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Resumé

I den følgende afhandling analyserer vi visse Knapp-Stein sammenflet-
ningsoperatorer via distributionsteori p̊a Liegrupper. S̊adan en operator
virker ved foldning med en distribution i enten det kompakte eller det ik-
kekompakte billede og vi undersøger om distributionen er positivt definit.
I bekræftende fald kan operatoren bruges til at konstruere nye invariante
indre produkter og dermed nye repræsentationer.

P̊a en vilk̊arlig kompakt Liegruppe K giver vi en Bochners Sætning, der
bestemmer hvorn̊ar en distribution (med operatorværdier) er positivt def-
ninit. P̊a Heisenberggruppen N konstruerer vi en Fouriertransformation,
der bestemmer hvorn̊ar en distribution er positivt definit p̊a et bestemt
∗-ideal i algebraen af Schwartzfunktioner p̊a N . Konstruktionen bruger
teorien om tensorprodukter af topologiske vektorrum: Givet to hypokon-
tinuerte bilineære afbildninger har vi brug for at vide, at deres “tensor
produkt” er hypokontinuert. Vi beviser s̊adan en sætning i tilfældet hvor
nogle af de involverede rum er af type F eller DF .

Til sidst udregner vi Knapp-Stein-kernerne og analyserer deres Fouri-
ertransformerede i tre tilfælde: Først betragter vi SL(d,R) med en stor
parabolsk undergruppe “i midten” og repræsentationer induceret fra ka-
raktererne i N -billedet. Dernæst betrager vi den samme repræsentation
i tilfældet d = 3 p̊a K, og til sidst betragter vi S̃L(3,R) i det kompakte
billede, hvor K = SU(2), og vi inducerer fra den naturlige repræsentation
af M ⊆ SU(2). For et bestemt valg af parametre giver dette en ny og
eksplicit konstruktion af Torassorepræsentationen.
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Abstract

In the following thesis we analyse certain Knapp-Stein intertwining
operators via distribution theory on Lie groups. Such an operator acts as
convolution with a distribution in either the compact or the noncompact
picture, and we consider the question of whether or not the distribution
is positive definite. In the affirmative case, the operator can be used to
construct new invariant inner products and thus new representations.

On an arbitrary compact Lie group K we give a Bochner’s Theorem
which determines when an (operator-valued) distribution is positive defi-
nite. On the Heisenberg group N we construct a Fourier transform which
determines when a distribution is positive definite on a certain ∗-ideal in
the algebra of Schwartz functions on N . The construction uses the the-
ory of tensor products of topological vector spaces. Namely, given two
hypocontinuous bilinear maps we need to know that their “tensor prod-
uct” is hypocontinuous. We prove such a theorem in the case where some
of the involved spaces are type F or DF .

Lastly, we compute concretely the Knapp-Stein kernels and analyse
their Fourier transform in three cases: First we consider SL(d,R) with a
big “middle parabolic” and representations induced from characters in the
N -picture. Second, we consider the same representation in the case d = 3
on K, and thirdly we consider S̃L(3,R) in the compact picture where K =
SU(2) and we induce from the natural representation of M ⊆ SU(2). For
a certain choice of parameters this gives a new and explicit construction
of the Torasso representation.
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Introduction

It is an interesting problem with applications in physics to determine, given a
group of symmetries G, its unitary dual, i.e., to determine all the irreducible
unitary representations of G. We typically think of the symmetries as falling
into continuous or even smooth families so the usual case is the one where G
is a Lie group. In this thesis we work in the context of G a semisimple Lie
group. Then it is known where to look for the unitary dual: By Langlands
classification, any irreducible admissible representation of G can be found as a
quotient of a representation in the family of representations {U(S, ε, λ)}S,ε,λ ([21,
Thm. 8.54]). A unitary irreducible representation is admissible so the only thing
missing from determining the unitary dual is to determine which U(S, ε, λ) that
admits a unitary quotient.

The construction is roughly as follows (cf. [21, Ch. VII]): We have Iwasawa
decompositions G = KAN into subgroups K,A,N where K ⊆ G is compact, and
with M = ZK(a) we have a minimal parabolic MAN . Then parabolic induction

from a representation ε ∈ M̂ and depending on λ ∈ a′C gives a representation
— together such representations make up the nonunitary principal series. Any
subgroup that contains a conjugate of MAN is called a parabolic subgroup.
Any such subgroup S admits a Langlands decomposition S = MSASNS just as
the minimal parabolic. Then again parabolic induction gives us representations
U(S, ε, λ) depending on ε ∈ M̂S, λ ∈ a′C.

The Langlands classification then says more specifically that we must look
for irreducible admissible representations as irreducible quotients of U(S, ε, λ)
where S ⊇ MAN and where Reλ is big enough. For two different parabolics
S, S ′ with MS = MS′ , AS = AS′ there is a formal intertwiner

A(S ′, S, ε, λ) : U(S, ε, λ)→ U(S ′, ε, λ)

defined on the smooth vectors and the subquotient can then be found as the
image of A(S, S, ε, λ) where S = Θ(S) for Θ : G→ G the Cartan involution.

When looking for unitary irreducible representations it is convenient to look
at slightly different intertwiners. For w ∈ NK(a) we have the unbounded Knapp-
Stein intertwiner

AS(w, ε, λ) : U(S, ε, λ)→ U(S,wε, wλ)

defined on the smooth vectors where NK(a) acts on M̂ and a′C via conjugation.

v
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Let us fix a parabolic S and let its Langlands decomposition be MAN . Write
P (ε, λ) = U(S, ε, λ) and let us also fix w and use T λε = AS(w, ε, λ). Owing to
the decomposition G = KAN , P (ε, λ) can be realised as a space of functions on
K and owing to the decomposition of almost all of G into NMAN , N = Θ(N),
P (ε, λ) can also be realised as a space of functions on N .

We consider certain w so that T λε in either picture is given by convolution
with the distribution

x 7→ a(w−1x)λ−ρε(m(w−1x)) (1)

where a,m refer to the projections in the NMAN -decomposition. It is known
([21, Thm. 8.38]) that the operator T λε makes sense defined on the smooth vectors
for Reλ big and also that it admits a meromorphic extension to the entirety of
a′C. Correspondingly, we have a meromorphic family of distributions defined by
Eq. (1).

There is a G-invariant sesquilinear pairing

P (λ, ε)× P (−λ, ε)→ C
(ϕ, ψ) 7→ (ϕ|ψ)

which when the representation space of P (λ, ε) and P (−λ, ε) is realised as func-
tions on N or K is given as the usual sesquilinear pairing over these groups:

(ϕ|ψ) =

∫
K

(ϕ(k)|ψ(k)) dk =

∫
N

(ϕ(n)|ψ(n)) dn.

So that when wλ = −λ one obtains a G-invariant sesquilinear pairing on the
smooth vectors C∞P (λ, ε) via T λε :

C∞P (λ, ε)× C∞P (λ, ε)→ C
(ϕ, ψ) 7→ (T λε ϕ|ψ).

When this pairing is positive, i.e., when (T λε ϕ|ϕ) ≥ 0 for all ϕ, we have a G-
invariant pseudo-inner product which enables us to construct a quotient repre-
sentation of P (ε, λ) in the usual way. This is a way to construct the so-called
“complementary series” of representations.

We are interested in determining for which λ and ε the above pairing is
positive for a few choices of G and MAN . It is clear that this problem is related
to the question of whether or not the distribution in Eq. (1) is positive definite
as a distribution on N or on K. In fact, in the compact picture this is an
equivalent problem since the smooth vectors of P (λ, ε) are the smooth functions
in the compact realisation of P (λ, ε). In the noncompact picture we can only say
that it is necessary that the distribution is positive definite for the pairing to be
positive. For the cases that we consider it is already known for what parameters
the pairing is positive but what is new here is the explicit calculations of the
kernels and their analysis through Fourier analysis on N and K.



vii

The problem of telling whether a distribution on Rd is positive definite is
solved by Bochner’s Theorem: Such a distribution f is positive definite if and
only if it is tempered and its Fourier transform f̂ is positive, i.e., if and only if f̂ is
a tempered positive measure. For a general Lie group there is no analogous result,
except in the case of a compact Lie group K for which the Fourier transform of a
distribution is a collection of matrices. Bochner’s Theorem in this case says that
the distribution is positive definite if and only if all these matrices are positive.
Theorems 2.3.4 and 2.3.7 give the Bochner’s Theorem on a compact Lie group
in the scalar and operator-valued case. In general, the contents of Chapter 2
perhaps except for the operator-valued cases is known but I have not seen it
collected anywhere.

We will consider the case where N is a Heisenberg group and as one of
the simplest non-Abelian Lie groups this group would be a good candidate for
a generalisation of Bochner’s Theorem. The unitary dual of the Heisenberg
group H in d dimensions can be split into two families: There are the infinite
dimensional representations parametrised by an h ∈ R∗ = R\0 and there are the
characters parametrised by Rd × Rd. The first gives rise to a continuous linear
Fourier transform

S(H)→ E(R∗,L0)

where L0 ⊆ L := L(S(Rd),S ′(Rd)) is the subspace of operators with kernels in
S(Rd×Rd), considered with the topology from this space. The second gives rise
to a continuous linear Fourier transform

S(H)→ S(Rd × Rd).

Both take the convolution to pointwise multiplication and the first comes with
a Fourier Inversion Theorem so that it is injective. One can use the Inversion
Theorem to define an appropriate Fourier transform

S ′(H)→ D′(R∗,L)

which is not injective. Its kernel is the space Polc(H) ⊆ S ′(H) of distribu-
tions that are polynomial along the center. This suggests considering the ∗-ideal
S∞(H) in the ∗-algebra S(H) consisting of functions on which Polc(H) vanish.
The Fourier transform on these functions becomes a ∗-algebra isomorphism

S∞(H)→ S0(R,L0)

to a certain multiplication algebra. The consideration of the “Lizorkin space”
S∞(H) and its Fourier transform is new.

In order to work efficiently with these spaces it is convenient to be well-versed
in tensor product theory of locally convex spaces. I have included an appendix
that outlines the general theory of topological vector spaces for convenience and
Chapter 4 is dedicated to a certain problem within this theory: Given locally
convex spaces X, Y, Z, E,F,G and hypocontinuous bilinear maps M : X × Y →
Z, B : E × F → G is the “tensor product”

M ⊗̂B : X ⊗̂ E × Y ⊗̂ F → Z ⊗̂G
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hypocontinuous? Here ⊗̂ denotes taking the completed projective tensor product
but the problem could be stated with other topologies or with other regularities
of M,B. An instance of this problem is the case where M is convolution of scalar-
valued functions on a Lie group soM ⊗̂B is a corresponding convolution of vector-
valued functions. This is considered in [4], for instance, where the focus is on
proving continuity of M ⊗̂B. We prove a somewhat general result Theorem 4.1.8
which says that the tensor product is hypocontinuous if, in addition to some
reasonable assumptions on the involved spaces, we assume that X,E are both F
or both DF . This result would be new, but after proving it I discovered it in [3].

Among the distributions in Polc(H) one can determine the positive definite
distributions with the help of the character Fourier transform S(H) → S(Rd ×
Rd) which has a transpose S ′(Rd × Rd) → S ′(H) which actually maps into
Polc(H) and takes a positive definite distribution on Rd×Rd to a positive definite
distribution on H. Unfortunately, the full Bochner’s Theorem still eludes me and
at the end I only achieve necessary conditions for positive definiteness.

At the end of the thesis we use the Fourier transform on K and N to say
determine positive definiteness of the Knapp-Stein kernel distributions. Consid-
ering G = SL(d,R) split into blocks of sizes 1, d− 2, 1 with the middle parabolic
consisting of matrices of the form∗ ∗ ∗0 ∗ ∗

0 0 ∗


the group N is exactly the d− 2-dimensional Heisenberg group. When inducing
from certain characters of the rather large M (in the d > 3-case it contains
SL(d− 2,R)) we obtain explicitly the Knapp-Stein kernel as a distribution

Rd × Rd × R 3 (x, y, z) 7→ |z − xy|λ−1
ε |z|λ−1

ε

where xy ∈ R is the inner product of x, y ∈ Rd. This family of distributions has
been considered in [19] where among other things it is proven (for d = 3) that
T λε ϕ is a solution to the equation

(XY + Y X)ψ = 0

for ψ ∈ S(H) where X, Y, Z are the usual basis for the Lie algebra of H, [X, Y ] =
Z.

We compute the Fourier transform and find, in the d = 3 case, necessary
conditions for the existence of the complementary series, cf. Theorem 5.1.5. This
agrees with other methods, for instance [36, Thm. 4.1]. The case of Reλ = 1

2

is special because in this case the Fourier transform is a generalised family of

rank-one operators given by projection onto the function |x|−
1
2

ε . This special case
is also simple in the d > 3-case and we suggest a conjecture in Theorem 5.1.7.

We also carry out the complete analysis of the same Knapp-Stein in the case
d = 3 in the compact picture. Then K = SO(3) has a convenient Euler angle
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parametrisation (ψ, θ, ϕ) in which the kernel becomes

R× R× R 3 (ψ, θ, ϕ) 7→ |sinψ|λ−1
ε |sin θ|2 Reλ−1|sinϕ|λ−1

ε

Fourier transformation on K then gives us a collection of matrices which we
analyse to obtain necessary and sufficient conditions for positive definiteness, cf.
Theorem 6.2.2. Here we can see again that the case Reλ = 1

2
is special because

the middle term disappears.
Lastly, we consider the case of G = S̃L(3,R) which we only analyse in the

compact picture. Then K ∼= SU(2) and M is the quaternion group. There is a
single 2-dimensional irreducible representation of M that doesn’t factor through
the M of SL(3,R) and we induce from this representation. Using again the
Euler angles we carry out the Fourier transform and obtain again necessary and
sufficient conditions for positive definiteness, cf. Theorem 6.3.4. The case of
λ = 1

2
is a special isolated representation which we consider in Theorem 6.3.12.

This representation is the famous Torasso representation constructed in [38].
The construction here can be regarded as the integral operator counterpart to
the differential operator construction of the same representation in [24].

Analysis in the noncompact picture could perhaps be carried out but the
calculations in Appendix B.2 suggests that the Knapp-Stein kernel (which is
now operator-valued) has a very complicated Fourier transform: The kernel in
this case not only depends on the sign of z − xy and the sign of z but it also
depends on the sign of y. The Fourier transform can be calculated in principle
but the expression on the Fourier side needs to be simplified before analysis is
tenable.
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OM(N) Multiplier space for S(N) (page 30).
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S(Rd)c Schwartz space convolution algebra (page 23).
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L1(H) Trace-class operators on a Hilbert space H.
(·|·) Sesquilinear pairing.
〈·, ·〉 Dual, bilinear pairing, or the pairing of D(U,E)

with D(U).
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Chapter 1

Knapp-Stein Intertwiners for
SL(d,R)

In this chapter we introduce the representation theoretic background for the
thesis. For the group SL(d,R) we spell out the Iwasawa and the NMAN -
decomposition when MAN is the minimal parabolic. We are interested in the
case where N is a Heisenberg group so we consider also the case where MAN is
a “middle parabolic” with a big middle block. We shall also consider the double
covering group S̃L(3,R) so we introduce some of the notation from [38]. We
then briefly introduce the principal series representations and the Knapp-Stein
intertwiners. For motivation we also consider the SL(2,R)-case. The material in
this chapter is well-known and can be found in [21].

1.1 Minimal Parabolic for SL(d,R)
We will go through the root system theory for SL(d,R) in order to introduce the
relevant notation. Let G = SL(d,R) be the group of matrices with determinant
1. Its Lie algebra is g = sl(d,R), the Lie algebra of matrices with trace 0.

Cartan Decomposition. We have the Cartan involution Θ : G → G, g 7→
g−t := (gt)−1 where t denotes transpose. Its derivative θ = dΘ : g → g is given
by X 7→ −X t is the Cartan involution on the Lie algebra level. These maps give
us a subgroup K of fixed elements of Θ and a subalgebra k of fixed elements
of θ. The Lie algebra k is the Lie algebra corresponding to K. Here we have
K = SO(d) and k = so(d). On the complexification gC we have the inner product

(X|Y ) := trXY ∗

which restricts to a real inner product on g for which θ is self-adjoint. Note also
θ2 = 1 so g splits into an orthogonal sum of eigenspaces for θ,

g = k + p.

which also gives a decomposition for G which is not so important for our purposes
so we will omit it.

1



2 Chapter 1. Knapp-Stein Intertwiners for SL(d,R)

Iwasawa Decomposition. We take a to be the subalgebra of diagonal matri-
ces in g. Then a is a maximal Abelian subspace of p that acts symmetrically on
g which then splits into a-eigenspaces. For each λ ∈ a′ let

gλ = {X ∈ g | [H,X] = λ(H)X ∀H ∈ a}.

The nonzero λ for which gλ 6= 0 are the roots of this system. Let Eij be the
matrix with 0 at every entry except the (i, j)’th one where there is a 1. Let
ej ∈ a′ be the functional that gives the j’th diagonal entry of a matrix in a.
Then we find

gei−ej = span(Eij)

and
g0 = a.

We can partition the roots into positive and negative ones. Mostly we will do
this by declaring that a root ei − ej is positive if i < j and negative if i > j but
it will also become convenient to switch this around later. Then it becomes the
case that if λ, µ are positive then λ+ µ is positive also if it is a root. We collect
all the positive roots spaces and the negative root spaces

n =
∑
λ>0

gλ, n =
∑
λ<0

gλ.

Then n resp. n consist of all strictly upper resp. lower triangular matrices in g.
Then we have the Iwasawa Decomposition

g = k + a + n

which on the Lie group level gives rise to

G = KAN.

We use the notation
g = κ(g)α(g)ν(g)

so give the latter decomposition of an element g ∈ G. In this case this is the
decomposition gotten out of the Gram-Schmidt Orthogonalisation Process. In-
deed, the columns of g is a basis of Rn which then through this process gives
an orthogonal basis which are exactly the columns of κ(g). Going through the
process carefully one can determine α(g) and ν(g), too.

NMAN-Decomposition. The general theory gives us another decomposition,
namely

G = NMAN.

Here M = ZK(a). It says that for almost every g ∈ G (in the sense that the
dimension of the complement has lower dimension of G) there is a decomposition

g = n(g)m(g)a(g)n(g).
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We will need an explicit determination of the middle part. Note that in our case
AM is simply the subgroup consisting of all diagonal elements in G.

For a matrix A ∈Md(C) and 1 ≤ l ≤ d let A[l] ∈Ml(C) be the l’th principal
submatrix, i.e., A[l]ij = Aij, 1 ≤ i, j ≤ l. The LDU -decomposition of A is a
decomposition

A = LDU

where L resp. U is lower resp. upper triangular with 1’s on the diagonal and
where D is a diagonal matrix. This decomposition doesn’t always exist. One
gets

Proposition 1.1.1. An invertible matrix A has an LDU-decomposition if and
only if detA[l] 6= 0 for all l, 1 ≤ l ≤ d. In this case the diagonal components Dl,
1 ≤ l ≤ d of D are given by

Dl =
detA[l]

detA[l − 1]
.

Proof. We can decompose each matrix in block matrices

A =

(
A11 A12

A21 A22

)
, L =

(
L11 0
L21 L22

)
, D =

(
D11 0
0 D22

)
, U =

(
U11 U21

0 U22

)
.

Let us make the decomposition such that A11 = A[l]. Then A = LDU implies

A[l] = A11 = L11D11U11

which is the LDU -decomposition of A[l]. Taking determinants one gets

detA[l] = detD[l] =
∏

1≤j≤l

dj

Consequently,

dl =
detA[l]

detA[l − 1]
.

In order to give existence we only give a brief argument. One goes forward
iteratively and by taking principal submatrices it is always only necessary to
look at the above blocks where L11, U11, D11 have been determined (in the start
of the iteration one sets L11 = U11 = 1), L22 = U22 = 1 and we only need to
determine vectors L21 and U21. Then can take

L21 = A21(L11D11)−1

U12 = (L11D11)−1A12.

For G, we get

Proposition 1.1.2. For every element g ∈ G with det g[l] 6= 0, 1 ≤ l ≤ d, we
have

g = n(g)m(g)a(g)n(g)
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where n(g) ∈ N , m(g) ∈ M , a(g) ∈ A, n(g) ∈ N and where the diagonal
elements m(g)l, a(g)l of m(g), a(g) are given by

a(g)l =
|det g[l]|
|det g[l − 1]|

,

m(g)l =
sgn det g[l]

sgn det g[l − 1]
.

Parametrisation of a′C. We call the roots

αj = ej − ej+1

simple because they are the only positive roots that cannot be written as a linear
combination of the other positive roots. They span the entirety of a′C but we will
use a different basis still. Since (·|·) is an inner product on a it is in particular
nondegenerate so it induces an isomorphism a ∼= a′ which allows us to transfer
the inner product to a′. Explicitly, we need to determine for each λ ∈ a′ the
unique Hλ ∈ a such that

(H|Hλ) = λ(H).

Then
(λ|µ) = (Hλ|Hµ) = λ(Hµ) = µ(Hλ).

One finds easily that Hαj = Ejj − Ej+1,j+1. This means

(αj|αl) =


2 j = l,

−1 |j − l| = 1,

0 Otherwise.

We introduce the fundamental weights δj ∈ a′ given uniquely by

(δj|αl) = δjl

where δjl is the Kronecker delta. This implies

δ1 =
2

3
α1 +

1

3
α2

αl =
1

2
αl−1 + αl +

1

2
αl+1, 2 ≤ l ≤ d− 2

αd−1 =
1

3
αd−2 +

2

3
αd−1.

Perhaps nicer is the formula

δl =
l∑

j=1

ej

which holds because (
l∑

j=1

ej

)
(Hαk) = δlk.
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Why is this a better basis for our purposes? This essentially comes down to
the fact that the interaction with a(g) is better. Note that the exponential gives
a bijection a→ A which allows us to define a pairing

A× a′C → C
(expH,λ) 7→ exp(λ(H)).

We denote the pairing of a ∈ A and λ ∈ a′C by aλ. Then we obviously have

a0 = eλ = 1

aλ+µ = aλaµ

(a1a2)λ = aλ1a
λ
2 .

We find then

aλδl =
l∏

j=1

aλj

so that

a(g)λδl =
l∏

j=1

|det g[j]|λ

|det g[j − 1]|λ
= |det g[l]|λ.

We identify a′C
∼= Cn−1 by λ ∈ Cn−1 corresponding to

∑n
j=1 λjδj. With this

notation,

a(g)λ =
n∏
j=1

|det g[j]|λj .

The Case of SL(2,R). It is convenient to first introduce notation on SL(2,R)
and then using injections into SL(d,R) to get notation in general. The high-
lighted elements of sl(2,R) are then

X :=

(
0 1
0 0

)
, Y :=

(
0 0
1 0

)
, H :=

(
1 0
0 −1

)
, W :=

(
0 1
−1 0

)
and in the case d = 2, n = span(X), n = span(Y ), a = span(a), k = span(W ) so
that we have parametrisations of the corresponding subgroups N,N and K,

n(t) := exp(tX) =

(
1 t
0 1

)
, n(t) := exp(tY ) =

(
1 0
t 1

)
,

k(t) := exp(tW ) =

(
cos t sin t
− sin t cos t

)
,

for t ∈ R. For A, I choose a slightly different convention

a(r) := exp(log(r)H) =

(
r 0
0 r−1

)
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for r > 0. So that while n, n, k are homomorphisms from (R,+), a is a homo-
morphism from ((0,∞), ·).

Two elements, both in K, are worth singling out, namely

m = k(π) =

(
−1 0
0 −1

)
, w = k

(π
2

)
=

(
0 1
−1 0

)
For 1 ≤ j ≤ l ≤ d, there are natural injective Lie algebra homomorphisms

dιjl : sl(2,R)→ sl(d,R) given by inclusion in the (j, l) entries(
a b
c d

)
7→ aEjj + bEjl + cElj + dEll (1.1)

The integrated map exists ιjl : SL(2,R)→ SL(d,R) as an injective Lie group ho-
momorphism and it is again given by Eq. (1.1). Now, we have the corresponding
notation in SL(d,R):

Xjl = dιjl(X), Yjl = dιjl(Y ), Hjl = dιjl(H),Wjl = dιjl(H),

njl(t) = ιjln(t), njl(t) = ιjln(t), ajl(r) = ιjla(r), kjl(t) = ιjlk(t)

and

mjl = ιjl(m),

wjl = ιjl(w).

The Subgroup M . We return to the case of a general d. M = ZK(a) is
the subgroup of diagonal matrices with entries {−1, 1}. It is generated by the
diagonal matrices mjl, 1 ≤ j < l ≤ d. Actually, it is generated by the elements
mj := mj,j+1, j = 1, 2, . . . , d − 1. Any irreducible representation σ of M is
one-dimensional and it is uniquely given by

εj = σ(mj).

Thus M̂ ∼= {−1, 1}d−1. We will make the isomorphism explicit: Introduce ir-
reducible representations ej : M → C, d 7→ dj (j’th diagonal component) then
with δl = e1 ⊗ e2 · · · ⊗ el we have

δl(mj) =

{
−1 if j = l,

1 if j 6= l.

We can then introduce for every ε ∈ {−1, 1}d−1,

σε =
⊗

{j|εj=−1}

δj

and obtain
σε(mj) = εj.
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Also,

δl(m(g)) =
l∏

j=1

sgn det g[j]

sgn det g[j − 1]
= sgn det g[l]

so that

σε(m(g)) =
∏

{j|εj=−1}

sgn det g[j] =
n∏
j=1

|det g[j]|0εj

where we use, for x ∈ R,

|x|λε :=

{
|x|λ if ε = +1,

sgn(x)|x|λ if ε = −1.

Now, using both the identifications a′C
∼= Cd−1 and M̂ ∼= {−1, 1}d−1 we have

a(g)λε(m(g)) =
n∏
j=1

|det g[j]|λjεj

Action of W on a′C and M̂ . The Weyl group W is the group of linear trans-
formations on a′ generated by the root reflections sα,

sα(ϕ) = ϕ− 2
(ϕ|α)

|α|2
α.

It is isomorphic to NK(a)/ZK(a) where w ∈ NK(a) acts on a′ by

[wλ](H) := λ(w−1Hw).

The group W is generated by the root reflections sαj corresponding to the sim-
ple roots. The group NK(a) is generated by the elements wjl,mjl. So then
NK(a)/ZK(a) is generated by wjlZK(a). One notes that if j < k < l then

wjl = wjkwklw
−1
jk .

This can be proven inside SL(3,R) by the corresponding identity

w13 = w12w23w
−1
12 .

It follows that NK(a)/ZK(a) is generated by the simple elements wjZK(a) where
wj = wj,j+1. Actually, the wjZK(a) corresponds to the root reflection sαj . In-
deed, wj acts on a by transposing the j’th and the (j + 1)’th coordinate so
wjej = ej+1, wjej+1 = ej and wjel = el for l 6= j, j + 1. This is exactly how sαj
acts.

The length of an element w ∈ W is the minimal number of factors when w is
written as a product of simple reflections. It is part of the general theory that a
root system has a unique longest element w ∈ W which as it turns out is given
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by wΠ = −Π where Π ⊆ ∆ is the set of simple roots. The longest element will
have length |∆+| = d(d−1)

2
. For d = 2, 3 the longest element is w1d. In general,

w1d = w1w2 · · ·wd−1wd−2 · w1

and it turns out that the length of w1d is 2d−3. One can also see that the length
of wjl is 2(l− j)− 1. Anyway, this means that the w1d is not the longest element
for d > 3.

The longest Weyl group element w0 ∈ W has a pleasant action on the δl’s.
Indeed, the element

w0 =


0 0 · · · 0 1
0 0 · · · 1 0
...

...
. . .

...
...

(−1)nin(n+1) 0 · · · 0 0

 ∈ NK(a)

corresponds to the action Ejj 7→ Ed−j,d−j on a so that w0ej = ed−j so w0αj =
−αd−j. Since w0 sends every simple root to minus a simple root it must be the
longest element. We find

(w0δj|αl) = −(δj|αd−l) = −δj,d−l = −δd−j,l

so that w0δj = −δd−j.
There is also an action of NK(a) on M = ZK(a) which induces an action on

M̂ given by
[wσ](m) = σ(w−1mw)

for σ ∈ M̂ . Since w−1
0 mjw0 = mn−j we find in terms of M̂ ∼= {−1, 1}d−1 that

[w0ε]j = εn−j.

In terms of a′C
∼= Cd−1 we have

[w0λ]j = −λn−j.

1.2 Middle Parabolic in SL(d,R)
When d = 2, 3 and MAN is the minimal parabolic, N is isomorphic to a Heisen-
berg group. This is not the case when d > 3. But we get N is isomorphic to a
Heisenberg group if we consider a different parabolic. We split an element g ∈ G
into 1× (d− 2)× 1 blocks so

g =

g11 g12 g13

g21 g22 g23

g31 g32 g33

 .

where g11, g33 ∈ M1(R), g22 ∈ Md−2(R). We take a parabolic subgroup P ⊆ G
consisting of the elements with g21 = 0, g31 = 0, g32 = 0. Then this parabolic
has a decomposition P = MAN . Here M,A,N are new groups, we will use Mp,
Ap, Np, etc. for the groups and Lie algebras above.
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The Langlands Decomposition of P . In the parlance of [21, Prop. 5.23] we
take ΠP = {α2, . . . , αn−2}. Then the Lie algebra a of A is the subalgebra a ⊆ ap
consisting of the elements orthogonal to the elements in ΠP which implies that
a = span(H1, H2) where

H1 =

1 0 0
0 − 1

d−2
Id−2 0

0 0 0

 , H2 =

0 0 0
0 1

d−2
Id−2 0

0 0 −1

 .

Note that el restricted to a is the same functional for 2 ≤ l ≤ d − 2. We have
two simple roots

α1 = e1 − el
α2 = el − ed

where 2 ≤ l ≤ d− 2. The corresponding root spaces are

gα1 = span{E1l | 2 ≤ l ≤ d− 2}gα2 = span{Ejd | 2 ≤ j ≤ d− 2}.

The only other positive root is α1 + α2 with root space

gα1+α2 = span(E1d).

Then we have

n = gα1 + gα2 + gα1+α2 =


0 ∗ ∗

0 0 ∗
0 0 0


n = g−α1 + g−α2 + g−α1−α2 =


0 0 0
∗ 0 0
∗ ∗ 0


Lastly we get

m =


0 0 0

0 ∗ 0
0 0 0

 ∼= sl(d− 2,R).

Since A is the analytic subgroup with Lie algebra a we find

A =


s1 0 0

0 s2I 0
0 0 s3

∣∣∣∣∣∣ sj > 0, s1s
d−2
2 s3 = 1


N is the analytic subgroup with Lie algebra n and M0 is the analytic subgroup
with Lie algebra m and M = ZK(a)M0. We find

ZK(a) = S(O(1)×O(d− 2)×O(1)),

M0 = 1× SL(d− 2,R)× 1

so that
M = S(O(1)× SL±(d− 2,R)×O(1)).
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The NMAN-Decomposition.

Proposition 1.2.1. For every g ∈ SL(d,R) written as

g =

g11 g12 g13

g21 g22 g23

g31 g32 g33


with g11 6= 0 and g22 − g21g12

g11
∈Md−2(R) invertible we can write

g = n(g)m(g)a(g)n(g)

where n(g) ∈ N , n(g) ∈ N and

m(g) =


sgn g11 0 0

0
g22− g21g12g11∣∣∣det(g22− g21g12g11

)
∣∣∣1/(d−2) 0

0 0 sgn g11 sgn det(g22 − g21g12
g11

)

 ∈M
and

a(g) =

|g11| 0 0
0 |det(g22 − g21g12

g11
)|1/(d−2)I 0

0 0 |g11|−1|det(g22 − g21g12
g11

)|−1

 ∈ A.
Proof. Writing out g = nmaan using the block notation gives us for the four
upper left blocks(

g11 g12

g21 g22

)
=

(
m1a1 m1a1n12

nn12m1a1 nn12m1a1n12 +m2a2

)
.

Parametrisation of a′C. Again we use “fundamental weights” δ1 = e1 and

δ2 =
d−1∑
j=1

ej

so that δj(Hl) = δjl. Note that an arbitrary element a of A is

a =

s1 0 0
0 s2I 0
0 0 s3

 = elog(s1)H1e− log(s3)H3

since s1s
d−2
2 s3 = 1. So we find

aλ1δ1+λ2δ2 = sλ11 s
−λ3
3

so with λ = λ1δ1 + λ2δ2 we have

a(g)λ = |g11|λ1+λ2|det(g22 −
g21g12

g11

)|λ2 .

Actually, according to [26, p. 475] we have

det(g22 −
g21g12

g11

) = det(g22)(1− g12g
−1
22 g21

g11

)

so
a(g)λ = |g11|λ1|det g22|λ2|g11 − g12g

−1
22 g21|λ2
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Parametrisation of M̂ . We single out the element

m1d =

−1 0 0
0 I 0
0 0 −1

 .

For any unitary irreducible representation σ of M , σ(m1d) must be scalar by
Schur’s Lemma and σ(m1d)

2 = 1 so σ(m1d) ∈ {−1, 1}. Also, the map

SL±(d− 2,R) 3 m 7→

1 0 0
0 m 0
0 0 detm


is an injective homomorphism so we conclude that M̂ ∼= {−1, 1}×SL±(d−2,R)∧.

For our purposes we single out the representation m 7→ |detm|0ε2 of SL±(d−
2,R) for a sign ε2 ∈ {−1, 1} which combined with a choice of sign ε1ε2 for σ(m1d)
gives us four representations σε1,ε2 . This somewhat arbitrary choice of sign gives
us that

σε(m1l) = ε1

σε(mjd) = ε2

for 2 ≤ j, l ≤ d− 1. Here mjl are defined as above, i.e., mjl is a diagonal matrix
with entries 1 except for at the j’th and l’th index where the entry is −1.

Now one finds

σε(m(g)) = |g11|0ε1ε2|det(g22 −
g21g12

g11

)|0ε2 = |g11|0ε1|det g22|0ε2|g11 − g12g21|0ε2

So if we use the shorthand ε for σε we have

a(g)λε(m(g)) = |g11|λ1ε1 |det g22|λ2ε2 |g11 − g12g21|λ2ε2 .

The Group NK(a). For an element w ∈ NK(a) one finds that the action on
a must permute the entries, i.e., for every such w there is a permutation σ such
that

w

h1 0 0
0 h2 0
0 0 h3

w−1 =

hσ(1) 0 0
0 hσ(2) 0
0 0 hσ(3).


When d = 3 all permutations are possible but when d > 3 only σ = (1 3) and
the identity are possible. Indeed, it is clear that the element

w1d =

 0 0 1
0 I 0
−1 0 0


realises σ = (1 3) and writing the above out for σ = (1 2) implies that w has the
form

w =

 0 w12 0
w21 0 0
0 0 w2

13

 .
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But w ∈ K then implies that w21w
t
21 = I which is not possible when d > 3. The

same argument can be give for σ = (2 3) and so since NK(a) is a group one can
always reduce to these two cases so all other permutations except (1 3) and the
identity are impossible as well.

It follows that NK(a) consists of w1dz and z where z ∈ ZK(a). Now, NK(a)

acts on a′C and M̂ and we particularly find

w1dδ1 = −δ2

w1dδ2 = −δ1

so that in the isomorphism a′C
∼= C2 we have

w1d(λ1, λ2) = (−λ2, λ1).

Also, w−1
1dm1lw1d = mld so that for our chosen representations

w1d(ε1, ε2) = (ε2, ε1).

1.3 The Double Cover of SL(3,R)
We will also have occasion to consider the double covering group G̃ of SL(3,R).

Then the maximal compact subgroup K̃ is isomorphic to the group SU(2). In
su(2) we have elements

W̃12 =

(
i 0
0 −i

)
, W̃23 =

(
0 1
−1 0

)
, W̃13 =

(
0 i
i 0

)
and the derivative of the double covering G̃ → G is the Lie algebra homomor-
phism given by W̃jl 7→ 2Wjl. We introduce the one-parameter subgroups

k̃jl(t) = exp tW̃jl

so that

k̃12(t) =

(
eit 0
0 e−it

)
, k̃23(t) =

(
cos t sin t
− sin t cos t

)
, k̃13(t) =

(
cos t i sin t
i sin t cos t

)
.

The group M̃ = ZK̃(a) is the group generated by m̃jl = k̃jl
(
π
2

)
given by

m̃12 =

(
i 0
0 −i

)
, m̃23 =

(
0 1
−1 0

)
, m̃13 =

(
0 i
i 0

)
.

Indeed, k̃jl(t) ∈ M̃ if and only if kjl(2t) ∈ M . Then M̃ is a group of order 8. It
also includes the only central element that isn’t e, namely

σ =

(
−1 0
0 −1

)
= m̃2

jl.
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The same argument tells us that W = NK(a) is generated by m̃jl and w̃jl =

k̃jl
(
π
4

)
given by

w̃12 =

(
ei
π
4 0

0 e−i
π
4

)
, w̃23 =

1√
2

(
1 1
−1 1

)
, w̃13 =

1√
2

(
1 i
i 1

)
.

Besides the representations of M̃ that factor through M , M̃ has also a 2-
dimensional irreducible representation, namely the one it inherits from the action
of SU(2) on C2.

Some computations of theNMAN -decomposition are included in Appendix B.

1.4 Parabolically Induced Representations

The following applies in general when G is a linear connected reductive group,
MAN is a parabolic subgroup and N = ΘN , cf. [21, Ch. VII]. For our purposes
it is primarily relevant for MAN the middle parabolic from the previous section.
We will also need the following when G is the double covering S̃L(3,R) but it
still applies, cf. [40, 5.2].

Pick ε ∈ M̂ and λ ∈ a′C. Then we have a representation P (ε, λ) as follows.
The Hilbert space is the space of measurable functions F : G→ Hε for which

F (gman) = a−λ−ρε(m)−1F (g)

and for which ∫
K

|F (k)|2 dk <∞.

Here ρ =
∑

j δj is the half-sum of the positive roots. The inner product is given
by

(F |F ′) =

∫
K

(F (k)|F ′(k)) dk.

The action of G on P (ε, λ) is simply the left translation action.
We can realise this representation solely as functions on K using the Iwasawa

decomposition to pass to the full picture. Then the action becomes

[Pε,λ(g)F ](k) = α(g−1k)λ−ρF (κ(g−1k))

which is in general a relatively complicated expression. The upside to this real-
isation is that the smooth vectors of the representation are simply the smooth
functions G → Hε. This will be useful because the smooth vectors are the
domain of the Knapp-Stein intertwiners.

We can also realise this representation as functions on N using the NMAN -
decomposition to pass to the full picture. The space is then the L2-functions
N → Hε with regards to the measure α(n)2 Reλdn. The action is

[Pε,λ(g)F ](n) = a(g−1n)λ−ρε(m(g−1n))−1F (n(g−1n)).

This can be made relatively explicit but we lose the easy characterisation of the
smooth vectors.
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Knapp-Stein Intertwiners. Consider the case where N ∩w−1Nw = N . This
is the case for d = 3 with the w chosen as above. Then we have intertwiners
T (ε, λ) : P (ε, λ)→ P (wε,wλ) given by

[T (ε, λ)F ](x) =

∫
N

a(w−1n)λ−ρε(m(w−1n))F (xn) dn

=

∫
K

a(w−1k)λ−ρε(m(w−1k))F (xk) dk.

The integrals do not converge for all choices of F and λ. But when F is a
smooth vector the integrals converge for sufficiently large λ and the integrals can
be extended by analytic continuation.

We see that the above expressions give T (ε, λ) as convolutions operators on

the right but or alternatively on the left on the functions F̃ (x) = F (x−1) with
kernels

n 7→ a(w−1n)λ−ρε(m(w−1n))

k 7→ a(w−1k)λ−ρε(m(w−1k))

over N or K.

Duality. Suppose that π, π′ are representations of a topological group M . We
say that π, π′ form a dual pair if there is a continuous sesquilinear form (·|·) on
Hπ ×Hπ′ which is invariant in the sense that

(π(m)v|π′(m)v′) = (v|v′)

for all m ∈ M , v ∈ Hπ, v′ ∈ Hπ′ . Continuity means that there is a C > 0 such
that

|(v|v′)| ≤ C‖v‖ · ‖v′‖.
Normalizing (·|·) preserves the invariance so we shall assume that C = 1. An
example then of a dual pair is any unitary representation paired with itself.

Suppose that σ, σ′ form a dual pair of representations of M with invari-
ant sesquilinear form (·|·). Then there is a natural candidate for an invariant
sesquilinear form on P (σ, λ)× P (σ′, λ′), namely

(F |F ′) =

∫
K

(F (k)|F ′(k)) dk.

We find that

Proposition 1.4.1. If σ, σ′ is a dual pair of representations of M then P (σ, λ),
P (σ′,−λ) forms a dual pair of representations of G. The invariant form is given
by

(F |F ′) =

∫
K

(F (k)|F ′(k)) dk =

∫
N

(F (n)|F ′(n)) dn

for F ∈ P (σ, λ), F ′ ∈ P (σ′,−λ).
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Proof. The continuity follows from Cauchy-Schwarz:

|(F |F ′)| ≤
∫
K

‖F (k)‖ · ‖F ′(k)‖ dk ≤ ‖F‖ · ‖F ′‖.

Since the form is continuous it is enough to check invariance on continuous F, F ′.
Since (·|·) is M -invariant,

K 3 k 7→ (F (k)|F ′(k))

is right invariant under M ∩K and continuous so [21, Ch. VII, §2, (2)] gives us
for any g ∈ G,∫

K

(F (k)|F ′(k)) dk =

∫
K

α(g−1k)−2ρ(F (κ(g−1k))|F ′(κ(g−1k))) dk.

Note that we have for any x ∈ G,

(F (x)|F ′(x)) = (α(x)−λ−ρσ(m)−1F (κ(x))|α(x)λ−ρσ′(m)−1F ′(κ(x)))

= α(x)−2ρ(F (κ(x))|F ′(κ(x)))

owing to the invariance of (·|·). Now, [21, 5.25] says that for continuous F, F ′ we
have∫

K

(F (k)|F ′(k)) dk =

∫
N

(F (κ(n))|F ′(κ(n)))α(n)−2ρ dn =

∫
N

(F (n)|F ′(n)) dn.

We get the equality∫
K

(F (k)|F ′(k)) dk =

∫
N

(F (n)|F ′(n)) dn

for all F, F ′ by approximation because (F, F ′) 7→
∫
N

(F, F ′) is also continuous:∫
N

|(F, F ′)| ≤
∫
N

‖F (n)‖α(n)Reλα(n)−Reλ‖F ′(n)‖ dn ≤ ‖F‖ · ‖F ′‖.

Knapp-Stein Kernel for the Middle Parabolic. With w = w1d and

n(x, y, z) =

1 0 0
x I 0
z y 0

 ,

we find

w−1n(x, y, z) =

−z −y −1
x I 0
1 0 0


so for n = n(x, y, z),

a(w−1n)λ−ρε(m(w−1n)) = |−z|λ1−1
ε1
|−z + yx|λ2−1

ε2
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1.5 The SL(2,R)-Case

We will briefly touch upon SL(2,R) as a motivating example. This is the above
with d = 2 so we have the parabolic series with a choice of sign ε = ε1 and a
choice of scalar λ = λ1. Also, N is isomorphic with R through t 7→ n(t) and the
Haar measure is simply the Lebesgue measure. The measure α(n)2 Reλ can be
given explicitly as follows: When n(t) = kan in the G = KAN -decomposition
we find

n(t)tn(t) = nta2n

which is the LDU -decomposition so since

n(t)tn(t) =

(
1 + t2 t
t 1

)
one finds

a2 =

(
1 + t2 0

0 (1 + t2)−1

)
so that α(n(t))2 Reλ = (1 + t2)Reλ. One can also figure out the action of G on
P (ε, λ) explicitly.

We find

w−1n(x)−1 =

(
x −1
1 0

)
so that the Knapp-Stein kernel in the noncompact picture is

a(w−1n(x)−1)λ−ρε(m(w−1n(x)−1)) = |x|λ−1
ε .

Now, K is isomorphic to R/2πZ through θ 7→ k(θ) where

k(θ) = exp θW =

(
cos θ sin θ
− sin θ cos θ

)
, W =

(
0 1
−1 0

)
and we take the Haar measure on K to be the normalised Lebesgue measure.
Note that

w = w0 = k(
π

2
)

We find

w−1k(θ)−1 = k(−θ − π

2
) =

(
sin θ − cos θ
cos θ sin θ

)
so that the Knapp-Stein kernel in the compact picture is

a(w−1k(θ)−1)λ−ρε(m(w−1k(θ)−1)) = |sin θ|λ−1
ε .
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Analysis on N . One readily obtains

d

dx
|x|λε = λ|x|λ−1

−ε

which gives the extension of the analytic map λ→ |x|λε from {z |Re z > −1} →
S ′(R) to C \ (−N) → S ′(R). As in [11, p. 173] we consider the following
normalisations:

χλ+ :=
2−

1
2
λ

Γ
(
λ+1

2

) |x|λ+
χλ− :=

2−
1
2
λ

Γ
(
λ+2

2

) |x|λ−
The takeaway is

Proposition 1.5.1. The family (χλε )λ∈C is a family of homogeneous tempered
distributions on R of degree λ that have parity ε. The map λ 7→ χλε is analytic
and χλε is nonzero for all λ. Also, when n ∈ N0,

χ−nε is propositional to

{
δ

(n−1)
0 for (−1)n = −ε,
x−n for (−1)n = ε.

One finds the identities

∂2χλ+ = λχλ−2
+ ,

∂2χλ− = (λ− 1)χλ−2
− .

We normalise T λε such that
T λε ϕ = χλ−1

ε ∗ ϕ
for ϕ ∈ S(R). In order to figure out if T λε is positive definite on S(R) we can
take the Fourier Transform.

Proposition 1.5.2. The Fourier transform of χλε is c(ε)χ−1−λ
ε where

c(+) = 1,

c(−) = i.

One easily sees that

Proposition 1.5.3. χλε is real if and only if λ ∈ R. χλε is positive if and only if
λ ≥ −1 and ε = +.

Proof. It is readily apparent that χλ+ is positive when λ ≥ −1.
Suppose that χλε is positive for some λ ∈ R. Because of the parity, ε = +.

Then we must have

0 ≤ 〈|x|λ+, e−x
2〉 = Γ(

λ+ 1

2
)
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but also

0 ≤ 〈|x|λ+, x2e−x
2〉 =

λ+ 1

2
Γ(
λ+ 1

2
).

These two combined implies that λ ≥ −1.

By Bochner’s Theorem this implies

Proposition 1.5.4. χλ+ is positive definite if and only if λ ≤ 1.

Consequences for the Representation Theory. The Knapp-Stein operator
in the compact picture is defined on the set of smooth functions ϕ : K → C for
which ϕ(θ + π) = εϕ(θ). It is given by convolution with |sin θ|λ−1

ε . One notes
that this is a function in L1(K) when Reλ > 0 so by the Young Inequality, T λε
is continuous L2(K)→ L2(K) for these λ. It follows that for any ϕ ∈ C∞(P λ

ε ),
the pairing

(T λε ϕ|ϕ)

can be approximated by (T λε ϕn|ϕn) where ϕn ∈ S(R) in the noncompact picture.
We can even take ϕn to have compact support on N . So one obtains:

Proposition 1.5.5. The operator T λε : C∞(P λ
ε ) → C∞(P−λε ) is positive in the

sense that

(T λε ϕ, ϕ) ≥ 0

for ϕ ∈ C∞(P−λε ) \ 0 if 0 < λ ≤ 1. If the operator is positive then −1 ≤ λ ≤ 1.

Proof. For the “only if” part of the statement one switches what root is con-
sidered positive, i.e., we realise the representation on N instead of on N . The
Knapp-Stein kernel on N is then given by |x|−λ−1

ε so the previous analysis gives
us that we must have −λ ≤ 1.

Analysis on K. On K the Knapp-Stein kernel is given by convolution with
|sin θ|λ−1

ε . One should make the same normalisation as in the compact picture
but it is simpler to consider the normalisation

Sλε =
1

Γ(λ+ 1)
|sin θ|λε .

Then we have λ 7→ Sλε is analytic and the extension is given by DλS
λ
ε = Sλ−2

ε

where

Dλ =
d2

dθ2
+ λ2.

It is easy to see that

S−1
ε = D1S

1
ε = (1 + ε)(δπ − δ0),

S−2
ε = D0S

0
ε = (1− ε)(δπ − δ0)
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which allows us to calculate the values at −N0 recursively. Actually, on C∞(P λ
ε ),

δπ = εδ0 so acting there,

S−1
ε = (1 + ε)(ε− 1)δ0 = 0,

S−2
ε = (1− ε)(ε− 1)δ0 = −(ε− 1)2δ0.

The Fourier Transform of Sλε is

Ŝλε (n) =
1

Γ(λ+ 1)

∫ π

−π
|sin θ|λεeinθ dθ =

1 + (−1)nε

2

i

2λΓ(λ
2

+ 1 + n
2
)Γ(λ

2
+ 1− n

2
)

The result remains the same:

Proposition 1.5.6. T λε is positive if and only if −1 ≤ λ ≤ 1.





Chapter 2

∗-Algebras

In this chapter we consider topological ∗-algebras. The problem of finding a new
inner product for a parabolically induced representation is related to the problem
of determining when a linear functional f on a ∗-algebra A is positive, i.e., when
〈f, aa∗〉 ≥ 0 for all a ∈ A. In our case we would like A to be a convolution algebra
of functions on K or N . We will consider examples where A is the convolution
algebra S(Rd), D(G) or S(N) for an arbitrary Lie group G or a simply connected
nilpotent Lie group N . In order to avoid confusion we will call the (continuous)
positive linear functionals on such algebras positive definite distributions. It is
hard, even on Rd, to see directly when a distribution is positive definite. On
the other hand we will also consider multiplication algebras S(Rd) or E(R∗,L0)
on which the positive linear functionals are simply the positive distributions —
i.e., the problem of determining the positive linear functionals is easy. On Rd

Bochner’s Theorem relates the positive definite distributions on Rd with the
positive distributions. What is happening is that the Fourier transform gives a
∗-algebra isomorphism of S(Rd) considered as a convolution algebra with S(Rd)
considered as a multiplication algebra. It would be extraordinarily satisfying to
have a corresponding classification for all Lie groups but such a classification is
not known. The only other case where it is known is for the compact Lie groups
where we have an isomorphism of E(K) with a certain space of matrices. We
will consider this case in detail as well.

Definition. For us, a topological *-algebra A is a topological vector space over
C equipped with a separately continuous bilinear operation

A× A 3 (a, a′) 7→ aa′ ∈ A

and a continuous antilinear operation

A 3 a 7→ a∗ ∈ A

satisfying

(aa′)a′′ = a(a′a′′)

(ab)∗ = b∗a∗

21
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A Fréchet ∗-algebra is a topological ∗-algebra for which the underlying topolog-
ical vector space is a Fréchet space. Note that this entails the bilinear operation
∗ is jointly continuous. We will not go into great depth about topological ∗-
algebras. For a more thorough treatment consider [10].

An approximate identity in a topological ∗-algebra A is a net (aλ)λ∈I such
that

aλa→ a

as λ→∞.

Positive Linear Functionals. A positive linear functional on a topological
∗-algebra A is an element f ∈ A′ that satisfies

〈f, aa∗〉 ≥ 0

for all a ∈ A.

Remark 2.0.1. In general, a positive linear functional is allowed to be discontin-
uous. We consider only continuous ones.

When we have such a positive linear functional we can construct a pseudo
inner product on A by

A× A 3 (a, b) 7→ 〈f, a ∗ b∗〉.

This is the idea behind the so-called GNS-construction.
There is a natural ∗-operation on A′, namely the one given by

〈f ∗, a〉 = 〈f, a∗〉

for f ∈ A′, a ∈ A. An element f ∈ A′ such that f ∗ = f is said to be self-adjoint.
We single out [10, Lemma 12.3 (1)]:

Proposition 2.0.2. Suppose that f ∈ A′ is a positive linear functional on a
topological ∗-algebra A. Then

〈f, xy∗〉 = 〈f, yx∗〉.

If A admits an approximate identity then f is self-adjoint.

Proof. The first identity is purely algebraic and arises by polarisation: Indeed,
let Q(x) = 〈f, xx∗〉 then Q(x) ≥ 0 and Q(ikx) = Q(x) so

4〈f, xy∗〉 =
3∑

k=0

ikQ(x+ iky) =
3∑

k=0

(−i)kQ(y + (−i)kx) = 4〈f, yx∗〉.

If (xλ)λ is an approximate identity we get

〈f, y∗〉 = lim
λ
〈f, xλy∗〉 = lim

λ
〈f, yx∗λ〉 = 〈f, y〉

so that f is self-adjoint.
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Example: Schwartz Functions on Rd. On S(Rd) we have two bilinear op-
erations ∗ and · given by

ϕ ∗ ψ(x) =

∫
Rd
ϕ(y)ψ(x− y) dy

ϕ · ψ(x) = ϕ(x)ψ(x)

and involutions ∗ and · given by

ϕ∗(x) = ϕ(−x)

ϕ(x) = ϕ(x).

Proposition 2.0.3. Both (S(Rd), ∗,∗ ) and (S(Rd), ·, ·) are Fréchet ∗-algebras
admitting approximate identities.

Proof. This is more or less obvious. Continuity of · is obvious because of Leibniz’
rule and continuity of ∗ then follows since the Fourier transform is a homeomor-
phism that takes ∗ to ·.

As for approximate identities, when the bilinear operation is · we can choose
ϕn ∈ S(Rd) such that 1 ≥ ϕn ≥ 0 and ϕn(x) = 1 for |x| ≤ n. Then Pϕnψ → Pψ
uniformly for any polynomial P and

P (ϕnψ)(k) =
∑
|l|≤|k|

(
k

l

)
Pϕ(l)

n ψ
(k−l)

goes uniformly to Pψ(k) because ϕ
(l)
n (x) = 0 for |x| ≤ n when l 6= 0.

Again by Fourier transformation we get an approximate identity for convo-
lution as well.

For brevity we denote S(Rd)c for the former ∗-algebra and S(Rd)m for the
latter.

A function ϕ : Rd → C is said to be positive definite if (ϕ(xi − xj))i,j is a
positive matrix for any choice of points x1, . . . , xn ∈ Rd, i.e.,∑

ij

ϕ(xi − xj)zizj ≥ 0

for all z1, . . . , zn ∈ C.

A function f : Rd → C can induce a tempered distribution by the pairing

〈f, ϕ〉 =

∫
Rd
f(x)ϕ(x) dx.

Proposition 2.0.4. The the positive linear functionals in S ′(Rd)c ∩ C(Rd) are
exactly the positive definite functions in S ′(Rd)c ∩ C(Rd).
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Proof. It is known from [9, Prop. 3.35] or from [35, Ch. VII, §9] that a continuous
function f : Rd → C is positive definite if and only if

〈f, ϕ ∗ ϕ∗〉 ≥ 0

for all ϕ ∈ D(Rd). Since D(Rd) is dense in S(Rd) we have the result.

It is customary to call all the positive functionals in S ′(Rd)c positive definite
distributions. We will use this nomenclature to avoid mistaking the positive
distributions on the algebra for the distributions that are positive in the following
sense:

Suppose that U ⊆ Rd is open. We say that a function ϕ : U → C is positive
if its values are positive, i.e., if

ϕ(x) ≥ 0

for all x ∈ U . Positivity extends as a concept to D′(U): A distribution f ∈ D′(U)
is said to be positive if for any positive ϕ ∈ D(U) we have 〈f, ϕ〉 ≥ 0. Then it is
easily seen that

Proposition 2.0.5. A continuous function f ∈ C(U) is positive as a distribution
if and only if it is positive as a functions.

In contrast to positivity of a linear functional on S(Rd)c, it is easy to see
when a linear functional on S(Rd)m is positive. Indeed,

Proposition 2.0.6. The positive linear functionals on S(Rd)m are exactly the
positive tempered distributions in S ′(Rd).

Proof. A linear functional f ∈ S ′(Rd)m is positive if and only if

〈f, |ϕ|2〉 ≥ 0

for all ϕ ∈ S(Rd). By the argument presented in [35, p. 277] this is equivalent
to 〈f, ϕ〉 ≥ 0 for all positive ϕ ∈ S(Rd).

A continuous linear map Φ : A → B between topological ∗-algebras is said
to be a homomorphism if it preserves the ∗-algebra structures, i.e., if

Φ(a ∗ a′) = Φ(a) ∗ Φ(a′)

Φ(a∗) = Φ(a)∗.

If Φ is bijective then we say it is an isomorphism and that A,B are isomorphic.
It is well-known that

Theorem 2.0.7. The Fourier transform is an isomorphism of S(Rd)c to S(Rd)m.

Corollary 2.0.8 (Bochner’s Theorem). A distribution f ∈ S ′(Rd) is positive

definite if and only if f̂ is positive. A function f ∈ S ′(Rd) ∩ C(Rd) is positive

definite (as a function) if and only if f̂ is a positive function.

Remark 2.0.9. Positive distributions are the same as positive measures, cf. [35,
Ch. I, §4, Thm. V]
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2.1 Convolution Algebras on Groups

Example: Functions on a Locally Compact Group. When G is a locally
compact topological group (i.e., a topological group that is Hausdorff and covered
by compact neighbourhoods) it is well-known that L1(G) admits the structure
of a Banach ∗-algebra. Indeed, one takes

f ∗ g(x) =

∫
G

f(y)g(y−1x) dy (2.1)

f ∗(x) = f(x−1) (2.2)

where dy is a Haar measure on G. This situation is covered in [9, §3.3]. The
algebra L1(G) admits approximate identities. A function f ∈ L∞(G) gives rise
to a continuous functional by

〈f, ϕ〉 =

∫
G

f(x)ϕ(x) dx. (2.3)

A function f : G→ C is said to be positive definite if
∑

ij cicjf(x−1
j xi) ≥ 0 for all

c1, . . . , cn ∈ C, x1, . . . , xn ∈ G. Such a function is necessarily self-adjoint f ∗ = f
and it is bounded;

|f(x)| ≤ f(0)

cf. [9, p. 91]. We have [9, Prop. 3.35]:

Proposition 2.1.1. A bounded function f ∈ C(G) gives rise to a positive linear
functional if and only if it is positive definite.

Example: Functions on a Lie Group. Generalising the above to a uni-
modular Lie group G it is natural to consider D(G) = C∞c (G). Again we define
convolution and involution by Eqs. (2.1) and (2.2). Note that D(G) is given the
natural LF -topology. Then [4, Prop. 3.1] tells us that

∗ : D(G)×D(G)→ D(G)

is hypocontinuous. Continuity of the involution is obvious since x 7→ x−1 is a
diffeomorphism.

Note that when X : C∞(G) → C∞(G) is a left-invariant vector field on G,
i.e., XLg = LgX for all g ∈ G (where Lgϕ(x) = ϕ(g−1x) is the canonical left
representation) then

X(ϕ ∗ ψ) =

∫
G

ϕ(g)XLgψ dg = ϕ ∗Xψ.

A linear map A : D(G) → E is continuous if and only if for each compact
K ⊆ G, A : DK(G) → E is continuous. This latter map is continuous if and
only if when ϕλ ∈ DK(G) is such that X1X2 · · ·Xkϕλ → 0 uniformly for every
choice of left-invariant vector fields X1, . . . , Xk then Aϕλ → 0.
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Proposition 2.1.2. For every Lie group G, D(G) is an LF topological ∗-algebra
that admits approximate identities.

Proof. We only need to see that there are approximate identities. We mimic the
construction in [9, Prop. 2.44]: For every neighbourhood U of e ∈ G we can
choose ψU ∈ D(G) such that ψU ≥ 0, suppψU ⊆ U and

∫
G
ψU = 1. Then the

argument from [9, Prop. 2.44] tells us that for every ϕ ∈ D(G) as U shrinks to
{e}, ψU ∗ ϕ→ ϕ uniformly (seeing as every ϕ ∈ D(G) is uniformly continuous).
As U shrinks we can take it to be contained in the same compact K ⊆ G so that
suppψU ∗ϕ ⊆ K suppϕ so in order to see that ψU ∗ϕ→ ϕ in D(G) it suffices to
see that ψU ∗ ϕ → ϕ in DK suppϕ(G). This is the case since for all left-invariant
vector fields X1, . . . , Xk,

X1 · · ·Xk(ψU ∗ ϕ) = ψU ∗ (X1 · · ·Xkϕ)→ X1 · · ·Xkϕ

uniformly as U shrinks.

This means in particular that positive linear functionals on D(G) are self-
adjoint, cf. Theorem 2.0.2. A continuous function f ∈ C(G) gives rise to an
element f ∈ D′(G) by Eq. (2.3). It still makes sense to say that f ∈ C(G) is
positive definite. We find

Proposition 2.1.3. f ∈ C(G) is positive definite if and only if f induces a
positive linear functional on D(G).

Proof. D(G) ⊆ L1(G) so a positive definite function must give rise to a positive
linear functional. On the other hand, if f gives rise to a positive linear functional
we can repeat the argument in [9, Prop. 3.35] using an approximate identity
(ψU)U in D(G) instead of Cc(G).

Regularisation of Distributions. We will consider regularisations as in
[35, Ch. VI, §4]. Let G be any connected Lie group; for convenience suppose
that it is unimodular. First for any function ϕ : G→ C, let

ϕ̃(x) := ϕ(x−1).

Then ϕ 7→ ϕ̃ is a continuous linear map D(G)→ D(G). There is a corresponding
continuous linear map D′(G)→ D′(G) given by

〈f̃ , ϕ〉 := 〈f, ϕ̃〉.

One finds
ϕ ∗ ψ(x) = 〈ϕ̃, Rxψ〉 = 〈ψ̃, Lx−1ϕ〉

which leads to the definitions

f ∗ ϕ(x) := 〈f̃ , Rxϕ〉 (2.4)

ϕ ∗ f(x) := 〈f̃ , Lx−1ϕ〉

for f ∈ D′(G), ϕ ∈ D(G). We have
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Proposition 2.1.4. The convolution is hypocontinuous

D′(G)×D(G)→ E(G)

D(G)×D′(G)→ E(G).

Proof. It is proven in [8, Prop. 6] that convolution is separately continuous (with
a slightly different convention for the convolution). Since LF -spaces are barreled,
the map is hypocontinuous.

Now, when (ϕn)n ⊆ D(G) is an approximate identity, ϕn → δe as distribu-
tions; indeed,

〈ϕn, ψ〉 = ϕn ∗ ϕ̃(e)→ ϕ̃(e) = 〈δe, ϕ〉
and the convergence is uniform as ψ varies over a bounded set because ∗ is
hypocontinuous on D×D.

It is convenient to note that

〈ϕ ∗ f, ψ〉 = 〈f, ϕ̃ ∗ ψ〉
〈f ∗ ϕ, ψ〉 = 〈f, ψ ∗ ϕ̃〉

It follows that E(G) is dense in D′(G) as usual. More interesting, however, is

Proposition 2.1.5. Any positive definite distribution in D′(G) is the limit of
positive definite smooth functions in E ′(G).

Proof. Suppose that f ∈ D′(G) is positive. Then f is the limit of functions of
the form α∗ ∗ f ∗ α for α ∈ D(G). These are positive definite; indeed,

〈α∗ ∗ f ∗ α, ϕ ∗ ϕ∗〉 = 〈f, (α ∗ ϕ) ∗ (α ∗ ϕ)∗〉 ≥ 0

for all ϕ.

The Operator-Valued Case. The details in this paragraph depends on
the theory of tensor products, cf. Appendix A.3. We will also take the tensor
product of bilinear maps, cf. Chapter 4.

Suppose that H is a Hilbert space with inner product (·|·). Then a map
Φ : G→ LH is said to be positive definite if∑

jl

(Φ(xjx
−1
l )ul|uj) ≥ 0

for all choices of x1, . . . , xn ∈ G and u1, . . . , un ∈ H. This is the definition given
in [27]. Just as above we have

Proposition 2.1.6. A continuous Φ ∈ C(G,LH) is positive definite if and only
if ∫

G

(Φ(xy−1)ϕ(y)|ϕ(x)) dy dx ≥ 0

for all ϕ ∈ D(G,H).
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Now, tensor product of convolution with the application map LH×H → H
gives us a vector-valued hypocontinuous convolution

D′(G,LH)×D(G,H)→ E(G,H)→ D′(G,H)

cf. Theorem 4.1.1. Denote by (·|·) the sesquilinear pairing of D′(G,H) with
D(G,H) given by the tensor product of the sesquilinear pairings D′(G)×D(G)→
C and H × H → C. Then a distribution F ∈ D′(G,LH) is said to be positive
definite if (F ∗ ϕ|ϕ) ≥ 0 for all ϕ ∈ D′(G,H). This is consistent with the
definition of positive definiteness of a function above.

We will find that there is a connection to a ∗-algebra just as in the scalar case.
Indeed, D(G,L1(H)) (L1(H) are the trace-class operators with trace-norm ‖·‖1)
becomes a ∗-algebra with operations (note ‖TS‖1 ≤ ‖T‖1‖S‖1 so the convolution
here is the tensor product of the convolution with the continuous composition
on L1(H) so we can apply Theorem 4.1.1)

Φ ∗Ψ(x) =

∫
Φ(y)Ψ(y−1x) dy

Φ∗(x) = Φ(x−1)∗.

According to [34, Prop. 22, Cor. 3 (p 104)],

D(G,L1(H))′ ∼= D′(G,LH),

the isomorphism given on simple tensors by

〈F, ϕ⊗ T 〉 = tr[F (ϕ)T ].

The element in D(G,L1(H))′ corresponding to F ∈ C(G,LH) is given by

〈F,Φ〉 =

∫
G

trF (x)Φ(x) dx.

Proposition 2.1.7. F ∈ C(G,LH) is positive definite if and only if F̃ induces
a positive linear functional on D(G,L1(H)).

Here and elsewhere, F̃ (x) = F (x−1).

Proof. If we take (ej)j to be an orthonormal basis for H we get for any Φ ∈
D(G,L1(H)),

〈F,Φ ∗ Φ∗〉 =
∑
j

(F̃ ∗ Φj|Φj)

where Φj(x) = Φ(x)ej.
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Example: The Schwartz Functions on a Nilpotent Group. For a con-
nected, simply connected, nilpotent Lie group N we can consider the Schwartz
functions S(N) on N , cf. [7, A.2]. We will not go into detail about the exact
definition of S(N) but it basically arises by taking global polynomial coordinates
on N and taking the Schwartz functions on N to be those that are Schwartz func-
tions in the coordinates. Again we define the structure of S(N) as a ∗-algebra
by Eqs. (2.1) and (2.2).

Proposition 2.1.8. For every connected, simply connected, nilpotent Lie group
N , S(N) is a Fréchet ∗-algebra that admits an approximate identity.

Proof. Since S(N) ⊆ L1(N), the integral defining the convolution exists. As in
the proof of [7, Theorem A.2.5], we take some norm on the Lie algebra of N and
transfer it to the group by the exponential map. Then we have

‖x−1‖ = ‖x‖

and as noted in the aforementioned proof, if N has dimension n, there is some
c > 0 such that

‖xy‖ ≤ c(1 + ‖x‖+ ‖y‖)n

for all x, y ∈ N . We introduce

p(x) := (1 + ‖x‖2)

and as a consequence of the above inequality, there is some C > 0 such that

p(xy) ≤ Cp(x)np(y)n

for all x, y ∈ N .
The topology on S(N) is given by the norms ‖pm ·Xα

Lϕ‖m,α where

Xα
L = (Xα1

1 )L · · · (Xαn
1 )L

for a basis X1, . . . Xn of the Lie algebra of N where XL is the left invariant vector
field associated to an element X of the Lie algebra. Then we have

‖pm ·Xα
L(ϕ ∗ ψ)‖∞ ≤ Cm sup

x

∫
N

p(y)mn|ϕ(y)|p(y−1x)mnXα
L |ψ(y−1x)| dy

≤ Cm‖pmnϕ‖L2‖pmnXα
Lψ‖L2 .

The topology on S(N) is also generated by the norms ‖pmXα
Lϕ‖L2 so we conclude

that convolution maps S(N)×S(N) into S(N) and that it is jointly continuous.
As for the involution note that p(x−1) = p(x) and XLϕ

∗ = (XRϕ)∗ where

XRϕ(g) =
d

dt

∣∣∣
t=0
ϕ(exp(−tX)g)

for every X ∈ n so Xα
Lϕ
∗ = (Xα

Rϕ)∗. We get

‖pmXα
Lϕ
∗‖∞ = sup

x
p(x)m|Xα

Rϕ(x−1)| = ‖pmXα
Rϕ‖∞.
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The topology on S(N) is also generated by the norms ϕ 7→ ‖pmXα
Rϕ‖m,α so the

involution is also continuous.
For an approximate identity we take ϕU ∈ D(N) such that ϕU ≥ 0,

∫
N
ϕU =

1, suppϕU ⊆ U for every neighbourhood U of e. Then

ϕU ∗ ψ − ψ =

∫
U

ϕU(x)(Lxϕ− ϕ) dx.

According to [7, Theorem A.2.6], x 7→ Lxϕ is continuous so if ‖·‖ is a continuous
norm on S(N) and if ε > 0, there is a neighbourhood U of e such that ‖Lxϕ −
ϕ‖ ≤ ε for all x ∈ U . Then

‖ϕU ∗ ψ − ψ‖ ≤ ε

demonstrating that ϕU ∗ ψ → ψ as U shrinks to {1}.

The continuous linear functionals on S(N) are the tempered distributions on
N . By using the polynomial coordinates we define the subspace of functions
that grow slowly OM(N) ⊆ E(N) to be the functions that become OM(Rn) in
the polynomial coordinates (i.e., have polynomial growth; cf. [35, Ch. VII, §5]).
Explicitly, ϕ ∈ E(N) is in OM(N) if and only if Xα

Lϕ (or Xα
Rϕ) has polynomial

growth for all α. A net ϕλ ∈ OM(N) converges to 0 if and only if ψ · Xα
Lϕ (or

ψ · Xα
Rϕ) converges uniformly to 0 for all α and for all ψ ∈ S(N). Then it is

pretty clear that we have a continuous linear injection OM(N)→ S ′(N) by way
of Eq. (2.3).

Remark 2.1.9. In order to justify the notation, OM(N) should be defined as
the multiplier space of S(N), i.e., it should be defined as the set of functions
f ∈ E(N) such that f · ϕ ∈ S(N) for all ϕ ∈ S(N). This also explains where
the topology comes from; OM(N) inherits the topology from L(S(N)). Since
everything is simply done in global coordinates, it is the case that the multiplier
space is simply the space of functions with polynomial growth defined above
because this is the state of things on Rd. Schwartz remarks this (on Rd) but does
not prove it — the only proof that I have found is [17, Ch. 4, §11, Prop. 5].

Of course, even a continuous function of polynomial growth induces a tem-
pered distribution through Eq. (2.3). Since D(N) is dense in S(N) we have

Proposition 2.1.10. A function f ∈ C(N) of polynomial growth induces a
positive linear functional on S(N) if and only if it is a positive definite function.

Regularisation of Tempered Distributions. We continue the investi-
gation of Section 2.1 in the context of nilpotent groups. This will have important
consequences on the Heisenberg group. The definition Eq. (2.4) still makes sense
when G = N and f ∈ S ′(N), f ∈ S(N) since according to [7, Thm. A.2.6],
x 7→ Lxϕ and x 7→ Rxϕ are smooth N 7→ S(N).

A priori, convolution is then a bilinear map into E(N).
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Proposition 2.1.11. The convolution is hypocontinuous

S ′(N)× S(N)→ OM(N)

S(N)× S ′(N)→ OM(N)

Proof. Consider p as in Theorem 2.1.8. When f ∈ S ′(N) there is a c > 0 such
that

|〈f̃ , ϕ〉| ≤ c max
|α|≤N

‖pN ·Xα
Rϕ‖∞

so that
|f ∗ ϕ(x)| ≤ c max

|α|≤N
‖pN ·Xα

RRxϕ‖∞.

Here,

‖pNXα
RRxϕ‖∞ = sup

y
pN(y)|Xα

Rϕ(yx)| = sup
y
pN(yx−1)|Xα

Rϕ(y)|

≤ Cp(x)nN‖pnNXα
Rϕ‖∞.

It follows that f ∗ ϕ has polynomial growth and that Xα
L(f ∗ ϕ) = f ∗Xα

Lϕ has
polynomial growth for all α so that f ∗ϕ ∈ OM(N). Since the norms of ϕ figure
explicitly we also find that ϕ 7→ f ∗ ϕ is continuous. As for continuity in f ,
suppose that fλ → 0. The above calculation tells us that when ψ ∈ S(N),

B = {ψ(x)Rxϕ |x ∈ N}

is a bounded subset of S(N) so that f̃λ|B → 0 uniformly. But then

ψ(x)fλ ∗ ϕ(x) = 〈f̃λ, ψ(x)Rxϕ〉 → 0

uniformly in x. Since ϕ is arbitrary we can replace it by Xα
Lϕ and obtain

ψXα
L(fλ ∗ ϕ) = ψ(fλ ∗Xα

Lϕ)→ 0

uniformly.

Just as before, when (ϕn)n ⊆ S(N) is an approximate identity, ϕn → δe in
terms of tempered distributions. So we have OM(N) is dense in S ′(N). Again,

Proposition 2.1.12. A positive definite tempered distribution in S ′(N) is a limit
of positive definite smooth functions in OM(N).

Example: The Lizorkin Space on the Heisenberg Group Let H be the
Heisenberg group considered as Rd × Rd × R with composition

(p, q, t)(p′, q′, t′) = (p+ p′, q + q′, t+ t′ + pq′).

Then we have
S(H) = S(Rd × Rd × R).

Let S∞(H) be the closed subspace of S(H) consisting of ϕ such that∫ ∞
−∞

ϕ(x, y, t)tn dt = 0

for all x, y ∈ Rd and n ∈ N0.



32 Chapter 2. ∗-Algebras

Proposition 2.1.13. S∞(H) is a ∗-ideal in S(H).

A ∗-ideal in a ∗-algebra A is a subspace I ⊆ A which is stable under the
involution and which satisfies a ∗ x ∈ I and x ∗ a ∈ I for all a ∈ A, x ∈ I.

Proof. We must show that ϕ ∗ψ ∈ S∞(H) when ϕ ∈ S(H) and ψ ∈ S∞(H) and
that ϕ∗ ∈ S∞(H) when ϕ ∈ S∞(H). We start with the first claim. Since S∞(H)
is closed and D(H) is dense in S(H) it is enough to assume that ϕ has compact
support. In this case (cf. [30, Theorem 3.27]),

ϕ ∗ ψ =

∫
H

ϕ(x)Lxψ dx

as a vector-valued integral so again since S∞(H) is closed it is enough to see that
Lxψ ∈ S∞(H) for all x:∫

L(p′,q′,t′)−1ϕ(p, q, t)tn dt =

∫
ϕ(p′ + p, q′ + q, t′ + t+ p′q)tn dt

=

∫
ϕ(p′ + p, q′ + q, t)(t− t′ − p′q)n dt

=
∑
a,b,c

(
n

a, b, c

)
(−t′)b(−p′q)c

∫
ϕ(p′ + p, q′ + q, t)ta dt

= 0.

As for the involution,∫
ϕ∗(p, q, t)tn dt =

∫
ϕ(−p,−q, pq − t)tn dt =

∫
ϕ(−p,−q, t)(pq − t)n dt

=
∑
a

(
n

a

)
(pq)n−a(−1)a

∫
ϕ(−p,−q, t)ta dt = 0

Let Polc(H) ⊆ S ′(H) be the subspace of tempered distributions that are
polynomial along the center; explicitly Polc(H) consists of

f(p, q, t) =
N∑
n=0

fn(p, q)tn (2.5)

where fn ∈ S ′(Rd × Rd) and N ∈ N0. Let

SN(H) = {ϕ ∈ S(H) | ∀n ≤ N,

∫ ∞
−∞

ϕ(·, ·, t)tn dt = 0}.

Proposition 2.1.14. The subspace SN(H) is a ∗-ideal of S(H) for all N . The
distributions f ∈ S ′(H) for which f |SN (H) = 0 are exactly the distributions with
a representation Eq. (2.5).
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Proof. The first part follows from the proof of Theorem 2.1.13. As for the second
part, suppose that f |SN (H) = 0. Let ϕn ∈ S(N) such that

〈ϕn(t), tm〉 = δnm.

Then pairing f with ϕn in the third coordinate gives us distributions fn ∈ S ′(Rd×
Rd). For ϕ ∈ S(H) let

ψ(p, q, t) = ϕ(p, q, t)−
N∑
n=0

〈ϕ(p, q, s), sn〉ϕn(t).

Then we have ψ ∈ SN(H) so

〈f, ϕ〉 =
N∑
n=0

〈fn(p, q)tn, ϕ(p, q, t)〉.

The fact that positive linear functionals can be approximated by positive
definite functions implies that not many elements in Polc(H) can be positive:

Theorem 2.1.15. For an element f ∈ Polc(H) written as Eq. (2.5) to be positive
it is necessary that N = 0.

Proof. Indeed, for such an f we have f |SN (H) = 0. Now, f is approximated by

α∗ ∗ f ∗ α for α ∈ S(H). If ϕ ∈ SN(H) we use the ideal property to see

〈α∗ ∗ f ∗ α, ϕ〉 = 〈f, α ∗ f ∗ α̃〉 = 0

so that α∗ ∗ f ∗ α|SN (H) = 0. It follows that

α∗ ∗ f ∗ α(p, q, t) =
N∑
n=0

ϕn(p, q)tn

where ϕn ∈ E(Rd×Rd). But α∗ ∗f ∗α is positive definite so it must be bounded.
This can only be satisfied with N = 0.

2.2 Multiplication Algebras

Example: Smooth Families of Operators. On the Fourier hand side we
will end up considering S0(R,Ld0) consisting of all Φ ∈ S(R,L0) with

Φ(n)(0) = 0

for all n. Recall that Ld0 ⊆ Ld = L(Sd,S ′d) are the operators with kernels in
S(Rd × Rd). Then S0(R,Ld0) is a Fréchet ∗-algebra with algebraic operations
given by

[ΦΨ](h) = Φ(h) ◦Ψ(h), (2.6)

Φ∗(h) = Φ(h)∗.
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It is also equipped with a continuous bilinear form and a continuous inner product

〈Φ,Ψ〉 :=

∫ ∞
−∞
|h|d tr[Φ(h)Ψ(h)] dh (2.7)

(Φ|Ψ) := 〈Φ,Ψ∗〉

The form 〈·, ·〉 defined the continuous linear injection S0(R,L0) → S0(R,L0)′.
There is a natural identification S0(R,Ld0)′ ∼= S ′0(R,Ld) determined by

tr[F (χ)T ] = 〈F, χ⊗ T 〉

for χ ∈ S0(R), T ∈ Ld0, cf. [39, Prop. 50.7].
There is a natural notion of positivity on S ′0(R,L). First, an operator T ∈ Ld

is positive (T ≥ 0) if
(Tϕ|ϕ) = 〈Tϕ, ϕ〉 ≥ 0

for all ϕ ∈ S(Rd). Then also S0(R,L0) admits a notion of positivity: An element
Φ ∈ S0(R∗,L0) is positive (Φ ≥ 0) if it is pointwise positive, i.e., Φ(h) ≥ 0 for all
h ∈ R. The notion of positivity naturally extends to S ′0(R,L): A distribution
F ∈ S ′0(R,L) is positive (F ≥ 0) if F (χ) ≥ 0 for all χ ∈ S0(R), χ ≥ 0.

The following is a useful result:

Lemma 2.2.1. An linear map T ∈ Ld is positive if and only if it is positive as
a member of (Ld0)′, i.e.,

〈T, S〉 = tr[TS] ≥ 0

for all positive S ∈ Ld0, S ≥ 0.

Proof. When S has the form S(x, y) = ϕ(x)ϕ(y) then S ≥ 0 and

tr[TS] = (Tϕ|ϕ).

This shows that if T is positive as a functional then it is also positive as an
operator. On the other hand we need to approximate an arbitrary S ∈ Ld0,
S ≥ 0. We can assume that S has finite rank and then its positivity will imply
that Sϕ = 0 if ϕ is orthogonal to the image of S. But then S is practically an
operator on a finite-dimensional space and we can split it out in eigenvectors (in
Sd).

Just as for S(Rd)m, it is easy to determine the positive linear functionals:

Proposition 2.2.2. A linear functional F ∈ S0(R,L0)′m is positive if and only
if it is positive as an element of S ′0(R,L).

Proof. If F is a positive linear functional then

0 ≤ 〈F, (χ⊗ T )(χ⊗ T )∗〉 = 〈F (|χ|2), TT ∗〉

for all χ ∈ S0(R), T ∈ Ld0. The argument of [35, p. 277] means that any positive
η ∈ S0(R) can be approximated by elements of the form |χ|2 and any S ∈ Ld0,
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S ≥ 0 can be approximated by TT ∗ by using the arguments of the lemma. So
we conclude that if F is a positive linear functional then it is positive as an
operator-valued distribution.

On the other hand, suppose F is positive as an element of S ′0(R∗,Ld). Given
Ψ ∈ S0(R,L0) we can approximate Ψ by

ΨN =
N∑
j=1

ξ
(N)
j ⊗ ϕ(N)

j ⊗ ψ(N)
j .

Using a Gram-Schmidt Orthogonalisation Process we can assume that

(ψ
(N)
j |ψ

(N)
l ) = δjl.

Then

〈F,ΨN ·Ψ∗N〉 =
N∑

j,l=1

(ψ
(N)
j |ψ

(N)
l )〈F, ξ(N)

j ξ
(N)
l ⊗ ϕ(N)

j ⊗ ϕ(N)
l 〉

=
N∑
j=1

〈F, |ξ(N)
j |2 ⊗ ϕ

(N)
j ⊗ ϕ(N)

j 〉 =
∑
j

(F (|ξj|2)ϕ
(N)
j |ϕ

(N)
j ) ≥ 0.

Taking the limit as N →∞ we obtain 〈F,Ψ ·Ψ∗〉 ≥ 0.

Other Multiplication Algebras. We could also have considered D(R∗,L0)
or E(R∗,L0). The latter is ill suited because it is too big so that the distribution
space becomes small. The former gives us some of the same analysis but it is
complicated by the fact that D(R∗) is not a Fréchet space so we have omitted it.

2.3 Fourier Theory on a Compact Lie Group

Suppose that K is a compact connected Lie group. We have as above the Fréchet
∗-algebra E(K) = D(K). There is a natural Bochner theorem in this setting. We
use the notation as in [37] with K = G: One choose a maximal toral subgroup
T ⊆ G and denote by t its Lie algebra. One lets (·|·) denote an AdK-invariant
inner product with corresponding norm |·| by which forms on g can be identified
with elements of g. Under this identification, D denotes the set of all dominant
K-integral forms, i.e., all elements λ ∈ t for which

(λ|H) ∈ 2πZ

for all H ∈ t and
(λ|s) ≥ 0

for every simple root s of g. Every element λ ∈ D corresponds uniquely to an
irreducible representation πλ : K → L(Hλ). Here the dimension d(λ) of Hλ if
of course finite. Denote by ‖A‖2 = tr[AA∗]1/2 the Hilbert-Schmidt norm of any
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matrix A which is a norm on any L(Hλ). One denotes by S(D) the collection of
“maps” F for which F (λ) ∈ L(Hλ) for every λ and for which

qn(F ) := max
λ
|λ|n‖F (λ)‖2

is finite for every n. Then S(D) is topologised by the seminorms qn and it
becomes a Fréchet space. Actually, S(D) is a Fréchet ∗-algebra with algebraic
operations

F ·G(λ) := F (λ) ◦G(λ),

F ∗(λ) := F (λ)∗.

To every ϕ ∈ E(K) one can associate its Fourier transform ϕ̂ given by

ϕ̂(λ) =

∫
K

ϕ(x)πλ(x) dx

We have from [37, Theorem 4] that

Theorem 2.3.1. The Fourier transform is a topological ∗-isomorphism

E(K)→ S(D).

In order to define the Fourier transform of distributions, let S(D) → E(K),

F 7→ F̂ be the map given by

F̂ (x) =
∑
λ

d(λ) trF (λ)πλ(x).

This is not quite the inverse Fourier transform but we have

(ϕ̂)̂(x) = ϕ(x−1).

For F,G ∈ S(D) let

〈F,G〉 =
∑
λ

d(λ) tr[F (λ)G(λ)] (2.8)

(F |G) = 〈F,G∗〉.

The continuous bilinear form 〈·, ·〉 allows us to define an injective continuous
linear map S(D)→ S(D)′ just as the corresponding forms on K

〈ϕ, ψ〉 =

∫
ϕ(x)ψ(x) dx (2.9)

(ϕ|ψ) = 〈ϕ, ψ〉

allows us to define an injective continuous linear map C(K)→ E ′(K) (note that
ϕ is not the involution on E(K)).
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It is easy to see that we get

〈ϕ̂,Φ〉 = 〈ϕ, Φ̂〉

for ϕ ∈ E(K), Φ ∈ S(D) and this allows us to define the Fourier transform of
distributions by simply replacing ϕ by a distribution f ∈ E ′(K). Naturally, we
have the Plancherel Identity

(ϕ̂|ψ̂) = (ϕ|ψ)

as well. Since Φ̂∗ = Φ̂∗ (for Φ ∈ S(D)) this even extends to ϕ = f ∈ E ′(K) and
ϕ ∈ E(K).

Positive Functionals. Owing to the fact that D is discrete, the dual S(D)′

is actually known explicitly. Define OM(D) to be the set of “maps” F for which
F (λ) ∈ L(Hλ) for every λ ∈ D and for which there is some n such that

max
λ
|λ|−n‖F (λ)‖2 <∞.

It is not difficult to see that every F ∈ OM(D) determines an element of S(D)′

by way of Eq. (2.8), cf. [37, Lemma 1.3].

Remark 2.3.2. To become worthy of the notation OM(D) we should define it as
the space of maps F for which F · Φ ∈ S(D) for every Φ ∈ S(D). This should
come to the same thing.

For every A ∈ L(Hλ) there is a natural element ΦA ∈ S(D) defined by

ΦA(µ) =

{
A µ = λ

0 µ 6= λ.

Then if F ∈ S(D)′, L(Hλ) 3 A 7→ 〈F,ΦA〉 is continuous so that there is some
F (λ) ∈ L(Hλ) such that

〈F,ΦA〉 = d(λ) trF (λ)A

for every A ∈ L(Hλ). We must have

|〈F,Φ〉| ≤ C max
n≤N

qn(Φ)

for some C > 0 and N ∈ N0. So that

d(λ)‖F (λ)‖2
2 = |〈F,ΦF (λ)∗〉| ≤ C max

n≤N
|λ|n‖F (λ)‖2

Note that d(λ) grows no faster than |λ|m for some power m so we have proven

Proposition 2.3.3. S(D)′ can be identified with OM(D).

When f ∈ E ′(K) we can actually pair it with πλ ∈ E(K,L(Hλ)) ∼= E(K) ⊗̂
L(Hλ) and obtain

f̂(λ) ∈ L(Hλ).

This is then the Fourier transform E(K)→ OM(D) explicitly.
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Theorem 2.3.4 (Bochner’s Theorem). A distribution f ∈ E ′(K) is positive

definite if and only if f̂(λ) is positive for every λ.

Proof. F ∈ OM(D) ∼= S(D)′ is positive if and only if

0 ≤ 〈F,ΦΦ∗〉 =
∑
λ

d(λ) trF (λ)Φ(λ)Φ(λ)∗.

By taking Φ = ΦA we find this is the case if and only if

trF (λ)AA∗ ≥ 0

for every λ and every A which since every positive matrix is of the form AA∗ is
equivalent to trF (λ)B ≥ 0 for every positive B which is equivalent to positivity
of F (λ).

Operator-Valued Case. When E is a locally convex space we can take the
tensor product and obtain the vector-valued Fourier transform

E(K,E) ∼= E(K) ⊗̂ E → S(D) ⊗̂ E.

We are primarily interested in the case E = L1(H) for some Hilbert space so we
will take E to be a complete normed space with norm ‖·‖. First we will achieve
explicit characterisations of S(D) ⊗̂ E and of

(S(D) ⊗̂ E)′ ∼= S ′(D) ⊗̂ E ′

Define S(D,E) to be the set of “maps” Φ such that Φ(λ) ∈ LHλ ⊗̂ E and such
that

qn(Φ) := max
λ
|λ|n‖Φ(λ)‖π <∞.

Here ‖·‖π denotes the projective tensor product norm of ‖·‖1 and ‖·‖. Note that
when A ∈ LHλ we have ‖A‖2 ≤ ‖A‖1 ≤

√
d(λ)‖A‖2 so that the norm ‖·‖2 in

the definition of S(D) can safely be replaced by ‖·‖1.
S(D,E) is a Fréchet space: If (Φn)n is a Cauchy sequence then (Φn(λ))n is

Cauchy so it has a pointwise limit Φ(λ). For every ε > 0 we have some N such
that

|λ|l‖Φn(λ)− Φm(λ)‖π ≤ ε

for all λ and for all n,m ≥ N . Taking the limit as n→∞ we have ql(Φ−Φm) ≤ ε
for m ≥ N . It follows that Φn → Φ.

Proposition 2.3.5. S(D,E) is linearly isomorphic to S(D) ⊗̂ E.

Proof. Consider the natural bilinear map Λ : S(D) × E → S(D,E), (Φ, e) 7→
Φ⊗ e where (Φ⊗ e)(λ) = Φ(λ)⊗ e. Then we have

qn(Λ(Φ⊗ e)) = max
λ
|λ|n‖Φ(λ)⊗ e‖π = qn(Φ)‖e‖
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so that the bilinear map is jointly continuous. Thus we have a continuous linear
map S(D) ⊗̂ E → S(D,E). The claim is that it is an isomorphism. The set of
Φ ∈ S(D,E) for which Φ(λ) is nonzero only for finitely many λ is dense and each
such element can be approximated by Φ’s with Φ(λ) ∈ LHλ⊗E which is in the
image of Λ. So we have the image of Λ which we will also denote by S(D)⊗ E
is dense.

We have a trilinear map

LHλ × LHλ × E → E

(T, S, e) 7→ tr[TS]e

which satisfies

‖tr[TS]e‖ ≤ ‖T‖1‖S‖1‖e‖ = ‖T‖1‖S ⊗ e‖π.

So we get a jointly continuous bilinear map Bλ : LHλ × LHλ ⊗̂ E → E which
satisfies

‖Bλ(T, u)‖ ≤ ‖T‖1‖u‖π.

This allows us to define the “application” map (we are trying to prove S(D,E) ∼=
S(D) ⊗̂ E ∼= L(S ′(D), E))

S ′(D)× S(D,E)→ E

by using the association S ′(D) ' OM(D)

F · Φ =
∑
λ

d(λ)B(F (λ),Φ(λ)).

If H ⊆ S ′(D) is an equicontinuous subset then there is some n and C such that

max
λ
|λ|−n‖F (λ)‖1 ≤ C

for all F ∈ H. Then

‖F · Φ‖ ≤
∑
λ

d(λ)‖F (λ)‖1‖Φ(λ)‖π

≤ Ccqn′(Φ)

for some appropriate n′ ≥ n. This demonstrates that the application map is
separately continuous in S(D,E). As for S ′(D), if Φ ∈ S(D) ⊗ E, Φ can be
written as

∑
j ϕj ⊗ ej so

F · Φ =
∑
j

∑
λ

d(λ) trF (λ)ϕj(λ)ej =
∑
j

〈F, ϕj〉ej

which gives us separate continuity in S ′(D) is the element in S(D,E) is held fixed
in S(D)⊗E. Note that S(D)⊗E is sequentially dense in S(D,E) and S(D) is
a nuclear Fréchet space so it is Montel (cf. [39, Prop. 50.2, Corollary 3]) so that
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S ′(D) is also Montel so in particular it is barreled. Approximating an element of
S(D,E) by elements in S(D)⊗E gives us then a sequence of continuous operators
S ′(D)→ E which is pointwise bounded so it is an equicontinuous sequence. The
limit operator is then continuous which gives us separate continuity in both
variables. Since both S ′(D) and S(D,E) are barreled, it is hypocontinuous
which means that we have a continuous linear map

S(D,E)→ Lb(S ′(D), E) ∼= S(D) ⊗̂ E

which is actually an inverse of the map we started out defining S(D) ⊗̂ E →
S(D,E).

Just as before we define OM(D,E) to be the set of “maps” F such that
F (λ) ∈ L(Hλ) ⊗̂ E for every λ ∈ D and

max
λ
|λ|−n‖F (λ)‖π <∞

for some n. Any element F ∈ OM(D,E ′) induces a continuous linear functional
on S(D,E) by

〈F,Φ〉 =
∑
λ

d(λ)〈F (λ),Φ(λ)〉.

Employing the same proof as before we have

Proposition 2.3.6. S(D,E)′ is identified with OM(D,E).

Now we return to the case E = L1(H). Then E ′ = LH. Concretely, the
Fourier transform E ′(K,LH)→ OM(D,L(H)) has the following description: A
distribution f ∈ E ′(K,LH) is a linear map E(K) → LH which can be paired
with πλ ∈ E(K,LHλ) to produce

f̂(λ) = 〈f, πλ〉 ∈ LHλ ⊗̂ LH ∼= L(Hλ ⊗̂ H).

Just as before we find

Theorem 2.3.7 (Bochner’s Theorem). A distribution f ∈ E ′(K,LH) is positive

definite if and only if f̂(λ) is positive for all λ.

Proof. An F ∈ OM(D,L1(H)) is a positive functional on S(D,L1(H)) if and
only if

0 ≤
∑
λ

d(λ) trF (λ)Φ(λ)Φ(λ)∗ ≥ 0

for all Φ ∈ S(D,L1(H)). This is equivalent to F (λ) being positive for all λ.



Chapter 3

Vector-Valued Distribution
Theory

In this chapter we consider distributions that have vector values. These have
been studied by Schwartz in [33, 34]. This inquiry is motivated by the following:
It is well-known that the Fourier transformation on the Heisenberg group takes a
function to a family (i.e., a function) of operators on the dual. Then a generalised
function (i.e., a distribution) should be taken to a generalised family of operators
(i.e., an operator-valued distribution). This chapter does take us on a bit of a
detour and its results are not strictly speaking necessary for the analysis of the
Knapp-Stein, but it features a very general structure theorem for distributions
with punctual support in Theorem 3.1.7. This interesting theorem I have not
seen anywhere.

In this chapter is also included the easy characterisation of vector-valued
homogeneous distributions on the line and also a proof of the smooth action of
the general linear group GL(d,R) on S(Rd) which will be used extensively later.
The characterisation of homogeneous distributions is simply a generalisation of
the arguments in [11, Ch. I, 3.11].

General Definitions. Suppose that U ⊆ Rd, that E is a topological vec-
tor space and that H(U) ⊆ E(U) is some vector subspace equipped with some
topology finer than the topology on E(U). Then we define

H′(U,E) := Lb(H(U), E).

In this way we define D′(U,E), E ′(U,E), S ′(Rd, E), (S∞)′(U,E), S ′0(U,E). The
continuous inclusion

D(U) ⊆ E(U)

gives rise to a continuous injection

E ′(U,E) ⊆ D′(U,E)

and the continuous inclusions

D(Rd) ⊆ S(Rd) ⊆ E(Rd)

41
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gives rise to continuous injections

E ′(Rd, E) ⊆ S ′(Rd, E) ⊆ D′(Rd, E).

Note that here we also use density of the spaces in question.

Remark 3.0.1. For this chapter we use the norms introduced in Appendix A.2.

Support of a Vector-Valued Distribution. For every V ⊆ U the continuous
inclusion D(V ) → D(U) induces a continuous transpose D′(U,E) → D′(V,E),
T 7→ T |D(V ). For every T ∈ D′(U,E) the support suppT of T is the complement
in U to the union of all the open V such that T |V = 0. We will say that T has
compact support when suppT is compact.

Proposition 3.0.2. The elements of D′(U,E) with compact support is contained
in E ′(U,E).

Proof. Let T ∈ D′(U,E), K = suppT . Then there is some ϕ ∈ D(U) such that
ϕ = 1 on K. The map E(U) 3 ψ 7→ T (ϕψ) ∈ E is a continuous extension of
T .

Remark 3.0.3. Unlike the scalar case, the subspace of distributions with compact
support is not identical to E ′(U,E). Indeed, one can consider E = RN with
en ∈ E being the element defined by (en)j = δnj. We then have the distribution

E(U) 3 ϕ 7→
∑
x∈N

ϕ(x)ex.

This is continuous because E is given the product topology and composition with
the projection onto the n’th factor gives ϕ 7→ ϕ(n) which is continuous. But the
support is seen to be N which is noncompact.

However, we have

Proposition 3.0.4. Suppose that E is a topological vector space with a contin-
uous norm. Then the elements of E ′(U,E) have compact support.

Proof. Let q = ‖·‖ be a continuous norm on E and let T ∈ E ′(U,E). Then we
have

‖Tϕ‖ ≤ Cpq,n,K(ϕ)

for some compact K ⊆ U and some n ∈ N0. This implies that T has support
contained in K.

Remark 3.0.5. The spaces E satisfying the condition of the last proposition in-
clude the normed spaces, naturally. The space RN is characteristic for not sat-
isfying this condition. Indeed, if p is a continuous seminorm on RN by there is
some N such that |xj| ≤ rj for j = 1, . . . , N implies p(x) ≤ 1. This in turn
implies that p(x) ≤ maxj≤N |xj| for all x so that p has a huge kernel. One can
see, cf. [18, Theorem 7.2.7], that a Fréchet space has a continuous norm if and
only if it does not contain a subspace linearly homeomorphic to RN.

As a consequence we have the well-known fact that E ′(U) = E ′(U,C) is iden-
tified with the space of distributions in D′(U) having compact support.
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Order of a Vector-Valued Distribution. For every m ∈ N0 we have the
space Dm(U) which contains D(U) as a dense subspace. We will say that T ∈
D(U,E) has finite order if T is continuous in the topology inherited from Dm(U)
for some m. This is equivalent to T admitting a continuous extension Dm(U)→
Ê where Ê is the completion of E. The order is then the smallest m for which
the above is true.

In the case that E is locally convex this translates to a definition analogous
to the one for scalar-valued distributions in e.g. [16, Definition 2.1.1]. In the
locally convex case, T ∈ D′(U,E) will have finite order if and only if there is
an m ∈ N0 such that for all continuous seminorms p on E and for all compact
K ⊆ U there is a C > 0 such that

p(Tϕ) ≤ C‖ϕ‖m (3.1)

for all ϕ ∈ DK(U). The order of T is then the smallest m such that this is true.

Remark 3.0.6. Unlike the scalar case, not all elements of E ′(U,E) have finite
order. Indeed, we see that

E(R) 3 ϕ 7→
∑
n

ϕ(n)(0)en

is an element in E ′(R,RN) of infinite order. Actually, this distribution has com-
pact support so not even this is sufficient for having finite order.

We say that T ∈ D′(U,E) is locally of finite order if T |V has finite order for
each open and bounded V ⊆ U .

Proposition 3.0.7. Suppose that E is a normed space. Then every element of
T ∈ D′(U,E) has finite order.

Proof. This is obvious since for every compact K ⊆ U we have Eq. (3.1) when
p is a norm that defines the topology on E. Every seminorm on E is equivalent
to p so T restricted to the interior of K has finite order.

Every normed space is a DF -space. Schwartz proves in general that

Proposition 3.0.8. Suppose that E is a quasi-complete DF-space. Then every
element of D′(U,E) is locally of finite order.

Proof. [33, Prop. 23, Corollaire 2].

Using tensor-product methods we can a similar result:

Proposition 3.0.9. Suppose that F is a Fréchet space. Then every element of
E ′(U, F ′) has compact support and finite order.

Proof. According to [39, Prop. 50.7] we have E ′(U, F ′) ∼= E(U, F )′. If T ∈
E(U, F )′ then there is some compact K ⊆ U and a continuous seminorm q on F
such that

|〈T,Φ〉| ≤ Cpq,n,K(Φ).
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The element S ∈ E ′(U, F ′) corresponding to T is 〈Sϕ, f〉 = T (ϕ⊗ f). We have

pq,n,K(ϕ⊗ f) = max
|α|≤n

sup
x∈K

p(∂αϕ(x)f) ≤ ‖ϕ‖n,Kp(f).

It is enough to consider on F ′ the continuous seminorms pB for B ⊆ F bounded
given by

pB(f) = sup
ϕ∈B
|〈f, ϕ〉|.

Then we have
pB(Sϕ) ≤ C‖ϕ‖K,n sup

f∈B
p(f).

This demonstrates that the order is at most n and that the support of S is
contained in K.

3.1 Structure Theorem for Distributions with

Punctual Support

The following theorem is well-known to be true for E = C:

Theorem 3.1.1. Suppose that T ∈ D′(U,E) has support {x} and order n. Then
it has the form

T (ϕ) =
n∑
j=1

ϕ(j)(x)ej

for some N ∈ N and ej ∈ E.

Proof. We can follow [16, Theorem 2.3.4] basically without change. For this we
need the following theorem.

Theorem 3.1.2. Suppose that T ∈ D′(U,E) has compact support and finite
order n. Then if ϕ ∈ D(U) such that ∂αϕ(x) = 0 for all x ∈ suppT and |α| ≤ n
then T (ϕ) = 0.

Proof. The proof in [16, Theorem 2.3.3] can be brought over without change.

This argument is present in basically the same form in [35, Ch. III, §10, Thm.
XXXV] and in [17, Ch. 4, §4, Prop. 5]. We will carry out a refactoring of this
argument which will enable us to generalise Theorem 3.1.1 to Theorem 3.1.7.
The unstated proposition that is being proven on the way in the previous proof
is

Lemma 3.1.3. Suppose that E is a quasi-complete locally convex space. For
N ∈ N0 ∪ {∞} the closure of

{ϕ ∈ DN(Rd, E) | suppϕ ⊆ Rd \ 0}

in DN(Rd, E) is exactly

{ϕ ∈ DN(Rd, E) |ϕ(n)(0) = 0 for all |n| ≤ N}.
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This is a remark (for E = C) made during the proof of the structure theorem
in [11, Ch. II, 4.5 Theorem] but it is actually made explicit in [39, Lemma 24.1]
without a detailed proof.

Remark 3.1.4. Here and other places we shall abuse notation slightly. When
N = ∞, ϕ(n)(0) = 0 for |n| ≤ N means that ϕ(n)(0) = 0 for all n. It does not
make sense in this case to put n =∞!

Proof. If a function ϕ ∈ DN(Rd, E) satisfies suppϕ ⊆ R \ 0 then ϕ(n)(0) = 0

for all |n| ≤ N and each δ
(n)
0 is continuous on DN(R, E) for |n| ≤ N so we have

one inclusion. For the other, it is necessary to prove that any ϕ ∈ DN(R, E)
satisfying ϕ(n)(0) = 0 for all |n| ≤ N is a limit of functions with support in
R \ 0. Take χ ∈ D(Rd) such that χ(x) = 1 for |x| ≤ 1

2
and χ(x) = 0 for |x| ≥ 1.

Let χk(x) = χ(kx). Then we prove that χkϕ → 0 as k → ∞. This will suffice
because then (1− χk)ϕ→ ϕ. First note that χkϕ→ 0 uniformly. Indeed if q is
some continuous seminorm on E and ε > 0 is given, by continuity there is some
δ > 0 such that q(ϕ(x)) ≤ ε for |x| ≤ δ. We have χk(x) = 0 if |x| ≥ 1/k so when
δ > 1/k we have ‖χkϕ‖q ≤ ε.

Next we consider the derivatives. By Leibniz’ rule (Theorem A.1.10),

(χkϕ)(n) =
∑

0≤m<n

(
n

m

)
χ

(n−m)
k ϕ(m) + χkϕ

(n).

For |n| ≤ N we have ϕ(n)(0) = 0 so by the above argument χkϕ
(n) → 0 uniformly.

As for the other terms,

χ
(n−m)
k (x) = k|n|−|m|χ(n−m)(kx)

is equal to 0 for |x| ≤ 1
2k

and for |x| ≥ 1
k

if m < n. So we have

‖χ(n−m)
k ϕ(m)‖q ≤ k|n|−|m|‖χ(n−m)‖∞ sup

1
2k
≤|x|≤ 1

k

q(ϕ(m)(x)).

The Taylor expansion (Theorem A.1.12) of ϕ(m) around 0 of degree |n|−|m|−1 ∈
N0 is

ϕ(m)(x) =
∑

l≤|n|−|m|−1

ϕ(m+l)(0)

l!
xl

+
∑

|l|=|n|−|m|

|n| − |m|
l!

xl
∫ 1

0

ϕ(l+m)(tx)(1− t)|n|−|m|−1 dt.

Note that |l| ≤ |n|− |m|−1 implies |m+ l| ≤ |n|−1 ≤ N so ϕ(m+l)(0) = 0. This
means the first terms disappear so we have

q(ϕ(m)(x)) ≤
∑

|l|=|n|−|m|

|n| − |m|
l!

|xl|
∫ 1

0

(1− t)|n|−|m|−1q(ϕ(l+m)(tx)) dt

≤ |x||n|−|m|
∑
|l|=|n|

1

l!
sup
|y|≤|x|

q(ϕ(l)(y))
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So we get

sup
1
2k
≤|x|≤ 1

k

q(ϕ(m)(x)) ≤ k|m|−|n|
∑
|l|=|n|

sup
|x|≤ 1

k

|ϕ(l)(x)|

and
‖χ(n−m)

k ϕ(m)‖q ≤ ‖χ(n−m)‖∞ sup
|x|≤ 1

k

∑
|l|=|n|

q(ϕ(l)(x)).

By continuity of ϕ(l) and since ϕ(l)(0) = 0 this converges to 0 as k →∞.

We will need a similar result for other spaces. Using that D(U,E) is dense
in E(U,E) and D(Rd, E) is dense in S(Rd, E) we get

Proposition 3.1.5. Suppose that E is a quasi-complete locally convex space.
The closure of the set of ϕ ∈ E(U,E) with suppϕ ⊆ Rd \0 is exactly the subspace
of ϕ that vanish to all degrees at 0.

Proposition 3.1.6. Suppose that E is a quasi-complete locally convex space.
The closure of the set of ϕ ∈ S(Rd, E) with suppϕ ⊆ Rd \0 is exactly S0(Rd, E),
i.e., the subspace of functions that vanish to all degrees at 0.

Theorem 3.1.7. Suppose that T ∈ D′(Rd, E) has support equal to {0}. Then
there are elements en ∈ E such that

T =
∑
n∈Nd0

δ
(n)
0 ⊗ en. (3.2)

Proof. By the previous theorem the kernel of T must contain

N =
⋂
n

ker δ
(n)
0 .

There is a continuous linear map Φ : D(Rd)→ CNd0 given by Φ(ϕ) = (ϕ(n)(0))n.
Restricted to DK(Rd) the map is surjective by Borel’s lemma ([39, Thm. 38.1])
and both DK(Rd) and CNd0 are Fréchet spaces so the restriction is an open map
cf. [30, Thm. 2.11]. Since a local basis for the topology on D(Rd) is given by
the absolutely convex sets that intersect with DK(Rd) to a 0-neighbourhood in
DK(Rd) (cf. [28, Ch. V, §2, Prop. 4]) we find that Φ must be open as well. But

then Φ induces an isomorphism Φ̃ : D(Rd)/N → CNd0 , cf. [18, Prop. 4.2.4]. Since

the kernel of T contains N it induces a continuous linear map T̃ : D(Rd)/N → E

([18, Prop. 4.1.2]). Now, T̃ ◦ Φ̃−1 is given uniquely by its values on the standard
basis vectors sn in CNd0 . Then we set

en = T̃ (Φ̃)−1(sn).

When ϕ ∈ D(Rd) we then find that

T (ϕ) = T̃ [ϕ] = T̃ (Φ̃)−1Φ̃[ϕ] = T̃ (Φ̃)−1(ϕ(n)(0))n =
∑
n

ϕ(n)(0)en.
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The equality Eq. (3.2) is an equality in D′(U,E) so we need to see that the
convergence in the sum is uniform on bounded subsets of D(R). The family

{
∑
|n|≤N

δ
(n)
0 ⊗ en |N ∈ N0} ∪ {T}

is equicontinuous because restricted to each DK(Rd) it is equicontinuous because
of the Uniform Boundedness Principle (cf. [28, Ch. V, §2, Prop. 5] and [30,
Thm. 2.6] — pointwise we have convergence so we have boundedness since it
is a sequence). Now, on an equicontinuous set of linear maps the topology of
pointwise convergence and compact convergence coincide, cf. [39, Proposition
32.5]. Since D(Rd) is a Montel space, this topology coincides with the topology
of bounded convergence.

Now a natural generalization presents itself: It is possible to define, in gen-
eral, D′(M,E) for any smooth manifold M . When N ⊆ M is an (embedded)
submanifold and T ∈ D′(M,E) has support contained in N it is natural to ask
whether or not there exists an S ∈ D′(N,E) such that T (ϕ) = S(ϕ|N) for all
ϕ ∈ D(M). We will give a simple theorem with an affirmative answer:

Corollary 3.1.8. Suppose that T ∈ D′(Rd, E) has support contained in Rk × 0
for some k ≤ d. Then there is a decomposition

T =
∑
n

Tn ⊗ δ(n)
0

for some Tn ∈ D′(Rk, E).

This corollary is of course well-known in the E = C-case.

Proof. We simply note that

D′(Rd, E) ∼= D′(Rd−k) ⊗̂ D′(Rk) ⊗̂ E ∼= D′(Rd−k,D′(Rk, E)).

That T has support in Rk × 0 means that the corresponding element T̃ in
D′(Rd−k,D′(Rk, E)) has support at {0}. The previous theorem implies that

T̃ =
∑
n

δ
(n)
0 ⊗ Tn

for some Tn ∈ D′(Rk, E).

3.2 Homogeneous Vector-Valued Distributions

Suppose that E is a locally convex space and let X be either Rd or Rd \ 0. An
element Φ ∈ E(X,E) is said to be homogeneous of degree λ ∈ C if for all s > 0
and we have

Φ(sx) = sλΦ(x)

for all x. We introduce δs : E(X) → E(X) given by [δsϕ](x) = ϕ(sx). Then
homogeneity of Φ means [δs ⊗ I]Φ = sλΦ. One finds
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Lemma 3.2.1. For every ϕ ∈ D(X), R∗ 3 s 7→ δsϕ ∈ D(X) is differentiable
with derivative at s equal to 1

s
x · ∇δsϕ.

Remark 3.2.2. We use the shorthand

x · ∇ =
d∑
j=1

xj∂j.

On the distributions it acts as

〈x · ∇T, ϕ〉 = −
∑
j

〈T, ∂jxjϕ〉 = −d〈T, ϕ〉 − 〈T, x · ∇ϕ〉 (3.3)

by the chain rule.

Proof. Note first that s 7→ δsϕ is continuous. Indeed, for s ∈ B ⊆ R∗ bounded,
supp δsϕ ⊆ B−1 suppϕ so in proving δtϕ → δsϕ for t → s we can work inside
DK(X) for K = B−1 suppϕ where B is a bounded neighbourhood of s. We have
ϕ is uniformly continuous so given ε > 0 we can find r > 0 such that |x− y| ≤ r
implies |ϕ(x) − ϕ(y)| ≤ ε. Let R > 0 such that K ⊆ B(0, R). Then for every
x ∈ X we have either |x| > R so that when t ∈ B, δtϕ(x) = 0 = δsϕ(x) or we have
|x| ≤ R so that when t ∈ B, |t− s| ≤ r/R, |tx− sx| ≤ r so |ϕ(tx)− ϕ(sx)| ≤ ε.

In short, we have proven that as t → s, δtϕ → δsϕ uniformly. Note that
∂jδsϕ = sδs∂jϕ so one finds

∂jδtϕ− ∂jδsϕ = t(δt∂jϕ− δs∂jϕ) + (t− s)δs∂jϕ

goes uniformly to 0 as t → s. This completes the argument that s 7→ δsϕ is
continuous.

As for the rest, we start with

d

dt
ϕ(tx) =

∑
j

xj∂jϕ(tx) =
1

t
x · ∇δtϕ(x)

so pointwise we have

δs+hϕ− δsϕ
h

− 1

s
x · ∇δsϕ =

1

h

∫ s+h

s

1

t
x · ∇δtϕ−

1

s
x · ∇δsϕdt.

We can take care of the supports as before so that it is only necessary to work
within DK(X). It is clear that the norms of DK(X) is sublinear with regards to
the integral above so it is only necessary to see that

t 7→ 1

t
x · ∇δtϕ

is continuous. But this follows from the above.

Then one has
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Proposition 3.2.3. An element Φ ∈ E(X,E) is homogeneous of degree λ if and
only if the corresponding Φ ∈ D′(X,E) satisfies

〈T, δsϕ〉 = sλ+d〈T, ϕ〉

for all s > 0.

Proof. For a general ϕ ∈ E(X) and ψ ∈ D(X) we have by substitution

〈ϕ, δsψ〉 = s−d〈δ−1
s ϕ, ψ〉.

Since δs is continuous this extends to the vector-valued case Φ ∈ E(X,E) and
ϕ ∈ D(X):

〈Φ, δsϕ〉 = s−d〈[δ−1
s ⊗ I]Φ, ψ〉.

Indeed, one simply approximates Φ by simple tensors.
Homogeneity of Φ as a function is equivalent to [δ−1

s ⊗ I]Φ = s−λΦ so we are
done.

This suggests the general definition: An element T ∈ D′(X,E) is said to be
homogeneous of degree λ ∈ C if

〈T, δsϕ〉 = s−λ−d〈T, ϕ〉. (3.4)

Just as in the scalar case there is an equivalent formulation by using the Euler
operator x · ∇.

Proposition 3.2.4. An element T ∈ D′(X,E) is homogeneous of degree λ ∈ C
if and only if

[x · ∇]T = λT.

Proof. Indeed, differentiating Eq. (3.4) and using the lemma above we have

1

s
〈T, x · ∇δsϕ〉 = −(λ+ d)s−λ−d−1〈T, ϕ〉.

Using Eq. (3.3) this is

d
1

s
〈T, ϕ〉+

1

s
〈x · ∇T, ϕ〉 = (λ+ d)s−λ−d−1〈T, ϕ〉.

Evaluating at s = 1 we have

〈x · ∇T, ϕ〉 = λ〈T, ϕ〉

as we want.
As for the other direction, we see that s 7→ 〈T, δsϕ〉 solves the differential

equation y′ = −(λ+ d)y/x which has exactly csλ+d as a solution. It follows that
T is homogeneous of degree λ.
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It will also be convenient to have the concept of parity. A function Φ ∈
E(X,E) is even if Φ(−x) = Φ(x) and odd if Φ(−x) = −Φ(x). In short, Φ
has parity ε ∈ {−1, 1} if Φ(−x) = εΦ(x). This concept generalises naturally
to D′(X,E): Let ι : D(X) → D(X) be the continuous linear map defined by
ιϕ(x) = ϕ(−x). Then F ∈ D′(X,E) has parity ε if

〈F, ιϕ〉 = ε〈F, ϕ〉,

i.e., if F ◦ ι = εF . Again, a distribution is even if it has parity + and odd if it
has parity −.

The Scalar Case. Let Hλ(X) ⊆ D′(X) be the vector space of homogeneous
distributions of degree λ. Let us review the homogeneous distributions in the
scalar case for d = 1. Consider the functions on R defined by

xλ+(t) =

{
tλ, t > 0

0, t ≤ 0.

xλ−(t) =

{
0, t ≥ 0

(−t)λ, t < 0.

Their restrictions to R∗ are smooth and so for each λ ∈ C we have homogeneous
distributions xλε ∈ D′(R∗). It is even the case that (xλε )λ is an analytic family, i.e.,
the map λ 7→ xλε is analytic. It is classical and follows from the same argument
as given below that

Hλ(R∗) = span(xλ+, x
λ
−).

Now, for X = R the xλε ’s are only smooth functions for Reλ > 0 but they are
still locally integrable for Reλ > −1. Also it is still the case that

{Reλ > −1} 3 λ 7→ xλε ∈ D′(R)

is analytic and we have
d

dx
xλε = ελxλ−1

ε .

This equation allows us to analytically extend xλε to λ ∈ C \ (−N) and we have
again

Hλ(R) = span(xλ+, x
λ
−)

for λ ∈ C\(−N). Indeed, when T ∈ D′(R) is homogeneous of degree λ ∈ C\(−N)
we have T |R∗ = c+x

λ
++c−x

λ
− for some c+, c− so that T−c+x

λ
+−c−xλ− is supported

at 0 so it is a sum of Dirac deltas. But the Dirac deltas are homogeneous of degree
−1,−2, . . . so the sum is 0.

The singularities are simple poles; with χλε = xλε
Γ(λ+1)

the above equation gives
us

χλε = εn
dn

dxn
χλ+n
ε .
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One finds by the Fundamental Theorem of Analysis that

dn

dxn
χ0
ε = εδ

(n−1)
0

so that
χ−nε = εn−1δ

(n−1)
0

for all n ∈ N.
We have

Resλ=−n x
λ
ε = χ−nε = εn−1δ

(n−1)
0

and as such this is the obstruction to extending xλε to λ = −n. We can
reparametrise

|x|λε = xλ+ + εxλ−

and use that when n is odd, χ−n+ = χ−n− so that the limit |x|−n− exists. A
convenient name for this distribution is x−n because it corresponds with this
reciprocal inverse on R∗. Likewise, for n even, χ−n+ = −χ−n− so the limit |x|−n+

exists and we will also call it x−n. One has then

x−n|R\0 = x−n+ + (−1)nx−n− .

Note that then x−n is odd when n is odd and even when n is even. Also we have
δ

(n−1)
0 is homogeneous of degree −n and it is even when n is odd and odd when
n is even.

As for extending x−nε from R \ 0 to R this is possible. Indeed, we can simply
subtract the singular part and consider

X−nε = lim
λ→−n

(xλε −
1

λ+ n
εn−1δ

(n−1)
0 ).

Then X−nε ∈ D′(R) satisfies X−n|R\0 = x−nε . While this can seem the natural

choice, X−nε is of course only unique up to addition of δ
(k)
0 ’s. Unfortunately, X−nε

is not homogeneous. Indeed, by continuity of x d
dx

,

x
d

dx
X−nε = lim

λ→−n
(λxλε −

1

λ+ n
(−n)εn−1δ

(n−1)
0 ) = −nX−nε + εn−1δ

(n−1)
0 .

Adding Dirac deltas to X−nε does not change the fact that it is not homogeneous
but we have

x−n = X−n+ + (−1)nX−n−

is homogeneous. The other linear combination X−n+ − (−1)nX−n− is not homo-
geneous so we arrive at

Proposition 3.2.5. Consider the restriction

Hλ(R)→ Hλ(R \ 0).

For any λ ∈ C \ (−N), it is an isomorphism. For λ = −n ∈ −N, the image is
one-dimensional and spanned by

x−n = x−n+ + (−1)nx−n− .
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With this in hand we can classify all the homogeneous distributions:

Theorem 3.2.6. For λ ∈ C \ (−N), with an abuse of notation

Hλ(R \ 0) = span(xλ+, x
λ
−) = Hλ(R).

For λ = −n ∈ N we have

H−n(R \ 0) = span(x−n+ , x−n− )

and
H−n(R) = span(x−n, δ

(n−1)
0 ).

Remark 3.2.7. The argument given for this in [11, p. 81] has a small flaw in the
case λ = −n: The problem lies in the sentence “We shall assume that f(x) is
even for even n and odd for odd n”. This assumption cannot be allowed but we
can split f into an even part and an odd part and then we need to argue that
that the wrong parity cannot exist.

Proof. The only thing that has not been commented on is the last bit. Consider
a homogeneous distribution T ∈ D′(R) of degree −n. Then T is uniquely a sum
T1 + T2 of distributions where T1 is of parity (−1)n and T2 is of parity −(−1)n.
By the previous proposition, T2 restricts to 0 in R \ 0 so T2 is a sum of Dirac
deltas. Since T2 is also homogeneous of degree −n we must have that it is a
scalar multiple of δ

(n−1)
0 . As for T1 it must restrict to cx−n for the parity to hold.

Then T1 − cx−n has support at 0 so it is a sum of Dirac deltas. But the only
Dirac delta of the correct degree is δ

(n−1)
0 and even this will not do because it

has the wrong parity. It follows that T1 = cx−n. Thus we are done.

The Vector-Valued Case. We will use the notation Hλ(X,E) ⊆ D′(X,E)
for the vector-valued distributions homogeneous of degree λ.

Proposition 3.2.8. For any topological vector space E and any λ ∈ C we have

Hλ(R∗, E) = Hλ(R∗)⊗ E.

The proof hinges on the following generalisation of a result in the scalar case.

Lemma 3.2.9. Suppose that U ⊆ R is an open interval and suppose that T ∈
D′(U,E) satisfies T ′ = 0. Then T = 1U ⊗ e for some e ∈ E.

Proof. The proof is basically the same as in the scalar case. That T ′ = 0 implies
that the kernel of 1U is contained in the kernel of T . We get

C ∼= D(U)/ ker 1U → D(U)/ kerT → E

is a linear map. Therefore, it must have the form 1 7→ e for some e ∈ E. An
arbitrary element ϕ ∈ D(U) corresponds in C to

∫
ϕ which is mapped to, on the

one hand,
∫
ϕ · e, and on the other, Tϕ.
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Proof of Theorem 3.2.8. Suppose that T ∈ D′(R∗, E) is homogeneous of degree
λ ∈ C \ (−N). Then |x|−λT is also a distribution and using the chain rule,

x
d

dx
(|x|−λT ) = 0

so that |x|−λT is constant on connected components, i.e., there are e± ∈ E such
that

|x|−λT = x0
+e+ + x0

−e−.

This implies
T = xλ+e+ + xλ−e−.

Proposition 3.2.10. For any topological vector space E and any λ ∈ C

Hλ(R, E) = Hλ(R)⊗ E.

Proof. Suppose that T ∈ Hλ(R, E). First consider the case for λ ∈ C \ (−N).
Then, naturally, T |R\0 is also homogeneous of degree λ so that by the previous
proposition,

T = T1 ⊗ e1 + T2 ⊗ e2

for Tj ∈ Hλ(R \ 0) and ej ∈ E. Note that we have used here that Hλ(R \ 0) is

2-dimensional. Both T1 resp. T2 have extensions T̃1 resp. T̃2 to R. But then

T − T̃1 ⊗ e1 − T̃2 ⊗ e2

has support {0} so Theorem 3.1.7 tells us that

T = T̃1 ⊗ e1 + T̃2 ⊗ e2 +
∞∑
n=0

δ
(n)
0 ⊗ xn

for some xn ∈ E. But since T, T1, T2 are homogeneous of degree λ we get

0 = (x
d

dx
− λ)

∞∑
n=0

δ
(n)
0 ⊗ xn = −

∞∑
n=0

(n+ 1 + λ)δ
(n)
0 ⊗ xn

since δ
(n)
0 is homogeneous of degree −(n + 1). It is possible to exhibit functions

in D(R) with (ϕ(n)(0))n as any given sequence so this implies that

(n+ 1 + λ)xn = 0

for all n ∈ N0. Since λ /∈ −N we must have xn = 0 for all n so that

T = T̃1 ⊗ e1 + T̃2 ⊗ e2.

Now suppose that λ = −n ∈ −N. Then T = T1 + T2 uniquely where T1(−x) =
(−1)nT1(x) and T2(−x) = −(−1)nT2(x). The previous theorem together with
the parity informs us that

T1|R\0 = x−n|R\0 ⊗ e1
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so that T1−x−n⊗e1 has support {0} so it is a sum of Dirac deltas. The argument
before gives us that because of the homogeneity

T1 − x−n ⊗ e1 = δ
(n−1)
0 ⊗ y

but δ
(n−1)
0 has parity −(−1)n so y = 0. So T1 = x−n ⊗ e1. As for T2 we must

have

T2|R\0 = |x|−n−(−1)n ⊗ e2

and we need to say here that e2 = 0. Indeed, if e2 6= 0 then |x|−n−(−1)n ⊗ e2 cannot
be extended to a homogeneous distribution of degree −n on R. This follows just
as in the scalar case: We have a continuous bilinear map

D′(R)× E → D′(R, E)

so we see that

λ 7→ xλε ⊗ e ∈ D′(R, E)

is analytic with residues

Resλ=−n x
λ
ε ⊗ e = εn−1δ

(n−1)
0 ⊗ e.

Removing the singularity, it is possible to find an extension of |x|−n−(−1)n ⊗ e2 to
R unique up to Dirac deltas because of Theorem 3.1.7. But just as in the scalar
case we see that none of these will be homogeneous.

This all implies that e2 = 0 so T2 is a sum of Dirac deltas. Considering the
homogeneity we must have

T2 = δ
(n−1)
0 ⊗ e3

which concludes the proof.

3.3 The Representation of GL(d,R) on Sd
Action of GL(d,R) on Sd. For g ∈ GL(d,R) and ϕ ∈ Sd we define g · ϕ :
Rd → C by

[g · ϕ](x) = ϕ(g−1x).

Lemma 3.3.1. For all g ∈ GL(d,R), ϕ ∈ Sd, gϕ ∈ Sd. Also, the linear map
ϕ 7→ gϕ is continuous Sd → Sd.

The n’th partial derivatives of ϕ at a point x can be understood as an n-linear
map Dnϕx : (Rd)n → C. That ϕ is a Schwartz function simply means that

sup
x
|x|m|Dnϕx(v1, . . . , vn)| <∞

for all m,n and all vectors v1, . . . , vn.
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Proof. The chain rule implies that

Dn(gϕ)x(v1, . . . , vn) = Dnϕg−1x(g
−1v1, . . . , g

−1vn)

=
∑
k

∏
i

(g−1vi|eki)Dnϕg−1x(vk1 , . . . , vkn)

where (ei)i is some orthonormal basis of Rd. It follows that it is enough to see
that |x|m/|g−1x|m is bounded as x ∈ Rd varies. Indeed, if ‖g‖ is the operator
norm of g then |gx| ≤ ‖g‖ · |x| so

|x| ≤ ‖g‖ · |g−1x|.

Using this we find

sup
x
|x|m|Dnϕx(v1, . . . , vn)| ≤ ‖g‖

∑
k

∏
i

|(g−1vi|eki)| sup
x
|x|m|Dnϕx(ek1 , . . . , ekn)|

which gives us what we want.

Proposition 3.3.2. The action of GL(d,R) on Sd is strongly continuous, i.e.,
GL(d,R) 3 g 7→ gϕ ∈ Sd is continuous.

Proof. We need to see that

|x|mDn(gϕ)x(v1, . . . , vn)→ |x|mDnϕx(v1, . . . , vn)

uniformly in x ∈ Rd as g → 1. We have

|x|mDn(gϕ)x(v1, . . . , vn)

=
|x|m

|g−1x|m
∑
k

∏
i

(g−1vi, eki)|g−1x|mDnϕg−1x(ek1 , . . . , ekn).

It is clear that the sum goes uniformly to |x|mDnϕx(v1, . . . , vn) as g → Id (indeed,
this function vanishes at infinity and for x bounded we can make g−1x close to
x). Also, we have that∣∣∣∣ |x||g−1x|

− 1

∣∣∣∣ ≤ |x− g−1x|
|g−1x|

≤ ‖1− g
−1‖|x|
|x|
‖g‖

= ‖g‖ · ‖1− g−1‖

so we are in the situation where we have fλ → f , gλ → g uniformly, ‖fλ‖ ≤ c
for all λ and g is bounded. Then fλgλ → fg uniformly. Indeed,

‖fλgλ−fg‖∞ ≤ ‖fλ(gλ−g)‖∞+‖(fλ−f)g‖∞ ≤ c‖gλ−g‖∞+‖fλ−g‖∞‖g‖∞ → 0

as λ→∞.

So we have a strongly continuous representation

GL(d,R)→ L(Sd).
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Proposition 3.3.3. For all ϕ ∈ Sd, the map g 7→ gϕ is smooth GL(d,R)→ Sd.

Proof. According to [39, Exercise 36.4], since Sd is a Montel space, it is enough
to see that for all f ∈ S ′d,

g 7→ 〈f, gϕ〉

is smooth. Consider first when f ∈ Sd. Let Φ(g) =
∫
f(x)ϕ(gx) dx. Then Φ is

clearly smooth, and the derivative is

DgΦ(h) =

∫
f(x)Dϕgx(hx) dx.

Now suppose that f ∈ S ′d and let fλ ∈ Sd such that fλ → f . Let Φλ(g) =
〈fλ, g−1ϕ〉 and Φ(g) = 〈f, g−1ϕ〉. Let g0 ∈ GL(d,R) and let K be some compact
neighbourhood of g0. Then B = {g−1ϕ}g∈K is compact by the previous proposi-
tion so it is bounded which implies that fλ|B → f |B uniformly. It follows that
Φλ|K → Φλ uniformly, and by the above calculations g 7→ D(Φλ)g(h) converges
uniformly on K (there is some polynomial contribution from hx but this is not
a problem since P · fλ → P · f for all polynomials P ) to some function Ψ given
by

Ψ(g) =

∫
f(x)Dϕgx(h) dx.

It follows that Φ is differentiable (initially on K), and that

DΦg(h) =

∫
f(x)Dϕgx(h) dx.

Now, this argument can be repeated for all partial derivatives so we find that Φ
is actually smooth.

Corollary 3.3.4. The map GL(d,R)→ L(Sd) is smooth.

Proof. Suppose g ∈ GL(d,R), and let Lh : Sd → Sd be defined by

[Lhϕ](x) = Dϕgx(h).

Then we have
(g + h)−1ϕ− g−1ϕ− Lhϕ

‖h‖
→ 0

as h → 0 for all ϕ. Banach-Steinhaus ([39, Thm. 33.1, Corollary]) turns this
convergence into uniform convergence on all compacts in Sd which is a Montel
space ([39, Prop. 34.4]) so we have uniform convergence on all bounded sets.
Note that h 7→ Lh is linear M(d,R)→ L(Sd) which then becomes the differential.



Chapter 4

Tensor Products of Bilinear
Maps

In this chapter we consider the problem of taking the tensor product of hypocon-
tinuous bilinear maps. This is a problem that was considered by Schwartz in
[34] and we will see that it is also related to Grothendieck’s “Problème des
topologies”. The solution that we will use is Theorem 4.1.8 which uses that
Grothendieck solved the problem of topologies for F - and DF -spaces. After
discovering this theorem, I found the same theorem in [3] so it is not quite new.

This chapter also sees extensive analysis of the space S0(R, E) and its multi-
plier space SM(R \ 0). This analysis will be necessary for the Fourier transform
of Lizorkin functions on the Heisenberg group.

Tensor Products of Bilinear Maps. In this paragraph we will consider the
following problem: Let M : X × Y → Z and B : E × F → G be separately
continuous bilinear maps. Then we have a natural induced bilinear map

M ⊗B : X ⊗ E × Y ⊗ F → Z ⊗G
(x⊗ e, y ⊗ f) 7→M(x, y)⊗B(e, f).

The problem is then to find conditions under which this map extends to a sepa-
rately continuous bilinear map

M ⊗̂B : X ⊗̂ E × Y ⊗̂ F → Z ⊗̂G.

If this map exists we shall say that the tensor product of M and B exists, and
we will call this map the tensor product of M and B.

One easy example is the following:

Proposition 4.0.1. Suppose that M : X × Y → Z and B : E × F → G are
continuous bilinear maps. Then the tensor product of M and B exists and it is
continuous.

Proof. Using that any convex neighbourhood of zero in the projective tensor
product contains acx(U⊗V ) for some neighbourhoods of zero U, V (here U⊗V =

57
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{u⊗ v |u ∈ U, v ∈ V }; it is not a subspace), it is not hard to see that M ⊗ B
is continuous (at (0, 0) at least but this becomes continuity everywhere, cf. [22,
§15, 14. (1)]). Continuous bilinear maps can always be extended because they
become uniformly continuous.

Alternative Proof. By using the universal properties and taking tensor product
we get an induced linear continuous map

(X ⊗̂ Y ) ⊗̂ (E ⊗̂ F )→ Z ⊗̂G.

But the projective tensor product of locally convex spaces is associative (we have
an explicit construction of the continuous seminorms) and it is clearly commu-
tative so we can arrange the factors so it suits us.

In general, however, we need to take tensor products of bilinear maps that
are not continuous. As an example, consider the following:

Theorem 4.0.2. Suppose that Λ is a hypocontinuous bilinear map E × F → G.
If ϕ ∈ E(U,E) and ψ ∈ E(U, F ) then Λ(ϕ, ψ) defined by

Λ(ϕ, ψ)(x) = Λ(ϕ(x), ψ(x))

is a smooth function U → G. This way Λ induces a hypocontinuous bilinear map

E(U,E)× E(U, F )→ E(U,G)

(ϕ, ψ) 7→ Λ(ϕ, ψ).

If ψ ∈ D(U, F ) then Λ(ϕ, ψ) ∈ D(U,G) and we obtain a separately continuous
bilinear map

E(U,E)×D(U, F )→ D(U,G).

The first claim is an example of taking tensor products because for all com-
plete Hausdorff locally convex spaces E (cf. [39, p. 533]),

E(U,E) ∼= E(U) ⊗̂ E.

Actually, the second claim is also an example of taking tensor product (albeit
using a different tensor product) because if E is an F -space then (cf. [15, Ch.
II, §3, no. 3, Examples 4.])

D(U,E) ∼= D(U)⊗ E.

So in the case where E,F,G are F -spaces the constructed map is

E(U)⊗ E ×D(U)⊗ F → D(U)⊗G.

which is the tensor product of the multiplication E(U)×D(U)→ D(U) with the
given bilinear map E × F → G.
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Proof. According to Theorem A.1.10, Λ(ϕ, ψ) ∈ E(U,G) for ϕ ∈ E(U,E), ψ ∈
E(U, F ) and

Λ(ϕ, ψ)(n) =
∑
|k|≤|n|

(
n

k

)
Λ(ϕ(k), ψ(n−k)).

If B ⊆ E(U, F ) is bounded then for any compact K ⊆ U and k ∈ Nd
0,⋃

ψ∈B

ϕ(k)(K)

is bounded in F so we conclude that Λ(ϕλ, ψ)(n) → 0 uniformly on K and
uniformly in ψ ∈ B as ϕλ → 0, proving hypocontinuity with regards to the
bounded subsets of E(U, F ). Likewise for the other factor.

It is clear that supp Λ(ϕ, ψ) ⊆ suppϕ ∩ suppψ so the map

E(U,E)×D(U, F )→ D(U,G)

is well-defined. If one fixes ϕ ∈ B ⊆ E(U,E) for B bounded then it is enough
to see that the restricted maps DK(U, F )→ D(U,G) is equicontinuous for every
compact K ⊆ U as ϕ varies over B. But this factors through DK(U,G) and the
corresponding family is equicontinuous for the same reason as above. If one fixes
some bounded B ⊆ D(U, F ) then B ⊆ DK(U, F ) for some compact K ⊆ U and
so if ϕλ → 0 then in particular all derivatives of ϕλ converges uniformly to 0 on
K and so all derivatives of Λ(ϕλ, ψ) converges to 0 in Dsuppψ(U,G) uniformly as
ψ ∈ B.

4.1 Solutions

Schwartz’ Solution. Laurent Schwartz has a partial solution to the problem
of taking the tensor product of two bilinear maps. The result in [31, Lecture 14]
is

Theorem 4.1.1. Suppose X, Y, Z are nuclear complete Hausdorff locally convex
spaces with nuclear strong duals. Let M : X × Y → Z be a hypocontinuous
bilinear map. Let E,F,G be Banach spaces and suppose that B : E × F → G is
a continuous bilinear map. Then the tensor product of M and B exists and is
hypocontinuous.

Using analogous methods we prove

Theorem 4.1.2. Suppose X, Y, Z are nuclear complete Hausdorff locally convex
spaces, and that E,F,G are complete locally convex spaces. Suppose either that
(1) E is nuclear and Y is barreled or that (2) F is nuclear and X is barreled.
Suppose that M : X×Y → Z is a hypocontinuous bilinear map and B : E×F →
G is a continuous bilinear map. Then the tensor product of M and B exists and
is separately continuous.
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Under the assumptions of the theorem and according to [39, Proposition 50.4]
we need to define a bilinear map

Lε(X ′, E)× Lε(Y ′, F )→ Lε(Z ′, G).

Note thatB inducesB : E⊗̂F → G so we need to define a map into Lε(Z ′, E⊗̂F ).
In the case E is nuclear we have

E ⊗̂ F ∼= Lε(E ′, F )

so we need a map into Lε(Z ′,Lε(E ′, F )). We can also replace Lε(X ′, E) ∼=
Lε(E ′, X).

We have a natural transpose M ′ : Z ′ → B(X, Y ), z′ 7→ z′ ◦M . Actually, in
the case where E is nuclear it is convenient to think of this map as

M ′ : Z ′ → Lb(X, Y ′)

given by
〈[M ′z′](x), y〉 := 〈z′,M(x, y)〉.

We find

Lemma 4.1.3. The map M ′ : Z ′ → Lb(X, Y ′) is well-defined and continuous
when M is hypocontinuous. Also, M ′ takes equicontinuous subsets to equicontin-
uous subsets.

Proof. Since Y ′ is given the strong topology we need hypocontinuity of M to
get the continuity of M ′z′ but otherwise it’s pretty clear. As for continuity of
z′ 7→ M ′z′ this relies on the fact that M takes products of bounded subsets to
bounded subsets which is also a property of hypocontinuity bilinear maps.

If H ⊆ Z ′ is equicontinuous then M ′H is equicontinuous because of the
hypocontinuity of M .

Now it is natural to define

Lε(E ′, X)× Lε(Y ′, F )→ Lε(Z ′,Lε(E ′, F ))

taking (T, S) 7→ ΦT,S where ΦT,Sz
′ = S ◦M ′z′ ◦ T .

Lemma 4.1.4. Suppose that Y is barreled. Then (T, S) 7→ ΦT,S is hypocon-
tinuous with regards to the bounded subsets of Lε(E ′, X) and the equicontinuous
subsets of L(Y ′, F ).

Proof. The previous proposition tells us that ΦT,S is continuous. When Y is
barreled we are actually looking at

Lε(E ′, X)× Lb(Y ′, F )→ Lε(Z ′,Lε(E ′, F )).

Suppose that B ⊆ Lε(E ′, X) is bounded and that Sλ ∈ Lb(Y ′, F ), Sλ → 0. Then
we need Sλ◦M ′H◦B → 0 uniformly in Lε(E ′, F ) for any equicontinuous H ⊆ Z ′.
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But given an equicontinuous H1 ⊆ E ′, B(E ′) ⊆ X is bounded so since M ′H is
equicontinuous, M ′H ◦B(E ′) is bounded on which Sλ → 0 uniformly.

On the other hand, suppose that B ⊆ Lb(Y ′, F ) is equicontinuous and that
Tλ ∈ Lε(E ′, X), Tλ → 0. Then we need B ◦ M ′H ◦ Tλ → 0 uniformly in
Lε(E ′, F ). Given equicontinuous H1 ⊆ E ′, Tλ|H1 → 0 uniformly and B ◦M ′H is
equicontinuous so we get the result.

Composing with B is continuous so in the case where E is nuclear and Y is
barreled we have a separately continuous bilinear map

Lε(E ′, X)× Lε(Y ′, F )→ Lε(Z ′, G).

Proof of the Theorem. We only need to check that the defined map is actually
an extension. We will assume that we are in the situation (1). If x⊗ e ∈ X ⊗̂E
it induces x ⊗ e ∈ L(E ′, X) by e′ 7→ 〈e′, e〉x. If y ⊗ f ∈ Y ⊗̂ F is induces
y ⊗ f ∈ L(Y ′, F ) by y′ 7→ 〈y′, y〉f . The element in L(Z ′,L(E ′, F )) is

z′ 7→ (e′ 7→ 〈e′, e〉〈z′,M(x, y)〉f.

Note that

e′ 7→ 〈e′, e〉〈z′,M(x, y)〉f

corresponds to 〈z′,M(x, y)〉e⊗ f in E ⊗̂ F so after applying B the entire thing
must correspond to

M(x, y)⊗B(e, f).

Relaxation of Schwartz’ Conditions. Even though we have in some ways
generalized the result by Schwartz this is not enough for our purposes since B is
assumed to be continuous. Next we will present a result for the case where M
and B are merely hypocontinuous.

Theorem 4.1.5. Suppose that M : X × Y → Z and B : E × F → G are
hypocontinuous. Then there is a bilinear map

X ⊗i E × Lε(Y ′, F )→ Lε(Z ′, G)

which coincides on the tensors with the natural tensor product of M and B. This
map is hypocontinuous with regards to subsets acx(A⊗B) of X⊗E where A ⊆ X,
B ⊆ E are bounded.

For the proof we will need some lemmata:

Lemma 4.1.6. Suppose that M : X × Y → Z is hypocontinuous. Then M
induces a continuous linear map

X → Lb(Y, Z)

x 7→M(x, ·)
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Proof. [5, III §5 Proposition 3] has this as an equivalent formulation of hypocon-
tinuity.

Lemma 4.1.7. Suppose E,F are locally convex topological vector spaces. The
transpose is a continuous linear map

Lb(E,F )→ Lε(F ′, E ′)
T 7→ T ′

which takes equicontinuous subsets to equicontinuous subsets.

Proof. [5, III §5 Proposition 9] informs us that the composition

Lb(E,F )× Lb(F,C)→ Lb(E,C)

is hypocontinuous with regards to the bounded subsets of Lb(E,F ) and the
equicontinuous subsets of F ′ = Lb(F,C). Because of [5, III §5 Proposition 3],
we have the first claim. As for the second, suppose that H ⊆ Lb(E,F ) is
equicontinuous and let V ⊆ C be a neighbourhood of 0, B ⊆ E be bounded.
Then H(B) =

⋃
h∈H h(B) is also bounded and so there is a neighbourhood of 0 in

F ′ given by all the functionals mapping H(B) to V . H ′ maps this neighbourhood
to the neighbourhood of 0 in E ′ consisting of functionals mapping B to V .

Proof of the Theorem. We can define

X ⊗i E × Lε(Y ′, F )→ Lε(Z ′, G)

by
(x⊗ e, T ) 7→ B(e, ·) ◦ T ◦M(x, ·)′.

This is separately continuous in x, e, T because the composition

Lε(Z ′, Y ′)× Lε(Y ′, F )× Lb(F,G)

is separately continuous. Furthermore, suppose that A ⊆ X and C ⊆ E are
bounded. Then A through M induces an equicontinuous subset of Lb(Y, Z) which
in turn is mapped to an equicontinuous subset of Lε(Z ′, Y ′), and C through B
is mapped to an equicontinuous subset of Lb(F,G). Now, the hypocontinuity
of the composition (twice) gives us that the map above is hypocontinuous with
regards to A⊗ B ⊆ X ⊗i E. The closed convex hull of an equicontinuous set of
linear maps is equicontinuous, cf. [39, Proposition 32.2], [39, Proposition 32.4]
so we have the wanted hypocontinuity.

The defined map coincides with the natural tensor product of the bilinear
maps. Indeed, the element corresponding to y ⊗ f in L(Y ′, F ) is the map y′ 7→
〈y, y′〉f so (x⊗ e, y ⊗ f) is mapped to the element of L(Z ′, G) given by

z′ 7→ B(e, ·)(y ⊗ f)M(x, ·)′z′ = B(e, f)〈M(x, y), z′〉

which is exactly the element induced by M(x, y)⊗B(e, f).
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It is clear that under the assumptions above we can always extend to

X ⊗ E × Lε(Y ′, F )→ Lε(Z ′, G)

which will always be continuous in the first variable if the other variable is held
fixed. But it is not clear in general that we will get continuity in the second
variable as the first is held fixed. In general as the first variable is held fixed, the
map in the second variable will be the pointwise limit of continuous maps. The
usual way of ensuring continuity is to arrange that the family of approximating
maps is equicontinuous. This will be satisfied in the above context if we can
somehow show that any element of X ⊗ E is in acx(A⊗ C) for A ⊆ X, C ⊆ E
bounded where the closure is now taken in X ⊗ E. This is a weak form of
Grothendieck’s “Probléme des topologies”: Given a bounded subset of X ⊗i E
(or, usually, X ⊗π E) Grothendieck asks if it is possible to find bounded subsets
A,C as above such that the given bounded subset if contained in acx(A⊗C). This
problem has not been solved in general, but there are two natural cases where
we can answer in the affirmative, namely if both X,E are F -spaces (technically,
only a partial answer) or if both X,E are DF -spaces.

Theorem 4.1.8. Suppose that X, Y, Z are nuclear complete spaces and that
E,F,G are complete locally convex spaces. Suppose that X,E are both F-spaces
or both DF-spaces. Suppose that M : X × Y → Z resp. B : E × F → G is a
bilinear map hypocontinuous with regards to the bounded subsets of X resp. E.
Their tensor product exists

X ⊗̂ E × Y ⊗̂ F → Z ⊗̂G

and it is hypocontinuous with respect to the bounded subsets of X ⊗̂ E.
If both X,E are barreled then the map is in fact hypocontinuous.

Proof. Considering [18, 11.1.6] and [18, 15.7.7] any separately continuous bilinear
form on X×E is continuous so X⊗iE = X⊗πE as topological spaces. According
to [39, Proposition 50.4] we have

Y ⊗̂ F ∼= Lε(Y ′, F )

Z ⊗̂ F ∼= Lε(Z ′, G)

so the previous theorem gives us bilinear

X ⊗π E × Y ⊗̂ F → Z ⊗̂G

which is hypocontinuous with regards to acx(A⊗C) for A ⊆ X, C ⊆ E bounded.
Now, [15, Ch. II, §3, no. 1, Proposition 12] informs us that any bounded subset
of X ⊗̂ E is contained in such a set (when the closure is taken in X ⊗̂ E) so in
particular the sets cover X ⊗̂ E.

The hypocontinuity now ensures that the extensions to X ⊗̂ E × Y ⊗̂ F is
continuous in the second variable and we get hypocontinuity with regards to the
bounded subsets of X ⊗̂ E. As for the bounded subsets of Y ⊗̂ F , it is enough
to remark that X ⊗̂ E is barreled. This is the case if both X,E are barreled
according to [18, 15.6.6] and [18, 15.6.8].
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4.2 Applications

We consider some application of Theorem 4.1.8. We have already seen some
applications in Chapter 2 and we will see more in Chapter 5. This section outlines
some results that can be used in an alternative approach to the Fourier theory on
the Heisenberg group than what will be presented in Chapter 5. This approach
was ultimately abandoned but it is provided here nevertheless for elucidation of
Theorem 4.1.8 through examples.

In the context of the Fourier Theory on the Heisenberg group Hd we are look-
ing at D′(R∗,L) where L = S ′(Rd ×Rd). We want to take the trace of elements
in D′(R∗,L) but not all elements of L are trace-class. The trace-class operators
are L1(S ′d) = S ′d⊗Sd and L1(Sd) = Sd⊗S ′d giving rise to generalised families of
trace-class operators D′(R∗, L1(S ′d)) and D′(R∗, L1(Sd)). As an analogue of the
fact that the composition of Hilbert-Schmidt operators give trace-class operators
we have

Proposition 4.2.1. Suppose that E,F are complete barreled locally convex spaces
and E ′, F ′ are nuclear complete spaces. Suppose either (1) that E is a F-space
and F is a DF-space or (2) that E is a DF space and F is a F-space. Then the
composition

L(F,E)× L(E,F )→ L(E)

factors
L(F,E)× L(E,F )→ E ⊗ E ′.

This bilinear map is hypocontinuous.

Proof. We know cf. [39, Proposition 50.5] that L(E,F ) ∼= F ⊗̂E ′ and L(F,E) ∼=
E ⊗̂ F ′. So we want to use the previous theorem to extend

E ⊗π F ′ × F ⊗π E ′ → E ⊗ E ′

(e⊗ f ′, f ⊗ e′) 7→ 〈f ′, f〉e⊗ e′

to the completions. Here we are taking the tensor product of the bilinear maps

F ′ × F → C
(f ′, f) 7→ 〈f ′, f〉

and

E × E ′ → E ⊗ E ′

(e, e′) 7→ e⊗ e′

that are both hypocontinuous because all the involved spaces are barreled (even
E ′, F ′ are barreled under the conditions of the theorem, cf. the proof of [39,
Proposition 50.5]). We see that one of the factors in each of the tensor products
is nuclear and that in the case (1), E ′, F are both F -spaces and in the case (2),
E ′, F are both DF -spaces.
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Corollary 4.2.2. The hypocontinuous compositions

L×L0 → L(S ′d)
L0×L → L(Sd)
(T, S) 7→ TS

factor through the trace-class operators so we obtain hypocontinuous

L×L0 → L1(S ′d)
L0×L → L1(Sd).

Proof. Use the previous proposition combined with the fact that L,L0 are nu-
clear, barreled, complete and that L is DF and L0 is F .

As an extension of Theorem 4.0.2 we have

Proposition 4.2.3. Suppose that E,F,G are complete locally convex spaces and
in addition that E is an F-space. Suppose that Λ : E × F → G is a hypocontin-
uous bilinear map. As an extension of the induced separately continuous bilinear
map

E(U,E)× E(U, F )→ E(U,G)

we have a hypocontinuous bilinear map

E(U,E)×D′(U, F )→ D′(U,G)

D′(U,E)× E(U, F )→ D′(U,G).

Proof. One simply uses Theorem 4.1.8 in the type F case. Note that E(U) and
D′(U) are both nuclear complete spaces.

Corollary 4.2.4. The space D′(R∗,L) is a two-sided module over E(R∗,L0), the
multiplication being an extension of the multiplication on E(R∗,L0). In fact, we
have hypocontinuous bilinear maps

E(R∗,L0)×D′(R∗,L)→ D′(R∗, L1(S ′d))
D′(R∗,L)× E(R∗,L0)→ D′(R∗, L1(Sd))

so that the image of the multiplication consists of generalised families of trace-
class operators. The pointwise conjugate transpose E(R∗,L0) → E(R∗,L0) ex-
tends to D′(R∗,L0) → D′(R∗,L0). The pointwise trace E(R∗,L0) → E(R∗) ex-
tends to continuous linear maps

D′(R∗, L1(S ′d))→ D′(R∗)
D′(R∗, L1(Sd))→ D′(R∗).

that satisfy

tr[ΦF ] = tr[FΦ]

tr[F ∗] = trF .
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Corollary 4.2.5. There is a hypocontinuous multiplication

D′(R∗,L)×D(R∗,L0)→ E ′(R∗, L1(S ′d))
D(R∗,L0)×D′(R∗,L)→ E ′(R∗, L1(Sd)).

which is compatible with the multiplication on E(R∗,L0).

Proof. For each compact K ⊆ R∗ we can use Theorem 4.1.8 to get hypocontin-
uous bilinear maps

D′(R∗,L)×DK(R∗,L0)→ E ′(R∗, L1(S ′d))
DK(R∗,L0)×D′(R∗,L)→ E ′(R∗, L1(Sd)).

Indeed, DK(R∗) and L0 are F -spaces and DK(R∗,L0) ∼= DK(R∗) ⊗̂L0. Also, the
multiplication D′(R∗) × D(R∗) → E ′(R∗) is hypocontinuous. Since D(R∗,L0) is
per definition the inductive limit of the spaces DK(R∗,L0) we get a separately
continuous bilinear map which is actually hypocontinuous: Any bounded subset
of D(R∗,L0) is in some DK(R∗,L0) and a family of linear maps on D(R∗,L0) is
equicontinuous if and only if each family of restrictions to DK(R∗,L0) is equicon-
tinuous for each compact K ⊆ R∗, cf. [28, Ch. V, §2, Proposition 5].

4.3 Multipliers on S0(R)
This section provides a result akin to Theorem 4.0.2 in the case where multipli-
cation E ×E → E is replaced with multiplication OM ×S0 → S0. In the end
it didn’t seem possible to prove Theorem 4.3.10 without using Theorem 4.1.8
despite the fact that the bilinear map can be written down explicitly and is not
defined by continuity.

Multiplication Operators on S0(R, E). Analogously with [32, p. 97, 4◦] we
introduce the multiplier space

OM(R \ 0, E)

= {ϕ ∈ E(R \ 0, E) |ϕ · α(n) is bounded for all ϕ ∈ S0(R) and n ∈ N0}

which is then given the topology such that αλ → 0 if and only if ϕα
(n)
λ → 0

uniformly for all ϕ ∈ S0(R). We use the shorthand OM(R \ 0,C) = OM(R \ 0).
One finds

Lemma 4.3.1. Suppose that E is locally convex. For α : R \ 0 → E to be in
OM(R\0, E) it is necessary and sufficient that 〈α, e′〉 ∈ OM(R\0) for all e′ ∈ E ′.

Proof. It is clearly necessary. The fact that it is sufficient follows from the
fact that in locally convex spaces weak smoothness is the same as smoothness
(Theorem A.1.7) and the fact that in locally convex spaces weak boundedness is
equivalent to boundedness (Mackey’s Theorem; [39, Thm. 36.2]).
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Lemma 4.3.2. Suppose that E is a complete locally convex space. Suppose that
ϕ ∈ E(R \ 0, E) such that

lim
x→0

ϕ(n)(x) = 0

for all n. Then there is an element ϕ ∈ E(R, E) uniquely given by ϕ|R\0 = ϕ.
This element satisfies

ϕ(n)(0) = 0.

for all n.

Proof. Define ϕ(n) as above. Then it is clear that ϕ(n) is a continuous function
for all n. The only thing that needs to be proven is that it is in fact differentiable
at 0 with derivative 0, i.e., we want to prove that

ϕ(n)(h)− ϕ(n)(0)

h− 0
=
ϕ(n)(h)

h
→ 0

as h→ 0. Let V ⊆ E be a neighbourhood of 0. Since E is locally convex we can
take V to be closed and convex. Since limx→0 ϕ

(n+1)(x) = 0 there is some δ > 0
such that ϕ(n+1)(x) ∈ V when |x| ≤ δ. Then Theorem A.1.3 implies that when
|h| ≤ δ,

ϕ(n)(h)

h
∈ V.

Proposition 4.3.3. Let ι : E(R \ 0, E)→ E(R \ 0, E) be the inversion

[ιϕ](x) = ϕ(1/x)

Then ι induces an isomorphism

S0(R, E)→ S0(R, E)

where

[ιϕ](n)(0) = 0

for all n and ϕ ∈ S0(R, E). Also, ι restricts to an isomorphism

OM(R \ 0, E)→ OM(R \ 0, E)

Proof. There are polynomials P n
j such that for n ≥ 1,(

d

dx

)n
ϕ
(1

x

)
=

n∑
j=1

P n
j

(1

x

)
ϕ(j)
(1

x

)
Indeed, differentiating shows that

P 1
1 (x) = −x2
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and

P n+1
1 (x) = −x2(P n

1 )′(x),

P n+1
j (x) = −x2

(
(P n

j )′(x) + P n−1
j (x)

)
, 2 ≤ j ≤ n,

P n+1
n+1 (x) = −x2P n

n (x).

For ϕ ∈ S0(R, E) we find

lim
x→0

[ιϕ](n)(x) = lim
x→∞

n∑
j=1

Pj(x)ϕ(j)(x) = 0

for all n. Then Theorem 4.3.2 tells us that ιϕ extends to a smooth function on
R with derivatives 0 at 0. Also, when p is a continuous seminorm on E,

sup
x
|x|mp([ιϕ](n)(x)) ≤

n∑
j=1

sup
x

p(P n
j (x)ϕ(j)(x))

|x|m

Let ψ(x) = P n
j (x)ϕ(j)(x) then Leibniz rule implies that ψ(n)(0) = 0 for all n so

that ψ is equal to its remainder term in the Taylor expansion (of any degree).
Then [20, A.4.2] informs us that

p(ψ(x)) ≤ |x|
m

m!
sup

0≤t≤1
p(ψ(m)(tx))

so

sup
x
|x|mp([ιϕ](n)(x)) ≤ 1

m!

n∑
j=1

sup
x
p(∂mx (P n

j (x)ϕ(j)(x))).

If the differentiation is carried out we will have continuous seminorms on S(R, E)
so we have not only proven that ιϕ ∈ S(R, E) we have also proven that ι is
continuous S0(R, E)→ S0(R, E).

When α ∈ OM(R \ 0, E) then ϕα is bounded for all ϕ ∈ S0(R) so [ιϕ][ια] is
bounded for all ϕ so since ι is surjective we find ια ∈ OM(R \ 0, E). If αλ → 0
then ϕαλ → 0 uniformly so [ιϕ][ιαλ]→ 0 uniformly so we get continuity by the
surjectivity of ι again.

Next let us characterise OM(R \ 0). First recall that the multiplier space
OM(R) of S(R) has a handy characterisation:

Proposition 4.3.4. The space of smooth functions α : Rd → C such that ϕα
is bounded for every ϕ ∈ S(Rd) is exactly the space of smooth functions α for
which every derivative α(n) is bounded by some polynomial.

Proof. [17, 4, §11, Proposition 5].

Proposition 4.3.5. The space OM(R \ 0) is the space of smooth functions α on
R \ 0 for which for every j there is an m ∈ N0 and a c > 0 such that

|α(j)(t)| ≤ ct−m
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for small t and
|α(j)(t)| ≤ ctm

for large t.
Furthermore, each element of OM(R \ 0) defines a unique continuous linear

operator on S0(R) by multiplication and in fact OM(R\0) has exactly the topology
inherited from L(S0(R)).

Proof. First note that the conditions are necessary: Suppose that α ∈ OM(R\0).
Then we may write α = α0 + α∞ where α0 is supported around 0 and α∞ is
supported around ∞. Then ια0, α∞ ∈ OM(R) so they have polynomial growth
by the previous proposition. Also, now

αϕ = ι([ια0][ιϕ]) + α∞ϕ

shows that ϕ 7→ αϕ is continuous since we already know that OM(R) acts con-
tinuously on S(R). The topology on OM(R \ 0) is exactly the topology from
Lb(S0(R)): If αλ → 0 then αλϕ → 0 for every ϕ. Note that S0(R) is barreled
because it is a Fréchet space so [39, Thm. 33.1, Corollary] tells us that αλ → 0
uniformly on compact subsets. But since S0(R) is a closed subspace of a Montel
space S(R) we find that the convergence is uniform on all bounded subsets. On
the other hand, it is clear that the topology on OM(R \ 0) is courser than the
topology on Lb(S0(R)).

Next, we show that the conditions are sufficient and furthermore that they
imply that we have a continuous linear operator on S0(R). For every ϕ ∈ S0(R),
the function αϕ extends to a smooth function on R. Indeed, because of The-
orem 4.3.2 it suffices to show that for each n the limit of (αϕ)(n)(t) as t → 0
exists and is 0. Leibniz’ rule tells us that it is sufficient to consider the limit of
α(j)(t)ϕ(n)(t) as t→ 0. By assumption there is some m and c such that

|α(j)(t)| ≤ ct−m

for small t. Then

α(j)(t)ϕ(n)(t) = (tmα(j)(t)) · (ϕ
(n)

tm
).

The first factor is bounded for small t by assumption. As for the second,
l’Hôspital’s rule tells us that

lim
t→0

ϕ(n)(t)

tm
= lim

t→0

ϕ(n+m)(t)

m!
= 0.

Not only have we shown that αϕ extends to a smooth function on R we have also
proven that all its derivatives at 0 vanish. Since α also has polynomial growth
at infinity we have that αϕ ∈ S(R) so αϕ ∈ S0(R).

Corollary 4.3.6. OM(R \ 0) is nuclear.

Proof. Indeed, Lb(S0(R),S0(R)) is nuclear according to [15, Ch. II, §2, no. 1,
Thm. 9, Cor. 3] so this follows from [39, Proposition 50.1] (a subspace of a
nuclear space is nuclear).
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Proposition 4.3.7. Suppose that E is locally convex. The topology on OM(R \
0, E) is exactly the topology inherited from Lε(E ′,OM(R\0)). It follows that the
topology induced on the tensor product OM(R \ 0)⊗ E is the ε-topology. In fact
we find

OM(R \ 0, E) ∼= OM(R \ 0) ⊗̂ E.

Proof. The map OM(R \ 0, E) → Lε(E ′,OM(R \ 0)) is the map that associates
to each α the operator e′ 7→ 〈α, e′〉. This is a continuous operator: If e′λ → 0
then we find that for every ϕ ∈ S0(R),

ϕ〈α, e′λ〉(n) = 〈ϕα(n), e′λ〉 → 0

uniformly since (ϕα(n))(R) is bounded. The association is continuous: If H ⊆ E ′

is an equicontinuous subset and αλ → 0 then whenever ϕ ∈ S0(R) we have

ϕ〈αλ, e′〉(n) = 〈ϕα(n)
λ , e′〉 → 0

uniformly as e′ ∈ H because ϕα
(n)
λ → 0 uniformly. Clearly, the association is

injective and we have just proven that the topology on OM(R\0, E) is finer than
the topology induced from Lε(E ′,OM(R \ 0)).

On the other hand, suppose that αλ → 0 in Lε(E ′,O(R \ 0)). Then if ϕ ∈
S0(R) we can go backwards and conclude that

〈ϕα(n)
λ , e′〉 → 0

uniformly as e′ ∈ H some equicontinuous subset. But the topology on a locally
convex space E is equal to the topology of uniform convergence on equicontinuous
subsets of E ′ ([39, Proposition 36.1]) so we must conclude that

ϕα
(n)
λ → 0

uniformly.
Employing the same proposition one sees that the induced topology on

OM(R \ 0)⊗ E

is the ε-topology which is identical to the π-topology since OM(R \ 0) is nuclear.
In order to get the tensor product representation all there is left to do is show
that the simple tensors are dense in OM(R \ 0, E). But this should be clear: An
element α ∈ OM(R \ 0, E) can be written as α = α0 + α∞ where α0 has support
around 0 and α∞ has support around∞. Then since OM(R, E) ∼= OM(R)⊗̂E we
can approximate ια0 and α∞ by simple tensors and we can even arrange that the
simple tensors respect the supports by multiplying by an appropriate function.
Now, ι preserves OM(R\ 0)⊗E and it is continuous so we get an approximation
of α.

One already knows that when E is locally convex, S(R, E) is identical to the
set of functions ϕ : R→ E such that 〈ϕ, e′〉 ∈ S(R) for all e′ ∈ E. By considering
that in this case E ′ separates points we find
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Lemma 4.3.8. Suppose that E is locally convex. S0(R, E) is exactly the set of
functions ϕ : R→ E for which 〈ϕ, e′〉 ∈ S0(R).

Proposition 4.3.9. Suppose that E is locally convex. If α ∈ OM(R \ 0, E) then
for all ϕ ∈ S0(R), α ·ϕ extends to a function in S0(R, E). The resulting bilinear
map

OM(R \ 0, E)× S0(R)→ S0(R, E)

is hypocontinuous.

Proof. We have already a continuous map

OM(R \ 0)→ Lb(S0(R),S0(R)).

By [39, Prop. 50.7] we have

Lb(S0(R),S0(R)) ∼= S0(R) ⊗̂ S ′0(R)

since S0(R) is a nuclear Fréchet space being a closed subspace of the nuclear
Fréchet space S(R).

Taking the tensor product with E we obtain a continuous map

OM(R \ 0, E) ∼= OM(R \ 0) ⊗̂E → (S0(R) ⊗̂ S ′0(R)) ⊗̂E ∼= Lb(S0(R),S0(R, E))

here using [39, Prop 50.5].
This proves the the map is hypocontinuous with regards to the bounded

subsets of S0(R). Since S0(R) is barreled we also have hypocontinuity with
regards to the bounded subsets of OM(R \ 0, E).

One should verify that when α ∈ OM(R \ 0, E) and ϕ ∈ S0(R) the image of
(α, ϕ) is actually given by pointwise multiplication. But note that any evaluation
map S0(R, E) → E is continuous so it is enough to see this on simple tensors.
This is obvious.

Finally, we have the following analogue of Theorem 4.0.2:

Theorem 4.3.10. Suppose that E,F,G are complete locally convex spaces and
that Λ : E × F → G is hypocontinuous. Suppose that F is an F-space. Then Λ
induces a hypocontinuous bilinear map

O0(R \ 0, E)× S0(R, F )→ S0(R, G)

given by

Λ(ϕ, ψ)(x) = Λ(ϕ(x), ψ(x))

for x 6= 0 and

Λ(ϕ, ψ)(n)(0) = 0

for all n.
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Proof. We will see in Theorem 4.1.8 that there is a hypocontinuous map

OM(R \ 0) ⊗̂ E × S0(R) ⊗̂ F → S0(R) ⊗̂G

given as the tensor product of the multiplication map

OM(R \ 0)× S0(R)→ S0(R)

and Λ. If we compose with the evaluation map we see that the induced map has
the given property.



Chapter 5

Fourier Theory on the
Heisenberg Group

In this chapter we consider the Fourier transform on the Heisenberg group. The
goal is to classify the positive definite tempered distributions in S ′(H) via the
Fourier transform. It is not completely clear how to do this: The unitary dual
of the Heisenberg group comes in two families. There are the infinite dimen-
sional representations parametrised by R∗ = R \ 0 and there are the characters
parametrised by Rd ×Rd. The classical Fourier inversion for functions take into
account only the infinite dimensional representations, but it becomes clear that
a corresponding Fourier inversion for distributions must take into account the
characters as well.

We show that the Fourier transform is an isomorphism of the ∗-ideal of Li-
zorkin functions in S(H) onto S0(R,L0) so that we can at least obtain necessary
conditions for positive definiteness via the Fourier transform, and conversely
relate positivity on the Fourier side to positivity on a ∗-ideal in S(H). We
then apply this to the Knapp-Stein kernel to get necessary conditions for the
existence of a new G-invariant inner product. The Knapp-Stein kernel and it an-
alytic extension has been considered in [19] but without analysis of its positive
definiteness.

Definition. Consider the Heisenberg group H = Rd×Rd×R with composition

(p, q, t)(p′, q′, t′) = (p+ p′, q + q′, t+ t′ + pq′)

Here (p, q, t) corresponds to 1 p t
0 1 q
0 0 1

 .

Eventually, the analysis here must be employed on N which is also isomorphic
to H. The isomorphism takes (p, q, t) to 1 0 0

−p 1 0
pq − t −q 1

 .

73
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Everything that was said in Section 2.1 applies here.

Unitary Dual of H. The characters of H are given by

(p, q, t) 7→ eipxeiqy.

For each h ∈ R∗ we have the Schrödinger representation ρh acting on L2(Rd) by

[ρh(p, q, t)ϕ](x) = eihteiqxϕ(x+ hp).

These are all the unitary representations of H up to unitary equivalence.

Fourier Transform of L1 Functions. For each f ∈ L1(H) the integral

f̂(h) = ρh(f) =

∫
H

f(g)ρh(g) dg

converges. The map f 7→ f̂ is the Fourier transform. It has certain well-known
algebraic properties, namely it is linear,

f̂ ∗ g = f̂ · ĝ.

and
f̂ ∗(h) = f̂(h)∗.

Fourier Transform of Schwartz Functions. It will be convenient to take
the Haar measure dx on Rd to be (2π)−d/2dλ(x) where λ is the Lebesgue measure.
We will take the Fourier transform on R to be

F : L2(Rd)→ L2(Rd),

[F ϕ](ξ) =

∫
ϕ(x)eixξ dx.

This makes F unitary with inverse

[F−1 ϕ](x) =

∫
ϕ(ξ)e−ixξ dξ.

Likewise, it is convenient to take the Haar measure dx on H to be the tensor
product of the Haar measures on Rd, Rd and R so that dx is (2π)−d−1/2dλ(x)
where λ is the Lebesgue measure on R2d+1.

Theorem 5.0.1. For each f ∈ S(H), the Fourier transform f̂(h) is a kernel
operator with kernel in L0 = S(Rd × Rd) given by

Kf
h (x, y) = |h|−d[F2,3 f ](h−1(y − x), x, h). (5.1)

Furthermore, the dependence on h is smooth and we obtain a continuous linear
map

S(H)→ E(R∗,L0)

which is the Fourier transform in the context of Schwartz functions. This map
also preserves the ∗-algebra structures.
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Proof. Letting ϕ ∈ S(Rd) we get

[f̂(h)ϕ](x) =

∫
H

f(p, q, t)[ρh(p, q, t)ϕ](x) d(p, q, t)

=

∫
H

f(p, q, t)eiht+iqxϕ(x+ hp) d(p, q, t)

=

∫
R
[F2,3 f ](p, x, h)ϕ(x+ hp) dp.

Here F2,3 denotes Fourier transformation in the second and third variable. Define
a new variable y = x+ hp then dy = |h|d dp so

[f̂(h)ϕ](x) = |h|−d
∫
R
[F2,3 f ](h−1(y − x), x, h)ϕ(y) dy.

Since the Fourier transform is an automorphism of S(Rd) and because of Theo-
rem 3.3.4, it is obvious that Kf

h ∈ S(Rd × Rd) for all h ∈ R∗.
That the map is well-defined and continuous is easy: First, the Fourier trans-

formation is continuous, then the restriction S(H)→ E(R∗,S(Rd × Rd)) is con-
tinuous, and then we use Theorem 4.0.2 with Theorem A.0.4 to make the linear
substitution continuously, noting that we have an element of E(R∗,L(S2d)) de-
fined by

R∗ 3 h 7→
(
−h−1 h−1

h−1 0

)
∈ GL(Rd)

as a consequence of Theorem 3.3.4.

We also have the well-known

Theorem 5.0.2 (Inversion Theorem). For all ϕ ∈ S(H), we have

ϕ(x) =

∫
|h|d tr[ϕ̂(h)ρh(x)∗] dh.

This of course implies that the Fourier transform S(H)→ E(R∗,L0) is injec-
tive.

The Fourier Transform of a Tempered Distribution. In the above, the
Fourier transform takes a function to a family of operators. It is natural then
to expect that a generalised function should be taken to a generalised family of
operators; the space

E(R∗,L0) ∼= E(R∗) ⊗̂ L0

is replaced by
D′(R∗) ⊗̂ L ∼= D′(R∗,L).

One can also take the view that a linear functional on S(H) should be taken
to a linear functional on the Fourier transformed object, in this case E(R∗,L0).
At first this is problematic because E(R∗,L0) is much bigger than the image of
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S(H). This can be salvaged by replacing E(R∗,L0) by its subalgebra D(R∗,L0).
We will go through this approach later as well.

Now, the Fourier transform above is defined as

S(H)
F2,3→ S(H)→ E(R∗,L0)

g→ E(R∗,L0)
|h|−d→ E(R∗,L0)

where g ∈ E(R∗,L(Sd)) is the linear substitution defined by

gh =

(
−h−1 h−1

−h−1 0

)
.

Using the theory of tensor products of bilinear maps, it is possible to do the same
thing for tempered distributions. Indeed, note first that the action of GL(d,R)
on Sd extends uniquely to S ′d by

〈g · f, ϕ〉 := |det g|〈f, g−1 · ϕ〉.

Then obviously the smooth map GL(d,R) → Lb(Sd) extends uniquely to a
smooth map GL(d,R)→ Lb(S ′d).

An element Φ ∈ E(R∗,L0) is uniquely associated with a generalised function
Φ ∈ D′(R∗,L) given by

Φ(χ) =

∫
|h|dχ(h)Φ(h) dh ∈ L0 ⊆ L .

So then it is possible to talk of extending the Fourier transform:

Theorem 5.0.3. The Fourier transform extends uniquely from S(H) to give a
continuous linear map

S ′(H)→ D′(R∗,L).

Properly understood, it is still the case that

f̂ ∗ ϕ = f̂ · ϕ̂
f̂ ∗ = f̂ ∗.

for f ∈ S ′(H) and ϕ ∈ S(H).

Proof. Pointwise application gives a separately continuous bilinear map

E(R∗,L(S2d))× E(R∗,S2d)→ E(R∗,S2d).

This is the tensor product of multiplication E ×E → E and the application
map L(S2d) × S2d → S2d. We would like to instead use the tensor product of
multiplication E ×D′ → D′ and the application map L(S ′2d)×S ′2d → S ′2d to give
a separately continuous bilinear map

E(R∗,L(S ′2d))×D′(R∗,S ′2d)→ D′(R∗,S ′2d).

Unfortunately, we do not have a theorem to facilitate this. However, the Fourier
transform should be defined on S ′(H) which is a DF -space so in our case we can
actually replace E ×D′ → D′ by E ×S ′ → D′. Thus, Theorem 4.1.8 applies in
the DF -case. The algebraic properties hold by density of S(H) in S ′(H).
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Linear Functional Approach. Here we take the second approach to the
Fourier transform, namely that a linear functional should be taken to a linear
functional. Note that

D′(R∗,L0) ∼= D(R∗,L)′

according to [34, Proposition 22, Corollaire 3 (p. 104)]. The isomorphism is
given on simple tensors as

〈F, χ⊗ T 〉 = tr[F (χ)T ]

for F ∈ D′(R∗,L).
For functions Φ,Ψ : R∗ → L0 we denote by

〈Φ,Ψ〉 =

∫ ∞
−∞
|h|d tr[Φ(h)Ψ(h)] dh.

This becomes a hypocontinuous bilinear pairing

E(R∗,L0)×D(R∗,L0)→ C

which then induces an injective continuous linear map E(R∗,L0) → D(R∗,L0)′.
Note that the inclusions

E(R∗,L0)→ D′(R∗,L)

E(R∗,L0)→ D(R∗,L0)′

are chosen so that they are compatible with the isomorphism

D′(R∗,L) ∼= D(R∗,L0)′.

Proposition 5.0.4. The image of S(Rd) under the Fourier transform contains
wholly D(R∗,L0), and in fact the Fourier transform admits a continuous linear
inverse

F−1 : D(R∗,L0)→ S(H)

given as usual by

F−1 Φ(x) =

∫
|h|d tr[Φ(h)ρh(x)∗] dh.

Subject to the pairings 〈·, ·〉, the Fourier transform admits a continuous linear
transpose F t : D(R∗,L0)→ S(H) given by

F t Φ(x) = F−1 Φ(x−1).

This means that
〈F ϕ,Ψ〉 = 〈ϕ,F t Ψ〉

for all ϕ ∈ S(H), Ψ ∈ D(R∗,L0).
The transpose satisfies the algebraic properties

F t(Φ ·Ψ) = F t Φ ∗ F t Ψ

(F t Φ)∗ = F t Φ∗.
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Proof. The Fourier Inversion Theorem says that F−1F ϕ = ϕ for all ϕ ∈ S(H),
but a simple calculation shows that F F−1 Φ = Φ for all Φ ∈ D(R∗,L0) as well.

One simply applies Fubini-Tonelli to see that

〈F ϕ,Ψ〉 =

∫
|h|d tr ϕ̂(h)Ψ(h) dh

=

∫
|h|dϕ(x) tr ρh(x)Ψ(h) dxdh = 〈ϕ,F t Ψ〉

That Φ 7→ F t Φ is a continuous linear map D(R∗,L0)→ S(H) requires an extra

argument: Doing the calculations, Φ̂ is explicitly given by

Φ̂(p, q, t) =

∫
|h|dΦ(y + hp, y, h)eihteiqy dydh.

This is again a linear substitution along h and after that a Fourier transform both
of which are continuous. So then also the inverse, being simply the transpose
composed with the substitution x 7→ x−1 is also continuous.

So we can define the Fourier transform S ′(H)→ D(R∗,L0)′ by

〈f̂ ,Φ〉 = 〈f, Φ̂〉.

There is (also) a natural sesquilinear form on S(H) given by

(ϕ|ψ) = 〈ϕ, ψ〉 =

∫
f(x)g(x) dx.

On the Fourier side of things, for functions Φ,Ψ : R∗ → L0, the corresponding
device is

(Φ|Ψ) = 〈Φ,Ψ∗〉 =

∫
|h|d tr[Φ(h)Ψ(h)∗] dh.

Then we have the traditional Plancherel Theorem

Theorem 5.0.5. The Fourier transform is unitary, i.e.,

(ϕ̂|ψ̂) = (ϕ|ψ)

for all ϕ, ψ ∈ S(H).

Properties of the Fourier Transform. Recall the definition of Polc(H) from
page 32.

Proposition 5.0.6. The Fourier transform S ′(H) → D(R∗,L0)′ is continuous
with dense image and with kernel Polc(H).

Proof. The image contains D(R∗,L0) which is dense in D′(R∗,L). Suppose that

f ∈ S ′(H) such that f̂ = 0. Then the generalised family

|h|−d[F2,3 f ](h−1(y − x), x, h) ∈ D′(R∗,L)
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is 0 and we can apply the family of operators in E(R∗,L) as above and find

|h|−d[F2,3 f ](x, y, h) ∈ D′(R∗,L)

is 0. We can multiply by |h|d in E(R∗) and even apply a Fourier transform to
find

[F3 f ](x, y, h) ∈ D′(R∗,L)

is 0. This means that F3 f ∈ D′(R,L) is 0 when restricted to R∗ so Theorem 3.1.7
implies that

F3 f =
∑
n

δ
(n)
0 ⊗ fn

for some fn ∈ L. Since L is a DF -space we have F3 f must have locally finite
order so the sum is actually finite. All in all we find

f(x, y, h) =
N∑
n=0

fn(x, y)hn

for some fn ∈ L.

Remark 5.0.7. Instead of using Theorem 3.1.7, since we are dealing with a dis-
tribution in D′(R, E) where E is a distribution space we could have used the
classical theorems on distributions supported on a subspace, cf. [35, Ch. III,
§10].

With regards to positive definiteness we have

Proposition 5.0.8. If f ∈ S ′(H) is positive then f̂ ∈ D(R∗,L0)′ is positive.

Proof. In this case,

〈f̂ ,ΦΦ∗〉 = 〈f,F t Φ ∗ (F t Φ)∗〉 ≥ 0.

Unfortunately, we do not get a full classification of positive linear functionals
because the transpose F t is not surjective. For instance, if f is a character

f(p, q, t) = eipxeiqy

then the Fourier transform above is 0, but f is not a positive functional. Indeed,
using the characters in the group Fourier transform we get a map F̃ : S(H) →
S(Rd × Rd) where

F̃ϕ(x, y) =

∫
H

ϕ(h)πx,y(h) dh

for πx,y(p, q, t) = eipxeiqy. Explicitly,

F̃ϕ(x, y) = FAb ϕ(x, y, 0)
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where FAb is the Abelian Fourier transform on Rd × Rd. So F̃ is continuous,
linear, and

F̃(ϕ ∗ ψ) = F̃ϕ · F̃ψ

F̃(ϕ∗) = F̃ϕ.

There is no transpose of the map F̃ so there is no corresponding Fourier transform
S ′(H) → S ′(Rd × Rd). We can use F̃ to pull back a tempered distribution,

however. The distributions f ◦F̃ for f ∈ S ′(Rd×Rd) are exactly the distributions
of the form

f(p, q, t) = f0(p, q) (5.2)

for a tempered distribution f0 ∈ S ′(Rd × Rd).

Proposition 5.0.9. Suppose that f ∈ S ′(H) is a tempered distribution that is
constant along the center, i.e., given by Eq. (5.2). Then f is positive if and
only if f0 is positive in the Abelian sense, i.e, if and only if the Abelian Fourier
transform of f0 is a positive measure.

Proof. The Fourier transform F̃ pulls back a positive measure on S(Rd × Rd)
to a positive definite tempered distribution on S(H). This gives us sufficiency.
As for necessity, let Aϕ ∈ S(Rd × Rd) be the average along the center of any
ϕ ∈ S(H), i.e.,

Aϕ(p, q) =

∫ ∞
−∞

ϕ(p, q, t) dt.

Then a calculation shows that

〈f, ϕ ∗ ψ〉 = 〈f0, Aϕ ∗ Aψ〉

where the latter convolution is over Rd × Rd, i.e., over an Abelian group. Evi-
dently, A is surjective so it follows that it is necessary that f0 is positive definite
as a distribution on Rd × Rd.

Combining this with Theorem 2.1.15 we find

Corollary 5.0.10. The only positive definite distributions in Polc(H) are the
distributions of the form

(p, q, t) 7→ f(p, q)

where f ∈ S ′(Rd × Rd) is positive definite in the Abelian sense.

Fourier Transform on the Lizorkin Space. We discuss again the Fourier
transform associated with the regular orbits. Above we have not achieved a full
Fourier inversion theorem. Indeed, the Fourier transform as outlined above is
0 on the polynomials so the Fourier transform does not give any information
about them. This suggests that a modification of the spaces is required. What
modification? According to [13, Prop. 1.1.3] we have

(S∞)′(R) ∼= S ′(R)/Pol(R)
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which suggests that we should focus on the Lizorkin space S∞(H) as defined on
page 31.

Now applying Abelian Fourier transform in the second and third variables we
have

S∞(H)→ S(Rd × Rd) ⊗̂ S0(R) ∼= S0(R,S(Rd × Rd)).

This is where we would like to apply the variable shift induced by

h 7→
(

0 1
h 1

)
=

(
−h−1 h−1

1 0

)−1

which a priori is an element of E(R∗,L(S2d)). We find

Lemma 5.0.11. The element

h 7→
(

0 1
h 1

)
induces an element in OM(R∗,L(S2d)).

Proof. Note that since S2d is barreled, bounded in L(S2d) is the same as pointwise
bounded. So we need to prove that every time χ ∈ S0(R) and ϕ ∈ S2d and γ is
a polynomial and m ∈ N0 × N0 we have

χ(h)γ(x, y)∂m1
x ∂m2

y |h|−dϕ(h−1(y − x), x)

is uniformly bounded as (x, y, h) ∈ Rd × Rd × R. Doing the differentiations it is
enough to see that

χ(h)γ(x, hz + x)|h|lϕ(j,m1)(z, x)

is bounded for any l, j, m1.

Taking γ(x, y) = xn1yn2 and doing the multiplications it is enough to see that

χ(h)|h|lxn1yn2ϕ(m2,m1)(y, x)

is bounded. This is the case when χ ∈ S0(R) (by L’Hôpital’s rule, e.g.) and
ϕ ∈ S(Rd × Rd).

Now applying Theorem 4.3.10 we get

Theorem 5.0.12. The Fourier transform restricts to a topological ∗-algebra iso-
morphism

S∞(H)→ S0(R,L0).

The transpose gives rise to a linear isomorphism

(S∞)′(H)→ S ′0(R,L0).
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Comments on Synthesis. In this paragraph we discuss what is missing from
a full Bochner’s Theorem on the Heisenberg group. Note first what is known:

1. A distribution in S ′(H) is given by its restriction to S∞(H) up to an
element of Polc(H).

2. The positive definiteness of a distribution in (S∞)′(H) is classified by
Fourier analysis.

3. A distribution in Polc(H) is positive definite if and only if it is of the form

(p, q, t) 7→ f(p, q)10

where f ∈ S ′(Rd × Rd) is positive definite in the Abelian sense.

These facts when taken together suggests that

Conjecture 5.0.13. The positive definite distributions in S ′(H) are in bijective
correspondence with pairs of positive definite distributions in Polc(H)×S ′∞(H).

What is missing is some way of extending a positive definite element of S ′∞(H)
to a positive definite element in S ′(H), taking into account the kernel of the
restriction Polc(H). An approach to this could be through complementary sub-
spaces. Recall that a closed subspace E of some space X is complemented if
there is some closed subspace F ⊆ X such that X = E+F and E∩F = 0. Note
first that

Lemma 5.0.14. The ∗-ideal S∞(H) cannot be complemented by an ideal I ⊆
S(H).

Proof. In this case we would have ϕ ∗ ψ = 0 for all ϕ ∈ I, ψ ∈ S∞(H) so that
ϕ̂ ·Ψ = 0 for all Ψ ∈ S0(R,L0) so that ϕ̂ = 0 so that ϕ = 0.

Suppose that S∞(H) is complemented by a space E. Let π be the projection
onto S∞(H) and p be the projection onto E. Then any distribution f decomposes
f = f ◦ π + f ◦ p. If we want f ◦ π to be positive when f is, we need to assume
something about π. It would be sufficient that π was ∗-invariant and S(H)-
invariant (i.e., π(ϕ ∗ψ) = ϕ ∗ π(ψ)) but this would mean that E was a ∗-ideal in
contradiction with the lemma. It would also be sufficient that π was a ∗-algebra
homomorphism which implies that E is a ∗-subalgebra. For the positivity of f
to descend to f ◦p we would want p to be a ∗-algebra homomorphism as well but
this is only possible if E ∗ S∞(H) = 0 which is a contradiction by the argument
in the proof of the lemma.

According to [25], the space S∞(R) is complemented in S(R) and it follows
by [18, Prop. 15.2.3] that S∞(H) is complemented in S(H). However, it does not
seem to be the case that the complement is a subalgebra. Indeed, the complement
of S∞(R) in S(R) as constructed in [25] is not a subalgebra. In the notation of
the article one only has

θaj ∗ θal = θaj+l mod S∞(R)
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which is not sufficient.

Remark 5.0.15. I have come to doubt even the result of the article: Is the con-
structed complement even a subspace? One is supposed to take union over a
of the spaces spanned by (θaj )j. But if a 6= a′ then both θaj and θa

′
j are in the

complement but
θaj − θa

′

j ∈ S∞(R).

Perhaps the result is salvageable if one is a little bit more careful about the se-
quences a that the union is taken over. And perhaps it is salvageable in a way
that would produce a subalgebra! Note that the fact that S∞(R) is comple-
mented by a subalgebra does not imply directly that S∞(H) is complemented
by a subalgebra since the convolution is not the tensor product of convolutions
in S(Rd × Rd) and S(R).

Dilations of the Heisenberg Group. We will make a few comments on the
homogeneous distributions in S ′(H). This will not have a great impact on the
analysis of the Knapp-Stein operator, but it furnishes us with an application of
Section 3.2. We take d = 1 for these two paragraphs.

We shall say that a family of automorphisms δs : H → H, s > 0 is a family
of dilations if s 7→ δs is continuous (say, strongly) and if they satisfy

δss′ = δsδs′

and if δ1 is the identity. For example, δs could be given by

δs(p, q, t) = (sxp, syq, sx+yt)

for x, y ∈ R. The case x = y = 1 is the case typically considered where we also
have a corresponding normlike map (p, q, t) 7→ (p2 + q2)2 + t2 homogeneous with
regards to these dilations. We will instead be focused on x = 1, y = 0 which is
the case that gives rise homogeneity after Fourier transform.

Homogeneous Functions. Let δs : H → H be the transformation δs(p, q, t) =
(sp, q, st). Then we say that a function or distribution f on H is homogeneous
of degree λ ∈ C if

f(δs(h)) = sλf(h).

At the same time we understand what it means to be homogeneous in

D′(R∗,S ′(R× R))

and in E(R∗,S(R× R)), namely we must have

T (sx) = sλT (x)

for s > 0, x ∈ R∗. It is then the case that if f ∈ S ′(H) is homogeneous of degree

λ then f̂ is homogeneous of degree −λ− 2. Indeed,

Kf
h (x, y) = |h|−1F2,3 f(h−1(y − x), x, h)
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so that

Kf
sh(x, y) = |sh|−1F2,3 f((sh)−1(y − x), xsh)

= |sh|−1

∫
eishtF2 f((sh)−1(y − x), x, t) dt

= s−2|h|−1

∫
eihtF2 f((sh)−1(y − x), x, t/s) dt

= s−λ−2|h|−1

∫
eihtF2 f(h−1(y − x), x, t) dt = s−λ−2Kf

h (x, y).

It follows then from Theorem 3.2.8 that

f̂(h) = h−λ−2
+ ⊗ F+ + h−λ−2

− ⊗ F−

for F+, F− ∈ Ld. It is the case that the Knapp-Stein kernel F λ
ε below is homo-

geneous of degree λ1 + λ2 − 2 so that its Fourier transform is homogeneous of
degree −λ1 − λ2. This is consistent with the calculations in the next section.

5.1 The Knapp-Stein Kernel

According to [11, Eqns. (12) and (13) p. 173] we have

F
(
|x|λε

Γ(λ+ 1)

)
= cλ+1

ε |x|−1−λ
ε

where

cλε =
exp(iπ λ

2
) + ε exp(−iπ λ

2
)

√
2π

=


√

2

π
cos

(
π
λ

2

)
, ε = +,√

2

π
i sin

(
π
λ

2

)
, ε = −.

We want to use the Fourier transformation to analyse the Knapp-Stein kernel
F λ
ε ∈ S ′(H) given by

F λ
ε (x, y, z) =

|z − xy|λ1−1
ε1
|z|λ2−1

ε2

Γ(λ1)Γ(λ1 + λ2)Γ(λ2)
.

First a useful lemma:

Lemma 5.1.1. Consider f ∈ S ′(Rd) given by

f̂(x) =
|a · x+ b|λε
Γ(λ+ 1)

for a ∈ Rd, b ∈ R. Then f̂ is given by

f̂(ξ) = cλ+1
ε |a|−1e

−ib aξ
|a|2 δ0(pr(a)⊥ ξ)

∣∣∣∣ aξ|a|2
∣∣∣∣−1−λ

ε



5.1. The Knapp-Stein Kernel 85

which means that

〈f̂ , ϕ〉 = cλ+1
ε

∫ ∞
−∞

e−isb|s|−1−λ
ε ϕ(sa) ds.

Remark 5.1.2. For any a ∈ Rd we use the shorthand (a) = span(a) ⊆ Rd, and
prU denotes the orthogonal projection onto any subspace U ⊆ Rd.

Proof. In the integral

Γ(λ+ 1)f̂(ξ) =

∫
|ax+ b|λεeixξ dx

we split the integration x = x0 + x⊥ subject to the linear decomposition Rd =
(a)⊕ (a)⊥. Thus,

Γ(λ+ 1)f̂(ξ) =

∫
(a)⊥

eix
⊥ξ dx⊥ ·

∫
(a)

|ax0 + b|λεeixξ.

We find ∫
(a)⊥

eix
⊥ξ dx⊥ = δ0(pr(a) ξ)

and ∫
(a)

|ax0 + b|λεeixξ =

∫ ∞
−∞

∣∣∣∣ta a|a| + b

∣∣∣∣λ
ε

eit
a
|a| ξ dt =

∫ ∞
−∞
|s|λεe

i s−b|a|
a
|a| ξ

ds

|a|

= Γ(λ+ 1)cλ+1
ε |a|−1e

−ib aξ
|a|2

∣∣∣∣ aξ|a|2
∣∣∣∣−1−λ

ε

which gives us the first claim. As for the second, when ξ = t a|a| ,
aξ
|a|2 = t

|a| so

〈f̂ , ϕ〉 = cλ+1
ε |a|−1

∫ ∞
−∞

e−ibt/|a|
∣∣∣∣ t|a|

∣∣∣∣−1−λ

ε

ϕ

(
t
a

|a|

)
dt

= cλ+1
ε

∫ ∞
−∞

e−isb|s|−1−λ
ε ϕ(sa) ds.

Theorem 5.1.3. The Fourier transform of F λ
ε is

F̂ λ
ε (h) =

cλ1ε1 c
λ2
ε2

Γ(λ1 + λ2)
|h|−λ1−λ2−d+1

ε1ε2
T λε

where T λε is given by

T λε ϕ(xv) =

∫ ∞
−∞
|x|−λ1ε1

|y − x|λ1+λ2−1
ε1ε2

|y|−λ2ε2
ϕ(yv) dy

for any x ∈ R and unit vector v or

T λε ϕ(p) =

∫ ∞
−∞
|t− 1|λ1+λ2−1

ε1ε2
|t|−λ2ε2

ϕ(tp) dt

for any p ∈ Rd.
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Proof. Let F = F λ
ε . The lemma tells us that

Γ(λ1 + λ2)Γ(λ2)F2 F (x, η, z) = cλ1ε1 |x|
−1e
−iz xη

|x|2 δ0(pr(x)⊥ ξ)

∣∣∣∣ xη|x|2
∣∣∣∣−λ1
ε1

|z|λ2−1
ε2

So it follows that F2 F (p, q, t) as a distribution in p, q is supported in the sub-
manifold

M =
{

(p, q) ∈ Rd
∣∣ p, q are linearly dependent.

}
.

This means we might as well compute F2, F (p, q, t) for p = xv, q = yv for some
unit vector v ∈ Rd. Then

Γ(λ1 + λ2)Γ(λ2)F2 F (xv, yv, z) = cλ1ε1 |x|
−1e−iz

y
x

∣∣∣y
x

∣∣∣−λ1
ε1
|z|λ2−1

ε2
.

Taking the Fourier transform in z as well,

Γ(λ1 + λ2)F2,3 F (xv, yv, h) = cλ1ε1 c
λ2
ε2
|x|λ1−1

ε1
|y|−λ1ε1

∣∣∣h− y

x

∣∣∣−λ2
ε2

.

= cλ1ε1 c
λ2
ε2
|x|λ1+λ2−1

ε1ε2
|y|−λ1ε1

|xh− y|−λ2ε2
.

Now, note that h−1(y−x), x are linearly dependent if and only if x, y are linearly
dependent so again it suffices with a calculation on M :

Γ(λ1+λ2)F2,3 F (h−1(y−x)v, xv, h) = cλ1ε1 c
λ2
ε2
|h|−λ1−λ2+1

ε1ε2
|y−x|λ1+λ2−1

ε1ε2
|x|−λ1ε1

|y|−λ2ε2
.

This is the result.

Now, an analysis of the operator T λε is in order.

Proposition 5.1.4. For d = 1, T λε ∈ L(S1,S ′1) is given by the kernel

T λε (x, y) = |x|−λ1ε1
|y − x|−λ1−λ2+1

ε1ε2
|y|−λ2ε2

for all x, y ∈ R. For ε1 = ε2 = ε, λ1 = λ2 = λ, T λε is a positive operator only if
Reλ ≤ 1

2
.

Proof. The first assertion follows directly from the previous theorem. As for the
other one, we find

(T λε ϕ|ϕ) =

∫
|x|−λε |y − x|2 Reλ−1|y|−λε ϕ(y)ϕ(x) dxdy = (|x|2 Reλ−1 ∗ Sϕ|Sϕ)

where
Sϕ(x) = |x|−λε ϕ(x).

When ϕ has compact support away from 0, Sϕ is also a smooth function with
compact support so that for T λε to be positive, it is necessary that |x|2 Reλ−1 is
positive definite. By the classical Bochner’s Theorem, this implies that−2 Reλ ≥
−1, i.e., Reλ ≤ 1

2
.
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Theorem 5.1.5. For d = 1, λ1 = λ2 = λ and ε1 = ε2 = ε, w = w13, the Knapp-
Stein intertwiner P (ε, λ) → P (wε,wλ) can be normalised to give a nonzero
positive P (ε, λ)-invariant sesquilinear form on C∞P (ε, λ) only if

−1

2
≤ Reλ ≤ 1

2
.

Proof. We have

F̂ λ
ε (h) =

cλε c
λ
ε

Γ(2 Reλ)
|h|−2 Reλ+1T λε .

In the case where T λε 6= 0, in order to have positivity at least up to normalisation
we must insist on −2 Reλ + 1 ≥ −1 or Reλ ≤ 1 so that |h|−2 Reλ+1 is positive.
Then we must have T λε is positive so that Reλ ≤ 1

2
.

By switching what roots we consider positive we can realise the representation
on N instead of on N . Then we are looking at the NMAN decomposition instead
of the NMAN one. By transpose inverse it is clear that

g−t = n(g)−tm(g)−1a(g)−1n(g)−t

so that the NMAN -decomposition is

g = n(g−t)−tm(g−t)−1a(g−t)−1n(g−t)−t.

Actually, since the MA part only involves determinants of the principal subma-
trices, they are invariant under t. Therefore, the decomposition is actually

g = n(g−t)−tm(g−1)−1a(g−1)−1n(g−t)−t.

The Knapp-Stein kernel on N is then

(a((w−1n−1)−1)−1)λ+ρε(m((w−1n−1)−1)−1) = a(nw)−λ−ρε(m(nw)).

Note that

nw =

−z y 1
−x 1 0
−1 0 0


so the Knapp-Stein kernel on N is

|xy − z|−λ1−1
ε1

|z|−λ2−1
ε2

.

This means that in order for the Knapp-Stein intertwiner to be positive definite
it is necessary that

−1

2
≤ Reλ ≤ 1

2
.
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Comments for the d > 1-Case. One approach to the analysis of T λε in this
case uses polar coordinates for the integral. Recall∫

Rd
f(x) dx =

∫
Sd−1

∫ ∞
0

f(rv)rd−1 drdv

or at least choose a normalisation of the integral on the sphere so this formula
holds. The formula holds just as well for x 7→ f(−x) so we can write∫

Rd
f(x) dx =

∫
Sd−1

∫ ∞
−∞

f(tv)|t|d−1 drdv

up to a proper normalisation on the sphere. But this is where trouble for T λε
begins because now

(T λε ϕ|ϕ) =

∫
Sd−1

∫ ∞
−∞

T λε ϕ(xv)ϕ(yv) dxdydv

=

∫ ∞
−∞

∫ ∞
−∞
|x|−λ+d−1

ε |y − x|2 Reλ−1|y|−λε
∫
Sd−1

ϕ(xv)ϕ(yv) dvdxdy.

Employing the same transformation trick as before we are basically asking the
question of whether or not∫ ∞

−∞

∫ ∞
−∞
|x|d−1|y − x|2 Reλ−1ϕ(x)ϕ(y) dxdy ≥ 0 (5.3)

for all ϕ. It is not at all clear how to proceed in general when d > 1.
For Reλ = 1

2
the analysis simplifies significantly, however. In this case we

are considering the operator Sλε : S(Rd)→ S ′(Rd) given by

Sλεϕ(x) =

∫ ∞
−∞
|t|λεϕ(tx) dt.

Proposition 5.1.6. When −1 ≤ λ ≤ d− 1 we have

(Sλεϕ|ϕ) ≥ 0

for all ϕ ∈ S(Rd) given by

ϕ(x) = P (x)e−|x|
2

where P is a homogeneous polynomial.

Proof. Then

Sλεϕ(x) = (1 + ε(−1)n)

∫ ∞
0

|t|λ+n
ε e−t

2|x|2 dt · P (x)

=
1 + ε(−1)n

2
Γ

(
λ+ n+ 1

2

)
|x|−λ−n−1P (x).
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Now, if Q is a polynomial homogeneous of degree m and ψ(x) = Q(x)e−|x|
2

then
using polynomial coordinates

(Sλεϕ|ψ) =
1 + ε(−1)n

2
Γ

(
λ+ n+ 1

2

)∫
Rd
|x|−λ−n−1P (x)Q(x)e−|x|

2

dx

=
1 + ε(−1)n

2
Γ

(
λ+ n+ 1

2

)
(P |Q)

∫ ∞
0

rm+d−λ−2e−r
2

dr

=
1 + ε(−1)n

2
Γ

(
λ+ n+ 1

2

)
(P |Q)

2
Γ

(
m+ d− λ− 1

2

)
where (P |Q) refers to the L2 inner product on Sd−1. So for ψ = ϕ we have

(Sλεϕ|ϕ) =
1 + ε(−1)n

2
Γ

(
λ+ n+ 1

2

)
(P |P )

2
Γ

(
n+ d− λ− 1

2

)
≥ 0

It should be possible to prove

Conjecture 5.1.7. For all d,

T
1
2
, 1
2

ε,ε = S
− 1

2
ε

is positive.





Chapter 6

Compact Picture

In this chapter we consider the Fourier analysis over K of the Knapp-Stein
kernel in two cases: First the linear case K = SO(3) where we induce from

ε ∈ {−1, 1}2 ∼= M̂ and then in the nonlinear case K = SU(2) where we in-
duce from the 2-dimensional representation of M ⊆ SU(2). This then achieves
necessary and sufficient conditions for the existence of new representations con-
structed via the G-invariant inner product given by the Knapp-Stein intertwiner.
The latter case was also considered in [38] but through a very different method.

6.1 Analysis of Certain Operators

In this section we analyse certain operators that are relevant for both the SO(3)
and SU(2)-case.

Unitary Dual of SU(2). Let Hn consist of all polynomials in two complex
variables z1, z2 homogeneous of degree n. Then SU(2) has a representation on
Hn given by

[ρn(k)P ](z) = P (k−1z).

Now, the simplest elements of Hn are given by

Pj(z) = zj1z
n−j
2 .

There is a G-invariant inner product on Hn for which the Pj’s are mutually
orthogonal and for which

‖Pj‖2 =

(
n

j

)−1

.

The ρn make up the entire unitary dual of SU(2).
In the analysis below it will be important to understand the operators

Anjl(λ) =
1

Γ(λ)

1

π

∫ π

0

sinλ−1 θρn

(
θ

2

)
dθ.

This makes sense as an integral for Reλ > 0 and can be extended analytically
in λ to the entire complex plane.
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Theorem 6.1.1. We have

Anjl(λ)∗ = ρn(mjl)
−1Anjl(λ)

and Anjl(λ) has eigenvalues {a(λ, n
2
−m)}0≤m≤n where

a(λ, j) =
ij

2λ−1Γ(λ+1+j
2

)Γ(λ+1−j
2

)
. (6.1)

The symbol a(λ, j) satisfies

(j + 1 + λ)a(λ, j + 2) = (j + 1− λ)a(λ, j) (6.2)

a(λ,−j) = (−1)ja(λ, j). (6.3)

Also, A0
jl(λ) is invertible if and only if λ /∈ −1 − 2N0 and for n ≥ 1, Anjl(λ) is

invertible if and only if λ /∈ n
2
− 1− N0.

Furthermore,
ρn(m12)−1An23(λ)ρn(m12) = An23(λ)∗.

Proof. Making the substitution ϕ = π − θ we have

πAnjl(λ)∗ = Γ(λ)
−1
∫ π

0

sinλ−1 θρn

(
−θ

2

)
dθ

= Γ(λ)−1

∫ π

0

sinλ−1 ϕρn

(
ϕ− π

2

)
dϕ = πρn(mjl)

−1Anjl(λ).

There is an orthonormal basis (Qm)0≤m≤n forHn where ρnkjlθQm = ei(n−2m)θQm.
In this basis Anjl(λ) is diagonal with eigenvalues a(λ, n

2
−m) where

a(λ, j) =
1

Γ(λ)

1

π

∫ π

0

sinλ−1 θeijθ dθ.

We arrive at Eq. (6.1) by combining equations 8 and 1 of [12, 3.631].
We have that A0

jl(λ) has sole eigenvalue

a(λ, 0) =
1

2λ−1Γ(λ+1
2

)

which is nonzero if and only if λ /∈ −1−2N0. Meanwhile, if n ≥ 1 we have Anjl(λ)
is invertible if and only if a(λ, n

2
−m) 6= 0 for 0 ≤ m ≤ n which is the case if and

only if
λ+ 1± (n

2
−m)

2
/∈ −N0

which is equivalent to

λ /∈ ±(
n

2
−m)− 1− 2N0.

If we take m = 0 and m = 1 we find that this is the same as

λ /∈ n
2
− 1− N0.
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The last equation is a consequence of

ρn(m12)−1k23(θ)ρn(m12) = k23(−θ).

For ε ∈ {−1, 1} we will use

En
jl(ε) :=

Id +ερn(mjl)

2

Lemma 6.1.2. We have

Id = En
jl(+) + En

jl(−)

and for even 2n,
(E2n

jl (ε))2 = E2n
jl (ε)

Introduce for λ ∈ C and ε ∈ {−1, 1},

Bn(λ, ε) := En
12(ε)An23(λ)En

12(ε).

Proposition 6.1.3. For every λ and ε,

B2n(λ, ε) = E2n
12 (ε)

A2n
23 (λ) + A2n

23 (λ)∗

2
=
A2n

23 (λ) + A2n
23 (λ)∗

2
E2n

12 (ε).

For λ ∈ −1− 2N0,
B2n(λ, ε) = 0

for all n.
For n = 0, 1, B2n(λ, ε) is positive for all λ ∈ R. For n ≥ 2 we have

B2n(λ, ε) ≥ 0

with λ ∈ R if and only if λ ∈ 1− 2N0 or λ ∈ (−1, 1).

Proof. Indeed,

2A2n
23 (λ)E2n

12 (ε) = A2n
23 (λ) + ερ2n(m12)A2n

23 (λ)∗

so that we have the first equation since E2n
12 (ε)ερ2n(m12) = E2n

12 (ε). The second
is achieved the same way.

Consider the eigenvectors Qm of A2n
23 (λ) with eigenvalue a(λ, n−m) for 0 ≤

m ≤ n. We change the parametrisation so that Qm has eigenvalue a(λ,m) for
−n ≤ m ≤ n. Then the above tells us that

B2n(λ, ε)E2n
12 (−ε)Qm = 0

B2n(λ, ε)E2n
12 (ε)Qm =

1 + (−1)m

2
a(λ,m)E2n

12 (ε)Qm
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since a(λ,m) = a(λ,−m)(−1)ma(λ,m). Since Id = E2n
12 (ε) + E2n

12 (−ε) we have
found all possible eigenvalues. In order to find out whether or not they are all
eigenvalues we need to figure out whether or not E2n

12 (ε)Qm 6= 0.
If Pj(z) = zj1z

2n−j
2 then we have

ρ2n(k12θ)Pj = e2i(n−j)Pj,

ρ2n(m23)Pj = (−1)jP2n−j.

We note that
k12(θ) = w−1

13 k23(θ)w13

so that {ρ2n(w13)Pj}j are the eigenvectors of k23(θ). Since w−1
13 m12w13 = m−1

23 we
have

ρ2n(m12)ρ2n(w13)Pj = ρ2n(w13)ρ2n(m−1
23 )Pj = (−1)jρ2n(w13)(P2n−j).

It follows that

2E2n
12 (ε)ρ2n(w13)Pj = ρ2n(w13)(Pj + ε(−1)jP2n−j)

which can never be 0 unless j = 2n− j, i.e., j = n. But for this j we have

E2n
12 (ε)ρ2n(w13)Pn = (1 + ε(−1)n)ρ2n(w13)Pn

which is 0 if and only if (−1)n = −ε. So in the case where (−1)n = −ε, 0 takes
the place of a(λ, 0) as an eigenvalue. Positivity is preserved to a(λ,m) for m > 0
in the same manner as above.

6.2 Knapp-Stein on SO(3)

We want to determine the kernel a(w−1k)λ−ρε(m(w−1k)). First it is necessary
to find a good parametrisation of SO(3) that is congenial to the Haar measure.

We have three copies of SO(2) inside SO(3). Let kjl(t) = ιjl(k(t)). We use
the following parametrisation of the Haar measure:∫

SO(3)

f =
1

8π2

∫ 2π

0

dψ

∫ π

0

sin θ dθ

∫ 2π

0

dϕ f(k12(ψ)k23(θ)k12(ϕ)).

Let us shorten k(ψ, θ, ϕ) := k12(ψ)k23(θ)k12(ϕ).
There is a double covering Φ : SU(2) → SO(3). For all n, ρ2n(σ) = Id and

so ρ2n descends to a representation ρ̃2n of SO(3). Then {ρ̃2n}n∈N0 exhausts the
unitary dual of SO(3).

We find with k = k(ψ, θ, ϕ):

a(w−1k)λ−ρε(m(w−1k)) = |sinψ sin θ|λ1−1
ε1
|sin θ sinϕ|λ2−1

ε2
.

We consider the Fourier transform of

Φλ
ε (k) =

1

Γ(λ1)Γ(λ1 + λ2)Γ(λ2)
a(w−1k)λ−ρε(m(w−1k))
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We introduce the notation for ε ∈ {−1, 1},

E2n
jl (ε) =

Id +ρ2n(mjl)

2
.

Theorem 6.2.1. The Fourier transform of Φλ
ε is given by

Φ̂λ
ε (2n) =

π

2
E2n

12 (ε1)A2n
12 (λ1)A2n

23 (λ1 + λ2)A2n
12 (λ2)E2n

12 (ε2).

Proof.∫
SO(3)

Φλ
ε (k)ρ̃2n(k) dk =

1

8π2

∫ 2π

0

|sinψ|λ1−1
ε1

ρn(k12ψ) dψ

·
∫ π

0

sinλ1+λ2−1 θρn(k23θ) dθ

∫ 2π

0

|sinϕ|λ2−1
ε2

ρn(k12ϕ) dϕ.

This clearly implies the result.

Positive Definiteness of the Knapp-Stein Kernel. For the kernel Φλ
ε to

be positive definite it must be self-adjoint. We have

(Φλ1,λ2
ε1,ε2

)∗ = Φλ2,λ1
ε2,ε1

so Φλ
ε is self-adjoint if and only if λ1 = λ2 = λ and ε1 = ε2 = ε. We find then

Theorem 6.2.2. For (ε1, ε2) = (ε, ε) and (λ1, λ2) = (λ, λ), we have

Φ̂λ
ε (2n) = 0

for all n if Reλ ∈ −1
2
− N0. For Reλ /∈ −1

2
− N0,

εΦ̂λ
ε (2n) ≥ 0

for all n if and only if −1
2
< Reλ ≤ 1

2
.

Proof. We have

Φ̂λ
ε (2n) = A2n

12 (λ)B(2 Reλ, ε)A2n
12 (λ) = A2n

12 (λ)B(2 Reλ, ε)ρ2n(m12)A2n
12 (λ)∗

= εA2n
12 (λ)B(2 Reλ, ε)A2n

12 (λ)∗

since E2n
12 (ε)ρ2n(m12) = εE2n

12 (ε). This is 0 for all n if 2 Reλ ∈ −1− 2N0.
The case n = 2 provides us with the necessary condition −1 < 2 Reλ < 1

when λ /∈ 1− N0 because then A4
12(λ) is invertible. It is clear from the previous

proposition that this is also sufficient and furthermore we find that Reλ = 1
2

is
also sufficient.
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6.3 Knapp-Stein on SU(2)

In this section, the notations k,m, a, n, n refers to the elements inside ˜SL(3,R).

Let q : ˜SL(3,R) → SL(3,R) be the projection. The nontrivial element of its
kernel will be denoted by σ. We take as a representation ε of M the canonical
2-dimensional one. Again we have the Knapp-Stein kernel

Φλ
ε (k) =

a(w−1k)λ−ρε(m(w−1k))

Γ(λ1)Γ(λ1 + λ2)Γ(λ2)

The normalised Haar measure on SU(2) is given by∫
SU(2)

f =
1

2π2

∫ 2π

0

dψ

∫ π
2

0

sin θ dθ

∫ π

0

dϕf(k(ψ, θ, ϕ))

where k(ψ, θ, ϕ) = k12(ψ)k23(θ)k12(ϕ).
Analogously (but not quite systematically) with the SO(3)-case we introduce

En =
Id +m12 ⊗ ρn(m12)

2

F n =
Id +m−1

23 ⊗ ρn(m12)

2
.

Consider also

W :=
1√
2
w13 ⊗ I

and note that since m−1
23 = w−1

13 m12w13,

F = W−1EW.

Proposition 6.3.1. For all odd n,

EnF n = EnW = WF n

F nEn = W−1En = F nW−1.

Proof. One finds

4EF = I +m12 ⊗ ρm12 +m−1
23 ⊗ ρm12 +m−1

13 ⊗ ρσ

=

(
1 i
i 1

)
⊗ I +

(
i −1
1 −i

)
⊗ ρm12

=
√

2(w13 ⊗ I)(I +m−1
23 ⊗ ρm12) = 4WF.

And we know that WF = EW . The second equation follows by conjugating the
first:

FE = F ∗E∗ = W ∗E∗ = W−1E = FW−1.
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Proposition 6.3.2. For every λ ∈ C2, Φ̂λ
ε (n) = 0 if n is even, and if n is odd,

Φ̂λ
ε (n) = 4π(e⊗ An12(λ1))F n(m12 ⊗ An23(λ1 + λ2))En(e⊗ An12(λ2))

Proof. We need to compute

a(w−1k(ψ, θ, ϕ))λ−ρε(m(w−1k(ψ, θ, ϕ)))

for the parameters relevant for the Haar integral. The A-part is already known
since q gives us an isomorphism of A and the A-part of SL(3,R). Consequently,

a(w−1k(ψ, θ, ϕ))λ−ρ = |sin 2ψ sin 2θ|λ1−1|sin 2θ sin 2ϕ|λ2−1.

For the M -part, we reduce to 0 ≤ ψ, θ, ϕ ≤ π
2

by way of:

m(w−1k(ψ + π, θ, ϕ)) = σm(w−1k(ψ, θ, ϕ))

m(w−1k(ψ +
π

2
, θ, ϕ)) = m−1

23 m(w−1k(ψ, θ, ϕ))

m(w−1k(ψ, θ, ϕ+
π

2
)) = m(w−1k(ψ, θ, ϕ))m12.

Here we have used that
w−1

13 m12w13 = m−1
23 .

Note finally that m(w−1k(ψ, θ, ϕ)) is constant for 0 < ψ, θ, ϕ < π
2
. This can

be seen by first computing the NMAN -decomposition inside S̃L(2,R) to get
a decomposition for every kjl(θ) and then using commutation rules to get the
NMAN -decomposition for k(ψ, θ, ϕ) (cf. Appendix B.3).

So for these parameters,

m(w−1k(ψ, θ, ϕ)) = m(w−1(
π

4
,
π

4
,
π

4
)) = m(w−1

13 w12w23w12) = m(m12) = m12.

The Fourier transformation is then given by

Φ̂λ
ε (n) =

1

2π2

∫ 2π

0

dψ

∫ π
2

0

sin 2θ dθ

∫ π

0

dϕΦλ
ε (k(ψ, θ, ϕ)⊗ ρn(k(ψ, θ, ϕ))

= 4π
1 + σ ⊗ ρn(σ)

2

1 +m−1
23 ⊗ ρn(m12)

2

(m12 ⊗ An12(λ1)An23(λ1 + λ2)An12(λ2))
1 +m12 ⊗ ρn(m12)

2
.

For even n, σ ⊗ ρn(σ) = 0

Just as before we explore the case λ1 = λ2 = λ. Then for every odd n,

Φ̂λ
ε (n) = 4π(e⊗ An12(λ))F n(e⊗ An23(2 Reλ))En(e⊗ An12(λ))∗

since m12 ⊗ ρn(m12)En = En. Introduce

B(λ) := F n(e⊗ An23(λ))En.
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Proposition 6.3.3. For odd n,

B(λ) =
e⊗ An23(λ) +m−1

13 ⊗ An23(λ)∗

2
En = F n e⊗ An23(λ) +m−1

13 ⊗ An23(λ)∗

2
.

Write n = 2l + 1, l ∈ N0. In addition to 0, the eigenvalues of B2l+1(λ) are

(−1)k

2λ−1Γ(λ+3/2
2

+ k)Γ(λ+1/2
2
− k)

for k integer, −b l+1
2
c ≤ k ≤ b l

2
c.

For λ ∈ [−1
2
, 1

2
], B(λ) is positive. If λ /∈ 1

2
− N0, B(λ) can only be positive if

λ ∈ [−1
2
, 1

2
].

Proof. Since m−1
23 = m−1

13 m12,

2F n(e⊗ An23(λ)) = e⊗ An23(λ) + (m−1
13 ⊗ An23(λ)∗)(m12 ⊗ ρn(m12))

so it is clear if we multiply with En we have the first equation. For the second,
note m12 = m−1

23 m
−1
13 so

2(e⊗ An23(λ))En = e⊗ An23(λ) + (m−1
23 ⊗ ρn(m12))(m−1

13 ⊗ An23(λ)∗)

so if we multiply with F n we have the second equation.
Now, suppose that Qm, 0 ≤ m ≤ n, is an eigenvector of ρnk23(θ) such that

ρn(k23θ)Qm = ei(
n
2
−m)θQm.

Suppose that vε, ε ∈ {−1, 1}, is an eigenvector of w13 with eigenvalue eεiπ/4.
Then we have

B(λ)F (vε ⊗Qm) = (e⊗ An23(λ) +m−1
13 ⊗ An23(λ)∗)EF (vε ⊗Qm)

= (e⊗ An23(λ) +m−1
13 ⊗ An23(λ)∗)EW (vε ⊗Qm)

=
1√
2

(eεiπ/4a(λ,
n

2
−m) + e−εiπ/4a(λ,m− n

2
))F (vε ⊗Qm).

In order to make sure that the values are actual eigenvalues we need to make
sure that F (vε ⊗Qm) 6= 0. For this, note that we can take

vε =

(
1
ε

)
so that

m−1
23 vε =

(
−ε
1

)
= −εv−ε.

Also, we know that Qm = ρnw13Pm where Pm(z) = zm1 z
n−m
2 so that ρn(m23)Pm =

(−1)n−mPn−m turns into ρn(m12)Qm = (−1)mQn−m. Thus,

2F (vε ⊗Qm) = vε ⊗Qm − ε(−1)mv−ε ⊗Qn−m
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which can never be 0.
We have found all the eigenvalues if we add 0. Indeed, with

F̃ =
I −m−1

23 ⊗ ρnm12

2

we have I = F + F̃ so that F (vε ⊗ Qm), F̃ (vε ⊗ Qm) form a basis and again,

F̃ (vε⊗Qm) cannot be 0. Also, FF̃ = 0 so that F̃ (vε⊗Qm) is an eigenvector for
B(λ) with eigenvalue 0.

The possibly nonzero eigenvalues are

1

2
√

2

eεiπ/4ei(
n
2
−m)π/2 + e−εiπ/4ei(m−

n
2

)

2λ−1Γ(
λ+1+n

2
−m

2
)Γ(

λ+1+m−n
2

2
)
.

Set n = 2l + 1, l ∈ N0. The numerator is

eεiπ/4ei(l+
1
2
−m)π/2(1 + e−εiπ/2e−i(l+

1
2
−m)π)

where

1 + e−εiπ/2e−i(l+
1
2
−m)π = 1 + i−ε(−1)l−mi−1 = 1− ε(−1)l−m.

It follows that the possibly nonzero eigenvalues are

1− ε(−1)l−m

2

1√
2

e(ε+1)iπ/4il−m

2λ−1Γ(λ+3/2+l−m
2

)Γ(λ+1/2+m−l
2

)
.

We split the analysis according to the parity of l−m. Note that as 0 ≤ m ≤ 2l+1
we have −(l + 1) ≤ m ≤ l. Also,

ei(ε+1)π/4 =

{
i ε = 1,

1 ε = −1.

In order to have a nonzero eigenvalue when l −m is even we must have ε = −1
so that the corresponding eigenvalues are

1√
2

im

2λ−1Γ(λ+3/2+m
2

)Γ(λ+1/2−m
2

)

for −(l + 1) ≤ m ≤ l, m even. For l −m odd we must have ε = 1 so that the
corresponding eigenvalues are

1√
2

im+1

2λ−1Γ(λ+3/2+m
2

)Γ(λ+1/2−m
2

)

for −(l + 1) ≤ m ≤ l, m odd. In the even case we can take m = 2k and in the
odd case we can take m = 2k − 1. Both add up to the same thing (one replaces
k by −k), namely

1√
2

(−1)k

2λ−1Γ(λ+3/2
2

+ k)Γ(λ+1/2
2
− k)
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for k integer, −b l+1
2
c ≤ k ≤ b l

2
c. Let b(k) be this number. One finds that

(2k + 3/2 + λ)b(k + 1) = (2k + 3/2− λ)b(k)

for all k. By inspection we see that if λ /∈ 1
2
−N0 then b(0) and b(−1) are nonzero

so that if they both are positive then since

b(−1) =
−1/2 + λ

−1/2− λ
b(0)

we need −1/2 ≤ λ ≤ 1/2.
One sees that by the Legendre duplication formula,

b(0) =

√
2

π

1

Γ(λ+ 1
2
)

is positive when λ ∈ [−1
2
, 1

2
]. The recursive formula above then implies that

b(k) ≥ 0 for all k when λ is in this interval.

Theorem 6.3.4. For λ /∈ 1
2
− N0 and 2 Reλ /∈ −1

2
− N0, Φ̂λ,λ

ε (3) can only be

positive when Reλ ∈ [−1
4
, 1

4
]. And Φ̂λ

ε (n) is positive for all n if Reλ ∈ [−1
4
, 1

4
].

Proof. This follows from the previous propositions since for odd n,

Φ̂λ,λ
ε (n) = 4π(e⊗ An12(λ))B(2 Reλ)(e⊗ An12(λ))∗.

When λ /∈ 1
2
− N0, An12(λ) is invertible so the positivity of Φ̂λ

ε (3) reduces to the
positivity of B(3).

Remark 6.3.5. We will see later that Φ̂λ,λ
ε (n) is positive when λ = 1

2
. This

proposition tells us that the unitary representation at λ = 1
2

is isolated from the
other complementary series representations at Reλ ∈ [−1

4
, 1

4
].

The Case When λ1 = λ2 = 1
2
. Let

An(λ1, λ2) = An12(λ1)An23(λ1 + λ2)An12(λ2).

We want to set λ1 = λ2 = 1
2
. Let Pj, j = 0, 1, . . . , n be the vectors that

diagonalise ρn(k12θ). Concretely, we can take Pj(z) = zj1z
n−j
2 . Then

An12(
1

2
)Pj = a(

1

2
,
n

2
− j)Pj.

Shorten anj := a(1
2
, n

2
− j). Then

Proposition 6.3.6. We have
a4a+1
m = 0

for m odd, 1 ≤ m ≤ 2a− 1, and for m even, 2a+ 2 ≤ m ≤ 4a. Also,

a4a+3
m = 0

for m even, 0 ≤ m ≤ 2a, and for m odd, 2a+ 3 ≤ m ≤ 4a+ 3.
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Proof. This follows by analysing

anm =

√
2i

n
2
−m

Γ(
1
2

+1+n
2
−m

2
)Γ(

1
2

+1+m−n
2

2
)
.

The following will be convenient:

Lemma 6.3.7. We have

An(
1

2
,
1

2
)∗ = ρn(σ)An(

1

2
,
1

2
)

and

(An(
1

2
,
1

2
)Pn−j|Pl) = in(−1)j+l(An(

1

2
,
1

2
)Pj|Pl)

(An(
1

2
,
1

2
)Pj|Pn−l) = (−i)n(−1)j+l(An(

1

2
,
1

2
)Pj|Pl)

Proof. First,

An(
1

2
,
1

2
)∗ = ρn(σ)A12(

1

2
)ρn(m12)A23(1)∗ρn(m12)−1A12(

1

2
) = ρn(σ)An(

1

2
,
1

2
).

The second set of equations is based on the fact that

ρn(m13)Pj = (−i)nPn−j
so that

(An(
1

2
,
1

2
)Pn−j|Pl) = in(An(

1

2
,
1

2
)ρn(m13)Pj|Pl)

= in(An12(
1

2
)ρn(m13m

−1
23 )An12(

1

2
)ρn(m12)Pj|Pl)

= inin−2j(An(
1

2
,
1

2
)Pj|ρn(m12)−1Pl)

= in(−1)j+l(An(
1

2
,
1

2
)Pj|Pl).

Conjugating this equation gives us

(An(
1

2
,
1

2
)Pl|Pn−j) = (−i)n(−1)j+l(An(

1

2
,
1

2
)Pl|Pj)

Theorem 6.3.8. For all a ∈ N0,

A4a+3(
1

2
,
1

2
) = 0

and in the (Pm)m-basis, in blocks of size 2a+ 1,

A4a+1(
1

2
,
1

2
) = (A4a+1(

1

2
,
1

2
)P0|P0)

(
xxt ixyt

−iyxt −yyt
)

where x ∈ C2a+1 is given by xm = 0 for m odd, 0 ≤ m ≤ 2a and

x2m = (−1)m
(1

2
)m(−a)m

(1
2
− a)m(−2a)m

for 0 ≤ m ≤ a and where ym = x2a−m.
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Proof. We start with the facts that

dρn(W23)Pj = −jPj−1 + (n− j)Pj+1

An23(1)dρnW23 = ρnm23 − I
ρn(m23)Pj = (−1)jPn−j

Note that the first equation does make sense for j = 0 or j = n with the right
interpretation. It follows that

(−1)jPn−j − Pj = −jAn23(1)Pj−1 + (n− j)An23(1)Pj+1.

We multiply by (n− 2j − 1)aj+1, using the fact that according to Eq. (6.2),

(n− 2j − 1)aj+1 = (n− 2j + 1)aj−1

so get

(n− 2j − 1)aj+1

(
(−1)jPn−j − Pj

)
= −j(n− 2j + 1)An23(1)An12(

1

2
)Pj−1

+ (n− j)(n− 2j − 1)An23(1)An12(
1

2
)Pj+1.

Lastly, we can apply An12(1
2
), using the fact that an−j = (−1)jaj to obtain

(n− 2j − 1)aj+1aj(Pn−j − Pj) = −j(n− 2j + 1)A(
1

2
,
1

2
)Pj−1

+ (n− j)(n− 2j − 1)A(
1

2
,
1

2
)Pj+1

For every j, aj or aj+1 is 0 unless j = n−1
2

for which n−2j−1 = 0 so one obtains
for all j,

j(n− 2j + 1)A(
1

2
,
1

2
)Pj−1 = (n− j)(n− 2j − 1)A(

1

2
,
1

2
)Pj+1.

In particular,

An(
1

2
,
1

2
)P1 = An(

1

2
,
1

2
)Pn−1 = 0.

So when n = 4a+ 3 we have

An(
1

2
,
1

2
)Pj = 0 (6.4)

when j is odd, j ≤ n−1
2

= 2a + 2 so combined with the previous proposition we
have Eq. (6.4) for all j ≤ 2a+ 1. Also, the above implies that Eq. (6.4) holds for
j even, j ≥ n−1

2
= 2a + 2 while the previous proposition tells us that it is true

for j odd, j ≥ 2a+ 3. Consequently we conclude that A4a+3(1
2
, 1

2
) = 0.

Now for A4a+1(1
2
, 1

2
). In the following we use A as a shorthand for this oper-

ator. We want to compute the matrix representation

Mjl = (APl|Pj).
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Because of the recursive relationship between the APm’s we must have a scalar
xm ∈ C, 0 ≤ m ≤ 2a such that

APm = xmAP0

for every such m. It is clear that x0 = 1 and that xm = 0 if m is odd. Further-
more, we get

x2m+2 = −
(1

2
+m)(−a+m)

(1
2
− a+m)(−2a+m)

x2m

which implies that (xm)m is given as claimed.
Likewise, there are scalars ym ∈ C, 0 ≤ m ≤ 2a such that

AP2a+1+m = ymP4a+1.

Then y2a = 1 and ym = 0 if m is odd. Furthermore,

y2m−2 = −
m(−a− 1

2
+m)

(a+m)(−1
2

+m)
y2m.

Introducing am = y2a−2m an solving its recurrence relation we find am = x2m,
i.e., y2m = x2a−2m.

Now we find that the matrix representation of A4a+1(1
2
, 1

2
) is

M =

(
(AP0|P0)xxt (AP4a+1|P0)xyt

(AP0|P4a+1)yxt (AP4a+1|P4a+1yy
t

)
.

For example, when 0 ≤ j, l ≤ 2a we have

Mjl = (APl|Pj) = −xl(Pl|APj) = xjxl(AP0|P0)

since A∗ = −A. Mutatis mutandis for the other blocks.
The lemma above informs us that

(AP4a+1|P0) = i(AP0|P0)

(AP0|P4a+1) = −i(AP0|P0)

(AP4a+1|P4a+1) = −i(AP0|P4a+1) = −(AP0|P0)

so we are done.

Proposition 6.3.9. For all a,

(A4a+1(
1

2
,
1

2
P0|P0) =

4√
π
i
Γ(2a+ 1)

Γ(2a+ 3
2
)

1

Γ(a+ 1)2Γ(−a+ 1
2
)2

Proof. Indeed,

ρn(k23θ)P0 =
n∑
j=0

sinj θ cosn−j θPj



104 Chapter 6. Compact Picture

so that

(An23(1)P0|P0) =
1
π
2

∫ π
2

0

cosn θ dθ =
2

π
B(

n+ 1

2
,
1

2
) =

2√
π

Γ(n+1
2

)

Γ(n+2
2

)
.

It follows that

(An(
1

2
,
1

2
)P0|P0) = a(

1

2
,
n

2
)(An23(1)P0|P0) =

4√
π

in

Γ(3+n
4

)2Γ(3−n
4

)2

Γ(n+1
2

)

Γ(n+2
2

)

so plugging in n = 4a+ 1 we have the result.

Proposition 6.3.10. Explicitly,

F 4a+1(m12 ⊗ A4a+1(
1

2
,
1

2
))E4a+1 = −

(A4a+1(1
2
, 1

2
)P0|P0)

2


x
iy
ix
y

(0 yt xt 0
)
.

Proof. Note first that since ρ4a+1(m12)Pj = (−1)jiPj and since that xm, ym = 0
for odd m, we must have that ρ(m12) acts on A = A4a+1(1

2
, 1

2
) on both the left

and the right as the block matrix (
iI 0
0 −iI

)
Consequently, in computing 4F (m12 ⊗ A)E we can replace 2F by

I +m−1
23 ⊗

(
i 0
0 −i

)
=


1 0 −i 0
0 1 0 i
i 0 1 0
0 −i 0 1


and we can replace 2E by

1 +m12 ⊗
(
i 0
0 −i

)
=


0 0 0 0
0 2 0 0
0 0 2 0
0 0 0 0


Then simply doing the matrix multiplication gives us the result.

Proposition 6.3.11. We have

Φ̂
1
2
, 1
2

ε (4a+ 1) = −π(A4a+1(
1

2
,
1

2
)P0|P0)


x
iy
ix
y

(0 yt xt 0
)

has rank 1. The single nonzero eigenvalue is

−2πi|x|2(A4a+1(
1

2
,
1

2
P0|P0) = 8

√
π|x|2 Γ(2a+ 1)

Γ(2a+ 3
2
)

1

Γ(a+ 1)2Γ(−a+ 1
2
)2

which is strictly positive for all a.
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Proof. Since |x|2 = |y|2,

Φ̂
1
2
, 1
2

ε (4a+ 1)


x
iy
ix
y

 = −2πi|x|2(A4a+1(
1

2
,
1

2
)P0|P0)


x
iy
ix
y


In summary,

Theorem 6.3.12. We have

Φ̂
1
2
, 1
2

ε (n) = 0

for n 6≡ 1 mod 4, and for n ≡ 1 mod 4, Φ̂
1
2
, 1
2

ε (n) is a rank-one positive ma-

trix. So there is a unitary quotient representation of S̃L(3,R) with Langlands
parameters given by the characteristic representation of SU(2) and 1

2
δ1 + 1

2
δ2.

The K-types of this representation are H4a+1 with multiplicity 1 for every a.

6.4 Outlook

Bochner’s Theorem in General. It is an interesting problem in general to
find Bochner’s Theorem for (operator-valued) distributions on an arbitrary Lie
group. As we have seen in Theorems 2.3.4 and 2.3.7 the problem is solved for
compact Lie groups and it seems that it is not a very great challenge to generalise
from the scalar case to the operator-valued one. On the Heisenberg group we only
achieved Bochner’s Theorem for the Lizorkin distributions and we realised via
the Abelian Fourier transform a sort of Bochner’s Theorem for the distributions
that are polynomial along the center. What we do not have is any way of relating
these two facts with each other.

I am confident that we could achieve analogous results on the Fourier trans-
form on more general nilpotent groups. For example one could let N be the
subgroup of all unipotent upper triangular matrices in SL(d,R) which corre-
sponds with inducing via a minimal parabolic. The change one would have to
content with is that N̂ would split into more families corresponding to the strat-
ification of the coadjoint orbits by their dimensions. I think it would be a good
idea to finish the Heisenberg case before taking that challenge on, however.

Operators from Section 5.1. Theorem 5.1.7 made the claim that the oper-
ator Sλε : S(Rd)→ S ′(Rd) defined by

Sλεϕ(x) =

∫ ∞
−∞
|t|λεϕ(tx) dt

is positive when λ = −1
2
. Our calculations show that one might even expect it

to be positive for −1 ≤ λ ≤ d− 1. Taking a step back from the case where the
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middle term vanishes in T̂ λε , we become interested in analysis of the operator
Rλ
ε : Sd → S ′d defined by

Rλ
εϕ(x) =

∫ ∞
−∞
|t− 1|2 Reλ−1|t|−λε ϕ(tx) dt.

We have made it likely that positivity of this operator is related to the operator
R̃λ
ε : S1 → S ′1 defined by

R̃λ
εϕ(t) =

∫ ∞
−∞
|s|d−1|t− s|2 Reλ−1ϕ(s) ds.

Analysis in the case d = 1 is easy because then R̃λ
ε is a convolution operator but

in general it does not seem like there is an easy way forward.

Computations for S̃L(3,R) on N . It is not impossible, merely very labour
intensive, to compute the Fourier transform in the noncompact picture using the
calculations of Appendix B.2. I have made some preliminary calculations of the
Fourier transform and one is left with many terms. In order to carry out the
analysis in this case one would need to somehow simplify the expression. At first
glance, it did not seem very easy.



Appendix A

Functional Theoretic Generalities

We say that a topological vector space is a Hausdorff topological space X that is
also a vector space such that the addition X ×X → X and scalar multiplication
C × X → X are continuous. The easiest case is of course when X is a metric
space. It is then natural to assume that the metric d is translation-invariant,
i.e.,

d(x+ t, y + t) = d(x, y).

In fact, the translation-invariance of d together with continuity of the scalar
multiplication is enough to ensure continuity of the addition, cf. [2, Ch. III,
§1]. Anyway, we say that X is an F-space if it is topological vector space whose
topology is defined by a translation-invariant metric with regards to which it is
complete as a metric space (i.e., Cauchy sequences are convergent sequences).

Locally Convex Spaces. The simplest way of getting a translation-invariant
(pseudo-)metric d is from a (semi-)norm p:

d(x, y) = p(x− y) (A.1)

A F -space whose translation-invariant metric comes from a norm like this is a
Banach space. In general we might consider the topology on a space X generated
by a collection of seminorms P , i.e., the topology is generated by the open balls

Bp(x, r) := {y ∈ X | p(x− y) < r} (A.2)

for p ∈ P , x ∈ X, r > 0. In order to have a Hausdorff space we need to impose
on P the condition that for every x ∈ X there is some p ∈ P with p(x) > 0.

One would expect p to be in some ways determined by A = Bp(0, 1). Indeed
one finds p = pA where

pA(x) := inf{t > 0 |x/t ∈ A}.

In general, in order for pA to be a seminorm for arbitrary A ⊆ X, assumptions
must be made on A: In order for the infimum to make sense for all x we must have⋃
r>0 rA = X; in this case we say A is absorbing. In order to have subadditivity

107
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of pA it is sufficient that A is convex, i.e., ta + (1 − t)a′ ∈ A for all a, a′ ∈ A,
t ∈ [0, 1]. In order to have homogeneity of pA, it is sufficient that A is balanced,
i.e., λA ⊆ A for |λ| ≤ 1. The ball Bp(0, 1) has all these properties. We will say
that a subset A ⊆ X is absolutely convex if it is both balanced and convex. We
have from [30, Thm. 1.35]:

Lemma A.0.1. Suppose that A is an absolutely convex absorbing subset of a
topological vector space X. Then pA is a seminorm and

BpA(0, r) ⊆ A ⊆ BpA(0, r).

Here

Bp(x, r) = {y ∈ X | p(y − x) ≤ r}.

Suppose X is a topological vector space. A subset U ⊆ X is a neighbourhood
of x ∈ X if there is some open V ⊆ X such that x ∈ V ⊆ U . A local base for
X is a collection γ of neighbourhoods of 0 such that if U is a neighbourhood
of 0 then U contains some element of γ. We say that γ is (absolutely) convex
if if every element in γ is (absolutely) convex. A topological vector space X
is said to be locally convex if it has a convex local base. One can show [30,
Thm 1.14] that any convex neighbourhood of 0 contains an absolutely convex
neighbourhood of 0 so any locally convex space has an absolutely convex local
base. Each absolutely convex neighbourhood of 0 is associated with a continuous
seminorm and we find that a locally convex space is completely described by the
collection of continuous seminorms.

All the spaces we will look at are locally convex. A locally convex F -space is
called a Fréchet space. Such a space is first countable so the absolutely convex
local base can be chosen to be countable. In this way it turns out that to specify
a Fréchet space it is enough to specify some countable family of seminorms on a
vector space.

Completeness. In order to prove continuity it will be convenient to consider
nets. A net in a topological vector space X is a subset (xλ)λ∈I indexed by some
directed set I. A nonempty set I is directed if it is partially ordered by some
order ≤ and if for every λ, λ′ ∈ I there is some Λ ∈ I with λ, λ′ ≤ Λ. A net (xλ)λ
is said to be convergent if there is some x ∈ X such that for every neighbourhood
U of x there is some Λ such that for all λ ≥ Λ we have xλ ∈ U . In this case x is
said to be the limit of the net (the Hausdorff property of X ensures uniqueness).
A net (xλ) is said to be Cauchy if to each neighbourhood U of 0 there is a Λ
such that for λ, λ′ ≥ Λ we have xλ − xλ′ ∈ U . A topological vector space X is
said to be complete if every Cauchy net in X is convergent. A space X is said
to be quasi-complete if its closed and bounded subsets are complete.

Barreledness. The Banach-Steinhaus theorem is an important tool in func-
tional analysis. The theorem says
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Theorem A.0.2. Suppose that X is a Banach space and Y is a normed vector
space. Suppose that Tλ : X → Y , λ ∈ I, is a family of continuous linear maps
such that supλ‖Tλx‖ <∞ for all x ∈ X. Then supλ‖Tλ‖ <∞.

Here ‖T‖ is the operator norm. In generalizing this to a non-normed context
one needs more concepts. A subset B of a topological vector space X is said
to be bounded if, to each neighbourhood U of 0 there is some t ≥ 0 such that
B ⊆ tU . In a locally convex space X it is easy to see that a subset B ⊆ X is
bounded if and only if p(B) ⊆ R is bounded for every continuous seminorm p on
X. The condition supλ‖Tλx‖ < ∞ is then naturally replaced by the condition
that {Tλx}λ is bounded for every x ∈ X. The condition that C = supλ‖Tλ‖ <∞
implies that when ‖x‖ < r we have ‖Tλx‖ < Cr. This condition is naturally
replace by equicontinuity. A family of maps Tλ : X → Y , λ ∈ I, between
topological vector spaces is said to equicontinuous if, to every neighbourhood
V ⊆ Y of 0 there is some neighbourhood U ⊆ X of 0 such that TλU ⊆ V holds
for every λ.

We will merely assume that Y is locally convex. What condition is required
on X? Suppose that Tλ : X → Y , λ ∈ I, is a family of operators that is pointwise
bounded, i.e., for which {Tλx}λ is bounded. Let V ⊆ Y be a closed absolutely
convex neighbourhood of 0. Then ⋂

λ

T−1
λ V

is closed, absolutely convex, and the pointwise boundedness implies that it is also
absorbing. Such a subset is said to be a barrel. In order to get equicontinuity
one requires that it is a neighbourhood of 0. We say that a topological vector
space X is barreled if all its barrels are neighbourhoods of 0. Then one has the
uniform boundedness principle:

Theorem A.0.3. Suppose that X is barreled and Y is locally convex. Then a
family of pointwise bounded continuous operators X → Y is equicontinuous.

LF-spaces. Suppose that E is a vector space and that we have a family of
linear subspaces Ej, j ∈ I, such that

⋃
j Ej = E. Suppose that each Ej is a

locally convex space. Then there is a finest topology among the topologies on
E making E into a locally convex space. With this topology, E is the inductive
limit of the Ej’s. In this case, a family of maps Tλ : E → F , λ ∈ J into a locally
convex space F is equicontinuous if and only if (Tλ|Ej)λ is equicontinuous for
each j (cf. [28, Ch. V, §2, Proposition 5]).

When I = N, En ⊆ En+1 and each En is a Fréchet space we will say that E
is an LF -space.

Spaces of Linear Maps. Let E,F be two locally convex spaces. Let L(E,F )
be the set of continuous linear maps E → F . We will typically give L(E,F ) the
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topology of uniform convergence on the bounded subsets of E. The neighbour-
hood filter for this topology is given by

U(B, V ) = {T ∈ L(E,F ) |T (B) ⊆ V } (A.3)

for bounded B ⊆ E and neighbourhood V ⊆ F of 0. When we wish to highlight
this choice of topology we will write Lb(E,F ).

A special case that we will work with extensively is the case where F = C.
This gives us E ′ = L(E,C) the dual space of E. If one wishes to emphasize the
topology given to E ′ one can say that this is the strong dual of E.

When we are looking at L(E ′, F ) we will have occasion to consider another
topology, namely the topology of uniform convergence on equicontinuous sub-
sets. This is the topology on L(E ′, F ) with the neighbourhood filters U(B, V )
in Eq. (A.3) where B = H ⊆ E ′ is taking to be equicontinuous. The space
equipped with this topology is denoted by Lε(E ′, F ).

Lemma A.0.4. For all barreled E, the application map

L(E,F )× E → F

is hypocontinuous.

Proof. [5, Ch. III, §5, Exercise 12].

DF-spaces. Morally, theDF -spaces are the dual spaces of the F -spaces. It will
not be important but let us review (some of) the technicalities for completeness
anyway. Let E be an F -space and let U1 ⊇ U2 ⊇ · · · be a countable base for the
topology. We have the corresponding polars

Bn = {f ∈ E ′ | ∀x ∈ Un, |〈f, x〉| ≤ 1}

and (Bn)n turns out to give a fundamental sequence of bounded sets for E ′, i.e.,
a sequence of bounded sets such that every bounded subset of E ′ is contained in
some Bn. An F -space is barreled so a bounded subset B of E ′ will be equicon-
tinuous which implies that there is some neighbourhood U of 0 in E such that
|〈f, x〉| ≤ 1 for all x ∈ U , f ∈ B. We can find n such that Un ⊆ U so B ⊆ Bn.

A DF -space E is a locally convex space with a fundamental sequence of
bounded sets that also satisfies that every strongly bounded subset of E ′ which
is the union of countably many equicontinuous sets is also equicontinuous. The
other property here is rather technical so we will not review it in detail. What
is important is that the strong dual of any F -space is a complete DF and that
the strong dual of any DF -space is a F -space.

Classes of Bilinear Maps. Suppose E,F,G are topological vector spaces. A
map

M : E × F → G
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is bilinear if M(e, ·) and M(·, f) are linear for every e, f . M is said to be jointly
continuous or just continuous if it is continuous when E×F is equipped with the
product topology. B is said to be separately continuous if M(e, ·) and M(·, f)
are continuous for every e, f . In general, these are distinct properties but we do
have [39, Thm 34.1]

Theorem A.0.5. Suppose that E,F are F-spaces and that G is locally convex.
Suppose also that E is barreled. Then every separately continuous bilinear map
E × F → G is jointly continuous.

M is said to be hypocontinuous with regards to the bounded subsets of E if
M(B, ·) = {M(b, ·)}b∈B is equicontinuous for every bounded subset B ⊆ E.
Likewise with regards to the bounded subsets of F . M is said to be hypocontin-
uous if it is hypocontinuous with regards to the bounded subsets of both E and
F . Obviously, hypocontinuity is a property weaker than continuity but stronger
than separate continuity, and

Proposition A.0.6. Suppose that E,F,G are locally convex. If E is barreled,
any separately continuous bilinear map E×F → G is hypocontinuous with regards
to the bounded subsets of F . If both E,F are barreled, any separately continuous
bilinear map E × F → G is hypocontinuous.

Finally, for DF -spaces there is an analogue of Theorem A.0.5, cf. [23, §40,
2. (10)]

Proposition A.0.7. Let E,F be DF-spaces and suppose that G is locally convex.
Any hypocontinuous bilinear map E × F → G is continuous.

A.1 Differential Calculus

Differentiable Maps Rd → E. We will collect some generalities on differen-
tiable maps here. Suppose that U ⊆ Rd is open and that E is a topological
vector space. A map ϕ : U → E is said to be differentiable at x ∈ U if there is
a linear map Dϕ(x) : Rd → E such that

lim
h→0

ϕ(x+ h)− ϕ(x)−Dϕ(x)h

|h|
= 0.

We say that ϕ is differentiable if ϕ is differentiable at all x ∈ U . In this case we
have a map Dϕ : U → L(Rd, E). As usual we make L(Rd, E) into a topolog-
ical vector space by giving it the topology of uniform convergence on bounded
subsets. Since Rd is finite dimensional, this topology actually coincides with the
topology of pointwise convergence and with the topology of uniform convergence
on compact, precompact or absolutely convex compact sets, i.e., the topology on
L(Rd, E) is very natural. In general, when replacing Rd by another topological
vector space these topologies will not coincide and a choice will have to be made,
cf. [20].
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Anyway, ϕ is continuously differentiable or C1 if ϕ is differentiable and Dϕ
is continuous. Inductively, stating with the case k = 1 and D0ϕ = ϕ and in the
case where Dk−1ϕ is differentiable we define Dkϕ := D(Dk−1ϕ). Canonically,
the image of this map is contained in Lk(Rd, E) — the space of k-linear maps
(Rd)k → E. Again, the topology on this space is very natural and can be taken
to be the topology of pointwise convergence. We then say that ϕ is k-times
continuously differentiable or Ck when Dkϕ exists and is continuous.

Remark A.1.1. This definitions coincides with the definition given in [21, p. 52]
in the context for Hilbert spaces. However, it is not quite the same as the
definition given in [20, Def. 2.1.0] nor as the one given in [32, p. 93] nor in [39,
Def. 40.1]. These definitions are all given in terms of some directional or partial
derivatives, in [20] out of necessity because Rd is replaced by some non-normable
locally convex space, in [32] the space E is locally convex and we will see that
the definitions will coincide, and in [39] the space E is kept arbitrary but his aim
is primarily on locally convex spaces.

Partial Derivatives. When ϕ is p-times continuously differentiable it is nat-
ural, for any directions v1, . . . , vp ∈ Rd to consider the partial derivatives

Dpϕx(v1, . . . , vp).

When using the canonical basis vectors ej ∈ Rd we get the canonical partial
derivatives

∂pϕ(x) = D|p|ϕx(e
p1
1 , . . . , e

pd
d )

for any tuple p ∈ Nd
0. Here we understand ekj = (ej, . . . , ej), k times and for

p ∈ Nd
0, |p| =

∑
j pj. Note that [20, Thm. 2.4.0] says that Dpϕ is symmetric so

it does not matter what order we use above. We also use ϕ(p) = ∂pϕ.
In particular we have the partial derivatives

D1ϕx(v) = lim
h→0

ϕ(x+ hv)− ϕ(x)

h
. (A.4)

The definition of differentiability in [20, Def. 1.0.0] is centered around these di-
rectional derivatives. We will say that ϕ : U → E, U ⊆ Rd open, is Gâteaux dif-
ferentiable if for every x ∈ U there is a linear map D1ϕ(x) : Rd → E (necessarily
continuous) such that Eq. (A.4) is satisfied for all v ∈ Rd. Note this definition ad-
mits generalisation to the case where Rd is an arbitrary topological vector space.
We say that ϕ is continuously Gâteaux differentiable if D1ϕ : U → L(Rd, E)
is continuous. A priori it is clear that any (continuously) differentiable map is
(continuously) Gâteaux differentiable but the converse seems elusive in general.

Even more specific is the definition of differentiability given in [32, p. 93].
This is build entirely in terms of the canonical partial derivatives

∂jϕ(x) = D1ϕx(ej) = lim
h→0

ϕ(x+ hej)− ϕ(x)

h
.

We will work shortly towards proving
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Proposition A.1.2. Suppose that E is a locally convex space and that U ⊆ Rd

is open. A function ϕ : U → E is continuously differentiable if and only if ∂jϕ
exists and is continuous for every j.

Really, looking over the proof of the corresponding finite-dimensional case
[29, Thm. 9.21] we see that what is needed is a Mean Value Theorem. Luckily
we have one available:

Proposition A.1.3. Suppose that E is locally convex and suppose that a, b ∈ R,
a ≤ b. Let ϕ : [a, b]→ E be continuous with ϕ|(a,b) differentiable. Then

ϕ(b)− ϕ(a)

b− a
∈ cx{ϕ′(t) | t ∈ [a, b]}.

Here cx denotes taking the closed convex hull in the weak topology.

Remark A.1.4. In [1, Example 1.23] it is remarked local convexity is essential for
this theorem and a counterexample is provided with E consisting of all measur-
able functions on [0, 1] equipped with the topology of convergence in measure.
In this example, E ′ = 0, cf. [18, 6.10 J]. In the case where E ′ separates points we
can equip E with the weak topology which will make it a locally convex space
Es and the identity E → Es is continuous. So the Mean Value Theorem actually
holds in this case if we take the weak closure instead of the closure.

Proof. Set

C := cx{ϕ′(t) | t ∈ [a, b]}.

If the theorem is false, Hahn-Banach [30, Thm. 3.4] gives us a linear functional
e′ ∈ E ′ such that

Re

〈
ϕ(b)− ϕ(a)

b− a
, e′
〉
< Re〈c, e′〉

for all c ∈ C. But the scalar Mean Value Theorem gives us a t ∈ [a, b] such that

〈ϕ′(t), e′〉 =

〈
ϕ(b)− ϕ(a)

b− a
, e′
〉

which leads us to the absurd

Re〈ϕ′(t), e′〉 < Re〈ϕ′(t), e′〉

by taking c = ϕ′(t).

Theorem A.1.5. Suppose that E is locally convex and U ⊆ Rd is open. Sup-
pose ϕ : U → E such that ∂jϕ exists and is continuous for all j. Then ϕ is
continuously differentiable.

This is the argument from [29, Thm 9.21]:
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Proof. Let x ∈ U and write h ∈
∑n

j=1 hjej. Let δ > 0 be so small that |hj| < δ

for all j implies that vk =
∑k

j=1 hjej ∈ U . We claim that as h→ 0,

1

|h|

(
ϕ(x+ h)− ϕ(x)−

n∑
j=1

hj∂jϕ(x)

)
→ 0.

For |hj| < δ we can write

ϕ(x+ h)− ϕ(x)−
n∑
j=1

hj∂jϕ(x) =

n∑
j=1

(
ϕ(x+ vj−1 + hjej)− ϕ(x+ vj−1)− hj∂jϕ(x)

)
.

Note that [0, 1] 3 t 7→ ϕ(x + vj−1 + thjej) − thj∂jϕ(x) is differentiable so the
Mean Value Theorem gives

ϕ(x+ vj−1 + hjej)− ϕ(x+ vj−1)− hj∂jϕ(x) ∈ cx{hj(∂jϕ(x+ vj)− ∂jϕ(x))}.

Let V ⊆ E be some neighbourhood of 0. Since E is locally convex we may
assume that V is closed and absolutely convex so that if we take δ so small that
|hj| < δ implies that

∂jϕ(x+ vj)− ∂jϕ(x) ∈ V
then we get

ϕ(x+ h)− ϕ(x)−
∑

j hj∂jϕ(x)

|h|
∈
∑
j

hj
|h|
V ⊆

∑
j

V.

which concludes the proof.

Corollary A.1.6. Suppose that E is locally convex and U ⊆ Rd open. Then
ϕ ∈ Cm(U,E) if and only if ∂pϕ exists and is continuous for all |p| = m.

The norm |·| is a multiindex p ∈ Nd
0 is defined as

|p| =
∑
j

pj.

Pairing with the Dual. Suppose that U ⊆ Rd is open and E is a topological
vector space. For every ϕ : U → Rd and every e′ ∈ E ′ we have a corresponding
map 〈ϕ, e′〉 : U → C given by

〈ϕ, e′〉(x) := 〈ϕ(x), e′〉.

If 〈ϕ, e′〉 is m-times continuously differentiable for all e′ we say that ϕ is scalarly
m-times continuously differentiable. It is clear that if ϕ is m-times continuously
differentiable then ϕ is scalarly m-times continuously differentiable. In fact, there
is a converse due to Grothendieck [14, Ch. 3, §8, Prop. 15, Corollary 1]:
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Proposition A.1.7. Suppose that E is a quasi-complete locally convex space and
that U ⊆ Rd is open. If ϕ : U → E is scalarly m-times continuously differentiable
then the partial derivatives of ϕ up to degree m− 1 exist and are continuous.

Remark A.1.8. Grothendieck only works with partial derivatives, hence the some-
what cumbersome formulation.

If we combine the results up to know we find

Theorem A.1.9. Suppose that E is a quasi-complete locally convex space and
U ⊆ Rd open. If ϕ : U → E satisfies that the degree m partial derivatives of
〈ϕ, e′〉 exist and are continuous for all e′ ∈ E ′ then ϕ is (m−1)-times continuously
differentiable. Consequently, ϕ is smooth if and only if all the partial derivatives
of 〈ϕ, e′〉 exist for all e′ ∈ E ′.

Leibniz’ Rule. Suppose that ϕ : U → E and ψ : U → F are both m-times
continuously differentiable and suppose that Λ : E × F → G is hypocontinuous.
Then we define Λ(ϕ, ψ) : U → G by Λ(ϕ, ψ)(x) = Λ(ϕ(x), ψ(x)). We find

Theorem A.1.10. The function Λ(ϕ, ψ) is m-times continuously differentiable
and we have Leibniz’ formula

Λ(ϕ, ψ)(n)(x) =
∑
k≤n

(
n

k

)
ϕ(k)(x)ψ(n−k)(x)

for every multiindex n with |n| ≤ m.

Here the relation k ≤ n for k, n ∈ Nd
0 means that kj ≤ kj for all j. Also, n−k

is to be understood pointwise; (n− k)j = nj − kj ∈ N0 if k ≤ n.

Remark A.1.11. This generalises for example [20, Prop. A.1.7].

Proof. There are linear maps Dϕx : Rd → E, Dψx : Rd → F such that

ϕ(x+ h)− ϕ(x)−Dϕxh
|h|

→ 0

ψ(x+ h)− ψ(x)−Dψxh
|h|

→ 0

as h→ 0. Note that h 7→ Λ(Dϕxh, ψ(x)) + Λ(ϕ(x), Dψxh) is a linear map and

Λ(ϕ(x+ h), ψ(x+ h))− Λ(ϕ(x), ψ(x))− Λ(Dϕxh, ψ(x)) + Λ(ϕ(x), Dψxh)

|h|

= Λ

(
ϕ(x+ h)− ϕ(x)−Dϕxh

|h|
, ψ(x+ h)

)
+ Λ

(
Dϕxh

|h|
, ψ(x+ h)− ψ(x)

)
+ Λ

(
ϕ(x),

ψ(x+ h)− ψ(x)−Dψxh
|h|

)
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which goes to 0 as h → 0 by hypocontinuity: As h → 0 it will in particular be
bounded so {ψ(x+ h)}h and {|h|−1Dϕxh}h will be bounded.

Thus one concludes that Λ(ϕ, ψ) is differentiable and that its differential is
h 7→ Λ(Dϕxh, ψ(x)) + Λ(ϕ(x), Dψxh). Note here that Λ induces a hypocontinu-
ous linear map L(Rd, E)×F → L(Rd, G) so we can apply the above reasoning if
Dϕ is differentiable to see that Λ(Dϕ,ψ) is differentiable, too. Continuing this
way we find, if ϕ, ψ are n-times differentiable that Λ(ϕ, ψ) is n-times differen-
tiable and that the n’th derivative is

DnΛ(ϕ, ψ)x(h1, . . . , hn) =
n∑
j=0

(
n

j

)
Λ(Djϕx(h1, . . . , hj), D

n−jψx(hj+1, . . . , hn))

which the understanding that D0ϕx = ϕ(x).

Expressed in partial derivatives this is exactly the formula that we want.

Taylor Expansion. We will need to use Taylor expansion of some vector-
valued functions.

Proposition A.1.12. Suppose that E is a quasi-complete locally convex space
and U ⊆ Rd is open. Suppose that ϕ : U → E is m-times continuously differen-
tiable. Then when x+ [0, 1]h ⊆ U we have

ϕ(x+ h) =
∑

|α|≤m−1

∂αϕ(x)

α!
hα +

∑
|α|=m

m

α!
hα
∫ 1

0

(1− t)m−1∂αϕ(x+ th) dt.

Remark A.1.13. The integral makes sense according to [6, III, §3, no. 3, Prop.
7, Cor. 2].

Proof. When paired with any continuous linear functional this will hold. Since
E ′ separates points we have the theorem.

A.2 Examples of Locally Convex Spaces

Suppose that X is a set. When f : X → C we use

‖f‖∞ := sup
x∈X
|f(x)|.

Suppose that E is a topological space. When f : X → E is a map and p is a
seminorm on E we use

‖f‖p := ‖p ◦ f‖∞ = sup
x∈X

p(f(x)).
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The Vector-Valued Smooth Functions E(U,E). Let E be some locally
convex space. We let E(U,E) be the vector space of smooth functions U → E.
We give E(U,E) the topology of uniform convergence of all derivatives on all
compacts in U . So then ϕλ → ϕ if and only if ∂pϕλ → ∂pϕ uniformly on every
compact K ⊆ U and for every tuple p.

Suppose that K ⊆ U is compact, n ∈ N0 and q is a continuous seminorm on
E. Then we get a seminorm

pq,n,K(ϕ) := max
|k|≤n
‖ϕ(k)|K‖q = max

|k|≤n
sup
x∈K

q(ϕ(k)(x))

on E(U,E) which defines its structure as a locally convex space. When E = C
we let q be the usual norm and we use pn,K = pq,n,K .

The Vector-Valued Schwartz Functions. Let E be some locally convex
space. We take S(Rd, E) ⊆ E(Rd, E) to be the set of smooth functions ϕ such
that whenever p is some continuous seminorm on E,

‖ϕ‖N,p = max
|n|≤N

sup
x∈Rd

p((1 + |x|2)N∂nϕ(x)) <∞.

Then S(Rd, E) is equipped with the topology induced by the norms ‖·‖N,p. When
E = C we let p be the usual norm and use ‖·‖N = ‖·‖N,p. For E = C we just
write S(Rd) = S(Rd,C). Also we will occasionally use the shorthand Sd for
S(Rd).

The Vector-Valued Test Functions DN(U,E). Let E be some locally con-
vex space and let N ∈ N0 ∪ {∞}. We let DN(U,E) be the vector space of all
functions that are N times continuously differentiable U → E with compact sup-
port (when N =∞ this means smooth). For each compact K ⊆ U let DNK(U,E)
be the subspace of functions ϕ with suppϕ ⊆ K. The DK(U,E) is given the
topology of uniform convergence of all derivatives. We can equip it with the
norms

‖ϕ‖p,n = max
|m|≤n

‖∂mϕ‖p = max
|m|≤n

sup
x∈U

p(∂mϕ(x)).

We then give DN(U,E) the finest locally convex topology such that all the inclu-
sions DNK(U,E)→ DN(U,E) are continuous. When N =∞ we use the notation
D(U,E) instead. For E = C we use the notation ‖·‖n instead.

The Vector-Valued Distributions D′(U,E). Let E be some locally convex
space. We define D′(U,E) := L(D(U), E) to be the set of distributions with
values in E. When E is complete there is a continuous linear injection E(U,E)→
D′(U,E) defined by

Φ(ψ) =

∫
ψ(x)ϕ(x) dx ∈ E
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for Φ ∈ E(U,E), ψ ∈ D(U). This integral is to be understood in the weak sense
so that

〈Φ(ψ), e′〉 =

∫
ψ(x)〈ϕ(x), e′〉 dx.

for all e′ ∈ E ′. Indeed, according to [6, III.39, No. 4, Prop. 8] the integral is
continuous D(U,E)→ E and the multiplication

D(U)× E(U,E)→ E(U,E)

is hypocontinuous.

The Multiplier Space OM(Rd, E). Let OM(Rd, E) ⊆ E(Rd, E) be the subset
of functions Φ such that ϕ · Φ(n) is bounded for all ϕ ∈ S(Rd) and all n. This

space is given the topology such that Φλ → 0 when ϕ · Φ(n)
λ → 0 uniformly. For

E = C we write OM(Rd) = OM(Rd,C). In [17, 4, §11, Proposition 5] it is proven
that OM(Rd) is exactly the subset of smooth functions Φ such that for every n
there is some m ∈ N0 and some c > 0 such that

|Φ(n)(x)| ≤ c|x|m.

A.3 Tensor Products

Suppose that E,F are locally convex spaces. We shall work with three topologies
on the tensor product E⊗F . The inductive resp. projective topology is the finest
locally convex topology such that the natural bilinear map E × F → E ⊗ F is
separately continuous resp. jointly continuous. Let E ⊗i F resp. E ⊗π F be
the space E ⊗ F with the inductive resp. the projective topology. Let E ⊗ F
resp. E ⊗̂ F be their completions. They are both equipped with a universal
property: Any separately continuous resp. jointly continuous bilinear map on
E×F descends to give a continuous linear map on E⊗F resp. E ⊗̂F . The third
topology will be identical to the projective one for most of our examples so we
will not go much into detail. The space E ⊗ F can be identified with B(E ′s, F

′
s)

— the space of continuous bilinear maps on E ′s × F ′s where E ′s, F
′
s are the dual

spaces given the topology of pointwise convergence, cf. [39, Proposition 42.5].
This space can then be given the topology of uniform convergence on products
of equicontinuous subsets of E ′s and F ′s. This topology on E ⊗ F is called the
injective topology. Given this topology the space is written E ⊗ε F .

Nuclear Spaces. A locally convex space E is called nuclear if for every locally
convex space F we have E ⊗π F = E ⊗ε F .

Since the projection E×F → E⊗̂F is continuous, it is in particular separately
continuous so there is a continuous linear map

Γ : E ⊗ F → E ⊗̂ F.

It will be convenient to know the following ([15, Ch. 1, §1, no. 3, Proposition 5
and Corollaire 1]):
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Proposition A.3.1. If both E and F are F-spaces then E ⊗π F is barreled. If
both E and F are barreled DF-spaces then E ⊗π F is barreled.

There is a map E ′×F → L(E,F ), e′×f 7→ e′⊗f given by e′⊗f(e) = 〈e′, e〉f .
This map is always continuous so by the universal property we get a continuous
linear map

E ′ ⊗π F → L(E,F )

the image of which consist of all finite-rank operators in L(E,F ). There are
problems with extending this map to E ′ ⊗̂ F in general because L(E,F ) is not
necessarily complete. However, we have ([39, Proposition 50.5]):

Proposition A.3.2. Suppose that E,F are complete locally convex spaces. Sup-
pose additionally that E is barreled, and that E ′ is nuclear and complete. Then
L(E,F ) is complete, and we have

E ′ ⊗̂ F ∼= L(E,F ).

Examples of Tensor Products. Many of the spaces introduced above have
a representation as a tensor product.

Vector-Valued Smooth Functions. Suppose U ⊆ Rd is open, and E is a
complete locally convex space. For ϕ ∈ E(U) and ψ ∈ E we have ϕ⊗ψ ∈ E(U,E)
defined by

ϕ⊗ ψ(x) = ϕ(x)ψ.

This gives us a map E(U)⊗ E → E(U,E).
We have, cf. [39, p. 533]:

E(U,E) ∼= E(U) ⊗̂ E.

Vector-Valued Test Functions. Again we have a map as above D(U)⊗
E → D(U,E). Grothendieck shows in [15, Chapitre II, §3, no. 3, Théorème 13,
Examples 4 (Ch. II, p. 84)] that if E is an F -space then

D(U,E) ∼= D(U)⊗ E.

Vector-Valued Schwartz Functions. [39, p. 533] tells us that

S(Rd, E) ∼= S(Rd) ⊗̂ E

whenever E is a complete locally convex space.

Vector-Valued Distributions. It follows from Theorem A.3.2 that for
any complete locally convex E,

D′(U,E) ∼= D′(U) ⊗̂ E.
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Schwartz Kernel Theorem. Again, Theorem A.3.2 and the fact that
Sn ⊗̂ Sm ∼= Sn+m gives us

L(S(Rn),S(Rm)) ∼= S(Rm) ⊗̂ S(Rn) ∼= S(Rm × Rn).

This is known as the Schwartz Kernel Theorem. We will introduce some nota-
tion for this theorem. Suppose that K ∈ S(Rm × Rn) is a kernel. Then the
corresponding operator TK : Sn → Sm is defined by

〈TKϕ, ψ〉 = 〈K,ψ ⊗ ϕ〉

for ϕ ∈ Sn, ψ ∈ Sm.

Multiplier Space. According to [32, Prop. 10], if E is a complete locally
convex space,

OM(Rd, E) ∼= OM(Rd) ⊗̂ E.



Appendix B

An SL(2,R)-Trick in S̃L(3,R)

In this chapter we compute the NMAN -decomposition for some elements in
ŜL(3,R) that are relevant to the Knapp-Stein intertwiner. These computations
have not been polished and might appear rough.

B.1 The NMAN-Decomposition in S̃L(2,R)
First we consider the group SL(2,R). We have the important subgroup M =
{e, σ} where e ∈ G is the identity element and σ = −e. For ε ∈ {−1, 1} we let
m(ε) = εe. Now, we get

Proposition B.1.1. For all g ∈ SL(2,R),

g =

(
a b
c d

)
, ad− bc = 1,

for which a 6= 0 we have

g = n(c/a)m(sgn(a))a(|a|)n(b/a).

We use the explicit construction of the double covering S̃L(2,R) from [38, I,
2] to obtain the NMAN -decomposition for this group. Note that SL(2,R) acts
on the upper half plane (=z > 0) by

gz =
az + b

cz + d
, g =

(
a b
c d

)
.

The double cover can be realised as the set of pairs (g,Φ) where g ∈ SL(2,R)
and Φ is a holomorphic function on the upper half plane such that

Φ(z)2 = cz + d, g =

(
a b
c d

)
.

The composition in S̃L(2,R) is given by

(g1,Φ1)(g2,Φ2) = (g3,Φ3)

121
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where g3 = g1g2 and

Φ3(z) = Φ1(g2z)Φ2(z).

We use the definitions from [38] with

n(t) = y(t)

a(s) = h(s) =

((
s 0
0 1/s

)
, s−1/2

)
n(t) = x(t)

for t ∈ R, s > 0, and additionally we define

m(u) :=

((
u2 0
0 u2

)
, u

)
for u ∈ {1, i,−1,−i}. We also use the convention that, for z ∈ C, z1/2 is the
square root defined by

z1/2 = r1/2eiθ/2

when z = reiθ, r > 0, −π < θ ≤ π.

Proposition B.1.2. For (g,Φ) ∈ S̃L(2,R),

g =

(
a b
c d

)
, ad− bc = 1

with a 6= 0 we have

g = n(c/a)m(u)a(|a|)n(b/a)

where u ∈ {1, i,−1,−i} is chosen such that u2 = sgn(a) and

Φ(z) = u · u(a, c, d)(cz + d)1/2

where

u(a, c, d) =



+1 a > 0

−i a < 0, c > 0

−i a < 0, c = 0, d < 0

+i a < 0, c < 0

+i a < 0, c = 0, d > 0.

B.2 NMAN-Decomposition of w−1
13 n(x, y, z)

Using the above we find

w−1
13 n(x, y, z) = w−1

13 n13(z)n12(x)n23(y)

= n13(−z−1)m(u1)a13|z|n13(z−1)n12(x)n23(y)
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where u2
1 = sgn(−z) = − sgn(z) and

u1 =

{
+1 z < 0

+i z > 0.

The idea is to use commutation rules arising from Lie algebra identities to move
around in the equation until we have an NMAN -decomposition.

Commutators. For a, b in any group we let

[a, b] := aba−1b−1.

There is another possible convention but this corresponds nicely with the ring
commutator [A,B] = AB − BA. The commutator gives us the cost of making
elements commute. Indeed,

ba[a−1, b−1] = ab = [a, b]ba.

We will need some commutators in G̃, among others the commutators of nij and
nkl for certain i, j, k, l. Let us start with (i, j) = (k, l):

Lemma B.2.1. For all s, t ∈ R,

n(s)n(t) = n

(
t

1 + ts

)
m(u)a|1 + ts|n

(
s

1 + ts

)
where

u =


+1 1 + ts > 0

i 1 + ts < 0, t > 0

−i 1 + ts < 0, t ≤ 0.

In order to rapidly generate more commutators we shall note some results
about certain automorphisms of G̃. First there is the Cartan involution Θ
uniquely given by its differential

θ(X) = −X t.

This implies that Θ preserves each of the embedded copies of S̃L(2,R) given by
the images of jkl, and Θ restricts to the Cartan involution of the subgroup.

In particular we have

Θ(nij(t)) = nij(−t)
Θ(aij(t)) = aij(t

−1)

Θ(kij(t)) = kij(t)

Θ(mij(u)) = mij(u).

We consider

w̃ =

(
0 1
1 0

)
∈ GL(2,R)
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and for n ≥ 3, 1 ≤ i < j ≤ n, w̃ij = jij(w̃). Note that GL(n,R) acts by
conjugation on SL(n,R) so this action ascends to the universal covers which is
equal to the double cover for n ≥ 3. For n = 2 we note that conjugation by w̃
sends the generator of π1 into its inverse. Indeed,

w̃

(
cos θ sin θ
− sin θ cos θ

)
w̃−1 =

(
cos(−θ) sin(−θ)
− sin(−θ) cos(−θ).

)
so the action of w̃ ascends to any m-fold cover of SL(2,R). In particular, it
ascends to the double cover. Concretely, it seems the action is realised as

(g,Φ) 7→ (cw̃g,

(
bz + a

dz + c

)1/2

Φ(z−1)z1/2), g =

(
a b
c d

)
.

The action of w̃ on S̃L(n,R) is given uniquely by its differential which is equal
to the differential of the action on SL(n,R), i.e., it is equal to Ad(w̃). From this

fact we can make conclusions about cw̃ on S̃L(3,R). It is not difficult to see that

Ad(w̃13)dj13 = dj13 Ad(w̃)

Ad(w̃13)dj12 = dj23 Ad(w̃)

the first equation being obvious and the second found by computation. This
implies that

cw̃13n13(s) = n13(s)

cw̃13n12(t) = n23(t)

cw̃13n23(x) = n12(x).

Likewise we have

Ad(w̃12)dj12 = dj12 Ad(w̃)

Ad(w̃12)dj13 = dj23

giving

cw̃12n13(s) = n23(s)

cw̃12n12(t) = n12(t)

cw̃12n23(x) = n13(x).

Lastly, we have

Ad(w̃23)dj23 = dj23 Ad(w̃)

Ad(w̃23)dj13 = dj12

so

cw̃23n13(s) = n12(s)

cw̃23n12(t) = n13(t)

cw̃23n23(x) = n23(x).
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Lemma B.2.2. For all s, t ∈ R,

[n12(x), n13(z)] = n23(xz)

[n12(x), n23(y)] = e

[n23(y), n13(z)] = n12(−yz)

Proof. In the Heisenberg group of course we have

[n12(x), n23(y)] = n13(xy)

Applying w̃12 and w̃23 gives, in order,

[n12(x), n13(y)] = n23(xy)

[n13(x), n23(y)] = n12(xy).

Also in the Heisenberg group we have

[n12(x), n13(z)] = e

so applying w̃12 gives
[n12(x), n23(z)] = e.

Proof. The one-parameter subgroup s 7→ cn12(t)n13(s) has differential at 0

Ad(n12(t))X13 = et adY12X13 = X13 + tX23

because [Y12, X13] = X23 and [Y12, X23] = 0. Since [X13, X23] = 0 we conclude

n12(t)n13(s)n12(−t) = n13(s)n23(st)

which is what we want after replacing s by −s.
Using this on the found commutator relation we have

[n13(s), n23(t)] = n12(−st).

Applying the Cartan involution gives us

[n13(−s), n23(−t)] = n12(st).

We can replace s, t by −s,−t to get the result.

So we have

n13(−z−1)m(u)a13|z|n12(x)n13(z−1)n23(−z−1x)n23(y)

Lemma B.2.3. For all t > 0, s ∈ R,

a13(t)n12(s) = n12(st−1)a13(t)

a13(t)n23(s) = n23(st−1)a13(t)

a23(t)n12(s) = n12(st−1)a23(t)

a23(t)n13(s) = n13(st)a23(t)
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Proof. Note first that [H13, Y12] = −Y12 so

et adH13Y12 = e−tY12.

This means that the one-parameter subgroup s 7→ ca13(t)n12(s) has differential at
0

Ad(a13(t))Y12 = elog t adH13Y12 = t−1Y12

so that
a13(t)n12(s)a13(t)−1 = n12(st−1).

Applying cw̃13 we get

a13(t)−1n23(s)a13(t) = n23(st−1)

which after Cartan involution is

a13(t)n23(−s)a13(t)−1 = n23(−st−1).

Note that

Ad(w̃12)dj12 = dj12 Ad(w̃)

Ad(w̃12)dj13 = dj23

so applying cw̃12 instead we have

a23(t)n12(−s)a23(t)−1 = n12(−st−1).

Lastly,

Ad(w̃23)dj23 = dj23 Ad(w̃)

Ad(w̃23)dj13 = dj12

so applying cw̃23 to this last equation we have

a23(t)−1n13(−s)a23(t) = n12(−st−1)

n13(−z−1)m(u)n12(x|z|−1)a13|z|n13(z−1)n23(−z−1x)n23(y)

Moving n past m(u) will depend on u, i.e., on the sign of z so let us move
the other n’s first. The above decomposition lemma tells us that

n(−z−1x)n(y) = n

(
zy

z − xy

)
m(u)a|1− xy/z|n

(
x

xy − z

)
where u2 = sgn(1− xy/z) and (1 + tz)1/2 = u(u2tz + u2)1/2. so we get
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Lemma B.2.4. For all s ∈ R, u ∈ {1, i,−1,−i},

m13(u)n12(s) = n12(u2s)m13(u)

m13(u)n23(s) = n23(u2s)m13(u)

m23(u)n12(s) = n12(u2s)m23(u)

m23(u)n13(s) = n13(u2s)m23(u).

Proof. The space spanned by (Y12, X23) is invariant under ad(X13−Y13) and this
map in matrix form is (

0 1
−1 0

)
.

The (time-dependent) matrix exponential of this is(
cos t sin t
− sin t cos t

)
.

It follows that

Ad(k13(t))Y12 = et ad(X13−Y13)Y12 = cos(t)Y12 − sin(t)X23.

This is the differential at 0 of the one-parameter subgroup s 7→ ck13(t)n12(s).
Since [Y12, X23] = 0 we conclude

k13(t)n12(s)k13(−t) = n12(cos t)n23(− sin t).

Now, putting in t = 0, π,−π, 2π gives the result.
Since Ad(w̃)(X − Y ) = Y − X we have cw̃k(t) = k(−t) so cw̃m(±1) =

m(±1), cw̃m(±i) = m(∓i). In other words, cw̃m(u) = m(u2u). Applying Cartan
involution to k(t) gives k(t) so m(u) is mapped to m(u).

Applying cw̃13 we get

m13(u2u)n23(s) = n23(u2s)m13(u2u).

and applying Cartan involution to this we get

m13(u2u)n23(−s) = n23(−u2s)m13(u2u).

Applying cw̃12 gets us the last two equations.

Using these results, one finds that

Theorem B.2.5. Let

n(x, y, z) = exp(xY12 + yY23 + zY13).

The NMAN-decomposition of w−1
13 n(x, y, z) in S̃L(3,R) is

w−1
13 n(x, y, z) = n

(
−x
z
,
−y

z − xy
,
−1

z

)
m13(u1)m23(u2)a13|z|a23

∣∣∣1− xy

z

∣∣∣
· n
(
y

z
,
−x

z − xy
,
1

z

)
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where

u1 =

{
+1 z > 0

+i z < 0,

and

u2 =


+1 1− xy

z
> 0

+i 1− xy
z
< 0, y > 0

−i 1− xy
z
< 0, y ≤ 0.

Calculating the M -part we split into six cases:

m13(u1)m23(u2) =



e, z < 0, z − xy < 0,

m13, z < 0, z − xy > 0, y > 0,

σm13, z < 0, z − xy > 0, y ≤ 0,

m23, z > 0, z − xy > 0,

m12, z > 0, z − xy < 0, y > 0,

σm12, z > 0, z − xy < 0, y ≤ 0.

Succinctly,

m13(u1)m23(u2) = w13w
− sgn z
13 (w23w

− sgn(z−xy)
23 )sgn y.

Note that sgn y was absent in the linear case. That it is present complicated the
Fourier transform considerably. In doing the Fourier transform we cannot use
the formulas that relate the Fourier transform of |x|λε to |x|−1−λ

ε . Instead, we are
looking at a sum of Fourier transforms of xλε which is related to another family,
namely (x+ εi0)−1−λ. Concretely, the (1, 1)-coordinate in M2(C) is

zλ1−1
− (z − xy)λ2−1

− + zλ1−1
+ (z − xy)λ2−1

− sgn(y).

Computing F2,3 of the second term is going to be difficult; that sgn y is present
means that one cannot simply replace z − xy by something else in the integral.

B.3 NMAN-Decomposition of w−1
13 k(ψ, θ, ϕ)

In this section we compute the NMAN -decomposition of

k12(ψ)k13(θ)k12(ϕ).

Note first that in ˜SL(2,R) we have

k(θ) = n(− tan θ)m(uθ)a|cos θ|n(tan θ)

for cos θ, sin θ 6= 0 where

uθ =

{
1 cos θ > 0

− sgn(θ)i cos θ < 0
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The NMAN-decomposition of k12(ψ)k13(θ). The above gives us

k12(ψ)k13(θ) = n12(− tanψ)m12(uψ)a12|cosψ|n12(tanψ)

· n13(− tan θ)m13(uθ)a13|cos θ|n13(tan θ)

Here we see that

[n12(x), n13(y)] = Θ[n12(−x), n13(−y)] = Θn23(xy) = n23(−xy)

so letting x = tanψ and y = − tan θ we get

n12(tanψ)n13(− tan θ) = n23(tanψ tan θ)n13(− tan θ)n12(tanψ).

This means

k12(ψ)n13(− tan θ) = n12(− tanψ)m12(uψ)a12|cosψ|
· n23(tanψ tan θ)n13(− tan θ)n12(tanψ)

Note that

Ca12(t)n(x, y, z) = n(t−2x, ty, t−1z)

Cmij(u)nkl(t) = nkl(u
2t)

(we use the notation Cg(x) = gxg−1) if (i, j) 6= (k, l) so

k12(ψ)n13(− tan θ) = n12(− tanψ)n23(sinψ tan θ)

· n13(− tan θ/ cosψ)m12(uψ)a12|cosψ|n12(tanψ)

= n(− tanψ, sinψ tan θ,− tan θ

cosψ
)m12(uψ)a12|cosψ|n12(tanψ).

We note that

Ca13(t)n(x, y, z) = n(tx, ty, t2z)

so

n12(tanψ)m13(uθ)a13|cos θ|n13(tan θ) = m13(uθ)a13|cos θ|n(
tanψ

cos θ
, 0, tan θ).

So we conclude

k12(ψ)k13(θ) = n(− tanψ, sinψ tan θ,− tan θ

cosψ
)m12(uψ)a12|cosψ|

·m13(uθ)a13|cos θ|n(
tanψ

cos θ
, 0, tan θ)

One can check by projecting to SL(3,R) that this gives the correct decomposition
in that group. It follows that our calculation is at least correct up to σ.
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The NMAN-decomposition of k12(ψ)k13(θ)k12(ϕ). First note that

n13(z)n12(x) = n12(x)n13(z)[n13(−z), n12(−x)] = n12(x)n13(z)n23(−xz)

and

n12(x′)n12(x) = n12(
x

1 + xx′
)m12(u)a12|1 + xx′|n12(

x′

1 + xx′
).

This means

n(x′, 0, z)n12(x) = n12(
x

1 + xx′
)m12(u)a12|1 + xx′|n12(

x′

1 + xx′
)n13(z)n23(−xz).

Here we have

n12(
x′

1 + xx′
)n13(z)n23(−xz) = n(

x′

1 + xx′
,−xz, z − xx′z

1 + xx′
)

= n(
x′

1 + xx′
,−xz, z

1 + xx′
)

so setting z = tan θ, x = − tanϕ, x′ = tanψ
cos θ

we conclude

n(
tanψ

cos θ
,0, tan θ)n12(− tanϕ) = n12(

− cos θ tanϕ

cos θ − tanψ tanϕ
)

·m12(u)a12|1−
tanψ tanϕ

cos θ
|

· n(
tanψ

cos θ − tanψ tanϕ
, tan θ tanϕ,

sin θ

cos θ − tanψ tanϕ
).

Next we look at

m12(uψ)a12|cosψ|m13(uθ)a13|cos θ|n12(
− cos θ tanϕ

cos θ − tanψ tanϕ
).

Note that

Ca13(t)n(x, y, z) = n(t−1x, t−1y, t−2z)

so combined with a result above we get that this is

n12(
− tanϕ

cos θ cos2 ψ − sinψ cosψ tanϕ
)m12(uψ)a12|cosψ|m13(uθ)a13|cos θ|.
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So we have

k12(ψ)k13(θ)n12(− tanϕ) = n(− tanψ, sinψ tan θ,− tan θ

cosψ
)m12(uψ)a12|cosψ|

·m13(uθ)a13|cos θ|n(
tanψ

cos θ
, 0, tan θ)n12(− tanϕ)

= n(− tanψ, sinψ tan θ,− tan θ

cosψ
)m12(uψ)a12|cosψ|

·m13(uθ)a13|cos θ|n12(
− cos θ tanϕ

cos θ − tanψ tanϕ
)m12(u)a12|1−

tanψ tanϕ

cos θ
|

· n(
tanψ

cos θ − tanψ tanϕ
, tan θ tanϕ,

sin θ

cos θ − tanψ tanϕ
)

= n(− tanψ, sinψ tan θ,− tan θ

cosψ
)n12(

− tanϕ

cos θ cos2 ψ − sinψ cosψ tanϕ
)

·m12(uψ)a12|cosψ|m13(uθ)a13|cos θ|m12(u)a12|1−
tanψ tanϕ

cos θ
|

· n(
tanψ

cos θ − tanψ tanϕ
, tan θ tanϕ,

sin θ

cos θ − tanψ tanϕ
)

= n(
− sinψ cos θ cosϕ− cosψ sinϕ

cosψ cos θ cosϕ− sinψ sinϕ
, sinψ tan θ,

− sin θ cosϕ

cosψ cos θ cosϕ− sinψ sinϕ
)

·m12(u)m12(uψ)a12|cosψ − sinψ tanϕ

cos θ
|m13(uθ)a13|cos θ|

· n(
tanψ

cos θ − tanψ tanϕ
, tan θ tanϕ,

sin θ

cos θ − tanψ tanϕ
).

We only need to multiply with m12(uϕ)a12|cosϕ|n12(tanϕ) and we are done. We
have

n(
tanψ

cos θ − tanψ tanϕ
, tan θ tanϕ,

sin θ

cos θ − tanψ tanϕ
)m12(uϕ)a12|cosϕ|

= m12(uϕ)a12|cosϕ|

n(
tanψ

cos θ cos2 ϕ− tanψ cosϕ sinϕ
, tan θ sinϕ,

sin θ

cos θ cosϕ− tanψ sinϕ
).

This leads to the final decomposition

Proposition B.3.1. The NMAN-decomposition of k12(ψ)k13(θ)k12(ϕ) is

k12(ψ)k13(θ)k12(ϕ)

= n(
− sinψ cos θ cosϕ− cosψ sinϕ

cosψ cos θ cosϕ− sinψ sinϕ
, sinψ tan θ,

− sin θ cosϕ

cosψ cos θ cosϕ− sinψ sinϕ
)

·m12(u)m12(uψ)m12(uϕ)a12|cosψ cosϕ− sinψ sinϕ

cos θ
|m13(uθ)a13|cos θ|

· n(
cosψ cos θ sinϕ+ sinψ cosϕ

cosϕ cos θ cosϕ
, tan θ tanϕ,

cosψ sin θ

cosψ cos θ cosϕ− sinψ sinϕ
)

This is not quite what we are looking for. We would actually like to have
a decomposition of w−1

13 k12(ψ)k23(θ)k12(ϕ). But this could be computed in the
same way.
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[23] Gottfried Köthe. Topological vector spaces. II, volume 237 of Grundlehren
der Mathematischen Wissenschaften [Fundamental Principles of Mathemat-
ical Science]. Springer-Verlag, New York-Berlin, 1979.

[24] Toshihisa Kubo and Bent Ø rsted. On the space of K-finite solutions to
intertwining differential operators. Represent. Theory, 23:213–248, 2019.

[25] Takahide Kurokawa. On complementary spaces of the Lizorkin spaces. Po-
tential Anal., 34(3):261–282, 2011.



Bibliography 135

[26] Carl Meyer. Matrix analysis and applied linear algebra. Society for Industrial
and Applied Mathematics (SIAM), Philadelphia, PA, 2000. With 1 CD-
ROM (Windows, Macintosh and UNIX) and a solutions manual (iv+171
pp.).

[27] Karl-Hermann Neeb. Holomorphy and convexity in Lie theory, volume 28 of
De Gruyter Expositions in Mathematics. Walter de Gruyter & Co., Berlin,
2000.

[28] A. P. Robertson and Wendy Robertson. Topological vector spaces. Cam-
bridge University Press, London-New York, second edition, 1973. Cambridge
Tracts in Mathematics and Mathematical Physics, No. 53.

[29] Walter Rudin. Principles of mathematical analysis. McGraw-Hill Book Co.,
New York-Auckland-Düsseldorf, third edition, 1976. International Series in
Pure and Applied Mathematics.

[30] Walter Rudin. Functional analysis. International Series in Pure and Applied
Mathematics. McGraw-Hill, Inc., New York, second edition, 1991.

[31] L. Schwartz. Lectures on mixed problems in partial differential equations
and representation of semi-groups. Bombay: Tata Institute of Fundamental
Research, 1957.

[32] Laurent Schwartz. Espaces de fonctions différentiables à valeurs vectorielles.
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[35] Laurent Schwartz. Théorie des distributions. Publications de l’Institut de
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