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Preface

The theory of quantum mechanics provides a mathematical model for describing inter-
acting systems of microscopic particles. However, to do actual calculations with the
model can be a complicated matter, and many basic properties remain to be under-
stood. A particular fundamental problem is the ground state energy of the interacting
Bose gas. Even this problem is, in its full generality, beyond reach of a mathematical
treatment. If one considers a sufficiently dilute Bose gas, it is possible to do something
though. Using semi-rigorous methods, asymptotic low density formulas for the ground
state energy was derived by Bogoliubov in the 1940’s and by Lee, Huang and Yang in
the 1950’s. Subsequently many attempts were made to extract rigorous results from
their methods, but only with modest success. For a rather long period of time the sub-
ject was quiescent. Now, starting with the experimental realization of Bose-Einstein
condensation in 1995, modern technology has shown it possible to test theoretical pre-
dictions for Bose gasses in labs, which in turns has inspired a renewed interest in a
rigorous understanding of these important physical systems.

The present dissertation is the result of my Ph.D.-studies at the Department of
Mathematics, Aarhus University. The aim of the project was to investigate the ground
state energy of a Bose gas in 4 spatial dimensions, motivated by a recent, but non-
rigorous, calculation of Yang. I have succeeded to obtain rigorous results verifying
Yang’s prediction to some precision (the leading order term), and almost consistent
to higher precision (the correction term). It turned out that some of the rigorous
3-dimensional methods may rather easily be applied in higher dimensions, while oth-
ers cannot (at all?). I concluded the latter after having considered a somewhat new
approach, introduced by Yau and Yin, in 4 dimensions. Instead I was able to make
a substantial simplification of their approach, and hence the title of my dissertation
contains also dimension n = 3.

There are several people I wish to thank. First and foremost I would like to thank
my advisor Professor Søren Fournais for his major commitment and patient guiding.
I would also like to thank Professor Jan Philip Solovej for helpful discussions on the
topic in chapter 4. Part of the project was carried out while I was traveling around
the world, profiting from the Danish fellowship ’Rejselegat for Matematikere’. In this
regard, I would like to thank Professor Rod Gover at the Department of Mathematics,
University of Auckland, and Professor Thomas Østergaard Sørensen at the Department
of Mathematics, Ludwig Maximillians University, München. I would like to thank
Matthias Engelmann for proof-reading part of the manuscript. Finally, I thank my wife,
Louisa, and our three children Marius, Elise and Bertram for your love and support.





Abstract

We consider a Bose gas in spatial dimension n ≥ 3 with a repulsive, radially symmetric
two-body potential V . In the limit of low density ρ, the ground state energy per particle
in the thermodynamic limit is shown to be (n − 2)|Sn−1|an−2ρ, where |Sn−1| denotes
the surface measure of the unit sphere in Rn, and a is the scattering length of V .
Furthermore, for smooth and compactly supported two-body potentials, we derive an
upper bound to the ground state energy with a correction term (1+γ)8π4a6ρ2| ln(a4ρ)|
in 4 dimensions, where 0 < γ ≤ C‖V ‖1/2∞ ‖V ‖1/21 , and a correction term which is O(ρ2)
in higher dimensions. Finally, we use a grand canonical construction to give a simplified
proof of the second order upper bound to the Lee-Huang-Yang formula, a result first
obtained by Yau and Yin. We also test this method in 4 dimensions, but with a negative
outcome.

Resume (Danish Abstract)

Vi betragter en Bose gas i rummelig dimension n ≥ 3 med et positivt, radialt sym-
metrisk par-potential V . I grænsen af lav tæthed ρ vises det, at grundtilstandsenergien
per partikel i den termodynamiske grænse er (n− 2)|Sn−1|an−2ρ, hvor |Sn−1| betegner
overfladem̊alet af enhedssfæren i Rn, og hvor a er spredningslængden af V . Endvidere,
for glatte par-potentialer med kompakt støtte udleder vi en øvre grænse til grundtil-
standsenergien med et korrektionsled (1 + γ)8π4a6ρ2| ln(a4ρ)| i 4 dimensioner, hvor

0 < γ ≤ C‖V ‖1/2∞ ‖V ‖1/21 , og med et korrektionsled O(ρ2) i højere dimensioner. Endelig
anvender vi en grand-kanonisk konstruktion til at give et simplificeret bevis for den
øvre grænse til Lee-Huang-Yang formlen, et resultat først opn̊aet af Yau og Yin. Vi
afprøver ogs̊a metoden i 4 dimensioner, men med et negativt udfald.





Chapter 1

Introduction

In this chapter we introduce the model in consideration along with relevant basic con-
cepts. We then discuss previous works by other people, and finally we give an outline
of our main results.

1.1 The Interacting Bose Gas

Consider the system of N identical particles in an n-dimensional cubic box Λ = ΛL =
(−L/2, L/2)n of side length L. The starting point for a quantum mechanical description
of this system is the N -fold tensor product

HN := H⊗ · · · ⊗ H ∼= L2(ΛN ) (1.1.1)

of the single particle Hilbert space H = L2(Λ). We assume that the particles are
bosons, meaning that we further restrict attention to the symmetric Hilbert space

Hsym
N
∼= L2

sym(ΛN ),

consisting of all Ψ ∈ HN which are invariant under arbitrary permutations of the N
coordinates. The possible states of the system are represented by the unit vectors in
Hsym
N , and each physical observable in a state Ψ is given by the expectation value

〈A〉Ψ := 〈Ψ, AΨ〉

of a self-adjoint operator A on Hsym
N . The operator corresponding to the total energy

of the system is the Hamiltonian

HN,L =
N∑
i=1

− ~2

2m
∆i + U(x1, . . . , xN ). (1.1.2)

Here ~ is the reduced Planck constant, m is the mass of a single particle and ∆i denotes
the Laplacian w.r.t. xi ∈ Rn. For simplicity we choose units so that ~2/(2m) = 1. The
sum in (1.1.2) models the total (non-relativistic) kinetic energy of the system, while



The Interacting Bose Gas

multiplication with U represents the interactions of the particles. We will assume a
pair-wise interaction, meaning that U has the form

U(x1, . . . , xN ) =
∑

1≤j<k≤N
V (xj − xk),

for some function V on Rn, usually called the two-body potential. Thus our Hamiltonian
takes the form

HN,L =

N∑
i=1

−∆i +
∑

1≤j<k≤N
V (xj − xk). (1.1.3)

We always assume that V is nonnegative, radially symmetric and Borel measurable.
To define HN,L more precisely, we consider the quadratic form

QN,L(Ψ) =

∫
ΛN

( N∑
i=1

|∇iΨ|2 +
∑

1≤j<k≤N
V (xj − xk)|Ψ|2

)
dx1 . . . dxN

on L2
sym(ΛN ) with appropriate boundary conditions. Usually these are either Dirichlet,

periodic or Neumann. That is, we consider QN,L on either of the domains

dom
(
QN,L

)
= L2

sym(ΛN ) ∩


H1(ΛN ) (Neumann)

H1
per(Λ

N ) (periodic)

H1
0 (ΛN ) (Dirichlet)

,

where H1
per(Λ

N ) denotes the set of L-periodic functions in H1(ΛN ), and H1
0 (ΛN ) de-

notes the set of functions in H1(ΛN ) vanishing at the boundary of ΛN . In either case
QN,L is a closed quadratic form, and it is a well-known fact that the corresponding
linear map, which we denote by HN,L, is then a self-adjoint operator. The ground state
energy of the Bose gas is the number

E0(N,L) := inf{〈HN,L〉Ψ : ‖Ψ‖ = 1},

or equivalently, E0(N,L) is the lowest eigenvalue of HN,L. We are interested in the
thermodynamic limit, meaning that we let N,L→∞ in a sequence with fixed density
N/Ln = ρ. Thus, the ground state energy per particle in the thermodynamic limit is
the quantity

e0(ρ) := lim
N→∞

E0(N, (N/ρ)1/n)

N
,

defined for ρ > 0. This limit is well-understood, see e.g. [19]. In particular we will
employ the facts that e0(ρ) is a convex function of ρ and independent of boundary
conditions. To calculate e0(ρ) is one of the most fundamental problems in many-body
quantum mechanics. Nevertheless, in its full generality, the problem is at the present
stage beyond reach! As we shall see below, there has been significant progress though
in understanding the asymptotics of e0(ρ) in the dilute limit ρ → 0. In this limit
the ground state energy depends to some precision only on V via the solution to the
two-body problem.

2



The Two-Body Problem

1.2 The Two-Body Problem

In dimension n ≥ 3 we let
sn := (n− 2)|Sn−1|,

where |Sn−1| denotes the surface measure of the unit sphere in Rn. Then in particular
s3 = 4π and s4 = 4π2.

Definition 1.2.1. Let n ≥ 3 and suppose that V is a nonnegative, radially symmetric
and measurable function on Rn. The scattering length of V is the number a ≥ 0 given
by

sna
n−2 = inf

u

∫
Rn
|∇u|2 +

1

2
V u2, (1.2.1)

where the infimum is taken over all nonnegative, radially symmetric functions u ∈
H1

loc(Rn) satisfying u(r) → 1 as r → ∞. If the infimum is attained, we call the
minimizer a scattering solution.

The scattering length in dimension n = 1, 2 can be defined using a local version of
(1.2.1), see [11]. With the above definition, the scattering length has indeed dimension
of length, and hence

Y := anρ

is a dimensionless quantity. Notice also that a is finite if and only if V is integrable
at infinity. Definition 1.2.1 above is motivated by the two-body problem in the limit
L→∞. In fact, it is fairly easy to show the convergence

lim
L→∞

LnE0(2, L) = sna
n−2. (1.2.2)

From (1.2.2) we can give a simple heuristic argument for the ground state energy of
the general problem. Since we are assuming particles to interact in pairs, we might
suggest that the ground state energy of the N -body problem should be close to the
ground state energy of the two-body problem times the number of pairs. That is,

E0(N,L) ≈ N(N − 1)

2
E0(2, L). (1.2.3)

Taking the thermodynamic limit and employing (1.2.2), we then obtain

e0(ρ) ≈ snan−2ρ. (1.2.4)

In fact, (1.2.4) turns out to be true, and we will prove it with rigorous upper and lower
bounds. We cannot help remark though, that in light of the complexity of the rigorous
proof of (1.2.4), it may seem surprising that the above very simple heuristic argument
yields the correct answer! It should also be noted that the approximation (1.2.3) does
not apply in dimension n = 2 (see e.g. [15]).

The general strategy for an upper bound to e0(ρ) is to construct a (trial) state with
low energy, and which is simple enough to do calculations with. Again, since we are
considering a pair-wise interaction of the particles, we might suggest that a good trial
state to the general problem can be constructed from the scattering solution. Existence,
uniqueness and other properties of the latter are established in the following theorem,
which we prove in Appendix 1.A.

3



The Two-Body Problem

Theorem 1.2.2. Let n ≥ 3. If V ∈ L1(Rn) is nonnegative, radially symmetric and
compactly supported, then the infimum in (1.2.1) is a unique minimum, and the mini-
mizer u satisfies the zero-energy scattering equation

−∆u+
1

2
V u = 0 (1.2.5)

in the sense of distributions on Rn. Moreover, u is continuous, radially symmetric,
radially increasing and satisfies

u(r) ≥ 1− (a/r)n−2,

with equality for r ≥ R0, if supp(V ) ⊂ B(0, R0).

We will consider two alternative representations for the scattering length. Suppose
that V satisfies the assumptions of Theorem 1.2.2. Let 1−w denote the corresponding
scattering solution, and let

ϕ := V w and g = V − ϕ = V (1− w).

Then w can be represented as

w(x) =
1

2
Γ(g)(x) :=

1

2sn

∫
Rn

g(y)

|x− y|n−2
dy. (1.2.6)

Indeed, (w− Γ(g)/2) is a bounded, harmonic function on Rn and hence, by Liouville’s
theorem, constant. In fact, since

|Γg(x)| ≤
‖g‖L1(Rn)

sn · dist(x, supp g)n−2
, x /∈ supp g,

we see that Γg(x)→ 0 as |x| → ∞. Since also w(x)→ 0 as |x| → ∞, the identity (1.2.6)
follows. Now, for large |x|, we have w(x) = (a/|x|)n−2 by Theorem 1.2.2. Comparing
with (1.2.6) we see that

an−2 =
1

2sn

∫
Rn

(
|x|
|x− y|

)n−2

g(y) dy,

for large |x|, and in the limit |x| → ∞, the dominated convergence theorem then yields

2sna
n−2 =

∫
Rn
g(y) dy. (1.2.7)

Given any function f ∈ L1(Rn) we let

f̂p = f̂(p) :=

∫
Rn
e−ip·xf(x) dx

denote its Fourier transform. Note that if f is real and even, then f̂ is real. We also
note that if f is radially symmetric, then so is f̂ . The function w above is not in
L1(Rn), since w(x) = (a/|x|)n−2 for large |x|. However, it follows from (1.2.5) that, as

4
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a tempered distribution, ŵ equals the function p 7→ ĝp/(2p
2). We shall abuse notation

slightly by denoting

ŵp :=
ĝp
2p2

.

By (1.2.7) we have
2sna

n−2 = ĝ0 = V̂0 − ϕ̂0. (1.2.8)

Now notice that

ϕ̂p =
1

(2π)n

∫
V̂q−pŵq dq =

1

(2π)n

∫
V̂q−p

ĝq
2q2

dq

=
1

(2π)n

∫
V̂q−pV̂q

2q2
dq − 1

(2π)n

∫
V̂q−pϕ̂q

2q2
dq.

Using this iteratively and inserting into (1.2.8), we obtain the so-called Born series

2sna
n−2 = V̂0 −

1

(2π)3

∫
V̂ 2
p

2p2
dp+

1

(2π)6

∫ ∫
V̂pV̂q−pV̂q

4p2q2
dqdp− . . .

in terms of the Fourier transform of V .

1.3 Previous Works

The first systematic and semi-rigorous treatment of the 3-dimensional problem was by
Bogoliubov in the 1940’s [2] and Lee-Huang-Yang in the 1950’s [9, 10]. In particular the
latter used the so-called pseudo-potential method to derive the asymptotic expansion

e0(ρ) = 4πaρ

(
1 +

128

15
√
π
Y 1/2 + o

(
Y 1/2

))
as Y → 0,

now known as the Lee-Huang-Yang formula (LHY). Subsequently several other deriva-
tions of LHY appeared, but unfortunately none of them were rigorous [16]. The only
rigorous result was the bounds

1

10
√

2
≤ e0(ρ)

4πaρ
≤ 1 + CY 1/3 (Y sufficiently small)

obtained by Dyson in 1957 [3]. Here C > 0 is a constant independent of V . While
Dyson’s upper bound is consistent with the leading order term in LHY, the lower bound
is off the mark by a factor 1/14. It took more than 40 years before a matching leading
order lower bound was proved. This was done by Lieb-Yngvason [14], who showed that

e0(ρ) ≥ 4πaρ
(
1− CY 1/17

)
,

for Y sufficiently small, depending on V . Dyson actually only considered the hard-core
potential, but his upper bound was later generalized to nonnegative, radially symmetric
potentials [11]. Thus there is a rigorous proof of the leading order term in LHY:

5
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Theorem 1.3.1 (Dyson/Lieb-Yngvason). Suppose that V is nonnegative, radially sym-
metric, measurable and integrable at infinity. Then

e0(ρ) = 4πaρ
[
1 + o(1)

]
as ρ→ 0.

The next problem is then to obtain a rigorous proof of the correction term in LHY.
As we shall see below there has been success regarding an upper bound. However,
for the matching lower bound there has only been limited progress. The method of
Lieb-Yngvason has been improved by J.O. Lee and Yin in [8] to yield an error term of
order ρ1/3| ln ρ|3. Also, the result of Giuliani-Seiringer [6] shows that LHY is correct
in a so-called simultaneously weak coupling and high density regime, and for a rather
narrow class of potentials. But the general problem remains open.

Unfortunately it is not easy to improve Dyson’s method directly. Instead it has
turned out successful to pass to momentum space (see Chapter 2). In [4] a trial state
of the form

Ψ = exp

(
1

2

∑
p 6=0

cpa
+
p a

+
−p +

√
N0a

+
0

)
|0〉 (1.3.1)

was used to derive the following upper bound:

Theorem 1.3.2 (Erdős-Schlein-Yau 2008). Suppose that Ṽ is nonnegative, radially
symmetric and smooth with a decay Ṽ (x) ≤ C(1 + |x|)−(3+δ), for some δ > 0. Let
λ > 0 be small and set V = λṼ . Then

e0(ρ) ≤ 4πaρ

(
1 +

128

15
√
π

(1 + Cλ)Y 1/2

)
+O(ρ2| ln ρ|) as ρ→ 0. (1.3.2)

Here a is the scattering length of V , while C > 0 is independent of V .

We see that the second order term in (1.3.2) has the correct order in Y , but the constant
is only correct in the limit of weak coupling, λ → 0. The trial state (1.3.1) is inspired
by the Bogoliubov approximation (Section 2.1), and its crucial feature is that particles
of nonzero momenta appear only in pairs of opposite momenta p,−p. A similar state
was used by Girardeau and Arnowitt in [5] in the context of a Bose gas, only here
the energy was not evaluated explicitly. We also note that the approach in [4] has the
advantage over [5] that (1.3.1) is considered in a grand canonical ensemble. This is a
technical convenience which simplifies some of the calculations.

A trial state of the form (1.3.1) is in general believed to yield the energy of LHY,
and the result of Theorem 1.3.2 above may at first sight appear to be close enough to
the desired to be repaired. This is not so easy though! In [4] the energy in the state Ψ
is calculated in terms of (integrals of various combinations of) the cp’s, and the task is
then to make the best possible choice of these coefficients. Unfortunately, this choice
is not obvious and a compromise must be taken. The strategy of [4] is to declare the
main terms in consistency with the Bogoliubov approximation, and then a posteriori
justify that the neglected terms are indeed of lower order in the energy. Finally, the
energy of the main terms is calculated explicitly (in the dilute limit) and the result is
the right-hand-side of (1.3.2). It is an interesting question whether one could make a
better choice of the cp’s e.g. by taking some of the neglected terms in consideration

6
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also. Nevertheless we want to point out the following: A trivial upper bound to e0(ρ)
can be obtained by calculating the energy of the constant function,

e0(ρ) ≤ 1

2

(∫
R3

V (x) dx

)
ρ.

The integral here is the first term in the Born approximation to 8πa, and one can easily
show that for a coupled potential V = λṼ , we then have

e0(ρ) ≤ 4πa(1 + Cλ)ρ.

The point is that, to get rid of the term Cλ, we clearly have to consider a more general
trial state. This suggests that one really has to ’do more’ than (1.3.1) in order to
capture the correct constant in LHY. The challenge was taken up by Yau and Yin in
their paper [25] from 2009. They introduced a new type of trial state, extending the
properties of (1.3.1). More precisely, they include pairs with total momentum of order
ρ1/2, the so-called soft-pair’s. This produces additional terms in the energy, and their
result is an upper bound consistent with LHY:

Theorem 1.3.3 (Yau-Yin 2009). Suppose that V is nonnegative, radially symmetric
and smooth with fast decay. Suppose furthermore that V is sufficiently small for the
Born series to converge. Then

lim sup
ρ→0

(
e0(ρ)− 4πaρ

(4πa)5/2ρ3/2

)
≤ 16

15π2
.

The proof of theorem 1.3.3 as it appears in [25] is severely complicated compared to the
proof of Theorem 1.3.2 in [4]. The reason is mainly two-fold: Firstly, the trial state of
[25] is more general, as it should be. Consequently there are more terms in the energy
to be estimated, and some of the nice symmetry properties of (1.3.1) do not apply.
Secondly, the trial state of [25] has a fixed number of particles, in contrast to [4].

Having discussed 3-dimensional results, we now turn briefly to other dimensions.
The one-dimensional case with a delta-function potential was considered by Lieb-Liniger
in [12] and turned out to be exactly solvable. In 2 dimensions the leading order term
was, to our knowledge, first identified by Schick [20] in 1971 to be 4πρ| lnY |−1. This
was rigorously proven to be correct by Lieb-Yngvason in 2001 [15]. To our knowledge
there are yet no rigorous results on the 2-dimensional correction term (in fact, it seems
that there is not even complete consensus about what this term should be: compare e.g.
[20], [24] and [17]). In [24] Yang reexamined the pseudo-potential method in dimension
2, 4 and 5. In the latter he found the method inconclusive, while he in four dimensions
derived the expansion

e0(ρ) = 4π2a2ρ
[
1 + 2π2Y | lnY |+ o

(
Y lnY

)]
as Y → 0. (1.3.3)

We remark that in Yangs paper the correction 2π2Y | lnY | appears to be 4π2Y | lnY |,
due to a minor miscalculation.

7
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1.4 Outline

In Chapter 2 we describe in more detail some of the tools applied in the subsequent
chapters. Also, we explain the Bogoliubov approximation and show how it leads to
LHY. In particular this will motivate the ansatz in (1.3.1).

In Chapter 3 we consider the Bose gas in arbitrary dimension n > 3. We first
follow the proofs of Dyson and Lieb-Yngvason and obtain n-dimensional upper and
lower bounds to e0(ρ) (Theorem 3.2.2, Theorem 3.2.3 and Corollary 3.2.10). As a
consequence we get the following n-dimensional analogue of Theorem 1.3.1 above.

Theorem 1.4.1. Let n ≥ 3 and suppose that V is nonnegative, radially symmetric,
measurable and decays faster than r−ν at infinity, where ν = (6n − 2)/5. Suppose
furthermore that V admits a scattering solution. Then

e0(ρ) = sna
n−2ρ

[
1 + o(1)

]
as ρ→ 0.

Next we employ the trial state in (1.3.1) to obtain the following second order upper
bounds.

Theorem 1.4.2. Let n ≥ 3 and suppose that V is nonnegative, radially symmetric,
smooth and compactly supported with V (0) > 0. In dimension n = 4,

e0(ρ) ≤ 4π2a2ρ
[
1 + 2π2(1 + γ)Y | lnY |

]
+O(ρ2) as ρ→ 0,

where 0 < γ ≤ C‖V ‖1/2∞ ‖V ‖1/21 . In dimension n ≥ 5,

e0(ρ) ≤ snan−2ρ+O(ρ2) as ρ→ 0.

The second order asymptotics of e0(ρ) becomes more subtle in dimension n > 3. The
correction to the energy is given in terms of certain integrals, which, in three dimensions,
are exactly computable in the limit ρ → 0, in a straight-forward manner. This is not
the case in higher dimensions, and a more careful analysis has to be carried out. In
dimension n ≥ 5 we have not even been able to identify the expansion parameter Y
in the correction term, nor an explicit coefficient. Chapter 3 (except Appendix 3.B) is
submitted as a paper. We have included it here in its submitted form, and hence there
will be minor repetitions from Chapter 1 and Chapter 2.

In Chapter 4 we consider the Bose gas in dimension 3 and 4. We carry out a grand
canonical calculation of the energy in the Yau-Yin trial state from [25]. In 3 dimensions
this yields a substantially simpler proof of the upper bound in Theorem 1.3.3 compared
to [25]. In fact, we show the following slightly stronger upper bound.

Theorem 1.4.3. Let n = 3 and suppose that V is nonnegative, radially symmetric,
smooth and compactly supported with V (0) > 0. Let 0 < η < 1/52. Then

e0(ρ) ≤ 4πaρ

(
1 +

128

15
√
π
Y 1/2

)
+O

(
ρ

3
2

+η
)

as ρ→ 0.

In 4 dimensions, unfortunately, the method does not apply. We have included the
calculations though, and we will explain in detail the reason for this break down.

8



Proof of Theorem 1.2.2

1.A Proof of Theorem 1.2.2

The proof given here is a somewhat modified version of the one found in Appendix A
in [15]. Recall that n ≥ 3 and sn := (n−2)|Sn−1|. We start by noting that any radially
symmetric function u ∈ H1

loc(Rn) is continuous away from the origin. Indeed if, say,
r > r0 > 0, then, by the fundamental theorem of calculus,

|u(r)− u(r0)| ≤
∫ r

r0

|u′(t)| dt ≤ 1

rn−1
0

∫ r

r0

|u′(t)|tn−1 dt (1.A.1)

=
1

rn−1
0 |Sn−1|

∫
r0≤|x|≤r

|∇u(x)| dx,

and the last quantity can be made arbitrarily small, by taking r sufficiently close to r0.
Suppose that supp(V ) ⊂ B(0, R0) and fix and arbitrary R > R0. Let B = B(0, R)

and define the auxiliary functional E = ER by

E(u) =

∫
B
|∇u|2 +

1

2
V |u|2

on the set D := {u ∈ H1(B) : u = 1 on ∂B}. Let E := infu∈D E(u). We claim that
E has a nonnegative, radially symmetric minimizer u ∈ D. To show this, choose a
minimizing sequence {uk} ∈ D such that E(uk)→ E. In particular the sequence E(uk)
is bounded and, since V is nonnegative, ∇uk is bounded in L2(B). Moreover, since
(uk − 1) ∈ H1

0 (B), the Poincaré inequality yields

‖uk‖L2(B) ≤ ‖uk − 1‖L2(B) + |B|1/2 ≤ C‖∇uk‖L2(B) + |B|1/2,

and hence uk is bounded in H1(B). By the Banach-Alaoglu theorem there exists a
u ∈ H1(B) and a subsequence, also denoted by uk, such that uk ⇀ u weakly in H1(B).
Since H1(B) is compactly embedded in L2(B), we may assume that uk → u in L2(B)
and consequently also that uk → u a.e. Since D is a closed and convex subset of H1(B)
it follows, by Mazur’s Theorem, that D is weakly closed and hence u ∈ D. Finally, by
weak lower semicontinuity of the L2-norm and Fatou’s Lemma, we see that

E = lim inf
k→∞

E(uk) ≥ ‖∇u‖2L2(B) +
1

2

∫
B

lim inf
k→∞

V |uk|2 = E(u),

and hence u is a minimizer. Since |u| ∈ D and E(|u|) ≤ E(u), we may assume that
u is nonnegative. Moreover, we can assume that u is radial. To see this consider the
function

us(x) :=

∫
Sn−1

u(|x|ω) dµ(ω),

where µ denotes the normalized surface measure on Sn−1. By passing into polar coor-
dinates it is evident that ‖us‖L2(B) ≤ ‖u‖L2(B) and∫

B
V u2

s ≤
∫
B
V u2.

9



Proof of Theorem 1.2.2

Moreover, an approximation argument employing the fact that D ∩ C1(B̄) is dense in
D and that D is closed, shows that us ∈ D with

∇us(x) =

∫
Sn−1

[
∇u(|x|ω) · ω

] x
|x|

dµ(ω), for x 6= 0. (1.A.2)

It follows that ‖∇us‖L2(B) ≤ ‖∇u‖L2(B), and hence E(us) ≤ E(u). We continue by
establishing further properties of u.

1. u is radially increasing. Suppose that 0 < s < t ≤ R and u(s) > u(t). Choose
τ ∈ (s, t] such that u(τ) ≤ u(r) for all r ∈ [s, t]. Then define the radial function

v(r) =

 min{u(τ), u(r)} for 0 ≤ r ≤ τ

u(r) for r > τ
.

Then v ∈ D and

E(u)− E(v) ≥ sn
∫ τ

s
u′(r)2rn−1 dr > 0,

since otherwise u′ = 0 a.e. on [s, τ ] and consequently

u(τ)− u(s) =

∫ τ

s
u′(r) dr = 0.

However, E(v) < E(u) contradicts the fact that u is a minimizer.
2. u is continuous. Since u is in H1(B) and is radial, it is continuous away from the

origin by the argument in (1.A.1). However, since u is increasing and bounded from
below, it can be chosen to be continuous at the origin also.

3. u is the only nonnegative, radial minimizer. Suppose that also v is a nonnega-
tive, radial minimizer (which by the above is continuous and radially increasing). The
function w :=

√
u2 + v2 is in H1(B) with

∇w =

(
u∇u+ v∇v)χE√

u2 + v2
,

where E := {x ∈ B : u(x)2 + v(x)2 > 0}. A direct computation shows that∫
B
|∇w|2 +

∫
E

|v∇u− u∇v|2

u2 + v2
=

∫
B
|∇u|2 +

∫
B
|∇v|2

and, since (w/
√

2) ∈ D and E(v) = E(u), it follows that

E(u) ≤ E(w/
√

2) = E(u)− 1

2

∫
E

|v∇u− u∇v|2

u2 + v2
.

Consequently
v∇u = u∇v a.e. on E. (1.A.3)

Fix 0 < ε < 1 and let A = {x ∈ B : u(x) > ε}. If A 6= B then A is an open annulus,
since u is radially increasing and continuous. Now choose an arbitrary test function
ϕ ∈ C∞0 (A), and let h = ϕ/u. Then h ∈ H1(A) with

∇h =
(∇ϕ)u− ϕ∇u

u2
.

10



Proof of Theorem 1.2.2

By (1.A.3) and an integration by parts (using that h vanishes on ∂A), we get∫
A
v∇h =

∫
A

v

u
∇ϕ−

∫
A
h∇v =

∫
A

v

u
∇ϕ+

∫
A
v∇h,

and hence ∫
A

v

u
∇ϕ = 0. (1.A.4)

Since (1.A.4) holds for any ϕ ∈ C∞0 (A), it follows that v/u is constant on A, and the
boundary conditions then yields u = v on A. We may take ε arbitrary small, so we
conclude that u = v whenever u > 0. Finally, we of course also have u = v whenever
v > 0, and hence u = v.

4. u satisfies −∆u + 1
2V u = 0 in the sense of distributions on B. Notice that

V ∈ L1(B) by assumption, and hence V u is indeed a distribution. Fix an arbitrary
v ∈ C∞0 (B). We need to show that∫

B
−u∆v +

1

2
V uv = 0. (1.A.5)

For each t ∈ R we have (u+ tv) ∈ D and

E(u+ tv) = E(u) + t2E(v) + t · Re

∫
B
∇u · ∇v +

1

2
vuv

Since u minimizes E ,

0 =
d

dt
E(u+ tv)

∣∣
t=0

= Re

∫
B
∇u · ∇v +

1

2
V uv = Re

∫
B
−u∆v +

1

2
V uv,

where the last equality follows from integration by parts and by noting that v (and
derivatives of v) vanishes on ∂B. Replacing v with −iv we find that the imaginary part
of the above integral vanishes and hence (1.A.5) holds.

5. Since u is radial and harmonic in R0 < |x| < R, and since u(R) = 1, it follows
that

u(r) = uas(r) :=
1− (α/r)n−2

1− (α/R)n−2
, R0 ≤ r ≤ R,

for some number α ≥ 0. Note that, in case α = 0, we have u = 1 on R0 ≤ |x| ≤ R,
and hence u attains its maximum in an interior point of B(0, R). From the scattering
equation and the fact that V is nonnegative it follows that u is subharmonic, and hence
u is constant. However, this implies that V = 0.

6. u(r) ≥ uas(r) for all 0 < r ≤ R. Suppose that u(ρ) < uas(ρ), for some 0 < ρ < R0.
For ε > 0 we define

hε(r) = 2
(
u(r)− (1 + ε)uas(r)

)
, 0 < r ≤ R,

Notice that hε(r) = −2εuas(r), for r ≥ R0, and in particular hε(R) = −2ε. Also, hε is
strictly decreasing on [R0, R] (if V 6= 0) and hence hε(R0) > −2ε. By the particular
choice of

ε =
uas(ρ)− u(ρ)

1− uas(ρ)
,

11



Proof of Theorem 1.2.2

we obtain hε(ρ) = −2ε. Now let Ω = {x ∈ Rn : ρ < |x| < R}. Since uas is harmonic, it
follows that hε is subharmonic on Ω and, by the maximum principle,

max
Ω̄

hε = max
∂Ω

hε = −2ε,

which contradicts the fact that hε(R0) > −2ε.
7. Employing 4. and 5., an integration by parts yields

E(u) = snα
n−2
[
1− (α/R)n−2

]−1
.

8. If R̃ > R and u, ũ denotes the corresponding minimizers of ER and ER̃ respec-
tively, then

ũ(r) = ũ(R)u(r), for r ≤ R,

which in particular shows that α is independent of R. To verify this define

v(r) =

 ũ(R)u(r), 0 ≤ r ≤ R

ũ(r), R < r ≤ R̃

Since
ER(u) ≤ ER

(
ũ/ũ(R)

)
= ũ(R)−2ER(ũ),

we get

ER̃(v) = ũ(R)2ER(u) +

∫
BR̃\BR

|∇ũ|2 +
1

2
V |ũ|2 ≤ ER̃(ũ)

and, by uniqueness, we must have v = ũ, as desired.
To summarize: for each R > R0 we have a minimizer uR of the functional ER with

the properties 1.-8. We can easily obtain the desired minimizer u of the functional in
(3.2.1). Simply let

u(r) =
[
1− (α/R)n−2

]
uR(r) for r ≤ R,

where CR :=
[
1 − (α/R)n−2

]
. By 8. u is well-defined. Fix an arbitrary nonnegative,

radial function v ∈ H1
loc(Rn) satisfying v(r)→ 1 as r →∞. Since C−1

R u minimizes ER,
we get

ER(u) = C2
RER(uR) ≤ C2

RER(v/v(R)) = C2
R/v(R)2ER(v),

and by taking the limit as R→∞, it follows that

sna
n−2 =

∫
Rn
|∇u|2 +

1

2
V |u|2

On the other hand 7. implies that

ER(u) = C2
RER(uR) = CRsnα

n−2,

and letting R→∞, we conclude that α = a. The remaining properties of u are easily
obtained from the corresponding properties of the minimizers of ER.
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Chapter 2

Momentum Space Representation

In this chapter we describe the important idea of considering the Hamiltonian in mo-
mentum space. It was this representation that led Bogoliubov to his famous approxi-
mation, which we also explain here. In particular we will motivate the Lee-Huang-Yang
formula and see how the Bogoliubov approximation leads to the ansatz in (1.3.1).

A standard trick in many-body quantum mechanics is to pass to the grand canonical
ensemble. Thus we introduce the bosonic Fock (Hilbert) space

F = FL(H) :=
∞⊕
N=0

Hsym
N (Hsym

0 = H0 := C).

The special vector |0〉 := (1, 0, 0, . . .) is called the vacuum. Operators on N -particle
spaces can then be lifted, or second quantized, to densely defined operators on the Fock
space by a componentwise action. We let

HL :=
∞⊕
N=0

HN,L (H0,L := 0) (2.0.1)

denote the second quantization of HN,L from (1.1.3). We furthermore let N = NL
denote the second quantization of multiplication with N on HN , i.e.

NΨ :=

∞⊕
N=0

NΨN .

N is called the number operator on F . Now, the obvious question is how to retrieve
information about e0(ρ) from this grand canonical setting. To answer this, we define
the ’grand canonical ground state energy’

EGC
0 (N,L) := inf

{
〈HL〉Ψ : ‖Ψ‖ = 1, 〈N〉Ψ ≥ N

}
. (2.0.2)

Here 〈·〉Ψ := 〈Ψ, ·Ψ〉F denotes the expectation value w.r.t. the inner product of the
Fock space. In Appendix 3.A we prove the following result, provided Dirichlet boundary
conditions are imposed. Of course, since the statement in the lemma concerns only the
thermodynamic limit, we expect it to hold for other boundary conditions as well.



CHAPTER 2. MOMENTUM SPACE REPRESENTATION

Lemma 2.0.1. Suppose that V ∈ L1(Rn) is nonnegative, radially symmetric and com-
pactly supported. Suppose furthermore that V ≥ εχB(0,2R), for some ε,R > 0. Then

e(ρ) = lim
L→∞

EGC
0 (ρLn, L)

ρLn
.

We remark that Lemma 2.0.1 remains true if the condition 〈N〉Ψ ≥ N in (2.0.2) is
replaced by 〈N〉Ψ = N , which might appear more natural. The idea of the proof of
Lemma 2.0.1 is to relate the canonical ground state energy to the grand canonical
ground state energy via the Legendre transform. In order for the latter to be well-
defined globally, we need high-density bounds on e0(ρ). It is at this point we need the
assumption V ≥ εχB(0,2R). Of course, if V is continuous, then V (0) > 0 suffices, and
hence this condition is imposed in the relevant theorems in the subsequent chapters.

Returning to the N -particle space in (1.1.1), we define the symmetrization Psym

initially on pure tensors in HN by

Psym(f1 ⊗ · · · ⊗ fN ) =
1

N !

∑
σ∈SN

fσ(1) ⊗ · · · ⊗ fσ(N),

where SN denotes the symmetric group of permutations of the numbers 1, . . . , N . Then
Psym extends to a bounded operator on HN in the usual way, and in fact it is an
orthogonal projection. The symmetric space is then

Hsym
N = Psym(HN ).

Given any f ∈ H we define the creation operator a∗(f) : HN → HN+1 by

a∗(f)Ψ =
√
N + 1f ⊗Ψ.

The adjoint of a∗(f) is the operator a(f) : HN+1 → HN satisfying

〈Φ, a∗(f)Ψ〉 = 〈a(f)Φ,Ψ〉, for each Φ ∈ HN+1 and Ψ ∈ HN .

We call a(f) the annihilation operator. It easily follows that

a(f)(g ⊗Ψ) =
√
N + 1〈f, g〉Ψ

for any g ∈ H and Ψ ∈ HN . More importantly we define the bosonic creation and
annihilation operators

asym(f) = a(f) and a∗sym(f) = Psyma
∗(f)

on the symmetric spaces Hsym
N . We remark that a(f) automatically maps a symmetric

space into a symmetric space. This is not the case for a∗(f) and hence we need to
compose with the symmetrization. The bosonic creation an annihilation operators are
also the adjoint of one another and furthermore, they satisfy the canonical commutation
relations (CCR):[

asym(f), asym(g)
]

= 0 =
[
a∗sym(f), a∗sym(g)

]
and

[
asym(f), a∗sym(g)

]
= 〈f, g〉I,
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CHAPTER 2. MOMENTUM SPACE REPRESENTATION

where [A,B] := AB − BA is the commutator of A with B, and where I denotes the
identity. We will apply the above general construction in a special setting. Let

Λ∗ = Λ∗L := (2π/L)Zn.

For each p ∈ Λ∗ we let up(x) = L−n/2eip·x, for x ∈ Rn. The set {up : p ∈ Λ∗} is an
orthonormal basis in H = L2(Λ). To keep notation simple we set

ap := asym(up) and a+
p := a∗sym(up).

The CCR then takes the form

[ap, aq] = 0 = [a+
p , a

+
q ] and [ap, a

+
q ] = δp,q.

Now, suppose that V, V̂ ∈ L1(Rn) with a decay

|V (x)|+ |V̂ (x)| ≤ C(1 + |x|)−(n+ε),

for some C, ε > 0. Then the L-periodization of V exists and the Poisson summation
formula holds [7]:

VL(x) :=
∑
m∈Zn

V (x+mL) =
1

Ln

∑
p∈Λ∗L

V̂pe
ip·x, x ∈ Rn. (2.0.3)

Note that

lim
L→∞

VL(x) =
1

(2π)n

∫
eip·xV̂p dp = V (x) (2.0.4)

by Fourier’s inversion formula. Suppose furthermore that V is nonnegative and radially
symmetric. Then consider

Hper
N,L :=

N∑
i=1

−∆i +
∑

1≤j<k≤N
VL(xj − xk) (2.0.5)

with periodic boundary conditions and let ẽ0(ρ) denote the corresponding ground state
energy per particle in the thermodynamic limit. Since V is nonnegative, it is clear that
V ≤ VL and consequently e0(ρ) ≤ ẽ0(ρ). However, due to the convergence in (2.0.4),
we expect that e0(ρ) = ẽ0(ρ). With the periodic potential VL one can show that in the
sense of quadratic forms [23],

Hper
N,L =

∑
p

p2a+
p ap +

1

2|Λ|
∑
p,q,r,s

p+q=r+s

V̂p−ra
+
p a

+
q aras, (2.0.6)

where all sums are over Λ∗, and where the original potential V reappears in terms of
its Fourier transform.

The creation and annihilation operators defined above do not preserve particle num-
bers, e.g. ap maps from HN into HN−1. One particular advantage of passing to the
grand canonical ensemble is that the second quantization of the creation and anni-
hilation operators (which we also denote by ap and a+

p ) are operators from F into
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The Bogoliubov Approximation

itself. Moreover, a+
p is still the (formal) adjoint of ap and the CCR, as well as the

representation (2.0.6), remain valid on a dense subset of F . Before we discuss the Bo-
goliubov approximation we will illustrate how the grand canonical ground state of the
non-interacting system can be represented in terms of creation operators. Let

Ψ0 = exp
(√

N0a
+
0

)
|0〉 :=

∞∑
m=0

(
√
N0a

+
0 )m

m!
|0〉. (2.0.7)

By employing the CCR it is easy to see that

〈Ψ0,Ψ0〉 = eN0 and 〈Ψ0,NΨ0〉 = N0.

Furthermore, it also clear that apΨ0 = 0, for each p 6= 0. Thus, if we take N0 = ρ|Λ|
and then normalize, we have the grand canonical ground state of the non-interacting
Bose gas.

2.1 The Bogoliubov Approximation

The partially heuristic presentation given here follows [5, 16] rather closely. Consider
H = Hper

L (the second quantization of (2.0.5)) on the set of normalized Fock states Ψ
with an expected number of particles 〈N〉Ψ = N := ρ|Λ|. Bogoliubov’s way of thinking
of the dilute (and hence weakly interacting) Bose gas goes as follows: The ground state
of the noninteracting system is given in (2.0.7). In this state all particles are in the
condensate, i.e. have momentum zero. ’Turning on’ the weak interaction, still the
vast majority of the particles are in the condensate, while a small amount of particle
pairs with equal and opposite momenta are created from the condensate. Only from
particle pairs, the other groups of particles, i.e. double pairs, triples and quartets, can
be created. Bogoliubov then proposes (the first ansatz) to discard all terms higher
than quadratic in ap and a+

p , for p 6= 0. Since the expected number of particles in the

condensate is given by the expectation of a+
0 a0, Bogoliubov furthermore proposes (the

second ansatz) to replace the operators a0 and a+
0 by

√
N . The resulting operator is

HBog :=
V̂0

2
ρ(N − 1) +

∑
p 6=0

(
p2 + ρV̂p

)
a+
p ap +

1

2
ρV̂p
(
αp + α+

p

)
,

where αp := apa−p. This operator can be diagonalized by a Bogoliubov transformation
exp

(
F
)
, where

F =
1

2

∑
p6=0

γp
(
αp − α+

p

)
and γ : Λ∗\{0} → R is some even function to be chosen appropriately. Note that iF is
self-adjoint, and hence exp

(
F
)

is unitary. We define the new ’creation and annihilation
operators’

bp := eFape
−F and b+p = eFa+

p e
−F .

Since exp
(
F
)

is unitary, the bp’s also satisfy the CCR. Now, we claim that

bp = ap cosh γp + a+
−p sinh γp. (2.1.1)
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The Bogoliubov Approximation

To show this we introduce

ap(ε) := eεFape
−εF , ε ∈ R.

Taking (formally) derivative w.r.t. ε we obtain

dap
dε

(ε) = FeεFape
−εF − eεFapFe−εF = [F (ε), ap(ε)],

where F (ε) := eεFFe−εF , and where we have also used that F commutes with eεF in
the last equality. We continue to calculate

[F (ε), ap(ε)] = eεF [F, ap]e
−εF

=
1

2
eεF
(
γp[ap, α

+
p ] + γ−p[ap, α

+
−p]
)
e−εF

= γpa
+
−p(ε),

where we have employed the commutator identity [A,BC] = [A,B]C + B[A,C], the
CCR and γ−p = γp to obtain the last equality. Thus we have

dap
dε

(ε) = γpa
+
−p(ε).

Since differentiation commutes with complex conjugation, it then follows that

d2ap
dε2

(ε) = γ2
pap(ε).

The general solution to this ODE is

ap(ε) = Ap cosh(γpε) +Bp sinh(γpε),

and the boundary condition ap(0) = ap yields Ap = ap, while

γpa
+
−p = γpa

+
−p(0) =

dap
dε

(0) = γpBp.

This verifies (2.1.1). By choosing

tanh(2γp) =
ρV̂p

p2 + ρV̂p
,

it follows from a lengthy, but straight forward, calculation that

HBog = EBog
0 +

∑
p 6=0

(
p4 + 2ρp2V̂p

)1/2
b+p bp,

where

EBog
0 :=

V̂0

2
ρ(N − 1) +

1

2

∑
p 6=0

p2

[(
1 +

2ρV̂p
p2

)1/2

− 1− ρV̂p
p2

]
.
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The Bogoliubov Approximation

Since b+p bp is a nonnegative operator, it is now clear the (non-normalized) ground state

of HBog is
ΨBog = eFΨ0,

with Ψ0 given in (2.0.7), and the ground state energy is then simply EBog
0 . In the

thermodynamic limit we have (replacing sums with integrals)

eBog
0 (ρ) := lim

L→∞

EBog
0

ρLn

=
V̂0

2
ρ+

1

2(2π)nρ

∫
Rn
p2

[(
1 +

2ρV̂p
p2

)1/2

− 1− ρV̂p
p2

]
dp

=
1

2

{
V̂0 −

1

2(2π)n

∫
V̂ 2
p

p2
dp

}
ρ+Q(ρ), (2.1.2)

where

Q(ρ) :=
1

2(2π)nρ

∫
Rn
p2

[(
1 +

2ρV̂p
p2

)1/2

− 1− ρV̂p
p2

+
ρ2V̂ 2

p

2p4

]
dp.

We recognize the terms in the curly brackets in (2.1.2) as the the first two terms in
the Born series (Section 1.2), which we denote by 8πa0 respectively 8πa1. Assume
that n = 3. By a change of variables p 7→ (V̂0ρ)1/2p and the dominated convergence
theorem, we find that

lim
ρ→0

Q(ρ)

ρ3/2V̂
5/2

0

=
1

2(2π)3

∫
R3

p2

[(
1 +

2

p2

)1/2

− 1− 1

p2
+

1

2p4

]
dp =

1

2(8π)3/2

128

15
√
π
,

and hence

Q(ρ) = 4πa0ρ
128

15
√
π

(
a3

0ρ
)1/2

+ o
(
ρ3/2

)
as ρ→ 0.

Thus we have shown the asymptotic formula

eBog
0 (ρ) = 4π(a0 + a1)ρ+ 4πa0ρ

128

15
√
π

(a3
0ρ)1/2 + o

(
ρ3/2

)
as ρ→ 0.

Assuming that indeed eBog
0 (ρ) ≈ e0(ρ) and replacing a0 + a1 respectively a0 with the

full scattering length a, we arrive at the Lee-Huang-Yang Formula. We end this chapter
by remarking that, using the CCR, the Bogoliubov ground state above may be written
in the form

ΨBog = exp

(
1

2

∑
p 6=0

cpa
+
p a

+
−p +

√
N0a

+
0

)
|0〉, (2.1.3)

where

cp :=
1−

√
1 + 2ρp−2V̂p

1−
√

1 + 2ρp−2V̂p

.

In Section 3.3 we shall use the ansatz in (2.1.3), not a priori fixing the cp’s.

18



Chapter 3

The Ground State Energy in
Dimension n > 3

Abstract : We consider a Bose gas in spatial dimension n > 3 with a repulsive, radially
symmetric two-body potential V . In the limit of low density ρ, the ground state energy
per particle in the thermodynamic limit is shown to be (n−2)|Sn−1|an−2ρ, where |Sn−1|
denotes the surface measure of the unit sphere in Rn and a is the scattering length of
V . Furthermore, for smooth and compactly supported two-body potentials, we derive
upper bounds to the ground state energy with a correction term (1+γ)8π4a6ρ2| ln(a4ρ)|
in dimension n = 4, where 0 < γ ≤ C‖V ‖1/2∞ ‖V ‖1/21 , and a correction term which is
O(ρ2) in higher dimensions.

3.1 Introduction

The experimental realization of Bose-Einstein Condensation in 1995 [1] has inspired
renewed interest in a rigorous understanding of the interacting Bose gas, and in partic-
ular the ground state energy. The typical model for the energy of N bosons enclosed
in a box Λ = ΛL := (−L/2, L/2)n, is the Hamiltonian

HN,L =
N∑
i=1

−∆i +
∑

1≤j<k≤N
V (xj − xk) (3.1.1)

on L2
sym(ΛN ) (the set of totally symmetric L2-functions on ΛN ). Here units are chosen

such that ~2/2m = 1, where m is the mass of a particle. We will always assume that
the two-body potential V is a nonnegative and radially symmetric function on Rn. Let

E0(N,L) := inf σ(HN,L) = inf{〈Ψ, HN,LΨ〉 : ‖Ψ‖ = 1}

denote the ground state energy of the Bose gas, and let

e0(ρ) := lim
N→∞

E0(N, (N/ρ)1/n)

N
(3.1.2)

denote the ground state energy per particle in the thermodynamic limit at density
ρ > 0. The latter is independent of whatever boundary conditions imposed on Λ. We
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let a denote the scattering length of V (see section 3.2) and note that Y := anρ is a
dimensionless quantity.

In dimension n = 3, the asymptotic behavior of e0(ρ) in the limit of low density
was studied by Bogoliubov [2], Lee-Yang [10] and Lee-Huang-Yang [9] in the 1940-50’s.
In particular, the latter applied the pseudopotential method to derive the expansion

e0(ρ) = 4πaρ

(
1 +

128

15
√
π
Y 1/2 + o

(
Y 1/2

))
as Y → 0,

now known as the Lee-Huang-Yang formula (LHY). To give a mathematical proof of
LHY is still an open problem, except in a special case of ρ in a so-called simultaneously
weak coupling and high density regime, and for a rather narrow class of potentials
[6]. Even to prove the leading order term in LHY turned out to be a hard problem:
A variational calculation carried out by Dyson in 1957 [3] showed the upper bound
e0(ρ) ≤ 4πaρ(1 + CY 1/3), for hard-core interactions. This has later been generalized
to general nonnegative, radially symmetric potentials [13]. However, no proof of a
matching, leading order lower bound was available until 1998, where Lieb-Yngvason
managed to show that e0(ρ) ≥ 4πaρ(1 − CY 1/17). Their approach was improved in
[8] to yield e0(ρ) ≥ 4πaρ(1 − Cρ1/3| ln ρ|3). At the present time, no lower bound has
captured even the correct order in the expansion parameter Y in LHY. For the upper
bound there has been success though: In [4] a trial state of the form

Ψ = exp

(
1

2

∑
p 6=0

cpa
+
p a

+
−p +

√
N0a

+
0

)
|0〉 (3.1.3)

was used to derive an upper bound

e0(ρ) ≤ 4πaρ

(
1 +

128

15
√
π

(1 + Cλ)Y 1/2

)
+ C̃ρ2| ln ρ|,

for a coupled two-body potential V = λṼ . While the correction term has the correct
order in Y , the constant is only correct in the limit of weak coupling, λ → 0. The
(Fock) trial state (3.1.3) is inspired by the Bogoliubov approximation, and the crucial
feature is that particles of nonzero momenta appear only in pairs of opposite momenta.
Similar states have previously been considered by Girardeau-Arnowitt [5] and Solovej
[22] in the context of Bose gases. In a paper from 2009 [25] Yau-Yin introduced a new
trial state, extending the properties of (3.1.3). More precisely, they include pairs with
total momentum of order ρ1/2 (however their trial state has a fixed number of particles
in contrast to (3.1.3)). This turns out to lower the energy significantly and their result
is an upper bound consistent with LHY. We note however that the calculation with the
Yau-Yin trial state is somewhat more involved than the computation with (3.1.3).

The model (3.1.1) has also been studied in other dimensions. The case n = 1 (with
a delta-function potential) was already considered back in 1963 by Lieb-Liniger [12]
and turned out to be exactly solvable. In two dimensions, the leading order term was,
to our knowledge, first identified by Schick [20] in 1971 to be 4πρ| ln(a2ρ)|−1. This was
rigorously proven to be correct by Lieb-Yngvason in 2001 [15]. To our knowledge there
are yet no rigorous results on the 2-dimensional correction term (in fact, it seems that

20



The Leading Order Term

there is not even consensus about what this term should be: compare e.g. [20], [24]
and [17]). In [24] Yang reexamined the pseudopotential method in dimension two, four
and five. In the latter he found the method inconclusive, while he in four dimensions
derived the expansion

e0(ρ) = 4π2a2ρ
[
1 + 2π2Y | lnY |+ o

(
Y lnY

)]
as Y → 0. (3.1.4)

We remark that in Yangs paper the correction 2π2Y | lnY | appears to be 4π2Y | lnY |,
due to a minor miscalculation.

In this paper we test some of the rigorous 3-dimensional calculations in higher
dimensions. We follow the proofs of Dyson and Lieb-Yngvason to obtain the n-
dimensional upper- and lower bounds (Theorem 3.2.2 and Theorem 3.2.3),

1− CY α ≤ e0(ρ)

snan−2ρ
≤ 1 + CY β, (3.1.5)

where sn := (n− 2)|Sn−1|, |Sn−1| denotes the surface measure of the unit sphere in Rn
and where

α =
n− 2

n(n+ 2) + 2
and β =

n− 2

n
.

Secondly, we employ the trial state (3.1.3) to improve the upper bounds. In dimension
n = 4 we show that (Theorem 3.3.1)

e0(ρ) ≤ 4π2a2ρ
[
1 + 2π2(1 + γ)Y | lnY |

]
+ CV ρ

2,

where 0 < γ ≤ C‖V ‖1/2∞ ‖V ‖1/21 , consistent with (3.1.4) in the limit of weak coupling.
In dimension n ≥ 5 the calculation yields the upper bound (Theorem 3.3.1)

e0(ρ) ≤ snan−2ρ+ Cρ2.

The second order asymptotics of e0(ρ) becomes more subtle in dimension n > 3. The
correction to the energy is given in terms of certain integrals, which, in three dimensions,
are exactly computable in the limit ρ → 0, in a straight-forward manner. This is not
the case in higher dimensions, and a more careful analysis has to be carried out. In
dimension n ≥ 5 we have not been able to identify the expansion parameter Y in the
correction term, nor an explicit coefficient.

Finally, since (3.1.3) is a Fock state, we need the fact that the canonical ground state
energy defined in (3.1.2) can be recovered from the grand-canonical setting. Although
this is a well-known result, we did not come across a good reference for it, and hence
we have included a proof in Appendix 3.A.

3.2 The Leading Order Term

In this section we prove the upper and lower bounds in (3.1.5). We will assume that V
is a nonnegative, radial and measurable function on Rn, where n ≥ 3. The scattering
length of V is denoted by a and may be defined via the variational problem (see e.g.
[11], [26])

sna
n−2 := inf

u

∫
Rn
|∇u|2 +

1

2
V u2, (3.2.1)
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The Leading Order Term

where the infimum is taken over all nonnegative, radially symmetric functions u ∈
H1

loc(Rn) satisfying u(r) → 1 as r → ∞. Notice that such functions are automatically
continuous away from the origin. Also, it is easy to see that we may restrict attention
to radially increasing functions. Moreover, we remark that a is finite if and only if V is
integrable at infinity. In many cases the infimum in (3.2.1) is a unique minimum, and
the minimizer u satisfies the zero-energy scattering equation

−∆u+
1

2
V u = 0 (3.2.2)

in the sense of distributions on Rn. The existence of a scattering solution for a non-
negative, radially symmetric and compactly supported potential is established in [15].
We note briefly some properties of the scattering solution u, referring to [15], [11] for
details:

(i) For large r, u(r) ≈ 1− (a/r)n−2, or more precisely

lim
r→∞

1− u(r)

(a/r)n−2
= 1. (3.2.3)

In fact
u(r) ≥ 1− (a/r)n−2, (3.2.4)

with equality for r > R0 if supp(V ) ⊂ B(0, R0).

(ii) Monotonicity: If V ≤ Ṽ , then a ≤ ã, while u ≥ ũ.

(iii) Regularity imposed on V is inherited by u. For instance, one may apply elliptic
regularity and Sobolev imbedding’s to show that if V is smooth, so is u.

(iv) For V ∈ L1(Rn), it follows from (4.B.2) that u can be represented as

1− u(x) =
1

2
Γ(V u)(x) :=

1

2sn

∫
Rn

V (y)u(y)

|x− y|n−2
dy. (3.2.5)

By (3.2.3) and the dominated convergence theorem it then follows that

2sna
n−2 =

∫
Rn
V (x)u(x) dx. (3.2.6)

The main result of this section is the following, which is an immediate consequence
of Theorem 3.2.2 and Corollary 3.2.10 below.

Theorem 3.2.1. Let n ≥ 3 and suppose that V is nonnegative, radially symmetric,
measurable and decays faster than r−ν at infinity, where ν = (6n − 2)/5. Suppose
furthermore that V admits a scattering solution. Then

lim
ρ→0

e0(ρ)

snan−2ρ
= 1. (3.2.7)
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The Leading Order Term

3.2.1 The Upper Bound

We have the following dimensional generalization of [3], [11].

Theorem 3.2.2. Let n ≥ 3 and suppose that V is nonnegative, radially symmetric and
measurable.

(i) Without further assumptions,

lim sup
ρ→0

e0(ρ)

snan−2ρ
≤ 1.

(ii) There exist C, δ > 0 independent of V such that, if V admits a scattering solution,
then

e0(ρ) ≤ snan−2ρ
[
1 + CY 1−2/n

]
,

whenever Y ≤ δ.

Proof. We employ the periodic trial state of Dyson [3]. This state is not symmetric,
but since the ground state of HN,L on the full space L2(ΛN ) is symmetric [11], we
obtain an upper bound to e0(ρ). Suppose that u ∈ H1

loc(Rn) is nonnegative, radially
symmetric, increasing and moreover that u(r) → 1 as r → ∞. The trial state is then
defined by

Ψ := F2 · F3 · · ·FN ,

where

Fi := min
1≤j<i

[
min
m∈Z

f(xi − xj −mL)

]
and

f(r) :=


u(r)
u(b) 0 ≤ r ≤ b

1 r > b
,

for some (large) b > 0 to be chosen. Following the calculation in [11] we obtain

e0(ρ) ≤
Jρ+ 2

3(Kρ)2

(1− Iρ)2
, (3.2.8)

where

I :=

∫
(1− f(x)2) dx, K :=

∫
f(x)|∇f(x)| dx

and

J :=

∫
|∇f(x)|2 +

1

2
V (x)f(x)2 dx.

It follows that

lim sup
ρ→0

e0(ρ)ρ−1 ≤ J ≤ 1

u(b)2

∫
|∇u(x)|2 +

1

2
V (x)u(x)2 dx,

where we have used

f(r) ≤ u(r)

u(b)
and f ′(r) ≤ u′(r)

u(b)
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The Leading Order Term

in the latter inequality. In the limit b→∞ we get

lim sup
ρ→0

e0(ρ)ρ−1 ≤
∫
|∇u(x)|2 +

1

2
V (x)u(x)2 dx,

and minimizing over u yields (i), by definition of the scattering length.
In case V admits a scattering solution, we apply the above construction with u being

this particular function. The bound (3.2.4) then allow us to estimate more explicitly.
Indeed, we have f(r) ≥ [1− (a/r)n−2]+, and hence

I ≤ |Sn−1|
(∫ a

0
rn−1 dr +

∫ b

a
2an−2r dr

)
≤ |Sn−1|an−2b2.

Next,

J ≤ sna
n−2

u(b)2
≤ sna

n−2

(1− (a/b)n−2)2
,

provided b > a. Finally, using f(r) ≤ 1 and an integration by parts yields

K ≤ |Sn−1|
∫ b

0
f ′(r)rn−1 dr ≤ |Sn−1|

(
bn−1 − (n− 1)

∫ b

0
f(r)rn−2 dr

)
.

However, ∫ b

0
f(r)rn−2 dr ≥

∫ b

a

[
1− (a/r)n−2

]
rn−2 dr

=
bn−1

n− 1
− an−2b+

n− 2

n− 1
an−1 ≥ bn−1

n− 1
− an−2b,

and hence K ≤ |Sn−1|(n− 1)an−2b. Now, by choosing b := (|Sn−1|ρ)−1/n, we have

(a/b)n−2 = |Sn−1|an−2b2ρ = Ỹ β,

where Ỹ := |Sn−1|Y and β := (n− 2)/n. In total we have

e0(ρ) ≤ snan−2ρ

[
1

(1− Ỹ β)4
+

CY β

(1− Ỹ β)2

]
≤ snan−2ρ

(
1 + C̃Y β

)
,

provided Ỹ is bounded away from 1.

3.2.2 The Lower Bound

In this section we prove an n-dimensional lower bound by following the steps in [14].
The assumption of compact support in Theorem 3.2.3 below is relaxed in Corollary
3.2.10.

Theorem 3.2.3. Let n ≥ 3 and suppose that V is nonnegative, radially symmetric,
measurable and compactly supported with, say, supp(V ) ⊂ B(0, R0). There exist C, δ >
0 independent of V such that

e0(ρ) ≥ snan−2ρ
(
1− CY α

)
,
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The Leading Order Term

where

α :=
n− 2

n(n+ 2) + 2
, (3.2.9)

provided

Y ≤ min
{
δ, (a/R0)

n−2
5α
}
. (3.2.10)

In order to prove Theorem 3.2.3 we consider H = HN,L with Neumann boundary
conditions on Λ. The first step is to obtain an n - dimensional version of Dyson’s
lemma. In what follows we set

an := (n− 2)an−2.

Lemma 3.2.4 (Dyson’s Lemma). Suppose that U is a measurable, nonnegative and
radially symmetric function on Rn, which satisfies

U(r) = 0, for r ≤ R0, and

∫ ∞
0

U(r)rn−1 dr ≤ 1.

Let B ⊆ Rn be open and star shaped w.r.t. the origin. Then∫
B
|∇ϕ(x)|2 +

1

2
V (x)|ϕ(x)|2 dx ≥ an

∫
B
U(x)|ϕ(x)|2 dx,

for each ϕ ∈ H1(B).

Proof. For any ω ∈ Sn−1 we let

R(ω) = sup{r ≥ 0 : sω ∈ B, for each 0 ≤ s ≤ r}

denote the (possibly infinite) distance from the origin to the boundary of B in the
direction of ω. Since B is open and star shaped w.r.t. the origin, it follows that, for
any r ≥ 0, rω ∈ B if and only if r < R(ω). By passing into polar coordinates, we then
see that it suffices to show that, for each fixed ω ∈ Sn−1,∫ R(ω)

0

(
|f ′(r)|2 +

1

2
V (r)|f(r)|2

)
rn−1 dr ≥ an

∫ R(ω)

0
U(r)|f(r)|2rn−1 dr, (3.2.11)

where f(r) := ϕ(rω) with |f ′(r)| ≤ |∇ϕ(rω)|. We may assume that R(ω) > R0, since
otherwise the right hand side in (3.2.11) vanishes, and we claim that∫ R(ω)

0

(
|f ′(r)|2 +

1

2
V (r)|f(r)|2

)
rn−1 dr ≥ an|f(R)|2, (3.2.12)

for each R0 < R < R(ω). Indeed, if f(R) 6= 0, then the function u given by u(x) =
|f(|x|)/f(R)| for |x| ≤ R and u(x) = 1 for |x| > R is admissible in (3.2.1), and since
V (r) = 0, for r > R, it follows that

sna
n−2 ≤ |S

n−1|
|f(R)|2

∫ R(ω)

0

(
|f ′(r)|2 +

1

2
V (r)|f(r)|2

)
rn−1 dr.

Now (3.2.11) follows by multiplying both sides of (3.2.12) with U(R)Rn−1 and then
integrating w.r.t. R.
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The Leading Order Term

Corollary 3.2.5. Suppose that U satisfies the conditions of Lemma 3.2.4, and define

W :=
N∑
i=1

U ◦ ti, ti(x1, . . . , xN ) := min
j 6=i
|xi − xj |.

Then H ≥ anW .

Proof. Since V is nonnegative and radial,

N∑
i=1

V (ti(~x)) ≤
N∑
i=1

∑
j<i

V (xi − xj) +
N∑
i=1

∑
j>i

V (xi − xj) = 2
∑
i<j

V (xi − xj),

for each ~x = (x1, . . . , xN ), and hence

H ≥
N∑
i=1

(
−∆i +

1

2
V ◦ ti

)
. (3.2.13)

We focus on the first term i = 1, and fix x2, . . . , xN ∈ Λ. For j 6= 1 define

Bj = {x1 ∈ Λ : t1(~x) = |x1 − xj |}.

Fix an arbitrary ψ ∈ H1(ΛN ). By a change of variables x1 7→ x1 + xj , and by noting
that (Bj − xj) is star shaped w.r.t. the origin (indeed convex), we may apply Dyson’s
lemma to obtain∫

Bj

|∇1ψ(~x)|2 +
1

2
V (ti(~x))|ψ(~x)|2 dx1 ≥ an

∫
Bj

U(t1(~x))|ψ(~x)|2 dx1, (3.2.14)

for each j 6= 1. Moreover, since the Bj ’s cover Λ disjointly (a.e.), we conclude that
(3.2.14) holds with Bj replaced by Λ. Then, by Fubini’s theorem,∫

ΛN
|∇1ψ(~x)|2 +

1

2
V (t1(~x))|ψ(~x)|2 d~x ≥ an

∫
ΛN

U(t1(~x))|ψ(~x)|2 d~x.

We get analogous contributions from i = 2, . . . , N in (3.2.13), and upon adding them,
we obtain the result.

We now combine Corollary 3.2.5 with Temple’s inequality [18] in a perturbative
approach. The parameters R and ε appearing below will be chosen appropriately later
on.

Lemma 3.2.6. Let 0 < ε < 1 and R0 < R < L/2. Suppose that

G(N,L) := επ2L−2 − snan−2L−nN2 > 0.

Then
E0(N,L) ≥ N(N − 1)K(N,L),

where

K(N,L) :=
sna

n−2

Ln
(1− ε)

(
1− 2R

L

)n(
1− vn

Rn

Ln

)N−2(
1− n(n− 2)an−2N

(Rn −Rn0 )G(N,L)

)
Here vn denotes the measure of the unit ball in Rn.
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Proof. Suppose that U and W are as in Lemma 3.2.4 respectively Corollary 3.2.5.
Together with the fact that V is nonnegative, we then have a lower bound

H = εH + (1− ε)H ≥ −ε∆ + (1− ε)anW =: H̃,

and consequently
E0(N,L) ≥ Ẽ0(N,L) := inf σ(H̃). (3.2.15)

We estimate Ẽ0(N,L) by employing Temple’s inequality in the ground state of −ε∆
(with Neumann Boundary conditions), which is the constant function ϕ0(x) ≡ |Λ|−N/2
with corresponding eigenvalue zero. Given any operator A on L2(ΛN ) with domain
containing ϕ0, we let 〈A〉 = 〈ϕ0, Aϕ0〉. Temple’s inequality and (3.2.15) yields

E0(N,L) ≥ 〈H̃〉 − 〈H̃
2〉 − 〈H̃〉2

Ẽ1 − 〈H̃〉

= (1− ε)an〈W 〉 −
(1− ε)2a2

n

(
〈W 2〉 − 〈W 〉2

)
Ẽ1 − (1− ε)an〈W 〉

,

provided 〈H̃〉 < Ẽ1, where Ẽ1 is the second lowest eigenvalue of H̃. Note however that,
since W is nonnegative, we have H̃ ≥ −ε∆, and hence Ẽ1 ≥ επ2/L2, which is the
second lowest eigenvalue of −ε∆. We now choose the function U to be

U(r) :=

 n(Rn −Rn0 )−1 for R0 < r < R

0 otherwise
.

By discarding the term 〈W 〉2, replacing (1 − ε) by 1 in two appropriate places and
employing the fact that

〈W 2〉 ≤ n ·N(Rn −Rn0 )−1〈W 〉,

we obtain

E0(N,L) ≥ (1− ε)an〈W 〉
[
1− nanN

(Rn −Rn0 )
(
επ2/L2 − an〈W 〉

)], (3.2.16)

provided an〈W 〉 < επ2/L2. To estimate this further, we need upper and lower bounds
on 〈W 〉, and we claim that

|Sn−1|
Ln

N(N − 1)
(
1− 2R/L

)n(
1− vnRn/Ln

)N−2 ≤ 〈W 〉 ≤ |S
n−1|
Ln

N(N − 1). (3.2.17)

This will conclude the proof of the lemma. For the upper bound in (3.2.17) we fix
x1 ∈ Λ and notice that

{
(x2, . . . , xN ) ∈ ΛN−1 : R0 < t1(~x) < R

}
⊆

N⋃
j=2

Fj ,
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where ~x = (x1, . . . , xN ) and Fj = ΛN−1, except that the j’th factor is replaced by
B(x1, R)\B(x1, R0). It follows that∫

ΛN−1

U(t1(~x)) dx2 . . . dxN ≤
n

Rn −Rn0

N∑
j=2

|Fj | = |Sn−1|(N − 1)|Λ|N−2.

By integrating over x1 ∈ Λ and then adding the identical contributions from the in-
tegrals of U(t2), . . . , U(tN ), we arrive at the upper bound in (3.2.17). To verify the
lower bound, we let Λ′ ⊆ Λ denote the cube with same center as Λ but with side length
L− 2R. Fix x1 ∈ Λ′ and notice that B(x1, R) ⊆ Λ. We then have

N⋃
j=2

Ej ⊆
{

(x2, . . . , xN ) ∈ ΛN−1 : R0 < t1(~x) < R
}
, (3.2.18)

where
Ej = (Λ\B(x1, R))N−1

except again that the j’th factor is replaced by B(x1, R)\B(x1, R0). Since the Ej ’s are
pairwise disjoint, (3.2.18) implies that∫

ΛN−1

U(t1(~x)) dx2 . . . dxN ≥
n

Rn −Rn0

N∑
j=2

|Ej | = |Sn−1|(N − 1)(|Λ| − vnRn)N−2,

and integrating over Λ ⊃ Λ′ 3 x1, we obtain∫
ΛN

U(t1(~x)) d~x ≥ |Sn−1|(N − 1)(L− 2R)n(|Λ| − vnRn)N−2.

Again, by adding identical contributions from the integrals of U(t2), . . . , U(tN ), we have
proved (3.2.17) and with it the lemma.

Note that, for fixed ρ > 0,

G(ρLn, L) ≤ π2L−2 − snan−2ρ2Ln < 0,

for large L, so Lemma 3.2.6 may not immediately be applied to get estimates in the
thermodynamic limit.

Lemma 3.2.7. The mapping N 7→ E0(N,L) is superadditive, i.e.,

E0(k +m,L) ≥ E0(k, L) + E0(m,L), for all k,m ∈ N.

Proof. Fix an arbitrary normalized ψ ∈ H1(Λk+m). Since V is nonnegative, it follows
that

〈ψ,Hψ〉 ≥
∫

Λk+m

k∑
i=1

|∇iψ|2 +
∑

1≤i<j≤k
V (xi − xj)|ψ|2 (3.2.19)

+

∫
Λk+m

k+m∑
i=k+1

|∇iψ|2 +
∑

k+1≤i<j≤k+m

V (xi − xj)|ψ|2.
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Then, by Fubini’s theorem,∫
Λk+m

k∑
i=1

|∇iψ|2 +
∑

1≤i<j≤k
V (xi − xj)|ψ|2 ≥

∫
Λm

(
E0(k, L)

∫
Λk
|ψ|2

)
= E0(k, L),

and similarly for the second term on the right-hand side in (3.2.19) .

Lemma 3.2.8. Suppose that L/l ∈ N. Then

E0(N,L) ≥M ·min
N∑
m=0

cmE0(m, l), (3.2.20)

where M := (L/l)n and where the minimum is over all tuples (c0, . . . , cN ) of numbers
cm ≥ 0 subject to the conditions

N∑
m=0

cm = 1 and
N∑
m=0

mcm = N/M. (3.2.21)

Proof. We partition Λ into M disjoint boxes Λ1, . . . ,ΛM , each of side length l. Corre-
spondingly we have a partition {Ωβ} of ΛN ,

Ωβ := Λβ1 × . . .× ΛβN , β = (β1, . . . , βN ), 1 ≤ βj ≤M,

and hence

〈ψ,Hψ〉 =
∑
β

∫
Ωβ

N∑
i=1

|∇iψ|2 +
∑
i<j

V (xi − xj)|ψ|2. (3.2.22)

Fix a β as above. By Fubini’s theorem, the integration regime Ωβ may be replaced
by Λα1

1 × . . . × ΛαMM , for some multiindex α ∈ NM0 with length |α| = N . For each
0 ≤ m ≤ N , we let M · cm denote the number of components of α equal to m. By
following the proof of Lemma 3.2.7, we split the kinetic energy into appropriate terms,
and discard interactions between particles in different boxes to obtain the lower bound∫

Ωβ

. . . ≥
(∫

Ωβ

|ψ|2
) M∑
j=1

E0(αj , l)

=

(∫
Ωβ

|ψ|2
)
M

N∑
m=0

cmE0(m, l)

≥
(∫

Ωβ

|ψ|2
)
M min

( N∑
m=0

cmE0(m, l)

)
.

Employing this estimate in (3.2.22) yields the result.

Lemma 3.2.9. Let ρ = N/Ln. Suppose that L/l ∈ N, R0 < R < l/2 and G(4ρln, l) >
0. Then

E0(N,L)

N
≥ (ρln − 1)K(4ρln, l).
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The Leading Order Term

Proof. Suppose that cm ≥ 0 satisfies (3.2.21). We split the sum in (3.2.20) into two
parts: ∑

m

cmE0(m, l) =
∑
m<p

cmE0(m, l) +
∑
m≥p

cmE0(m, l), (3.2.23)

for some p ∈ N to be chosen. Suppose for now that G(p, l) > 0. Since G(N,L) and
K(N,L) are decreasing functions of N , Lemma 3.2.6 implies that

E0(m, l) ≥ m(m− 1)K(p, l), for 0 ≤ m ≤ p, (3.2.24)

and hence ∑
m<p

cmE0(m, l) ≥ K(p, l)
∑
m<p

cmm(m− 1).

Let t :=
∑

m<pmcm. By the Cauchy-Schwarz inequality,

t2 ≤

(∑
m<p

m2cm

)(∑
m<p

cm

)
≤
∑
m<p

m2cm,

and it follows that ∑
m<p

cmm(m− 1) ≥ t(t− 1).

Thus we have ∑
m<p

cmE0(m, l) ≥ K(p, l)t(t− 1).

We now employ the superadditivity of m 7→ E0(m, l) (Lemma 3.2.7) to obtain a lower
bound on the second sum on the right hand side in (3.2.23). For m ≥ p we write
m = bm/pcp+ r, where bm/pc denotes the lower integer part of m/p and r ∈ N0 is the
remainder. Notice that bm/pc ≥ m/(2p) always. The superadditivity of E0(m, l) then
yields

E0(m, l) ≥ m/(2p)E0(p, l),

and it follows that∑
m≥p

cmE0(m, l) ≥ E0(p, l)

2p
(k − t) ≥ 1

2
(p− 1)(k − t)K(p, l),

where k := N/M = ρln. Altogether we have

N∑
m=0

cmE0(m, l) ≥ K(p, l)
[
t(t− 1) +

1

2
(p− 1)(k − t)

]
.

The choice p = b4kc implies that x 7→
(
x(x − 1) + 1

2(p − 1)(k − x)
)

is decreasing on
[0, k], which is where t lies, and hence the minimum is taken at x = k. Thus we have
that

E0(N,L)

N
≥ 1

ρln

∑
m

cmE0(m, l) ≥ K(p, l)(k − 1),

as claimed.
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The Leading Order Term

We can now finish the proof of Theorem 3.2.3.

Proof of Theorem 3.2.3. Suppose that the conditions of Lemma 3.2.9 are satisfied. Re-
call that Y = anρ. Then

E0(N,L)

N
≥ sna

n−2ρ
(
1− ε

)(
1− 2nR/l

)[
1− Y −1(a/l)n

]
×

[
1− 4vnY (l/a)n(R/l)n

][
1− 4n(n− 2)lnY

(Rn −Rn0 )(επ2(a/l)2 − 16snY 2(l/a)n)

]
.

We now make the ansatz

ε = Y α, a/l = Y β,
Rn −Rn0

ln
= Y γ ,

for exponents α, β, γ > 0. In particular this implies that(
R

l

)n
= Y γ +

(
R0

a

)n
Y nβ ≤ 2Y γ ,

provided

Y ≤
(
a

R0

)n/(nβ−γ)

. (3.2.25)

Thus we have

E0(N,L)

N
≥ sna

n−2ρ
(
1− Y α

)(
1− C1Y

γ/n
)(

1− Y nβ−1
)(

1− C2Y
1+γ−nβ)

×
(

1− C3Y
1−α−2β−γ

1− C4Y 2−α−(n+2)β

)
.

In attempt to fit exponents we choose β and γ such that

γ/n = α = nβ − 1,

which in particular implies that 1 + γ − nβ = 2α. Now, the optimal choice of α, such
that

1− α− 2β − γ ≥ α and 2− α− (n+ 2)β > 0,

is given in (3.2.9). With this choice the requirements of Lemma 3.2.9 are indeed satisfied
if Y is sufficiently small (depending only on the dimension) and if we take L = kl, for
an integer k ∈ N. Also (3.2.25) is exactly the latter condition in (3.2.10). By letting
k →∞ we therefore conclude the proof.

Corollary 3.2.10. Suppose that V is nonnegative, radial and measurable with a decay
V (r) ≤ Cr−ν , for large r, where ν > (6n − 2)/5. Suppose furthermore that V admits
a scattering solution. There exist a constant C > 0 depending only on n and a δ > 0
depending on n, V such that

e0(ρ) ≥ snan−2ρ
(
1− CY α

)
,

provided Y ≤ δ.
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A Second Order Upper Bound

Proof. Let R > 0 and define VR = V χB(0,R) with scattering length aR ≤ a. Since V
is nonnegative, replacing V with VR cannot increase the energy. By Theorem 3.2.3 we
then have

e0(ρ) ≥ snan−2
R ρ

(
1− CY α

R

)
≥ snan−2

R ρ
(
1− CY α

)
,

provided YR := anRρ is sufficiently small and

YR ≤
(
aR
R

)n−2
5α

. (3.2.26)

Denote the scattering solutions of V and VR by u respectively uR. Then, by (3.2.6),

an−2 − an−2
R =

1

2sn

∫
V (x)u(x)− VR(x)uR(x) dx

≤ 1

2sn

∫
V (x)− VR(x) dx =

1

2sn

∫
|x|≥R

V (x) dx,

where the inequality follows from the fact that u ≤ uR ≤ 1. From the decay of V we
obtain

an−2
R ≥ an−2

(
1− K

2(n− 2)an−2Rε

)
,

provided R is sufficiently large. By choosing R such that

K

2(n− 2)an−2Rε
= Y α,

it follows that R is large,
an−2
R ≥ an−2

(
1− Y α

)
,

and (3.2.26) is satisfied, if Y is sufficiently small and ν > (6n− 2)/5.

3.3 A Second Order Upper Bound

In this section we derive a second order upper bound to e0(ρ) by estimating the energy
in the state (3.1.3). The calculation is inspired by [4].

Theorem 3.3.1. Let n ≥ 3 and suppose that V ∈ C∞0 (Rn) is nonnegative and radially
symmetric with V (0) > 0. There exist δ, C > 0 (depending on n, V ) such that

e0(ρ) ≤ snan−2ρ
[
1 + (1 + γ)Qn

]
+ CΩn, (3.3.1)

provided ρ ≤ δ, where

Q3 =
128

15
√
π
Y 1/2 Ω3 = ρ2| ln ρ|

Q4 = 2π2Y | lnY | Ω4 = ρ2

Qn = Cρ Ωn = ρ2, n ≥ 5

and 0 < γ ≤ C ′‖V ‖1−2/n
∞ ‖V ‖2/n1 . Here C ′ > 0 depends only on n.
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A Second Order Upper Bound

The assumptions on V in Theorem 3.3.1 are presumably not optimal. In the actual
grand-canonical calculation below, we only need V and its Fourier transform to decay
sufficiently fast at infinity (depending on the dimension), and of course the latter can be
met by imposing finite smoothness on V . We use compact support of V and V (0) > 0
in Lemma 3.3.2 below, which allows us to relate the canonical- and ’grand canonical’
ground state energies. Presumably the assumption of compact support can be relaxed
to a sufficiently fast decay.

In order to prove Theorem 3.3.1 we initially consider (3.1.1) with Dirichlet boundary
conditions. Our calculation below is carried out in the grand canonical ensemble, and
hence we consider the second quantization of HN,L

HL :=
∞⊕
N=0

HN,L on FL :=
∞⊕
N=0

L2
sym(ΛNL ), (3.3.2)

with the corresponding ’grand canonical ground state energy’

EGC
0 (N,L) := inf

{
〈HL〉Ψ : ‖Ψ‖F = 1, 〈N〉Ψ ≥ N

}
, (3.3.3)

where N = NL denotes the number operator on FL and 〈A〉Ψ denotes the expectation
〈Ψ, AΨ〉 of any operator A with Ψ in its domain. Consider the canonical and grand
canonical ground state energy per volume,

eL(ρ) :=
E0(ρLn, L)

Ln
, eGC

L (ρ) :=
EGC

0 (ρLn, L)

Ln
. (3.3.4)

We will assume that the limit

e(ρ) := lim
L→∞

eL(ρ) (3.3.5)

is a convex function of ρ (see e.g. [19]). The following result, which we prove in appendix
3.A, shows that, in the thermodynamic limit, the canonical and grand canonical energies
agree.

Lemma 3.3.2. Suppose that V ∈ L1(Rn) is nonnegative, radially symmetric and com-
pactly supported. Suppose furthermore that V ≥ εχB(0,2R), for some ε,R > 0. Then

e(ρ) = lim
L→∞

eGC
L (ρ).

By (3.3.3) it is clear that ρ 7→ eGC
L (ρ) is increasing, for any fixed L. As a consequence

we have the following slightly stronger result.

Corollary 3.3.3. Suppose that V satisfies the assumptions of Lemma 3.3.2, and sup-
pose that ρL → ρ as L→∞. Then

e(ρ) = lim
L→∞

eGC
L (ρL)
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A Second Order Upper Bound

Proof. Fix an arbitrary ε > 0. By assumption e(ρ) is convex and hence continuous.
Thus we can choose δ > 0 such that

|e(ρ)− e(ρ′)| ≤ ε,

for each ρ′ > 0 with |ρ− ρ′| ≤ δ. Then, for L sufficiently large,

eGC
L (ρL) ≥ eGC

L (ρ− δ)
=

[
eGC
L (ρ− δ)− e(ρ− δ)

]
+ e(ρ− δ)

≥
[
eGC
L (ρ− δ)− e(ρ− δ)

]
+ e(ρ)− ε.

By Lemma 3.3.2 it then follows that

lim inf
L→∞

eGC
L (ρL) ≥ e(ρ)− ε.

Similarly we can show a consistent upper bound, and since ε was arbitrary, the result
follows.

In Section 3.3.1 we construct a periodic trial state with an expected number of
particles 〈N〉 = ρLn, not directly leading to an upper bound on e0(ρ) via Lemma 3.3.2.
However, Lemma 3.3.4 below, which is essentially proved in [25], shows that given any
periodic state, we can find a Dirichlet state on a slightly larger box, with almost as low
energy. We let

VL(x) :=
∑
m∈Zn

V (x+mL) =
1

Ln

∑
p∈Λ∗L

V̂pe
ip·x, x ∈ Rn

denote the L-periodization of V , where Λ∗L := (2π/L)Zn and

V̂p :=

∫
Rn
e−ip·xV (x) dx

denotes the Fourier transform of V , which is real-valued and radially symmetric, since
V is. Then let

H̃N,L :=
N∑
i=1

−∆i +
∑

1≤j<k≤N
VL(xj − xk)

with periodic boundary conditions, and let H̃L denote its second quantization. Note
that, since V is nonnegative, it is clear that V ≤ VL, and hence the transition from V
to VL cannot decrease the energy. However, since VL → V pointwise as L → ∞, we
expect the ground state energy of the two systems to coincide in the thermodynamic
limit.

Lemma 3.3.4. Let L > 2l > 0. Then

EGC
0 (N,L+ 2l) ≤ 〈H̃L〉Ψ + C

N

lL
,

for each periodic, normalized Ψ ∈ FL with 〈N〉Ψ = N . Here C > 0 depends only on n.
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A Second Order Upper Bound

We apply Lemma 3.3.4 with l :=
√
L/2 and notice that

EGC
0 (ρLn, L+ 2l)

ρLn
=
EGC

0 (ρL+2l(L+ 2l)n, L+ 2l)

ρL+2l(L+ 2l)n
,

where

ρL :=
ρ(L− 2l)n

Ln
→ ρ as L→∞.

Together with Corollary 3.3.3 we conclude that

e0(ρ) ≤ lim sup
L→∞

〈H̃L〉Ψ
ρLn

,

for each periodic, normalized Ψ ∈ FL with expected number of particles 〈N〉Ψ = ρLn.
Finally, we note that, with the periodic potential VL, we have (in the sense of

quadratic forms)

H̃L =
∑
p

p2a+
p ap +

1

2Ln

∑
p, q, r, s

p+ q = r + s

V̂p−ra
+
p a

+
q aras, (3.3.6)

where all sums are over Λ∗L and where a+
p and ap denote the bosonic creation and

annihilation operators on FL w.r.t. the plane wave x 7→ L−n/2eip·x.

3.3.1 The Trial State

The state in (3.1.3) can be defined as follows. Fix ρ, L > 0 and set N := ρ|Λ| = ρLn.
Then let

Ψ :=
∑
α

f(α)|α〉 (3.3.7)

where {|α〉}α ⊂ F is the orthonormal basis given by

|α〉 :=
∏
k∈Λ∗

1√
α(k)!

(a+
k )α(k)|0〉,

for each α : Λ∗ → N0 with |α| :=
∑

k∈Λ∗ α(k) < ∞. Note that, by the canonical
commutation relations,

ap|α〉 =
√
α(p)|α− δp〉 and a+

p |α〉 =
√
α(p) + 1|α+ δp〉, (3.3.8)

for any p ∈ Λ∗, where δp(k) := δp,k. Let

M :=
{
α : Λ∗ → N0 : |α| <∞ and α(−p) = α(p) for each p ∈ Λ∗

}
,

We define the coefficient function f in (4.2.1) by

f(α) := exp

(
N0 +

∑
p 6=0

| ln(1− c2
p)|
)−1/2

·
(
N
α(0)
0

α(0)!

∏
p 6=0

cα(p)
p

)1/2

, (3.3.9)
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A Second Order Upper Bound

for α ∈M and f(α) = 0 otherwise. Here c : Λ∗\{0} → (−1, 1) is to be chosen and

N0 := N −
∑
p6=0

c2
p

1− c2
p

. (3.3.10)

It will be apparent later on that (3.3.10) is equivalent to the condition 〈Ψ,NΨ〉 = N .
We will assume that c−p = cp, for each p and clearly we also need some decay of cp in
order for the sums in (3.3.9) and (3.3.10) to converge. Given any operator A with a
domain containing Ψ, we let 〈A〉 := 〈Ψ, AΨ〉 denote the expectation of A in the state
Ψ. Most of the interaction terms in (3.3.6) have zero expectation in the state Ψ. In
fact, since f vanishes outside M and since α(−p) = α(p), for each p ∈ Λ∗ and each
α ∈M, it follows that only pair interactions terms where either p = r, p = s or p = −q
have nonzero expectation in Ψ. Thus

〈H̃L〉 =
∑
p

p2〈a+
p ap〉+ E1 + E2 + E3,

where

E1 :=
V̂0

2|Λ|
∑
p,q

〈a+
p a

+
q apaq〉, E2 :=

1

2|Λ|
∑
p 6=q

V̂p−q〈a+
p a

+
q apaq〉

and

E3 :=
1

2|Λ|
∑
p 6=±q

V̂p−q〈a+
p a

+
−paqa−q〉.

Lemma 4.3.1 below provides us with all the relevant expectations in terms of N0 and
cp. We introduce the notation

hp :=
c2
p

1− c2
p

and sp :=
cp

1− c2
p

.

Lemma 3.3.5. Let p, q ∈ Λ∗ with p 6= ±q and p 6= 0. Then

1. 〈a+
0 a0〉 = N0 = 〈a0a0〉 and 〈a+

0 a0a
+
0 a0〉 = N0(N0 + 1)

2. 〈a+
p apa

+
q aq〉 = 〈a+

p ap〉 · 〈a+
q aq〉

3. 〈a+
p a

+
−paqa−q〉 = 〈a+

p a
+
−p〉 · 〈aqa−q〉

4. 〈a+
p ap〉 = hp

5. 〈a+
p a

+
−p〉 = sp

6. 〈a+
p apa

+
±pa±p〉 = hp(2hp + 1)

Proof. The identities are proved similarly, so we only show a few of them. By definition
of Ψ and the relations (3.3.8), we have

〈a+
p ap〉 =

∑
α

α(p)|f(α)|2,
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for any p ∈ Λ∗. Define the operation A0α := α+ δ0 and Apα := α+ δp+ δ−p, for p 6= 0.
Notice that

f(A0α) = N
1/2
0 (α(0) + 1)−1/2f(α) and f(Apα) = cpf(α).

We then have

〈a+
0 a0〉 =

∑
α∈A0(M)

α(0)|f(α)|2 =
∑
β

(β(0) + 1)|f(A0β)|2 = N0,

where we have also used that
∑

β |f(β)|2 = 1 due to normalization. For p 6= 0 we get

〈a+
p ap〉 =

∑
β

(β(p) + 1)|f(Apβ)|2 = c2
p(〈a+

p ap〉+ 1),

and solving for 〈a+
p ap〉 yields 4. Also,

〈a+
p a

+
−p〉 =

∑
α

f(Apα)f(α)(α(p) + 1) = cp(hp + 1) = sp,

as claimed.

Notice that, by Lemma 4.3.1,

〈N〉 =
∑
p

〈a+
p ap〉 = N0 +

∑
p 6=0

hp,

and hence the condition 〈N〉 = N is indeed equivalent to (3.3.10).

3.3.2 Computation of the Energy

Eventually we will choose cp via the new variable

ep :=
cp

1 + cp
, hp =

e2
p

1− 2ep
, sp =

ep(1− ep)
1− 2ep

.

Note that the constraint |cp| < 1 is equivalent to ep < 1/2. In Lemma 3.3.6 below we
calculate the energy 〈H̃L〉 per particle in the thermodynamic limit

E(ρ) := lim
L→∞

〈H̃L〉
ρLn

.

For this reason, it is convenient to assume that ep is independent of L, i.e. we assume
that c is defined on Rn\{0} rather than on Λ∗\{0}. We will also employ the fact that
for any continuous function F ∈ L1(Rn), decaying faster than |p|−n−ε at infinity, for
some ε > 0, we have the convergence

lim
L→∞

1

Ln

∑
p∈Λ∗

F (p) =
1

(2π)n

∫
Rn
F (p) dp. (3.3.11)
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We denote the scattering solution by 1− w and set

ϕ := V w and g := V − ϕ = V (1− w).

Note that ĝ0 > 0, unless V is trivial. Though w is not integrable, it follows from
the scattering equation (4.B.2) that, as tempered distribution, ŵ equals the function
p 7→ ĝp/(2p

2). We shall abuse notation slightly by denoting

ŵp :=
ĝp
2p2

.

Lemma 3.3.6. Suppose that e : Rn\{0} → (−∞, 1/2) is continuous and integrable
with fast decay. Then

E(ρ) =
ĝ0

2
ρ+Q+ Q̃+ Ω,

where

Q :=
1

2(2π)nρ

∫
p2

[
e2
p + 2ρŵpep

1− 2ep
+ (ρŵp)

2

]
dp,

Q̃ :=
2

(2π)n

∫
ϕ̂php dp,

Ω :=
1

2(2π)2nρ

∫ ∫ [
V̂p−q(ep + ρŵp)(eq + ρŵq) + 2(V̂p−q − V̂p)sphq − 2V̂phphq

]
dp dq.

Proof. By Lemma 4.3.1, the kinetic energy is simply

∑
p

p2〈a+
p ap〉 =

∑
p 6=0

p2hp =
∑
p 6=0

p2e2
p

1− 2ep
.

Using commutation relations, Lemma 4.3.1 and (3.3.10), we find that

E1 =
V̂0

2|Λ|

(∑
p,q

〈a+
p apa

+
q aq〉 −

∑
p

〈a+
p ap〉

)
=

V̂0

2|Λ|

(
N2 +

∑
p 6=0

hp(hp + 1)

)
,

where the last sum comes from the special cases p = ±q. Note that contributions like
that will vanish in the energy per particle in the thermodynamic limit. Similarly,

E2 =
N0

|Λ|
∑
p 6=0

V̂php +
1

2|Λ|
∑
p 6=0

V̂2php(2hp + 1) +
1

2|Λ|
∑
p,q 6=0

p 6=±q

V̂p−qhphq

=
∑
p 6=0

ρV̂php −
1

|Λ|
∑
p,q 6=0

V̂phphq +
1

2|Λ|
∑
p 6=0

V̂2php(2hp + 1) +
1

2|Λ|
∑
p,q 6=0

p6=±q

V̂p−qhphq,

and also

E3 =
∑
p 6=0

ρV̂psp −
1

|Λ|
∑
p,q 6=0

V̂psphq +
1

2|Λ|
∑
p,q 6=0

p 6=±q

V̂p−qspsq.
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Thus, in the limit L→∞,

E(ρ) =
V̂0ρ

2
+

1

(2π)nρ

∫
p2e2

p + ρV̂pep

1− 2ep
dp+

1

2(2π)2nρ

∫ ∫
V̂p−qspsq − 2V̂psphq dp dq

+
1

2(2π)2nρ

∫ ∫
V̂p−qhphq − 2V̂phphq dp dq.

By the relation ep = sp − hp we have∫ ∫
V̂p−qspsq − 2V̂psphq dp dq =

∫ ∫
V̂p−q(epeq − hphq) + 2(V̂p−q − V̂p)sphq dp dq

and hence

E(ρ) =
V̂0ρ

2
+

1

(2π)nρ

∫
p2e2

p + ρV̂pep

1− 2ep
dp+

1

2(2π)2nρ

∫ ∫
V̂p−qepeq dp dq

+
1

(2π)2nρ

∫ ∫
(V̂p−q − V̂p)sphq − V̂phphq dp dq.

Now, using (2π)nϕ̂ = V̂ ∗ ŵ, (3.2.6) and V = g + ϕ, we get

V̂0ρ

2
=
ĝ0ρ

2
+

ρ

2(2π)n

∫
V̂pŵp dp = sna

n−2ρ+
ρ

2(2π)n

∫
ĝpŵp dp+

ρ

2(2π)n

∫
ϕ̂pŵp dp

and also

1

2(2π)2nρ

∫ ∫
V̂p−qepeq dp dq =

1

2(2π)2nρ

∫ ∫
V̂p−q(ep + ρŵp)(eq + ρŵq) dp dq

− 1

(2π)n

∫
ϕ̂pep dp−

ρ

2(2π)n

∫
ϕ̂pŵp dp.

Combining terms yields the desired.

In [4] the function ep is chosen as the pointwise minimizer of the sum of integrands
in Q and Q̃. However, it turns out that including the latter in the minimization problem
does not lower the energy significantly. In fact, the calculation of Yau-Yin [25] suggests
that Q̃ is really not present in the ground state energy, but should rather be cancelled
by a term ’missing’ in the energy of our trial state. Thus we will choose ep to minimize
the simpler expression

mp :=
e2
p + 2ρŵpep

1− 2ep
.

This yields

−e2
p + ep + ρŵp = 0, ep =

1

2

(
1−

√
1 + 4ρŵp

)
(3.3.12)

and

mp =
(1− 2ep)(−ep − ρŵp) + (−e2

p + ep + ρŵp)

1− 2ep
=

1

2

(√
1 + 4ρŵp − 1− 2ρŵp

)
,
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provided 1 + 4ρŵp ≥ 0. Note however that, since ĝ is continuous, ĝ0 > 0 and ĝp → 0 as
|p| → ∞, it follows that ŵp is bounded from below, and hence

lim inf
ρ→0

[
inf
p 6=0

(1 + 4ρŵp)
]
≥ 1.

With the choice in (4.5.3) we have

Q =
1

2(2π)nρ

∫
p2Φ(ρŵp) dp, (3.3.13)

where
Φ(t) :=

√
1 + 4t+ 2t2 − 2t− 1. (3.3.14)

Finally, we note that |ep| ≤ ρ|ŵp|, for |p| � ρ1/2, and hence e inherits decay from ĝ.

3.3.3 Estimates

In this section we estimate the integrals from Lemma 3.3.6 in the limit ρ → 0, given
the particular choice in (4.5.3). We begin with the term Q, and in fact we will derive
asymptotics of order up to ∼ n/2 with coefficients, all except one, given in terms of
integrals of ŵp (see also Table 1 below). We stress, however, that the physical relevance
of these higher order asymptotics remains to be understood. In fact, while the main
contribution in dimension three and four comes from Q, we believe that Ω and Q are
of the same leading order in dimension n ≥ 5.

Lemma 3.3.7. In dimension n = 3,

Q = (4πaρ) · 128

15
√
π
Y 1/2 + o(ρ3/2) and Q ≤ (4πaρ) · 128

15
√
π
Y 1/2.

In dimension n ≥ 4,

Q =

dn/2e∑
m=3

cmρ
m−1 + cn/2+1

(
sna

n−2ρY n/2−1| lnY |
)

+O(ρn/2),

where the error term depends on V and where cm = 0 if m /∈ N,

cm :=
Φ(m)(0)

2(2π)nm!

∫
Rn
p2ŵmp , m ≤ (n+ 1)/2,

and

cn/2+1 :=
Φ(n/2+1)(0)|Sn−1|n/2+1(n− 2)n/2

4(2π)n(n/2 + 1)!
.

The function Φ is given in (4.5.6).

Proof. We first consider the case n = 3. Let ε = (ĝ0ρ)1/2. By a change of variables
p 7→ εp, continuity of ĝ and the dominated convergence theorem we have

ρ−3/2Q =
ĝ

5/2
0

2(2π)3

∫
R3

p2Φ

(
ĝεp

2p2ĝ0

)
dp→ ĝ

5/2
0

2(2π)3

∫
R3

p2Φ

(
1

2p2

)
dp (3.3.15)
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A Second Order Upper Bound

as ρ→ 0. A direct calculation then yields

Q = (4πaρ) · 128

15
√
π
Y 1/2 + o(ρ3/2). (3.3.16)

The explicit upper bound claimed in the lemma can be obtained from the same cal-
culation with the additional information that Φ is increasing and ĝp ≤ ĝ0. In [4] the
estimate is done more carefully and shows that (3.3.16) holds with o(ρ3/2) replaced by
O(ρ2| ln ρ|). In higher dimensions the asymptotics of Q is more subtle, due to the fact
that the latter integral in (3.3.15) becomes divergent! That is, we cannot replace ĝp
by ĝ0, because we need the decay of ĝ in order for the integral to converge. However,
from the asymptotics of Φ we get some information. First notice that Φ(t)t−2 → 2 as
t→∞, and in fact, Φ(t) ≤ 2t2, for each t ≥ −1/4. Hence

Q′ε :=
1

2(2π)nρ

∫
|p|≤ε

p2Φ(ρŵp) dp ≤
1

2(2π)nρ

∫
|p|≤ε

p22(ρŵp)
2 dp

≤ ĝ2
0ρ

4(2π)n

∫
|p|≤ε

p−2 dp = Can−2ρY n/2−1,

where we have inserted ĝ0 = 2sna
n−2. To estimate Qε := Q−Q′ε, we expand Φ to the

(k − 1)’th order around t = 0, where k is the smallest integer such that 2k ≥ n + 3.
Since Φ(0) = Φ′(0) = Φ′′(0) = 0, we have

Φ(t) = b3t
3 + . . .+ bk−1t

k−1 +O(tk),

where bm := Φ(m)(0)/m!. Correspondingly we have the expansion

Qε = Q(3)
ε + . . .+Q(k−1)

ε + E ,

where

Q(m)
ε :=

bm
2(2π)nρ

∫
|p|>ε

p2(ρŵp)
m dp,

and where

|E| ≤ Cρ−1

∫
|p|>ε
|ρŵp|k dp ≤ Cĝk0ρk−1

∫
|p|>ε

p2−2k dp = Can−2ρY n/2−1.

If m < n/2 + 1, then p2ŵmp is integrable at p = 0, and we have

Q(m)
ε =

bmρ
m−1

2(2π)n

∫
p2ŵmp dp+O

(
an−2ρY n/2−1

)
.

Notice that if n is odd, then k = (n+ 3)/2, and hence m < n/2 +1, for each m ≤ k−1.
In equal dimension there is a m = n/2 + 1 term:

Q(m)
ε =

bm
2(2π)nρ

∫
ε<|p|≤1

p2(ρŵp)
m dp+O(ρm−1)

=
bm

2(2π)nρ

∫
ε<|p|≤1

p2

(
ĝ0

2p2

)m
dp+O(ρm−1),
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n Q

3 ρ3/2 O(ρ2| ln ρ|)

4 ρ2| ln ρ| O(ρ2)

5 ρ2 O(ρ5/2)

6 ρ2 ρ3| ln ρ| O(ρ3)

7 ρ2 ρ3 O(ρ7/2)
...

...

Table 3.1: Qualitative expansion of Q in the first few dimensions.

where the errors depend on V , and where we have used Lipschitz continuity of ĝ to
replace ĝp with ĝ0 in the second estimate. Now, by inserting ĝ0 = 2sna

n−2, we get

Qn/2+1
ε = sna

n−2ρ
bn/2+1|Sn−1|n/2+1(n− 2)n/2

4(2π)n
Y n/2−1| lnY |+O(ρn/2),

where we have artificially replaced | ln(ĝ0ρ)| by | lnY | at the cost of an error of order
ρn/2, depending on V . In particular, with b3 = 4 and |S3| = 2π2, we have

Q
(3)
2 = (4π2a2ρ) · 2π2Y | lnY |+O(ρ2),

which is the term present in four dimensions.

In table 1 we have listed the powers of ρ in the expansion of Q up to dimension
n = 7. Whether the expansion of e0(ρ) has this structure too remains to be clarified.

Lemma 3.3.8.

Ω(ρ) =

 O(ρ2| ln ρ|) n = 3

O(ρ2) n ≥ 4

Proof. Using |V̂p| ≤ V̂0, Lipschitz continuity of V̂ and the relation in (4.5.3), we have

|Ω| ≤ CV ρ−1

{(∫
e2
p dp

)2

+

(∫
|sp| dp

)(∫
hq|q| dq

)
+

(∫
hp dp

)2}
.

Notice the asymptotics

hp =
1

2

(
1 + 2ρŵp√
1 + 4ρŵp

− 1

)
=

 O
(√

ρŵp
)

as |ρŵp| → ∞

O
(
ρ2ŵ2

p

)
as |ρŵp| → 0

.

In fact, hp ≤ Cρ2ŵ2
p for each p 6= 0, provided ρ is sufficiently small. In dimension n ≥ 5

we then simply have ∫
hp dp = O

(
ρ2‖ŵ‖22

)
.
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A Second Order Upper Bound

Otherwise we split the integral into two parts∫
hp dp ≤ C

[ ∫
|p|≤ε

(ρŵp)
1/2 dp+

∫
|p|>ε

(ρŵp)
2 dp

]
= I1 + I2

where ε := (aρ)1/2. Since ĝp ≤ ĝ0 = 2sna
n−2, it follows that I1 = O(ρY n/2−1).

In dimension n = 3 we again use |ĝp| ≤ ĝ0 to obtain I2 = O(ρY 1/2), and in four
dimensions we get a logarithmic term,

I2 ≤ CρY | lnY |+ CV ρ
2.

In total,

∫
hp dp ≤


CρY 1/2 n = 3

CρY | lnY |+ CV ρ
2 n = 4

CV ρ
2 n ≥ 5

. (3.3.17)

By repeating the above estimates with an additional factor |p| in the integrands, we
see that ∫

|p|hp dp ≤

 CV ρ
2| ln ρ| n = 3

CV ρ
2 n ≥ 4

.

The integral of e2
p is estimated similarly to hp and in fact (3.3.17) holds with hp replaced

by e2
p. Finally, since

sp =
−ρŵp√
1 + 4ρŵp

,

we see that ∫
|sp| dp = O(ρ),

for any n ≥ 3, and we are done.

Remark 3.3.9. From the estimate (3.3.17) and |ϕ̂p| ≤ ϕ̂0 it follows that

Q̃(p) ≤


CγaρY 1/2 n = 3

Cγa2ρY | lnY |+ CV ρ
2 n = 4

CV ρ
2 n ≥ 5

,

where γ := ϕ̂0/ĝ0.

In order to finish the proof of Theorem 3.3.1 we only need to show that

γ ≤ C‖V ‖1−2/n
∞ ‖V ‖2/n1 . (3.3.18)

However, from the representation (3.2.5) and the fact that ϕ ≥ 0 it follows that

ϕ = V w =
1

2
V Γg =

1

2
V (ΓV − Γϕ) ≤ 1

2
V ΓV.
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Equivalence of Ensembles

Then by Hölder’s inequality and the Hardy-Littlewood-Sobolev inequality,

‖V ΓV ‖1 ≤ ‖V ‖p · ‖ΓV ‖p′ ≤ C‖V ‖2p ≤ C‖V ‖1−2/n
∞ · ‖V ‖1+2/n

1

where p := 2n/(n+ 2) and p′ := p/(p−1) is the dual exponent of p. On the other hand
ĝ0 = V̂0 − ϕ̂0 ≥ ‖V ‖1, and (3.3.18) follows.
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3.A Equivalence of Ensembles

In this section we prove Lemma 3.3.2. We will see that the canonical and grand
canonical energies are related via the Legendre transform, and in order for this to
be well-behaved globally, it is convenient to have high density bounds on the ground
state energy. A trivial upper bound to E0(N,L) with periodic boundary conditions is
obtained by calculating the energy of the constant function:

E0(N,L) ≤ N(N − 1)

2|Λ|

∫
V (x) dx.

Thus, in the thermodynamic limit (and for all boundary conditions),

e0(ρ) ≤ V̂0

2
ρ. (3.A.1)

In the following lemma we derive a simple lower bound to E0(N,L) under the assump-
tion that V is uniformly strictly positive in a neighborhood of the origin. Due to lack
of space, this forces a large fraction of the particles to interact.

Lemma 3.A.1. Suppose that V ≥ εχB(0,2R), for some ε,R > 0. Then

E0(N,L) ≥ CεRnN
2

|Λ|
− N

2
V (0), (3.A.2)

for some constant C > 0 depending only on the dimension.

Proof. We will simply discard the kinetic energy and show that the total interaction is
pointwise bounded from below by the RHS in (3.A.2). Let χR = χB(0,R). By Jensen’s
inequality we have(∫

Λ

N∑
j=1

χR(xj − z)
dz

|Λ|

)2

≤ 1

|Λ|
∑
j,k

∫
Λ

χR(xj − z)χR(xk − z) dz.
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Equivalence of Ensembles

However, the triangle inequality shows that

χR(xj − z)χR(xk − z) ≤ χ2R(xj − xk)χR(xk − z),

and hence(∫
Λ

N∑
j=1

χR(xj − z)
dz

|Λ|

)2

≤ vnR
n

|Λ|
∑
j,k

χ2R(xj − xk) ≤
vnR

n

ε|Λ|
∑
j,k

V (xj − xk)

=
vnR

n

ε|Λ|

(
2
∑
j<k

V (xj − xk) +NV (0)

)
,

where vn denotes the volume of the unit ball in Rn. The result now follows by noting
that ∫

Λ

N∑
j=1

χR(xj − z) dz ≥ Nvn2−nRn,

where the inequality and the factor 2−n comes from the situation where xj is located
close the corner of the box.

Recall the notation in (3.3.4) and (3.3.5) for the ground state energy per volume.
As a technical convenience we extend, for fixed L > 0, the mapping N 7→ E0(N,L) to
[0,∞), as a piecewise linear function, by setting E(0, L) = 0 and

E0(N + σ, L) = (1− σ)E0(N,L) + σE0(N + 1, L), σ ∈ [0, 1]. (3.A.3)

Note that, as a consequence of Lemma 3.A.1 we have the lower bounds

eL(ρ) ≥ C1ρ
2 − C2ρ and e(ρ) ≥ C1ρ

2 − C2ρ, (3.A.4)

for constants C1, C2 > 0 depending on V .
Since each N -particle sector is naturally imbedded in the Fock space, it follows

that EGC
0 (N,L) ≤ E0(N,L). We remark that in case N is not a natural number, the

inequality follows from the convention (3.A.3) by considering the combination

Ψ :=
√

1− σΨbNc +
√
σΨdNe

of arbitrary bNc-particle and dNe-particles states, where σ := N − bNc. In order to
prove Lemma 3.3.2, we therefore only need to show that

lim inf
L→∞

eGCL (ρ) ≥ e(ρ). (3.A.5)

We introduce a chemical potential µ ≥ 0 and notice that, for any normalized Ψ =
(Ψ0,Ψ1, . . .) ∈ F with 〈Ψ,NΨ〉 ≥ ρLn we have the lower bound

〈Ψ, HLΨ〉
Ln

=
1

Ln
[
µ〈Ψ,NΨ〉+ 〈Ψ, (HL − µN )Ψ〉

]
≥ µρ+

∞∑
N=0

‖ΨN‖2
[
eL(N/Ln)− µ N

Ln

]
≥ µρ+ fL(µ),
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where fL := −e∗L and where

g∗(µ) := sup
ρ≥0

[
µρ− g(ρ)

]
,

denotes the Legendre Transform of any function g : [0,∞) → R, and for µ ≥ 0 such
that the supremum is finite. We will employ the well-known fact [21] that the Legendre
transform is involute on convex functions, meaning that (g∗)∗ = g∗. The inequality
(3.A.5) will then follow, provided we can show the convergence

lim
L→∞

fL(µ) = f(µ) := −e∗(µ),

for each µ ≥ 0. Now, by definition,

fL(µ) ≤ e(ρ)− µρ+ [eL(ρ)− e(ρ)],

and hence
lim sup
L→∞

fL(µ) ≤ e(ρ)− µρ,

for each ρ ≥ 0. It follows that

lim sup
L→∞

fL(µ) ≤ f(µ).

For the lower bound we employ the following lemma.

Lemma 3.A.2. Suppose that V is compactly supported with, say, supp(V ) ⊂ B(0, R).
Then

eL(ρ) ≥ (1 +R/L)ne(ρ[1 +R/L]−n)

for each ρ, L > 0.

Proof. By convexity of e(ρ) we may assume that N := ρLn is an integer. Let k ∈ N and
put L′ = k(L+R).We can place M := kn copies of the box ΛL inside the larger box ΛL′

with separation R between neighboring boxes. From an N -particle trial state Ψ in ΛL
we can construct a trial state with MN particles by placing independent particles in
each of the M boxes, each with state Ψ. Because of the Dirichlet boundary condition,
this gives a trial state on ΛL′ by extending Ψ by zero and, due to the separation,
particles in different boxes do not interact. Minimizing over Ψ yields

eL(ρ) ≥ (1 +R/L)neL′(ρ[1 +R/L]−n).

This estimate holds for each k ∈ N, so the result follows by taking the limit k →∞.

By Lemma 3.A.2 we have

eL(ρ)− µρ ≥ e(ρL)− µρ
= [1 +R/L]n(e(ρL)− µρL) + εL

≥ [1 +R/L]nf(µ) + εL,
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where
ρL := ρ[1 +R/L]−n and εL := e(ρL)(1− [1 +R/L]n).

Now notice that, by (3.A.4),

fL(µ) = inf
ρ∈[0,ρµ]

[eL(ρ)− µρ],

for some ρµ > 0. From the upper bound (3.A.1), we then have

fL ≥ [1 +R/L]nf(µ) + Cρ2
µ(1− [1 +R/L]n),

and consequently
lim inf
L→∞

fL(µ) ≥ f(µ),

as desired.

3.B Dyson’s Upper Bound

In this appendix we prove Dyson’s upper bound, which we employed in the proof of
Theorem 3.2.2. The result in fact holds in any dimension, including n = 1, 2. Our
calculation follows closely [3] and [11].

Theorem 3.B.1. Suppose that f ∈ H1
loc(Rn) is radially symmetric and satisfies

0 ≤ f ≤ 1 and f ′ ≥ 0.

Define

I =

∫
(1− f(x)2) dx, K =

∫
f(x)|∇f(x)| dx

and

J =

∫
|∇f(x)|2 +

1

2
V (x)f(x)2 dx.

Let N ≥ 2, L > 0 and set ρ = N/Ln. Suppose that ρI < 1. Then

E0(N,L)

N
≤
Jρ+ 2

3(Kρ)2

(1− Iρ)2
, (3.B.1)

where periodic boundary conditions have been imposed on the left-hand side.

Proof. We construct a trial state with energy bounded by N times the right-hand side
in (3.B.1). Let

Ψ := F2 · F3 · · ·FN ,

where Fi := f(ti),

ti := min
1≤j<i

d(xi, xj) and d(x, y) := min
m∈Zn

|x− y −mL|, for x, y ∈ Rn.

Notice that Ψ is continuous and periodic and that ti and Fi only depend on the variables
x1, . . . , xi. Also, d(x, y) = |x−y| whenever (x−y) ∈ Λ and, for almost all (x1, . . . , xN ) ∈
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Rn·N , there exists a unique j < i such that ti = d(xi, xj). For each i the function Fi is
weakly differentiable with

|∇kFi| = εikf
′(ti), (3.B.2)

where

εik(x1, . . . , xN ) :=

 1 for k = i or ti = d(xi, xk)

0 otherwise
.

Moreover, by the product rule, Ψ is weakly differentiable with

∇kΨ =

N∑
i=2

ΨF−1
i ∇kFi. (3.B.3)

where the expression ΨF−1
i is simply a shorthand for F2 . . . Fi−1Fi+1 . . . FN . Thus we

have

|∇kΨ| ≤
N∑
i=2

ΨF−1
i f ′(ti)εik,

and hence

N∑
k=1

|∇kΨ|2 ≤
N∑
i=2

N∑
j=2

N∑
k=1

εikεjk(ΨF
−1
i )(ΨF−1

j )f ′(ti)f
′(tj).

We divide the above sum into two parts; one containing terms with i = j and one
containing terms with i 6= j. Since the summands are symmetric in i and j, the part
with i 6= j equals 2 times the part with, say, j < i. Moreover, when j < i only terms
with k ≤ j can be nonzero. For the part with i = j we notice that

∑
k ε

2
ik = 2 almost

everywhere. It follows that

N∑
k=1

|∇kΨ|2 ≤ 2
N∑
i=2

(ΨF−1
i )2f ′(ti)

2 + 2
∑
k≤j<i

εikεjk(ΨF
−1
i )(ΨF−1

j )f ′(ti)f
′(tj).

Thus we have 〈Ψ, HN,LΨ〉 ≤ E1 + E2, where

E1 :=
N∑
i=2

(∫
Ψ2

)−1
∫ 2(ΨF−1

i )2f ′(ti)
2 +

i−1∑
j=1

V (xi − xj)Ψ2


and

E2 := 2
∑
k≤j<i

(∫
Ψ2

)−1 ∫
εikεjk(ΨF

−1
i )(ΨF−1

j )f ′(ti)f
′(tj).

The integrands in E1 and E2 involve the functions Fi both in the numerator and
the denominator, so we need both upper and lower bounds on these. For p > i, j ≥ 2
we define

Fp,i = min
k<p

k 6=i

f(d(xp, xk)), Fp,ij = min
k<p

k 6=i,j

f(d(xp, xk)).
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Notice that Fp,i does not depend on xi, and similarly Fp,ij does not depend on xi and
xj . Since f is increasing and 0 ≤ f ≤ 1,

F 2
p,if(d(xp, xi))

2 ≤ F 2
p ≤ F 2

p,i and F 2
p,ijf(d(xp, xi))

2f(d(xp, xj))
2 ≤ F 2

p ≤ F 2
p,ij .

Hence, for 2 ≤ j < i ≤ N , we have the upper bound(
F 2
j+1 · · ·F 2

i−1

)(
F 2
i+1 · · ·F 2

N

)
≤
(
F 2
j+1,j · · ·F 2

i−1,j

)(
F 2
i+1,ij · · ·F 2

N,ij

)
(3.B.4)

and the lower bound

F 2
j · · ·F 2

N ≥
j−1∏
p=1

f(d(xp, xj))
2

i−1∏
p=j+1

F 2
p,jf(d(xp, xj))

2

×
i−1∏
p=1

f(d(xp, xi))
2

N∏
p=i+1

F 2
p,ijf(d(xp, xi))

2f(d(xp, xj))
2

=
(
F 2
j+1,j · · ·F 2

i−1,j

)(
F 2
i+1,ij · · ·F 2

N,ij

)
(3.B.5)

×
N∏

p=1,p 6=i,j
f(d(xp, xj))

2
N∏

p=1,p 6=i
f(d(xp, xi))

2.

In the lower bound we have also employed the fact that

F 2
j ≥

j−1∏
p=1

f(d(xj , xp))
2 and F 2

i ≥
i−1∏
p=1

f(d(xi, xp))
2.

Notice that, for any numbers a1, . . . , am ∈ [0, 1],

m∏
p=1

ap ≥ 1−
m∑
p=1

(1− ap). (3.B.6)

Employing (3.B.6) in (3.B.5) we get

F 2
j · · ·F 2

N ≥
(
F 2
j+1,j · · ·F 2

i−1,j

)(
F 2
i+1,ij · · ·F 2

N,ij

)
AjBij , (3.B.7)

where

Aj := 1−
N∑

p=1,p 6=i,j
(1− f(d(xp, xj))

2) and Bij := 1−
N∑

p=1,p 6=i
(1− f(d(xp, xi))

2).

We are now ready to estimate E1. Since

Fi ≤ f(d(xi, xj)) for j < i and f ′(ti)
2 ≤

i−1∑
j=1

f ′(d(xi, xj))
2,

we see that

E1 ≤
N∑
i=2

i−1∑
j=1

∫ (
2f ′(d(xi, xj))

2 + f(d(xi, xj))
2V (xi − xj)

)
(ΨF−1

i )2∫
Ψ2

. (3.B.8)
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By (3.B.4) and (3.B.7) we get

(ΨF−1
i )2 ≤

(
F 2

1 · · ·F 2
j−1

)
· 1 ·

(
F 2
j+1,j · · ·F 2

i−1,j

)(
F 2
i+1,ij · · ·F 2

N,ij

)
(3.B.9)

and
Ψ2 ≥

(
F 2

1 · · ·F 2
j−1

)(
F 2
j+1,j · · ·F 2

i−1,j

)(
F 2
i+1,ij · · ·F 2

N,ij

)
AiBij . (3.B.10)

Employing (3.B.9) and (3.B.10) in (3.B.8) decouples the integration w.r.t. xi and xj
and the rest of the integrals cancel out. Thus

E1 ≤
N∑
i=2

i−1∑
j=1

∫
Λ2 2f ′(d(xi, xj))

2 + V (xi − xj)f(d(xi, xj))
2 dxidxj∫

Λ2 AjBij dxidxj
.

Since d is periodic with period L, we have∫
Λ
f ′(d(x, y))2 dx =

∫
y+Λ

f ′(d(x, y))2 dx =

∫
y+Λ

f ′(|x− y|)2 dx ≤
∫
Rn
f ′(|x|)2 dx,

for each fixed y ∈ Λ. This observation, together with the fact that f is non-decreasing,
yields∫

Λ
2f ′(d(x, y))2 + V (x− y)f(d(x, y))2 dx ≤

∫
Rn

2f ′(|x|)2 + V (x)f(|x|)2 dx = J.

Also ∫
Λ
Bij dxi = Ln −

N∑
p=1,p 6=i

∫
Λ

(
1− f(d(xi, xp))

2
)
dxi ≥ Ln(1− ρI).

Similarly, the integral of Aj is bounded below by Ln(1− ρI). In total we have

E1 ≤
N∑
i=2

i−1∑
j=1

LnJ

L2n(1− ρI)2
≤ N

2
ρ

J

(1− ρI)2
.

For the estimate of E2 we employ (3.B.4) and obtain

εikεjk(ΨF
−1
i )(ΨF−1

j )f ′(ti)f
′(tj) ≤

(
F 2

1 · · ·F 2
j−1

)[
εjkf(tj)f

′(tj)
](
F 2
j+1,j · · ·F 2

i−1,j

)
×

[
εikf(ti)f

′(ti)
](
F 2
i+1,ij · · ·F 2

N,ij

)
,

which together with (3.B.7) allows us to decouple integration w.r.t. xj and xi as in the
estimate of E1. Thus we have

E2 ≤ 2L−2n
∑
j<i

j∑
k=1

∫
Λ2

[
εjkf(tj)f

′(tj)
][
εikf(ti)f

′(ti)
]
dxidxj

(1− ρI)2
.

Since εik = 0 except when ti = d(xi, xk) we have∫
Λ
εikf(ti)f

′(ti) dxi ≤
∫

Λ
f(d(xi, xk))f

′(d(xi, xk)) dxi ≤
∫
Rn
f(|x|)f ′(|x|) dx = K.
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Next, the summation over k only contributes by a factor 2, since
∑j

k=1 εjk = 2 a.e.
Since ∫

Λ
f(ti)f

′(ti) dxi ≤
j−1∑
p=1

∫
Λ
f(d(xp, xi))f

′(d(xp, xi)) dxi ≤ (j − 1)K

we see that

E2 ≤ 4L−2nK2
N∑
i=3

i−1∑
j=2

(j − 1) =
2

3
L−2nK2N(N − 1)(N − 2) ≤ 2

3
Nρ2K2.

By adding the contributions from E1 and E2 we arrive at the right-hand side in (3.B.1)
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Chapter 4

The Second Order Upper Bound
via Soft-Pair Fock States

In this chapter we consider a grand canonical version of the trial state introduced by
Yau and Yin in [25], and we give an alternative and somewhat simpler proof of Theorem
1.3.3. We also consider the method in 4 dimensions, but with a negative outcome, in
contrast to the calculations with the Bogoliubov trial state in Section 3.3. Our main
result is the following upper bound, slightly stronger than the one of [25].

Theorem 4.0.2. Let n = 3. Suppose that V is nonnegative, radially symmetric, smooth
and compactly supported with V (0) > 0. Let 0 < η < 1/52. Then

e0(ρ) ≤ 4πaρ

(
1 +

128

15
√
π
Y 1/2

)
+O

(
ρ

3
2

+η
)

as ρ→ 0.

The assumptions on V in Theorem 4.0.2 are presumably not optimal. In particular we
expect the proof to work, assuming only finite smoothness and sufficiently fast decay
at infinity. Furthermore, the error term can probably be improved, although we do not
expect something even close to ρ2| ln ρ| (i.e. the error term in Theorem 3.3.1) from the
present approach.

The main idea of Yau and Yin was to extend the typical Bogoliubov trial state

ΨBog = exp

(
1

2

∑
p 6=0

cpa
+
p a

+
−p +

√
N0a

+
0

)
|0〉 (4.0.1)

by allowing soft-pair’s, i.e. particle pair’s with momenta q, p−q, where |p| ∼ ρ1/2. This
would (at least formally) be accomplished by a state of the form

Ψ = exp

(
1√
N

∑
p 6=0
q 6=p,0

√
cq
√
cp−qa

+
q a

+
p−qap +

1

2

∑
p6=0

cpa
+
p a

+
−p +

√
N0a

+
0

)
|0〉.

This state turns out to be too complicated though (perhaps even to define properly),
and instead a truncated version is constructed. Still, the truncated state is significantly
more complicated to handle than the Bogoliubov state, due to the fact that more



Reduction to Small Torus

interaction terms contributes to the energy: Recall that the Bogoliubov state has the
property that, if

〈ΨBog, a+
p a

+
q arasΨ

Bog〉 6= 0,

then either p = −q, p = r or p = s. This does not hold true for the soft-pair state,
and we get contributions from general quartets a+

p a
+
q aras, where p + q = r + s. The

most complicated case is when all four indices are nonzero. In particular, the energy
estimates in this case are hardly compatible with the thermodynamic limit, and hence
a detour is taken (Section 4.1 below). In [25] the soft-pair state is considered in a
canonical ensemble with the particle number fixed. Our main observation is that some
of the calculations become simpler in a grand canonical ensemble. The reason behind
this is that, basically, the calculations with the trial state reduces to manipulations
of (finite) sums in the canonical ensemble, and (infinite) series in the grand canonical
ensemble. Due to the unbounded summation regime, the latter is often easier to handle.

We briefly fix notations. Suppose that V ∈ C∞0 (Rn), with n ≥ 3, is nonnegative
and radially symmetric with V (0) > 0. Let 1−w denote the the zero-energy scattering
solution and let a denote the scattering length. We reserve the notations

ϕ := V w, g := V − ϕ and ŵp :=
ĝp
2p2

.

Let FL denote the bosonic Fock space over L2(ΛL), and let HDir
L denote the second

quantization of HN,L with Dirichlet boundary conditions. Recall the corresponding
(Dirichlet) ’grand canonical ground state energy’ EGC

0 (N,L) from (2.0.2) along with
Lemma 2.0.1. Then let Hper

L denote the second quantization of HN,L with periodic
boundary conditions and with V replaced by its L-periodization, given in (2.0.3). Fi-
nally, recall the representation

Hper
L =

∑
p

p2a+
p ap +

1

2|Λ|
∑
p,q,r,s

p+q=r+s

V̂p−ra
+
p a

+
q aras (4.0.2)

in the sense of quadratic forms.

4.1 Reduction to Small Torus

In Section 4.2 we construct, for fixed ρ, L, a periodic Fock state Ψ ∈ FL with expected
number of particles

ρLn ≤ 〈N〉Ψ ≤ CρLn.
The following lemma, which we prove in Appendix 4.A, shows that the energy in the
periodic state almost yields an upper bound on the grand canonical (Dirichlet) ground
state energy in a slightly larger box.

Lemma 4.1.1. Let L > 2l > 0. Then

EGC
0 (N,L+ 2l) ≤ 〈Hper

L 〉Ψ + C
N

lL
,

for each periodic, normalized Ψ ∈ FL with N ≤ 〈N〉Ψ ≤ C ′N . Here C,C ′ > 0 depend
only on n.
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Reduction to Small Torus

Our energy estimates in the trial state Ψ will only have the desired form if the side
length of the box ΛL does not exceed ∼ ρ−1, and in particular, we cannot take the
limit L→∞, for fixed ρ. The next lemma is proved in Appendix 4.B and shows that
we may still obtain an upper bound to the ground state energy in the thermodynamic
limit, by ’sacrificing’ density.

Lemma 4.1.2. Suppose that supp(V ) ⊂ B(0, R). Let N,L, ρ > 0 with ρ = N/Ln.
Then

EGC
0 (N,L)

N
≥ e0

(
ρ[1 +R/L]−n

)
,

We will prove the following theorem for the case n = 3:

Theorem 4.1.3. Let ρ > 0 and L = ρ−γ, where 1 < γ < 1 + 1/52. There exists a
periodic state Ψ ∈ FL such that

〈Hper
L 〉Ψ
ρL3

≤ 4πaρ

(
1 +

128

15
√
π
Y 1/2

)
+ Cρ1/2+γ . (4.1.1)

We obtain an upper bound on e0(ρ) from Theorem 4.1.3 as follows: Denote the right-
hand side of (4.1.1) by E(ρ). Let l < L/2 and put

ρ̃ :=
ρL3

(L+ 2l)3
,

so that ρL3 = ρ̃(L+ 2l)3. Then the Lemma 4.1.2 above yields

EGC
0 (ρL3, L+ 2l)

ρL3
=
EGC

0 (ρ̃(L+ 2l)3, L+ 2l)

ρ̃(L+ 2l)3

≥ e0

(
ρ̃[1 +R/(L+ 2l)]−3

)
= e0

(
ρ[1 + (2l +R)/L]−3

)
.

Combining with Lemma 4.1.1 and Theorem 4.1.3, we have

e0

(
ρ[1 + (2l +R)/L]−3

)
≤ E(ρ) +

C

lL
,

and therefore also

e0(ρ) ≤ E
(
ρ[1 + (2l +R)/L]3

)
+
C

lL
.

We will take l = Lα, for some 0 < α < 1. Using the fact that ρ 7→ E(ρ) is increasing,
we arrive at

e0(ρ) ≤ E(ρ) + C
[
ρ1+γ(1−α) + ργ(1+α)

]
.

For given γ, the optimal choice for α is α = 1/(2γ). With this choice we have

e0(ρ) ≤ E(ρ) + Cρ1/2+γ .

This proves Theorem 4.0.2.
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Construction of the Trial State

4.2 Construction of the Trial State

Fix ρ, L > 0. We define a trial state

Ψ :=
∑
α

f(α)|α〉 (4.2.1)

in terms of the orthonormal basis {|α〉}α ⊂ FL given by

|α〉 :=
∏
k∈Λ∗

1√
α(k)!

(a+
k )α(k)|0〉,

for each α : Λ∗ → N0 with |α| :=
∑

k∈Λ∗ α(k) <∞. From the CCR it follows that

ap|α〉 =
√
α(p)|α− δp〉 and a+

p |α〉 =
√
α(p) + 1|α+ δp〉, (4.2.2)

for any p ∈ Λ∗, where δp(k) := δp,k. Let

M :=
{
α : Λ∗ → N0 : |α| <∞, α(−p) = α(p) for each p ∈ Λ∗

}
.

For each p 6= 0 we define the strict-pair operation Ap by

Apα(k) :=

 α(k) + 1 k = ±p

α(k) otherwise
.

The inverse of Ap is denoted by Ap. Notice that any α ∈M can be represented as

α =
∏
p6=0

(
Ap
)α(p)

β,

for some β : Λ∗ → N0 with β(p) = 0, for each p 6= 0. Given any p, q ∈ Λ∗\{0} with
p 6= q we define the soft-pair operation Ap,q by

Ap,qα(k) :=


α(k)− 1 k = p

α(k) + 1 k = q, p− q

α(k) otherwise

,

with inverse Ap,q. Suppose that

0 < 8εL < 4RL ≤ 2εH < RH (4.2.3)

and define the two subsets

PL := {p ∈ Λ∗ : εL ≤ |p| ≤ RL}, PH := {p ∈ Λ∗ : εH ≤ |p| ≤ RH}.

We will eventually choose

εL = ρ1/2+η, RL = ρ1/2−η, εH = ρη, RH = ρ−η, (4.2.4)
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The Pair-Hamiltonian

where 0 < η < 1/52. However, we want to keep track of these parameters, and besides
our calculation only uses (4.2.3). Now define M to be the union of M with the set of
all finite derivations of the form

∏m
j=1Apj ,qjβ, where m ∈ N,

pj ∈ PL with pj 6= ±pk, qj , (pj − qj) ∈ PH and β ∈M with β(pj) ≥ 1.

Note that the condition pj 6= ±pk implies that, for each α ∈M ,

|α(p)− α(−p)| ≤ 1, for each p ∈ PL.

We let
α∗(p) := max{α(p), α(−p)}.

Also define
M s
p := {α ∈M : α(−p) = α(p)} and Ma

p := M\M s
p .

By construction, M s
p = M , for p /∈ PL ∪ PH . Suppose that c : Λ∗\{0} → (−1, 1) has

fast decay and satisfies c−p = cp, for each p 6= 0. Let

N0 := N −
∑
p 6=0

c2
p

1− c2
p

, (4.2.5)

where N := ρ|Λ| = ρLn. We define the coefficient function f in (4.2.1) by

f(α) := C

(
N
α(0)
0

α(0)!

)1/2 ∏
k 6=0

c
α(k)/2
k

∏
v∈PL

α∗(v)−α(v)=1

(
4α∗(v)cv

N

)1/2

,

for α ∈ M and f(α) = 0 otherwise. Here C > 0 is a normalization constant and
we use the convention

√
x := i

√
|x| if x < 0. We warn the reader that, in general,√

xy 6=
√
x
√
y. We also remark that f restricted to M yields the Bogoliubov state in

(4.0.1). For the remaining part of this chapter we set

H := Hper
L and 〈A〉 := 〈A〉Ψ,

with Ψ given in (4.2.1).

4.3 The Pair-Hamiltonian

From the total Hamiltonian (4.0.2) we single out the kinetic energy and interaction
terms where either p = r, s,−q. Thus we let

HP :=
∑
p

p2a+
p ap +HP1 +HP2 +HP3,

where

HP1 :=
V̂0

2|Λ|
∑
p,q

a+
p a

+
q apaq, HP2 :=

1

2|Λ|
∑
p 6=q

V̂p−qa
+
p a

+
q apaq
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and

HP3 :=
1

2|Λ|
∑
p6=±q

V̂p−qa
+
p a

+
−paqa−q.

Our first result in this section shows that, for momenta outside PL and PH , the expec-
tations in HP can be calculated directly in terms of the cp’s. The central observation
is the relations

f(α+ δ0) = N
1/2
0 (α(0) + 1)−1/2f(α) and f(Apα) = cpf(α),

for p ∈ PH or α ∈M s
p . Given any p1, . . . , pn ∈ Λ∗, we use the notation

Q(p1, . . . , pn) := 〈(a+
p1ap1) . . . (a+

pnapn)〉 =
∑
α

α(p1) · · ·α(pn)|f(α)|2.

We also introduce the functions

hp :=
c2
p

1− c2
p

and sp :=
cp

1− c2
p

.

Finally, it is convenient to have the notation

Rr,sp,q(α) :=
√
α(p)α(q)(α(r) + 1)(α(s) + 1),

with the further convention that if one (or more) of the four indices on the LHS is
omitted, the corresponding factor(s) on the RHS is replaced by one.

Lemma 4.3.1. Suppose that p, q, p1, . . . , pn ∈ Λ∗ and p /∈ PL ∪ PH .

(i) For any operator A on F (with domain containing Ψ and a0Ψ) we have

〈Aa0〉 =
√
N0〈A〉.

(ii) If p 6= 0 then

Q(p) = hp, 〈a+
p a

+
−p〉 = sp = 〈apa−p〉 and Q(p,±p) = hp(2hp + 1).

(iii) If p 6= ±pi, for i = 1, . . . , n, then

Q(p, p1, . . . , pn) = Q(p)Q(p1, . . . , pn).

(iv) If p 6= ±q, then
〈a+
q a

+
−qapa−p〉 = 〈a+

q a
+
−q〉〈apa−p〉.

Proof. By definition of Ψ and the relation in (4.2.2),

〈Aa0〉 =
∑
α,β

f(β)f(α)〈β|Aa0|α〉 =
∑
α,β

f(β)f(α)
√
α(0)〈β|A|α− δ0〉

=
∑
α,β

f(β)f(α+ δ0)
√

(α+ δ0)(0)〈β|A|α〉 =
√
N0〈A〉.
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The Pair-Hamiltonian

In the third equality we have used the fact that {α ∈M : α(0) ≥ 1} = {α+δ0 : α ∈M}.
Next, since the symmetry α(−p) = α(p) is preserved for p outside PL ∪ PH , we have
{α ∈M : α(p) ≥ 1} = {Apα : α ∈M}, and hence

Q(p) =
∑
α

α(p)|f(α)|2 =
∑
α

(α(p) + 1)|f(Apα)|2 = c2
p(Q(p) + 1).

Solving for Q(p) yields Q(p) = hp. The identity (iii) is proved completely similarly,
since α(pi) is not affected by Ap. For a ’pair-operator’ a+

p a
+
−p we have

〈a+
p a

+
−p〉 =

∑
α

f(Apα)f(α)Rp,−p(α)

= cp
∑
α

|f(α)|2(α(p) + 1) = cp(Q(p) + 1)

= cp(hp + 1) = sp.

Then, for a double ’pair-operator’,

〈a+
q a

+
−qapa−p〉 =

∑
α

f(AqApα)f(α)Rq,−q(α)α(p)

= c2
p

∑
α

f(AqApα)f(α)Rq,−q(α)(α(p) + 1)

= c2
p

(
〈a+
q a

+
−qapa−p〉+

∑
α

f(AqApα)f(α)Rq,−q(α)

)
= c2

p〈a+
q a

+
−qapa−p〉+ cp〈a+

q a
+
−q〉,

and hence
〈a+
q a

+
−qapa−p〉 = sp〈a+

q a
+
−q〉 = 〈a+

q a
+
−q〉〈apa−p〉.

Finally,

Q(p,±p) = c2
p

∑
α

(α(p) + 1)(α(±p) + 1)|f(α)|2 = c2
p

(
Q(p,±p) + 2Q(p) + 1

)
,

where we have also used Q(p) = hp = Q(−p). It follows that Q(p,±p) = hp(2hp + 1)
as desired.

In order to calculate the energy of HP it remains to obtain good estimates for the
quantities in Lemma 4.3.1, for p, q ∈ PL ∪ PH . This is done in Lemma 4.3.2, Lemma
4.3.4, Lemma 4.3.5 and Lemma 4.3.6 below. Notice the relations

f(Apα) = cp

√
α∗(p) + 1

α∗(p)
f(α) if p ∈ PL and α ∈Ma

p (4.3.1)

f(Ap,qα) =
√
cq
√
cp−q

√
4α(p)

N
f(α) if p ∈ PL and α ∈M s

p . (4.3.2)
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In Table 4.1 below we have listed various quantities, with which we express the
(presumable) error terms in our further calculation. Most of them will not appear
before Proposition 4.3.7, and some not before Section 4.4. Our motivation from the
particular grouping of terms comes from the choice of cp in [4] and the calculation in
Section 3.3, where cp ≈ 1, for p ∈ PL and cp ≈ −ρŵp, for p ∈ PH , assuming (4.2.4)
also. Notice that, since |cp| < 1, and by (4.2.5) we have I ≤ K ≤ 1. We introduce a
new variable

ep :=
cp

1 + cp
, hp =

e2
p

1− 2ep
, sp =

ep(1− ep)
1− 2ep

,

and we note that the constraint |cp| < 1 is equivalent to ep < 1/2. Furthermore, let

h̃p := (1 + hp)

(
1− 4|sp|

N

∑
v∈PL

v−p∈PH

|cv−p|hv
)−1 4|sp|

N

∑
v∈PL

v−p∈PH

|cv−p|hv.

Finally we set

δ := sup
p∈PH

|cp| and sc := 1 + sup
p∈PL

|sp| and hc := 1 + sup
p∈PL

hp.

Note that hp ≤ |sp| always, and hence in particular hc ≤ sc. We further assume that

Ih2
c ≤ 1 and δ < 1/2. (4.3.3)

In particular, the latter assumption implies that

h̃p = O(Kδsp), for p ∈ PH . (4.3.4)

×N ×N ×N

I
∑

p∈PH c
2
p J

∑
p 6=0 |sp| K

∑
p 6=0 hp

Ĩ
∑

p 6=0 |cp|1/2 J̃
∑

p 6=0 s
2
p K̃

∑
p 6=0 h

2
p

S
∑

p 6=0 |p|hp T
∑

p 6=0 p
2hp U

∑
p6=0 |ep|

W
∑

p 6=0 |ep + ρŵp| J0
∑

p∈PL |sp| K0
∑

p∈PL hp

I1
∑

p6=0 |cp| W1 |cp + ρŵp|

Table 4.1: Various quantities appearing in the error terms. The notation here means
that I = N−1

∑
p∈PH c

2
p and so on.

Lemma 4.3.2. We have

hp ≤ Q(p) ≤

 hp(1 + CIhc) ≤ Chp, p ∈ PL

hp + h̃p ≤ Cδ|sp|, p ∈ PH .
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Proof. Notice that Ap(M) ⊆M for each p 6= 0. Then

Q(p) ≥
∑

α∈Ap(M)

α(p)|f(α)|2 =
∑
β∈M
Apβ(p)|f(Apβ)|2 ≥ c2

p(Q(p) + 1),

where the second inequality comes from the case where p ∈ PL and β ∈Ma
p . It follows

that Q(p) ≥ hp. For the upper bounds, we suppose first that p ∈ PL. Write

Q(p) =
∑
α∈Ms

p

α(p)|f(α)|2 +
∑
α∈Ma

p

α(p)|f(α)|2 =: Qs(p) +Qa(p).

Following the argument in the proof of Lemma 4.3.1 (ii) we see that

Qs(p) = hp
∑
α∈Ms

p

|f(α)|2 ≤ hp.

To estimate Qa(p) we notice that Ma
p is generated from M s

p via soft-pair operations.
That is, for each α ∈Ma

p with, say, α∗(p) = α(−p), there exist q ∈ PH with p− q ∈ PH
and β ∈M s

p with β(p) ≥ 1, such that α = Ap,qβ. Thus we have the upper bound∑
α∈Ma

p

α∗(p)=α(−p)

α(p)|f(α)|2 ≤
∑
β∈Ms

p

∑
q∈PH
p−q∈PH

Ap,qβ(p)|f(Ap,qβ)(p)|2 (4.3.5)

=
∑
β∈Ms

p

∑
q∈PH
p−q∈PH

(β(p)− 1)β(p)
4

N
|cq| · |cp−q||f(β)|2

≤ 4I
∑
β∈Ms

p

(β(p)− 1)β(p)|f(β)|2,

where the equality follows from the relation (4.3.2), and where we have used the Cauchy-
Schwarz in the last estimate. Again, by following the strategy used in the proof of
Lemma 4.3.1, we obtain∑

β∈Ms
p

(β(p)− 1)β(p)|f(β)|2 = 2hp
∑
β∈Ms

p

β(p)|f(β)|2 = 2h2
p

∑
β∈Ms

p

|f(β)|2 ≤ 2h2
p.

It follows that the left-hand side in (4.3.5) is bounded by 8Ih2
p. Similarly we bound the

sum where α∗(p) = α(p), but the contribution from this case is 4Ihp(2hp + 1). Using
the bound hp + 1 ≤ hc we obtain the desired.

Now suppose that p ∈ PH and write

Q(p) =
∑

α∈Ap(M)

α(p)|f(α)|2 +
∑

α∈M\Ap(M)

α(p)|f(α)|2 =: A+B.

Clearly

A =
∑
β∈M
Apβ(p)|f(Apβ)|2 = c2

p(Q(p) + 1), (4.3.6)
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and hence
Q(p) = hp + (1 + hp)B. (4.3.7)

If α ∈ M\Ap(M) with α(p) ≥ 1, then there exist a v ∈ PL with v − p ∈ PH and a
β ∈M s

v such that Av,pβ = α. Thus B may be bounded as

B ≤
∑
v∈PL

v−p∈PH

∑
β∈Ms

v

Av,pβ(p)|f(Av,pβ)|2

= 4N−1
∑
v∈PL

v−p∈PH

|cp||cv−p|
∑
β∈Ms

v

β(v)(β(p) + 1)|f(β)|2

≤ 4N−1|cp|(Q(p) + 1)
∑
v∈PL
v−p∈PL

|cv−p|hv

= 4N−1 |cp|
1− c2

p

(B + 1)
∑
v∈PL

v−p∈PH

|cv−p|hv,

and it follows that B ≤ h̃p/(1+hp). Together with (4.3.7), this shows the upper bound
in case p ∈ PH .

Remark 4.3.3. From Lemma 4.3.1, Lemma 4.3.2 and (4.2.5) it follows that

N ≤ 〈N〉 ≤ N
[
1 + CK(Ihc + δJ)

]
.

The estimates in the following lemma can be obtained using the strategy of Lemma
4.3.2 and the assumptions in (4.3.3), so we skip the proof. We say that vectors
p1, . . . , pm are ± different if pi 6= ±pj , for each i 6= j.

Lemma 4.3.4. (i) If p1, . . . , pn ∈ PL are ± different, then

Q(p1, . . . , pn) ≤ Chp1Q(p2, . . . , pn).

(ii) If q1, . . . , qm ∈ PH are ± different and p1, . . . , pn /∈ PH , then

Q(p1, . . . , pn, q1, . . . , qm) ≤ Cmδm|cq1 · · · cqm |Q(p1, . . . , pn)

(iii) For p 6= 0,

Q(p,±p) ≤ C ·

 hchp, p ∈ PL

δ|sp|, p ∈ PH
.

Lemma 4.3.5. We have

〈a+
p a

+
−p〉 =

 sp
[
1 +O(Ihc)

]
if p ∈ PL

sp
[
1 +O(δ|cp|)

]
if p ∈ PH

.
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Proof. For any p 6= 0 we have

〈a+
p a

+
−p〉 =

∑
α

f(Apα)f(α)Rp,−p(α).

For p ∈ PL we write 〈a+
p a

+
−p〉 = A+B, where

A : =
∑
α∈Ms

p

f(Apα)f(α)Rp,−p(α) = cp
∑
α∈Ms

p

|f(α)|2(α(p) + 1)

= cp(hp + 1)
∑
α∈Ms

p

|f(α)|2 = sp − sp
∑
α∈Ma

p

|f(α)|2.

From (4.3.1) we get

B = cp
∑
α∈Ma

p

|f(α)|2(α∗(p) + 1).

Following the proof of Lemma 4.3.2 we use the fact that Ma
p is generated from M s

p via
soft-pair operations to obtain∑

α∈Ma
p

|f(α)|2 ≤ 8Ihp and
∑
α∈Ma

p

|f(α)|2α∗(p) ≤ 8Ihp(2hp + 1). (4.3.8)

The result now follows, since hp + 1 ≤ hc and hp ≤ |sp|.
For p ∈ PH we have

〈a+
p a

+
−p〉 = cp

∑
α

|f(α)|2Rp,−p(α) = cp + cp
∑
α

|f(α)|2
(
Rp,−p(α)− 1

)
,

and the result follows from the inequality

0 ≤ (
√

(a+ 1)(b+ 1)− 1) ≤ 1

2
(a+ b), a, b ≥ 0, (4.3.9)

Lemma 4.3.2 and the identity cp = sp(1− c2
p).

Lemma 4.3.6. For p 6= ±q we have

〈a+
p a

+
−paqa−q〉 =


spsq

[
1 +O(Ihc)

]
p, q ∈ PL

spsq
[
1 +O

(
δ|sp|+ Ihc

)]
p ∈ PH , q ∈ PL

spsq
[
1 +O

(
δ(|sp|+ |sq|)

)]
p, q ∈ PH

.

Proof. For any p, q ∈ Λ∗ with p 6= ±q we have

〈a+
p a

+
−paqa−q〉 =

∑
α

f(ApAqα)f(α)Rp,−pq,−q(α). (4.3.10)

Suppose first that q ∈ PL. In analogue to the proof of Lemma 4.3.5 we split the sum
in (4.3.10) into a part over M s

q (denoted A) and a part over Ma
q (denoted B). By

following the calculation in the proof of Lemma 4.3.1 (iv) we obtain

A = sq〈a+
p a

+
−p〉 − sq

∑
α∈Ma

q

f(Apα)f(α)Rp,−p(α).
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Hence

|A− sq〈a+
p a

+
−p〉| ≤ |sqcp|

∑
α∈Ma

q

|f(α)|2(α∗(p) + 1)

≤ 8I|sqcp|
∑
α∈Ms

q

|f(α)|2α(q)(α∗(p) + 1)

≤ 16Ihq|sqcp|(Q(p) + 1) ≤ CIhq|spsq|. (4.3.11)

For the term B we notice that, if α(q) and α(−q) are both positive, then α ∈ Aq(M).
It follows that

|B| ≤ |cpcq|
∑
β∈Ma

q

|f(β)|2(β∗(p) + 1)(β∗(q) + 1),

and using the fact that Ma
q is generated from M s

q via soft-pair operations, we can show
that B is also bounded by the the last expression in (4.3.11). The two first claims of
the lemma then follows from the triangle inequality together with Lemma 4.3.5 and
the relation cp = sp(1− c2

p). For p, q ∈ PH we write

〈a+
p a

+
−paqa−q〉 = cp

∑
α

f(Aqα)f(α)Rp,−pq,−q(α)

= cp
∑
α

f(Aqα)f(α)Rq,−q(α) + Ω

= cp〈aqa−q〉+ Ω,

where

Ω := cp
∑
α

f(Aqα)f(α)Rq,−q(α)
(
Rp,−p(α)− 1

)
= cpcq

∑
α

|f(α)|2Rq,−q(α)
(
Rp,−p(α)− 1

)
satisfies

|Ω| ≤ 1

2
|cpcq|

∑
α

|f(α)|2(α∗(q) + 1)(α(p) + α(−p)) ≤ Cδhp|cq|.

Again the result follows from Lemma 4.3.5 and the identity cp = sp(1− c2
p).

Recall that for any continuous function F ∈ L1(Rn), decaying faster than |p|−n−ε
at infinity, for some ε > 0, we have the convergence

lim
L→∞

1

Ln

∑
p∈Λ∗

F (p) =
1

(2π)n

∫
Rn
F (p) dp. (4.3.12)

Since we do not take the thermodynamic limit we will get L-dependent errors in our
estimates. In this regard we employ the bound∣∣ŵp+v − ŵp∣∣ ≤ C|v|(|p|−2 + |p|−3

)
,
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which holds for each p, v ∈ Rn with |v|/|p| ≤ c < 1. This follows from the Lipschitz
continuity of ĝ and the fact that |ĝp| ≤ ĝ0. The relevant sums-to-integral error terms
then turn out to be E3(L) = L−1 lnL and En(L) = L−1, if n ≥ 4.

Proposition 4.3.7. We have

〈HP 〉
N
≤ EBog +

2ρ

N

∑
p6=0

ϕ̂php +
1

N

∑
p∈PH

p2h̃p + ΩP , (4.3.13)

where

EBog :=
ĝ0

2
ρ+

1

N

∑
p 6=0

p2

[
e2
p + 2ρŵpep

1− 2ep
+ (ρŵp)

2

]
(4.3.14)

and

ΩP = Cρ

{
K(K + δJ + Isc) + J2sc(δ + I) + JS

+ ρ−1IT +N−1(J̃ + δJ + scK) +W 2 + UEn(L)

}
.

Remark 4.3.8. By comparing with Lemma 3.3.6 and ignoring the Ω-terms, we see
that the only new term in the energy of the pair-Hamiltonian is N−1

∑
p∈PH p

2h̃p, cor-
responding to some extra kinetic energy (see the proof below).

Proof. By Lemma 4.3.1 and Lemma 4.3.2 we have the following upper bound on the
kinetic energy: ∑

p

p2〈a+
p ap〉 ≤

∑
p

p2hp +
∑
p∈PH

p2h̃p + I
∑
p∈PL

p2hp.

Using the CCR, Lemma 4.3.1 (i), (4.2.5) and the fact that Q(p) ≥ hp ≥ 0 (Lemma
4.3.2) we have

〈HP1〉 =
V̂0

2|Λ|

(∑
p,q

Q(p, q)−
∑
p

Q(p)

)

=
V̂0

2|Λ|

(
N0(N0 + 1) + 2N0

∑
p6=0

Q(p) +
∑
p,q 6=0

Q(p, q)−
∑
p 6=0

Q(p)−N0

)

≤ V̂0

2|Λ|

(
N2 + 2N

∑
p 6=0

(Q(p)− hp) +
∑
p,q 6=0

Q(p, q)

)
.

Similarly,

〈HP2〉 =
∑
p6=0

ρV̂pQ(p)−
(

1

|Λ|
∑
p 6=0

V̂pQ(p)

)∑
p6=0

hp +
1

2|Λ|
∑
p,q 6=0

p 6=q

V̂p−qQ(p, q)
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and

〈HP3〉 =
∑
p 6=0

ρV̂p〈a+
p a

+
−p〉 −

(
1

|Λ|
∑
p 6=0

V̂p〈a+
p a

+
−p〉
)∑
p 6=0

hp

+
1

2|Λ|
∑
p,q 6=0

p 6=±q

V̂p−q〈a+
p a

+
−paqa−q〉

By Lemma 4.3.1, Lemma 4.3.2 and Lemma 4.3.4 we have

1

N

∑
p 6=0

Q(p) = O
[
K(1 + δJ)]

and
1

N2

∑
p,q 6=0

Q(p, q) = O
[
K2 + δJK + δ2J2 +N−1(hcK + δJ)

]
.

The last term N−1(hcK + δJ) arises from the special cases p = ±q, and we have also
used |cp| ≤ |sp|. It follows that

〈HP1〉+ 〈HP2〉
N

≤ V̂0

2
ρ+

1

|Λ|
∑
p 6=0

V̂php

+ Cρ
[
K2 + δJK + IKhc + δ2J2 +N−1(hcK + δJ)

]
.

For HP3 we employ Lemma 4.3.5 and Lemma 4.3.6 to estimate

〈HP3〉
N

=
1

|Λ|
∑
p 6=0

V̂psp +
1

2ρ|Λ|2
∑
p,q 6=0

(
V̂p−qspsq − 2V̂psphq

)
+O

{
ρ
[
(I + δ)J2sc + δJK +N−1J̃

]}
.

From the relation ep = sp − hp we have∑
p,q 6=0

(
V̂p−qspsq − 2V̂psphq

)
=
∑
p,q 6=0

V̂p−q(epeq − hphq) + 2(V̂p−q − V̂p)sphq,

so from the Lipschitz continuity of V̂ we obtain

ρ

2N2

∑
p,q 6=0

(
V̂p−qspsq − 2V̂psphq

)
=

ρ

2N2

∑
p,q 6=0

V̂p−qepeq +O(ρ(K2 + JS)).

Now notice that

ρ

2N2

∑
p,q 6=0

V̂p−qepeq =
ρ

2N2

∑
p,q 6=0

V̂p−q(ep + ρŵp)(eq + ρŵq)

− ρ2

N2

∑
p,q 6=0

V̂p−qŵqep −
ρ3

N2

∑
p,q 6=0

V̂p−qŵqŵp.

66



The Anti-Symmetric Interaction Terms

Moreover, since (2π)nϕ̂ = V̂ ∗ ŵ and V = g + ϕ, we get

V̂

2
ρ =

ĝ

2
ρ+

ρ

2(2π)n

∫
V̂pŵp dp =

ĝ

2
ρ+

ρ

2(2π)n

∫
ĝpŵp dp+

ρ

2(2π)n

∫
ϕ̂pŵp dp.

Finally, by adding up terms and by noting that

1

|Λ|
∑
p 6=0

V̂p−qŵq =
1

(2π)2

∫
V̂p−qŵq dq +O(En(L)),

the result follows.

4.4 The Anti-Symmetric Interaction Terms

In this section we estimate the energy of the remaining part of the Hamiltonian,

HA := H −HP ,

i.e. the interaction terms from (4.0.2) where p 6= r, s,−q. From HA we further single out
terms with (exactly) one zero-momentum operator. Thus we write HA = HA1 +HA2,
where

〈HA1〉 =
2

|Λ|
∑
p+q=r
p6=r,−q,0

V̂q · Re 〈a+
p a

+
q ara0〉. (4.4.1)

4.4.1 Interaction with Three Non-zero Momenta

We start by noting that in (4.4.1) only terms with p, q, r ∈ PL ∪ PH give nonzero
contribution, due to the fact that α(−p) = α(p), for each α ∈ M and p /∈ PL ∪ PH .
Moreover, by construction, for any α ∈M ,

∑
k∈PH α(k) is an even number, and hence

we can assume that either none, or exactly two of the momenta p, q, r are contained
in PH . Thus, the only relevant expectations are the ones considered in the following
lemma.

Lemma 4.4.1. Suppose that p, q, r are ± different with p+ q = r.

(i) For p, q ∈ PH and r ∈ PL,

〈a+
p a

+
q ara0〉 = 2

√
N0/N

√
cp
√
cqhr

[
1 +O

(
Ihr + δ2|cr|−1

)]
.

(ii) For q ∈ PL and p, r ∈ PH ,

〈a+
p a

+
q ara0〉 = O

(
δ|cpcr|1/2|sq|

)
.

(iii) For p, q, r ∈ PL,
〈a+
p a

+
q ara0〉 = O

(
(I +N−1)|spsqsr|

)
.
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Proof. By Lemma 4.3.1 we have

〈a+
p a

+
q ara0〉 =

√
N0

∑
α

f(Ar,pα)f(α)Rp,qr (α). (4.4.2)

Suppose first that p, q ∈ PH and r ∈ PL. We split the sum in (4.4.2) into two parts A
and B depending on whether α ∈M s

r respectively α ∈Ma
r .

A :=
√
N0

∑
α∈Ms

r

f(Ar,pα)f(α)Rp,qr (α)

= 2
√
N0/N

√
cp
√
cq
∑
α∈Ms

r

|f(α)|2α(r)Rp,q(α)

= 2
√
N0/N

√
cp
√
cqhr

∑
α∈Ms

r

|f(α)|2Rp,q(α)

= 2
√
N0/N

√
cp
√
cqhr

[
1 +O

(
Ihr + δ(|sp|+ |sq|)

)]
,

where we in the estimate have used (4.3.9), Lemma 4.3.2 and the first bound in (4.3.8).
For the sum over Ma

r we note that

{α ∈Ma
r : Ar,pα ∈M} = Ar,p(M s

r ) ∩M, (4.4.3)

where Ar,p := (Ar,p)−1 with

f(Ar,pα) =
cr√
cp
√
cq

√
4(α(r) + 1)

N
f(α), for α ∈M s

r .

Thus

B =
√
N0

∑
α∈Ms

r

f(α)f(Ar,pα)Rrp,q(α)

= 2
√
N0/Ncrc

−1/2
p c−1/2

q

∑
α∈Ms

r

|f(α)|2(α(r) + 1)Rp,q(α)

= 2
√
N0/Nsrc

−1/2
p c−1/2

q

∑
α∈Ms

r

|f(α)|2Rp,q(α),

where we have also used sr = cr(hr + 1) in the last equality. From Lemma 4.3.2 and
1/(1− c2

p) ≤ C, for p ∈ PH , we see that

B = O
[√

N0/N
√
cp
√
cqhrδ

2c−1
r

]
.

Upon adding A and B and using |sp|+ |sq| ≤ Cδ and 1 < |cr|−1, we arrive at (i).
The case where q ∈ PL and p, r ∈ PH is similar: The sum in (4.4.2) is now splitted

in parts over M s
q and Ma

q . For α ∈M s
q and Ar,pα ∈M we then have relation

f(Ar,pα) =
2cq
√
cp√

cr

√
α(q) + 1

N
f(α).
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For the sum over Ma
q we note that (4.4.3) still holds with M s

r and Ma
r replaced by M s

q

respectively Ma
q and that, for α ∈M s

q with Ar,pα ∈M we have

f(Ar,pα) =
2
√
cr√
cp

√
α(q)

N
f(α).

Finally, we need to consider the case where p, q, r ∈ PL. Once again the procedure
is similar, except there are more cases to consider due to the three PL momenta. We
decompose M into 8 regimes:

M1 = M s
p ∩M s

q ∩M s
r , M2 = M s

p ∩M s
q ∩Ma

r , M3 = M s
p ∩Ma

q ∩M s
r ,

M4 = M s
p ∩Ma

q ∩Ma
r , M5 = Ma

p ∩M s
q ∩M s

r , M6 = Ma
p ∩M s

q ∩Ma
r ,

M7 = Ma
p ∩Ma

q ∩M s
r , M8 = Ma

p ∩Ma
q ∩Ma

r .

As in the previous cases we use the fact that Ar,p reflects symmetry to have∑
(M4,M6,M7,M8)

f(Ar,pα)f(α)Rp,qr =
∑

(M5,M3,M2,M1)

f(α)f(Ar,pα)Rrp,q.

From the definition of f we now read of the following relations:

f(Ar,pα)f(α)Rp,qr |f(α)|−2 f(α)f(Ar,pα)Rrp,q|f(α)|−2

M1 8N−3/2cpcq[R
p,q
r (α)]2 8N−3/2cr[R

r
p,q(α)]2

M2 2N−1/2cpcqc
−1
r [Rp,q(α)]2 2N−1/2[Rp,q(α)]2

M3 2N−1/2cp[R
p
r(α)]2 2N−1/2c−1

q cr[R
r
p(α)]2

M5 2N−1/2cq[R
q
r(α)]2 2N−1/2c−1

p cr[R
r
q(α)]2

The result then easily follows from a direct calculation together with the estimates
(4.3.9), N0 ≤ N and |ck| ≤ 1.

Remark 4.4.2. The above analysis may of course also be carried out in either of the
special cases p = q, p = −r or q = −r. It turns out, however, that the Cauchy-Schwarz
inequality suffices in these cases. Moreover, the assumptions (4.2.3) implies that the
special cases are only present if p, q, r ∈ PL, in which case

|〈a+
p a

+
q ar〉| ≤ Q(p, q)1/2Q(r)1/2 ≤ C


h

1/2
2p |sp| p = q

hph
1/2
2p p = −r

hqh
1/2
2q q = −r

.

It follows that the contribution to the energy per particle from the special cases is

O(s
1/2
c ρN−1/2J0).
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Proposition 4.4.3. We have

〈HA1〉
N

= −4K0ϕ̂0ρ+O
(
ΩA1

)
, (4.4.4)

where

ΩA1 := ρK2 + ρJ0

[√
δĨ(Isc + δĨ) + J0sc(I +N−1) + scN

−1/2
]

+

 ρK
[
εH +R−2

H +RL + L−1 ln(L) + W̃
]

+ ρS| ln(εH)|, n = 3

ρK
[
εn−2
H +R−2

H + εHRL + L−1 + W̃
]

+ ρS, n ≥ 4
.

Proof. Notice that
√
N0/N = 1 +O(K). Then, From Lemma 4.4.1 and Remark 4.4.2

above we arrive at the following estimate on the energy per particle of HA1:

〈HA1〉
N

=
[
1 +O(K)

] 4ρ

N2

∑
p,q∈PH
p+q∈PL

V̂qhp+qRe
(√
cp
√
cq
)

+O(Ω̃A1) (4.4.5)

where
Ω̃A1 := ρJ0

[√
δĨ(Isc + δĨ) + J0sc(I +N−1) + scN

−1/2
]
.

Suppose that p, q ∈ PH with r := p+ q ∈ PL. We claim that

Re (
√
cp
√
cq) = −ρŵq +O

[
|cp + ρŵp|+ |cq + ρŵq|+ ρ|r|(|q|−2 + |q|−3)

]
. (4.4.6)

To see this, first notice that∣∣Re
(√
cp
√
cq
)

+ ρŵq
∣∣ ≤ ∣∣√cp√cq − cq∣∣+

∣∣cq + ρŵq
∣∣.

Now, if cp and cq have different sign, then |cp|+ |cq| = |cp − cq| and hence∣∣√cp√cq − cq∣∣ ≤√|cp| |cq|+ |cq| ≤ 2|cp − cq|.

In case cp and cq have the same sign, we have∣∣√cp√cq − cq∣∣ =
√
|cq| ·

∣∣√|cp| −√|cq|∣∣ ≤ ∣∣cp − cq∣∣,
so in either case ∣∣√cp√cq − cq∣∣ ≤ 2|cp − cq|. (4.4.7)

Recall the estimate ∣∣ŵp+v − ŵp∣∣ ≤ C|v|(|p|−2 + |p|−3
)
, (4.4.8)

for each p, v ∈ Rn with |v|/|p| ≤ c < 1. Then (4.4.6) follows from the triangle inequality
and (4.4.8). As a consequence the factor Re

(√
cp
√
cq
)

in (4.4.5) can be replaced by
−ρŵq by at cost of an error O[ρKW1 +ρ2S| ln εH |] in three dimensions and O[ρKW1 +
ρ2S] in higher dimensions. Furthermore, the summation over p, q ∈ PH with p+q ∈ PL
can be replaced by the summation over PH × PL at the cost of an error O(ρKRL) in
three dimensions and O(ρKεHRL) in higher dimensions. Finally, we note that since
V̂ ∗ ŵ = (2π)nϕ̂, we have

1

|Λ|
∑
q∈PH

V̂qŵq = ϕ̂0 +O(εn−2
H +R−2

H + En(L)),

and the result follows.
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4.4.2 Interactions with Four Non-zero Momenta

In this section we estimate the energy of

HA2 =
1

2|Λ|
∑

(p,q,r,s)∈R

V̂p−ra
+
p a

+
q aras, (4.4.9)

where
R :=

{
(p, q, r, s) ∈ (Λ∗\{0})4 : p+ q = r + s, p 6= −q, r, s

}
.

As for the interactions with three non-zero momenta, we begin by noting that, since
a+
p a

+
q aras breaks symmetry in p, q, r, s, only terms with p, q, r, s ∈ PL∪PH give nonzero

contribution to the expectation of (4.4.9) in our trial state. Moreover, since each α ∈M
represents a state with an even number of particles in PH , we may assume that PH
contains exactly either zero, two or four of the momenta’s p, q, r, s. This leads to a
decomposition

HA2 = H0
A2 +H2

A2 +H4
A2.

Throughout this section we let

Tα = Tp,q,r,sα := α+ δp + δq − δr − δs.

Using the strategy from the proof of Lemma 4.4.1 in the case p, q, r ∈ PL (only here we
have to partition M into 16 different regimes), we obtain

〈a+
p a

+
q aras〉 = O

[
|spsqsrss|

(
I2 + IN−1 +N−2

)]
,

whenever p, q, r, s ∈ PL are ± different. The special cases are easily estimated by the
Cauchy-Schwarz inequality. This leads to the following estimate on H0

A2.

Lemma 4.4.4. We have

〈H0
A2〉
N

= O
[
ρscJ

3
0 (NI2 + I +N−1)

]
.

Lemma 4.4.5. We have

〈H2
A2〉
N

= O
[
ρδ1/2Ĩ

[
K2 + δIJ0(J0 + δK)N + δ(K + J0)

]]
. (4.4.10)

Proof. Suppose first that p, q ∈ PL and r, s ∈ PH . The only special case possible is
p = q, in which case the Cauchy-Schwarz inequality yields

|〈a+
p a

+
p aras〉| ≤ Q(p, p)1/2Q(r, s)1/2 ≤ Cδ|sp|

√
|crcs|.

Suppose now that p 6= q (and hence p, q, r, s are ± different). Then

〈a+
p a

+
q aras〉 =

∑
α

f(Tα)f(α)Rp,qr,s (α). (4.4.11)

Decompose M into 4 regimes,

M1 = M s
p ∩M s

q , M2 = M s
p ∩Ma

q , M3 = Ma
p ∩M s

q , M4 = Ma
p ∩Ma

q .
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For α ∈M1 we have the relation

f(Tα) =
4

N

cpcq√
cr
√
cs
Rp,q(α)f(α),

and hence the contribution to (4.4.11) from this regime is∣∣∣∣ ∑
α∈M1

· · ·
∣∣∣∣ =

4

N

|cpcq|√
|crcs|

∑
α∈M1

(α(p) + 1)(α(q) + 1)Rr,s(α)|f(α)|2

≤ 4

N

|spsq|√
|crcs|

Q(r, s) ≤ CN−1δ2|spsq|
√
|crcs|.

Next, for α ∈M2,

f(Tα) =
cp√
cr
√
cs

√
α(p) + 1

α(q) + 1
f(α),

and hence ∣∣∣∣ ∑
α∈M2

· · ·
∣∣∣∣ =

|cp|√
|crcs|

∑
α∈M2

|f(α)|2(α(p) + 1)Rr,s(α)

≤ |sp|√
|crcs|

∑
α∈Ma

q

|f(α)|2α(r)α(s)

≤ CIδ2|sp|hq
√
|crcs|.

In the last inequality, the factor Ihq comes from the fact that Ma
q is generated from

M s
q via soft-pair creations. The contribution from M3 equals the contribution from M2

with p and q interchanged. For the last case we use∑
α∈M4

· · · =
∑
β∈M1

f(β)f(T−1β)
√
β(p)β(q)(β(r) + 1)(β(s) + 1)

to obtain ∣∣∣∣ ∑
α∈M4

· · ·
∣∣∣∣ ≤ CN−1hphq

√
|cr|
√
|cs|.

In total we have

|〈a+
p a

+
q aras〉| ≤ C

√
|crcs|

[
N−1hphq + Iδ2(hq|sp|+ hp|sq|) + δ2N−1|spsq|

]
.

The case p, r ∈ PL and q, s ∈ PH is similar: In the special case p = −r we have

|〈a+
p a

+
q a−pas〉| ≤ Cδhp

√
|cqcs|,

and otherwise

|〈a+
p a

+
q aras〉| ≤ C

√
|cqcs|

[
δN−1

(
|sp|hr + hp|sr|

)
+ δI|spsr|

]
.

By carrying out the appropriate integrations, we arrive at the desired.
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Lemma 4.4.6. Suppose that δ2ρ−1|Λ|R3n/2
L R

n/2
H ≤ ρε, for some ε > 0. Then

〈H4
A2〉
N

=
2ρK0

(2π)n

∫
ϕ̂pŵp dp+O(Ω4

A2), (4.4.12)

where

Ω4
A2 := ρδĨ2

[
δ2 +K(Ihc + δ2)

]
+R3n

H δ
4ρ−2

[
1 + ρ−1h2

cR
n
L

]
+ ρKW1

[
1 + I1 + δ1/2Ĩ

]
+ ρK

[
εn−2
H +R−2

H + En(L)
]

+ ρS
[
I1 + δ1/2Ĩ

]
×


[
RH + ln(RH/εH)

]
, n = 3[

Rn−2
H +Rn−3

H

]
, n ≥ 4

.

Proof. Notice that, for p, q, r, s ∈ PH ,

f(Tα) =

√
cp
√
cq√

cr
√
cs
f(α),

whenever Tα ∈ M . There are essentially only two special cases to consider, namely
p = q and p = −r, and it is easy to see that

|〈a+
p a

+
q aras〉| ≤ Cδ2|cp|


√
|crcs| if p = q√
|cqcs| if p = −r

.

It follows that the contribution to the energy per particle from the special cases is
O(δ3ρĨ2). Now fix (p, q, r, s) ∈ R such that p, q, r, s ∈ PH are ± different. Then

〈a+
p a

+
q aras〉 =

∑
α

f(Tα)f(α)Rp,qr,s (α) = A+B,

where
A :=

∑
α∈M ′

f(Tα)f(α)Rp,qr,s (α), B :=
∑

α∈M\M ′
f(Tα)f(α)Rp,qr,s (α)

and M ′ := Ar+s,r(M s
r+s), if r + s ∈ PL, and M ′ := ∅ otherwise. We will see that

the main contribution comes from the term A. Suppose that r + s ∈ PL. Since
T = Ap+q,pAr+s,r, we have

A =
∑

β∈Ms
r+s

f(Ap+q,pβ)f(Ar+s,rβ)Rr,s(β)Rp,q(β)

= ±4N−1√cp
√
cq
√
cr
√
cshp+q

∑
β∈Ms

p+q

|f(β)|2Rr,s(β)Rp,q(β),

where the negative sign applies in case cp and cq have different sign. From (4.3.9) it
follows that

0 ≤
√

(a+ 1)(b+ 1)(c+ 1)(d+ 1)− 1 ≤ 1

2

(
ab+ a+ b+ cd+ c+ d

)
,
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for nonnegative a, b, c, d. Using this fact and (4.3.8) we obtain

A = ±4N−1√cp
√
cq
√
cr
√
cshp+q

+O
(
N−1hp+q|cpcqcrcs|1/2

[
δ(|cr|+ |cs|+ |cp|+ |cq|) + Ihp+q

])
. (4.4.13)

With two integrations over PH and one integration over PL, the contribution to the
energy per particle from the error in (4.4.13) is of order ρδĨ2K(Ihc + δ2). Using the
triangle inequality, (4.4.7) and (4.4.8), we obtain

±√cp
√
cq
√
cr
√
cs = ρ2ŵpŵr +O

{
|cr| |cp + ρŵp|+ ρ|ŵp| |cr + ρŵr| (4.4.14)

+
√
|crcs|

(
|cp + ρŵp|+ ρ|p+ q|(|p|−2 + |p|−3) + |cq + ρŵq|

)
+ |cp|

(
|cr + ρŵr|+ ρ|r + s|(|r|−2 + |r|−3) + |cs + ρŵs|

)}
.

The contribution to the energy per particle from the error in (4.4.14) is of order

ρKW1

(
1 + I1 + δ1/2Ĩ

)
+ ρS

(
I1 + δ1/2Ĩ

)
×


[
RH + ln(RH/εH)

]
, n = 3[

Rn−2
H +Rn−3

H

]
, n ≥ 4

.

Furthermore, we have

2

N3

∑
p,q,r,s∈PH
p+q=r+s

V̂p−rŵrŵphp+q =
2ρK0

(2π)3

∫
ϕ̂pŵp dp+O

[
ρK
(
εn−2
H +R−2

H + En(L)
)]
.

In order to estimate the term B we employ the fact that∑
α(r)≥m

|f(α)|2Rp,qr,s (α) = O
[
δ|cs|(δ|cr|)m

]
, m ≥ 0, (4.4.15)

and the analogues bounds for sums over α(s) ≥ m, α(p) ≥ m and α(q) ≥ m. These
estimates are easy, but tedious, to obtain using the strategy of Lemma 4.3.2 and |cp| ≤ δ,
for p ∈ PH . As a consequence we may restrict attention to α’s which are bounded
uniformly in p, q, r, s, and hence it suffices to show that

B̃ :=
∑

α∈M\M ′
|f(Tα)f(α)|

is negligible. Given m ∈ N0, a nonempty subset {v1, . . . , vt} ⊂ PL of ± different
elements and a γ ∈ M with γ(−vi) = γ(vi) ≥ 1, we let M(m, {v1, . . . , vt}, γ) denote
the set of all α ∈M\M ′ such that α and Tα have the form

α =

t∏
i=1

Avi,ki
m∏
j=1

Aqjγ, Tα =

t∏
i=1

Avi,k′i
m∏
j=1

Aq
′
jγ. (4.4.16)
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Here qj , ki, (vi − ki) are in PH and similarly for the ’primes’. We also require that

ki 6= k′i and qj 6= q′j . (4.4.17)

In case m = 0 the products over j in (4.4.16) should be interpreted as a factor one.
Notice also that if m = 0, then t ≥ 2, since otherwise α ∈M ′. From the definition of f
and the fact that |ck| ≤ δ whenever k ∈ PH , we see that, for α ∈M(m, {v1, . . . , vt}, γ),

|f(Tα)f(α)| ≤ δ2m
[
4δ2N−1

]t|f(γ)|2
t∏
i=1

γ(vi).

Since α and Tα agree outside PH and represent states with equal number of particles
in PH , it follows that

{α ∈M\M ′ : Tα ∈M} ⊆
⋃

m,{v1,...,vt},γ

M(m, {v1, . . . , vt}, γ),

and hence we have an upper bound

B̃ ≤
∑

m,{v1,...,vt},γ

δ2m
[
4δ2N−1

]t|f(γ)|2
t∏
i=1

γ(vi) · |M(m, {v1, . . . , vt}, γ)|,

where | · | denotes the cardinality. We claim that

|M(m, {v1, . . . , vt}, γ)| ≤ |PH |−1t!
[
Ct|PH |

]t/2 · [C|PH |]m/2, (4.4.18)

if there exists an i ∈ {1, . . . , t} such that

vi ∈ span{0,±1} {v1, . . . , vi−1, vi+1, . . . , vt, p, q, r, s}, (4.4.19)

and |M(m, {v1, . . . , vt}, γ)| = 0 otherwise. Here span{0,±1} denotes the set of all linear
combinations with coefficients in {0, 1,−1}. To verify (4.4.18) we suppose that α ∈
M(m, {v1, . . . , vt}, γ) so that α and Tα has the form (4.4.16). Since in particular
α /∈M ′ we must have

{ki, vi − ki} 6= {r, s} and {k′i, vi − k′i} 6= {p, q}. (4.4.20)

Since Tα(k) = α(k), for each k /∈ {p, q, r, s}, the PH -momenta in the representation for
α respectively Tα in (4.4.16) are almost the same. We denote the common momenta by
p1, . . . , p2(m+t)−2. Counting with multiplicity, the PH -momenta appearing in (4.4.16)
for α respectively Tα can then be listed as

α : r, s, p1, . . . , p2(m+t)−2

Tα : p, q, p1, . . . , p2(m+t)−2

Thus each common momenta appear in one α-pair and one Tα-pair. By (4.4.20), the
momenta p, q, r, s form pair with one common momenta each. A ’graph’ is associated
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Figure 4.1: A visualization of typical α- and Tα-pairs in the case m = 3 and t = 2.

to α as follows (see Figure 4.1): We represent each PH -momentum pair from (4.4.16)
by two dots connected by an arc, labeled by the sum of the momenta’s in the pair
(so in particular we can distinguish strict pairs from soft-pairs). The graph consists of
two chains (parts involving p, q, r, s) and possibly a number of loops (parts involving
only common momenta). Since the ends of the chains are fixed, and since chains must
involve soft-pairs (since p, q, r, s are ± different), it follows that (4.4.19) holds, for some
i. The length of a chain/loop is the number of points in it. Suppose that the graph
has a total of l ≥ 2 chains and loops with respective lengths m1, . . .ml. Then we must
have

m1 + . . .+ml = 2(m+ t) + 2. (4.4.21)

By (4.4.17), each loop has length a least 4. Since the two chains contain at least one
of the pi’s each, it follows that

l − 2 ≤ 2(m+ t)− 2− 2

4
=
m+ t

2
− 1. (4.4.22)

We call a chain or a loop trivial if all associated Tα -pairs are strict. Since each trivial
chain involves at least one strict pair and each trivial loop involves at least two strict
pairs, it follows that the total number of trivial chains and loops are at most m/2 + 1.
Hence the number of non-trivial chains and loops is at least l − (m/2 + 1). Thus we
can bound the number of α ∈M(m, {v1, . . . , vt}, γ) having the particular graph above
as follows:

• Choose one pi in each loop. The total number of choices is less than |PH |l−2

• Choose the positions of the m zero’s in the m + t α-edges. The total number of
choices is less than 2m+t

• Choose the positions of v1, . . . , vt in the remaining t α-edges. The total number
of choices is t!
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• Choose the positions of the m zero’s in the m+ t Tα-edges. The total number of
choices is less than 2m+t

• Choose the positions of the vi’s in Tα-edges. The total number of choices is less
than tt−(l−m/2−1)

Taking the product of the above yields

4m+tt!|PH |−2tt+m/2+1
(
|PH |/t

)l ≤ |PH |−1t!
[
16t|PH |

]t/2[
16|PH |

]m/2
, (4.4.23)

where the inequality follows from (4.4.22), assuming that |PH |/t ≥ 1. Since the right-
hand side in (4.4.23) is independent of m1, . . . ,ml and l, we only need to show that
the number of different graphs is bounded by Cm+t. But this follows by considering
(for fixed l) the number of nonnegative integer solutions to (4.4.23), summing from
l = 2, . . . , (m+ t)/2 + 1 and then using the binomial theorem.

Employing the bound (4.4.18) we now can finish the proof as follows: First perform
the summation over γ,

∑
γ∈∩iMs

vi

|f(γ)|2
t∏
i=1

γ(vi) ≤ htc
∑

γ∈∩iMs
vi

|f(γ)|2 ≤ htc. (4.4.24)

Next we note that, for fixed t, the number of subsets {v1, . . . , vt} ⊂ PL with the property
that (4.4.19) holds, for some i, is bounded by

t3t+3 |PL|t−1

(t− 1)!
.

Thus we have

B̃ ≤ C

|PL| · |PH |
∑
t≥1

∑
m≥0

m+t≥2

[
Cδ2|PH |1/2

]m[
Cδ2hcN

−1|PL|(t|PH |)1/2
]t

≤ Cδ4N−1 +
C

|PL| · |PH |
∑
t≥2

[
Cδ2hcN

−1|PL|(t|PH |)1/2
]t
.

Let t0 ≥ 2 and notice that∑
2≤t≤t0

[
Cδ2hcN

−1|PL|(t|PH |)1/2
]t ≤ Ct0δ4h2

c |PL|2|PH |N−2,

provided δ2hcN
−1|PL|(t0|PH |)1/2 is sufficiently small (which is true if µ below is small).

For the remaining part of the sum, we use t ≤ |PL| to obtain∑
t>t0

[
Cδ2hcN

−1|PL|(t|PH |)1/2
]t ≤ Cµt0 ,

provided
µ := Cδ2hcN

−1|PL|3/2|PH |1/2
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is sufficiently small. In total we get

B̃|PH |3

N |Λ|
≤
(
|PH |
|Λ|

)3[
δ4ρ−2 + t0δ

4ρ−3h2
c

|PL|
|Λ|

+
|Λ|

|PH ||PL|
ρ−1µt0

]
From the bounds |PL| ∼ |Λ|RnL and |PH | ∼ |Λ|RnH we see that∣∣∣∣ 1

N |Λ|
∑

p,q,r,s∈PH
p+q=r+s

B̃

∣∣∣∣ ≤ CR3n
H δ

4ρ−2
(
1 + ρ−1h2

cR
n
L

)
,

provided µ ≤ ρε and t0 sufficiently large. Also notice that

µ ≤ Cδ2ρ−1|Λ|R3n/2
L R

n/2
H .

By adding up the error terms we are finally done.

4.5 Minimization and Estimates

Considering (4.3.13) we start by noting that

2ρ

N

∑
p 6=0

ϕ̂php = 2ρK0ϕ̂0 +O
[
ρ(K −K0) + ρS

]
. (4.5.1)

For the excess kinetic energy we have

1

N

∑
p∈PH

p2h̃p =
[
1 +O(δ2)

] 4

N2

∑
p∈PH

p2|sp|
∑
v∈PL

v−p∈PH

|cv−p|hv

=
[
1 +O(δ2)

]( 2K0ρ

(2π)n

∫
ĝpŵp dp+O(ΩKin)

)
, (4.5.2)

where

ΩKin :=
1

N2

∑
p∈PH

∑
v∈PL

v−p∈PH

p2|sp|
∣∣cv−p − cp∣∣hv +

K

N

∑
εH≤|p|≤εH+RL

p2hp

+
K

N

∑
RH−RL≤|p|≤RH

p2hp +
Kρ

|Λ|
∑
p/∈PH

ĝpŵp

+
K

N

∑
p∈PH

p2
[
hp − (ρŵp)

2
]

+KρEn(L).

Upon adding the (presumable) main terms from (4.5.1), (4.5.2), (4.4.12) and (4.4.4),
and by using (2π)nϕ̂ = V̂ ∗ ŵ, we see that they exactly cancel:

2ρK0ϕ̂0 +
2K0ρ

(2π)n

∫
ĝpŵp dp+

2ρK0

(2π)3

∫
ϕ̂pŵp dp− 4K0ϕ̂0ρ = 0.
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Minimization and Estimates

We choose the function ep pointwise to minimize the expression

mp :=
e2
p + 2ρŵpep

1− 2ep
.

from (4.3.14). This yields

−e2
p + ep + ρŵp = 0, ep =

1

2

(
1−

√
1 + 4ρŵp

)
(4.5.3)

and

mp =
1

2

(√
1 + 4ρŵp − 1− 2ρŵp

)
,

provided 1 + 4ρŵp ≥ 0. Note however that, since ĝ is continuous, ĝ0 > 0 and ĝp → 0 as
|p| → ∞, it follows that ŵp is bounded from below, and hence

lim inf
ρ→0

[
inf
p 6=0

(1 + 4ρŵp)
]
≥ 1.

Notice that (4.5.3) yields

cp =
1−

√
1 + 4ρŵp

1 +
√

1 + 4ρŵp
, sp =

−ρŵp√
1 + 4ρŵp

, hp =
1

2

(
1 + 2ρŵp√
1 + 4ρŵp

− 1

)
. (4.5.4)

Also notice that
cp = −ρŵp +O((ρŵp)

2) as ρp−2 → 0.

Finally, with the choice in (4.5.3) we have

EBog =
ĝ0

2
ρ+

1

2ρ|Λ|
∑
p 6=0

p2Φ(ρŵp), (4.5.5)

where
Φ(t) :=

√
1 + 4t+ 2t2 − 2t− 1. (4.5.6)

Notice that ρŵp ≤ ĝ0ρε
−2
L /2, for any p ∈ PL. Suppose that RL � 1 such that also

ρŵp > 0 whenever p ∈ PL. Then

sc = sup
p∈PL

|sp| = O(ρ1/2ε−1
L )

In Table 4.2 we have listed elementary estimates on the quantities from Table 4.1, given
the particular choice in (4.5.3) (see also [4] and Section 3.3.3).

4.5.1 Dimension n = 3

A straightforward calculation, using the fact that Φ is increasing and ĝp ≤ ĝ0, yields

EBog ≤ 4πaρ

(
1 +

128

15
√
π

(a3ρ)1/2

)
+O

[
ρ3/2(lnL)/L

]
,
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Minimization and Estimates

I J K S T U W J0

n = 3 ρε−1
H 1 ρ1/2 ρ ln ρ ρ 1 ρ1/2 RL

n = 4 ρε−1
H 1 ρ ln ρ ρ ρ 1 ρ ln ρ R2

L

Ĩ J̃ K̃ W1 I1 sc hc δ

n = 3 ρ−1/2 ρ1/2 ρ1/2 ρ1/2 1 ρ1/2ε−1
L ρ1/2ε−1

L ρε−2
H

n = 4 ρ−1/2 ρ ln ρ ρ ln ρ ρ ln ρ 1 ρ1/2ε−1
L ρ1/2ε−1

L ρε−2
H

Table 4.2: Estimates on the quantities from Table 4.1. The information here is that
I = O(ρε−1

H ), for n = 3, and so on.

where the error ρ3/2(lnL)/L comes from replacing the sum with an integral. We now
choose parameters. From (4.5.1) we need K ≈ K0, and since the main contribution
to the sum defining K comes from |p| ∼ ρ1/2, we choose εL, RL ∼ ρ1/2. From ΩA1

in Proposition 4.4.3 and ΩA2 in Lemma 4.4.6, it is clear that we need εH � 1 and
R−1
H � 1. However, from the estimates on I and δ in Table 4.2 it is also clear that εH

cannot be too small, which in turns implies that RH cannot be too large. In particular,
if we take RH = ε−1

H , then the second term in ΩA2 together with δ = O(ρε−2
H ) shows

that εH ≥ ρ1/34. For simplicity we choose

εL = ρ1/2+η, RL = ρ1/2−η, εH = ρη and RH = ρ−η

for some 0 < η ≤ 1/34. Moreover we take L = ρ−(1+η). With these choices we obtain

ΩP = O(ρ2−3η) and ΩA1 = O(ρ3/2+η).

Furthermore, the contributions from Lemma 4.4.4 and Lemma 4.4.5 are O(ρ5/2−9η)
respectively O(ρ2−9η). The condition in Lemma 4.4.6 is satisfied if η < 1/52 and the
contribution is then ΩA2 = O(ρ3/2+η). Finally, one can check that the errors from
(4.5.1) and (4.5.2) are also of order ρ3/2+η. This concludes the proof of Theorem 4.1.3.

4.5.2 Dimension n = 4

In 4 dimensions we have (see Section 3.3.3)

EBog ≤ 4π2a2ρ

(
1 + 2π2a4ρ| ln(a4ρ)|

)
+O

[
ρ2(1 + | ln ρ|L−1)

]
.

Proceeding similarly to the 3-dimensional case, we seek parameters such that K ≈ K0.
However, in 4 dimensions, the dominant part of

∑
p 6=0 hp comes from the regime ρ1/2 ≤

|p| ≤ 1, and hence we are forced to take RL ∼ 1. Furthermore, we have the estimate

ΩP = O(ρ2ε−3
H + ρL−1),
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Proof of Lemma 4.1.1

similar to the 3-dimensional case, so we must also have εH ∼ 1 and L ∼ ρ−1. On
the other hand, since J0 = R2

L, we see that the estimates in Section 4.4.6 all require
RL ∼ ρα, for some 1/4 ≤ α ≤ 1/2. A further complication arises when we attempt
to divide Λ into smaller boxes (since we cannot take the thermodynamic limit). With
L = ρ−γ , we could repeat the steps from Section 4.1 to show that

e0(ρ) ≤ 4π2a2ρ

(
1 + 2π2a4ρ| ln(a4ρ)|

)
+ Ω + Cρ1/2+γ ,

where Ω denotes the sum of all ’error terms’. Thus, in 4 dimensions we need γ ≈ 3/2,
in contrast to γ ≈ 1 in 3 dimensions. This makes an appropriate choice of parameters
even harder, if not impossible.

4.A Proof of Lemma 4.1.1

Define the function q : R→ [0, 1] by

q(t) =



cos
[π(t−l)

4l

]
|t| ≤ l

1 l < t < L− l

cos
[π(t−(L−l))

4l

]
|t− L| ≤ l

0 otherwise

.

Suppose that ψ ∈ L2
loc(R) is L-periodic. By definition of q,∫ L+l

−l
|q(t)ψ(t)|2 dt =

∫ l

−l
cos2

(
π(t− l)

4l

)
|ψ(t)|2 dt+

∫ L−l

l
|ψ(t)|2 dt

+

∫ L+l

L−l
cos2

(
π[t− (L− l)]

4l

)
|ψ(t)|2 dt.

In the latter integral we now employ a change of variables s = t − L (which leaves ψ
invariant) and the identity cos(θ + π/2) = − sin θ, to obtain∫ L+l

L−l
cos2

(
π[t− (L− l)]

4l

)
|ψ(t)|2 dt =

∫ l

−l
sin2

(
π(t− l)

4l

)
|ψ(t)|2 dt.

Hence, in total ∫ L+l

−l
|q(t)ψ(t)|2 dt =

∫ L

0
|ψ(t)|2 dt, (4.A.1)
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Proof of Lemma 4.1.1

showing that ψ 7→ qψ is an isometry from L2
per([0, L]) to L2

Dir([−l, L + l]). Next we
notice that∫ L+l

−l
|(qψ)′(t)|2 dt =

∫ L+l

−l
|q(t)ψ′(t)|2 dt+ 2

∫ L+l

−l
q(t)q′(t)Re (ψ̄(t)ψ(t)) dt

+

∫ L+l

−l
|q′(t)ψ(t)|2 dt

=

∫ L

0
|ψ′(t)|2 dt+ 2

∫ L+l

−l
q(t)q′(t)

d

dt
|ψ(t)|2 dt

+

∫ L+l

−l
|q′(t)ψ(t)|2 dt,

where we have used (4.A.1) and the fact that ψ′ is periodic in the last equality. Notice
that |q′(t)| ≤ Cl−1χ(t) and |q′′(t)| ≤ Cl−2χ(t), where χ is the characteristic function
of the set [−l, l] ∪ [L − l, L + l]. Moreover, an integration by parts and the fact that
q(−l) = 0 = q(L+ l) yields∫ L+l

−l
q(t)q′(t)

d

dt
|ψ(t)|2 dt = −

∫ L+l

−l

[
q′(t)2 + q(t)q′′(t)

]
|ψ(t)|2 dt.

It follows that∫ L+l

−l
|(qψ)′(t)|2 dt ≤

∫ L

0
|ψ′(t)|2 dt+ Cl−2

∫
|ψ(t)|2χ(t) dt.

Fix an arbitrary u ∈ Rn to be averaged out. We can generalize the above arguments to
construct an isometry F u from L2

per([0, L]nN ) into L2
Dir([−l−u, L+ l−u]nN ) as follows.

Let
h(x) = q(x(1)) · · · q(x(n)), x = (x(1), . . . , x(n)) ∈ Rn.

Then define

F u(Ψ)(x1, . . . , xN ) = Ψ(x1, . . . , xN )
N∏
i=1

h(xi + u).

Then F u is an isometry and furthermore

‖∇F u(Ψ)‖2L2([−l−u,L+l−u]nN ) ≤ ‖Ψ‖
2
L2([0,L]nN ) + Cl−2

N∑
i=1

∫
χ(xi + u)|Ψ|2,

where χ is now the characteristic function of the set {x ∈ Rn : dist(x, ∂[0, L]n) ≤ l)}.
For the interaction energy we notice that V (x) ≤ VL(x), since V is nonnegative. Then,
using the isometry property of F u, we have∫

|F u(Ψ)|2V (xj − xk) ≤
∫ ∣∣F u(Ψ

√
VL(xj − xk))

∣∣2 =

∫
|Ψ|2VL(xj − xk).

In total we have shown the estimate

〈HDir
N,L+2l〉Fu(Ψ) ≤ 〈H

per
N,L〉Ψ + Cl−2

N∑
i=1

〈χ(xi + u)〉Ψ,

82



Proof of Lemma 4.1.2

for each u ∈ Rn. By averaging over u ∈ [0, L]n we obtain∫
[0,L]n

〈HDir
N,L+2l〉Fu(Ψ) du ≤ Ln〈H

per
N,L〉Ψ + CNLn−1l−1‖Ψ‖.

Thus, for each periodic Ψ there exists a u ∈ [0, L]n, such that

〈HDir
N,L+2l〉Fu(Ψ) ≤ 〈H

per
N,L〉Ψ + C

N

lL
‖Ψ‖. (4.A.2)

Finally, the grand canonical version is obtained by applying (4.A.2) componentwise.

4.B Proof of Lemma 4.1.2

Fix an arbitrary k ∈ N and set L̃ = k(L + R). We place M := kn copies of ΛL inside
the larger box ΛL̃, such that neighboring boxes are separated by a distance R. Denote
the center of the j’th box by cj . We may assume that c1 = 0. Pick an arbitrary
Ψ ∈ H1

0 (ΛNL ) and extend Ψ trivially to all of RnN . Define

ϕj(x1, . . . , xN ) := Ψ(x1 − cj , . . . , xN − cj)

and

Φ := ϕ1(x1, . . . , xN ) · ϕ2(xN+1, . . . , x2N ) · · ·ϕM (x(M−1)N+1, . . . , xMN ).

Then Φ is an MN -particle Dirichlet function on the larger box, and by Tonelli’s theorem
and a simple change of variables, it follows that ‖Φ‖ = ‖Ψ‖M . Moreover, we claim that

〈Φ, HMN,L̃Φ〉 = M‖Ψ‖2(M−1)〈Ψ, HN,LΨ〉. (4.B.1)

To see this, first split the kinetic energy into the M different sectors:

‖∇Φ‖2 =

N∑
i=1

‖∇iΦ‖2 +

2N∑
i=N+1

‖∇iΦ‖2 + . . .+

MN∑
i=(M−1)N+1

‖∇iΦ‖2.

Again, by Tonelli’s theorem,

N∑
i=1

‖∇iΦ‖2 =

∫
Λ
(M−1)N

L̃

|Φ|2|ϕ1|−2

(∫
ΛNL

N∑
i=1

|∇iΨ|2
)

= ‖Ψ‖2(M−1)
N∑
i=1

‖∇iΨ‖2,

and by a change of variables, we get identical contributions from the remaining M − 1
terms. For the interaction energy, we notice that, due to the spacing, particles in
different boxes do not interact. By a similar argument as above we then see that∫

ΛMN
L̃

∑
1≤i<j≤MN

V (xi − xj)|Φ|2 = M‖Ψ‖2(M−1)

∫
ΛNL

∑
1≤i<j≤N

V (xi − xj)|Ψ|2.
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Proof of Lemma 4.1.2

Now, for a grand-canonical Dirichlet wave function ΨGC = ⊕∞N=0ΨN we apply the above
construction componentwise to define Dirichlet functions ΦMN on the larger box. Then

ΦGC :=
∞⊕
N=0

‖ΨN‖1−MΦMN

readily satisfies ‖ΦGC‖ = ‖ΨGC‖,

〈N〉ΦGC = M〈N〉ΨGC and 〈HL̃〉ΦGC = M〈HL〉ΨGC .

Thus we have
〈HL〉ΨGC

N
=
〈HL̃〉ΦGC

MN
≥ EGC

0 (MN, L̃)

MN
,

for each normalized Dirichlet state ΨGC, and hence

EGC
0 (N,L)

N
≥ EGC

0 (MN, L̃)

MN
. (4.B.2)

Now, the left-hand-side in (4.B.2) is independent of k, so the result follows from Lemma
3.3.2 in the the limit k →∞.
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[12] E. H. Lieb and W. Liniger. Simplified approach to the ground-state energy of an
imperfect bose gas. application to the one-dimensional model. Phys. Rev., 134 2A,
1963.

[13] E. H. Lieb, R. Seiringer, and J. Yngvason. Bosons in a trap: A rigorous derivation
of the gross-pitaevskii energy functional. Phys. Rev. A, 61 043602, 2000.



BIBLIOGRAPHY

[14] E. H. Lieb and J. Yngvason. Ground state energy of the low density bose gas.
Phys. Rev. Lett., 80:2504–2507, 1998.

[15] E. H. Lieb and J. Yngvason. The ground state energy of a dilute two-dimensional
bose gas. J. Stat. Phys., 103:509–526, 2001.

[16] E.H. Lieb. The bose fluid. Univ. of Colorado Press, pages 175–224, 1964.

[17] C. Mora and Y. Castin. Ground state energy of the two-dimensional weakly in-
teracting bose gas: First correction beyond bogoliubov theory. Phys. Rev. Lett.,
102, 2009.

[18] M.Reed and B. Simon. Methods of Modern Mathematical Physics Vol. 4. Academic
Press, 1. edition, 1978.

[19] D. Ruelle. Statistical Mechanics: Rigorous Results. Imperial College Press and
World Scientific, 3. edition, 1969.

[20] M. Schick. Two-dimensional system of hard core bosons. Phys. Rev. A, pages
1067–1073, 1971.

[21] B. Simon. Convexity: An Analytical Viewpoint. Cambridge University Press, 1.
edition, 2011.

[22] J.P. Solovej. Upper bounds to the ground state energies of the one- and two-
component charges bose gases. Comm. Math. Phys., 266, 2006.

[23] J.P. Solovej. Many Body Quantum Mechanics. Lecture Notes, 2007.

[24] C. N. Yang. Pseudopotential method and dilute hard ”sphere” bose gas in dimen-
sion 2,4 and 5. Europhys. Lett., 84 40001, 2008.

[25] H-T. Yau and J. Yin. The second order upper bound for the ground state energy
of a bose gas. J. Stat. Phys., 2009.

[26] J. Yin. Quantum many-body systems with short-range interactions (ph.d. disser-
tation). Princeton University., 2008.

86


