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Preface

This PhD thesis has been submitted to the Faculty of Science and Technology at
Aarhus University. The work was conducted at the Department of Mathematics un-
der the supervision of Associate Professor Ute Hahn in collaboration with Professor
Eva B. Vedel Jensen and Professor Jens R. Nyengaard. The work was partly financed
by the Centre for Stochastic Geometry and Advanced Bioimaging (CSGB), funded
by the Villum Foundation.

The thesis comprises an introduction followed by four self-contained papers
published in international journals or as research reports, and two supplementary
chapters:

Paper A Ina Trolle Andersen, Ute Hahn and Eva B. Vedel Jensen (2015). Optimal
PPS sampling with vanishing auxiliary variables – with applications in mi-
croscopy. Scandinavian Journal of Statistics 42(4), 1136–1148.

Supplement A Supplementary material which is also available in the online
version of Paper A at the publisher’s web site.

Paper B Kresten K. Keller, Ina Trolle Andersen et al. (2013). Improving efficiency
in stereology: a study applying the proportionator and the autodisector on
virtual slides. Journal of Microscopy 251(1), 68–76.

Paper C Ina Trolle Andersen and Johanna F. Ziegel (2014). 2D non-uniform sys-
tematic sampling. CSGB Research Report 2014–14, Department of Mathematics,
Aarhus University.

Paper D Ina Trolle Andersen and Ute Hahn (2016). Matérn thinned Cox processes.
Spatial Statistics 15, 1–21.

Supplement D Limit results and parameter estimation in Matérn thinned
Matérn cluster processes. Unpublished.

The introduction consists of two parts concerning sampling (Paper A, B and C)
and point processes (Paper D). These parts of the thesis present the theoretical
background and research question of interest and summarize the main results.
Additionally, Supplement D elaborates on Paper D with theoretical results and a
simulation study.
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Summary

This PhD thesis presents advances in non-uniform sampling in microscopy. Fur-
thermore, the thesis takes up concrete modelling aspects for microscopy data. The
developed model class for point processes is an original contribution to the theory
of spatial point processes.

Recent improvements in computerized image analysis of microscopy sections
have opened up the possibility for obtaining precise quantitative information about
inhomogeneous spatial structures. The idea is to use image analysis for the iden-
tification of the regions with high contents of the spatial structure of interest.
Subsequently, small fields of view (FOV) of the section are considered at high mag-
nification, thereby allowing for precise measurements of the structure by an expert
user. The FOV are chosen according to a sampling design, where the sample in-
clusion probabilities depend on the auxiliary information from the image analysis.
Thereby, efficient estimators can be obtained for the structure on the whole section.

In microscopy, the most commonly used non-uniform sampling design, the
proportionator, is a systematic sampling design with sample inclusion probabilities
proportional to the size of an auxiliary variable (PPS sampling). However, a common
phenomenon in microscopy is vanishing auxiliary variables, i.e. zero-valued auxil-
iary variables with corresponding positive variables of interest. In PPS sampling this
phenomenon makes part of the sample population inaccessible, hence it introduces
a bias. In Paper A, we address this problem and propose a modified sampling design,
which is optimal in a model-assisted sampling set-up.

In a practical application (Paper B), we compare the efficiency of the proportion-
ator and the efficiency of standard systematic uniform random sampling (SURS).
We find the proportionator 45 percent to 90 percent more time efficient than SURS.
Furthermore, the applicability of our modified sampling design is illustrated for
these data (Paper A).

Designs like the proportionator do not use the spatial information often available
prior to sampling in microscopy. In order to preserve and utilize such information,
we introduce in Paper C a generalization of non-uniform systematic sampling to the
plane. The design has zero estimator variance under optimal auxiliary information.
Simulation results show that this design is more efficient than standard sampling
designs in a number of cases of area estimation, however, in general the design is
not substantially better than simpler alternatives.

In bone marrow pathology, the degree of clustering of cells is used as a diag-
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vi Summary

nostic criterion. However, pathologists categorize the degree of clustering by eye
using vaguely defined rules. Therefore, we set out to derive statistical inference for
clusters of cells. We aimed at describing such cell clusters by simple parametric
models. This has the advantage in practice that the parameters often have simple
biological interpretations and hypothesis regarding the parameters can be tested.
Proper statistical inference can be obtained viewing the centres of the cells as a real-
ization from a point process. For non-overlapping spherical cells, the diameter of
the cells determine a lower bound for the distance between the centres. In Paper D,
we achieve a combination of clustering and a hard core behaviour by applying
dependent Matérn thinning to Cox processes. Formulae for first- and second-order
characteristics are established using Palm theory. Simple approximations for these
characteristics are suggested, for which the quality is supported by limit results
(Supplement D) and simulations (Paper D and Supplement D). This allow for a
quantitative characterization through summary statistics. We study parametric in-
ference in the model (Supplement D) and illustrates its applicability for microscopy
data (Paper D).



Dansk Resumé

Denne afhandling præsenterer fremskridt inden for ikke-uniform sampling i mi-
kroskopi. Endvidere beskæftiger afhandlingen sig med konkrete modellerings aspek-
ter vedrørende data fra mikroskopi. Den nye modelklasse af punktprocesser er et
originalt bidrag til teorien om rumlige punktprocesser.

Forbedret billedanalyse af snit fra mikroskopi har gjort det muligt at opnå
præcise kvantitative informationer om inhomogene rumlige strukturer. Ideen er at
benytte billedanalysen til at identificere de dele af snittet, der indeholder meget
af den struktur man er interesseret i. Efterfølgende betragtes små observationsvin-
duer af snittet i høj forstørrelse, hvorpå en ekspert kan lave præcise målinger af
strukturen. Observationsvinduerne er valgt ud fra et samplings design, hvor sample
inklusionssandsynlighederne er baseret på den ekstra information der er tilgængelig
fra billedanalysen. Derved kan der opnås præcise estimater for strukturen på hele
snittet.

I mikroskopi er det oftest anvendte ikke-uniforme sampling design, propor-
tionatoren, et systematisk sampling design med inklusionssandsynligheder, der
er proportionale med en hjælpevariabel (PPS sampling). Imidlertid er det dog et
udbredt fænomen i mikroskopi at hjælpevariablen kan tage værdien nul selv hvis
interessevariablen tager en positiv værdi. I PPS sampling resulterer dette fænomen
i, at en del af sample populationen er utilgængelig, hvorved der introduceres et bias.
I Artikel A betragter vi dette problem og foreslår et modificeret sampling design,
som er optimal under et model-assisteret set-up.

I en praktisk anvendelse (Artikel B), sammenlignes effektiviteten af proportiona-
toren med effektiviteten af standard systematisk uniform random sampling (SURS).
Vi fandt proportionatoren 45 procent til 90 procent mere tidseffektiv end SURS.
Endvidere blev anvendeligheden af vores modificerede sampling design illustreret
for disse data (Artikel A).

Designs såsom proportionatoren anvender ikke den rumlige information, som
ofte er tilgængelige forud for sampling i mikroskopi. For at bevare og udnytte
denne information, introducerer vi i Artikel C en generalisering af ikke-uniform
systematisk sampling til planen. Med dette design opnår man, at variansen på
estimatet er nul, når optimale hjælpevariabler er tilgængelige. Simulationer viser, at
dette design er mere effektivt end standard sampling designs i en række tilfælde
af areal estimation, men generelt er designet ikke betydeligt bedre end simplere
alternativer.
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viii Dansk Resumé

Inden for knoglemarvspatologi anvendes graden af klyngedannelse af celler som
et diagnostisk kriterium. Patologerne kategoriserer graden af klyngedannelse på
øjemål ved brug af nogle svagt definerede regler. Dette motiverede os til at udlede
statistisk inferens for klyngedannelse af celler. Vi sigtede mod at kunne beskrive
sådanne cellegrupperinger ved simple parametriske modeller. I praksis har det
den fordel, at parametrene ofte har simple biologiske fortolkninger. Endvidere
kan hypoteser vedrørende parametrene testes. Statistisk inferens kan opnås ved
at betragte midtpunkterne af cellerne som en realisation af en punktproces. For
ikke-overlappende sfæriske celler vil diameteren af cellerne bestemme en nedre
grænse for afstanden mellem midtpunkterne. I Artikel D foreslår vi at anvende
afhængig Matérn udtynding på Cox processer for at modellere klyngedannelse
med en mindste positiv afstand mellem punkterne. Formler for første- og anden-
ordensegenskaber bestemmes ud fra Palm teori. Simple approksimationer for disse
egenskaber foreslås, for hvilke kvaliteten understøttes af grænseværdiresultater
(Supplement D) og simuleringer (Artikel D og Supplement D). Dette giver mulighed
for en kvantitativ karakterisering ved hjælp af summary statistics. Vi studerer
parametrisk inferens i modellen (Supplement D) og illustrerer dets anvendelighed
for data fra mikroskopi (Artikel D).
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Part I

Introduction





Contributions to sampling in
microscopy

1.1 Introduction

Analysis of spatial material by microscopy requires measurements on sections
through the material. To reduce workload, the sections are partitioned into small
fields of view (FOV) and a sample of these are considered at high magnification. Usu-
ally, the sample is chosen as a systematic uniform random set of FOV as illustrated
in Figure 1.1. See also Baddeley and Jensen (2005, Section 12.4.2).

Figure 1.1: Illustration of a systematic sample of fields of view (FOV) from a section.
Sampled FOV are shown hatched.

Biological material, however, is quite often inhomogeneous. For such material,
systematic uniform random samples (SURS) of FOV consist frequently of many FOV
with no or very small parts of the material of interest. The sampling scheme may
be improved if the microscopy images allow for automatic identification of regions
with high contents of the material of interest. An alternative uniform sampling
scheme using such information, the so-called smooth fractionator, was proposed in
Gundersen (2002). Later, Gardi et al. (2008a,b) developed this type of sampling into
a systematic non-uniform random sampling scheme, called the proportionator, which
is based on probability proportional to size (PPS) sampling. The proportionator has
been shown to reduce the estimator variance considerably (Gardi et al., 2008a,b).

The non-uniform sampling scheme requires for each FOV the measurement
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4 Contributions to sampling in microscopy

at low magnification of an auxiliary variable. In microscopy applications, this
auxiliary variable may vanish for quite a number of FOV and these sampling units
are thereby inaccessible by PPS sampling. In this thesis, we suggest a modification
of the proportionator design for which an optimal solution can be found using
a model-assisted approach. We also develop a genuine 2D non-uniform random
sampling design that directly include the spatial information of the FOV in the
sampling procedure.

In the following, we start by a description of design-based and model-assisted
sampling (Section 1.2). We also give a short account of some of the currently used
sampling designs in microscopy. Next, a description is given of the research ques-
tions studied, the results obtained and their relation to the state-of-the-art within
sampling in microscopy for the three sampling publications of the thesis (Papers
A, B and C), see Sections 1.3–1.5. Proofs and results from a robustness study of the
optimal design in Paper A is given in Supplement A.

1.2 Design-based and model-assisted sampling

We consider a finite population ofN units and assume that a realization of a random
variable Yi (the measurement of interest, e.g. number of cells in a FOV) is available
for each unit i, i = 1, . . . ,N . Furthermore, we let T =

∑N
i=1Yi denote the population

total and assume that T is the quantity of interest.
In the design-based framework, the aim is to estimate T for a realization of

Y = {Y1, . . . ,YN }, based on a random sample S ⊆ {1, . . . ,N }, independent of Y . We shall
assume that S is a random sample without replacement of fixed size n. A popular
estimator of the population total is the Horvitz-Thompson estimator (Särndal et al.,
1992, p. 42)

T̂HT =
∑
i∈S

Yi
πi
, (1.1)

where πi = P (i ∈ S) is the probability that the ith unit is included in the sample.
The estimator T̂HT is design-unbiased, i.e. E(T̂HT | Y ) = T , if the inclusion probabil-
ities πi are all positive. Design-based inference is often preferable in microscopy
applications, as no model assumptions such as stationarity or isotropy are needed.
Unfortunately, a general variance minimizing design and estimator (optimal strat-
egy) does not exist in the design-based framework, which motivates some use of
models.

In the model-based framework a model of Yi is assumed. The objective is to
predict T from a predictor T̂ , based on a sample S. The predictor T̂ is not necessarily
design-unbiased, but instead required to be model-unbiased, i.e. E(T̂ − T | S) = 0
for all possible samples S. Optimization in this framework is with respect to the
model-variance Var(T̂ | S) (Isaki and Fuller, 1982).

Both design-based and model-based sampling for inference about particle popu-
lations (in particular, cell populations) are discussed in Baddeley and Jensen (2005,
Chapter 10). In Hansen et al. (2011), model-based non-uniform sampling of point
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processes was developed for microscopy data to obtain an optimal predictor under
a proportional regression model.

A compromise between the design- and model-based framework is the model-
assisted approach which has been advocated by Särndal et al. (1992). Here, both the
design and the assumed model is important, as (approximately) design-unbiased
estimation is required and one seek optimality results with respect to the anticipated
variance of the estimation error Var(T̂ − T ) (Isaki and Fuller, 1982). Under the
assumptions that the Yi ’s are uncorrelated and T̂ is unbiased, E(T̂ − T ) = 0, the
anticipated variance simplifies and has following lower bound (Särndal et al., 1992,
Remark 12.2.2, p. 453)

Var(T̂ − T ) = E(T̂ − T )2 ≥
N∑
i=1

(
1
πi
− 1)Var(Yi). (1.2)

The assumption regarding unbiasedness holds when T̂ is design-unbiased. In this
case, the mean design variance, the anticipated variance and the mean square error
of T̂ are identical,

EVar(T̂ | Y ) = Var(T̂ − T ) = E(T̂ − T )2. (1.3)

Thus minimizing the anticipated variance is the same as minimizing the model
expectation of the design variance. When EYi ∝ πi we obtain the Godambe-Joshi
lower bound in (1.2) of the Horvitz-Thompson estimator.

In order to obtain an efficient estimator of T , auxiliary information is often
used directly in the sampling design to choose the inclusion probabilities wisely,
or indirectly to choose an efficient design with constant inclusion probabilities. A
class of sampling schemes which is widely used in sampling due to its simplicity
and efficiency is (non-uniform) systematic sampling, see e.g. Särndal et al. (1992).
Here, auxiliary information may be used both directly and indirectly. A systematic
sampling design with inclusion probabilities πi , i = 1, . . . ,N , and fixed sample size
n, can be implemented as follows. Let U ∼Unif([0,1]) and Uj =U + j − 1, j = 1, . . . ,n.
Then, the sample S consists of those units i for which a Uj is contained in the
interval [ i−1∑

l=1

πl ,
i∑
l=1

πl

]
.

Auxiliary variables xi associated with Yi may be used directly when xi is expected to
be roughly proportional to Yi . Then, the efficiency increases if we let the inclusion
probability πi be proportional to xi (sampling proportional to size, PPS sampling),
πi = nxi/

∑N
i=1 xi . Auxiliary variables xi may also be used indirectly to choose an

efficient design with constant inclusion probabilities. For instance, we may use the
xis in an ordering of the units. If we simply order the units directly according to
the size of the auxiliary variables, x1 ≤ . . . ≤ xN , then a linear (or monotonic) trend
will often appear in the yis which means that the estimate T̂ will be monotonic with
respect to the starting point of the samples. Balanced systematic sampling, described
in Murthy et al. (1967, Section 5.9d) and illustrated in Figure 1.2, is a uniform
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x1 < x2 < . . . < xN

x[1] < x[2] < . . . < x[N ]

Figure 1.2: Ordered and balanced systematic sampling.

systematic sampling design with an ascending-descending ordering which is based
on the idea of pairing the units together in such way that the trend cancels out. More
precisely, if we let 1, . . . ,N denote the ordering such that x1 ≤ x2 ≤ . . . ≤ xN , M = N

2
if N is even and M = N+1

2 if N is odd, the balanced ordering becomes [1], . . . , [N ],
where

[i] =

2i − 1, i ≤M,
2(N + 1− i), i > M.

(1.4)

Balanced systematic sampling and other uniform systematic designs e.g. modified
systematic sampling (Singh et al., 1968), have been considered in details under differ-
ent models to find the optimal ordering. Balanced sampling with xi = i has been
proven to be superior to uniform systematic sampling with an ordering according
to increasing unit numbers when linear trend (EYi = a+ bi, i = 1, . . .N ) is present
(Bellhouse and Rao, 1975).

When using the balanced uniform systematic sampling in stereology, the method
is referred to as the smooth fractionator as proposed by Gundersen (2002) and con-
sidered for microscopy data in Gardi et al. (2006). Theoretical results with respect
to optimal orderings for non-uniform systematic sampling do not exists, yet Gardi
et al. (2008a,b) adapted the idea to their PPS sampling design, the proportionator,
which now used in microscopy.

1.3 Optimal PPS Sampling (Paper A)

In applications in microscopy, a non-negligible part of the population under study
may be inaccessible under PPS sampling due to vanishing auxiliary variables. In such
cases, the Horvitz-Thompson estimator may be biased. Suggestions for resolving
the situation have been given in Gardi et al. (2008a,b), but with the expense of an
unnecessary large estimator variance. In Paper A, we propose a modification of the
systematic PPS sampling design using stratified sampling for which an optimal
solution can be found. The approach is model-assisted and optimality is in terms of
minimal mean design variance.
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1.3.1 Design and model set-up

As described in details in Section 1.2, we assume realizations of uncorrelated random
variables Yi (the variable of interest), and associated auxiliary variables xi , i = 1 . . . ,N ,
are available. Let Y = {Y1, . . . ,YN } and x = {x1, . . . ,xN }. The aim is to estimate T =∑N
i Yi for a realization of Y based on a sample S using the Horvitz-Thompson

estimator T̂ = T̂HT . As x is completely known in the applications we have in mind,
modelling and inference about Y will be made in the conditional distribution given
x. Thus, we may think of x as non-random variables.

The common characteristics of the sampling designs we optimize in Paper A are
fixed sample size n and inclusion probabilities π̃i , say, with

π̃i = 0, i = 1, . . . ,N0, (1.5)

π̃i > 0, i =N0 + 1, . . . ,N . (1.6)

(We use the notation π̃i here because πi is reserved for the modified design presented
below.) Note that for i = 1, . . . ,N0, the inclusion probabilities may in fact be zero
or have been set to zero, because they are unknown. Consequently, part of the
population is inaccessible. Hence, the purpose is to find an optimal modification
of the design, such that the first N0 units are assigned a constant positive inclusion
probability and the remaining units have inclusion probabilities proportional to the
original ones. The modified design should still have fixed sample size n.

In the microscopy example which motivated this set-up, we consider systematic
PPS sampling with π̃i = nxi/x., x. =

∑N
i=1 xi and x1 = · · · = xN0

= 0. The modification
proposed in Gardi et al. (2008a,b) is simply to let xi = ε > 0, i = 1, . . .N0. This design
is called ε-corrected systematic PPS sampling and is illustrated in Figure 1.3. Letting
ε be too small will lead to a large estimator variance. For instance, if there exists an
i with Yi > 0 and xi = ε, then

Var(T̂ | Y ) ≥
N∑
i=1

1
πi
Y 2
i − T

2→∞, as ε→ 0. (1.7)

Therefore, we seek an optimal ε, which minimizes the variance.
The crucial step in the optimization is to realize that ε-corrected systematic PPS

sampling has a built-in stratification mechanism, such that an almost fixed fraction
of the sampled units belongs to the two strata, Stratum 0 (1, . . . ,N0) and Stratum 1
(N0 + 1, . . . ,N ). The expected number of units sampled in Stratum 0 is given by

n0 = n
N0ε

x.+N0ε
. (1.8)

Hence, finding an optimal ε > 0 is equivalent to finding an optimal sample size
n0 > 0 in Stratum 0.

In Theorem 1 in Paper A, which holds under the mild assumption EYi = EYj ,
i, j = 1, . . . ,N0, we verify to which extent the mean design variance of T̂ changes
when it is modified into a genuinely stratified design, i.e. a design with independent
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ε xi

Stratum 0 Stratum 1

Figure 1.3: Illustration of ε-corrected systematic PPS sampling where a small constant
ε > 0 has been added to each unit with xi = 0 to ensure an unbiased estimator. Each box
represents a sampling unit i with height given by Yi and width proportional to the inclusion
probabilities. The dashed arrows illustrate the sampled units in a systematic sample S. The
sampling scheme has a built-in stratification mechanism such that an almost fixed fraction
of the sampled units will be in each stratum. (Paper A, Figure 2)

sampling in each of the two strata. In particular, when n0 is an integer, the two types
of design have the same mean design variance.

In the general set-up described in (1.5)-(1.6), we similarly propose to sample
independently on the two strata, Stratum 0 and Stratum 1, and consider modified
designs with integer values of n0 > 0, the sample size in Stratum 0, such that the
inclusion probabilities of the modified design are given by

πi =


n0

N0
, i = 1, . . . ,N0,(

1− n0

n

)
π̃i , i =N0 + 1, . . . ,N .

(1.9)

1.3.2 Optimal PPS sampling

In order to use a model-assisted approach to achieve optimal results, we will consider
the following model

EYi = β0, VarYi = σ2
0 , i = 1, . . . ,N0, (1.10)

EYi ∝ π̃i , VarYi = σ2
i , i =N0 + 1, . . . ,N , (1.11)

where σ2
0 > 0 and σ2

i > 0, i =N0 + 1, . . . ,N .
In Theorem 2 in Paper A, we consider the Horvitz-Thompson estimator T̂ =

T̂0 + T̂1 where T̂0 and T̂1 are based on independent samples S0 and S1 in Stratum
0 and Stratum 1, respectively. We find the n0 for which the mean design variance
EVar(T̂ |Y ) is minimized. In particular, we find a simple expression for the optimal
n0 under PPS sampling where π̃i = nxi/x.. In the microscopy application, this n0

may be converted to an expression for ε.
Further simplifications are possible if we assume a proportional regression

model in Stratum 1 and, in addition, we assume that the mean-variance relationship
is the same in the two strata, i.e.

EYi = β1xi , VarYi = σ2
1 x

g
i , i =N0 + 1, . . . ,N and σ2

0 /β
g
0 = σ2

1 /β
g
1 , (1.12)
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with 1 ≤ g ≤ 2. Then, the optimal allocation becomes

n0 = n

√
N

2−g
0 (qx.)g√

N
2−g
0 (qx.)g +

√
x.(xg−1).

, (1.13)

where (xg−1). =
∑N
i=N0+1 x

g−1
i and q = ET0/ET1 = β0N0

β1x.
. In the special cases with g = 1

and g = 2, we find

n0 =


n

√
qk

1 +
√
qk
, g = 1,

n
q

1 + q
, g = 2.

(1.14)

1.3.3 Robustness

We also investigated the robustness of the optimal allocation solution against pa-
rameter misspecifications and departures from the proportional regression model,
described above. Numerical calculations as well as simulations from an inhomoge-
neous Poisson point process suggest that the optimum is robust against two types of
misspecifications, namely; the guessed fraction of the variable of interest expected
to be found in the part of the population with vanishing auxiliary variables, and
departures from proportionality in a Poisson model with Yi ∼ pois(xδi ). Numerical
calculation also showed that if the true variance parameter is g = 1 then choosing
g = 2 may result in a substantial loss in efficiency, whereas the opposite case is less
pronounced. These results may be found in Supplement A after Paper A in this
thesis.

1.3.4 Analysis of microscopy data

To see how well the approach works in practice, microscopy data from Paper B
were considered. The mean-variance relation in the extended regression model
fitted a model with g = 1 quite well. The mean proportionality in Stratum 1 was
not fulfilled. In fact, a model with δ = 2.4 was more suitable. However, as also
seen in the robustness study, lack of proportionality is not critical for the optimum
when g = 1. The optimal allocation rule in (1.14) with g = 1 almost fitted the true
optimum. Compared to using the optimum for g = 2 the variance was halved. This
is illustrated in Figure 1.4.

1.3.5 Discussion and perspectives

Paper A shows both theoretically and in applications the consequence that adding a
non-optimal correcting-constant ε > 0 has for the estimator variance. In the existing
literature, either vanishing auxiliary variables are completely ignored (Hansen et al.,
2011) or the importance of the value of ε is underrated (Gardi et al., 2008a,b). We
have shown that a model-assisted approach can be used to achieve optimal results
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Figure 1.4: Left: The variance of simple random sampling (dotted line), PPS with replace-
ment sampling (stippled line) and systematic PPS sampling with an ordering according to
the size of the xis (dots), all under stratification as a function of n0/n. Right: The same plot
except that the variance for systematic PPS sampling is obtained by averaging bins of size
20. The sample allocations obtained by (1.14) with g = 1 and g = 2 are marked with crosses.
(Paper A, Figure 6)

for the design-unbiased Horvitz-Thompson estimator. As the optimal solution only
depends on a few parameters and has been shown to be robust, we expect that the
optimal estimator will be used in the microscopy community, and also in a more
general context where PPS sampling is used, and auxiliary variables can take the
value zero.

For further research, it could be interesting to generalize the optimality result in
Theorem 2 of Paper A. The result requires that the mean variance do not depend
on the second-order inclusion probabilities. This holds under the assumption that
EYi is proportional to the inclusion probabilities. However, some sampling designs
have the same property for the mean variance using arbitrary inclusion probabilities,
such as the design considered in Nedyalkova and Tillé (2008), where the samples
are balanced on EYi . This opens up to further optimization, using optimal inclusion
probabilities. In a more general set-up with possible more than one type of auxiliary
variable, the general regression estimator may also be considered (Särndal et al.,
1992).

1.4 Implementation (Paper B)

In Paper B, published in Journal of Microscopy, the actual implementation of ε-
corrected PPS sampling is discussed. One of the main objectives of the paper is to
investigate the time efficiency of this new sampling design and compare it with the
time efficiency of systematic uniform random sampling (SURS) in a practical appli-
cation of cell counting in inhomogeneously distributed cell populations. Paper B
is written for microscopy users. In the following, a mathematical and statistical
description of the involved geometric sampling and variance estimation procedures
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U +mt

U +mt + d

U + (m+ 1) t

U + (m+ 1) t + d

X

Zi

×

×

×

zi

Look-up plane

Reference plane

Figure 1.5: Illustration of the disector counting rule for particles.

is given.

1.4.1 Sampling

Let us consider a finite population of cells, Z1, . . . ,ZN . They can be arbitrary compact
subsets of R3. Our aim is to estimate N from observations in planar sections. We
only consider planes of fixed orientation. Let Tu , u ∈R, be such a plane with position
u, see Figure 1.5. A disector of height d is a set of two parallel planes (Tu ,Tu+d) a
distance d apart. Here, Tu+d is called the reference plane and Tu the look-up plane.

In Paper B, a systematic uniform random set of disectors with distance t > d
between neighbour disectors is used in the sampling. More specifically, the disectors
are described as

(TU+mt ,TU+mt+d), m ∈Z, U ∼Unif[0, t).

Let zi ∈ R be the coordinate of the projection of the lower point of the cell Zi
onto a line perpendicular to the planes, see Figure 1.5. The sample S of cells consists
of those cells with lower point between the planes of one of the disectors. More
precisely,

S = {i | ∃m :U +mt ≤ zi < U +mt + d}. (1.15)

The ith inclusion probability becomes

πi =
∑
m

P (U +mt ≤ zi < U +mt + d) (1.16)

=
∑
m

P (U ∈ [zi − (mt + d), zi −mt]) = d/t, (1.17)

where we at the last equality sign use that U is uniform and contained in exactly
one of the intervals. Thus, all cells are equally likely to be included in the sample.

In Paper B, the number of sampled particles is denoted Q−. We find

EQ− =
N∑
i=1

πi =Nd/t, (1.18)
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so N̂ = t
dQ
− is an unbiased estimator of N .

The sampling of sections described above requires that it is possible to identify
whether the lower point of a cell lies in the space between the two planes of a
disector. If this is not possible, the sampling may still be performed if the height of
the cells is at least d. Then, no cell comes to lie entirely between two planes, and a
cell is sampled in a disector if it hits the reference plane but not the look-up plane.

In applications, such as the one described in Paper B, we use sections, which
are not exactly two-dimensinal planes but have a certain thickness. The object is
cut completely into a random series of sections. The thickness corresponds to the
disector height d and d/t will be the section sampling fraction (ssf). See further
theoretical details in Baddeley and Jensen (2005) and e.g. Boyce et al. (2010); Evans
et al. (2004) for a more applied point of view. Due to the low number of cells in
the present study, the disector was applied in two directions, using both sections as
reference and look-up section.

In Paper B, each section was subsampled, using either systematic uniform ran-
dom sampling (SURS) or a version of ε-corrected PPS sampling, the proportionator,
by the following procedure. For each sampled disector section, the area of interest
was marked and subsequently divided into fields of view (FOVs) using a randomly
placed grid and two measurements were determined for each FOV: the cell count
(Yi = Q−FOV i), obtained from manually counting the cells using the disector prin-
ciple and a weight assignment (wi) which were generated automatically from the
image analysis program using a pre-chosen classification protocol based on the
amount of colour from a staining. Subsequently, the weights were transformed
(xi = log(wi + 1) + 1) to avoid vanishing auxiliary variables and to obtain a better
weight-count relation (i.e. ε = 1). To imitate a standard application procedure we
simulated from the original exhaustive data two independent samples of half the
desired sample size for each of the two designs; SURS and the proportionator. We
used the Horvitz-Thompson estimator of the total number of cell in the sampled
sections for each design, and used as the final estimate for each design, the mean of
the two half samples

Q− = 1
2 (Q−1 +Q−2 ). (1.19)

The estimate N̂ of the total number of cells was then simply obtained by scaling Q−

with the inverse section sampling fraction and divided by two due to the double
count in the disector.

1.4.2 Variance estimation

The precision of the estimator N̂ is in Paper B measured by the coefficient of
error, CE(N̂ ) =

√
Var(N̂ )/EN̂ . Two sources of randomness influence the precision

of the estimator N̂ : sampling of the sections and sampling within the sections,
often referred to as the counting noise. Conditioning on U , the random variable
determining the sections, we may use the standard variance decomposition

CE2
totalN̂ = CE2

sectN̂ +CE2
noiseN̂ , (1.20)
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where

CE2
sectN̂ =

VarE(N̂ |U )

E
2N̂

=
VarE(Q− |U )

E
2Q−

, (1.21)

CE2
noiseN̂ =

EVar(N̂ |U )

E
2N̂

=
EVar(Q− |U )

E
2Q−

. (1.22)

The estimation of the variance of the counting noise may be performed under
a model assumption. In the applied literature, a Poisson model for the cells is
typically assumed. In Paper B, we used instead a direct method of estimating
the counting noise as the empirical variance of two sub-samples. Ignoring the
randomness of the grid of the FOVs, which is justified in the Appendix of Paper B,
we have that Q−1 and Q−2 are conditionally independent and identically distributed.
Thus, Var(Q− |U ) = 1/2Var(Q−i |U ), i = 1,2, and therefore we may use the unbiased
estimate

V̂ar(Q− |U ) = 1/2V̂ar(Q−i |U ) = 1/2[(Q−1 −Q
−)2 + (Q−2 −Q

−)2] (1.23)

= 1/4(Q−1 −Q
−
2 )2, (1.24)

which is called Varnoise in Paper B. Hence, an estimate of CE2
noiseN̂ becomes

CE2
noise =

(Q−1 −Q
−
2 )2

(Q−1 +Q−2 )2 . (1.25)

To estimate the variance due to the randomness of the sections, we may write
the estimate Q− as Q− =

∑
iQ
−
secti, where Q−secti denotes the number of cells sampled

in section pair i. The variance between sections can be expressed as

VarE(Q− |U ) = Var
(∑
i

f (U + it)
)

(1.26)

where f (U + it) = E(Q−secti |U ) is measured with error by f̂i =Q−secti. The parameter
of interest is

N =
1
d

∫
f (x)dx. (1.27)

The variance of an estimator of such an integral of a measurement function f is a
well-studied problem in geometric sampling. In Paper B, we use the following esti-
mate of the variance, including a correction-term (Varnoise) due to the measurement
error,

CE2
sect =

3(A−Varnoise)− 4B+C)/240
(Q−)2 (1.28)

(Gundersen et al., 1999), where A =
∑
f̂ 2
i , B =

∑
f̂i f̂i+1 and C =

∑
f̂i f̂i+2. In Baddeley

and Jensen (2005, Chapter 13), approximations of such variances are discussed in
detail where background references may also be found.
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1.4.3 Discussion and perspectives

From the point of view of a statistician, this study yields a unique opportunity
to work with data containing all information of the cell population within the
sampled sections, not only a few sampled FOV. Hereby, we could detect problems
with the weight assignment which e.g. results in a biased estimator due to vanishing
weights (see Paper A). Furthermore, we could make a proper comparison between
the designs based on exactly the same FOV and approximately the same cell count
in the sample. Estimating the variance of systematic sampling is non-trivial, as can
be seen from the wealth of literature dealing with this problem, see Baddeley and
Jensen (2005, Chapter 13). The variance of systematic sampling of sections can often
be estimated from formulae like (1.28), whereas no generally unbiased estimator
for the within section variance which is based on only one sample is known. Often a
very simple Poisson assumption is made, or, as in Paper B, two independent samples
are used. This estimator, called the direct CE in Gardi et al. (2008a,b), is unbiased
but can have a very skewed distribution which lead to underestimation in many
cases. Consequently, better alternatives for estimation of the within section variance
is an important topic for future research.

1.5 2D non-uniform sampling (Paper C)

Standard systematic uniform random sampling (SURS) in microscopy is, as de-
scribed earlier, a sampling design, where each field of view (FOV) is equally likely
to be sampled from a finite set of FOVs, and where the sampled FOVs are spa-
tially spread across the section. The recently proposed proportionator design in
microscopy (Gardi et al., 2008a,b) is non-uniform and therefore suitable for sam-
pling of inhomogeneous material, but all spatial information is lost, prior to the
sampling. Therefore, an idea to improve upon this non-uniform design, is to include
spatial information in the sampling procedure.

In Paper C, we introduce a new 2D non-uniform systematic sampling design that
balances samples spatially and study its efficiency. This design is a natural general-
ization of the 1D non-uniform systematic sampling introduced in the microscopy
setting by Dorph-Petersen et al. (2000).

1.5.1 The generalized 2D design

The objective is to estimate the integral

Q =
∫

[0,1]2
f (x,y)dxdy, (1.29)

using values of the measurement function f at a set of randomly sampled points in
[0,1]2. The aim is to spread the points spatially such that the resulting estimator
is efficient. In microscopy applications, the value of f at a point (x,y) is typically a
quantity observed in a small observation window (FOV) located at this point, e.g.
the number of cells in the FOV.
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To obtain a systematic non-uniform random set of points, we propose to use
a systematic uniform random set of points subject to a transformation given by a
diffeomorphism G : [0,1]2→ [0,1]2. The aim is to choose G such that the estimator
of Q has a low variance.

An unbiased estimator can be found using a set of n·m systematic random points,
G−1((U1 + i) 1

n , (U2 + j) 1
m ), i = 0, . . . ,n−1, j = 0, . . . ,m−1, where U1,U2 ∼Unif[0,1) are

independent. The estimate is given by

Q̂nm =
1
nm

n−1∑
i=0

m−1∑
j=0

f (G−1((U1 + i) 1
n , (U2 + j) 1

m ))

|det(G′(G−1((U1 + i) 1
n , (U2 + j) 1

m )))|
(1.30)

where G′ denotes the Jacobi matrix of G. In the Appendix of Paper C, proof is given
that Q̂nm is in fact an unbiased estimator ofQ. Assuming f (x,y) > 0 a.s., the variance
of Q̂nm is zero if we choose any G with

|det(G′(u,v))| = cf (u,v), (1.31)

where c > 0. For instance, (1.31) is fulfilled if we let G = (G1,G2), where

G1(x,y) =
∫ x

0
g(u)du, G2(x,y) =

1
g(x)∆

∫ y

0
f (x,v)dv, (1.32)

and

g(x) =
1
∆

∫ 1

0
f (x,v)dv, ∆ =

∫
[0,1]2

f (u,v)dudv. (1.33)

The unknown function f in G must be replaced by an auxiliary function f0, ideally
proportional to f , prior to sampling. In the microscopy applications, f0 could be
based on colour values obtained by automatic image analysis of the material of
interest. This choice of G is closely related to proportional-to-size sampling in the
discrete set-up, as shown in the Appendix of Paper C. When replacing f by f0 in the
expression of G, the estimator becomes

Q̂nm =
∫

[0,1]2
f0(u,v)dudv

1
nm

n−1∑
i=0

m−1∑
j=0

f (G−1((U1 + i) 1
n , (U2 + j) 1

m ))

f0(G−1((U1 + i) 1
n , (U2 + j) 1

m ))
. (1.34)

A 2D non-uniform systematic set of sampling points is illustrated in Figure 1.6,
where the uniform systematic set of points has been transformed according to the
colour values by the formulae of G in (1.32).

Using the proposed formulae, the transformed points are aligned in one direction.
If one wants to avoid this, it is possible to introduce a composition G = Ψ ◦Φ of
two transformations - see further details in Paper C. This results in a completely
deformed grid of points, but may be difficult to work with in practice as inversion
of G may be difficult.
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Figure 1.6: Left: 2D uniform systematic sampling. Right: 2D non-uniform systematic
sampling where the points have been transformed according to the colour values. (Paper C,
Figure 1)

1.5.2 Simulation study

A simulation study imitating sampling situations in microscopy was carried out,
in order to compare the efficiency of the new design with that of existing designs.
The simulations included number estimation, area estimation and general integral
estimations. Below, we shall concentrate mainly on number estimation to explain
how the simulations were carried out. Several sampling designs are compared: Non-
uniform and uniform designs, systematic and non-systematic designs, continuous
and discrete designs. For details, see Paper C. We compared

• 2D (non)-uniform systematic sampling (continuous, proposed in Paper C),

• 2D (non)-uniform systematic sampling (discrete, which corresponds to stan-
dard SURS in the uniform case and is proposed in the Appendix of Paper C
for the non-uniform case),

• proportional-to-size sampling with replacement (PPS WR, discrete),

• simple random sampling without replacement (SRS WOR, discrete).

We model a cell population by a realization of a point process Z = {z1, z2, . . .}
in a bounded region, for which we want to estimate the total number of cells NZ .
The associated measurement function f (x,y) is the total number of points from the
realized point process counted in the quadratic FOV (x,y) + [0,w]2, normalized by
the size of the FOV,

f (x,y) =
NZ∑
i=1

1(x,y)+[0,w]2(zi)

w2 . (1.35)

With this definition of f , (1.29) is equal to NZ . A realization of a point process and
the corresponding f is illustrated to the left in Figure 1.7 (the colours indicate values
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Figure 1.7: Left: The measurement function f on [0,1]2, for the realization of an point
process illustrated by points (black dots). The full-drawn red lines indicates the lower
and left boundary of [w,1]2, where the point process has been generated, and the red
dashed lines indicates the ‘invisible’ part of for cell population, that is points which are
not expressed in f0. Right: One of the simulated auxiliary measurement functions f0 for
number estimation (f with some noise), and one realization from the corresponding 2D
non-uniform systematic sample (black dots) and a FOV (black square). (Paper C, Figure 2,8)

of f ). The “shadow” of side-length w, lower and left of each cell, shows where the
cells contribute to the value of f .

Prior to sampling, several auxiliary functions f0 similar to f are generated:

f0(x,y) =
∑

zi∈[0,1]2\B

αi
1(x,y)+[0,w](zi)

w2 + c, (1.36)

with different choices of spatial error αi (may depend on the (x,y) coordinate), B
(sub-set of [0,1]2, where the cells are "invisible", i.e. do not contribute to f0) and a
constant c. An example of such function f0 is seen to the right in Figure 1.7, where
the black points are the set of sampling points and the small black square illustrates
the corresponding FOV in one point.

1.5.3 Results

In the simulations, resembling the microscopy set-up, we found that the 2D non-
uniform systematic designs (continuous and discrete) were more efficient than the
various uniform designs and the more simple PPS WR design in a number of cases
for area estimation. For number estimation, the new 2D non-uniform designs only
had similar efficiency as PPS WR.

1.5.4 Discussion and perspectives

In Paper C, we have derived an optimal 2D non-uniform sampling design which
reduces the variance substantially compared to the uniform case when the auxiliary
function used in the design has a close connection to the measurement function.
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Actual comparisons of efficiency have in Paper C been based on simulated
data. Future studies should include analysis of real microscopy data. Also it seems
worthwhile to compare our approach with the one presented in Grafström and Tillé
(2013). Here, the distance between the sampling units are used in their sample
algorithm to obtain a spatially balanced sample. Another idea is simply to divide
the area into strata and sample independently in each stratum.

From a theoretical point of view, it could be interesting to investigate whether
it is possible to construct a class of sampling situations for which 2D non-uniform
systematic sampling is more efficient than independent 2D non-uniform sampling.
Some considerations concerning this question may be found in Section 5 of Paper C.
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Contributions to point processes
in microscopy

2.1 Introduction

The fully developed phase of several myeloproliferative disorders (i.e. hematopoietic
stemcell disorders), described in Paper D, shows a wide and well-differentiated
spectrum of clinical findings. By contrast, similar and sometimes overlapping clini-
cal pictures can be observed in the early phases of these disorders. In these cases,
bone marrow histopathology can be necessary for discriminating different disorders.
The diagnostic criteria for these diseases by the World Health Organization (WHO)
classification (Vardiman et al., 2009) includes the morphology of megakaryocytes,
however the rationale and reproducibility of these diagnostic guidelines have been
questioned. In Madelung et al. (2013) low consensus among pathologists concerning
megakaryocyte morphological parameters such as the degree of clustering was
found.

Figure 2.1 illustrates a bone marrow section at different magnification, where
some megakaryocytes have been marked. Pathologists determine the level of cluster-
ing (i.e. no, “loose” and “dense” clustering) by a visual judgement following often
vaguely described rules. In fact, a review of the literature revealed that the defini-
tions were not unified and in several ways insufficient, as e.g. the cell intensities
influenced several of the definitions, see e.g. Florena et al. (2004); Wilkins et al.
(2008); Koopmans et al. (2011); Madelung et al. (2013); Vytrva et al. (2014). In order
to use the degree of clustering of megakaryocytes as a classification marker, more
precise and reproducible measures must therefore be found.

Proper statistical inference can be achieved viewing the centres of the cells as a
realization of a point process. Parametric point process models often allow for simple
biological interpretations of the parameters. In such cases, scientific hypotheses
regarding the parameters can be used to e.g. test for significant differences in the
degree of clustering between groups.

We propose to use Matérn thinned Cox processes as a natural, simple, and at-
tractable class of point process models for centres of non-overlapping spherical cells
in clusters. Dependent Matérn thinning is applied to Cox processes to achieve a
hard core (minimum interpoint) distance between points in clustered point patterns.
Thereby, the point pattern at short distances exhibits a repulsive behaviour, while at

21
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Figure 2.1: Left: A small part of a bone marrow biopsy section at high magnification,
where a few megakaryocytes have been outlined with red. Right: A biopsy sub-section
and the corresponding binary image, where the boarder of the tissue and midpoints of the
megakaryocytes have been marked. (Paper D, Figure 4 and 5)

the same time at middle to large range distances exhibits a clustering behaviour. In
Paper D, this new model class was proposed and theoretical properties were derived.
The applicability in microscopy was illustrated by the megakaryocyte example.
Furthermore, a simulation study was carried out to study parametric inference in
the model. The work contributes not only to the particular study of megakaryocytes
important to pathologists, but also to the point process literature in general.

Below, we start with a short background description of the relevant point process
theory in Section 2.2, followed by a summary of the results obtained in Paper D, see
Section 2.3. Additionally, limit results and further results from the simulation study
are given in Supplement D.

2.2 Spatial point processes

Spatial point processes are used to model point patterns typically formed by po-
sitions of objects in 2D or 3D. The applications are numerous. The literature on
spatial point processes spans from highly theoretical papers to genuine applications.
Classical references include Diggle (2003); Møller and Waagepetersen (2004); Chiu
et al. (2013). Modern technology increases the amount of applications and details
for spatial data, including informations on marks, such as covariates and shape, size
and type of the objects. See also Illian et al. (2008) with emphasis on statistical meth-
ods for applications. An overview of modern statistics for spatial point processes
may be found in Møller and Waagepetersen (2007).
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We consider mainly spatial point processes X on R
d , i.e. random countable

subsets with realizations in Nlf, the space of locally finite subsets of Rd .
Let X be a spatial point process on R

d with well-defined intensity function ρ(·)
and second-order product density ρ(2)(·, ·). The intensity measure α and the second
factorial moment measure α(2) are then given by

α(B) = E

[∑
ξ∈X

1(ξ ∈ B)
]

=
∫
B
ρ(ξ)dξ (2.1)

and

α(2)(B1 ×B2) = E

[∑,

ξ,η∈X
1(ξ ∈ B1,η ∈ B2)

]
=

∫
B1

∫
B2

ρ(2)(ξ,η)dξ dη, (2.2)

for all B, B1 and B2 in the Borel σ -algebra on R
d . Here

∑,
denotes summation

over distinct pairs. These measures describe first- and second-order properties of X.
Heuristically, ρ(ξ)dξ is the probability of the occurrence of a point from X in an
infinitesimal region around ξ. Correspondingly, for ξ , η, ρ(2)(ξ,η)dξ dη is the
probability of the occurrence of points in infinitesimal regions around ξ and η. The
value of a constant intensity function is called the intensity of the point process.

The interaction between pairs of points can be described by second-order sum-
mary statistics of which we will discuss (Ripley’s) K-function and the pair correlation
function (pcf)

g(ξ,η) = ρ(2)(ξ,η)/(ρ(ξ)ρ(η)) (2.3)

(Møller and Waagepetersen, 2004, Chapter 4). We will mainly consider stationary
and isotropic point processes, but some of the definitions can be generalized to
so-called second-order intensity reweighted stationary processes which are explained
and considered in Møller and Waagepetersen (2004, Section 4.1).

For the reduced Palm distribution in a point ξ, we will use the notation P
!
ξ .

This probability distribution can be interpreted as the conditional distribution of
X\ξ given ξ ∈ X. The expectation with respect to P

!
ξ will be denoted E

!
ξ . In the

stationary case, P!
o = P

!
ξ for all ξ, where o denotes origo, and this point can therefore

be considered as a “typical” point in the process, see Møller and Waagepetersen
(2004, Appendix C.2) and Illian et al. (2008, Section 4.1). Second- and higher-order
Palm distributions can be defined analogously, and we let P!

ξ,η denote the two-point
reduced Palm distribution for X in (ξ,η) (Hanisch, 1982, p. 172).

In the stationary and isotropic case, the K-function is defined by

K(r) = E
!
o

[∑
ξ∈X

1(ξ ∈ b(o, r))
]
/ρ, (2.4)

which is the expected number of further points within distance r from a “typical”
point in X divided by the intensity ρ. In this case, the pcf takes the form

g(r) = ρ(2)(r)/ρ2. (2.5)
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Due to the relation

K(r) =
∫
b(o,r)

g(t)dt = d|b(o,1)|
∫ r

0
td−1g(t)dt, (2.6)

g(r) can be interpreted as the expected number of points at distance r from a
“typical” point in X, relative to the expected number for a Poisson process (the
squared intensity).

The K-function and the pcf g contain the same statistical information. Since the
K-function is a cumulative function, it does not have as simple an interpretation as
g. However, it has obtained its popularity due to the fact that the function is much
easier to estimate. It is recommended e.g. in Illian et al. (2008) to use g as the most
informative second-order summary statistic. For the class of models considered in
Paper D, an approximative expression for g has been derived and this expression is
used for parameter estimation. As shown in Supplement D, it is of great importance
to find good estimators for g.

The existing point process literature provides models for a variety of interactions
between points. In applications, models that allow for simple statistical inference
are in favour. Often, the models describe patterns that exhibit one of the follow-
ing three characteristics for the interaction between the points: Complete spatial
randomness/no-interaction (Poisson processes), clustering/aggregation (e.g. Cox pro-
cesses (Cox, 1955)) or repulsiveness/regularity (e.g. Gibbs point processes (Chiu et al.,
2013), Matérns hard core processes (Matérn, 1986) or other hard core processes (Illian
et al., 2008)).

A Cox process X is a spatial point process with a non-negative driving (random)
field Λ, such that conditionally on Λ, the process is a Poisson process with intensity
function Λ. Simple expressions of e.g. intensity, second-order product density and
void probabilities, follow directly from the conditional Poisson behaviour. We shall
focus on shot noise Cox processes (SNCPs) (Møller, 2003), which can be regarded as
Poisson cluster processes. Conditional on cluster locations and mean number of
points in the clusters, the process has the same distribution as the superposition
of independent Poisson processes. Each Poisson process generates a cluster with
intensity functions proportional to a chosen kernel k, which may depend on the
cluster location. Neyman-Scott processes (NSPs) (Neyman and Scott, 1958) may be
regarded as a particular case of SNCPs with a constant mean number of points per
cluster. More specifically, the driving field of a NSP is of the form

Λ(ξ) =
∑
c∈C

µk(ξ − c), (2.7)

where the process of cluster centres C is a stationary Poisson point process with
intensity κ > 0 (the cluster intensity) and µ is the mean number of points in a cluster.
Finally, k is a kernel function integrating to 1.

Two simple and popular stationary and isotropic NSPs are the Matérn cluster
process (MCP) (Matérn, 1960, 1986) and the Thomas process (TP) (Thomas, 1949),
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defined by kernels

k(ξ) = 1(‖ξ‖ ≤ R)/ |b(o,R)| and k(ξ) = exp(−‖ξ‖2/2σ2)/(2πσ2)d/2, (2.8)

for R > 0 and σ > 0, respectively, (the cluster “radius”).
In practical applications, the above classification (i.e. no-interaction, clustering

or repulsiveness) may be too simplistic. Patterns of centres of cells in biological
material often show a repulsive behaviour at short distances due to cell size, while
at the same time at larger range distances exhibit a clustering behaviour. A popular
class of models for such behaviour is Gibbs point processes with an appropriate
interaction function, as e.g. in Mattfeldt et al. (2006, 2007). Statistical inference
is unfortunately based on simulations that require elaborate Markov chain Monte
Carlo methods (Møller and Waagepetersen, 2004) which is less appealing in some
applications. The interest for finding alternative models to Gibbs point processes, to
achieve such dual behaviour is confirmed by recent work by Lavancier and Møller
(2015) who extend previous work on interrupted point processes by Stoyan (1979).
The idea is to apply thinning according to a random field on a regular point process.
In Paper D, discussed in the next section, we take a reverse strategy and obtain the
desired interaction by Matérn thinning of Cox processes.

2.3 Matérn thinned Cox processes (Paper D)

A class of mathematically tractable point process models that combine a clustering
and a hard core behaviour, can be obtained by applying dependent Matérn type
II thinning to a clustered Cox process. In recent years, generalizations of Matérn’s
hard core models have appeared in the literature, e.g. in Månsson and Rudemo
(2002); Kiderlen and Hörig (2013); Teichmann et al. (2013), however, non of these
models are appropriate for modelling considerable clustering behaviour as they are
confined to thinning of a homogeneous Poisson point process. Very little seems to
be known about thinning for other models.

In Paper D, we consider general processes subject to the Matérn type II thinning
rule and introduce a general framework of Palm retention probabilities for calculat-
ing first- and second-order densities. In particular, we consider Matérn thinned Cox
processes which we define as a point process with parameters (Λ,h) given by

MTCP(Λ,h)B {ξ ∈ X | ∀(η,mη) ∈ XM ,η , ξ : ‖ξ − η‖ > h∨mη > mξ}, (2.9)

where X is a Cox process with driving field Λ and XM = {(ξ,mξ) | ξ ∈ X,mξ ∼
Unif[0,1)} is the corresponding marked process with i.i.d. uniform marks. Sample
realizations of Matérn thinned Cox processes with kernels as defined in (2.8), i.e.
Matérn thinned MCPs (MTMCPs) and Matérn thinned TPs (MTTPs), are shown in
Figure 2.2. These two types of models are considered in detail in Paper D.
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Figure 2.2: Realizations of MTMCPs (first column) and MTTPs (second column) with
κ = 25, R = 0.10 or σ = 0.04, h = R/3 and µ = 20. First row: An (un-thinned) MCP or TP X
is generated in the following way: generate a realization from a stationary planar Poisson
point process C of cluster locations with intensity κ > 0. Subsequently, for each location
point c ∈ C, generate cluster points Xc from an (inhomogeneous) Poisson point process with
intensity function µk(· − c) (illustrated by grey scaled values), where µ > 0 and k(·) is the
kernel of the MCP or TP. All the clusters are generated from independent distributions and
independently of the location process C. Letting X be the superposition of all the cluster
points results then in a realization of a MCP or TP. Second and third row: The thinned
process (black points) is now obtained be generating i.i.d. marks {mξ : ξ ∈ X} uniformly on
[0,1), and letting pairs of points from X with distance smaller than the hard core distance
h > 0 compete to survive according to their marks. If a point does not survives one or more
pair-competitions, it is deleted (open circles). The resulting thinned process is illustrated in
the third row.
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2.3.1 First- and second-order properties using Palm retention
probabilities

The intensity function and second-order product density of the thinned process
MTCP(Λ,h) can be obtained by multiplying the corresponding functions for the
original process with the so-called retention probabilities,

ρth(ξ) = pret(ξ)ρ(ξ) and ρ
(2)
th (ξ,η) = p(2)

ret(ξ,η)ρ(2)(ξ,η). (2.10)

Properties like stationarity and isotropy are inherited from the original process such
that

ρth = pretρ and ρ
(2)
th (r) = p(2)

ret(r)ρ
(2)(r). (2.11)

The ratio pret(ξ) between the intensity functions ρth(ξ) and ρ(ξ) is also called
the (first-order) Palm retention probability at the point ξ, since it can be expressed in
terms of the reduced Palm distribution P

!
(ξ,mξ ) for the marked process XM . In fact,

pret(ξ) =
∫ 1

0
P

!
(ξ,mξ )(F(ξ,mξ ;h))dmξ , (2.12)

where F(ξ,mξ ;h) is the set of marked point patterns xM , for which the point ξ with
mark mξ is retained in the thinned process. The second-order Palm retention proba-
bilities can be found analogously using the two-point reduced Palm distribution
P

!
(ξ,mξ )(η,mη ) for XM .

One of the main results in Paper D (Theorem 2) is an exact formula for the
first-order Palm retention probabilities of a Matérn thinned shot noise Cox process.
In the special case of MTMCPs and MTTPs, the formula reduces nicely and can
be determined by simple numerical calculations. For general driving fields Λ, the
intensity function and second-order product density of MTCP(Λ,h) can alternatively
be expressed using conditional retention probabilities given the driving field Λ. In
Theorem 4 in Paper D we find under mild assumptions for Λ,

ρth(ξ) = E

[
pret|Λ(ξ)Λ(ξ)

]
and ρ

(2)
th (ξ,η) = E

[
p

(2)
ret|Λ(ξ,η)Λ(ξ)Λ(η)

]
(2.13)

for ‖ξ − η‖ > h, otherwise 0, where for Λ(ξ) and Λ(η) > 0,

pret|Λ(ξ) = 1−exp(−Ωξ )
Ωξ

(2.14)

and

p
(2)
ret|Λ(ξ,η) = 1−exp(−Ωξ )

ΩξΩη\ξ
+

1−exp(−Ωη )
ΩηΩξ\η

− 1−exp(−Ωξ∪η )
Ωξ∪η

(
1

Ωξ\η
+ 1

Ωη\ξ

)
, (2.15)

with Ω∗ =
∫
b∗
Λ(τ)dτ , bξ = b(ξ,h), bξ\η = b(ξ,h)\b(η,h), and bξ∪η = b(ξ,h)∪ b(η,h).
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2.3.2 Approximations

The expressions for ρth(ξ) and ρ(2)
th (ξ,η) are in general computational infeasible, and

therefore we propose approximations which makes inference possible at least for
Matérn thinned short noise Cox processes. Using

Ωξ =
∫
b(ξ,h)

Λ(ϑ)dϑ ≈Λ(ξ)|b(ξ,h)| (2.16)

and similar approximations, simple expressions of ρth(ξ) and ρ(2)
th (ξ,η) can be ob-

tained, see Theorem 5 in Paper D. For stationary and isotropic Matérn thinned
Neyman-Scott processes we find approximative expressions for the intensity and
pair correlation function (pcf) given by

ρa =
1− exp(−a)

τh
, (2.17)

and

ga(r) =
ρ

(2)
a (r)

ρ2
a

=
2Γh(r)τh(1− exp(−a))− 2τ2

h (1− exp(−b(r)))

Γh(r)(Γh(r)− τh)(1− exp(−a))2 , r > h, (2.18)

where τh = |b(o,h)|, Γh(r) = |b(o,h)∪ b(ξr ,h)|, ξr ∈Rd , with ‖ξr‖ = r, and where a and
b(r) depend on the kernel and parameters in the model through integration. For
MTTPs and in particular MTMCPs, a and b(r) take simple forms. For MTMCPs, the
formulas do not involve numerical integration.

2.3.3 Discussion and perspectives

One way of examining the quality of the approximations suggested in Section 2.3.2,
is to compare the approximated functions with the theoretical functions in limiting
cases of a scaling parameter of the intensity. Due to space limitations, such limit
results were not included in Paper D, but are presented in Supplement D. A different
approach is by evaluating the approximations by simulations. This was done in
Paper D for MTMCPs and MTTPs, where it was found that the approximations
capture most of the true behaviour of the models. Hence, the approximations are
likely to be sufficiently accurate to enable simple model fitting in applications,
using the minimum contrast method. Supplement D elaborates on the method
used for parameter estimation, where we have found that parameter estimation for
MTTPs often is as simple and efficient as for the simpler standard MCPs and TPs.
An exception is the estimation of µ (the mean number of points per cluster before
thinning) in highly regular MTTPs which is also discussed in Supplement D.

In the application in Paper D, point patterns of megakaryocytes in a control
group and three disease groups were compared. MTMCPs and MTTPs were success-
fully fitted to the data. The fitted models seem to capture most of the behaviour
of the average group pcfs from the observed point patterns. Thus, the new models
can be used in a valid cluster detection procedure for megakaryocytes which other-
wise has been missing in the literature within the field of pathology. The MTTPs
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result in a slightly better fit. The fitted MTMCPs and MTTPs have slightly higher
degree of clustering for short and large range distances and slightly lower degree of
clustering for medium range distances compared to the observed point patterns. A
future larger study must be performed to establish more detailed conclusions for
the groups under considerations.
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ABSTRACT. Recently, non-uniform sampling has been suggested in microscopy to increase effi-
ciency. More precisely, proportional to size (PPS) sampling has been introduced, where the
probability of sampling a unit in the population is proportional to the value of an auxiliary vari-
able. In the microscopy application, the sampling units are fields of view, and the auxiliary variables
are easily observed approximations to the variables of interest. Unfortunately, often some auxil-
iary variables vanish, that is, are zero-valued. Consequently, part of the population is inaccessible
in PPS sampling. We propose a modification of the design based on a stratification idea, for which
an optimal solution can be found, using a model-assisted approach. The new optimal design also
applies to the case where ‘vanish’ refers to missing auxiliary variables and has independent interest
in sampling theory. We verify robustness of the new approach by numerical results, and we use real
data to illustrate the applicability.

Key words: Horvitz–Thompson estimator, microscopy, model-assisted sampling, optimal allo-
cation, proportional regression models, systematic PPS sampling, vanishing auxiliary variables

1. Introduction

Non-uniform sampling has considerable practical interest in microscopy, as the structures
under study often show pronounced inhomogeneity. In microscopy, one aims at estimating the
total number of cells (or some other feature of interest) in a section, by evaluating only a few
fields of view (FOV) at high magnification. The FOV are thus the sampling units. When using
uniform sampling on an inhomogeneous microscopical section, most of the sampled FOV will
contain no or only little information of the feature of interest, and, as a consequence, the sam-
pling becomes highly inefficient. The idea is therefore to use a ‘cheap’ auxiliary variable that is
a crude approximation to the ‘expensive’ variable of interest to determine sampling weights. In
microscopy, the auxiliary variables can be obtained by automatic computerized analysis of low
magnification images, therewith detecting areas where a high content of the feature of inter-
est is expected. Combining this information with non-uniform sampling may then lead to a
considerable reduction in estimator variance compared with the traditional systematic uniform
sampling (Gardi et al., 2008a, 2008b).

This idea of empirical importance sampling has been given a stochastic formulation in
Hansen et al. (2011), using point process theory. In the paper by Hansen et al. (2011), statistical
tools are developed for assessing the efficiency and constructing optimal model-based estima-
tors of intensities in the class of generalized proportional regression models. These estimators
can be used in practice, but several problems arise, which motivates further research.

One of the problems is that if the proportionality assumption is not met, the model-
based estimator may be biased, which is unacceptable for the majority of researchers working
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in microscopy. Therefore, it may be preferable to keep the original design-based Horvitz–
Thompson estimator, which preserves unbiasedness regardless of proportionality or not, and
focus on modifying the sampling design to improve efficiency of the estimator.

Another important problem which is not addressed in Hansen et al. (2011) is vanishing aux-
iliary variables. We use the term vanishing auxiliary variables to cover either the case where the
auxiliary variables are zero-valued but may have positive value of the corresponding variables
of interest, which often occurs in the microscopy application, or the case where the auxiliary
variables are simply missing. In a study of Keller et al. (2013) where the variables of inter-
est were cell counts and the auxiliary variables were the amount of colour associated with a
staining of the cells, 10% of the cells were in fact found in FOV with vanishing (zero-valued)
auxiliary variables. Unbiasedness of the Horvitz–Thompson estimator however requires pos-
itive inclusion probabilities for all FOV with a positive cell count. Sampling proportional to
size (PPS), where ‘size’ is measured by the auxiliary variables, needs therefore to be modified if
vanishing auxiliary variables can occur.

The workaround in microscopy, as suggested in Gardi et al. (2008a, 2008b), is to add a small
constant " > 0 to all auxiliary variables before sampling. Current software (Keller et al., 2013)
uses by default an unrealistically small constant. In cases such as the one described in Keller
et al. (2013), the unbiasedness would therefore be paid for by an extremely high variance if the
default had been used. This is caused by rare cases, where the sample includes the problematic
FOV mentioned previously. On the other hand, large values of " may decrease the efficiency
one hopes to gain from PPS sampling compared with uniform sampling. Therefore, optimal
ways of choosing such " are important in practical application. This problem is addressed in
the present paper. We consider a sampling design for a finite population of units, numbered
¹1; : : : ; N º. The sample is a random subset S � ¹1; : : : ; N º of the population with n elements,
say. Some of the sampling units i have zero inclusion probabilities  i D P.i 2 S/, for instance,

 1 D � � � D  N0 D 0;

where N0 < N . We modify the design, such that the resulting sample still has size n, and such
that it retains a constant positive inclusion probability  0 for the units 1; : : : ; N0 and inclusion
probabilities proportional to the original inclusion probabilities for the remaining units. Under
mild regularity conditions, we find the optimal design of this type. This result, which is of
independent interest in sampling theory, can be used to determine an optimal value of " in the
original problem described previously.

The composition of the paper is as follows. The sampling set-up is presented in Section 2,
while the optimal design is derived in Section 3, where it is also shown, that under a propor-
tional regression model, the optimality result simplifies. This framework, where both design
and model play a role, is often referred to as a model-assisted approach (Särndal et al., 1992).
Furthermore, Section 3 gives a summary of the robustness study of the optimal design against
parameter misspecification and departures from proportionality. An analysis of data from
microscopy, using the developed methods, is presented in Section 4. Conclusions and further
perspectives are found in Section 5. The Supporting Information contains proofs of theorems
and a detailed investigation of the robustness of the optimal design.

2. Set-up

We consider a finite population of N units and assume that a realization of a random variable
Yi (the variable of interest) is available for each unit i; i D 1; : : : ; N . Additionally, we assume
that Y1; : : : ; YN are uncorrelated. The aim is to estimate the population total, T D

PN
iD1 Yi ,

for a realization of Y D ¹Y1; : : : ; YN º.
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2.1. The Horvitz–Thompson estimator

Let S � ¹1; : : : ; N º be a random sample without replacement of fixed size n and independent
of Y . An estimator of the population total, well known from survey sampling theory (Särndal
et al., 1992, p. 42), is the Horvitz–Thompson estimator

OT D
X
i2S

Yi

 i
; (1)

where  i D P.i 2 S/ is the probability that the i th unit is included in the sample. The sampling
design is called non-uniform if the inclusion probabilities  i are non-constant. The estimator
OT is design-unbiased, that is,

E. OT jY / D T;

if the inclusion probabilities i are all positive. Under the same assumption, the design variance
takes the form

Var. OT jY / D
NX
iD1

NX
jDiC1

. i j �  ij /

�
Yi

 i
�
Yj

 j

�2
; (2)

where  ij is the .i; j /th joint inclusion probability,  ij D P.i 2 S; j 2 S/.
A sampling design is called optimal under a model for Y , if it minimizes the mean design

variance EVar. OT jY /. Because OT is design-unbiased, the mean design variance is in fact equal
to the mean square error of OT

EVar. OT jY / D Var OT � VarT D E. OT � T /2:

If the inclusion probabilities are proportional to the mean values of the Yi s, that is,

 i / EYi ;

then we have the following result for the mean design variance

EVar. OT jY / D
NX
iD1

�
1

 i
� 1

�
VarYi ; (3)

which follows directly from Särndal et al. (1992, Result 2.6.2). Note that the mean variance only
depends on the inclusion probabilities  i and the variances of the Yi s. More detailed properties
of the sampling design such as the joint inclusion probabilities do not appear in the formula.

2.2. Systematic proportional to size sampling

In order to obtain an efficient estimator of T , the information from an auxiliary variable xi
associated with Yi , i D 1; : : : ; N , may be used. We let x D ¹x1; : : : ; xN º. In the applications
we have in mind, both x and Y are random, but x is completely known. Henceforth, modelling
and inference about Y will be made in the conditional distribution given x. Compared with the
previous subsection, the variables of interest Y1; : : : ; YN are now assumed to be uncorrelated
in the conditional distribution given x, and the sample S and Y are independent given x.

Often, the inclusion probability  i is chosen proportional to xi (sampling proportional to
size and PPS sampling), as one expects xi to be roughly proportional to Yi . It is possible to
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construct such a PPS sample S of size n if nxi=x: � 1 for all i , where x: D
PN
iD1 xi : Under

this common constraint on the sample size n (Särndal et al., 1992, Remark 3.6.2), we have

 i D n
xi

x:
:

A PPS sampling scheme that is widely used in sampling because of its simplicity and efficiency
is the systematic PPS sampling (Särndal et al., 1992, Section 3.6). It can be implemented as
follows. Let 1; : : : ; N refer to an ordering of the units. Sampling is performed on cumulative
weights with a random starting point in Œ0; x:

n
�, followed by equidistant selections of the units.

More precisely, let Wi D
Pi
jD1 xj ; i D 1; : : : ; N , denote the cumulated weights with W0 D 0.

Let V1 � unif
��
0; x:
n

��
, independent of Y , and let Vj D V1C .j �1/x:n ; j D 2; : : : ; n. Then, the

sample S consists of those units i for which ŒWi�1; Wi � contains at least one Vj . Because of the
constraint that xi � x:=n, each interval ŒWi�1; Wi � can contain at most one Vj , and therefore,

nX
jD1

1¹Vj 2 ŒWi�1; Wi �º � 1

for all i , and the inclusion probabilities take the intended form

 i D P

0
@ nX
jD1

1¹Vj 2 ŒWi�1; Wi �º D 1

1
A

D E

0
@ nX
jD1

1¹Vj 2 ŒWi�1; Wi �º

1
A

D n
xi

x:
:

Figure 1 illustrates systematic PPS sampling with the natural ordering of the units, according
to the size of the auxiliary variable x.

A specific variant of systematic PPS sampling, called the proportionator, was suggested in
Gardi et al. (2008a, 2008b) for analysis of microscopy images. The design uses the principles
of the so-called smooth fractionator (Gundersen, 2002) to order the sampling units, which
corresponds to the balanced systematic sampling described in Murthy (1967, Section 5.9d). If
we let 1; : : : ; N denote the ordering such that x1 � x2 � : : : � xN ;M D N

2
if N is even and

M D NC1
2

if N is odd, the smooth ordering becomes Œ1�; : : : ; ŒN �, where

Œi � D

´
2i � 1; i �M;

2.N C 1 � i/; i > M:
(4)

Fig. 1. Illustration of systematic proportional to size sampling. Each box represents a sampling unit i with
height given by the variable of interest Yi and width given by the auxiliary variable xi . The sampling units
have been ordered according to the sizes of the auxiliary variables, and sampling is then performed on the
cumulative weights from a random starting point in

�
0; x:

n

�
, followed by equidistant selections of the units.
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This alternative ordering with xi D i has been proven to be superior to the ordinary (according
to increasing unit number) ordering in uniform systematic sampling, for example, when linear
trend (EYi D a C bi; i D 1; : : : N ) is present (Bellhouse & Rao, 1975), and the efficiency is
illustrated in Gundersen (2002). Similar theoretical results for non-uniform sampling do not
exists, to the best of our knowledge, yet Gardi et al. (2008a, 2008b) adapted the idea, and this
ordering is used in microscopy.

In the sampling literature, there also exists a with-replacement version of PPS sampling.
Here, the estimator takes the form (Särndal et al., 1992, p. 97)

OTWR D
1

n

NX
iD1

#¹i 2 Sº
Yi

pi
;

where #¹i 2 Sº denotes the number of times unit i is sampled, and the draw-by-draw inclusion
probability of unit i is given by pi D xi=x:.

2.3. "-corrected proportional to size sampling

In the present paper, we address the problem of vanishing auxiliary variables, that is, either
xi D 0 for some i or xi is missing for some i . In the latter case, we set xi D 0 too. As a
consequence, in both cases, there may exist units i with Yi > 0 and xi D 0. In PPS sampling,
these units are sampled with probability  i D 0, and thus, the Horvitz–Thompson estimator
(1) will be biased. To adjust for this, one can add a small constant " > 0 to the auxiliary
variables which are zero. The resulting PPS sampling design will be called "-corrected.

Let N0 D #¹i jxi D 0º, and suppose that the units are ordered such that

x1 D � � � D xN0 D 0:

Then, the inclusion probabilities of the "-corrected PPS sampling design with sample size
n become

�i D

´
n "
x:CN0"

; i D 1; : : : ; N0;

n xi
x:CN0"

; i D N0 C 1; : : : ; N:
(5)

It is important that " is not chosen too small. When " is chosen unrealistically small, like it
was done in microscopy until recently, the result is an extremely large variance. In fact, with
inclusion probabilities as specified in (5), Var. OT jY / ! 1, when " ! 0, if Yi > 0 for just one
i 2 ¹1; : : : ; N0º. To see this, note that

Var. OT jY / �
NX
iD1

1

�i
Y 2i � T

2 !1; as "! 0: (6)

On the other hand, " should not be chosen too large, because then the sampling is directed
towards the first N0 units, and units in Stratum 1 with proportionality between xi and Yi are
not sampled so often.

The "-corrected systematic PPS sampling can be considered as a kind of stratification, based
on the auxiliary variables (Fig. 2). This observation opens up for the possibility of finding an
optimal ", using optimal allocation in stratified sampling (Särndal et al., 1992, Section 3.7).

Stratification is a standard variance reduction technique in sampling, where the population
is divided into strata, and independent samples are taken from each stratum. In "-corrected
systematic PPS sampling, we can regard the population as divided into two strata, Stratum 0
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Fig. 2. Illustration of "-corrected systematic proportional to size sampling, where a small constant " has
been added to each unit with xi D 0 to ensure an unbiased estimator. Due to the systematic sampling, the
sampling scheme has a built-in stratification mechanism, such that an almost fixed fraction of the sampled
units will be in each stratum.

consisting of the sampling units with xi D 0 and Stratum 1 consisting of the sampling units
with xi > 0. If we let U0 D ¹1; : : : ; N0º and U1 D ¹N0C 1; : : : ; N º be the notation used for the
two strata, we have for the Horvitz–Thompson estimator based on "-corrected PPS sampling

OT D
X
i2S

Yi

 i
D

X
i2S\U0

Yi

 i
C

X
i2S\U1

Yi

 i
D OT0 C OT1; (7)

say. Because we have no detailed information about Stratum 0, where all auxiliary variables
vanish, it is natural to make the model assumption that the Yi s in Stratum 0 have the same
mean. Under this model, systematic PPS sampling leads to zero mean covariance of the two
estimator parts OT0 and OT1 if the expected number of units sampled from Stratum 0,

n0 D n
N0"

x:CN0"
(8)

is an integer, as stated in theorem 1. This is essentially due to the number of sampled units in
each stratum being fixed, if n0 is integer.

Theorem 1. Assume that Yi ; Yj ; i ¤ j are uncorrelated, and that EYi D EYj if both xi D 0

and xj D 0. Under "-corrected systematic PPS sampling with ordering according to the variables
of size,

E Cov
�
OT0; OT1 j Y

	
D ��.1 � �/�0�1;

where bn0c is the integer part and � D n0 � bn0c is the fractional part of n0, �0 D ET0=n0 and

�1 D

8<
:

ET1=.n � n0/ (or some arbitrary constant); � D 0

1
�

E
�

E
�
OT1 � T1 j S

	 ˇ̌̌
#.S \ U0/ D bn0c

	
; � > 0:

If we furthermore assume proportionality for units i in Stratum 1, that is EYi / xi , then �1
simplifies to �1 D ET1=.n � n0/ for all values of �.

For the proof, refer to the Supporting Information. This built-in stratification effect of sys-
tematic sampling motivates to consider alternatively in the following sections, a genuinely
stratified design, with fixed sample size n0 in Stratum 0, and where sampling is carried out
independently on the two strata.
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3. An optimal stratified design

3.1. The optimality results

Consider a sampling design with fixed sample size n and inclusion probabilities Q i such thatPN
iD1 Q i D n: Let us suppose that

Q i D 0; i D 1; : : : ; N0;

Q i > 0; i D N0 C 1; : : : ; N:

The model example is the systematic PPS sampling in Section 2.2 with Q i D nxi=x: and x1 D
� � � D xN0 D 0: We want to modify the design such that the first N0 units are assigned a
constant positive inclusion probability and the remaining units have inclusion probabilities
proportional to the original ones. We will only consider modified designs for which the sample
size among the first N0 units is a fixed integer n0. The modified sampling design will have the
following inclusion probabilities

 i D

´
n0
N0
; i D 1; : : : ; N0;�

1 � n0
n

�
Q i ; i D N0 C 1; : : : ; N:

(9)

Motivated by the result of theorem 1, we propose to sample independently on the two strata,
Stratum 0 .1; : : : ; N0/ and Stratum 1 .N0C 1; : : : ; N /. Otherwise, the sampling design remains
unchanged, up to the rescaled inclusion probabilities. The theorem below gives the optimal
stratified design of this type. The proof may be found in the Supporting Information. The result
holds under the following model assumptions

EYi D ˇ0; VarYi D �
2
0 ; i D 1; : : : ; N0; (10)

EYi / Q�i ; VarYi D �
2
i ; i D N0 C 1; : : : ; N; (11)

where �2
0
> 0 and �2

i
> 0; i D N0 C 1; : : : ; N .

Theorem 2. Consider a sampling design with positive inclusion probabilities of the form (9) and
suppose that (10) and (11) hold. Then, under stratified sampling, the mean variance EVar. OT jY /
of the Horvitz–Thompson estimator OT D OT0 C OT1, where OT0 and OT1 are based on independent
samples S0 and S1 in Stratum 0 and Stratum 1, respectively, is minimized if the sample size n0 in
Stratum 0 is chosen as one of the integers closest to

min

0
B@n N0

N0 C

q
n
PN
iDN0C1

�2
i

ı�
�2
0
Q i
� ; N0

1
CA : (12)

We will from now on, for ease of exposition, focus on the case, where the first term inside the
minimum sign in (12) is an integer n0 smaller than or equal to N0, such that this term becomes
the optimal allocation for n0.

In the case of PPS sampling with probabilities according to an auxiliary variable, as described
in the previous section, we have Q i D nxi=x: with x1 D � � � D xN0 D 0. It follows from
theorem 2 that under PPS sampling with (10) and (11) fulfilled, the optimal allocation becomes

n0 D n
N0

N0 C

q
x:
PN
iDN0C1

�2
i

ı�
�2
0
xi
� : (13)
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Using the expression (8) for n0 in terms of ", we find " D n0x:=Œ.n � n0/N0� and the "
minimizing EVar. OT jY / then becomes

" D

q
�2
0
x:qPN

iDN0C1
�2
i
=xi

: (14)

Further simplifications are possible if we assume that the Yi s in Stratum 1 fulfil a propor-
tional regression model with 1 � g � 2,

EYi D ˇ1xi ; VarYi D �
2
1x
g

i
; i D N0 C 1; : : : ; N (15)

and, in addition, the mean–variance relationship is the same in the two strata, that is,

�2
0

ˇ
g

0

D
�2
1

ˇ
g

1

: (16)

Then, the optimal allocation becomes

n0 D n
.ˇ0=ˇ1/

g=2N0

.ˇ0=ˇ1/g=2N0 C
p
x:.xg�1/:

; (17)

where .xg�1/: D
PN
iDN0C1

x
g�1

i
. The optimal allocation in (17) can alternatively be

expressed, using the natural parameter q D ET0=ET1, where T0 D
PN0
iD1

Yi and T1 DPN
iDN0C1

Yi . We find

n0 D n

q
N
2�g
0

.qx:/gq
N
2�g
0

.qx:/g C
p
x:.xg�1/:

: (18)

In the special cases with g D 1 and g D 2, we find

n0 D

8<
:
n
p
qk

1C
p
qk
; g D 1;

n q
1Cq

; g D 2;
(19)

where k D N0=.N �N0/. Under the model specified in (10), (15) and (16), q D ˇ0N0
ˇ1x:

:

Notice that under the assumptions of theorem 2, the optimal choice of n0 (or ") does not
depend on joint inclusion probabilities within the strata.

3.2. Robustness

We have investigated robustness of optimal allocation against departures from proportional-
ity in the regression model and against misspecification of the parameters g and q. A detailed
description of the results may be found in the Supporting Information under the heading
Robustness. Throughout the study, the extended proportional regression model given by (10),
(15) and (16) was assumed, and stratified sampling was considered. The model we used in the
investigations for departure from proportionality is inspired by the applications we have in
mind, namely, cell counting (Hansen et al., 2011). We assume that

Yi � pois.ˇ0/; i D 1; : : : ; N0;

Yi jXi D xi � pois
�
xı
i

�
; i D N0 C 1; : : : ; N:

(20)
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Fig. 3. The empirical distribution of the number of cells y in Stratum 0 (N0 D 1915 FOV with x D 0)
and a scatterplot of the auxiliary variable x and the number of cells y in Stratum 1 (N �N0 D 788 fields
of view with x > 0).

To summarize, investigations based on numerical calculations and simulations suggest that
the optimum is robust against departures of proportionality in the regression model and mis-
specification of the parameter q, determining the part of the population total stemming from
sampling units with vanishing auxiliary variables. Numerical calculations also showed that the
parameter g, controlling the variance of the variables of interest, given the auxiliary variable,
must be chosen with care. Under the model considered with g D 1, choosing g D 2 caused a
substantial loss in efficiency, whereas the opposite case was less pronounced.

4. Analysis of real microscopy data

In this section, we use the developed methods in the analysis of a data set from microscopy
(Keller et al., 2013), collected with the purpose of estimating osteoclast cell numbers in paws
from mice with experimental arthritis. The tissue sections analyzed were divided by a grid into
N D 2703 small FOV or observation windows. The realized random variable Yi is the number
of cells in FOV i , while xi indicates the amount of a pre-chosen colour in FOV i associated
with the staining of the cells. The xi values are easily determined by automatic image analysis
at a low magnification. This is in contrast to the cell counts Yi which are time-consuming to
determine, as they have to be carried out at high magnification by an expert user.

The data set from Keller et al. (2013) is unique in the sense that it is exhaustive comprising
100% of FOV and covering the total section areas. Figure 3(a) shows the empirical distribution
of cells in Stratum 0 (N0 D 1915 FOV with x D 0), and Fig. 3(b) shows a scatterplot of the
auxiliary variable x and the number of cells y in Stratum 1 (N �N0 D 788 FOV with x > 0).

As the population analyzed in Keller et al. (2013) is completely known, containing 10% cells
in FOV with x D 0 .q D 1=9/, these data are suitable for testing how far the allocation provided
by the new approach using models in combination with optimal allocation is from the actual
optimum. We first check the proportionality assumption and choose model parameters, and
then study the variance as a function of allocation.

4.1. Proportionality

In Fig. 4, it is investigated whether a linear relationship between x and y is a satisfactory
description of the data in Stratum 1, consisting of N1 D 788 FOV. The data were partitioned
into bins of size 35 .˙1/, resulting in a total number of 22 bins.
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Fig. 4. Means (left) and log means (right) of x and y-values in 22 bins in Stratum 1. The curve in the left
panel was obtained by transforming the regression line from the right panel.

The mean proportionality in Stratum 1 is not fulfilled (see the left panel in Fig. 4). A lin-
ear regression on the log-transformed and binned x and y gave a much more satisfactory
description (see Fig. 4 right panel). The estimated relation is logy D �3:93C 2:40 log x, which
corresponds to a model with ı D 2:4 in (20).

4.2. Relation between mean and variance

Under the extended proportional regression model, it is assumed that VarYi / .EYi /g holds in
Stratum 1 (cf. (15)). To choose an appropriate value for g for use in (18), we compare the empir-
ical means Ny and variances s2 estimated in the bins in Stratum 1 as specified in Section 4.1.
Linear regression of the log-transformed s2 and Ny gives a relation log s2 D 0:44 C 1:22 log Ny,
which is shown in the left panel of Fig. 5 (full drawn line). Although the slope 1.22 is sig-
nificantly different from 1 (p D 0:021), we will use g D 1 in further investigations. For
completeness, a line with slope 1 is also shown in the left panel (dotted line). Figure 5, right
panel, shows the same estimated relations in a mean–variance plot by transformation of the line
in the left panel (full drawn curve), together with a fitted line through the origin (stippled line).

An additional assumption of the model is given in (16), which means that both strata have
the same mean–variance relation, that is, the ratio VarYi=.EYi /g must be the same. Here, we
assume g D 1. While s2= Ny D 1:69 in Stratum 0, the ratio was found to be 2.03 in Stratum 1,
thus (16) with g D 1 appears only approximately fulfilled.

Fig. 5. The left panel shows log-variances plotted against log-means of y in each of the 22 bins from
Stratum 1, together with a regression line (full drawn) and a fitted line with slope 1 (dotted). The right
panel shows variances plotted against means of y in each bin, together with a transformation of the left
panel regression line (full drawn) and a fitted line through 0 (stippled).
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Fig. 6. Left: The variance of stratified simple random sampling (dotted line), proportional to size with
replacement sampling (stippled line) and systematic proportional to size sampling with an ordering accord-
ing to the size of the xi s (dots), all under stratification, as a function of n0=n. Right: The same plot, except
that the variance for systematic proportional to size sampling is obtained from a partition of the original
ones into bins of size 20, where data begin to fluctuate. The sample allocations obtained by (19) with g D 1
and g D 2 are marked with crosses.

4.3. Optimal allocation

Following the results of Section 4.1 and 4.2, we will describe the data by a proportional regres-
sion model with g D 1; �2=ˇ D 2; q D 1=9 and ı D 2:4. The simulations presented in the
Supporting Information indicated that moderate departures from proportionality .ı ¤ 1/ are
not critical for optimal allocation. It thus seems reasonable to use the optimal allocation given
in (19) for g D 1. We investigate how well this fits the actual optimum and compare with the
allocation given by (19) for g D 2.

Figure 6 shows for completeness the mean variance of stratified simple random sampling
(SRS), stratified PPS with replacement (WR) sampling and stratified systematic PPS sampling
as functions of the proportion n0=n of the sample of size n D 0:10N that is allocated to
Stratum 0. The mean variances of PPS WR sampling and SRS are smooth functions, whereas
the mean variance of systematic PPS sampling shows a more complicated behaviour, because of
the systematic sampling. It is however clear that the mean variance of systematic PPS sampling
becomes very large if n0 is chosen too small, and in most cases, the mean variance is smaller
than the one for PPS WR sampling and SRS with the same allocation. An overall impression
of the mean variance of systematic PPS sampling is obtained by binning of size 20 except
for the small (and large) values of n0, which removes the huge fluctuations (see Fig. 6, right
panel). Using the binned data, optimal allocation based on (18) for g D 1, corresponding
to n0 D 0:34n, very well fits the true optimum. If g D 2 is used instead, corresponding to
n0 D 0:10n, the mean variance becomes a factor 2 larger. From (8) we obtain that n0 D 0:34n
corresponds to " D 1:05 and n0 D 0:10n corresponds to " D 0:23, hence " D 1 used in Keller
et al. (2013) was in fact remarkably close to the optimal choice.

5. Conclusion and further perspectives

In applications of PPS sampling in microscopy, vanishing, that is zero-valued, auxiliary vari-
ables are dealt with by adding a small positive constant ". In the present paper, it has been
shown, both theoretically and in applications, that it is of great importance to choose this con-
stant wisely, in order to obtain an efficient estimator. To solve the problem of choosing the
constant in an optimal manner, a model-assisted approach has been suggested, where the mean
variance is minimized. The optimization depends on the choice of just a few parameters in the
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model given by (10), (15) and (16). If not yet any or only little data are available, we recom-
mend to use g D 1 as a robust guess and give a rough guess on the remaining parameter q in
the formula for the optimal ".

The optimal "may be so large that it makes the Stratum 0 sampling probabilities larger than
the Stratum 1 sampling probabilities for units with the smallest positive x-values. For our data,
this happened only for 3 out of 788 units in Stratum 1. If this phenomenon is more predominant
and it is expected that the vanishing variables are zero-valued, we suggest to enlarge Stratum 0
with units having small positive x-values until the sampling probability for units in Stratum 0
is smaller than any of the sampling probabilities for units in Stratum 1.

Throughout the paper, we have mainly used the term vanishing auxiliary variables for zero-
valued size variables, and both the robustness results and analysis of microscopy data are
examples of this case. However, the optimality result also applies to the case, where Stratum 0
solely consists of units where the auxiliary variable has not been determined.

In the present paper, we have focused on the Horvitz–Thompson estimator. Note, however,
that under PPS sampling with one auxiliary variable, the Horvitz–Thompson estimator actually
coincides with the ( -weighted) ratio estimator and the general regression estimator (Särndal
et al., 1992, p. 180 and 225). An interesting future research question is to try to generalize
theorem 2 such that the assumption EYi / Q�i in (11) is relaxed. Theorem 2 depends crucially
on formula (3) for the mean variance, which does not depend on the second-order inclusion
probabilities. We have already seen that (3) holds when EYi is proportional to the sampling
probability of unit i , but it can in fact also be shown, that for specific sampling designs with
samples balanced on EYi , (3) holds for arbitrary inclusion probabilities – see Nedyalkova &
Tillé (2008) for details on balanced sampling. This observation opens up for establishing a
theorem 2 in a more general setting, allowing for other inclusion probabilities, for example,
the optimal inclusion probabilities found in Nedyalkova & Tillé (2008), which are proportional
to the standard deviations of the Yi s. Note also that under balanced sampling on EYi , in
the sense of Nedyalkova & Tillé (2008), the Horvitz–Thompson estimator and the regression
estimator coincide.
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Supplement A

This chapter contains proofs of the theorems in Paper A and a detailed investigation
of the robustness of the optimal design. This information may also be found in the
online version of Paper A at the publisher’s web site. References in this chapter are
with respect to Paper A.

AA.1 Proofs

Proof of Theorem 1. To find ECov(T̂0, T̂1 | Y ), write

ECov(T̂0, T̂1 | Y ) = Cov(T̂0, T̂1)−Cov
(
E(T̂0 | Y ),E(T̂1 | Y )

)
. (AA.1)

Obviously, the parts T̂h :=
∑
i∈S∩Uh Yi/πi , h = 0,1, are design-unbiased estimators for

the stratum totals Th =
∑
i∈Uh Yi . Together with the uncorrelatedness of Yi ,Yj , i , j,

which results in uncorrelatedness of T0 and T1, we thus have

Cov
(
E(T̂0 | Y ),E(T̂1 | Y )

)
= Cov(T0,T1) = 0. (AA.2)

Furthermore, T̂0 and T̂1 are also uncorrelated, given the sample S. Thus,

Cov(T̂0, T̂1) = Cov
(
E(T̂0 | S),E(T̂1 | S)

)
+ECov(T̂0, T̂1 | S)

= Cov
(
E(T̂0 | S),E(T̂1 | S)

)
= E

(
E(T̂0 | S)−ET̂0

)(
E(T̂1 | S)−ET̂1

)
. (AA.3)

Since the Yis in Stratum 0 all have the same mean EYi = ET0/N0, and the same
inclusion probability πi = n0/N0,

E(T̂0 | S) =
∑

i∈S∩U0

EYi
πi

=M0
ET0

n0
(AA.4)

depends only on the number M0 of sampled units from U0. Due to the systematic
sampling procedure, this number only takes the values bn0c or bn0c + 1, where
bn0c is the integer part of n0 = EM0. With probability ν = n0 − bn0c, we have that
M0 = bn0c+ 1, and with probability 1− ν, it is M0 = bn0c. Writing

A := {S :M0 = bn0c+ 1}, (AA.5)
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and τ0 = ET0/n0, we get

E(T̂0 | S)−ET̂0 =M0τ0 −n0τ0 =

(1− ν)τ0, S ∈ A,
−ντ0, S < A.

(AA.6)

Thus,

(
E(T̂0 | S)−ET̂0

)(
E(T̂1 | S)−ET̂1

)
=

(1− ν)τ0

(
E(T̂1 | S)−ET1

)
, S ∈ A,

−ντ0

(
E(T̂1 | S)−ET1

)
, S < A.

(AA.7)

Let f1(S) = E(T̂1 | S)−ET1. Taking the expectation of (AA.7), we obtain

Cov(T̂0, T̂1) = (1− ν)τ0E(f1(S) | S ∈ A)P (S ∈ A)− ντ0E(f1(S) | S < A)P (S < A)

= (1− ν)τ0E(f1(S) | S ∈ A)ν − ντ0E(f1(S) | S < A)(1− ν), (AA.8)

so T̂0 and T̂1 are uncorrelated if ν = 0. For ν > 0, use the notation τ1 = E(f1(S) | S <
A)/ν; since Ef1(S) = 0, and P (S ∈ A) = ν, we get

E(f1(S) | S ∈ A)P (S ∈ A) = −E(f1(S) | S < A)P (S < A) = −τ1ν(1− ν), (AA.9)

hence

Cov(T̂0, T̂1) = −(1− ν)2ντ0τ1 − ν2(1− ν)τ0τ1 = −ν(1− ν)τ0τ1. (AA.10)

For a model with proportionality in Stratum 1 between EYj and πj such that
EYj /πj = ET1/n1 for all N0 + 1 ≤ j ≤N , we get

E(T̂1 − T1 | S) =
∑

j∈S∩U1

EYj
πj
−ET1 = (#(S ∩U1)−n1)

ET1

n1
. (AA.11)

Thus, the definition of τ1 reduces to τ1 = ET1/n1, where n1 = n−n0 is the expected
number of sampled units in Stratum 1.

Proof of Theorem 2. The expected variance of T̂ is

EVar(T̂ |Y ) = EVar(T̂0|Y ) +EVar(T̂1|Y ), (AA.12)

since, conditionally on Y , T̂0 and T̂1 are independent. Within each stratum the mean
values of Yi is proportional to the inclusion probabilities πi given in (9) and, using
(3) on each stratum separately, we find for n0 ≤N0 and n0 < n

EVar(T̂ |Y ) =N0

(
N0

n0
− 1

)
σ2

0 +
N∑

i=N0+1

 1(
1− n0

n

)
π̃i
− 1

σ2
i = f (n0), (AA.13)

say. We will now, as is usual in optimal allocation problems, replace the fundamen-
tally discrete problem, the choice of the number n0 of units to be sampled in Stratum
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0, by a continuous one, so we replace n0 in f (n0) by a positive real parameter η0, say.
We find

f ′(η0) = −
N2

0 σ
2
0

η2
0

+
V

n
(
1− η0

n

)2 , (AA.14)

where

V =
N∑

i=N0+1

σ2
i

π̃i
. (AA.15)

The equation f ′(η0) = 0 can be written as(
N2

0
n
σ2

0 −V
)
η2

0 − 2σ2
0N

2
0 η0 +nσ2

0N
2
0 = 0, (AA.16)

which has the following solution for η0 < n

η0 =
nN0

N0 +
√
nV /σ2

0

. (AA.17)

This solution is a minimum of f (η0). Restricting to integer values n0 with n0 ≤N0,
we get that the optimal n0 is one of the integers closest to (12).

AA.2 Robustness

In this section, we investigate the robustness of the optimal allocation under the
extended proportional regression model against departures from this model and
parameter misspecification. We study the relative inflation in mean variance

R =
EVar(T̂ (n′0)|Y )

EVar(T̂ (n0)|Y )
, (AA.18)

where n0 and n′0 are calculated according to (18), n0 with the true values of the
parameters and the correct model, and n′0 with alternative parameter values or the
wrong model, and T̂ (.) is the resulting estimator.

AA.2.1 Robustness against parameter misspecification

Consider the case that the extended proportional regression model given by (10),
(15) and (16) holds, but that the parameter g is misspecified. This parameter controls
the mean-variance relation, viz.

VarYi ∝ (EYi)
g . (AA.19)

In Table AA.1, R is shown for the case g = 1. For n′0, the true value of q is used, but
g is wrongly assumed to be 2. Using (19), we find

R =
(1 + q)(1 + k)(1− n

N )

(1 +
√
qk)2 − (1 + q)(1 + k) nN

. (AA.20)
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Table AA.1 shows the value ofR for different combinations of k and q, with n/N = 0.1.
The range of k and q has been chosen such that it represents what is expected in
the application we have in mind, see Section 4. It is seen, that the mean variance
is increased quite markedly if we wrongly assume that g = 2. The same conclusion
holds for other choices of n/N . We also considered the ‘opposite’ case, where the

Table AA.1: The relative inflation R in mean variance, given by (AA.20), by wrongly using
g = 2, when the true value is g = 1. The results are for varying values of q and k, when
n/N = 0.1.

k \ q 0.025 0.05 0.10 0.15
0.25 1.113 1.069 1.028 1.010
0.50 1.278 1.197 1.115 1.071
1.00 1.624 1.468 1.309 1.222
2.00 2.326 2.000 1.683 1.514
4.00 3.781 3.011 2.341 2.010

true value of g is 2, but g is wrongly assumed to be 1. In this case, R also depends
on the realized values of the auxiliary variable. With Cx = (N −N0)(x2)./(x.)2 =
N (x2)./((1 + k)(x.)2), we get

R =
(1 +

√
qk)(1 + q2

√
qk

)− n
N (1 + k)(q

2

k +Cx)

(1 + q)2 − n
N (1 + k)(q

2

k +Cx)
. (AA.21)

If the auxiliary variables xN0+1, . . . ,xN are i.i.d. realizations of a random variable X,
we have Cx ≈ E(X2)/E(X)2. Since πi = (n−n0)xi/x. ≤ 1, very skew distributions are
excluded and thus large values of Cx are prevented. In the case illustrated in Table
AA.2, where we let Cx = 1.3, R was much closer to one than in the previous case
where g = 1, but g = 2 is assumed. The same conclusion holds for other choices of
n/N .

Table AA.2: The relative inflation R in the mean variance, given by (AA.21), by wrongly
using g = 1, when the true value is g = 2. The results are for varying values of q and k, when
n/N = 0.1 and Cx = 1.3.

k \ q 0.025 0.05 0.10 0.15
0.25 1.042 1.036 1.020 1.009
0.50 1.079 1.082 1.068 1.050
1.00 1.142 1.160 1.156 1.137
2.00 1.267 1.315 1.329 1.311
4.00 1.670 1.780 1.802 1.752

Table AA.3 shows values of R, when n′0 is calculated, using the true values of
g = 1 and k = 2, and varying values of a guessed value q̂ and a true value of q. The
formula is here

R =
(1 +

√
q̂k)(1 +

√
q2

q̂ k)− (1 + q)(1 + k) nN

(1 +
√
qk)2 − (1 + q)(1 + k) nN

. (AA.22)
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These results indicate that R is robust against misspecification of q.

Table AA.3: The relative inflation R in mean variance, given by (AA.22), for varying values
of the guessed value q̂ and the true value q, when n/N = 0.1, g = 1 and k = 2.

q̂ \ q 0.025 0.05 0.10 0.15
0.025 1.000 1.030 1.133 1.185
0.05 1.023 1.000 1.031 1.055
0.10 1.096 1.028 1.000 1.002
0.15 1.155 1.065 1.009 1.000

AA.2.2 Robustness against departures from proportionality

Let us now investigate the robustness of the optimal allocation based on the pro-
portional regression model against departures from proportionality between xi and
EYi . The model we used in the investigations for departure from proportionality
is inspired by the applications we have in mind, namely cell counting, see Hansen
et al. (2011). We assume that

Yi ∼ pois(β0), i = 1, . . . ,N0,

Yi |Xi = xi ∼ pois(xδi ), i =N0 + 1, . . . ,N .
(AA.23)

Note that in Stratum 1, a model of this type is obtained if Yi is the number of cells
observed in field of view i and the cell centres follow a Cox point process with
cumulated random intensity of the form xδi . For all choices of δ, the model (AA.23)
represents a mean-variance relation with g = 1, i.e., VarYi ∝ (EYi)1. If δ = 1, the
extended proportional regression model holds with σ2

0 = β0 and σ2
1 = β1. If instead

δ , 1, the proportional regression relationship between xi and Yi does not hold for
i > N0.

We study the consequences of using n0 as given in (19) with g = 1, even though
the underlying assumptions are not fulfilled. We use PPS sampling in Stratum 1
with inclusion probabilities proportional to the xis. In contrast to the case δ = 1, the
mean variance for δ , 1 is influenced by the specific design. We focus on systematic
PPS sampling, with an ordering according to the size of the xis.

Various distributions of the auxiliary variable have been tested. Here, we present
the results for the case where xi is a realization of

Xi ∼ beta(γ1,γ2)ρ+ τ, (AA.24)

i =N0 +1, . . . ,N . The relative inflation R in mean variance due to allocation following
(19) with g = 1 was calculated for various values of q and δ in the model given by
(AA.23) and (AA.24). The correct value of q was used in the allocation. For each
pair of parameters q and δ, one realization of the Xis was considered, and the true
optimal value of n0, which is needed for calculation of the denominator of R, was
determined. In all the cases considered, 0.025 ≤ q ≤ 0.15 and 0.5 ≤ δ ≤ 2, optimal
allocation assuming proportionality showed robustness against departures from
proportionality (R ∈ [1;1.03]).
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Table AA.4 shows the empirical distribution of Y in Stratum 0 and Figure
AA.1 shows scatterplots of (X,Y ) for realizations of the model with δ=0.5, 1 and 2,
respectively. The parameter β0 is chosen such that the parameter q = ET0/ET1 = 0.05
is the same in all three cases.

Table AA.4: The empirical distribution of Y in Stratum 0 for a realization of the model
specified in (AA.23) and Figure AA.1.

Frequency
y 0 1 2
Units 618 46 2

0 5 10 15 20 25 30

0
2

4
6

8
1
0

x

y

0 1 2 3 4 5

0
2

4
6

8
1
0

x

y

0.0 0.5 1.0 1.5 2.0

0
2

4
6

8
1
0

x

y

Figure AA.1: Scatterplots of (X,Y ) in Stratum 1 for realizations of the model given by
(AA.23) and (AA.24) with (left to right) δ=0.5, 1 and 2, respectively, together with the mean
relation Y = Xδ. The parameters in the distribution (AA.24) are γ1 = γ2 = 2, ρ = 5, τ = 0.5
while the parameter q is equal to 0.05 in all three cases. The values ofN andN0 areN = 1000
and N0 = 2/3N . The empirical marginal distributions of X and Y are shown on the upper
and right side of the graphs.

In Figure AA.2, the mean variance is shown for n fixed (n = 100) as a function
of the sample proportion n0/n in Stratum 0. The variances are shown for simple
random sampling (SRS), PPS with replacement (WR) sampling, and systematic PPS
sampling, all under stratification. Note that the variances are only shown for a range
of the values of n0, as the variance becomes very large for extreme choices of n0.
This emphasizes the importance of good choices of n0. Although the variances differ,
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Figure AA.2: The mean variance of the model given by (AA.23) and (AA.24) under SRS,
PPS WR sampling and systematic PPS sampling, all under stratification, is shown for
q = 0.05 and (from left to right) δ=0.5, 1 and 2, respectively, as a function of the sample
proportion in Stratum 0. The remaining parameter values are specified in Figure AA.1. For
more details, see the text.

the optimal allocations are almost identical for PPS WR sampling and systematic
PPS sampling. In the case δ = 0.5, shown to the left of Figure AA.2, we gain much
from using systematic sampling, as PPS WR and systematic PPS sampling, differ
the most in this case. Here, SRS actually performs better than PPS WR sampling.
This can be mainly ascribed to stratification, as without stratification, the variance
of SRS is approximately 35.000 in the case of δ = 0.5.
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Summary

Cell counting in stereology is time-consuming. The propor-
tionator is a new stereological sampling method combining
automatic image analysis and non-uniform sampling. The
autodisector on virtual slides combines automatic generation
of disector pairs with the use of digital images. The aim of
the study was to investigate the time efficiency of the pro-
portionator and the autodisector on virtual slides compared
with traditional methods in a practical application, namely
the estimation of osteoclast numbers in paws from mice with
experimental arthritis and control mice. Tissue slides were
scanned in a digital slide scanner and the autodisector was
applied on the obtained virtual tissue slides. Every slide was
partitioned into fields of view, and cells were counted in all of
them. Based on the original exhaustive data set comprising
100% of fields of view and covering the total section area, a
proportionator sampling and a systematic, uniform random
sampling were simulated. We found that the proportionator
was 50% to 90% more time efficient than systematic, uniform
random sampling. The time efficiency of the autodisector on
virtual slides was 60% to 100% better than the disector on
tissue slides. We conclude that both the proportionator and
the autodisector on virtual slides may improve efficiency of
cell counting in stereology.

Introduction

Systematic, uniform random sampling (SURS) has been the
gold standard in the field of stereology for decades (Gundersen

Correspondence to: K.K. Keller, Department of Rheumatology, Aarhus University

Hospital, Nørrebrogade 44, DK-8000 Aarhus C, Denmark. Tel: +45 7846 4411;

fax: +45 7846 4412; e-mail: kresten@ana.au.dk

& Jensen, 1987). This principle is commonly applied when de-
termining the total number of cells in an organ from parallel
sections; the sections to be evaluated are selected by SURS. In
the next step, SURS is used in a computer-aided system to select
a known and homogeneously distributed fraction of the fields
of view (FOVs) that are subsequently evaluated using stereo-
logical estimators. These methods may be time-consuming, if
the cell population is very inhomogeneous, as a large number
of FOVs must be examined to obtain a reasonable coefficient
of error (CE = square root of standard error, divided by the
mean). Thus, new methods to increase sampling efficiency are
needed.

Recently, the proportionator was introduced by Gardi et al.
(2008a, b), combining automatic image analysis and non-
uniform sampling. This method aims at avoiding evaluation
of FOVs with low cell number, and is applicable if regions with
high cell number can be visually distinguished from regions
with low cell number, as is the case when the cells are well
stained. First, the experimenter determines, e.g. a colour of
interest (colour of the stained cells). This colour is used by
the image analysis system to assign a weight to every FOV,
based on number of pixels with similar colour. Subsequently,
the FOVs are sampled with probability proportional to their
weights, using an advanced systematic sampling scheme that
combines various variance reduction ideas known from tra-
ditional statistics, and from modern stereology. Prior to sam-
pling, the FOVs are arranged according to the principles of the
smooth fractionator (Gundersen, 2002), which corresponds
to so-called balanced systematic sampling described in Murthy
(1967, Section 5.9d). Next, systematic probability propor-
tional to size (pps) sampling (Madow, 1949) is applied to select
the FOVs. Finally, the total cell number is estimated design-
unbiased using the Horvitz–Thompson estimator, which is

C© 2013 The Authors
Journal of Microscopy C© 2013 Royal Microscopical Society
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a weighted sum of the sampled cells (Horvitz & Thompson,
1952). The CE of this estimate depends on the relation be-
tween the weights and the counts. Ideally, the weights will
be directly proportional to the counts. However, even with a
poor or no relation, the proportionator will still yield a design-
unbiased estimate, but the CE may be higher than for SURS.

The proportionator has been successfully implemented in a
computer simulation as well as in three different tissues but
only using one or two individuals per study setup (Gardi et al.,
2008a, b). In order to learn more about the proportionator, it is
necessary to investigate it in a setting with several individuals.

Osteoclasts are the main cells responsible for bone degrada-
tion in arthritis (Gravallese et al., 1998). Therefore, estimation
of the number of osteoclasts on bone surfaces is important in
arthritis research. Recently, we estimated the total number of
osteoclasts in the SKG model of rheumatoid arthritis using the
fractionator (Gundersen, 1986; Keller et al., 2011). The SKG
mouse model shares many similarities with rheumatoid arthri-
tis and is characterised by polyarthritis, elevated cytokines as
well as extra-articular manifestations of arthritis (Sakaguchi
et al., 2003; Kobayashi et al., 2006). Since osteoclasts are very
inhomogeneously distributed in arthritic mouse paws, this cell
type seems appropriate for studying the proportionator.

The routine use of digital images in the field of pathology has
considerable potential, but has until recently not been used.
However, this is changing in the current years due to im-
provement of the technique and distribution of slide scanners
(Jara-Lazaro et al., 2010; Taylor, 2011). To date, no stereo-
logical study has applied these techniques, and therefore it is
unknown whether the use of digital images can improve time
efficiency in counting. In addition, no study has combined the
use of digital images with the automated aligning of images
for the physical disector (autodisector).

The primary objective was to compare the proportionator
with the traditional SURS. The secondary objective was to
investigate time efficiency of the autodisector on virtual slides
compared to the traditional disector on tissue slides.

Methods and materials

SKG mice

Paws from 7 female SKG mice with and 5 without arthritis from
a larger study were evaluated (Keller et al., 2012). Six weeks
after arthritis induction with 20 mg mannan intraperitoneally
(Hashimoto et al., 2010), the mice were anesthetised with
isoflurane (Baxter, Deerfield, Illinois, USA) and euthanised by
cervical dislocation. The study was approved by the Danish
Animal Experiments Inspectorate.

Histological preparation of mouse paws

The right hind paw was cut 0.5 cm above the ankle joint and
immersed in 70% alcohol for fixation, followed by dehydration,

and finally the paws were embedded undecalcified in methyl
methacrylate (Fig. 1a).

The width of the paw was measured and we aimed at obtain-
ing approximately 10 section levels using SURS (Gundersen &
Jensen, 1987) (Fig. 1b). Section pairs, 7-μm-thick, were sam-
pled at each section level using a microtome (R. Jung GmbH,
Heidelberg, Germany) (Fig. 1c). The number of section levels
was only approximate, because it relies upon the measured
thickness of the paw, which will never be precise. The enzy-
matic TRAP stain was used to detect osteoclasts.

Virtual tissue slides

Tissue slides were scanned in a high-resolution digital slide
scanner (NanoZoomer 2.0 series, Hamamatsu, Japan) using
the software provided with the scanner (vers. 2.2.60). Virtual
slides were generated at a total magnification of ×589.

Data collection

The newCAST software vers. 3.6.5.0 and the add-on module
autodisector (Visiopharm, Hoersholm, Denmark) were used
for automated aligning of images for the physical disector
(Sterio, 1984). In short, overview images were automatically
created from the virtual slides and linked. Subsequently, the
software automatically aligned each pair of virtual slides, and
after delineating the region of interest with a mask, the au-
todisector automatically sampled and stored corresponding
disector images. We sampled an area fraction of 100% using
a counting frame of 107912 μm2 at a total magnification of
×589. Finally, the samples were loaded, and cell counting was
performed.

Image analysis and weights

The protocol for calculating the weights was made using the
visiomorph software (Visiopharm). A linear Bayesian pixel
classifier was applied in RGB space running a training pro-
cess of marking the background, tissue and osteoclasts on a
representative image ending up with three possible classes
(Gonzales & Woods, 2008). It was checked that the classi-
fication protocol was robust across images. A post process
step was included in the protocol with an output calculation
defined as weight (wraw) which equals the area of classified os-
teoclasts (in pixels) as described by Gardi et al. (2008a). The
weights were generated on all FOVs (counting frames) serv-
ing as reference sections. For sampling of FOVs, the weights
were transformed to w = log(wraw + 1) + 1, since the original
weights had a very skewed distribution, and many of the origi-
nal weights were equal to zero. The logarithm transformation
ensures that the distribution of weights resembles the distri-
bution of cell numbers, and the constant was added to avoid
bias due to vanishing weights.
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Fig. 1. Stereological design. Right hind paw was cut 0.5 cm above the ankle joint (a). The paws were embedded in methyl methacrylate and cut according
to the principles of SURS with a random start and a fixed distance between section levels (b). Two sections 7 μm apart were generated at each section level
(c). The region of interest was drawn with a dotted line according to the tarsus, and subsequently the FOVs were sampled using non-uniform sampling
with a probability correlated to a weight determined by image analysis – the proportionator (d). The amount of the osteoclast colour indicates the weight
of the field of view. Here, area with detected osteoclast colour is marked with red dots. Finally, osteoclasts were counted on the sampled FOVs using the
physical disector (e). Black arrows indicate an osteoclast on the left picture and the corresponding spot on the right picture.

Simulated SURS and proportionator sampling

For each individual, a proportionator sampling and SURS
were simulated using the original exhaustive data set com-
prising 100% of FOVs and covering the total section area.
For the proportionator sampling, the transformed weights
from all FOVs were arranged by the smooth fractionator
principle (Gundersen, 2002), followed by systematic sam-
pling, as described by Gardi et al. (2008a, b) (Fig. 1d and e).
The SURS mimicked the meander sampling procedure used

by the newCAST software, as described by Gardi et al.
(2006).

The SURS sample covered 50% of the FOVs, which may seem
quite large. However, the entire data set contained about 200
cells per animal. Thus, counting with an area fraction of 50%
amounts to an average count of about 100 cells per specimen,
which is commonly acknowledged as the number necessary
to achieve a reasonable precision. The proportionator sam-
ple comprised 20% of the FOVs and was chosen as to obtain
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approximately the same cell count as in SURS. Both samples
consisted of two independent parts of half the sample size, with
the purpose of estimating the CE (see below).

Estimation of the number of cells

Osteoclasts were counted in each of the n sampled FOVs using
a physical disector. We applied the disector in two directions,
using the two sections both as reference and as lookup section.
In order to estimate the total number of cells in the sampled
section pairs from one individual (Q −), the counted number
of cells (Q −

FOVi ) in a FOV was summed up and multiplied by the
inverse area sampling fraction (asf) for SURS:

Q − = 1
asf

∑
Q −

FOVi. (1)

In the proportionator sampling, the estimate is the weighted
sum of the counted cells:

Q − = W
n

·
∑ Q −

FOVi

wi
, (2)

where W is the sum of the weights of all FOVs,wi and Q −
FOVi are

the weight and cell count in a given FOV and n is the number
of FOVs. W

n can be regarded as a systematic sampling period.
We made two samples, and thus obtained two estimates Q −

1
and Q −

2 ; hence, the final estimate (Q −) was obtained as the
mean

Q − = 1
2

(Q −
1 + Q −

2 ). (3)

In order to estimate the total number of osteoclasts (N) in the
paw, we used the physical fractionator principle (Gundersen,
1986):

N̂ = 1
2

· 1
ssf

· Q −, (4)

where ssf is the section sampling fraction. The result was di-
vided by two because we counted both ways in the physical
fractionator.

Time estimation for SURS and the proportionator

We estimated the time spent in the following four situations
for both arthritic and control mice:

(1) SURS using the autodisector on virtual slides. The time
was estimated as the sum of the time for preparation
of the autodisector, the time for automatic sampling by
the autodisector and the time for counting cells. Total
counting time was estimated as the number of FOVs with
a given cell count multiplied with the counting time for
a FOV with this cell count. The results were summed for
all given cell counts in a FOV from 0 to 10.

(2) Proportionator using the autodisector on virtual slides. Time
was estimated as in (1).

(3) SURS using the disector on sections. Time was estimated
as the sum of the time for preparation of the autodisector
and counting cells. Time for counting was estimated as
the number of FOVs with a given cell count multiplied
with the sum of the counting time for a FOV with this
cell count and the time for microscope stage movement.
The results were summed for all given cell counts in a
FOV from 0 to 10.

(4) Proportionator using the disector on sections. Time was
estimated as in (3).

The preparation time for the autodisector was recorded dur-
ing the 100% SURS. In this study, we used the same prepara-
tion time for the disector as for the autodisector, although the
autodisector may be faster due to the automatic alignment of
the virtual slides.

The time for microscope stage movement from position to
position was obtained as the average time recorded approxi-
mately 40 times in total, on four different sections. Time was
recorded from when a picture of the reference section was
taken, until pictures of the lookup section were obtained and a
virtual image was generated. In this study, the image acquired
from the lookup section was expanded by 50% to allow for any
small dis-alignment.

In approximately 200 FOVs located on 12 different sections,
we recorded the time for evaluating a FOV and the number of
cells counted in a given FOV. The average time for counting
a given number of cells was calculated. At least five FOVs
with a given number of cells were recorded before an average
was estimated. Therefore, FOVs with six or more cells were
extrapolated from the results of 0 to 5 cells in a FOV.

In order to investigate the time efficiency of the different
evaluation and counting methods, the relative time efficiency
(Rte) was estimated:

Rte = t1

t2
, (5)

where t1 and t2 are the total time for evaluation using two
different evaluation or counting methods. The Rte was calcu-
lated when comparing SURS and the proportionator as well as
the autodisector and the disector. For each comparison (e.g.
evaluation method), the other two parameters (e.g. group and
counting method) were fixed in four different combinations.

Coefficient of error

Two sources of randomness influence the precision of the es-
timator N̂: sampling of the sections and sampling of the FOVs
within the sections; the latter is also known as ‘cell counting
noise’. Accordingly, the coefficient of error is composed of two
parts, CEsect and CEnoise. Here, we describe the practical estima-
tion of the total CE (CEtotal = √

VarN̂/N). For the mathematical
background, see the Appendix.
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Table 1. The average of the number of FOVs, counted cells, total number of osteoclasts (N̂) and CEs for the proportionator and SURS. The total CE (CEtotal)
is composed of CEnoise and CEsect.

Group Evaluation method FOV Count (cells) Nˆ (cells) CEnoise (%) CEsect (%) CEtot (%)

Arthritis SURS 194 97 4823 15.6 2.5 15.8
Proportionator 77 92 4707 13.4 2.3 13.6

Control SURS 154 14 862 18.3 7.2 19.7
Proportionator 62 19 657 20.8 6.3 21.7

Table 2. The average time consumption for the different groups, counting and evaluation methods. Time consumption is divided into preparation,
automatic sampling and counting.

Group Counting method Evaluation method Preparation (min) Automatic sampling (min) Counting (min) Total time (min)

Arthritis Autodisector SURS 15:47 16:23 27:26 59:36
Proportionator 15:47 6:33 17:54 40:15

Disector SURS 15:47 00:00 99:19 115:06
Proportionator 15:47 00:00 46:48 62:35

Control Autodisector SURS 14:31 13:32 13:25 41:27
Proportionator 14:31 5:25 7:08 27:03

Disector SURS 14:31 00:00 70:12 84:43
Proportionator 14:31 00:00 29:58 44:29

To obtain CEnoise, we applied the so-called direct CE method
described by Gardi et al. (2008a), which is simply the empirical
CE of two countsQ −

1 and Q −
2 from two independent samples of

half the wanted size, i.e.

CEnoise =
√

Varnoise

Q − , (6)

where

Varnoise = 1
2

· est.VarQ (7)

is half the empirical variance of the two values Q −
1 and Q −

2 ,
which can be calculated as est. VarQ = 1

2 (Q −
1 − Q −

2 )2. The
other part of the total CE (CEsect) explains how the tissue varies
from section to section (Gundersen et al., 1999). It is estimated
as

CEsect =
√

(3 (A − Varnoise) − 4B + C )/240
Q − , (8)

where A = ∑
Q −

secti · Q −
secti , B = ∑

Q −
secti · Q −

secti+1, C =∑
Q −

secti · Q −
secti+2 and Q −

secti denotes the estimated number
of cells in section pair i. The total CE was calculated as

CEtotal =
√

CE2
sect + CE2

noise. (9)

Finally, the average CE for all m individuals was calculated
as follows:

CE =
√

CE2
1 + CE2

2 · · · + CE2
m

m
. (10)

Results

Characterization of data

The study was designed to obtain almost identical cell
counts for the simulated SURS and proportionator sampling
(Table 1).

The total coefficient of error (CEtotal) in this study was com-
posed mainly of the CEnoise (Table 1). The average CE for SURS
(16%) was approximately the same as for the proportiona-
tor (14%) in arthritic mice. Similar results were found for the
control group (Table 1). However, in both groups, the results
varied among individuals, and in some cases, the CEtotal was
larger for the proportionator than for SURS.

Time efficiency

We investigated the theoretical time consumption for the dif-
ferent evaluation and counting methods in arthritic and con-
trol mice. The results are shown in Table 2.

The proportionator was 48% to 90% more time effi-
cient than SURS depending on group and counting method
(Table 3). SURS versus the proportionator using the disec-
tor was superior to other comparisons (Table 3). The average
time difference between the proportionator and SURS was ex-
plained by a time gain in both the automatic sampling and the
following cell counting for the autodisector, and a time gain
in the cell counting for the disector (Table 2).

Knowing that the proportionator improved time efficiency,
we compared the autodisector with the disector in order to
evaluate the difference in time consumption. We found that
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Table 3. The relative time efficiency (Rte) for comparisons of the different
counting and evaluation methods. During the comparisons, the two other
variables were fixed in four different combinations for each comparison.
Rte is the total time for evaluating one parameter (e.g. SURS) divided with
the other (e.g. proportionator).

Fixed variables Comparison Rte

Arthritis, Autodisector SURS vs. Proportionator 1.48
Arthritis, Disector SURS vs. Proportionator 1.84
Control, Autodisector SURS vs. Proportionator 1.53
Control, Disector SURS vs. Proportionator 1.90

Arthritis, SURS Disector vs. Autodisector 1.93
Arthritis, Proportionator Disector vs. Autodisector 1.55
Control, SURS Disector vs. Autodisector 2.04
Control, Proportionator Disector vs. Autodisector 1.64

the autodisector was 55% to 104% faster than the disector
(Table 3).

Relation between counts per FOV and number of FOVs

In this study, the number of evaluated FOVs was much larger
in SURS than in the proportionator sampling for both arthritis
and control mice. The difference was almost entirely explained
by a high number of FOVs with 0 counts (Fig. 2a and c). In
order to directly compare the two sampling methods, we ad-
justed the number of frames using 50% SURS to the 20%
proportionator sampling (multiplied with 0.4). We found that
there were still more frames with 0 counts using SURS. How-
ever, for all other counts, there was a larger number of FOVs
using the proportionator (Fig. 2b and d).

Relation between counts per FOV and weight

The association between the counts per FOV and the weight
was not ideal in this study. In many FOVs with high weight, no
cells were counted. On the other hand, Figure 3 demonstrates
that some of the FOVs with the lowest weight 1 contained one

Fig. 2. Association between the counts per FOV and the number of FOVs for SURS and the proportionator in arthritic and control mice. The counts per
FOV were compared to the number of FOVs (a) and (c). The number of FOVs using the 50% SURS was adjusted to the number of FOVs using the 20%
proportionator (multiplied with 0.4) (b) and (d). Black boxes illustrate SURS and grey boxes illustrate the proportionator.
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Fig. 3. Association between the weight and the counts per FOV. Some
FOVs with a high weight achieved no counts and some FOVs with a
weight of 1 achieved one or two counts in arthritic mice (eight and three
FOVs) and two FOVs in normal mice achieved one count. The results for
a weight of 1 are jittered. Marginal relative distributions for each axis are
shown due to many overlapping dots.

or two cells in arthritic mice (eight and three FOVs, respec-
tively) and one cell in control mice (two FOVs). As the original
weights have been transformed, a weight of 1 corresponds to a
raw weight of 0. This means that the corresponding cells have
not been detected by the image analysis procedure.

Discussion

In this study, we compared the proportionator with SURS us-
ing number estimation of osteoclasts in arthritic joints. In our

setup, we found that the proportionator was 48% to 90% more
time efficient than SURS. Hence, the proportionator was effi-
cient in both arthritic and control mice. Previously, Gardi et al.
(2008a) demonstrated that the proportionator was approxi-
mately 100% more time efficient in some tissues (pancreas
tissue, pancreas β cells and cerebellar granule cells), but only
approximately 50% as time efficient in another tissue (GFP
orexin neurons).

Although the proportionator was more time efficient, we
also encountered challenges. The association between the
weight and the count was poor. Firstly, we found that some
FOVs with a weight of 1 yielded one or two counts. A weight of
1 as used in sampling corresponds to a weight of 0 of the orig-
inal image analysis. Hence, some cells were counted in FOVs
where no colour was detected. In this study setup, some of the
cell counts in FOVs with a weight of 1 can probably be ex-
plained by the fact that we counted both ways, but the weight
was only recorded in the first section. However, the major
reason for these cell counts is probably that the image proto-
col was not sensitive enough. This does not lead to a biased
estimate, but may result in a high CE (or, equivalently, high
variance), a problem common in sampling with unequal prob-
ability and well known to statistics, as drastically illustrated by
Basu (1971) with his famous circus elephant example. There-
fore, the pilot study to calibrate the weights should ensure
that the protocol is ‘over sensitive’ thereby making sure that
all countable areas are classified. Consequently, efficiency will
be reduced as more empty areas will be presented to the user,
but the CE will be much lower. Secondly, we also observed that
a lot of FOVs with a high weight yielded none or few counts.
In some cases, a large weight and no count is explained by
large cells that are less likely to be counted. Bridges, defined
as cells that appear as one cell profile on the reference section
but as two cell profiles on the lookup section (Gundersen et al.,
1993), are also a challenge for the proportionator, because
they contribute to the weight. We did not account for bridges
although they amount to 4–5% of the total number of osteo-
clasts (Keller et al., 2011). How bridges can be accounted for
in proportionator counting needs further investigation.

CE estimation for the proportionator is difficult, due to the
systematic sampling that is part of the principles of the smooth
fractionator. We applied the direct CE of two individual sam-
plings (Gardi et al., 2008b) on the proportionator sample as
well as the SURS sample in order to compare the two methods
under the same conditions. This estimate is design-unbiased,
but can have a skewed distribution, which will lead to under-
estimation in most cases. The skewness may be reduced by
more independent samples, but the true CE of the estimator
will be increased. Consequently, the development of reliable
estimators for the CE remains a challenging problem for future
research.

Time efficiency of the autodisector on virtual slides was also
compared with the disector on tissue slides. We found that the
autodisector on virtual slides was 55% to 104% faster than the
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disector on tissue slides. Consequently, the autodisector was
superior to the disector in both arthritic and control mice. The
time spent on scanning slides in the digital slide scanner was
not accounted for in this study, and therefore the real time gain
will be somewhat smaller. However, the scanning process is
not very laborious because more than 200 tissue slides can be
automatically scanned in one session. One could also argue
that the automatic sampling should not be accounted for,
because this process is entirely automatic, and thereby the
total time for the autodisector would actually be decreased.
In conclusion, the net time gain is substantial and we believe
that the autodisector on virtual slides will be able to save time
during stereological cell counting in the future.

In this study, we applied the autodisector on virtual slides,
but the autodisector can also be applied directly on tissue slides
on a standard microscope equipped for stereology. However,
efficiency will be lower in this process primarily because the
image generation is slower. In addition, time must be spent on
taking super images of the slides and changing slides in the
slide loader.

The use of virtual slides could also be implemented for stere-
ology on volume, length and surfaces. However, the time
gained would probably be less because the stage movement
time would be almost identical in the two setups. In our study,
time was primarily gained by the fast and automatic gener-
ation of the disector pairs. When using tissue slides for the
estimation of volume, length and surfaces, time must be spent
on taking super images of the slides and changing slides in the
slide loader.

When using virtual slides, a concern is whether the quality
of the virtual slides is as good as the original tissue slides, and
especially whether the plane of focus is acceptable. In general,
we found the quality of the virtual slides to be quite acceptable
for evaluation in a stereological setup.

There are limitations in the design of this study. Although
the time estimation for the proportionator and SURS was based
on a real 100% SURS sample, it was, however, simulated.

In summary, we demonstrated that the proportionator was
more time efficient than the traditional SURS. Secondarily, we
showed that cell counting on virtual slides using the autodis-
ector is time efficient compared with traditional cell counting
on tissue slides using the disector. Hence, the autodisector on
virtual slides and the proportionator may be important for
stereological cell counting in the future.
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Appendix

In the Material and Methods section, we showed a formula for
the CE of N̂, the estimator of the total number N of cells. This
appendix exposes the mathematical background.

Three randomization steps contribute to the variance of N̂,
namely:

(1) the randomization of the start section U in systematic
sampling of the sections,

(2) the uniform selection of random origins O of the grid of
the FOVs on the sections and

(3) the sample S of FOVs given the grid.

For the last step, we chose either the traditional spatially
systematic uniform meander design (see Gardi et al., 2006), or
the proportionator.

Following the standard variance decomposition when con-
ditioning on U, the squared coefficient of error of N̂ =
Q −/(2ssf ) can be written as CE2

total N̂ = CE2
sect N̂ + CE2

noise N̂,

where

CE2
sect N̂ = Var E(N̂|U )

E 2 N̂
= Var E(Q −|U )

E 2 Q − (A1)

can be estimated by CE2
sect given in Eq. (8), see Gundersen

et al. (1999). The CE2 due to randomization and sampling of
the FOVs,

CE2
noise N̂ = E Var(N̂|U )

E 2 N̂
= E Var(Q −|U )

E 2 Q − , (A2)

is estimated using empirical variance and mean of two real-
izations of Q − using the same set of sections, by

CE2
noise =

1
2 est.Var Q( 1

2 (Q −
1 + Q −

2 )
)2 = (Q −

1 − Q −
2 )2

(Q −
1 + Q −

2 )2
, (A3)

see Equations (6) and (7). The empirical variance est.Var Q
is a design-unbiased (though not very precise) estimator
for Var(Q −|U ), even if the same set of FOV grid origins
O on the sections is used for both Q −

1 and Q −
2 : Since

the sections are entirely partitioned into FOVs, the condi-
tional mean E (Q −|U, O )is independent of the grid origins
O; thus, VarO E S(Q −|U, O ) = 0 and therefore Var(Q −|U ) =
E O VarS(Q −|U, O ).
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Abstract

In this paper, we introduce a natural generalization of non-uniform systematic sam-
pling to two dimensions. Under optimal auxiliary information about the function of
interest, this design yields an estimator with zero variance. In a simulation study
imitating sampling situations in microscopy, the 2D non-uniform systematic designs
show similar efficiency as proportional-to-size sampling with replacement. An excep-
tion is area estimation where the 2D non-uniform systematic designs are superiour in
a number of cases considered.

Keywords: Cavalieri estimator, efficiency, Horvitz-Thompson estimator, microscopy,
systematic sampling, 2D sampling

1 Introduction

In this paper, we introduce a new 2D non-uniform systematic sampling design that respects
the spatial information available and study its efficiency. In designs like the proportionator
(Gardi et al., 2008a,b), which is used in microscopy, all spatial information is lost, prior
to sampling. Therefore, a natural idea to improve upon such designs, is to include spatial
information in the sampling procedure. We propose to use transformations of 2D uniform
systematic sampling into non-uniform sampling, while still maintaining some of the spa-
tially balanced arrangement. Unlike Grafström and Tillé (2012) and Stevens Jr and Olsen
(2004), which also try to balance non-uniform samples spatially, our proposal is a genuine
2D sampling procedure.

The suggested 2D non-uniform systematic sampling design is a generalization of Dorph-
Petersen et al. (2000), where non-uniform systematic sampling was introduced in 1D. In
that paper it was concluded from simulations, that non-uniform sampling was more effi-
cient than traditional uniform sampling, known as the classical 2D Cavalieri estimator, in
an example of area estimation from lengths of linear intercepts. In the present paper we
propose a 2D non-uniform systematic sampling design, which under optimal auxiliary in-
formation about the function of interest, yields zero variance of the estimator. Furthermore,
a simulation study resembling sampling in microscopy, has been performed to investigate
the applicability of the method.



The paper is organised as follows. First we recall results from Dorph-Petersen et al.
(2000) for the 1D sampling procedure. Then, we derive the generalization to higher di-
mensions and propose various transformations of 2D uniform systematic sampling. Subse-
quently, methods and results of the simulation study are presented, followed by a discussion.
Technical proofs are deferred to two appendices.

2 Generalized systematic sampling in 1D

2.1 Theoretical considerations

Let f be a bounded non-negative function with bounded support, assumed to be the
interval [0, 1] without loss of generality. The objective is to estimate the integral

Q =

∫ 1

0
f(x) dx, (2.1)

using values of f at a set of random sampling points. In uniform systematic sampling
(Cruz-Orive, 1993; Gundersen et al., 1999), a random systematic set of n points is selected,
Yi = (U + i)/n, where U ∼ unif[0, 1) and i = 0, 1 . . . , n− 1, from which f is estimated by
a simple step function. Thus, Q can be estimated unbiasedly by

Q̂n =
1

n

n−1∑

i=0

f(Yi). (2.2)

Instead of equidistant sampling points, it may be more efficient to choose points closer to
each other in some areas, while keeping a spatially spread sample. This can be obtained
by considering an increasing bijective function G : [0, 1] → [0, 1], which transforms the
sampling points into new points Xi = G−1(Yi), i = 0, . . . , n− 1. Using that

Q =

∫ 1

0
f(x) dx =

∫ 1

0
f(G−1(x))

1

G′(G−1(x))
dx, (2.3)

we obtain a new unbiased estimator

Q̂n =
1

n

n−1∑

i=0

f(Xi)

G′(Xi)
=

1

n

n−1∑

i=0

f(G−1(Yi))

G′(G−1(Yi))
,

which corresponds to the uniform systematic sampling estimator of the function

f̃(y) = f(G−1(y))/G′(G−1(y)).

2.2 Choice of sampling points

Finding efficient sampling points, hence G and thereby f̃ , is considered in Dorph-Petersen
et al. (2000), where three choices are investigated. An obvious possibility is to choose G
such that f̃ is constant. Then Q̂n is constant and always yields the true value Q. Under
the assumption that f > 0, the function G can be defined by

G(x) =

∫ x
0 f(t) dt
∫ 1

0 f(t) dt
. (2.4)
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In Dorph-Petersen et al. (2000), the relation between this choice and sampling proportional-
to-size in the discrete setting, is established. Another suggestion uses that the transforma-
tion corresponds to uniform systematic sampling for f̃ , hence asymptotic results in the
uniform case can be used. Transitive methods yield that the asymptotic variance depends
on the smoothness of f̃ , hence it is preferable to have f̃ smoother than f . The third
suggestion is based on the idea of sampling the most, where f varies the most.

The three possibilities considered in the paper each depend on the function f , thus
prior knowledge of f or properties of f are needed. In practice f is unknown, therefore a
function f0 similar to f is used instead. For instance using this in (2.4), the estimator Q̂n
becomes

Q̂n =

∫ 1

0
f0(t) dt · 1

n

n−1∑

i=0

f(Xi)

f0(Xi)
, Xi = G−1((U + i) 1

n). (2.5)

3 Generalized systematic sampling in 2D

3.1 Theoretical considerations

The idea is now to generalize this to higher dimensions. For simplicity, we restrict our
considerations to two dimensions as the theoretical considerations are directly transferable
to any dimension. Let f be a bounded non-negative function with bounded support [0, 1]2.
The objective is to estimate the integral

Q =

∫

[0,1]2
f(x, y) dx dy, (3.1)

using values of f at a set of random sampling points in [0, 1]2. In uniform systematic
sampling, a random systematic set of n×m points is selected,

(Y1i, Y2j) = ((U1 + i) 1
n , (U2 + j) 1

m),

where U1 and U2 are independent and U1, U2 ∼ unif[0, 1), i = 0, 1 . . . , n − 1 and j =

0, 1 . . . ,m− 1. From these points f is estimated by a simple step function, hence Q can be
estimated unbiasedly by

Q̂nm =
1

nm

n−1∑

i=0

m−1∑

j=0

f(Y1i, Y2j).

Similar to the 1D case, it might be better to choose points closer to each other in some
areas. This can be obtained by considering a diffeomorphism G : [0, 1]2 → [0, 1]2, which
transforms the sampling points into new points (X1i, X2j) = G−1(Y1i, Y2j), i = 0, . . . , n−1,
j = 0, . . . ,m− 1. Using that

Q =

∫

[0,1]2
f(x, y) dx dy

=

∫

[0,1]2
f(G−1(x, y))

1

|det(G′(G−1(x, y)))| dx dy,
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where G′ denotes the Jacobi matrix of G, we obtain a new unbiased estimator

Q̂nm =
1

nm

n−1∑

i=0

m−1∑

j=0

f(X1i, X2j)

|det(G′(X1i, X2j))|

=
1

nm

n−1∑

i=0

m−1∑

j=0

f(G−1(Y1i, Y2j))

|det(G′(G−1(Y1i, Y2j)))|

which, again, corresponds to the uniform systematic sampling estimator of the function

f̃(x, y) = f(G−1(x, y))/|det(G′(G−1(x, y)))|.

In the Appendix, we proof that Q̂nm is in fact unbiased.

3.2 Choice of sampling points

Analogously to 1D we would like to choose the sampling points in an efficient manner. In
particular, we can determine G such that f̃ is constant, which implies that the variance of
Q̂nm becomes zero. Assuming f(x, y) > 0, f̃ is constant if we choose any G with

|det(G′(u, v))| = cf(u, v), (3.2)

for some constant c > 0. There are many possible choices of diffeomorphisms with property
(3.2), one example is G = (G1, G2), where

G1(x, y) =

∫ x

0
g(u) du, G2(x, y) =

1

g(x)∆

∫ y

0
f(x, v) dv, (3.3)

and

g(x) =
1

∆

∫ 1

0
f(x, v) dv, ∆ =

∫

[0,1]2
f(u, v) dudv. (3.4)

The Jacobi matrix is given by
(
∂G1
∂x

∂G1
∂y

∂G2
∂x

∂G2
∂y

)
=

(
g(x) 0

· · · f(x,y)
g(x)∆

)
,

hence |det(G′(u, v))| = f(u, v)/∆. Replacing f with a known function f0, which is similar
to f , will be used in practice. This could be colour values obtained by image analysis. Like
in 1D this choice of G is related to sampling proportional-to-size in the discrete set-up.
In the Appendix, this relation is established. Replacing f with f0 in (3.3) and (3.4), the
estimator becomes

Q̂nm =

∫

[0,1]2
f0(u, v) dudv

1

nm

n−1∑

i=0

m−1∑

j=0

f(X1i, X2j)

f0(X1i, X2j)
, (3.5)

(X1i, X2j) = G−1((U1 + i) 1
n , (U2 + j) 1

m).

Figure 1 illustrates a 2D uniform systematic sample, which is transformed into a non-
uniform systematic sample, proportional to the colour values. Note that the non-uniform
sample is still spatially spread. However, the statistical behaviour of the estimator Q̂nm
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Figure 1: Left: 2D uniform systematic sampling. Right: 2D non-uniform systematic sampling,
where the points have been transformed proportional to the colour values using (3.3) and (3.4).
The colours are obtained from the bei -data in the R-package Spatstat, see Baddeley and Turner
(2005).

depends on which coordinate in (3.3) and (3.4) is chosen first. If we interpret Φ as the
result of a gravitational force acting on the systematic grid of points, G has to be given as
G(x, y) = ∇Φ(x, y) for some scalar potential Φ. Hence to fulfil property (3.2), we seek a
solution of the Monge-Amper equation

∂2Φ

∂x2

∂2Φ

∂y2
− ∂2Φ

∂x∂y
= cf(x, y)

see e.g. Kołodziej (1998), subject to some suitable boundary and convexity conditions.
Unfortunately this equation is known to be very difficult to solve even numerically.

Instead, keeping the ideas behind G in (3.3) and (3.4), it is possible to decrease the
strong dependence on the order of the coordinates by working with the composition G =

Ψ ◦ Φ of two transformations, where Φ : [0, 1]2 → [0, 1]2 is given by

Φ1(x, y) =

∫ x

0
g(u) du,

Φ2(x, y) =
1

g(x)∆g

∫ y

0
f(x, v)α dv,

where α ∈ (0, 1),

g(x) =
1

∆g

∫ 1

0
f(x, v)α dv, ∆g =

∫

[0,1]2
f(u, v)α dudv.

and Ψ : [0, 1]2 → [0, 1]2 is given by

Ψ1(x, y) =
1

h(y)∆h

∫ x

0
(f ◦ Φ−1)(u, y)1−α du,

Ψ2(x, y) =

∫ y

0
h(v) dv,
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where

h(y) =
1

∆h

∫ 1

0
(f ◦ Φ−1)(u, y)1−α du,

∆h =

∫

[0,1]2
(f ◦ Φ−1)(u, v)1−α du dv.

It is straight forward to show, that this choice of G fulfils (3.2), and we expect that the
resulting estimator is more efficient. Unlike G in (3.3) and (3.4), where the transformed
points are aligned in one direction, this composition of G results in a completely deformed
grid of points, which is not effected much by the order of coordinates. In practice, it may
be difficult to work with a transformation of the form G = Ψ ◦ Φ as inverting G can be
very hard even numerically.

4 Simulation study

4.1 Motivation

To support our theoretical findings and to investigate the efficiency of the new design
compared to existing designs, a simulation study was carried out. As the project was
motivated by sampling in microscopy, it is natural to construct set-ups, which resemble data
obtained from this field of research. Here, non-uniform sampling is mainly used for counting
purposes, for instance for determining the total number of cells in a cell population, but also
area estimation is considered, see e.g. Gardi et al. (2008a,b). Both number estimation and
area estimation will be studied in the present paper, as well as estimation of the integral
of a function. The latter case will be called integral estimation and involves investigation
of more smooth functions than the measurement functions in the first two cases, which
are based on indicator functions. In microscopy, the value of the measurement function in
a point corresponds to complete information from a small observation window, located at
this point.

We use a selection of stochastic point processes to generate the centres of the imaginary
cells for number estimation, and thereby a selection of measurement functions f . Various
choices of the function f0, which controls the transformation G of the sampling points, is
investigated in all three cases of estimation. The function f0 is constructed from f with
different levels of noise including spatial errors. In this set-up, f0 corresponds to known
auxiliary information, obtainable from automatic image analysis of a tissue section, for
instance the amount of a predetermined color identifying a staining of the cells.

4.2 Sampling approximations

The inverse of some non-standard integrals is needed to obtain the samples, but as this
is quite time consuming, the integrals are approximated by sums, and only the non-
decomposed choice of G given in (3.3) and (3.4) is considered. Furthermore, f0 is only
determined in a finite number of points, corresponding to a pixelation of the image. Let
f0 be determined in a finite number of points in [0, 1]2, say in N ×M equidistant points,
(xk, yl), k = 1, . . . , N , l = 1, · · · ,M , where xk = (k − 1)/N and yl = (l − 1)/M . These
values correspond to an approximation of G using the lower left corners of the ‘pixels’.
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This choice allows for a particularly simple approximation of G−1. We assume that N
and M are large compared to the size of the observation window, thus we have a set-up,
which resembles a continuous set-up. Replacing f with f0 in (3.3) and (3.4), we obtain for
x ∈ [xk, xk+1) = [k−1

N , kN ), y ∈ [yl, yl+1) = [ l−1
M , l

M ), k = 1, . . . , N , l = 1, . . . ,M , discrete
approximations given by

∆ =

∫

[0,1]2
f0(u, v) dudv ≈ 1

NM

N∑

i=1

M∑

j=1

f0(xi, yj),

g(x) =
1

∆

∫ 1

0
f0(x, v) dv ≈ 1

∆M

M∑

j=1

f0(xk, yj),

G1(x) =

∫ x

0
g(u) du =

k−1∑

i=1

∫ xi+1

xi

g(u) du+

∫ x

xk

g(u) du

≈ 1

N

k−1∑

i=1

g(xi) + (x− k−1
N )g(xk)

≈ 1

∆NM

M∑

j=1

(k−1∑

i=1

f0(xi, yj) + (Nx− k + 1)f0(xk, yj)
)
,

G2(x, y) =
1

∆g(x)

∫ y

0
f0(x, v) dv

≈ 1

∆g(xk)

( l−1∑

j=1

∫ yj+1

yj

f0(xk, v) dv +

∫ y

yl

f0(xk, v) dv
)

≈ 1

∆g(xk)M

( l−1∑

j=1

f0(xk, yj) + (My − l + 1)f0(xk, yl)
)
.

In particular,

G1(xk) ≈
1

∆NM

M∑

j=1

k−1∑

i=1

f0(xi, yj),

G2(xk, yl) ≈
1

∆g(xk)M

l−1∑

j=1

f0(xk, yj),

for k = 1, . . . , N , l = 1, . . . ,M . To approximate the inverse we take for u, v ∈ [0, 1),
G−1(u, v) ≈ (xk, yl), where k = max {i |G1(xi) ≤ u}, l = max {j |G2(xk, yj) ≤ v}. For a
given choice of f0, using the approximations above, it is straight forward to simulate non-
uniform samples from uniformly generated random variables, and calculate the estimate
from (3.5).

4.3 Sampling designs

In order to investigate the efficiency of the sampling design, the variance or CE2 (squared
coefficient of error) of the design is compared to the ones for standard sampling designs.
The designs which are considered are
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• 2D continuous: 2D non-uniform systematic sampling, described above and in Sec-
tion 3.2 (continuous sampling).

• 2D discrete: 2D non-uniform systematic sampling, described in Appendix B, corre-
sponding to proportional-to-size sampling (PPS sampling) with spatial information.
This design is a new design proposed in the present paper. It is thought as a com-
promise between the continuous design above and standard PPS sampling with no
spatial information (discrete sampling).

• PPS WR: Proportional-to-size sampling with replacement (discrete sampling).

• SRS WOR: Simple random sampling without replacement (discrete sampling).

When discrete sampling is considered, the section is divided by an equally spaced grid into
fields of size w × w (determined in the section below), thus sampling is performed on a
finite number of elements.

4.4 The measurement function

Without loss of generality we assume, that the measurement function is defined on the unit
square [0, 1]2. We imitate observations in microscopy by letting the measurement function
f(x, y) be proportional to the measurement of interest on a whole observation window
(x, y) + [0, w]2, with side-length 0 ≤ w ≤ 1. As we shall see, the parameters of interest
are expressible as an integral (3.1) of f over [0, 1]2 if the spatial structure is contained in
[w, 1]2.

4.4.1 The measurement function for number estimation

Let Z = {z1, z2, . . .} be points in [w, 1]2, generated by a pre-chosen point process, indicating
centres of a cell population, and assume we want to estimate the number of points in Z,
NZ . Then, Wi = zi − [0, w]2 is the set of (x, y) in [0, 1]2 for which zi is counted in the
observation window (x, y)+ [0, w]2. If we let f(x, y) be the total number of points, counted
in (x, y) + [0, w]2, normalized with 1/w2,

f(x, y) =

NZ∑

i=1

1Wi(x, y)

w2
, (4.1)

we obtain, as desired, the total number of points NZ by

Q =

∫

[0,1]2
f(x, y) dx dy =

∫

[0,1]2

NZ∑

i=1

1Wi(x, y)

w2
dx dy

=

NZ∑

i=1

|Wi|
w2

= NZ .

4.4.2 The measurement function for area or integral estimation

Let λ be a non-negative function on R2 that is identically 0 outside [w, 1]2, and assume we
want to estimate ∫

[w,1]2
λ(u, v) dudv,
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which for λ(x, y) = 1((x, y) ∈ A) corresponds to the area of the set A ⊆ [w, 1]2. If we let
f(x, y) be the integral of λ over (x, y) + [0, w]2, normalized with 1/w2,

f(x, y) =
1

w2

∫

(x,y)+[0,w]2
λ(u, v) dudv, (4.2)

we obtain the complete integral by

Q =

∫

[0,1]2
f(x, y) dx dy

=
1

w2

∫

[0,1]2

(∫

(x,y)+[0,w]2
λ(u, v) dudv

)
dx dy

=
1

w2

∫

[0,1]2

(∫

[0,w]2
λ(u+ x, v + y) dudv

)
dx dy

=
1

w2

∫

[0,w]2

(∫

[0,1]2
λ(u+ x, v + y) dx dy

)
du dv

=
1

w2

∫

[0,w]2

(∫

(u,v)+[0,1]2
λ(x, y) dx dy

)
dudv

=
1

w2

∫

[0,w]2

(∫

[w,1]2
λ(x, y) dx dy

)
dudv

=

∫

[w,1]2
λ(u, v) dudv.

4.5 Computational details

The simulations have been performed under the following specifications:

• The constructed images consist of 128× 128 pixels covering [w, 1]2.

• We let the observation windows consist of 8×8 pixels, thus |Wi| = w2, w = 8/(128+

8− 1).

• We have N = M = 128 + 8− 1 = 135.

• The set [w, 1]2 can be covered by 16 × 16 observation windows, which is considered
in the cases of discrete sampling.

• For each set-up we used sample sizes n×m, where n = m = 3.

• For each set-up 10 000 samples were simulated to approximate the theoretical variance
of the estimator.

4.6 Number estimation

4.6.1 Choices of f and f0

Several set-ups have been tested, including different sample sizes (n andm) and population
sizes (NZ). Only some of these will be discussed in detail here. We consider three cases
of the measurement function f , which are shown in Figure 2. In all cases, f is given by
(4.1), generated by point patterns obtained as realizations of different inhomogeneous point
processes, resulting in approximately 400 points. We define the auxiliary information f0
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Figure 2: The three cases of the measurement function f , cf. (4.1), together with the points from
realizations of the point process Z. The full-drawn red lines indicates the lower and left boundary
of [w, 1]2, and the red dashed lines indicates the ‘invisible’ part of Z, for some choices of f0, see
(4.3) and Table 1.

by the same sum of indicator functions as the measurement function f in (4.1), but with
additional spatial error and a constant added, to avoid division by zero. More precisely,

f0(x, y) =
∑

zi∈[0,1]2\B
αi

1Wi(x, y)

w2
+ c, (4.3)

with different choices of αi, B and c. The 9 choices are shown in Table 1 and illustrated in
Figure 8 in Appendix A.3. Both αi and B are used to introduce a spatial error, in particular
B is used to make some of the points ‘invisible’, that is, the points are not expressed in f0.

Table 1: Parameter choices for f0 in formula (4.3).

f0 αi B c

1 xi + yi ∅ 1000

2 1 ∅ 1000

3 xi + yi ∅ 250

4 1 ∅ 250

5 xi + yi [0.6; 1]× [0; 0.4] 1000

6 1 [0.6; 1]× [0; 0.4] 1000

7 xi + yi [0.6; 1]× [0; 0.4] 250

8 1 [0.6; 1]× [0; 0.4] 250

9 0 0 1

4.6.2 Results

Figure 3 shows the estimated CE2 (Row 1) and the estimated relative CE2 (Row 2)
obtained by 10 000 sample simulations, for different choices of the auxiliary information f0

(x-axis), as detailed in Table 1, with n = m = 3.
The values of the three measurements functions f lies in the intervals [0; 3417], [0; 2563]

and [0; 4841], thus when constructing f0 from f with error, the non-uniformity is consid-
erable and large ‘smoothing’ parameters are needed, e.g. large values of the constant c in

82 Paper C



2 4 6 8
0.00

0.05

0.10

0.15

0.20

0.25
C

E
2

f0

●

●

●

●

2D Continuous
2D Discrete
PPS WR
SRSWOR

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

● ●

●

2 4 6 8
0.00

0.05

0.10

0.15

0.20

C
E

2

f0

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

2 4 6 8
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

C
E

2

f0

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

2 4 6 8
0.0

0.5

1.0

1.5

2.0

2.5

3.0

R
el

 C
E

2

f0

●
●

●

●

● ●

●

●

●

●
●

●

●

●

●

● ● ●

2 4 6 8
0.0

0.5

1.0

1.5

2.0

2.5

3.0

R
el

 C
E

2

f0

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

2 4 6 8
0.0

0.5

1.0

1.5

2.0

2.5

3.0

R
el

 C
E

2

f0

●
●

● ●

●
●

●
●

●

●
●

●

●

● ● ●

●
●

Figure 3: Results for number estimation with n = m = 3. Row 1: The estimated CE2 for the
four sampling designs, in the three cases of f . For each choice of f , the nine choices of f0 are
displayed. Row 2: The estimated relative CE2 for the two 2D non-uniform systematic sampling
designs, relative to PPS WR, in the three cases of f . For each choice of f , the nine choices of f0
are displayed.

Table 1, to prevent extreme estimates. Moreover, extreme non-uniformity results in over-
laps between the sample windows in the 2D continuous systematic sampling design and
non-fixed effective sample-sizes in the 2D discrete systematic sampling design, even for
relative small sample sizes. Due to the extreme non-uniformity, n = m = 3 is the upper
bound on the sample size in the three cases considered here, and this sample size was
therefore chosen.

Figure 3 shows that the main effect on efficiency is from the choice of f0, and there
is almost no difference in efficiency between the three designs, 2D continuous, 2D discrete
and PPS WR, which uses non-uniform sampling. The effect from the two more complicated
designs, which use spatial information, compared to the much more simple PPS WR design,
is therefore negligible. The variances naturally become larger in the non-uniform cases,
when many of the cells are placed in the invisible part of the section, but due to the large
value of c, this effect is not clearly expressed in the results. In the uniform case, choice 9
of f0, the effect solely from systematic sampling can be seen. Systematic uniform sampling
surprisingly yields in its continuous implementation a higher CE2 than SRS WOR for the
second choice of f , and only little effect is seen for the remaining two choices of f , which
may explain why the non-uniform systematic sampling designs do not have the expected
effect. In general, it seems that when spatial error is introduced (choices 1,3,5 and 7 of f0),
2D continuous systematic sampling is either almost as efficient or slightly more efficient
than PPS WR, and overall the 2D discrete systematic sampling design performs better
than the continuous version and often even slightly better than PPS WR.
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4.7 Area estimation

4.7.1 Choices of f and f0
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Figure 4: Left: The function λ equal to the indicator function of the set of interest. Right: The
corresponding measurement function f , see (4.2).

The integration function λ is in this case an indicator function, indicating where the
tissue of interest is located. A simple example is investigated here, see Figure 4, where
we consider the area of a circular disc with centre (0.5, 0.5) and radius 0.25, denoted
B((0.5, 0.5), 0.25). More precisely, using (4.2), the measurement function f can be written
as

f(x, y) = |B((0.5, 0.5), 0.25) ∩ ((x, y) + [0, w]2)|/w2. (4.4)

We define the auxiliary information f0 from the measurement function f by adding spatial
error in the following way

f0(x, y) = c1f(x, y) + c2f(x, y)

× Γ(x, y)(ΦR(x, y)− Φr(x, y)) + c3, (4.5)

where Φr(x, y) = 1((x− 0.5)2 + (y− 0.5)2 > r2) and ΦR(x, y) = 1((x− 0.5)2 + (y− 0.5)2 ≤
R2), creating a smoother band around the boundary of the circular disk, and with different
choices of Γ, c1, c2 and c3. The choices are shown in Table 2 and illustrated in Figure 9 in
Appendix A.3. In all cases r = 0.15 and R = 0.35.

4.7.2 Results

Figure 5 shows the estimated CE2 and the estimated relative CE2 obtained by 10 000

sample simulations, for different choices of the auxiliary information f0, as detailed in
Table 2, with n = m = 3.

For most choices of f0, the non-uniformity is only moderate, hence sample sizes up to
n×m, with n = m = 5, without non-fixed effective sample sizes are possible in 2D discrete
sampling. Nevertheless, in order to minimize the probability of repeated sampling of the
same window in PPS WR, we consider only results for n = m = 3. Difference between
PPS WR and the 2D systematic sampling designs will therefore not solely be due to the
re-sampling probability.
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Table 2: Parameter choices for f0 in formula (4.5).

f0 Γ c1 c2 c3

1 x+ y 1 0.4 0.2

2 1 1 0.4 0.2

3 x+ y 0 0.4 0.2

4 1 0 0.4 0.2

5 x+ y 1 1 0.2

6 1 1 1 0.2

7 x+ y 0 1 0.2

8 1 0 1 0.2

9 x+ y 1 0.4 0.4

10 1 1 0.4 0.4

11 x+ y 0 0.4 0.4

12 1 0 0.4 0.4

13 x+ y 1 1 0.4

14 1 1 1 0.4

15 x+ y 0 1 0.4

16 1 0 1 0.4

17 0 0 0 1

The effect from just introducing systematic sampling in the uniform case, choice 17
of f0, is clearly substantial, and might explain why, in contrast to the case of number
estimation, 2D non-uniform systematic sampling (2D continuous and 2D discrete in Fig-
ure 5) overall performs better than PPS WR. Although uniform systematic sampling is
an efficient design here, the efficiency may still be increased by combining the systematic
sampling with non-uniform sampling. The efficiency is most pronounced for moderate non-
uniformity, as large values of c3 reduces the variance of the 2D sampling designs relative
to both SRS WOR and PPS WR. There seems to be almost no difference in the results
from the discrete and the continuous 2D systematic sample designs.

Clearly the parameter c1 affects the efficiency relative to SRS WOR, as c1 = 1 results
in high agreement between f and f0, thus non-uniform sampling is close to optimal. The
influence of c1 for the non-uniform designs is less clear. The parameter c2 controls the
magnitude of spatial error, and clearly larger values of c2 results in a higher variance, but
in contrast to what is expected, it also results in less efficiency compared to PPS WR.
There seems to be no or negligible effect from the spatial error introduced by Γ.

4.8 Integral estimation

4.8.1 Choices of f and f0

Here we consider three cases of functions λ, which together with the corresponding mea-
surement functions f , see (4.2), are shown in Figure 6. The integrals have been scaled, such
that they integrate to one, which unifies the set-up and choices of parameters. We define
the auxiliary information f0 from the measurement function f by adding spatial error in

C.4. Simulation study 85



5 10 15

0.0

0.1

0.2

0.3

0.4

0.5

0.6

C
E

2

f0

●

●

●

●

2D Continuous
2D Discrete
PPS WR
SRSWOR

● ●

● ●

● ●

● ●

● ●

● ●

● ●

●
●

●● ●

● ●

● ●

●
●

● ●

● ●

● ●

●
●

●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

●

5 10 15

0.0

0.5

1.0

1.5

2.0

R
el

 C
E

2

f0

●
●

● ●

● ●

●
●

● ●

● ●
●

●

●
●

●

● ●

● ●

●
●

●
●

● ●

● ●

● ●
●

●

●

Figure 5: Results for area estimation with n = m = 3. Left: The estimated CE2 for the four
sampling designs for the nine choices of f0 are displayed. Right: The estimated relative CE2 for
the two 2D non-uniform systematic sampling designs, relative to PPS WR.
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Figure 6: Row 1: The three functions λ. Row 2: The three corresponding measurement functions
f .

the following way

f0(x, y) = c1f(x, y) + c2f(x, y)Γ(x, y) + c3, (4.6)

with different choices of Γ, c1, c2 and c3. The choices are shown in Table 3 and illustrated
in Figure 10 in Appendix A.3.
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Table 3: Parameter choices for f0 in formula (4.6), with A = [0, 1]2\([0.6, 1]× [0, 0.4]).

Sim Γ c1 c2 c3

1 x+ y 1 0.4 0.4

2 1 1 0.4 0.4

3 x+ y 0 0.4 0.4

4 1 0 0.4 0.4

5 x+ y 1 1 0.4

6 1 1 1 0.4

7 x+ y 0 1 0.4

8 1 0 1 0.4

9 (x+ y + 0.1)1((x, y) ∈ A) 1 0.4 0.4

10 1((x, y) ∈ A) 1 0.4 0.4

11 (x+ y + 0.1)1((x, y) ∈ A) 0 0.4 0.4

12 1((x, y) ∈ A) 0 0.4 0.4

13 (x+ y + 0.1)1((x, y) ∈ A) 1 1 0.4

14 1((x, y) ∈ A) 1 1 0.4

15 (x+ y + 0.1)1((x, y) ∈ A) 0 1 0.4

16 1((x, y) ∈ A) 0 1 0.4

17 0 0 0 1

4.8.2 Results

Figure 7 shows the estimated CE2 and the estimated relative CE2, obtained by 10 000

sample simulations, for different choices of the auxiliary information f0, detailed in Table 3,
with n = m = 3.

In all cases of f0, the non-uniformity is only moderate, hence allow sample sizes up to
n×m, with n = m = 5, without non-fixed effective sample sizes in 2D discrete sampling.
Nevertheless, with arguments stated in the previous section, we consider only results for
n = m = 3.

The main effect is again from the choice of f0, and there is almost no difference between
the three designs, which use non-uniform sampling. The relative differences seem on the
other hand more significant. In particular the 2D continuous design does not perform well,
but the 2D discrete design perform similar or better than PPS WR.

Introducing systematic sampling in the uniform case, choice 17 of f0, increases the
efficiency in the first and third case, where the non-uniformity is most systematic, whereas
in the second case the efficiency decreases. Interchanging the sampling order (first on the
y-axis, then on the x-axis instead of the opposite order) did not change the results much.
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Figure 7: Results for area estimation with n = m = 3. Row 1: The estimated CE2 for the four
sampling designs, in the three cases of f . Row 2: The estimated relative CE2 for the two 2D non-
uniform systematic sampling designs, relative to PPS WR, in the three cases of f . For each choice
of f , the seventeen choices of f0 are displayed.

5 Discussion and other perspectives

We have shown the existence of an optimal choice of 2D non-uniform systematic sampling.
The design reduces the variance substantially compared to uniform sampling, when the
auxiliary information used to construct the sampling inclusion probabilities have a close
connection to the measurement function under consideration. More precisely, when a func-
tion proportional to the measurement function is known, the design yields zero variance of
the estimator.

To support our theoretical findings and investigate the efficiency of this new design
compared to other designs, a simulation study was carried out. As the project was mo-
tivated by sampling in microscopy, it was natural to construct a set-up, which resembles
data obtained from this field of research. Number estimation, area estimation and general
integral estimation was simulated for several choices of the measurement function and the
auxiliary information, with different levels of spatial error added.

In most cases considered, the 2D non-uniform systematic designs had similar efficiency
as PPS WR. An exception was area estimation where the non-uniform systematic designs
were superior in a number of cases considered. Within the non-uniform systematic designs,
the new discrete design is more efficient than the continuous design in a number of cases.
The discrete design is easy to simulate and with a moderate constant added a robust and
efficient choice, if one suspects that the auxiliary information f0 is not optimal.

In the simulation study, other sample sizes (n and m) were considered such that the
range 3% to 25% of the total number of observation windows was covered. The conclu-
sion concerning the relative efficiency of the designs was the same as for the sample sizes
considered in the present paper.

In the case of number estimation in a Poisson point process, it is expected that 2D
non-uniform systematic sampling does not have higher efficiency than the proportionator,
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simply because the numbers counted in disjoint observation windows are independent. The
simulation study shows that in a wider range of sampling situations in microscopy the gain
in efficiency, if any, is modest.

One might wonder whether it is possible to construct a theoretical class of sampling
situations for which the parameter of interest is more efficiently estimated, using 2D non-
uniform systematic sampling compared to independent 2D non-uniform sampling. For this
purpose, let fhom be a bounded non-negative function with bounded support [0, 1]2. Sup-
pose that

Var
( 1

nm

∑

i,j

fhom(Y1i, Y2j)
)
< Var

( 1

nm

∑

i,j

fhom(U1i, U2j)
)
,

where (Y1i, Y2j) = ((U1 + i) 1
n , (U2 + j) 1

m) and U1, U2 ∼ unif[0, 1) independent, while the
U1is and U2js are all independent and unif[0,1). Furthermore, let G : [0, 1]2 → [0, 1]2 be
any diffeomorphism. Then,

finhom(x, y) = fhom(G(x, y)) · |detG′(x, y)|

is more efficiently estimated using 2D non-uniform systematic sampling than independent
2D non-uniform sampling, induced by G. More precisely, the variance of

1

nm

∑

i,j

finhom(G−1(Y1i, Y2j))

|detG′(G−1(Y1i, Y2j))|

is smaller than the variance of

1

nm

∑

i,j

finhom(Vij)

|detG′(Vij)|
,

where Vij = (V1ij , V2ij) are independent and with common density |detG′(v)|. The prac-
tical consequences of this finding are subject of future research.
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Appendix

A.1 Unbiasedness of Q̂nm

The estimator Q̂nm is unbiased, which follows directly by using the distribution of U1 and
U2. We let An = [0, 1

n ]× [0, 1
m ] and obtain

E(Q̂nm) = E
( 1

nm

n−1∑

i=0

m−1∑

j=0

f(G−1(Y1i, Y2j))

|det(G′(G−1(Y1i, Y2j)))|
)

=
1

nm

n−1∑

i=0

m−1∑

j=0

E
( f(G−1(U1+i

n , U2+j
m ))

|det(G′(G−1(U1+i
n , U2+j

m )))|

)

=
1

nm

n−1∑

i=0

m−1∑

j=0

∫

An

nmf(G−1(u+ i
n , v + j

m))

|det(G′(G−1(u+ i
n , v + j

m)))|
dudv

=
n−1∑

i=0

m−1∑

j=0

∫

[ i
n
, i+1

n
]×[ j

m
, j+1

m
]

f(G−1(u, v))

|det(G′(G−1(u, v)))| dudv

=

∫

[0,1]2
f(G−1(u, v))

1

|det(G′(G−1(u, v)))| dudv

=

∫

[0,1]2
f(x, y) dx dy

= Q.

A.2 Relation to proportional-to-size sampling

2D systematic sampling proportional-to-size can be described as follows. Let us consider
a population of N ×M units P = {(i, j), i = 1, . . . , N, j = 1, . . .M}, where the numbers
refer to the spatial arrangement. For each unit we have an unknown variable of interest
xij , and a known auxiliary variable zij , which is positively correlated with xij . The object
is to estimate

Q =
∑

(i,j)∈P

xij ,

from a systematic sample S ⊆P of fixed size n×m. The sampling procedure performed
below generates samples, where the probability of including unit (i, j) in S, is proportional
to zij . The procedure uses the (marginal) cumulative values of zij in two steps, where
in each step, systematic sampling is performed analogous to the procedure in 1D. First,
the units are divided into N groups according to the values of the first coordinate, from
which n groups are sampled, followed by sampling m units, for each of the n groups.
Let zg =

∑M
j=1 zgj , g = 1, . . . , N , denote the marginal auxiliary variables and ∆0 = 0,

∆g =
∑g

i=1 zi, g = 1, . . . , N , the cumulative ones. Then, letting U1 ∼ unif[0, 1), the group
g is chosen if there exists an i = 0, . . . , n− 1, such that

(U1 + i) 1
n∆N ∈ [∆g−1,∆g).

Assume zg < ∆N/n, g = 1, . . . , N , such that no group is sampled more than once. Next,
for each of the n sampled groups g, let ∆g0 = 0, ∆gk = (∆gM/zg)

∑k
j=1 zgj , k = 1, . . . ,M ,
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denote the (scaled) cumulative auxiliary variables within the group g. Then, letting U2 ∼
unif[0, 1), unit k is chosen if there exists an j = 0, . . . ,m− 1, such that

(U2 + j) 1
m∆gM ∈ [∆g(k−1),∆gk).

Assume again that zgk < ∆gM/m, k = 1, . . . ,M . It can be shown (see calculations below),
that πij = P((i, j) ∈ S) = nmzij/∆N from which we get the Horvitz-Thompson estimator

Q̂nm =
∑

(i,j)∈S

xij
πij

=
1

nm
∆N

∑

(i,j)∈S

xij
zij
.

The following calculation verifies that the scaling of the auxiliary variables results in the
correct inclusion probabilities, using the distribution of U1, U2 and the assumptions zg <
∆N/n and zgk < ∆gM/m. We have with Ag = [∆g−1,∆g), Agk = [∆g(k−1),∆gk) and
Bg(i, j) = [i, i+ 1) 1

n∆N × [j, j + 1) 1
m∆gM

πgk = P((g, k) ∈ S)

=
n−1∑

i=0

m−1∑

j=0

P((U1 + i) 1
n∆N ∈ Ag, (U2 + j) 1

m∆gM ∈ Agk)

=
n−1∑

i=0

m−1∑

j=0

∫

Ag×Agk∩Bg(i,j)

nm

∆N∆gM
dudv

=
nm

∆N∆gM
|Ag ×Agk|

=
nm

∆N∆gM
zg

∆gMzgk
zg

= nm
zgk
∆N

.

The relation to the set-up with integrals of a measurement function follows when we let

f(x, y) = NMxij ,

f0(x, y) = NMzij , when

(x, y) ∈ [i− 1, i) 1
N × [j − 1, j) 1

M

and

G1(x, y) =

∫ x

0
g(u) du =

1

∆

( i−1∑

k=1

M∑

j=1

zkj + (Nx− i+ 1)
M∑

j=1

zij

)

G2(x, y) =
1

g(x)∆

∫ y

0
f0(x, v) dv =

1
∑M

j=1 zij

(j−1∑

k=1

zik + (My − j + 1)zij

)
,

where

g(x) =

∫ 1
0 f0(x, y) dy

∆
=
N
∑M

j=1 zij

∆
,

∆ =

∫

[0,1]2
f0(x, y) dx dy =

∑

(i,j)∈P

zij ,

when (x, y) ∈ [i− 1, i)/N × [j − 1, j)/M , for i = 1 . . . , N and j = 1, . . . ,M .
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A.3 Figures
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Figure 8: The eight cases of non-uniform auxiliary information f0 for number estimation, for the
second measurement function, together with one example of sample points.
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Figure 9: The sixteen cases of non-uniform auxiliary information f0 for area estimation, together
with one example of sample points.
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Figure 10: The auxiliary information in the sixteen cases of f0 for integral estimation, for the
second measurement function, together with one example of sample points.
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a b s t r a c t

A class of spatial point process models that combine short range
repulsion with medium range clustering is introduced. The model
is motivated by patterns of centres of non-overlapping spheri-
cal cells in biological tissue which tend to have a clustering be-
haviour. Such a combination of clustering and hard core behaviour
can be achieved by applying a dependent Matérn thinning to a Cox
process. An exact formula for the intensity of a Matérn thinned
shot noise Cox process is derived from the Palm distribution. For
the more general class of Matérn thinned Cox processes, formu-
lae for the intensity and second-order characteristics are estab-
lished using the conditional Poisson assumption. These formulae
include more complicated integrals for which approximations are
suggested to simplify calculations. An example from pathology il-
lustrates the applicability of the models.

© 2015 Published by Elsevier B.V.

1. Introduction

The existing point process literature provides models for a variety of interactions between points,
of which the models that allow for simple statistical inference often are those used in applications.
Most models yield point patterns with either clustering or hard core behaviour; however in practical
applications, one may observe both types of interaction on different scales simultaneously. One such
example is the pattern formed by centres of cells in cell clusters—the centres cannot come closer than
the diameter of the cells, but nevertheless they show clustering on amid range of spatial distance. This
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example has motivated the present study. In the literature, such cases are often modelled by Gibbs
point processes with an appropriate interaction function, as e.g. inMattfeldt et al. (2006, 2007).While
they have an intuitive physical interpretation through the interaction function, theoretical properties
and summary statistics of Gibbs models are accessible only by simulation. Another modelling option
is to start with a stationary hard core process and obtain a clustered behaviour by independent
thinning with probability according to a random field. Second-order summary statistics of these so-
called interrupted point processes (Stoyan, 1979; Lavancier and Møller, in press) can be obtained
straightforwardly from the properties of the hard core process and the random field. In particular
if the random field can take zero values, such as a Boolean model, this approach yields a clustered
appearance. However, the spatial arrangement of points inside the clusters is influenced by ‘‘invisible’’
points outside the clusters that have been thinned from the original homogeneous pattern, which,
depending on the application, may seem less natural from a physical point of view.

In the present paper,we introduce and investigate a class ofmathematically tractable point process
models that combine clustering and hard core property, namely by applying dependent Matérn type
II thinning (Matérn, 1960, 1986) to a clustered Cox process (Cox, 1955; Møller and Waagepetersen,
2004). In a nutshell, Matérn’s thinning algorithms remove points from an existing pattern that have
neighbours that are closer than a given hard core distance h. The thinning condition can be interpreted
as the condition that balls with diameter h attached to the points may not overlap. In recent years,
generalizations of Matérn hard core models have appeared in the literature. These papers modify the
thinning condition, by replacing the non-overlapping balls with more general (random) convex sets
(Månsson and Rudemo, 2002; Kiderlen and Hörig, 2013), or by thinning according to more general
functions of the distance between points (Teichmann et al., 2013), but they still are confined to
thinning a homogeneous Poisson point process, as in Matérn’s original work. Very little is known
about the point processes resulting from application of Matérn thinning rules to other models. In his
Ph.D. thesis (2005), Tscheschel gives a formula for the intensity of Matérn thinned Matérn cluster
point processes as a model for microstructure of rubber. With the present paper, we supply a general
framework of Palm retention probabilities for calculating both first- and second-order densities of
point processes with known Palm distribution in Section 3. For the applications, we focus on Cox
point processes as a very flexible class for clustered patterns.

The paper is organized as follows. In Section 2 we give a short theoretical overview of the applied
standard point process models, and we recall some of their properties. In Section 3 we derive general
expressions for Palm retention probabilities obtained after aMatérn type II thinning procedure. These
probabilities are important in the analysis of Matérn thinned Cox processes, defined in Section 4.
Sample realizations and theoretical results with respect to Palm retention probabilities, first- and
second-order characteristics of the Matérn thinned Cox processes are also presented in Section 4.
Simple approximations are suggested in Section 5, for which the quality is supported by simulations
of two examples of Matérn thinned Cox processes, the Matérn thinned Matérn cluster process (MCP)
and theMatérn thinned Thomas process (TP). The applicability of the proposed class of point processes
is illustrated in Section 6 by means of an example from pathology of patterns of megakaryocytes in
bone marrow. Finally, a short discussion is found in Section 7 and all the included proofs are found in
the Appendix.

2. Preliminaries

This section introduces the notation and basic properties of the point process models considered
in this paper. References for detailed description of the theory of point processes include Stoyan et al.
(1995), Illian et al. (2008) and Møller and Waagepetersen (2004).

2.1. Spatial point processes

Let Nlf denote the set of locally finite subsets of the d-dimensional Euclidean space Rd, equipped
with an appropriate σ -algebra Nlf. Then, a spatial point process X is a random variable taking values in
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Nlf. Assume X has well-defined intensity function ρ(·) and second-order product density ρ(2)(·, ·), such
that the intensity measure α and the second factorial moment measure α(2) are given by

α(B) = E


ξ∈X

1(ξ ∈ B)


=


B
ρ(ξ) dξ,

α(2)(B1 × B2) = E


≠

ξ,η∈X

1(ξ ∈ B1, η ∈ B2)


=


B1


B2

ρ(2)(ξ , η) dξ dη,

for B, B1 and B2 in the Borel σ -algebra B on Rd. Here


≠ denotes summation over distinct pairs. The
interaction between pairs of points can be described by the pair correlation function

g(ξ , η) = ρ(2)(ξ , η)/(ρ(ξ)ρ(η)).

The process is said to be stationary if its distribution is translation invariant. Stationarity implies
that the intensity function is constant and that ρ(2)(ξ , η) = ρ(2)(ξ − η). The process is said to be
isotropic if its distribution is invariant with respect to rotations around the origin. For stationary and
isotropic point processes,we haveρ(2)(ξ , η) = ρ(2)(∥ξ−η∥). In this case, the pair correlation function
is effectively a function on R, g(r) = ρ(2)(r)/ρ2, r ∈ R, and the function can be interpreted as the
mean number of points at distance r from a ‘‘typical’’ point in X , relative to the mean number for a
Poisson process. Here ‘‘typical’’ point is to be understood by means of Palm distribution theory. For
the reduced Palm distribution in a point ξ , we will use the notation P!

ξ , which can be interpreted as
the conditional distribution of X\ξ given ξ ∈ X (Møller and Waagepetersen, 2004, p. 249).

2.2. Cox processes

Let {Λ(ξ), ξ ∈ Rd
} be a non-negative random field, which is almost surely locally integrable with

respect to the Lebesgue measure. A point process X is by definition a Cox process with driving field
Λ, if conditionally on Λ, X is a Poisson process with intensity function Λ (Cox, 1955; Møller and
Waagepetersen, 2004). It follows from the conditional behaviour of X , that the intensity function and
the second-order product density are given by

ρ(ξ) = E[Λ(ξ)] and ρ(2)(ξ , η) = E[Λ(ξ)Λ(η)]. (1)

Furthermore, the void probability for bounded B ∈ B is given by

P(X ∩ B = ∅) = E

exp


−


B
Λ(ξ) dξ


, (2)

and the generating functional GX (f ) = E[


ξ∈X f (ξ)] for a function f : Rd
→ [0, 1] is

GX (f ) = E

exp


−


Rd

(1 − f (ξ))Λ(ξ) dξ


, (3)

cf. Møller and Waagepetersen (2004, p. 60). A Cox process is stationary and isotropic if the driving
field Λ is stationary and isotropic.

Shot noise Cox processes (SNCPs) are characterized by random intensity functions of the form

Λ(ξ) =


(c,γ )∈Φ

γ k(c, ξ), (4)

where Φ is a Poisson process of cluster centres and cluster intensities on Rd
×(0, ∞) with a locally

finite diffuse intensity measure denoted by ζ , and k(c, ·) is a kernel, i.e. a probability density function
on Rd. See more details in Møller (2003). SNCPs can be regarded as Poisson cluster processes, as X |Φ is
distributed as the superposition of independent Poisson processes X(c,γ ), (c, γ ) ∈ Φ , with intensity
functions γ k(c, ·).
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Neyman–Scott processes (NSPs) (Neyman and Scott, 1958), which are also Cox processes, can be
regarded as a particular case of SNCPs with constant γ in (4). In the stationary case, Λ takes the form

Λ(ξ) =


c∈C

µk(ξ − c), (5)

where C is a stationary Poisson process on Rd with intensity κ > 0, say. The intensity for a stationary
NSP is ρ = µκ . Two examples of well-known stationary NSPs are given below. These processes will
be used throughout the paper to show how the general formulae simplify in concrete examples.

Example 1 (Matérn Cluster Process). A simple and popular NSP is the Matérn cluster process (MCP)
(Matérn, 1960, 1986), where the kernel

k(ξ) = 1(∥ξ∥ ≤ R)/|B(o, R)|

is the uniform density on a ball B(o, R) centred at the origin o and of radius R > 0. Here and in the
following, |B| denotes the volume of a set B. Note that a MCP is distributed as ∪c∈C Xc , where Xc |C is a
stationary Poisson point process on B(c, R) with mean number of points µ > 0, and where Xc , c ∈ C ,
are mutually independent and independent of C .

Example 2 (Thomas Process). The class of NSPs also includes the Thomas process (TP) (Thomas, 1949),
where the kernel

k(ξ) = exp(−∥ξ∥
2/2σ 2)/(2πσ 2)d/2

is the density for d independent normally distributed variables with mean 0 and variance σ 2 > 0. As
for the MCP, the TP can be constructed as a Poisson cluster process.

The reduced Palm distribution P!

ξ of a SNCP takes a particularly simple form, as it is just the
distribution of X superposed with an independent cluster containing ξ . This turns out to be useful
in the following sections. The result is restated below. The proof may be found in Møller (2003,
Proposition 2).

Proposition 1 (Reduced Palm Distribution of SNCPs). Let X be a SNCP with random intensity of the
form (4). For ρ(ξ) > 0, let

Λξ (η) = γξk(cξ , η), η ∈ Rd,

where (cξ , γξ ) is a random variable with distribution

P((cξ , γξ ) ∈ D) =


D γ k(c, ξ) dζ (c, γ )

ρ(ξ)
, for Borel sets D ⊆ Rd

×(0, ∞).

Let Xξ |(cξ , γξ ) be a Poisson process with intensity function Λξ and let (cξ , γξ , Xξ ) be independent of
(Φ, X). Then, for Lebesgue almost all ξ with ρ(ξ) > 0,

P!

ξ (F) = P(X ∪ Xξ ∈ F), F ∈ Nlf.

2.3. Matérn’s hard core models

Matérn (1960, 1986) introduced three hard core models, obtained by dependent thinning of a
stationary Poisson process, according to a hard core distance h > 0. These models are known as
Matérn’s processes of types I, II and III. Themost simplemodel, based onMatérn type I thinning, solely
depends on the point configuration of the original process. All points with a neighbour closer than the
distance h are deleted, and this thinning rule results in the most sparse process. In contrast, the most
popular thinning algorithm, the Matérn type II thinning, depends also on independent ‘‘arrival time’’
marks, which are attached to the points of the original Poisson process. The hard core property is
then achieved by removing points if there are other points within a distance h with a smaller mark.
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Naturally, the intensity of the type II model becomes higher than that for the type I model. To increase
the intensity further, Matérn proposed an iterative procedure, where a point is only influenced by
other points that have not already been deleted (type III model). Due to the resulting long range
dependence, closed forms for the summary statistics of the type III model do not exist, and therefore
we only consider Matérn type II thinning in this paper.

3. Palm retention probabilities for Matérn type II thinned processes

An important tool in analysing the Matérn thinned Cox processes is calculation of Palm retention
probabilities. They have the intuitive interpretation as the probability that a given point (or a pair
of points) that is present in the original pattern ‘‘survives’’ the thinning. In this section, we derive
expressions for these probabilities, valid for an arbitrary point process X .

Let the mark attached to a point ξ ∈ X of the point process be denoted as mξ . The marks are
assumed independent, continuously and identically distributed, and independent of X . Without loss
of generality, the marks will be assumed to be uniformly distributed on [0, 1) (Stoyan and Stoyan,
1985). Let XM = {(ξ ,mξ )|ξ ∈ X,mξ ∼ unif[0, 1)} denote the marked process. The Matérn type II
thinned process is then given by

MatII(XM; h) := {ξ ∈ X | ∀(η,mη) ∈ XM , η ≠ ξ : ∥ξ − η∥ > h ∨ mη > mξ }. (6)

The ratio between the intensity function ρth of the thinned process Xth = MatII(XM; h) and the
intensity function ρ of the original process X can be interpreted as a retention probability

pret(ξ) := ρth(ξ)/ρ(ξ). (7)

The probability will be called the Palm retention probability, since it can be expressed in terms of the
reduced Palm distribution P!

(ξ ,mξ ) for the marked process XM . In fact,

pret(ξ) =

 1

0
pret(ξ ,mξ ) dmξ , (8)

where

pret(ξ ,mξ ) = P!

(ξ ,mξ )(F(ξ ,mξ ; h)), (9)

and F(ξ ,mξ ; h) is the set of marked point patterns xM , for which the point ξ with markmξ is retained
in the thinned process,

F(ξ ,mξ ; h) := {xM | ∀(η,mη) ∈ xM : ∥ξ − η∥ > h ∨ mη > mξ }.

A proof of (8) can be found in the Appendix.
Second- and higher-order Palm retention probabilities can be treated analogously. Let ρ(2)

th and ρ(2)

denote the second-order product density of Xth and X , respectively. Then, the second-order retention
probability is defined by

p(2)
ret (ξ , η) := ρ

(2)
th (ξ , η)/ρ(2)(ξ , η). (10)

As in (8) and (9), we have

p(2)
ret (ξ , η) =

 1

0

 1

0
p(2)
ret ((ξ ,mξ )(η,mη)) dmξ dmη (11)

with

p(2)
ret ((ξ ,mξ ), (η,mη)) = 1(∥ξ − η∥ > h)P!

(ξ ,mξ ),(η,mη)(F(ξ ,mξ ; h) ∩ F(η,mη; h)). (12)

Here, P!

(ξ ,mξ )(η,mη) is the two-point reduced Palm distribution for XM (Hanisch, 1982, p. 172). A proof
of (11) can be found in the Appendix.
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In cases where it is possible to calculate the retention probabilities, the intensity and second-order
product density of the thinned process can be obtained bymultiplying the ones for the original process
with the retention probabilities. If Xth is obtained by thinning a stationary and isotropic point process
X , Xth will likewise be stationary and isotropic, and the intensity and second-order product density
are given by

ρth = pretρ and ρ
(2)
th (r) = p(2)

ret (r)ρ
(2)(r). (13)

4. Matérn thinned Cox processes

A Matérn (type II) thinned Cox process is defined as follows.

Definition 1. A Matérn thinned Cox processwith parameters (Λ, h) is a point process given by

MTCP(Λ, h) := {ξ ∈ X | ∀(η,mη) ∈ XM , η ≠ ξ : ∥ξ − η∥ > h ∨ mη > mξ }, (14)

where X is a Cox process with driving field Λ and XM = {(ξ ,mξ ) | ξ ∈ X,mξ ∼ unif[0, 1)} is the
marked process with i.i.d. uniform marks.

Sample realizations of Matérn thinned MCPs and TPs in R2 are shown in Fig. 1. For Matérn thinned
Cox processes, there exist (at least) two possible methods to derive the intensity function and the
second-order product density for the thinned process. Either one can try to calculate the retention
probabilities in (8) and (11) directly, or one can use the standard approach for Cox processes, and
first condition on the random intensity function, and then calculate the retention probabilities given
the random intensity function. The first approach is in general more difficult, but as we shall see in
Theorem 2 it is possible to find explicit expressions for the first-order retention probability forMatérn
thinned SNCPs. A proof of Theorem 2 can be found in the Appendix.

Theorem 2 (Retention Probabilities of Matérn Thinned SNCPs). The first-order Palm retention probabil-
ity (8) of MTCP(Λ, h) with shot noise driving field Λ specified by (4) is given by

pret(ξ) =

 1

0
exp


−


Rd ×(0,∞)

pξ,m(c, γ ) dζ (c, γ )


×


Rd ×(0,∞)

γ (1 − pξ,m(c, γ ))
k(c, ξ)

ρ(ξ)
dζ (c, γ )


dm,

where

pξ,m(c, γ ) = 1 − exp


−m

B(ξ ,h)

γ k(c, η) dη


.

From Theorem 2 we can easily derive the retention probabilities for Matérn thinned NSPs.

Corollary 3 (Retention Probabilities of Matérn Thinned NSPs). The first-order Palm retention
probability (8) of MTCP(Λ, h) with Neyman–Scott driving field Λ specified by (5) with µ, κ > 0 is given
by

pret =

 1

0
exp


−κ


Rd

pm(c) dc


Rd
(1 − pm(c))k(−c) dc


dm,

where

pm(c) = 1 − exp


−µm

B(o,h)

k(η − c) dη


.
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Fig. 1. Sample realizations of Matérn thinned MCPs (left) and Matérn thinned TPs (right) in observation windowW = [0, 1]2 ,
with four choices of parameters, all with intensities ρth ≈ 150 and κ = 25.
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Further simplifications are possible in the case of isotropy, which is illustrated in Examples 3 and
4 for the Matérn thinned MCPs and Matérn thinned TPs, respectively.

Example 3 (Example 1, Continued). For d = 2, the first-order Palm retention probability of a Matérn
thinned MCP reduces to

pret =

 1

0
exp


−2πκ

 R+h

0
pm(r)r dr


2/R2

 R

0
(1 − pm(r))r dr


dm, (15)

where

pm(r) = pm(∥ξr∥) = 1 − exp(−µm|B(o, h) ∩ B(ξr , R)|/(πR2)).

Example 4 (Example 2, Continued). For d = 2, the first-order Palm retention probability of a Matérn
thinned TP reduces to

pret =

 1

0
exp


−2πκ


∞

0
pm(r)r dr


1/σ 2


∞

0
(1 − pm(r)) exp(−r2/(2σ 2))r dr


dm, (16)

where

pm(r) = 1 − exp

−µm/(2πσ 2)

 h

−h

 √
h2−η22

−

√
h2−η22

exp(−(η2
1 + (η2 − r)2)/(2σ 2)) dη1 dη2


.

For general Matérn thinned Cox processes the intensity function and the second-order product
density can be determined by conditioning on the random intensity function.

Theorem 4 (Intensity Function and Second-Order Product Density of Matérn Thinned Cox Processes). As-
sume Λ is a driving field of a Cox process that almost surely fulfils

Λ(ξ) > 0 ⇒


B(ξ ,r)

Λ(η) dη > 0, for all r > 0, (17)

which can be regarded as the assumption, that the random intensity function almost surely has no
singularities.

Then for MTCP(Λ, h), the intensity function and second-order product density are given by

ρth(ξ) = E

pret|Λ(ξ)Λ(ξ)


(18)

and

ρ
(2)
th (ξ , η) = E


p(2)
ret|Λ(ξ , η)Λ(ξ)Λ(η)


(19)

for ∥ξ − η∥ > h, otherwise 0, where for Λ(ξ) and Λ(η) > 0,

pret|Λ(ξ) =
1−exp(−Ωξ )

Ωξ
(20)

and

p(2)
ret|Λ(ξ , η) =

1−exp(−Ωξ )

Ωξ Ωη\ξ
+

1−exp(−Ωη)

ΩηΩξ\η
−

1−exp(−Ωξ∪η)

Ωξ∪η


1

Ωξ\η
+

1
Ωη\ξ


, (21)

with Ω∗ =

B∗

Λ(τ ) dτ , and Bξ = B(ξ , h), Bξ\η = Bξ\Bη , and Bξ∪η = Bξ ∪ Bη .

A proof of Theorem 4 may be found in the Appendix. If the original process is an inhomogeneous
Poisson process (corresponding to a Cox process case, where Λ(ξ) = ρ(ξ) is deterministic), the
retention probabilities reduce to

pret(ξ) =
1 − exp(−ωξ )

ωξ

(22)
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and

p(2)
ret (ξ , η) =

1−exp(−ωξ )

ωξ ωη\ξ
+

1−exp(−ωη)

ωηωξ\η
−


1−exp(−ωξ∪η)

ωξ∪η


1

ωξ\η
+

1
ωη\ξ


(23)

for ∥ξ − η∥ > h, otherwise 0, where ω∗ =

b∗

ρ(ϑ) dϑ and bξ is defined in Theorem 4.
In the stationary and isotropic case (corresponding to the Matérn type II model), the intensity is

given by

ρth =
1 − exp(−ρτh)

τh
, (24)

and the second-order product density is given by

ρ
(2)
th (r) =

0, r ≤ h,
2Γh(r)(1 − exp(−ρτh)) − 2τh(1 − exp(−µΓh(r)))

τhΓh(r)(Γh(r) − τh)
, r > h, (25)

where ρ is the intensity of the process before thinning, τh = |B(o, h)|, Γh(r) = |B(o, h) ∪ B(ξr , h)|,
ξr ∈ Rd with ∥ξr∥ = r . These formulae may also be found in e.g. Matérn (1960) and Stoyan et al.
(1995).

5. Approximated first- and second-order densities

5.1. Derivation of approximations

The first- and second-order densitiesρth(ξ) andρ
(2)
th (ξ , η), givenby Eqs. (18) and (19) in Theorem4,

are in general hard to evaluate numerically or express explicitly, since they require calculation ofmean
values as complex as

E
1 − exp(−Ω∗)

Ω∗

Λ(ξ)


and E
1 − exp(−Ω∗)

Ω∗Ω�

Λ(ξ)Λ(η)

, Ω� =


B�

Λ(ϑ) dϑ,

where B∗ or B� stand for sets of the form

Bξ = B(ξ , h), Bξ∪η = Bξ ∪ Bη and Bξ\η = Bξ \ Bη.

When both clustering and hard core behaviour are visible in a point pattern, the hard core distance
will always appear small compared to the diameter of the clusters. Thus, in an appropriate model, the
driving field Λ will be often appear constant or slowly varying on a scale of the hard core distance
h. It is therefore sensible to approximate Λ(ϑ) for ϑ ∈ B(ξ , h) by Λ(ξ), which yields the following
expressions for the integrals Ω�:

Ωξ =


Bξ

Λ(ϑ)dϑ ≈ Λ(ξ)τh, (26)

Ωξ∪η =


Bξ∪η

Λ(ϑ)dϑ ≈ (Λ(ξ) + Λ(η))Γh(r)/2, (27)

Ωξ\η =


Bξ\η

Λ(ϑ)dϑ ≈ Λ(ξ)(Γh(r) − τh), (28)

where r = ∥ξ − η∥, τh = |B(o, h)|, Γh(r) = |B(o, h) ∪ B(ξr , h)|, ξr ∈ Rd, with ∥ξr∥ = r .
We will thus approximate the intensity function and second-order product density of a Matérn

thinned Cox process by

ρa(ξ) := E[pa|Λ(ξ)Λ(ξ)], (29)
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and

ρ(2)
a (ξ , η) := E[p(2)

a|Λ(ξ , η)Λ(ξ)Λ(η)], (30)

for ∥ξ − η∥ > h, otherwise 0, where pa|Λ(ξ) and p(2)
a|Λ(ξ , η) are obtained by replacing Ω∗ in the

retention probabilities (20) and (21) with the approximations (26)–(28). Simple formulae for the
approximated intensity function and second-order product density can then be found.

Theorem 5 (Approximated First- and Second-Order Densities for Matérn Thinned Cox Processes). The
approximated intensity function and second-order product density of a MTCP(Λ, h), defined by (29) and
(30), are given by

ρa(ξ) =
1−E[exp(−Λ(ξ)τh)]

τh
(31)

and

ρ(2)
a (ξ , η) =

Γh(r)(2−E[exp(−Λ(ξ)τh)]−E[exp(−Λ(η)τh)])−2τh(1−E[exp(−(Λ(ξ)+Λ(η))Γh(r)/2)])
τhΓh(r)(Γh(r)−τh)

(32)

for ∥ξ − η∥ = r > h, otherwise 0.

The proof of Theorem 5 may be found in the Appendix. From Theorem 5 we can derive the
approximated intensity function and second-order product density for Matérn thinned SNCPs.

Corollary 6 (Approximated First- and Second-Order Densities for Matérn thinned SNCPs). For SNCPs with
driving field Λ given by (4), the expected values in Theorem 5 are for ∥ξ − η∥ = r given by

E[exp(−Λ(ξ)τh)] = exp(−a(ξ)), (33)
E[exp(−(Λ(ξ) + Λ(η))Γh(r)/2)] = exp(−b(ξ , η)), (34)

where

a(ξ) =


Rd ×(0,∞)

(1 − exp(−γ k(c, ξ)τh)) dζ (c, γ ),

b(ξ , η) =


Rd ×(0,∞)

(1 − exp(−γ {k(c, ξ) + k(c, η)}Γh(r)/2)) dζ (c, γ ).

For stationary Matérn thinned NSPs with driving field Λ given by (5), a(ξ) and b(ξ , η) reduce to

a = κ


Rd

(1 − exp(−µk(ϑ)τh)) dϑ,

b(ξ − η) = κ


Rd

(1 − exp(−µ{k(ξ − η + ϑ) + k(ϑ)}Γh(r)/2)) dϑ.

The formulae become particularly simple for stationary and isotropic Matérn thinned NSPs, which
is illustrated in Examples 5 and 6 for Matérn thinned MCPs and Matérn thinned TPs in the plane.

Example 5 (Example 1, Continued). For d = 2, k(ξ) = 1(∥ξ∥ ≤ R)/(πR2) and b(ξ −η) = b(∥ξ −η∥),
say, a and b in Corollary 6 for Matérn thinned MCPs reduce to

a = κπR2(1 − exp(−µh2/R2)) and

b(r) = 2κ(1 − exp(−µΓh(r)/(2πR2)))(ΓR(r) − πR2)

+ κ(1 − exp(−µΓh(r)/(πR2)))(2πR2
− ΓR(r)).
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Example 6 (Example 2, Continued). For d = 2, k(ξ) = exp(−∥ξ∥
2/(2σ 2))/(2τσ ) and b(ξ − η) =

b(∥ξ − η∥), say, a and b in Corollary 6 for Matérn thinned TPs reduce to

a = 2πκ


∞

0
(1 − exp[−µ h2/(2σ 2) exp(−r2/(2σ 2))])r dr,

b(r) = κ


R


R
(1 − exp(−µ{exp(−(ϑ2

1 + ϑ2
2 )/(2σ 2))

+ exp(−(ϑ2
1 + (ϑ2 − r)2)/(2σ 2))}Γh(r)/(4πσ 2))) dϑ1 dϑ2.

Combining Theorem 5 and Corollary 6, the approximated intensity function and the second-order
product density for stationary and isotropic Matérn thinned NSPs simplify to

ρa =
1 − exp(−a)

τh
, (35)

and for r > h,

ρ(2)
a (r) =

2Γh(r)(1 − exp(−a)) − 2τh(1 − exp(−b(r)))
τhΓh(r)(Γh(r) − τh)

. (36)

The approximated pair correlation function is defined by ga(ξ , η) := ρ
(2)
a (ξ , η)/(ρa(ξ)ρa(η)). For

stationary and isotropic Matérn thinned NSPs, we find

ga(r) =
ρ

(2)
a (r)
ρ2
a

=
2Γh(r)τh(1 − exp(−a)) − 2τ 2

h (1 − exp(−b(r)))
Γh(r)(Γh(r) − τh)(1 − exp(−a))2

. (37)

5.2. Properties of the approximations in Matérn thinned MCPs and Matérn thinned TPs

In order to examine the quality of the approximations ρa and ga in (35) and (37), Matérn thinned
MCPs and Matérn thinned TPs have been considered in the plane for different combinations of the
parameters.

The approximated intensity ρa is compared to the theoretical intensity ρth = pretρ, where pret is
found from (15) in Example 3 for Matérn thinned MCPs and (16) in Example 4 for Matérn thinned TPs
(obtained by numerical integration). The results are summarized in Fig. 2, which shows the relative
bias as a function of the hard core distance h, relative to the cluster radius R, for the nine combinations
of parameters (κ, µ) indicated in the figure. ForMatérn thinnedMCPs, R is simply the radius forwhich
the kernel is positive, while for the Matérn thinned TPs, R is determined such that

R2
k(∥ξ∥)1(∥ξ∥ ≤ R) dξ ≈ 95%.

For Matérn thinned MCPs, ρa yields a negative, but relatively small bias, when h is reasonably small
compared to R. For Matérn thinned TPs, ρa approximates ρth very well. To assess the quality of the
approximation for the pair correlation function (pcf), ga is compared to an estimated theoretical
pcf obtained by averaging 500 empirical estimates from sample realizations. We consider four
combinations of parameter values for each of the two types of processes, Matérn thinned MCPs and
Matérn thinned TPs. See Fig. 1 for parameter details and sample realizations.

For the simulated point patterns from each of the chosen combinations of parameters, non-
parametric estimates ĝ(r) of the pcfs were found using the pcf.ppp function from the spatstat
package in R (Baddeley and Turner, 2005), with default values of r , the Epanechnikov kernel, fixed
kernel bandwidth parameter bw = h/

√
5, translate for the choice of edge correction and

divisor = d. Since the estimator ĝ(r) is based on kernel smoothing, it is biased. In particular, it
will assign values ĝ(r) > 0 for r < h. One can show that ĝ(r) with the above choice of parameters
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Fig. 2. The relative bias of the approximated intensities of Matérn thinnedMCPs (left) andMatérn thinned TPs (right) from the
theoretical intensities obtained by numerical integration. The bias is shown as a function of the hard core distance h, relative to
the cluster radius R. For Matérn thinned MCPs, R is simply the radius for which the kernel is positive, while for Matérn thinned
TPs, a comparable R is used. For details, see text. In each sub-figure, nine different models are considered, corresponding to all
the combinations of three cluster intensities, κ = 10, 25 and 50 (unbroken, dashed and dotted lines, respectively), and three
mean number of points in a cluster before thinning, µ = 5, 15 and 25 (black, blue and green lines, respectively).

is a ratio unbiased estimator for the convolution of the true pair correlation function with the kernel,
see Fiksel (1988). We therefore consider the kernel smoothed version

ga(r) :=


ga(s)k(r − s)ds (38)

when judging the quality of approximation by simulation.
In Fig. 3, ga and ga are compared to estimated pcfs for Matérn thinned MCPs (left) and Matérn

thinned TPs (right). The grey areas mark pointwise central 95%-regions. The black full drawn lines are
the average estimated pcfs, and the red stippled and full drawn lines represent ga and ga, respectively.
The smooth versions ga of ga are very similar to the average estimated pcfs in all cases considered, in
particular for the Matérn thinned MCPs.

6. Applications

In this section, we consider point patterns describing the position of megakaryocytes in bone
marrow biopsy sections for a control group and three case groups with haematopoietic stem cell
disorders, essential thrombocythemia (ET), polycythaemia vera (PV) andprimarymyelofibrosis (PMF).
The diseases result in an increased number ofmegakaryocytes and different levels of clustering, which
is used as diagnostic indicators in pathology. Pathologists determine the level of clustering (i.e. no,
‘‘loose’’ and ‘‘dense’’ clustering) by a visual judgement following different vaguely described rules, see
e.g. Madelung et al. (2013) and Vytrva et al. (2014) for further details. To the best of our knowledge, no
precise quantitative measure for the degree of clustering between megakaryocytes has been used in
the existing literature within the field of pathology and this is therefore the first time, point process
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Fig. 3. For Matérn thinned MCPs (left) and Matérn thinned TPs (right) and each of the parameter combinations (a)–(d) shown
in Fig. 1, estimates of the pcfs are shown together with the approximated pcfs ga (red stippled lines). The estimates of the pcfs
are represented by the grey areas, whichmark pointwise central 95%-regions, based on 500 simulations. The average pcfs, based
on these simulations, are also shown (black full drawn lines) as well as the smooth versions ga of ga (red full drawn lines).
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Fig. 4. A small part of a bone marrow biopsy section at high magnification. The bonemarrow consists mostly of blood forming
cells, among them megakaryocytes, a few of which have been outlined with red. On the section, huge white fat cells are also
seen.

theory has been applied to measure the level of clustering in this application. One means to get to
a quantitative characterization of the spatial arrangement of the cells are summary functions, such
as the pair correlation function considered here. Another option is to fit a point process model that
includes parameters directly linked to clustering. A similar approach has been taken byMattfeldt et al.
(2007) for the description of capillary profiles in pathological sections by a Strauss hard core model.

Megakaryocytes are large cells, which are easy to distinguish from other cells. See Fig. 4 for an
illustrative example of megakaryocytes at high magnification. We considered 1, 5, 3 and 4 biopsies
for the control, ET, PMF and PV groups, respectively. One section per biopsy was scanned and divided
into sub-sections, resulting in 9, 13, 10 and 10 sub-sections, respectively. These were chosen as parts
of the sections, where the tissuewas fairly regular and unbroken. For the case groups, the sub-sections
were of size 1540 µm × 1540 µm, but for the control group we chose parts of different sizes to
include enough cells for the point process analysis. In Fig. 5, sub-section examples are shown for
the four groups, where the tissue and megakaryocytes have been outlined. The distinct clustering
behaviour and low density in the pattern formed by the centres of themegakaryocyte profiles suggest
that Matérn thinned Cox processes are suitable models. In order to reveal differences between the
groups, we fitted Matérn thinned MCPs and Matérn thinned TPs to the data. The hard core distance
h is considered as a nuisance parameter. Considering minimum point-to-point distances, we chose
h = 25 µm. A preliminary investigation showed that the results were not affected substantially
by choosing other reasonable values of h. To estimate the other model parameters, we applied the
minimum contrast method in combination with the pcf (Diggle, 1983, Chapter 6). More concretely,
the estimated parameter vector θ̂ is found as the minimizer of the discrepancy measure

D(θ) =

 r2

r1
(ĝ(r)q − g(r; θ)q)2 dr

between the theoretical function g(·; θ) and its empirical non-parametric counterpart ĝ , where r1,
r2 and q are tuning parameters specified below. We estimated the pair correlation functions for each
group as average of pcfs estimated on the sub-sections, using spatstat as described in Section 5.2.
To avoid bias due to kernel estimation, we replaced the theoretical pcf with the convoluted version ga
given in (38). To find the parameter vector θ̂ that minimizes D(θ̂), we used the spatstat function
mincontrast, which is based on theNelder–Mead (1965) algorithm. The set of candidate parameters
for the search of θ̂ was restricted to parameters that yield an approximated intensity ρa calculated
from (35) to be equal to the observed one. The tuning parameters were set to r1 = 0, r2 = 200 µm,
and q = 1. The value of q can be used to addweight to the part of the functionsmost important for the
analysis. The short range clustering seems to be of most importance in the pathological application,
thus we chose q = 1.

In Table 1 an overview of the fitted parameters is given for the Matérn thinned MCP and Matérn
thinned TP models. Besides the model parameters we also show the usual non-parametric estimate
for the intensity ρ̂th = #Cell/|W |, the estimate for themean number of cells in a cluster after thinning
µ̂th = ρ̂th/κ̂ and the discrepancy measure.
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Fig. 5. Sub-section examples (1540 µm × 1540 µm) of the control, ET, PMF and PV groups. Tissue images and binary images
are shown, where the tissue and cells have been marked. The cells have been marked manually and they are represented by
balls of radius r = h/2 = 12.5 µm.
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Table 1
Estimated parameters from fitting Matérn thinned MCPs and Matérn thinned TPs to the observed point patterns using the
estimated pcf for each group. Besides the model parameters we also estimated the following quantities: the usual non-
parametric estimate for the intensity ρ̂th = #Cell/|W |, the estimate for the mean number of cells in a cluster after thinning
µ̂th = ρ̂th/κ̂ and the discrepancy measure.

Estimated parameters Groups and Matérn thinned models
Control ET PMF PV

MC T MC T MC T MC T

κ̂ × 105 (per (µm)2) 3.95 3.44 2.59 2.57 1.48 1.48 2.38 2.39
R̂ or σ̂ (µm) 56.29 34.83 86.78 45.67 76.40 38.61 113.16 59.28

µ̂ 0.43 0.48 1.54 1.54 4.16 4.11 2.47 2.50
ρ̂th × 105 (per (µm)2) 1.58 1.58 3.62 3.62 4.74 4.74 5.25 5.25

µ̂th 0.40 0.46 1.40 1.41 3.21 3.21 2.21 2.20
Discrepancy measure 2.57 2.16 0.50 0.37 2.82 1.98 0.40 0.41

In Fig. 6, we consider the four groups (top to bottom) and the fitted Matérn thinned MCPs (left)
and Matérn thinned TPs (right). The estimated pcf for each group from the observed point patterns is
shown as black full drawn lines. The approximated pcfs ga for the Matérn thinned MCPs and Matérn
thinned TPs with fitted parameters are also shown, as well as the smooth versions ga (red stippled
and full drawn lines, respectively). The grey areas mark pointwise central 95%-regions based on 500
simulations from the fitted Matérn thinned MCPs and Matérn thinned TPs.

The fitted Matérn thinnedMCPs andMatérn thinned TPs seem to capture most of the behaviour of
the pcfs from the observed point pattern, although we see that the models slightly underestimate the
level of clustering for short and large range distances and slightly overestimate the level of clustering
for medium range distances. The Matérn thinned TPs result in slightly better fit, except for the PV
group, where the models are almost equally good (see the discrepancy measure in Table 1).

All groups indicate a clustering behaviour, but the control group can easily be distinguished from
the case groups due to the low intensity. The PMF group is themost clustered group and seems to have
amuch highermean number of cells per cluster than the rest of the groups. The ET and PV groups show
similar behaviour of the pcfs, with ET having slightly smaller clusters with fewer cells per cluster.

7. Discussion

In the present paper, we have defined the class of Matérn thinned Cox processes and derived
formulae for first- and second-order characteristics. Furthermore, we have suggested approximations
to simplify calculations. For Matérn thinned MCPs and Matérn thinned TPs, the accuracy of the
approximationswas examined by numerical integration (for the intensity) and by simulations (for the
pair correlation function), which indicates that the approximations capturemost of the true behaviour
of the models. The approximations enable simple fitting of the models, using e.g. the minimum
contrast method, without the need of simulations. Model fitting using both Matérn thinned MCPs
and Matérn thinned TPs were performed in a study of the pattern of megakaryocytes under different
diseases. Themodels fitted very well the observed behaviour of the estimated pcfs, resulting in a valid
analysis procedure to detect clustering of these cells, which is missing in the literature within the
field of pathology. As only a pilot study with few sections was available, a future larger study must be
performed to establishmore robust conclusions for the groups under consideration. The fittedMatérn
thinnedMCPs andMatérn thinned TPs are very similar, and as numerical integration is only necessary
for the approximations of the more complicated Matérn thinned TPs, the Matérn thinned MCPs could
very well be preferred.

There are still some open questions regarding the approximations. It may be possible to
obtain results regarding upper bounds for the deviation between the theoretical and approximated
quantities. Furthermore, a thorough, future simulation study of the Matérn thinned Cox processes is
needed to investigate in detail for which choices of parameters efficient estimation of the parameters
is possible.
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Fig. 6. Group estimated pcfs from the observed point patterns are shown (black full drawn lines) for the control, ET, PMF and
PV groups. The approximated pcfs as well as the ones after smoothing (see details in the text) of the fitted models are shown
(red stippled and full drawn lines, respectively) for Matérn thinned MCPs (left) and Matérn thinned TPs (right). The grey areas
mark pointwise central 95%-regions based on 500 simulations from the fitted models.
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Appendix. Proofs

Proof of (8). To show (8), let XMth denote the thinnedmarked process. Then, the intensity measure of
Xth is for B ∈ B given by

αXth(B) = αXMth(B × [0, 1)) = E


(ξ ,mξ )∈XM

h((ξ ,mξ ), XM\(ξ ,mξ )),

where

h((ξ ,mξ ), XM\(ξ ,mξ )) = 1(ξ ∈ B)1(XM\(ξ ,mξ ) ∈ F(ξ ,mξ ; h)).

Applying the Campbell–Mecke theorem (Møller and Waagepetersen, 2004, p. 249) on the marked
process XM and the function h((ξ ,mξ ), XM\(ξ ,mξ )), we obtain

αth(B) =


B

 1

0
P!

(ξ ,mξ )(F(ξ ,mξ ; h)) dmξ ρ(ξ) dξ .

This equality holds for all B ∈ B, and therefore we have ρth(ξ) = pret(ξ)ρ(ξ) for Lebesgue almost all
ξ , where pret(ξ) is given by (8). �

Proof of (11). To derive (11), we rewrite the second factorialmomentmeasure of the thinned process
for B1, B2 ∈ B

α
(2)
th (B1 × B2) = E


≠

(ξ ,mξ ),(η,mη)∈XM

h((ξ ,mξ ), (η,mη), XM\{(ξ ,mξ ), (η,mη)}),

where

h((ξ ,mξ ), (η,mη), XM\{(ξ ,mξ ), (η,mη)})

= 1((ξ , η) ∈ B1 × B2)1(∥ξ − η∥ > h)1(XM\{(ξ ,mξ ), (η,mη)}

∈ F(ξ ,mξ ; h) ∩ F(η,mη; h)).

Using Hanisch (1982, (2.4) and (2.6)) with n = 2, we find

α
(2)
th (B1 × B2) =


Rd

 1

0


Rd

 1

0
E!

(ξ ,mξ )(η,mη) h((ξ ,mξ ), (η,mη), XM)

× α
(2)
M ( d(ξ ,mξ ), d(η,mη)).

Since α
(2)
M ( d(ξ ,mξ ), d(η,mη)) = ρ(2)(ξ , η) dmξ dmη dξ dη, we get (11). �

Proof of Theorem 2. Recall that X = ∪(c,γ )∈Φ X(c,γ ), where Φ is a Poisson process and X(c,γ )|Φ are
independent Poisson processes on Rd with intensity functions γ k(c, ·).

The marked process XM = {(ξ ,mξ )|ξ ∈ X,mξ ∼ unif[0, 1)} can then similarly be written as
XM = ∪(c,γ )∈Φ X(c,γ )M , where X(c,γ )M = {(ξ ,mξ )|ξ ∈ X(c,γ ),mξ ∼ unif[0, 1)} and X(c,γ )M |Φ are
independent Poisson processes on Rd

×[0, 1) with intensity functions h(c,γ )(ξ ,m) = γ k(c, ξ) for all
(c, γ ) ∈ Φ . Thus, XM is again a SNCP, and the retention probability can be obtained using Proposition 1
on the marked SNCP XM .
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Let XM(ξ ,m) denote the random process specified in Proposition 1. Then by definition
XM(ξ ,m)|(cξ,m, γξ,m) is a Poisson process with intensity function Λξ,m(η, m̃) = γξ,mk(cξ,m, η), the
distribution of (cξ,m, γξ,m) is given by

P((cξ,m, γξ,m) ∈ D) =


D γ k(c, ξ) dζ (c, γ )

ρ(ξ)
, for Borel sets D ⊆ Rd

×(0, ∞),

and (cξ,m, γξ,m, XM(ξ ,m)) is independent of (Φ, XM). Next, we notice that

F(ξ ,m; h) = {xM |xM ∩ (B(ξ , h) × [0,m]) = ∅}.

Using the simple description of the reduced Palm distribution in Proposition 1, we obtain

pret(ξ ,m) = P!

(ξ ,m)(F(ξ ,m; h))

= P(XM ∩ (B(ξ , h) × [0,m]) = ∅)P(XM(ξ ,m) ∩ (B(ξ , h) × [0,m]) = ∅),

where the void probabilities are

P(XM ∩ (B(ξ , h) × [0,m]) = ∅) = exp

−


Rd ×(0,∞)

pξ,m(c, γ ) dζ (c, γ )

, (A.1)

P(XM(ξ ,m) ∩ (B(ξ , h) × [0,m]) = ∅) =


Rd ×(0,∞)

γ (1 − pξ,m(c, γ ))
k(c, ξ)

ρ(ξ)
dζ (c, γ ), (A.2)

with

pξ,m(c, γ ) = 1 − exp

−m


B(ξ ,h)

γ k(c, η) dη

. (A.3)

The result in (A.1) follows by using that XM is a SNCP together with (2) and (3) in the Poisson case. The
result in (A.2) is derived using Proposition 1 as follows

P(XM(ξ ,m) ∩ (B(ξ , h) × [0,m]) = ∅)

= E P(XM(ξ ,m) ∩ (B(ξ , h) × [0,m]) = ∅|(cξ,m, γξ,m))

= E

exp


−m


B(ξ ,h)

γξ,mk(cξ,m, η) dη


=


Rd ×(0,∞)

γ (1 − pξ,m(c, γ ))
k(c, ξ)

ρ(ξ)
dζ (c, γ ). �

Proof of Theorem 4. The intensity function and the second-order product density of Xth can be
written as

ρth(ξ) = E

Λth(ξ)


,

ρ
(2)
th (ξ , η) = E


Λ

(2)
th (ξ , η)


,

where Λth(ξ) and Λ
(2)
th (ξ , η) are the intensity function and second-order product density function of

Xth given Λ. Using (7) and (10), we get that

Λth(ξ) = pret|Λ(ξ)Λ(ξ),

Λ
(2)
th (ξ , η) = p(2)

ret|Λ(ξ , η)Λ(ξ)Λ(η).

To find pret|Λ(ξ) and p(2)
ret|Λ(ξ , η) it remains to derive the retention probabilities for inhomogeneous

Poisson processes.
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Let P!

(ξ ,mξ )|Λ be the reduced Palm distribution for the marked point process XM given Λ. Using (8),
we find

pret|Λ(ξ) =

 1

0
P!

(ξ ,mξ )|Λ(F(ξ ,mξ ; h)) dmξ . (A.4)

Since the conditional distribution of XM given Λ is inhomogeneous Poisson with intensity function
ΛM(ξ ,mξ ) = Λ(ξ), we can use the Slivnyak–Mecke theorem (Møller and Waagepetersen,
2004, (3.7)), and get

P!

(ξ ,mξ )|Λ(F(ξ ,mξ ; h)) = P(XM ∩ (B(ξ , h) × [0,mξ ]) = ∅|Λ) = exp(−Ωξmξ ).

Inserting in (A.4), we get (20).
Likewise, using (11), we find

p(2)
ret (ξ , η) =

 1

0

 1

0
1(∥ξ − η∥ > h)P!

(ξ ,mξ ),(η,mη)|Λ(F(ξ ,mξ ; h) ∩ F(η,mη; h)) dmξ dmη,

where

P!

(ξ ,mξ ),(η,mη)|Λ(F(ξ ,mξ ; h) ∩ F(η,mη; h))

= P(XM ∩ (B(ξ , h) × [0,mξ ]) = ∅, XM ∩ (B(η, h) × [0,mη]) = ∅|Λ)

= exp(−(Ωξ\ηmξ + Ωη\ξmη + Ωξ∩η(mξ ∨ mη))),

for ∥ξ − η∥ > h, otherwise 0, for which (21) similarly appears from integration over the marks. �

Proof of Theorem 5. Let Λ(ξ), Λ(η) > 0, and ∥ξ − η∥ = r . Using the approximations (26)–(28), the
approximated retention probabilities reduce to

pa|Λ(ξ) =
1−exp(−Λ(ξ)τh)

Λ(ξ)τh

and

p(2)
a|Λ(ξ , η) =

1−exp(−Λ(ξ)τh)
Λ(ξ)τhΛ(η)(Γh(r)−τh)

+
1−exp(−Λ(η)τh)

Λ(η)τhΛ(ξ)(Γh(r)−τh)

−
1−exp(−(Λ(ξ)+Λ(η))Γh(r)/2)

(Λ(ξ)+Λ(η))Γh(r)/2


1

Λ(ξ)(Γh(r)−τh)
+

1
Λ(η)(Γh(r)−τh)


,

=
Γh(r)(2−exp(−Λ(ξ)τh)−exp(−Λ(η)τh))−2τh(1−exp(−(Λ(ξ)+Λ(η))Γh(r)/2))

τhΓh(r)(Γh(r)−τh)Λ(ξ)Λ(η)
,

and therefore, using the definitions (29) and (30), we obtain the results in (31) and (32). �

Proof of Corollary 6. We find

E[exp(−Λ(ξ)τh)] = E

 
(c,γ )∈Φ

exp(−γ k(c, ξ)τh)


= exp(−a(ξ)),

where we at the last equality sign have used the form of the generating functional for the Poisson
process Φ , see Møller and Waagepetersen (2004, Proposition 3.3). The formula (34) is proved in a
similar fashion. The result for NSPs is obtained by noting that a NSP is a special case of a SNCP with
k(c, ξ) = k(ξ − c) and intensity measure of cluster centres and cluster intensities dζ (c, γ ) =

dc dδµ(γ ), where δµ is a measure concentrated in the point µ with δµ({µ}) = κ . �
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Supplement D

This chapter elaborates on the results found in Paper D. We examine the quality
of the proposed approximations of first- and second-order characteristics in lim-
iting cases of a scaling parameter. Furthermore, we study parametric inference
based on the minimum contrast method in combination with the approximated
characteristics.

DD.1 Limit results

Obviously, the retention probabilities in Paper D are close to one if the intensity
of the un-thinned process is low, and close to zero, if the original process has
high intensity. In Theorem DD.1 and Theorem DD.2 below, we describe the limit
behaviour of the pair correlation function g(r) and proposed approximation ga(r)
of a Matérn thinned Cox process, when the intensity of the original process is
multiplied by a constant β, which goes either to zero or to infinity. This is particularly
interesting for NSPs, as it explains how g(r) depends on the parameter µ, the mean
number of points in a cluster before thinning. The proofs of Theorem DD.1 and
Theorem DD.2 are deferred to the Appendix at the end of the thesis.

Theorem DD.1 (Limit behaviour of the pair correlation function under scaled
driving measures). Consider Matérn thinned Cox processes with driving field βΛ, where
β > 0. Assume that Λ has no singularities, in particular that Ωξ > 0 a.s. when Λ(ξ) > 0,
where Ωξ =

∫
b(ξ,h)Λ(η)dη.

Then, the pair correlation functions gβ of the thinned processes satisfy

lim
β→0

gβ(ξ,η) = ḡ(ξ,η), ‖ξ − η‖ > h, (DD.1)

lim
β→∞

gβ(ξ,η) = ğ(ξ,η), ‖ξ − η‖ > 2h, (DD.2)

where ḡ is the pair correlation function of a Cox process with driving field Λ and ğ is the
pair correlation function of a Cox process with driving field given by

Λ̆(ξ) =
Λ(ξ)
Ωξ

1(Λ(ξ) > 0), (DD.3)

Example 1. Let X be a MTMCP with cluster intensity κ, cluster radius R and mean
number of points per cluster before thinning µ. If µ is large, we can use the approx-
imation Λ(ξ)/Ωξ ≈ 1/τh (a constant) to see that the pair correlation function g(r)

121



122 Supplement D

of X can for r > 2h be approximated by the pair correlation function of a Boolean
model with spherical grains of radius R and germ intensity κ.

Theorem DD.2 (Limit behaviour of the approximation pair correlation under scaled
driving measures). Consider Matérn thinned Cox processes with driving field βΛ, where
β > 0 and Λ fulfils the assumptions in Theorem DD.1.

Then, the approximated pair correlation functions gaβ of the thinned processes satisfy

lim
β→0

gaβ(ξ,η) = ḡ(ξ,η), ‖ξ − η‖ > 2h, (DD.4)

lim
β→∞

gaβ(ξ,η) = g̃(ξ,η)gMatII∞(‖ξ − η‖), ‖ξ − η‖ > h, (DD.5)

where ḡ is the pair correlation function of a Cox process with driving field Λ, g̃ is the pair
correlation function of a Cox point process with driving field given by

Λ̃(ξ) = 1(Λ(ξ) > 0) (DD.6)

and gMatII∞ is the limit for β→∞ of the pair correlation function of a Matérn type II
model with intensity β before thinning. This pair correlation function takes the simple
form

gMatII∞(r) = 2τh/Γh(r), r > h. (DD.7)

Example 1 (continued). Let X be the MTMCP described previously in this example.
Then, using the approximation in Example 1, ğ in Theorem DD.1 will be equal to
g̃ in Theorem DD.2 for r > 2h, and as gMatII∞(r) = 1 for r > 2h, the limit of g(r) and
ga(r) for β→∞ will be identical.

Comparing Theorem DD.1 with Theorem DD.2, we observe that g(r) and ga(r)
show similar behaviour in the limits, in particular for r > 2h, whereas for h < r < 2h it
is more complicated to understand the relation. More precisely, for β→ 0 the limits
are identical for r > 2h and for β→∞ they show similar behaviour for MTMCPs, cf.
Example 1.

DD.2 Parameter estimation in Matérn thinned Matérn
cluster processes

In this section, we present a thorough study of parameter estimation in Matérn
thinned Matérn cluster processes (MTMCPs) that, due to space limitations, could
not be presented in Paper D.

In principle, the inference is based on a standard estimation procedure, the
so-called minimum contrast method (Diggle, 2003), where the difference between a
non-parametric estimate of a second-order summary statistic (in this case the pair
correlation function (pcf)) and the corresponding theoretical function is minimized.
However, it is non-trivial to use the method, as estimation of the pcf is based
on kernel smoothing, which does not capture the discontinuity of the theoretical
function caused by the hard core distance in the MTMCPs, thus the estimate is
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biased. Moreover, as discussed in Paper D, the theoretical summary statistics in
the Matérn thinned Cox process models are hard to work with in practice, thus we
need to substitute these with approximations. Hence, it is clearly crucial for the
quality of the method that the bias introduced by kernel smoothing in the estimated
pcf is controlled and that the quality of the approximations suggested in Paper D
is sufficiently good. These questions are studied in this section. We start with a
discussion of non-parametric estimation of the pcf.

DD.2.1 Non-parametric estimation of the pair correlation function

We consider the estimation situation, where a single point pattern X∩W is observed
in a bounded observation window W with |W | > 0 in R

d . There exist a number of
estimators for the pcf g and often these include an edge-correction factor, which is
needed due to missing information for points in W near the boundary, caused by
the unobserved points outside W . A simpler alternative is to use minus sampling,
where only the points in W with a distance larger than r to the boundary of W are
used. Using this method, not all information in X ∩W is used in the estimate, but
with sufficient data, this method may be preferred.

Common for all estimators of the pcf is the need for kernel smoothing. Therefore,
let k : R→R

+ be a kernel function, i.e. a probability density with compact support
and let kδ(ξ)B k(ξ/δ)/δ be the corresponding kernel with bandwidth δ > 0. Two
of the edge-corrected kernel estimators for the pair correlation function in the
stationary and isotropic case are given by

ĝi(r) =
ρ̂

(2)
i (r)

ρ̂2
, i = 1,2, (DD.8)

where

ρ̂
(2)
1 (r) =

1
2πr

∑,

ξ,η∈X

1(ξ,η ∈W )kδ(r − ||η − ξ ||)
|W ∩Wη−ξ |

, (DD.9)

ρ̂
(2)
2 (r) =

1
2π

∑,

ξ,η∈X

1(ξ,η ∈W )kδ(r − ||η − ξ ||)
|W ∩Wη−ξ |||η − ξ ||d−1

(DD.10)

and

ρ̂2 = n(X ∩W )(n(X ∩W )− 1)/ |W |. (DD.11)

Here n(X ∩W ) denotes the number of points in X ∩W . The estimators (DD.9) and
(DD.10) (translate-edge-corrected estimators) were suggested in Fiksel (1988) with
inspiration from edge-corrections for the K-function, discussed in Ohser and Stoyan
(1981). The estimator (DD.10) is a modification of (DD.9), where the contribution
from the interpoint distances is used instead of the distance r. This may reduce bias
for small values of r. Discussions regarding estimates of ρ2 may be found in Møller
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and Waagepetersen (2004, p. 39). If |W ∩Wξ | > 0, for all ξ ∈ B(0, r), the estimators
fulfil

Eρ̂
(2)
1 (r) =

∫ ∞
0
kδ(r − s)ρ(2)(s)(s/r)ds, (DD.12)

Eρ̂
(2)
2 (r) =

∫ ∞
0
kδ(r − s)ρ(2)(s)ds. (DD.13)

Estimation procedures based on kernel smoothing are sensitive towards the
choice of bandwidth of the kernel. Large values of the bandwidth yield smooth
estimates, but important details may be lost, whereas small values of the bandwidth
yield noisy estimates. The optimal procedure for estimation of pcfs is therefore
frequently discussed in the literature, and several simulation studies have been
carried out, see e.g. discussions in Stoyan and Stoyan (1994, Section 15.4.2), Møller
and Waagepetersen (2004, Section 4.3.5) and Illian et al. (2008, Section 4.3.3).

It is well-known, that a hard core property of point processes such as Matérn
thinned Cox processes (ρ(2)(r) = 0, r < h, where h > 0 is the hard core distance) is
not utilized in a kernel based estimate ĝ of the pcf. Thus, for comparison between
the theoretical function g, which contains a discontinuity at r = h, and the smooth
function ĝ, g should be smoothed with the same kernel. From (DD.12) and (DD.13)
it follows that ĝ1 and ĝ2 in (DD.8) should be compared to

g̃1(r) =
∫ ∞

0
kδ(r − s)g(s)(s/r)ds and g̃2(r) =

∫ ∞
0
kδ(r − s)g(s)ds, (DD.14)

respectively. Alternatively, if it is known prior to estimation that g(r) = 0, for r < h,
h > 0, the bias due to the kernel estimation can be reduced by the so-called reflection
method (Illian et al., 2008), where the following estimator is considered

ĝref(r) =

ĝ(r) + ĝ(h− r) for r ≥ h
0 otherwise.

(DD.15)

DD.2.2 Parametric inference for Matérn thinned Cox processes

For point processes with theoretical second-order characteristics in a reasonably
tractable form, second-order moment estimation methods have become of great
interest. These simulation-free methods have been developed as alternatives to
computationally demanding Markov chain Monte Carlo simulation methods like
maximum likelihood estimation. In a study of moment methods for stationary Cox
processes by Dvořák and Prokešová (2012), it was concluded that for the majority
of the considered Cox process cases, the minimum contrast method, in combination
with the pcf, provides the best estimates. However, when the pcf does not have a
closed form, the method becomes numerically more demanding.

In the minimum contrast method, a vector of parameters θ is estimated by
minimizing the discrepancy measure

D(θ) =
∫ r2

r1

(T̂ (s)q − T (s;θ)q)2 ds (DD.16)
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between the theoretical summary function T (·;θ) and its empirical non-parametric
counterpart T̂ . The method performs best both in terms of speed and accuracy, if the
theoretical function is available in a reasonable form and is sensitive to the variation
of θ.

For many Cox processes, the minimum contrast method can be applied both
using the K-function and the pcf g, when these have closed form theoretical expres-
sions (Møller and Waagepetersen, 2004, p. 182). The K-function has traditionally
been used most frequently. However, recent studies report, that the estimation pro-
cedure using the pcf is more stable, see e.g. Dvořák and Prokešová (2012). In Diggle
(2003, Section 6.1.1) it is recommended to use the tuning parameter r2 ≤ 0.25 for
fitting point patterns in the unit square window using the K-function, and q = 1/4
for aggregated point patterns and q = 1/2 for regular point patterns. The param-
eter r1 can be set to 0 or a small positive values, e.g. depending on the minimum
inter-point distance between the observed points.

For the classical MCPs and TPs, the parameter estimates can be found using the
default settings in matclust.estpcf and thomas.estpcf functions in the spatstat
library (Baddeley et al., 2015) of R. Note that for these processes, g does not depend
on µ, thus θ = (κ,R) or θ = (κ,σ ), respectively. Subsequently, µ is estimated using
µ̂ = ρ̂/κ̂.

In order to estimate the parameters in the Matérn thinned Cox process mod-
els, we propose to use the minimum contrast method in combination with the
approximated theoretical pair correlation function ga and an estimator ĝ, using
either ∫ r2

h
(ĝref(s)

q − ga(s;θ)q)2 ds or
∫ r2

0
(ĝ(s)q − g̃a(s;θ)q)2 ds, (DD.17)

where ĝref and g̃a(s; ·) are the reflected or smooth versions of the functions as defined
in Section DD.2.1. Alternatively, to compare ĝ(·) with ga(·;θ) directly, a large value
of r1 must be chosen to avoid the kernel-effect, e.g. r1 = h+δ (the hard-core distance
plus the kernel bandwidth). No standard recommendations are available for the
method in combination with the pcf, but following the simulation study of Cox
processes by Dvořák and Prokešová (2012), we shall use r2 = 0.25 and q = 1/4.

For Matérn thinned Neyman-Scott processes, the simple expressions for ρa and
ga in (2.17) and (2.18), allow for a simplification of D(θ) as the dimension of θ can
be reduced. We have

ga(r) =
2Γh(r)ρa − 2(1− (1− ρaτh)exp(b̃(r)/ã))

ρ2
aΓh(r)(Γh(r)− τh)

(DD.18)

and
κ = − log(1− ρaτh)/ã (DD.19)

where ã = a/κ and b̃(r) = b(r)/κ do not depend on κ. Hence, replacing ρa with an
estimate of the intensity ρ̂, allows κ to be estimated separately. For MTMCPs and
MTTPs, assuming h is known or estimated be the minimum inter-point distance,
we can therefore minimize D(θ), where θ = (µ,R) and θ = (µ,σ ), respectively, and
subsequently estimate κ using (DD.19).
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DD.2.3 Simulation study

Simulations and estimation of parameters were performed using the spatstat

library of R, where standard functions were used for MCPs and TPs, and similar
adjusted functions were used for MTMCPs. For each point process model and each
combination of parameters, we generated 500 independent realizations in the unit
square window W = [0,1]2 and re-estimated the parameters using the minimum
contrast method. Simulation of the processes are straightforward for MTMCPs and
MCPs, using larger windows, dependent on R and h. For the Thomas process, see
default settings in spatstat. Estimation of parameters is explained thoroughly
in the following sections. To assess the performance of parameter estimation in
MTMCPs on middle-sized to large point patterns, exhibiting different degree of
clustering and regularity, we chose sixteen combinations of parameter values and
compared the results to similar MCPs and TPs. The parameter h was assumed
to be known. Alternatively, this parameter could have been estimated prior to
the other parameters using the minimum inter-point distance. For each of eight
combinations of the intensity ρ, cluster intensity κ and cluster radius R, four models
were compared;

• Highly regular MTMCP, with parameters (κ,R,µ,h), where h = R/3 and µ

were chosen according to formula (13) and (15) in Paper D, to obtain the
desired intensity ρ.

• Slightly regular MTMCP, with parameters (κ,R,µ,h), where h = R/5 and µ
were chosen according to formula (13) and (15) in Paper D, to obtain the
desired intensity ρ.

• MCP, with parameters (κ,R,µ), where µ = κ/ρ.

• TP, with parameters (κ,σ ,µ), where µ = κ/ρ and σ where chosen in agreement
with the parameter R, such that∫

R
2
kσ (‖ξ‖)1(‖ξ‖ ≤ R)dξ ≈ 95%,

where kσ (·) denotes the kernel of the TP.

In Table DD.1 an overview of the parameter values for the MTMCPs, MCPs and
TPs is given. Sample realizations are shown in Figure DD.1 for model I-II and in
Figure DD.5 in the Appendix for all the models. Approximated pcfs for MTMCPs
(red stippled lines) obtained by (2.18) and theoretical pcfs for MCPs and TPs (blue
full drawn and stippled lines, respectively) are shown in Figure DD.2 for model
I-II and in Figure DD.6-DD.8 in the Appendix for all the models. The grey areas
represent the effect from the parameter µ on the pcfs of the MTMCPs. The lower
bound corresponds to the pcf of a Boolean model (µ→∞) and the upper bound
corresponds to the pcf of the MCP model (µ→ 0), see Section DD.1.
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Figure DD.1: Sample realizations of model I-II for four types of processes; highly regular
MTMCPs, slightly regular MTMCPs, MCPs and TPs.
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κ ρ R σ h = R/ · µ (MTMCP) µ (MCP, TP) pret(%)

I hr 25 100 .05 .02 3 5.4 4 75
sr 5 4.4 91

II hr .10 .04 3 6.7 60
sr 5 4.7 85

III hr 150 .05 .02 3 10.0 6 60
sr 5 7.0 86

IV hr .10 .04 3 17.5 34
sr 5 7.7 78

V hr 50 200 .05 .02 3 5.7 4 70
sr 5 4.5 89

VI hr .10 .04 3 11.4 35
sr 5 5.1 78

VII hr 300 .05 .02 3 11.4 6 53
sr 5 7.2 83

VIII hr (∗) .10 .04 3 22.8 20
sr 5 8.9 67

Table DD.1: Parameters of the MTMCPs and similar MCPs and TPs in all parametric
models considered in this study. The index I–VIII corresponds to eight parametric MCP
and TP models, whereas the abbreviations hr and sr is used for highly regular MTMCPs
and slightly regular MTMCPs, respectively, in short for the choice of h. For all the MTMCP
models, pret denotes the retention probability. In VIII hr (∗) marks that the desired intensity
could not be obtained as ρ→ 239 (approximately) for µ→∞. Instead, µ = 22.8 (two times
the value for case VI hr) yields ρ ≈ 228.

DD.2.4 Preliminary studies of Matérn thinned cluster processes

To find an (optimal) strategy for parameter estimation in MTMCPs models, we
considered several pcf estimates and three methods for the discrepancy measure:
large lower r (r1 = h + δ ) (M1), the reflection method (M2) and the convolution
method (M3), as described in Section DD.2.2.

The modified pcf estimator ĝ2, see (DD.8) and (DD.10), clearly improved the
bias of the estimator near zero, which was important in M1 and M2. However, no
differences were found for M3. The choice of smoothing bandwidth was important
both in terms of estimating parameters in M1 and for some cases of M2, as well as
the behaviour of ĝ in M2, as e.g. artificial jumps appeared using default values. The
methods M2 and M3 were almost equally good, when using ĝ2 as the pcf estimator.
To summarize, preliminary simulations indicate that a reasonable strategy for
parameter estimation was obtained by the pcf.ppp function using: default values of
r (equidistant values between 0 and 0.25), the Epanechnikov kernel, fixed kernel
bandwidth δ = h (i.e. smooth Epanechnikov bandwidth bw = h/

√
5), translate for the

choice of edge correction, divisor = d (i.e. using ĝ2), q = 1/4, combined with either
M2 to obtain ĝ similar to g for visualization or M3 to estimate the parameters in the
MTMCP model. In the following section, this set-up is used.



DD.2. Parameter estimation in Matérn thinned Matérn cluster processes 129

I II

hr MTMCP

0.00 0.05 0.10 0.15 0.20
0

1

2

3

4

5

6

7

r
0.00 0.05 0.10 0.15 0.20

0.0

0.5

1.0

1.5

2.0

2.5

3.0

r

sr MTMCP

0.00 0.05 0.10 0.15 0.20
0

1

2

3

4

5

6

7

r
0.00 0.05 0.10 0.15 0.20

0.0

0.5

1.0

1.5

2.0

2.5

3.0

r

Figure DD.2: The approximated pcfs ga (red stippled lines) of MTMCPs are compared
to the theoretical pcfs for the similar MCPs and TPs (blue full drawn and stippled lines,
respectively) in model I-II. The grey areas represent the effect from the parameter µ on the
pcfs of the MTMCPs. The lower bound corresponds to the pcf of a Boolean model (µ→ 0)
and the upper bound corresponds to the pcf of the MCP model (µ→∞).

DD.2.5 Comparison between the Matérn thinned Matérn cluster
processes, Matérn cluster processes and Thomas processes

In this section, we describe the performance of parameter estimation of the MTMCPs
compared to the performance for MCPs and TPs.

The obtained estimates of the pcfs in the MTMCPs are shown together with
the approximated pcfs ga(red stippled lines) in Figure DD.3 for model I-II and in
Figure DD.6-DD.8 for the remaining models. The estimates are represented by the
grey areas, which mark point-wise central 95%-regions, based on 500 simulations.
The average pcfs, based on these simulations, are also shown (black full drawn lines),
the reflected average pcfs (black stippled lines) as well as the smooth versions of ga

(red full drawn lines). Thus the stippled lines illustrate the functions expected to be
closest to the true theoretical pcf g and verify, that the proposed approximation ga

captures most of the true behaviour of g. On the other hand, the full drawn lines
illustrates the average functions compared in the estimation procedure.

Main results are illustrated using the relative deviations of the parameters κ,
µ and R in Figure DD.4 for model I-II and Figure DD.9-DD.10 in the Appendix
for all models. Furthermore, the results are summarized in Table DD.2 and DD.3
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Figure DD.3: Estimates of the pcfs in the highly regular MTMCPs and slightly regular
MTMCPs in model I-II are shown together with the approximated pcfs ga(red stippled
lines). The estimates are represented by the grey areas, which mark point-wise central
95%-regions, based on 500 simulations. The average pcfs, based on these simulations, are
also shown (black full drawn lines), the reflected average pcfs (black stippled lines) as well
as the smooth versions of ga (red full drawn lines).

in the Appendix. The tables show relative mean biases 1/N
∑N
i (θ̂i − θ)/θ (RMBs)

of the estimators and relative mean squared errors 1/N
∑N
i (θ̂i − θ)2/θ2 (RMSEs).

All the statistics were obtained from the middle 95% of the estimates from the
500 replications. Neglecting the 5% of the most extreme estimates was inspired
by the procedure in a simulation study in Dvořák and Prokešová (2012). The
motivation is, that in practical applications, if such estimates were encountered,
they would be identified easily as unrealistic and practitioners would probably alter
the optimization methods e.g. by introducing limits of the parameters.

The figures and tables show that for the majority of cases considered in this
study, parameter estimation for MTMCPs is or almost is as efficient as parameter
estimation for the simpler standard MTPs and TPs.

Common for all four processes (highly regular MTMCPs, slightly regular MTM-
CPs, MCPs and TPs) is that estimation of κ, µ and R or σ depends much on the level
of clustering (R or σ ). The highly clustered processes (model I, III, V and VII) result
in much more accurate estimates than the slightly clustered processes (model II, IV,
VI and VIII). For each of the eight models (I-VIII), all four processes the parameter κ
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Figure DD.4: The relative deviation of the estimates from the true parameters κ, µ and R
for highly regular MTMCPs, slightly regular MTMCPs, MCPs and TPs in model I and II.
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is almost equally well estimated. For the highly clustered processes (model I, III, V
and VII), µ and R are estimated equally well for all four processes, with estimation
for highly regular MTMCPs being slightly less accurate. For the remaining four
cases, apart from model II for µ and model II and VI for R, estimation of µ and R
for slightly regular MTMCPs is somewhat less accurate, whereas for highly regular
MTMCPs, estimation of µ and R is much less accurate.

The overall conclusion is that parameter estimation of slightly regular MTMCPs
works well, relative to the estimation of MCPs and TPs. For hightly regular MTMCPs
it seems to be more difficult to estimate some of the parameters, in particular if
there is a low level of clustering.

DD.2.6 Discussion

In this simulation study, we have found that parameter estimation in the MTMCP
model is almost as simple and efficient, as standard estimation procedures for
MCPs and TPs, using the minimum contrast method. Thus, the models introduced
in Paper D can be used in practical applications, and furthermore, the proposed
approximations seem to represent the true theoretical pcfs sufficiently accurately
to be used for parameter estimation. Additionally, we have found specific recom-
mendations for the use of the minimum contrast method to fit a MTMCP model
to observed point patterns using parameters and discrepancy measure as recom-
mended in Section DD.2.4. In particular, using a convolution of the theoretical
(approximated) pcf identical to the one used in the estimated pcf is recommended
for a robust parameter estimation procedure.

However, for some cases of highly regular MTMCPs (model IV hr, VI hr and
VIII hr), further investigation is needed for proper estimation of the parameters in
the model, in particular for the parameter µ. One might be able to overcome the
problems for the highly regular MTMCPs, by using prior knowledge of the data,
requiring certain bounds on the parameters or by choosing other tuning parameters
in the minimum contrast method. On the other hand, the minimum contrast method
performs best, if the function under consideration is sensitive to the variation of the
parameters. For the complicated highly regular and slightly clustered cases (model
IV hr, VI hr and VIII hr), it can be seen from Figure-DD.6-DD.8 that this is not true
for high values of the parameter µ, as the function almost hit the limit function
for µ→∞. The problematic cases have high values of µ and low values of pret - see
Table DD.1. One may rise the question how important correct estimation of µ is, if
the behaviour of the thinned process does not depend much on µ, from a certain
level of µ. The sample realizations shown in Figure DD.5 illustrate how difficult it
is to distinguish the clusters in the slightly clustered cases. Thus, it is not surprising
that parameter estimation is more difficult in these cases.

In general, when fitting a Cox process to data, one often has replicated realiza-
tions of the model. This might improve the parameter estimation, as it will prevent
extreme values of the parameter estimates.

The MTMCP is a more sophisticated model than the MP and the TP, as it
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contains both clustering and regularity properties, however it should be noted that
the complexity of the process is reduced by assuming that the hard core distance h is
known and in this case MTMCP contains the same number of unknown parameters
as the MCP and the TP. Alternatively in applications, h could be estimated as the
minimum inter-point distance. This, of course, introduces additional error.

Above, we have compared the MTMCPs to cluster processes with the same
number of clusters κ and intensity ρ, to study the applicability of the new models.
Based on the results in this study, it could be relevant to construct and investigate a
set-up, where prior retention probabilities are chosen, and the other parameters are
chosen accordingly.

DD.3 Appendix

Proof of Theorem DD.1. Let ρβ and ρ(2)
β be the intensity and product density of the

Matérn thinned Cox process with driving field βΛ. To proof (DD.1), we use that

the retention probabilities pret|βΛ(ξ) and p(2)
ret|βΛ(ξ,η) in (2.14)-(2.15) in Section 2.3.1

converge to one for β→ 0, if ‖ξ − η‖ > h, which is a consequence of l’Hôpitals rule.
More explicitly,

lim
β→0

pret|βΛ(ξ) = lim
β→0

1− exp(−βΩξ )
βΩξ

= lim
β→0

Ωξ exp(−βΩξ )
Ωξ

= 1 (DD.20)

and

lim
β→0

p
(2)
ret|βΛ(ξ,η) = 2 lim

β→0

(
1− exp(−βΩξ )
β2ΩξΩη\ξ

−
1− exp(−βΩξ∪η)

β2Ωξ∪ηΩη\ξ

)
= 1 (DD.21)

By dominated convergence, we therefore have

lim
β→0

ρβ(ξ)/β = lim
β→0

E

(
pret|βΛ(ξ)Λ(ξ)

)
= E (Λ(ξ)) (DD.22)

and

lim
β→0

ρ
(2)
β (ξ,η)/β2 = lim

β→0
E(p(2)

ret|βΛ(ξ,η)Λ(ξ)Λ(η)) = E (Λ(ξ)Λ(η)) , (DD.23)

thus

lim
β→0

gβ(ξ,η) = lim
β→0

ρ
(2)
β (ξ,η)

ρβ(ξ)ρβ(η)
=

E(Λ(ξ)Λ(η))
EΛ(ξ)EΛ(η)

= ḡ(ξ,η). (DD.24)

For (DD.2), note that p(2)
ret|βΛ(ξ,η) = pret|βΛ(ξ)pret|βΛ(η) if ‖ξ − η‖ > 2h. By dominated

convergence, we have

lim
β→∞

ρβ(ξ) = lim
β→∞

E

(
1− exp(−βΩξ )

βΩξ
βΛ(ξ)1(Λ(ξ) > 0)

)
= E

(
Λ(ξ)/Ωξ1(Λ(ξ) > 0)

)
= EΛ̆(ξ), (DD.25)
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and

lim
β→∞

ρ
(2)
β (ξ,η) = lim

β→∞
E

(
(1−exp(−βΩξ ))(1−exp(−βΩη ))

βΩξβΩη
β2Λ(ξ)Λ(η)1(Λ(ξ),Λ(η) > 0)

)
= E

(
Λ(ξ)/ΩξΛ(η)/Ωη1(Λ(ξ) > 0,Λ(η) > 0)

)
= E(Λ̆(ξ)Λ̆(η)),

(DD.26)

thus

lim
β→∞

gβ(ξ,η) = lim
β→∞

ρ
(2)
β (ξ,η)

ρβ(ξ)ρβ(η)
=

E(Λ̆(ξ)Λ̆(η))

EΛ̆(ξ)EΛ̆(η)
= ğ(ξ,η). (DD.27)

The last equalities in (DD.24) and (DD.27) use the fact that the product density of
an inhomogeneous Poisson point process factorizes.

Proof of Theorem DD.2. Let ρaβ and ρ(2)
aβ be the approximated intensity and product

density of the Matérn thinned Cox process with driving field βΛ. The proof of
(DD.4) is similar to the proof in Theorem DD.1, where we use that the approximative
retention probabilities pa|βΛ(ξ) and p(2)

a|βΛ(ξ,η) converge to one for β→ 0, if ‖ξ −η‖ >
2h. For (DD.5), we have by dominated convergence

lim
β→∞

ρaβ(ξ) = lim
β→∞

E

(
1− exp(−βΛ(ξ)τh)

βΛ(ξ)τh
βΛ(ξ)1(Λ(ξ) > 0)

)
= E (1/τh1(Λ(ξ) > 0)) = E(Λ̆(ξ))/τh, (DD.28)

and with

p
(2)
a|βΛ(ξ,η) = Γh(r)(2−exp(−βΛ(ξ)τh)−exp(−βΛ(η)τh))−2τh(1−exp(−β(Λ(ξ)+Λ(η))Γh(r)/2))

β2τhΓh(r)(Γh(r)−τh)Λ(ξ)Λ(η) ,

(DD.29)

we obtain

lim
β→∞

ρ
(2)
aβ (ξ,η) = lim

β→∞
E

(
p

(2)
a|βΛ(ξ,η)β2Λ(ξ)Λ(η)1(Λ(ξ),Λ(η) > 0)

)
= E (2/(τhΓh(r))1(Λ(ξ),Λ(η) > 0)) = E(Λ̆(ξ)Λ̆(η))2/(τhΓh(r)), (DD.30)

where r = ||ξ − η||, thus

lim
β→∞

gaβ(ξ,η) = lim
β→∞

ρ
(2)
aβ (ξ,η)

ρaβ(ξ)ρaβ(η)
=

E(Λ̆(ξ)Λ̆(η))

EΛ̆(ξ)EΛ̆(η)

2τh
Γh(r)

= ğ(ξ,η)gMatII∞(‖ξ − η‖). (DD.31)
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Figure DD.5: Sample realizations of all models I-VIII in Table DD.1 for highly regular
MTMCPs, slightly regular MTMCPs, MCPs, and TPs.
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Figure DD.6: Theoretical and estimated pcfs for model III-IV. See Figure DD.2 and DD.3
for a detailed description.
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Figure DD.7: Theoretical and estimated pcfs for model V-VI. See Figure DD.2 and DD.3
for a detailed description.
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Figure DD.8: Theoretical and estimated pcfs for model VII-VIII. See Figure DD.2 and
DD.3 for a detailed description.
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Figure DD.9: Relative deviation of the estimates from the true parameters κ, µ and R for
all models I-IV in Table DD.1.
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Figure DD.10: Relative deviation of the estimates from the true parameters κ, µ and R for
all models V-VIII in Table DD.1.
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RMB κ ρ R σ hrMTMC srMTMC MCP TP

κ̂ 25 100 .05 .02 -.005 .043 .044 .022
.10 .04 .100 .186 .229 .178

150 .05 .02 -.001 .007 .009 .020
.10 .04 .099 .162 .217 .113

50 200 .05 .02 .002 .013 .039 .031
.10 .04 .095 .150 .349 .158

300 .05 .02 .009 .031 .027 .009
.10 .04 .069 .124 .244 .119

µ̂ 25 100 .05 .02 .074 -.029 -.044 -.040
.10 .04 .095 -.055 -.100 -.131

150 .05 .02 .129 -.007 -.033 -.041
.10 .04 ≈ 1 -.089 -.123 -.090

50 200 .05 .02 .085 -.017 -.048 -.037
.10 .04 ≈ 1 .004 -.172 -.109

300 .05 .02 .218 -.011 -.032 -.015
.10 .04 ≈ 2 .046 -.119 -.106

R̂ or σ̂ 25 100 .05 .02 .009 .001 -.051 -.059
.10 .04 -.028 -.019 -.075 -.100

150 .05 .02 .005 .003 -.042 -.051
.10 .04 -.010 -.041 -.082 -.082

50 200 .05 .02 .005 -.012 -.059 -.054
.10 .04 ≈2 x 102 .025 -.118 -.091

300 .05 .02 -.008 -.006 -.049 -.036
.10 .04 ≈5 x 102 .071 -.080 -.086

Table DD.2: Relative mean bias.
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RMSE κ ρ R σ hrMTMC srMTMC MCP TP

κ̂ 25 100 .05 .02 .074 .086 .098 .073
.10 .04 .260 .355 .449 .227

150 .05 .02 .058 .070 .073 .057
.10 .04 .209 .257 .295 .166

50 200 .05 .02 .054 .061 .075 .054
.10 .04 .501 .356 .598 .192

300 .05 .02 .041 .061 .052 .050
.10 .04 .540 .327 .371 .160

µ̂ 25 100 .05 .02 .074 .058 .057 .042
.10 .04 .295 .225 .202 .132

150 .05 .02 .072 .050 .048 .032
.10 .04 ≈5 .171 .140 .097

50 200 .05 .02 .068 .052 .053 .039
.10 .04 ≈5 .316 .187 .107

300 .05 .02 .106 .048 .035 .037
.10 .04 ≈12 .362 .153 .094

R̂ or σ̂ 25 100 .05 .02 .018 .013 .012 .017
.10 .04 .076 .053 .054 .042

150 .05 .02 .007 .011 .010 .013
.10 .04 .048 .043 .034 .029

50 200 .05 .02 .013 .010 .014 .013
.10 .04 ≈ 1 x 106 .112 .064 .035

300 .05 .02 .007 .009 .009 .010
.10 .04 ≈ 3 x 105 .140 .038 .029

Table DD.3: Relative mean squared error.
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