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Resumé – Dansk

I denne afhandling studeres problemer i forbindelse med perturbationsteori af indle-
jrede egenværdier. Den første del omhandler den translationsinvariante, massive Nelson-
model og beviser, at indlejrede egenværdier af Hamilton-operatorens fibre m̊a være
mindst to gange differentiable som funktion af fiberparameteren. Beviset bygger p̊a en
udvikling af orden 2 +α mht. til fiberparameteren. De væsentligste tekniske hindringer
er, at fiber-operatorerne a priori ikke har tilstrækkelig regularitet mht. den konjugerede
operator og at kommutatorer mellem den konjugerede operator og fiber-operatorerne
ikke kan begrænses af fiber-operatoren. I anden del bevises en abstrakt analytisk per-
turbationsteori for indlejrede egenværdier. Et teknisk krav p̊a Hamilton-operatorerne
er dog, at alle itererede kommutatorer skal kunne begrænses af Hamilton-operatoren,
hvilket udelukker Nelson-modellen. Strategien i artiklen er at bruge spektraldeforma-
tionsteknikker hvor den unitære gruppe er genereret af den konjugerede operator. Et
Mourre-estimat gør det muligt at bevise, at det essentielle spektrum af de transformerede
Hamilton-operatorer forsvinder, og s̊aledes tillader brug af Kato-teori.
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Resumé – English

In this thesis problems connected with perturbation theory of embedded eigen-
values are studied. The first part deals with the case of the translation invari-
ant massive Nelson model and establishes that embedded eigenvalues of the fiber
Hamiltonians have to depend at least twice differentiable on the fiber parameter.
This is done by deriving an expansion to order 2 + α w.r.t. the fiber param-
eter. The main technical obstacles are that a priori the fiber Hamiltonians do
not have sufficient regularity w.r.t. the conjugate operator and that commuta-
tors of the conjugate operator with the fiber Hamiltonians cannot be bounded
by the Hamiltonians again. In the second part an abstract analytic perturbation
theory for embedded eigenvalues is established. However a technical requirement
on the Hamiltonians is that all iterated commutators should be bounded by the
Hamiltonian thus excluding the Nelson model. The strategy of the paper is to
use spectral deformation techniques were the unitary group is generated by the
conjugate operator. A Mourre estimate allows to prove that the essential spectrum
of the transformed Hamiltonians recedes thus permitting the use of Kato theory.
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CHAPTER 1: Overview
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1 General Motivation of the Thesis: Perturbation Theory of
Embedded Eigenvalues

The question how the spectrum of a family of operators {Hκ}κ acting on a Hilbert
space depends on the parameter κ is most likely an old one, since it contains the
question how the eigenvalues of a family of matrices depend on a parameter κ.
In the case of bounded operators on a Hilbert space H the notion of a family
{Hκ}κ depending analytically on κ is somewhat natural, since the set B(H) of all
bounded operators on H equipped with the operator norm is a Banach space. A
function f : U → X, where U ⊂ C is open, with values in some Banach space
X is called weakly analytic, if the functions z 7→ x∗(f(z)) are analytic for all
x∗ ∈ X∗. If X is a Hilbert space, this property is equivalent to the notion of strong
analyticity, that is analyticity of the functions z 7→ f(z)ψ for all ψ ∈ X. The
continuing interest in perturbation theory over the last 50 years or so is partly
due to its immense importance in quantum mechanical problems. Schrödinger’s
equation for the Hydrogen atom admits an explicit solution and the spectrum
of the corresponding operator can be found. At a first glance the theoretical
predictions seem to be confirmed by experiments as they reproduce the famous
Rydberg formula. However, phenomena like the Zeeman and the Stark effect
cause the energy levels of the atom to split which in turn can be observed in more
accurate experiments. These effects have, from a conceptual viewpoint, a natural
interpretation as a perturbation to the known solution of the Hydrogen atom, since
the corresponding additions to the interaction potential always come with a small
pre-factor in one way or the other.

However, the situation of unbounded operators is more complicated than the
case of bounded operators, so the problem of formulating the perturbation prob-
lem in a mathematically precise way is interesting in itself. One of the basic ideas
in this business is that for discrete eigenvalues with finite multiplicities the per-
turbation problem is essentially reduced to its finite dimensional counterpart for
matrices after restricting the operator to this subspace. These ideas have been
systematically summed up by Kato in his now classic textbook Perturbation The-
ory for Linear Operators, [33]. Another excellent and more streamlined exhibition
can be found in another classic textbook of mathematical physics, see [45].

Despite the success it should be mentioned that the application of the theory
comes with some problems. First of all the calculation of the eigenvalues λ(κ)
as power series of κ, the so-called Rayleigh-Schrödinger series, is difficult, due
to the complexity of the coefficients. In several physically interesting cases this
perturbation series is not even convergent and one can only extract some meaning
out of it in an asymptotic sense. This particular problem is usually referred to as
asymptotic perturbation theory. Kato’s as well as Reed and Simons’ book give an
introduction to this topic, it is however discussed in greater detail in an overview
paper by Hunziker, see [28]. We will not follow this particular line of research and
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leave the discussion of asymptotic perturbation theory at this point.
A more important issue is that for an eigenvalue λ to be treated in a perturbative

way by Kato’s theory it has to be isolated and thus excludes the situation, where
an eigenvalue with finite multiplicity is an element of the essential spectrum. One
of the main complications in such a situation is that the projection P onto the
eigenspace cannot be contructed by mean of the Riesz projection

P =
1

2πi

∫
γ(λ)

(H − z)−1dz,

since a path γ(λ) around λ which does not intersect the spectrum of H does
not exist. One way of dealing with such a situation goes back to two papers
by Aguilar and Combes and Balslev and Combes, [3, 6]. There the technique of
spectral deformation is used to investigate the structure of the essential spectrum
of Schrödinger operators H. More precisely, for certain unitary groups U(θ) the
operator Hθ = U(θ)HU(θ)−1 obtained by conjugating H with U(θ) admits an
analytic continuation to a strip in the complex plane around the real axis. The
virtue of this transformation is that for complex θ the essential spectrum of H
swings out into the complex plane with an angle controlled by the imaginary part
of θ and can in this way uncover embedded eigenvalues or threshold values. We
will describe this approach in more detail later in the thesis and thus refrain from
going into more details for the time being.

An example of an operator with an embedded eigenvalue is−∆x1−∆x2−2|x1|−1−
2c2|x2|−1, see [45]. It describes a Helium atom in the limit of infinite mass of the
nucleus and neglect of repulsion amongst the electrons. In [49] Simon treats the
addition of the electron-electron interaction within the context of perturbation
theory under certain analyticity assumptions. Many of the ideas presented in the
mentioned paper rely on the concept of spectral deformation.

Some years later Agmon, Herbst and Skibsted published a paper on the pertur-
bations of embedded eigenvalues in the quantum mechanical N -body problem, [2].
The authors do not work with an analyticity assumption but focus on the so-called
Fermi Golden Rule which they use to show that embedded eigenvalues disappear
under small perturbations. For our purposes the paper is interesting, because of
its use of Mourre-theory which now is one of the standard methods within spectral
theory.

More recent results in perturbation theory of embedded eigenvalues can be found
in a paper by Faupin, Møller and Skibsted, see [15]. In their paper Mourre the-
ory and the limiting absorption principle are used to prove an expansion of the
perturbed eigenvalue w.r.t. the perturbation parameter up to second order. Even
though their results are formulated in an abstract way, they are designed to be ap-
plied in the context of massless Pauli Fierz Hamiltonians and the massless Nelson
model in particular.
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In this thesis we aim to obtain similar results on perturbation theory of embed-
ded eigenvalues. One major part of the thesis is devoted to the massive and trans-
lation invariant Nelson model. This model describes a non-relativistic quantum
field of massive bosons interacting with a single electron through linear coupling.
This model has a fiber decomposition w.r.t. total momentum and we address
the following question: If the fiber Hamiltonians H(ξ) exhibit bands of embedded
eigenvalues λξ in the energy momentum spectrum below the two-boson threshold,
how do these eigenvalues depend on ξ? By using recent results in Mourre theory
of this model and related topics, [39, 40], an expansion of λξ+ζ for small ζ up to
terms of order |ζ|2+α, where α ∈ (0, 1), is proven. Such a result obviously implies
that the map ζ 7→ λξ+ζ is twice differentiable.

This result is of interest in its own right for the spectral theory of such mod-
els. The twice differentiability of ground states enabled Møller and Rasmussen
in [39,44] to obtain a Mourre estimate away from threshold energies in the essen-
tial spectrum below the two-boson threshold. Note that the result on the validity
of the Mourre estimate in the PhD thesis of the first author was weaker than the
result obtained in the follow up paper by Møller and Rasmussen. Recently Dybal-
ski and Møller have proven asymptotic completeness in the massive Nelson model
in the energy regime in which the Mourre estimate holds. This results motivates
the desire to establish these type of estimates also in higher energy regions. In a
sense one would like to proceed step by step and continue to push the analysis to
higher regimes. Another central ingredient to push the results on asymptotic com-
pleteness in a similar fashion requires knowledge of the behavior of the threshold
sets. In particular these should not fill up the whole essential spectrum by forming
a dense set. Such a situation could be argued to be impossible, if it was known
that embedded eigenvalues were not just twice differentiable but rather analytic
functions w.r.t. the fiber parameter. Even though it was our initial ambition to
obtain smoothness rather than twice differentiability by proving arbitrary expan-
sions of λξ0+ζ below the two-boson threshold, we were not able to achieve it due
to technical complications.

However, the desire to possibly return to this problem in future research lead to
the following question: Which abstract assumptions are actually needed to obtain
analyticity results for parameter dependence of embedded eigenvalues? A partial
answer to this question is given in the second part of this thesis. The starting
point is a self-adjoint operator H together with a unitary group U(θ) generated
by a self-adjoint operator A. To start the analysis the assumption that all iterated
commutators ik adkA(H) remain H-bounded and satisfy ‖ik adkA(H)(H + i)−1‖ ≤
Ckk! for some C > 0 is shown to be equivalent to the statement that the operator
Hθ = U(θ)HU(θ)−1 extends analytically to a strip in the complex plane. By using
a version of Mourre’s estimate absence of essential spectrum of Hθ can then be
shown in a certain region around the eigenvalue of interest. The real (and in
this region discrete) eigenvalues of Hθ correspond to eigenvalues of H and thus
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allow a study via the usual Kato theory if H is substituted by an analytic family
H(ξ) of type A at least in the case, where the perturbation parameter ξ is drawn
from a one dimensional set. It should be noted however, that this method yields
a perturbation theory for all eigenvalues of Hθ(ξ) = U(θ)H(ξ)U(θ)−1 and thus
opens up the possibility to study resonances.

It should be noted however that this result cannot be applied to the massive
Nelson model, since there the commutator adA(H(ξ)) is only bounded by (H(ξ) +
c)3/2 for appropriately chosen constant c > 0. Nevertheless, we aim to apply the
obtained result to study resonances or eigenvalues in discrete Schödinger operators.

2 Conjugate Operators, Mourre Theory, Limiting Absorption
Principle

2.1 Commutator Calculus

In this section we mainly follow the presentation of [21]. Let H be a Hilbert space,
A be a self-adjoint operator with domain D(A) and S ∈ B(H).

Definition 2.1. Define Wt := eitA and let k ∈ N. We say that S ∈ Ck(A), if the
maps t 7→ W−tSWtψ are elements of Ck(R,H) for all ψ ∈ H.

Let ψ, ψ′ ∈ D(A) and define

〈ψ, i[A, S]ψ′〉 := 〈AψiSψ′〉 − 〈S∗ψ, iAψ〉.

The factor i is only added so that the operator which will be implementing the
form later on is self-adjoint for S = S∗. Suppose that there exists C > 0 such that

|〈ψ, i[A, S]ψ′〉| ≤ C‖ψ‖‖ψ′‖.

Then the sesqui-linear form i[A, S] has a continuous extension i[A, S]◦ to the whole
of H and there is a bounded operator i adA(S) ∈ B(H) such that

〈ψ, i[A, S]ψ′〉 := 〈ψ, i adA(S)ψ′〉.

Suppose further that i adA(S) ∈ C1(A). Then the double commutator form
i[A, i adA(S)] extends from D(A)×D(A) to a bounded form on H×H and there
is a bounded operator i2 ad2

A(S) implementing it. If this procedure can be iterated
k times, we say that S admits k bounded commutators with A. It turns out that

Lemma 2.2. Let k ∈ N. S ∈ Ck(A), if and only if S admits k bounded commu-
tators with A.

We will thus use these two equivalent characterizations of the set Ck(A) inter-
changeably without further comment. Some of the important features of the set
C1(A) are collected in the following Lemma.
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Lemma 2.3.

1. S ∈ C1(A)⇔ S∗ ∈ C1(A). In this case i adA(S∗) = (i adA(S))∗.

2. S1, S2 ∈ C1(A)⇒ S1S2 ∈ C1(A).

3. S 7→ i adA(S) is a linear map from C1(A) to B(H) which is closed in the weak
operator topology.

4. S 7→ i adA(S) is a derivation: i adA(S1S2) = S1i adA(S2) + i adA(S1)S2.

The situation is more involved for unbounded, self-adjoint operators T . The
basic idea is to define the commutators via the resolvent of T .

Definition 2.4. Let T be self-adjoint on D(T ). We say that T is of class Ck(A),
if there exists z ∈ ρ(T ) such that (T − z)−1 ∈ Ck(A).

Again there is a connection between the C1(A) class and commutator forms.

Lemma 2.5. Let T be self-adjoint on D(T ) ⊂ H. Then T is of class C1(A), if
and only if the following two conditions hold:

1. ∃C > 0∀ψ, ψ′ ∈ D(A) ∩D(T ) : |〈ψ, i[A, S]v〉| ≤ C‖ψ‖T‖ψ′‖T .

2. There exists z ∈ ρ(T ) such that {ψ ∈ D(A) | (T − z)−1 ∈ D(A)} is a core
for A.

For convenience we denote by D(T ) the Banach space obtained by equipping
D(T ) with graph norm. We write D(T )∗ for its dual space. Moreover, the following
formula holds:

i adA((T − z)−1) = −(T − z)−1i adA(T )(T − z)−1, (2.1)

where
i adA(T ) ∈ B(D(T ), D(T )∗)

and the first resolvent appearing on the right hand side is extended to a bounded
operator from D(T )∗ to H. Recall that D(T ) ⊂ H ⊂ D(T )∗ with continuous
and dense inclusions. Operators for which adA(T ) takes values in H rather than
D(T )∗ are of a natural interest, since (2.1) holds in a more literate sense, that
is none of the objects have to be extended to spaces larger than H. In this case
i adA(T ) ∈ B(D(T ),H), that is i adA(T )(T − z)−1 extends to a bounded operator
on H by the closed graph theorem.

The commutator calculus presented here is frequently used in spectral theory.
The case i adA(T )(T − z)−1 typically arises in the theory of Schrödinger operators
and is therefore well-studied. However the case, where adA(T ) takes values in H
but can only by extended to a bounded operator from D(T n) to H for some n > 1
are more difficult to deal with. In our framework they arise in the spectral analysis
of massive, translation invariant Nelson models.
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2.2 Mourre Estimate

The following estimate is at the heart of what is now known as Mourre theory.
Mourre used the commutator calculus in his paper, [41], to establish this type of
estimate in the quantum 3-body problem and thereby managed to prove absence
of singular continuous spectrum.

A self-adjoint operator T which is of class C1(A) is said to satisfy a Mourre
estimate around λ, if there exists a bounded interval J ′, a constant CM > 0 and a
compact operator K such that for all closed intervals J ⊂ J ′ the estimate

EJ(T )i[A, T ]EJ(T ) ≥ CMEJ(T ) +K, (2.2)

holds in the sense of quadratic forms. Here, CM > 0 is the so-called Mourre-
constant and EJ(T ) denotes the spectral projection of T on J . In this scenario A
is said to be a conjugate operator to H at λ. If the choice K = 0 can be made for
some J , that is

EJ(T )i[A, T ]EJ(T ) ≥ CMEJ(T ), (2.3)

the Mourre estimate is said to be strict.
There exist several versions of this estimate. We shall discuss some of them.

The first and maybe easiest one replaces the projections EJ(T ) by a smoothed
out version. More precisely, let f ∈ C∞0 (R) be such that f1J = f . Then
f(T )i[A, T ]f(T ) = f(T )EJ(T )i[A, T ]EJ(T )f(T ) implies

f(T )i[A, T ]f(T ) ≥ CMf(T )2 +K ′,

where K ′ = f(T )Kf(T ) is still compact.

2.3 Local Commutators, Regularity of Eigenstates

A possible way to try and deal with the situation in which the commutators
i adA(T ) are not bounded by (S − z)−1 anymore is to localize the operator T
by a local version f(T ), where f ∈ C∞0 (R) and is linear in a neighborhood of the
energy region of interest. The following proposition justifies this idea.

Proposition 2.6. If T is a self adjoint operator of class C1(A), then f(H) ∈ C1(A)
for all f ∈ C∞0 (R).

This leads to a natural generalization of the sets Ck(A).

Definition 2.7. Let T be a self-adjoint operator on H. For k ∈ N and Ω ⊂ R
open we write T is of class Ck

loc(A; Ω), if f(T ) ∈ Ck(A) for all f ∈ C∞0 (Ω). We
define Ck

loc(A) := Ck
loc(A;R). For an operator T which is of class Ck

loc(A) we will
also simply say that T is locally of class Ck(A).
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An interesting consequence of an operator T to be locally of class Ck+1(A) is
that eigenstates of T with eigenvalue λ are elements of D(k) provided that there is
a Mourre-estimate (2.2) around λ. This result, among others, has been obtained
by Møller and Westrich in 2010. Note that the original formulation requires a
slightly modified version of the estimate (2.2), see Theorem 1.6 in [40]. However
(2.2) implies the estimate used in their formulation. A proof of this fact can also
be found in their paper.

Theorem 2.8 (Regularity of Eigenstates). Suppose that T satisfies a Mourre esti-
mate around λ. Let ψ be an eigenvector of T with eigenvalue λ. If f(T ) ∈ Ck+1(A)
for all f ∈ C∞0 (R) and some k ∈ N, then ψ ∈ D(Ak).

2.4 Limiting Absorption Principles

Another important consequence of an operator to be of class C2(A) is the so-called
limiting absorption principle. More precisely the operator 〈A〉−s(T − z)−1〈A〉−s
has a limit as |Im(z)| → 0 for k ≥ 2 and s > 1/2. These types of limits have
been studied extensively in the literature. We refer to Mourre’s paper, [41] and
several of its generalizations [32], [4]. A Generalization to the local Ck(A) classes
has been proven by Sahbani in [47]. In this paper refinements of these classes are
used to obtain optimal results which makes it rather difficult to access. However,
in [19] the authors discuss a version of Sahbani’s result which is more fitting in
our framework and we will follow their presentation.

Assumption 2.9.

1. T is a self-adjoint operator on H which is of class C2
loc(A; Ω)

2. For all λ ∈ Ω there is an open interval J containing λ such that (2.3) holds.

Theorem 2.10 (Limiting Absorption Principle). Suppose Assumption 2.9 holds
and let s > 1/2, and ψ, ψ′ ∈ H. Then the limit

〈ψ, 〈A〉−s(T − λ± i0)−1〈A〉−sψ′〉 := 〈ψ, lim
ε→0
〈A〉−s(T − λ± iε)−1〈A〉−sψ′〉

exists uniformly in λ on every compact subset of Ω.

This theorem allows us to define a bounded operator

〈A〉−s(T − λ± i0)−1〈A〉−s := lim
ε→0
〈A〉−s(T − λ± iε)−1〈A〉−s

via the help of sesquilinear forms. Another result which is of particular interest in
perturbation theory concerns Hölder-continuity w.r.t. λ of these limit operators.
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Theorem 2.11 (Hölder Continuity). Suppose Assumption 2.9 holds and let s ∈
(1/2, 1). The map

λ 7→ 〈A〉−s(T − λ± i0)−1〈A〉−s

is Hölder continuous in Ω with Hölder-exponent αs = s− 1/2.

If we replace the singular operator T by a family of self-adjoint operators Tκ and
the preceding theorems hold uniformly in κ as well, one can usually prove joint
Hölder continuity in λ and κ. A nice application in the context of the quantum
N -body problem can be found in [31].

3 The Feshbach-Schur Method

The method presented in this section deals with the question when an operator
given by some 2×2 block decomposition is invertible, provided one of the diagonal
blocks is invertible. The method presented here is also known as the Grushin
problem. An easily accessible presentation can be found in [26]. A nice overview
article by Zworski and Sjöstrand, [53], shows connections to other type of problems.

The method has also been successfully used in the context of spectral theory for
non-relativistic QED by Bach, Fröhlich and Sigal, [5]. An application to spectral
theory of Pauli-Fierz operators can be found in [11]. The last reference is of
particular interest to us, since it stresses an abstract connection between Mourre
theory and the Feshbach method. A version of this connection will be used to
obtain a perturbation theory of embedded mass-shells below the 1-boson threshold
in massive translation invariant Nelson models. The Feshbach method also plays
a role in the second part of the thesis to conclude absence of essential spectrum in
a region provided that a part of the block decomposition has empty spectrum in
the same region.

We follow the presentation of [5]. Suppose we are given a self-adjoint operator T0

with dense domain D(T0) and an orthogonal projection P with Ran(P ) ⊂ D(T0)
which commutes with T0. Put P = 1 − P . Suppose that W is T0-bounded and
that the operator T := T0 +W is self-adjoint with domain D(T ) = D(T0).

Further assume that PTP − zP is invertible on PH and that the operators

(PTP − zP )−1P , PWP (PTP − zP )−1P , (PTP − zP )−1PWP

PWP (PTP − zP )−1PWP, PWP

all extend to bounded operators on H. Then we can define the operator

FP (T − z) := (T0 − z)P + PWP + PWP (PTP − zP )−1PWP. (3.4)

By the assumptions made on T0 and W FP (T − z) is a closed operator on PH
with domain D(FP (T − z)) = D(T0P ). Indeed, simply note that FP (T − z)−T0P
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is bounded on PH. The assumptions given here are too strong, see the discussion
in [5], in particular Lemma II.2.

The operator FP (T − z) is usually referred to as the Feshbach map. Its impor-
tance lies in the fact that it is invertible, if and only if T − z is invertible. More
importantly, since FP (T − z) is defined on the smaller space PH the eigenvalue
problem is potentially easier to solve. Note however, that if FP (T − z)ψ = 0, (3.4)
shows that the equation determining z on PH becomes nonlinear in z.

The next proposition appears as Theorem II.1 in [5] and sums up the properties
of the Feshbach map.

Proposition 3.1 (Feshbach map).

1. 0 ∈ ρ(FP (T − z))⇔ 0 ∈ ρ(T − z). In this case FP (T − z)−1 = P (T − z)−1P .

2. If Tψ = zψ for some ψ 6= 0, then FP (T − z)Pψ = 0.

3. If FP (T − z)Pψ′ = 0 for some ψ′ 6= 0, then Tψ′′ = zψ′′, where ψ′′ =
(P − (PTP − zP )−1PWP ).

4. dim ker(T − z) = dim ker(FP (T − z)).

Define Rz := (PTP − zP )−1. If [FP (T − z)]−1 exists, the following block decom-
position for (T − z)−1 can be proven:

P (T − z)−1P = [FP (T − z)]−1

P (T − z)−1P = −[FP (T − z)]−1PWPRz

P (T − z)−1P = −RzPWP [FP (T − z)]−1

P (T − z)−1P = Rz +RzPWP [FP (T − z)]−1PWPRz.

4 Perturbation Theory

4.1 Kato’s Analytic Perturbation Theory

In this chapter we sum up Kato’s analytic perturbation theory developed int his
classic textbook, [33]. Another nice review can be found in [45]. The question
addressed there can easily be motivated in the case of 2 × 2 matrices. Consider
the matrix

B(ξ) :=

(
2 ξ
ξ 2

)
for ξ ∈ C. B(0) clearly is a self-adjoint matrix with only eigenvalue λ0 = 2 and
two dimensional eigenspace. A natural question one can ask is how the spectrum,
that is the eigenvalues, of the family of matrices B(ξ) will depend on ξ. In this
situation it is of course trivial to calculate that (λ(ξ)− 2)2 = ξ2 and thus λ(ξ)− 2
is given by one of the branches of the complex square root of ξ2.
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It turns out that this situation is generic for all families {B(ξ)}ξ∈U of bounded
operators, U ⊂ C open, depending analytically on the parameter ξ. In this case
analytic dependence means that the map ξ 7→ B(ξ) is an analytic function with
values in the Banach space of all bounded operators on some finite dimensional
space X.

The situation for general bounded or even unbounded operators on an infinte
dimensional space is more subtle to describe. First of all the spectrum of an oper-
ator need not consist of isolated points anymore and the dimension of eigenspaces
might be infinte. However, if the operator has eigenvalues of finite multiplicity
and the spectrum can be separated by a closed curve in a part which contains only
finitely many isolated eigenvalues of finite multiplicity in its interior and a remain-
der in the exterior part, the restriction of the operator to the spectral subspace
generated by these isolated points will reduce the situation to that of bounded
operators on finite dimensional spaces. The remainder of this section is devoted
to reviewing how these ideas can be made precise. Since it is more condensed, we
follow the presentation in [45].

Definition 4.1. Let U ⊂ C be open and connected. Suppose that for every β ∈ U
there exists a closed operator T (β). The family {T (β)}β∈U is called analytic of
type A, if the following two conditions are satisfied.

1. D(β) = D for some dense set D ⊂ H

2. For all ψ ∈ D the map β 7→ T (β)ψ is analytic.

Since the operators we are considering are typically self-adjoint for real values
of β, we assume

∀β ∈ U ∩R : T (β)∗ = T (β).

In our trivial example we have seen that a doubly degenerate eigenvalue split
into two nondegenerate eigenvalues which, as functions of β, were branches of
an analytic function. As claimed the next theorem states that this situation is
somehow generic, even for perturbations of unbounded operators.

Theorem 4.2 (Analytic Perturbation of Discrete Eigenvalues). Let {T (β)}β∈U be
analytic of type A, self adjoint for β ∈ R. Let λ0 ∈ R be a discrete eigenvalue of
T := T (0) of multiplicity m. Then there exists an open neighborhood O of 0 and
functions λ1(β), . . . , λm(β) which are analytic in O and satisfy λj(0) = λ0 such that
the numbers λ1(β), . . . , λm(β) are eigenvalues of T (β). Moreover, these functions
need not be distinct and the eigenvalues λ1(β), . . . , λm(β) are all eigenvalues of
T (β) for β ∈ O.

4.2 Embedded Eigenvalues

For a closed operator T we call λ0 an embedded eigenvalue of T , if λ0 is an
eigenvalue and (λ0−ε, λ0 +ε)∩σ(T ) 6= {λ0} for all ε > 0. Now suppose {T (β)}β∈U
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is analytic of type A. If λ0 is an embedded eigenvalue of the operator T = T (0),
Kato’s theory is not applicable, since it requires us to draw a little circle around λ0

which does not intersect σ(T ). However, through a combination of the Feshbach
method and the limiting absorption principle an expansion of the eigenvalue up to
a certain order in the perturbation parameter can be achieved.

To illustrate this idea we will assume that the β-dependence is linear. More
precisely, we modify the example given in Section 3 in the following way:

T (β) = T0 + (1 + β)W.

Let λ0 be an embedded eigenvalue of T and denote by P the projection onto the
corresponding eigenspace. Put P = 1 − P . Assume that there exists an interval
J 3 λ0 such that PT (β)P does not have an eigenvalue in J for |β| small. Moreover,
suppose that there exists a self-adjoint operator A conjugate to T (β) for small β.
Suppose that PAP is strictly conjugate to PT (β)P , that is

θ(PT (β)P )[PAP, PT (β)P ]θ(PT (β)P ) ≥ Cθ(PT (β)P )2.

Now suppose that the limiting absorption principles as well as the results on Hölder
continuity extend to this scenario. We assume that there exists a constant C > 0
and α ∈ (0, 1) independent of β, λ such that the limit

〈A〉−s(PT (β)P − λ± i0)−1〈A〉−s := lim
ε→0
〈A〉−s(PT (β)P − (λ± iε)P )−1〈A〉−s

exists for λ ∈ J ,
‖〈A〉−s(PT (β)P − λ± i0)−1〈A〉−s‖ ≤ C

and the map (λ, β) 7→ 〈A〉−s(PT (β)P−λ± i0)−1〈A〉−s is jointly Hölder continuous
in λ, β with Hölder exponent α uniformly in a neighborhood of (λ0, 0).

We want to show that, if λ(β) is an eigenvalue of T (β) for small β we obtain
an expansion of λ(β) up to terms of order |β|2(|β|α + |λ(β) − λ0|α). First of
all we obtain for ε > 0 that the Feshbach map FP (T (β) − λ(β) − iε) exists. If
U1 := PWP 〈A〉s and U2 := 〈A〉sPWP extend to bounded operators for s > 1/2,
we obtain

lim
ε→0

FP (T (β)− λ(β)− iε)

= (λ0 − λ(β))P + PWP

+ (1 + β)2U1〈A〉−s(PT (β)P − λ± i0)−1〈A〉−sU2.

If on top of that the limit FP (T (β)) := limε→0 FP (T (β)−λ(β)− iε) has a nontrivial
kernel, the equation FP (T (β))ψ = 0 for nonzero ψ and joint Hölder continuity of
the boundary value of the resolvent then yield the desired expansion for λ(β).
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5 Spectral Deformation

We present a general theory of spectral deformation given by Hunziker in [29]. Let
H be a self-adjoint operator on a Hilbert space H and U(θ), θ ∈ R, be a unitary
group such that the operator

Hθ = U(θ)HU(θ)−1

extends to an analytic family in an open strip of width R > 0 around the real axis.
The extension of the unitary operators U(θ) itself can be defined via functional
calculus. First note that by Stone’s theorem there exists a self adjoint operator A
which generates the unitary group. Hence

〈ψ,U(θ)ψ〉 =

∫
R

e−isθdµAψ(s).

This expression now extends to complex θ whenever dµAψ has compact support.
Such vectors form a core of U(θ) for complex θ. Suppose H has an embedded
eigenvalue λ of multiplicity m <∞ and denote by P the corresponding eigenpro-
jection. If λ /∈ σ(Hθ) for some θ with Im(θ) 6= 0, then λ is a discrete eigenvalue of
Hθ by definition.

The eigenprojection P (θ) onto the corresponding eigenspace of Hθ extends to an
analytic family of operators on the whole strip of width R > 0. Thus, the range
of this family has constant dimension:

dim[Ran(P (θ))] = m.

The range of P is contained in D(U(θ)−1) and the relation

P (θ) = U(θ)PU(θ)−1 (5.5)

holds on D(U(θ)−1). These relations are of particular use, if H is replaced by an
analytic family of operators H(ξ). Then, if the operator Hθ(ξ) = U(θ)H(ξ)U(θ)−1

is an analytic family for every fixed θ. Then Kato’s analytic perturbation theory
can be applied to the isolated eigenvalue λ of Hθ(ξ). The equation (5.5) then
establishes a link to the original eigenspace and real eigenvalues of Hθ(ξ) are also
eigenvalues of H(ξ).

6 Direct Integrals

In this section we present the basic theory of direct integrals. Our presentation
follows [45, 46]. In particular, we assume that all fiber Hilbert spaces are given
by a fixed Hilbert space H′. First we discuss some notions of strong and weak
measurability.
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Definition 6.1 (Vector Valued Measurable Functions). Let (E, ‖ · ‖) be a Banach
space, (M,A, µ) a measure space and f : M → E a function.

1. Denote by S(M) the set of functions g : M → E taking only finitely many
values {e1, . . . , en} ⊂ E and g−1({ej}) ⊂ A. f is called strongly measurable,
if

∃{gn}n∈N ⊂ S(M) : ‖f(x)− gn(x)‖ → 0 µ-a.e.

2. f is called Borel measurable, if f−1(O) ∈ A for every open set O ⊂ E.

3. f is called weakly measurable, if x 7→ ρ(f(x)) is a measurable (complex val-
ued) function for all ρ ∈ E∗.

We define the set

Mw(M,E) := {g : M → E | g weakly measurable}.

It can be shown that in this situation strong measurability⇒ Borel measurability
⇒ weak measurability. If E is a separable Hilbert space, the notions are equivalent.

Proposition 6.2. Let H′ be a separable Hilbert space, (M,A, µ) a measure space
and f : M → H′ a function. Then the following statements are equivalent:

1. f is strongly measurable.

2. f is Borel measurable.

3. f is weakly measurable.

In this case we simply call f measurable, since no confusion can arise.

We can now define the Hilbert space of square integrable H′-valued functions on
M .

Definition 6.3. Let H′ be a separable Hilbert space and (M,A, µ) a measure
space. Define the set L2(M, dµ;H′) of all measurable functions f : M → H′ that
satisfy ∫

M

‖f(x)‖2
H′dµ(x) <∞.

Equipped with the scalar product

〈f, g〉L2(M,dµ;H′) :=

∫
M

〈f(x), g(x)〉H′dµ(x)

this set is a Hilbert space that we denote by H.
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Note that in the case µ = δm1 + · · ·+δmk for Dirac measures δmj concentrated on
points mj ∈M we obtain that L2(M, dµ;H′) is isomorphic to the k-fold direct sum
of H′. Therefore, L2(M, dµ;H′) has the natural interpretation as a kind of con-
tinuous direct sum with identical summands. In order to stress this interpretation
we put

H :=

∫ ⊕
M

H′dµ := L2(M, dµ;H′)

and call this new Hilbert space a direct integral with constant fibers. We will need
to study operators on such fiber integrals. We start with the bounded case to fix
some notation.

L∞(M, dµ;B(H′)) := {A ∈Mw(M,B(H′)) | ‖A‖∞ <∞},

where
‖A‖∞ := ess sup ‖A(x)‖B(H′).

The set of bounded operators A on H which can in some way be decomposed w.r.t.
the fiber decomposition is of special interest. We define

Definition 6.4 (Decomposable Operators). Let A be a bounded operator on H.

A is called decomposable w.r.t. the direct integral H =
∫ ⊕
M
H′dµ, if there exists a

function A(·) ∈ L∞(M, dµ;B(H′)) such that

∀ψ ∈ H : (Aψ)(x) = A(x)ψ(x) µ-a.e.

In this case we write

A =

∫ ⊕
M

A(x)dµ(x)

and call A(x) the fibers of A.

It turns out that every element A(·) ∈ L∞(M, dµ;B(H′)) uniquely defines a
bounded operator on the direct integral H. We define unbounded operators on
direct integrals next.

Definition 6.5. A function A(·) from M to the set of self adjoint operators on
H′ (not necessarily bounded) is called measurable, if and only if the function
(A(·) + i)−1 is measurable. In this situation we define an operator A on H =∫ ⊕
M
H′dµ by putting

D(A) =

{
ψ ∈ H

∣∣∣∣ ψ(x) ∈ D(A) µ-a.e.,

∫
M

‖A(x)ψ(x)‖2
H′dµ(x) <∞

}

and
(Aψ)(x) = A(x)ψ(x).
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We write

A =

∫ ⊕
M

A(m)dµ(x).

and call A(m) the fibers of A.

It turns out that such an operator A is self-adjoint, if all of its fibers A(x) are
self-adjoint.

7 Fock Space

7.1 Construction of Fock space

Fock space is one of the central mathematical objects in dealing with systems
that might admit an infinite number of particles. The idea is roughly that a
quantum system of N particles is described by the N -fold tensor product of the
single particle Hilbert space. By taking a direct sum of all such N particle spaces,
we obtain a set which describes a system with arbitrary numbers of particles. We
start by giving a more precise abstract definition of this notion.

Let h be a Hilbert space. Define

⊗nh := h⊗ h⊗ · · · ⊗ h.

and the set

F(h) =
∞⊕
n=0

⊗nh,

where ⊗0h := C. It is called Fock space over h. Thus an element ψ of F(h) is a
sequence ψ = (ψ0, ψ1, ψ2, . . . ), where ψn ∈ ⊗nh. Define the scalar product

〈ψ, ψ′〉F(h) := ψ∗0ψ
′
0 +

∞∑
n=1

〈ψn, ψ′n〉⊗nh.

Under the additional requirement

‖ψ‖ = 〈ψ, ψ〉F(h) <∞

F(h) equipped with 〈·, ·〉F(h) becomes a Hilbert space. It is separable, if h is. The
vector

Ω = (1, 0, 0, . . . )

is called the vacuum vector. From a physical point of view it is natural to single
out the subspaces which are invariant under permutations and the ones which
produce a sign after such an operation. They are called bosonic and fermionic
Fock space respectively. Since we will only need the bosonic Fock space, we focus
on its construction.
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On the subset of simple tensors of ⊗nh we define the symmetrization operator
by

Snψ1 ⊗ · · · ⊗ ψn :=
1

n!

∑
π∈Sn

ψπ(1) ⊗ · · · ⊗ ψπ(n),

where Sn denotes the group of permutations of n elements. It extends from to
a self adjoint bounded operator on ⊗nh which we denote by Sn as well. The
pre-factor n!−1 guarantees that Sn is an orthogonal projection:

S∗n = Sn = S2
n.

By putting

S :=
∞∑
n=0

Sn

we obtain a symmetrization operator on the whole Fock space. We then define the
symmetric or bosonic Fock space over h by

Fs(h) = SF(h) =
∞⊕
n=0

Sn ⊗n h.

7.2 Operators on Fock Space

In this section we define annihilation and creation operators, the Segal fields and
the second quantization. Once more we follow the presentation of [45, 46]. Let T
be a self adjoint operator on h with domain D(T ). Define the operator

T (n) := T ⊗ 1⊗ · · · ⊗ 1+ 1⊗ T ⊗ · · · ⊗ 1+ · · ·+ 1⊗ · · · ⊗ 1⊗ T

on ⊗nk=1D(T ). Moreover, we put A(0) = 0. Define the set of finite particle vectors
by

F0 := {ψ ∈ F(h) | ∃n ∈ N∀m ≥ n : ψm = 0}
and let

DT := {ψ ∈ F0 | ∀n ∈ N : ψn ∈ ⊗nk=1D(T )}.
Then DT is dense in F(h) and the symmetric operator

dΓ(T ) =
∞∑
k=0

T (n)

is essentially self-adjoint on DT . It is called the second quantization of T . More-
over, dΓ(T )

∣∣
Fs(h)

is essentially self adjoint on Fs(h) ∩DT . An important choice is

T = 1, D(T ) = h. Its second quantization

N := dΓ(1)
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is called the number operator. Note that N acts on ⊗nh by multiplication with n
which explains the name. For g ∈ h define a map b−(g) : ⊗nh→ ⊗n−1h by

b−(g)ψ1 ⊗ · · · ⊗ ψn = 〈g, ψ1〉ψ2 ⊗ · · · ⊗ ψn.

b−(g) can be extended to a bounded map ⊗nh → ⊗n−1h by linearity and the
estimate ‖b−(g)ψ′‖ ≤ ‖g‖‖ψ′‖. Furthermore, define b−(g)ψ0 = 0 for all ψ0 ∈
⊗0h := C. Then b−(g) extends to a bounded map Fs(h)→ Fs(h). We then define
the annihilation operator on F0,s := F0 ∩ Fs(h) by

a(g) = (N + 1)
1
2 b−(g).

Now define an operator b+(g) : ⊗nh→ ⊗n+1h by

b+(g)ψ1 ⊗ · · · ⊗ ψn = g ⊗ ψ1 ⊗ · · · ⊗ ψn.

The creation operator is then defined on F0,s by

a∗(g) = Sb+(g)(N + 1)
1
2 .

Both, a(g) and a∗(g) are closable and their closures are denoted by the same
symbols respectively. The operators satisfy the canonic commutation relations

[a(g), a(g′)] = [a∗(g), a∗(g′)] = 0, [a(g), a∗(g′)] = 〈g, g′〉1.

It follows that a(g) and a∗(g) have the same domain and we can thus define the
Segal field operator by

Φ(g) :=
1√
2

(a(g) + a∗(g)).

The second quantization functor Γ is defined by

Γ(h) = F , Γ(T ) =
∞⊕
n=1

⊗nT,

where T ∈ B(h) and ⊗nT is defined on simple tensors by

[⊗nT ](ψ1 ⊗ · · · ⊗ ψn) = Tψ1 ⊗ · · · ⊗ Tψn

and extends to a bounded operator on ⊗nh. Note that

Γ(eiT ) = ei dΓ(T ).
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1 Introduction

The model discussed here describes the interaction of a particle with a scalar
field of massive bosons. Due to E. Nelson’s paper [42] it is often referred to as the
massive Nelson model. It’s structure has also been discussed by Cannon in [7] some
years after. However, Nelson himself refers to several other authors in his paper. It
should be noted that for a certain (constant) choice of the boson dispersion relation
we obtain H. Fröhlich’ model for the polaron, [16]. Fröhlich’s paper predates
Nelson’s and the Fröhlich Hamiltonian can be derived independently from first
principles.

The term polaron refers to an electron moving through a crystal which leads
to local deformation of the crystal structure due to the opposite charge of atom
cores and the electron. Hence the movement of the electron will cause certain
vibrations throughout the crystal which in their quantized version are bosons also
called phonons. The moving electron can then be pictured as being surrounded
by a cloud of phonons which will affect its mobility, thus leading to an effective
electron mass. In some sense it might be helpful to imagine the general situation as
some kind of analogue, the electron somehow interacting with an abstract bosonic
field while being surrounded by a boson cloud. A nice review of the polaron’s
scientific history is given in [37]. With this picture in mind we will from now on
refer to the abstract particle in the Nelson model simply as an electron.

Regarding the treatment of the Nelson model we should also mention the work
of J. Fröhlich in [17, 18] and Dereziński and Gérard in [10], since these authors
obtained results independent of the coupling strength, that is no smallness of the
coupling function is required. In the present paper we also follow this general
direction in that the coupling function is first fixed to be an arbitrary compactly
supported and smooth function for computational aspects. The obtained results
are then extended to a larger class.

Since we have mentioned the polaron, we should comment on the difference to
what is usually referred to as the Nelson model. Generally, it should be noted
that the polaron case has to be treated differently from a technical point of view,
since its constant dispersion relation causes difficulties in spectral theory. More
precisely, a boson dispersion relation like

√
m2 + |k|2, m > 0, which grows as

|k| → ∞ makes the derivation of central objects in spectral theory such as a
Mourre estimate possible. Therefore, results by Møller and Rasmussen on the
spectral theory of the model first avoided the constant dispersion relation case,
see [36,44]. In their follow up paper [39] the authors greatly improve their previous
results and were able to avoid problems coming from a bounded boson dispersion
relation by forcing the electron dispersion relation to be unbounded with bounded
second derivatives instead. This assumption is somewhat natural, since the free
electron dispersion relation is quadratic.

In this thesis we will fix such a quadratic dispersion relation for the electron, first
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and foremost due to computational simplicity. The methods presented here are
valid for both, the unbounded and the bounded case of boson dispersion relation.
A technical complication when dealing with the massive Nelson model is that the
Hamiltonian H describing it is translation invariant, that is it commutes with
the operator of total momentum. This implies that the Hamiltonian is in fact a
fibered operator, where each fiber operator acts on Fock space, see Section 2.1
for details. This diagonalization goes back to Lee, Low and Pines in [34]. A
rigorous formulation in the context of Fock space can be found in [39] and will
be explained in a later part of the thesis. Even though the specific quadratic
choice enables us to carry out very explicit calculations and is therefore somewhat
simple, it still causes some technical problems in the context of Mourre theory.
More precisely, the commutator forms with the conjugate operator and the fiber
Hamiltonians cannot be implemented by an operator which is bounded by the
fiber Hamiltonians H(ξ) again. Therefore, methods developed in the context of
Schrödinger operators are typically not applicable.

In the translation invariant case the structure of the spectrum of the fiber Hamil-
tonians H(ξ), where ξ ∈ Rν denotes the total momentum, has been studied by
many authors and we merely focus on the results used in this paper. A good
overview is given in the introductions of [36, 39]. In the already mentioned pa-
pers [17, 18] by J. Fröhlich and and a paper by Spohn, [54], a proof of the HVZ
Theorem appears. In [36] an HVZ theorem for the essential spectrum is proven by
Møller in the case of unbounded boson dispersion relation. Moreover, as in Spohn’s
paper, [54], the existence of a non-degenerate ground state for all ξ in dimensions
ν = 1, 2 is shown. Dimensions ν = 3, 4 can also be treated, but there the existence
of a ground state for all ξ cannot be established. However, if it should exist it is
non-degenerate as well.

There seem to be no results on the existence of eigenvalues between the ground
state of H(ξ) and the beginning of its essential spectrum. Since the fiber operators
form an analytic family of type A such eigenvalues have to be analytic functions
of ξ. These functions are usually referred to as isolated mass shells. It should be
noted that their only possible accumulation point lies at the bottom of the essential
spectrum. In order to construct a conjugate operator known from Mourre theory
this fact is exploited in the sense that the isolated mass shells are required to be
twice continuously differentiable, see [39].

In a sense the situation is similar when moving from the bottom of the discrete
spectrum into the bottom of the essential spectrum, even though it is not known
whether so-called embedded mass shells exist. An embedded mass shell is a func-
tion ξ 7→ λξ, where all (ξ, λξ) are taken from a subset of the energy momentum
spectrum in which all λξ are embedded eigenvalues of the fiber Hamiltonians H(ξ).
If these objects should exist however, they have to be accounted for in analogy to
the isolated mass shells when moving to higher energy regimes. More precisely,
one would expect that high energy versions of the Mourre estimate will require
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the same regularity in the embedded case as in the isolated one. This regularity
problem is the main topic of discussion in this thesis. In particular, our main
result, Theorem 4.6 gives an affirmative answer, in that it provides an expansion
of λξ+ζ in ζ up to terms of order |ζ|2+α, where ζ is chosen small, all eigenvalues are
assumed to be non-degenerate. We are confident that this last restriction can be
removed and the result thus be extended to eigenvalues of constant (but arbitrary)
finite multiplicity.

In this context we should mention that the examination of the nature of the
spectrum is usually carried out to establish asymptotic completeness. Indeed,
the previously mentioned discussion enabled Dybalski and Møller to established
asymptotic completeness in the Nelson model below the 2-boson threshold under
rather general assumptions, see [13]. Note that in this situation twice differentia-
bility suffices to deal with the embedded mass shells except possibly accumulation
points which have to be avoided. To show that these accumulation points are not
filling up the whole energy regime as a dense set analyticity of the mass shells
would be needed. It was the initial plan behind this paper to go into this direc-
tion and prove smoothness as an intermediate result by extending the mentioned
expansion of λξ0+ζ . Therefore, Theorem 5.34, a key technical result, is formulated
for arbitrary k instead of the case k = 3 needed to obtain the expansion. Unfor-
tunately, due to technical complications this project could not be accomplished in
time and was thus discarded from the PhD thesis. However, the first crucial step
to push the analysis to the orders 3 + α appeared to be almost within our reach
and we will pursue this direction of research in the future.

2 Main Results

2.1 The Model

Massive translation invariant Nelson models describe an electron linearly coupled
to a bosonic field. The electron’s Hilbert space is

K := L2(Rν
x),

where the index x signifies that we are working in position space. The free Hamil-
tonian for the electron is given by Ω(p) := p2, where p = −i∇ on K. Note that
the dispersion relation Ω can be chosen more general but due to computational
difficulties arising from an abstract choice of function we restrict ourselves to a
quadratic term. The Hilbert space of a single boson is denoted by

h := L2(Rν
k),

where the index k indicates that the variable for functions in h is to be understood
as a momentum. Define the bosonic Fock space over h by F = Fs(h). The full
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Hilbert space of the composite system consisting of the electron plus the bosonic
field is defined by

H := K ⊗F .
The dispersion relation of the bosonic particle is denoted by ω. We employ the
following general assumptions on ω under which a Mourre estimate was proven by
Møller and Rasmussen in [39].

Assumption 2.1 (Boson Dispersion Relation). Let ω ∈ C∞(Rν) be real-analytic.
Furthermore, suppose that ω satisfies the following extra conditions.

1. ∃m > 0 : infk∈Rν ω(k) = m.

2. ∀k1, k2 ∈ Rν : ω(k1 + k2) < ω(k1) + ω(k2).

3. ω is rotation invariant.

4. ∀α ∈ Nν : supk∈Rν |∂αω(k)| <∞

5. ∃c > 0∀m ∈ {1, 2} : |k|m|∇mω(k)| ≤ cω(k).

6. lim|k|→∞ ω(k) =∞ or supk ω(k) <∞.

A possible choice for such a function is ω(k) :=
√
k2 +m2 or ω(k) = m, where

m > 0. Since a concrete choice of ω will not play any role in our arguments, we
keep it in this generality. Furthermore, we have to choose a coupling function that
implements the interaction between the electron and the bosonic field.

Assumption 2.2 (Coupling Function). Depending on the situation we will typi-
cally assume one of the three conditions on the coupling function g ∈ L2(Rν).

1. g ∈ C∞0 (Rν).

2. g ∈ L2
uv(Rν), where L2

uv(Rν) is defined in (2.1).

3. ∃k ∈ N0 : g ∈ Hk
uv(Rν), where Hk

uv(Rν) is defined in (2.2).

We define the space of square integrable functions decaying to arbitrary order
by

L2
uv(Rν) :=

∞⋂
n=0

L2(Rν , (1 + |k|)2ndx). (2.1)

The space of coupling functions with arbitrary decay at infinity and k local weak
derivatives is defined by

Hk
uv(Rν) := L2

uv(Rν) ∩ Hk
loc(R

ν). (2.2)

For the first half of the paper we will restrict ourselves to coupling functions
g ∈ C∞0 (Rν), since it allows for rather explicit calculations of iterated commutators,
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see Section 3. It can be shown that the sets in (2.2) and (2.1) can be equipped
with a locally convex topology turning them into Fréchet spaces, see Section 5.1. It
turns out that g ∈ C∞0 (Rν) is a dense subset in this topology and that commutator
forms, where general coupling functions are used, can be approximated by their
smooth and compactly supported counterparts.

We define the free and the interacting Hamiltonian on H by

H0 := 1K ⊗ dΓ(ω) + p2 ⊗ 1F ,
H := H0 + Vg,

where the operator Vg is given by

Vg(x) :=
1

2

∫
Rν

(
e−ik·xg(k)1K ⊗ a∗(k) + eik·xg(k)1K ⊗ a(k)

)
dνk.

The operator of total momentum

P := −i∇⊗ 1F + 1K ⊗ dΓ(k)

commutes with H and H0. Thus, both of these operators are translation invariant
and can be represented as a direct integral. More precisely, there exists a unitary
transformation ILLP : H → L2(Rν ,F) such that

ILLPH0I
∗
LLP =

∫ ⊕
Rν
H0(ξ)dνξ,

ILLPHI
∗
LLP =

∫ ⊕
Rν
H(ξ)dνξ,

where H0(ξ) and H(ξ) are operators acting on F given explicitly by

H0(ξ) = dΓ(ω) + (k − dΓ(k))2,

H(ξ) = H0(ξ) + Φ(g),

Φ(g) =
1

2
(a∗(g) + a(g)).

The transformation ILLP was first used by Lee, Low and Pines in [34]. It can be
written as

ILLP := (F⊗ 1F) ◦ ΓK⊗F(e−ik·x),

where ΓK⊗F is an analogue of the second quantization functor Γ. It has been
defined by Møller and Rasmussen in [39]. More precisely, for a bounded operator
D ∈ B(K ⊗F) with ‖D‖ ≤ 1 it is given by

ΓK⊗F(D) := (1⊗ S)G(D)(1⊗ S),
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where S is the symmetrization operator on Fock space and G(D) = ⊕∞n=0G
(n)(D)

acting on K ⊗ ⊕∞n=0 ⊗n h, G(0)(D) = D and G(n)(D) = D1 · · ·Dn. The Dj are
bounded operators on K ⊗⊗nh defined by

Dj := [E (n)
j ]∗D ⊗ 1⊗n−1hE (n)

j .

Finally, E (n)
j is defined via its action on simple tensors by

E (n)
j (f ⊗ ψ1 ⊗ · · · ⊗ ψj ⊗ · · · ⊗ ψn) = f ⊗ ψj ⊗ ψ1 ⊗ · · · ⊗ ψj−1 ⊗ ψj+1 ⊗ · · · ⊗ ψn,

where f ∈ K and ψ1, . . . , ψn ∈ h. There are several cores one can use for the fiber
operators. For our purposes the set

C∞0 := C⊕
∞⊕
n=1

C∞0,sym(Rnν),

where C∞0,sym(Rm) denotes the smooth functions of compact support which are
symmetric under permutation of coordinates.

We quickly sum up some results on Mourre-theory needed to state the main theo-
rem of the paper in the next section. Under (a generalizations of) our assumptions
a Mourre estimate has been established by Møller and Rasmussen in [39].

Define the operator

aξ :=
1

2
(vξ · i∇ki∇kvξ)

which is essentially self-adjoint on C∞0 (Rν) for every smooth and compactly sup-
ported vector field vξ ∈ C∞0 (Rν ,Rν). A proof of this statement can be found
in [44]. We now define the conjugate operator Aξ at fiber ξ by

Aξ := dΓ(aξ).

Proposition 2.3 (Regularity w.r.t. A). Let ξ ∈ Rν. There exists an open neigh-
borhood O(ξ) of ξ such that for all ξ′ ∈ O(ξ) the operators H(ξ′) are of class
C2(Aξ).

It requires several definitions to properly state the set in which the Mourre
estimate established by Møller and Rasmussen in [39] holds. They have thus been
moved and into Section 2.3 in order not to obscure the presentation.

Theorem 2.4 (Mourre Estimate). Let (ξ, λ) ∈ E (1) \ T (1), where the sets E (1)

and T (1) are defined in (2.4) and (2.5). Denote by O(ξ) the neighborhood from
Proposition 2.3. Define Iλ,κ := (λ− κ, λ+ κ) for κ > 0. There exists κ > 0, c > 0,
and a compact self-adjoint operator K such that Iλ,κ ⊂ E (1)(ξ′) \ T (1)(ξ′) and

1Iλ,κ(H(ξ′))i[H(ξ′), A]1Iλ,κ(H(ξ′)) ≥ c1Iλ,κ(H(ξ′)) +K, (2.3)

where ξ′ ∈ O(ξ).
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2.2 Main Results

Assumption 2.5.

1. Suppose there exists U ⊂ Rν such that the operators H(ξ) have a family of
embedded eigenvalues λξ ∈ σ(H(ξ)) ∩ E (1)(ξ) \ T (1)(ξ) of multiplicity one.

2. Further assume that this family is isolated. More precisely, suppose that there
exists d > 0 such that for all ξ ∈ U we have that dist(λξ, σp(H(ξ))\{λξ}) ≥ d,
where σp(H(ξ)) denotes the set of eigenvalues of H(ξ).

Notation 2.6 (Conjugate Operator for a Fixed Fiber).

1. Throughout the rest of the paper we fix ξ0 in U . Moreover, we fix the
neighborhood O0 := O(ξ0) given by Proposition 2.3.

2. From now on we put A := Aξ0 .

Notation 2.7 (Eigenstate and Eigenprojection).

1. Denote by η the normalized eigenstate of H(ξ0), that is H(ξ0)η = λξ0η and
‖η‖ = 1.

2. Put P := |η〉〈η| and P = 1− P .

We first state a result on finite local regularity w.r.t. the conjugate operator A.

Theorem 2.8 (Finite Local Regularity). Suppose that the coupling function g
satisfies g ∈ Hk

uv(Rν). Then

f(H(ξ)) ∈ Ck(A)

for all f ∈ C∞0 (R).

For the proof, see Thoerem 4.6 which asserts the statement in the compactly
supported and smooth case. The full statement reappears as Theorem 5.34 and
is basically proven by generalizing the proof of Thoerem 4.6 to the situation of
general coupling functions in Hk

uv(Rν).
Obviously, the theorem implies the following Corollary which is interesting in

its own right.

Corollary 2.9. Let f ∈ C∞0 (R) and g ∈ C∞0 (Rν), where g is the coupling function.
Then

∀k ∈ N : f(H(ξ)) ∈ Ck(A).
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In Appendix E it is shown that the projected fiber Hamiltonians PH(ξ)P have
the same property. It should further be noted that the previous statement has a
consequence on the structure of the eigenstate η due to regularity of eigenstates,
see [40], provided that there is a Mourre estimate in a neighborhood of the corre-
sponding eigenvalue. More precisely, the mentioned result then implies the validity
of the implication

g ∈ Hk+1
uv (Rν)⇒ η ∈ D(Ak).

Let ξ0, ξ0 + ζ ∈ U . With this implication we can prove the following Proposition
for the projected Hamiltonian PH(ξ + ζ)P .

Proposition 2.10. There exists an open neighborhood V of ξ0 and r > 0 such
that for ξ ∈ V and |ζ| < r PH(ξ + ζ)P is of class C2(PAP ) and satisfies a strict
Mourre estimate (that is K = 0) of the type (2.3).

For ε > 0 we define

Rx+iε(ξ) = (PH(ξ)P − (x+ iε)P )−1

and put A := PAP . Note that A is symmetric and closed with domain D(A).
This notation will not lead to confusion, since the context dictates the choice of ξ
in the definition of A.

Theorem 2.11 (Limiting Absorption Principle, Hölder Continuity). Let s > 1/2.
Then there exists an open interval J containing λξ0, an open neighborhood V of ξ0

satisfying V ⊂ O0 and constants C, r > 0 independent of ζ, ε such that

∀ξ ∈ V ∀|ζ| < r : sup
x∈J,|ε|<1

‖〈A〉−sRx+iε(ξ + ζ)〈A〉−s‖ ≤ C

and the limit

〈A〉−sRx+i0(ξ + ζ)〈A〉−s := lim
ε→0
〈A〉−sRx+iε(ξ + ζ)〈A〉−s

exists as a bounded operator on PH for all x ∈ J , ξ ∈ V and |ζ| < r. If s ∈ (1/2, 1)
we have that there exists α ∈ (1/2, 1) and a constant C ′ > 0 such that

‖〈A〉−sRx+i0(ξ + ζ)〈A〉−s − 〈A〉−sRx′+i0(ξ + ζ ′)〈A〉−s‖
≤ C ′ (|x− x′|α + |ζ − ζ ′|α)

for all x, x′ ∈ J and |ζ|, |ζ ′| < 1. Moreover, C ′ is independent of ξ ∈ V.

The proof of this statement can be found in Section 6.4. It is then used in
an substantial way to derive the next statement which is the main theorem of
this paper. The proof itself relies on abstract considerations which can be found
throughout the literature. A first step consists of showing the statement for ζ =
0 and ξ in a neighborhood V ′ of ξ0. This neighborhood derives from a slight
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modification of Gérard’s proof of the limiting absorption principle in [22]. A quick
discussion on how Gérard’s result can be modified to fit into a parameter dependent
context is given in Appendix D. By choosing an open subset V ⊂ V ′ containing ξ0

we can achieve that ξ′ + ζ ∈ V ′ ∩ U(ξ) for |ζ| sufficiently small.

Theorem 2.12 (Second Order Perturbation Theory). Let ξ0 ∈ U and s ∈ (1/2, 1).
There exists an open neighborhood V of ξ0 satisfying V ⊂ O0 and r > 0 such that
for all ξ ∈ V and all |ζ| < r

λξ+ζ = λξ +
ν∑

σ=1

ζσβσ(ξ) +
ν∑

σ,σ′=1

ζσζσ′βσ,σ′(ξ) + O
(
|ζ|2+α

)
.

Where we have defined

βσ(ξ) := 2ξσ − 2〈η, dΓ(kσ)η〉, Uση := P 〈A〉s dΓ(kσ)η

and

βσ,σ′(ξ) := δσ,σ′ + 4ξσξσ′〈P 〈A〉sη, 〈A〉−sRλξ+i0(ξ)〈A〉−sP 〈A〉sη〉
+ 4ξσ′〈P 〈A〉sη, 〈A〉−sRλξ+i0(ξ)〈A〉−sUση〉
+ 4ξσ′〈Uση, 〈A〉−sRλξ+i0(ξ)〈A〉−sP 〈A〉sη〉
− 4〈Uση, 〈A〉−sRλξ+i0(ξ)〈A〉−sUση〉.

Moreover, the error term can be estimated independently of ξ: There exists C > 0
independent of ξ ∈ V such that∣∣O (|ζ|2+α

)∣∣ ≤ C|ζ|2+α.

The proof combines most of the results presented here and is given at the end
of Section 6.5. It rests on a combination of the Feshbach-Schur method with the
results on Hölder continuity of the resolvent boundary values. The above expansion
finally implies the desired differentiability.

Proposition 2.13 (Twice Differentiable Parameter Dependence). Let ξ0 ∈ U ,
s ∈ (1/2, 1) and V be the neighborhood of ξ0 in Theorem 2.12. Define a map
Λ : V → U by Λ(ξ) = λξ. Then Λ ∈ C2(V , U).

Proof: Denote by eσ the usual basis vector for Rν and by δx,y the Kronecker
delta. First note that due to

λξ+heσ = λξ + h
ν∑

σ1=1

δσ,σ1βσ1(ξ) + h2

ν∑
σ1,σ2=1

δσ,σ1δσ,σ2βσ1,σ2(ξ)

+ O
(
|h|2+α

)
= λξ + hβσ(ξ) + h2βσ,σ(ξ) + O

(
|h|2+α

)
,
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Λ is differentiable at every ξ ∈ Rν and ∂σΛ(ξ) = βσ(ξ). Since ξ 7→ βσ(ξ) is contin-
uous, so is ∂σΛ and thus Λ ∈ C1(V , U). In order to prove twice differentiability,
we have to control

1

h
(βσ(ξ + heσ′)− βσ(ξ)) .

Note that

βσ(ξ)

h
=
λξ+heσ − λξ

h2
− βσ,σ(ξ) + O (|h|α)

βσ(ξ + heσ′)

h
=
λξ+heσ+heσ′

− λξ+heσ′
h2

− βσ,σ(ξ − heσ′) + O (|h|α)

and an easy computation which uses the expansion in Theorem 2.12 shows that

1

h
(βσ(ξ + heσ′)− βσ(ξ))

= βσ,σ′(ξ) + βσ′,σ(ξ) + βσ,σ(ξ + heσ′)− βσ,σ(ξ) + O (|h|α) .

Due to Hölder-continuity of βσ,σ(ξ), we obtain

∂σ′∂σΛ(ξ) = βσ,σ′(ξ) + βσ′,σ(ξ)

and thus the continuity of ∂σ′∂σΛ(ξ) on V . �

2.3 Remarks on the Spectral Theory of the Model

In order to state results on Mourre theory in this model, we have to introduce some
notation. We follow the presentation in [39]. We define the energy momentum
spectrum by

Σ = {(ξ, E) | E ∈ σ(H(ξ))}
and the bottom of the spectrum of the fiber Hamiltonian H(ξ) by

Σ0(ξ) := inf σ(H(ξ)).

The energy necessary to support the interacting system at total momentum ξ −∑n
j=1 kj and n non-interacting bosons with momenta k1, . . . , kn is given by

Σ
(n)
0 (ξ, k) = Σ0(ξ − k1 + · · ·+ kn) +

n∑
j=1

ω(kj),

where k = (k1, . . . , kn) ∈ Rnν . The minimal energy needed for such a situation to
occur is

Σ
(n)
0 (ξ) = inf

k∈Rnν
Σ

(n)
0 (ξ, k).

These numbers are called n-boson threshold. Note however that the term carries
a double meaning in the sense that it can denote the minimal energy needed to
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support the interacting system and n free bosons but it can also mean a threshold
in the following sense that it denotes an energy at which the system can form an
interacting bound state and n bosons with zero breakup velocity. With the above
notation we put

E (1)(ξ) = (Σ
(1)
0 (ξ),Σ

(2)
0 (ξ)) and E (1) = {(ξ, λ) ∈ Rν ×R | λ ∈ E (1)(ξ)}. (2.4)

The HVZ theorem can be written as

σess(ξ) =
[
Σ

(1)
0 (ξ),∞

)
.

Hence the 1-boson threshold also serves as the start of the essential spectrum. It
is therefore somehow natural to write

Σess(ξ) = Σ
(1)
0 (ξ).

The discrete or isolated part of the energy momentum spectrum is defined as

Σiso := {(ξ, E) ∈ Σ | E < Σess(ξ)}.

Since the possibility of energy levels to cross cannot be ruled out at this generality,
we define the set of level crossings by

X := {(ξ, E) ∈ Σiso | ∀n ∈ N : Σiso ∩B((ξ, E);n−1) is not a graph},

where B((ξ, E); r) denotes the ball of radius r > 0 centered at (ξ, E) ∈ Rν × R.
The connected components of X are connected to each other by real analytic
manifolds S. The collection of such manifolds is denoted by S. More precisely,
the set S consists of tuples (A, S), where A is a ν dimensional annulus or an open
ball centered at 0, and S : A → R is a function satisfying Σ0(ξ) ≤ S(ξ) < Σess(ξ).
For (A, S) ∈ S we define

S(1)(ξ, k) = S(ξ − k) + ω(k).

The threshold set at momentum ξ ∈ Rν is

T (1)(ξ) = T (1)
S (ξ) ∪ T (1)

‖ (ξ) ∪ T (1)
∦ (ξ).

The different components are defined as follows.

T (1)
S (ξ) := {E ∈ R | ∃(A, S) ∈ S, k ∈ A+ ξ : E = S(1)(ξ, k),

∇kS
(1)(ξ, k) = 0}

For ξ ∈ Rν define u(ξ) to be a unit vector such that ξ = su(ξ) for some s ∈ R.
Finally, we put

T (1)
‖ (ξ) := {E ∈ R | ∃r ∈ R(ξ − ru(ξ), E − ω(ru(ξ))) ∈ X},

T (1)
∦ (ξ) := {E ∈ R | ∃k ∈ Rν : (ξ − k,E − ω(k)) ∈ X ,∇kω(k) = 0}
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and
T (1) = T (1)

S ∪ T
(1)
‖ ∪ T

(1)
∦ , (2.5)

where T (1)
S = {(ξ, E) | E ∈ T (1)

S (ξ)} etc. At last we have accumulated all the
definitions necessary to formulate the Mourre estimate Theorem 2.4 established
by Møller and Rasmussen, see [39], Theorem 3.18.

3 Operators Acting on a Core

3.1 Bounds on a Core

In this section we have to deal with products of field operators and second quan-
tized multiplication operators frequently. It is thus convenient to introduce some
notation for it.

Notation 3.1.

n∏
i=1

Φ(gi) := Φ(g1)Φ(g2) · · ·Φ(gn−1)Φ(gn),

n∏
i=1

dΓ(ui) := dΓ(u1) dΓ(u2) · · · dΓ(un−1) dΓ(un),

where the ui ∈ C∞(Rν ,C) are arbitrary functions and gi ∈ C∞0 (R). Note that
these operators make sense at least on C∞0 . Moreover, the operators in the second
product all commute so that there is no ambiguity. Whenever there are products
of field operators the symbol

∏n
i=1 Φ(gi) means that they should be arranged such

that the factos in the product respect the ordering of the indexes when read from
left to right.

Definition 3.2. The set of smooth functions bounded by the photon dispersion
relation is defined by

C∞ω := {f ∈ C∞(Rν) | ∃C > 0 : f ≤ Cω}

and the set of all operators acting on C∞0 by

Op(C∞0 ) := {S linear operator | D(S) = C∞0 , SC∞0 ⊂ C∞0 }.
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1. Define the following subsets of Op(C∞0 ):

C0,0,0 := C{1}

C0,0,α3 := Span{
ν∏

σ=1

dΓ(kσ)qσ | qσ ∈ N0,
ν∑

σ=1

qn3,σ = n3 ≤ α3}

+ C0,0,0,

C0,α2,0 := Span{
j2∏
m=1

dΓ(um) | ui ∈ C∞ω , 1 ≤ i ≤ j2 ≤ α2}

+ C0,0,0,

Cα1,0,0 := Span{
n∏
i=1

Φ(gi) | g1, . . . gj1 ∈ C∞0 (Rν), j1 ≤ α1}

+ C0,0,0.

2. Note that operators in these sets can be multiplied without any issues con-
cerning domains, since they only act on C∞0 . We can thus define

Cα1,α2,0 := Cα1,0,0C0,α2,0, Cα1,0,α3 := Cα1,0,0C0,0,α3 ,

C0,α2,α3 := C0,α2,0C0,0,α3 , Cα1,α2,α3 := Cα1,0,0C0,α2,0C0,0,α3 .

3. We write
T ∼ Cα1,α2,α3 ,

if C∞0 ⊂ D(T ) and

∃T̃ ∈ Cα1,α2,α3 : T |C∞0 = T̃ .

Remark 3.3.

1. The restriction |ui| ≤ Ci · ω is made so that dΓ(ui) is H0(ξ)-bounded.

2. We require gi ∈ C∞0 (Rν) so that vjk
`
σgi ∈ L2(Rν) for all i, j, `σ that can

appear.

3. All functions are chosen to be smooth, so that T ∈ Cα1,α2,α3 implies TC∞0 ⊂
C∞0 .

4. It follows immediately from the definition that αi ≤ βi implies

Cα1,α2,α3 ⊆ Cβ1,β2,β3

for αi, βi ∈ N0.
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The spaces Cα1,α2,α3 allow us to control form identities on C∞0 such as commuta-
tors by calculating them on the core and then order them such that all fields are
on the left and all second quantizted multicplication operators are on the right.
This in turn will lead to (form) bounds in terms of graph norms of powers of the
free Hamiltonian.

Definition 3.4 (Commutators on C∞0 ). Let T, S ∈ Op(C∞0 ). Then we define an
operator adS(T ) ∈ Op(C∞0 ) by

∀ψ ∈ C∞0 : adS(T )ψ := STψ − TSψ.

We draw first conclusions from our definitions. Let T ∼ Cα1,α2,α3 , S ∈ Op(C∞0 )

and ψ, ψ′ ∈ C∞0 . According to the definitions there exists T̃ ∈ Cα1,α2,α3 such that

T |C∞0 = T̃ . If C∞0 ⊂ D(T ∗), we may compute

〈ψ, [S, T ]ψ′〉 = 〈S∗ψ, T̃ψ′〉 − 〈T ∗ψ, Sψ′〉 = 〈ψ, ST̃ψ′〉 − 〈ψ, T̃Sψ′〉
= 〈ψ, adS(T̃ )ψ′〉

Hence we can calculate the commutator form on [S, T ] on C∞0 ×C∞0 and argue that
it is given by the operator adS(T̃ ). However, it will in general by difficult to extract
more information on the analytical properties of this operator. In particular, we
would like to extend it to larger domains.

To this end the subspaces Cα1,α2,α3 ⊂ Op(C∞0 ) are a quite useful technical tool,
since their elements may be easily bounded by powers of the number operator
and hence by powers of the free Hamiltonian H0(ξ). It is in general not clear, if
adS(T̃ ) ∼ Cα1,α2,α3 again. However, if we are in a position to explicitly compute

adS(T̃ ) on C∞0 , we can then try to re-write it in such a fashion that it will be
an element of Cα′1,α′2,α′3 for some new constants α′i. In this situation we may view
the operation of taking a commutator with S as a map between sets Cα1,α2,α3 and
Cα′1,α′2,α′3 . In the following we slightly abuse notation and define a map

adS(·) : Cα1,α2,α3 → Op(C∞0 )

T 7→ adS(T ).

The next Proposition deals with the question whether adS(T ) ∼ Cα′1,α′2,α′3 for cer-
tain choices of S. It will play a crucial role in our analysis.

If we further assume that T is a H0(ξ)m/2-bounded operator for some m ∈ N,
an extension of the commutator form would require us to first extend to form to
the larger domain. Since the form satisfies the generic bound

|〈ψ, [S, T ]ψ′〉| ≤ C‖ψ‖S,m‖ψ′‖S,m,
‖ψ‖S,m := ‖ψ‖+ ‖H0(ξ)

m
2 ψ‖+ ‖Sψ‖,
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this could be done if we knew that C∞0 was a ‖·‖S,m-dense subset ofD(Hm/2)∩D(S).
We are interested in commutators with the conjugate operator A and H(ξ). Since
the domain of the conjugate operator A contains C∞0 and AC∞0 ⊂ C∞0 , we can
replace S by A in the preceding argument.

Hence the key question we have to address in order to extend commutator forms
like [A, T ] is whether or not C∞0 is dense in D(Hm/2)∩D(S) w.r.t. the intersection
norms ‖ · ‖m := ‖ · ‖A,m for all m ∈ N.

Proposition 3.5. Let g ∈ C∞0 (Rν) and αi ∈ N0, where i = 1, 2, 3, but at least one
αi 6= 0. Then

addΓ(kσ)(Cα1,α2,α3) ⊆ Cα1,α2,α3 ,

adH0(ξ)(Cα1,α2,α3) ⊆

{
Cα1,α2,α3+1 , α1 6= 0

C0,0,0 , α1 = 0
,

adA(Cα1,α2,α3) ⊆


Cα1,α2,α3 + Cα1,α2+1,α3−1 , α3 ≥ 1, α2 ≥ 1 or α1 ≥ 1

C0,1,α3−1 , α3 ≥ 1, α1 = α2 = 0

Cα1,α2,0 , α3 = 0

adΦ(g)(Cα1,α2,α3) ⊆



Cα1−1,α2,α3 + Cα1+1,α2−1,α3 , α1, α2,≥ 1, α3 ∈ N0

Cα1−1,0,0 , α1 ≥ 1, α2 = α3 = 0

Cα1−1,0,α3 + Cα1+1,0,α3−1 , α1, α3 ≥ 1, α2 = 0

C1,α2−1,α3 , α1 = 0, α2 ≥ 1, α3 ∈ N0

C1,0,α3−1 , α1 = α2 = 0, α3 ≥ 1

In particular,

adH(ξ)(Cα1,α2,α3) ⊆ adH0(ξ)(Cα1,α2,α3) + adΦ(g)(Cα1,α2,α3).

Proof: For the different operators we want to take commutators with, we only
treat the cases, where α1, α2, α3 ∈ N0 are as general as possible, since the proofs
of the special cases are more simple. Since the elements of the sets Cα1,α2,α3 are
finite linear combinations, it suffices to carry out the calculations for summands
of the form

n1∏
i=1

Φ(gi)

n2∏
m=1

dΓ(vm)
ν∏

σ=1

dΓ(kσ)qn3,σ ,

where ni ≤ αi and qn3,1 + · · ·+ qn3,ν = n3.
Now note that dΓ(kσ) commutes with all other second quantized multiplication
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operators. Hence

addΓ(kσ)

(
n1∏
i=1

Φ(gi)

n2∏
m=1

dΓ(vm)
ν∏

σ=1

dΓ(kσ)qn3,σ

)

= addΓ(kσ)

(
n1∏
i=1

Φ(gi)

)
n2∏
m=1

dΓ(vm)
ν∏

σ=1

dΓ(kσ)qn3,σ .

Lemma A.5 implies

addΓ(kσ)

(
n1∏
i=1

Φ(gi)

)

=

n1∑
`=1

Φ(g1) · · ·Φ(gn,`−1)[dΓ(kσ),Φ(gn,`)]Φ(gn,`+1) · · ·Φ(gn1)

= −i

n1∑
`=1

Φ(g1) · · ·Φ(gn,`−1)Φ(ikσgn,`)Φ(gn,`+1) · · ·Φ(gn1)

and the first statement follows.
In the next step we analyze how taking a commutator with H0(ξ) effects ele-

ments of Cα1,α2,α3 . Since H0(ξ) commutes with all second quantized multiplication
operators, the only interesting case is α1 6= 0. In this case we obtain

adH0(ξ)

(
n1∏
`=1

Φ(g`)

n2∏
m=1

dΓ(vm)
ν∏

σ=1

dΓ(kσ)qn3,σ

)

=

[
H0(ξ),

n1∏
`=1

Φ(g`)

]
n2∏
m=1

dΓ(vm)
ν∏

σ=1

dΓ(kσ)qn3,σ .

In order to keep the equations shorter we introduce

Cn1 := [H0(ξ),Φ(g1) · · ·Φ(gn1)].

Clearly,

Cn1 =

n1∑
`=1

Φ(g1) · · ·Φ(gn,`−1)[H0(ξ),Φ(gn,`)]Φ(gn,`+1) · · ·Φ(gn1).
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Thus, we have to calculate the single commutator

[Φ(g), H0(ξ)]

= [Φ(g), dΓ(ω)] + [Φ(g), (ξ − dΓ(k))2]

= −iΦ(iωg)− 2[Φ(g), ξ · dΓ(k)] + [Φ(g), dΓ(k)2]

= −iΦ(iωg) + 2iΦ(iξ · kg)− idΓ(k) · Φ(ikg)− iΦ(ikg) · dΓ(k) .

= −iΦ(iωg) + 2iΦ(iξ · kg)− i
ν∑

σ=1

(dΓ(kσ)Φ(ikσg) + Φ(ikσg)dΓ(kσ))

= −iΦ(iωg) + 2iΦ(iξ · kg)− i
ν∑

σ=1

(
iΦ(ik2

σg) + 2Φ(ikσg)dΓ(kσ)
)

= −iΦ(iωg) + 2iΦ(iξ · kg) + Φ(i|k|2g)− 2i
ν∑

σ=1

Φ(ikσg)dΓ(kσ).

This last equation implies

Cn1 = −i
n∑
`=1

Φ(g1) · · ·Φ(g`−1)Φ(iωg`)Φ(g`+1) · · ·Φ(gn1)

+ 2i
n∑
`=1

Φ(g1) · · ·Φ(g`−1)Φ(iξ · kg`)Φ(g`+1) · · ·Φ(gn1)

+
n∑
`=1

Φ(g1) · · ·Φ(g`−1)Φ(i|k|2g`)Φ(g`+1) · · ·Φ(gn1)

− 2i
n∑
`=1

ν∑
σ=1

Φ(g1) · · ·Φ(g`−1)Φ(ikσg`)dΓ(kσ)Φ(g`+1) · · ·Φ(gn1).

All contributions except the last one are already in the correct form. By commuting
dΓ(kσ) through to the right we obtain

Φ(g`−1)Φ(ikσg`)dΓ(kσ)Φ(g`+1) · · ·Φ(gn1)

=Φ(g`−1)Φ(ikσg`)Φ(g`+1) · · ·Φ(gn1) dΓ(kσ)

+ Φ(g`−1)Φ(ikσg`)[dΓ(kσ),Φ(g`+1) · · ·Φ(gn1)].

Another application of Lemma A.5 gives

Φ(g`−1)Φ(ikσg`)dΓ(kσ)Φ(g`+1) · · ·Φ(gn1)

=Φ(g`−1)Φ(ikσg`)Φ(g`+1) · · ·Φ(gn1) dΓ(kσ)

+ Φ(g`−1)Φ(ikσg`)
n∑
k=1

CkΦ(g`+1) · · ·Φ(g`+k−1)Φ(ikσg`+k)×

× Φ(g`+k+1) · · ·Φ(gn).
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Therefore, the H0(ξ)
1
2 -boundedness of dΓ(kσ) implies

adH0(ξ)

(
n1∏
`=1

Φ(g`)

n2∏
m=1

dΓ(vm)
ν∏

σ=1

dΓ(kσ)qn3,σ

)
∈ Cα1,α2,α3+1.

We examine the commutators with the field operator Φ(g) next. Let α1, α2 ≥ 1
and α3 ∈ N0. We compute

adΦ(g)

(
n1∏
`=1

Φ(g`)

n2∏
m=1

dΓ(vm)
ν∏

σ=1

dΓ(kσ)qn3,σ

)

=

[
Φ(g),

n1∏
`=1

Φ(g`)

]
n2∏
m=1

dΓ(vm)
ν∏

σ=1

dΓ(kσ)qn3,σ

+

n1∏
`=1

Φ(g`)

n2∏
m=1

dΓ(vm)

[
Φ(g),

ν∏
σ=1

dΓ(kσ)qn3,σ

]

+

n1∏
`=1

Φ(g`)

[
Φ(g),

n2∏
m=1

dΓ(vm)

]
ν∏

σ=1

dΓ(kσ)qn3,σ .
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A two-fold application of Lemma A.4 gives

adΦ(g)

(
n1∏
`=1

Φ(g`)

n2∏
m=1

dΓ(vm)
ν∏

σ=1

dΓ(kσ)qn3,σ

)

=

[
Φ(g),

n1∏
`=1

Φ(g`)

]
n2∏
m=1

dΓ(vm)
ν∏

σ=1

dΓ(kσ)qn3,σ

+

n1∏
`=1

Φ(g`)

[
Φ(g),

n2∏
m=1

dΓ(vm)

]
ν∏

σ=1

dΓ(kσ)qn3,σ .

+

n1∏
`=1

Φ(g`)

n2∏
m=1

dΓ(vm)

[
Φ(g),

ν∏
σ=1

dΓ(kσ)qn3,σ

]

=

n1∑
j=1

2iIm〈g, gj〉
j−1∏
`=1

Φ(gi)

n1∏
`=j+1

Φ(gi)

n2∏
m=1

dΓ(vm)
ν∏

σ=1

dΓ(kσ)qn3,σ

+

n2∑
i=1

∑
D∈Pi(Nn2 )

CNn2\D

n1∏
`=1

Φ(g`)Φ(gD)
∏

j∈Nn2\D

dΓ(vj)
ν∏

σ=1

dΓ(kσ)qn3,σ

−
ν∑

σ=1

qn3,σ∑
i=1

∑
D∈Pi(Nqn3,σ

)

n2∑
d=1

∑
D′∈Pi(Nn2 )

CNqn3,σ
\DCNn2\D′

n1∏
`=1

Φ(g`)×

× Φ((gD)D′)
∏

m∈Nn2\D′
dΓ(vm)

∏
`∈Nqn3,σ

\D′
dΓ(kσ)`

ν∏
σ′=1
σ′ 6=σ

dΓ(kσ′)
qn3,σ

′ .

This equation clearly implies that

adΦ(g)

(
Φ(g1) · · ·Φ(gn1)

n2∏
m=1

dΓ(vm)
ν∏

σ=1

dΓ(kσ)qn3,σ

)
∈ Cα1−1,α2,α3 + Cα1+1,α2−1,α3 .

Since adH(ξ)(·) = adH0(ξ)(·) + adΦ(g)(·), the mapping properties of adH(ξ)(·) now
follow from what has been proven already.

In order to complete the proof it remains to analyze adA(·). Let αi ≥ 1, i = 1, 2, 3
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and calculate

adA

(
n1∏
`=1

Φ(g`)

n2∏
j=1

dΓ(vj)
ν∏

σ=1

dΓ(kσ)qn3,σ

)

=

[
A,

n1∏
`=1

Φ(g`)

]
n2∏
j=1

dΓ(vj)
ν∏

σ=1

dΓ(kσ)qn3,σ

+

n1∏
`=1

Φ(g`)

[
A,

n2∏
j=1

dΓ(vj)

]
ν∏

σ=1

dΓ(kσ)qn3,σ

+

n1∏
`=1

Φ(g`)

n2∏
j=1

dΓ(vj)

[
A,

ν∏
σ=1

dΓ(kσ)qn3,σ

]
.

By Lemma A.6 we obtain [
A,

n1∏
`=1

Φ(g`)

]
∈ Cα1,0,0

and similarly, since second quantization of ~v · ∇vj leads to an H0(ξ)-bounded
operator, we have that

n1∏
`=1

Φ(g`)

[
A,

n2∏
j=1

dΓ(vj)

]
ν∏

σ=1

dΓ(kσ)qn3,σ ∈ Cα1,α2,α3 .

The last term remaining has to be treated with more care. Recall that the um were
only introduced to make products of operators of the type dΓ(kσ)N appear more
symmetric. Therefore, commuting A with some dΓ(uj) amounts to commuting A
with some dΓ(kσ) which gives [A, dΓ(kσ)] = dΓ(i(~v)σ) by Remark A.1. luckily,
second quantization of multiplication by a component of ~v is H0(ξ) bounded so
that

n1∏
`=1

Φ(g`)

n2∏
j=1

dΓ(vj)

[
A,

ν∏
σ=1

dΓ(kσ)qn3,σ

]
∈ Cα1,α2+1,α3−1

which proves that adA(Cα1,α2,α3) ⊆ Cα1,α2,α3 + Cα1,α2+1,α3−1. �

For technical reasons we will be forced to control the adjoint T ∗ of some T ∈
Cα1,α2,α3 . It turns out that T ∗ ∈ Cα1,α2,α3 again.

Lemma 3.6.
T ∼ Cα1,α2,α3 =⇒ T ∗ ∼ Cα1,α2,α3 .
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Proof: Let

T =

n1∏
i=1

Φ(gi)

n2∏
j=1

dΓ(vj)
ν∏

σ=1

dΓ(kσ)qn3,σ

and ψ, ψ′ ∈ C∞0 , where ni ≤ αi. Then, by symmetry,

〈ψ, Tψ′〉 = 〈
n2∏
j=1

dΓ(vj)
ν∏

σ=1

dΓ(kσ)qn3,σΦ(gn1) · · ·Φ(g1)ψ, ψ′〉.

Obviously, in the case n1 = 0 the statement follows immediately, since all second
quantized multiplication operators are commuting on C∞0 . We may thus assume
that n1 ≥ 1. In any case the previous equation shows that C∞0 ⊂ D(T ∗). Define

Sn1 :=

n2∏
j=1

dΓ(vj)
ν∏

σ=1

dΓ(kσ)qn3,σΦ(gn1) · · ·Φ(g1).

Clearly, T ∗|C∞0 = Sn1 . A repeated application of Lemma A.4 shows that Sn1 ∼
Cα1,α2,α3 . In particular, there exists S ′n1

∈ Cα1,α2,α3 such that Sn1|C∞0 = S ′n1
. Hence

T ∗|C∞0 = S ′n1
. �

Proposition 3.7. Let g ∈ C∞0 (Rν) and m ∈ N. Then

H(ξ)m ∼
m∑
j=0

m−j∑
k=0

Cj,k,2(m−j−k).

Proof: We begin the inductive proof by noting that for m = 1

H(ξ) = Φ(g) + dΓ(ω) + ξ2 − 2
ν∑

σ=1

ξσ dΓ(kσ) +
ν∑

σ=1

dΓ(kσ)2

∈ C1,0,0 + C0,1,0 + C0,0,2 =
1∑
j=0

1−j∑
k=0

Cj,k,2(1−j−k).

Assume that the assertion is correct for some m ∈ N. We clearly have that

H(ξ)m+1 = Φ(g)H(ξ)m +H0(ξ)H(ξ)m.

Since left multiplication by Φ(g) takes Cα1,α2,α3 into Cα1+1,α2,α3 we may invoke the
induction hypothesis to conclude that

Φ(g)H(ξ)m ∼
m∑
j=0

m−j∑
k=0

Cj+1,k,2(m−j−k) ⊂
m+1∑
j=0

m+1−j∑
k=0

Cj,k,2(m+1−j−k),
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where we have used that for two subsets V, V ′ ⊂ H we always have V ⊂ V + V ′

provided that 0 ∈ V ′.
Similarly, it should be clear that H0(ξ) ∼ C0,1,0 + C0,0,2 and that right multipli-

cation by elements of this space sends Cα1,α2,α3 into Cα1,α2+1,α3 + Cα1,α2,α3+2. If we
compute

H0(ξ)H(ξ)m = H(ξ)mH0(ξ) + adH0(ξ)(H(ξ)m)

and use Proposition 3.5 to control the commutator contribution, we can apply the
last remark and see that

H0(ξ)H(ξ)m

∼
m∑
j=0

m−j∑
k=0

(
Cj,k+1,2(m−j−k) + Cj,k,2(m+1−j−k) + Cj,k,2(m−j−k)+1

)
⊂

m∑
j=0

m−j∑
k=0

(
Cj,k+1,2(m−j−k) + Cj,k,2(m+1−j−k)

)
⊂

m+1∑
j=0

m+1−j∑
k=0

Cj,k,2(m+1−j−k),

where we have made use of Cj,k,2(m−j−k)+1 ⊆ Cj,k,2(m−j−k)+2. It is now easy to show
that

m+1∑
j=1

m+1−j∑
k=0

Cj,k,2(m+1−j−k) +
m∑
j=0

m−j∑
k=0

(
Cj,k+1,2(m−j−k) + Cj,k,2(m+1−j−k)

)
⊂

m+1∑
j=0

m+1−j∑
k=0

Cj,k,2(m+1−j−k).

Since H(ξ)m+1 = Φ(g)H(ξ)m + H0(ξ)H(ξ)m is an element of the left hand side,
the argument is complete. �

Lemma 3.8. Let m ∈ N. For all n ∈ N we have that

[An, H(ξ)m] = adAn(H(ξ)m)

as a form identity on C∞0 , where

adAn(H(ξ)m)ψ :=
n−1∑
j=0

(
n

j

)
adn−jA (H(ξ)m)Ajψ (3.6)

for all ψ ∈ C∞0 .
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Proof: The proof can be carried out by induction. The statement is clear for
n = 1. Let ψ, ψ′ ∈ C∞0 . We assume that the statement is true for some n ∈ N and
compute

〈ψ, [An+1, H(ξ)m]ψ′〉
= 〈Aψ, [An, H(ξ)m]ψ′〉+ 〈ψ, [A,H(ξ)m]Anψ′〉

=
n−1∑
j=0

(
n

j

)[
〈ψ, adn−jA (H(ξ)m)Aj+1ψ′〉+ 〈ψ, adn+1−j

A (H(ξ)m)Ajψ′〉
]

+ 〈ψ, adA(H(ξ)m)Anψ′〉

=
n∑
j=0

(
n+ 1

j

)
〈ψ, adn+1−j

A (H(ξ)m)Ajψ′〉,

where we have used that AC∞0 ⊂ C∞0 and adiA(H(ξ)m)C∞0 ⊂ C∞0 for compactly
supported coupling functions g. This completes the proof. �

Definition 3.9. Define the set of smooth functions bounded by polynomials
p(|k|) = (1 + |k|)` for some ` ∈ N.

C∞p :=

{
f ∈ C∞(Rν)

∣∣∣∣ ∀n ∈ N ∃(`, C) ∈ N0 ×R+ :

|f (n)(k)|
(1 + |k|)`

≤ C

}
. (3.7)

Note that C∞ω ⊂ C∞p . For a function f we call Mf the multiplication operator by

f acting on L2(Rν) with the usual maximal domain. We define the set

M(C∞p ) :=
⋃
f

{Mf | f ∈ C∞p }. (3.8)

Furthermore, on Hk
loc(R

ν) we may define the operator

Dα
η := Mη∂

α, (3.9)

where α is a multi-index with |α| ≤ k, η ∈ C∞c (Rν). Note that in this notation
D0
η = Mη. Moreover, we define

Dk :=
⋃
α∈Nν
|α|≤k

∞⋃
n=1

{Dα
η | α ∈ Nν , |α| ≤ k, supp(η) ⊂ Bn(0)}. (3.10)

Finally, the union of these two sets is denoted by

Okuv :=M(C∞p ) ∪ Dk. (3.11)
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These sets can be used to specify how commuting H0(ξ),Φ(g), H(ξ) or A with
T ∼ Cα1,α2,α3 affects the compactly supported functions appearing when T acts
on C∞0 . In order to keep track of the dependence on these functions we introduce
some notation.

Definition 3.10. Let T ∈ Op(C∞0 ). In order to emphasize the dependence on the
coupling functions g1, . . . , gn1 ∈ C∞0 (R) we write

T (g1, . . . , gn1) ∼ Cα1,α2,α3 ,

if n1 ≤ α1 and there exist u1, . . . , un2 ∈ C∞ω and qn3,σ ∈ N0, where σ = 1, . . . , ν
and qn3,1 + · · ·+ qn3,ν = n3 and CT ∈ C, such that

∀ψ ∈ C∞0 : Tψ = CT

n1∏
i=1

Φ(gi)

n2∏
j=1

dΓ(uj)
ν∏

σ=1

dΓ(kσ)qn3,σψ.

This definition allows us to reformulate Proposition 3.5 in the special case where
adH0(ξ)(·) etc. act on T (g1, · · · , gn1) ∼ Cα1,α2,α3 . In particular, it enables us to keep
track of how the coupling functions change which will be used to extend certain
arguments to more general functions later on.

Before stating the Lemma we introduce some more notation. Let T (g1, · · · , gn1) ∼
Cα1,α2,α3 be such that

T (g1, · · · , gn1)ψ = CT

n1∏
i=1

Φ(gi)

n2∏
j=1

dΓ(uj)
ν∏

σ=1

dΓ(kσ)qn3,σψ

for all ψ ∈ C∞0 . Put

S(n2, n3) :=

n2∏
j=1

dΓ(uj)
ν∏

σ=1

dΓ(kσ)qn3,σ ∈ Op(C∞0 ).

We define
T (g1, . . . , ĝm, . . . , gn1) ∼ Cα1−1,α2,α3

by setting

T (g1, . . . , ĝm, . . . , gn1)ψ

:= CTΦ(g1) · · ·Φ(gm−1)Φ(gm+1) · · ·Φ(gn1)S(n2, n3)ψ.

Lemma 3.11. Let T (g1, · · · , gn1) ∼ Cα1,α2,α3 and ψ ∈ C∞0 .

1. There exist N ∈ N and operators Mf1,`
, . . . ,Mfn1,`

∈M(C∞p ) and

T`(Mf1,`
g1, · · · ,Mfn1,`

gn1) ∈ Cα1,α2,α3+1,

where 1 ≤ ` ≤ N , such that

adH0(ξ)(T (g1, · · · , gn1))ψ =
N∑
`=1

T`(Mf1,`
g1, · · · ,Mfn1,`

gn1)ψ.
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2. Let g ∈ C∞0 . Then there exist N ∈ N, Mfn1+1,`
∈M(C∞p ) and operators

T`(g1, . . . , gn,Mfn1+1,`
g) ∼ Cα1−1,α2,α3+1,

where 1 ≤ ` ≤ N , such that

adΦ(g)(T (g1, · · · , gn1))ψ =
n∑
i=1

T (g1, . . . , ĝi, . . . , gn)ψ

+
N∑
`=1

T`(g1, · · · , gn,Mfn1+1,`
g)ψ.

3. For every σ ∈ {1, . . . , ν} define δσ ∈ Nν by (δσ)j = δσ,j. There exist N ∈ N
and operators T1(g1, . . . , gn), . . . , TN(g1, . . . , gn) ∼ Cα1,α2+1,α3−1 such that

adA(T (g1, · · · , gn1))ψ

=

n1∑
i=1

ν∑
σ=1

T (g1, . . . , (D
0
vσ +Dδσ

vσ)gi, . . . , gn1)ψ

+
N∑
i=1

Ti(g1, · · · , gn1)ψ.

Proof: Due to C∞ω ⊂ C∞p and kσ ∈ C∞p for all σ = 1, . . . , ν, the first two
statements are immediate consequences of the proof of Proposition 3.5. Likewise,
since the vector field v has compact support and a = 1

2
(v · i∇+ i∇ · v) = v · i∇+

i
2
Mdiv(v), D

0
vσ , D

1
vσ ∈ D

1 and the third statement immediately follows from the
proof of Proposition 3.5 as well. �

Lemma 3.12. Let m ∈ N and c > 0 and g ∈ C∞0 (Rν). There exist Nm ∈ N,
Mf1,`

, . . . ,Mfj`,`
∈ M(C∞p ), where 1 ≤ ` ≤ Nm and 0 ≤ j` ≤ m, such that for all

ψ ∈ C∞0

H(ξ)mψ = H0(ξ)mψ +
Nm∑
`=1

m∑
j`=1

T`(Mf1,`
g, . . . ,Mfj`,`

g)ψ,

where for all 1 ≤ ` ≤ Nm

T`(Mf1,`
g, . . . ,Mfj`,`

g) ∼ Cj`,k`,2(m−j`−k`)

for some 0 ≤ k` ≤ m− j`.
Proof: From Proposition 3.7 we already know that there exist Nm ∈ N,

g1,`, . . . , gj`,` ∈ C∞p , where 1 ≤ ` ≤ Nm and 0 ≤ j` ≤ m, such that for all ψ ∈ C∞0

H(ξ)mψ = H0(ξ)mψ +
Nm∑
`=1

m∑
j`=0

T (g1,`, . . . , g`,j`)ψ,

44



where for all 1 ≤ ` ≤ Nm

T (g1,`, . . . , g`,j`) ∼ Cj`,k`,2(m−j`−k`).

for some 1 ≤ k` ≤ m−j`. We thus have to show that g1,` = M1,`g,..., gj`,` = Mfj`,`
g

for appropriately chosen operators M1,`, . . . ,Mj`,` ∈M(C∞p ).
The statement is clear for m = 1. The general case follows by induction from

Lemma 3.11 and a similar argumentation as in Proposition 3.7. More precisely,
Lemma 3.11 implies that in every step the coupling functions will at most accumu-
late one factor Mf for some f ∈ C∞ω . Since MfMf ′ = Mff ′ and C∞ω is an algebra,
the induction step can be carried out. �

Corollary 3.13. Let T (g1, . . . , gn1) ∈ Cα1,α2,α3 and g ∈ C∞0 (R). Then

adH0(ξ)+Φ(g)(T (h1, . . . , hn1)) =

n1∑
i=1

T (h1, . . . , ĥi, . . . , hn1)

+
N∑
`=1

T`(h1, · · · , hn1 ,Mfn1+1,`
h)

+
N∑
`=1

T (Mf1,`
h1, · · · ,Mfn1,`

hn1).

Proof: Due to

adH0(ξ)+Φ(g)(T (g1, . . . , gn1))

= adH0(ξ)(T (g1, . . . , gn1)) + adΦ(g)(T (g1, . . . , gn1)),

we simply combine Lemma 3.11.1 and Lemma 3.11.2 to complete the proof. �

3.2 Extension of the Bounds to Larger Domains

Lemma 3.14. Let n > 0. For x ∈ D(A) ∩ D(Hn
0 ) define the intersection norm

‖x‖I,n := ‖x‖+ ‖Ax‖+ ‖Hn
0 x‖. Then:

1. Dn := (H0 − λ)−nD(A) ⊆ D(A) ∩ D(Hn
0 ) is independent of the choice of

λ ≤ −1.

2. If n ≥ 1, C∞0 is dense in Dn w.r.t. the intersection norm ‖ · ‖I .

Proof: Let λ1, λ2 < 0 and put Dn(λi) := (H0 − λi)−nD(A) for i = 1, 2. Note
that by the first resolvent identity

(H0 − λ1)−1 = (H0 − λ2)−1
(
1 + (λ1 − λ2)(H0 − λ1)−1

)
.
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For n ∈ N commutativity of the resolvents thus yields

(H0 − λ1)−n = (H0 − λ2)−n
(
1 + (λ1 − λ2)(H0 − λ1)−1

)n
.

Since (H0 − λ1)−1 preserves the domain of A so does (H0 − λ1)−` for all ` ∈ N.
Combined with the previous equation this implies

(H0 − λ1)−nD(A) ⊆ (H0 − λ2)−nD(A).

Reversing roles of λ1 and λ2 gives the other inclusion and thus Dn(λ1) = Dn(λ2).
This proves the first assertion, if n ∈ N.

Since the integer case is clear, it suffices to show that(
1 + (λ1 − λ2)(H0 − λ1)−1

)α
D(A) ⊂ D(A)

for α ∈ (0, 1). If (1 + (λ1 − λ2)(H0 − λ1)−1)α ∈ C1(A), the desired result follows,
since all operators in C1(A) preserve D(A). In order to see this first note that the
choice of λi implies infλ∈σ(H(ξ)) |λ − λi| ≥ 1 and hence (λ1 − λ2)(H0 − λ1)−1 has
norm less than 1

2
for |λ1 − λ2| < 1/2. Furthermore, we abbreviate

R := (λ1 − λ2)(H0 − λ1)−1

and compute

|〈ψ, [A, (1 +R)α]ψ′〉| ≤ Cα

∞∫
0

1

tα
|〈(1 + t+R)−1 ψ, [A,R] (1 + t+R)−1 ψ′〉|dt

≤
∞∫

0

Cα‖ψ‖‖ψ′‖‖ adA(R)‖
tα(1

2
+ t)2

dt ≤ C ′α‖ψ‖‖ψ′‖‖ adA(R)‖,

where we have used that (H0−λ1)−1 is of class C1(A) which immediately gives that
R is of class C1(A) and the form [A,R] is given by a bounded operator adA(R).

We now prove the second statement. To this end let φ ∈ Dn. We need to
construct a sequence φk ∈ C∞0 such that φk → φ w.r.t. ‖ · ‖I . Due to φ ∈ Dn, we
may write φ = (H0 + 1)−nψ for some ψ ∈ D(A). Since C∞0 is a core for A, there
exists a sequence (ψk)k ⊆ D(A) such that ‖ψ − ψk‖A → 0, where ‖ · ‖A denotes
the graph norm of A.

We define φk := (H0 + 1)−nψk ∈ Dn ⊆ D(A) ∩ D(Hn). By the continuity of
(H0 + 1)−n it is then clear that ‖φk − φ‖ → 0. As before we first cover the case
where n ∈ N. This assumption allows us to calculate

‖Hn
0 (φk − φ)‖ = ‖Hn

0 (H0 + 1)−n(ψk − ψ)‖ ≤ ‖(ψk − ψ)‖ −→ 0.
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Thus, the validity of the second assertion for n ∈ N follows, if we can establish
that ‖A(φk − φ)‖ → 0. Since ψ and all ψk are in D(A) and (H0 + 1)−n is of class
C1(A), we may calculate

‖A(φk − φ)‖ = ‖A(H0 + 1)−n(ψk − ψ)‖
≤ ‖(H0 + 1)−nA(ψk − ψ)‖+ ‖ adA((H0 + 1)−n)(ψk − ψ)‖
≤ max{‖(H0 + 1)−n‖, ‖ adA((H0 + 1)−n)‖} · ‖ψk − ψ‖A .

Therefore, ‖A(φk−φ)‖ −→ 0 which completes the proof of the case, where n ∈ N.
Next assume that n = m+1/2 for some m ∈ N. The Hn

0 -term in the intersection
norm can be dealt with easily. Indeed,

‖Hn
0 (φk − φ)‖ = ‖Hm

0 (H0 + 1)−mH
1
2
0 (H0 + 1)−

1
2 (ψk − ψ)‖ ≤ ‖ψk − ψ‖.

In order to deal with the half power we compute

|〈η, A(φk − φ)〉| = |〈η,A(H0 + 1)−k−
1
2 (ψk − ψ)〉|

≤ |〈η, (H0 + 1)−
1
2A(H0 + 1)−k(ψk − ψ)〉|

+ |〈η, [A, (H0 + 1)−
1
2 ](H0 + 1)−k(ψk − ψ)〉|

≤ |〈η, (H0 + 1)−
1
2 (H0 + 1)−kA(ψk − ψ)〉|

+ |〈η, (H0 + 1)−
1
2 adA((H0 + 1)−k)(ψk − ψ)〉|

+ |〈η, [A, (H0 + 1)−
1
2 ](H0 + 1)−k(ψk − ψ)〉|

for η ∈ C∞0 . The first two terms only involve bounded operators and thus give
uniform expressions in η. If we can show that the form expression [A, (H0 +

1)−
1
2 ](H0 + 1)−k is given by a bounded operator, ‖A(φk − φ)‖ → 0 and we are

done.
Let η, η′ ∈ C∞0 . Since H0 + 1 is strictly positive, we can make use of the integral

representation formula in [14], Lemma 3.1, for (H0 + 1)−1/2. Moreover, [A,H0]
is given by the operator adA(H0) on C∞0 . Due to (H0 + 1)−1C∞0 ⊂ C∞0 , we may
calculate

|〈η′, [A, (H0 + 1)−
1
2 ](H0 + 1)−1η〉|

= C

∞∫
0

t−
1
2 |〈η′, (H0 + 1 + t)−1[A,H0](H0 + 1 + t)−1(H0 + 1)−1η‖dt

= C

∞∫
0

t−
1
2 |〈(H0 + 1 + t)−1η′, adA(H0)(H0 + 1 + t)−1(H0 + 1)−1η〉|dt .

47



By direct computation on C∞0 we can establish that

adA(H0) = dΓ(iv · ∇ω) + i
ν∑

σ=1

ξσ dΓ(vσ) + 2i
ν∑

σ=1

dΓ(vσ) dΓ(kσ).

Thus, adA(H0)(H0 + 1)−3/2 extends from C∞0 to a bounded operator. This lets us
compute

C

∞∫
0

t−
1
2 |〈(H0 + 1 + t)−1η′, adA(H0)(H0 + 1 + t)−1(H0 + 1)−1η〉|dt

≤ C ′
∞∫

0

t−
1
2‖(H0 + 1 + t)−1η′‖‖(H0 + 1)

1
2 (H0 + 1 + t)−1η‖dt·

≤ C ′
∞∫

0

t−
1
2

(1 + t)
3
2

dt · ‖η′‖‖η‖ = C ′′‖η′‖‖η‖ .

Hence we have shown that the form [A, (H0 +1)−
1
2 ](H0 +1)−1 is bounded and thus

given by a bounded operator adA((H0 + 1)
1
2 )(H0 + 1)−1. As previously mentioned

this completes the proof. �

As a next step we prove that Dn can be used to approximate elements in the
intersection domain D(Hn

0 ) ∩D(A) w.r.t. the intersection topology.

Lemma 3.15. Let n ≥ 1. Dn is dense in the intersection domain D(A) ∩D(Hn
0 )

equipped with the intersection topology given by ‖ · ‖I,n.

Proof: Let n ≥ 1 and write n = m + α for m ∈ N and α ∈ [0, 1). Let
ψ ∈ D(A) ∩D(Hn

0 ) and define

ψk := kn(H0 + k)−nψ .

for large enough k. Clearly, ψk ∈ Dn for all k ∈ N. Furthermore, recall that
the operator Hk = kn(H0 + k)−n converges strongly to the identity and therefore
Hn

0 (Hk− 1)ψ and (Hk− 1)ψ converge to 0 for all ψ ∈ D(Hn
0 ). Next, we show that

‖A(ψk − ψ)‖ → 0. In order to see this let φ ∈ D(A) ∩D(Hn
0 ) and compute

|〈φ,Aψk − Aψ〉| = |〈φ,Akn(H0 + k)−nψ − Aψ〉|
≤ |〈φ, kn(H0 + k)−nAψ − Aψ〉|+ |〈φ, kn[A, (H0 + k)−n]ψ〉|
≤ ‖φ‖‖(Hk − 1)Aψ‖+ |〈φ, kn[A, (H0 + k)−n]ψ〉| . (3.12)
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The first term converges to 0, because Hk − 1 converges strongly to 0. In order to
deal with the last term we estimate

kn|〈φ, [A, (H0 + k)−m−α]ψ〉| ≤ kn|〈φ, [A, (H0 + k)−α](H0 + k)−mψ〉|
+ kn|〈φ, (H0 + k)−α[A, (H0 + k)−m]ψ〉| (3.13)

and deal with both terms separately. First note that the commutator form [A,Hj
0 ]

is implemented by a H
j+ 1

2
0 -bounded operator on C∞0 for all j ∈ N. This can be

seen by directly computing Hj
0 on C∞0 via a binomial expansion. The additional

half power in the bound comes from a dΓ(kσ) which is transformed into a dΓ(vσ)
after commuting with A. Since C∞0 is dense in Dn for all n ≥ 1 by Lemma 3.14,
the form and hence the operator extends to all Dn, n ≥ 1. Due to this fact and
ψ ∈ D(Hn

0 ) the second term in (3.13) can be estimated as follows:

kn|〈φ, (H0 + k)−α[A, (H0 + k)−m]ψ〉|
= kn|〈φ, (H0 + k)−m−α[A, (H0 + k)m](H0 + k)−mψ〉|

≤
m−1∑
`=0

(
m

`

)
kn+`|〈φ, (H0 + k)−m−α[A,Hm−`

0 ](H0 + k)−mψ〉|

≤ C
m−1∑
`=0

(
m

`

)
kn+`‖(H0 + k)−nφ‖‖(H0 + 1)m−`+

1
2 (H0 + k)−mψ‖

≤ C‖φ‖‖(H0 + 1)ψ‖
m−1∑
`=0

(
m

`

)
k`‖(H0 + k)−`−

1
2‖

≤ k−
1
2C‖φ‖‖(H0 + 1)ψ‖2m−1.

Thus,
lim
k→∞

kn‖ adA((H0 + k)−m)(H0 + k)−αψ‖ = 0.

The first term in (3.13) vanishes for α = 0. For α ∈ (0, 1) it can be dealt
with in a similar fashion as in the proof of Lemma 3.14, where we proceed as
in [14], Lemma 3.2, and use an integral representation for (H0 + k)α instead of the
respective formula for (H0 + 1)−α. Once again we use that the form bounds on
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[A,H0] extend to (H0 + 1)−3/2D(A) and compute

km+α|〈φ, [A, (H0 + k)−
1
2 ](H0 + k)−mψ〉|

= Cαk
m+α

∞∫
0

t−α〈φ, (H0 + k + t)−1[A,H0](H0 + k + t)−1(H0 + k)−mψ〉dt

≤ C ′αk
m+α

∞∫
0

t−α‖(H0 + k + t)−1φ‖‖(H0 + k + t)−1(H0 + k)−m(H0 + 1)
3
2ψ‖dt

≤ C ′αk
α‖φ‖‖(H0 + 1)

3
2ψ‖

∞∫
0

t−α(k + t)−2dt

≤ k−1C ′′α‖φ‖‖(H0 + 1)
3
2ψ‖.

We conclude that |〈φ,Aψk − Aψ〉| −→ 0. This completes the proof. �

We would now like to replaceD(H0(ξ)n) in the preceding discussion byD((H(ξ)+
c)n). Unfortunately, the proofs depend on the relation (H0(ξ) + 1)−1C∞0 ⊂ C∞0
which is not satisfied for (H(ξ) + c)−1 anymore. To solve this issue we prove two
technical Lemmas which let us compare both domains equipped with the respective
graph norms.

Lemma 3.16. Suppose that the coupling function g ∈ C∞0 (Rν) and let c > 0 large
enough so −c ∈ ρ(H). For any m ∈ N0 we have that

Bg
m := (H0 + 1)

m
2 (H + c)−

m
2 ∈ B(H).

Proof: Since the coupling function g is fixed, we simply put Bg
m = Bm. We

proceed inductively. The case m = 0 is clear. Assume that there exists m ∈ N
such that Bm′ ∈ B(H) for all m′ ∈ N ∩ [0,m]. We compute

Bm+1 = (H0 + 1)
m−1

2 (H0 + 1)(H + c)−1(H + c)−
m−1

2

= (H0 + 1)
m−1

2 (H + c)−
m−1

2 + (1− c)(H0 + 1)
m−1

2 (H + c)−
m+1

2

+ (H0 + 1)
m−1

2 Φ(g)(H + c)−
m+1

2

= Bm−1 + (1− c)Bm−1(H + c)−1 + (H0 + 1)
m−1

2 Φ(g)(H + c)−
m+1

2 .

By the induction hypothesis the first two contributions are bounded operators. In
order to deal with the last term we compute formally

(H0 + 1)
m−1

2 Φ(g)(H + c)−
m+1

2 = Φ(g)(H0 + 1)
m−1

2 (H + c)−
m+1

2

+ [Φ(g), (H0 + 1)
m−1

2 ](H + c)−
m+1

2 . (3.14)
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We would like to make sense out of this computation in the sense of quadratic
forms on C∞0 and then argue that these forms are in fact bounded.

TheH
1
2
0 -boundedness of Φ(g) implies that Φ(g)(H0+1)(m−1)/2 is aH

m/2
0 -bounded

operator. By induction hypothesis D(H
m/2
0 ) ⊂ D((H + c)m/2) and hence

Φ(g)(H0 + 1)
m−1

2 (H + c)−
m+1

2

is a bounded operator.
Thus, it remains to show that the last term on the right hand side of (3.14) can

be defined on C∞0 and extends to a bounded operator. In order to do this first
assume that m− 1 = 2k for some integer k ∈ N. It is easy to see that H0 can act
on the sets Cα1,α2,α3 by multiplication and that

(H0 + 1)Cα1,α2,α3 ⊂ Cα1,α2+1,α3 + Cα1,α2,α3+2.

This fact combined with (H0 + 1) ∈ C0,1,0 + C0,0,2 then implies

(H0 + 1)k ∈
∑
i,j∈N0
i+j=k

C0,i,2j. (3.15)

Indeed, the formula is true for k = 1. Assume it holds for some k ∈ N and compute

(H0 + 1)k+1 ∈
∑
i,j∈N0
i+j=k

(C0,i+1,2j + C0,i,2j+2) =
∑
i,j∈N0
i+j=k+1

C0,i,2j.

Using Proposition 3.5 we see that adΦ(g)((H0 + 1)k) is again an Hk
0 -bounded oper-

ator which implies

‖ adΦ(g)((H0 + 1)
m−1

2 )(H + c)−
m+1

2 η‖ ≤ C‖Bm−1‖‖(H + c)−1‖‖η‖.

for all η ∈ C∞0 . Clearly, this upper bound implies that the operator extends to a
bounded operator on the whole Hilbert space. This completes the proof for the
case m− 1 = 2k, k ∈ N.

For m − 1 = 2k + 1, k ∈ N we cannot simply apply the mapping properties of
adΦ(g)(·) in Proposition 3.5, due to the presence of a factor (H0 + 1)1/2. In any
case it is still true that for η, η′ ∈ C∞0

|〈η, [Φ(g), (H0 + 1)k+ 1
2 ]η′〉| ≤ |〈η, [Φ(g), (H0 + 1)

1
2 ](H0 + 1)kη′〉|

+ |〈η, (H0 + 1)
1
2 [Φ(g), (H0 + 1)k]η′〉|. (3.16)
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In order to deal with the first term we use the representation formula of [14] once
more. Let η′′ ∈ C∞0 and calculate

|〈η, [Φ(g), (H0 + 1)
1
2 ]η′′〉|

≤ C

∞∫
0

t
1
2 |〈η, (H0 + 1 + t)−1[Φ(g), H0](H0 + 1 + t)−1η′′〉|dt

≤ C

∞∫
0

t
1
2‖(H0 + 1 + t)−1η‖‖(H0 + 1 + t)−1H0η

′′‖dt

≤ C‖η‖‖H0η
′′‖

∞∫
0

t
1
2

(1 + t)2
dt ≤ C ′‖η‖‖(H0 + 1)η′′‖.

Due to H0C∞0 ⊂ C∞0 , we may put η′′ = (H0 + 1)kη′ and obtain the estimate

|〈η, [Φ(g), (H0 + 1)
1
2 ](H0 + 1)kη′〉| ≤ 2C‖η‖‖(H0 + 1)k+1η′‖.

Thus, the sesquilinear form [Φ(g), (H0 + 1)
1
2 ](H0 + 1)k extends to H × D(Hk

0 )
by continuity and density. Again by the induction hypothesis D((H + 1)m/2) ⊂
D((H0 + c)m/2), where k + 1 = m/2. This gives meaning to (3.14) and implies

|〈η, [Φ(g), (H0 + 1)
1
2 ](H0 + 1)k(H + c)−k−

3
2η′〉|

≤ 2C‖η‖‖(H0 + 1)k+1(H + c)−k−1(H + c)−
1
2η′‖

≤ 2C‖Bm(H + c)−
1
2‖‖η‖‖η′‖, (3.17)

where we have used that k+1 = m/2 and that Bm(H+c)−
1
2 is a bounded operator

by induction hypothesis. This shows that the first term in (3.16) gives a bounded
contribution.

Next we deal with the second term in (3.16). Recall that adΦ(g)(Cα1,α2,α3) ⊂
Cα1−1,α2,α3 + Cα1+1,α2,α3 . This clearly implies

adΦ(g)((H0 + 1)k) ∈
∑
i,j∈N0
i+j=k

C1,i,2j.

as operators on C∞0 . Hence there are functions u1, . . . , uk−1 and integers q1,σ, . . . , q2k,σ

for σ ∈ {1, . . . , ν} such that dΓ(uj) is H0-bounded and adΦ(g)((H0 + 1)k) is given
on C∞0 as linear combinations of elements of the type

Φ(g1)
n∏
i=1

dΓ(ui)
ν∏

σ=1

dΓ(kσ)m,σ,
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where n ≤ k, 1 ≤ m ≤ 2k, qm,1 + · · ·+ qm,σ ≤ 2k and n+ (qm,1 + · · ·+ qm,σ)/2 = k.

Therefore, (H0 + 1)
1
2 adΦ(g)((H0 + 1)k) is given on C∞0 by linear combinations of

the type

[Φ(g1), (H0 + 1)
1
2 ]

n∏
i=1

dΓ(ui)
ν∏

σ=1

dΓ(kσ)m,σ,

Φ(g1)(H0 + 1)
1
2

n∏
i=1

dΓ(ui)
ν∏

σ=1

dΓ(kσ)m,σ.

By the above argumentation [Φ(g1), (H0 + 1)
1
2 ] and Φ(g1)(H0 + 1)

1
2 are both

H0-bounded. The restrictions on n and the qm,σ now imply that [Φ(g1), (H0 +

1)
1
2 ]
∏n

i=1 dΓ(ui)
∏ν

σ=1 dΓ(kσ)m,σ and Φ(g1)(H0 + 1)
1
2

∏n
i=1 dΓ(ui)

∏ν
σ=1 dΓ(kσ)m,σ

are Hk
0 –bounded. As we have argued above this implies that the quadratic forms

extend to H×D(Hk
0 ) which gives meaning to the following computation:

|〈η, (H0 + 1)
1
2 [Φ(g), (H0 + 1)k](H + c)−k−

3
2η′〉|

≤ |〈η, (H0 + 1)k(H + c)−k−
3
2η′〉| ≤ C ′‖Bm(H + c)−

1
2‖‖η‖‖η′‖. (3.18)

Combining (3.16)-(3.18) finally give a rigorous meaning to the second term in
(3.14). Moreover, (3.18) extends to the whole Hilbert space by density and conti-
nuity and hence the sesquilinear form extends to a bounded operator denoted by
(H0 + 1)

1
2 adΦ(g)((H0 + 1)k)(H + c)−k−

3
2 . Therefore, (3.16) extends to the whole

Hilbert space. This in turn establishes that all terms in (3.14) are bounded in the
case m− 1 = 2k + 1. This finishes the inductive proof. �

Lemma 3.17. Suppose that the coupling function g ∈ C∞0 (Rν) and let c > 0 large
enough so −c ∈ ρ(H). For any m ∈ N0 we have that

F g
m := (H + c)

m
2 (H0 + 1)−

m
2 ∈ B(H) .

Proof: The lemma is a rather easy consequence of Lemma 3.16 and its proof.
There, one of the main steps is to establish that Φ(g)(H0 +1)

m−1
2 and [Φ(g), (H0 +

1)
m−1

2 ] both extend to H
m
2

0 -bounded operators.
We prove the lemma by induction. First of all observe that the case m = 0 is

clear. Now assume that there exists m ∈ N such that F g
m′ are bounded operators

for all m′ ∈ N0 ∩ [0,m]. As in Lemma 3.16 we compute

Fm+1 = (H + c)
m+1

2 (H0 + 1)−
m+1

2

= F g
m−1 + (c− 1)F g

m−1(H0 + 1)−1 + (H + c)
m−1

2 Φ(g)(H0 + 1)
m+1

2

= F g
m−1 + (c− 1)F g

m−1(H0 + 1)−1 +Bg
m−1(H0 + 1)

m−1
2 Φ(g)(H0 + 1)−

m+1
2 .
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By the H
m
2

0 -boundedness of Φ(g)(H0 + 1)
m−1

2 , Lemma 3.16 and the induction hy-
pothesis all operators are bounded and thus F g

m+1 is bounded. �

We sum up some immediate but important consequences of this section in a
couple of remarks.

Remark 3.18.

1. For any m ∈ N0 we have that D(H
m
2

0 ) = D((H + c)
m
2 ).

2. The norms ‖x‖H0,m = ‖(H0 + 1)
m
2 x‖ and similarly ‖x‖H,m = ‖(H + c)

m
2 x‖

for large enough c > 0 are equivalent on D(H
m
2 ).

Remark 3.19. Let q(·, ·) be a sesquilinear form on C∞0 . Suppose further that
there exists T ∈ Cα1,α2,α3 such that nT := n1/2 + n2 + n3/2 ≥ 3/2 and

q(φ, ψ) = 〈φ, Tψ〉.

Then q extends uniquely to a sesquilinear form q̃ which is continuous on D((H +
c)nT ) w.r.t. the graph norm ‖ · ‖nT := ‖ · ‖(H+c)nT . Moreover q̃ is given by the

extension T̃ of the operator T to an operator in B((H + c)nT ,H), that is

q̃(φ, ψ) = 〈φ, T̃ψ〉

3.3 Iterated Commutators on a Core

The statements in the previous section can be used to associateH-valued operators
to iterated commutators calculated on the core C∞0 .

Notation 3.20. We fix c > 0 such that −c ∈ ρ(H).

Definition 3.21 (Iterated Commutators on C∞0 I). We introduce the abbreviation
T := {T1, T2}, where T1 := H and T2 := A. For n ∈ N, define

In := {w = (w(1), . . . , w(n)) ∈ {1, 2}n | w(1) = 2}.

For w ∈ In we define its `-th truncation w(`) by

w(`) := (w(1), . . . , w(`)) ∈ {1, 2}`.

The `-th truncation adw
(`)

T ((H + c)m) of the mixed commutator corresponding to
w on C∞0 is iteratively defined by

adw
(1)

T ((H + c)m) := A(H + c)m − (H + c)mA

for ` = 1 and

adw
(`)

T ((H + c)m) := Tw(`) adw
(`−1)

T ((H + c)m)− adw
(`−1)

T ((H + c)m)Tw(`)
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for ` ≥ 2. All equations hold in the sense of operators on C∞0 . The mixed commu-
tator corresponding to w ∈ In is then defined as

adwT ((H + c)m) := adw
(n)

T ((H + c)m).

This operator is sometimes simply referred to as a mixed or iterated commutator.
It is convenient to define I0 := 0 and ad0

T ((H + c)m) := (H + c)m for all w ∈ I0.

Remark 3.22. By the mapping properties of the maps adH(·) and adA(·) on
Op(C∞0 ) it is clear by induction that there exists a constant Cw > 0 such that for
all ψ ∈ C∞0

‖ adwT ((H + c)m)ψ‖ ≤ Cw‖(H + c)m+n
2ψ‖ ≤ C ′w‖(H + c)Mψ‖,

where M ∈ N with M ≥ m+ n
2
. In particular, adwT ((H+c)m) extends to a bounded

operator from both D((H + c)m+n
2 ) and D((H + c)M) with values in the Hilbert

space H. We do not introduce a new symbol for these extensions and will also
simply call it a mixed or iterated commutator.

Notation 3.23. Throughout the rest of this thesis the symbol T always denotes
the set T := {T1, T2}, where T1 := H and T2 := A.

Definition 3.24. Let n ∈ N0, w ∈ In. For n ≥ 1 the overall amount of taken A
commutators is defined by

nAw := |{1 ≤ i ≤ n | w(i) = 2}|.

For n = 0 we simply put nAw = 0.

Lemma 3.25. Let m,n ∈ N0, g ∈ C∞0 (R) and w ∈ In. There exists Nw and

operators O
(`)
1,1, . . . , O

(`)
1,n+1, ... , O

(`)
j`,1
, . . . , O

(`)
j`,n+1 ∈M(C∞p )∪D1, where 1 ≤ ` ≤ Nw

and 0 ≤ j` ≤ n+ 1 such that for all ψ ∈ C∞0

adwT ((H + c)m)ψ =

Nw∑
`=1

T (Õ
(`)
1 g, . . . , Õ

(`)
j`
g)ψ,

where
T (Õ

(`)
1 g, . . . , Õ

(`)
j`
g) ∈ Cα`1,α`2,α`3

with α`1/2 + α`2 + α`3/2 ≤ m+ n/2 and

Õ
(`)
1 :=

n+1∏
i=1

O
(`)
1,i , . . . , Õ

(`)
j`

:=
n+1∏
i=1

O
(`)
j`,i
.

Moreover, for all ` at most nwA of the operators O
(`)
i,1 , . . . , O

(`)
i,n+1 are in D1.
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Proof: The statement can be proven by induction in n, the order of the iterated
commutator. For n = 0 the statement reduces to Corollary 3.12 and has thus
already been proven.

Let ψ ∈ C∞0 and assume the claim is correct for some n ∈ N0. Suppose w ∈ In+1

and hence w(n) ∈ In. By definition of the iterated commutator and the induction
hypothesis this implies

adwT ((H + c)m)ψ = adTw(n+1)

(
adw

(n)

T ((H + c)m)
)
ψ

=

Nn,w∑
`=1

adTw(n+1)
(T (Õ

(`)
1 g, . . . , Õ

(`)
j`
g))ψ .

Assume w(n + 1) = 1. By Corollary 3.11 the operators in the last step of the
equation can at most gain one additional field with coupling function Og for some
O ∈M(C∞p ) or existing fields may gain at most one additional factor O ∈M(C∞p )

on top of the existing operators Õ
(`)
i . This shows the statement for w(n+ 1) = 1.

Likewise for w(n + 1) = 2 the worst contribution is an additional operator
O ∈ D1. Moreover in this case nAw = n+ 1 and at most n+ 1 operators in a given

factor OÕ
(`)
i are differentiations. This completes the proof. �

Note that the last Lemma immediately shows theH
n/2+m
0 -boundedness of adwT ((H+

c)m).

4 Regularity With Respect to the Conjugate Operator

4.1 Large Powers of the Resolvent

Notation 4.1.

1. H := H(ξ) and Hc := H + c for c > 0 large enough so that −c ∈ ρ(H)

2. For all z ∈ ρ(H) put

Rz := (H(ξ)− z)−1 ≡ (H − z)−1.

3. Furthermore, recall that we put T := {T1, T2}, where T1 := H and T2 := A.

In Remark 3.22 we have already seen that

adwT ((H + c)m) ∈ B
(
D
(
(H + c)M

)
,H
)

(4.19)

for any integer M ≥ m+ n/2. It turns out that for large enough values of M the
product of this operators with RM

z is actually in C1(A).
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Lemma 4.2. Let n,m ∈ N, w ∈ {1, 2}n and Qw ≥ m+ Int(n/2) + 1, where Int(r)
denotes the smallest integer that is bigger than r ∈ R. Then

adwT ((H + c)m)R
Qw
−c ∈ C1(A) .

In particular,

adA
(
adwT ((H + c)m)RQw

c

)
= adA (adwT (Hm

c ))R
Qw
−c

+
1∑

k=0

(−1)k+1 adwT (Hm
c )R

Qw−k
−c ad1−k

H (adA(HQw
c ))R

Mw+1
−c

as a bounded operator on H.

Proof: In order to keep the formulas shorter we abbreviate

Sw := adwT (Hm
c ).

Let η, η′ ∈ C∞0 and calculate

〈η, [A, SwRQw
−c ]η′〉 = 〈Aη, SwRQw

−c η
′〉 − 〈(SwRQw

−c )∗η, Aη′〉
= 〈Aη, SwRQw

−c η
′〉 − 〈(Sw)∗η,R

Qw
−c Aη

′〉,

where in the second step we have used that T ∗(Sw)∗ ⊂ (TSw)∗ whenever TSw and
T ∗(Sw)∗ are defined. Since we are assuming that the coupling function is smooth
and compactly supported, Sw and its adjoint (Sw)∗ map C∞0 into itself by Lemma
3.6. Due to R−cC∞0 ⊂ D(A), we may thus compute

〈η, [A, SwRQw
−c ]η′〉 = 〈Aη, SwRQw

−c η
′〉 − 〈(Sw)∗η,R

Qw
−c Aη

′〉
− 〈(Sw)∗η, AR

Qw
−c η

′〉+ 〈(Sw)∗η,AR
Qw
−c η

′〉
= 〈η, adA(Sw)R

Qw
−c η

′〉
+ 〈(Sw)∗η,R

Qw
−c adA((H + c)Qw)R

Qw
−c η

′〉.

Note that adA(Sw)R
Qw
−c is a bounded operator on H, because adA(Sw) extends to

a bounded operator from D(H
Mw+1/2
c ), where Mw := m + Int(n/2), into H by

Proposition 3.5. We are thus left with the second term in the previous equation.

adA(H
Qw
c ) is a bounded operator from D(H

Mw+3/2
c ) into H so that it is not clear

a priori that R
Qw
−c adA((H+c)Qw)R

Qw
−c extends from C∞0 to a bounded operator. The

main idea of the proof is to use the rearrangement formula in Lemma A.7 to move
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a resolvent from the left to the right and thereby obtain a bounded expression.
With the help of this lemma we calculate

〈(Sw)∗η,R
Qw
−c adA((H + c)Qw)R

Qw
−c η

′〉
= 〈η, SwRQw−1

−c adA((H + c)Qw)R
Qw+1
−c η′〉

− 〈η, SwRQw
−c adH(adA((H + c)Qw))R

Qw+1
−c η′〉.

Note that adH(adA(H
Qw
c )) is bounded from D(HQw+) into H. Thus, there is a

Cw > 0 which depends on w through the various operator norms involved, such
that for all η, η′ ∈ C∞0

|〈η, [A, SwRQw
−c ]η′〉| ≤ Cw‖η‖‖η′‖ .

By density of C∞0 in H this estimate extends to H and hence SwR
Qw
−c is of class

C1(A). The second part of the statement follows, since the form is given by the
correct operators on C∞0 and because these are bounded they extend to H and
uniquely represent the extension of the form. �

Definition 4.3.

1. Let i, k ∈ N and b ∈ N0. Define

i∏
p=1

ad
wp
T (HMp

c ) := ad
wi
T (HMi

c ) ad
wi−1

T (HMi−1
c ) · · · ad

w1
T (HM1

c )

and

Ui,k,b := Span{RB
−c

j∏
p=1

ad
wp
T (HMp

c )R
Qp
−c | B ≥ b, 1 ≤ j ≤ i,

i∑
p=1

nAwp = k

Qp ≥Mp + Int(|wp|/2) + 1, },
U0,0,b := Span{RB

−c | B ≥ b},
U0,k,b := 0,

where 0 means the 0-operator in the last equation.

2. Let i ∈ N, w1 ∈ In(1), . . . , wi ∈ In(i), M1, . . .Mi ∈ N and Q1, . . . Qi ∈ N with
Qj ≥Mj + Int(|wj|/2). We introduce the notation

i∏
p=1

ad
wp
T (HMp

c )R
Qp
−c := ad

wi
T (HMi

c )RQi
−c · · · ad

w1
T (HM1

c )RQ1
−c . (4.20)
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Since the operators ad
wp
T (H

Mp
c ) need not commute, the symbol

∏i
p=1 ad

wp
T (H

Mp
c )

will always mean that the product is to be written in decreasing order from left to
right, that is the highest index appears on the very left and the lowest index on
the very right.

Note that this notation is somewhat contrary to
∏

i Φ(gi) due to the order in
which the indexes appear. But since these symbols will not be used simultaneously,
no confusion can arise. Moreover, note that if we define

Ij :=

j∏
p=1

ad
wp
T (HMp

c )R
Qp
−c

for j ≥ 1 and assume 0 = k =
∑i

p=1 n
A
wp

, we would necessarily have T = 0. Indeed,

k = 0 would imply nAwp = 0 which in turn implies that ad
wp
T (H

Mp
c ) = 0 for all p.

This motivates the definition U0,k,b = 0 for k 6= 0.
Clearly, Ui,k,b ⊂ B(H). Since the operators which are of class C1(A) form an

algebra, every element of Ui,k,b is of class C1(A) by Lemma 4.2. This implies that
taking a commutator with A defines s map adA(·) : Ui,k,b → B(H).

Lemma 4.4. Let i, k ∈ N0, b ∈ N and suppose b ≥ 3 · 2i. Then

adA(Ui,k,b) ⊂ Ui+1,k+1,b−3·2i .

Proof: The statement is proven by induction in i. In the case i = 0 and
k 6= 0 there is nothing to show. Let i = k = 0, B ≥ b ∈ N ∩ [3,∞) and
U0,0,B := RB

−c ∈ U0,0,b. Due to B ≥ 3, we may compute on C∞0

adA(U0,0,B) = −RB
−c adA((H + c)B)RB

−c

= −
3∑
`=0

(
3

`

)
(−1)`RB−`

−c ad3−`
H (adA((H + c)B))RB+3

−c .

The equation extends to the whole Hilbert space by continuity and density of C∞0 .
Moreover, adA(U0,0,B) ∈ U1,1,b−3 which proves the statement in the case i = 0.

Now suppose theres exists i ∈ N such that the statement is correct for all
i′ ≤ i− 1. Let b ≥ 3 · 2i and

Ui,k,b := RB
−c

j∏
p=1

ad
wp
T (HMp

c ) ∈ Ui,k,b.

In order to reduce notation we define

Swp := ad
wp
T (HMp

c ), p = 1, . . . , i.
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The main idea of the proof is to use Lemma 4.2 and the algebra structure of the
C1(A) class to obtain an expression for adA(Ui,k,b) which is then shown to be an
element of Ui+1,k+1,b−3·2i . Since adA(·) defines a derivation on C1(A), adA(Ui,k,b) is
a sum of several terms. By the induction hypothesis all contributions of the form

RB
−cS

wiRQi
−c · · · adA

(
Sw`RQ`

−c

)
· · ·Sw2RQ2

−cS
w1RQ1

−c ,

where 2 ≤ ` ≤ i, are elements of Ui+1,k+1,b−3·2i . Hence, it remains to examine the
term

RB
−cS

wiRQi
−c · · ·Sw2RQ2

−c adA

(
Sw1RQ1

−c

)
,

where the restriction B ≥ 3·2i plays a crucial role. With our abbreviations Lemma
4.2 takes the form

adA

(
Sw1RQ1

−c

)
= adA (Sw1)RQ1

−c

+
1∑

k=0

(−1)k+1Sw1RQ1−k
−c ad1−k

H (adA(HQ1
c ))RQ1+1

−c . (4.21)

Thus, there are two main contributions to consider: adA(Swj)R
Qj
−c and the sum.

We deal with the sum first. The fewest amount of resolvents occurs for k = 1
which we take as the starting point of our analysis. Then we argue that the k = 0
contribution can be dealt with in a similar fashion but with less severe restrictions
on B. Define the set

Wi :=
{

(ki, . . . , k0) ∈ Ni+1 | kj ∈ [0, 3 · 2j], j = 1, . . . , i, k0 ∈ [0, 2]
}
.

We claim that for any i ∈ N and all

RB
−cS

wiRQi
−c · · ·Sw2RQ2

−cS
w1RQ1−1

−c adA
(
HQ1
c

)
RQ1+1
−c

=
∑

(ki,...,k0)∈Wi

Ck0,...,kiR
B−ki
−c S(ki, . . . , k0) ad2−k0

H (S0)RQ1+3
−c , (4.22)

where

S(ki, . . . , k0) :=
i∏

j=1

ad
3·2j−kj
H (Swj)R

Qj+3·2j−kj−1−δ1,j
−c ,

S0 := adA(HQ1
c ), B ≥ 3 · 2i,

Ck0,...,ki =

(
3 · 2i

ki

)
· · ·
(

2

k0

)
(−1)k0+···+ki .

Clearly, if (4.22) is valid, then

RB
−cS

wiRQi
−c · · ·Sw2RQ2

−cS
w1RQ1−1

−c adA
(
HQ1
c

)
RQ1+1
−c ∈ Ui+1,k+1,b−3·2i
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and it thus suffices to prove (4.22) in order to deal with this term.
To establish the validity of (4.22) we use an inductive proof. Let i = 1 and

B1 ≥ 6. A two-fold application of the rearrangement formula in Lemma A.7 gives

RB
−cS

w1RQ1−1
−c adA

(
HQ1
c

)
RQ1+1
−c

=
6∑

k1=0

(
6

k1

)
(−1)k1RB1−k1

−c ad6−k1
H (Sw1)RQ1+6−1

−c adA
(
HQ1
c

)
RQ1+1
−c

=
6∑

k1=0

2∑
k0=0

(
6

k1

)(
2

k0

)
(−1)k1+k2RB1−k1

−c ad6−k1
H (Sw1)RQ1+6−1−k0

−c

× ad2−k0
H (adA

(
HQ1
c

)
)RQ1+3
−c .

Hence, the claim is true for i = 1. Now assume it is true for some i ∈ N and
choose B ≥ 3 · 2i+1. Consider a similar operator as before consisting out of i + 1

products of the form SwjR
Qj
−c instead of just i. Then another application of the

rearrangement formula implies

RB
−cS

wi+1R
Qi+1

−c SwiRQi
−c · · ·Sw1 adA

(
HQ1
c

)
RQ1+1
−c

=
3·2i+1∑
ki+1=0

(
3 · 2i+1

ki+1

)
(−1)ki+1R

B−ki+1

−c ad
3·2i+1−ki+1

H (Swi+1)R
Qi+1+3·2i+1

−c

× SwiRQi
−c · · ·Sw1

RQ1−1
−c adA

(
HQ1
c

)
RQ1+1
−c .

Note that the H-commutator with Swi+1 is bounded by Qi+1 + 3 · 2i resolvents.
Since there are Qi+1 + 3 · 2i + 3 · 2i resolvent to its right, there are sufficiently
many resolvents left for us to use the induction hypothesis with B = 3 · 2i and the
remaining i factors in each product. This proves (4.22).

The contribution arising from the term k = 0 in (4.21), can be treated in com-
plete analogy to the case, where k = 1. Define the set

W ′
i := {(k0, . . . , ki) ∈ Ni+1 | kj ∈ [0, 2j+1], j = 0, . . . , i}

We can establish inductively that for any i ∈ N
RB
−cS

wiRQi
−c · · ·Sw2RQ2

−cS
w1RQ1

−c adH
(
adA

(
HQ1
c

))
RQ1+1
−c

=
∑

(k0,...,ki)∈W ′i

C ′k0,...,ki
RB−ki
−c S ′(k0, . . . , ki) ad3−k0

H (S0)RQ1+3
−c , (4.23)

where

S ′(k0, . . . , ki) :=
i∏

j=1

ad
2j+1−kj
H (Swj)R

Qi+2j+1−kj−1

−c ,

C ′k0,...,ki
=

(
2i+1

ki

)
· · ·
(

2

k0

)
(−1)k0+···+ki , B ≥ 2i+1.
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Once more, it should be clear that

RB
−cS

wiRQi
−c · · ·Sw2RQ2

−cS
w1RQ1

−c adH
(
adA

(
HQ1
c

))
RQ1+1
−c ∈ Ui+1,k+1,b−3·2i ,

if (4.23) holds. As we have mentioned above the proof of (4.23) is very similar
to the proof of (4.22) and will thus be omitted. However, to illustrate why the
summation indexes are drawn from W ′

i rather than Wi we provide the induction
start. Let B ≥ 4. A two-fold application of Lemma A.7 gives

RB
−cS

w1RQ1
−c adH

(
adA

(
(H + c)Q1

))
RQ1+1
−c

=
4∑

k1=0

2∑
k0=0

(
4

k1

)(
2

k0

)
(−1)k1+k0RB−k1

−c ad4−k1
H (Sw1)RQ1+4−k0

−c ad3−k0
H (S0)RQ1+3

−c .

Last but not least yet another slightly modified version of the preceding arguments
shows that for B ≥ 2i

RB
−cS

wiRQi
−c · · ·Sw2RQ2

−c adA (Sw1)RQ1
−c

=
∑

(k1,...,ki)∈W ′′i

C ′′k1,...,ki
RB−ki
−c S ′′(k1, . . . , ki) ad3−k0

H (S0)RQ1+2
−c , (4.24)

where

S ′′(k1, . . . , ki) =
i∏

j=1

ad
2j−kj
H (Swj)R

Qi+2j−kj−1+δ1,j

−c ,

Ck1,...,ki =

(
2i

ki

)
· · ·
(

2

k1

)
(−1)k1+···+ki ,

W ′′
i := {(k1, . . . , ki) ∈ Ni | kj ∈ [0, 2j]}.

As before the difference in the summation set is due to a different induction start.
Hence all contributions arising from (4.21) have been shown to be elements of

Ui+1,k+1,b−3·2i . Since any U ′i,k,b ∈ Ui+1,k+1,b−3·2i is a finite linear combination of
elements of the form Ui,k,b, the proof is complete. �

The previous Lemma enables us to prove the main statement of this section:
For any k ∈ N there exists a sufficiently large mk ∈ N such that Rmk ∈ C1(A).

Proposition 4.5 (Large Resolvent Powers are in Ck(A) I). Let k ∈ N0 and suppose

that m ∈ N satisfies m ≥ mk :=
∑k

j=0 3·2j. Then (H(ξ)+c)−m is of class Ck+1(A).
In particular,

adkA((H(ξ) + c)−m) ∈ Uk,k,m−mk . (4.25)
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Proof: Since (H(ξ)+ c)m ∈ U0,0,m, the statement is an immediate consequence
of Lemma 4.4. Indeed, due to m ≥ mk := 3+3 ·2+ · · ·+3 ·2k, a k-fold application
of the inclusion adA(Ui,k,b) ⊂ Ui+1,k+1,b−3·2i completes the proof. �

It should be noted that this result is most likely not optimal. For example it is
known from Morten Grud Rasmussen’s PhD thesis, see [44], Proposition 2.5, that
(H(ξ)− z)−1 ∈ C2(A), whereas Proposition 4.5 states that (H(ξ)− z)−m ∈ C2(A)
for m ≥ m1 = 3 · 2 + 3 = 9. However the mentioned result is of a different nature
than ours, since it is not clear that (H(ξ)− z)−1 ∈ C2(A) implies (H(ξ)− z)−m ∈
C2(A) for all m ∈ N.

4.2 Local Regularity

One of our main results is stated right in the beginning. It guarantees that for any
smooth and compactly supported function f the bounded operator f(H(ξ)) is of
class Ck(A) for any k ∈ N.

Theorem 4.6 (f(H(ξ)) ∈ Ck(A) I). Let the coupling function g ∈ C∞0 (Rν) and
suppose that f ∈ C∞0 (R). Then f(H(ξ)) ∈ Ck(A) for all k ∈ N.

The remaining part of the section is devoted to the proof of this statement.
The most important tool used in the proof is that (H + c)−m is of class Ck(A)
for sufficiently large m ∈ N and any k ∈ N, see Proposition 4.5. In Lemma 4.9
we prove that for any k ∈ N (H + c)−m(H − z)−1 ∈ Ck(A) for sufficiently large
m. The proof of Lemma 4.9 is similar to the strategy used in Lemma 4.4 and
we refer to the proof of the latter whenever analogies in the argumentation arise.
Furthermore, the proof of Theorem 4.6 and Proposition 4.5 follow more or less the
same strategy and we will refer to the proof of the Proposition as often as possible
to avoid repetitions.

Notation 4.7.

1. Throughout this section we simply write H and H0 instead of H(ξ) and H0(ξ)
respectively.

2. For any z ∈ ρ(H) we define Rz(H) := (H − z)−1. If no confusions can arise,
we drop the H dependence and write Rz instead of Rz(H).

3. Let i ∈ N, θ ∈ {0, 1}, w1 ∈ In(1), . . . , wi ∈ In(i), M1, . . .Mi ∈ N and
Q1, . . . Qi ∈ N with Qj ≥ Mj + Int(|wj|/2). For any z ∈ ρ(H) we intro-
duce the notation

i∏
p=1

Rθp
z ad

wp
T (HMp

c )R
Qp
−c := Rθ

z ad
wi
T (HMi

c )RQi
−c · · · Rθ

z ad
w1
T (HM1

c )RQ1
−c . (4.26)
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The symbol
∏i

p=1 ad
wp
T (H

Mp
c ) will always mean that the product is to be

written in decreasing order from left to right, that is the highest index appears
on the very left and the lowest index on the very right.

Definition 4.8. Let i, k, b ∈ N. Define

Vz
i,k,b := Span{RB

−c(
i∏

p=1

Rθ
z ad

wp
T (HMp

c )R
Qp
−c)Rz | B ≥ b, 1 ≤ j ≤ i,

i∑
p=1

nAwp = k

θ ∈ {0, 1}, Qp ≥Mp + Int(|wp|/2) + 1, },
Vz

0,0,b := Span{RB
−cRz | B ≥ b},

Vz
0,k,b := 0.

As in the case of Ui,k,b we clearly have that Vz
i,k,b ⊂ B(H) and that every element

of Vz
i,k,b is of class C1(A). Again, this implies that taking a commutator with A

defines a linear map adA : Vz
i,k,b → B(H).

Lemma 4.9. Let i, k ∈ N0, b ∈ N and suppose b ≥ 5 · 2i. Then

adA(Vi,k,b) ⊂ Vi+1,k+1,b−5·2i .

Proof: We introduce the abbreviation

Swi := ad
wi
T ((H + c)Mi).

We prove the statement by induction. For i = k = 0 and B ≥ b ≥ 5 we put
V0,0,B := RB

−cRz ∈ V0,0,b and compute

adA(V0,0,b) = adA(RB
−c)Rz −RB

−cRz adA(H)Rz

on C∞0 . The first term can be dealt with as in Lemma 4.4 which shows that
adA(RB

−c)Rz ∈ V1,1,b−3. As for the second term we compute

RB
−c adA(H) = (−1)B

5∑
`=0

(
5

`

)
(−1)`RB−`

−c ad5−`
H (adA(H))R5

−c (4.27)

and thus RB
−cRz adA(H)Rz ∈ adA(RB

−c)Rz ∈ V1,1,b−5. This completes the induction
start.

To perform the induction step suppose that the statement is correct for i′ ≤ i−1
and let i, k ∈ N and B ≥ b ≥ 5 · 2i. Put

Vi,k,b := RB
−cR

θ
zSwiR

Qi
−cR

θ
z · · ·Rθ

zSw1
RQ1
−cRz ∈ Vz

i,k,b.
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After taking a commutator with A we have to redistribute resolvents in order to
obtain expressions which are linear combinations of operators of the form Vi+1,k+1,b.
As in Lemma 4.4 the induction hypothesis implies that we have two main contri-
butions to consider:

RB
−cR

θ
zSwiR

Qi
−c · · ·Rθ

z adA

(
Sw1

RQ1
−c

)
Rz

and
RB
−cR

θ
zSwiR

Qi
−cR

θ
z · · ·Rθ

zSw1
RQ1
−c adA(Rz).

As in the case i = 0 the first of the two relevant cases can be dealt with as in
Lemma 4.4, since B ≥ 5 · 2i > 3 · 2i. In order to deal with the second term we
compute

RB
−cR

θ
zSwiR

Qi
−cR

θ
z · · ·Rθ

zSw1
RQ1
−c adA (Rz)

= −RB
−cR

θ
zSwiR

Qi
−cR

θ
z · · ·Rθ

zSw1
RQ1
−cRz adA (H)Rz. (4.28)

Observe that it requires 5 additional resolvents to turn Rz adA (H)Rz into an
operator in C1(A), if we do not want to incorporate Rz into the calculation.

Due to structural similarities we would like to deal with (4.28) as in Lemma 4.4.
(4.27) suggests that this would require us to adapt (4.22)-(4.24) to the current
situation. This however is straight-forward due to the choice B ≥ 5 · 2i. We omit
the details to avoid unnecessary repetition. �

Lemma 4.10. Let k ∈ N0, m ∈ N and suppose that m ≥ m′k :=
∑k

j=0 5 ·2j. Then

(H(ξ) + c)−m(H(ξ) + z)−1 is of class Ck+1(A) for any z ∈ ρ(H(ξ)). Moreover,

adkA((H(ξ) + c)−m(H(ξ) + z)−1) ∈ Vz
k,k,m−m′k

. (4.29)

Proof: As in the proof of Proposition 4.5 the statement follows from a k-fold
application of Lemma 4.9, since (H(ξ) + c)−m(H(ξ) + z)−1 ∈ V0,0,m and m ≥ m′k.
�

Proof of Theorem 4.6: Suppose f ∈ C∞0 (R) and k ∈ N. By Lemma 4.10
there exists m′k ∈ N such that for all m ≥ m′k (H − c)−m(H − z)−1 ∈ Ck(A) and
adkA((H − c)−m(H − z)−1) ∈ Vz

k,k,m−mk .
We start by deriving an estimate of the norm of a typical element of Vz

k,k,m−mk .
Let

RB
−c

k∏
p=1

(Rθ
z ad

wp
T (HMp

c )R
Qp
−c)Rz ∈ Vz

k,k,m−mk
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and estimate

‖RB
−c

k∏
p=1

(Rθ
z ad

wp
T (HMp

c )R
Qp
−c)Rz‖

≤ ‖RB
−c‖‖Rz‖kθ+1

k∏
p=1

‖adwpT (HMp
c )R

Qp
−c‖

≤ |Im(z)|−k·θ−1‖RB
−c‖

k∏
p=1

‖adwpT (HMp
c )R

Qp
−c‖ .

By Lemma 4.10 there exist jk ∈ N, integers 1 ≤ p1, . . . , pk ≤ k, integersB1, . . . , Bjk ,≥
m−mk, constants C1, . . . , Cjk and operators

V z
p1,k,B1

:= RB1
−c

p1∏
q=1

(Rθ1
z ad

wq
T (HMq

c )R
Qq
−c)Rz ∈ Vz

k,k,m−mk

...

V z
pjk ,k,Bjk

:= R
Bjk
−c

p1∏
q=1

(R
θjk
z ad

wq
T (HMq

c )R
Qq
−c)Rz ∈ Vz

k,k,m−mk

such that

adkA((H + c)m) =

jk∑
i=1

CiV
z
p(i),k,m−mk .

From the previous estimate we deduce that

‖
jk∑
i=1

CiV
z
p(i),k,m−mk‖ ≤

jk∑
i=1

Ci|Im(z)|−pi·θi−1‖RB
−c‖

pi∏
q=1

‖adwqT (HMq
c )R

Qq
−c‖

=

jk∑
i=1

C ′i · |Im(z)|−pi·θi−1

for some constants C ′i > 0.
Fix m ≥ m′k. The main strategy of the proof is to use the Helffer-Sjöstrand

formula to see that

f(H) = fm(H)(H + c)−m = − 1

π

∫
C

∂f̃m
∂z

(z)(H − z)−1(H + c)−mdz,

where fm ∈ C∞0 (R) is given by fm(x) := f(x)(x + c)m. The preceding estimates
can now be used to bound the integral. To this end we choose an almost analytic
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extension f̃m of fm with compact support such that

∀N ∈ N ∃DN > 0 : |f̃m(z)| ≤ DN |z|N ,

see [9]. We can thus estimate∥∥∥∥∥
∫
C

∂f̃m
∂z

(z) adkA
(
(H − z)−1(H + c)−m

)
dz

∥∥∥∥∥
≤

jk∑
i=1

C ′iDpi·θi+1

∫
supp( ∂f̃m

∂z
)

|Im(z)|pi·θi+1

|Im(z)|pi·θi+1
dz <∞ .

With this statement at our disposal we may resume the proof of the Ck(A)
property. Clearly, f(H) ∈ C1(A), see for instance [21]. Now suppose there is
a k ∈ N such that f(H) is in Ck(A) for any smooth and compactly supported
real-valued function f . Fix m ≥ mk+1 > mk with mk defined as above and choose
any f ∈ C∞0 (R). With the same definition as above this implies

adkA(f(H)) = adkA(fm(H)(H + c)−m)

= − 1

π

∫
C

∂f̃m
∂z

(z) adkA((H − z)−1(H + c)−m)dz ,

where we have used the strong closedness of C1(A) in B(H) and that adkA((H −
z)−1(H + c)−m) yields an integrable expression. But by our choice of m the in-
tegrand admits another commutator with A which will also give an integrable
expression, since the same type of estimates hold. Using the strong closedness of
the C1(A) class once more, we can conclude that f(H) is in fact in Ck+1(A). �

Lemma 4.11. Let λξ ∈ E (1)(ξ)\T (1)(ξ) be an eigenvalue of H(ξ) and η ∈ D(H(ξ))
be a corresponding eigenvector, that is H(ξ)η = λξη. Then

1. η ∈ D(An) for all n ∈ N.

2. Let n ∈ N. Then Anη ∈ D(H(ξ)m) for all m ∈ N.

Proof: By Theorem 4.6 we have that f(H(ξ)) ∈ Ck(A) for all k ∈ N and for
all f ∈ C∞0 (R). By the regularity of eigenstates established in [40] η ∈ D(Ak) for
all k ∈ N. This proves the first part of the statement. The second part can be
proven by induction in n ∈ N. The case n = 1 is true, since

H(ξ)mAη = λmξ Aη + adA(H(ξ)m)η,

where we have used that the form identity [A,H(ξ)m] = adA(H(ξ)m) extends
from C∞0 to D(A) ∩ D(H(ξ)m+1). Now suppose that there exists n ∈ N such
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that An
′
η ∈ D(H(ξ)m) for all m ∈ N and all n′ ≤ n. Since ad`A(H(ξ)m) is

(H(ξ) + c)m+`/2-bounded, we have that

Ajη ∈ D(adn−jA (H(ξ)m))

for all j ∈ N ∩ [1, n]. Thus, the induction hypothesis implies that (3.6) in Lemma
3.8 extends from ψ ∈ C∞0 to η. This implies that

H(ξ)mAn+1η = λmξ A
n+1η +

n∑
j=0

(
n+ 1

j

)
adn+1−j

A (H(ξ)m)Ajη

and hence An+1η ∈ D(H(ξ)m). �

5 Extension to More General Coupling Functions

Lemma 5.1. Let H be a Hilbert space, ψ ∈ Γfin(H) and f1, . . . fk ∈ H. Denote by
Nψ := max{n ∈ N | ψ(n) 6= 0} ∈ N. Then there exists Cn > 0 independent of
fi, . . . , fk such that

‖
∏̀
i=1

Φ(fi)ψ‖ ≤ Cn(Nψ + 1)
`
2 ·
∏̀
i=1

‖fi‖. (5.30)

Proof: We use the estimate

‖(N + 1)p
∏̀
i=1

Φ(fi)(N + 1)−p−`/2‖ ≤ Cn,p
∏̀
i=1

‖fi‖

proven in CITE DER/GER for the special case p = 0. �

Lemma 5.2. Let ψ ∈ Γfin(H) and f1, . . . fk ∈ H. Choose sequences (fj,n)n such
that ‖fj − fj,n‖ → 0. Then

lim
n→∞

‖Φ(f1) · · ·Φ(f`)ψ − Φ(f1,n) · · ·Φ(f`,n)ψ‖ = 0. (5.31)

Proof: The main idea is to rewrite the terms in (5.31) in a telescopic sum
and use (5.30) in order to show that the limit is 0. For ` ∈ N we abbreviate

C` = (Nψ + 1)
`
2 and compute

‖Φ(f1) · · ·Φ(f`)ψ − Φ(f1,n) · · ·Φ(f`,n)ψ‖

=

∥∥∥∥∥∑̀
k=1

Φ(f1,n) · · ·Φ(fk−1,n)Φ(fk − fk,n)Φ(fk) · · ·Φ(f`)ψ

∥∥∥∥∥
≤
∑̀
k=1

‖Φ(f1,n) · · ·Φ(fk−1,n)Φ(fk − fk,n)Φ(fk) · · ·Φ(f`)ψ‖

≤ ‖ψ‖C`
∑̀
k=1

‖f1,n‖ · · · ‖fk−1,n‖ ‖fk,n − fk‖ ‖fk+1‖ · · · ‖f`‖.
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There is a constant D > 0 such that ‖fj,n‖ ≤ D for all j = 1, . . . , `, since
fj,n are convergent sequences and hence uniformly bounded in n. Therefore,
‖Φ(f1) · · ·Φ(f`)ψ − Φ(f1,n) · · ·Φ(f`,n)ψ‖ converges to 0 as n→∞. �

5.1 A Fréchet Space of Coupling Functions

Throughout this chapter we will make use of the notation introduced in Definition
3.9. Recall the definitions

L2
uv(Rν) :=

∞⋂
n=0

L2(Rν , (1 + |k|)2ndx).

and
Hk

uv(Rν) := L2
uv(Rν) ∩ Hk

loc(R
ν).

It is sometimes convenient to define H0
uv(Rν) := L2

uv(Rν). On Hk
uv(Rν) we define

the semi-norms

‖f‖n := ‖(1 + |k|)nf‖, ‖f‖n,α := ‖1Bn(0)∂
αf‖,

where α ∈ Nk
0 with |α| ≤ k and Bn(0) ⊂ Rν is the open ball around 0 with radius

n.

Remark 5.3. It should be clear that MfH
k
uv(Rν) ⊂ Hk

uv(Rν) for all f ∈ C∞p and

all k ∈ N. Moreover, Dα
ηHk

uv(Rν) ⊂ H
k−|α|
uv for all multi-indices α with |α| ≤ k.

Proposition 5.4. The vector space Hk
uv(Rν) equipped with the topology generated

by the countable family of seminorms ∪∞n=0 ∪|α|≤k {‖ · ‖n, ‖ · ‖n+1,α} is a Fréchet
space.

Proof: It is clear that these norms give rise to a locally convex topological
vector space. Since the family of norms is countable and separating, the topology
is metrizable with the standard choice of translation invariant metric d. Next we
show that the metric space equipped with this topology is actually complete.

Choose a sequence gj in Hk
uv(Rν) which is Cauchy w.r.t. the metric d. Since this

means that the sequence is Cauchy w.r.t. to any individual semi-norm, we have
that gj is Cauchy in L2(Rν) and hence there exists g ∈ L2(Rν) such that gj → g
in L2(Rν).

Furthermore, note that for any f ∈ Huv(Rν) we can reconstruct the norm of the
k-th Sobolev space on Bn(0) by

‖f‖Hk(Bn(0)) =
∑
|α|≤k

‖f‖n,α.
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Hence the sequence gj is also Cauchy w.r.t. all Hk(Bn(0)) and completeness of
these spaces implies that there exists a Hk(Bn(0)) limit h(n). Further note that

‖1Bn(0)gj − h(n)‖L2(Rν) ≤ ‖gj − h(n)‖Hk(Bn(0)).

Uniqueness of limits implies that h(n) = 1Bn(0)g. Hence the limit function g is an
element of Hk

loc(R
ν) for all n.

It remains to show that (1 + |k|)ng is square integrable for all n. As above we
argue that since (1 + |k|)ngj is a Cauchy sequence in L2, it has an L2-limit f (n).
Note that f (0) = g by definition. We claim that f (n) = (1 + |k|)ng for all n.
Calculate

‖(1 + |k|)−nf (n) − gj‖2
L2(Rν) =

∫
Rν

|f (n)(k)− gj(1 + |k|)n|2

(1 + |k|2)2n
dνk

≤ ‖f (n) − gj(1 + |k|)n‖2
L2(Rν) −→ 0.

This implies gj → (1 + |k|)−nf (n) in L2 and since limits are unique we obtain

∀n ∈ N : f (n) = (1 + |k|)ng.

This completes the proof, since f (n) ∈ L2. �

Furthermore, the compactly supported, smooth functions are dense in Hk
uv.

Proposition 5.5. C∞0 (R) is dense in Hk
uv(Rν).

Proof: We first show that the compactly supported functions in Hk
uv(Rν) are a

dense subset of Hk
uv(Rν) and then establish that C∞0 (R) is dense in the compactly

supported functions in Hk
uv(Rν).

Let f ∈ Hk
uv(Rν) and choose a function η ∈ C∞0 (R) which satisfies

1. η(x) = 1 for |x| ≤ 1.

2. η(x) = 0 for |x| ≥ 2.

Note that there is M > 0 such that |∂αη(x)| ≤M for all multiindices with |α| ≤ k.
Define ηj(x) := η(j−1x) and note that |∂αηj(x)| ≤Mj−|α| for all |α| ≤ k. Clearly,
ηjf ∈ Hk

uv(Rν) for all j and has compact support. Let n ∈ N and calculate

‖f − ηjf‖2
n =

∫
Rν

|1− ηj(x)|2|f(x)|2(1 + |x|)2ndνx .

Since 1− ηj converges pointwise to 0 and |f |2(1 + |x|)2n ∈ L1(Rν) by assumption,
we may apply Lebesgue’s Theorem and conclude that ‖f − fηj‖n → 0 as j →∞
for all n. Similarly, there exists a constant C > 0 such that

‖f − ηjf‖n,α ≤ ‖1B−n(0)(1− ηj)∂αf‖2 +
∑
β<α
β∈Nν0

(
α

β

)
‖∂αf∂α−βηj‖,
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where we have used that f ∈ Hk
loc(R

ν). Obviously, ∂α−βηj converges pointwise
to 0 and ‖f − fηj‖n,α → 0 for j → ∞ follows from Lebesgue’s Theorem. This
establishes that the compactly supported functions in Hk

uv(Rν) are a dense subset
of Hk

uv(Rν).
In order to show that C∞0 (Rν) is a dense subset of the compactly supported

functions in Hk
uv(Rν) we use mollifiers. Let f ∈ Hk

uv(Rν), supp(f) ⊂ Rν compact
and define a function θ(x) := exp((1 − |x|2)−1) for |x| < 1 and 0 for |x| ≥ 1.
Moreover, define θj(x) := jνθ(jx) and fj := θj∗f , where θj∗(·) denotes convolution
with θj. Since f and all θj have compact support, so do all fj and therefore
fj ∈ C∞0 (R) for all j. We have that fj → f in Hk(Rν), see e.g. [1]. Thus,

‖fj − f‖2
n,α =

∫
Bn(0)

‖∂α(f − fj)‖dνx ≤ ‖f − fj‖2
Hk(Rν) −→ 0

for all n and all α with |α| ≤ k. Since fj → f pointwise almost everywhere, there
exists a compact set K ⊂ Rν such that supp(f), supp(fj) ⊂ K. Therefore,

‖fj − f‖2
n =

∫
K

|f(x)− fj(x)|2(1 + |x|)2ndνx

≤ sup
x∈K

[(1 + |x|)2n]‖f − fj‖2
L2(Rν) −→ 0

for all n. This completes the proof by an ε/3 argument. �

5.2 Commutators

Notation 5.6. In order to distinguish between fiber Hamiltonians with compactly
supported and smooth coupling functions and functions in Hk

uv(Rν) we define

Hf (ξ) := H0(ξ) + Φ(f)

for any f ∈ L2(Rν). We abbreviate further and simply put Hf ≡ Hf (ξ). More-
over the symbols g, gj, . . . are reserved to denote compacly supported and smooth
functions and h, hj, . . . to denote functions in Hk

uv(Rν).

Let η ∈ C∞0 (Rν), n, k ∈ N, α ∈ Nν
0, |α| ≤ k and f ∈ Hk

uv(Rν). There exists
m ∈ N such that supp(η) ⊂ Bm(0). This allows us to compute

‖Dα
η f‖n = ‖(1 + |k|)nη1Bm(0)Dαf‖ ≤ ‖(1 + |k|)nη‖∞‖f‖m,α.
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For all β ∈ Nν
0, |β| ≤ k − |α| we perform a similar computation:

‖Dα
η f‖n,β = ‖1Bn(0)D

β(ηDαf)‖ ≤
∑
γ∈Nν0
γ≤β

(
β

γ

)
‖1Bn(0)D

β−γηDγ+αf‖

≤
∑
γ∈Nν0
γ≤β

(
β

γ

)
‖Dβ−γη‖∞‖f‖n,γ+α.

Hence, Dα
η : Hk

uv(Rν) → H
k−|α|
uv (Rν) is continuous as a linear map between locally

convex spaces.
Likewise, let g ∈ C∞p , f ∈ Hk

uv(Rν) and |β| ≤ k. Due to g ∈ C∞p , we have that for

every γ ∈ Nν
0 there exists Cγ > 0 and `γ ∈ N0 such that |Dγf(k)‖ ≤ Cγ(1 + |k|)`γ .

We calculate
‖gf‖n = ‖(1 + |k|)ngf‖ ≤ C0‖f‖n+`0

and

‖gf‖n,β = ‖1Bn(0)D
β(gf)‖ ≤

∑
γ∈Nν0
γ≤β

(
β

γ

)
‖1Bn(0)D

γgDβ−γf‖

≤
∑
γ∈Nν0
γ≤β

(
β

γ

)
Cγ‖1Bn(0)(1 + |k|)`γ‖∞‖f‖n,β−γ.

This establishes that Mg : Hk
uv(Rν)→ Hk

uv(Rν) is a continuous linear map between
locally convex spaces.

Lemma 5.7 (Approximation Lemma). Let n ∈ N and O1, . . . , On ∈ Okuv (see
Definition 3.9).

1. For every ψ ∈ C∞0 the map

Kψ : Hk
uv(Rν)× · · · × Hk

uv(Rν) −→ H

given by
(h1, . . . , hn) 7→ Φ(h1) · · ·Φ(hn)ψ

is continuous w.r.t. the product topology on Hk
uv(Rν)× · · · × Hk

uv(Rν).

2. Define

[Kψ ◦ (O1, . . . , On)](h1, . . . , hn) := Kψ(O1h1, . . . , Onhn).

The map
(h1, . . . , hn) 7→ [Kψ ◦ (O1, . . . , On)](h1, . . . , hn)

is also continuous w.r.t. the product topology on Hk
uv(Rν)× · · · × Hk

uv(Rν).
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3. Let h1, . . . , hn1 ∈ Hk
uv(Rν), u1, . . . , un2 ∈ C∞ω (Rν) (see Defintion 3.2) define

T (h1, . . . , hn1) :=

n1∏
i=1

Φ(hi)

n2∏
j=1

dΓ(uj)
ν∏

σ=1

dΓ(kσ)qn3,σ , (5.32)

where
∑

σ qn3,σ = n3, as an operator on C∞0 . Then the map

K ′ψ : Hk
uv × · · · × Hk

uv −→ H

defined by
K ′ψ(h1, . . . , hn1) = T (h1, . . . , hn1)ψ

is continuous for all ψ ∈ C∞0 .

Proof: Note that the second and third part immediately follow from the first
and so it suffices to prove the first part. Since the maps Oi ∈ Okuv are continuous,
the second statement follows directly from the first. By equation (5.30) and for
ψ ∈ C∞0 we have

‖Kψ(h1, . . . , hn1)‖ = ‖
n∏
i=1

Φ(hi)ψ‖ ≤ Cψ

n∏
i=1

‖hi‖0. (5.33)

Since Fréchet spaces are metrizable, sequential continuity is equivalent to continu-
ity. This completes the proof of the first statement. �

As in the case of compactly supported coupling functions we would like to define
spaces of operators like Cα1,α2,α3 but with coupling functions taken from Hk

uv(Rν)
instead of C∞0 (Rν). Since Φ(h) does not necessarily map C∞0 into itself, this requires
some adjustment of notation. Define

Opuv(C∞0 ) := {S linear operator | D(S) = C∞0 }.

This set is still a vector space but unlike Op(C∞0 ) it has no algebraic structure
anymore. In any case we clearly have Op(C∞0 ) ⊂ Opuv(C∞0 ).

Definition 5.8.

1. Define the following subset of Opuv(C∞0 ):

Cuv,k
α1,0,0

:= Span{
n∏
i=1

Φ(hi) | h1, . . . hj1 ∈ Hk
uv(Rν), j1 ≤ α1}+ C0,0,0.

2. Due to TC∞0 ⊂ C∞0 for all T ∈ C0,α2,α3 , the compositions
∏n

i=1 Φ(hi)T can be
defined on D(T ) = C∞0 for such T and all n ∈ N. This allows us to define

Cuv,k
α1,α2,α3

:= Cα1,0,0C0,α2,α3 ⊂ Opuv(C∞0 ).

Moreover, we put
Cuv
α1,α2,α3

= Cuv,0
α1,α2,α3

.
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3. Let T be an operator on H such that C∞0 ⊂ D(T ). We write

T ∼ Cuv,k
α1,α2,α3

,

if T ∈ Opuv(C∞0 ) and

∃T̃ ∈ Cuv,k
α1,α2,α3

: T |C∞0 = T̃ .

Due to the similarities in the definitions of Cα1,α2,α3 and Cuv
α1,α2,α3

we might expect
that similar statements as in the compactly supported case hold in the generalized
scenario as well. This is indeed the case and all proofs follow the same strategy:
We consider a sequence gj in C∞0 (Rν) which converges against h in Hk

uv and use the
Approximation Lemma 5.7 in combination with the (already proven) statement in
the compactly supported case to finish the proof. Since the idea behind every
proof is basically the same we only demonstrate the scheme in two selected cases
to avoid repetitions.

Definition 5.9. Let k ∈ N0, h ∈ Hk
uv(Rν), S ∈ {H0,Φ(h), Hh} and T (h1, · · · , hn1) ∈

Cuv,k
α1,α2,α3

. If the form [S, T (h1, . . . , hn1)] is implemented by an operator on C∞0 , it
is called adS(T (h1, . . . , hn1)). For k ≥ 1 S may also be equal to A.

Lemma 5.10. Let h ∈ Huv(Rν), S ∈ {H0,Φ(h), Hh} and choose T (h1, · · · , hn1) ∈
Cuv
α1,α2,α3

. Then the form [S, T (h1, . . . , hn1)] is implemented by an operator on C∞0 .
Moreover, the following three statements hold.

1. Let α1 6= 0. There exist N ∈ N, operators Mf1,`
, . . . ,Mfn1,`

∈M(C∞p ) and

T`(Mf1,`
h1, · · · ,Mfn1,`

hn1) ∈ Cα1,α2,α3+1,

where 1 ≤ ` ≤ N , such that

adH0(ξ)(T (h1, · · · , hn1)) =
N∑
`=1

T`(Mf1,`
h1, · · · ,Mfn1,`

hn1).

2. Let α1, α2 ≥ 1. Define

T (h1, . . . , ĥi, . . . , hn1) := T (h1, . . . , hi−1, hi+1, . . . , hn1) ∈ Cα1−1,α2,α3 ,

where the functions v1, . . . , vn2 ∈ C∞ω and the constants qn3,1, . . . , qn3,ν ∈ N0

in the definition of T (h1, . . . , hi−1, hi+1, . . . , hn) coincide with the ones in the
definition of T (h1, · · · , hn1).

There exist N ∈ N, Mfn1+1,`
∈M(C∞p ) and operators

T`(h1, . . . , hn,Mfn1+1,`
h) ∈ Cα1+1,α2−1,α3 ,
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where 1 ≤ ` ≤ N , such that

adΦ(h)(T (h1, · · · , hn1)) =
n∑
i=1

T (h1, . . . , ĥi, . . . , hn)

+
N∑
`=1

T`(h1, · · · , hn,Mfn1+1,`
h).

3. Let α3 ≥ 0 and α1 ≥ 0 or α2 ≥ 0. For every σ ∈ {1, . . . , ν} define δσ ∈
Nν by (δσ)j = δσ,j. If h1, ..., hn1 ∈ H1

uv, there exist N ∈ N and operators
T1(h1, . . . , hn), . . . , TN(h1, . . . , hn) ∈ Cuv

α1,α2+1,α3−1 such that

adA(T (h1, · · · , hn1))

=

n1∑
i=1

ν∑
σ=1

T (h1, . . . , (D
0
vσ +Dδσ

vσ)hi, . . . , hn1)

+
N∑
i=1

Ti(h1, · · · , hn1).

Proof: We start with the first statement. Let (g`j)j ⊂ C∞0 (R) be a se-

quence converging to h`, ` ∈ {1, . . . , n1}, in the topology of Hk
uv(Rν) and let

Mf1,`, . . . ,Mfn1 ,`
by the operators of Corollary 3.11. Then Lemma 5.7.3 and Corol-

lary 3.11 imply that

|〈ψ, [H0, T (h1, . . . , hn1)]ψ′〉 − 〈ψ,
N∑
`=1

T (Mf1,`
h1, · · · ,Mfn1,`

hn1)ψ′〉|

≤ |〈ψ, [H0, T (h1, . . . , hn1)]ψ′〉 − 〈ψ, [H0, T (g1
j , . . . , g

n1
j )]ψ′〉|

+ |〈ψ, [H0, T (g1
j , . . . , g

n1
j )]ψ′〉 − 〈ψ,

N∑
`=1

T (Mf1,`
h1, · · · ,Mfn1,`

hn1)ψ′〉|

≤ |〈ψ, [H0, T (h1, . . . , hn1)]ψ′〉 − 〈ψ, [H0, T (g1
j , . . . , g

n1
j )]ψ′〉|

+
N∑
`=1

|〈ψ, (T (Mf1,`
h1, · · · ,Mfn1,`

hn1)− T (Mf1,`
g1
j , · · · ,Mfn1,`

gn1
j ))ψ′〉|.

This proves the first statement. The proof of the third statement is similar and is
thus omitted.

The second assertion differs from the other two in a structural fashion, because
both, the operator T (h1, . . . , hn1) and Φ(h), are defined via elements of Hk

uv(Rν).
However this only requires us to go through the above approximation procedure
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twice. Since this kind of proof re-appears below, we provide the details. Let
(g)j ⊂ C∞0 (R) converge against h in the topology of Hk

uv(Rν). Abbreviate

S(f1, . . . , fn1 , f) :=
n∑
i=1

T (f1, . . . , f̂i, . . . , fn1)

+
N∑
`=1

T`(f1, . . . , f̂i, . . . , fn1 ,Mfn1+1,`
f).

For any j ∈ N we compute

|〈ψ, [Φ(h), T (h1, . . . , hn1)]ψ′〉 − 〈ψ, S(h1, . . . , hn−1, h)ψ′〉|
≤ |〈ψ, [Φ(h), T (h1, . . . , hn1)]ψ′〉 − 〈ψ, [Φ(gj), T (h1, . . . , hn1)]ψ′〉|

+ |〈ψ, [Φ(gj), T (h1, . . . , hn1)]ψ′〉 − 〈ψ, [Φ(gj), T (g1
j , . . . , g

n1
j )]ψ′〉|

+ |〈ψ, S(h1, . . . , hn1 , h)ψ′〉 − 〈ψ, S(g1
j , . . . , g

n1
j ), gj)ψ

′〉|

in complete analogy to the beginning of the proof. Since we clearly have that
S(g1

j , . . . , g
n−1
j , gj)ψ → S(h1, . . . , hn−1, h)ψ inH by Lemma 5.7.3, the second state-

ment now follows by an ε/3-argument. �

Corollary 5.11. Let T (h1, . . . , hn1) ∈ Cuv,0
α1,α2,α3

and h ∈ Huv(Rν). Adopt the
notation of Lemma 5.10.1 and Lemma 5.10.2. Then

adHh(T (h1, . . . , hn1)) =

n1∑
i=1

T (h1, . . . , ĥi, . . . , hn1)

+
N∑
`=1

T`(h1, · · · , hn1 ,Mfn1+1,`
h)

+
N∑
`=1

T (Mf1,`
h1, · · · ,Mfn1,`

hn1).

Proof: Simply note that for ψ, ψ′ ∈ C∞0
〈ψ, [Hh, T (h1, . . . , hn1)]ψ′〉 = 〈ψ, [H0, T (h1, . . . , hn1)]ψ′〉

+ 〈ψ, [Φ(h), T (h1, . . . , hn1)]ψ′〉.

The statement now follows from Lemma 5.10.1 and Lemma 5.10.2. �

Corollary 5.12. Let k ∈ N0, h ∈ Hk
uv(Rν) and m ∈ N. There exist Nm ∈ N,

Mf1,`
, . . . ,Mfj`,`

∈ M(C∞p ), where 1 ≤ ` ≤ Nm and 0 ≤ j` ≤ m, such that for all
ψ ∈ C∞0

Hh(ξ)
mψ = H0(ξ)mψ +

Nm∑
`=1

m∑
j`=1

T`(Mf1,`
h, . . . ,Mfj`,`

h)ψ,
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where for all 1 ≤ ` ≤ Nm

T`(Mf1,`
h, . . . ,Mfj`,`

h) ∈ Cuv,k
j`,k`,2(m−j`−k`)

for some 0 ≤ k` ≤ m− j`.

Proof: We prove the statement by induction in m. The case m = 1 is clear.
Let ψ ∈ C∞0 and calculate

Hh(ξ)
m+1ψ = Hh(ξ)H0(ξ)m +

Nm∑
`=1

m∑
j`=1

Hh(ξ)T`(Mf1,`
h, . . . ,Mfj`,`

h)ψ

= H0(ξ)m+1ψ + Φ(h)H0(ξ)mψ

+
Nm∑
`=1

m∑
j`=1

Φ(h)T`(Mf1,`
h, . . . ,Mfj`,`

h)ψ

+
Nm∑
`=1

m∑
j`=1

H0(ξ)T`(Mf1,`
h, . . . ,Mfj`,`

h)ψ

Due to (3.15), the first two terms are already of the correct form. The same holds
for every term in the first of the two sums, since

Φ(h)T`(Mf1,`
h, . . . ,Mfj`,`

h) ∈ Cuv,k
j`+1,k`,2(m+1−(j`+1)−k`).

As for the last sum, we compute

H0(ξ)T`(Mf1,`
h, . . . ,Mfj`,`

h)ψ = T`(Mf1,`
h, . . . ,Mfj`,`

h)H0(ξ)ψ

+ adH0(ξ)(T`(Mf1,`
h, . . . ,Mfj`,`

h))ψ.

Note that

T`(Mf1,`
h, . . . ,Mfj`,`

h)H0(ξ) ∈ Cuv,k
j`,k`+1,2(m+1−j`−(k`+1))

+ Cuv,k
j`,k`,2(m+1−j`−k`)

and

adH0(ξ)(T`(Mf1,`
h, . . . ,Mfj`,`

h))ψ =
N ′∑
`′=1

T`,`′(Mf ′1,`
Mf1,`

h, . . . ,Mf ′j`,`
Mfj`,`

h)

for functions f ′1,`, . . . , f
′
j`,`
∈, N ′ ∈ N and

T`,`′(Mf ′1,`
Mf1,`

h, . . . ,Mf ′j`,`
Mfj`,`

h) ∈ Cuv,k
j`,k`,2(m−j`−k`)+1.

Since Cuv,k
j`,k`,2(m−j`−k`)+1 ⊂ Cuv,k

j`,k`,2(m+1−j`−k`), this completes the proof. �
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Corollary 5.13 (Convergence in Strong Resolvent Sense). Let k ∈ N0 and h ∈
Hk

uv(Rν). Let (gn)n ⊂ C∞0 (Rν) such that gn −→ h in the topology of Hk
uv(Rν).

Then Hgn −→ Hh in the strong resolvent sense.

Proof: By Corollary 5.12 and Lemma 5.7 Hgnψ −→ Hhψ for all ψ ∈ C∞0 .
Since ψ ∈ C∞0 is a common core for all Hgn and Hh, this implies convergence in
the strong resolvent sense, see e.g. [46]. �

Observe that the previous lemma combined with Corollary 5.12 immediately
implies that the form [A,Hh] is implemented by an operator on C∞0 . In fact, we
combine our results to learn more about its structure.

Corollary 5.14. Let h ∈ H1
uv(Rν) and adopt the notation of Corollary 5.12.

There exist N ∈ N, operators T`,i(Mf1,`
h, . . .Mfj`,`

h) ∈ Cuv,k
j`,k`+1,2(m−k`−j`)−1, i ∈

{1, . . . , N}, such that

adA((Hh(ξ) + c)m)

=
Nm∑
`=1

m∑
j`=0

j∑̀
i=1

ν∑
σ=1

T`(Mf1,`
h, . . . , (D0

vσ +Dδσ
vσ)Mfi,`h, . . . ,Mfj`,`

h)

+
Nm∑
`=1

m∑
j`=0

N∑
i=1

T`,i(Mf1,`
h, . . . ,Mfj`,`

h)

Proof: Combine Lemma 5.10 with Corollary 5.12. �

Lemma 5.15. Let T (h1, . . . , hn1) ∈ Cuv
α1,α2,α3

and define n := α1/2 + α2 + α3/2.
Then the operator T (h1, . . . , hn1) is (H0 + 1)n-bounded and thus extends to an
operator T ′ on D((H0 + 1)n) which we denote by T (h1, . . . , hn1) again.

Proof: Choose sequences (gij)j ⊂ C∞0 (R) so that gij → hi w.r.t. the topology

of Huv(Rν) for all i ∈ {1, . . . , n1}. Note that since gij → hi in L2 as well, there is a

constant C > 0 so that ‖gij‖ ≤ C‖hi‖. Let ψ ∈ C∞0 and ε > 0. There exists j ∈ N
such that

‖T (h1, . . . , hn1)ψ − T (g1
j , . . . , g

n1
j )ψ‖ < ε.

With this choice of j we calculate

‖T (h1, . . . , hn1)ψ‖ ≤ ‖T (h1, . . . , hn1)ψ − T (g1
j , . . . , g

n1
j )ψ‖+ ‖T (g1

j , . . . , g
n1
j )ψ‖

< ε+ Cn1

n1∏
i=1

‖hi‖‖(H0 + 1)nψ‖ ,

where we have used (5.33) in the last step. Since ε > 0 was chosen arbitrarily, this
concludes the proof. �
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Clearly, the previous statement enables us to extend all commutators which we
have shown to be implemented by operators in Cuv,k

α1,α2,α3
for some αi, k ∈ N0 in this

section to D((H0 + 1)m) for appropriately chosen m ∈ N0/2.
In order to further extend these operators to D((Hh + c)n) for h ∈ Huv(Rν) we

have to extend Lemma 3.16 and Lemma 3.17 to this particular situation.

Lemma 5.16. Let m ∈ N, k ∈ N0 and h ∈ Hk
uv.

1. Bh
m := (H0 + 1)

m
2 (Hh + c)−

m
2 ∈ B(H).

2. F h
m := (Hh + c)

m
2 (H0 + 1)−

m
2 ∈ B(H).

Proof: Let (gn)n ⊂ C∞c (Rν) be a sequence converging to h in Hk
uv. Since

(H0 +1)−
m
2 preserves C∞0 and Hgnψ −→ Hhψ for all ψ ∈ C∞0 , we immediately have

that
lim
n→∞

(Hgn + c)k(H0 + 1)−kψ = F2kψ.

By Lemma 3.17 all (Hgn + c)k(H0 + 1)−k are bounded operators. Corollary 5.12,
Lemma 5.15 and L2-convergence of gn imply that there exists a constant C > 0
independent of n such that for all ψ ∈ H

‖(Hgn + c)k(H0 + 1)−kψ‖ ≤ C‖ψ‖.

Boundedness of F2k now follows from the uniform boundedness principle. That all
other Fk are bounded follows from interpolation.

In order to prove the first statement note that we have already proven all ingre-
dients necessary to go through all steps in the proof of Lemma 3.16. By copying
this proof word by word we can thus establish the validity of the first assertion.
To avoid repetitions we will not present the details here. �

As in the case of compactly supported coupling functions this result implies the
following corollary.

Corollary 5.17. Let h ∈ Huv(Rν), m ∈ N0 and c > 0 large enough.

1. We have that D(H
m
2

0 ) = D((Hh + c)
m
2 ).

2. The norms ‖x‖H0,m = ‖(H0 + 1)
m
2 x‖ and ‖x‖H,m = ‖(Hh + c)

m
2 x‖ are equiv-

alent on D((Hh + c)
m
2 ) = D(H

m
2

0 ).

As a consequence the form extensions obtained earlier in this sections actually
extend to the domain of (Hh + c)

m
2 for some integer power m. Since this fact is

crucial for the remaining part of this section, we state it as a separate remark.
We are now in a position to define iterated commutators for coupling functions

in h ∈ Hk
uv in complete analogy to Definition 3.21.
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Definition 5.18 (Iterated Commutators on C∞0 ). Let h ∈ Huv. We introduce the
abbreviation Q := {Q1, Q2}, where Q1 := Hh and Q2 := A. Moreover, let c > 0
be large enough such that −c ∈ ρ(H). For n ∈ N, define

In := {w = (w(1), . . . , w(n)) ∈ {1, 2}n | w(1) = 2}.

For w ∈ In we define its `-th truncation w(`) by

w(`) := (w(1), . . . , w(`)) ∈ {1, 2}`

and the amount of taken A-commutators by

nAw := |{j ∈ {1, . . . , n} | w(j) = 2}|.

If h ∈ Hk
uv for k = nAw, the `-th truncation adw

(`)

Q ((Hh + c)m) of the mixed commu-
tator corresponding to w on C∞0 is iteratively defined by

adw
(1)

Q ((Hh + c)m) := adA((Hh + c)m)

for ` = 1, where the operator on the right hand side implements the commutator
form [A, (Hh + c)m] on C∞0 . For ` ≥ 2 we define

adw
(`)

Q ((Hh + c)m) := adT
w(`)

(
adw

(`−1)

Q ((Hh + c)m)
)

to be the operator which implements the form

[Tw(`) , adw
(`−1)

Q ((Hh + c)m)]

on C∞0 . The mixed commutator corresponding to w ∈ In is then defined as

adwQ((Hh + c)m) := adw
(n)

Q ((H + c)m).

This operator is sometimes simply referred to as a mixed or iterated commutator.
It is convenient to define I0 := {0} and adwQ((Hh + c)m) := (Hh + c)m for w ∈ I0.

In the next remark we stress that the previous construction obtains similar
properties to the case of compactly supported and smooth coupling functions. We
will make extensive use of it in this paper.

Remark 5.19.

1. We show inductively that the forms [Tw(`) , adw
(`−1)

Q ((Hh+c)m)] are all given by

H
m+ `

2
0 -bounded operator by using Corollary 5.12 and then applying Lemma

5.10 repeatedly.
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2. The requirement that h ∈ Hk
uv(Rν) for k = nAw guarantees that we may in

fact apply Lemma 5.10 for k times, due to Remark 5.3.

3. We thus have that adwQ((Hh+c)m) extends from C∞0 to a bounded operator on

D(H
m+n

2
0 ) with values in H. By Corollary 5.17 this extension even defines a

bounded H-valued operator on D((Hh + c)m+n
2 ). If we denote this extension

with the same symbol again, we have argued that

adwQ((Hh + c)m) ∈ B(D(HM
h ),H)

for all M ∈ N with M ≥ m+ n
2
.

The first remark seems to imply that we should be able to prove an analogue of
Lemma 3.25 for coupling functions in Hk

uv(Rν) for large enough k. This is indeed
the case and can be achieved by basically copying the inductive argument in 3.25
word by word, where the corresponding statements for the Hk

uv(Rν) case have to
be substituted for the respective Corollaries in the compactly supported case. We
will omit the proof and simply state the result.

Proposition 5.20. Let m,n ∈ N0, w ∈ In and h ∈ Hk
uv(Rν) for k = nAw. Then

there exists Nw and operators O
(`)
1,1, . . . , O

(`)
1,n+1, ... , O

(`)
j`,1
, . . . , O

(`)
j`,n+1 ∈ M(C∞p ) ∪

D1, where 1 ≤ ` ≤ Nw and 0 ≤ j` ≤ n+ 1 such that for all ψ ∈ C∞0

adwT ((Hh + c)m)ψ =

Nw∑
`=1

T (Õ
(`)
1 h, . . . , Õ

(`)
j`
h)ψ,

where
T (Õ

(`)
1 h, . . . , Õ

(`)
j`
h) ∈ Cuv

α`1,α
`
2,α

`
3

with α`1/2 + α`2 + α`3/2 ≤ m+ n/2 and

Õ
(`)
1 :=

n+1∏
i=1

O
(`)
1,i , . . . , Õ

(`)
j`

:=
n+1∏
i=1

O
(`)
j`,i
.

Moreover, for all ` at most nwA of the operators O
(`)
i,1 , . . . , O

(`)
i,n+1 are in D1.

Corollary 5.21. Let Q ∈ N with Q ≥ m + Int(n
2
), m,n ∈ N0 and w ∈ In.

Moreover suppose that h ∈ Hk
uv(Rν) for k = nAw. Define the maps

Swm,Q(·)ψ : Hk
uv −→ H,

for all ψ ∈ H by

Swm,Q(h)ψ := adwT ((Hh + c)m)(Hh − z)−Qψ,

where z ∈ ρ(Hh). Then all maps h 7→ Swm,Q(·)ψ(h) are continuous w.r.t. the

topology of Hk
uv(Rν).
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Proof: By Corollary 5.17 adwT ((Hh + c)m) is (Hh + c)m+n/2-bounded. We use
Proposition 5.20 to compute

‖Swm,Q(h)ψ‖ < C

 Nw∑
`=1

C`

j∏̀
i=1

‖D`
ih‖

 ‖Hm+n
2

0 (Hh − zj)−Q‖‖ψ‖.

which implies the continuity of Swm,Q(·)ψ. �

Remark 5.22. Moreover, for z1, · · · , zQ ∈ ρ(Hh) we could show in the exact same
way as in the corollary that the map

h 7→ S̃wm,Q(h)ψ := adwT ((Hh + c)m)

Q∏
j=1

(Hh − zj)−1ψ (5.34)

is continuous w.r.t. the topology of Hk
uv(Rν) for k ≥ nAw.

Remark 5.23. Suppose that we are given wi ∈ Ini , hi ∈ Hki
uv, where ki = nAwi ,

ni,mi ∈ N, Qi ≥ m+ Int(ni/2) for i = 1, 2. If we put ψ = S
w2
m2,Q2

(h2)ψ′, we obtain

‖Sw1
m1,Q1

(h)ψ‖

≤ 2

Nw1∑
`=1

C`

j∏̀
i=1

‖D`
ih1‖

 ‖Hm1+
n1
2

0

Q∏
j=1

(Hh1 − zj)−1‖‖Sw2
m2,Q2

(h2)ψ′‖

≤ 4
2∏

a=1

Nwa∑
`=1

C`

j∏̀
i=1

‖D`
iha‖

 ‖Hm2+n
2

0

Q∏
j=1

(Hh2 − zj)−1‖

 ‖ψ′‖
which is the continuity of the map which maps the pair (h1, h2) onto the vector

ad
w1
T ((Hh1 + c)m1)

Q∏
j=1

(Hh1 − zj)−1 ad
w2
T ((Hh2 + c)m2)

Q∏
j=1

(Hh2 − zj)−1ψ.

We denote this map by the suggestive expression

S
w1
m1,Q1

(h1)S
w2
m2,Q2

(h2)ψ.

Obviously, this procedure can be iterated to any finite number of factors adwT ((Hh+
c)m2)(Hh2 + c)−Q2 . For our purposes the case, where all functions h2 are the same
will be most interesting.
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5.3 Large Powers of the Resolvent

Since we deal with general coupling functions h ∈ Huv(Rν) throughout this section,
we have to adjust our notation to this case.

Notation 5.24. For the rest of this section we define

R−c := (Hh + c)−1

for any h ∈ Huv, where the constant c > 0 is picked large enough.

Lemma 5.25. Let n,m ∈ N, w ∈ In and Qw ∈ N with Qw ≥ m + Int(n/2) + 1,
where Int(r) denotes the smallest integer larger than r ∈ R. Suppose that h ∈
Hk

uv(Rν), where k = nAw. Then Swm,Qw(h) ∈ C1(A), that is

adA

(
Swm,Qw(h)

)
∈ B(H).

In particular,

adA

(
Swm,Qw(h)

)
= S

(2,w)
m,Qw

(h) +
1∑

k=0

(−1)k+1Swm,Qw−k(h)S
(1−k,2)
Qw,Qw+1(h) (5.35)

as a bounded operator on H, where (2, w) = (2, w(1), . . . , w(n)) ∈ In+1.

Proof: First of all note that by the choice of Qw the operator Swm,Qw(h) is

bounded. Hence we need to show that the commutator form [A, Swm,Qw+1(h)] is

bounded. For this it suffices to show that (5.35) holds in the sense of forms on
D(A).

By Remark 5.23 we have that Swm,Qw+1(gj)→ Swm,Qw+1(h) and hence

〈ψ, [A, Swm,Qw+1(gj)]ψ
′〉 = 〈Aψ, Swm,Qw+1(gj)ψ

′〉 − 〈ψ, Swm,Qw+1(gj)Aψ
′〉

−→ 〈ψ, [A, Swm,Qw+1(h)]ψ′〉

Recall that we have already proven (5.35) for compactly supported and smooth
coupling functions. By Corollary 5.21

adA (adwT ((Hgn + c)m))RQw+1
gn ψ = S

(2,w)
m,Qw+1

(gn)ψ −→ S
(2,w)
m,Qw+1(h)ψ

for any ψ ∈ H. Likewise, for k ∈ {0, 1} we may apply Remark 5.23 to obtain that

Swm,Qw−k(gn)S
(1−k,2)
Qw,Qw+1(gn) −→ Swm,Qw−k(h)S

(1−k,2)
Qw,Qw+1(h).

In total we have shown that both, the expressions for the commutator forms
and the respective (trial) operators implementing the forms converge against each
other. This shows (5.35) and thus completes the proof. �

Similar to the case of compactly supported coupling functions, see Definition
4.3, we now define a span of products of operators of the type appearing in the
last lemma.
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Notation 5.26.

1. Let j, n(1), . . . , n(j) ∈ N and w1 ∈ In(1), . . . , wj ∈ In(j). For 1 ≤ p ≤ j

we suppose that Mp, Qp ∈ N, h ∈ Hk
uv(Rν) for k = maxp∈{1,...,j} n

A
wp

and

Qp ≥Mp + Int(|wp)|/2). We then define

j∏
p=1

S
wp
Mp,Qp

(h) := S
wj
Mj ,Qj

(h)S
wj−1

Mj−1,Qj−1
(h) · · ·Sw1

M1,Q1
(h).

See Remark 5.23 for the definition of the right hand side.

2. Note that since C∞0 (Rν) ⊂ Hk
uv(Rν) for all k ∈ N, the previous definition is

also meaningful for functions g ∈ C∞0 (Rν).

3. The context usually dictates the choice of j, n(i), wi, . . . and we will thus not
list them whenever no confusion can arise.

Definition 5.27. Let i, k, b ∈ N and ` ≥ k. Define

Uuv,`
i,k,b := Span{RB

h

j∏
p=1

S
wp
Mp,Qp

(h) | h ∈ H`
uv(Rν), 1 ≤ j ≤ i,

i∑
p=1

nAwp = k,B ≥ b,

Qp ≥Mp + Int(|wp|/2) + 1},
Uuv,`

0,0,b := Span{RB
−c | B ≥ b},

Uuv,`
0,k,b := 0.

Moreover, we define

adA(Uuv,`
i,k,b) := Span{adA(RB

h

j∏
p=1

S
wp
Mp,Qp

(h)) | RB
h

j∏
p=1

S
wp
Mp,Qp

(h) ∈ Uuv,`
i,k,b}.

For any ` ∈ N Definition 4.3 and Definition 5.27 are connected by the inclusion

Ui,k,b ⊂ Uuv,`
i,k,b

due to C∞0 (Rν) ⊂ Hk
uv(Rν) for any k. As a next step we want to prove that Lemma

4.4 and Proposition 4.5 extend to more general coupling functions. To this end we
will use the same strategy as in the previous Lemma, exploit the continuity of the
maps S

wp
Mp,Qp

(·) and the existing results for the compactly supported case.

Lemma 5.28. Let i, k, b ∈ N, suppose that b ≥ 3 · 2i and ` ≥ k + 1. Then

adA(Uuv,`
i,k,b) ⊂ Uuv,`

i+1,k+1,b−3·2i .
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Proof: Since Uuv,`
i,k,b consists of linear combinations of elements of the form∏j

p=1 S
wp
Mp,Qp

(h) and the operation of taking a commutator is linear, it suffices to

check the statement for elements of the type
∏j

p=1 S
wp
Mp,Qp

(h).
The proof is carried out by induction. The induction start at k = 0 is a straight

forward generalization of the corresponding part in Lemma 4.4 to coupling func-
tions in L2

uv(Rν).

Let ` ≥ k + 1, h ∈ H`
uv(Rν), ψ ∈ H and

∏j
p=1 S

wp
Mp,Qp

(h) ∈ Uuv,`
i,k,b. Choose a se-

quence (gn)n ⊂ C∞0 (Rν) such that gn −→ h w.r.t. the topology of H`
uv(Rν). Since

the result in Lemma 4.4 does not depend on the exact choice of compactly sup-
ported and smooth coupling function, we conclude that there exist C1, . . . , C`,
j1, . . . , jN , n`(1), . . . , n`(j`) ∈ N, where 1 ≤ j1, . . . , jN ≤ i + 1, and w`,1 ∈
In`(1), . . . , w`,j` ∈ In`(j`) and nAw`,1 +· · ·+nAw`,j`

= k+1 for all `, and M`,p` , Q`,p` ∈ N,

where ` ∈ {1, . . . , N}, p` ∈ {1, . . . , j`} and Q`,p` ≥ M`,p` + Int(|w`,p` |/2) + 1, such
that for every n ∈ N:

adA

(
j∏

p=1

S
wp
Mp,Qp

(gn)

)
ψ =

N∑
`=1

C`

j∏̀
p`=1

S
w`,p`
M`,p`

,Q`,p`
(gn)ψ (5.36)

We study the right hand side of (5.36) first. It is clear from Remark 5.23 that

N∑
`=1

j∏̀
p`=1

S
w`,p`
M`,p`

,Q`,p`
(gn)ψ −→

N∑
`=1

j∏̀
p`=1

S
w`,p`
M`,p`

,Q`,p`
(h)ψ .

In order to show convergence of the left hand side of (5.36) we compute

|〈ψ, [A,
j∏

p=1

S
wp
Mp,Qp

(gn)]ψ′〉 − 〈ψ, [A,
j∏

p=1

S
wp
Mp,Qp

(h)]ψ′〉|

≤ ‖Aψ‖‖
j∏

p=1

S
wp
Mp,Qp

(gn)ψ′ −
j∏

p=1

S
wp
Mp,Qp

(h)ψ′‖

+ ‖ψ‖‖
j∏

p=1

S
wp
Mp,Qp

(gn)Aψ′ −
j∏

p=1

S
wp
Mp,Qp

(h)Aψ′‖

for ψ, ψ′ ∈ D(A). Since the upper bound converges to 0 as n → ∞ by Remark
5.23, we have shown that

〈ψ, [A,
j∏

p=1

S
wp
Mp,Qp

(h)]ψ′〉 = 〈ψ,
N∑
`=1

C`

j∏̀
p`=1

S
w`,p`
M`,p`

,Q`,p`
(h)ψ′〉

for all ψ, ψ′ ∈ D(A). The right hand side is now given by a bounded operator
and thus the form extends by continuity and density to a continuous form on the
whole of H uniquely implemented by the operator adA(

∏j
p=1 S

wp
Mp,Qp

(h)).
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However, uniqueness implies that

adA(

j∏
p=1

S
wp
Mp,Qp

(h)) =
N∑
`=1

j∏̀
p`=1

S
w`,p`
M`,p`

,Q`,p`
(h) ,

because it does so on the dense set D(A). To complete the argument we simply
note that since

N∑
`=1

j∏̀
p`=1

S
w`,p`
M`,p`

,Q`,p`
(gn) ∈ Ui+1,k+1,b−3·2i

for all n ∈ N, it follows that

N∑
`=1

j∏̀
p`=1

S
w`,p`
M`,p`

,Q`,p`
(h) ∈ Uuv,`

i+1,k+1,b−3·2i .

This concludes the proof. �

With the preceding arguments we have generalized all ingredients which needed
in the proof of Proposition 4.5 to general coupling functions in H`

uv(Rν) for some
`. It is therefore not surprising that we are able to prove

Proposition 5.29 (The Ck(A) Property for Large Resolvent Powers II). Let k ∈
N0, ` ≥ k and suppose that m ∈ N satisfies m ≥ mk :=

∑k
j=0 3 · 2j. Then for

every h ∈ Hk+1
uv (Rν) the operator (Hh(ξ) + c)−m is in Ck+1(A). Moreover,

adkA((Hh(ξ) + c)−m) ∈ Uuv,`
k,k,m−mk .

Proof: It is trivial to check the statement for k = 0. The induction step uses
Lemma 5.28 and is a word by word copy of Proposition 4.5. �

5.4 Local Regularity

As in the proof of Theorem 4.6 we will need to adapt notation in order to extend
the proof from the previous chapter to the case, where there may be resolvents at
two different points −c, z ∈ ρ(H).

Notation 5.30.

1. For h ∈ Huv(Rν) and z ∈ ρ(Hh) we define

Rz := (Hh − z)−1.
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2. Let θ ∈ {0, 1}, i ∈ N, n(1), . . . , n(i) ∈ N, w1 ∈ In(1), . . . , wi ∈ In(i),
m1, . . . ,mi ∈ N and Q1, . . . , Qi ∈ N with Qj ≥ mj+Int(|wj|/2)+1. Suppose

h ∈ Hk
uv(Rν), where k ≥ max{nw1

, . . . , nwi}. For any z ∈ ρ(H) we define

i∏
p=1

Rθ
zS

wp
mp,Qp

(h) := Rθ
zS

wi
mi,Qi

(h) · · ·Rθ
zS

w1
m1,Q1

(h).

Definition 5.31. Let i, k, b ∈ N and ` ≥ k. Define

Vuv,`
i,k,b := {RB(−c)[

i∏
p=1

Rh(z)θS
wp
mp,Qp

(h)]R(z) | h ∈ Hk
uv(Rν), 1 ≤ j ≤ i,

i∑
p=1

nAwp = k,B ≥ b, θ ∈ {0, 1}, Qp ≥Mp + Int(|wp|/2) + 1}.

Moreover, for any ` we define

Vuv,`
0,0,b := Span{RB

−cRz | B ≥ b}, Vuv,`
0,k,b := 0.

Lemma 5.32. Let i, k, b ∈ N and suppose that b ≥ 5 · 2i and ` ≥ k + 1. Then

adA(Vuv,`
i,k,b) ⊂ Vuv,`

i+1,k+1,b−5·2i .

Proof: The proof uses the same approximation strategy as Lemma 5.28. We
fix Vi,k,b ∈ Vuv,`

i,k,b for a coupling function h ∈ Huv(Rν) \ {C∞0 (Rν)}. We may
approximate the form expressions [A, Vi,k,b] on C∞0 by limits of compactly supported
coupling functions. Since the statement is correct for compactly supported and
smooth coupling functions, these approximations are implemented by bounded
operators which are already of the correct form. This then implies that the form
expressions in the general case are bounded and hence implemented by bounded
operators. Finally, we use that by uniqueness these operators have to coincide
with the limits of the operators in the compactly supported case and hence are of
the correct form. Since this is more or less a word-by-word copy of the proof of
Lemme 5.28, we omit the details. �

Lemma 5.33. Let k ∈ N0, h ∈ Hk+1
uv (Rν), m ∈ N and suppose that m ≥ mk :=∑k

j=0 5 · 2j. Then (Hh + c)−m(Hh − z)−1 is of class Ck+1(A) for any z ∈ ρ(Hh).
Moreover, for ` ≥ k + 1 we have that

adkA((Hh + c)−m(Hh − z)−1) ∈ Vuv,`
i,k,b−mk .

Proof: As in the case of Proposition 5.29 is is trivial to verify the case k = 0
for m ≥ 5 and h ∈ Huv(Rν) by Lemma A.7 in the same fashion as in Proposition
4.5. Since all ingredients used in the proof of Proposition 4.5 have been generalized
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to the case of coupling functions in Hk
uv(Rν), the rest of the proof can be carried

out in complete analogy to the proof of this proposition and can thus be omitted.
�

We have thus proven all necessary technical ingredients needed to extend The-
orem 4.6 to coupling functions h ∈ Hk

uv(Rν).

Theorem 5.34 (Ck(A)-Property for f(Hh(ξ)) with h ∈ Hk
uv(Rν)). Let h ∈ Hk

uv(Rν)
and suppose that f ∈ C∞0 (Rν). Then f(Hh(ξ)) ∈ Ck(A).

With the help of the usual approximation procedure and Theorem 5.34 we can
mimic the proof of Lemma 4.11 and obtain a generalization of this statement. Note
that unlike in the case, where g ∈ C∞0 (Rν), h ∈ Hk

uv(Rν) implies less regularity of
the eigenstate η, since we are not necessarily allowed to compute arbitrary amounts
of derivatives of h.

Lemma 5.35. Let h ∈ Hk+1
uv (Rν). η ∈ D(Hh(ξ)) be an eigenvector, that is

Hh(ξ)η = λξη. Then

1. η ∈ D(Ak).

2. Let k′ ≤ k. Then Ak
′
η ∈ D(H(ξ)m) for all m ∈ N.

Proposition 5.36 (Regularity of Eigenstates). Let h ∈ Hk+1
uv (Rν) and suppose

that there exist ξ ∈ Rν, η ∈ D(H(ξ)) and λξ ∈ σ(H(ξ)) ∩ E (1)(ξ) \ T (1)(ξ) with
H(ξ)η = λξη. Then η ∈ D(Ak).

Proof: By Theorem 5.34 h ∈ Hk+1
uv (Rν) implies that H(ξ) is locally of class

Ck+1(A). This implies the statement by Theorem 1.6 in [40]. �

6 The Feshbach-Schur Method

6.1 Small Total Momenta as a Perturbation

Throughout the rest of Section 6 we assume that the coupling function satisfies at
least

h ∈ L2
uv(Rν)

unless stated otherwise. Moreover, we fix the following notation.

Notation 6.1.

1. Recall that ξ0 ∈ U λξ0 ∈ σp(H(ξ0)) ∩ E (1)(ξ0) \ T (1)(ξ0) with normalized
eigenvector η, that is H(ξ0)η = λξ0η and ‖η‖ = 1.

2. P := |η〉〈η|, P := 1− P .
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3. Pick ξ0 ∈ U and fix κ > 0 such that (2.3) holds for all ξ ∈ O0.

4. For ξ ∈ R define H(ξ + ζ) := PH(ξ + ζ)P .

5. A := PAP .

6. For any ξ ∈ Rν and z ∈ C with Im(z) > 0 we define

Rz(ξ) := (PH(ξ)P − zP )−1 �Ran(P ) .

Let ξ, ζ ∈ Rν . Then

H(ξ + ζ) = H0(ξ) + Φ(h) + Vζ , Vζ := ζ2 + 2ξ · ζ − 2ζ · dΓ(k)

6.2 Regularity of the projected Hamiltonian

Let T be a closed operator on H with dense domain D(T ) and suppose that
η ∈ D(T ) ∩D(T ∗). Then, on D(T ) we may define

PTP = T − |η〉〈T ∗η| − |Tη〉〈η|+ 〈η, Tη〉P.

Clearly, PTP with domain D(T ) is again a closed operator. By Theorem 5.34
and regularity of eigenstates, Proposition 5.36, h ∈ H2

uv(Rν) implies η ∈ D(A) and
hence PD(A) ⊂ D(A). Therefore, A is a closed operator on D(A). Likewise H(ξ+
ζ) is a closed operator on D(H(ξ0)), since Vζ is H(ξ0)-bounded and symmetric.

Lemma 6.2. Let k ∈ N, T, T ′ ∼ Cuv,k
α1,α2,α3

and suppose T, T ′ are H(ξ)m-bounded
for some m ∈ N. Then η ∈ D(T ), D(T ′) and the following two statements hold.

1. Let h ∈ Hk+1
uv (Rν). Then |Tη〉〈T ′η| ∈ Ck(A).

2. Let `, `′ ∈ N, put L := max{`, `′} and suppose that h ∈ Hk+L+1
uv (Rν). Then

|TA`η〉〈T ′A`′η| ∈ Ck(A).

Proof: We prove the first statement by using induction in k ∈ N. For k = 1
we have η ∈ D(A) by the regularity of eigenstates, see Theorem 1.6 in [40]. Hence,
we are in a situation in which (6.57) holds. This shows that |Tη〉〈T ′η| ∈ C1(A).

Now assume that the first assertion holds for some k ∈ N and suppose that
h ∈ Hk+2

uv (Rν) and T, T ′ ∼ Cuv,k+1
α1,α2,α3

. Clearly, the induction hypothesis implies that

|Tη〉〈T ′η| ∈ Ck(A). By Lemma 5.35 and the assumption on T, T ′ we can define
the sets

Vn :=
⋃

0≤i1+i2≤n

{adi1A(T )Ai2η, TAi1η},

V ′n :=
n⋃

0≤i1+i2≤n

{adi1A(T ′)Ai2η, T ′Ai1η},

Fn := {|ζ〉〈ζ ′| | ζ ∈ Vn, ζ ′ ∈ V ′n}
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for every n ∈ N with n ≤ k + 1. As an intermediate step we show that in this
situation there exist m(`) ∈ N, finite rank operators |ζ1〉〈ζ ′1|,. . . ,|ζm(k)〉〈ζ ′m(`)| ∈ F`
and constants C1, . . . , Cm(`) ∈ C for every ` ≤ k such that

ad`
A

(|Tη〉〈T ′η|) =

m(`)∑
i=1

Ci|ζi〉〈ζ ′i| (6.37)

as bounded operators. We prove this statement by induction as well. For ` = 1
an easy computation shows that ad1

A
(|Tη〉〈T ′η|) = [A, |Tη〉〈T ′η|] is of the correct

form. Assume that |Tη〉〈T ′η| ∈ C`+1(A) and (6.37) holds for |Tη〉〈T ′η| ∈ C`(A).
Let ψ, ψ′ ∈ D(A) and compute

〈ψ, [A, ad`
A

(|Tη〉〈T ′η|)]ψ′〉 =

m(`)∑
i=1

Ci〈ψ, [A, |ζi〉〈ζ ′i|]ψ′〉

There are four possible configurations for each ζi, ζ
′
i which need to be checked.

Let 1 ≤ i ≤ m(`) and assume that ζi = adi1A(T )Ai2η and ζ ′i = T ′Ai3η, where
1 ≤ i1, i2, i3 ≤ `. Then as a form on D(A)

〈ψ, [A, |ζi〉〈ζ ′i|]ψ′〉 = 〈ψ, |A adi1A(T )Ai2η〉〈ζ ′i|ψ′〉 − 〈ψ, |ζi〉〈AT ′Ai3η|ψ′〉
= 〈ψ, | adi1A(T )Ai2+1η〉〈ζ ′i|ψ′〉+ 〈ψ, | adi1+1

A (T )Ai2η〉〈ζ ′i|ψ′〉
− 〈ψ, |ζi〉〈T ′Ai3+1η|ψ′〉 − 〈ψ, |ζi〉〈adA(T ′)Ai3η|ψ′〉.

Hence adA(|ζi〉〈ζ ′i|) is implemented by a linear combination of finite rank operators
|ιi〉〈ι′i| ∈ F`+1. The remaining cases can be checked in the exact same fashion and
hence

ad`+1

A
(|Tη〉〈T ′η|) =

m(`+1)∑
i=1

C ′i|ιi〉〈ι′i|,

where m(` + 1) ∈ N, |ιi〉〈ι′i| ∈ F`+1 and C ′1, . . . , C
′
m(`+1) ∈ C. This proves (6.37)

holds for any ` ∈ N provided that |Tη〉〈T ′η| ∈ C`(A).
Now we return to the initial induction hypothesis that |Tη〉〈T ′η| ∈ Ck(A) for

some k ∈ N. Taking another commutator and using (6.37) we compute

〈ψ, [A, adk
A

(|Tη〉〈T ′η|)]ψ′〉 = 〈ψ,
m(`)∑
i=1

Ci[A, |ζi〉〈ζ ′i|]ψ′〉.

Since we have already shown that |ζi〉〈ζ ′i| ∈ C1(A) earlier in the proof, this shows
that [A, adk

A
(|Tη〉〈T ′η|)] is given by a bounded operator which proves the first

statement.
The second statement directly follows from a slight generalization of (6.37).

Indeed, if we replace |Tη〉〈T ′η| by |TA`η〉〈T ′A`′η|, we can repeat the proof of
(6.37) in this generalized setting and thus draw the same conclusions. �
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Remark 6.3. Note that a slight adaptation of the proof also yields that |Tη〉〈T ′η| ∈
Ck(A).

Lemma 6.4. Let ` ≥ k+1 and suppose the coupling function satisfies h ∈ H`
uv(Rν).

Then there exist Tj ∈ Ck−j(A), where j ∈ Nk := {1, . . . , k}, such that

adj
A

(dΓ(kσ)) = P adjA(dΓ(kσ))P + Tk−j

extends from C∞0 to D(Hh(ξ)) for all j ∈ Nk. Here, we have put C0(A) := B(H).

Proof: In order to carry out the proof by induction in k we prove the more
precise statement that for all k ∈ N and j ∈ Nk there exist nj ∈ N and Hh(ξ)-
bounded Tj,i ∼ Cα1,α2,α3 such that

Tj ∈ Span{|Tj,iA`η〉〈Tj,i′A`
′
η| | i, i′ ∈ Nnj , `, `

′ ∈ N0, 0 ≤ `+ `′ ≤ j}. (6.38)

Let ψ, ψ′ ∈ C∞0 , k = 1 and ` ≥ 2. By regularity of eigenstates, see Theorem 1.6
in [40], we have that η ∈ D(A). This allows us to compute

〈ψ, [A, dΓ(kσ)]ψ′〉 = 〈ψ, [P, dΓ(kσ)]APψ′〉+ 〈ψ, P [A, dΓ(kσ)]Pψ′〉
+ 〈ψ, PA[P, dΓ(kσ)]ψ′〉

= 〈ψ, |η〉〈dΓ(kσ)Aη|Pψ′〉+ 〈ψ, |η〉〈adA(dΓ(kσ))η|Pψ′〉
− 〈ψ, | dΓ(kσ)η〉〈Aη|Pψ′〉+ 〈ψ, P adA(dΓ(kσ))Pψ′〉
+ 〈ψ, P |Aη〉〈dΓ(kσ)η|ψ′〉 − 〈ψ, P | dΓ(kσ)Aη〉〈η|ψ′〉
− 〈ψ, P | adA(dΓ(kσ))η〉〈η|ψ′〉.

By Lemma 6.2 all contributions except P adA(dΓ(kσ))P are given by elements of
B(H) = C0(A) which are elements of the set appearing in (6.38), where ` + `′ ∈
{0, 1}.

Suppose the statement is true for all k′ ≤ k and (6.38) holds for all Tj, j ∈ Nk.
Choose ` ≥ k + 2. Let j ∈ Nk and calculate

〈ψ, [A, adk
A

(dΓ(kσ))]ψ′〉 = 〈ψ, [A, adkA(dΓ(kσ))]ψ′〉+ 〈ψ, [A, Tk]ψ′〉.

Again by [40] this implies η ∈ D(Ak+1). Lemma 6.2 thus implies that Tj ∈ Ck+1−j

and therefore [A, Tk] extends to a bounded operator for all j ≤ k. Moreover, this
operator is an element of the set in (6.38), where ` + `′ ≤ k + 1. In order to deal
with the first term we compute

〈ψ, [A, adkA(dΓ(kσ))]ψ′〉 = 〈ψ, [P, adkA(dΓ(kσ))]APψ′〉
+ 〈ψ, P adk+1

A (dΓ(kσ))Pψ′〉
+ 〈ψ, PA[P, adkA(dΓ(kσ))]ψ′〉

The second contribution is already of the correct form. The first and second can be
dealt with similarly to the induction start. We omit the details to avoid repetition.
�
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Definition 6.5. Recall the notation Iλ,κ = (λ − κ, λ + κ). Let U be as in As-
sumption 2.5, pick ξ ∈ U and fix κ > 0 such that (2.3) holds. In particular,
Iλξ,κ ⊂ E (1)(ξ) \ T (1)(ξ). We define the set of functions

LE(1)\T (1)(λξ) :=
{
θ ∈ C∞0 (R) | ∃κ′ ∈ (0, κ) : supp(θ) ⊂ Iλξ,κ′ and θ

∣∣
Iλξ,κ′

≡ 1
}
.

Proposition 6.6. Fix κ > 0 such that (2.3) holds and pick θ ∈ LE(1)\T (1)(λξ0).
Then there exists r, e > 0 and an open neighborhood V of ξ0 with V ⊂ O0, where
O0 is defined in Notation 2.6, such that for all ξ ∈ V and |ζ| < r

Pθ(H(ξ + ζ))[A,H(ξ + ζ)]θ(H(ξ + ζ))P ≥ ePθ(H(ξ + ζ))2P . (6.39)

Proof: We establish the statement for ξ = ξ0 and small |ζ| first and then show
how the neighborhood V can be picked. Choose θ ∈ LE(1)\T (1)(λξ0). By the Mourre
estimate (2.3) there exists C > 0 and a compact operator K such that

Pθ(H(ξ0))[A,H(ξ0)]θ(H(ξ0))P = Pθ(H(ξ0))[A,H(ξ0)]θ(H(ξ0))P

≥ CPθ(H(ξ0))2P + Pθ(H(ξ0))Kθ(H(ξ0))P .

Therefore, since H(ξ0) does not have eigenvalues close to λξ0 , there is a strict
Mourre estimate:

Pθ(H(ξ0))[A,H(ξ0)]θ(H(ξ0))P ≥ CPθ(H(ξ0))2P . (6.40)

Moreover, due to

Pθ(H(ξ0 + ζ))[A,H(ξ0 + ζ)P ]θ(H(ξ0 + ζ))P

= Pθ(H(ξ))[A,PH(ξ)P ]θ(H(ξ0))P

+ P
{
θ(H(ξ0 + ζ))− θ(H(ξ0))

}
[A,H(ξ0)]θ(H(ξ0 + ζ))P

+ Pθ(H(ξ0 + ζ))[A,H(ξ0)]
{
θ(H(ξ0 + ζ))− θ(H(ξ0))

}
P

− 2
ν∑

σ=1

ζσPθ(H(ξ0 + ζ))[A,P dΓ(kσ)P ]θ(H(ξ0 + ζ))P

and the Lipschitz continuity of ζ 7→ θ(H(ξ0 + ζ)), the previous equation can be
bounded from below as in (6.40) for |ζ| sufficiently small, say |ζ| < r′ for some
r′ > 0. The choices r′′ < r′, r := r′ − r′′ and V = B′′r (ξ0) then imply the general
statement. �

Proposition 6.7. Let h ∈ H3
uv(Rν). There exists a neighborhood V of ξ0 with

V ⊂ O0 and r > 0 such that H(ξ + ζ) is of class C2(A) for all ξ ∈ V and |ζ| < r.
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Proof: Assume h ∈ H3
uv(Rν) accordingly. First note that due to h ∈ H3

uv(Rν),
η ∈ D(A2) by regularity of eigenstates, see Proposition 5.36. As in the proof of
Proposition 6.6 it suffices to check the result for ξ = ξ0 and small |ζ|.

Since at this point it is not clear whether Rz(ξ) preserves D(A), we have to be
more careful in dealing with commutators of A and Rz(ξ). We thus introduce a
regularization of A by

Aµ := iµA(A− iµ)−1

for µ ∈ R and put Aµ := PAµP . Let ψ, ψ′ ∈ C∞0 and calculate

〈Pψ, [Aµ, Rz(ξ0 + ζ)]Pψ′〉
= −〈Rz(ξ0 + ζ)Pψ, [Aµ, PH(ξ0 + ζ)P ]Rz(ξ0 + ζ)Pψ′〉
= 〈Rz(ξ0 + ζ)Pψ, |Aµη〉〈η|2ζ · dΓ(k)Rz(ξ0 + ζ)Pψ′〉

+ 〈Rz(ξ0 + ζ)Pψ, 2ζ · dΓ(k)|η〉〈A−µη|Rz(ξ0 + ζ)Pψ′〉
− 〈Rz(ξ0 + ζ)Pψ, [Aµ, H(ξ0)]Rz(ξ0 + ζ)Pψ′〉
+ 〈Rz(ξ0 + ζ)Pψ, [Aµ, 2ζ · dΓ(k)]Rz(ξ0 + ζ)Pψ′〉, (6.41)

where we have used that P commutes with Rz(ξ0 +ζ) and thus some contributions
of rank one operators of the form |η′〉〈η| and |η〉〈η′| are annihilated. We now look
at the convergence of this expression as |µ| → ∞ by studying the individual terms
separately.

To treat the first term in (6.41) we note that Aµη = iµ(A − iµ)−1Aη → Aη as
|µ| → 0. Moreover, η ∈ D(dΓ(kσ)), since dΓ(kσ) is H(ξ0)-bounded. Thus,

lim
|µ|→∞

〈Rz(ξ0 + ζ)Pψ, |Aµη〉〈η|2ζ · dΓ(k)Rz(ξ0 + ζ)Pψ′〉

= lim
|µ|→∞

〈Rz(ξ0 + ζ)Pψ, |Aµη〉〈2ζ · dΓ(k)η|Rz(ξ0 + ζ)Pψ′〉

= 〈Rz(ξ0 + ζ)Pψ, |Aη〉〈2ζ · dΓ(k)η|Rz(ξ0 + ζ)Pψ′〉 (6.42)

by symmetry of dΓ(kσ). Likewise

lim
|µ|→∞

〈Rz(ξ0 + ζ)Pψ, 2ζ · dΓ(k)|η〉〈A−µη|Rz(ξ0 + ζ)Pψ′〉

= 〈Rξ0+ζ(z)Pψ, |2ζ · dΓ(k)η〉〈Aη|Rξ0+ζ(z)Pψ′〉 . (6.43)

In order to deal with the third term in (6.41) we let Pχ, Pχ′ ∈ C∞0 and find
χ0, χ

′
0 ∈ H such that Pχ = (H(ξ0)− i)−1χ0 and Pχ′ = (H(ξ0) + i)−1χ′0. We make
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use of this fact to compute

lim
|µ|→∞

〈Pχ, [H(ξ0), Aµ]Pχ′〉

= lim
|µ|→∞

〈(H(ξ0)− i)−1χ0, [H(ξ0), Aµ](H(ξ0) + i)−1χ′0〉

= − lim
|µ|→∞

〈χ0, [(H(ξ0) + i)−1, Aµ]χ′0〉

= −〈χ0, [(H(ξ0) + i)−1, A]χ′0〉
= 〈Pχ, [H(ξ0), A]Pχ′〉 , (6.44)

where (H(ξ0) + i)−1 ∈ C1(A) has been used in the last line. Moreover, this expres-
sion clearly extends to χ, χ′ ∈ D(H(ξ0)) by continuity and density. It remains to
examine (6.41)’s last term. To this end we calculate

lim
|µ|→∞

〈χ, [dΓ(kσ), Aµ]χ′〉 = lim
|µ|→∞

(〈dΓ(kσ)ψ,Aµχ
′〉 − 〈Aµψ, dΓ(kσ)χ′〉)

= lim
|µ|→∞

(〈dΓ(kσ)χ,Aµχ
′〉 − 〈Aµχ, dΓ(kσ)χ′〉)

= 〈χ, [dΓ(kσ), A]χ′〉 = 〈χ, dΓ(vσ)χ′〉 . (6.45)

As we have argued before the H(ξ0)-boundedness of dΓ(vσ) and density of C∞0 in
D(H(ξ0)) allows us to extend this form expression to χ, χ′ ∈ D(H(ξ0)).

Thus, combining (6.42)-(6.45) in their extended versions, we have shown that

lim
|µ|→∞

〈Pψ, [Aµ, Rz(ξ0 + ζ)]Pψ′〉

= 〈Rz(ξ0 + ζ)Pψ, |Aη〉〈2ζ · dΓ(k)η|Rz(ξ0 + ζ)Pψ′〉
+ 〈Rz(ξ0 + ζ)Pψ, |2ζ · dΓ(k)η〉〈Aη|Rz(ξ0 + ζ)Pψ′〉
+ 〈Rz(ξ0 + ζ)Pψ, [H(ξ0), A]Rz(ξ0 + ζ)Pψ′〉
+ 〈Rz(ξ0 + ζ)Pψ, dΓ(vσ)Rz(ξ0 + ζ)Pψ′〉 . (6.46)

Since all fiber operators H(ξ) are of class C1(A), the second term is bounded which
proves that PH(ξ0 + ζ)P is of class C1(A). Now note that

〈Pψ,Rz(ξ0 + ζ)[H(ξ0), A]Rz(ξ0 + ζ)Pψ′〉
= 〈Pψ,Rz(ξ0 + ζ) adA(H(ξ0))Rz(ξ0 + ζ)Pψ′〉,

since Rξ0+ζ(z)PC∞0 ⊂ D(H(ξ0)2). As usual we aim to commute a resolvent
Rξ0+ζ(z) through to the right and use that adA(H(ξ0))Rz(ξ0 + ζ)2 is a bounded
operator. As opposed to previous calculations the projections P cause additional
terms which have to be dealt with. We calculate

〈Rz(ξ0 + ζ)Pψ, adA(H(ξ0))Rz(ξ0 + ζ)Pψ′〉
= −〈Rz(ξ0 + ζ)Pψ, [PH(ξ0 + ζ)P , adA(H(ξ0))]Rz(ξ0 + ζ)2Pψ′〉

+ 〈Pψ, adA(H(ξ0))Rz(ξ0 + ζ)2Pψ′〉.
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Clearly, the last term in the previous equation is already bounded and it remains
to control the first:

〈Rz(ξ0 + ζ)Pψ, [PH(ξ0 + ζ)P , adA(H(ξ0))]Rz(ξ0 + ζ)2Pψ′〉
= 〈Rz(ξ0 + ζ)Pψ, [H(ξ0), adA(H(ξ0))]Rz(ξ0 + ζ)2Pψ′〉

+ (ζ2 + 2ζ · ξ0 − λ)〈Rz(ξ0 + ζ)Pψ, [P, adA(H(ξ0))]Rz(ξ0 + ζ)2Pψ′〉

+ 2
ν∑

σ=1

ζσ〈Rz(ξ0 + ζ)Pψ, [P dΓ(kσ)P , adA(H(ξ0))]Rz(ξ0 + ζ)2Pψ′〉

= 〈Rz(ξ0 + ζ)Pψ, adH(ξ0)(adA(H(ξ0)))Rz(ξ0 + ζ)2Pψ′〉

+ 2
ν∑

σ=1

ζσ〈Rz(ξ0 + ζ)Pψ, [P dΓ(kσ)P , adA(H(ξ0))]Rz(ξ0 + ζ)2Pψ′〉, (6.47)

where the second term in the second equality vanishes in the last step due to
the presence of finite rank operators of the type |η〉〈η′|, |η′〉〈η|. By the mapping
properties of adH(ξ0)(·) the first term in (6.47) is already bounded.

The boundedness of the last term in (6.47) can be seen as follows. Recall that
adA(H(ξ0))∗ is (H(ξ0) + c)3/2-bounded and hence η ∈ D(adA(H(ξ0))∗). We may
thus calculate

〈Rz(ξ0 + ζ)Pψ, [P dΓ(kσ)P , adA(H(ξ0))]Rz(ξ0 + ζ)2Pψ′〉
= 〈Rz(ξ0 + ζ)Pψ, P [dΓ(kσ), adA(H(ξ0))]PRz(ξ0 + ζ)2Pψ′〉

+ 〈Rz(ξ0 + ζ)Pψ, P dΓ(kσ)[P, adA(H(ξ0))]Rz(ξ0 + ζ)2Pψ′〉
+ 〈Rz(ξ0 + ζ)Pψ, [P, adA(H(ξ0))] dΓ(kσ)PRz(ξ0 + ζ)2Pψ′〉

= 〈Rz(ξ0 + ζ)Pψ, | dΓ(kσ)η〉〈adA(H(ξ0))∗η|Rz(ξ0 + ζ)2Pψ′〉
− 〈Rz(ξ0 + ζ)Pψ, | adA(H(ξ0))η〉〈dΓ(kσ)η|Rz(ξ0 + ζ)2Pψ′〉
+ 〈Rz(ξ0 + ζ)Pψ, addΓ(kσ)(adA(H(ξ0)))Rz(ξ0 + ζ)2Pψ′〉. (6.48)

By Proposition 3.5 addΓ(kσ)(adA(H(ξ0))) is (H(ξ0) + c)
3
2 -bounded and thus, all

summands in (6.48) are given by bounded operators. If we combine (6.46), (6.47)
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and (6.48), we may conclude that

〈Pψ, [A,Rz(ξ0 + ζ)]Pψ′〉
= 〈Rz(ξ0 + ζ)Pψ, 2Re(|Aη〉〈2ζ · dΓ(k)η|)Rz(ξ0 + ζ)Pψ′〉

+ 〈Pψ, adA(H(ξ0))Rz(ξ0 + ζ)2Pψ′〉
+ 〈Rz(ξ0 + ζ)Pψ, adH(ξ0)(adA(H(ξ0)))Rz(ξ0 + ζ)2Pψ′〉
+ 〈Rz(ξ0 + ζ)ψ, 2ζ · dΓ(v)Rz(ξ0 + ζ)ψ′〉
+ 〈Rz(ξ0 + ζ)Pψ, |2ζ · dΓ(k)η〉〈adA(H(ξ0))∗η|Rz(ξ0 + ζ)2Pψ′〉
− 〈Rz(ξ0 + ζ)Pψ, | adA(H(ξ0))η〉〈2ζ · dΓ(k)η|Rz(ξ0 + ζ)2Pψ′〉
+ 〈Rz(ξ0 + ζ)Pψ, ζ · addΓ(k)(adA(H(ξ0)))Rz(ξ0 + ζ)2Pψ′〉. (6.49)

Since the right hand side of (6.49) clearly is a bounded expression, we have thus
shown that Rz(ξ0 + ζ) ∈ C1(A).

To show that Rz(ξ0 + ζ) is an element of C2(A) we have to show that every term
in (6.49) is again given by an operator in C1(A). Note however that only the first,
fifth and sixth term are clearly implemented by such operators. The remaining
second, third, fourth and seventh term have to be taken care of separately. We
start with the second one:

〈Pψ, [A, adA(H(ξ0))Rz(ξ0 + ζ)2]Pψ′〉
= 〈Pψ, [A, adA(H(ξ0))]Rz(ξ0 + ζ)2Pψ′〉

+ 〈Pψ,A[P, adA(H(ξ0))]Rz(ξ0 + ζ)2]Pψ′〉
+ 〈Pψ, [P, adA(H(ξ0))]ARz(ξ0 + ζ)2]Pψ′〉
− 〈Pψ, adA(H(ξ0))Rz(ξ0 + ζ)2P [A, (PH(ξ0 + ζ)P − zP )2]PRz(ξ0 + ζ)2Pψ′〉.

The second and third terms of the previous equation can be seen to be bounded
expressions in a similar fashion as in the beginning of this section. To deal with
the first term, recall that

adA(H(ξ)) = −iΦ(iag) + dΓ(iv · ∇ω) + 2ξ · dΓ(v) + 2i dΓ(v) · dΓ(k),

ad2
A(H(ξ)) = Φ(a2g) + dΓ((iv · ∇)2ω) + 2ξ · dΓ((iv · ∇)v)− 2 dΓ(v) · dΓ(v)

+ 2 dΓ((iv · ∇)v) · dΓ(k)

for any ξ ∈ Rν . Thus, [A, adA(H(ξ0))]Rz(ξ0 + ζ)2 extends to a bounded form on
PH. In order to prove that the second term in (6.49) is bounded, it thus suffices
to show that the form

R−c(ξ0 + ζ)
1
2 [A, (PH(ξ0 + ζ)P − zP )2]Rz(ξ0 + ζ)2
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is bounded. We compute

(PH(ξ0 + ζ)P − zP )2

= PH(ξ0 + ζ)PH(ξ0 + ζ)− PH(ξ0 + ζ)P |Vζη〉〈η| − zPH(ξ0 + ζ)

+ zP |Vζη〉〈η|
and can now clearly see that only the first and third term are truly problematic,
because the other two are given by finite rank operators. If we expand them by
writing P = 1 − P , we can further note that the worst term is coming from the
presence of H(ξ0 + ζ)2. We thus have to control

〈Pψ,R−c(ξ0 + ζ)
1
2 [A,H(ξ0 + ζ)2]Rz(ξ0 + ζ)2ψ′〉

= 〈Pψ, adA(H(ξ0 + ζ)2)R−c(ξ0 + ζ)
1
2Rz(ξ0 + ζ)2ψ′〉

− 〈Pψ, [R−c(ξ0 + ζ)
1
2 , adA(H(ξ0 + ζ)2)]Rz(ξ0 + ζ)2ψ′〉.

Define the abbreviation U := adPH(ξ0+ζ)P (adA(H(ξ0 + ζ)2))R−c(ξ0 + ζ)3 and com-
pute

|〈Pψ, [R−c(ξ0 + ζ)
1
2 , (adA(H(ξ0 + ζ)2))]R−c(ξ0 + ζ)2Pψ′〉|

≤ C‖Pψ‖‖U‖
∞∫

0

t−
1
2‖(PH(ξ0 + ζ)P + (c+ t)P )−1)Pψ′‖dt

≤ C̃‖ψ‖‖ψ′‖ .
Hence, the second term in (6.49) is bounded. It thus remains to check the third,
fourth and last term of (6.49). Since these can be dealt with by similar methods,
we omit the calculations. �

6.3 Lipschitz Continuity

Definition 6.8. For N ∈ N and a tuple ({Tn,k}3N
k=1, {tk,n}3N

k=1), where {Tn,k}Nk=1 is
a family of H(ξ0)n-bounded operators, where Tn,k ∼ Cα1,α2,α3 for all k, {tk,n}Nk=1 is
a family of functions on Rν Lipschitz continuous in a neighborhood of 0, we define

Bn(ζ) :=
N∑
k=1

tk,n(ζ)Tk,n (6.50)

on D((H(ξ0) + c)n−1/2) and

Fn(ζ) :=
N∑
k=1

tk+N,n(ζ) |Tk+N,nη〉〈η|

+
N∑
k=1

tk+2N,n(ζ) |η〉〈(Tk+2N,n)∗η| (6.51)
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for every fiber ζ ∈ Rν . We call Bn(ζ) the H(ξ0)n-bounded operator associated to
the tuple ({Tn,k}3N

k=1, {tk,n}3N
k=1) and Fn(ζ) the finite rank operator associated to it.

Proposition 6.9. Let z ∈ C. For all n ∈ N there exists an integer Nn and a triple
({Tn,k}3Nn

k=1 , {tk,n}
3Nn
k=1) as in Definition 6.8 such that the H(ξ0)n-bounded operator

and the finite rank operator associated to it satisfy

(PH(ξ0 + ζ)P − zP )n = (H(ξ0)− z)n + Bn(ζ) + Fn(ζ). (6.52)

Moreover, all tk,n are polynomials of order less than 2n.

Proof: The proof is carried out by induction. For n = 1 we compute

PH(ξ0 + ζ)P − zP = H(ξ0)− z + Vζ − (λ+ c)P − 2Re|Vζη〉〈η|+ 〈Vζη, η〉P.

The last three terms are finite rank operators and Vζ is a (H(ξ0) + c)1/2-bounded
operator. Furthermore, all functions of ζ appearing in this expression are either
constants or polynomials of order less than 2. Hence the assertion is true for n = 1.

Let us assume that the statement has already been proven for all m ≤ n. Choose
ψ ∈ C∞0 and compute

(PH(ξ0 + ζ)P − zP )n+1ψ

= ((H(ξ0)− z)P − PVζP )[(H(ξ0)− z)n + Bn(ζ) + Fn(ζ)]ψ.

We study this last equation term by term. Note that

(H(ξ0)− z)P (H(ξ0)− z)nψ = (H(ξ0)− z)n+1ψ − (λ− z)n+1Pψ.

Hence this contribution is already of the correct form. Using the induction hy-
pothesis and (6.50) we calculate

(H(ξ0)− z)PBn(ζ)ψ

=
N∑
k=1

tk,n(ξ)(H(ξ0)− z)Tk,n − (λ− z)
N∑
k=1

tk,n(ζ) |η〉〈(Tk,n)∗η|ψ.

Note that computations on C∞0 show that (H(ξ0)− z)Tk,n extends to a H(ξ0)n+1-
bounded operator on D(H(ξ0)n+1). Thus, these contributions are also of the cor-
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rect type. Similarly,

(H(ξ0)− z)PFn(ζ)ψ =
Nn∑
k=1

tk+Nn,n(ζ) |(H(ξ0)− z)Tk+Nn,nη〉〈η|ψ

+
Nn∑
k=1

tk+2Nn,n(ζ) (λ− z)|η〉〈(Tk+2Nn,n)∗η|ψ

− (λ− z)
Nn∑
k=1

tk+Nn,n(ζ) 〈η, Tk+Nn,nη〉Pψ

− (λ− z)
Nn∑
k=1

tk+2Nn,n(ζ) |η〉〈(Tk+2Nn,n)∗η|ψ

which has the correct form. As a next step we deal with the contributions coming
from PVζP .

PVζP (H(ξ0)− z)nψ

= (Vζ − 2Re|Vζη〉〈η|+ 〈Vζη, η〉P )(H(ξ0)− z)nψ

= (H(ξ0)− z)nVζ +
ν∑

σ=1

2ζσ addΓ(kσ)((H(ξ0)− z)n)ψ

− (λ− z)n(|Vζη〉〈η|+ 〈Vζη, η〉P )− |η〉〈(H(ξ0)− z)nVζη|ψ

which is of the correct type again due to Proposition 3.5. (6.50) implies

PVζPBn(ζ)ψ = (Vζ − 2Re|Vζη〉〈η|+ 〈Vζη, η〉P )Bn(ζ)ψ

=
Nn∑
k=1

(
tk,n(ζ)Tk,nVζψ − 2

ν∑
σ=1

tk,n(ζ)ξσ addΓ(kσ)(Tk,n)ψ

)

−
Nn∑
k=1

(tk,n(ζ)|Vζη〉〈Tk,nη|ψ − tk,n(ζ)|η〉〈(Tk,n)∗Vζη|ψ)

+
Nn∑
k=1

〈Vζη, η〉tk,n(ζ)|η〉〈Tk,nη|ψ. (6.53)

Note that Tk,n being H(ξ0)n-bounded implies that (Tk,n)∗Vζ is H(ξ0)n+1/2-bounded.
Thus, the contributions of PVζPBn(ζ) are of the correct form. It remains to check
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PVζPFn(ζ). Similar to previous computations, we use (6.51) to calculate

PVζPFn(ζ) = PVζP

Nn∑
k=1

tk+Nn,n(ζ)|Tk+Nn,nη〉〈η|ψ

= PVζP

Nn∑
k=1

tk+Nn,n(ζ)|Tk+Nn,nη〉〈η|ψ

=
Nn∑
k=1

tk+Nn,n(ζ)|Tk+Nn,nVζη〉〈η|ψ

− 2
Nn∑
k=1

tk+Nn,n(ζ)
ν∑

σ=1

ζσ| addΓ(kσ)(Tk+Nn,n)η〉〈η|ψ

−
Nn∑
k=1

tk+Nn,n(ζ)〈η, Tk+Nn,nη〉|Vζη〉〈η|ψ

−
Nn∑
k=1

tk+Nn,n(ζ)〈Vζη, Tk+Nn,nη〉Pψ

+
Nn∑
k=1

tk+Nn,n(ζ)〈Vζη, η〉〈η, Tk+Nn,nη〉P.

Clearly all contributions are of the correct type.
Therefore, we see that the induction hypothesis implies (6.52) restricted to C∞0 in

the case n+ 1 after relabeling all operators, functions and constants and choosing
Nn+1 sufficiently large. Indeed, we have argued that all contributions are of the
correct form and the only problem that we might encounter is that the number of
terms is not correct. To this end note that we have the freedom to choose several
the operators and functions equal to 0 and Nn+1 large enough to obtain the correct
number of terms. Since all operators are H(ζ)n+1-bounded the results extend to
D(H(ξ)n+1) by density of C∞0 w.r.t. respective graph norms.

Finally, it remains to show that the new functions tk,n+1 are in fact polynomials
of degree less than 2n+2. This however is true, since all of them are either constant
or of the type p · tk,n, where p is a polynomial of order less than 2 which implies
that all tk,n+1 are polynomials of order less than 2n + 2. We illustrate this by an
example. For the first term in (6.53) we compute more explicitly:

Nn∑
k=1

tk,n(ζ)Tk,nVζ =
Nn∑
k=1

ξ2tk,n(ζ)Tk,n +
Nn∑
k=1

2ξ0 · ζtk,n(ζ)Tk,n

−
Nn∑
k=1

2
ν∑

σ=1

ζσtk,n(ζ)Tk,n dΓ(kσ) .
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A quick look at all calculations carried out in this proof shows that this is the only
way the functions tk,n are modified and hence the assertion is correct. �

The proofs of the next two lemmas are trivial and thus omitted.

Lemma 6.10. Let T, T ′ ∼ Cuv,0
α1,α2,α3

be (H(ξ0) + c)n-bounded operators. The fol-
lowing equation extends from a form identity on C∞0 to an operator identity on

D((H(ξ0) + c)n+ 1
2 ).

adPH(ξ0+ζ)P (T )

= P adH(ξ0)(T )P − 2
ν∑

σ=1

ζσP addΓ(kσ)(T )P

− Pλξ0|Tη〉〈η| − P | adH(ξ0)(T )η〉〈η| − (ζ2 − 2ζ · ξ0)P |Tη〉〈η|

+ P
ν∑

σ=1

ζσ(| dΓ(kσ)η〉〈T ∗η| − |T dΓ(kσ)η〉〈η| − | addΓ(kσ)(T )η〉〈η|)

− λξ0|η〉〈T ∗η|P − |η〉〈adH(ξ0)(T
∗)η|P − (ζ2 − 2ζ · ξ0)|η〉〈T ∗η|P

+
ν∑

σ=1

ζσ(|Tη〉〈dΓ(kσ)η| − |η〉〈T ∗ dΓ(kσ)η| − |η〉〈addΓ(kσ)(T
∗)η|)P (6.54)

Moreover, the following equation extends from a form identity on D(A) to an
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operator identity on H.

adPH(ξ0+ζ)P (|Tη〉〈T ′η|)

= P

(
| adH(ξ0) η〉〈T ′η − |Tη〉〈adH(ξ0)(T

′)η| − 2
ν∑

σ=1

ζσ(|T dΓ(kσ)η〉〈T ′η|)

)
P

− 2P
ν∑

σ=1

ζσ(| addΓ(kσ)(T )η〉〈T ′η| − |Tη〉〈T ′ dΓ(kσ)η| − |Tη〉〈addΓ(kσ)(T
′)η|)P

+ 〈η, Tη〉P
ν∑

σ=1

ζσ| dΓ(kσ)η〉〈T ′η| − 〈T ′η, η〉(ζ2 − 2ζ · ξ0 + λξ0)P |Tη〉〈η|

− 〈T ′η, η〉P | adH(ξ0)(T )η〉〈η| − 2〈T ′η, η〉P
ν∑

σ=1

ζσ|T dΓ(kσ)η〉〈η|

− 〈T ′η, η〉2P
ν∑

σ=1

ζσ| addΓ(kσ)(T )η〉〈η| − 2〈T ′η, η〉
ν∑

σ=1

ζσ|Tη〉〈dΓ(kσ)η|P

+ 〈η, Tη〉(ζ2 − 2ζ · ξ0 + λξ0)|η〉〈T ′η|P + 〈η, Tη〉
ν∑

σ=1

ζσ|η〉〈T ′ dΓ(kσ)η|

+ 〈η, Tη〉
ν∑

σ=1

ζσ|η〉〈addΓ(kσ)(T
′)η| (6.55)

Remark 6.11. Let h ∈ H2
uv(Rν) so that η ∈ D(A) ∩ D(H(ξ0)n) for all n ∈ N.

Since H(ξ0)η = λξ0η,

H(ξ0)nAη = λnξ0Aη − adA(H(ξ0)n)η,

where we have used that adA(H(ξ0)m) extends to D(H(ξ0)m+1). Hence Aη ∈
D(H(ξ0)n) for all n ∈ N as well. This is used to define T ∗Aη, TAη etc. in the
next lemma.

Lemma 6.12. Let h ∈ H2
uv(Rν) and T, T ′ ∼ Cuv,1

α1,α2,α3
be (H(ξ0) + c)n-bounded op-

erators. The following equation extends from a form identity on C∞0 to an operator

identity on D((H(ξ0) + c)n+ 1
2 ).

adA(T )

= P adA(T )P + P (|Aη〉〈T ∗η| − |TAη〉〈η| − | adA(T )η〉〈η|)
+ (|η〉〈T ∗Aη|+ |η〉〈adA(T ∗)η| − |Tη〉〈Aη|)P . (6.56)

Moreoever, the following equation extends from a form identity on D(A) to an
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operator identity on H:

adA(|Tη〉〈T ′η|)
= (〈η, Tη〉{|η〉〈T ′Aη|+ |η〉〈adA(T ′)η|} − 〈T ′η, η〉|Tη〉〈Aη|)P

+ P (〈η, Tη〉|Aη〉〈T ′η| − 〈T ′η, η〉{|TAη〉〈η|+ | adA(T )η〉〈η|})
+ P (|TAη〉〈T ′η|+ | adA(T )η〉〈T ′η| − |Tη〉〈T ′Aη| − |Tη〉〈adA(T ′)|)P . (6.57)

In order to prove the Lipschitz property for some operator valued maps later in
this section the next result will be of great use.

Lemma 6.13. Let Im(z) 6= 0. Choose R > 0 such that BR(ξ0) ⊂ O0, let ζ ∈ Rν

and ξ ∈ BR(ξ0). Then

∀m ∈ N : Dm(ζ, z) := (H(ξ) + c)mRz(ξ + ζ)mP ∈ B(H).

Moreover, there exists r > 0 such that for all m ∈ N

∀|ζ| < r : ‖Dm(ζ, z)‖ ≤ Cm
pm(|ζ|, |z|)
|Im(z)|m

, (6.58)

where pm : R2 → R , qm : R → R is a polynomial of degree less than 2m with
positive coefficients and Cm > 0 is a constant independent of ζ, z and ξ.

Proof: We prove the statement by induction in m. Clearly, on PH we may
compute

(H(ξ) + c)Rz(ξ + ζ)P = (H(ξ) + c)Rz(ξ + ζ)P

= (H(ξ) + c)PRz(ξ + ζ)P = P (H(ξ) + c)PRz(ξ + ζ)P

= P (H(ξ + ζ)− z + P (c+ z + Vζ)P )PRz(ξ + ζ)P

= P + PVζPRz(ξ + ζ)P + (c+ z)Rz(ξ + ζ)P . (6.59)

All terms except for the second one are easily seen to be bounded operators which
depend Lipschitz continuously on the fiber parameter ζ in operator norm. It thus
suffices to examine the second term to prove the result in the special case m = 1.
We calculate

PVζP = Vζ − 2Re(|Vζη〉〈η|) + 〈Vζη, η〉P
= −2ζ · dΓ(k) + ζ2 − 2ζ · ξ − 2Re(|Vζη〉〈η|) + 〈Vζη, η〉P

Since dΓ(kσ) is (H(ξ + ζ) + c)1/2-bounded for all coordinates σ, we may conclude
that PVζPRz(ξ + ζ)P ∈ B(H). By elementary calculations

(1 + 2ζ · dΓ(k)(H(ξ) + c)−1)(H(ξ) + c)Rz(ξ + ζ)P

= P + cPRz(ξ + ζ)P − (ζ2 − 2ζ · ξ)Rz(ξ + ζ)P − 2Re(|Vζ〉〈η|)Rz(ξ + ζ)P .
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There exists R > 0 such that the operator 1 + 2ζ · dΓ(k)(H(ξ) + c)−1 becomes
invertible for |ζ| < R and the norm of its inverse can be estimated independently
of ζ. The previous equation then implies (6.58). This establishes the validity of
the assertion for the case m = 1.

Let us assume that the statement has been proven for all n ≤ m− 1. Then, by
(6.59),

(H(ξ) + c)mRz(ξ + ζ)mP

= (H(ξ) + c)m−1Rz(ξ + ζ)m−1P − (c− z)(H(ξ) + c)m−1Rz(ξ + ζ)mP

− (H(ξ) + c)m−1PVζPRz(ξ + ζ)mP

= Dm−1(ζ)P − (c− z + ζ2 + 2ξ · ζ)Dm−1(ξ)Rz(ξ + ζ)P

+ 2
ν∑

σ=1

ζσ(H(ξ) + c)m−1P dΓ(kσ)PRz(ξ + ζ)mP (6.60)

All terms except for the last sum are clearly bounded operators and Lipschitz
continuous for |ζ| < R and can be bounded as in (6.59) in the m + 1 case by the
induction hypothesis and the usual bounds on the resolvent. It thus suffices to
study this remaining term. We recall the definition Bh

m = (H0(ξ) + 1)m/2(H(ξ) +
c)−m/2, where h is the coupling function, and compute

(H(ξ) + c)m−1P dΓ(kσ)Rz(ξ + ζ)mP

= P (H(ξ) + c)m−1(H0(ξ) + 1)−m+1 dΓ(kσ)(H0(ξ) + 1)−1Bh
2mDm(ζ, z),

where we have used that H(ξ) commutes with P and that H0(ξ) commutes with
dΓ(kσ). Hence all missing terms are of the correct form. �

Lemma 6.14. Let Im(z) 6= 0. Adopt the notation of Lemma 6.13. The map
ζ 7→ Dm(ζ, z) is differentiable on Br(0) for all m ∈ N. Moreover, there exist
a constant Cm > 0 independent of ζ, z, ξ and polynomials pm : Rν × R → C,
qm : R→ C such that

‖∂ζσDm(ζ, z)‖ ≤ Cm
|pm(ζ, z)|
|qm(|Im(z)|)|
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Proof: Let m ∈ N and compute

∂ζσRz(ξ + ζ)mP

=
m−1∑
`=0

Rz(ξ + ζ)`
[
∂ζσRz(ξ + ζ)

]
Rz(ξ + ζ)m−1−`P

= −2m(ζσ + ξσ)Rz(ξ + ζ)m+1P

+ 2
m−1∑
`=0

Rz(ξ + ζ)`+1P dΓ(kσ)PRz(ξ + ζ)m−`P

= −2m(ζσ + ξσ)Rz(ξ + ζ)m+1P − 2mRz(ξ + ζ)mP dΓ(kσ)PRz(ξ + ζ)P

− 2
m−1∑
`=0

Rz(ξ + ζ)mPLσ(ζ, `, z)Dm−`−1(ζ, z)Rz(ξ + ζ)P ,

where

Lσ(ζ, `, z) = addΓ(kσ)((PH(ξ + ζ)P − zP )m−1−`)(H(ξ) + c)−m+1+`.

With the help of Proposition 6.9 we can further calculate

∂ζσDm(ζ, z)

= 2m(ζσ + ξσ)Dm(ζ, z)Rz(ξ + ζ)

− 2mDm(ζ, z)Rz(ξ + ζ)P dΓ(kσ)(H(ξ) + c)−1D1(ζ, z)

+ 2
m−1∑
`=0

Dm(ζ, z)PSσ,m−`−1Dm−`−1(ζ, z)Rz(ξ + ζ)P

+ 2
m−1∑
`=0

Dm(ζ, z)PS ′σ,m−`−1(ζ)Dm−`−1(ζ, z)Rz(ξ + ζ)P

+ 2
m−1∑
`=0

Dm(ζ, z)PF(ζ)Rz(ξ + ζ)m−`P ,

where

Sσ,m−1(z) = addΓ(kσ)((H(ξ)− z)m−1)R−c(ξ)
m−1, (6.61)

S ′σ,m−1(ζ) = addΓ(kσ)(Bm−1(ζ))R−c(ξ)
m−1. (6.62)

The statement now follows from Lemma 6.13. �

Corollary 6.15. Let Im(z) 6= 0. The map ζ 7→ Rz(ξ + ζ)P is differentiable on
BR(0), where R > 0 is as in Lemma 6.13, and there exist a constant C independent
of z, ζ and polynomials p : Rν ×R→ C, q : R→ C such that

‖∂ζσRz(ξ + ζ)P‖ ≤ C
|p(ζ, z)|
|q(Im(z))|
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In particular, ζ 7→ Rz(ξ + ζ)P is Lipschitz continuous in a neighborhood of 0.

Proof: We simply note

Rz(ξ + ζ)P = (H(ξ) + c)−1D1(ζ,−c)

and apply Lemma 6.14. �

Lemma 6.16. Let k ∈ C∞0 (R) and define the operator

kH(ζ) := k(PH(ξ + ζ)P )

on PH. The map K : B(PH) → B(PH), ζ 7→ kH(ζ) is differentiable on BR(0),
where R > 0 is as in Lemma 6.13. In particular, K is Lipschitz continuous in a
neighborhood of 0.

Proof: By Corollary 6.15 there exist a constant C > 0 independent of z, ξ and
polynomials p : Rν ×R→ C, q : R→ C such that

‖∂ζσRz(ξ + ζ)P‖ ≤ C
|p(ζ, z)|
|q(Im(z))|

.

By choosing an appropriate almost analytic extension k̃ of the function k ∈ C∞0 (R)

we can achieve that ∂zk̃(z)p(ζ, z)q(Im(z))−1 is integrable over the support of ∂zk̃.
Hence

∂ζσkH(ζ)P = − 1

π

∫
C

∂k̃(z)∂ζσRz(ξ + ζ)Pdz

which gives rise to a bounded operator by the choice of k̃. �

6.4 Hölder Continuity of the Boundary Values of the Resolvent

In Section 6.2 we have seen that H(ξ + ζ) is of class C2(A) for sufficiently small
|ζ|, or in slightly different words that PH(ξ)P is of class C2(A) for ξ ∈ V ′, where
V ′ is a neighborhood of ξ0. This property can be shown to imply a limiting
absorption principle for Rx+iy(ξ), ξ ∈ V ′ and Hölder continuity w.r.t. x for the
respective boundary values, see e.g. [19,22,47]. In principle these statements only
hold for every fixed value of ξ ∈ V ′ so that all constants appearing in the respective
theorems depend on ξ.

It should be noted that f(H(ξ0 + ζ)) ∈ Ck(A) for sufficiently regular coupling
functions implies the corresponding statement for the projected Hamiltonian H(ξ+
ζ), see Appendix E. Thus limiting absorption principle and Hölder continuity
would also follow directly from Sahbani’s paper on local regularity, [47]. Note
that this result is also used in [19]. However, Sahbani’s proof does not cover
parameter dependence either and is less explicit when it comes to error estimates
than Gérard’s proof in [22] which is why we focus on the latter.
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More precisely, an inspection of this proof shows that the parameter depen-
dence enters either through the Mourre constants or the iterated commutators
adk

PAP
(f(H(ξ))), where k = 1, 2 and f ∈ C∞0 (R). The Mourre constants can be

chosen uniformly in ξ by possibly decreasing V ′ and all commutators depend Lip-
schitz continuously on ξ ∈ V ′ by Theorem E.10. Hence we obtain the limiting
absorption principle as well as Hölder continuity of the boundary values uniformly
for ξ in some neighborhood of V ′ of ξ0. Without loss of generality we can assume
that V ′ ⊂ O(ξ0), where the open set O(ξ0) denotes those ξ for which Aξ0 is also
a conjugate operator of H(ξ). It is defined in Notation 2.6. For the sake of com-
pleteness we have included a proof of the uniform limiting absorption principle
in Appendix D and a proof of the uniform Hölder continuity w.r.t. the spectral
parameter z in Appendix C.

Now note that since V ′ is open there exists r0 > 0 such that V := BR
ν

r0
(ξ0) ⊂ V ′.

By possibly decreasing the size of r0 we can argue that there exists r > 0 such that
ξ+ζ ∈ V ′ for all ξ ∈ V and all |ζ| < r. This explains the formulation of the limiting
absorption principle given below. The set V should be thought of as the set from
which we draw the base points ξ around which we want to do perturbation theory
w.r.t. ζ. The uniformity in these base points is needed to obtain error estimates
in the expansion in Theorem 2.12.

Notation 6.17. Throughout this section we denote by Iξ0 the interval on which
the Mourre estimate (6.39) holds, that is

Pθ(H(ξ + ζ))[A,H(ξ + ζ)]θ(H(ξ + ζ))P ≥ ePθ(H(ξ + ζ))2P .

for θ ∈ C∞0 (R) with supp(θ) ⊂ Iξ0 .

Theorem 6.18 (Limiting Absorption Principle). Let s ∈ (1/2, 1) and x+ iε ∈ C,
where ε > 0 and x ∈ Iξ0. There exists a neighborhood V of ξ0 ∈ U and r > 0 such
that the limit

〈A〉−sRx+i0(ξ + ζ)〈A〉−s := lim
ε→0+
〈A〉−sRx+iε(ξ + ζ)〈A〉−s (6.63)

exists as a bounded operator for all ξ ∈ V and all |ζ| < r. Furthermore, there
exists a constant C > 0 independent of x ∈ Iξ0 such that

∀ξ ∈ V ∀|ζ| < r : ‖〈A〉−sRx+i0(ξ + ζ)〈A〉−s‖ ≤ C.

Unlike the previous theorem the next result on Hölder continuity needs a proof.
We should note however that Hölder continuity w.r.t. x ∈ Iξ0 follows immediately
from the abstract theory, since H(ξ + ζ) is of class C2(A) for ξ ∈ V and |ζ| < r.
For the sake of completeness a proof is given in Appendix C.
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Theorem 6.19 (Hölder Continuity). Let s ∈ (1/2, 1). There exists an open subin-
terval J ⊂ Iξ0, α ∈ (1/2, 1) a neighborhood V of ξ0 ∈ U and C, r > 0 such that for
all x, x′ ∈ J and all |ζ|, |ζ ′| < r:

‖〈A〉−sRx+i0(ξ + ζ)〈A〉−s − 〈A〉−sRx′+i0(ξ + ζ ′)〈A〉−s‖
≤ C (|ζ − ζ ′|α + |x− x′|α) . (6.64)

In order to prove Hölder continuity w.r.t. the fiber parameter, we need two
technical Lemmas. The proof of the first follows along the lines of Mourre’s paper
and has therefore been moved to the appendix, see Section B.

Notation 6.20. For ξ ∈ V and |ζ| < r we define

θH(ζ) := θ(H(ξ + ζ)).

Since it will be clear from the context which ξ is used in the definition of θH(ζ),
no confusion can arise.

Lemma 6.21 (Mourre’s Quadratic Estimate). Let θ ∈ C∞0 (R) with supp(θ) ⊂ J ,
where J ⊂ Iξ0 is chosen such that the strict Mourre estimate (6.39) in Proposition
6.6 holds. Define

B(ζ) := Pθ(H(ξ + ζ))i adA(H(ξ0 + ζ))θ(H(ξ + ζ))P ,

θ⊥(H(ξ + ζ)) := 1− θ(H(ξ + ζ))

and
H(δ, ζ) := H(ξ + ζ) + iδB(ζ).

There exists δ0 > 0 such that for all z ∈ C with Re(z) ∈ J and all |δ| < δ0 with
δ · Im(z) > 0 the operator H(δ, ζ)− zP is invertible on PH with bounded inverse
Gz(δ, ζ). Moreover, there exists C0 > 0, a neighborhood V of ξ0 and r > 0 such
that for all ξ ∈ V and all |ζ| < r the following estimates hold:

‖Gz(δ, ζ)‖+ ‖H(ξ + ζ)Gz(δ, ζ)‖ ≤ C0

|δ|
,

‖Gz(δ, ζ)〈A〉−s‖+ ‖H(ξ + ζ)Gz(δ, ζ)〈A〉−s‖ ≤ C0

|δ| 12
,

‖θ⊥H(ζ)Gz(δ, ζ)‖+ ‖H(ξ + ζ)θ⊥H(ζ)Gz(δ, ζ)‖ ≤ C0.

Lemma 6.22. Adopt the notation and definitions of Lemma 6.21 and choose an
arbitrary ξ ∈ V. There exists C > 0 such that

‖B(ζ)−B(ζ ′)‖ ≤ C|ζ − ζ ′|

for ζ, ζ ′ in a neighborhood of 0.
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Proof: We calculate H(ξ + ζ)

θH(ζ)i adA(H(ξ0 + ζ))θH(ζ)− θH(ζ ′)i adA(H(ξ0 + ζ ′))θH(ζ ′)

= (θH(ζ)− θH(ζ ′)) i adA(H(ξ0 + ζ))θH(ζ)

+ θH(ζ ′)
(
i adA(H(ξ0 + ζ))− i adA(H(ξ0 + ζ ′))

)
θH(ζ)

+ θH(ζ ′)i adA(H(ξ0 + ζ ′)) (θH(ζ)− θH(ζ ′))

By Lemma 6.16 the map ζ 7→ θH(ζ) is differentiable and thus locally Lipschitz.
Hence there exists C ′ > 0 such that ‖θH(ζ)− θH(ζ ′)‖ ≤ C ′|ζ − ζ ′| for |ζ|, |ζ ′| < r.
Thus,

‖ (θH(ζ)− θH(ζ ′)) i adA(H(ξ0 + ζ))θH(ζ)‖
≤ C ′|ζ − ζ ′|‖i adA(H(ξ0 + ζ))(H(ξ0 + ζ) + cP )−2‖‖θ(2)

H (ζ)‖,

where θ
(`)
H (ζ) = (H(ξ0+ζ)+cP )`θH(ζ) for ` ∈ N. Since (H(ξ0+ζ)+cP )−2i adA(H(ξ0+

ζ)) extends to a bounded operator by the closed graph theorem, we can compute

‖θH(ζ ′)i adA(H(ξ0 + ζ ′)) (θH(ζ)− θH(ζ ′)) ‖
≤ C ′|ζ − ζ ′|‖(H(ξ0 + ζ) + cP )−2i adA(H(ξ0 + ζ))‖‖θ(2)

H (ζ)‖.

Note that (H(ξ0 +ζ)+cP )−1 adA(dΓ(kσ))(H(ξ0 +ζ)+cP )−1 extends to a bounded
operator as well which is denoted by Wσ(ζ). Hence,

(
i adA(H(ξ0 + ζ))− i adA(H(ξ0 + ζ ′))

)
= 2

ν∑
σ=1

(ζσ − ζ ′σ) adA(dΓ(kσ))

implies

‖θH(ζ ′)
(
i adA(H(ξ0 + ζ))− i adA(H(ξ0 + ζ ′))

)
θH(ζ)‖

≤ 2
ν∑

σ=1

|ζσ − ζ ′σ|‖θ
(1)
H (ζ)‖2‖Wσ(ζ)‖.

This completes the proof. �

Proof of Theorem 6.19: Define

Fz(δ, ζ) := 〈A〉−sGz(δ, ζ)〈A〉−s.

For simplicity we suppose that δ, ε > 0. Note that Fz(δ, ζ) is bounded uniformly
in z, δ, ζ by (B.10). By Mourre’s paper there is a constant C1 > 0 such that

‖Fz(δ, ζ)‖ ≤ C1.
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We compute

d

dt
Fz(t, ζ)

= −i〈A〉−sGz(t, ζ)B(ζ)Gz(t, ζ)〈A〉−s

= −〈A〉−sGz(t, ζ)θ⊥H(ζ) adA(H(ξ0 + ζ))Gz(t, ζ)〈A〉−s

+ 〈A〉−sGz(t, ζ)θH(ζ) adA(H(ξ0 + ζ))θ⊥H(ζ)Gz(t, ζ)〈A〉−s

− 〈A〉−s adA(Gz(t, ζ))〈A〉−s

+ it〈A〉−sGz(t, ζ)B(ζ)Gz(t, ζ)〈A〉−s. (6.65)

The last term is bounded uniformly in z, t, ζ due to Lemma 6.21.
For any s ∈ R \ {0} denote by Hs the Banach space obtained by equipping

D(〈A〉s) with graph norm. We put H0 := H and for a bounded operator B we
denote by ‖B‖s→s′ its norm as a map from Hs to Hs′ . We have

‖Gz(t, ζ)〈A〉−s‖ = ‖Gz(t, ζ)‖s→0 ≤
C0

|δ| 12
,

‖〈A〉−sGz(t, ζ)〈A〉−s‖ = ‖Gz(t, ζ)‖s→−s ≤ C1.

By interpolation theory this gives

‖〈A〉−s+1Gz(t, ζ)〈A〉−s‖ = ‖Gz(t, ζ)‖s→−s+1 ≤
C(s)

|δ| 1
2s

,

where C(s) = C
1/s
0 C

1−1/s
1 . Therefore,

‖〈A〉−s adA(Gz(t, ζ))〈A〉−s‖ ≤ ‖A〈A〉−1〈A〉−s+1Gz(t, ζ)〈A〉−s‖
+ ‖〈A〉−sGz(t, ζ)〈A〉−s+1A〈A〉−1‖,

≤ C(s)

|t| 1
2s

.

The first and the second term in (6.65) can be bounded in a similar fashion. Indeed,
we can use Lemma 6.21 to estimate

‖〈A〉−sGz(t, ζ)(1− θH(ζ)) adA(H(ξ0 + ζ))Gz(t, ζ)〈A〉−s‖

≤ C‖(H(ξ0 + ζ) + i)−1 adA(H(ξ0 + ζ))(H(ξ0 + ζ) + i)−1‖ 1

|t| 12
.

Due to

(H(ξ0 + ζ) + i)−1 adA(H(ξ0 + ζ))(H(ξ0 + ζ) + i)−1

= D1(ζ)∗(H(ξ0) + i)−1 adA(H(ξ0 + ζ))(H(ξ0) + i)−1D1(ζ)
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the uniform bound follows from Lemma 6.13, where z = i, m = 1. Thus, we have
shown that (6.65) can be bounded by a constant times |δ|−1/2s. We write

Fz(0, ζ)− Fz(0, ζ ′) = [Fz(δ, ζ)− Fz(δ, ζ ′)]

−
δ∫

0

[
d

dt
Fz(t, ζ)− d

dt
Fz(t, ζ

′)

]
dt. (6.66)

In order to deal with the first term we calculate

‖Fz(δ, ζ)− Fz(δ, ζ ′)‖ = δ‖〈A〉−sGz(δ, ζ)[B(ζ ′)−B(ζ)]Gz(δ, ζ
′)〈A〉−s‖

≤ δ|ζ − ζ ′|C7
1

δ
= C7|ζ − ζ ′|

By combining (6.65) and (6.66) we can thus show that there exists C8 > 0 inde-
pendent of z, δ, ζ such that

‖Fz(0, ζ)− Fz(0, ζ ′)‖ ≤ C8|ζ − ζ ′|+ C8δ
1− 1

2s .

For |ζ−ζ ′| sufficiently small we may put δ = |ζ−ζ ′|β, where β > 0. Let α ∈ (1/2, 1).
By choosing

β

(
1− 1

2s

)
= α

we obtain
‖Fz(δ, ζ)− Fz(δ, ζ ′)‖ ≤ 2C8|ζ − ζ ′|α.

This clearly implies the joint Hölder continuity of Fz(0, ζ) in z and ζ.

6.5 Feshbach Map and Eigenvalue Equation

We adopt the definitions of V and r > 0 from the previous chapter throughout the
rest of this section. For every ε > 0 we define the Feshbach map at λξ+ζ by

FP (H(ξ + ζ)− λξ+ζ − iε)

:= P (H(ξ + ζ)− λξ+ζ − iε)P − PVζPRλξ+ζ+iε(ξ + ζ)PVζP.

In the non-degenerate case, where P = |η〉〈η| for the eigenstate η, this map takes
the simpler form

FP (H(ζ)− λξ+ζ − iε) = (λξ − λξ+ζ − iε)P + 〈η, Vζη〉P
− 〈η, VζPRλξ+ζ+iε(ξ + ζ)PVζη〉P (6.67)

and the problem becomes one dimensional.
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Proposition 6.23. The limit FP (ζ) := limε→0+ FP (H(ζ) − λξ0+ζ − iε) exists in
norm as a bounded operator on PH and

FP (ζ) = [λξ − λξ+ζ + 〈η, Vζη〉]P
− 〈U(ζ)η, 〈A〉−sRλξ+ζ+i0(ξ0 + ζ)〈A〉−sU(ζ)η〉P,

where U(ζ) := P 〈A〉sVζ and s ∈ (1/2, 1).

Proof: We first show that Vζη ∈ D(〈A〉s). Since 〈A〉s(A−z)−1 is a bounded
operator, it suffices to show Vζη ∈ D(A). This however follows directly from
Lemma 6.4 by commuting with A. Thus, we may calculate

〈η, VζPRλξ+iε(ξ0 + ζ)PVζη〉 = 〈U(ζ)η, 〈A〉−sRλξ+iε(ξ + ζ)〈A〉−sU(ζ)η〉,

where U(ζ) := 〈A〉sVζ . The existence of the limit ε → 0 is thus a consequence of
Theorem 6.18. �

Proposition 6.24. FP (ζ) is not invertible, that is

λξ − λξ+ζ + 〈η, Vζη〉 − 〈U(ζ)η, 〈A〉−sRλξ+ζ+i0(ξ + ζ)〈A〉−sU(ζ)η〉 = 0.

Proof: Since FP (ζ) is a linear operator on a one dimensional space, it is in-
vertible, if and only if

λξ − λξ+ζ + 〈η, Vζη − 〈U(ζ)η, 〈A〉−sRλξ+ζ+i0(ξ + ζ)〈A〉−sU(ζ)η〉 6= 0.

Suppose for a contradiction that FP (ζ) was invertible. Then

λξ − λξ+ζ + 〈η, Vζη − 〈U(ζ)η, 〈A〉−sRλξ+ζ+iε(ξ + ζ)〈A〉−sU(ζ)η〉
→ λξ − λξ+ζ + 〈η, Vζη − 〈U(ζ)η, 〈A〉−sRλξ+ζ+i0(ξ + ζ)〈A〉−sU(ζ)η〉 6= 0

implies FP (H(ζ) − λξ+ζ − iε)−1 → FP (ζ)−1. A look in the proof of Theorem II.1
in [5] reveals that the inverse of FP (H(ξ + ζ) − λξ+ζ − iε) determines the inverse
Rλξ+ζ+iε(ξ+ζ) of H(ξ+ζ)−λξ+ζ−iε by means of a block decomposition. Our initial
assumption would thus imply the existence of the limit limε→0+Rλξ+ζ+iε(ξ + ζ) as
a bounded operator on H. However, this is impossible for λξ+ζ sufficiently close
to λξ, since λξ ∈ σess(H(ξ)). �

Proof of Theorem 2.12: The previous Proposition clearly implies that

λξ+ζ = λξ + 〈η, Vζη〉 − 〈U(ζ)η, 〈A〉−sRλξ+ζ+i0(ξ + ζ)〈A〉−sU(ζ)η〉,

where

U(ζ) = P 〈A〉sVζ = (ζ2 + 2ξ · ζ)P 〈A〉s − 2P 〈A〉sζ · dΓ(k).
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Hence

λξ+ζ

= λξ + ζ2 + 2ξ · ζ − 2
ν∑

σ=1

ζσ〈η, dΓ(kσ)η〉

− (ζ2 + 2ξ · ζ)2〈P 〈A〉sη, 〈A〉−sRλξ+ζ+i0(ξ + ζ)〈A〉−sP 〈A〉sη〉

+ 2
ν∑

σ=1

ζσ(ζ2 + 2ξ · ζ)〈P 〈A〉sη, 〈A〉−sRλξ+ζ+i0(ξ + ζ)〈A〉−sUση〉

+ 2
ν∑

σ=1

ζσ(ξ2 + 2ξ · ζ)〈Uση, 〈A〉−sRλξ+ζ+i0(ξ + ζ)〈A〉−sP 〈A〉sη〉

− 4
ν∑

σ,σ′=1

ζσζσ′〈Uσ′η, 〈A〉−sRλξ0+ζ+i0(ξ + ζ)〈A〉−sUση〉, (6.68)

where Uσ := P 〈A〉s dΓ(kσ). Theorem 6.18 implies that

λξ+ζ = λξ +
ν∑
σ=

(2ξσ − 2〈η, dΓ(kσ)η〉)ζσ +O(|ζ|2).

In particular, we have that there exists C > 0 independent of ζ such that

|λξ+ζ − λξ| ≤ C|ζ|. (6.69)

Combing the Lipschitz continuity of the map ζ 7→ λξ+ζ in (6.69) with (6.68) and
the joint Lipschitz continuity of the resolvent boundary values in Theorem 6.19,
we obtain

λξ+ζ = λξ +
ν∑

σ=1

ζσβσ +
ν∑

σ,σ′=1

ζσζσ′βσ,σ′ + O
(
|ζ|2+α

)
,

where
βσ := 2ξσ − 2〈η, dΓ(kσ)η〉

and

βσ,σ′ := δσ,σ′ + 4ξσξσ′〈P 〈A〉sη, 〈A〉−sRλξ+i0(ξ)〈A〉−sP 〈A〉sη〉
+ 4ξσ′〈P 〈A〉sη, 〈A〉−sRλξ+i0(ξ)〈A〉−sUση〉
+ 4ξσ′〈Uση, 〈A〉−sRλξ+i0(ξ0)〈A〉−sP 〈A〉sη〉
− 4〈Uση, 〈A〉−sRλξ+i0(ξ)〈A〉−sUση〉.
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A Derivation of Several Commutator Relations

Throughout this section we adapt Notation 4.1. Moreover note that

Φ(g)C∞0 ⊂ C∞0 ,
dΓ(u)C∞0 ⊂ C∞0 ,

AC∞0 ⊂ C∞0
for all u, g ∈ C∞(Rν). In particular,

H0(ξ)C∞0 ⊂ C∞0 .

These relations enable us to define commutator forms on C∞0 which can then be
extended to larger domains by the strategy set out in Section 3.2.

Remark A.1. Let h ∈ C∞(R), g ∈ C∞0 (Rν). Then

[A, dΓ(h)] = [dΓ(a), dΓ(h)] = dΓ(iv · ∇h) ,

[dΓ(h) dΓ(h),Φ(g)] = −Φ(−h2g)− 2iΦ(ihg) dΓ(h)

as operators on C∞0 .

Lemma A.2. For any m ∈ N the commutator of Φ(g) with H0(ξ)n can be expanded
in terms of the iterated commutators adjH0(ξ)(Φ(g)). In particular, the equation

[Φ(g), H0(ξ)n] =
n−1∑
`=0

(
n

`

)
(−1)`+n adn−`H0(ξ)(Φ(g))H0(ξ)`

extends holds in the sense of operators on C∞0 for all n ∈ N.

Proof: For n = 1 one can easily check that the statement is true. Next, assume
that the formula holds for some n ∈ N and calculate

[Φ(g), H0(ξ)n+1] = [Φ(g), H0(ξ)]H0(ξ)n +H0(ξ)[Φ(g), H0(ξ)n]

= − adH0(ξ)(Φ(g))H0(ξ)n

+
n−1∑
`=0

(
n

`

)
(−1)`+n adn−`H0(ξ)(Φ(g))H0(ξ)`+1

+
n−1∑
`=0

(
n

`

)
(−1)`+n adn+1−`

H0(ξ) (Φ(g))H0(ξ)`

=
n∑
`=0

(
n+ 1

`

)
(−1)` adn+1−`

H0(ξ) (Φ(g))H0(ξ)`

on C∞0 . Thus, the statement is true for all n ∈ N. �

114



Definition A.3. Let K ⊂ N with |K| = n. For i ≤ n we define the set of
partitions of length i of K by

Pi(K) := {{k1, . . . , ki} | {k1, . . . , ki} ⊂ D, k1 < k2 < · · · < ki} .

Moreover, we introduce the shorthand

Nn := {1, . . . , n}.

Lemma A.4. Let h1, . . . , hn ∈ C∞0 (Rν), g ∈ C∞0 (Rν). Then[
n∏
i=1

dΓ(hi),Φ(g)

]
=

n∑
i=1

∑
D∈Pi(Nn)

CNn\DΦ(gD)
∏

`∈Nn\D

dΓ(h`) , (A.1)

where all CD appearing in the above formula are complex valued constants and

|gD(k)| := |hj1(k) · · ·hjn(k)| · |g(k)|

for D = {j1, . . . , jn}.

Proof: The statement can be proven by induction. The case n = 1 is clear.
Suppose that the statement is true for some n ∈ N and calculate

[
n+1∏
i=1

dΓ(hi),Φ(g)

]

= dΓ(hn+1)

[
n∏
i=1

dΓ(hi),Φ(g)

]
+ [dΓ(hn+1),Φ(g)]

n∏
i=1

dΓ(hi)

= C∅dΓ(hn+1)Φ(gNn) +
n−1∑
i=1

∑
D∈Pi(Nn)

CNn\DdΓ(hn+1)Φ(gD)
∏

`∈Nn\D

dΓ(h`)

− iΦ(ihn+1)
n∏
i=1

dΓ(hi)

= −iC∅Φ(ihn+1gNn) + C∅Φ(gNn)dΓ(hn+1)

+
n−1∑
i=1

∑
D∈Pi(Nn)

CNn\DΦ(gD)
∏

`∈Nn+1\D

dΓ(h`)

+
n−1∑
i=1

∑
D∈Pi(Nn)

(
−iCNn\D

)
Φ(ihn+1gD)

∏
`∈Nn+1\(D∪{n+1})

dΓ(h`)

− iΦ(ihn+1g)
∏

`∈Nn+1\{n+1}

dΓ(h`)
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Note that the first sum can be re-written into a sum that runs overD = {j1, . . . , ji} ⊂
Nn+1 for j1 < j2 < · · · < ji, where all indices satisfy jk 6= n + 1. Similarly, the
second sum runs over all D = {j1, . . . , ji} ⊂ Nn+1 with j1 < j2 < · · · < ji and
ji = n+ 1, where 2 ≤ i ≤ n. A simple re-labeling of indexes finishes the proof. �

A similar statement can be proven for the general form of a commutator of a
second quantized multiplication operator with a product of field operators.

Lemma A.5. Let f ∈ L2(Rν), h1, . . . , hn ∈ C∞0 . We then have as an operator
identity on C∞0 :

[dΓ(f),Φ(h1) · · ·Φ(hn)] =
n∑
k=1

CkΦ(h1) · · ·Φ(hk−1)Φ(ifhk)Φ(hk+1) · · ·Φ(hn),

where Cj ∈ C.

Proof: The proof is a simple application of

[dΓ(f),Φ(h1) · · ·Φ(hn)] =
n∑
k=1

Φ(h1) · · ·Φ(hk−1)[dΓ(f),Φ(hk)]Φ(hk+1) · · ·Φ(hn)

and Remark A.1. �

Another Lemma regarding commutators of the conjugate operator A with prod-
ucts of second quantized multiplication operators is needed.

Lemma A.6. Let n ∈ N, g1, . . . , gn ∈ C∞c and u1, . . . , un ∈ C∞(Rν). Then[
A,

n∏
j=1

dΓ(uj)

]
=

n∑
`=1

dΓ(iv · ∇u`)
n∏
j=1
j 6=`

dΓ(uj)

and

[A,Φ(g1) · · ·Φ(gn)] = −i
n∑
`=1

Φ(g1) · · ·Φ(g`−1)Φ(iv · ∇g`)Φ(g`+1) · · ·Φ(gn)

hold as operator identities on C∞0 .

Proof: The assertions can be proven inductively and follow immediately from
the formulas[

A,

n∏
j=1

dΓ(uj)

]
=

n∑
`=1

dΓ(u1) · · · dΓ(g`−1)[A, dΓ(u`)] dΓ(u`+1) · · · dΓ(un),

[A,Φ(g1) · · ·Φ(gn)] =
n∑
`=1

Φ(g1) · · ·Φ(g`−1)[A,Φ(g`)]Φ(g`+1) · · ·Φ(gn)

and Remark A.1. �
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Lemma A.7 (Rearrangement Formula). Suppose that p ∈ N and ` ∈ N0. Then

R`
−c adpA((H + c)m)Rm

−c

= (−1)`
∑̀
k=0

(
`

k

)
(−1)kR`−k

−c ad`−kH (adpA((H + c)m))Rm+`
−c

holds for operators on C∞0 and extends to H, if ` ≥ p.

Proof: Clearly, the assertion is true for ` = 0. The general case can be proven
by induction but since the proof is very similar to the proofs of the other form
identities in this section, we omit most of the details.

It should be noted however that C∞0 ⊂ D(Hn) for all n ∈ N due to H0C∞0 ⊂ C∞0
and Lemma 3.17. Thus, C∞0 ⊂ D(adpA((H + c)m)Rm

−c) for all p ∈ N and the
following calculations are meaningful when carried out on C∞0 .

Assume that the statement holds for some ` ∈ N and calculate

R`−1
−c adpA((H + c)m)Rm

−c

= (−1)`
∑̀
k=0

(
`

k

)
(−1)kR`−k

−c ad`−kH (adpA((H + c)m))Rm+`+1
−c

+ (−1)`
∑̀
k=0

(
`

k

)
(−1)kR`+1−k

−c ad`−kH (adpA((H + c)m))Rm+`+1
−c

= (−1)`+1(−1)`+1 adpA((H + c)m)Rm+`+1
−c

+ (−1)`+1
∑̀
k=1

(
`+ 1

k

)
(−1)kR`−1−k

−c ad`+1−k
H (adpA((H + c)m))Rm+`+1

−c

+ (−1)`+1R
−(`+1)
−c ad`+1

H (adpA((H + c)m))Rm+`+1
−c

= (−1)`+1

`+1∑
k=0

(
`+ 1

k

)
(−1)kR`−1−k

−c ad`+1−k
H (adpA((H + c)m))Rm+`+1

−c ,

where we have made an index shift to get from the second to the third equation.
Finally note that

ad`−kH (adpA((H + c)m))Rm+`
−c ∈ B(H)⇔ m+

p

2
+
`

2
≤ m+ `⇔ ` ≥ p.

This proves the last part of the statement. �

B Proof of Mourre’s Quadratic Estimate

The purpose of this section is to prove Lemma 6.21. First of all note that it suffices
to show the statement for ξ = ξ0 and |ζ| < r′ for some r′ > 0. The correspomding
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statements with the neighborhood V of ξ0 can be obtained in the same way as the
corresponding statements in the limiting absorption principle, Theorem 6.18.

In order to establish the invertibility of H(δ, ξ)− z we may simply use Mourre’s
argument, see [41]. There the estimate

‖(H(δ, ζ)− z)Pψ‖2 ≥ (Im(z))‖Pψ‖2

is established by using the assumption Im(z)δ > 0. This estimate then implies
the bounded invertibility of H(δ, ζ) − zP . Moreover, Mourre proves that for all

bounded and self-adjoint operators T on PH and all bounded operators B
′

satis-

fying B
′
B
′∗ ≤ B(ζ) the estimate

‖B′Gz(δ, ζ)T‖ ≤ ‖TGz(δ, ζ)T‖ 1
2

|δ| 12

holds. However, all of Mourre’s arguments can only be carried out for fixed ζ
and thus the constants may be ζ-dependent as well. Therefore, we have to go
through the proof more carefully to guarantee that all constants can be chosen

independently of z, ζ, δ. The choice B
′
= θH(ζ) and T = P = idPH gives

‖θH(ζ)Gz(δ, ζ)‖ ≤ 1

|δ| 12
‖Gz(δ, ζ)‖

1
2 . (B.1)

Likewise the choice B
′
= θH(ζ) and T = 〈A〉−s yields

‖θH(ζ)Gz(δ, ζ)〈A〉−s‖ ≤ 1

|δ| 12
‖〈A〉−sGz(δ, ζ)〈A〉−s‖

1
2 . (B.2)

To finish the proof we have to prove the inequalities stated in the lemma. First
note that

− θH(ξ)Gz(δ, ζ) + θ⊥H(ζ)Gz(0, ζ) =
[
1 + iδGz(0, ζ)θ⊥H(ζ)B(ζ)

]
Gz(δ, ζ). (B.3)

By definition of the cutoff function θ we have that

‖Gz(0, ζ)θ⊥H(ζ)‖ ≤ sup
x∈R

1− θ(x)

|x− Re(z)|
≤ C1(J, θ),

where C1(J, θ) > 0 is independent of ζ, z and δ. Moreover, it is clear that there
exists a constant C > 0 independent of ζ, z and δ such that ‖B(ξ)‖ ≤ C. Hence

‖Gz(0, ζ)θ⊥H(ζ)B(ζ)‖ ≤ C1(J, θ)C. (B.4)

By choosing

δ0 <
1

2C1(J, θ)C
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we have thus shown that Tz(ζ) := 1 + δGz(0, ζ)θ⊥H(ζ)B(ζ) is invertible for all
|δ| < δ0 with norm ‖Tz(ζ)−1‖ ≤ 2. (B.3) now implies

Gz(δ, ζ) = −Tz(ζ)−1θH(ζ)Gz(δ, ζ) + Tz(ζ)−1θ⊥H(ζ)Gz(0, ζ). (B.5)

By (B.1), we may estimate

‖θH(ζ)Gz(δ, ζ)‖2 ≤ 1

|δ|
‖Gz(δ, ζ)‖ ≤ α2

2
‖Gz(δ, ζ)‖2 +

1

2|δ|2α2
(B.6)

for any α > 0. Note that we may choose δ0 < 1 and 0 < α to be small. Hence
(B.4), (B.5) and (B.6) imply that there exists a constant C1 > 0 independent of
ζ, z and δ such that

‖Gz(δ, ζ)‖ ≤ C

|δ|
(B.7)

With (B.7) we can estimate

‖θ⊥H(ζ)Gz(δ, ζ)‖ = ‖θ⊥H(ζ)Gz(0, ζ)‖1− iδB(ζ)Gz(δ, ζ)‖

≤ ‖θ⊥H(ζ)Gz(0, ζ)‖
(

1 + |δ|C 1

|δ|

)
≤ C2(J, θ), (B.8)

where C2(J, θ) does not depend on z, ξ, δ. By a similar trick we obtain

‖H(ξ + ζ)θ⊥H(ζ)Gz(δ, ζ)‖ ≤ ‖H(ξ + ζ)θ⊥H(ζ)Gz(0, ζ)‖‖1− iδB(ζ)Gz(δ, ζ)‖
≤ C3(J, θ), (B.9)

where we have used that the function x(1−θ(x))/(x−Re(z))) is bounded uniformly
on R. Again the constant C3(J, θ) does not depend on z, ζ, δ.

Clearly, these bounds show that

‖H(ξ + ζ)Gz(δ, ζ)‖ ≤ ‖H(ξ + ζ)θH(ζ)Gz(δ, ζ)‖+ ‖H(ξ + ζ)θ⊥H(ζ)Gz(δ, ζ)‖

≤ C4(θ)‖Gz(δ, ζ)‖+ C3(J, θ) ≤ 1

|δ|
C5(J, θ).

We have thus established the first and the last of the claimed estimates on Gz(δ, ζ).
In order to prove the second estimate, we refer to Mourre’s paper again, see [41].
There it is established that the estimates (B.7)-(B.9) together with (B.1) and (B.2)
imply that ‖〈A〉−sGz(δ, ζ)〈A〉−s‖ ≤ C ′, where C ′ > 0 is independent of z, δ. This
result is proven via a differential inequality technique and the uniform constant C ′

is obtained from the uniform constants in (B.7)-(B.9).
Since we have established that the constants in (B.7)-(B.9) are independent of

z, δ as well as ξ, we may conclude that

‖〈A〉−sGz(δ, ζ)〈A〉−s‖ ≤ C6(J, θ), (B.10)
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where C6(J, θ) is independent of z, ξ, δ. With this bound it clearly follows from
(B.2) that

‖θH(ξ)Gz(δ, ζ)〈A〉−s‖ ≤ C6(J, θ)

|δ| 12
(B.11)

The relation Gz(δ, ζ) = Gz(0, δ)(1 − iB(ζ)Gz(δ, ζ)), (B.7)-(B.9) and (B.11) let us
obtain the desired inequality

‖Gz(δ, ζ)〈A〉−s‖+ ‖H(ξ + ζ)Gz(δ, ζ)〈A〉−s‖ ≤ C

|δ| 12

after inserting the localizations θH(ζ) and θ⊥H(ζ). Since the details are similar to
previous calculations, we omit them.

C Hölder-Continuity in the Limiting Absorption Principle

Let ε, δ > 0. In order to establish Hölder-continuity of the limit, we write

Fz(0, ζ)− Fz′(0, ζ) = −[Fz(δ, ζ)− Fz′(δ, ζ)]

+

δ∫
0

[
d

dt
Fz(t, ζ)− d

dt
Fz′(t, ζ)

]
dt. (C.1)

Note that

‖Fz(δ, ζ)− Fz′(δ, ζ)‖ = |z − z′|‖〈A〉−sGz(δ, ζ)Gz′(δ, ζ)〈A〉−s‖

≤ |z − z′|C 1

|δ|
, (C.2)

where C1 > 0 is independent of z, δ, ζ. Hence the first term in (C.1) is even
Lipschitz continuous. It thus remains to study the integral. The discussion after
(6.65) implies the estimate

|δ|∫
0

∥∥∥∥ d

dt
Fz(t, ζ)− d

dt
Fz′(t, ζ)

∥∥∥∥ dt ≤ C3

|δ|∫
0

1

|t| 12
dt = 2C3|δ|

1
2 . (C.3)

Now choose δ = |z − z′|2/3 for |z − z′| sufficiently small. If we combine (C.2) and
(C.3), we may conclude that there exists a constant C6 > 0 independent of ζ, z, δ
such that

‖Fz(0, ζ)− Fz′(0, ζ)‖ ≤ C6|z − z′|
1

δ
+ C6δ

1
2 = 2C6|z − z′|

1
3

which proves the claimed Hölder continuity w.r.t. the spectral parameter.
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D Adding a Parameter to a Result by Gérard

In [22] the limiting absorption principle (LAP) is derived via a chain of implications
starting from certain estimates of (energy) localizations χ(H) of a Hamiltonian H
and weights 〈A〉 of the conjugate operator. The crucial technical assumption is
a strict Mourre estimate in the energy region of interest and that H is of class
C2(A). Most likely to avoid assumptions on H-boundedness of the commutators
adA(H) and ad2

A(H) the Hamiltonian is replaced by Hτ = Hτ(H), where τ ∈ Rν is
a plateau function equaling 1 in a neighborhood of the region of interest. To apply
his result in our setup we have to investigate how the bounds appearing in the LAP
will depend on a parameter κ, if H is replaced by a family of operators H(κ) and
the purpose of this section is to carry out this investigation. More precisely, we are
concerned with the question whether the bounds in the LAP can be formulated
to hold uniformly on a (sufficiently small) neighborhood U of a fixed parameter
value κ0.

As a first step we replace the single operator H by a family of self adjoint
operators H(κ) for κ ∈ Rd with common domain D(H(κ)) = D. In view of our
results on Lipschitz continuity of the maps ζ 7→ adkA(f(PH(ξ + ζ)P )) established
in Theorem E.10 we will assume that

∃C > 0∃r > 0∀κ ∈ Br(κ0) : ‖ adkA(f(H(κ)))‖ ≤ C. (D.1)

provided that f(H(κ) ∈ Ck(A) for the self-adjoint operator A. Let A be self-
adjoint and H(κ) be of class C2(A) for κ ∈ U . Put U := Br(κ0), where r is given
as above. Suppose that there is a constant c0 and an interval I independent of
κ ∈ U such that

1I(H(κ))[iA,H(κ)]1I(H(κ)) ≥ c01I(H(κ)).

This is a needed generalization of Gérard’s estimate (1.1) in a κ-uniform version.
Lemma 2.1 in Gérard’s paper establishes that (z − H)−1 and χ(H), where χ ∈
C∞0 (R), are bounded operators on D(〈A〉s) for s ∈ [0, 1]. It can immediately be
proven for all H(κ), since they satisfy the same conditions as the single operator
H. The same is true for Lemma 2.2, that is all χ(H(κ)) ∈ Ck(A), if all H(κ) are
of class Ck(A).

Let J ⊂ I be a compact interval and define the set J+ := {z ∈ C | Re(z) ∈
J, Im(z) > 0}. Let τ, χ1 ∈ C∞0 (R) such that τ(x) = χ1(x) = 1 for all x ∈ I and
τ(x) = 1 for all x ∈ supp(χ1). Put Hτ (κ) = H(κ)τ(H(κ)). The commutator
expansion on D(〈A〉k) for k ∈ N \ {1} and f ∈ C∞0 (R) in Lemma 2.3,

[f(A), Hτ (κ)] =
k−1∑
j=1

1

j!
f (j)(A) adjA(Hτ (κ)) +Rk(f, A,Hτ (κ)),
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can also be generalized provided Hτ ∈ Ck(A), since it is a structural result. The
important estimate

‖〈A〉sRk(f, A,Hτ (κ))〈A〉s′‖ ≤ C(f)‖ adkA(Hτ (κ))‖

valid for all s, s′ ≥ 0 with s+ s′ < k can now be bounded uniformly for κ ∈ U , due
to (D.1). This leads to similar uniform estimates of the error terms R1 and R2 in
Gérard’s Proposition 2.4. One of the crucial ideas in the paper is that a chain of
implications in Gérard’s Lemma 3.1 can be used to show the limiting absorption
principle. The needed generalization is

Lemma D.1. Let s ∈ (0, 1] and consider the following statements:

1. ∃C > 0∀κ ∈ U : supz∈J+ ‖〈A〉−s(H(κ)− z)−1〈A〉−s‖ ≤ C <∞.

2. There exists C > 0 such that for all κ ∈ U , all z ∈ J+ and all u ∈ (H(κ0) +
i)−1D(〈A〉s) we have that

‖〈A〉−s‖ ≤ C‖〈A〉s(H(κ)− z)u‖.

3. There exists C > 0 such that for all κ ∈ U , all z ∈ J+ and all u ∈ D(〈A〉s)
we have that

‖〈A〉−sχ1(H)u‖ ≤ C‖〈A〉s(Hτ (κ)− z)χ1(H(κ))u‖.

Then 3. ⇒ 2. ⇒ 1.

The proof is a word by word copy of Gérard’s proof. The uniformity w.r.t.
κ ∈ U in every implication comes from the built in uniformity in the modified
statements 3. and 2. In order to prove LAP Gérard establishes 3. in his Lemma
3.1. The proof of this statement hinges on Proposition 2.4 and Lemma 2.3 as well
as the Mourre estimate. A crucial role is played by the Mourre constant c0 and the
error estimates in Proposition 2.4. Since both terms, called R1 and R2 by Gérard,
are shown to be estimated uniformly w.r.t. κ ∈ U , the resulting constant in the
desired estimate 3. in Lemma D.1 in our modified version of Gérard’s proof is also
uniform w.r.t. κ ∈ U .

Another technicality in Gérard’s derivation of his version of the estimate in 3. is
to rescale the conjugate operator A, that is to consider Aa = a−1A for a > 0. For a
sufficiently large an error estimate in Gérard’s proof improves significantly. In the
parameter dependent case we need to be able to make this choice for a independent
of κ. This however is a consequence of the uniform estimates on ‖R1‖ and ‖R2‖.
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E Regularity of the Functional Calculus of the Projected
Hamiltonian

In complete analogy to Definition 3.21 we define mixed commutators of PH(ξ0 +
ξ)P and A.

Definition E.1 (Projected, Iterated Commutators). We introduce the abbrevia-
tion QP := {PT1P , PT2P}, where T1 := H(ξ0 + ξ) and T2 := A. Moreover, let
c > 0 be large enough such that −c ∈ ρ(H). For n ∈ N, define

In := {w = (w(1), . . . , w(n)) ∈ {1, 2}n | w(1) = 2}.

For w ∈ In we define its `-th truncation w(`) by

w(`) := (w(1), . . . , w(`)) ∈ {1, 2}` .

Let T ∼ Cuv,k
α1,α2,α3

be a H(ξ0)m-bounded operator, where k = nAw. Suppose h ∈
Hk+1

uv (Rν). The `-th truncation adw
(`)

T (T ) of the mixed commutator corresponding
to w on C∞0 is iteratively defined by

〈ψ, adw
(1)

TP
(T )ψ′〉 := 〈ψ, [A, T ]ψ〉

for ` = 1 and

〈ψ, adw
(`)

TP
(T )ψ′〉 := 〈ψ, [PTw(`)P , adw

(`−1)

TP
(T )]ψ′〉

for ` ≥ 2. The mixed commutator corresponding to w ∈ In is then defined as

adwTP
(T ) := adw

(n)

TP
(T ).

This operator is sometimes simply referred to as a mixed or iterated commutator.
It is convenient to define I0 := {0} and adwT (T ) := S for w ∈ I0.

Remark E.2. As before the mixed commutators extend from C∞0 to D((H(ξ0) +
c)m+n/2) provided that T is (H(ξ0) + c)m-bounded. Moreover, note that instead of
T we could have used the corresponding projected operator PTP .

In the next lemma we establish a connection between the projected mixed com-
mutators and the unprojected ones.

Lemma E.3. Let n,m ∈ N and ψ ∈ D(H(ξ0)m+n/2). For every w ∈ {1, 2}n there
exists a tuple ({Tn,k}2N

k=1, {tk,n}2N
k=1 such that

adwTP
((PH(ξ0 + ζ)P − zP )m)ψ = P adwT ((H(ξ0)− z)m)Pψ + P adwT (Bm(ζ))Pψ

+ P adwT (Fm(ζ))Pψ + PGm,w(ζ)P ,

where Bm(ζ) is the (H(ξ0) + c)m-bounded operator associated to the tuple, Fm(ζ)
is the finite rank operator associated to it (see Definition 6.8). Gm,w(ζ) is a finite
rank operator which depends Lipschitz continuously on ζ.
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Proof: We prove the statement by induction. The case n = 1 follows from
[PTP , (PH(ξ0 + ζ)P − zP )m] = P [T, (PH(ξ0 + ζ)P − zP )m]P and (6.52). We
thus assume the statement holds for some n ∈ N. Let w ∈ {1, 2}n and abbreviate

S1 := adwT ((H(ξ0)− z)m), S2 := adwT (Bw(ζ)), S3 := adwT (Bw(ζ))

where we have used the notation of (6.56). Let ψ, ψ′ ∈ C∞0 . We first assume that
w′ = (2, w). Using the induction hypothesis we compute:

〈ψ, [A, adwTP
((P (H(ξ0 + ζ)− zP )m))]ψ′〉

= 〈ψ, P adA(adwT ((H(ξ0)− z)m))Pψ′〉+ 〈ψ, P adA(adwT (Bm(ζ)))Pψ′〉
+ 〈ψ, P adA(adwT (Fm(ζ)))Pψ′〉

+
3∑
j=1

〈ψ, P |Aη〉〈S∗j η|Pψ′〉 −
3∑
j=1

〈ψ, P |Sjη〉〈Aη|Pψ′〉

This proves the assumption in this case. The proof that

adP (H(ξ0+ζ)P (adwTP
((PH(ξ0 + ζ)− zP )m))

= adH(ξ0)(adwT ((H(ξ0)− z)m)) + P ad
(1,w)
T (Bm(ζ))P + PF(1,w)

m (ζ)P

+
3∑
j=1

P |Aη〉〈S∗j η| −
3∑
j=1

P |Sjη〉〈Aη|P

in the case w′ = (1, w) is similar. �

Remark E.4. A similar statement holds, if (H(ξ0 + ζ) − z)m is replaced by a
(H(ξ0)+c)m-bounded operator T which is given on C∞0 in terms of the sets Cα1,α2,α3

and the ξ dependence is dropped. (The ζ dependent functions can either be chosen
equal to zero or constant)

We are now in a position to prove the analogue of Lemma 4.2 in the case of the
projected operators. Since the presence of the projections causes the appearance
of several additional terms, we introduce some more notation to keep the formulas
in a manageable length.

Let n,m ∈ N, w ∈ {1, 2}n and define Mw ≥ m+ Int(n/2), where Int(r) denotes
the smallest integer that is bigger than r ∈ R and T ∼ Cα1,α2,α3 be H(ξ0)Mw+1-
bounded. Define

f1(T, ζ) := −PRMw

z P adA(T )PR
Mw+2

z P

+ PR
Mw+1

z P adH(ξ0)(adA(T ))PR
Mw+2

z P

+ 2
ν∑

σ=1

ζσPR
Mw+1

z P addΓ(kσ)(adA(T ))PR
Mw+2

z P . (E.1)
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Similarly, for an H(ξ0)Mw-bounded T ′ ∼ Cα′1,α′2,α′3 we define

f2(T ′, ζ) := P adA(T ′)PR
Mw+1

z P , (E.2)

and
R2(T ′, ζ) := P |Aη〉〈(T ′)∗η|PRMw+1

z P + |T ′η〉〈Aη|PRMw+1

z P (E.3)

Moreover, we put

R1(ζ) := R
Mw+1

z P (|BMw+1(ζ)η〉〈Aη| − |Aη〉〈(BMw+1(ζ))∗η|)RMw+1

z P

+R
Mw+1

z P (|FMw+1(ζ)η〉〈Aη| − |Aη〉〈(FMw+1(ζ))∗η|)RMw+1

z P

+R
Mw+1

z P adA(FMw+1(ζ))R
Mw+1

z P , (E.4)

where BMw+1(ζ) and FMw+1(ζ) are the (H(ξ0) + c)Mw+1-bounded and the finite
rank operator appearing in (6.52) in the case m = Mw + 1.

Lemma E.5. Let n,m ∈ N, w ∈ {1, 2}n and define Mw ≥ m + Int(n/2), where
Int(r) denotes the smallest integer that is bigger than r ∈ R. Put k = nAw and

suppose that h ∈ Hk+1
uv (Rν). Then

adwTP
((H(ξ0 + ζ)− z)m)Rz(ξ0 + ζ)Mw+1 ∈ C1(A),

that is Jw(ζ) := adA

(
adwTP

((H(ξ0 + ζ)− z)m)Rz(ξ0 + ζ)Mw+1
)
∈ B(PH). More-

over, there exists a neighborhood O of ξ0 such that the map ζ 7→ Jw(ζ) is Lipschitz
continuous in operator norm. In particular,

adA

(
adwTP

(Rz)R
Mw+1

z

)
P

=

[
adwT ((H(ξ0)− z)m) + adwT (Bm(ξ)) + adwT (Fm(ζ))

]
f1((H(ξ0)− z)Mw+1, ζ)

+

[
adwT ((H(ξ0)− z)m) + adwT (Bm(ζ)) + adwT (Fm(ζ))

]
f1(BMw+1(ζ), ζ)

+ f2(adwT ((H(ξ0)− z)m), ζ) + f2(adwT (Bm(ζ)), ζ) + f2(adwT (Fm(ζ)), ζ)

+ R(ζ), (E.5)

where

R(ζ) = R1(ζ) + R2(adwT ((H(ξ0)− z)m), ζ) + R2(adwT (Bm(ζ)), ζ)

+ R2(adwT (Fm(ζ)), ζ).
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Proof: For ` ∈ N define

S`w = adwT (H(ξ0)− z)`), S`A = adA((H(ξ0)− z)`)

and abbreviate
H ≡ PH(ξ0 + ζ)P , Rz ≡ Rz(ξ0 + ζ).

Let ψ, ψ′ ∈ C∞0 . We use Lemma E.3 in order to calculate

〈Pψ, [A, adwTP
((H − z)m)R

Mw+1

z ]Pψ′〉

= 〈Pψ, adwT ((H(ξ0)− z)m)P [A,R
Mw+1

z ]Pψ′〉

+ 〈Pψ, adwT (Bm(ζ))P [A,R
Mw+1

z ]Pψ′〉

+ 〈Pψ, adwT (Fm(ζ))P [A,R
Mw+1

z ]Pψ′〉

+ 〈Pψ, [A, adwT ((H(ξ0)− z)m)]PR
Mw+1

z Pψ′〉

+ 〈Pψ, [A, adwT (Bm(ζ))]PR
Mw+1

z Pψ′〉

+ 〈Pψ, [A, adwT (Fm(ζ))]PR
Mw+1

z Pψ′〉. (E.6)

Let Ψ,Ψ′ ∈ D(A). Making use of (6.52) we compute

〈PΨ, [A,R
Mw+1

z ]PΨ′〉

= −〈PΨ, R
Mw+1

z P [A, (H(ξ0)− z)Mw+1]PR
Mw+1

z PΨ′〉

− 〈PΨ, R
Mw+1

z P [A,BMw+1(ζ)]PR
Mw+1

z PΨ′〉

+ 〈PΨ, R
Mw+1

z P |BMw+1(ζ)η〉〈Aη|PRMw+1

z PΨ′〉

− 〈PΨ, R
Mw+1

z P |Aη〉〈(BMw+1(ζ))∗η|PRMw+1

z PΨ′〉

− 〈PΨ, R
Mw+1

z P [A,FMw+1(ζ)]PR
Mw+1

z PΨ′〉

+ 〈PΨ, R
Mw+1

z P |FMw+1(ζ)η〉〈Aη|PRMw+1

z PΨ′〉

− 〈PΨ, R
Mw+1

z P |Aη〉〈(FMw+1(ζ))∗η|PRMw+1

z PΨ′〉.

Let T ∼ Cα1,α2,α3 be H(ξ0)Mw+1-bounded. It is easy to check that

−〈PΨ, R
Mw+1

z P [A, T ]PR
Mw+1

z PΨ′〉 = 〈PΨ, f1(T, ξ)PΨ′〉,

where f1(T, ξ) is defined in (E.1). For an H(ξ0)Mw-bounded T ′ ∼ Cα′1,α′2,α′3 we
compute

〈Pψ, [AT ′]PRMw+1

z Pψ′〉 = 〈Pψ, f2(T ′, ζ)Pψ′〉+ 〈Pψ,R2(T ′, ζ)Pψ′〉,

where f2(T ′, ζ) is defined in (E.2) and R2(T ′, ζ) in (E.3). Moreover,

〈PΨ, [A,Fw(ζ)]PΨ′〉 = 〈PΨ, adA(Fw(ζ))PΨ′〉.
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Since (H(ξ0) − z)` ∼ Cα1,α2,α3 for some αi and is (H(ξ0) − z)`-bounded and
BMw+1(ζ) ∼ Cα′1,α′2,α′3 for some α′i is (H(ξ0)− z)Mw+1-bounded, (E.6) is a bounded
form. Lipschitz continuity follows from

(H(ξ0) + c)Mwf1(T, ξ)

= −PDMw(ζ, z)P adA(T )(H(ξ0) + c)−Mw−2PDMw+2(ζ)P

+ PDMw(ξ, z)RzP adH(ξ0)(adA(T ))(H(ξ0) + c)−Mw−2PDMw+2(ζ, z)P

+ 2
ν∑

σ=1

ζσPDMw(ζ, z)RzP addΓ(kσ)(adA(T ))(H(ξ0) + c)−Mw−2PDMw+2(ζ, z)P

and

f2(T ′, ζ) = P adA(T ′)(H(ξ0) + c)−Mw−1PDMw+1(ζ, z)P

+ P |Aη〉〈(T ′)∗η|PRMw+1

z P + |T ′η〉〈Aη|PRMw+1

z P .

This completes the proof by Lemma 6.13. �

In analogy to (4.20) we define

i∏
p=1

Swp(ζ)R
Qp
−c := Swi(ζ)R

Qi
−c · · ·Sw1

(ζ)R
Q1

−c , (E.7)

where

Swp(ζ) ∈
{

ad
wp
T ((H(ξ0)− z)Mp), ad

wp
T (BMp(ζ)), ad

wp
T (FMp(ζ)).GMp,wp

(ζ)
}
,

Here, wp ∈ In for some n ∈ N, Mp ∈ N, Qp ≥Mp + Int(n/2) and Bwp
(ζ), Fwp(ζ)

are as in Lemma E.3 and GMp,wp
(ξ) is as in Lemma E.5. Moreover, we define

Ui,k,b(ζ) := Span{RB

z

j∏
p=1

Swp(ξ)R
Qp
−c | B ≥ b, 1 ≤ j ≤ i ,

i∑
p=1

nAwp = k,

Qp ≥Mp + Int(|wp|/2|)} . (E.8)

By Lemma E.5 adA(Ui,k,b(ζ)), where Ui,k,b(ζ) ∈ Ui,k,b(ζ), can be expressed as a
linear combination of operators Ui′,k′,b′(ζ) as in (E.7), where some of the Q′p are

possibly not large enough for these operators to be elements of some Ui′,k′,b′(ζ).
In order to resolve this issue we begin to redsitribute resolvents Rz from left

to right. Due to Lemma E.3 this redistribution process is going to preserve the
structure of the spans Ui′,k′,b′(ζ). Hence, by a word-by-word copy of the proof of
Lemma 4.4, we can prove the following statement:
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Lemma E.6. Let i, k, b ∈ N and suppose b ≥ 3 · 2i. Then

adA(Ui,k,b(ζ)) ⊂ Ui+1,k+1,b−3·2i(ζ).

Once we have proven this statement however, we can proceed as in the case
without projections and prove the analog of Proposition 4.5.

Proposition E.7. Let k ∈ N. There exists mk ∈ N so that R
m

z ∈ Ck(A) for all
m ≥ mk. Moreover,

adk
A

(
Rz(ξ0 + ζ)m

)
∈ Uk,k,m−mk(ζ). (E.9)

As a direct consequence of Lemma 6.13 we obtain that the map

ζ 7→ adk
A

(
Rz(ξ0 + ζ)m

)
is Lipschitz continuous on any bounded neighborhood of 0. Clearly, we may carry
on with this type of argument and develop an analog of the strategy used to prove
Theorem 4.6 in a step by step adaptation of every tool needed along the way. We
begin with adapting (4.26).

i∏
p=1

R
θ

zSwpR
Qp
z0

:= R
θ

zSwiR
Qi
z0
· · ·Rθ

z , SwpR
Qp
−c , (E.10)

where the constants are as in (4.26) and the operators Swp are as in (E.7). As
above we proceed by defining

Vi,k,b(ξ) := Span{RB

z

j∏
p=1

Swp(ξ)R
Qp
−cRz | B ≥ b, 1 ≤ j ≤ i ,

i∑
p=1

nAwp = k,

θ ∈ {0, 1}, Qp ≥Mp + Int(|wp|/2|)}. (E.11)

Once more we have all necessary tools at our disposal to prove

Lemma E.8. Let i, k, b ∈ N and suppose b ≥ 5 · 2i. Then

adA(Vi,k,b(ζ)) ⊂ Vi+1,k+1,b−5·2i(ζ).

and

Lemma E.9. Let k ∈ N. There exists mk ∈ N such that R−cRz ∈ C(A) for all
m ≥ mk and

adA(R−c(ξ0 + ζ)mRz(ξ0 + ζ)) ∈ Vi+1,k+1,b−5·2i(ζ).

In particular, the map ζ 7→ adA(R−c(ξ0 + ξ)mRz(ξ0 + ζ)) is Lipschitz continuous
on any bounded neighborhood of 0.
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by literally copying the proofs of Lemma 4.9 and Lemma 4.10. With these two
structural results we are then in a position to invoke a word by word copy of the
proof of Theorem 4.6 and obtain that the following similar result holds.

Theorem E.10. Let f ∈ C∞0 (R). For all k ∈ N we have that

f(PH(ξ0 + ζ)P ) ∈ Ck(A).

Moreover, the map ζ 7→ adk
A

(f(PH(ξ0 + ζ)P )) is Lipschitz continuous w.r.t. op-
erator norm on every bounded neighborhood of 0.
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1 Introduction

The investigation of the essential spectrum of a self-adjoint operator via spec-
tral deformation techniques goes back to two papers by Aguilar and Combes and
Balslev and Combes, see [3] and [6]. The starting point of the whole theory is
the behavior of the Laplace operator under certain unitary transformations. In
particular, we define the unitary group of dilations on L2(Rn) by

U(θ)ψ(x) = e
n
2
θψ(eθx).

Under conjugation with U(θ) the Laplace operator transforms into

U(θ)∆U(θ)−1 = e−2θ∆.

Thus, the spectrum of e−2θ∆ is a half-line starting at 0 which has an angle of
−2Im(θ) to the real line. The situation can be interpreted in the following way: by
conjugating ∆ with U(θ) the spectrum of the transformed operator swings out into
the complex plane with an angle dependent on size and sign of the imaginary part
of θ. The observation by Aguilar and Combes was that for certain potentials V , the
Schrödinger operator H = −∆ + V exhibits a similar behavior when conjugated
with U(θ). This idea is generalized by Balslev and Combes to the situation of
many-body Hamilton operators. The class of potentials for which this strategy
works are called dilation analytic. The theory of dilation analytic potentials and
its application to quantum mechanics is summed up in [45]. However, it should
be noted that its applicability is limited. The reason being that many physically
relevant potentials are not dilation analytic. An example of this is the Hamiltonian
describing several electrons in the external field generated by several nucleons, the
interaction terms of the type |x−X|−1, where x is an electron position and X the
position of a nucleon, are not dilation analytic, see [30]. Several authors have then
begun to further develop an analogue of the theory in the non dilation analytic
case, see [8, 30,48,51].

One of the great successes of the theory lies in the examination of so-called reso-
nances. A resonance can be defined as the poles of the meromorphic continuation
of certain matrix elements. More precisely, suppose that for a self adjoint operator
H on H the matrix elements

M(ψ, ψ′, z) := 〈ψ, (H − z)−1ψ′〉,

have a meromorphic continuation into an open subset U ⊂ C for certain vectors
ψ, ψ′. The poles of this continuation are called resonances of the operator H.
It should be stressed that typically real poles correspond to eigenvalues of H.
We will now sketch how this continuation can be constructed in the context of
dilation analyticity. Put Hθ = U(θ)HU(θ)−1 for θ ∈ R. One first needs to rewrite
M(ψ, ψ′, z) as

Mθ(ψ, ψ
′, z) = 〈U(−θ)ψ, (Hθ − z)−1U(θ)ψ′〉
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and then analytically extend to complex θ in a certain region Ω in the complex
plane for fixed z. For this expression to be meaningful the vectors ψ, ψ′ are chosen
in the set of analytic vectors of the generator A of the unitary group U(θ). Then we
fix θ0 in Ω and extend Mθ0(ψ, ψ′, z) meromorphically in z. The study of resonances
plays a huge role in quantum physics and in particular in perturbation theory, for
an application in the context of the quantum N -body problem see [31]. A broader
discussion of the topic not just aiming at applications in physics can be found
in [55]. For a textbook discussion and overview, see [26, 27]. It should be noted
however, that the definition of resonances is a subtle business, since our definition
depends on the set of vectors from which ψ, ψ′ are drawn as well as the unitary
group. We will not address this issue here, however a discussion can be found in
an overview article by Simon, [52], and the textbook [27] by Hislop and Sigal.

It is interesting to note that the generator A of the unitary group of dilations is
given by A = 1

2
(p · x+ x · p), where p = i∇. This operator appears in the context

of Mourre theory as the conjugate operator in spectral theory. It is therefore
natural to ask whether there is a connection between the two notions. Formally, the
transformed operator Hθ = e−iθAHeiθA is given as the power series H−iθ adA(H)+
θ2

2!
i2 ad2

A(H)−· · · , where ik adkA(H) are the self adjoint operators implementing the
k-th commutator form [iA, [iA, · · · [iA,H]] · · · ]. In the context of Mourre theory a
key role is played by the so-called limiting absorption principle in which certain
boundary values of the resolvent are constructed as a limit between weighted spaces
controlled by the conjugate operator A:

〈A〉−s(H − λ∓ i0)−1〈A〉−s := lim
ε↘0
〈A〉−s(H − λ∓ iε)−1〈A〉−s. (1.1)

The concept of conjugate operators and their applicability to spectral problems
in quantum mechanics goes back to Mourre in his paper [41]. Maybe one of the
first results which actively connects Moure theory to the mentioned formal power
series goes back to the paper [32] by Jensen, Perry and Mourre. There, n times
differentiability of the limiting operator in (1.1) is established, if the map θ 7→ Hθ

is n times differentiable as a map between C and B(H, D(H)), where D(H) is
the Banach space obtained by equipping D(H) with the graph norm of H. Their
result is then applied to scattering theory of Schrödinger operators.

In the present paper this idea is developed in a systematic and abstract fash-
ion. Starting from a self-adjoint operator (Hamiltonian) and an arbitrary unitary
group U(θ) generated by a self adjoint operator A the equivalence of the existence
of an analytic continuation of the map θ 7→ Hθ to the existence of all commu-
tators ik adkA(H) as H-bounded operators satisfying the estimate ‖ adkA(H)(H +
i)−1‖ ≤ Ckk! for some C > 0 is shown. As a consequence the power series

Hψ−iθ adA(H)ψ+ θ2

2!
i2 ad2

A(H)ψ−· · · is summable for |θ| < C−1 and all ψ ∈ D(H).
The corresponding operator is closed and densely defined. If for κ > 0 one further
assumes a Mourre estimate

[H, iA] ≥ C − C ′E(|H − λ| ≥ κ)〈H〉+K
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around a point λ ∈ σ(H), absence of essential spectrum of Hθ in the set Yθ =
{z | Re(z) ∈ (λ− κ/2, λ+ κ/2), Im(z) > −CIm(θ)} can be shown, where |θ| < R
and Im(θ) > 0. Consequently, the operator Hθ only has discrete spectrum in Yθ.
The rough idea behind this argument can be easily explained. For a normalized
sequence Pψn such that (PHθP − µP )ψn → 0, where µ ∈ σ(PHθP ), we compute
for Im(θ) > 0

Imµ = −〈Pψn, (PHθP − µP )ψn〉 − Imθ〈Pψn, i adA(H)Pψn〉+O(|θ|2).

Ignoring the error terms coming from −C ′E(|H − λ| ≥ κ)〈H〉+K in the Mourre
estimate for the commutator we obtain

Imµ ≤ −CImθ − 〈Pψn, (PHθP − µP )ψn〉+O(|θ|2) + remainder

If the remaining error terms are well behaved in the limit n→∞, we have reached
the conclusion that there cannot be any spectrum of PHθP with imaginary part
strictly larger than −CImθ. The corresponding statement for the essential spec-
trum of Hθ follows from the Feshbach method. It is tempting to think of the Pψn
as a Weyl sequence. Such a sequence however need not exist, because it is not
clear whether PHθP is a normal operator. It should further be noted that the
width of the set Yθ is needed to control the remainder terms.

Finally, if H is substituted by an analytic family {H(ξ)}ξ∈U , where U ⊂ Cn,
of type A, this deformation technique is then used to apply Kato’s perturbation
theory (which clearly holds at least in the case n = 1) to eigenvalues of Hθ(ξ) =
U(θ)H(ξ)U(θ)−1 by ensuring that all results in the single operator case come with
a certain uniformity in ξ. If the family Hθ(ξ) happens to have real eigenvalues,
these have to be eigenvalues of the operators H(ξ). Thus, our result allows an
analytic perturbation theory of eigenvalues of H even if these are embedded in the
essential spectrum.

A trivial case of an operator which admits a band of embedded eigenvalues
depending real-analytically on a parameter is provided in the following example.

Example 1.1 ( [12]). Let H0 = ∆2 as an operator on H4(Rd). Let f ∈ C∞c (Rd)
be nonnegative f ≥ 0.

Then, for any ξ > 0 and since (−∆ + ξ)−1 is positivity improving, we have
u(ξ) = (−∆ + ξ)−1f is Schwarz class and strictly positive everywhere.

Put

V (ξ) = − 1

u(ξ)
(−∆− ξ)f ∈ C∞c (Rd).

Then

V (ξ)u(ξ) = −(−∆− ξ)f = −(−∆− ξ)(−∆ + ξ)u(ξ) = −∆2u(ξ) + ξ2u(ξ).

Hence (H0 + V (ξ))u(ξ) = ξ2u(ξ) and consequently, H(ξ) = H0 + V (ξ) has an
embedded eigenvalue at the energy E = ξ2.
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One can choose to read V (ξ) as a function of ξ > 0. The associated family of
operators H(ξ) = ∆2 + V (ξ) will now have a persistent (real analytic) band of
embedded eigenvalues E(ξ) = ξ2.

Since the strategy of the paper is roughly speaking to transform the Hamiltonian
into a non self adjoint operator with receding essential spectrum in the area of
interest, the question whether or not our assumptions are too strong arises. In
particular, one could be tempted to hope that the minimal requirements of Kato’s
theory are sufficient. This however is not the case, since the following example
illustrates that one cannot expect the usual conclusions of Kato to hold true,
when one considers analytic perturbations of self-adjoint operators with embedded
eigenvalues.

Example 1.2. Let H = L2(R2)⊕ C and define

H(ξ) =

(
−∆− ξ21[|x| ≤ 1] 0

0 0

)
with domain H2(R2)⊕C. There exist ρ > 0, such that For ξ ∈ R with 0 < |ξ| < ρ,
the operator −∆ − ξ21[|x| ≤ 1] has a unique eigenvalue λ(ξ), which is simple
and depends real analytically on 0 < |ξ| < ρ. See [?]. We may extend λ to
a continuous function on (−ρ, ρ) by setting λ(0) = 0. Hence, for ξ ∈ (−ρ, ρ),
σpp(H(ξ)) = {λ(ξ), 0} and ξ → H(ξ) is clearly analytic of Type (A). We observe
two things: (I) At ξ = 0, there is a single simple eigenvalue λ = 0. But we have
two branches of eigenvalues coming out for ξ 6= 0. That is, the total multiplicity
of the eigenvalue cluster is not upper semi continuous. (II) The lower of the two
eigenvalue branches ξ → λ(ξ) does not have an algebraic singularity at ξ = 0,

more precisely; |λ(ξ)| ≤ e−(aξ2)−1
for some a > 0, cf. [50]. For a closely related

example, see [24, p. 585].

2 General Theory

2.1 Generalized Dilations

In this subsection H and A denotes two self-adjoint operators on a complex sep-
arable Hilbert space H. The inner product 〈·, ·〉 is assumed linear in the second
variable and conjugate linear in the first variable. We associate to an (unbounded)
operator T with domain D(T ), its graph norm ‖ψ‖T = ‖Tψ‖ + ‖ψ‖, as a norm
on the subspace D(T ). We shall frequently, for self-adjoint T , exploit the easy
estimate 1

2
‖ψ‖T ≤ ‖(T + i)ψ‖ ≤ ‖ψ‖T .

We work throughout Section 2 under the following condition:

Condition 2.1.
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1. Abbreviating U(t) = eitA for t ∈ R, we assume U(t)D(H) ⊂ D(H) for all
t ∈ R and

∀ψ ∈ D(H) : sup
|t|≤1

‖HU(t)ψ‖ <∞.

2. The quadratic form on D(H) ∩D(A)×D(H) ∩D(A) given by

(ψ, ϕ) 7→ 〈Hψ,Aϕ〉 − 〈Aψ,Hϕ〉

is continuous w.r.t. the norm ‖(ψ, ϕ)‖H := ‖ψ‖H + ‖ϕ‖H .

3. There exists R > 0 such that for any ψ ∈ D(H), the map

R 3 t 7→ Htψ := U(t)HU(−t)ψ

extends to a strongly analytic H-valued function {Hθψ}θ∈SR , where

SR := {z ∈ C | |Im(z)| < R}.

This defines a collection of linear operators {Hθ}θ∈SR with domain D(H).

4. For Hθ defined above, note that Hθ(H + i)−1 ∈ B(H) by the closed graph
theorem.2 We suppose that

M := sup
θ∈BCR(0)

‖Hθ(H + i)−1‖ <∞.

Remarks 2.2. 1. The Conditions 2.1.1 and 2.1.2 go back to Mourre [41] and
are equivalent to saying that H is of class C1(A) with commutator [H,A]◦

bounded as an operator from D(H) into H. See [38, Prop. B.11].

2. Another consequence of Conditions 2.1.1 and 2.1.2 is the density of D(H) ∩
D(A) in both D(H) and D(A), equipped with their respective graph norms.
See [38, Lemma. B.10].

3. It suffices that the map θ 7→ Hθψ extends from (−R,R) to BCR(0) in order
to obtain an extension into SR. Indeed, since we assume that U(t)D(H) ⊂
D(H), the composition HθU(t) makes sense on D(H) for all θ ∈ BCR(0). Let
t ∈ R and θ ∈ (t−R, t+R), then

Hθψ = U(t)Hθ−tU(−t)ψ

extends from (t−R, t+R) to an analytic function on BCR(t) for all ψ ∈ D(H).
Sliding t along the real axis produces an analytic continuation of Hθψ to the
whole strip SR.

2Hθ is closable, since Hθ̄ ⊂ H∗θ .
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We recall from [33] that if U ⊂ C is open then a family {Tθ}θ∈U of closed
operators is said to be analytic of Type (A) if the domain of Tθ does not depend
on θ and the map U 3 θ → Tθψ is analytic for any ψ in the common domain. If
U ⊂ Cd, then {Tθ}θ∈U is said to be analytic of Type (A), if it is separately analytic
of Type (A) in each of its d variables.

Lemma 2.3. Assume Conditions 2.1.1 and 2.1.2. We have

1. For any ψ ∈ D(H), θ ∈ C and m ∈ N, we have ψm(θ) := e−A
2/(2m)+iθAψ ∈

D(H).

2. If θ ∈ R, we have limm→∞ ψm(θ) = U(θ)ψ in the topology of D(H). In
particular (θ = 0), the set of vectors in D(H) that are analytic vectors for A
are dense in D(H).

3. For all ψ ∈ D(H) and m ∈ N, the map θ → Hψm(θ) is entire.

Proof. Put ψm(θ) = e−A
2/(2m)+iθAψ. Using the Fourier transform, we may write

ψm(θ) =

√
2π

m
e−mθ

2/2

∫
R

e−mt
2/2+mθtU(t)ψ dt.

Note that for any m ∈ N, the integral converges absolutely in D(H), since
‖U(t)ψ‖D(H) ≤ ec|t|, for all t ∈ R, where c > 0 is some constant. This is a
consequence of Condition 2.1.1 and implies 1.

Let θ ∈ R. To show that ψm(θ) → U(θ)ψ in D(H), it suffices to argue that
Hψm(θ)→ HU(θ)ψ in H. Since U(θ)ψ ∈ D(H) for real θ, it suffices to prove this
with θ = 0. Here we observe that∫

|t|≥1

e−mt
2/2U(t)ψ dt→ 0,

due to the estimate ‖U(t)ψ‖D(H) ≤ ec|t| from before. Furthermore, the estimate

‖(HU(t)− U(t)H)ψ‖ ≤ C|t|, (2.2)

valid for |t| ≤ 1 with some C > 0, cf. [?, Props. 2.29 and 2.34] (applied with
S = H, H1 = D(H), H2 = H, W1(t) = U(t)|D(H) and W2(t) = U(t)), finally yields
2.

We now establish 3. Since the map θ → ψm(θ) is entire it suffices, by Vitali-
Porter’s theorem, to show that n‖H(H+in)−1ψm(θ)‖ is bounded locally uniformly
in θ ∈ C. But this follows easily from the estimates already invoked above.

It turns out that under the assumption in Condition 2.1.1, the remaining three
items are equivalent to the statement that all iterated commutators of H with A
are H-bounded and satisfy a certain growth bound. If these bounds are satisfied
the analytic continuation of the family Hθ can be written as a power series in a
neighborhood of 0. More precisely, we can prove

136



Proposition 2.4. Assume Condition 2.1.1. Then the following two properties are
equivalent:

1. Conditions 2.1.2, 2.1.3 and 2.1.4.

2. There exists a constant C > 0 such that: the iterated commutators adkA(H)
exist as H-bounded operators for all k ∈ N and∥∥adkA(H)(H + i)−1

∥∥ ≤ Ckk!. (2.3)

In the confirming case, {Hθ}θ∈BC
(3C)−1 (0) is an analytic family of Type (A), and for

all θ ∈ BC(3C)−1(0) and ψ ∈ D(H), we have

Hθψ :=
∞∑
k=0

(−θ)k

k!
ik adkA(H)ψ (2.4)

and
1

2
‖ψ‖H ≤ ‖ψ‖Hθ ≤ 2‖ψ‖H . (2.5)

Remark 2.5. If one supposes 1 with a given R and M coming from Condition
2.1.3 and 2.1.4, respectively, then one may choose C = max{1,M}/R in (2.3).

Conversely, if one assumes 2 with a given C, then one may choose R = (3C)−1

and M = 3.
Since we have elected to state our assumptions in terms of an analytic extension

of H, we shall below employ the estimate (2.3) with

C =
max{1,M}

R
. (2.6)

The expansion (2.4) of Hθ and the relative bounds (2.5) will then hold true for
θ ∈ BCR′(0), where

R′ =
1

3C
=

R

3 max{1,M}
. (2.7)

Proof. We begin with 2 ⇒ 1. Therefore, we assume that for all k, the iterated
commutators exist as H-bounded operators adkA(H) and that (2.3) holds.

That Condition 2.1.2 follows is obvious (take k = 1).
Note that Condition 2.1.1 ensures that Hθ is well-defined for real θ as an operator

with domain D(H).
Exploiting (2.3), we may for ψ ∈ D(H) and |θ| < 1/C estimate

∞∑
k=0

∥∥∥θk
k!

adkA(H)ψ
∥∥∥ ≤ ‖(H + i)ψ‖

1− C|θ|
. (2.8)
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where ‖ · ‖H denotes the graph norm of H. Hence, the prescription

Sθψ :=
∞∑
k=0

(−θ)k

k!
ik adkA(H)ψ (2.9)

defines an analytic H-valued function defined in the disc BC1/C(0). It is now easy

to check that the map ψ 7→ Sθψ defines – for each θ ∈ BC1/C(0) a linear operator

with domain D(H).
The estimate (2.8) implies that

∀ψ ∈ D(H) :
∥∥Sθψ∥∥ ≤ (1− C|θ|)−1‖ψ‖H , (2.10)

and in particular that Sθ is H-bounded.
To show that Sθ is closed, i.e., D(Sθ) = D(H), we establish that the two cor-

responding graph norms are equivalent for θ in a sufficiently small disc centered
at 0. Note that the (2.10) already establishes that there exists a constant C1 > 0
independent of θ ∈ BC1/(3C)(0) such that

‖ψ‖Sθ ≤ C1‖ψ‖H .

In complete analogy to the first estimate, we estimate for ψ ∈ D(H) and θ ∈
BC1/C(0):

‖ψ‖H = ‖ψ‖+ ‖Hψ‖ ≤ ‖ψ‖Sθ +
∞∑
k=1

(C|θ|)k‖ψ‖H

= ‖ψ‖Sθ +
C|θ|

1− C|θ|
‖ψ‖H . (2.11)

Hence, for θ ∈ BC1/(3C)(0) we have

‖ψ‖H ≤ 2‖ψ‖Sθ .

This proves the claimed equivalence of graph norms and thus that Sθ is closed as
an operator with domain D(H) for all θ ∈ BC1/(3C)(0). Abbreviating R = 1/(3C),

this proves that {Sθ}θ∈BCR(0) is an analytic family of Type (A). (Note that redoing

the estimate (2.8) using |θ| ≤ 1/(3C) yields ‖ψ‖Sθ ≤ 2‖ψ‖H as well.)
It remains, recalling Remark 2.2 3, to argue that Sθ = Hθ for θ ∈ (−R,R). Let

ψ, φ ∈ D(H) and put ψm = e−A
2/(2m)ψ and φm = e−A

2/(2m)φ. Then, with the
notation of Lemma 2.3, we have

fm(θ) = 〈ψm, Hθφm〉 = 〈ψm(θ̄), Hφm(θ)〉

a priori for real θ, but extending to an entire function of θ. Here we used
Lemma 2.3 3.
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We may use the assumption on the existence of iteratedH-bounded commutators
adkA(H) to compute

dkfm
dθk
|θ=0 = 〈ψm, (−i)k adkA(H)φm〉.

Since analytic functions in BCR(0) are determined by their derivatives at zero, we
may conclude that

〈ψm, Hθφm〉 = 〈ψm, Sθφm〉
for all θ ∈ BCR(0). Finally, we exploit Lemma 2.3 once more to compute the
limit m → ∞ in the above identity and conclude that for all θ ∈ (−R,R) and
ψ, φ ∈ D(H)∩D(A), we have 〈ψ,Hθφ〉 = 〈ψ, Sθφ〉. By density of D(H)∩D(A) in
D(H), we conclude that Hθ = Sθ for θ ∈ (−R,R) as desired. It now follows from
(2.10) that we may choose M = 3 in Condition 2.1.4.

In order to prove that 1 ⇒ 2, we assume that Conditions 2.1.2– 2.1.4 holds
true. Let η, ψ ∈ D(H). By Condition 2.1.1 and the analyticity of θ 7→ Hθψ, we
may use [40, Prop. 2.2] to argue that all iterated commutators of A with H exists
and are implemented by H-bounded operators, provided we can establish that for

every j ∈ N there exist H-bounded operators H
(j)
0 , such that

∀θ ∈ (−R,R) :
dj

dθj
〈η,Hθψ〉|θ=0 = 〈η,H(j)

0 ψ〉.

As a starting point we use the analyticity of θ 7→ Hθψ to obtain a power series
expansion for |θ| < r < R, that is

〈η,Hθψ〉 =
∞∑
k=0

θkbk(η, ψ), bk(η, ψ) =
1

2πi

∫
Γr

θ−k−1〈η,Hθψ〉 dθ, (2.12)

where η ∈ H and Γr is the circle in the complex plane with radius r centered at
0. Observe that the bk(η, ψ)’s define sesquilinear forms.

Using Condition 2.1.4, we get an M > 0 such that

|bk(η, ψ)| ≤ ‖η‖‖ψ‖H
M

Rk
,

where we also took the limit r → R. For every ψ ∈ D(H) (and k ∈ N) there thus

exists a vector ψ̃ such that bk(η, ψ) = 〈η, ψ̃〉 for all η ∈ D(H). It follows that the

assignment Bkψ := ψ̃ defines an H-bounded linear operator on D(H). With this
construction, we have

dj

dθj
〈η,Hθψ〉|θ=0 = 〈η, k!Bkψ〉

and [40, Prop. 2.2] now implies that (2.3) holds with C := max{1,M}/R.
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In the following we abbreviate

Wθ := Hθ −H =
∞∑
k=1

(−θ)k

k!
ik adkA(H) (2.13)

as an operator with domain D(H). Observe for θ ∈ BCR′(0) the estimate

‖Wθ(H + i)−1‖ ≤ C|θ|
1− C|θ|

≤ 3C

2
|θ|, (2.14)

We have the following, rough but sufficient, spectral localization result.

Proposition 2.6. Assume Condition 2.1. Then

∀θ ∈ BCR′(0) : σ(Hθ) ⊂
{
x+ iy

∣∣ |y| ≤ 4C|θ|(|x|+ 1)
}
.

Proof. Let z ∈ C with Im z 6= 0 and compute on D(H):

Hθ − z =
[
1 +Wθ(H − z)−1

]
(H − z)

Hence, Hθ − z is invertible if ‖Wθ(H − z)−1‖ < 1 due to the Neumann series. The
norm appearing in the previous inequality can be estimated trivially by

‖Wθ(H − z)−1‖ ≤ ‖Wθ(H + i)−1‖ sup
p∈R

|p+ i|
|p− z|

.

Let c > 0. Suppose z = x + iy with |y| ≥ c(|x| + 1). Then |p + i|2/|p − z|2 ≤
(p2 + 1)/((p − x)2 + c2x2 + c2) ≤ 4/c2 uniformly in p, x and y. Using (2.14), we
have:

‖Wθ(H − z)−1‖ ≤ 3C|θ|
c

.

for z = x + iy with |y| ≥ c|x| The choice c = 4C|θ| ensures convergence of the
Neumann series.

Lemma 2.7. Assume Condition 2.1 and let θ ∈ BCR′(0). We have

D(H∗θ ) = D(H) and H∗θ = Hθ.

Proof. Let ψ, φ ∈ D(H). We compute

〈
ψ,Hθφ

〉
=
∞∑
k=0

〈
ψ,

(−θ)k

k!
ik adkA(H)φ

〉
=
∞∑
k=0

〈(−θ)k

k!
ik adkA(H)ψ, φ

〉
=
〈
Hθψ, φ

〉
.
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Hence Hθ ⊂ H∗θ . Conversely, let φ ∈ D(H), ψ ∈ D(H∗θ ) and set

y = max
{

1, 8CR′
}
. (2.15)

Observe that iy ∈ ρ(Hθ) \ R, due to Proposition 2.6. We compute, using the
notation from (2.13)

|〈ψ,Hφ〉| ≤ |〈ψ,Hθφ〉|+ |〈ψ,Wθφ〉|
= |〈ψ,Hθφ〉|+ |〈ψ, (Hθ − iy)(Hθ − iy)−1Wθφ〉|
≤ ‖H∗θψ‖‖φ‖+ ‖(H∗θ + iy)ψ‖‖(Hθ − iy)−1Wθφ‖.

Note that
Hθ − iy = (H − iy)(1 + (H − iy)−1Wθ)

and that, recalling (2.7), (2.14) and (2.15),

∥∥(H − iy)−1Wθ

∥∥ ≤ (sup
x∈R

x2 + 1

x2 + y2

)1/2 ∥∥(H − i)−1Wθ

∥∥ ≤ 1

2
.

Abbreviating Bθ = (1 + (H − iy)−1Wθ)
−1, we may estimate

‖(Hθ − iy)−1Wθφ‖ ≤ ‖Bθ‖‖(H − iy)−1Wθφ‖ ≤ C‖φ‖.

Hence, there exists a Cψ > 0 such that

∀φ ∈ D(H) :
∣∣〈ψ,Hφ〉∣∣ ≤ Cψ‖φ‖,

and therefore we may conclude that ψ ∈ D(H∗) = D(H), exploiting the self-
adjointness of H. This shows that D(H∗θ ) = D(H) and that H∗θ = Hθ.

2.2 The Mourre Estimate

At this stage we will single out a specific energy λ0 ∈ R, where we shall assume that
H has an eigenvalue. In order for the dilated Hamiltonian to have its essential
spectrum out of the way of the eigenvalue, we shall impose a Mourre estimate
locally around λ0. To formulate the requirement, we need the notation EH(B)
for the spectral projection associated with a Borel set B ⊂ R and the self-adjoint
operator H.

Condition 2.8. Let λ0 ∈ R. For the pair of self-adjoint operators H and A
satisfying Condition 2.1, we further assume:

1. λ0 ∈ σpp(H).

2. There exist e, C, κ > 0 and a compact operator K, such that

i adA(H) ≥ e− CEH(R \ [λ0 − κ, λ0 + κ])〈H〉 −K (2.16)

in the sense of quadratic forms on D(H).
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3. We suppose that there exists a conjugation3 C on H satisfying CD(H) ⊂
D(H), CD(A) ⊂ D(A),

CH = HC and CA = −AC.

Notation 2.9. We write P0 = EH({λ0}) for the orthogonal projection onto the
eigenspace of H associated with the eigenvalue λ0. Furthermore, we abbreviate
P 0 = 1−P 0 for the projection onto the orthogonal complement of the eigenspace.

Remarks 2.10. 1. Observe that it is a consequence of Conditions 2.1 2, 2.8 2
and the Virial Theorem [20] that P0 is a finite rank projection.

2. Choosing κ possibly smaller, one may replace the compact operator K in
(2.16) with a positive multiple of the eigenprojection P0 and obtain

i adA(H) ≥ e′ − C ′
(
EH(R \ [λ0 − κ′, λ0 + κ′])〈H〉+ P0

)
, (2.17)

for suitably chosen constants e′ ∈ (0, e], κ′ ∈ (0, κ] and C ′ ≥ C. It is in this
form that we shall use the Mourre estimate, and for convenience we assume
κ′ ≤

√
3.

As a preparation for a Feshbach analysis, we have:

Lemma 2.11. Assume Conditions 2.1, 2.8.1 and 2.8.2. The following three state-
ments are true for all θ ∈ BCR′(0):

1. P 0HθP 0 is a closed operator with domain P 0D(H).

2. [P 0HθP 0]∗ = P 0Hθ̄P 0 on P 0D(H).

3. For all θ ∈ BCR′(0): σ(P 0HθP 0) ⊂
{
x+ iy

∣∣ |y| ≤ 4C|θ|(|x|+ 1)
}

.

Proof. As for 1, note first that HθP 0 with domain D(H) is closed, since P 0D(H) ⊂
D(H) and Hθ with domain D(H) is a closed operator (Proposition 2.4). To con-
clude, observe that the graph of P 0HθP 0 is the range of the open map H ⊕H 3
(ψ, ϕ)→ (P 0ψ, P 0ϕ) ∈ P 0H⊕ P 0H applied to the graph of HθP 0.

We turn to the claim 2. Clearly, P 0Hθ̄P 0 ⊂ [P 0HθP 0]∗. Let ϕ ∈ D([P 0HθP 0]∗)
viewed as an element of P 0H ⊂ H, and compute for ψ ∈ D(H):

〈ϕ,Hθψ〉 = 〈P 0ϕ,Hθ(P 0 + P0)ψ〉
= 〈ϕ, P 0HθP 0ψ〉+ 〈P 0ϕ,HθP0ψ〉.

Since P0 is finite rank operator and Hθ is closed, it follows from the Closed Graph
Theorem, that HθP0 is bounded. Hence, there exists C > 0 such that∣∣〈ϕ,Hθψ〉

∣∣ ≤ C‖ψ‖,
3see Definition A.1.
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which implies that ϕ ∈ D((Hθ)
∗) = D(Hθ̄) = D(H). Here we used Lemma 2.7.

Since P 0H ∩D(H) = P 0D(H), we are done.
The last claim 3 may be established by repeating the proof of Proposition 2.6.

Remarks 2.12. We make some remarks regarding the conjugation C from Con-
dition 2.8 3:

1. Since CD(H) ⊂ D(H) and CH = HC, we readily conclude that CP0 = P0C
and CP 0 = P 0C. We write C also for the conjugation acting in P 0H.

2. As an operator identity on D(H), we have

CHθ = Hθ̄C. (2.18)

3. Finally, invoking Lemma 2.11 as well, as an operator identity on P 0D(H)

CP 0HθP 0 = P 0Hθ̄P 0C. (2.19)

In formulating the following proposition, we make use of the eigenvalue λ0 from
Condition 2.8 and the constants e′ and κ′ from (2.17). The radius R′ was defined
in (2.7).

Proposition 2.13. Assume Conditions 2.1 and 2.8. Abbreviate for σ, ρ > 0 and
θ ∈ C+ = {z ∈ C | Im(z) > 0}:

Rθ(σ, ρ) =
{
z ∈ C

∣∣ Re(z) ∈ (λ0 − ρ, λ0 + ρ), Im(z) ∈ (−σ Im(θ),∞)
}
, (2.20)

There exist constants R′′, ρ > 0 with R′′ ≤ R′, such that

∀θ ∈ BCR′′(0) ∩ C+ : Rθ(e
′/2, ρ) ∩ σ(P 0HθP 0) = ∅. (2.21)

Proof. Using the constants from (2.17), we define a bounded operator

L := C ′EH(R \ [λ0 − κ′, λ0 + κ′])〈H〉(H − λ0)−1. (2.22)

Note that ‖L‖ ≤ 2C ′〈λ0〉/κ′, where we used κ′ ≤
√

3. We claim suitable choices

ρ = min
{

1,
e′

8C ′〈λ0〉/κ′
}
,

R′′ = min
{
R′,

e′

12C(6|λ0|+ 14)(2C ′〈λ0〉/κ′ + 2C)

}
, (2.23)

where C and R′ were defined in (2.6) and (2.7), respectively. Recall that R′′C ≤
R′C ≤ 1/3.

Let θ ∈ C+ ∩ BCR′′(0) and µ ∈ Rθ(e
′/2, ρ) ∩ σ(P 0HθP 0). Note that due to

Lemma 2.11 3, we may estimate

|µ| ≤
(
|λ0|+ ρ+ 1

)(
1 + 16R′2C2

)1/2 ≤ 2|λ0|+ 4. (2.24)
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By Remark 2.12 3 and Lemma 2.11 1 and 2, we may apply Corollary A.3 to
the operator P 0(Hθ − µ)P 0. Thus there exists a sequence ψn ∈ P 0D(H) with
‖ψn‖ = 1, such that

on :=
∥∥P 0(Hθ − µ)P 0ψn

∥∥→ 0 for n→∞. (2.25)

We estimate for all n using (2.5)∥∥P 0ψn
∥∥
H
≤ 2
∥∥P 0ψn

∥∥
Hθ

≤ 2
(∥∥P 0HθP 0ψn

∥∥+
∥∥P0HθP 0ψn

∥∥)
≤ 2
(
on + |µ|+ 2(|µ|+ 1)

)
= 2on + 6|µ|+ 4. (2.26)

Exploiting the power series expansion (2.4) of Hθ, the Mourre estimate (2.17) and
simplifying for real expectation values, we obtain for any n

Im(µ) = Im
〈
P 0ψn, (µ−Hθ)P 0ψn

〉
+ Im

〈
P 0ψn, HθP 0ψn

〉
= Im

〈
P 0ψn, (µ−Hθ)P 0ψn

〉
− Im

〈
P 0ψn, θi adA(H)P 0ψn

〉
− Im

〈
P 0ψn,

∞∑
k=2

(−θ)k

k!
ik adkA(H)P 0ψn

〉
= Im

〈
P 0ψn, (µ−Hθ)P 0ψn

〉
− Im(θ)

〈
P 0ψn, i adA(H)P 0ψn

〉
−
∞∑
k=2

Im
(
(−θ)k

)
k!

〈
P 0ψn, i

k adkA(H)P 0ψn

〉
≤ on − Im(θ)

[
e′ − C ′

〈
P 0ψn, E(|H − λ| ≥ κ′)〈H〉P 0ψn

〉]
−
∞∑
k=2

Im
(
(−θ)k

)
k!

〈
P 0ψn, i

k adkA(H)P 0ψn

〉
. (2.27)

Note that for all k, we have | Im((−θ)k)| ≤ 2k| Im(θ)||θ|k−1. Therefore,∣∣∣ ∞∑
k=2

Im
(
(−θ)k

)
k!

〈
P 0ψn, i

k adkA(H)P 0ψn

〉∣∣∣ ≤ ∞∑
k=2

∣∣Im((−θ)k)∣∣Ck
∥∥P 0ψn

∥∥
H

≤ C
∣∣Im(θ)

∣∣ ∞∑
k=2

2k−1
∣∣θ∣∣k−1

Ck−1
∥∥P 0ψn

∥∥
H

= C
∣∣Im(θ)

∣∣ 2C|θ|
1− 2C|θ|

∥∥P 0ψn
∥∥
H

≤ 6
∣∣Im(θ)

∣∣R′′C2
(
on + 3|µ|+ 2

)
, (2.28)
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where we used (2.26) and that C|θ| ≤ 1/3 in the last step. We estimate using
(2.14), recalling the definition (2.22) of the bounded operator L,

C ′
∣∣〈P 0ψn, EH(R \ [λ0 − κ′, λ0 + κ′])〈H〉P 0ψn

〉∣∣
≤
∥∥LP 0(H − λ0)P 0ψn

∥∥
≤
∥∥L∥∥∥∥P 0(Hθ − µ)P 0ψn

∥∥+
∥∥L∥∥∥∥WθP 0ψn

∥∥+ |λ0 − µ|
∥∥L∥∥

≤
∥∥L∥∥on +

∥∥L∥∥∥∥Wθ(H + i)−1
∥∥∥∥P 0ψn

∥∥
H

+ |λ0 − µ|
∥∥L∥∥

≤ ‖L‖on +
3

2
CR′′‖L‖‖P 0ψn‖H + κ′′‖L‖

≤
∥∥L∥∥(1 + 3CR′′

)
on + 3

(
3|µ|+ 2

)
CR′′

∥∥L∥∥+ ρ
∥∥L∥∥, (2.29)

where we used (2.26) in the final step.
Combining (2.27), (2.28) and (2.29) we obtain

Im(µ) ≤ − Im(θ)
(
e′ − 3R′′C(3|µ|+ 2)(‖L‖+ 2C)− ρ‖L‖

)
+
(
1 + 6| Im(θ)|(R′′C2 + ‖L‖(1 + 3CR′′))

)
on.

By the choices of ρ and R′′ from (2.23), (2.24) and ‖L‖ ≤ 2C ′〈λ0〉/κ′ to estimate

3R′′C(3|µ|+ 2)(‖L‖+ 2C) + ρ‖L‖ ≤ e′

2

and thus, taking the limit n→∞ using (2.25), we arrive at

Im(µ) ≤ − Im(θ)
e′

2
.

This completes the proof.

The following theorem is proven using the Feshbach reduction method, for which
Proposition 2.13 above is an essential prerequisite.

Theorem 2.14. Assume Conditions 2.1 and 2.8. Then

∀θ ∈ BCR′′(0) ∩ C+ : σess(Hθ) ∩Rθ(e
′/2, ρ) = ∅.

The constants ρ,R′′ and the sets Rθ come from Proposition 2.13.

Proof. By Proposition 2.13 there exist R′′, ρ > 0 such that for all |θ| < R′′ the
closed operator P 0HθP − zP 0 is invertible on P 0H for all z ∈ R := Rθ(e

′/2, ρ).
Define reduced resolvents

Rθ(z) :=
(
P 0HθP 0 − zP 0

)−1
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on P 0H for z ∈ R. Recall that Wθ is defined in (2.13). For z ∈ R we can construct
the Feshbach map on the finite dimensional subspace P0H:

FP0(z) = P0(Hθ − z)P0 − P0HθP 0Rθ(z)P 0HθP0

= P0(Wθ + λ0 − z)P0 − P0WθP 0Rθ(z)P 0WθP0.

Clearly, FP0(z) is a finite rank operator, which can be interpreted as a matrix, and
hence; by isospectrality of the Feshbach reduction [11,25],

µ ∈ σ(Hθ) ∩R ⇔ det
(
FP0(µ)

)
= 0.

By the Unique Continuation Theorem for holomorphic functions, the set σ(Hθ)∩R
are locally finite. Note that µ ∈ σ(Hθ) ∩ R is necessarily an eigenvalue for Hθ.
In order to establish the theorem, it remains to prove that the Riesz projections
pertaining to the eigenvalues in R are of finite rank. Let µ ∈ R∩σ(Hθ) and choose
r > 0, such that D ⊂ R \ σ(Hθ), where D = {z ∈ C | 0 < |z − µ| ≤ r} denotes a
closed punctured disc.

The inverse of FP0(z) for z ∈ D has a Laurent expansion

FP0(z)−1 =
N∑
k=1

B−k(z − µ)−k +
∞∑
k=0

Bk(z − µ)k

convergent in the punctured disc D. Here N ≥ 1 and {Bk}∞k=−N denote linear
operators on P0H. See [43, Sect. 6.1]. Note that the inverse has no essential
singularities since we are in finite dimension.

By [11,25], for z ∈ R\σ(Hθ), the inverse Rθ(z) of Hθ− z can be recovered from
the inverse Feshbach operator and the reduced resolvent via the block decomposi-
tion

P0Rθ(z)P0 = FP0(z)−1,

P0Rθ(z)P 0 = −FP0(z)−1P0WθP 0Rθ(z),

P 0Rθ(z)P0 = −Rθ(z)P 0WθP0FP0(z)−1,

P 0Rθ(z)P 0 = Rθ(z) +Rθ(z)P 0WθP0FP0(z)−1P0WθP 0Rθ(z).

Note that the map z 7→ Rθ(z) is analytic in R, so the only singularities are those
in σ(Hθ), coming from the inverse Feshbach operator.

Let γ : [0, 2π]→ C be the closed curve γ(t) = µ+ reit parametrizing the (outer)
boundary of D, encircling µ. Recall the construction of the Riesz projections

Pθ(µ) =
1

2πi

∫
γ

Rθ(z) dz
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associated with the eigenvalue µ. The block decomposition of Rθ(z), induces a
block decomposition of Pθ(µ) and the Riesz projection have finite rank, provided
P 0Pθ(µ)P 0 are of finite rank. To check this, we compute

P 0Pθ(µ)P 0

=
1

2πi

∫
γ

[
Rθ(z) +Rθ(z)P 0WθP0FP0(z)−1P0WθP 0Rθ(z)

]
dz

=
N∑
k=1

1

2πi

∫
γ

(z − µ)−kRθ(z)P 0WθP0B−kP0WθP 0Rθ(z) dz

+
1

2πi

∫
γ

∞∑
k=0

(z − µ)kRθ(z)P 0WθP0BkP0WθP 0Rθ(z) dz,

where we have used that the function R 3 z 7→ Rθ(z) is analytic. Moreover,
the integral in the last line of the equation above is carried out over an analytic
function, once again, and thus equals 0. The remaining N singular integrals can
be evaluated by Cauchy’s Integral Formula:

1

2πi

∫
γ

(z − µ)−kRθ(z)P 0WθP0B−kP0WθP 0Rθ(z) dz

=
1

(k − 1)!

dk−1

dzk−1
Rθ(z)P 0WθP0B−kP0WθP 0Rθ(z)

∣∣∣∣
z=µ

=
1

(k − 1)!

k−1∑
j=0

(
k − 1

j

)
(−1)k−1j!(k − 1− j)!

×Rθ(µ)1+jP 0WθP0B−kP0WθP 0Rθ(µ)k−j

= (−1)k−1

k−1∑
j=0

Rθ(µ)j+1P 0WθP0B−kP0WθP 0Rθ(µ)k−j.

Since each term in the sum above is a finite rank operator, we conclude that
P 0Pθ(µ)P 0 is of finite rank.

Since σ(H) ∩ R is locally finite and all the associated Riesz projections have
finite rank, we have shown that σess(Hθ) ∩R = ∅. This completes the proof.

Note that

D(U(θ)) =
{
ψ ∈ H

∣∣∣ ∫
R

e2 Im(θ)x dEψ(x) <∞
}
,

where Eψ is the spectral measure for A associated with the state ψ. Motivated by
this we abbreviate for r ≥ 0:

Dr(A) =
{
ψ ∈ H

∣∣∣ ∫
R

e2r|x| dEψ(x) <∞
}
.
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Having established Theorem 2.14, we may conclude the following theorem by in-
voking a general result of Hunziker and Sigal [31, Theorem 5.2].

Theorem 2.15. Assume Conditions 2.1 and 2.8. Let θ ∈ BCR′′(0) with θ 6= 0.
Then the dilated Hamiltonian Hθ have an isolated eigenvalue at λ0. Denote by Pθ
the associated Riesz projection. The following statements hold true:

1. Range(Pθ) is the eigenspace of Hθ pertaining to the eigenvalue λ0.

2. P0 = U(−θ)PθU(θ) as a form identity D| Im(θ)|(A).

3. Rank(P0) = Rank(Pθ).

4. Let r < R′′. Then Range(P0) ⊂ Dr(A).

Remark 2.16. The above theorem implies that eigenfunctions pertaining to the
eigenvalue λ0 are analytic vectors for the operator A. A result previously estab-
lished by brute force in [40]. Here, however, we needed Condition 2.8.3, which
played no role for the method employed in [40].

2.3 Analytic Perturbation Theory

Condition 2.17. Let ξ0 ∈ Rd and U ⊂ Rd an open (connected) neighborhood of
ξ0, A a self-adjoint operator on H and {H(ξ)}ξ∈U a family of self-adjoint operators
on H.

1. D(H(ξ)) = D(H(ξ0)) =: D for all ξ ∈ U .

2. For all ξ in U , the operator H(ξ) satisfies Condition 2.1 with the same con-
stants R and M .

3. The pair A and H(ξ0) satisfies Condition 2.8.

4. There exists θ0 ∈ BCR(0) with Im(θ0) 6= 0, such that the map ξ → Hθ0(ξ)
extends from U to an analytic family of Type (A) defined for ξ ∈ UC ⊂ Cd,
an open (connected) set with U ⊂ UC ∩R.

Remark 2.18. Suppose one strengthens Condition 2.17 and assumes that ξ →
Hθ(ξ) extends to an analytic family of Type (A) not just for one θ0 but for all θ in
a complex disc of radius Θ < R′ around 0. Then one may use Morera’s theorem
to conclude that for any ψ ∈ D and n, we have

in adnA(H(ξ))ψ =
(−1)n

2πi

∫
|θ|=Θ/2

n!θ−n−1Hθ(ξ)ψ dθ,

a priori for real ξ, but since the righ-hand side extends analytically to ξ in a complex
neighborhood of ξ0, so does the left-hand side. This will in particular permit one to
conclude that also for complex ξ does the closed operator H(ξ) iteratively admit
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commutators with A of arbitrary order. (Note that H(ξ̄) ⊂ H(ξ)∗, by unique
continuation.) Furthermore, the iterated commutators must coincide (strongly)
with the analytic extension from real ξ of adnA(H(ξ))ψ, obtained above.

Recall the notation λ0 for the eigenvalue of H(ξ0) with eigenprojection P0. By
Theorem 2.15, we know that λ0 is an isolated eigenvalue of Hθ0(ξ0) with finite rank
eigenprojection Pθ0 . Denote by n0 the common rank of P0 and Pθ0 .

Fix 0 < ρ′ < ρ and 0 < e′′ < e′/2, such that σ(Hθ0(ξ0)) ∩BC2ρ′(λ0) = {λ0}.

Remark 2.19. We may choose r′ > 0, such that for all ξ ∈ BCdr′ (ξ0), we have

σ(Hθ0(ξ)) ∩BCρ′(λ0) = σpp(Hθ0(ξ)) ∩BCρ′(λ0)

and the total multiplicity of the eigenvalues in BCρ′(λ0) equals n0 ( [33, Sect. IV.4]).
By [31, Theorem 5.2], we may now conclude – just as we did with Theorem 2.15

– that

σpp(H(ξ)) ∩ (λ0 − ρ′, λ0 + ρ′) = σ(Hθ0(ξ)) ∩ (λ0 − ρ′, λ0 + ρ′). (2.30)

If the perturbation parameter ξ is one-dimensional, we may in light of Theo-
rem 2.14 and Condition 2.17, invoke Kato, in the form of [33, Theorem VII.1.8],
and conclude the following theorem.

Theorem 2.20. Suppose Condition 2.17 and that d = 1. There exist

• r > 0 with (ξ0 − r, ξ0 + r) ⊂ U ,

• natural numbers 0 ≤ m± ≤ n0 and n±1 , . . . , n
±
m± ≥ 1 with n±1 +· · ·+n±m± ≤ n0,

• real analytic functions λ±1 , . . . , λ
±
m± : I± → R, where I− = (ξ0 − r, ξ0) and

I+ = (ξ0, ξ0 + r),

such that

1. for any ξ ∈ I±, we have σpp(H(ξ))∩ (λ0− ρ′, λ0 + ρ′) = {λ±1 (ξ), . . . , λ±m±(ξ)},

2. The eigenvalue branches I± 3 ξ → λ±j (ξ) have constant multiplicity n±j .

In the case of multiple parameters, the structure of the point spectrum becomes
more complicated, and we need the notion of semi-analytic sets, which we recall
from [35] in the following definition.

Definition 2.21. 1. Let W ⊂ Rν be an open set. We write O(W ) for the
smallest ring4 of subsets of W containing sets of the form {y ∈ W | f(y) > 0}
and {y ∈ W | f(y) = 0} where f ranges over real analytic functions f : W →
R.

4collection of sets stable under complement as well as under finite intersections and unions.
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2. Let M ⊂ Rν be an open set. A subset Σ ⊂M is called a semi-analytic subset
of M if: for any x ∈ M , there exists an open neighborhood W ⊂ M of x,
such that Σ ∩W ∈ O(W ).

We may now formulate our main theorem:

Theorem 2.22. Suppose Condition 2.17. There exists r > 0 and ρ > 0, such
that with M = BR

d

r (ξ0) × (λ0 − ρ′, λ0 + ρ′), we have that Σ = {(ξ, λ) ∈ M |λ ∈
σpp(H(ξ))} is a semi-analytic subset of M .

Proof. Let r′ be chosen as in Remark 2.19. The projection onto the total eigenspace
is the Riesz projection,

Q(ξ) =
1

2πi

∫
|z−λ0|=ρ′

(Hθ0(ξ)− z)−1 dz,

which depends analytically on ξ ∈ BCr′(ξ0). Write V (ξ) = Range(Q(ξ)) for the total
eigenspace of dimension n0 and Π: Cn0 → Π(ξ0) a linear isomorphism identifying
the unperturbed eigenspace with Cn0 . Following [23], we choose r′ such that
‖Q(ξ) − Q(ξ0)‖ ≤ 1/2 for |ξ − ξ0| ≤ r′. Then Θ(ξ) := Q(ξ)|V (ξ0) defines a linear
isomorphism from V (ξ0) onto V (ξ) and

∀ξ ∈ BCdr (ξ0) : T (ξ) = Π∗Θ(ξ)∗Hθ0(ξ)Θ(ξ)Π

defines a family of linear operators on Cd depending analytically on ξ and satisfying
that σ(T (ξ)) = σ(Hθ0(ξ)) ∩BCρ′(λ0). Hence, recalling (2.30),

Σ =
{

(ξ, λ) ∈M | det(T (ξ)− λ) = 0
}
.

Split into real and imaginary parts det(T (ξ) − λ) = u(ξ, λ) + iv(ξ, λ), to obtain
two real analytic real-valued functions. Define semi-analytic sets for i = 1, . . . , n0

by setting

ΣR
i =

{
(ξ, λ) ∈M | ∀j = 0, . . . , i−1 : ∂jλu(λ, ξ) = ∂jλv(λ, ξ) = 0 and ∂iλu(ξ, λ) 6= 0

}
and

ΣI
i =

{
(ξ, λ) ∈M | ∀j = 0, . . . , i−1 : ∂jλu(λ, ξ) = ∂jλv(λ, ξ) = 0 and ∂iλv(ξ, λ) 6= 0

}
Then

Σ =

n0⋃
i=1

(
ΣR
i ∪ ΣI

i

)
is a semi-analytic subset of M .
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3 Example

We introduce the two-particle Hamiltonian on L2(Rd) by

H ′V = ω1(p1) + ω2(p2) + V (x1 − x2),

where pi = −i∇xi , xi ∈ Rd and the operator V is multiplication by V ∈ L1(Rd).
The functions ωi should be thought of as effective dispersion relations. By taking
the Fourier transform of this operator we see that it is unitarily equivalent to

HV = ω1(k1) + ω2(k2) + tV ,

where

(tV f)(k1, k2) :=

∫
V̂ (u)f(k1 − u, k2 + u)du.

Note that, since L2(Rd × Rd) =
∫ ⊕
Rd

L2(Rd), this operator can be fibered w.r.t.

ξ ∈ Rd by the unitary transform f(ξ, k) 7→ fξ(k) = f(−ξ − k, k), where all fibers
are equipped with the Hilbert space Hξ = L2(Rd). The fiber operators take the
form

H(ξ) = ωξ(k) + TV ,

where

(ωξf)(k) = (ω1(ξ − k) + ω2(k))f(k),

(TV f)(k) = (V ∗ f)(k)

and V = V̂ (−k). Furthermore, we define a self-adjoint operator for every fiber ξ
by

Aξ =
i

2
(vξ · ∇k +∇k · vξ) , (3.31)

where the vector field vξ is given by

vξ(k) = (∇kωξ)(k)e−k
2

. (3.32)

Condition 3.1 (Properties of ω1, ω2 and V).

1. Let j ∈ {1, 2}. ωj is real analytic on Rd. Moreover, there exists pj ∈ N and
C,B,B′ > 0 such that

|∂αωj(k)| ≤ C〈k〉pj , |ωj(k)| ≥ B〈k〉pj −B′. (3.33)

for every multi-index α ∈ Nd
0, |α| ≤ 1.
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2. Assume further that there exists an R > 0 such that ω1 and ω2 extend to ana-
lytic functions on the d-dimensional strip SR := {(z1, . . . , zd) ∈ Cd | |Im(zi)| ≤
R, i = 1, . . . , d}. We denote the analytic continuations of these functions by
the same symbols.

3. The analytic continuations of the ωj still satisfy the bounds (3.33) on SR.

4. For all α ∈ Nd
0 with |α| ≤ 1 we have that x̂αV ∈ L2(Rd).

5. There exists a ≥ MR and n ∈ N, n ≥ d/2 such that eb|·|∂αV (·) ∈ L1(Rd) for
all b < a and all α ∈ Nd

0, |α| ≤ n.

Remark 3.2.

1. By Condition 3.1.1 B〈k〉pj − B′ ≤ |ωj(k)| ≤ C〈k〉pj and thus D(Mωj) =
D(M〈·〉pj ). Consequently, D(Mωξ) = D(M〈·〉p) =: D, where p = max{p1, p2}.
Thus all operators H(ξ) have the common domain D.

2. The two estimates in Condition 3.1.1 are clearly satisfied by the real analytic
functions f(k) = (|k|2)p. These have an analytic continuation into SR for
any R > 0 and the corresponding estimates are still satisfied by the analytic
continuations.

3. Condition 3.1.2 implies that ωξ as well as every component of ∇kωξ extend

to analytic functions in the strip SR. Since |e−(x+iy)2| ≤ e−x
2
e+y2

, the same
is true for the vector field vξ.

4. Condition 3.1.1 and Condition 3.1.3 imply

sup
z∈SR
|vξ(z)| ≤M <∞. (3.34)

and
sup
z∈SR
|∇zωξ(z) · vξ(z)| ≤M ′ <∞. (3.35)

The next Lemma connects the action of the unitary group generated by Aξ to
objects related to the solution of the ODE defined by the vector field vξ. This
result has already been proven in the PhD thesis of one of the authors, see [44].

Lemma 3.3. Let γt be the solution of the ODE

d

dt
γt(k) = vξ(γt(k)), γ0(k) = k. (3.36)

and define

J(t, k) = e

t∫
0

∇·vξ(γs(k))ds
. (3.37)
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Then (
eitAξf

)
(k) =

√
J(t, k)f(γt(k)). (3.38)

It is easily checked that the useful relation

J(t, γ−t(k)) =
1

J(−t, k)
(3.39)

holds.

Lemma 3.4. Assume Conditions 3.1.2 and 3.1.3. Then the solution of (3.36), γt,
admits an analytic continuation into the d-dimensional strip Sr, where M ′r < R
and M ′ = max{M, 1}. Moreover, this continuation maps Sr into SMr ⊂ SR.

Proof. By definition γt solves the ODE

d

dt
γt(k) = vξ(γt(k)), γ0(k) = k.

Since v is real-analytic, so is γt(k) and hence it admits an analytic continuation
into some region G ⊂ C. We do not introduce a new symbol for this continuation.
Without loss of generality we may assume that G = BCr (0) for some r > 0. By
possible decreasing r > 0, we can assume that M ′r < R, where M ′ = max{1,M}
with R,M are as in Condition 3.1.2 and Condition 3.1.3.

For z ∈ BCr (t), where t ∈ Rd, we clearly have that z − t ∈ BCr (0) and hence

γ̃z(k) := γz−t(γt(k))

is analytic on BCr (t). Choose t such that V := BCr (t) ∩BCr (0) 6= ∅. Let z ∈ V ∩R
and note that γ̃z(k) = γz(k). Hence analyticity of γz and γ̃z implies that γ̃z = γz
for all z ∈ V due to the identity theorem. This in turn implies that γ̃z is an
analytic continuation of γz to BCr (t). It is clear that this way of extending γz can
be used to obtain an analytic extension to the strip Sr.

Let I ⊂ R be a compact interval and pick an open subinterval J ⊂ I. By
continuity of z 7→ γz(k) we have that for every x ∈ I there exists δx ∈ (0, r)

such that γx+it(k) ∈ BC
d

r (γx(k)) for |t| < δx. By compactness we deduce that

there exists δ > 0 such that for all x ∈ I γx+it(k) ∈ BC
d

δ (γx(k)) ⊂ SR provided
that |t| < δ. Hence the composition vξ(γz(k)) extends analytically from J to the
complex rectangle Rδ := {z | Re(z) ∈ J, |Im(z)| < δ} ⊂ SR. Since for z ∈ J
the ODE in (3.36) is satisfied, it carries over to z ∈ Rδ by uniqueness of analytic
continuation.

For j = 1, . . . , d we denote by γjt and vj the j-th component of γt and vjξ respec-
tively. Let x+ it ∈ Rδ. The conclusion of the preceding paragraph now allows us
to calculate

d

dt
Im[γjx+it(k)] = Im[ivjξ(γx+it(k))] = Re[vjξ(γx+it(k))] ≤M,
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where we have used the uniform bound on vξ in Condition 3.1.3. This inequality
implies ∣∣Im[γjx+it(k)]

∣∣ =
∣∣Im[γjx+it(k)]− Im[γjx(k)]

∣∣ ≤M |t| ≤Mr,

since γz maps into Rd for real values of z. Hence γx+it(k) ∈ SMr for all x ∈ J .
Covering R with compact intervals In we obtain that γx+it(k) ∈ SMr for any x ∈ R
and |t| < r. Hence the analytic continuation of γt maps Sr into SMr. �

Remark 3.5.

1. This result implies that the ODE in (3.36) extends to z ∈ Sr. Indeed, we
simply copy the argument given for the extension to Rδ in the previous proof.

2. The above remark allows us to considering d
da

(γj
aeit(k)− kj) for a < r instead

of d
dt

Im[γjx+it(k)y] and we can prove |γaeit − k| ≤ Ca. Hence,

|γz(k)− k| ≤ C|z| (3.40)

in complete analogy to the preceding proof.

The previous two Lemmas allow us to explicitly compute how conjugation by
the unitary group generated by A effects the fiber Hamiltonians and argue that
the so obtained expressions admit analytic continuations.

Lemma 3.6. Assume Condition 3.1. Then the map

t 7→ e−itAξTV e
itAξ := T tV

extends to an analytic B(H)-valued function on Sr.

Proof. Note that(
e−iAξtTV eiAξtg

)
(k) =

√
J(−t, k)

∫
Rd
V̂ (γ−t(k

′)− γ−t(k))
√
J(−t, k′)g(k′)dk′.

By the assumptions V̂ (γ−t(k
′)− γ−t(k)) extends to a function on the strip SR for

|t| < R. It remains to show that, if this extension is substituted in the above
equation, it still yields a function in L2(Rd). Let n ∈ N denote the unique integer
satisfying 2n > d. Then jn(k) := (1 + |k|2n)−1 ∈ L1(Rd) and hence jn ∗ g ∈ L2(Rd)
for all g ∈ L2(Rd). Note that there exists a constant Ct > 0 independent of k such
that J(−t, k) ≤ Ct. We define βt(k, k

′) := γ−t(k
′)− γ−t(k) and compute∫

Rd
J(−t, k)

∣∣∣∣∫
Rd
V̂ (βt(k, k

′))
√
J(−t, k′)g(k′)dk′

∣∣∣∣2 dk

= C2
t

∫
Rd

(∫
Rd
|(1 + |k − k′|2n)V̂ (βt(k, k

′))||g(k′)|jn(k − k′)dk′
)2

dk. (3.41)
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Now we define αt(k, k
′) = γ−t(k)−k−(γ−t(k

′)−k′) and compute |αt(k, k′)| ≤ 2M |t|

|(1 + |k − k′|2n)V̂ (βt(k, k
′))|

=
1

(2π)
d
2

∣∣∣∣∫
Rd

(1 + |k − k′|2n)ei(k−k′)·xeiαt(k,k′)·xV(x)dx

∣∣∣∣
≤ 1

(2π)
d
2

‖e2M |t||·|V (·)‖L1(Rd) +
1

(2π)
d
2

∣∣∣∣∫
Rd

(
∆n
xei(k−k′)·x

)
eiαt(k,k′)·xV(x)dx

∣∣∣∣
=

1

(2π)
d
2

‖e2M |t||·|V (·)‖L1(Rd)

+
1

(2π)
d
2

∣∣∣∣∫
Rd

ei(k−k′)·x∆n
x

(
eiαt(k,k′)·xV(x)

)
dx

∣∣∣∣ , (3.42)

where ∆n
x denotes the n-th product of the Laplace operator w.r.t. the variable

x ∈ Rd. Let κ ∈ Nd
0, define Dκ

x = ∂κ1
x1
· · · ∂κdxd and calculate∣∣∣∣∫

Rd
ei(k−k′)·xDκ

x

(
eiαt(k,k′)·xV(x)

)
dx

∣∣∣∣
≤
∑
κ′≤κ
κ′∈Nd0

(
κ

κ′

)∫
Rd

∣∣∣(Dκ−κ′
x eiαt(k,k′)·x)(Dκ′

x V (x))
∣∣∣ dx

≤
∑
κ′≤κ
κ′∈Nd0

(
κ

κ′

)
(2M |t|)|κ−κ′|

∫
Rd

eM |t||x|
∣∣∣(Dκ′

x V (x))
∣∣∣ dx (3.43)

Combining (3.42) and (3.43) we argue that there is a constant Cn,t > 0 such that

|(1 + |k − k′|2n)V̂ (βt(k, k
′))| ≤ Cn,t

∑
κ∈Nd0,
|κ|≤n

∥∥eM |t||·|(Dκ
xV )(·)

∥∥ . (3.44)

Finally, (3.41) and (3.44) yield∥∥e−iAξtTV eiAξtg
∥∥2

L2(Rd)

≤ C2
t Cn,t

∑
κ∈Nd0,
|κ|≤n

∥∥eM |t||·|(Dκ
xV )(·)

∥∥ ‖jn ∗ |g|‖2
L2(Rd)

≤ C2
t Cn,t

∑
κ∈Nd0,
|κ|≤n

∥∥eM |t||·|(Dκ
xV )(·)

∥∥ ‖jn‖2
L1(Rd)‖g‖

2
L2(Rd). (3.45)

Thus, the analytic continuation of e−iAξtTV eiAξt to BCr (0) is a bounded operator.
The continuation to the strip Sr can be constructed as in the abstract case by
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translating the continuation to BCr (0) along the real axis by conjugation with the
unitary group eiAξt for t ∈ R.

Lemma 3.7. For all t ∈ R we have that

e−itAξMωξe
itAξ = Mωξ◦γ−t

on D(Mωξ), where γt is the solution to (3.36).

Proof. Let ψ ∈ D(Mωξ). Since the action of eitA is defined by (3.38), we use
(3.39) and the group property of the flow γt to compute

[e−itAMωξe
itAf ](k) = ωξ(γ−t(k))

√
J(t, γ−t(k))

√
J(t, k)f(k)

= ωξ(γ−t(k))f(k).

This proves the statement. �

Proposition 3.8. Assume Condition 3.1. Then the family of operators HV (ξ)
satisfies Condition 2.1.

Proof. We begin by establishing Condition 2.1.1 in our example. Let t ∈ [0, 1],
ψ ∈ D and compute

‖H(ξ)U(t)ψ‖ = ‖Ht(ξ)ψ‖ ≤ ‖Mωξ◦γ−tψ‖+ ‖TV ‖‖ψ‖. (3.46)

The first term on the right hand side of the previous estimate can be treated as
follows.

‖Mωξ◦γ−tψ‖2 =

∫
Rd
|ωξ(γ−t(k))|2|ψ(k)|2dk

≤
∫
R

|ω2(γ−t(k))|2|ψ(k)|2dk +

∫
R

|ω1(ξ − γ−t(k))|2|ψ(k)|2dk

≤ C

∫
R

〈γ−t(k)〉2p2|ψ(k)|2dk + C

∫
R

〈ξ − γ−t(k)〉2p1|ψ(k)|2dk.

Let q ∈ {p1, p2}. A two-fold application of equation (3.40) implies

〈ξ − γ−t(k)〉2p =
(
1 + |ξ − γ−t(k)|2

)q ≤ (1 + |ξ|2 + 2|ξ||γ−t(k)|+ |γ−t(k)|2
)q

≤
(

1 +
(|ξ|+ C|t|)2

1 + |k|2
+ 2(|ξ|+ C|t|) |k|

1 + |k|2

)q
〈k〉2q

≤
(
1 + (|ξ|+ C|t|)2 + 2(|ξ|+ C|t|)

)q 〈k〉2q.
Define dq(ξ, t) := (1 + (|ξ|+ C|t|)2 + 2(|ξ|+ C|t|))q. Then

‖Mωξ◦γ−tψ‖2 ≤ Cdp2(0, |t|)
∫
R

|〈k〉p2ψ(k)|2dk

+ Cdp1(ξ, |t|)
∫
R

|〈k〉p1ψ(k)|2dk (3.47)
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which implies that

sup
t∈[0,1]

‖H(ξ)U(t)ψ‖ ≤ Cdp2(0, 1)‖〈k〉p2ψ‖+ Cdp1(ξ, 1)‖〈k〉p1ψ‖+ ‖TV ‖‖ψ‖

which is a finite upper bound, since ψ ∈ D(〈k〉p1) ∩D(〈k〉p2).
In order to verify Condition 2.1.2 we define wξ := 1

2
∇ · vξ and compute

[H(ξ), iAξ] = vξ · ∇kωξ +MwξT ˆ̄V
+ T ˆ̄V

Mwξ

+
d∑

σ=1

(
M(vξ)σT(idxδσ V̄ )∧ + T(idxδσ V̄ )∧M(vξ)σ

)
,

where the components of δσ ∈ Rd are given by (δσ)σ′ = δσ,σ′ . Since wξ and vξ ·∇kωξ
are bounded functions by Condition 3.1.3 and (3.35) and V (x)eb|x| is assumed to
be in L1(Rd) by Condition 3.1.5 for some b > 0, the expression on the right of the
above equation is even a bounded operator.

By Lemma 3.4 and Lemma 3.6 we may conclude that the map t 7→ Ht(ξ) admits
a strongly analytic continuation into a d-dimensional strip Sr of the complex plane.
This establishes Condition 2.1.3.

It thus remains to examine whether or not Condition 2.1.4 holds. A look at
(3.45) shows that the operator norm of the analytic continuation of eitAξTV e−itAξ

is uniformly bounded on BCr (0). Denote this upper bound by CV > 0. Substituting
CV for ‖TV ‖ in (3.46) and then use (3.47) we obtain the estimate

sup
t∈BCr (0)

‖eitAξH(ξ)e−itAξ(H(ξ) + i)−1ψ‖

≤ CV ‖(H(ξ) + i)−1ψ‖+ Cdp2(0, r)‖M〈k〉p2 (H(ξ) + i)−1ψ‖
+ dp1(ξ, r))‖M〈k〉p1 (H(ξ) + i)−1ψ‖. (3.48)

Since D = D(ω1)∩D(ω1) = D(M〈k〉p′ ), where p′ = max{p1, p2}, M〈k〉pj (H(ξ)+i)−1,
where j = 1, 2, extend to bounded operators by the closed graph theorem. This
completes the proof. �

Proposition 3.9. Assume Condition 3.1. The family of operators H(ξ) satisfies
Condition 2.8 and Condition 2.17.

Proof. The first part of Condition 2.17 has already been shown. Now note that
ωξ(k) extends to an analytic function in a strip SR. Recall that the analytic
extension of the flow γt(k) to the strip Sr maps into the (possibly bigger) strip
SM ′r, where M ′ = max{1,M} and M is given by (3.34). Fix t0 ∈ BCr (0) and let
k ∈ Rd. Since M ′r < R, the map ξ 7→ ωξ ◦ γ−t0(k) = ω1(ξ − γ−t0(k)) + ω2(k)
extends to complex ξ provided |Im(ξ)| < R′ := R −M ′r. The analyticity of the

maps ξ 7→ Ht0(ξ)ψ on BC
d

R′′(0) for every ψ ∈ D now follows. Moreover, R′′ > 0
can be chosen independently of ξ and the upper bound in (3.48) can be chosen
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independently of ξ ∈ BCR′′(0). Hence the second and fourth part of Condition 2.17
are satisfied. The third part as well as Condition 2.8 will be established in the
remaining part of the proof.

The conjugation C in Condition 2.8 is easily seen to be given by complex con-
jugation on L2(Rd). Put w = 1

2
∇ · vξ. Recall that the commutator [H(ξ), iAξ] is

bounded and given by

[H(ξ), iAξ] = |∇kωξ(k)|2e−k
2

+MwT ˆ̄V
+ T ˆ̄V

Mw

+
d∑

σ=1

(M(vξ)σT(idxδσ V̄ )∧ + T(idxδσ V̄ )∧M(vξ)σ),

Let K = [H(ξ), iAξ] − vξ · ∇kωξ. It is easy to see that K extends to a compact
operator. Note that for f ∈ C∞c (R),

f(H(ξ0))− f(Mωξ0
) =

1

π

∫
C

∂̄zf̃(z)((H(ξ0)− z)−1 − (Mωξ0
− z)−1)

d

dz

=
1

π

∫
C

∂̄zf̃(z)(H(ξ0)− z)−1TV (Mωξ0
− z)−1 d

dz

which is compact as ωξ(k) → ∞ when |k| → ∞. Choosing f with support in
[λ0 − 2κ, λ0 + 2κ] and f ≡ 1 on [λ0 − κ, λ0 + κ] and multiplying from the left and
the right by EH(ξ0)([λ0 − κ, λ0 + κ]) thus shows that EH(ξ0)([λ0 − κ, λ0 + κ]) may
be replaced by EMωξ0

([λ0 − κ, λ0 + κ]) at the cost of a compact error. As

e−k
2|∇ωξ0|2EMω0

([λ0 − κ, λ0 + κ]) ≥ eEMω0
([λ0 − κ, λ0 + κ])

by the choice of κ and
e−k

2 |∇ωξ0|2 ≤ C

for some constant C > 0, we may now conclude the proof by collecting all esti-
mates.

A Intertwining Conjugations

Recall that a conjugation is an anti-linear operator C that satisfies C2 = 1 and
〈ψ, ψ′〉 = 〈Cψ, Cψ′〉.
Definition A.1. Let T be a closed and densely defined operator with domain
D(T ). A conjugation C is said to intertwine T and T ∗, if CD(T ) ⊂ D(T ∗) and
CT = T ∗C on D(T ).

Note that, if the conjugation C intertwines T and T ∗ it also intertwines T ∗ and
T . Indeed, suppose that C intertwines T and T ∗ and let ψ ∈ D(T ∗). Then there
exists a ψ′ ∈ H such that

〈ψ′, φ〉 = 〈ψ, Tφ〉 = 〈Cψ, CTφ〉 = 〈Cψ, T ∗Cφ〉
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for all φ ∈ D(T ). We can thus conclude that Cψ ∈ D(T ∗∗) = D(T ), since T is
closed. CT ∗ = TC on D(T ∗) follows trivially from CD(T ∗) ⊂ D(T ), C2 = 1 and
CT = T ∗C. In particular, if C intertwines T and T ∗, we have the inclusions

CD(T ) ⊂ D(T ∗) = C2D(T ∗) ⊂ CD(T )

and hence
CD(T ) = D(T ∗).

Lemma A.2. Let T be a closed, densely defined operator. Suppose there exists a
conjugation C which intertwines T and T ∗. Then

λ ∈ ρ(T ) ⇔ ∃c > 0∀ψ ∈ D(T ) : ‖(T − λ)ψ‖ ≥ c‖ψ‖.

Proof. Suppose that λ ∈ ρ(T ). Then there exists a bounded inverse B such that
B(T − λ) = 1. Thus,

‖ψ‖ = ‖B(T − λ)ψ‖ ≤ ‖B‖‖(T − λ)ψ‖

and ‖(T − λ)ψ‖ ≥ c‖ψ‖ follows from ‖B‖ 6= 0.
Conversely, let us assume that there exists c > 0 such that ‖(T − λ)ψ‖ ≥ c‖ψ‖.

Note that V := Ran(T −λ) is a closed subspace of H. Choose φ ⊥ V and compute

|〈φ, Tψ〉| ≤ |〈φ, (T − λ)ψ〉|+ |λ||〈φ, ψ〉| ≤ |λ|‖φ‖‖ψ‖

for every ψ ∈ D(T ). This implies that φ ∈ D(T ∗) and we can thus calculate

〈(T ∗ − λ)φ, ψ〉 = 〈φ, (T − λ)ψ〉 = 0

whenever ψ ∈ D(T ). Since D(T ) is dense, we have now established that λ ∈
σpp(T ∗). The intertwining relation TC = CT ∗ then gives the contradiction that
λ ∈ σpp(T ). Therefore, we must have V = H. The preceding argument shows that
T − λ is bijective and we can conclude that it has a left inverse B. Since

‖B(T − λ)ψ‖ = ‖ψ‖ ≤ 1

c
‖(T − λ)ψ‖,

B is bounded.
Due to C2 = 1, the anti-linearity of C and the intertwining property, the estimate
‖(T − λ)ψ‖ ≥ c‖ψ‖ on D(T ) can be re-written as

∀ψ ∈ D(T ∗) : ‖(T ∗ − λ)ψ‖ = ‖(T − λ)Cψ‖ ≥ c‖Cψ‖ = c‖ψ‖.

Therefore, the operator T ∗ satisfies the same conditions as T and we can construct
a left inverse B′ ∈ B(H) for T ∗ − λ in a similar fashion. Hence B′(T ∗ − λ) = 1
which in turn implies (T − λ)B′∗ = 1. (Here we used that Range(B′∗) ⊂ D(T ).)
Therefore, T − λ has a bounded right inverse as well, and we can conclude that
λ ∈ ρ(T ).
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Negation of the assertion in Lemma A.2, immediately implies the following useful
corollary:

Corollary A.3. In the situation of Lemma A.2, we have

λ ∈ σ(T ) ⇔ ∃{ψn}n∈N ⊂ D(T ), ‖ψn‖ = 1 : ‖(T − λ)ψn‖ → 0.
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[53] Johannes Sjöstrand and Maciej Zworski, Elementary linear algebra for ad-
vanced spectral problems, Ann. L’Insitut Fourier 57 (2007), no. 7, 2095–2141.

[54] Herbert Spohn, The polaron at large momentum, J. Phys. A 21 (1988), no. 5,
1199–1211.

[55] Maciej Zworski, Resonances in physics and geometry, Notices of the AMS 46
(1999), no. 3, 319–328.

164


	Overview
	General Motivation of the Thesis: Perturbation Theory of Embedded Eigenvalues
	Conjugate Operators, Mourre Theory, Limiting Absorption Principle
	Commutator Calculus
	Mourre Estimate
	Local Commutators, Regularity of Eigenstates
	Limiting Absorption Principles

	The Feshbach-Schur Method
	Perturbation Theory
	Kato's Analytic Perturbation Theory
	Embedded Eigenvalues

	Spectral Deformation
	Direct Integrals
	Fock Space
	Construction of Fock space
	Operators on Fock Space


	Second Order Perturbation Theory in Massive Nelson Models
	Introduction
	Main Results
	The Model
	Main Results
	Remarks on the Spectral Theory of the Model

	Operators Acting on a Core
	Bounds on a Core
	Extension of the Bounds to Larger Domains
	Iterated Commutators on a Core

	Regularity With Respect to the Conjugate Operator
	Large Powers of the Resolvent
	Local Regularity

	Extension to More General Coupling Functions
	A Fréchet Space of Coupling Functions
	Commutators
	Large Powers of the Resolvent
	Local Regularity

	The Feshbach-Schur Method
	Small Total Momenta as a Perturbation
	Regularity of the projected Hamiltonian
	Lipschitz Continuity
	Hölder Continuity of the Boundary Values of the Resolvent
	Feshbach Map and Eigenvalue Equation

	Derivation of Several Commutator Relations
	Proof of Mourre's Quadratic Estimate
	Hölder-Continuity in the Limiting Absorption Principle
	Adding a Parameter to a Result by Gérard
	Regularity of the Functional Calculus of the Projected Hamiltonian

	Generalized Dilation Analyticity
	Introduction
	General Theory
	Generalized Dilations
	The Mourre Estimate
	Analytic Perturbation Theory

	Example
	Intertwining Conjugations


