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RESUME — DANSK

I denne afhandling studeres problemer i forbindelse med perturbationsteori af indle-
jrede egenveerdier. Den fgrste del omhandler den translationsinvariante, massive Nelson-
model og beviser, at indlejrede egenveerdier af Hamilton-operatorens fibre ma vaere
mindst to gange differentiable som funktion af fiberparameteren. Beviset bygger pa en
udvikling af orden 2 + o mht. til fiberparameteren. De vaesentligste tekniske hindringer
er, at fiber-operatorerne a priori ikke har tilstraekkelig regularitet mht. den konjugerede
operator og at kommutatorer mellem den konjugerede operator og fiber-operatorerne
ikke kan begraenses af fiber-operatoren. I anden del bevises en abstrakt analytisk per-
turbationsteori for indlejrede egenveerdier. Et teknisk krav pa Hamilton-operatorerne
er dog, at alle itererede kommutatorer skal kunne begraenses af Hamilton-operatoren,
hvilket udelukker Nelson-modellen. Strategien i artiklen er at bruge spektraldeforma-
tionsteknikker hvor den uniteere gruppe er genereret af den konjugerede operator. Et
Mourre-estimat ggr det muligt at bevise, at det essentielle spektrum af de transformerede
Hamilton-operatorer forsvinder, og saledes tillader brug af Kato-teori.



RESUME — ENGLISH

In this thesis problems connected with perturbation theory of embedded eigen-
values are studied. The first part deals with the case of the translation invari-
ant massive Nelson model and establishes that embedded eigenvalues of the fiber
Hamiltonians have to depend at least twice differentiable on the fiber parameter.
This is done by deriving an expansion to order 2 + o w.r.t. the fiber param-
eter. The main technical obstacles are that a priori the fiber Hamiltonians do
not have sufficient regularity w.r.t. the conjugate operator and that commuta-
tors of the conjugate operator with the fiber Hamiltonians cannot be bounded
by the Hamiltonians again. In the second part an abstract analytic perturbation
theory for embedded eigenvalues is established. However a technical requirement
on the Hamiltonians is that all iterated commutators should be bounded by the
Hamiltonian thus excluding the Nelson model. The strategy of the paper is to
use spectral deformation techniques were the unitary group is generated by the
conjugate operator. A Mourre estimate allows to prove that the essential spectrum
of the transformed Hamiltonians recedes thus permitting the use of Kato theory.
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CHAPTER 1: Overview



1 General Motivation of the Thesis: Perturbation Theory of
Embedded Eigenvalues

The question how the spectrum of a family of operators { H, }. acting on a Hilbert
space depends on the parameter x is most likely an old one, since it contains the
question how the eigenvalues of a family of matrices depend on a parameter k.
In the case of bounded operators on a Hilbert space H the notion of a family
{H,}, depending analytically on x is somewhat natural, since the set B(#) of all
bounded operators on H equipped with the operator norm is a Banach space. A
function f : U — X, where U C C is open, with values in some Banach space
X is called weakly analytic, if the functions z — x*(f(2)) are analytic for all
r* € X*. If X is a Hilbert space, this property is equivalent to the notion of strong
analyticity, that is analyticity of the functions z +— f(2)¥ for all ©» € X. The
continuing interest in perturbation theory over the last 50 years or so is partly
due to its immense importance in quantum mechanical problems. Schrédinger’s
equation for the Hydrogen atom admits an explicit solution and the spectrum
of the corresponding operator can be found. At a first glance the theoretical
predictions seem to be confirmed by experiments as they reproduce the famous
Rydberg formula. However, phenomena like the Zeeman and the Stark effect
cause the energy levels of the atom to split which in turn can be observed in more
accurate experiments. These effects have, from a conceptual viewpoint, a natural
interpretation as a perturbation to the known solution of the Hydrogen atom, since
the corresponding additions to the interaction potential always come with a small
pre-factor in one way or the other.

However, the situation of unbounded operators is more complicated than the
case of bounded operators, so the problem of formulating the perturbation prob-
lem in a mathematically precise way is interesting in itself. One of the basic ideas
in this business is that for discrete eigenvalues with finite multiplicities the per-
turbation problem is essentially reduced to its finite dimensional counterpart for
matrices after restricting the operator to this subspace. These ideas have been
systematically summed up by Kato in his now classic textbook Perturbation The-
ory for Linear Operators, [33]. Another excellent and more streamlined exhibition
can be found in another classic textbook of mathematical physics, see [45].

Despite the success it should be mentioned that the application of the theory
comes with some problems. First of all the calculation of the eigenvalues A(k)
as power series of k, the so-called Rayleigh-Schrodinger series, is difficult, due
to the complexity of the coefficients. In several physically interesting cases this
perturbation series is not even convergent and one can only extract some meaning
out of it in an asymptotic sense. This particular problem is usually referred to as
asymptotic perturbation theory. Kato’s as well as Reed and Simons’ book give an
introduction to this topic, it is however discussed in greater detail in an overview
paper by Hunziker, see [28]. We will not follow this particular line of research and



leave the discussion of asymptotic perturbation theory at this point.

A more important issue is that for an eigenvalue A to be treated in a perturbative
way by Kato’s theory it has to be isolated and thus excludes the situation, where
an eigenvalue with finite multiplicity is an element of the essential spectrum. One
of the main complications in such a situation is that the projection P onto the
eigenspace cannot be contructed by mean of the Riesz projection

1

P=—" | (H-2'

om | H =2 dz
v(N)

since a path (A) around A which does not intersect the spectrum of H does
not exist. One way of dealing with such a situation goes back to two papers
by Aguilar and Combes and Balslev and Combes, [3,/6]. There the technique of
spectral deformation is used to investigate the structure of the essential spectrum
of Schrodinger operators H. More precisely, for certain unitary groups U(f) the
operator Hy = U(A)HU(A)™' obtained by conjugating H with U() admits an
analytic continuation to a strip in the complex plane around the real axis. The
virtue of this transformation is that for complex 6 the essential spectrum of H
swings out into the complex plane with an angle controlled by the imaginary part
of 6 and can in this way uncover embedded eigenvalues or threshold values. We
will describe this approach in more detail later in the thesis and thus refrain from
going into more details for the time being.

An example of an operator with an embedded eigenvalue is —A,, —A,, —2|z;| 71—
2¢o|mo| 1, see [45]. Tt describes a Helium atom in the limit of infinite mass of the
nucleus and neglect of repulsion amongst the electrons. In [49] Simon treats the
addition of the electron-electron interaction within the context of perturbation
theory under certain analyticity assumptions. Many of the ideas presented in the
mentioned paper rely on the concept of spectral deformation.

Some years later Agmon, Herbst and Skibsted published a paper on the pertur-
bations of embedded eigenvalues in the quantum mechanical N-body problem, [2].
The authors do not work with an analyticity assumption but focus on the so-called
Fermi Golden Rule which they use to show that embedded eigenvalues disappear
under small perturbations. For our purposes the paper is interesting, because of
its use of Mourre-theory which now is one of the standard methods within spectral
theory.

More recent results in perturbation theory of embedded eigenvalues can be found
in a paper by Faupin, Mgller and Skibsted, see [15]. In their paper Mourre the-
ory and the limiting absorption principle are used to prove an expansion of the
perturbed eigenvalue w.r.t. the perturbation parameter up to second order. Even
though their results are formulated in an abstract way, they are designed to be ap-
plied in the context of massless Pauli Fierz Hamiltonians and the massless Nelson
model in particular.



In this thesis we aim to obtain similar results on perturbation theory of embed-
ded eigenvalues. One major part of the thesis is devoted to the massive and trans-
lation invariant Nelson model. This model describes a non-relativistic quantum
field of massive bosons interacting with a single electron through linear coupling.
This model has a fiber decomposition w.r.t. total momentum and we address
the following question: If the fiber Hamiltonians H (&) exhibit bands of embedded
eigenvalues )¢ in the energy momentum spectrum below the two-boson threshold,
how do these eigenvalues depend on £7 By using recent results in Mourre theory
of this model and related topics, [39,40], an expansion of ¢ for small ( up to
terms of order |(|**, where « € (0,1), is proven. Such a result obviously implies
that the map ¢ +— A¢i¢ is twice differentiable.

This result is of interest in its own right for the spectral theory of such mod-
els. The twice differentiability of ground states enabled Mgller and Rasmussen
in [39,/44] to obtain a Mourre estimate away from threshold energies in the essen-
tial spectrum below the two-boson threshold. Note that the result on the validity
of the Mourre estimate in the PhD thesis of the first author was weaker than the
result obtained in the follow up paper by Mgller and Rasmussen. Recently Dybal-
ski and Mgller have proven asymptotic completeness in the massive Nelson model
in the energy regime in which the Mourre estimate holds. This results motivates
the desire to establish these type of estimates also in higher energy regions. In a
sense one would like to proceed step by step and continue to push the analysis to
higher regimes. Another central ingredient to push the results on asymptotic com-
pleteness in a similar fashion requires knowledge of the behavior of the threshold
sets. In particular these should not fill up the whole essential spectrum by forming
a dense set. Such a situation could be argued to be impossible, if it was known
that embedded eigenvalues were not just twice differentiable but rather analytic
functions w.r.t. the fiber parameter. Even though it was our initial ambition to
obtain smoothness rather than twice differentiability by proving arbitrary expan-
sions of A¢ ;¢ below the two-boson threshold, we were not able to achieve it due
to technical complications.

However, the desire to possibly return to this problem in future research lead to
the following question: Which abstract assumptions are actually needed to obtain
analyticity results for parameter dependence of embedded eigenvalues? A partial
answer to this question is given in the second part of this thesis. The starting
point is a self-adjoint operator H together with a unitary group U(f) generated
by a self-adjoint operator A. To start the analysis the assumption that all iterated
commutators i* ad® (H) remain H-bounded and satisfy [|i* ad%(H)(H + 1)~ <
C*E! for some C > 0 is shown to be equivalent to the statement that the operator
Hy=U(A)HU(A)~! extends analytically to a strip in the complex plane. By using
a version of Mourre’s estimate absence of essential spectrum of Hy can then be
shown in a certain region around the eigenvalue of interest. The real (and in
this region discrete) eigenvalues of Hy correspond to eigenvalues of H and thus



allow a study via the usual Kato theory if H is substituted by an analytic family
H (&) of type A at least in the case, where the perturbation parameter £ is drawn
from a one dimensional set. It should be noted however, that this method yields
a perturbation theory for all eigenvalues of Hy(¢) = U(Q)H(£)U () and thus
opens up the possibility to study resonances.

It should be noted however that this result cannot be applied to the massive
Nelson model, since there the commutator ad4(H (&)) is only bounded by (H (&) +
0)3/ 2 for appropriately chosen constant ¢ > 0. Nevertheless, we aim to apply the
obtained result to study resonances or eigenvalues in discrete Schédinger operators.

2 Conjugate Operators, Mourre Theory, Limiting Absorption
Principle
2.1 Commutator Calculus

In this section we mainly follow the presentation of [21]. Let H be a Hilbert space,
A be a self-adjoint operator with domain D(A) and S € B(H).

Definition 2.1. Define W; := ¢ and let k € IN. We say that S € C¥(A), if the
maps t — W_,SWy) are elements of C*(R,H) for all ¢ € H.

Let ¢,9" € D(A) and define

(0,i[A, S[Y') := (APiSY') — (5™, iAd).

The factor i is only added so that the operator which will be implementing the
form later on is self-adjoint for S = S*. Suppose that there exists C' > 0 such that

(¥, i[A, ST | < Cllll[¢'])-

Then the sesqui-linear form i[A, S| has a continuous extension i[A, S]° to the whole
of H and there is a bounded operator iad(S) € B(H) such that

(0,1[A, SP') == (¥, 1ad(9)¢).

Suppose further that iads(S) € C'(A). Then the double commutator form
i[A,1ad4(95)] extends from D(A) x D(A) to a bounded form on H x H and there
is a bounded operator i? ad%(S) implementing it. If this procedure can be iterated
k times, we say that S admits £ bounded commutators with A. It turns out that

Lemma 2.2. Let k € N. S € C*(A), if and only if S admits k bounded commu-
tators with A.

We will thus use these two equivalent characterizations of the set C*(A) inter-
changeably without further comment. Some of the important features of the set
CY(A) are collected in the following Lemma.



Lemma 2.3.
1. SeCYHA) & S* € CYA). In this case iada(S*) = (1ad4(S))*.
2. 51,52 € CI(A) = 5152 € Cl(A)

3. S+ iada(9) is a linear map from C'(A) to B(H) which is closed in the weak
operator topology.

4. S iads(S) is a derivation: iad4(S1S52) = Siiad4(Sy) +iada(S1)Ss.

The situation is more involved for unbounded, self-adjoint operators 7. The
basic idea is to define the commutators via the resolvent of T'.

Definition 2.4. Let T be self-adjoint on D(T). We say that T is of class C*(A),
if there exists z € p(T) such that (T'— 2)~! € CF(A).

Again there is a connection between the C'(A) class and commutator forms.

Lemma 2.5. Let T be self-adjoint on D(T) C H. Then T is of class C*(A), if
and only if the following two conditions hold:

1. 3C > 0¥y, 4" € D(A) N D(T) = [(4,i[A, S]v)| < Cl[9[|[¢]|2-

2. There exists z € p(T) such that {p € D(A) | (T —z)~' € D(A)} is a core
for A.

For convenience we denote by D(T') the Banach space obtained by equipping
D(T') with graph norm. We write D(T')* for its dual space. Moreover, the following
formula holds:

iad (T —2)7') = —(T — 2) Hada(T)(T — 2)7 1, (2.1)

where

iadu(T) € B(D(T), D(T)*)

and the first resolvent appearing on the right hand side is extended to a bounded
operator from D(T)* to H. Recall that D(T) ¢ H C D(T)* with continuous
and dense inclusions. Operators for which ad(T") takes values in A rather than
D(T)* are of a natural interest, since holds in a more literate sense, that
is none of the objects have to be extended to spaces larger than H. In this case
iad4(T) € B(D(T),H), that is iad4(T)(T — 2)~! extends to a bounded operator
on H by the closed graph theorem.

The commutator calculus presented here is frequently used in spectral theory.
The case iad4(T)(T — 2)~! typically arises in the theory of Schrédinger operators
and is therefore well-studied. However the case, where ad4(7T) takes values in H
but can only by extended to a bounded operator from D(7T™) to H for some n > 1
are more difficult to deal with. In our framework they arise in the spectral analysis
of massive, translation invariant Nelson models.



2.2 Mourre Estimate

The following estimate is at the heart of what is now known as Mourre theory.
Mourre used the commutator calculus in his paper, [41], to establish this type of
estimate in the quantum 3-body problem and thereby managed to prove absence
of singular continuous spectrum.

A self-adjoint operator T' which is of class C!(A) is said to satisfy a Mourre
estimate around ), if there exists a bounded interval .J’, a constant C; > 0 and a
compact operator K such that for all closed intervals J C J’ the estimate

Ey(T)[A, T|E/(T) > Oy Ey(T) + K, (2.2)

holds in the sense of quadratic forms. Here, C; > 0 is the so-called Mourre-
constant and E;(7T) denotes the spectral projection of 7" on J. In this scenario A
is said to be a conjugate operator to H at A. If the choice K = 0 can be made for

some J, that is
E;(THATIE,(T) > CuEy(T), (2.3)

the Mourre estimate is said to be strict.

There exist several versions of this estimate. We shall discuss some of them.
The first and maybe easiest one replaces the projections E;(T) by a smoothed
out version. More precisely, let f € CS°(R) be such that f1; = f. Then
J(TY[A,T)f(T) = J(T)Es(T)[A, TE(T) f(T) implies

FIATIF(T) = Cuf(T)* + K,

where K' = f(T)K f(T) is still compact.

2.3 Local Commutators, Regularity of Eigenstates

A possible way to try and deal with the situation in which the commutators
iads(T) are not bounded by (S — z)~! anymore is to localize the operator T
by a local version f(T'), where f € C°(R) and is linear in a neighborhood of the
energy region of interest. The following proposition justifies this idea.

Proposition 2.6. If T is a self adjoint operator of class C(A), then f(H) € C'(A)
for all f € CP(R).

This leads to a natural generalization of the sets CF(A).

Definition 2.7. Let T be a self-adjoint operator on H. For £ € IN and Q2 C R
open we write T is of class CE _(A;Q), if f(T) € C¥(A) for all f € CF(Q). We
define C} (A) := Cf (A;R). For an operator T which is of class Cf (A) we will

loc
also simply say that T is locally of class C*(A).



An interesting consequence of an operator T’ to be locally of class C**1(A) is
that eigenstates of T with eigenvalue ) are elements of D(*) provided that there is
a Mourre-estimate around A. This result, among others, has been obtained
by Mgller and Westrich in 2010. Note that the original formulation requires a
slightly modified version of the estimate (2.2)), see Theorem 1.6 in [40]. However
implies the estimate used in their formulation. A proof of this fact can also
be found in their paper.

Theorem 2.8 (Regularity of Eigenstates). Suppose that T satisfies a Mourre esti-
mate around X. Let v be an eigenvector of T with eigenvalue X. If f(T) € CEFL(A)
for all f € CP(R) and some k € N, then ¢ € D(AF).

2.4 Limiting Absorption Principles

Another important consequence of an operator to be of class C?(A) is the so-called
limiting absorption principle. More precisely the operator (A)=5(T — z)~1(A)~*
has a limit as [Im(z)] — 0 for £ > 2 and s > 1/2. These types of limits have
been studied extensively in the literature. We refer to Mourre’s paper, [41] and
several of its generalizations [32], [4]. A Generalization to the local C*(A) classes
has been proven by Sahbani in [47]. In this paper refinements of these classes are
used to obtain optimal results which makes it rather difficult to access. However,
in [19] the authors discuss a version of Sahbani’s result which is more fitting in
our framework and we will follow their presentation.

Assumption 2.9.
1. T is a self-adjoint operator on H which is of class C2 _(A;Q)

loc

2. For all X € Q) there is an open interval J containing A such that holds.

Theorem 2.10 (Limiting Absorption Principle). Suppose Assumption holds
and let s > 1/2, and ¥, ¢" € H. Then the limit

(W, (A) (T = A £10) 71 (A) ™) := (v, lim(A) (T — A £ ie) = (A) )

exists uniformly in X\ on every compact subset of €).

This theorem allows us to define a bounded operator

(A)"5(T — X £i0)"H(A)* 1= lm(A) " 5(T — X £ie) " 1(A)~*

e—0

via the help of sesquilinear forms. Another result which is of particular interest in
perturbation theory concerns Holder-continuity w.r.t. A of these limit operators.



Theorem 2.11 (Holder Continuity). Suppose Assumption holds and let s €
(1/2,1). The map
A= (A)7H(T — A £i0)"1(A)~*

is Holder continuous in Q with Holder-exponent oy = s — 1/2.

If we replace the singular operator T' by a family of self-adjoint operators 7T}, and
the preceding theorems hold uniformly in x as well, one can usually prove joint
Holder continuity in A and k. A nice application in the context of the quantum
N-body problem can be found in [31].

3 The Feshbach-Schur Method

The method presented in this section deals with the question when an operator
given by some 2 x 2 block decomposition is invertible, provided one of the diagonal
blocks is invertible. The method presented here is also known as the Grushin
problem. An easily accessible presentation can be found in [26]. A nice overview
article by Zworski and Sjostrand, [53], shows connections to other type of problems.

The method has also been successfully used in the context of spectral theory for
non-relativistic QED by Bach, Frohlich and Sigal, [5]. An application to spectral
theory of Pauli-Fierz operators can be found in [11]. The last reference is of
particular interest to us, since it stresses an abstract connection between Mourre
theory and the Feshbach method. A version of this connection will be used to
obtain a perturbation theory of embedded mass-shells below the 1-boson threshold
in massive translation invariant Nelson models. The Feshbach method also plays
a role in the second part of the thesis to conclude absence of essential spectrum in
a region provided that a part of the block decomposition has empty spectrum in
the same region.

We follow the presentation of [5|. Suppose we are given a self-adjoint operator Ty
with dense domain D(T}) and an orthogonal projection P with Ran(P) C D(Tp)
which commutes with Tj. Put P = 1 — P. Suppose that W is Ty-bounded and
that the operator T := Ty + W is self-adjoint with domain D(T") = D(Tj).

Further assume that PTP — zP is invertible on PH and that the operators

(PTP —zP)"'P, PWP(PTP—:P)"'P, (PTP—zP)'PWP
PWP(PTP — zP)*PWP, PWP
all extend to bounded operators on H. Then we can define the operator
Fp(T — 2) := (Ty — 2)P+ PWP + PWP(PTP — 2P)"'PWP. (3.4)

By the assumptions made on Ty and W Fp(T — z) is a closed operator on PH
with domain D(Fp(T — z)) = D(TyP). Indeed, simply note that Fp(T — z) — Ty P



is bounded on PH. The assumptions given here are too strong, see the discussion
in [5], in particular Lemma II.2.

The operator Fp(T — z) is usually referred to as the Feshbach map. Its impor-
tance lies in the fact that it is invertible, if and only if T"— z is invertible. More
importantly, since Fp(T — z) is defined on the smaller space PH the eigenvalue
problem is potentially easier to solve. Note however, that if Fp(T — z)y =0,
shows that the equation determining z on PH becomes nonlinear in z.

The next proposition appears as Theorem II.1 in |5] and sums up the properties
of the Feshbach map.

Proposition 3.1 (Feshbach map).
1. 0€ p(Fp(T—2)) & 0 € p(T —2). In this case Fp(T —2)"' = P(T — 2)7'P.
2. If Ty =z for some ¢ # 0, then Fp(T — z)P = 0.

8. If Fp(T — 2)Py' = 0 for some ¢ # 0, then TY" = z", where " =
(P — (PTP — zP)"'PWP).

4. dim ker(T — z) = dim ker(Fp(T — z)).

Define R, := (PTP — zP)~'. If [Fp(T — 2)]~! exists, the following block decom-
position for (T — 2)~! can be proven:

P(T —2)"'P =[Fp(T — 2)]*

P(T —2)7'P = —[Fp(T — 2)] "PWPR,

P(T —2)'P=—~R,PWP[Fp(T — 2)]*

P(T —2)'P =R, + R.PWP[Fp(T — 2)] 'PWPR,.

4 Perturbation Theory

4.1 Kato’s Analytic Perturbation Theory

In this chapter we sum up Kato’s analytic perturbation theory developed int his
classic textbook, [33]. Another nice review can be found in [45]. The question
addressed there can easily be motivated in the case of 2 x 2 matrices. Consider

the matrix
5 = (¢ §)

for £ € C. B(0) clearly is a self-adjoint matrix with only eigenvalue Ay = 2 and
two dimensional eigenspace. A natural question one can ask is how the spectrum,
that is the eigenvalues, of the family of matrices B(£) will depend on £. In this
situation it is of course trivial to calculate that (A(§) — 2)? = €% and thus A(§) —
is given by one of the branches of the complex square root of £2.
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It turns out that this situation is generic for all families { B()}¢cy of bounded
operators, U C C open, depending analytically on the parameter £. In this case
analytic dependence means that the map £ — B() is an analytic function with
values in the Banach space of all bounded operators on some finite dimensional
space X.

The situation for general bounded or even unbounded operators on an infinte
dimensional space is more subtle to describe. First of all the spectrum of an oper-
ator need not consist of isolated points anymore and the dimension of eigenspaces
might be infinte. However, if the operator has eigenvalues of finite multiplicity
and the spectrum can be separated by a closed curve in a part which contains only
finitely many isolated eigenvalues of finite multiplicity in its interior and a remain-
der in the exterior part, the restriction of the operator to the spectral subspace
generated by these isolated points will reduce the situation to that of bounded
operators on finite dimensional spaces. The remainder of this section is devoted
to reviewing how these ideas can be made precise. Since it is more condensed, we
follow the presentation in [45].

Definition 4.1. Let U C C be open and connected. Suppose that for every g € U
there exists a closed operator T'(f). The family {T'(5)}sev is called analytic of
type A, if the following two conditions are satisfied.

1. D(B) = D for some dense set D C H
2. For all ¢y € D the map f — T'(5) is analytic.

Since the operators we are considering are typically self-adjoint for real values
of B, we assume
Ve UNR:T(B) =T(B).

In our trivial example we have seen that a doubly degenerate eigenvalue split
into two nondegenerate eigenvalues which, as functions of 3, were branches of
an analytic function. As claimed the next theorem states that this situation is
somehow generic, even for perturbations of unbounded operators.

Theorem 4.2 (Analytic Perturbation of Discrete Eigenvalues). Let {T'(8)}gev be
analytic of type A, self adjoint for § € R. Let \g € R be a discrete eigenvalue of
T :=T(0) of multiplicity m. Then there exists an open neighborhood O of 0 and
functions \(B), ..., Am(B) which are analytic in O and satisfy X;(0) = X such that
the numbers \1(B), ..., A\n(B) are eigenvalues of T(S). Moreover, these functions
need not be distinct and the eigenvalues A\ (), ..., \n(B) are all eigenvalues of

T(B) for p € O.

4.2 Embedded Eigenvalues

For a closed operator T" we call Ay an embedded eigenvalue of T, if Ay is an
eigenvalue and (A\g—¢€, \g+€) N (1) # { Ao} for all e > 0. Now suppose {T(5) }sevs
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is analytic of type A. If )y is an embedded eigenvalue of the operator 7' = T'(0),
Kato’s theory is not applicable, since it requires us to draw a little circle around g
which does not intersect o(7"). However, through a combination of the Feshbach
method and the limiting absorption principle an expansion of the eigenvalue up to
a certain order in the perturbation parameter can be achieved.

To illustrate this idea we will assume that the [-dependence is linear. More
precisely, we modify the example given in Section [3|in the following way:

T(B)="1To+ (1+3)W.

Let Ay be an embedded eigenvalue of T" and denote by P the projection onto the
corresponding eigenspace. Put P = 1 — P. Assume that there exists an interval
J 2 Ao such that PT(3)P does not have an eigenvalue in .J for | 3| small. Moreover,
suppose that there exists a self-adjoint operator A conjugate to T'(3) for small 5.
Suppose that PAP is strictly conjugate to PT(3)P, that is

0(PT(B)P)[PAP, PT(B)P|0(PT(B)P) > CO(PT(B)P)*.

Now suppose that the limiting absorption principles as well as the results on Holder
continuity extend to this scenario. We assume that there exists a constant C' > 0
and a € (0,1) independent of 5, A such that the limit

(AY*(PT(B)P — XA £i0)"1{A)~* := lim(A) " *(PT(B)P — (A £ie)P) 1 (A)~®

e—0

exists for A € J,

(A)=(PT(B)P — A £i0)"(A) || < C

and the map (), B) = (A)~*(PT(B)P — X%i0)~1(A)~* is jointly Holder continuous
in A\, 8 with Holder exponent o uniformly in a neighborhood of (A, 0).

We want to show that, if A\(3) is an eigenvalue of T'(f) for small 8 we obtain
an expansion of A\(8) up to terms of order |3]2(|3]* + |A(B) — Xo|®). First of
all we obtain for € > 0 that the Feshbach map Fp(T(8) — A\(B) — ie) exists. If
U, := PWP({A)® and U, := (A)*PW P extend to bounded operators for s > 1/2,

we obtain

lim Fo(T(8) — A(8) — i€
— (Ao — \(B))P + PWP
+ (1+ B)’Ui(A)"*(PT(B)P — A £10) " (4)*Up.
If on top of that the limit Fp(T(5)) := lim._,o Fp(T(8)— A(B) —i€) has a nontrivial

kernel, the equation Fp(T'(5))1 = 0 for nonzero ¢ and joint Holder continuity of
the boundary value of the resolvent then yield the desired expansion for A(3).
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5 Spectral Deformation

We present a general theory of spectral deformation given by Hunziker in [29]. Let
H be a self-adjoint operator on a Hilbert space H and U(6), 6 € R, be a unitary
group such that the operator

Hy = U(O)HU(6)"

extends to an analytic family in an open strip of width R > 0 around the real axis.
The extension of the unitary operators U(f) itself can be defined via functional
calculus. First note that by Stone’s theorem there exists a self adjoint operator A
which generates the unitary group. Hence

(W, U(0)) = /R e 0y (s).

This expression now extends to complex 6 whenever d,u;2 has compact support.
Such vectors form a core of U(f) for complex #. Suppose H has an embedded
eigenvalue A of multiplicity m < oo and denote by P the corresponding eigenpro-
jection. If A\ ¢ o(Hy) for some 6 with Im(6) # 0, then \ is a discrete eigenvalue of
Hy by definition.

The eigenprojection P(f) onto the corresponding eigenspace of Hy extends to an
analytic family of operators on the whole strip of width R > 0. Thus, the range
of this family has constant dimension:

dim[Ran(P(0))] = m.
The range of P is contained in D(U(6)~!) and the relation
PO)=U®@®)PU®O)! (5.5)

holds on D(U(6)~!). These relations are of particular use, if H is replaced by an
analytic family of operators H(£). Then, if the operator Hy(§) = U(0)H (&)U ()7 *
is an analytic family for every fixed #. Then Kato’s analytic perturbation theory
can be applied to the isolated eigenvalue A of Hy(¢). The equation then
establishes a link to the original eigenspace and real eigenvalues of Hy(§) are also
eigenvalues of H(§).

6 Direct Integrals

In this section we present the basic theory of direct integrals. Our presentation
follows [45,146]. In particular, we assume that all fiber Hilbert spaces are given
by a fixed Hilbert space H'. First we discuss some notions of strong and weak
measurability.
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Definition 6.1 (Vector Valued Measurable Functions). Let (E, || -||) be a Banach
space, (M, %, 1) a measure space and f : M — E a function.

1. Denote by S(M) the set of functions g : M — E taking only finitely many
values {e1,...,e,} C E and g7*({e;}) C A. [ is called strongly measurable,
if

Hntnew € S(M) : [|f (@) = gn(2)]| = 0 p-ace.
2. f is called Borel measurable, if f~1(O) € 2 for every open set O C E.

3. f is called weakly measurable, if x — p(f(z)) is a measurable (complex val-
ued) function for all p € E*.

We define the set
My (M, E):={g: M — E | g weakly measurable}.

It can be shown that in this situation strong measurability = Borel measurability
= weak measurability. If F is a separable Hilbert space, the notions are equivalent.

Proposition 6.2. Let H' be a separable Hilbert space, (M,2L, 1) a measure space
and f: M — H' a function. Then the following statements are equivalent:

1. f 1s strongly measurable.
2. f is Borel measurable.
3. [ is weakly measurable.
In this case we simply call f measurable, since no confusion can arise.

We can now define the Hilbert space of square integrable H’-valued functions on

M.

Definition 6.3. Let H' be a separable Hilbert space and (M, %, 1) a measure
space. Define the set L?(M,du; H') of all measurable functions f : M — H' that
satisfy

[l anta) < o
M
Equipped with the scalar product

F. g atamr = / (), () prdpu(z)

M

this set is a Hilbert space that we denote by H.
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Note that in the case 1 = 6,,, +- - - + 0, for Dirac measures §mj concentrated on
points m; € M we obtain that L?(M, du; H') is isomorphic to the k-fold direct sum
of H'. Therefore, L2(M,du; H') has the natural interpretation as a kind of con-
tinuous direct sum with identical summands. In order to stress this interpretation
we put

®
H = / H'dp = L*(M,du; H')
M

and call this new Hilbert space a direct integral with constant fibers. We will need
to study operators on such fiber integrals. We start with the bounded case to fix
some notation.

L>(M, dp; B(H')) := {A € My(M,B(H)) | Al < o0},
where
[Allo = esssup [|A(z) | sae).
The set of bounded operators A on H which can in some way be decomposed w.r.t.

the fiber decomposition is of special interest. We define

Definition 6.4 (Decomposable Operators). Let A be a bounded operator on H.

A is called decomposable w.r.t. the direct integral H = f]\? H'dp, if there exists a
function A(-) € L(M,du; B(H')) such that

Vi € H: (AY)(x) = A(x)p(z)  p-ae.
In this case we write

®
A:/ A(z)du(x)

M
and call A(z) the fibers of A.

It turns out that every element A(-) € L*(M,du; B(H')) uniquely defines a
bounded operator on the direct integral H. We define unbounded operators on
direct integrals next.

Definition 6.5. A function A(-) from M to the set of self adjoint operators on
H' (not necessarily bounded) is called measurable, if and only if the function
(A(-) +1)~! is measurable. In this situation we define an operator A on H =

fﬁ; ‘H'dp by putting
D(4) = {w e \ 0(@) € D(A) peae, [ A Budnta) < oo}

and

(Ap)(z) = A(x)y(x)-
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We write

A / " Am)du(e).

M

and call A(m) the fibers of A.

It turns out that such an operator A is self-adjoint, if all of its fibers A(z) are
self-adjoint.

7 Fock Space

7.1 Construction of Fock space

Fock space is one of the central mathematical objects in dealing with systems
that might admit an infinite number of particles. The idea is roughly that a
quantum system of N particles is described by the N-fold tensor product of the
single particle Hilbert space. By taking a direct sum of all such /N particle spaces,
we obtain a set which describes a system with arbitrary numbers of particles. We
start by giving a more precise abstract definition of this notion.

Let b be a Hilbert space. Define

RQ'h=hRH®---®bh.
and the set

n=0

where ®°h := C. Tt is called Fock space over h. Thus an element v of F(h) is a
sequence 1 = (g, Y1, s, ... ), where 1, € ®"h. Define the scalar product

W) ) = Vol + > (Wn, V) e

n=1

Under the additional requirement

2] = W’J/J)f(h) <0

F(h) equipped with (-, -) @) becomes a Hilbert space. It is separable, if § is. The
vector

Q=(1,0,0,...)

is called the vacuum vector. From a physical point of view it is natural to single
out the subspaces which are invariant under permutations and the ones which
produce a sign after such an operation. They are called bosonic and fermionic
Fock space respectively. Since we will only need the bosonic Fock space, we focus
on its construction.
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On the subset of simple tensors of ®"h we define the symmetrization operator
by
1
S ® @ Un = — DY) ® @ Ui,
T€EG,

where &,, denotes the group of permutations of n elements. It extends from to
a self adjoint bounded operator on ®"h which we denote by &, as well. The
pre-factor n!~! guarantees that S, is an orthogonal projection:

S=8,=8%
By putting
S:=) 8,
n=0

we obtain a symmetrization operator on the whole Fock space. We then define the
symmetric or bosonic Fock space over b by

Fu(b) =SF(h) =P S.a"b.

7.2 Operators on Fock Space

In this section we define annihilation and creation operators, the Segal fields and
the second quantization. Once more we follow the presentation of [45,46]. Let T
be a self adjoint operator on h with domain D(T'). Define the operator

T =T@l® - ®1+107T® - @1+ +1® 01T

on ®7_, D(T). Moreover, we put A®) = 0. Define the set of finite particle vectors
by
Fo:={¢Y € F(h) | In € NYm >n: 1, =0}

and let
Dr={YpeF|¥neN: ¢, e DT}

Then Dy is dense in F(h) and the symmetric operator

o0

dr(ry =y 1™

k=0

is essentially self-adjoint on Dy. It is called the second quantization of T. More-
over, dI'(T)| £ 18 essentially self adjoint on F,(h) N Dr. An important choice is

T =1, D(T) = . Its second quantization

N :=dI'(1)
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is called the number operator. Note that N acts on ®"h by multiplication with n
which explains the name. For g € h define a map b~ (g) : ®"h — ®"~1h by

b ()1 ® -+ @y = (g, V1) P2 @ -+ - @ 1.

b~ (g) can be extended to a bounded map ®"h — ®"'h by linearity and the
estimate [|b=(¢)¢'|| < |lg||l|'||. Furthermore, define b= (g)1y = 0 for all 1y €
®%h := C. Then b~ (g) extends to a bounded map F,(h) — Fs(h). We then define
the annihilation operator on Fy s := Fo N Fs(h) by

alg) = (N +1)2b"(g).
Now define an operator b (g) : ®"h — @™ 'h by

Vr ()1 @ @ =g Y1 ® -+ Q.

The creation operator is then defined on F s by

N|—=

a*(g) = Sb*(g)(N +1)2.

Both, a(g) and a*(g) are closable and their closures are denoted by the same
symbols respectively. The operators satisfy the canonic commutation relations

[a(9); a(g")] = [a*(9),a™(g)] = 0, [a(g),a™(¢")] = {g,¢") 1.
It follows that a(g) and a*(g) have the same domain and we can thus define the
Segal field operator by
1

D(g) := ﬁ(a(g) +a*(g)).

The second quantization functor T' is defined by
L(h)=F, T(T)=PeT,
n=1

where T' € B(h) and ®"T is defined on simple tensors by
[@"T) (1 @ @¢Pn) =T1 @+ @ Tty
and extends to a bounded operator on ®"h. Note that

F(eiT) — oldI(T)
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1 Introduction

The model discussed here describes the interaction of a particle with a scalar
field of massive bosons. Due to E. Nelson’s paper [42] it is often referred to as the
massive Nelson model. It’s structure has also been discussed by Cannon in [7] some
years after. However, Nelson himself refers to several other authors in his paper. It
should be noted that for a certain (constant) choice of the boson dispersion relation
we obtain H. Frohlich” model for the polaron, [16]. Frohlich’s paper predates
Nelson’s and the Frohlich Hamiltonian can be derived independently from first
principles.

The term polaron refers to an electron moving through a crystal which leads
to local deformation of the crystal structure due to the opposite charge of atom
cores and the electron. Hence the movement of the electron will cause certain
vibrations throughout the crystal which in their quantized version are bosons also
called phonons. The moving electron can then be pictured as being surrounded
by a cloud of phonons which will affect its mobility, thus leading to an effective
electron mass. In some sense it might be helpful to imagine the general situation as
some kind of analogue, the electron somehow interacting with an abstract bosonic
field while being surrounded by a boson cloud. A nice review of the polaron’s
scientific history is given in [37]. With this picture in mind we will from now on
refer to the abstract particle in the Nelson model simply as an electron.

Regarding the treatment of the Nelson model we should also mention the work
of J. Frohlich in [17,/18] and Derezinski and Gérard in [10], since these authors
obtained results independent of the coupling strength, that is no smallness of the
coupling function is required. In the present paper we also follow this general
direction in that the coupling function is first fixed to be an arbitrary compactly
supported and smooth function for computational aspects. The obtained results
are then extended to a larger class.

Since we have mentioned the polaron, we should comment on the difference to
what is usually referred to as the Nelson model. Generally, it should be noted
that the polaron case has to be treated differently from a technical point of view,
since its constant dispersion relation causes difficulties in spectral theory. More
precisely, a boson dispersion relation like \/m? + |k|2, m > 0, which grows as
|k| — oo makes the derivation of central objects in spectral theory such as a
Mourre estimate possible. Therefore, results by Mgller and Rasmussen on the
spectral theory of the model first avoided the constant dispersion relation case,
see [36,44]. In their follow up paper [39] the authors greatly improve their previous
results and were able to avoid problems coming from a bounded boson dispersion
relation by forcing the electron dispersion relation to be unbounded with bounded
second derivatives instead. This assumption is somewhat natural, since the free
electron dispersion relation is quadratic.

In this thesis we will fix such a quadratic dispersion relation for the electron, first
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and foremost due to computational simplicity. The methods presented here are
valid for both, the unbounded and the bounded case of boson dispersion relation.
A technical complication when dealing with the massive Nelson model is that the
Hamiltonian H describing it is translation invariant, that is it commutes with
the operator of total momentum. This implies that the Hamiltonian is in fact a
fibered operator, where each fiber operator acts on Fock space, see Section
for details. This diagonalization goes back to Lee, Low and Pines in [34]. A
rigorous formulation in the context of Fock space can be found in [39] and will
be explained in a later part of the thesis. Even though the specific quadratic
choice enables us to carry out very explicit calculations and is therefore somewhat
simple, it still causes some technical problems in the context of Mourre theory.
More precisely, the commutator forms with the conjugate operator and the fiber
Hamiltonians cannot be implemented by an operator which is bounded by the
fiber Hamiltonians H(§) again. Therefore, methods developed in the context of
Schrodinger operators are typically not applicable.

In the translation invariant case the structure of the spectrum of the fiber Hamil-
tonians H (&), where & € R” denotes the total momentum, has been studied by
many authors and we merely focus on the results used in this paper. A good
overview is given in the introductions of [36,139]. In the already mentioned pa-
pers [17,/18] by J. Frohlich and and a paper by Spohn, [54], a proof of the HVZ
Theorem appears. In [36] an HVZ theorem for the essential spectrum is proven by
Mgller in the case of unbounded boson dispersion relation. Moreover, as in Spohn’s
paper, [54], the existence of a non-degenerate ground state for all £ in dimensions
v = 1,2 is shown. Dimensions v = 3,4 can also be treated, but there the existence
of a ground state for all £ cannot be established. However, if it should exist it is
non-degenerate as well.

There seem to be no results on the existence of eigenvalues between the ground
state of H(&) and the beginning of its essential spectrum. Since the fiber operators
form an analytic family of type A such eigenvalues have to be analytic functions
of £. These functions are usually referred to as isolated mass shells. It should be
noted that their only possible accumulation point lies at the bottom of the essential
spectrum. In order to construct a conjugate operator known from Mourre theory
this fact is exploited in the sense that the isolated mass shells are required to be
twice continuously differentiable, see |39].

In a sense the situation is similar when moving from the bottom of the discrete
spectrum into the bottom of the essential spectrum, even though it is not known
whether so-called embedded mass shells exist. An embedded mass shell is a func-
tion £ — A¢, where all (€, \¢) are taken from a subset of the energy momentum
spectrum in which all A\¢ are embedded eigenvalues of the fiber Hamiltonians H (£).
If these objects should exist however, they have to be accounted for in analogy to
the isolated mass shells when moving to higher energy regimes. More precisely,
one would expect that high energy versions of the Mourre estimate will require
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the same regularity in the embedded case as in the isolated one. This regularity
problem is the main topic of discussion in this thesis. In particular, our main
result, Theorem gives an affirmative answer, in that it provides an expansion
of Aey¢ in ¢ up to terms of order |¢|***, where ( is chosen small, all eigenvalues are
assumed to be non-degenerate. We are confident that this last restriction can be
removed and the result thus be extended to eigenvalues of constant (but arbitrary)
finite multiplicity.

In this context we should mention that the examination of the nature of the
spectrum is usually carried out to establish asymptotic completeness. Indeed,
the previously mentioned discussion enabled Dybalski and Mgller to established
asymptotic completeness in the Nelson model below the 2-boson threshold under
rather general assumptions, see [13]. Note that in this situation twice differentia-
bility suffices to deal with the embedded mass shells except possibly accumulation
points which have to be avoided. To show that these accumulation points are not
filling up the whole energy regime as a dense set analyticity of the mass shells
would be needed. It was the initial plan behind this paper to go into this direc-
tion and prove smoothness as an intermediate result by extending the mentioned
expansion of A¢;¢. Therefore, Theorem [5.34] a key technical result, is formulated
for arbitrary k instead of the case k = 3 needed to obtain the expansion. Unfor-
tunately, due to technical complications this project could not be accomplished in
time and was thus discarded from the PhD thesis. However, the first crucial step
to push the analysis to the orders 3 4+ « appeared to be almost within our reach
and we will pursue this direction of research in the future.

2 Main Results

2.1 The Model

Massive translation invariant Nelson models describe an electron linearly coupled
to a bosonic field. The electron’s Hilbert space is

K := L’(RY),

where the index x signifies that we are working in position space. The free Hamil-
tonian for the electron is given by Q(p) := p?, where p = —iV on K. Note that
the dispersion relation €2 can be chosen more general but due to computational
difficulties arising from an abstract choice of function we restrict ourselves to a
quadratic term. The Hilbert space of a single boson is denoted by

b :=L*(R}),

where the index k indicates that the variable for functions in b is to be understood
as a momentum. Define the bosonic Fock space over h by F = F,(h). The full
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Hilbert space of the composite system consisting of the electron plus the bosonic
field is defined by
H =K F.

The dispersion relation of the bosonic particle is denoted by w. We employ the
following general assumptions on w under which a Mourre estimate was proven by
Mpgller and Rasmussen in [39].

Assumption 2.1 (Boson Dispersion Relation). Let w € C*(RY) be real-analytic.
Furthermore, suppose that w satisfies the following extra conditions.

1. 3m > 0 : infierr w(k) = m.

2. Vki,ky € R” : w(ky + ko) < w(ky) + w(ke).
3. w 1is rotation invariant.

4. Yoo € NV @ supyepy [0%w(k)| < o0

5. de > 0Vm e {1,2} : |k|™V™w(k)] < cw(k).
6. im0 w(k) = 00 or sup, w(k) < oo.

A possible choice for such a function is w(k) := Vk? + m? or w(k) = m, where
m > 0. Since a concrete choice of w will not play any role in our arguments, we
keep it in this generality. Furthermore, we have to choose a coupling function that
implements the interaction between the electron and the bosonic field.

Assumption 2.2 (Coupling Function). Depending on the situation we will typi-
cally assume one of the three conditions on the coupling function g € L*(RY).

1. g € CF(RY).
2. g € L2 (R"), where L2 (R") is defined in (2.1)).
3. 3k € No : g € H* (R"), where HE (R) is defined in (2.4).

We define the space of square integrable functions decaying to arbitrary order
by

L2, (RY) := [ L*(R”, (1 + |k[)*"dx). (2.1)
n=0
The space of coupling functions with arbitrary decay at infinity and & local weak
derivatives is defined by

i, (RY) = LE,(R”) N HY,

loc

(R"). (2.2)

For the first half of the paper we will restrict ourselves to coupling functions
g € C5°(RY), since it allows for rather explicit calculations of iterated commutators,

23



see Section . It can be shown that the sets in and can be equipped
with a locally convex topology turning them into Fréchet spaces, see Section[5.1] It
turns out that g € C°(RR¥) is a dense subset in this topology and that commutator
forms, where general coupling functions are used, can be approximated by their
smooth and compactly supported counterparts.

We define the free and the interacting Hamiltonian on H by

Hy =1 @dl(w) +p*® 1F,
H:=Hy+V,,

where the operator V, is given by

Vﬂ@;:%/(a*m@ﬂx®a%m+émyme®q@)$h

The operator of total momentum
P = —iV ® ]l}‘ + ]l;c ® dF(k)

commutes with H and H,. Thus, both of these operators are translation invariant
and can be represented as a direct integral. More precisely, there exists a unitary
transformation Iy p : H — L*(R”, F) such that

®

IipHolfp = Hy(&)d"e,
RU
@

[LLPH[ELP = H(ﬁ)dyf,
]Rl/

where Hy(§) and H () are operators acting on F given explicitly by

Hy(§) = dT'(w) + (k — dT'(k))?,
H(&) = Ho(§) + @(g),

2(g) = 5(a°(9) + alg)).

The transformation I p was first used by Lee, Low and Pines in [34]. It can be
written as

Ip = (F®1x)o FK@F(e_ik'w),

where ['igr is an analogue of the second quantization functor I'. It has been
defined by Mgller and Rasmussen in [39]. More precisely, for a bounded operator
D € B(K ® F) with ||D|| < 1it is given by

Tkor(D) = (1®S)G(D)(1®S),
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where S is the symmetrization operator on Fock space and G(D) = @&22,G™ (D)
acting on K ® &2, @" h, GO(D) = D and G™(D) = D;---D,. The D; are
bounded operators on K ® ®™h defined by

D; = [EM]"D @ 1gn-1,E"
Finally, E;n) is defined via its action on simple tensors by

ENfOU® @Y @ Q)= fOY RN Y1 O @ @Yy,

where f € K and ¢4, ...,1, € h. There are several cores one can use for the fiber
operators. For our purposes the set

where C§°,,(R™) denotes the smooth functions of compact support which are
symmetric under permutation of coordinates.

We quickly sum up some results on Mourre-theory needed to state the main theo-
rem of the paper in the next section. Under (a generalizations of) our assumptions
a Mourre estimate has been established by Mgller and Rasmussen in [39].

Define the operator

1 -
5 (Uﬁ . 1Vk1Vkv5)

which is essentially self-adjoint on C3°(R”) for every smooth and compactly sup-
ported vector field v, € Ci°(R”,R”). A proof of this statement can be found
in [44]. We now define the conjugate operator A at fiber £ by

A£ = dF(CLg)

CL& =

Proposition 2.3 (Regularity w.r.t. A). Let £ € RY. There exists an open neigh-
borhood O(&) of & such that for all & € O(&) the operators H(E') are of class
C?(Ae).

It requires several definitions to properly state the set in which the Mourre
estimate established by Mgller and Rasmussen in [39] holds. They have thus been
moved and into Section in order not to obscure the presentation.

Theorem 2.4 (Mourre Estimate). Let (£,\) € €M\ TW, where the sets £V
and TY are defined in and (.) Denote by O(&) the neighborhood from
Proposztzonm Define [,\,i = (A=K, A+ k) for k > 0. There ezists k > 0,¢ > 0,
and a compact self-adjoint operator K such that Iy, C EM(E)\ TO(E) and

L, (H(EIH(E), ALy, (H(E)) = 1y, (H(E) + K, (2.3)
where & € O(€).
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2.2 Main Results
Assumption 2.5.

1. Suppose there exists U C RY such that the operators H(§) have a family of
embedded eigenvalues \e € o(H(E)) NEW(E)\ TW (&) of multiplicity one.

2. Further assume that this family is isolated. More precisely, suppose that there
exists d > 0 such that for all § € U we have that dist(Ae, 0,(H(€))\{Ae}) > d,
where 0,(H(§)) denotes the set of eigenvalues of H(E).

Notation 2.6 (Conjugate Operator for a Fixed Fiber).

1. Throughout the rest of the paper we fix & in U. Moreover, we fix the
neighborhood Oy := O(&,) given by Proposition 2.3

2. From now on we put A := Ag,.

Notation 2.7 (Eigenstate and Eigenprojection).

1. Denote by 7 the normalized eigenstate of H (&), that is H(&y)n = A¢,n and
Il = 1.

2. Put P:=|n){n| and P=1— P.
We first state a result on finite local regularity w.r.t. the conjugate operator A.

Theorem 2.8 (Finite Local Regularity). Suppose that the coupling function g
satisfies g € HY (RY). Then

fH(€)) € CH(A)
for all f € CP(R).

For the proof, see Thoerem which asserts the statement in the compactly
supported and smooth case. The full statement reappears as Theorem [5.34] and
is basically proven by generalizing the proof of Thoerem to the situation of
general coupling functions in H* (RY).

Obviously, the theorem implies the following Corollary which is interesting in
its own right.

Corollary 2.9. Let f € CP(R) and g € CF(RY), where g is the coupling function.
Then
Vk e N : f(H(€)) € CF(A).
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In Appendix [E|it is shown that the projected fiber Hamiltonians PH (¢)P have
the same property. It should further be noted that the previous statement has a
consequence on the structure of the eigenstate n due to regularity of eigenstates,
see [40], provided that there is a Mourre estimate in a neighborhood of the corre-
sponding eigenvalue. More precisely, the mentioned result then implies the validity
of the implication

g € HEIH(RY) = n e D(AF).
Let &, & + ¢ € U. With this implication we can prove the following Proposition
for the projected Hamiltonian PH (& + () P.

Proposition 2.10. There exists an open neighborhood V of & and v > 0 such
that for € €V and |¢| <r PH(E + )P is of class C2(PAP) and satisfies a strict
Mourre estimate (that is K = 0) of the type (2.9).

For € > 0 we define
Royic(§) = (PH(E)P — (z +1ie)P) "

and put A := PAP. Note that A is symmetric and closed with domain D(A).
This notation will not lead to confusion, since the context dictates the choice of §
in the definition of A.

Theorem 2.11 (Limiting Absorption Principle, Holder Continuity). Let s > 1/2.
Then there exists an open interval J containing ¢, an open neighborhood V of &
satisfying ¥V C Oy and constants C,;r > 0 independent of (, e such that

VEEV VIl <r: sup [[(A) " Ropie(§ +O(A) I < C

z€J,|e|]<1

and the limait
(A) " Rosio(§ + O)(A) ™ o= Im(A) " Ropie(§ + O(A) ™

€E—

exists as a bounded operator on PH forallz € J, £ €V and [¢| <r. Ifs € (1/2,1)
we have that there exists o € (1/2,1) and a constant C" > 0 such that

I(A) ™" Raio(§ + O(A) ™ = (A) " Rursio(€ + ¢)(A) ||
<O (le =2+ ¢ =%
for all x,x' € J and |(],|¢'| < 1. Moreover, C" is independent of £ € V.

The proof of this statement can be found in Section [6.4 It is then used in
an substantial way to derive the next statement which is the main theorem of
this paper. The proof itself relies on abstract considerations which can be found
throughout the literature. A first step consists of showing the statement for { =
0 and ¢ in a neighborhood V' of &,. This neighborhood derives from a slight
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modification of Gérard’s proof of the limiting absorption principle in [22]. A quick
discussion on how Gérard’s result can be modified to fit into a parameter dependent
context is given in Appendix [D] By choosing an open subset V C V' containing &
we can achieve that & + ¢ € V' NU(E) for || sufficiently small.

Theorem 2.12 (Second Order Perturbation Theory). Let§, € U and s € (1/2,1).
There exists an open neighborhood V of & satisfying V C Oy and r > 0 such that
forall¢ €V and all |(] <

)‘£+C = )‘5 + Z Caﬂa(f) + Z CUCa’ﬁa,a/(f) + 0 (‘C|2+a) :
o=1

o,0'=1

Where we have defined
Bo(€) =26 — 2(n, dT(ko)n),  Uyn := P(A)*dL (ko)
and
Ba,a’ (5) = 60,0’ + 4§U§U’ <?<K>S777 <K>_Sﬁ>\5+i0(§) <K>_S?<K>Sn>
+4€ (P(A)"n, (A) " Ra+10() (A) ™" Usm)
+ 4& (Usn, (A) " Rag410(€) (A) " P(A)°n)
— AU, <K>_SE>\§—HO(§) <K>_S o)

Moreover, the error term can be estimated independently of £: There exists C > 0
independent of £ € V such that

‘O (|C‘2+a)‘ S C‘<‘2+a.

The proof combines most of the results presented here and is given at the end
of Section [6.5l It rests on a combination of the Feshbach-Schur method with the
results on Holder continuity of the resolvent boundary values. The above expansion
finally implies the desired differentiability.

Proposition 2.13 (Twice Differentiable Parameter Dependence). Let & € U,
s € (1/2,1) and V be the neighborhood of & in Theorem [2.13 Define a map
A:V = U by A€) = Xe. Then A € C*(V,U).

PROOF: Denote by e, the usual basis vector for R” and by ¢,, the Kronecker
delta. First note that due to

Aethe, = A¢ +h Z 00,0180, (§) + h’ Z 00,0100,03 301,02 (§)

o1=1 o1,02=1
+ 1) (‘h‘2+o¢)
= Ae + Mo (€) + h2B,0(€) + O (|h***)
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A is differentiable at every £ € R” and 0,A(§) = 5,(&). Since & — S,(§) is contin-
uous, so is d,A and thus A € C'(V,U). In order to prove twice differentiability,
we have to control

L (6a(6 -+ hew) = Ailc).

Note that
Bo 5 )\ es >\ o
&) Aeee 226 g (04 0. ()
o h o’ )\ eo e s )\ e _y
B (57; € ) _ Ntheoth ;LQ Ethe,r 60,0(5 B heg,) +0 (|h’a)

and an easy computation which uses the expansion in Theorem shows that

L(Bo(E + hew) = 6r(6)
= Ba,a’(g) + Ba’,a(é) + Ba,a(g + hea’) - Ba,a(g) + 0 (|h’a> .
Due to Holder-continuity of 3, ,(£), we obtain

80’80A(€) - 50,0’ (5) + 60’70 (f)
and thus the continuity of 0,,0,A(§) on V. O

2.3 Remarks on the Spectral Theory of the Model

In order to state results on Mourre theory in this model, we have to introduce some
notation. We follow the presentation in [39]. We define the energy momentum
spectrum by

Y={&E) | Eca(H())}
and the bottom of the spectrum of the fiber Hamiltonian H () by

So(€) = inf o(H(S)).

The energy necessary to support the interacting system at total momentum & —
Z;Zl k; and n non-interacting bosons with momenta ky, ..., &, is given by

S0 E k) = So(E — ki ha) + > w(ky),
j=1

where k = (kq,...,k,) € R™. The minimal energy needed for such a situation to
occur is

20() = inf BV(E k).

EGR‘ILV

These numbers are called n-boson threshold. Note however that the term carries
a double meaning in the sense that it can denote the minimal energy needed to
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support the interacting system and n free bosons but it can also mean a threshold
in the following sense that it denotes an energy at which the system can form an
interacting bound state and n bosons with zero breakup velocity. With the above
notation we put

EV(E) = (29, 27(€) and W ={(£,)) eR" xR A€ EN()}. (24)
The HVZ theorem can be written as
Tess(§) = [Eél)(§)7 OO)

Hence the 1-boson threshold also serves as the start of the essential spectrum. It
is therefore somehow natural to write

1
EBSS<€> = Eé )(5)
The discrete or isolated part of the energy momentum spectrum is defined as
Yiso 1= {<€7E> €X | E< ZeSS(é)}'

Since the possibility of energy levels to cross cannot be ruled out at this generality,
we define the set of level crossings by

X :={(&,E) €Yo | Vn €N : Xy, N B((, E);n™t) is not a graph},

where B((¢, E);r) denotes the ball of radius r > 0 centered at (£, F) € R” x R.
The connected components of X’ are connected to each other by real analytic
manifolds S. The collection of such manifolds is denoted by S. More precisely,
the set S consists of tuples (A, S), where A is a v dimensional annulus or an open
ball centered at 0, and S : A — R is a function satisfying ¥q(§) < S(§) < Xess(§)-
For (A, S) € S we define

SW(E k) = S(& — k) + w(k).
The threshold set at momentum ¢ € R” is
TOE) = TPEOUTVEQUT(E).
The different components are defined as follows.
T ={EcR|3IAS)eS ke A+¢: E=5D( k),
VieSW(E k) =0}

For ¢ € R” define u(&) to be a unit vector such that £ = su(§) for some s € R.
Finally, we put

ﬁ(l)(f) ={EeR|3IreR(—ru§),E—w(ru(g))) € X},

T ={E€R|IkeR": (§—k E—wk) € X, Viw(k) = 0}
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and
T — 7;(1) U 7](1) U 74-)((1)7 (2.5)

where 73(1) ={(,,F)| E € 73(1)(5)} etc. At last we have accumulated all the
definitions necessary to formulate the Mourre estimate Theorem established
by Mgller and Rasmussen, see [39], Theorem 3.18.

3 Operators Acting on a Core

3.1 Bounds on a Core

In this section we have to deal with products of field operators and second quan-
tized multiplication operators frequently. It is thus convenient to introduce some
notation for it.

Notation 3.1.

n

H D(g;) == (g1)P(g2) - - - P(gn—1)P(gn),

i=1
n

[ a0 (w) := dr (uy) AT (ua) - - - AT (1) AT (),

=1

where the u; € C*(R”,C) are arbitrary functions and g; € CF(R). Note that
these operators make sense at least on Cj°. Moreover, the operators in the second
product all commute so that there is no ambiguity. Whenever there are products
of field operators the symbol []'"_, ®(g;) means that they should be arranged such
that the factos in the product respect the ordering of the indexes when read from
left to right.

Definition 3.2. The set of smooth functions bounded by the photon dispersion
relation is defined by

Cr:={feC®R")|3IC>0:f<Cuw}
and the set of all operators acting on Cg° by

Op(Cg°) := {S linear operator | D(S) = Cg°, SC° C C5°}.
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1. Define the following subsets of Op(C§°):

Qto,[)’o = C{l}
60,07043 = Span{H dF(kU)qU | q- € Ny, ZQn3,a =nz < a3}
o=1 o=1
+ €o,0,0,

J2
Co.ap0 = Span{H AT (up) | u; € CF) 1 <i < js < as}

m=1

+ €000,

€00 = Span{H ®(g:) | 915--- 95 € CT(RY), ji < au}

i=1
+ €0,0,0-

2. Note that operators in these sets can be multiplied without any issues con-
cerning domains, since they only act on Cg°. We can thus define

Cata2,0 = €a100%0,020,  Car 0,05 = €a1,00€0,0,0s,
Q:O,Oémas = 60,a270€0,07a3> Q:Oéhamas = 601,07060,&2,00:070,043'

3. We write
T ~ €a1,a27a3>

if C° c D(T) and N
T € Q:al,ag,ag : Tlcgo =T.

Remark 3.3.
1. The restriction |u;| < C; - w is made so that dI'(w;) is Ho(§)-bounded.

2. We require g; € C(RY) so that vjklg; € L*(RY) for all i,j, (o that can
appear.

3. All functions are chosen to be smooth, so that T' € €,, 4, , implies TC;® C
Coe.

4. Tt follows immediately from the definition that o; < (; implies

Q:Ot1,a27a3 C 651”327,33

for o4, B; € INg.
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The spaces €y, ay.05 allow us to control form identities on C§° such as commuta-
tors by calculating them on the core and then order them such that all fields are
on the left and all second quantizted multicplication operators are on the right.
This in turn will lead to (form) bounds in terms of graph norms of powers of the
free Hamiltonian.

Definition 3.4 (Commutators on C°). Let TS € Op(C§°). Then we define an
operator adg(T") € Op(C§°) by

Vip € C¢° : adg(T) = ST — T'Shp.

We draw first conclusions from our definitions. Let T' ~ €4, 4504, S € Op(C°)
and ¢, 9" € C3°. According to the definitions there exists T' € €4, 45,4, such that
Tlege =T. If C5° C D(T™), we may compute

(W, [S, Ty = (S™, T9') = (T*, SY') = (4, STY') — (&, TSY)
= (¢, ads(T))

Hence we can calculate the commutator form on [S, 7] on C5° x Cg° and argue that
it is given by the operator adg(7"). However, it will in general by difficult to extract
more information on the analytical properties of this operator. In particular, we
would like to extend it to larger domains.

To this end the subspaces €4, 0,05 C Op(C5°) are a quite useful technical tool,
since their elements may be easily bounded by powers of the number operator
and hence by powers of the free Hamiltonian Hy(§). It is in general not clear, if
ads(T) ~ €, as.0s again. However, if we are in a position to explicitly compute
adg(T) on C3°, we can then try to re-write it in such a fashion that it will be
an element of €y o o, for some new constants . In this situation we may view
the operation of taking a commutator with S as a map between sets €, 4,4, and

Cof oh.ay- In the following we slightly abuse notation and define a map

ads(-) : Q:oq,ag,ag, — Op(cgo>
T+ ads(T)

The next Proposition deals with the question whether adg(7") ~ €l for cer-
tain choices of S. It will play a crucial role in our analysis.

If we further assume that 7" is a Hy(¢)™2-bounded operator for some m € IN,
an extension of the commutator form would require us to first extend to form to
the larger domain. Since the form satisfies the generic bound

(0, [S, TIO < Cllllsmll¢ Il 5.
[llsm = 1+ [ Ho(§) %l + 1S,
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this could be done if we knew that C3° was a ||-||s,»-dense subset of D(H™/2)ND(S).
We are interested in commutators with the conjugate operator A and H(&). Since
the domain of the conjugate operator A contains C3° and AC§® C C§°, we can
replace S by A in the preceding argument.

Hence the key question we have to address in order to extend commutator forms
like [A, T is whether or not C$° is dense in D(H™/?) N D(S) w.r.t. the intersection
norms || - ||, :== || - || a,m for all m € IN.

Proposition 3.5. Let g € CP(RY) and o; € Ny, where i = 1,2, 3, but at least one
a; #0. Then

addFUﬂa) (Q:al,OéQ,%) - Qtal,az,as )

Q:Oz ag,a3+1
ad Q: C 1,062,063 ?
Ho(f)( CYLOZZ:OCB) = {@070,0 ay =0

Q:al,ag,ag + Q:al,angl,agfl , O3 Z 1,0(2 Z 1 or Qaq Z 1

ada(€aya0,05) € € €otas-1 yoa3 2> 1o =ay =0
Q:al,ag,O , i3 = 0
(Qtalfl,ag,ag + €a1+1,a271,a3 , O, Qg Z 17 0% S ]NO
Cai-1,00 yop 2 1Lag =a3 =0
ad‘l’(g)(ezoél,az,as) g Q:Oq—l,o,ag + Q:a1+1,0,a3—1 , O, (3 2 1, Qg = 0
Clas—1,03 ya1 =0, ag > 1, az € Ny
LC1.0,a5-1 yop =0 =0, az3 > 1

In particular,

adH(ﬁ)(Q:al,amOls) - adH0(5)<Q:Ot1,Oé27a3) + ad@(g)(gal,amas)'

PRrROOF: For the different operators we want to take commutators with, we only
treat the cases, where ay, as, a3 € INy are as general as possible, since the proofs
of the special cases are more simple. Since the elements of the sets €4, 4,4, are
finite linear combinations, it suffices to carry out the calculations for summands
of the form

ni n2 14
[T @) [T dr@n) [ dr (ks
=1 m=1 o=1

where n; < a; and @ 1 + - -+ Qg = N3-
Now note that dI'(k,) commutes with all other second quantized multiplication
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operators. Hence

adar(k,) (H ®(g:) H dI*(vr) H dr(ka)q”3"’>
i=1 m=1 o=1
ni n2 v
= adark,) <H @(gi)> [T a0 (wn) [ T (kg )2
1=1 m=1 o=1

Lemma implies
adar(x,) (H q’(ﬂi))
i=1

= Z (1) -~ P(gne-1)[AT (K5 ), P(Gn,0)|®(gne41) - - - Py

= =i ®(g1) - ©(gne1) (ko gn.e)P(Gnis1) - - P(gny)
/=1

and the first statement follows.

In the next step we analyze how taking a commutator with Hy(&) effects ele-
ments of €y, ny.as- Since Hy(§) commutes with all second quantized multiplication
operators, the only interesting case is oy # 0. In this case we obtain

ni no v
ad g (¢) (H (g0) H dT’(vy) H dF(kU)Qn3,o—>
=1 m=1 o=1

= [HO(S), H <I>(gz)] H dl(vy,) H dI'(k, ).
=1 m=1 o=1
In order to keep the equations shorter we introduce

Cm = [Ho(g), (I)(gl) T (1)<gn1)]'

Clearly,

Cm = (I)(gl) e q)(gn,ﬁ—l)[H0(§)7 (I)(gnvf)]q)(gn,ﬁ—&-l) T (I)(gnl)'
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Thus, we have to calculate the single commutator

[©(9), Ho(E)]

= [®(g),dT(w)] + [®(g), (§ — dT'(k))?]

= —i®(iwg) — 2[®(g), & - AT (k)] + [@(g), dT'(k)’]
—i®(iwg) + 21P(i€ - kg) —idD'(k) - D(ikg) — iP(ikg) - AT'(k) .

v

= —i®(iwg) + 2AP(E - kg) — 1Y (AT (ko) @ (ikog) + P (ikog)dT (ko))

o=1
14

= —i®(iwg) + AL - kg) — 1Y _ (1(ik2g) + 20 (ikeg)dT (ko))

o=1
= —i®(iwg) + 2P - kg) + P(i[k|*g) — 21 > D(ikyg)dT(k,).
o=1

This last equation implies

Cny = —1Z<I> 1) -+ @(ge-1)P(1wge)®(ges1) - - (g, )
+21Zq> g1) - (ge1) (S - kge)2(ges1) - - - (g, )
+Zf1> 91) - D(ge1)P(ilk[ge) P (gr41) - - - P(gn,)
- 21;2¢> g1) - @(ge-1) (ko ge) AL (k) D(ges1) - - (g )-

All contributions except the last one are already in the correct form. By commuting
dI'(k,) through to the right we obtain

(I)(gﬁ—l)(I)(ikagﬁ)dr(ka)q)(gﬁ-‘rl) e (I)(gnl)

=0 (gr-1)P(1koge) 2(get1) - P(gn, ) AL'(ks)
+ ®(ge-1) P (ko ge) AT (Ky ), ®(ges1) - -~ Pgni)].

Another application of Lemma gives

D(go—1)P(ikge)dL (k)2 (get1) - - - P(gny)
=P (g—1)P(ikog0) 2(get1) - - - P(gn, ) AL (ko)

+ ®(ge—1)P(ikogr) Z Cre®(ger1) - P(Gesr—1)P(ikogesr) ¥

k=1
X (gernr1) -+ P(gn)-
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Therefore, the Hy(¢)2-boundedness of dI'(k,) implies

ad my (¢) (H ®(g¢) H dl' (v ) H dr(ko)qn3’g> € Caaz,ast1-
(=1 m=1 o=1

We examine the commutators with the field operator ®(g) next. Let oy, as > 1
and a3 € INg. We compute

ade(g) (H P (g0) H dl'(v,) H df‘(k;a)qng,g)
t=1 m=1 o=1
o(g), | [ ‘D(ge)] [T ar(v..) T dr(k,)omes
=1 it ke
+ 1_1 (ge) 1_2[ dl (vy,) [d)(g), H dr(ka)qng,a]
=1 m=1 o=1

Tl

o(g), [] dr@m)] [T ar (e, )oms-.
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A two-fold application of Lemma gives

ada(g) (ij[l ®(gr) ln_IdF(vm) f[ldl“(kg)q"w)
- [@(g),f[lq%gz)] ii[ldr(vm) li[ldnkg)qng,a
+f[1<1>(9e) [<I>(g), ﬁdf‘(vm)] ﬁldp(;%)qns,a _
+ i‘[l (g0 f‘_[l dr(v,) [qp(g), U dp(ka)qng,(,]
i2ﬂm<g,gj>21j[id> (g:) H d(g;) H AT (v, Hdr Jing.e

t=j+1
+Z Z ONRQ\DH(I) (g0)® H dl'(v;) de Jnzio
i=1 DEP,(Npy) gean\D
v Qnz,o

IS Z > CNqngaDCNnQ\Dqu) ge) X

o=1 i=1 DGP(NQTL:)’U)d lDEP Nn2

x®((gp)p) ] drwa) ] HdF Ying.a

meNng\D/ ZENLIWB,U\DI /#O.

This equation clearly implies that

adq’(g) <q>(gl) e (I)(gm) H dr(vm> H dr(ka)qn?”U)

€ Q:Otlfl,oéz,a:s + €a1+1,a271,o¢3-

Since adp()(-) = adm,)(-) + ada(g)(-), the mapping properties of adge)(-) now
follow from what has been proven already.
In order to complete the proof it remains to analyze ad4(-). Let a; > 1,7 =1,2,3
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and calculate

" (H ot [Tare) [ dru%)%svv)

(=1

ni ng 14

AT @) | [T drwy) [T dr(k,)os-
(=1 j=1 o=1

A, ln"[ dr(uj)] H RINC B
J=1 o=1

A, H dr(ka)qw] .
o=1

+ 1_1[‘1)(95)

+ 1_1[ d(gy) 1_2[ dI'(v;)
=1 j=1

By Lemma we obtain

ni

ATl ‘I’(Qz)] € €a100

(=1

and similarly, since second quantization of ¢ - Vu; leads to an Hy(§)-bounded
operator, we have that

ni

H ®(g¢)

(=1

n2 v
ATl dF(vﬁ] [T artko) s € €ay o -
j=1 o=1

The last term remaining has to be treated with more care. Recall that the w,, were
only introduced to make products of operators of the type dI'(k, )" appear more
symmetric. Therefore, commuting A with some dI'(u;) amounts to commuting A
with some dI'(k,) which gives [A,d['(k,)] = dI'(i(¥),) by Remark [A.1] luckily,
second quantization of multiplication by a component of @' is Hy(£) bounded so
that

ni

[T @) HdF(%’)

(=1

Aa H dr(ka)qns’(r] € Q:Otl,oé2+1,a3*1
o=1

which proves that ada(€a; as.05) € €ay 005 T Car.antiaz—1- L

For technical reasons we will be forced to control the adjoint 7™ of some T' €
Cat,as.as- It turns out that 7™ € &y, 4, 4, again.

Lemma 3.6.
T ~ ¢a1,a2,a3 = 1" ~ Q:omaz,a:a-
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PROOF: Let . s ,
T =[] @) [[dr(v)) J] dT (ko)®ms
i=1 j=1 o=1

and ¢, ¢’ € C§°, where n; < ;. Then, by symmetry,
(W, T9') = ([ [ (vy) [T A0 (ko) 0@ (gn,) - - - B(g1), o).
j=1 o=1

Obviously, in the case ny = 0 the statement follows immediately, since all second
quantized multiplication operators are commuting on C;°. We may thus assume
that ny > 1. In any case the previous equation shows that C;° C D(T*). Define

HdF v HdF )Ise B (g, ) - D(gy).

Clearly, T*|¢ee = Syp,. A repeated application of Lemma shows that S,, ~
Coryan,a3- 10 particular, there exists S, € €q, ay.a; such that Sy, e = S, . Hence
T*ew = S, O

Proposition 3.7. Let g € C3°(R”) and m € IN. Then

HE™ ~ D > €aimejb):

ProoFr: We begin the inductive proof by noting that for m =1

H(E) = ®(g) + dT(w 5—2Z§Udf )+idF(k;

11]

€ €0+ &0+ o2 = Z Z i k21—j—k)-
=0 k=0

Assume that the assertion is correct for some m € IN. We clearly have that

H(E)™ = ®(g)H (&)™ + Ho(§)H (&)™

Since left multiplication by ®(g) takes €4, ap.05 10 €4y 11,05.0s We may invoke the
induction hypothesis to conclude that

HE™ ~

j=0

—J m+1m+1—j

Q:]+1k2m —j—k) C E § Q:]k:2m+1 —j—k)>
J=0 k=0

3

b
I

0
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where we have used that for two subsets V, V' C ‘H we always have V. C V 4+ V'’
provided that 0 € V.

Similarly, it should be clear that Hy(§) ~ €10 + €002 and that right multipli-
cation by elements of this space sends €4, ay.a5 I1t0 Coy aot1.05 + Caya0,a5+2- 1 We
compute

Ho(§)H(§)™ = H(§)" Ho (&) + aduye) (H(§)™)

and use Proposition to control the commutator contribution, we can apply the
last remark and see that

Ho(§H(E)™
m m—j

NZZ ik1,2m—j—k) T Cir2mr1—j—k) T €k 2(m—j— k)+1)
§=0 k=0

3

'MS

(Q:j k+1,2(m—j—k) T €j,k,2(m+1*j*k))
0

o

=0

7
3

—Jj

- €k 2(mA1-j—k)
j=0 k=0

=]

where we have made use of €; ;. 2(m—j—k)+1 € &€k 2(m—j—k)+2- It is now easy to show
that

m+1m+1—j m m—j

E g ik 2(mr1—j—k) + E g Ckt1,20m—j—k) + Cjk2(mt1—j—k))
7=1 = j=0 k=0

m+1m+1—j

CZ Z €k 2me1—j—k)-
j=0 k=0

Since H(&)™ = ®(g)H (&)™ + Ho(E)H(£)™ is an element of the left hand side,
the argument is complete. [J

Lemma 3.8. Let m € IN. For all n € IN we have that
[A", H(§)™] = adan(H(§)™)

as a form identity on C3°, where

|
—

n

o (H (€)™ = (’;) oI (H(€)™) AT (3.6)

.
Il
o

for all i € C5°.
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PROOF: The proof can be carried out by induction. The statement is clear for
n = 1. Let ¢, 9" € C§°. We assume that the statement is true for some n € IN and
compute

Il
3
A
3
-+
—_
~
=
o
3
A
d
Ja
o
3
=
S

where we have used that ACS® C C5° and ad’(H(£)™)C® C C3° for compactly
supported coupling functions g. This completes the proof. [

Definition 3.9. Define the set of smooth functions bounded by polynomials
p(|k|) = (1 + |k|)* for some ¢ € IN.
Vne N 3¢, C)e Ny x R :

|/ (k)]
LT c}. (3.7)

Note that CZ° C C;°. For a function f we call My the multiplication operator by
[ acting on L*(RR¥) with the usual maximal domain. We define the set

M(C) = J{My | f ey (3.8)
f

Coe = {f e C®(RY)

k
loc

(R”) we may define the operator
D2 = M0, (3.9)

Furthermore, on H

where « is a multi-index with |a| < k, n € C*(RR”). Note that in this notation
Dg = M,. Moreover, we define

D" = | (J{DS | a € N, |a| < k,supp(n) C B,(0)}. (3.10)
A

Finally, the union of these two sets is denoted by

Of, == M(C¥) UD", (3.11)
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These sets can be used to specify how commuting Hy (), ®(g), H(§) or A with
T ~ €4 .04 affects the compactly supported functions appearing when 7' acts
on C§°. In order to keep track of the dependence on these functions we introduce
some notation.

Definition 3.10. Let 7" € Op(C°). In order to emphasize the dependence on the
coupling functions g, ..., g, € CP(R) we write
T(glu cee 7gn1) ~ Cayaz,a35

if n; < oy and there exist uy,...,u,, € CJ and g¢n,, € Ny, where 0 = 1,...,v
and ¢, 1+ -+ + Gny = ng and Cp € C, such that

Vi € C° : Ty = Cr [ [ (g:) [ [ T (wy) T ] AT ()77

This definition allows us to reformulate Proposition in the special case where
adp, () () etc. act on T'(g1, -+, gny) ~ Cayan,a5- 10 particular, it enables us to keep
track of how the coupling functions change which will be used to extend certain
arguments to more general functions later on.

Before stating the Lemma we introduce some more notation. Let T'(gy, -+, gn,) ~
Ca1.a0,05 be such that

Tlan )0 = G [ w0 T arwy) [ ar oo
i=1 Jj=1 o=1
for all ¥ € C§°. Put
S(na,ng) == [[d(uy) T] dr (ko)™ € Op(CF).
j=1 o=1

We define
T(gl, ey Gy e e ,gm) ~ ¢a1—17a27a3
by setting
T(Gry- s Gms -y Gy U
= Cr®(g1) -+ (gm-1) P(gm1) - - - (gny ) S (12, 123) ).
Lemma 3.11. Let T(g1, -+ , Gny) ~ Car.an.as and ¢ € C3°.
1. There exist N € N and operators My, ,,..., My, , € M(CY) and

Tﬁ(Mfl,eglv e ’anl,zgm) € €0417062,&3-&-17

where 1 < ¢ < N, such that
N

adHo(ﬁ)(T(gla G )Y = Z Tf(Mfl,tzgh e ’anl,égnl)w'

(=1
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2. Let g € CF°. Then there exist N € N, My ., , € M(CY) and operators

Te(gla -y 9n, an1+1,gg) ~ Q:al—l,ag,a3+17
where 1 < ¢ < N, such that

n

ada(o)(T(g1, -+ 9u ) = D T(g1, -3 Gis -+, gn)V
1=1
N

+ ZTZ(glv oty Ony an1+1,zg)1/]'

(=1

3. For every o € {1,...,v} define 6, € N” by (65); = doj. There exist N € N
and operators Ty (g1, .-y Gn)s-- s IN(g1, -+, Gn) ~ Cayantlas—1 Such that

adA(T(gh U Jgnl))w

=33 T(g1,.... (DY, + DX)gis -, g )V

i=1 o=1

N
+ Zﬂ(gla U 79n1)¢~
=1

PROOF: Due to C37 C C and k, € G for all o = 1,...,v, the first two
statements are immediate consequences of the proof of Proposition [3.5] Likewise,
since the vector field v has compact support and a = %(v iV 4iV.v) =v-iV 4+
tMaiv(), DS, D} € D' and the third statement immediately follows from the
proof of Proposition [3.5| as well. [J

Lemma 3.12. Let m € N and ¢ > 0 and g € CP(RY). There exist N,,, € N,
My, .oy My, , € M(C), where 1 <€ < Ny, and 0 < j, < m, such that for all
b e

Nm m

H(&)™p = Ho(&)"p+ > Y Tu(My, ,g,..., My, g0,

=1 jo=1
where for all 1 < ¢ < N,,

Ti(My, g, - - My, ,9) ~ €y gy 20m—jo—ke)
for some 0 < ky < m — 7.

ProOOF: From Proposition we already know that there exist N,, € N,
91,6, 9jpe € G, where 1 < £ < N, and 0 < j, < m, such that for all ¢ € Cg°

Npm m

H(&)™)p = Ho(&)™0+ > > T(gus,- - Geg ),

(=1 j,=0
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where for all 1 </ < N,,

T(91,€> cee ’gf,je) ~ cje»kzﬂ(m*jrké)'

for some 1 < k¢ < m—j,. We thus have to show that g1, = Mig,..., g0 = My, .9
for appropriately chosen operators My, ..., Mj,, € M(C).

The statement is clear for m = 1. The general case follows by induction from
Lemma [3.11] and a similar argumentation as in Proposition [3.7 More precisely,
Lemma|3.11|implies that in every step the coupling functions will at most accumu-
late one factor My for some f € CZX. Since MMy = Mys and CZF is an algebra,
the induction step can be carried out. [J

Corollary 3.13. Let T(g1, .-, 9n,) € Cayan.as and g € CP(R). Then

ni

ad (o) 4a(e) (T(hay o ) = > T(ha, o hiyo hiy)

=1

+

M =

Té(hla IR hnN an1+1,éh)

(=1

+

] =

T<Mf1,zh17 T anl,zhm)'

o~
I

1

PROOF: Due to

adgy(¢)+e(9) (T'(91,- - In))
= aduye) (T (g1, -, 9n,)) +ada@) (T (g1, - - Gny)),

we simply combine Lemma [3.11,.1 and Lemma |3.11/2 to complete the proof. [J

3.2 Extension of the Bounds to Larger Domains

Lemma 3.14. Let n > 0. For x € D(A) N D(H{) define the intersection norm
|zl 1 = ||z|| + |Az|| + [|Hx||. Then:

1. D, := (Hy — N\)™"D(A) C D(A) N D(H) is independent of the choice of
A< —1.

2. If n > 1, Ci° is dense in D,, w.r.t. the intersection norm || - ||;.

PROOF: Let A, Ay < 0 and put D, (N\;) := (Ho — A\;) "D(A) for i = 1,2. Note
that by the first resolvent identity

(Ho—M)7"=(Ho— X)) (1+ (A — X2)(Ho— A)7H).
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For n € IN commutativity of the resolvents thus yields
(Ho— A1) ™" = (Ho— X)) ™" (1+ (M — Xo)(Ho — A1) )"

Since (Hy — A\;)~! preserves the domain of A so does (Hy — \;)~¢ for all £ € IN.
Combined with the previous equation this implies

(Ho — A1) "D(A) C (Hy — \2) "D(A).

Reversing roles of A\; and Ay gives the other inclusion and thus D, (A1) = D, (\2).
This proves the first assertion, if n € IN.
Since the integer case is clear, it suffices to show that

(T4 (A1 — A2)(Ho — M) """ D(A) C D(A)

for € (0,1). If (1 + (A1 — Xo)(Ho — A\1)71)™ € C'(A), the desired result follows,
since all operators in C'(A) preserve D(A). In order to see this first note that the
choice of \; implies infye,(rr(e)) |A — A;] > 1 and hence (A\; — A2)(Ho — A1)™! has
norm less than 3 for [A\; — Xo| < 1/2. Furthermore, we abbreviate

Ri=(\ — o) (Hy— M)~

and compute

[e.e]

6,14, (14 RIS Co [ (Ut e+ B 0 A RN £+ R 0)lde

[e. 9]

S/C/“alllelw’HHadA(R)H

dt < "M ada(R
1oL +1)2 < Chllollw' N ada(R)|,

where we have used that (Hy—\;)™! is of class C'(A) which immediately gives that
R is of class C'(A) and the form [A, R] is given by a bounded operator ad(R).

We now prove the second statement. To this end let ¢ € D,,. We need to
construct a sequence ¢ € Cg° such that ¢p — ¢ w.r.t. ||-||;. Due to ¢ € D,,, we
may write ¢ = (Hy + 1)~"¢ for some ¢ € D(A). Since Cg° is a core for A, there
exists a sequence (¢x)r € D(A) such that ||t — ¥x]|la — 0, where || - ||4 denotes
the graph norm of A.

We define ¢ := (Ho + 1)"™)y € D,, € D(A) N D(H™). By the continuity of
(Hop + 1)~™ it is then clear that ||¢r, — ¢|| — 0. As before we first cover the case
where n € IN. This assumption allows us to calculate

1Hg (0r — @) = 1 Hg (Ho + 1)7" (¢x — )| < ([ (o = )| — 0.
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Thus, the validity of the second assertion for n € IN follows, if we can establish
that ||A(¢r — ¢)|| = 0. Since ¢ and all ¢y, are in D(A) and (Hy + 1)~ is of class
C'(A), we may calculate

[A(x — @)l = [|[A(Ho + 1) 7" (¢, — )]
< |[[(Ho+ 1) AW, — V)| + [[ada((Ho + 1)) (¢ — V)|
< max{|[(Ho +1)""[, [lada((Ho + 1)"")|I} - [[vx — ¥|la -

Therefore, ||A(¢r — ¢)|| — 0 which completes the proof of the case, where n € IN.
Next assume that n = m+1/2 for some m € IN. The HJ-term in the intersection
norm can be dealt with easily. Indeed,

| HE (6 — &) = | HE (Ho + 1)~ HE (Ho + 1)7% (. — )| < [l — 0.

In order to deal with the half power we compute

|(n, Ao — 9))| = (0, A(Ho + 1) ™2 (1, — )|
< [{n, (Ho + 1) 2 A(Ho + 1) (¢, — )|

+ (0, [A, (Ho + 1)72)(Hy + 1) (¢, — )|

< [(n, (Ho + 1)72 (Ho + 1) Ay — 0))]

+ (0, (Ho +1)7"% ada((Ho + 1) ™) (v — v))|
+ (0, [A, (Ho + 1)72)(Hy + 1) (¢, — )|

for n € C3°. The first two terms only involve bounded operators and thus give
uniform expressions in 7. If we can show that the form expression [A,(H, +
1)~2](Hy 4 1)7* is given by a bounded operator, |A(¢, — ¢)|| — 0 and we are
done.

Let n,n" € C§°. Since Hy+ 1 is strictly positive, we can make use of the integral
representation formula in [14], Lemma 3.1, for (Hy + 1)~%2. Moreover, [A, Hy)
is given by the operator ada(Hy) on C§°. Due to (Hy + 1)7'C° C C§°, we may
calculate

(0, [A, (Ho + 1)72](Hy + 1) "'n))|

C

2{(n', (Ho + 1+ )7 [A, Hol(Ho + 14 ¢) " (Ho + 1) |t

C [t 2[((Hy+1+t) "0, ada(Ho)(Ho + 1+ t)" " (Ho + 1) n)|dt .

IE
0
00
IE
0
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By direct computation on C5° we can establish that

ada(Hy) = dl'(iv - Vw) + ii &, dl(vy) + Qii dI'(v,) dI'(ky).

o=1 o=1
Thus, ad(Ho)(Hy + 1)73/2 extends from C§° to a bounded operator. This lets us
compute
c [+
0

< C//tél‘(Ho + 14+ ||||(Ho + 1)%(H0 + 14 ¢)"'n||de-

N[

[(Ho+1+t)""n,ada(Ho)(Ho + 1+ t) " (Hy + 1) 'n)|dt

0
< O'/ zdt - |7 [linll = Sl il -
(1+4+1)>
0
Hence we have shown that the form [A, (Hy+1)"2](Hy+1)"" is bounded and thus
given by a bounded operator ad((Ho -+ 1)2)(Ho + 1)~!. As previously mentioned
this completes the proof. [J

As a next step we prove that D,, can be used to approximate elements in the

intersection domain D(H{) N D(A) w.r.t. the intersection topology.

Lemma 3.15. Let n > 1. D, is dense in the intersection domain D(A) N D(HY)
equipped with the intersection topology given by || - |1,

PrROOF: Let n > 1 and write n = m + o for m € N and a € [0,1). Let
¥ € D(A) N D(H) and define

U = k"(Hy + k)™ .

for large enough k. Clearly, ¢ € D, for all k € IN. Furthermore, recall that
the operator Hy = k™ (Hy + k)™" converges strongly to the identity and therefore
H{(H, — 1)y and (Hy — 1)y converge to 0 for all v € D(H['). Next, we show that
|A(¢r, — )|l — 0. In order to see this let ¢ € D(A) N D(H{) and compute

(¢, Ay — An)|

(¢, AK"™(Ho + k)" — Adp)|
(¢, K" (Ho + k)" Ap — Ap)| + [0, K" [A, (Ho + k) ™"]¢)]
|

<
< [|o[l[[(Hy — 1) A¢[| + [{¢, K"[A, (Ho + k) ") . (3.12)
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The first term converges to 0, because Hy — 1 converges strongly to 0. In order to
deal with the last term we estimate

k(0. [A, (Ho + k)™ )| < K[(9, [A, (Ho + k)~*](Ho + k)""¢)]|
+ k(¢ (Ho+ k)"[A, (Ho+ k)""[)| - (3.13)

and deal with both terms separately. First note that the commutator form [A, H]]

is implemented by a Hé+§—bounded operator on Cg° for all j € IN. This can be
seen by directly computing Hj on C§° via a binomial expansion. The additional
half power in the bound comes from a dI'(k,) which is transformed into a dI'(v,)
after commuting with A. Since Ci° is dense in D,, for all n > 1 by Lemma [3.14]
the form and hence the operator extends to all D,,, n > 1. Due to this fact and
Y € D(HJ) the second term in can be estimated as follows:

(¢, (Ho + k)" *[A, (Ho + k)" ]¥)]
K", (Ho + k)" “[A, (Ho + k)™ ](Ho + k) ""¢)]|

< 3 (17 )t kB4 ) )

= @) K (Ho + B) 0l (Ho + 1) "= (Ho + k)"
=0

< Cll6llI(Ho + 1) Z ( )kfn Ho+ k)3

< k20| ¢lll|(Ho + )¢!I2m K

Thus,
Jim K" ada((Ho + k)™")(Ho + k)¢ = 0.

The first term in (3.13)) vanishes for & = 0. For o € (0,1) it can be dealt
with in a similar fashion as in the proof of Lemma [3.14] where we proceed as
in [14], Lemma 3.2, and use an integral representation for (Hy+ k) instead of the
respective formula for (Hy 4+ 1)~®. Once again we use that the form bounds on
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[A, Hy] extend to (Hy + 1)™2D(A) and compute
K7 (@, [A, (Ho + k)72 ](Ho + k) ™"0)]

—C km+a/ U, (Ho + Kk + ) [A, Hol(Ho + k + ) (Hy + k) ™)) dt

0
00

< C&kmm/t_a”(Ho +k+t)(Ho+ k+t) " (Ho+ k)™ (Ho + 1)%1/1Hdt
0

< Rl (Hy + 13| / 0k + £) 2t

< KON (Ho + 1) 20
We conclude that |(¢, Ay — A)| — 0. This completes the proof. [

We would now like to replace D(H(€)™) in the preceding discussion by D((H (£)+
¢)™). Unfortunately, the proofs depend on the relation (Hy(£) + 1)7'C5° C C§°
which is not satisfied for (H(£) + ¢)~! anymore. To solve this issue we prove two
technical Lemmas which let us compare both domains equipped with the respective
graph norms.

Lemma 3.16. Suppose that the coupling function g € C3*(R”) and let ¢ > 0 large
enough so —c € p(H). For any m € Ny we have that
BY = (Hy+1)2(H+¢)"% € B(H).

m
2

PROOF: Since the coupling function g is fixed, we simply put BY, = B,,. We
proceed inductively. The case m = 0 is clear. Assume that there exists m € IN
such that B, € B(H) for all m’ € N N[0, m]. We compute

1

Bt = (Ho + ) (Ho + 1)(H + C)fl(H + c)fmTi
=

= (Ho+1)" H+c) m (1 o)(Hy 4 1) (H 4 o)
+(H0+1) > (g)(H+C)—mTH

m—+1

— B+ (1= &) By (H+ )" + (Hy +1)"7 ®(g)(H 4+ ¢) ™.

By the induction hypothesis the first two contributions are bounded operators. In
order to deal with the last term we compute formally

(Ho+1)"7 ®(g)(H +¢)™ " = ®(g)(Ho + 1)"% (H +¢)”
+[®(g), (Ho+1)"“T |(H+c) " .  (3.14)

m+1




We would like to make sense out of this computation in the sense of quadratic
forms on C§° and then argue that these forms are in fact bounded.

The Hg-boundedness of ®(g) implies that ®(g)(Ho+1)m /2 is a Hén/2—bounded
operator. By induction hypothesis D(Hglﬂ) C D((H + ¢)™?) and hence

m—1 m+1
2

(g)(Ho+1) = (H+c)” =

is a bounded operator.

Thus, it remains to show that the last term on the right hand side of can
be defined on C§° and extends to a bounded operator. In order to do this first
assume that m — 1 = 2k for some integer k£ € IN. It is easy to see that H, can act
on the sets €4, a,,45s by multiplication and that

(HO + 1)0:111,&2,043 C Q:a1,a2+1,a3 + Q:Cxl,OéQ,Oz?,-&-?'

This fact combined with (Hy+ 1) € €y10 + €2 then implies

(Ho+1)* € Z Coi,25- (3.15)

Indeed, the formula is true for £ = 1. Assume it holds for some k& € IN and compute

k1 _
(Ho+1)"" € E (Co,iv125 + Coi2j42) = E Co.i,25-
ivjeINO ZvjeINO
irj=k i —kt1

Using Proposition (3.5 we see that ade,)((Ho 4+ 1)¥) is again an H}-bounded oper-
ator which implies

m—1 m—+1

lade ) ((Ho +1)"= )(H + ) = nll < Cl|Bu-llll(H +¢)~l[In]l.

for all n € Cg°. Clearly, this upper bound implies that the operator extends to a
bounded operator on the whole Hilbert space. This completes the proof for the
case m — 1 =2k, k € IN.

For m —1 =2k + 1,k € IN we cannot simply apply the mapping properties of
adg(g)(-) in Proposition , due to the presence of a factor (Hy + 1)*/2. In any
case it is still true that for n,n" € C§°

(1, [®(9), (Ho + 1) 2])| < (0. [®(g), (Ho + 1)2](Ho + 1)*n')]
+(n, (Ho + 1)2[®(g), (Ho + 1)¥0)[.  (3.16)
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In order to deal with the first term we use the representation formula of [14] once
more. Let " € C3° and calculate

[(n, [®(g), (Ho + 1)2]n")]
t

< C/ 3|(n, (Ho +1+t) " [®(g), Ho](Ho + 1 + 1)~ n")|dt

< C [ t2||(Ho+ 1+ )""n|||(Ho + 1 + t)~ Hon"||dt

O\8

3
(1+1)?

< Cllall| Hor"| / dt < C'|InllIl(Ho + "],
0

Due to HoCS® C C8°, we may put 1" = (Hy + 1)*n and obtain the estimate
1
[(n, [®(g), (Ho +1)2](Ho + 1)"1)| < 2C|nlll|(Ho + 1)**/||.

Thus, the sesquilinear form [®(g), (Hy + 1)2](Hy 4+ 1)* extends to H x D(HE)
by continuity and density. Again by the induction hypothesis D((H + 1)™/?) C
D((Hp + ¢)™?), where k + 1 = m/2. This gives meaning to (3.14) and implies

[(, [®(g), (Ho + 1)2](Ho + D)*(H + ¢) % 27)|
< 20 |nl||(Ho + 1)***(H + &)™ "1 (H + ¢) 277
< 20| B (H + o)~ 2 || [nll|1']]. (3.17)

where we have used that k+1 = m/2 and that B,,(H +¢)"2 is a bounded operator

by induction hypothesis. This shows that the first term in (3.16)) gives a bounded
contribution.

Next we deal with the second term in (3.16)). Recall that adcp(g)(@al,azm) -
Cai—1,a0,05 T €ar41,a0,04- This clearly implies

as operators on CgO. Hence there are functions uq, . . ., ux_1 and integers Qlos - Q2%k0
for o € {1,...,v} such that dI'(u;) is Ho-bounded and adg ) ((Hp + 1)*) is given
on C§° as linear combinations of elements of the type

n

®(g1) H dl(us) H A’ (k)™

=1
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where n <k, 1 <m <2k, g1+ +qmo <2k and n+ (gm1+- - +qmo)/2 =k
Therefore, (Hy + 1)2 ade(g) ((Ho + 1)) is given on Cg° by linear combinations of
the type

[®(g1), (Ho +1)2] H (u; HdF

=1

®(g1)(Ho + 1) %H uZHdF

=1

By the above argumentation [®(g;), (Ho + 1)2] and ®(g)(Ho + 1)2 are both
Hy-bounded. The restrictions on n and the ¢,,, now imply that [®(g1), (Ho +

1 n v m.o 1 n v m,o
1)2] ;e dT(us) ITo—; AU (ko)™ and @(g1)(Ho + 1)z [[;—, dl'(w;) [T,—, dL'(k,)™
are HY—bounded. As we have argued above this implies that the quadratic forms
extend to H x D(HE) which gives meaning to the following computation:

[0 (Ho + 1)2[2(9), (Ho + D!J(H + ) 20)]
< |(n, <Ho+ VE(H + )5 20)| < C'|| Byu(H + o) |||l ] (3.18)

Combining (3.16} D finally give a rigorous meaning to the second term in
- Moreover 1 ) extends to the whole Hilbert space by density and conti-
nuity and hence the sesquilinear form extends to a bounded operator denoted by
(Ho + 1)% ade(g) ((Ho + 1)*)(H + ¢)~%~2. Therefore, 1) extends to the whole
Hilbert space. This in turn establishes that all terms in (3.14]) are bounded in the
case m — 1 = 2k + 1. This finishes the inductive proof. [J

Lemma 3.17. Suppose that the coupling function g € C3°(R”) and let ¢ > 0 large
enough so —c € p(H). For any m € Ng we have that

m

F9 = (H+c)2(Hy+1)"2 € B(H) .

PROOF: The lemma is a rather easy consequence of Lemma and its proof.
There, one of the main steps is to establish that ®(g)(Hy+1)"2 and [®(g), (Ho +

1)"2"] both extend to H,? -bounded operators.
We prove the lemma by induction. First of all observe that the case m = 0 is
clear. Now assume that there exists m € IN such that F?, are bounded operators

for all m" € Ny N[0, m]. As in Lemma we compute

+1

Frar = (H+ )™ (Ho+ 1)~
= F5 4+ (c—=V)F (Ho+ 1)+ (H+e)"7 ()( +1) >
= FS y + (c— D)FS (Ho+ 1) + BY,  (Hy+ 1) ®(g)(Ho + 1)~

m+1
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By the HO%—boundedness of ®(g)(Ho +1)"%, Lemma and the induction hy-
pothesis all operators are bounded and thus FJ,, is bounded. O

We sum up some immediate but important consequences of this section in a
couple of remarks.
Remark 3.18.

1. For any m € Ny we have that D(H ) = D((H +¢)?).

m

2. The norms ||z zy.m = [|(Ho + 1)2 || and similarly ||z, = ||(H + ¢)% 2|
for large enough ¢ > 0 are equivalent on D(H ?).

Remark 3.19. Let g(-,-) be a sesquilinear form on C§°. Suppose further that
there exists T € €4, ay.04 Such that ny :=ny/2 4+ ny 4+ n3/2 > 3/2 and

q(¢, V) = (9, TY).

Then ¢ extends uniquely to a sesquilinear form ¢ which is continuous on D((H +
¢)"") w.r.t. the graph norm | - ||ln, = || - ||(#4enr. Moreover ¢ is given by the
extension T of the operator T' to an operator in B((H + ¢)"*,H), that is

d(¢,0) = (6, T)

3.3 Iterated Commutators on a Core

The statements in the previous section can be used to associate H-valued operators
to iterated commutators calculated on the core Cg°.

Notation 3.20. We fix ¢ > 0 such that —c € p(H).

Definition 3.21 (Iterated Commutators on C3° I). We introduce the abbreviation
T :={T1,T5}, where Ty := H and T, := A. For n € N, define

Jp i ={w=(w(l),...,w(n)) € {1,2}" | w(l) = 2}.
For w € J,, we define its (-th truncation w® by

w = (w(l),...,w(0)) € {1,2}".

: w® : :
The ¢-th truncation adrré ((H + ¢)™) of the mixed commutator corresponding to
w on Cy° is iteratively defined by

w®

ad? (H+o)")=AH+o)" — (H+c)"A

for =1 and
w® m w1 m w1 m
ady (H+o)") =Tywadr ((H+c)")—ady ((H+c)")Tuo
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for £ > 2. All equations hold in the sense of operators on Ci°. The mixed commu-
tator corresponding to w € J,, is then defined as

w(™

adr((H +¢)") = ady ((H +c)").

This operator is sometimes simply referred to as a mixed or iterated commutator.
It is convenient to define Jy := 0 and adJ-((H + ¢)™) := (H + ¢)™ for all w € Jp.

Remark 3.22. By the mapping properties of the maps adg(-) and ad4(:) on
Op(Cg°) it is clear by induction that there exists a constant C,, > 0 such that for
all ¥ € Cg°

lad7((H + o)™l < Cull(H + )" 29| < CL[|(H + )y,

where M € N with M > m+%. In particular, adz((H+c¢)™) extends to a bounded
operator from both D((H + ¢)™*3) and D((H + ¢)™) with values in the Hilbert
space H. We do not introduce a new symbol for these extensions and will also
simply call it a mixed or iterated commutator.

Notation 3.23. Throughout the rest of this thesis the symbol T always denotes
the set T := {T1,T,}, where T1 := H and T; := A.

Definition 3.24. Let n € Ny, w € J,,. For n > 1 the overall amount of taken A
commutators is defined by

For n = 0 we simply put nﬁ =0.

Lemma 3. 25 Let m,n € Ny, g € C3*(R) and w € J,,. There exists N, and
operators OY) oo szlﬂ, ,O](-f?l, . Oy(z w1 € M(CR)UD!, where 1 < £ < N,
and 0 < jy <n+1 such that for all ¢ € C§°

ad2((H + ¢)™ ZT 'g,...,0%g)p,

where

T7(0"g,....0g) € €t ot

OéOéad

with of /2 + o + /2 <m +n/2 and

n+1 n+1
() A . 0
O} HO“WWQW_H@M
i=1
Moreover, for all £ at most wy of the operators Ogl), cee ngﬂ are in D.
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PROOF: The statement can be proven by induction in n, the order of the iterated
commutator. For n = 0 the statement reduces to Corollary and has thus
already been proven.

Let ¢ € C§° and assume the claim is correct for some n € INy. Suppose w € J,, 11
and hence w™ € J,,. By definition of the iterated commutator and the induction
hypothesis this implies

ad(H + )"0 = adry, ., (adf " ((H +0)") ) v
Nnw

=Y adp,,,, (T(0g,....0})9)¢ .
/=1

Assume w(n + 1) = 1. By Corollary the operators in the last step of the
equation can at most gain one additional field with coupling function Og for some
O € M(C) or existing fields may gain at most one additional factor O € M(C:?)

on top of the existing operators 626). This shows the statement for w(n + 1) = 1.
Likewise for w(n + 1) = 2 the worst contribution is an additional operator
O € D'. Moreover in this case n? = n + 1 and at most n + 1 operators in a given

w

factor O@@ are differentiations. This completes the proof. [J

Note that the last Lemma immediately shows the H /2™ _houndedness of ad=((H+

c)™).
4 Regularity With Respect to the Conjugate Operator

4.1 Large Powers of the Resolvent

Notation 4.1.
1. H:=H({) and H. := H + ¢ for ¢ > 0 large enough so that —c € p(H)
2. For all z € p(H) put

R,:=(H(E) —2)"'=H-2)""
3. Furthermore, recall that we put 7 := {71, T2}, where T} := H and T3 := A.

In Remark we have already seen that
ad?((H +¢)™) € B (D (H + o)), H) (4.19)

for any integer M > m + n/2. It turns out that for large enough values of M the
product of this operators with R is actually in C*(A).
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Lemma 4.2. Let n,m € N, w € {1,2}" and Q, > m+Int(n/2) + 1, where Int(r)
denotes the smallest integer that is bigger than r € R. Then

adZ((H + ¢)™)R®* € C'(A).
In particular,

ada (adZ((H + ¢)™)R=)
= ad (ad(H.")) RZ:

(=D adf(HRE ™ adj *(ada(HE=))RY 2

—C

B

+

i

0
as a bounded operator on H.

PROOF: In order to keep the formulas shorter we abbreviate
S = adr(H").
Let n,n" € C§° and calculate
(1, [A, SEREE) = (An, S2RZE) = (S“REE)n, A
= (An, SREz) — ((5%)n, REE A),
where in the second step we have used that 7*(S%)* C (T'S%)* whenever T'S* and
T*(S%)* are defined. Since we are assuming that the coupling function is smooth

and compactly supported, S% and its adjoint (S%)* map C§° into itself by Lemma
3.6, Due to R_.C3° C D(A), we may thus compute

(An, S“R%21() — ((S®)*n, R%= Ary')

— ((8%)*n, AR%4y) + ((S)*n, AR%En))
= <n,adA<Sw>RQ“’ )

+((82)"n, R% ada((H + ¢)2=)R%).

(n, [A, SER®“]y) =

Note that adA(Sﬂ)RQﬁ is a bounded operator on H, because ad4(S%) extends to

a bounded operator from D(HMw+1/2), where M,, := m + Int(n/2), into H by
Proposition [3.5] We are thus left with the second term in the previous equation.
adA(HQ ) i 1s a bounded operator from D(HMw+3/2) into H so that it is not clear

a priori that R¥* ad 4 ((H +¢)9=) R* extends from Cg° to a bounded operator. The
main idea of the proof is to use the rearrangement formula in Lemma to move
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a resolvent from the left to the right and thereby obtain a bounded expression.
With the help of this lemma we calculate
<<SM)*7% R?CH adA((H + C)Qy)Rgc&n/>
= (n, S“R% " ada((H + ¢)%=) R )
— (0, SR% adp (ad 4 (H + ©)%)) R% ).
Note that ady(ada(H)) is bounded from D(H@=+) into H. Thus, there is a

Cy > 0 which depends on w through the various operator norms involved, such
that for all n,n" € C5°

[(n, [A, S“RE 1) < Cullnlllln']| -

By density of Ci° in H this estimate extends to H and hence S@R?CH is of class
C!(A). The second part of the statement follows, since the form is given by the
correct operators on C§° and because these are bounded they extend to H and
uniquely represent the extension of the form. [

Definition 4.3.
1. Let 7,k € IN and b € Nq. Define

[ad7 (H)?) = adF (HM) adf~ (HY ) - - adF (HM")

p=1

and

J 7
iy = Span{RZ, [[ady” (HM)R% | B> b1 <j<i,y nh =k
p=1 p=1
Qp > M, + Int(|w,[/2) + 1, },
Yoo = Span{RZ, | B > b},
HUopp =0,

where 0 means the 0-operator in the last equation.

2. Leti € N, w; € Jp1), ..., w; € Ty, My,... M; € N and Qy,...Q; € N with
Qj > M; + Int(Jw;|/2). We introduce the notation

[T ady (H2) R = ad (HM) R ad (HM)R2. (4.20)

p=1
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Since the operators ad;” (H) need not commute, the symbol H;Zl ad%-"(Héw )

will always mean that the product is to be written in decreasing order from left to
right, that is the highest index appears on the very left and the lowest index on
the very right.

Note that this notation is somewhat contrary to [[, ®(g;) due to the order in
which the indexes appear. But since these symbols will not be used simultaneously,
no confusion can arise. Moreover, note that if we define

J
I; == [ ady (2R
p=1

for 7 > 1 and assume 0 = k = 22:1 ni , we would necessarily have 7" = 0. Indeed,
k = 0 would imply nﬁp = 0 which in turn implies that ad%—” (HCM ?) =0 for all p.
This motivates the definition £, = 0 for k # 0.

Clearly, 4, , C B(H). Since the operators which are of class C!'(A) form an
algebra, every element of i, 1., is of class C'(A) by Lemma . This implies that

taking a commutator with A defines s map ada(-) : ; xp, — B(H).
Lemma 4.4. Let i,k € Ny, b € N and suppose b > 3 -2°. Then

ada (k) C it pr1p—3.0i-

PRrROOF: The statement is proven by induction in 7. In the case ¢ = 0 and
k # 0 there is nothing to show. Let i = &k = 0, B > b € NN [3,00) and
Uoo.s = RE, € tyop. Due to B > 3, we may compute on C§°

ad4(Upo ) = —RE, ads((H + c)?)R?
3

> @ (=1)"RE; adiy (ada((H + ¢)") R%,

C

The equation extends to the whole Hilbert space by continuity and density of Cg°.
Moreover, ada(Upo ) € .13 which proves the statement in the case i = 0.

Now suppose theres exists ¢ € IN such that the statement is correct for all
i/ <i—1. Let b>3-2 and

J
Ui = R2. [ Jad7” (H") € 46 1.

p=1
In order to reduce notation we define

S = adiu?”(HC]V[P), p=1,...,1.
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The main idea of the proof is to use Lemma [4.2| and the algebra structure of the
C'(A) class to obtain an expression for ada(U; ) which is then shown to be an
element of ;1 441 4-32i. Since ad4(-) defines a derivation on C*(A), ad (Ui xp) is
a sum of several terms. By the induction hypothesis all contributions of the form

RE_SuiR% ... ad, (Swe R?g) .. G2 R g RO

where 2 < ¢ < ¢, are elements of 4, y1-3.2:. Hence, it remains to examine the
term

RP SR ... 542 R ad, (S% R?;) ,

where the restriction B > 3-2° plays a crucial role. With our abbreviations Lemma

[4.2] takes the form
ad 4 (5@1 RE?;) — ad, (S%1) RY

1
+ Y (D) RA ady M ad 4 (HE))RAT. (4.21)
k=0
Thus, there are two main contributions to consider: ad (5% )R% and the sum.
We deal with the sum first. The fewest amount of resolvents occurs for £ = 1
which we take as the starting point of our analysis. Then we argue that the k = 0

contribution can be dealt with in a similar fashion but with less severe restrictions
on B. Define the set

Wii={(ks,... ko) e N | k; €[0,3-2],5=1,...,1,k €[0,2]}.
We claim that for any ¢ € IN and all
RP SwiRV: ... Sw2RP2 5w RO  ady (HP) RO
= > Crpw RIS (i, ko) ady ™ (So) RO, (4.22)

where
S(k"“ ey ko) = ad§_12j_k] (Swj)Rc_?i‘f'vg'zj—kj_l—dl’j?
=1
AHch)a 32321,

‘]:
S() = ad (
Cko ..... ki — ( 2 ) (k )(_1)ko+ +hi
i 0

Clearly, if (4.22) is valid, then
RE SuiR% ... 5% RU2Gu RO ady (HP) RO € iy p1p s
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and it thus suffices to prove (4.22)) in order to deal with this term.
To establish the validity of (4.22)) we use an inductive proof. Let i = 1 and

B; > 6. A two-fold application of the rearrangement formula in Lemma [A.7] gives

R, S% R ady (HY') RO

Z (k1> klRB1 —k1 d6 k1(Sw1>RQ1+6 1 dA (Hch) R?é‘f‘l

2
Z( >( ) (—1)FHR RE M ad ™ (S 2O

x adf ™ (ady (HO')) RO,

I M® I

Hence, the claim is true for ¢ = 1. Now assume it is true for some ¢ € IN and
choose B > 321, Consider a similar operator as before consisting out of i + 1
products of the form S“ Rgé instead of just . Then another application of the
rearrangement formula implies

RiSwiH Rgéﬂ s%R?g 81 ad (H?l) R%ﬂ

3.2041 3 2i+1 ) )
o ’ ki1 pB—Fkit1 320+ kg w, Qi+1+3-2011
=30 (02 )R s,

ki11=0 t

> SﬂiRgé . S%Rgé_l ady (HCQI) Rc;giﬂ.

Note that the H-commutator with S%i+1 is bounded by Q41 + 3 - 2¢ resolvents.
Since there are Q;, 1 + 3 - 2° + 3 - 2° resolvent to its right, there are sufficiently
many resolvents left for us to use the induction hypothesis with B = 3-2¢ and the

remaining i factors in each product. This proves (4.22)).

The contribution arising from the term k£ = 0 in (4.21)), can be treated in com-
plete analogy to the case, where k = 1. Define the set

W! = {(ko, ..., k;) € N | k; €[0,271],5 =0,...,i}
We can establish inductively that for any ¢ € IN
RE S%iR%: ... S22 RP2 5w RO ady (ad4 (H2Y)) RO

= Y Ch W RPN (ko ki) adf ™ (S) RO, (4.23)
(ko, . )EW’

where

S'(ko, ... k) = H adzﬂ_kj (S@j)RgZ+2j+1_,€j_l,

J=1

4 2 2 ko4+k; i+1
Okow,ki - kL ko <_1> ) B> 27",

61



Once more, it should be clear that
RE SwiR% ... S22 R 5w R ady (ada (HDY)) RO € Sy jsr s,

if holds. As we have mentioned above the proof of is very similar
to the proof of and will thus be omitted. However, to illustrate why the
summation indexes are drawn from W) rather than W; we provide the induction
start. Let B > 4. A two-fold application of Lemma gives

RB, SwlRQl ad (adA ((H + C)Ql)) RC_Qé-H
4 2
4 2
— Z Z (kl) (k’o) (-1)k1+k0R€C—k1 ad‘;{—kl (Sw1)Rgé+4—k0 ad%‘ko (SO)Rgé'Hs

Last but not least yet another slightly modified version of the preceding arguments
shows that for B > 2¢

RB,S%RY: ... SR ad, (S*1) R

= > O GREHS (K, ki) add R (S) RO, (4.24)
(k‘l ,,,,, ki)GWiII
where
Qz+2 _kj 1446
S//(kl,---,ki):H 27k 13’

Cha.. kiz( ) : ( ) O

Wi// = {(k’l, ce ,k’l) S INZ | k’j S [O,QJ]}

As before the difference in the summation set is due to a different induction start.

Hence all contributions arising from - have been shown to be elements of
31 kr1p—32i- Since any U/ kb € Witipy1p-320 18 A finite linear combination of
elements of the form U, ., the proof is complete. [

The previous Lemma enables us to prove the main statement of this section:
For any k € N there exists a sufficiently large m;, € IN such that R™ € C(A).

Proposition 4.5 (Large Resolvent Powers are in C¥(A) I). Let k € Ny and suppose
that m € IN satisfies m > my, := Zf:o 3-29. Then (H(£)+c)™™ is of class CET1(A).
In particular,

ady (H(E) +¢)™™) € W pm—my (4.25)
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PROOF: Since (H (&) +c¢)™ € o o.m, the statement is an immediate consequence
of Lemma . Indeed, due to m > my, :=3+3-2+---+3-2% a k-fold application
of the inclusion ad (k) C iyt kt1p-3.2: completes the proof. [

It should be noted that this result is most likely not optimal. For example it is
known from Morten Grud Rasmussen’s PhD thesis, see [44], Proposition 2.5, that
(H(&) — 2)~! € C%(A), whereas Proposition 4.5 states that (H(£) —z)™™ € C?*(A)
form>m; =3-2+ 3 =9. However the mentioned result is of a different nature
than ours, since it is not clear that (H(£) — 2z)~! € C?(A) implies (H(§) —2)™™ €
C?(A) for all m € IN.

4.2 Local Regularity

One of our main results is stated right in the beginning. It guarantees that for any
smooth and compactly supported function f the bounded operator f(H(&)) is of
class C*(A) for any k € IN.

Theorem 4.6 (f(H(£)) € C*(A) 1). Let the coupling function g € CP(RY) and
suppose that f € C(R). Then f(H(€)) € C¥(A) for all k € IN.

The remaining part of the section is devoted to the proof of this statement.
The most important tool used in the proof is that (H + ¢)™™ is of class C¥(A)
for sufficiently large m € IN and any k € NN, see Proposition [£.5 In Lemma [4.9
we prove that for any k € N (H + ¢)"™(H — z)~* € CF(A) for sufficiently large
m. The proof of Lemma [4.9 is similar to the strategy used in Lemma [£.4] and
we refer to the proof of the latter whenever analogies in the argumentation arise.
Furthermore, the proof of Theorem 4.6|and Proposition follow more or less the
same strategy and we will refer to the proof of the Proposition as often as possible
to avoid repetitions.

Notation 4.7.

1. Throughout this section we simply write H and Hy instead of H(§) and Hy(§)
respectively.

2. For any z € p(H) we define R.(H) := (H — 2)~'. If no confusions can arise,
we drop the H dependence and write R, instead of R,(H).

3. Let + € NN, S {0,1}, w, € jn(l)a--wwi € jn(i)a My,...M; € N and
Q1,...Q; € N with Q; > M; + Int(|w,|/2). For any 2 € p(H) we intro-
duce the notation

[1 7 ad? (HYM)R?: = RS ad (HM )R-+ R ad (HM)RL. (4.26)

p=1

63



The symbol H;:1 ad” (H)") will always mean that the product is to be
written in decreasing order from left to right, that is the highest index appears
on the very left and the lowest index on the very right.

Definition 4.8. Let i, k,b € IN. Define

Prp = Span{R” (]| B! ady” (HM)RO)R. | B> b,1<j <i, Zn@p =k
p=1 p=1
0 €{0,1}, Q> M, +Tnt(juw,|/2) + 1},
0§ o, := Span{R” R, | B > b},

z . —
O,k‘,b — O

As in the case of l; ., we clearly have that 207, , C B(H) and that every element
of U7, , is of class C'(A). Again, this implies that taking a commutator with A
defines a linear map ad, : U5, , — B(H).

Lemma 4.9. Let i,k € Ny, b € N and suppose b > 5-2°. Then

ada(Biks) C Vg1 pt1,p-52i-

Proor: We introduce the abbreviation
S, = ad ((H + 0)™).

We prove the statement by induction. For ¢ = Kk = 0 and B > b > 5 we put
Voo.s = RP.R, € Uy, and compute

ada (Vo) = ada(R%)R. — RE R, ads(H)R.

on C§°. The first term can be dealt with as in Lemma which shows that
ada(RB,)R, € U114 3. As for the second term we compute

RE ad,(H Bi( > 1)¢REadi (ads(H))R®, (4.27)

and thus RP R, ada(H)R, € ada(RZ,)R, € U1 1,_5. This completes the induction
start.

To perform the induction step suppose that the statement is correct for ¢/ < i—1
and let 3,k € N and B >b>5-2'. Put

Viky = RZ.R!S, R%R?--- R\S, ROLR. € T;,,,
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After taking a commutator with A we have to redistribute resolvents in order to
obtain expressions which are linear combinations of operators of the form Vj 1 x4+1-
As in Lemma [£.4] the induction hypothesis implies that we have two main contri-
butions to consider:

RP RS, R% ... Rlad, (s% RE?;) R.

and
RE RS, RORY - RS, RO ada(R.).

As in the case 7 = 0 the first of the two relevant cases can be dealt with as in
Lemma [4.4] since B > 5.2/ > 3-2'. In order to deal with the second term we
compute

RE RS, R¥RY-- RS, R ads(R.)
= —RE.RYS, R%“R?. .. RS, ROR, ad, (H) R.. (4.28)

Observe that it requires 5 additional resolvents to turn R,ad4 (H) R, into an
operator in C'(A), if we do not want to incorporate R, into the calculation.

Due to structural similarities we would like to deal with (4.28) as in Lemma[4.4]
suggests that this would require us to adapt (4.22)-(4.24) to the current
situation. This however is straight-forward due to the choice B > 5 - 2¢. We omit
the details to avoid unnecessary repetition. [

Lemma 4.10. Let k € No, m € IN and suppose that m > m; = Z?:o 5-27. Then
(H(E) +c)™™(H (&) + 2) Y is of class CFY(A) for any z € p(H(E)). Moreover,

adly (H(€) + ) ™ (H(E) +2) ") € Vi g (4.29)

PROOF: As in the proof of Proposition the statement follows from a k-fold
application of Lemma 4.9} since (H (&) +¢)"™(H(§) + 2)~! € Vo o.m and m > mj,.
O

PrOOF OF THEOREM [4.6} Suppose f € C°(R) and k € N. By Lemma [4.10]
there exists mj, € IN such that for all m > m), (H —c¢)"™(H — z)~! € C¥(A) and
adi((H - c)—m(H - Z>_1> S mz,k,mfmk'

We start by deriving an estimate of the norm of a typical element of U7, . .
Let

k
Réc H(RZ ad’%'p (HCJ\L))R?g)RZ € Q]z,k,mfmk
p=1
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and estimate

k
1RE, T (RS ad7? (HX)RE2)R.|

p=1

k
< |RER|*+ T] Nlady () R ||

p=1
< [Im(z)| "M RE, HHHadT (HM7)RZ]|
p=1

By Lemmaf4.10|there exist j, € N, integers 1 < pq,...,pr <k, integers By, ..., B;
m — my, constants C1,...,C}, and operators

k)

p1
= e = RO [(RY ads (HM) R R. € B ) 0,

q=1

p1

z L Bj 03 My Qq
Vi kB, = RZ} [[(RZ* ady* (HY ) RE)R. € 07 4 0o,

Pjp R, Djp
q=1

such that
adk (H+c)™ ZCVZ)km -

From the previous estimate we deduce that

Jk Jk
1Y GV i | < ZCi\Im(Z') “HIRE H lads* (H M) R%|

—ZC' [Im(2) —pi-i

for some constants C] > 0.
Fix m > mj. The main strategy of the proof is to use the Helffer-Sjostrand
formula to see that

) = e+ = [ ey

where f,, € CP(R) is given by f.(x) := f(z)(x + ¢)™. The preceding estimates
can now be used to bound the integral. To this end we choose an almost analytic
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extension f, of f,, with compact support such that
VYN € N 3Dy > 0: |fin(2)| < Dyl2|",

see |9]. We can thus estimate

| ad (U1 =27 (T + 0™ a

0z
Jk 041
: [T (2) |7
< Z C,L'Dpi.eiJrl / Wdz < 00 .
= supp(ag’z—’1

With this statement at our disposal we may resume the proof of the CF(A)
property. Clearly, f(H) € C'(A), see for instance [21]. Now suppose there is
a k € N such that f(H) is in C¥(A) for any smooth and compactly supported
real-valued function f. Fix m > my.; > my with m; defined as above and choose
any f € C5°(R). With the same definition as above this implies

ad (F(H)) = adh (Fn(H)(H + ) ™)
= [ Iy adt 2y 0z
C

where we have used the strong closedness of C'(A) in B(#) and that ad® ((H —
2) Y H + ¢)™™) yields an integrable expression. But by our choice of m the in-
tegrand admits another commutator with A which will also give an integrable
expression, since the same type of estimates hold. Using the strong closedness of
the C*(A) class once more, we can conclude that f(H) is in fact in C*1(A). O

Lemma 4.11. Let A\ € EM(E\TW(€) be an eigenvalue of H(€) andn € D(H ()
be a corresponding eigenvector, that is H(§)n = Aen. Then

1. ne D(A") for all n € IN.

2. Letn € N. Then A"y € D(H(§)™) for all m € N,

PROOF: By Theorem [4.6| we have that f(H(£)) € C*(A) for all k € N and for
all f € C°(R). By the regularity of eigenstates established in [40] n € D(A*) for

all k € IN. This proves the first part of the statement. The second part can be
proven by induction in n € IN. The case n = 1 is true, since

H(&)™An = A" An + ada(H (€)™ )n,

where we have used that the form identity [A, H(£)™] = ada(H(§)™) extends
from C3° to D(A) N D(H (&)™), Now suppose that there exists n € IN such
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that A"y € D(H(&)™) for all m € N and all n’ < n. Since ad(H (&)™) is
(H (&) + ¢)™**2-bounded, we have that

Al € D(ad’y” (H(€)™))

for all j € NN [1,n|. Thus, the induction hypothesis implies that (3.6) in Lemma
extends from ¢ € C§° to n. This implies that

n +1 el .
H(f)mAnJrln — )\gnAn+1,,7 + Z (nj ) adAJrl j(H(f)m)AJ'ﬂ

J=0

and hence A"*'n € D(H(§)™). O

5 Extension to More General Coupling Functions

Lemma 5.1. Let $) be a Hilbert space, ¥ € Iy (9) and fi, ... fr € . Denote by
N, := max{n € N | ™ £ 0} € N. Then there ezists C,, > 0 independent of
fiv. .., fr such that

] ;
£
ITT @0l < Cu(Ny +1)2 - TT 1AL (5.30)
i=1 i=1
PRrROOF: We use the estimate
i ;
IV + 0P[O + )72 < Cop TT Il

i=1 i=1

proven in CITE DER/GER for the special case p = 0. O

Lemma 5.2. Let ¢ € I'5n(9) and fi,... fi € $. Choose sequences (fjn)n such
that ||f; — finll = 0. Then

T [[(f) - @f) — B(fin) - D fra)] =0 (5.31)

PROOF: The main idea is to rewrite the terms in (5.31) in a telescopic sum
and use (5.30) in order to show that the limit is 0. For ¢ € IN we abbreviate

Cop= (Ny + 1)z and compute

‘
> (fin) O(fro1)@(fr — frn)P(f) - ‘I’(fz)wH

)4
<D N0(fin) - ©(famr) U = frn) R(fir) -+~ (fe)0 |

k=1

1
< 1NCe Y Ml Lfrmrmll 1 = Sill el == 11 fell
k=1
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There is a constant D > 0 such that ||f;,| < D for all j = 1,...,¢, since
fjn are convergent sequences and hence uniformly bounded in n. Therefore,

[D(fr) - @(fo)Y — P(fim) - P(fen)V| converges to 0 as n — oo. [

5.1 A Fréchet Space of Coupling Functions

Throughout this chapter we will make use of the notation introduced in Definition

3.9 Recall the definitions

Li,(RY) := [ L*(R”, (1 + |k[)*"dx).
n=0

and
HY, (RY) == L2 (RY) N Hy, (R").

loc

It is sometimes convenient to define H? (R¥) := L2 (R¥). On H* (R¥) we define
the semi-norms

[l =N+ EDFIL (e = 11,00 1,

where a € N} with |a| < k and B, (0) C R” is the open ball around 0 with radius
n.

Remark 5.3. It should be clear that M H}, (R”) C HE (R¥) for all f € C* and
all k € IN. Moreover, DOHY (R”) C Hi ! for all multi-indices o with || < k.

Proposition 5.4. The vector space HE (RY) equipped with the topology generated
by the countable family of seminorms U>q Ujaj<k {I| - In, || - ln+1,a} s @ Fréchet
space.

PRroOOF: It is clear that these norms give rise to a locally convex topological
vector space. Since the family of norms is countable and separating, the topology
is metrizable with the standard choice of translation invariant metric d. Next we
show that the metric space equipped with this topology is actually complete.

Choose a sequence g; in H® (R”) which is Cauchy w.r.t. the metric d. Since this
means that the sequence is Cauchy w.r.t. to any individual semi-norm, we have
that g; is Cauchy in L?(R”) and hence there exists g € L*(R”) such that g; — g
in L*(RY).

Furthermore, note that for any f € H,,(R”) we can reconstruct the norm of the
k-th Sobolev space on B, (0) by

£l sy = D 1 llna-

| <k
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Hence the sequence g; is also Cauchy w.r.t. all H*(B,(0)) and completeness of
these spaces implies that there exists a H*(B,,(0)) limit A™. Further note that

115,09 — M li2me) < lg; — A" (s, 0))-

Uniqueness of limits implies that A =1 B,(0)g- Hence the limit function g is an
element of H (R”) for all n.

It remains to show that (1 + |k|)"g is square integrable for all n. As above we
argue that since (1 + |k|)"g; is a Cauchy sequence in L2, it has an L2-limit ™
Note that f® = g by definition. We claim that f® = (1 + |k|)"g for all n.

Calculate

o FO0) ~ gi(L+ [HYP
I8+ )5 = gy = / S Erne

< Hf = gi (L + kD" [E2 ey — 0.
This implies g; — (1 + |k|)™"f™ in L? and since limits are unique we obtain
VneIN: f™ = (1+|k|)"g
This completes the proof, since f e L2. O

Furthermore, the compactly supported, smooth functions are dense in H¥, .
Proposition 5.5. C(R) is dense in HF (R).

PROOF: We first show that the compactly supported functions in Hk (R¥) are a
dense subset of H¥ (R”) and then establish that C3°(R) is dense in the compactly
supported functions in HY (RY).

Let f € H* (R”) and choose a function n € C(R) which satisfies

1. n(x) =1 for |z| < 1.
2. n(z) =0 for |z| > 2.

Note that there is M > 0 such that [0°n(x)| < M for all multiindices with |a| < k.
Define n;(x) := n(j~'z) and note that |[0%n;(z)| < Mj~lel for all |a| < k. Clearly,
n;f € HY (RY) for all j and has compact support. Let n € IN and calculate

1f = niflls = / 1= ni(@) P f (@) (1 + [2])*"d"
v

Since 1 — n; converges pointwise to 0 and |f[*(1 + |z])*® € L'(R¥) by assumption,
we may apply Lebesgue’s Theorem and conclude that || f — fn;|l, — 0 as j — oo
for all n. Similarly, there exists a constant C' > 0 such that

1 = 1l < ey — )0 F e+ 3 (g) 107 F0r—m .

B<a
BeENY
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where we have used that f € HF_(R”). Obviously, > "n; converges pointwise
to 0 and ||f — fnjllna — 0 for j — oo follows from Lebesgue’s Theorem. This
establishes that the compactly supported functions in H¥ (R”) are a dense subset
of H* (RY).

In order to show that C°(R”) is a dense subset of the compactly supported
functions in HX (R”) we use mollifiers. Let f € HE (R"), supp(f) C R compact
and define a function 6(z) := exp((1 — |z|*)™!) for |z| < 1 and 0 for |z] > 1.
Moreover, define 8;(z) := j70(jx) and f; := 0% f, where 6;*(-) denotes convolution
with 6;. Since f and all 6; have compact support, so do all f; and therefore
fi € C°(R) for all j. We have that f; — f in H¥(R"), see e.g. [1]. Thus,

1y — FI2 = / 10°(F = FIQ2 < 1 = il — 0
B, (0)

for all n and all a with |a| < k. Since f; — f pointwise almost everywhere, there
exists a compact set K C R” such that supp(f),supp(f;) C K. Therefore,

1= 712 = [170) = H@PQ + ol s
K
< Sg}g[(l +1aD)™If = fill ey — 0
for all n. This completes the proof by an ¢/3 argument. [J

5.2 Commutators

Notation 5.6. In order to distinguish between fiber Hamiltonians with compactly
supported and smooth coupling functions and functions in H* (R”) we define

Hy(8) := Ho(&) + @(f)

for any f € L*(R”). We abbreviate further and simply put H; = H(£). More-
over the symbols g, g;, ... are reserved to denote compacly supported and smooth
functions and h, hj, ... to denote functions in H* (R").

Let n € C(RY), n,k € N, a € N, |a] < k and f € H* (R"). There exists
m € IN such that supp(n) C B,,(0). This allows us to compute

105 Flln = 1L+ (KD 015, 0) Daf || < [[(1+ [KD)" nllool fllm.a-
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For all 8 € N, |8] < k — || we perform a similar computation:

«Q a ﬁ B .
1D5 fllns = 15,0 D" (nD* f)]| < Z (ﬁy 15,0 DDV ||

7ENG
¥<B
I6; _
<y ( 1Dl s
vyeINg v
v<B

Hence, D¢ : Hf (R") — Hiy |C“‘(IE{”) is continuous as a linear map between locally
convex spaces.

Likewise, let g € C°, f € Hf (R¥) and |3] < k. Due to g € C;°, we have that for
every v € N there exists C, > 0 and £, € Ny such that |D7f(k)|| < C,(1+ |k])*.
We calculate

g flln = 1L+ |E)" g f]] < Coll fllnseo
and

I6; _
10 ls = 5.0 D) < 3 (7 |0 D7gD* ]|

veNg
v<B
B
<Y (D)ettma+ 1) el
vENg 7
v<B

This establishes that M, : H% (R”) — HE (R) is a continuous linear map between
locally convex spaces.

Lemma 5.7 (Approximation Lemma). Let n € N and Oy,...,0, € OF (see
Definition .
1. For every i € Cg° the map
Ky :HE (RY) x -~ x HE (RY) — H

given by
(hi,... hy) = ®(hy) -+ P(hy)Y

is continuous w.r.t. the product topology on HE (R¥) x --- x H* (RY).
2. Define
[Kyo(O1,...,00)|(h1, ..., hy) = Ky(O1hy, ..., Onhy,).

The map
(hl,...,hn) — [K¢O (01,...,On)](h1,...,hn)

is also continuous w.r.t. the product topology on HE (R¥) x --- x HE (RY).
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3. Let hy,..., hy, € HE (RY), uy, ..., u,, € CP(RY) (see Defintion define
ni n2 v
T(ha, ... ) o= [ @(hs) [T A0 (uy) T dT (ko) (5.32)
i=1 j=1 o=1

where Y qng.o = N3, as an operator on C3°. Then the map
Ky :Hi x - xHE — H
defined by
K{p(hl, coishyy) =T(hy, ... hy )Y
is continuous for all v € C§°.
PRrROOF: Note that the second and third part immediately follow from the first
and so it suffices to prove the first part. Since the maps O; € OF  are continuous,

the second statement follows directly from the first. By equation ((5.30) and for
Y € Cg° we have

[y (s byl = | H‘P DYl < CwH [1Pillo- (5.33)

Since Fréchet spaces are metrizable, sequential continuity is equivalent to continu-
ity. This completes the proof of the first statement. [J

As in the case of compactly supported coupling functions we would like to define
spaces of operators like €, 4, o5 but with coupling functions taken from H* (R")
instead of C3°(R”). Since ®(h) does not necessarily map Cg§° into itself, this requires
some adjustment of notation. Define

Op,, (C5°) := {S linear operator | D(S) = C5°}.

This set is still a vector space but unlike Op(Cg°) it has no algebraic structure
anymore. In any case we clearly have Op(Cg°) C Op,, (C°).

Definition 5.8.
1. Define the following subset of Op,, (C5°):

Coroo = Span{HCI) ) [ by by € HE(RY), 51 < ai} + o

2. Due to TC{® C Cg° for all T' € € 4, a4, the compositions [[;_; ®(h;)T can be
defined on D(T") = C&° for such T" and all n € IN. This allows us to define

uv,k L e’
Q:Ozl ag,a3 * Qto‘l’O:OQ:OyaQ,aB C OpuV(CO )
Moreover, we put
uv uv,0
Qtog 2,03 Q:Oq az,a3”
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3. Let T be an operator on #H such that C3° C D(T). We write

T ~ Q:uv,k

aq,02,037

if '€ Op,, (C§°) and

T e ek i Tlew =T.

1,002,003

Due to the similarities in the definitions of €4, o, a5 and €7 ) . we might expect
that similar statements as in the compactly supported case hold in the generalized
scenario as well. This is indeed the case and all proofs follow the same strategy:
We consider a sequence g; in C3°(R”) which converges against h in H? and use the
Approximation Lemma in combination with the (already proven) statement in
the compactly supported case to finish the proof. Since the idea behind every
proof is basically the same we only demonstrate the scheme in two selected cases

to avoid repetitions.

Definition 5.9. Let k € Ny, h € HE (R”), S € {Ho, ®(h), Hp} and T'(hy, - -+ , hy,) €
guvk If the form [S,T'(hy,..., hy,)] is implemented by an operator on Cg°, it

aq,02,03°

is called adg(7T'(hy,. .., hy,)). For k > 1.5 may also be equal to A.

Lemma 5.10. Let h € Hy(RY), S € {Ho, ®(h), Hy,} and choose T'(hy,--- ,hy,,) €
cuy Then the form [S,T(h1, ..., hy,)] is implemented by an operator on C3°.

aq,02,03 "
Moreover, the following three statements hold.

1. Let oy # 0. There exist N € N, operators My, ,,..., My, , € M(C)°) and
Tf(MfLehlv T 7an1,ehn1> S ¢a17a2,a3+17

where 1 < £ < N, such that
adHo(f)(T(hla T 7hn1>) = Z Tf(Mszhlv T 7an1,zhn1>'

2. Let ay, 9 > 1. Define

~

T(hl, ey hia Ce 7hn1) = T(h,l, ceey hfi—la hi—i—la Ce 7hn1) < €a1_17a2’a3,
where the functions vy, ..., v,, € CX and the constants gny1,. .., qns € No

in the definition of T'(hy, ..., hi—1, hit1,. .., hy) coincide with the ones in the
definition of T'(hy, -+ , hp,).

There exist N € N, My, .., € M(C}°) and operators

Tﬂ(hb ceey h’na anﬁ-l,fh') € €a1+1,a2—1,o¢37
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where 1 < ¢ < N, such that

n

ade(n (T(he, -+ hn,)) = ZT(hl,...,ﬁi,,”,hn)

i=1
N
+ ZTE(hla o P, an1+1,£h)'
=1
3. Let ag > 0 and a; > 0 or ag > 0. For every o € {1,...,v} define 6, €

N by (0,); = 05j. If h,...,h,, € HL,, there exist N € N and operators
Tl(hl, ce hn>, R ,TN(hl, ce hn> S Q:g\;,a2+1,a371 such that

ada(T(hy, -+ ,hyy))

= ZliT(hl, ey (Dgo + Dgi)hzy o -7hn1)

i=1 o=1

N
+ Zﬂ(hh e ;hnl)'
i=1

PROOF: We start with the first statement. Let (¢¢); € C§°(R) be a se-

quence converging to hy, £ € {1,...,n;}, in the topology of H* (R”) and let
My, ¢, ..., My, oby the operators of Corollary [3.11} Then Lemma . and Corol-

lary imply that
N

|<77ZJ7 [Hov T(hlv R hm)]ﬂ}/) - <¢’ Z T(Mfuhl? T anl,ehn1)¢/>’

(=1
< |<w7 [H07 T(hla SRR hnl)]¢/> o <w7 [H07 T(g]lu s 79;11”1?/)’
N
(0, [Ho, T(g)s - gf ) = (0, T(My, ha, -+ My, o )0
/=1
< [{¢, [Ho, T(hy, ..., b W) = (¢, [Ho, T(gj, - - -, g7 )"

N
+ Z (¥, (T(Mfl,ehh B anl,ehm) - T(Mfuggl'v T >an1,eg;‘ll)>w,>"
(=1

This proves the first statement. The proof of the third statement is similar and is
thus omitted.

The second assertion differs from the other two in a structural fashion, because
both, the operator T'(hy, ..., h,,) and ®(h), are defined via elements of H? (R").
However this only requires us to go through the above approximation procedure
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twice. Since this kind of proof re-appears below, we provide the details. Let
(9); € C(R) converge against h in the topology of H: (R”). Abbreviate

S(fireoifun ) =Y T(fry o fire o fu)
=1

N
+ ZTE(fla ey fia s >fn1’ an1+1,[f)'
/=1

For any 7 € IN we compute

(0, [®(h), T(has - s B )JU) = (b, S(ha, o ey )Y

< [, [@(R), T (ha, - hn) )W) = (0, [(g;), T (ha - hny )]0
(0, [@(95), T(ha, - b )J0') = (0, [@(g5), T(g5, - -, 9]
+ (W, S, Py, W)Y = (0, (g5, g57), 9700

in complete analogy to the beginning of the proof. Since we clearly have that
S(ghs- 97 9500 = S(ha, .. hyo1, h)ep in H by Lemma5.73] the second state-

ment now follows by an €/3-argument. [J

Corollary 5.11. Let T(hy,..., h,,) € €0 and h € Hy (RY). Adopt the

1,002,003

notation of Lemma[5.1011 and Lemma[5.10.2. Then

ni
adp, (T(h1,... b)) =Y T(h1, ... i hyy)
i=1
N
+ Z Te(hla SR hﬂl’ an1+1,zh)
l=1

N
+ Y T(My, oo My, hey).
/=1

PROOF: Simply note that for ¢, ¢’ € C§°

<wv [Hha T(hb SRR hm)hb/) = <w7 [HOv T(hla R hm)hﬂ)
+ (0, [@(R), T (P, ... hny )W),

The statement now follows from Lemma [5.10l1 and Lemma [5.10/2. OJ

Corollary 5.12. Let k € Ny, h € H* (R¥) and m € N. There exist N,, € N,
My, ..., My, , € M(C)?), where 1 < £ < Ny, and 0 < jo < m, such that for all
CASYE
Nm m
Hh(g)m¢ = H0(£>m¢ + Z Z Té(Mfl,zhv s ’ijz,/zh)w’

=1 jo=1
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where for all 1 < ¢ < N,
Ty(My, b, ..., My, h) € €

Jeske,2(m—je—ke)
for some 0 < ky < m — 7.

Proor: We prove the statement by induction in m. The case m = 1 is clear.
Let ¢ € C3° and calculate

Hi (€)™ = Ha(¢ ZZ ETo(My, b, ..., My, W)
(=1 jp=1
= Ho(&)™ b + ®(h) Hy (&)™)

Nm m

+ YO (R T(My, by, My, )
1=1 je=1
o

+ 3N Ho(§)Tu(My, b, ..., My, b))
=1 jo=1

Due to (3.15]), the first two terms are already of the correct form. The same holds
for every term in the first of the two sums, since

O(h)To(My, b, ..., My, h) €€

Je+1ke,2(m+1—(je+1)—ke)"
As for the last sum, we compute
Ho(f)Tg(Mfuh, o >ije,eh)w = Tg(Mflyeh, o ,ije}[h)Ho(f)zﬁ
+ adHO(g) (Tg(Mth ce ijz,éh))w‘

Note that
uv,k
Tf(MfLeh? T ij[,eh)HO(g) € Q:gz ke+1,2(m~+1—75,—(ke+1))
uv,k
+ Q:]i ke,2(m+1—jo—kj)
and
N/
ad (e (To(My, b, ..., My, ) = Znﬁe,(Mf{jMfuh, c My My, h)
=1
for functions fi,,..., fj,, €, N’ € N and
uv,k
T&g/(Mf{,éMfl’[h, ey ij{g,lejZ’[h) € Q:JZ ke, 2(m Go— k£)+
uv,k uv,k .
Since < S(m—jo—ke)+1 c< S(mt1—jo—ke) , this completes the proof. [
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Corollary 5.13 (Convergence in Strong Resolvent Sense). Let k € Ny and h €
HE (RY). Let (gn)n € CP(RY) such that g, — h in the topology of HE (RY).
Then H,, — Hj, in the strong resolvent sense.

ProoFr: By Corollary and Lemma H, v — Hpy for all b € C°.
Since ¢ € Cg° is a common core for all H,, and Hj, this implies convergence in
the strong resolvent sense, see e.g. [46]. O

Observe that the previous lemma combined with Corollary immediately
implies that the form [A, Hy] is implemented by an operator on C3°. In fact, we
combine our results to learn more about its structure.

Corollary 5.14. Let h € H! (R”) and adopt the notation of Corollary [5.13.
There exist N € IN, operators ﬂ,z’(Mflyehw.-ijMh) € Q:?Z}Z—&-LQ(m—kg—jg)—l’ 1€
{1,..., N}, such that

ada((Hn(§) +¢)™)

Nm m e v

- Z Z Z ZTE(Mfl,fh’ T (Dga + Dgz)Mfi,eh’ SR 7ij£,zh)

(=1 j,=0 i=1 o=1
Ny m N

+Y NS Ti(My, by My )

(=1 j;=0 i=1
ProOF: Combine Lemma [5.10| with Corollary [5.12] O

Lemma 5.15. Let T(hy, ..., hy,) € € . . and define n = ay/2 + oy + as/2.

Then the operator T(hy, ..., hy,) is (Hy + 1)"-bounded and thus extends to an
operator T" on D((Hy + 1)") which we denote by T'(hy, ..., hy,) again.

PROOF: Choose sequences (g}); C C§°(R) so that g0 — h; w.r.t. the topology
of Hy(R”) for all i € {1,...,n1}. Note that since g? — h; in L* as well, there is a
constant C' > 0 so that [|g}|| < C|lhs]|. Let ¢ € Cg® and € > 0. There exists j € N
such that

||T(h17 SRR hn1)¢ - T(gjla Tt 79?1)w|| <€

With this choice of ;7 we calculate
1T (s b)Y S NT (s i )8 = Ty g7+ T g5 97 )Y

< e+ O T Inall(Ho + D)™

i=1

where we have used ([5.33)) in the last step. Since € > 0 was chosen arbitrarily, this
concludes the proof. [
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Clearly, the previous statement enables us to extend all commutators which we
have shown to be implemented by operators in €2 for some «;, k € Ny in this
section to D((Hy + 1)™) for appropriately chosen m € Ny /2.

In order to further extend these operators to D((Hjy, + ¢)") for h € Hy (R”) we

have to extend Lemma and Lemma to this particular situation.
Lemma 5.16. Let m € N, k € Ny and h € HY|

1. B! = (Hy+1)2 (H, +¢)"% € B(H).

2. F' .= (Hy+c)2 (Hy+1)"2 € B(H).

PRrROOF: Let (g,), C C(R¥) be a sequence converging to h in H* . Since
(Ho+1)~% preserves C5° and H,, 1) — Hpy for all ¢ € C§°, we immediately have
that

lim (H,, +¢)*(Hy +1)"% ) = Fyab.

n—o0

By Lemma all (H,, + ¢)¥(Hy + 1)~* are bounded operators. Corollary |5.12]
Lemma and L2-convergence of g, imply that there exists a constant C' > 0

independent of n such that for all ¢ € H

I(Hy, + )" (Ho + 1)~ ]| < Cllo]l.

Boundedness of Fy, now follows from the uniform boundedness principle. That all
other F}, are bounded follows from interpolation.

In order to prove the first statement note that we have already proven all ingre-
dients necessary to go through all steps in the proof of Lemma [3.16| By copying
this proof word by word we can thus establish the validity of the first assertion.
To avoid repetitions we will not present the details here. [J

As in the case of compactly supported coupling functions this result implies the
following corollary.

Corollary 5.17. Let h € Hy(R”), m € Ny and ¢ > 0 large enough.

1. We have that D(HO%) = D((Hp+¢)?).

2. The norms || x| my.m = ||(Ho + 1) x| and ||| gm = H(Hh—i—c)%:cH are equiv-
HZ

alent on D((Hy, +¢)%) = D(Hy?).

As a consequence the form extensions obtained earlier in this sections actually
extend to the domain of (Hj, + ¢)> for some integer power m. Since this fact is
crucial for the remaining part of this section, we state it as a separate remark.

We are now in a position to define iterated commutators for coupling functions
in h € H* in complete analogy to Definition m
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Definition 5.18 (Iterated Commutators on C3°). Let h € H,,. We introduce the
abbreviation Q := {Q1,Q2}, where Q1 := Hj and Q)3 := A. Moreover, let ¢ > 0
be large enough such that —c¢ € p(H). For n € N, define

T ={w = (w(1),...,w(n) € {1,2}" | w(1) = 2}.
For w € J,, we define its (-th truncation w® by
w? = (w(1),...,w()) € {1,2}"
and the amount of taken A-commutators by

m, =i e {1 n} [ w(y) =2}

If h € HE, for k = nj, the (-th truncation adgm ((Hp 4 ¢)™) of the mixed commu-
tator corresponding to w on Cg° is iteratively defined by
w® m m

adg ((Hp+c)™) :=ada((Hy+c)™)
for £ = 1, where the operator on the right hand side implements the commutator
form [A, (Hp, + ¢)™] on Cg°. For ¢ > 2 we define

w® m w1 m
adg ((Hy +¢)") == ady , (adé ((Hn + ¢) ))

to be the operator which implements the form

w1

[Tw(a y adé

((Hp +)™)]

on C§°. The mixed commutator corresponding to w € J,, is then defined as

adS((Hy + ¢)™) = ad%" (H + ¢)™).

This operator is sometimes simply referred to as a mixed or iterated commutator.
It is convenient to define Jy := {0} and adg((Hp 4 ¢)™) := (Hp 4 ¢)™ for w € Jp.

In the next remark we stress that the previous construction obtains similar
properties to the case of compactly supported and smooth coupling functions. We
will make extensive use of it in this paper.

Remark 5.19.
1. We show inductively that the forms [T, ), ad%“il) ((Hp+c)™)] are all given by

L
m+3

H, ?-bounded operator by using Corollary |5.12| and then applying Lemma
repeatedly.
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2. The requirement that & € HE (R”) for k = nj, guarantees that we may in
fact apply Lemma for k times, due to Remark [5.3]

3. We thus have that adg((Hy+c)™) extends from Cg° to a bounded operator on

D(H,' Jr%) with values in ‘H. By Corollary |5.17 this extension even defines a
bounded H-valued operator on D((Hj, + ¢)™*2). If we denote this extension
with the same symbol again, we have argued that

ad$((Hy + ") € BD(H]), )
forallME]NwithMZm—i—%.

The first remark seems to imply that we should be able to prove an analogue of
Lemma for coupling functions in H% (R”) for large enough k. This is indeed
the case and can be achieved by basically copying the inductive argument in |3.25
word by word, where the corresponding statements for the H* (R¥) case have to
be substituted for the respective Corollaries in the compactly supported case. We
will omit the proof and simply state the result.

Proposition 5.20. Let m,n € Ny, w € J,, and h € Hk J(RY) for k = n Then
there exists N,, and operators Og?, cees Oﬁﬂ, y Oj(f Lye-- Oj(e ntl € M(C"O)
D!, where 1 < £ < Ny and 0 < jp < n+1 such thatfm’ all ¢ € C3°

ad((Hy + )™ Z T(0 O\ h),

where _ _
T(OFh,...,00h) € €% 1 .«

with of /2 + ab + a§/2 < m +n/2 and

n+1 n+1

A N . ()
O} HOU,...,OJ.Z =[] 05
i=1

Moreover, for all £ at most wy of the operators Ogl), cees ngﬂ are in D.

Corollary 5.21. Let Q € N with Q > m —i— Int(%), m,n € Ny and w € Jy,.
Moreover suppose that h € H* (RY) for k = n . Define the maps

Sﬁ,@()lb : Hﬁv — H?
for all v € H by
S = adZ((Hy + o)) (Hy — 2)"%,

where z € p(Hy). Then all maps h +— S, o(-)i(h) are continuous w.r.t. the
topology of HE (RY).
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PRrOOF: By Corollary adZ((Hy + ¢)™) is (Hp, + ¢)™*™/2-bounded. We use
Proposition to compute

Ny
1S (MYl < C ZCeHHD%H 1He™ 2 (Hy — 2) 21
/=1 =1

which implies the continuity of S,  ,(-)¢. O

Remark 5.22. Moreover, for 21, -+ , zg € p(H}p,) we could show in the exact same
way as in the corollary that the map

Q
h S2 o (h)y == ad((Hy, + )™) H(Hh —z) W (5.34)

is continuous w.r.t. the topology of HE (R¥) for k > nj.

Remark 5.23. Suppose that we are given w, € J,,,, h; € Hﬁv, where k; = nA
ni,m; € N, Q; > m+1Int(n;/2) for i = 1,2. If we put w Sy 0, (h2), we obtam
Nﬂ)l Q
mi+k
<2 ZCeH | Dehl| | NEg" LLHR = 2) 1852 g, (ha)¥|
(=1 i=1 j=1
2 w
ma+5 _
<4]] ZCeHHD% ] 11Hy ™ H(Hh2 —z) 1]
a=1 i= j=1
which is the continuity of the map which maps the pair (hq, he) onto the vector
Q Q
ad (Hp, + &)™) [ [(Hn, — )" ad? (Hy, + 0)™) [ [ (Hn, — )"0
j=1 j=1

We denote this map by the suggestive expression

Sr 0, (h1) 8,2 o, (ha)i).

Obviously, this procedure can be iterated to any finite number of factors ad7((Hj+
c)™2)(Hp, + ¢)~92. For our purposes the case, where all functions h, are the same
will be most interesting.

82



5.3 Large Powers of the Resolvent

Since we deal with general coupling functions h € H,,(R") throughout this section,
we have to adjust our notation to this case.

Notation 5.24. For the rest of this section we define
R_.:=(H,+c)™"
for any h € Hyy, where the constant ¢ > 0 is picked large enough.
Lemma 5.25. Let n,m € N, w € J,, and Q,, € N with Q,, > m + Int(n/2) + 1,

where Int(r) denotes the smallest integer larger than r € R. Suppose that h €
HE (RY), where k = n’. Then S0 (l) € CH(A), that is

w

ad4 (S%Qﬂ(h» € B(H).

In particular,

1
ad (10, (1)) = SSBL () + D (=DM o ((SGE2 () (5.35)
k=0

as a bounded operator on H, where (2,w) = (2,w(1),...,w(n)) € Jni1.

ProOOF: First of all note that by the choice of @, the operator Sﬁ@w (h) is

bounded. Hence we need to show that the commutator form [A, Sﬁ,QwH(h)] is

bounded. For this it suffices to show that (5.35)) holds in the sense of forms on
D(A).
By Remark we have that S,, o .1(9;) = Sy, g,+1(h) and hence
(W, [As S 0,1 (99)10) = (A, S 0,41 (99)8) = (S gy, 44 (95) AY)
— (¥, [A, S g (W]Y)

Recall that we have already proven ([5.35) for compactly supported and smooth
coupling functions. By Corollary

ads (adf((Hy, +o)™) Rg=y = S0 | (g — Sg) i (W
for any 1) € H. Likewise, for k € {0, 1} we may apply Remark to obtain that
w —k, w —k,
SE,QH—AQ”)SS@QZH(%) — Sm,Qﬂ—k(h)Sgﬂ,QiLl(h’)‘

In total we have shown that both, the expressions for the commutator forms
and the respective (trial) operators implementing the forms converge against each
other. This shows ([5.35)) and thus completes the proof. [J

Similar to the case of compactly supported coupling functions, see Definition
4.3, we now define a span of products of operators of the type appearing in the
last lemma.
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Notation 5.26.
L. Let j,n(1),...,n(j) € N and w; € Jp),...,w; € Tny). For 1 < p < j

.....

Qp > M, + Int(|w,)|/2). We then define

J
LI 500, (1) = Sai 0, ()53 g, () -+ Sit o, ().
p=1

See Remark for the definition of the right hand side.

2. Note that since C3°(R¥) C H* (RY) for all k € IN, the previous definition is
also meaningful for functions g € C3°(R").

3. The context usually dictates the choice of j, n(i),w;, ... and we will thus not
list them whenever no confusion can arise.

Definition 5.27. Let i, k,b € N and ¢ > k. Define

J i
75 = Span{RY [ [ Saf o, (P) | h € Hi (RY), 1 <j <, > ny =k B>b,
p=1 p=1
Qp = M, + Int(|w,[/2) + 1},
8o, = Span{R”, | B > b},
uv,l |
Lot = 0.

Moreover, we define

J J
ad4(8L')}) == Span{ad. (R} H SA%; o, () | RY H s;“;; o, (h) € L.

p=1 p=1

For any ¢ € IN Definition [£.3] and Definition are connected by the inclusion
Wiy C ﬂ%i

due to C(R”) C HY (RY) for any k. As a next step we want to prove that Lemma
[4.4 and Proposition extend to more general coupling functions. To this end we
will use the same strategy as in the previous Lemma, exploit the continuity of the
maps Sﬁ’;’@p(-) and the existing results for the compactly supported case.

Lemma 5.28. Let i,k,b € IN, suppose that b> 3 -2" and ¢ > k+ 1. Then

uv,f uv,/
ada($67) C U5 4 p g0
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PROOF Since il b consists of linear combinations of elements of the form

p:l S]Tj; Qp(h) and the operation of taking a commutator is linear, it suffices to
check the statement for elements of the type H;Zl Sl\mj;’Qp(h).

The proof is carried out by induction. The induction start at k = 0 is a straight
forward generalization of the corresponding part in Lemma to coupling func-
tions in L2 (RY). A

Let £ > k+1, h € Hi (R"), ¢ € H and [[)_, SJ\%IZ,QP( ) € il;“,;i Choose a se-
quence (g,), C C(RY) such that g, — h w.r.t. the topology of H’ (R"). Since
the result in Lemma does not depend on the exact choice of compactly sup-
ported and smooth coupling function, we conclude that there exist C,...,CY,
jl?"'a.jN? ng(l),...,ng(jg) S IN where 1 < jlw“ajN < i+ ]-) and Wy 1y S
Tng(1)s > We g, € Tng(iy) andn S+ —|—n L=kt for all £, and My ,,, Qrp, € N,

? )
where £ € {1,...,N}, ps € {1 ..,jg} and Qep, > Myy, + Int(|wy,,[/2) + 1, such
that for every n € IN:

J
ad (H SA%; ,(9n) ) Z C, H s;;é’;f; Qup, (90)¥ (5.36)

p=1 pe=1

We study the right hand side of (5.36) first. It is clear from Remark that

N Je
ZH ﬁ;ZQ@pe ganZH ﬁ;ZQeW w

{=1 pp=1 {=1 pp=1
In order to show convergence of the left hand side of ([5.306} - we compute

J

4 H v o)1) — (0 A TT 552 0, ()W)

p—l p=1

J
< [[A |l HSA} o, =[S, (V]
p=1

+ IWHHHSM,,QP gn) AV — HSM @ (WAY]

for ¢,¢" € D(A). Since the upper bound converges to 0 as n — oo by Remark
5.23 we have shown that

J
(W, [AT] Sat 0, (W) = (v, Z Ce ]V[i’;;%(h>w'>

p=1 pe=1

for all 1,¢" € D(A). The right hand side is now given by a bounded operator
and thus the form extends by continuity and density to a continuous form on the
whole of H uniquely implemented by the operator ad 4( ;:1 SJ\MJ; ,Qp(h)).
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However, uniqueness implies that

J

wa([T 580,00 = 3 TT S50, )

p=1 =1 pe=1

because it does so on the dense set D(A). To complete the argument we simply
note that since

wé Py )
Z H My @y () € Y1 g p—3.20

{=1 pp=1

for all n € IN, it follows that

wZ ) uv,f
Z H szszpe ) € Llz+1 k+1,b—3-2¢"

(=1 pe=1
This concludes the proof. [
With the preceding arguments we have generalized all ingredients which needed

in the proof of Proposition to general coupling functions in H% (R¥) for some
(. Tt is therefore not surprising that we are able to prove

Proposition 5.29 (The C*(A) Property for Large Resolvent Powers II). Let k €
No, ¢ > k and suppose that m € IN satisfies m > my := 25:03 .27, Then for
every h € HEFL(RY) the operator (Hy,(€) + ¢)™™ is in C*1(A). Moreover,

adly ((Ha() +¢)™™) € 4,

k,km—my®

PROOF: It is trivial to check the statement for £ = 0. The induction step uses
Lemma and is a word by word copy of Proposition |4.5/ [J

5.4 Local Regularity

As in the proof of Theorem we will need to adapt notation in order to extend
the proof from the previous chapter to the case, where there may be resolvents at
two different points —c, z € p(H).

Notation 5.30.
1. For h € Hy(RY) and z € p(H},) we define

Rz = (Hh - 2)71.
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2. Let 6 € {0,1}, 1 € N, n(l),...,n(i) e N, w, € jn(l),...,wi S jn(i),
my,...,m; € Nand Qq,...,Q; € N with Q; > m;+Int(|w;|/2)+1. Suppose
h € HE (R”), where k > max{n, ,...,n, }. For any z € p(H) we define

HRZS;p = RIS o, (h) -~ RIS o, (h).
Definition 5.31. Let ¢, k,b € N and ¢ > k. Define

V', = {RP(—c HRh )sur o (WIR(2) | h € HE (RY),1 < j <,

anp =k,B>b,0€{0,1},Q, > M, + Int(Jw,|/2) + 1}.

p=1
Moreover, for any ¢ we define
Wt = Span{RER. | B=b}, WY, =0,
Lemma 5.32. Let i,k,b € IN and suppose that b >5-2' and ¢ > k + 1. Then

uv,l uv,
ada(Ty ) C RUSEPNRSETS

PRrROOF: The proof uses the same approximation strategy as Lemma [5.28] We
fix Vigy € ‘Buv’ for a coupling function h € Hy (R”) \ {C°(R”)}. We may
approximate the form expressions [A, V; i ] on C3° by limits of compactly supported
coupling functions. Since the statement is correct for compactly supported and
smooth coupling functions, these approximations are implemented by bounded
operators which are already of the correct form. This then implies that the form
expressions in the general case are bounded and hence implemented by bounded
operators. Finally, we use that by uniqueness these operators have to coincide
with the limits of the operators in the compactly supported case and hence are of
the correct form. Since this is more or less a word-by-word copy of the proof of
Lemme [5.28] we omit the details. [J

Lemma 5.33. Let k € Ny, h € HEFL(RY), m € N and suppose that m > my, =
Z?:()E) -2 Then (Hy, + ¢)™™(Hy, — 2)~' is of class C*T1(A) for any z € p(Hy).
Moreover, for £ > k + 1 we have that

ad’y(Hy + ¢) ™™ (H, — 2)7") € B}

i,k,b—my *

PROOF: As in the case of Proposition [5.29]is is trivial to verify the case k = 0
for m > 5 and h € H,(R”) by Lemma in the same fashion as in Proposition
[4.5 Since all ingredients used in the proof of Proposition [£.5 have been generalized
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to the case of coupling functions in H¥ (RY), the rest of the proof can be carried

out in complete analogy to the proof of this proposition and can thus be omitted.
O

We have thus proven all necessary technical ingredients needed to extend The-
orem [4.6 to coupling functions h € H (RY).

Theorem 5.34 (C*(A)-Property for f(Hy(€)) with h € H: (R¥)). Let h € HE (R”)
and suppose that f € C(RY). Then f(Hy(£)) € Ck(A).

With the help of the usual approximation procedure and Theorem we can
mimic the proof of Lemma4.11and obtain a generalization of this statement. Note
that unlike in the case, where g € C°(R”), h € HF (R”) implies less regularity of
the eigenstate 7, since we are not necessarily allowed to compute arbitrary amounts
of derivatives of h.

Lemma 5.35. Let h € HEFL(RY). n € D(Hu(€)) be an eigenvector, that is
Hy,(&)n = Aen. Then

1. n € D(AF).
2. Let k' < k. Then A¥n € D(H(&)™) for allm € IN.

Proposition 5.36 (Regularity of Eigenstates). Let h € H¥F(RY) and suppose
that there exist £ € R, n € D(H(E)) and Ne € a(H(€)) N ED(E)\ TW (&) with
H(&)n = A\en. Then n € D(AF).

Proor: By Theorem h € HEFL(RY) implies that H (&) is locally of class
Ck+1(A). This implies the statement by Theorem 1.6 in [40]. O

6 The Feshbach-Schur Method

6.1 Small Total Momenta as a Perturbation

Throughout the rest of Section [6] we assume that the coupling function satisfies at
least
hel? (R")

unless stated otherwise. Moreover, we fix the following notation.

Notation 6.1.

1. Recall that & € U A, € 0,(H(&)) N EW (&) \ TW (&) with normalized
eigenvector 7, that is H(&)n = A¢gn and ||n|| = 1.

2. P:=n){n|, P:=1-P.
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3. Pick & € U and fix k > 0 such that holds for all £ € O.
4. For € € R define H(¢ +¢) := PH(¢ +()P.
5. A:= PAP.
6. For any £ € R” and 2z € C with Im(z) > 0 we define
R.(¢) == (PH()P — zP)™" [Ran(P) -
Let £, € R”. Then
H(E+ () = Ho(§) + ®(h) + Ve, Vo= 426 ¢ = 2(- dT(k)

6.2 Regularity of the projected Hamiltonian

Let T be a closed operator on ‘H with dense domain D(7) and suppose that
n € D(T)N D(T*). Then, on D(T) we may define

PTP =T — |n)(T*n| — [Tn){n| + (n, Tn)P.

Clearly, PTP with domain D(T) is again a closed operator. By Theorem m
and regularity of eigenstates, Proposition [5.36, i € H2 (R”) implies € D(A) and
hence PD(A) C D(A). Therefore, A is a closed operator on D(A). Likewise H (£ +
() is a closed operator on D(H (&)), since V; is H(&)-bounded and symmetric.

Lemma 6.2. Let k € N, T,T" ~ €2k and suppose T,T' are H(&)™-bounded

a1,002,0

for some m € N. Then n € D(T), D(T") and the following two statements hold.
1. Let h € H*FY(RY). Then |Tn){(T'n| € Ck(A).

2. Let (,0' € N, put L := max{{,{'} and suppose that h € HFHEALY(RY). Then
T At)(T" A¥n| € Ck(A).

ProoF: We prove the first statement by using induction in £ € IN. For k =1
we have n € D(A) by the regularity of eigenstates, see Theorem 1.6 in [40]. Hence,
we are in a situation in which holds. This shows that |Tn)(T"n| € C(A).

Now assume that the first assertion holds for some & € IN and suppose that
h e HiF?(RY) and T, T ~ €uvkt - Clearly, the induction hypothesis implies that
|Tn){(T'n| € C¥(A). By Lemma and the assumption on T, 7" we can define
the sets

Ve |J {adj()ann TAM),
0<ig+i2<n

V= U {adfj (TYA™n, T' A" n},
0<214+i2<n

Eo={O 1 ¢eVa, eV}

89



for every n € IN with n < k4 1. As an intermediate step we show that in this

situation there exist m(¢) € N, finite rank operators (1) ((1|.- - - | Gn@e)) (Cuin] € Fo
1 m(£)

and constants C1, ..., Cp € C for every £ < k such that

m(£)
ad’y(|Tn)(T"y)) ZC\@ (6.37)

as bounded operators. We prove this statement by induction as well. For £ =1
an easy computation shows that ad(|Tn)(I"n|) = [A, |Tn)(T'n|] is of the correct

form. Assume that |Tn)(T"n| € C”l( ) and (6.37) holds for |Tn)(T"n| € C(A).
Let ¢, 9" € D(A) and compute

m(£)

(¥, [A, ad5(|Tn) (T )]y ZO A, ¢ (¢

There are four possible configurations for each (;, ¢; which need to be checked.
Let 1 < i < m(f) and assume that (; = ad’}(T)A%n and / = T'A®%n, where
1 <y,i9,i3 < £. Then as a form on D(A)

(W, [A GG = (0, |Aadf (T)An)(C[¢") — (@, [G)(AT A" nly)
= (, | ad} (T) A= ) (") + (W, [ad ™ (T) A™n)(¢][¢")
= (W, [GUT" A ) — (0, |G} (ada (T) A% nl).

Hence ad4(]|¢;)(¢!|) is implemented by a linear combination of finite rank operators
|t;)(t}] € Fpy1. The remaining cases can be checked in the exact same fashion and

hence
m(+1)

adf (| Tn)(T'y)) = Z Cilea) (e

where m(¢ + 1) € N, |1;)(4| € Fiq and C,...,C ) € C. This proves (6.37)
holds for any ¢ € IN provided that |Tn)(T"n| € C*(A). B
Now we return to the initial induction hypothesis that |Tn)(T'n| € C*(A) for
some k € IN. Taking another commutator and using ((6.37)) we compute
m(£)

(0, [A, ad’(|Tn){T'n|)]v’ w,zc [A, |G

Since we have already shown that |¢;){(¢/| € C'(A) earlier in the proof, this shows
that [A,ad%(|Tn)(T"n|)] is given by a bounded operator which proves the first
statement.

The second statement directly follows from a slight generalization of -
Indeed, if we replace |Tn)(T"n| by |TA%)(T'A"n|, we can repeat the proof of
(6.37) in this generalized setting and thus draw the same conclusions. [J
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Remark 6.3. Note that a slight adaptation of the proof also yields that |Tn)(T'n| €
Ck(A).

Lemma 6.4. Let { > k+1 and suppose the coupling function satisfies h € H' (RY).
Then there exist Ty € C*I(A), where j € Ny :={1,...,k}, such that

ad’ (dl'(k,)) = Pad’(dl'(k,))P + Ti—;
extends from C$° to D(Hy(€)) for all j € Ny,. Here, we have put C°(A) := B(H).

PROOF: In order to carry out the proof by induction in k we prove the more
precise statement that for all £ € IN and j € Nj there exist n; € IN and Hj(§)-
bounded Tj; ~ €4, a,,a; Such that

T; € Span{|T;, A'n) (T4 A"n| | i,i' € Ny, 0,0 € No,0 < £+ < j}.  (6.38)

Let ¢,¢" € Cg°, k = 1 and ¢ > 2. By regularity of eigenstates, see Theorem 1.6
in |40, we have that n € D(A). This allows us to compute

(. [A, AT (ko) J1') = (&, [P, AT (ko)JAPY') + (¢, P[A, dT (k,) | PY)
+ (¢, PA[P,dT (ko))
= (0, In)(dT (ko) An[ PY') + (4, [n) (ad a(dT (ko) ) [ PY')
— (¢, | T (ko)) (An[PY') + (4, P ad(dT (ko)) PY')
+ (0, PlAn)(dT (ko )n|v') — (¢, P|dT (kq) An) (n|¢')
— (¢, Plada(dT (ko)) (n]d)).

By Lemma all contributions except P ad(dI'(k,))P are given by elements of
B(H) = CY(A) which are elements of the set appearing in (6.38)), where ¢ + ¢’ €

{0, 1}.
Suppose the statement is true for all " < &k and (6.38)) holds for all 7}, j € Nj.
Choose £ > k + 2. Let 7 € Ny and calculate
(W, [A, ad% (AT (ko)J0") = (0, [A, ady (dT (ko)) + (0, [A, Til").
Again by [40] this implies n € D(A*"!). Lemma [6.2 thus implies that T, € C*+!~/
and therefore [A, Ty extends to a bounded operator for all j < k. Moreover, this
operator is an element of the set in (6.38]), where ¢/ + ¢/ < k + 1. In order to deal
with the first term we compute
(0, [, ad (AT (k, )]e') = (1, [P, adb (T (k,)) APY)
+ (¢, Pad{™ (AT (k,)) PY')
+ (¢, PA[P, ad}y (AT (k,))]")
The second contribution is already of the correct form. The first and second can be

dealt with similarly to the induction start. We omit the details to avoid repetition.

O
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Definition 6 5. Recall the notation I, = (A — kK, A+ k). Let U be as in As-
sumptlon plck § € U and fix k > 0 such that . holds. In particular,
Iw CEC ( ) \ TW(€). We define the set of functions

Leanrm(Ae) == {0 € CP(R) | 3" € (0, k) : supp(d) C Iy, and Q‘IA =1}
gir

Proposition 6.6. Fiz k > 0 such that holds and pick 0 € Leanr(Ag)-
Then there exists r,e > 0 and an open neighborhood V of & with V C Oq, where
Oy is defined in Notation such that for all £ € V and || <

POCH(E + Q))[A, H(E+ QIOH(E + Q)P > ePOH(E +¢))*P. (6.39)

PROOF: We establish the statement for £ = & and small |(] first and then show
how the nelghborhood V can be picked. Choose 6 € L¢a)7a)(Ag ). By the Mourre
estimate ) there exists C' > 0 and a compact operator K such that

P9(H(r5o))[1ﬁ(§o)]( (€0)) P = PO(H (&))[A, H(£0)10(H (S)) P
> CPO(H())*P + PO(H (%)) K0(H (&) P

Therefore, since H(&) does not have eigenvalues close to A, there is a strict
Mourre estimate:

PO(H(&))[A, H()|0(H (&))P > CPY(H ())*P- (6.40)

Moreover, due to

0(H (& + O)IA, H (&

O(H(£)[A, PH(E)PIo (F(fo))

+ P{O(H (& +C)) — 0(H (&)} [A, H(&)0(H (& + )P
+

m
cf\r
S—
=
—~
]
~~
Iy
=)
+
2y
S~—
S~—
i)

P
B0

+?9( (€0 + CO)IA, H ()] {0(H (&

—2 Z G PO(H (& + C))[A, PAT(k,)PlO(H (& + ¢)) P

and the Lipschitz continuity of ¢ + 0(H (& + ¢)), the previous equation can be
bounded from below as in ([6.40) for |¢| sufficiently small, say |¢| < 7’ for some
r" > 0. The choices " < 1/, r := 1" — 71" and V = B/ (&) then imply the general
statement. []

Proposition 6.7. Let h € H3 (RY). There exists a neighborhood V of & with
V C Oy and r > 0 such that H(§~|—C) is of class C*(A) for all ¢ €V and (| < r.
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PROOF: Assume h € H3 (R”) accordingly. First note that due to h € H? (RY),
n € D(A?) by regularity of eigenstates, see Proposition As in the proof of
Proposition [6.6] it suffices to check the result for £ = & and small ]

Since at this point it is not clear whether R, 2(€) preserves D(A), we have to be
more careful in dealing with commutators of A and R.(¢). We thus introduce a
regularization of A by

A, = ipAA —ip)~!

for p € R and put Zu = FAM?. Let 1,4’ € C§° and calculate

[A, R.(& + Q)| PY)
(50 + Q)P [A,, PH (& + ¢)P|R. (¢ + () PY')
= (R=(& + Q) P, | Aun) (n]2¢ - AT (k)R- (& + ¢)PY')
+ (R=(& + )P, 2¢ - AT(k)[m)(A-_un|R.(§ + ) PY')
— (R=(6 + )Py, [Ay, H(&)IR.(& + O)PY')
(R=(& + )P, [A;u?C dT (k)| R. (& + ¢)Py'), (6.41)

(P,
—(R:

+

where we have used that P commutes with R,(£y+(¢) and thus some contributions
of rank one operators of the form |n)(n| and |n) (1| are annihilated. We now look
at the convergence of this expression as |u| — oo by studying the individual terms
separately.

To treat the first term in (6.41) we note that A,n = iu(A —ip)"'An — An as
|| = 0. Moreover, n € D(dI'(k,)), since dI'(k,) is H(&p)-bounded. Thus,

Tim (Re(6 + QP | 4,m)(0[26 - AU R.(60 + )P
= Tim (Re(& + )P, [ 4,m) (26 - AL (k) Re(o + ) PY)
= (Re(€o + )P0, | An) (26 - AT (K} [Re(6o + OPY) (6.42)
by symmetry of dT'(k,). Likewise
Tim (Re(6o -+ P, 2C - dT(R) ) (A= el + P
— (Reyrc(2) P, 126 - AT (K)) (An[ Ry (2 P) (6.43)

In order to deal with the third term in (6.41)) ~we let Py, PY' € C® and find
X0, Xo € H such that Py = (H(&) —1) 'xo and Px' = (H(&) +1)'x;. We make
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use of this fact to compute

lim (Py, [H(&), A )PX')

|| =00
= “}'igloo«H(fo) —1)""x0, [H (&), Au) (H (&) +1)'x0)
= lim (o [(HE) + )7 A
= —(x0, [(H (&) +1)~", Alx0)
= (Px, [H(%), AIPY) (6.44)

where (H (&) +1)~' € C'(A) has been used in the last line. Moreover, this expres-
sion clearly extends to x, x’ € D(H(&)) by continuity and density. It remains to
examine ((6.41))’s last term. To this end we calculate

Tim (0 A0 (E,), AY) = T (@D ko), A,0) = (A, dD (k)

|l —00
= “}'igloo (AT (ko )X, AuX') — (Aux, AT (k6) X))
= (x, [dT(ko), Alx") = (x, dT'(vs)X') - (6.45)

As we have argued before the H(&p)-boundedness of dI'(v,) and density of C5° in
D(H (&)) allows us to extend this form expression to x, x’ € D(H (&)).
Thus, combining (6.42))-(6.45)) in their extended versions, we have shown that

Jim (P, [A,, R (G + Q1PY)
= (R=(& + )Py, |An)(2¢ - AT (k)n|R.(& + ) Py')
+ (Rz(& + Q) P, |2¢ - AT (k)n) (An| R. (& + ¢)PY')
+ (R=(& + Q) Py, [H (&), A|R.(& + ) PY')
+ (Rz(& + Q) P, dT (v, R (& + Q) PY') (6.46)

Since all fiber operators H (€) are of class C'(A), the second term is bounded which
proves that PH (& + ()P is of class C'(A). Now note that

(P, R=(& + Q) [H (&), AJR=(& + ) PY')
= (P, R=(& + ¢) ada(H(&)) R=(& + Q) PY'),
since Reyrc(2)PCE C D(H(&)?). As usual we aim to commute a resolvent
Re,1c(2) through to the right and use that ad(H(&))R.(& + ¢)? is a bounded

operator. As opposed to previous calculations the projections P cause additional
terms which have to be dealt with. We calculate

(R=(& + Q) Py, ada(H (&))R- (¢ + C)PY')
= —(Rz(& + Q) Py, [PH(& + )P, ada(H (&) R- (& + ¢)*Py')
+ (P, ada(H(&))R- (& + ¢)*Py').
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Clearly, the last term in the previous equation is already bounded and it remains
to control the first:

(Rz(& + Q) Py, [PH (& + ¢)P,ada(H (&))]R. (& + ¢)*Py')
= (R=(& + Q) Py, [H(&), ada(H (&))|R- (& + ¢)*PY)
+ (P4 2¢ - & — A (R=(& + )Py, [P,ada(H (&))]R-(& + ¢)*PY)

+2 Z (o (R=(& + Q) P, [P A (k,) P, ada(H (&) R. (& + C)*PY)

R
R

~—

= (R <so+o W, adpr(ey) (ada(H (&) R (6o + ¢)* Py
+2 Z Co(R=(60 + Q) Py, [P AT (ky) P, ada(H ($))]R= (S + O)*Py'),  (6.47)

where the second term in the second equality vanishes in the last step due to
the presence of finite rank operators of the type |n){(n'[, |7'){(n|. By the mapping
properties of adp(g)(-) the first term in (6.47) is already bounded.

The boundedness of the last term in (6.47)) can be seen as follows. Recall that
ada(H (&))" is (H(&) + ¢)*>-bounded and hence n € D(ads(H(&))*). We may
thus calculate

(Rz(& + Q) P, [P AT (k) P, ada(H (&))]R. (& + ¢)*PY)
= (R:(& + O)Pv, P[dT(k,), ad 4 (H (&) PR (& + O)2Py)
+ (R=(& + Q) Py, P (ko) [P, ada(H (&) R=(& + ¢)*Py')
+ (R=(& + Q) Py, [P ads(H(&))] dT (ko) PR.(& + ¢)*PY')
= (Rz(& + Q) Py, | AT (ko)) (ad 4 (H (&) 0| R. (& + ¢)*PY')
— (R=(& + Q) P, |ad a(H (&0))m) (AL (ko )n|R- (&0 + () Py')
+ (R=(& + Q) Py, adar,)(ad a(H (0))) R= (& + ¢)*Py). (6.48)

By Proposition . adar(k,)(ada(H(&))) is (H (&) + ¢)2-bounded and thus, all
summands in (6.48) are given by bounded operators. If we combine ((6.46)), (6.47))
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and (/6.48)), we may conclude that

(Py,[A, R.(& + ¢)]PY')
= (R=(& + Q) P, 2Re(|An)(2¢ - AT (k)n|) R.(& + ¢) Py')
<P¢aadA( (&0))R.(& + ¢)°Py)
Rz(&o + Q) Py, adrg) (ada(H () R (o + C)*PY)
R=(& + O, 2¢ - AT (v) R.. (& + C)¥)
R=(& + ¢)Py, |2¢ - AT (k)n) (ad a(H (o)) 1 R. (& + ¢)*Py')
R=(& + Q) P, [ ada(H (&))n)(2¢ - AT (k)n|R.(& + ¢)*Py')
R=(& + ¢) Py, ¢ - addF(k)<adA<H(§0)))Ez(£0 + () PY'). (6.49)

Since the right hand side of (6.49)) clearly is a bounded expression, we have thus
shown that R.(§ + () € Cl(A)

To show that Rz(£y+() is an element of C2(A) we have to show that every term
in is again given by an operator in C'(A). Note however that only the first,
fifth and sixth term are clearly implemented by such operators. The remaining
second, third, fourth and seventh term have to be taken care of separately. We
start with the second one:

(P, [A, ada(H (&) R (& + )| PY)
= (P, [A, ada(H (&) Rz (& + C)*PY)
+ (Py, A[P,ada(H (50))] (& + Q)*IPY)
+ (P, [P ada(H (&) AR. (€0 + ()] PY)
— (P, ada(H(&))R(6 + Q)*PIA, (PH(& + )P — 2P)*|PR.(& + ¢)*PY).
The second and third terms of the previous equation can be seen to be bounded

expressions in a similar fashion as in the beginning of this section. To deal with
the first term, recall that

ads(H(§)) = —i®(iag) + dI'(iv - Vw) + 2¢ - dI'(v) + 2idl(v) - dI'(k),
ad’ (H(€)) = ®(a’g) +dl'((iv - V)’w) + 2¢ - dI'((iv - V)v) — 2dT'(v) - dT(v)
+2dl((iv - V)v) - dI'(k)
for any & € R”. Thus, [A, ads(H(&))|R(& + () extends to a bounded form on

P#H. In order to prove that the second term in is bounded, it thus suffices
to show that the form

R_o(&+ ¢)?[A, (PH(& + Q)P — 2P)!|R.(& + ¢)°
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is bounded. We compute
(PH(& + ()P — 2P)?
= PH(& + Q)PH(& +¢) — PH(& + Q)P|Ven) (] — 2PH(& + ¢)
+2P|Ven) (n)

and can now clearly see that only the first and third term are truly problematic,
because the other two are given by finite rank operators. If we expand them by
writing P = 1 — P, we can further note that the worst term is coming from the
presence of H (& + ¢)?. We thus have to control

(P, R_o(& + Q)7 [A, H(& + QYR (& + €)%Y)
= (P, ada(H (& + OPR_o(€o + Q)T R.(E + O)%')
— (P, [R_c(éo + €)%, ada(H (& + C)*)]R.(6 + O)*').

Define the abbreviation U := adpy e, 4 oyp(ada(H (& +¢)?))R-c(éo + ¢)? and com-
pute

(P, [R-c(€o + €)%, (ada(H (& + €)%))R-c(& + C)?Py)]

< CIPy)U] / FH(PH (G + OF + (c + 0P) ) Py/||dt

< Cllllll'] -

Hence, the second term in (6.49) is bounded. It thus remains to check the third,
fourth and last term of (6.49)). Since these can be dealt with by similar methods,
we omit the calculations. [

6.3 Lipschitz Continuity

Definition 6.8. For N € N and a tuple ({T,,1}3Y,, {trn }3Y,), where {T), .}, is
a family of H(&y)"-bounded operators, where T}, ; ~ Coy an.as for all k, {t 1o, is
a family of functions on R” Lipschitz continuous in a neighborhood of 0, we define

N
k=1

on D((H (&) + ¢)""'/?) and

Z tk:+Nn |Tk+N n77> <77|

+ Z tirann(€) 1) (Tisaw ) 1) (6.51)
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for every fiber ¢ e R”. We call B,,(¢) the H(&)"-bounded operator associated to
the tuple ({71 13N, {ten }3Y,) and F,(C) the finite rank operator associated to it.

Proposition 6.9. Let z € C. For alln € N there exists an integer N, and a triple
AT i i Lt 13X7) as in Definition such that the H(&y)™-bounded operator
and the finite rank operator associated to it satisfy

Moreover, all ty,, are polynomials of order less than 2n.

PRrROOF: The proof is carried out by induction. For n = 1 we compute
H(§ + Q)P — 2P = H(&) — 2+ Ve — (A + )P — 2Re[Ven) (] + (Ven, m) P

The last three terms are finite rank operators and V; is a (H (&) + ¢)*/?-bounded
operator. Furthermore, all functions of {( appearing in this expression are either
constants or polynomials of order less than 2. Hence the assertion is true for n = 1.

Let us assume that the statement has already been proven for all m < n. Choose
Y € C§° and compute

(F (§o+ Q)P —2P)" 1y
= ((H(&) — 2)P = PVP)[(H(&) — 2)" + B, (C) + FnlQ)]e-

We study this last equation term by term. Note that
(H(&) — 2)P(H(&) — 2)" = (H(&) — 2)" ' — (A = 2)" "' Py,

Hence this contribution is already of the correct form. Using the induction hy-
pothesis and (6.50) we calculate

< (€) = 2)PB (O
—Ztm H(&) = 2)Ten — A= 20> tia(€) ) ((Thon) ]

Note that computations on C5° show that (H (&) — 2)Tk., extends to a H ()" t-
bounded operator on D(H (£)"*1). Thus, these contributions are also of the cor-
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rect type. Similarly,

(H(&) — =) Pgn Ztk+Nn n H (&) — 2) TN ) (0¥
+ Z tra2n,n(€) (A = 2) [ ((Teran, n) 0|t
k=1 N
—(A—2) Ztk+Nn,n(<) (1, Tt Ny nm) PY

—(A—2z Z trr2n, Q) M A{(Tht2n, n) nlY

which has the correct form. As a next step we deal with the contributions coming
from PV, P.

PV:P(H(&) — )"
= (Ve — 2Re|Ven) (n| + (Ven, m) P)(H (§0) — 2)"¢

= (H(&) — 2)"Ve + > 2¢, adar,) (H (&) — 2)")

= (A =2)"(IVem)(nl + (Ven, m) P) — [m){(H (&) — 2)"Venlo
which is of the correct type again due to Proposition (6.50)) implies

PVePB, ()¢ = (Ve — 2Re|Ven) (] + (Ven, m) P) B ()¢

Nnp, v
= Z (tm(C)Tk,nVW -2 Z thn(C)és addF(kg)(Tkm)w)
o=1

—Z ton (O IVen) (Tl = tn(O)0)((Ten) Venlh)

+ Z(ch Nt (O)0) (Tenn| - (6.53)

Note that Ty, being H (&)"-bounded implies that (Tj,)*V, is H (&)™ */2-bounded.
Thus, the contributions of PV, P*%B,,(¢) are of the correct form. It remains to check
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FVC?&L(( ). Similar to previous computations, we use 1) to calculate

Nn
PV.P§,(¢) = PV, P Z et N (O Thg vy nm) (M
k=1

Nn

= FV&F Z tk—f—Nn,n(C) |Tk+Nn,n77> <77|¢

k=1

Np,
=Dt (O T Vo) ()
k=1

Ny, v
-2 Z tit-Ny i (C) Z ol addF(k(,)(Tk+Nn,n>77> (nly
k=1

o=1

Nn
Y o nan( Q00 Ty n ) Ven) ()
k=1
Nn
=S b (Ve Toe ) P
K1

Ny
+ Z tk+Nn,n(C) <VvC777 77) <77> Tk+Nn,n77> P.
k=1

Clearly all contributions are of the correct type.

Therefore, we see that the induction hypothesis implies restricted to C§° in
the case n + 1 after relabeling all operators, functions and constants and choosing
N, .1 sufficiently large. Indeed, we have argued that all contributions are of the
correct form and the only problem that we might encounter is that the number of
terms is not correct. To this end note that we have the freedom to choose several
the operators and functions equal to 0 and N, large enough to obtain the correct
number of terms. Since all operators are H(¢)"™'-bounded the results extend to
D(H (&)™) by density of C§° w.r.t. respective graph norms.

Finally, it remains to show that the new functions ¢, are in fact polynomials
of degree less than 2n+2. This however is true, since all of them are either constant
or of the type p - i, where p is a polynomial of order less than 2 which implies
that all ¢ ,41 are polynomials of order less than 2n 4 2. We illustrate this by an
example. For the first term in we compute more explicitly:

Nn Nn Nn
D tenlOTinVe = D> EtnlO)Thn + D 260 - Ctin(Q)Thn
k=1 k=1

k=1

No v
B Z 2 Z Cﬂtk,n(C)Tk,n dF(kg) .
k=1 o=1
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A quick look at all calculations carried out in this proof shows that this is the only
way the functions ¢, are modified and hence the assertion is correct. [J

The proofs of the next two lemmas are trivial and thus omitted.

Lemma 6.10. Let T,T" ~ ¢2v° be (H(&) + c)"-bounded operators. The fol-

a1,02,x3
lowing equation extends from a form identity on C§° to an operator identity on

D((H(&) +¢)"*2).
adpp (e, 40p(T)

= FadH(go)(T)]_D — 2 Z CJF addp(ko) (T)F
— P, |Tn) (n| = Pl ad s, (T)n) (n| — (¢* = 2¢ - &) P|Tn) (]
+ P G (kg )n) (T | — [T AT (kq)n) (] — | adare,)(T)n) (1))

= Ao [n) (T 0| P — |n) (ad g (T )0 P — (¢* = 2¢ - &) [m)(T™n| P

+ > GUT0)(AT (ko 0| — [m) (T AT (ko )0 — 1) (adarge) (T} P (6.54)

Moreover, the following equation extends from a form identity on D(A) to an
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operator identity on H.

adFH(50+<)ﬁ( [ Tn)(T'n|)

=P (\ ad ey M) (T'n — | Tn)(adp(eo) (T = 2 G (IT AT (kg )) <T'77|)> P
— 2P > " (ol adare,) (T))(T'n| — [Tn)(T" dT (ke )n| — |Tn) adark,) (T")n|) P

+ (0, Tn)P Y G AT (ko)) (T'n| = (T'n,m)(¢* = 2¢ - & + A,/ P|T) (n]

o=1

— (T, ) Pl adseo) (T)n) (n = 2(T'n,n) P> G |T AT (ko)) (1

—{(T'n,m)2P > Col adarqen) (T)n) (0l — 2(T"0,m) Y Co|T)(dT (k)| P

o=1 =

+ (0, Tn) (6% = 2C - o + Aeo I (0[P + (1, Tn) > Con)(T" T (k)1

o=1

+ (0. Tn) Y Colm) (adar e, (7)) (6.55)

o=1

Remark 6.11. Let h € H2 (R¥) so that n € D(A) N D(H(&)") for all n € IN.
Since H (§0)n = Ag,1,

H(&)" An = Aé, An — ada(H (&)")n,

where we have used that ada(H (&)™) extends to D(H(&)™"). Hence An €
D(H (&)™) for all n € IN as well. This is used to define 7*An, T'An etc. in the
next lemma.

Lemma 6.12. Let h € H (R”) and T,T" ~ €3¥p . .. be (H(&) + ¢)"-bounded op-

erators. The following equation extends from a form identity on Cg° to an operator
identity on D((H (&) + ¢)™2).

adz(T)
= Pad(T)P + P(|[An)(T*n| — |T An) (n] — | ada(T)n)(nl)
+ (Im{(T* An| + |n)(ada(T*)n| — |Tn){An|)P. (6.56)

Moreoever, the following equation extends from a form identity on D(A) to an
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operator identity on H.:

ad(|Tn)(T"n])
= ({n, T){Im)(T" An| + In)(ada(T" )|} — (T"n, n)|Tn){An|) P
+ P ((n, Tn)| An){T"n| — (T"n, m{|T An)(n| + | ada(T)n)(nl})
+ P (|TAn)(T'n| + | ada(T)n)(T"n| = [Tn)(T"An| — [Tn)(ada(T")]) P. (6.57)

In order to prove the Lipschitz property for some operator valued maps later in
this section the next result will be of great use.

Lemma 6.13. Let Im(z) # 0. Choose R > 0 such that Br(&) C Oy, let ¢ € R
and £ € Br(&). Then

Vm € N: D,,(¢,2) == (H(E) + )" R.(£+)™P € B(H).

Moreover, there exists r > 0 such that for all m € IN

Vil < 1+ | Du(C, )] < G LUk 12D

< O () (6.58)

where p, : R2 = R ,qn : R — R is a polynomial of degree less than 2m with
positive coefficients and C,, > 0 is a constant independent of (,z and &.

PRrROOF: We prove the statement by induction in m. Clearly, on PH we may
compute

(H(E) +c)R(E+ P = ( (&) +oR(E+ Q)P
= (H(§) + ¢)PR.(§ + Q)P = P(H(§) + )PR.(§+ (P
= P(H(§ +) —z+P(c+z+V<)_)W% (E+¢)P
=P+ PV,PR.(£E+ )P+ (c+ 2)R.(£+ ¢)P. (6.59)
All terms except for the second one are easily seen to be bounded operators which
depend Lipschitz continuously on the fiber parameter  in operator norm. It thus

suffices to examine the second term to prove the result in the special case m = 1.
We calculate

PVeP =V, = 2Re(|Ven)(nl) + (Ven, m) P
= —2¢ - dU(k) + ¢* = 2¢ - & = 2Re(|Vem) (n]) + (Ven, m) P

Since dI'(k,) is (H (£ + ¢) + ¢)'/?-bounded for all coordinates o, we may conclude
that PV PR.(¢ + ()P € B(H). By elementary calculations

(1+2¢ - dU(k)(H (&) + ) ) (H(E) + o) R.(E+ P
=P+ cPR.(E+ QP — (¢F = 20 OR(E+ QP — 2Re(|Ve) () R (€ + Q)P
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There exists R > 0 such that the operator 1+ 2¢ - dT'(k)(H(£) + ¢)~' becomes
invertible for |¢| < R and the norm of its inverse can be estimated independently
of (. The previous equation then implies . This establishes the validity of
the assertion for the case m = 1.

Let us assume that the statement has been proven for all n < m — 1. Then, by
(6.59)),

(H(&) +c)"Ra(§+ Q)" P

= (H(&) + )" " Ru(§+ Q)" P — (e = 2)(H(&) + )" ' Ro(§ + )P
— (H(§) + )" "PV.PR.(E+ O™P

= Dypr(OP = (e =2+ + 26 QD1 (OR(E+ P

+2) G(H(E) + )" "P AL (k,) PR.( + ()P (6.60)

All terms except for the last sum are clearly bounded operators and Lipschitz
continuous for || < R and can be bounded as in in the m + 1 case by the
induction hypothesis and the usual bounds on the resolvent. It thus suffices to
study this remaining term. We recall the definition B® = (Hy(&) + 1)™/2(H(€) +
¢)™™/2 where h is the coupling function, and compute

(H(§) + )" "PdL (ko) Ro(¢ + Q)P
= P(H(&) + o)™ (Ho(€) + 1) 7" dT (ko) (Ho (&) + 1)~ By Din(C, 2),

where we have used that H(¢) commutes with P and that Hy(¢) commutes with
dI'(k,). Hence all missing terms are of the correct form. [J

Lemma 6.14. Let Im(z) # 0. Adopt the notation of Lemma [6.15 The map
¢ — Dn(C, 2) is differentiable on B.(0) for all m € IN. Moreover, there exist
a constant C,, > 0 independent of ,z,& and polynomials p,, : R x R — C,
Gm : R — C such that

Pm (G, 2)]

10, Din (¢, 2) || < Cmm
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PrROOF: Let m € IN and compute

R.(¢+()™P
RAE+ Q) [0, RAE+ Q) R(E+ Q™ P

MME

( +&)RA(E+ Q)P

m—1

+2) R.(6+ Q)" Pdl(k,)PR.(E+ ()P
=0

= —2m(C + &) RA(E+QO)™P —2mR, (€ + )™ Pdl'(k,)PR.(£ + ()P

m—1

—2 Ez(f + OmFLU(<7 €, 2) D -1(C, Z)}_%z(g + Oﬁ7

=0

where
Lo (¢4, 2) = adarqe,) (PH( + Q)P = 2P)" ) (H(€) + 0",
With the help of Proposition we can further calculate

9, Dim(C, 2)
= 2m(Cs + &) D (€, 2) Ra(§ + C)

—2mDu(C, 2) R (§ + Q)P AT (ko) (H (&) + ) D1 (G, )

m—1

+ 2 Z Dm(ca Z)Fsa,mfélemfﬁfl(Ca Z)Ez(é- + C)ﬁ
=0
m—1

+22Dm(C7 PS;m L— 1(C>Dm*£*1(<.7 Z)Ez(f—FC)?

m—1
+23" DolC, 2 PEOR(E+ O™ P

where
Som-1(2) = adar(e,) (H(E) — 2)™ ) R_o(§)™" (6.61)
Séfm 1(0 = addl’(kg)<%m—1(g)) (f) - (6-62)

The statement now follows from Lemma [6.13 [

Corollary 6.15. Let Im(z) # 0. The map ¢ — R.(¢ + ¢)P is differentiable on
Br(0), where R > 0 is as in Lemmal[6.13, and there exist a constant C' independent
of z,( and polynomials p: R¥ x R — C, q: R — C such that

Ip( )I
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In particular, ¢ = R.(€ + ()P is Lipschitz continuous in a neighborhood of 0.

ProOF: We simply note
R.(E+ QP = (H(&) +¢)7'Di(¢, —¢)

and apply Lemma [6.14 O
Lemma 6.16. Let k € CP(R) and define the operator

ki (Q) == k(PH(§+ ()P)

on PH. The map K : B(PH) — B(PH), ¢ — kg(() is differentiable on Bg(0),
where R > 0 is as in Lemma[6.13 In particular, K is Lipschitz continuous in a
neighborhood of 0.

Proor: By Corollary there exist a constant C' > 0 independent of z, ¢ and
polynomials p: RV x R — C, ¢ : R — C such that

10, R-(€ + ¢) Pl < o P& =)

la(Im(2))[

By choosing an appropriate almost analytic extension k of the function k € Cgo(lfi)
we can achieve that 9:k(2)p(¢, 2)q(Im(z))~"! is integrable over the support of dk.
Hence

™

which gives rise to a bounded operator by the choice of k. O

6.4 Holder Continuity of the Boundary Values of the Resolvent

In Section we have seen that H (& + ) is of class C2(A) for sufficiently small
¢|, or in slightly different words that PH(£)P is of class C2(A) for £ € V', where
V" is a neighborhood of &. This property can be shown to imply a limiting
absorption principle for }_%Hiy(f), ¢ € V' and Holder continuity w.r.t. x for the
respective boundary values, see e.g. [19,22,/47]. In principle these statements only
hold for every fixed value of £ € V' so that all constants appearing in the respective
theorems depend on €.

It should be noted that f(H (& + ¢)) € C*(A) for sufficiently regular coupling
functions implies the corresponding statement for the projected Hamiltonian H (&+
(), see Appendix . Thus limiting absorption principle and Hoélder continuity
would also follow directly from Sahbani’s paper on local regularity, [47]. Note
that this result is also used in [19]. However, Sahbani’s proof does not cover
parameter dependence either and is less explicit when it comes to error estimates
than Gérard’s proof in [22] which is why we focus on the latter.
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More precisely, an inspection of this proof shows that the parameter depen-
dence enters either through the Mourre constants or the iterated commutators
ads 5(f(H())), where k = 1,2 and f € C®(R). The Mourre constants can be
chosen uniformly in £ by possibly decreasing V' and all commutators depend Lip-
schitz continuously on ¢ € V' by Theorem [E.10} Hence we obtain the limiting
absorption principle as well as Holder continuity of the boundary values uniformly
for £ in some neighborhood of V' of &. Without loss of generality we can assume
that V' C O(&), where the open set O(&;) denotes those { for which A, is also
a conjugate operator of H(§). It is defined in Notation For the sake of com-
pleteness we have included a proof of the uniform limiting absorption principle
in Appendix [D] and a proof of the uniform Hoélder continuity w.r.t. the spectral
parameter z in Appendix [C]

Now note that since V' is open there exists ro > 0 such that V := B (&) C V.
By possibly decreasing the size of ry we can argue that there exists » > 0 such that
E+¢ eV forall¢ € Vandall |¢| < r. This explains the formulation of the limiting
absorption principle given below. The set )V should be thought of as the set from
which we draw the base points ¢ around which we want to do perturbation theory
w.r.t. (. The uniformity in these base points is needed to obtain error estimates
in the expansion in Theorem [2.12

Notation 6.17. Throughout this section we denote by I¢, the interval on which
the Mourre estimate ([6.39)) holds, that is

POCH(E + O)A, H(E+ QIO(H (E + )P = ePO(H(E + ()" P,
for § € C(R) with supp(f) C I,.

Theorem 6.18 (Limiting Absorption Principle). Let s € (1/2,1) and = + ie € C,
where € > 0 and x € Ig,. There exists a neighborhood V of § € U and r > 0 such
that the limat

<Z>_8Ex+i0(€ + C) <Z>—s = El m <K>_Sﬁx+ie (5 + C) <K>_S (663)

1
—0+

exists as a bounded operator for all £ € V and all |(| < r. Furthermore, there
exists a constant C' > 0 independent of x € I, such that

VE €V VI <7t [[(A) " Ravio(§ + O(A) 7] < C.

Unlike the previous theorem the next result on Holder continuity needs a proof.
We should note however that Hélder continuity w.r.t. « € I, follows immediately
from the abstract theory, since H (& + () is of class C?*(A) for ¢ € V and |(| < r.
For the sake of completeness a proof is given in Appendix [C]
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Theorem 6.19 (Holder Continuity). Let s € (1/2,1). There exists an open subin-
terval J C Ig,, o € (1/2,1) a neighborhood V of § € U and C,r > 0 such that for
all z,2" € J and all ||, |C'| < 7:
I(A) ™ Rasio(§ + OA) ™™ = (A) " Rarin(€ + ¢)(A) |
<C(C— P+ la— ). (6.64)

In order to prove Holder continuity w.r.t. the fiber parameter, we need two
technical Lemmas. The proof of the first follows along the lines of Mourre’s paper
and has therefore been moved to the appendix, see Section [B]

Notation 6.20. For £ € V and |(| < r we define
0 (C) = O(H(§ + Q).

Since it will be clear from the context which £ is used in the definition of 04((),
no confusion can arise.

Lemma 6.21 (Mourre’s Quadratic Estimate). Let § € C¥(R) with supp(6) C J,
where J C I, is chosen such that the strict Mourre estimate in Proposition

holds. Define
B(¢) = PO(H(& + ¢))iadz(H (& + ¢)0(H(E + )P,
OH(H(E+ ) =1—0(H(E+())
and
H(6,¢) = H(¢+ () +10B(().

There exists g > 0 such that for all z € C with Re(z) € J and all |§] < 0y with
§ - Im(2) > 0 the operator H(6,() — zP is invertible on PH with bounded inverse
G.(0,C). Moreover, there exists Cy > 0, a neighborhood V of & and r > 0 such
that for all £ € V and all |C| < r the following estimates hold:

- C
1G=(8, Oll + [[H(§ + Q)G-(6, )l < IT(I)’

166, )@ || + IE (€ + O)C.(6, ) (@)~ < %

Lemma 6.22. Adopt the notation and definitions of Lemma [6.21] and choose an
arbitrary € € V. There exists C' > 0 such that

I1B(¢) = B < Cl¢— (|
for ¢, " in a neighborhood of 0.

108



ProOOF: We calculate H (¢ + ()

O (Q)iadz(H (& + €))0n(C) — 0n(¢)iadz(H (& + ¢'))0r(()
= (01(C) — 0 (")) iadz(H (& + 0)0n(C)
+0r(¢) (tadx(H (& + ¢)) —iadg(H(& + () 0r(C)
+0r(¢iadz(H(& + () (0r(¢) — 0r(¢))
)

By Lemma the map ¢ — 0y (() is dlfferentlable and thus locally Lipschitz.
Hence there exists C’ > 0 such that ||05(¢) — 05 ()| < C'|¢ — '] for |C], || < r.
Thus,

1 (85(C) — 0r(¢")) iad(H(& + O))0u (<)l
< C'|¢ — ¢lfiad5(H (& + €))(H(& + ¢) + cP) 2165 ()]l

where 69(¢) = (H(&+C)+cP)"0y/(¢) for ¢ € N. Since (H(&+¢)+cP) % ady(H (€0 +
()) extends to a bounded operator by the closed graph theorem, we can compute

162(¢")i adg(H (€0 + ') (61 (C) — 0u () |
< C'¢ — CI(H(& + ) + cP)iadg(H(& + )0 (Q)ll-

Note that (H (& +¢) +cP) "t ad+(dl (ky)) (H (€9 +¢) +cP) ™! extends to a bounded
operator as well which is denoted by W, (). Hence,

(tad5(TT(& + ) — adg(T(& + ) —22 1) ad(dr(K,))
implies
16(C) (tacs (T (& + ) — (€ + ) 0 ()]
< 2261 G = QI (O]

This completes the proof. [J
PROOF OF THEOREM [6.19} Define

F.(6,¢) = (A)"G.(6,0)(A) "

For simplicity we suppose that 6, > 0. Note that F,(J, () is bounded uniformly
in 2,4, ¢ by (B.10). By Mourre’s paper there is a constant C; > 0 such that

I1E.(5, Ol < C.
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We compute

SE(1,0)
— ~i(A) G (¢, BG4, O ()
= —(@) G 05 C) adz (T (& + )G (1) ()
+ ()Gt () ads(F (& + IH G, ) (A)
— (A)* ad (G (1, ) (A)
+ i) G4, OBOG-(1,) (A) (6.65)

The last term is bounded uniformly in 2, ¢, due to Lemma [6.21]

For any s € R\ {0} denote by H; the Banach space obtained by equipping
D((A)*) with graph norm. We put H, := H and for a bounded operator B we
denote by || B||s—s its norm as a map from H, to Hy. We have

1G(t, A = 1G=(t,O)lao < |;°

I(A) G (t, (A [l = IG=(t, O)ls-s < Ch.
By interpolation theory this gives

~—

|Gt @ || = [Galt Ollasass < fsr(

M‘H

where C(s) = Cy/*C{™"/*. Therefore,
1{A) ™" adx (G (t, O)A) | < |A(A
+ I
< St
|tz

The first and the second term in ([6.65)) can be bounded in a similar fashion. Indeed,
we can use Lemma [6.2]] to estimate

I(A) G (¢, (1 = 01 (C)) adx (H (&0 + ¢)) G (¢, O)(A) ||
< ClI(H(& +¢) +1)" " adg (H (S + ¢)) (H (& +¢) +1)”

A)THA) TG OA) |
A) G, OA) A T,
)

1
t]2
Due to

(H(& +¢)+1) " adg(H (& + Q) (H (& + ) +1) 7

(H (
= Dy (¢)*(H(&) +1) " adg(H(& + O))(H(&) +1) 7" D1 (C)
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the uniform bound follows from Lemma [6.13] where z =i, m = 1. Thus, we have
shown that (6.65) can be bounded by a constant times |6|~'/2*. We write

Fz(07 C) - Fz(07 CI> = [Fz(év C) - Fz(dv CI)]
- / [%Fz(t, O- SR d (660

In order to deal with the first term we calculate
1F.(6,¢) — F.(6,¢)|| = 6I{A) °G=(6,¢)[B((') — B(Q)]G-(6,¢")(A)~°|
< 01¢ ~ ¢10r = Crlc — ¢!

By combining (6.65)) and we can thus show that there exists C's > 0 inde-
pendent of z, 4, ( such that

I£.0,€) = F.(0,¢)]| < Gsl¢ = ¢ + Cud' 3.

For |¢—('| sufficiently small we may put § = [(—(’|?, where 8 > 0. Let a € (1/2,1).
By choosing
1
1—— ) =
(1w

1F.(5, ¢) — Fx(6, )| < 2Cs|¢ — '™
This clearly implies the joint Holder continuity of F,(0,() in z and (.

we obtain

6.5 Feshbach Map and Eigenvalue Equation

We adopt the definitions of V and r > 0 from the previous chapter throughout the
rest of this section. For every e > 0 we define the Feshbach map at A\¢j¢ by

Fp(H(§+ () = Agy¢ — l€)
= P(H<£ + C) - >\§+C o 1€>P - P‘/CP_R/\ng(Jrié(g + O?VCP

In the non-degenerate case, where P = |n)(n| for the eigenstate 7, this map takes
the simpler form

Fp(H(C) = Aev¢ —i€) = (Ae = Agy¢ — 1) P+ (n, Vem) P
— (0, VePRx, 4ic(€ + Q) PVen) P (6.67)

and the problem becomes one dimensional.
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Proposition 6.23. The limit Fp(¢) = lim. o4 Fp(H(C) — Agyrc — 1€) exists in
norm as a bounded operator on PH and

Fp(¢) = e = Agyc + (0, Ve P
—(U(On, (A) " R, c+i0(6o + QO (A) U () P,
where U(C) :== P(A)*V; and s € (1/2,1).

PROOF: We first show that V;n € D((A)*). Since (A)*(A —z)~! is a bounded
operator, it suffices to show V¢n € D(A). This however follows directly from
Lemma by commuting with A. Thus, we may calculate

(n, %ﬁ%Ag-&-ie(fO + C)?ch = (U(O)n, <K>_S}_%>\5+is(£ + C)<K>_SU(O77>,

where U(C) := (A)®*V;. The existence of the limit ¢ — 0 is thus a consequence of
Theorem [6.18 O

Proposition 6.24. Fp(() is not invertible, that is

Ae = Aerc + (0, Ven) — (U(On, (A) " Rag,c+io(€ + Q) (A)*U(C)n) = 0.

PROOF: Since Fp(() is a linear operator on a one dimensional space, it is in-
vertible, if and only if

Ae = Aere + (0, Ven = (U(Q)n, (A) " Ri, +i0(§ + QO{A) U (()n) # 0.

Suppose for a contradiction that Fp(¢) was invertible. Then

Ae = Aeve + (0, Ven = (U (O, (A) " R, e (€ + O (A) U (C)n)
= Ae = Aere + (0, Ven — (UQ)n, (A) R 06+ OA)U(C)m) #0

implies Fp(H(¢) — Ae¢ —i€)"1 = Fp(¢)~'. A look in the proof of Theorem II.1
in [5] reveals that the inverse of Fp(H (£ 4 () — Aet¢ — i€) determines the inverse
Rig, +ie(§+C) of H(§+()— Mgy —ie by means of a block decomposition. Our initial
assumption would thus imply the existence of the limit lim, o4 Rx,  1ic(§ +C) as
a bounded operator on ‘H. However, this is impossible for Ay, sufficiently close

to Ag, since A\¢ € oess(H(€)). O
PROOF OF THEOREM [2.12}: The previous Proposition clearly implies that

Aere = e + (1, Ven) — (U(O)n, (A) "R, +io(€ + O(A) U (C)m).

where

U(C) = P(A)'V; = (¢* + 26 Q)P(A) — 2P(A)*C - dT(k).
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Hence
Ae+¢

= X+ P H+26-C—2> ((n,dT(ko)n)

o=1

—(¢®+26- QX (P(A)*n, (A) " R, c+10(§ + O(A)"P(A)*n)
+2 Z (¢ +26- O(PAY, (A) "R, vio(€ + Q) (A) " Uyn)

+22<a§ +2€ - Q) {Uqm, (A) R c+in(€ + O)(A)P(A)*n)

—42% 1, B " Rg, 106 + Q) B Uy, (6.68)

o,0'=1

where U, := P(A)*dI'(k,). Theorem implies that

Acre = >\s+z 26, — 2(n, AT (ko )1))¢o + O(IC]?)-

In particular, we have that there exists C' > 0 independent of  such that
[Aerc — Ael < CIC] (6.69)

Combing the Lipschitz continuity of the map ¢ + Aey¢ in with (6.68]) and
the joint Lipschitz continuity of the resolvent boundary values in Theorem [6.19]
we obtain

Aerc = AﬁZCaﬂaJr 3 Clrboar + 0 (1),

o,0'=1

where
ﬁa = 250 - 2(”7 dr(ka)n>
and

(P(A)*n, (A) " R 10(€) (A) " P(A)*n)
+ 46, (P(A)*n, (A) " Rac1i0(€) (A) " Usm)
+ 4€5 (Usn, (A) ™ ,\§+10(50)< )"*P(A)*n)
— 4(Usn, (A) "R 410(€) (A) " Usn).

6 o = 500’ + 4£U£cr
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A Derivation of Several Commutator Relations

Throughout this section we adapt Notation 4.1l Moreover note that
®(9)C5° < Cg7,
dI'(uw)C5® C CF°,
ACy® C Cy°
for all u,g € C*°(R¥). In particular,
Ho()Cq" < €5

These relations enable us to define commutator forms on C§® which can then be
extended to larger domains by the strategy set out in Section

Remark A.1. Let h € C*(R), g € C¥(R"). Then
[A,dT’(h)] = [dT'(a),dl'(h)] = dl'(iv - Vh) ,
[dL(h) dL(h), ®(g)] = —®(—h?g) — 2i®(ihg) dT'(h)
as operators on C§°.

Lemma A.2. For anym € IN the commutator of ®(g) with Ho(§)™ can be expanded
in terms of the iterated commutators adH (5)(CI>(g)). In particular, the equation

0(0), 6] = 3 () (1) i (B0 Hofe)

(=0
extends holds in the sense of operators on C§° for all n € IN.

PROOF: For n = 1 one can easily check that the statement is true. Next, assume
that the formula holds for some n € IN and calculate

[@(g), Ho(§)""'] = [®(g), Ho(§)] Ho(€)" + Ho(&)[®(g), Ho(€)"]
= —adp, () (P(g)) Ho(§)"

(o
+ X () -0 adglg @l (e

-3 () gl oty
=0

on Cg°. Thus, the statement is true for all n € IN. [
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Definition A.3. Let K C IN with |K| = n. For i < n we define the set of
partitions of length 7 of K by

P(K) :={{k1,....k} | {k1,.. ., ki} C D, ky <ko<---<ki}.
Moreover, we introduce the shorthand
N, :={1,...,n}.
Lemma A.4. Let hy,..., h, € CP(R"), g € C3*(R”). Then
[H dl'(hs), (I)(g)] = Z Z ONn\DCI)(gD> H dl'(he) , (A1)
i=1 i=1 DeP;(Ny) ¢eN,\D
where all C'p appearing in the above formula are complex valued constants and
90 ()] <= [y (k) -y (R)] - lg(R)
for D ={j1,...,jn}

PrROOF: The statement can be proven by induction. The case n = 1 is clear.
Suppose that the statement is true for some n € IN and calculate

oo

n

+ [dT(Any1), @(9)] H dI'(h)

=1

=C@dr<hn+1><1><gNn>+i Y. Cwandl(hnsn)@(gp) [ dr(h)

i=1 DEP;(N,) LeN,\D
— i®(ihp4r) [[ T (R
=1

= —iC’Q)(I)(ihanNn) + C@(I)(gNn)dF(hn+1)

+i Y Cnan®gp) [ dr(h)

i=1 DeP;(Ny) LEN;+1\D
+ Z > (~iCw\p) ®(ihns1gp) 11 AT (hy)
i=1 DeP;(Ny) LENn11\(DU{n+1})
—i®(ihnng) [ dU(he)
eGNn"'l\{n‘Fl}
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Note that the first sum can be re-written into a sum that runs over D = {ji,...,ji} C
Npiq for j1 < jo < --- < ji, where all indices satisfy ji, # n + 1. Similarly, the
second sum runs over all D = {ji,...,5;} C Nyy1 with j; < jo < -+- < j; and
ji=n-+1, where 2 <7 < n. A simple re-labeling of indexes finishes the proof. [J

A similar statement can be proven for the general form of a commutator of a
second quantized multiplication operator with a product of field operators.

Lemma A.5. Let f € L*(RY), hy,...,h, € C°. We then have as an operator
identity on C§°:

[dL(f), ®(h1) - Z Ce®(ha) - -+ P(hye—1) (i f hi) @ (ht) - - - (hn),
where C; € C.
PRrOOF: The proof is a simple application of

[dT(f), ®(ha) - Z<b (h) - @(hg-1)[AT(f), @ (7 )] @ (hgeya) - - - D)

and Remark [A1l O

Another Lemma regarding commutators of the conjugate operator A with prod-
ucts of second quantized multiplication operators is needed.

Lemma A.6. Letn € N, g1,...,9, € C® and uy,...,u, € C°(R"). Then

A, ﬁdf‘(uj)] = z”: dI'(iv - Vuy) ﬁ dI’(u
j=1
J#t

j=1 =1

and

n

[A, ©(g1) -~ 12 ®(g1) -+ D(ge-1) (v - Vgo)@(ger1) - - - P(gn)

hold as operator identities on C3°.

PRrROOF: The assertions can be proven inductively and follow immediately from
the formulas

A, H dF(uj)] = Z dl(uq) - - - dI(ge—1)[A, AT (wp)] AT (wpsq) - - - AT (),

[A, ®(g1) - Z<I> g1) -+ D(ge1)[A, D(90)]®(ges1) - - - D(gn)

and Remark [AL1l O
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Lemma A.7 (Rearrangement Formula). Suppose that p € N and ¢ € Ny. Then

R’ ad%((H 4 c)™)R",
‘e
= (1)) (k) (=DFREF adf * (adh (H + ¢)™))R™*

holds for operators on C5° and extends to H, if £ > p.

PRroOF: Clearly, the assertion is true for £ = 0. The general case can be proven
by induction but since the proof is very similar to the proofs of the other form
identities in this section, we omit most of the details.

It should be noted however that Cg° C D(H™) for all n € IN due to HyCS® C C§°
and Lemma 3.17] Thus, C° € D(ad((H 4 ¢)™)R™,) for all p € IN and the
following calculations are meaningful when carried out on C§°.

Assume that the statement holds for some ¢ € IN and calculate

RS adh((H + o)™ R,

=Y () DR e

e
# 0D () R ady (4 + R
— (_1)£+1<:1)£+1 adﬁ((H + C)m)Rr_nc-i-é-i-l

J4

(+1

Y (T R Sy o
k=1

+ (=1 RZY adff (ad? (H + o)™) R7HH

{41
=Y () O Ry (1 + )R
k=0

where we have made an index shift to get from the second to the third equation.
Finally note that

14
adiy *(adiy(H + )" )R € BH) & m 5+ 5 <m0 0>p

This proves the last part of the statement. [J

B Proof of Mourre’s Quadratic Estimate

The purpose of this section is to prove Lemma [6.21] First of all note that it suffices
to show the statement for £ = &, and |(| < 7’ for some 7’ > 0. The correspomding
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statements with the neighborhood V of £, can be obtained in the same way as the
corresponding statements in the limiting absorption principle, Theorem [6.18]

In order to establish the invertibility of H (6, ¢) — z we may simply use Mourre’s
argument, see [41]. There the estimate

I(H(8,¢) = 2)Py|I* = (Im(2))|[ Py ]*

is established by using the assumption Im(z)d > 0. This estimate then implies
the bounded invertibility of H(d,() — zP. Moreover, Mourre proves that for all

bounded and self-adjoint operators 7 on PH and all bounded operators B satis-
fying BB~ < B(() the estimate

ITG.(6,)T)2
16]2

IB'G.(5, )T <

holds. However, all of Mourre’s arguments can only be carried out for fixed (
and thus the constants may be (-dependent as well. Therefore, we have to go
through the proof more carefully to guarantee that all constants can be chosen
independently of 2, ¢, 8. The choice B = 0r(¢) and T = P = idp,, gives

1 .
-1GL(9,Q)||2- B.1
|5|§H (6, )l (B.1)

Likewise the choice B = 0(¢) and T = (A)~* yields

L@ 6.6, 0@ . (B.2)

10 (C)G-(8,O)(A) || < o

To finish the proof we have to prove the inequalities stated in the lemma. First
note that

—0r(8)G-(0,0) + 05(0)G-(0,¢) = [1 +16G. (0,005 () B(¢)] G=(6,¢).  (B.3)

By definition of the cutoff function # we have that

1G.(0, )64 (Q)]] < sup ~—2)

< Ci(J,0),
S [ —Re(z)] = 10

where C1(J,0) > 0 is independent of ¢, 2z and 6. Moreover, it is clear that there
exists a constant C' > 0 independent of (, z and 0 such that ||B(¢)|| < C. Hence
1G-(0, )0u(OB()Il < Ca(J.6)C. (B.-4)

By choosing
1

% <SG T
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we have thus shown that 7.(¢) := 1+ 6G.(0,¢)0%4(¢)B(¢) is invertible for all
18] < do with norm ||T,(¢)7'|| < 2. (B.3) now implies

G2(6,¢) = =T.(¢Q) 7 0r (Q)G=(6,¢) + To() 105 (G- (0,¢). (B.5)

By (B.1), we may estimate

1
2|62

S
9]

0[2

165 (¢)G- (5, QI < 2

IG-(0, Ol < - IIG-(0, O +

(B.6)

for any @ > 0. Note that we may choose dp < 1 and 0 < « to be small. Hence
(B.4), (B.5) and imply that there exists a constant C; > 0 independent of

¢, z and ¢ such that

|wmxms% B.7)

With we can estimate
165 ()G (8, )|l = 107(O)G=(0, )11 — 6 B(¢)G-(6,¢) ||

swao@m@n0+ww%)sauw, (B.8)

where Cy(J,0) does not depend on z,&,d. By a similar trick we obtain

IH (& + Q05 (OG- (8. Ol < [H(E + )05 ()G=0, QI —10B()G-(5, Q)|
< Cs(J,0), (B.9)

where we have used that the function z(1—6(z))/(z—Re(2))) is bounded uniformly
on R. Again the constant C3(.J,#) does not depend on z,(, 9.
Clearly, these bounds show that

I (& + ¢)G=(8, Ol < TH(E + Q)0r (OG-0, Oll + IH (& + 5 () G=(8, )l

< COIG0.0)] + Co(J.6) € 5 C(.6).

We have thus established the first and the last of the claimed estimates on G, (6, ().
In order to prove the second estimate, we refer to Mourre’s paper again, see [41].
There it is established that the estimates — together with and
imply that [|[(A)°G.(5,()(A)*|| < C’, where C’ > 0 is independent of z,d. This
result is proven via a differential inequality technique and the uniform constant C’
is obtained from the uniform constants in (B.7))-(B.9).

Since we have established that the constants in QEE' are independent of
z,0 as well as £, we may conclude that

I(A) 7 G.(3,)(A) "]l < Co(J, 0), (B.10)



where Cg(J,0) is independent of z,£,0. With this bound it clearly follows from

(B.2)) that
OG(Ja 9)
16]2

The relation G.(8,¢) = G.(0,0)(1 —iB(()G.(4,¢)), — and let us

obtain the desired inequality

101 (£)G= (3, O)(A) || <

(B.11)

C

1G=(0, O(A) Il + I (€ + OG- (8, O)(A) ~*|| < e

after inserting the localizations 67 (¢) and 03(¢). Since the details are similar to
previous calculations, we omit them.

C Holder-Continuity in the Limiting Absorption Principle

Let €,0 > 0. In order to establish Holder-continuity of the limit, we write

Fz<07 C) - Fz’(07<:) = _[Fz((Sa C) - Fz’((57 C)]

)

d d
+/ {EFZ(t,C)—EFZ/(t,C) dt. (C.1)
0
Note that
||Fz<57 C) - Fz’<57 C)H = |Z - Z,H’(K>_SGZ(67 C)Gz’(éa <)<K>_SH
oo L
< |Z -z ‘Cmu (CQ)

where '} > 0 is independent of z,0,(. Hence the first term in (C.1) is even
Lipschitz continuous. It thus remains to study the integral. The discussion after
(6.65) implies the estimate
18] q 4 8] .

—F(t,0)— —F.(t,O)||dt < C
0 0

dt = 20562 (C.3)

Now choose § = |z — 2/|/3 for |z — 2/| sufficiently small. If we combine (C.2) and
(C.3]), we may conclude that there exists a constant Cy > 0 independent of (, z, ¢
such that
1
1£:(0.0) = Fo(0.Q)]| < Colz = 2|5 + Cs0% = 2Cg|z — 2|3

which proves the claimed Holder continuity w.r.t. the spectral parameter.
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D Adding a Parameter to a Result by Gérard

In [22] the limiting absorption principle (LAP) is derived via a chain of implications
starting from certain estimates of (energy) localizations y(H) of a Hamiltonian H
and weights (A) of the conjugate operator. The crucial technical assumption is
a strict Mourre estimate in the energy region of interest and that H is of class
C?(A). Most likely to avoid assumptions on H-boundedness of the commutators
ady(H) and ad’(H) the Hamiltonian is replaced by H, = H7(H), where 7 € R is
a plateau function equaling 1 in a neighborhood of the region of interest. To apply
his result in our setup we have to investigate how the bounds appearing in the LAP
will depend on a parameter &, if H is replaced by a family of operators H (k) and
the purpose of this section is to carry out this investigation. More precisely, we are
concerned with the question whether the bounds in the LAP can be formulated
to hold uniformly on a (sufficiently small) neighborhood U of a fixed parameter
value K.

As a first step we replace the single operator H by a family of self adjoint
operators H(x) for k € R? with common domain D(H (k)) = D. In view of our
results on Lipschitz continuity of the maps ¢ — ad® (f(PH (& + ¢)P)) established
in Theorem [E.10] we will assume that

3C > 03r > 0k € B, (ko) : || adi(f(H(k)))| < C. (D.1)

provided that f(H(k) € CF(A) for the self-adjoint operator A. Let A be self-
adjoint and H (x) be of class C?(A) for k € U. Put U := B,(kg), where r is given
as above. Suppose that there is a constant ¢y and an interval I independent of
k € U such that

1,(H(r))[A, H(r)[11(H(K)) = coli(H(r))-

This is a needed generalization of Gérard’s estimate (1.1) in a x-uniform version.
Lemma 2.1 in Gérard’s paper establishes that (2 — H)™! and x(H), where y €
CP(R), are bounded operators on D({A)*) for s € [0,1]. It can immediately be
proven for all H(k), since they satisfy the same conditions as the single operator
H. The same is true for Lemma 2.2, that is all x(H(k)) € C¥(A), if all H(k) are
of class CF(A).

Let J C I be a compact interval and define the set J* := {z € C | Re(z) €
J,Im(z) > 0}. Let 7,x1 € C°(R) such that 7(z) = x1(z) = 1 for all x € I and
7(z) = 1 for all « € supp(x1). Put H,(k) = H(k)7(H(k)). The commutator
expansion on D({A)*) for k € N\ {1} and f € C°(R) in Lemma 2.3,

[f(A), Hy (k)] =

||P1?T

]if (A) ad’y(H, (1)) + Ru(f, A, Hy (1)),
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can also be generalized provided H, € C*(A), since it is a structural result. The
important estimate

1{A)* Ri(f, A, He ()Y < C(f) | ady (H- ()|

valid for all s, s > 0 with s+ s’ < k can now be bounded uniformly for x € U, due
to . This leads to similar uniform estimates of the error terms R; and Rs in
Gérard’s Proposition 2.4. One of the crucial ideas in the paper is that a chain of
implications in Gérard’s Lemma 3.1 can be used to show the limiting absorption
principle. The needed generalization is

Lemma D.1. Let s € (0,1] and consider the following statements:
1. 3C > 0Vk € U : sup,c + |[{(A) " (H(k) — 2)"HA) 7% < C < .

2. There exists C' > 0 such that for all k € U, all z € J* and all v € (H (ko) +
1)"'D((A)*) we have that

{A) Il < ClI(AY (H (k) = 2)ull

3. There exists C > 0 such that for all k € U, all z € J© and all u € D((A)*®)
we have that

(A xa (H)ul| < ClI(A)* (Hr (k) = 2)xa (H(K))ul.

Then 3. = 2. = 1.

The proof is a word by word copy of Gérard’s proof. The uniformity w.r.t.
k € U in every implication comes from the built in uniformity in the modified
statements 3. and 2. In order to prove LAP Gérard establishes 3. in his Lemma
3.1. The proof of this statement hinges on Proposition 2.4 and Lemma 2.3 as well
as the Mourre estimate. A crucial role is played by the Mourre constant c¢q and the
error estimates in Proposition 2.4. Since both terms, called R, and R, by Gérard,
are shown to be estimated uniformly w.r.t. k € U, the resulting constant in the
desired estimate 3. in Lemma D.1 in our modified version of Gérard’s proof is also
uniform w.r.t. kK € U.

Another technicality in Gérard’s derivation of his version of the estimate in 3. is
to rescale the conjugate operator A, that is to consider A, = a=!A for a > 0. For a
sufficiently large an error estimate in Gérard’s proof improves significantly. In the
parameter dependent case we need to be able to make this choice for a independent
of . This however is a consequence of the uniform estimates on ||R;|| and || Rz||.
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E Regularity of the Functional Calculus of the Projected
Hamiltonian

In complete analogy to Definition we define mixed commutators of PH (&, +
§)P and A.

Definition E.1 (Projected, Iterated Commutators). We introduce the abbrevia-
tion Qp = {PT1P, PT2P}, where Ty := H(& + &) and Ty := A. Moreover, let
¢ > 0 be large enough such that —c € p(H). For n € N, define

T =A{w = (w(1),...,w(n)) € {1,2}" | w(l) = 2}.
For w € J,, we define its (-th truncation w® by
w? = (w(1),...,w(0) € {1,2}".
Let T ~ guvk be a H(&)™-bounded operator, where k = nﬁ. Suppose h €

a1,002,03
. ) . .
HFFY(RY). The (-th truncation ad%é (T') of the mixed commutator corresponding
to w on C{° is iteratively defined by
w®

(0, ad” (T o= (w, [A, T}

for / =1 and

(. adi (T)) := (6, [PTy0 Poads (DY)

for £ > 2. The mixed commutator corresponding to w € J,, is then defined as

(7).

w w(™)
ad;F(T )= ady_

This operator is sometimes simply referred to as a mixed or iterated commutator.
It is convenient to define Jy := {0} and ad#(T') := S for w € J.

Remark E.2. As before the mixed commutators extend from C5° to D((H (&) +
¢)™ /%) provided that T'is (H (&) + ¢)™-bounded. Moreover, note that instead of
T we could have used the corresponding projected operator PT P.

In the next lemma we establish a connection between the projected mixed com-
mutators and the unprojected ones.

Lemma E.3. Let n,m € N and ¢ € D(H (&)™ ™/?). For every w € {1,2}" there
exists a tuple ({T 1 12N, {trn}2Y, such that

ady (PH(& + QP — 2P)™)i = Pad((H(&) — 2)™) Pt + P ad(B,,(C)) Py
+ P ad(3n(C) Py + PB,,(C)P,

where B, (C) is the (H(&) + ¢)™-bounded operator associated to the tuple, Fp(C)
is the finite rank operator associated to it (see Definition . Gw(C) is a finite
rank operator which depends Lipschitz continuously on (.
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PROOF: We prove the statement by induction. The case n = 1 follows from
[PTP,(PH(& + )P — 2P)™] = P[T,(PH(& + ()P — 2P)™]P and (6.52). We
thus assume the statement holds for some n € IN. Let w € {1 2}” and abbreviate

Sy i=adp((H (&) — 2)™),  S2:=adp(By(()), Ss:=adr(Bu(())

where we have used the notation of (6.56)). Let ¢,¢" € C§°. We first assume that
w' = (2,w). Using the induction hypothesis we compute:

(¥, [A,adg (P(H (& +¢) — 2P)™)Y')
= (¥, (adT(( (o) = 2)™)PY') + (v, P ada(ad(%B.,(C))) PY)
ad (ad7(§m () PY)

Pad
v, P

3 3
Z W, PlAn)(Sin[Py') =Y (0, P|S;n)(An[Py')
j=1 7j=1

This proves the assumption in this case. The proof that

ad H(¢o+¢)P (adT (PH(& +¢) —zP)™))
= admgo)(ad?(( (&) — 2)™)) + Pad?™(B,,(0)P + PF L2 (C)P

+ ) PlAp)(S;nl = > PlSin)(An|P

=1 j=1
in the case v’ = (1,w) is similar. [J

Remark E.4. A similar statement holds, if (H(& + () — 2)™ is replaced by a
(H(&)+c)™-bounded operator T" which is given on Ci° in terms of the sets €4, 4, a4
and the ¢ dependence is dropped. (The ¢ dependent functions can either be chosen
equal to zero or constant)

We are now in a position to prove the analogue of Lemma in the case of the
projected operators. Since the presence of the projections causes the appearance
of several additional terms, we introduce some more notation to keep the formulas
in a manageable length.

Let n,m € N, w € {1,2}" and define M,, > m + Int(n/2), where Int(r) denotes
the smallest integer that is bigger than r € R and T ~ €, a0 be H ()Mt
bounded. Define

—5Mw+2+

fL(T,¢) = —PR.“Pad(T)PR. P
+ PR Padye,) (ada(T)) PR,

+ 2240133

——Muy+2—

P
My +1- My+2
4

P adar,)(ada(T))PR, ™ " P. (E.1)
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Similarly, for an H(&)M=-bounded T" ~ € ap.0, We define

—5Mw+1+

£2(T",C) = Pada(T")PR"™"'P, (E.2)

and
Ry (17,C) := PlAn)((T")n| PR, P + |T'n){AgPR.*T'P  (E.3)

Moreover, we put

91() = B P(Barn (On) (Anl — [An)(Barya () nDR™P
+ B P(Fasr Q) (Anl = [ A (s Q) ) B2 P
+ R Pada@a, 0 ()R TP, (E.4)

where Bz, 4+1(¢) and Far,11(¢) are the (H(&) + ¢)™=+!-bounded and the finite
rank operator appearing in (6.52)) in the case m = M,, + 1.

Lemma E.5. Let n,m € N, w € {1,2}" and define M,, > m + Int(n/2), where
Int(r) denotes the smallest integer that is bigger than r € R. Put k = nﬁ and
suppose that h € H¥FL(RY). Then

ady ((H(& +¢) — 2)")R.(& + Q) e C'(A),

that is J,(C) = adz (adit, (T (€0 + ) — =)™ R (& + ) 2*1) € B(PH). More-

over, there exists a neighborhood O of &y such that the map ¢ — J,(C) is Lipschitz
continuous in operator norm. In particular,

" {adwr(fo) ™)+ ad(B,,(Q) + ad#(%(@)] 2 (Bar, 11(0), O

+ fa(adF((H (&) — 2)™), €) + F2(adF(Bm(C)), €) + F2(adF (Fm(¢)); ¢)
+ R((), (E.5)

where

R(Q) = R (¢) + Ra(ad7((H(S) — 2)™), ¢) + Ra(ad7(Bm(¢)), )
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PRrooF: For ¢ € IN define

S = adF(H (&) — 2)°), 54 = ada((H(&) — 2)")
and abbreviate o L
H=PH(+QP, R.=R.(&+().
Let ¢, € C3°. We use Lemma in order to calculate
(Py, [A, adt (H — 2)™) R, TPy')
= (P, ad7((H (&) — 2)™ )1’_3[Z f_?z =Py
Py, ad(%B,,())P[A, R, Py)
Py, adF(Fm(C)) P[4, Rz TPy
P, (A, ad((H (&) — 2)")|PR." T PY)
Py, (A, ad(%8,, ()| PR Py)
P, [, ad(§ ()] PR. T PY). (E:6)
Let ¥, ¥’ € D(A). Making use of (6.52) we compute

+ o+ o+ o+ 4
/\/\/NE/\/\

—My+1

<?\If [A R, ]P\If’)

—(PU, R PA, (H(&) — )"+ PR. ™ PY)
— (PO, R P[A, B s, 11 (O] PR P

+ (PO, R P|%B g, 1 (On) (An[PR. ™ PW)
— (P, R P An) (B, 1 (O) 0| PR, PW)
— (PU, R PA, Sas 11 (O] PR PW)

+ (P, RM’”+1P|§Mw+1( ) (An| PR Py

— (PU, R PLAR) (Baru 1 () n[ PR, PW).

Let T ~ €4, ap.05 e H(E)Me-bounded. It is easy to check that

HSMw+1- S5 pMwtls

—(PV,R_“" P[ATIPR,* PV) = (PV, §(T &PV,

where f1(T,€) is defined in (E.1). For an H(&)=-bounded T ~ €y o1 o1 we

compute

(P, [AT']PR PW (P, f2(T", )?W + (Py, Ro(T", Q) PY'),
where fo(77, () is defined in and Ro(T",¢) in (E.3). Moreover,
(PO, [A,§u(C)|PV) = (P‘If, adA(&(C))P‘I’ )-
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Since (H(&) — 2)° ~ €ayamas for some a; and is (H(&) — 2)“bounded and
Brs,+1(¢) ~ Cat oy o for some of is (H(&) — 2)Me*!-bounded, (E.6) is a bounded
form. Lipschitz continuity follows from

(H (&) + ¢)"=f1(T,¢€)
= —PDuy, (¢, 2)Pada(T)(H (&) + )" *PDy,42(C) P
+ PDu, (&, 2)R. P adp g, (ada(T)) (H (&) + ¢) M2 PDyy,12(C, 2) P

+ 2 Z CU?DME(C7 Z)EZ? addp(k0)<adA(T))(H(£o) —+ C)_Mﬂ_2?DM£+2(C, Z)?

o=1

and

fo(T',¢) = Pada(T')(H (&) 4+ ¢) M " PDy,41(¢, 2)P

+ PIAN(T Y n|PRY™ TP + | T'n) (An[PRY=T'P

z z :

This completes the proof by Lemma [6.13] [J

In analogy to (4.20) we define
i 50 SR H1
L1 S, (QRZE = Su, (QORZ: -+ Su, (O RZ., (E.7)
p=1

where

S, (€) € {ad (H (&) = 2)), ad7” (B, (0)), ady” (11, (C))- By, (O) }

P

Here, w,, € J,, for some n € N, M, € N, @, > M, + Int(n/2) and B, (¢), Fuw, (¢)
are as in Lemma and Gy, (§) is as in Lemma [E.50 Moreover, we define

J i
Wsn(C) = Span{R. [ Su, (OB [ B2b, 1<j<i > nd =k,
p=1 p=1

Qp = My + Int(|w,[/2])} . (E.8)

By Lemma adx (Ui rp(€)), where U;ps(C) € Uixs(C), can be expressed as a
linear combination of operators Uy j/y(¢) as in (E.7), where some of the @ are
possibly not large enough for these operators to be elements of some ﬁi/,k’,b’(c ).

In order to resolve this issue we begin to redsitribute resolvents R, from left
to right. Due to Lemma this redistribution process is going to preserve the
structure of the spans Uy 4 (¢). Hence, by a word-by-word copy of the proof of
Lemma [4.4] we can prove the following statement:
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Lemma E.6. Let i, k,b € IN and suppose b > 3 -2t Then
ady (Wikp(¢)) € Wit or1-32:(C).

Once we have proven this statement however, we can proceed as in the case
without projections and prove the analog of Proposition [4.5

Proposition E.7. Let k € N. There exists my € N so that R, € C*(A) for all
m > my. Moreover,

ad (R.(6 +Q)™) € thm-m, (C). (E.9)

As a direct consequence of Lemma [6.13| we obtain that the map

¢ = adg (Ra(& +)")

is Lipschitz continuous on any bounded neighborhood of 0. Clearly, we may carry
on with this type of argument and develop an analog of the strategy used to prove
Theorem in a step by step adaptation of every tool needed along the way. We

begin with adapting (4.26)).

H Ez Sﬂp Rg)p = }_%zsﬂz}_zZQol R S R?Z’

(E.10)

where the constants are as in 1) and the operators S, are as in 1) As
above we proceed by defining

J
Bi0(€) = Span{RL [[ S, (€ RER. | B>b, 1<j<i, Zn =k,
p=1 p=1

0 (0.1}, Q= M, + Int(lw,|/2)}. (E.11)
Once more we have all necessary tools at our disposal to prove

Lemma E.8. Let i,k,b € IN and suppose b > 5-2'. Then

adx (Vi p(€)) C Vi1 hr1,0-52i(C)-

and

Lemma E.9. Let k € N. There exists my € N such that R_.R, € C(A) for all
m > my and

adz(R_c( + Q)" R.(& +()) € ﬁi+1,k;+1,b—5~2i(Q-

In particular, the map ¢ — adg(R_.(& + &)™ R.(& + €)) is Lipschitz continuous
on any bounded neighborhood of 0.
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by literally copying the proofs of Lemma [4.9] and Lemma [£.10] With these two
structural results we are then in a position to invoke a word by word copy of the
proof of Theorem [4.6] and obtain that the following similar result holds.

Theorem E.10. Let f € C°(R). For all k € N we have that
f(PH(& +()P) € CH(A).

Moreover, the map ¢ v~ ad(f(PH(& + ¢)P)) is Lipschitz continuous w.r.t. op-
erator norm on every bounded neighborhood of 0.

129



CHAPTER 3: Generalized Dilation
Analyticity

MATTHIAS ENGELMANNY
AND
JACOB SCHACH M@LLER

DEPARTMENT OF MATHEMATICS
AARHUS UNIVERSITY
DENMARK

MORTEN GRUD RASMUSSEN

DEPARTMENT OF MATHEMATICAL SCIENCES
AALLBORG UNIVERSITY
DENMARK

'Partially supported by the Lundbeck Foundation

130



1 Introduction

The investigation of the essential spectrum of a self-adjoint operator via spec-
tral deformation techniques goes back to two papers by Aguilar and Combes and
Balslev and Combes, see [3] and [6]. The starting point of the whole theory is
the behavior of the Laplace operator under certain unitary transformations. In
particular, we define the unitary group of dilations on L?(R") by

U(0)i(x) = e2%(e’).
Under conjugation with U(6) the Laplace operator transforms into
UO)AU(G)™ = e 2 A.

Thus, the spectrum of e"? A is a half-line starting at 0 which has an angle of
—2Im(#) to the real line. The situation can be interpreted in the following way: by
conjugating A with U(6) the spectrum of the transformed operator swings out into
the complex plane with an angle dependent on size and sign of the imaginary part
of . The observation by Aguilar and Combes was that for certain potentials V', the
Schrodinger operator H = —A + V exhibits a similar behavior when conjugated
with U(6). This idea is generalized by Balslev and Combes to the situation of
many-body Hamilton operators. The class of potentials for which this strategy
works are called dilation analytic. The theory of dilation analytic potentials and
its application to quantum mechanics is summed up in [45]. However, it should
be noted that its applicability is limited. The reason being that many physically
relevant potentials are not dilation analytic. An example of this is the Hamiltonian
describing several electrons in the external field generated by several nucleons, the
interaction terms of the type |x — X|~!, where x is an electron position and X the
position of a nucleon, are not dilation analytic, see [30]. Several authors have then
begun to further develop an analogue of the theory in the non dilation analytic
case, see [8,30,48./51].

One of the great successes of the theory lies in the examination of so-called reso-
nances. A resonance can be defined as the poles of the meromorphic continuation
of certain matrix elements. More precisely, suppose that for a self adjoint operator
H on H the matrix elements

M, ¢/, 2) o= (b, (H — 2)7 '),

have a meromorphic continuation into an open subset U C C for certain vectors
1,1'. The poles of this continuation are called resonances of the operator H.
It should be stressed that typically real poles correspond to eigenvalues of H.
We will now sketch how this continuation can be constructed in the context of
dilation analyticity. Put Hy = U(0)HU(6)~! for # € R. One first needs to rewrite

M,y z) as
M0(¢71/1/7 Z) - <U(_§)¢7 (H9 - Z)_1U<(9)w/>
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and then analytically extend to complex # in a certain region €2 in the complex
plane for fixed z. For this expression to be meaningful the vectors 1,1’ are chosen
in the set of analytic vectors of the generator A of the unitary group U (). Then we
fix 0y in 2 and extend My, (1,1, z) meromorphically in z. The study of resonances
plays a huge role in quantum physics and in particular in perturbation theory, for
an application in the context of the quantum N-body problem see [31]. A broader
discussion of the topic not just aiming at applications in physics can be found
in [55]. For a textbook discussion and overview, see [26,27]. It should be noted
however, that the definition of resonances is a subtle business, since our definition
depends on the set of vectors from which 1,1’ are drawn as well as the unitary
group. We will not address this issue here, however a discussion can be found in
an overview article by Simon, [52], and the textbook [27] by Hislop and Sigal.

It is interesting to note that the generator A of the unitary group of dilations is
given by A = % (p-x+ z-p), where p =1V. This operator appears in the context
of Mourre theory as the conjugate operator in spectral theory. It is therefore
natural to ask whether there is a connection between the two notions. Formally, the
transformed operator Hf = e %A Hel% is given as the power series H—i0 ad 4(H )+
%—712 ad}(H)—-- -, where i* ad¥ (H) are the self adjoint operators implementing the
k-th commutator form [iA, [iA,---[i1A, H]]---]. In the context of Mourre theory a
key role is played by the so-called limiting absorption principle in which certain
boundary values of the resolvent are constructed as a limit between weighted spaces
controlled by the conjugate operator A:

(AY*(H — A Fi0)"H(A) % := li\r‘%(AYS(H — A Fie) HA)", (1.1)
The concept of conjugate operators and their applicability to spectral problems
in quantum mechanics goes back to Mourre in his paper [41]. Maybe one of the
first results which actively connects Moure theory to the mentioned formal power
series goes back to the paper [32] by Jensen, Perry and Mourre. There, n times
differentiability of the limiting operator in is established, if the map 6 — Hy
is n times differentiable as a map between C and B(H,D(H)), where D(H) is
the Banach space obtained by equipping D(H) with the graph norm of H. Their
result is then applied to scattering theory of Schrodinger operators.

In the present paper this idea is developed in a systematic and abstract fash-
ion. Starting from a self-adjoint operator (Hamiltonian) and an arbitrary unitary
group U(0) generated by a self adjoint operator A the equivalence of the existence
of an analytic continuation of the map 6 — Hy to the existence of all commu-
tators i* ad% (H) as H-bounded operators satisfying the estimate || ad’ (H)(H +
)71 < C*K! for some C > 0 is shown. As a consequence the power series
Hp—i0 ad o (H)p+2i2 ad® (H)p—- - - is summable for [§] < C~" and all ) € D(H).
The corresponding operator is closed and densely defined. If for k > 0 one further
assumes a Mourre estimate

[H,iA] > C — C'E(|H — \| > x)(H) + K
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around a point A € o(H), absence of essential spectrum of Hy in the set Yy =
{z | Re(2) € (A = K/2,\+ k/2),Im(z) > —CIm(#)} can be shown, where |§] < R
and Im(#) > 0. Consequently, the operator Hy only has discrete spectrum in Yj.
The rough idea behind this argument can be easily explained. For a normalized
sequence P, such that (PHyP — uP), — 0, where u € o(PHyP), we compute
for Im(f) > 0

Imp = —(Pty, (PHyP — tP)yn) — Im0(Pty, iada(H) Pyn) + O(10]).

Ignoring the error terms coming from —C"E(|H — A| > k)(H) + K in the Mourre
estimate for the commutator we obtain

Imp < —CTmf — (P, (PHgP — puP)i,) + O(]0]*) + remainder

If the remaining error terms are well behaved in the limit n — oo, we have reached
the conclusion that there cannot be any spectrum of PHyP with imaginary part
strictly larger than —CTm#. The corresponding statement for the essential spec-
trum of Hy follows from the Feshbach method. It is tempting to think of the P,
as a Weyl sequence. Such a sequence however need not exist, because it is not
clear whether PHyP is a normal operator. It should further be noted that the
width of the set Yj is needed to control the remainder terms.

Finally, if H is substituted by an analytic family {H (§)}¢ep, where U C C",
of type A, this deformation technique is then used to apply Kato’s perturbation
theory (which clearly holds at least in the case n = 1) to eigenvalues of Hy(§) =
U(0)H(E)U(0)~! by ensuring that all results in the single operator case come with
a certain uniformity in £. If the family Hy(£) happens to have real eigenvalues,
these have to be eigenvalues of the operators H(£). Thus, our result allows an
analytic perturbation theory of eigenvalues of H even if these are embedded in the
essential spectrum.

A trivial case of an operator which admits a band of embedded eigenvalues
depending real-analytically on a parameter is provided in the following example.

Example 1.1 ( [12]). Let Hy = A? as an operator on H*(R?). Let f € C>*(R?)
be nonnegative f > 0.

Then, for any & > 0 and since (—A + &)~! is positivity improving, we have
w(é) = (—A + &)~ f is Schwarz class and strictly positive everywhere.

Put ]
V() = —@(—A —&)f € CE(RY).

Then

V(QuE) = (A=) f = —(=A = (A + u(§) = —A%(&) + & u(§).

Hence (Hy + V(€))u(¢) = u(§) and consequently, H() = Hy + V(£) has an
embedded eigenvalue at the energy E = £2.
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One can choose to read V' (§) as a function of £ > 0. The associated family of
operators H(§) = A? + V(£) will now have a persistent (real analytic) band of
embedded eigenvalues F(&) = £2.

Since the strategy of the paper is roughly speaking to transform the Hamiltonian
into a non self adjoint operator with receding essential spectrum in the area of
interest, the question whether or not our assumptions are too strong arises. In
particular, one could be tempted to hope that the minimal requirements of Kato’s
theory are sufficient. This however is not the case, since the following example
illustrates that one cannot expect the usual conclusions of Kato to hold true,
when one considers analytic perturbations of self-adjoint operators with embedded
eigenvalues.

Example 1.2. Let H = L?(R?) ® C and define

H(¢) = (—A - 523[|x| <1] 8)

with domain H?(R?)@® C. There exist p > 0, such that For £ € R with 0 < |¢| < p,
the operator —A — £21[|z| < 1] has a unique eigenvalue \(¢), which is simple
and depends real analytically on 0 < || < p. See [?]. We may extend A to
a continuous function on (—p, p) by setting A(0) = 0. Hence, for & € (—p,p),
opp(H(E)) = {A(£),0} and & — H (&) is clearly analytic of Type (A). We observe
two things: (I) At £ = 0, there is a single simple eigenvalue A = 0. But we have
two branches of eigenvalues coming out for £ # 0. That is, the total multiplicity
of the eigenvalue cluster is not upper semi continuous. (II) The lower of the two
eigenvalue branches £ — \(£) does not have an algebraic singularity at £ = 0,
more precisely; [A(€)] < e @)™ for some a > 0, cf. [50]. For a closely related
example, see |24, p. 585].

2 General Theory

2.1 Generalized Dilations

In this subsection H and A denotes two self-adjoint operators on a complex sep-
arable Hilbert space H. The inner product (-,-) is assumed linear in the second
variable and conjugate linear in the first variable. We associate to an (unbounded)
operator T" with domain D(T), its graph norm |[¢||r = [|T%] + ||¢||, as a norm
on the subspace D(T). We shall frequently, for self-adjoint 7', exploit the easy
estimate 3[[¥]lr < (T +1)vll < [¢]r.

We work throughout Section 2| under the following condition:

Condition 2.1.
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1. Abbreviating U(t) = €™ for t € R, we assume U(t)D(H) C D(H) for all
t € R and
Vip € D(H): sup ||HU(t)Y| < oo.
[t[<1

2. The quadratic form on D(H) N D(A) x D(H) N D(A) given by

is continuous w.r.t. the norm ||(¢, )|z := ||V||x + ||¢ll#-

3. There exists R > 0 such that for any ¢» € D(H), the map
R >t Hap = U)HU(~t)
extends to a strongly analytic H-valued function {Hpt}pes,,, where
Sg:={z € C| |Im(z)| < R}.
This defines a collection of linear operators { Hp }oes,, with domain D(H).

4. For Hy defined above, note that Hy(H + i)' € B(H) by the closed graph
theoremﬂ We suppose that

M := sup |Hp(H+1i)7'| < 0.

0eB%(0)

Remarks 2.2. 1. The Conditions and 2.1 go back to Mourre [41] and
are equivalent to saying that H is of class C'(A) with commutator [H, A]°
bounded as an operator from D(H) into H. See |38, Prop. B.11].

2. Another consequence of Conditions and is the density of D(H) N
D(A) in both D(H) and D(A), equipped with their respective graph norms.
See 38, Lemma. B.10].

3. Tt suffices that the map 6 — Hy) extends from (=R, R) to BS(0) in order
to obtain an extension into Sg. Indeed, since we assume that U(t)D(H) C
D(H), the composition HylU(t) makes sense on D(H) for all § € BS(0). Let
teRand § € (t — R,t+ R), then

Hyp = U(t)Hy—U(—t)0

extends from (t— R, ¢+ R) to an analytic function on BS(¢) for all ¢ € D(H).
Sliding ¢ along the real axis produces an analytic continuation of Hyy to the
whole strip Skg.

2Hy is closable, since H; C Hj.
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We recall from [33] that if U C C is open then a family {Tp}oep of closed
operators is said to be analytic of Type (A) if the domain of Ty does not depend
on # and the map U 3 6 — Tyt is analytic for any ¢ in the common domain. If
U C €% then {Ty}gey is said to be analytic of Type (A), if it is separately analytic
of Type (A) in each of its d variables.

Lemma 2.3. Assume Conditions 211 and [2.1[2. We have

1. For any v € D(H), 0 € C and m € N, we have 1,,(0) := 67A2/(2m)+i9A¢ c
D(H).

2. If 0 € R, we have lim,, o ¥, (0) = U(0) in the topology of D(H). In
particular (0 = 0), the set of vectors in D(H) that are analytic vectors for A
are dense in D(H).

3. For allv € D(H) and m € N, the map 0 — H1,,(0) is entire.

Proof. Put 1,,(0) = e~ A?/(@m)+04y,  Using the Fourier transform, we may write

/2
¢m(0) _ _ﬂ_e—m92/2/ e—mt2/2+m9tU(t),¢ dt.
m R

Note that for any m € IN, the integral converges absolutely in D(H), since
U@V py < €ltl] for all + € R, where ¢ > 0 is some constant. This is a
consequence of Condition 2.1][T] and implies [I}

Let # € R. To show that ¢,,(0) — U(0)y in D(H), it suffices to argue that
Hy,(0) = HU(0)Y in H. Since U(0)y € D(H) for real 0, it suffices to prove this
with 6 = 0. Here we observe that

/Q e ERU () dt — 0,
[t|>1

due to the estimate |U(t)¥| piary < el from before. Furthermore, the estimate
I(HU(t) = U@)H)y|| < CJt, (2:2)

valid for [t| < 1 with some C' > 0, cf. [?, Props. 2.29 and 2.34] (applied with
S=H,Hi=D(H), Hy =H, Wi(t) = U(t)| pr) and Wy (t) = U(t)), finally yields
2

We now establish . Since the map 6 — ,,(6) is entire it suffices, by Vitali-
Porter’s theorem, to show that n||H(H +in)~4,,(0)|| is bounded locally uniformly
in @ € C. But this follows easily from the estimates already invoked above. n

It turns out that under the assumption in Condition [2.1J[I} the remaining three
items are equivalent to the statement that all iterated commutators of H with A
are H-bounded and satisfy a certain growth bound. If these bounds are satisfied
the analytic continuation of the family Hy can be written as a power series in a
neighborhood of 0. More precisely, we can prove

136



Proposition 2.4. Assume Condition[2.1)[1. Then the following two properties are
equivalent:

1. Conditions [2.1]3, [2.1]3 and [2.1][]

2. There exists a constant C > 0 such that: the iterated commutators ad” (H)
exist as H-bounded operators for all k € IN and

|ad’y (H)(H +1)7|| < C*k!. (2.3)

In the confirming case, {Hg}(,eBE@ () is an analytic family of Type (A), and for
30)—

all 8 € Bgc),l(O) and ¥ € D(H), we have

0
Hyp =) i ad () (2.4)

and ]
Sl < 1¥llm, < 2019]a. (2.5)

Remark 2.5. If one supposes [I| with a given R and M coming from Condition

and 2.1]1] respectively, then one may choose C'= max{1, M}/R in (2.3).

Conversely, if one assumes |2 with a given C, then one may choose R = (3C)!
and M = 3.

Since we have elected to state our assumptions in terms of an analytic extension
of H, we shall below employ the estimate with

max{1, M}
—p

The expansion (2.4)) of Hy and the relative bounds (2.5) will then hold true for
0 € BS,(0), where

C = (2.6)

1 R
30 3max{1, M}’

Proof. We begin with 2] = [I] Therefore, we assume that for all k, the iterated
commutators exist as H-bounded operators ad” (H) and that (2.3) holds.

That Condition follows is obvious (take k = 1).

Note that Condition ensures that Hy is well-defined for real 6 as an operator
with domain D(H).

Exploiting (2.3), we may for ¢ € D(H) and |f] < 1/C estimate

/

(2.7)

5] < it N
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where || - ||z denotes the graph norm of H. Hence, the prescription

(=0
Sotp = - i* ad® (H)y (2.9)
k=0
defines an analytic H-valued function defined in the disc B /C(O). It is now easy
to check that the map ¢ — Syt defines — for each 0 € B; /C(O) a linear operator

with domain D(H).
The estimate ([2.8)) implies that

vy e D(H):  ||Sevol| < (1= Cl1O) ¥l (2.10)

and in particular that Sy is H-bounded.

To show that Sy is closed, i.e., D(Sy) = D(H), we establish that the two cor-
responding graph norms are equivalent for # in a sufficiently small disc centered
at 0. Note that the (2.10]) already establishes that there exists a constant C; > 0
independent of § € B1 /(30)(0) such that

[llsy < Culll]ar-

In complete analogy to the first estimate, we estimate for v» € D(H) and 6 €
380(0)5

1l = 1ol + 1Y) < 1ls, + Y (ClOD* I¥lln
k=1

CI9|

—A [Vl (2.11)

Hence, for 6 € 38(30)(0) we have

[0l < 2[4 ]]s,-

This proves the claimed equivalence of graph norms and thus that Sy is closed as
an operator with domain D(H) for all 6 € B1/(3C)( ). Abbreviating R = 1/(3C),
this proves that {Sg}(,e BG(0) is an analytic family of Type (A). (Note that redoing

the estimate (2.8)) using || < 1/(3C) yields |[¢||s, < 2||¢||x as well.)
It remains, recalhng Remark [2.2) ml 3l to argue that Sg Hy for 6 € (—R, R). Let

Y, € D(H) and put zp = /@m)yy and ¢, = e 4/ ¢ Then, with the
notation of Lemma we have

a priori for real 6, but extending to an entire function of #. Here we used

Lemma 2.3[3]

138



We may use the assumption on the existence of iterated H-bounded commutators
ad® (H) to compute

d* fm
do

Since analytic functions in B%(0) are determined by their derivatives at zero, we
may conclude that

|9:0 = <¢m7 (_i)k adZ(H)¢m>'

<wm7 H9¢m> - Wm, 59¢m>

for all # € B%(0). Finally, we exploit Lemma once more to compute the
limit m — oo in the above identity and conclude that for all # € (—R, R) and
v, ¢ € D(H)ND(A), we have (¢, Hyo) = (1, Sppp). By density of D(H)ND(A) in
D(H), we conclude that Hy = Sy for § € (—R, R) as desired. It now follows from
that we may choose M = 3 in Condition [2.1][4]

In order to prove that [I] = [2| we assume that Conditions 2.1]4] holds
true. Let n,v € D(H). By Condition and the analyticity of 8 — Hgp, we
may use [40, Prop. 2.2] to argue that all iterated commutators of A with H exists
and are implemented by H-bounded operators, provided we can establish that for

every j € IN there exist H-bounded operators Héj ), such that
dJ
dgi

As a starting point we use the analyticity of 6§ — Hyi to obtain a power series
expansion for || < r < R, that is

V0 € (R, R) : (1, Ho oo = (n, HY ).

271
ry

<777 H9w> = Z ekbk(na ¢)> bk(na w) = L /e_k_1<777 H9w> dea (212)
k=0

where n € H and I, is the circle in the complex plane with radius r centered at
0. Observe that the by (n,1)’s define sesquilinear forms.
Using Condition 2.1JH] we get an M > 0 such that

M

1Bk (n, ) < [l ] 7

where we also took the limit » — R. For every ¢ € D(H) (and k € IN) there thus

exists a vector 1 such that by(n,v) = (n,¢) for all n € D(H). It follows that the

assignment Byt := 1) defines an H-bounded linear operator on D(H). With this
construction, we have

J

3g5 {1 Hovllo—o = (0, k1Buy))

and |40, Prop. 2.2] now implies that (2.3) holds with C' := max{1, M'}/R. O
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In the following we abbreviate

e’} _0 k
Wy=Hy—H=>_ ( k') i* ad® (H) (2.13)
k=1 ’

as an operator with domain D(H). Observe for § € BE,(0) the estimate

clo| _ 3cC

H+i)™ < —0 2.14
Wl +0)7 < 1= g < 5101 (2.14)

We have the following, rough but sufficient, spectral localization result.

Proposition 2.6. Assume Condition [2.1. Then
V0 € B (0):  o(Hp) C {z+iy||yl <4C|0|(|z] +1)}.
Proof. Let z € C with Im z # 0 and compute on D(H):
Ho—z=[1+Wy(H —2)""] (H —2)

Hence, Hy — z is invertible if |[Wy(H — 2z)7!|| < 1 due to the Neumann series. The
norm appearing in the previous inequality can be estimated trivially by

+1
IWolH — =) < [WalH + 1)~ sup 21
peR |p— Z|

Let ¢ > 0. Suppose z = x + iy with |y| > ¢(|z] + 1). Then |p +i]*/|p — 2> <
(p* +1)/((p — 2)* + *2* + %) < 4/c* uniformly in p, z and y. Using (2.14)), we

have:
30\9\

IWo(H = )7} < =

for = = x + iy with |y| > ¢|z| The choice ¢ = 4C|f| ensures convergence of the
Neumann series. [l

Lemma 2.7. Assume Condz'tz'on and let 6 € B%,(0). We have
D(Hy) =D(H) and H, = Hj.

Proof. Let 1, ¢ € D(H). We compute

(v Hoo) = 3 (0,5

(11,0 = (g, 0.

OF (1))
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Hence Hy C Hj. Conversely, let ¢ € D(H), ¢ € D(Hj) and set
y = max{1,8CR'}. (2.15)
Observe that iy € p(Hp) \ R, due to Proposition 2.6, We compute, using the
notation from
(Y, Hp)| < (1, Hpg)| + [(¥, W)
= [(v, Hoo)| + (0, (Ho — iy)(Hy — iy) " Woo)|
< | Hzyllllell + [|(Hg + iy)y || (Ho — iy) " W]

Note that
Hy —iy = (H —iy)(1+ (H — iy)~'Wp)

and that, recalling (2.7)), (2.14)) and ({2.15),

2 1 1/2
|(H — i)W < (sup T+ ) I(H = 1) W| <

zeR x? + y2
Abbreviating By = (1 + (H — iy) 'Wp)~!, we may estimate
I(Hp — iy) ™ Wooll < || Bollll(H — iy) ™ Weo|| < Cll¢].
Hence, there exists a Cy > 0 such that
Vo€ D(H):  [(v, Ho)| < Cylldll,

and therefore we may conclude that ¢ € D(H*) = D(H), exploiting the self-
adjointness of H. This shows that D(H;) = D(H) and that H; = Hp. O
2.2 The Mourre Estimate

At this stage we will single out a specific energy Ay € R, where we shall assume that
H has an eigenvalue. In order for the dilated Hamiltonian to have its essential
spectrum out of the way of the eigenvalue, we shall impose a Mourre estimate
locally around Ag. To formulate the requirement, we need the notation Fy(B)
for the spectral projection associated with a Borel set B C R and the self-adjoint
operator H.

Condition 2.8. Let \y € R. For the pair of self-adjoint operators H and A
satisfying Condition [2.1I we further assume:

1. X\ € Jpp(H).
2. There exist e,C, k > 0 and a compact operator K, such that
iada(H) > e—CEg(R\ [ — K, Ao + K])(H) — K (2.16)

in the sense of quadratic forms on D(H).
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3. We suppose that there exists a conjugatiorﬂ C on H satisfying CD(H) C
D(H), CD(A) C D(A),

CH=HC and CA=-AC.

Notation 2.9. We write Py = Ey({\o}) for the orthogonal projection onto the
eigenspace of H associated with the eigenvalue Ag. Furthermore, we abbreviate
Py =1— Py for the projection onto the orthogonal complement of the eigenspace.

Remarks 2.10. 1. Observe that it is a consequence of Conditions
and the Virial Theorem [20] that P, is a finite rank projection.

2. Choosing k possibly smaller, one may replace the compact operator K in
(2.16)) with a positive multiple of the eigenprojection Py and obtain

iada(H) > ¢ — C'(Eg(R\ [\ — &', Ao + &) (H) + Py), (2.17)

for suitably chosen constants ¢’ € (0,¢], ¥ € (0,x] and C' > C. It is in this
form that we shall use the Mourre estimate, and for convenience we assume

K < /3.

As a preparation for a Feshbach analysis, we have:

Lemma 2.11. Assume Conditions[2.1], [2.8[1] and[2.8]3. The following three state-
ments are true for all 0 € BS,(0):

1. PoHyP, is a closed operator with domain PoD(H).
2. [?0]‘]9?0]* = ﬁgHg?o on P(]D(H>
3. For all 0 € BS,(0): a(PoHoPo) C {x +iy||y| < 4C|6|(|=| + 1)}.

Proof. As for , note first that HyPy with domain D(H) is closed, since PyD(H) C
D(H) and Hp with domain D(H) is a closed operator (Proposition [2.4). To con-
clude, observe that the graph of PoHyP, is the range of the open map H ® H >
(¥, ) = (Pot, Po) € PoH @ PyH applied to the graph of HyP,.

We turn to the claim 2l Clearly, PoHyPy C [PoHyPy]*. Let ¢ € D([PoHyPo]*)
viewed as an element of PoH C H, and compute for ¢ € D(H):

(¢, Hob) = (Pop, Ho(Po + Po)b)
= (¢, PoHyPot)) + (Pog, HyPyt)).

Since F, is finite rank operator and Hy is closed, it follows from the Closed Graph
Theorem, that HyF, is bounded. Hence, there exists C' > 0 such that

3see Definition
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which implies that ¢ € D((Hy)*) = D(H) = D(H). Here we used Lemma 2.7
Since PoyH N D(H) = PyD(H), we are done.
The last claim [3Jmay be established by repeating the proof of Proposition[2.6] [

Remarks 2.12. We make some remarks regarding the conjugation C from Con-

dition 2.81[3k

1. Since CD(H) C D(H) and CH = HC, we readily conclude that CFy = P,C
and CPy = PoC. We write C also for the conjugation acting in PyH.

2. As an operator identity on D(H), we have
CHy = HgC. (2.18)

3. Finally, invoking Lemma as well, as an operator identity on PoD(H)
Cﬁngﬁo - F()H@'F()C (219)

In formulating the following proposition, we make use of the eigenvalue \g from
Condition and the constants e’ and «' from (2.17). The radius R’ was defined

in (27).
Proposition 2.13. Assume Conditions and[2.8. Abbreviate for o,p > 0 and
e Ct={zeC|Im(z) > 0}:
Ro(o,p) = {z € C| Re(z) € (Ao — p, Ao + p),Im(z) € (—oIm(6),00)}, (2.20)
There exist constants R", p > 0 with R" < R, such that
VO € BS,(0)NCY: Ry(e'/2, p) No(PyHyPy) = 0. (2.21)
Proof. Using the constants from (2.17)), we define a bounded operator
L:=C'Eg(R\ [\ — &, o+ &) (H)Y(H — )" (2.22)

Note that || L|| < 2C"{\o)/K', where we used ' < /3. We claim suitable choices

e/

p= min{l,m},

R" = min{ R,

6/

12C(6]Xo| + 14)(2C" (o) /# + 2C) }

where C' and R’ were defined in and (2.7)), respectively. Recall that R"C' <
R'C <1/3.

Let # € CT N BE,(0) and pu € Ry(e'/2,p) N o(PyHyPy). Note that due to
Lemma [2.17][3, we may estimate

(2.23)

] < (ol + p+ 1) (1 + 16R2C?)Y* < 2|Ao| + 4. (2.24)
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By Remark [2.12|[3] and Lemma and [2, we may apply Corollary to
the operator Po(Hy — p1)Po. Thus there exists a sequence v, € PyoD(H) with

[ = 1, such that
o = ||Po(Hg — p) Potn || = 0 for n — oo. (2.25)
We estimate for all n using
[Pl < 2[[Potin],
< 2([|[PoHo Potin| + || PoHo Potin|)

< 2(0n + |p| +2(|ul + 1))
= 20, + 6|p| + 4. (2.26)

Exploiting the power series expansion ([2.4)) of Hy, the Mourre estimate (2.17) and
simplifying for real expectation values, we obtain for any n

Im(u) =Im <F0¢n7 (M - H9>?01/}n> + Im <F077Z)na H9?0¢n>
= Im <F0,¢n7 (M - H9>?0¢n> — Im <ﬁ0¢na o1 adA<H)F077Z)n>
°© ok .
—Im (Potin, Y ( ,j) *ady (H) P )
=Im <F0¢n7 (/L — H0>?O¢n> — Im(0)<ﬁo¢n, i adA(H)F0¢n>

=30 OO (B i a1 P,

—~ k!
< on — Im(0) [¢' = C"(Povn, B(|H = A| = #){H) Potn)]
[e] m((— k . B

Note that for all k, we have |Im((—6)%)] < 2%|Im(0)||0]*~L. Therefore,

’i m((k;'e)k)@o% i* adk (H P0¢n>
k=2 ’

Z!Im 1) |CH[Potiall

< Clm(0)] Y- 24 0]" [ Povn

k=2
2000] |

m“Pow”HH

< 6/Im(0)|R"C* (0, + 3|p| + 2), (2.28)

= C|Im(6)]|
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where we used (2.26) and that C'|0] < 1/3 in the last step. We estimate using
(2.14)), recalling the definition (2.22)) of the bounded operator L,

C'|(Poton, En(R\ [N — &', Ao + &) (H) Pot,)|
< || LPo(H — Xo)Poth||
< || L1[Po(Ho = 1) Potoal| + || L{[|[WoPorin]| + 20 — il L]
< |[Lllon + |EWoH + 57 || Poval; + 10 = ul|L]
< 1Lllon+ SCR"NENPotoallr + w1 L]
< || L||(1 +3CR") o, + 3(3|ul + 2) CR"||L|| + p|| L

, (2.29)

where we used ([2.26]) in the final step.
Combining (2.27)), (2.28) and (2.29)) we obtain

Im(p) < —Tm(0)(¢' — 3R"C(3|p| + 2)(I|L]| +2C) — p||L]])
+ (14 6] Im(0)|(R"C* + ||L||(1 + 3CR"))) 0n.

By the choices of p and R” from (2.23)), (2.24) and ||L|| < 2C"(\o)/K’ to estimate

/! 6/
SRICEul + 2)(ILI +2C) +pllL] = 5

and thus, taking the limit n — oo using (2.25]), we arrive at

/

Tm(p) < —Im(Q)%.

This completes the proof. n

The following theorem is proven using the Feshbach reduction method, for which
Proposition [2.13| above is an essential prerequisite.

Theorem 2.14. Assume Conditions 2.1 and[2.8. Then
Vo € BS,(0)NCY 1 ous(Hy) NRy(e' /2, p) = 0.
The constants p, R" and the sets Ry come from Proposition[2.13

Proof. By Proposition there exist R”,p > 0 such that for all [0| < R” the
closed operator PoHyP — zPy is invertible on PyH for all z € R := Ry(€'/2, p).
Define reduced resolvents

EQ(Z) = (FoHQFO — Zﬁo)_l

145



on PyH for z € R. Recall that W is defined in (2.13). For 2z € R we can construct
the Feshbach map on the finite dimensional subspace PyH:

FPO (Z) = P0<H9 — Z)PO — PoHQF()Eg(Z)FoHQPO
= P0<W9 + )\0 — Z)PO — POWHﬁOE(;(z)fOWGPO.

Clearly, Fp,(z) is a finite rank operator, which can be interpreted as a matrix, and
hence; by isospectrality of the Feshbach reduction [11}25],

1 € o(Hp) NR < det(Fp,(p)) = 0.

By the Unique Continuation Theorem for holomorphic functions, the set o(Hy) R
are locally finite. Note that u € o(Hy) NR is necessarily an eigenvalue for Hy.
In order to establish the theorem, it remains to prove that the Riesz projections
pertaining to the eigenvalues in R are of finite rank. Let u € RNo(Hy) and choose
r > 0, such that D C R\ 0(Hy), where D = {z € C|0 < |z — p| < r} denotes a
closed punctured disc.

The inverse of Fp,(z) for z € D has a Laurent expansion

Fp(2) 7 =Y Boi(z =)+ Bi(z — p)*
k=0

k=1

convergent in the punctured disc D. Here N > 1 and {By}2_, denote linear
operators on PyH. See [43, Sect. 6.1]. Note that the inverse has no essential
singularities since we are in finite dimension.

By [11,25], for z € R\ 0(Hy), the inverse Ry(z) of Hy — z can be recovered from
the inverse Feshbach operator and the reduced resolvent via the block decomposi-
tion

-1

PoRy(2)Py = Fp,(2) ",
PyRy(2)Po = —Fp,(2) " PoWyPoRy(z),
PoRy(2)Py = —Ry(2) PoWy Py Fp,(2) 7",
PoRy(2)Py = Ry(2) + Ry(2) PoWyPyFp,(2) * PeWyPoRy(2).
Note that the map z — Ry(z) is analytic in R, so the only singularities are those
in o(Hy), coming from the inverse Feshbach operator.

Let v: [0,27] — C be the closed curve v(t) = p + re* parametrizing the (outer)
boundary of D, encircling p. Recall the construction of the Riesz projections

Py(p) = L/Rg(z) dz

27
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associated with the eigenvalue . The block decomposition of Ry(z), induces a
block decomposition of Py(u) and the Riesz projection have finite rank, provided
PoPy(u) Py are of finite rank. To check this, we compute

ﬁope(/i)ﬁo
1 — — —
= — [ [Ro(2) + Ro(2)PoWoPoFp,(2) " PsWoPoRy(2)] dz

27

/ (z — 1) " Ry(2)PoWyPyB_ PyWs Py Ry(z) dz
;
1 — — —
+ — / (z — p)¥Ry(2) PoWy Py By PyWy Py Ry(2) dz,
Y

where we have used that the function R 3 z + Ry(2) is analytic. Moreover,
the integral in the last line of the equation above is carried out over an analytic
function, once again, and thus equals 0. The remaining /N singular integrals can
be evaluated by Cauchy’s Integral Formula:

1 E5) - R
2_71'i (Z - :u)ikR9(Z)P0W6POBkaQW9PORg(z) dz
Y
1 dk—l o . o
- (k _ 1)| dzk—1 RG(Z)P0W6POB_kPoW9PORg(z)

Z=L

k—1
1 k—1
(k_l)!;(j )it = 1)
X E@(,U/)l—i_j?ongoB_kP()W@?gE@ (,u)k_j

k-1
= (-1 Z Ro(p) ' PoWoPyB_ PyWy Po Ry (1) 7.
=0

Since each term in the sum above is a finite rank operator, we conclude that
Py Py(11)Py is of finite rank.

Since o(H) N'R is locally finite and all the associated Riesz projections have
finite rank, we have shown that oe(Hy) N R = (). This completes the proof.  [J

Note that
D(U(8)) = {w c %‘ / 2O 4B (1) < oo},
R

where Ey, is the spectral measure for A associated with the state 1. Motivated by
this we abbreviate for r > 0:

D,(A) :{¢ €eH ‘ /]Re%lx dEy(x) < oo}
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Having established Theorem [2.14] we may conclude the following theorem by in-
voking a general result of Hunziker and Sigal [31, Theorem 5.2].

Theorem 2.15. Assume Conditions and . Let 0 € BS,(0) with 6 # 0.
Then the dilated Hamiltonian Hy have an isolated eigenvalue at \g. Denote by Py
the associated Riesz projection. The following statements hold true:

1. Range(Fy) is the eigenspace of Hy pertaining to the eigenvalue \g.
2. Py =U(=0)PyU(0) as a form identity D)) (A).

3. Rank(Fp) = Rank(F).

4. Let v < R". Then Range(FPy) C D,(A).

Remark 2.16. The above theorem implies that eigenfunctions pertaining to the
eigenvalue \y are analytic vectors for the operator A. A result previously estab-
lished by brute force in [40]. Here, however, we needed Condition , which
played no role for the method employed in [40].

2.3 Analytic Perturbation Theory

Condition 2.17. Let & € R? and U C R? an open (connected) neighborhood of
&o, A a self-adjoint operator on H and {H (£) }ecp a family of self-adjoint operators
on H.

1. D(H(€)) = D(H(&)) =: D for all € € U.

2. For all ¢ in U, the operator H (&) satisfies Condition with the same con-
stants R and M.

3. The pair A and H (&) satisfies Condition

4. There exists 0y € B%(0) with Im(6y) # 0, such that the map & — Hy, (&)
extends from U to an analytic family of Type (A) defined for £ € Uy C €4,
an open (connected) set with U C Ug N R.

Remark 2.18. Suppose one strengthens Condition and assumes that & —
Hy(&) extends to an analytic family of Type (A) not just for one §, but for all § in
a complex disc of radius ©® < R’ around 0. Then one may use Morera’s theorem
to conclude that for any ¢ € D and n, we have
mo_n —1)" —n—
i"ad} (H(&))y = u/ n!O~" " Hy(€) d6,
|6|=0/2

271

a priori for real £, but since the righ-hand side extends analytically to £ in a complex
neighborhood of &, so does the left-hand side. This will in particular permit one to
conclude that also for complex ¢ does the closed operator H(§) iteratively admit
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commutators with A of arbitrary order. (Note that H(§) C H(&)*, by unique
continuation.) Furthermore, the iterated commutators must coincide (strongly)
with the analytic extension from real £ of ady(H (&))v, obtained above.

Recall the notation A for the eigenvalue of H({y) with eigenprojection Py. By
Theorem [2.15] we know that )y is an isolated eigenvalue of Hg, (&) with finite rank
eigenprojection Fy,. Denote by ny the common rank of Py and F,.

Fix 0 < p' < pand 0 < ¢” < ¢//2, such that o(Hy,(£)) N By, (Ao) = {Ao}-

Remark 2.19. We may choose r’ > 0, such that for all £ € Bf,d (&), we have
o(Hey(§)) N By (M) = 0pp(Hey (§)) N By (o)

and the total multiplicity of the eigenvalues in B (\o) equals ng ( [33, Sect. IV.4]).
By [31, Theorem 5.2], we may now conclude — just as we did with Theorem [2.15]
— that

opp(H(£)) N (Ao = p', Ao + p') = 0 (Hp,(€)) N (Ao = o' Ao + ). (2.30)

If the perturbation parameter £ is one-dimensional, we may in light of Theo-
rem and Condition invoke Kato, in the form of [33, Theorem VII.1.§],
and conclude the following theorem.

Theorem 2.20. Suppose Condition[2.17 and that d = 1. There exist
o >0 with (§—r,& +71) CU,

e natural numbers 0 < my < ng and nic, - ,nii > 1 with nf—i—- . ‘+”ii < ny,
e real analytic functions \E,. . A I = R, where I- = (& — 1, &) and
I—i— - (50750 + T)J
such that

1. for any € € L., we have oy, (H(€)) N (Ao — p/, Ao +p) = {AF(E), .. An, ()}
2. The eigenvalue branches 14 > & — Ajt(g) have constant multiplicity nf

In the case of multiple parameters, the structure of the point spectrum becomes
more complicated, and we need the notion of semi-analytic sets, which we recall
from [35] in the following definition.

Definition 2.21. 1. Let W C R” be an open set. We write O(W) for the
smallest ring[f of subsets of W containing sets of the form {y € W | f(y) > 0}
and {y € W | f(y) = 0} where f ranges over real analytic functions f: W —
R.

“4collection of sets stable under complement as well as under finite intersections and unions.
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2. Let M C R” be an open set. A subset ¥ C M is called a semi-analytic subset
of M if: for any x € M, there exists an open neighborhood W C M of z,
such that X NW € O(W).

We may now formulate our main theorem:

Theorem 2.22. Suppose Condition |2.17. There exists r > 0 and p > 0, such
that with M = BR"(&) x (Ao — ¢/, Xo + p'), we have that ¥ = {(£,\) € M|\ €
opp(H(E))} is a semi-analytic subset of M.

Proof. Let 1’ be chosen as in Remark|2.19, The projection onto the total eigenspace
is the Riesz projection,

Q) = = (Hyp(€) — 2)" d,

2mi lz—Xo|=p’

which depends analytically on £ € BS(&). Write V(£) = Range(Q(€)) for the total
eigenspace of dimension ny and II: C" — II(&;) a linear isomorphism identifying
the unperturbed eigenspace with C™. Following [23], we choose ' such that

Q&) — Q&) < 1/2 for |€ — &| < 7. Then O(§) := Q(&)|v(e,) defines a linear
isomorphism from V(&) onto V(&) and

Ve € BE (&) T(€) = II"O(€)" Hy, (€)O(E)IL

defines a family of linear operators on C? depending analytically on € and satisfying
that o(T(€)) = o(Hp,(£)) N BE’(/\O)‘ Hence, recalling ([2.30)),

Y ={(&N) € M| det(T(¢) — ) =0}.

Split into real and imaginary parts det(7'(§) — A) = u(&, A) + iv(§, A), to obtain
two real analytic real-valued functions. Define semi-analytic sets for ¢ = 1,...,ng
by setting

SR ={(EN) e MIVi=0,...,i—1: Bu(\ &) = Hv(\€) =0 and du(E, ) # 0}
and
Sh={(&,N) e M|Vj=0,...,i—1: Hu(\,E&) =Hv(\ &) =0and d4w(E,\) #£0}

Then o
y = U (ZRus))

=1

is a semi-analytic subset of M. O
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3 Example

We introduce the two-particle Hamiltonian on L*(R¢) by
H‘// = wl(pl) + w2<p2) + V(.Z‘l — xg),

where p; = —iV,., 7; € R? and the operator V is multiplication by V € L}(R).
The functions w; should be thought of as effective dispersion relations. By taking
the Fourier transform of this operator we see that it is unitarily equivalent to

HV = W1(k’1) + CUQ(k’Q) + tv,

where
(b £) (kv ) = / V() f(ky — u, by + u)da.

Note that, since L?(R¢ x R?) = fﬁ; L2(RY), this operator can be fibered w.r.t.
¢ € R? by the unitary transform f(&, k) — fe(k) = f(—¢ — k, k), where all fibers
are equipped with the Hilbert space He = L?(R?). The fiber operators take the
form

H(§) = we(k) +Tv,
where

(Wef) (k) = (wi(§ = k) + w2 (k) f(K),
(Ty f)(k) = (V= f) (k)

and V = V(—k’) Furthermore, we define a self-adjoint operator for every fiber &
by .
i
T2
where the vector field v, is given by

Ag (Ug Vi + V- Ug) , (331)
ve(k) = (Vawe) (k)e ™. (3.32)
Condition 3.1 (Properties of wy,ws and V).

1. Let j € {1,2}. wj is real analytic on R?. Moreover, there exists p; € N and
C, B, B’ > 0 such that

|0%w; (k)| < C(R)», |wj(R)] = B(k)? — B (3.33)

for every multi-index a € IN¢, |a] < 1.

151



2. Assume further that there exists an R > 0 such that w; and wy extend to ana-
lytic functions on the d-dimensional strip Sg := {(21, ..., 24) € C?| [Im(2;)| <
R,i=1,...,d}. We denote the analytic continuations of these functions by
the same symbols.

3. The analytic continuations of the w; still satisfy the bounds (3.33)) on Sk.

4. For all a € N¢ with |a] < 1 we have that 2oV € L%(R9).

5. There exists a > MR and n € N,n > d/2 such that e’'19°V (-) € LY(R?) for
all b < a and all @ € N, |a| < n.

Remark 3.2.

1. By Condition B(k)1 — B" < |w;(k)| < C(k)? and thus D(M,,) =
D(M ;). Consequently, D(M,,) = D(M») =: D, where p = max{py, p2}.
Thus all operators H (&) have the common domain D.

2. The two estimates in Condition [3.1][] are clearly satisfied by the real analytic
functions f(k) = (|k|*)?. These have an analytic continuation into Sg for
any R > 0 and the corresponding estimates are still satisfied by the analytic
continuations.

3. Condition [3.1[2 implies that we as well as every component of V,w, extend
to analytic functions in the strip Sg. Since |e”@H1%)°| < e=#*et¥’ the same
is true for the vector field v.

4. Condition 3.1][T] and Condition [3.1)3] imply

sup |ve(z)| < M < o0. (3.34)
zESR
and
sup |V,we(2) - ve(2)] < M' < o0. (3.35)
2ESR

The next Lemma connects the action of the unitary group generated by A to
objects related to the solution of the ODE defined by the vector field ve. This
result has already been proven in the PhD thesis of one of the authors, see [44].

Lemma 3.3. Let v; be the solution of the ODE

k) = ven(k), 7o(k) = k. (3.36)

dt
and define

t
[ Vv (s (k))ds

J(t, k) = e (3.37)
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Then
(€™ £) (k) = /T (8, k) f (ve().- (3.38)

It is easily checked that the useful relation

1

J(t,v—e(k)) = TR

(3.39)

holds.
Lemma 3.4. Assume Conditions @ and @ Then the solution of , Vi,

admits an analytic continuation into the d-dimensional strip S,, where M'r < R
and M’ = max{M,1}. Moreover, this continuation maps S, into Syr, C Sg.

PROOF. By definition =, solves the ODE

d

(k) = ve(u k), 0(k) = k.

Since v is real-analytic, so is (k) and hence it admits an analytic continuation
into some region G C C. We do not introduce a new symbol for this continuation.
Without loss of generality we may assume that G = BS(0) for some r > 0. By
possible decreasing r > 0, we can assume that M'r < R, where M’ = max{1, M}
with R, M are as in Condition and Condition

For z € BE(t), where t € R%, we clearly have that z —t € BE(0) and hence

Va(k) = Yt (e (k)

is analytic on BE(t). Choose t such that V := BE(t) N BE(0) #0. Let z € VN R
and note that 7,(k) = ~.(k). Hence analyticity of 7, and 7, implies that 7, = ~,
for all z € V due to the identity theorem. This in turn implies that 7, is an
analytic continuation of 7, to BE(t). It is clear that this way of extending v, can
be used to obtain an analytic extension to the strip S,.

Let I C R be a compact interval and pick an open subinterval J C I. By
continuity of z +— 7,(k) we have that for every x € I there exists §, € (0,r)
such that v4u(k) € B (v,(k)) for |t| < é,. By compactness we deduce that
there exists 0 > 0 such that for all © € I v,4(k) € B?d(’yx(k)) C Sg provided
that |t| < 0. Hence the composition v¢(7,(k)) extends analytically from .J to the
complex rectangle Rs; := {z | Re(z) € J,|Im(z)| < 0} C Sg. Since for z € J
the ODE in is satisfied, it carries over to z € Rs by uniqueness of analytic
continuation. ' .

For j =1,...,d we denote by 7/ and v; the j-th component of ~; and v} respec-
tively. Let x + it € Rs. The conclusion of the preceding paragraph now allows us
to calculate

%Im[7£+it(k)] = Im[iv] (va11u(k))] = Re[v (yrie(k))] < M,
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where we have used the uniform bound on v in Condition 3.1]3] This inequality
implies

[Tl ;e ()] = [Im[y (k)] — Im[y) (k)]| < M]t| < M,

since 7, maps into R? for real values of z. Hence 7,4y (k) € Sy, for all z € J.
Covering R with compact intervals I,, we obtain that v, (k) € Sy, for any z € R
and |t| < r. Hence the analytic continuation of 7, maps S, into Sy,.. O

Remark 3.5.

1. This result implies that the ODE in (3.36]) extends to z € S,. Indeed, we
simply copy the argument given for the extension to Rs in the previous proof.

2. The above remark allows us to considering %(7{{ ot (k) = kj) for a < r instead

of %Imhiht(k‘)y] and we can prove |Ygit — k| < Ca. Hence,
7:=(k) — k| < Cz] (3.40)
in complete analogy to the preceding proof.

The previous two Lemmas allow us to explicitly compute how conjugation by
the unitary group generated by A effects the fiber Hamiltonians and argue that
the so obtained expressions admit analytic continuations.

Lemma 3.6. Assume Condition[3.1. Then the map
t s e ey e = T
extends to an analytic B(H)-valued function on S,.

PROOF. Note that
(e Ty et g) (k) = \/m/m Vv (B — s (k)T (—t, K g (k') dE.

By the assumptions V(v_y(k') — y_;(k)) extends to a function on the strip Sg for
|t| < R. It remains to show that, if this extension is substituted in the above
equation, it still yields a function in L2(R?). Let n € IN denote the unique integer
satisfying 2n > d. Then j,(k) := (1+]k|*")~' € L}(R?) and hence j, * g € L2(R?)
for all g € L?(R?). Note that there exists a constant C; > 0 independent of k such
that J(—t, k) < Cy. We define B;(k, k') := v_+(k") — v_¢(k) and compute

/R J(=t.k) 2

dk
=t [ ([ = KT GgW)i ~ KK ) ak. @4

[ VB k)T g
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Now we define ay(k, k') = v_4(k)—k—(7_«(k")—k") and compute |ay(k, k)| < 2M ||

(L4 [k = K[V (Bi(k, k)]

1 : N /
_ _ / (1 + |:I{Z . k/|2n)e1(k—k )~a:elat(k,k )IV(I)dCL’
(2m)2 |Jme
1 2M |t|]-| 1 n i(k—k')x\ o (k,k')x
< L
< ~le V() L(Rdy T y (Ame > e V(z)dx
(2m)z (2m)2 |JRe
1 .
= (27r>% HeQM‘t” |V(')HL1(]Rd)
1 . , ) ,
+ / Gilh—K)a pm <elat<kvk MV(:E)) dz|, (3.42)
(2m)2 |/Re

where A denotes the n-th product of the Laplace operator w.r.t. the variable
z € RY Let k € INj, define D = 95! --- 944 and calculate

R4

<2 ()L

K<k
x'€INd

<>y (:,) (2M [t])/5 =~ /RdeM|t|x|

K<k
k' €INg

Combining (3.42) and (3.43]) we argue that there is a constant C,,; > 0 such that

DS_“/ei‘”(k’k/)'w)(D’;/V(x)>‘ dz

(D;'V(x))‘ dz (3.43)

(1 + [k = K"V (Be(k, K| < Cog D [ DIV () (3.44)
nelNg,
] <n
Finally, (3.41) and (3.44]) yield
—i i 2
”e Al Tye AthHL?(Rd)
< CPChy Y [DEVY O] Ml * 1912 et
HEINg,
|k|<n
< CPCuy Y J™DEVY O] Mgl gy 91172 e (3.45)
nelNg,
|| <n

Thus, the analytic continuation of e e!Ty it to BE(0) is a bounded operator.
The continuation to the strip S, can be constructed as in the abstract case by

155



translating the continuation to B(0) along the real axis by conjugation with the
unitary group e'“¢* for ¢ € R. O

Lemma 3.7. For allt € R we have that
—itA itA

e M,, e = Mo,
on D(M,,), where 7, is the solution to .

PROOF. Let ¢ € D(M,,). Since the action of e is defined by (3.38), we use
(3.39) and the group property of the flow ; to compute

e ML FI(R) = we(ro () T AR/ T RV (k)
— we(v-o(R)) F(R).

This proves the statement. [J

Proposition 3.8. Assume Condition [3.1, Then the family of operators Hy (€)
satisfies Condition |2.1]

PROOF. We begin by establishing Condition in our example. Let ¢t € [0, 1],
1 € D and compute

IHEQU@YI = |H(E)D] < [[Muor 0l + [TV I[[]]- (3.46)

The first term on the right hand side of the previous estimate can be treated as
follows.

Moo 1 = [ ol (B)RIOR) Pa
< [leaOa )P Pab+ [ fonle = -1
<C [ BP0 Pak+C [ (€= (k)™ ()
R R

Let g € {p1,p2}. A two-fold application of equation (3.40|) implies

(€ —voi(B)* = (L4 1€ = v=o(B)]D)* < (14 €12 + 21¢]|v=e(B)] + [y—e(k)]D)*

(&l + Cpe)? BN 2
< (1+T’]€’2+2(’§‘+C|t’)1+‘k|2> </€>2

< (1+ (gl + CleD* +2(¢] + CleD)” (k)™
Define d,(€,t) := (1+ (€] + Ct])> + 2(/€| + C¢]))". Then

[Mosgor ]I < Oy (0, Itl)/R|<k>”21/1(/f)I2dk

+Cdy, (§, Itl)4|<k>pl¢(k)lzdk (3.47)
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which implies that

sup [[H(E)U (£)¢]] < Cdp, (0, D[[(K)?* 9] + Cdp, (€, DI 9| + [ Tv (][]

te[0,1]

which is a finite upper bound, since ¥ € D((k)?*) N D({k)??).
In order to verify Condition . we define wg 1= %V - ve and compute

[H(g),ZAf] = ?Jg . Vk% —f— ngTV + T M

+ Z (ve)o L(idaso 7)r T T(idasovyn (vs)a) ’

where the components of §, € R? are n by (¢, g U/ = 0g,0'. Oince wg and ve - Vywe
are bounded functions by Condition hl and and V(z)ebl*! is assumed to
be in L'(R?) by Condition EI o| for some b > 0, the expression on the right of the
above equation is even a bounded operator.

By Lemma 3.4 and Lemma [3.6| we may conclude that the map ¢ — H,(£) admits
a strongly analytic continuation into a d-dimensional strip S, of the complex plane.
This establishes Condition [2.113]

It thus remains to examine whether or not Condition .14 holds. A look at
shows that the operator norm of the analytic continuation of e*4¢Ty e~
is uniformly bounded on BE(0). Denote this upper bound by Cy > 0. Substituting
Cy for | Tv] in and then use (3.47) we obtain the estimate

sup [l H (€)e A< (H(€) + 1)~

te BE(0)
< Ov[[(H(&) +1) 7"l + Cdpy (0,7) [ Migye= (H(€) +1) 7 4|
+ dp, (&, 7)) [[M g (H(€) +1) ¢ (3.48)

Since D = D(w1)ND(w1) = D(M ), where p’ = max{py, pa}, Myr; (H(£)+1)~",
where 7 = 1,2, extend to bounded operators by the closed graph theorem. This
completes the proof. []

Proposition 3.9. Assume Condition . The family of operators H(§) satisfies
Condition [2.§ and Condition [2.17.

Proof. The first part of Condition has already been shown. Now note that
we(k) extends to an analytic function in a strip Sg. Recall that the analytic
extension of the flow (k) to the strip S, maps into the (possibly bigger) strip
S, where M’ = max{1, M} and M is given by (3.34). Fix t, € BE(0) and let
k € R% Since M'r < R, the map & + we 0 vy (k) = wi(€ — 74y (k) + wa(k)
extends to complex ¢ provided [Im(§)| < R’ := R — M'r. The analyticity of the
maps £ — H; (£)1 on Bci(O) for every ¥ € D now follows. Moreover, R > 0
can be chosen independently of £ and the upper bound in can be chosen
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independently of £ € BS,(0). Hence the second and fourth part of Condition
are satisfied. The third part as well as Condition will be established in the
remaining part of the proof.

The conjugation C in Condition is easily seen to be given by complex con-
jugation on L*(R%). Put w = iV - v¢. Recall that the commutator [H(),14] is
bounded and given by

[H(€),iAd] = |Viwe (k)?e™ + M, T, + T: M,
+ Z(M(vg)gT(id.z"sﬂ ‘7)/\ + T(id$6UV)AM(U§)0)7
=1

Let K = [H(E),iA¢] — ve - Viwe. It is easy to see that K extends to a compact
operator. Note that for f € C>®(R),

. d
P () = F(Mog)) = 7 [ 2 FEH(E) =7 = (M = 2)7)
d
0 —2) Ty (M, — 2)"
/f H(&) — 2) Ty (M, —2)7'
which is compact as we(k) — oo when |k| — co. Choosing f with support in
Ao — 2K, Ao+ 2k] and f =1 on [A\g — K, A\g + k] and multiplying from the left and

the right by Epe,)([Ao — K, Ao + &]) thus shows that Epe,)([Ao — &, Ao + &]) may
be replaced by Ep,, ([Ao — K, Ao + K]) at the cost of a compact error. As

e |Vwg, B, (Mo — 5, Xo + £]) = eEar,, ([N — &, Ao + £])

by the choice of k£ and ,
eik |V("j£0|2 <C

for some constant C' > 0, we may now conclude the proof by collecting all esti-
mates. O

A Intertwining Conjugations

Recall that a conjugation is an anti-linear operator C that satisfies C*> = 1 and
(,9") = (Cy,CY').
Definition A.1. Let T be a closed and densely defined operator with domain
D(T). A conjugation C is said to intertwine 7" and 7™, if CD(T) C D(T*) and
CT =T*C on D(T).

Note that, if the conjugation C intertwines 7" and 7™ it also intertwines 7™ and
T. Indeed, suppose that C intertwines 7' and 7™ and let v € D(T™*). Then there

exists a ¢’ € ‘H such that
(W', ¢) = (¥, Tp) = (CY,CTP) = (CY, T"Co)
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for all € D(T). We can thus conclude that Ciyp € D(T**) = D(T), since T is
closed. CT* = TC on D(T*) follows trivially from CD(T*) c D(T), C* = 1 and
CT =T*C. In particular, if C intertwines 7" and T, we have the inclusions

CD(T) C D(T*) =C*D(T*) C CD(T)

and hence
CD(T) = D(T™).

Lemma A.2. Let T be a closed, densely defined operator. Suppose there exists a
conjugation C which intertwines T and T*. Then

rep(T) & Fe>0v e D) : (T =N| = clld].

Proof. Suppose that A € p(T'). Then there exists a bounded inverse B such that
B(T — \) = 1. Thus,
[l = 1B(T = Al < |IBIII(T = M|

and |[(T"— A)y|| > ¢||¢|| follows from ||B]| # 0.
Conversely, let us assume that there exists ¢ > 0 such that ||(T°— \)y|| > ¢[[¢]|.
Note that V' := Ran(7 — ) is a closed subspace of H. Choose ¢ L V' and compute

{0, T)| < [{@, (T = M) + A, )| < [Alll I l]
for every ¢ € D(T). This implies that ¢ € D(T*) and we can thus calculate

(T = N¢,¥) = (6, (T = N¢p) =0

whenever ¢ € D(T). Since D(T) is dense, we have now established that A\ €
opp(T*). The intertwining relation TC = CT™ then gives the contradiction that
A € 0pp(T). Therefore, we must have V' = H. The preceding argument shows that
T — )X is bijective and we can conclude that it has a left inverse B. Since

1B = Xl = 9] < ST~ 29l

B is bounded.
Due to C? = 1, the anti-linearity of C and the intertwining property, the estimate
(T — N)|| > ¢||v|| on D(T) can be re-written as

V€ D(T7) + ([T = Nl = (T = NC|| > ellCy] = el

Therefore, the operator T* satisfies the same conditions as T and we can construct
a left inverse B’ € B(H) for T* — X in a similar fashion. Hence B'(T* — \) = 1
which in turn implies (T — A\)B"™ = 1. (Here we used that Range(B™*) C D(T).)
Therefore, T'— A\ has a bounded right inverse as well, and we can conclude that

A€ p(T). O
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Negation of the assertion in Lemma[A.2] immediately implies the following useful
corollary:

Corollary A.3. In the situation of Lemmal[A.9, we have

reo(T) & Hinnen CD(T), [[Ynll =1+ (T = A)hull — 0.
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