respect to the norm on H and
(5.13) also holds in the norm of H. By Proposition 5.1, it follows that

∀A ∈ Dom (δ) : Ut,s (AΩ) = Tt,s (AΩ) := τt,s (A) Ω. (5.15)

By density, for any A ∈ V , there is a sequence {An}∞
n=1 ⊂ Dom (δ) con-

verging in V to A. We infer from (5.14) that this sequence {An}∞
n=1 also

converges to A in the sense of H. On the one hand, by continuity of Ut,s in
H,

lim
n→∞

Ut,s (AnΩ) = Ut,s (AΩ) .

On the other hand, using (5.15) and the continuity of Tt,s in O, one gets

lim
n→∞

Ut,s (AnΩ) = lim
n→∞

Tt,s (AnΩ) = Tt,s (AΩ) .
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As a consequence, Ut,s|O = Tt,s. In particular, from the uniqueness of the
inverse we obtain U−1

t,s |O = T−1
t,s . We then use (5.7) to deduce that

∀t ≥ s, A ∈ V , x ∈ O : τt,s (A) x = Ut,s AU−1
t,s (x) .

By density of O in H, we arrive at the final assertion of the proposition

∀t ≥ s, A ∈ V : τt,s (A) = Ut,s AU−1
t,s . �

The use of C–Liouvilleans is advantageous because of the presence of only
one evolution operator in the dynamics described by

∀A ∈M : Ut,s AUs,tΩ = Ut,s AΩ.

In particular, it establishes a direct relation to the Lindbladian, which is an
operator defined on the von Neumann algebra M. Observe also that Lt is
not anymore selfadjoint and can thus be dissipative.

Appendix to Chapter 5

In this appendix we gather some standard results for non–autonomous
Cauchy problems for the convenience of the reader. Let X be a Banach
space, and J ⊆ R an interval of X . We refer to [Paz83, Kat93, EN00, Sch04]
as references of the results presented below. Consider the non–autonomous
Cauchy problem (nCP),

(nCP)

{
d
dt u (t) = Atu (t) + f (t) (t ∈ J) ,
u (s) = x,

(5.16)

where {At}t∈R is a family of closed operators on X and f ∈ L1
loc (J, X).

The homogeneous (nCP), where f ≡ 0, is denoted by (nCP)0. We start
with (nCP)0 and focus only on the (nCP)0 of hyperbolic type, where the
At are generators of C0–semigroups. The parabolic (nCP)0 addresses the
case in which At generates an analytic semigroup and much stronger results
on the well–posedness are known in this case. We start with the general
notion of well–posedness.

Definition 5.6 (Well–posedness). The problem (nCP)0 is called well–posed
if there are dense subspaces Ys ⊆ X , with Ys ⊆ Dom (As), ∀s ∈ J,
such that for each x ∈ Ys there is a unique solution u = u (·, s, x) ∈
C1 ([s, ∞) ∩ J, X) of (nCP)0, with u (t) ∈ Yt, ∀t ∈ [s, ∞) ∩ J. Moreover, if
sn → s and xn → x in X , with (sn)n∈N ⊂ J, xn ∈ Ysn , x ∈ Ys, then

û (t, sn, xn)→ û (t, s, x) ,

in X uniformly for t in compact subsets of J. Here, û (t, r, y) := u (t, r, y)
if t ≥ r and û (t, r, y) := y, for t ≤ r and y ∈ Yr.

If a (nCP)0 is well-posed, we define

Ut,sx := u(t, s, x), t ≥ s, t, s ∈ J, x ∈ Ys.

Ut,s naturally extends to X and the extension, denoted by the same
symbol, satisfies:
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1. The cocycle–, or Chapman–Kolmogorov property

∀t ≥ r ≥ s, t, r, s ∈ J : Ut,s = Ut,rUr,s Us,s = 1.

2. Moreover, for t ≥ s, t, s ∈ J, the map

(t, s) 7→ Ut,s

is strongly continuous.

Definition 5.7 (Evolution family).
A family U := {Ut,s}t≥s,t,s∈J ⊂ B(X ) of bounded operators on X is called
evolution family if it satisfies 1. and 2. If (nCP)0 is well–posed, we say that
U solves (nCP)0 or that A(·) generates U .

In particular, we are interested in the non–autonomous evolution equa-
tions for which Ys ≡ Y , where Y is some dense subspace of X ,

∀t > s, x ∈ Y : ∂t {Ut,sx} = At {Ut,sx} , Us,s := 1. (5.17)

The standard results providing well-posedness in this case are due to Kato,
[Kat53, Kat70, Kat73].

Standard sufficient conditions for the existence of an evolution fam-
ily U solving the non–autonomous evolution equation (5.17) includes the
notion of Kato quasi–stability.

Definition 5.8 (Kato quasi-stability).
For t ∈ R, let At be the generator of a C0 semigroup {St (s)}s≥0 ⊂ B(X ).
The family {At}t∈R is called quasi–stable with stability constants µ ∈ R
and M ∈ [1, ∞) if ∥∥∥∥∥ n

∏
j=1

Stj

(
sj
)∥∥∥∥∥ ≤ M exp

(
µ

n

∑
j=1

sj

)

for all sj ≥ 0 with j ∈ {1, · · · , n}, and all reals t1 ≤ ... ≤ tn.

This property is stable w.r.t. bounded perturbations [Paz83, Theorem 2.3]:

Theorem 5.9 (Kato quasi-stability and bounded perturbation).
Let {At}t∈R be a quasi–stable family of generators of C0 semigroups on X with
stability constants ς ∈ R and M ∈ [1, ∞). Then, for any uniformly bounded
family {Bt}t∈R ⊂ B(X ), ‖Bt‖ ≤ K < ∞, {At + Bt}t∈R is quasi–stable family
of generators of C0 semigroups on X with stability constants µ′ = µ + MK and
M′ = M.

A family {At}t∈R of generators of a C0 semigroup generates an approxi-
mating evolution family defined as follows:

Definition 5.10 (Approximating evolution family).
For any family {At}t∈[0,T] of generators of C0 semigroups, {St (s)}s≥0 and
all n ∈ N, a two parameter family {Ut,s,n}t≥s≥0 is called approximating
evolution family iff

Ut,s,n := Stj,n (t− s) ,
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for all tj,n ≤ s ≤ t ≤ tj+1,n and

Ut,s,n := Stk,n (t− tk,n)

[
k−1

∏
j=l+1

Stj,n

(
T
n

)]
Stl,n (tl,n − s)

for all k ≥ l, tl,n ≤ s ≤ tl+1,n, tk,n ≤ s ≤ tk+1,n. Here, tj,n := (j/n) T for
j ∈ {0, · · · , n}.

Kato provided in [Kat53] conditions under which the approximating evo-
lution family {Ut,s,n}t≥s≥0 converges strongly to an evolution family, which
is a solution of (nCP)0, [Paz83, Theorem 4.8].

Theorem 5.11 (Well-posedness of (nCP)0).
Let {At}t∈R be a quasi–stable family of generators of C0 semigroups on X with
stability constants µ ∈ R and M ∈ [1, ∞). If Dom (At) = Y ⊂ X and, for all
x ∈ Y , {Atx}t∈R ∈ C1 (R,X ), then there is an evolution family U satisfying
the following properties:
(i) ‖Ut,s‖ ≤ Meµ(t−s) and Ut,sY ⊂ Y for all t ≥ s.
(ii) For all T ≥ t ≥ s, Ut,sY ⊂ Y and for any x ∈ Y the map (t, s) 7→ Ut,sx ∈
(Y , ‖·‖Y ) is continuous, where ‖·‖Y is the graph norm of A0.
(iii) {Ut,s,n}t≥s converges strongly to {Ut,s}t≥s.
(iv) It is the unique evolution family solving (nCP)0, i.e., Us,s := 1 and, for all
x ∈ Y ,

∀t ≥ s : ∂+
t Ut,sx = AtUt,sx .

∀t > s : ∂sUt,sx = −AsUt,sx .

Corollary 5.12.
Let At := A + Bt with A being the generator of a C0 semigroup on X and
{Bt}t∈R ∈ C1 (R,B(X )). Then, there is a unique evolution family {Ut,s}t≥s ⊂
B(X ) satisfying (i)–(iv) of Theorem 5.11 and

∀t ≥ s : Ut,s = e(t−s)A +
∫ t

s
Ut,rBre(r−s)Adr

in the strong sense.

We close with a result for the in-homogenous (nCP), where f 6= 0. In this
case the following theorem holds, [Paz83, Theorem 5.3].

Theorem 5.13 (Well-posedness of (nCP)).
Assume f ∈ C1 (R,X ) and the assumption of Theorem 5.11. Then, the (nCP)
(5.16) has a unique C1–solution equal to

u (t) = Ut,sx +
∫ t

s
Ut,r f (r) dr ,

where {Ut,s}t≥s ⊂ B(X ) is the evolution family satisfying (i)–(iv) of Theorem
5.11.
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Chapter 6
Towards a Dynamical

Renormalisation Group

V. Bach, J. S. Møller, M. Westrich

Abstract

In this paper we provide a detailed analysis of the long time dy-
namics of a spin boson model, restricted to low field energies. Assum-
ing dilation analytic coupling functions, an effective generator for the
atomic- and low energy photon degrees of freedom is derived. The
effective generator is obtained as the unique solution of an implicit
operator equation. We provide quantitative bounds on the approxi-
mation of the full dynamics by the effective dynamics. In the weak
coupling limit regime, our result reproduces the well known results
by Davies.

6.1 Introduction

We study the long time dynamics of an open quantum system consisting of
a two–level atom weakly coupled to the environment, which is modelled
by a massless boson field at zero temperature. Assuming dilation analytic-
ity of the Hamiltonian, we derive an effective generator for the evolution of
the atomic- and low energy photon degrees of freedom and provide quan-
titative errors in the coupling constant. In the weak coupling limit our re-
sult reproduces the well known results of Davies, [Dav74, Dav75, Dav76],
for our model. We neither require Fermi golden rule nor an infrared reg-
ularisation. For the type of model we investigate, it is expected that the
weak coupling limit in the sense of Davies cannot be extended to times be-
yond the van Hove timescale. Our paper is a first step to develop a renor-
malisation group analysis that provides for a given timescale τn = tgn+ε,
for a fixed ε ∈ [0, 1), n ∈ N, n ≥ 2, an effective generator Hat + T

(n)
g (Hf)

for the evolution of atomic- and low energy field degrees of freedom, as
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well as quantitative error bounds. The effective operator is obtained as the
unique solution of an implicit operator equation.

The general strategy of this paper is to restrict to low momentum
modes the complex deformed Hamiltonian dynamics of the full system
and to analyse this object using the inverse (vector–valued) Laplace trans-
form. The inverse Laplace transform expresses C0–semigroups in terms
of the resolvent of their generator. In spectral regions far from the un-
perturbed eigenstates, we obtain exponentially decaying error terms. For
regions close to the unperturbed eigenvalues, we analyse the restricted
resolvent by means of the Feshbach map. Estimates on the distance of
a given contour to the spectrum of the unperturbed Hamiltonian allow
to reduce the analysis to an “effective” Feshbach map. The residue theo-
rem yields the effective dynamics, and its generator is determined by the
“zeros” of the effective Feshbach map.

Our work is inspired by works on resonances over the past 30 years.
Let

Hg := H0 + gW,

where H0 is assumed to be selfadjoint, W is a relatively H0–bounded per-
turbation of H0. Then, assume that λ is an eigenvalue of H0 with finite
multiplicity. It is known, that excited eigenvalues may be unstable if a per-
turbation is switched on and it is possible to estimate the decay of matrix
elements,

(ψ, f (Hg)e−itHg ψ) =
(

1 +O
(

g2
))

e−itλ(g) + b (t, g) , Im (λ (g)) > 0,

|b (t, g)| ≤ o
(

g2
)

(1 + t)−n , n ∈ N, t ≥ 0, (6.1)

provided Fermi’s golden rule holds and the resolvent,
(

Hg − z
)−1, is suffi-

ciently regular with respect to some auxiliary operator A. For our model,
the resolvent is even analytic in a strip around the real axis with respect
to the conjugation with the group generated by A. In the context of reg-
ular perturbation theory there are strong results on the decay rate of the
resonances. These results usually assume a deformation analyticity of the
Hamiltonian Hg, in order to separate the essential from the discrete spec-
trum. The first result which provided rigorous estimates on the decay law
of resonances states is due to Hunziker, [Hun90]. He proves a relation of
the type (6.1), but the error term b (t, g) decays as (1 + t)−n for any n ∈ N.
For finite regularity, i.e. if finitely many commutators of

(
Hg − z

)−1 and A
exist, Cattaneo, Graf and Hunziker proved in [CGH06] a similar result as
Hunziker, but the decay of b (t, g) is then related to the degree of regular-
ity and does not hold for any n ∈ N any longer. Both results, [Hun90] and
[CGH06], depend on the function f (·), which localises the group e−itHg

to a small interval around the eigenvalue λ. For a different choice of f ,
namely assuming that f is of Gevrey class, Rama and Klein proved re-
cently, [KR10], that for an abstract dilation analytic model that b (t, g) is
almost exponentially decaying,

|b (t, g)| ≤ O
(

g2
)

e−Ct
1
a , C ≤ ac

1
a ,
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for any a > 1, c > 0 and g sufficiently small. They also point out, that for
semibounded Hamiltonians Hg, the absolute value of the matrix element
(6.1) cannot be exponentially decaying. Namely, if (6.1) is exponentially
bounded, i.e. ∣∣∣(ψ, f (Hg)e−itHg ψ)

∣∣∣ ≤ Ce−C′t, C, C′ > 0,

a Payley–Wiener argument implies ψ = 0. Finally, in the case of finite
temperature, Jaksic and Pillet used in [JP95, JP96a, JP96b] a complex de-
formation technique, a complex translation, which allows to deform Li-
ouvilleans such that the discrete spectrum is separated from the essential
spectrum, even if the reservoir arises from a massless field. In this vein, the
problem becomes tractable by regular perturbation theory, whereas this is
not possible for the generator of dilations.

In the context of singular perturbation theory, more specifically in
massless quantum field theoretic models, resonances have first been anal-
ysed by Bach, Fröhlich and Sigal, [BFS98a]. Their analysis is based on the
isospectral Feshbach map. The Feshbach map has as an intrinsic feature a
reduction of state space. An iteration based on an repeated decimation of
the state space leads to the construction of a renormalisation group analysis,
which provides an algorithm to localise the resonance to arbitrary preci-
sion, [BFS98b, BCFS03]. The first result to determine the decay rate of (6.1)
for dilation analytic, massless, quantum field theoretic models has been
established in [BFS99], using a single step Feshbach map analysis. The re-
sult proved there is of the same type as the result by Hunziker, [Hun90]. In
a more recent paper Hasler, Herbst and Huber proved also a lower bound
on the decay rate of (6.1). Their analysis is also based on the Feshbach
map, see [HHH08].

For open quantum systems one is interested in finding an effective
evolution for the entire “small system”, i.e. the atom. Assume that H0
has N eigenvalues with finite multiplicity, E`, with spectral projections P`,
` = 1, . . . , N. Moreover let P`WP` = 0, for ` = 1, . . . , N. If

M` := P`WP`

(
(E` + i0) P` − H0P`

)−1 P`WP`

:= lim
ε↘0

P`WP`

(
(E` + iε) P` − H0P`

)−1 P`WP`,

exists for ` = 1, . . . , N, we define the level shift operator (LSO), as

M := −i
N

∑
`=1

P`WP`

(
(E` + i0) P` − H0P`

)−1 P`WP`. (6.2)

There are several notions of Fermi golden rule (FGR), depending on the
problem one has in mind. Following [DF06], there are three types of FGR
involving the LSO:

1. Analytic Fermi golden rule: H0P + g2M, P := ∑N
`=1 P`, predicts up

to an error o
(

g2) the location and multiplicity of the resonances and
eigenvalues of Hg in a neighbourhood of the spectrum of H0, σ (H0),
for small |g|.
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2. Spectral Fermi golden rule: The intersection

σ
(

H0P + g2M
)
∩R,

predicts the possible location of eigenvalues of Hg, for small |g| 6= 0.

3. Dynamical Fermi golden rule: The semigroup{
exp

(
−it

(
H0P + g2M

))}
t≥0

,

describes approximately the reduced dynamics PX (t) P, for small
|g|.

The dynamical Fermi golden rule has first been rigorously established by
Davies, [Dav74, Dav75, Dav76] in form of a weak coupling limit (WCL).
Davies proved under mild assumptions

lim
g→0

eiτg−2 H0PPe−iτg−2 Hg P = e−iτM. (6.3)

Note, that the time has been subject to a rescaling, i.e. the weak coupling
limit refers to a timescale where

τ = tg2, (6.4)

which is sometimes referred to as the van Hove timescale. Results beyond
this timescale are scarce, but see [Kos00] for the analysis of an explicitly
solvable model.

Finally, in the context of positive temperature, Jaksic and Pillet proved,
using translation analyticity facilitated by a novel method now usually re-
ferred to as Jaksic–Pillet glueing,

(Ψ, e−itHg Φ) = (AΨ, e−it(Hat+∑∞
n=1 g2n M(2n))BΦ) +O

(
e−ct) ,

for some operators A, B and t → +∞, see [JP96a, Thm. 2.5]. Due to fun-
damental obstacles, this method cannot extended to the zero temperature
case. In this case, one expects that the WCL cannot be extended to the
original timescale, but one rather has to find “higher order” LSO’s M(n),
for a given timescale τn = tgn, ε ∈ [0, 1), n ∈ N, n ≥ 2. That is the eventual
goal of our project.

This paper is organised as follows. In Section 6.1.1 we define the model
and the spectral projections used in our analysis. Then, we introduce
the complex dilation, provide an estimate on the numerical range of the
complex dilated model and state our main result in Section 6.1.2. The
proof if the main theorem is the content of Section 6.2 and finally in Section
6.3 we present heuristic ideas for an iteration of our analysis.

6.1.1 Definition of the model

We follow the convention of the literature, which may be found in [BCFS03].
To keep the analysis as simple as possible, we restrict ourselves to a 2-level
atom described by the Hamiltonian

Hat = H∗at ∈ B (Hat) . (6.5)
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The corresponding Hilbert space is Hat := C2. The electromagnetic field
will be simplified by neglecting the polarisation of the photons. The state
space is then the bosonic Fock space

F :=
∞⊕

n=0
Snh�n, (6.6)

with
h := L2(R3, d3k), (6.7)

the orthogonal projection onto the totally symmetric n-particle wave func-
tions Sn and S0h

�0 = C · {Ω}. Ω is the vacuum vector of F . The scalar
product in F is defined as

(Ψ, Φ) :=
∞

∑
n=0

∫ n

∏
j=1

d3k jψn(k1, . . . , kn)ϕn(k1, . . . , kn), (6.8)

∀Ψ = (ψn)n∈N, Φ = (ϕ)n∈N ∈ F . Clearly, any element in F may be
identified by such sequences. Denote by Ffin the subspace of elements
Ψ ∈ F corresponding to finite sequences Ψ = (ψn)n∈N. Then, for ϕ ∈ h
we define a(ϕ)Ψ =: Φ as Φ = (φn), with

φn(k1, . . . , kn) :=
√

n + 1
∫

d3kϕ(k)φn+1(k, k1, . . . , kn) (6.9)

and
a(ϕ)Ω = 0. (6.10)

The operator a(ϕ) is closable and we denote its closure with the same
symbol and call it the annihilation operator. The adjoint of a(ϕ) with respect
to the scalar product, a∗(ϕ), is called the creation operator. Note, that a(ϕ)
is anti-linear in ϕ and a∗(ϕ) is linear, so that the symbolic notation

a(ϕ) =
∫

d3k ϕ(k) a(k), a∗(ϕ) =
∫

d3k ϕ(k) a∗(k)

becomes meaningful if a(k), a∗(k) are interpreted as unbounded operator-
valued distributions. They obey the canonical commutation relations (CCR)

[a](k), a](k′)] = 0, [a(k), a∗(k′)] = δ(k− k′). (6.11)

Let ω(k) := |k|, k ∈ R3. Then, we define HfΨ = (φn)n∈N, with

φn(k1, . . . , kn) :=

(
n

∑
j=1

ω(k j)

)
ψn(k1, . . . , kn), ∀Ψ ∈ F0. (6.12)

The closure of Hf is self-adjoint and its spectrum consists of the positive
real half–line with the simple eigenvalue 0,

σ(Hf) = R>0 ∪ {0}. (6.13)

This gives the representation

Hf =
∫

d3k a∗(k) ω(k) a(k), (6.14)
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where the right hand side is to be understood as a weak integral. The state
space of the combined system is

H := Hat �F . (6.15)

On the domain Hat �D (Hf) one observes H0 := Hat � 1 + 1 � H f to be
a selfadjoint operator, since Hat is finite dimensional. Next, we define the
coupled system. The (Segal) field operator is defined as

φ (gG) := g
∫
R3

d3k {G(k) a∗(k) + G∗(k) a(k)}, (6.16)

with G ∈ L2 (R3,C2×2) and g ≥ 0, on the dense domain Hat �Ffin. Since
φ (gG) is symmetric, it is closable. The operator φ (gG) is infinitesimally
H0-bounded on Hat � (D (Hf) ∩ Ffin) and thus

Hg := H0 + φ (gG) (6.17)

is selfadjoint on the domain of H0 for any choice of g. As a short hand we
introduce the notation

a(gG) := g
∫
R3

d3k G(k) a(k) , a∗(gG) := g
∫
R3

d3k G(k) a∗(k). (6.18)

We use the following spectral projections in order to reduce the field de-
grees of freedom. Let

Pρ := 1 [Hf < ρ] , P⊥ρ := 1− Pρ, (6.19)

P := 1 � 1 [Hf < ρ] , P := 1− P. (6.20)

It will be useful to also define the following projections on the range of P,
i.e.

Pat,` := 1 [Hat = E`] � Pρ, Pat,` := 1PH − Pat,` = 1 [Hat = E`]
⊥ � Pρ. (6.21)

6.1.2 Spectral deformation and main result

Let f ∈ h and define the unitary strongly continuous one–parameter group
of dilations, u(·), on the space h by (u(α) f ) (r, Ω) := e−

3
2 α f (e−αr, Ω), us-

ing polar coordinates, (r, Ω). Its second quantised analogue is denoted by
U(α) := Γ (u(α)). We will use the convenient Hilbert space hω consisting

of all f ∈ h such that ‖ f ‖2
hω

:= ‖ f ‖2 +
∥∥∥ω−1/2 f

∥∥∥2
< ∞. Moreover, for

matrix–valued functions, like Gα, we use the convention that the norm is
the operator norm on B

(
C2) and we write again ‖G‖hω

if G is matrix–
valued.

Condition 6.1 (Coupling functions).
Let ξ0 ∈

(
0, π

2
)

and G ∈ L2 (R3, B (Hat)
)
. The map R 3 α 7→ Gα := u(α)G

extends to an analytic function in the strip I (ξ0) := R+ i(−ξ0, ξ0) and

sup
|θ|<ξ0

‖Gα+iθ‖hω
< ∞. (6.22)



6.1. Introduction 135

Moreover,

G (k) = G (|k|) , (G (k))`` = 0, ∀k ∈ R3, ` = 0, 1. (6.23)

There is a c6.1 ∈ R+, such that

‖G (k)‖ ≤ c6.1√
|k|

, ∀k ∈ R3. (6.24)

Finally, assume that ‖G (k)‖ → 0 sufficiently rapid, as |k| → ∞. We refer
to the sufficiently fast convergence ‖G (k)‖ → 0 as the ultraviolet cutoff.

For any bounded operator A ∈ B (H), we write

Aα := U(α)AU∗(α), α ∈ R. (6.25)

U leaves the domain of H0, D (H0), invariant and one easily computes

H0,α = Hat + e−α Hf, ∀α ∈ R. (6.26)

For any z ∈ C with |Argπ (z) | > ξ0, the resolvent, Rα(z) := (z− H0,α)
−1

extends to an analytic function of α in the strip I(ξ0), as a consequence of
the first resolvent identity. Arga denotes the argument function with cut
at a ∈ (−π, π]. For any α ∈ C,

H0,α = Hat + e−αHf,

is a closed operator on Hat �D (Hf), as Hat is finite dimensional. From
the selfadjointness of Hat and Hf follows that the adjoint of H0,α is a closed
operator on Hat �D (Hf) and

H∗0,α = Hat + e−ᾱHf. (6.27)

Since [
H0,α, H∗0,α

]
= 0

as a quadratic form on Hat �D (Hf), it follows that H0,α is a normal oper-
ator. Moreover, one may observe

σ (H0,α) = σ (Hat) + e−ασ (Hf) , ∀α ∈ C. (6.28)

Pick now ξ ∈ I (ξ0). Then, since H0,ξ is normal it follows from (6.28) that

∥∥Rξ (z)
∥∥ ≤ 1

dist
(
z, {E0, E1}+ e−ξR+

0
) . (6.29)

Hille–Yosida’s theorem implies that H0,ξ generates a contraction semi-
group and as one easily observes also an analytic semigroup. Next we
shall define the “analytic continuation” of the dilated field operator, φ (Gα),
α ∈ R+. Let ξ ∈ I (ξ0) be as above. Then, on the domain Hat � Ffin we
define

φ̌
(
Gξ

)
:=

1√
2

(
a
(

Gξ̄

)
+ a† (Gξ

))
. (6.30)
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Note, that we used ξ̄ for the annihilation operator, a (·), since it is anti-
linear in the argument. Hence there is a Cξ ∈ R+, depending on ξ,

∥∥Gξ

∥∥
hω

,∥∥∥Gξ̄

∥∥∥
hω

, such that ∥∥∥φ̌
(
Gξ

)
(Hf + 1)−

1
2

∥∥∥ ≤ Cξ . (6.31)

On the domain Hat �D (Hf) we define the closed operator

Hg,ξ := H0,ξ + φ̌
(

gGξ

)
. (6.32)

As φ̌
(
Gξ

)
is infinitesimally Hf bounded and H0,ξ generates an analytic

semigroup, one may observe by [Kat76, Thm. IX.2.4] that Hg,ξ generates
also an analytic semigroup. Moreover,

{
Hg,ξ

}
ξ∈I(ξ0)

is an analytic family
of type A. For later reference, we introduce the constants

η0 := e−Re(ξ) sin (Im (ξ)) , η1 := e−Re(ξ) cos (Im (ξ)) . (6.33)

Proposition 6.2 (Numerical range of Hg,ξ). For any g ∈ R, and M > 1, the
numerical range of Hg,ξ , denoted by NumRan

(
Hg,ξ

)
, is contained in

NumRan
(

Hg,ξ
)
⊆ NR

(
Hg,ξ

)
:= [E0, E1] + e−ξK M

M−1
+ D

(∣∣∣eξ
∣∣∣ c2g2M

)
,

(6.34)
with

Kβ :=
{

reiα
∣∣∣ r ≥ 0, α ∈ [−β, β]

}
(6.35)

and
D (r) := { z ∈ C| |z| ≤ r} . (6.36)

For g = 0 one has

NumRan
(

H0,ξ
)
⊆ [E0, E1] + e−ξ [0, ∞) . (6.37)

Proof. Let ε > 0. Note first that∥∥∥a
(

Gξ̄

)
(Hf + ε)−

1
2

∥∥∥ ≤ ∥∥∥ω−
1
2 Gξ̄

∥∥∥
L2(R3,B(Hat))

. (6.38)

This implies∥∥∥(Hf + ε)−
1
2 φ̌
(
Gξ

)
(Hf + ε)−

1
2

∥∥∥ ≤ 2ε−
1
2

∥∥∥ω−
1
2 Gξ̄

∥∥∥
L2(R3,B(Hat))

. (6.39)

From now on we write ‖·‖L2 for ‖·‖L2(R3,B(Hat)) and abbreviate c :=

2
∥∥∥ω−

1
2 Gξ̄

∥∥∥
L2

. Hence, for all ψ ∈ Hat �D
(

H
1
2
f

)
we obtain

∣∣(ψ, φ̌
(

gGξ

)
ψ
)∣∣ ≤ gc√

ε
(ψ, (Hf + ε) ψ)

=
gc√

ε
(ψ, Hfψ) + gε

1
2 c ‖ψ‖2 . (6.40)
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Then, for all ψ ∈ Hat �D
(

H
1
2
f

)
, ‖ψ‖ = 1, we compute for the full Hamil-

tonian(
ψ, Hg,ξ ψ

)
= (ψ, Hatψ) + e−ξ (1 + ζ (ψ)) (ψ, Hfψ) + ζ̃ (ψ) , (6.41)

where

ζ (ψ) := eξ

(
ψ, φ̌

(
gGξ

)
ψ
)

(ψ, (Hf + ε) ψ)
, ζ̃ (ψ) := ρ

(
ψ, φ̌

(
gGξ

)
ψ
)

(ψ, (Hf + ε) ψ)
. (6.42)

Note that
|ζ (ψ)| ≤

∣∣∣eξ
∣∣∣ cgε−

1
2 ,

∣∣∣ζ̃ (ψ)
∣∣∣ ≤ cgε

1
2 . (6.43)

Moreover, choose ε :=
(∣∣eξ

∣∣ cMg
)2, for M >

(
π
3 − 1

)−1,

|Arg (1 + ζ (ψ))| =
∣∣∣∣arctan

(
Im (ζ)

1 + Re (ζ)

)∣∣∣∣ ≤ M
M− 1

. (6.44)

Putting the estimates (6.41), (6.43) and (6.44) together, we arrive at (6.34).
The case g = 0 is easily obtained. �

Remark 6.3. Note that in Proposition 6.2 for M >
(

π
3 − 1

)−1 the opening
angle of K M

M−1
is less than π/3, but that opening angle of K M

M−1
is always

less than 1. Since Hg,ξ is a normal operator for all g ∈ R, it follows
from Proposition 6.2 and Hille–Yosida’s theorem, that Hg,ξ generates a C0–
semigroup. We denote the semigroup generated by Hg,ξ with {X (t)}t∈R+

0
if g 6= 0 and with {Y (t)}t∈R+

0
for g = 0. Proposition 6.2 provides also

exponential bounds on the semigroups {X (t)}t∈R+
0

, {Y (t)}t∈R+
0

, namely

‖X (t)‖ ≤ e2|eξ |c2g2 Mt, ‖Y (t)‖ ≤ 1, (6.45)

for all t ∈ R+
0 .

We are now prepared to state our main result.

Theorem 6.4. Let
Xg,ξ (t) := e−itHg,ξ

and ρ = gµ, µ ∈ (0, 2), and pick ν ∈
(

0, min
(

1, µ−1 − 1
2

))
. There is a

bounded operator,

Ξg,ξ (Hf) := ∑
`=0,1

z` (Hf) Pat,` ∈ B (PH)

and bounded operators z` (Hf) ∈ B (Pat,`H), such that

E` + e−ξr− z`

(
H f

)
− g2Λ̃11

(
r, z`

(
H f

))
= 0, ` = 0, 1 (6.46)

where for ` = 0, 1, r ∈ [0, ρ]

Λ̃`` (r, z) :=
∞∫

0

dk
e−3ξ k2

∣∣∣(G)(1−`)`
(
e−ξk

)∣∣∣2
E1−` + e−ξ (r + k)− z

. (6.47)
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For any t ∈ R+, ∥∥∥1 [Hf < ρ] Xg,ξ (t) 1 [Hf < ρ]− e−itΞg,ξ (Hf)
∥∥∥

≤ C
(

e−tcδ + ec1g2ρνt
(

ρ
1−ν

2 + g
1
2 ρ−

1
2 (ν+ 1

2 )
))

,

for some C, c0, c1, cδ ∈ R+, which are independent of g. Moreover, for ` = 0, 1,
and r ∈ [0, ρ],

Ξg,ξ (r) Pat,` =
(

E` + e−ξr− g2Λ̃`` (0, E`)
)

Pat,` +O
(

g2ρ
)

.

Remark 6.5. (i) It is possible to relate Λ̃`` (0, E`) to objects which are ξ
independent. For the ground state, ` = 0, this yields a correction in sec-
ond order of g with vanishing imaginary part = 0. For the excited state,
` = 1, the obtained correction has a negative imaginary part, provided
Fermi Golden Rule holds.
(ii) To our knowledge, the evolution of the ground state has previously
not been addressed in singular perturbation theory. Note, that the error
contains an exponentially growing factor, ec1g2ρνt, which is due to contri-
butions of the ground state. This exponential growth is however of a mild
type, as it becomes constant on the van Hove timescale, where tg2 = const.
as g→ 0.
(iii) The optimal choice of µ depends on the value of t. If one chooses

µ = 2
3 , then ρ

1−ν
2 = g

1
2 ρ−

1
2 (ν+ 1

2 ).
(iv) Our result reproduces Davies results in the weak coupling limit, but
also provides quantitative bounds.

6.2 Effective Dynamics on the van Hove Timescale

The present section is devoted to a quantitative analysis of second order
perturbation theory. There are two recurrent quantities which are impor-
tant in our analysis.

Definition 6.6 (Control quantities). Define for any ε, ε′ ≥ 0 the sets

A(`)
ε,ε′ := Bε (E`) + e−ξ

[
ε′, ∞

)
, ` = 0, 1 (6.48)

and
Aε,ε′ := A(0)

ε,ε′ ∪A
(1)
ε,ε′ . (6.49)

For any z ∈ C\
(
A0,0 ∩Ac

0,ρ

)
, Ac

0,ρ := C\A0,ρ, define

dρ (z) :=
∥∥∥∥ P

H0 − z

∥∥∥∥ . (6.50)

Moreover, for any z ∈ A0,ε set

zε (z) :=
∥∥∥∥(Hf + ρ)

1
2

(
1 [Hf ≥ ε]

H0 − z

)
(Hf + ρ)

1
2

∥∥∥∥ , (6.51)

provided the right hand side is finite.
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Remark 6.7. We remark, that the notation of (6.51) does not explicitly refer

to its ρ–dependence due to the factors (Hf + ρ)
1
2 . This is done to ease the

notation in the upcoming estimates.

We start with the identification of the leading contribution to the dynamics
generated by (6.32). From now on, we drop the ξ–dependence in Hg,ξ and
H0,ξ .

Proposition 6.8 (Effective Feshbach operator – I). Let ε ∈ (0, ρ). For any
z ∈ Aρ,ρ define

FP
(

Hg − z
)

= PHgP− zP− g2PWP̄
(

P̄Hg P̄− zP̄
)−1 P̄WP, (6.52)

F̃P (z) := PHgP− zP− g2Λρ (Hf, z) , (6.53)

with

Λρ (Hf, z) :=
∫
R3

d3k G∗ξ̄ (k)
(

Hat + e−ξ (Hf + ω (k))− z
)−1

(6.54)

×Gξ (k) 1 [Hf + ω (k) ≥ ρ] P.

The operators F̃P (z) and FP
(

Hg − z
)

exist and are bounded. Set

c6.8 := max
|ξ|≤|ξ0|

{∥∥∥ω−
1
2 Gξ̄

∥∥∥
L2(R3,C)

,
∥∥∥ω−

1
2 Gξ

∥∥∥
L2(R3,C)

}
< ∞. (6.55)

If

c6.8zρ (z) g <
1
2
√

ρ, (6.56)

then there is a C ∈ R+, such that

∥∥FP
(

Hg − z
)
− F̃P (z)

∥∥ ≤ C
(
zρ (z) g2ρ + zρ (z)2 g3ρ−

1
2

)
. (6.57)

Proof. We estimate the following terms:

A1 (z) := g2PWP̄
((

P̄Hg P̄− zP̄
)−1 − (H0P̄− zP̄)−1

)
P̄WP, (6.58)

A2 (z) := g2
∫

Bρ(0)×Bρ(0)

d3k1d3k2 1 [Hf + ω (k1) + ω (k2) ≥ ρ]

Pa∗ (k2) G∗ξ̄ (k1)
(

Hat + e−ξ (Hf + ω (k1) + ω (k2))− z
)−1

Gξ (k2) a (k1) P. (6.59)
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Observe that a Neumann series expansion and (6.56) yield

‖A1 (z)‖ ≤
∞

∑
n=2

∥∥PW (R̄0 (z) gW)n P
∥∥

≤ 2ρ
∞

∑
n=2

gn+1
∥∥∥(Hf + ρ)−

1
2 W (Hf + ρ)−

1
2

∥∥∥n+1

·
∥∥∥(Hf + ρ)

1
2 R̄0 (z) (Hf + ρ)

1
2

∥∥∥n

≤ 2zρ (z)2 ρ

(
c6.8g
√

ρ

)3 ∞

∑
n=0

(
c6.8zρ (z) g
√

ρ

)

≤ 2ρ

zρ (z)

(
c6.8zρ (z) g
√

ρ

)3 1

1− cξzρ(z)g√
ρ

≤ 4ρ

zρ (z)

(
c6.8zρ (z) g
√

ρ

)3

= 4c3
6.8zρ (z)2 ρ−

1
2 g3, (6.60)

where R̄0 (z) := (H0 − z)−1 P̄. Moreover, let ψ1, ψ2 ∈ H, with ‖ψ1‖ =
‖ψ2‖ = 1. Then,

|(ψ2, A2 (z) ψ1)|

≤ 2g2
∫

Bρ(0)×Bρ(0)
d3k1d3k2

∥∥G∗ξ̄ (k1)
∥∥∥∥Gξ (k2)

∥∥
·
∥∥∥∥∥ (Hf + ω (k1) + ω (k2) + ρ) 1 [Hf + ω (k1) + ω (k1) ≥ ρ](

Hat + e−ξ (Hf + ω (k1) + ω (k2))− z
) ∥∥∥∥∥

·
2

∏
j=1

∥∥∥(Hf + ω (k1) + ω (k2) + ρ)−
1
2 a
(
k j
)

Pψj

∥∥∥
≤ 2zρ (z) g2

∫
Bρ(0)×Bρ(0)

d3k1d3k2

∥∥∥G∗ξ̄ (k1)
∥∥∥ ∥∥Gξ (k2)

∥∥
·

2

∏
j=1

∥∥∥(Hf + ω (k1) + ω (k2) + ρ)−
1
2 a
(
k j
)

Pψj

∥∥∥
≤ 2zρ (z) g2

∫
Bρ(0)×Bρ(0)

d3k1d3k2

∥∥∥∥∥ G∗
ξ̄
(k1)

√
ω (k1)

∥∥∥∥∥
∥∥∥∥ Gξ (k2)√

ω (k2)

∥∥∥∥
·

2

∏
j=1

∥∥∥ω
1
2
(
k j
)

a
(
k j
)
(Hf + ρ)−

1
2 Pψj

∥∥∥
≤ Czρ (z) g2ρ

2

∏
j=1

(
ψj,

Hf
Hf + ρ

ψj

)
≤ Czρ (z) g2ρ, (6.61)

where we used the Cauchy-Schwarz inequality for the third estimate and,
as a consequence of (6.24),∥∥∥ω−

1
2 G∗ξ̄ (k1)

∥∥∥
L2(Bρ(0))

,
∥∥∥ω−

1
2 Gξ

∥∥∥
L2(Bρ(0))

≤ Cρ.
�
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In the following we use the inverse Laplace transform to determine the
effective evolution on the van Hove timescale of

X (t) =
1

2πi
lim

N→∞

N∫
−N

dx e−i(x+ic)tP
(

Hg − (x + ic)
)−1 P, (6.62)

where c ∈ R+ = (0, ∞) is chosen sufficiently large. The integral is under-
stood as a strong integral in H. We intend to deform the contour of the
integral above appropriately in several spectral regions. Let Γ be a curve
in the resolvent set of Hg and define

∀t ∈ R+ : XΓ (t) :=
1

2πi

∫
Γ

dz e−iztP
(

Hg − z
)−1 P, (6.63)

provided the integral exists in norm. Note, that this implies restrictions on
the possible choices of Γ. Observe that for any c′ ∈ (−∞, 0] ∪ {−∞},

lim
N→∞

c∫
c′

dy e−i(±N+iy)tP
(

Hg − (±N + iy)
)−1 P = 0.

Therefore, and by the analyticity of the integrand, we may always bend
the domain of integration in (6.62) far from the spectral points E0, E1 to
the lower half plane. Next we define a family of admissible paths in the
complex plane, to which the domain (6.62) will be deformed, see also
Figure 6.1.

Definition 6.9 (The contour Γ). Let 4δ := E1 − E0, ρ = gµ, µ ∈ (0, 2),
pick ν ∈

(
0, min

(
1, µ−1 − 1

2

))
and c` ∈ R+, ` = 0, 1. A curve Γ ⊂ C,

consisting of pieces Γj for j = le, 0, m, 1, ri, such that

Γ = Γle ∪ Γ0 ∪ Γm ∪ Γ1 ∪ Γri (6.64)

and
Γ ∩A0,0 = ∅, (6.65)

is called admissible iff the following requirements are met. There are inter-
vals

J0 = [a0, b0] , J1 = [a1, b1] , Jle = (−∞, 0] , Jm = [0, 1] , Jri = [0, ∞)

such that γj ∈ C1 (Jj, Γj
)
, is a continuously differentiable parametrisation

of Γj for j = le, 0, m, 1, ri. Moreover:

1. γle (0) = E0 − δe
i
2 Im(ξ) and

γle (x) = γle (0) + xe
i
2 Im(ξ). (6.66)

2. γ0 (a0) = γle (0), γ0 (b0) = E0 + δe−
i
2 Im(ξ) and

Im (γ0 (x)) := c0g2ρν, (6.67)

if

x ∈ γ−1
0

({
z ∈ Γ0|Re (z) ∈

[
E0 −

δ

4
, E0 +

δ

4

]})
, (6.68)
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E0

Γm

E1

Γ

Re(

Im(

z)

z)

Im(ξ)

Γ1Γ0

Im(ξ)

Γle ri

Figure 6.1: The contour Γ.

3. ∀x ∈ [0, 1],
γm (x) := xγ0 (b0) + (1− x) γ1 (a1) (6.69)

4. γ1 (a1) = E1 − δe
i
2 Im(ξ), γ1 (b1) = E1 + δe−

i
2 Im(ξ) and

Im (γ1 (x)) := c1g2ρν, (6.70)

if

x ∈ γ−1
1

({
z ∈ Γ1|Re (z) ∈

[
E1 −

δ

4
, E1 +

δ

4

]})
, (6.71)

5. γri (0) = E1 + δe−
i
2 Im(ξ),

γri (x) := γri (0) + xe−
i
2 Im(ξ). (6.72)

For later reference, we introduce

cδ := δ

∣∣∣∣sin
(

Im
(

ξ

2

))∣∣∣∣ > 0. (6.73)

Lemma 6.10 (Bounds for zε, dρ). Let ε ≥ 0. For any z ∈ C\A0,ε holds

zε (z) ≤
∣∣∣eξ
∣∣∣
1 + max

`=0,1

∣∣e−ξρ + E` − z
∣∣

dist
(

z,A(`)
0,ε

)
 . (6.74)

If ε = 0 and z ∈ Γle ∪ Γm ∪ Γri, then there are cΓlmr , CΓlmr ∈ R+ with

dist (z,A0,0) ≥ CΓlmr

(
1 + |z|2

) 1
2 (6.75)

dρ (z)−1 ≥ cΓlmr

(
1 + |z|2

) 1
2 (6.76)

and in particular there is a C6.10 ∈ R+, such that

z0 (z) ≤ C6.10 < ∞, ∀z ∈ Γl ∪ Γm ∪ Γr. (6.77)

Moreover, if ε = ρ, then there is a C̃6.10 ∈ R+, depending on ξ, such that

∀z ∈ Γ0 ∪ Γ1 : zρ (z) ≤ C̃6.10 < ∞. (6.78)
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Proof. Let ε ≥ 0. For any z ∈ C\A0,ε we have

zε (z) = sup
r≥ε, `=0,1

∣∣∣∣ r + ρ

E` − z + e−ξr

∣∣∣∣
≤

∣∣∣eξ
∣∣∣+ sup

r≥ε, `=0,1

∣∣∣∣ρ− eξ (E` − z)
E` − z + e−ξr

∣∣∣∣
=

∣∣∣eξ
∣∣∣
1 + max

`=0,1

∣∣e−ξ ρ− E` + z
∣∣

dist
(

z,A(`)
0,ε

)
 < ∞. (6.79)

We consider first z ∈ Γri and ε = 0. Observe by (6.72) that

dist (z,A0,0) = |z− E1| sin
(

Im
(

ξ

2

))
. (6.80)

Moreover, since

|z− E1|2 = |z|2 + E2
1 − 2E1Re (z)

≥ |z|2 sin2 (Arg (z)) + E2
1 sin2 (Arg (z)) (6.81)

and

Arg (z) ∈
[

Arg
(

E1 + δe−
i
2 Im(ξ)

)
, Im

(
ξ

2

))
⊂
(

0,
π

2

)
(6.82)

there (6.75) holds for z ∈ Γri and similarly for z ∈ Γle. There is a constant
C > 0, independent of ρ, such that dist (z,A0,0) ≥ C, for any z ∈ Γm. Since
Γm is of finite length, there is a CΓlmr > 0, such that (6.75) holds for any
z ∈ Γle ∪ Γm ∪ Γri. A similar consideration shows (6.76) and one may note
that dist (z,A0,0) ≤ dρ (z)−1.

Observe that

dist
(

z,A(`)
0,ρ

)
=
∣∣∣E` + ρe−ξ − z

∣∣∣ ≥ C (ξ) ρ, (6.83)

for z ∈ Γ`, ` = 0, 1 and a constant C (ξ) > 0, depending on ξ. In combina-
tion with (6.79) and∣∣∣e−ξ ρ− E` + z

∣∣∣ ≤ 2
∣∣∣e−ξ

∣∣∣ ρ +
∣∣∣E` + e−ξ ρ− z

∣∣∣ ,

(6.83) yields (6.78). �

Now we estimate the contributions of the regions far from the singularities
near E0, E1 and we shall assume henceforth that Γ is admissible.

Theorem 6.11 (Decay estimates – regular domains). Let Γlmr := Γle∪Γm∪
Γri. For any t ∈ R+ we have

XΓlmr (t) = XΓl (t) + XΓm (t) + XΓr (t) , (6.84)

where

XΓj (t) :=
1

2πi

∫
Γj

dz e−iztP
(

Hg − z
)−1 P, t ∈ R+, j = l, m, r. (6.85)
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Then, for
2gc6.8C6.10 < ρ

1
2 , (6.86)

there is a C6.11 ∈ R+, such that∥∥XΓlmr (t)
∥∥ ≤ C6.11e−cδt

(
1 + gρ

1
2

)
. (6.87)

Proof. Observe,
XΓlmr (t) = YΓlmr (t) + gB (t) , (6.88)

with
YΓlmr (t) :=

1
2πi

∫
Γlmr

dz e−izt (H0 − z)−1 P (6.89)

and

B (t) :=
1

2πi

∫
Γlmr

dz e−izt (H0 − z)−1 PW
(

Hg − z
)−1 P. (6.90)

Since (H0 − z)−1 P is holomorphic for all z ∈ C with Im (z) < −η0ρ, we
obtain by Cauchy’s theorem,

YΓlmr (t) = YΓ̂1∪Γ̂2
(t) , ∀t ∈ R+, (6.91)

where Γ̂`, ` = 1, 2 are chosen such that Im (z) ≤ −cδδ, cδ > 0 as in (6.73)
and Γ` ∪ Γ̂` are closed curves. Thus∥∥YΓlmr (t)

∥∥ ≤ Ce−cδt. (6.92)

The error term B (t) is estimated as follows. By Lemma 6.10 there is
CΓlmr > 0 a independent of ρ such that

∀z ∈ Γlmr : dist (z,A0,0) ≥ CΓlmr

(
1 + |z|2

) 1
2 (6.93)

and z0 (z) ≤ C6.10 < ∞. Using (6.55), (6.77) and (6.76) we obtain∥∥∥(H0 − z)−1 PgW
(

Hg − z
)−1 P

∥∥∥
≤ ρ

∞

∑
n=0

∥∥∥(H0 − z)−1 P
∥∥∥2

·
∥∥∥(Hf + ρ)−

1
2 gW (Hf + ρ)−

1
2

∥∥∥n+1

·
∥∥∥(Hf + ρ)

1
2 (H0 − z)−1 (Hf + ρ)

1
2

∥∥∥n
(6.94)

≤ Cgρ
1
2

(
1 + |z|2

)−1 ∞

∑
n=0

(
2gc6.8C6.10√

ρ

)n
(6.95)

≤ Cgρ
1
2

(
1 + |z|2

)−1
, (6.96)

for some generic constant C ∈ R+. Therefore we conclude

‖gB (t)‖ ≤ Cgρ
1
2

e−cδt +
∞∫

0

dr
e−cδ(t+r)

1 + r2

 ≤ Cgρ
1
2 e−cδt. (6.97)

�
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Next we turn to investigate the behaviour of X in the spectral regions close
to the unperturbed eigenstates E0 and E1, which has some differences.
For the region close to E0 we obtain a mild exponential growth of the
dynamics, which is mild in the sense that it becomes uniformly bounded
on the van Hove timescale. In contrast E1 may even turn into a metastable
state, which decays on the van Hove timescale under generic assumptions
on G01. We investigate XΓ0 first.

Lemma 6.12 (Spectral distance – Γ0). Let ρ = gµ, µ ∈ (0, 2), pick
ν ∈

(
0, min

(
1, µ−1 − 1

2

))
and define

Λ̃00 (0, E0) := 4π
∫
R+

dw w2 |(G)10 (w)|2 (E1 − E0 + w)−1 . (6.98)

For any z ∈ Γ0, FP
(

Hg − z
)

and F̃P (z) are invertible on PH and there are
C6.12, C̃6.12 ∈ R+, such that∥∥∥FP

(
Hg − z

)−1
∥∥∥ ≤ C6.12

g2ρν +
∣∣z− E0 + g2Λ̃00 (0, E0)

∣∣ , (6.99)

and ∥∥∥F̃P (z)−1
∥∥∥ ≤ C̃6.12

g2ρν +
∣∣z− E0 + g2Λ̃00 (0, E0)

∣∣ , (6.100)

provided g2ρ−1 is sufficiently small. Moreover for some C ∈ R+,∥∥∥FP
(

Hg − z
)−1 − F̃P (z)−1

∥∥∥ ≤ C
(

ρ1−ν + gρ−(ν+ 1
2 )
) ∥∥∥F̃P (z)−1

∥∥∥ . (6.101)

Proof. Throughout the proof C denotes a generic constant inR+. We write,
z := x + iy, x, y ∈ R and

d` (r, z) :=
∣∣∣eξr− (z− E`)

∣∣∣ , ` = 0, 1. (6.102)

Then for any y ∈ R+ and 0 < α < 1,

d` (r, z)2 = (η1r + E` − x)2 + (η0r + y)2

≥ −η2
1

(
α−1 − 1

)
r2 + (1− α) (x− E`)

2

+η2
0r2 + y2. (6.103)

Choosing

α =
1

1 + η2
0

2η2
1

< 1, (6.104)

we obtain

d` (r, z)2 ≥
η2

0r2

2
+ (1− α) |z− E`|2 . (6.105)

Note that Estimate (6.105) is not uniform in ξ. Thanks to our assumtion
that G`` ≡ 0, ` = 0, 1, the operator Λρ (Hf, z) may be represented as the
matrix

Λρ (Hf, z) =
(

Λ00 (Hf, z) 0
0 Λ11 (Hf, z)

)
, (6.106)
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with

Λ00 (Hf, z) :=
∫
R3

d3k
(

Gξ̄

)
10

(k)
(
Gξ

)
10 (k)(

E1 + e−ξ (Hf + ω (k))− z
)−1

1 [Hf + ω (k) ≥ ρ] P, (6.107)

Λ11 (Hf, z) :=
∫
R3

d3k
(

Gξ̄

)
01

(k)
(
Gξ

)
01 (k)(

E0 + e−ξ (Hf + ω (k))− z
)−1

1 [Hf + ω (k) ≥ ρ] P. (6.108)

Inequality (6.105) then yields for any r ∈ [ρ, ∞) and z ∈ C with Im (z) ∈
R+

0 the bounds

‖Λ00 (Hf, z)‖ ≤ C0(
ρ2 + |z− E1|2

) 1
2

, (6.109)

‖Λ11 (Hf, z)‖ ≤ C1(
ρ2 + |z− E0|2

) 1
2

. (6.110)

These inequalities extend to Γ0. For the inner part

Γ0 ∩
([

E0 −
δ

4
, E0 +

δ

4

]
+ iR

)
,

of Γ0, the inequalities (6.109), (6.110) hold true. Let now z be in the com-
plement of the inner part, i.e. z ∈ Γ0, |Re (z)− E0| > δ

4 . Then,

d` (r + ω (k) , z) ≥ δ

4
, ` = 0, 1 (6.111)

and hence (6.109), (6.110) hold for all z ∈ Γ0. Moreover, by denoting the
matrix entries of Gξ , Gξ̄ with

(
Gξ

)
jk,
(

Gξ̄

)
jk

, respectively, we have

F̃P (z) = P

 λ0 (z, Hf) gφ̌
((

Gξ

)
01

)
gφ̌
((

Gξ

)
10

)
λ1 (z, Hf)

 P.

with
λ` (z, Hf) := E` + e−ξ Hf − z− g2Λ`` (Hf, z) , ` = 0, 1.

We aim at the construction of the inverse of F̃P (z) by means of the Fes-
hbach isospectrality with projection Pat,0. Note that for any z ∈ Γ0, r +
ω (k) ≥ ρ,

d1 (r + ω (k) , z) ≥ δ

4
. (6.112)
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Thus, by (6.112), (6.105) and (6.110), it follows for all z ∈ Γ0, that

∣∣∣d1 (r, z)− g2 ‖Λ11 (r, z)‖
∣∣∣ ≥ d1 (r, z)− C1g2

ρ

≥ 1
2

d1 (r, z) +
δ

8
− C1g2

ρ

≥ 1
2

d1 (r, z) . (6.113)

Therefore,

R̃1 (z) :=
(

E1 + e−ξ HfP− z− g2Λ11 (Hf, z)
)−1

(6.114)

exists for all z ∈ Γ0 on Pat,1H and is bounded by∥∥∥R̃1 (z)
∥∥∥ ≤ Cδ−1. (6.115)

Hence,

FPat,0

(
F̃P (z)

)
= E0 + e−ξ HfPat,0 − z− g2Λ00 (Hf, z)

−g2Pat,0φ̌
((

Gξ

)
01

)
Pat,1R̃1 (z) Pat,1 (6.116)

·φ̌
((

Gξ

)
10

)
Pat,0

is well–defined and we obtain the inverse of F̃P (z) by

F̃P (z)−1 = QPat,0

(
F̃P (z)

)
FPat,0

(
F̃P (z)

)−1
Q]

Pat,0

(
F̃P (z)

)
+Pat,1R̃1 (z) Pat,1, (6.117)

with

QPat,0

(
F̃P (z)

)
:= Pat,0 − R̃1 (z) Pat,1φ̌

((
Gξ

)
10

)
Pat,0, (6.118)

Q]
Pat,0

(
F̃P (z)

)
:= Pat,0 − Pat,0φ̌

((
Gξ

)
01

)
Pat,1R̃1 (z) , (6.119)

iff FPat,0

(
F̃P (z)

)
is invertible on the range of Pat,0. Note, that by (6.39) and∥∥∥Pat,0φ̌

((
Gξ

)
01

)
Pat,1R̃1 (z) Pat,1φ̌

((
Gξ

)
10

)
Pat,0

∥∥∥ ≤ Cδ−1ρ. (6.120)

By Lemma 6.13 it follows for all z ∈ Γ0 and all ψ ∈ Pat,0H, with ‖ψ‖ = 1,∥∥∥FPat,0

(
F̃P (z)

)
ψ
∥∥∥ ≥ C6.13

(∣∣∣z + g2Λ̃00 (0, E0)− E0

∣∣∣+ g2ρν
)

.

The inequality (6.100) follows now from

QPat,0

(
F̃P (z)

)
, Q]

Pat,0

(
F̃P (z)

)
= Pat,0 +O

(
gρ

1
2

)
(6.121)
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and the finite length of Γ0. It remains to prove the bound (6.99). First note
that for all z ∈ Γ0 by Proposition 6.8, Lemma 6.10 and (6.100)∥∥∥(FP

(
Hg − z

)
− F̃p (z)

)
F̃p (z)−1

∥∥∥ ≤ C
(

ρ1−ν + gρ−(ν+ 1
2 )
)

. (6.122)

Therefore, the Neumann series

Fp
(

Hg − z
)−1 =

∞

∑
n=0

F̃p (z)−1
((

FP
(

Hg − z
)
− F̃p (z)

)
F̃p (z)−1

)n
, (6.123)

converges for sufficiently small g, and we obtain∥∥∥Fp
(

Hg − z
)−1
∥∥∥ ≤ 2

∥∥∥F̃p (z)−1
∥∥∥ ,

provided ρ is sufficiently small, and thus inequality (6.99). Finally, in-
equality (6.101) follows from (6.122) and (6.123). �

Our goal is now to prove the invertibility of FPat,0

(
F̃P (z)

)
.

Lemma 6.13 (Invertibility of FPat,0

(
F̃P (z)

)
). Let ρ = gµ, µ ∈ (0, 2) and

pick ν ∈
(

0, min
(

1, µ−1 − 1
2

))
. Then, for all z ∈ Γ0 and all ψ ∈ Pat,0H,

‖ψ‖ = 1, there is a C6.13 ∈ R+, such that∥∥∥FPat,0

(
F̃P (z)

)
ψ
∥∥∥ ≥ C6.13

(∣∣∣z + g2Λ̃00 (0, E0)− E0

∣∣∣+ g2ρν
)

. (6.124)

Proof. We establish (6.124) in two steps. The first step addresses the inner
part of Γ0, i.e. those z ∈ Γ0, for which

Re (z) ∈
[

E0 −
δ

4
, E0 +

δ

4

]
and the second the outer part of Γ0, i.e. z ∈ Γ0 with

Re (z) ∈ Re (Γ0) \
[

E0 −
δ

4
, E0 +

δ

4

]
.

Step 1.
Let Re (z) ∈

[
E0 − δ

4 , E0 + δ
4

]
, z ∈ Γ0. In order to obtain invertibility of

FPat,0

(
F̃P (z)

)
, we determine the imaginary part of

E0 + e−ξ HfPat,0 − z− g2Λ00 (Hf, z) ,

as the leading term. To this end, it is useful to relate Λ00 (z) to a slightly
different operator, which has an integrand that is analytic in |k|. Thus we
define

Λ̃00 (Hf, z) := 4π
∫
R+

dk fξ (k)
(

E1 + e−ξ (Hf + ω (k))− z
)−1

P, (6.125)

where

fξ (k) := e−3ξ f
(

e−ξk
)

, f (k) := k2 |(G)10 (k)|2 . (6.126)
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Note that

Λ00 (r, z) := 4π
∫
R+

dk fξ (k)
(

E1 + e−ξ (r + ω (k))− z
)−1

χr+|k|≥ρχr<ρ.

Then, for any r ∈ [0, ρ],∣∣∣Λ00 (r, z)− Λ̃00 (r, z)
∣∣∣ ≤ C

∫
R3

d3k
∣∣ fξ (k)

∣∣ χr+|k|<ρ ≤ Cρ2. (6.127)

Observe, that

Λ̃00 (r, z) = 4π
∫

e−ξR+
dw f (w)

(
E1 + e−ξr + w− z

)−1
χr<ρ

= 4π
∫
R+

dw f (w)
(

E1 + e−ξr + w− z
)−1

χr<ρ,

by Cauchy’s theorem and the sufficiently rapid decay of f (|w|) → 0, as
|w| → ∞, due to the ultraviolet cutoff. Since f is real–valued, the imagi-
nary part of Λ̃00 (r, z) is given by

Im
(

Λ̃00 (r, z)
)

= 4π
∫
R+

dw f (w)
re−Re(ξ) sin (Im (ξ)) + Im (z)∣∣E1 + e−ξr + w− z

∣∣2 χr<ρ.

(6.128)
The denominator is uniformly bounded,

sup
(r,w,z)∈[0,ρ]×R+×Γ0

1∣∣E1 + e−ξr + w− z
∣∣2 < ∞.

It follows, that for some C > 0,

Im
(

Λ̃00 (r, z)
)
≥ C Im (z) ≥ 0. (6.129)

Now, we observe that∥∥∥g2Pat,0φ̌
((

Gξ

)
01

)
Pat,1R̃1 (z) Pat,1φ̌

((
Gξ

)
10

)
Pat,0

∥∥∥ ≤ Cg2ρ, (6.130)

see (6.120). It is convenient to use the abbreviation

A00 (r, z) := E0 + e−ξr− z− g2Λ̃00 (r, z) . (6.131)

We next determine the shift of the energy E0 by second order perturbation
theory. By the fundamental theorem of calculus we have

A00 (r, z) = E0 − z− g2Λ̃00 (r, E0) + e−ξr + g2
(

Λ̃00 (r, E0)− Λ̃00 (r, z)
)

= E0 − z− g2Λ̃00 (r, E0) + e−ξr− g2 (E0 − z) h (r, z)

= E0 − z− g2Λ̃00 (r, E0) + e−ξr (6.132)

−g2M (r, z) + g4M̃ (r, z) ,
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where

M (r, z) :=
(

E0 − z− g2Λ̃00 (r, E0)
)

h (r, z) , (6.133)

M̃ (r, z) := Λ̃00 (r, E0) h (r, z) , (6.134)

h (r, z) :=
1∫

0

ds
(

d
dz

Λ̃00

)
(r, z (1− s) + E0s) . (6.135)

Note that

sup
r∈[0,ρ], z∈Γ0

|h (r, z)| ≤ C.

This yields

A00 (r, z) =
(

E0 − z− g2Λ̃00 (r, E0)
) (

1− g2h (r, z)
)

+ e−ξr + g4M̃ (r, z)

=
(

E0 + e−ξr− z− g2Λ̃00 (0, E0)
) (

1− g2h (r, z)
)

+g2
(

Λ̃00 (0, E0)− Λ̃00 (r, E0)
) (

1− g2h (r, z)
)

(6.136)

+g2e−ξrh (r, z) + g4M̃ (r, z) .

With

Ã00 (r, z) :=
(

E0 + e−ξr− z− g2Λ̃00 (0, E0)
) (

1− g2h (r, z)
)

(6.137)

and ∥∥∥Λ̃00 (0, E0)− Λ̃00 (r, E0)
∥∥∥ ≤ Cρ, (6.138)

we find that (6.116) satisfies for any ψ ∈ PH, ‖ψ‖ = 1,∥∥∥FPat,0

(
F̃P (z)

)
ψ
∥∥∥ ≥ inf

r∈[0,ρ]

∣∣∣∣∣∣Ã00 (r, z)
∣∣∣− C

(
g2ρ + g4

)∣∣∣ . (6.139)

By (6.105) we have

d0

(
r, z + g2Λ̃00 (0, E0)

)2
≥

η2
0r2

2
+ (1− α)

∣∣∣z + g2Λ̃00 (0, E0)− E0

∣∣∣2 .
(6.140)

Moreover, for any z ∈ C with Im (z) = c0g2ρν, c0 ∈ R+,

Im
(

E0 + e−ξr− z− g2Λ̃00 (0, E0)
)

= −Im (z)− η0r

−g2 Im
(

Λ̃00 (0, E0)
)

︸ ︷︷ ︸
=0

≤ −Im (z)

≤ −c0g2ρν. (6.141)
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Hence, by (6.140,6.141), follows for any ψ ∈ PH, ‖ψ‖ = 1,∥∥∥FPat,0

(
F̃P (z)

)
ψ
∥∥∥ ≥ inf

r∈[0,ρ]

∣∣∣d0

(
r, z + g2Λ̃00 (0, E0)

) ∣∣∣1− g2h (r, z)
∣∣∣

−C
(

g2ρ (1 + ρ) + g4
)∣∣∣

≥ inf
r∈[0,ρ]

∣∣∣∣∣η2
0r2

8
+

(1− α)
4

∣∣∣z + g2Λ̃00 (0, E0)− E0

∣∣∣2
−C

(
g2ρ
)2
∣∣∣∣ 1

2

≥ inf
r∈[0,ρ]

∣∣∣∣∣η2
0r2

8
+

(1− α)
4

∣∣∣z + g2Λ̃00 (0, E0)− E0

∣∣∣2
−C

(
g2ρ
)2
∣∣∣∣ 1

2

≥ (1− α)
8

∣∣∣z + g2Λ̃00 (0, E0)− E0

∣∣∣+ Cg2ρν. (6.142)

Step 2.
For all z ∈ C, r ∈ [0, ρ] and Re (z) ∈ Re (Γ0) \

[
E0 − δ

4 , E0 + δ
4

]
,

d0 (r, z)2 ≥ 1
2

(E0 − x)2 − e−2Re(ξ)r2 − 2 (E0 − x) η1r + (y + η0r)2

≥ 1
4
|E0 − z|2 + Cρ2ν. (6.143)

This inequality extends to

d0 (r, z)2 ≥ 1
8

∣∣∣E0 −
(

z + g2Λ̃00 (0, E0)
)∣∣∣2 + Cρ2ν, (6.144)

by an appropriate redefinition of C. Thus we find for any ψ ∈ PH, ‖ψ‖ =
1, ∥∥∥FPat,0

(
F̃P (z)

)
ψ
∥∥∥ ≥ inf

r∈[0,ρ]

∣∣∣d0 (r, z)− Cg2
∣∣∣

≥ inf
r∈[0,ρ]

∣∣∣∣ 1
16

∣∣∣z + g2Λ̃00 (0, E0)− E0

∣∣∣2 + Cρ2ν

∣∣∣∣ 1
2

≥ 1
32

∣∣∣z + g2Λ̃00 (0, E0)− E0

∣∣∣+ Cρν, (6.145)

provided g2 < ρν, ρ small enough. This finishes the Step 2.
From (6.142) and (6.145) follows now (6.124). �

Lemma 6.12 sets us in the position to approximate XΓ0 by

X̃Γ0 (t) :=
1

2πi

∫
Γ0

dz e−izt F̃p (z)−1 , t ∈ R+. (6.146)

This is the purpose of the following proposition.



152 Chapter 6. Towards a Dynamical Renormalisation Group

Proposition 6.14 (Effective Feshbach operator – II). Let ρ = gµ, µ ∈ (0, 2),
and pick ν ∈

(
0, min

(
1, µ−1 − 1

2

))
. Then, for all t ∈ R+, there is a C6.14∥∥∥XΓ0 (t)− X̃Γ0 (t)

∥∥∥ ≤ C6.14ec0g2ρνt
(

ρ
1−ν

2 + g
1
2 ρ−

1
2 (ν+ 1

2 )
)

, (6.147)

provided ρ−1g2 is sufficiently small.

Proof. C denotes again a generic constant in R+. From (6.100) and (6.101)
follows∥∥∥XΓ0 (t)− X̃Γ0 (t)

∥∥∥ ≤ 1
2π

∫
Γ0

dz
∥∥∥e−itz

((
FP
(

Hg − z
)−1 − F̃p (z)−1

))∥∥∥
≤ Cec0g2ρνt

(
ρ1−ν + gρ−(ν+ 1

2 )
) ∫

Γ0

dz
∥∥∥F̃p (z)−1

∥∥∥ .

We split Γ0 into the inner part defined by (6.68) and its complement in Γ0,
denoted by Γc

0. The inner part may be estimated by (6.100) as

E0+ δ
4∫

E0− δ
4

dx
∥∥∥∥F̃p

(
x + c0g2ρν

)−1
∥∥∥∥ ≤ C ln

(
δ

2g2ρν

)
. (6.148)

For Γc
0 we choose a straight line from E0 ± δ/4 + ic0g2ρν to E0 ± δe

i
2 Im(ξ).

Hence, we get similarly to (6.148) using (6.145),

∫
Γc

0

dz
∥∥∥F̃p (z)−1

∥∥∥ ≤ C ln
(

δ

ρν

)
. (6.149)

The elementary inequality

∀κ ∈ R+, ∀r ∈ (0, 1) : ln
(

1
r

)
≤ 1

κ
r−κ ,

yields for

κ :=
min

(
µ (1− ν) , 1− µ

(
ν + 1

2

))
2 (2 + µν) �

the inequality (6.147).

Remark 6.15. We pause for a moment to comment on the relative size of
the error terms in (6.147). Observe that

gρ−ν− 1
2

ρ−ν+1 = gρ−
3
2 = g1− 3

2 µ.

Thus, if µ ∈ (2/3, 2), then the second term dominates the first one and
vice versa for µ ∈ (0, 2/3). The two terms are of equal size if µ = 2/3.
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The next step is to write the one–parameter family
{

X̃Γ0 (t)
}

t∈R+
as a sum

X̃Γ0 (t) = ỸΓ0 (t) + o (1) , (6.150)

where

ỸΓ0 (t) :=
1

2πi

∫
Γ0

dz e−itzFPat,0

(
F̃P (z)

)−1
(6.151)

=
1

2πi

γ0(b0)∫
γ0(a0)

dx e−it(x−icδ)FPat,0

(
F̃P (x− icδ)

)−1
(6.152)

+
(

e−itz0(Hf) 0
0 0

)
.

Provided the integral on the right hand side of (6.151) exists, we define the
operator z0 (Hf) as the solution of the implicit equation

E0 + e−ξr− z− g2Λ̃00 (r, z) = 0, (r, z) ∈ [0, ρ]× G0, (6.153)

see (6.162). Here, G0 is the interior of the compact set G0, enclosed by the
curve Γ0 ∪ Γ̃0 = ∂G0, with

Γ̃0 :=
{
−icδ +

[
E0 − cos

(
Im
(

ξ

2

))
δ, E0 + cos

(
Im
(

ξ

2

))
δ

]}
. (6.154)

First, we establish a refined version of (6.150).

Lemma 6.16. Let ρ = gµ, µ ∈ (0, 2) and pick ν ∈
(

0, min
(

1, µ−1 − 1
2

))
.

Then, there is a C6.16 ∈ R+, such that∥∥X̃Γ0 (t)− ỸΓ0 (t)
∥∥ ≤ C6.16

(
gρ

1
2 + e−tcδ

)
. (6.155)

Proof. Recall, that the inverse of F̃p (z) is given by

F̃p (z)−1 = QPat,0

(
F̃p (z)

)
F̃p (z)−1 Q]

Pat,0

(
F̃p (z)−1

)
+ R̃1 (z) , (6.156)

with
R̃1 (z) =

(
Pat,1 F̃p (z) Pat,1

)−1
.

By (6.121) we have

QPat,0

(
F̃P (z)

)
, Q]

Pat,0

(
F̃P (z)

)
= Pat,0 +O

(
gρ

1
2

)
,

for all z ∈ Γ0 and moreover by (6.115)∥∥∥R̃1 (z)
∥∥∥ ≤ Cδ−1.

This bound extends to G0 by a computation which is analogous to the one
leading to (6.187) and (6.188) in Lemma 6.20. Since R̃1 (z) is holomorphic
in G0 we may deform the contour as

1
2πi

∫
Γ0

dz e−itzR̃1 (z) =
1

2πi

Re(γ0(b0))∫
Re(γ0(a0))

dx e−it(x−icδ)R̃1 (x− icδ) ,

and hence (6.155) follows. �



154 Chapter 6. Towards a Dynamical Renormalisation Group

We estimate now the contribution of the integral in (6.152).

Lemma 6.17 (Spectral distance – Γ̃0). For all z ∈ Γ̃0 we have∥∥∥∥FPat,0

(
F̃P (x− icδ)

)−1
∥∥∥∥ ≤ C (6.157)

Proof. As in the proof of Lemma 6.12, see (6.136,6.137,6.138), is

FPat,0

(
F̃P (z)

)
= Ã00 (Hf, z) +O

(
ρg2 + g4

)
. (6.158)

Moreover,∣∣∣Ã00 (r, z)
∣∣∣2 = d0

(
r, z + g2Λ̃00 (0, E0)

)2
≥ C > 0. (6.159)

Hence, for sufficiently small ρ follows (6.157). �

Lemma 6.17 implies∥∥∥∥∥∥∥
γ0(b0)∫

γ0(a0)

dx e−it(x−icδ)FPat,0

(
F̃P (x− icδ)

)−1

∥∥∥∥∥∥∥ ≤ Ce−tcδ . (6.160)

The construction of z0 (Hf) is the goal of the following proposition.

Proposition 6.18 (Construction of z0 (Hf)). Let ρ = gµ, µ ∈ (0, 2), r ∈
[0, ρ] and pick ν ∈

(
0, min

(
1, µ−1 − 1

2

))
. For sufficiently small g there is a

unique z0 (r) ∈ G0, such that for

qr (z) := E0 + e−ξr− z− g2Λ̃00 (r, z) , (6.161)

qr (z0 (r)) = 0. (6.162)

Moreover, the map
(0, ρ) 3 r 7→ z0 (r) (6.163)

is analytic and bounded in [0, ρ]. In particular, z0 satisfies

z0 (r) = E0 + e−ξr− g2Λ̃00 (0, E0) +O
(

g2ρ
)

. (6.164)

Proof. We construct first z0 (r) for a given r ∈ [0, ρ] by Rouché’s theorem
and conclude the analyticity of (6.163) by the analytic implicit function
theorem.

Let r ∈ [0, ρ]. Define

fr (z) := E0 + e−ξr− z− g2Λ̃00 (r, E0) , ∀z ∈ G0. (6.165)

For all z ∈ ∂G0 we have

| fr (z)− qr (z)| ≤ g2 |h (r, z)| |E0 − z|
≤ g2 |h (r, z)| (| fr (z)| (6.166)

+g2
∣∣∣Λ̃00 (r, E0)

∣∣∣+ g2ρ
∣∣∣e−ξ

∣∣∣) .
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Observe now, that analogously to (6.140) and (6.144) combined with (6.159)

| fr (z)| ≥ Cg2ρν, (6.167)

for all z ∈ ∂G0. This implies for sufficiently small g,

| fr (z)− qr (z)| ≤ Cg2ρ−ν | fr (z)| < | fr (z)| , ∀z ∈ ∂G0. (6.168)

As fr and qr are analytic in G0, it follows by Rouché’s theorem that qr has
as many zeros as fr in G0, with the same multiplicity. The existence and
uniqueness follows now from

fr

(
E0 + e−ξr− g2Λ̃00 (r, E0)

)
= 0, (6.169)

since
E0 + e−ξr− g2Λ̃00 (r, E0) ∈ G0, (6.170)

and because this is the only zero of fr in G0. One easily observes that

(0, ρ)× G0 3 (r, z) 7→ qr (z) (6.171)

is analytic in both arguments and that the derivatives do not vanish for
sufficiently small g. It follows from the analytic implicit function theorem
that (6.163) is analytic. Finally, by (6.136) and (6.133,6.134,6.135) we have

qr (z) =
(

E0 + e−ξr− z− g2Λ̃00 (0, E0)
) (

1− g2h (r, z)
)

+g2
(

Λ̃00 (0, E0)− Λ̃00 (r, E0)
) (

1− g2h (r, z)
)

(6.172)

+g2e−ξrh (r, z) + g4M̃ (r, z) .

Note, that this expression is meaningful for all z ∈ G0. Setting z = z0 (r),
the left hand side vanishes and since h (r, z) is uniformly bounded we have
g2h (r, z0 (r)) 6= 1. Hence, we arrive at the relation (6.164). From (6.172)
follows moreover that z1 is bounded on [0, ρ]. �

Proposition 6.18 allows now to define z0 (Hf) by functional calculus and it
follows

qHf (z0 (Hf)) = 0. (6.173)

The residue theorem implies then (6.152). We summarise these results in
the subsequent theorem.

Theorem 6.19 (The effective dynamics – Γ0). Let ρ = gµ, µ ∈ (0, 2), and
pick ν ∈

(
0, min

(
1, µ−1 − 1

2

))
. For all t ∈ R+ and sufficiently small g holds∥∥∥XΓ0 (t)− e−itz0(Hf)

∥∥∥ ≤ C
(

e−tcδ + ec0g2ρνt
(

ρ
1−ν

2 + g
1
2 ρ−

1
2 (ν+ 1

2 )
))

.
(6.174)

Proof. The inequality (6.174) readily follows from (6.152), Lemma 6.16,
Proposition 6.18, (6.160) and Proposition 6.14. �
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After having established an effective time evolution pertaining to the atomic
level E0, we now turn to the investigation of the excited state, E1. To this
end we start with the following lemma.

Lemma 6.20 (Spectal distances – Γ1). Let ρ = gµ, µ ∈ (0, 2) and pick
ν ∈

(
0, min

(
1, µ−1 − 1

2

))
. For any z ∈ Γ0, FP

(
Hg − z

)
and F̃P (z) are

invertible on PH and there are C6.20, C̃6.20 ∈ R+, such that∥∥∥FP
(

Hg − z
)−1
∥∥∥ ≤ C6.20

g2ρν + |z− E1|
, (6.175)

and ∥∥∥F̃P (z)−1
∥∥∥ ≤ C̃6.20

g2ρν + |z− E1|
, (6.176)

provided g2ρ−1 is sufficiently small. Moreover for some C ∈ R+,∥∥∥FP
(

Hg − z
)−1 − F̃P (z)−1

∥∥∥ ≤ C
(

ρ1−ν + gρ−(ν+ 1
2 )
) ∥∥∥F̃P (z)−1

∥∥∥ . (6.177)

Proof. C denotes again a generic constant in R+. We start again with
estimtates of d` (r, z). Let r ∈ [0, ρ], z ∈ Γ1, such that |Re (z)− E1| < δ

4 .
Then, by definition Im (z) = c1g2ρν. We compute

d1 (r, z)2 = (Re (z)− E1 − η1r)2 + (Im (z) + η0r)2

= (Re (z)− E1)
2 − 2η1r (Re (z)− E1) + e−2Re(ξ)r2 + Im (z)2

+ 2rη0Im (z)︸ ︷︷ ︸
≥0

≥
(

e−Re(ξ)r− cos (Im (ξ)) (Re (z)− E1)
)2

+ Im (z)2

+
(

1− η2
1

)
(Re (z)− E1)

2

≥
(

1− η2
1

)
|z− E1|2 + η2

1Im (z)2

≥ C (ξ)
(
|z− E1|2 + η2

1c2
1g4ρ2ν

)
≥ C (ξ)

(
|z− E1|+ η1c1g2ρν

)2
, (6.178)

for some generic ξ–dependent C (ξ) > 0. Assume now r ∈ [0, ρ], z ∈ Γ1,
such that |Re (z)− E1| ≥ δ

4 . Then,

|Im (z)| ≤ |Re (z)− E1| .

Since
d1 (r, z) ≥ |z− E1| −

∣∣∣e−ξ
∣∣∣ ρ ≥ 1

2
|z− E1|+ g2ρν, (6.179)

provided g is sufficiently small, the inequality (6.178) extends to Γ1.
Next, we consider

A11 (r, z) := E1 + e−ξr− zg2Λ11 (r, z) (6.180)

Ã11 (r, z) := E1 + e−ξr− zg2Λ11 (0, E1) , (6.181)
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where

Λ11 (r, z) :=
∞∫

0

dk
fξ (k) χk+r≥ρ

E0 + e−ξ (r + k)− z
χr<ρ, (6.182)

and
fξ (k) := e−3ξ f

(
e−ξk

)
, f (k) := k2 |(G)01 (k)|2 . (6.183)

Write now a := Re (z)− E0, b := Im (z). We intend to prove

dist
(

z,A(0)
0,0

)
≥ C (ξ) > 0, (6.184)

for all z ∈ Γ1. By redefining r̃ := e−Re(ξ)r, we may set for this consideration
Re (ξ) = 0. This yields

d0 (r, z)2 = r2 + a2 + b2 − 2η1ra + 2η0rb. (6.185)

Observe, that this function has a minimum at

r0 (z) := η1a− η0b. (6.186)

Then

d0 (r, z)2 ≥ a2 + b2 − (η1a− η0y)2 (6.187)

= η2
0a2 + η2

1b2 + 2η0η1ab.

Since z ∈ Γ1, we have a ≥ 2δ and b > −η0δ. Hence,

d0 (r, z)2 ≥ η2
0a2 − 2η2

0η1δa

≥ a2η2
0 (1− η1)

≥ 4δ2η2
0 (1− η1) > 0. (6.188)

For any r ∈ [0, ρ) we compute

Λ11 (r, z) − Λ11 (0, E1)

=
∞∫

0

dk fξ (k)
(

χk+r≥ρ

E0 + e−ξ (r + k)− z
−

χk≥ρ

E0 + e−ξk− E1

)

=
∞∫

0

dk fξ (k) χk+r≥ρ

(
1

E0 + e−ξ (r + k)− z
−

χk≥ρ

E0 + e−ξk− E1

)

=
∞∫

0

dk
fξ (k) χk+r≥ρχk<ρ

E0 + e−ξ (r + k)− z

+
∞∫

ρ

dk
fξ (k)

(
z− E1 − e−ξr

)(
E0 + e−ξ (r + k)− z

) (
E0 + e−ξk− E1

) . (6.189)

Hence,

A11 (r, z) − Ã11 (r, z)

= −g2 (Λ11 (r, z)−Λ11 (0, E1))

= −g2B1 (r, z) + g2
(

E1 + e−ξr− z
)

B2 (r, z) (6.190)
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where

B1 (r, z) :=
ρ∫

0

dk
fξ (k) χk+r≥ρχk<ρ

E0 + e−ξ (r + k)− z
, (6.191)

B2 (r, z) :=
∞∫

ρ

dk
fξ (k)(

E0 + e−ξ (r + k)− z
) (

E0 + e−ξ k− E1
) . (6.192)

Note that by (6.188) and the definition of fξ , (6.183),

∀z ∈ Γ1, 0 ≤ r < ρ : ‖B1 (r, z)‖ ≤ Cρ2, ‖B2 (r, z)‖ ≤ C. (6.193)

This leads to

A11 (r, z) =
(

E1 + e−ξr− z
) (

1 + g2B2 (r, z)
)
− g2B1 (r, z) , (6.194)

and using (6.178) thus for all z ∈ Γ1, r ∈ [0, ρ]:

|A11 (r, z)| ≥
∣∣∣E1 + e−ξr− z

∣∣∣ (1− Cg2
)
− Cg2ρ2

≥ C
(
|E1 − z|+ g2ρν

)
. (6.195)

We again want to construct the inverse of F̃P (z) on the range of P for all
z ∈ Γ1 using the Feshbach isospectrality. Therefore, we define

R̃0 (z) :=
(

E0 + e−ξ HfP− z− g2Λ00 (Hf, z)
)−1

, (6.196)

which exists by (6.188) for all z ∈ Γ1 analogously to (6.113) and is bounded
by ∥∥∥R̃0 (z)

∥∥∥ ≤ Cδ−1. (6.197)

Thus,

FPat,1

(
F̃P (z)

)
=

E0 + e−ξ HfPat,1 − z− g2Λ00 (Hf, z) (6.198)

−g2Pat,1φ̌
((

Gξ

)
10

)
Pat,0R̃0 (z) Pat,0φ̌

((
Gξ

)
01

)
Pat,1 (6.199)

is well–defined and we obtain the inverse of F̃P (z) by

F̃P (z)−1 = QPat,1

(
F̃P (z)

)
FPat,1

(
F̃P (z)

)−1
Q]

Pat,1

(
F̃P (z)

)
+Pat,0R̃0 (z) Pat,0, (6.200)

with

QPat,1

(
F̃P (z)

)
:= Pat,1 − R̃0 (z) Pat,0φ̌

((
Gξ

)
01

)
Pat,1, (6.201)

Q]
Pat,1

(
F̃P (z)

)
:= Pat,1 − Pat,1φ̌

((
Gξ

)
01

)
Pat,0R̃0 (z) , (6.202)

iff FPat,1

(
F̃P (z)

)
is invertible on the range of Pat,1. The statement follows

now by similar arguments as in Lemma 6.12. �
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After having established the spectral distance formulas (6.175,6.176,6.177),
we proceed as for Γ0. We start with an analogue of Proposition 6.18. To
this end, we introduce G1 as the interior of the compact set G0, enclosed
by the curve Γ1 ∪ Γ̃1 = ∂G1, with

Γ̃1 :=
{
−icδ +

[
E1 − cos

(
Im
(

ξ

2

))
δ, E1 + cos

(
Im
(

ξ

2

))
δ

]}
. (6.203)

Proposition 6.21 (Construction of z1 (Hf)). Let ρ = gµ, µ ∈ (0, 2), r ∈
[0, ρ] and pick ν ∈

(
0, min

(
1, µ−1 − 1

2

))
. For sufficiently small g there is a

unique z1 (r) ∈ G1, such that for

pr (z) := E1 + e−ξr− z− g2Λ̃11 (r, z) , (6.204)

with

Λ̃11 (r, z) :=
∞∫

0

dk
e−3ξ k2

∣∣(G)01
(
e−ξ k

)∣∣2
E0 + e−ξ (r + k)− z

, (6.205)

the equation
pr (z1 (r)) = 0 (6.206)

holds. Moreover, the map
(0, ρ) 3 r 7→ z1 (r) (6.207)

is analytic and bounded on [0, ρ]. In particular, z1 satisfies

z1 (r) = E1 + e−ξr− g2Λ̃11 (0, E1) +O
(

g2ρ
)

. (6.208)

Proof. Note that (6.188) implies that Λ̃11 (r, z) is analytic in z, uniformly in
r ∈ R+

0 . Define for r ∈ [0, ρ] and z ∈ G1,

fr (z) := E1 + e−ξr− z− g2Λ̃11 (r, E1) . (6.209)

Then, for some generic C ∈ R+, we get similarly to (6.166), (6.167) and
(6.168),

|pr (z)− fr (z)| ≤ g2
∣∣∣Λ̃11 (r, z)− Λ̃11 (r, E1)

∣∣∣
≤ g2

(
sup
z∈G0

∣∣∣∣ d
dz

Λ̃11 (r, z)
∣∣∣∣
)
|z− E1|

≤ Cg2
(
| fr (z)|+ g2

∣∣∣Λ̃11 (r, E1)
∣∣∣+ g2ρ

∣∣∣e−ξ
∣∣∣)

< Cg2ρ−ν | fr (z)| . (6.210)

Moreover, for sufficiently small g,

E1 + e−ξr− g2Λ̃11 (r, E1) ∈ G1,

and this is the only zero of fr. Hence there is a unique z1 (r) ∈ G1, such
that

pr (z1 (r)) = 0. (6.211)
�
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Again, for small g, the analytic implicit function theorem implies the ana-
lyticity of (6.207). Also, analogously to Proposition 6.18 one obtains (6.208)
and the boundedness of z1 on [0, ρ].

Remark 6.22. (i) Note that in contrast to Proposition 6.18, the construc-
tion of z1 according to Proposition 6.21 involves ξ–dependent objects, and
thus z1 depends on ξ.
(ii) We do not use Im

(
Λ̃11 (r, z)

)
< −const.

We omit now repetitions of Proposition 6.14 and Lemmata 6.16, 6.17 for
Γ1, because the same arguments can be used. Instead, we state the final
result in the following theorem.

Theorem 6.23 (The effective dynamics – Γ1). Let ρ = gµ, µ ∈ (0, 2), and
pick ν ∈

(
0, min

(
1, µ−1 − 1

2

))
. For all t ∈ R+ and sufficiently small g holds∥∥∥XΓ1 (t)− e−itz1(Hf)

∥∥∥ ≤ C
(

e−tcδ + ec1g2ρνt
(

ρ
1−ν

2 + g
1
2 ρ−

1
2 (ν+ 1

2 )
))

.
(6.212)

6.3 Beyond the van Hove Timescale

In this section we give a brief outlook on how to establish an iteration of
our analysis. We only present heuristic ideas, not rigorous results. The reg-
ular domains, Γlmr, provide exponentially decaying error bounds, which
are small for any timescale τn = tgn, ε ∈ [0, 1), n ≥ 2, n ∈ N. Therefore,
we restrict the discussion to the singular domains, Γ`, ` = 0, 1.

The construction of the previous section is based on the replacement of

P
(

Hg,ξ − z
)−1 P

by the Feshbach map, which in turn is approximated by F̃p (z)−1. In order
to obtain finer estimates, we propose to employ the spectral renormalisa-
tion group based on the (smooth) Feshbach map originally introduced by
Bach, Fröhlich, and Sigal in [BFS98b] and later generalised by these and
Chen in [BCFS03]. We recall from [1] that the image under the Feshbach
map,

FP
(

Hg − z
)

= PHgP− zP− g2PWP̄
(

P̄Hg P̄− zP̄
)−1 P̄WP,

can be written as a power series in annihilation and creation operators by
expanding

(
P̄Hg P̄− zP̄

)−1 in a Neumann series, i.e.

FP
(

Hg − z
)

= ∑
n,m≥0

Wn,m (Hf, z) ,

where Wn,m (Hf, z) is a Wick monomial with n creation and m annihila-
tion operators. We assume the Wick monomials to be normal ordered,
i.e. all creation operators are moved to the left and all annihilation oper-
ators are moved to the right, using the CCR, 6.11. Then, one can inter-
pret FP

(
Hg − z

)
as renormalised Hamiltonian, which however depends
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non–linearly on z. This means, that one singles out a renormalised free
Hamiltonian, which is formally given by

H(1)
0 (Hf, z) := W0,0 (Hf, z) ,

i.e. PH0P plus the contractions resulting from normal ordering, see [BCFS03,
Thm. 3.6]. The lowest order terms in the coupling constant of the operator
H(1)

0 (Hf, z) are given by

H(1)
0 (Hf, z) = PH0P− zP− g2Λρ (Hf, z) +O

(
g4
)

.

Therefore, the singularities in the integral,

Z(1)
ρ (t, Hf) :=

1
2πi

∫
Γ`

dz e−itz
(

H(1)
0 (Hf, z)

)−1

give rise to an analogue of exp (−itz`(Hf)), containing all orders of con-
tractions, not only the lowest. Then, one reduces the state space of this
renormalised Hamiltonian by applying the Feshbach map with projection
P(1) := 1

[
Hf < ρ2] to the Feshbach pair(

FP
(

Hg − z
)

, H(1)
0 (Hf, z)

)
,

where FP
(

Hg − z
)

is now given as a normal ordered expression. Note that[
H(1)

0 (Hf, z) , 1
[

Hf < ρ2
]]

= 0.

For this new operator one again applies normal ordering and obtains a
new renormalised Hamiltonian, whose interaction is smaller than ρα, for
some α > 0, as was shown by Bach, Chen, Fröhlich, and Sigal. Therefore,
we expect that the spectral distance estimates of the present paper can be
improved by some power of ρ. Then, the contour of the first step, Γ = Γ(1)

can be deformed to a contour, Γ(2), which is closer to the spectral points
E`, ` = 0, 1. Again, we expect that the singularities in

Z(2)
ρ2 (t, Hf) :=

1
2πi

∫
Γ(2)

`

dz e−itz
(

H(2)
0 (Hf, z)

)−1

yield an effective dynamics, which approximates the projected dynamics
P(2)X (t) P(2) on a larger timescale than the van Hove timescale. Eventu-
ally, we hope to establish a renormalisation group analysis of the dynamics
based on an iteration of the above. The steps described above are the first
in an infinite sequence which has to be controlled inductively.

We close with a remark about the normal ordering and its relation to
the spectral averaging in the theory of the weak coupling limit. The weak
coupling limit due to Davies involves a spectral averaging of the generator
of the effective dynamics. For A ∈ B (Hat) one has

〈A〉Hat
:= lim

T→∞

1
T

T∫
0

dt eitHat Ae−itHat = ∑
`

1 [Hat = E`] A1 [Hat = E`] .
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In our approach there are also field degrees of freedom contributing to
the WCL and it is a priori not clear how the spectral averaging can be
generalised to this case, [Dav80]. The Feshbach map FP

(
Hg − z

)
can be

written as

FP
(

Hg − z
)

= PH0P− zP + gPW
∞

∑
n=0

[(
P

H0 − z

)
P (−g) W

]n

P,

and the normal ordering of the last term can be expressed by the formula

lim
T→∞

 1
T

T∫
0

dt eitHf gPW
∞

∑
n=0

[(
P

H0 − z

)
P (−g) W

]n

e−itHf

 ,

which is a spectral averaging w.r.t. Hf, [BCFS03].
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