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Preface

This thesis consists of the work made during my four years as a PhD student at De-
partment of Mathematics, Aarhus University, Denmark. It considers high-dimensional
classification from various points of view, and includes an introduction followed by
four self-containing chapters. The notation may differ between the chapters.

• Chapter 1 gives a review of existing methods and problems within the field of
high-dimensional classification.

• Chapter 2 is based on joint work with Jens Ledet Jensen and Morten Fenger-Grøn,
and has been published in the Scandinavian Journal of Statistics (March, 2015).
In Section 2.6 an extension of the result from the paper is described. All content
of this chapter was also a part of my progress report in 2013.

• Chapter 3 is a submitted paper, based on joint work with Jens Ledet Jensen.

• Chapter 4 is joint work with Jens Ledet Jensen, and contains a corrected version of
an existing theorem. We thank Xin Tong for reviewing this material. The content
can also be found on arXiv (http://arxiv.org/abs/1405.5989).

• Chapter 5 consists of unpublished joint work with Jens Ledet Jensen.

Britta Anker Bak
Aarhus, July 2015
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Abstract

The scientific and technological development has given rise to an increasing demand
of statistical methods that can handle the “large p, small n” paradigm, where the
number of variables is large, while the number of observations remains small. One
such example is microarray analysis, where the expressions of a large number of genes
are measured on a limited number of individuals, bounded by either cost or a limited
number of patients.

In this thesis we focus on the high dimensional classification problem of two nor-
mally distributed groups with equal covariance matrices. Inspired by the applications
in microarray studies, we are primarily interested in situations where the vector of
differences between the two group means is sparse, meaning that most variables do
not differ systematically between the two groups.

It is well known that Fishers rule fails to work in a scenario where p/n→ ∞, due
to noise accumulation. Contrary, the independence rule, which ignores correlations
between variables, has been proved to be useful in a very specific, extremely sparse,
setting. We extend this result under more general assumptions justifiable for microarray
data, and in this way theoretically justify current practice.

While ignoring correlation in classification problems decreases the noise accumu-
lation, it also omits potential information and is thus not optimal. In recent years,
this recognition has motivated procedures searching directly for the optimal classi-
fication vector, instead of estimating it as a product of a matrix and a vector. Such
procedures have good properties theoretically as well as empirically when compared
to independence classifiers in correlated settings. We perform a comparison of four
such procedures through a large simulation study. We furthermore correct a technical
mistake and reformulate a theorem regarding the ROAD classifier.

A problem, which has often been either overlooked or neglected in the statistical
field, as well as in broader scientific societies, is the bias in classification when the
group sizes in the training data differ. When p is fixed the problem is minor, but as p
increases it gets more substantial, and classification to the smaller group is sometimes
almost impossible. Existing literature on the topic primarily focuses on intuition and
methods that are shown empirically to work. We take a more analytic approach in a
simple setting where all variables are independent, and thereby obtain an in-depth
understanding of the origin of the problem. This insight leads to the suggestion of
two new classifiers with practically no bias. Simulation studies support our theoretical
conclusion, and further simulations indicate that our methodology can be of relevance
also for the situation of dependent variables. Finally, we see that oversampling, a
commonly applied method in imbalanced situations, worsens the bias.
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Resume

Den videnskabelige og teknologiske udvikling har medført et voksende behov for
metoder, der kan håndtere data for “stort p, lille n”, dvs. situationer hvor antallet af
variable er højt, mens antallet af observationer fortsat er lavt. Et område hvor dette har
relevans, er microarray analyse, hvor ekspressionsniveauet måles på en lang række
gener, men på et begrænset antal individer, da målingerne er dyre og der ofte kun er
et begrænset antal patienter til rådighed.

Dennne afhandling betragter højdimensionel klassifikation mellem to normal-
fordelte grupper med samme kovariansmatrix. Inspireret af microarray analyse er
vi primært interesserede i situationer svarende til, at de fleste gener ikke afviger
systematisk mellem de to grupper.

Når p/n → ∞ er det velkendt, at Fishers lineære diskriminationsregel bryder
sammen asymptotisk som følge af akkumulationen af støj. Uafhængighedsregler, der
ignorerer korrelation, kan derimod beviseligt udføre en brugbar klassifikation i restrik-
tive situationer. Vi udvider et eksisterende resultat til antagelser, der synes rimelige for
microarray data, og på den måde retfærdiggør vi teoretisk den nuværende praksis.

Udover at udeladelsen af korrelation reducerer mængden af støj, vil det også betyde,
at en væsentlig information bliver ignoreret i klassifikationen. I de seneste år har dette
givet inspiration til en række metoder, der estimerer den optimale klassifikationsvektor
direkte i stedet for som et produkt af en matrix og en vektor. Disse metoder har gode
egenskaber teoretisk, og også empirisk når de sammenlignes med klassifikationsregler
baseret på en naiv uafhængighedsantagelse. Vi sammenligner fire sådanne klassifika-
tionsregler i et simulationsstudium. Desuden reformulerer og retter vi et teoretisk
resultat angående klassifikationsreglen ROAD.

Både i den statistiske verden og i bredere videnskabelige sammenhænge bliver
det ofte overset eller ignoreret, at der fremkommer et bias i klassifikationen, når
antallet af observationer varierer imellem grupperne. Dette giver en tilbøjelighed til at
klassificere til den største gruppe. Når p er lille, er dette bias sjældent afgørende, men i
højdimensionale situationer kan det være næsten umuligt at klassificere til den mindste
af grupperne. Størstedelen af den eksisterende forskning på området har foreslået nye
metoder med baggrund i intuition, og efterfølgende påvist at disse virker godt empirisk.
Gennem en analytisk tilgang under en antagelse om uafhængige variable opnår vi en
dybere forståelse af årsagen til problemet. Dette leder os til to nye metoder, der praktisk
talt ikke har noget bias uanset graden af ubalance. Vores teoretiske udledninger bakkes
op af simulationer, og vi ser endvidere, at vores metoder også kan være anvendelige i
situationer med afhængige variable. Endelig viser vi, at oversampling, der er en gængs
metode til at håndtere ubalance, blot gør biasproblemet værre.
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1
Introduction

The development of statistics has always been driven by the demands of other scientific
fields as well as the surrounding society. Classical statistical methods, such as the t-test
and analysis of variance, were developed due to the needs from growing industries
and agricultural organizations with a desire of a more effective production. In such
situations, one considers a small number of variables measured on a limited number of
observations. This can be an agricultural experiment where various levels of fertilizer
and pesticides are added to different plots and subplots, and the crop is evaluated
as an outcome. Another example could be determining whether a patient should be
assigned to further inspection for a specific disease, based on the levels of a few factors
in a blood sample.

As the advances in science and technology have not stopped, the demand of
new statistical methods have not either. Today, computers are able to collect and
store large amounts of data automatically, so there is no need to restrict the interest
to a few parameters only. Simultaneously, methods justifiable and efficient also in
situations with a vast amount of data, where the dimension of each observation might
be large, are needed. In Committee on Mathematical Sciences Research for DOE’s
Computational Biology (2005) a thorough description of situations where the biological
field challenges the curiosity and ingenuity of statisticians in this millennium is given.

One example of a high-dimensional situation is in image analysis, where one picture
is represented by a large number of pixels. If the aim is to group all pictures on the
internet into themes, the amount of data points can roughly be considered as tending
to infinity, so lack of data is not an issue, while computational limitations definitely are.

Another high-dimensional example is microarray data sets, where the expression
levels of a large number of genes are measured simultaneously. The purpose of a such
study can be to differentiate between various cancer types, or to enable population
screening for a specific form of cancer. Though the price of extracting DNA is decreasing
dramatically in these years, the number of observations in such data sets is usually
small due to a low number of patients available. This leads to situations where the
number of variables, typically denoted by p, is dramatically bigger than the number of
observations, typically denoted by n. A further challenge is that probably only a few of
the genes in a microarray study are differentially expressed, meaning that their values
differ systematically between the considered groups of patients, but it is unknown a
priori which ones. Finding these important variables is complicated by the fact that
some variables coincidentally appear to differ between the groups without having any
causal effect. That this aspect is fundamental to take into account is obvious, since
10 000 hypotheses tested simultaneously at a 0.05 level, are expected to detect 500 false
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2 Chapter 1 · Introduction

positives.
In the following, we focus on statistical methods in the latter situation, known

as the ’large p, small n’ regime, with focus towards applications in microarray data.
In Section 1.1, we introduce our setting along with Bayes rule, Fishers rule and the
independence rule, while in Section 1.2, we focus on problems arising for these classi-
fiers in high-dimensional settings. Section 1.3 gives a description of common variable
selection methods for independence classifiers, including nearest shrunken centroids,
features annealed independence rule and higher criticism thresholding. Section 1.4
and Section 1.5 describe methods allowing the use of correlation in high-dimensional
classification. Section 1.6 relates methods from penalized regression to a classification
setting. Section 1.7 describes a bias problem arising in classification when the sample
size in the various groups differ, and a range of methods meant to eliminate this bias
are presented. Finally, Section 1.8 gives a brief overview over the remaining chapters of
this thesis.

1.1 Bayes rule, Fishers rule and the independence rule

In this section, we introduce our setting and some of the most well-known linear
classifiers. Mathematically, we consider independent observations from two normally
distributed groups with equal covariance, that is x0i ∼ Np(µ0, Σ) for i = 1, . . . , n0, and
x1i ∼ Np(µ1, Σ) for i = 1, . . . , n1. Let ∆ = µ1 − µ0 and n = n0 + n1. An (approximately)
sparse setting means that most entries in ∆ are (approximately) zero. Inspired by the
microarray terminology, the term differentially expressed are used for variables where ∆j
is not (approximately) zero after scaling by the inverse standard deviation. Similarly,
we call all other variables non-expressed. Our aim is to construct a classifier ξ(z)
with a high probability of assigning a new observation z to the correct group, when
p is possible much larger than n. That is, we compare classifiers in terms of their
classification error P(ξ(z) 6= y), where y is the group label of z.

It is well known (Mardia et al., 1979) that the optimal classifier, in terms of minimiz-
ing the classification error, is Bayes rule, which classifies a new observation to group
ξB(z) where

ξB(z) = 1
{

∆TΣ−1(z− 1
2 (µ0 + µ1)

)
> log(π0/π1)

}
, (1.1)

and πk is the prior probabilities of the k’th group. Until Section 1.7, we always assume
π0 = π1 = 0.5, so the decision threshold in (1.1) is simply zero. In this situation, the
classification error of both groups is Φ

(
(∆TΣ−1∆)1/2/2

)
, also known as Bayes risk,

where Φ denotes the upper tail of a standard normal distribution.
Bayes rule is an oracle rule, meaning that it involves the true parameters, and thus

has limited practical applicability. When plugging in maximum likelihood estimates of
each of the parameters in (1.1), a more useful classifier is naturally suggested, which in
our situation with two normally distributions equals Fishers rule:

ξF(z) = 1
{

∆̂TΣ̂−1(z− 1
2 (x̄0 + x̄1)

)
> 0

}
. (1.2)

Here x̄k is the k’th group average. When p is fixed, Fishers rule approaches Bayes
rule, as n tends to infinity. When p is larger than n, Σ̂ is singular, and Fishers rule is
undefined. This can be repaired by applying alternative estimates of Σ−1, but it does
not necessarily gives good results, as described in Section 1.2.

When Fishers rule does not perform well, an obvious explanation is the lack of
information to estimate p(p− 1) parameters of Σ. One solution is to ignore correlation,
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and estimate the variances only, which leads to the independence rule

ξ I(z) = 1
{

∆̂TD̂−1(z− 1
2 (x̄0 + x̄1)

)
> 0

}
, (1.3)

where D̂ = diag(Σ̂). When the variables are truly independent, the independence rule
can be considered as Fishers rule incorporating this a priori information. When the
data is not independent, some information is lost by omitting correlations, but often
this loss is less serious than the noise arising from estimating p(p− 2) covariances.

In the following, λi(A) for i = 1, . . . , p denotes the eigenvalues of a symmetric ma-
trix A, with λmax(A) and λmin(A) denoting the largest and smallest ones, respectively.
Define also Σ0 = D−1/2ΣD−1/2, where D = diag(Σ).

1.2 Problems in classification when p/n→ ∞

Bickel and Levina (2004) consider the classification between two p-variate normal
distributions, as described above, in an asymptotic setting with p/n → ∞. We here
state their main results which show that while Fishers rule works poorly in high-
dimensional settings, the independence rule can result in a useful classifier. We further
mention a result of Fan and Fan (2008), stating that the independence rule also fails in
some high-dimensional settings though.

The parameter space considered in Bickel and Levina (2004) is

Γ =
{
(µ0, µ1, Σ) : ∆TΣ−1∆ > c2, c1 ≤ λmin(Σ) ≤ λmax(Σ) ≤ c2, µ0, µ1 ∈ B

}
, (1.4)

where c, c1 and c2 are strictly positive constants, and

B =
{ ∞

∑
j=1

ajµ
2
j ≤ K

}
, (1.5)

for some constant K and aj → ∞. In words this can be formulated as the covariance
matrix being well-behaved while the group means are small on most coordinates, and
the difference between the groups is sufficiently large. Now define the a posteriori
classification error of a parameter combination θ ∈ Γ as

W(ξ, θ) = Pθ

(
ξ(z) 6= y | x

)
.

Classifiers are examined in terms of their worst case classification error over Γ, defined
by

WΓ(ξ) ≡ max
θ∈Γ

E[W(ξ, θ)],

where the mean value is with respect to the distribution of the training data.
Bickel and Levina (2004) first consider the behaviour of Fishers rule in (1.2), but

instead of the maximum likelihood estimates they use estimates µ̂0 and µ̂1 inspired
by Pinsker’s Theorem (see Johnstone (2002) for details). In particular, µ̂0j and µ̂1j are
zero for large values of j. Since p > n, Σ̂ is singular, and Σ̂−1 in (1.2) is replaced by the
Moore-Penrose inverse

Σ̂− =
f

∑
i=1

1
λi(Σ̂)

vivT
i ,

where only the n− 2 nonzero eigenvalues of Σ̂ is included, and the v′is are the corre-
sponding eigenvectors. When p/n→ ∞, it is proved that the worst case classification
error tends to 1/2, the classification error of a random guess, so Fishers rule is of no
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use. This failure, caused by the estimation of too many parameters compared to the
amount of data, encourages to consider instead the independence rule from (1.3). By
this simplification, the number of parameters in Σ is reduced from p(p + 1)/2 to p. For

K0 = max
θ∈Γ

λmax(Σ0)

λmin(Σ0)
,

it is proved that as long as log(p)/n→ 0,

lim sup
n→∞

WΓ(ξ I) = Φ
( √

K0

1 + K0
c
)

. (1.6)

Note that the right hand side is strictly less than 1/2 for any K0 < ∞. If the true
covariance is the identity, the independence rule is asymptotically as good as Bayes
rule.

In a less restrictive setting than (1.4), avoiding the estimation of all the covariance
coefficients is not sufficient to assure an informative classification. Fan and Fan (2008)
consider the parameter space

Γ2 =
{
(∆, Σ) : ∆TD−1∆ > cp, λmax(R) ≤ c, min

j=1,...,p
σ2

j > 0
}

,

where σ2
j is the variance of the j’th variable. They prove that even when log(p)/n→ 0,

the classification error of the independence rule can tend to one half. This occurs when
many variables together contribute only little information, such that noise constitutes
the dominating part of the classifier. Therefore, unless most variables have large
differential expression, variable selection is useful, and may even be necessary to obtain
a good classifier in high-dimensional situations

1.3 Variable selection for independence classifiers

Inspired by the result of Fan and Fan (2008) described above, we give a review of
methods performing variable selection through thresholding. When theoretical results
on the classifer exist we mention these as well.

Note that the independence rule can be written as

ξ I(z) = 1
{ p

∑
j=1

(
(zj − x̄0j)

2 − (zj − x̄1j)
2)/s2

j > 0
}

, (1.7)

where s2
j =

(
∑n0

i=1(x0ij − x̄0j)
2 + ∑n1

i=1(x1ij − x̄1j)
2)/(n− 2).

1.3.1 Hard and soft thresholding

In the classifier, we want to incorporate only variables that appear differentially ex-
pressed. The obvious way of doing so is to include variables where the t-statistic

tj =
x̄1j − x̄0j√

s2
j

(
1

n0
+ 1

n1

) ,

is large, and exclude all other variables. This can be done by incorporating a weight
function into each term in ξ I(z):

ξT(z) = 1
{
(

p

∑
j=1

(
(zj − x̄0j)

2 − (zj − x̄1j)
2)/s2

j · w(tj) > 0
}

. (1.8)



1.3 Variable selection for independence classifiers 5

Hard thresholding, as studied in Chapter 2, has w(t) = 1{|t| > α}, meaning that
ξT(z) is ξ I(z) with terms having small t-statistics omitted. Soft thresholding uses a
continuous weight function instead, often of the form

w(t) =
|t| − α

θ + |t| 1{|t| > α}. (1.9)

Similar to hard thresholding, soft thresholding omits variables with small t-statistics,
but concurrently weights the rest of the variables according to their t-statistics.

When the type of threshold has been selected, one needs to determine a good
threshold value α. For simulated data, the exact classification error can be calculated
from the true parameter values, for a range of threshold values. From these values,
an optimal α can be found. For real data the optimal threshold is often estimated by
cross-validation (CV) instead. Section 1.3.3 and Section 1.3.4 suggest two alternative
methods for selecting the threshold.

Simulations in Jensen (2006) show that thresholding decreases the mean of the
classification error, and at the same time reduces a negative correlation existing between
P
(
ξ I(z) = 1 | y = 1

)
and P

(
ξ I(z) = 0 | y = 0

)
. It is seen that the use of a data-dependent

threshold chosen by cross-validation often improves classification compared to a
threshold fixed a priori. In most situations, soft thresholding decreases the classification
error more than hard thresholding, but at the cost of including more variables, and
thereby increasing the number of variables to be measured on new observations when
using the classifier.

A final note on thresholding is that in situations where certain variables are expected
to be strongly correlated, for instance genes within the same pathway in microarray
analysis, one may include the whole group of variables as soon as one of them is
selected.

1.3.2 Nearest shrunken centroids

Tibshirani et al. (2003) suggest a threshold method called nearest shrunken centroids
(NSC). The idea is to replace the maximum likelihood estimates of the mean values by
adjusted means. Define

x̃0j =

aj if |tj| < α,

x̄0j + sgn(x̄1j − x̄0j)αsj

√
1

n0
− 1

n if |tj| ≥ α.
(1.10)

x̃1j =

aj if |tj| < α,

x̄1j − sgn(x̄1j − x̄0j)αsj

√
1

n1
− 1

n if |tj| ≥ α.

The classifier ξNSC(z) is defined as (1.7) with x̄kj replaced by x̃kj. According to Jensen
(2006), when n0 = n1, ξNSC(z) equals (1.8) with soft thresholding and θ = 0 in (1.9). In
Section 1.7 an extension of NSC is described.

1.3.3 Features annealed independence rule

Fan and Fan (2008) consider two normally distributed groups with Σ = Ip, and p→ ∞
sufficiently slow, as n→ ∞. A theoretical analysis of the independence rule leads to the
suggestion of a new method to select its threshold. When incorporating this threshold,
the resulting classifier is called the Features Annealed Independence Rule (FAIR). The
background and results of FAIR are described in this section.
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First note that with known Σ = Ip, the independence rule can be written as:

ξ I(z) = 1
{

∆̂T
(
z− 1

2 (x̄0 + x̄1)
)
> 0

}
.

When assuming that the variables are ordered with respect to their absolute differential
expression, an intuitive way of simplifying the independence rule is by including only
the first m variables, for some appropriate choice of m < p. This leads to the following
classifier:

ξm
I (z) = 1

{
(∆̂m)T

(
zm − 1

2 (x̄m
0 + x̄m

1 )
)
> 0

}
, (1.11)

where zm is a vector consisting of the first m coordinates of z only, and x̄m
0 , x̄m

1 and
∆̂m are defined in a similar way. In the asymptotic setting of Fan and Fan (2008), m is
assumed to tend to infinity with n. For specific values of p and n, the optimal value of
m is wanted.

Under the assumption n√
m ∑m

j=1 ∆2
j → ∞ as n→ ∞, it is proved that

W(ξm
I , θ) = Φ

(
(1 + o(1))∑m

j=1 ∆2
j + m n0−n1

n1n0

2
√
(1 + o(1))∑m

j=1 ∆2
j +

nm
n1n0

)
, (1.12)

where o(1) denotes a term tending to zero in probability as n → ∞. Ignoring small
terms, W(ξm

I , θ) is minimized as a function of m in

m0 = arg max
1≤m≤p

(
∑m

j=1 ∆2
j + m n0−n1

n0n1

)2

∑m
j=1 ∆2

j +
nm

n0n1

. (1.13)

If the positions of most importance in ∆ are known a priori, but are not the first
ones, the classifier

ξα
orc(z) = 1

{ p

∑
j=1

∆̂j
(
zj − 1

2 (x̄0j + x̄1j)
)
1{|∆j| > α} > 0

}
,

can be used instead of the truncated classifier in (1.11). Here α is chosen to be smaller
than exactly m of the |∆j|’s. The result in (1.12) obviously remains valid if the sum over
{1, . . . , m} is replaced by summing over {j : |∆j| > α}.

In data scenarios, oracle information on the positions of important variables are not
available. Therefore, for a threshold αn, FAIR is defined by substituting ∆̂j for ∆j also
in the thresholding process, that is

ξαn
FAIR(z) = 1

{ p

∑
j=1

∆̂j
(
zj − 1

2 (x̄0j + x̄1j)
)
1{|∆̂j| > α} > 0

}
.

The defining point of FAIR is now to estimate m̂0 from (1.13) by plugging in estimates of
∆j, and subsequently selecting a threshold αn, such that exactly m̂0 terms are included
in ξα

FAIR(z).
Next, the behaviour of FAIR is considered theoretically. Define A = {j : |∆j| > αn}

with |A| = m and assume:

(i) maxj∈Ac |∆j| < αn,

(ii) log(p−m)
n(αn−maxj∈Ac |∆j |)2 → 0 for n→ ∞,

(iii) n√
m ∑j∈A ∆2

j → ∞ for n→ ∞,



1.3 Variable selection for independence classifiers 7

(iv) ∑j∈A |∆j |√
n ∑j∈A ∆2

j
→ 0 for n→ ∞.

Assumption (i) means that variables omitted in the oracle classifier are not allowed to
have differential expression above the threshold, and (ii) that these are not allowed to
get too close to the threshold either. Furthermore, (ii) restricts the growth rate of p. A
lower bound on the sum of differential expressions of the oracle set is given by (iii)
and (iv).

Under (i)–(iv), the following upper bound of the classification error is found:

W(ξαn
FAIR, θ) ≤ Φ

(
(1 + o(p))∑j∈A ∆2

j +
mn

n1n0
−mα2

n

2
√
(1 + o(p))∑j∈A ∆2

j +
nm

n1n0

)
. (1.14)

Note (1.14) differs from (1.12) only by the term mα2
n. Not surprisingly, this means

that the upper bound of FAIR is increased compared to (1.12), since we now need to
estimate A in addition to the ∆j’s.

FAIR is generalized to a situation with any covariance matrix Σ by using the
t-statistics in thresholding:

ξαn
FAIR(z) =

p

∑
j=1

∆̂j
(zj − 1

2 (x̄0j + x̄1j))

s2
j

1
{√

n/(n0n1)|tj| > αn
}

.

Fan and Fan (2008) state that after ordering the variables by decreasing values of ∆̂j,
the optimal number of variables to use in classification is:

m̂1 = arg max
1≤m≤p

1
λmax(Σ̂m

0 )

n
(

∑m
j=1 t2

j +
m(n0−n1)

n

)2

mn0n1 + n0n1 ∑m
j=1 t2

j
.

Here λmax(Σ̂m
0 ) is the maximum eigenvalue of the estimated correlation matrix for the

m included variables. Since 1/λmax(Σ̂m
0 ) is decreasing in m, m̂1 is usually smaller than

m̂0. No proof is given that m̂1 is actually the optimal number of variables to include,
and no boundary on the classification error is found for a general Σ either.

To justify the application of FAIR when the variances are unknown a priori, Fan
and Fan (2008) prove that the differential expressed variables can be separated from the
non-expressed ones by the t-statistics, asymptotically. This occurs when some technical
assumptions are met, including that ∆ is sparse with only the first sn elements being
non-zero. These non-zero values are not allowed to decrease too fast, and the threshold
αn grows slowly. Formally, the result states

P
(

min
j≤s
|tj| > αn, max

j>s
|tj| < αn

)
→ 1 as n→ ∞.

This is proved by showing that the probabilities of the complementary events, that is
{minj>s |tj| > αn} and {maxj≤s |tj| < αn}, tend to zero sufficiently fast by using normal
tail probability inequalities. The result is closely related to Lemma 2.5 in Chapter 2 of
this thesis, though none of the two results directly imply the other.

Simulations show that FAIR has a lower classification error than NSC, and also that
FAIR tends to include a more stable number of variables across simulations. The last
point leads to a smaller variation of the classification error of FAIR.

1.3.4 Classification by higher criticism thresholding

Higher criticism (HC) was first introduced by Donoho and Jin (2004) as a test for the
global null hypothesis

⋂p
j=1{∆j = 0}. The phrase “higher criticism” emphasizes that a
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decision is assessed on p test statistics simultaneously, and not by testing each of the
hypotheses separately.

In this section, we first state the original, simple formulation of higher criticism, and
describe how this method can be applied as a variable selection method in classification
problems. Afterwards, we introduce the asymptotic setting of Donoho and Jin (2009),
and give a more general definition of the HC threshold. This more flexible definition
enables us to define the ideal HC threshold which can be compared to the ideal
threshold. We state theoretical results from the paper Donoho and Jin (2009), which
examines when a successful classification is possible for the ideal threshold as well as
the ideal HC threshold.

Let p(i) denote the i’th ordered P-value when testing each individual hypothesis of
∆j = 0 with a two-sided alternative. The HC score for variable i is defined as

HC(i, p(i)) =
i
p − p(i)√
i
p (1−

i
p )

. (1.15)

The motivation behind these scores is that when the global null hypothesis holds, one
has p · p(i) ∼ binomial(p, i/p), and thus large values of the HC scores indicate that
some variables are differentially expressed. Define further

î = arg max
1≤i≤α0 p

HC(i, p(i)), (1.16)

where α0 is some fixed constant between 0 and 1, with 0.1 as a typical choice.
Donoho and Jin (2008) and Donoho and Jin (2009) use HC for variable selection in

binary classification, by including only variables with pi ≤ p(î) in the classifier. Their
model consists of two normally distributed groups with known covariance matrix
Σ = Ip. Most coordinates of ∆ are zero, apart from a small fraction, ε, where the value
is instead ∆0. For simplicity, n0 = n1 and (µ0 + µ1) = 0p, such that the latter does
not need to be estimated. Define t̃ = (x̄1 − x̄0)/

√
n as a vector of test statistics for

the hypotheses ∆j = 0, for i = 1, . . . , p. The two-sided P-values for Hj : ∆j = 0 are
calculated from the t̃-statistics. These P-values are applied for calculation of the HC
scores in (1.15), and finally the HC threshold is found as α̂HC = |t̃(î)|.

Classifiers of the form L(z) = ∑
p
j=1 wα,j(t̃)zj, which classifies to group 1 when L > 0,

and to group 0 otherwise, is of interest. The aim is to find a weight function wα(t̃)
which results in a low classification error. To this end, three thresholding functions, all
applied to the threshold α̂HC, are considered:

• hard thresholding, where wα(t̃) = t̃1{|t̃| > α},

• soft thresholding, where wα(t̃) = sgn(t̃)(|t̃| − α)+,

• clip thresholding, where wα(t̃) = sgn(t̃)1{|t̃| > α}.

Here x+ denotes the positive part of x.
We now turn to the asymptotic model of Donoho and Jin (2009), where p is the

driving parameter, and n ∼ c(log(p))ζ for positive constants c and ζ. The differential
expressed variables become rare as p increases, described through the fraction of
nonzero variables εp = p−β for some β ∈ (0, 1). The amount of differential expression
is described through τp ≡

√
n∆0 =

√
2r log(p) for some r ∈ (0, 1). When ζ > 1, the

value of each differentially expressed variable decreases with p.
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For notational simplicity, we often omit the subscript p of ε and τ. As described
in the following, the values of the parameters β and r determine whether a successful
classification is possible.

To inspect this setting in detail, a more general definition of the HC than given
through (1.15) is fruitful. To this end, define the HC functional

AHC(F) = arg max
α>α0

F0(α)−Φ0(α)√
F0(α)F0(α)

.

Here, F is a distribution function not equal to Φ, while Φ0(α) = Φ(α) − Φ(−α),
F0(α) = F(α) − F(−α), and F0(α) = 1− F0(α). The ideal HC threshold is defined as
AHC(F) when F = E[Fp], where Fp denotes the empirical distribution function for the
t̃-values. For comparison, remark that the HC procedure defined from (1.16) leads to
the threshold AHC(Fp).

The behaviour of the ideal HC threshold is compared to the ideal threshold to
be defined next, and the two turn out to have similar properties. Recall that the
classification error of a classifier defined by the linear vector w, since Σ = Ip, is a
function of γ = wT∆/

√
wTw. The error is minimal when the vector of weights w

is given by ∆. Here, we instead search for the threshold value that minimizes the
classification error when applied to a given classification vector w. To this end, an
approximation of γ is

γ̃(α, ε, τ) =
A√
B

,

where for U ∼ N(0, 1), A and B are defined as

A(α, ε, τ) = ετE[wα(τ + U)],

B(α, ε, τ) = εE[wα(τ + U)] + (1− ε)E[w2
α(W)].

The ideal threshold is now defined as

Aideal(ε, τ) = arg max
α

γ̃(α, ε, τ).

The main result of Donoho and Jin (2009) states that the behaviour of the ideal
threshold and the ideal HC threshold when applying either hard, soft or clip thresh-
olding are in many aspects the same. Common properties are described below. On the
other hand, it is shown that such similarities do not hold between the ideal threshold
and a threshold found through ideal procedures controlling either the familywise error
rate or the false discovery rate (FDR), that is, either the probability of declaring a
non-expressed variable as differential expressed, or the fraction of declared expressed
variables that are truly non-expressed (Benjamini and Hochberg, 1995). Thus HC
thresholding appears superior to those methods.

Of particular interest regarding ideal thresholding and ideal HC thresholding, the
parameter space with respect to r and β is divided into exactly two phases: A phase
of success, where the classification error tends to zero, as p tends to infinity, and a
phase of failure, where this never occurs. Actually, Jin (2009) shows for a more general
relationship between p and n that the classification error in any point of the phase
of failure tends to 1/2, as p tends to infinity. The phase of success for both ideal
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thresholding and ideal HC thresholding is determined by r > ρ(β) where

ρ(β) =


0 0 < β ≤ 1/2,

β− 1/2 1/2 < β ≤ 3/4,

(1−
√

1− β)2 3/4 < β < 1.

An interesting aspect to consider is the value of the ideal threshold when a successful
classification is possible. To this end, divide the phase of success into three regions:

(I) 0 < r ≤ β/3 and 1/2 < β ≤ 3/4; r > ρ(β),

(II) β/3 < r ≤ β and 1/2 < β ≤ 1; r > ρ(β),

(III) β < r ≤ 1 and 1/2 < β ≤ 1; r > ρ(β).

Recall that the differentially expressed variables have strength
√

2r log(p). The ideal
threshold as well as the ideal HC threshold have a related form in the phase of success,
namely AHC(F) = Aideal(ε, τ) =

√
2q log(p) where

q =

{
4r region (I),

(β + r)2/(4r) region (II), (III).

In region (I) and (II), the ideal threshold is thus larger than the signals to be detected,
which demonstrates the importance of excluding most irrelevant variables, even though
it means a majority of the important variables are excluded as well. This is illustrated
by the fact that the FDR, which has similar behaviour for ideal thresholding and ideal
HC thresholding, is large in those regions: In region (I), the FDR tends to 1 as p→ ∞,
while in region (II), it is asymptotically strictly between 1/2 and 1. In region (III), on the
other hand, where the expressions are a bit stronger, the optimal threshold is smaller
than the signals. Asymptotically, the FDR is 1/2 in this region. We note that this setting
is fundamentally different from the asymptotic settings of Fan and Fan (2008) and
Bak et al. (2015), where complete separation between expressed and non-expressed
variables is possible. It is surprising that even though most selected variables are false
positives, and most expressed variables remain undetected, an asymptotically perfect
classification can be performed in region (I).

Obviously, the ideal HC threshold cannot be calculated in practice, since one lacks
knowledge of ε and τ. As pointed out by Donoho and Jin (2015), the results for the ideal
HC threshold also holds for the HC threshold based on the data, when ε and τ are not
known. Simulations in Donoho and Jin (2008) illustrate that the asymptotic behaviour
of the ideal HC classifier is also reflected in realistic finite sample size situations.

Apart from the attractive asymptotic behaviour, a huge advantage of HC threshold-
ing is that no cross-validation step is needed for selecting the threshold. Furthermore,
the variance of the threshold itself is smaller than when it is chosen through cross-
validation, according to Donoho and Jin (2008).

1.4 Including correlation in classification

In this section, it is illustrated that including correlation can be fundamental for
obtaining a better classification. Therefore, we review procedures that make use of
correlation in classification, with a particular focus on methods which estimate the
covariance matrix consistently in restricted settings.
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As described in Section 1.2, Fishers rule cannot be expected to perform well when
p > n, and Σ−1 is estimated by a generalized inverse. Correlation can be helpful in
classification, though: When the true parameters are known, we have

W(ξB) = Φ
(
(∆TΣ−1∆)1/2/2

)
≤ Φ

(
∆TD−1∆

2(∆TD−1ΣD−1∆)1/2

)
,

where the inequality follows from Corollary A.9.2.2 in Mardia et al. (1979), and the
right hand side is the classification error of the oracle independence rule. The difference
between Bayes rule and the independence rule can be substantial as illustrated through
this small example from Fan et al. (2012): Set p = 2, and consider

Σ =

(
1 ρ

ρ 1

)
,

for some ρ ∈ (0, 1). Bayes risk can be written as Φ
(
(Γ1(ρ)

)1/2/2) where

Γ1(ρ) =
1

1− ρ2 (∆
2
1 + ∆2

2 − 2ρ∆1∆2).

It is easy to see that Γ1(ρ)→ ∞, as ρ→ 1. On the other hand, the classification error of
the oracle independence rule is Φ

(
(Γ2(ρ)

)1/2/2) where

Γ2(ρ) =
(∆2

1 + ∆2
2)

2

∆2
1 + ∆2

2 + 2ρ∆1∆2
.

Note that Γ2(ρ) tends to (∆2
1 + ∆2

2)
2/(∆1 + ∆2)

2, a fixed constant, as ρ→ 1, and thus
the independence rule is considerably worse than Bayes rule when ρ is large. Thus,
if we can find a reasonable, or maybe even consistent, estimate of Σ−1 in sample
situations, we can hope for a better classification than when applying the independence
rule to correlated data.

1.4.1 Nearest shrunken centroids regularized discriminant analysis

Inspired by NSC, Guo et al. (2005) introduce shrunken centroids regularized discriminant
analysis (SRRDA) as

SCRDA(z) = 1
(
(x̃∗1 − x̃∗0)

TΣ̃−1(z− 1
2 (x̃∗0 + x̃∗1)) > 0

)
,

where

Σ̃ = βΣ̂ + (1− β)Ip and x̃∗k = sgn(Σ̃−1 x̄k)(|Σ̃−1 x̄k| − α)+,

with β ∈ (0, 1) and α ≥ 0. SCRDA incorporates two innovations compared to the
thresholded independence rule. First, SCRDA includes correlation between variables
by estimating the covariance matrix as an intermediate between the ones applied in the
independence rule and Fishers rule. Second, SCRDA thresholds Σ̂−1(x̄1 − x̄0) instead
of the t-statistic.

One drawback of SCRDA is that it involves two parameters, α and β, to be esti-
mated by cross-validation. If the amount of data is limited, this might cause lack of
stability, meaning that small deviations in the data can lead to rather different selected
parameters. Furthermore, though a nonsingular estimate of Σ is suggested, we cannot
expect neither Σ̂ nor Σ̂−1 to be close to Σ and Σ−1, respectively.
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1.4.2 Estimation of covariance matrices

Though the correlation matrix is usually unknown, one can have prior knowledge of
its structure from the scientific situation at hand. As an example, in time series, and
to some extend in gene data, it can be reasonable to assume that variables are only
short-range dependent, which means Σij = 0 for |i− j| sufficiently large. After realizing
that no well-behaved estimate of Σ exists in general high-dimensional situations, a
considerable amount of work on improving estimates of the covariance matrix in such
more specific situations has been performed within the last decade. We highlight a
few of these suggestions. Replacing Σ̂− in Fishers rule by such estimates hopefully
improves classification in specific settings. This is indeed the case in Shao et al. (2011),
described below.

Besides its relevance in classification, estimation of covariance matrices is also of
significant importance in principal component analysis, graphical modelling, and when
establishing confidence intervals for linear functions of variables.

Evaluating consistency of an estimator of Σ in terms of coordinate wise convergence
is inappropriate when p is increasing with n: Even if each coordinate converges, the
full matrix can diverge dramatically. Instead, we consider consistency of a symmetric
matrix M through convergence in either operator norm, defined by

‖M‖ = sup
‖v‖2=1

‖Mv‖2 = max1≤j≤p|λj(M)|,

or in Frobenius norm
‖M‖2

F = ∑
i,j

M2
ij = trace(MMT).

Convergence in operator norm is linked to convergence of eigenvalues, and is thus par-
ticularly relevant when the target of the covariance estimation is principal component
analysis.

Bickel and Levina (2004) consider a scenario where Σij = σ(|i− j|), and σ(k) takes
small values when k is large. This justifies the following estimate of the covariance

Σ̂∗ij =

{
σ̂∗(|i− j|) |i− j| ≤ d,

0 otherwise,
(1.17)

where

σ̂∗(k) =
1

p− k

p−k

∑
a=1

Σ̂a,a+k.

Compared to the general case, we have much more information available for the
estimation of each entry of Σ. While the number of parameters to be estimated possibly
increases with p, the information available for each variable to be estimated does as
well. Under further conditions, this classifier has attractive asymptotic properties, see
Theorem 2 of Bickel and Levina (2004).

In Bickel and Levina (2008a), a more general estimator of Σ under short range
dependence is suggested as

Σ̂∗∗ij = Σ̂ij1{|i− j| ≤ d}.

This method is called banding. Similarly to (1.17) the known structure of the covariance
matrix is applied to reduce the noise from estimating too many correlation coefficients,
while we have less information for each entry of Σ̂∗∗ compared to Σ̂∗. Notice that
Σ̂∗∗ is not automatically invertible, which excludes the possibility of direct insertion
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in Fishers rule. This problem can be solved by replacing 1{|i − j| ≤ d} with more
cleverly selected rij fulfilling certain conditions, including that rij is decreasing as the
distance between i and j increases. It is proved that Σ̂∗∗ based on either 1{|i− j|} or
rij converge in operator norm under certain conditions, including the assumption of
log(p)/n→ 0. Not surprisingly, a fundamental assumption is that distant variables are
almost uncorrelated.

Related procedures and results are presented when regularizing the estimate of the
inverse of the covariance matrix based on the Cholesky decomposition of Σ in a similar
way. Besides classification, this is of particular usage in graphical modelling, where
a zero in the inverse covariance matrix corresponds to no causal effect between the
associated variables (Lauritzen, 1996, Proposition 5.2).

Bickel and Levina (2008b) consider a similar setting, where most covariances are
close to zero while the positions of the nonzero covariances are unknown. Inspired by
thresholding in the estimation of ∆, they suggest:

Σ̂∗∗∗ij = Σ̂ij1{|Σ̂ij| > α′}.

It is proved that Σ̂∗∗∗ estimate Σ well with respect to both operator and Frobenius
norm, when the true Σ is sparse. This thresholding estimator can be applied also when
the assumptions in Bickel and Levina (2008a) hold, but since Σ̂∗∗ takes more advantage
of the true covariance structure in such situations, it outperforms Σ̂∗∗∗ asymptotically.

Shao et al. (2011) consider applying Σ̂∗∗∗ in classification. This leads to the pro-
posal of sparse linear discriminant analysis (SLDA), where both ∆̂ and Σ̂ in Fishers rule
are replaced by their thresholding estimates. When the differential expressions are
sufficiently large, log(p)/n → 0, and certain sparsity restrictions hold for Σ and ∆,
it is proved that SLDA is asymptotically optimal, in the sense that its classification
error converges to Bayes risk with the optimal rate. Simulations show that SLDA is
significantly better than SCRDA in terms of classification error.

In a setting related to Bickel and Levina (2008a), Rothman et al. (2008) estimate
the inverse of the covariance matrix, Ω, directly through `1 penalization in the Sparse
Permutation Invariant Covariance Estimator (SPICE) defined as

Ω̂ = arg min
Ω�>0

{trace(ΩΣ̂)− log|Ω|+ λ|Ω−|1},

where Ω− is the negative part of Ω. Similar rates of convergence of the Frobenius and
operator norm as in Bickel and Levina (2008a) are obtained. An efficient algorithm
for the calculation is suggested, based on the Cholesky decomposition of the inverse
estimated covariance matrix combined with a coordinate descent approach.

1.5 Correlated classifiers avoiding the estimation of the inverse
covariance

Attractive estimates of the covariance matrix in high-dimensional settings only appear
to exist under rather tight restrictions, so we cannot expect good results in general
when building a classifier by plugging estimates of each parameter directly into (1.1).
To imitate Bayes rule, one do not need good estimates of neither Σ−1 nor ∆, though, as
long as a good estimate of wBayes = Σ−1∆ exists. This section reviews methods that use
correlation in classification without estimating the inverse covariance matrix.

Due to the results of Fan and Fan (2008), a sparse estimate of wBayes is wanted. While
sparsity in Σ−1∆ is harder to interpret than sparsity in ∆, it does reduce the amount of
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noise in the classifier. Following Mai et al. (2012), sparsity in neither Σ−1∆ nor ∆ imply
the other.

We thus consider linear classifiers of the form

ξw(z) = 1
{

wT(z− 1
2 (µ0 + µ1)) > 0

}
,

and want to estimate w directly. This line of research has been developed within the
last few years. In data situations, µ0 and µ1 are estimated by their sample averages.

Note that the classification error of an observation from group 0 for a linear classifier
as above is given by

W(δw) = Φ
(

wT∆
2(wTΣw)1/2

)
. (1.18)

When considering the sample version of a linear classifier, an extra term from the
estimation of ∆ is added in this expression.

All procedures below are computational more complex than methods described
previously, and their computation often involve convex optimization techniques. Unless
the number of variables is extremely large, this should not be a serious concern though.
In situations where the computational burden is considered too large, the procedures
can be combined with an initial variable screening, as described in Fan et al. (2012).

In the remaining of this chapter we use the notation that |v|pp = ∑i|vi|p, including
|v|0 = #{i : vi 6= 0}.

1.5.1 Regularized optimal affine discriminant

The method broadly known as Regularized Optimal Affine Discriminant (ROAD) has been
proposed independently by Fan et al. (2012) and Wu et al. (2011). The starting point in
Fan et al. (2012) is to minimize the classification error in (1.18), that is to find

arg min
∆Tw=1

wTΣw. (1.19)

When inserting estimates of the parameters, the solution to this problem is not unique
in high-dimensional situations. To assure uniqueness as well as some kind of sparsity
of the solution, an `1 penalty is added, and the ROAD classification vector is defined as

wROAD(c) = arg min
∆Tw=1,|w|1≤c

wTΣw. (1.20)

Wu et al. (2011) start from Fishers rule, which was originally proposed as the
classifier which maximizes

arg max
w

wTΣ̂betweenw
wTΣ̂withinw

.

When considering classification between only two groups, this reduces to the sample
version of (1.19), and the `1 penalty is further introduced.

Both Fan et al. (2012) and Wu et al. (2011) suggest algorithms to solve (1.20). Wu
et al. (2011) solve the problem directly through an algorithm closely related to the
LARS-algorithm, also known from estimation of the LASSO (see Section 1.6). By convex
theory, Fan et al. (2012) instead reformulate (1.20) to

wROAD(λ) = arg min
wT∆=1

wTΣw + λ|w|1
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which is further approximated by

wROAD(λ, γ) = arg min
wT∆=1

wTΣw + λ|w|1 + 1
2 γ(wT∆− 1)2.

When γ→ ∞, it is proved that wROAD(λ, γ)→ wROAD(λ). Simulations show that the
value of γ is not crucial for the performance of the resulting classifier, as long as a
corresponding λ(γ) is selected by cross-validation. Therefore, introducing the extra
parameter does not increase the computational burden.

Mai and Zou (2012) prove that, after appropriate scaling and adjustment of the
regularization parameters, ROAD is equivalent to Direct Sparse Discriminant Analysis
(DSDA) and Sparse Optimal Scoring (SOS), which are two recently suggested procedures
avoiding the estimation of the full covariance matrix. DSDA was first introduced by
Mai et al. (2012), and can be formulated as

wDSDA(λ) = arg min
w

{
wT(Σ + 1

4 ∆∆T)w− 1
2 wT∆ + λ|w|1

}
.

SOS was proposed in Clemmensen et al. (2011), and is only formulated in a sample
version. Let X be the n× p mean centred data matrix, and Ỹ be a n× 2 matrix with
Ỹi1 = 1 if i belongs to group 0, Ỹi2 = 1, if i belongs to group 1, and all other coordinates
equal to zero. SOS consider the optimization problem

min
w,θ
{|Ỹθ − Xw|22 + λ|w|1}

subject to 1
n θTỸTỸθ = 1, θỸTỸ12,

and define wSOS(λ) as the minimizing w hereof.
The equivalence of the sample versions of wROAD, wDSDA and wSOS means that

theoretical properties proved for one classifier automatically holds for the others. We
now summarize such properties.

Under some sparsity assumption on wROAD(c) in (1.20), Fan et al. (2012) prove that
the empirical ROAD obtains a classification error close to the oracle ROAD. If wBayes is
sparse, wROAD(c) is further proved to approach wBayes in `2 norm. See Chapter 4 and
Chapter 5 for further details on these issues.

Kolar and Liu (2015) prove that the oracle version of wDSDA detects exactly the true
nonzero coefficients of wBayes under certain conditions, and up to scaling estimates these
nonzero coefficients as if the support was known a priori. When n is sufficiently large
compared to p and the sparsity |wBayes|0, and the nonzero coefficients of wBayes are not
too small, a related selection and estimation result is proved for the sample version
of DSDA. It is briefly sketched, that the results can be extended to situations where
wBayes is only approximately sparse, and one requires only detection of sufficiently large
coefficients hereof.

1.5.2 Linear programming discriminant

Cai and Liu (2011) find their starting point in ΣwBayes = ∆, and search for a sparse
classification vector which almost fulfills this equality coordinatewise. This leads to the
Linear Programming Discriminant (LPD) defined by

wLPD = arg min
|Σw−∆|∞≤λ

|w|1.

The name originates from the optimization problem being solved through a linear
program, similar to the one used for the Dantzig Selector in Candes and Tao (2007). It is



16 Chapter 1 · Introduction

proved that the sample version of LPD, denoted by ŵLPD, obtains a classification error
approaching Bayes risk under certain sparsity conditions on wBayes when log(p)/n→ ∞.

Wang et al. (2013) prove under further restrictions that when |wBayes|0 = s, the s
largest coefficients of ŵLPD are with high probability the nonzero coefficients of wBayes.
This leads to the proposal of a two-stage procedure: First, select the important variables
as those with the largest coefficients in ŵLPD. Next, calculate Fishers rule based only
on the selected variables. Calculating Fishers rule only from a subset of variables is a
straightforward approach, but previously only procedures ignoring correlation have
been considered in the variable selection step in such application (e.g. by selecting
variables with large t-test as in Figure 1 of Fan et al. (2012)).

It is shown that this two-step LPD has classification error tending to Bayes risk
with a faster rate than LPD itself, under similar assumptions of sparseness. In practice,
|wBayes|0 is not known a priori, and must be estimated through cross-validation, as the
number s that minimizes the CV-error. Naturally, only situations where s ≤ n is of
interest, such that the inverse of the estimated covariance matrix is well defined.

1.6 Penalized classifiers

In this section we consider prediction methods frequently used in linear classification.
We first compare classification and prediction settings, and afterwards sketch a range
of high-dimensional linear regression methods, including ridge regression, LASSO,
and the elastic net. The content of this section is not a prerequisite for the rest of this
thesis.

Let xi = (xi1, . . . , xip) for i = 1, . . . , n be mean centred predictors generated from
normal distributions. Assume for simplicity that n0 = n1, and let observations from
group 1 have group label yi = 1, while observations from group 0 have yi = −1, such
that ȳ = 0. Let X denote the n× p matrix of predictors, and y the n× 1 vector of group
labels.

We classify a new observation z with outcome ynew to group 1 if zb > 0, for some
p-dimensional vector b, and to group 0 otherwise. Let borc denote the vector which
minimizes E[(zb− y)2]. From Zhang (2004) it is known that the classifier build from borc

have classification error close to Bayes risk, and thus applying the prediction approach
in classification is reasonable.

When p < n, the classical estimation of borc is by ordinary least squares, that is

b̂OLS = (XTX)−1XTy.

When n < p, (XTX)−1 does not exists. A remedy could be to substitute a generalized
inverse into the formula for b̂OLS, which causes problems related to those described in
Section 1.2. A more customary option is to adjust XTX by a diagonal matrix, known as
ridge regression

b̂ridge = (XTX + βIp)
−1XTy, (1.21)

for some constant β. While b̂ridge does not estimate borc unbiasedly, it is more stable
towards small deviations in the data, compared to b̂OLS. Due to this stableness, ridge
regression is also widely applied when p < n.

The expression in (1.21) is equivalent to

b̂ridge = arg min
b

{
1
n |y− Xb|22 + λ|b|22

}
,
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or

b̂ridge = arg min
b

1
n |y− Xb|22 subject to |b|22 ≤ c,

with a one-to-one correspondence between β, λ and c. For a suitable choice of regular-
ization parameter b̂ridge always exists, and due to (1.21) it is easy to compute.

When borc is sparse, ridge regression do not give a good estimate hereof. As an
example, when the data originate from normal distributions, where most variables
have no influence in classification, the probability of having any zero coefficients in
b̂ridge is zero, which must be suboptimal. In the regression setting, Tibshirani (1996)
introduce the least absolute shrinkage and selection operator (LASSO) as

b̂LASSO(λ) = arg min
b

{ 1
n |y− Xb|22 + λ|b|1

}
,

which can equivalently be formulated as

b̂LASSO = arg min
b

1
n |y− Xb|22 subject to |b|1 ≤ c,

with a one-to-one correspondence between c and λ. When λ > 0, b̂LASSO(λ) is sparse
with no more than min(p, n) nonzero coordinates.

In the regression setting when considering both the prediction of Xborc and the
estimation of borc, the LASSO is proved to have nice theoretical properties under
sparsity of borc and further distributional assumptions of the error terms. These results
cannot be directly translated to the classification setting, but it indicates that the LASSO
is a good procedure more generally.

Contrary to ridge regression, there is no explicit expression for b̂LASSO, but it is
easy to calculate through convex optimization techniques. In most practical situations,
a priori knowledge of a good value of c or λ is unavailable, and the parameter
is found through cross-validation. Efron et al. (2004) suggest the LARS-algorithm,
which calculates the full path of b̂LASSO,j(λ) as a function of λ for j = 1, . . . , p, by
utilizing that the solution is piecewise linear. The computational complexity of LARS is
O(np min(n, p)), and it thus makes the cross-validation approach attractive. A sketch of
the LARS-algorithm is found in Section 5.6.4. In some situations, a coordinate descend
algorithm is faster than LARS in obtaining the full path of LASSO-coefficients.

The LASSO has experienced much success due to its simple formulation and
computational algorithms, as well as its nice theoretical properties. It does have some
limitations though. First, it cannot include more than n variables. Secondly, though
the LASSO incorporates the covariance structure, it have a tendency to include only
one or a few variables from a group of very correlated variables, where one often
wants to include all of them. In fact, Zou and Hastie (2005) show that if variable
i and j are perfectly correlated, and b̂LASSO,i and b̂LASSO,j are their corresponding
LASSO estimates, then all estimates of the form b̂∗LASSO,i = β(b̂LASSO,i + b̂LASSO,j) and
b̂∗LASSO,j = (1− β)(b̂LASSO,i + b̂LASSO,j) for β ∈ [0, 1] are LASSO solutions as well. This
means that the most sparse LASSO solution only estimates one of those two coefficients
as nonzero. On the other hand, when a strictly convex penalization function is applied
instead of the `1 penalty, both coefficients have a unique solution where b̂i = b̂j,
according to Zou and Hastie (2005).

The elastic net was proposed by Zou and Hastie (2005) to solve these problems of
the LASSO, while retaining some kind of sparsity. For parameters λ1 and λ2 define



18 Chapter 1 · Introduction

augmented data as

X∗ =
1

1 + λ2

(
X√
λ2 Ip

)
, y∗ =

(
y
0p

)
.

Then the elastic net is b̂EN =
√

1 + λ2b̂∗EN, where

b̂∗EN = arg min
b

{
|y∗ − X∗b|22 +

λ1√
1 + λ2

|b|1
}

.

That is, the elastic net is a scaled version of the LASSO applied to the augmented
data with transformed penalty parameter. Contrary to b̂LASSO, b̂EN is able to have all
coordinates nonzero. It turns out that b̂EN = (1 + λ2)b̂′EN, where

b̂′EN = arg min
b

1
n |y− Xb|22 subject to β|b|1 + (1− β)|b|2 ≤ c,

for some β between 0 and 1. Thus, the elastic net is an intermediate between LASSO
and ridge regression. The elastic net maintains most positive characteristics of both
LASSO and ridge regression, and it often achieves a better precision in prediction
when compared to the LASSO. A disadvantage, though, is its higher computational
complexity, since it involves cross-validation in two parameters.

Figure 1.1 illustrates the behaviour of the LASSO, ridge regression and elastic net
with β = 0.5, for p = 2. For the penalized classifiers, the curves mark the boundary
of the feasible set, that is the set of b’s fulfilling |b|1 ≤ c, |b|22 ≤ c, and |b|1 + |b|22 ≤ 2c,
respectively. Note that b̂OLS exists (for n ≥ 2), and is the minimizer of g(b) = 1

n |y− Xb|22.
The contours of g are marked by dotted curves. The penalized solutions for b̂ are found
where these contours first intersects their respective feasible set. One can sense that
when considering the LASSO, this often happens in an axis point, which on the other
hand very rarely occurs regarding the intersection with the ridge curve. The elastic net
is an intermediate of those two, which can be sparse, but this happens less frequent
than for the LASSO.

The approach considered in this section have been extended in multiple directions.
One option is to consider the class of bridge estimators defined for γ > 0 as

b̂bridge(λ, γ) = arg min
b

{
1
n |y− Xb|22 + λ

p

∑
j=1
|bj|γ

}
,

which includes both the LASSO and ridge regression. Huang et al. (2008) consider
properties of bridge estimators with regard to variable selection when 0 < γ < 1. When
1 < γ < 2, the shape of the restriction of a bridge classifier is very similar to one of an
elastic net as in Figure 1.1. Small deviations around the axes are fundamental, though,
since the elastic net performs variable selection, whereas the bridge classifier does not.

Finally, an example of a more complicated penalty function is the Smooth Continuous
Absolute Deviation (SCAD) penalty from Fan and Li (2001). Other possible extensions
in penalized regression is to replace |y− Xb|22 in the minimization criteria by a more
general, but preferably convex, loss functions Lb(X, y). This includes an extension
of obvious application in classification, namely to replace the prediction function
f (X) = Xb by the prediction function from logistic regression. Due to its confined
relevance for this thesis, we refer to Bühlmann and van de Geer (2011) for further
information on those last extensions.
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b1

b2

b̂OLS

Figure 1.1: Comparison of LASSO (dashed), ridge regression (dashed-dotted), and elastic net
with β = 1/2 (full) in a two-dimensional situation. Contours of the value of 1

n |y − Xb|22 are
marked by dotted lines.

1.7 The imbalance problem

A problem which has been generally overlooked or ignored in the above described
work on classification is the imbalance problem, where the number of observations in
the groups of the training data differ. Within the last couple of decades, this issue has
had some attention, but even today most researchers in the statistical as well as broader
scientific fields do not take the issue into account (Shipp et al., 2002; Ramaswamy
et al., 2002; Fan et al., 2012). In this section, we describe the background of the problem
with the independence rule as a simple, illustrative example. We furthermore review
methods for handling the imbalance, including a variety of over- and undersampling
methods. Most of these methods have been shown empirically to work well. We refer
to Chapter 3 for a deeper theoretical analysis of the imbalance problem.

In real life, imbalanced data sets are the rule, not the exemption. Even when an
experiment is designed to have equal sample size in all groups, imbalance often occurs
due to missing data points, patients dropping out or dying from external reasons etc.
Furthermore, in some groups the amount of data might be limited due to e.g. few
patients available with a specific disease, while the control group can be much larger.
In such instances the imbalance problem is unavoidable unless one accepts a generally
low sample size. Methods to handle imbalance should therefore be of broad demand.
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In binary imbalanced settings, the group with most observations is called the
majority group while the other is called the minority group. An imbalance can have
an intrinsic or extrinsic origin. Intrinsic imbalance occurs when the proportion of two
varieties differs in the population, that is π0 6= π1, for example when one compare a
group of cancer patients to a control group. Note, though, that in designed experiments,
imbalance in the population does not necessarily lead to imbalanced data sets. Extrinsic
imbalance occurs due to the way the data are collected, for example when studying
the difference in health conditions between genders on a population level by collecting
data only among PhD students at the math department at a given university.

It is worth mentioning, that often a classification problem is considered imbalanced
only when the difference in sample size among groups is sufficiently large (Blagus
and Lusa, 2010; Chawla et al., 2002; He and Garcia, 2009). As illustrated for the
independence rule in Section 1.7.1, the problem arises as soon as n0 6= n1, though, and
in Chapter 3 we see that even small imbalances can have drastic consequences in the
high-dimensional case.

In the following, we make use of the group wise probability of correct classification
(POCC) defined by

POCCk = P
(
ξ(z) = k | z from group k

)
,

which is also known as the group specific accuracy. Note that 1− POCCk equals the
classification error of group k.

1.7.1 The imbalance problem for the independence rule

The imbalance problem occurs for most common classifiers, but for simplicity we now
address the issue by considering the independence rule in a situation with independent
variables. When performing no thresholding, the independence rule is build from the
function

D(z) =
p

∑
i=1

(zj − x̄0j)
2 − (zj − x̄1j)

2

s2
j

. (1.22)

When the imbalance is expected to be intrinsic, imitating Bayes rule, the independence
rule classifies to 1

{
D(z) > log(n0/n1)

}
. Bayes rule puts more weight on the majority

group, and is thus not optimal if one wants POCC0 = POCC1, and we apply instead
1{D(z) > 0} irrespective of the imbalance being intrinsic or extrinsic.

The mean value of a term in (1.22), corresponding to a variable with no differential
expression, is σ2

j (1/n0 − 1/n1) f /( f − 2) where f = n0 + n1 − 2. This gives the inde-
pendence rule a preference for classifying to the majority group. This bias, due to the
varying precisions of the estimates of µ0 and µ1, arises whenever n0 6= n1, also for
small p. However, for large p it gets destructive, and classification to the minority group
can be almost impossible even for fairly moderate imbalances. Note that the problem is
worse for smaller sample sizes when the imbalance ratio is held constant.

When thresholding the terms in (1.22), the classification bias between the two groups
is decreased, but not eliminated. Actually, the irrelevant variables selected through
thresholding are the ones that cause the largest bias, as illustrated in Section 3.2. Thus,
if the number of variables is decreased to one tenth of the original number through
thresholding, it is optimistic to expect the same amount of decline in the bias.

Intuitively, the reason that the independence rule works poorly in imbalanced
situations can be explained as follows. Assume without loss of generality that n0 > n1.
Then we expect x̄0 to be a more accurate estimate than x̄1. When µ0j = µ1j, the j’th
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coordinate of a new observation is thus on average closer to x̄0j than x̄1j. Summarizing
this effect over all variables makes classification to the minority group almost impossible
in high-dimensional situations.

It is important to realize, that since the bias between groups is inherent in the
classification procedure, it cannot be avoided by applying alternative performance
measures. In Blagus and Lusa (2013), improved variants of NSC are proposed, where
the value of the threshold is selected by considering the G-mean:

G-mean =
√

POCC0 · POCC1,

While such procedures can decrease the classification bias in some instances, they
cannot generally remove it.

In many situations, it is desirable to have different POCCs between groups. For
example, when screening a population for a specific cancer type, one typically wants a
larger probability of detecting an increased risk of disease, than for correct assignment
to the non-risk group. In such situations, the independence rule gives a bias in the
opposite direction than desired.

1.7.2 Imbalanced classifiers

In the following, we consider classification between two groups with nmaj observations
in the majority group, and nmin observations in the minority group. Since the bias
problem occurs due to different sample sizes in the groups, the most obvious remedy
is to adjust the data such that equal sample size is achieved. The simplest way of doing
this is by either over- or undersampling (downsizing).

In random oversampling (ROS), one randomly replicates observations from the
minority group until it reaches the size of the majority group. Notice that this does
not enables the minority group to span a larger fraction of the sample space. Contrary
to this, if one obtained more real observations from the minority group, one would
hardly expect all of them to lie in the convex hull of the original observations. When
considering the independence rule, it is shown in Chapter 3 that the imbalance problem
is increased by applying ROS as well as some other oversampling procedures.

In Chawla et al. (2002), an extension of oversampling is proposed under the name
Synthetic Minority Oversampling Technique (SMOTE). Instead of direct resampling of
the minority observations, one samples random points on the line segments between
minority observations. The method is simple: For each observation in the minority
group, its h nearest neighbours within the minority class are found, where a reasonable
value of h could be 5. For an original observation x and one of its neighbours x′,
u ∼ U(0, 1) is generated, and a new observation is defined as x∗ = x + u(x′ − x). If
the imbalance is large, multiple new observations can be generated along each line
segment, whereas for almost balanced groups only a random subset of the artificial
observations are added to the minority group.

Random undersampling (RUS), removes the bias by using only n1 observations
from the majority group, at the cost of omitting some of the available data, which
is clearly not optimal. This can be solved by multiple undersampling, where RUS
is repeated a number of times, and a sub-classifier is calculated for each repetition.
The conclusion is reached through voting of the sub-classifiers. A slightly different
version of multiple undersampling is EasyEnsemble from Liu et al. (2009). Here, q
subsets A1, . . . , Aq are chosen such that Ai ⊆ {1, . . . , nmaj} and |Ai| = nmin, and a
sub-classifier 1

{
H(z; Ai) − αi > 0

}
is calculated, where H(z; Ai) can be built from
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multiple sub-sub-classifiers. A final ensemble classifier is defined as

1
{ q

∑
i=1

H(z; Ai)− αi > 0
}

. (1.23)

Regarding undersampling, a natural question is whether subsampling can be done
in a more clever way than simply sampling at random, so that more information is
obtained from each sampled observation. We now describe two extensions following
this line of thought.

Yang et al. (2014) propose Sample Subset Optimization Technique (SSO) which can
be applied to ones preferred classifier. Their suggestion is to split the dataset into a
number of cross-validation folds q. When leaving out the observations in one fold as
a test set, a good subset of observations from the majority group is searched in the
remaining folds in terms of test error. In this way, q subsets A1, . . . , Aq of suggested
optimal majority subsets are obtained. The nmin majority observations appearing with
highest frequency in these optimal subsets are thus selected for inclusion in the final
classifier, while all other majority observations are ignored. Some information is lost
when applying SSO, but it is probably less as compared to RUS.

BalanceCascade, suggested by Liu et al. (2009), is an extension of EasyEnsemble
which is able to handle larger imbalances due to an iterative method of selecting subsets.
In the first step, A1 is selected at random and used in the first sub-classifier H1(z; A1)

along with all observations in the minority group. The decision threshold α1 is adjusted
such that the classification error of the majority group, 1− POCCmaj, is (approximately)
r = q−1

√
nmin/nmaj, when classifying by 1

{
H1(z; A1)− α1 > 0

}
. Majority observations

which are correctly classified by this classifier are removed from the majority group,
and A2 is randomly selected among the remaining majority observations, leading to
H2(z; A2). Once again, the threshold α2 is chosen such that 1

{
H2(z; A2)− α2

}
fulfils

1− POCCmaj ≈ r. This procedure is repeated q times in total. Finally, all sub-classifiers
are combined as in (1.23). The adjustment of the decision threshold makes sure that
the majority group includes at least nmin observations at the execution of the last step.

Finally, we turn to a method unrelated with sampling strategies. Proposition 5 of
Jensen (2006) shows that NSC reduces the bias in imbalanced situations. Tibshirani
et al. (2003) further suggest an adjusted version of NSC, which repairs the imbalance
problem though it is not its explicit purpose: Calculate ξ I(z), with x̄0j replaced by x̃0j
as in (1.10), while x̄1j is replaced by

x̃1j =

aj if |tj| < θα,

x̄1j − (1− 1
θ )

n0
n0+n1

(x̄1j − x̄0j)− sgn(x̄1j − x̄0j)αsj

√
1

n1
− 1

n if |tj| ≥ θα.

For each value of the threshold α, it is now possible to find a value of θ such that the
variables with no actual influence do not systematically give any of the groups an
advantage over the other, see Jensen (2006) for details.

1.8 Review of the thesis

In this section we give a description of the problems considered in the succeeding
chapters of this thesis and state the main conclusions.

1.8.1 Chapter 2: Classification error of the thresholded independence rule

In Chapter 2 the thresholded independence rule is considered in a situation of two
p-variate normal distributions when log(p)/n→ ∞. From Bickel and Levina (2004), it
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is known that a classification superior to random guessing can be conducted under
the parameter restrictions in (1.4). When aiming at application in microarray settings,
these restrictions are in our opinion inappropriate. We thus consider relaxing them in
the discussion below. A more detailed discussion can be found in the master thesis of
Morten Fenger-Grøn (Grøn, 2007).

Consider first the covariance matrix, where Bickel and Levina (2004) assume an
upper as well as a lower bound on the eigenvalues. This is implied by having both
the variances and the eigenvalues of the correlation matrix bounded above and below.
The boundedness of the variances appears reasonable, at least after a transformation.
The upper bound of the correlation matrix is assured if the sum of the correlations
of each variable with all the other variables are upper bounded, which we consider
reasonable in microrarray settings. We do not have a justification for the lower bound
of the eigenvalues of the correlation matrix Σ0.

Next, when considering the assumptions of the mean values, (1.5) is extremely
restrictive since all coordinates apart from the first few ones are required to be very
close to zero. In microarray analysis this rarely happens, but we do expect that the
differential expression is close to zero for most genes. Substituting µ by ∆ in (1.5)
will not fulfil our purpose though, since we do not expect a priori knowledge of the
positions of the differentially expressed genes.

Based on the discussion of (1.4) and (1.5) above, we define the following parameter
space

Θ =
{

θ : ∀j cD
1 ≤ σ2

j ≤ cD
2 , λmax(Σ0) ≤ c2, θ ∈ B

}
,

where cD
1 , cD

2 and c2 are positive constants, and B is either B1 or B2 where

B1 =
{

θ : #{j : |δk| ≥ α
2} ≤ bnn, #{j : |δk| > c0} ≥ 1

}
,

for δj = ∆j/σj, c0 a constant, and bn → 0 as n→ ∞, or

Kn = #{k : |δj| > 2α} ≥ 1

B2 =
{

θ : #{j : α
2 ≤ |δj| ≤ 2α} ≤ c1Kn

}
.

Note that neither B1 nor B2 require most variables to have differential expression
equal to zero, but only that the majority of the expressions are small.

Our main result provides an upper asymptotic bound of the classification error
of the thresholded independence rule on Θ. Contrary to (1.6), which gives an upper
bound of the worst case classification error of the full parameter space, we instead find
an asymptotic bound of the classification error for any θ ∈ Θ.

Our result uses that perfect separation between expressed and non-expressed
variables is obtained asymptotically. This separation rarely occurs in finite sample
scenarios. An extension of our theorem shows that the conclusion remains valid when
the threshold is chosen such that a fixed number of false detected variables are allowed.

While being an extension of Bickel and Levina (2004), our result is also related
to Fan and Fan (2008) and Donoho and Jin (2009). Compared to Fan and Fan (2008),
our main improvement is that our result is proved for Σ 6= Ip, whereas FAIR is only
heuristically justified for such Σ. A comparison of the upper bounds of the classification
error in our result and Fan and Fan (2008) are given in Chapter 2.

In our setting, the expression levels of the differentiable expressed variables are
allowed to vary, whereas Donoho and Jin (2009) require all nonnull variables to be equal.
The number of nonzero coefficients in B1 and B2 are defined with respect to n, while
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Donoho and Jin (2009) use p as the driving parameter. This means that the situations
covered differ for the two results. For instance, the situation B1 with bn = log(p)/n is
not included in the setting of Donoho and Jin (2009).

FAIR and HC thresholding suggest directly applicable methods for selecting the
threshold in data situations, whereas our main result is of a more theoretical nature.
Our extension selects a specific threshold fulfilling an upper bound of the expected
number of false discoveries, and is thus more directly applicable. No optimality result
exists for the resulting value of threshold, though. Actually, in situations included in
the setting of Donoho and Jin (2009), we must expect this threshold to be too large to
obtain an optimal classification, since it leads to a low FDR when p is large.

1.8.2 Chapter 3: High-dimensional classifiers in the imbalanced case

Chapter 3 considers the imbalance problem introduced in Section 1.7 restricted to a
situation with independent variables, such that Bayes rule corresponds to the inde-
pendence rule. To the best of our knowledge, this situation has not previously been
considered from our analytical point of view. We consider theoretically the behaviour
of the thresholded independence rule, and clearly see that the bias can be very large in
high-dimensional situations, even for rather small imbalances.

The in-depth understanding of the reasons behind the failure of the independence
rule leads to the introduction of two new classifiers. The first one is called the bias
adjusted independence classifier (BAI classifier). The justification for BAI is through
subtracting the bias from the independence classifier, as if the variables were non-
differentiable expressed, leading to

B0(z) =
p

∑
j=1

x̄0j − x̄1j

s2
j

[
zj −

1
2
(x̄0j + x̄1j) +

ρ

2
(x̄1j − x̄0j)

]
w(tj),

where ρ = (n0 − n1)/(n0n1). Regarding the weight function w(t), our main focus is on
hard thresholding. In B0, a bias of unknown size from the differentially expressed vari-
ables remains, which is estimated by leave-one-out cross-validation and subsequently
subtracted. BAI is thus defined as classifying to group 0 when B(z) < 0 and to group 1
otherwise, where

B(z) = B0(z)−
1
2

[ 1
n0

n0

∑
i=1

B0(x0i; x0i) +
1
n1

n1

∑
i=1

B0(x1i; x1i)
]
,

and B0(z1; z2) denotes B0 calculated from all available training data except for z2, and
afterwards applied to z1.

To state our second proposed classifier, let x̄kj(i) be the k’th group average with
the respective i’th observation left out, and let s2

j (xki) be the within group variance
when xki is left out. The corresponding t-statistic is denoted tj(xki). The leave one out
independence classifier (LOUI classifier) is defined as

L(z) =
1
2

p

∑
j=1

[ 1
n0

n0

∑
i=1

x̄1j − x̄0j(i)
s2

j (x0i)
(zj − x0ij)w

(
tj(x0i)

)
+

1
n1

n1

∑
i=1

x̄1j(i)− x̄0j

s2
j (x1i)

(zj − x1ij)w
(
tj(x1i)

)]
.

The reasoning behind LOUI is that, from a certain point of view, it reestablish indepen-
dence between x̄1 − x̄0 and x̄1 + x̄0.
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Both of the suggested classifiers result in a tiny bias of no practical importance
in classification. When considering the resulting probabilities of correct classification
analytically, the behaviour of BAI and LOUI are very alike. In an empirical study, they
are further compared to EasyEnsemble with the thresholded independence rule as
sub-classifier. Both BAI and LOUI slightly outperform EasyEnsemble in our scenarios,
and BAI furthermore includes fewer variables, which makes it more attractive from an
experimentalist and interpretative point of view.

A small simulation study shows that the BAI and LOUI classifiers can be generalized
and combined with ROAD, which enables them to handle imbalance also in correlated
situations.

In an appendix, a general formulation of oversampling is proved to increase the
bias of the independence rule. This general form of oversampling includes ROS and a
method familiar to SMOTE. This advices one to be careful when applying oversampling
also in more general situations.

1.8.3 Chapter 4: On oracle efficiency of the ROAD classification rule

In Theorem 1 of Fan et al. (2012), the classification errors of the empirical ROAD and
the oracle ROAD are concluded to be close under specific restrictions. In Chapter 4, we
point out an error in the original proof, and further reformulate and prove the theorem
under adjusted assumptions.

The major difference between our result and Theorem 1 is that the sparseness
of wROAD is not included in neither the assumptions nor the result in our corrected
theorem. This extends the applicability of ROAD. While Fan et al. (2012) require the
eigenvalues of the covariance matrix to be bounded below, our only restriction related
to the covariance is that |Σ|∞ should be upper bounded. Following the discussion in
Section 1.8.1, this is a realistic scenario in microarray settings. We furthermore include
minor extra restrictions on the mean values and mean difference in our theorem, which
in our opinion were missing in the original result.

1.8.4 Chapter 5: A numeric comparison of sparse linear classifiers
incorporating covariance

In Chapter 5 an extensive simulation study is performed to compare various classifiers
in correlated settings. The considered classifiers are ROAD from (1.20) calculated from
the algorithms of both Fan et al. (2012) and Wu et al. (2011), LPD from (1.5.2), and a
new suggestion, namely the Linear Lasso Discriminant (LLD) defined by

wLLD = arg min
w:|w|1≤c

1
p
|Σw− ∆|22.

The theoretical properties of the various classifiers are summarized, and all of the
applied algorithms are described. The simulations are performed in 19 different settings
with small, moderate and large correlations, and p varying between 100 and 1000. We
fix n0 = n1 = 50, which is rather low when comparing to related simulation studies,
but we consider sample sizes of that order more realistic in microarray settings.

Our main interest in the simulations is to find the classifier that minimizes the
classification error, but we consider other aspects as well. The two algorithms for ROAD
result in correlated, but different, classifiers. None of the classifiers generally have
lower classification error than the others, but ROAD and LPD tend to be the better
options in most situations. LLD works poorer than the other classifiers, unless p = 100.
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In our implementations, ROAD is by far the fastest classifier to calculate, and,
contrary to theory its computational complexity appears linear in p. LPD and LLD
is less sparse than ROAD. No significant difference in the ability to estimate wBayes

with respect to `2 error is seen for ROAD and LPD, though ROAD is slightly better at
estimating large, nonzero elements of wBayes precisely.
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2
Classification error of the thresholded

independence rule

Britta Anker Bak, Morten Fenger-Grøn and Jens Ledet Jensen

Abstract

We consider classification in the situation of two groups with normally distributed data
in the ‘large p small n’ framework. To counterbalance the high number of variables we
consider the thresholded independence rule. An upper bound on the classification error
is established which is taylored to a mean value of interest in biological applications.

2.1 Introduction

Many modern measurement devices are of the high throughput type, whether that
be chemometrics measurements (Savorani et al., 2010), medical imaging problems
(Garzon et al., 2011) or microarray based techniques for cancer classification (Dyrskjøt
et al., 2003). From a statistical point of view the challenge is to handle situations where
the number of variables p is much larger than the number of samples n. Often the
number of actually relevant variables are much less than p and variable selection is
necessary. This is often done by either thresholding or the LASSO (Tibshirani, 1996) and
extensions hereof. For a thorough overview of the LASSO see Bühlmann and van de
Geer (2011).

In this paper we consider classification into two groups based on a p-dimensional
vector, and take our inspiration from a cancer setting where the two groups, as an
example, can be two subtypes of a cancer and where the measurements come from a
microarray. In the classical setting, with p fixed and n→ ∞, the solution to the classifi-
cation problem is well established, but when the number of variables becomes large
compared to the number of observations the situation is much less straightforward.

When the parameters are known the optimal classifier is Bayes rule, see Mardia et al.
(1979). However, when p/n → ∞ Bickel and Levina (2004) prove that the estimated
version of Bayes rule, known as Fishers rule, asymptotically is no better than a random
guess. Intuitively, the estimation of an increasingly large number of covariances makes
the generalized inverse of the covariance matrix less and less precise. Avoiding the
estimation of the increasing number of covariances naturally leads to the independence
rule, also known as naive Bayes, where the covariance matrix in Fishers rule is replaced
by its diagonal. Bickel and Levina (2004) discuss this rule and find an upper bound for

29
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the classification error when log(p)/n→ 0, and with a restrictive setting for the mean
values of the variables.

In this paper we consider a setting, aimed at a microarray experiment, where the
number of variables carrying information for discrimination may be increasing with n,
although the majority of variables are irrelevant. To get rid of the irrelevant variables
the thresholded version of the independence rule is considered, that is, only variables
for which the t-statistic is significantly large are included. Fan and Fan (2008) show that
in a suitable setting for p and n tending to infinity, the t-statistic can, with a probability
tending to one, separate the variables with a nonzero mean difference between the two
groups and those variables with a zero difference. This points to the relevance of the
thresholded independence rule.

We prove in this paper an upper bound for the classification error resembling that
of Bickel and Levina (2004), but allowing for a quite different set of conditions on the
mean values of the variables. Section 2.2 contains the setup of the paper and states the
main result. The proof is given in Section 2.3 and the appendix in Section 2.5 collects all
the basic inequalities used in the proof. The appendix in Section 2.6 gives an extension
of the main theorem where a constant number of expected false positives are allowed.

2.2 Notation and main result

Based on n0 observations from group 0 and n1 observations from group 1 of a p-
dimensional vector x, we construct a classifier ξ that maps an observation x to one of
the two groups, ξ(x) ∈ {0, 1}. Let the training data be xij, i = 0, 1, j = 1, . . . , ni. Then for
an observation x from group 0 the classification error is W(ξ, θ) = Pθ(ξ(x) = 1 | {xij}),
where θ parametrizes the distributions. Our aim is to control the classification error
W(ξ, θ) uniformly for θ in a chosen set (and at the same time controlling the classifica-
tion error for an observation from group 1). We consider a setup where an observation
x is p-variate normal with mean µi dependent on the group i = 0, 1, and covariance
matrix Σ. For the training set we assume that κ1 ≤ n0/n1 ≤ κ2, for some positive
constants κ1 and κ2.

First we introduce the notation used throughout the paper. The diagonal matrix
with variances σ2

k , k = 1, . . . , p, is denoted D, and the correlation matrix is Σ0 =

D−1/2ΣD−1/2. The difference between the means ∆k = µ1k − µ0k, k = 1, . . . , p, is called
the differential expression and δk = ∆k/σk the scaled differential expression. The
average of the kth variable in group i is x̄ik, and the observed differential expression
is dk = x̄1k − x̄0k. The pooled variance estimate for the kth variable is s2

k ∼ σ2
k χ2(n)/n,

with n = n1 + n2 − 2, and D̂ is the diagonal matrix with entries s2
k .

The theoretical optimal classifier when the parameters are known, Bayes rule, is
defined as

ξB(x) = 1
{

∆TΣ−1(x− 1
2 (µ0 + µ1)

)
> 0

}
with W(ξB, θ) = Φ

( 1
2 (∆

TΣ−1∆)1/2).
Here Φ(x) = 1−Φ(x) is the tail of the standard normal distribution, and W(ξB, θ) is
known as Bayes risk. Replacing Σ by its diagonal we get the theoretical independence
rule

ξTI(x) = 1
{

∆TD−1(x− 1
2 (µ0 + µ1)

)
> 0

}
with

W(ξTI, θ) = Φ
(

∆TD−1∆
2(∆TD−1ΣD−1∆)1/2

)
,
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and where the independence rule ξ I is obtained on replacing parameters by their
estimates. Bickel and Levina (2004) obtain the upper bound Φ(c

√
K0/(1 + K0)) for

EW(ξ I , θ) over a subset of {∆, Σ : ∆TΣ−1∆ ≥ c} and where K0 is an upper bound on
λmax(Σ0)/λmin(Σ0) with λmax and λmin the largest and smallest eigenvalue of Σ0.

The classifier we consider is a thresholded version of the independence rule. For
this we define

tk =
dk√
s2

k/m
, m =

n0n1

n0 + n1
, and Ik = 1{|tk| >

√
mα},

∆̂k = dk Ik, and µ̂ik =

{
x̄ik if Ik = 1,

n0
n0+n1

x̄0k +
n1

n0+n1
x̄1k if Ik = 0.

The classifier is
ξ(x) = 1

{
∆̂TD̂−1(x− 1

2 (x̄1k + x̄0k)
)
> 0

}
.

The threshold α that appears in the definition depends on n, α = αn, but for notational
convenience we hide this dependency.

The model is parametrized by θ = (µ1, µ2, Σ) and the parameter space we consider
is defined in two steps. The first step restricts the covariance matrix Σ and the second
step restricts the mean values µ0 and µ1. We define

Θ =
{

θ : ∀k cD
1 ≤ σ2

k ≤ cD
2 , λmax(Σ0) ≤ c2, θ ∈ B

}
, (2.1)

where cD
1 , cD

2 , c2 are positive constants, λmax is the maximal eigenvalue and B is a set
putting restrictions on the mean values. For the set B we consider two possibilities. The
first covers the case when the number of differentiable expressed variables, with an
expression above α/2, is of smaller order than n and at least one of the differentiable
expressions is not small,

B1 =
{

θ : #{k : |δk| ≥ α
2} ≤ bnn, #{k : |δk| > c0} ≥ 1

}
, (2.2)

where c0 is a constant and bn → 0 as n → ∞. In the second case we do not restrict
the number of differentiable expressed variables, instead we require that there is not a
disproportionally large number of expressed variables around the threshold α,

Kn = #{k : |δk| > 2α} ≥ 1

B2 =
{

θ : #{k : α
2 ≤ |δk| ≤ 2α} ≤ c1Kn

}
, (2.3)

where c1 is a constant. Note that in the specification of the parameter space the
dependency on n has been hidden. The important point is that the c-constants are
independent of n.

To formulate our main result we let PΘ−−→ denote uniform convergence in probability,
that is Xn

PΘ−−→ 0 if for all ε1 > 0 and ε2 > 0 there exists n(ε1, ε2) such that P(|Xn| >
ε1) < ε2 for n > n(ε1, ε2) for all θ ∈ Θ. Similarly, P<−−→ denotes onesided uniform
convergence, that is |Xn| is replaced by Xn in the above statement.

Theorem 2.1. Let p tend to infinity with n in such a way that log(p)/n = τn → 0, and let
α ≥ cατ

1/2−γ
n where cα > 0 and 0 < γ < 1

2 . Consider the parameter space given through (2.1)
and either (2.2) or (2.3). Then

W(ξ, θ)−Φ
(

1
2
√

c2

√
∑

k:|δk |>2α

δ2
k

)
P<−−→ 0.
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Remark 2.2. By exchanging the group labels it is clear that the upper bound of Theorem 2.1
applies also to the classification error for a new observation from group 1. Furthermore, the
formulation of Theorem 2.1 allows for a triangular array where means and variances depend
on n.

Remark 2.3. The result in Theorem 2.1 differs in two ways from the result in Bickel and Levina
(2004). Firstly, we only use a restriction on the maximal eigenvalue of Σ0 whereas both the
maximal and the minimal eigenvalue enter the bound of Bickel and Levina (2004). Secondly,
where we have the term ∑k:|δk |>2α δ2

k the situation in Bickel and Levina (2004) (looking into
their proof) is comparable to the sum ∑k δ2

k . The difference comes from less assumptions on
the mean values in our case, achieved by using the thresholded version of the independence
rule. Furthermore, for the setup in Bickel and Levina (2004) we have for any sequence kn → ∞
that ∑k δ2

k − ∑k≤kn δ2
k → 0, and since |∑k≤kn δ2

k − ∑k≤kn :|δk |>2α δ2
k | ≤ 4knα2, we can take

kn = 1/α so that when α→ 0 the two bounds are equivalent.

The proof of the theorem is given in the next section. We use a number of inequalities
for the normal distribution and for the t-distribution that we have gathered in an
appendix.

2.3 Proof

We start by stating and proving a fundamental lemma. To this end we define for a
p-dimensional vector a and a symmetric, nonsingular p× p matrix M

ΨΣ(a, M) =
aT M−1a

2(aT M−1ΣM−1a)1/2 ,

and let ω(D̂) = max{maxk s2
k/σ2

k , (mink s2
k/σ2

k )
−1}.

Lemma 2.4. Let the covariance matrix Σ satisfy the bounds stated explicitly in (2.1). Then
ω(D̂)

PΘ−−→ 1 and if

∑k:∆̂k 6=0(µ̂0k − µ0k)
2/σ2

k

∑k:∆̂k 6=0 ∆̂2
k/σ2

k

PΘ−−→ 0, (2.4)

we have

W(ξ, θ)−Φ(ΨΣ(∆̂, D̂))
PΘ−−→ 0. (2.5)

Furthermore, on Θ we have:

2ΨΣ(∆̂, D̂) ≥ 1
ω(D̂)

√
c2
|D−1/2∆̂|. (2.6)

Proof. From the multivariate normal distribution we find that

W(ξ, θ) = Φ
(

ΨΣ(∆̂, D̂) +
∆̂TD̂−1(µ̂0 − µ0)

2(∆̂TD̂−1ΣD̂−1∆̂)1/2

)
= Φ

(
ΨΣ(∆̂, D̂)

(
1 +

2∆̂TD̂−1(µ̂0 − µ0)

|D̂−1/2∆̂|2
))

.
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Using Lemma 2.5(ii) we see that we need only show that the last term in the inner
parenthesis tends to zero uniformly. Using the Cauchy-Schwarz inequality we find

|∆̂TD̂−1(µ̂0 − µ0)|
|D̂−1/2∆̂|2

=

∣∣∣∑k:∆̂k 6=0
∆̂k
sk

(µ̂0k−µ0k)
sk

∣∣∣
∑k:∆̂k 6=0 ∆̂2

k/s2
k

≤

√
∑k:∆̂k 6=0 ∆̂2

k/s2
k

√
∑k:∆̂k 6=0(µ̂0k − µ0k)2/s2

k

∑k:∆̂k 6=0 ∆̂2
k/s2

k

≤ ω(D̂)

{∑k:∆̂k 6=0(µ̂0k − µ0k)
2/σ2

k

∑k:∆̂k 6=0 ∆̂2
k/σ2

k

}1/2

.

By assumption the expression within the curly parenthesis tends to zero uniformly. For
ω(D̂) we use that s2

k/σ2
k ∼ χ2(n)/n. The Chernoff type bound given in Lemma 2.5(iii)

together with Boole’s inequality give that

P
(

max
k

s2
k

σ2
k
> 1 + ε

)
≤

p

∑
k=1

P
( s2

k
σ2

k
> 1 + ε

)
≤ e−

n
2 (ε−log(1+ε)−2τn),

with a similar bound for the minimum being less than 1− ε. Thus ω(D̂)
PΘ−−→ 1 and

(2.5) has been proven.
Finally, (2.6) follows from the inequalities

2ΨΣ(∆̂, D̂) =
∆̂TD̂−1∆̂

(∆̂TD̂−1ΣD̂−1∆̂)1/2
≥ 1√

c2

|D̂−1/2∆̂|2

|D1/2D̂−1∆̂|

≥ 1√
ω(D̂)c2

|D̂−1/2∆̂| ≥ 1
ω(D̂)

√
c2
|D−1/2∆̂|. �

Proof of main theorem. We start by proving (2.4) and then obtain the result of the theorem
from (2.6). We use the bound m ≥ nκ1/(κ2 + 1/2) = nκ3 for n1 > 4 and recall that
log(p) = nτn.

To study the denominator of (2.4) we first note that P(Ik = 1, ∀k : |δk| ≥ 2α) → 1
since the probability of the complement from Lemma 2.5(vi) is bounded by

∑
k:|δk |≥2α

P(|tk| <
√

mα) ≤ pa1e−mα2a2 ≤ a1e−nτn(κ3a2c2
ατ
−2γ
n −1) → 0. (2.7)

For case B1 of the parameter space we have from Lemma 2.5(i) that

P(|dk|/σk > c0/2))→ 1 when |δk| > c0.

For the parameter space B2 we have P(|dk|/σk > α, ∀k : |δk| ≥ 2α) → 1 since the
probability of the complement from Lemma 2.5(i) is bounded by

∑
k:|δk |≥2α

P(|dk|/σk < α) ≤ pe−mα2/2 ≤ e−nτn(κ3c2
ατ
−2γ
n /2−1) → 0.

Thus, with a probability tending to one we have that the denominator in (2.4) is
bounded by

∑
k:∆̂k 6=0

∆̂2
k

σ2
k
≥ ∑

k:|δk |>2α

Ik
d2

k
σ2

k
= ∑

k:|δk |>2α

d2
k

σ2
k
≥
{

c2
0
4 case B1,

α2Kn case B2.
(2.8)
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For the numerator in (2.4) we introduce the notation x̄k = n0/(n0 + n1)x̄0k +

n1/(n0 + n1)x̄1k, µ̄k = n0/(n0 + n1)µ0k + n1/(n0 + n1)µ1k. Note that x̄k is indepen-
dent of dk, Var(x̄k) = σ2

k /(n0 + n1) and Var(dk) = σ2
k /m. Taking expectation and using

Lemma 2.5(iv)-(v) we get for the nominator in (2.4)

E
[

∑
k:∆̂k 6=0

(µ̂0k − µ0k)
2

σ2
k

]
= E

[ p

∑
k=1

1{∆̂k 6= 0} (x̄0k − µk)
2

σ2
k

]

= E
[ p

∑
k=1

1{∆̂k 6= 0}
(x̄k − µ̄k − n1

n0+n1
(dk − ∆k))

2

σ2
k

]
=

p

∑
k=1

{
E
[
1{∆̂k 6= 0} 1

n0 + n1

]
+

n2
1

(n0 + n1)2 E
[
1{∆̂k 6= 0} (dk − ∆k)

2

σ2
k

]}
≤ ∑

k:|δk |< α
2

{
P(|tk| > α

√
m)

1
n0 + n1

+
n2

1
(n0 + n1)2 E

[
1{|tk| > α

√
m} (dk − ∆k)

2

σ2
k

]}
+ ∑

k:|δk |> α
2

1
n0 + n1

+
n2

1
(n0 + n1)2 E

[ (dk − ∆k)
2

σ2
k

]

≤
{

2pa1e−nα2a2 + bn(1 + n/m) case B1,

2pa1e−nα2a2 + (c1 + 1)Kn
( 1

n0+n1
+ 1

m
)

case B2.
(2.9)

Dividing (2.9) by (2.8) we see immediately the convergence to zero for case B1. For case
B2 the second term of (2.9) is the dominating part and dividing this by (2.8) we get

(c1 + 1)Kn
1+1/κ3

n
Knα2 =

(c1 + 1)(1 + 1/κ3)

nα2 ≤ (c1 + 1)(1 + 1/κ3)

c2
αn2γ log(p)1−2γ

→ 0.

This ends the proof of (2.4).
We next turn to the use of (2.6) to obtain the result of the theorem. We need to show

that |D−1/2∆̂|2 ≥ Sα(1 + Wn), where Sα = ∑k:|δk |>2α δ2
k and where Wn tends to zero in

probability. We write

|D−1/2∆̂|2 = ∑
k:|∆̂k |6=0

Ik
d2

k
σ2

k
≥ ∑

k:|δk |>2α

Ik
d2

k
σ2

k
.

From the argument in (2.7) all the indicators Ik in this expression are one with a
probability tending to one. Thus, we remove Ik from the expression and write dk/σk =

δk + Uk/
√

m, where the Uks are independent standard normal variables. This gives

∑
k:|δk |>2α

d2
k

σ2
k
= Sα +

2
√

Sα√
m

U +
1
m

Vn = Sα

(
1 +

2√
mSα

U +
1

mSα
Vn

)
,

where U ∼ N(0, 1) and Vn ∼ χ2(Kn).
For case B1 notice that Sα ≥ c2

0, so that 1/
√

mSα → 0, and that Kn/(mSα) ≤
bnn/(mc0) → 0. Considering case B2 we get mSα ≥ 4mα2Kn → ∞ and Kn/(mSα) ≤
α2/(4κ3 log(p)) → 0. Thus in both cases we have that |D−1/2∆̂|2 = Sα(1 + Wn) with
Wn tending to zero in probability and the result of the theorem is obtained. �

2.4 Discussion

Theorem 2.1 extends the result of Bickel and Levina (2004) to a more general structure
for the mean values in the two groups by using a thresholded version of the indepen-
dence rule. Bickel and Levina (2004) require the individual group means µjk to tend
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to zero as k→ ∞. This is not the situation in an experiment with microarray measure-
ments. Instead, in Theorem 2.1, we have restrictions on the differences µ1k − µ0k only.
Also, when δ contains m nonzero coefficients, all with differential expression c, these
coefficients can not be placed arbitrarily along the sequence δ1, . . . , δp in the setting of
Bickel and Levina (2004). In the setting of a microarray experiment we want to consider
the possibility of a number of nonzero (small) coefficients spread all over the variables.

Our approach is similar to the one considered in Fan and Fan (2008), where a
proof is given for the case Σ = I. The upper bound on the classification error in their
Theorem 5 can be compared to the bound in Theorem 2.1 on taking bn and a of their
paper equal to α and α/2, respectively. When the set of differential expressed variables
{j : δj 6= 0} is finite the two bounds agree. More generally, for the cases considered in
this paper the asymptotic upper bound by Fan and Fan (2008) is larger than the bound
from Theorem 2.1. It is possible to construct situations where the upper bound of Fan
and Fan (2008) tends to one, whereas the bound of Theorem 2.1 is strictly less than one,
as an example consider δ1 6= 0 fixed and all remaining nonzero δjs between α/2 and α.

Theorem 2.1 is an asymptotic result for n → ∞. For finite n it is of interest to
investigate whether one is close to the asymptotic situation. Looking at the proof of
Theorem 2.1 we find that the assumption α ≥ cατ

1/2−γ
n is used to make sure that

the expected number of false positives tends to zero. We turn this upside down and
let α be determined by specifying the expected number of false positives. Thus let
ωn = pP(|t| > α

√
m) be an upper bound on the expected number of false positives

among p variables, where t is t-distributed. We can then select ωn, tending to zero at a
sufficiently fast rate, and determine α from ωn.

At the intuitive level the thresholded independence rule should exclude all false
positives, as in the asymptotic case in Theorem 2.1, and include all true positives with
large differential expression. To illustrate this intuitive background, we have in Table 2.1
chosen the expected number of false positives as ωn = 0.1, chosen α accordingly,
and then calculated δ, the scaled differential expression needed in order to include a
variable in the classifier with a high probability, here taken as 0.9. With p in the order
of thousands, requiring the number of false positives to be below 0.1 imply that only
variables with a fairly high level of differential expression are detected. This hardly
gives an optimal classifier in terms of classification error. In Table 2.1 we have therefore
also included the case where the expected number of false positives is ωn = 5. We leave
it to future work to analyze theoretically the impact of including such non-expressed
variables in the classifier.

The interesting aspect of the table is the amount of differential expression needed
in order to include an expressed variable in the classifier with some certainty. In
particular we see that for moderate values of the number of observations n, the number
of variables p can be quite large still allowing for inclusion of true positives both when
ωn = 0.1 and ωn = 5.

We now take a brief look on the bladder cancer data from Dyrskjøt et al. (2003).
After prefiltering there are p = 3032 variables and two groups of patients, a group with
n0 = 15 patients having no recurrence of the cancer and a group with n1 = 16 having
recurrence. In Table 2.2 the number of positive variables and the number of expected
positives under the hypothesis of no differential expression, obtained from the t-test, is
calculated for different values of the threshold α. For these data most effects appears
to be zero or small as assumed in our result. The requirement of a low number of
expected false positives leave us with no differential expressed variables. The data still
points to a number of differential expressed variables, but the expression is small and
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Table 2.1: Threshold and differential expression needed to achieve separation. For each value of
the number of observations, n0 = n1 = n/2, and each value of the number of variables p, the
threshold α has been chosen such that the upper bound ωn on the expected number of false
positives among p variables is 0.1 and 5 respectively. The scaled differential expression δ has
been chosen such that an expressed variable is included in the classifier with probability 0.9.

ωn = 0.1 ωn = 5

n p α δ α δ

40 1000 1.37 1.82 0.94 1.37
80 1000 0.92 1.22 0.65 0.95

160 1000 0.64 0.85 0.46 0.67
160 4000 0.69 0.90 0.52 0.73
160 20000 0.75 0.96 0.60 0.81

Table 2.2: Number of observed positives and expected false positives for various values of the
threshold α in bladder cancer data from Dyrskjøt et al. (2003).

√
mα Observed positives Expected false positives

1 1195 987
1.5 615 438
2 282 167
2.5 100 56
3 35 17
3.5 5 5
4 1 1

the false discovery rate seems to be above 50%. For these data it is far from possible to
obtain perfect separation between true positives and false positives. In Dyrskjøt et al.
(2003) a classifier with 26 variables was built based on these data, but it did not prove
successful in a later follow up study (Dyrskjøt et al., 2003).

2.5 Appendix A: Lemma

In this appendix we have put together the bounds used for the normal distribution and
the t-distribution.

Lemma 2.5. Let U ∼ N(0, 1), V ∼ χ2(n)/n and t =
√

m(δ+ 1√
m U)/

√
V, where m ≥ κ3n

and n→ ∞. Then there exists constants a1 and a2 such that the following inequalities hold.

(i) For x > 0 we have Φ(x) ≤ 1
2 e−x2/2.

(ii) For x > 0 and |ε| < 1
2 we have |Φ(x(1 + ε))−Φ(x)| ≤ ε/4.

(iii) For a > 0 we have

P(V > 1 + a) ≤ exp{−n(
√

1 + 2a− 1)2/4},
P(V < 1− a) ≤ exp{−na2/4}.

(iv) For |δ| < α
2 we have P(|t| ≥

√
mα) ≤ a1e−a2α2n.

(v) For |δ| < α
2 we have E

[
1{|t| >

√
mα}U2] ≤ a1e−a2α2n.
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(vi) For |δ| > 2α we have P(|t| ≤ α
√

m) ≤ a1e−a2α2n.

Proof.

(i). This follows from

Φ(x) =
∫ ∞

x

e−z2/2
√

2π
dz = e−x2/2

∫ ∞

0

e−u2/2
√

2π
e−uxdu ≤ 1

2 e−x2/2.

(ii). This is simply the mean value theorem together with the bound yφ(y) < 1/4,
y > 0, where φ is the standard normal density.

(iii). The two bounds follows from (4.3) and (4.4) in Laurent and Massart (2000).

(iv). Let fV be the density of V and consider δ with |δ|/α ≤ ω < 1. Then we have

P(t >
√

mα) =
∫ ∞

0
Φ
(√

m(
√

vα− δ)
)

fV(v)dv

≤ P(V ≤ ω2) + Φ
(
m(ωα− δ)

)
≤ e−n(1−ω2)/4 + 1

2 e−α2m(ω−δ/α)2/2,

where the last inequality follows from the bounds (i) and (iii). For the case δ < α/2 we
use ω = 3/4 and obtain

P(t >
√

mα) ≤ e−7n/64 + 1
2 e−α2nκ3/32 ≤ a1e−a2α2n,

for suitable values of a1 and a2, and α bounded from above. For the lower tail, and
with δ ≤ α/2, we find

P(t < −
√

mα) =
∫ ∞

0
Φ(−
√

m(
√

vα− δ)) fV(v)dv

≤ P
(
V ≤ 1

2
)
+ Φ

(
−
√

mα(
√

1/2− δ
α )
)

≤ e−n/16 + 1
2 e−α2m(

√
2−1)2/8

≤ a1e−a2α2n,

for suitable values of a1 and a2, and α bounded from above.

(v). As above we consider δ with |δ|/α ≤ ω < 1. Using partial integration we have∫ ∞
z u2φ(u)du = zφ(z) + Φ(z) so that

E
[
1{t >

√
mα}U2] = ∫ ∞

0

∫ ∞
√

m(α
√

v−δ)
u2φ(u) fV(v)dudv

≤ P(V ≤ ω2) +
∫ ∞

ω2

{
z(v)φ(z(v)) + Φ(z(v))

}
fV(v)dv, z(v) =

√
m(α
√

v− δ)

≤ e−n(1−ω2)/4 + e−α2m(ω−δ/α)2/3 + 1
2 e−α2m(ω−δ/α)2/2,

where we have used xφ(x/
√

3) < 1/2 in the last inequality. As before when δ < α/2
we use ω = 3/4 and obtain a bound on the form a1 exp(−a2α2n). For the lower tail
E[1{t < −

√
mα}U2] the above argument is combined with the argument in (iv).
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(vi). For |δ| > 2α we find

P(|t| ≤ α
√

m) ≤ P(t ≤ α
√

m) =
∫ ∞

0
Φ
(√

m(α
√

v− δ)
)

fV(v)dv

≤ P
(
V ≥ 2

)
+ Φ

(√
m(α
√

2− 2)
)

≤ e−n(
√

3−1)2/4 + 1
2 e−mα2(2−

√
2)2/2,

where we have used (i) and (iii). As before we obtain a bound on the form a1 exp(−a2α2n)
for suitable a1 and a2. �

2.6 Appendix B: Selecting α to control the expected number of
false discoveries

Theorem 2.1 does not report on how the threshold α should be determined for given
values of p and n. Optimally, α should be as small as possible while the expected
number of false positives is still converging to zero. In practice it is acceptable as long
as the expected number of false positives is upper bounded by a constant as in Table 2.1,
which allows α to converge slightly faster to zero.

We continuously examine the thresholded independence rule on Θ as in (2.1) with B
either equal to B1, or equal to B2 with Kn → ∞, which is rarely a restriction since when
Kn is bounded, the situation is in most cases covered by B1. The following theorem,
similar to Theorem 2.1, holds:

Theorem 2.6. Let V be a selected constant and p tend to infinity with n in such a way that
log(p)/n→ 0. Choose the sequence of α’s such that

p · Pδ=α/2(|t| >
√

mα) = V. (2.10)

Consider the parameter space given through Θ and B1 or B2 with Kn → ∞. Then

W(ξ, θ)−Φ
(

1
2
√

c2

√
∑

k:|δk |>2α

δ2
k

)
P<−−→ 0.

Proof. The proof is based on Lemma 2.7 below. Due to Lemma 2.4 we are to prove

∑k:∆̂k 6=0(µ̂0k − µ0k)
2/σ2

k

∑k:∆̂k 6=0 ∆̂2
k/σ2

k

PΘ−−→ 0. (2.11)

At first we note that due to (2.10), we still have
√

mα ≥ t1−2V/p(n) → ∞, where
t1−2V/p(n) is the (1− 2V/p)th fractile of a t-distribution with n degrees of freedom.
Lemma 2.7(ii) gives

∑
k:|δk |>2α

P(|tk| <
√

mα) ≤ pPδ=2α(|t| <
√

mα)

≤ pPδ=α/2(|t| >
√

mα)a1e−a2α2m

≤ Va1e−a2α2m → 0,

and furthermore from Lemma 2.7(iii) we have
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∑
k:δk≥2α

P(|dk|/σk < α) ≤ pPδ=2α

( 1√
m

U + δ < α
)

≤ pPδ=α/2(|t| >
√

mα)a1e−a2α2m

≤ Va1e−a2α2m → 0.

Hereby the denominator in (2.11) is bounded below on B1 as well as B2 by the same
constants as in (2.8).

Next we study the numerator in (2.11):

E
[

∑
k:∆̂k 6=0

(µ̂0k − µ0k)
2

σ2
k

]
≤ ∑

k:|δk |< α
2

{
P(|tk| > α

√
m)

1
n0 + n1

+
n2

1
(n0 + n1)2 E

[
1{|tk| > α

√
m} (dk − ∆k)

2

σ2
k

]}
+ ∑

k:|δk |> α
2

1
n0 + n1

+
n2

1
(n0 + n1)2 E

[ (dk − ∆k)
2

σ2
k

]
.

The last sum is upper bounded as in (2.9) for both B1 and B2. For B1 we therefore
obtain by Lemma 2.7(i):

E
[

∑
k:∆̂k 6=0

(µ̂0k − µ0k)
2

σ2
k

]
≤ V

( 1
n0 + n1

+ a1α2
)
+ e−n(a2−

log(p)
n ) + bnn

( 1
n0 + n1

+
1
m

)
→ 0.

Combining the numerator and denominator provides the desired convergence to zero
for B1.

We now turn to B2. With K = (c1 + 1)(1 + 1/κ3) the quotient in (2.4) is bounded
above:

V( 1
n0+n1

+ a1α2) + α2e−n(a2−
log(p)

n ) + K Kn
n

Knα2

≤ V
Kn

(
1

(n0 + n1)α2 + a1 + e−n(a2−
log(p)

n )

)
+

K
nα2

→ 0,

so (2.11) holds by the extra assumption Kn → ∞.
The inspection of |D−1/2∆̂| is accomplished exactly as in Theorem 2.1. �

Lemma 2.7. Let U ∼ N(0, 1), V ∼ χ2(n)/n and t =
√

m(δ+ 1√
m U)/

√
V, where m ≥ κ3n

and n→ ∞. Then (i) to (iii) below hold:

(i) If |δ| < α
2 then E[1{|t| >

√
mα}U2] ≤ a1mα2(e−na2 + P(|t| >

√
mα)

)
.

(ii)
Pδ=2α(|t| <

√
mα)

Pδ=α/2(|t| >
√

mα)
≤ a1e−a2α2m.
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(iii)

Pδ=2α

( 1√
m U + δ < α

)
Pδ=α/2(|t| >

√
mα)

≤ a1e−a2α2m.

Proof.

(i). First note for 0 < s ≤ t it holds

E[U2 |U > s] =
1

P(U > s)

∫ ∞

s
u2φ(u)du

=
1

P(U > s)
(
sφ(s) + P(U > s)

)
=

sφ(s)
P(U > s)

+ 1

≤ sφ(s)
s/(s2 + 1)φ(s)

+ 1

= s2 + 2

≤ 2(t2 + 1)

= 2
(

tφ(t)
φ(t)/t

+ 1
)

≤ 2
(

tφ(t)
P(U > t)

+ 1
)

≤ 2E[U2 |U > t], (2.12)

where the first inequality is from Cook (2009). It is easily seen that (2.12) also holds for
−t ≤ s < 0.

Next we study the second moment of the normal distribution when conditioning
on the upper tail of the t-distribution:

E[1{t >
√

mα}U2] =
∫ ∞

0
E[U21{U >

√
m(
√

vα− δ)}] fV(v)dv

=
∫ ∞

0
E[U2 |U >

√
m(
√

vα− δ)]P
(
U >

√
m(
√

vα− δ)
)

fV(v)dv

≤ 2
∫ 1/4

0
E[U2 |U >

√
m

α

2
]P
(
U >

√
m(α
√

v− δ)
)

fV(v)dv

+ 2
∫ 2

1/4
m(α
√

v− δ)2P
(
U >

√
m(α
√

v− δ)
)

fV(v)dv

+ 2
∫ ∞

2
m(α
√

v− δ)2e−m(α
√

v−δ)2
fV(v)dv

≤ 4m
α2

4

∫ 1/4

0
fV(v)dv + 4mα2

∫ 2

1/4
P
(
U >

√
m(α
√

v− δ)
)

fV(v)dv

+ 2
∫ ∞

2
v fV(v)dv

≤ mα2e−na + 4mα2P(t >
√

mα) + e−na,

where the first inequality follows from (2.12). The result follows.



2.6 Appendix B: Selecting α to control the expected number of false discoveries 41

(ii) : Define A = {|
√

V − 1| ≤ 1
8}. Then

Pδ=α/2(|t| >
√

mα) ≥ Pδ=α/2(t >
√

mα)

≥ P
(
U >

√
m
(

α
√

v− α

2

)
, V ∈ A

)
≥ P

(
U > 5

8
√

mα, V ∈ A
)

= P
(
U > 5

8
√

mα
)

P(V ∈ A),

and

Pδ=2α(|t| <
√

mα) ≤ P(t <
√

mα)

≤ P
(
U <

√
m(α
√

v− 2α), V ∈ A
)
+ P(V ∈ AC)

≤ P
(
U < − 7

8
√

mα
)

P(V ∈ A) + P(V ∈ AC).

Thereby:

Pδ=2α(|t| <
√

mα)

Pδ=α/2(|t| >
√

mα)
≤

P(U > 7
8
√

mα)

P(U > 5
8
√

mα)
+

P(V ∈ AC)

P(U > 5
8
√

mα)P(V ∈ A)

≤ k1e−mα2( 49−25
2·64 ) + k2

√
mαe−m(a− 5

8 α2)

≤ a1e−a2mα2
.

(iii) : Since Pδ=2α

( 1√
m U + δ < α

)
= P(U >

√
mα) we have

Pδ=2α

( 1√
m U + δ < α

)
Pδ=α/2(|t| >

√
mα)

≤ P(U >
√

mα)

P(U > 5
8
√

mα)P(V ∈ A)

≤ ke−mα2(1−25/64)/2

= a1e−a2α2m. �
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3
High dimensional classifiers in the

imbalanced case

Britta Anker Bak and Jens Ledet Jensen

Abstract

We consider the binary classification problem in the imbalanced case where the number
of samples from the two groups differ. The classification problem is considered in
the high dimensional case where the number of variables is much larger than the
number of samples, and where the imbalance leads to a bias in the classification. A
theoretical analysis of the independence classifier reveals the origin of the bias and
based on this we suggest two new classifiers that can handle any imbalance ratio.
The analytical results are supplemented by a simulation study, where the suggested
classifiers in some aspects outperform multiple undersampling. For correlated data we
consider the ROAD classifier and suggest a modification of this to handle the bias from
imbalanced group sizes. In an appendix we see that oversampling increases the bias of
the independence rule.

3.1 Introduction

During the last decade much research in the statistical community has been on classi-
fiers for high dimensional data where the sample size is small, see e.g. Donoho and
Jin (2009), Cai and Liu (2011) and Fan et al. (2012). Typically, this research has not
focussed on the imbalance problem where the sample sizes of the groups differ. In
real life experiments, on the other hand, imbalanced data sets are the norm rather
than the exception. Even if scientists decide to collect a balanced data set, missing data
due to for example patients dropping out of the experiment or invalid measurements
commonly leads to imbalance.

Faced with imbalance most classifiers tend to classify observations from a binary
classification problem to the majority group at the expense of the minority group. It
appears to be overlooked or neglected that this imbalance problem becomes much
more pronounced in high dimensional settings. To briefly illustrate this Table 3.1 gives
the mean and standard deviation of the probability of correct classification for both
groups in a few instances for the thresholded independence classifier. It is clearly seen
that even rather small imbalances seriously harm classification, pointing to the need of
correcting for all imbalances.
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The imbalance problem has, however, been addressed recently in the computer
science and engineering communities. Here the focus has been on reducing to the
balanced case by either undersampling or oversampling. Lin et al. (2009), Yang et al.
(2014) and Liu et al. (2009) introduced Meta Imbalanced Classification Ensemble (MICE),
Sample Subset Optimization (SSO) and BalanceCascade, respectively. Those are all
ensemble methods, where several classifiers are build on all observations in the minority
group and wisely selected subsamples of the majority group. Chawla et al. (2002)
propose a technique where the minority group is extended by adding observations on
the line segments between an existing minority observation and its nearest neighbours.
The above classifiers are studied empirically rather than theoretically, and are all shown
to handle imbalanced classification problems well. Typically, the high dimensional
situation is not addressed as a problem in itself.

The aim of the present paper is to analyse the imbalance problem in relation
to high dimensional binary classification and, building on this analysis, to suggest
classifiers that are not based on undersampling or oversampling. Ideally, we want
our classifiers to involve a small number of variables only, while maintaining a high
probability of correct classification. To this end we consider a simple classification
problem between two groups with independent normally distributed variables. The
assumption of independent variables is a simplification in relation to most data sets, but
the setting is useful for studying the imbalance problem in high dimensional settings,
and the classifiers are also of practical relevance for correlated variables.

After detecting the origin of the bias problem for imbalanced data in Section 3.2,
we suggest in Section 3.3 two new classifiers with, practically, no bias. We discuss the
properties of the suggested classifiers both theoretically and empirically. Turning to a
situation with correlated variables in Section 3.6, we find that the corrections introduced
for the case of independent variables can be combined with the ROAD classifier of
Fan et al. (2012) for the imbalanced case. This suggests that the introduced correction
methods can be helpful for a range of linear classifiers in more general situations. In
the appendix in Section 3.8 we show that a general form of oversampling increases the
bias instead of reducing it.

3.2 The bias problem for imbalanced data

The model we consider is as follows. Let x1, x2, . . . , xn and y1, y2, . . . , ym be p-dimensio-
nal observations from group 1 and group 2, respectively. Assume all observations and
variables are independent with distributions xij ∼ N(µj, σ2

j ) and yij ∼ N(µj + δjσj, σ2
j ).

Table 3.1: Average probability of correct classification of the thresholded independence classifier
for a new observation from each of two groups. There are n samples from group 1 and m samples
from group 2. Each observation has 1000 variables of which only 10 have a differential expression
of size 1. Values are based on 1000 simulated data sets.

Group 1 Group 2

n m Mean Std Mean Std

15 15 70.5 7.0 70.3 7.1
16 14 76.8 6.2 63.2 7.7
18 12 87.4 4.5 44.9 8.7
20 10 94.9 2.2 24.7 7.2
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Let x̄j and ȳj denote the sample means of variable j for each of the two groups, and
let s2

xj and s2
yj be the corresponding sample variances. Define the imbalance factor

as ρ = (n−m)/(nm), and let f = n + m− 2 be the degrees of freedom for the joint
sample variance. We call δj the (scaled) differential expression.

To describe the independence classifier with thresholding we first define for j =
1, . . . , p

s2
j =

(n− 1)s2
xj + (m− 1)s2

yj

n + m− 2
, tj =

ȳj − x̄j√
s2

j (1/n + 1/m)
,

and let w(t) be a weight function. Hard thresholding, which we use throughout this
paper, corresponds to w(t) = 1{|t| > ∆}. The independence classifier with thresholding
allocates a new observation z to group 1 if D(z) < 0 and to group 2 if D(z) > 0, where

D(z) =
p

∑
j=1

ȳj − x̄j

s2
j

[
zj − 1

2 (x̄j + ȳj)
]
w(tj). (3.1)

The probability of correct classification for a new observation from either group 1
or group 2 is

Φ
( ξD

τD

)
and Φ

( ξ̃D
τD

)
, (3.2)

where ξD = −D(µ) = ∑
p
j=1 ξDj, ξ̃D = D(µ + δσ) = ∑

p
j=1 ξ̃Dj, τ2

D = ∑
p
j=1 w(tj)(ȳj −

x̄j)
2σ2

j /s4
j and

ξDj = −
ȳj − x̄j

s2
j

[
µj − 1

2 (x̄j + ȳj)
]
w(tj),

ξ̃Dj =
ȳj − x̄j

s2
j

[
µj + δjσj − 1

2 (x̄j + ȳj)
]
w(tj).

To describe the means of these terms define

Ta,b(δ; n, m) = E
[ (d + δ)a

vb w(t)
]
,

where d ∼ N(0, 1/n+ 1/m), v ∼ χ2( f )/ f with f = n+m− 2 and t = (d+ δ)/
√

v(1/n + 1/m).

Proposition 3.1. Let ξ0
D and ξ̃0

D be generic terms in the sums ξD and ξ̃D. Then

E(ξ0
D) =

1
2
[
(1− ρ)δT1,1(δ, n, m) + ρT2,1(δ, n, m)

]
,

E(ξ̃0
D) =

1
2
[
(1 + ρ)δT1,1(δ, n, m)− ρT2,1(δ, n, m)

]
.

When δ = 0 we simply get E(ξ0
D) = −E(ξ̃0

D) =
1
2 ρT2,1(0, n, m). For the case of no threshold-

ing, w(t) ≡ 1, we get in the general case

E(ξ0
D) =

f
2( f − 2)

[δ2 + ρ(1/n + 1/m)], E(ξ̃0
D) =

f
2( f − 2)

[δ2 − ρ(1/n + 1/m)].

Proof. Letting u = (x̄ + ȳ − 2µ − δ)/σ ∼ N(0, 1/n + 1/m), d = (ȳ − x̄ − δ)/σ ∼
N(0, 1/n + 1/m) and v = s2/σ2 ∼ χ2( f )/ f with f = n + m− 2, we can write

ξ0
D =

d + δ

2v
(u + δ)w(t) and ξ̃0

D =
d + δ

2v
(δ− u)w(t),
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with t = (d + δ)/
√

v(1/n + 1/m). Had u and d been independent, ξ0
D and ξ̃0

D would
have the same mean and there would be no bias problem. However, in the imbalanced
case we have

u | d ∼ N
(

ρd,
4

n + m

)
. (3.3)

We then obtain

E(ξ0
D) = E

[d + δ

2v
(ρd + δ)w(t)

]
= 1

2 E
{[

ρ
(d + δ)2

v
+ δ(1− ρ)

d + δ

v

]
w(t)

}
,

and E(ξ̃0
D) is calculated in the same way.

In the case of no thresholding, w(t) ≡ 1, we use that E(1/v) = f /( f − 2) so that

E
( (d + δ)2

v

)
=
( 1

n
+

1
m

+ δ2
) f

f − 2
and E

(d + δ

v

)
= δ

f
f − 2

.
�

The case of no differential expression (δ = 0) in the proposition shows that if
the expected number pE(w(t)) of variables with δ = 0 included in the classifier is
nonnegligible, then also the bias of the classifier is nonnegligible with the majority
class being strongly favoured. In the general case, with δ 6= 0, the formulae point to
a bias in the same direction as in the δ = 0 case. This is seen more directly for the
case of no thresholding. Overall, the thresholding does not remove the bias problem
for the imbalanced case. This can be seen more clearly from the left part of Figure 3.1.
The two dotted curves illustrate the bias for the case of no differential expression. The
figure shows the mean for a single term of ξD and ξ̃D, conditional on this term being
included in the classifier. The two dashed curves show the bias when the differential
expression is one. The virtue of increasing the threshold is that we include much fewer
of the δ = 0 cases and keep most of the δ = 1 cases. There are, however, a number
of opposing effects. When the threshold is increased, the bias for each of those null
cases included actually increases. Also, since the mean of τ02

D is increasing with the
threshold, the effect of each of the δ = 1 cases in the probability (3.2) is diminished as
the threshold is increased. The right part of Figure 3.1 relates to the classifiers proposed
in the next section.

3.3 Bias adjusted classifiers

In this section we describe two ways of circumventing the bias problem in the imbal-
anced case. The origin of the bias problem is the lack of independence of x̄j + ȳj and
ȳj − x̄j as stated in (3.3).

The first proposal is simply to subtract the conditional mean from (3.3). Thus we
consider

B0(z) =
p

∑
j=1

ȳj − x̄j

s2
j

[
zj −

1
2
(x̄j + ȳj) +

ρ

2
(ȳj − x̄j)

]
w(tj).

Let ξ0
B0

be minus a generic term in the sum with zj replaced by µj, and let ξ̃0
B0

be a
generic term with zj replaced by µj + δjσj. Then, with calculations as in Proposition 3.1,
we find

E(ξ0
B0
) =

1− ρ

2
δT1,1(δ, n, m), and E

(
ξ̃0

B0

)
=

1 + ρ

2
δT1,1(δ, n, m).

Most importantly, we see here that the bias originating from those variables with δ = 0
has been removed. However, there remains a bias for variables with δ 6= 0, where now
the minority group is favoured.
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Figure 3.1: The left part shows the mean of a generic term ξ0
D, ξ̃0

D and τ02
D conditionally on the

term being included, that is, given that w(t) = 1. Two cases of the differential expression are
shown: δ = 0 and δ = 1 shown by the subscript on the mean value sign. The right part shows the
mean value of ξ and ξ̃ for the two classifiers proposed in Section 3.3. The threshold here depends
on the differential expression: ∆ = δ/

√
1/n + 1/m− 1. In both figures n = 30 and m = 10.

We therefore consider a classifier on the form B0(z)− ε for some constant ε. Opti-
mally, we want ξB0 + ε = ξ̃B0 − ε or ε = (ξ̃B0 − ξB0)/2. We estimate ξB0 and ξ̃B0 by a
leave-one-out cross-validation and use these to correct the classifier. To this end we
define B0(z; xi) to be the classifier based on the reduced sample with xi excluded and,
similarly, B0(z; yi) is based on the reduced sample with yi excluded. Define

ε̄ =
1
2

[ 1
n

n

∑
i=1

B0(xi; xi) +
1
m

m

∑
i=1

B0(yi; yi)
]
.

Since B0 is a sum over all p variables, we can also write ε̄ as a sum ε̄ = ∑
p
j=1 ε̄j, where ε̄j

depends on the j’th coordinate of the data only. The bias adjusted independence classifier
(BAI classifier) is now defined as

B(z) = B0(z)− ε̄ =
p

∑
j=1

{ ȳj − x̄j

s2
j

[
zj −

1
2
(x̄j + ȳj) +

ρ

2
(ȳj − x̄j)

]
w(tj)− ε̄j

}
.

Defining ξ0
B and ξ̃0

B as the generic terms of −B(µ) and B(µ + δσ), we see that

E(ξ0
B) =

δ

2

{
(1− ρ)T1,1(δ, n, m)− 1− ρ1

2
T1,1(δ, n− 1, m) +

1 + ρ2

2
T1,1(δ, n, m− 1)

}
,

E(ξ̃0
B) =

δ

2

{
(1 + ρ)T1,1(δ, n, m) +

1− ρ1

2
T1,1(δ, n− 1, m)− 1 + ρ2

2
T1,1(δ, n, m− 1)

}
,

(3.4)

where ρ = (n−m)/(n+ 1), ρ1 = (n−m− 1)/(n+m− 1) and ρ2 = (n−m+ 1)/(n+m− 1).
Since ε̄ is based on one less observation than B0, the BAI classifier is not exactly unbi-
ased, but the remaining bias is of no practical concern. The bias of the BAI classifier
is illustrated in the right part of Figure 3.1 for the case n = 30 and m = 10. When the
differential expression δ is less than 1.5, the bias is very small.

When calculating the probability of correct classification as in (3.2), the denominator
is τ2

B = ∑
p
j=1 w(tj)(ȳj − x̄j)

2σ2
j /s4

j , that is, the same expression as τ2
D.
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We next consider a different approach for removing the bias of the independence
classifier in the imbalanced case. First, we rewrite the independence classifier as

D(z) =
1
2

p

∑
j=1

[ 1
n

n

∑
i=1

ȳj − x̄j

s2
j

(zj − xij)w(tj) +
1
m

m

∑
i=1

ȳj − x̄j

s2
j

(zj − yij)w(tj)
]
.

The origin of the bias problem, as given in (3.3), is here seen as the lack of independence
of xij (or yij) and ȳj − x̄j. We suggest to solve this by removing xij (or yij) when
calculating the difference ȳj − x̄j. Thus let x̄j(i) and ȳj(i) be the group averages when
the i’th observation is left out, and let s2

j (xi) and s2
j (yi) be the within group variance

when either xi or yi is left out. The corresponding t-value is denoted either tj(xi) or
tj(yi). The leave one out independence classifier (LOUI classifier, originally suggested in
Jensen (2006)) is defined as

L(z) =
1
2

p

∑
j=1

[ 1
n

n

∑
i=1

ȳj − x̄j(i)
s2

j (xi)
(zj − xij)w(tj(xi))

+
1
m

m

∑
i=1

ȳj(i)− x̄j

s2
j (yi)

(zj − yij)w(tj(yi))
]
.

Defining ξ0
L and ξ̃0

L as a generic term in −L(µ) and L(µ + δσ), we see that

E(ξ0
L) =

1
2 δT1,1(δ, n, m− 1) and E

(
ξ̃0

L
)
= 1

2 δT1,1(δ, n− 1, m).

The difference between these two terms is very small so that the LOUI classifier is
almost unbiased. An example is shown in the right part of Figure 3.1 for the case
n = 30 and m = 10.

When calculating the probability of correct classification, as in (3.2), the denominator
is now

τ2
L =

1
4

p

∑
j=1

[ 1
n

n

∑
i=1

ȳj − x̄j(i)
s2

j (xi)/σ2
j

w(tj(xi)) +
1
m

m

∑
i=1

ȳj(i)− x̄j

s2
j (yi)/σ2

j
w(tj(yi))

]2
,

which is somewhat more complicated than for the independence classifier and the BAI
classifier.

A comparison of the two proposed classifiers BAI and LOUI is given in Section 3.5.

3.4 Distribution approximation of the error probability

We are mostly interested in situations where the number of variables with a nonzero
differential expression is quite small, and the sample sizes n and m are not sufficiently
large for a complete separation between the variables with a nonzero differential ex-
pression and those with no differential expression. The classifier therefore typically
includes a limited number of variables and a part of these are null variables. The prob-
ability of correct classification given through ξ/τ and ξ̃/τ in (3.2) therefore has a fairly
large variance, and part of this variance stems from the variance of the denominator τ.
Actually, both ξ and τ turn out to have fairly large variances and a strong correlation.

We want to be able to look at the mean and variance of ξ/τ and ξ̃/τ for various
combinations of the differential expressions δj in an easy computable way for the case of
independent variables. This means that we want to use only moment values of generic
terms ξ0, ξ̃0 and τ02. For this purpose we use the following rough approximation

ξ | τ2 ≈ N(α + βτ2, ω2), ξ̃ | τ2 ≈ N
(
α̃ + β̃τ2, ω̃2), τ2 ≈ Γ(λ, κ). (3.5)
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Figure 3.2: Illustration of the approximation (3.5) for the BAI classifier. The 1000 simulated values
of ξB and τ2

B are for the case n = 30, m = 10, δ = 1 and ∆ = 2. There are p = 1000 variables of
which k = 20 are differentially expressed. The left subfigure shows the approximate linearity of
the conditional mean of ξB given τ2

B, the center figure shows the conditional normality and the
right subfigure illustrates the Gamma approximation to the distribution of τ2

B.

The approximation is illustrated in Figure 3.2. The left subfigure shows the approx-
imate linear relationship E(ξB | τ2

B) ≈ α + βτ2
B, the center figure shows approximate

normality of ξB given τ2
B and the right subfigure shows the Gamma approximation to

the distribution of τ2
B. Plots for the thresholded independence classifier and the LOUI

classifier show that the approximation also works well in these cases.

Lemma 3.2. Under the above approximation (3.5) we have

E
( ξ

τ

)
≈ α
√

κ
Γ(λ− 1

2 )

Γ(λ)
+ β

Γ(λ + 1
2 )√

κΓ(λ)
,

Var
( ξ

τ

)
≈ (ω2 + α2)

κ

λ− 1
+ β2 λ

κ
+ 2αβ−

{
E
( ξN

τN

)}2
,

with similar expressions for ξ̃ with (α, β) replaced by (α̃, β̃).

Proof. We have E(ξ/τ) = αE(1/τ) + βE(τ) and the first result follows from the prop-
erties of a gamma distribution. Next,

Var(ξ/τ) = Var(α/τ + βτ) + E(ω2/τ2)

= (ω2 + α2)E(1/τ2) + β2E(τ2) + 2αβ− [E(ξ/τ)]2.

and the result for the variance again follows from properties of the gamma distribu-
tion. �

To use this in practice we choose the parameters in (3.5) from moment relations:

λ

κ
= E(τ2),

λ

κ2 = Var(τ2), Cov(ξ, τ2) = β Var(τ2),

E(ξ) = α + βE(τ2), Var(ξ) = β2 Var(τ2) + ω2.

We write a generic term of the sums ξB and τ2
B as

ξ0
B = ξ0

B0
+

1
n

n

∑
i=1

B0
0(xi) +

1
m

n

∑
i=1

B0
0(yi), τ02

B =
(ȳ− x̄)2

s4 ,
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where B0
0(xi) is a generic term in the sum B0(xi; xi) and B0

0(yi) is a generic term in the
sum B0(yi; yi). The first two moments can be simulated directly from standard normal
variables x1, . . . , xn and y1, . . . , ym, and calculating all the terms in ξ0

B. However, the
computational complexity can be reduced on writing variances and covariances as
sums involving at most two terms from ξ0

B. In that case we only need to simulate x1,
x2, x̄(3) = ∑n

i=3 xi/(n− 3), ∑n
i=3(xi − x̄(3))2 (and similar y-terms), and calculate ξ0

B0
,

B0
0(x1) and B0

0(x2) from these. To this end, and supplementing the mean values in (3.4),
we note the following simplifications.

Proposition 3.3. For the case of hard thresholding we have the following moment relations:

E
(
τ02

B
)
= T2,2(δ; n, m), E

(
τ04

B
)
= T4,4(δ; n, m),

E
(
ξ02

B0

)
=
[ 1

n + m
+

(1− ρ)2

4
δ2
]

T2,2(δ; n, m), E
(
ξ0

B0
τ02

B
)
=

1− ρ

2
δT3,3(δ; n, m),

E[B0
0(x1)] = −

1− ρ1

2
δT1,1(δ; n− 1, m),

E[B0
0(x1)

2] =
[
1 +

1
n− 1 + m

+
(1− ρ1)

2

4
δ2
]

T2,2(δ; n− 1, m).

Proof. The proof follows the same lines as the proof of Proposition 3.1. The only extra
element used is that E[(u− ρd)2 | d] = 4/(n + m) from (3.3). The requirement of hard
thresholding is used for the simplification w(t)2 = w(t). �

3.4.1 Mean and variance investigations

In Figures 3.3 and 3.4 we compare the independence classifier D, the BAI-classifier B
and the LOUI-classifier L. There are k differentiable expressed variables all with the
same differential expression δ = 1. We consider the two cases k = 20 and k = 80. In all
cases we have n = 30 and m = 10. To calculate the mean and variance of ξ/τ we use
the approximation in Lemma 3.2. To this end, we must calculate moments of generic
terms ξ0, ξ̃0 and τ02 for the chosen value of δ for the expressed variables, as well as
the case δ = 0 for the nonexpressed variables. These moments cannot be calculated
analytically, and we use 106 simulated values to estimate the moments. Note that the
mean values µj and variances σ2

j do not enter the distribution of ξ0, ξ̃0 and τ02 so that
we can fix these at zero and one, respectively.

In Figure 3.3 the threshold is fixed at ∆ = 2, and we consider the dependency on
the differential expression δ for the k expressed variables in the range 0 < δ < 1.5.
We consider the two cases k = 20 and k = 80, and either p = 1000 or p = 10 000
variables. It is clearly seen that the independence classifier D performs much better
on the majority group than on the minority group. For both BAI and LOUI there is
practically no difference between the two groups, and also practically no difference
between BAI and LOUI for the considered range of δ. For this reason only the BAI
classifier is shown in Figure 3.3. Taking into account the random variation, and looking
at the case p = 10 000, we will indeed encounter simulations where the classifier is
worse than a random guess unless the differential expression δ is large. For k = 20 and
δ = 1 this will happen in approximately 7% of the simulations. For p = 1000 variables
the classifier is much more useful, although there is a considerable variation in ξ/τ

giving a considerable variation in the probability of correct classification.
In Figure 3.4 the differential expression is fixed at δ = 1, and we consider the

dependency on the threshold ∆. As in Figure 3.3 the curves for the two classifiers BAI
and LOUI as well as the curves for the two groups for each classifier are indistinguisable,



3.4 Distribution approximation of the error probability 51

0.0 0.5 1.0 1.5

−
2

−
1

0
1

2
3

4

Differential expression δ

M
ea

n 
va

lu
es

E(ξD/τD)

E(ξB/τB)

E(ξ
~

D/τD)

0.0 0.5 1.0 1.5

0
1

2
3

4
5

6

Differential expression δ

E
(ξ

B
 /τ

B
)

k=20
k=80

Figure 3.3: Performance of different classifiers for the case n = 30, m = 10 and with the threshold
∆ = 2. In the left part the means of the classification indices ξD/τD and ξ̃D/τD are compared
to the mean of ξB/τB for the case of p = 1000 variables with k = 20 having the differential
expression δ, the remaining variables having no differential expression. In the right part the
mean of the classification index ξB/τB is shown for different values of p and k. The value of k
is shown in the legend, and the lower and upper curves of a specific line type correspond to
p = 10000 and p = 1000, respectively. For the chosen settings of the parameters, the means of
ξ̃B/τB, ξL/τL and ξ̃L/τL are indistinguisable from the mean of ξB/τB. The vertical lines show
plus and minus two times the standard deviation.
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Figure 3.4: Performance of different classifiers for the case n = 30, m = 10 and with the
differential expression δ = 1. In the left part the means of the classification indices ξD/τD and
ξ̃D/τD are compared to the mean of ξB/τB for the case of p = 1000 variables with k = 20 having
the differential expression δ = 1, the remaining variables having no differential expression. In
the right part the mean of the classification index ξB/τB is shown for different values of p and k.
The value of k is shown in the legend, and the lower and upper curves of a specific line type
correspond to p = 10000 and p = 1000, respectively. For the chosen settings of the parameters,
the means of ξ̃B/τB, ξL/τL and ξ̃L/τL are indistinguisable from the mean of ξB/τB. The vertical
lines show plus and minus two times the standard deviation.
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and only one curve is shown. Clearly, a high threshold reduces the strong bias of
the independence classifier D. Still, in most cases the median probability of correct
classification for the minority group is below 0.5. Looking for the value of the threshold
∆, where the mean value of ξB/τB is maximized, no clear optimal choice is seen for
the case of p = 10 000 variables. For p = 1000 the optimal value is between 2 and 2.5.
However, the gain in mean value is partly reduced by having a large spread of ξB/τB
when the threshold is increased.

3.5 Simulations

In this section we report on simulations to compare the suggested classifiers BAI and
LOUI for the case of imbalanced data. We include also in the comparison a commonly
used undersamling classifier, namely EasyEnsemble from Liu et al. (2009) built on
top of the thresholded independence classifier. To write this explicitly, assume n > m
and let D(z; A) be the independence classifier from (3.1) based on a subset A of the
observations x1, . . . , xn from group 1 and all the observations from group 2, and with
|A| = m. The undersampling classifier is based on

Q(z) =
1
q

q

∑
i=1

D(z; Ai), (3.6)

where A1, . . . , Aq are independent random subsets. In the results in Table 3.2 below we
use a value of q such that the probability of using all the samples in the training of the
classifier is at least 0.95.

We include the case of a fixed threshold in the comparisons, but we are mostly
interested in the situation where the threshold ∆ is chosen suitably for each simulated
data set. In the simulations we have searched for a value of ∆ in the range where a t-test
will give between 1 and 30 false positives among p independent tests. For any classifier
H(z) we have used a leave-one-out cross-validation to choose ∆. Instead of using the
number of correctly classified samples we use a measure that depends continuously on
the threshold ∆. Define

ξ̂ = − 1
n

n

∑
i=1

H(xi; xi) and ˆ̃ξ =
1
n

m

∑
i=1

H(yi; yi),

where H(z; xi) is the classifier constructed from the reduced sample with xi left out
and H(z; yi) defined similarly. Also let τ̂2 be the empirical variance of the terms that
enters ξ̂ and ˆ̃ξ. We then use Φ(ξ̂/τ̂) and Φ( ˆ̃ξ/τ̂) to choose ∆. Since we often see strong
negative correlation between ξ and ξ̃, we have opted against using the average of the
two terms for selecting ∆. Instead we use

arg max
∆

min{Φ(ξ̂/τ̂), Φ( ˆ̃ξ/τ̂)}.

For the LOUI classifier it is easy to see that ξ̂ = ˆ̃ξ so that it is immaterial how the
two terms are combined to choose ∆. We compare the above cross-validation choice
with an optimal oracle selected threshold based on the true mean values, where
we maximize min{Φ(ξ/τ), Φ(ξ̃/τ)} in the same range of ∆ values as in the cross-
validation approach.

The numbers in Table 3.2 are based on 1000 simulated data sets for each setting. It
is clear from the table that the independence classifier D has an unacceptable large
bias, even for the case of the optimal threshold. The bias for each of the LOUI, BAI
and EasyEnsemble classifiers is very small, favouring the minority group in the fixed
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threshold and optimal threshold cases, and favouring the majority group in the cross-
validation case. The EasyEnsemble classifier has the smallest bias, but at the same
time also the smallest probability of correct classification for both groups, making it
less optimal than the BAI and LOUI classifiers. The LOUI classifier typically has a
slightly larger probability of correct classification as compared to the BAI classifier.
However, this comes at the cost of including many more variables in the classifier. The
EasyEnsemble classifier includes even more variables than the LOUI classifier.

Generally, the fixed threshold and the cross-validation threshold gives approxi-
mately the same probability of correct classification, but with the use of fewer variables
for the cross-validation approach. Also, the cross-validation approach typically lowers
the negative correlation between ξ/τ and ξ̃/τ. For the BAI and LOUI classifiers the
optimal threshold gives rise to a fairly large positive correlation. The reason for this is
that in many instances the threshold will be chosen close to where the two curves for
ξ/τ and ξ̃/τ, as a function of ∆, intersects, so that the two values are almost identical.

In general, the BAI classifier is our preferred method since the bias is small, it has a
comparable good probability of correct classification, and it uses only a small number
of the variables for constructing the classifier.

Table 3.2: Comparison of the classifiers D, LOUI, BAI and EasyEnsemble for various values of
p, n and m based on 1000 simulated data sets. There are k = 20 differential expressed variables
with δ = 1. The Fixed columns have the threshold fixed at ∆ = 2.5 when p = 1000 and ∆ = 3
when p = 10000. In the CV columns the threshold is selected by leave-one-out cross-validation
for each data set, while Opt denotes the optimal threshold calculated from the true parameters.

D LOUI BAI EasyEnsemble

p n m fixed CV opt Fixed CV Opt Fixed CV Opt Fixed CV Opt

103 30 10

E(ξ/τ) 2.00 1.55 1.56 1.19 1.20 1.21 1.14 1.14 1.19 1.13 1.10 1.12
E(ξ̃/τ) 0.32 0.58 0.81 1.25 1.14 1.27 1.18 1.14 1.25 1.14 1.08 1.16
Std(ξ/τ) 0.23 0.38 0.32 0.29 0.28 0.21 0.29 0.28 0.22 0.26 0.27 0.23
Cor(ξ/τ, ξ̃/τ) −0.09 −0.10 0.08 −0.28 −0.15 0.42 0.06 −0.13 0.44 −0.17 −0.12 0.06
E(N) 28.5 12.3 10.6 68.0 51.7 55.1 28.5 22.6 22.2 165.8 121.7 144.6
Std(N) 4.7 9.1 5.2 7.3 34.0 27.0 4.7 14.1 11.6 11.4 74.3 65.1

103 50 10

E(ξ/τ) 2.28 1.76 1.77 1.30 1.28 1.34 1.24 1.22 1.31 1.20 1.17 1.21
E(ξ̃/τ) 0.31 0.65 0.87 1.41 1.28 1.41 1.35 1.30 1.39 1.24 1.20 1.26
Std(ξ/τ) 0.22 0.36 0.30 0.29 0.24 0.21 0.29 0.25 0.21 0.26 0.25 0.23
Cor(ξ/τ, ξ̃/τ) −0.12 −0.08 0.11 −0.33 −0.11 0.43 0.10 −0.13 0.48 −0.23 −0.12 0.03
E(N) 27.9 11.7 10.9 62.3 38.0 50.3 27.9 19.3 22.1 254.0 175.4 226.5
Std(N) 4.4 7.1 4.3 7.0 28.8 24.1 4.4 12.4 10.6 13.6 110.0 93.1

104 30 10

E(ξ/τ) 2.35 1.03 0.99 0.60 0.68 0.64 0.55 0.58 0.63 0.53 0.50 0.52
E(ξ̃/τ) −1.22 −0.02 0.21 0.63 0.53 0.68 0.58 0.54 0.68 0.52 0.46 0.52
Std(ξ/τ) 0.23 0.41 0.35 0.32 0.34 0.24 0.31 0.31 0.24 0.26 0.29 0.23
Cor(ξ/τ,ξ̃/τ) −0.35 −0.21 0.15 −0.56 −0.21 0.58 −0.15 −0.09 0.58 −0.49 −0.14 0.17
E(N) 55.7 6.3 4.5 193.0 63.8 60.1 55.7 17.6 15.5 639.1 177.3 252.7
Std(N) 7.2 7.1 3.2 13.5 50.3 40.8 7.2 14.3 11.5 25.1 146.1 148.6

104 50 10

E(ξ/τ) 2.77 1.29 1.27 0.70 0.84 0.80 0.64 0.72 0.77 0.59 0.59 0.61
E(ξ̃/τ) −1.41 0.05 0.26 0.79 0.70 0.86 0.72 0.73 0.85 0.60 0.59 0.64
Std(ξ/τ) 0.24 0.42 0.35 0.32 0.31 0.25 0.30 0.30 0.25 0.28 0.30 0.25
Cor(ξ/τ, ξ̃/τ) −0.32 −0.26 0.11 −0.44 −0.18 0.52 −0.02 −0.14 0.52 −0.44 −0.20 0.05
E(N) 48.8 6.1 5.0 157.9 54.2 54.4 48.8 18.2 16.0 1066.5 335.2 480.3
Std(N) 6.7 5.5 3.0 12.0 44.3 36.4 6.7 14.3 11.2 30.7 250.7 277.4
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3.5.1 Breast Cancer Data

We illustrate the imbalance bias problem with the breast cancer data from Sotiriou
et al. (2003). There are 99 women in the study divided into two groups according to
their estrogen receptor status. The ER+ group (65 women) are those women where the
cancer has receptors for estrogen, and the ER- group (34 women) are those without
receptors. In the original data there are 7650 variables, but we use here only the subset
with p = 4327 variables measured in all 99 samples. One hundred times we split the
data into a training set and a test set, the latter consisting of 20 randomly chosen
observations from each group. The training set thus has 45 women in the ER+ group
and 14 in the ER- goup, an imbalance ratio around 3. The threshold in the different
classifiers is chosen through leave-one-out cross-validation, where the range considered
corresponds to an expected number of false positives out of 4327 variables to be
between 1 and 30.

In Table 3.3 we compare BAI, LOUI and EasyEnsemble to the thresholded inde-
pendence classifier. The table gives the percentage of correctly classified samples, both
when evaluated on the training set and on the test set. As expected, the independence
classifier shows no bias on the training set, but has a considerable bias when eval-
uated on the test set. This bias is removed for all three alternatives BAI, LOUI and
EasyEnsemble. The bias correction has the consequence that on the training set BAI,
LOUI and EasyEnsemble perform best on the minority group. BAI obtains the same
performance as LOUI and EasyEnsemble using much less variables, roughly one half
of the variables used in LOUI and one third of the variables used in EasyEnsemble. It
seems slightly astonishing for this data set, that although a large number of variables
seem to be true positives, the classification error is still around 16%.

Table 3.3: Comparison of the thresholded independence classifier, BAI, LOUI and EasyEnsemble
on the Breast Cancer data from Sotiriou et al. (2003). The data are randomly divided into a
training set with n = 45 and m = 14 observations in the two groups ER+ and ER-, and a test
set with 20 observations in each group. Numbers in the table are based on 100 random splits.
The row N gives the number of variables included in the classifier and the remaining entries are
percentage correctly classified samples.

D LOUI BAI EasyEnsemble

Variable Mean Std Mean Std Mean Std Mean Std

Training ER+ 94.8 2.2 89.7 3.7 89.3 3.9 89.6 3.3
Training ER- 92.1 6.2 94.4 5.1 94.4 5.0 94.7 4.6
Test ER+ 90.5 5.5 84.1 7.2 83.9 7.1 84.6 6.9
Test ER- 75.5 8.2 83.3 6.2 83.8 5.9 83.0 6.0
N 229 127 409 198 232 121 602 270

3.6 Correlated data: BA-ROAD and LOU-ROAD

In many high dimensional settings the variables will be correlated, and classifiers build
on the independence classifier will be suboptimal. The Fisher classifier based on an
estimate of the inverse covariance matrix is not directly applicable when p � n. As
an alternative Fan et al. (2012) suggested the Regularized Optimal Affine Discriminant
(ROAD) classifier based on

R(z) =
p

∑
j=1

rj
[
zj − 1

2 (x̄j + ȳj)
]
,
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where

r = arg min
(ȳ−x̄)Tr=1,|r|1≤c

rTΣ̂r, (3.7)

with Σ̂ the p× p estimated covariance matrix, and with the tuning parameter c chosen
by cross-validation. Fan et al. (2012) introduced an efficient algorithm for calculating r,
and simulations with n = m show that ROAD performs better for correlated data as
compared to a number of alternative classifiers including the independence classifier.
However, as seen from the first two columns of Table 3.4, in the imbalanced case
the ROAD classifier can have an appreciable bias. Inspired by the BAI and the LOUI
corrections to the independence classifier, we propose the following adjustments to the
ROAD classifier. First define

B0,R(z) =
p

∑
j=1

rj

[
zj −

1
2
(x̄j + ȳj) +

ρ

2
(ȳj − x̄j)

]
,

ε̄R =
1
2

[ 1
n

n

∑
i=1

B0,R(xi; xi) +
1
m

m

∑
i=1

B0,R(yi; yi)
]
,

where B0,R(xi; xi) and B0,R(yi; yi) are defined from B0,R in the same way as B0(xi; xi)

and B0(yi; yi) are defined from B0, that is, B0,R is constructed from a reduced sample
with one observation left out and then evaluated on the excluded observation. The
BA-ROAD classifier is next defined as

BR(z) = B0R(z)− ε̄R.

In a similar spirit we define the LOU-ROAD classifier as

LR(z) =
1
2

p

∑
j=1

[ 1
n

n

∑
i=1

rj(xi)(zj − xij) +
1
m

m

∑
i=1

rj(yi)(zj − yij)
]
,

where r(xi) and r(yi) are calculated as in (3.7) based on the reduced sample with either
xi or yi left out.

For each of the above classifiers the probability of correct classification is evaluated
through ξ, ξ̃ and τ2 as in (3.2). Here ξ is minus the value of the classifier evaluated at
µ, and ξ̃ is the value at µ + δσ. For both of R and BR we have τ2 = ∑

p
j=1 σ2

j r2
j , and for

LR the formula becomes

τ2 =
1
4

p

∑
j=1

σ2
j

[ 1
n

n

∑
i=1

rj(xi) +
1
m

m

∑
i=1

rj(yi)
]2

.

We evaluate BA-ROAD and LOU-ROAD via a set of simulations. For comparison
we include the EasyEnsemble undersampling classifier built on top of ROAD, that is,
the classifier (3.6) with D replaced by R. In each simulation the value of c in (3.7) is
determined by five-fold cross-validation for each of the classifiers. Also, we include
the BAI independence classifier where the threshold ∆ is chosen by five-fold cross-
validation searching over a region with 5 to 30 expected false positives. We consider the
setting with n = 30, m = 10 and p = 1000 variables of which the first 20 variables have
differential expression 1, the remaining variables having no differential expression. The
numbers in Table 3.4 are based on 100 simulated values. We consider three models for
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the covariance matrix Σ:

Model 1: Σii = 1, Σij = 0.2, i 6= j,

Model 2: Σij = 0.8|i−j|,

Model 3: Σ = Cor
(

Σ̂p +

√
log(p)
n + m

Ip

)
,

where Σ̂p is the empirical variance based on the data in Golub et al. (1999), Ip is
the identity matrix and Cor is the function that transforms a variance matrix to a
correlation matrix (Σ̂p has been obtained by choosing p consequtive variables where
the distribution of the correlations resembles the distribution for all variables).

First of all, Table 3.4 shows that ROAD itself has a considerable bias in the im-
balanced case. The bias is almost eliminated with the use of BA-ROAD, LOU-ROAD
or the EasyEnsemble-ROAD classifier. Generally, the performance of BA-ROAD is
comparable to that of ROAD in terms of the number of variables included in the
classifier. LOU-ROAD and EasyEnsemble-ROAD perform slightly better on average,
but at the cost of including many more variables than BA-ROAD. In terms of mean
values the BAI independence classifier performs as good as the ROAD based classifiers.
However, it has a somewhat larger spread. A clear message from this small simulation
study is that the bias of the ROAD classifier can be handled by using the classifiers we
propose in this paper.

3.7 Conclusion

In this paper we have analyzed the independence classifier in order to study the
bias originating from imbalanced data sets. It has been found that a correction for
bias is needed also for minor imbalances when considering classification in the high
dimensional case. The thresholded independence classifier favours the majority group,
and in the high dimensional case this can lead to classifying practically all observations

Table 3.4: Comparison of ROAD, BA-ROAD, LOU-ROAD, EasyEnsemble-ROAD (EE-ROAD)
and the BAI independence classifier for the case n = 30, m = 10 and p = 1000 variables of which
the first k = 20 have differential expression δ = 1. Values are based on 100 simulated data sets.
The variable N is the number of variables included in the classifier and Cor is the correlation
between ξ/τ and ξ̃/τ.

ROAD LOU-ROAD BA-ROAD EE-ROAD BAI

Model Variable Mean Std Mean Std Mean Std Mean Std Mean Std

1 ξ/τ 1.28 0.33 1.06 0.26 0.92 0.27 1.16 0.28 1.06 0.52
ξ̃/τ 0.40 0.25 1.05 0.28 0.84 0.29 1.12 0.31 1.34 0.55
N 24 21 138 65 35 20 147 63 15 12

Cor −0.22 −0.10 −0.22 −0.01 −0.00

2 ξ/τ 0.97 0.27 0.63 0.32 0.57 0.28 0.77 0.37 1.04 0.73
ξ̃/τ 0.22 0.31 0.66 0.35 0.58 0.32 0.74 0.35 1.13 0.52
N 10 11 49 57 16 18 69 71 15 9

Cor −0.26 −0.33 −0.22 −0.11 0.10

3 ξ/τ 1.45 0.29 1.22 0.21 1.13 0.25 1.23 0.23 1.13 0.48
ξ̃/τ 0.74 0.25 1.28 0.29 1.12 0.28 1.21 0.33 1.21 0.61
N 28 18 116 64 34 17 105 64 16 18

Cor 0.19 0.04 0.06 −0.05 −0.49
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to the majority group. The two suggested classifiers virtually remove the bias and have
almost the same error rate.

The BAI classifier performs better in the sense that it obtains the same error rate as
the LOUI classifier using much fewer variables. This can be of some practical value
when implementing a classifier as a diagnostic tool in a medical setting. Simulations
reveal that both classifiers have a slightly lower error rate than a variant of multiple
undersampling, which is currently considered among the best methods for correcting
imbalance (Blagus and Lusa, 2013). Multiple undersampling uses a high number of
variables which also makes it less attractive.

For the case of correlated variables the ROAD classifier turns out to have a bias in
the imbalanced case. We have suggested a modification of the ROAD classifier that
removes the bias, and simulations show a good performance of this classifier. Overall,
our way of correcting for bias seems of value for a broad range of linear classifiers.

3.8 Appendix: Oversampling can increase bias

In Section 3.5 we saw an example of undersampling, meaning that the dataset is made
balanced by removing observations from the majority group. The opposite strategy,
where observations are added to the minority group, is called oversampling. The added
observations can either be replications of original minority observations, or generated
from the minority data in a more complicated way.

We consider applying oversampling when using the independence classifier for two
normally distributed groups. We show that the bias in classification is increased for
a range of oversampling procedures compared to when performing no correction for
imbalance.

We consider the setup of Section 3.2, but for simplicity we further assume σj is
known and equal to one for all j = 1, . . . p. The classifier in this case is

D(z) =
p

∑
j=1

(ȳj − x̄j)
(
zj − 1

2 (x̄j + ȳj)
)
w(uj) with uj = (ȳj − x̄j)/

√
1/n + 1/m.

Let y1, . . . , ym denote the original minority observations, while ym+1, . . . , yn are the
added observations. Assume that the average of all minority observations has the form

ȳOS =
1
n

n

∑
i=1

yi =
1
n

( m

∑
i=1

aiyi + V
)

,
m

∑
i=1

ai = n, (3.8)

where ai ≥ 1 are random, V is random with EV = 0, and a, V and y are independent.
As in Section 3.2 we consider general terms ξ0

OS and ξ̃0
OS, where OS(z) is the

classifier D(z) with ȳ replaced by ȳOS. For simplicity we consider a term corresponding
to a variable with δ = 0.

Given a, and defining Var(V) = τ2, we have

Var(ȳOS) =
1
n2

( m

∑
i=1

a2
i + τ2) ≥ 1

n2

(n2

m
+ τ2

)
≥ 1

m
= Var(ȳ),

where the first inequality follows from ∑m
i=1 a2

i ≥ mā2 = n2/m. We write ba for this
conditional variance of ȳOS.

Given a, the conditional mean of

2(ȳOS − x̄)(µ− 1
2 (x̄ + ȳOS)1{|ȳOS − x̄| > ∆}
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is (
ba −

1
n

)
E
(
d2

a1{|da| > ∆̃}
)
,

where

da =
ȳOS − x̄√
ba + 1/n

, and ∆̃ =
∆√

ba + 1/n
.

From Proposition 3.1 it is known that the independence classifier without oversampling
gives a similar term with the factor ba − 1/n replaced by 1/m− 1/n. Thus, for a given
a, when we scale ∆ such that the probability of including the variable is the same
as for the independence classifier D(z), the difference between E(ξ0

OS) and E(ξ̃0
OS) is

larger than the difference between E(ξ0
D) and E(ξ̃0

D). That is, oversampling procedures
fulfilling (3.8) increase the imbalance bias in classification.

We now give a few examples of such oversampling procedures.

Example 1: Random oversampling (ROS). Random oversampling, where ym+1, . . . ,
yn are randomly drawn from y1, . . . , ym with replacement. In this case V = 0, and ai is
the number of times, yi is in the dataset.

Example 2: SMOTE-like oversampling. Each added observation is obtained by ran-
domly choosing two (different) samples yr and ys from y1, . . . , ym, and using αyr +

(1− α)ys as the new observation, where α is uniformly distributed on (0, 1). In this
case V = 0, and ai is one plus the sum of the α and 1− α terms for those cases where
yi has been chosen.

Note that the original SMOTE of Chawla et al. (2002) does not fit into our framework
since the ai’s and yi’s are not independent, when pairs of observations are selected
through a nearest neighbour algorithm. Most likely, though, the original SMOTE will
have the same bias problem as our SMOTE-like version. For further discussion of the
SMOTE-method in a general setting, see Blagus and Lusa (2013).

Example 3: RWO-like oversampling. This procedure is inspired by the idea in Zhang
and Li (2014) of generating artificial observations by adding normally distributed noise
to existing observations. More specifically, the procedure consists of choosing randomly
two (different) samples yr and ys from y1, . . . , ym, and using (yr + ys)/2 + U/

√
2 as

the new sample, where U ∼ N(0, 1). In this case V is proportional to a sum of n−m
standard normally distributed variables, and ai = 1 + qi/2, where qi is the number of
times yi has been chosen.

3.8.1 Simulations

In Table 3.5 we compare the independence classifier with the oversampling procedures
from Example 1-3 through simulations. For comparison we include also SMOTE of
the form in Chawla et al. (2002). Contrary to the theoretical analysis above we do not
consider the variance to be known, and all classifiers are build from D in (3.1). For the
independence classifier we fix the threshold at 2.5 and 3.0 for p = 1000 and p = 10000,
respectively. In the oversampling methods we select the threshold such that the number
of included variables is on average close to the number of variables included in the
independence classifier.

Our results clearly show that all classifiers constructed through oversampling
increase the bias. One reason is that a slightly smaller fraction of the included variables
are true detections.
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There is no major difference in the behaviour of the classifiers build on SMOTE and
SMOTE-like oversampling. Even though SMOTE does not fit into our framework, it
still appears useless in correcting for imbalance.

Table 3.5: Comparison of D and the oversampling procedures ROS, SMOTE-like, SMOTE and
RWO-like. All numbers are calculated over 1000 repetitions with n = 30, m = 10, and k = 20
differential expressed variables with δ = 1. N is the number of variables included in the classifier,
while Ntrue is the number of variables with δ = 1 included in the classifier.

D ROS SMOTE-like SMOTE RWO-like

Mean Std Mean Std Mean Std Mean Std Mean Std

p = 1000

E[ξ/τ] 1.96 0.24 2.01 0.28 2.03 0.26 2.00 0.26 2.11 0.34
E[ξ̃/τ] 0.40 0.32 0.11 0.37 0.18 0.34 0.23 0.34 0.06 0.34

N 25.50 4.47 25.02 5.27 26.58 5.00 25.93 4.80 26.53 4.77
Ntrue 11.54 2.17 10.28 2.25 10.95 2.17 10.98 2.17 10.62 2.20

∆ 2.5 3.9 4.0 4.0 3.8

p = 10000

E[ξ/τ] 2.18 0.23 2.35 0.34 2.32 0.30 2.26 0.27 2.51 0.34
E[ξ̃/τ] −1.05 0.29 −1.38 0.41 −1.29 0.37 −1.21 0.34 −1.48 0.34

N 46.19 6.80 45.80 10.60 46.95 9.17 45.20 8.25 46.93 7.64
Ntrue 7.63 2.22 6.49 2.14 6.92 2.11 6.92 2.11 6.82 2.10

∆ 3.0 4.7 4.8 4.8 4.6

Bibliography

Blagus, R. and L. Lusa (2013). Smote for high-dimensional class-imbalanced data. BMC
Bioinformatics 14(106).

Cai, T. and W. Liu (2011). A direct estimation approach to sparse linear discriminant
analysis. Journal of the American Statistical Association 106(496), 1566–1577.

Chawla, N. V., K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer (2002). Smote: Synthetic
miniority over-sampling technique. Journal of Artificial Intelligence Research 16, 321–357.

Donoho, D. and J. Jin (2009). Feature selection by higher criticism thresholding achieves
the optimal phase diagram. Philosophical transactions of the royal society A 367, 4449–
4470.

Fan, J., Y. Feng, and X. Tong (2012). A road to classification in high dimensional space:
The regularized optimal affine discriminant. Journal of the Royal Statistical Society:
Series B (Statistical Methodology) 74(4), 745–771.

Golub, T. R., D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. P. Mesirov, H. Coller,
M. L. Loh, J. R. Downing, M. A. Caligiuri, and C. D. Bloomfield (1999). Molecular
classification of cancer: class discovery and class prediction by gene expression
monitoring. Science 286, 531–537.

Jensen, J. L. (2006). Maximum likelihood classifiers in microarray studies. Research
Report 474, University of Aarhus.

Lin, S.-C., Y.-c. I. Chang, and W.-N. Yang (2009). Meta-learning for imbalanced data
and classification ensemble in binary classification. Neurocomputing 73(1-3), 484–494.



60 Chapter 3 · High dimensional classifiers in the imbalanced case

Liu, X.-Y., J. Wu, and Z.-H. Zhou (2009). Exploratory undersampling for class-imbalance
learning. IEEE Transations on Sysetems, Man, and Cybernetics Part B: Cybernetics 39(3),
539–550.

Sotiriou, C., S.-Y. Neo, L. M. McShane, E. L. Korn, P. M. Long, A. Jazaeri, P. Martiat,
S. B. Fox, A. L. Harris, and E. T. Liu (2003). Breast cancer classification and prognosis
based on gene expression profiles from a population-based study. Proceedings of the
National Academy of Sciences 100(18), 10393–10398.

Yang, P., P. D. Yoo, J. Fernando, B. B. Zhou, Z. Zhang, and A. Y. Zomaya (2014). Sample
subset optimization techniques for imbalanced and ensemble learning problems in
bioinformatics applications. IEEE Transations on Cybernetics 44(3), 445–455.

Zhang, H. and M. Li (2014). Rwo-sampling: A random walk over-sampling approach
to imbalanced data classification. Information Fusion 20(1), 99–116.



4
On oracle efficiency of the ROAD

classification rule

Britta Anker Bak and Jens Ledet Jensen

Abstract

For high-dimensional classification Fishers rule performs poorly due to noise from
estimation of the covariance matrix. Fan et al. (2012) introduced the ROAD classifier
that puts an `1-constraint on the classification vector. In their Theorem 1 Fan et al.
(2012) show that the ROAD classifier asymptotically has the same misclassification rate
as the corresponding oracle based classifier. Unfortunately, the proof contains an error.
Here we restate the theorem and provide a new proof.

4.1 Introduction

We consider classification among two groups based on a p-dimensional normally
distributed variable. Let the means in the two groups be µ1 and µ2, and let the common
covariance matrix be Σ. Also, let the probability of belonging to either of the two groups
be 1

2 . Defining µa = (µ1 + µ2)/2 and µd = (µ1 − µ2)/2, the Bayes discriminant rule
becomes

δw(x) = 1 + 1
{

wT(x− µa) < 0
}

, with w = wF = Σ−1µd,

where x is classified to group 1 or 2 according to the value of δw(x). The misclassification
rate of the rule δw is

W(δw) = Φ̄
( 1

2 wTµd
/
(wTΣw)1/2),

where Φ̄(z) = 1−Φ(z) is the upper tail probability of a standard normal distribution.
The interpretation of the Bayes rule is that wF is the vector that minimizes the misclas-
sification rate. Fan et al. (2012) suggest to use an `1 regularized version of wF, that
is,

wc = arg min
|w|1≤c, wTµd=1

wTΣw.

Its sample version
ŵc = arg min

|w|1≤c, wT µ̂d=1
wTΣ̂w,

61
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yields the ROAD classifier

δ̂ = 1 + 1
{

ŵT
c (x− µ̂a) < 0

}
.

Theorem 1 of Fan et al. (2012) states that the misclassification rate W(δ̂) of the
ROAD classifier approaches the misclassification rate of the oracle classifier W(δwc).
Unfortunately, an essential step in the proof uses an inequality which is not valid, see
Section 4.3 for details. We reformulate the theorem and give a new proof.

For a matrix A, define |A|∞ = maxi,j Ai,j.

Theorem 4.1. Let ε be a positive constant such that maxj{|µdj|} > ε, and c > ε +

1/ maxj{|µdj|}. Let an be a sequence tending to zero such that |Σ̂ − Σ|∞ = Op(an), and
|µ̂i − µi|∞ = Op(an), i = 1, 2. Then, as n→ ∞:

W(δ̂)−W(δwc) = Op(dn),

with dn = c2an(1 + c2|Σ|∞).

Prior to proving the theorem we comment on the differences compared to Theorem 1
of Fan et al. (2012). Contrary to us, Fan et al. (2012) require that the smallest eigenvalue
of Σ is bounded from below. The upper bound on W(δ̂)−W(δwc) in Fan et al. (2012)
depends on the sparsity of wc and of w(1)

c , where w(1)
c is given by

w(1)
c = arg min

|w|1≤c, wT µ̂d=1
wTΣw,

whereas our bound depends on the regularizing parameter c only. In the formulation of
both theorems c is allowed to depend on n. We require a lower bound on maxj{|µdj|},
which is not part of the theorem in Fan et al. (2012). However, it enters indirectly in
that we must have c > 1/ maxj{|µdj|} in order for wc to exist. Thus, if maxj{|µdj|} → 0,
we have c → ∞, and c enters the upper bound of Fan et al. (2012). The reason for
our more restrictive condition c > ε + 1/ maxj{|µdj|} is that the theorem only makes
sense if ŵc exists with probability tending to one. Similarly, whereas Fan et al. (2012)
have the condition |µ̂d − µd|∞ = Op(an), we have |µ̂i − µi|∞ = Op(an), i = 1, 2, in
order to handle a term in the misclassification rate that has been neglected in Fan et al.
(2012). Finally, |Σ|∞ appears in our bound. However, requiring that the variances Σii,
i = 1, . . . , p, are bounded is often encountered in high dimensional settings.

4.2 Proof of Theorem 1

In the proof we use the following inequalities:

|Φ̄(a(1 + ε))− Φ̄(a)| ≤ 2ε for a > 0 and |ε| < 1, (4.1)

|Φ̄((a + ε)−1/2)− Φ̄(a−1/2)| ≤ ε for a > 0 and a + ε > 0. (4.2)

The misclassification rate consists of two terms corresponding to an observation from
each of the two groups. The proofs for the two terms are identical, so to simplify we
consider the misclassification rate of an observation from group 1 only. Using (4.1) the
misclassification rate of δ̂ becomes

W(δ̂) = Φ̄
(1

2
ŵT

c µ̂d + ŵT
c (µ̂1 − µ1)√

ŵT
c Σŵc

)
= Φ̄

(1
2

1√
ŵT

c Σŵc

)
+ O(|ŵT

c (µ̂1 − µ1)|)

≤ Φ̄
(1

2
1√

ŵT
c Σŵc

)
+ O(c|µ̂1 − µ1|∞). (4.3)
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Next,
|ŵT

c Σŵc − ŵT
c Σ̂ŵc| ≤ c2|Σ̂− Σ|∞,

and from (4.2) we get

Φ̄
(1

2
1√

ŵT
c Σŵc

)
= Φ̄

(1
2

1√
ŵT

c Σ̂ŵc

)
+ O(c2|Σ̂− Σ|∞). (4.4)

From the proof in Fan et al. (2012) we see that

|ŵT
c Σ̂ŵc − w(1)T

c Σw(1)
c | ≤ c2|Σ̂− Σ|∞,

and thus
Φ̄
(1

2
1√

ŵT
c Σ̂ŵc

)
= Φ̄

(1
2

1√
w(1)T

c Σŵ(1)
c

)
+ O(c2|Σ̂− Σ|∞). (4.5)

Combining (4.3–4.5) we have

W(δ̂) = Φ̄
(1

2
1√

w(1)T
c Σŵ(1)

c

)
+ O(c2|Σ̂− Σ|∞ + c|µ̂1 − µ1|∞). (4.6)

Since the oracle misclassification rate is W(δwc) = Φ̄
(
1/(2

√
wT

c Σwc)
)
, we need to

compare wT
c Σwc with w(1)T

c Σŵ(1)
c .

To this end let

A1 = {w : wTµd = 1, |w|1 ≤ c},
A2 = {w : wT µ̂d = 1, |w|1 ≤ c}.

We want to show that for any w ∈ A1 there exists w̃ ∈ A2 such that wTΣw is close to
w̃TΣw̃ and vice versa. This means that the minimum of wTΣw over the set A1 is close
to the minimum over the set A2.

Let w ∈ A1, and define w̃ = w/(wT µ̂d). If |w̃|1 ≤ c, we have w̃ ∈ A2, and

wTΣw = (wT µ̂d)
2w̃TΣw̃ =

(
1 + O(c|µ̂d − µd|∞)

)2w̃TΣw̃.

If instead |w̃|1 > c, we first define w̄ ∈ A1 and then w∗ = w̄/(w̄T µ̂d) ∈ A2. To define w̄
assume without loss of generality that µd1 = maxj{|µdj|}. Write w = (w1, w(2)), where
w(2) is (p− 1)-dimensional, and define w̄ = (w̄1, rw(2)) with 0 < r < 1, and w̄1 chosen
such that w̄Tµd = 1. The latter requirement implies

w̄1µd1 = 1− rwT
(2)µd(2) = 1− r(1− w1µd1).

We will show that with r = 1− c2|µ̂d − µd|∞/(c− 1/µd1) = 1−O(c2|µ̂d − µd|∞), we
have |w∗|1 ≤ c. From the definition of w̄ we have

|w̄|1 = |w̄1|+ r|w̄(2)|1 =
|1− r(1− w1µd1)|

µd1
+ r(|w|1 − |w1|).

If 1− r(1− w1µd1) > 0 we get

|w̄|1 =
1

µd1
+ r
(
|w|1 −

1
µd1

+ w1 − |w1|
)
≤ 1

µd1
+ r
(

c− 1
µd1

)
.

This shows that w̄ ∈ A1 and w∗ ∈ A2 since

|w∗|1 =
|w̄|1

w̄T µ̂d
≤

1
µd1

+ r
(
c− 1

µd1

)
1− c|µ̂d − µd|∞

≤ c,
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when r ≤ 1− c2|µ̂d − µd|∞
/
(c− 1/µd1). If instead 1− r(1− w1µd1) < 0 we find

|w̄|1 =
r− 1
µd1

+ r|w|1 ≤ rc− 1− r
µd1

≤ rc,

and |w∗|1 ≤ rc
/
(1− c|µ̂d − µd|∞) ≤ c for r ≤ 1− c|µ̂d − µd|∞. The latter condition is

satisfied with r ≤ 1− c2|µ̂d − µd|∞
/
(c− 1/µd1). Comparing w̄ and w we get

|wTΣw− w̄TΣw̄| ≤ 2c|w− w̄|1|Σ|∞ ≤ 2c[(1− r)|w|1 + (1− r)
1

µd1
]|Σ|∞

= O(c4|µ̂d − µd|∞|Σ|∞),

and also
|w̄TΣw̄− w∗TΣw∗| ≤ (w∗TΣw∗)O(c|µ̂d − µd|∞).

We have now shown that any value of wTΣw for w ∈ A1 is close to the corresponding
value for some w̃ ∈ A2. The other way around, starting with w ∈ A2, is treated in
the same way. The only difference is that instead of using c− 1/µd1 > ε, we use that
when |µ̂d1 − µd1| < min{ε, ε3/(2 + ε2)}, which happens with probability tending to 1
(exponentially fast), we have µ̂d1 > 0 and c− 1/µ̂d1 > ε/2. Therefore, the minimum
wT

c Σwc of wTΣw over the set A1 is close to the minimum w(1)T
c Σw(1)

c over the set A2:

wT
c Σwc = w(1)T

c Σw(1)
c + O(c4|µ̂d − µd|∞|Σ|∞) + O(c|µ̂d − µd|∞wT

c Σwc)

= w(1)T
c Σw(1)

c + O(c4|µ̂d − µd|∞|Σ|∞).

Combining the latter with (4.6) we conclude

|W(δ̂)−W(δwc)| = O
(
c2an(1 + c2|Σ|∞)

)
.

4.3 Appendix

An essential step in the proof in Fan et al. (2012) is the inequality (used in equation (21)
of that paper)

wT
c µ̂d√

wT
c Σwc

≤ 1√
w(1)T

c Σw(1)
c

.

Unfortunately, this inequality is not correct. We illustrate this by a concrete example.
We consider the two-dimensional case with

µd = (1, 0)T , Σ =

(
1 1
1 σ

)
, c = 1 + ε with ε < 1/σ.

In this case we have

wc = (1,−ε)T and wT
c Σwc = 1− 2ε + σε2.

Consider next µ̂d = (1 + a, b) with a and b small. For a and b sufficiently small we
obtain

w(1)
c =

(1 + b[a + ε(1 + a)]/(1 + a + b)
1 + a

,− a + ε(1 + a)
1 + a + b

)T
,

and
w(1)T

c Σw(1)
c = (w(1)

c1 )2 + 2w(1)
c1 w(1)

c2 + σ(w(1)
c2 )2.
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For a and b small and including O(a) and O(b) terms only we get

1√
w(1)T

c Σw(1)
c

=
1√

1− 2ε + σε2

{
1 + a− bε + (a− bε)

1 + ε− εσ(1 + ε)

1− 2ε + σε2

}
, (4.7)

which must be compared to

wT
c µ̂d√

wT
c Σwc

=
1 + a− bε√
1− 2ε + σε2

. (4.8)

We thus see that (4.7) is less that (4.8) when a− bε has the opposite sign of 1 + ε−
εσ(1 + ε). Since (a− bε) ∼ N

(
0, (1− 2ε + σε)c0

)
for some constant c0, the probability

of a particular sign of a− bε is one half.

Bibliography

Fan, J., Y. Feng, and X. Tong (2012). A road to classification in high dimensional space:
The regularized optimal affine discriminant. Journal of the Royal Statistical Society:
Series B (Statistical Methodology) 74(4), 745–771.



5
A numeric comparison of sparse linear

classifiers incorporating covariance

Britta Anker Bak and Jens Ledet Jensen

Abstract

Recent results have shown incorporating covariance into linear classifiers in highdimen-
sional settings can improve their performance. In this report, we explore the properties
of a new proposal, the linear lasso discriminant, along with three existing classifiers:
Regularized optimal affine discriminant, linear programming discriminant, and sparse
linear discriminant. The comparison is done through an extensive simulation study in
a variety of settings, as well as on two datasets. The study shows that no classifier is
generally the best with respect to classification error. In most situations the computa-
tional cost can be reduced by a preliminary selection procedure without losing much
in performance. In our implementation the regularized optimal affine discriminant
(ROAD) is much faster to compute compared to the other procedures, especially when
the dimension is large.

5.1 Introduction

Scientific and technological developments during the last decades have caused the
emergence of high dimensional data in a large variety of fields, including medical
imaging (Garzon et al., 2011) and microarray analysis (Dyrskjøt et al., 2003). This is a
challenge to the statistical community since it leads to situations where the number of
variables p is much larger than the number of observations n, invalidating traditional
assumptions based on n tending to infinity.

An important problem in high-dimensional data situations is classification where
the data arise from multiple groups. Based on a training data set with known group
labels, one wants to determine a function f , such that f (x) can be used to predict the
group label of an observation x. Due to simplicity a linear f is a popular choice, and we
write a linear f as f (x) = wTx + constant, where w is called the classification vector.

The optimal, linear classification rule with respect to classification error is Bayes
rule, see e.g. Mardia et al. (1979) for a proof. Bickel and Levina (2004) proved that
Fishers rule, that is, the sample version of the optimal Bayes rule, is no better than a
random guess when p/n→ ∞, indicating that estimation of the covariance matrix is
infeasible in such high dimensional situations. Fan and Fan (2008) further showed that

66
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variable selection might be necessary to obtain useful classifiers, unless the distance
between the group means is very large.

When estimation of the covariance matrix cannot be done with sufficient precision,
there has been some focus on independence classifiers that simply ignore correlation,
and perform variable selection based on marginal properties. However, as emphasized
by Fan et al. (2012) and Cai and Liu (2011), correlation does matter in classification, and
variables that marginally are irrelevant can be helpful in reducing the classification error.
As a remedy, those two papers introduced the regularized optimal affine discriminant
(ROAD) and linear programming discriminant (LPD), respectively. Both procedures
search directly for an optimal linear p-dimensional classification vector, and thus avoid
the estimation of the covariance matrix. ROAD and LPD have attractive properties
theoretically as well as empirically.

Wu et al. (2011) introduced sparse linear discriminant analysis (sLDA), which has a
theoretical formulation equivalent to ROAD, but an alternative algorithm is applied for
its estimation, making it different from ROAD.

In this report, ROAD, LPD, sLDA, and our new suggestion, the linear lasso dis-
criminant (LLD), are compared through an extensive simulation study. We analyze the
results in search for the best classifier with respect to classification error, computational
cost, and estimation of the oracle classification vector. The results designate no uniquely
best classifier, but we do detect different behaviours among them.

In Section 5.2 we introduce the classifiers and summarize theoretical results from
the literature. Section 5.3 describes the models for our simulations, while the results
are given in Section 5.4 along with an analysis hereof. Section 5.5 states the main
conclusions. The theory behind the algorithms for estimation is given in the appendix
in Section 5.6.

5.2 Sparse linear classifiers incorporating covariance

We consider discrimination between two p-dimensional normally distributed groups
with equal covariance matrix, and means µ1 and µ2. Thus, our training data are
Xij ∼ Np(µi, Σ) for i = 1, 2, and j = 1, . . . , ni. We define n = n1 + n2, and ∆ = µ2 − µ1.
Let µ̂1 = x1 and µ̂2 = x2 denote the sample group averages, ∆̂ = x2 − x1, and Σ̂ the
within group sample variance.

We consider linear discriminants where we calculate

δw(x) = 1
{

wT
(
x− 1

2 (µ1 + µ2)
)
> 0

}
, (5.1)

for a new observation x, and classify x to group 1 when δw is zero, and to group 2
when δw is one. The probability of a wrong classification is

W(δw) = Φ
(

wT∆
2(wTΣw)1/2

)
, (5.2)

both when x comes from group 1 and group 2. In this formula Φ denotes the upper
tail probability of a standard normal distribution. The smallest classification error is
obtained with wBayes = Σ−1∆ (Mardia et al. (1979)). This classifier is known as Bayes
rule, and the classification error W(δBayes) = Φ

(
(∆Σ−1∆)1/2/2

)
is called Bayes risk. It

is customary to evaluate the performance of a classifier by comparing with Bayes risk.
In practice, µ1, µ2 and w are replaced by estimates so that (5.1) becomes

δŵ = 1
{

ŵT
(

x− 1
2 (µ̂1 + µ̂2)

)
> 0

}
.
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The classification error for a new observation from group 1 is then

W(δŵ) = Φ
(

ŵT∆̂ + 2ŵT(µ̂1 − µ1)

2(ŵTΣŵ)1/2

)
. (5.3)

Fishers rule corresponds to Bayes rule with estimated parameters, that is, ŵ = Σ̂−1∆̂.
For fixed p and large n Fishers rule is close to Bayes rule. When p is increasing with
n, this is no longer the case. For p/n→ ∞ and Σ estimated by a generalized inverse,
Bickel and Levina (2004) proved that the classification error of Fishers rule approaches
one half, the classification error of a random guess. Intuitively, this occurs through
error accumulation from estimating p2 entries of Σ. One possible remedy is to use only
the variances and disregard all the covariances, that is, using ŵD = D̂−1∆̂, where D̂
is the diagonal matrix of Σ̂. This is known as the independence rule or naive Bayes
corresponding to the naive assumption of independence between variables.

Often relatively few variables are relevant for classification, and to avoid noise
accumulation variable selection is needed, as pointed out by Fan and Fan (2008).
Among independence classifiers performing variable selection are nearest shrunken
centroids (Tibshirani et al., 2003), features annealed independence rule (Fan and Fan,
2008), and the thresholded independence rule (Bak et al., 2015).

An independence classifier ignores the information in the correlation structure, and
is therefore suboptimal. This is illustrated by the following example from Cai and Liu
(2011). Write

∆ =

(
∆1
∆2

)
, Σ =

(
Σ11 Σ12
Σ21 Σ22

)
,

where ∆1 is k-dimensional, Σ11 is k× k-dimensional, and ∆2 = is a (p− k)-dimensional
zero vector. The classification error of the independence rule using the true parameter
values is Φ(Γp/2), where

Γp =
∆T

1D−1
11 ∆1

(∆T
1D−1

11 Σ11D−1
11 ∆1)1/2

.

From Lemma A.3 of Mardia et al. (1979), we have

∆T
1Σ−1

11 ∆1 = max
z∈Rk

zT∆T
1∆1z

zTΣ11z
,

and thus ∆T
1Σ−1

11 ∆1 ≥ Γ2
p. This shows that Bayes rule based on the first k variables is

better than the independence rule. Furthemore,

∆TΣ−1∆ = ∆T
1Σ−1

11 ∆1 + (Σ−1
22 Σ12∆1)

T(Σ22 − Σ12Σ−1
11 Σ21)

−1(Σ−1
22 Σ12∆1),

and since Σ22 − Σ12Σ−1
11 Σ21 is positive definite, Bayes rule based on the first k variables

is strictly worse than Bayes rule based on all coordinates, unless Σ−1
22 Σ12∆1 = 0. Thus,

we see that the inclusion of variables with no differential expression between the two
groups actually improves the classifier.

5.2.1 Regularized optimal affine discriminant (ROAD)

The classifier (5.1) is invariant to scaling of w. Choosing a scale by requiring ∆Tw = 1,
minimizing (5.2) is equivalent to minimizing wTΣw subject to ∆Tw = 1. Fan et al. (2012)
regularizes this minimization problem by putting an upper bound on the `1 norm of w:

wc = arg min
∆Tw=1,|w|1≤c

wTΣw. (5.4)
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The purpose of the `1 norm is to reduce the number of nonzero entries of w. The bound
c can be chosen from scientific considerations or by cross-validation. There is no direct
link between c and the sparseness of w, the latter depends on ∆ and Σ as well as c.
The existence of a non-empty search set for w requires c ≥ 1/|∆|∞, and the solution
differs from wBayes only when c < |Σ−1∆|1/(∆TΣ−1∆). The classifier in (5.4) is called
the regularized optimal affine discriminant (ROAD), and its sample version is

ŵc = arg min
∆̂Tw=1,|w|1≤c

wTΣ̂w. (5.5)

The minimization in ROAD can be reformulated as a Lagrangian problem, better
suited for calculation:

wλ = arg min
∆Tw=1

{
wTΣw + λ|w|1

}
. (5.6)

Large values of λ correspond to small values of c.
The following theorem summarizes Theorem 1 in Bak and Jensen (2014) (which is a

corrected and improved version of Theorem 1 in Fan et al. (2012)), and Theorem 2 in
Fan et al. (2012).

Theorem 5.1. Let ε and K be positive constants such that maxj{|∆j|} > ε, c > ε +

1/ maxj|∆j|, and λmin(Σ) > K where λmin(Σ) denotes the smallest eigenvalue of Σ. As-
sume that for some sequence an → 0, we have |Σ̂− Σ|∞ = Op(an), and |∆̂− ∆|∞ = Op(an).
Then

W(δŵc)−W(δwc) = Op
(
c2an(1 + c2|Σ|∞)

)
. (5.7)

Next, let wB be wBayes scaled to fulfil ∆TwB = 1, and consider the minimization problem in (5.6).
We have

|wλ − wB|2 ≤
λ
√
|wB|0

λmin(Σ)
, (5.8)

where |w|0 is the number of nonzero entries of w.

In practice, an can be chosen as
√

log(p)/n under mild conditions. For a fixed
value of c, (5.7) shows that the difference between the classification error of the sample
ROAD and the true optimal ROAD tends to zero, if |Σ|∞ is upper bounded. Equation
(5.8), on the other hand, considers directly the difference between ROAD and Bayes
rule. If wBayes is sparse (|wB|0 is bounded), and we choose λ =

√
log(p)/n→ 0, we see

that ROAD approaches Bayes rule. Note, though, that c gets large when λ→ 0, so (5.7)
gives no positive result for the sample ROAD in this situation.

In Fan et al. (2012), ROAD is implemented through a fast coordinate descent
algorithm, described in Section 5.6.1, which minimizes

wλ,γ = arg min
wT∆=1

{
wTΣw + λ|w|1 + 1

2 γ(wT∆− 1)2}. (5.9)

When referring to ROAD in the following sections, we mean the implementation
through (5.9). When γ is fixed, and λγ is chosen by cross-validation, simulations (Fan
et al. (2012)) show that the choice of γ is not crucial to obtain a low classification error.
However, the choice of γ has an effect on the sparsity of wλ,γ and its ability to estimate
wB.
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5.2.2 Sparse linear discriminant analysis (sLDA)

In Wu et al. (2011) the starting point is Fishers rule defined by arg maxw wTΣ̂Bw/wTΣ̂w,
where Σ̂B is the estimated between-group variance. This starting point relates to
variances, and not directly to a distributional assumption. In the two group setting the
criteria reduces to minimizing wTΣ̂w subject to ∆̂Tw = 1. Using an `1 constraint the
sparse linear discriminant (sLDA) is defined as in (5.5), the latter being the background
for the ROAD algorithm which solves (5.9).

The implementation of sLDA in Wu et al. (2011) solves (5.5), and is therefore
different from the ROAD algorithm. The authors first argue that the solution ŵc is
piecewise linear, as a function of c, and next describe an algorithm to produce the entire
solution path. Their work is based on the results in Rosset and Zhu (2007). Details of
the algorithm are given in Section 5.6.2.

Mai and Zou (2012) proved that sLDA is equivalent to sparse optimal scoring
(Clemmensen et al., 2011) and direct sparse discriminant analysis (Mai et al., 2012).

5.2.3 Linear programming discriminant (LPD)

Bayes rule wBayes = Σ−1∆ can be written as the solution to Σw− ∆ = 0. Motivated by
this Cai and Liu (2011) define the linear programming discriminant (LPD) as

ŵLPD = arg min
|Σ̂w−∆̂|∞≤λn

|w|1. (5.10)

To see the asymptotic properties of LPD we restate Theorem 2 and Theorem 3 of Cai
and Liu (2011).

Theorem 5.2. Assume n1 � n2, log(p) ≤ n, maxi Σii ≤ K1, and ∆TΣ−1∆ ≥ K2 for positive
constants K1 and K2, and let λ = C

√
∆TΣ∆ log(p)/n for a sufficiently large C.

(i) If
|Σ−1∆|1

(∆TΣ−1∆)1/2 +
|Σ−1∆|21

(∆TΣ−1∆)2 = o
(√ n

log(p)

)
,

then
W(δLPD)−W(δBayes)→ 0,

in probability as n→ ∞.

(ii) If

|Σ−1∆|1(∆TΣ−1∆)1/2 + |Σ−1∆|21 = o
(√ n

log(p)

)
,

then
W(δLPD)

W(δBayes)
− 1 = O

(
(|Σ−1∆|1(∆TΣ∆)1/2 + |Σ−1∆|21)

√
log(p)

n

)
,

with probability greater than 1−O(p−1).

(iii) If |Σ−1∆|0∆TΣ−1∆ = o
(√

n/ log(p)
)
, and the eigenvalues of Σ are bounded above and

below, it holds that:

W(δLPD)

W(δBayes)
− 1 = OP

(
|Σ−1∆|0∆TΣ∆

√
log(p)

n

)
.
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Theorem 5.2 states that under various sparseness assumptions on wBayes = Σ−1∆,
the LPD classifier performs well as compared to the Bayes classifier. Part (iii) uses direct
sparseness of Σ−1∆, whereas parts (i) and (ii) use approximately sparseness through a
restriction on the `1 norm of Σ−1∆.

LPD is implemented using linear programming, see Section 5.6.3 for details.

5.2.4 Linear lasso discriminant (LLD)

The LPD in (5.10) is defined through the supremum norm of Σ̂w− ∆̂. Using instead
the `2 norm we get a classifier that we term linear lasso discriminant (LLD):

wLLD = arg min
w:|w|1≤c

1
p
|Σ̂w− ∆̂|22, (5.11)

Numerically, this procedure is easily implemented through the LARS-algorithm (Efron
et al., 2004) without intercept, see Section 5.6.4 for details. The setting here is quite
different from the setting in Efron et al. (2004), and the properties shown in that paper
cannot be directly transferred to our setting.

5.3 Methods and models

We compute ROAD, LPD, sLDA, and LLD on simulated datasets in 19 settings. Ad-
ditionally, all classifiers are computed after preliminary variable selection: Selection
version number 1 (S1) uses the 50 variables with the largest t-statistics, while selection
version number 2 (S2) furthermore incorporates the variables which are most correlated
with each of these 50 variables. This is inspired by Fan et al. (2012) where a closely
related selection procedure turns out to produce a classifier almost as good as the
original ROAD, while the computational burden is much smaller.

From experience it is known that LPD and LLD are better when Σ̂ is replaced by
Σ̃ = Σ̂ + log(p)/nIp. For LPD this estimate furthermore enables us to find an initial
solution.

ROAD, sLDA, and LLD result in sparse classification vectors whereas the algorithm
applied to find wLPD produces a solution with many coefficients very close to zero.
For wLPD we set coefficients smaller than e10/τ equal to zero, where τ is described in
Section 5.6.3.

For all classifiers the optimal value of the regularizing parameter is found by
fivefold cross-validation with the same splitting across classifiers for each simulation,
and searching over 100 values of the regularizing parameter.

All settings are performed for p = 100, 500, and 1000, while the number of observa-
tions from each group is constantly n1 = n2 = 50. The number of repeated simulations
in each setting is nsim = 100. When p = 1000, LPD is not calculated due to the very
long computing time needed.

Let ab denote a b-dimensional vector with a on all entrances. Our settings are as
follows:

Setting 1 – Equal correlation: ∆ = (110, 0p−10), Σii = 1, and Σij = ρ i 6= j for
ρ = 0.1, 0.5, 0.9.

Setting 2 – Blockwise correlation 1: ∆ = (0.55, 05, 0.55, 0p−15), and Σ = diag(Σ0),
where Σ0 is a 10× 10 equicorrelated matrix with correlation ρ = −0.1, 0.1, 0.5, 0.9.
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Setting 3 – Blockwise correlation 2: ∆ =
(
(0.51, 09)10, 0p−100

)
, and Σ as in blockwise

correlation 1.

Setting 4 – Descending correlation 1: ∆ = (110, 0p−10), and Σij = ρ|i−j| for ρ =

0.1, 0.5, 0.9.

Setting 5 – Descending correlation 2: ∆ =
(
(11, 09)10, 0p−100

)
, and Σ as in descending

correlation 1.

Setting 6 – Leukaemia 1: ∆ = ∆̂p and Σ = Cor
(

Σ̂p +
√

log(p)
n1+n2

Ip

)
, where ∆̂p is the

empirical mean difference, and Σ̂p is the empirical variance based on the data in Golub
et al. (1999), Ip is the identity matrix, and Cor() is the function that transforms a
variance matrix to a correlation matrix. The p variables have been selected by choos-
ing p consecutive variables where the distribution of the correlations resembles the
distribution for all variables.

Setting 7 – Leukaemia 2: ∆ = (110, 0p−10), and Σ as in Leukaemia 1.

5.3.1 Previous simulations

We now give a brief overview over existing empirical studies of the relevant classifiers.
Fan et al. (2012) have performed a simulation study with p = 1000, n0 = n1 = 300,

and 10 variables with differential expression. The differential expression is either 1
or 0.5 depending on the setting. With these parameter values an almost complete
separation, based on the t-values, between the differentially expressed variables and
the nondifferentially expressed variables, is obtained. Setting 1 above is considered
with differential expression 1, and Setting 2 above with negative correlation, ρ = −0.1
is studied. Furthermore, two settings not related to Setting 1 to 6 are considered: First
a two-block setting, with all the differentially expressed variables in a block of size 20,
and next a setting with a 10-factor form of the covariance matrix, where the factors are
generated from a uniform distribution, and the differential expressions is taken from a
double exponential distribution.

Also three real datasets are considered, including the data of Golub et al. (1999)
and Gordon et al. (2002), which both have many variables with a very high differential
expression.

Cai and Liu (2011) have performed a simulation study with p in the range from
100 to 800, n1 = n2 = 200, and 10 variables with differential expression equal to 1. In
such situations we have an almost complete separation, based on the t-values, between
the differentially expressed variables and the nondifferentially expressed variables.
Setting 1 above is considered with ρ = 0.5, and Setting 4 with ρ = 0.8. Also a setting
with random entries of Σ−1 is considered. The datasets of Golub et al. (1999) and
Gordon et al. (2002) are analyzed as well.

Note that due to our lower number of observations compared to the above studies,
we cannot obtain the same quality of our resulting classifiers. In our opinion this lower
sample size is more realistic in many microarray experiments.

Wu et al. (2011) only perform low-dimensional simulations with p equal to 10 and
40 respectively.
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5.4 Results and discussion

In this section we compare the performance of the classifiers, with particular emphasis
on classification error.

5.4.1 Classification error

Table 5.1 shows the average of the classification error from 100 simulations, each
calculated from (5.3).

None of the procedures are uniformly best. Generally, ROAD and sLDA are very
close, although mostly with sLDA having the larger classification error of the two.
Often ROAD has the smallest classification error, or is close to the smallest values.

When considering the procedures starting from all variables, the errors of the
classifiers are almost equal for p = 100. When p = 500 and p = 1000, ROAD and sLDA
remain equally good, while LPD and LLD are worse in some situations, particularly
when the correlation is large.

Regarding the variable selection method S1, the classifiers tend to be of the same
quality, apart from LLD being slightly better than the rest in some of the settings with
a small correlation.

The situation for the variable selection method S2 looks somewhat like the proce-
dures with all variables. There is no significant difference for p = 100. For p = 500 and
p = 1000, LPD and LLD tend to be worse than ROAD and sLDA when the correlation
is large.

When considering the various versions of ROAD, we see that S1 is generally worse
than the procedure including all variables, while S2 in some cases is better and in some
cases worse. The latter happens mainly for large correlations. These conclusions are
parallel to the ones from the simulations in Fan et al. (2012). When comparing S1, S2,
and the procedure with all variables for the other classifiers, we arrive at similar
conclusions as for ROAD.

5.4.2 Computational cost

In Table 5.2 the average running times over 100 simulations are seen. From this
perspective ROAD is the most attractive classifier. Theoretical arguments suggest that
the running time is O(p2) for ROAD. However, for the settings we have considered, the
increase with p is much slower. LLD and sLDA seem more to obey a p2 relationship,
with sLDA using roughly twice the time of LLD, and LPD increases even faster. For
one of the p = 500 cases, the simulation took around 5 minutes, and for that reason we
did not calculate LPD for p = 1000. Note, however, that following James et al. (2009), it
is possible to implement LPD with the same computational effort as sLDA and LLD
(we have not pursued this in the present report).

5.4.3 Variable selection

Looking at the sparsity of the classifiers in Table 5.3, we see that ROAD and sLDA are
almost equally sparse in most situations, and significantly more sparse than LPD and
LLD, with LLD being the least sparse classifier. This is true both for the procedure
with all variables and the variable selection method S2. For the S1 selection method the
different classifiers are almost equally sparse. Slightly surprisingly we find that S1 and
S2 in some cases are less sparse than the corresponding classifier build on all variables.
From this we conclude that the variable selection methods should be seen as a help to
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Table 5.1: Average number of nonzero coefficients over 100 simulations for all estimators.
Standard deviations are given in parentheses.

Setting ρ p = 100 p = 500 p = 1000

Bayes ROAD LPD sLDA LLD ROAD LPD sLDA LLD ROAD sLDA LLD

Equal 0.1 All 5.6 12.4 (2.5) 11.1 (2.4) 13.4 (3.3) 10.9 (2.7) 13.1 (2.7) 11.8 (2.6) 14.6 (4.0) 12.6 (2.3) 12.5 (2.8) 14.0 (3.8) 13.2 (3.3)
S1 13.3 (3.0) 12.2 (2.5) 14.0 (3.2) 11.4 (2.6) 16.4 (4.0) 15.1 (3.3) 16.7 (4.3) 13.6 (2.9) 16.7 (4.0) 17.3 (4.0) 14.0 (3.6)
S2 15.6 (4.2) 14.9 (3.9) 16.0 (4.4) 13.4 (3.2) 15.9 (4.8) 16.4 (4.3) 13.8 (3.4)

0.5 All 1.7 6.1 (1.8) 4.2 (1.1) 7.1 (3.5) 4.1 (1.2) 5.3 (1.2) 4.0 (1.4) 7.1 (3.2) 4.3 (1.5) 4.9 (1.4) 7.6 (4.4) 4.5 (1.8)
S1 6.5 (2.0) 4.8 (1.3) 7.2 (2.5) 4.9 (2.2) 7.2 (2.8) 5.7 (2.5) 8.1 (3.2) 5.7 (2.2) 8.1 (3.5) 8.8 (3.4) 6.6 (3.8)
S2 7.2 (2.7) 5.7 (2.3) 8.0 (3.1) 5.1 (1.9) 8.3 (3.0) 9.5 (4.3) 5.8 (3.0)

0.9 All 0.0 0.0 (0.0) 0.0 (0.0) 0.5 (0.5) 0.7 (1.0) 0.0 (1.0) 0.0 (0.0) 0.1 (0.3) 0.4 (0.5) 0.0 (0.0) 0.4 (0.8) 0.4 (0.5)
S1 0.0 (0.0) 0.0 (0.0) 0.1 (0.1) 0.7 (0.9) 0.6 (5.4) 0.5 (5.4) 0.7 (5.4) 1.1 (5.4) 0.5 (5.2) 0.7 (5.5) 1.1 (5.3)
S2 0.1 (1.1) 0.3 (2.5) 0.8 (1.9) 1.1 (2.3) 0.6 (5.7) 1.7 (6.6) 1.4 (5.7)

Blockwise 1 −0.1 All 3.2 20.6 (4.5) 24.6 (4.6) 20.2 (4.4) 26.3 (5.3) 32.1 (5.3) 33.5 (5.3) 33.0 (6.1) 36.4 (6.4) 36.3 (6.4) 35.7 (5.9) 39.3 (6.2)
S1 23.7 (4.3) 24.2 (3.7) 24.2 (4.2) 25.4 (4.1) 35.2 (5.5) 34.8 (5.0) 35.4 (5.6) 34.4 (4.9) 38.4 (4.9) 38.5 (4.8) 37.5 (4.9)
S2 35.3 (5.7) 35.0 (4.8) 35.2 (5.9) 35.0 (4.7) 39.3 (5.6) 38.9 (5.2) 38.4 (4.6)

0.1 All 23.7 35.5 (5.1) 34.7 (4.6) 36.2 (5.0) 34.5 (5.0) 38.5 (5.0) 38.9 (5.2) 39.0 (5.3) 40.2 (4.9) 38.9 (5.4) 39.0 (5.5) 42.6 (5.5)
S1 36.3 (5.0) 35.4 (4.3) 36.4 (4.7) 34.0 (4.7) 42.2 (4.6) 40.9 (4.5) 42.2 (4.6) 38.8 (4.2) 42.0 (4.5) 42.2 (4.6) 39.7 (4.5)
S2 41.6 (4.5) 40.8 (4.4) 41.7 (4.9) 39.7 (4.9) 42.2 (4.5) 41.9 (4.7) 41.1 (4.7)

0.5 All 20.4 35.5 (4.5) 34.8 (4.1) 35.1 (4.3) 34.6 (4.8) 41.0 (4.8) 41.7 (5.3) 41.0 (5.0) 43.3 (4.5) 42.3 (4.9) 42.4 (4.8) 44.8 (5.0)
S1 36.2 (5.2) 35.4 (4.5) 35.9 (5.0) 35.8 (5.0) 43.3 (4.0) 42.5 (4.1) 43.4 (4.2) 42.3 (4.1) 44.8 (4.7) 44.6 (4.6) 43.1 (4.6)
S2 40.7 (4.7) 39.8 (4.7) 40.6 (4.7) 40.0 (4.6) 42.0 (4.6) 42.4 (4.6) 41.8 (4.7)

0.9 All 3.8 10.6 (3.1) 11.4 (3.3) 11.2 (3.5) 11.4 (3.3) 24.9 (3.3) 36.3 (6.1) 25.2 (6.8) 39.7 (6.9) 39.0 (6.0) 37.9 (7.5) 47.2 (4.7)
S1 19.5 (10.2) 22.2 (10.0) 19.7 (10.0) 22.9 (10.6) 39.1 (9.3) 40.9 (6.6) 39.4 (9.3) 41.1 (6.3) 44.0 (6.7) 44.4 (6.6) 44.0 (5.5)
S2 18.0 (6.6) 25.3 (7.8) 19.6 (7.3) 25.4 (7.9) 22.6 (8.7) 24.1 (8.7) 31.5 (8.5)

Blockwise 2 −0.1 All 14.3 32.0 (5.7) 30.9 (5.2) 31.9 (5.3) 32.1 (5.1) 36.5 (5.1) 36.5 (5.4) 36.8 (5.4) 39.6 (5.8) 37.3 (5.6) 38.1 (5.7) 41.0 (5.8)
S1 32.3 (4.9) 31.7 (4.7) 32.2 (5.1) 30.8 (4.4) 39.5 (4.1) 38.4 (4.0) 39.4 (4.1) 37.6 (4.5) 40.9 (5.0) 40.6 (5.2) 38.3 (4.7)
S2 39.5 (4.6) 39.0 (4.2) 39.2 (5.0) 38.4 (4.4) 41.2 (5.0) 41.1 (5.0) 39.8 (4.5)

0.1 All 20.9 32.3 (5.8) 31.1 (5.4) 32.7 (5.4) 31.2 (5.2) 36.1 (5.2) 36.7 (4.9) 36.9 (5.3) 39.1 (6.0) 38.0 (5.3) 38.4 (5.7) 40.6 (5.1)
S1 32.5 (5.1) 31.4 (4.7) 32.2 (4.7) 30.9 (4.6) 39.7 (4.5) 38.4 (4.3) 39.7 (4.8) 36.9 (4.5) 40.4 (4.8) 40.4 (4.9) 38.4 (4.8)
S2 39.6 (4.7) 38.7 (4.5) 39.4 (4.9) 37.9 (4.5) 41.2 (5.0) 41.1 (5.1) 39.7 (4.4)

0.5 All 14.3 26.6 (4.9) 25.6 (5.1) 27.4 (5.3) 25.3 (4.6) 33.8 (4.6) 34.8 (4.9) 34.2 (4.8) 37.4 (5.4) 36.4 (4.9) 36.7 (5.6) 42.8 (6.1)
S1 26.1 (4.8) 25.8 (4.6) 26.7 (4.6) 25.7 (4.3) 35.3 (4.6) 35.0 (4.3) 35.6 (4.8) 35.1 (4.1) 39.0 (4.4) 39.0 (4.7) 38.3 (4.2)
S2 34.4 (4.4) 34.2 (4.4) 34.4 (4.2) 34.9 (4.5) 38.3 (4.8) 38.0 (5.4) 38.6 (4.2)

0.9 All 0.9 4.2 (1.4) 3.4 (1.4) 5.0 (2.2) 3.9 (2.3) 13.9 (2.3) 25.8 (5.9) 16.4 (5.5) 29.4 (6.7) 32.1 (6.4) 31.1 (6.6) 42.2 (5.6)
S1 6.9 (2.9) 7.7 (4.4) 7.7 (3.2) 8.5 (4.4) 28.7 (6.7) 31.0 (5.5) 29.1 (7.3) 32.1 (5.8) 32.5 (6.3) 32.9 (6.6) 35.3 (4.9)
S2 13.9 (4.8) 21.0 (5.9) 14.6 (5.2) 21.2 (6.2) 19.2 (5.3) 20.2 (5.3) 28.7 (6.1)

Descending 1 0.1 All 7.4 10.9 (2.7) 10.4 (2.8) 12.5 (3.8) 10.6 (2.7) 12.5 (2.7) 12.1 (3.1) 14.4 (4.5) 15.0 (3.1) 13.0 (3.0) 14.6 (4.8) 16.0 (3.0)
S1 12.2 (3.5) 11.1 (2.8) 13.3 (3.6) 10.2 (2.2) 18.3 (5.4) 16.8 (4.2) 19.0 (5.6) 14.0 (3.7) 19.0 (4.6) 19.1 (4.8) 14.4 (2.8)
S2 16.0 (5.3) 15.9 (4.7) 16.6 (5.5) 14.5 (3.9) 17.3 (5.0) 17.8 (4.9) 15.3 (3.6)

0.5 All 14.9 20.7 (4.0) 20.0 (3.7) 22.7 (4.9) 20.3 (3.3) 21.4 (3.3) 21.0 (4.5) 22.2 (4.0) 23.2 (3.9) 21.2 (4.1) 21.8 (4.3) 25.3 (4.3)
S1 22.3 (5.0) 21.3 (3.6) 23.5 (4.9) 20.7 (3.1) 27.9 (5.3) 26.1 (4.4) 28.2 (5.1) 24.5 (4.6) 30.2 (5.5) 29.9 (6.1) 26.0 (5.2)
S2 25.4 (5.5) 25.4 (5.0) 26.3 (5.8) 24.7 (4.5) 28.0 (6.1) 28.4 (5.7) 26.3 (4.7)

0.9 All 11.6 16.7 (3.4) 21.6 (3.4) 17.6 (3.6) 23.9 (4.2) 23.7 (4.2) 28.5 (4.3) 23.1 (4.5) 32.9 (4.2) 27.2 (5.6) 26.5 (4.9) 35.9 (5.4)
S1 22.2 (7.2) 24.5 (5.1) 22.9 (7.5) 25.7 (4.9) 32.3 (6.6) 32.9 (5.1) 32.4 (7.0) 33.1 (5.0) 36.3 (6.1) 36.0 (6.6) 35.6 (4.9)
S2 20.6 (3.8) 26.4 (3.5) 21.6 (4.9) 28.3 (3.9) 23.3 (4.2) 23.9 (4.2) 30.6 (4.8)

Descending 2 0.1 All 5.5 9.4 (2.9) 8.8 (2.4) 10.8 (3.1) 8.6 (2.3) 10.7 (2.3) 9.7 (2.4) 13.0 (4.4) 12.8 (2.9) 10.6 (2.9) 12.0 (4.3) 13.9 (3.0)
S1 10.0 (3.0) 9.4 (2.6) 11.2 (3.2) 8.8 (2.3) 15.2 (4.9) 14.2 (4.2) 15.5 (5.0) 11.5 (3.4) 16.3 (5.2) 16.8 (5.3) 12.6 (3.4)
S2 14.0 (5.2) 13.4 (4.3) 15.3 (5.0) 12.7 (4.0) 16.0 (6.2) 16.2 (5.5) 14.3 (4.0)

0.5 All 2.2 7.6 (2.0) 7.1 (1.8) 8.2 (2.6) 7.3 (1.7) 9.9 (1.7) 9.8 (2.6) 11.1 (4.0) 13.0 (3.2) 10.1 (3.1) 12.1 (4.8) 13.9 (3.3)
S1 8.2 (2.1) 7.7 (1.9) 8.5 (2.3) 7.7 (1.7) 13.3 (4.3) 12.6 (3.9) 13.7 (4.0) 11.7 (3.0) 15.6 (4.8) 16.0 (5.3) 12.3 (3.1)
S2 11.8 (4.1) 11.6 (3.6) 12.5 (4.8) 12.4 (3.3) 13.5 (4.7) 14.5 (5.1) 13.1 (2.8)

0.9 All 0.0 0.0 (0.0) 0.0 (0.0) 0.6 (1.4) 0.6 (0.7) 0.5 (0.7) 1.3 (0.9) 0.9 (0.9) 2.9 (1.6) 2.0 (2.0) 2.7 (2.3) 9.3 (3.8)
S1 0.2 (0.1) 0.2 (0.2) 0.5 (0.7) 1.0 (0.9) 7.5 (5.3) 9.5 (4.7) 8.1 (5.6) 10.4 (4.9) 14.9 (6.6) 15.4 (6.9) 16.6 (5.1)
S2 0.3 (0.2) 0.8 (0.6) 1.0 (1.0) 1.5 (1.5) 0.5 (0.4) 1.2 (1.2) 2.8 (2.2)

Leukaemia 1.0 All 0.2 2.5 (0.8) 1.9 (0.8) 2.7 (0.9) 2.4 (1.5) 0.6 (1.5) 0.1 (0.2) 1.4 (1.1) 0.9 (1.0) 0.1 (0.1) 0.1 (0.1) 0.9 (1.1)
S1 3.0 (1.0) 2.5 (0.8) 3.3 (1.2) 2.9 (1.5) 3.6 (1.3) 3.2 (1.7) 4.4 (2.2) 3.5 (1.4) 0.4 (0.4) 0.9 (0.6) 1.3 (1.2)
S2 2.3 (1.0) 1.5 (0.7) 3.0 (1.3) 2.2 (1.4) 0.3 (0.2) 0.9 (0.8) 1.2 (1.1)

2.0 All 0.3 3.3 (1.4) 2.6 (1.0) 3.9 (1.6) 2.9 (1.4) 5.1 (1.4) 4.3 (1.8) 7.3 (3.8) 5.8 (2.1) 3.3 (1.2) 5.3 (4.1) 5.6 (2.1)
S1 3.9 (1.2) 3.4 (1.0) 4.8 (1.9) 3.9 (1.4) 9.7 (3.0) 9.1 (2.8) 10.3 (3.2) 9.9 (3.3) 5.8 (1.9) 6.2 (2.3) 6.4 (2.1)
S2 6.8 (1.8) 6.2 (1.8) 7.8 (2.7) 6.6 (2.2) 5.1 (1.8) 5.7 (2.9) 5.7 (2.2)
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Table 5.2: Average computation time over 100 simulations for the classifiers calculated from all
variables.

Setting ρ p = 100 p = 500 p = 1000

ROAD LPD sLDA LLD ROAD LPD sLDA LLD ROAD sLDA LLD

Equal 0.1 3.0 7.9 1.5 1.7 8.4 304.9 31.8 13.4 17.4 127.4 79.6
0.5 3.1 9.3 1.4 1.7 8.8 374.9 30.7 11.6 17.5 119.0 72.3
0.9 2.7 10.8 1.5 1.4 9.1 514.6 34.6 10.5 18.4 141.2 68.4

Blockwise 1 −0.1 4.0 7.6 1.6 1.7 8.9 274.5 33.1 13.0 17.4 136.4 73.9
0.1 5.2 7.5 1.5 1.7 9.1 277.0 36.7 12.8 17.6 137.3 73.8
0.5 5.9 7.8 1.5 1.7 10.1 288.6 35.7 13.1 18.8 136.8 74.4
0.9 5.8 8.5 1.5 1.7 12.0 319.7 38.8 13.7 20.6 142.2 79.7

Blockwise 2 −0.1 5.0 7.6 1.6 1.7 9.0 290.3 36.8 13.1 17.6 136.0 74.3
0.1 4.8 7.6 1.6 1.7 9.0 291.4 36.6 13.1 17.3 133.9 73.8
0.5 5.2 7.9 1.5 1.7 9.5 289.0 34.6 13.7 17.9 132.8 74.4
0.9 4.2 8.4 1.5 1.5 11.1 306.4 36.6 13.5 19.6 135.2 79.5

Descending 1 0.1 3.1 7.3 1.6 1.7 8.3 267.8 34.8 13.2 17.1 128.8 76.5
0.5 4.0 7.3 1.6 1.7 8.9 260.0 33.5 13.1 17.8 128.0 76.1
0.9 4.7 8.3 1.5 1.7 10.3 278.9 35.2 13.5 19.0 135.4 78.6

Descending 2 0.1 2.8 7.3 1.6 1.7 8.1 275.2 34.0 13.8 16.9 132.4 76.7
0.5 2.7 7.5 1.6 1.7 8.1 266.7 34.6 13.4 17.0 136.0 77.9
0.9 2.4 9.1 1.6 1.6 8.4 305.7 38.2 13.4 17.5 145.7 82.0

Leukaemia 1.0 2.3 8.2 1.5 1.7 8.1 297.0 35.1 11.7 14.9 118.9 75.0
2.0 2.5 8.5 1.6 1.7 8.7 326.5 33.9 12.4 17.4 136.0 77.3

reduce computational cost rather than a way of reducing the dimension of the final
classifier.

We now consider whether the classifiers find variables with large values of wBayes

in those cases where wBayes has only few large values. More precisely, we look at those
cases where the number of variables with wBayes larger than 10−4 is small. Setting the
small entries of wBayes to zero we have the following cases with sparse wBayes:

Blockwise 1 with only the first 20 coordinates nonzero,

Descending 1 with only the first 11 coordinates nonzero,

Descending 2 with only the first 100 coordinates nonzero.

For the above settings we define a true positive rate (TPR) and a false positive rate
(FPR) as follows:

TPR =
{i : wi 6= 0, wBayes,i 6= 0}

#{i : wBayes,i 6= 0} , and FPR =
{i : wi 6= 0, wBayes,i = 0}

#{i : wBayes,i = 0} .

These rates can be seen in Table 5.4 and Table 5.5. Both TPR and FPR are generally
larger for LPD and LLD than for ROAD and sLDA in accordance with the previous
observation that these methods are less sparse.

ROAD tends to have the lowest value of both TPR and FPR. TPR is always above
50% if p = 100, but gets as low as 17% for ROAD when p = 1000. For ROAD, LPD and
sLDA the FPR are almost always below 50%, and when p = 1000, it is even below 10%.
Summarizing, most procedures tend to include a large part of the relevant variables,
but particularly LLD selects a lot of irrelevant ones simultaneously.

5.4.4 Estimation of wBayes

In this section we compare the estimates of w for the various classifiers. Figure 5.1 and
Figure 5.2 plot pairs of estimates of w for four of the one hundred simulations. We
see that the coefficients of sLDA and ROAD are strongly positively correlated. The
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Table 5.3: Average number of nonzero coefficients over 100 simulations for all estimators.
Standard deviations are given in parentheses.

Setting ρ p = 100 p = 500 p = 1000

ROAD LPD sLDA LLD ROAD LPD sLDA LLD ROAD sLDA LLD

Equal 0.1 All 34.5 (13.6) 42.1 (18.1) 38.0 (14.6) 42.6 (16.4) 48.6 (25.1) 81.5 (60.4) 43.3 (20.5) 105.0 (40.5) 51.7 (24.8) 48.6 (21.2) 148.1 (81.8)
S1 30.6 (8.4) 35.9 (10.2) 32.5 (10.0) 32.6 (9.2) 33.4 (9.6) 39.1 (11.2) 33.7 (10.1) 38.0 (10.0) 35.0 (8.5) 36.1 (9.5) 39.6 (7.8)
S2 47.5 (16.7) 68.7 (23.9) 47.2 (14.8) 64.5 (18.7) 50.4 (15.1) 51.6 (14.6) 64.3 (17.7)

0.5 All 46.2 (11.8) 58.0 (17.7) 47.2 (12.7) 52.7 (14.2) 66.2 (19.3) 131.0 (85.8) 60.8 (18.1) 94.8 (38.8) 75.2 (22.1) 60.3 (18.6) 127.0 (65.3)
S1 34.4 (6.0) 42.2 (6.3) 37.1 (7.3) 38.7 (7.8) 35.1 (7.4) 42.5 (7.9) 38.0 (8.6) 36.2 (9.7) 34.6 (8.3) 36.1 (9.3) 35.4 (10.0)
S2 48.0 (11.7) 67.9 (21.5) 50.0 (13.1) 51.0 (14.5) 50.0 (13.3) 50.9 (14.8) 56.3 (17.8)

0.9 All 48.1 (4.2) 95.9 (1.9) 78.6 (9.2) 25.4 (8.6) 71.9 (8.1) 452.6 (6.8) 85.1 (12.5) 38.6 (15.5) 81.4 (8.3) 82.3 (16.8) 42.6 (19.5)
S1 35.5 (2.8) 49.6 (0.7) 48.6 (2.7) 24.7 (9.4) 35.3 (3.9) 49.2 (4.4) 48.2 (5.0) 28.5 (11.9) 35.2 (4.5) 47.8 (5.2) 27.3 (11.8)
S2 46.3 (5.1) 95.6 (2.6) 78.7 (9.6) 25.9 (9.5) 46.1 (5.1) 77.1 (13.7) 24.9 (10.8)

Blockwise 1 −0.1 All 49.9 (24.1) 48.7 (29.3) 54.7 (21.4) 70.2 (23.0) 45.1 (34.9) 96.6 (114.3) 36.8 (26.9) 121.0 (55.1) 35.3 (32.5) 38.6 (27.2) 138.5 (92.4)
S1 36.3 (9.2) 41.1 (7.8) 37.9 (9.9) 43.4 (5.5) 43.4 (3.0) 47.9 (2.4) 43.8 (5.1) 46.6 (3.7) 43.5 (2.8) 45.0 (3.7) 46.4 (4.7)
S2 63.2 (13.0) 80.7 (15.6) 60.0 (12.3) 80.4 (11.7) 63.4 (11.0) 61.9 (10.8) 78.2 (12.9)

0.1 All 29.4 (22.0) 33.7 (26.8) 36.5 (24.3) 41.9 (27.6) 34.2 (33.4) 98.8 (128.8) 35.3 (25.9) 105.8 (54.5) 33.6 (34.3) 29.9 (23.3) 130.7 (104.3)
S1 32.6 (13.4) 39.6 (11.8) 34.9 (11.2) 37.7 (12.2) 43.5 (3.1) 47.9 (2.2) 43.3 (4.8) 46.1 (5.7) 43.5 (3.2) 44.8 (4.2) 47.1 (3.2)
S2 62.6 (13.3) 82.0 (14.6) 60.9 (16.4) 75.6 (16.3) 65.4 (12.4) 63.4 (13.8) 80.3 (15.1)

0.5 All 37.0 (25.8) 45.1 (31.4) 39.7 (22.0) 55.3 (29.5) 38.3 (36.3) 97.7 (137.9) 40.3 (28.6) 100.1 (71.2) 30.9 (35.5) 38.9 (28.2) 111.4 (78.4)
S1 28.9 (11.6) 33.1 (12.9) 29.7 (10.4) 32.9 (12.6) 38.4 (6.2) 42.8 (6.0) 39.1 (7.4) 42.3 (7.4) 40.5 (4.1) 41.5 (5.8) 44.4 (4.9)
S2 58.2 (14.7) 77.7 (17.8) 56.3 (17.0) 75.7 (17.3) 60.5 (11.3) 58.8 (14.7) 75.3 (16.2)

0.9 All 41.7 (12.8) 72.2 (18.3) 43.1 (12.4) 71.5 (17.0) 76.1 (24.8) 98.4 (104.8) 70.1 (19.8) 141.6 (90.2) 53.1 (43.8) 58.2 (31.4) 132.1 (132.9)
S1 25.1 (9.5) 34.3 (11.1) 28.4 (9.0) 34.6 (11.0) 24.5 (8.1) 34.0 (8.7) 29.2 (10.2) 30.6 (10.4) 23.6 (7.4) 28.5 (9.0) 30.9 (10.3)
S2 47.9 (11.2) 78.6 (18.6) 52.1 (14.4) 82.6 (14.2) 51.0 (12.7) 54.0 (15.1) 80.1 (15.5)

Blockwise 2 −0.1 All 29.2 (23.9) 31.5 (25.7) 33.9 (23.7) 42.9 (26.1) 37.6 (34.7) 79.0 (107.7) 38.8 (25.9) 105.2 (54.2) 35.9 (36.8) 34.5 (25.4) 159.1 (124.1)
S1 32.4 (13.5) 39.1 (11.7) 34.2 (11.3) 39.8 (10.2) 43.5 (3.8) 47.5 (2.4) 44.5 (4.9) 46.5 (3.9) 44.1 (2.9) 43.7 (4.3) 47.1 (3.4)
S2 61.4 (15.4) 80.9 (15.9) 58.3 (16.5) 74.9 (16.7) 64.7 (12.7) 62.8 (12.9) 80.0 (12.3)

0.1 All 31.8 (24.1) 38.6 (29.8) 37.9 (23.2) 51.1 (25.9) 36.5 (32.1) 114.3 (136.2) 37.7 (26.1) 111.2 (57.7) 36.9 (33.4) 37.4 (26.5) 158.4 (128.1)
S1 34.3 (12.3) 38.8 (12.7) 35.8 (10.6) 40.7 (9.1) 44.2 (3.3) 48.2 (1.7) 44.3 (5.1) 47.4 (2.9) 44.1 (3.1) 44.3 (5.0) 47.1 (3.0)
S2 65.3 (12.7) 84.5 (14.9) 62.0 (15.5) 77.5 (15.8) 64.3 (10.6) 63.0 (12.7) 79.3 (12.3)

0.5 All 38.9 (20.9) 49.0 (27.9) 38.6 (21.2) 61.3 (21.9) 48.4 (34.7) 57.5 (73.1) 41.2 (25.9) 125.1 (51.1) 43.1 (37.8) 39.6 (28.3) 133.3 (101.5)
S1 31.7 (10.2) 34.8 (11.5) 30.7 (10.7) 37.6 (7.2) 39.0 (5.6) 44.5 (4.3) 40.0 (6.6) 43.4 (4.9) 40.4 (4.5) 42.1 (5.7) 45.8 (2.8)
S2 56.4 (15.4) 75.1 (19.8) 55.3 (15.3) 70.7 (18.8) 57.4 (15.0) 55.0 (15.7) 71.5 (16.1)

0.9 All 51.9 (9.7) 85.4 (12.2) 52.7 (11.8) 73.8 (13.6) 84.6 (18.6) 103.9 (73.0) 72.2 (18.3) 188.9 (50.6) 51.1 (39.1) 48.1 (31.3) 176.7 (112.0)
S1 34.3 (5.2) 45.5 (4.6) 36.9 (7.9) 41.8 (4.6) 26.3 (6.3) 34.1 (8.9) 28.5 (7.4) 33.0 (8.0) 28.2 (6.5) 30.7 (7.1) 34.6 (8.5)
S2 50.0 (10.6) 75.7 (19.1) 52.1 (10.5) 79.7 (13.7) 50.8 (10.3) 52.8 (11.6) 78.7 (17.0)

Descending 1 0.1 All 19.9 (12.1) 23.7 (19.0) 25.8 (14.6) 27.2 (19.9) 24.8 (20.2) 47.1 (56.4) 29.6 (19.0) 104.4 (47.3) 29.3 (22.4) 32.5 (19.7) 133.2 (68.4)
S1 23.4 (11.4) 26.0 (12.7) 27.3 (11.1) 26.1 (11.5) 37.0 (8.4) 43.2 (8.9) 37.1 (9.5) 40.1 (8.4) 39.4 (7.1) 39.1 (8.2) 41.7 (7.4)
S2 40.9 (20.1) 61.5 (26.4) 41.5 (18.1) 59.0 (19.1) 47.4 (17.5) 48.1 (15.7) 60.9 (18.9)

0.5 All 15.8 (13.7) 20.5 (18.8) 26.6 (18.3) 21.2 (19.1) 18.9 (16.8) 43.7 (93.1) 25.2 (19.4) 69.6 (55.6) 19.9 (17.7) 23.2 (15.8) 117.5 (89.3)
S1 21.0 (11.9) 27.2 (12.7) 24.4 (11.8) 23.0 (12.6) 35.6 (9.5) 42.2 (7.4) 37.0 (8.0) 40.7 (8.9) 38.6 (7.1) 38.8 (7.7) 43.0 (7.4)
S2 41.2 (19.5) 66.2 (22.9) 46.3 (18.3) 62.2 (22.4) 49.5 (17.7) 52.1 (14.8) 65.6 (17.4)

0.9 All 22.1 (12.0) 31.0 (24.2) 26.4 (13.3) 45.7 (23.7) 37.6 (23.5) 37.3 (67.4) 34.5 (19.7) 69.7 (70.5) 35.2 (30.9) 36.4 (23.2) 111.2 (86.7)
S1 16.7 (9.6) 22.6 (12.7) 21.7 (9.6) 23.4 (13.9) 19.3 (9.8) 26.7 (12.3) 22.6 (9.5) 24.8 (12.5) 25.8 (8.5) 27.8 (11.3) 32.9 (9.7)
S2 32.4 (11.5) 52.3 (22.5) 36.1 (14.8) 57.4 (21.5) 37.6 (12.0) 41.0 (14.1) 64.6 (19.9)

Descending 2 0.1 All 23.9 (14.4) 29.8 (21.4) 30.8 (15.3) 32.9 (21.4) 27.1 (21.2) 42.0 (41.8) 32.5 (20.0) 101.6 (35.2) 31.3 (23.4) 29.6 (18.0) 133.7 (72.0)
S1 25.3 (10.1) 28.5 (12.3) 28.1 (10.3) 26.3 (12.4) 36.1 (10.3) 43.4 (6.5) 36.6 (8.7) 39.2 (9.4) 37.7 (8.6) 38.1 (9.2) 40.5 (9.3)
S2 42.5 (19.8) 60.8 (25.5) 44.9 (17.2) 58.2 (20.7) 47.3 (17.9) 47.9 (16.0) 64.9 (19.0)

0.5 All 33.4 (16.0) 47.3 (24.8) 36.9 (16.0) 51.5 (19.9) 30.4 (22.2) 52.7 (53.3) 32.5 (19.6) 116.8 (38.8) 32.7 (22.8) 33.1 (20.2) 130.3 (56.5)
S1 28.1 (9.6) 33.8 (12.0) 30.9 (8.8) 32.9 (10.2) 33.7 (8.9) 40.1 (9.3) 34.6 (8.7) 38.5 (8.5) 37.9 (7.7) 38.5 (7.9) 41.0 (7.7)
S2 43.5 (17.0) 62.6 (25.3) 46.6 (17.0) 62.4 (18.9) 49.6 (15.8) 50.9 (15.4) 63.9 (17.7)

0.9 All 48.2 (4.0) 95.5 (3.3) 72.7 (14.9) 57.6 (11.9) 80.9 (14.0) 120.7 (37.5) 76.6 (15.7) 152.7 (22.9) 87.4 (15.9) 66.8 (23.3) 179.8 (29.6)
S1 34.9 (2.3) 48.5 (1.8) 46.1 (5.7) 40.0 (3.8) 30.0 (6.3) 37.0 (9.4) 31.1 (8.7) 37.8 (7.1) 30.2 (7.2) 32.3 (9.0) 35.1 (9.5)
S2 50.2 (5.5) 84.5 (18.7) 64.3 (15.8) 67.3 (12.2) 50.6 (5.4) 64.5 (12.2) 70.3 (12.1)

Leukaemia 1.0 All 45.1 (13.3) 75.2 (25.6) 47.5 (14.1) 52.9 (22.9) 83.1 (15.3) 470.4 (72.9) 79.8 (16.0) 131.9 (39.0) 76.5 (7.1) 87.8 (9.9) 95.6 (25.9)
S1 30.4 (8.1) 40.2 (10.7) 32.7 (10.3) 32.1 (8.8) 34.6 (7.4) 43.7 (8.6) 38.5 (7.5) 36.8 (5.2) 32.0 (4.9) 43.1 (9.2) 30.0 (5.6)
S2 55.8 (9.8) 92.0 (14.5) 58.3 (14.3) 64.5 (19.0) 45.3 (8.1) 67.8 (16.7) 38.8 (14.0)

2.0 All 45.0 (15.2) 67.6 (24.2) 48.3 (14.3) 52.3 (18.3) 70.9 (21.6) 119.5 (43.1) 62.2 (18.7) 133.8 (38.1) 69.9 (24.5) 62.2 (21.9) 145.8 (35.1)
S1 32.2 (8.4) 37.8 (10.3) 34.3 (10.5) 31.9 (8.1) 34.3 (7.9) 41.7 (8.1) 35.5 (8.7) 38.5 (7.2) 31.9 (9.0) 34.4 (8.8) 35.1 (8.3)
S2 49.8 (11.5) 74.5 (20.0) 50.0 (13.4) 66.0 (15.3) 46.9 (14.5) 48.0 (15.1) 60.7 (17.9)
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Table 5.4: Average true positive rate in settings where wBayes is sparse.

Setting ρ p = 100 p = 500 p = 1000

ROAD LPD sLDA LLD ROAD LPD sLDA LLD ROAD sLDA LLD

Blockwise 1 −0.1 80.1 74.8 84.5 81.7 41.4 47.2 37.6 52.3 28.2 31.1 41.9
0.1 48.5 52.0 54.0 59.5 28.3 40.7 28.1 45.2 21.7 21.7 33.4
0.5 56.6 64.4 61.0 71.5 25.8 37.9 28.6 39.6 17.3 20.1 27.5
0.9 88.5 99.8 87.4 99.9 68.1 64.7 62.1 66.5 28.2 30.5 28.8

Descending 1 0.1 87.1 89.0 84.3 88.2 79.8 84.2 74.6 89.1 81.2 75.5 88.5
0.5 64.5 76.4 68.0 74.8 60.7 69.5 58.9 70.5 59.8 55.1 72.7
0.9 47.1 69.6 51.9 73.5 40.9 55.4 45.6 50.9 36.7 43.9 55.0

Descending 2 0.1 44.4 49.1 48.3 49.9 34.3 37.7 32.9 45.9 33.5 31.1 41.8
0.5 58.9 67.6 61.7 68.0 37.9 41.8 37.7 51.3 34.9 33.1 42.3
0.9 86.7 99.6 90.1 72.9 75.4 85.3 69.4 84.3 66.0 52.6 72.1

Table 5.5: Average false positive rate in settings where wBayes is sparse.

Setting ρ p = 100 p = 500 p = 1000

ROAD LPD sLDA LLD ROAD LPD sLDA LLD ROAD sLDA LLD

Blockwise 1 −0.1 42.4 42.2 47.3 67.3 7.7 18.2 6.1 23.0 3.0 3.3 13.3
0.1 24.7 29.1 32.1 37.5 5.9 18.9 6.2 20.2 3.0 2.6 12.7
0.5 32.1 40.3 34.4 51.3 6.9 18.8 7.2 19.2 2.8 3.6 10.8
0.9 30.0 65.3 32.1 64.5 13.0 17.8 12.0 26.7 4.8 5.3 12.9

Descending 1 0.1 11.6 15.6 18.6 19.7 3.3 7.7 4.4 19.4 2.1 2.4 12.5
0.5 9.8 13.6 21.4 14.6 2.5 7.4 3.8 12.6 1.3 1.7 11.1
0.9 19.0 26.3 23.2 42.3 6.8 6.4 6.0 13.1 3.1 3.2 10.6

Descending 1 0.1 15.5 21.9 23.7 26.0 3.6 6.6 4.9 18.7 2.2 2.1 12.5
0.5 23.0 39.0 26.8 44.8 4.1 8.6 4.6 21.6 2.3 2.4 12.2
0.9 32.5 93.9 65.5 51.4 12.5 20.4 12.0 27.2 7.0 5.3 16.4

correlation of the coefficients of LLD and LPD tend to be larger than the correlation of
either LLD or LPD with ROAD or sLDA.

Though theoretical results do not guarantee that wBayes is estimated well by any
of the classifiers, it is of interest to see how close the estimated classification vectors
and wBayes are. In Table 5.6, |w− wBayes|22 is given for all classifiers, while Figure 5.3 and
Figure 5.4 compare the coefficients of wBayes to its estimates for all 100 simulations in
two of the settings. We have scaled wROAD and wsLDA by ∆TwBayes to make the results
comparable.

We note that the estimation error of wBayes is larger when Bayes risk is low. ROAD
and sLDA more often detect large coefficients of wBayes than LPD and LLD, particularly
for settings with large correlations. Still, in many such situations, the estimation errors
of ROAD and sLDA are larger than for LPD and LLD.

In Figure 5.5, the relationship between ROAD and sLDA is studied in more details.
This is of interest because these classifiers solve closely related optimization problems.
The number of nonzero coefficients is almost the same for the two methods, as seen in
the left column. The fraction of common nonzero coefficients, defined as

2|wROAD,sLDA|0
|wROAD|0 + |wsLDA|0

,

where wROAD,sLDA is the elementwise multiplication of wROAD and wsLDA, is shown in
the center column of Figure 5.5. This number is often, but far from always, above 50%.
Right column shows the number of opposite signs when comparing ROAD and sLDA.
This number is often zero, and across all settings never above 20.
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Figure 5.1: Pairs of estimates of the coordinates in w for four simulations in the setting of
equal correlation with p = 500. In each row, points of the same color originate from the same
simulation.

Table 5.6: Average estimation error, |w− wBayes|22, across 100 simulations.

Setting ρ p = 100 p = 500 p = 1000

ROAD LPD sLDA LLD ROAD LPD sLDA LLD ROAD sLDA LLD

Equal 0.1 22.3 6.0 7.2 5.4 21.7 13.0 8.9 10.4 20.8 9.0 17.0
0.5 97.0 14.6 27.0 15.7 83.7 22.6 29.6 22.1 77.7 35.7 24.3
0.9 2425.0 402.6 1759.6 844.6 2558.3 453.7 1227.3 929.3 2478.8 1573.5 947.1

Blockwise 1 −0.1 104.7 95.4 55.5 89.7 134.4 127.0 118.4 115.5 143.6 121.0 123.0
0.1 3.3 4.1 2.0 4.0 2.6 26.7 2.1 6.9 2.6 2.3 13.2
0.5 9.2 6.7 4.7 6.4 7.1 24.3 5.6 10.0 6.7 6.0 9.5
0.9 247.8 65.4 69.9 66.3 199.8 106.2 118.3 101.0 184.0 150.3 122.0

Blockwise 2 −0.1 29.7 24.4 23.8 24.9 29.6 39.9 26.9 29.5 29.5 27.8 41.4
0.1 4.7 5.5 2.3 4.8 3.8 31.6 3.2 9.0 3.8 3.3 19.6
0.5 15.0 7.2 7.1 6.9 11.6 11.6 8.2 10.7 11.6 9.7 15.1
0.9 522.2 107.7 134.9 121.4 422.5 172.3 201.7 152.3 315.8 258.9 199.1

Descending 1 0.1 11.4 3.7 4.3 4.1 12.7 8.3 5.0 10.1 11.4 5.1 13.0
0.5 6.1 2.4 3.1 2.7 5.8 14.4 3.0 5.4 5.4 2.8 11.4
0.9 21.6 33.0 12.4 34.1 24.1 42.7 23.8 43.8 31.2 31.7 44.8

Descending 2 0.1 16.3 5.3 5.0 5.6 16.7 6.9 7.9 8.7 15.7 6.2 14.2
0.5 52.7 17.7 17.8 17.5 47.2 25.0 21.9 25.3 46.1 26.4 27.8
0.9 2183.2 718.5 1332.1 1043.1 2256.3 964.4 956.5 1008.0 2185.7 1291.5 1079.0

Leukaemia 1.0 213.0 48.5 66.3 57.8 3598.5 300.5 1362.0 514.3 13365.3 3801.9 1400.0
2.0 212.0 45.3 64.9 60.8 341.1 77.9 138.1 91.2 295.5 129.6 97.7
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Figure 5.2: Pairs of estimates of the coordinates in w for four simulations in the setting of
blockwise correlation 1 with p=500. In each row, points of the same color originate from the
same simulation.

5.4.5 Analysis of real datasets

We compare the behaviour of the classification procedures on two real datasets: The
leukaemia data (Golub et al., 1999), and the lung cancer data (Gordon et al., 2002). The
leukaemia data consist of p = 7129 genes measured on a training set with n0 = 27
samples with acute lymphoblastic leukaemia (ALL) and n1 = 11 samples with acute
myeloid leukaemia (AML), and a test dataset with 20 ALL and 14 AML samples. The
lung cancer set contains p = 12533 genes measured on n0 = 16 adenocarcinoma and
n1 = 15 mesothelioma samples in the training set, and 134 adenocarcinoma and 15
mesothelioma samples in the test set. For both datasets we only include the 3000
variables with largest t-statistics.

The results are shown in Table 5.7 and Table 5.8. Regarding the leukaemia dataset
LPD, LLD and LLD-S2 perform best when considering test error, closely followed by
ROAD, ROAD-S2 and LPD-S2. Those classifiers select between 24 and 60 variables. For
the lung data ROAD, LPD and LLD have lowest test error, but LPD and LLD select
extremely many variables, whereas ROAD selects 60 variables only and is therefore
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Figure 5.3: Comparison of the coefficients of wBayes (red) and the estimated values hereof (blue),
for each of the p=100 coordinates in the equal correlation setting, and for all 100 simulations.

Figure 5.4: Comparison of the coefficients of wBayes (red) and the estimated values hereof (blue),
for each of the p=100 coordinates in the blockwise correlation 1 setting, and for all 100 simulations.
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Figure 5.5: Comparison of the number of nonzero coefficients in ROAD and sLDA (left column),
the fraction of common selections of ROAD and sLDA out of their total number of selections
in each of the 100 simulations (center column), and the number of coefficients in wROAD and
wsLDA where the sign differ in each simulation (right column). All plots are in the descending
correlation 1 setting with p = 500.

Table 5.7: Analysis of the leukaemia data. The S1 and S2 methods are based on an initial selection
of 50 and 100 variables, respectively.

Procedure Training Error Testing Error Number of selected genes

ROAD 0 2 60
ROAD-S1 0 5 13
ROAD-S2 0 2 26

LPD 0 1 37
LPD-S1 1 2 19
LPD-S2 0 2 38

sLDA 0 3 35
sLDA-S1 0 5 14
sLDA-S2 0 3 27

LLD 0 1 35
LLD-S1 3 6 2
LLD-S2 0 1 24

preferable. Since a large number of variables is needed to obtain a good classifier in
this situation, the preselection methods do not work well.

5.5 Conclusions

Our analysis gives no unique recommendation of the most preferable classifier for
high dimensional correlated data, but it does give new insight into the four classifiers
considered. The origin of ROAD and sLDA is the same, and their performances are
closely related, but far from equal. Though sLDA approaches the optimization problem
in (5.5) more directly than ROAD, ROAD is preferable since it often gains slightly
smaller classification error. LPD gives a less sparse classifier than ROAD and sLDA,
but obtains comparable classification errors. LLD is primarily a good classifier when p
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Table 5.8: Analysis of the lung data. The S1 and S2 methods are based on an initial selection of
50 and 100 variables, respectively.

Procedure Training Error Testing Error Number of selected genes

ROAD 0 3 60
ROAD-S1 0 8 8
ROAD-S2 0 7 20

LPD 0 3 2719
LPD-S1 0 10 16
LPD-S2 0 9 32

sLDA 0 7 22
sLDA-S1 0 8 4
sLDA-S2 0 21 6

LLD 0 3 851
LLD-S1 1 25 3
LLD-S2 1 23 5

is small.
Considering the pre selection versions, S1 is not recommended in correlated situa-

tions, while S2 is often useful for reducing the computational cost without increasing
the classification error. S2 cannot generally be expected to reduce the number of
variables included in the resulting classifier though.

ROAD and sLDA identify large coefficients of wBayes better than LPD and LLD, but
this do not result in a lower estimation error of wBayes in general.

When the computational time is a serious concern, the overall advice is to apply
ROAD. In general, it is preferable to apply multiple classifiers, particularly ROAD
and LPD, and either select the classifier that performs best on a test set, or use a
combination of the suggested classifiers.

5.6 Appendix

This appendix considers the theory behind the numerical algorithms to compute the
various classifiers.

5.6.1 ROAD: A coordinate descent algorithm

Fan et al. (2012) present a coordinate descent algorithm for minimizing (5.9). Before
presenting the algorithm and its convergence properties, we describe the relation
between the original minimization problem (5.4), and the two alternatives (5.6) and (5.9).

Transforming the original minimization problem

We outline here the reasoning behind rewriting (5.4) to (5.6), and refer to Chapter 5
of Boyd and Vandenberghe (2004) for a detailed description. Consider a general
minimization problem

min
fi(x)≤0,i∈I,hj(x)=0,j∈J

f0(x), x ∈ X, (5.12)

with X′ the subset of X consisting of points satisfying the restrictions. Define the
Lagrangian:

L(x, λ, ν) = f0(x) + ∑
i∈I

λi fi(x) + ∑
j∈J

νjhj(x), λi ≥ 0, νj ≥ 0.
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The Lagrange dual function is g(λ, ν) = infx∈X L(x, λ, ν), which clearly satisfies

g(λ, ν) ≤ min
fi(x)≤0,i∈I,hj(x)=0,j∈J

f0(x) ∀λ, ν ≥ 0. (5.13)

We seek (λ∗, ν∗) which maximizes g. If there is equality in (5.13) with (λ, ν) = (λ∗, ν∗),
we say that strong duality holds, and in this case minimizing f0(x) with respect to x is
equivalent to maximizing g(λ, ν) with respect to (λ, ν).

For the general problem in (5.12) it is known that strong duality holds under the
following two conditions:

(i) fi, i ∈ I are convex, and hj(x), j ∈ J, are linear,

(ii) there exists x ∈ relint(X′) such that fi(x) < 0, i ∈ I, and hj(x) = 0, j ∈ J (Slaters
condition).

Transforming (5.4) to (5.6) corresponds to the general case with f0(w) = wTΣ̂w and
f1(w) = |w|1 − c. These functions are clearly convex, |w|1 < c is an open set, and the
intersection with ∆̂Tw = 1 is relative open.

Next consider replacing (5.6) by (5.9). Using a large value of γ, the two give almost
the same result (this is true in the limit γ→ ∞ as shown in Theorem 6.7 of Ruszczynski
(2006)), and in the simulations reported in this paper we use γ = 10. The latter value is
based on the recommendation in Fan et al. (2012), where simulations show that the
classification error is insensitive to the value of γ when λ is chosen by cross-validation.

The minimization step

For fixed λ and γ the minimization is performed iteratively by minimizing over each
coordinate in turn. The minimization is done for a set of λ values, λ1 > λ2 > · · · >
λK−1, where the solution for λ = λi is used as initial guess in the search when λ = λi+1,
and the initial guess is w = 0 when λ = λ1.

Minimizing (5.9) with respect to one coordinate of w, say w1, while the p − 1
dimensional vector w2 of the remaining coordinates is fixed, means minimizing the
convex function:

g(w1) =
1
2 w2

1(Σ11 + γ∆2
1) + +w1{Σ12w2 + γ∆1(∆T

2w2 − 1)}+ λ|w1|+ λ|w2|1
+ 1

2{w
T
2Σ22w2 + γ(∆T

2w2 − 1)2}. (5.14)

The derivative g′(w1) has a jump at w1 = 0, and from this one finds that g(w1) has
minimum at

w1 =


−(Σ12+γ∆1∆T

2 )w2+γ∆1+λ

Σ11+γ∆2
1

if (Σ12 + γ∆1∆T
2)w2 − γ∆1 − λ > 0,

−(Σ12+γ∆1∆T
2 )w2+γ∆1−λ

Σ11+γ∆2
1

if (Σ12 + γ∆1∆T
2)w2 − γ∆1 + λ < 0,

0 otherwise.

(5.15)

From (5.15) it is seen that w = 0 minimizes (5.9) if and only if λ ≥ |γ∆i| for all i. For this
reason we start by calculating the solution with λ = λ1, where λ1 is slightly smaller than
λmax = maxi|γ∆i|. For the calculations in this paper we have used λ1 = λmax(1− ε)

and λk = ελ1 with ε = 10−3.



84 Chapter 5 · A numeric comparison of sparse linear classifiers incorporating covariance

Convergence properties

To study the convergence properties of the above algorithm we use a general result for
the coordinate descent algorithm when minimizing

f (w) = f0(w) +
p

∑
k=1

fk(wk).

In our setup we take f0(w) = 1
2 wTΣw + 1

2 γ(wTµd − 1)2, and fk(wk) = λ|wk| for k =

1, . . . , p. Theorem 5.1 of Tseng and Mangasarian (2001) requires

(i) f0 is continuous,

(ii) wk → f (w1, . . . , wk, . . . , wp) is quasiconvex and hemivariate,

(iii) for i = 0, 1, . . . , p it holds that lim infw→w0 fi(w) ≥ fi(w0) ∀w0,

(iv) the domain of f0 is open,

(v) f0 → ∞ on every boundary point of its domain,

(vi) {w : f (w) ≤ f (w0)} is bounded, where w0 is the initial value in the search.

In our case (i), (iii), (iv) and (v) are clearly satisfied. Condition (ii) holds if f is strictly
convex in each of its arguments. From (5.14) this is clearly seen to be the case since
λ|w1| is convex, and w2

1(Σ11 + γ∆2
1) is strictly convex. For proving (vi) we note that

in our case f (w0) > 0, and since wTΣw ≥ λmin(Σ)|w|22, we have that f (w) ≤ f (w0)

implies |w|22 ≤ 2 f (w0)/λmin(Σ).
Consider the coordinate descent algorithm, with coordinates being updated at

proportional rates, leading to a sequence w1, w2, . . . Under the assumptions (i)–(vi) it
is shown in Tseng and Mangasarian (2001) that the sequence of updates is bounded,
and any accumulation point is a coordinatewise minimum of f . Since in our case f0 is
convex and smooth, and fk is convex, it follows that the coordinatewise minimum of f
is a global minimum.

5.6.2 Sparse linear discriminant analysis

We describe here the algorithm of Wu et al. (2011) for solving the minimization problem
(5.5). As already mentioned the solution ŵc is piecewise linear in c. What we need
then is to describe the points in c, where there is a change from one linear relation to
another, and to describe the linear relation itself. For notational simplicity we use the
population version (5.4) instead of the sample version (5.5).

Writing w = w+ − w−, with w+ and w− denoting the positive and negative part of
w, we consider the minimization problem

min
w+ ,w−

(w+ + w−)TΣ(w+ + w−) subject to: (5.16)

p

∑
i=1

(w+
i + w−i )− c ≤ 0,

p

∑
i=1

∆T(w+
i − w−i )− 1 = 0, −w+

i ≤ 0, −w−i ≤ 0.

From the description below it follows that the solution to the latter problem actually
has w−i = 0 if w+

i > 0 and vice versa, so that the solution gives the solution to the
original problem (5.4).
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Introducing Lagrangian multipliers ν, λ ≥ 0, λ+
i ≥ 0 and λ−i ≥ 0, i = 1, . . . , p, the

KKT conditions (Boyd and Vandenberghe, 2004) for the convex minorization problem
(5.16) are

2Σi∗w + λ− λ+
i + ν∆i = 0, −2Σi∗w + λ− λ−i − ν∆i = 0, i = 1, . . . , p,

λ
( p

∑
i=1

(w+
i + w−i )− c

)
= 0, λ+

i w+
i = 0, λ−i w−i = 0, i = 1, . . . , p, (5.17)

where Σi∗ is the i’th row of Σ. We are looking at these equations as a function of c, and
speak of the active set A = {i : wi = wi(c) 6= 0}.

Generally, we have
|2Σi∗w + ν∆i| ≤ λ, (5.18)

since λ+
i ≥ 0 and λ−i ≥ 0. For i ∈ A we find

|2Σi∗w + ν∆i| = λ and sgn(2Σi∗w + ν∆i) = − sgn(wi(λ)), (5.19)

since w+
i > 0 implies λ+

i = 0 and λ = −(2Σi∗w + ν∆i), and w−i > 0 implies λ−i = 0
and λ = (2Σi∗w + ν∆i). From (5.17) it is also seen that w+

i > 0 implies λ−i = 2λ, so
that w−i = 0 when λ > 0 and, similarly, w−i > 0 implies w+

i = 0.
Since we have a piecewise linear solution as a function of c, we see from (5.19) that

a variable j is removed from the active set A, when wj hits zero. A variable j /∈ A is
entered to the active set when an infinitesimal move in the current direction leads to
|Σi∗w + ν∆i| > λ.

The linear part

Defining ξi = sgn(wi), and combining (5.17) and (5.19) we obtain

2ΣiAwA + ν∆A + ξiλ = 0, i ∈ A,

∆T
AwA = 1, ξT

AwA = c.

Differentiating with respect to c gives

2ΣiA
∂wA

∂c
+

∂ν

∂c
∆A + ξi

∂λ

∂c
, i ∈ A,

∆T
A

∂wA
∂c

= 0, ξT
A

∂wA
∂c

= 1,

which shows that the direction for a linear part is the solution to a system of |A|+ 2
linear equations.

We now calculate the step size until a variable is either included in or excluded
from A. Let di be the solution to

∣∣∣2ΣiA(wA + d ∂wA
∂c ) + (ν + d ∂ν

∂c ∆i)
∣∣∣ = λ + d ∂λ

∂c , i /∈ A,

wi + d ∂wi
∂c = 0, i ∈ A,

and let the stepsize be s = arg mini di.
The algorithm terminates when (5.18) is no longer fulfilled.
To start the algorithm we note that c0 = min{1/|∆i|} is the smallest possible value

of c. Let I = arg maxi{|∆i|}, and let w0 be zero except w0
I = 1/∆I . It is not difficult to

see, that when c is increased above c0, a better solution can be found including one
more variable than I. The active set at c0 therefore contains two variables where the
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second variable is the one giving the largest value of λ, such that (5.18) is satisfied
for the remaining p − 2 variables. For the two variables I and j at c0, λ and ν are
determined by

2ΣI I
1

∆I
+ λ + ν∆I = 0, 2ΣjI

1
∆I

+ λ + ν∆j = 0.

This gives λj = 2(ΣI I∆j/∆I − ΣjI)/(∆I − ∆j), and the active set therefore becomes I
and arg maxj 6=I λj.

5.6.3 Linear programming discriminant: A linear program

The minimization of
min

|Σw−∆|∞≤γ
|w|1 (5.20)

is done through a linear program similar to the one for the Dantzig selector (Candes
and Tao, 2007).

First we rewrite (5.20) in order to avoid absolute values,

min
p

∑
i=1

ui

subject to: −wi − ui ≤ 0, wi − ui ≤ 0,

−Σi∗w + ∆i − γ ≤ 0, Σi∗w− ∆i − γ ≤ 0,

for i = 1, . . . , p.
With z = (w, u) this is an instance of a general linear program of the form:

min
z

cT
0z,

fi(z) = cT
i z + di ≤ 0, i = 1, . . . 4p,

where in our case c0 = (0p, 1p)T.
In the following we work along the lines of Candes and Romberg (2005). For

further information see also Chapter 11 of Boyd and Vandenberghe (2004). Introducing
Lagrangian multipliers λ1, . . . , λ4p a solution (w, λ) must fulfil the KKT-conditions:

c0j +
m

∑
i=1

λicij = 0, j = 1, . . . , 2p,

λi fi(z) = 0, fi(z) ≤ 0, i = 1, . . . , 4p.

Even though we expect the solution to be on the boundary of the feasible set, we want
to stay in the interior during the steps of the search. To this end, we search for (z, λ)

such that rτ = (rdual, rcent) with

rdual = c0 +
4p

∑
i=1

λici, rcent =
(
−λ1 f1(z)−

1
τ

, . . . ,−λ4p f4p(z)−
1
τ

)T

is close to 02p+m. Therefore, we search for a direction (∆z, ∆λ) and a step size s such
that rτ at the new point is closer to zero than rτ at the old point.

Finding the search step

Using a first order Taylor approximation we find the direction by solving

rτ(z, λ) +
∂rτ(z, λ)

∂(z, λ)

(
∆z
∆λ

)
= 06p.
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The derivatives of rτ are

∂rdual
∂zi

= 0,
∂rdual

∂λj
= cj,

∂rcent,j

∂z
= λjcT

j ,
∂rcent,j

∂λ
= f j(z)ej,

where ej is the zero vector of length p, except ejj = 1.
To find the step size s our first requirement is that z + s∆z and λ + s∆λ is in the

interior of the search set, meaning that fi(z + s∆z) ≤ 0 and λ + s∆λ > 0. To this
end, we only need to keep track of coordinates where cT

i ∆z > 0 and ∆λi < 0. Define
I+f = {i : cT

i ∆z > 0} and I−λ = {i : ∆λ < 0}, and set

s = 0.99 ·min
{

1,
{− fi(z)

cT
i ∆z

, i ∈ I+f
}

,
{−λi

∆λi
, i ∈ I−λ

}}
.

The second requirement is that the step should lead to a value of rτ closer to zero. For
this we iteratively set s = βs, for some β strictly less than one, until s fulfils

|rτ(z + s∆z, λ + s∆λ)|2 ≤ (1− α)|rτ(z, λ)|2.

We have used the algorithm with α = 0.01 and β = 0.5.
The minimization procedure described above is applied iteratively for increasing

values of τ. The surrogate duality gap η = −λT f (z) approximates cT
0z∗ − cT

0z, and thereby
indicates the extent of deviation from the optimal solution. We stop the iterations when
η gets below 10−3.

5.6.4 Linear lasso discriminant

Since LLD in (5.11) is simply an application of the LASSO, its path can be computed
by the LARS-algorithm. We give a brief summary based on Efron et al. (2004). See also
Rosset and Zhu (2007).

LARS utilizes that the solution path of the LASSO is piecewise linear as a function
of c with the gradient altering only when a variable is either introduced to or excluded
from the set of active variables A. Both the algorithm and derivation of LARS is related
to sLDA, but LARS has a different criterion for selecting variables in each step.

LARS includes variables according to a correlation measure ωi = Σi∗(∆− Σw). A
variable is included when the correlation measure reaches the value for the current
active set. The first variable to enter the active set is therefore arg maxi Σi∗∆.

Let A denote the current active set, meaning that wi = 0 for i /∈ A. The active set
fulfills the property

A = {i : |ωi| = Ω}, where Ω = max
i
|ωi|.

For the linear part of wA the direction of change is given as the direction for which
all the active variables continue to have the same correlation measure. To calculate the
direction we define ΣA as the p× |A| matrix with columns from Σ having column
number in A. The direction is then calculated as

vA = −(ΣT
AΣA)−1 sgn(wA).

The direction needs to be recalculated only when a variable is either introduced
to or excluded from A. A variable in AC is introduced when the correlation measure
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of that variable equals the correlation measure of the variables of the active set. This
occurs for a step size d = d1 where

d1 = min
i∈AC

{
Ω− |ωi|

1− sgn(ωi)ΣT
i∗ΣAvA

}
.

A variable is excluded from A when a coordinate in A hits zero. This occurs when
d = d2 where

d2 = min
i∈A: sgn(wi) sgn(vi)=−1

∣∣∣wi
vi

∣∣∣.
The final step size is therefore d = min(d1, d2), and the appropriate variable is either
added to or removed from A, before a new step direction is calculated.

Due to Theorem 1 of Efron et al. (2004), LARS results in the full path of the LASSO
solution under the one-at-a-time assumption, meaning that only one variable is allowed
to be added to or removed from A at the same time. When the mean corrected MLEs
are used for Σ and ∆, this holds with probability one.
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