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Resume

Det overordnede tema i denne afhandling går tilbage til Jones, der i 1985 [40] [42] opdagede
nogle bestemte repræsentationer af fletningsgrupperne. Disse repræsentationer tillod Jones at
definere den første kvanteinvariant, nemlig Jonespolynomiet VL(q) ∈ Z[q 1

2 , q−
1
2 ] af en lænke L.

Denne invariant udmærkede sig ved at være meget effektiv til at skelne forskellige lænker og
knuder, men også ved dens definition, der udelukkende benytter en projektion til planet samt
en række algebraiske operationer. Dette fik Atiyah til i 1987 at efterlyse en rent 3-dimensional
definition af Jonespolynomiet. Svaret kom prompte i 1988, da Witten indførte – som et af de
første eksempler på en topologisk kvante-felt teori – kvante-Chern-Simons teori og på et fysisk
grundlag argumenterede for, at Jonespolynomiet kunne bestemmes som forventningsværdierne
af Wilson-løkke operatorene. Witten betragtede et principelt G-bundt P → M over en
3-mangfoldighed M , for en Liegruppe G. Felterne i teorien er givet ved konnektionerne AP i
P , og stiintegralet er givet i termer af Chern-Simons virkningen CS : AP /GP → R/Z:∫

A/G
e2πikCS([A])D[A].

Hvor k ∈ N er niveauet, som man kan tænke på som ~−1. Teoriens obsevable O(L,R) : A → C
er konstrueret ud fra orienterede lænker L ⊂M , hvor hver komponent Li er blevet tildelt en
endelig dimensional irreducibel repræsentation Ri af G, hvor O(L,R) er givet ved følgende
udtryk:

O(L,R)([A]) =
∏
i

Tr(Ri ◦ holLi(A)).

Forventingsværdien er så givet ved

Z(M,O(L,R))k =
∫
A/G
O(L,R)e2πikCS([A])D[A],

og det var denne værdi – for M = S3, G = SU(2) og Ri standardrepræsentationen – som
Witten argumenterede for opfyldte at

Z(S3,O(L,R))k = VL(e
2πi
k+2 ).

I Wittens konstruktion spiller modulirummet af flade konnektioner på både 2 og 3 mang-
foldigheder en vigtig rolle. Specielt geometrisk kvantisering af disse modulirum for flader
er fundamentale for hans teori. Geometrisk kvantisering kræver et valg af Kählerstruktur,
og modulirummene kommer ikke med en naturlig sådan. Istedet argumentere Witten for at
der må eksistere en kanonisk måde at identificere de geometriske kvantiseringer svarende til
forskellige Kählerstrukterer, nemlig ved eksistensen af en (projektiv) flad konnektion i bundtet
af geometriske kvantiseringer over rummet af Kählerstrukterer. En sådan konnektion – nu
kaldes de Hitchin konnektioner – blev konstrueret for modulirummet af flade konnektioner på

v



vi Resume

en lukket flade af Hitchin i [38] og uafhængigt af Witten, Della-Pietra og Axelrod i [15], og
denne konstruktion blev senere genereliserret af Andersen [2] til det generelle tilfælde.

Wittens teori blev defineret matematisk af Reshetikhin og Turaev i [56], men på en funda-
mental anderledes grundlag. Udover invarianter af lænker giver en topologisk kvantefeltteori
også repræsentationer af afbildningsklassegrupper. Andersen og Ueno [8] [10][11][9] viste
disse repræsentationer er ækvivalente til repræsentationer konstrueret fra en bestemt konform
feltteori. Laszlo [48] viste at repræsentationerne for en lukket flade i denne konforme feltteori
igen er ækvivalente til repræsentationer defineret ud fra Hitchin-konnektionen. Hovedresultatet
i denne afhandling er en udvidelse af denne ækvivalens til at omfatter flader af genus 0 med
mindst 5 markerede punkter. Disse repræsentationer er tæt forbundne med de repræsen-
tationer af fletningsgrupperne som Jones fandt. Derudover indeholder afhandlingen også
resultater opnået sammen med Søren Fuglede Jørgensen der generalisere [7] og forbinder
Jonesrepræsentationerne med bestemte repræsentationer defineret i termer af homologien af
bestemte flader, og bekræfter en formodning fremsagt i [7] for en stor familie af pseudo-Anosov
afbildningsklassegruppe elementer. Vi henviser til den engelsksprogede introduktion for flere
detaljer samt en oversigt over indholdet i de enkelte kapitler.



Introduction

The themes of this dissertation all owes to the discovery of Jones [40][42] of certain repre-
sentations of the braid groups, which gave rise to the first quantum invariant, namely the
Jones polynomial VL(q) ∈ Z[q 1

2 , q−
1
2 ] of a link L ⊂ S3. The invariant was very successful in

distinguishing different knots, but it was not clear why. Even though its definition is completely
elementary in terms of knot diagrams, it remained a mystery why such an invariant should
exists and why it was so effective: what was the relation of this invariant with the 3D-topology
of knots? This led Atiyah to ask in 1987 for an intrinsically three-dimensional definition of the
Jones polynomial; that is, a definition not relying on a knot projection or braid representation.
A physical solution was supplied in 1988 by Witten in the celebrated article [65], where he for
each compact simple Lie group G describes a quantum field theory of three-manifolds. He
consider a principal G-bundle P →M over a 3-manifold M . The fields of the theory are the
connections AP in P , acted on by the gauge group GP of P . The Lagrangian is given by the
Chern-Simons functional CS. The partition function is then defined as the path integral∫

A/G
e2πikCS([A])D[A].

where k ∈ N is the level and play the role of ~−1 in the quantization. The observables of the
theory are constructed from oriented links L ⊆M , with each component Li coloured with a
representation Ri of G, as the following function:

O(L,R)([A]) =
∏
i

Tr(Ri ◦ holLi(A)).

Witten was able to argue that the expectation value of O(L,R),

Z(M,O(L,R))k =
∫
A/G
O(L,R)e2πikCS([A])D[A],

when M = S3, G = SU(2) and Ri the defining representation of SU(2), calculate the Jones
polynomial in the following way:

Z(S3,O(L,R))k = VL(e
2πi
k+2 ),

which answered Atiyah’s question. Witten’s construction is however not satisfying from a
mathematical point of view, as the path integral do not have a mathematical rigorous definition
and Witten argues only by formal properties such a path integral ought to satisfy, which led
to the definition of a topological quantum field theory. He argues that the path integral – in an
instance of stationary phase approximation – must localize on critical point set of CS, which is
exactly the set of flat connections A0 ⊂ A . Therefore the moduli spaces of flat connections on
three-manifolds and on surfaces (the boundary of three-manifolds) plays an important part in

vii
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Witten’s theory. Especially the geometric quantization of the moduli space of flat connections
on a surface was fundamental to his approach. However such a quantization requires a choice
of complex structure on the moduli space, and Witten argued that his construction should be
independent of this choice and proposed that the existence of a flat connection on the space of
choices, identifying the different quantizations.

This point of view sheds some light on the question why the Jones polynomial, and other
quantum invariants, are so strong. The moduli space of flat connections on a manifold with
values in a G bundle are in correspondence with the representations of the fundamental group
of the manifold into G, modulo conjugations. It is therefore possible to use the quantum
invariants to probe the fundamental group, which is a difficult but very strong invariant.

Soon after Reshetikhin and Turaev constructed a theory using categories of representations
of quantum groups. Their approach are very different from Witten’s. Blanchet, Habegger,
Masbaum and Vogel later gave a construction using skein theory in [22]. Andersen and Ueno
([8], [10], [11] and [9]) proved that this skein theoretic description is – as a modular functor
– equivalent to a modular functor from a certain conformal field theory. Laszlo have shown
that representations of a closed surface MCG(Σ) without marked points from this conformal
field theory is equivalent to representations obtained from the geometric quantization of the
moduli space of flat SU(N) connections on a closed surface Σ. One of our main theorems an
extension of Laszlo’s result from closed surfaces to spheres with marked points.

Let us review the setup of the geometric quantization approach to the TQFT for G = SU(2).
Let k be a natural number and let Σ be a closed surface with a finite number of marked points
{pi}, each coloured by a k-admissible irreducible SU(2)-representation. When identifying
the SU(2) representations with N0 in the standard way, the k-admissible representations
corresponds to the numbers between 0 and k. We define the moduli space of flat connections
MFlat(Σ, ~λ, k) to be the space of flat connections on Σ \ {pi} such that the holonomy around
pi are in the conjugacy class corresponding to λi, modulo the action of the gauge group G.
For SU(2), this is the conjugacy class with trace 2 cos(πλik ). This moduli space have a natural
symplectic form ω, and given a complex structure σ on Σ, there exists a complex structure Iσ
onMFlat(Σ, ~λ, k), compatible with ω in the sense that (MFlat(Σ, ~λ, k), ω, Iσ) forms a Kähler
triple. Geometric quantization takes a Kähler manifold equipped with a prequantum line
bundle, a complex line bundle L with connection ∇ such that F∇ = −iω, and produces a
vector space Q(k)

σ . The Teichmüller space T (Σ) of Σ parametrizes such complex structures on
MFlat(Σ, ~λ, k), and letting σ vary in T (Σ) give rise to a vector bundle

Q(k) → T (Σ)

of quantum spaces with respect to different Kähler structures onMFlat(Σ, ~λ, k). When Σ have
no marked points, it was shown by Axelrod, Della Pietra and Witten [15] and independently
by Hitchin [38] that the vector bundle Q(k) supports a projectively flat connection, called the
Hitchin connection. The mapping class group MCG(Σ) acts on T (Σ) and this action lifts to
Q(k)(Σ). The Hitchin connection is natural in the sense that it is invariant under the action of
MCG(Σ). We therefore have a projective representation of MCG(Σ) on the space of projectively
covariant constant sections of Q(k)(Σ). In [8], [10], [11], [9] Andersen and Ueno proved that the
representations from the Reshetikhin-Turaev TQFT are equivalent to representations from a
certain conformal field theory. Laszlo proved in [48] that the representations from this TQFT,
for a closed surface, are equivalent to the one constructed from the projectively flat sections of
the Hitchin connection. In [2] Andersen proved that a family of compatible complex structures
on a symplectic manifold satisfying conditions always carries a projectively flat connection, for
which he gives an explicit construction, and calls the Hitchin connection. Let Σ be S2 with
n marked points, and define a map π : T (Σ) → Confn−1(C) as follows. A point in T (Σ) is
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an equivalence class of diffeomorphisms from Σ to CP1, such that two diffeomorphisms f, g
are considered equivalent if f−1 ◦ gΣ→ Σ is isotopic to the identity through diffeomorphisms
preserving the marked points. Due to the triple-transitive action of PSL(2,C) on CP1, any
such equivalence class have a representative where the last tree marked points are mapped to
0, 1,∞. The map π maps an equivalence class to the image of the first n− 1 marked point of
this special representative. The main result of this thesis is:

Theorem 1. Let Σ = S2 with n > 4 marked points, and let λi = λj for 1 ≤ i, j ≤ n. The
Hitchin connection for the family T (Σ) of Kähler structures onMFlat(Σ, ~λ, k) are projectively
equivalent to the pullback of the Knizhnik-Zamolodchikov connection along the map π : T (Σ)→
Confn−1(C).

This theorem is joint work with Jørgen Ellegaard Andersen and will soon appear in a joint
paper. It have the following consequence:

The Knizhnik-Zamolodchikov (KZ) connection are related to the conformal field theory
mentioned above, and is defined in a trivial bundle over Confn(C) with fiber homg(

⊗n
i=1 Vλi ,C),

and is defined as
∇KZ = d + 1

k + h
∑

1≤i<j≤n
Ωij dzi − dzj

zi − zj
,

where Ωij are certain endomorphisms of the fiber. We will prove theorem 1 in the following
steps:

1. Construct a trivial bundle over T (Σ) with fibers the holomorphic sections of a line bundle
LG over a space XG, in such a way that Ωij can be identified with certain second-order
differential operators in LG. We will call the KZ connection, when transfered to this
bundle, the geometrized KZ connection.

2. Show that the family T (Σ)×XG are isomorphic to the family T (Σ)×MFlat(Σ, ~λ, k) as
families of complex manifolds.

3. This isomorphisms lifts to an isomorphism between the vector bundles Q(k)(Σ) and
H0(XG, LG)× T (Σ).

4. Using this identification, we can now consider the difference between the Hitchin and
the geometrized KZ connection at each point σ ∈ T (Σ), which a priori is a second order
differential operator.

5. By explicit calculations, we can show that the degree 2 symbol of this differential operator
is 0, so it is in fact at most a first order operator.

6. We can then show that the first order symbol must be 0 as well, leaving us with a 0-order
operator. A final consideration then shows that this operator must be constant, which
means that the two connections are projectively equivalent.

Remark 1. For simplicity we have stated the theorem only in the case where all labels
are equal. The same proof works when we allow different labels, but we need to replace
the geometric quantization of the moduli space with the metaplectic corrected geometric
quantization, and instead of the Hitchin connection from [3] we must use the Hitchin connection
for the metaplectic setting, as constructed in [6].
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An interesting feature of this approach is that the construction of the geometrized KZ
connection is explicit and can be completely computed, which is in contrast of the Hitchin
connection which have an explicit construction, but is very difficult to compute explicit in
coordinates. For n = 4 the space XG = CP1 \ {0, 1,∞}, and T (Σ) is the universal cover of
CP1 \ {0, 1,∞}, U

(
CP1 \ {0, 1,∞}

)
, and the connection is given as follows:

∇KZ
∂
∂p

= ∇t
∂
∂p

+ 1
8(k + 2)

(τ(τ − 1)(τ − p)
p(p− 1) ∇ ∂

∂τ
∇ ∂

∂τ
+(

4i
p
τ

1− τ + |τ − 1|
1 + |τ |+ |τ − 1| + 8

p− 1
(τ − 1)(|τ |+ τ)
1 + |τ |+ |τ − 1|

)
∇ ∂

∂τ

+ 1
p

1− 3|τ |+ |τ − 1|
1 + |τ |+ |τ − 1| + 1

p− 1
1 + |τ | − 3|τ − 1|
1 + |τ |+ |τ − 1|

)
Due to some irregularities owing to the low dimension (and indeed this is the reason that
theorem 1 requires n > 4) the fiber of the line bundle is, for n = 4, not H0(XG, LG). The
reason is that we actually are interested in the sections of a line bundle on a compactification of
XG, and for n > 4 the compactifying set have codimension ≥ 2, and therefore the holomorphic
sections are in bijections with the holomorphic sections of LG → XG by Hartogs theorem.
This is however not the case for n = 4 where XG = CP1 \ {0, 1,∞} and the compactifying
set {0, 1,∞} have codimension 1. The relevant space for n = 4 is the subspace of sections in
H0(CP1 \ {0, 1,∞},O) that extends to sections of O([1]) over CP1, that is, the span of the
functions 1 and 1

τ . In this trivialization we have

∇ = d + ∂F

where
F = log |τ ||τ − 1|

(1 + |τ |+ |τ − 1|)3 .

We have tried to extend theorem 1 to n = 4 by making some of the arguments more
explicit, but we are lacking proofs of two claims to make the argument work. We present them
here as conjectures. As we will later see, the space XG have a natural Kähler structure.

Conjecture 2. The families T (Σ)×XG and T (Σ)×MFlat(Σ, ~λ, k) are isomorphic as families
of Kähler manifolds.

Conjecture 3. The subbundle T (Σ) × spanC(1, 1
τ ) ⊆ T (Σ) × H0(XG, LG) are mapped to a

subbundle of Qk(Σ) that are preserved under the Hitchin connection.

We further prove that

Theorem 2. Let n ∈ N be odd and greater than 4, Σ a sphere with n punctures and ρp,qk the
quantum representation of MCG(Σ) where the n points are coloured with pk, at level qk, where
p, q ∈ N and p

q < 1.. Then
∞⊕
k=1

ρp,qk

is a faithful representation of MCG(Σ).

The thesis also contains – in chapter 3 – the results of the paper [26] joint with Søren
Fuglede Jørgensen. The results also concerns the Jones representations, but this time viewed
from a diagrammatic point of view. We generalize results from the article [7] which deals
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with the quantum representations for a sphere with four punctures. They find that, when
q → −1, the quantum representation approaches the representation of the mapping class group
of the 4-punctured sphere on the first homology of S1×S1 through the lift along the branched
double cover S1 × S1 → S2 with 4 branch points. We give a similar result about the Jones
representation for a sphere with n > 4 points, in terms of the homology of a double cover with
n branch points. Whereas [7] prove the result by applying a clever change of basis, we instead
find a natural way to interpret the homology the homology of a double cover.

Let Σg be a closed surface of genus g and , and let ω =
∑g
i=1 αi ∧βi ∈ Λ2H1(Σg,C), where

αi, βi is a symplectic basis for the intersection pairing. We prove the following

Theorem 3. The Jones representation π2n,0
q specialized to q = −1 is equivalent to the action

on ΛgH1(Σg,C)/(ω ∧ Λg−2H1(Σg,C)), where g = n− 1.

In [7] Andersen, Masbaum and Ueno conjecture that the quantum representation of a
pseudo-Anosov has infinite order for all but finitely many levels k, and verify this conjecture
the four-holed sphere. In [58], Santharoubane prove the conjecture for the one-holed torus. We
use theorem 3 to verify the conjecture for a class of pseudo-Anosovs that for n = 4 contains
all pseudo-Anosov mapping classes.

The dissertation starts with a short introduction to braids, knots, and mapping class
groups in chapter 1, where we will also discuss some quantum invariants of links and braids.
In chapter 3 we present the results obtained with S.F. Jørgensen on the Jones representation
at q = −1. We then give a very short introduction to topological quantum field theory in 2,
mostly serving to introduce notation and the quantum representations, and to collect some
facts used in the later chapters

In chapter 4 we introduce the concept of geometric quantization, which plays an important
role in this thesis. First of all, the Hitchin connection – the topic of a later chapter – is a
connection constructed to remedy that geometric quantization depends on a non-physical
choice, namely a complex structure. Geometric quantization is also involved in a different way
in the construction of the geometrized KZ construction.

We introduce the moduli spaces that we will work with in chapter 5. The moduli spaces
are constructed in terms of data associated to a surface Σ, and are interesting to us because
MCG(Σ) acts on them in a highly nontrivial way. This action is then in turns used to construct
a representation of MCG(Σ) by – in some sense – approximation the moduli spaces by a vector
space. This is done using geometric quantization.

In chapter 6 we introduce the Hitchin connection, crucial for constructing the representations
of MCG(Σ) mentioned above, as the choices involved in geometrically quantizing the moduli
spaces are not invariant under MCG(Σ). It is therefore necessary to find a MCG(Σ)-equivariant
way to identify the quantizations of different choices, which is exactly what the Hitchin
connection achieves.

In chapter 7 we construct the geometrized KZ connection In chapter 8 we prove that the
bundles that the Hitchin and KZ connection lives in can be identified, and in chapter 9 we
prove that under this identification, the geometrized KZ connection and the Hitchin connection
are equivalent up to a projective factor, and that the representations of the mapping class
group that they induce are projectively equivalent.





Chapter 1
Knots, braids and the mapping class group

1.1 The braid group

Let Confn(C) = {(z1, z2, . . . , zn) ∈ Cn | i 6= j =⇒ zi 6= zj} be the configuration space
of n points in C and Yn = Confn(C)/Sn the quotient by the permutation group acting by
permuting the entries: (z1, z2, . . . , zn) · σ = (zσ(1), zσ(2), . . . , zσ(n)). These are manifolds of n
complex dimensions, but it is not hard to visualize them: a point in Confn(C) is just n distinct
particles in C and a point in Yn is represented by n identical particles in C. This makes it
easy to imagine a curve inside one of these spaces: we can identify R3 ∼= C× R and use the
last coordinate as “time”, and a curve is just the spacetime path of n particles – and a loop
is just a path where each particle end up where a similar particle started. The fundamental
group of Yn is called the braid group on n strings and denoted by Bn. Artin showed that it
has the following presentation:

Bn = 〈σ1, σ2, . . . , σn−1〉/〈σiσi+1σi = σi+1σiσi+1, σiσj = σjσi for |i− j| > 1〉

where the generator σi corresponds to the braid with the i’th string moving over the i+ 1’th
string, as shown in figure 1.1.

Figure 1.1: The braid σ3 ∈ B7 .

We notice that the relations are almost the same as for the group Sn, which have a
presentation in terms of simple transpositions given as:

Sn = 〈s1, s2, . . . , sn−1〉/〈s2
i = 1, sisi+1si = si+1sisi+1, sisj = sjsi for |i− j| > 1〉.

This means that there is a homomorphism Bn → Sn given by mapping σi 7→ si – the result
of applying this map to a braid is to follow the trajectory of each particle and record the

1
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Figure 1.2: The composition in the braid group: the product of
σ3 and σ−1

2 .

Figure 1.3: A halftwist in B5 on the first four strings.

end position. The kernel of this map is called the pure braid group, and is isomorphic to
π1(Confn(C)).

We collect here the following facts (see i.e. [19]):

Theorem 4. 1. The generators σi are all conjugate; σi−1 is conjugate to σ1 by a half twist
on the first i strings.

2. Bn is torsion free, which give us the very useful property that we can rescale a represen-
tation by rescaling the matrices associated to the generators.

3. The center of Bn, n > 1, is generated by (σ1 · · · · · σn−1)n.

1.2 Mapping class groups

In this section we introduce a central notion in low dimensional topology, namely the group of
symmetries of surface, up to isotopy. We consider the group Homeo+ of orientation-preserving
homeomorphisms of a surface Σ and equip it with the compact-open topology. It was shown
by Hamstrom in [37] that if Σ have negative Euler characteristic (i.e. not a sphere with 0, 1 or
2 punctures or a torus) then the components of Homeo+ are contractible and as such does not
contain interesting topological information. We will make the following

Definition 4 (Mapping class group). Let Σ be a compact surface with a finite set D ⊆ Σ
of marked points. Let Homeo+

D(Σ) be the group of orientation-preserving homeomorphisms ϕ
of Σ such that ϕ(D) = D and ϕ�∂Σ = id∂Σ. Let Homeo+

D,0(Σ) ⊆ Homeo+
D(Σ) be the normal

subgroup of homeomorphisms isotopic to idΣ through homeomorphisms in Homeo+
D(Σ), and

define the mapping class group of Σ as:

MCG(Σ) = Homeo+
D(Σ)/Homeo+

D,0(Σ)
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Theorem 5 (Alexander). The mapping class group of a disc is trivial

An invertible 2×2 matrix with integer coefficients defines a homeomorphism of R2 preserving
the standard lattice Z2, and therefore descends to the quotients R2/Z2 ∼= S1 × S1. If the
inverse matrix also have integer coefficients then the descended map is a homeomorphism.
This construction give rise to the isomorphism in the following

Theorem 6. The mapping class group of S1 × S1 are isomorphic to SL(2,Z).

The braid group Bn can be identified with the mapping class group of a disc with n
punctures p1, . . . , pn, in the following way: a diffeomorphism ϕ of the punctured disc can
be completed to a diffeomorphism ϕ̄ of the disc. By theorem 5, there exists an isotopy
ht : D2 → D2 of ϕ̄ to the identity, and this isotopy gives a loop in Confn(D2)/Sn ∼= Yn by
t 7→ [ht(p1), ht(p2), . . . , ht(pn)].

Given a simple, closed curve c on a surface Σ, we can define a homeomorphism of Σ
by “cutting Σ along c, twisting a full turn, and glue the two boundaries together”. To
formalise this we will first consider the annulus A1,3 = {reiθ | 1 ≤ r ≤ 3} ⊆ C and define
τ(reiθ) = rei(θ+πr−π).

Definition 5 (Dehn twist). Let c be a simple closed curve on a oriented surface Σ. Then
there exists tubular neighbourhood Nc of c such that Nc ∼= A1,3 by an orientation-preserving
homeomorphism ϕ. We can define a homeomorphism τc of Σ by letting τc be the identity
away from Nc and on Nc equal to ϕ−1 ◦ τ ◦ ϕ. The isotopy class of τc depends only on c, and
therefore gives a well-defined element in the mapping class group τc ∈ MCG(Σ), called the
Dehn twist around c.

Theorem 7. The mapping class group of an annulus is freely generated by the Dehn twist
around the core

Proposition 6. Let a, b be simple closed curves on a surface Σ.

1. If a ∩ b = 0 then τaτb = τbτa.

2. If a ∩ b = {pt} then τaτbτa = τbτaτb.

A sphere with n punctures can be thought of as a disc with n punctures, glued together
with a disc, and this defines a map p : MCG(D2 \ {x1, . . . , xn})→ MCG(S2, \{x1, . . . , xn}).
This map is surjective and it is shown in [19] that for n ≥ 2 the kernel is normally generated
by σ1σ2 . . . σ

2
n−1σn−2 . . . σ1 and (σ1σ2 . . . σn−1)n.

Consider surfaces Sig of genus g with i = 0, 1 boundary components. There is an element
ι ∈ MCG(Sig) of order two, with 2g + 2− i fixed points. The quotient of Sig minus the fixed
points of ι with the subgroup 〈ι〉 is a sphere with 2g + 2 punctures if i = 0 and a disc with
2g + 1 puncture if i = 1.

Theorem 8 (Birman-Hilden [20]). Let g ≥ 2 and SMCG(Sig) be the centralizer of ι in
MCG(Sig). Then

SMCG(S1
g) ∼= MCG(D2, x1, . . . , x2n+1) ∼= B2n+1

and
SMCG(Sg)/〈ι〉 ∼= MCG(S2, x1, . . . , x2g+2)

Definition 7. An element in MCG(Σ) is said to be:
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Figure 1.4: The braid σ3
1 ∈ B2 and it is closure, the trefoil knot

.

Periodic if it has finite order,

Reducible if it is not of finite order and have a power fixing a simple, essential curve on
Σ (a curve with no self-intersections, that does not bound a puncture and is nontrivial in
homology),

Pseudo-Anosov if it have a representative ϕ that preserves two transverse (singular)
foliations F1,F2 of Σ equipped with transverse measures µ1, µ2 and there exists a real
number λ > 1, called the stretch factor , such that ϕ(F1, µ1) = (F1, λµ1) and ϕ(F2, µ2) =
(F2, λ

−1µ2). The foliations can be singular in that they can have finitely many leaves of
dimension 0, and each of them being in the closure of k dimension-1 leaves; such a singular
point is said to have k prongs. The singular points are required to have at least 3 prongs.
Marked points on Σ are however allowed to be singular points with just 1 prong.

We can now state the following important theorem (see for instance [27] theorem 13.1):

Theorem 9 (Nielsen–Thurston classification). A mapping class f ∈ MCG(Σ) belongs
to exactly one of the three types: periodic, reducible or pseudo-Anosov.

Example 8. In case of Σ = S1 × S1, let ϕ ∈ MCG(Σ) ∼= SL(2,Z).

1. if |Trϕ| > 2 then ϕ is pseudo-Anosov. The stretch factor is the largest eigenvalue, and
the foliations all parallel to the eigenvectors.

2. if |Trϕ| = 2 and ϕ 6= ±id then ϕ is reducible.

3. if |Trϕ| < 2 or ϕ = ±id then ϕ is finite order.

1.3 Braids and links

Given a braid b ∈ Bn it is possible to close it up to obtain a link b̂ by connecting the bottom n
points with the top n points by n parallel strands, as shown in Figure 1.4. The resulting link
is called the closure of b, and the following two theorems describe the relationship between
links and closures of braids.

Theorem 10 (Alexander). Given a link L there exists a braid b ∈ Bn such that L = b̂.

Theorem 11 (Markov). Two braids have the same closure if and only if they can be con-
nected by a finite sequence of the following two moves, known as Markov moves (note that the
second move changes the braid group):
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1. b↔ aba−1, a, b ∈ Bn

2. b↔ b′σ±1
n for b ∈ Bn and b′ denoting the image of b in Bn+1.

Therefore the study of functions on ∪n∈NBn that are invariant under the Markov moves is
the same as the study of link invariants.

1.3.1 Traces
Definition 9. A trace Tr : A→ k on a k-algebra A is a linear functional such that Tr(ab) =
Tr(ba).

Observe that a trace on C[Bn] is invariant under the first Markov move: Tr(aba−1) =
Tr(a(ba−1)) = Tr(ba−1a) = Tr(b). Since all σi’s are conjugate to σ1, we see that Tr(σi) is
independent of i. Denote by B∞ the direct limit of the braid groups, where the inclusion of
Bn ↪→ Bn+m is σi 7→ σi (so it just adds m unbraided strings to the right), and by Bn,m the
subgroup generated by {σi | n ≤ i ≤ m− 1} (the subset of Bm where the first n− 1 strings
are unbraided). Traces satisfying certain conditions give rise to link invariants.

Definition 10. A trace Tr on C[B∞] is called a Markov trace if

Tr(σ1b) = Tr(σ1) Tr(b)

for all b ∈ B2,∞

Lemma 11. A Markov trace satisfies Tr(σnb) = Tr(σn) Tr(b) for b ∈ Bn.

Proof. Conjugation by a halftwist ∆n+1 of the first n+ 1 strands exchanges σi with σn+1−i,
for i ≤ n. Since we already know that Tr is invariant under the first Markov move, we see
that if a ∈ Bn, then Tr(σna) = Tr(∆n+1σna∆−1

n+1) = Tr(σ1(∆n+1a∆−1
n+1)) = Tr(σ1) Tr(a) =

Tr(∆n+1σ1∆−1
n+1) Tr(a) = Tr(σn) Tr(a) . �

We say that a Markov trace is normalized if Tr(σi) = Tr(σ−1
i ) for all i. Given a normalized

Markov trace, we can define a link invariant in the following way:

Definition 12. Let Tr be a normalized Markov trace. If b ∈ Bn, define

VTr (b̂) = Tr(σ1)1−n Tr(b).

This is a well-defined link invariant because it is invariant under both Markov moves.

Given a Markov trace, we can find an α such that α2 = Tr(σ−1
i

)
Tr(σi) and define T̃r(b) =

αe(b) Tr(b), where e(b) is the exponent sum of b in the letters σi (it is clear from the relations
of Bn that this is well-defined). Its easy to check that T̃r is a normalized Markov trace, and
the corresponding link invariant can be written in terms of Tr as:

VT̃r(b̂) = (αTr(σ1))1−nαe(b) Tr(b)

We have the following proposition:

Proposition 13. There is a bijeciton between normalized, multiplicative (i.e. that Tr(ab) =
Tr(a) Tr(b) if a ∈ B1,n and b ∈ Bn+1,∞) Markov traces with values in the field k and link
invariants L taking values in k, such that
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1. L(unknot) = 1

2. There is a z ∈ k∗ such that

L(K1 ∪K2) = zL(K1)L(K2)

for two links K1, K2 contained in disjoint balls.

Proof. It is easy to check that a multiplicative, normalized Markov trace gives a link invariant
satisfying the two properties, with z = Tr(σ1)−1. On the other hand, we can define a trace
from such a link invariant by mapping b ∈ Bn to z−n+1L(b̂). �

1.4 The Hecke algebras of type An

We would like to study representations π of the braid group such that π(σi) is diagonalizable
with at most two eigenvalues. Therefore the minimal polynomial of π(σi) is of degree two, i.e.
there exist some scalars a and b so that for all i:

π(σi)2 + aπ(σi) + b = 0

By scaling each π(σi) we can assume that one of the possible eigenvalues is −1. If we call
the other possible eigenvalue q, the equation can be written as

(gi + 1)(gi − q) = g2
i + (1− q)gi − q = 0,

where we have written gi for π(σi). So representations of the braid group where the generators
have at most −1 and q as eigenvalues are the representations of the group algebra CBn that
factor through the Hecke algebra H(n, q), which is the algebra over k with the presentation

H(n, q) = 〈g1, . . . , gn−1 | gigi+1gi = gi+1gigi+1,

gigj = gjgi for |i− j| ≥ 2,
g2
i = (q − 1)gi + q〉.

where q ∈ k. We will only consider the cases k = C and k = C[q, q−1].

Remark 14. We use this generating set only in this section, to agree with the original work
of Jones. From the next section we will use the generating set q− 1

2 gi, which corresponds to
the more symmetric choice with q 1

2 ,−q− 1
2 as eigenvalues.

There is a representation of Bn on H(q, n) given by σi 7→ gi, which acts by multiplication.
The following theorem gives a family of traces on H(q,∞):

Theorem 12 (Ocneanu, [30]). For any z ∈ C there is a trace Tr on H(∞, q), uniquely
defined by

1. Tr(1) = 1

2. Tr(xgn) = zTr(x) for x ∈ H(n, q).

Proof. The idea is to define the trace inductively as

1. Tr(1) = 1

2. Tr(xgny) = zTr(xy) for x, y ∈ H(n, q).
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Then the two properties are certainly satisfied, but we still need to show that Tr is a trace, i.e.
that Tr(ab) = Tr(ba). This is done by induction over n. �

We remark that this is a family of Markov traces, so we obtain knot invariants for any z by
normalizing with an α such that Tr(αgi) = Tr((αgi)−1). We can calculate α in the following
way: first we find the inverse of gi:

gi

(
gi + 1− q

q

)
= g2

i + (1− q)gi
q

= q + (q − 1)gi + (1− q)gi
q

= q

q
= 1,

so to normalize the trace, we need α to satisfy Tr(αgi) = Tr(αgi)−1 which means that

α2 = Tr(g−1
i )

Tr(gi)

but
Tr(g−1

i ) = Tr
(
gi + 1− q

q

)
= 1
q

(Tr(gi) + Tr(1− q)) = z + 1− q
q

,

so we have that
α2 = z + 1− q

zq
.

Thus we get the following link invariant as in Definition 12, where πα is the representation of
Bn in H(n, q) mapping σi 7→ αgi, and b ∈ B(n) is such that L = b̂:

XL(z, q) = Tr(σ1)1−n Trz(πα(b)) = (zα)1−nαe Trz(π(b)).

This is the HOMFLY polynomial, and we can show that it satisfies a skein relation: given
a braid diagram for a link L such that b = b1σ

−1
i b2, we will show that the polynomials

XL0 , XL+ , XL− satisfy a linear equality, where L0 = b̂1b2, L+ = L and L− = b̂1σib2. First
notice that we can, by a Markov 1 move, assume that L0 = ĉσi, L− = ĉ and L+ = ĉσ2

i . Let
e = e(c) be the exponent sum. Then we have

XL+ = (zα)1−nαe+2 Trz(π(cσ2
i )),

XL0 = (zα)1−nαe+1 Trz(π(cσi)),
XL+ = (zα)1−nαe Trz(π(c)).

From the relation g2
i = (q − 1)gi + q, we have that

Trz(π(cσ2)) = Trz(π(c)((q − 1)π(σi) + q)) = (q − 1) Trz(π(cσi)) + qTrz(π(c)).

Multiplying this by q− 1
2 we see that

(q 1
2 − q− 1

2 )XL0 = q−
1
2α−1XL+ − q

1
2αXL− .

The polynomial XL(z, q) has the specialization VL(q) given by α = q
1
2 which is the Jones

polynomial: since zqα2 = z + 1− q, we get that z = 1−q
(q−1)(q+1) = − 1

q+1 , so (zα)−1 = − q+1√
q =

−q 1
2 − q− 1

2 and the skein relation becomes

(q 1
2 − q− 1

2 )VL0 = q−1VL+ − qVL− .
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The reason for this value of the specialization is that Jones found the Jones polynomial
in the context of Temperley–Lieb algebras, which are the following quotients of the Hecke
algebras

TLn = H(n, q)/〈gigi+1gi + gigi+1 + gi+1gi + gi + gi+1 + 1〉,

and for the trace Trz to factor through the Temperley–Lieb algebra, it must be 0 on this ideal.
But if we calculate the trace on the generators:

Trz(gigi+1gi + gigi+1 + gi+1gi + gi + gi+1 + 1)
= Trz(gigi+1gi) + Trz(gigi+1) + Trz(gi+1gi) + Trz(gi) + Trz(gi+1) + Trz(1)
= zTrz(g2

i ) + zTrz(gi) + zTr(gi+1) + 2z + 1
= zTrz((q − 1)gi + q) + 2z2 + 2z + 1
= (q − 1)z2 + zq + 2z2 + 2z + 1
= (q + 1)z2 + zq + 2z + 1 = (1 + q)z2 + (2 + q)z + 1
= ((1 + q)z + 1)(z + 1)

which has the roots z = −1 and z = − 1
q+1 .

Definition 15. The Jones representation πJn is the representation of the braid group Bn
into TLn given by

Bn → H(q, n) � TLn,

and the Jones polynomial of a link obtained as the closure of b ∈ Bn is

Vb̂ = (zα)1−nαe Trz(π(b)) = −qe(b)/2

q
1
2 + q−

1
2

Tr −1
1+q

(b)

1.4.1 Representations of Hecke algebras

As remarked in the definition of the Hecke algebra, we will from now on replace the third
relation with g2

i = (q 1
2 − q− 1

2 )gi + 1, which just corresponds to scaling the generators with
q−

1
2 .
Wenzl defines in [64] some families of representations of Hecke algebras. He defines, in

analogy with Young’s orthogonal representations of the symmetric group, for each Young
diagram λ with n boxes an irreducible representation πλ of H(q, n), where q ∈ C is n-regular
(q 6= 0 and q is not a l’th root of unity for 2 ≤ l ≤ n). It is convenient to define another
generating set for H(n, q), given by the spectral projections

ei = q
1
2 − gi

q
1
2 + q−

1
2
.

The relations become

1. e2
i = ei,

2. eiei+1ei − 1
[2]ei = ei+1eiei+1 − 1

[2]ei+1,

3. eiej = ejei for |i− j| > 1.
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He then defines rational functions of q

ad(q) = 1− qd+1

(1 + q)(1− qd) = [d+ 1]
[2][d] ,

where [d] = q
d
2−q−

d
2

q
1
2−q−

1
2
is the d’th quantum integer . A standard Young tableau of shape λ is

a filling of the boxes of λ with the numbers 1, 2, 3 . . . , n, increasing down and to the right. If
t is a standard Young taublaux and 1 ≤ i, j ≤ n, Wenzl defines dt,i,j = (ci − ri) − (cj − rj)
where ci, ri is the column/row where i appear in t. If t is a standard Young tableau and
1 ≤ i, j ≤ n we let at,i,j(q) = adt,i,j (q). For a Young diagram λ with n boxes, Wenzl defines a
representation on the vector space with basis standard Young tableau of shape λ by:

πλ(ei)vt = at,i,i+1(q)vt + (at,i,i+1(q)at,i+1,i(q))
1
2 vsit,

where vt is the basis vector corresponding to the standard Young taubleaux t, and sit is t with
the numbers i and i+ 1 permuted. Note that sit is not necessarily a standard Young tableau,
but Wenzl shows that the coeffecient in front of it vanishes if it is not.

Theorem 13 (Wenzl). For q generic or q ∈ C n-regular, πλ defines an irreducible repre-
sentation of H(n, q). If λ, µ are Young diagrams with n boxes, πλ = πµ if and only if λ = µ,
and

πn =
⊕
λ∈Λn

πλ

is a faithful representation of H(n, q). The representations πλ coincide with Youngs orthogonal
representations for q = 1; in particular, the dimension is given by the hook-length formula.

The automorphism F of H(q, n) that maps ei 7→ 1− ei has the following property: πλ ◦ F
is equivalent to πλ∗ , where λ∗ is the Young diagram obtained by switching rows and columns.

Furthermore, we have the following Bratelli property:

πλ|H(n−1,q) ∼=
⊕
λ′<λ

πλ′ ,

where λ′ < λ means that λ′ is obtained from λ by removing a box.

Jones showed in [42] that if λ has n− 1 rows and n boxes (so of the form ) then πλ is
equivalent to the reduced Burau representation. Jones also showed that the representations
that factors through the Temperley–Lieb algebra are exactly the ones corresponding to Young
diagrams with at most two rows, and that

TLn ∼=
⊕
λ

πλ(TLn)

where the sum is over Young diagrams with n boxes less than two rows – this is a consequence
of the fact that the Temperley–Lieb algebra is a finite dimensional C∗-algebra of dimension

1
n+1

(2n
n

)
.

We say that a Young diagram is of type (k, l) if it contains at most k rows, and the number
of boxes in the first row, minus the number of boxes in the k’th (perhaps 0) is less than or
equal to l − k. Wenzl also defines representations πk,lλ of H(n, q), q a primitive l’th root of
unity, on the space of Young tableaux t of shape λ such that λ is a (k, l)-diagram and t with

the box with the highest number removed, also has the shape of a (k, l)-diagram. (
1 2
3 4 is a
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(2, 2)-tableau, but
1 2
3 4

′

=
1 2
3 is not). πk,lλ is defined by the same formula as πλ. He then

shows that

Theorem 14 (Wenzl). If q is a primitive root of unity of order at least 4 then πk,lλ defines an
irreducible representation of H(n, q). If λ is a (k1, l) and a (k2, l) diagram with k1, k2 ≤ l − 1
then πk1,l

λ = πk2,l
λ , so we can define πlλ = πk,lλ if λ is a (k, l)-diagram for some k ≤ l − 1. If

Λl,kn denotes the set of (k, l)-diagrams with k ≤ l − 1, the representation

πk,ln =
⊕
λ∈Λk,ln

πk,lλ

satisfies that πk,ln (H(n− 1, q)) is isomorphic to πk,ln−1(H(n− 1, q)).

This allow us to take the direct limit, and we obtain a representation πk,l of H(∞, q).

Theorem 15 (Wenzl). Let q = e2πi/l. Then there is a Markov trace with Tr e1 = η factoring
over a C∗-representation of H(∞, q) if and only if η = a−k(q) with k = 1, 2, . . . , l − 1. The
GNS construction applied to this trace is the representation πk,l.

We observe that if λ is a Young diagram with at most N rows we have that λ is a N, k+N
diagram if λ1 − λk ≤ k +N −N = k. This is always satisfied if k ≥ n = |λ|. It is therefore
also true if a box is removed from λ, so any standard tableau of shape λ is also a standard
(N, k +N)-tableau. But then we have that πN,k+N

λ and πλ are defined on the same spaces by
the same formulas, and therefore that πN,k+N

λ = πλ.

1.5 Is the Jones representation faithful?

Jones asked this question in [42], and again as one of his ten problem in [13]. Recall that the
Jones representation decomposes as

πJn =
⊕
λ∈Λ2

n

πλ,

where Λ2
n is the set of Young diagrams with n boxes and at most two rows. The representation

π ... corresponding to a Young diagram with only one row is always one-dimensional since
there is only one possible standard Young tableau of this shape. The action of ei is given by
a[1,2,...,n],i,i+1 = a−1(q) = 0, so we have that πλ(gi) = πλ(−[2]e1 + q

1
2 ) = 0 + q

1
2 . So for a

general braid b we get that πλ(b) = q
e(b)

2 .
For n = 2 the exponent sum defines an isomorphism B2 ∼= Z, so the representation

corresponding to a diagram with one row is clearly faithful for q not a root of unity. We also
notice that the sum of infinitely many copies of this representation, at different primitive roots
of unity, is faithful.

The reduced Burau representation corresponds to the Young diagram with two columns
and n− 1 rows. For n = 3 this diagram has only two rows, and is therefore a summand in
the Jones representation. For n = 3, it is known (shown for instance in [19]) that the Burau
representation is faithful.

For n ≥ 4, it is unknown if the Jones representation is faithful. It is not known if the
Burau representation is faithful for n = 4, so it might be possible to show that the n = 4
Jones representation is faithful by showing that the Burau representation is. The Burau



1.6 Diagrammatic description of the Jones representations 11

= (−A2 −A−2)◦ =

Figure 1.5: The multiplication in TL4(A) .

Figure 1.6: The element e3 ∈ TL6(A) .

representation is not faithful for n > 4 (this was shown in [52] for n ≥ 9 in 1991, improved
to n ≥ 6 in [50] and finally in [18] for n = 5 in 1999), so another method of proof would be
needed.

It is known by [61] that the kernel (if any) of the Burau representation of B4 is con-
tained in the set of triangular pseudo-Anosov mappings, which consists of maps conjugate to
∆2m

4 P (σ−1
1 , σ3σ2), where P (x, y) is a word with positive exponents in x and y, and by [49]

that – again only for n = 4 – that the Burau representation is faithfull if and only if πλq with
λ = is faithfull.

Jones [42] shows that if λ is Young diagram and r is the rank of πλ(ei) and d the dimension
of πλ, then πλ((σ1 . . . σn−1)n) = q

rn(n−1)
d id, and rn(n−1)

d is an integer. This implies that πJn is
never faithful for q a root of unity. However, if we can show that

∞⋂
k=1

kerπJ|�q=e2πi/k+2 = {id}

we have shown that πJ is faithful, for generic q. The Jones representation at these roots of
unity have a special geometric interpretation, and indeed the motivation behind this thesis
was to develop the geometric picture. Theorem 1 shows that the representation at these roots
of unity can be understood in a way that involves the action of Bn on a certain space where
all elements in Bn are known to act non-trivially.

1.6 Diagrammatic description of the Jones representations

In chapter 3 we will need a graphical description of the Jones representations of the braid group.
It is obtained by giving a graphical description of the Temperley–Lieb algebra, the modules
of the Temperley–Lieb algebra, and the map from the braid group to the Temperley–Lieb
algebra.

The Temperley–Lieb algebra TLn(A) is an algebra over C(A) and has a basis consisting
of noncrossing pairings of 2n points, n of them located at the bottom of a square and n of
them at the top. The multiplication is given by stacking two squares on top of each other,
rescaling the vertical direction to obtain a square, removing all circles, and multiplying by
−[2]A = −(A2 +A−2) for each removed circle, see Figure 1.5. It is generated, as an algebra,
by the n elements, id, e1, e2, . . . , en−1 (Figure 1.6). The map Bn → TLn(A) is given by
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Figure 1.7: A basis element of V 6,4..

ρA(σ2) = A

ρA(σ3) = A +A−1

ρA(σ4) = −A−3

Figure 1.8: The actions of σ2, σ3, and σ4 on the basis element
from Figure 1.6..

σi 7→ Aid + A−1ei. This map essentially just resolves the braid using the Kauffman skein
relations until a non-crossing diagram is obtained. For generic A, the irreducible submodules
of this braid group action are in correspondence with two-row Young diagrams with n boxes,
which we can parametrize with the difference of the lengths of the two rows, d ∈ {0, . . . , n}
with d ≡ n mod 2. These modules also admits a natural graphical description:

Definition 16. Let V n,d, 0 ≤ d ≤ n, denote the complex vector space spanned by non-
crossing pairings of n + d points, such that n points are “at the top” and d points “at the
bottom”, in such a way that all points at the bottom are connected to points at the top; see
Figure 1.6. The Temperley–Lieb algebra acts on V n,d in a way similar to the multiplication
in TLn: by stacking diagrams, and removing circles, multiplying by −[2]A for each removed
circle. However, if two bottom points end up connected when doing so, the result is multiplied
by 0; see Figure 1.6. We denote by ηn,dA the action of TLn(A) on V n,d.

Proposition 17. The TLn(A)-module V n,d are isomorphic to the representation t� πλ from
section 1.4.1, where λ is the n-box Two-row Young diagram of shape (n+d

2 ≥ n−d
2 ), t is the

1-dimensional representation t(b) = A−e(b) and A2 = q
1
2 .

Proof. We will just descripe the intertwining homomorphism. To a non-crossing diagram we
can associate the Young tableau where the second row contains the indices of the top points
paired with a top point with a samller index. �

Since ηn,dA and the map B→ TLn(A) are defined over Z[A,A−1], we can specialize them
to any complex value of A. We can therefore get any specialize πn,dq to any complex number q
by letting q = A4 and taking the tensor product of ηn,dA with the 1-dimensional representation
σi 7→ A. We should note that considering the representation in this particular basis is not a
new idea: see for instance [57] for a thorough description of the action which moreover puts
focus on the case q = −1 which is of interest to us.



Chapter 2
TQFT

Let us first make the following

Definition 18. The cobordism category Bordn is the category with:

Objects oriented, closed n-dimensional manifolds M . We consider the empty set a
manifold of all dimensions.

Morphisms M1 →M2 are equivalence classes of n+ 1 manifolds X with an orientation
preserving diffeomorphism ϕX : M1

∐
−M2 → ∂X, where X1 ∼ X2 if there exists a

diffeomorphism ψ : X1 → X2 such that ψ ◦ ϕ1 = ϕ2.

The composition of two such morphisms – called cobordisms – is by gluing the common
boundary using the parametrization.

The cobordisms category is useful as it allow one to "chop up" a manifold into smaller
pieces and analyze them individually – for instance, consider a closed surface Σ as a cobordism
Σ : ∅1 → ∅1. We can use a pair of pants decomposition to decompose it as pants (a two-sphere
with three boundaries) and annuli. If we want to define invariants of surfaces that can be
computed by chopping them up in simpler pieces, compute the invariant for each piece and
then fit the computed invariant together, we can conveniently define them as functors from
Bord2. Topological Quantum Field Theories are such an example:

Definition 19. A functor Z : Bordn → Vect is a TQFT if it satisfies the following axioms:

1. Z(−M) = Z(M)∗

2. Z(M1
∐
M2) = Z(M1) � Z(M2) for n-manifolds M1,M2, and if X1, X2 are two cobor-

disms, then Z(X1
∐
X2) = Z(X1) � Z(X2).

3. Z(∅n) = C where ∅n is the empty n-manifold.

4. Z(M × [0, 1]) = idZ(M) where M × [0, 1] is the identity corbordism.

An n+ 1 TQFT provides invariants of n+ 1 manifolds by interpreting a n+ 1-manifold X
as a cobordism X : ∅n → ∅n: Z(X) ∈ Hom(C,C) ∼= C. They also provide representations of
mapping class groups by the following construction:

13
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Definition 20 (Quantum representations from TQFTs). Let Z be a n+ 1 dimensional
TQFT. If ϕ : M → M is a diffeomorphism of a n-manifold M , we can define a cobordism
Tϕ : M →M by M × [0, 1] by parametrizing the boundaries with x 7→ (x, 0) and x 7→ (ϕ(x), 1).
The diffeomorphism type of the cobordism depends only on the isotopy type of ϕ. By the
functoriality of Z we have that

ϕ 7→ Z(Tϕ) ∈ GL(Z(M))

defines a representation of MCG(M), which we will call the quantum representation of MCG(M)
associated to Z.

The TQFT important to this thesis is the Reshetikhin-Turaev-Witten TQFT, which is of
dimension 2 + 1. It is actually not a TQFT in the sense we defined above, as it is defined for a
cobordism category where the manifolds carry extra structure. The RTW-TQFT depends on
a choice of simple Lie group G and a level k. We now define the cobordism category relevant
for the RTW-TQFT with G = SU(N) and level k, where we consider manifolds with labeled,
embedded submanifolds. First we define:

Definition 21. A label set ∆ is a finite set equipped with a trivial element denoted 0 and an
involution † : ∆→ ∆, such that 0† = 0.

The label set for the SU(N) RTW-TQFT at level k is defined as:

Definition 22. Let ΛN,k be the set of Young diagrams with height less than N and length at
most k, and the involution † : ΛN,k → ΛN,k given by assigning to λ ∈ ΛN,k the Young diagram
obtained by a 180 degree rotation of the complement of λ in the rectangular diagram with N
rows and λ1 columns. Interpreting λ as an SU(N) representation, the involution corresponds
to the dual representation.

And we can now define the relevant version of the cobordism category:

Definition 23. The cobordism category BordRTW
N,k is defined to have as:

Objects oriented, closed 2-dimensional manifolds Σ, with a choice of Lagrangian (for the
intersection pairing) subspace L ⊆ H1(Σ,Z). Furthermore, Σ can have a finite number of
marked points D = {p1, p2, . . . , pn}, each equipped with with a projective tangent vector
vi ∈ (TpiΣ \ {0})/R+, and a label λi ∈ ΛN,k.

Morphisms Σ1 → Σ2 is a pair (X,n) where n ∈ Z and X is an oriented, cobordism X :
Σ1 → Σ2, which contains finitely many embedded, oriented 1-manifolds Li, each equipped
with a label λi ∈ ΛN,k and a framing of Li, that is, an embedding hi : Li× [0, 1] ↪→ X such
that hi(s, 1

2 ) = s. The boundary of Li, if any, is required to be contained in the marked
points of the boundary of M , and each marked point on ∂M must be exactly one of the
boundary points of exactly one of the Li’s, and in such a way that the framing of the point
match ∂

∂thi(s, t)�t= 1
2
. Furthermore, if Li is labeled by λi it can only meet a point on Σ1 in

a point labeled λi, and Σ2 in points labeled λ†i . Two morphisms Xi, ni) are composed as
(X1, n1) ◦ (X − 2, n2) = (X1 ◦X2, n1 + n2 + σ(X1, X2)), where σ is Walls signature cocycle
applied to a certain triple of Lagrangian subspaces of the boundary of X1 ◦X2, see [35,
definition 6] for more details.

In particular BordRTW
N,k contains as morphisms links in S3 with labeled components.
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2.0.1 Construction
Let us review the universal construction of [22], however we will only work over C instead of
their more general rings. Let 〈, 〉 : homBordRTW(∅, ∅)→ C satisfying:

1. 〈M1
∐
M2〉 = 〈M1〉〈M2〉.

2. 〈∅〉 = 1.

3. 〈−M〉 = 〈M〉.

The construction associates to such an invariant a functor Z : BordRTW → Vect, in the
following way. First, for Σ an object in BordRTW, an axillary vector space V (Σ) is constructed
as the vector space freely spanned by homBordRTW(∅,Σ). We define a bilinear form on V (Σ)
by

〈M1,M2〉Σ = 〈M1
∐
Σ
−M2〉.

We can now define Z(Σ) as V (Σ)/ ker〈, 〉, where ker〈, 〉 = {x ∈ V (Σ) | 〈x, y〉 = 0∀y ∈ V (Σ)}.
To a cobordism M : Σ1 → Σ2 we associate the map V (M) : V (Σ1) → V (Σ2) given on the
basis as:

V (M)(M ′) = M ′ ◦M.

where ◦ denotes the composition on BordRTW. If M ′ ∈ ker〈, 〉Σ1 and M ′′ ∈ V (Σ2) then

〈V (M ′),M ′′〉Σ2 = 〈M ′ ◦M
∐
Σ2

(−M ′′)〉 = 〈M ′
∐
Σ1

M ◦ (−M ′′)〉 = 〈M ′,−M ◦ (−M ′′)〉Σ1 = 0,

so the map V (M) induces a map Z(M) : Z(Σ1) → Z(Σ2). Furthermore there are a map
Z(Σ1)�Z(Σ2)→ Z(Σ1

∐
Σ2) induced by the mapM1�M2 7→M1

∐
M2, and a map Z(−Σ)→

Z(Σ)∗ induced by M 7→ 〈·,−M〉. Now Z is a TQFT if these two maps are isomorphisms and
Z(Σ) is finite dimensional for all Σ, and Z(∅) = C. This happens for the so-called quantum
invariants. We will now discuss the 3-manifold invariant which gives rise to the RTW-TQFT.
Given a framed link L ⊆ S3 we can define a new three-manifold, the result of the integral
surgery along L, XL = S3 \NL

∐
h(
∐n
i=1D

2 × S1) where n is the number of components of
L, NL is a tubular neighbourhood of L and h : ∂NL → ∂

∐n
i=1D

2 × S1 =
∐n
i=1 S

1 × S1 is a
homeomorphism defined in terms of the framing of L.

Theorem 16 (Lickorish, Wallace). For any closed, connected 3-manifold Y there exist a
framed link L ⊆ S3 such that XL

∼= Y .

Furthermore, there are the theorem:

Theorem 17 (Kirby). Let Li be framed link diagrams. Then XL1
∼= XL2 if an only if L1

can be transformed into L2 using a combination of the framed Reidermeister moves and the
Kirby moves.

Using this theorem we can try to promote an invariant of framed links to an invariant of
three-manifolds by proving that it is invariant under the Kirby moves. Reshetikhin and Turaev
found a general way to produce such link invariants from the data of a modular category, and
the invariants obtained this way always results in a TQFT, see [62]. For the SU(2) RTW
TQFT,

Ωk(L) =
∑

~λ∈(Λ2,k)n

n∏
i=1

[λi]e 2πi
k+2

J(L,~λ)(e
2πi
k+2 ),
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where J(L,~λ) denotes the coloured Jones polynomial. Ωk(L) is clearly a knot invariant, but
it is not quite invariant under the Kirby moves. However there exists numbers b, c such that
bncσΩ(L) is invariant under the Kirby moves, where n is the number of components and σ
the signature of the linking matrix of L. For more details see [56], [46]. Any link K ⊆ XL

can be represented as a link K ′ ⊆ S3 \ L, and we can extend Ω to three-manifolds containing
coloured links by

Ωk(L,K ′) =
∑

~λ∈(Λ2,k)n

n∏
i=1

[λi]e 2πi
k+2

J((L,~λ) ∪K)(e
2πi
k+2 ).

and we obtain an invariant of closed three-manifolds containing coloured, framed links, and
this invariant defines via the universal construction to RTW TQFT.

The mapping class group of a surface with labeled, marked points and projective tangent
vectors are defined just as the normal mapping class group, but requiring that the involved
diffeomorphisms satisfy:

1. If a marked point p1 is mapped to another marked point p2, then λ1 = λ2.

2. The tangent directions must be preserved.

The effect of the second requirement is effectively that of adding a Z factor for each marked
point, generated by the Dehn twist around that point. The quantum representations provide a
representation of the braid groups in the following way: The mapping class group of a sphere
with n+1 marked points with projective tangent vectors, where the first n of the points have the
label µ, and the last point – lets call it∞ – have a label λ is the (or, if λ = µ, contains) the ribbon
braid group, Z o Bn, where Bn acts on Zn by the permutation action Bn → Sn. The ribbon
braid group contains the braid group Bn as the subgroup {0} × Bn. Because of the framings
in the definition of the cobordism category for the RTW TQFT, the quantum representation
construction does only yield projective representations of the mapping class groups; however,
in genus 0 the framing ambiguity are not present, and we get actual representations. Let
us write M̃(0, n)∞ for the subgroup of M̃(S2, (0, 1, . . . , n − 1,∞), ( , . . . , , λ†)) consisting
of classes of diffeomorphisms fixing ∞ and its framing. Moreover, we introduce M̃(0, n) =
M̃(Σ, (0, 1, . . . , n−1), ( , . . . , )). Now M̃(0, n)∞ contains Bn as a subgroup as described above.
We will denote by ρλN,k the restriction of the quantum representation of M̃(0, n)∞ to Bn, and
will think of Bn as MCG(0, n)∞, the mapping class group of a sphere with n marked points
and an extra marked point called ∞ which also carries a preserved projective tangent vector.
Finally, we denote by ρN,k the quantum representation of M̃(0, n) for G = SU(N) at level
k. Like Witten’s result about the Jones polynomial, it turns out that the RTW TQFT also
computes the Jones representations evaluated at certain roots of unity:

Proposition 24. There are the following isomorphism of representations of the braid group:

ρλN,k
∼= πλ

e
2πi
k+N

.

Although the quantum representations are very strong, they cannot be faithful for any given
level, as a Dehn twist always have finite order. However, in [1] Andersen show that a mapping
class of a closed surface cannot be in the kernel of the quantum representations at infinitely
many levels, hence proving that these quantum representations are asymptotic faithful. In [7]
Andersen, Ueno and Masbaum states the following conjecture:

Conjecture 25 (AMU, [7]). The quantum representations of a pseudo-Anosov mapping
class has infinite order for all but finitely many levels.
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This conjecture was verified in [7] for the sphere with four marked points labeled with , and
also for the torus with one marked point in [58].





Chapter 3
The Jones representation at q = −1

In this chapter we present the results of [26], which we will follow rather closely. All results
obtained in this chapter are joint with Søren Fuglede Jørgensen. We give an interpretation of
the Jones representations at q = −1, in terms of the action of the braid group on the homology
of certain double covers of punctured disks and spheres.

The study of the Jones representation as contained in this paper was initiated by an
attempt to generalize the results of [7] to general punctured spheres. Here, the authors show
how to relate the quantum representations of the mapping class group of a sphere with four
punctures, obtained from the level k quantum representations to an action on the homology of
a torus by considering the limit k →∞. In [7] they find a clever that change of basis that allow
them to obtain the relation to the homology on the torus; in our approach, the connection is
more clear as we use a basis for the Jones representation that already consists of curves and
show how to map such basis elements to the homology.

3.0.2 The Jones representation and homology
Let n ∈ N and let g = n− 1 and denote by MCG(g, r) the mapping class group of a surface
of genus g with r boundary components. There is a homomorphism Ψ : B2n → MCG(g, 0)
given by mapping the standard braid generators σ1, . . . , σ2n−1 ∈ B2n to the (right) Dehn
twists along the curves γ0, β1, γ1, . . . , βg, γg indicated in Figure 3.1(a) respectively, well-defined
due to proposition 6. Similarly, we define Ψ : B2n−1 → MCG(g, 1) by mapping σ1, . . . , σ2n−2
to twists along γ0, β1, γ1, . . . , γg−1, βg respectively (Figure 3.1(b)). Notice also that these
homomorphisms are exactly those that appear in theorem 8 .

Now, MCG(g, 0), respectively MCG(g, 1), act on the first homology group of a genus g
surface, respectively of a genus g surface with one boundary component, by symplectomorphisms
with respect to the intersection pairing ω. In particular it preserves the bivector associated to
ω, which we by a small abuse of notation also will denote ω =

∑
i αi ∧ βi. For m = 0, 1 and

l ≥ 1, we let

ρ̃g,lhom : MCG(g,m)→ GL(ΛlH1(Σmg ,C)/(ω ∧ Λl−2H1(Σmg ,C)))

denote the induced action, i.e. for [ϕ] ∈ MCG(g,m) and v1, . . . , vl ∈ H1(Σmg ,C),

ρ̃g,lhom([ϕ])[v1 ∧ · · · ∧ vl] = [(ϕ∗)v1 ∧ · · · ∧ (ϕ∗)vl],

19
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β1 β2 βg

γ0

γ1 γ2 γg−1

γg

(a) The closed surface Σg .

β1 β2 βg

γ0

γ1 γ2 γg−1

(b) The surface Σ1
g .

β1 β2 βg

γ0

γ1 γ2 γg−1

γg

(c) The surface Σ2
g .

Figure 3.1: This figure illustrates how curves and homology
cycles on a surface are named..

where we use the conventions that Λ−1H1(Σmg ,C) = {0} and Λ0H1(Σmg ,C) = C. Finally, let
ρg,lhom = ρ̃g,lhom ◦Ψ denote the corresponding braid group representations.

In [41, Sect. 10], Jones gave explicit matrices for the representation associated to (closely
related to π6,0

q , the representation associated to ). Moreover, the choice of basis is such that
all matrix entries are in Z[q, q−1], so that one obtains this way representations of B6 for all
non-zero values of q rather than only the 6-regular ones. Kasahara [45, Lem. 2.1] observed
in the same vein as above that at q = −1, the resulting representation is equivalent to the
representation ρ2,2

hom. In general, the representation space of π2n,0
q has dimension Cn+1, the

(n+ 1)’th Catalan number.
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Theorem 18. The Jones representation π2n,0
q has a natural extension to q = −1, for which

it is equivalent to ρg,ghom, where g = n− 1.

By theorem 13 it follows that π2n−1,1
q is equivalent to π2n,0

q |B2n−1 , the above Theorem allows
us to deduce a similar homological description for π2n−1,1

q=−1 .

Theorem 19. The representation π2n+1,d
q has a natural extension to q = −1 for which it is

equivalent to the action ρg,lhom, where g = n and 2l = 2n+ 1− d.

This leaves us with the two-row diagrams having an even number of boxes. The fact that
πn,dq |Bn−1

∼= πn−1,d−1
q � πn−1,d+1

q (see e.g. [41]), together with the observation that(
2g
l

)
−
(

2g
l − 2

)
+
(

2g
l + 1

)
−
(

2g
l − 1

)
=
(

2g + 1
l + 1

)
−
(

2g + 1
l − 1

)
for all g and l, leads us to the following: let ρ̂g,lhom denote the action of B2n on ΛlH1(Σ2

g,C),
where g = n− 1, given by mapping σ1, . . . , σ2n−1 to the action induced by the homological
action of the Dehn twists tγ0 , tβ1 , tγ1 , . . . , tβg , tγg respectively (see Figure 3.1(c)).

Theorem 20. The representation π2n,d
q has a natural extension to q = −1 for which it is

equivalent to a subrepresentation of ρ̂g,lhom, where g = n− 1 and 2l = 2n− d.

In each of the three cases, the appropriate intertwining operator is constructed as follows: a
natural basis for the representation spaces of πn,dq is given in terms of non-intersecting paths
in the relevant punctured disc, connecting the punctures. Regarding the punctures as marked
points, the disk is realized as the quotient of a surface by the order two element rotating the
surface by π along its horizontal axis in Figure 3.1, allowing us to realize the surface as a
well-understood branched double cover. Lifting the non-intersecting paths through the double
cover defines a collection of loops in the covering surface, and by taking an appropriately
ordered and scaled wedge product of the homology classes of these loops, we obtain our desired
linear map.

We now prove Theorems 18, 19, and 20. For the remainder of this section, we assume that
A = exp(−πi/4).

3.0.3 Construction of the (iso)morphism
We now construct the intertwining morphism ϕ as needed in Theorems 19 and 20. For
Theorem 18 the construction needs to be tweaked slightly; a concern we defer until it becomes
relevant.

For a diagram D in the basis of V n,d we denote by D0 the set of arcs connecting two top
points. We identify the points at the top with the numbers 1, 2, . . . , n, and for a ∈ D0 we
denote by a0 and a1 the left and right end point of a respectively. The set of bottom points
will be called ∞.

Definition 26. Let c1, . . . , cn−1 be simple closed curves on the surface Σmg , such that ci∩ ci+1
consists of a single point, and such that ci and cj are disjoint for |i−j| > 1. We orient the curves
such that tci(ci+1) = ci+1 +ci, where we abuse notation and use ci also for the element that the
oriented curve defines in H1(Σmg ,C), and assume that span{ci | i = 1, . . . , n− 1} ⊆ H1(Σmg ,C)
has dimension n− 1. We note that γ0, β1, γ1, β2, . . . , βg, respectively γ0, β1, γ1, β2, . . . , βg, γg
in fig. 3.1(b) respectively fig. 3.1(c) defines such curves.
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e

Figure 3.2: The arcs contributing to w(e) = 3 have been coloured
red, and the arcs contributing to v(e) = 2 have been coloured
blue. .

We order the arcs in D0 by their starting points so that e < e′ if e0 < e′0. To each arc e in
D0 we associate the element Xe =

∑e1−1
i=e0

ci ∈ span{ci} ⊆ H1(Σmg ,C).
Define a map ϕ : V n,d → ΛlH1(Σmg ,C), by letting, for a basis diagram D ∈ V n,d,

ϕ(D) = f(D)
∧
e∈D0

Xe, (3.1)

where f(D) = (−i)
∑

e∈D0
w(e)+v(e); here, w(e) denotes the number of arcs between the starting

and ending point of e, v(e) denotes the number of points greater than e1 that are connected
to ∞ (see Figure 3.2), and the wedge product runs through D0 from the first to the final arc
with respect to the ordering on D0.

3.0.4 Proof of equivariance
Lemma 27. Denote by Ti the action of ei on V n,d. Then we have, for all i = 1, 2, . . . , n− 1
and D ∈ V n,d, that

ϕ(D + iTiD) = tciϕ(D).

Proof. Let c = ci. We first observe that (tc)∗ acts trivially on Xe if e is not connected to
exactly one of i or i + 1. In particular, if the points i, i + 1 are connected, or if both are
connected to ∞, then

(tc)∗(ϕ(D)) = ϕ(D).

Since in these cases TiD = 0, we obtain the claim of the Lemma.
Let us therefore consider the case where we have two distinct arcs connecting to i, i+ 1,

not both connecting to ∞. Let us first assume that i+ 1 is connected to ∞, and let us denote
the arc ending in i by a.

Then (tc)∗ acts trivially on all factors of ϕ(D) except for Xa. If a is the j’th arc in D0,
then

(tc)∗ϕ(D) = f(D)Xj−1
1 ∧ (Xa − c) ∧Xk

j+1 = ϕ(D) + f(D)Xj−1
1 ∧ (−c) ∧X l

j+1,

where we denote the i’th edge in D0 by ei and write

Xj
i =

j∧
l=i

Xei .
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On the other hand, we have

ϕ(Ti(D)) = (−i)−2w(a)−1f(D)Xj−1
1 ∧Xj+w(a)

j+1 ∧ c ∧X l
j+w(a)+1

= (−i)−2w(a)−1(−1)w(a)f(D)Xj−1
1 ∧ c ∧X l

j+1

= −if(D)Xj−1
1 ∧ (−c) ∧X l

j+1.

Likewise, if i is connected to ∞ but i+ 1 is not, we denote by a the arc connecting to i+ 1
and find that

(tc)∗ϕ(D) = f(D)Xj−1
1 ∧ (Xa + c) ∧X l

j+1 = ϕ(D) + f(D)Xj−1
1 ∧ c ∧X l

j+1,

and

ϕ(Ti(D)) = (−i)w(a)−w(a)+1f(D)Xj−1
1 ∧ c ∧X l

j+1 = −if(D)Xj−1
1 ∧ c ∧X l

j+1.

Now only the cases where two distinct arcs from D0 connect to i and i+ 1 remain. Denote
these arcs by a and b, and assume that they are the j’th and m’th arc respectively, with j < m.
There are three possibilities, corresponding to whether or not a and b start or end in i and i+ 1
(the case where a starts in i and b ends in i+ 1 is not possible if a 6= b). We distinguish these
cases by the signs (ξia, ξib) of the intersections of the curves with c, i.e. (tc)∗Xa = Xa + ξiac,
and likewise for b. Then

(tc)∗ϕ(D) = f(D)Xj−1
1 ∧ (Xa + ξiac) ∧Xm−1

j+1 ∧ (Xb + ξibc) ∧X l
m+1

= ϕ(D) + f(D)Xj−1
1 ∧ (ξibXa − ξiaXb) ∧Xm−1

j+1 ∧ c ∧X
l
m+1

= ϕ(D) + f(D)Xj−1
1 ∧ (ξibXa ± c− ξiaXb) ∧Xm−1

j+1 ∧ c ∧X
l
m+1.

If now (ξa, ξb) = (−,+), then we have

ϕ(Ti(D)) = (−i)−w(a)−w(b)+w(a)+w(b)+1f(D)Xj−1
1 ∧ (a+ c+ b) ∧Xm−1

j+1 ∧ c ∧X
l
m+1

= −if(D)Xj−1
1 ∧ (a+ c+ b) ∧Xm−1

j+1 ∧ c ∧X
l
m+1.

If (ξa, ξb) = (+,+),

ϕ(Ti(D)) = (−i)−w(a)−w(b)+w(a)−w(b)−1f(D)

·Xj−1
1 ∧ c ∧Xm−1

j+1 ∧X
m+w(b)
m+1 ∧ (a− c− b) ∧X l

m+w(b)+1

= i(−i)−2w(b)(−1)w(b)f(D)Xj−1
1 ∧ c ∧Xm−1

j+1 ∧ (a− c− b) ∧X l
m+1

= −if(D)Xj−1
1 ∧ (a− c− b) ∧Xm−1

j+1 ∧ c ∧X
l
m+1.

And finally, if (ξa, ξb) = (−,−),

ϕ(Ti(D)) = (−i)−w(a)−w(b)+w(a)−w(b)−1f(D)

·Xj−1
1 ∧ (a− c− b) ∧Xm−1

j+1 ∧X
m+w(b)
m+1 ∧ c ∧X l

m+w(b)+1

= i(−i)−2w(b)(−1)w(b)f(D)Xj−1
1 ∧ c ∧Xm−1

j+1 ∧ (a− c− b) ∧X l
m+1

= −if(D)Xj−1
1 ∧ (−a+ c+ b) ∧Xm−1

j+1 ∧ c ∧X
l
m+1. �

This shows that ϕ is a homomorphism between the representation σi 7→ A−1ηn,dA (σi) and the
representation on ΛlH1(Σmg ,C) in the cases of Theorems 19, and 20. For Theorem 18, we define
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Figure 3.3: Here, the outermost arc is a and the bk’s have been
coloured red. .

ϕ̃(D) for D ∈ V 2n,0 in the following way: there is an i such that there is an arc a connecting
i to n. We define an element D̃ in V n−1,1 by removing a, forgetting n, and connecting i to
∞, and we define ϕ̃ : V 2n,0 → ΛgH1(Σg,C) by ϕ̃(D) = ϕ(D̃), identifying H1(Σg,C) with
H1(Σ1

g,C). It is clear that the induced map ·̃ : V 2n,0 → V 2n−1,1 is an isomorphism of vector
spaces.

Lemma 28. The map ϕ̃ is a homomorphism of representations.

In order to prove this, we need the following Lemma.

Lemma 29. If D is a diagram and a is an arc that connects i to j, i < j, we have that

Xa ∧
∧
e≺a

Xe =

 ∑
i≤k≤j,

k≡i mod 2

ck

 ∧ ∧
e≺a

Xe,

where we say that e ≺ a if a0 < e0 < e1 < a1.

Proof. The proof is by induction on w(a). If w(a) = 0, the claim is clear. Otherwise we use
the induction hypothesis on the arcs bk, k = 1, 2, . . . ,m, connecting (ik, jk), where i1 = i+ 1,
jm = j − 1, and jk + 1 = ik+1 for k < m. See Figure 3.3. �

Up until this point, we have not used the possible description of the curves ci in terms of
the curves βi and γi of Figure 3.1, but for the proof of Lemma 28 below, we will need that

cn−1 = −
∑

1≤k≤n−3,
k≡1 mod 2

ck

in H1(Σg,C), which will be guaranteed by considering the concrete curves.

Proof (Of lemma 28). If we consider only the action of Bn−1 ⊆ Bn, then ϕ̃ defines a homo-
morphism by the above, so we only have to check the equivariance of the action of σn−1.
If n − 1 and n are connected, then βg does not appear in ϕ(D̃), and the action of σn−1 on
homology is trivial, just as Tn(D) = 0.

If n is connected to i < n− 1 by the j’th arc, and n− 1 is an end point of the m’th arc,
which we denote by b, then

(tcn−1)∗(ϕ(D̃)) = f(D̃)Xj−1
1 ∧Xm−1

j+1 ∧ (Xb − cn−1) ∧X l
m+1

= ϕ(D̃)− f(D̃)Xj−1
1 ∧Xm−1

j+1 ∧ cn−1 ∧X l
m+1
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= ϕ(D̃) + f(D̃)Xj−1
1 ∧Xm−1

j+1 ∧

 ∑
1≤k≤n−3,
k≡1 mod 2

ck

 ∧X l
m+1

= ϕ(D̃) + f(D̃)Xj−1
1 ∧Xm−1

j+1 ∧

 ∑
i≤k≤b0,

k≡1 mod 2

ck

 ∧X l
m+1.

Here we used Lemma 29 in last equality, applying it to the arcs left of i that are not
contained between the end points of any other arc, and on the arcs between the end points of
b. Letting p be the number of arcs to the right of i in D̃, we find, where we denote by d an
arc connecting i with b0, that

ϕ( ˜Tn−1(D)) = (−i)p−w(b)+p−w(b)−1f(D̃)Xj−1
1 ∧Xd ∧Xm−1

j+1 ∧X
l
m+1

= (−i)p−w(b)+p−w(b)−1f(D̃)Xj−1
1 ∧

 ∑
i≤k≤b0,

k≡1 mod 2

ck

 ∧Xm−1
j+1 ∧X

l
m+1

= (−1)p−w(b)+1(−i)p−w(b)+p−w(b)−1f(D̃)Xj−1
1 ∧Xm−1

j+1 ∧

 ∑
i≤k≤b0,

k≡1 mod 2

ck

 ∧X l
m+1

= −if(D̃)Xj−1
1 ∧Xm−1

j+1 ∧

 ∑
i≤k≤b0,

k≡1 mod 2

ck

 ∧X l
m+1.

This shows the equivariance of ϕ̃. �

3.0.5 Injectivity
In the case of Theorem 19 we know that the dimension of V n,d agrees with the dimension of
ΛlH1(Σ1

g,C)/ω ∧ Λl−2H1(Σ1
g,C), so we can show that ϕ̄ – which here denotes ϕ composed

with the map to the quotient – is an isomorphism by showing that it is surjective, which we
will do next. This also shows the injectivity claimed in Theorem 18, by construction of ϕ̃.

Proof (Of theorem 18 and theorem 19). Denote by ϕ̄ the composition of ϕ with the projection
to the quotient ΛlH1(Σ1

g,C)/ω ∧ Λl−2H1(Σ1
g,C). We just need to show that ϕ̄ is injective, as

we know that the spaces have the same dimension. Assume that v is in the kernel of ϕ̄; then

eiv = Tiv = −i(v + iTiv) + iv,

so
ϕ̄(eiv) = −itci ϕ̄(v) + iϕ̄(v) = 0,

which shows that ker ϕ̄ is a TLn(exp(−πi/4))-subrepresentation of V n,d. But it follows from
Corollary 4.8 of [57] that the representation on V n,d is irreducible (as noted in the remarks on
the case β = 0 following their Corollary), so ker ϕ̄ is either 0 or V n,d. It is easy to check that
the latter is not the case, and so we obtain the Theorem. �

Remark 30. We remark that the injectivity above can also be shown by explicitly constructing
a basis a1, a2, . . . , ai, b1, b2, . . . , bj of ΛlH1(Σ,C) in such a way that ϕ surjects onto span{ak},
ω ∧ Λl−2H1(Σ,C) = span{bk}, and span{ak} has the right dimension.
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Proof (Of theorem 20). This follows from Theorem 19 in the following way: we can define a
map h1 : V n,d → V n−1,d−1 that maps D to 0 if n is not connected to ∞, and otherwise to the
diagram given by removing the arc going from n to∞; here we let V n−1,−1 = V n−1,n+1 = {0}.
Likewise, we define a map h2 : V n,d → V n−1,d+1 that maps a diagram to 0 if n is connected
to ∞, and otherwise to the diagram where the point connected to n is now connected to ∞.
For a diagram of the latter type, we define g(D) = αXe, where α is a scalar depending on
D, and e is an arc such that ϕ(D) = g(D) ∧ ϕ(h2(D)). It is clear that g(D) = α

∑n−1
i=k ci for

some k, and by looking at the block decomposition of ϕ with respect to these two kinds of
diagrams and with respect to the two subspaces cn−1 ∧ Λl−1 span{ci | i = 1, 2, . . . , n− 2} and
its orthogonal complement (using wedge products of ci’s as an orthogonal basis), we see that
ϕ is injective, as it has the form(

ϕn−1,d−1 ◦ h1 ∗
0 αcn−1 ∧ ϕn−1,d+1 ◦ h2

)
,

where the diagonal blocks are injective by Theorem 19; here, we interpret ϕn−1,−1 and ϕn−1,n+1

as the maps between two 0-dimensional spaces. �

3.1 The AMU conjecture for homological pA’s of a sphere

In the following we let L be the set of Young diagrams with 2 rows and n cells.

Theorem 21. Let ϕ ∈ MCG(0, n)∞ be a homological pseudo-Anosov, and let λ ∈ L. Then
ρλN,k(ϕ) has infinite order for all but finitely many k.

As above, we say that ϕ ∈ M̃(0, n) is a homological pseudo-Anosov if its image in MCG(0, n)
is a pseudo-Anosov whose invariant foliations have the property that all non-puncture singu-
larities are even-pronged and all punctures have odd-pronged singularities.

Theorem 22. Assume that n is even. If ϕ ∈ M̃(0, n) is a homological pseudo-Anosov, then
ρ2,k(ϕ) has infinite order for all but finitely many k.

Moreover, we show in Corollary 39 that for the homological pseudo-Anosovs, the quantum
representations determine their stretch factors, answering positively [7, Question 1.1 (2)] in
this case.

We turn now to the proofs of Theorems 21 and 22. Recall that these are concerned with the
genus 0 quantum SU(N)-representations ρλN,k, depending on a level k and a Young diagram
λ ∈ L.

Lemma 31. Let Xn denote the set of primitive n’th roots of unity. Then for every z ∈ U(1),
there exist zn ∈ Xn such that limn→∞ zn = z.

Remark 32. For z = −1 – which in fact is the only case we will need in the proof of
Theorem 21 – this is [7, Lem. 5.1], in which the sequence zn is constructed explicitly.

Proof (Of lemma 31). Write z = exp(2πiα), α ∈ [0, 1), and let

Yn = {m | 0 < m < n, gcd(m,n) = 1}.

The largest gap between two consecutive points of Yn is bounded from above by j(n), the
ordinary Jacobsthal function at n. The result of Iwaniec [39] allows us to bound the size of this
gap as j(n) = O(log2(n)). Thus, since log2(n)/n→ 0 as n→∞, we may choose αn ∈ Yn/n
such that αn − α→ 0 for n→∞. Letting zn = exp(2πiαn) ∈ Xn, we obtain the result since
znz
−1 → 1 as n→∞. �
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For ϕ ∈ MCG(0, n)∞, define srd(ϕ) : R→ R>0 by

srd(ϕ)(x) = sr(ηn,dexp(−πix/4)(ϕ)),

for d ∈ {0, . . . , n} with d ≡ n mod 2, where sr denotes the spectral radius of a linear map.

Lemma 33. Let ϕ ∈ MCG(0, n)∞. If srd(ϕ)(x0) > 1 for some x0 ∈ [0, 1], then there exists
k0 ∈ N such that the order of ρλN,k(ϕ) is infinite for all k > k0, where λ = ((n + d)/2 ≥
(n− d)/2).

Proof. It follows from Theorem 24 and the relations described in Section 1.6 that it suffices to
show that for some k0, the order of ηn,dA (ϕ) is infinite for q = A4 = exp(2πi/(k +N)) for all
k with k > k0. On the other hand, the order of ηn,dA (ϕ) at a general primitive 4(k + N)’th
root of unity A = exp( 2πil

4(k+N) ) is independent of l, as one is the image of the other under the
Galois isomorphism permuting the two primitive roots.

Now, apply Lemma 31 to q = exp(−πix0) to obtain primitive 4(k +N)’th roots of unity
Ak with A4

k → q. Since srd(ϕ) is continuous, sr(ηn,dAk (ϕ)) > 1, for all sufficiently large k, and
a linear map having an eigenvalue of absolute value greater than 1 necessarily has infinite
order. �

To show that a given pseudo-Anosov ϕ ∈ MCG(0, n)∞ has infinite order in ρλN,k for all but
finitely many levels, it thus suffices to find x0 as above. As we will see below, by Theorems 19
and 20, this is possible for those pseudo-Anosovs whose stretch factors are given by their action
on the homology of the double cover. In case d = n− 2, the claims will follow immediately
from Lemma 33 but in general, we will need the following remarks on the actions of surface
diffeomorphisms on wedge products of homology.

Remark 34. Let f∗ be the action on H1(Σ,C), where Σ is a surface of genus g with 0 or
1 boundary components, induced by a diffeomorphism f . Let λ1, . . . .λ2g be the diagonal
entries in the Jordan normal form of the matrix for f∗. Then the action of f on ΛlH1(Σ,C)
will have an eigenvector of eigenvalue

∏
i∈I λi for any subset I ⊆ {1 : 2g} of size l, given

by wedging together the corresponding vectors in the Jordan normal form, in such a way
that a non-eigenvector is only included if all the preceding vectors in its block are also
included. As all of these eigenvectors are of the form

∧l
i=1 vi, they can not be in the subspace

ω ∧Λl−2H1(Σ,C) if l ≤ g, and therefore they define eigenvectors of the same eigenvalue in the
quotient ΛlH1(Σ,C)/ω ∧ Λl−2H1(Σ,C).

Assume now that the action on H1(Σ,C) has an eigenvalue with absolute value strictly
greater than 1. The action is symplectic, so the eigenvalues come in pairs λ, λ−1, and there must
be at least g columns in the Jordan normal form having diagonal entry with absolute value at
least 1. Therefore the action on ΛlH1(Σ,C) has an eigenvalue with absolute value greater than 1
for l ≤ g, and by the above considerations, so does the action on ΛlH1(Σ,C)/ω∧Λl−2H1(Σ,C).

Proposition 35. Let λ ∈ L, let f ∈ MCG(0, n)∞, and assume that the action f̂∗ of f̂ = Ψ(f)
on H1(Σmg ) has spectral radius strictly greater than 1. Then the order of ρλN,k(f) is infinite for
all but finitely many levels k.

Proof. For general d, we also need to ensure that an appropriate eigenvector – of eigenvalue
with absolute value strictly greater than 1 – is actually contained in the image of the morphism
of representations. This, on the other hand, is guaranteed by Remark 34 in case n is odd.

Assume now that n is even and that d < n− 2. Since f̂ preserves the boundaries pointwise,
it defines a diffeomorphism of Σ1

g+1, obtained by gluing to Σ2
g a pair of pants. Denote by ι the
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induced map on (wedge products of) homology. On the level of diagrams, this corresponds to
the inclusion V n,d ↪→ V n+1,d+1 obtained by adding to a diagram the point n+1 and connecting
it to ∞. This of course corresponds to the decomposition V n+1,d+1 = V n,d � V n,d+2 as a
vector space, as described in the proof of Theorem 20 (but note that n+ 1 is now odd); that
is, V n,d+2 is spanned by diagrams where n+ 1 is not connected to ∞. Now, even though the
action of f does not preserve the decomposition, it is clearly block triangular.

With these identifications, we have a diagram
V n,d //

ϕn,d

��

V n+1,d+1

ϕn+1,d+1

��

ΛlH1(Σ2
g,C) ι // ΛlH1(Σ1

g+1,C) // ΛlH1(Σ1
g+1,C)/ω ∧ Λl−2H1(Σ1

g+1,C),
which is commutative up to a power of −i. We wish to show that the action of f on

V n,d ⊆ V n+1,d+1 contains eigenvectors of the appropriate eigenvalues. Suppose that the
eigenvalues of the action of f∗ on H1(Σ2

g,C), counted with algebraic multiplicity, have absolute
values

(x1, . . . , xm, 1, 1, . . . , 1, x−1
m , . . . , x−1

1 )
with xi > 1 for all i so that as before, m ≥ 1. Consider first the case l ≤ m. As in Remark 34,
the action of f̂∗ on ΛlH1(Σ2

g,C) has an eigenvector v = v1 ∧ · · · ∧ vl whose eigenvalue has
absolute value x = x1 · · ·xl. Now, ι(v) is an eigenvector for the induced action with the
same eigenvalue (up to the same root of unity), and it follows from the case of n odd that
Im(ϕn+1,d+1) contains an eigenvector which has the same eigenvalue as ι(v). Moreover, since
the eigenvectors arising from V n,d+2 all have absolute value strictly less than x (as we take
only the (l − 1)’st wedge products), we obtain the desired eigenvector of ηn,dexp(−πi/4)(f). The
conclusion now follows as in the case of odd n.

The case l > m is similar but involves also a small combinatorial exercise as in this case,
there may also be eigenvectors coming from V n,d+2 with eigenvalue of absolute value x. Let
dn,dx be the sum of the algebraic multiplicities of eigenvalues of absolute value x of the action
of f on V n,d. We claim that for n even,

dn,dx =
(

2g + 1− 2m
l −m

)
−
(

2g + 1− 2m
l −m− 2

)
. (3.2)

To see this, we appeal again to the decomposition used above, as a simple extension of the
argument from Remark 34 shows that

dn+1,d+1
x =

(
2g + 2− 2m

l −m

)
−
(

2g + 2− 2m
l −m− 2

)
.

Now, since dn+1,d+1
x = dn,dx + dn,d+2

x , equation (3.2) follows by induction on l, starting at
l = m, by using well-known recursive formulas for binomial coefficients. Since dn,dx > 0, this
completes the proof. �

Proof (Of theorem 21). Let f ∈ MCG(0, n)∞ be a homological pseudo-Anosov, let f̃ denote
its image in MCG(0, n+ 1), and let f̂ ∈ MCG(g,m) denote the image of f under the Birman–
Hilden map used in Theorems 19 and 20 with the appropriate values of g and m. Everything
has been set up so that f̂ is a pseudo-Anosov of Σm

g with the same stretch factor as f̃ , and
that, moreover, f̂ has orientable invariant foliations. This follows by the exact same reasoning
as in the similar setup in Theorem 5.1 of [16]. In short: the orientability of a foliation is
determined by the vanishing of its associated orientation homomorphism, and this on the
other hand is ensured by the assumptions on the degrees of the singularities.



3.1 The AMU conjecture for homological pA’s of a sphere 29

Now, the stretch factor of any pseudo-Anosov with orientable invariant foliations is simply
the spectral radius of its action on homology which is therefore strictly greater than 1. This
is a well-known result and in fact a criterion for having orientable foliations; see e.g. [16,
Lemma 4.3] and the discussion preceding it.

The claim then follows directly from Proposition 35.

Proof (Of theorem 22). Consider now the case where N = 2, n is even, and λ is the empty
diagram. Here, the level k quantum SU(2)-representation, rescaled on each generator by
a suitable k-dependent root of unity, defines a representation of M̃(0, n), equivalent by
construction to ρ2,k (see [41, Sect. 10]). As multiplication by a root of unity does not change
whether or not the order of a linear map is finite or infinite, we obtain from Theorem 21 the
claimed result. �

Remark 36. More generally, in [41, Sect. 10], Jones finds that his representations may be
tweaked by roots of unity to descend to the mapping class groups of spheres whenever the
associated Young diagram λ is rectangular. Thus, the same is of course true for the quantum
SU(N)-representations ρλN,k. One could therefore proceed as in [7, Sect. 4], define new quantum
representations for mapping class groups of punctured spheres, and immediately obtain a
version of Theorem 22 for those.

Remark 37.

On a closed torus, the stretch factor of a pseudo-Anosov is always given by its action on
homology, and so we recover the main result of [7].

Example 38 (Homological pseudo-Anosovs on the sphere).

As noted in the proof of Theorem 21, [16, Lemma 4.3] tells us that if the spectral radius
of the action of a pseudo-Anosov on homology equals its stretch factor, the pseudo-Anosov
must necessarily have orientable invariant foliations, and so we can appeal directly to any
of the existing homological constructions of pseudo-Anosovs to obtain interesting examples.
One such family of examples arises as a special case of the pseudo-Anosovs described in [54]
(Penner’s construction) on the level of the covering surfaces, which – passing through the
Birman–Hilden homomorphism – may be described as follows. Suppose that n is even. Then
any word in the generators σ1, . . . , σn−1 such that the sign of the exponents for odd-indexed
generators all agree, such that exponents of even-indexed generators all have the opposite sign
as the odd-indexed ones, and such that each generator appears at least once, is a homological
pseudo-Anosov.

3.1.1 Determining stretch factors

In [7, Cor. 5.8], the authors go on to show that the stretch factor of any given pseudo-Anosov
of a sphere with four punctures may be obtained as limits of eigenvalues of the quantum
representations of ϕ. The analogous statement in our general case is the following.

Corollary 39. For any homological pseudo-Anosov ϕ ∈ MCG(0, n)∞ and Young diagram
λ ∈ Λ, there exist eigenvalues λk, λ̃k of ρλN,k(ϕ) such that

√
|λkλ̃k| tends to the stretch factor

of ϕ as k →∞.
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Proof. The statement follows from the proof of Proposition 35 by continuity in A of the
eigenvalues of ηn,dA (ϕ), as these include at q = A4 = −1 the values τµ and τµ−1, where |τ | is
the stretch factor of ϕ (and likewise, µ is a product of eigenvalues of the induced action on
homology). �



Chapter 4
Geometric quantization

4.1 Symplectic manifolds

A symplectic manifold is a pair (M,ω) where M is a smooth manifold and ω is a closed
2-form on M that is non-degenerate in each fiber, that is, for p ∈M and X ∈ TpM such that
ωp(X,Y ) = 0 for all Y ∈ TpM , then X = 0. Therefore ω induces an isomorphism between the
tangent bundle and the cotangent bundle by X 7→ iXω.

Definition 40. Let (M,ω) be a symplectic manifold. For any function f ∈ C∞(M) we can
define the Hamiltonian vector field Xf by

df(·) = ω(Xf , ·).

Definition 41. The Poisson bracket {·, ·} : C∞(M)× C∞(M)→ C∞(M) is given by

{f, g} = −ω(Xf , Xg) = −dg(Xf ) = −Xf (g)

It is a Lie bracket on C∞(M) and satisfies the Leibniz rule:

{f, gh} = {f, g}h+ g{f, h}.

The map C∞(M)→ C∞(M,TM) given by f 7→ Xf is an homomorphism of Lie algebras:

[Xf , Xg] = X{f,g}.

Given a G-action on (M,ω) by symplectomorphisms, we call it Hamiltonian if there exist a
moment map: a smooth map µ : M → g∗, such that

1. ξ = Xµ(ξ) for all ξ ∈ g.

2. µ is G-equivariant, with respect to the coadjoint action on g∗.

From property 2 it is clear that G preserves µ−1(0).

Theorem 23 (Marsden-Weinstein). Assume that µ is the moment map for the action of
G on M and 0 is a regular value of µ, and G acts freely and properly on µ−1(0). Then
the two-form ωG in µ−1(0)/G defined as ωG(π∗(A), π∗(B)) = ω(A,B) for A,B ∈ TpM is
well-defined and a symplectic form on µ−1(0)/G. The symplectic manifold (µ−1(0)/G, ωG)
is called the symplectic reduction of M with respect to the G-action, and denoted M//ωG.

31



32 Chapter 4 · Geometric quantization

ωG is the unique form such that π∗(ωG) = i∗(ω), where i : µ−1(0) → M . If furthermore
M supports a complex structure compatible with ω and preserved by the G action, then the
quotient will also support a complex structure, compatible with ωG. We call the resulting Kähler
manifold for the Kähler quotient.

4.2 Geometric quantization

The goal of quantization is to associate to a 2n-dimensional symplectic manifold (M,ω) and
~ ∈ R+ a complex Hilbert space H and a map C∞(M)→ Op(H), written as f 7→ f̂ , such that

1. The map f 7→ f̂ is linear over R.

2. 1̂ = id

3. [f̂1, f̂2] = i~f̂ for f = {f1, f2}.

4. if (M,ω) = (T ∗Rn,d(
∑n
i=1 pidqi)) then the obtained quantum system is “canonical

quantization” of the harmonic oscillator:

a) The quantum space is

H = L2(Rn) =
{
f : Rn → C |

∫
Rn
|f(q1, . . . , qn)|2dq1 . . . dqn <∞

}
.

b) q̂if = qif

c) p̂if = i~ ∂
∂qi
f

Unfortunately, such a correspondence is not possible in general, as shown by the Groenewold-
Van Hove no-go theorem. It is therefore necessary to relax the conditions in some way. One
possibility is to be less ambitious and only aim to quantize a subalgebra of C∞(M). Another
is to define a family of quantizations, indexed by different values of ~, but relax the third
criterion to [f̂1, f̂2] = i~f̂ + O(~2).

A central notion in geometric quantization is that of a prequantum line bundle:

Definition 42. A prequantum line bundle L → M is a complex line bundle with a
connection ∇ and a hermitian structure 〈·, ·〉 compatible with the connection, such that the
curvature is F∇ = −iω.

A prequantum line bundle exists if and only if [ ω2π ] ∈ im
(
H2(M,Z)→ H2(M,R)

)
. We can

define an inner product on the vector space of compactly supported smooth sections of L by

〈s1, s2〉 =
∫
M

〈s1, s2〉
ωn

n!

and our first candidate for a Hilbert space quantizing (M,ω) will be the completion, L2(M,L).
On this space we will let f̂ act in the following way on a smooth section s

f̂s = i~∇Xf s+ fs.

A constant function f has Xf = 0, so it acts by multiplication: f̂ s = fs. The map f 7→ f̂ is
R-linear since ∇Xaf+bg = ∇aXf+bXg = a∇Xf + b∇Xg . Similarly it can be shown that f̂ is a
symmetric operator and that condition 3 holds.
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Condition 4 is however not satisfied. To remedy this, we must restrict our quantum space
to a subset of L2(M,L) – right now the prequantum operator depend on too many variables
(i.e. the prequantum operator for the momentum mapping could depend on the position
as well, something that should not happen in the canonical quantization of the harmonic
oscillator). There are different ways to do this. The basic idea is to consider the subset of
sections of L that are constant (with respect to the prequantum connection) along vector fields
taking values in a special n-dimensional distribution. There are different kinds of choices for
such a distribution that leads to a satisfying theory. We will consider a special case where M
is not only symplectic, but also Kähler, in which there always is a good choice, namely T 0,1M ,
which we will call the Kähler polarization associated to the Kähler structure. The quantum
space of a Kähler manifold with its Kähler polarization is

Q(M,L) = {s ∈ C∞(M,L) | ∀X ∈ T 0,1M : ∇Xs = 0} = H0(M,L),

that is, the set of holomorphic sections of the line bundle, with respect to the complex structure
defined by ∇ (∇0,1 defines a complex structure because

(
∇0,1)2 = (F∇))(0,2) = (−iω)(0,2) = 0,

since ω is a Kähler form and therefore of type (1, 1)). However, this introduces a new
problem: The prequantum operators do not necessarily preserve Q(M,L): let Y ∈ T 0,1

C M and
s ∈ Q(M,L)

∇Y f̂ s = ∇Y i∇Xf s+∇Y fs = i∇Y∇Xf s+ df(Y ) + f∇Y s
= i(∇Xf∇Y − iω(Y,Xf )−∇[Y,Xf ])s+ ω(Xf , Y )s = −i∇[Y,Xf ]s.

So in general we would have to restrict to functions f such that [Xf , T
0,1
C M ] ⊆ T 0,1

C M , but
such Xf preserve both the complex structure and the symplectic form, and therefore are
Killing vector fields. For M compact this is a finite dimensional vector space corresponding
to the Lie algebra of the Kähler isometries of M . However quantum operators for functions
whose Hamiltonian vector field is Killing will be very useful for us later, where we will see that
they provide a representation of the Lie algebra of the Kähler isomorphisms.

Another approach assumes that M is compact, and lets us quantize all functions. But
instead of just one Hilbert space, we instead get a Hilbert space for each natural number k,
and we only satisfy our requirements asymptotically in k, where we will think of k−1 as ~. The
level k quantum space is defined as before, but with L replaced with L�k with the naturally
induced connection and metric

Q(k)(M) = {s ∈ C∞(M,L�k) | ∀X ∈ T 0,1M : ∇Xs = 0} = H0(M,L�k),

The quantum space is a L2-closed subspace of the smooth sections (as the ∂̄ operator is
elliptic), so we have a projection operator πk : Γ(M,Lk)→ Q(M,Lk), and we simply define
the level k quantum operator to be f̂ks = πk(f̂ s). Operators of the form s 7→ π(Ds) where D
is a differential operator is called a Toeplitz operator. If D is of degree 0, we will denote by
T kf the Toeplitz operator on section of Lk given by s 7→ πk(fs). There is the following

Theorem 24 (Schlichenmaier).

‖[T kf , T kg ]− i

k
T k{f,g}‖k = O(k−2)

for k →∞. Here ‖·‖k is the operator norm on Q(k).

The quantum operators f̂k satisfy
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Theorem 25 (Tuynman).

f̂k = T k1
2k∆f+f

Proof. Let s′ be a holomorphic section and s a smooth section. Then

LX1,0(h(s, s′)ωn) = h(∇X1,0s, s′)ωn + h(s, s′)divX1,0ωn,

but the integral of the Lie derivative of a top form over a manifold without boundary is 0 (by
Cartans formula and Stokes theorem), so

〈∇X1,0s, s′〉 = −〈divX1,0s, s′〉,

therefore we have T−divX1,0 = T∇X1,0 . This shows that the quantum operator is a Toeplitz
operator of order 0, and the theorem follows from a formula relating the divergence along the
Hamiltonian vector field and the Laplace operator on Kähler manifolds. �

It follows that
[f̂1, f̂2] = i

k
̂{f1, f2}+ O(k−2)

which is the relaxed version of 3.

4.2.1 Quantization and products
Let (Li,∇i, 〈·, ·〉i) be prequantization data for the symplectic manifolds (Mi, ωi). Let pi :∏n
j=1Mj → Mi denote the projections. We can now form the line bundle �ni=1Li =⊗n
i=1 p

∗
i (Li), that comes with a connection �p∗i (∇i) and a hermitian structure �〈·, ·〉i, and

this is prequantum data for (
∏
Mi,

∑
p∗i (ωi)). Likewise, a Kähler structure on each Mi

induce a product Kähler structure, and we get a Kähler polarization. As p∗i (Li) restricted to
M1 ×M2 . . .Mi−1 × {p} ×Mi+1 × . . .Mn is the trivial bundle, the only holomorphic sections
are the constants. Therefore a holomorphic section of p∗i (Li) only depends on the projection
to Mi. So we have

H0(
∏
i

Mi,�iLi) =
⊗
i

H0(Mi, Li).

4.2.2 Quantization and symmetries
If a Lie group G act on M in a Hamiltonian fashion with moment map µ : M → g∗, then
the action of G induces an action of g on the sections of a prequantum line bundle L by
ξ 7→ ∇ξ−iµ(ξ): for recall that the pre-quantum operators obtained from geometric quantization
satisfy i{̂f, g} = [f̂ , ĝ], so if we define f̃ = −if̂ we get that

{̃f, g} = −[f̂ , ĝ] = [−if̂ ,−iĝ] = [f̃ , g̃].

Since the map µ : g → (C∞(M,R), {·, ·}) is a Lie algebra homomorphism, we obtain a
representation of g by

ξ 7→ µ̃(ξ) = ∇ξ − iµ(ξ).

We say that the prequantum data is G-invariant if this action is induced from an action of G on
L. An important example is that of a coadjoint orbit of Oλ = G · λ ⊆ g∗ a compact Lie group
G. The coadjoint orbits are symplectic with the KKS symplectic form ωµ : TµOλ×TµOλ → R
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given by ωµ(X,Y ) = µ([X,Y ]). The coadjoint orbits also support a natural complex structure
compatible with ω that are preserved under the action of GṪherefore the fundamental vector
fields of the action preserves the Kähler polarization, and the prequantum operators acts also
on the quantum space of holomorphic sections. If λ is an integral weight, then [ω] ∈ H2(O,R)
is integral and we can apply geometric quantization to Oλ. It follows from the Borel-Weil
theorem [59] that if λ is dominant, then the resulting action of g integrates to G and is exactly
given by the irreducible representation corresponding to λ.

The following important theorem is an instance of a general principle that “reduction
commutes with quantization”:

Theorem 26 (Guillemin and Sternberg, [36] ). Let L be a G-invariant prequantum line
bundle for (M,ω), with moment map µ, such that 0 is a regular value of µ and G acts freely
on µ−1(0). Then the line bundle LG := L�µ−1(0)/G→M//ωG has a connection ∇G such that
i∗(L,∇) = π∗(LG,∇G). Furthermore, the curvature satisfies F∇G = −iωG, where ωG the
symplectic form of the symplectic reduction. Furthermore, a G-invariant Kähler polarization
(this is the case if M is Kähler and G acts by biholomorphisms) induces a complex structure
on M//ωG compatible with ωG, and the map

H0(M,L)G → H0(M//ωG, LG)

given by
s 7→ ([x] 7→ [s(x)])

is an isomorphism of vector spaces.





Chapter 5
Moduli spaces

5.1 Moduli spaces of flat connections

Let G be a Lie group and π : P → Σ be a principal G-bundle over a manifold Σ.

Definition 43. A connection A in P is a g-valued 1-form on P satisfying

1. A(ξ) = ξ,

2. R∗g(A) = Adg−1 A for all g ∈ G.

where ξ is the fundamental vector field of ξ ∈ g, and Rg : P → P is the map p 7→ pg.

The kernel of A defines a G-invariant Ehresmann connection, and every G-invariant
Ehresmann connection defines a connection in P .

If ρ : G → GL(V ) is a representation of G, the associated bundle (P × V )/G is a
vector bundle over Σ consisting of equivalence classes [p, v] with p ∈ P and v ∈ V , where
the equivalence relation is given by (p, v) ∼ (pg, vg) = (pg, ρ(g−1)v), and the projection
π : P × V/G → Σ is given by π([p, v]) = π(p). Let AdP g = P ×G g be the vector bundle
associated to P and the representation Ad of G on g. The sections of AdP can be identified
with the G-equivariant maps f : P → g. A induces an affine connection ∇A in this bundle:

(∇AXf) = X̃Af

where X̃A denotes the lift of Xπ(p) ∈ Tπ(p)Σ to TpP , using A.
Notice that if given any lift X0 of X, then X̃A = X0 −A(X0), for this is a lift of X and

A(X0 −A(X0)) = A(X0)−A(X0) = 0. So ∇As = ds+ [A, s].
There is a unique map dA

Ωi(Σ,AdP ) dA−→ Ωi+1(Σ,AdP ) (5.1)

satisfying dA(α� β) = (dAα) ∧ β + (−1)rα ∧ dβ, when α ∈ Ωr(Σ,AdP ) and β ∈ Ωi(Σ), and
such that dA = ∇A on Ω0(Σ,AdP ). It is easy to see that ω 7→ dω + [A,ω] satisfies this for
the connection A, and thus dA = d+A. The curvature of ∇A is given by F∇A = ∇A ◦∇A ∈
Ω2(Σ,End(AdP )).

The calculation

dAdAs = dA(ds+ [A, s]) = (dds+ [dA, s]− [A,ds] + [A,ds] + [A, [A, s]])

37
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= [dA+ 1
2[A,A], s] = (dA+ 1

2[A,A])s

gives us the following formula for the curvature:

FA = dA+ 1
2[A,A].

Definition 44. A connection A is flat if F∇A = 0. We denote the space of all connections in
P by AP and the subset of flat connections by A0.

Proposition 45. Let γi : [0, 1] → Σ be smooth curves for i = 0, 1. If F∇A = 0 and γ0 is
homotopic to γ1 relative the endpoints, then PTAγ0

= PTAγ1
.

This proposition makes the following definition possible:

Definition 46. If A is flat, we can define a homomorphism holA : π1(Σ, x0)→ G by

holA([γ]) = PTγ(p).

Here PTAγ denotes parallel transport along γ with respect to A. If γ is a loop on Σ and γ̃
is a horizontal lift to P , then we get a horizontal lift γ̂v in P ×ρ V with γ̂v(0) = [γ̃(0), v] by
t 7→ [γ̃(t), v]. Then γ̂v(1) = [γ̃(1), v] = [γ̃(0) PTγ , v] = [γ̃(0), vPT−1

γ ] = [γ̃(0), ρ(PTγ)v]. This
shows that the holonomy of the induced connection is ρ ◦ hol.

Given two connections A,B, their difference is a g-valued 1-form on P satisfying (A −
B)(ξ) = ξ − ξ = 0 and R∗g(A − B) = Adg−1(A − B). On the other hand, if Ȧ is a g-valued
1-form such that Ȧ(ξ) = 0 and R∗g(Ȧ) = Adg−1 Ȧ then A+ Ȧ is again a connection. This shows
that the space of connections is affine, modelled on the space AdP g-valued 1-forms on Σ.

The automorphism group GP of P acts on the space of connections in P , AP , by pull-back.
We have the following formulas, for g ∈ Aut(P )

Ag = g∗(A) = Adϕ−1
g
A+ ϕ∗g(θ),

F∇Ag = g∗(F∇A) = Adϕ−1
g

(F∇A),

where θ is the Maurer-Cartan one-form on G and ϕg : P → G is defined by g(p) = pϕg(p).
We notice that the flat connections are preserved, and we define the moduli space of flat
connections on Σ to be the quotient of the space of flat connections in P by the gauge group:

MFlat(Σ) = A0(P )/GP .

Given a x0 ∈ Σ, we consider the map hol : A0(P )→ Hom(π1(Σ, x0),G). The effect of a
gauge transform on the holonomy is a conjugation:

holAg(h) = ϕg(x0) holA(h)ϕg(x0)−1.

Therefore we have a map

hol :MFlat(Σ)→ Hom(π1(Σ, x0),G)/G

where G acts on homomorphisms by conjugation. We can forget about the base point x0, as
change of basepoint corresponds to conjugation. We will now assume that Σ is a surface and
G is connected and simply-connected. Then there is, up to isomorphism, only one principal G
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bundle on Σ (as π2 of a topological group always vanishes, and therefore BG is 3-connected,
which implies that there is unique homotopy class of maps Σ→ BG). We define

R(Σ,G) = Hom(π1(Σ, x0),G)/G

We can give Hom(π1(Σ),G) and R(Σ,G) a topology (and if G is a real/complex ma-
trix group, the structure of a real/complex algebraic variety) by using the identification
Hom(π1(Σ),G) ⊆ Gk, given by fixing k generators γ1, . . . , γk of π1(ϕ) and uses the embedding
ρ 7→ (ρ(γ1), ρ(γ2), . . . , ρ(γk)). The resulting topology does not depend on the chosen system
of generators. The structure of a variety come from the fact that any relations on γ1, . . . , γk
are expressed as polynomials in the coordinates of G.

A morphism π1(Σ) → G is called reducible if the centralizer of the image is larger
than the center of G. The irreducible homomorphisms form an open and dense subset of
all homomorphisms (if they exists at all; for G = SU(2) they do exist precisely when the
Euler characteristic of Σ is negative), and by I.2.5 in [14], Homirr(π1(Σ),G)/G is a smooth
manifold when G is compact. A flat connection is irreducible if its holonomy is an irreducible
representation. We have the following well-known

Theorem 27. The map hol is a homeomorphism. Its restriction to the set of equivalence
classes of irreducible connections is a diffeomorphism onto the set of equivalence classes of
irreducible representations.

The inverse to the holonomy map is as follows: given a representation ρ of π1 in G we can
construct a G-bundle by Σ̃×G/π1(Σ) and the trivial connection on Σ̃×G descend to a flat
connection A with holonomy ρ. Since there is only one isomorphism-class of G-bundles on Σ,
there is a bundle isomorphism to P , and the image of A is a flat connection with holonomy
conjugate to ρ.

Definition 47. We will denote byMFlat(Σ), respectivelyMFlat,irr(Σ) the moduli space of flat
connections, respectively flat irreducible connection. If Σ have punctures D = {pi | i = 1, . . . , n}
we will consider the moduli space of flat connections with restricted holonomy around the
punctures. Let h ⊂ g be a Cartan subalgebra, and let λi ∈ h for i = 1, . . . , n. Then we denote
byMFlat(Σ, ~λ, k) the moduli space of flat connections on Σ \ {pi} such that the holonomy
around a loop contracting to pi is in the conjugacy class of exp λi

k , and byMFlat,irr(Σ, ~λ, k)
the subset consisting of irreducible connections.

This parametrisation of conjugacy classes might seem odd at the moment, but it will be
convenient later. For SU(2) this means that the holonomy around pi have trace 2 cos( 2πλi

k ).
In terms of representations of the fundamental group, we have that if Σg,n is a surface of genus
g with n punctures, then π1(Σg,n) = 〈γ1, . . . , γ2g, c1, . . . , cn |

∏n
i=1 ci

∏g
i=1[γ2i−1, γ2i] = id〉

where ci is a curve homotopic to the i’th puncture. Then, if Ci ∈ G/G is the conjugacy class
containing e

λi
k , the holonomy gives an homeomorphism

MFlat(Σ, ~λ, k) = {ρ ∈ Hom(π1(Σg,n),G) | ρ(ci) ∈ Ci}/G.

that restricts to a diffeomorphism onMFlat,irr(Σ, ~λ, k) to the irreducible representations.

5.2 Complex structures on moduli spaces

In this section we review the construction of complex structures onMFlat,irr(Σ, ~λ, k), induced
by a complex structure on Σ. The arguments will be formal, but can be made precise using the
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theory of infinite dimensional Banach manifolds and Sobolev connections. We want to describe
a natural way to obtain complex structures on moduli spaces of irreducible flat connections
over a surface, using a complex structure on the surface. First, we recall that the connections
in P is an affine space, modeled on Ω1(Σ,AdP g), so the tangent space at a connection A can
be naturally identified with Ω1(Σ,AdP g). A tangent vector Ȧ ∈ TAA is in TAA0 if (where we
will denote ∇A by dA)

0 = d
dt t=0

FA+tȦ = d
dt t=0

(d(A+ tȦ) + 1
2 [A+ tȦ, A+ tȦ])

= d
dt t=0

(dA+ 1
2[A,A]) + t(dȦ+ 1

2[A, Ȧ]) + 1
2 t

2[Ȧ, Ȧ] = dȦ+ [A, Ȧ]

= dAȦ.

The gauge group is identified with Ω0(Σ,AdP G), and its Lie algebra with Ω0(Σ,Ad g). In
a similar way, we can show that the fundamental vector field of the gauge group is given by

ξ
A

= dAξ.

This means that we can identify the tangent space at [A] as the quotient of the tangent spaces
of the flat connection and the G-orbit: T[A]MFlat(Σ) ∼= ker dA/ Im dA = H1(Σ,dA), the first
cohomology of the complex (5.1).

Let us first give the construction in the case where Σ have no marked points. The idea is
to use a Hodge star ∗ on the Σ to define a map ∗ : Ω1(Σ,AdP g)→ Ω1(Σ,AdP g) that squares
to −1: ∗2 = −1. This defines an almost complex structure on the set of connections A, but
we can not just define an almost complex structure on the moduli space by applying this to
an arbitrary representative, since − ∗ Ȧ is not necessarily dA-closed. Instead we can use a
theorem of Hodge theory, that allow us to represent [Ȧ] by a (unique) harmonic 1-form α,
that is, (dA + ∗dA∗)α = 0. But then ∗dA ∗ α = 0 so ∗α is dA closed. We can now define
I([Ȧ]) = [− ∗ α]. As any map ϕ : Σ → Σ homotopic to the identity induces the identity on
H1
A(Σ,dA), this complex structure does not depend of the isotopy class of ∗.
When Σ have marked points, we are working with a non-compact surface and therefore

standard Hodge theory does not apply. However, the holonomy condition serves as a boundary
condition, and instead we can use Hodge theory with exponential decay towards the punctures,
as treated in [andersen:npotmsattcots ]. First we need another model for the space of
connections. Let αi ∈ su(2) for i = 1, 2, . . . , n. We will consider weighted Sobolev spaces:
fix a smooth function d on Σ \ {p1, . . . , pn} such that for each i there is a trivialization
of a neighbourhood Ni of pi to S1 × [0,∞) and d(θ, r) = r, and d is 0 outside of these
neighbourhoods. We let ∇ be some base connection in a trivial SU(2)-bundle P on all of Σ.
We can now consider the norms:

‖ϕ‖2ε,k =
∫

Σ

∑
0≤l≤k

|∇leεdϕ|2,

on sections of Ωi(Σ \ {p1, . . . , pn}) with compact support, and define the weighted Sobolev
spaces L2

ε,k(E) to be the completion with respect to this norm. Here ε > 0 is a small real
number, and for the rest of this section we will assume that it is small enough. For more
details we again refer to [andersen:npotmsattcots ]. The moduli space is given as

{A ∈ A | FA = 0,holA(∂iΣ) ∈ Ci}
G

,



5.2 Complex structures on moduli spaces 41

where holA(∂iΣ) means the holonomy around pi. We can spend some gauge symmetry to
bring the connections into temporal gauge around the punctures

∼=
{A ∈ A | FA = 0, A|Ni = Ai}
{g ∈ G | g∗|NiAi = Ai}

,

where Ai = αidθi. We can instead of smooth sections use sections of the Sobolev spaces

∼=
{A ∈ Ω1

k,ε(Σ,AdP g) | FA = 0, ‖A|Ni −Ai‖k,ε <∞}
{g ∈ Ω0

k+1,ε(Σ,AdP g) | ‖g∗|NiAi −Ai‖ <∞}
.

To find the tangent space, we see that the tangent space of the numerator is Ȧ ∈
Ω1
k−1,ε(Σ,AdP g) and dAȦ = 0. For the denominator we get Aig|Ni(t) = Ai so dAi ġ = 0.

Therefore we can identify the tangent space to this subgroup of the gauge group with

Ω0
ε,k+2,∞(Σ,AdP g) = {f ∈ ΩL2

loc
(Σ,AdP g) | ∃f∞ ∈ H0(∂Σ,dAi) : ‖f − ρf∞‖k+2,ε <∞},

where ρ is a function that takes values in [0, 1] and is 1 outside a compact set. We therefore
get an identification

T[A]MFlat(Σ) ∼= H1
k,ε(Σ,dA),

where the cohomology is of the complex

0→ Ω0
k+1,ε,∞

dA−→ Ω1
k,ε

dA−→ Ω2
k−1,ε,∞ → 0.

The Hodge theory of this complex was treated in [4], where it was shown that:

Lemma 48 (Andersen). Any element of H1
ε,k(Σ, dA) can be represented by a dA-closed one

form with compact support.

And

Theorem 28 (Andersen). Each cohomology class has a unique harmonic representative:
there is a natural isomorphism

H1
ε,k(Σ,dA) ∼= ker(dA + d∗A)

where d∗A is the formal adjoint of dA with respect to the L2
k,ε-inner product.

As before, this allow us to define a complex structure by using −∗ on the harmonic representa-
tive, which give us a complex structure on the moduli spaceM(Σ, ~λ, k), and we will write
M(Σ, ~λ, k)σ for the moduli space equipped with this complex structure.

5.2.1 The symplectic form
The space of connections on a closed surface Σ have the following natural symplectic structure,
where we again identify the tangent space as TAA ∼= Ω1(Σ, ad g):

ω(Ȧ, Ḃ) = −
∫

Tr(Ȧ ∧ Ḃ).

It is closed as there are no dependence on the point in A, and it is non-degenerate because
ω(Ȧ,− ? Ȧ) > 0 for Ȧ 6= 0. Atiyah and Bott noticed that the curvature map F : A →
Ω2(Σ, ad g) ∼= Ω0(Σ, ad g)∗ = (G)∗ is a moment map for the action of G. The symplectic
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reduction turns out to also hold in this infinite-dimensional setting, and they introduced the
following symplectic form on the moduli space of flat connections:

ω([Ȧ], [Ḃ]) = −
∫

Σ
Tr(Ȧ ∧ Ḃ),

which is formally the result of the symplectic reduction of A by G. Using lemma 48 we can define
the symplectic form forMFlat,irr(Σ, ~λ, k) by the same formula, by choosing representatives
with compact support. It is easy to see that the symplectic form is compatible with the
induced complex structure from any Hodge star ? on Σ, and thereforeMFlat,irr(Σ, λ, k) have
a Kähler structure for each σ ∈ T (Σ).

5.2.2 The mapping class group action
The mapping class group MCG(Σ, ~λ) ⊆ MCG(Σ) of surface with labeled marked points (Σ, ~λ)
is the subgroup of MCG(Σ) such that if the marked point pi is mapped to the marked point
pj , then λi = λj . MCG(Σ, ~λ) acts on MFlat,irr(Σ, ~λ, k) from the right. In the language of
connections the action can be described by the pullback, and in terms of representations, by
precomposing with the induced map ϕ∗ : π1(Σ)→ π1(Σ) for ϕ ∈ MCG(Σ, ~λ).

Theorem 29. The action of MCG(Σ, ~λ) onMFlat,irr(Σ, ~λ, k) preserves the symplectic form,
and furthermore, if σ ∈ T and ϕ ∈ MCG(Σ, ~λ), then:

ϕ : (MFlat,irr(Σ, ~λ, k), ω~λ,k, Iσ)→ (MFlat,irr(Σ, ~λ, k), ω~λ,k, Iσϕ)

is a Kähler isomorphism.

Theorem 30 ([5] ). If the conjugacy classes corresponding to ~λ
k are generic, then the only

mapping class elements that act trivially on MFlat,irr(Σ, ~λ, k) are the ones preserving all
simple closed curves. Therefore only the central elements of MCG(Σ, ~λ) acts trivially on
MFlat,irr(Σ, ~λ, k).

5.2.3 Prequantum line bundle
For a closed surface, it was shown in [55] and in [29] how to construct a prequantum line bundle
for (MFlat,irr(Σ), ω), the so-called Chern-Simons prequantum line bundle, constructed
as the quotient line bundle for a cocycle for the gauge group action on A0, where the cocycle is
defined in terms of the Chern-Simons functional. ForMFlat,irr(Σ, ~λ, k) the following theorem
holds, see [12] and the references therein.

Theorem 31. If ~λ is in the co-root lattice then there exist a line bundle LCS
~λ,k →M

Flat,irr(Σ, ~λ, k)
with a connection ∇CS and hermitian structure, such that F∇CS = −ikω~λ,k. Furthermore, the
Chern-Simons line bundle is natural in the sense that the mapping class group action lifts to
LCS

~λ,k and preserves ∇CS and the hermitian structure.

5.3 Teichmüller space

The complex structures on the moduli space defined in section 5.2 does only depend on the
conformal class of the metric. The conformal classes of metrics, up to isotopy, on a surface is
parametrized in a very nice way by the Teichmüller space. If we fix a volume form ω on Σ, and
I is an almost complex structure, then 〈v, w〉 = ω(v, I(w)) defines a Riemannian metric on Σ,
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and this map is surjective onto the set of conformal classes of metrics, since any conformal
class defines an almost complex structure by rotation π

2 in the positive direction determined
by ω. Furthermore, any almost complex structure on a surface is a proper complex structure.

Definition 49. The Teichmüller space of a surface Σ consists of pairs (ϕ,X) where ϕ : Σ→
X is a diffeomorphism, andX is a complex surface, modulo the relation that (ϕ1, X1) ∼ (ϕ2, X2)
if there exist a biholomorphism Φ : X1 → X2 such that ϕ−1

2 ◦Φ ◦ ϕ1 is isotopic to the identity.
If Σ has marked points, we require that ϕ−1

2 ◦ Φ ◦ ϕ1 is isotopic to the identity through maps
that preserve that marked points, and if Σ has marked points with chosen tangent vectors, we
require that the isotopy respects the tangent vectors.

We will need the two following important facts about Teichmüller spaces

Theorem 32. The Teichmüller space of a surface has the structure of a complex manifold,
and is homeomorphic to a ball. A diffeomorphism f : Σ1 → Σ2 (preserving marked points and
tangent vectors) induces a map f̃ from the Teichmüller space of Σ2 to the Teichmüller space
of Σ1. This map does not depend on the isotopy class of f , and is in fact a biholomorphism.
If f3 = f2 ◦ f1 then f̃3 = f̃2 ◦ f̃1.

Theorem 33 (Douady and Earle, [25]). The Teichmüller space of a surface is contractible.

Theorem 34 (Bers, Ehrenpreis [17]). The Teichmüller space of a surface is a Stein man-
ifold

In fact, there are the following explicit coordinates on the Teichmüller space, known as
Fenchel-Nielsen coordinates. Take a pair of pants decomposition of the surface. Then there
is exactly one hyperbolic structure on the pair of pants with any set of lengths on the three
boundary curves. The first half of the coordinates measures these lengths, around each curve
in the pair of pant decomposition. The last half measures the (R-lift of the) angle with which
the pants have been glued together.

The genus zero situation (S2, p1, p2, . . . , pn) is quite simple. If ψ : X → Y is a biholo-
morphism, we always have that (ϕ,X) ∼ (ψ ◦ ϕ, Y ), since ψ gives the required map. Since
all complex surfaces diffeomorphic to S2 are biholomorphic to CP1, we can represent all
equivalence classes with an element of the form (ϕ,CP1), and by applying an automorphism
to CP1 we can even assume that ϕ(p1) = 0, ϕ(p2) = 1 and ϕ(p3) = ∞. But two such pairs
(ϕi,CP1) are equivalent only if ϕ1(pi) = ϕ2(pi) for all i, and if this is satisfied, the element in
the mapping class group given by ϕ−1

2 ◦ ϕ1 determines if they are equal.

Proposition 50. The Teichmüller space of a punctured sphere with n ≥ 4 punctures is the
universal cover of a configuration space, U

(
Confn−3(CP1 \ {0, 1,∞})

)
.

Proof. Choose a base point ϕ0 : (S2, p1, . . . , pn)→ (CP1, 2, 3, . . . , n−2, 0, 1,∞) in T (S2, p1, . . . , pn).
Given another diffeomorphism ϕ : S2 → CP1 we can find and isotopy ht from id to ϕ0 ◦ ϕ−1,
and by applying a family ψt of PSL(2,C) transformations to CP1, we can assume that this
isotopy preserves 0, 1,∞. The space U

(
Confn−3(CP1 \ {0, 1,∞})

)
has as points paths starting

at (2, 3, . . . , n− 2, 0, 1,∞) modulo homotopy preserving end points. The path associated to ϕ
is then given by t 7→ (ht(2), ht(3), . . . , ht(n− 2)). The inverse map is constructed in the same
was as the point-pushing map in [27, section 4.6 ] – notice that CP1 \ {0, 1,∞} has negative
Euler characteristic. �

We see that the Teichmüller space of a sphere with n ≥ 4 punctures has 2(n − 3) real
dimensions.
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5.4 Parabolic bundles

Let Σ be a Riemann surface and p1, . . . , pn ∈ Σ, E → Σ a complex vector bundle of rank r,
and for each pi, let (d1

i , d
2
i , . . . d

si−1
i ) be a sequence of positive integers. A parabolic vector

bundle E associated to this data is a holomorphic structure on E together with, for each
pi, a filtration 0 = Esipi ⊂ Esi−1

pi ⊂ · · · ⊂ E1
pi = Epi , such that dimEjpi/E

j+1
pi = dji . We now

fix numbers wji ∈ R, 0 ≤ j ≤ si such that wji < wj+1
i . We define the parabolic degree of a

parabolic vector bundle E to be

pdegE = degE +
∑
i,j

wji d
i
j

and the slope to be
µp(E) = pdegE

rankE
.

We remark that pdeg depends only on the data (E, d, w), so we will sometimes write
pdeg(E, d, w) for this number. A parabolic morphism g : E → F is a morphism of vec-
tor bundles, such that gpi(Ejpi) ⊆ F

k+1
pi if wji (E) > wki (F). A holomorphic subbundle F ⊆ E is

a parabolic subbundle if the filtration of F over pi is the filtration Fpi ∩ Epi with repeated
terms deleted, and wji (F) = wki (E) where k is the largest number such that F jpi ⊆ E

k
pi . Notice

that this also give any subbundle of E the structure of a parabolic subbundle.
If f : E→ F we say that F is a parabolic quotient bundle if f is surjective and for all pi

and 1 ≤ j ≤ si(F) there exist 1 ≤ k ≤ si(E) such that fpi(Ekpi) = F jpi , and, if k is the largest
number with this property, wji (F) = wki (E).

The direct sum of two parabolic vector bundles E = E1 �E2 is the direct sum of the
vector bundles with weights the union of the weights of E1 and E2, and the filtration Ejpi =
E1

k
pi � E2

l
pi where j and k are maximal such that wjpi(E) ≤ wkpi(E1) and wjpi(E) ≤ wlpi(E2).

We say that a parabolic vector bundle E is stable with respect to w if for all parabolic
subbundles F ⊂ E we have that µp(F) < µp(E), and semistable if we for all parabolic
subbundles have µp(F) ≤ µp(E), and we call semistable bundles that are not stable for strictly
semistable.

A parabolic endomorphism is an endomorphism of E preserving the flags, and a strongly
parabolic endomorphism is an endomorphism ϕ such that ϕ(Ei) ⊆ Ei+1. We denote trace
0 such by PEnd0 and SPEnd0, respectively. The map (α, β) 7→ 1

2πi Tr(αβ) defines a non-
degenerate pairing between SPEnd0(D) and PEnd0 [60], where D is the divisor of parabolic
points. Therefore SPEnd0(E)(D)∗ ∼= PEnd0(E).

5.5 Moduli space of parabolic bundles

The moduli space MPar(Σ, p1, . . . , pn, d
j
i , w

j
i ) of parabolic bundles over (Σ, p1, . . . , pn) with

given flag type dji and weights wji , is the space of semi-stable parabolic vector bundles modulo
a certain equivalence relation known as s-equivalence. If E ∼s F and E is stable, then E must
be isomorphic to F, that is, there is a holomorphic section of the bundle of isomorphisms, and
this preserves the flags over the marked points (p1, . . . , pn). If E is a semistable bundle, we
can define a new bundle, Gr(E), well-defined up to isomorphism, in the following way: there
exists a series of nested sub-parabolic bundles 0 = Fn ⊂ Fn−1 ⊆ · · · ⊆ F1 = E such that Fi is
a parabolic subbundle of F i−1 with maximal rank such that µp(Fi) = µp(Fi−1). This implies
that Fi−1/Fi is a stable parabolic bundle, and we define Gr(E) = �n−1

i=1 Fi/Fi+1. We say that
E and F is s-equivalent if Gr(E) ∼= Gr(F). We will denote the subset of equivalence classes
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stable bundles withMPar′(Σ, p1, . . . , pn, d
j
i , w

j
i ). MPar′ is a smooth manifold, and the tangent

space at [E] is given by T[E]MPar′ = H1(Σ,PEnd0(E)) [60]. By Serre duality, the cotangent
space is T ∗[E]M

Par′ = H0(Σ,SPEnd0(E) �K(D)).

Theorem 35 (Mehta-Seshadri [51]). The moduli space of parabolic bundles of type (E, d, w),
with pdeg(E, d, w) = 0, is homeomorphic to the moduli space of U(r) representations of the
fundamental group of X \ {pi} such that the holonomy around a puncture is conjugate to a
diagonal matrix with entries e2πiwj

i , each occurring dji times. Furthermore, the restriction to
the stable part gives a diffeomorphism to the space of irreducible connections.

The map going from unitary connections to parabolic bundles can be described in the following
way. Given a flat, unitary connection ∇ in E → Σ \ {p1, . . . pn}, we can find a neighborhood
around each puncture that is holomorphic to a punctured, open disc, and a unitary frame
g1, g2, . . . , gr such that ∇ = d+ iαdθ, where α is a diagonal matrix with real entries, increasing
along the diagonal. We can get a holomorphic frame for ∂̄∇ by setting fi = |z|αigi. We can
glue this trivialization, with the standard trivialization of the trivial bundle D × Cr, and in
this way, we obtain a holomorphic bundle over Σ. The parabolic structure is given by the flag
Ei = span{ej | αj ≥ αi} where ej is the j’th standard basis vector for Cr, and the weights
are diagonal entries with duplicates removed.

Remark 51. If Σ = CP1 and the sum of weights, with multiplicities, over each point is zero,
the parabolic bundle corresponds to a representation into SU(r).

Theorem 36 ([24]). The Mehta-Seshadri map is a biholomorphism from the moduli space of
stable parabolic bundles on Σσ to the moduli space of irreducible flat connections with prescribed
holonomy equipped with the complex structure from σ:

MS :MFlat,irr(Σ, ~λ, k)σ →MPar′(Σσ, ~λ, k).

5.6 The case of Σ = CP1

We will consider parabolic bundles on CP1 with marked points p1, . . . , pn, each with flag type
(di1, di2) = (1, 1) and parabolic weights (w0

i , w
1
i , w

2
i ) = (− 1

k ,
1
k , 1) for a k > n, and E → CP1 a

rank 2, degree 0 vector bundle. We will writeMPar
n,k for the moduli space of such bundles.

Lemma 52. Any semistable parabolic bundle E of this type must be a trivializable as a
holomorphic vector bundle.

Proof. Assume that F ⊆ E is a holomorphic subbundle. Then we have

pdegF = degF +−
∑

i:Fpi=E2
pi

1
k

+
∑

i:Fpi 6=E2
pi

1
k

= degF + n

k
− 2
k

∑
i:Fpi=E2

pi

1

We first observe that since pdegE = 0, we must have that degF ≤ n
k < 1. A theorem

of [34] states that any holomorphic vector bundle on CP1 splits uniquely as a direct sum of
holomorphic line bundles, so E ∼= O(j) � O(−j) for some j, since the first Chern class is
additive under direct sum. But we just showed that E has no subbundles of positive degree,
so we must have that E ∼= O(0) �O(0) – the trivial rank 2 bundle over CP1. �
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To find all the semistable parabolic bundles of this type, we can now assume that E =
CP1 × C2, and therefore the remaining data just consists of a line in C2 for each marked
point – so the parabolic bundles are parametrized by (CP1)n. We want to find the subset
corresponding to the semistable and stable bundles, and then consider the quotient.

Remark 53. We first make a small observation: for n odd, there are no strictly semistable
bundles. For µp(F) = µp(E) = 0 is only possible if degF = 0 and F agrees with E2

pi at exactly
half of the marked points – impossible if n is odd.

We will now find the precise conditions on (L1, L2, . . . , Ln) ∈ (CP1)n that corresponds to a
semistable bundle. It is clear that a subbundle of negative degree has negative parabolic
slope, and therefore cannot have larger parabolic slope than E. So we just have to consider
subbundles F that are holomorphically trivial. But then F ⊆ E has a holomorphic nowhere
vanishing section s : CP1 → F. But this is a holomorphic map from CP1 to C2, so it is
constant, and Fp = spanC(s(p)), so F = CP1 × spanC{s(p0)}, a trivial subbundle. Thus the
set of nonnegative parabolic slopes of subbundles of (E, (E2

p1
, . . . , E2

pn)) is exactly { 2j−n
k | x ∈

CP1, x occurs exactly j > n
2 times in (E2

p1
, . . . , E2

pn)}. We can now conclude the following

Proposition 54. The parabolic bundle (CP1 × C2, (E2
p1
, . . . , E2

pn)) is semi-stable if and only
if at most half of the Epi ’s are equal, and stable if and only strictly less than half of the Epi ’s
are equal.

We are now ready to find the s-equivalence classes of parabolic bundles on CP1. We first
investigate the example of 4 parabolic points.

Example 55. In the case n = 4, a bundle is stable if and only if the 4 flags are pairwise
different. The isomorphism group of E is GL(2,C), and therefore any stable bundle is
isomorphic to exactly one where the flags are (0, 1,∞, z) where x ∈ CP1 \ {0, 1,∞}. There
are some strictly semistable bundles – these occur exactly when two of the lines agree. Up to
isomorphism there are 6 where |{E2

1 , E
2
2 , E

2
3 , E

2
4}| = 3 and three where |{E2

1 , E
2
2 , E

2
3 , E

2
4}| = 2.

We will show that there are 3 s-equivalence classes of strictly semistable bundles, namely the
classes with representatives F{1,2} � F{3,4}, F{1,3} � F{2,4} and F{1,4} � F{2,3}, where F{a,b}
is the parabolic bundle CP1 × C with flags C over i and j and flag {0} over the two other
points, with weights ( 1

k , 1) over i and j and (− 1
k , 1) over the other points. For assume that

E = (CP1 × C2, {E2
i }4i=1) with weights as above, and that Er = Es. Then the parabolic

subbundle of CP1×Er ⊆ E is isomorphic to F{r,s}. Since E is semistable, we know that Et 6= Er
for t 6= r, s, so the quotient parabolic bundle E/

(
CP1 × Es

)
is isomorphic to F{1,2,3,4}\{r,s},

and therefore Gr(E) is isomorphic to one of the 3 bundles listed above. As an example, let

E = (CP1 × C2, A,A,B,C)

where A,B,C ∈ CP1 and B,C 6= A (but we might have B = C). Then E is strictly semistable,
for it has the same slope as the subbundle F = (CP1 ×A,A,A,A,A) ∼= F{1,2} where the first
two A’s have parabolic weight 1

k and the last two − 1
k . There is only one more term in the

composition series, and this is

E/F = (CP1 × (C2/A), A/A,A/A,B/A,C/A) ∼= F{3,4},

where the first two lines has weight − 1
k and the last two weight 1

k . The set of s-equivalence
classes of strictly semistable points is {[0, 1,∞, 0], [0, 1,∞, 1], [0, 1,∞,∞]}. So we have a
bijection from CP1 toMPar

4,k given by z 7→ [0, 1,∞, x].
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The argument of this example generalized immediately to the following:

Proposition 56. A strictly semi-stable bundle (CP1×C2, (E2
p1
, . . . , E2

p2n
)) must have n equal

flags, and their indices partition the set {1, 2, . . . , 2n} into two sets with n elements. Two
strictly semistable bundles are s-equivalent if and only if their associated partitions are equal.

Remark 57. We can parametrize an open and dense subset of the stable part of the
moduli space by Confn−3

(
CP1 \ {0, 1,∞}

)
, by mapping such a tuple (z1, z2, . . . , zn−3) 7→

[z1, z2, . . . , zn−3, 0, 1,∞]. This parametrization will be useful for calculations later.

Observe that the only automorphisms of CP1 that preserve 0 and ∞ are the complex dila-
tions. Therefore we can define a map from the subset ofMPar

n given by {[0,∞, z1, . . . , zn−2] |
zi 6=∞} to CPn−3 by [0,∞, z1, . . . , zn−3] 7→ [z1, . . . , zn−2]. This map cannot be extended to
the points where 2 or more flags coincide. However, if we blow up CPn−3, we can extend to
the points with at most two equal flags:

Theorem 37. There exists a union X of submanifolds of codimension 2 inMPar
n,k and a

union Y of submanifolds of codimension at least 2 in RMn, the blowup of CPn−3 in n − 1
points, such thatMPar

n,k \X is biholomorphic to RMn \ Y .

Proof. Let X be the union of all submanifolds where there exists 4 flags that takes at most
2 distinct values. That is, either there are three flags that agree, or there are two pairs of
flags that agree. It is clear that X has codimension 2. We will map the complement of X to
CPn−3, blown up at the n− 1 points [1, 0, 0, . . . , 0], . . . , [0, 0, . . . , 0, 1] and [1, 1, . . . , 1]. Let us
first define the map on the subset ofMPar

n,k where all flags are different. We can assume
that the first two flags are 0,∞, and we define:

f([0,∞, z1, . . . , zn−2]) = [z1, . . . , zn−2].

This map is holomorphic, as it is induced from the following SL(2,C)-invariant map from
{(w1, . . . , wn) ∈ (CP1)n | i 6= j =⇒ wi 6= wj} → CPn−3

(w1, w2, . . . , wn) 7→
[
1, (w4 − w1)(w3 − w2)

(w4 − w2)(w3 − w1) ,
(w5 − w1)(w3 − w2)
(w5 − w2)(w3 − w1) , . . . ,

(wn − w1)(w3 − w2)
(wn − w2)(w3 − w1)

]
,

which is invariant, as it is can be expressed in terms of the cross ratio CR(a, b, c, d) = (b−a)(d−c)
(b−c)(d−a) ,

which is an SL(2,C)-invariant function on (CP1)4. The blow up of CPn−3 at [1, 0, . . . , 0] is
the following manifold:

(CPn−3 \ {[1, 0, . . . , 0]})
∐

γn−4/ ∼

where γn−4 = {([z1, . . . , zn−4], w) ∈ CPn−4 × Cn−4 | w ∈ [z1, . . . , zn−4]}, and ∼ is the
identification [1, w1, . . . wn−3] ∼ ([w1, . . . wn−3], (1, w1, . . . wn−3)). So for z1 6= 0,∞ the map f
into the blowup is f([0,∞, z1, . . . , zn−2]) = ([ z2

z1
, . . . , zn−2

z1
], (z1, . . . , zn−2)). We will extend f

to points where z1 =∞ by setting

f([0,∞,∞, z2, . . . , zn−2]) = ([z2, . . . , zn−2], (0, 0, . . . , 0)).

Our goal is now to show that this is holomorphic. To this end, let us pick coordinates on
MPar

n,k as

(z1, . . . , zi−1, zi+1, . . . , zn−2) 7→ [0,∞, 1
z1
, z2, . . . , zi−1, 1, zi+1, . . . , zn−3],
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where z1, . . . zn−2 ∈ C and at most one of z2, . . . zn−2 is equal to 0, and z−1
1 , . . . zn−2 are

pairwise distinct, with the exception of at most one pair – that is, the requirements to end up
inside the complement of X. Likewise, let us pick coordinates on γn−4 as

(w1, . . . , wi−1, wi+1wn−4, s) 7→ ([w1, . . . , . . . , wi−1, 1, wi+1, . . . , wn−4], s(w1, . . . , 1, . . . , wn−4)) .

We can now calculate f in these coordinates as follows, where the first map is the coordinate
map, the second f and the last the inverse coordinate map:

(z1, . . . , zi−1,zi+1, . . . , zn−2)

7→ [0,∞, 1
z1
, z2, . . . , 1, . . . , zn−2]

=
{

[0,∞, 1, z1z2, . . . , z1 · 1, . . . z1zn−2] if z1 6= 0
[0,∞,∞, z2, . . . , 1, . . . , zn−2] if z1 = 0

7→

{
([z1z2, . . . , z1 · 1, . . . , z1zn−2], (z1z2, . . . , z1 · 1, . . . , z1zn−2)) if z1 6= 0
([z2, . . . , 1, . . . , zn−2], (0, . . . , 0)) if z1 = 0

=
{

([z2, . . . , 1, . . . , zn−2], z1(z2, . . . , 1, . . . , zn−2)) if z1 6= 0
([z2, . . . , 1, . . . , zn−2], (0, . . . , 0)) if z1 = 0

= ([z2, . . . , 1, . . . , zn−2], z1(z2, . . . , 1, . . . , zn−2))
7→ (z2, . . . , zi−1, zi+1, . . . , zn−2, z1)

The extension of f to points of the form [0,∞, z1, . . . ,∞, . . . , zn−2] (to the blowup at [0, . . . , 1, . . . , 0])
and [0, 0,∞, z1, . . . , zn−3 (to the blowup at [1, 1, . . . , 1]) is done in the same way. It is clear
from this calculation that all but a codimension-1 subset of the blowup divisor is in the image
of f , as well as the image of f contains all but a codimension 2 subsetset of CPn−3. �

Remark 58. Note that in [43] it is shown that the moduli space is birational to CPn−3.

Corollary 59. For n > 4 there are no holomorphic vector fields onMPar′
n,k.

Proof. By Hartog’s extension theorem, sections of a vector bundle always extend over subsets
of codimension 2. Therefore we just need to conclude that RMn do not have any holomorphic
vector fields. But the holomorphic vector fields on the blowup of a space Z are in correspondence
to the holomorphic vector fields on Z with zeroes at the point being blown up. But RMn is
CPn−3 with n−1 points blown up. Requiring that a holomorphic vector field vanishes at a point
on CPn−3 imposes n− 3 linear conditions, so requiring that it vanishes at n− 1 generic points
give rise to (n−3)(n−1) = (n−2)2−1 linear constraints. Since the group of biholomorphisms
of CPn−3 is PSL(n− 3 + 1,C), we have dimH0(CPn−3, T 1,0) = dim sl(n− 2) = (n− 2)2 − 1.
Therefore dimH0(RMn, T

1,0) = (n− 2)2 − 1− ((n− 2)2 − 1) = 0.
A different argument can be given in the following way. Let V be a holomorphic vector field

onMPar′
n,k and pull it back to the stable points in (CP1)n. As n > 4, the vector field must

extend holomorphically to all of (CP1)n. But it was the pull-back along the quotient map, so
it must be SL(2,C) -invariant, and therefore each of the n components must be invariant. But
there are no SL(2,C) invariant holomorphic vector fields on CP1. �

Lemma 60. For n > 4 the second cohomology group of MPar′
n is isomorphic to Zn =

H2(CP1n \N,Z), and the hmomorphism induced by the quotient map is an isomorphism. In
these coordinates on the cohomology the Chern class ofMPar

n is given by (2, 2, . . . , 2).



5.6 The case of Σ = CP1 49

Proof. For n > 4, N have real codimension ≥ 4 and therefore the inclusion map gives an
isomorphism H2((CP1)n \N,Z) ∼= H2((CP1)n,Z) = Zn. Now (CP1)n \N forms a fiber bundle
with SL2(C) fiber. This follows from the existence of local sections, which we can show using
that µ−1(0) is a SU(2) bundle. Now we can apply Serre’s spectral sequence for fiber bundles.
As H∗(SL2(C),Z) ∼= H∗(SU(2),Z) ∼= H∗(S3,Z), which have all its cohomology in dimension 0
and 3. Therefore the quotient map must define an isomorphism on the second cohomology.
The tangent bundle of (CP1)n \ N splits as the direct sum of the pullback of the tangent
bundle of the quotient and the tangent bundle of the fibers. But the tangent space to the fibers
is trivial, as the map from sl(2,C) × ((CP1n) \N) → T ((CP1n) \N) mapping (V, x) 7→ V x
defines a global trivialization. The last statement of the theorem now follows from the fact
that c1(TCP1) = 2 ∈ Z ∼= H2(CP1,Z). �

Corollary 61. The second Stiefel-Whitney class w(MPar
n,k) ofMPar

n,k vanishes

Proof. This follows directly from lemma 60, as w2 of a vector bundle with complex structure
is the mod-2 reduction of the first Chern class. �

Let D = p1, . . . , pn where pn−2 = 0, pn−1 = 1 and pn =∞, and denote by Eτ the trivial
bundle with parabolic structure at 0, 1,∞ be given by(

0
1

)
,

(
1
1

)
,

(
1
0

)
,

respectively, and for pi by (
τi
1

)
,

where τ = (τ1, . . . , τn−3) ∈ Conf(CP1 \ {0, 1,∞}). The map Confn−3(CP1 \ {0, 1,∞}) →
MPar′

n,k given by τ 7→ [Eτ ] is injective and the image is open and dense. The complement of
the image inside the stable part consist of all points where some, but less than n

2 , of the flags
coincide.

Cotangent space

The cotangent space at E is T ∗[E]M
Par

n,k = H0(X,SPEnd0(E) �K(D)), for E a stable bundle
[60]. For x ∈ C, let fx = dz

z−x . Then H0(X,K(D)) has the basis {fx | x ∈ D0}, where
D0 = D ∩ C. Then (

1 0
0 −1

)
� fp1 , . . . ,

(
1 0
0 −1

)
� fpn−1 ,(

0 1
0 0

)
� fp1 , . . . ,

(
0 1
0 0

)
� fpn−1 ,(

0 0
1 0

)
� fp1 , . . . ,

(
0 0
1 0

)
� fpn−1

(5.2)

is a basis for H0(X,End0(Eτ ) �K(D)).
The element

|D0|∑
i=1

(
aifpi bifpi
cifpi −aifpi

)
∈ H0(X,End0(Eτ ) �K(D))
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is in H0(X,SPEnd0(Eτ ) �K(D)) if:

|D0|∑
i=0

ai = 0,

|D0|∑
i=0

ci = 0,

τiai + bi = 0 for i = 1, . . . , |D0|,
τici − ai = 0 for i = 1, . . . , |D0|,

where the first two equations ensure that the properties at ∞ is satisfied (fp has a simple pole
at ∞ of residue −1). Using the basis (5.2), this is the kernel of the matrix that have first row
|D0| 1’s and then 2|D0| 0’s, second row 2|D0| 0’s and then |D0| 1’s, and for each i a row where
the i’th column equals τi and the |D0|+ i’th column is 1, and a row where the i’th column is
−1 and the 2|D0|+ i’th is τi.

For n = 4 this looks like:

1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1
τ1 0 0 1 0 0 0 0 0
−1 0 0 0 0 0 τ1 0 0
0 0 0 0 1 0 0 0 0
0 −1 0 0 0 0 0 0 0
0 0 1 0 0 1 0 0 0
0 0 −1 0 0 0 0 0 1


.

This matrix has full rank, and it is easy to check that, for i = 1, 2, . . . , n − 3, the following
element is in the kernel:

θi =
(

−τi
z−1 + τi

z−pi
τi
z−1 + −τ2

i

z−pi
τi−1
z − τi

z−1 + 1
z−pi

τi
z−1 −

τi
z−pi

)
dz.

As the matrix is 2|D|× 3(|D0|) and have full rank, the kernel is 3|D0|− 2|D| = 3(n− 1)− 2n =
n− 3 dimensional, and since θi, i = 1, . . . , n− 3 is linear independent, we have:

H0(X,SPEnd0(Eτ ) �K(D)) = spanC{θi | i = 1, 2, . . . , n− 3}.

Tangent space

The tangent space at E is given by H1(X,PEnd0(E)). We want to find ∂
∂τi

for i ≤ n − 3.
Let {Uj}nj=1 be an open cover by contractible sets, such that Ūj ∩D = pj and Uj ∩ U∞j is
an annulus, where U∞i = ∪i∈D\{pi}Ui. Let τw = (τ1, . . . , τi−1, τi + w, τi+1, . . . , τn−3) We can

make Eτw by gluing together (Eτ )Ui and (Eτ )U∞
i
, with the transition function g =

(
1 w
0 1

)
.

To see this, let γ : (Eτ )Ui t (Eτ )U∞
i
→ Eτw be given by γ(z, v) = (z, v) for z ∈ U∞i and

γ(z, v) = (z, g(z)v) for z ∈ Ui. γ is clearly a morphism of parabolic vector bundles and
invariant under the identification of (z, v) ∈ U∞i × C2 with (z, g(z)v) ∈ Ui × C2.

Taking the derivative, we get that ∂
∂τi

– as a one-cycle relative to the cover Ui, U∞i of X –

is represented by ∂
∂τi

=
(

0 1
0 0

)
∈ H0(Ui ∩ U∞i ,PEnd0(Eτi)). Let hi be a smooth function on
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0 1 p1

∞

U0 U1 Up1

U∞

Figure 5.1: An example of an allowed choice of the Ui’s. Ui is
the interior of the disc centered around pi, for pi 6=∞, and U∞
is the domain outside the red curve..

X that vanish on U∞i \ Ui and is 1 on Ui \ U∞i . Define smooth sections of PEnd0(E) over Ui
and U∞i by ψi =

(
0 1− hi
0 0

)
and ψ∞i =

(
0 −hi
0 0

)
. Then

ψi|Ui∩U∞i − ψ
∞
i |Ui∩U∞i =

(
0 1
0 0

)
.

We conclude:

Proposition 62. The Dolbeault representative for ∂
∂τi

is given by

(
0 −∂hi∂z̄
0 0

)
� dz̄ ∈ Ω0,1

∂̄
(X,PEnd0(Eτi)).

Let A ⊆ X be the annulus such that hj only takes the values 0 and 1 outside of IntA.

θi(
∂

∂τj
) = 1

2πi

∫
X

Tr θi
(

0 −∂hj∂z̄
0 0

)
dz̄ =

∫
X

−∂hj
∂z̄

(τi − 1
z
− τi
z − 1 + 1

z − pi
)dz ∧ dz̄

= 1
2πi

∫
A

−∂hj
∂z̄

(τi − 1
z
− τi
z − 1 + 1

z − pi
)dz ∧ dz̄

= 1
2πi

∫
A

∂̄(hj(
τi − 1
z
− τi
z − 1 + 1

z − pi
))dz = 1

2πi

∫
A

d(hj(
τi − 1
z
− τi
z − 1 + 1

z − pi
))dz

= 1
2πi

∫
∂A

hj(
τi − 1
z
− τi
z − 1 + 1

z − pi
)dz

= 1
2πi

∫
{x∈∂A|hj(x)=1}

(τi − 1
z
− τi
z − 1 + 1

z − pi
)dz

= 1
2πi Res

pj
(τi − 1

z
− τi
z − 1 + 1

z − pi
)dz = δij .

(5.3)

We finally see that θi = dτi.
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5.7 Moduli space of polygons

Given weights ~α = (α1, . . . , αn) ∈ R+ we say that a tuple (ξ1, ξ2, . . . , ξn) ∈
(
R3)n is a n-gon

with side lengths ~α if
n∑
i=1

ξi = 0,

‖ξi‖ = αi for all i,

where we are thinking of ξi as the vector of the i’th edge of the polygon. We say that a polygon
is degenerate if span{ξi | i = 1, . . . , n} is one-dimensional, and non-degenerate otherwise. Let
S2
r ⊆ R3 be the sphere around 0 of radius r. We define the following map µ :

∏n
i=1 S

2
αi → R3

by

µ(ξ1, ξ2, . . . , ξn) =
n∑
i=1

ξi

and we observe that the polygons are exactly the zero set of µ. We define two polygons to be
isomorphic if there exists an isometry of R3 carrying one to the other: that is, (ξ1, . . . , ξn) ∼=
(ξ′1, . . . , ξ′n) if there exists A ∈ SO(3) such that ξi = A(ξ′i) for all i. We define the moduli space
of polygons of weight ~α to be the space

Pn = µ−1(0)/SO(3).

It is easy to see that 0 is a regular value of µ away from the non-degenerate polygons, and
also that the stabilizer of any non-degenerate polygons is trivial. Therefore the subset of
equivalence classes of non-degenerate polygons forms a smooth manifold. Even more is true:
identifying R3 with so(3)∗ and each S2

αi with the coadjoint orbit through (αi, 0, 0), this is just
the symplectic quotient of a product of coadjoint orbits, and furthermore, each coadjoint orbit
supports an SO(3)-invariant Kähler structure, and Pn becomes the symplectic reduction of∏
i S

2
αi .

5.7.1 GIT quotient
Let us now assume that αi = λi

k , for k >>
∑
i λi and λi ∈ N. Then the symplectic form on∏

i S
2
λi

is representing the first Chern class of the line bundle �iO(λi) over
(
CP1)×n. Writing

out the conditions for GIT stability we see that they are equivalent to the stability of parabolic
bundles, where the weights are (−λik ,

λi
k , 1). Note also that an (orbit of) a degenerate polygon

corresponds to a partition of {1, 2, . . . , n} in two sets N,S such that
∑
i∈N λi =

∑
i∈S λj –

orient the polygon so it lies in the x axis an let N be the set of indices whose corresponding
vector points in the direction of the north pole of the unit sphere, and S the set of indices
pointing south. But we see that this corresponds exactly to a strictly semi-simple parabolic
bundle with the given weights.(

CP1)n //~λSL(2,C) ∼=MPar
~λ,k.

It is clear that the subset {(τ1, . . . , τn−3, 0, 1,∞) | τi ∈ CP1 \ {0, 1,∞}, i 6= j =⇒ τi 6= τj} ⊆(
CP1)n consists only of stable points. It follows from the Kempf-Ness theorem ([53]) that the
inclusion ι : µ−1(0) ↪→ (CP1)n induces a homeomorphism

µ−1(0)/SO(3) ∼=
(
CP1)n //~λSL(2,C) ∼=MPar

~λ,k

such that the restriction to the non-degenerate polygons is a biholomorphism ontoMPar′
~λ,k
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5.7.2 Tangent space of µ−1(0)/SU(2)
If x ∈ µ−1(0) then T[x](µ−1(0)/SU(2)) ∼= {V ∈ Tx | V µ = 0}/TxSU(2)x. Let us identify
CP1 ∼= S2 ⊂ R3 ∼= C× R using the map

z 7→

(
2z

1 + |z|2
,

1− |z|2

1 + |z|2

)
.

Let x ∈ µ−1(0). Then Txµ−1(0) = {V ∈ Tx(CP1)n | V µ = 0}. For V =
∑n
i=1 ai

∂
∂zi

+ āi
∂
∂z̄i

this is equivalent to the following 2 equations:

0 =
n∑
i=1

aiz̄i + āizi

(1 + |zi|2)2
(5.4)

0 =
n∑
i=1

ai − āiz2
i

(1 + |zi|2)2
(5.5)

It is easy to verify there are the following three solutions:

ai = z2
i + 1,

ai = 2izi,
ai = z2

i − 1,

and they corresponds to Tx(SU(2)x) ⊂ Txµ
−1(0). We are looking for solutions outside the

span of these. For any subset S ⊆ {1, 2, . . . , n} we can deform a polygon by rotating the
coordinates corresponding to S around the vector

∑
s∈S µs(x). This give us the following

vector field:

VS = i
∑
s∈S

((
(−b+ ic)z2

s − 2azs + b+ ic
) ∂

∂zs
− ((−b+ ic)z2

s − 2azs + b+ ic) ∂

∂z̄s

)
, (5.6)

where

a =
∑
s∈S

1− |zs|2

1 + |zs|2

b = Re
∑
s∈S

2zs
1 + |zs|2

c = Im
∑
s∈S

2zs
1 + |zs|2

.

We check that the equations (5.4) (5.5) are satisfied:
n∑
i=1

aiz̄i + āizi

(1 + |zi|2)2
=
∑
s∈S

(
(−b+ ic)z2

s − 2azs + b+ ic
)
z̄s − ((−b+ ic)z2

s − 2azs + b+ ic)zs
(1 + |zs|2)2

=
∑
s∈S

(−b+ ic)zs(|zs|2 + 1) + (b+ ic)z̄s(1 + |zs|2)
(1 + |zs|2)2

=
∑
s,r∈S

−2z̄r
1 + |zr|2

zs

1 + |zs|2
+ 2zr

1 + |zr|2
z̄s

1 + |zs|2
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Figure 5.2: The tangent space at the point ofM6,k shown here
is spanned by the rotating one part of the hexagon around the
coloured lines. For by rotating around the red lines, the length
of the blue lines can be adjusted to the corresponding lengths of
any nearby hexagon, and afterwards rotations around the blue
lines can adjust the angles .

= 0.

And
n∑
i=1

ai − āiz2
i

(1 + |zi|2)2
=
∑
s∈S

(
(−b+ ic)z2

s − 2azs + b+ ic
)

+ ((−b+ ic)z2
s − 2azs + b+ ic)z2

i

(1 + |zi|2)2

=
∑
s∈S

−2azs(1 + |zs|2) + (b+ ic)(1− |zs|4)
(1 + |zs|2)2

=
∑
s∈S

−2azs + (b+ ic)(1− |zs|2)
1 + |zs|2

=
∑
s,r∈S

−21− |zr|2

1 + |zr|2
zs

1 + |zs|2
+ 2zr

1 + |zr|2
1− |zs|2

1 + |zs|2

= 0.

For generic x, we have that

Txµ
−1(0) = span

(
{V{1,2,...,i} | i = 2, . . . , n− 2}} ∪ {V{n}∪{1,...,i} | i = 1, . . . , n− 3}

)
�TxSU(2)x,

see figure (5.2)
It is now be possible to use these vectors to calculate the symplectic form of the symplectic

quotient.

5.7.3 Computations for n = 4

For n = 4, the map q is just the cross ratio, and we can write down an explicit section
of the quotient µ−1(0) → µ−1(0)/SO(3) ∼= CP1 \ {0, 1,∞}. We first observe that the map
h : CP1 → (CP1)4 given by

h(z) = (z−1, iz,−z−1,−iz).

maps into µ−1(0), and it is easy to check that CR(h(
√

PP(√q)) = q, where

PP(x) = ix+ 1
x− 1 .
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We can therefore for any point τ ∈ CP1 \ {0, 1,∞} find an explicit x ∈ µ−1(0) ⊆ (CP1)4

mapping to τ under the cross ratio. This allow us to do explicit computations for n = 4, which
we are not able to do for n > 4, lacking good explicit coordinates for a slice for the SU(2)
action of µ−1(0). After some lengthy computations we get the following expressions for the
bending vector fields:

q∗(V12) = −8
√
τ

|PP(
√
τ)|+ iPP(

√
τ)

(|PP(
√
τ)|+ 1)(PP(

√
τ) + i)

∂

∂τ
,

q∗(V23) = −8τ |PP(
√
τ)| − iPP(

√
τ)

(|PP(
√
τ)|+ 1)(PP(

√
τ) + i)

∂

∂τ
.

Even though these expressions seems to depend on the choice of square root of q, the fact that
PP(−x) = −PP(x)−1 shows that the expression for VS is invariant under √q 7→ −√q. Let us
simplify the expression for q∗(V12):

q∗(V12) = −8
√
τ

|PP(
√
τ)|+ iPP(

√
τ)

(|PP(
√
τ)|+ 1)(PP(

√
τ) + i)

|
√
τ − 1|(

√
τ − 1)

|
√
τ − 1|(

√
τ − 1)

∂

∂τ

= −8
√
τ
|(
√
τ + 1)|(

√
τ − 1)− (

√
τ + 1)|

√
τ − 1|

(|
√
τ + 1|+ |

√
τ − 1|)(i

√
τ + 1 + i(

√
τ − 1))

∂

∂τ

= 4i |(
√
τ + 1)|(

√
τ − 1)− (

√
τ + 1)|

√
τ − 1|

(|
√
τ + 1|+ |

√
τ − 1|)

∂

∂τ

= 4i
√
τ(|
√
τ + 1| − |

√
τ − 1|)− (|

√
τ − 1|+ |

√
τ + 1|)

(|
√
τ + 1|+ |

√
τ − 1|)

∂

∂τ

= 4i
√
τ(|
√
τ + 1|2 − |

√
τ − 1|2)− (|

√
τ − 1|+ |

√
τ + 1|)2

(|
√
τ + 1|+ |

√
τ − 1|)2

∂

∂τ

= 4i
√
τ(4 Re

√
τ)− (|

√
τ − 1|+ |

√
τ + 1|)2

(|
√
τ + 1|+ |

√
τ − 1|)2

∂

∂τ

= 4i2τ + 2|τ | − (|
√
τ − 1|+ |

√
τ + 1|)2

(|
√
τ + 1|+ |

√
τ − 1|)2

∂

∂τ

= 4i2τ + 2|τ | − 2(1 + |τ |+ |τ − 1|)
2(1 + |τ |+ |τ − 1|)

∂

∂τ

= −4i 1− τ + |τ − 1|
1 + |τ |+ |τ − 1|

∂

∂τ
.

Similar computations give that

q∗(V13) = −4i (τ − 1)(|τ |+ τ)
1 + |τ |+ |τ − 1|

∂

∂τ

We can calculate the symplectic form evaluated on the pair (V12, V23) at h(z):

ω(V12, V23) = 8(Re z2) (|z|4 − 1)
(|z|2 + 1)4

= 8 Re PP(√q)
|PP(√q)|2 − 1

(|PP(√q)|+ 1)4
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G-invariant orthonormal basis

Unfortunately, V12 and V23 are not orthogonal to TSO(3)x, nor to each other. We can project
onto the complement of TSO(3)x and find a orthonormal basis for the their span. Doing this
at the point h(z) we get:

b1(z) = i− 1√
8
z̄(z4 + 1)(|z|2 + 1)
|z||z4 + 1|


1
z2

−i
− 1
z2

i


and b2(z) = ib1(z). We can calculate the differential:

q∗(b1) = −i
√

8(i + 1)τ
√
|PP(

√
τ)| |PP(

√
τ) + 1|

|PP(
√
τ) + 1|

∂

∂τ

= −i
√

8(i + 1)
τ
√
|τ − 1|(|

√
τ + 1|+ |

√
τ − 1|)

4|
√
τ |

∂

∂τ
,

and also the symplectic form between b1 and b2 in (CP1)4 : ω(b1,b2) = −1. Using this
we find that the following expression for the symplectic form ω on the quotient in terms of
τ ∈ CP1 \ {0, 1,∞}:

ω = idτ ∧ dτ̄
|τ ||τ − 1|(1 + |τ |+ |τ − 1|) .

It is now possible to calculate the curvature of the Kähler quotient, and we find that it is of
constant curvature −1. From the expression we see that it has a cone point of angle π at each
of the points 0, 1,∞. This confirms a theorem in [44] that the moduli spaces have conical
complex hyperbolic structure.

Ricci potential

According to a formula derived in [31] we can calculate the Ricci potential of a Kähler quotient
as follows: Let ξ1, . . . , ξk be an orthonormal basis of the Lie algebra of the Lie group, J the
complex structure, and let ξ ∈ ∧kT 1,0X be ∧ki=1

1
2 (ξ − iJ(ξ)). Then, if logF is the Ricci

potential on X, log(F̂ + ‖ξ‖2) is the Ricci potential on X//G, where F̂ (p(x)) = F (x). For
n = 4 we can calculate that

‖ξ‖2 = 64
|PP(√q)|(|PP(√q)|2 + 1)2

|PP (√q) + 1|6
= 16 |τ ||τ − 1|

(1 + |τ |+ |τ − 1|)3 ,

and, as the Ricci potential on CP1 is 0, this determines the Ricci potential on the quotient.

Calculation of 〈ξi, ξj〉

At the point given by h(z) we can calculate the following inner products:

〈ξ1, ξ2〉 = −1
2

(
|PP(√q)|2 − 1
|PP(√q)|2 + 1

)2

= −2
(Re√q)2

(|q|+ 1)2 = 1− 3|τ |+ |τ − 1|
1 + |τ |+ |τ − 1|

and
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〈ξ1, ξ3〉 =
|PP(√q)|4 − 6|PP(√q)|+ 1

(|PP(√q)|2 + 1)2
= 1 + |τ | − 3|τ − 1|

1 + |τ |+ |τ − 1|





Chapter 6
The Hitchin connection

In this section we follow [2] closely. We will see how it is possible, under some restrictions,
to make our quantization independent of a choice of Kähler structure. On the quantum side,
we are not interested in the actual Hilbert space, but only in P(H) = H/C×. We will show
the independence on the complex structure by showing the existence of a projectively flat
connection in a bundle over the space of complex structures, where the fiber over a point is
the quantum space corresponding to this choice of Kähler polarization.

Let (M,ω) be a symplectic manifold and I : T → Γ(End(TM)) a smooth map (i.e. a
smooth section of the vector bundle π∗2(TM)→ T ×M) such that I(σ)2 = −1 for all σ ∈ T .
T is a smooth manifold that parametrizes almost complex structures on M . Assume further
that (M,ω, Iσ) is a Kähler for all σ.

Let TMC = Tσ � T̄σ be the splitting of the complexified tangent bundle into the eigenspace
for i and −i (i.e. into the holomorphic and antiholomorphic tangent spaces). Let gσ = ω · Iσ
be the contraction of the symplectic form and the complex structure, so that gσ(X,Y ) =
ω(X, Iσ(Y )) is the metric associated to the Kähler manifold.

Let V ∈ Γ(TT ). Since, for x ∈M we have that I(x, ·) : T → End(TxM) is a map from T
into a fixed vector space, we can differentiate it along V . We will use the notation V [I] for the
result of doing so for each x ∈ M , which is a new map V [I] : T → Γ(End(TM)). Since the
square of I is constant, we get, by the Leibniz rule

V [I]I + IV [I] = 0,

so V [I]σ anticommutes with Iσ and thus it exchanges types

V [I] ∈ Γ((Tσ � T̄ ∗σ ) � (T̄σ � T ∗σ )).

We write V [I]′ for the projection to T̄ ∗σ � Tσ and V [I]′′ for the projection to T ∗σ � T̄σ. Assume
now that T is a complex manifold and V ′[I] = V [I]′ and V ′′[I] = V [I]′′ (we say that I is
holomorphic – indeed, the almost complex structure on T ×M obtained by combining the
complex structure on T with I is integrable if and only if I is holomorphic in this sense, and
each Iσ is integrable), where V ′ and V ′′ denote the (1, 0) and (0, 1) part of V , respectively.
Remark that V [g] = ω · V [I]. g is symmetric and ω is (1, 1) so we get that

V [g]σ ∈ Γ(S2(T ∗σ ) � S2(T̄ ∗σ ))

We define G̃(V ) by
G̃(V )ω = V [I],

59
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for all vector fields V on T , and by the types of V [I] and ω, we must have a decomposition as:

G̃(V ) = G(V ) + Ḡ(V ),

where G(V ) ∈ (T )�2, and Ḡ(V ) ∈ (T̄ )�2. We have that V [g] = ωV [I] = ωG̃ω, and from this
it follows that G̃ – and thus G and Ḡ – must be symmetric. If ∂̄σG(V )σ = 0 for all vector
fields on T , we call the family rigid.

Assume that we have a prequantum line bundle over M , i.e. a complex line bundle L over
M with a hermitian structure and a compatible connection with curvature −iω. We can define

(∂̄σ)Xs = ∇ 1
2 (1+iIσ)Xs

for s ∈ Γ(L) and X ∈ TMC, and

H(k)
σ = H0(Mσ,Lk) = {s ∈ Γ(Lk) | ∂̄σs = 0},

which is finite dimensional for each σ (this follows from the theory of elliptic differential
operators on compact manifolds). We will assume that these vector spaces fit together as finite
dimensional subbundle of the infinite dimensional vector bundle H(k) = T × Γ(Lk) over T .
Denote by ∇̂t the trivial connection in this bundle, and let D(M,Lk) be the set of differential
operators acting on Lk. For a u ∈ Ω1(T ,D(M,Lk)) we have a connection in H(k) given by
∇̂V = ∇̂tV − u(V ).

Definition 63 (Hitchin connection). A Hitchin connection in H(k) is a connection of
the form ∇t + u, u ∈ Ω1(T ,D(M,L)), that preserves the subbundle tσH(k)

σ .

Observe that the existence of such a connection will guarantee that H(k)
σ forms a smooth

subbundle, and that the Hitchin connection restricts to a connection in this bundle.

6.1 Construction of a Hitchin connection

We will first reformulate the condition of preserving H(k):

Lemma 64. The connection ∇̂ in H(k) preserves H(k) if and only if

i

2V [I]∇1,0s+∇0,1u(V )s = 0

for all vector fields V on T and smooth sections s of H(k).

Proof. We differentiate ∇0,1s = 0 and obtain

0 = V
[
∇0,1s

]
= V

[
1
2(1 + iI)∇s

]
= i

2V [I]∇s+∇0,1V [s] = i

2V [I]∇1,0s+∇0,1V [s] .

We are now ready to check when we get an element of H(k), that is, when the following is 0:

∇0,1
σ

((
∇̂V (s)

)
σ

)
= ∇0,1

σ V [s] +∇0,1
σ ((u(V )s)σ)

= − i2
(
V [I]∇1,0s

)
σ
−∇0,1

σ ((u(V )s)σ) �
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Denote by Rσ the Riemannian curvature tensor on (M,ω, Iσ) and define the Ricci tensor as
ricσ(X,Y ) = Tr(ζ 7→ Rσ(ζ,X)Y ), and the Ricci form as ρσ(X,Y ) = ricσ(Iσ(X), Y ). We
define a second order differential operator ∆G : Γ(Lk)→ Γ(Lk) by the composition

Γ(Lk) ∇1,0
σ−−−−→ Γ(T ∗σ � Lk) G�id−−−−→

Γ(Tσ � Lk) ∇1,0
σ �id+id�∇1,0

σ−−−−−−−−−−−−→ Γ(T ∗σ � Tσ � Lk) Tr−−−−→ Γ(Lk),

and we note that this operator have symbol GV . We can now define the following second
order differential operator for k, n ∈ Z, 2k + n 6= 0:

u(V ) = 1
2k + n

(
1
2∆G(V ) −∇G(V )dF − nV ′[F ]

)
+ V ′[F ],

Where Fσ is the Ricci potential of integral 0, that is, a function such that ricσ −nω = 2i∂∂̄Fσ
. We will use the rest of this section to show that it defines a Hitchin connection.

Lemma 65. Assume that the first Chern class of (M,ω) is n[ω] ∈ H2(M,Z). For any σ ∈ T
and for any G ∈ H0(Mσ, S

2(Tσ)) we have the formula:

∇0,1
σ (∆G(s)− 2∇GdFσ (s)) = −i(2k + n)Gω∇1,0

σ (s)− ikTr(−2G∂σFω +∇1,0
σ (G)ω)s

for all s ∈ H0(Mσ,Lk)

Proof. The idea is to move the ∇0,1 toward the s by commuting it with whatever is in front
of it. This produces a lot of curvature terms, both the Riemannian curvature Rσ from the
tangent bundle and −iω from the prequantum bundle. It is a tensorial calculation, so we
will assume that everything is done in a basis of tangent vectors whose Lie bracket vanishes,
so that we can replace the commutator of a connection with the curvature. We will also
use that the tensor product connection is compatible with Tr. We observe that if X ∈ T 0,1

then ιXρσ = −iιX ricσ. We will write G∇1,0s instead of Tr(G∇1,0s) and similarly for other
contractions.

∇0,1
σ X (∆G(s)) = Tr

(
∇0,1
X ∇

1,0 (G∇1,0s
))

= Tr
(
∇1,0∇0,1

X

(
G∇1,0s

))
+ Tr

(
ιXF∇G∇1,0s

)
= Tr

(
∇1,0∇0,1

X

(
G∇1,0s

))
+ Tr (id � (−ikιXω))G∇1,0s+ (ιXRσ � id)

= Tr
(
∇1,0∇0,1

X

(
G∇1,0s

))
− ikTr

(
ιXωG∇1,0s

)
+ Tr

(
−ιX ricσ G∇1,0s

)
= Tr

(
∇1,0

(
∇0,1
X G)∇1,0s+G∇0,1

X ∇
1,0s
))
− ikTr

(
ιXωG∇1,0s

)
+ Tr

(
−ιX ricσ G∇1,0s

)
= Tr

(
∇1,0G∇0,1

X ∇
1,0s
)
− ikTr

(
ιXωG∇1,0s

)
+ Tr

(
−ιX ricσ G∇1,0s

)
= −ikTr

(
∇1,0 (GιXωs)

)
− ikTr

(
ιXωG∇1,0s

)
+ Tr

(
−ιX ricσ G∇1,0s

)
= −ikTr

(
∇1,0 (GιXωs)

)
− ikTr

(
ιXωG∇1,0s

)
− iTr

(
ιXρσG∇1,0s

)
= −ikTr

(
∇1,0 (GιXωs)

)
− ikTr

(
ιXωG∇1,0s

)
− iTr

(
ιXρσG∇1,0s

)
= −ikTr

(
∇1,0 (G) ιXωs+G∇1,0(ιXω)s+GιXω∇1,0s

)
− ikTr

(
ιXωG∇1,0s

)
− iTr

(
ιXρσG∇1,0s

)
= −ikTr

(
∇1,0 (G) ιXωs

)
− 2ikTr

(
ιXωG∇1,0s

)
− iTr

(
ιXρσG∇1,0s

)
= −ikTr

(
∇1,0 (G) ιXωs

)
− 2ikTr

(
ιXωG∇1,0s

)
− iTr

(
ιXnωG∇1,0s

)
− iTr

(
ιX2i∂∂̄FG∇1,0s

)
,

where we have used the holomorphicity of G (to see that ∇0,1G = 0), that ∇ω = 0 since the
connection is induced from a Kähler metric and that mixed covariant derivatives vanish, to
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conclude that ∇1,0ιXω = Tr(∇1,0X �ω+X �∇1,0ω) = 0. We assumed that c1(M,ω) = n[ω],
so the curvature in the canonical bundle must belong to the cohomology class of nω. But the
Ricci form is the curvature of the induced connection on this bundle, and since the Kähler
form ω is harmonic, we must have that the harmonic part of the Ricci curvature, ρHσ , satisfies
ρHσ = nω, since every cohomology class has exactly one harmonic representable. We need the
following fact (see e.g. [32], Prop. 1.7): Any exact form α ∈ Ωp,q(M) on a compact Kähler
manifold can be written as α = 2i∂∂̄β for some β ∈ Ωp−1,q−1(M). This implies that there
exists a Fσ ∈ C∞(M) such that ρσ = nω+2i∂∂̄Fσ. We observe that ∇GdF s = Tr(∂σFG∇1,0s)
so we have that

∇0,1
X ∇GdF s = Tr

(
(ιX ∂̄∂F )G∇1,0s+ ∂F (ιX ∂̄G)∇1,0s+ ∂FG∇0,1

X ∇
1,0s
)

= Tr(ιX ∂̄∂FG∇1,0s− ∂FGikιXωs)
= −Tr(ιX∂∂̄FG∇1,0s+ ik∂FGιXωs).

We are now ready to calculate the desired quantity

∇0,1
X (∆G(s) + 2∇GdFσ (s))

= −ikTr
(
∇1,0 (G) ιXω

)
� s− iTr

(
nιXωG�∇1,0s

)
− iTr

(
2iιX∂∂̄FG�∇1,0s

)
− 2ikTr

(
ιXωG

(
∇1,0s

))
− 2 Tr(ιX∂∂̄FG∇1,0s+ ik∂FGιXωs)

= −ikTr
(
∇1,0 (G) ιXω

)
� s− i(2k + n) Tr

(
ιXωG�∇1,0s

)
− 2ikTr(∂FGιXωs)

�

Lemma 66. If H1(M,R) = 0 we have the relation

2i∂̄σ(V ′[F ]σ) = 1
2 Tr(2G(V )∂(F )ω −∇1,0(G(V ))ω)σ

Proof. Recall that
ρσ = ρHσ + 2i∂∂̄σFσ = nω + 2id∂̄σFσ

So
V ′[ρ] = 2i(V [d∂̄])F + 2id∂̄V ′[F ] = 2i( i2dV ′[I]dF ) + 2id∂̄V ′[F ].

Observe that the (0, 1)σ-form

1
2 Tr

(
2G(V )∂Fω −∇1,0G(V )ω

)
σ
− 2i∂̄σV ′[F ]σ

is ∂σ-closed, by lemma 67. It is also ∂̄σ-closed, since the last term clearly is so, and the first
two terms are the last two terms of the equality in Lemma 65 (which also holds locally), in
which the first term of the right hand side is ∂̄-closed since ∂̄ of it reduces, after commuting
with ∇1,0s and producing a curvature term, to Gijdz̄i ∧ dz̄j = 0 by the symmetry of G. So it
is a closed form, and therefore, by hypothesis, an exact form. But this means that it is equal
to dh for some function h, but for this to be a (0, 1)-form, we must have that ∂h = 0. But the
only antiholomorphic maps on a compact manifold are the constant maps, so this implies that
h is constant, and thus that dh = 0. This gives the desired result. �

Lemma 67. For any smooth vector field V on T we have that

(V ′[ρ])1,1 = −1
2∂ Tr

(
∇1,0(G(V ))ω

)
.
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The 2-form ρσ represents the first Chern class of the canonical line bundle – in our case, n[ω].
This implies that the harmonic part is independent of σ: ρHσ = nω.

Theorem 38 (Andersen). Assume as above that the family T is holomorphic and rigid,
H1(M,R) = 0, that the first Chern class of (M,ω) = n[ω] . Then the connection ∇t + u is a
Hitchin connection.

Proof. By 64 it is enough to show that ∇0,1u(V )s = − i
2V
′[I]∇1,0s for all vector fields V on

T and sections s of H(k).

(2k + n)∇0,1u(V )s = 1
2∇

0,1(∆G(V ) − 2∇G(V )dF ) + 2k∇0,1V ′[F ]s

= 1
2
(
−i(2k + n)Gω∇1,0s− ikTr(−2G∂Fω +∇1,0(G)ωs)

)
+ 2k∇0,1V ′[F ]s

= (2k + n)−i2 Gω∇1,0s+ 2iik∂̄(V ′[F ])s+ 2k∇0,1V ′[F ]s

= (2k + n)−i2 Gω∇1,0s

= (2k + n)−i2 V ′[I]∇1,0s,

Where we use Lemma lemma 65 on page 61 in the first line, Lemma lemma 66 on page 62 in
the second and the definition of G, and in the fourth line that ∇0,1fs = ∂̄fs+ f∇0,1s. �

6.2 Asymptotic faithfulness

In this section we will describe the main result of [1], which uses the Hitchin connection for the
moduli space of flat connections on a closed surface Σ. However, to get a smooth and compact
moduli we need to consider a slightly different setup. Let Σ be a surface with one puncture, and
γ a loop around the puncture. The fundamental group is given by 2g+1 generators A1, . . . , Ag
and B1, . . . , Bg and γ, with the only relations

∏
i[Ai, Bi] = γ (so it is also freely generated

by the Ai’s and Bi’s). Let Homd(Σ,SU(n)) be the representations π with π(γ) = e2πid/nidn.
Assume that π is a reducible representation: π = π0 � π1. Then π0(γ) = e2πid/niddimπ0 . But
e2πid dimπ0/n = detπ0(γ) =

∏
i det([Ai, Bi]) = 1, which implies that ddim π0 divides n. This

shows that Homd(π1(Σ),SU(n)) only consists of irreducible representations, and therefore the
moduli space Md

g is a smooth manifold. There is a description similar to the above, that
involves taking symplectic reduction at a non-zero coadjoint orbit to obtain all connections with
constant, central holonomy, and we can use a description as the one for flat connections, see
[38]. It was shown by Axelrod, della Pietra and Witten [15], and Hitchin [38], that geometric
quantization applies to these moduli spaces for g > 2 with Kähler structure parametrized by
Teichmüller space, and they constructed a Hitchin connection. Freed showed [29] that the
action of the mapping class group on the moduli space lift to an action of the prequantum line
bundle. The Hitchin connection induces a flat connection in the projectivized bundle, and
it is clear from Andersen construction that the mapping class group preserves the Hitchin
connection. We therefore have an action of the mapping class group on the space of smooth
section of H(k) → T by (ϕ · s)(x) = ϕ(s(ϕ−1(x))). Since MCG(Σ) preserves the connection,
we can restrict the representation to a representation ρkd on the finite dimensional space of
covariant constant projective sections. The fiber over a single point can, via parallel transport,
be identified with the space of covariant constant sections. Using this description, let σ be the
chosen base point and s a covariant constant section. The action on s(σ) is then given by:

ϕ · (s(σ)) = (ϕ · s)(σ) = ϕ(s(ϕ−1σ)) = ϕ(Pσ,ϕ−1(σ)s(σ)) = Pϕ(σ),σϕ(s(σ))
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In [1] it is shown that

Theorem 39 (Andersen). The Toeplitz operators are asymptotically flat with respect to the
connection in End(H(k)) induced by the Hitchin connection:

‖P (k)
σ1,σ2

T
(k)
f,σ1
− T (k)

f,σ2
‖op = O(k−1)

Theorem 40 (Andersen). For any ϕ ∈ MCG(Σ):

ϕ ∈
∞⋂
k=1

ker ρkd

(if and) only if ϕ induces the identity on M .

Proof. ϕ ∈ Γ induces an symplectomorphism on M , which we will also denote by ϕ. Let
f ∈ C∞(M). We denote by Tf , σ(k) the Toeplitz operator s 7→ πkσ(fs). We have the following
commutative diagram:

H0(Mσ,Lkσ) ϕ−−−−→ H0(Mϕ(σ),Lkϕ(σ))
Pϕ(σ),σ−−−−−→ H0(Mσ,Lkσ)yT (k)

f,σ

yT (k)
f◦ϕ−1,ϕ(σ)

yPϕ(σ),σT
(k)
f◦ϕ−1,ϕ(σ)

H0(Mσ,L(k)
σ ) ϕ−−−−→ H0(Mϕ(σ),L

(k)
ϕ(σ))

Pϕ(σ),σ−−−−−→ H0(Mσ,L(k)
σ )

where the commutativity of the last square is by definition of the parallel transport in the
endomorphism bundle, and in the first because

ϕπkσ(fs) = πkϕ(σ)(ϕfs) = πkϕ(σ)((f ◦ ϕ−1)ϕs)

Suppose now that ϕ is in the kernel for all k. So for each k, the rows are just multiplication
by the same nonzero constant – thus, the first and last vertical arrow must be equal

T
(k)
f,σV = Pϕ(σ),σT

(k)
f◦ϕ−1,ϕ(σ).

But this now implies that

lim
k→∞

‖T (k)
f−f◦ϕ−1,σ‖ = lim

k→∞
‖T (k)

f,σ − T
(k)
f◦ϕ−1,σ‖ = lim

k→∞
‖Pϕ(σ),σTf◦ϕ−1,ϕσ − T

(k)
f◦ϕ−1,σ‖ = 0

where the last equality is (39). By a theorem of Bordemann, Meinrenken and Schlichenmaier
[23] limk→∞‖T (k)

f ‖ = sup|f |, and therefore we must have that f = f ◦ ϕ−1. Since C∞(M)
separates points, ϕ must act by the identity on M . �

It is known that the only element of MCG(Σ) that acts by the identity on M is the identity
or the hyperelliptic involution in genus 2, in the case of SU(2) and with even holonomy around
a marked point (This is in appendix 10 in [33]. The basic idea is using the inclusion of SU(2)
into G to reduce the problem to SU(2), and then complexify to obtain Hom(π1,SL(2,C)). The
space has the Teichmüller space as a MCG(Σ)-invariant subspace, and the only non-identity
mapping class group elements that fix every complex structure are the hyperelliptic involution
mentioned).
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6.3 Metaplectic correction

There is a way to relax the requirements in theorem 38, as shown in [6]. Here the quantum
spaces are replaced by the metaplectic corrected quantum spaces. Metaplectic corrected
geometric quantization, also known as half-form quantization, is a refinement of geometric
quantization as discussed in section 4.2. Standard geometric quantization fails to reproduce
the canonical quantization of the harmonic oscillator: the quantization of the Hamiltonian
does not have the right spectrum: the physical spectrum of the harmonic oscillator are the
positive half-integers, but geometric quantization of the Hamiltonian have as spectrum all
the non-negative half-integers, that is, the physical spectrum shifted down by 1

2 . Metaplectic
correction corrects this mismatch by introducing a square root of the canonical bundle of M .

Theorem 41 (Andersen, Gammelgaard, Roed-Lauridsen). Let (M,ω) be a prequanti-
zable symplectic manifold with vanishing first Stiefel-Whitney class. Let I be a rigid family
of M , parametrized by a smooth manifold T , such that H0,1(Mσ,C) = 0 for all σ ∈ T . Then
there exists a family of metaplectic structures, also parametrized by T , that is, a line bundle
δ → T ×M such that δσ = δ�{σ}×M is a square root of the canonical bundle Kσ = ΛtopT ∗σM .
Let L be a prequantum line bundle over M . Then there exists a one-form b ∈ Ω1(T ×M) such
that the connection

∇Hit
V = ∇t

V + 1
4k
(
∆G(V ) + b(V )

)
in the bundle T × C∞(M,L�k � δ) preserves the subbundle∐

σ∈T
H0(Mσ,L�k

σ � δσ)→ T .

Furthermore,

Theorem 42 (Andersen-Gammelgaard, [32]). If H0(Mσ,Tσ) = 0 for all σ ∈ T then the
Hitchin connection of theorem 41 is projectively flat.





Chapter 7
The geometrized KZ connection

7.1 The KZ connection

In this section we introduce the KZ connection. Let G be a compact Lie group, g the Lie
algebra of G and let {Iν}ν denote an orthonormal basis for g with respect to the Killing form.

Definition 68. TheKnizhnik–Zamolodchikov, or KZ, connection at level k is a connection
in the trivial line bundle with fiber

(
V �n
λ

)g over Confn(C), given by

∇KZ = d + 1
k + h

∑
1≤i<j≤n

Ωij dzi − dzj
zi − zj

,

where d is the trivial connection, h is the dual Coxeter number of g and Ωij is the action of
the quadratic Casimir Ω =

∑
ν Iν � Iν ∈ U(g) � U(g) when V �n

λ is given the structure of a
U(g)�2-module by (X �Y )(v1 � · · ·� vn) = v1 � v2 �· · ·� (Xvi) � · · ·� (Y vj) � . . . vn, that is

Ωij(v1 � · · ·� vn) =
∑
ν

v1 � v2 � · · ·� (Iνvi) � · · ·� (Iνvj) � . . . vn.

Let ∆ : U(g) → U(g)�2 be the algebra homomorphism given by X 7→ X � 1 + 1 � X, for
X ∈ g. Then Ω = 1

2 (∆(C) − 1 � C − C � 1), where C =
∑
ν Iν · Iν ∈ U(g) is the ordinary

Casimir element. Since C � 1− 1 � C is in the center, and [∆(C),∆(X)] = ∆([C,X]) = 0 we
have that [Ω,∆(X)] = 0. Therefore Ωij preserves the g-invariant part of V �n

λ . The curvature
of a connection of the form d +A is dA+ 1

2 [A,A]. It is easy to check that

d

 ∑
1≤i<j≤n

Ωij dzi − dzj
zi − zj

 = 0,

by observing that a local choice of logarithm gives us dzi−dzj
zi−zj = d log(zi − zj). Using the

algebraic properties of Ωij it can be shown that ∑
1≤i<j≤n

Ωij dzi − dzj
zi − zj

,
∑

1≤i<j≤n
Ωij dzi − dzj

zi − zj

 = 0,

and thus the KZ connection is flat for all k. The following theorem allow us to relate the
monodromy of the KZ connection to the quantum representations discussed in 2:

67
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Theorem 43 (Drinfeld-Kohno). The monodromy of the KZ connection for g with ~λ along
a braid b is equal to the RTW-TQFT quantum representation representation of G applied to b,
seen as an element in the mapping class group of the sphere with n+ 1 marked points, the first
n labeled with ~λ and the last with 0.

7.2 Construction of the geometrized KZ connection

The goal of this section is to construct a new connection, the geometrized KZ connection,
which interpolates between the KZ and the Hitchin connections. From the construction it will
be clear that it is just a “reformulation” of the algebraic KZ connection. However, the actual
formulas will rather make us think of the Hitchin connection. Concretely we will find a Kähler
manifold XG with a prequantum line bundle LG → XG such that H0(XG, LG) ∼=

(
V �n
λ

)g and
differential operators ΩijG acting on sections of LG representing the action of Ωij . This is the
data we need to write the KZ connection in the same setup as the Hitchin connection.

The G representation Vλ can be realized as the geometric quantization of the coadjoint orbit
through λ: Vλ ∼= H0(Oλ,Lλ), as we saw in 4.2.2. To get the representation V~λ = Vλ1 � · · ·�Vλn
we take the exterior tensor product as in section 4.2.1:⊗

i

H0(Oλi ,Lλ) ∼= H0(Oλ1 × · · · × Oλn ,Lλ1 � . . .� Lλn),

where ξ ∈ g acts by ∇ξ − iµ~λ(ξ), µ~λ : O~λ ↪→ (g∗)n → g∗ is the inclusion followed by the sum
of components, and ξ is the fundamental vector field generated by ξ under the diagonal action
of G. We can also act on a single coordinate by ∇ξi + i(µi(ξ) ◦ πi), where ξi is the vector
field generated by the action of G on the i’th factor and µi : Oλi → g∗ is the inclusion and πi
is the projection to the i factor. This means that we can realize the operators Ωij on V~λ by
differential operators on H0(O~λ,L~λ) of order 2:

ΩjkL =
∑
ν

(
∇νj − iµ(ν) ◦ πj

) (
∇νk − iµ(ν) ◦ πk

)
.

For the KZ connection we need not the full tensor product, but only the invariant part.
From Theorem 26 we realize that the symplectic quotient of O~λ by the diagonal action of G
would be the right space to support a line bundle whose sections are in correspondence with
the invariants. The theorem does however not apply directly: 0 is not a regular value of µ and
the action of G on µ−1(0) is not free. Instead, we have the following, when specializing to
G = SU(2):su(2) acts on su(2)∗ ∼= R2 by rotations, factoring through the map SU(2)→ SO(3).
This puts us in exactly the situation discussed in section 5.7, from which we can extract the
following:

Proposition 69. The action of SU(2) on O~λ factors through SO(3). The points in µ−1(0)
with non-trivial SO(3) stabilizer is exactly the non-regular points in µ−1(0) and they form a
SO(3) invariant subset of real dimension 2.

To be able to apply the symplectic reduction theorem, we want to remove a union of
complex submanifolds N = ∪iNi of codimension ≥ 2 from O~λ such that this union is preserved
by SU(2) and the intersection of these submanifolds with µ−1(0) exactly is the points with
non-trivial stabilizer under the SO(3) action. We choose the submanifolds with at least n

2
equal points, which have complex codimension n − (bn2 c + 1), which is > 1 for n > 4. For
n = 4 we need to take some special care, which we will discuss later in section 9.2. Hartogs
extension theorem guarantees that the restriction map from H0(O~λ,L~λ) to H0(O~λ \N,L~λ) is
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an isomorphism. We can now take the symplectic reduction for the diagonal action of SU(2)
on X = O~λ \N , which has the moment map µ~λ : ×iOλi → g∗ given by µ~λ(ξ1, . . . , ξN ) =

∑
i ξi.

From Theorem 26 and Hartogs extension theorem we now obtain

H0(X//G, L//G) ∼= H0(O~λ \ ∪Ni,L~λ)G ∼= H0(O~λ,L~λ)G.

We let XG = X//G and LG = L//G. We want to show that Ωij
L is the pullback of a

differential operator ΩijG in the line bundle LG 7→ XG in the following sense: we want to find
another differential operator Ω̃L

ij in L such that Ω̃L
ij
s = Ωij

L s for all s ∈ H0(X,L)G and
such that there is a differential operator Ωij

G in LG such that i∗(Ω̃ij) = π∗(Ωij
G). We know

from 26 that π0
∗(∇) = ι∗(∇). This means that it π0∗(X) = Y then π0

∗(∇Y s) = ∇Xπ0
∗(s)

for all s ∈ C∞(XG, LG). So we want to write Ωij
L in terms of ∇ and invariant vector fields

and functions. Let ξ = (ξ1, . . . , ξn) ∈ Oλ. In the following, ν runs over an orthonormal basis
(with respect to the Killing form) of su(2), and νi is the vector field induced from the action
of SU(2) on the i’th copy of CP1.

ΩjkL =
∑
ν

(
∇νj − iµ(ν) ◦ πj

) (
∇νk − iµ(ν) ◦ πk

)
=
∑
ν

∇νj∇νk − (iµ(ν) ◦ πj)∇νk − (iµ(ν) ◦ πk)∇νj − (µ(v) ◦ πj)(µ(v) ◦ πk)

=
∑
ν

∇νj∇νk − i∇ξjk − i∇ξkj − 〈ξk, ξj〉

=
∑
ν

∇νj∇νk − i∇ξj+ξkk+ξj+ξkj − 〈ξk, ξj〉

=
∑
ν

∇(νj)1,0∇(νk)1,0 − i∇ξj+ξkk+ξj+ξkj − 〈ξk, ξj〉,

where the last line uses the fact that we act on holomorphic sections and that the curvature
F∇
(
(νj)0,1, (νk)1,0) = −iω

(
(νj)0,1, (νk)1,0) = 0 and the Lie bracket [(νj)0,1, (νk)1,0)] = 0.

The function 〈ξk, ξj〉 is G invariant, and so are the vector field ξj + ξk
k + ξj + ξk

j , which also
preserves µ−1(0) – it is up to a constant just V{ij} from section 5.7.2. Therefore the second and
third term above both descend to LG, and we can turn our attention towards the first term.
Let s ∈ H0(X,L)G, and for tangent vector V ∈ TxX let V ′′ ∈ TxGCx and V ′ ∈ (TxGCx)⊥
such that V = V ′ + V ′′. Then∑

ν

∇νj∇νks =
∑
ν

∇(νj)′+(νj)′′∇(νk)′+(νk)′′s =
∑
ν

∇(νj)′+(νj)′′∇(νk)′s

=
∑
ν

∇(νj)′∇(νk)′s+
∑
ν

∇(νj)′′∇(νk)′s

=
∑
ν

∇(νj)′∇(νk)′s− iω((νj)′′, (νk)′)s−∇[(νj)′′,(νk)′]s

=
∑
ν

∇(νj)′∇(νk)′s−∇[(νj)′′,(νk)′]s

Since ω(I(W ), V ′) = g(W,V ′) = 0 for W ∈ TxGx, and we can write W = a for a ∈ g, so
ω(W,V ′) = ω(a, V ′) = dµ(a)(V ′) = 0, and

∑
ν [(νj)′′, (νk)′] is G-invariant, as we will see later.

Let bl be an orthonormal, G-invariant frame of Tµ−1(0).
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∑
ν

∇(νj)′∇(νk)′ =
∑
ν

∑
l,m

〈νj ,bl〉∇bl〈νk,bm〉∇bm

=
∑
l,m

∑
ν

〈νj ,bl〉〈νk,bm〉∇bl∇bm + 〈νj ,bl〉bl(〈νk,bm〉)∇bm

The first term is G-invariant: Let Adg ν =
∑
υ a

υ
νυ. As the Ad action is by rotations, {aυν}

forms an orthogonal matrix, and therefore aυνaην = δυη. We can therefore compute∑
ν

〈νjg−1x, (bl)g−1x〉〈νkg−1x, (bm)g−1x〉

=
∑
ν

〈(g−1)∗(Adg νj)x, (g−1)∗(bl)x〉〈(g−1)∗(Adg νk)x, (g−1)∗(bm)x〉

=
∑
ν

〈(Adg νj)x, (bl)x〉〈(Adg νk)x, (bm)x〉

=
∑
ν

∑
υ

∑
η

〈(aυνυ
j)x, (bl)x〉〈(aηνη

k)x, (bm)x〉

=
∑
υ

∑
η

(
∑
ν

aυνa
η
ν)〈(υj)x, (bl)x〉〈(ηk)x, (bm)x〉

=
∑
υ

〈(υj)x, (bl)x〉〈(υk)x, (bm)x〉

Invariance of the second term and of (7.2) are proved in a similar way.
We know that ∇X descends to µ−1(0)/G for X an invariant vector field. Therefore we

have shown that there exists a second-order differential operator ΩjkG such that (ΩjkL s)|µ−1(0) =
π∗(ΩjkG π∗(s)), for s ∈ H0(X,L)G.

We have thus shown that there exist invariant vector fields Xij
k , Y

ij
k , Z

ij and an invariant
function f ij such that

ΩijL s =
(∑

m

∇Xijm∇Y ijm +∇Zij + f ij

)
s

hold for all s ∈ H0(X,L)G.

Definition 70. Let

ΩijG =
∑
m

∇π0∗(X
ij
m)∇π0∗(Y

ij
m ) +∇π0∗(Zij) + f ij ◦ π0.

The connection
∇gKZ = d + 1

k + 2
∑

1≤i<j≤n
ΩijG

dpi − dpj
pi − pj

in Confn(C) × C∞(XG, LG), which preserves H0(XG, LG), is called the geometrized KZ
connection. Also, we let

ugKZ =
∑

1≤i<j≤n
ΩijG

dpi − dpj
pi − pj
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We have shown

Proposition 71. The pullback of ∇gKZ under the vector bundle isomorphism (
⊗n

i=1 Vλi)G ×
Confn(C)→ H0(XG, LG)× Confn(C) is the ordinary KZ connection.

7.3 Symbol of the geometrized KZ connection

In this section we compute the symbol of the geometrized KZ connection. The symbol of
the second order operator Ω̃L

ij is
∑
ν(νi)⊥TGC � (νj)⊥TGC where ν runs over a real basis for

su(2) that is orthonormal with respect to the Killing form. To find the symbol of ΩijG we have
to compute p∗(

∑
ν(νi)⊥TGC � (νj)⊥TGC) where p : µ−1(0) → X//G. This is however a very

nontrivial calculation, and we shall instead use the following lemma:

Lemma 72. If q : X → X/GC is the quotient map, we have that p∗(
∑
ν(νi)⊥TGC�(νj)⊥TGC) =

q∗(
∑
ν ν

i � νj)

Proof. Both sides are equal to q∗(
∑
ν(νi)⊥TGC �(νj)⊥TGC), as q is G-invariant and holomorphic,

and therefore invariant under GC. �

The right hand side is much easier to compute, as we can compute at any point in X without
taking care of the µ−1(0) constraint, and we do not need to compute the projection of the
vector fields. We only need to compute the symbol on an dense subset, and we will use the
SL(2,C)-invariant map from Confn(CP1)→ Confn−3(CP1 \ {0, 1,∞}) given by

q(z1, z2, . . . , zn) = (CR(z1, zn−2, zn−1, zn),CR(z2, zn−2, zn−1, zn), . . . ,CR(zn−3, zn−2, zn−1, zn)),

where we recall that CR(a, b, c, d) = (b−a)(d−c)
(b−c)(d−a) is the cross ratio in the normalization where

CR(z, 0, 1,∞) = z. We will denote by τ1, . . . , τn−3 the coordinates on Confn−3(CP1 \ {0, 1,∞}).

Remark 73. We note that q(z1, . . . , zn) exactly gives the representative in the orbit through
(z1, . . . , zn) where (zn−2, zn−1, zn) = (0, 1,∞). This is the exactly the same as the τ coordinates
on the moduli space of parabolic bundles in section 5.6

The quantity we are interested in is:

σ

(
ugKZ( ∂

∂pi
)(dτj ,dτk)

)
= σ

 n∑
l=1
l 6=i

ΩilG
pi − pl

 (dτj ,dτk)

=
n∑
l=1
l 6=i

1
2

dτj((qj)∗(Ii))dτk((qk)∗(I l) + dτj((qj)∗(I l))dτk((qk)∗(Ii)
pi − pj

Before starting to compute, we list the results of some useful calculations:

qi = (zn−2 − zi)(zn − zn−1)
(zn−2 − zn−1)(zn − zi)

,
∂

∂zi
qi = zn−2 − zn

(zn − zi)(zn−2 − zi)
qi,

∂

∂zn−2
qi = zn−1 − zi

(zn−2 − zi)(zn−1 − zn−2)qi,
∂

∂zn−1
qi = zn−2 − zn

(zn−1 − zn−2)(zn − zn−1)qi,

∂

∂zn
qi = zn−1 − zi

(zn − zi)(zn − zn−1)qi, 1− qi = (zn−1 − zi)(zn−2 − zn)
(zn−2 − zn−1)(zn − zi)

.
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And we list the vector fields induced by the standard orthonormal basis of su(2):

1
2
√

2

(
i 0
0 −i

)1,0

z

= i√
2
z
∂

∂z

1
2
√

2

(
0 1
−1 0

)1,0

z

= i
2
√

2
(1− z2) ∂

∂z

1
2
√

2

(
0 i
i 0

)1,0

z

= 1
2
√

2
(1 + z2) ∂

∂z

We now observe that

8
∑
ν

(νiqk)(νjql) = (−4zizj − (1− zi)2(1− zj)2 + (1 + zi)2(1 + zj)2)( d
dzi

qk)( d
dzj

ql)

= 2(zi − zj)2( d
dzi

qk)( d
dzj

ql),

We are now ready to compute

8σ
(
uKZ( ∂

∂pi
)(dτi,dτi)

)
= 8

n−1∑
j=n−2

1
pi − pj

∑
ν

dτi(qi)∗(νi)dτi(qi)∗(νj)

= 8
∑
ν

(νiqi)(νn−2qi)
pi

+ (νiqi)(νn−2qi)
pi − 1

= q2
i

(
(1 + z2

i )(1 + z2
n−2)− 4zizn−2 − (1− z2

i )(1− z2
n−2))

· 1
pi

zn−2 − zn
(zn − zi)(zn−2 − zi)

zn−1 − zi
(zn−2 − zi)(zn−1 − zn−2)

+ 1
pi − 1(1 + z2

i )(1 + z2
n−1)− 4zizn−1 − (1− z2

i )(1− z2
n−1))

· zn−2 − zn
(zn − zi)(zn−2 − zi)

zn−2 − zn
(zn−1 − zn−2)(zn − zn−1)

)
= 2q2

i

( (zi − zn−2)2

pi

zn−2 − zn
(zn − zi)(zn−2 − zi)

zn−1 − zi
(zn−2 − zi)(zn−1 − zn−2)

+ (zi − zn−1)2

pi − 1
zn−2 − zn

(zn − zi)(zn−2 − zi)
zn−2 − zn

(zn−1 − zn−2)(zn − zn−1)

)
= 2q2

i

( 1
pi

(zn−2 − zn)(zn−1 − zi)
(zn − zi)(zn−1 − zn−2)

+ 1
pi − 1

(zn−2 − zn)2(zi − zn−1)2

(zn−2 − zi)(zn−1 − zn−2)(zn − zn−1)(zn − zi)

)
= 2q2

i

( (qi − 1)
pi

+ −1
pi − 1

(zn−2 − zn−1)(zn − zi)
(zn−2 − zi)(zn − zn−1)

(zn−2 − zn)2(zn−1 − zi)2

(zn−1 − zn−2)2(zn − zi)2

)
= 2q2

i

( (qi − 1)
pi

+ −q
−1
i

pi − 1(1− qi)2
)
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= 2qi(qi − 1)( qi
pi
− qi − 1
pi − 1)

For j 6= i and j < n− 2 we have, leaving out the 1
pi−pj factor, we get similarly:

8σ(Ωij)(dτi,dτj) = (zi − zj)2 zn−2 − zn
(zn − zi)(zn−2 − zi)

qi
zn−2 − zn

(zn − zj)(zn−2 − zj)
qj

= (zi − zj)2 zn−2 − zn
(zn − zi)(zn−2 − zi)

(zn−2 − zi)(zn − zn−1)
(zn−2 − zn−1)(zn − zi)

zn−2 − zn
(zn − zj)(zn−2 − zj)

(zn−2 − zj)(zn − zn−1)
(zn−2 − zn−1)(zn − zj)

= (zn−2 − zn)2

(zn − zi)2
(zn − zn−1)2

(zn−2 − zn−1)2
(zi − zj)2

(zn − zj)2

=
(

zn − zn−1

zn−2 − zn−1

)2(
znzj + zizn−2 − zizn − zjzn−2

(zn − zi)(zn − zj)

)2

=
(

zn − zn−1

zn−2 − zn−1

)2(
znzn−2 + zizj − znzn−2 − zizj + znzj + zizn−2 − zizn − zjzn−2

(zn − zi)(zn − zj)

)2

=
(

zn − zn−1

zn−2 − zn−1

)2( (zn − zj)(zn−2 − zi)− (zn − zi)(zn−2 − zj)
(zn − zi)(zn − zj)

)2

=
(

zn − zn−1

zn−2 − zn−1

)2( (zn−2 − zi)
(zn − zi)

− (zn−2 − zj)
(zn − zj)

)2

= (qi − qj)2

8σ(Ωi,n−2)(dτi,dτj) = (zi − zn−2)2 zn−2 − zn
(zn − zi)(zn−2 − zi)

qi
zn−1 − zj

(zn−2 − zj)(zn−1 − zn−2)qj

= (zi − zn−2)2 1
(zn − zi)(zn−2 − zi)

qi
1

(zn−2 − zj)
qj(zn − zj)(qj − 1)

= (zn−2 − zi)(zn − zj)
(zn − zi)(zn−2 − zj)

qiqj(qj − 1)

= (q−1
j qi)qiqj(qj − 1)

= q2
i (qj − 1)

8σ(Ωi,n−1)(dτi,dτj) = (zi − zn−1)2 zn−2 − zn
(zn − zi)(zn−2 − zi)

qi
zn−2 − zn

(zn−1 − zn−2)(zn − zn−1)qj

= (zn−2 − zn)(zn − jn−1)
(zn−2 − zn−2)(zn − zi)

(zi − zn−1)2(zn−2 − zn)2

(zn − zi)(zn−2 − zi)(zn−1 − zn−2)(zn − zn−1)qj

= − (zi − zn−1)2(zn−2 − zn)2

(zn − zi)2(zn−1 − zn−2)2 qj

= −(1− qi)2qj

Combining it all together we get:

8σ
(
ugKZ( ∂

∂pi
)
)

= 2qi(qi − 1)
(
qi
pi
− qi − 1
pi − 1

)
∂

∂qi
�

∂

∂qi
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+
(

(qi − qj)2

pi − pj
+ q2

i (qj − 1)
pi

− qj(qi − 1)2

pi − 1

)
∂

∂qi
�

∂

∂qj



Chapter 8
From the geometrized KZ connection to

Hitchin’s connection

8.1 The parameter spaces

Let us first identify the base spaces for the KZ and Hitchin connection. The KZ connection
is a connection in a bundle over the configuration space of n points in C. We restrict
to the subset of configurations where the last 3 points are mapped to 0, 1,∞, which is
Confn−3(CP1 \ {0, 1,∞}). We can pull the bundle and the KZ connection back to the
universal cover U

(
Confn−3(CP1 \ {0, 1,∞})

)
, and the pullback bundle and connection carries

an action of π1(Confn−3(CP1 \ {0, 1,∞})). The monodromy representation is then equivalent
to the representation we get from fixing a point in x ∈ U

(
Confn−3(CP1 \ {0, 1,∞})

)
and

assigning to γ ∈ π1(Confn−3(CP1 \ {0, 1,∞})) the representation that first parallel transport
to γ · x and then act by γ−1 to get back to the fiber over x. This is again equivalent to the
action on the flat sections. But the Teichmüller space of a sphere with n > 3 punctures is
exactly the universal cover of Confn−3(CP1 \ {0, 1,∞}), as we saw in proposition 50. We now
have connections in two bundles over the same base manifold, and we can try to identify the
bundles under investigation.

8.2 The families

As we saw in section 5.7, we can identify the moduli space of parabolic bundles on (CP1, p1, . . . , pn−3, 0, 1,∞),
MPar(CP1, ~λ, k), with the GIT quotient (CP1)×n//SL(2,C). The quotient is exactly with
respect to the line bundle with Chern class [ω~λ]. As in 5.7.1, the stable part of the GIT
quotient is XG. We get, using the Mehta-Seshadri map and composing it with the map from
the parabolic bundles to XG, a map

Flags : T ×MFlat,irr(Σ, ~λ, k)→ T ×XG.

We denote by T ×I MFlat,irr(Σ, ~λ, k) the left hand side above, endowed with the complex
structure IT � Iσ. We will show that Flags is holomorphic.

Remark 74. In the non-punctured case, Biswas proved in [21] that the left hand side with
this complex structure serves as a “universal” moduli space of stable bundles, that is, families
of stable bundles where also the complex structure on the surface is allowed to vary in the

75
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family. Its possible to prove that the right hand side is such a universal moduli space, and
the map Flags would exactly be the classifying map if we showed that the left hand side
was a universal moduli space. We will however give a different proof. However, note that
in the nonpunctured case, or the punctured of higher genus, it is not true that the family is
trivializable, as the individual fibers are not isomorphic.

Let us describe the map Flagsσ. Given d+A ∈MFlat we construct a parabolic bundle over
Σσ in the following way. In the smoothly trivial bundle (Σσ \D)×C2 we define a holomorphic
structure by the del-bar operator ∂̄A = π0,1dA = ∂̄ + A0,1. Around each p ∈ D we can find

sections e1, e2 in a disc D∗ such that A = d + i

(
α 0
0 −α

)
dθ, where θ is the angle coordinate

on the disc. We have that

dθ = d−i
2 log

(z
z̄

)
= −i

2
z̄dz − zdz̄
|z|2

So dθ0,1 = i
2

dz̄
z̄ . Therefore |z|

α
e1, |z|−αe2 defines holomorphic sections:

∂̄|z|αe1 = α

2 |z|
α−1

zdz̄e1 = α

2 |z|
α dz̄
z̄
e1 = −i

(
α 0
0 −α

)
|z|αe1dθ0,1,

and similar for |z|−αe2. We can now glue the bundle together with the holomorphically trivial

bundle D × C2 by the transition maps (z, |z|αe1) → (z,
(

1
0

)
) and (z, |z|−αe2) → (z,

(
0
1

)
).

Doing this over each point in D we obtain a holomorphic vector bundle EA,σ over Σσ and we

can at each point p ∈ D choose the flag 0 ⊆ C
(

1
0

)
⊆ C2 to obtain a parabolic bundle. This is

the Mehta-Seshadri map. The Chern class of the bundle is −
∑
p∈D

∑2
i=1 αi. If the holonomy

around each point in D is in SU(2), we have that α1 = −α2, and the degree is 0. This is the
case for our specific choice of weights. As we saw in lemma 52, the parabolic bundles are – as
holomorphic bundles – trivial, so there exists a holomorphic trivialization f : EA,σ → Σσ ×C2.
The map Flagsσ is then given by

Flags(σ,A) =
[
fp1

((
1
0

))
, fp2

((
1
0

))
, . . . , fpn

((
1
0

))]
∈ (CP1)×n/SL(2,C).

which is well defined as the only automorphisms of the trivial vector bundle is the automor-
phisms that acts as the same SL(2,C) map in each fiber.

Theorem 44. The map Flags is a biholomorphism.

Proof. By Hartog’s theorem it is enough to show that the map is holomorphic in each variable.
For the variables in theMFlat,irr(Σ, ~λ, k)σ direction, this follows from theorem 36. Choose
a disc D ⊆ T centered at σ0 and a points [A] ∈ MFlat,irr(Σ, ~λ, k). We will prove that Flags
restricted to D×{A} is holomorphic. We can define a holomorphic structure ED on the vector
bundle (D× Σ)× C2 in the following way

1. On D× (Σ \D), using the ∂̄-operator given by ∂̄D + ∂̄Aσ (σ is the variable of D). This
is clearly a ∂̄-operator, and the requirement to define a holomorphic structure is that
the square is 0. But it is the ∂̄-operator induced from the prequantum connection
on MFlat,irr(Σ, ~λ, k) and the trivial connection on T , which have curvature π∗2(ω) ∈
Ω(1,1)(T ×IMFlat,irr(Σ, ~λ, k)), and therefore the curvature have (0, 2)-part equal to 0.
But the (0, 2) part of the curvature is exactly the square of the induced ∂̄ operator.
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2. On D×N(D) the bundle ED have the trivial holomorphic structure.

So the section (σ, zσ) 7→
(
σ, zσ,

(
1
0

))
is holomorphic, where zσ is a σ-holomorphic coordinate

around pi. In particular the composition mi of this section with the map σ 7→ pi is holomorphic.
The map Flags is then the composition of σ 7→ (m1, . . . ,mn) with a holomorphic trivialization
of E�{σ}×Σ, and the quotient from C2 \ {0} → Σ. Therefore we just need to show that there
exists a holomorphic trivialization of E�{σ}×Σ, varying holomorphically with σ, that is, a
holomorphic trivialization f : ED → D×Σ×C2. We then get that Flags is the composition of
holomorphic maps, and therefore holomorphic. In doing so, we can restrict to smaller discs
around 0 in D. As the complex structure on CP1 is rigid (we are currently not concerned about
the marked points), there is a biholomorphism D× Σ ∼= D× CP1 respecting the projection to
the first factor. We will denote by D0,D∞ the two coordinate charts of CP1.

1. There exists a holomorphic trivialization over D×D0 and D×D∞ as these are contractible
Stein manifolds.

2. The restriction to any {σ}×CP1 is trivializable, so there exists two point-wise independent,
holomorphic sections s1, s2 : {0} × CP1 → ED.

3. Their restriction to {0} × D0 extend to holomorphic sections over D× D0, and we can
assume these sections are also point-wise independent after a possible restriction to a
smaller disc.

4. By applying the transition function, we get independent sections D× D∞ \ {∞} → ED.

5. By construction the sections extend over (0,∞). So – after possible another restriction
to a smaller disc – we know that they have to be bounded.

6. So by Riemann’s removable singularities theorem we get for all z ∈ D a holomorphic
extension of si|{z}×(D∞\{0}) to {z} × D∞.

7. Therefore we get an extension to D× CP1, that might not be holomorphic at the points
in D× {∞}.

8. It now follows from the multi-variable version of Riemanns removeable singularities
theorem that this extension is holomorphic, see e.g. [47], theorem 7.3.3.

9. We now have two point-wise independent holomorphic sections, so the bundle is holo-
morphically trivial. �

The permutation group acts on XG by permuting the coordinates. This defines a action of the
mapping class group of Σ by assigning to a mapping class the corresponding permutation of
the marked points.

Proposition 75. The mapping class group of Σ acts on XG by permutations is intertwined
with the action of the mapping class group onMFlat,irr(Σ, ~λ, k) under Flags

Proof. There exists a commutative diagram as below, where the vertical maps are isomorphisms
of holomorphic vector bundles covering the identity, and the horizontal maps are isomorphisms
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of holomorphic vector bundles covering the biholomorphism ϕ : Σσ → Σϕσ:

EA,σ
ϕ∗

//

��

EϕA,ϕσ

��

Σσ × C2 ϕ×id
// Σϕσ × C2

We see that the image under Flagsϕσ of the parabolic bundle at the lower right corner in XG
is just the permutation determined by ϕ of the image of the bundle at the lower left. �

8.3 The line bundles

In this section we want to show

Proposition 76. There exists a holomorphic line bundle isomorphism

ψ :
(∐

σ

LCS
σ →MFlat,irr(Σ, ~λ, k)×I T

)
→ (LG × T → XG × T )

covering Flags :MFlat,irr(Σ, ~λ, k)×I T → XG × T .

Proof. We will prove the existence of an isomorphism by proving the following two claims:

1. Holomorphic line bundles over XG × T are classified by their first Chern class.

2. The two line bundles have the same first Chern class, that is, [Flags∗σ(ω~λG)] = k[ω~λ,k].

By theorem 37 XG is – up to subsets of codimension 2 – RMn, the blowup of n − 1 points
in CPn−3. But this space have H2(RMn,Z) ∼= Pic(RMn). Therefore – again due to the
equivalence up to subsets of codiemsnion 2 – also H2(XG,Z) ∼= Pic(XG). By Theorem
theorem 34, the Teichmüller space T is a Stein manifold. The theorem of Oka-Grauert – see
e.g. [28] – states that each topological vector bundle on a Stein manifolds admits exactly one
holomorphic structure, up to isomorphism, in particular the Picard group must be isomorphic
to the degree 2 cohomology group with integer coefficients, which for Teichmüller space is
the trivial group, as T is contractible by theorem 33 . To conclude that the Picard group of
T ×XG is equal to the product of the Picard groups of XG and T , we show that the last map
in the following piece of the sheaf exponential sequence is injective:

H1(T ×XG,Z) ι // H1(T ×XG,O) exp
// H1(T ×XG,O∗)

c1 // H2(T ×XG,Z) .

This follows from the fact that the kernel is the image of H1(T × XG,O), and by the
Künneth formula:

H1(T ×XG,O) ∼= H0(T ,O) �H1(XG,O)
⊕

H1(T ,O) �H0(XG,O).

It follows from the exponential sequence applied individually to T and XG, and the fact that
both T and XG have trivial degree 1 cohomology with integer coefficients, that H1(T ,O) ∼= 0
and H1(XG,O) ∼= 0. Therefore H1(T ×XG,O) ∼= 0 and the map is injective.

For the second part, we just need to show that the pullback of the first Chern class of LCS

along Flagsσ equals the first Chern class of LG restricted to XG × {σ}.
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This is shown in [24, proposition 6.3] that for a surface with one puncture with genus > 3.
The argument uses the calculations used in the proof of [24, Theorem 4.12], which is completely
local around the puncture, and therefore extends to multiple punctures. The requirement on
the genus is only to ensure high enough co-dimension of the unstable points, which we can
guarantee as well by assuming n > 4. Their calculation shows that∫

(Flags−1
σ )∗(ιi)∗(CP1)

ω~λ,k = λi
k

where λi is the colour of the i’th flag. However, c1(LG) is represented by ωλG, which is the
symplectic form obtained from reduction of the form �n

i=1λiωFS on×ni=1 CP
1, and therefore∫

q∗({z1,z2,...,zi−1}×CP1×{zi+1,...,zn})
ωλG = λi

�

But an element in H2(XG,Z) is determined exactly by the evaluation at these n cycles. Thus
we have c1(LCS) = Flags∗σ(c1(LG))

Remark 77. Such a ψ is unique up to a holomorphic function on T .

8.4 The isomorphism of the vector bundles

ψ gives an isomorphism of holomorphic vector bundles:

ψ : V → H0(XG, LG)× T
(ψ(s))(x, σ) = ψ(s(Flags−1

σ (x), σ))

This is compatible with the mapping class group action, at least up to a projective factor:

Proposition 78. The actions on H0(XG, LG)× T and V are projectively intertwined by ψ

Proof. This follows essentially from proposition 75.

ϕψ(s)(x, σ) = ϕϕ−1σ · (ψϕ−1σs)(ϕ−1x, ϕ−1σ) = ϕϕ−1σψϕ−1σ(s(Flags−1
ϕ−1σ ◦ ϕ

−1(x), ϕ−1σ))

= ϕϕ−1σψϕ−1σ(s(Flags−1
ϕ−1σ(x), ϕ−1σ))

ψ(ϕs)(x, σ) = ψσ((ϕs)(Flags−1
σ (x), σ)) = ψσ(ϕϕ−1σs(ϕ−1 ◦ Flags−1

σ (x), ϕ−1σ))
= ψσ(ϕϕ−1σs((Flags−1

σ ◦ Flagsϕ−1σ)−1 ◦ Flags−1
σ (x), ϕ−1σ))

= ψσ(ϕϕ−1σs(Flags−1
ϕ−1σ(x), ϕ−1σ))

so the difference is exactly given by ϕϕ−1σ ◦ ψϕ−1σ ◦ ϕ−1
ϕ−1σ ◦ ψ

−1
σ . This is a holomorphic

automorphism of LCS
σ, and therefore its multiplication by a non-zero holomorphic function

onMFlat,irr(Σ, ~λ, k)σ. However, such a function must be constantly equal to some number ασ,
so ψϕs = αϕψs . �

We can use ψ to push the geometrized KZ connection to a connection in V:

ψ(∇t + 1
k + 2u

KZ)ψ−1 = ∇t + ψ(dT ψ−1) + 1
k + 2ψ(uKZ)ψ−1
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We see that this is a connection satisfying our definition of a Hitchin connection. The trivial
action in the fibers of π∗(LG) covering the trivial action on XG and natural action on T ,
together with ψ defines an action • of MCG on LG. This action preserves the geometrized KZ
connection and therefore defines a representation on the flat sections, which is isomorphic to
the representation of the KZ connection. The same is true for push-forward, up to a projective
factor:

Theorem 45. The push forward of the geometrized KZ connection is a connection of Hitchin
type for the family of complex structures on (MFlat,irr(Σ, ~λ, k),LCS) defined by T .

Our next goal is to show that the geometrized KZ actually is projectively equal to the
Hitchin connection constructed in theorem 38.



Chapter 9
Comparison with the Hitchin connection

Recall that the Hitchin connection was of the form ∇Hit = ∇t +u where u was a one-form with
values in the differential operators on LCS. ForMFlat,irr(Σ, ~λ, k) we will denote this one-form
by uHit

λ,k, and by G~λ,k(V ) the symbol of uHit
~λ,k(V ) – denoted by G(V ) in section 6.1, and

was defined by:
G~λ,k(V )ω~λ,k = V ′[I].

We will explicitly calculate G~λ,k(V ) for the family of complex structures onMFlat,irr
k,~λ given

by T (Σ). The strategy is to first generalize [38, lemma 2.13] from moduli spaces of holomorphic
vector bundles to moduli spaces of parabolic vector bundles. This will give us a handle to
calculate G~λ,k(V ) in coordinates τi onMPar′(Σσ, ~λ, k).

Proposition 79. Let [A] ∈ MFlat,irr(Σ, ~λ, k), σ ∈ T (Σ) and E = MS([A], σ). Let X ∈
T0,1

E MPar′(Σσ, ~λ, k) be represented as an harmonic form α ∈ H1,0
ε (Σσ \ D, ad gC). Then

V [I](X) is represented in H1
∂̄A

(Σσ \D, ad gC) by the contraction −V [?]α.

Proof. This is a direct adaption of Hitchins proof of [38, lemma 2.13], using the Hodge theory
with exponential decay from [4]. Let ?(t) be a family of conformal structures on Σ, and
I(t) the corresponding family of complex structures onMFlat,irr(Σ, ~λ, k). Then we can write
α = h(t) + dAψ where h(t) is harmonic with respect to ?(t). Taking the derivative at t = 0 we
get

0 = ḣ+ dAψ̇
and from the uniqueness of harmonic representatives, that h(0) = α. We can now use the
definition of I(t) to get:

I(t)[α] = [−?(t)h(t)],
and again differentiation at t = 0 we get

İ[α] = [−?̇h(0)− ?dAḣ] = [−?̇α+ ?dAψ̇].

This class is represented by a harmonic (0, 1) form β:

β = −?α+ ?dAψ̇ + dAϕ.

By considering the type of the right hand side, we have that (?dAψ̇ + dAϕ)1,0 = 0, that is
?dAψ̇ + dAϕ = (?dAψ̇ + dAϕ)0,1 = −i∂̄Aψ̇ + ∂̄Aϕ. Therefore

[β] = [−?̇α]

81
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in H1
dA(Σ, ad g) �

In the same way as Hitchin, we use this to give the following formula for G~λ,k(V ) in terms
of data associated to the moduli space of holomorphic (parabolic) bundles instead of the
moduli space of flat connections:

Proposition 80. For α, β ∈ T∗MPar′(Σσ, ~λ, k) we have

G~λ,k(V )(α, β) = 1
2πi

∫
Σ

Tr(αβ)V [?]

Proof. Let α, β be as elements of H0(Σσ,SPEnd0(E) � K(D)). Then ω−1
~λ,k

applied to β is
exactly the harmonic representative h ∈ T0,1

[E]M
Par(Σσ, ~λ, k) such that β = ω~λ,k(h, ·). So we

have:

αG~λ,k(V )β = α(V ′[I]ω−1
~λ,k

(β)) = 1
2πi

∫
Σ

Tr(α ∧ V [I]ω−1
k β)

= 1
2πi

∫
Σ

Tr(α ∧ −V [?]ω−1
k β) = 1

2πi

∫
Σ

Tr(αV [?] ∧ ω−1
~λ,k
β)

= −ω~λ,k(αV [?], ω−1
~λ,k
β) = β(αV [?]) = 1

2πi

∫
Σ

Tr(β ∧ αV [?]). �

9.0.1 Kodaira-Spencer map of Σ

Next we must calculate ∂
∂pi

[?]. We only need to integrate against it, and it is therefore enough
to find a representative in H1(Σ?,T1,0). This is however exactly the Kodaira-Spencer map ρ
applied to ∂

∂pi
of the universal curve over T , at [?]. According to [63, Lemma 5.4.1], ρ( ∂

∂pi
) is

as a 1-Čech-cocycle, using again the open cover Uj , given by the sections

ρ

(
∂

∂pi

)
im

= −∂z ∈ H0(Ui ∩ Um, T (−D))

and ρ
(

∂
∂pi

)
mk

= 0 when i /∈ {k,m}. The computation works the same way as section 5.6. We
can find a Dolbeault representative exactly the same way as we did for ∂

∂τi
in proposition 62

and the result is
ρ

(
∂

∂pi

)
= ∂hi

∂z̄

∂

∂z
dz̄.

9.0.2 The symbol G~λ,k
(V )

The symbol G~λ,k(V )σ is a section of the symmetric tensor square S2(T 1,0MFlat,irr(Σ, ~λ, k)σ),
which is the same as S2((T 1,0)∗MFlat,irr(Σ, ~λ, k)σ)∗, and as such, it is given by proposition 80
as G(V )(α, β) =

∫
Σ Tr(αβ)ρ(V ), where ρ is the Kodaira-Spencer map. For V = ∂

∂pi
, a

computation similar to eq. (5.3) shows that

G( ∂

∂pi
)(α, β) = 1

2πi

∫
Σ

Tr(αβ)∂hi
∂z̄

dz ∧ dz̄ = Res
pi

Trαβ.
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We calculate:

G( ∂

∂pi
)(θi, θi) = Res

pi
2( −τi
z − 1 + τi

z − pi
)2 + 2( τi

z − 1 + −τ2
i

z − pi
)(τi − 1

z
− τi
z − 1 + 1

z − pi
)

= 2
(

2 −τ
2
i

pi − 1 + τi
pi − 1 − τ

2
i

(
τi − 1
pi

− τi
pi − 1

))
= 2τi(τi − 1)

(
τi − 1
pi − 1 −

τi
pi

)
,

and for i 6= j:

G( ∂

∂pi
)(θi, θj) = Res

pi
2( −τi
z − 1 + τi

z − pi
)( −τj
z − 1 + τj

z − pj
)

+ ( τi
z − 1 + −τ2

i

z − pi
)(τj − 1

z
− τj
z − 1 + 1

z − pj
)

+ ( τj
z − 1 +

−τ2
j

z − pj
)(τi − 1

z
− τi
z − 1 + 1

z − pi
)

=
(
2τi(

−τj
pi − 1 + τj

pi − pj
)

− τ2
i (τj − 1

pi
− τj
pi − 1 + 1

pi − pj
)

+ ( τj
pi − 1 +

−τ2
j

pi − pj
)
)

=
(
−(τi − τj)2

pi − pj
+ τj

(τi − 1)2

pi − 1 + (1− τj)
τ2
i

pi

)
and since θj does not have a pole at pi for i 6= j, we have G( ∂

∂pi
)(θj , θk) = 0 for i /∈ {j, k}.

9.1 Comparison

Comparing the expression for G~λ,k(V ) with the symbol calculated in section 7.3, we find that:

σ

(
1

k + 2u
gKZ(V )

)
= − 1

8(k + 2)G~λ,k(V ).

The Hitchin connection for T ×IMFlat(Σ, ~λ, k), on the other hand, have a one-form with the
symbol

σ
(
−uHit

k+2(V )
)

= σ

(
−1

2(k + 2) + nk+2

1
2δG~λ,k(V )

)
= − 1

8(k + 2)G~λ,k(V ),

using that nk = 2k, by lemma 60 and the second item in the proof of proposition 76. That is,
the two operators have the same symbol. The difference between two operators with the same
symbol is an operator of one degree lower. We now need the following two lemmas:

Lemma 81. The differential operator ugKZ(V ) preserves local holomorphic sections.

Proof. This follows from the description of ugKZ(V ) by reduction. If U ⊆ XG and s ∈
H0(U,LG), then the action of ugKZ(V ) on s is the same as the action of the pre-reduction
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operator
∑
i<j ΩijL

d(pi−pj)
pi−pj (V ) on the GC-invariant holomorphic section that lifts s to π−1(U).

Let us therefore show that the prequantum operator associated to the function µ(ξ) on X
preserves local holomorphic sections, so let Z ∈ T 0,1 and let s be a holomorphic section of L
over U ⊆ X.

∇Z(i∇Xµ(ξ) + µ(ξ)s) = i(∇[Z,Xµ(ξ)] − iω(Z,Xµ(ξ)))s+ df(Z)s = i∇[Z,Xµ(ξ)]s

But since G acts by Kähler isometries, Xµ(ξ) = ξ preserves both the metric and the symplectic
form, and therefore also the complex structure. Therefore

[Z,Xµ(ξ)] = −LXµ(ξ)Z ∈ T
0,1,

and we have that i∇[Z,Xµ(ξ)]s = 0. Since ΩijL is built from these prequantum operators it must
also preserve local holomorphic sections. �

Lemma 82. The differential operator uHit(V ) preserves local holomorphic sections.

Proof. The argument in lemma 64 that uHit(V ) preserves the global sections works the for
local sections as well. �

Theorem 46. For n > 4 there are one-forms ak on T such that
1

k + 2u
gKZ

~λ(V )− (Flags−1)∗(uHit
~λ,k+2(V )) = ak(V ).

Proof. We will consider sections of H0(XG, LG)× T → T as sections of π∗1(LG) → XG × T
that are holomorphic when restricted to XG × {σ} for any σ ∈ T . For a vector field V on
T we can treat ∇gKZ

V and (Flags−1)∗(∇Hit)V as differential operators in π∗1(LG). It follows
from lemma 82 and lemma 81 that if either of these differential operators are applied to a
local section s defined on an open subset U ⊆ XG ×T such that s�U∩(XG×{σ}) is holomorphic,
then the result also have this property. Therefore the difference is also holomorphic when
restricted to U ∩ (XG × {σ}). But the difference between ∇gKZ

V − (Flags−1)∗(∇Hit)V is a first
order operator differentiating only in the XG directions. As it preserves local holomorphic
sections, the symbol must be a holomorphic vector field on XG. But by corollary 59 there are
no holomorphic vector fields, and we see that it must be a zero order operator. But the only
zero order operators that preserves holomorphic sections are the constants. This is exactly the
claim. �

Theorem 47. The representation of the braid group coming from the Hitchin connection is
projectively equivalent to representations from the KZ connection

Proof. Remember that the representations can be realized in the following way. Fix a point
σ ∈ T , and let MCG(Σ) act on the fiber over σ in the following way. First choose a path γ
from σ to g · σ, for g ∈ MCG(Σ). The action of g on the fiber are now given by the parallel
transport along γ followed by the action of g−1. For the KZ and the Hitchin connection we
have to different parallel transports and two different actions on the line bundles, but both a
projectively equivalent: let γ : [0, 1]→ T be a curve, and consider the parallel transport along
γ. If s is a section along γ, flat with respect to the Hitchin connection, then eA(t)s is a flat
section of the KZ connection along γ, where A : [0, 1] → C is a solution to the differential
equation d

dtA(t) = a(γ̇(t)). Therefore the parallel transport along a curve of the KZ and the
Hitchin connection is projectively equivalent. It follows now from proposition 78 that the two
mapping class group actions to get back to γ(0) are projectively equivalent. Therefore the two
representations are projectively equivalent. �
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Remark 83. In fact, since the Teichmüller space is contractible, we can even find a function
A : T → C such that dA = a. It follows that the map s 7→ eAs send the projective covariant
sections of the Hitchin connection to the covariant sections of the KZ connection. Therefore
the representations consisting of the flat sections of two connections are projectively equivalent.

This theorem opens up for the use of Andersen’s theorem on asymptotic faithfulness, as
described in section 6.2 , to be applied to the quantum representations on a sphere. To make
the argument work, we need to choose (Σ, ~λ) such thatMFlat,irr(Σ, ~λ, k) is compact. One way
to ensure that is to choose an odd number of marked points, all with the same label, as we
saw in remark 53. Next, we need to choose a sequence of levels and labels so that the moduli
space associated to each of them is the same space. Recall that only the ratio ~λ

k is used in
the construction ofMFlat,irr(Σ, ~λ, k), and we can therefore achieve this by choosing for each
r ∈ N the level kr = qr and the label ~λr = r(p, p, . . . , p), where p, q ∈ N such that p

q < 1. The
quantum representation for the label ~λr at level kr is given by the Hitchin connection for a
prequantum line bundle for the symplectic form krω~λr,kr = krω~λ1,k1

. Therefore we are exactly
in the setup of section 6.2, and the following theorem can be proved by an identical argument:

Theorem 48. Let n ∈ N be odd and greater than 4, Σ a sphere with n punctures and ρp,qk the
quantum representation of MCG(Σ) where the n points are coloured with pk, at level qk, where
p, q ∈ N and p

q < 1.. Then
∞⊕
k=1

ρp,qk

is a faithful representation of MCG(Σ).

9.2 Case of 4 punctures

As mentioned above, the interesting case of 4 marked points are more complicated due to
the low codimension of the strictly semistable points. The stable part of the moduli space
MPar′(CP1, (1, 1, 1, 1), k) is parametrized by CP1 \ {0, 1,∞} by the cross ratio, and the three
strictly semi-stable points corresponds to 0, 1,∞ – that is, a codimension 1 subset, and
we therefore cannot apply Hartogs extension theorem. However, we can make some very
explicit calculations, which we will present in this section, and although we cannot quite show
theorem 1, we can reduce the statement to some reasonable conjectures.

We let ∇CS = ψ−1(∇CS), and set B to be the one-form ∇CS−∇. We see that B is of type
(1, 0) and therefor B = bdz for some function b.

(ψ−1)∗(∆G) = (ψ−1)∗(G∇ ∂
∂τ
∇ ∂

∂τ
+∇div(G ∂

∂τ ) ∂∂τ
)

= G

(
∇ ∂

∂τ
∇ ∂

∂τ
+ 2b∇ ∂

∂τ
+ bdb( ∂

∂τ
) + b2

)
+∇div(G ∂

∂τ ) ∂∂τ
+B(div(G ∂

∂τ
) ∂
∂τ

)

= G∇ ∂
∂τ
∇ ∂

∂τ
+∇Gdiv( ∂∂τ ) ∂∂τ

+∇( ∂∂τG) ∂∂τ
+G

(
2b∇ ∂

∂τ
+ bdb( ∂

∂τ
) + b2

)
+ bdiv(G ∂

∂τ
)

Lemma 84. The first 3 terms above match exactly the second and first order terms of the
geometrized KZ connection:

G∇ ∂
∂τ
∇ ∂

∂τ
+∇Gdiv( ∂∂τ ) ∂∂τ

+∇( ∂∂τG) ∂∂τ
=
∑
i=2,3

∑
ν

∇q∗(ν1)∇q∗(νi) − i∇ξ1+ξi1+ξ1+ξii
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Proof. We start with the second order term on the RHS. We know that, for x ∈ µ−1(0),
(TxGCx)⊥ = spanCW where W is a tangent vector such that q∗(W ) = ∂

∂τ . We let

νi = hiνW + P i,

where P i ∈ Tx(GCx). We know that

G( ∂
∂p

) = q∗(
∑
ν,i<j

Θij(p)hiνhjνW �W ) =
∑
ν,i<j

Θij(p)hiνhjν
∂

∂τ
�

∂

∂τ
,

where Θij = dpi−dpj
pi−pj ( ∂

∂p1
).

2∇νi∇νj =
∑
ν

∇hiνW∇hjνW +
∑
ν

∇hjνW∇hiνW

=
∑
ν

2hiνhjν∇W∇W +∇hiν(Whjν)W +∇hjν(Whiν)W

=
∑
ν

2hiνhjν∇W∇W +∇(W (hiνh
j
ν))W

so, as Θ only depend on p, we have:∑
i<j

∇νi∇νjΘij = G∇W∇W + 1
2∇(WG)W ,

where G = 2 1
p(p−1) (τ − p)(τ − 1)τ is the function such that G ∂

∂τ � ∂
∂τ = G( ∂∂p ). On the

quotient this becomes∑
i=2,3

∑
ν

∇q∗(ν1)∇q∗(νi) = G∇ ∂
∂τ
∇ ∂

∂τ
+ 1

2∇( ∂∂τG) ∂∂τ
. (9.1)

To calculate the second term on the LHS, we first recall that the symplectic form ωG is given
by

ωG = idτ ∧ dτ̄
|τ ||τ − 1|(1 + |τ |+ |τ − 1|) .

Remember that L ∂
∂τ
ωG = div( ∂

∂τ )ωG. We use Cartans formula and get

L ∂
∂τ
ωG = dωG( ∂

∂τ
, ·) = d idτ̄

|τ ||τ − 1|(1 + |τ |+ |τ − 1|) =
(
∂

∂τ

1
|τ ||τ − 1|(1 + |τ |+ |τ − 1|)

)
idτ∧dτ̄

And from this we get

div( ∂
∂τ

) =
(
∂

∂τ

1
|τ ||τ − 1|(1 + |τ |+ |τ − 1|)

)
|τ ||τ − 1|(1 + |τ |+ |τ − 1|)

= − ∂

∂τ
log(|τ ||τ − 1|(1 + |τ |+ |τ − 1|))

= − 1
2τ −

1
2(τ − 1) −

τ̄
2|τ | + τ̄−1

2|τ−1|

1 + |τ |+ |τ − 1| .
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And we can now us this to calculate the desired quantity:

∇(Gdiv( ∂∂τ )+ ∂
∂τG) ∂∂τ

.

We compute:

∂

∂τ
G = 2

p(p− 1)((τ − p)(2τ − 1) + τ(τ − 1)),

We already have a contribution of 1
2∇ ∂

∂τG
∂
∂τ

from eq. (9.1), so we compute:

G

(
div( ∂

∂τ
)
)

+ 1
2
∂

∂τ
G = (τ − p)

p(p− 1)

(
−(τ − 1 + τ)− (τ − 1)|τ |+ τ |τ − 1|

1 + |τ |+ |τ − 1|

)
+ 1
p(p− 1)((τ − p)(2τ − 1) + τ(τ − 1))

= (τ − p)
p(p− 1)

(
− (τ − 1)|τ |+ τ |τ − 1|

1 + |τ |+ |τ − 1|

)
+ 1
p(p− 1)(τ(τ − 1)).

For the KZ connection, we have the following, from calculation in section 5.7.3

U12 = −iq∗(ξ1 + ξ2
1 + ξ1 + ξ2

2) = τ

(
1− τ + |τ − 1|

1 + |τ |+ |τ − 1|

)
∂

∂τ

U13 = −iq∗(ξ1 + ξ3
1 + ξ1 + ξ3

3) = (τ − 1)(|τ |+ τ)
1 + |τ |+ |τ − 1|

∂

∂τ
.

We also have Θ12 = 1
p and Θ13 = 1

p−1 . The relevant vector field for the first-order part of
the KZ is

Θ12U12 + Θ13U13 = 1
p(p− 1) ((p− 1)U12 + pU13)

= − 1
p(p− 1)

(
(τ − p) (τ − 1)|τ |+ τ |τ − 1|

1 + |τ |+ |τ − 1| − τ(τ − 1)
)

�

Remark 85. We see that if B = (ψ−1)∗(∂Fσ) then the KZ connection match the pullback of
the Hitchin connection up to a zero order operator.

Lemma 86. K−
1
2

XG
∼= LG as holomorphic line bundles with connection and hermitian structure.

Proof. They are isomorphic as holomorphic vector bundles, and the connections have the
same curvature (because the Ricci form is −2ωG). The obstruction to isomorphism is in
H1(XG,U(1)), and given by the difference of the monodromy around the punctures. But both
bundles (with connection and hermitian structure) are invariant under the permutation action,
so the same is true for the monodromy. But the only element x ∈ U(1) that satisfies x = x2 is
the identity, so the obstruction vanishes. �
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Conjecture 87. The map Flagsσ :MFlat(Σ, ~λ, k)→ XG is an isometry for all σ ∈ T

Conjecture 88. The subset of sections of the quotient line bundle LG that satisfy that the
pullback to the stable points in X extends over the strictly semistable points are mapped, under
ψ, to a subset of

∐
σ∈T H0(MFlat(Σ, ~λ, k)σ,LCS) preserved by the Hitchin connection.

Assuming the first of these conjectures, we have that B satisfies the requirement presented
in remark 85, so the difference is a zero order operator. Assuming the second conjecture,
this operator must preserve a finite-dimensional subset of the holomorphic sections. However,
multiplication with a non-constant function generates a infinite dimensional subspace, so the
zero-order operator is multiplication with a function on T .
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