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Preface

This thesis presents the results I obtained during my PhD studies at the Department
of Mathematics at Aarhus University. The project was supervised by Jacob Schach
Møller but I also had many helpful discussions with Oliver Matte, Wojciech Dybalski,
Fumio Hiroshima and Masao Hirokawa. My studies were mainly funded by the
Independent Research Fund Denmark but I also received travel grants from the
Augustinus Foundation, the Oticon Foundation and Aarhus University for which I
am grateful.

The thesis contains an introduction to the framework, a presentation and discus-
sion of the results obtained and four papers in which the results are proved. These
papers are

• Paper A: Spin-Boson type models analysed through symmetries: submitted.

• Paper B: Large interaction asymptotics of spin-boson type models: ready for
submission.

• Paper C: Non-existence of ground states in the translation invariant Nelson
model: ready for submission.

• Paper D: Rigorous Results on the Bose-Polaron: small corrections needed
(typos).

An old version of Paper A appeared in my Part A thesis. Since then, the conclusions
have been vastly generalised and the final version is presented here. Both Paper
A and B started from a note given to me by Jacob Schach Møller, who had tried
to prove existence of exited states in the massive Spin-Boson model at sufficiently
strong interactions. I managed to prove a convergence theorem which removed all
constraints in one of the results by Jacob and even added an unexpected result on
ultraviolet renormalisation.

The idea for Paper C came to me while working on Paper D. After reading a Paper
by Ira Herbst and David Hasler, I realised that their difficulties could be avoided by
rotational symmetry and non degeneracy of ground states. Paper D was finished last
minute and may be a little rough around the edges. It started a project to investigate
a model for polarons in Bose Einstein condensations. I wanted to prove theorems
similar to those that hold for Nelson type Hamiltonians.

During my time as a PhD student I have spend quite a lot of time abroad. I spend
6 months at the TUM in Munich, 4 Months at Kyushu University and 2 weeks at
Hiroshima University. Apart from this I have spend several months abroad during
various summer schools and conferences. I have also presented my work at the
following conferences/seminars:
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1. Mathematical Physics seminar, Kyushu University. September 2016.

2. Qmath13, Institute of Technology. October 2016.

3. LQP39, University of Münster, January 2017.

4. Mathematical Physics seminar, Kyoto University. May 2017.

5. Probability Seminar, Kyushu University. July 2017.

6. Mathematical Physics seminar, Aalborg University. September 2017.

7. Thiele Seminar, Aarhus University. October 2017.

8. QMath/QUSCOPE Joint Quantum Theory Seminar, Aarhus University. Novem-
ber 2017.

9. Mathematical Challenges in Quantum Mechanics, La Sapienza, Rome. February
2018.

10. Quantum fields and related topics, RIMS Kyoto. July 2018.

11. Young Researchers symposium (in connection with ICMP), Mcgill University.
July 2018.

This thesis marks the end of many happy years at the university. I had the chance
to learn great mathematics, make friends and literally travel around the globe. First
and foremost I would like to thank Jacob for his continued support and the hours he
spend on my supervision. Secondly, I would like to thank Wojciech Dybalski, Fumio
Hiroshima and Masao Hirokawa for letting me stay at their respective universities
and helping me with my research. Thirdly, I would like to thank family and friends
who have solved many practical problems for me while I was either physically or
mentally absent from the real world.

Thomas Norman Dam
July 2018, Aarhus



Summary

In this thesis, several families of operators related to quantum field theory are in-
vestigated. It is emphasised that all results are obtained through non perturbative
techniques so there is no restrictions on the size of interactions.

The first paper is concerned with a family of models describing a qubit coupled to
a bosonic field. LetHSB denote the corresponding Hamiltonian. It is shown, that there
is a unitary map U such that UHSBU ∗ = F+ ⊕F−, where F± are selfadjoint operators
on Fock space. The operators F± are referred to as fiber operators. We calculate the
essential spectrum of F−,F+ and HSB under minimal conditions and identify which
fiber operator corresponds to the ground state. Using this we find a simple criterion
for the existence of an exited state.

Under the additional assumption of linear coupling we find the strong interaction
limit of spin-boson Hamiltonians. The limit is independent of the qubit, which has
two main applications. First of all, it is proven that exited states exists at sufficiently
strong coupling. Secondly, one can conclude that ultraviolet renormalisation using
Nelsons original method will never give physically interesting result.

The thesis also treats the massless translation invariant Nelson model. This model
describes a spinless particle with no charge coupled to a photon field. After a unitary
transformation we may write the Hamiltonian for this system as a direct integral of
fiber operators {H(ξ)}ξ∈R3 . We prove that H(ξ) does not have a ground state for any ξ.
The physical significance of this result is that construction of scattering states cannot
be done the usual way, as it requires existence of ground states for sufficiently many
of the ξ.

We also treat polarons in Bose Einstein condenstates. Recently a new model
has been proposed and we prove a collection of fundamental theorems for this
Hamiltonian including selfadjointness. The main problem is, that it adds 4 terms to
the old model and it is not clear if this destroys selfadjointness or other nice properties.
However rewriting the operator it is possible to prove that many properties of the
old model carries over to the new model.
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Resumé

Denne afhandling omhandler matematisk stringent behandling af modeller fra
kvantefeltteori. Det skal understreges, at alle resultater i denne afhandling er ikke-
perturbative. Faktisk tages koblingens styrke til∞ i et af resultaterne, så perturbative
metoder ville slet ikke kunne virke i dette tilfælde.

Den første model som behandles, er en generalisering af spin-boson modellen.
Denne model beskriver et to-niveau system koblet til et kvantiseret felt. LadHSB være
den tilhørende Hamiltonoperator. Det vises, at der findes en unitær transformation
U således UHSBU ∗ = F+ ⊕ F−, hvor F± er selvadjungerede operatorer på Fockrum.
Operatorerne F± kaldes for fiberoperatorer. I afhandlingen bestemmes det essentielle
spektrum af F± og HSB under minimale antagelser. Desuden identificeres hvilken af
fiberoperatorerne svarer til grundtilstanden. Ved brug af et variationelt argument
finder man et simpelt kriterium for eksistensen af en exciteret tilstand.

Antages at koblingen til feltet er lineær, kan man bestemme en asymptotisk
grænse for HSB når koblingsstyrken går mod uendeligt. Denne grænse er uafhængig
af to-niveau systemet, hvilket har to konsekvenser. Den første konsekvens er, at
Hamiltonoperatoren har en exciteret tilstand, når koblingsstyrken er stor nok. Den
anden konsekvens er, at "standardmetoden" til ultraviolet renormalisering ikke kan
give et fysisk interessant resultat.

Afhandlingen indeholder også et kapitel dedikeret til den masseløse Nelson model.
I dette tilfælde beskriver Hamiltonoperatoren en partikel uden spin eller ladning,
der vekselvirker med et kvantiseret felt af fotoner. Efter en unitær transformation
kan Hamiltonoperatoren skrives som et direkte integral af fiberoperatorer {H(ξ)}ξ∈R3 .
Det vises, at H(ξ) ikke har en grundtilstand for noget ξ. Dette resultat har den
konsekvens, at spredningsteori bliver enormt besværligt, da disse grundtilstande
normalt bruges til konstruktionen af spredningstilstande.

Den sidste model som analyseres i denne afhandling er en ny model for en
urenhed der bevæger sig i et Bose-Einstein kondensat. Den minder meget om en
ældre model for samme fysiske system, men Hamiltonoperatoren i den nye model
indeholder 4 led mere en Hamiltonoperatoren i den gamle model. Det vises, at en lang
række af egenskaber som den gamle Hamilton operator besidder også gælder for den
nye Hamiltonoperator. Dette er dog langt fra oplagt og kræver mange omskrivninger
af den nye Hamiltonoperator.
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Chapter 1

A quick introduction to Fock spaces.

The aim of this section is to give the reader an up to date list of various identities and
inequalities needed to analyse operators on Fock Spaces. The proofs of many of these
claims are long and will not be given here. I have a PDF (available upon request)
with most of the proofs which was given to during a course by Oliver Matte. Since
then I added the remaining proofs along with an introduction to direct sums and
abstract tensor products. I will assume the reader is familiar with tensor products
of Hilbert-spaces and direct sums of Hilbert spaces and operators as this is covered
in most graduate courses on functional analysis. I will start from tensor products of
operators and work my way through the material. The reason for this is that not all
people agree on what the tensor product of two operators is and this might create
confusion later on.

1 Tensor products of operators

This subsection is taken ore or less directly from [6] (see also [38]). Throughout this
section let H1, . . . ,Hn be a finite collection of Hilbert spaces. Let Di ⊂Hi be a subset
and define the algebraic tensor product

D1⊗̂ · · · ⊗̂Dn = Span{x1 ⊗ · · · ⊗ xn | xi ∈ Vi}.

The following theorem establishes notation and a few definitions:

Theorem 1.1. Let Ti be and operator onHi for i ∈ {1, . . . ,n}. Then there is a unique linear
map T = T1⊗̂ · · · ⊗̂Tn defined on D(T1)⊗̂ · · · ⊗̂D(Tn) such that

T1⊗̂ · · · ⊗̂Tn(x1 ⊗ · · · ⊗ xn) = T1x1 ⊗ · · · ⊗ Tnxn, (1.1)

for all xi ∈ D(Ti) and i ∈ {1, . . . ,n}. Furthermore, we have

(1) If all Ti are densely defined then T is densely defined and T ∗1 ⊗̂ · · · ⊗̂T ∗n ⊂ T ∗.

(2) If all Ti are closable, then T is closable. We will then write T = T1⊗ · · · ⊗Tn. Further-
more, we have

T1 ⊗ · · · ⊗ Tn = T 1 ⊗ · · · ⊗ T n
T ∗1 ⊗ · · · ⊗ T

∗
n = (T1 ⊗ · · · ⊗ Tn)∗.

1



2 Chapter 1. A quick introduction to Fock spaces.

(3) If all the Ti are symmetric (selfadjoint, unitary, a projection), then T is symmetric
(selfadjoint, unitary, a projection).

(4) If Ti ≥ 0 for all i ∈ {1, . . . ,n} then T ≥ 0.

(5) If all the Ti are bounded then T is bounded and

‖T ‖= ‖T1‖· · · ‖Tn‖= ‖T1 ⊗ · · · ⊗ Tn‖.

The following result is also important. Many of the operators that we will encounter
are on the form given in this theorem

Theorem 1.2. For each j ∈ {1, . . . ,n} let Tj be a selfadjoint operator on Hi and define

Hi = 1⊗ · · · ⊗ Ti ⊗ · · · ⊗ 1,

H =H1 +H2 + · · ·+Hn.

Then

(1) (H1, · · · ,Hn) is a touple of strongly commuting selfadjoint operators with σ (Hi) =
σ (Tj ). The joint spectrum is σ (T1)× · · · ×σ (Tn) and if f : R→C is Borel measurable
then f (Hj ) = 1⊗ · · · ⊗ f (Tj )⊗ · · · ⊗ 1.

(2) H is essentially selfadjoint with

eitH = eitT1 ⊗ · · · ⊗ eitTn t ∈R.

(3) If Vj is a core for Tj then V1⊗̂ · · · ⊗̂Vn is a core for H .

(4) Assume Tj is semibounded with inf(σ (Tj )) = λj for all j. Then H is selfadjoint and
semibounded with inf(σ (H)) = λ := λ1 + · · ·+λn. Let PB denote the spectral measure
for an operator B ∈ {H,T1, . . . ,Tn}. Then

e−tH = e−tT1 ⊗ · · · ⊗ e−tTn t ≥ 0

PH ({λ}) = PT1
({λ1})⊗ · · · ⊗ PTn({λn}).

In particular, Dim(PH ({λ})) = Dim(T1({λ})) · · ·Dim(Tn({λ})). Let µj = inf(σess(Tj ))
which may be∞. Then

inf(σess(H)) ≥min
j

µj +
∑
l,i

λj

 :=m.

(5) Assume Bi is selfadjoint on Hi . If D(Ti) ⊂ D(Bi) for some i ∈ {1, . . . ,n} then D(Hi) ⊂
D(1⊗ · · · ⊗Bi ⊗ · · · ⊗ 1).

(6) Assume Bi is selfadjoint on Hi and Ti +Bi is selfadjoint. Then

Hi + 1⊗ · · · ⊗Bi ⊗ · · · ⊗ 1 = 1⊗ · · · ⊗ (Ti +Bi)⊗ · · · ⊗ 1 := Si



1. Tensor products of operators 3

1.1 Fock spaces

In this section we present some facts about symmetric Fock spaces. This section is
based on (Oliver). No proofs are presented but most of the results are easy to prove
and can be found in e.g. [31].

Let H be a separable Hilbert space. For n ∈N0 = N∪ {0} we will write H⊗n for
the n-fold tensor product of H. Here H⊗0 = C by convention. The following lemma
allows us to define symmetric tensors.

Lemma 1.3. Let n ∈N and Sn be the permutations of {1, . . . ,n}. For each π ∈ Sn there is a
unique unitary map π̂ on H⊗n such that

π̂(f1 ⊗ · · · ⊗ fn) = fπ(1) ⊗ · · · ⊗ fπ(n)

for all f1, . . . , fn ∈ H. The following also holds :

1. Let π,σ ∈ Sn. Then π̂σ̂ = σ̂ ◦π and (π̂)−1 = π̂−1.

2. Define

Sn =
1
n!

∑
π∈Sn

π̂.

Then Sn is a projection.

We also define S0 = 1 on C = H⊗0. The range Sn(H⊗n) is called the symmetric
tensor product and is sometimes written as H⊗sn. Furthermore, we will write

Sn(f1 ⊗s · · · ⊗s fn) = f1 ⊗s · · · ⊗s fn.

If H = L2(M,F ,µ) where (M,F ,µ) is σ -finite then H⊗n = L2(Mn,F ⊗n,µ⊗n) and we
have the formula

(π̂f )(k1, . . . , kn) = f (kπ−1(1), . . . , kπ−1(n))

Let f ∈ H⊗n. Then f ∈ H⊗sn of and only if f (k1, . . . , kn) = f (kπ(1), . . . , kπ(n)) for almost
all (k1, . . . , kn) ∈ Mn and π ∈ Sn. So H⊗sn is simply the square integrable functions
which are permutation symmetric in the variables k1, . . . , kn.

We now define the bosonic (or symmetric) Fock space as

Fb(H) =
∞⊕
n=0

H⊗sn.

We will write an element ψ ∈ Fb(H) in terms of its coordinates ψ = (ψ(n)) and define
the vacuum Ω = (1,0,0, . . . ). For any g ∈ H we define the corresponding exponential
vector (or coherent state) as

ε(g) =
∞∑
n=0

g⊗n
√
n!
. (1.2)

Let D ⊂H. We define the following families of vectors

N = {(ψ(n)) ∈ Fb(H) | ∃K ∈N s.t. ψ(n) = 0 for all n ≥ K},
J (D) = {Ω} ∪ {f1 ⊗s · · · ⊗s fn | fi ∈ D and n ∈N},
E(D) = {ε(f ) | f ∈ D}.

We have the following Lemma
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Lemma 1.4. N is a dense subspace of Fb(H). If D ⊂H is dense then J (D) and E(D) are
total in Fb(H). Furthermore, E(D) is a collection of linearly independent vectors.

We can now introduce the Wyel representation. Let U (H) be the unitaries from H
into H. Fix U ∈ U (H) and h ∈ H. Then there is a unique unitary map W (h,U ) such
that

W (h,U )ε(g) = e−‖h‖
2/2−〈f ,Ug〉ε(h+Ug). ∀g ∈ H

It is easily seen that that (h,U ) 7→W (h,U ) is strongly continuous and

W (h1,U1)W (h2,U2) = e−iIm(〈f ,Ug〉)W ((h1,U1)(h2,U2)),

where (h1,U1)(h2,U2) = (h1 +U1h2,U1U2). If A is selfadjoint on H and f ∈ H then
t 7→W (0, eitA) and t 7→W (−itf ,1) are strongly continuous unitary representations of
R on Fb(H). By Stones theorem we may define selfadjoint operators dΓ (A) and ϕ(f )
on Fb(H) by

eitdΓ (A) =W (0, eitA)

eitϕ(f ) =W (−itf ,1).

for all t ∈R. One may then prove the following

Theorem 1.5. Let A be selfadjoint on H. Then H⊗sn reduces dΓ (A) and the restriction to
H⊗sn ∩D(dΓ (A)) is given by

dΓ (n)(A) :=
n∑
i=1

(1⊗)i−1A(⊗1)n−i |H⊗sn .

We may also calculate the spectrum

σ (dΓ (n)(A)) = {λ1 + · · ·+λn | λi ∈ σ (A)} n ≥ 1

σ (dΓ (A)) = {0} ∪
∞⋃
n=1

{λ1 + · · ·+λn | λi ∈ σ (A)}

Assume now A ≥ 0 and injective. Then the following holds

(1) 0 is an eigenvalue for dΓ (ω) with multiplicity 1. The eigenspace is spanned by Ω.

(2) Let m = inf(σ (A)) and mess = inf(σess(A)). Then

inf(σess(dΓ
(n)(ω))) ≥mess + (n− 1)m

(3) dΓ (ω) will have compact resolvents if and only if ω has compact resolvents.

If H = L2(M,F ,µ) where (M,F ,µ) is σ -finite and A is a multiplication operator
on H then dΓ (n)(A) is multiplication by

An(k1, . . . , kn) = A(k1) + · · ·+A(kn).

Regarding the field operators we have the following result
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Lemma 1.6. Let f ∈ H and D ⊂H be dense. Then both J (D) and E(D) spans a core for
ϕ(f ).

In order to get a better understanding of field operators we introduce creation
and annihilation operators.

Lemma 1.7. Let f ∈ H. There exists unique closed operators a(f ) and a†(f ) with the
property that a(g)Ω = 0, a†(g)Ω = g and

a(g)(f1 ⊗s · · · ⊗s fn) =
1
√
n

n∑
i=1

〈g,fi〉f1 ⊗s · · · ⊗s f̂i ⊗s · · · ⊗s fn

a†(g)(f1 ⊗s · · · ⊗s fn) =
√
n+ 1g ⊗s f1 ⊗s · · · ⊗s fn

for all f1, . . . , fn ∈ H. Here f̂i means that fi is omitted from the tensor product. a(f ) is called
an annihilation operator while a†(f ) is called a creation operator. We also have:

(1) ϕ(f ) = a(f ) + a†(f )

(2) The canonical commutation relations hold

[a(f ), a(g)] = 0 = [a†(f ), a†(g)] and [a(f ), a†(g)] = 〈f ,g〉.

(3) The following holds
[ϕ(f ),ϕ(g)] = 2iIm(〈f ,g〉).

(4) If D ⊂H is dense then J (D) and E(D) span cores for a(f ) and a†(f ).

(5) If A is selfadjoint on H and f ∈ D(A) then

[dΓ (A), a†(f )] = a†(Av)

[a(f ),dΓ (A)] = a(Av)

[dΓ (A),ϕ(f )] = −iϕ(iAv).

FurthermoreN∩D(dΓ (A)) is contained in the domains of [dΓ (A), a†(f )], [a(f ),dΓ (A)]
and [dΓ (A),ϕ(f )].

If H = L2(M,F ,µ) where (M,F ,µ) is σ -finite we have explicit formulas for cre-
ation and annihilation operators. For ψ ∈ H⊗sn with n ≥ 1 we have

(a(f )ψ)(k1, k2, . . . , kn−1) =
√
n

∫
M
f (k)ψ(k,k1, . . . , kn−1)dµ(k)

(a†(f )ψ)(k1, k2, . . . , kn+1) =
1

√
n+ 1

n∑
i=1

f (ki)ψ(k1, . . . , k̂i , . . . , kn+1)

where k̂i means that the variable ki is omitted. If K is an other Hilbert space and
U :H→K is a bounded operator with ‖U‖≤ 1 then we define

Γ (U ) = 1⊕
∞⊕
n=1

U⊗n |H⊗sn .

Note that Γ (U ) will be unitary if U is unitary. We have the following Lemma
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Lemma 1.8. Let U :H→K be unitary, A be selfadjoint on H, V ∈ U (H) and f ∈ H then

Γ (U )dΓ (A)Γ (U )∗ = dΓ (UAU ∗).

Γ (U )W (f ,V )Γ (U )∗ =W (Uf ,UVU ∗).

Γ (U )ϕ(f )Γ (U )∗ = ϕ(Uf ).

Γ (U )a(f )Γ (U )∗ = a(Uf ).

Γ (U )a†(f )Γ (U )∗ = a†(Uf ).

Furthermore, Γ (U )(f1 ⊗s · · · ⊗s fn) =Uf1 ⊗s · · · ⊗s Ufn and Γ (U )Ω = Ω.

An important aspect of this Lemma is that we may assume H = L2(M,F ,µ)
when proving spectral properties and various inequalities. It is needed to prove the
following relative bounds.

Theorem 1.9. Let A be a non negative, selfadjoint and injective operator on H. Let
f1, . . . , fn ∈ D(ω−1/2) and a ≥ 0. Then

(1) a(f1) · · ·a(fn) maps D(dΓ (A)a+n/2) continuously into D(dΓ (A)a) with respect to the
graph norm. We have the following specific bound for λ ≥ 0 and ψ ∈ D(dΓ (A)a+n/2) :

‖(dΓ (A) +λ)aa(f1) · · ·a(fn)ψ‖≤

 n∏
i=1

‖ω−1/2fi‖

‖(dΓ (A) +λ)a+n/2ψ‖

(2) a†(f1) · · ·a†(fn) maps D(dΓ (A)n/2) continuously into Fb(H) with respect to the graph
norm. We have the following specific bound for ψ ∈ D(dΓ (A)n/2) :

‖a†(f1) · · ·a†(fn)ψ‖2≤ n!2n
n∏
i=1

‖(1 +ω−1/2)fi‖
n∑
`=0

1
`!
‖dΓ (A)`/2ψ‖2

One can now apply these relative bounds to obtain relative bounds of the field
operators. We sum up the important conclusions

Theorem 1.10. Let A be a non negative, selfadjoint and injective operator on H. Let
f1, . . . , fn ∈ D(ω−1/2). Then D(dΓ (A)n/2) ⊂ D(ϕ(f1) · · ·ϕ(fn)) and φ(f1) is infinitesimally
dΓ (A) bounded.

Furthermore, σ (dΓ (A) + ϕ(f1)) = −‖A−1/2f1‖2+σ (dΓ (A)) and dΓ (A) + ϕ(f1) has a
ground state if and only if f1 ∈ D(A−1).

The following transformation statements are also very good to know as they will
be used frequently in the papers. This statement below taken from [6]. For a proof
see [26].

Lemma 1.11. Let f ,h ∈ H and U ∈ U (H). Then

W (h,U )ϕ(g)W (h,U )∗ = ϕ(Ug)− 2Re(〈Ug,h〉)
W (h,U )a(g)W (h,U )∗ = a(Ug)− 〈Ug,h〉

W (h,U )a†(g)W (h,U )∗ = a†(Ug)− 〈h,Ug〉

Furthermore, if ω is selfadjoint, non negative and injective on H and h ∈ D(ωU ∗) then

W (h,U )dΓ (ω)W (h,U )∗ = dΓ (UωU ∗)−ϕ(UωU ∗h) + 〈h,UωU ∗h〉

on the domain D(dΓ (UωU ∗)).
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The next result is commonly used. In the papers below it is used to split Hamilto-
nians into two parts. In one part one usually has compact resolvents and the other
part can usually be analysed using Theorem 1.5. The statement here is taken from [6]
where a proof can also be found.

Theorem 1.12. There is a unique isomorphism U : Fb(H1⊕H2)→Fb(H1)⊗Fb(H2) such
that U (ε(f ⊕ g)) = ε(f )⊗ ε(g). If f1, . . . , fj ∈ H1 and g1, . . . , g` ∈ H2 then

U ((f1,0)⊗s · · · ⊗s (fj ,0)⊗s(0, g1)⊗s · · · ⊗s (0, g`))

=
(
j!`!

(j + `)!

)1/2

(f1 ⊗s · · · ⊗s fj )⊗ (g1 ⊗s · · · ⊗s g`).

The map also has the following transformation properties. If Ai is selfadjoint onHi , Vi is
unitary on Hi and f ∈ H1, g ∈ H2 then

UW (f ⊕ g,V1 ⊕V2)U ∗ =W (f ,V1)⊗W (g,V2)

UdΓ (A1 ⊕A2)U ∗ = dΓ (A1)⊗ 1 + 1⊗ dΓ (A2)

Uϕ(f ,g)U ∗ = ϕ(f )⊗ 1 + 1⊗ϕ(g)

Ua(f ,g)U ∗ = a(f )⊗̂1 + 1⊗̂a(g)

Ua†(f ,g)U ∗ = a†(f )⊗̂1 + 1⊗̂a†(g).

One very essential observation is the relationship between quantum field theory
and Malliavin calculus. In simple terms it can be shown that the symmetric Fock space
is unitarily equivalent in a "nice way" to L2(X ,F ,P) where (X ,F ,P) is probability
space. Here "nice way" refers to the fact that many field operators are transformed
to multiplication operators which simplifies many calculations. It also provides the
Fock space with a very nice positive cone. The following statement is taken from [6].
See [5] for a proof.

Theorem 1.13. Let H
R
⊂H be a real Hilbert space such that H =H

R
+ iH

R
. Then there

exists a probability space (X ,F ,P) such that Fb(H) is unitarily isomorphic to L2(X ,F ,P)
via a map I . Furthermore, the following properties hold

(1) If U is a bounded operator on H with ‖U‖≤ 1 such that UH
R
⊂H

R
then IΓ (U )I ∗

is positivity preserving.

(2) Assume ω ≥ 0 is selfadjoint and injective. If e−tω maps H
R

into H
R

for all t ≥
0 then Ie−tdΓ (ω)I ∗ is positivity improving. If inf(σ (ω)) > 0 then Ie−tdΓ (ω)I ∗ is
hypercontractive.

(3) If v ∈ H
R

then Iϕ(v)I ∗ acts like multiplication by a normally distributed variable
ϕ̃(v) with mean 0 and variance ‖v‖2. In fact, {ϕ̃(v)}v∈H

R
is a Gaussian process

indexed by H
R

with mean 0 and covariance function given by Cov(ϕ̃(v1), ϕ̃(v2)) =
〈v1,v2〉.

The duality between Fock spaces and Malliavin calculus can be pushed quite far
and forms the foundations for white noise analysis. Even though white noise analysis
is very exiting we shall not pursue it further here.
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1.2 Direct Integrals

We willl now consider a special kind of operators defined on Hilbert space valued
L2 spaces. Let Q = (M,F ,µ) be a σ -finite measure space and H a separable Hilbert
space. We have the identification

L2(M,F ,µ)⊗H = L2(M,F ,µ,H)

where L2(M,F ,µ,H) denotes theH valued L2 space generated byQ. Let f :M→ B(H)
be strongly measurable (i.e. x 7→ f (x)ψ is measurable for all ψ ∈ H) and bounded.
Then we define the direct integral

I⊕(f ) =
∫ ⊕
M
f (x)dµ(x)

as the bounded operator on L2(Q,H) defined by I⊕(Ux)ψ(x) =Uxψ(x). One also has
a direct integral for unbounded selfadjoint operators. Let {Ax}x∈M be a collection
on selfadjoint operators on H. We say {Ax}x∈M is strong resolvent measurable if
x 7→ (Ax + i)−1 is strongly measurable. Then we define

I⊕(Ax)ψ(x) =Uxψ(x)

D(I⊕(Ax)) = {ψ ∈ L2(Q,H) | ψ(x) ∈ D(Ax) and x 7→ ‖Axψ(x)‖∈ L2(Q)}

The following Theorem sums up the results about direct integrals we shall need

Theorem 1.14. Let {Ax}x∈M be a collection on selfadjoint operators on H. Then x 7→
(Ax + i)−1 is strongly measureable if and only if x 7→ eitAx is weakly measurable. In this
case I⊕(Ax) is selfadjoint and x 7→ (i + f (Ax))−1 is strongly measurable for all f : R→R.
Furthermore,

f (I⊕(Ax)) = I⊕(f (Ax)).

If Ax ≥ λ for all x we find I⊕(Ax) ≥ λ (use f = 1(−∞,λ)). If A is selfadjoint or bounded
on H we may identify 1⊗A = I⊕(A) and if V is a multiplication operator on L2(Q) then
V ⊗ 1 = I⊕(V ).

Proof. This is easily done using results from [26] and [35].

The following Lemma shows what happens in the special case where one considers
operators on Fock space. This is used in [9]

Proposition 1.15. LetQ = (M,F ,µ) be a sigma-finite measure space. Let x 7→ fx ∈ H and
x 7→ gx ∈ H be measurable, {Ax}x∈M a be strong resolvent measurable family of selfadjoint
operators on H and x 7→Ux ∈ B(H) be strongly measurable with ‖Ux‖≤ 1. Then

(1) {ϕ(fx)}x∈M, {a†(fx)a(fx)}x∈M and {dΓ (Ax)}x∈M are strong resolvent measurable and
x 7→ Γ (Ux) is strongly measurable. We will use the notation ϕ⊕(fx) = I⊕(ϕ(fx)),
a†⊕(fx)a⊕(fx) = I⊕(a†(fx)a(fx)), dΓ⊕(Ax) = I⊕(dΓ (Ax)) and Γ⊕(Ux) = I⊕(Γ (Ux)).

(2) If Ux is unitary for all x then Γ⊕(Ux) is unitary and

Γ⊕(Ux)ϕ⊕(fx)Γ⊕(Ux)∗ = ϕ⊕(Uxfx)
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(3) Assume x 7→ fx and x 7→ gx are bounded, Ax ≥ 0 is injective for all x ∈ M,
fx, gx ∈ D(A−1/2

x ) for all x ∈ M and the two maps x 7→ A−1/2
x fx and x 7→ A−1/2

x gx
are bounded. Then ϕ⊕(fx) is dΓ⊕(A)1/2 bounded, ϕ⊕(gx)ϕ⊕(fx) is dΓ⊕(A) bounded
and a†⊕(gx)a⊕(fx) is dΓ⊕(A) bounded. In particular, ϕ⊕(fx) is infinitesimally dΓ⊕(A)
bounded.

We will need the following definition

Definition 1.16. Consider the ν-dimensional Lebesguespace Lν = (Rν ,B(Rν),λν). Let
x 7→ fx ∈ H be bounded and measurable. We say it is weakly differentiable if for all
i ∈ {1, . . . ,ν} there is x 7→ g

(i)
x ∈ H such that for all φ ∈ C∞0 (Rν) and ψ ∈ H we have∫

R
ν
∂xiφ(x)〈ψ,fx〉dx = −

∫
R
ν
∂xiφ(x)〈ψ,g(i)

x 〉dx

in this case we write ∂xi f = g(i)
x .

Shall need on last result about differential operators

Lemma 1.17. Define

K = L2(Rν ,B(Rν),λν ,Fb(H)) = L2(Rν ,B(Rν),λν)⊗Fb(H),

pi = −i∂xi ⊗ 1 and |p|= (−∆x)1/2 ⊗ 1.

(1) D(|p|) =
⋂ν
i=1D(pi) and for ψ ∈ D(|p|) we have ‖|p|ψ‖2=

∑ν
i=1‖piψ‖2.

(2) If x 7→ fx is weakly differentiable the [ϕ⊕(fx),pi] = −iϕ⊕(∂xi fx) holds onC∞0 (Rν)⊗̂J (D).
In particular ϕ⊕(fx)ψ ∈ D(|p|) for ψ ∈ C∞0 (Rν)⊗̂J (D).





Chapter 2

The papers

In this chapter, I will comment on the results obtained in this thesis and compare
them to results found in the literature. In general, the operators I investigated take the
form H = T + gV where T is the free (kinetic) energy and V models the interaction.
The results obtained in this thesis are all non perturbative which means g is not
assumed to be small. In fact we will send g to infinity in the second paper.

The interaction V always depends on elements (f1, . . . , fn) from the bosonic state
space H and T depends on a non negative, injective and selfadjoint operator on
H called ω. The interaction V is called infrared regular if fi ∈ D(ω−1) for all i and
infrared singular if this is not the case. As we shall see below, infrared regularity
usually guarantees that H has a ground state, while infrared singularities can imply
H does not have a ground state.

1 Paper A: Spin-Boson type models analysed through
symmetries.

In this paper, we analyse so-called spin-boson type Hamiltonians with singular
perturbations. Physically, such hamiltonians describe dynamics of a two level system
interacting strongly with a boson field. The Hilbert space for the operator is C2⊗Fb(H)
whereH is the state space of a single Boson. Let σx,σy and σz denote the Pauli matrices

σz =
(
1 0
0 −1

)
σy =

(
0 −i
i 0

)
σx =

(
0 1
1 0

)
.

We also write e1 = (1,0) and e−1 = (0,1). The operators investigated in this paper are
of the form

Hη(α,f ,ω) := ησz ⊗ 1 + 1⊗ dΓ (ω) +
2n∑
i=1

αi(σx ⊗ϕ(fi))
i ,

which is here parametrised by α ∈ C2n, f ∈ H2n,η ∈ C and ω selfadjoint and non
negative on H. One should note that the standard spin-boson model corresponds to
the case where αi = for i ≥ 2. This operator possesses a special symmetry, called the
spin-parity symmetry, which implies that there is a unitary map V such that

VHη(α,f ,ω)V ∗ = F−η(α,f ,ω)⊕Fη(α,f ,ω)

11
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where the fiber operators Fη(α,f ,ω) are defined as

Fη(α,f ,ω) = ηΓ (−1) + dΓ (ω) +
2n∑
i=1

αiϕ(fi)
i .

This project started as an attempt to prove that the standard spin-boson model has
an exited state for strong couplings. The general strategy was to localize the essential
spectrum of the of the Fη(α,f ,ω) and then establish the existence of a ground state
in each fiber operator via a variational argument.

First problem on the agenda is proving that Fη(α,f ,ω) and Hη(α,f ,ω) makes
sense. To do so we need to introduce some more notation and assumptions. For an
element f ∈ H2n we define the leading terms

L(f ) = {i ∈ {2,3, . . . ,2n} | fi , fj ∀j > i}.

The expression L(f )c is to be interpreted as the complement within {1,2, . . . ,2n}. For
ω selfadjoint on H we define the numbers

m = inf{σ (ω)} and mess = inf{σess(ω)}.

We will need the following definition

Definition 1.1. Let (M,F ,µ) be a measure space.

(1) We say that (M,F ,µ) has strong topological properties ifM is a locally compact,
Hausdorff and second countable topological space, F is the Borel σ -algebra and µ is
finite on compact sets.

(2) Let M be a metric space. We say that M can be cut nicely if for each n ∈ N

there is a sequence of disjoint sets {Gnα}α∈N ⊂ B(M) that covers M such that
supα∈N Diam(Gnα) converges to 0 as n tends to infinity, Gnα is compact and for
any B ⊂M bounded the set

{α ∈N | Gnα ∩B , ∅}

is finite.

In order to get essential selfadjointness one needs to use either hyper contractive
bounds (see [34]) or a result due to Arai (see [2]). For this reason the conditions we
work under are sometimes split in two. The general, assumptions are

Hypothesis 1.1. α ∈C2n, f ∈ H2n and ω selfadjoint on H fulfil Hypothesis 1.1 if

(1) L(f ) consists only of even numbers, αi > 0 for all i ∈ L(f )\{2} and α2 ≥ 0 if 2 ∈ L(f ).

(2) ω is injective and non negative.

(3) fi ∈ D(ω−
1
2 )∩D(ω

1
2 ) for all i ∈ {2, . . . ,2n} and f1 ∈ D(ω−

1
2 ).

Hypothesis 1.2. f ∈ H2n and ω selfadjoint on H fulfil Hypothesis 1.2 if and only if
〈fi , g(ω)fj〉 ∈R for all g : R→R measurable and bounded on σ (ω).
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Hypothesis 1.3. f ∈ H2n and ω selfadjoint on H fulfil Hypothesis 1.3 if either n ≤ 2 or
m > 0 and Hypothesis 1.2 holds.

Hypothesis 3 ensures that we may use hypercontrative bounds if n > 2.

Hypothesis 1.4. f ∈ H2n and ω selfadjoint on H fulfil Hypothesis 1.4 if

(1) H = L2(M,F ,µ) where (M,F ,µ) has strong topological properties andM can be
cut nicely.

(2) ω is a multiplication operator on H.

(3) There is a measurable function h :M→ C with |h|= 1 such that hf is R2n valued
almost everywhere. A function h with these properties is called a phase function for
f .

Hypothesis 1.5. We say f ∈ H2n and ω selfadjoint on H fulfil Hypothesis 1.5 if fi ∈
D(ω−1) for all i.

The following proposition gives precise conditions under which Fη(α,f ,ω) and
Hη(α,f ,ω) are selfadjoint.

Proposition 1.2. Assume η ∈C and (α,f ,ω) satisfies Hypotheses 1.1 and 1.3. Then the
operators Fη(α,f ,ω) and Hη(α,f ,ω) are closed on the respective domains

D(Fη(α,f ,ω)) =D(dΓ (ω))∩i∈L(f )\{2}D(ϕ(fi)
i)

D(Hη(α,f ,ω)) =D(1⊗ dΓ (ω))∩i∈L(f )\{2}D(1⊗ϕ(fi)
i).

Given any core D of ω the linear span of the following sets

J (D) := {Ω} ∪
∞⋃
n=1

{g1 ⊗s · · · ⊗s gn | gj ∈ D}

J̃ (D) := {v1 ⊗ v2 | v1 ∈ {e1, e−1},v2 ∈ J (D)}

are cores for Fη(α,f ,ω) and Hη(α,f ,ω) respectively. Also both operators are selfadjoint
and semibounded if (α,η) ∈ R2n+1 and they have compact resolvents if ω has compact
resolvents.

The overall strategy for proving this proposition is outlined in [21] and is a rather
technical argument involving a lot of commutators. If one wishes to find the essential
spectrum of the fiber operators (and thereby the full Hamiltonian) it is not really that
important to know the full domain of the operators. However the estimates needed
to prove proposition 1.2 were actually central in proving the following Theorem
which we will call the HVZ Theorem. In the remaining part of this section we will
be suppress α,f and ω from the notation as they are fixed in the initial part of each
Theorem discussed below.

Theorem 1.3 (HVZ-theorem). Let α ∈ R2n,η ∈ R, f ∈ H2n and ω be selfadjoint on H
and assume they satisfy Hypothesis 1.1,1.3 and either n ≤ 2 or Hypothesis 1.4. Then the
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following holds

inf{σess(Fη)} ≥min{E−η +mess,Eη +m+mess}
∞⋃
q=1

{E(−1)qη +λ1 + · · ·+λq | λi ∈ σess(ω)} ⊂ σess(Fη)

inf(σess(Hη)) = Eη +mess
∞⋃
q=1

{Eη +λ1 + · · ·+λq | λi ∈ σess(ω)} ⊂ σess(Hη).

In particular, Hη has a ground state of finite multiplicity if mess > 0 and if m =mess then
inf(σess(Fη)) = E−η +mess. Furthermore

(1) Assume m = mess, [mess,3mess] ⊂ σess(ω) and if mess = 0 then mess is not isolated
in σess(ω). Then σess(Fη) = [E−η +mess,∞).

(2) Assume [mess,2mess] ⊂ σess(ω) and if mess = 0 then mess is not isolated in σess(ω).
Then σess(Hη) = [Eη +mess,∞).

(3) If we assume Hypothesis 1.1,1.2,1.3 and either n ≤ 2 or Hypothesis 1.4, then
E−|η| ≤ E|η| with equality if and only if η = 0 or m = 0. In particular we find
inf(σess(F|η|)) = E−|η| +mess.

The HVZ-theorem for Hη does not really come as a surprise as similar results has
been seen in e.g. [10] for the standard spin-boson model. The statement given here is
much more general and the argument is also rather long and technical. In the paper
[10] the authors really need a fourier transform along with many nice properties
of ω and f . If fi = fj for all i, j ∈ {1, . . . ,2n} then Theorem 1.3 applies as soon as the
operator exists. Hence Theorem 1.3 is a vastly more general result. The proof is based
on the method by Glimm and Jaffe introduced in the paper [16].

One really interesting thing is an equality such as inf(σess(Fη)) = E−η +mess. State-
ments of this sort can be combined with variational methods to extract ground states.
In fact one can use a coherent trial state, and prove there is an exited state for large
interactions in the standard spin boson model. We also have

Theorem 1.4. Let α ∈ R2n,η ∈ R, f ∈ H2n and ω be selfadjoint on H and assume they
satisfy Hypothesis 1.1,1.2 and 1.3. Let U be the map such that

UHη(α,f ,ω)U ∗ = F−η(α,f ,ω)⊕Fη(α,f ,ω).

Then

(1) If η , 0 then ground states of Hη are non degenerate and if ψ is a ground state for
Hη then Uψ = e−sign(η) ⊗φ where φ is an eigenvector for F−|η| corresponding to the
energy Eη .

(2) F−|η| has non degenerate ground states and any ground state eigenvector will have
nonzero inner product with Ω. In particularH0 will have a doubly degenerate ground
states if they exists. If ψ is a ground state for H0 then Uψ = e1 ⊗φ1 + e−1 ⊗φ−1
where φi is either 0 an eigenvector for F0 corresponding to the energy E0.
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(3) If we further assume Hypothesis 1.4 when n > 2 then E−|η| = Eη . Hence Hη has a
ground state if and only if F−|η| has a ground state. Also, if m = 0 then F|η| has no
ground state when η , 0.

(4) If we further assume Hypothesis 1.4 when n > 2 and m,η , 0 then Hη will have an
exited state in (Eη ,Eη +mess] if F|η| has a ground state. This is the case if 2|η|< mess.

Parts of this result are similar to results found in [20] and [22] for the standard
spin-boson model. In [20], non degeneracy of the ground state of Hη is investigated
and in [22] the subspace containing the ground state is pinpointed. Our main contri-
bution in these cases, is that these results works in much higher generality.

However, the observation that F|η| has no ground state if m = 0 and η , 0 is new
and nearly impossible to prove directly. It is only the connection with Hη that allows
us to give a simple proof. Furthermore the simple criteria 2|η|< mess for the existence
of an exited state is also new. Unfortunately this does not say anything about what
happens when the interaction strength goes to infinity, but this is the main topic of
paper B.

We now have the following result about ground states in the massless but infrared
regular case.

Theorem 1.5. Let α ∈ R2n,η ∈ R, f ∈ H2n and ω be selfadjoint on H and assume they
satisfy Hypothesis 1.1,1.2,1.3,1.5 and either n ≤ 2 or Hypothesis 1.4.

(1) If F−|η| has a ground state ψ and Hη has a ground state φ then ψ ∈ D(N a) and
φ ∈ D(1⊗N a) for any a > 0.

(2) Assume H = L2(Rν ,B(Rν),λ⊗ν), ω is a multiplication operator and n ≤ 2. Then Eη
is an eigenvalue for F−|η| and Hη . Here λ⊗ν is the Lebesgue measure on B(Rν).

Part (2) was proven in [3] and [14] for the standard spin-boson model. Our result
is proven along the same lines but contains some new ideas to improve generality.
Usually it is assumed that ω has bounded derivatives away from 0 and that ω(x)
goes to infinity as x goes to infinity. These criteria have been removed, so it is really
only the infrared singularity that poses a problem for existence. In [20] and [4] it
is proven, that the standard spin-boson model has a ground state in some infrared
singular cases. However, that result is only perturbative and existence for all coupling
strengths is an open problem.

Part (1) follows from completely novel ideas based on pull through formulas.
Assume H = L2(µ,F ,µ). Then one can define the pointwise annihilation operator
of order n as a map An : D(Nn/2) → L2(Mn,F ⊗n,µ⊗n,Fb(H)). This works well if
regularity with respect to the number operator is already known. In paper A, we
develop a new approach to the pointwise annihilation operators such that they can be
applied to any state. In this framework we prove, that Anψ ∈ L2(Mn,F ⊗n,µ⊗n,Fb(H))
if and only if ψ ∈ D(Nn/2). Under the infrared regularity condition it is easy to see
Anψ ∈ L2(Mn,F ⊗n,µ⊗n,Fb(H)) for any ground state ψ and n ∈N. Thus the conclusion
in Theorem 1.5 follows. In principle this could also be applied to almost every other
model in non relativistic quantum field theory as long infrared singularities are
absent.
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2 Paper B: Large interaction asymptotics of spin-boson type
models.

In this paper we consider the standard spin-boson model

Hη(v,ω) := ησz ⊗ 1 + 1⊗ dΓ (ω) + σx ⊗ϕ(v),

which is here parametrised by v ∈ H,η ∈C and ω selfadjoint and non negative on H.
As in Paper A, there is a unitary map V such that

VHη(v,ω)V ∗ = F−η(v,ω)⊕Fη(v,ω)

where the fiber operators Fη(v,ω) are defined as

Fη(v,ω) = ηΓ (−1) + dΓ (ω) +ϕ(v).

For ω selfadjoint on H we define the numbers

m = inf{σ (ω)} and mess = inf{σess(ω)}.

Selfadjointness is now a walk in the park via Kato-Rellich theorem. Alternatively one
can just use the Lemma 1.2.

Proposition 2.1. Let ω ≥ 0 be selfadjoint and injective, v ∈ D(ω−1/2) and η ∈ C. Then
the operators Fη(v,ω) and Hη(v,ω) are closed on the respective domains

D(Fη(v,ω)) =D(dΓ (ω))

D(Hη(v,ω)) =D(1⊗ dΓ (ω))

and given any core D of ω the linear span of the following sets

J (D) := {Ω} ∪
∞⋃
n=1

{f1 ∨ · · · ∨ fn | fj ∈ D}

J̃ (D) := {f1 ⊗ f2 | f1 ∈ {e1, e−1}, f2 ∈ J (D)}

is a core for Fη(v,ω) and Hη(v,ω) respectively. Furthermore, both operators are selfadjoint
and semibounded if η ∈R and they have compact resolvents if ω has compact resolvents.

The physically relevant assumptions are:

Remark 2.2. In the physical model we have H = L2(Rν ,B(Rν),λν) with ν ≤ 3, ω(k) =√
m2 + ‖k‖2 and vg,Λ(k) = gω(k)−1/2χ(ω(k)) where χ is a cutoff function (i.e. 0 ≤ χ ≤ 1

and ensures vg,Λ ∈ D(ω−1/2)). The model is said to be massive if m > 0.

The aim of this paper is to investigate limits of Fη(v,ω) and Hη(v,ω) as the
interaction strength |v| tends to infinity. As with paper A, the original motivation
was to prove existence of exited states in the spin-boson model at large interaction
strengths. In the special case where H = C this was done in the paper [29] using a
simple Weyl transformation and a compactness argument. The main technical result
is the following theorem
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Theorem 2.3. Let {vg }g∈(0,∞) ⊂ D(ω−1/2) and Pω denote the spectral measure correspond-
ing to ω. Assume that there is m̃ > 0 such that:

(1) {Pω([0, m̃])vg }g∈(0,∞) converges to v ∈ D(ω−1/2) in the graph norm of ω−1/2.

(2) ‖ω−1Pω(m̃,∞)vg‖ diverges to∞ as g tends to infinity.

Then the g-dependent family of operators given by

W (ω−1Pω(m̃,∞)vg ,1)Fη(vg ,ω)W (ω−1Pω(m̃,∞)vg ,1)∗ + ‖ω−1/2Pω(m̃,∞)vg‖2

= ηW (2ω−1Pω(m̃,∞)vg ,−1) + dΓ (ω) +ϕ(Pω(0, m̃])vg ) (2.1)

:= F̃η,m̃(vg ,ω)

is uniformly bounded below by −|η|−supg∈(0,∞)‖Pω(0, m̃])vg‖2. Furthermore, the family

{F̃η,m̃(vg ,ω)}g∈(0,∞) converges to dΓ (ω) +ϕ(v) in norm resolvent sense as g tends to∞.

This result is interesting for a number of reasons. First of all the convergence
is in norm resolvent sense and the transformation is unitary which means we can
find limiting spectrum using standard theory. Secondly, there is almost no restriction
on how ω−1vg goes to infinity. This means that it can be applied to both ultraviolet
renormalisation analysis and to the case vg = gv for some scaling g > 0. Thirdly the
limit found does not depend on η. From a physical point of view this means that the
qubit becomes degenerate in the limit. Applying this theorem yields the following
two corollaries regarding the strong interaction limit

Corollary 2.4. Let v ∈ H, η ∈ R and assume m > 0. Then there exists g0 > 0 such
that Eη(gv,ω) is a non degenerate eigenvalue of Fη(gv,ω) when g > g0. Furthermore,
one may pick a family of normalised vectors {ψg }g∈[g0,∞) such that g 7→ ψg is smooth,
Fη(gv,ω)ψg = Eη(gv,ω)ψg and

lim
g→∞
‖ψg − e−g

2‖ω−1v‖2ε(−gω−1v)‖ = 0,

lim
g→∞

〈ψg ,Nψg〉 − g2‖ω−1v‖2

g
= 0,

lim
g→∞

(Eη(gv,ω) + g2‖ω−1/2v‖2) = 0.

If η < 0 then g 7→ Eη(gv,ω) + g2‖ω−1/2v‖ is strictly increasing and the range is contained
in [−η,0].

Corollary 2.5. Assume ω is selfadjoint, non-negative and injective on H. Let v ∈ H and
η ∈ R. If m(ω) > 0 there is g0 > 0 such that Hη(gv,ω) has an exited state with energy
Ẽη(gv,ω) for g > g0. Furthermore

lim
g→∞

(Eη(gv,ω)− Ẽη(gv,ω)) = 0.

These two corollaries shows the claim that we set out to prove: For sufficiently
strong coupling there is an exited state. However it also tells much more. I shows
that as the interaction becomes large, the contribution from the qubit vanishes, so
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the eigenstates become approximately coherent and the energy approximates that of
a free system. In particular, the energy difference between the ground state and the
exited state will go to 0. Note that by Remark 2.2 the above conclusions applies to
the massive spin-boson model. In the massless but infrared regular case one has the
following result.

Theorem 2.6. Assume also H = L2(Rν ,B(Rν),λν) where λν is the Lebesgue measure.
Assume also ω is a selfadjoint, non-negative and injective multiplication operator. Let
v ∈ D(ω−1) and η ≤ 0. Then there is a family {ψg }g∈R of normalised ground states for
Fη(gv,ω) and

lim
g→∞

(Eη(gv,ω) + g2‖ω−1/2v‖2) = 0.

lim
g→∞

〈ψg ,Nψg〉 − g2‖ω−1v‖2

g2 = 0.

We cannot conclude that an exited state exists in the full model, because one of
the fiber operators will not have a ground state by Theorem 1.4 in Paper A. We now
turn our attention to ultraviolet renormalisation. We have the following corollary to
Theorem 2.3.

Corollary 2.7. Assume H = L2(M,F ,µ) and ω is a multiplication operator on this
space. Let v : M → C is measurable and that {χg }g∈(0,∞) is a collection of functions
from R into [0,1]. Assume g 7→ χg (x) is increasing and converges to 1 for all x ∈ R.
Assume furthermore that k 7→ χg (ω(k))v(k) ∈ D(ω−1/2) and that there is m̃ > 0 such
that ṽ := 1{ω≤m̃}v ∈ D(ω−1/2). If k 7→ ω(k)−1v(k)1{ω>1}(k) < H there are unitary maps
{Vg }g∈(0,∞) and {Ug }g∈(0,∞) independent of η such that:

(1) {VgFη(vg ,ω)V ∗g + ‖ω−1/21{ω>m̃}vg‖2}g∈(0,∞) is uniformly bounded below and con-
verges in norm resolvent sense to the operator dΓ (ω) +ϕ(ṽ) as g tends to infinity.

(2) {UgHη(vg ,ω)U ∗g + ‖ω−1/21{ω>m̃}vg‖2}g∈(0,∞) is uniformly bounded below and con-
verges in norm resolvent sense to the operator

H̃ := (dΓ (ω) +ϕ(ṽ))⊕ (dΓ (ω) +ϕ(ṽ))

as g tends to∞. This implies

(Hη(vg ,ω) + ‖ω−1/21{ω>m̃}vg‖2+i)−1 − (H0(vg ,ω) + ‖ω−1/21{ω>m̃}vg‖2+i)−1

will converge to 0 in norm as g tends to∞.

Let H̃η(vg ,ω) =Hη(vg ,ω)+‖ω−1/2vg‖2. By Remark 2.2 we see that the physical spin-
boson model with ν = 3 fulfils the criteria in Corollary 2.7. So if a limit of H̃η(vg ,ω)
exists in strong or uniform resolvent sense then the limit will be independent of η.
In particular the resulting model will not be physically interesting. In conclusion:
One cannot hope to renormalise the spin-boson model in a physically interesting way
using the scheme introduced by E. Nelson to renormalise the Nelson model (see [30]).
For a longer discussion see paper B below.

Paper B contains two more results which are interesting even though they are not
directly related to the main topic of the paper. The first one is
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Theorem 2.8. Let ω be selfadjoint, non-negative and injective on H, v ∈ D(ω−1/2), g ∈
(0,∞) and η ≤ 0. Assume H = L2(M,F ,µ) and ω is a multiplication operator on this

space. If that Fη(gv,ω) has a ground state ψg,η = (ψ(n)
g,η) then

(1) We may choose ψg,η such that ψ(0)
g,η > 0 and (−1)nv⊗nψ(n)

g,η > 0 almost everywhere on
{v , 0}n.

(2) Almost everywhere the following inequality holds

|ψ(n)
g,η(k1, . . . , kn)|≤

gn
√
n!

|v(k1)|· · · |v(kn)|
ω(k1) · · ·ω(kn)

.

In particular ψ(n)
g,η is zero outside {v , 0}n almost everywhere and if v ∈ D(ω−1) then

‖ψ(n)
g,η‖ goes to zero like gn for g tending to 0.

(3) Assume v ∈ D(ω−1), f : N0 → [0,∞) is a function and assume Fη(gv,ω) has a
ground state for all η ≤ 0. Then Ha(gv,ω) has a ground state φg,a for all a ∈R and
we have

αg,f ,v,ω :=
∞∑
n=0

f (n)2g2n‖ω−1v‖2n

n!
<∞ ⇐⇒ ψg,η ∈ D(f (N )) ∀η ≤ 0

⇐⇒ φa,η ∈ D(1⊗ f (N )) ∀a ∈R

In particular ψg,η ∈ D( p
√
N !) and φg,η ∈ D(1⊗ p

√
N !) for all p > 2.

A result similar to (2) was derived in Frölichs paper [13]. However the application
(3) was never mentioned in that paper. One should note that part (3) vastly generalises
the result in paper [22], were it is proven ψg ∈ D(etN ) for all t > 0. The only downside
of part (3) is the infrared condition, which does not apply to the massless physical
model. The last result is

Theorem 2.9. Assume ω is a selfadjoint, non-negative and injective multiplcation opera-
tor on H = L2(Rν ,B(Rν),λν). If m(ω) > 0, v ∈ H\{0} and∫

R
ν

|v(k)|2

ω(k)−m
dk =∞. (2.2)

then both Fe(v,ω) and F−η(v,ω) have a ground state so Hη(gv,ω) will have an excited
state. The condition is satisfied if ω ∈ C2(Rν ,R), ν ≤ 2 and there is x0 ∈ Rν such that
ω(x0) =m and |v| is bounded from below by a positive number on a ball around x0.

The technique for proving this result has been deployed for the translation invari-
ant Nelson model in the papers [29] and [39]. Note that Theorem 2.9 applies to the
massive physical spin-boson model in dimension 1 and 2 so an exited state always
exist in this case.
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3 Paper C: Non-existence of ground states in the translation
invariant Nelson model.

In this paper we analyse operators arising from a spinless particle interacting with
a boson field. The bosonic Hilbert space is H = L2(Rν ,B(Rν),λν) and the total
Hilbertspace is L2(Rnu,B(Rν),λν) ⊗ Fb(H) = L2(Rν ,B(Rν),λν ,Fb(H)) and the total
Hamiltonian takes the form

H = K(∆x)⊗ 1 + 1⊗ dΓ (ω) +µϕ⊕(Uxv)

where ω is a selfadjoint, non-negative and injective multiplication operator, K is
the dispersion relation for the matter particle and (Uxv)(k) = eikxv with v ∈ D(ω1/2).
Write k for the identity map from R

ν to R
ν . H is called translation invariant because

in commutes with the px ⊗1 + 1⊗dΓ (k) which is the total momentum of the field and
the particle. From this fact it may be proven that there is a unitary transform U of
L2(Rν ,B(Rν),λν ,Fb(H)) such that

U ∗HU =
∫
R
ν
H(ξ)dλν(ξ)

where

Hµ(ξ) = K(ξ − dΓ (k)) + dΓ (ω) +µϕ(v).

The standard assumptions under which the above discussion is true are.

Hypothesis 3.1. We assume

(1) K ∈ C2(Rν ,R) is non negative and there is CK > 0 such that ‖∇K‖2≤ CK (1 +K) and
‖D2K‖≤ CK where D2K is the Hessian of K .

(2) ω : Rν → [0,∞) is continuous and ω > 0 λν almost everywhere.

(3) v ∈ D(ω−1/2).

As H0(ξ) acts on the n’th particle sector as multiplication by

Gn(k1, . . . , kn) = K(ξ − k1 − · · · − kn) +ω(k1) + · · ·+ω(kn).

Thus H0(ξ) is selfadjoint on D(H0(ξ)) =D(dΓ (ω))∩D(K(ξ − dΓ (k))). Using Theorem
1.10 and that dΓ (ω) is H0(ξ)-bounded one immediately gets Hµ(ξ) is selfadjoint. In
fact

Lemma 3.1. Assume Hypothesis 1. Then D(Hµ(ξ)) is independent of ξ and µ. Let D ⊂
{f ∈ H | f has compact suppot} be a dense subspace. Then E(D) and J (D) span cores for
Hµ(ξ,A).

Our main result can be stated under the conditions:

Hypothesis 3.2. We assume

(1) K,ω and v are rotation invariant. Furthermore k 7→ e−tK(k) is positive definite for
all t.
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(2) ω is sub-additive andω(x1) < ω(x2) if |x1|< |x2|. Furthermore,Cω = limk→0|k|−1ω(k)
exists and is strictly positive.

(3) v <D(ω−1)

For the 3-dimensional Nelson model we have K ∈ {k 7→ |k|2, k 7→
√
|k|2+m −m},

ω(k) = |k| and v = ω−1/2χ where χ : Rν → R is a spherically symmetric ultraviolet
cutoff. It is well known that Hypothesis 1 and 2 are fulfilled in this case. We can now
state the main theorem of this paper:

Theorem 3.2. Assume Hypothesis 1 and 2 along with ν ≥ 3. Then Hµ(ξ) has no ground
state for any ξ and µ , 0.

This theorem proves that infrared singularities in the interaction can imply non-
existence of ground states. This is physically significant because ground states of the
Hµ(ξ) are used to construct scattering states for the full system. Hence the result
above implies that the construction of scattering states becomes a very hard problem.
However a lot of work has actually already been done on this problem, since the
conclusion of Theorem 3.2 has been widely anticipated.

The first indication of non-existence was provided by in the PhD-thesis of J.
Frölich which was published in the two papers [12] and [13]. In the paper [32] it is
proven that ground states exists in a non-equivalent Fock representation. This proves,
that the method used in [3] and [14] cannot be used to prove existence of ground
states, but not ground states are absent.

Absence of ground states was proven for the minimally coupled model in the
paper [20]. The proof given in that paper requires that the map Σ(ξ) = inf(σ (Hµ(ξ)))
is differentiable and that the derivative is nonzero. However, proving Σ is differen-
tiable is very hard and has only been done perturbatively (see [1]). Furthermore the
differentiability criterion does not work at ξ = 0 where Σ has a global minimum.

In this paper we mimic the proof given in [20], but we rely on rotation-invariance,
non degeneracy of ground states and the HVZ-theorem instead of the existence of
a non zero a derivative. The techniques in this paper could potentially be extended
to the renormalised model, as most of the Lemmas used here remains true for the
renormalised model. But there are issues with domains in the last steps of the proof
and proving the pullthrough formula is also a challenge.

4 Paper D: Rigorous Results on the Bose-Polaron

In this paper we look at a new model for an impurity moving in a Bose gas. In recent
papers [25], [36] and [37] a more complicated model and rather successful model has
been used in the physics literature. It considers the impurity as a spinless particle
interacting with a bosonic field (the condensate). We define and analyse a generalised
version of the model in [25], [36] and [37]. In this generalised model, the bosonic
space is assumed to be an abstract, separable Hilbert space H. The total hilbert space
is L2(Rν ,B(Rν),λν)⊗Fb(H) = L2(Rν ,B(Rν),λν ,Fb(H)) and the full Hamiltonian takes
the form

HV
g1,g2

=
( 1

2M
∆x +V

)
⊗ 1 + dΓ⊕(ω) + g1ϕ⊕(ux − vx) + g2HI (vx,ux)
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where V is an external potential and

HI (ux,vx) =
∫ ⊕
R
ν
a†(ux)a(ux) + a†(vx)a(vx)− a†(ux)a†(vx)− a(ux)a(vx)dλν(x)

At this point it is not clear if HI (ux,vx) makes sense as an operator, as it is not clear
that we are taking the direct integral of a selfadjoint operator. We will need the
following lemma

Lemma 4.1. Assume u,v ∈ D(ω−1/2) where ω is selfadjoint, injective and non negative
on H. For ψ ∈ D(ω) we have

a†(u)a(u) + a†(v)a(v)− a†(u)a†(v)− a(u)a(v)

=
1
4
ϕ(u − v)2 +

1
4
ϕ(i(u + v))2 −C(v,u)

= a†(u + v)a(u + v) +ϕ(v)ϕ(u) +D(v,u)

where C(v,u) = 1
2 (‖u‖2+‖v‖2) and D(v,u) = 1

2 (〈u,v〉+ Re(〈u,v〉)).

Thus if we define the function h(x) = C(vx,ux) and ux,vx ∈ D(ω−1/2) for all x then
we may interpret

HI (ux,vx) =
1
4
ϕ⊕(ux − vx)2 +

1
4
ϕ⊕(i(ux + vx))2 + h⊗ 1.

I will now describe the hypothesis we are working under

Hypothesis 4.1. We assume the following minimal properties

(1) V ∈ L2
loc(R

ν) and − 1
2M∆x+V is essentially selfadjoint onC∞(Rν). Defining V= max{0,−V }

we also assume V 1/2
− is relatively (− 1

2M∆x)1/2 bounded with bound smaller than 1.

(2) ω is selfadjoint, non negative and injective on H.

(3) x 7→ vx and x 7→ ux are weakly differentiable maps. Both maps takes values in
D(ω−1/2)∩D(ω−1/2) and the partial derivatives takes values in D(ω−1/2). Further-
more

sup
x∈Rν
{‖(1 +ω−1/2 +ω1/2)vx‖,‖(1 +ω−1/2 +ω1/2)ux‖} <∞

sup
x∈Rν ,i∈{1,...,ν}

{‖(1 +ω−1/2)∂xivx‖,‖(1 +ω−1/2)∂xiux‖} <∞

One may now prove

Theorem 4.2. Assume Hypothesis 1 holds, that g1 ∈R and g2 ≥ 0. Let S be the selfadjoint
closure of 1

2M∆x +V . Then S is bounded below and Hg1,g2
(V ) is selfadjoint on D(S ⊗ 1)∩

D(dΓ⊕(ω)), bounded below and essentially selfadjoint on any core for S ⊗ 1 + dΓ⊕(ω). One
example of a core is C∞0 (Rν)⊗̂J (D(ω)).

Assume in addition that 〈a,e−tωb〉 ∈ R for all t ≥ 0 and a,b ∈ {vx}x∈Rν ∪ {ux}x∈Rν . If
HV
g1,g2

has a ground state, then it is non degenerate and any eigenvector will have non zero
inner product with any vector of the form φ⊗Ω with φ , 0 and non negative.
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The selfadjointness part of this statement more or less appears in [21]. However,
the author does have stronger conditions and uses the result in [2]. Unfortunately
there is a small mistake in [21, Lemma 3.3], so I decided to prove Theorem 4.2 from
scratch in the paper. The proof is not that long (3 pages) and does not really rely on
any specialised knowledge.

The hardest part to prove is the second part. One has to find a unitary map U
into an L2-space such that U ∗HV

g,g2
U is positivity improving. The usual choice would

be to take U = 1⊗ Ũ where Ũ is a Q-space isomorphism. However, it is not clear
that this will work as HI (ux,vx) is not a multiplication operator in Q-space. One
needs to rewrite HI (ux,vx) using Lemma 4.1 and even then, standard theory does not
quite apply. This is why this paper has a section devoted to positivity preserving and
positivity improving semi groups.

As in the case of the Nelson model, we also have fiber Hamiltonians defined on
Fb(H)

Hg1,g2
(ξ) =

1
2M

(ξ − dΓ (m))2 + dΓ (ω) + g1ϕ(u − v)

+ g2a
†(u)a(u) + g2a

†(v)a(v) + g2a
†(u)a†(v) + g2a(u)a(v)

wherem = (m(1), . . . ,m(ν)) is a vector of operators and ξ ∈Cν . The operator (ξ−dΓ (m))2

should be interpreted as (ξ1−dΓ (m(1)))2 + · · ·+(ξν −dΓ (m(ν)))2. The basic assumptions
for these operators are

Hypothesis 4.2. Under hypothesis 4.2 we assume

1. ω,m(1), . . . ,m(ν) are strongly commuting selfadjoint operators. Furthermore, ω is
non negative and injective.

2. v,u ∈ D(ω−1/2)∩D(ω1/2)∩
⋂ν
j=1D(m(j))∩D(ω−1/2m(j)).

Hypothesis 4.3. H = L2(Rν ,B(Rν),λν), ω is multiplication by a continuous function
and m(j) is multiplication by m(j)(k) = ki .

Hypothesis 4.4. Assume in addition 〈a,e−tωeit1m(1)
. . . eitνm

(ν)
b〉 ∈R for all t ≥ 0, t1, . . . , tν ∈

R and a,b ∈ {u,v}

We have the following Theorem

Theorem 4.3. Assume Hypothesis 1 holds. If g1 ∈ R, g2 ≥ 0 and ξ ∈ R
ν then H(ξ)

is selfadjoint on D(dΓ (ω))∩D((dΓ (m))2), bounded below and essentially selfadjoint on
D(dΓ (ω))∩D((dΓ (m))2)∩N . Furthermore, we also have:

(1) ξ 7→H(ξ) is an analytic family of type A, so the map ξ 7→ (H(ξ) + i)−1 is smooth.

(2) The map Σ(ξ) = inf(σ (H(ξ))) is locally Lipshitz and almost everywhere twice differ-
entiable.

(3) Assume Hypothesis 4.3 holds as well. Then

Σ(ξ − k1 − · · · − kn) +ω(k1) + · · ·+ω(kn) ∈ σess(H(ξ))
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for all k1, . . . , kn ∈Rν . If in addition infk∈Rν ω(k) > 0 or ω(0) = 0 then

inf(σess(H(ξ))) = inf
n∈N0

inf
ξ∈Rν

Σ(ξ − k1 − · · · − kn) +ω(k1) + · · ·+ω(k1)(kn).

If ω is also unbounded we have σess(H(ξ)) = [inf(σess(H(ξ))),∞).

(4) Assume Hypothesis 4.3 holds as well. Define the elements ux = eix1m
(1)
. . . eixνm

(ν)
u

and vx = eix1m
(1)
. . . eixνm

(ν)
v. Then there is a unitary map (the Lee Low Pines trans-

formation) such that

UH0
g1,g2

U ∗ =
∫ ⊕
R
ν
Hg1,g2

(ξ)dλν(ξ)

If in addition we assume Hypothesis 4.4 then H0
g1,g2

has no ground state.

(5) Assume Hypothesis 4.4 holds as well. Then Σ has a global minimum at ξ = 0 and
if Hg1,g2

(0) has a ground state then it is non degenerate. If inf(σ (ω)) > 0 and we
additionally assume Hypothesis 4.3 holds, then 0 is the unique minima.

All of these results are known for the Nelson model (see [15], [18] and [23]). The
main contribution is selfadjointness, statement (5) and the last part of statement (4).
The proof of the remaining properties are almost identical to the proof given for the
Nelson model. In part (5) we also follow the general strategy outlined in [15], [18]
and [23] but the proofs become much longer due to technical problems with positive
cones. Again we are saved by the general theory developed in this paper.

One interesting observation is the fact that H0
g1,g2

has no ground state in the
translation invariant case. From a physical perspective this should be a no-brainier:
Translation invariant systems should not have bound states, as bound states should be
localised. However, translation invariance is not with respect to impurity coordinates,
so the "localisation argument" does not quite work.

Proving that there is no bound states has actually not been done so far and it is
by no means trivial. We can only exclude the existence of a ground state due to the
following simple argument: If a ground state eigenvector exists, then the eigenspace
has infinite dimension by the direct integral decomposition. However this contradicts
Theorem 4.2. A similar strategy would work for any bound state as long one can
exclude infinite dimension of the eigenspace. Tools such as Mourre theory could be
useful for this, but that would be future work.

We now turn our attention to the machinery that makes everything work. Let

H =L2(M,F ,µ)

H+ :=L2(M,F ,µ) := {f ∈ H | f ≥ 0 almost everywhere}

be an L2-space. We want to answer the following question: If B is a multiplcation
operator and A is selfadjoint, bounded below and generates a positivity improving
semigroup does it follow that A+B generates a positivity improving semigroup? The
general answer to this question is no (see [35, Theorem XIII.48]), but it is often true.
To use the results in the literature (see [11], [27] and [35]) one needs to approximate
B by bounded multiplication operators in such a way A+Bn and A+B−Bn remains
uniformly bounded below. To find such lower bounds is often easy but not in the
situations encountered in this paper.

Instead of working directly with operators we do instead work with forms.
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Definition 4.4. Let A be selfadjoint on a Hilbert spaceH. The form of A is the sesquilinear
map qA :D(|A|1/2)×D(|A|1/2)→C given by

qA(ψ,φ) = 〈Sign(A)|A|1/2ψ, |A|1/2φ〉

We now present the following theorem

Theorem 4.5. Let A be selfadjoint and bounded below onH. Assume B is a multiplication
operator on H and define B+ = max{0,B} and B− = max{0,−B}. Assume

(1) A generates a positivity improving semigroup.

(2) D(qB+
) contains a core for qA and D(qA)∩D(qB+

) ⊂ D(qB− ).

(3) The quadratic form q = qA + qB+
− qB− is bounded below and closed.

is bounded below and closed. If C is the operator corresponding to q then C will generate a
positivity improving semi group.

One key example is Schrödinger operators on a connected, weighted Riemannian
manifold (M,g,Υ ) (see [17] for definitions). In this case A is the Laplace-Beltrami
operator which is positivity improving because the heat kernel is positive everywhere.
Furthermore, if B is a potential where qB+

is locally integrable and qB− is qA + qB+
-

bounded with bound strictly smaller than 1 then the form q = qA + qB will be closed
and bounded below. The operator corresponding q will generate a positivity improv-
ing semigroup. A similar result was found in [19] but we do not require potential to
be Kato-class and we work on a weighted manifold.

The following result is a bit different but we use it a part of our proofs.

Theorem 4.6. Let A,B,C be selfadjoint operators in L2(M,F ,µ). Assume

(1) A is bounded below and e−tA is positivity improving for all t ≥ 0.

(2) B is a multiplication operator which is bounded from below.

(3) −C ≥ 0 and C is a multiplication operator.

(4) D(qB) contains a form core for qA and D(qA)∩D(qB) ⊂ D(qC).

(5) The form q = qA + qB + qC is closable and bounded below.

Then the operator H corresponding to q is bounded below and e−tH is positivity improving.

Let A be selfadjoint, bounded below and assume it generates a positivity im-
proving semigroup. Assume also B is an A bounded multiplication operator and
H := A+B = A+B+ −B− is selfadjoint and bounded below. By standard theory (see
e.g. [42]) we have D(qA) ⊂ D(qB) = D(qB+

) ∩ D(qB− ) and it is not hard to see that
qA + qB+

+ q−B− is closable and the operator corresponding to that closure is H . Hence
we find H generates a positivity improving semi group. This is used often in Paper D.
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Abstract. In this paper we analyse a family of models for a qubit interact-
ing with a bosonic field called spin-boson type models. The Hamiltonian has
a special symmetry called spin-parity symmetry, which plays a central role in
our analysis. Furthermore, higher order perturbations of field operators are
added to the Hamiltonian. We find the domain of selfadjointness and decom-
pose the Hamiltonian into two fiber operators each defined on Fock space. We
then prove a HVZ theorem for the fiber operators and single out a particular
fiber operator, which has a ground state if and only if the full Hamiltonian has
a ground state. From these results we can deduce a simple criterion for the
existence of an exited state.
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1. Introduction

This paper is devoted to the analysis of so called spin-boson type models, which
is a family of models describing a qubit interacting with a bosonic field. The
assumptions in our framework are very weak, which allows us to cover both the Rabi
model and the standard spin-boson model simultaneously. Furthermore, higher
order perturbations of field operators are also considered. QFT Models with higher
order perturbations have lately become relevant in physics. They appear in cavity
QED (see [11]) and in the theory of polarons (see [19]).

The analysis in this paper relies on the fact that spin-boson type Hamiltonians
commute with the spin-parity operator. This fact was used in [3] and [8] to prove
that ground states exist in the massless spin-boson model. The spin-parity operator
has two invariant subspaces, which are both isomorphic to the Fock space. In our
paper, we investigate the restriction of the full model to each of these subspaces.
These two restrictions are referred to as the fiber operators. We shall see, that the
two fiber operators differ only by the value of a scalar parameter, but they behave
quite differently.

Models with higher order perturbations were treated in [9], [11], [13] and [21].
Spin-boson type models are treated in [11], [13] and [21], but the authors assume
either that the field is massive or that the coupling is weak. The results in [9] does
not assume weak coupling or a massive field, but the model treated in that paper
is not the spin-boson model and rather strong infrared conditions are assumed.
Furthermore, the author of [9] only proves selfadjointness of the Hamiltonian and
existence of ground states, while we treat several other questions as well.

Thomas Norman Dam: Department of mathematics, Aarhus University, 8000 Aarhus C Den-
mark; cyperman@gmail.com

Jaciob Schach Møller: Department of mathematics, Aarhus University, 8000 Aarhus C Den-
mark; Jacob@math.au.dk.
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We start by proving selfadjointness of all involved operators and move on to
prove an HVZ theorem for the fiber operators. The method we use is related to
the approach in [14], but is written up in a more general way, which allows one to
handle massless fields and abstract Hilbert spaces. The HVZ theorem for the fiber
operators also gives an HVZ theorem for the full Hamiltonian.

Using arguments similar to those presented in [8], we prove that if ground states
exists for the full Hamiltonian, then the bottom of the spectrum is a non degenerate
eigenvalue. Using this result, we single out a particular fiber which has a ground
state if and only if the full Hamiltonian has a ground state. Ground states for the
other fiber operator must therefore correspond to exited states. The HVZ theorem
then gives a simple criterion for the existence of an exited state.

The reader is then encouraged to have a look at Appendix D, where a new frame-
work for pointwise annihilation operators is developed. Most maps are continuous
in this framework, so calculations are reduced to simple algebraic manipulations.
This makes it very easy to rigorously prove higher order pull-through formulas. Us-
ing these pull-through formulas, we prove that ground states are in the domain of
the number operator raised to any positive power (if infrared regularity is assumed).

Lastly, we follow the general strategy outlined in [7] to prove the existence of
ground states in massless (but infrared regular) models. Our proofs are simpler
than the ones presented in [7] and we are able to work under weaker assumptions
on the bosonic dispersion relation. This is possible due to a novel approach to the
last step in [7].

2. Notation and definitions

We start by fixing notation. If X is a topological space we will write B(X)
for the Borel σ-algebra. Furthermore if (M,F , µ) is a measure space and X is a
Banach space we will for 1 ≤ p ≤ ∞ write Lp(M,F , µ,X) for the vector valued Lp
space. If X = C we will drop X from the notation. Also we will write B(X) for
the bounded linear operators from X to X.

Let H be the state space of a single boson which we will assume to be a separable
Hilbert space. Write H⊗n for the n-fold tensor product of H and let H⊗sn ⊂ H⊗n
be the subspace of symmetric tensors. The bosonic (or symmetric) Fock space is
defined as

Fb(H) =
∞⊕

n=0

H⊗sn.

IfH = L2(M,F , µ) where (M,F , µ) is σ-finite, thenH⊗sn = L2
sym(Mn,F⊗n, µ⊗n).

We will write an element ψ ∈ Fb(H) in terms of its coordinates as ψ = (ψ(n)) and
define the vacuum Ω = (1, 0, 0, . . . ). The finite particle vectors are defined by

N = {(ψ(n)) ∈ Fb(H) | ∃K ∈ N s.t. ψ(n) = 0 for all n ≥ K}.
For g ∈ H one defines the annihilation operator a(g) and creation operator a†(g)
on symmetric tensors in Fb(H) using a(g)Ω = 0, a†(g)Ω = g and

a(g)(f1 ⊗s · · · ⊗s fn) =
1√
n

n∑

i=1

〈g, fi〉f1 ⊗s · · · ⊗s f̂i ⊗s · · · ⊗s fn

a†(g)(f1 ⊗s · · · ⊗s fn) =
√
n+ 1g ⊗s f1 ⊗s · · · ⊗s fn

where f̂i means that fi is omitted from the tensor product. One can show that
these operators extends to closed operators on Fb(H) and that (a(g))∗ = a†(g).
Furthermore, we have the canonical commutation relations which are:

[a(f), a(g)] = 0 = [a†(f), a†(g)] and [a(f), a†(g)] = 〈f, g〉.

32 Paper A
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We also define the field operators

ϕ(g) = a(g) + a†(g).

They are selfadjont and

(2.1) [ϕ(f), ϕ(g)] = 2iIm(〈f, g〉).
Let A be a selfadjoint operator on H with domain D(A). Then we define the second
quantisation of A to be the selfadjoint operator

(2.2) dΓ(A) = 0⊕
∞⊕

n=1

n∑

k=1

(1⊗)k−1A(⊗1)n−k |H⊗sn .

If ω is a multiplication operator then dΓ(ω) acts on elements in H⊗sn as multipli-
cation by ωn(k1, . . . , kn) = ω(k1) + · · ·+ ω(kn). The number operator is defined as
N = dΓ(1). If K is an other Hilbert space and U : H → K is a bounded operator
with ‖U‖≤ 1 then we define

Γ(U) = 1⊕
∞⊕

n=1

U⊗n |H⊗sn .

Note that Γ(U) will be unitary if U is unitary. We will write dΓ(n)(A) = dΓ(A) |H⊗sn
and Γ(n)(U) = Γ(U) |H⊗sn throughout the text. If v ∈ D(A) one has the commu-
tation relation

(2.3) [dΓ(A), ϕ(v)] = −iϕ(iAv)

where N ∩ D(dΓ(A)) ⊂ D([dΓ(A), ϕ(v)]). We now introduce the Weyl representa-
tion. For any g ∈ H we define the corresponding exponential vector

(2.4) ε(g) =
∞∑

n=0

g⊗n√
n!
.

One may prove that if D ⊂ H is a dense subspace then {ε(f) | f ∈ D} is a linearly
independent and total subset of Fb(H). Let U(H) be the unitaries from H into H.
Fix U ∈ U(H) and h ∈ H. Then there is a unique unitary map W (h, U) such that

W (h, U)ε(g) = e−‖h‖
2/2−〈f,Ug〉ε(h+ Ug). ∀g ∈ H

One may easily check that (h, U) 7→ W (h, U) is strongly continuous. Furthermore
one may check the relation

W (h1, U1)W (h2, U2) = e−iIm(〈f,Ug〉)W ((h1, U1)(h2, U2)),

where (h1, U1)(h2, U2) = (h1 + U1h2, U1U2). If A is selfadjoint and f ∈ H we have

eitdΓ(A) = Γ(eitA) = W (0, eitA)

eitϕ(if) = W (tf, 1).

The following lemma is important and well known (see e.g [4] or [12]):

Lemma 2.1. Assume ω ≥ 0 is selfadjoint an injective on H and let g1, g2, . . . , gn ∈
D(ω−

1
2 ). Then ϕ(g1) · · ·ϕ(gn) is dΓ(ω)

n
2 bounded. In particular ϕ(g1) · · ·ϕ(gn) is

Nn/2 bounded so N ⊂ D(ϕ(g1) · · ·ϕ(gn)). We have the following bounds

‖ϕ(g1)ψ‖ ≤ 2‖(ω− 1
2 + 1)g1‖‖(dΓ(ω) + 1)

1
2ψ‖

‖ϕ(g1)ϕ(g2)ψ‖ ≤ 15‖(ω− 1
2 + 1)g1‖‖(ω−

1
2 + 1)g2‖‖(dΓ(ω) + 1)ψ‖

which holds on respectively D(dΓ(ω)
1
2 ) and D(dΓ(ω)). In particular ϕ(g1) is in-

finitesimally dΓ(ω) bounded. Furthermore, dΓ(ω) + ϕ(g1) ≥ −‖ω− 1
2 g1‖2.
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Lemma 2.2. Let U : H → K be unitary, A be selfadjoint on H, V ∈ U(H) and
f ∈ H. Then

Γ(U)dΓ(A)Γ(U)∗ = dΓ(UAU∗).

Γ(U)W (f, V )Γ(U)∗ = W (Uf,UV U∗).

Γ(U)ϕ(f)Γ(U)∗ = ϕ(Uf).

Γ(U)a(f)Γ(U)∗ = a(Uf).

Γ(U)a†(f)Γ(U)∗ = a†(Uf).

Furthermore, Γ(U)(f1 ⊗s · · · ⊗s fn) = Uf1 ⊗s · · · ⊗s Ufn and Γ(U)Ω = Ω.

3. The spin-boson model

Let σx, σy, σz denote the Pauli matrices and define e1 = (1, 0) and e−1 = (0, 1).
Note that ej is an eigenvector for σz with eigenvalue j. We consider a qubit coupled
to a radiation field. The state space for the qubit is C2 and the energy of the qubit
can be represented by ησz. Let H be the state space for a single boson and ω be the
energy operator for a single boson. Then the state space for the field is Fb(H) and
the energy operator of the field is dΓ(ω). This leads to the state space C2 ⊗Fb(H)
for the total system and we have the Hamiltonian

Hη(α, f, ω) := ησz ⊗ 1 + 1⊗ dΓ(ω) +
2n∑

i=1

αi(σx ⊗ ϕ(fi))
i,

which is here parametrised by α ∈ C2n, f ∈ H2n, η ∈ C and ω selfadjoint on H. We
will also need the fiber operators:

Fη(α, f, ω) = ηΓ(−1) + dΓ(ω) +

2n∑

i=1

αiϕ(fi)
i.

If the spectra are real we define

Eη(α, f, ω) := inf(σ(Hη(α, f, ω)))

Eη(α, f, ω) := inf(σ(Fη(α, f, ω))).

For an element f ∈ H2n we define the leading terms

L(f) = {i ∈ {2, 3, . . . , 2n} | fi 6= fj ∀j > i}.
The expression L(f)c is to be interpreted as the complement within {1, 2, . . . , 2n}.
For ω selfadjoint on H we define the numbers

m(ω) = inf{σ(ω)} and mess(ω) = inf{σess(ω)}.
The basic set of assumptions are:

Hypothesis 1. α ∈ C2n, f ∈ H2n and ω selfadjoint on H fulfil Hypothesis 1 if
(1) L(f) consists only of even numbers, αi > 0 for all i ∈ L(f)\{2} and α2 ≥ 0

if 2 ∈ L(f).
(2) ω is injective and nonnegative.
(3) fi ∈ D(ω−

1
2 ) ∩ D(ω

1
2 ) for all i ∈ {2, . . . , 2n} and f1 ∈ D(ω−

1
2 ).

Hypothesis 2. f ∈ H2n and ω selfadjoint on H fulfil Hypothesis 2 if 〈fi, g(ω)fj〉 ∈
R for all i, j ∈ {1, . . . , 2n} and g : R→ R measurable and bounded on σ(ω).

Hypothesis 3. f ∈ H2n and ω selfadjoint on H fulfil Hypothesis 3 if either n ≤ 2
or m(ω) > 0 and Hypothesis 2 holds.

Hypothesis 3 ensures that we may use hypercontrative bounds if n > 2.

Hypothesis 4. f ∈ H2n and ω selfadjoint on H fulfil Hypothesis 4 if
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σ(Hη)

σ(F−|η|)

σ(F|η|)

× ×

×

×

E−|η|

E|η| E−|η| +mess

E|η| +mess

E−|η| = Eη E|η| Eη +mess

E

Figure 1. The picture established by Theorems 3.3 and 3.4 in the
case 0 < 2|η|< mess, m = mess and [mess, 3mess] ⊂ σess(ω).

(1) H = L2(M,F , µ) where (M,F , µ) satisfies the assumptions in Theorems
A.5 and A.8.

(2) ω is a multiplication operator on H.
(3) There is a measurable function h : M → C with |h|= 1 such that hf is

R2n valued almost everywhere. A function h with these properties is called
a phase function for f .

Hypothesis 5. We say f ∈ H2n and ω selfadjoint on H fulfil Hypothesis 5 if
fi ∈ D(ω−1) for all i.

This now brings us to our results.

Proposition 3.1. Assume η ∈ C and (α, f, ω) satisfies Hypotheses 1 and 3. Then
the operators Fη(α, f, ω) and Hη(α, f, ω) are closed on the respective domains

D(Fη(α, f, ω)) = D(dΓ(ω)) ∩i∈L(f)\{2} D(ϕ(fi)
i)

D(Hη(α, f, ω)) = D(1⊗ dΓ(ω)) ∩i∈L(f)\{2} D(1⊗ ϕ(fi)
i).

Given any core D of ω the linear span of the following sets

J (D) := {Ω} ∪
∞⋃

n=1

{g1 ⊗s · · · ⊗s gn | gj ∈ D}

J̃ (D) := {v1 ⊗ v2 | v1 ∈ {e1, e−1}, v2 ∈ J (D)}
are cores for Fη(α, f, ω) and Hη(α, f, ω) respectively. Also both operators are self-
adjoint and semibounded if (α, η) ∈ R2n+1 and they have compact resolvents if ω
has compact resolvents.

Proposition 3.2. Let φ = (φ1, φ−1) = e1 ⊗ φ1 + e−1 ⊗ φ−1 be an element in
Fb(H)2 = Fb(H) ⊕ Fb(H) ≈ C2 ⊗ Fb(H). Write φj = (φ

(k)
j ) for j ∈ {−1, 1}. Let

j ∈ {−1, 1}. Define φ̃j = (φ̃
(k)
j ) where

φ̃
(k)
j =

{
φ

(k)
j k is even
φ

(k)
−j k is odd

Then φ̃j ∈ Fb(H) and the map U : φ 7→ (φ̃1, φ̃−1) is U is selfadjoint and unitary.
Furthermore

UHη(α, f, ω)U∗ = F−η(α, f, ω)⊕ Fη(α, f, ω).

In the remaining part of this section we will be suppress α, f and ω from the
notation as they are fixed in the initial part of each Theorem. The first result we
present is about the location of the essential spectrum.
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Theorem 3.3. Let α ∈ R2n, η ∈ R, f ∈ H2n and ω be selfadjoint on H and assume
they satisfy Hypothesis 1,3 and either n ≤ 2 or Hypothesis 4. Then the following
holds

inf{σess(Fη)} ≥ min{E−η +mess, Eη +m+mess}
∞⋃

q=1

{E(−1)qη + λ1 + · · ·+ λq | λi ∈ σess(ω)} ⊂ σess(Fη)

inf(σess(Hη)) = Eη +mess
∞⋃

q=1

{Eη + λ1 + · · ·+ λq | λi ∈ σess(ω)} ⊂ σess(Hη).

In particular, Hη has a ground state of finite multiplicity if mess > 0. We also have:
(1) Assume m = mess, [mess, 3mess] ⊂ σess(ω) and if mess = 0 then mess is not

isolated in σess(ω). Then σess(Fη) = [E−η +mess,∞).
(2) Assume [mess, 2mess] ⊂ σess(ω) and if mess = 0 then mess is not isolated in

σess(ω). Then σess(Hη) = [Eη +mess,∞).
(3) If we assume Hypothesis 1,2,3 and either n ≤ 2 or Hypothesis 4, then
E−|η| ≤ E|η| with equality if and only if η = 0 or m = 0. In particular we
find inf(σess(F|η|)) = E−|η| +mess.

In the following result we single out which fiber operator is associated with the
ground state and which fiber operator is associated with exited states.

Theorem 3.4. Let α ∈ R2n, η ∈ R, f ∈ H2n and ω be selfadjoint on H and assume
they satisfy Hypothesis 1,2 and 3. Let U be the map from Proposition 3.2.

(1) If η 6= 0 and Eη is an eigenvalue for Hη then Eη is non degenerate. If ψ
is a ground state for Hη then Uψ = e−sign(η)⊗ φ where φ is an eigenvector
for F−|η| corresponding to the energy Eη.

(2) If E−|η| is an eigenvalue for F−|η| then E−|η| is non degenerate. In par-
ticular, if E0 is an eigenvalue for H0 then E0 will have multiplicity two.
Furthermore, if ψ is a ground state for H0 then Uψ = e1 ⊗ φ1 + e−1 ⊗ φ−1

where φi is either 0 or an eigenvector for F0 corresponding to the energy
E0 = E0.

(3) If we further assume Hypothesis 4 when n > 2 then E−|η| = Eη. Hence Hη

has a ground state if and only if F−|η| has a ground state. Also, if m = 0
then F|η| has no ground state for η 6= 0.

(4) If we further assume Hypothesis 4 when n > 2 and m, η 6= 0 then Hη will
have an exited state in (Eη, Eη + mess] if F|η| has a ground state. This is
the case if 2|η|< mess.

Assuming weak infrared regularity one can prove the following theorem. Note that
the assumptions imposed on ω are much weaker than in e.g. [7].

Theorem 3.5. Let α ∈ R2n, η ∈ R, f ∈ H2n and ω be selfadjoint on H and assume
they satisfy Hypothesis 1,2,3,5 and either n ≤ 2 or Hypothesis 4.

(1) If F−|η| has a ground state ψ and Hη has a ground state φ then ψ ∈ D(Na)
and φ ∈ D(1⊗Na) for any a > 0.

(2) Assume H = L2(Rν ,B(Rν), λ⊗ν), ω is a multiplication operator and n ≤ 2.
Then Eη is an eigenvalue for F−|η| and Hη. Here λ⊗ν is the Lebesgue
measure on B(Rν).

4. Important estimates

In this section we prove series of estimates which will become useful later. We
start with the following lemma
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Lemma 4.1. Fix α ∈ R2n and define

K = {f ∈ H2n | (α, f) satisfies part (1) of Hypothesis 1 }.
There is a constant C := C(α), such that for any collection {A(v)}v∈H of selfadjoint
operators and f ∈ K we have

(4.1)
2n∑

j=2

αjA(fj)
j ≥ C.

Proof. Let K = {i ∈ {2, 4, . . . , 2n} | αi > 0} = {i1, . . . , ik}. For each b ≤ k we
consider polynomials of the form

αibX
ib +

ib−1∑

j=2

α̃jX
j ,

where α̃j is either 0 or αj . Since there are only finitely many choices of b and α̃j
we find a uniform lower bound C0 < 0 of all these polynomials. Using the spectral
calculus we find

(4.2) αibA
ib +

ib−1∑

j=2

α̃jA
j ≥ C0,

for all A selfadjoint on Fb(H), b ∈ {1, . . . , k} and choices of α̃j as either 0 or αj .
Since the sum of operators in equation (4.1) is a sum of at most n operators of the
form in equation (4.2) we find nC0 is a uniform lower bound. �
In the remaining part of the section we fix ω to be a selfadjoint, nonnegative and
injective operator on H with domain D(ω).

Lemma 4.2. For any ε > 0 and r > 0 there is C := C(r, ε) such that for all
v1, v2 ∈ D(ω−

1
2 ) and a, b ≥ 0 with ‖(1 + ω−

1
2 )v1‖+‖(1 + ω−

1
2 )v2‖+a + b < r we

have
2Re(〈aϕ(v1)4ψ, bϕ(v2)2ψ〉) ≥ −ε‖dΓ(ω)ψ‖2−C‖ψ‖2

for all ψ ∈ N ∩ D(dΓ(ω)).

Proof. On elements in N we may calculate using equation (2.1)

ϕ(v2)ϕ(v1)4 = ϕ(v1)4ϕ(v2) + 4(2iIm(〈v2, v1〉))ϕ(v1)3.

This implies

2Re(〈aϕ(v1)4ψ, bϕ(v2)2ψ〉) = 2ab‖ϕ(v1)2ϕ(v2)ψ‖2

− 16abIm(〈v2, v1〉)Im(〈ϕ(v1)3ψ,ϕ(v2)ψ〉).
Now

Im(〈ϕ(v1)3ψ,ϕ(v2)ψ〉) =
1

2i
〈[ϕ(v2), ϕ(v1)3]ψ,ψ〉 = 3Im(〈v2, v1〉)‖ϕ(v1)ψ‖2.

Hence we find

2Re(a〈ϕ(v1)4ψ, bϕ(v2)2ψ〉) ≥ −48r6‖ϕ(v1)ψ‖2.
Using Cauchy-Schwarz inequality and Lemma 2.1 we find

‖ϕ(v1)ψ‖2≤ 4‖(ω− 1
2 + 1)v1‖2(〈ψ, dΓ(ω)ψ〉+ ‖ψ‖2) ≤ 4r2(〈ψ, dΓ(ω)ψ〉+ ‖ψ‖2),

and so

2Re(〈aϕ(v1)4ψ, bϕ(v2)2ψ〉) ≥ −196r8‖ψ‖‖dΓ(ω)ψ‖−196r8‖ψ‖2

≥ −ε‖dΓ(ω)ψ‖2−196r8‖ψ‖2− (196r8)2

4ε
‖ψ‖2,

which finishes the proof. �
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Lemma 4.3. For any ε > 0, r > 0, n ∈ N there is C := C(r, ε, n) such that for all
v ∈ D(ω

1
2 ) and a ≥ 0 with ‖v‖+‖ω 1

2 v‖+a < r we have

2Re(〈aϕ(v)2nψ, dΓ(ω)ψ〉) ≥ −ε‖aϕ(v)2nψ‖2−C‖ψ‖2,

for all ψ ∈ N ∩ D(dΓ(ω)).

Proof. Define ωk = max{ω, k} via the spectral calculus. Using equation (2.3) we
find the following operator identity holds on N

ϕ(v)ndΓ(ωk) = dΓ(ωk)ϕ(v)n + i
n−1∑

j=0

ϕ(v)n−j−1ϕ(iωkv)ϕ(v)j .

This yields

2Re(〈aϕ(v)2nψ, dΓ(ωk)ψ〉) = 2a‖dΓ(ωk)
1
2ϕ(v)nψ‖2

− 2a
n−1∑

j=0

Im(〈ϕ(v)nψ,ϕ(v)n−j−1ϕ(iωkv)ϕ(v)jψ〉).

Now for each j ≤ n− 1 we have

Im(〈ϕ(v)nψ,ϕ(v)n−j−1ϕ(iωkv)ϕ(v)jψ〉) =
1

2i
〈[ϕ(v)n−j−1ϕ(iωkv)ϕ(v)j , ϕ(v)n]ψ,ψ〉.

Using equation (2.1) we may calculate on N

[ϕ(v)n−j−1ϕ(iωkv)ϕ(v)j , ϕ(v)n] = ϕ(v)n−j−1[ϕ(iωkv), ϕ(v)n]ϕ(v)j

= n2iIm(−i〈ωkv, v〉)ϕ(v)2(n−1).

Using the above equalities we find

2Re(〈aϕ(v)2nψ, dΓ(ω)ψ〉) ≥ −2an2‖ω
1
2

k v‖2‖ϕ(v)n−1ψ‖2

= −2a1/nn2‖ω
1
2

k v‖2‖(a
1
2nϕ(v))n−1ψ‖2.

Now for any ε′ > 0 there is a constant A depending only on ε′, n such that x2(n−1) ≤
ε′x4n+A. Pick such A for ε′ = 2−1n−2r−2−1/nε. Then since ‖ω

1
2

k v‖2≤ ‖ω
1
2 v‖2≤ r2

for all k we find that

2Re(〈aϕ(v)2nψ, dΓ(ωk)ψ〉) ≥ −ε‖aϕ(v)2nψ‖2−2n2Ar2+1/n‖ψ‖2.

Taking k to ∞ finishes the proof. �

Lemma 4.4. Let r > 0, 1 > ε > 0 and n ∈ N. Define

K = {(α, v) ∈ [0,∞)× (D(ω1/2) ∩ D(ω1/2)) | αj + ‖(1 + ω−
1
2 + ω

1
2 )v‖< n−1r}

A =

{
Hn n ≤ 2

{v ∈ Hn | 〈vi, vj〉 ∈ R ∀ i, j ∈ {1, ..., n}} n > 2

There is a constant C := C(ε, r, n) such that for all (α1, v1), . . . , (αn, vn) ∈ K with
v = (v1, . . . , vn) ∈ A we have

‖dΓ(ω)ψ‖2+

n∑

j=1

‖αjϕ(vj)
2jψ‖2≤ 1

1− ε

∥∥∥∥dΓ(ω)ψ +

n∑

j=1

αjϕ(vj)
2jψ

∥∥∥∥
2

+C‖ψ‖2.

for all for ψ ∈ N ∩ D(dΓ(ω)).
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Proof. First we note that

‖dΓ(ω)ψ‖2+
n∑

j=1

‖αjϕ(vj)
2jψ‖2 =

∥∥∥∥dΓ(ω)ψ +
n∑

j=1

αjϕ(vj)
2jψ

∥∥∥∥
2

−
n∑

j=1

2Re(〈αjϕ(vj)
2jψ, dΓ(ω)ψ〉)

−
n∑

j1=1

n∑

j2=j1+1

2αj2αj1Re(〈ϕ(vj1)2j1ψ,ϕ(vj2)2j2ψ〉.

Let C̃(r, ε, n) be the constant from Lemma 4.3 and define C1 = C̃(r, ε, 1) + · · · +
C̃(r, ε, n) which depends only on n, r, ε. Then we find

−
n∑

j=1

2Re(〈αjϕ(vj)
2jψ, dΓ(ω)ψ〉) ≤

n∑

j=1

ε‖αjϕ(vj)
2jψ‖2+C1‖ψ‖2.

We now turn to the double sum. If n ≤ 2 we only have one term which can be
estimated using Lemma 4.2. Therefore we find a constant C2 > 0 such that

−
n∑

j1=1

n∑

j2=j1+1

2αj2αj1Re(〈ϕ(vj1)2j1ψ,ϕ(vj2)2j2ψ〉) ≤ ε‖dΓ(ω)ψ‖2+C2‖ψ‖2.

If n > 2 then ϕ(vj) and ϕ(vi) commute on N for all i, j and so

−
n∑

j1=1

n∑

j2=j1+1

2αj2αj1Re(〈ϕ(vj1)2j1ψ,ϕ(vj2)2j2ψ〉)

= −
n∑

j1=1

n∑

j2=j1+1

2αj2αj1‖ϕ(vj1)j1ϕ(vj2)j2ψ‖2≤ 0 ≤ ε‖dΓ(ω)ψ‖2+C2‖ψ‖2.

Using these inequalities we find the desired result with C = C1+C2

1−ε . �

Lemma 4.5. Let r > 0, 1 > ε > 0 and n ∈ N. Then there is a constant C such
that for all f ∈ H2n, α ∈ C2n, η ∈ C and ω selfadjoint on H that fulfils Hypothesis
1, 3 and

|η|+‖α‖+‖(ω− 1
2 + 1)f1‖+

2n∑

j=2

‖(ω− 1
2 + 1 + ω

1
2 )fj‖< r, max

j∈L(f)\{2}
{α−1

j } < r,

we have

‖ηΓ(−1)ψ‖+
∑

j∈L(f)c

‖αjϕ(fj)
jψ‖ ≤ ε

∥∥∥∥dΓ(ω)ψ +
∑

j∈L(f)

αjϕ(fj)
jψ

∥∥∥∥+C‖ψ‖

‖αiϕ(fi)
iψ‖, ‖dΓ(ω)ψ‖ ≤ 1

(1− ε)2
‖Fη(α, f, ω)ψ‖+ C‖ψ‖.

for all ψ ∈ N ∩ D(dΓ(ω)) and i ∈ L(f).

Proof. For a fixed ε, r, n pick C1 such that

r2
2`−1∑

j=1

|x|2j≤ ε2

16n2r2
|x|4l+C1,

for all ` ∈ {1, . . . , n}. For each j ∈ L(f)c\{1} we find q ∈ L(f)\{2} such that
fj = fq and j < q. Noting that α−1

q < r ⇐⇒ r−1 ≤ αq we find

‖αjϕ(fj)
j‖≤

√
r2‖ϕ(fj)j‖2 ≤

ε

4nr
‖ϕ(fq)

q‖+
√
C1‖ψ‖≤

ε

4n
‖αqϕ(fq)

q‖+
√
C1‖ψ‖.
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We know from Lemma 2.1 that

‖α1ϕ(f1)ψ‖ ≤ 2r‖(ω− 1
2 + 1)f1‖(〈ψ, dΓ(ω)ψ〉+ ‖ψ‖2)

1
2

≤ ε

2
‖dΓ(ω)ψ‖+2r2‖ψ‖+2r4

ε
‖ψ‖.

Then it is clear that there is a constant C2 depending only on r, ε and n such that
∑

j∈L(f)c

‖αjϕ(fj)
jψ‖≤ ε

2

(
‖dΓ(ω)ψ‖+

∑

j∈L(f)

‖αjϕ(fj)
jψ‖

)
+C2‖ψ‖.

Combining this with Lemma 4.4 (applied with ε = 1
2 ) there is a constant C3 again

depending only on r, ε and n such that

(4.3)
∑

j∈L(f)c

‖αjϕ(fj)
jψ‖≤ ε

∥∥∥∥dΓ(ω)ψ +
∑

j∈L(f)

αjϕ(fj)
jψ

∥∥∥∥+C3‖ψ‖.

This proves the first relation. For the next we note that∥∥∥∥dΓ(ω)ψ +
∑

j∈L(f)

αjϕ(fj)
jψ

∥∥∥∥≤ ‖Fη(α, f, ω)ψ‖+
∑

j∈L(f)c

‖αjϕ(fj)
jψ‖+|η|‖ψ‖.

Using equation (4.3) we obtain
∥∥∥∥dΓ(ω)ψ +

∑

j∈L(f)

αjϕ(fj)
jψ

∥∥∥∥≤
1

1− ε‖Fe(α, f, ω)ψ‖+C3 + r

1− ε ‖ψ‖.

Combining this and Lemma 4.4 we find a constant C4 such that for all q ∈ L(f)

‖αqϕ(fq)
q‖, ‖dΓ(ω)ψ‖≤ 1

(1− ε)2
‖Fη(α, f, ω)ψ‖+C4‖ψ‖.

This finishes the proof. �

5. Proof of Proposition 3.1 and Proposition 3.2

We start by proving a lemma regarding the map U in Proposition 3.2.

Lemma 5.1. The map U defined in Proposition 3.2 is unitary with inverse U∗ = U .
Furthermore, for any v ∈ H and A selfadjoint on H we have

U(σx ⊗ ϕ(v))U∗ = ϕ(v)⊕ ϕ(v) = 1⊗ ϕ(v)(5.1)
U(1⊗ dΓ(A))U∗ = dΓ(A)⊕ dΓ(A) = 1⊗ dΓ(A)(5.2)

U(σz ⊗ 1)U∗ = (−Γ(−1))⊕ Γ(−1) = σz ⊗ Γ(−1).(5.3)

In particular we have for α ∈ C2n, f ∈ H2n, η ∈ C and ω selfadjoint on H that

UHη(α, f, ω)U∗ = F−η(α, f, ω)⊕ Fη(α, f, ω).

Proof. First we note that
∞∑

k=0

‖ψ̃(k)
1 ‖2+

∞∑

k=0

‖ψ̃(k)
−1‖2 =

∑

k even

‖ψ(k)
1 ‖2+

∑

k odd

‖ψ(k)
−1‖2+

∑

k even

‖ψ(k)
−1‖2+

∑

k odd

‖ψ(k)
1 ‖2

= ‖ψ1‖2+‖ψ−1‖2= ‖e1 ⊗ ψ1 + e−1 ⊗ ψ−1‖2

which shows that the ψ̃i are elements in Fock space and U gives rise to an isometric
map from Fb(H)2 to Fb(H)2. To prove surjectivity we fix (ψ1, ψ−1) ∈ Fb(H)2 and
write U2(ψ1, ψ−1) = U(ψ̃1, ψ̃−1) = (φ1, φ−1). Fixing j ∈ {1,−1} we have

φ
(k)
j =

{
ψ̃

(k)
j k even
ψ̃

(k)
−j k odd

=

{
ψ

(k)
j k even

ψ
(k)
j k odd

= ψ
(k)
j ,
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and hence U is bijective with inverse U−1 = U . It is clear from the definition of
ψ̃j that the map (ψ1, ψ−1) 7→ ψ̃j is linear and hence U is also linear. We have
thus proven that U is unitary with U = U−1 = U∗. It remains to prove equations
(5.1),(5.2) and (5.3). Both sides of each equation is a selfadjoint map and the maps
on the left hand side of each equation is essentially selfadjoint on the set spanned
by ej ⊗ Ω and ej ⊗ g1 ⊗s · · · ⊗s gk with j ∈ {±1} and g` ∈ D(A). Hence we just
need to show equality on this set. Now

U∗(ej ⊗ Ω) = ej ⊗ Ω

U∗(ej ⊗ (g1 ⊗s · · · ⊗s gk)) = e(−1)kj ⊗ (g1 ⊗s · · · ⊗s gk),

which is in the domain of σx ⊗ ϕ(v), 1⊗ dΓ(A) and σz ⊗ 1. Using σxej = e−j and
σzej = jej we find

σx ⊗ ϕ(v)(ej ⊗ Ω) = e−j ⊗ v = U∗(1⊗ ϕ(v))(ej ⊗ Ω)

σx ⊗ ϕ(v)(e(−1)kj ⊗ (g1 ⊗s · · · ⊗s gk)) = e(−1)k+1j ⊗ a†(v)g1 ⊗s · · · ⊗s gk
+ e(−1)k−1j ⊗ a(v)g1 ⊗s · · · ⊗s gk

= U∗(1⊗ ϕ(v))(ej ⊗ (g1 ⊗s · · · ⊗s gk))

1⊗ dΓ(A)(ej ⊗ Ω) = 0 = U∗(1⊗ dΓ(A))(ej ⊗ Ω)

1⊗ dΓ(A)(e(−1)kj ⊗ (g1 ⊗s · · · ⊗s gk)) = e(−1)kj ⊗ dΓ(A)g1 ⊗s · · · ⊗s gk
= U∗(1⊗ dΓ(A))(ej ⊗ (g1 ⊗s · · · ⊗s gk))

σz ⊗ 1(ej ⊗ Ω) = jej ⊗ Ω = U∗(σz ⊗ Γ(−1))(ej ⊗ Ω)

σz ⊗ 1(e(−1)kj ⊗ (g1 ⊗s · · · ⊗s gk)) = (−1)kje(−1)kj ⊗ (g1 ⊗s · · · ⊗s gk)

= je(−1)kj ⊗ Γ(−1)g1 ⊗s · · · ⊗s gk
= U∗(σz ⊗ Γ(−1))(ej ⊗ (g1 ⊗s · · · ⊗s gk)).

This finishes the proof. �

Now Proposition 3.1 will follow as soon as we prove the statements for Fη(α, f, ω).
We start by proving the following lemma

Lemma 5.2. The conclusions of Proposition 3.1 hold under Hypothesis 1, 3 and
the assumption

L := dΓ(ω) +
∑

j∈L(f)

αjϕ(fj)
j

is essentially selfadjoint on N ∩D(dΓ(ω)).

Proof. Combining the assumption with Lemma 4.4 we see that L is selfadjoint on

C = D(dΓ(ω)) ∩j∈L(f)\{2} D(ϕ(fj)
j).

Now simple perturbation theory along with Lemma 4.5 shows that Fη(α, f, ω) is
closed on C and any core for L is a core for Fη(α, f, ω). If α ∈ R2n and η ∈ R, the
Kato-Rellich Theorem shows that Fη(α, f, ω) is selfadjoint and bounded below.

We now prove that J (D) is a core for L. It is enough to approximate elements in
N ∩D(ω). Any such element ψ can be approximated by a sequence {ψj}∞j=1 from
the span of J (D) with respect to dΓ(ω)-norm. Pick c so large 1(−∞,c)(N)ψ = ψ,
and write P = 1(−∞,c)(N). Then by the decomposition in equation (2.2) we see
that Pψj converges to ψ in D(dΓ(ω))-norm and in Nn norm. It follows from Lemma
2.1 that ψj converges to ψ in L-norm as desired.
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If ω has compact resolvents then so does dΓ(ω) by lemma B.4. That Fη(α, f, ω)
has compact resolvents will now follow from the equality

(Fη(α, f, ω) + i)−1 = (dΓ(ω) + i)−1

+ (dΓ(ω) + i)−1(Fη(α, f, ω)− dΓ(ω))(Fη(α, f, ω) + i)−1.

This finishes the proof. �

Proof of Proposition 3.1. It remains to prove that

L := dΓ(ω) +
∑

j∈L(f)

αjϕ(fj)
j

is essentially selfadjoint on N ∩ D(dΓ(ω)) under Hypothesis 1 and 3. The case
n ≤ 2 is simply done by appealing to [1]. If n > 2 one appeals to the theory
of hypercontractive semigroups (See Lemma E.1, Theorem E.2 and [17, Theorem
X.58] ) and obtains L is essentially selfadjoint on ∩n∈ND(dΓ(ω)n).

Using Lemma 2.1 we see that L is dΓ(ω)n bounded. Recall that a vector g ∈ H
is said to be bounded for ω if g ∈ ∩k∈ND(ωk) and there is C > 0 such that
‖ωkg‖≤ Ck‖g‖ for all k ∈ N. The set of vectors which are bounded for ω is dense
in H since

g = lim
`→∞

1[−`,`](ω)g

for any g ∈ H. Let g1, . . . , gq be bounded for ω. Then we have g1 ⊗s · · · ⊗s gq ∈
∩k∈ND(dΓ(ω)k) and

‖dΓ(ω)kg1 ⊗s · · · ⊗s gq‖ =

∥∥∥∥
∑

α∈Nq0,|α|=k

(
k
α

)
ωα1g1 ⊗s · · · ⊗s ωαqgq

∥∥∥∥

≤
∑

α∈Nq0,|α|=k

(
k
α

)
Cα1

1 · · ·Cαnq ‖g1‖· · · ‖gq‖

≤ (C1 + · · ·+ Cq)
k‖g1‖· · · ‖gq‖.

Hence g1 ⊗s · · · ⊗s gq is an analytic vector for dΓ(ω)n. In particular

{Ω} ∪ {g1 ⊗s · · · ⊗s gq | gi is bounded for ω, q ∈ N} ⊂ N ∩ D(dΓ(ω))

will span a core for dΓ(ω)n by Nelsons analytic vector theorem. Since L is dΓ(ω)n

bounded, we find that elements from N ∩D(dΓ(ω)) can approximate every element
in D(dΓ(ω)n) with respect to the graph norm of L. Since L is essentially selfadjoint
on D(dΓ(ω)n) we find N ∩D(dΓ(ω)) is a core for L. �

6. Lemmas for the HVZ theorem

In this chapter we discuss some of the technical machinery needed to prove the
HVZ theorem.

Lemma 6.1. Let f ∈ H2n, α ∈ R2n, η ∈ R, ω be selfadjoint on H and assume
Hypothesis 1 and 3 are satisfied. If there is a unitary map V : H → H1 ⊕H2 such
that V fi = (f̃i, 0) for all i ∈ {1, . . . , 2n} and V ωV ∗ = ω1 ⊕ ω2. Then (α, f̃ , ω1)
satisfies Hypothesis 1 and 3. Furthermore there is a unitary map

U : Fb(H)→ Fb(H1)⊕
∞⊕

k=1

(
Fb(H1)⊗H⊗sk2

)

such that

UFη(α, f, ω)U∗ = Fη(α, f̃ , ω1)⊕
∞⊕

k=1

(
F(−1)kη(α, f̃ , ω1)⊗ 1 + 1⊗ dΓ(k)(ω2)

)
.
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In fact U = U2U1Γ(V ), where U1 is the unitary map from Theorem C.1 and U2 is
the unitary map from Theorem C.2.

Proof. It is easy to see that Hypothesis 1 and 3 are preserved under the isomor-
phism. Using Lemma 2.2 one calculates

Γ(V )Fη(α, f, ω)Γ(V )∗ = ηΓ(−1⊕−1) + dΓ(ω1 ⊕ ω2) +
2n∑

i=1

αiϕ(V fi)
i.

Let U1 be the isomorphism from Theorem C.1. Using Theorems B.2 and C.1 we
see

U1Γ(V )Fη(α, f, ω)Γ(V )∗U∗1 = ηΓ(−1)⊗ Γ(−1) + F0(α, f̃ , ω1)⊗ 1 + 1⊗ dΓ(ω2).

Let U2 be the unitary transform from Theorem C.2. Defining U = U2U1Γ(V ) we
calculate

UFη(α, f, ω)U∗ = ηU2Γ(−1)⊗ Γ(−1)U∗2 + U2F0(α, f̃ , ω1)⊗ 1U∗2 + U21⊗ dΓ(ω2)U∗2

=
(
ηΓ(0)(−1)Γ(−1) + F0(α, f̃ , ω1)

)

⊕
∞⊕

k=1

(
ηΓ(−1)⊗ Γ(k)(−1) + F0(α, f̃ , ω1)⊗ 1 + 1⊗ dΓ(k)(ω2)

)
.

The fact that Γ(k)(−1) = (−1)k finishes the proof. �

Lemma 6.2. Let f ∈ H2n, α ∈ R2n, η ∈ R, ω be selfadjoint on H and assume
Hypotheses 1 and 3 are satisfied. Let H1,H2 ⊂ H be closed subspaces with H⊥1 = H2

and let Pi denote the orthogonal projection onto Hi. If f ∈ H2n
1 and ω is reduced

by H1, then we may take ωi = ω |Hi and V f = (P1f, P2f) in Lemma 6.1. Let U
be the corresponding map. For g1, . . . , gq ∈ H2 we define

B = {Ω} ∪
∞⋃

b=1

{h1 ⊗s · · · ⊗s hb | hi ∈ H1 ∩ D(ω)}

C = {g1 ⊗s · · · ⊗s gq} ∪
∞⋃

b=1

{h1 ⊗s · · · ⊗s hb ⊗s g1 ⊗s · · · ⊗s gq | hi ∈ H1 ∩ D(ω)}.

If ψ ∈ Span(B) then we may interpret ψ as an element in both Fb(H) and Fb(H1).
Using this identification for ψ we find that

U∗(ψ ⊗ (g1 ⊗s · · · ⊗s gq)) ∈ Span(C).(6.1)
U∗(ψ) = ψ.(6.2)

‖(Fη(α, f, ω)− λ)ψ‖ = ‖(Fη(α, f, ω1)− λ)ψ‖.(6.3)

where λ ∈ C.

Proof. V is clearly unitary and satisfies the properties needed in Lemma 6.1. Let
ji : Hi → H1⊕H2 be the embedding defined by either j1(f) = (f, 0) or j2(g) = (0, g)
and define Qi = V ∗j1. Then Qi is the inclusion map from Hi into H. Lemma C.3
immediately yields equation 6.1 and

Γ(Q) = U∗ |Fb(H1) .

This map acts as the identity on the set spanning B proving equation (6.2). To
prove (6.3) we note ψ = UU∗ψ = Uψ and so

‖(Fη(α, f, ω)− λ)ψ‖= ‖U(Fη(α, f, ω)− λ)U∗Uψ‖= ‖(Fη(α, f, ω1)− λ)ψ‖.
This finishes the proof. �
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Lemma 6.3. Let {fk}∞k=1 ⊂ H2n, α ∈ R2n, η ∈ R and ω be selfadjoint on H.
Assume (α, fk, ω) fulfils Hypothesis 1, 3 and L(fk) = L(f1) for all k ∈ N. Assume
furthermore that

C := sup
k∈N,q∈{2,...,2n}

{‖fkq ‖, ‖ω±
1
2 fkq ‖, ‖ω−

1
2 fk1 ‖, ‖fk1 ‖} <∞.

Then for each λ ∈ R there is K <∞ such that

‖ϕ(fkq )j(Fη(α, fk, ω) + λ± i)−1‖, ‖dΓ(ω)(Fη(α, fk, ω) + λ± i)−1‖≤ K
for all k ∈ N, q ∈ {1, . . . , 2n} and 1 ≤ j ≤ q.
Proof. Define

r = max

{
2n3C + ‖α‖+|η|,

(
max

q∈L(f1)\{2}
α−1
q

)}
+ 1

and ε = 1
2 . Then by Lemma 4.5 we have for all ψ ∈ D(dΓ(ω))∩N and q ∈ L(f1)\{2}

the inequalities

‖αqϕ(fkq )qψ‖, ‖dΓ(ω)ψ‖≤ 4‖Fη(α, fk, ω)ψ‖+C̃‖ψ‖
where C̃ depends only on n, r, ε and not on k. Now D(dΓ(ω)) ∩ N is a core for
Fη(α, fk, ω) and so the inequality extends to all ψ ∈ D(Fη(α, fk, ω)). Using

‖Fη(α, fk, ω)(Fη(α, fk, ω)± i+ λ)−1‖≤ 2 + |λ|
and α−1

q ≤ r for all q ∈ L(f1)\{2} we obtain the following uniform upper bounds

‖ϕ(fkq )q(Fη(α, fk, ω)± i+ λ)−1ψ‖ ≤ r(8 + 4|λ|+C̃)‖ψ‖(6.4)

‖dΓ(ω)(Fη(α, fk, ω)± i+ λ)−1ψ‖ ≤ (8 + 4|λ|+C̃)‖ψ‖(6.5)

for q ∈ L(f1)\{2}. Assume now q ∈ {1, . . . , 2n} and 1 ≤ j ≤ q. Using Lemma 2.1
we find for j ≤ 2 and ψ ∈ D(Fη(α, fk, ω)) ⊂ D(dΓ(ω)) that

‖ϕ(fkq )jψ‖≤ 15(2r)j‖(dΓ(ω) + 1)j/2ψ‖≤ 60r2‖(dΓ(ω) + 1)ψ‖
Using (6.5) we find ‖ϕ(fkq )j(Fη(α, fk, ω)± i+ λ)−1‖≤ 60r2(8 + 4|λ|+C̃ + 1) which
is a uniform upper bound. If j ≥ 3 we may find p ∈ L(f1)\{2} such that fp = fq.
For ψ ∈ D(Fη(α, fk, ω)) ⊂ D(ϕ(fp)

p) we have

‖ϕ(fkq )jψ‖≤ ‖ϕ(fkp )pψ‖+‖ψ‖.
Using equation (6.4) we find ‖ϕ(fkq )j(Fη(α, fk, ω)± i+ λ)−1‖≤ r(8 + 4|λ|+C̃) + 1
which is a uniform upper bound. �
Next is a crucial result regarding convergence of operators.

Lemma 6.4. Assume H = L2(M,F , µ) where (M,F , µ) is σ-finite, α ∈ R2n and
η ∈ R. Let ω, ω1, ω2, . . . be a collection of multiplication operators on L2(M,F , µ)
and f, f1, f2, . . . be a collection of elements from H2n such that (α, f, ω), (α, fk, ωk)
satisfy Hypothesis 1, 3 and L(f) = L(fk) for all k. Assume that

lim
k→∞

ωk
ω

= 1 = lim
k→∞

ω

ωk

in L∞(M,F , µ) and that

lim
k→∞

fk1 = f1 lim
k→∞

ω
− 1

2

k fk1 = ω−
1
2 f1(6.6)

lim
k→∞

fkj = fj lim
k→∞

ω
± 1

2

k fkj = ω±
1
2 f1(6.7)

in H for all j ≥ 2. Furthermore we assume either n ≤ 2 or there is a function
h :M→ S1 ⊂ C such that hf and hfk are almost surely R2n-valued for all k. Then
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Fη(α, fk, ωk) − λk converges to Fη(α, f, ω) − λ in norm resolvent sense whenever
{λk}∞k=1 ⊂ R converges to λ.

Proof. We check convergence at the point i in the resolvent set. For convenience
we will sometimes write ω = ω∞ or f = f∞. Since ωk/ω and ω/ωk are essentially
bounded functions we see (α, fk, ω) fulfils Hypothesis 1 and 3. Furthermore the
limits in equations (6.6) and (6.7) also exists if we write ω instead of ωk since the
ωk/ω, ω/ωk converges to 1 in L∞(M,F , µ). We now prove

(6.8) (Fη(α, fk, ωk) + λn − i)−1 − (Fη(α, fk, ω) + λ− i)−1

converges to 0 since this will reduce the problem to the case ωk = ω and λk = λ = 0
for all k. For any ψ ∈ Fb(H) and k, k′ ∈ N ∪ {∞} have
∞∑

`=1

∫

M`

(ωk(k1) + · · ·+ ωk(k`))
2|ψ(`)(k1, . . . , k`)|2dµ⊗`(k1, . . . , k`)

≤
∥∥∥∥
ωk
ωk′

∥∥∥∥
2

∞

∞∑

l=1

∫

M`

(ωk′(k1) + · · ·+ ωk′(k`))
2|ψ(`)(k1, . . . , k`)|2dµ⊗`(k1, . . . , k`).

so D(dΓ(ωk)) = D(dΓ(ω)) for all k ∈ N. On this set ‖(dΓ(ωk)− dΓ(ω))ψ‖2 is now
estimated by
∞∑

`=1

∫

M`

(ωk(k1)− ω(k1) + · · ·+ ωk(k`)− ω(k`))
2|ψ(`)(k1, . . . , k`)|2dµ⊗`(k1, . . . , k`)

≤
∥∥∥∥
ωk − ω
ω

∥∥∥∥
2

∞

∞∑

`=1

∫

M`

(ω(k1) + · · ·+ ω(k`))
2|ψ(l)(k1, . . . , k`)|2dµ⊗`(k1, . . . , kl).

Hence we find with Ck = ‖ωk−ωω ‖∞ that

‖(Fη(α, fk, ωk) + λn − i)−1 − (Fη(α, fk, ω) + λ− i)−1‖
≤ |λk − λ|+Ck‖dΓ(ω)(Fη(α, fk, ω) + λ− i)−1‖.

Now ‖dΓ(ω)(Fη(α, fk, ω) + λ− i)−1‖ is uniformly bounded by Lemma 6.3 and Ck
converges to 0. Thus the operator in equation (6.8) converges to 0 as desired, and
so we have reduced to the case ωk = ω and λk = λ = 0 for all k.

In case n > 2, we letHR be the real Hilbert space from Lemma E.1, corresponding
to the elements fki for k ∈ N ∪ {∞} and i ∈ {1, . . . , 2n}. Let L2(X,X ,Q) be a
Q-space corresponding to HR and V is unitary map from Theorem E.2. Now define

(6.9) I(fk) = α1ϕ(fk1 ) +

2n∑

i=2

αiϕ(fki ),

for all k ∈ N∪{∞}. By Theorem E.2 we know that V e−tdΓ(ω)V ∗ is hypercontractive
and the interaction terms V I(fk)V ∗ are a multiplication operators on the same Q-
space for all k. Convergence in norm resolvent sense now follows if η = 0 from
Theorem E.2 and [17, Theorem X.60]. For η 6= 0 we apply Lemma E.3.

Assume now n ≤ 2 and define I(fk) as in equation (6.9) for all k ∈ N∪{∞} and
write F (f) := Fη(α, f, ω) and F (fk) := Fη(α, fk, ω). Define

Ck = max
0≤b≤1

{‖ϕ(f − fk)ϕ(fk)b(dΓ(ω) + 1)−1‖, ‖ϕ(f − fk)ϕ(f)b(dΓ(ω) + 1)−1‖}

D = sup
0≤a≤3,k∈N∪{∞}

{‖ϕ(fk)a(F (fk)± i)−1‖, ‖(dΓ(ω) + 1)(F (fk)± i)−1‖},
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where D <∞ follows from Lemma 6.3. On N we may calculate

I(fk)− I(f) = α1ϕ(fk1 − f) + α2(ϕ(fk2 )ϕ(fk2 − f2) + ϕ(fk2 − f2)ϕ(f2))

+ α3(ϕ(fk3 )2ϕ(fk3 − f3) + ϕ(fk3 )ϕ(fk3 − f3)ϕ(f3) + ϕ(fk3 − f3)ϕ(f3)2)

+ α4ϕ(fk4 )3ϕ(fk4 − f4) + α4ϕ(fk4 )2ϕ(fk4 − f4)ϕ(f4)

+ α4ϕ(fk4 )ϕ(fk4 − f4)ϕ(f4)2 + α4ϕ(fk4 − f4)ϕ(f4)3.

Fix k ∈ N. Let ψ, φ ∈ Fb(H) with (F (fk) + i)−1φ, (F (f) − i)−1ψ ∈ N . We note
that this set is dense since N contains a core for F (fk) and F (f). We calculate

〈φ, ((F (fk)− i)−1 − (F (f)− i)−1)ψ〉
= 〈(F (fk) + i)−1φ, (I(f)− I(fk))(F (f)− i)−1ψ〉.

This is a sum of 10 terms of the form

− αj〈ϕ(fkj )a(F (fk) + i)−1φ, ϕ(fkj − fj)ϕ(fj)
b(F (f)− i)−1ψ〉

− αj〈ϕ(fj − fkj )ϕ(fkj )b(F (fk) + i)−1φ, ϕ(fj)
a(F (f)− i)−1ψ〉.

with 0 ≤ a ≤ 3 and 0 ≤ b ≤ 1. Hence we see that

|〈φ, ((F (fk)− i)−1 − (F (f)− i)−1)ψ〉|≤ 10 max{|α1|, |α2|, |α3|, |α4|}D2Ck‖ψ‖‖φ‖.
Ck converges to 0 by Lemma 2.1 which finishes the proof. �
Lemma 6.5. Let H = L2(M,F , µ) where (M,F , µ) is σ-finite, α ∈ R2n, η ∈
R, f ∈ H2n and ω :M→ R be measurable. Assume that (α, f, ω) satisfies Hypoth-
esis 1,3 and either n ≤ 2 or Hypothesis 4. Let {An}∞n=1 be an increasing sequence
of sets covering M up to a zeroset and define fk = 1Akf . Then (α, fk, ω) sat-
isfies Hypothesis 1, 3 and either n ≤ 2 or Hypothesis 4 for all k. Furthermore
Fη(α, fk, ω) is uniformly bounded from below and converges to Fη(α, f, ω) in norm
resolvent sense. In particular, if λk ∈ σess(Fη(α, fk, ω)) and {λk}∞k=1 converges to
λ, then λ ∈ σess(Fη(α, f, ω)) and

lim
k→∞

Eη(α, fk, ω) = Eη(α, f, ω).

Proof. (α, fk, ω) satisfies Hypothesis 1 obviously. In case n ≤ 2 Hypothesis 3 is
obtained directly and if n > 2 the phase function for f will also be a phase function
for fk. Since Hypothesis 4 implies Hypothesis 2 we have proven the first part.
Norm resolvent convergence follows directly from Lemma 6.4. Write

Fη(α, fk, ω) = ηΓ(−1) + dΓ(ω) + α1ϕ(fk1 ) +

2n∑

j=2

αjϕ(fkj )j .

Using ηΓ(−1) ≥ −|η| and dΓ(ω) + α1ϕ(fk1 ) ≥ −α2
1‖ω−

1
2 fk1 ‖2≥ −α2

1‖ω−
1
2 f1‖2 by

Lemma 2.1 we can find a uniform lower bound of the first three terms. The sum
is also uniformly bounded from below by Lemma 4.1 since L(fk) = L(f) for all
k. The functional calculus now implies the claims regarding convergence of the
spectra. �

7. The HVZ theorem

In this section we prove Theorem 3.3 except from part 3. Fix η ∈ R, α ∈
R2n, f ∈ H2n, ω selfadjoint on H and assume they fulfil Hypothesis 1,3 and either
n ≤ 2 or Hypothesis 4. We introduce the notation F(−1)k := F(−1)kη(α, f, ω),
E(−1)k := E(−1)kη(α, f, ω), m := m(ω) and mess := mess(ω).

Since spectral properties are conserved under unitary transformations we may
(using Lemmas A.10 and 2.2) assume that H = L2(M,F , µ) where (M,F , µ)
satisfies the assumptions in Theorems A.5 and A.8 and ω is a multiplication operator
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on H with ω > 0 almost everywhere. In particularM is a locally compact metric
space. In case n > 2 and we assume Hypothesis 4 to hold, we may assume that
the phase function h is 1 by using the unitary transformation Γ(h). Hence we may
assume the fi to be almost everywhere real valued when n > 2.

Lemma 7.1. {E(−1)q + λ1 + · · ·+ λq | λi ∈ σess(ω)} ⊂ σess(F1) for all q ∈ N.

Proof. Fix q ∈ N and λ1, . . . , λq ∈ σess(ω). By Theorem A.5 we may for each i ∈
{1, . . . , q} pick a collection of sets {Aik}∞k=1 such that 0 < µ(Aik) <∞, |ω − λi|≤ 1

k

on Aik, A
i
k ∩Aj` = ∅ for i 6= j or k 6= ` and

∞∑

k=1

µ(Aik) <∞

for all i ∈ {1, . . . , q}. Define for each and k ∈ N the set

Bk =

q⋃

i=1

∞⋃

j=k

Aij ⇒ µ(Bk) =

q∑

i=1

∞∑

j=k

µ(Aij) <∞,

and note that µ(Bk) ↓ 0. Since the Bk is a decreasing collection of sets we find

B =
∞⋂

k=1

Bk

has measure 0. Define now for each ` ∈ N the set

H` = {f ∈ H | 1Bc` f = f µ− a.e} = 1Bc`H.
Assume first that f ∈ H2n

K for some K and hence that f ∈ H2n
` for all ` ≥ K.

Define the following sets for ` ≥ K

A` =
⋃̀

k=K

Hk ∩ D(ω) = H` ∩ D(ω) A∞ =

∞⋃

k=K

Hk ∩ D(ω)

We now claim that A∞ is a core for ω. If φ ∈ D(ω) then φk = φ1Bck ∈ A∞ for all
k ≥ K and using dominated convergence we find

lim
k→∞

‖φ− φk‖2= 0 = lim
k→∞

‖ω(φ− φk)‖2

so A∞ is a core for ω. Defining

J (A∞) = {Ω} ∪
∞⋃

k=1

{g1 ⊗s · · · ⊗s gk | gi ∈ A∞}

J (A`) = {Ω} ∪
∞⋃

k=1

{g1 ⊗s · · · ⊗s gk | gi ∈ A`}

we find that J (A∞) spans a core for F±1 by Proposition 3.1. Note that any element
in g ∈ Span(J (A∞)) is of the form

g = aΩ +

b∑

i=1

c∑

j=1

αi,jg
j
1 ⊗s · · · ⊗s gji

for some a, b, c, αi,j constants and gji ∈ A∞. Note that each gji is in fact con-
tained in some A`(i,j) by definition so defining u = maxi,j{`(i, j)} we see that
g ∈ Span(J (A`)) for any ` ≥ u. Hence we have now proven the following state-
ments

• For any g ∈ Span(J (A∞)) there is u ∈ N with u ≥ K such that g ∈
Span(J (A`)) for any ` ≥ u.
• Span(J (A∞)) is a core for F±1.
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For each p ∈ N we pick a νp ∈ Span(J (A∞)) such that ‖(F(−1)q − E(−1)q )νp‖≤ 1
p

and ‖νp‖= 1. Pick for each p ∈ N an u(p) ≥ K such that νp ∈ Span(J (A`)) for
any ` ≥ u(p) and u(p + 1) > u(p) for all p ∈ N. For each p ∈ N and i ∈ {1, . . . , q}
we define

gpi = µ(Aiu(p))
− 1

2 1Ai
u(p)

and note gpi ∈ D(ω) since ω is bounded by λi + 1
u(p) on Aiu(p). Note also that

gpi ∈ H⊥u(p) since Aiu(p) ⊂ Bu(p) so gpi and elements in Hu(p) have disjoint support.
Furthermore the collection {gpi }p∈N,i∈{1,...,q} is orthogonal since the elements have
disjoint support. Let Up be the unitary map in Lemma 6.2 corresponding to Hu(p)

which exists since f ∈ H2n
K ⊂ H2n

u(p). Define

φp =
√
q!U∗p (νp ⊗ gp1 ⊗s · · · ⊗s gpq ).

We are done in the case f ∈ H2n
K for some K if we can prove that {φp}∞p=1 is a

Weyl sequence for F1 corresponding to the value E(−1)q + λ1 + · · ·+ λq. We check:

(1) φp ∈ D(F1).
(2) ‖φp‖= 1 for all p ∈ N.
(3) φp is orthogonal to φr for p 6= r.
(4) ‖(F(−1)q − (E(−1)q + λ1 + · · ·+ λq))φp‖ converges to 0.

(1): Lemma 6.2 shows φp ∈ N ∩ D(dΓ(ω)) ⊂ D(F1) for all p ∈ N.
(2): For each fixed p ∈ N we have that the gpi are orthogonal. Let Sq be the

permutations of {1, . . . , q}. Then we find

‖gp1 ⊗s · · · ⊗s gpq‖2 =
1

q!

∑

σ∈Sq
〈gp1 ⊗ · · · ⊗ gpq , gpσ(1) ⊗ · · · ⊗ g

p
σ(q)〉

=
1

q!

∑

σ∈Sq
〈gp1 , gpσ(1)〉 · · · 〈gpq , g

p
σ(q)〉

=
1

q!
〈gp1 , gp1〉 · · · 〈gpq , gpq 〉 =

1

q!
.

(3): Define for all p ∈ N the set

Cp = {gp1 ⊗s · · · ⊗s gpq} ∪
∞⋃

`=1

{h1 ⊗s · · · ⊗s h` ⊗s gp1 ⊗s · · · ⊗s gpq | hi ∈ Hu(p) ∩D(ω)}

and let r < p. Then φr ∈ Span(Cr) and φp ∈ Span(Cp) by Lemma 6.2, so we just
need to see that every element in Cp and Cr are orthogonal. Let ψ1 ∈ Cp and
ψ2 ∈ Cr. Note every tensor in Cp has a factor gp1 and that this factor is orthogonal
to gri for all i ∈ {1, . . . , q} by construction. Furthermore for any h ∈ Hu(r) we
see that h is supported in Bcu(r) ⊂ Bcu(p) ⊂ (A1

u(p))
c and hence gp1h = 0, so gp1 is

orthogonal to any element in Hu(r). This implies ψ1 contains a factor orthogonal
to all factors in ψ2. This finishes the proof of (3).
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(4): Using Lemma 6.2 we find

‖(F1 − E(−1)q − λ1 − · · · − λq)φp‖
=
√
q!‖Up(F1 − E(−1)q + λ1 + · · ·+ λq)U

∗
p νp ⊗ gp1 ⊗s · · · ⊗s gpq‖

≤
√
q!‖(F(−1)q (α, f, ω1)− E(−1)q )νp ⊗ gp1 ⊗s · · · ⊗s gpq‖

+
√
q!

q∑

i=1

‖νp ⊗ gp1 ⊗s · · · ⊗s (ω2g
p
i − λigpi )⊗s · · · ⊗s gpq‖

≤ ‖(F(−1)q − E(−1)q )νp‖+
√
q!

q∑

i=1

‖(ω − λi)gpi ‖

≤ 1

p
+
√
q!

q∑

i=1

1

u(p)

which converges to 0. This finishes the case where f ∈ H2n
K for some K. To prove

the general case let fk = 1Bckf and note that E(−1)qη(α, fk, ω) + λ1 + · · · + λq ∈
σess(Fη(α, fk, ω)) for all k. Applying Lemma 6.5 finishes the proof. �

Lemma 7.2. Define m̃ = min{mess + E−1, E1 + mess + m}. Then (−∞, m̃) ∩
σess(F1) = ∅.

Proof. First we note that if m = 0 then mess = 0 by injectivity of ω and so
the statement is trivial since (−∞, m̃) does not contain any spectral points of F1.
Hence we may assume m > 0, so ω ≥ m > 0 almost everywhere. If mess = ∞ the
conclusion will follow from Proposition 3.1. Hence we may assume mess <∞.

Define B = ∪j≤2n{fj 6= 0} and assume that the lemma has been proven under
the extra assumption that B is bounded and there is an R > 0 such that R−1 <
ω < R on B. To prove the general case case we fix x0 ∈M and define

Ak = (B ∩ {k−1 < ω < k} ∩Bk(x0)) ∪Bc

where Bk(x0) is the ball centred at x0 of radius k. Note that the Ak are increasing
and cover M up to a zeroset. Let fk = 1Akf and note that Lemma 6.5 implies
(α, fk, ω) satisfies Hypothesis 1,3 and either n ≤ 2 or Hypothesis 4. Furthermore
∪j≤2n{fkj 6= 0} is now bounded and contained in {k−1 < ω < k}. Defining F±1,k :=

F±η(α, fk, ω) and E±1,k := E±η(α, fk, ω) we therefore have

(7.1) (−∞, m̃k) ∩ σess(F1,k) = ∅,

where m̃k = min{mess + E−1,k, E1,k + mess + m}. Note that m̃k converges to
m̃ by Lemma 6.5. Equation (7.1) implies that h(Fk,1) is compact for all h ∈
C∞c ((−∞, m̃k)). For any h ∈ C∞c ((−∞, m̃)) we have h ∈ C∞c ((−∞, m̃k)) for k
large enough and Lemma 6.5 implies

lim
k→∞

h(F1,k) = h(F1)

in norm. Therefore h(F1) is compact finishing the proof.
What remains is the special case where B is bounded and there is an R > 0 such

that R−1 < ω < R on B. Pick now a sequence of maps {ωk}∞k=1 as in Lemma A.1.
Then 1Bωk is a simple function

1Bωk =

q̃k∑

j=1

α̃k,j1B̃kj
,
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where 2R > α̃k,j > (2R)−1, the B̃k1 , . . . , B̃kqk are disjoint and

B =

q̃k⋃

j=1

B̃kj .

From Lemma A.1 one obtains ω/ωk and ωk/ω converges 1 in L∞(M,F , µ) and
defining the masses mk := m(ωk) and mess,k := mess(ωk) we have mk converges to
m and mess,k converges to mess. We may thus assume mk > 0 for all k. Define
A = Bc and use Theorem A.8 to pick disjoint subdivisions

A = Hk ∪
ck⋃

`=1

Ak` and B = Jk ∪
qk⋃

j=1

Bkj

which fulfils the criteria in Theorem A.8 and let Pk be the projection

Pk(f) =

qk∑

j=1

1

µ(Bkj )

∫

Bnj

f(x)dµ(x)1Bkj +

ck∑

`=1

1

µ(Ak` )

∫

An`

f(x)dµ(x)1Akl .

Now 0 < µ(Bkj ) <∞ by Theorem A.8 so the elements 1Bkj are nonzero, orthogonal
elements in H. We define

Hk = Span
({

1Bkj | j ∈ {1, . . . , qk}
})

.

Furthermore, Theorem A.8 also gives that for all k ∈ N, j ≤ qk there is a j′ such
that Bkj ⊂ B̃kj′ . Hence ωk is constant on Bkj . For each β ∈ R we thus find

ωβk = ωβ1A + ωβk 1Jk +

qk∑

j=1

αβj,k1Bkj ,

with 2R > αj,k > (2R)−1. Hence ωβk is an operator defined on all of Hk and it acts
on 1Bkl like multiplication with αβj,k. In particular the projection Qk onto Hk will
map H into D(ωβk ) for all β ∈ R. Note that {µ(Bkj )−

1
2 1Bkj | j ∈ {1, . . . , qk}} is an

orthonormal basis for Hk and hence Qk is given by

Qkf =

qk∑

j=1

1

µ(Bkj )

∫

Bkj

f(x)dµ1Bkj .

Hence we find for f ∈ D(ωβk ) that

Qkω
β
k f =

qk∑

j=1

1

µ(Bnj )

∫

Bkj

ωβk (x)f(x)dµ1Bnj =

qk∑

j=1

αβk,j
µ(Bkj )

∫

Bkj

f(x)dµ1Bkj

= ωβk

k∑

j=1

1

µ(Bkj )

∫

Bkj

f(x)dµ1Bkj = ωβkQkf,

so ωβk is reduced by Hk. Note that ω−
1
2 fi is supported in B. Hence Pk(ω−

1
2 fi) =

Qk(ω−
1
2 fi) ∈ Hk ⊂ D(ω

1
2

k ) so we may define

(7.2) fki = ω
1
2

k Pk(ω−
1
2 fi) ∈ Hk ⊂ D(ωβk ) ∀β ∈ R.

Pk converges strongly to 1 by Theorem A.8 which implies ω−
1
2

k fki = Pk(ω−
1
2 fi)

converges to ω−
1
2 fi for all i ∈ {1, 2, . . . , 2n}. Since the fi and fki are 0 almost
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everywhere outside B and (2R)−1 < ωk, ω < 2R on B we find that

‖fki − fi‖ ≤
(∫

B

|fki − ω
1
2

k ω
− 1

2 fi|2dµ
) 1

2

+

(∫

B

|ω
1
2

k ω
− 1

2 fi − fi|2dµ
) 1

2

≤
√

2R‖Pk(ω−
1
2 fi)− ω−

1
2 fi‖2+

√
2R

(∫

B

(ω
1
2 − ω

1
2

k )|fi|2dµ
) 1

2

,

which converges to 0 by dominated convergence since ωk converges to ω by Lemma
A.1. Hence fki converges to fi for all i ∈ {1, 2, . . . , 2n}. For i ≥ 2 we calculate

‖ω
1
2

k f
k
i − ω

1
2 fi‖ ≤

(∫

B

|ω
1
2

k f
k
i − ω

1
2

k fi|2dµ
) 1

2

+

(∫

B

|(ω 1
2 − ω

1
2

k )fi|2dµ
) 1

2

≤ 2R‖fki − fi‖+
(∫

B

|(ω 1
2 − ω

1
2

k )fi|2dµ
) 1

2

which converges to 0. Hence ω
1
2

k f
k
i converges to ω

1
2 fi for all i ∈ {2, 3, . . . , 2n}.

Noting that L(fk) = L(f) for all k sufficiently large and the fki are real if n > 2
we find that (α, fk, ωk) satisfies Hypothesis 1,3 and either n ≤ 2 or Hypothesis 4.
Hence we may now define

F±1,k := F±η(α, fk, ωk).

Theorem 6.4 now applies so F±1,k converges to F±1 in norm resolvent sense. Let
E±1,k = inf(σ(F±1,k)) and define

m̃k = min{mess,k + E−1,k, E−1,k +mess,k +mk}.
Applying the bounds in Lemmas 4.1 and 2.1 along with the bound ηΓ(−1) ≥ −|η|
we see

F±1,k ≥ −|η|−‖ω−
1
2

k fk1 ‖2+C,

which is uniformly bounded below in k, since ‖ω−
1
2

k fk1 ‖ converges. This implies
that E±1,k converges to E±1 and so m̃k converges to m̃.

Assume now we have proven that h(F1,k) is compact for any h ∈ C∞c ((−∞, m̃k)).
Then for any h ∈ C∞c ((−∞, m̃)) we would have h ∈ C∞c ((−∞, m̃k)) for k large
enough. This together with norm resolvent converges gives h(F1) is compact, which
would finish the proof.

Let h ∈ C∞c ((−∞, m̃k)). Now fk ∈ H2n
k by construction and ωk is reduced by

Hk. Defining g1 = ωk |Hk and g2 = ωk |H⊥k we may apply Lemma 6.1 to obtain a
unitary map

Uk : Fb(H)→ Fb(Hk)⊕
∞⊕

j=1

(
Fb(Hk)⊗ (H⊥k )⊗sj

)
,

such that

UkF±1,kU
∗
k = F±η(α, fk, g1)⊕

∞⊕

j=1

(
F±(−1)jη(α, fk, g1)⊗ 1 + 1⊗ dΓ(j)(g2)

)
.

Thus we find E±η(α, fk, g1) ≥ E±1,k and

Ukh(F1,k)U∗k = h(Fη(α, fk, g1))⊕
∞⊕

j=1

h
(
F(−1)jη(α, fk, g1)⊗ 1 + 1⊗ dΓ(j)(g2)

)
.

Now h(Fη(α, fk, g1)) is compact by Proposition 3.1 since Hk has finite dimension.
For j ≥ 1 let Cj = F(−1)jη(α, fk, g1) ⊗ 1 + 1 ⊗ dΓ(j)(g2). Using Theorem B.2,
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Proposition 3.1 and Lemma B.4 we find for j ≥ 1

inf(σess(Cj)) ≥ E(−1)jη(α, fk, g1) + (j − 1) inf(σ(g2)) + inf(σess(g2))

≥ E(−1)j ,k + (j − 1)mk +mess,k ≥ m̃k

inf(σ(Cj)) ≥ E(−1)jη(α, fk, g1) + j inf(σ(g2)) ≥ E(−1)j ,k + jmk.

Thus h(Cj) is compact for all j and since mk > 0 we find h(Cj) = 0 for j large
enough. Hence Ukh(F1,k)U∗k is a direct sum of compact operators where only finitely
many are nonzero. This shows Ukh(F1,k)U∗k is compact as desired. �
Combining the two previous lemmas with Proposition 3.2 proves the first part of
Theorem 3.3. Statements (1) and (2) will follow from the corollaries below.

Corollary 7.3. Assume m = mess, that [m, 3m] ⊂ σess(ω) and if m = 0 then 0 is
not isolated in σess(ω). Then σess(F1) = [E−1 +m,∞).

Proof. If m = mess then E1 ≤ E−1 + m by Lemma 7.1. Hence the minimum in
Lemma 7.2 is E−1 +mess = E−1 +m. Now fix x ∈ [E−1 +m,∞). If m 6= 0 the result
is direct from Lemma 7.1. If m = 0 then for any ε > 0 we may find λ ∈ σess(ω)
with λ ≤ ε. We may then pick q ∈ N ∪ {0} such that

|x− E(−1)2q+1 − (2q + 1)λ|≤ ε.
Now E(−1)2q+1 + (2q + 1)λ ∈ σess(F1) so x ∈ σess(F1) = σess(F1). �
Corollary 7.4. Assume m = mess, that [m, 2m] ⊂ σess(ω) and if m = 0 then 0 is
not isolated in σess(ω). Then σess(Hη(α, f, ω)) = [mess + Eη(α, f, ω),∞).

Proof. Combining Proposition 3.2 and Lemma 7.1 we see

{Eη(α, f, ω) + λ1 + · · ·+ λq | λi ∈ σess(ω)} ⊂ σess(Hη(α, f, ω))

for all q ∈ N. The proof is now the same as for Corollary 7.3. �

8. Uniqueness

In this chapter we fix η ∈ R, α ∈ R2n, f ∈ H2n and ω be selfadjoint on H such
that the Hypothesis 1,2 and 3 are satisfied. Let Fη := Fη(α, f, ω), Eη := Eη(α, f, ω),
Hη := Hη(α, f, ω), mess = mess(ω), m = m(ω) and Eη := Eη(α, f, ω). We let HR
be the real Hilbert space from Lemma E.1 and L2(Q,G,P) be the corresponding
Q-space.

Lemma 8.1. Define the unitary matrix

A =
1√
2

(
1 −1
1 1

)
.

Let V be the Q-space isomorphism and define U = A ⊗ V . This defines a unitary
map from C2 ⊗Fb(H) to

C2 ⊗ L2(Q,G,P) = L2({±1} ×Q,B({±1})⊗ G, τ ⊗ P) := L2(X,X , ν),

where τ is the counting measure. Here we use the tensor product

((v1, v−1)⊗ f)(a, x) = δ1,av1f(x) + δ−1,av−1f(x).

where δi,j is the Kronecker delta. For v ∈ HR we have

Uσx ⊗ ϕ(v)U∗ = Φ(v)(8.1)
Uσz ⊗ 1U = −σx ⊗ 1(8.2)

U1⊗ dΓ(ω)U∗ = 1⊗ V dΓ(ω)V ∗(8.3)

where Φ(v) is a multiplication operator. Furthermore UHηU
∗ generates a positivity

improving semigroup for η < 0.
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Proof. We begin by noting that (ei ⊗ f)(a, x) = δi,af(x) and V ϕ(v)V ∗ = ϕ̃(v) is
a multiplication operator. We now prove equations (8.1),(8.2) and (8.3). Equation
(8.3) is trivial. To prove the other two one calculates

AσzA
∗ = σx and AσxA

∗ = −σz
and so Uσx ⊗ ϕ(v)U = −σz ⊗ ϕ̃(v) and Uσz ⊗ ϕ(v)U = σx ⊗ 1. Since −σz ⊗ ϕ̃(v)
obviously acts like multiplication by the map (Φ(v))(a, x) = −a(ϕ̃(v))(x) we are
done proving equations (8.1) and (8.2).

From Lemma B.3 we find that every element ψ ∈ L2(X,X , ν) is of the form

ψ = e1 ⊗ ψ1 + e−1 ⊗ ψ−1.

Hence ψ is (strictly) positive if and only if ψ1 and ψ−1 are (strictly) positive. Using
Theorem E.2 we therefore find that 1⊗ exp(−tV dΓ(ω)V ∗) is positivity preserving
for all t ≥ 0. Furthermore, the map σx ⊗ 1 is positivity preserving since it maps
e1 ⊗ ψ1 + e−1 ⊗ ψ−1 into e−1 ⊗ ψ1 + e1 ⊗ ψ−1 and so exp(t1 ⊗ σx) is positivity
preserving for all t ≥ 0. It follows that for all η < 0 and t ≥ 0

exp(−tUHη(0, 0, ω)U∗) = exp(−tη1⊗ σx)(1⊗ exp(−tV dΓ(ω)V ∗))

is positivity preserving. We now calculate

(8.4) U(e1 ⊗ Ω) = Ae1 ⊗ V Ω =
1√
2

(e1 ⊗ 1 + e2 ⊗ 1) =
1√
2
.

Fix η < 0. Since e1 ⊗ Ω spans the non degenerate ground state eigenspace of
ησz ⊗ 1 + 1 ⊗ dΓ(ω) = Hη(0, 0, ω) by Theorem B.2, the above calculation shows
that 1√

2
does the same for −ησx ⊗ 1 + 1 ⊗ V dΓ(ω)V ∗ = UHη(0, 0, ω)U∗. So

UHη(0, 0, ω)U∗ generates a positivity preserving semi group and the ground state
is spanned by a strictly positive vector. This implies that the semi group generated
by UHη(0, 0, ω)U∗ is ergodic by [18, Theorem XIII.43]. Note that

UHηU
∗ = UHη(0, 0, ω)U∗ +

2n∑

j=1

αjΦ(fj)
j := UHη(0, 0, ω)U∗ +B

and define

Bk =
2n∑

j=1

αjΦ(fj)
j1{|Φ(fj)|≤k},

which is a bounded multiplication operator. Assume now that we have proven the
following statements

(1) If u, v ≥ 0 and 〈u, exp(−tBk)v〉 = 0 then 〈u, v〉 = 0
(2) UHη(0, 0, ω)U∗ +Bk, UHηU

∗ −Bk are uniformly bounded below and con-
verge in strong resolvent sense to UHηU

∗ and UHη(0, 0, ω)U∗ respectively.
Then we may appeal to the proof of [6, Theorem 3] to see that UHη(α, f, ω)U∗

generates an ergodic semigroup, which by [18, Theorem XIII.44] will be positivity
improving.

The first statement is trivial since Bk is a multiplication operator. To prove the
second statement, note that J̃ (D(ω)) spans a core for Hη(0, 0, ω) and Hη by Propo-
sition 3.1. Thus for any element ψ ∈ Span(J̃ (D(ω))) we have Uψ ∈ D(Φ(fj)

j) for
all j so by dominated convergence we find

lim
k→∞

BkUψ = BUψ.

Since U J̃ (D(ω)) spans a core for UHη(0, 0, ω)U∗ and UHηU
∗ we find U J̃ (D(ω))

spans a core for UHη(0, 0, ω)U∗ + Bk and UHηU
∗ − Bk for all k. Using stan-

dard theorems about strong resolvent convergence (e.g. [16, Theorem VIII.25])
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we find UHη(0, 0, ω)U∗ + Bk and UHηU
∗ − Bk converges to UHηU

∗ respectively
UHη(0, 0, ω)U∗ in strong resolvent sense.

What remains is the lower bound. We calculate

UHηU
∗ −Bk = −ησx ⊗ 1 + 1⊗ V dΓ(ω)V ∗ + α1Φ(f1)1{|Φ(f1)|>k}

+

2n∑

j=2

αjΦ(fj)
j1{|Φ(fj)|>k}.

UHη(0, 0, ω)U∗ +Bk = −ησx ⊗ 1 + 1⊗ V dΓ(ω)V ∗ + α1Φ(f1)1{|Φ(f1)|≤k}

+
2n∑

j=2

αjΦ(fj)
j1{|Φ(fj)|≤k}.

In both expressions, the first term on the right hand side is bounded below by
−|η|, and the sum is bounded below uniformly in k by Lemma 4.1. Now α1Φ(f1)
is infinitesimally 1⊗ V dΓ(ω)V ∗ bounded by Lemmas 2.1 and B.3. Hence there are
0 ≤ a < 1, b ≥ 1 such that for all ψ ∈ D(1⊗ V dΓ(ω)V ∗) we have

‖α1Φ(f1)ψ‖≤ a‖(1⊗ V dΓ(ω)V ∗)ψ‖+b‖ψ‖.
Now 1Cα1Φ(f1) will satisfy the same inequality for any C ∈ X and so [23, Theorem
9.1] provides a lower bound of 1Cα1Φ(f1) + 1⊗ V dΓ(ω)V ∗ independent of C. �
Lemma 8.2. If η 6= 0 and Eη is an eigenvalue for Hη then Eη is non degenerate.
If ψ is any ground state for Hη then Uψ = e−sign(η) ⊗ ψ where ψ is an eigenvalue
for the fiber F−|η| corresponding to the energy Eη. Also Eη is not an eigenvalue for
F|η|.

Proof. If η < 0 non degeneracy of the ground state follows from Lemma 8.1 along
with [18, Theorem XIII.43]. If a ground state exist then it will have nonzero inner
product with e1⊗Ω, since this vector is mapped the positive element 1√

2
under the

map U from Lemma 8.1 (see equation (8.4)). If η > 0 then σx⊗1 transformsHη into
H−η, showing that non degeneracy holds in this case as well, but now the nonzero
inner product will be with the vector σx ⊗ 1(e1 ⊗ Ω) = e−1 ⊗ Ω. In conclusion if a
ground state for Hη exists then it is non generate and 0 6= 〈ψ, e−sign(η) ⊗ Ω〉.

Non degeneracy of the ground state for Hη implies that Eη must be a non
degenerate eigenvalue for F−|η| or F|η|, but never both. It remains to see that this
always will be F−|η|. Let U be the unitary map from Proposition 3.2, and let ψ be
a ground state for Hη. Then Uψ = e−1 ⊗ ψ−1 + e1 ⊗ ψ1 = (ψ1, ψ−1) is a ground
state for F−η ⊕ Fη corresponding to the eigenvalue Eη. By non degeneracy of the
ground state for Hη, we must have either ψ−1 = 0 or ψ1 = 0. Now

0 6= 〈ψ, e−sign(η) ⊗ Ω〉 = 〈(ψ1, ψ2), U∗e−sign(η) ⊗ Ω〉
= 〈(ψ1, ψ2), e−sign(η) ⊗ Ω〉 = 〈ψ−sign(η),Ω〉.

This implies ψ−sign(η) 6= 0. Hence ψ−sign(η) is an eigenvector for F−|η| corresponding
to the eigenvalue Eη. �
Lemma 8.3. If E−|η| is an eigenvalue for F−|η| then E−|η| is non degenerate and
every eigenvector will have nonzero inner product with Ω.

Proof. We start with the case η = 0. Let V be the Q-space isomorphism from
Theorem E.2. From Thorem E.2 we know that V dΓ(ω)V ∗ generates a positivity
improving semigroup and V Ω = 1. We now prove that the semigroup of V F0V

∗ is
positivity improving. Note

V F0V
∗ = V F0(0, 0, ω)V ∗ +

2n∑

j=1

αjϕ̃(vj)
j := V Hη(0, 0, ω)V ∗ +A,
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and define

Ak =

2n∑

j=1

αjϕ̃(vj)
j1{|ϕ̃(vj)|≤k},

which is now a bounded multiplication operator. With the exact same proof as in
Lemma 8.1 we check

(1) If u, v ≥ 0 and 〈u, exp(−tAk)v〉 = 0 then 〈u, v〉 = 0.
(2) V F0(0, 0, ω)V ∗ + Ak, V F0V

∗ − Ak are uniformly bounded below and con-
verge in strong resolvent sense to respectively V F0V

∗, V F0(0, 0, ω)V ∗.

An appeal to the proof of [6, Theorem 3] along with [16, Theorem XIII.43] finishes
the proof when η = 0. For general η 6= 0 one may combine Theorem E.2 part 1
with [6, Theorem 2] to obtain the conclusion in this case. �

We can now prove some spectral properties of the fiber operators. In the remaining
part of this section we will also assume Hypothesis 4 is satisfied if n > 2, so we may
use Theorem 3.3 except from part (3), which is proven in the next lemma

Lemma 8.4. In general we have E−|η| = E and E−|η| ≤ E|η|. Furthermore E−|η| <
E|η| if and only if m > 0 and η 6= 0. In particular if η 6= 0 and m = 0 then F|η| will
have no ground state.

Proof. If m = 0 then mess = 0 by injectivity of ω. Using Theorem 3.3 we obtain
E±|η| ≤ E∓|η| since E∓|η| ∈ σ(F±|η|). Hence equality follows in this case, and it is
trivial if η = 0. The statement regarding no ground state of F|η| now follows from
E−|η| = E|η| and Lemma 8.2.

Assume that m > 0 and η 6= 0. Now m > 0 implies that Eη is an eigenvalue
for Hη by Theorem 3.3, and so by Lemma 8.2 we have Eη = E−|η| is an eigenvalue
for F−|η|. Now since E−|η| = Eη ≤ E|η| we just have to prove that E−|η| = E|η| is
impossible. Assume E−|η| = E|η|. Then Theorem 3.3 implies that

inf(σess(F|η|)) = E−|η| +mess > E|η|,

and so E−|η| = E|η| = Eη would be an eigenvalue for F|η|, but this gives a contra-
diction with Lemma 8.2. �

Regarding exited states we now deduce the following

Lemma 8.5. If η 6= 0 and E|η| is an eigenvalue for F|η| then it is an eigenvalue
for Hη contained in (E,E +mess]. This is the case if 2|η|< mess.

Proof. Assume E|η| is an eigenvalue for F|η|. Then mess ≥ m > 0 by Lemma 8.4
and we calculate using Theorem 3.3 and Lemma 8.4

Eη = E−|η| < E|η| ≤ E−|η| +mess = Eη +mess.

Assume now 0 < 2|η|< mess. By Theorem 3.3 it is enough to prove the inequality
E|η| < E−|η| +mess. For any ε > 0 we may pick normalised ψ ∈ D(F|η|) = D(F−|η|)
such that

ε+ E|η| − E−|η| ≤ 〈ψ,F|η| − F−|η|ψ〉 = 2|η|〈ψ,Γ(−1)ψ〉 ≤ 2|η|.

This proves the desired inequality. �

Theorem 3.4 is now a combination of all lemmas in this chapter.
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9. The massless case

In this chapter we prove the last half of Theorem 3.5. A proof of the first half
can be found in Appendix D. First we shall need the following lemma.

Lemma 9.1. Assume H = L2(M,F , µ) with (M,F , µ) σ-finite. Let η ≤ 0, α ∈
R2n, f ∈ H2n, ω be a selfadjoint multiplication operator on H and assume (α, f, ω)
satisfies Hypothesis 1,2,3 and either n ≤ 2 or Hypothesis 4. Let A =

⋃
i≤2n{fi 6= 0},

H1 = L2(X,F , 1Aµ), H2 = L2(X,F , 1Acµ), ωi be multiplication with ω on the space
Hi and define f̃i ∈ H1 by f̃i = fi 1Aµ-almost everywhere. Then (α, f̃ , ω1) satisfies
Hypothesis 1,2,3 and either n ≤ 2 or Hypothesis 4. We also have

(1) Eη(α, f, ω) = Eη(α, f̃ , ω1) and Eη(α, f, ω) is an eigenvalue for Fη(α, f, ω)
if and only if Eη(α, f, ω) is an eigenvalue for Fη(α, f, ω1). In particular if
ω ≥ q > 0 almost everywhere on A then Eη(α, f, ω) is an eigenvalue for
Fη(α, f̃ , ω1) and thus for Fη(α, f, ω).

(2) If ψ = (ψ(k)) is a ground state for Fη(α, f, ω1), then ψ = (1Akψ
(k)) is a

ground state for Fη(α, f, ω).

Proof. Define Pi : H → Hi by P1(f) = f 1Aµ-almost everywhere and P2(f) = f
1Acµ-almost everywhere. Let V : H → H1 ⊕ H2 be V (f) = (P1(f), P2(f)). Then
we see V is unitary with V ∗(f, g) = 1Af + 1Acg µ-almost everywhere. Clearly we
have V fi = (f̃i, 0) along with V ωV ∗ = (ω1, ω2). The properties in Hypothesis 1,2
and 3 are easily checked. If n > 2 one uses the same phase function for f̃ as for f
to verify Hypothesis 4. Using Lemma 6.1 we find a unitary map U from Fb(H) to

Fb(H1)⊕
∞⊕

j=1

(
Fb(H1)⊗H⊗sj2

)

such that

UFη(α, f, ω)U∗ = Fη(α, f̃ , ω1)⊕
∞⊕

j=1

(
F(−1)jη(α, f̃ , ω1)⊗ 1 + 1⊗ dΓ(j)(ω2)

)
.

Since η ≤ 0, Theorem 3.3 implies Eη(α, f̃ , ω1) ≤ E−η(α, f̃ , ω1) with equality if and
only if η = 0 or inf σess(ω1) = 0. Hence we find using Theorem B.2 and Lemma
B.4 that

Eη(α, f, ω) = min{Eη(α, f̃ , ω1), inf
j∈N

(E(−1)jη(α, f̃ , ω1) + j inf(σ(ω2)))} = Eη(α, f̃ , ω1)

Assume now that Eη(α, f, ω) is an eigenvalue for Fη(α, f̃ , ω1). Then by the decom-
position we find Eη(α, f, ω) is an eigenvalue for Fη(α, f, ω). Assume now Eη(α, f, ω)

is an eigenvalue for Fη(α, f, ω), and that it is not an eigenvalue for Fη(α, f̃ , ω1).
Then there is an j ∈ N such that

Eη(α, f, ω) = inf(σ(F(−1)jη(α, f̃ , ω1)⊗ 1 + 1⊗ dΓ(j)(ω2)))

= E(−1)jη(α, f̃ , ω1) + j inf(σ(ω2)).

This can only hold if inf(σ(ω2)) = 0 and therefore

inf(σ(F(−1)jη(α, f̃ , ω1)⊗ 1 + 1⊗ dΓ(j)(ω2)) = E(−1)jη(α, f̃ , ω1) + 0.

Injectivity of ω2 and Lemma B.4 implies that 0 is no eigenvalue for dΓ(j)(ω2). By
Theorem B.2 we find that E(−1)jη(α, f̃ , ω1) + 0 is not an eigenvalue for the operator
F(−1)jη(α, f, ω1) ⊗ 1 + 1 ⊗ dΓ(j)(ω2) which is a contradiction. Hence Eη(α, f, ω)

is an eigenvalue for Fη(α, f̃ , ω1). The statement regarding the dimension of the
eigenspaces is contained in Theorem 3.4. The last part of statement (1) follows
from m(ω1) ≥ q > 0 and Theorem 3.3.
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To prove statement (2) we let j1 : H1 → H1 ⊕ H2 be the embedding j1(f) =
(f, 0) and define Q = V ∗j1. Now U∗ψ = Γ(Q)ψ by Lemma C.3 and U∗ψ is
the desired eigenvector for Fη(α, f, ω). Noting Q(f) := V ∗j1(f) = 1Af we see
Γ(Q)ψ = (1Akψ

(k)) as desired. �

From now on we assume H = L2(Rν ,B(Rν), λ⊗ν), ω is a multiplication operator,
η ∈ R, α ∈ R2n, n ≤ 2 and Hypothesis 1,2,3 and 5 are satisfied.

Define B` = {ω ≥ `−1} and f ` = 1B`f . Then F±1,` := F±|η|(α, f `, ω) con-
verges in norm resolvent sense to F±1 := F±|η|(α, f, ω) by Lemma 6.5 and E` =

E−|η|(α, f `, ω) converges to E := E−|η|(α, f, ω). Furthermore F−1,` has a ground
state ψ` for all ` by Lemma 9.1. Taking a subsequence we may assume that ψ`
converges weakly to ψ. The last half of Theorem 3.5 will be proven by [2, Lemma
4.9] if we can prove that ‖ψ‖= 1. First a few observations which we will summarise
in Lemma 9.2a below. For a strict definition of the pointwise annihilation operator
see the discussion after Lemma D.9 in Appendix D.

Lemma 9.2. The following holds
(1) Let A1 be the point wise annihilation operator of order 1. We have

(A1ψ`)(k) =
2n∑

j=1

f `j (k)(F1,` − E` + ω(k))−1jαjϕ(f `j )j−1ψ`.

(2) There is a constant C independent of ` and j such that ‖αjϕ(f `j )j−1ψ`‖≤ C
(3) ψ` ∈ D(N) and 〈ψ`, Nψ`〉 is uniformly bounded in `. In particular we

find A1ψ` ∈ L2(Rν ,B(Rν), λ⊗ν ,Fb(H)) for all ` ∈ N and the sequence
{A1ψ`}∞`=1 is bounded in this space.

(4) We have

(9.1) A1ψ` −
2n∑

j=1

fj(k)(F1 − E + ω(k))−1jαjϕ(f `j )j−1ψ`

converges to 0 in L2(Rν ,B(Rν), λ⊗ν ,Fb(H)).

Proof. Statement (1) follows directly from Theorem D.16 in Appendix D. To prove
statement (2), we note that jαjϕ(f `j )j−1(F−1,` − i)−1 is uniformly bounded for
` ∈ N and j ≤ 2n by Lemma 6.3. Let C be the bounding constant. Then

‖jαjϕ(f `j )j−1ψ`‖≤ C‖(E` − i)ψ`‖.
Now E` is convergent and ‖ψ`‖= 1 for all ` and so the conclusion follows.

To prove statement (3) we note that ψ` ∈ D(N) by the first half of Theorem 3.5.
Using (1) and E` ≤ E|η|(α, f `, ω) by Theorem 3.3 we estimate

(9.2) ‖(A1ψ`)(k)‖2≤ C2




2n∑

j=1

|f `j (k)|
ω(k)




2

≤ 2nC2
2n∑

j=1

|fj(k)|2
ω(k)2

.

Integrating and appealing to Theorem D.15 yields the result.
To prove statement (4), note that (F1,` − E` + ω(k))−1 − (F1 − E + ω(k))−1

converges to 0 in norm by Lemma 6.4. Since jαjϕ(f `j )j−1ψ` is uniformly bounded,
we see that the function in equation (9.1) converges to 0 pointwise. Using estimates
as in equation (9.2), the conclusion follows by dominated convergence. �

We need one last lemma before we can put it all together. One should note that
a similar statement also appears in the paper [7], but the proof presented here is
faster and much more general.
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Lemma 9.3. Let G ∈ C∞0 (Rν) such that G(0) = 1 and 0 ≤ G ≤ 1. Define
GR = G(x/R) and let A be either x = −i∇k or k. For any ε > 0 there is `′, R′ > 0
such that ‖(1− Γ(GR(A)))ψ`‖≤ ε for R > R′, ` > `′ and any choice of A.

Proof. We start by noting

(1− Γ(GR(A)))2 = 1− Γ(GR(A)) + Γ(GR(A))(Γ(GR(A))− 1).

On j particle vectors we see that Γ(GR(A))(Γ(GR(A)) − 1) acts like a negative
multiplication operator in position/momentum space depending on the choice of
A. Hence

(1− Γ(GR(A)))2 ≤ 1− Γ(GR(A)).

On j particle vectors in position/momentum space (depending on A) we find that
1− Γ(GR(A)) acts like multiplication by

1−G(k1)G(k2) · · ·G(kj) =

j∑

i=1

(1−G(ki))G(ki+1) · · ·G(kj) ≤
j∑

i=1

(1−G(ki)).

Hence 1− Γ(GR(A)) ≤ dΓ(1−GR(A)) so it is enough to prove that

〈ψ`, dΓ(1−GR(A))ψ`〉
goes to 0 for R, ` tending to∞. First we note that ψ` ∈ D(N) ⊂ D(dΓ(1−GR(A)))
by Lemma 9.2, so the above quantity is well defined. Using Theorem D.15 we see
that

〈ψ`, dΓ(1−GR(A))ψ`〉 = 〈A1ψ`, ((1−GR(A))⊗ 1)A1ψ`〉.
Define the maps

q`(t) =
2n∑

j=1

fj(k)(F1(f)− E + ω(k))−1jαjϕ(f `j )j−1ψ`.

By Lemma 9.2 we know A1ψ`−q` converges to 0 in L2(Rν ,B(Rν), λ⊗ν ,Fb(H)) and
the A1ψ` are uniformly bounded in L2(Rν ,B(Rν), λ⊗ν ,Fb(H)). In particular the q`
are uniformly bounded in L2(Rν ,B(Rν), λ⊗ν ,Fb(H)), and since ‖(1−GR(A))⊗1‖=
1 for all R, we find an `′ such that

〈A1ψ`, (1−GR(A))⊗ 1A1ψ`〉 ≤
ε

3
+ 〈q`, ((1−GR(A))⊗ 1)q`〉

for all R > 0, ` > `′. Write

q̃j(t) = fj(k)(F1 − E + ω(k))−1

and note that q̃j ∈ L2(Rν ,B(Rν), λ⊗ν , B(Fb(H))). Hence there is a sequence
{q̃j,p}∞p=1 of elements in L2(Rν ,B(Rν), λ⊗ν , B(Fb(H))) such that q̃j,p converges to
q̃j in L2(Rν ,B(Rν), λ⊗ν , B(Fb(H))) and each q̃j,p is a linear combination of func-
tions of the form g(k)B where B ∈ B(Fb(H)) and g ∈ H. Since jαjϕ(f lj)

j−1ψ` is
uniformly bounded in `, we see that

q`,p :=
2n∑

j=1

q̃j,pjαjϕ(f `j )j−1ψ`

converges to q` ∈ L2(Rν ,B(Rν), λ⊗ν ,Fb(H)) uniformly in `, for p tending to ∞. In
particular the q`,p are uniformly bounded in L2(Rν ,B(Rν), λ⊗ν ,Fb(H)) since this
holds for the q`. Picking p large enough we may thus estimate as above

〈A1ψ`, (1−GR(A))⊗ 1A1ψ`〉 ≤
2ε

3
+ 〈q`,p, (1−GR(A))⊗ 1q`,p〉

for all ` > `′, R > 0. Now each of the terms in q`,p is of the form g ⊗ v` where
v` is uniformly bounded in ` and g is independent of `. Furthermore the number
of terms in q`,p is also independent of ` (it depends only on p by construction).
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Since 1 − GR(A) converges to 1 strongly by the functional calculus, we find that
((1 − GR(A)) ⊗ 1)q`,p goes to 0 for R tending to ∞, uniformly in `. Thus picking
R larger than some R′ we find for ` > `′ that

〈A1ψ`, ((1−GR(A))⊗ 1)A1ψ`〉 ≤ ε,
since the q`,p are uniformly bounded in L2(Rν ,B(Rν), λ⊗ν ,Fb(H)). �

The following lemma finishes the proof of Theorem 3.5.

Lemma 9.4. ‖ψ‖= 1.

Proof. Let ε > 0. Pick R′, `′ so large that ‖(1−Γ(GR(A)))ψ`‖≤ ε
3 when A is either

x = −i∇k or k and R > R′, ` > `′. By Lemma 9.2, 〈ψ`, Nψ`〉 is uniformly bounded
by a constant C, thus we find

‖(1− 1[0,p](N))ψ`‖= ‖1(p,∞)(N)ψ`‖≤
1√
p
‖1(p,∞)(N)N

1
2ψ`‖≤

√
C√
p

Hence we may pick p so large that ‖(1− 1[0,p](N))ψ`‖≤ ε
3 uniformly in `. We now

find

1 = ‖ψ`‖
= ‖(1− Γ(GR(k)))ψ`‖+‖Γ(GR(k))(1− Γ(GR(−i∇)))ψ`‖
+ ‖Γ(GR(k))Γ(GR(−i∇))(1− 1[0,p](N))ψ`‖+‖Γ(GR(k))Γ(GR(−i∇))1[0,p](N)ψ`‖
≤ ε+ ‖Γ(GR(k))Γ(GR(−i∇))1[0,p](N)ψ`‖.

Since Γ(GR(k))Γ(GR(−i∇))1{[0,p]}(N) is compact, we may take ` to ∞ and find

1− ε ≤ ‖Γ(GR(k))Γ(GR(−i∇))1{[0,p]}(N)ψ‖≤ ‖ψ‖≤ lim inf
`→∞

‖ψ`‖= 1.

This finishes the proof. �

Appendix A. Measure Theory.

In this section we introduce the necessary measure theoretic tools to prove the
HVZ theorem. We fix a σ-finite measurable space (M,F , µ). If f : M → R is
a measurable map and Mf is the corresponding multiplication operator then it is
easy to see

σ(Mf ) = {λ ∈ R | µ((λ− ε, λ+ ε)) > 0 for all ε > 0} := essran(f)

σess(Mf ) = {λ ∈ R | Dim(1{λ−ε<ω<λ+ε}L
2(M,F , µ)) =∞ for all ε > 0}.

Here essran(f) is called the essential range of f under µ.

Lemma A.1. Let f : M → R be measurable such that f > 0 almost everywhere.
Let B ∈ F and assume there is an R > 0 such that

B ⊂ f−1([R−1, R]).

Then there is a sequence of real valued measurable functions {fn}∞n=1 such that fn
converges uniformly to f , fn takes only finitely many values in B, (2R)−1 < fn <
2R on B, fn/f and f/fn converges to 1 in L∞(M,F , µ) and

lim
n→∞

inf(σ(Mfn)) = inf(σ(Mf )).

Furthermore, σess(Mfn) 6= ∅ if σess(Mf ) 6= ∅ and in this case

lim
n→∞

inf(σess(Mfn)) = inf(σess(Mf )).
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Proof. Define

fn = f1Bc +

∞∑

k=1

k

2nR−1
1f−1([ k

2nR−1 ,
k+1

2nR−1 ))∩B .

Note the above sum is pointwise finite, and so defines a measurable, nonnegative
function. In fact C = {f ≤ 0} = {fn ≤ 0} ⊂ Bc for all n and

(A.1) sup
x∈M
|f(x)− fn(x)|≤ 1

R2n
,

so 1
2R < fn < 2R on B for all n. Hence uniform convergence is implied and we may

calculate ∣∣∣∣
f

fn
− 1

∣∣∣∣ = 1B

∣∣∣∣
f − fn
fn

∣∣∣∣ ≤ 2R
1

R2n
=

1

2n−1
.

Hence f/fn − 1 ∈ L∞(M,F , µ) and converges to 0 in this topology. A similar
argument works for fn/f − 1.

Equation (A.1) shows D(Mf ) = D(Mfn) for all n and on this set we have the
inequality ‖(Mf − Mfn)ψ‖≤ R−12−n‖ψ‖ which shows Mfn converges to Mf in
norm resolvent sense (see [16, Theorem VIII.25]). Since the operators Mfn are
uniformly bounded below by 0, we conclude

lim
n→∞

inf(σ(Mfn)) = inf(σ(Mf )).

Write λ = inf(σess(Mf )). For every q ∈ N we have

1f−1((λ−q−1,λ+q−1)) = 1Bc∩f−1((λ−q−1,λ+q−1)) + 1f−1((λ−q−1,λ+q−1))∩B

and the left hand side defines an infinite dimensional projection. Then one of the
two projections on right hand side must have infinite dimension for infinitely many
q ∈ N. If it is the first projection, we find

1f−1
n ((λ−q−1,λ+q−1)) = 1Bc∩f−1((λ−q−1,λ+q−1)) + 1f−1

n ((λ−q−1,λ+q−1))∩B

has infinite dimension for for infinitely many q and so λ ∈ σess(Mfn). Defining λn =
λ we even found a sequence of elements converging to λ such that λn ∈ σess(Mfn).

Assume now 1f−1(λ−q−1,λ+q−1)∩B has infinite dimensional range for infinitely
many q. Fix n ∈ N and pick k such that

λ ∈ [k(R2n)−1, (k + 1)(R2n)−1),

and note that either k(R2n)−1 or (k− 1)(R2n)−1 belongs to the essential spectrum
of Mfn , since it is an eigenvalue of infinite dimension. In particular σess(Mfn)
contains a point λn such that |λ− λn|≤ 2(R2n)−1.

Hence we have now proven that for each n ∈ N there is a λn ∈ σess(Mfn) such
that λn converges to λ. In particular µn = inf(σess(Mfn)) <∞ and bounded from
above, since the sequence of λn is bounded.

Let µ be any limit point of the µn. Then µ ≤ λ and by elementary properties of
norm resolvent convergence, it is an element in the essential spectrum of Mf . This
implies µ = λ, and so λ is the only accumulation point of the bounded sequence
µn, which implies the desired convergence. �

We have the following definition:

Definition A.2. Write R+ = [0,∞). A continuous resolution for the measure
space (M,F , µ) is a collection (Ax)x∈R+

⊂ F such that µ(A0) = 0, Ax ⊂ Ay when
x ≤ y, µ(Ax) <∞ for all x ∈ R+, 1Ax → 1Ay µ-a.e for x→ y and

⋃

x≥0

Ax =M.
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Lemma A.3. Assume that (M,F , µ) allows a continuous resolution (Ax)x∈R+
.

Let A ∈ F with 0 < µ(A). Then for every λ ∈ (0, µ(A)) there is B ⊂ A with B ∈ F
and µ(B) = λ. Furthermore there is a partition of A into disjoint measurable sets
{Bn}n∈N such that 0 < µ(Bn) <∞.

Proof. We start by defining f : [0,∞)→ [0,∞) by

f(x) =

∫

M
1A(y)1Ax(y)dµ(y).

Then f is increasing and continuous by the dominated convergence theorem. Fur-
thermore f(0) = 0 and by monotone convergence we find that

µ(A) = lim
x→∞

f(x).

Let λ ∈ (0, µ(A)). The intermediate value theorem now gives x0 ∈ [0,∞) such that
λ = f(x0) implying B = Ax0 ∩ A has the properties claimed in the Lemma. We
now prove that the subdivision of A exists. For each n ∈ N pick xn ∈ [0,∞) such
that

f(xn) =

{
(1− 2−n)µ(A) µ(A) <∞
n µ(A) =∞

Since f is increasing and f(xn) < f(xn+1) we find that xn < xn+1. Define

En = A ∩Axn
and put B̃1 = E1 and B̃n = En\En−1 for n ≥ 2. Note that µ(B̃1) = µ(E1) = f(x1)

so 0 < µ(B̃1) <∞. Now µ(En) <∞ for all n ∈ N so we find for n ≥ 2 that

µ(B̃n) = µ(En\En−1) = f(xn)− f(xn−1),

so we conclude 0 < µ(B̃n) < ∞. Furthermore, B̃n ∩ B̃m = ∅ for n 6= m by
construction. Define

x = lim
n→∞

xn.

If x =∞ we find
∞⋃

n=1

Bn =
∞⋃

n=1

En = A ∩
∞⋃

n=1

Axn = A,

so we may pick Bn = B̃n. If x <∞ we note that

∞ >

∫

M
1A(y)1Ax(y)dµ(x) = f(x) = lim

n→∞
f(xn) = µ(A),

so µ(A) <∞ and f(x) = µ(A). Furthermore,

µ

( ∞⋃

n=1

B̃n

)
= µ

( ∞⋃

n=1

En

)
= lim
n→∞

µ(En) = µ(A).

Let B = A\⋃∞n=1 B̃n and note that µ(B) = 0. Define B1 = B̃1 ∪ B and Bn = B̃n
for n ≥ 2. Then µ(Bn) = µ(B̃n) ∈ (0,∞) for all n, and Bn ∩ Bm = ∅ for n 6= m.
Furthermore,

∞⋃

n=1

Bn =
∞⋃

n=1

B̃n ∪
(
A\

∞⋃

n=1

B̃n

)
= A,

which shows that a subdivision exists. �

Using this we may prove the following preliminary result.
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Lemma A.4. Assume that (M,F , µ) allows a continuous resolution. Let f :M→
R and z ∈ σ(Mf ). Then there is a collection of sets {An}∞n=1 ⊂ F such that
|f(x)− zi|≤ 1

n on An, An ∩Am = ∅ if m 6= n, µ(Ain) > 0 and

µ

( ∞⋃

n=1

An

)
=
∞∑

n=1

µ(An) <∞.

If Mf denotes the corresponding multiplication operator we find σ(Mf ) = σess(Mf ).

Proof. Fix z ∈ σ(Mf ) and define

Bn = {f ∈ (z − n−1, z + n−1)}.
There are now several cases. First assume that µ(Bn) = ∞ for all n ∈ N. Then
define An recursively as follows: By Lemma A.3 we may pick A1 ⊂ B1 such that
µ(A1) = 1. Assume now we have constructed disjoint sets A1, . . . , An−1 such that
Aj ⊂ Bj for each j ∈ {1, . . . , n− 1} and µ(Aj) = 1

j2 . Then

∞ = µ(Bn) ≤ µ(Bn\(A1 ∪ · · · ∪An−1)) +
n−1∑

j=1

1

j2
.

so µ(Bn\(A1∪· · ·∪An−1)) =∞. By Lemma A.3 there is An ⊂ Bn\(A1∪· · ·∪An−1)
such that µ(An) = 1

n2 . Hence we have now constructed a sequence of disjoint sets
{An}n∈N in F such that An ⊂ Bn and µ(An) = 1

n2 . Since

µ

( ∞⋃

n=1

An

)
=
∞∑

n=1

µ(An) =
∞∑

n=1

1

n2
<∞

we are done. Assume now that there is a N ∈ N such that µ(BN ) <∞. Define

Cn = BN+n.

Since the Bn are decreasing we find that Cn ⊂ Bn and

lim
n→∞

µ(Cn) = µ({f = z}) <∞.

If µ({f = z}) > 0 we apply Lemma A.3 and obtain a disjoint subdivision {An}∞n=1

of {f = z}. Since An ⊂ {f = z} ⊂ Bn for all n and

µ

( ∞⋃

n=1

An

)
=

∞∑

n=1

µ(An) = µ({f = z}) <∞,

we are finished.
What remains is the case µ({f = z}) = 0. We know that µ(Cn) > 0 for all n since

z ∈ essran(f). We now claim that there are natural numbers n1 < n2 < n3 < . . .
such that µ(Cnk\Cnk+1

) > 0. Define n1 = 1 and assume that n1 < n2 < · · · < nk
has been constructed. Define

nk+1 = min{n ∈ N | µ(Cnk\Cn) > 0, n > nk}.
The minimum exists because if the set is empty then

µ(Cnk) = µ(Cn)

for all n > nk implying that µ({f = z}) = µ(Cnk) > 0 which is a contradiction.
Define

Ak = Cnk\Cnk+1
.

Then Ak ⊂ Cnk ⊂ Ck ⊂ Bk so |f(x) − z|≤ 1
k holds on Ak. Furthermore, 0 <

µ(Ak) ≤ µ(Cnk) <∞ for all k and the Ak are disjoint by construction. Note also
∞∑

n=1

µ(An) = µ

( ∞⋃

n=1

An

)
≤ µ(C1) <∞,
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which proves the existence in the last case. The collection of maps µ(An)−
1
2 1An is

a Weyl sequence for z and hence z ∈ σess(Mf ). �

This leads to the following theorem which we shall need. The reader is reminded
that singletons are sets of the form {x} for some x ∈M.

Theorem A.5. Assume that (M,F , µ) is σ-finite and that all singletons are mea-
surable. Let A be the set of points in (M,F , µ) such that the corresponding singleton
has positive measure. Then A is countable and in particular measurable. Let µAc
denote the measure µAc(B) = µ(Ac ∩ B) and assume that (M,F , µAc) has a con-
tinous resolution. Let f :M→ R be measurable, B denote the essential range of f
with respect to µAc and define

C = {λ ∈ R | ∃{λn}∞n=1 ⊂ A, λn 6= λm ∀n 6= m and |f(λn)− λ|≤ n−1}.
Then

σess(Mf ) = B ∪ C.
If furthermore µ(A) < ∞ then for z1, . . . , zk ∈ σess(Mf ) there are k collections of
sets {Ain}∞n=1 ⊂ F for i ∈ {1, . . . , k} such that |f(x)− zi|≤ 1

n on Ain, Ain ∩Ajm = ∅
if i 6= j or m 6= n, µ(Ain) > 0 and

µ

( ∞⋃

n=1

Ain

)
=

∞∑

n=1

µ(Ain) <∞.

Proof. By σ-finiteness of (M,F , µ) we knowM can be divided into countably many
disjoint sets of finite measure. Each of these sets can only contain countably many
elements from A and these elements must all have finite measure. Hence A must
be countable and all singletons must have finite measure.

Now if λ ∈ B then we may by Lemma A.4 pick a sequence of disjoint elements
{Ei}∞i=1 in F such that 0 < µAc(Ei) < ∞ and |f − λ|≤ 1

i on Ei for all i. After
removing the µAc zero set A, we may assume Ei ⊂ Ac for all i, and then µ(Ei)

− 1
2 1Ei

will be a Weyl sequence for λ. If λ ∈ C, we let {λn}∞n=1 be the corresponding
sequence. Then µ({λi})−

1
2 1{λi} will be a Weyl sequence for λ.

To prove the other inclusion, let λ ∈ (B ∪ C)c. If µ({|f − λ|< n−1} ∩ Ac) > 0
or A ∩ {0 < |f − λ|< n−1} 6= ∅ for all n ∈ N then λ ∈ B ∪ C which would be a
contradiction. Also A ∩ {|f − λ|= 0} must also be finite since we would otherwise
have λ ∈ C.

Hence there is an N ∈ N such that Ac ∩ {|f − λ|< N−1} is a zero set and
{|f − λ|< N−1} ∩ A = {|f − λ|= 0} ∩ A is a finite set. In particular the spectral
projection of f onto (λ−N−1, λ+N−1) is given by 1{|f−λ|<N−1} = 1{|f−λ|=0}∩A
almost everywhere. Since {|f − λ|= 0} ∩ A is finite we see that 1{|f−λ|=0}∩A has
finite-dimensional range and so λ ∈ σess(Mf )c.

The construction of the sets goes as follows. Assume first that z1, . . . , zk are
different. For each i ∈ {1, . . . , k} we either have zi ∈ B or zi ∈ C. If zi ∈ B

then by Lemma A.4 pick a sequence of disjoint elements {Ãin}∞n=1 in F such that
0 < µAc(Ã

i
n) and |f − λ|≤ 1

n on Ãin for all n. After removing the µAc zero set A,
we may assume Ãin ⊂ Ac for all i and so we have

µ

( ∞⋃

n=1

Ãin

)
=
∞∑

n=1

µ(Ãin) =
∞∑

n=1

µAc(Ã
i
n) <∞.

If zi ∈ C and {λin}∞n=1 is the corresponding sequence we let Ãin = {λin} which is a
disjoint collection. Then 0 < µ(Ãin) and |f − λ|≤ 1

n on Ãin for all n. Furthermore,
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since µ(A) <∞ we have

µ

( ∞⋃

n=1

Ãin

)
=
∞∑

n=1

µ(Ãin) ≤ µ(A) <∞.

Now pick N so large that 2N−1 < maxi 6=j |zi − zj | and define Ain = ÃiN+n. Then

Ain ⊂
{
|f − zi|<

1

N + n

}
⊂
{
|f − zi|<

1

n

}

µ

( ∞⋃

n=1

Ain

)
=
∞∑

n=1

µ(Ain) ≤
∞∑

n=1

µ(Ãin) <∞

and 0 < µ(Ain) for all i, n. If x ∈ Ain ∩ Ajm for i 6= j we would have |zi − zj |≤
|zi − f(x)|+|f(x) − zj |< 2

N which is a contradiction. So Ain ∩ Ajm = ∅ if i 6= j. If
i = j and n 6= m we find Ain ∩Ajm = ÃiN+n ∩ ÃiN+m = ∅. Thus we are now finished
in the case where z1, . . . , zk are different.

If z1, . . . , zk are not all different, let λ1, . . . , λ` be the different elements and h(i)

be such that zi = λh(i). We now pick sequences {Ãhn}∞n=1 ⊂ F as in the theorem
for the collection λ1, . . . , λ` ∈ σess(Mf ) and define Ain = Ã

h(i)
i+kn. Observe that

Ain ⊂
{
|f − λh(i)|<

1

i+ kn

}
⊂
{
|f − zi|<

1

n

}

µ

( ∞⋃

n=1

Ain

)
=

∞∑

n=1

µ(Ain) ≤
∞∑

n=1

µ(Ãin) <∞

and 0 < µ(Ain) for all i, n. Note that Ain ∩Ajm = Ã
h(i)
i+kn ∩ Ã

h(j)
j+mk. If i 6= j or n 6= m

then j + mk 6= i + nk since 1 ≤ i, j ≤ k and so the intersection is empty. This
finishes the proof. �

We now have one more definition.

Definition A.6. Let (M,F , µ) be a measure space.
(1) We say that (M,F , µ) has strong topological properties if M is a locally

compact, Hausdorff and second countable topological space, F is the Borel
σ-algebra and µ is finite on compact sets.

(2) Let M be a metric space. We say that M can be cut nicely if for each
n ∈ N there is a sequence of disjoint sets {Gnα}α∈N ⊂ B(M) that covers
M such that supα∈N Diam(Gnα) converges to 0 as n tends to infinity, Gnα is
compact and for any B ⊂M bounded the set

{α ∈ N | Gnα ∩B 6= ∅}
is finite.

The following result can be found in standard references on measure theory and
topological spaces.

Lemma A.7. We have the following statements:
(1) LetM be a locally compact metric space, and A ⊂M a compact set. Then

there is an r > 0 such that

Vr = {x ∈M | dist(x,A) ≤ r}
is compact. In particular for α ≤ r the set

{x ∈M | dist(x,A) < α}
is an open neighbourhood of A with compact closure.
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(2) If (M,F , µ) has strong topological properties then the subspace Cc(M) is
dense in Lp(M,F , µ) for all 1 ≤ p <∞. Furthermore Lp(M,F , µ) is sep-
arable for all 1 ≤ p <∞ and elements in Cc(M) are uniformly continuous
ifM is metric.

We have the following important theorem:

Theorem A.8. Assume now that (M,F , µ) has strong topological properties and
that M can be cut nicely. Assume that M = A ∪ B with A,B ∈ F and A ∩ B =
∅ such that B is bounded. Assume furthermore that for each n ∈ N we have a
subdivision

B =

k̃n⋃

`=1

B̃n`

such that B̃n` ∩ B̃nj = ∅ when j 6= `. Then there are subdivisions

A = Hn ∪
Kn⋃

`=1

An`

B = Jn ∪
kn⋃

j=1

Bnj

such that Kn ∈ N ∪ {∞} and kn ∈ N for all n. Furthermore

(1) For each j, n there is j′ such that Bnj ⊂ B̃nj′ .
(2) µ(Hn) = 0 = µ(Jn) and 0 < µ(An` ), µ(Bn` ) <∞ for all `, n.
(3) An` ∩An`′ = ∅ = Bnj ∩Bnj′ when ` 6= `′ or j 6= j′ and Hn ∩An` = ∅ = Jn ∩Bnj

for all `, j and n.
(4) Let Pn be the projection onto Span(Bn) where

Bn = {1Bnj | j ∈ {1, . . . , kn}} ∪ {1An` | ` ∈ N ∩ [0,Kn]}.
Then Pn converges strongly to the identity and Pn is given by

Pn(f) =

kn∑

j=1

1

µ(Bnj )

∫

Bnj

f(x)dµ(x)1Bnj +

Kn∑

`=1

1

µ(An` )

∫

An`

f(x)dµ(x)1An` .

Proof. For each n ∈ N let {Gnα}α∈N be the sets from Definition A.6. Fix n ∈ N.
Define for any set C ∈ F

In(C) = {α ∈ N | µ(Gnα ∩ C) > 0}.
If C is bounded then In(C) is finite since there is only finitely many α such that
Gnα ∩ C 6= ∅. We have

B =

k̃n⋃

j=1

( ⋃

α∈In(B̃nj )

B̃nj ∩Gnα
)
∪

k̃n⋃

j=1

( ⋃

α∈In(B̃nj )c

B̃nj ∩Gnα
)

:=

k̃n⋃

j=1

( ⋃

α∈In(B̃nj )

B̃nj ∩Gnα
)
∪Jn

A =

( ⋃

α∈In(A)

A ∩Gnα
)
∪
( ⋃

α∈Icn(A)

A ∩Gnα
)

:=

( ⋃

α∈In(A)

A ∩Gnα
)
∪Hn

Since In(B̃nj )c and In(A)c are countable for all j we find that the sets Jn and
Hn are a nullsets. The Anj are obtained by numbering the countable collection
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(A ∩ Gnα)α∈In(A). Similarly the Bnj are obtain by numbering the finite collection
B̃nj ∩Gnα for j ∈ {1, . . . , k̃n} and α ∈ In(B̃nj ).

The properties in statements (1) and (3) are clear. Statement (2) follows from
the definition of the In(B̃nj ) and In(A) and the fact that elements of the form C∩Gnα
have compact closure (and thus finite measure) since Gnα has compact closure. Note
now for later reference that

sup
`,j
{Diam(An` ),Diam(Bnj )} ≤ sup

α∈N
Diam(Gnα)(A.2)

which converges to 0 for n tending to ∞. What remains is statement (4). The
projection onto Span(B) is obviously given by

Pnf =

kn∑

j=1

1

µ(Bnj )

∫

Bnj

f(x)dµ(x)1Bnj +

Kn∑

l=1

1

µ(An` )

∫

An`

f(x)dµ(x)1An`

where the limit is taken in L2(M,F , µ) if Kn = ∞. Since the corresponding
functions also converge pointwise, we can take the pointwise limit to represent the
limit in L2(M,F , µ). It remains to prove that Pn converges strongly to the identity.
It is enough to check this on Cc(M) since this space is dense in L2(M,F , µ).

To prove the statement for f ∈ Cc(M) we start by noting that if µ({f 6= 0}) = 0
then Pnf = 0 for all n and f = 0 in L2(M,F , µ) so the convergence holds in this
case. Assume now that {f 6= 0} has positive measure and hence that suppf has
positive but finite measure since it is compact. We start by proving that there
is a compact set K and a number N1 ∈ N such that K will contain supp(f) and
supp(Pnf) for all n ≥ N1 .

By Lemma A.7 there is an r > 0 such that K = {x ∈ M | dist(x, supp(f)) ≤ r}
is compact. Now pick N1 ∈ N such that sup`,j{Diam(An` ),Diam(Bnj )} < r for all
n ≥ N1 (this is possible by equation (A.2)). Let n ≥ N1. If Pnf(x) 6= 0 then there
is a set C of diameter smaller than r such that x ∈ C and the integral of f over C
is not 0. In particular supp(f)∩C 6= ∅ so x ∈ K. This implies that {Pnf 6= 0} ⊂ K
and hence supp(Pnf) ⊂ K for all n ≥ N1, proving the claim.

We now prove convergence. Let ε > 0. Pick a compact set K containing supp(f)
and supp(Pn(f)) for all n ≥ N1. Since f is uniformly continuous on M there
is a δ > 0 such that when x, y ∈ M, d(x, y) ≤ δ then |f(x) − f(y)|≤ ε√

µ(K)
.

Pick N2 ∈ N such that sup`,j{Diam(An` ),Diam(Bnj )} < δ for all n ≥ N2 and fix
n ≥ N = max{N1, N2}. For x ∈ M\(Hn ∪ Jn) there is a set C of diameter less
than δ such that x ∈ C and

Pnf(x) =
1

µ(C)

∫

C

f(y)dµ(y).

This implies

|Pnf(x)− f(x)|≤ 1

µ(C)

∫

C

|f(y)− f(x)|dµ(y) ≤ ε

µ(K)
1
2

,

which gives

‖Pnf − f‖=
(∫

K

|Pnf(x)− f(x)|2dµ(x)

) 1
2

≤ µ(K)
1
2 ε

µ(K)
1
2

= ε.

This finishes the proof. �

The following two lemmas show that Theorems A.5 and A.8 can be applied to a
wide range of L2-spaces.
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Lemma A.9. Let A ⊂ Z and let µ be some measure on (A × Rν ,B(A × Rν))
which is finite on compact sets. Then the assumptions of Theorems A.5 and A.8
are satisfied if µ(B) < ∞ where B = {x ∈ A × Rν | µ({x}) > 0} and µBc is zero
on sets of the form {i} × C with C = {x ∈ Rν | ‖x‖= c}.
Proof. Since A×Rν ⊂ Rν+1 is closed we see that A×Rν is a locally compact metric
space. It is second countable since both A and Rν are second countable. A × Rν
can be covered by compacts so (A× Rν ,B(A× Rν), µ) is σ-finite. In particular B
is countable and therefore measurable.

Define Ux = {y ∈ Rν+1 | ‖y‖≤ x} ∩ (A × Rν). Then 1Ux converges to 1Uy
pointwise for x→ y except at points in ∂Uy. Note that ∂Uy is a finite union of sets
of the form {i} × {x ∈ Rν | ‖x‖= c} with c ≥ 0 and i ∈ Z. Hence ∂Uy is a µBc
zeroset, proving that {Ux}x∈[0,∞) defines a continuous resolution for µBc .

To show thatM cuts nicely we define

Gnα,i = {i} ×
(

ν×
i=1

(n−1αi, n
−1(αi + 1)]

)

for α ∈ Zn and i ∈ A. For each n this is a disjoint cover and elements have
diameter

√
νn−1. Given any bounded set D, there is A1 ⊂ A finite and R ∈ N

such that D ⊂ A1 × [−R,R]ν . It will only take finitely many of the Gn(α,i) to cover
A1 × [−R,R]ν and hence D. �

The following lemma is central to the spectral analysis.

Lemma A.10. Let H be a separable Hilbert space and let A be selfadjoint on H.
Then H is unitarily equivalent to L2(M,F , µ) such that A is transformed into a
multiplication operator ω. If A ≥ γ for some γ ∈ R then we may pick ω ≥ γ
everywhere. Furthermore if γ is not an eigenvalue then ω > γ almost everywhere.
Also (M,F , µ) will fulfil the conditions in Theorems A.5 and A.8.

Proof. We follow the construction found in [22]. Let {ψn}n∈B (where B ⊂ N) be
a complete collection of normed cyclic vectors, and let µn be the measure gen-
erated my ψn with respect to the spectral measure PA of A. That is µn(C) =
〈ψn, PA(C)ψn〉. By [22] we see that H is unitarily equivalent to

K1 =
⊕

n∈B
L2(R,B(R), µn),

and A acts like multiplication by the identity map f(x) = x on each of the com-
ponent spaces. If A ≥ γ then µn will be supported on [γ,∞) showing we may
pick ω̃ = max{f, γ}. By standard measure theory of kernels, there is measure µ̃ on
B(B × R) defined by

∫

B×R
f(n, k)dµ̃(n, k) =

∑

n∈B

∫
f(n, x)dµn(x)

for any non negative and measurable map f : B × R→ R. Then the direct sum of
L2-spaces is clearly unitarily equivalent to

K2 = L2 (B × R,B(B × R), µ̃)

and A is now multiplication by the map ω(n, x) = ω̃(x). Note that each {n} × R
has measure 1 by construction, so the measure space is σ-finite. Hence there is a
strictly positive measurable map f on B×R which integrates to 1. Defining µ = fµ̃
we thus obtain a finite measure, and multiplication by f−

1
2 defines a unitary map

from K2 to
L2(B × R,B(B × R), µ).
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Note that A still acts like multiplication by ω on this space. Since µ(B × R) = 1,
and sets of the form {i}× {x ∈ R | |x|= c} are finite we see that the measure space
satisfies the conditions in Lemma A.9. This finishes the proof. �

Appendix B. Spectral Theory of tensor products

I this section we list a few results regarding the tensor product of operators. A
good reference for these results are [20]. Throughout this section let H1, . . . ,Hn be
a finite collection of Hilbert spaces. For Vi ⊂ Hi subspaces, we define the algebraic
tensor product

V1⊗̂ · · · ⊗̂Vn = Span{x1 ⊗ · · · ⊗ xn | xi ∈ Vi}.
Most of the content in the following theorem can be found in [20]. The remaining
items can easily be deduced.

Theorem B.1. Let Ti be an operator on Hi for i ∈ {1, . . . , n}. Then there is a
unique linear map T = T1⊗̂ · · · ⊗̂Tn defined on D(T1)⊗̂ · · · ⊗̂D(Tn) such that

T1⊗̂ · · · ⊗̂Tn(x1 ⊗ · · · ⊗ xn) = T1x1 ⊗ · · · ⊗ Tnxn,
for all xi ∈ D(Ti) and i ∈ {1, . . . , n}. We also have the following:

(1) If all Ti are densely defined then T is densely defined and T ∗1 ⊗̂ · · · ⊗̂T ∗n ⊂
T ∗.

(2) If all Ti are closable, then T is closable. We will then write T = T1⊗· · ·⊗Tn.
Furthermore, the following identities hold

T1 ⊗ · · · ⊗ Tn = T 1 ⊗ · · · ⊗ Tn
T ∗1 ⊗ · · · ⊗ T ∗n = (T1 ⊗ · · · ⊗ Tn)∗.

(3) If all the Ti are symmetric (selfadjoint, unitary, a projection), then T is
symmetric (selfadjoint, unitary, a projection).

(4) If Tj ≥ 0 for all j ∈ {1, . . . , n} then T ≥ 0.
(5) If all the Ti are bounded then T is bounded and

‖T‖= ‖T1‖· · · ‖Tn‖= ‖T1 ⊗ · · · ⊗ Tn‖.
The following result is also important.

Theorem B.2. For each j ∈ {1, . . . , n} let Tj be a selfadjoint operator on Hi and
define

Hi = 1⊗ · · · ⊗ Ti ⊗ · · · ⊗ 1,

H = H1 +H2 + · · ·+Hn.

Then
(1) (H1, · · · , Hn) is a touple of strongly commuting selfadjoint operators with

σ(Hi) = σ(Tj). The joint spectrum is σ(T1)× · · ·×σ(Tn) and if f : R→ C
is Borel measurable then f(Hj) = 1⊗ · · · ⊗ f(Tj)⊗ · · · ⊗ 1.

(2) H is essentially selfadjoint with

eitH = eitT1 ⊗ · · · ⊗ eitTn t ∈ R.

(3) If Vj is a core for Tj then V1⊗̂ · · · ⊗̂Vn is a core for H.
(4) Assume Tj is semibounded with inf(σ(Tj)) = λj for all j. Then H is

selfadjoint and semibounded with inf(σ(H)) = λ := λ1 + · · · + λn. Let PB
denote the spectral measure for an operator B ∈ {H,T1, . . . , Tn}. Then

e−tH = e−tT1 ⊗ · · · ⊗ e−tTn t ≥ 0

PH({λ}) = PT1({λ1})⊗ · · · ⊗ PTn({λn}).
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In particular, Dim(PH({λ})) = Dim(T1({λ})) · · ·Dim(Tn({λ})). Let µj =
inf(σess(Tj)) which may be ∞. Then

inf(σess(H)) ≥ min
j



µj +

∑

l 6=i
λj



 := m.

(5) Assume Bi is selfadjoint on Hi. If D(Ti) ⊂ D(Bi) for some i ∈ {1, ..., n}
then D(Hi) ⊂ D(1⊗ · · · ⊗Bi ⊗ · · · ⊗ 1).

(6) Assume Bi is selfadjoint on Hi and Ti +Bi is selfadjoint. Then

Hi + 1⊗ · · · ⊗Bi ⊗ · · · ⊗ 1 = 1⊗ · · · ⊗ (Ti +Bi)⊗ · · · ⊗ 1 := Si

Proof. Statements (1)-(3) can more or less be found in either [20] or [23]. It is proven
in [20] that f(Hj) = 1 ⊗ · · · ⊗ f(Tj) ⊗ · · · ⊗ 1 holds for f(x) = (x ± i)−1. From
there one may simply use standard approximation arguments. To prove (4), let P
be a joint spectral measure of A = (H1, . . . ,Hn). Using that the joint spectrum is
σ(T1)×· · ·×σ(Tn), one may show thatH = P (f) where f(x1, ..., xn) = x1+· · ·+xn.
SoH is selfadjoint and bounded below by λ. The formula for e−tH is now immediate
from the spectral theorem. We also find

PH(λ) = P ({x1 + · · ·+ xn = λ} ∩ σ(T1)× · · · × σ(Tn))

= P ({x1 = λ1} × · · · × {xn = λn})
= PT1({λ1})⊗ · · · ⊗ PTn({λn}).

Let f ∈ C∞c ((−∞,m)). Then there is ε > 0 such that f is supported in (−∞,m−ε).
We observe

PH(f) =

∫

σ(T1)×···×σ(Tn)

f(x1 + · · ·+ xn)dP (x1, . . . , xn).

If (x1, . . . , xn) ∈ σ(T1)× · · · × σ(Tn) and f(x1 + · · ·+ xn) 6= 0, then xi < µi − ε for
all i. Since only finitely many xi have this property, we find PH(f) is a finite linear
combination of terms of the form

PT1({x1})⊗ · · · ⊗ PTn({xn})
with xi in the discrete spectrum of Ti. The above projection has finite rank and is
therefore compact, so PH(f) is compact.

To prove (5), note Bj(Tj + i)−1 is bounded and

(1⊗ · · · ⊗Bj ⊗ · · · ⊗ 1)(Hj + i)−1 = 1⊗ · · · ⊗Bj(Tj + i)−1 ⊗ · · · ⊗ 1

holds on a dense set. Thus (1⊗ · · · ⊗Bj ⊗ · · · ⊗ 1)(Hj + i)−1 extends to a bounded
operator implying the claim.

To prove (6), note that the equality holds on H1⊗̂ · · · ⊗̂D(Tj + Bj)⊗̂ · · · ⊗̂Hn
which is a core for Sj . Therefore

(B.1) Sj = Hj + 1⊗ · · · ⊗Bj ⊗ · · · ⊗ 1

By part (5) we note D(Sj) ⊂ D(Hj) ∩ D(1 ⊗ · · · ⊗ Bj ⊗ · · · ⊗ 1) so the closure on
the right side of (B.1) is not necessary. �

The next two results are important to the theory developed in this paper.

Lemma B.3. Let A and B be selfadjoint on H2. If B is A-bounded with bound a,
and C ∈ B(H1) then C ⊗B is 1⊗A bounded with relative bound a‖C‖.
Proof. On simple tensors we see that

C ⊗B(1⊗A− iλ)−1 = C ⊗B(A− iλ)−1
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which is bounded. Hence D(C ⊗ B) ⊂ D(1 ⊗ A) and the above identity extends
to the full tensor product. Calculating norms and taking λ to ∞ gives the 1 ⊗ A-
bound by [22, Lemma 6.3]. Using Theorem B.1 to calculate the norm finishes the
proof. �

We now wish to consider second quantised observables. Let ω be selfadjoint on the
space H. Let dΓ(ω) denote the second quantised observable. By standard theory
of reducing subspaces we have

σp(dΓ(n)(ω)) ⊂σp
(

n∑

k=1

(1⊗)k−1ω(⊗1)n−k
)

(B.2)

σess(dΓ(n)(ω)) ⊂σess

(
n∑

k=1

(1⊗)k−1ω(⊗1)n−k
)

(B.3)

Lemma B.4. Let ω ≥ 0 be a selfadjoint operator defined on the Hilbert space H and
let m = inf(σ(ω)) and mess = inf(σess(ω)). Let dΓ(ω) denote the second quantised
observable. Then for n ≥ 1 we have

σ(dΓ(n)(ω)) = {λ1 + · · ·+ λn | λi ∈ σ(ω)}
inf(σ(dΓ(n)(ω))) = nm

Now let ω ≥ 0 be injective. Then
(1) 0 is an eigenvalue for dΓ(ω) with multiplicity 1. The eigenspace is spanned

by Ω.
(2) inf(σess(dΓ(n)(ω))) ≥ mess + (n− 1)m
(3) dΓ(ω) will have compact resolvents if and only if this is the case for ω.

Proof. The statements regarding the spectrum is easy and can be found in e.g, [12].
We prove the statements (1), (2) and (3).

To prove statement (1), we note that Ω is an eigenvector as desired. Assume
that there exists an eigenvector ψ orthogonal to Ω. We may then assume that there
is n ≥ 1 such that ψ is in the n’th particle sector and an eigenvector for dΓ(n)(ω)
with eigenvalue 0. Since dΓ(n)(ω) ≥ nm we find m = 0 and thus m ∈ σ(ω) but is
not an eigenvalue. By Theorem B.2 and equation (B.2) we find that dΓ(n)(ω) is
injective, reaching a contradiction.

Statement (2) follows from Theorem B.2 and equation (B.3).
If dΓ(ω) has compact resolvents then projection onto the one particle subspace

shows that ω has compact resolvents. If ω has compact resolvents, then mess =∞
and so m > 0. Statement (2) now gives that dΓ(n)(ω) has compact resolvents for
all n ∈ N. Now ‖(dΓ(n)(ω) + i)−1‖≤ 1

nm which converges to 0 as n tends to ∞.
Hence we find

(dΓ(ω) + i)−1 =
∞⊕

n=0

(dΓ(n)(ω) + i)−1

is compact. �

Appendix C. Isomorphism theorems

Let H1,H2 be Hilbert spaces. Then

Fb(H1 ⊕H2) ≈ Fb(H1)⊗Fb(H2) ≈
∞⊕

n=0

(
Fb(H1)⊗H⊗sn2

)
.

In this chapter we investigate these isomorphisms. See also [5] and [15].
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Theorem C.1. There is a unique isomorphism U : Fb(H1 ⊕ H2) → Fb(H1) ⊗
Fb(H2) such that U(ε(f ⊕ g)) = ε(f)⊗ ε(g). If f1, . . . , fj ∈ H1, g1 and . . . , g` ∈ H2

then

U((f1, 0)⊗s · · · ⊗s (fj , 0)⊗s(0, g1)⊗s · · · ⊗s (0, g`))

=

(
j!`!

(j + `)!

)1/2

(f1 ⊗s · · · ⊗s fj)⊗ (g1 ⊗s · · · ⊗s g`)

The map also has the following transformation properties. If Ai is selfadjoint on
Hi, Vi is unitary on Hi and f ∈ H1, g ∈ H2 then

UW (f ⊕ g, V1 ⊕ V2)U∗ = W (f, V1)⊗W (g, V2)(C.1)

UdΓ(A1 ⊕A2)U∗ = dΓ(A1)⊗ 1 + 1⊗ dΓ(A2)(C.2)

Uϕ(f, g)U∗ = ϕ(f)⊗ 1 + 1⊗ ϕ(g)(C.3)

Ua(f, g)U∗ = a(f)⊗̂1 + 1⊗̂a(g)(C.4)

Ua†(f, g)U∗ = a†(f)⊗̂1 + 1⊗̂a†(g).(C.5)

Proof. The set of exponential vectors are total and linearly independent. Hence at
most map can satisfy U(ε(f ⊕ g)) = ε(f) ⊗ ε(g). By the linear independence we
may define U(ε(f ⊕ g)) = ε(f)⊗ ε(g) and extend by linearity. Note that the image
of exponential vectors is total and the map conserves the inner product since

〈ε(h1 ⊕ h2), ε(f1 ⊕ f2)〉 = e〈h1⊕h2,f1⊕f2〉 = 〈ε(h1), ε(f1)〉〈ε(h2), ε(f2)〉.

Hence it extends by continuity to a unitary map. To prove equation (C.1), it is
enough to check a total set. We calculate

UW (f ⊕ g, V1 ⊕ V2)U∗ε(h1)⊗ ε(h2) = Uε(V1h1 ⊕ V2h2 + f ⊕ g)

= ε(V1h1 + f)⊗ ε(V2h2 + g)

= W (f, V1)⊗W (g, V2)(ε(h1)⊗ ε(h2)).

This also proves equations (C.2) and (C.3) since both sides generate the same
unitary group. To prove equations (C.4) and (C.5) define

C = {ε(f1)⊗ ε(f2) | fi ∈ Hi} = U({ε(f1 ⊕ f2) | fi ∈ Hi}).

for ψ = ε(f1)⊗ ε(f2) ∈ C we have

Ua(f ⊕ g)U∗ε(f1)⊗ ε(f2) = Ua(f ⊕ g)ε(f1 ⊕ f2)

= 〈f ⊕ g, f1 ⊕ f2〉ε(f1)⊗ ε(f2)

= (a(f)⊗̂1 + 1⊗̂a(g))ε(f1)⊗ ε(f2)

showing the first relation. For φ = ε(g1)⊗ ε(g2) ∈ C we find

〈φ,Ua†(f ⊕ g)U∗ψ〉 = 〈Ua(f ⊕ g)U∗φ, ψ〉 = 〈φ, (a†(f)⊗̂1 + 1⊗̂a†(g))ψ〉

as C is total we can now conclude that equations (C.4) and (C.5) hold on C. Let ]
denote either † or nothing. Exponential vectors span a core for both creation and
annihilation operators (see [12]) so

Ua](f ⊕ g)U∗ = a](f)⊗̂1 + 1⊗̂a](g) |Span(C)

Using that exponential vectors span a core for both creation and annihilation op-
erators it is not hard to see that a](f)⊗̂1 + 1⊗̂a](g) |Span(C) is an extension of
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a](f)⊗̂1 + 1⊗̂a](g). Thus we see a](f)⊗̂1 + 1⊗̂a](g) |Span(C) = a](f)⊗̂1 + 1⊗̂a](g)
proving equations (C.4) and (C.5). Lastly we note

U(f1, 0)⊗s · · · ⊗s (fj , 0)⊗s (0, g1)⊗s · · · ⊗s (0, g`)

=

(
1

(j + `)!

)1/2

Ua†(f1, 0) · · · a†(fj , 0)a†(0, g1) · · · a†(0, g`)Ω

=

(
`!j!

(j + `)!

)1/2

(f1 ⊗s · · · ⊗s fj)⊗ (g1 ⊗s · · · ⊗s g`)

finishing the proof. �

The following result is obvious.

Theorem C.2. There is a unique isomorphism

U : Fb(H1)⊗Fb(H2)→ Fb(H1)⊕
∞⊕

n=1

Fb(H1)⊗H⊗sn2

such that

U(w ⊗ {ψ(n)
2 }∞n=0) = ψ(0)w ⊕

∞⊕

n=1

w ⊗ ψ(n)
2 .

Let A be a selfadjoint operator on Fb(H1) and B be selfadjoint on Fb(H2) such that
B is reduced by all of the subspaces H⊗sn2 . Write B(n) = B |H⊗sn2

. Then

U(A⊗ 1 + 1⊗B)U∗ = A+B(0) ⊕
∞⊕

n=1

(A⊗ 1 + 1⊗B(n))

U(A⊗B)U∗ = B(0)A⊕
∞⊕

n=1

(A⊗B(n)).

Lemma C.3. Let H be a Hilbert space and assume there is a unitary map V : H →
H1 ⊕H2. Let U1 be the map from Theorem C.1, U2 be the map from Theorem C.2
and ji : Hi → H1⊕H2 be the embedding defined by j1(f) = (f, 0) or j2(g) = (0, g).
Define the maps U = U2U1Γ(V ) and Qi = V ∗ji. Then

(C.6) Γ(Q1) = U∗ |Fb(H1)

Fix a subspace K ⊂ H1 and g1, . . . , gq ∈ H2. Define

B =
∞⋃

b=0

{h1 ⊗s · · · ⊗s hb | hi ∈ K}

C =

∞⋃

b=0

{Q1h1 ⊗s · · · ⊗s Q1hb ⊗s Q2g1 ⊗s · · · ⊗s Q2gq | hi ∈ K}.

Let ψ ∈ Span(B). Then

(C.7) U∗(ψ ⊗ g1 ⊗s · · · ⊗s gq) ∈ Span(C).

.

Proof. It is enough to prove equation (C.6) on elements of the form ε(f) for f ∈ H1.
We calculate using Theorems C.1 and C.2:

U∗ε(f) = Γ(V )∗U∗1 ε(f)⊗ Ω = Γ(V )∗ε(f, 0) = ε(V ∗j1f) = ε(Q1f) = Γ(Q1)ε(f).

By linearity it is enough to prove equation (C.7) in the case ψ = h1⊗s · · · ⊗s hb for
hi ∈ K and some b ∈ {0} ∪N. Using Theorems C.1 and C.2 along with Lemma 2.2
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we find

U∗((h1⊗s · · · ⊗s hb)⊗ (g1 ⊗s · · · ⊗s gq))
=Γ(V )∗U∗1 ((h1 ⊗s · · · ⊗s hb)⊗ (g1 ⊗s · · · ⊗s gq))

=

(
(b+ q)!

q!b!

)1/2

Γ(V )∗((h1, 0)⊗s · · · ⊗s (hb, 0)⊗s (0, g1)⊗s · · · ⊗s (0, gq))

=

(
(b+ q)!

q!b!

)1/2

Q1h1 ⊗s · · · ⊗s Q1hb ⊗s Q2g1 ⊗s · · · ⊗s Q2gq

finishing the proof. �

Appendix D. Pointwise annihilation operators

In this appendix we define pointwise annihilation operators and show associated
pull through formulas. We will need this when discussing regularity of ground
states. Let H = L2(M, E , µ), where (M, E , µ) is assumed to be σ-finite. We define
the extended symmetric Fock space to be the product

F+(H) =
∞×
n=0

H⊗sn

with coordinate projections Pn. For elements (ψ(n)), (φ(n)) ∈ F+(H) we define

d((ψ(n)), (φ(n))) =

∞∑

n=0

1

2n
‖ψ(n) − φ(n)‖

1 + ‖ψ(n) − φ(n)‖
where ‖·‖ is the Fock space norm. This makes sense since Pn(F+(H)) ⊂ Fb(H).
Standard theorems from measure theory and topology now gives the following
lemma.

Lemma D.1. The map d defines a metric on F+(H) and turns this space into a
complete separable metric space and a topological vector space. The topology and
Borel σ-algebra is generated by the projections Pn. If a sequence {ψn}∞n=1 ⊂ Fb(H)
is convergent/Cauchy then it is also convergent/Cauchy with respect to d. Also any
total/dense set in Fb(H) will be total/dense in F+(H) as well.

Define

(D.1) A = {Ω} ∪
∞⋃

n=1

{g⊗n | g ∈ H}.

Then A is total in Fb(H) since the span of A can approximate any exponential
vector. By Lemma D.1 we find A is total in F+(H) as well. For each a ∈ R we
define

‖·‖a,+= lim
n→∞

(
n∑

k=0

(k + 1)2a‖Pk(·)‖2
) 1

2

.

which is measurable from F+(H) into [0,∞]. Let

Fa,+(H) = {ψ ∈ F+(H) | ‖ψ‖a,+<∞}.
Note ‖·‖a,+ restricts to a norm on Fa,+(H) that comes from an inner product. In
particular Fa,+(H) is a Hilbert space and for a ≥ 0 we have Fa,+(H) = D((N+1)a).
We summarise as follows

Lemma D.2. ‖·‖a,+ defines measurable map from F+(H) to [0,∞] and restricts
to a norm on the spaces Fa,+(H). This norm comes from an inner product so
Fa,+(H) is a Hilbert space. Furthermore, the set A from equation (D.1) is total in
F+(H).
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The point of defining a metric on F+(H) and finding a dense set is that most of the
operations we will encounter in this chapter are continous on F+(H). Therefore
many operator identities can be proven by checking the identity on the set A from
(D.1). Fix now v ∈ H. We now define the following maps on F+(H)

a+(v)(ψ(n)) = (an(v)ψ(n+1))

a†+(v)(ψ(n)) = (0, a†0(v)ψ(0), a†1(v)ψ(1), . . . )

ϕ+(v) = a+(v) + a†+(v)

Where an(v) is annihilation from H⊗s(n+1) to H⊗sn and a†n(f) is creation from
H⊗sn to H⊗(n+1) which are both continuous. The following lemma is almost auto-
matic.

Lemma D.3. The maps a+(v),a†+(v) and ϕ+(v) are all continuous. For B ∈
{a, a†, ϕ} we have

(D.2) B+(v)ψ = B(v)ψ if ψ ∈ D(B(v)).

Proof. Equation (D.2) holds for B ∈ {a, a†} simply by definition. The topology on
F+(H) is generated by the projections Pn. Therefore continuity of a+(v), a†+(v)
and ϕ+(v) follows from continuity of

Pna+(v) = an(v)Pn+1

Pna
†
+(v) = a†n−1(v)Pn−1 n ≥ 1

P0a
†
+(v) = 0.

We now prove equation (D.2) for B = ϕ. The relation

ϕ(v)ψ = ϕ+(v)ψ

easily holds on the span of A where A is the set from equation (D.1). For ψ ∈
D(ϕ(v)) we may pick as sequence {ψn}∞n=1 ⊂ Span(A) that converges to ψ in ϕ(f)
norm (use e.g. [15, Corollary 20.5]). Continuity of ϕ+(v) together with Lemma D.1
now yields the desired result. �

We now move on to the second quantisation of unitaries and selfadjoint operators.
Let U be unitary on H and ω = (ω1, . . . , ωp) be a tuple of strongly commuting
selfadjoint operators on H. We then define

dΓ(ω) = (dΓ(ω1), . . . , dΓ(ωp))

dΓ(n)(ω) = (dΓ(n)(ω1), . . . , dΓ(n)(ωp))

which are now tuples of strongly commuting selfadjoint operators (It is easily
checked that the unitary groups commute). Let furthermore f : Rp → C be a
map. We then define

f(dΓ+(ω)) =
∞×
n=0

f(dΓ(n)(ω)) D(f(dΓ+(ω))) =
∞×
n=0

D(f(dΓ(n)(ω)))

Γ+(U) =
∞×
n=0

Γ(n)(U).

If ω : M → Rp is measurable then we may identify ω as such a touple of com-
muting selfadjoint operators. In this case f(dΓ(n)(ω)) is multiplication by the map
f(ω(k1) + · · ·+ ω(kn)). The following lemma is obvious.
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Lemma D.4. The map Γ+(U) is an isometry on F+(H) and is thus continuous.
Furthermore we have

f(dΓ+(ω))ψ = f(dΓ(ω))ψ, ψ ∈ D(f(dΓ(ω)))

Γ+(U)ψ = Γ(U)ψ, ψ ∈ Fb(H)

We will now consider a class of linear functionals on F+(H). For each n ∈ N we let
Qn : F+(H) → N denote the linear projection which preserves the first n entries
of (ψ(n)) and projects the rest of them to 0. For ψ ∈ N there is K ∈ N such that
Qnψ = ψ for n ≥ K. For φ ∈ F+(H) we may thus define the pairing

(D.3) 〈ψ, φ〉+ := 〈ψ,Qnφ〉 =
K∑

i=0

〈ψ(i), φ(i)〉,

where n ≥ K.

Lemma D.5. The map Qn above is linear and continuous into Fb(H). The paring
〈·, ·〉+ is sesquilinear, and continuous in the second entry. If φ ∈ Fa,+(H) then
ψ 7→ 〈ψ, φ〉+ is continous with respect to ‖·‖−a,+. Furthermore, the collection of
maps {〈ψ, ·〉+}ψ∈N will separate points of F+(H).

Proof. The paring 〈·, ·〉+ is trivially sesquilinear. Let {ψk}∞k=1 converge to ψ in
F+(H). Then ψ(i)

k will converge to ψ(i) for all i. Now ‖Qn(ψk − ψ)‖2 is the sum

‖Qn(ψk − ψ)‖2=

n∑

i=0

‖ψ(i)
k − ψ(i)‖2

which converges to 0. Hence Qn is continuous from F+(H) into Fb(H). This also
shows continuity in the second entry of 〈·, ·〉+. If φ ∈ Fa,+(H) and ψ ∈ N we find
some K ∈ N such that

|〈ψ, φ〉+|≤
K∑

i=0

(i+ 1)a‖φ(i)‖(i+ 1)−a‖ψ(i)‖≤ ‖φ‖a,+‖ψ‖−a,+

showing the desired continuity. Fix now φ ∈ F+(H) and assume that 〈ψ, φ〉+ = 0
for all ψ ∈ N . Then 〈ψ, φ(n)〉 = 0 for all ψ ∈ H⊗sn showing φ(n) = 0. �

Corollary D.6. Let φ ∈ Fa,+(H) for some a ≤ 0, D ⊂ N be dense in Fb(H) and
assume 〈ψ, φ〉+ = 0 for all ψ ∈ D. Then φ = 0.

Proof. Note D consists of elements which are analytic for (N+1)−a so D is a core for
(N + 1)−a. Let ψ in N and pick {ψn}∞n=1 ⊂ D converging to ψ in (N + 1)−a-norm.
Using Lemma D.5 we see 〈ψ, φ〉+ = 0 and thus φ = 0 by Lemma D.5. �

Lemma D.7. Let ψ ∈ N , φ ∈ F+(H), v ∈ H and U be unitary on H. Then we
have

〈a†(v)ψ, φ〉+ = 〈ψ, a+(v)φ〉+, 〈a(v)ψ, φ〉+ = 〈ψ, a†+(v)φ〉+,
〈ϕ(v)ψ, φ〉+ = 〈ψ,ϕ+(v)φ〉+, 〈Γ(U)ψ, φ〉+ = 〈ψ,Γ+(U∗)φ〉+.

Let ω = (ω1, . . . , ωp) be a tuple of commuting selfadjoint operators, f : Rp → C,
ψ ∈ N ∩ D(f(dΓ(ω))) and φ ∈ D(f(dΓ+(ω))) we have

〈f(dΓ(ω))ψ, φ〉+ = 〈ψ, f(dΓ+(ω))φ〉+.
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Proof. Since ψ ∈ N we may pick K such that ψ(n) = 0 for all n ≥ K. Then we
may calculate

〈a†(v)ψ, φ〉+ = 〈ψ, a(v)QK+1φ〉 = 〈ψ,QKa+(v)φ〉 = 〈ψ, a+(v)φ〉+
〈a(v)ψ, φ〉+ = 〈ψ, a†(v)QK−1φ〉 = 〈ψ,QKa†+(v)φ〉 = 〈ψ, a†+(v)φ〉+
〈ϕ(v)ψ, φ〉+ = 〈ψ, a+(v)φ〉+ + 〈ψ, a†+(v)φ〉+ = 〈ψ,ϕ+(v)φ〉+
〈Γ(U)ψ, φ〉+ = 〈ψ,Γ(U∗)QKφ〉 = 〈ψ,QKΓ+(U∗)φ〉 = 〈ψ,Γ+(U∗)φ〉+

Assume now that ψ ∈ N ∩ D(f(dΓ(ω))) and φ ∈ D(f(dΓ+(ω))). Then QKφ ∈
D(f(dΓ(ω))) and

〈f(dΓ(ω))ψ, φ〉+ = 〈ψ, f(dΓ(ω))QKφ〉 = 〈ψ,QKf(dΓ+(ω))φ〉 = 〈ψ, f(dΓ+(ω))φ〉+
this finishes the proof. �

We now consider functions with values in F+(H). Let (X,X , ν) be a σ-finite and
countably generated measure space. Define the quotient

M(X,X , ν) = {f : X → F+(H) | f is X − B(F+(H)) mesurable}/ ∼,
where we define f ∼ g ⇐⇒ f = g almost everywhere. We are interested in the
subspace

C(X,X , ν) = {f ∈M(X,X , ν) | x 7→ Pnf(x) ∈ L2(X,X , ν,H⊗sn) ∀n ∈ N0}.
Lemma D.2 shows that x 7→ ‖f(x)‖a,+ is measurable for functions f ∈ C(X,X , ν)
and so the integral ∫

X

‖f(x)‖2a,+dν(x)

always makes sense. If a = 0 then it is finite if and only if f ∈ L2(X,X , ν,Fb(H)).
We write f ∈ C(X,X , ν) as (f (n)) where f (n) = x 7→ Pnf(x). For f, g ∈ C(X,X , ν)
we define

d(f, g) =
∞∑

n=0

1

2n
‖f (n) − g(n)‖L2(X,X ,ν,H⊗sn)

1 + ‖f (n) − g(n)‖L2(X,X ,ν,H⊗sn)

.

We can now summarise.

Lemma D.8. d is a complete metric on C(X,X , ν) such that C(X,X , ν) becomes
separable topological vector space. The topology is generated by the maps f 7→
(x 7→ Pnf(x)). Furthermore L2(X,X , ν,Fb(H)) ⊂ C(X,X , ν) and convergence in
L2(X,X , ν,Fb(H)) implies convergence in C(X,X , ν). Also the map x 7→ ‖f(x)‖a,+
is measurable for any f in C(X,X , ν) and a ∈ R.

We now move on to discuss some actions on this space. This is strongly related to
the direct integral and readers should look up the results in [18]. Let n ≥ 1, v ∈ H,
U be unitary on H, ω = (ω1, . . . , ωp) a tuple of selfadjoint multiplication operators
on H, m :Mn → Rp measurable and g : Rp → R a measurable map. Then we wish
to define operators on C(M`, E⊗`, µ⊗`) for ` ≥ 1 by

(a†⊕,`(v)f)(k) = a†+(v)f(k)

(a⊕,`(v)f)(k) = a+(v)f(k)

(ϕ⊕,`(v)f)(k) = ϕ+(v)f(k)

(Γ⊕,`(U)f)(k) = Γ+(U)f(k)

(g(dΓ⊕,`(ω) +m)f)(k) = g(dΓ+(ω) +m(k))f(k).

We further define C(M0, E⊗0, µ⊗0) = F+(H) along with a†⊕,0(v) = a†+(v), a⊕,0(v) =

a+(v), ϕ⊕,0(v) = ϕ+(v) and Γ⊕,0 = Γ+(U). We have the following lemma.
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Lemma D.9. The a†⊕,`(v), a⊕,`(v), ϕ⊕,`(v) and Γ⊕,`(U) are well defined and con-
tinuous for all ` ∈ N0. Let f ∈ C(M`, E⊗`, µ⊗`). If f(k) ∈ D(g(dΓ+(ω) + m(k)))
for all k ∈M` then k 7→ Pn(g(dΓ+(ω)+m(k))f(k)) is measurable. Thus as domain
of g(dΓ⊕,`(ω) +m) we may choose
{
f ∈ C(M`, E⊗`, µ⊗`)

∣∣∣∣f(k) ∈ D(g(dΓ+(ω) +m(k))) for almost every k ∈M`,

∫

M`

‖Png(dΓ+(ω) +m(k))f(k)‖2dµ⊗`(k) <∞ ∀n ∈ N
}
.

Proof. To deal with the first three maps, it is enough to handle the first two, since
the last follows by addition of continuous maps. We have

k 7→ Pna+(v)h(k) = k 7→ an(v)Pn+1h(k)

k 7→ Pna
†
+(v)h(k) = k 7→ a†n−1(v)Pn−1h(k) n ≥ 1

k 7→ P0a
†
+(v)h(k) = k 7→ 0

k 7→ PnΓ+(U)h(k) = k 7→ Γ(n)(U)Pnh(k).

Continuity of an(v), a†n−1(v) and Γ(n)(U) and Lemma D.8 now implies that the first
four maps are well defined and continous. For the next claim we note

Png(dΓ+(ω) +m(k))f(k) = g(dΓ(n)(ω) +m(k))Pnf(k)

since dΓ(n)(ωi) +mi(k) is strongly resolvent measurable for each i ∈ {1, . . . , p}, we
find that g(dΓ(n)(ω)+m(k)) is strongly resolvent measurable and so the conclusion
follows from standard theorems (See e.g [18]). �

We will now introduce the pointwise annihilation operators. For ψ = (ψ(n)) ∈
F+(H) we define A`ψ ∈ C(M`, E⊗`, µ⊗`) by

Pn(A`ψ)(k1, . . . , k`) =
√

(n+ `)(n+ `− 1) · · · (n+ 1)ψ(n+`)(k1, . . . , k`, ·, . . . , ·)
Since ψ(n+`) is symmetric and square integrable, we may pick a representative such
that the above map is symmetric in k1, . . . , k` and has values in H⊗sn. It is easy
to see, that the choice of representative only changes A`ψ up to a zeroset. Hence
A` is well defined. Clearly

‖(A`ψ)(n) − (A`φ)(n)‖n=
√

(n+ `)(n+ `− 1) · · · (n+ 1)‖ψ(n+`) − φ(n+`)‖
so A` is continuous from F+(H) into C(M`, E⊗`, µ⊗`). One immediately observes
that A`ψ ∈ L2(M`, E⊗`, µ⊗`,Fa,+(H)) if and only if

∞ >

∫

M`

‖A`ψ(k1, . . . , k`)‖2a,+dµ⊗n(k1, . . . , k`)

=
∞∑

n=0

(n+ 1)2a(n+ `)(n+ `− 1) · · · (n+ 1)‖ψ(n+`)‖2

⇐⇒
∞∑

n=0

(n+ `)2a+`‖ψ(n+`)‖2<∞

which is equivalent to ψ ∈ D(N
`
2 +a) if `

2 + a ≥ 0. In particular we see A`ψ is
almost everywhere F− `2 ,+(H) valued if ψ ∈ Fb(H). If ψ, φ ∈ D(N

`
2 ) we apply the

above calculations with a = 0 to obtain

‖A`ψ −A`φ‖2 =
∞∑

n=0

(n+ `)(n+ `− 1) · · · (n+ 1)‖ψ(n+`) − φ(n+`)‖2(D.4)

≤ ‖N `
2 (ψ − φ)‖.
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We summarise:

Lemma D.10. A` is a continuous linear map from F+(H) to C(M`, E⊗`, µ⊗`)
and from D(N

`
2 ) into L2(M`, E⊗`, µ⊗`,Fb(H)). Furthermore ψ ∈ D(N `/2) if and

only if A`ψ ∈ L2(M`, E⊗`, µ⊗`,Fb(H)) and if ψ ∈ Fb(H) we have A`ψ is almost
everywhere F− `2 ,+(H) valued.

Fix v ∈ H and ` ∈ N0. We then define a map z`(v) : C(M`, E⊗`, µ⊗`) →
C(M`+1, E⊗((`+1)), µ⊗`+1) by

(z0(v)ψ)(k) = v(k)ψ and (z`(v)ψ)(x, k) = v(x)ψ(k)

when ` ≥ 1. Note this defines a measurable map fromM`+1 into F+(H) and

(D.5)
∫

M`+1

‖Pn(z`(v)ψ)(k)‖dµ⊗`+1(k) = ‖v‖2‖ψ(n)‖2L2(M`,E⊗`,µ⊗`,H⊗sn)

where we define L2(M0, E⊗0, µ⊗0,H⊗sn) = H⊗sn. This implies z`(v) is well defined
and obviously linear. Equation (D.5) also shows z`(v) is continuous and maps
L2(M`, E⊗`, µ⊗`,Fb(H)) continuously into L2(M`+1, E⊗(`+1), µ⊗(`+1),Fb(H)). We
summarise

Lemma D.11. The map z`(v) introduced above is linear and continuous. Both
as a map from C(M`, E⊗`, µ⊗`) into the space C(M`+1, E⊗(`+1), µ⊗(`+1)) and from
L2(M`, E⊗`, µ⊗`,Fb(H)) into L2(M`+1, E⊗(`+1), µ⊗(`+1),Fb(H)).

Lastly, we look at permutation and symmetrisation operators. Let ` ≥ 1 and
σ ∈ S` where S` is the set of permutations of {1, . . . , `}. Define σ̃ :M` →M` by
σ̃(k1, . . . , k`) = (kσ(1), . . . , kσ(`)) and observe that σ̃ is E⊗`-E⊗` measurable. Define
σ̂ : C(M`, E⊗`, µ⊗`)→ C(M`, E⊗`, µ⊗`) by

(σ̂f)(k1, . . . , k`) = f(kσ(1), . . . , kσ(`)) = (f ◦ σ̃)(k1, . . . , k`).

σ̂ is a well defined isometry on C(M`, E⊗`, µ⊗`) since σ̃ is measurable and µ⊗` =
µ⊗` ◦ σ̃−1 so∫

M`

‖f (n)(k1, . . . , k`)‖2dµ⊗`(k) =

∫

M`

‖f (n)(kσ(1), . . . , kσ(`))‖2dµ⊗`(k),

A similar calculation shows that σ̂ is also isometric on L2(M`, E⊗`, µ⊗`,Fb(H)).
For π ∈ S` we have

σ̂π̂f = f ◦ π̃ ◦ σ̃ = f ◦ (̃σ ◦ π) = σ̂ ◦ πf
and hence the inverse map of σ̂ is σ̂−1. Note also that σ̂A`ψ = A`ψ since the ψ(n)

are symmetric in all coordinates. Define now

S` :=
1

(`− 1)!

∑

σ∈S`
σ̂.

For π ∈ S` we have

π̂S` =
1

(`− 1)!

∑

σ∈S`
π̂σ̂ =

1

(`− 1)!

∑

σ∈S`
π̂ ◦ σ = S`.

Hence S2
` = `S`. We summarise:

Lemma D.12. Let ` ∈ N. For σ ∈ S` the map σ̂ defines a linear bijective isom-
etry from C(M`, E⊗`, µ⊗`) to C(M`, E⊗`, µ⊗`) and from L2(M`, E⊗`, µ⊗`,Fb(H))
to L2(M`, E⊗`, µ⊗`,Fb(H)). Also σ̂A`ψ = A`ψ and if π ∈ S` then π̂σ̂ = π̂ ◦ σ.

Furthermore S` is continuous and linear from C(M`, E⊗`, µ⊗`) into the space
C(M`, E⊗`, µ⊗`) and it satisfies relation S2

` = `S`. Furthermore S` is also contin-
uous from L2(M`, E⊗`, µ⊗`,Fb(H)) into L2(M`, E⊗`, µ⊗`,Fb(H)).
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We can now calculate commutators

Lemma D.13. Let ω : M → Rp be measurable, v, g ∈ H and let f : Rp → R be
measurable. Define A0 = 1, A−1 = 0, z†0(v) = 0 and z†` (v) = S`z`−1(v) for ` ≥ 1.
We have the following operator identities for `, n ∈ N0

a⊕,`(g)A`ψ = A`a+(g) A`a
†
+(g)− a†⊕,`(g)A` = z†` (g)A`−1(D.6)

a⊕,`+1(g)z`(v) = z`(v)a⊕,`(g) a†⊕,`+1(g)z`(v) = z`(v)a†⊕,`(g)(D.7)

a⊕,`+1(g)S`+1 = S`+1a⊕,`+1(g) a†⊕,`+1(g)S`+1 = S`+1a
†
⊕,`+1(g)(D.8)

ϕ⊕,`+1(g)z`(v) = z`(v)ϕ⊕,`(g) ϕ⊕,`+1(g)S`+1 = S`+1ϕ⊕,`+1(g)(D.9)

A`ϕ+(v)n =

min{`,n}∑

q=0

(
n
q

)
ϕ⊕,`(v)n−q

(
q−1∏

c=0

z†`−c(v)

)
A`−q(D.10)

Γ⊕,`(−1)A` = (−1)`A`Γ+(−1).(D.11)

Let ` ≥ 1. If ψ ∈ D(f(dΓ(ω))) then A`ψ ∈ D(f(dΓ⊕(ω) + ω`)) where we define
ω`(k1, . . . , k`) = ω(k1) + · · ·+ ω(k`) and

f(dΓ⊕(ω) + ω`)A`ψ = A`f(dΓ+(ω))ψ.

Proof. First we note that equation (D.9) follow directly from (D.7) and (D.8).
Secondly we note that by continuity and linearity it is enough to prove the relations
(D.6)-(D.11) directly on the set A from equation (D.1). Thirdly we note that the
identities involving A` are trivial for ` = 0, so we only need to prove these when
` > 0. We start by proving the identities in equation (D.6).

Let h⊗n ∈ A (with h⊗0 = Ω). If n < `+1 then a⊕,`(v)A`h
⊗n = 0 = A`a+(v)h⊗n.

Otherwise we calculate

(a⊕,`(g)A`h
⊗n)(k1, . . . , k`) =

√
n(n− 1) . . . (n− `)h(k1) . . . h(k`)〈g, h〉h⊗n−`−1

= (A`a+(g)h⊗n)(k1, . . . , k`)

If n < `− 1 we find

A`a
†
+(g)h⊗n = 0 = a†⊕,`(g)A`h

⊗n = 0 = z†`−1(g)A`−1h
⊗n

If n ≥ `− 1 we have (in the calculation we define h⊗−1 = 0)

(A`a
†
+(v)h⊗n)(k1, . . . , k`) = A`

(
1√
n+ 1

n+1∑

a=1

h⊗a−1 ⊗ v ⊗ h⊗n−a+1

)
(k1, . . . , k`)

=
√
n(n− 1) . . . (n− `+ 2)

∑̀

a=1

h(k1) . . . v(ka) . . . h(k`)h
⊗n−`+1

+
√
n(n− 1) . . . (n− `+ 2)

n+1∑

a=`+1

h(k1) . . . h(k`)h
⊗a−1−` ⊗ v ⊗ h⊗n−a+1

=
∑̀

a=1

v(ka)(A`−1h
⊗n)(k1, . . . , k̂a, . . . , k`)

+
√
n(n− 1) . . . (n− `+ 1)h(k1) . . . h(k`)a

†
+(v)h⊗n−`

= (S`z`−1(v)A`−1h
⊗n)(k1, . . . , k`) + (a†⊕,`(v)A`h

⊗n)(k1, . . . , k`)
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This finishes the proof of equation (D.6). If n < ` we have (−1)`Γ⊕,`(−1)A`h
⊗n =

0 = A`Γ+(−1)h⊗n. Writing k = (k1, . . . , k`) we obtain for n ≥ `

(−1)`Γ⊕,`(−1)A`h
⊗n(k) = (−1)`

√
n(n− 1) . . . (n− `+ 1)h(k1) . . . h(k`)(−h)⊗n−`

= A`(−h)⊗n(k)

= A`Γ+(−1)h⊗n(k).

This proves equation (D.11). Next we let ψ ∈ C(M`+1, E⊗(`+1), µ⊗(`+1)) and
σ ∈ S`+1. We find

(a]⊕,`(v)σ̂ψ)(k) = a]+(v)(ψ ◦ σ̃)(k) = (σ̂a]⊕,`(v)ψ)(k)(D.12)

(a]⊕,`+2(v)z`+1(g)ψ)(x, k) = a]+(g)v(x)ψ(k) = (z`+1(g)a]⊕,`+1(v)ψ)(x, k)(D.13)

where ] is either nothing or †. Equation (D.12) shows (D.8) and equation (D.13)
shows (D.7) in the special case ` ≥ 1. The ` = 0 case is similar. We will now prove
(D.10). It clearly holds in the ` = 0 case. We proceed by induction in `. Adding
the two equations in (D.6) we find the n = 1 case. Using the n = 1 case and the
induction hypothesis we find

A`ϕ+(v)n+1 = ϕ⊕,`(v)n+1A` +

n∑

a=0

ϕ⊕,`(v)a(A`ϕ+(v)− ϕ⊕,`(v)A`)ϕ+(v)n−a

= ϕ⊕,`(v)n+1A` +
n∑

a=0

ϕ⊕,`(v)az†`−1(v)A`−1ϕ+(v)n−a

= ϕ⊕,`(v)n+1A` +

n∑

a=0

min{`−1,n−a}∑

q=0

(
n− a
q

)
ϕ⊕,`(v)n−q

(
q−1∏

c=−1

z†`−c−1(v)

)
A`−q−1

= ϕ⊕,`(v)n+1A` +

min{`,n+1}∑

q=1

n+1−q∑

a=0

(
n− a
q − 1

)
ϕ⊕,`(v)n+1−q

(
q∏

c=0

z†`−c(v)

)
A`−q

= ϕ⊕,`(v)n+1A` +

min{`,n+1}∑

q=1

(
n+ 1
q

)
ϕ⊕,`(v)n−q−1

q∏

c=0

z†`−c(v)A`−q

as desired. To prove the last statement we let ψ ∈ D(f(dΓ+(ω))). Note that

(f(dΓ+(ω))ψ)(n+`)(k1, . . . , kn+`) = f(ω(k1) + · · ·+ ω(kn+`))ψ
(n+`)(k1, . . . , kn+`)

is in Sn+`(H⊗(n+`)). Standard integration theory yields ψ(n+`)(k1, . . . , k`, ·, . . . , ·) ∈
D(f(dΓ(n)(ω) + ω`(k1, . . . , k`))) for almost all (k1, . . . , k`) ∈ M`. Furthermore we
observe

f(dΓ(n)(ω) + ω`(k1, . . . , k`))ψ
(n+`)(k1, . . . , k`, ·, . . . , ·)

= (f(dΓ+(ω))ψ)(n+`)(k1, . . . , k`, ·, . . . , ·)∫

M`

‖f(dΓ(n)(ω) + ω`(k1, . . . , k`))ψ
(n+`)(k1, . . . , k`, ·, . . . , ·)‖2dµ⊗`(k1, . . . , k`)

= ‖Pn+`f(dΓ+(ω))ψ‖2<∞.
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Since (PnA`ψ)(k1, . . . , k`) =
√
n(n− 1) · · · (n− `+ 1)ψ(n+`)(k1, . . . , k`, ·, . . . , ·) we

find that A`ψ ∈ D(f(dΓ⊕,`(ω) + ω`)) by Lemma D.9. We calculate

(Pnf(dΓ⊕,`(ω) + ω`)A`ψ)(k1, . . . , k`)

=
√
n(n− 1) · · · (n− `+ 1)f(dΓ(n)(ω) + ω`(k1, . . . , k`))ψ

(n+`)(k1, . . . , k`, ·, . . . , ·)
=
√
n(n− 1) · · · (n− `+ 1)(f(dΓ+(ω))ψ)(n+`)(k1, . . . , k`, ·, . . . , ·)

= (PnA`f(dΓ+(ω))ψ)(k1, . . . , k`).

This finishes the proof. �

Commutation relations with Weyl operators can also be calculated but only on
restricted domains. For future reference we prove

Lemma D.14. Let ψ ∈ D(N
1
2 ) and g ∈ H. Then the following holds

(D.14) A1W (g, 1)ψ =

∫ ⊕

M
W (g, 1)dµ(k)A1ψ + z0(g)W (g, 1)ψ

Proof. We calculate on an exponential vector ε(v)

(A1W (g, 1)ε(v))(k) = e−‖v‖
2/2−Im(〈f,g〉)A1(ε(v + g))(k)

= (v(k) + g(k))W (g, 1)ε(v)

=

(∫ ⊕

M
W (g, 1)dµ(k)A1ψ

)
(k) + z0(g)W (g, 1)ψ

Hence the result holds on the span of exponential vectors. The collection of expo-
nential vectors span a core for the number operator N and thus for N

1
2 . Hence a

general element in ψ ∈ D(N
1
2 ) may be approximated in N

1
2 -norm by a sequence

{ψn}∞n=1 inside the span of exponential vectors. Now Lemmas D.10 and D.11 imply

lim
n→∞

∫ ⊕

M
W (g, 1)dµ(k)A1ψn + z0(g)W (g, 1)ψn

=

∫ ⊕

M
W (g, 1)dµ(k)A1ψ + z0(g)W (g, 1)ψ

in L2(M, E , µ,Fb(H)). Applying equation (D.4) (which hold with equality if ` = 1)
we see that W (g, 1)ψn is Cauchy in N

1
2 norm and thus convergent. This implies

that W (g, 1)ψ ∈ D(N
1
2 ) and N

1
2W (g, 1)ψn converges to N

1
2W (g, 1)ψ. Appealing

to Lemma D.10 we see that

lim
n→∞

A1W (g, 1)ψn = A1W (g, 1)ψ,

in L2(M, E , µ,Fb(H)) finishing the proof. �

The pointwise annihilation operators are useful for calculating expectation values.
Before we start note that L2(M,F , µ,Fb(H)) is a tensor product H⊗Fb(H) under
the identification f ⊗ φ = k 7→ f(k)φ. If ω is a multiplication operator on H then

ω ⊗ 1 =

∫ ⊕

M
ω(k)dµ(k)

D(ω ⊗ 1) = {f ∈ L2(M,F , µ,Fb(H)) | ωf ∈ L2(M,F , µ,Fb(H))}.
In particular D(ω ⊗ 1) = D(|ω|⊗1). We now prove:

Theorem D.15. Let ψ, φ ∈ Fb(H) and B be a selfadjoint operator on H. Let
B+ = B1[0,∞)(B), B− = B1(−∞,0)(B). Then:
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(1) We have

D(dΓ(B+)
1
2 ) ∩ D(dΓ(B−)

1
2 ) = D(dΓ(|B|) 1

2 )(D.15)
D(dΓ(|B|)) ⊂ D(dΓ(B+)),D(dΓ(B−)),D(dΓ(B))(D.16)

and dΓ(B+)− dΓ(B−) = dΓ(B) on D(dΓ(|B|)).
(2) Assume B is a multiplication operator. Then ψ ∈ D(dΓ(|B|) 1

2 ) ⇐⇒
|B| 12A1ψ ∈ L2(M, E , µ,Fb(H)). Furthermore, for φ, ψ ∈ D(dΓ(|B|) 1

2 ) we
have

(D.17)
∑

σ∈±
σ〈dΓ(Bσ)

1
2φ, dΓ(Bσ)

1
2ψ〉 =

∫

M
B(k)〈A1φ(k), A1ψ(k)〉dµ(k),

along with A1ψ(k) ∈ Fb(H) almost everywhere on {|B(k)|> 0}.
(3) For ψ, φ ∈ D(dΓ(|B|) 1

2 ) ∩ D(N
1
2 ) we find A1ψ,A1φ ∈ D(|B| 12⊗1) and

(D.18) 〈dΓ(|B|) 1
2φ, dΓ(|B|) 1

2ψ〉 = 〈(|B| 12⊗1)A1φ, (|B|
1
2⊗1)A1ψ〉.

(4) For ψ ∈ D(dΓ(|B|)) ∩ D(N
1
2 ) and φ ∈ D(N

1
2 ) we find A1ψ ∈ D(|B|⊗1) =

D(B ⊗ 1) and

(D.19) 〈φ, dΓ(B)ψ〉 = 〈A1φ, (B ⊗ 1)A1ψ〉.
(5) Let v ∈ H and ψ ∈ Fb(H). If x 7→ v(k)(A1ψ)(k) is Fock space valued and

integrable in the weak sense then ψ ∈ D(a(v)) and

(D.20) a(v)ψ =

∫

M
v(k)(A1ψ)(k)dµ(k).

Proof. We start by proving the first four statements of the theorem when B is a
multiplication operator. Let A ∈ {B,B+, B−} and note A ≤ |B| everywhere. We
prove equations (D.15) and (D.16) as follows

D(dΓ(B+)
1
2 ) ∩ D(dΓ(B−)

1
2 )

=

{
(ψ(n))

∣∣∣∣
∞∑

n=1

∫

Mn

(B±(k1) + · · ·+B±(kn))|ψ(n)|2dµ⊗n <∞
}

=

{
(ψ(n))

∣∣∣∣
∞∑

n=1

∫

Mn

(|B(k1)|+ · · ·+ |B(kn)|)|ψ(n)|2dµ⊗n <∞
}

= D(dΓ(|B|) 1
2 )

D(dΓ(|B|)) =

{
(ψ(n))

∣∣∣∣
∞∑

n=1

∫

Mn

(|B(k1)|+ · · ·+ |B(kn)|)2|ψ(n)|2dµ⊗n <∞
}

⊂
{

(ψ(n))

∣∣∣∣
∞∑

n=1

∫

Mn

(A(k1) + · · ·+A(kn))2|ψ(n)|2dµ⊗n <∞
}

= D(dΓ(A)).

The identity dΓ(B+)− dΓ(B−) = dΓ(B) on D(dΓ(|B|)) is now a simple computa-
tion. To prove statement (2), we calculate using symmetry

∞∑

n=1

∫

Mn

(|B(k1)|+ · · ·+ |B(kn)|)|ψ(n)(k1, . . . , kn)|2dµ⊗n(k1, . . . , kn)

=

∫

M
|B(k1)|

∞∑

n=1

n

∫

Mn−1

|ψ(n)(k1, . . . , kn)|2dµ⊗n−1(k2, . . . , kn)dµ(k1)(D.21)

=

∫

M
|B(k)|‖A1ψ(k)‖2dµ(k).

This shows statement (2) except equation (D.17). We have however proven equation
(D.17) in the case φ = ψ and B ≥ 0. Using linearity and statement (1), we find
equation (D.17) holds for φ = ψ. One may now apply the polarisation identity to
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finish the proof of statement (2). Statement (3) follows trivially from statement (2)
when B is a multiplication operator.

We now prove statement (4). First we note that

B(k1)2 + · · ·+B(kn)2 ≤ (|B(k1)|+ · · ·+ |B(kn)|)2

so D(dΓ(|B|)) ⊂ D(dΓ(B2)
1
2 ). This implies A1ψ ∈ D(|B|⊗1) = D(B ⊗ 1) by

statement (3). If φ, ψ ∈ D(N
1
2 ) ∩ D(dΓ(|B|)) the formula in statement (4) will

follow from statements (1) and (2). To finish the proof, it is by Lemma D.10 enough
to find a sequence {φn}∞n=1 ⊂ D(N

1
2 ) ∩ D(dΓ(|B|)) that converges to φ ∈ D(N

1
2 )

in the graph norm of D(N
1
2 ).

Let φ ∈ D(N
1
2 ) and let φn = 1[−n,n](dΓ(|B|))φ. Since dΓ(|B|) and N 1

2 commute
strongly, we find φn ∈ D(N

1
2 ) ∩ D(dΓ(|B|)) and

‖N 1
2 (φn − φ)‖= ‖(1− 1[−n,n](dΓ(|B|)))N 1

2φ‖

which converges to 0. This finishes the proof when B is a multiplication operator.
For general B we may pick an L2 space K and unitary U : H → K such that

UBU∗ = ω is a multiplication operator on K. Note that Γ(U) transforms dΓ(f(B))
into dΓ(f(ω)) for any real, measurable f . This implies that statement (1) holds,
since it holds with Γ(U) applied on both sides.

Let Ñ be the number operator on Fb(K) and Ã1 denote the pointwise annihila-
tion operator with respect to Fb(K). First we prove that

U∗ ⊗ Γ(U)∗Ã1Γ(U) = A1

as maps on D(N
1
2 ). Since Γ(U)D(N

1
2 ) = D(Ñ

1
2 ) so both operators are defined

on the same sets. Now a sequence that converges in N
1
2 -norm will be mapped by

Γ(U) to a sequence that converges in Ñ
1
2 norm. Therefore we just need to show

the equality on a set that spans a core for N
1
2 . The set A = {h⊗n | h ∈ H, n ∈ N0}

satisfies this so we fix h⊗n ∈ A and calculate

U∗ ⊗ Γ(U)∗Ã1Γ(U)h⊗n(k) =
√
n(U∗ ⊗ Γ(U)∗)(Uh)(k)(Uh)⊗n−1

=
√
nh(k)h⊗n−1

= A1h
⊗n

as desired.
We now prove statement (3). Under the assumptions in statement (3) we have

Γ(U)ψ,Γ(U)φ ∈ D(dΓ(|ω|) 1
2 ) ∩ D(Ñ

1
2 ) so A1ψ,A1φ ∈ U∗ ⊗ Γ(U)∗D(|ω| 12⊗1) =

D(|B| 12⊗1). We may then calculate

〈dΓ(|B|) 1
2φ, dΓ(|B|) 1

2ψ〉 = 〈dΓ(|ω|) 1
2 Γ(U)φ, dΓ(|ω|) 1

2 Γ(U)ψ〉
= 〈(|ω| 12⊗1)Ã1Γ(U)φ, (|ω| 12⊗1)Ã1Γ(U)ψ〉
= 〈(|B| 12⊗1)A1φ, (|B|

1
2⊗1)A1ψ〉.

We now prove statement (4). Under the given assumptions Γ(U)ψ ∈ D(dΓ(|ω|)) ∩
D(Ñ

1
2 ) and so A1ψ ∈ U∗ ⊗ Γ(U)∗D(|ω|⊗1) = D(|B|⊗1). Hence

〈φ, dΓ(B)ψ〉 = 〈Γ(U)φ, dΓ(ω)Γ(U)ψ〉
= 〈Ã1Γ(U)φ, (ω ⊗ 1)Ã1Γ(U)ψ〉
= 〈A1φ, (B ⊗ 1)A1ψ〉.
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To prove statement (5) fix φ ∈ H⊗sn. Then
〈
φ, Pn

∫

M
v(k)(A1ψ)(k)dµ(k)

〉

=
√
n+ 1

∫

M

∫

Mn

v(k)φ(k1, . . . , kn)ψ(n+1)(k, k1, . . . , kn)dµ⊗n(k1, . . . , kn)dµ(k).

Using Fubinis Theorem we see

Pn

∫

M
v(k)(A1ψ)(k)dµ(k) = an+1(v)ψ(n+1).

Hence (an+1(v)ψ(n+1)) ∈ Fb(H) so ψ ∈ D(a(v)) and the desired equality holds. �

We can now prove the pull-trough formula.

Theorem D.16. Let α ∈ R2n, η ∈ R, f ∈ H2n and ω be a selfadjoint multi-
plication operator on H. Assume (α, f, ω) satisfies Hypothesis 1,2,3 and either
n ≤ 2 or Hypothesis 4. Define now E` = E(−1)`η(α, f, ω), F` := F(−1)`η(α, f, ω)
and ω`(k1, . . . , kn) = ω(k1) + · · · + ω(k`). Let λ ≤ E` for all ` and let R`(a) =
(F` − λ + a)−1 for a > 0. If ψ ∈ D(F0) = D(F1) and Aq(F0 − λ)ψ is Fock space
valued for all q ≤ `, then (A`ψ)(k) ∈ D(F0) = D(F1) for almost every k ∈M` and

A`ψ =−R`(ω`(·))
2n∑

i=1

αi

min{i,`}∑

q=1

(
i
q

)
ϕ⊕,`(fi)

i−q
(q−1∏

c=0

P`−cz`−c−1(fi)

)
A`−qψ

+R`(ω`(·))A`(F0 − λ)ψ.(D.22)

Assume furthermore, that Hypothesis 5 holds, η ≤ 0 and ψ is a ground state for
F0. Then we may take λ = E0 and we have A`ψ ∈ L2(M`, E⊗`, µ⊗`,Fb(H)).

Proof. By definition F`−λ ≥ 0 for all ` and so the resolvent R(ω`(k)) exists almost
everywhere since {ω ≤ 0} is a µ-zero set. Define the lifted operators on F+(H) and
C(M`, E⊗`, µ⊗`) respectively

F+,` = (−1)`ηΓ+(−1) + dΓ+(ω) +
2n∑

i=1

αiϕ+(fi)
i

F⊕,` = (−1)`ηΓ⊕,`(−1) + dΓ⊕,`(ω) + ω` +
2n∑

i=1

αiϕ⊕,`(fi)
i

with domains D(F+) = D(dΓ+(ω)) and D(F⊕) = D(dΓ⊕,`(ω) + ω`). Let ψ ∈
D(F0) = D(F1) and assume Aq(F0 − λ)ψ is Fock space valued for all q ≤ `. By
Lemma D.13 we have A`ψ ∈ D(F⊕). Using Lemmas D.3, D.4 and D.13 we also
obtain

g` : = −
2n∑

i=1

αi

min{i,`}∑

q=1

(
i
q

)
ϕ⊕,`(fi)

i−q
(q−1∏

c=0

S`−cz`−c−1(fi)

)
A`−qψ +A`(F0 − λ)ψ

= (F⊕,` − λ)A`ψ.

Assume now we have proven that g` is almost everywhere Fock space valued. Let
M be a zeroset such that:

• A`ψ is F−`/2,+(H) valued on M c (see Lemma D.10).
• g`(k) = (F+,` + ω`(k) + λ)(A`ψ)(k) and g`(k) ∈ Fb(H) for k ∈M c.
• R(ω`(k)) exists on M c.
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Fix k ∈M c. For any vector φ such that both R`(ω`(k))φ and φ is in N (this set is
dense by Proposition 3.1) we find using Lemma D.7 that

〈φ,A`ψ(k)〉+ = 〈(F` + ω`(k)− λ)R`(ω`(k))φ,A`ψ(k)〉+
= 〈R`(ω`(k))φ, g`(k)〉 = 〈φ,R`(ω`(k))g`(k)〉+.

Corollary D.6 shows that A`ψ(k) = R`(ω`(k))g`(k) for every k ∈ M c proving
equation (D.22) and that A`ψ is almost everywhere D(F0) = D(F1)-valued. We
now prove g` is Fock space valued by induction.

If ` = 1 then g` is a linear combination of A1(F0 − λ)ψ and functions of the
form k 7→ f i(k)ϕ(fi)

i−1ψ which all takes values in Fock space. Hence g1 is almost
everywhere Fock space valued and so equation (D.22) will hold for A1. Assume now
that g1, . . . , g`−1 are almost everywhere Fock space valued. Then equation (D.22)
holds for A1ψ, . . . , A`−1ψ and so Aiψ is almost everywhere D(F0) = D(F1)-valued
for i ≤ `− 1. Using Proposition 3.1 and Lemma D.3 we find for all q ≥ 1 that

ϕ⊕,`−q(fi)
i−qA`−qψ = k 7→ ϕ+(fi)

q(A`−qψ)(k) = k 7→ ϕ(fi)
q(A`−qψ)(k).

In particular ϕ⊕(fi)
i−qA`−qψ is almost everywhere Fock space valued for q ≥ 1.

Since zq(fi) and Sq map Fock space valued maps into Fock space valued maps, we
see that g` is Fock space valued, finishing the proof of (D.22).

For the second part we note that λ := cE0 ≤ E` for all ` by Theorem 3.3 and so
we may apply the formula since (F0 − λ)ψ = 0. We have already seen that A`ψ is
D(F0) = D(F1) valued almost everywhere. Hence the maps

k 7→ ϕ(fi)
q(A`ψ)(k) = ϕ⊕,`(fi)

qA`ψ

will also be measurable into Fb(H) for all q ≤ i. We will prove that they are square
integrable. First we note that there is a constant Cq,i,l such that

‖ϕ(fi)
qR`(ω`(k))‖2≤ Cq,i,`

(
1 +

1

ω`(k)

)2

.

Hence it is enough to prove that ω−2
` ‖g`‖2 and ‖g`‖2 are integrable which will now

be done via induction. If ` = 1 then g` is a linear combination of elements of the
form k 7→ fc(k)ϕ(fc)

c−1ψ and since fc ∈ D(ω−1) the claim follows.
Inductively we now assume that ω−2

u ‖gu‖2, ‖gu‖2 are integrable for all u < `.
Then k 7→ ϕ(fi)

q(Auψ)(k) is square integrable for all 1 ≤ i ≤ 2n, q ≤ i and u < `.
Now g` is a linear combination of functions of the form

(k1, . . . , k`) 7→ fc(kσ(1)) · · · fc(kσ(b))ϕ(fc)
c−b(A`−bψ)(kσ(b+1), . . . , kσ(`))

where σ ∈ S`, 1 ≤ b ≤ ` and c ∈ {1, . . . , 2n}. Combining the observations that
1

ω`(k) ≤ 1
ω(kσ(1))

, fc ∈ D(ω−1) and (ϕ(fc)
c−bA`−bψ)(kσ(b+1), . . . , kσ(`)) is square

integrable with respect to (kσ(b+1), . . . , kσ(`)) we find the desired result. �
Proof of Theorem 3.5 part (1). Lemma 5.1 and Theorem 3.4 shows it is enough to
prove the claim for the fiber operator. Lemmas 2.2 and A.10 show we may assume
H = L2(M,F , µ) with (M,F , µ) a σ-finite measure space. This case is dealt with
in Lemma D.10 and Theorem D.16. �

Appendix E. Q-spaces and functional analysis

Following the approach in [8] we have

Lemma E.1. Let {fα}α∈I ⊂ H and ω ≥ 0 be selfadjoint on H. Assume that
〈fα, g(ω)fβ〉 ∈ R for all α, β ∈ I and g ∈ Mb,+(R,R) where Mb,+(R,R) is the set
of real measurable maps from R to R which are bounded on [0,∞). Then there is a
real Hilbert space HR such that H = HR + iHR, e−tω maps HR to HR for all t ≥ 0
and fα ∈ HR for all α ∈ I.
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Proof. Let
H′ = SpanR{g(ω)fα | g ∈Mb,+(R,R), α ∈ I}.

Note that H′ is a real Hilbert space. For every f ∈ (H′)⊥\{0} we define

H(f) = SpanR{g(ω)f | g ∈Mb,+(R,R)}.
It is clear that e−tω maps H′ to H′ and H(f) to H(f), since it maps the spanning
set to the spanning set. Furthermore we define

A = {A ⊂ (H′)⊥ | H(f) ⊥ H(g) ∀ f 6= g ∈ A}.
We partially order A by inclusion and take a maximal totally ordered subset B.
Let B be the union of all elements in B. If f, g ∈ B, then there is an element in B
that contains both f and g (since B is totally ordered). This implies H(f) ⊥ H(g)
and so B ∈ B and is clearly the largest element. Define now

HR := H′ ⊕
⊕

a∈B
H(a),

which is clearly a real Hilbert space containing {fα}α∈I and it is left invariant by
e−tω since each component is. Assume now towards contradiction that there is an
element f ∈ H⊥R \{0}. Then for every g1, g2 ∈Mb(R,R), h ∈ B we would have

〈g2(ω)f, g1(ω)h〉 = 〈f, g2(ω)g1(ω)h〉 = 0

and so H(f) is orthogonal to H(h) for all h ∈ B. In particular B ∪ {f} ∈ A, and
so B ∪ {B ∪ {f}} is larger than B and totally ordered which is not possible. Hence
H⊥R \{0} = ∅.

Let {en}Nn=1 be an orthonormal basis for HR (N ≤ ∞) which is then also an
orthonormal basis for H. Hence we may write any element in H as

f =

N∑

j=1

(aj + ibj)ej =

N∑

j=1

ajej + i

N∑

j=1

bjej

as desired. This finishes the proof. �

Theorem E.2. Let HR ⊂ H be a real Hilbert space such that H = HR + iHR. Then
there exists a probability space (X,X ,Q) such that F(H) is unitarily isomorphic to
L2(X,X ,Q) via a map I. Furthermore the following properties hold

(1) If U is a bounded operator on H with ‖U‖≤ 1 such that UHR ⊂ HR then
IΓ(U)I∗ is positivity preserving.

(2) Assume ω ≥ 0 is selfadjoint and injective. If e−tω maps HR into HR for
all t ≥ 0 then Ie−tdΓ(ω)I∗ is positivity improving. If inf(σ(ω)) > 0 then
Ie−tdΓ(ω)I∗ is hypercontractive.

(3) If v ∈ HR then Iϕ(v)I∗ acts like multiplication by a normally distributed
variable ϕ̃(v) with mean 0 and variance ‖v‖2.

(4) If {vn}∞n=1 ⊂ HR converges to v ∈ HR then ϕ̃(vn)` converges to ϕ̃(v)` in
Lq(X,X ,Q) for all ` ∈ N and q ≥ 1.

(5) Fix α ∈ R2n and q, r > 0 and define

K = {f ∈ H2n | (α, f) satisfies part (1) of Hypothesis 1 and ‖f1‖< r}
There is a constant C := C(α, r, q) such that for all f ∈ K we have

‖eH̃I(α,f)‖q≤ C,

where H̃I(α, f) =
∑2n
j=1 αiϕ̃(fi).
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Proof. Everything in the first three points can be found in [4] and [17]. To prove
the fourth part note that for any N(0, σ2) distributed variable X we have

‖|X|a‖q= σaE[|X/σ|aq]1/q

Since X/σ is N(0, 1) distributed we find that E[|X/σ|qa]1/q depends only on q and
a. Write B(q, a) for this constant. Then we may calculate using Hölders inequality

‖ϕ̃(vn)` − ϕ̃(v)`‖q ≤
`−1∑

j=0

‖ϕ̃(vn)`−j−1ϕ̃(vn − v)ϕ̃(v)j‖q

≤
`−1∑

j=0

‖ϕ̃(vn)(`−j−1)‖3q‖ϕ̃(vn − v)‖3q‖ϕ̃(v)j‖3q

≤
`−1∑

j=0

B(3q, `− j − 1)B(3q, 1)B(3q, j)‖vn‖`−j−1‖vv − v‖‖v‖j

showing the desired result.
We now prove statement (5). The sum from j = 2 to j = 2n is uniformly

bounded below by a constant C1 by Lemma 4.1. Thus we now find

‖e−H̃I(α,f)‖q≤ e−C1E[e−qα1ϕ̃(f1)]1/q = e−C1(e−q
2α2

1‖f1‖2/2)1/q ≤ e−C1e−r
2α2

1q/2.

This finishes the proof. �

Lemma E.3. Let {An}∞n=1 be a sequence of selfadjoint operators on the Hilbert
space H converging to A in norm resolvent sense. If B is a bounded selfadjoint
operator on H then {An +B}∞n=1 will converge in norm resolvent sense to A+B

Proof. For λ > ‖B‖+1 we have ‖B(A− iλ)−1‖, ‖B(An− iλ)−1‖< ‖B‖
1+‖B‖ and so we

may calculate

(A+B − iλ)−1−(An +B − iλ)−1

=
∞∑

k=0

(A− iλ)−1(B(A− iλ)−1)k − (An − iλ)−1(B(An − iλ)−1)k

now each term in the series converge and for fixed k we may estimate

‖(A− iλ)−1(B(A− iλ)−1)k − (An − iλ)−1(B(An − iλ)−1)k‖≤ 2

λ

( ‖B‖
1 + ‖B‖

)k

which is summable. The conclusion now follows by dominated convergence. �
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Abstract: In this paper we investigate a family of models for a qubit interacting
with a bosonic field. More precisely, we find asymptotic limits of the Hamilto-
nian as the strength of the interaction tends to infinity. The main result has
two applications. First of all, we show that self-energy renormalisation schemes
similar to that of the Nelson model will never give a physically interesting result.
This is because any limit obtained through such a scheme would be independent
of the qubit. Secondly, we find that exited states exist in the massive Spin-Boson
models for sufficiently large interaction strengths. We are also able to compute
the asymptotic limit of many physical quantities.

1. Introduction

In this paper we consider a family of models for a qubit coupled to a bosonic field,
which we will call spin-boson type models. These models has been investigated
in many papers, so many properties are well known. Asymptotic completeness
along with basic spectral properties were discussed in [4] and [22]. Existence and
regularity of ground states were discussed in [1],[8],[11] and [13]. Furthermore,
properties at positive temperature were discussed in [15] and [18].

One of the main ingredients in the papers [1] and [11] is the so-called spin-
parity symmetry. In the paper [3], this symmetry is used to decompose the
Hamiltonian into two so-called fiber Hamiltonians, which are both perturba-
tions of Van Hove Hamiltonians. This symmetry is also essential to the analysis
conducted in this paper, and we will need the results from [3].

To avoid a full technical description in the introduction, we will specialise
to the 3-dimensional Spin-Boson model. In this case the bosons have dispersion
relation ω(k) =

√
m2 + ‖k‖2 with m ≥ 0 (here k ∈ R3). The interaction between
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the field and the qubit is parametrised by the functions

vg,Λ(k) = g
χΛ(ω(k))√

ω(k)

where {χΛ}Λ∈(0,∞) is a family functions such that vg,Λ ∈ D(ω−1/2). We will

assume that Λ 7→ χΛ(k) increases to 1 as Λ tends to infinity for all k ∈ R3. Let
2η > 0 be the size of the energy gap in the qubit and Hg,Λ,η be the Hamiltonian
of the full system. Then we show the following (See corollaries 4.4 and 4.3 below)
two things:

1. First we consider self-energy renormalisation schemes. In such schemes one
defines fg,η(Λ) = inf(σ(Hg,Λ,η)) and proves that {Hg,Λ,η − fg,η(Λ)}Λ∈(0,∞)

converges in strong or norm resolvent sense to an operator HRen
g,η . Using Corol-

lary 4.4 and Lemma 5.5 below we see:
(1) Λ 7→ inf(σ(Hg,Λ,η)) + ‖ω−1/21{ω>1}vg,Λ‖2 has a limit independent of η.

(2) (Hg,Λ,η−‖ω−1/21{ω>1}vg,Λ‖2+i)−1−(Hg,Λ,0−‖ω−1/21{ω>1}vg,Λ‖2+i)−1

converges to 0 in norm as Λ tends to ∞ .
From this we conclude that if a self-energy renormalisation scheme exists then
HRen
g,η must be independent of η, which is not physically interesting. In other

words, the contribution from the qubit disappears, as the ultraviolet cutoff is
removed. This result is similar to the result in [6], where it is shown, that the
mass-shell in a certain model becomes ”almost flat” as the ultraviolet cutoff
is removed. Thus the contribution from the matter particle vanishes as the
ultraviolet cutoff is removed.

2. If m > 0 we can take g to infinity instead. In this case the result yields that
an exited state exists for g very large. Furthermore, the energy difference
between the exited state and the ground state converges to 0. Taking g to
infinity is not a purely mathematical exercise as experiments can go beyond
the ultra deep coupling regime. This was achieved by Yoshihara, K. et al. and
published in Nature Physics [25].

We will also prove two smaller results. The first result is about regularity of
ground states with respect to the number operator. The result only applies to
the infrared regular case, but is close to optimal and extends the results found in
[13]. The second result is a condition under which the massive spin-boson model
has an exited state in the mass gap.

2. Notation and preliminaries

We start by fixing notation. If X is a topological space we will write B(X) for
the Borel σ-algebra. Furthermore if (M,F , µ) is a measure space we will for
1 ≤ p ≤ ∞ write Lp(M,F , µ) for the corresponding Lp space.

Throughout this paper H will denote the state space of a single boson which
we will assume to be a separable Hilbert space. Let Sn denote projection of H⊗n
onto the subspace of symmetric tensors. The bosonic (or symmetric) Fock space
is defined as

Fb(H) =

∞⊕

n=0

Sn(H⊗n).
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IfH = L2(M,F , µ) where (M,F , µ) is a σ-finite measure space then Sn(H⊗n) =
L2
sym(Mn,F⊗n, µ⊗n). An element ψ ∈ Fb(H) is an infinite sequence of elements

which is written as ψ = (ψ(n)). We also define the vacuum Ω = (1, 0, 0, . . . ).
Furthermore, we will write

Sn(f1 ⊗ · · · ⊗ fn) = f1 ⊗s · · · ⊗s fn.

For g ∈ H one defines the annihilation operator a(g) and creation operator a†(g)
on symmetric tensors in Fb(H) by a(g)Ω = 0, a†(g)Ω = g and

a(g)(f1 ⊗s · · · ⊗s fn) =
1√
n

n∑

i=1

〈g, fi〉f1 ⊗s · · · ⊗s f̂i ⊗s · · · ⊗s fn

a†(g)(f1 ⊗s · · · ⊗s fn) =
√
n+ 1g ⊗s f1 ⊗s · · · ⊗s fn

where f̂i means that fi is omitted from the tensor product. One can show that
these operators extends to closed operators on Fb(H) and that (a(g))∗ = a†(g).
Furthermore we have the canonical commutation relations which states

[a(f), a(g)] = 0 = [a†(f), a†(g)] and [a(f), a†(g)] = 〈f, g〉.

One now introduces the selfadjoint field operators

ϕ(g) = a(g) + a†(g).

Let ω be a selfadjoint and non-negative operator on H with domain D(ω). Write
(1⊗)k−1ω(⊗1)n−k for the operator B1 ⊗ ... ⊗ Bn where Bk = ω and Bj = 1 if
j 6= k. We then define the second quantisation of ω to be the selfadjoint operator

dΓ (ω) = 0⊕
∞⊕

n=1

(
n∑

k=1

(1⊗)k−1ω(⊗1)n−k
)
|Sn(H⊗n) . (2.1)

If ω is a multiplication operator then dΓ (ω) acts on elements in Sn(H⊗n) as
multiplication by ωn(k1, . . . , kn) = ω(k1) + · · · + ω(kn). The number operator
is defined as N = dΓ (1). Let U be unitary from H to K. Then we define the
unitary from Fb(H) to Fb(K) by

Γ (U) = 1⊕
∞⊕

n=1

U⊗n |Sn(H⊗n),

For n ∈ N0 = N ∪ {0} we also define the operators dΓ (n)(ω) = dΓ (ω) |Sn(H⊗n)

and Γ (n)(U) = Γ (U) |Sn(H⊗n). See [3] for a proof of the following lemma:

Lemma 2.1. Let ω ≥ 0 be a selfadjoint operator defined on the Hilbert space H
and let m = inf(σ(ω)). For n ≥ 1 we have

σ(dΓ (n)(ω)) = {λ1 + · · ·+ λn | λi ∈ σ(ω)},
inf(σ(dΓ (n)(ω))) = nm.

Furthermore, dΓ (ω) will have compact resolvents if and only if ω has compact
resolvents. Furthermore dΓ (n)(ω) is injective for n ≥ 1 if ω is injective.
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We now introduce the Weyl representation. For any g ∈ H we define the corre-
sponding exponential vector

ε(g) =

∞∑

n=0

g⊗n√
n!
.

One may prove that if D ⊂ H is dense then the set {ε(f) | f ∈ D} is a linearly
independent total subset of Fb(H). Let U(H) be the unitaries from H into H.
Fix now U ∈ U(H) and h ∈ H. The corresponding Weyl transformation is the
unique unitary map W (h, U) satisfying

W (h, U)ε(g) = e−‖h‖
2/2−〈f,Ug〉ε(h+ Ug).

for all g ∈ H. One may easily check that (h, U) 7→ W (h, U) is strongly continu-
ous. Furthermore one may check the relation

W (h1, U1)W (h2, U2) = e−iIm(〈h1,U1h2〉)W ((h1, U1)(h2, U2)), (2.2)

where (h1, U1)(h2, U2) = (h1 + U1h2, U1U2). If ω is selfadjoint and f ∈ H then
we have

eitdΓ (ω) = Γ (eitω) = W (0, eitω) (2.3)

eitϕ(if) = W (tf, 1). (2.4)

The following lemma is important and well known (see e.g [2] and [5]):

Lemma 2.2. Let ω ≥ 0 be selfadjoint and injective. If g ∈ D(ω−1/2) then ϕ(g)
is dΓ (ω)1/2 bounded. In particular ϕ(g) is N1/2 bounded. We have the following
bound

‖ϕ(g)ψ‖≤ 2‖(ω−1/2 + 1)g‖‖(dΓ (ω) + 1)1/2ψ‖
which holds on D(dΓ (ω)1/2). In particular ϕ(g) is infinitesimally dΓ (ω) bounded.
Furthermore σ(dΓ (ω) + ϕ(g)) = −‖ω−1/2g‖2+σ(dΓ (ω)).

3. The Spin-Boson model

Let σx, σy, σz denote the Pauli matrices

σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)

and define e1 = (1, 0) and e−1 = (0, 1). The total system has the Hamiltonian

Hη(v, ω) := ησz ⊗ 1 + 1⊗ dΓ (ω) + σx ⊗ ϕ(v),

which is here parametrised by v ∈ H, η ∈ C and ω selfadjoint on H. We will also
need the fiber operators:

Fη(v, ω) = ηΓ (−1) + dΓ (ω) + ϕ(v).
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acting in Fb(H). If the spectra are real we define

Eη(v, ω) := inf(σ(Hη(v, ω)))

Eη(v, ω) := inf(σ(Fη(v, ω))).

For ω selfadjoint on H we define

m(ω) = inf{σ(ω)} and mess(ω) = inf{σess(ω)}.
Standard perturbation theory and Lemma 2.2 yields:

Proposition 3.1. Let ω ≥ 0 be selfadjoint and injective, v ∈ D(ω−1/2) and
η ∈ C. Then the operators Fη(v, ω) and Hη(v, ω) are closed on the respective
domains

D(Fη(v, ω)) = D(dΓ (ω))

D(Hη(v, ω)) = D(1⊗ dΓ (ω))

and given any core D of ω the linear span of the following sets

J (D) := {Ω} ∪
∞⋃

n=1

{f1 ⊗s · · · ⊗s fn | fj ∈ D}

J̃ (D) := {f1 ⊗ f2 | f1 ∈ {e1, e−1}, f2 ∈ J (D)}
is a core for Fη(v, ω) and Hη(v, ω) respectively. Furthermore both operators are
selfadjoint and semibounded if η ∈ R and they have compact resolvents if ω has
compact resolvents.

From the paper [3] we find the following theorem:

Theorem 3.2. Let φ = (φ1, φ−1) = e1 ⊗ φ1 + e−1 ⊗ φ−1 be an element in

Fb(H)2 = Fb(H)⊕Fb(H) ≈ C2 ⊗Fb(H). Write φi = (φ
(k)
i ) for i ∈ {−1, 1}. Let

i ∈ {−1, 1}. Define φ̃i = (φ̃
(k)
i ) where

φ̃
(k)
i =

{
φ
(k)
i k is even

φ
(k)
−i k is odd

and V (φ1, φ−1) = (φ̃1, φ̃−1). Then

(1) V is unitary with V ∗ = V .
(2) If ω ≥ 0 is selfadjoint and injective then V 1 ⊗ dΓ (ω)V ∗ = 1 ⊗ dΓ (ω). If

furthermore η ∈ R and v ∈ D(ω−1/2) then

V Hη(v, ω)V ∗ = F−η(v, ω)⊕ Fη(v, ω).

(3) Let ω ≥ 0 be selfadjoint and injective, η ∈ R and v ∈ D(ω−1/2). Then
Eη(v, ω) = E−|η|(v, ω) and Hη(v, ω) has a ground state if and only if the
operator F−|η|(v, ω) has a ground state. This is the case if m(ω) > 0, and it
is non degenerate if η 6= 0. Also

inf(σess(F|η|(v, ω))) = E−|η|(v, ω) +mess(ω)

inf(σess(Hη(v, ω))) = Eη(v, ω) +mess(ω)

and E|η|(v, ω) > E−|η|(v, ω) if and only if both η 6= 0 and m(ω) 6= 0.
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(4) Let ω ≥ 0 be selfadjoint and injective, η ∈ R and v ∈ D(ω−1/2). If φ is a
ground state for Hη(v, ω) then

V φ =

{
e−sign(η) ⊗ ψ η 6= 0

e−1 ⊗ ψ−1 + e1 ⊗ ψ1 η = 0

where ψ is a ground state for F−|η|(v, ω) and ψ1, ψ−1 are either 0 or a ground
state for F0(v, ω).

4. Results

In this section we state the results which are proven in this paper. Throughout
this section ω will always denote an injective, non negative and selfadjoint op-
erator on H. Furthermore, we will write m = m(ω) and mess = mess(ω). The
main technical result is the following theorem:

Theorem 4.1. Let {vg}g∈(0,∞) ⊂ D(ω−1/2) and Pω denote the spectral measure
corresponding to ω. Assume that there is m̃ > 0 such that:

(1) {Pω([0, m̃])vg}g∈(0,∞) converges to v ∈ D(ω−1/2) in the graph norm of ω−1/2.

(2) ‖ω−1Pω(m̃,∞)vg‖ diverges to ∞ as g tends to infinity.

Then the g-dependent family of operators given by

W (ω−1Pω(m̃,∞)vg, 1)Fη(vg, ω)W (ω−1Pω(m̃,∞)vg, 1)∗ + ‖ω−1/2Pω(m̃,∞)vg‖2

= ηW (2ω−1Pω(m̃,∞)vg,−1) + dΓ (ω) + ϕ(Pω(0, m̃])vg) (4.1)

:= F̃η,m̃(vg, ω)

is uniformly bounded below by −|η|− supg∈(0,∞)‖Pω(0, m̃])vg‖2. Furthermore,

{F̃η,m̃(vg, ω)}g∈(0,∞) converges to dΓ (ω) + ϕ(v) in norm resolvent sense as g
tends to ∞.

The assumption in part (1) is critical. Divergence where ω is small can lead to
problems. This is proven in proposition 5.8 below.

In the strongly coupled Spin-Boson model one usually has vg = gṽ where

ṽ ∈ D(ω−1/2) and g ∈ (0,∞) is the strength of the interaction. We can now
answer what happens as g goes to ∞.

Corollary 4.2. Let v ∈ H, η ∈ R and assume m > 0. Then there exists g0 > 0
such that Eη(gv, ω) is a non degenerate eigenvalue of Fη(gv, ω) when g > g0.
Furthermore, one may pick a family of normalised vectors {ψg}g∈[g0,∞) such
that g 7→ ψg is smooth, Fη(gv, ω)ψg = Eη(gv, ω)ψg and

lim
g→∞

‖ψg − e−g
2‖ω−1v‖2ε(−gω−1v)‖ = 0,

lim
g→∞

〈ψg, Nψg〉 − g2‖ω−1v‖2
g

= 0,

lim
g→∞

(Eη(gv, ω) + g2‖ω−1/2v‖2) = 0.

If η < 0 then g 7→ Eη(gv, ω) + g2‖ω−1/2v‖ is strictly increasing.
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Corollary 4.3. Let v ∈ H and η ∈ R. If m > 0 there is g0 > 0 such that

Hη(gv, ω) has an exited state with energy Ẽη(gv, ω) for g > g0. Furthermore

lim
g→∞

(Eη(gv, ω)− Ẽη(gv, ω)) = 0.

Corollary 4.4. Assume H = L2(M,F , µ) and ω is a multiplication operator
on this space. Let v : M → C is measurable and that {χg}g∈(0,∞) is a col-
lection of functions from R into [0, 1]. Assume g 7→ χg(x) is increasing and
converges to 1 for all x ∈ R. Assume furthermore that k 7→ χg(ω(k))v(k) ∈
D(ω−1/2) and that there is m̃ > 0 such that ṽ := 1{ω≤m̃}v ∈ D(ω−1/2). If k 7→
ω(k)−1v(k)1{ω>1}(k) /∈ H there are unitary maps {Vg}g∈(0,∞) and {Ug}g∈(0,∞)

independent of η such that:

(1) {VgFη(vg, ω)V ∗g +‖ω−1/21{ω>m̃}vg‖2}g∈(0,∞) converges in norm resolvent sense
to the operator dΓ (ω) + ϕ(ṽ) as g tends to infinity.

(2) {UgHη(vg, ω)U∗g +‖ω−1/21{ω>m̃}vg‖2}g∈(0,∞) is uniformly bounded below and
converges in norm resolvent sense to the operator

H̃ := (dΓ (ω) + ϕ(ṽ))⊕ (dΓ (ω) + ϕ(ṽ))

as g tends to ∞. This implies

(Hη(vg, ω)+‖ω−1/21{ω>m̃}vg‖2+i)−1−(H0(vg, ω)+‖ω−1/21{ω>m̃}vg‖2+i)−1

will converge to 0 in norm as g tends to ∞.

To prove a result similar to Corollary 4.2 in the massless case one needs to work
a bit harder. First we shall need

Theorem 4.5. Assume H = L2(M,K, ν) and ω is multiplication by a measur-
able function. Let v ∈ D(ω−1/2), g ∈ (0,∞) and η ≤ 0. Assume that Fη(gv, ω)

has a ground state ψg,η = (ψ
(n)
g,η ). Then

(1) We may choose ψg,η such that ψ
(0)
g,η > 0 and (−1)nv⊗nψ(n)

g,η > 0 almost every-
where on {v 6= 0}n.

(2) Almost everywhere the following inequality holds

|ψ(n)
g,η (k1, . . . , kn)|≤ gn√

n!

|v(k1)|· · · |v(kn)|
ω(k1) · · ·ω(kn)

.

In particular ψ
(n)
g,η is zero outside {v 6= 0}n almost everywhere and if v ∈

D(ω−1) then ‖ψ(n)
g,η‖ goes to zero like gn for g tending to 0.

(3) Assume v ∈ D(ω−1), f : N0 → [0,∞) is a function and assume Fη(gv, ω) has
a ground state for all η ≤ 0. Then Ha(gv, ω) has a ground state φg,a for all
a ∈ R and we have

αg,f,v,ω :=

∞∑

n=0

f(n)2g2n‖ω−1v‖2n
n!

<∞ ⇐⇒ ψg,η ∈ D(f(N)) ∀η ≤ 0

⇐⇒ φg,a ∈ D(1⊗ f(N)) ∀a ∈ R

In particular ψg,η ∈ D( p
√
N !) and φg,η ∈ D(1⊗ p

√
N !) for all p > 2.

B.4. Results 97



8 Thomas Norman Dam, Jacob Schach Møller

This extends the result which was proven using path measures in [13]. Similar
point wise estimates can also be found in [7]. In the last two results we will
assume H = L2(Rν ,B(Rν), λν) where λν is the Lebesgue measure. Furthermore
we assume ω is a multiplication operator.

Theorem 4.6. Let v ∈ D(ω−1) and η ≤ 0. Then there is a family {ψg}g∈R of
normalised ground states for Fη(gv, ω) and

lim
g→∞

(Eη(gv, ω) + g2‖ω−1/2v‖2) = 0.

lim
g→∞

〈ψg, Nψg〉 − g2‖ω−1v‖2
g2

= 0.

The following is a simple criterion for the existence of an exited state in the
massive Spin-Boson model.

Theorem 4.7. Assume m > 0 and
∫

Rν

|v(k)|2
ω(k)−mdk =∞. (4.2)

Then both Fη(v, ω) and F−η(v, ω) have a ground state and Hη(gv, ω) will have
an excited state. The condition is satisfied if ω ∈ C2(Rν ,R), ν ≤ 2 and there is
x0 ∈ Rν such that ω(x0) = m and |v| is bounded from below by a positive number
on a ball around x0. This holds for the physical model with ν ≤ 2.

5. Proof of the main technical result

In this section we shall investigate operators of the form

F̃η(v, ω) := Γ (ω) + ηW (v,−1)

indexed by η ∈ R, v ∈ H and ω selfadjoint and non negative on H.

Proposition 5.1. Assume η ∈ R, v ∈ H and ω is selfadjoint, non negative and

injective on H. Then F̃η(v, ω) is selfadjoint on D(dΓ (ω)). Furthermore F̃η(v, ω)

is bounded from below by −|η| and F̃η(v, ω) has compact resolvents if ω has
compact resolvents.

Proof. Using equation (2.2) we see

W (v,−1)W (v,−1) = e−iIm(〈v,−v〉)W (v − v, (−1)2) = W (0, 1) = 1

so W (v,−1) = W (v,−1)−1 = W (v,−1)∗ since W (v,−1) is unitary. Hence

F̃η(v, ω) = dΓ (ω) + ηW (v,−1) is selfadjoint on D(dΓ (ω)). Furthermore the
lower bound follows from dΓ (ω) ≥ 0 by Lemma 2.1 and −1 ≤ W (v,−1) ≤ 1. If
ω has compact resolvents, then so does dΓ (ω) by Lemma 2.1 and hence

(Fη(v, ω) + i)−1 = (dΓ (ω) + i)−1 + η(dΓ (ω) + i)−1W (v,−1)(Fη(v, ω) + i)−1

will be compact. �
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Lemma 5.2. Assume that {vg}g∈(0,∞) is a collection of elements in H such that
‖vg‖ diverges to ∞. Then W (vg,−1) converges weakly to 0 as g goes to ∞.

Proof. By [26, Theorem 4.26] it is enough to check a dense subset. By linearity
it is enough to check a set that spans a dense set. Hence it is enough to check
exponential vectors ε(g) for any g ∈ H. We calculate

〈ε(g1),W (vg,−1)ε(g2)〉 = e−‖vg‖
2/2+〈vg,g2〉〈ε(g1), ε(vg − g2)〉

= e−‖vg‖
2/2+〈vg,g2〉+〈g1,vg〉−〈g1,g2〉,

which converges to 0. �

The following Lemma contains all the technical constructions we need. The tech-
niques goes back to Glimm and Jaffe (see [9]) but has also been used in [3].

Lemma 5.3. Assume ω is selfadjoint, non negative and injective on H. Let Pω
be the spectral measure of ω and let m̃ > 0. Define the measurable function
fk : R→ R

fk(x) = x1(0,m̃](x) +

∞∑

n=0

(n+ 1)2−k1(n2−k,(n+1)2−k]∩(m̃,∞)(x).

along with ωk =
∫
R fk(λ)dPω(λ). Then the following holds

1. F̃η(v, ωk) converges to F̃η(v, ω) in norm resolvent sense uniformly in v.
2. Let {vg}g∈(0,∞) be a collection of elements in Pω((m̃,∞))H. For each k ∈ N,

there are Hilbert spaces H1,k,H2,k, selfadjoint operators ω1,k, ω2,k ≥ 0, a
collection of elements {ṽg,k}g∈(0,∞) ⊂ H1,k and a collection of unitary maps
{Ug,k}g∈(0,∞) such that

Ug,k : Fb(H)→ Fb(H1,k)⊕
( ∞⊕

n=1

Fb(H1,k)⊗ Sn((H2,k)⊗n)

)
,

ω1,k ≥ 2−k has compact resolvents, ‖vg‖= ‖ṽk,g‖ for all g > 0 and

Ug,kF̃η(vg, ωk)U∗g,k =F̃η(ṽg,k, ω1,k)

⊕
∞⊕

n=1

(
F̃(−1)nη(ṽg,k, ω1,k)⊗ 1 + 1⊗ dΓ (n)(ω2,k)

)

for all η ∈ R.

Proof. (1): We may pick a σ-finite measure space (M,F , µ) and a unitary map
U : H → L2(M,F , µ) such that ω̃ = UωU∗ is multiplication by a strictly
positive and measurable map. Conjugation with the unitary map Γ (U), Lemma
A.1 and UωkU

∗ = fk(UωkU
∗) gives us

‖(F̃η(v, ωk)− ξ)−1 − (F̃η(v, ω)− ξ)−1‖
= ‖(F̃η(Uv, fk(UωU∗))− ξ)−1 − (F̃η(Uv,UωU∗)− ξ)−1‖
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for all ξ ∈ R\C. Hence we may assume ω is multiplication by a strictly positive
map, which we shall also denote ω. Using standard theory for the spectral calcu-
lus (see [23]) we find ωk is multiplication by ωk(x) := fk(ω(x)). Write ω = ω∞
and note that ωk > 0 for all k ∈ N ∪ {∞} by construction. Furthermore,

sup
x∈M

∣∣∣∣
ωk(x)− ω(x)

ω(x)

∣∣∣∣ ≤
2−k

m̃
. (5.1)

Now dΓ (n)(ωk) acts on L2
sym(Mn,F⊗n, µ⊗n) like multiplication with the map

ω
(n)
k (x1, . . . , xn) = ωk(x1) + · · ·+ ωk(xn)

for all k ∈ N∪{∞}. Equation (5.1) gives that |ω(n)(x)−ω(n)
k (x)|≤ 2−km̃−1ω(n)(x)

for all x ∈ Mn so D(dΓ (n)(ω)) ⊂ D(dΓ (n)(ωk)) for all k ∈ N and n ∈ N0. Fur-
thermore we find for ψ ∈ D(dΓ (n)(ω)) that

‖(dΓ (n)(ω)− dΓ (n)(ωk))ψ‖≤ m̃−12−k‖dΓ (n)(ω)ψ‖.
Hence for all ψ ∈ D(dΓ (ω)) we have ψ ∈ D(dΓ (ωk)) and

‖(F̃η(v, ω)− F̃η(v, ωk))ψ‖= ‖(dΓ (ω)− dΓ (ωk))ψ‖≤ 2−k

m̃
‖dΓ (ω)ψ‖.

Let ε > 0, ξ ∈ C\R. We now estimate

‖((F̃η(v, ω) + ξ)−1 − (F̃η(v, ωk) + ξ)−1)ψ‖

≤ 1

|Im(ξ)| ‖(dΓ (ω)− dΓ (ωk))(F̃η(v, ω) + ξ)−1ψ‖

≤ 1

|Im(ξ)|
2−k

m̃
‖dΓ (ω)(F̃η(v, ω) + ξ)−1ψ̃‖

≤ 1

|Im(ξ)|
2−k

m̃

(
1 +

1

|Im(ξ)| +
|ξ|
|Im(ξ)|

)
‖ψ‖

which shows norm resolvent convergence uniformly in v.
(2): For each k ∈ N we define

Ck =

{
c ∈ N0

∣∣∣∣Pc,k := Pω((m̃,∞) ∩ (c2−k, (c+ 1)2−k]) 6= 0

}

For each c ∈ Ck let Kc,k be a Hilbert space with dimension dim(Pc,k)−1. In case
this number is infinity we pick a Hilbert space we countably infinite dimension.
Define K = Pω([0, m̃])H and note that K reduces ω. Define the spaces

H1,k = L2(Ck,B(Ck), τCk) = `2(Ck) and H2,k = K ⊕
⊕

c∈Ck
Kc,k

where τCk is the counting measure on Ck. We now define ω1,k to be multiplication
by the map fk(c) = (c+ 1)2−k in H1,k and

ω2,k = ω |K ⊕
⊕

c∈Ck
(c+ 1)2−k.
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Note ω1,k ≥ 2−k and ω2,k ≥ 0 since Ck ⊂ N0. Write Ck = {ni,k}Ki=1 where
K ∈ N ∪ {∞} and ni,k < ni+1,k. Then {1{ni,k}}Ki=1 is an orthonormal basis of

eigenvectors for ω1,k corresponding to the eigenvalues {(ni,k + 1)2−k}Ki=1. This
collection of eigenvalues is either finite or diverges to infinity so ω1,k will have
compact resolvents. For each g ∈ (0,∞) and c ∈ Ck we define the vector

ψc,g,k =

{
Pc,kvg
‖Pc,kvg‖ , Pc,kvg 6= 0

Some normalized element in Pc,kH otherwise

and note {ψc,g,k | c ∈ Ck} is an orthonormal collection of states. We also define

H̃c,g,k =

{
ψ ∈ Pc,kH

∣∣∣∣ψ ⊥ ψc,g,k
}

and note {H̃c,g,k | c ∈ Ck} consists of orthogonal subspaces. We then define

H1,g,k = Span{ψc,g,k | c ∈ Ck} and H2,g,k =
⊕

c∈Ck
H̃c,g,k.

Now ω ≥ 0 is injective and so

I = Pω((0, m̃]) +

∞∑

c=0

Pc,k = Pω([0, m̃]) +
∑

c∈Ck
Pc,k,

which implies H = H1,g,k ⊕ K ⊕H2,g,k. Note that vg ∈ H1,g,k by construction.

Let Bc,g,k be an orthonormal basis for H̃c,g,k and let Bg,k = ∪c∈CkBc,g,k which is
an orthonormal basis for H2,g,k. Let B ⊂ K be an orthonormal basis for K and
define Bg,k = {ψc,g,k | c ∈ Ck} which is an orthonormal basis for H1,g,k. Define
D = Bg,k ∪Bg,k ∪B which is an orthonormal basis for H.

Let Vc,g,k be a unitary from H̃c,g,k to Kc,k which exists since the spaces have
the same dimension. Define Qg,k : H1,g,k → H1,k to be the unique unitary map
which satisfies Qg,kψc,g,k = 1{c}. Then we define

Ug,k = Qg,k ⊕ 1⊕
⊕

c∈Ck
Vc,g,k : H → H1,k ⊕H2,k.

We now prove that

U∗g,kω1,k ⊕ ω2,kUg,k = ωk. (5.2)

Let ψ ∈ Bc,g,k ∪ {ψc,g,k} for some c ∈ Ck. Using the functional calculus we find
ψ = Pc,kψ ∈ D(ωk) and

ωkψ = ωkPc,kψ = (c+ 1)2−kPψc,g,k = (c+ 1)2−kψ. (5.3)

Furthermore for ψ ∈ B ⊂ K we find that ψ ∈ D(ωpk) for all p ∈ N and we have
the inequality ‖ωpkψ‖≤ m̃p‖ψ‖. In particular D is an orthonormal basis for H
consisting of analytic vectors for ωk so D spans a core for ωk. Hence it is enough
to prove equation (5.2) on D.
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Let ψ ∈ Bg,k ∪ Bg,k and pick c ∈ Ck such that ψ ∈ Bc,g,k ∪ {ψc,g,k}. If ψ =
ψc,g,k then Ug,kψ = (1{c}, 0). Now 1{c} ∈ D(ω1,k) with ω1,k1{c} = (c+1)2−k1{c}
so Ug,kψ = (1{c}, 0) ∈ D(ω1,k ⊕ ω2,k) and

U∗g,kω1,k ⊕ ω2,kUg,kψ = (c+ 1)2−kU∗g,k(1{c}, 0) = (c+ 1)2−kψ = ωkψ

by equation (5.3). If ψ ∈ Bc,g,k then Ug,kψ = (0, Vc,g,kψ). By definition we have
Vc,g,kψ ∈ Kc,k ⊂ D(ω2) with ω2,kVc,g,kψ = (c + 1)2−kVc,g,kψ. Hence Ug,kψ =
(0, Vc,g,kψ) ∈ D(ω1,k ⊕ ω2,k) and

U∗g,kω1,k ⊕ ω2,kUg,kψ = (c+ 1)2−kU∗g,k(1{c}, 0) = (c+ 1)2−kψ = ωkψ

by equation (5.3). If ψ ∈ B ⊂ K we have ψ ∈ D(ωk)∩D(ω) and ωkψ = ωψ ∈ K.
In particular Ug,kψ = (0, ψ) ∈ D(ω1,k⊕ω2,k) and Ug,kωkψ = (0, ωkψ) = (0, ωψ).
Thus we find

U∗g,kω1,k ⊕ ω2,kUg,kψ = U∗g,k(0, ωψ) = ωkψ.

This proves equation (5.2). As earlier noted vg ∈ H1,g,k so Ug,kvg is of the form
(ṽg,k, 0) with ‖ṽg,k‖= ‖vg‖. Using Lemma A.1 we find

Γ (Ug,k)F̃η(vg, ωk)Γ (Ug,k)∗ = F̃η((ṽg,k, 0), ωk,1 ⊕ ωk,2).

Letting L1 be the isomorphism from Lemma A.3 we see that

L1F̃η((ṽg,k, 0), ωk,1 ⊕ ωk,2)L∗1 =dΓ (ω1)⊗ 1 + 1⊗ dΓ (ωk2)

+ ηW (ṽg,k,−1)⊗ Γ (−1).

Letting L2 be the isomorphism from Lemma A.4 we see that

L2L1F̃η((ṽg,k, 0), ωk,1 ⊕ ωk,2)L∗1L
∗
2

= dΓ (ωk,1) + dΓ (0)(ωk,2) + Γ (0)(−1) |C ηW (ṽg,k,−1)⊕
∞⊕

n=1

dΓ (ωk,1)⊗ 1 + 1⊗ dΓ (n)(ωk,2) + ηW (ṽg,k,−1)⊗ Γ (n)(−1)

= F̃η(ṽg,k, ωk,1)⊕
∞⊕

n=1

F̃(−1)nη(ṽg,k, ωk,1)⊗ 1 + 1⊗ dΓ (n)(ωk,2)

where we used Γ (n)(−1) = (−1)n. Hence Ug,k = L2L1Γ (Ug,k) will work. �
Lemma 5.4. Assume that ω is selfadjoint, injective and non negative operator
on H which have compact resolvents. Let {vg}g∈(0,∞) be a collection of elements

in H such that ‖vg‖ diverges to ∞. Then F̃η(vg, ω) converges in norm resolvent

sense to F̃0(0, ω) = dΓ (ω) as g goes to ∞ for all η ∈ R.

Proof. We calculate

(F̃η(vg, ω)− i)−1 − (dΓ (ω)− i)−1

= η(F̃η(vg, ω)− i)−1W (vg,−1)(dΓ (ω)− i)−1

= η(F̃η(vg, ω)− i)−1W (vg,−1)(dΓ (ω)− i)−1W (vg,−1)(dΓ (ω)− i)−1

+ η2(dΓ (ω)− i)−1W (vg,−1)(dΓ (ω)− i)−1.
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This implies

‖(F̃η(vg, ω)− i)−1 − (dΓ (ω)− i)−1‖
≤ (|η|+1)|η|‖(dΓ (ω)− i)−1W (vg,−1)(dΓ (ω)− i)−1‖,

which converges to 0 by Lemma 5.2 and compactness of (dΓ (ω)− i)−1. �
Lemma 5.5. Let H be a Hilbert space. Let {An}∞n=1 be a sequence of selfadjoint
operators on H that are uniformly bounded below by γ. Let A be selfadjoint on
H and bounded below. Then An converges to A in norm resolvent sense if and
only if e−tAn converges to e−tA in norm for all t < 0. In this case inf(σ(An))
converges to inf(σ(A)).

Proof. Norm resolvent convergence along with existence the uniform lower bound
implies convergence of the semigroup (see [20, Theorem VIII.20]). To prove the
converse we apply the formula

(A− λ)−1ψ =

∫ ∞

0

e−t(A−λ)ψdt

for all λ < γ along with dominated convergence. To prove the last part note that
by the spectral theorem

inf(σ(A)) = − log(‖exp(−A)‖) = lim
n→∞

− log(‖exp(−An)‖) = lim
n→∞

inf(σ(An))

finishing the proof. �
Lemma 5.6. Assume that ω is a selfadjoint, injective and non negative operator
on H. Let {vg}g∈(0,∞) be a collection of elements in H such that ‖vg‖ diverges
to ∞. Assume there is m̃ > 0 such that Pω((0, m̃])vg = 0 for all g where Pω
is the spectral measure corresponding to ω. Then F̃η(vg, ω) converges in norm

resolvent sense to F̃0(0, ω) = dΓ (ω) as g tends to ∞ for all η ∈ R.

Proof. For each k ∈ N letH1,k,H2,k, ωk, ω1,k, ω2,k and ṽg,k be the quantities from
Lemma 5.3 corresponding to the family {vg}g∈(0,∞) and the number m̃ > 0. For
each n ∈ N0 we define

F±η,k,g,n = F̃±η(ṽg,k, ωk,1)⊗ 1 + 1⊗ dΓ (n)(ωk,2).

By Lemma 5.3 statement (1), it is enough to prove that F̃η(vg, ωk) converges to

dΓ (ωk) in norm resolvent sense as g tends to ∞. Noting that F̃η(vg, ωk) ≥ −|η|
for all g we may use Lemma 5.5. Using the unitary transformations in Lemma
5.3 we see

‖exp(−tF̃η(vg, ωk))− exp(−tdΓ (ωk))‖
= sup
n∈N0

{‖exp(−tF(−1)nη,k,g,n)− exp(−tF0,k,g,n)‖}

= sup
n∈N0

{‖exp(−tF̃(−1)nη(ṽg,k, ωk,1))− exp(−tdΓ (ω1,k))‖‖exp(−tdΓ (n)(ω2,k))‖}

≤ sup
n∈N0

{‖exp(−tF̃(−1)nη(ṽg,k, ωk,1))− exp(−tdΓ (ω1,k))‖}

= max
n∈{1,2}

{‖exp(−tF̃(−1)nη(ṽg,k, ωk,1))− exp(−tdΓ (ω1,k))‖}

which converges to 0 by Lemma 5.4. This finishes the proof. �
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Lemma 5.7. Assume that ω is selfadjoint, injective and non negative operator
on H. Let v ∈ D(ω−1/2) and f ∈ D(ω). Then

W (f, 1)Fη(v, ω)W (f, 1)∗ =ηW (2f,−1) + dΓ (ω) + ϕ(v − ωf)

+ ‖ω1/2f‖2−2Re(〈v, f〉).
Proof. Use equation (2.2), (2.3) and Lemma A.2. �

We can now prove Theorem 4.1.

Proof (of Theorem 4.1). The formula in equation (4.1) is obtained via Lemma
5.7 and the lower bound is trivial from Lemma 2.2. For c ∈ (0,∞) we will write
Pc = Pω((c,∞)) and P c = 1−Pc = Pω((0, c]). Note that Pcvg, Pcv, P cvg, P cv ∈
D(ω−1/2) holds trivially by the spectral theorem. Define for 0 < c ≤ m̃ and
η ∈ R

F̃η,c,g := ηW (2ω−1Pcvg,−1) + dΓ (ω) + ϕ(P cvg) + ‖ω−1/2Pω((c, m̃])vg‖2

Aη,c,g := ηW (2ω−1Pcvg,−1) + dΓ (ω) + ‖ω−1/2Pω((c, m̃])vg‖2

and note they are all selfadjoint on D(dΓ (ω)) by the Kato-Rellich theorem and
Lemma 2.2. For ψ ∈ D(dΓ (ω)) we have ‖(1 + dΓ (ω))1/2ψ‖≤ ‖(1 + dΓ (ω))ψ‖ by
the spectral theorem. Using this and Lemma 2.2 we find for all c ∈ (0, m̃]

‖(F̃η,c,g + i)−1 − (Ãη,c,g + i)−1‖
≤ ‖ϕ(P cvg)(Ãη,c,g + i)−1‖
≤ 2‖P c(1 + ω−1/2)vg‖‖(1 + dΓ (ω))(Ãη,c,g + i)−1‖
≤ 2‖P c(1 + ω−1/2)vg‖(1 + 1 + 1 + |η|+‖ω−1/2Pω((0, m̃])vg‖2).

where we in the last step used ‖ω−1/2Pω((c, m̃])vg‖2≤ ‖ω−1/2Pω((0, m̃])vg‖2.
We now define

C1 := 3 + |η|+ sup
g∈(0,∞)

‖ω−1/2Pω((0, m̃])vg‖2

which is finite since ω−1/2Pω((0, m̃])vg is convergent. Let B = dΓ (ω) +ϕ(v) and
C2 = ‖(1 + dΓ (ω))(B + i)−1‖. We estimate using Lemma 2.2

‖(F̃0,m̃,g + i)−1 − (B + i)−1‖ ≤ ‖ϕ(P m̃vg − v)(B + i)−1‖
≤ 2‖(1 + ω−1/2)(P m̃vg − v)‖C2

Let Uc = W (Pω((c1, m̃])v, 1) for some c ∈ (0, m̃]. Using equation (2.2) and

Lemma A.2 we obtain UcF̃η,m̃,gU
∗
c = F̃η,c,g for all η ∈ R. Using this transforma-

tion and the previous estimates we find for all c ∈ (0, m̃] and g > 0 that

‖(F̃η,m̃,g + i)−1 − (B + i)−1‖≤‖(F̃η,c,g + i)−1 − (F̃0,c,g + i)−1‖
+ ‖(F̃0,m̃,g + i)−1 − (B + i)−1‖
≤2(2C1‖P c(1 + ω−1/2)vg‖)

+ ‖(Ãη,c,g + i)−1 − (Ã0,c,g + i)−1‖
+ 2C2‖(1 + ω−1/2)(P m̃vg − v)‖
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Noting that

‖P c(1 + ω−1/2)vg‖≤ ‖(1 + ω−1/2)(P m̃vg − v)‖+‖P c(1 + ω−1/2)v‖

we see that

lim sup
g→∞

‖(F̃η,m̃,g + i)−1 − (B + i)−1‖≤ 4C1‖P c(1 + ω−1/2)v‖

for all c ∈ (0, m̃] by Lemma 5.6. Taking c to 0 finishes the proof since F̃η,m̃,g =

F̃η,m̃(vg, ω). �

Proposition 5.8. Let H = L(R3,B(R3), λ⊗3), ω(k) = |k|, vg = ω−1/21{g−1≤|k|≤2}
and η < 0. Then ‖ω−1vg‖ converges to ∞ for g going to ∞, but there is h 6= 0

such that F̃η(hvg, ω) = dΓ (ω) + ηW (hω−1vg,−1) does not go to dΓ (ω) in norm
resolvent sense.

Proof. Define v = ω−1/21{|k|≤2}. It is easy to see that ‖ω−1vg‖ goes to ∞ as g
tends to infinity. Assume that convergence in norm resolvent sense holds for all
h 6= 0. Applying Lemma 5.7 with f = hω−1vg we see

inf{σ(Fη(hvg, ω))}+ h2‖ω−1/2vg‖2= inf{σ(F̃η(hvg, ω))}

converges to 0 for g going to ∞. In [3] it is proven that Fη(hvg, ω) converges
in norm resolvent sense to Fη(hv, ω), and the bottom of the spectrum also con-
verges. This can also be done directly as an easy exercise left to the reader.
Taking g to infinity yields

inf{σ(Fη(hv, ω))} = −h2‖ω−1/2v‖2

for any h 6= 0. Since 〈Ω,Fη(hv, ω)Ω〉 = η we see −h2‖ω−1/2v‖2≤ η < 0 for all
h 6= 0. Taking h to 0 yields 0 ≤ η < 0. �

We now prove Corollaries 4.2, 4.3 and 4.4.

Proof (of Corollary 4.2). Define Ug = W (gω−1v, 1) and m := m(ω) > 0. Note
that

F̃η(2gω−1v, ω) := UgFη(gv, ω)U∗g + g2‖ω−1/2v‖2

converges in norm resolvent sense to dΓ (ω) as g tends to infinity by Theorem 4.1

(use m̃ = m(ω) and v = 0). Since F̃η(2gω−1v, ω) ≥ −|η| for all g > 0, Lemma
5.5 implies

lim
g→∞

Eη(gv, ω) + g2‖ω−1/2v‖2= lim
g→∞

inf(σ(F̃η(2gω−1v, ω))) = 0.

Let Pg be the spectral projection of F̃η(gv, ω) onto [−m2 , m2 ]. Using [20, Theorem
VIII.23] and Lemma 2.1 we find Pg converges in norm to P = |Ω〉〈Ω|. Pick g0
such that Eη(gv, ω) + g2‖ω−1/2v‖2∈ (−m2 , m2 ) and ‖Pg − P‖< 1 for all g > g0.

Then Pg has dimension 1 by [26, Theorem 4.35], so F̃η(gv, ω) and Fη(gv, ω) will
have a non degenerate isolated ground state for all g > g0. Let {ψg}g≥g0 be a real
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analytic collection of normalized eigenstates for Fη(gv, ω) and write ψ̃g = Ugψg
which is a ground state for F̃η(gv, ω). We calculate

|〈e−g2‖ω−1v‖ε(−gω−1v), ψg〉|= |〈Ω, ψ̃g〉|= ‖Pψ̃g‖≥ ‖ψ̃g‖−‖P − Pg‖‖ψ̃g‖> 0.

Hence h(g) = 〈e−g2‖ω−1v‖ε(−gω−1v), ψg〉 is nonzero and smooth. Multiplying
with 1

h(g) and normalising, we may pick the family {ψg}g≥g0 smooth such that

〈e−g2‖ω−1v‖ε(−gω−1v), ψg〉 = 〈Ω,Ugψg〉 > 0.

This implies

1 ≥ |〈Ω, ψ̃g〉|= ‖Pψ̃g‖≥ ‖ψ̃g‖−‖P − Pg‖‖ψ̃g‖= 1− ‖P − Pg‖.

Therefore |〈Ω, ψ̃g〉|= 〈Ω, ψ̃g〉 converges to 1, and hence ψ̃g converges to Ω. This
implies

0 = lim
g→∞

‖ψ̃g −Ω‖= lim
g→∞

‖U∗g ψ̃g − U∗gΩ‖= lim
g→∞

‖ψg − e−g
2‖ω−1v‖2ε(−gω−1v)‖.

Using Lemma 5.2 we thus find

〈ψ̃g, dΓ (ω)ψ̃g〉 = Eη(gv, ω) + g2‖ω−1/2v‖2−η〈ψ̃g,W (2gω−1v,−1)ψ̃g〉

converges to 0. Hence ψg converges to Ω in dΓ (ω)1/2 norm, and hence also in

N1/2 norm since m > 0. Note that ψg, ψ̃g ∈ D(dΓ (ω)) ⊂ D(N) since m > 0.
Using Theorem A.2 we see that

〈ψg, Nψg〉 = 〈ψ̃g, UgNU∗g ψ̃g〉 = 〈ψ̃g, Nψ̃g〉+ g〈ψ̃g, ϕ(ω−1v)ψ̃〉+ g2‖ω−1v‖.

Since ψ̃g goes to Ω in N1/2 norm and ϕ(ω−1v) is N1/2 bounded by Lemma 2.2

we find that ϕ(ω−1v)ψ̃g converges to ϕ(ω−1v)Ω in norm. Hence 〈ψ̃g, ϕ(ω−1v)ψ̃g〉
and 〈ψ̃g, Nψ̃g〉 converges to 0 which implies

(g−1〈ψg, Nψg〉 − g‖ω−1v‖) = g−1〈ψ̃g, Nψ̃g〉+ 〈ψ̃g, ϕ(ω−1v)ψ̃〉

converges to 0 as g tends to ∞. Define f(g) = Eη(gv, ω) + g2‖ω−1/2v‖2 and
assume η < 0. Since f(0) = η and f converges to 0, we just need to see f
is increasing. There is a unitary map U : H → L2(X,F , µ) such that UωU∗

is a multiplication operator. Using Lemma A.1 we see Γ (U)Fη(gv, ω)Γ (U)∗ =
Fη(gUv, UωU∗) so

f(g) = Eη(gUv, UωU∗) + g2‖(UωU∗)−1/2Uv‖2

Hence we may assume H = L2(M,F , µ) and ω is multiplication by a strictly
positive and measurable map, which we shall also denote ω. We note ψg exists
for all g ≥ 0 by Theorem 3.2 and we have the pull through formula (see [3])

a(k)ψg = −gv(k)(F−η(gv, ω)− Eη(gv, ω) + ω(k))−1ψg. (5.4)
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Note that g 7→ Eη(gv, ω) is real analytic since it is a an isolated non degenerate
eigenvalue by Theorem 3.2. We may then calculate

d

dg
Eη(gv, ω) = 〈ψg, ϕ(v)ψg〉 = 2Re(〈ψg, a(v)ψg〉)

= −2g

∫

X

|v(k)|2‖(F−η(gv, ω)− Eη(gv, ω) + ω(k))−1/2ψg‖2dk

> −2g‖ω−1/2v‖2= − d

dg
g2‖ω−1/2v‖

because ‖(F−η(gv, ω) − Eη(gv, ω) + ω(k))−1/2ψg‖2< ω(k)−1 almost everywhere
by Theorem 3.2. This proves the claim. �

Proof (of Corollary 4.3). By Theorem 3.2 we may pick a a unitary map V such
that V Hη(gv, ω)V ∗ = F−η(gv, ω)⊕ Fη(gv, ω). Noting that

lim
g→∞

Eη(gv, ω)− E−η(gv, ω) = 0

and that E±η(gv, ω) is an eigenvalue for F±η(gv, ω) for sufficiently large g by
Corollary 4.2, we see that for g large enough Hη(gv, ω) will have at least two
eigenvalues in the mass gap [Eη(gv, ω), Eη(gv, ω) +mess], and the energy differ-
ence will converge to 0. �

Proof (of Corollary 4.4). Define Vg = W (ω−1vg, 1) which is independent of η. If
ω−1v1{ω≥1} /∈ H, we see part (1) follows from Theorem 4.1 and Lemma 2.2.

We now prove part (2). By Theorem 3.2 there is a unitary map U with the
property that UHη(vg, ω)U∗ = F−η(vg, ω)⊕ Fη(vg, ω). Let Ug = U∗(Vg ⊕ Vg)U .

Convergence to H̃ and the uniform lower bound now follows from part (1) and
Lemma 2.2. Let Cg = ‖ω−1/21{ω>m̃}vg‖2. Then

‖(Hη(vg, ω) + Cg + i)−1 − (H0(vg, ω) + Cg + i)−1‖
= ‖(UgHη(vg, ω)U∗g + Cg + i)−1 − (UgH0(vg, ω)U∗g + Cg + i)−1‖

which converges to 0. This finishes the proof. �

6. Proof of Theorem 4.5

In this chapter we prove Theorem 4.5. We will in this section assume that H =
L2(X,F , µ) where (X,F , µ) is σ-finite and countably generated. We will also
assume ω is a multiplication operator which satisfies ω > 0 almost everywhere.
We also fix v ∈ D(ω−1/2) and define

h(x) =

{
−1 v(x) = 0

− v(x)
|v(x)| v(x) 6= 0

(6.1)

Note that h is measurable, |h|= 1 and h∗v = −|v|. Define also h(n)(k1, . . . , kn) =
h(k1) . . . h(kn) and note

Γ (h) =

∞⊕

n=0

h(n) Γ (h)∗ = Γ (h∗) =

∞⊕

n=0

(h(n))∗.
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Define

C+ = {ψ = (ψ(n)) ∈ Fb(H) | ψ(0) ≥ 0, (h(n))∗ψ(n) ≥ 0 a. e. for n ≥ 1}.

We have

Lemma 6.1. C+ is a selfddual cone inside Fb(H). The strictly positive elements
are

C>0 = {ψ = (ψ(n)) ∈ Fb(H) | ψ(0) > 0, (h(n))∗ψ(n) > 0 a. e. for n ≥ 1}.

Proof. We note

C+ = Γ (h){ψ = (ψ(n))∞n=0 ∈ Fb(H) | ψ(0) ≥ 0, ψ(n) ≥ 0 a. e. for n ≥ 1}.

The result now follows by the theory developed in [16].

Lemma 6.2. Let g > 0 and T be a selfadjoint operator on Fb(H) such that

T =

∞⊕

n=0

T (n)

with T (n) ≥ γ a multiplication operator for all n ∈ N0. Assume gϕ(v) infinitesi-
mally T -bounded. Define H = T + gϕ(v). Then H is bounded below, selfadjoint
and (H − λ)−1C+ ⊂ C+ for all λ < inf(σ(H)). If v 6= 0 almost everywhere then
(H − λ)−1C+\{0} ⊂ C>0 for all λ < inf(σ(H)). So if inf(σ(H)) is an eigenvalue
then it is non degenerate and spanned by an element in C>0.

Proof. The Kato Rellich theorem implies H is selfadjoint and bounded below.
For λ < −γ we note that (T −λ)−1 acts on each particle sector as multiplication
with a positive bounded map. Hence it will map C+ into C+. Assume now that
ψ = (ψ(n)) ∈ C+ ∩ D(dΓ (ω)). Then we have almost everywhere that

(h(n−1))∗(−a(v)ψ(n))(k2, . . . , kn) =
√
n

∫

M
|v(k)|((h(n))∗ψ(n))(k, k2, . . . , kn)dk

(h(n+1))∗(−a†(v)ψ(n))(k1, . . . , kn+1)

=
1√
n+ 1

n+1∑

l=1

−h∗(kl)v(kl)((h
(n))∗ψn)(k1, . . . , k̂l, . . . , kn+1)

which implies −gϕ(v)ψ ∈ C+. In particular we obtain

(−gϕ(v)(T − λ)−1)nC+ ⊂ C+

(−1)ngn
n∏

k=1

a]k(v)(T − λ)−1C+ ⊂ C+. (6.2)

where ]k can be either a † or nothing. For λ ∈ R sufficiently negative we may
expand

(H − λ)−1 =

∞∑

n=0

(T − λ)−1(−gϕ(v)(T − λ)−1)n. (6.3)

108 Paper B



Asymptotics in Spin Boson type models 19

Since each term preserves the closed set C+ we find (H − λ)−1C+ ⊂ C+ for λ
small enough. Assume now v 6= 0 almost everywhere. Let In denote the integral
over Mn with respect to µ⊗n. For u ∈ Sn(H⊗n)\{0} with u ∈ C+ we have

(−1)n(ga(v)(T − µ)−1)nu (6.4)

= In

(
(−1)ngnv(k1) . . . v(kn)u(k1, . . . , kn)

n∏

`=1

(T (`)(k1, . . . , k`)− λ)−1
)

which is strictly positive. Let u,w ∈ C+\{0}. Pick n1 such that u(n1) 6= 0 and
n2 such that w(n2) 6= 0. Consider now the n = n1 + n2 term in equation (6.3).
This term can again be written as a sum of terms of the form (6.2) multiplied
to the left by (T − λ)−1. Since all terms are positivity preserving we find

〈u, (H − λ)−1w〉 ≥ 〈(T − λ)−1u, (−ga†(v)(T − λ)−1)n1(−ga(v)(T − λ)−1)n2w〉
= 〈(T − λ)−1(−ga(v)(T − λ)−1)n1u, (−ga(v)(T − λ)−1)n2w〉

Since u− u(n1) ∈ C+ and w − w(n2) ∈ C+ we find the following lower bound:

(T (0) − λ)−1(−ga(v)(T − λ)−1)n1u(n1)(−ga(v)(T − λ)−1)n2w(n2)

which is strictly positive by Equation (6.4). Hence we have proven the lemma
for λ sufficiently negative. Now fix λ such that the lemma is true. For any
µ ∈ (λ, inf(σ(H))) we can use standard theory of resolvents to write

(H − µ)−1 =

∞∑

k=0

(µ− λ)n((H − λ)−1)n+1

which is positivity preserving/improving since each term is. �

The following lemma can be found in [3].

Lemma 6.3. Define A = {v 6= 0}, µA(B) = µ(A∩B) and µAc(B) = µ(Ac∩B).
Let H1 = L2(X,F , µA) and ω1 be multiplication with ω but on the space H1.
Assume that η ≤ 0 and g > 0. Then

1. Eη(gv, ω) = Eη(gv, ω1) and Eη(gv, ω) is an eigenvalue for Fη(gv, ω) if and
only if Eη(gv, ω) is an eigenvalue for Fη(gv, ω1). In this case the dimension
of the eigenspace is 1.

2. If ψ = (ψ(n))∞n=0 is a ground state for Fη(gv, ω1), then ψ = (1Anψ
(n))∞n=0 is

a ground state for Fη(gv, ω).

We can now finally prove Theorem 4.5.

Proof (Proof of Theorem 4.5). Statement (1) follows from Lemmas 6.2 and 6.3
since gφ(v) = φ(gv) and h defined in equation (6.1) does not depend on g as
long as g > 0. To prove statement (2) we let ψ be a ground state for Fη(gv, ω).
Define for λ > 0 and ` ∈ N the operator

R`(λ) = (F(−1)`η(gv, ω) + λ− Eη(gv, ω))−1.
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This makes sense since Eη(gv, ω) ≤ E−η(gv, ω) by Proposition 3.1. Using the pull
through formula found in [3] we find

a(k1, . . . , kn)ψg,η =

n∑

i=1

gv(ki)Rn(ω(k1) + · · ·+ ω(kn))a(k1, . . . , k̂i, . . . , kn)ψg,η,

where k̂i means that the variable ki is omitted. We proceed by induction to

show that ‖a(k1, . . . , kn)ψg‖≤ gn |v(k1)|...|v(kn)|ω(k1)...ω(kn)
. For k = 1 this follows since

Eη(gv, ω) ≤ E−η(gv, ω) and so

‖a(k)ψg,η‖=
∥∥∥∥

gv(k)

F−η(gv, ω) + ω(k) + Eη(gv, ω)
ψg

∥∥∥∥ ≤ g
|v(k)|
ω(k)

.

Using the induction hypothesis we may now compute

‖a(k1, . . . , kn)ψg,η‖ ≤
n∑

i=1

ω(ki)

ω(k1) + · · ·+ ω(kn)
gn
|v(k1)|. . . |v(kn)|
ω(k1) . . . ω(kn)

= gn
|v(k1)|. . . |v(kn)|
ω(k1) . . . ω(kn)

.

Now
√
n!|ψ(n)

g,η (k1, . . . , kn)|≤ ‖a(k1, . . . , kn)ψg,η‖ and so the desired inequality
follows.

Statement (3): By Theorem 3.2 and N = dΓ (1) we see that the conclu-
sions about φg,η follows from those of Fη(gv, ω). It is easily seen that ψg,0 =

e−2
−1g2‖ω−1v‖ε(gω−1v) and ε(gω−1v) ∈ D(f(N)) ⇐⇒ αg,f,v,ω < ∞. This

proves the ” ⇐ ” part. If αg,f,v,ω < ∞ then we may use the point wise bounds
to obtain

∞∑

n=0

f(n)2‖ψ(n)
g,η‖2

n!
≤
∞∑

n=0

f(n)2g2n‖ω−1v‖2n
n!

<∞,

which proves the ”⇒ ”. �

7. Convergence in the massless case

In this section we will assume H = L2(Rν ,B(Rν), λν) and that ω is a selfadjoint,
non negative and injective multiplication operator on this space with m(ω) = 0.
Fix an element v ∈ D(ω−1)\{0}. In [3] it is proven that if η ≤ 0 then Fη(gv, ω)
has a normalised ground state ψg for any g ∈ R and Eη(gv, ω) = E−η(gv, ω).
Furthermore we will for η, g ∈ R write Fη,g := Fη(gv, ω) and Eη,g := Eη(gv, ω).

Lemma 7.1. Assume η ≤ 0. Define Ug = W (gω−1v, 1) and ψ̃g = Ugψg. Then

0 ≤ 〈ψ̃g, dΓ (ω)ψ̃g〉 ≤ |η|〈ψg, Γ (−1)ψg〉 = −η〈ψg, Γ (−1)ψg〉,
and 〈ψg, Γ (−1)ψg〉 converges to 0 for g tending to ∞. Furthermore, given any
sequence of elements {gn}∞n=1 ⊂ R tending to ∞ there is a subsequence {gni}∞i=1
such that

lim
i→∞
|v(k)|2‖(F−η,gni − Eη,gni + ω(k))−1ψgni − ω(k)−1ψgni‖

2= 0

almost everywhere.
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Proof. We have

UgFe,gU
∗
g + g2‖ω−1/2v‖2= dΓ (ω) + ηW (2gω−1v,−1) = F̃η(2gω−1v, ω).

Note that

〈Ω, F̃η(2gω−1v, ω)Ω〉 = η exp(−2g2‖ω−1v‖2) ≤ 0

so Ee,g + g2‖ω−1/2v‖= inf(σ(F̃η(2gω−1v, ω))) ≤ 0. This implies

0 ≤ 〈ψ̃g, dΓ (ω)ψ̃g〉 ≤ −η〈ψ̃g,W (2gω−1v,−1)ψ̃g〉 = |η|〈ψg, Γ (−1)ψg〉 ≤ |e|.

Since ψg ∈ D(N1/2) by Theorem 4.5 we find (see [3])

a(k)Ugψg = Uga(k)ψg + gv(k)ω(k)−1Ugψg,

and so the pull through formula from equation (5.4) gives

a(k)ψ̃g = −gv(k)Ug(F−η,g − Ee,g + ω(k))−1ψg + gv(k)ω(k)−1Ugψg.

Hence we find

〈ψ̃g, dΓ (ω)ψ̃g〉

= g2
∫

M
ω(k)|v(k)|2‖(F−η,g(v, ω)− Ee,g + ω(k))−1ψg − ω(k)−1ψg‖2dk.

Since this remains bounded by |η| as g tends to infinity, we conclude that the
integral converges to 0 as g tends to infinity. Thus existence of the desired subse-
quence follows from standard measure theory. Assume now that the conclusion
about convergence of 〈ψg, Γ (−1)ψg〉 is false. We may then pick ε > 0 and se-
quence {gn}∞n=1 such that −e〈ψgn , Γ (−1)ψgn〉 ≥ ε for all n and

lim
g→∞

|v(k)|2‖(F−η,gn − Ee,gn + ω(k))−1ψgn − ω(k)−1ψgn‖2= 0

for almost every k ∈ Rν . Let Pg be the spectral measure of F−η,g − Ee,g =
F−η,g − E−η,g and define the measure µg(A) = 〈ψg, Pg(A)ψg〉. Since v 6= 0 we
see

‖(F−η,gn − Ee,gn + ω(k))−1ψgn − ω(k)−1ψgn‖2

=

∫

[0,∞)

∣∣∣∣
1

λ+ ω(k)
− 1

ω(k)

∣∣∣∣
2

dµgn(λ)

converges to 0 for some k ∈ Rν where ω(k) > 0. Since the integrals above
converges to 0, the numbers µgn([ε/2,∞)) must converge to 0, as the integrand
has a positive lower bound on [ε/2,∞). In particular Pgn([0, ε/2))ψgn −ψgn will
converge to 0. Hence we find for n larger than some K that

−η〈Pgn([0, ε/2))ψgn , Γ (−1)Pgn([0, ε/2))ψgn〉 ≥
3ε

4
‖Pgn([0, ε/2))ψgn‖2.

B.7. Convergence in the massless case 111



22 Thomas Norman Dam, Jacob Schach Møller

Let xn = Pgn([0, ε/2))ψgn . By Lemma 2.2 we find dΓ (ω)+gϕ(v)+g2‖ω−1/2v‖2≥
0. Using this and Ee,g = E−η,g ≤ −g2‖ω−1/2v‖2 we may calculate for n ≥ K

(Ee,gn(v, ω) + ε/2)‖xn‖2 ≥ 〈xn, F−η,gnxn〉
= −η〈xn, Γ (−1)xn〉+ E−η,gn‖xn‖2

+ 〈xn, (dΓ (ω) + gnϕ(v) + g2n‖ω−1/2v‖2)xn〉
− (E−η,gn + g2n‖ω−1/2v‖2)‖xn‖2

≥ −η〈xn, Γ (−1)xn〉+ E−η,gn‖xn‖2

≥ (3ε/4 + Ee,gn(v, ω))‖xn‖2,

which is the desired contradiction. �

Proof (Proof of Theorem 4.6). For each g ≥ 0 we let ψg be a ground state

eigenvector for Fe,g. Define Ug = W (gω−1v, 1) and ψ̃g = Ugψg. We see that

|Ee,g + g2‖ω−1/2v‖| = |〈ψ̃g, F̃η(2gω−1v, ω)ψ̃g〉|
= |η〈ψg, Γ (−1)ψg〉+ 〈ψ̃g, dΓ (ω)ψ̃g〉|
≤ 2|η|〈ψg, Γ (−1)ψg〉,

which converges to 0 for g tending to∞ by Lemma 7.1. It only remains to prove
the statement regarding the number operator. Let {gn}∞n=1 be any sequence
converging to ∞. Pick a subsequence {gni}∞i=1 such that

lim
i→∞
|v(k)|2‖(F−η,gni − Ee,gni + ω(k))−1ψgni − ω(k)−1ψgni‖

2= 0

almost everywhere. Using equation (5.4) we see that

a(k)ψg = −gv(k)(F−η,g − Ee,g + ω(k))−1ψg

and so

|〈ψgni , Nψgni 〉 − g2ni‖ω−1v‖2|
g2ni

≤
∫

M
|v(k)|2|‖(F−η,gni − Ee,gni + ω(k))−1ψgni ‖

2−‖ω(k)−1ψgni‖
2|dk,

which goes to 0 as i tends to infinity by dominated convergence. �

8. Proof of Theorem 4.7

In this section we will assume H = L2(Rν ,B(Rν), λν) and that ω is a selfadjoint,
non-negative and injective multiplication operator on this space. Then mess(ω) =
m(ω) := m since σ(ω) = σess(ω) (See [3]). Furthermore we define P = |Ω〉〈Ω|
and P = 1−P . Then P clearly reduces dΓ (ω) and Γ (−1). Let dΓ (ω) and Γ (−1)

denote the restrictions to Fb(H) = PFb(H). For v ∈ H we define ϕ(v) as the
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restriction of Pϕ(v)P to Fb(H). Note that it is symmetric and infinitesimally
dΓ (ω) bounded when v ∈ D(ω−1/2). Hence we may define

F η(v, ω) = dΓ (ω) + ηΓ (−1) + ϕ(v),

which is selfadjoint on D(dΓ (ω)) and bounded below when v ∈ D(ω−1/2). Note
by the min-max principle that inf(σ(F η(v, ω))) ≥ Eη(v, ω) and one may repeat
the argument for Lemma 6.2 to show that for every λ < Eη(v, ω) we have

(F η(v, ω)− λ)−1PC+ ⊂ PC+.
To summarise

Lemma 8.1. If v ∈ D(ω−1/2) then F η(v, ω) is selfadjoint selfadjoint and bounded

below by Eη(v, ω). Furthermore (F η(v, ω) − λ)−1PC+ ⊂ PC+ for every λ <
Eη(v, ω).

We shall also need the following lemma.

Lemma 8.2. For all λ < Eη(v, ω) we have

0 < 〈Ω, (Fη(v, ω)− λ)−1Ω〉 = (e− λ+ 〈v, (F η(v, ω)− λ)−1v〉)−1.

Proof. Let λ < Eη(v, ω). One easily checks that (Fη(v, ω)−λ, dΓ (ω)+ηΓ (−1)−λ)
is a Feshbach pair for P . Write T = dΓ (ω) + ηΓ (−1)− λ, H = Fη(v, ω)− λ and
W = H − T = ϕ(v). The Feshbach map F is now given by

F = PHP − PWP (F η(v, ω)− λ)−1PWP

= (e− λ)P + 〈v, (F η(v, ω)− λ)−1v〉P.
This is invertible from Span(Ω) to Span(Ω) since H is invertible. To calculate
the inverse using we use the formula in [10] and find

F−1 = PH−1P = 〈Ω, (Fη(v, ω)− λ)−1Ω〉P.
If one identifies the the linear maps from Span(Ω) to Span(Ω) with C we find
the desired relation. Positivity follows since H−1 maps C+ into C+, and we know
that the matrix element is not zero since the Feshbach map is invertible. �

We may now prove Theorem 4.7. The basic technique for proving this result
comes from the paper [24] where it is used for the translation invariant Nelson
model.

Proof (Proof of Theorem 4.7). Let η > 0 and assume the conclusion does not
hold. Since F−η(v, ω) has a ground state by Theorem 3.2 the only option is that
Fη(v, ω) does not have a ground state. By Theorems 3.2 and 4.5 we note that
Eη(v, ω) = inf(σess(Fη(v, ω))) = E−η(v, ω) +m and that F−η(v, ω) has a ground
state ψ which has non-zero inner product with Ω. By Lemma 8.2 we find

λ− η > 〈v, (F η(v, ω)− λ)−1v〉

for all λ < Eη(v, ω) = E−η(v, ω) +m, and so 〈v, (F η(v, ω)− λ)−1v〉 is uniformly
bounded from above for all λ < E−η(v, ω) + m. We shall now prove that this
leads to a contradiction with the assumption in equation (4.2). The following pull
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through formula, holds for x ∈ D(dΓ (ω)) such that (Fη(v, ω) − λ)x ∈ D(N1/2)
(see [3])

a(k)x =(F−η(v, ω) + ω(k)− λ)−1a(k)(Fη(v, ω)− λ)x (8.1)

− v(k)(F−η(v, ω) + ω(k)− λ)−1.

We note that

(Fη(v, ω)− λ)(F η(v, ω)− λ)−1v = PFη(v, ω)(F η(v, ω)− λ)−1v + v ∈ D(N1/2).

Hence we may apply equation (8.1) with x = (F η(v, ω)−λ)−1v. Now a(k)P = 0
so a(k)(Fη(v, ω)− λ)x = v(k)Ω. This implies

v(k)a(k)(F η(v, ω)− λ)−1v = |v(k)|2(F−η(v, ω) + ω(k) + λ)−1Ω

− |v(k)|2(F−η(v, ω) + ω(k)− λ)−1(F η(v, ω)− λ)−1v.

Taking the inner product with Ω for each k, we obtain two terms. Both are
non-negative by Lemmas 6.2 and 8.1 so

〈Ω, v(k)a(k)(F η(v, ω)− λ)−1v〉 ≥ |v(k)|2〈Ω, (F−η(v, ω) + ω(k)− λ)−1Ω〉
≥ |〈Ω,ψ〉|2|v(k)|2(ω(k) + E−η(v, ω)− λ).

Hence we find

〈v, (F η(v, ω)− λ)−1v〉 =

∫

M
〈Ω, v(k)a(k)(F η(v, ω)− λ)−1v〉dk

≥ |〈Ω,ψ〉|2
∫

M
|v(k)|2(ω(k) + E−η(v, ω)− λ)dk,

which goes to infinity for λ tending to E−η(v, ω) + m by the monotone conver-
gence theorem, equation (4.2) and the fact |〈Ω,ψ〉|2 6= 0. This contradicts the
boundedness of 〈v, (F η(v, ω)− λ)−1v〉.

In the special case mentioned, let ω(x0) = m be the global minimum of ω.
Using Taylor approximations there is r > 0 such that for x ∈ Br(x0) we have
0 ≤ ω(k)−m ≤ C|k − x0|2. Switching to polar coordinates yields the result. �

A. Various transformation statements.

In this appendix various useful transformation theorems is stated. Sources are
[19], [4] and [3].

Lemma A.1. Let U be unitary from H into some Hilbert space K. Then there
is a unique unitary map Γ (U) : Fb(H)→ Fb(K) such that Γ (U)ε(g) = ε(Ug). If
ω is selfadjoint on H, V is unitary and f ∈ H then

Γ (U)dΓ (ω)Γ (U)∗ = dΓ (UωU∗).

Γ (U)W (f, V )Γ (U)∗ = W (Uf,UV U∗).

Γ (U)ϕ(f)Γ (U)∗ = ϕ(Uf).

Furthermore Γ (U)(f1 ⊗s · · · ⊗s fn) = Uf1 ⊗s · · · ⊗s Ufn and UΩ = Ω.
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One may transform the field operators and second quantised observables by the
Weyl transformations. One then obtains the following important statements that
we shall need. The proof is an easy calculation using exponential vectors

Lemma A.2. Let f, h ∈ H and U ∈ U(H). Then

W (h, U)ϕ(g)W (h, U)∗ = ϕ(Ug)− 2Re(〈Ug, h〉)
W (h, U)a(g)W (h, U)∗ = a(Ug)− 〈Ug, h〉
W (h, U)a†(g)W (h, U)∗ = a†(Ug)− 〈h, Ug〉

Furthermore if ω is selfadjoint, non negative and injective on H and h ∈ D(ωU∗)
then

W (h, U)dΓ (ω)W (h, U)∗ = dΓ (UωU∗)− ϕ(UωU∗h) + 〈h, UωU∗h〉
on the domain D(dΓ (UωU∗)).

In what follows we consider two fixed Hilbert spaces H1 and H2. We will need
the following two lemmas.

Lemma A.3. There is a unique isomorphism U : F(H1⊕H2)→ F(H1)⊗F(H2)
such that U(ε(f ⊕ g)) = ε(f)⊗ ε(g). The map has the following transformation
properties. If ωi is selfadjoint on Hi, Vi is unitary on Hi and fi ∈ Hi then

UW (f1 ⊕ f2, V1 ⊕ V2)U∗ = W (f1, V1)⊗W (f2, V2)

UdΓ (ω1 ⊕ ω2)U∗ = dΓ (ω1)⊗ 1 + 1⊗ dΓ (ω2)

Uϕ(f1, f2)U∗ = ϕ(f1)⊗ 1 + 1⊗ ϕ(f2)

Ua(f1, f2)U∗ = a(f1)⊗ 1 + 1⊗ a(f2)

Ua†(f1, f2)U∗ = a†(f1)⊗ 1 + 1⊗ a†(f2).

Lemma A.4. There is a unique isomorphism

U : F(H1)⊗F(H2)→ F(H1)⊕
∞⊕

n=1

F(H1)⊗ Sn(H⊗n2 )

such that

U(w ⊗ {ψ(n)
2 }∞n=0) = ψ(0)w ⊕

∞⊕

n=1

w ⊗ ψ(n)
2 .

Let A be a selfadjoint operator on F(H1) and B be selfadjoint on F(H2) such
that B is reduced by all of the subspaces Sn(H⊗n2 ). Write B(n) = B |Sn(H⊗n

2 ).

Then

U(A⊗ 1 + 1⊗B)U∗ = A+B(0) ⊕
∞⊕

n=1

(A⊗ 1 + 1⊗B(n))

UA⊗BU∗ = A⊗B = B(0)A⊕
∞⊕

n=1

A⊗B(n).

Acknowledgements. Thomas Norman Dam was supported by the Independent Research Fund
Denmark with through the project ”Mathematics of Dressed Particles”.

B.9. Various transformation statements 115



26 Thomas Norman Dam, Jacob Schach Møller

References

1. V. Bach, M. Ballesteros, M. Könenberg and L. Menrath. Existence of Ground State Eigen-
values for the Spin-Boson Model with Critical Infrared Divergence and Multiscale Analysis.
ArXiv:1605.08348 [math-ph].

2. Betz V., Hiroshima F., Lorinczi J.: Feynman-Kac-Type Theorems and Gibbs Measures on
Path Space, with applications to rigorous Quantum Field Theory. De Gruyter Studies in
Mathematics, 34. Walter De Gruyter & CO, Berlin (2011).

3. Dam, T. N.,Møller J. S.: Spin Boson Type Models Analysed Through Symmetries.
Arxiv:1803.05812.

4. Derezinski J., Gérard C.: Asymptotic completeness in quantum field theory. Massive Pauli-
Fierz Hamiltonians, Rev. Math. Phys. 11 383-450 (1999).

5. Derezinski J.: Van Hove Hamiltonians - Exactly Solvable Models of the Infrared and
Ultraviolet Problem. Ann. Henri Poncaré 4 713-738 (2003).
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Abstract: In this paper we consider the massless translation invariant Nelson
model with ultraviolet cutoff. It is proven that the fiber operators have no ground
state if there is no infrared cutoff.

1. Introduction

In this paper we study the translation invariant massless Nelson model. The
model can (after a unitary transformation) be written as a direct integral of
fiber operators {H(ξ)}ξ∈R3 . The spectral properties of these operators were first
investigated by by J. Frölich in his Phd-thesis, which was published in the two
papers [5] and [6]. Frölich showed, that if the field is massive or there is an
infrared cut-off then H(ξ) has a ground state for ξ in an open ball around 0. He
also proved, that if the field is massless, no infrared conditions are imposed and
a ground state exists for sufficiently many of the H(ξ), then one can reach some
physically unacceptable conclusions. The aim of this paper is to prove that H(ξ)
does not have a ground state if the field is massless and no infrared conditions
are assumed. We shall briefly review central results about existence of ground
states in the massless Nelson model.

In the paper [10], it is proven that ground states exists in a non-equivalent
Fock representation. A consequence of this result is that the usual ”taking the
massgap to 0” strategy for proving existence of ground states does not work.
This strongly indicates that there should be no ground state.

A proof of absence of ground states in a similar model was given by I. Herbst
and D. Hasler in the paper [8]. They consider the fiber operators of the massless
and translation invariant Pauli-Fierz model {H(ξ)}ξ∈R3 . They prove that H(ξ0)
has no ground state if ξ 7→ inf(σ(H(ξ))) is differentiable at ξ0 and has a non-
zero derivative. One may easily work out the same problem for the Nelson model
and obtain the same conclusions. However proving the existence of a non-zero
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derivative is an extremely hard problem and such a result has only been achieved
for weak coupling and small ξ (see [1]). Furthermore, ξ = 0 is a global minimum
for ξ 7→ inf(σ(H(ξ))) and therefore the derivative is 0. However, H(0) has no
ground states shall prove below.

In fact we shall prove that H(ξ) has no ground state for any non-zero coupling
strength and ξ ∈ R3. Our proof is based on strategy used by I. Herbst and D.
Hasler, but we remove the assumption regarding the existence of a non-zero
derivative. Instead we use rotation invariance of the map ξ 7→ inf(σ(H(ξ))), non
degeneracy of ground states and the HVZ-theorem.

2. Notation and preliminaries

We start by fixing the measure theoretic notation. Let (M,F , µ) be a σ-finite
measure space and X be a separable Hilbert space. We will write Lp(M,F , µ,X)
for the Hilbert space valued Lp-space. If X = C it will be omitted from the
notation. In case M is a topological space we will write B(M) for the Borel
σ-algebra.

Let H denote a Hilbert space and n ≥ 1. We write H⊗n for the n-fold tensor
product. Write Sn for the set of permutations of {1, . . . , n} and letH be a Hilbert
Space. The symmetric projection is the unique bounded extension of the map

Sn(f1 ⊗ · · · ⊗ fn) =
1

n!

∑

σ∈Sn
fσ(1) ⊗ · · · ⊗ fσ(n)

and S0 is the identity onH⊗n = C. In certain cases we can realise tensor produces
as concrete spaces:

L2(M,F , µ,X) = L2(M,F , µ)⊗X
(L2(M,F , µ))⊗n = L2(M⊗n,F⊗n, µ⊗n).

with the tensor products f ⊗ x = k 7→ f(k)x and f1 ⊗ · · · ⊗ fn = (k1, . . . , kn) 7→
f1(k1) . . . fn(kn). In the case H = L2(M,F , µ) we have for n ≥ 1

(Snf)(k1, . . . , kn) =
1

n!

∑

σ∈Sn
f(kσ(1), . . . , kσ(n)).

We note that f ∈ Sn(L2(M,F , µ)⊗n) if and only if f ∈ L2(M⊗n,F⊗n, µ⊗n)
and f(k1, . . . , kn) = f(kσ(1), . . . , kσ(1)) for any σ ∈ Sn. Write H⊗sn = Sn(H⊗n).
The bosonic Fock space is defined by

F(H) =

∞⊕

n=0

H⊗sn.

where S0 = 1. We will write an element ψ ∈ F(H) in terms of its coordinates
as ψ = (ψ(n)) and define the vacuum Ω = (1, 0, 0, . . . ). Furthermore, for D ⊂ H
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and f1, . . . , fn ∈ H we introduce the notation

Sn(f1 ⊗ · · · ⊗ fn) = f1 ⊗s · · · ⊗s fn

ε(fi) =

∞∑

n=0

f⊗ni√
n!

J (D) = {Ω} ∪ {f1 ⊗s · · · ⊗s fn | fi ∈ D, n ∈ N}
L(D) = {ε(f) | f ∈ D}

where f⊗0i = Ω. One may prove that if D ⊂ H is dense then L(D) is a linearly
independent total subset of F(H). From this one easily concludes J (D) is total.

For g ∈ H one defines the annihilation operator a(g) and creation operator
a†(g) on symmetric tensors in F(H) using a(g)Ω = 0, a†(g)Ω = g and

a(g)(f1 ⊗s · · · ⊗s fn) =
1√
n

n∑

i=1

〈g, fi〉f1 ⊗s · · · ⊗s f̂i ⊗s · · · ⊗s fn

a†(g)(f1 ⊗s · · · ⊗s fn) =
√
n+ 1g ⊗s f1 ⊗s · · · ⊗s fn

where f̂i means that this element is omitted. One can show that these operators
extends to closed operators on F(H) and that (a(g))∗ = a†(g). Furthermore, we
have the canonical commutation relations which states

[a(f), a(g)] = 0 = [a†(f), a†(g)] and [a(f), a†(g)] = 〈f, g〉.

One now introduces the selfadjoint field operators

ϕ(g) = a(g) + a†(g).

If ω is a selfadjoint operator on H with domain D(ω) then we define the second
quantisation of ω to be the selfadjoint operator

dΓ (ω) = 0⊕
∞⊕

n=1

n∑

k=1

(1⊗)k−1ω(⊗1)n−k |H⊗sn . (2.1)

If ω is a multiplication operator on H = L2(M,F , µ) we define ωn :Mn → R by
ω0 = 0 and ωn(k1, . . . , kn) = ω(k1) + · · ·+ ω(kn). Then dΓ (ω) acts on elements
in H⊗sn as multiplication by ωn(k1, . . . , kn) = ω(k1) + · · ·+ω(kn). The number
operator is defined as N = dΓ (1). Let U be a unitary map from H to K. Then
we define the unitary map

Γ (U) = 1⊕
∞⊕

n=1

U ⊗ · · · ⊗ U |H⊗sn .

For n ∈ N0 = N ∪ {0} we define the operators dΓ (n)(ω) = dΓ (ω) |H⊗sn and
Γ (n)(U) = Γ (U) |H⊗sn . The following lemma is important and well known (see
e.g [2]):
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Lemma 2.1. Let ω ≥ 0 be selfadjoint and injective. If g ∈ D(ω−1/2) then ϕ(g),
a†(g) and a(g) are dΓ (ω)1/2 bounded. In particular ϕ(g) is N1/2 bounded. We
have the following bound

‖ϕ(g)ψ‖≤ 2‖(ω−1/2 + 1)g‖‖(dΓ (ω) + 1)1/2ψ‖
which holds on D(dΓ (ω)1/2). In particular, ϕ(g) is infinitesimally dΓ (ω) bounded.
Furthermore, σ(dΓ (ω) + ϕ(g)) = −‖ω−1/2g‖2+σ(dΓ (ω)).

We have the following obvious lemma which is useful for calculations

Lemma 2.2. Let f, g ∈ H. Then ε(g) ∈ D(Nn) for all n ≥ 0. Furthermore:

(1) a(g)ε(f) = 〈g, f〉ε(f) and 〈ε(g), ε(f)〉 = e〈g,f〉.
(2) If f ∈ D(ω) then ε(f) ∈ D(dΓ (ω)) and dΓ (ω)ε(f) = a†(ωf)ε(f). In particular

we find 〈ε(g), dΓ (ω)ε(f)〉 = 〈g, ωf〉e〈g,f〉.
Let A ∈ B(Rν). In this paper we shall mainly encounter spaces of the form

HA = (Rν ,B(Rν), 1Aλν)

where λν is the Lebesgue measure. Note H⊗nA = L2((Rν)n,B(Rν)⊗n, 1Anλ⊗nν ).
We also define

CSA = {f ∈ HA | ∃R > 0 such that 1BR(0)f = f 1Aλν almost everywhere}.
which is obviously a dense subspace inside HA. We will also need the contraction
PA : HRν → HA defined by

PA(v) = v

1Aλν almost everywhere. Let ω : Rν → R be a measurable map. Then ωA is de-
fined to be multiplication by ω on the space HA. Define furthermore dΓ (kA) =
(dΓ ((k1)A), . . . , dΓ ((kν)A)) where ki : Rν → R is projection to the i’th coordi-
nate and let g(n) : (Rν)n → Rν be given by g(0)(0) = 0 and g(n)(k) = k1+· · ·+kn
for n ≥ 1. Then for K : Rν → R we have

K(ξ − dΓ (kA)) =

∞⊕

n=0

KA(ξ − g(n))

where KA(ξ − g(n)) is to be interpreted as the corresponding multiplication
operator on H⊗snA . In case A = Rν we will omit A from the notation.

We shall also encounter vectors of operators. Let B1, . . . , Bn be operators on
a Hilbert space H and define B = (B1, . . . , Bn) from ∩ni=1D(Bi) into Hν by
Bψ = (B1ψ, . . . , Bnψ). Note Hν =

⊕ν
k=1H and is also a Hilbert space. For any

k ∈ Rν we define

k ·B =

n∑

i=1

kiBi.

In particular we find for ψ ∈ D(B)

‖k ·Bψ‖2 =

n∑

i,j=1

〈kiBiψ, kjBjψ〉 ≤
n∑

i,j=1

|ki||kj |‖Biψ‖‖Bjψ‖

≤
n∑

i,j=1

1

2
|ki|2‖Biψ‖‖Bjψ‖2+

1

2
|kj |‖Biψ‖2= ‖k‖2‖Bψ‖2 (2.2)
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3. The operator - basic properties and the main result

Fix K,ω : Rν → [0,∞) measurable and let v ∈ H. Define for A ∈ B(Rν) and
ξ ∈ Rν the Hamiltonian

Hµ(ξ, A) = K(ξ − dΓ (kA)) + dΓ (ωA) + µϕ(vA)

where vA = PA(v). We have

Lemma 3.1. Assume ω > 0 λν almost everywhere, v ∈ D(ω−1/2) and A ∈
B(Rν). Then ωA ≥ 0 is injective and vA ∈ D(ω

−1/2
A ). Furthermore, Hµ(ξ, A) is

selfadjoint on D(H0(ξ, A)) = D(dΓ (ω))∩D(dΓ (K(ξ− dΓ (kA))) and essentially
selfadjoint on any core for H0(ξ, A). Also, Hµ(ξ, A) ≥ −µ2‖ω−1/2v‖ independent
of A and ξ.

Proof. We know {ω ≤ 0} is a λν 0 set and therefore a 1Aλν 0 set. Hence ωA ≥ 0

is injective. That vA ∈ D(ω
−1/2
A ) is obvious as ω−1/2v is square integrable over

Rν . For each n ∈ N0 we define a map G
(n)
ξ = K(ξ − g(n)) + ωn. and define the

selfadjoint operator Bξ =
⊕∞

n=0G
(n)
ξ on F(HA). Using max{K(ξ − g(n)), ω} ≤

G
(n)
ξ = K(ξ − g(n)) + ωn we note

D(Bξ) = D(KA(ξ − dΓ (k))) ∩ D(dΓ (ω)) and H0(ξ, A) = Bξ.

In particular, H0(ξ, A) is selfadjoint. For ψ ∈ D(H0(ξ, A)) we have ‖dΓ (ω)ψ‖≤
‖H0(ξ, A)ψ‖ and so we find via Lemma 2.1 and the Kato Rellich theorem that

Hµ(ξ, A) := H0(ξ, A) + µϕ(vA)

is selfadjoint on D(H0(ξ, A)) and any core for H0(ξ, A) is a core for Hµ. Using

Lemma 2.1 again we find Hµ(ξ, A) ≥ 0− µ2‖ω−1/2v‖2≥ −µ2‖ω−1/2v‖. �

Hypothesis 1: We assume

(1) K ∈ C2(Rν ,R) is non negative and there is CK > 0 such that ‖∇K‖2≤
CK(1 +K) and ‖D2K‖≤ CK where D2K is the Hessian of K.

(2) ω : Rν → [0,∞) is continuous and ω > 0 λν almost everywhere.
(3) v ∈ D(ω−1/2).

Under these hypothesis we define maps

∇K(ξ − dΓ (kA)) = (∂1K(ξ − dΓ (kA)), . . . , ∂νK(ξ − dΓ (kA)))

ΣA(ξ) = inf(σ(Hµ(ξ, A)))

We have the following lemma

Lemma 3.2. Assume Hypothesis 1. The following holds

(1) D(K(ξ−dΓ (kA))) ⊂ D(∇K(ξ−dΓ (kA))) and for ψ ∈ D(K(ξ−dΓ (kA))) we
have ‖∇K(ξ − dΓ (kA))ψ‖2≤ CK‖K(ξ − dΓ (kA))ψ‖2+CK‖ψ‖2

(2) D(K(ξ − dΓ (kA))) is independent of ξ. On D(K(ξ − dΓ (kA))) we have

K(ξ + a− dΓ (kA)) = K(ξ − dΓ (kA)) + a · ∇K(ξ − dΓ (kA)) + Eξ,A(a)
(3.1)

where ‖Eξ,A(a)‖≤ CK‖a‖2. In particular, D(Hµ(ξ, A)) is independent of ξ.
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(3) Let ψ ∈ D(K(ξ − dΓ (kA))). Then

‖K(ξ + a− dΓ (kA))−K(ξ − dΓ (kA))ψ‖2

≤ C2
K‖a‖2‖K(ξ − dΓ (kA))ψ‖2+(1 + ‖a‖2)CK‖a‖2‖ψ‖2. (3.2)

Furthermore, ξ 7→ Hµ(ξ, A)ψ is continuous for any ψ ∈ cD(Hµ(0, A)) and
ξ 7→ Hµ(ξ, A) is continuous in norm resolvent sense. In particular, the map
ξ 7→ ΣA(ξ) is continuous.

(4) Let D ⊂ CSA be a dense subspace. Then L(D) and J (D) span cores for
Hµ(ξ, A).

Proof. To prove (1) we calculate for ψ ∈ D(K(ξ − dΓ (kA)))

ν∑

i=1

∞∑

n=0

∫

An
|ψ(n)(k)∂iK(ξ − g(n)(k))|2dλ⊗nν

≤
∞∑

n=0

∫

An
Ck|ψ(n)(k)K(ξ − g(n)(k))|2dλ⊗nν + Ck‖ψ(n)‖

= CK‖K(ξ − dΓ (k))ψ‖2+CK

This proves (1). To prove (2) we use the fundamental theorem of calculus twice
and arrive at

K(ξ + a− k) = K(ξ − k) + a · ∇K(ξ − k) + a ·
∫ 1

0

∫ 1

0

D2K(ξ + sta− k)adsdt

Define Ga(k) = a ·
∫ 1

0

∫ 1

0
D2K(k + sta)adsdt, and note |Gξ,a(k)|≤ CK‖a‖2 uni-

formly in k and ξ. Thus if we define Eξ,A(a) = Gξ,a(ξ − dΓ (kA)) we find that
Eξ,A(a) is bounded with norm bound CK‖a‖2. Let ψ ∈ D(K(ξ−dΓ (kA))). Then
ψ ∈ D(K(ξ−dΓ (kA)) + 〈a,∇K(ξ−dΓ (kA))〉+Eξ,A(a)) by part 1. We have the
point wise identity:

((K(ξ − dΓ (kA)) + a · ∇K(ξ − dΓ (kA)) + Eξ,A(a))ψ)(n) = K(ξ + a− g(n))ψ(n)

showing K(ξ + a− g(n))ψ(n) is square integrable and the sum of squared norms
is finite. Hence ψ ∈ D(K(ξ + a − dΓ (kA))) and equation (3.1) holds. We have
thus proven D(K(ξ + a− dΓ (kA))) ⊂ D(K(ξ − dΓ (kA))) for all ξ ∈ Rν however
using ξ′ = ξ − a we find the other inclusion. This proves (2).

To prove (3) we note that equation (3.2) is easily obatined from statements
(1) and (2). Using

(Hµ(ξ + a,A)−Hµ(ξ, A))ψ = (K(ξ + a− dΓ (kA))−K(ξ − dΓ (kA)))ψ

for any ψ ∈ D(Hµ(ξ, A)) and equation (3.2) we immediately obtain continuity for
ξ 7→ Hµ(ξ, A)ψ. To prove the statement regarding norm resolvent convergence
we calculate using equation (3.2)

‖(Hµ(ξ + a,A) + i)−1 − (Hµ(ξ, A) + i)−1‖2

≤ CK‖a‖2‖KA(ξ − dΓ (k))(Hµ(ξ, A) + i)−1‖+(1 + ‖a‖2)CK‖a‖2
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which goes to 0 for a tending to 0. Continuity of ξ 7→ inf(σ(Hµ(ξ, A))) now fol-
lows from continuity of the spectral calculus and the existence of a ξ-independent
lower bound by Lemma 3.1.

It only remains to prove statement (4). By Lemma 3.1 it is enough to check
that J (D) and L(D) span a core for H0(ξ, A). Let f1, . . . , fn ∈ CSA. Pick R > 0
such that 1BR(0)fi = fi 1Aλν almost everywhere for all i ∈ {1, . . . , n} and note

that 1BR(0)nf1 ⊗s · · · ⊗s fn = f1 ⊗s · · · ⊗s fn 1Anλ
⊗n
ν almost everywhere. Let

C = supk∈BR(0) ω(k). Using the fundamental theorem of calculus we find the

following point wise inequality for k ∈ BR(0)n :

|K(ξ − gn(k))|= K(ξ) + ‖−g(n)(k)‖‖∇K(ξ)‖+‖−g(n)(k)‖2CK ≤ C̃(1 + n2R2)

Where C̃ = max{K(ξ)+ 1
2‖∇K(ξ)‖, (1+CK)} and we used that ‖−g(n)(k)‖≤ nR

for k ∈ BR(0)n. We therefore find the following point wise estimates on BR(0)n :

(K(ξ − gn) + ωn)2p|f1 ⊗s · · · ⊗s fn|≤ (C̃(1 + n2R2) + nC)2p|f1 ⊗s · · · ⊗s fn|

Integrating yields f1 ⊗s · · · ⊗s fn ∈ D(H0(ξ, A)p) and

‖H0(ξ, A)pf1 ⊗s · · · ⊗s fn‖≤ (C̃(1 + n2R2) + nC)p‖f1 ⊗s · · · ⊗s fn‖ (3.3)

Multiplying by 1
p! and summing over p yields a finitie number so f1 ⊗s · · · ⊗s fn

is analytic for H0(ξ). Now, Ω is an eigenvector for H0(ξ) and therefore analytic
we see J (D) is a total set of analytic vectors for H0(ξ, A) and therefore it spans
a core for H0(ξ, A) by Nelson analytic vector theorem.

By equation (3.3) we see f⊗n ∈ D(H0(ξ, A)p) and

‖H0(ξ, A)pf⊗n1 ‖2 ≤ ‖(C̃(1 + n2R2) + nC)2p‖f1‖2n

≤ (C̃1/2(1 + nR) +
√
nC)4p‖f1‖2n

This also holds for n = 0 as we in this case obtain ‖H0(ξ, A)pΩ‖2=
√
K(ξ)

4p ≤
(C̃1/2)4p. Multiplying by 1

n! and summing over n yields a finitie number so
ε(f1) ∈ D(H0(ξ, A)p) for all p. Now

∞∑

p=0

1

(2p)!
‖H0(ξ, A)pε(f1)‖ ≤

∞∑

p=0

1

(2p)!

∞∑

n=0

1√
n!
‖H0(ξ, A)pf⊗n1 ‖

=

∞∑

n=0

1√
n!

∞∑

p=0

1

(2p)!
(C̃1/2(1 + nR) +

√
nC)2p‖f1‖n

≤
∞∑

n=0

‖f‖ne(C̃1/2(1+nR)+
√
nC)

√
n!

<∞

Thus ε(f1) is semi analytic for H0(ξ). This implies {ε(f) | f ∈ D} spans a
dense subspace of semi analytic vectors for H0(ξ, A), which is a core by the
Masson-McClary theorem. �

Hypothesis 2: We assume
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(1) K,ω and v are rotation invariant. Furthermore k 7→ e−tK(k) is positive definite
for all t.

(2) ω is sub-additive, ω(x1) < ω(x2) of |x1|< |x2|. Also Cω = limk→0‖k‖−1ω(k)
exists and is strictly positive.

(3) v /∈ D(ω−1Rν )

The physical choices for the 3-dimensional Nelson model are ω(k) = |k|,
K ∈ {k 7→ |k|2, k 7→

√
|k|2+m − m} and v = ω−1/2χ where χ : Rν → R is a

spherically symmetric ultra violet cutoff. It is well known that Hypothesis 1 and
2 are fulfilled in this case. We can now state the main theorem of this paper:

Theorem 3.3. Assume Hypothesis 1 and 2 along with ν ≥ 3. Then Hµ(ξ) has
no ground states for any ξ and µ 6= 0.

4. Proof of Theorem 3.3

We start with proving series of lemmas which we shall need. We work under
Hypothesis 1 and 2. The first Lemma is known and we only sketch the proof.

Lemma 4.1. The map ξ 7→ Σ(ξ) is rotation invariant.

Proof L. et O denote any orthogonal matrix with dimensions ν. Define the uni-

tary map Ô : H → H by (Ôf)(k) = f(Ok) λν almost everywhere. Let f, g ∈ CS
and note Ôf, Ôg ∈ CS. In particular, Γ (Ô)ε(f) = ε(Ôf) ∈ D(Hµ(ξ)) for all ξ.
One now easily calculates using Lemma 2.2

〈ε(g), Γ (Ô)∗Hµ(ξ)Γ (Ô)ε(f)〉 = 〈ε(g), Hµ(Oξ)ε(f)〉.

Now L(CS) is total so we find Hµ(Oξ) = Γ (Ô)∗Hµ(ξ)Γ (Ô) on L(CS) which is

spans a core for Hµ(Oξ) and so Γ (Ô)∗Hµ(ξ)Γ (Ô) = Hµ(Oξ). �
For any x ∈ Rn\{0} we write x̂ = ‖x‖−1x. The next small lemma is basically
spherical coordinates.

Lemma 4.2. Let U ⊂ Rν be invariant under multiplication by elements in
(0,∞). Then for any positive, rotation invariant, measurable map f we have

∫

U

f(x)dλν(x) = nλν(U ∩B1(0))

∫ ∞

0

f(ke1)kν−1dλ1(k)

where e1 is the first standard basis vector. If U is open then λν(U ∩B1(0)) 6= 0.

Proof. Consider the map g : Rν → [0,∞) given by g(x) = |x|. Define the
transformed measure on ([0,∞),B([0,∞))) by

µ = (1Uλν) ◦ g−1

The transformation theorem implies

µ([0, a]) = λν(a(U ∩B1(0))) = νλν(Ũ ∩B1(0))

∫ a

0

kν−1dλ1(k)
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By uniqueness of measures (see [13, chapter 5]) we find that µ has density

νλν(Ũ ∩B1(0))rν−1 with respect to λ1. Using that f(g(x)e1) = f(x) we find

λν(U ∩B1(0))ν

∫ ∞

0

f(ke1)kν−1dλ1(k) =

∫ ∞

0

f(ke1)dµ(k) =

∫

U

f(x)dλν(x)

as desired. If U is not empty we can pick k ∈ U . If ‖k‖< 1 then k ∈ U ∩B1(0).
If ‖k‖≥ 1 then 1

2‖k‖k ∈ U ∩B1(0) so U ∩B1(0) 6= ∅. Hence if U is open and not

empty we find U ∩B1(0) is open and non empty so λν(U ∩B1(0)) 6= 0. �

Lemma 4.3. Σ has a global minimum at ξ = 0.

Proof. This result was proven in the paper [7] under the extra assumption that
there is m > 0 such that ω ≥ m. The proof used in [7] does however generalise
to our setting. Another way to derive it to consider ωn = 1/n+ ω and let

Hn(ξ) = K(ξ − dΓ (k)) + dΓ (ωn) + µϕ(v)

Write Σn(ξ) = inf(σ(Hn(ξ))). Now Span(J (CS)) is a common core for the Hn(ξ)
and H(ξ) by Lemma 3.2 and for ψ in this set we see

lim
n→∞

(Hn(ξ)−H(ξ))ψ = lim
n→∞

1

n
Nψ = 0

implying Hn(ξ) converges to H(ξ) in strong resolvent sense by [11, Theorem
VIII.25]. For any ε > 0 we may pick ψ ∈ Span(J (CS)) such that

Σn(ξ) + ε ≥ 〈ψ,Hn(ξ)ψ〉 ≥ 〈ψ,H(ξ)ψ〉 ≥ Σ(ξ)

In particular, Σn(ξ) ≥ Σ(ξ) for all n ∈ N. By [11, Theorem VIII.24] we find a
sequence {λn}∞n=1 converging to Σ(ξ) with λn ∈ σ(Hn(ξ)).

Hence 0 ≤ Σn(ξ) − Σ(ξ) ≤ λn − Σ(ξ) so Σn(ξ) converges to Σ(ξ). Now Σn
has a global minimum at ξ = 0 and so

Σ(0) = lim
n→∞

Σn(0) ≤ lim
n→∞

Σn(ξ) = Σ(ξ)

finishing the proof. �

For every ξ ∈ Rn and 0 < ε < 1 we define

Sε(ξ) = {k ∈ Rν\{0} | |k̂ · ξ|< (1− ε)‖ξ‖}.

where k̂ = k/‖k‖. The following Lemma is essential:

Lemma 4.4. Let ξ ∈ Rν . Then

(1) Σ(ξ − k) + ω(k) > Σ(ξ) if k /∈ Rξ.
(2) For any 1 > ε > 0 there exists D := D(ε, ξ) < 1 and r := r(ε, ξ) > 0 such

that for all k ∈ Br(0) ∩ Sε(ξ) we have

Σ(ξ − k)−Σ(ξ) ≥ −Dω(k)
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Proof. We start by proving (1). Assume ξ = 0 and k 6= 0. If ω(k) = 0 then by
Hypothesis 2 we have ω(k′) < 0 for all k′ ∈ B|k|(0) which contradicts Hypothesis

1. So if ξ = 0 the result is trivial since Σ(ξ − k) − Σ(ξ) > − 1
2ω(k) > −ω(k)

holds for all k 6= 0 by Lemma 4.3.
Assume now ξ 6= 0 and let k /∈ Rξ. By rotation invariance of Σ (Lemma 4.1)

we may calculate

Σ(ξ − k)−Σ(ξ) = Σ(ξ − k)−Σ
( ‖ξ‖
‖ξ − k‖ (ξ − k)

)
(4.1)

By Lemma A.5 we have Σ(ξ−k)+ω(k) ∈ σ(H(ξ)) and so Σ(ξ) ≤ Σ(ξ−k)+ω(k)
implying

Σ(ξ − k)−Σ
( ‖ξ‖
‖ξ − k‖ (ξ − k)

)
≥ −ω

( ‖ξ‖
‖ξ − k‖ (ξ − k)− ξ − k

)

= −ω
(

(‖ξ‖−‖ξ − k‖) ξ − k
‖ξ − k‖

)
(4.2)

Now |‖ξ‖−‖ξ − k‖|≤ ‖k‖ by the reverse triangle inequality. If equality holds we
have either ‖ξ‖= ‖ξ − k‖+‖k‖ or ‖ξ − k‖= ‖ξ‖+‖−k‖. By [14, Page 9] either k
and ξ−k are linearly dependent or k and ξ are linearly dependent. In any case ξ
and k are linearly independent which ( as ξ 6= 0) implies k = aξ for some a ∈ R.
So since k /∈ Rξ we find |‖ξ‖−‖ξ − k‖|< ‖k‖ and so

ω

(
(‖ξ‖−‖ξ − k‖) ξ − k

‖ξ − k‖

)
< ω(k)

by Hypothesis 2. Combining this and equations (4.1) and (4.2) we find statement
(1). To prove statement (2) we continue to calculate for k ∈ Sε(ξ) (which is
disjoint from Rξ)

|‖ξ − k‖−‖ξ‖|=
∣∣∣∣
‖ξ − k‖2−‖ξ‖2
‖ξ − k‖+‖ξ‖

∣∣∣∣ = |k|
∣∣∣∣∣
−ξ · k̂ + ‖k‖
‖ξ − k‖+‖ξ‖

∣∣∣∣∣ ≤ |k|
(

1− ε+
‖k‖
‖ξ‖

)

(4.3)
Pick n such that D := (1 + 1/n)(1− 1/n)−1(1− ε/2) < 1 and R > 0 such that

Cω(1− 1/n)‖k‖≤ ω(k) ≤ Cωω(1 + 1/n)‖k‖ (4.4)

for all k ∈ BR(0). Pick r = min{‖ξ|ε2 , R}. Using equations (4.1), (4.2), (4.3) and
(4.4) we find

Σ(ξ − k)−Σ(ξ) ≥ −C(1 + 1/n)

(
1− ε+

|k|
|ξ|

)
|k|≥ −Dω(k)

for k ∈ Br(0) ∩ Sε(ξ). �

The following lemma is well known see e.g. [4].

Lemma 4.5. Define A = {v 6= 0}. Assume Hµ(ξ, A) has a ground state for
some µ 6= 0 and ξ ∈ Rν . Then the corresponding eigenspace is non degenerate.

We will now sharpen this result.
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Lemma 4.6. Assume Hµ(ξ) has a ground state for some µ 6= 0 and ξ ∈ Rν .
Then the corresponding eigenspace is non degenerate if ν ≥ 2.

Proof. Define A = {v 6= 0}. By Lemma A.3 there is a unitary map

U : F(H)→ F(HA)⊕
∞⊕

n=1

F(HA)⊗H⊗snAc

such that

UHµ(ξ)U∗ = Hµ(ξ, A)⊕
∞⊕

n=1

Hn,µ(ξ, A) |F(HA)⊗H⊗sn
Ac

(4.5)

for all ξ ∈ Rν where

Hn,µ(ξ, A) =

∫ ⊕

(Ac)n
Hµ(ξ − k1 − · · · − kn, A) + ω(k1) + · · ·+ ω(kn)dλ⊗nν (k)

Let ψ be any ground state for HRν (ξ). We prove Uψ = (ψ̃(0), 0, 0, . . . ). Write

Uψ = (ψ̃(n)) and assume towards contradiction that ψ̃(n) 6= 0 for some n ≥ 1.

Then ψ̃(n) is an eigenvector for Hn,A(ξ) corresponding to the eigenvalue Σ(ξ).
The spectral projection of Hn,A(ξ) onto Σ(ξ) is given by

∫ ⊕

(Ac)n
1{Σ(ξ)}(H(ξ − k1 − · · · − kn) + ω(k1) + · · ·+ ω(kn))dλ⊗nν (k) 6= 0.

Hence Σ(ξ) is an eigenvalue for Hµ(ξ − k1 − · · · − kn, A) + ω(k1) + · · ·+ ω(kn)
on a set of positive λ⊗nν measure. Sub-additivity of ω along with Lemmas A.3
and A.5 gives

Σ(ξ) ≥ ΣA(ξ − k1 − · · · − kn) + ω(k1) + · · ·+ ω(kn)

≥ Σ(ξ − k1 − · · · − kn) + ω(k1 + · · ·+ kn) ≥ Σ(ξ)

most hold on a set of positive λ⊗nν measure. By Lemma 4.4 we se that this can
only hold for k ∈ (Rν)n with k1 + · · · + kn ∈ Span(ξ). But the rank theorem
implies that the set of k satisfying this is a subspace of (Rν)n of dimension
νn − (ν − 1) < νn. However such a subspace must have λν measure 0 which is
a contradiction.

We now finish the proof as follows. Assume ψ1, ψ2 are orthogonal eigenvectors

corresponding to the eigenvalue Σ(ξ). Then Uψi = (ψ̃i, 0, 0, . . . .). Now U pre-

serves the inner product so ψ̃1 and ψ̃2 are orthogonal eigenvectors for Hµ(ξ, A)
corresponding to the eigenvalue Σ(ξ) so in particular Σ(ξ) ≥ ΣA(ξ). By equation
(4.5) we conclude that Σ(ξ) = ΣA(ξ) and therefore Hµ(ξ, A) has two orthogonal
ground states. This is a contradiction with Lemma 4.5. �

The next two Lemmas are an adapted version of the corresponding ones found
in [8]. For ξ ∈ Rν and k 6= 0 we define

Q0(k, ξ) = ω(k)(H(ξ)−Σ(ξ) + ω(k))−1

P0(ξ) = 1Σ(ξ)(H(ξ))
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Lemma 4.7. Fix ξ ∈ Rν and R > 0. Then k̂·∇K(ξ−dΓ (k))Q0(k, ξ) is uniformly
bounded for k in B(0, R)\{0}. We also have

s− lim
k→0

k̂ · ∇K(ξ − dΓ (k))Q0(k, ξ)(1− P0(ξ)) = 0 (4.6)

Proof. Note k̂ · ∇K(ξ − dΓ (k))Q0(k) is bounded for k 6= 0 by the closed graph
theorem and Lemma 3.2. For ψ ∈ F(H) we find by equation (2.2) that

‖k̂ · ∇K(ξ − dΓ (k))Q0(k, ξ)ψ‖2≤
ν∑

i=1

‖∂iK(ξ − dΓ (k))Q0(k, ξ)ψ‖2

so it is enough to see ∂iK(ξ−dΓ (k))Q0(k, ξ) is uniformly bounded onB(0, R)\{0}
for any R > 0 and converges strongly to ∂iK(ξ − dΓ (k))P0(ξ). We have

∂iK(ξ − dΓ (k))Q0(k, ξ) = ∂iK(ξ − dΓ (k))
ω(k)

H(ξ)−Σ(ξ) + ω(k) + 1

+ ∂iK(ξ − dΓ (k))
1

H(ξ)−Σ(ξ) + ω(k) + 1
Q0(k, ξ)

Now ω is continous and goes to 0 as k tends to 0 so Q0(k, ξ) goes strongly to
P0(ξ). Hence it is enough to see ∂iK(ξ − dΓ (k))(H(ξ) − Σ(ξ) + ω(k) + 1)−1 is
uniformly bounded in k and converges to ∂iK(ξ − dΓ (k))(H(ξ) − Σ(ξ) + 1)−1

in norm. But this is obvious from the equality

∂iK(ξ − dΓ (k))
1

H(ξ)−Σ(ξ) + ω(k) + 1
= ∂iK(ξ − dΓ (k))

1

Hµ(ξ)−Σ(ξ) + 1

+ ∂iK(ξ − dΓ (k))
1

Hµ(ξ)−Σ(ξ) + 1

ω(k)

Hµ(ξ)−Σ(ξ) + 1 + ω(k)

because the first term is constant and the other term is uniformly bounded and
goes to 0. �

For ξ ∈ Rν and k /∈ Rξ we may by Lemma 4.4 define

Q(k, ξ) = ω(k)(H(ξ − k)−Σ(ξ) + ω(k))−1

Lemma 4.8. Fix ξ ∈ Rν . There is a vector v(ξ) ∈ Rν such that

P0(ξ)k̂ · ∇K(ξ − dΓ (k))P0(ξ) = k̂ · v(ξ)P0(ξ)

for any k ∈ Rν\{0}. Pick 0 < ε < 1 such that k̂ · Cωv(ξ) < 1
2 for all k ∈

Sε(Cωv(ξ)). Define

S̃ε(ξ) = Sε(ξ) ∩ Sε(Cωv(ξ)).

If ν ≥ 3 then Sε is open, non-empty and invariant under positive scalings.
Furthermore,

w − lim
k→0,k∈S̃ε(ξ)

Q(k, ξ)− (1− Cωk̂ · v(ξ))−1P0(ξ) = 0. (4.7)
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Proof. As ξ is fixed in this proof it will be omitted from the nation of Q,Q0, B
and P0. If P0 = 0 we can pick v(ξ) = 0. If P0(ξ) = 0 then is has dimension
1 by Lemma 4.6 and is spanned by a vector ψ ∈ D(H(ξ)). Using P0 = |ψ〉〈ψ|
we find that v(ξ)i = 〈ψ, ∂iK(ξ − dΓ (k))ψ〉 does the trick. Furthermore, Sε is
obviously open and invariant under positive scaling since this holds for Sε(ξ)
and Sε(Cωv(ξ)). Furthermore any non-zero vector which is orthogonal to ξ and
v(ξ) is in Sε and such vector will always exist if ν ≥ 3.

It remains only to prove equation 4.7. By Lemma 4.4 we may pick R(ξ, ε) > 0

such that for k ∈ S̃ε(ξ) ∩BR(ξ,ε)(0) we have

Σ(k − ξ)−Σ(ξ) + ω(k) ≥ (1−A(ξ, ε))ω(k)

with D(ξ, ε) < 1. Hence we find

‖Q(k)‖ ≤ (1−D(ξ, ε))−1 ∀k ∈ S̃ε(ξ) ∩BR(ξ,ε)(0) (4.8)

Using Lemma 3.2 we may calculate for k ∈ S̃ε(ξ):

Q(k) = Q0(k) + ω(k)−1Q0(k)(H(ξ)−H(ξ − k))Q(k) (4.9)

=
|k|
ω(k)

Q0(k)(k̂ · ∇K(ξ − dΓ (ω))− |k|−1Eξ(−k))Q(k) (4.10)

= Q0(k) +
|k|
ω(k)

Q0(k)(k̂ · ∇K(ξ − dΓ (ω)))Q(k) + o1(k) (4.11)

where o1(k) := −Q0(k)ω(k)−1Eξ(−k)Q(k). We also have

Q(k) = Q0(k) + ω(k)−1Q(k)(H(ξ)−H(ξ − k))Q0(k) (4.12)

= Q0(k) +
|k|
ω(k)

Q(k)(k̂ · ∇K(ξ − dΓ (ω)))Q0(k) + o2(k) (4.13)

where o2(k) := −Q0(k)ω(k)−1Eξ(−k)Q(k). Note oi(k) goes to 0 in norm for

k tending to 0 in S̃ε(ξ) by equation (4.8), Lemma 3.2 and the uniform bound
‖Q0(k)‖≤ 1. Inserting equation (4.13) into equation (4.11) we find

Q(k) = Q0(k) +
|k|
ω(k)

Q0(k)(k̂ · ∇K(ξ − dΓ (ω))Q0(k) (4.14)

+
|k|2
ω(k)2

Q0(k)(k̂ · ∇K(ξ − dΓ (ω)))Q(k)(k̂ · ∇K(ξ − dΓ (ω)))Q0(k) + o(k)

Where

o(k) = Q0(k)(k̂ · ∇K(ξ − dΓ (ω)))o2(k) + o1(k)

= − |k|
ω(k)

Q0(k)(k̂ · ∇K(ξ − dΓ (ω)))Q0(k)|k|−1Eξ(−k)Q(k) + o1(k)

Note o(k) goes to 0 in norm for k tending to 0 in S̃ε(ξ) by equation (4.8), Lemmas
3.2 and 4.7, the uniform bound ‖Q0(k)‖≤ 1 and the fact that |k|ω(k)−1 has a
limit for k tending to 0. Using equation (4.14) and appealing to the limit found
in Lemma 4.7 along with the uniform bounds in Lemma 4.7 and equation (4.8)
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we now see (1− P0)Q(k) and Q(k)(1− P0) goes to 0 weakly for k tending to 0

inside S̃ε(ξ). Hence we find

w − lim
k→0,k∈S̃ε(ξ)

Q(k)− P0Q(k)P0 = 0. (4.15)

From equation (4.11) we find

P0Q(k)P0 = P0Q0(k)P0 +
|k|
ω(k)

P0Q0(k)(∇K(ξ − dΓ (ω))Q(k)P0 + P0o1(k)P0

= P0 +
|k|
ω(k)

P0(k̂ · ∇K(ξ − dΓ (ω)))(1− P0)Q(k)P0

+

( |k|
ω(k)

− Cω
)
k̂ · v(ξ)P0Q(k)P0 + Cωk̂ · v(ξ)P0Q(k)P0 + P0o1(k)P0

Write Dk = (1− Cωk̂ · v(ξ))−1 and that for k ∈ S̃ε(ξ) we have |Dk|≤ 2. A little
algebra yields

P0Q(k)P0 −DkP0 = Dk
|k|
ω(k)

P0(k̂ · ∇K(ξ − dΓ (ω)))(1− P0)Q(k)P0

+Dk

( |k|
ω(k)

− Cω
)
k̂ · v(ξ)P0Q(k)P0 +DkP0o1(k)P0

The second and third term converges to 0 in norm since for k tending to 0

inside S̃ε(ξ) since Dk and k̂ · v(ξ)P0Q(k)P0 are uniformly bounded by equation

(4.8) and o1(k) converges to 0 in norm since for k tending to 0 inside S̃ε(ξ).
Sandwiching the first term with two vectors φ, ψ ∈ F(H) we find

Dk
|k|
ω(k)

n∑

i=1

k̂i〈∂iK(ξ − dΓ (k))P0ψ, (1− P0)Q(k)P0φ〉

Now 〈∂iK(ξ−dΓ (k))P0ψ, (1−P0)Q(k)P0φ〉 converges to 0 for k going to 0 inside

S̃ε(ξ) by equation (4.15) and |k|
ω(k) k̂i remains bounded as k goes to 0. Therefore

first term goes weakly to 0 for k going to 0 inside S̃ε(ξ). �

Proof (Theorem 3.3). Fix notation from Lemma 4.8. Assume that a ground state
ψ exist and pick η ∈ D(N1/2) such that 〈ψ, η〉 > 1

2 . Then by Lemma B.14 in
Appendix B we have the pull through formula

〈η,A1ψ(k)〉 = µ
v(k)

ω(k)
〈η,Q(k)ψ〉.

Now

lim
k→0,k∈S̃ε(ξ)

〈η,Q(k)ψ〉 − (1− Cωk̂ · v(ξ))−1〈η, ψ〉 = 0
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and since (1−Cωk̂ · v(ξ))−1〈η, ψ〉 is uniformly bounded from below in S̃ε(ξ) by
1
2 we find that there is R > 0 such that

|〈η,A1ψ(k)〉|2≥ µ2

16

|v(k)|2
ω(k)2

for all k ∈ S̃ε(ξ)∩BR(0). Using Hypothesis 1 and 2 we see ω(Re1)2 > 0 because
if that was not true then ω ≤ 0 on BR(0) which is a contradiction. Hence we
find

∞ =

∫

Rν

|v(k)|2
ω(k)2

dλν ≤
1

ω(Re1)2

∫

BR(0)c
|v(k)|2dλν +

∫

BR(0)

|v(k)|2
ω(k)2

dλν

as v ∈ H we find that the integral of ω(k)−2|v(k)|2 over BR(0) must be infinite.
Using Lemma 4.2 we find

∞ =

∫

BR(0)

|v(k)|2
ω(k)2

dλν = λν(B1(0))

∫ ∞

0

1BR(0)(xe1)
|v(ke1)|2
ω(ke1)2

kν−1dλ1(k)

as λν(B1(0)) we see that the latter integral must be infinite. Furthermore since

S̃ε(ξ) is open and not empty we have

∫

S̃ε(ξ)∩BR(0)

|v(k)|2
ω(k)2

dλν = νλν(S̃ε(ξ) ∩B1(0))

∫ ∞

0

1BR(0)(xe1)
|v(ke1)|2
ω(ke1)2

kν−1dλ1

=∞

by Lemma 4.2 so |〈η,A1ψ(k)〉|2 is not integrable. On the other hand we find

|〈η,A1ψ(k)〉|2≤ ‖(N + 1)1/2η‖2‖(N + 1)−1/2A1ψ(k)‖2

= ‖(N + 1)1/2η‖2
∞∑

i=1

∫

R(n−1)ν

|ψ(n)(k, k1, . . . , kn−1)|2dλ⊗n−1ν (k1, . . . , kn−1)

which is integrable with integral ‖(N + 1)1/2η‖2‖ψ‖2 by definition of the Fock
space norm. This is the desired contradiction. �

A. Partitions of unity and the essential spectrum.

In this section we prove a few technical ingredients. Hypothesis 1 will be assumed
throughout this section. Define VA : H → HA ⊕HAc by

VA(f) = (PAf, PAcf).

Then VA is unitary with V ∗A(f, g) = f1A + g1Ac λ
ν almost everywhere. The

following Lemma can be found in e.g. [9]:

Lemma A.1. There is a unique isomorphism U : F(HA ⊕ HAc) → F(HA) ⊗
F(HAc) with the property that U(ε(f1 ⊕ f2)) = ε(f1)⊗ ε(f2).

The following Lemma is obvious
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Lemma A.2. There is a unique isomorphism

U : F(HA)⊗F(HAc)→ F(HA)⊕
∞⊕

n=1

F(HA)⊗H⊗snAc

such that

U(w ⊗ {ψ(n)}∞n=0) = ψ(0)w ⊕
∞⊕

n=1

w ⊗ ψ(n).

Note that we may identify

F(HA)⊗H⊗snAc = (1⊗ Sn)L2(Rnν ,B(Rnν), 1(Ac)nλnν ,F(HA))

where 1⊗ Sn acts on L2(Rnν ,B(Rnν), λnν ,F(HA)) like

(Snf)(k1, . . . , kn) =
1

n!

∑

σ∈Sn
f(kσ(1), . . . , kσ(n)).

Now we define

H
(n)
A (ξ, k1, . . . , kn) = Hµ(ξ − k1 − · · · − kn, A) + ω(k1) + · · ·+ ω(kn)

which is strongly resolvent measurable in (k1, . . . , kn) ∈ (Ac)n since ξ 7→ H(ξ)
is strong resolvent measurable by Lemma 3.2. In particular

Hn,A(ξ) =

∮

(Ac)n
H(n)(ξ, k1, . . . , kn)dλnν(k1, . . . , kn)

defines a selfadjoint operator on L2(Rnν ,B(Rnν), λnν ,F(HA)) and it is reduced
by the projection 1 ⊗ Sn. To see this we note that 1 ⊗ Sn commutes with the

unitary group of Hn,A(ξ) since H
(n)
A (ξ, k1, . . . , kn) symmetric in the variables

k1, . . . , kn. Combining the above observations one arrives at the following lemma.

Lemma A.3. Let A ∈ B(Rν) and assume 1Av = v λν almost everywhere. Define
ji : Hi → HA⊕HAc by jA(f) = (f, 0) and jAc(f) = (0, f) and define Qi = V ∗Aji.
There is a unitary map

U : F(H)→ F(HA)⊕
∞⊕

n=1

F(HA)⊗H⊗snAc

such that

UHµ(ξ)U∗ = Hµ(ξ, A)⊕
∞⊕

n=1

Hn,A(ξ) |F(HA)⊗H⊗sn
Ac

:= GA(ξ) (A.1)

for all ξ ∈ Rν . In particular ΣA(ξ) ≥ Σ(ξ) for all ξ ∈ Rν . Furthermore

U |F(HA)= Γ (QA).
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Let g1, . . . , gn ∈ HAc and let K ⊂ CSA be a subspace. Define

D ={QAcg1 ⊗s · · · ⊗s QAcgn}

∪
∞⋃

b=1

{h1 ⊗s · · · ⊗s hb ⊗s QAcg1 ⊗s · · · ⊗s QAcgn | hi ∈ K}.

If ψ ∈ Span(J (K)) we have

U∗(ψ ⊗ g) ∈ Span(D). (A.2)

‖(Hµ(ξ − k)−Hµ(ξ))Γ (QA)ψ‖ = ‖(Hµ(ξ − k,A)−Hµ(ξ, A))ψ‖. (A.3)

‖(Hµ(ξ)− λ)Γ (QA)ψ‖ = ‖(Hµ(ξ, A)− λ)ψ‖. (A.4)

where λ ∈ C.

Proof. Define U = U2U1Γ (VA). Let f, h ∈ CS and write for C ∈ {A,Ac} fC =
PC(f), hC = PC(h) ∈ CSC . Then

Uε(f) = U2U1ε(fA, fAc) = U2ε(fA)⊗ ε(fAc) = ε(fA)⊕
∞⊕

n=1

ε(fA)⊗ 1√
n!
f⊗nAc

which one may check is in D(G(ξ)). A long but easy calculation using Lemma
2.2 yields

〈ε(h), U∗G(ξ)Uε(f)〉 = 〈Uε(h), G(ξ)Uε(f)〉 = 〈ε(h), H(ξ)ε(f)〉

As L(CS) is total we find Hµ(ξ) and U∗G(ξ)U = H(ξ) on L(CS) which is spans
a core for Hµ(ξ). Hence U∗G(ξ)U = Hµ(ξ) as both operators are selfadjoint.
This proves the claim regarding the transformations. The remaining statements
except equations (A.3) and (A.4) can be found in [3]. However equations (A.3)
and (A.4) follows from U |F(HA)= Γ (QA) and equation (A.1). �

We have the following Lemma

Lemma A.4. Let k1, . . . , k` ∈ Rν be different. If there is ε > 0 such that
(Bε(k1) ∪ · · · ∪ Bε(k`)) ∩ {v 6= 0} is a λν 0-set then Σ(ξ − k1 − · · · − k`) +
ωn(k1, . . . , k`) ∈ σess(Hµ(ξ)).

Proof. Pick ε > 0 such that the balls Bε(k1), . . . , Bε(k`) are pairwise disjoint and

we have (Bε(k1)∪· · ·∪Bε(k`))∩{v 6= 0} is a λν 0-set. Let εn = ε
n , B

(i)
n = Bεn(ki),

Bn = B
(1)
n ∪ · · · ∪B(`)

n , k0 = k1 + · · ·+ k`, An = B
(1)
n × · · · ×B(`)

n and let

g(i)n = λν(B(i)
n \B(i)

n+1)−1/21
B

(i)
n \B(i)

n+1

An = {f ∈ CS | f1
(B

(i)
n )c

= f λν almost everywhere for all i ∈ {1, . . . , n}}

A∞ =

∞⋃

n=1

An.

Note that CS ⊂ A∞ so A∞ is a dense subspace of H. In particular, J (A∞)
spans a core for Hµ(ξ − k0) by Lemma 3.2. For each p ∈ N we may thus pick
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ψp ∈ J (A∞) such that ‖(Hµ(ξ−k0)−Σ(ξ−k0))ψp‖≤ 1/p. By Lemma 3.2 there
is u1(p) such that

sup
x=(x1,...,x`)∈An

‖(H(ξ − x1 − · · · − x`)−H(ξ − k0))ψp‖≤
1

p
.

for all n ≥ u1(p). Note now that ψp may we written as

ψp = a(p)Ω +

b∑

i=1

c(p)∑

j=1

αi,j(p)f
j
1 (p)⊗s · · · ⊗s f ji (p)

for some a(p), b(p), c(p), αi,j(p) constants and f ji (p) ∈ A∞. Note that each

f ji (p) is in fact contained in some Al(i,j,p) by definition so defining u2(p) =
maxi,j{l(i, j, p)} we see that ψp ∈ Span(J (Al)) for any l ≥ u2(p). Define now up
inductively by u1 = max{u1(p), u2(p)} and up+1 = max{u1(p), u2(p), up−1}+ 1.

To summarise we have found vectors ψp ∈ D(H(ξ)) and a strictly increasing
sequence of numbers {up}∞p=1 ⊂ N such that

(1) ‖(H(ξ − k0)−Σ(ξ − k0))ψp‖≤ 1/p.
(2) supk∈Bδp (k1+···+k`)‖(H(ξ − k)−H(ξ − k0))ψp‖≤ 1

p and `εup ≤ δ
(3) ψp ∈ Span(J (Aup)).

For each n ∈ N and A ∈ {Bcn, Bn} define Vn = VBεn (k0)c and jn,A : Hi →
HBcn⊕HBn by jn,Bcn(f) = (f, 0) and jn,Bnf = (0, f). Furthermore we set Qn,A =
V ∗n jn,A and let Un be the unitary map from Lemma A.4 corresponding to Bcn.
Fix f ∈ H. Then the following equalities holds λν almost everywhere:

Qn,BnPBn(f) = V ∗n (0, PBn(f)) = 1BnPBn(f) = 1Bnf (A.5)

Qn,BcnPBcn(f) = V ∗n (PBcn(f), 0) = 1BcnPBcn(f) = 1Bcnf (A.6)

since PBn(f) = f 1Bnλν-almost everywhere and PBcn(f) = f 1Bcnλν-almost
everywhere. For f ∈ An we have 1Bcnf = f and so we obtain the two equalities

Γ (Qn,Bcn)Γ (PBcn)ψ = Γ (1Bcn)ψ = ψ ∀ψ ∈ Span(J (An)) (A.7)

Qn,BnPBng
(i)
n = 1Bng

(i)
n = g(i)n (A.8)

for all i ∈ {1, . . . , `}. We now define the Weyl sequence as follows:

φp =
√
`!U∗up(Γ (PBcup )ψp ⊗ PBup g(1)up ⊗s · · · ⊗s PBup g(`)up )

We will now prove

(1) φp ∈ D(F1).
(2) φp is orthogonal to φr for p 6= r.
(3) ‖φp‖= 1 for all p ∈ N.
(4) ‖(H(ξ)−Σ(ξ − k0)− ωn(k1, . . . , kn))φp‖ converges to 0.
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(1): Define for all p ∈ N the set

Cp ={g(1)up ⊗s · · · ⊗s g(`)up }

∪
∞⋃

q=1

{h1 ⊗s · · · ⊗s hq ⊗s g(1)up ⊗s · · · ⊗s g(`)up | hi ∈ Aup} ⊂ J (CS)

and let Kp = PBcupAup ⊂ CSBcup since PBcup maps CS into CSBcup . Using equation

(A.5) we find Qup,BcupKp = 1BupAup = Aup and Lemma A.3 implies ψp ∈ Cp ⊂
J (CS) ⊂ D(Hµ(ξ)) as required.

(2): Let r < p. Then φr ∈ Span(Cr) and φp ∈ Span(Cp), so we just need to
see that every element in Cp and Cr are orthogonal. Let ψ1 ∈ Cp and ψ2 ∈ Cr.
Note every tensor in Cp has a factor g

(1)
up and that this factor is orthogonal to g

(i)
ur

for all i by construction. Furthermore for any h ∈ Aur we see that h is supported

in Bcur ⊂ Bcup and hence g
(1)
up h = 0, so g

(1)
up is orthogonal to any element in Aur .

This implies ψ1 contains a factor orthogonal to all factors in ψ2 and thus ψ1 is
orthogonal to ψ2.

(3): Qup,Bcup and Qup,Bnp are isometrics and which implies Γ (Qnp,Bcup ) and

Γ (Qnp,Bup ) are isometrics. Using equations (A.7) and (A.8) we calculate

‖φp‖ =
√
`!‖Γ (PBcnp )ψp‖‖PBup g(1)up ⊗s · · · ⊗s PBup g(`)up ‖

=
√
`!‖Γ (Qnp,Bcup )Γ (PBcup )ψp‖‖Γ (Qup,Bcup )PBup g

(1)
up ⊗s · · · ⊗s PBup g(`)up ‖

=
√
`!‖ψp‖‖g(1)up ⊗s · · · ⊗s g(`)up ‖= 1

where we used g
(i)
up and g

(j)
up are normalised and orthogonal if i 6= j and

‖g(1)up ⊗s · · · ⊗s g(`)up ‖2 =
1

`!

∑

σ∈S`
〈g(1)up ⊗ · · · ⊗ g(`)up , g(σ(1))up ⊗s · · · ⊗s g(σ(`))up 〉 =

1

`!
.

(4): Define the function gup = g
(1)
up ⊗s · · · ⊗s g(`)up . Using Lemma A.3 we see

that ‖(H(ξ)−Σ(ξ − k0)− ωn(k1, . . . , kn))φp‖ is given by

√
`!

(∫

B`up

‖(HBcup
(ξ − x1 − · · · − x`) + ω`(x1, . . . ., x`)

−Σ(ξ − k0)− ω`(k1, . . . , k`))Γ (PBcup )ψp‖2|gup(x)|2dλν(x)

)1/2

:=
√
`!γ
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Using the triangle inequality, ‖Γ (PBcnp )ψp‖= 1, Γ (Qnp,Bcup )Γ (PBcnp )ψp = ψp
and Lemma A.3 we find γ ≤ C1 + C2 + C3 where

C1 =

(∫

B`up

‖(H(ξ − x1 − · · · − xn)−H(ξ − k0))ψp‖2|gup(x)|2dλν(x)

)1/2

C2 =

(∫

B`up

|(ωn(x1, . . . , x`)− ωn(k1, . . . , k`))|2|gup(x)|2dλν(x)

)1/2

C3 = ‖(H(ξ − k0)−Σ(ξ − k0))ψp‖
(∫

B`up

|gup(x)|2dλν(x)

)1/2

Let f : (Rν)n → R+ be non negative and symmetric. Using that the g
(i)
up have

disjoint support one finds

|gup(x1, . . . , x`)|2=
1

`!2

∑

σ∈Sn

ν∏

i=1

g
(π(i))
up (xi)g

(σ(i))
up (xi) =

1

`!2

∑

σ∈Sn

ν∏

i=1

|g(σ(i))up (xi)|2

Thus using permutation invariance of f we find

∫

B`up

f(x)|gup(x)|2dλν(x) =
1

`!

∫

Aup

f(x)

ν∏

i=1

|g(i)up (xi)|2dλν(x)

Thus
√
`!C3 = ‖(H(ξ − k0)−Σ(ξ − k0))ψp‖≤ p−1. Furthermore
√
`!C1 ≤ sup

(x1,...,xn)∈Aup
‖(H(ξ − x1 − · · · − x`)−H(ξ − k0))ψp‖≤ p−1

√
`!C2 ≤ sup

(x1,...,xn)∈Aup
|ω`(x1, . . . , x`)− ω`(k1, . . . , k`)|

By continuity of ω we now see
√
`!γ goes to 0 for p tending to ∞. �

Lemma A.5. Let k1, . . . , k` ∈ Rν . Then Σ(ξ − k1 − · · · − k`) + ωn(k1, . . . , k`) ∈
σess(Hµ(ξ)).

Proof. Assume first k1, . . . , k` ∈ Rν are different elements and define An =
B1/n(k1) ∪ · · · ∪B1/n(k`). Let vn = 1Acnv and note that vn ∈ D(ω−1/2) and

lim
n→∞

‖(vn − v)(ω−1/2 + 1)‖= 0

by dominated convergence. Define

H(n)(ξ) = Ω(ξ − dΓ (k)) + dΓ (ω) + µϕ(vn) ≥ −µ2‖ω−1/2vn‖2≥ −µ2‖ω−1/2v‖2
Σn(ξ) = inf(σ(H(ξ)))

Using Lemma 2.1 we find

‖(Hµ(ξ) + i)−1 − (H(n)(ξ) + i)−1‖≤ |λ|‖ϕ(v − vn)(Hµ(ξ) + i)−1)−1‖
≤ |λ|‖(vn − v)(ω−1/2 + 1)‖‖(dΓ (ω) + 1)1/2(Hµ(ξ) + i)−1‖
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so H(n)(ξ) converges to Hµ(ξ) in norm resolvent sense for all ξ ∈ Rν . The
uniform lower bound ofΣn(ξ) and norm resolvent convergence now impliesΣn(ξ)
converges to Σ(ξ) for all ξ.

By Lemma A.4 we have Σn(ξ−k1−· · ·−k`)+ωn(k1, . . . , k`) ∈ σess(H(n)(ξ)).
Now Σn(ξ − k1 − · · · − k`) + ωn(k1, . . . , k`) converges to Σ(ξ − k1 − · · · − k`) +
ωn(k1, . . . , k`) and H(n)(ξ) converges to H(ξ) in norm resolvent sense so we are
done in the case where k1, . . . , k` are different. The conclusion now follows since
Σ and ω` are continous, {(k1, . . . , k`) | ki 6= kj ∀i, j} is dense and σess(H(ξ)) is
closed. �

B. Proof of pull though formula

This appendix is devoted to proving the pull through formula. The in case
K(k) = |k|2 one could compute everything directly using tools as in [8]. However
the other possible choices of K require a more sophisticated approach ao we use
the formalised developed in [3] and the reader should consult this paper for the
proofs. Let H = L2(M, E , µ), where (M, E , µ) is assumed to be σ-finite. We
start by defining

F+(H) =
∞×
n=0

H⊗sn

with coordinate projections Pn and H = L2(Rν ,B(Rν), λν). For (ψ(n)), (φ(n)) ∈
F+(H) we define

d((ψ(n)), (φ(n))) =

∞∑

n=0

1

2n
‖ψ(n) − φ(n)‖

1 + ‖ψ(n) − φ(n)‖

where ‖·‖ is the Fock space norm. This makes sense since Pn(F+(H)) ⊂ F(H).
We now have

Lemma B.1. The map d defines a metric on F+(H) and turns this space into
a complete separable metric space and a topological vector space. The topology
and Borel σ-algebra is generated by the projections Pn. If a sequence {ψn}∞n=1 ⊂
F(H) is convergent/Cauchy then it is also convergent/Cauchy with respect to d.
Also any total/dense set in Fb(H) will be total/dense in F+(H) as well.

For each a ∈ R we define

‖·‖a,+= lim
n→∞

(
n∑

k=0

(k + 1)2a‖Pk(·)‖2
) 1

2

.

which is measurable from F+(H) into [0,∞]. Let

Fa,+(H) = {ψ ∈ F+(H) | ‖ψ‖a,+<∞}.

Note ‖·‖a,+ restricts to a norm on Fa,+(H) that comes from an inner product.
In particular Fa,+(H) is a Hilbert space and for a ≥ 0 we have Fa,+(H) =
D((N + 1)a). We summarise as follows
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Lemma B.2. ‖·‖a,+ defines measurable map from F+(H) to [0,∞], and restricts
to a norm on the spaces Fa,+(H) that comes from an inner product turning
Fa,+(H) into a Hilbert space.

The point of defining a metric on F+(H) and finding a dense set is that most
of the operations we will encounter in this chapter are continous on F+(H).
Therefore many operator identities only needs to be proven on well behaved
vectors. Fix now v ∈ H. We now define the following maps on F+(H)

a+(v)(ψ(n)) = (an(v)ψ(n+1))

a†+(v)(ψ(n)) = (0, a†0(v)ψ(0), a†1(v)ψ(1), . . . )

ϕ+(v) = a+(v) + a†+(v)

Where an(v) is annihilation from H⊗s(n+1) to H⊗sn and a†n(f) is creation from
H⊗sn to H⊗(n+1).

Lemma B.3. The maps a+(v),a†+(v) and ϕ+(v) are all continuous. For B ∈
{a, a†, ϕ} we have

B+(v)ψ = B(v)ψ if ψ ∈ D(B(v)). (B.1)

Furthermore we have the commutation relations

[a+(v), a†+(g)] = 〈v, g〉
[ϕ+(v), ϕ+(g)] = 2iIm(〈v, g〉)

We now move on to the second quantisation of unitaries and selfadjoint op-
erators. Let U be unitary on H and ω = (ω1, . . . , ωp) be a tuple of strongly
commuting selfadjoint operators on H. We then define

dΓ (ω) = (dΓ (ω1), . . . , dΓ (ωp))

dΓ (n)(ω) = (dΓ (n)(ω1), . . . , dΓ (n)(ωp))

which are now tuples of strongly commuting selfadjoint operators (this is easily
checked using the unitary group). Let furthermore f : Rp → C be a map. We
then define

f(dΓ+(ω)) =
∞×
n=0

f(dΓ (n)(ω)) D(f(dΓ+(ω))) =
∞×
n=0

D(f(dΓ (n)(ω)))

Γ+(U) =
∞×
n=0

Γ (n)(U).

If ω : M → Rp is measurable then we may identify ω as such a touple of
commuting selfadjoint operators. In this case f(dΓ (n)(ω)) is multiplication by
the map f(ω(k1) + · · ·+ ω(kn)). The following lemma is now obvious.

Lemma B.4. The map Γ+(U) is an isometry on F+(H) and is thus continuous.
Furthermore we have

f(dΓ+(ω))ψ = f(dΓ (ω))ψ, ψ ∈ D(f(dΓ (ω)))

Γ+(U)ψ = Γ (U)ψ, ψ ∈ Fb(H)
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We will now consider a class of linear functionals on F+(H). For each n ∈ N we
let Qn : F+(H) → N denote the linear projection which preserves the first n
entries of (ψ(n)) and projects the rest of them to 0. For ψ ∈ N there is K ∈ N
such that for n ≥ K we have Qnψ = ψ. For φ ∈ F+(H) we may thus define the
pairing

〈ψ, φ〉+ := 〈ψ,Qnφ〉 =

K∑

i=0

〈ψ(i), φ(i)〉, (B.2)

where n ≥ K.

Lemma B.5. The map Qn above is linear and continuous into F(H). The par-
ing 〈·, ·〉+ is sesquilinear, and continuous in the second entry. If φ ∈ Fa,+(H)
then ψ 7→ 〈ψ, φ〉+ is continous with respect to ‖·‖−a,+. Furthermore, the collec-
tion of maps of the form 〈ψ, ·〉+ will separate points of F+(H).

Corollary B.6. Let φ ∈ Fa,+(H) for some a ≤ 0, D ⊂ N be dense in F(H)
and assume 〈ψ, φ〉+ = 0 for all ψ ∈ D. Then φ = 0.

We also have the following formal adjoint relations

Lemma B.7. Let ψ ∈ N , φ ∈ F+(H), v ∈ H and U be unitary on H. Then we
have

〈a†(v)ψ, φ〉+ = 〈ψ, a+(v)φ〉+, 〈a(v)ψ, φ〉+ = 〈ψ, a†+(v)φ〉+,
〈ϕ(v)ψ, φ〉+ = 〈ψ,ϕ+(v)φ〉+, 〈Γ (U)ψ, φ〉+ = 〈ψ, Γ+(U∗)φ〉+.

Let ω = (ω1, . . . , ωp) be a tuple of commuting selfadjoint operators, f : Rp → C,

ψ ∈ N ∩ D(f(dΓ (ω))) and φ ∈ D(f(dΓ+(ω))) we have

〈f(dΓ (ω))ψ, φ〉+ = 〈ψ, f(dΓ+(ω))φ〉+.
We now consider functions with values in F+(H). Let (X,X , ν) be a σ-finite and
countably generated measure space. Define the quotient

M(X,X , ν) = {f : X → F+(H) | f is X − B(F+(H)) mesurable}/ ∼,
where we define f ∼ g ⇐⇒ f = g almost everywhere. We are interested in the
subspace

C(X,X , ν) = {f ∈M(X,X , ν) | x 7→ Pnf(x) ∈ L2(X,X , ν,H⊗sn) ∀n ∈ N0}.
Lemma B.2 shows that x 7→ ‖f(x)‖a,+ is measurable for functions f ∈ C(X,X , ν)
and so the integral ∫

X

‖f(x)‖2a,+dν(x)

always makes sense. If a = 0 then it is finite if and only if f ∈ L2(X,X , ν,Fb(H)).
We write f ∈ C(X,X , ν) as (f (n)) where f (n) = x 7→ Pnf(x). For f, g ∈
C(X,X , ν) we define

d(f, g) =

∞∑

n=0

1

2n
‖f (n) − g(n)‖L2(X,X ,ν,H⊗sn)

1 + ‖f (n) − g(n)‖L2(X,X ,ν,H⊗sn)
.

We can now summarise.

C.6. Proof of the pull through formula 141



24 Thomas Norman Dam

Lemma B.8. d is a complete metric on C(X,X , ν) such that C(X,X , ν) becomes
separable topological vector space. The topology is generated by the maps f 7→
(x 7→ Pnf(x)). Furthermore L2(X,X , ν,Fb(H)) ⊂ C(X,X , ν) and convergence
in L2(X,X , ν,Fb(H)) implies convergence in C(X,X , ν). Also the map x 7→
‖f(x)‖a,+ is measurable for any f in C(X,X , ν) and a ∈ R.

We now move on to discuss some actions on this space. This is strongly related
to the direct integral and readers should look up the results in [12]. Let n ≥ 1,
v ∈ H, U be unitary on H, ω = (ω1, . . . , ωp) a tuple of selfadjoint multiplication
operators on H, m :Mn → Rp measurable and g : Rp → R a measurable map.
Then we wish to define operators on C(M`, E⊗`, µ⊗`) for ` ≥ 1 by

(a†⊕,`(v)f)(k) = a†+(v)f(k)

(a⊕,`(v)f)(k) = a+(v)f(k)

(ϕ⊕,`(v)f)(k) = ϕ+(v)f(k)

(Γ⊕,`(U)f)(k) = Γ+(U)f(k)

(g(dΓ⊕,`(ω) +m)f)(k) = g(dΓ+(ω) +m(k))f(k).

We further define C(M0, E⊗0, µ⊗0) = F+(H) along with a†⊕,0(v) = a†+(v),

a⊕,0(v) = a+(v), ϕ⊕,0(v) = ϕ+(v) and Γ⊕,0 = Γ+(U). We have the following
lemma.

Lemma B.9. The a†⊕,`(v), a⊕,`(v), ϕ⊕,`(v) and Γ⊕,`(U) are well defined and

continuous for all ` ∈ N0. Let f ∈ C(M`, E⊗`, µ⊗`). If f(k) ∈ D(g(dΓ+(ω) +
m(k))) for all k then k 7→ Pn(g(dΓ+(ω) + m(k))f(k)) is measurable. Thus as
domain of g(dΓ⊕,`(ω) +m) we may choose

∞⋂

`=0

{
f ∈ C(M`, E⊗`, µ⊗`)

∣∣∣∣f(k) ∈ D(g(dΓ+(ω) +m(k))) for a.e. k ∈M`,

∫

M`

‖Png(dΓ+(ω) +m(k))f(k)‖2dµ⊗`(k) <∞
}
.

We will now introduce the pointwise annihilation operators. For ψ = (ψ(n)) ∈
F+(H) we define A`ψ ∈ C(M`, E⊗`, µ⊗`) by

Pn(A`ψ)(k1, . . . , k`) =
√

(n+ `)(n+ `− 1) · · · (n+ 1)ψ(n+`)(k1, . . . , k`, ·, . . . , ·)
which is easily seen to be well defined and take values in H⊗sn. We can prove

Lemma B.10. A` is a continuous linear map from F+(H) to C(M`, E⊗`, µ⊗`)
and from D(N

`
2 ) into L2(M`, E⊗`, µ⊗`,F(H)). Furthermore ψ ∈ D(N `/2) ⇐⇒

A`ψ ∈ L2(M`, E⊗`, µ⊗`,F(H)) and if ψ ∈ F(H) we have A`ψ is almost every-
where F− `2 ,+(H) valued.

Fix v ∈ H and ` ∈ N0. We then define a map z`(v) : C(M`, E⊗`, µ⊗`) →
C(M`+1, E⊗(`+1), µ⊗(`+1)) by

(z0(v)ψ)(k) = v(k)ψ and (z`(v)ψ)(x, k) = v(x)ψ(k)

when ` ≥ 1. One may prove
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Lemma B.11. The map z`(v) introduced above is linear and continuous. Both
as a map from C(M`, E⊗`, µ⊗`) into the space C(M`+1, E⊗(`+1), µ⊗(`+1)) and
from L2(M`, E⊗`, µ⊗`,F(H)) into the space L2(M`+1, E⊗(`+1), µ⊗(`+1),F(H)).

Lastly we look at permutation and symmetrisation operators. Let ` ≥ 1 and σ ∈
S` where S` is the set of permutations of {1, . . . , `}. Defining σ̃ :M` →M` by
σ̃(k1, . . . , k`) = (kσ(1), . . . , kσ(`)). Define σ̂ : C(M`, E⊗`, µ⊗`)→ C(M`, E⊗`, µ⊗`)
by

(σ̂f)(k1, . . . , k`) = f(kσ(1), . . . , kσ(`)) = (f ◦ σ̃)(k1, . . . , k`).

Define now

S` :=
1

(`− 1)!

∑

σ∈S`
σ̂.

One may prove:

Lemma B.12. Let ` ∈ N. For σ ∈ S` the map σ̂ defines a linear bijective isome-
try from C(M`, E⊗`, µ⊗`) to C(M`, E⊗`, µ⊗`) and from L2(M`, E⊗`, µ⊗`,F(H))
to L2(M`, E⊗`, µ⊗`,F(H)). Also σ̂A`ψ = A`ψ and if π ∈ S` then π̂σ̂ = π̂ ◦ σ.

Furthermore S` is continuous and linear from C(M`, E⊗`, µ⊗`) into the space
C(M`, E⊗`, µ⊗`) and it satisfies relation S2

` = `S`. Furthermore S` is also con-
tinuous from L2(M`, E⊗`, µ⊗`,F(H)) into L2(M`, E⊗`, µ⊗`,F(H)).

We can now calculate commutators (more commutation relations can be found
in [3] but we will only cite those used here)

Lemma B.13. Let ω : M → Rp be measurable, v ∈ H and let f : Rp → R be
measurable. Then

ϕ⊕(v)A1 = A1ϕ+(v)− z0(v) (B.3)

Let ` ≥ 1. If ψ ∈ D(f(dΓ (ω))) then A`ψ ∈ D(f(dΓ⊕(ω) + ω`)) where we define
ω`(k1, . . . , k`) = ω(k1) + · · ·+ ω(k`) and

f(dΓ⊕(ω) + ω`)A`ψ = A`f(dΓ+(ω))ψ.

We can now prove the pull-trough formula.

Lemma B.14. Let H = L2(Rν ,B(Rν), λν) and ω, v,K satisfy Hypothesis 1 and
2 and let µ ∈ R, ξ ∈ Rν , ν ≥ 2. Assume ψ is a ground state for Hµ(ξ). Then we
have

(A1ψ)(k) = −µv(k)(Hµ(ξ − k) + ω(k)−Σ(ξ))−1ψ

almost everywhere.

Proof. First we note (Hµ(ξ − k) + ω(k)−Σ(ξ))−1 exists as a bounded operator
away from the zero set Rξ by Lemma 4.4. Define the lifted operators on F+(H)
and C(M`, E⊗`, µ⊗`) respectively

H+(ξ) = K(ξ − dΓ+(k)) + dΓ+(ω) + µϕ+(v)

H⊕(ξ) = K(ξ − g − dΓ⊕,1(k)) + dΓ⊕(v),1(ω) + ω + µϕ⊕(v),1
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where g : Rν → Rν is given by g(k) = k. The domains are

D(H+(ξ)) = D(dΓ+(ω)) ∩ D(K(ξ − dΓ+(g)))

D(H⊕(ξ)) = D(dΓ⊕,1(ω) + ω`) ∩ D(K(ξ − g − dΓ⊕,1(g)))

By Lemma B.13 we have A1ψ ∈ D(H⊕(ξ)) since ψ ∈ D(H(ξ)) ⊂ D(H+(ξ)).
Using Lemmas B.3, B.4 and B.13 we also obtain

h := (H⊕(ξ)−Σ(ξ))A1ψ = −µz†0(v)ψ +A1(H+(ξ)−Σ(ξ))ψ = −µz0(v)ψ

which is Fock space valued. Let M be a zeroset such that:

1. A1ψ is F−1/2,+(H) valued on M c (see Lemma B.10).
2. h(k) = (H+(ξ − k) + ω(k))(A1ψ)(k) and h(k) ∈ F(H) for k ∈M c.
3. (Hµ(ξ − k) + ω(k)−Σ(ξ))−1 exists on M c.

Fix k ∈M c. For any vector φ such that both (Hµ(ξ− k) +ω(k)−Σ(ξ))−1φ and
φ is in N (this set is dense by Proposition 3.2) we find using Lemma B.7 that

〈φ,A1ψ(k)〉+
= 〈(Hµ(ξ − k) + ω(k)−Σ(ξ))(Hµ(ξ − k) + ω(k)−Σ(ξ))−1φ,A1ψ(k)〉+
= 〈(Hµ(ξ − k) + ω(k)−Σ(ξ))−1φ, h(k)〉
= 〈φ, (Hµ(ξ − k) + ω(k)−Σ(ξ))−1h(k)〉+.

Corollary B.6 finishes the proof.
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5. Fröhlich J.: Existence of dressed one-electron states in a class of persistent models.
Fortschr. Phys. 22 (1974), 159198.
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Abstract: We consider a new model for an impurity in a Bose-Einstein conden-
sate. The Hamiltonian is translation invariant and so it can be represented as a
direct integral of fiber Hamiltonians {H(ξ)}ξ∈R3 each corresponding to a fixed
value of total momentum. We prove selfadjointness of the Hamiltonian and fiber
operators and find the essential spectrum of the fiber Hamiltonians. We then ex-
tend (and correct) certain results on operators generating a positivity improving
semigroup and apply them to the model. From these results we obtain directly
that ξ 7→ inf(σ(H(ξ))) has a global minimum at ξ = 0 and that H does not have
a ground state.

1. Introduction

The model we investigate in this paper is an extension of the usual polaron model
and has been used in the papers [5], [7], [10] and [19]. Informally, the Hamiltonian
appears using a Bogoliubov approximation but one still keeps some of the second
order terms that would normally be ignored. However these terms are important
to model Effimov physics and the new model does give rather good results when
compared with data (see [7]).

The point of departure of this paper is the model encountered immediately
after the formal manipulations have been finished. We then rewrite it in an
convenient form which is practical for proving the theorems we are after. The
reader is warned that the Hamiltonians in [19] contains a small misprint which
is eventually corrected in [10].

The first step is proving selfadjointness of the Hamiltonian and the fiber
Hamiltonians arising from the Lee-Low-Pines transformation. This is non trivial
because the ”perturbation” is a rather large expression. So it is not at all clear
that one ends up be a selfadjoint Hamiltonian.
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After proving selfadjointness we try to generalise the results from [8], [9]
and [12] to our setting. Especially the theory from [9] is used in [19] (without
proof that it is correct). The main problem is that the ”perturbation” is not a
multiplication operator. In fact, to generalise the results in [9] and [8] we actually
have to develop new abstract theorems on positivity improving semi groups. We
improve and correct results found in [4], [11] and [16] on the subject and apply
them along the lines found in [9] and [8].

One new point being made in this paper is the absence of ground states
for translation invariant Hamiltonians. From a physical perspective this sounds
trivial and actually there should be no bound states at all in translation invariant
systems. However our proof only works to exclude a ground state and the general
problem is future work.

2. Notation and preliminaries

We start by fixing notation. If X is a topological space we will write B(X) for
the Borel σ-algebra. Furthermore, if (M,F , µ) is a measure space and X is a
Banach space we will for 1 ≤ p ≤ ∞ write Lp(M,F , µ,X) for the vector valued
Lp space. If X = C we will drop X from the notation. Also we will write B(X)
for the bounded linear operators from X to X.

Now let H1, . . . ,Hn be Hilbert spaces and let H1⊗· · ·⊗Hn denote the tensor
product. If Di ⊂ Hi we will write

D1⊗̂ . . . ⊗̂Dn = Span{f1 ⊗ · · · ⊗ fn | fi ∈ Di}

We will be using the results from the following Theorem

Theorem 2.1. Let Ai be a closable operator on Hi for all i. Then

(1) There is a unique, closable map A1⊗̂ . . . ⊗̂An on D1⊗̂ . . . ⊗̂Dn such that if
fi ∈ Di for all i then (A1⊗̂ . . . ⊗̂An)f1 ⊗ · · · ⊗ fn = A1f1 ⊗ · · · ⊗ Anfn. We
define

A1 ⊗ · · · ⊗An = A1⊗̂ . . . ⊗̂An.

Then A1⊗· · ·⊗An = A1⊗· · ·⊗An and A1⊗· · ·⊗An is unitary if A1, . . . , An
are unitary.

(2) Define Ti := (1⊗)i−1Ai(⊗1)n−i = B1 ⊗ · · · ⊗ Bn with Bj = 1 if i 6= j and
Bi = Ai. If Ai is essentially selfadjoint then Ti is selfadjoint and Ti will
commute strongly with Tj. Furthermore, for any f : R→ C we have

f(Ti) = (1⊗)i−1f(Ai)(⊗1)n−i.

In particular, σ(Ti) = σ(Ai).
(3) Define T = T1 + · · · + Tn and assume Ai is essentially selfadjoint for all

1 ≤ i ≤ n. Then T is essentially selfadjoint on D1⊗̂ . . . ⊗̂Dn and the unitary

group is given by eitT = eitA1 ⊗ · · · ⊗ eitAn . If −∞ < λi := inf(σ(Ai)) for
all 1 ≤ i ≤ n then inf(σ(T )) = λ := λ1 + · · · + λn, T is selfadjoint and
e−tT = e−tA1 ⊗ · · · ⊗ e−tAn . If λi is a non degenerate eigenvalue of Ai for all
1 ≤ i ≤ n, then λ is a non degenerate eigenvalue for T .

148 Paper D



Rigorous Results on the Bose-Polaron 3

(4) Let Qi = (Mi,Fi, µi) be a σ-finite measure spaces for i ∈ {1, 2, . . . , n} and
H be a separable Hilbert space. Then we may identify

L2(Q1)⊗ · · · ⊗ L2(Qn) = L2(M1 × · · · ×Mn,F1 ⊗ · · · ⊗ Fn, µ1 ⊗ · · · ⊗ µn)

L2(Q1)⊗H = L2(Q1,H)

where (f1⊗· · ·⊗fn)(x1, . . . , xn) = f1(x1)·· · ··f(xn) and f⊗ψ(x) = f(x)ψ. In
particular, one may identify L2(M1×M2,F1⊗F2, µ1⊗µ2) = L2(Q1, L

2(Q2))
where ψ ∈ L2(M1 × M2,F1 ⊗ F2, µ1 ⊗ µ2) is identified with the element
x 7→ ψ(x, ·).

Proof. See [2], [18] and [21].

Of special interest to this paper is vector valued L2 spaces. Let Q = (M,F , µ) be
a σ-finite measure space and H a separable Hilbert space. Let f :M→ B(H) be
strongly measureable (i.e. x 7→ f(x)ψ is measurable for all ψ ∈ H) and bounded.
Then we define the direct integral

I⊕(f) =

∫ ⊕

M
f(x)dµ(x)

as the bounded operator on L2(Q,H) defined by I⊕(f)ψ(x) = f(x)ψ(x). One
also has a direct integral for unbounded selfadjoint operators. Let {Ax}x∈M be
a collection on selfadjoint operators on H. We say {Ax}x∈M is strong resolvent
measurable if x 7→ (Ax + i)−1 is strongly measurable. Then we define

I⊕(Ax)ψ(x) = Axψ(x)

D(I⊕(Ax)) = {ψ ∈ L2(Q,H) | ψ(x) ∈ D(Ax) and x 7→ ‖Axψ(x)‖∈ L2(Q)}

The following Theorem sums up the results about direct integrals we shall need

Theorem 2.2. Let {Ax}x∈M be a collection on selfadjoint operators on H. Then
x 7→ (Ax + i)−1 is strongly measureable if and only if x 7→ eitAx is weakly
measurable. In this case I⊕(Ax) is selfadjoint and x 7→ (i+ f(Ax))−1 is strongly
measurable for all f : R→ R. Furthermore

f(I⊕(Ax)) = I⊕(f(Ax)).

If Ax ≥ λ for all x we find I⊕(Ax) ≥ λ (use f = 1(−∞,λ)). If A is selfadjoint
or bounded on H we may identify 1 ⊗ A = I⊕(A) and if V is a multiplication
operator on L2(Q) then V ⊗ 1 = I⊕(V ).

Proof. See [16] and some easy calculations.

Throughout this paper we will write H for the state space of a single boson
which is always assumed to be a separable Hilbert space. Let n ∈ N and H⊗n be
the n-fold tensor product. If B ∈ B(H) we also write B⊗n for the n-fold tensor
product of B. Write Sn for the set of permutations of {1, . . . , n}. The symmetric
projection Sn is the unique bounded map satisfying

Sn(f1 ⊗ · · · ⊗ fn) =
1

n!

∑

σ∈Sn
fσ(1) ⊗ · · · ⊗ fσ(n) := f1 ⊗s · · · ⊗s fn
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We further define S0 = 1 = B⊗0 on H⊗0 = C and write H⊗sn = Sn(H⊗n). Note
B⊗n maps symmetric tensors to symmetric tensors so B⊗n |H⊗sn is well defined
as an operator on H⊗s0. This implies that if ω is selfadjoint on H then (eitω)⊗n

leaves H⊗sn invariant so by Theorem 2.1 we may define

dΓ (ω) = 0⊕
∞⊕

n=1

n∑

k=1

(1⊗)k−1ω(⊗1)n−k |H⊗sn and Γ (B) =

∞⊕

n=0

B⊗n |H⊗sn .

as operators on the bosonic (or symmetric) Fock space

Fb(H) =

∞⊕

n=0

H⊗sn.

We will write an element ψ ∈ Fb(H) in terms of its coordinates ψ = (ψ(n)) and
define the vacuum Ω = (1, 0, 0, . . . ). For g ∈ H we define a coherent state

ε(g) =

∞∑

n=0

g⊗n√
n!
. (2.1)

Let D ⊂ H be a dense subspace. We also define

N = {(ψ(n)) ∈ Fb(H) | ∃K ∈ N s.t. ψ(n) = 0 for all n ≥ K} (2.2)

J (D) = {Ω} ∪ {f1 ⊗s · · · ⊗s fn | n ∈ N fi ∈ D}. (2.3)

E(D) = {ε(f) | f ∈ D} (2.4)

One may prove N ,J (D) and E(D) are dense. For g ∈ H one defines the annihi-
lation operator a(g) and creation operator a†(g) on symmetric tensors in Fb(H)
using a(g)Ω = 0, a†(g)Ω = g and

a(g)(f1 ⊗s · · · ⊗s fn) =
1√
n

n∑

i=1

〈g, fi〉f1 ⊗s · · · ⊗s f̂i ⊗s · · · ⊗s fn

a†(g)(f1 ⊗s · · · ⊗s fn) =
√
n+ 1g ⊗s f1 ⊗s · · · ⊗s fn

where f̂i means that fi is omitted from the tensor product. One can show that
these operators extends to closed operators on Fb(H) and that (a(g))∗ = a†(g).
One may thus define the symmetric operator

ϕ(g) = a(g) + a†(g).

Let U(H) be the unitaries from H into H. Fix now U ∈ U(H) and h ∈ H. Then
there is a unique unitary map W (h, U), called a Weyl operator, such that

W (h, U)ε(g) = e−‖h‖
2/2−〈f,Ug〉ε(h+ Ug).

for all g ∈ H. The properties of the above operators are

Proposition 2.3. Let ω and C be selfadjoint on H, U be unitary on H and
v, g ∈ H. Then
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(1) dΓ (ω) is selfadjoint, essentially selfadjoint on the span of J (D(ω)) and eitdΓ (ω) =
Γ (eitω). If ω ≥ 0 then dΓ (ω) ≥ 0 and e−tdΓ (ω) = Γ (e−tω). If ω ≥ 0 and in-
jective then 0 is a non degenerate eigenvalue. Ω spans the eigenspace.

(2) If ω and B strongly commute then so does dΓ (ω) and dΓ (B).
(3) ϕ(v) is selfadjoint and eitϕ(v) = W (−itv, 0).
(4) The following commutation relations holds

[a(v), a(g)] = 0 = [a†(v), a†(g)] and [a(v), a†(g)] = 〈v, g〉. (2.5)

[ϕ(v), ϕ(g)] = 2iIm(〈v, g〉). (2.6)

Furthermore, a†(v)a(v) = dΓ (|v〉〈v|).
(5) If v ∈ D(ω) then N ∩D(ω) ⊂ D([dΓ (ω), ϕ(v)]) and

[dΓ (ω), ϕ(v)] = −iϕ(iωv) (2.7)

(6) Γ (U) is unitary and Γ (U)ϕ(v)Γ (U)∗ = ϕ(Uv).
(7) Assume ω ≥ 0 is selfadjoint an injective on H, D,E ∈ {a, a†, ϕ} and let

g1, g2 ∈ D(ω−
1
2 ). Then D(g1)E(g2) is dΓ (ω) bounded and D(g1) is dΓ (ω)1/2

bounded. In particular D(g1)E(g2) is N bounded so N ⊂ D(D(g1)E(g2)). We
have the following bounds

‖D(g1)ψ‖ ≤ 2‖(ω− 1
2 + 1)g1‖‖(dΓ (ω) + 1)

1
2ψ‖

‖D(g1)E(g2)ψ‖ ≤ 15‖(ω− 1
2 + 1)g1‖‖(ω−

1
2 + 1)g2‖‖(dΓ (ω) + 1)ψ‖

which holds on respectively D(dΓ (ω)
1
2 ) and D(dΓ (ω)). In particular ϕ(g1) is

infinitesimally dΓ (ω) bounded. Furthermore dΓ (ω) + ϕ(g1) ≥ −‖ω− 1
2 g1‖2.

Proof. See [1], [13] and some easy calculations.

Using the above results one can now easily conclude the following:

Proposition 2.4. Let Q = (M,F , µ) be a sigma-finite measure space. Let x 7→
fx ∈ H and x 7→ gx ∈ H be measurable, {ωx}x∈M a be strong resolvent mea-
surable family of selfadjoint operators on H and x 7→ Ux ∈ B(H) be strongly
measurable with ‖Ux‖≤ 1. Then

(1) {ϕ(fx)}x∈M, {a†(fx)a(fx)}x∈M and {dΓ (ωx)}x∈M are strong resolvent mea-
surable and x 7→ Γ (Ux) is strongly measurable. We will write ϕ⊕(fx) =

I⊕(ϕ(fx)), a†⊕(fx)a⊕(fx) = I⊕(a†(fx)a(fx)), dΓ⊕(ωx) = I⊕(dΓ (ωx)) and
Γ⊕(Ux) = I⊕(Γ (Ux)).

(2) If Ux is unitary for all x then Γ⊕(Ux) is unitary and Γ⊕(Ux)ϕ⊕(fx)Γ⊕(Ux)∗ =
ϕ⊕(Uxfx).

(3) Assume x 7→ fx and x 7→ gx are bounded, ωx ≥ 0 is injective for all x ∈ M,

fx, gx ∈ D(ω
−1/2
x ) for all x ∈ M and the two maps x 7→ ω

−1/2
x fx and x 7→

ω
−1/2
x gx are bounded. Then ϕ⊕(fx) is dΓ⊕(ω)1/2 bounded, ϕ⊕(gx)ϕ⊕(fx) is

dΓ⊕(ω) bounded and a†⊕(gx)a⊕(fx) is dΓ⊕(ω) bounded. We have the bounds

‖ϕ⊕(fx)ψ‖ ≤ 2 sup
x∈M

(‖(ω−
1
2

x + 1)fx‖)‖(dΓ⊕(ωx) + 1)
1
2ψ‖

‖ϕ⊕(gx)ϕ⊕(fx)ψ‖ ≤ 15 sup
x∈M

(‖(ω−
1
2

x + 1)g1‖‖(ω−
1
2

x + 1)g2‖)‖(dΓ⊕(ωx) + 1)ψ‖

In particular, ϕ⊕(fx) is infinitesimally dΓ⊕(ω) bounded.
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We will need the following definition

Definition 2.5. Let Lν = (Rν ,B(Rν), λν) be the ν-dimensional Lebesgue mea-
sure space. Let x 7→ fx ∈ H be bounded and measurable. We say it is weakly

differentiable if for all i ∈ {1, . . . , ν} there is x 7→ g
(i)
x ∈ H such that for all

φ ∈ C∞0 (Rν) and ψ ∈ H we have

∫

Rν
∂xiφ(x)〈ψ, fx〉dλν(x) = −

∫

Rν
φ(x)〈ψ, g(i)x 〉dλν(x).

In this case we write ∂xif = g
(i)
x .

We shall need the following result about differential operators

Lemma 2.6. Define

K = L2(Rν ,B(Rν), λν ,Fb(H)) = L2(Rν ,B(Rν), λν)⊗Fb(H),

pi = −i∂xi ⊗ 1 and |p|= (−∆)1/2 ⊗ 1. Here ∆ is the Laplace operator. Then

(1) D(|p|) =
⋂ν
i=1D(pi) and for ψ ∈ D(|p|) we have ‖|p|ψ‖2=

∑ν
i=1‖piψ‖2.

(2) If x 7→ fx is weakly differentiable the [ϕ⊕(fx), pi] = −iϕ⊕(∂xifx) holds on
C∞0 (Rν)⊗̂J (D). In particular, ϕ⊕(fx)ψ ∈ D(|p|) for ψ ∈ C∞0 (Rν)⊗̂J (D).

Proof. To prove statement (1) we let F denote the Fourier transform and define
the functions f(k) = |k| and fi(k) = ki form Rν to R. By Theorem 2.2 we see
(F ⊗ 1)|p|(F ⊗ 1)∗ = I⊕(f) and (F ⊗ 1)pi(F ⊗ 1)∗ = I⊕(fi) and so

(F ⊗ 1)D(|p|) =
{
ψ ∈ K | |k|2‖ψ(k)‖2∈ L1(Rν ,B(Rν), λν)

}

=
{
ψ ∈ K | |ki|2‖ψ(k)‖2∈ L1(Rν ,B(Rν), λν) ∀i ∈ {1, . . . , ν}

}

= (F ⊗ 1)

ν⋂

i=1

D(pi)

showing the domain identity. Now let ψ ∈ C∞0 (Rν)⊗̂H. Then

‖|p|ψ‖2= 〈ψ,−∆⊗ 1ψ〉 =

ν∑

i=1

〈ψ, p2iψ〉 =

ν∑

i=1

‖piψ‖2 (2.8)

For general ψ ∈ D(|p|) we may pick a sequence {ψn}n=1 ⊂ C∞0 (Rν)⊗̂H approxi-
mating ψ ∈ |p| norm. Using equation (2.8) we see {ψn}n=1 is Cauchy in pi norm
for all i ∈ {1, . . . , ν}, so as the pi are closed we find {ψn}n=1 converges to ψ in
pi norm for all i ∈ {1, . . . , ν}. The result now follows taking limits in equation
(2.8).

Statement (2) is proven in [6] where the author concludes that ϕ⊕(fx)ψ ∈
D(|p|2) for ψ ∈ C∞0 (Rν)⊗̂J (D). This is not true, but his proof works well enough
to prove statement (2).
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3. The Hamiltonian(s) - definition and results

The full Hamiltonian is defined on L2(Lν ,Fb(H)) where H is for now taken to be
an abstract Hilbert space. Let {ux}x∈Rν , {vx}x∈Rν ⊂ H be strongly measurable
families and ω be selfadjoint on H. The full Hamiltonian takes the form

HV
g1,g2 =

(
− 1

2M
∆+ V

)
⊗ 1 + 1⊗ dΓ (ω) + g1ϕ⊕(ux − vx) + g2a

†
⊕(vx)a⊕(vx)

+ g2a
†
⊕(ux)a⊕(ux)− g2

∫ ⊕

Rν
a(Uxv)a(Uxu) + a†(Uxv)a†(Uxu)dx

where V is a multiplication operator. A priori it is not clear that this operator
makes sense on any domain since the last direct integral is not of a selfadjoint
operator. We shall show later that under certain assumptions it will make sense
however. Here V = 0 corresponds to the translation invariant case.

We shall also need the fiber Hamiltonians. Let u, v ∈ H and ω be selfadjoint
on H. Let m = (m(1), . . . ,m(ν)) be a touple of commuting selfadjoint operators
on H. Then we define

Hg1,g2(ξ) =
1

2M
(ξ − dΓ (m))2 + dΓ (ω) + g1ϕ(u− v) + g2a

†(u)a(u)

+ g2a
†(v)a(v)− g2a(v)a(u)− g2a†(v)a†(u)

where (ξ − dΓ (k))2 =
∑ν
i=1(ξi − dΓ (m(i)))2 by definition.

Remark 3.1. For the reader comparing this to the papers [10] and [19] please

note that in this case W := (u− v)(k) =

√
1

2M ‖k‖2
ω and (u+ v)(u− v) = 1 which

fixes the functions u and v. One then introduces a ultraviolet cutoff in u and v
to make sense of the operator.

Furthermore, defining Uxψ(k) = eikxψ(k) we have ux = Uxu, vx = Uxv. The

operator ω is multiplication by ω(k) =
√
a|k|2+|k|4 and m(i) is multiplication by

the projection m(i)(k) = ki ∈ R. All results except uniqueness of the minimum
obtained in Theorem 3.2 part (5) below applies to this situation. In particular
the Hamiltonians above are selfadjoint.

Hypothesis 1: Under Hypothesis 1 we assume

1. ω,m(1), . . . ,m(ν) are strongly commuting selfadjoint operators. Furthermore
ω is non negative and injective.

2. v, u ∈ D(ω−1/2) ∩ D(ω1/2) ∩⋂νj=1D(m(j)) ∩ D(ω−1/2m(j)).

Hypothesis 2: H = L2(Rν ,B(Rν), λν), ω is multiplication by a continuous
function and m(j) is multiplication by m(j)(k) = kj .

Hypothesis 3: Assume in addition 〈a, e−tωeit1m(1)

. . . eitνm
(ν)

b〉 ∈ R for all t ≥
0, t1, . . . , tν ∈ R and a, b ∈ {u, v}

Theorem 3.2. Assume Hypothesis 1 holds. If g1 ∈ R, g2 ≥ 0 and ξ ∈ Rν
then Hg1,g2(ξ) is selfadjoint on D(dΓ (ω)) ∩ D((dΓ (m))2), bounded below and
essentially selfadjoint on D(dΓ (ω)) ∩ D((dΓ (m))2) ∩ N . Furthermore, we also
have:
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(1) ξ 7→ Hg1,g2(ξ) is an analytic family of type A, so the map ξ 7→ (Hg1,g2(ξ)+i)−1

is smooth.
(2) The map Σ(ξ) = inf(σ(Hg1,g2(ξ))) is locally Lipshitz and almost everywhere

twice differentiable.
(3) Assume Hypothesis 2 holds as well. Then

Σ(ξ − k1 − · · · − kn) + ω(k1) + · · ·+ ω(kn) ∈ σess(Hg1,g2(ξ))

for all k1, . . . , kn ∈ Rν . If in addition infk∈Rν ω(k) > 0 or ω(0) = 0 then

inf(σess(Hg1,g2(ξ))) = inf
n∈N0

inf
ξ∈Rν

Σ(ξ − k1 − · · · − kn) + ωn(k1, . . . , kn).

If ω is also unbounded we have σess(Hg1,g2(ξ)) = [inf(σess(Hg1,g2(ξ))),∞).

(4) Assume Hypothesis 2 holds as well. Define ux = eix1m
(1)

. . . eixνm
(ν)

u and

vx = eix1m
(1)

. . . eixνm
(ν)

v. Then there is a unitary map (called the Lee Low
Pines transformation) such that

UH0
g1,g2U

∗ =

∫ ⊕

Rν
Hg1,g2(ξ)dλν(ξ)

If in addition we assume Hypothesis 3 then H0
g1,g2 has no ground state.

(5) Assume Hypothesis 3 holds as well. Then Σ has a global minimum at ξ = 0
and if Hg1,g2(0) has a ground state then it is non degenerate. If inf(σ(ω)) > 0
and we additionally assume Hypothesis 2 holds, then 0 is the unique minima.

Hypothesis 4: We assume the following minimal properties

1. V ∈ L2
loc(Rν) and − 1

2M∆+ V is essentially selfadjoint on C∞(Rν). Defining

V− = max{0,−V } we also assume V
1/2
− is relatively (− 1

2M∆)1/2 bounded
with bound smaller than 1.

2. ω is selfadjoint, non negative and injective on H.
3. x 7→ vx and x 7→ ux are weakly differentiable maps. Both maps takes values

in D(ω−1/2)∩D(ω−1/2) and the partial derivatives takes values in D(ω−1/2).
Furthermore

sup
x∈Rν
{‖(1 + ω−1/2 + ω1/2)vx‖, ‖(1 + ω−1/2 + ω1/2)ux‖} <∞

sup
x∈Rν ,i∈{1,...,ν}

{‖(1 + ω−1/2)∂xivx‖, ‖(1 + ω−1/2)∂xiux‖} <∞

Theorem 3.3. Assume Hypothesis 1 holds, that g1 ∈ R and g2 ≥ 0. Let S be
the selfadjoint closure of − 1

2M∆ + V . Then S is bounded below and HV
g1,g2 is

selfadjoint on D(S ⊗ 1) ∩ D(dΓ⊕(ω)), bounded below and essentially selfadjoint
on any core for S ⊗ 1 + dΓ⊕(ω). One example of a core is C∞0 (Rν)⊗̂J (D(ω)).

Assume in addition that 〈a, e−tωb〉 ∈ R for all t ≥ 0 and a, b ∈ {vx}x∈Rν ∪
{ux}x∈Rν . If HV

g1,g2 has a ground state, then it is non degenerate and any eigen-
vector will have non zero inner product with any vector of the form φ⊗Ω with
φ 6= 0 and non negative.
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The reason for bringing a potential is the the particles are really confined by an
external potential so it is really of some interest to bring it along. The reason
for looking at compatible interactions is that it makes the notation somewhat
smoother and the argument is really the same.

The proofs of both Theorem 3.2 and Theorem 3.3 relies heavily on properties
of positivity improving semigroups which usually on gives information about
the bottom of the spectrum. Actually one should be able to prove that H0 = H
has no bound states, however this is not an easy task even though it seems
obvious that translation invariant systems cannot have bound states. To prove
that certain operators generate a positivity improving semigroup we shall prove
a perturbation theorem which will be presented below. Similar theorems can be
found in [4], [11] and [16]. However both [4] and [11] are missing a key assumption
about uniform lower bounds of approximating Hamiltonians in their proof. This
assumption is not appropriate for the setting in this paper which will become
apparent later. Let A be selfadjoint operator. In the following we will let qA
denote the quadratic form

qA(ψ, φ) = 〈Sign(A)|A|1/2ψ, |A|1/2φ〉 D(qA) = D(|A|1/2)

Instead of working directly with operators it is easier to work directly with
quadratic forms. This results in the following two results which are each of
independent interest.

Theorem 3.4. Let A be bounded below and selfadjoint on L2(M,F , µ). Let B+

and B− multiplication operators such that B+ is bounded below and assume

1. e−tA is positivity improving for all t ≥ 0
2. D(qB+) contains a form core for qA and D(qA) ∩ D(qB+) ⊂ D(qB−).
3. The form q = qA + qB+ + qB− is closed and bounded below.

Then the operator H corresponding to q is bounded below and e−tH is positivity
improving.

Theorem 3.5. Let A,B,C be selfadjoint operators in L2(M,F , µ). Assume

1. A is bounded below and e−tA is positivity improving for all t ≥ 0.
2. B is a multiplication operator which is bounded from below.
3. −C ≥ 0 and C is a multiplication operator.
4. D(qB) contains a form core for qA and D(qA) ∩ D(qB) ⊂ D(qC) ⊂ D(qC).
5. The form q = qA + qB + qC is closable and bounded below.

Then the operator H corresponding to q is bounded below and e−tH is positivity
improving.

4. Proof of selfadjointness

We shall need the following Lemma.

Lemma 4.1. Assume v, u ∈ D(ω−1/2) where ω is selfadjoint on H, injective
and non negative. The following identities hold on D(dΓ (ω))

ϕ(u− v)2 + ϕ(i(u+ v))2 =4a†(u)a(u) + 4a†(v)a(v)− 4(a†(u)a†(v) + a(u)a(v))

+ 2‖u‖2+2‖v‖2

=4a†(u+ v)a(u+ v) + 2ϕ(v)ϕ(u) + 2‖u‖2+2‖v‖2
+ 4Re(〈u, v〉) + 2iIm(〈u, v〉)
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Proof. The following calculations holds on D(dΓ (A))

ϕ(u− v)2 + ϕ(i(u+ v))2 = ϕ(u)2 + ϕ(v)2 − ϕ(v)ϕ(u)− ϕ(u)ϕ(v)

+ ϕ(iu)2 + ϕ(iv)2 + ϕ(iv)ϕ(iu) + ϕ(iu)ϕ(iv).

Using Proposition 2.3 we find

ϕ(u)2 + ϕ(iu)2 =a†(u)a(u) + a(u)a†(u) + a†(u)2 + a(u)2

+ a†(iu)a(iu) + a(iu)a†(iu) + a†(iu)2 + a(iu)2

=a†(u)a(u) + a(u)a†(u) + a†(u)2 + a(u)2

+ a†(u)a(u) + a(u)a†(u)− a†(u)2 − a(u)2

=4a†(u)a(u) + 2‖u‖2.

Furthermore,

ϕ(iv)ϕ(iu)− ϕ(v)ϕ(u) =a†(iv)a(iu) + a†(iu)a(iv) + a†(iu)a†(iv) + a(iu)a(iv)

− a†(v)a(u)− a†(u)a(v)− a†(u)a†(v)− a(u)a(v)

=a†(v)a(u) + a†(u)a(v)− a†(u)a†(v)− a(u)a(v)

− a†(v)a(u)− a†(u)a(v)− a†(u)a†(v)− a(u)a(v)

=− 2(a†(u)a†(v) + a(u)a(v))

Thus we finally arrive at

ϕ(u− v)2 + ϕ(i(u+ v))2 = 4a†(u)a(u) + 4a†(v)a(v)− 4(a†(u)a†(v) + a(u)a(v))

+ 2‖u‖2+2‖v‖2.

We may also calculate

ϕ(v − u)2 + ϕ(i(v + u))2 = ϕ(v − u)2 + ϕ(i(v + u))2 + ϕ(v + u)2 − ϕ(v + u)2

= 4a†(u+ v)a(u+ v) + 2‖u+ v‖2+ϕ(v − u)2 − ϕ(v + u)2

= 4a†(u+ v)a(u+ v) + 2‖u+ v‖2+ϕ(u)ϕ(v) + ϕ(v)ϕ(u)

= 4a†(u+ v)a(u+ v) + 2ϕ(v)ϕ(u) + 2‖u‖2+2‖v‖2+4Re(〈u, v〉) + 2iIm(〈u, v〉)

finishing the proof. �

Before we proceed we will make the following definitions for u, v ∈ H

C(u, v, g2) :=
1

2
(‖u‖2+‖v‖2)

D(u, v, g2) :=
1

2
(〈u, v〉+ Re(〈u, v〉))

We will start with proving Hg1,g2(ξ) is selfadjoint under the given assump-
tions. The main calculations are contained in the following Lemma.
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Lemma 4.2. Let ω,m be a selfadjoint and strongly commuting operators on H.
Assume ω ≥ 0 is injective and v ∈ D(ω−1/2) ∩ D(ω1/2) ∩ D(m) ∩ D(ω−1/2m).
Then

2Re(〈dΓ (ω)ψ,ϕ(v)2ψ〉) ≥ −2‖ω1/2v‖‖ψ‖2 ψ ∈ D(dΓ (ω)) ∩N
2Re(〈(c− dΓ (m))2ψ,ϕ(v)2ψ〉) ≥ ε(‖(c− dΓ (m))2ψ‖2+‖dΓ (ω)ψ‖2)−K‖ψ‖2

for all ε > 0, c ∈ R and ψ ∈ D(dΓ (ω)) ∩ D(dΓ (m)2) ∩N . Here we may choose

K = ε+ 16ε−1R4 + 64R2(1 + 8ε−1R2)

as long ‖v‖, ‖mv‖, ‖ω−1/2mv‖ are smaller than some R > 0.

Proof. Let ψ ∈ Span(J (D(ω))) and define ω` = ω1[0,`](ω) via the spectral calu-
clus. Using Proposition 2.3 we calculate on N

dΓ (ω`)ϕ(v)2 = ϕ(v)dΓ (ω`)ϕ(v)− iϕ(iω`v)ϕ(v)

So

2Re(〈dΓ (ω`)ψ,ϕ(v)2ψ〉) = 2‖dΓ (ω`)
1/2ϕ(v)ψ‖2+2Im(〈ψ,ϕ(iω`v)ϕ(v)ψ〉)

Now

2Im(〈ψ,ϕ(iω`v)ϕ(v)ψ〉) =
1

i
〈ψ, [ϕ(iω`v), ϕ(v)]ψ〉

= 2Im(〈iω`v, v〉)‖ψ‖2

= −2‖ω1/2
` v‖‖ψ‖2

So we end up with

2Re(〈dΓ (ω`)ψ,ϕ(v)2ψ〉) ≥ −2‖ω1/2
` v‖‖ψ‖2.

As ` goes to infinity we see ‖ω1/2
` v‖ converges to ‖ω1/2v‖ by the functional

calculus. For φ ∈ J (D(ω)) one easily sees dΓ (ω`)φ converges to dΓ (ω)φ applying
the functional calculus to each factor in the tensor product. Thus taking ` to
infinity yields the result for ψ ∈ Span(J (D(ω))). For general ψ ∈ D(dΓ (ω)) we
may find a sequence of elements {ψn}∞n=1 ⊂ Span(J (D(ω))) converging to ψ
in D(dΓ (ω))-norm. As ϕ(v)2 is D(dΓ (ω)) bounded we see convergence holds in
ϕ(v)2-norm as well. Taking n to infinity in

2Re(〈dΓ (ω)ψn, ϕ(v)2ψn〉) ≥ −2‖ω−1/2v‖‖ψn‖2

yields the result.
Let ψ ∈ D(dΓ (m)2) ∩ D(dΓ (ω)) ∩ N . Define dΓc(m) = c − dΓc(m). Using

Proposition 2.3 and dΓc(m)ψ ∈ D(dΓc(m)) ∩N we find

〈dΓc(m)2ψ,ϕ(v)2ψ〉 =〈ϕ(v)dΓc(m)2ψ,ϕ(v)ψ〉
=〈dΓc(m)ϕ(v)dΓc(m)ψ,ϕ(v)ψ〉 − i〈ϕ(imv)dΓc(m)ψ,ϕ(v)ψ〉
=‖dΓc(m)ϕ(v)ψ‖2−i〈ϕ(imv)dΓc(m)ψ,ϕ(v)ψ〉
− i〈ϕ(imv)ψ, dΓc(m)ϕ(v)ψ〉
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Now

〈ϕ(imv)dΓc(m)ψ,ϕ(v)ψ〉 = 2iIm(〈imv, v〉)〈dΓc(m)ψ,ψ〉+ 〈dΓc(m)ψ,ϕ(v)ϕ(imv)ψ〉
〈ϕ(imv)ψ, dΓc(m)ϕ(v)ψ〉 = −i‖ϕ(imv)ψ‖2+〈ϕ(v)ϕ(imv)ψ, dΓc(m)ψ〉

Defining a = 〈dΓc(m)ψ,ϕ(v)ϕ(imv)ψ〉 we finally arrive at

2Re(〈dΓc(m)2ψ,ϕ(v)2ψ〉) =2‖dΓc(m)ϕ(v)ψ‖2
+ 2Re(2Im(〈imv, v〉)〈ψ, dΓc(m)ψ〉 − ia)

+ 2Re(−‖ϕ(imv)ψ‖2−ia)

≥− 〈mv, v〉〈ψ, dΓc(m)ψ〉+ 2Im(a+ a)− 2‖ϕ(imv)ψ‖2

=− 4〈mv, v〉〈ψ, dΓc(m)ψ〉 − 2‖ϕ(imv)ψ‖2

Using Proposition 2.3 we estimate

‖ϕ(imv)ψ‖2≤ 4‖(1 + ω−1/2)mv‖2‖(dΓ (ω) + 1)1/2ψ‖2

≤ 4‖(1 + ω−1/2)mv‖2(‖ψ‖2+‖ψ‖‖dΓ (ω)ψ‖)
≤ 2−1ε‖dΓ (ω)ψ‖2+4‖(1 + ω−1/2)mv‖2(1 + 2ε−1‖(1 + ω−1/2)mv‖2)‖ψ‖2

We also estimate

|〈v,mv〉〈ψ, dΓc(m)ψ〉| ≤ ‖v‖‖mv‖‖ψ‖‖(dΓc(m)2 + 1)1/2ψ‖
= (4ε−1‖v‖2‖mv‖2+4−1ε)‖ψ‖2+4−1ε‖dΓc(m)2ψ‖2

This implies

2Re(〈dΓc(m)2ψ,ϕ(v)2ψ〉) ≥ ε(‖dΓc(m)2ψ‖2+‖dΓ (ω)ψ‖2)−K‖ψ‖2

where

K = ε+ 16ε−1‖v‖2‖mv‖2+16‖(1 + ω−1/2)mv‖2(1 + 2ε−1‖(1 + ω−1/2)mv‖2)

We find the desired inequality when ‖(1 + ω−1/2)mv‖2 is estimated by 4R2,
‖mv‖ is estimated by R and ‖v‖ is estimated by R.

Lemma 4.3. Assume Hypothesis 1. For ψ ∈ D(H0,0(0)) and ξ ∈ Rν we have

max
1≤i≤ν

{‖dΓ (ω)ψ‖, ‖(ξi − dΓ (m(i)))2ψ‖} ≤ ‖H0,0(ξ)‖ (4.1)

There is a constant γ independent of ξ such that

1

2
‖H0,0(ξ)ψ‖2≤ γ‖ψ‖2+‖H0,g2(ξ)ψ‖

for all ψ ∈ D(H0,0(0)) ∩ N . Given R > 0 one may choose the same γ for all

choices of u, v, ω,m(i) where

‖u‖, ‖m(i)u‖, ‖ω−1/2m(i)u‖, ‖ω1/2u‖, ‖v‖, ‖m(i)v‖, ‖ω−1/2m(i)v‖, ‖ω1/2v‖≤ R
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Proof. As dΓ (m(i)) and dΓ (ω) commute strongly and dΓ (ω) ≥ 0 we find from
the spectral theorem that

〈(ξi − dΓ (m(i)))2ψ, dΓ (ω)ψ〉 ≥ 0.

Similarly 〈(ξi − dΓ (m(i)))2ψ, (ξj − dΓ (m(j)))2ψ〉 ≥ 0 which implies

‖H0,0(ξ)ψ‖2 =

ν∑

i=1

‖(ξi − dΓ (m(i)))2ψ‖2+2Re(〈(ξi − dΓ (m(i)))2ψ, dΓ (ω)ψ〉)

+ ‖dΓ (ω)ψ‖2+

ν∑

i>j=1

2Re(〈(ξi − dΓ (m(i)))2ψ, (ξj − dΓ (m(j)))2ψ〉)

≥ max
1≤i≤ν

{‖dΓ (ω)ψ‖2, ‖(ξi − dΓ (m(i)))2ψ‖2}

Define now a = u− v, b = i(u+ v) and g = 4−1g4. For ψ ∈ N ∩ D(H0,0(ξ)) we
calculate using Lemma 4.1

‖(H0,g2(ξ)− C(g2, u, v))ψ‖2=‖H0,0(ξ)ψ‖2+g2‖(ϕ(a)2 + ϕ(b)2)ψ‖2

+ g2Re(dΓ (ω)ψ, (ϕ(a)2 + ϕ(b)2)ψ〉)

+

ν∑

i=1

g2Re(dΓ (ki)
2ψ, (ϕ(a)2 + ϕ(b)2)ψ〉)

Using Lemma 4.2 with ε′ = ε
4νg(ν+1) we now arrive at

‖(H0,g2(ξ)− C(g2, u, v))ψ‖2≥ ‖H0,0(ξ)ψ‖2

− 1

2(ν + 1)

(
‖dΓ (ω)ψ‖2+

ν∑

i=1

‖(ξi − dΓ (ki))
2ψ‖2

)
− K̃‖ψ‖

where K̃ is independent of ξ and K̃ may chosen to have the same value for all
choices of u, v, ω,m(i) where

‖u‖, ‖m(i)u‖, ‖ω−1/2m(i)u‖, ‖ω1/2u‖, ‖v‖, ‖m(i)v‖, ‖ω−1/2m(i)v‖, ‖ω1/2v‖≤ R

Define γ =
√
K̃ + C(g2, u, v) and use equation (4.1) along with the triangle

inequality to find the desired result.

Lemma 4.4. Assume Hypothesis 1. Then Hg1,g2(ξ) is closed on D(Hg1,g2(0)) =

D(dΓ (ω)) ∩⋂νi=1D(dΓ (m(i))2) for g2 ∈ [0,∞), ξ ∈ Cν and g1 ∈ C. It is selfad-
joint and bounded below if g1 ∈ R and ξ ∈ Rν . Furthermore, D(Hg1,g2(0)) ∩ N
is a core.

Proof. We start by notingH0,0(0) is symmetric is a sum of non negative and com-

muting operators. Thus it is selfadjoint (see [14]). Both dΓ (m(i)) dΓ (ω) strongly
commute with the number operator N by Proposition 2.3. Using [18, 5.26 and
5.27] we see 1{N≤k}ψ ∈ D(H0,0(0)) and H0,0(0)1{N≤k}ψ = 1{N≤k}H0,0(0)ψ for
any ψ ∈ D(H0,0(0)). Taking k to infinity shows 1{N≤k}ψ converges to ψ in
H0,0(0) norm so N ∩ D(H0,0(0)) is a core for H0,0(0). By Lemmas 4.1, 4.3 and
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A.3 we see H0,g2(0) is selfadjoint, bounded below and has D(Hg1,g2(0)) ∩ N as
a core. To finish the proof we note that

Hg1,g2(ξ) = H0,g2(0) + g1ϕ(u− v) +

n∑

i=1

uξ2i + ξidΓ (m(i)).

Now dΓ (m(i)) is infinitesimally dΓ (m(i))2 bounded and ϕ(u − v) is infinitesi-
mally dΓ (ω) bounded. As both dΓ (m(i))2 and dΓ (ω) are H0,g2(0) bounded by
[21, Theorem 5.9] we see that Hg1,g2(ξ) arises from H0,g2(0) by an infinites-
imally bounded perturbation. Thus Hg1,g2(ξ) is closed on D(H0,0(0)) and has
D(H0,0(0))∩N as a core. Selfadjointness in the case g1 ∈ R, ξ ∈ Rν and existence
of a lower bound follows directly from the Kato-Rellich theorem.

Lemma 4.5. Assume Hypothesis 1 holds. There is a constant γ independent of
ξ such that

‖H0,0(ξ)ψ‖2≤ γ(‖Hg1,g2(ξ)ψ‖2+‖ψ‖2)

for all ψ ∈ D(H0,0(0)). Given R > 0 one may choose the same γ for all

u, v, ω,m(i) where

‖u‖, ‖m(i)u‖, ‖ω−1/2m(i)u‖, ‖ω1/2u‖, ‖v‖, ‖m(i)v‖, ‖ω−1/2m(i)v‖, ‖ω1/2v‖≤ R

and ‖ω−1/2u‖, ‖ω−1/2v‖≤ R.

Proof. By Lemma 4.4 it is enough to prove the statement for ψ ∈ D(H0,0(0))∩N
due to this being a core for Hg1,g2(ξ). By Lemma 4.3 there is γ′ ≥ 0 such that

1

2
‖H0,0(ξ)ψ‖2≤ ‖H0,g2(ξ)ψ‖+γ′‖ψ‖

By Lemma 4.3 there is α > 0 depending only on g1‖(1 + ω−1/2)(u − v)‖ such
that ‖g1ϕ(u− v)ψ‖≤ 1

4‖dΓ (ω)‖+α‖ψ‖. Using this we find

1

2
‖H0,0(ξ)ψ‖2≤ ‖Hg1,g2(ξ)ψ‖+(γ′ + α)‖ψ‖+1

4
‖H0,0(ξ)‖

rearranging yields the inequality with γ = max{4, γ′ + α}.

We can now prove most of Theorem 1.

Proof (Proof of Theorem 1 parts (1)-(3)). The selfadjointness and existence on
a lower bound is clear from Lemma 4.4. Obviously ξ 7→ Hg1,g2(ξ)ψ is analytic
for any ψ ∈ D0 and since Hg1,g2(ξ) is closed on this set for all ξ statement (1)
follows. Statement (2) follows since

Σ(ξ)− 1

2M
ξ2 = inf

ψ∈D0,‖ψ‖=1

ν∑

i=1

ξi〈ψ, dΓ (ki)ψ〉+ 〈ψ,Hg1,g2(0)ψ〉

we see Σ(ξ) − 1
2M ξ2 is an infimum of concave functions and thus concave. In

particular is almost everywhere twice differentiable and locally Lipschitz. Thus
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the conclusion in (2) follows. To prove part (3) one should follow the calculations
in [3] to find that

Σ(ξ − k1 − · · · − kn) + ω(k1) + · · ·+ ω(kn) ∈ σess(Hg1,g2(ξ)) (4.2)

To prove the second part of (3) if inf(σ(ω)) > 0 is easily done in the same
way as [12]. The only thing one needs is Lemma 4.5 at some point during the
calculations. If inf(σ(ω)) = 0 and ω(0) = 0 then Σess(ξ) = Σ(ξ) by equation
(4.2) so the statement is obvious in this case.

We now consider the full Hamiltonian First we shall need a technical Lemma

Lemma 4.6. Assume Hypothesis 4 holds. Then the following holds

(1) S is bounded below. Write E = inf(σ(S)).
(2) |p| is S ⊗ 1 bounded.
(3) For any ε > 0 there is γ ∈ (0,∞) such that

‖(S ⊗ 1)ψ‖2+‖dΓ⊕ψ‖2 ≤ ‖HV
0,0ψ‖2+|E|‖ψ‖2 (4.3)

2Re(〈S ⊗ 1ψ,ϕ⊕(fx)2ψ〉) ≥ −ε‖HV
0,0ψ‖2−γ‖ψ‖2 (4.4)

2Re(〈dΓ⊕(ω)ψ,ϕ⊕(fx)2ψ〉) ≥ −2 sup
x∈Rν

(‖ω1/2fx‖)‖ψ‖2 (4.5)

for ψ ∈ C∞0 (Rν)⊗̂J (D(ω)).

Proof. Define the form

q(ψ, φ) =
1

2M
〈
√
−∆ψ,

√
−∆φ〉+ 〈V+ψ, V+φ〉 − 〈V−ψ, V−φ〉

which is closed on D((−∆)1/2) ∩ D(V
1/2
+ ) by the KLMN theorem and the fact

that adding two non negative, closed forms gives a closed form if the intersection
domain is dense (see [15]). Let A be the selfadjoint and lower bounded operator
corresponding to q and note that A = S on C∞0 (Rν). As S is selfadjoint we see
A = S. Now A is bounded below and D(A) ⊂ D(q) ⊂ (−∆)1/2 so (−∆)1/2 is S
bounded. From Lemma A.1 we see |p|= (−∆)1/2 ⊗ 1 is S ⊗ 1 = S ⊗ 1 bounded.
This proves statements (1) and (2).

Fix ψ ∈ C∞0 (Rν)⊗̂J (D(ω)). We calculate

‖HV
0,0ψ‖2= ‖(S ⊗ 1)ψ‖2+‖dΓ⊕ψ‖2+2Re(〈(S ⊗ 1)ψ, dΓ⊕ψ〉)

Using that

〈(S ⊗ 1)ψ, dΓ⊕ψ〉 = 〈(S ⊗ 1)dΓ⊕(ω)1/2ψ, dΓ⊕(ω)1/2ψ〉 ≥ E‖φ‖2

we have proven equation (4.3). Note that equation (4.5) follows from the point
wise estimate in 4.2. Thus we only need to prove equation (4.4). We calculate

2Re(〈S ⊗ 1ψ,ϕ⊕(fx)2ψ〉) =2Re(〈V+ ⊗ 1ψ,ϕ⊕(fx)2ψ〉) (4.6)

− 2Re(〈V− ⊗ 1ψ,ϕ⊕(fx)2ψ〉) (4.7)

+

ν∑

j=1

2Re(〈p2jψ,ϕ⊕(fx)2ψ〉). (4.8)
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Let a ∈ {±}. ψ takes values in N so

〈Va ⊗ 1ψ,ϕ⊕(fx)2ψ〉 =

∫

Rν
Va‖φ(fx)Ψ(x)‖2dλν(x) = ‖V 1/2

a ⊗ 1ϕ⊕(fx)ψ‖2

Here the first equality ensures ϕ⊕(fx)ψ ∈ D(V
1/2
a ⊗ 1). Furthermore, since

p2jψ, pjψ ∈ C∞0 (Rν)⊗̂J (D(ω)) we may use Lemma 2.6 to calculate

〈p2jψ,ϕ⊕(fx)2ψ〉 =〈ϕ⊕(fx)p2jψ,ϕ⊕(fx)ψ〉
=〈ϕ⊕(fx)pjψ, pjϕ⊕(fx)ψ〉 − 〈−iϕ⊕(∂xjfx)pjψ,ϕ⊕(fx)ψ〉
=‖piϕ⊕(fx)ψ‖2
− 〈−iϕ⊕(∂xjfx)pjψ,ϕ⊕(fx)ψ〉
− 〈−iϕ⊕(∂xjfx)ψ, pjϕ⊕(fx)ψ〉

Write Uj(x) = Im(〈∂xjfx, fx〉) and note that by Theorem 2.2 and Proposition
2.3 we have

〈−iϕ⊕(∂xjfx)pjψ,ϕ⊕(fx)ψ〉 = 〈pjψ, iϕ⊕(fx)ϕ⊕(∂xjfx)ψ〉+ 〈pjψ, i2i(U ⊗ 1)ψ〉
〈−iϕ⊕(∂xjfx)ψ, pjϕ⊕(fx)ψ〉 = −〈iϕ⊕(fx)ϕ⊕(∂xjfx)ψ, pjψ〉 − ‖ϕ⊕(∂xjfx)ψ‖2

Noting 〈iϕ⊕(fx)ϕ⊕(∂xjfx)ψ, pjψ〉 and 〈pjψ, iϕ⊕(fx)ϕ⊕(∂xjfx)ψ〉 are complex
conjugates we find that

2Re(〈p2jψ,ϕ⊕(fx)2ψ〉) ≥ −4Re(〈pjψ, (Uj ⊗ 1)ψ〉) + ‖ϕ⊕(∂xjfx)ψ‖2

Using Lemma 2.6 we new arrive at

Re(〈S ⊗ 1ψ,ϕ⊕(fx)2ψ〉) =‖V 1/2
+ ⊗ 1ϕ⊕(fx)ψ‖2−‖V 1/2

− ⊗ 1ϕ⊕(fx)ψ‖2 (4.9)

+
1

2M
‖|p|ϕ⊕(fx)ψ‖2−

ν∑

j=1

‖ϕ⊕(∂xjfx)ψ‖2 (4.10)

+

ν∑

j=1

−2Re(〈pjψ, (Uj ⊗ 1)ψ〉) (4.11)

Using Lemma A.1 we find constants b > 0 and a < 1 such that

‖V 1/2
− ⊗ 1ϕ⊕(fx)ψ‖2≤ a

2M
‖|p|ϕ⊕(fx)ψ‖2+b‖ϕ⊕(fx)ψ‖2

which implies

Re(〈S ⊗ 1ψ,ϕ⊕(fx)2ψ〉) ≥
ν∑

j=1

−‖ϕ⊕(∂xjfx)ψ‖2−2Re(〈pjψ, (Uj ⊗ 1)ψ〉)

− b‖ϕ⊕(fx)ψ‖2
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Write b̃ = max{b, 1}

R = max

{
sup
x∈Rν
‖(1 + ω−1/2 + ω1/2)fx‖, sup

x∈Rν ,j∈{1,..,ν}
‖(1 + ω−1/2)∂xjfx‖

}

Using Proposition 2.3, 2αβ ≤ ε−1α2 + εβ2 for all ε, α, β > 0 and equation (4.3)
we find

max{b̃‖ϕ⊕(∂xjfx)ψ‖2, b̃‖ϕ⊕(fx)ψ‖2}
≤ 4b̃R2‖(dΓ⊕(ω) + 1)1/2ψ‖2

≤ b̃4R2(‖ψ‖2+‖ψ‖‖dΓ⊕(ω)ψ‖)

≤ (̃b4R2 + ε|E|)‖ψ‖2+
16b̃2R4(ν + 1)

ε
‖ψ‖2+

ε

4(ν + 1)
‖HV

0,0ψ‖2

By statement 2 we find c, d ∈ [0,∞) such that

‖|p|ψ‖2≤ c‖(S ⊗ 1)ψ‖2+d‖ψ‖2 (4.12)

Using this, Cauchy-Schwatz, ‖Uj⊗1‖≤ R2, 2αβ ≤ ε−1α2+εβ2 for all ε, α, β > 0
equation (4.3) we find

ν∑

j=1

|〈pjψ, (Uj ⊗ 1)ψ〉| ≤ 2cν2R4

ε
‖ψ‖2+

ε

c8
‖|p|ψ‖2

≤ 2cνR4 + dε

ε
‖ψ‖2+

ε

8
‖HV

0,0ψ‖2

Defining

1

2
γ =

2(2cν2R4 + dε)

ε
+ 4b̃R2(ν + 1) + (ν + 1)ε|E|+16b̃2R4(ν + 1)2

ε

we have the desired inequality.

We can now prove selfadjointness of HV
g1,g2 and the decomposition.

Lemma 4.7. HV
g1,g2 is selfadjoint on D(S⊗1)∩D(dΓ⊕(ω)) and essentially self-

adjoint on any core for HV
0,0.

Assume now vx(k) = eix·kv(k), ux(k) = eix·ku(k) where u, v ∈ D(ω±1/2) ∩⋂ν
i=1D(ki) ∩ D(ω−1/2ki). Define F to be the Fourier transform and let U =

(F ⊗ 1)Γ⊕(e−ikx) be the Lee-Low-Pines transformation. Then

UHg1,g2(0)U∗ =

∫ ⊕

Rν
Hg1,g2(ξ)dξ
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Proof. We start by noting HV
0,0 is selfadjoint on D0 = D(S ⊗ 1) ∩ D(dΓ⊕(ω))

as it is the sum of two semibounded, selfadjoint and strongly commuting oper-
ators (see [14] and Theorem 2.1). By Proposition 2.3 and Theorem 2.1 we see
C∞0 (Rν)⊗̂J (D(ω)) is a core for HV

0,0. Using Lemma 4.1 we realise that

HV
g1,g2 =

(
− 1

2M
∆+ V

)
⊗ 1 + 1⊗ dΓ (ω) + g1ϕ⊕(ux − vx)

+
g2
4
ϕ⊕(ux − vx) +

g2
4
ϕ⊕(i(ux + vx)) + C ⊗ 1

where C is multiplication by x 7→ C(ux, vx, g2). Selfadjointness now follows from
Lemmas 4.6 and A.3.

To prove the next part let Ux denote multiplication by eik·x and note that Ux
is a unitary and strongly continous representation of Rν . Furthermore, since vx =
U−xv, ux = U−xu we see vx, ux are continuously differentiable by the domain
properties of u and v with derivatives ∂xiux = Ux(ixiu), ∂xivx = Ux(ixiv). The
ω±1/2 norms of ux, vx and the ω−1/2 norm of the derivatives does not depend
on x, so Hypothesis 4 is fulfilled. Let x 7→ ax ∈ {x 7→ ux − vx, x 7→ i(ux + vx)}.
Note that U−xax = a independent of x so by Proposition 2.4 we see

Uϕ⊕(ax)U∗ = (F ⊗ 1)ϕ⊕(a)(F ⊗ 1)∗ = 1⊗ ϕ(a) = ϕ⊕(a)

Using this equality, that C(g2, ux, vx) is a constant and that the statement is
true for Hg1,0(0) we find U∗ψ(ξ) ∈ D(Hg1,0(ξ)) = D(Hg1,g2(ξ)) for all ξ and

(UH0
g1,g2U

∗)ψ(ξ) =Hg1,0(ξ)ψ(ξ)− C(g2, u, v)ψ(ξ)

+
g2
4
ϕ(u− v)2ψ(ξ) +

g2
4
ϕ(i(u+ v))2ψ(ξ)

=Hg1,g2(ξ)ψ(ξ).

this finishes the proof.

5. Abstract results on positivity

In this section we will fix a σ-finite measure space (M,F , µ) and write H =
L2(M,F , µ). Define

L2
R(M,F , µ) := {f ∈ L2(M,F , µ) | f(k) ∈ R almost everywhere} = HR

L2
+(M,F , µ) := {f ∈ L2(M,F , µ) | f(k) ≥ 0 almost everywhere} = H+

L2
>0(M,F , µ) := {f ∈ L2(M,F , µ) | f(k) > 0 almost everywhere} = H>0

the following definition is central and con be found in [15]:

Definition 5.1. Let f, g ∈ H we say f ≥ g if f − g ∈ H+. A ∈ B(H) is called
positivity preserving if AH+ ⊂ H+, positivity improving if AH+\{0} ⊂ H>0 and
ergodic if for all ψ, φ ∈ H+\{0} we have 〈ψ,Anφ〉 > 0 for some n ∈ N.

We now define two maps abs : H → H+ and <,= : H → HR by abs(f)(x) =
|f(x)|, <(f)(x) = Re(f(x)) and =(f)(x) = Im(f(x)) for almost all x ∈ M. The
following lemma is essential
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Lemma 5.2. Let (X,X , τ) be a σ-finite measurable space and A ∈ B(H) be
positivity preserving. The following hold

(1) f ∈ H+ ⇐⇒ 〈f, g〉 ≥ 0 for all g ∈ H+. In particular H+ is closed.
(2) abs, = and < are well defined and continous. If f, g ∈ H and abs(f) ≤ g then

g ∈ H+ and ‖f‖≤ ‖g‖
(3) For all f ∈ H there is a multiplication operator φf with |φv(x)|= 1 for all

x ∈ M , φfabs(f) = f and abs(f) = φ∗ff . If f ∈ H+ then φf = 1 so

abs(f) = f . If a ∈ C then abs(af) = |a|abs(f)
(4) If f, g ∈ H and f ≤ g then Af ≤ Ag.
(5) < and = are real linear and 1 = <+ i=. If f ∈ HR then Af ∈ HR,<(f) = f

and <(if) = 0.
(6) <A = A< and for all f ∈ H we have abs(Af) ≤ A(abs(f)).
(7) if x 7→ f(x) ∈ L1(X,X , τ,H) then x 7→ abs(f(x)) ∈ L1(X,X , τ,H) and

abs

(∫

X

f(x)dτ(x)

)
≤
∫

X

abs(f(x))dτ(x)

(8) If x 7→ f(x), x 7→ g(x) ∈ L1(X,X , τ,H) and f(x) ≤ g(x) for all x ∈ X then

∫

X

f(x)dτ(x) ≤
∫

X

g(x)dτ(x)

Proof. (1): The implication ” ⇒ ” in is clear. To prove the other implication
we assume that it is false. Then µ({f < 0}) 6= 0. Now µ is σ-finite so there is
B ⊂ {f < 0} such that 0 < µ(B) <∞. Thus we now have 0 ≤ 〈1B , f〉 < 0 (see
[17]) which is a contradiction. Now H+ =

⋂
ψ∈H+

{φ ∈ H | 〈ψ, φ〉 ≥ 0} which is

closed.
(2): Let C ∈ {abs,<,=}. We see

∫

M
|Cf(m)− Cg(m)|2dµ(m) ≤

∫

M
|f(m)− g(m)|2dµ(m) = ‖f − g‖2.

Thus C is well defined and continous. Let g̃ be a representative for g and f̃ a

representative for f . Then by assumption g̃(k) − |f̃(k)|≥ 0 almost everywhere,

so g(k) = g̃(k)− |f̃(k)|+|f̃(k)|≥ 0 almost everywhere. Hence

‖g‖2−‖f‖2=

∫

M
g̃(k)2 − |f̃(k)|2dµ(k) =

∫

M
(g̃(k) + |f̃(k)|)(g̃(k)− |f̃(k)|)dµ(k)

which is non negative.

(3): Fix some representative f̃ of f . Define φf (k) = 1 if f̃(k) = 0 and φf (k) =
f̃(k)

|f̃ | otherwise. Note φf = 1 almost everywhere if f ∈ H+. As f̃ is measurable we

see that φf is measurable. Furthermore, the following calculations hold almost
everywhere

φf (k)abs(f)(k) = φf (k)|f̃(k)|= f̃(k) = f(k)

φf (k)∗f(k) = φf (k)∗f̃(k) = |f̃(k)|= |f(k)|
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showing φfabs(f) = f and φ∗ff = abs(f). Now, af̃ is a representative for af

so abs(af)(k) = |af̃(k)|= |a|abs(f)(k) almost everywhere. Hence |a|abs(f) =
abs(af) proving (3).

(4): We see g − f ∈ H+, so A(g − f) ∈ H+.

(5): Let f, g ∈ H and a, b ∈ R. Let f̃ and g̃ be representatives of f and g

respectively. Then af̃ + bg̃ is a representative for af + bg and

Re(af̃ + bg̃) = aRe(f̃) + bRe(g̃) Im(af̃ + bg̃) = aIm(f̃) + bIm(g̃)

so for C ∈ {<,=} we have almost everywhere C(af + bg)(k) = (aC(f) +

bC(g))(k). Furthermore, f̃ = Re(f̃)+ iIm(f̃) showing f(k) = <(f)(k)+ i=(f)(k)
almost everywhere so 1 = <+ i=.

Let f ∈ HR. Then f = f+ − f− with f± ∈ H+ ⊂ HR so Af = Af+ − Af− ∈
H+−H+ = HR. Furthermore f̃(k) = Re(f̃)(k) and 0 = Re(if̃)(k) for almost all
k implying f = <(f) and 0 = <(if).

(6). Using (5) we find

<(Af) = <(A<(f)) + <(iA=(f)) = A<(f) + 0 = A<(f)

Let Θ ∈ Q and f ∈ H. Let f̃ be a representative for f and note <(eiΘf̃(k)) ≤
|f̃(k)| for all k. As <(eiΘf̃(k)) is a representative for <(eiΘf) we see from (4)
that <(eiΘAf) = A<(eiΘf) ≤ A(abs(f)).

Let g be a representative for Af and h be a representative for A(abs(f)).
As <(eiΘg) is a representative of <(eiΘAf) we see <(eiΘAf) ≤ h except on a
nullset CΘ. Let C =

⋃
Θ∈Q CΘ which is still a nullset. For k /∈ C we have

|g(k)|= sup
Θ∈Q
<(eiΘg(k)) ≤ h(k)

As C is a null-set we have abs(Af) ≤ A(abs(f)).
(7): x 7→ abs(f(x)) is measurable since abs is continous. We also see

∫

X

‖abs(f(x))‖dτ(x) =

∫

X

‖f(x)‖dτ(x) <∞

Let g =
∫
X
f(x)dτ(x), v =

∫
X

abs(f(x))dτ(x) and h ∈ H+. Then

〈h, abs(g)〉 =

∫

X

〈h, φ∗gf(x)〉dτ(x) ≤
∫

X

〈h, abs(f(x))〉dτ(x)

where we used |〈h, φ∗gf(x)〉|≤ 〈h, abs(f(x))〉. By (1) we now see v − g ∈ H+.

(8): Write u =
∫
X
f(x)dτ(x), v =

∫
X
g(x)dτ(x) and let h ∈ H+. Then we see

〈h, v − u〉 =
∫
X
〈h, g(x)− f(x)〉dτ(x) > 0 proving (8).

We now have a new definition

Definition 5.3. Let A be selfadjoint and bounded below. We say A generates a
positivity preserving (respectively ergodic or positivity improving) semigroup if
e−tA is positivity preserving, (respectively ergodic or positivity improving) for all
t > 0.
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The following Lemma is essential. The proof can be found in [16]

Theorem 5.4. Let A be selfadjoint, bounded below and generates a positivity
preserving semi group. Write λ = inf(σ(A))

1. If λ is a non degenerate eigenvalue and a ground state ψ ∈ H>0 exists then
A generates a positivity improving semi group.

2. If A generates an ergodic semigroup then it generates a positivity improving
semigroup.

3. If A generates a positivity improving semigroup and λ is an eigenvalue then
it is non degenerate and the eigenspace is spanned by an element ψ ∈ H>0.

The following result is found combing the results in [16] with in [4, Theorem 3].

Theorem 5.5. Let A,C be bounded below and selfadjoint. Assume

1. e−tA is positivity improving for all t ≥ 0
2. There is bounded multiplication operators {Bn}∞n=1 such that A + Bn and
C − Bn are uniformly bounded below and converges to respectively C and A
in strong resolvent sense.

Then C generates a positivity improving semi group.

We will now prove Theorems 3.4 and 3.5.

Proof (Theorem 3.4). Step 1. We start by assuming B− = 0. Then

q = qA + qB+
(5.1)

is closed on D(qA) ∩ D(qB+) since D(qA) ∩ D(qB+) is dense (see [15]). Let H
be the corresponding selfadjoint and lower bounded operator. Define Bn =
1(−∞,n)(B+)B+. Then Bn is a bounded multiplication operator and qn = qA +
qBn = qA+Bn is increasing. On D(q) we see qn converges to q so A + Bn has a
uniform lower bound and converges strongly to C by [15, Theorem S.14].

Furthermore, q − qBn will be decreasing and converge to qA restricted to
D(qA)∩D(qB+

). D(qA)∩D(qB+
) is a form core for qA so by [15, Theorem S.16]

we see C − Bn converges to A in strong resolvent sense. We also note, that
q − qBn ≥ qA so H −Bn is uniformly bounded below and so we may now apply
5.5 to finish the proof in the case B− = 0.

Step 2. Letting H be the operator associated with qA + qB+
we see that

H1, B̃
+ = 0, B̃− := B− satisfies the assumptions in the Theorem. Hence we may

assume B+ = 0 and write B := B−. We now define Bn = 1(−n,∞)(B+)B+. Then
qA + qBn is decreasing with limit q = qA + qB . This shows A+Bn is uniformly
bounded below and converges to C in strong resolvent sense. Furthermore, qC −
qBn is increasing with limit q = qA. This shows C − Bn is uniformly bounded
below and converges to A in strong resolvent sense. So we may apply Theorem
5.5 to finish the proof.

Proof (Theorem 3.5). Pick γ so large that q ≥ −γ and set q̃ = qA + qB . Then
we note that

|qC(ψ)|= −qC(ψ) ≤ qA(ψ) + qB(ψ) + γ〈ψ, φ〉

For any 0 ≤ a < 1 we note that qaC = a2qC is relativity q̃ bounded with
bound smaller than a2 < 1. Hence qa = qA + qB + aqC is closed and uniformly
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bounded below by q ≥ −γ. Let Ha be the operator corresponding to qA. By
Theorem 3.4 we know that Ha generates a positivity improving semigroup and
thus (Ha + γ + `)−1 is positivity improving for all 0 ≤ a < 1, ` > 0 (see [15]).

Now the collection of closed forms qa is uniformly bounded below and con-
verges monotonously to q, which is closable. By [15, Theorem S.14] we find that
(Ha +γ+ `)−1 converges strongly to (H +γ+ 1)−1 for all ` > 0 and so this map
is positivity preserving. Using standard theory of forms (see [20]) we have

(Ha + γ + 1)−1−(H0 + γ + 1)−1

=a2(|C|1/2(H0 + γ + 1)−1)∗|C|1/2(Ha + γ + 1)−1

Now since |C|−1(H0 + γ + 1)−1, |B|−1/2(Ha + γ + 1)−1 are positivity preserving
we find for fixed element in ψ ∈ H+\{0} that

(Ha + γ + 1)−1ψ − (H0 + γ + 1)−1ψ ∈ H+

taking the limit a tending to 1, we find

(H + γ + 1)−1ψ − (H0 + γ + 1)−1ψ ∈ H+.

Since (H0 + γ + 1)−1ψ ∈ H>0 we are finished.

The following Corollary is useful

Corollary 5.6. Let A,B and C be selfadjoint. Assume A and C are bounded
below and

1. e−tA is positivity improving for all t ≥ 0
2. B is a multiplication operator with D(B) ⊂ D(A) and C = A+B.

Then C generates a positivity improving semi group.

Proof. Let B− = 1(−∞,0)(B)B and B+ = 1[0,∞)(B)B. Note that D(B±) ⊂ D(A)
and so D(qB±) ⊂ D(qA) (see [21, Theorem 9.4]). It only remains to see that

qC = qA + qB+ + qB− .

However this holds on D(C) = D(A) obviously and using D(qA) = D(qC) ⊂
D(qB±) (see [21, Theorem 9.4]) we can extend the equality by continuity (use
[21, Theorem 5.9]).

We will use the following two lemmas

Lemma 5.7. Let A1, . . . , An be strongly commuting selfadjoint operators on H
which are bounded below. Assume also C is selfadjoint operators on H an that
B = A1 + · · · + An + C is essentially selfadjoint. If A1, .., An, C all generate a
positivity presering semigroup we find B generates one as well.

Proof. A = A1 + · · ·+An is selfadjoint (see [14]) and using the joint functional
calculus for B = (A1, . . . , An) we see e−tAH+ = e−tA1 . . . e−tAnH+ ⊂ H+. Using
trotters product formula we have

e−tBψ = lim
n→∞

(en
−1tAen

−1C)nψ

As H+ is closed and (en
−1tAen

−1C)nH+ ⊂ H+ we find e−tB preserves H+.
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Lemma 5.8. AssumeM =M1×M2,F = F1⊗F2 and µ1⊗µ2. Let i, j ∈ {1, 2}
with i 6= j. Then

1. If B : M1 → B(L2(M2,F2, µ2)) is strongly measurable and Bx is positivity
preserving for all x then so is I⊕(Bx).

2. I Bi ∈ B(L2(Mi,Fi, µi)) is positivity preserving so is B1 ⊗ 1, B1 ⊗ B2 and
1⊗B2

Proof. (1): Let ψ ∈ H+. ψ is identified with the element x 7→ ψ(x, ·) under the
identification H = L2(M1,F1, µ1, L

2(M2,F2, µ2)). Noting that

0 = µ{|ψ|6= ψ} =

∫

M1

µ2({|ψ(x, ·)|6= ψ(x, ·)})dµ1(x)

we see ψ(x, ·) ∈ L2(M2,F2, µ2)+ for almost all x. Let φ ∈ H+ as well. Then we
see

〈φ, I⊕(Bx)ψ〉 =

∫

M1

〈φ(x, ·), Bxψ(x, ·)〉dµ1(x) ≥ 0

we are now finished by Lemma 5.2.
(2): By Theorem 2.2 we have dealt with the case 1 ⊗ B2 in (1). Let U be

the unitary map from H to L2(M2 ×M1,F = F2 ⊗ F1, µ2 ⊗ µ1) defined by
Uψ(x, y) = ψ(y, x). U obviously have the inverse U−1ψ(y, x) = ψ(x, y) and is
isometric by fubinis theorem. As U(ψ⊗ φ) = φ⊗ψ we see U∗1⊗B1U = B1 ⊗ 1
since this will hold on simple tensors and simple tensors are total in H.

Now U maps H+ to L2
+(M2 ×M1,F = F2 ⊗ F1, µ2 ⊗ µ1) and U∗ maps

L2
+(M2 ×M1,F = F2 ⊗F1, µ2 ⊗ µ1) to H+. As 1⊗B2 is positivity preserving

by statement 1 we find B1 ⊗ 1 is positivity preserving. Now B1 ⊗ B2H+ =
(B1 ⊗ 1)(1⊗B2)H+ ⊂ H+ shows B1 ⊗B2 is positivity preserving.

6. Application of positivity results

In order to apply the above theorems one needs to find an L2 space to work in.
The following Theorem is well known and can be found in [1]

Theorem 6.1. There is a probability space Q = (Y,Y,P) and a unitary map U
from Fb(H) to L2(Q) with the following properties

1. UΩ = 1.
2. If B is a bounded operator on H with ‖B‖≤ 1 which maps HR to HR then
UΓ (B)U∗ is positivity preserving.

3. For all v ∈ HR the operator Uϕ(v)U∗ acts like multiplication by a random
variable Φ(v). Furthermore, the collection {Φ(v)}v∈HR is normally distributed
with covariance function E[Φ(v)Φ(u)] = 〈v, u〉.

Lemma A.4 in the appendix gives conditions for specific spaces to exist. We may
now prove

Lemma 6.2. Let (M,F , µ) be a σ-finite measurable space and A be a multipli-
cation operator on this space. Assume x 7→ vx ∈ L∞(M,F , µ,HR) and let U be
the isomorphism from Theorem 6.1. Then (1⊗ U)ϕ⊕(vx)(1⊗ U)∗ and A⊗ 1 is
a multiplication operator on L2(M×Y,F ⊗Y, µ⊗ P).
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Proof. Let f be a strictly positive element in L2(M,F , µ) which exists since
(M,F , µ) is sigma finite. Define ψ(x) = f(x)Φ(vx) ∈ L2(Rν ,B(Rν), λν , L

2(Q))
since ‖ψ(x)‖2= |f(x)|2‖vx‖2 which is integrable. Under the identification

L2(Rν ,B(Rν), λν , L
2(Q)) = L2(M×Y,F ⊗Y, µ⊗ P)

there is a jointly measurable map p(x, y) such that p(x, ·) = f(x)Φ(vx) for almost

all x ∈ Rν . Define V (x, y) = p(x,y)
f(x) and note that V (x, ·) = Φ(vx) in L2(Q).

Obviously

(1⊗ U)ϕ⊕(vx)(1⊗ U)∗ =

∫ ⊕

Rν
Φ(vx)dλν(x)

Using standard properties of direct integrals we see

ψ ∈ D(V ) ⇐⇒
∫

Rν

∫

Y
|V (x, y)ψ(x, y)|2dP(y)dλν(x) <∞

⇐⇒
∫

Rν
‖Φ(vx)ψ(x, ·)‖2dλν(x) <∞ ⇐⇒ ψ ∈ D

(∫ ⊕

Rν
Φ(vx)dλν(x)

)

Furthermore, for almost all x we have V (x, ·)ψ(x, ·) = Φ(vx)ψ(x, ·) when ψ ∈
D(V ). This proves (1⊗ U)ϕ⊕(vx)(1⊗ U)∗ is multiplication by V .

We now check A⊗ 1 is multiplication by V (x, y) = A(x). For ψ ∈ D(A), φ ∈
L2(Q) we see (A ⊗ 1)ψ ⊗ φ = Aψ ⊗ φ = (x, y) 7→ A(x)ψ(x)φ(y). This implies
(x, y) 7→ A(x)ψ(x)φ(y) = V (x, y)ψ(x)φ(y) is square integrable so ψ ⊗ φ ∈ D(V )
and V ψ⊗φ = (A⊗1)ψ⊗φ. As A⊗1 and V are selfadjoint and A⊗1 essentially
selfadjoint on D(A)⊗̂L2(Q) we see A⊗ 1 = V .

Lemma 6.3. There a bounded function Vν : Rν → R such that −(2M)−1∆+Vν
has a ground state.

Proof. By [15, Theorem XIII.11] the Lemma holds if ν = 1 and in this case the
ground state eigenvalue is a negative number a. Let ψ1 denote a ground state
eigenvector. Define

Vν(x1, . . . , xν) = V1(x1) + · · ·+ V1(xν)

Then ψν(x1, . . . , xν) = ψ1(x1) · · · · ·ψ1(xν) is an eigenvector for −(2M)−1∆+V
corresponding to the eigenvalue νa < 0. As the essential spectrum of−(2M)−1∆+
V is [0,∞) (see [20]) the conclusion is obvious.

Lemma 6.4. Let v ∈ H. If v ∈ HR then e−t|v〉〈v| maps HR to HR.

Proof. We may calculate

e−t|v〉〈v| =

∞∑

n=0

(−t)n(|v〉〈v|)n
n!

= 1 + C|v〉〈v|

where C ∈ R depends on t and ‖v‖. This clearly maps HR to HR.

The remaining part of Theorem 3.3 will now be proven in the following Lemma.
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Lemma 6.5. The remaining conclusion of Theorem 3.3 is true.

Proof. Define ωx = |ux + vx〉〈ux + vx|. Applying Lemma 4.7 with g1 = 0, u′x =
vx + ux and v′x = 0 we find

H̃V = S ⊗ 1 + dΓ⊕(ω) + g2dΓ⊕(ωx)

is selfadjoint on D(S ⊗ 1)∩D(dΓ⊕(ω)) and C∞0 (Rν)⊗̂J (D(ω)) is a core. Let Vν
be the potential from Lemma 6.3 and note that

H̃0 + Vν ⊗ 1 = H̃Vν (6.1)

Pick HR such that vx, ux ∈ HR for all x ∈ Rν and e−tωHR ⊂ HR. Let Q be the
corresponding probability space from Theorem 6.1. Write U for the unitary map
from Fb(H) to L2(Q) and note that

A = (1⊗ U)(H̃0+Vν ⊗ 1)(1⊗ U)∗

= (−(2M)−1∆+ Vν)⊗ 1 + I⊕(UdΓ (ω)U∗) + g2I⊕(UdΓ (ωx)U∗)

By corollary 5.6 we see −(2M)−1∆ + Vν generates a positivity improving semi
group. Combining this with theorem 6.1 and Lemmas 5.7 and 6.4 we see that
A generates a positivity preserving semigroup. So A will generate a positivity

improving semigroup if we can show that H̃0 +Vν ⊗ 1 has a ground state φ such
that (1⊗ U)φ is strictly positive and any other ground state is a multiple of φ.

Let λ = inf(σ(−(2M)−1∆ + Vν)) < 0 and let ψ be a strictly positive eigen-
vector (such a vector exists because −(2M)−1∆+ Vν generates a positivity im-

proving semi group). By Theorems 2.1 and 6.1 we see H̃ ≥ λ and ψ ⊗ Ω is a
ground state satisfying (1⊗ U)ψ ⊗Ω is positive.

Let now Ψ be a ground state for H̃0 + Vν ⊗ 1. Then

λ = 〈Ψ, (−(2M)−1∆+ Vν)⊗ 1Ψ〉+ 〈Ψ, dΓ⊕(ω)Ψ〉+ 〈Ψ, dΓ⊕(ωx)Ψ〉

Since (−(2M)−1∆+Vν)⊗1 ≥ λ, dΓ⊕(ω) ≥ 0 and dΓ⊕(ωx) ≥ 0 we must have the
equalities 〈Ψ, (−(2M)−1∆+Vν)⊗1Ψ〉 = λ and 〈Ψ, dΓ⊕(ω)Ψ〉 = 0. In particular,

λ = 〈Ψ, (−(2M)−1∆+ Vν)⊗ 1Ψ〉+ 〈Ψ, dΓ⊕(ω)Ψ〉 = 〈Ψ,HVν
0,0Ψ〉.

By Theorem 2.1 we see λ = inf(σ(H0,0(Vν))) is a non degenerate eigenvalue for
H0,0(Vν). Now Ψ must be a ground state for H0,0(Vν) since it minimizes the
quadratic form and ψ ⊗ Ω is also a ground state for H0,0(Vν). In particular Ψ
must be proportional to ψ⊗Ω. Thus we have now established that A generates
a positivity improving semigroup. Noting that Vν ⊗ 1 acts like bounded multi-

plication operator we find (1⊗U)(H̃0)(1⊗U)∗ generates a positivity improving
semigroup (use Corollary 5.6).

Let Ṽ ∈ {0, V } and define a form on D0 = D(|p|) ∩ D(I⊕(UdΓ (ω)U∗)1/2) ∩
D(Ṽ

1/2
+ ⊗ 1)

qṼ = qI⊕(UdΓ (ω)U∗) + qg2I⊕(UdΓ (ωx)U∗) + q−(2M)−1∆⊗1 + qṼ+⊗1 − qṼ−⊗1
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where we used D(dΓ⊕(ωx)1/2) ⊂ D(dΓ⊕(ω)1/2) by [21, Theorem 9.4]. The first
four terms are non negative and thus defines a closed form. Using V− ⊗ 1 is
−(2M)−1∆ ⊗ 1 form bounded with bound a < 1 strictly smaller than 1 we see
(using Lemma A.1) that

qṼ−⊗1(ψ,ψ) ≤ aq−(2M)−1∆⊗1(ψ,ψ) + b‖ψ‖2≤ a(q(ψ,ψ) + qṼ−⊗1(ψ,ψ)) + b‖ψ‖2

so qṼ is becomes closed by the KLMN theorem. Write AṼ for the corresponding
operator. For ψ ∈ C∞0 (R)⊗ J (D(ω)) and φ ∈ D0 we see that

qṼ (ψ, φ) = 〈(1⊗ U)H̃ Ṽ (1⊗ U)∗ψ, φ〉

Hence (1 ⊗ U)H̃ Ṽ (1 ⊗ U)∗ = AṼ on C∞0 (R) ⊗ (1 ⊗ U)J (D(ω)) which is a

core for (1 ⊗ U)H̃ Ṽ (1 ⊗ U)∗, implying (1 ⊗ U)H̃ Ṽ (1 ⊗ U)∗ = AṼ . Noting that
C∞0 (R) ⊗ UJ (D(ω)) ⊂ D(qV+⊗1) is a core for qH̃0 = q0 by Lemma A.2 we

find via Theorem 3.4 that (1⊗ U)H̃V (1⊗ U)∗ generates a positivity improving
semigroup.

To finish the proof note that (1⊗U)HV
g1,g2(1⊗U)∗− (1⊗U)H̃V (1⊗U)∗ is a

multiplication operator that is relatively (1 ⊗ U)dΓ⊕(ω)(1 ⊗ U)∗ bounded (use

Lemmas 4.1 and 6.2). In particular, it is (1 ⊗ U)H̃V (1 ⊗ U)∗ bounded by [21,

Theorem 5.9] and so we may apply Corollary 5.6 to see (1⊗U)H̃V (1⊗U)∗ gener-
ates a positivity improving semi group. Note that for all ψ ∈ L2

+(Rν ,B(Rν), λν)
we have (1⊗ U)ψ ⊗Ω is non negative.

Lemma 6.6. Let A = (A1, . . . , Aν) be a touple of commuting and selfadjoint
operators on H and assume HR ⊂ H is a real Hilbert space satisfying H =
HR + iHR. Let Q be the probability space from Theorem 6.1 corresponding to HR
and U : Fb(H) → L2(Q) the isomorphism. Assume lastly that HR is invariant
under the action of eitB1 , . . . , eitBn .

(1) Define K(ξ) = U∗ 12 (ξ − dΓ (B))2U . Then K(ξ) is selfadjoint, bounded below

and e−tK(0) is positivity preserving for all t. Furthermore, for any ψ ∈ L2(Q)
abs(e−tK(ξ)ψ) ≤ e−tK(0)abs(ψ).

(2) Define the measure spaces X1 = (Zν ,B(Zν), τ) and X2 = (T ν ,B(T ν), h)
where τ is the counting measure and T ν is the ν dimensional torus with nor-
malised Haar measure h. Let F : L2(X1)→ L2(X2) be the furrier transform
and A be a diagonal matrix with diagonal entries a1, . . . , aν > 0. Then

K = (F ⊗ U)

∫ ⊕

Zd
(Aα− dΓ (B))2dτ(α)(F ⊗ U)∗ (6.2)

is positivity preserving on L2(X2)⊗ L2(Q).

Proof. (1): Let Nt be the density of a ν-dimensional normally distributed vector
with variance t

mI and mean 0. By Lemma A.7 we find

e−tK(ξ)ψ = U∗e
1

2M (ξ−dΓ (B))2Uψ

=

∫

Rν
Nt(x)eiξ·xU∗eix1dΓ (A1) · · · eixνdΓ (Aν)Uψdλν(x)
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Using Proposition 2.3, Lemma 5.2 and Theorem 6.1 we see

abs(e−tK(ξ)ψ) ≤
∫

Rν
abs(Nt(x)eiξ·xU∗Γ (eix1A1 · · · eixνAν )Uψ)dλν(x)

≤
∫

Rν
Nt(x)U∗Γ (eix1A1 · · · eixνAν )Uabs(ψ)dλν(x)

= e−tK(0)abs(ψ)

If ψ ∈ L2
+(Q) we see abs(ψ) = ψ by Lemma 5.2 so e−tK(0)ψ ∈ L2

+(Q) by Lemma
5.2.

(2): For (φ1, . . . , φν) ∈ T ν we define the unitary map V (ψ1, . . . , φν) on L2(X2)
given by (V (φ1, . . . , φν)ψ)(b1, . . . , bν) = ψ(φ1b1, . . . , φνbν). It is well known (see
folland) that this is a strongly continous, unitary representation. The observation
(t1, . . . , tn) 7→ (eit1 , . . . , eitn) ∈ Tn is continuous a continous homomorphism
shows (t1, . . . , tn) 7→ V (eit1 , . . . , eit) is a strongly continous homomorphism. Let

V (x) = Ṽ (eix1 , . . . , eixn). Define now the map

π(x) = V (Ax)⊗ U∗Γ (eix1A1 · · · eixνAν )

= V (Ax)ψ1 ⊗ U∗e−ix1dΓ (A1) · · · e−ixνdΓ (Aν)U

which is strongly continous by Lemmas A.5 and A.6. We can now define an
operator bounded Bt on L2(X2)⊗ L2(Q) by

Btψ =

∫

Rν
Nt(x)π(x)ψdλν(x)

since ‖Nt(x)(V (Ax) ⊗ U∗Γ (eix1A1 · · · eixνAν )U)ψ‖= Nt(x)‖ψ‖ which is inte-
grable and x 7→ Nt(x)π(x)ψ is continous.

We claim e−tK = Bt. Clearly {1{α}}α∈Zd is an orthonormal basis for L2(X1).
Now F1{α} = fα where

fα(φ1, . . . , φν) = φα1
1 . . . φανν .

This implies A = {fα ⊗ ψ | α ∈ Zν , ψ ∈ L2(Q)} spans a dense subspace of
L2(X2)⊗ L2(Q), so it is enough to check

〈f{α1} ⊗ ψ1, e
−tKf{α2} ⊗ ψ2〉 = 〈f{α1} ⊗ ψ1, Btf{α2} ⊗ ψ2〉

for all α1, α2 ∈ Zν and ψ1, ψ2 ∈ L2(Q). We calculate

〈f{α1} ⊗ ψ1, e
−tKf{α2} ⊗ ψ2〉

=

〈
1{α1} ⊗ U∗ψ1,

∫ ⊕

Zd
e−t

1
2M (Aα−dΓ (A)2)dτ(α)1{α2} ⊗ U∗ψ2

〉

=
〈

1{α1} ⊗ U∗ψ1, 1{α2} ⊗ e−t
1

2M (Aα1−dΓ (A))2U∗ψ2

〉

= δα1,α2

∫

Rν
Nt(x)eiAx·α1〈ψ1, UΓ (eix1A1 · · · eixνAν )U∗ψ2〉dλν(x)

=

∫

Rν
Nt(x)eiAx·α1〈f{α1} ⊗ ψ1, f{α2} ⊗ UΓ (eix1A1 · · · eixνAν )U∗ψ2〉dλν(x)
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Now eiAβ·x = eiβ·Ax since A is symmetric. Furthermore

eiα·Axfα(φ1, . . . , φν) = φα1
1 . . . φανν eia1x1α1 . . . eiaνxναν = V (Ax)fα(φ1, . . . , φν)

So

〈f{α1} ⊗ ψ1, e
−tKf{α2} ⊗ ψ2〉

=

∫

Rν
Nt(x)〈f{α1} ⊗ ψ1, V (Ax)f{α2} ⊗ UΓ (eix1A1 · · · eixνAν )U∗ψ2〉dλν(x)

= 〈f{α1} ⊗ ψ1, Btf{α2} ⊗ ψ2〉

Now V (Ax) is positivity preserving and so is UΓ (eix1A1 · · · eixνAν )U∗. It follows
(by Lemma 5.8) that π(x) is positivity preserving for all x. Thus we may use
Lemma 5.2 to see that for ψ ∈ L2

+(T ν × Y,B(T ν)⊗Y, h⊗ P) we have

abs(e−tKψ) ≤
∫

Rν
abs(Nt(x)π(x)ψ)dλν(x)

≤
∫

Rν
Nt(x)π(x)abs(ψ)dλν(x) = e−tKabs(ψ) = e−tKψ.

Hence e−tKψ ∈ L2
+(T ν × Y,B(T ν)⊗Y, h⊗ P).

Lemma 6.7. Let a1, . . . , aν ∈ (0,∞) and A be the diagonal matrix with Ai,i =

ai. Let ω ≥ 0 be injective and selfadjoint on H and let m(1), . . . ,m(ν) be selfad-
joint operators on H such that ω,m(1), . . . ,m(ν) are strongly commuting. Assume
v, u ∈ D(ω−1/2) ∩ D(ω1/2) ∩⋂νi=1D(m(i)) ∩ D(m(i)ω−1/2) and that

〈u, e−it1m(1)

, . . . , e−itνm
(ν)

e−tν+1ωv〉 ∈ R

for all t1, . . . , tν ∈ R and tν+1 ≥ 0. Let M = (Zν ,B(Zν), τ) where τ is the
counting measure on Zν and define

Hg1,g2 =

∫ ⊕

Zν
Hg1,g2(Aα)dτ(α) = I⊕(Hg1,g2(Aα)).

Then Hg1,g2 = H̃g1,g2 where

H̃g1,g2 =I⊕((Aα− dΓ (m))2) + dΓ⊕(ω) + g2a
†
⊕(u+ v)a⊕(u+ v)

+ g2ϕ⊕(v)ϕ⊕(u) + g1ϕ⊕(u− v) +D(g2, u, v)

and Hg1,g2 can have at most one ground state counted with multiplicity.

Proof. Clearly H̃g1,g2 is well defined onD0 = D(I⊕((Aα−dΓ (m))2))∩D(dΓ⊕(ω)).
Let ψ ∈ D0. For each α ∈ Zν we see ψ(α) ∈ D(dΓ (ω)) ∩ D((Aα − dΓ (m))2) =
D(Hg1,g2(Aα)) and (using Lemma 4.1) we see

(H̃g1,g2ψ)(α) = Hg1,g2(Aα)ψ(α)

so α 7→ ‖Hg1,g2(Aα)ψ(α)‖2= α 7→ ‖(H̃g1,g2ψ)(α)‖2 is integrable. Thus H̃g1,g2 ⊂
Hg1,g2 . To prove equallity we fix ψ ∈ D(Hg1,g2) and note that ψ(α) ∈ D(dΓ (ω))∩
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D((Aα − dΓ (m))2) = D(Hg1,g2(Aα)) for each α ∈ Zν . Using Lemmas 4.5 and
4.3 we find γ independent of α such that

max{‖dΓ (ω)ψ(α)‖2, ‖(Aα− dΓ (m))2ψ(α)‖2} ≤ γ‖Hg1,g2(Aα)ψ(α)‖2+γ‖ψ(α)‖2

which is integrable by assumption. Hence ψ ∈ D0 proving Hg1,g2 = H̃g1,g2 .
Taking g1 = 0, v′ = u+ v and u′ = 0 we find

K = I⊕((Aα− dΓ (m))2) + dΓ⊕(ω) + g2a
†
⊕(u+ v)a⊕(u+ v)

= I⊕((Aα− dΓ (m))2) + dΓ⊕(ω) + g2dΓ⊕(ω̃)

is selfadjoint on D0 where ω̃ = |v+u〉〈u+v|. Let F : L2(M)→ L2(T ν ,B(T ν), h)
be the furrier transform. Here T ν is the ν-dimensional torus and h is the nor-
malised Haar-measure so for α ∈ Zν we see F (1α) = (φ1, . . . , φn) 7→ φα1

1 , . . . , φανν .
Pick a real Hilbert space HR ⊂ H as in Lemma A.4, let Q be the probability
space corresponding to HR from Theorem 6.1 and let U be the isomorphism.
Using Theorem 6.1 and Lemmas 5.7, 6.4 and 6.6 we see (F ⊗ U)K(F ⊗ U)∗

generates a positivity preserving semi group. Define ψ = 1{0}⊗Ω. To prove that
(F ⊗ U)K(F ⊗ U)∗ generates a positivity improving semi group it is enough
to see (F ⊗ U)ψ is strictly positive, that Kψ = 0 and any eigenvector for K
corresponding to the eigenvalue 0 is a multiple of ψ.

Now (F⊗U)ψ = 1⊗1 = 1. Furthermore, since dΓ (C)Ω = 0 for any selfadjoint
C we see

(Kψ)(α) = 1{0}(α)(Aα− dΓ (m))2Ω = 0

for all α ∈ Zν proving Kψ = 0. Now let φ be a ground state for K. Then

0 = 〈φ,Kφ〉 = 〈φ, I⊕((Aα− dΓ (m))2)φ〉+ 〈φ, dΓ⊕(ω)φ〉+ g2〈φ, dΓ⊕(ω̃)φ〉

as all terms are non negative we see that each of the must be 0. In particular

0 =
∑

α∈Zν
‖dΓ (ω)1/2φ(α)‖2.

By Proposition 2.3 we see that for all α ∈ Zd we must have φ(α) = f(α)Ω for
some f(α) ∈ C. Thus

0 = 〈φ, I⊕((Aα− dΓ (m))2)φ〉 =
∑

α∈Zν
|f(α)|2(Aα)2

and hence f(α) = 0 for all α 6= 0. This implies φ = f(0)1{0}⊗Ω = f(0)ψ proving
(F ⊗U)K(F ⊗U)∗ generates a positivity improving semi group. By Lemma 6.2
and Theorem 6.1 we see

(F ⊗ U)Hg1,g2(F ⊗ U)∗ − (F ⊗ U)K(F ⊗ U)∗

is a multiplication operator which is relatively bounded to dΓ⊕(ω). In particular
(F ⊗U)Hg1,g2(F ⊗U)∗ generates a positivity improving semi group by Corollary
5.6 finishing the proof.

We can now prove part (5) of Theorem 3.2
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Proof (Theorem 3.2 part (5)). Define ω̃ = |u + v〉〈u + v|, let m̃ ∈ {0,m} and
define the operators

K(m̃) = dΓ (m̃)2 + dΓ (ω) + g2dΓ (ω̃)

P (m̃) = dΓ (m̃)2 + dΓ (ω) + g2dΓ (ω̃)− g2ϕ(v)ϕ(u) + g1ϕ(y − v) +D(g2, u, v)

which are both selfadjoint using Lemma 4.4. Pick a real Hilbert space HR ⊂ H as
in Lemma A.4, let Q be the probability space corresponding toHR from Theorem
6.1 and let U be the isomorphism. Using Theorem 6.1 and Lemmas 5.7 and
6.6 we see UK(m̃)U∗ generates a positivity preserving semigroup. Furthermore,
K(m̃)Ω = 0 and K(m̃) ≥ 0 showing Ω is a ground state an eigenvector. If ψ is
a ground state we have

0 = 〈ψ,K(m̃)ψ〉 ≥ 〈ψ, dΓ (ω)ψ〉 = ‖dΓ (ω)1/2ψ‖2≥ 0

Thus dΓ (ω)1/2ψ = 0 and which implies ψ is proportional to Ω by Proposition
2.3. As UΩ = 1 > 0 we see UK(m̃)U∗ generates a positivity improving semi-
group. Now U(P (m̃)−K(m̃))U∗ is a multiplication operator which is UdΓ (ω)U∗-
bounded. Since U∗dΓ (ω)U∗ is U∗K(m̃)U bounded by [21, Theorem 5.9] we see
U(P (m̃)−K(m̃))U∗ is U∗K(m̃)U bounded. Corollary 5.6 now gives UP (m̃)U∗

generates a positivity improving semi group. This yields that the ground state
of P (m) = Hg1,g2(0) must have dimension 0 or 1. Furthermore, Ω is mapped to
a strictly positive element ad advertised.

Let abs denote the action from Lemma 5.2. Using Lemmas 5.2 and 6.6 we see
that

abs(e−tHg1,g2 (ξ)ψ) = lim
n→∞

abs(e−tn
−1P (0)e−tn

−1(ξ−dΓ (m))2ψ)

≤ lim
n→∞

e−tn
−1P (0)e−tn

−1(dΓ (m))2abs(ψ) = e−tHg1,g2 (0)abs(ψ)

which implies

‖e−Hg1,g2 (ξ)‖= sup
‖ψ‖=1

‖e−Hg1,g2 (ξ)ψ‖≤ sup
‖ψ‖=1

‖e−Hg1,g2 (0)abs(ψ)‖≤ ‖e−Hg1,g2 (0)‖

So e−Σ(ξ) = ‖e−Hg1,g2 (ξ)‖≤ ‖e−Hg1,g2 (0)‖= e−Σ(0) proving 0 is a global mini-
mum.

It remains to prove that 0 is a unique minimum in case ω is a multiplication
operator with inf(ω(k)) > 0 and m(i)(k) = ki. Assume that ξ0 6= 0 is an other
minimum for Σ. Then there is a1, . . . , aν > 0 and an element α ∈ Zd such that
Aα0 = ξ0 where A is the diagonal matrix with Ai,i = ai. Using part (3) of Theo-
rem 3.2 we that if Σ is minimal at a point x then Σess(x)−Σ(x) ≥ inf(ω(k)) > 0
so Hg1,g2(x) has a ground state. In particular Hg1,g2(0) and Hg1,g2(ξ) has a
ground state ψ0 and ψξ. Let M = (Zν ,B(Zν), τ) where τ is the counting mea-
sure on Zν and define

Hg1,g2 =

∫ ⊕

Zν
Hg1,g2(Aα)dτ(α) = I⊕(Hg1,g2(Aα)).

Now Hg1,g2 ≥ Σ(0) = Σ(Aα0) and Σ(0) = Σ(Aα0) is an eigenvalue for Hg1,g2

with two orthogonal eigenvectors 1{0}⊗ψ0 and 1{α0}⊗ψ0. This is a contradiction
with Lemma 6.7 finishing the proof.
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A. Collection of facts

In this chapter we collect some small results which are used throughout the
paper. We begin by the following lemma

Lemma A.1. Let A be selfadjoint on H1 with domain D(A) and B be closed on
H1 with domain D(B). Assume B is A-bounded with bound b. If H2 is an other
Hilbert space then B ⊗ 1 is A⊗ 1 bounded with bound b.

Proof. See Appendix B of [2].

We will be working quite extensively with forms in the last part of the paper.
For this reason we will need a few general results on the square roots of operators.

Lemma A.2. Let A and B be closed operators with domains D(A),D(B) ⊂ H.

1. If D(A) = D(B) then any core for A is a core for B.
2. If A is selfadjoint and bounded below then any core D for A is a core for qA.

Proof. (1): We note A and B have equivalent graph norms by [21, Theorem 5.9].
Thus D0 is dense in (‖·‖A,D(A)) ⇐⇒ D0 is dense in (‖·‖B ,D(B)). (1) now
follows by definition of a core.

(2): Let γ be a lower bound of A. By [18, Proposition 10.5] we see D0 is a core
for qA of and only if it is a core for (A − γ)1/2. Now D((A − γ)1/2) = D(qA) =
D(|A|1/2) by [18, Proposition 10.5] so by (1) we see D0 is a core for qA of and
only if it is a core for |A|1/2.

Let D0 be a core for D(A). Noting that D(|A|1/2) ⊂ D(|A|) = D(A) we see
|A|1/2 is A bounded by [21, Theorem 5.9], so since D0 is dense in (‖·‖A,D(A))
we see that it is also dense in (‖·‖|A|1/2 ,D(A)). By [18, Proposition 3.18] we see

D(|A|) = D(A) is dense in (‖·‖|A|1/2 ,D(|A|1/2)) so in total D0 is a core for |A|1/2.

Lemma A.3. Let B be selfadjoint on H. Assume C,D are symmetric operators
on H such that D(B) ⊂ D(C),D(D) and D is infinitesismally B-bounded. As-
sume also that there is a core D for B such that for all ε > 0 there is bε such
that

2Re(〈Bψ,Cψ〉) ≥ −ε‖Bψ‖2−bεψ
for all ψ ∈ D0. Then Hg,h = B + gC + hD is selfadjoint on D(B) for all g ≥ 0
and h ∈ R. Furthermore Hg,h is essentially selfadjoint on any core for B.

Proof. We start by proving Hg,0 is closed for all g ≥ 0. It is clearly true for
g = 0 so we fix g > 0. We note Hg,0 is symmetric and therefore closable.

To see Hg,0 = Hg,0 it is enough to see D(Hg,0) = D(Hg,0) = D(B) where

D(B) ⊂ D(Hg,0) is obvious. For φ ∈ D(Hg,0) there is a sequence {φn}∞n=1

converging to ψ such that {Hg,0φn}∞n=1 is Cauchy. Note that for any ε > 0 we
have

2Re(〈Bψ, gCψ〉) ≥ −ε‖Bψ‖2−bε/g‖ψ‖2

for all ψ ∈ D0. Using this with ε = 1/2 we find

‖Hg,0ψ‖2= ‖Bψ‖2+g2‖Cψ‖2+2Re(〈Bψ, gCψ〉) ≥ 1

2
‖Bψ‖2−b1/(2g)‖ψ‖2 (A.1)
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for all ψ ∈ D0. Let ψ ∈ D(B). As D0 is a core for B we may for is a sequence
{ψn}∞n=1 converging to ψ in the graph norm of B. As gC is B-bounded we see
Hg,0ψn converges to Hg,0ψ. Taking limits we see

b1/(2g)‖ψ‖2+‖Hg,0ψ‖2≥
1

2
‖Bψ‖2 (A.2)

on for all ψ ∈ D(B). In particular we now see {Bφn}∞n=1 is cauchy so φ ∈ D(B)
as we wanted to prove. By Wüst theorem we see Hg,0 is selfadjoint on D(B) for
all g ≥ 0.

By [21, Theorem 5.9] we see A is Hg,0 bounded, so we get hD is infinitesimally
Hg,0 bounded. Thus Hg,h is selfadjoint on D(B). By Lemma A.2 we see any core
for B is a core for Hg,h finishing the proof.

Lemma A.4. Let {xα}α∈I ⊂ H and A ⊂ B(H). Assume A is closed under
multiplication, A is closed under taking adjoins, and for all α, β ∈ I and A ∈ A
we have 〈xα, Axβ〉 ∈ R. Then there is a real hilbertspace HR ⊂ H such that
{xα}α∈I ⊂ HR, HR is invariant under A and H = HR + iHR.

Proof. Let
H′ = SpanR{Axα | A ∈ A, α ∈ I}.

Note that H′ is a real Hilbert space since A is closed under multiplication and
taking adjoints. For every f ∈ (H′)⊥\{0} we define

H(f) = SpanR{Af | A ∈ A.
It is clear that the elements of A maps H′ to H′ and H(f) to H(f), since it
maps the spanning set to the spanning set. Furthermore we define

B = {B ⊂ (H′)⊥ | H(f) ⊥ H(g) ∀ f 6= g ∈ A}.
We partially order B by inclusion and take a maximal totally ordered subset C.
Let C be the union of all elements in C. If f, g ∈ C, then there is an element in C
that contains both f and g (since C is totally ordered). This impliesH(f) ⊥ H(g)
and so B ∈ C and is clearly the largest element. Define now

HR := H′ ⊕
⊕

a∈B
H(a),

which is clearly a real Hilbert space containing {xα}α∈I and it is left invariant
by A since each component is. Assume now towards contradiction that there is
an element f ∈ H⊥R \{0}. Then for every A1, A2 ∈ A, h ∈ C we would have

〈A2f,A1h〉 = 〈f,A∗2A1h〉 = 0

and so H(f) is orthogonal to H(h) for all h ∈ C. In particular C ∪ {f} ∈ B,
and so C ∪ {C ∪ {f}} is larger than C and totally ordered which is not possible.
Hence H⊥R \{0} = ∅.

Let {en}Nn=1 be an orthonormal basis for HR (N ≤ ∞) which is then also an
orthonormal basis for H. Hence we may write any element in H as

f =

N∑

j=1

(aj + ibj)ej =

N∑

j=1

ajej + i

N∑

j=1

bjej

as desired. This finishes the proof.
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Lemma A.5. Let H be a Hilbert space and (X, d) a metric space. Let U(H)
be the set of unitary operators on H and assume πi : X → U(H) is strongly
continous for i ∈ {1, . . . , n}. Then π(x) = π1(x) . . . πn(x) is strongly continous

Proof. Let {xn}∞n=1 ⊂ X converge to x ∈ X. For ψ ∈ H we have

‖π(xn)ψ − π(x)ψ‖ =

∥∥∥∥∥
n∑

i=1

π1(xn) . . . πi−1(xn)(πi(xn)− πi(x))πi+1(x) . . . πn(x)ψ

∥∥∥∥∥

≤
n∑

i=1

‖(πi(xn)− πi(x))πi+1(x) . . . πn(x)ψ‖

which goes to 0.

Lemma A.6. Let H1,H2 be a Hilbert space and (X, d) a metric space. Let U(Hi)
be the set of unitary operators on Hi and assume πi : X → U(Hi) is strongly
continous for i ∈ {1, 2}. Then π(x) = π1(x) ⊗ π2(x) is strongly continous and
takes values in the unitary operators on H1 ⊗H2.

Proof. π(x) is unitary for all x0 ∈ X by Theorem 2.1. Let {xn}∞n=1 ⊂ X converge
to x ∈ X. For a simple tensor ψ1 ⊗ ψ2 we see

‖π(xn)ψ1 ⊗ ψ2 − π(x0)ψ1 ⊗ ψ2‖ ≤ ‖π1(xn)ψ1‖‖(π2(xn)− π2(x0))ψ2‖
+ ‖(π1(xn)− π1(x0))ψ1‖‖π2(x0)ψ1‖

as ‖π1(xn)ψ1‖= ‖ψ‖ we find the above converges to 0. Thus one sees π(x)ψ
is continous when ψ is a simple tensor. If ψ is a linear combination of simple
tensor then π(x)ψ is a line combination of continous maps and so continous.
Hence π(x)ψ is continous for ψ ∈ H1⊗̂H2. Let ψ ∈ H1 ⊗H2 and pick {ψn}∞n=1

converging to ψ. For any ε > 0 pick N1 such that ‖ψ−ψN1
‖< ε/3. Pick now N

such that ‖(π(xn)− π(x0))ψN1
‖< ε/3. Then

‖(π(xn)− π(x0))ψ‖ ≤ ‖π(xn)(ψ − ψN1)‖+‖(π(xn)− π(x0))ψN1‖
+ ‖π(x0)(ψ − ψN1)‖< ε.

finishing the proof.

Lemma A.7. Assume B = (A1, . . . , An) be selfadjoint and strongly commuting
on H, ξ ∈ Rn and M > 0. Then

A =
1

2M
(ξ1 −A1)2 + · · ·+ 1

2M
(ξ1 −An)2

is selfadjoint and bounded below. Let Nt : Rν → R be the density of a Gaussian
random variable with mean 0 and variance t

mI. Then for all ψ ∈ H

e−tA =

∫

Rν
Nt(x)eiξ·xe−ix1A1 . . . e−ixnAnψdλ(x) (A.3)
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Proof. A is a sum of non negative and strongly commuting selfadjoint operators
so it is non negative and selfadjoint (see [14]). Let P be the spectral measure of
B. Then

A =

∫

Rν

1

2M
(ξ1 − λ1)2dP (λ) + · · ·+

∫

Rν

1

2M
(ξn − λn)2dP (λ)

⊂
∫

Rν

1

2M
(ξ1 − λ1)2 + · · ·+ 1

2M
(ξn − λn)2dP (λ).

By selfadjointness of A we see equality must hold. In particular, we must have

e−tA =

∫

Rν
e−

t
2M (ξ1−λ1)

2−···− t
2M (ξn−λn)2dP (λ).

Let ψ ∈ H and µψ be the measure µψ(C) = 〈ψ, P (C)ψ〉. Using that

e−
t

2M (ξ1−λ1)
2−···− t

2M (ξn−λn)2 =

∫

Rν
Nt(x)eiξ·xe−ix1λ1 . . . e−ixnλdλ(x)

we see

〈ψ, e−tAψ〉 =

∫

Rν

∫

Rν
Nt(x)eiξ·xe−ix1λ1 . . . e−ixnλndλ(x)dµψ(λ)

The aboslute value of the integrand is Nt(x) which integrates to µψ(Rν) = ‖ψ‖2.
Thus we may use fubini to obtain

〈ψ, e−tAψ〉 =

∫

Rν
Nt(x)eiξ·x〈ψ, e−ix1A1 . . . e−ixnAnψ〉dλ(x)

For any ψ ∈ H we see x 7→ e−ix1A1 . . . e−ixnAnψ is continous by Lemma A.5
and the fact x 7→ xi is continous. Furthermore, ‖Nt(x)e−ix1A1 . . . e−ixnAnψ‖=
Nt(x)‖ψ‖ which is integrable with integral ‖ψ‖. Hence vector valued integral in
equation (A.3) exists for each ψ and defines a bounded linear operator Ct with
norm smaller than 1. What we have proven so far is that 〈ψ, e−tAψ〉 = 〈ψ,Ctψ〉
for all ψ ∈ H so Ct = e−tA.
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