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Abstract

This thesis is about the topological quantum field theory (TQFT) invented by Reshetikhin-
Turaev [RT90, RT91, Tur10] and motivated by Atiyah’s work [Ati88], and Witten’s work
[Wit89] on quantum Chern-Simons theory and the Jones polynomial [Jon85, Jon87]. The
main theme is the connection between this TQFT and Chern-Simons theory [CS74, CS85].
This thesis contains the results which were obtained during my PhD studies at Centre for
Quantum Geometry of Moduli Spaces (QGM) at Aarhus University with Professor Jørgen
Ellegaard Andersen as supervisor, most of which are published in [AP17a, AP18a, AP18b].

In [AP18a] we prove an asymptotic expansion of quantum invariants of mapping tori
in terms of Chern-Simons invariants of flat connections. This is done using by the quan-
tum representations obtained by quantizing the moduli space of flat connections, following
Hitchin [Hit90] and Axelrod-Della Pietra-Witten [ADPW91], and results from Toeplitz op-
erator theory due to Andersen [And06] and Karabegov-Schlichenmaier [KS01].

In [AP18b] we provide a resurgence analysis of quantum invariants of Seifert fibered in-
tegral homology three spheres. We show that the quantum invariants admit an asymptotic
expansion in terms of a resurgent series whose Borel transform has poles which match ex-
actly with the Chern-Simons invariants of complex flat connections. Furthermore, we show
that the exact quantum invariant can be reconstructed from the Borel transform. Our work
[AP18a] is inspired by and generalises work of Gukov-Marino-Putrov [GMP16]. Our results
are in agreement with the ideas introduced by Witten in [Wit11], and with the complexifi-
cation paradigm introduced by Dunne-Unsal [DU15] which introduces into quantum field
theory the use of a combination of Écalle’s theory of resurgence [É81a, É81b] and Pham-
Picard-Lefschetz theory [Mal74, Pha83, PS71, Lef50]. Our results also support conjectures
posed by Garoufalidis in [Gar08].

In [AP17a] we show that the modular functor constructed from a unitary modular tensor
category (MTC) admits duality and unitarity structures compatible with each other with
orientation reversal and with glueing surfaces along boundary components. We define the
dual of the fundamental group of an MTC as well as symplectic characters. We show that
if a symplectic character exists (which we prove for the MTC relevant to Chern-Simons
theory), then all compatibility constants can be set to unity. We call this strict compatibility.

iii





Resumé

Denne afhandling angår forbindelsen mellem Reshetikhin-Turaev’s topologiske kvante-
feltteori [Ati88, RT90, RT91] og Chern-Simons teori [CS74, CS85]. Denne forbindelse er
motiveret af Witten’s studie [Wit89] af Chern-Simons kvantefeltteori og Jones polynomiet
[Jon85, Jon87]. Vi fokuserer især på kvanteinvarianter. Afhandlingen udgøres af de resul-
tater, som er opnået opnået under mit PhD studie under vejledning af Professor Jørgen
Ellegaard Andersen. Mange af disse er udgivet i artiklerne [AP17a, AP18a, AP18b].

I [AP17a] beviser vi eksistensen af en asymptotisk ekspansion af kvanteinvarianter for
afbildningstori, i termer af Chern-Simons invarianter af flade konnektioner. Dette gøres ved
brug af kvanterepræsentationerne konstrueret af Hitchin [Hit90] og Axelrod-Della Pietra-
Witten [ADPW91], ved hjælp af kvantisering af moduli rummet af flade konnektioner.

I [AP18b] udfører vi en såkaldt resurgence analyse af kvanteinvarianter af Seifert fibre-
rede integrale holomogi sfærer. Vi viser, at disse kvanteinvarianter tillader en asymptotisk
ekspansion i form af en resurgent potensrække, hvis Borel transform har singulariteter
svarende præcis til Chern-Simons invarianter af komplekse flade konnektioner. Ydermere
viser vi, at disse kvanteinvarianter kan genskabes eksakt ud fra Borel-Laplace resummation.
Denne artikel er inspireret af artiklen af Gukov-Marino-Putrov [GMP16]. Vores resultater
stemmer overens med ideer fra Witten’s arbejde [Wit11] og kompleksificerings paradig-
met introduceret af Dunne-Unsal [DU15], der går ud på at introducere i kvantefeltteori en
kombination af Écalle’s teori om resurgence [É81a, É81b] og Pham-Picard-Lefschetz teori
[Mal74, Pha83, PS71, Lef50]. Vores resultater understøtter også formodninger udformet af
Garoufalidis i [Gar08].

I [AP17a] viser vi, at en modular functor konstrueret fra en unitær modular tensor kate-
gori kan udstyres med såkaldte dualitets og unitaritets strukturer, og at disse er kompatible
med hinanden, med orienteringsskift, og med topologiske operationer givet ved at skære
to-mangfoldigheder langs simple løkker. Vi introducerer definitionen af den duale gruppe
til første fundamental gruppe af en modular tensor kategori, samt definitionen af symplekti-
ske karakterer. Vi viser, at hvis en symplektisk karakter eksisterer, så kan alle kompatibilitets
konstanter sættes til enhed. Vi viser, at symplektiske karakterer eksisterer for kategorierne
associeret med de kvantegrupper, der er relevante i Chern-Simons teori.
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C H A P T E R 1
Introduction

1.1 Quantum topology, Chern-Simons theory and resurgence

Let G = SU(n), let tG,k be the Reshetikhin-Turaev TQFT [RT90, RT91, Tur10] and let VG,k be
the associated Walker modular functor [AP17a]. Let M be a closed oriented three-manifold
containing a framed oriented link L, whose components Li are labelled by irreducible G-
representations Ri of level at most k 2 N. The TQFT associates to (M, L, R) an invariant

tG,k(M, L, R) 2 C, (1.1)

called the quantum invariant. The invention of tG,k was motivated by [Ati88] and Witten’s
work [Wit89] on quantum Chern-Simons theory and the Jones polynomial [Jon85, Jon87].
Let A/G be the space of G-connections modulo gauge equivalence. For [A] 2 A/G, we
have the Chern-Simons action

S([A]) =
1

8p2

Z

M
tr(AdA +

2
3

A3) mod Z. (1.2)

The space of classical solutions d S[A] = 0 is equal to the moduli space M(G, M) of flat
connections. Witten argued that the path integrals (which are mathematically ill-defined)

Zphys
G,k (M, L, R) =

Z

A/G
e2pik S(A) ’

Li2p0(L)
tr (Ri � HolA(Li)) DA (1.3)

are rich topological invariants subject to surgery formulae. The TQFT tG,k is believed to be a
mathematical model for Zphys

G,k . In connection to tG,k we have the quantum representation ZG,k
of the mapping class group G(S) of a surface S, constructed by Hitchin [Hit90] and Axelrod-
Della Pietra-Witten [ADPW91] by quantizing the moduli space M(G, S). The Andersen-
Ueno isomorphism [AU15] shows that ZG,k is equivalent to the representations induced by
the modular functor VG,k. This builds on several works including [TUY89, Las98].

Recent years have seen a fruitful interplay [Gar08, Wit11, DU15, GMP16, Kon15] be-
tween quantum field theory and a combination of Écalle’s theory of resurgence [É81a,
É81b], Pham-Picard-Lefschetz theory [Pha65, Pha67] and the theory of Laplace integrals
[Pha83, BH91, Mal74]. This paradigm is called complexification. In accordance with this
paradigm, the action (1.2) extends to a holomorphic action SC on the space of GC = SL(n, C)-
connections [CS85] and the classical solutions are given by the moduli space M(GC, M).
Thus complex Chern-Simons theory plays an important role in relation to tG,k.

1



1 . I N T R O D U C T I O N

1.2 Results

We now present the results contained in this thesis. Many of our results are about Poincaré
asymptotic expansions of quantum invariants (1.1) in terms of Chern-Simons invariants
(1.2) and are motivated by the path integral formula (1.3).

1.2.1 The asymptotic expansion conjecture for mapping tori

Let CG denote the set of conjugacy classes of G. For (M, L) as above and C : p0(L) ! CG, we
define CS(M, L, C) = S (M(G, M, L, C)) , where M(G, M, L, C) denotes the moduli space
of flat G-connections on M \ L with meridional holonomy C around L.

Let S = Sg,d be a closed oriented surface of genus g and with a subset P of d marked
points. Let V denote a choice of v 2 (TpS \ {0})/R>0 for each p 2 P. For C : P ! CG, let
M = M(G, S, P, C) denote the moduli space of flat G-connections on S \ P with holonomy
around each p 2 P contained in C(p). Let G = p0(Diff(S, P, V)C) be the group of mapping
classes [j] where j preserves P and V as sets, and satisfy j⇤(C) = C. Recall that [j] 2 G
acts on M and let Mj be the fixed point set. Let Tj = S ⇥ I/[(x, 0) ⇠ (j(x), 1)] be the
mapping torus with the framed oriented link L ⇢ Tj traced out by (P, V). The inclusion
i : S ,! Tj induces a map i⇤ : M(G, Tj, L, C) ! Mj. Set r = k + n.

The coprime case: non-degenerate fixed point set

Let S = Sg,1 with g � 2. Let m 2 N with (m, n) = 1, and set Cm = [exp( 2pim
n ) I] 2 CG.

Recall that M = M(G, S, p, Cm) is a compact, symplectic manifold with a prequantum
bundle LCS ! M. Set 2n0 = 2(n2 � 1)(g � 1) = dim(M). Let j 2 G and set CS =

CS(Tj, L, Cm). For each q 2 CS, let 2mq = max(dim(Ker(d jz � Id)) : i⇤�1(z) ⇢ S�1(q)).
Let T = TS be Teichmüller space. Recall that G act on T . Each s 2 T induces a Kähler

structure Ms on M [NS64] and the Verlinde bundle Hk ! T is the bundle with fibre at
s given by the level k quantization of Ms, i.e. Hk(s) = H0(Ms,L✏k

CS ). There exists a lift
j⇤

k : Hk ! j⇤(Hk) and a projectively flat connection r on Hk that is preserved by j⇤

k [Hit90].
By fixing s and composing j⇤

k with parallel transport of r we obtain the quantum action:

ZG,k : G ! PGL (Hk(s)) . (1.4)

Theorem 1 ([AP18a]). If every component of Mj is an integral manifold of Ker(d j � Id) then
there exists for each q 2 CS smooth densities {Wa(q)}•

a=0 on Mj giving an asymptotic expansion

tr (ZG,k(j)) ⇠k!• Â
q2CS

e2pirqrmq

•

Â
a=0

r�
a
2

Z

Mj
Wa(q). (1.5)

Theorem 1 is based on stationary phase approximation and on Theorem 2 below, which
holds for every j 2 G. Let H = {z 2 C : Re(z)  0}.

Theorem 2 ([AP18a]). There exists bj 2 C•(M, H/2piZ) and {Wj
n}

•
n=0 ⇢ W2n0(M) with

the following properties. We have that bj � i⇤ = 2pi S, bj is real analytic near Mj (in the analytic
structure given by s) and Mj = {d bj = 0} \ Re(bj)�1(0). For every m̃ 2 N we have that

tr (ZG,k(j)) = rn0
m̃

Â
n=0

r�n
Z

M

erbj Wj
n + O(kn0�m̃�1). (1.6)

2



1.2. Results

If the condition of Theorem 1 holds, we say that Mj is non-degenerate.1 Theorem 1
generalizes a result of Charles [Cha16], which is valid when in addition dim(Mj) = 0.

The coprime case: possibly degenerate fixed point set

The real analyticity of bj guarantees that for any z 2 Mj there exists a coordinate neighbor-
hood U of z, and bjC 2 O(U +

p
�1U) which is an extension of bj|U . Thus we can apply to

(1.6) Malgrange’s version of saddle point analysis for Laplace integrals with holomorphic
phase [Mal74]. This version imposes no non-degeneracy condition on Hess(bjC). We prove:

Theorem 3 ([AP18a]). Assume that all z 2 Mj satisfy one of the following three conditions:

• z is a smooth point with TzM
j = Ker(d jz � Id),

• dim(Ker(d jz � Id))  1, or

• z is an isolated saddle point of the germ of bjC at z.

Then there exists for each q 2 CS an unbounded subset Aq ⇢ Q0, nq 2 Q�0, dq 2 N and
{ca,b(q)}a2Aq , 0bdq

⇢ C giving an asymptotic expansion

tr (ZG,k(j)) ⇠k!• Â
q2CS

e2pirqrnq Â
a2Aq

dq

Â
b=0

ca,b(q)ra log(r)b. (1.7)

If the first or second condition holds for all z 2 Mj \ bj�1(2piq) then dq = 0 and nq = mq .

The punctured torus case

Let S = S1,1. For l 2 J = (�2, 2) let Ml = M(SU(2), S, p, Cl) where tr(Cl) = l. Then Ml
is a symplectic manifold [Jef94] and for l in a dense subset Q ⇢ J it is quantizable for some
levels k. For these k, we can construct a projective representation Zl,k of G, which is analogous
to (1.4). The analogs of Theorem 2 and 3 both hold. Fix j 2 G and set CS = CS(Tj, L, Cl).

Theorem 4 ([AP18a]). If j is Anosov then M
j
l is non-degenerate2 for l in an open dense subset

Aj ⇢ J, and for l 2 Aj \Q there exists for each q 2 CS a sequence {ca(q)}•
a=0 ⇢ C such that

tr (Zl,k(j)) ⇠k!• Â
q2CS

e2pirq
•

Â
a=0

ca(q)r�a. (1.8)

Via the Andersen-Ueno isomorphism [AU15], all of the above expansions (1.5), (1.7) and
(1.8) are special cases of the asymptotic expansion conjecture due to Witten [Wit89].

From semi-classical expansions to resurgence and complexification

The ideas from [Wit11] suggests that the asymptotic expansions of quantum invariants
should have interesting resurgence properties. Formally this follows from the application
of Pham-Picard-Lefschetz theory to the holomorphic action SC . In Section 1.2.2 we present
a (mathematical) generalization of this framework together with key definitions from resur-
gence, that are central in complexification [DU15, BDS+15] and used in [AP18b].

1In [AP18a] a non-degenerate fixed point set is called a transversely cut out fixed point set.
2This result concerning M

j
l is due to Brown [Bro98].

3



1 . I N T R O D U C T I O N

1.2.2 Resurgence phases, Picard-Lefschetz theory and Laplace integrals

To generalize results from [Mal74, How97, Pha83] we introduce the following definition.

Definition. Let Y be a complex manifold with dimC(Y) = d. Let f 2 O(Y). Let S be the
set of saddle points, and let W be the set of critical vaules. We call f a resurgence phase if S is
discrete and f

|Y\ f�1(W) is a locally trivial fibration over the Riemann surface C = f (Y) \ W.

Fix a resurgence phase f . Consider the homological bundle H = Hd�1( f�1( · )) ! C
with the Gauss-Manin connection. If Bz is a small ball centered at z 2 S \ f�1(h), then
f
|Bz \ f�1(h) is a Milnor fibration [Mil68] over a punctured disc D \{h} with a basepoint c. The

fibres are homotopy equivalent to _
µz
j=1 Sd�1

j , µz being the Milnor number. Denote by Ez the
homological bundle

Hd�1( f�1( · ) \ Bz) ! D \{h} (1.9)

and by Mz 2 Aut(Ez(c)) the monodromy. A vanishing cycle s is a parallel section of (1.9).
Such s extends to a multivalued parallel section C ! H and shrink to a point near z.

Definition. Let l 2 C
⇤. Let (s, g) be a pair consisting of a path g : (R�0, 0) ! (C [ {h}, h)

with Re(l(g � h)) being strictly increasing and a vanishing cycle s near z 2 S \ f�1(h) and
defined on a neighbourhood of g(R�0) \ D \ {h}. The l-Picard-Lefschetz thimble D(s, g) is
the formal sum of isotopy classes of maps Sd�1

⇥R�0 ! Y given by D(s, g)(t) = s(g(t)).

�(t)

�(�(t))

Figure 1.1: Picard-Lefschetz thimble D(s, g) in dimension d = 2

Saddle point analysis of resurgence phases

Theorem 5 ([AP18b]). Let z 2 S\ f�1(h), let D(s, g) be a l-Picard-Lefschetz thimble at z and let
w 2 Wd,0

Hol(Y). There exists an unbounded set A ⇢ Q<0, {da}a2A ⇢ N and {cw
a,b}a2A, 0bda

⇢

C giving for fixed arg(l) an asymptotic expansion (provided the integral is absolutely convergent)
Z

D(s,g)
e�l f w ⇠l!• e�lh Â

a2A

da

Â
b=0

cw
a,bla log(l)b. (1.10)

The set exp(�2piA) is a subset of the set of eigenvalues of Mz and for each a 2 A the number da + 1
is less than or equal to the maximal dimension of any Jordan block associated with exp(�2pia).

4



1.2. Results

Resurgence properties of the Borel transform

We briefly present general definitions from resurgence, which we afterwards apply to (1.10).

Definition. For a Riemann surface C with universal covering space eC ! C, the algebra
R(C) of resurgent functions is O( eC).3 For d 2 p1(C) let yd 2 Aut( eC) be the induced deck
transformation and define Vard = y⇤

d � Id 2 End(R(C)).

We now introduce the Borel transform.

Definition. Let S ⇢ P = C [ {•} be a subset with a limit point s 2 S \ S . Given a sequence
of functions {gj}

•
j=0 ⇢ C

S the formal series Â•
j=0 gj is said to be s-asymptotic if for every

j 2 N we have that gj+1 = os(gj), i.e. gj+1 is small o of gj with respect to the limit s. Given a
strictly increasing sequence {aj}

•
j=0 ⇢ R>0 and a sequence {(b j, cj)}

•
j=0 ⇢ N ⇥ C the Borel

transform of the •-asymptotic series j̃(l) = Â•
j=0 cjl

�aj log(l)b j is the 0-asymptotic series
given by

B(j̃)(z) =
•

Â
j=0

cj(�1)b j
∂b j

∂aj
b j

 
zaj�1

G(aj)

!
.

Consider now a resurgence phase f 2 O(Y) and set C = f (Y) \ W where W is the set
of critical values. For d 2 p1(C, ĉ) define vard = Pd � Id 2 End (H(ĉ)) where Pd denotes
parallel transport of the flat bundle H ! C introduced above. For each f 2 W we let
D0(f) = D \{f} be a small punctured disc (with a basepoint). We denote the Borel transform
of the expansion (1.10) by

Bs,w = Â
a,b

cw
a,bB(l

a log(l)b).

Theorem 6 ([AP18b]). The Borel transform Bs,w is convergent for small z, and extends to Bs,w 2

R(C � h) by the formula

Bs,w(z) =
Z

s(z+h)

w

d f
, (1.11)

where w
d f is the Gelfand-Leray transform defined4 by d f ^ w

d f = w. Further, we have that
Z

D(s,g)
e�l f w =

Z

g
e�lz

Bs,w(z � h) d z. (1.12)

For every f 2 W, the cycle c = var∂ D0(f)(s) is a sum of vanishing cycles above f and we have
that5

Var∂ D0(f)�h (Bs,w) (z) = Bc,w(z + h � f). (1.13)

We now compare our results with the works [Mal74, BH91, How97, Pha83]. The work
[Mal74] is purely local in the sense that it deals with the case of a single isolated saddle
point in C

d, whereas [BH91, How97, Pha83] deals with the case Y = C
d and mostly with

a polynomial phase function f with Morse singularities. We stress that the formulas (1.11)
and (1.12) essentially reduces our proofs to the proofs from the cited works.

3Our definition of resurgent functions is slighly different from the standard definition [Sau07, MS16] but is is
suitable for the study of Laplace integrals.

4Though the Gelfand-Leray transfom w
d f is not globally well-defined, its restriction to level sets of f is.

5For (1.13) to hold, we assume a localization principle described below in Definition 5.3.1
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1 . I N T R O D U C T I O N

1.2.3 Resurgence analysis of quantum invariants

We now turn to the application of resurgence to quantum invariants [AP18b]. In Section
1.2.3 we assume G = SU(2) and write tG,k = tk. Set CSC(M) = SC(M(SL(2, C), M)).

Seifert fibered homology spheres: the Borel transform and complex Chern-Simons

Let n 2 N and choose pj, qj 2 Z, j = 1, ..., n with (pj, qj) = 1 and (pj, pl) = 1 for l 6= j.
Consider the Seifert fibered three-manifold X = S((p1/q1), ..., (pn/qn)) with n exceptional
fibers and surgery link depicted below. We can and will assumme pj > 0, for all j. Let

p1/q1
p2/q2 p3/q3

pn/qn

Figure 1.2: Surgery link for X.

P = ’n
i=1 pi and H = P Ân

j=1
qj
pj

. We require H1(X, Z) = 0 which is equivalent to H = ±1.
Let S( · , · ) be the Dedekind sum. Let CS⇤

C
= CS⇤

C
(X) be the range of SC on the irreducible

flat SL(2, C)-connections. Consider the normalization

eZk(X) =
tk(X)

tk(S2 ⇥ S1)

p

P exp

  
3 �

H
P

+ 12
n

Â
j=1

S(qj, pj)

!
ip
2k

�
pi3H

4

!
. (1.14)

Theorem 7 ([AP18b]). There exists a set of polynomials {Zq(x) 2 C[x]}q2CS⇤
C

of degree at most

n � 3 and a formal power series Z•(x) 2 x�
1
2 C[[x�1]] which give an asymptotic expansion

eZk(X) ⇠k!• Â
q2CS⇤

C

e2pikq Zq(k) + Z•(k). (1.15)

The Borel transform B(Z•) is the resurgent function given by

B(Z•)(z) = �

s
P2

izpH

 
sinh

 r
i2Ppz

H

!!2�n n

’
j=1

sinh

 r
i2Ppz

H
1
pj

!
. (1.16)

Let W be the set of poles of B(Z•). Then i
2p W consists of all numbers of the form �m2 H

4P where
m 2 Z and m is divisible by at most n � 3 of the pj, and we have the following identiy

CS⇤
C
=

i
2p

W mod Z. (1.17)

The existence of an expansion eZk(X) ⇠k!• Âq2R(X) e2pikq Zq(k) +Z•(k) where R(X) ⇢

Q/Z is a finite set was proven in [LR99]. Our contribution in regard to (1.15) is to show
R(X) ⇢ CS⇤

C
. It is of course expected that R(X) = CS(X) \ {0}, i.e. the asymptotic expan-

sion (1.15) should be a sum over Chern-Simons invariants of flat G-connections, rather than
flat GC-connections. This is known to be true for n = 3 exceptional fibers [Hik05c] and in
some cases for n = 4 [Hik05b].
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1.2. Results

Seifert fibered homology spheres: resummation of the quantum invariant

We now turn to the question of resummation of eZk. Introduce for µ 2 Q/Z the set

T (µ) = {m = 1, ..., 2P � 1 : �m2H/4P = µ mod Z}. (1.18)

Introduce the integral operators Lµ defined by

Lµ(ĵ)(x) =
1

2pi Â
x2T (µ)

I

y=2pix

ex Hiy2
8pP

(1 � e�xy)

yH
P4

ĵ

✓
y2

i8pP

◆
d y. (1.19)

Observe that by definition T (µ) is empty for all but finitely many µ 2 Q/Z and therefore
Lµ is 0 for all but these finitely many µ.

Theorem 8 ([AP18b]). The polynomials {Zq(x) 2 C[x]}q2CS⇤
C

are determined by B(Z•) as
follows:

e2pikq Zq(k) = Lq (B(Z•)) (k). (1.20)

The quantum invariant eZk(X) is determined by B(Z•) as follows:

eZk(X) =
Z •

0
e�kx

B(Z•)(x) d x + Â
q2 i

2p W mod Z

Lq (B(Z•)) (k). (1.21)

The above reconstruction from the Borel transform is reminiscent of the typical resum-
mation process arising when applying resurgence in physics [Dor14, ABS18].

We now compare with [GMP16]. In [GMP16] the authors analyse tk(X) for some exam-
ples with n = 3 exceptional fibers. The identity (1.17) was verified for these examples. They
connect their results to q-series with integer coefficients, the so-called Ẑa(q) invariants and
propose to interpret the integrality of Ẑa(q) as a categorification of tk, and this was further
developed in [CCF+18]. One can obtain Ẑq from B(Z•) as discussed in Section 7.1.5.

Surgeries on the figure eight knot

We now turn to the hyperbolic three-manifolds Mr/s with surgery link giving by the figure
eight knot with framing r/s. In [AH12], Andersen-Hansen gives an expression for tk(Mr/s)

Figure 1.3: Figure eight knot

involving Fadeev’s quantum dilogarithm S [Fad95, FK94]. As S can be semi-classically
approximated by the dilogarithm Li2, they are led to the following conjecture.

7



1 . I N T R O D U C T I O N

Conjecture 1 ([AH06] conjecture 2). Choose c, d 2 Z with rd � cs = 1. Introduce for a, b 2

{0, 1} and n 2 Z/|s|Z the function

Fn
a,b(x, y) =

Li2(e2pi(x+y))� Li2(e2pi(x�y))
4p2

�
dn2

s
+ (�

r
4s

x +
n
s
+ y + a + b)x + y(a � b).

There exists chains Gn
a,b ⇢ C

2 of real dimensions 2 meeting only non-degenerate stationary points
of Fn

a,b in {(x, y) 2 R ⇥ C : e2piy 2]� •, 0[}, and holomorphic 2-forms cn
a,b such that6 for some

m0 2 N and every m 2 N we have:

tk(Mr/s) = k Â
n

Â
a,b

Z

Gn
a,b

e2pikFa,b
n cn

a,b +O(km0�m). (1.22)

Set CSC = CSC(Mr/s) and set CS = CS(Mr/s). Andersen-Hansen show ([AH12] Theo-
rem 2) that the Fn

a,b have isolated saddle points and that the set of relevant critical values
(modulo the integers) is equal to CSC . By applying Theorem 5, we obtain the following
result (see Remark 7.2.5).

Theorem 9 ([AP18b]). Assume conjecture 2 in [AH12] is true, and assume the integration chains
Gn

a,b can be decomposed into Picard-Lefschetz thimbles. Then there exists a set of formal power series
{Zq(x) 2 x�1

C[[x�1]]}q2CS giving an asymptotic expansion of the form

tk(Mr/s) ⇠k!• k Â
q2CS

e2pikq Zq(k). (1.23)

For each q 2 CS we haveB(Zq) 2 R(U(q) \ W(q)) where U(q) ⇢ C is open and W(q) is a closed
discrete subset satisfying

CSC �q �
i

2p
W(q) mod Z. (1.24)

Each B(Zq) can be decomposed into a finite sum of resurgent functions

B(Zq) = Â
l2L(q)

Žl(q), (1.25)

with the following property. For any two Chern-Simons values q, q0 and l 2 L(q), there exists
{nl,µ}µ2L(q0) ⇢ C such that up to a change of parameter we have that

Varg2pi(q�q0)
(Žl(q)) = Â

µ2L(q0)

nl,µŽµ(q
0), (1.26)

where g2pi(q�q0) is a small circle which encircles 2pi(q � q0).

The quantum dilogarithm and analytic extensions

The use of the quantum dilogarithm in connection with quantum invariants is also central
to an ongoing collaboration with Andersen concerning analytic extensions of quantum
invariants which we describe in Section 1.3.

6We have strengthened the conjecture here. The original conjecture only considers the leading order asymp-
totic.
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1.2. Results

1.2.4 Modular functors with duality and unitarity

To state our results on modular functors [AP18b] we recall the properties of the modular
functor VG,k . Let L(k) be the label set of isomorphisms classes of irreducible G-representations
of level at most k. Let S = (S, P, V, l, L) be a closed oriented surface with a finite subset P,
a choice V of v 2 (TpS \ {0})/R>0 for each p 2 P, a labelling l 2 L(k)P and a Lagrangian
subspace L ⇢ H1(S, Q). To such data VG,k associates a finite dimensional vector space

VG,k(S) 2 Vect(C).

We let G(S) = p0(Diff+(S, P, V)l), i.e. j 2 Diff+(S) represents a class in G(S) if it satisfies
j(P) = P, d j(V) = V and j⇤(l) = l. There is a projective action

VG,k : G(S) ! PGL(VG,k(S))

and mapping class invariant isomorphisms VG,k(S1 t S2) ' VG,k(S1)✏ VG,k(S2). We have
a factorization axiom: given an oriented simple loop g in S and a label l we obtain a surface
Sl

g by cutting out g and then collapse the two resulting boundaries and label these by l

and the dual representation l† respectively. There is a decomposition

Pg : VG,k(S)
⇠
! �l2L(k) VG,k(Sl

g). (1.27)

Factorisation

� �†

Figure 1.4: Factorization

For W 2 Vect(C) let W have the conjugated scalar multiplication. For a surface S we
let�S denote the surface with reversed the orientation, and with each label l replaced with
the dual representation l†. There exists mapping class invariant perfect pairings

DS : VG,k(S)✏ VG,k(�S) ! C, US : VG,k(S)✏ VG,k(S) ! C.

The pairing DS is called the duality and the pairing US is called the unitarity. As we have
�(�S) = S, we can ask if duality and orientation reversal is compatible in the sense that
DS = D�S � P where P(v ✏ w) = v ✏ w. We can also ask if the duality and unitary are
compatible, in the sense that they induce a commutative diagram

VG,k(S) VG,k(�S)⇤

VG,k(S)⇤ VG,k(�S).

'

' '

'

Finally, we can ask if DS, US are compatible with factorization, i.e. that they are orthogo-
nal with respect to (1.27) for all g. If all three answers are affirmative we say that duality,
unitarity and factorization are strictly compatible.

9



1 . I N T R O D U C T I O N

In [Tur10] Turaev constructs a TQFT tV for every modular category (V , {Vi}i2I) (see
Definition 3.1.6 below). Here {Vi}i2I is a finite set of simple objects. To each V 2 Obj(V)
there exists V⇤ 2 Obj(V) and we have an involution i 7! i† defined by Vi† ' (Vi)

⇤. There is
a preferred 0 2 I with 0† = 0, and K = EndV (V0, V0) is a commutative ring.

The strict compatibility theorem

As mentioned above we work in this thesis with Walker’s axioms for a modular functor.
The precise definitions and axioms are given in Chapter 4. We stress that these differ slightly
from Turaev’s axioms [Tur10] but we prove the following.

Theorem 10 ([AP17a]). Let (V , {Vi}i2I be a modular category with ground ring K.

• For any choice of isomorphisms

q = {qi : Vi⇤ ! (Vi)
⇤ : i 2 I} (1.28)

there exists a modular functor VV (q) based on (I, K) as defined in Definition 4.1.6 and VV (q)
can be given a duality Dq0 as defined in Definition 4.2.1, depending on a (possibly different)
choice q0 of isomorphisms. If V is has a unitarity structure then VV (q) can be given a unitarity
U as defined in Definition 4.2.2 which is compatible with the duality.

• Assume that (V , {Vi}i2I) has a fundamental symplectic character as defined in Definition
4.3.2, and has a unitarity structure (this implies K = C). Then VV can be given a duality
D and a unitarity U satisfying the strict compatibility condition defined in Definition 8.2.1.
All the modular tensor categories associated with quantum groups at roots of unity admits
fundamental symplectic structures.

1.3 Future perspectives

Analytic extensions of quantum invariants

Let qk = exp(2pi/k) and let L(k) = {1, ..., k � 1} be the label set in SU(2) theory. Let
L ⇢ S3 be a framed oriented link. Let M be the three-manifold obtained by surgery on L.
For l 2 Col(L, k) = L(k)p0(L) let Jl(L, q) denote the Colored Jones polynomial. Using the R
matrix approach to Jl(L, q) and the quantum dilogarithm, we prove the following.

Theorem 11. Fix a a coloring l 2 Col(L, k0) The meromorphic function Jl(L) 2 M(C) defined
in Definition 8.1.4 satisfies for every integer k � k0 the equation

Jl(L)(k) = Jl(L, q).

Conjecture 2. Let F be the semiclassical approximation of J , as defined in Definition 8.2.1. Let
W(F) denote the set of critical values of F. We have that

CSC(M) = W(F) mod Z. (1.29)

Conjecture 2 is based upon a comparison with the potential function W0 defined by
Yoon [Yoo18]. The potential is a function defined from the surgery link L, which is strongly
related to the action SC and M(SL(2, C), M) (see Theorem 2.2.6 below).
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1.3. Future perspectives

Complexification, brane quantization and the moduli spaces of Higgs bundles

Let C be a Riemann surface with underlying smooth manifold S. In light of the importance
in TQFT of complexification and the quantum geometry of the moduli space M(SU(2), S),
it is natural to ask if resurgence analysis of tk is connected to the moduli space MHiggs(C)
of Higgs bundles [Hit87] since this moduli space can be seen as a complexification of
M(SU(2), S). In relation to this, it is interesting to adress the possible relation to Gukov
and Witten’s idea of brane quantization [GW09, Guk10] in which complexification of the
phase space plays a central role. In fact the application of brane quantization (and mirror
symmetry) to Chern-Simons theory is a key topic in both of the works [GW09, Guk10].

Resurgence and recursion

Consider again the asymptotic expansion (1.10). This is almost always divergent, and this
divergence is a source of hidden information, which can be extracted by resurgence tech-
niques. This idea is central to the remarkable resurgence formula (1.30) [BH91, How97]. Let f
be a resurgence phase with f (Y) = C, and with finitely many saddle points S = {zj}, all of
which are Morse singularities. Assume f|S is injective. For j 6= l let f j,l = f (zl)� f (zj) and
assume arg(l) 6= �arg( f j,l) for all pairs zj 6= zl . For each zj let gj = e�i arg(l)

R�0 + f (zj)

and let sj be the vanishing cycle emanating from zj (this is unique up to a choice of orienta-
tion). Choose for each j a regular value cj near f (zj). Introduce

T(j)(l) = l
d
2 el f (zj)

Z

D(sj ,gj)
e�l f (x)w(x).

Theorem 12. If z 7!
R

sj(z)
w/ d f decays fast enough at infinity7 the expansion (1.10) is exact in

the sense that there exists for each zj a sequence {c(j)r}r2N ⇢ C such that for every M 2 N the
followhing holds, where h · , · i is the intersection pairing and

T(j)(l) =
M�1

Â
r=0

c(j)r
lr +

1
2pi Â

l 6=j

(�1)
d(d�1)

2 hsj(cl), sl(cl)i

(l f j,l)M

Z •

0

vM�1e�v

(1 � v/(l f j,l))
T(l)

 
v
fj,l

!
d v.

(1.30)

One can iterate (1.30) and this leads to a recursion known as hyperasymptotics which
asymptotically gives the high order coefficients c(j)r, r >> 0 in terms of lower order coef-
ficients c(l)0r, r0 < r at distant saddles – see [How97] and [DH02]. In principle, the proof of
(1.30) in the context of resurgence phases can be reduced to the proof given in [How97] by
using (1.12). a suitable version of the Pham-Picard-Lefschetz theorem [Pha65, Pha67, PS71,
Lef50] must be applied. See the appendix in [DH02] for more details.

Much recent research in mathematical physics focuses on combining resurgence and
recursion techniques – see for instance [CD19]. It is an important task, and beyond the scope
of this thesis, to further investigate the connection between resurgence and topological and
geometric recursion [EO09, ABO17]. These theories have been used to great succes in many
settings, including in Chern-Simons theory, see for example [BEMn12].

7See [DH02] or Howls [How97] for the precise condition.
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1 . I N T R O D U C T I O N

1.4 Organization, notations and conventions

We let Man(R) (resp. Mand(R)) be the category whose objects are smooth manifolds (of di-
mension d) without boundary, and whose morphisms are smooth maps. We let Mand(C) be
the category of complex manifolds of complex dimension d, with morphisms given by holo-
morphic maps. The category of smooth manifolds (of dimension d) with (possibly empty)
boundary, and morphisms given by smooth maps, is denoted by Man∂ (resp. Man∂(d)).

Organization

This thesis is organised as follows.

• Chapter 2 presents classical Chern-Simons theory following [Fre95].

• Chapter 3 presents the construction of quantum invariants from modular tensor cat-
egories following [Tur10]. We give an explicit construction of the modular tensor
category relevant for SU(2).

• Chapter 4 presents the relevant definitions from [AP17a]. In the interest of brevity, we
have not included the proof of Theorem 10. The proof is given in full detail in [AP17a].

• Chapter 5 presents classical results concerning stationary phase approximation and
proofs of Theorem 5 and Theorem 6. We also prove that the rapid decay homology
groups introduced by Pham in [Pha83] can be defined for resurgence phases, and are
generated by Picard-Lefschetz thimbles.

• Chapter 6 presents geometric quantization following [Sch12] and Hitchin connections
following [And12]. We present the quantum representations and prove the Theorems
1, 2, 3 and 4.

• Chapter 7 proves Theorems 7 , 8 and 9. We also present the parts of the computations
from [LR99] which are relevant for our purposes.

• Chapter 8 Presents some details on work in progress concerning analytic extensions
of quantum invariants. In particular, we prove Theorem 11 and present some compu-
tations in support of Conjecture 2.
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C H A P T E R 2
Chern-Simons theory

We will assume familiarity with basic notions and foundational results in gauge theory.

2.1 Classical theory

Chern-Simons theory was originally introduced in [CS74]. We will closely follow [Fre95].
Fix for now a compact, simple, simply connected Lie group G with Lie algebra (g, [ · , · ]). Fix
a bilinear, symmetric, Ad-invariant, non-degenerate form h · , · i on g, which is normalized
such that the closed three form hwMC ^ [wMC ^ wMC]i 2 H3(G, R), represents an integral
class. A principal G bundle G ,! P

p⇣ M will be denoted by (P, p, M) and the space
of connections will be denoted by A(P). For a connection w, we denote its curvature by
Fw = d w + 1

2 [w, w]. Recall that w is said to be flat if Fw = 0, and if so (P, w), is referred
to as a flat bundle. Recall that a connection on a principal G bundle P is reducible, if for the
induced connection r on AdP, we have a splitting (AdP,r) ' �i(Ai,ri). A connection is
irreducible if it is not reducible.

Definition 2.1.1. Let (P, p, M) be a principal G bundle. The Chern-Simons form associated
with w 2 A(P) is

a(w) = hw ^ Fwi �
1
6
hw ^ [w ^ w]i 2 W3(P).

Let M 2 Mand(R), d  3. It follows from results in homotopy theory that any principal
G bundle (P, p, M) admits a global section s 2 G•(M, P).

Definition 2.1.2. Let M 2 Man∂(3) be compact and oriented. Let (P, p, M) be a principal
G bundle. For any pair (w, y) 2 A(P)⇥ G•(M, P), the Chern-Simons action is defined by

S(w, y) =
Z

M
y⇤(a(w)).

If we wish to stress the depence of the base space M, we write SM . We define S∆ = 0.
Given Y 2 Man2(R) which is compact and oriented we can define the Wess-Zumino-Witten
action WY : C•(Y, G) ! R/Z as follows. Choose a compact oriented three-manifold B with

13



2 . C H E R N - S I M O N S T H E O R Y

∂B = Y, extend y 2 C•(Y, G) to ỹ 2 C•(B, G) and define

WY(y) = �

Z

B
hỹ⇤(wMC) ^ [ỹ⇤(wMC) ^ ỹ⇤(wMC)]i mod Z. (2.1)

The Wess-Zumino-Witten action is in fact independent of the choice of extension. See
Lemma 2.12 in [Fre95]. The following result summarizes Proposition 2.3, Proposition 2.7,
and Proposition 2.10 in [Fre95].

Proposition 2.1.1. Let M 2 Man∂(3) be compact and oriented, with boundary Y = ∂M
i
,! M.

Let (P, p, M) be a principal G bundle. For any pair (w, y) 2 A(P)⇥ G•(M, P) and any h 2 G(P)
if we let g = gh � y 2 C•(X, G) we have

S(w, h � y) = S(h⇤(w), y) = S(w, y) +
Z

Y
i⇤(hAdg�1(y⇤(w)) ^ g⇤(wMC)i) + WY(i

⇤(g)).

If ∂M = ∆ we have

S(w, h � y) = S(h⇤(w), y) = S(w, y)�
Z

X
hg⇤(wMC) ^ [g⇤(wMC) ^ g⇤(wMC)]i.

In particular, in the case ∂M = ∆, the Chern-Simons action descends to well-defined map

S : A(P)/G(P) ! R/Z.

If (F, f ) : (P, p, M, w) ! (P0, p0, M0, w0) is a gauge equivalence, and M0 is oriented, we have
S(w) = deg( f ) S(w0). If M = M1 t M2 and w = w1 t w2 we have S(w) = S(w1) + S(w2).

As a result, we can make the following definition.

Definition 2.1.3. The Chern-Simons invariant of a gauge equivalence class of a principal
G bundle with connection (P, p, M, w), with M 2 Man3(R) compact and oriented, is by
definition S(w, y) 2 R/Z, where y is any element of G•(M, P).

Let us now focus on the case of G = SU(2). We will use the following ad invariant,
non-degenerate, symmetric bilinear form

h · , · i =
1

8p2 tr( · , · ).

Let M be a closed oriented three manifold equipped with the trivial SU(2) bundle P =

M ⇥ SU(2). The Chern-Simons action takes the following (perhaps more familiar) form
(where ^ denotes matrix multiplication)

S([A]) =
1

8p2

Z

M
tr
✓

A ^ d A +
2
3

A ^ A ^ A
◆
2 R/Z.

2.1.1 The Chern-Simons lines

Let L be the groupoid with objects C vector spaces of dimension one, equipped with a
Hermitian metric, and with morphisms given by unitary isomorphisms. Given a groupoid C

and a functor T : C ! L we define LT to be the set of coherent sequences, {V(c) 2 T(c)}c2C ,

14



2.1. Classical theory

such that for every q 2 C(c, c0) we have T(q)(V(c)) = V(c0). Assume that there exists a
morphism between every pair of objects in C and that C(c, c) = Idc for every object c. We
say that C is a connected groupoid with no non-trivial automorphisms. This ensures that LT is
naturally a C vector space of dimension one, equipped with a Hermitian metric.

Now consider a principal G bundle (Q, p, Y) where Y 2 Man2(R) is compact and
oriented. Let C(Q) = G•(Y, Q). Given any pair of global sections s1, s2 2 C(Q) there is a
unique gauge transform f 2 G(Q) with f ⇤(s1) = s2. Thus C(Q) is naturally a connected
groupoid with no non-trivial automorphisms. Given w 2 A(Q), we define a functor Tw :
C(Q) ! L as follows. It is constantly equal to C on the level of objects. For any gauge
transformation h : s1 ! s2 we let Tw(h) be multiplication by cY(s

⇤
1 (h), gh � s1), where

cY : W1(Y, g)⇥ C•(Y, G) ! U(1) is defined by

cY(a, y) = exp(2pi
Z

Y
hAdy�1(a) ^ y⇤(wMC)i+ WY(y)).

Here Wy is the Wezz-Zumino-Witten action (2.1). Functoriality of Tw follows from the co-
cycle condition CY(a, y · y0) = cY(ay)cY(Ady�1(a) + y⇤(wMC), y0).

Definition 2.1.4. Let (Q, p, Y) be a principal G bundle, with Y 2 Man2(R), compact and
oriented. The Chern-Simons line associated with w 2 A(Q) is by defintion Lw := LTw . If we
wish to stress the depence of the base space Y we write LY. We define L∆ = C.

Let (P, p, M) be a principal G bundle, with M 2 Man3(R) compact, oriented and with
boundary ∂M = Y. Let (Q, p, Y) be the restriction of P to Y. Let w 2 A(P). Proposition
2.1.1 implies that the assignment

G•(M, P) 3 y 7! e2piS(w,y)
2 C,

naturally defines an element of the Chern-Simons line Lw|Y . We implicitly use, that any
µ 2 G•(Y, Q) extends to hµ 2 G•(M, P).

Theorem 2.1.2 (Theorem 2.19, [Fre95]). Let (P, p, M) be a principal G bundle, with M 2

Man∂
3(R) compact, oriented and with (possibly empty) boundary ∂M = Y

i
,! M, equipped with

the Stokes orientation. Let (Q, p, Y) be the restriction of P to Y. Then the following holds. The
Chern-Simons lines form a smooth hermitian line bundle L ! A(Q). The map e2pi S : A(P) ! L

determines a smooth unit norm section of the pullback line bundle i⇤(L) ! A(P). Moreover, we
have that:

• Functoriality: If (G, g) : (Q0, p0, Y0) ! (Q, p, Y) is an isomorphism, and g is an orientation
preserving diffeomorphism, then there exists an induced isometry

G⇤ : LY ! G⇤(LY0),

and this defines a contravariant functor. If (G, g) is the restriction of an isomorphism (F, f ) :
(P0, p0, M0) ! (P, p, M) and f is orientation preserving then

G⇤
� e2pi S = e2pi S �F⇤

.

15



2 . C H E R N - S I M O N S T H E O R Y

• Orientation compatibility: We have a natural isometry L�Y ' LY and with respect to this
we have

e2pi SM = e2pi S�M .

• Multiplicativity: If Y = Y1 t Y2 we have a natural isomorphism LY ' LY1 ⇥ LY2 . If the
decomposition of Y results from a decomposition M = M1 t M2, we have

e2pi SM = e2pi SM1 ⇥ e2pi SM2 .

• Locality: Suppose N ,! M is a closed, oriented, embedded submanifold of dimension 2 and
Mcut is the compact, oriented manifold obtained by cutting M along N. Then ∂Mcut =

∂M t N t (�N). There is an induced map j : A(P) ! A(Pcut), and we have

e2pi SM(w) = Tr
⇣

e2pi SMcut (j(w))
⌘

where Tr is the contraction

Tr : Lj(w) ' Lj(w)|∂M
✏Lj(w)|N

✏Lj(w)|�N
! Lj(w)|∂M

,

which is induced using the multiplicative property and the Hermitian metric.

Remark 2.1.3. Concerning the locality property: There is a natural map i 2 C•(Mcut, M)

and Pcut = i⇤(P) and j = i⇤.

Though we shall not present it here, one can also consider the case where the surface Y
has boundary components (or punctures), and define Chern-Simons lines over G bundles
over Y. This is done by Freed in Chapter 4 of [Fre95]. It is also thoroughly discussed in
[AHJ+17].

2.1.2 The Euler-Lagrange equation

As the space of connections is a Frechét manifold, it makes sense to differentiate the Chern-
Simons action. According to the prinicple of least action, we think of the critical points of
the Chern-Simons action, as the space of classical solution in Chern-Simons.

Proposition 2.1.4 (Proposition 3.1, [Fre95]). Let (P, p, M) be a principal G bundle, with M 2

Man3(R) oriented and closed. For any w 2 A(P) and any y 2 G•(M, P) we have for every
h 2 TwA(P) ' W1(M, g)

d Sw,y(h) = 2
Z

X
y⇤(hFw ^ hi).

In particular we have d Sw,y = 0, if and only if Fw = 0.

This proposition shows the importance of the moduli spaces M(G, M) of flat connec-
tions introduced in Section 1.1.
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2.2. Complex Chern-Simons theory

2.2 Complex Chern-Simons theory

One can define Chern-Simons invariants for SL(n, C) and PSL(n, C) connections as well, by
simply extending the formula for SU(2) connections. This was done (in higher generality)
in the following article by Cheeger and Simons [CS85]. We shall focus on n = 2.

Definition 2.2.1. Let H 2 {SL(2, C), PSL(2, C)} with Lie algebra h = sl(2, C). The Cheeger-
Chern-Simons invariant of a gauge equivalence class [A] 2 W1(M, h)/C•(M, H) is given
by

SC([A]) =
1

8p2

Z

M
tr
✓

A ^ d A +
2
3

A ^ A ^ A
◆
2 C/Z.

As in the case with compact gauge group, the classical solutions correspond to flat
connections. These Cheeger-Chern-Simons invariants are closely connected to hyperbolic
geometry.

Recall that by the Mostow-rigidity theorem [Mos68] the hyperbolic volume
R

M Vol(g) of
an oriented closed hyperbolic three-manifold (M, g) is a topological invariant and will be
denoted simply by Vol(M).

Theorem 2.2.1 ([Yos85]). Let M be a closed oriented hyperbolic three-manifold and let A be the
gauge equivalence class of the flat PSL(2, C) connection associated with the geometric representation.
We have that

4p2 Im(S([A]) = Vol(M).

This was conjectured by Thurston [Thu82], and Neumann and Zagier [NZ85]. See [GTZ15]
for further discussion of these aspects.

2.2.1 Computing Cheeger-Chern-Simons invariants

We shall present a formula for the difference of (Cheeger)-Chern-Simons invariants due to
Kirk and Klassen.

Theorem 2.2.2 ([KK90]). Let M be a closed oriented three-manifold containing a knot K. Let Y be
the complement of a tubular neighborhood of K in M. With respect to an identification M \ Y '

D2 ⇥ S1, choose simple closed curves µ, l on ∂Y intersecting in a single point such that µ bounds
a disc of the form ∂D2 ⇥ {1}. Let rt : p1(Y) ! SU(2) be a path of representations such that
r0(µ) = r1(µ) = 1, and for which there exists piecewise continuous differentiable functions
a, b : I ! R with

rt(µ) =

 
e2pia(t) 0

0 e�2pia(t)

!
, rt(l) =

 
e2pib(t) 0

0 e�2pib(t)

!
.

Thinking of r1, r0 as flat connections on M we have

S(r0)� S(r1) = �2
Z 1

0
b(t)a0(t) d t mod Z.

17
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Notice that the formula (2.2.2) differs from the corresponding formula in [KK90] by a
sign. This discrepancy was already discussed by Freed and Gompf in [FG91] and is due to
a sign convention. See the footnote on page 98 in [FG91].

We make the following remark, which explains how the formula (2.2.2) also works for
some paths of SL(2, C) representations.

Remark 2.2.3. Kirk and Klassen remarks in [KK90] that (2.2.2) is also valid for a path of
SL(2, C) connections, as long as the path rt stays away from parabolic representations. This
is to ensure that rt is conjugate to a path which maps l, µ to the maximal C

⇤ torus of
diagonal matrices.

Theorem 2.2.2 was further developed in [KK93], in a work which puts special emphasis
on the SL(2, C) case. In [Auc94] Theorem 2.2.2 was used by Auckley to compute SU(2)
Chern-Simons for a large class of oriented closed three-manifolds. It is conjectured that all
SU(2) Chern-Simons invariants of flat connections are rational numbers.

Recent work by Garoufalidis-Thurston-Zickert [GTZ15] (see also [DZ06]) provides an
algorithm for computing the Chern-Simons invariants, which makes use of the so-called
Ptolemy coordinates on the character variety M(SL(2, C), M). This was (even more re-
cently) used by Yoon [Yoo18], to give a computation of Cheeger-Chern-Simons invariants
from a surgery presentation of M. We shall now present the main result of this work.

Yoon: the potential of a surgery link

Let M be a closed oriented three-manifold. Let L ⇢ S3 be a surgery link. Let D = D(L)
be an oriented diagram of L, with at least one over crossing and one under crossing in
each component. Let C = C(D) be the set of crossings of L. Let R = R(D) be the set of
regions, which are the connected components of the complement of D. Let n = |R|. We will
introduce a a holomorphic function W 2 O(XD), where XD is the universal cover of the
complement of a divisor D in C

p0(L) ⇥ C
R. First we recall the dilogarithm

Definition 2.2.2. The dilogarithm Li2 is the holomorphic function on the universal cover of
C \ {1} given by

Li2(z) = �

Z

gz

log(1 � u)
u

d u,

where gz is the homotopy class of a path from 0 to z in C \ {1}.

Let us record two of the well-known functional equations of the dilogarithm.

Theorem 2.2.4. We have

Li2
✓

1
z

◆
= �Li2(z)�

p2

6
�

1
2
(log(�z))2,

Li2 (1 � z) = �Li2(z) +
p2

6
� log(z) log(1 � z).

We next introduce some divisors.
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2.2. Complex Chern-Simons theory

Definition 2.2.3. On C
2 ⇥ C

4 we consider coordinates (ml , mr, wl , wr, wo, wd). We consider
the following divisors

D+ = D+
1 [ D+

2 [ D+
3 [ D+

4 [ D+
5 , D� = D�

1 [ D�

2 [ D�

3 [ D�

4 [ D�

5

where

D+
1 = {wl � wd � mr 2 Z}, D+

2 = {wr � wd � ml 2 Z}, D+
3 = {wo � wr � mr 2 Z}

and
D+

4 = {wo � wl � ml 2 Z}, D+
5 = {wd � wl + wo � wr 2 Z}.

Further

D�

1 = {mr + wo � wr 2 Z}, D�

2 = {ml + wo � wl 2 Z}, D�

3 = {mr + wl � wd 2 Z}

and
D�

4 = {ml + wr � wd 2 Z}, D�

5 = {wd � wl + wo � wr 2 Z}.

For each crossing c 2 C we get a divisor Dc inside C
p0(L) ⇥ C

R by pulling back Ds(c) with
respect to the projection

p̃c : C
p0(L)

⇥ C
R
! C

2
⇥ C

4.

We then let D0 =
S

c2C Dc. We define the projection maps from XD0 to Xs(c) for each c, which
we also denote p̃c.

We can now introduce the potential

Definition 2.2.4. Let X± be the universal cover of C
2 ⇥ C

4 � D± and define W± 2 O(X±)

by

+(ml , mr, wl , wr, wo, wd) = Li2(e2pi(wl�wd�mr)) + Li2(e2pi(wr�wd�ml))

� Li2(e2pi(wo�wr�mr))� Li2(e2pi(wo�wl�ml))�
p2

6
+ Li2(e2pi(wd�wl+wo�wr)) + 4p2(wl � wd � mr)(wr � wd � ml),

and

W�(ml , mr, wl , wr, wo, wd) = Li2(e2pi(wo�wr+mr)) + Li2(e2pi(wo�wl+ml))

� Li2(e2pi(wl�wd+mr))� Li2(e2pi(wr�wd+ml)) +
p2

6
+ 4p2(wl � wd + mr)(wr � wd + ml)� Li2(e2pi(wd�wl+wo�wr)).

We define the pre-potential function W 2 O(XD0) by

W = Â
c2C

Ws(c) � p̃c.

The potential function of the link L is

W0(m, w) = W(m, w)� Â
r2R

∂W

∂wr
(m, w)wr � Â

g2p0(L)

∂W

∂mg
(m, w)mg.
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2 . C H E R N - S I M O N S T H E O R Y

Remark 2.2.5. We work with logarithmic coordinates compared to [Yoo18] and we will use
slightly different notation. That is, if his coordinates are denoted by (m̃, w̃) and (m, w) are
the coordinates we introduced above, we have

m̃ = exp(2pim), w̃ = exp(2piw)

Although we use coordinate expressions, each expression in the arguments of the diloga-
rithm symbolizes the corresponding map from X± to the universal cover of C � {1}. More-
over, in comparison with Yoon, we have switched the over and under crossings. This is to
take into account a different sign convention for the Chern-Simons action, and the fact that
if L is a surgery link for M, then the mirror image of L is a surgery link for �M.

Let us now introduce the following set

Definition 2.2.5. Let

S
0 = {(m, w) 2 XD |

∂W

∂wr
2 4p2

Z, r 2 R; r(m,w)(lg) = Id, mg /2 Z, g 2 p0(L)},

and let

M
0 = {r 2 hom(p1(M), PSL(2, C)) | r(µg) 6= ±Id, g 2 p0(L)}/PSL(2, C).

Theorem 2.2.6 ([Yoo18]). There is a surjective holomorphic map r : S 0 ! M0, and we have

p2 SC �r = W0 mod p2
Z.
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C H A P T E R 3
Quantum invariants

There is a bijection between closed oriented three-manifolds considered up to orientation
preserving diffeomorphism and framed links in S3 considered up to so-called Kirby equiv-
alence (see Theorem 3.1.4 below) and the process of associating a three-manifold to a link
via this correspondence is called surgery. The Reshetikhin-Turaev TQFT is essentially con-
structed using these surgery presentations of three-manifolds and certain categories which
can be used to construct invariants of links that are invariant under Kirby equivalence.
These categories are the so-called modular tensor categories (MTC) or modular categories,
as they are called in Turaev’s book [Tur10]. The MTCs connected to Chern-Simons theory
arise as certain representation categories of quantum groups. The discussion of modular
tensor categories given below closely follows Turaev’s book [Tur10].

3.1 Modular tensor categories

We begin by introducing the notion of a monoidal category. We will assume familiarity
with basic category theory. A great introduction which more than suffices is the classic
monograph by S. MacLane [ML98].

Definition 3.1.1. A unital strict monoidal category is a triple (V , ✏, ), consisting of the the
following data. A category V , an associative covariant functor ✏ : V ⇥ V ! V and an object
2 Obj(V) which satisfies the following. The covariant functors ( · ) ✏ : V ! V and
✏ ( · ) : V ! V are both equal to the identity functor IdV : V ! V . The object 2 Obj(V) is

called the unit. A strict monoidal functor is a covariant functor between unital strict monoidal
categories F : (V , ✏, ) ! V 0, ✏0, )0 with (F, F) �✏ = ✏0 � (F, F) : V ⇥ V ! V ⇥ V .

We observe that the definition imply that for any morphism f 2 V(V, W) we have
f ✏ Id = Id ✏ f = f .

Many authors relax the condition that ✏ is strictly associative, and instead require the
existence of certain natural transformations known as left and right associaters, which are
required to (together with ✏) satisfy identities known as the pentagon and the triangle
identity. See [ML98]. From a certain viewpoint, nothing is lost by considering instead strict
monoidal categories because of MacLane’s coherence Theorem. We shall return to this point
below. Next we introduce Ribbon categories.
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Definition 3.1.2. A Ribbon category is a tuple (V , ✏, , C, · ⇤, q, b, d) which consists of the
following data. The triple (V , ✏, ) is a strict unital monoidal category. We have a natural
isomorphism C : ✏ ) ✏ � P, called the braiding, where P : V ⇥ V ! V ⇥ V is the permu-
tation functor, i.e. P(V, W) = (W, V) for all pairs V, W 2 Obj(V). For any triple of objects
U, V, W 2 Obj(V) we have

CU,V✏W = (IdV ✏ CU,W) � (CU,V ✏ IdW), CU✏V,W = (CU,W ✏ IdV) � (IdU ✏ CV,W).

We have a natural isomorphism q : IdV ! IdV , called the twist, such that for every pair of
objects V, W 2 Obj(V) we have

qV✏W = CW,V � CV,W � (qV ✏ qW).

We have a map · ⇤ : Obj(V) ! Obj(V), together with an assignment for each V 2 Obj(V)
of morphisms bV 2 V( , V ✏ V⇤), dV 2 V(V⇤ ✏ V, ) which satisfy

(IdV ✏ dV) � (bV ✏ IdV) = IdV , (dv ✏ IdV⇤) � (IdV⇤ ✏ bV) = IdV⇤ ,

and
(qV ✏ IdV⇤) � bV = (IdV ✏ qV⇤) � bv.

The triple ( · ⇤, b, d) is called the duality, d is called the evaluation whereas b is called the
co-evaluation.

It is easy to verify that for any object V 2 Obj(V) in a ribbon category the braiding must
satisfy CV, = C ,V = IdV . Moreover, the twist must satisfy q = Id .

Next we introduce the notions of trace and dimension.

Definition 3.1.3. Let (V , ✏, , C, · ⇤, q, b, d) be a ribbon category. For any object V 2 Obj(V)
define tr : V(V, V) ! V( , ) by

tr( f ) = dv � CV,V⇤ � ((qV � f )✏ IdV⇤) � bV .

Define dim(V) = tr(IdV).

Next we introduce abelian categories (in the sense of [Tur10]) and some algebraic notions
pertaining to ribbon categories which are also abelian categories.

Definition 3.1.4. An abelian category is a category C, such that for every pair V, W 2 Obj(C),
the set C(V, W) is aquipped with the structure of an abelian group, and for every Z 2 Obj(C),
the composition � : C(V, W)⇥ C(W, Z) ! C(V, Z) is linear.

Proposition 3.1.1. Let (V , ✏, , C, · ⇤, q, b, d) be a ribbon category which is also an abelian category.
The set K = V( , ) is a commutative ring, with multiplication given by composition. For any pair
of objects V, W 2 Obj(V), the group V(V, W) is canonically a left K-module with the action
(k, f ) 7! k ✏ f , k 2 K, f 2 V(V, W). For any triple of objects V, W, Z 2 Obj(V), the composition
� : V(V, W)⇥ V(W, Z) ! V(V, Z) is K-bilinear. Similarly, the tensor product ✏ is K-bilinear.
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Motivated by this proposition, we make the following definition.

Definition 3.1.5. A ribbon category, which is also an abelian category, is called an abelian
ribbon category. The ground ring of an abelian ribbon cateogory (V , ✏, , C, · ⇤, q, b, d), is
defined to be K = V( , ). An object V 2 Obj(V) is called simple if V(V, V) is a free K-
module of rank 1. Let {Vi}i2I ⇢ Obj(V). An object V 2 Obj(V) is said to be dominated by
{Vi}i2I if the following composition induces a surjective K-linear map

� :
M

i2I
V(V, Vi)✏K V(Vi, V) ⇣ V(V, V).

We are now finally in position to define modular tensor categories.

Definition 3.1.6. A modular tensor category is an abelian ribbon category (V , ✏, , C, · ⇤, q, b, d)
together with a finite family of simple objects {Vi}i2I ⇢ Obj(V) which satisfies the follow-
ing conditions. There exists 0 2 I such that V0 = . For any i 2 I there exists i⇤ 2 I such
that Vi⇤ is isomorphic to (Vi)

⇤. Any object V 2 Obj(V) is dominated by {Vi}i2I . The matrix
S with entries S = (Si,j)i,j2I 2 K is invertible over K.

We shall often abbreviate a modular tensor category by (V , {Vi}i2I). We now introduce
some concepts related to a modular tensor category.

Definition 3.1.7. Let (V , {Vi}i2I) be a modular tensor category. For every i 2 I we introduce
dim(i) = dim(Vi). As Vi is simple, there is a uniquely defined invertible element ki 2 K,
which satisfies ki ✏ IdVi = fVi . A rank of (V , {Vi}i2I) is an element D 2 K which satisfies

D
2 = Â

i2I
(dim(i))2.

Introduce
D = Â

i2I
k�1

i (dim(i))2
2 K.

The following remark is very important.

Remark 3.1.2. A rank D may not always exist, and when it does it is not necessarily unique.
However, a rank can always be formally added to a slighly refined modular tensor category
Ṽ . See the discussion in Section 1.6 in [Tur10].

3.1.1 The graphical calculus

Fix throughout this section a ribbon category (V , ✏, , C, · ⇤, q, b, d). We simply denote this
by V . We shall adopt the following convention. For an object V 2 V and a sign e 2 {±1}
we let Ve = V if e = 1, and Ve = V⇤ if e = �1.

We now introduce ribbon graphs in three manifolds.

Definition 3.1.8. Let M 2 Man∂(3). Assume M is oriented and is equipped with a decom-
position ∂M = (�∂�(M)) t ∂+(M) and that ∂M is equipped with a finite set of oriented
embedded intervals I with a sign Ie. These are called marked arcs. A band is the square
[0, 1]⇥ [0, 1] or a homeomorphic image of it in M. The images of the intervals [0, 1]⇥ {0}
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and [0, 1]⇥ {1} are called the bases of the band,whereas {1/2}⇥ [0, 1] is called the core. An
annulus is the cylinder S1

⇥[0, 1] or a homeomorphic image in M. The image of the circle
S1

⇥{1/2} is called the core. A band or an annulis is directed if its core is oriented, and the
orientation is called the direction. A coupon is a band with a distinguished base called the
bottom, the opposite is called the top. A a ribbon graph in M is an oriented two manifold W
(with corners) embedded in M and decomposed into a union of a finite number of annuli,
bands and coupons such that

• The intersection W \ ∂M is transversal and equal to the marked arcs, meeting the
bases of W which are not incident to coupons. If an arc has sign 1, the base is directed
inside M, and if the arc has sign �1 the base is directed outside. The orientation of W
induces on each arc the orientation opposite to the given one. The intervals in ∂�(M)

are called the bottom boundary intervals, wheres the intervals in ∂+(M) are called the
top boundary intervals.

• Other bases of bands lie on bases of coupons, otherwise, the bands, coupons, and
annuli are disjoint.

• The bands and annuli are directed.

A Ribbon graph isotopy is an ambient isotopy of M which is constant on the boundary in-
tervals, preserves the splitting into bands, annuli and coupons, and preserves directions
of bands and annuli as well as the orientation of the ribbon graph. A tangle in M is a
ribbon graph with no coupons. The pair (M, W) is called a three-manifold with a ribbon
graph. A homeomorphism of three-manifolds with ribbon graphs f : (M1, W1) ! (M2, W2) is
an orientation preserving homeomorphism f : M1 ! M2 which satisfies the following.
We have f (∂±(M1) = ∂±(M2), and f induces an orientation preserving homeomorphism
f : W1 ! W2, which respects the splitting into bands, coupons and annuli.

Let us introduce the notion of a (k, l) ribbon graph.

Definition 3.1.9. For non-negative integers (k, l) a (k, l) Ribbon graph is a ribbon graph
inside M = R

2 ⇥ [0, 1] with ∂�(M) = R
2 ⇥ {0}, ∂+(M) = R

2 ⇥ {1}, and where the marked
arcs are the embedded intervals

{[i � (1/10), i + (1/10)]⇥ {0}⇥ {0} | i = 1, ..., k},

{[j � (1/10), j + (1/10)]⇥ {0}⇥ {1} | j = 1, ..., l}.

The orientation of a ribbon graph W is equivalent to a choice of preffered side, or equiv-
alently a framing in the form of a unit normal n(W). As explained in [Tur10], the isotopy
class of a ribbon graph (in R

2 ⇥ R) can be recovered from a ribbon graph diagram.

Definition 3.1.10. A diagram of a ribbon graph W in R2 ⇥ [0, 1] is a projection of W in the
R ⇥ {0}⇥ R plane with the following properties. The projections of the coupons, and cores
of annuli and bands are disjoint except for possibly finitely many transversal double points
between two bands, two annuli, or an annulus and a band. Any coupon of W is point-wise
fixed under the projection, bases of coupons are parallel to R ⇥ {0} ⇥ {0}, and the top
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3.1. Modular tensor categories

base is higher than the botton base. The unit normal n(W) is pointing upwards (towards
the reader) everywhere. Any band or annuli is replaced by their (directed) cores with an
appropriate number of directed kinks inserted which accounts for the winding number of
the unit normal n(W) along the core.

An example of a diagram of (4, 3) ribbon graph is depicted in Figure~3.1.

Figure 3.1: Ribbon graph.

We now discuss colored Ribbon graphs

Definition 3.1.11. Let M 2 Man∂(3). Assume M is oriented and is equipped with a de-
composition ∂M = (�∂�(M)) t ∂+(M). A ribbon graph W in M is said to be V-colored if
the following holds. Each band and each annuli is assigned an object of V , called its color.
The coupons are assigned a morphism in V , called their color. This has to be in accordance
with the following convention. Let Q be a coupon of W. Let V1, .., Vm be the colors of the
bands of W which are incident to the bottom base of Q and numbered counterclockwise
according to the orientation of Q induced from W. Let W1, .., Wn be the colors of the bands
of W which are incident to the bottom base of Q, and numbered counterclockwise according
to the orientation of Q induced from W. Let e1, ..., em 2 {±1} (resp. n1, ..., nn 2 {±1}) be
the signs determined by the directions of these bands: ei = 1 (resp. nj = �1) if the band is
directed out of the coupon, and ei = �1 (resp. nj = 1) if the band is directed towards the
coupon. A color of Q is an arbitrary morphism f 2 V(Ve1

1 ✏ · · · ✏ Vem
m , Wn1

1 ✏ · · · ✏ Wnn
n ).

By isotopy of V-colored ribbon graphs, we mean an isotopy of ribbon graphs which pre-
serve the coloring. The pair (M, W) is called a three-manifold with a V-colored ribbon graph. A
V-colored homeomorphism f : (M1, W1) ! (M2, W2) between pairs of three-manifolds with
V-colored ribbon graphs is an orientation preserving homeomorphism f : M1 ! M2 which
satisfies the following. We have f (∂±(M1)) = ∂±(M2), and f induces a color and orienta-
tion preserving homeomorphism f : W1 ! W2 (which therefore have to respect the splitting
into bands, coupons and annuli).

Definition 3.1.12. For V1, .., Vm, W1, ..., Wn 2 Obj(V), e1, ..., em, n1, ..., nn 2 {±1}, and f 2

V(Ve1
1 ✏ · · ·Vem

m , Wn1
1 ✏ Wen

n ) introduce W( f ) as depicted in figure~3.2. The directions of the
bands are determined by the signs e, n. For V, W 2 Obj(V) introduce the pair X+

V,W and
X�

V,W as depicted in figure~3.3 (X+
V,W is to the left). Define [V ,[�

V ,\V ,\�

V , fV , f�

V as de-
picted in figure~3.4. When neglecting the color, we denote these tangles by X±,\±,[±, f±.

Next we introduce the monoidal category of V-colored ribbon graphs (in R
2 ⇥ [0, 1]).
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(V1, ✏1) (Vm, ✏m)

(W1, ⌫1) (Wn, ⌫n)

· · ·

· · ·

f

Figure 3.2: Elementary coupons

V W V W
,

Figure 3.3: Colored crossings

V V

V V

V V

,

,

,

Figure 3.4: Tangles [V ,[�

V ,\V ,\�

V , fV , and f�

V listed from top to bottom, left to right.
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3.1. Modular tensor categories

Definition 3.1.13. We define the unital strict monoidal category RibV of V-colored ribbon
graphs as follows. The objects of RibV are (possibly empty) finite sequences of the fom
((V1, e1), ..., (Vm, em)) where V1, ..., Vm are objects of V , and e1, ..., em 2 {±1}. A morphism
f : h ! h0 in RibV is an isotopy type of a V-colored ribbon graph in R

2 ⇥ [0, 1] satisfying
the following. The sequence h is the sequence of colors and signs of the parts of the tangle,
which meets the bottom boundary intervals where e = 1 if the direction is downward and
e = �1 otherwise. The sequence h0 is the sequence of colors and signs of the part of the
tangle which meet the top boundary intervals where e = 1, if the direction is downward,
and e = �1 otherwise. Composition of composable morphisms ( f , g) is done by glueing the
bottom of (a representative of) f to the top of (a representative of) g, and compress the result
into a V-colored ribbon graph in R

2 ⇥ [0, 1]. The composition f � g is the isotopy type of the
resulting V-colored ribbon graph. Identity morphisms are represented by V-colored ribbon
graphs with no annuli or coupons, and vertical unlinked bands. The tensor product of
objects h = ((V1, e1), ..., (Vm, en)) and h0 = ((W1, n1), ..., (Wn, nn)) is defined by horizontal
juxtaposition h ✏ h0 = ((V1, e1), ..., (Vm, en), (W1, n1), ..., (Wn, nn)). The tensor products of
morphisms f and g is also defined by horizontal juxtaposition, that is, a representative of
f is placed to the left of a representative of g with no mutual linking or intersection and
compressed into R

2 ⇥ [0, 1]. The f ✏ g is the isotopy type of the resulting V-colored ribbon
graph. The unit object is the empty string ∆.

The following theorem is of foundational importance for this thesis.

Theorem 3.1.3 ([RT90], [RT91], [Tur10]). There exists a uniquely defined strict monoidal functor
F : RibV ! V satisfying the following properties. For any object V 2 Obj(V) we have the
equalities F(V,+1) = V and F(V,�1) = V⇤. For any pair of objects V, W 2 Obj(V), and for any
elementary coupon W( f ) associated with a morphism f in V and we have

F(X+
V,W) = CV,W , F(fV) = qV , F([V) = bV , F(\V) = dV , F(W( f )) = f .

3.1.2 Surgery

Definition 3.1.14. The (k, m)-handle is the manifold H(k, m) = Bk
⇥Bm�k . Let Y 2 Man∂

m(R).
The attachment of handles takes as input an embedding f : tn

j=1 S
kj�1
j ⇥Bm

j ,! ∂Y and pro-
duces the manifold

Y(f) =
⇣
t

n
j=1 H(kj, m)j

⌘
[f Y.

If Y is oriented, then Y(f) is naturally oriented.

Recall that a link L in M 2 Man3(R) is an isotopy class of an embedded tm
j=1 S1

j , and
a framing f is an isotopy class of an embedding f : tm

j= S1
j ⇥B2

j ,! M with the property
f(tm

j=1 S1
⇥{0}) = L. This determines an embedding of a ribbon graph consisting of annuli.

Definition 3.1.15. Let L = (L, f) be a framed link in S3 and let W ⇢ R
2 ⇥ [0, 1] be a ribbon

graph which is disjoint from L. Denote by (ML, W) the three-manifold with a ribbon graph
obtained as follows. We have ML = ∂

�
B4(f)

�
and the ribbon graph W is naturally induced.

We say (L, W) is a surgery link for (ML, W).

27



3 . Q U A N T U M I N VA R I A N T S

The framing of L ⇢ S3 is equivalent to a choice g = (gj) of simple closed curve on
each component ∂Tj of ∂T where T is a tubular neighbourhood of L. In the literature such
gj is often called a longitude or a parallel. This choice in fact determines a diffemorphism
jg : tm

j=1 S1
j ⇥ S1

j ! ∂T which maps the meridian S1
j ⇥{1j} to gj, and we have

ML =
⇣

S3
\Interior (T)

⌘
[jg

⇣
t

m
j=1 B2

j ⇥ S1
j

⌘
.

In particular the topological type of ML only depends on the choice g. For a proof, see for
instance Lemma 10.1.2 in [Mar16]. This description is useful for computing p1(ML). One
can compute p1(S3

\T) using the Wirtinger presentation and then use (Proposition 10.1.3
[Mar16])

p1(ML) '
p1(S3

\T)
N(g)

where N(g) is the normal subgroup generated by the simple closed curves gj.

Definition 3.1.16. For i = 1, 2 let (Li, Wi) be a pair consisting of a framed link Li in S3 with
a disjoint ribbon graph Wi. We say that (L1, W1) and (L2, W2) are Kirby equivalent if they are
equivalent under the equivalence relation generated by the relation depicted in figure~3.5.
This should be understood as follows. A pair L = (L, W) which in a small neighbourhood

right twist

· · ·

· · ·

· · ·

C

⇠ · · ·

L L0

Figure 3.5: Generalized Kirby equivalence

B disjoint from any coupon of W looks like the part on the left of figure~3.5, where C is a
component of L, is equivalent to the pair L0 = (L0, W0), which is identical to it outside of B,
and inside B it looks like the part on the right. On the right hand side, we have a system of
unlinked untwisted vertical strands represented by dots. On the left hand we have the same,
except that 1) these strands are now encircled by an unknot C with a kink, and 2) below C
we have used the isotopy given by a full clockwise rotation of a plane perpendicular to the
strands.
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It follows from the works of Lickorish and Wallace [Lic62, Wal60], that any closed ori-
ented three-manifold can be obtained through Dehn surgery, and the Kirby calculus [Kir78]
tells us exactly which links give the same three-manifold (up to homeomorphism). The
Kirby calculus was subsequencely simplifed by Fenn-Rourke [FR79]. The following refine-
ment of Kirby calculus, which works for three-manifolds with ribbon graphs, is due to
Reshetikhin and Turaev. See Section 7.3 in [RT91].

Theorem 3.1.4 ([RT91]). For any connected closed three-manifold with a ribbon graph (M, WM)

there exists a link with a ribbon graph (L, W) and a homeomorphism of three-manifolds with ribbon
graphs f : (ML, W) ! (M, WM). For i = 1, 2, let (Mi, Wi) be a closed three-manifold with a
ribbon graph, obtained from Dehn surgery on a link with a ribbon graph (Li, Wi). There exists a
homeomorphism of three-manifolds with ribbon graphs f : (M1, W1) ! (M2, W2) if and only if
(L1, W2) and (L2, W2) are Kirby equivalent.

3.1.3 The quantum invariant

Fix a modular tensor category (V , {Vi}i2I) together with a rank D.

Definition 3.1.17. Let L = (L, j) ⇢ S3 be a framed oriented link. Let lk(L) be the linking
matrix of L. Let s(L) be the number of positive eigenvalues of lk(L) minus the number of
negative eigenvalues of lk(L). Choose an orientation of L and let Col(L) = {Vi | i 2 I}p0(L).
Choose an ordering p0(L) = {L1, ..., Lm}. For any l = (l1, ..., lm) 2 Col(L) we let G(L, l)

be the associated colored ribbon graph. Let also dim(l) = ’m
j=1 dim(lj).

Remark 3.1.5. The signature s(L) of lk(L) is equal to the signature of the intersection form
on H2(B4(j)), and in fact Turaev uses this description in [Tur10].

We can now state the main theorem of this chapter.

Theorem 3.1.6 ([RT90, RT91, Tur10]). Let W be colored ribbon graph in S3, and let L ⇢ S3 be
a framed oriented link with L \ W = ∆. The following quantity is independent of the choice of
orientation on L and invariant under color preserving generalized kirby moves on (L, W).

tV (L, W) = Ds(L)
D

�s(L)�m�1 Â
l2Col(L)

dim(l)F(G(L, l) [ W).

Definition 3.1.18. The quantum invariant of (M, W) is by definition

tV (M, W) = Ds(L)
D

�s(L)�m�1 Â
l2Col(L)

dim(l)F(G(L, l) [ W)

where (L, W) is any surgery link for (M, W).

The quantum invariant have the following properties. We have

tV (S1
⇥ S2) = 1. (3.1)

For any colored ribbon graph W ⇢ S3 we have

tV (S3, W) = D
�1F(W). (3.2)
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The equations (3.1), (3.2) are normalization properties. Let (Mi, Wi), i = 1, 2 be two three-
manifolds with colored ribbon graphs. By choosing embedded three balls (disjoint from the
ribbon graphs), we can form a new three-manifold with a colored ribbon graph in the form
of their connected sum (M1#M2, W1 t W2). We have

tV (M1#M2, W1 t W2) = DtV (M1, W1)tV (M2, W2). (3.3)

The formula (3.3) is referred to as the multiplicative property. It follows that the normalized
invariant (M, W) 7! DtV (M, W) is strictly multiplicative with respect to connected sum.

3.2 Modular Hopf algebras, quantum groups and knot polynomials

In this section, we sketch how to construct modular tensor categories from algebraic objects
called modular Hopf algebras. We then introduce the modular Hopf algebra relevant for
Chern-Simons theory with gauge group SU(2) and give an explicit formula for the quantum
invariants. We also introduce the colored Jones polynomial.

We now commence a presentation of modular Hopf algebras. We follow Chapter 11 in
[Tur10] closely. Fix a commutative ring K with unit.

Definition 3.2.1. A Hopf algebra A over K is a unital algebra over K, provided with K-linear
homomorphisms D : A ! A ✏K A and e : A ! K called the comultiplication and the counit,
and a K-linear homomorphism s : A ! A called the antipode. If 1A is the unit, we have
D(1a) = 1A ✏ 1A and e(1A) = 1. Let m : A ⇥ A ! A be the multiplication. We have

(IdA ✏ D) � D = (D ✏ IdA) � D,

m � (s ✏ IdA) � D =m � (IdA ✏ s) � D = e · 1A,

(e ✏ IdA) � D = (IdA ✏ e) = IdA.

Here the natural isomorphism A ✏K (A ✏K A) ' (A ✏K A) ✏K A is neglected from the
notation. Let Rep(A) be the category of left A-modules whose underlying K-module is
projective (of finite type).

Observe that the axioms imply that the antipode s is in fact an anti-automorphism of
the algebra s(m(a, b)) = m(s(b), s(a)), 8a, b 2 A. For a Hopf algebra A, let P : A ✏K A !

A ✏K A be the flip homomorphism P(a ✏ b) = b ✏ a. The axioms imply D � s = P � s ✏ s �
D, s(1A) = 1A and e � s = e.

Definition 3.2.2. A quasi-triangular Hopf algebra is a pair (A, R) consisting of a Hopf algebra
A and an invertible element R 2 A ✏K A called the universal R matrix. The pair must satisfy
the following conditions. We have for all a 2 A

P � D(a) = RD(a)R�1, (IdA ✏ D)(R) = R1,3R1,2, (D ✏ IdA)(R) = R1,3R2,3,

where, for any x 2 A ✏K A, we define x1,2 = x ✏ 1A 2 A✏3, x2,3 = 1A ✏ x 2 A✏3 and x1,3 =

(IdA ✏ P)(x1,2). A ribbon Hopf algebra is a triple (A, R, v) consisting of a quasi-triangular
Hopf algebra (A, R) and an invertible element v 2 A called the universal twist which belong
to the center of A. The universal twist must satisfy

D(v) = P(R)R(v ✏ v), s(v) = v.
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3.2. Modular Hopf algebras, quantum groups and knot polynomials

We have the following theorem (which is Theorem 3.2 in Chapter 11 in [Tur10]).

Theorem 3.2.1. Let (A, R, v) be a ribbon Hopf algebra. The category Rep(A) can be given the
structure of an abelian ribbon category as follows. For V, W 2 Obj(Rep(A)) the tensor product is
V ✏k W where A acts from the left via the comultiplication, i.e. a.(v ✏ w) = D(a).(v ✏ w), 8a 2

A, v 2 V, w 2 W. The unit is K, where the action is given by the counit a.k = e(a)k, 8a 2 A, k 2 K.
The braiding CV,W : V ✏ W ! W ✏ V is defined by u 7! P(R.u) where P : V ✏ W ! W ✏ V
is the flip map P(v ✏ w) = w ✏ v, 8v 2 V, w 2 W. The dual of V is V⇤ = HomK(V, K), with
action given by (a.r)(v) = r(s(a).v) for all a 2 A, r 2 V⇤, v 2 V. The pairing dV is simply the
evaluation map, whereas bV = d⇤V . The twists qV : V ! V is given by qV(v) = u.v, 8v 2 V.

It follows that we can make the following definition.

Definition 3.2.3. Let (A, R, v) be a ribbon Hopf algebra. We write trQ for the trace map
introduced in Definition 3.1.3. For any V 2 Obj(Rep(A)) we define its quantum dimension
to be dimQ(V) = trQ(IdV) 2 K.

Next we discuss the process of purification.

Definition 3.2.4. Let C be an abelian ribbon category. A morphism f : V ! W in C is
said to be neglible if tr(g � f ) = 0, for every g : W ! V. Denote the subgroup of negligble
morphisms by Negl(V, W) ⇢ C(V, W). The purified category Cp is the category with the same
objects as C, and for any pair of objects V, W we have Cp(V, W) = C(V, W)/Negl(V, W).
An object V 2 Obj(C) is said to be quasidominated by a finite family {Vi}i2I of objects if there
exists two finite families of morphisms { fr : Vi(r) ! V, gr : V ! Vi(r)}

m
r=1 (here i(r) 2 I for

r = 1, ..., m), such that

IdV �

m

Â
r=1

fr � gr 2 Negl(V, V).

A quasimodular category is a pair (C, {Vi}i2I) consisting of an abelian ribbon category C and
a finite family of simple ojects satisfying the following. There exists 0 2 I such that V0 = .
For any i 2 I, there exists i⇤ 2 I such that Vi⇤ is isomorphic to (Vi)

⇤. The matrix S with
entries S = (Si,j)i,j2I 2 K is invertible over K. Moreover, any object V is quasidominated by
{Vi}i2I .

We have the following result, which is Lemma 4.3.2 in Chapter 11 of [Tur10].

Theorem 3.2.2. Let C be an abelian ribbon category. The category Cp is naturally an abelian ribbon
category. If (C, {Vi}i2I) is quasi-modular, then (Cp, {Vi}i2I) is a modular tensor category.

Now to some preliminaries on modules. Here and below, finite rank means over the
ground ring K.

Definition 3.2.5. Let A be an algebra over K. An A-module V is said to be simple if every
A-linear endomorphism of V is multiplication by an element of K. If A is a ribbon Hopf
algebra, we say that an A-module of finite rank V is Negligble if trQ( f ) = 0 for any A-linear
endomorpism f : V ! V.

We can now finally define a modular Hopf algebra.
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Definition 3.2.6. A modular Hopf algebra is a pair (A, {Vi}i2I) consisting of a ribbon Hopf
algebra A = (A, R, v) and a finite family of simple A-modules of finite rank {Vi}i2I satisfy-
ing the following. For some 0 2 I, we have V0 = K (where A act via the counit as described
above). For each i 2 I there exists i⇤ 2 I such that Vi⇤ is isomorphic to (Vi)

⇤. For any
i, j 2 I the tensor product Vi ✏K Vj splits as a direct sum of certain Vi, i 2 I (possibly with
multiplicities) and a negligible A-module. For each i, j define Wi,j : Vi ✏ Vj ! Vj ✏ Vi by
Wi,j(x) = P(R)R.x, and let Si,j = trQ(Wi,j). The matrix S with entries Si,j 2 K is invertible
over K.

Given a modular Hopf algebra, we introduce the following category.

Definition 3.2.7. Let (A, {Vi}i2I) be a modular Hopf algebra. Define V = V(A, {Vi}i2I) to
be the full subcategory of Rep(A), whose objects are all A-modules of finite rank quasidom-
inated by {Vi}i2I .

Finally, we can state the following result which is Theorem 5.3.2 in Chapter 11 of [Tur10].

Theorem 3.2.3. Let (A, {Vi}i2I) be a modular Hopf algebra. The subcategory V given in Definition
3.2.7 is unital monoidal subcategory of Rep(A) and (V , {Vi}i2I) is a quasimodular category. In
particular (Vp, {Vi}i2I) is a modular tensor category.

We shall introduce a special element, which is convenient for computations.

Proposition 3.2.4. Let (A, R, v) be a ribbon Hopf algebra with universal R element R = Âi ai ✏ bi.
Introduce µ = Âi s(ai)biv. The element µ is invertible and satisfies for all x 2 A

µxµ�1 = S2(x), Â
i

aiµ
�1b = Â

i
biµai, S(µ) = µ�1. (3.4)

In [KM91], any invertible element µ 2 A satisfying (3.4) is called charmed.

3.2.1 Quantum groups

The presentation given here closely follows Section 1 and Section 2 of Kirby and Melvin’s
article [KM91]. Let k 2 N. We introduce the quantities t = exp(ip/k2), s = t2 and q = s2.

Definition 3.2.8. Let Ũq(sl(2, C)) be the associative unital algebra over C with generators
X, Y, K, K and relations

K = K�1, KX = sXK, KY = sYK,

[X, Y] = K2�K2

s�s , Xk = Yk = 0, K4k = 1.

Define C linear maps D : Ũq(sl(2, C)) ! Ũq(sl(2, C)) ⇥ Ũq(sl(2, C)), S : Ũq(sl(2, C)) !

Ũq(sl(2, C)) and e : Ũq(sl(2, C)) ! C by

D(X) = X ✏ K + K ✏ X, D(Y) = Y ✏ K + K ✏ Y, D(K) = K ✏ K D(K) = K ✏ K,
S(X) = �sX, S(Y) = �sY, S(K) = K, S(K) = K,

e(X) = 0, e(Y) = 0, e(K) = 1, e(K) = 1.
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Remark 3.2.5. If we drop the relations Xk = Yk = 0, K4k = 1 and let q 6= ±1 be a generic
complex number, we obtain instead the algebra often denoted by Uq(sl(2, C)). This algebra
is an example of a quantum group. For more on quantum groups see Section 6 in Chapter 11
of [Tur10], or the references contained in [RT90, RT91].

Proposition 3.2.6. The tuple (Ũq(sl(2, C)), D, S, e) is a Hopf algebra over C, and Ũq(sl(2, C)) is
finite dimensional algebra over C.

We now introduce the quantum integers and the quantum factorials.

Definition 3.2.9. For an integer m, introduce the quantum integer [m] = [m]q given by

[m] =
q

m
2 � q�

m
2

q
1
2 � q�

1
2

=
sin
�
m p

k
�

sin
�

p
k
� .

The quantum factorial of a positive integer m is given by [m]! = ’m
j=1[j].

Theorem 3.2.7. The element

R =
1
4k Â

n,a,b

(s � s)n

[n]!
tab+(b�a)n+nXnKa ✏ YnKb

where the sum is over all 0  n < k and 0  a, b < 4k, is a universal R-matrix for Ũq(sl(2, C)). If
we write R = Âj=1 aj ✏ b j and let u = Âj S(b j)aj, then u is invertible and

v = u�1K2

is a universal twist for (Ũq(sl(2, C)), R). Thus (Ũq(sl(2, C)), R, v) is a Ribbon Hopf algebra.

Remark 3.2.8. The twist v introduced above is the inverse of the twist introduced in [RT91].
This stem from the fact there is a slight difference between the definition of a Ribbon hopf
algebra given in [Tur10], which we follow, and the definition given in [RT91]. This is clarified
in Appendix A in [KH01].

We now turn to the representation theory.

Theorem 3.2.9. For 0 < r < k there exists an irreducible self-dual Ũq(sl(2, C))-module V(r)

defined as follows. Write r = 2lr + 1. There is a C basis e(r)
�lr , ..., e(r)lr for which the left action is given

by
Xe(r)j = [lr + j + 1]e(r)j+1, Ye(r)j = [lr � j + 1]e(r)j�1, Ke(r)j = sje(r)j .

The pair (Ũq(sl(2, C)), {V(r)}0<r<k) is a modular Hopf algebra. The module V(2) is known as the
fundamental representation.

Thus we appeal to the Theorem 3.2.3 and make the following definition.

Definition 3.2.10. The SU(2) TQFT tV is the TQFT constructed using the modular tensor

category V = V(Ũq(sl(2, C)), {V(r)}0<r<k) and with D =
q

k
2

1
sin(p/k) . We write L(k) =

{1, ..., k � 1} for the label set.

For the resut of this chapter we work with V(Ũq(sl(2, C)), {V(r)}0<r<k).
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Theorem 3.2.10. For 0 < n, m < k we have

dim(n) = [n], vn = t(n�1)(n+1), Sn,m =
sin
�

pnm
k
�

sin(p
k )

.

Consider the braiding isomorphism C = Cn,m : V(n) ✏ V(m) ! V(m) ✏ V(n). Write n = 2ln + 1
and m = 2lm + 1.With respect to the distinguished bases e(n), e(m) we have that

C
⇣

e(n)i ✏ e(m)
j

⌘
= Â

v,w
Cv,w

i,j e(m)
v ✏ e(n)w

where

C(n, m)v,w
i,j =

(s � s)w�i

[w � i]!
[ln + w]!
[ln + i]!

[lm � v]!
[lm � j]!

t4ij�2(w�i)(i�j)�(w�i)(w�i+1)d
i+j
v+w (3.5)

if (i, j, v, w) satisfy

ln � w � i � �ln,

lm � j � v � �lm.
(3.6)

and C(n, m)v,w
i,j = 0 otherwise. Moreover, we have

DD�1 = exp
✓

ip3(2 � k)
4k

◆
(3.7)

and
µ = K2. (3.8)

All of these expressions are well known. The formula for the braiding isomorphism
is the content of Corollary 2.32 in [KM91]. The identity (3.8) is Theorem 3.24 in [KM91].
Equation (3.7) is derived in [KH01].

Normalizations of the SU(2) quantum invariant

Several normalizations of the SU(2) quantum invariant are used in the literature. We shall
write tk for invariant defined in [RT90, RT91] using the Hopf algebra Ũq(sl(2, C)). Let V be
the modular tensor category associated with Ũq(sl(2, C)). We have the following relation

tk(M, W) = (DD�1)
b1(M)

DtV (M, W). (3.9)

Here b1(M) = dimR(H1(M, R)). The formula (3.9) is derived in Appendix A in [KH01].

3.2.2 The colored Jones polynomial

Recall the notation F for the Reshetikhin-Turaev functor.

Definition 3.2.11. Let L ⇢ S3 be an oriented framed link. For l 2 Col(L) the colored Jones
polynomial of (L, l) is given by

Jl(L, q) = F(L, l).
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If we let l be the coloring that associate to each component the fundamental representa-
tion V(2) then Jl(L) = Vq(L), where V(L) is the Jones polynomial (or a suitable normaliza-
tion thereof) originally introduced by Jones [Jon85, Jon87]. For more on knot polynomials
see [Mor93].

Definition 3.2.12. A Skein triple is a triple (L+, L�, L0) consisting of three oriented black-
board framed link diagrams, which are identical except in a small rectangle where L+ looks
like X+, L� looks like X�, and L0 looks like two parallel strands as depicted in figure~3.6

L+ L� L0
, ,

Figure 3.6: Skein triple

We have the following result, known as the Skein relation.

Theorem 3.2.11 ([Jon85, Jon87]). Let (L+, L�, L0) be a Skein triple. Let 2 be the coloring that
associate to every component the fundamental representation V(2). We have

tJ2(L+)� tJ2(L�) = (s � s)J2(L0). (3.10)

The Skein relation (3.10) together with the formula J2(Om) = [2]m, (where Om is the
disjoint union of m unknots given the blackboad framing) completely determines J2 as one
can always modify the crossings of a link diagram to the unlink of m components. For
more general colorings, one can in fact compute Jl(L) from J2 using cabling, as explained
in Section 4 of [KM91]. One can use the theory of Skein relations to give a purely combi-
natorial/topological construction of modular tensor categories, as was done by Blanchet-
Habegger-Masbaum-Vogel [BHMV92, BHMV95, Bla00]. The colored Jones polynomial is
connected to hyperbolic geometry of cusped three-manifolds [Kas97] and satisfy rich holo-
nomicity properties [Guk05, GL05]. From the Jones polynomial, one can recover classi-
cal knot invariants, such as the Alexander polynomial, as conjectured by Melvin-Morton-
Rozansky and proven by Bar-Natan and Garoufalidis [BNG96].

Let M be a closed oriented three-manifold, with surgery link L ⇢ S3 . Let m = |p0(L)|.
Let s(L) be the signature of the linking matrix of L. We have the following formula for the
quantum invariant

tV (M) = exp
✓

ip3(2 � k)
4k

◆�s(L)
 r

2
k

sin
⇣p

k

⌘!m+1

Â
l2Col(L)

dim(l)Jl(L).
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Rational surgery formulas

Definition 3.2.13. Let L be a link in S3 together with a framing consisting in a tubuluar
neighboorhood T with a parametrization f : tm

j=1 B2
⇥ S1 ⇠

! T ⇢ S3 . Choose an ordering
of the components p0(L) = {L1, ..., Lm} and choose

U =

(
Uj =

 
pj sj

qj tj

!)m

j=1

⇢ SL(2, Z).

For each j = 1, ..., m, let yj : S1
⇥ S1

! S1
⇥ S1 be the diffeomorphism which is equal to Uj

with respect to the identification S1
⇥ S1

' R/Z ⇥ R/Z. The result of rational surgery on L
with framing data U is

ML,U =
⇣

S3
\Interior (T)

⌘
[tf�yj

⇣
t

m
j=1 B2

j ⇥ S1
⌘

.

In case qj 6= 0 for each j, we also say that ML,U is the result of rational surgery with coeffi-
cients pj/qj on the j’th component.

Let mj and lj be the meridian and the longitude on the component Tj of T which are
determined by the framing f. Then ML,U is obtained by gluing S3

\T with solid tori T̃j =

(B2
⇥ S1)j via diffeomorphisms f � yj : T̃j ! ∂Tj that maps the meridian m̃j = S1

⇥{1} of
T̃j to the curve of Tj which is homologous to pjmj + qjlj.

Recall that PSL(2, Z) = SL(2, Z)/h�1i admits a finite presentation with generators S
and T subject to the relation S2 = (ST)3 = 1. Define the representation rk by

rk(S)a,b =

r
2
k

sin
✓

pab
k

◆
, rk(T)a,b = exp

✓
pi
2k

a2
�

pi
4

◆
db

a . (3.11)

There exists a more explicit formula due to Jeffrey. To present it, we must recall the definition
of the Dedekind function and the Rademacher function. Define the Dedekind sum for z > 0
by

S(x, z) =
1
4z

z�1

Â
t=1

cot
✓

tp
z

◆
cot
✓

tpx
z

◆
,

and S(x,�|z|) = �S(x, z), S(x, 0) = 0. Define the Rademacher function F given by

F

 
x y
z v

!
=

8
<

:

x+v
z � 12S(x, z), if z 6= 0,

y
v , otherwise.

We have the following result due to Jeffrey.

Proposition 3.2.12 ([Jef92]). For an element A, which can be represented by

 
x y
z v

!
, z 6= 0, we

have

rk(A)a,b =
sign(z)p

2k|z|
exp

✓
�pi

4
F(A) +

pi
2kz

vb2
◆

Â
t mod 2kz,

t⌘a mod 2k

exp
✓

pixt2

kz

◆
2 sin

✓
ptb
kz

◆
.

(3.12)
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We observe that for any m 2 Z and x0 2 Z satisfying xx0 ⌘ 1 mod z, we have

S(�x, z) = �S(x, z), S(x + mz, z) = S(x, z), S(x, z) = S(x0, z). (3.13)

Furthermore we have that

F(S) = 0, F

 
S

 
x y
z v

!!
= F

 
x y
z v

!
� 3sign(xz) (3.14)

We now present a rational surgery formula for quantum invariants.

Proposition 3.2.13 ([Jef92]). Let L ⇢ S3 be a framed oriented link, and let U 2 SL(2, Z)p0(L). Let
M be the three-manifold resulting from this surgery data. Let s(L) be the signature of the linking

matrix of L, with diagonal entries given xc/zc, where Uc =

 
xc yz

zc vc

!
. We have

tk(M) = exp

0

@pi(k � 2)
4k

0

@ Â
c2p0(L)

F(Uc)� 3s(L)

1

A

1

A Â
l2Col(L)

Jl(L) ’
c2p0(L)

rk(Uc)l(c),1.

(3.15)
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C H A P T E R 4
Modular functors with duality and

unitarity

4.1 Walker’s Axiom’s for a Modular Functor

Definition 4.1.1. A label set is a triple (L,† , 0) consisting of a finite set L with an involution
† : L ! L and a preferred element 0 2 L with 0† = 0.

Recall that for a closed, oriented and connected surface H1 is equipped with the inter-
section pairing. For any real vector space W, let P(W) := (W \ {0})/R+.

Definition 4.1.2. A L-marked surface is given by the following data: (S, P, V, l, L). Here
S is a smooth oriented closed surface. P is a finite subset of S. We call the elements of P
distinguished points of S. V assigns to any p in P an element v(p) 2 P(TpS). We say that
v(p) is the direction at p. l is an assignment of labels from L to the points in P, e.g. it is a map
P ! L. We say that l(p) is the label of p. Assume S splits into connected components {Sa}.
The L is a Lagrangian subspace of H1(S) such that the natural splitting H1(S) ' �a H1(Sa)

induces a splitting L ' �aLa where La ⇢ H1(Sa) is a Lagrangian subspace for each a. By
convention the empty set ∆ is regarded as a L-labeled marked surface.

For the sake of brevity, we will refer to a L-labeled marked surface as a labeled marked
surface. To simplify notation, we shall simply write S = (S, P, V, l, L).

Definition 4.1.3. The category C(L) of L-labeled marked surfaces has L-labeled marked
surfaces as objects and with morphisms and composition defined as follows. For two (non-
empty) L-labeled marked surfaces Si, i = 1, 2 we let C(L)(S1, S2) be the set of pairs
f = ( f , s) where s is an integer and f is an isotopy class of an orientation preserving
diffeomorphisms f : S1

⇠
! S2 that restricts to a bijection of distinguished points P1

⇠
!

P2 that preserves directions and labels. For two composable morphisms f1 = ( f1, s1) :
S1 ! S2 and f2 = ( f2, s2) : S2 ! S3, their composition f2 � f1 is defined to be =

( f2 � f1, s2 + s1 � s(( f2 � f1)#(L1), ( f2)#(L2), L3)) where s is Wall’s signature cocycle for
triples of Lagrangian subspaces.
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Using properties of Wall’s signature cocycle we obtain that the composition operation
is associative and therefore we obtain the category of L-labelled marked surfaces. Observe
that Wall’s signature cocycle s is the same as the Maslow index considered in [Tur10].

There is an easy way to make this category into a symmetric monoidal category.

Proposition 4.1.1. The category C(L) is a symmetric monoidal category with ✏ = t defined as
follows. For two labeled marked surfaces Si = (Si, Pi, Vi, li, Li), i = 1, 2 define their disjoint union
S1 t S2 to be

(S1 t S2, P1 t P2, V1 t V2, l1 t l2, L1 � L2).

For morphisms fi : Si ! S3, i = 1, 2 we define f1 t f2 = ( f1 t f2, s1 + s2). We have an obvious
natural transformation Perm : S1 t S2 ! S2 t S1. The empty surface ∆ is the unique neutral
element with respect to t.

We now describe the operation of orientation reversal. For an oriented surface S we let
�S be the oriented surface where we reverse the orientation on each component. For a map
g with values in L we let g† be the map, with the same domain and codomain, given by
g†(x) = g(x)†.

Definition 4.1.4. Let S = (S, P, V, l, L) be a L-labeled marked surface. Then we define
�S := (�S, P, V, l†, L). We say that �S is obtained form S by reversal of orientation. For
a morphism f = ( f , s) we let �f := ( f ,�s).

Factorization

Definition 4.1.5. Factorization data for a labeled marked surface S consists of a pair (g, l)

where g : [0, 1] ,! S is an oriented simple closed curve in S with base point g(0) whose
homology class belong to L, and l 2 L. The based loop g is called pre-factorization data.
The result of cutting along (g, l) is the labeled marked surface Sl

g which is obtained as
follows. The underlying smooth surface is obtained as follows. Choose a tubular neighbour
g ⇥ [�e, e], e << 1 such that the product orientation agrees with the orientation of S.
Cut out g and then collapse the resulting boundaries g�, g+ (where g+ is the component
having a collared neighbourhood corresponding to g ⇥ [0, e]) to two points p� and p+. The
directions at p± are induced by the basepoint g(0), and p+ is equipped with the label l,
whereas p� is equipped with l†. The rest of the data making Sl

g a labelled marked surface
is naturally induced from S.

We note that factorization is functorial in the following sense

Proposition 4.1.2. If (g, l) is factorization data for S and h = ([ f ], s) 2 C(L)(S, S0), then
( f (g), l) is factoriation data for S0, and there exists a naturally induced morphism hl

g = ([ fg], s) :
Sl

g ! (S0)l
f (g).
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4.1. Walker’s Axiom’s for a Modular Functor

Axioms

We now turn to the axioms. Let K be a commutative ring (with unit). Let P(K) be the cate-
gory of finitely generated projective K-modules. We recall that this is a symmetric monoidal
category with the tensor product over K as product and K as unit. For the definition of a
strong monoidal functor between symmetric monoidal categories, we refer to [ML98].

The Walker axioms presented below are the ones used in the works of Andersen-Ueno
[AU07a, AU07b, AU12, AU15]. These works show that the TUY construction of conformal
field theory [TUY89] can be refined to a modular functor and that this modular functor is
isomorphic to the Reshetikhin-Turaev Walker modular functor. To show this, they consider
the Skein-theoretic construction [BHMV92, BHMV95, Bla00]. Combined with the works
of Laszlo [Las98] one gets that the quantum representations defined independently by
Hitchin [Hit90] and Axelrod-Della Pietra-Witten [ADPW91] are equivalent to the projective
representations from the Reshetikhin-Turaev modular functor. For Turaev’s axioms of a
modular functor, we refer to chapter 5 in [Tur10].

Definition 4.1.6. For a commutative ring K, let P(K) be the category of finitely generated
projective K-modules. Let L be a label set. A modular functor V based on (L, K) is a strong
monoidal functor V

(V, V2) : (C(L),t, ∆) ! (P(K), ✏K, K) ,

which satisfies the axioms (a), (b), (c) and (d) specified below.

(a) Assume g is pre-factorization data. We demand that there is a specified isomorphism

g :
M

l2L
V(Sl

g)
⇠

�! V(S).

We let Pl = Pl(g) be projection V(S) ! V(Sl
g). We refer to g as the factorization (or

glueing) isomorphism. It is subject to the axioms (a1), (a2) and (a3) specified below.

(a1). The isomorphism should be associative in the following sense. Assume that g2

is another set of pre-factorization data, disjoint from g. For any pair (l, µ) 2 L2 the
following diagram is commutative

V(S) V(Sl
g)

V(Sµ
g2) V

✓⇣
Sl

g

⌘µ

g2

◆

Pl(g)

Pµ(g2) Pµ(g2)

s0�Pl(g)

Here s0 = V(s) where s = ([ f ], 0) :
⇣

Sµ
g2

⌘l

g
!

⇣
Sl

g

⌘µ

g2
, f being the obvious identifica-

tion.

(a2). The isomorphism should be compatible with factorization of morphisms in the
following sense. Assume that h = ([ f ], s) : S1 ! S2 is a morphism, and that g is
pre-factorization data for S. For any l 2 L the following diagram is commutative
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V(S1) V((S1)l
g)

V(S2) V((S2)l
f (g))

Pl

V(h) V(hl
g)

Pl

(a3). The isomorphism should be compatible with disjoint union in the following
way. Assume that (g, l) is a factorization data for S1. For any S2, we see that (g, l)

is also a choice of glueing data for S1 t S2 and that there is a canonical morphism
i = ([i], 0) : (S1)l

g t S2 �! (S1 t S2)
l
g . This should induce a commutative diagram

V(S1 t S2) V((S1 t S2)l
g)

V(S1)✏ V(S2) V((S1)l
g ✏ V(S2).

Pg

Pg✏1

V2 V(i)�V2

(b) For any l 2 L consider a sphere Sl with one distinguished point p labelled with l, we
demand that

V(S0) '

8
<

:
K if l = 0

0 if l 6= 0.

(c) For any ordered pair (l, µ) in L2, consider a sphere Sl,µ with two distinguished points,
labelled by l and µ respectively. We demand that

V(Sl,µ) '

8
<

:
K if µ = l†

0 if µ 6= l†.

Modular functors from modular tensor categories

In Turaev’s axioms, the surfaces are equipped with points marked both with an object of V
and a sign e. When doing factorization according to Turaev’s axioms, one endows the new
pair of points with (Vi, 1) and (Vi,�1) respectively, whereas one should endow them with i
and i† respectively according to the Walker axioms if I is the label set. It is to make up for
this difference that we must introduce the choice (1.28) in Theorem 10. This choice is only
used for the factorization axiom.

4.2 Duality and unitarity

We now move on to consider axioms for a duality and a unitarity on a modular functor
V based on a label set L. Before we formulate the axioms, consider an arbitrary L-labeled
marked surface S0. Observe that if p, q 2 S0 are subject to glueing then so are p, q 2 �S0.
Oberve that if S is the result of glueing S along p, q, then �S is the result of glueing �S0

along the same ordered pair of points.
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4.2. Duality and unitarity

Definition 4.2.1. Let (V, g) be a modular functor based on L and K. A duality on V is a
perfect pairing

h · , · iS : V(S)✏ V(�S) ! K,

subject to the axioms (a), (b), (c) and (d) specified below.

(a) Let f = ( f , s) : S1 ! S2 be a morphism between L-labeled marked surfaces. Then

hV(f), V(�f)iS2 = h · , · iS1 .

(b) Consider a disjoint union of L-labeled marked surfaces S = S1 t S2. The modular
functor V provides an isomorphism

h : V(S)✏ V(�S) ⇠
�! V(S1)✏ V(�S1)✏ V(S2)✏ V(�S2).

We demand that with respect to the natural isomorphism K ✏ K ' K we have that

h · , · iS =
�
h · , · iS1 ✏ h · , · iS2

�
� h.

(c) Let g be pre-factorization data for S. The factorization isomorphism induce an isomor-
phism

M

l,l02L
V(Sl

g)✏ V((�S)l0

g )
g✏g
�! V(S)✏ V(�S).

We have that
h · , · iS = Â

l2L
µlhPl, Pl†iSl

g
, (4.1)

where µl 2 K is invertible.

(d) For a L-labeled marked surface S we demand that there is an invertible element µ 2 K⇤

that only depends on the isomorphism class of S such that for all (v, w) 2 V(S)⇥V(�S)
the following equation holds

µhw, vi�S = hv, wiS. (4.2)

We now move on to present axioms for unitarity. For a complex vector space W with
scalar multiplication (l, w) 7! l.w, let W be the complex vector space with the same under-
lying Abelian group and scalar multiplication given by (l, w) 7! l.w. Here l is the complex
conjugate of l. If P : W ! W 0 is a complex linear map between complex vector spaces, we
let P : W ! W 0 be the induced complex linear map which is set-theoretically identical to P.

Definition 4.2.2 (Unitarity). Let (V, g) be a modular functor based on L and C. A unitary
on V is a positive definite hermitian form for each labeled marked surface S

( · , · )S : V(S)✏ V(S) ! C,

subject to the axioms (a), (b), (c) and (d) specified below..

(a) Let f = ( f , s) : S1 ! S2 be a morphism between L-labeled marked surfaces. Then

(V( f ), V( f ))S2 = ( · , · )S1 .
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(b) Consider a disjoint union of L-labeled marked surface S = S1 t S2. Composing with
the permutation of the factors, the modular functor V provides an isomorphism

h : V(S)✏ V(S) ⇠
�! V(S1)✏ V(S1)✏ V(S2)✏ V(S2).

We demand that with respect to the natural isomorphism C ✏ C ' C we have that

( · , · )S =
�
( · , · )S1 ✏ ( · , · )S2

�
� h.

(c) Let g be pre-factorization data for S. We have

( · , · )S = Â
l2L

kl(Pl, Pl)Sl
l
, (4.3)

where kl 2 R>0 for all l.

If the modular functor (V, g) also has a duality we demand the unitary and the duality
is compatible in the following sense.

(d) For all labeled marked surfaces S, we demand that the following diagram is commuta-
tive up to a scalar r depending only on the isomorphism class of S

V(S) V(�S)⇤

V(S)⇤ V(�S).

'

' '

'

(4.4)

Here, the horizontal isomorphisms are induced by the duality whereas the vertical
isomorphisms are induced by the unitary.

The composition w : V(S) '
�! V(�S)⇤ '

�! V(�S) is defined by

hx, f i�S = (x, w( f ))�S,

for all (x, f ) in V(�S)⇥ V(S). The composition f : V(S) '
�! V(S)⇤ '

�! V(�S) is defined
by

hy, f( f )iS = (y, f )S,

for all (y, f ) in V(S)⇥ V(S). Projective commutativity of (4.4) can be reformulated as the
existence of r(S) in C with

f = r(S)w. (4.5)

Definition 4.2.3. A duality h · , · i and unitarity ( · , · ) satisfy strict compatibility if the fol-
lowing holds. For each labelled marked surface S we have

µ = r = 1,

where µ is defined by (4.2) and r is factor making the diagram (4.4) commute, as specified
by (4.5). If (g, N) is pre-factorization data, we have for each label l 2 L

µl = kl = 1,

where µl is defined by (4.1) and kl is defined by (4.3).
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4.3. Symplectic characters

4.3 Symplectic characters

As already mentioned above, the construction of ZV (q) is a slight modification of the con-
struction of Reshetikhin and Turaev. The most interesting part concerns the duality and
unitarity. To formulate our result, we must introduce some algebraic notions.

Recall the notation F for the Reshetikhin-Turaev functor.

Definition 4.3.1. A label i is self-dual if i⇤ = i, and non-selfdual otherwise. If it is selfdual, it
is said to be symplectic if for some (and hence any) isomorphism q : Vi ! (Vi)

⇤ we have the
following identity

�q =
⇣

Id(Vi)⇤ ✏ F(\Vi⇤)
⌘
�

⇣
Id(Vi)⇤ ✏ q ✏ IdVi

⌘
�

⇣
F(U�

Vi
)✏ IdVi

⌘
.

It is non-symplectic otherwise.

We now introduce the dual of the fundamental group of a modular tensor category.

Definition 4.3.2. Let (V , {Vi}i2I) be a modular tensor category. Let P(V , I)⇤ consist of the
set of functions µ̃ : I ! K⇤ that satisfies µ̃(i)µ̃(i⇤) = 1, and such that µ̃(i)µ̃(j)µ̃(k) 6= 1,
implies Hom(1, Vi ✏ Vj ✏ Vk) = 0. The set P(V , I)⇤ is called the dual of the fundamental group
of a modular tensor category. An element µ̃ 2 P(V , I)⇤ with the property that µ̃ takes on the
values ±1 on the self-dual simple objects, in such way that µ̃ is �1 on the symplectic simple
objects and 1 on the rest of the self-dual simple objects, is called a fundamental symplectic
character.

The duality and unitarity are naturally induced from the Reshetikhin-Turaev TQFT.
However: orientation reversal is defined a bit differently in Turaev’s axioms, and again the
identification between a label (Vi,�1) and (Vi⇤ , 1) turn out to be important. To induce the
duality, we have the freedom to make an additional choice of (1.28), and the symplectic
characters are used in this auxillary choice. Our proof of Theorem 10 is based on the ob-
servation that by factorization it essentially reduces to the cases of spheres with with one,
two or three labelled marked points. The only case posing a difficulty is the case of a sphere
with three labelled marked points, and the definition of symplectic characters is made to
deal with exactly this case.
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C H A P T E R 5
Laplace integrals and Picard-Lefschetz

theory

5.1 Classical stationary phase approximation

We now present the notion of a Poincaré asymptotic expansion. For more on this topic, see
the treatises [Olv74] and [Won01].

Definition 5.1.1. For any interval J ⇢ [0, 2p] let S(J) = {z 2 C : arg(z) 2 J + 2piZ}. Let
D be an unbounded subset of S(J) and let A, B 2 C

D⇥Y where Y is a parameter space. We
shall write A = O(B) if for every compact subset K ⇢ Y there exists a constant C > 0, such
that for all l with |l| sufficiently large we have that

Supy2K|A(l, y)|  CSupy2K|B(l, y)|.

We shall write A = o(B) if for every compact subset K ⇢ Y we have that

lim
|l|!•

Supy2K|A(l, y)|
Supy2K|B(l, y)|

= 0.

We shall write A ⇡l!• B, if A � B = O
�
l�N� for every N 2 N.

Definition 5.1.2. Let J be an interval, let D ⇢ S(J) be unbounded and let B 2 C
D⇥Y, where

Y is a parameter space. An asymptotic expansion of B is a pair (bj)
•
j=0, (cj)

•
j=0 ⇢ C

D⇥Y such
that for all j, M 2 N we have that cj+1 = o(cj) and B = ÂM

j=0 bj + o (cM) . This is a Poincaré
asymptotic expansion if there exists (dr)m

r=1 ⇢ C
D⇥Y, (b̃r,j)

•
j=0 ⇢ C

Y and (b j)
•
j=0, (aj)

•
j=0 ⇢ R

such that for all j 2 N

bj(l, y) =
m

Â
r=1

dr(l, y)b̃r,j(y) log(l)b j laj , cj = max(|dr(l, y)|)m
r=1 log(l)b j laj .

In this case, we write

B(l, y) ⇠l!•

m

Â
r=1

dr(l, y)
•

Â
j=0

b̃r,j(y) log(l)b j laj .
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We shall sometimes write ⇠l!•=⇠ when the context is clear. Let H = {z 2 C : Im(z) >
0}. The following localization result will be used below.

Theorem 5.1.1 (Theorems 7.7.1 [H0̈3]). Let M 2 Mand(R) be oriented and let f 2 C•(M, H).
Let h 2 Wd

c (M). Denote the set of stationary points by S( f ). Define S( f , h) = S( f ) \ supp(h) \
(Im( f ))�1(0). Let µ 2 C•

c (V, [0, 1]), where V is a small neighbourhood of S( f , h), and µ|S( f ,h) =

1. Let l 2 (0, •). Then Z

M
eli f h ⇡l!•

Z

M
eli f µh.

The following theorem is known as stationary phase approximation with parameters.

Theorem 5.1.2 (Theorem 7.7.23 [H0̈3]). Let U ⇢ R
n
x ⇥ R

m
y be an open neighbourhood of (0, 0).

Let F 2 C•(U, H). Assume that F satisfies the following conditions

∂F(0, 0)
∂x

= 0, Im(F)(0, 0) = 0, det
✓

∂2F(0, 0)
∂x2

◆
6= 0. (5.1)

Assume that u 2 C•(U, C) is of compact support concentrated in a sufficiently small neighbourhood
of (0, 0). Then there exists {LF,j 2 D0

n(R
n, 2j)}j2N giving an asymptotic expansion

e�ilF0(y)

s

det
✓

l

2pi
∂2F
∂x2

◆0
(y)

Z
u(x, y)eilF(x,y) d x ⇠l!•

•

Â
j=0

LF,j(u)0(y)l�j, (5.2)

where for functions G(x, y) the notation G0(y) stands for a function of y only which is in the same
residue class modulo the ideal generated by ∂F

∂xi
, i = 1, ..., n, i.e. there exists an open neighbourhood

V ⇢ U of (0, 0) and Hi 2 C•(V, C), i = 1, ..., n such that for all (x, y) 2 V we have that

G(x, y) = G0(y) +
n

Â
i=1

Hi(x, y)
∂F
∂xi

(x, y).

5.2 Complex analytic phase and saddle point analysis

5.2.1 The Milnor fibration and the Pham-Picard-Lefschetz-theorem

For X 2 Mand(C) and f 2 O(X), we let S( f ) denote the set of saddles. If S( f ) = {p}, we
say ( f , p) is an isolated singularity of dimension d. For 0 < t << 1, let D(t) = {z 2 C : |z| <
t} and D0(t) = D(t) \ {0}.

Theorem 5.2.1 ([Mil68]). Let U ⇢ C
d be an open neigbourhood of 0 and let f 2 O(U) with

S( f ) \ U = {0} and f (0) = 0. There exists µ 2 N satisfying the following. For every sufficiently
small e > 0, there exists e0 > 0, such that for all t 2 (0, e0], the restriction

f : B2d
e \ f�1(D0(t)) ! D0(t) (5.3)

is a C• locally trivial fibration with fibres homotopy equivalent to
Wµ

j=1 Sd�1
j . For each z 2 D0(t),

we have f�1(z) t S2d�1
r , 8r 2 (0, e].
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5.2. Complex analytic phase and saddle point analysis

We recall that the fibration (5.3) is called a Milnor fibrationof ( f , p). We shall in fact also
refer to the map f : B2d

e \ f�1(D(t)) ! D(t) as a Milnor fibration. We recall that the µ 2 N

from Theorem 5.2.1 is called the Milnor number of ( f , p). The Milnor number is equal to
unity if and only if ( f , p) is a Morse singularity.

We now fix a Milnor fibration and simplify notation we assume p = 0 and write B = B2d
e

and D0(t) = D0 . We consider the homological bundle 1.9 E0 = E ! D0 associated with
f
|B \ f�1(0) and we refer to this as the homological Milnor fibration. Introduce the notation

d0 = d : S1
! D0 for the choice of a simple loop, which encircles 0, and is oriented counter

clockwise. We write M = Md 2 Aut(E(e)) for the monodromomy operator, where 0 < e << 1.
Observe that in Section 1.2.2, we used the slightly different notation Mz, where z denoted
the saddle point above. Recall from Section 1.2.2 the notion of a vanishing cycle.

Theorem 5.2.2 ([Pha65, Pha67] , [PS71] [Lef50]). Assume that ( f , 0) is a Morse singularity, and
consider a coordinate neigbourhood (U, z) of 0, such that f (z) = Âd

j=1 z2
j . For each sufficiently

small t > 0 let Sz(t) = {Âd
j=1 z2

j = t, Im(zj) = 0} ⇢ f�1(t) \ B . Let s(t) = [Sz(t)] be the
associated section of the homological Milnor fibration E ! D0 . Then s extends to a vanishing cycle
and for any a 2 E(t) = Hd�1( f�1(t) \ B) we have

Md(a) = a + (�1)d(d+1)/2
ha, sis,

where h · , · i is the intersection pairing. Moreover Md(s) = (�1)ds.

Theorem 5.2.3 ([A’C73, A’C75, Bri70]). There exists N 2 N with
⇣

MN
d �id

⌘d
= 0. All eigen-

values of Md are roots of unity and no Jordan block is of dimension bigger than d.

Division of forms and the Gelfard-Leray transform

We now recall elements of Leray’s residue theory [Ler59]. The presentation given here builds
on [Pha11]. For a smooth function f , we let S( f ) denote the set of stationary points.

Proposition 5.2.4. Let M 2 Mand(R) and let f 2 C•(M, C) with S( f ) = ∆. For any w 2

Wr
C
(M), with d f ^ w = 0, there exists a form h 2 Wr�1

C
(M) such that w = d f ^ h. The

restriction of h to any any level set of f is uniquely determined.

Definition 5.2.1. With notation as in Proposition, we write

h
| f�1(c) =

w

d f
(c),

and w
d f is called the Gelfand-Leray transform.

Proposition 5.2.5. If M is oriented, f 2 C•(M, R) and w 2 Wd
c (M) we have

Z

M
w =

Z

R

✓Z

f=t

w

d f

◆
d t.

If h 2 Wd�1
C,c (M), we have

d
d t

Z

f=t
h =

Z

f=t

d h

d f
.
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We now consider the holomorphic case which is also treated in Chapter 10 [AGZV12].

Proposition 5.2.6. Let X 2 Mand(C) and let f 2 O(X) with S( f ) = ∆. Observe d f ^ w = 0
for any w 2 WHol(X). With notation as in Proposition 5.2.5, if w is holomorphic, then the form h

can locally be choosen to be holomorphic. In particular, for each z 2 C, the Gelfand-Leray transform
w

d f (z) is a holomorphic form on f�1(z). If w is a holomorphic d-form, h is a holomorphic d � 1 form,
and y(z) ⇢ f�1(z) is a family of d � 1 cycles depending continuously on z, then the assignments

z 7!

Z

y(z)

w

d f
(z), z 7!

Z

y(z)
h

are both holomorphic. Furthermore, we have that

d
d z

Z

y(z)
h =

Z

y(z)

d h

d f
.

5.2.2 Malgrange’s asymptotic expansions

We now return to the homological Milnor fibration (1.9). Given a holomorphic frame s =

(s1, ..., sµ) of the homological Milnor fibration, the associated Picard-Fuchs equation is the
linear ordinary differential equation

d I
d t

= As I, (5.4)

defined by r = d�As d t, where r = r0 is the Gauss-Manin connection associated with
(1.9). Recall the notion of a regular singularity of a linear system (see for instance [MS16]).
Let C{t} denote the algebra of germs of holomorphic functions at t = 0. The following
theorem, due to Malgrange, is of fundamental importance for our purposes.

Theorem 5.2.7 ([Mal74]). The Picard-Fuchs equations (5.4) have a regular singularity at t = 0.
Let A ⇢ Q \ (0, 1] be the set of arguments of eigenvalues of the monodromy operator Md . Let s be
a vanishing cycle of (1.9) defined on a fixed sector S, and let w be a holomorphic (d, 0) form defined
in a neighbourhood of 0. For 0 < |t| sufficently small, and t 2 S, there exists {da}a2A ⇢ N and
{ fa,b}a2A, 0bda

⇢ t�1
C{t} giving a convergent expansion

Z

s(t)

w

d f
= Â

a2A

da

Â
b=0

fa,b(t)ta log(t)b. (5.5)

For each a 2 A the number da + 1 is less than or equal to the maximal dimension of any Jordan
block of Md associated with the eigenvalue exp(2pia). If h is a holomorphic n � 1 form defined in a
neighbourhood of 0, we have

lim
t!0+

Z

s(t)
h = 0. (5.6)

The expansion (5.5) follows from the well-known form of solutions to regular singular-
ites, together with Theorem 5.2.3, and an analysis of the growth of solutions. The following
results of Malgrange shows that if we assume an analycity condition on the phase f we can
relax the non-degeneracy hypothesis in stationary phase approximation. Below l denotes
a positive real parameter.
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5.2. Complex analytic phase and saddle point analysis

Theorem 5.2.8 ([Mal74]). Let ( f , p) be an isolated singularity of dimension d. Let X be an open
neighbourhood of p and let (w, [y]) 2 Wd,0

Hol(X) ⇥ Hd(X, X \ {Re( f ) < Re( f (p))}). If X is
sufficiently small, there exists an unbounded set A ⇢ Q<0, {da}a2A ⇢ N and a sequence
{ca,b}a2A,0bda

⇢ C giving an asymptotic expansion

Z

y
e�l f w ⇠l!• e�l f (p) Â

a2A

da

Â
b=0

ca,bla log(l)b. (5.7)

The set exp(�2piA) is a subset of the set of eigenvalues of M and for each a 2 A the number da + 1
is less than or equal to the maximal dimension of any Jordan block associated with exp(�2pia).

For any manifold M, and any closed subset F we let D0
n(M, F) denote the space of

currents of dimension n with support in F.

Theorem 5.2.9 ([Mal74]). Let M 2 Mann(R) be real analytic and oriented. Let f 2 C•(M, R)

be real analytic. Let p 2 S( f ). There exists an unbounded set A ⇢ Q<0 which is a union of finitely
many arithmetic progressions and which have the following properties. For every sufficiently small
open neighbourhood B of p there exsists {da}a2A ⇢ N and {ca,b}a2A, 0bda

⇢ D0
n(B, { f =

f (p)} \ B) such that for every w 2 Wn
c (B) we have that

Z

M
eli f w ⇠l!• eli f (p) Â

a2A

da

Â
b=0

ca,b(w)la log(l)b. (5.8)

Moreover, we have da  n � 1 for every a 2 A. If in addition p is a local maximum of f , there
exists {ba}a2A ⇢ N and{ua,b}a2A, 0bbda)2A⇥N ⇢ D0

n(B, { f = f (p)} \ B) such that

Z

M
el f w ⇠l!• el f (p) Â

a2A

ba

Â
b=0

ua,b(w)la log(l)b. (5.9)

Moreover, we have ba  n � 1 for every a 2 A. In both cases, all of the currents are of finite order.

For an explicit construction of the currents, we refer to [AGZV12]. In our study of quan-
tum invariants, we shall use the following variant, which will be proven below.

Theorem 5.2.10 ([AP18a]). Let f 2 C•(Rn, C). Assume p 2 S( f ) and that p is a maximum of
a = Re( f ). Assume Re( f ) and Im( f ) are both real analytic near p. Let f be a smooth function with
compact support contained in a small neighborhood D of p.

1. If Hess( f )p is non-degenerate on a subspace of TpR
n of co-dimension one and D is sufficiently

small, then there exists m 2 N and {ca(f)}•
a=0 ⇢ C such that

Z

Rn
el f (x)f(x) d x ⇠l!• el f (p)l�

n�1
2

•

Â
a=0

ca(f)l
�a/m.

2. Let f̌ 2 O(V) be a holomorphic extension of f to an open neighbourhood V ⇢ C
n of p. If

S( f̌ ) = {p} and a � a(p) has an isolated zero at p and if D is sufficiently small, then there
exists an unbounded set A ⇢ Q<0, a finite set B ⇢ N and {ca,b(f)}a2A, b2B ⇢ C such that

Z

Rn
el f (x)f(x) d x ⇠l!• el f (p) Â

a2A,b2B
ca,b(f)l

a log(l)b.
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Remark 5.2.11. We stress that Theorem 5.2.9 impose no condition on the Hessian nor does
it impose that the stationary point (resp. maximum) is an isolated stationary point (resp.
maximum). Theorem 5.2.9 is essentially a local result and in Malgranges article [Mal74], he
deals with the case where M is an open subset of R

n.

Remark 5.2.12. In the second case in Theorem 5.2.10, we have that the set exp(2piA) is a
subset of the set of eigenvalues of the monodromy operator of ( f̌ , p) and for each a 2 A we
have c(f)a,b = 0 if b + 1 is greater than or equal to the maximal dimension of any Jordan
block associated with exp(2pia).

We shall present proofs of Theorem 5.2.8 and Theorem 5.2.9 below.

Corollary 5.2.13. Assume that F : R
n ⇥ R

m ! C is a complex valued function which satisfy
(5.1). If F is real analytic near (0, 0), one can choose the function F0 in equation (5.2) in Theorem
6.2.2 to be real analytic near 0. If F is real and real analytic, then F0 can be chosen to be real and real
analytic as well.

Proof. This will be proven in the first step of the proof of Theorem 5.2.10 when F is complex
valued, and the last statement follows from the Weierstrass preparation theorem for real
analytic functions.

Corollary 5.2.13 can be used to provide a bound for powers of log(k) appearing in the
asymptotic expansions (5.8) and (5.9).

Corollary 5.2.14. Let f 2 C•(Rn, R). Assume f is real analytic near a stationary point p. Assume
that f is a smooth function of compact support contained in a small neighborhood D of p. Assume
that Hess( f )p is non-degenerate on a subspace of dimension m < n and let q = n � m � 1. All the
da in (5.8) are bounded by q. Similarly, if p is a maximum of f , then all the ba in (5.9) are bounded
by q.

Proof. This is a straightforward application of Corollary 5.2.13 and the theorems of Mal-
grange on asymptotic expansions of oscillatory integrals presented above in (5.8) and
(5.9).

Recall the Gamma function G which for Re(z) > 0 is defined by

G(z) =
Z •

0
e�ttz�1 d t,

and extended holormorphically to C \ (�N) by the functional equation G(z + 1) = zG(z).

Proposition 5.2.15. For l 2 N, l > 0 and a 2 C, Re(a) > �1 we have
Z •

0
e�tlta log(t)l d t =

dl

d al

✓
G(a + 1)

la+1

◆
.

We now prove Theorem 5.2.8. First we recall that given a pair of spaces A ⇢ Z we get a
long exact sequence in homology

· · ·
∂
! Hn(A) ! Hn(Z) ! Hn(Z, A)

∂
! Hn�1(A) ! · · ·
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5.2. Complex analytic phase and saddle point analysis

Proof of Theorem 5.2.8. We may assume without loss of generality that f : X ! f (X) is a
Milnor fibration. Let X� = X \ Re( f )�1(Re(p), •)). Choose a small sector S ⇢ D0 which
contains (0, d] for sufficiently small d. For every t 2 (0, d] we get by excision an isomorphism
∂t : Hd(X, X�)

⇠
! Hd�1(Vt). As S is contractible, the fibration restricts to a globally trivial

fibration over S. It follows that we can choose a continuous family yt ⇢ f�1(t), t 2 S such
that s(t) = ∂yt is parallel with respect to the Gauss-Manin connection and ∂t([y]) = [s(t)].
We have

R
y e�l f w ⇡l!•

R
yt

e�l f w, for evey t 2 (0, d]. As X is contractible, we can for each
l find a holomorphic n � 1 form Y(l) with d Y(l) = e�l f w. By Stokes Theorem we getR

yt
e�l f w =

R
s(t) y(l). From (5.6) we get that this quantity tends to 0 as t tends to 0. Thus

we get by Proposition 5.2.6

Z

s(t)
Y(l) =

Z t

0

d
d s

Z

s(s)
Y(l) d s =

Z t

0

Z

s(s)

e�l f w

d f
d s =

Z t

0
e�sl

Z

s(s)

w

d f
d s. (5.10)

As s is parallel with respect to the Gauss-Manin connection, we can combine the expansion
(5.5) from Theorem 5.2.7 and Proposition 5.2.15 to the right hand side of (5.10) to obtain
(5.7). This concludes the proof.

Remark 5.2.16. In the literature it is common to discuss in connection with the method of
saddle point analysis the method of steepest descent. The idea is to consider Laplace integrals
with holomorphic integrand over a cycle D which can be continuously deformed into re-
gions where the phase f is real and either increasing or decresing according to whether
one considers

R
d exp(�l f ) or

R
D exp(l f ). This idea was used in the proof above and our

definition of a Picard-Lefschetz thimble introduced in Section 1.2.2 is motivated by it.

We now turn to a sketch proof of Theorem 5.2.9.

Sketch proof of Theorem 5.2.9. We consider the integral I(l) =
R

exp(l f )w in the case where
f has a maximum at p. Using Hironaka’s resolution of singularities [Hir64, AHV18] (more
precisely, a version which is stated in [Ati70]) we can reduce to the case where the phase
function is a monomial P. Write I(l) =

R •
0 e�t R

P=t
w
f d t. The proof consists in showing

that the Gelfand-Leray transform J(t) =
R

P=t
w
f admits an expansion for small t of the same

form as in Theorem 5.2.7 and then integrate it againts the Laplace kernel using Proposition
5.2.15. We recall that there exists a correspondence between terms in a small t expansion
of an integrable function h(t) and poles in the left-half plane {Re(s) < 0} of its Mellin
transform h⇤(s) =

R •
0 f (x)xs�1 d x. See Theorem 4 in [FGD95]. We have

J⇤(s) =
Z •

0
J(x)xs�1 d x =

Z

Rn
Ps�1w.

The expressions
R

Rn Ps�1w is the well-known homogeneous distribution. It has a well-
known meromorphic extension to the left half-plane, see for instance [H0̈3] or [AGZV12].
For a detailed computation, which shows that the coefficients of the final expansion are
finite order currents evaluated on w, see also Chapter 7 in [AGZV12].

We now give the proof of Theorem 5.2.10.
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Proof of Theorem 5.2.10. Let I(k) =
R

Rn ek f (x)f(x) d x. Without loss of generality, we can as-
sume that p is the origin and that f (0) = 0. We shall start by reducing the first case to the
second case. By using the theorem of stationary phase approximation with parameters we
first show that I(k) has an asymptotic expansion in terms of products of negative powers
of k and 1-dimensional oscillatory integrals Ij(k), all of which have the the same phase f 0

whose imaginary and real parts are real analytic functions. Assume that U is a coordinate
neighborhood centered at the fixed point. We can apply a linear transformation in order
to obtain coordinates (x, y) on U ⇢ R

n�1 ⇥ R such that Hess( f )0 is non-degenerate on
T0R

n�1 = Span(∂x1, ..., ∂xn�1). It follows from our assumptions that f satisfies the condi-
tions for stationary phase approximation with parameters. With the notation as above, write
g(y) = f 0(y). Then there are smooth functions qj(x, y) such that

f (x, y) =
n�1

Â
j=1

qj(x, y)
∂ f
∂xj

(x, y) + g(y). (5.11)

We wish to argue that we can arrange that the functions Im(g) and Re(g) are both real ana-
lytic and that Re(g)  0. In Proposition 7.7.13 in [Hor03], Hörmander proves that the expan-
sion (5.2) is valid for any function g0(y) for which there exists functions q01(x, y), ..., q0n�1(x, y)
such that (5.11) holds near 0, with g replaced by g0, and qj replaced by q0j. Hence it will suf-
fice to prove the following assertion: Assume that the real and imaginary parts of a function
s(x, y) are both real analytic and that f1, ...., fn�1 are functions whose real and imaginary
parts are both real analytic and

8
<

:
f j(0, 0) = 0, for j = 1, ..., n � 1,

det
⇣

∂ f j
∂xr

(0, 0)
⌘
6= 0.

Then there are functions h(y), qj(x, y), j = 1, ..., n � 1, with real analytic real and imaginary
parts, such that in a neighborhood of 0 we have

s(x, y) =
n�1

Â
j=1

qj(x, y) f j(x, y) + h(y). (5.12)

We see that we can arrange that Im(g), Re(g) are real analytic by using this assertion in the
case where s = f and f j = ∂ f /∂xj.

We now prove the assertion. Shrink the domain to assume that the following power
series expansions are valid near 0

f j(x, y) = Â cj
a,bxayb, s(x, y) = Â ca,bxayb,

where a ranges over N
n�1 and b range over N. Let U ⇢ R

n be a small enough domain
such that these series are absolutely convergent. Consider the domain U1 + iU2 ⇢ C

n

with coordinates (z, w) with z = x1 + ix2 and w = y1 + iy2. We can extend f j and s to
holomorphic functions f̌ j and š on U1 + iU2 by

f̌ j(z, w) = Â cj
a,bzawb, š(z, w) = Â ca,bzawb.
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5.2. Complex analytic phase and saddle point analysis

Observe that
∂ f̌ j

∂zj
(x1, y1) =

∂ f j

∂xj
(x1, y1).

Therefore it will suffice to prove the holomorphic version of the assertion. This can be proven
using the Weierstrass preparation theorem, analogously to how the proof of Theorem 7.5.7
in [Hor03] relies on Malgrange’s preparation theorem, which is Theorem 7.5.6 in [Hor03].

Thus we obtain an asymptotic expansion such that for all M 2 N we have
Z

Rn�1
ek f (x,y)f(x, y) d x

= ekg(y)
vuut

2ip

det
⇣

k ∂2 f
∂x2

⌘0
(y)

M

Â
j=0

k�jL f ,j(f)
0(y) + O

⇣
k�M�1� n�1

2
⌘

where Im(g), Re(g) are real analytic. Observe that as
R

Rn�1 ek f (x,y)f(x, y) d x is bounded as
a function of k, we see that it is also true that Re(g)  0. As the estimate is uniform for small
y, we have

I(k) =
Z

R

ekg(y)
vuut

2ip

det
⇣

k ∂2 f
∂x2

⌘0
(y)

M

Â
j=0

k�jL f ,j(f)
0(y) d y + O

⇣
k�M�1� n�1

2
⌘

. (5.13)

Introduce

Ij(k) =
Z

R

ekg(y)
vuut

2ip

det
⇣

∂2 f
∂x2

⌘0
(y)

L f ,j(f)
0(y) d y,

and rewrite (5.13) as

I(k) = k�
n�1

2
M

Â
j=0

k�j Ij(k) + O
⇣

k�M�1� n�1
2
⌘

.

Without loss of generality, we can assume that d g
d y (0) = 0. Otherwise the conclusion of

the theorem is true with all coefficients being ca(f) = 0. From (5.12) and d f0 = 0 we
also deduce g(0) = f (0, 0), which implies that Re(g)(y) has a maximum at y = 0. Write
Re(g)(y) = a1(y). As we are in the one-dimensional case, a real analytic function is either
constant or has isolated zeroes and isolated stationary points. Thus, by appealing to the
expansions (5.8) and (5.9) we can assume without loss of generality that the holomorphic
extension ǧ(y) has an isolated stationary point at y = 0 and a1(y) has an isolated zero at
y = 0. Hence the existence of an expansion can be reduced to the second case. We shall
return to the form of the expansion after having proven its existence.

We now deal with the second case. Write
Z

U
ek f (x)f(x) d x =

Z

U
ek f (x)T(f)(x) d x +

Z

U
ek f (x)R(f)(x) d x

where T(f)(x) is a Taylor polynomial of f at x = 0 of very high degree such that R(f)(x)
vanishes to very high order at x = 0, say to order m. Let a = Re( f ). By the Cauchy-Schwartz
inequality we have
����
Z

U
ek f (x)R(f)(x) d x

���� 
Z

U
|ek f (x)R(f)(x)| d x 

✓
Vol(U)

Z

U
e2ka(x)(R(f)(x))2 d x

◆ 1
2

.
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We can expand J1(k) =
R

U e2ka(x)(R(f)(x))2 d x by using Malgrange’s theorem for Laplace
integrals. The coefficients of that expansion will be of the form ba,b = B2a

a,b(R(f)), where
B2a

a,b is a distribution of finite order supported at the level set {x : a(x) = 0}. By assumption
this level set meets supp(f) only at the origin at which R(f)(x) vanishes to a high order m.
It follows that for any M 2 N we can choose m large enough to ensure that

Z

U
ek f (x)R(f)(x) d x = O

⇣
k�M

⌘
. (5.14)

We can expand J2(k) =
R

U ek f̌ (x)T(f)(x) d x by using Malgrange’s theorem for oscillatory
integrals with holomorphic phase. Here we use that we can think of U as a real n chain
inside C

n, and T(f)(x) d x1 · · ·d xn can be seen as a holomorphic n form on C
n. Combining

the expansion of J2(k) with the estimate (5.14) gives a partial expansion of I(k). Continuing
this way, by Taylor expandanding f to all orders, we get a full asymptotic expansion of I(k).

We now return to the form of the expansion in the first case. We appeal to Example
11.1.3 in [AGZV12] where the case of an oscillatory line integral with holomorphic phase is
treated. Indeed, this case reduces to the case g(y) = ym, and it is proven that the asymptotic
expansion is of the form (for holommorphic q(z) and over an appropriate contour through
0)

Z
ekym

q(y) d y ⇠

•

Â
j=1

cj(q)k�
j

m .

This finishes the proof

5.3 Resurgence phases

At this point, the reader may want to recall the central definitions from resurgence given
in the introduction to this thesis. Écalle’s theory of resurgence [É81a, É81b] was originally
developed in the context of analytic ODE’s. For an introduction to Écalle’s theory we re-
fer to [Sau07] and the monograph [MS16]. In this section we are concerned with applying
elements of the theory to the study of asymptotic expansions of Laplace integrals. More pre-
cisely, we shall prove Theorem 5 which generalizes and summarizes results from the works
of Malgrange [Mal74], Pham [Pha83], Berry-Howls [BH91], Howls [How97] and Delabaere-
Howls [DH02] mentioned in the introduction.

We introduce the Laplace transform along a curve. For a function j(z) and an oriented
curve g ⇢ C we introduce the Laplace transform

Lg(j)(l) =
Z

g
e�lz j(z) d z.

We note that the Laplace transform is the formal inverse of the Borel transform.

Proposition 5.3.1. Let k be a complex number with Re(k) > 0 and let m 2 N. We have that

LR+ � B(l�k log(l)m) = l�k log(l)m, B � LR+(z
k�1 log(z)m) = zk�1 log(z)m.
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Proof. We compute

LR+(B
�
l�k log(l)m�) = LR+

✓
(�1)m ∂m

∂km

✓
zk�1

G(k)

◆◆

= (�1)m ∂m

∂km

 
LR+(z

k�1)

G(k)

!

= (�1)m ∂m

∂km
�
l�k� = l�k log(l)m.

For the last equality we used Proposition 5.2.15. Computing B �LR+

�
zk�1 log(z)m� is done

similarly.

5.3.1 Saddle point analysis of resurgence phases

We now recall the setup from Section 1.2.2. Fix a resurgence phase (Y, f ) 2 Mand(C)/C.
Write f (Y) = Z and C = Z \ W where W = f (S), and S ⇢ Y is the set of saddle points. For
h 2 W recall the notation D0(h) = D \{h} for the small punctured disc and introduce the
notation dh 2 p1(D0(h)) for a small loop homotopic to ∂ D0(h). We now turn to the Laplace
integral

I(l, D(s, g), w) =
Z

D(s,g)
e�l f w

and the proof of Theorem 5.

Proof of Theorem 5. Recall that D = D(s, g) denotes a Picard-Lefschetz thimble emanating
from a saddle point z 2 S \ f�1(h). By properties of the Gelfand-Leray transform, we have
that

I(l, D, w) =
Z •

0
e�lg(t)

✓Z

s(g(t))

w

d f

◆
ġ(t) d t. (5.15)

Recall that D(s, g)(t) = s(g(t)) where s(g(t)) is obtained by parallel transport of s along
the Gauss-Manin connection r. As w is holomorphic, we can deform g close to the saddle
point h without changing the integral. Thus we may assume ġ(t) = l�1/|l�1| when t is
sufficiently close to 0. Write a = l�1/|l�1|. It follows that for sufficiently small e > 0 we
can write

Z •

0
e�lg(t)

✓Z

s(g(t))

w

d f

◆
ġ(t) d t =

Z h+ea

h
e�lt

✓Z

s(ĝ(t))

w

d f

◆
a d t + E(l),

where ĝ : [0, 1] ! C [ {h} is the straight line ĝ(t) = (1 � t)h + t(h + ea) and elhE(l)

is exponentially decreasing. Now use Theorem 5.2.7 and Proposition 5.2.15 to establish
(1.10).

Remark 5.3.2. As the expansion (1.10) was obtained by deforming g near h to the curve h +

exp(�iq)R�0 where q = arg(l), it is clear that the coefficients cw
a,b are indeed independent

of g.
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Theorem 5.3.3. In case z is a Morse singularity there exists {ca}
•
a=0 ⇢ C such that the asymptotic

expansion takes the form

I(l, D(s, g), w) ⇠l!• e�l f (z)l�
d
2

•

Â
a=0

cal�a. (5.16)

We shall present two proofs. The first one makes use of the Picard-Lefschetz theorem,
whereas the second one is more geometric.

First proof Theorem 5.3.3. As we are considering a Morse singularity the Milnor number is
equal to one. Thus the rank of the homological Milnor fibration is equal to unity and The
Picard-Lefschetz Theorem (Theorem 5.2.2 ) implies that the monodromy operator M is equal
to (�1)d Id . Therefore it follows from well-known results on the form of solutions to linear
systems in terms of their monodromy representations, that the expansion (5.5) is in fact of
the form Z

s(t)

w

d f
= g(t)t

d
2 �1,

where g(t) is holomorphic. See for instance Lemma 1.35 and Corollary 1.37 in [MS16]. With
notation as in Theorem 5 this implies that A ⇢ �

d
2 � N. Moreover there is exactly one

Jordan block of size 1 so we have da = 0 for every a 2 A.

The next proof given here is an adaption from a similar proof given in [How97].

Second proof of Theorem 5.3.3. We shall assume for notational convenience that f (z) = 0, q =

0 and that f (z1, ..., zd) = Âd
j=1 z2

j . As the Milnor-number is 1, we may assume that D(s) =
{ f = s, Im(zj) = 0, j = 1, ..., d}. Write w = g(z1, ..., zd)d z1 · · ·d z2. Let Bd(t) be the standard
ball of radius t and real dimension d, i.e. D(t) = ∂Bd(t) where we think of R

d as a subspace
of C

d where the coordinates uj on R
d are defined by uj = Re(zj). We have the standard

spherical coordinates u1 = r cos(q1), ud = r ’d�1
l=1 sin(ql), and for j = 2, ..., d � 1 we have

uj = r sin(qj)’j�1
l=1 cos(ql). Here 0  r 

p
t, 0  ql  p, l = 1, ..., d � 2 and 0  qd�1  2p.

This is a real analytic change of variables. We recall the formula

d u1 · · ·d ud = rd�1 sind�2(q1) sind�3(q2) · · · sin(qd�2)d r d q1 · · ·d qd�1. (5.17)

Up to an exponentially suppressed term E(l) we have

I(l) =
Z e

0
e�lt

Z

∂Bd(t)

w

d t
d t. (5.18)

Now we have
Z

∂Bd(t)

w

d t
=
Z

Bd(t)
d

w

d t
=

d
d t

Z

Bd(t)
g Vol =

•

Â
|a|=0

∂ag
∂ua (0)

d
d t

Z

Bd(t)
ua d u1 · · ·d ud.

Here we used Proposition 5.2.6. We can use (5.17) to rewrite the terms of the right hand

d
d t

Z

Bd(t)
ua d u1 · · ·d ud

=
d

d t

Z t1/2

0
r|a|+d�1 d r

Z p

0
· · ·

Z p

0

Z 2p

0
Qa(q1, ..., qd�1) d q1 · · ·d qd�1 = t

|a|+d
2 �1C(a),
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where Qa(q1, ..., qd�1) = r�|a|�d+1 ’d
j=1(uj(r, q))aj . Write a = (a1, ..., ad). As we have thatR p

0 cosaj(q) sinm(q) d q = 0 unless aj is even, we conclude that C(a) = 0, unless every
a1, ..., ad�1 are even. When ad�1 is even, we also have

R 2p
0 sinad(qd�1) cosad�1(qd�1) d qd�1 =

0, unless ad is even. We conclude that C(a) = 0, unless a1, ..., ad are all even. It follows that
we have a convergent expansion

R
∂Bd(t)

w
d t = t

d
2 �1 Â•

a=0 cata. Inserting this into (5.18), and
applying Proposition 5.2.6, we obtain (5.16).

5.3.2 Resurgence properties of the Borel transform

We now define the notion of localized monodromy, relevant for the resurgence relations
(1.13).

Definition 5.3.1. A resurgence phase is said to have localized monodromy if the following
holds. Let B = [z2S B(z) where each B(z) is a small ball centered at z 2 S. For every h 2 W
the operator vardh := Mond � Id factors

Hd�1( f�1(x)) Hd�1( f�1(x), f�1(x) \ B)

Hd�1( f�1(x))
vardh

fvardh

where x = dh(1) and fvardh ([y]) = vard(y). Moreover, we have the inclusion

vardh

⇣
Hd�1( f�1(x))

⌘
⇢ i⇤

⇣
Hd�1( f�1(x) \ B)

⌘

where i⇤ is induced from the inclusion i : f�1(x) \ B ,! f�1(x).

We believe it to be a theorem that this localization principle holds for every resurgence
phase. Similar localization principles concerning monodromy of singularities are common
in the literature. There are many results due to Pham in this direction. See [Pha11] and
[Vas02].

Remark 5.3.4. For Theorem 6 to hold, we only need lozalized monodromy with respect to
vanishing cycles.

We now turn to the proof of Theorem 6.

Proof of Theorem 6. Observe that (1.11) follows from Proposition 5.3.1, and thus the Borel
transform clearly defines a resurgent function as stated. We observe that (1.12) follows from
equations (1.11), (5.15) and Proposition 5.3.1. Finally, we turn to (1.13). It follows from the
definition that (up to a change of parameter)

Vard (Bs,w) =
Z

vard(s)

w

d f
.

However, the assumption that f have localized monodromy in the sense of Definition 5.3.1
ensures that var(s) is itself a vanishing cycle, and thus we can conclude by appealing again
to (1.11).
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5.3.3 Rapid decay homology

The following generalizes some of the results from [Pha83] to the context of resurgence
phases.

Definition 5.3.2. A family of supports on a topological space T is a family F of closed subsets
of T which satisfy the following two conditions. If A, B 2 F, then A [ B 2 F. If A 2 F and
B ⇢ A is a closed subset, then B 2 F.

For n 2 N, let D(n) be the standard n-simplex, defined as the convex hull of the standard
basis vectors of R

n+1. Let D(n)(T) be the set of continuous maps s : D(n) ! T, also called
n-simplices in T. Let R be a ring, and let Cn(T, R) :=

L
s2D(n)(T) Rs be the space of n-chains

in T (with coefficients in R). Let F be a family of supports on T.

Definition 5.3.3. For any c 2 RD(n)(T) define

supp(c) =
[

s2c�1(R\{0})

s(D(n)).

Define Cn(T, F, R) ⇢ RD(n)(T) to be the R-module of c0s such that supp(c) 2 F and each
p 2 T admits a neighbourhood U which meets only finitely many s(D(n)) with c(s) 6= 0.

The ordinary boundary operator d extends to Cn(T, F, R), and (C⇤(T, F, R), d) form a
chain complex, i.e. d2 = 0. We denote the associated homology R-module by H⇤(T, F, R).

We now return to our resurgence phase f : Y ! C, and the reader might want to recall
the notation from the beginning of Section 5.3.1. Let arg(l) = q.

Definition 5.3.4. For q 2 R and c > 0 let S�
c (q) = {z 2 C | Re(zeiq)  c}. Let F( f , q) be

the family of supports which consists of closed subsets A ⇢ Y such that A \ f�1(S�
c (q)) is

compact for every c > 0.

Definition 5.3.5. For h 2 W let Yh(l) be the set of homotopy-classes of paths g : [0, •) !

C [ {h} which start at h and satisfy that t 7! Re(l(h � g(t)) is strictly increasing and
unbounded. For z 2 S let P(z, l) be the vector space of vanishing cycles near z defined on
a small contractible sector S(l) ⇢ D0

f (z) with S(l) \ (R+e�i arg(l) + f (z)) 6= ∆.

Next we introduce the notion of a system of cuts. Here we adopt the convention that a
deformation retraction of a space A onto a subspace B ⇢ A is a homotopy ht : A ! A with
the properties that h0 = Id, h1(A) = B and that ht |B = IdB . This is sometimes referred to
as a strong deformation retraction in the literature as some authors relax the last condition
and only require ht(B) = B.

Definition 5.3.6. A system of cuts is a choice of disjoint paths (gh 2 Yh(l)) which satisfies
the following. The space [h2Wgh [ D0(h) is a deformation retract of f (X) along h with

Re(lh(q, t))  Re(lq), 8(q, t) 2 Z ⇥ [0, 1]. (5.19)

We have the following theorem where we work with coefficient ring R = C.
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Theorem 5.3.5. We have for each z 2 S and g 2 Y f (z)(l) a linear map

D( · , g) : P(z, l) ! Hd(Y, F)

defined by associating to a vanishing cycle s the Picard-Lefschetz thimble D(s, g). Given a system
of cuts (gh)h2W, we get an induced isomorphism

�z2SD( · , g f (z)) :
M

z2S( f )
P(z, l)

⇠
�! Hd(Y, F).

To prove this theorem we recall some notions from algebraic topology. A cofibration is a
continous map betweem topological space i : Y ! W which satisfy the following condition.
Given a continous map g̃0 : W ! V and homotopy gt : Y ! V with g̃0 � i = g0, there exists
a homotopy g̃t : W ! V with g̃t � i = gt.

Proposition 5.3.6. Assume p : X ! Z is a fibre bundle, and h : Z ⇥ [0, 1] ! Z is a deformation
retraction onto a closed subspace A ⇢ Z satisfying that i : A ,! Z is a cofibration. Then h lifts to a
deformation retraction of X onto p�1(A).

For Proposition 5.3.6 to hold, it is important that we consider strong a deformation
retraction, i.e. ht |Z = IdZ for all t.

Let us also recall the principle of excision. If A0 � A1 � A2 are topological spaces, such
that the closure of A2 is contained in the interior of A1, then we have an isomorphism

H⇤(A0, A1) ' H⇤(A0 \ A2, A1 \ A2).

Finally, we a recall the long exact sequence associated to a triple of spaces R ⇢ S ⇢ T

· · ·
d
! Hn(S, R) ! Hn(T, R) ! Hn(T, S) d

! Hn�1(S, R) ! · · · (5.20)

Proof of Theorem 5.3.5. We shall start by showing that H⇤(Y, F) is equivalent to a projective
limit of ordinary (relative) homology groups. For c > 0 let S+

c (q) = {z 2 C | Re(zeiq) � c}.
We shall argue that we have a an isomorphism of chain complexes

C⇤(Y, F) ' lim
c!+•

C⇤(Y, f�1(S+
c (q)), (5.21)

where C⇤(Y, f�1(S+
c (q)) = C⇤(Y, R)/C⇤( f�1(S+

c (q)), and the right hand side of (5.21) is
the projective limit of the directed system (C⇤(Y, f�1(S+

c (q)))c>0. It follows immediately
from Definition 5.3.3 and Definition 5.3.4 that for any c 2 Cn(Y, F) and any c > 0 there
exists at most finitely many s 2 D(r)(Y) such that c(s) 6= 0 and s(D(r)) \ f�1(S�

c (q)) 6= ∆.
It follows that we can define a linear map Fc : Cr(Y, F) ! Cr(Y, f�1(S+

c (q))) by

Fc(c) = Â
s2D(r)(Y):c(s) 6=0,

s(D(r))\ f�1(S�
c (q)) 6=∆

c(s) · s.

We observe that Fc is clearly surjective. Moreover, as D(r) is compact, it holds that for any
s 2 D(r)(Y) there must exists some c0 > 0 such that s(D(d)) \ f�1(S�

c0 (q)) 6= ∆. From this
we deduce that c = 0 if and only if Fc(c) = 0 for every c > 0. This bi-implication together
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with the surjective of Fc for each c > 0, imply that the F0
cs induce an isomorphism (5.21). As

this is a chain map, we get an induced isomorphism

H⇤(Y, F) ' lim
c!+•

H⇤(Y, f�1(S+
c (q)). (5.22)

We now show the summands H⇤(Y, f�1(S+
c (q)), c > 0 localizes to the preimage of a

system of cuts in a way which is compatible with the c ! • limit. Consider a system of
cuts (gh)h2W. The deformation retraction of f (Y) onto [h2W(gh [ D0(h)) can be lifted to
a deformation retraction of Y \ f�1(W) onto

S
h2W f�1(D0(h) [ gh). By gluing it with the

identity on f�1(W), this extends to a deformation retraction of Y onto
S

h2W f�1(D0(h)[gh).
Here we use proposition 5.3.6. Thus we get an induced isomorphism

Gc : H⇤(Y, f�1(S+
c (q))

⇠
! H⇤

0

@ [

h2W
f�1(gh [ D0(h)),

[

h2W
f�1(gh [ D0(h)) \ S+

c (q))

1

A

and because of (5.19), these combine with (5.22) to given an isomorphism

G : H⇤(Y, F)
⇠
! lim

c!+•
H⇤

0

@ [

h2W
f�1(gh [ D0(h)),

[

h2W
f�1((gh [ D0(h)) \ S+

c (q))

1

A

' lim
c!+•

H⇤

0

@ [

h2W
f�1(gh [ D0(h)),

[

h2W
f�1((gh [ D0(h)) \ S+

c (q))

1

A

' lim
c!+•

M

h2W
H⇤

⇣
f�1(gh [ D0(h)), f�1((gh [ D0(h)) \ S+

c (q))
⌘

We now fix z 2 W, c > 0 and consider a summand

Hh = H⇤

⇣
f�1(gh [ D0(h)), f�1((gh [ D0(h)) \ S+

c (q))
⌘

.

We now show that in dimension d each summand Hh localize to the set of saddle points
of f . For the sake of notational convenience we will write gh [ D0(h) = D0

[[0, •) and
(gh [ D0(h)) \ S+

c (q) = [c, •). This notation is justified by a natural homotopy equivalence
of pairs. A small homological argument will show that for every 0 < e << c we have a
natural isomorphism

Hd( f�1(D0
[[0, •)), f�1[c, •)) ' Hd( f�1(D0

[[0, •)), f�1[e, •)).

This follows from the long exact sequence (5.20) associated with the triple f�1(D0
[[0, •)) �

f�1[e, •) � f�1[c, •), the triviality of the fibration above [e, •) and the fact that f�1[c, •)

is a deformation retract of f�1[e, •).
Choose pairwise disjoint open subets (Yx)x2 f�1(h)\S such that (Yx, f|Yx ) is a Milnor fib-

tration of ( f , x) for every x 2 S \ f�1(h). Let Bh =
S

x2 f�1(h) Yx Let A0 = f�1(gh [ D0(h)).
Let A1 = f�1((gh [ D0(h)) \ S+

c (q)) and let A2 = f�1((gh [ D0(h)) \ S+
c (q)) \ (Y \ Bh).

We can choose e small enough so that A2 = f�1[e0, •) with e0 > e. In particular, the closure
of A2 is contained in the interior of A1. Therefore we can apply exicision to obtain that

Hh ' H⇤

⇣
Bh \ f�1(gh [ D0(h)), Bh \ f�1((gh [ D0(h)) \ S+

c (q))
⌘
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Now one can argue as in the proof of Theorem 5.7 to show that each summand Hh has
a basis consisting of vanishing cycles of ( f , x). It is clear that their lifts by parallel transport
(along the Gauss-Manin connection) define elements in the projective limit (5.22).
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C H A P T E R 6
Quantization of moduli spaces and

quantum representations

6.1 Quantization

We shall discuss two forms of quantization schemes known as geometric Kähler quan-
tization and Toeplitz quantization. In both cases, a crucial ingredient is the notion of a
prequantum bundle, as defined below in Definition 6.1.1. The use of prequantum bundles
in quantization, was invented independently by Kostant [Kos70] and Souriau [Sou70]. It is
is also thoroughly discussed in the monograph of Woodhouse [Woo92]. The presentation
below is inspired by the survey article of Schlichenmaier [Sch12] and the articles [KS01] and
[And12] of Karabegov-Schlichenmaer and Andersen respectively.

Definition 6.1.1. Let (M, w) be a symplectic manifold. A prequantum bundle is a Hermitian
line bundle with unitary connection (L, h,r) ! M, with curvature Fr = �iw.

A prequantum line bundle exists if and only if
⇥

w
2p

⇤
2 H2(M, Z). This is known as

the integrality condition. Inequivalent choices are parametrized by H1(M, U(1)). A proof of
these assertions can be found in [Woo92].

We fix from now on and until Section 6.3 a compact symplectific manifold (M, w) of
real dimension 2n0, together with a prequantum line bundle (L, h,r). For each k 2 Z, let
Lk := L✏k and equip Lk with the induced connection r(k) and the induced Hermitian form
h(k). We write h0 = h(�1) for the induced metric on t : L⇤ ! M. We think of k as 1/h̄ and it
is often referred to as the quantum level. We get a volume form W = wn0 /(n0!(2p)n0) and a
Hermitian inner product

(s, t)(k)L2 =
Z

M
h(k)(s, t) W,

defined on the the Hilbert space L2(Lk) of square integrable sections of Lk.
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6.1.1 Geometric Kähler quantization

If J is a complex structure on M, Lk aquires the structure of a holomorphic line bundle with

∂
(k) operator defined by p(0,1) � r(k) and Chern connection given by r(k). We fix a Kähler

structure J from now on and until section 6.1.4.

Definition 6.1.2. The level k quantum Hilbert space is by definition Hk = H0((M, J), Lk). The
level k geometric Kähler quantization Q(k) : C•(M) ! End(Hk) is defined by

Q(k)( f )(s) = p(k)(r(k)

X(k)
f

s + i f · s), f 2 C•(M), s 2 Hk

where X(k)
f is the Hamiltonian vector field with respect to kw and p(k) : L2(Lk) ! Hk is

the orthogonal projection. Let K(k) 2 G•(M ⇥ M, Lk ⇥ (L⇤)k) be the integral kernel of the
orthogonal projector, i.e. such that for all s 2 C•(M, Lk) and all x 2 M we have

p(k)(s)(x) =
Z

M
K(k)(x, y)s(y) W(y).

We let k · k be the operator norm on End(Hk) defined using the L2 inner product.

Although we shall not need it, we shall also define the notion of metaplectic quantization.
Let dJ be a squareroot of the canonoical line bundle of (M, J). The level k Hilbert space arising
from the half-form corrected geometric quantization is H0((M, J), Lk ✏ dJ).

6.1.2 Toeplitz quantization

The use of Toeplitz operators in quantization was introduced by Berezin in [Ber74] and
Boutet de Monvel-Guillemin in [BdMG81].

Definition 6.1.3. The level k Toeplitz quantization T(k) : C•(M) ! End(Hk) is defined by

T(k)
f (s) = p(k)( f · s), f 2 C•(M), s 2 Hk .

The T(k)
f is called the level k Toeplitz operator associated with f . The Toeplitz quantization scheme

consists in the assignment T : C•(M) ! ’•
k=0 End(Hk) given by T( f ) = (T(m)

f )•
m=0.

The following theorem shows that Toeplitz operators exhibits the correct asymptotic
semi-classical behaviour.

Theorem 6.1.1 ([BMS94]). For every ( f , g) 2 C•(M)2 we have

kT(k)
f � T(k)

g � T(k)
f g k = O

⇣
k�1
⌘

, kik[T(k)
f , T(k)

g ]� T(k)
{ f ,g}k = O

⇣
k�1
⌘

.

For every f 2 C•(M) there exists C > 0 such that

| f |• �
C
k
 kT(k)

f k  | f |•.

In particular limk!•kT(k)
f k = | f |•. Morever, the map T(k) : C•(M) ! End(Hk) is surjective

at each level k.

The following formula, known as the Tuynman lemma [Tuy87], relates geometric and
Toeplitz quantization. For every f 2 C•(M) we have Q(k)( f ) = iT(k)

f� 1
2k D( f )

.
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6.1.3 Expansion of the Bergman kernel

The aim of this subsection is present an asymptotic expansion of the Bergman kernel due
Schlichenmaier and Karabegov [KS01]. Following [KS01] it is convenient to work on the
associated U(1) bundle.

Definition 6.1.4. Let t : X ! M be the U(1) bundle defined by X = {a 2 L⇤ | h0(a) = 1}.
Let W̃ be the unique U(1) invariant volume form with

R
X t⇤( f )W̃ =

R
M f W for every f 2

C•(M) and let L2(X) be complex vector space of square-integrable C-valued functions, with
respect to the inner product ( f , g) =

R
X f g W̃. Let H̃k ⇢ C•(X) be the subspace of functions

which are the restriction of holomorphic functions on L⇤ \ {0} that are k-homogenous with
respect to the U(1) action. Let p̂(k) : L2(X) ! H̃k be the orthogonal projection. The level k
Bergman kernel on L2(X) is the K̂(k) 2 C•(X ⇥ X) that for all f 2 L2(X) and all x 2 X we
have

p̂(k)( f )(x) =
Z

X
K̂(k)(x, y) f (y) W̃(y).

Proposition 6.1.2 ([KS01]). Let e : L⇤ \ 0 ! ’k Hk be the map such that for each s 2 Hk one has
(s, e(k)a )L2 = a✏k(s). We have

K̂(k)(a, b) = (e(k)b , e(k)a )L2 .

Thus the Bergman Kernel extends to a holomorphic function on L⇤ \ 0 ⇥ L⇤ \ 0 by

K̂(k)(ca, db) = cdK̂(k)(a, b). (6.1)

By extension of (6.1) we can define a smooth function on M by uk(x) = K̂(k)(a(x), a(x)),
where a is a smooth section of X defined near x.

Theorem 6.1.3 ([Zel98]). There exists (bv)•
v=0 ⇢ C•(M) giving a Poincaré asymptotic expansion

uk ⇠k!• Â•
v=0 kn0�vbv and b0 = 1.

We now commence a local asymptotic expansion of the Bergman Kernel near the di-
agonal. Consider an arbitrary point x0 2 M. Let s : U ! L be a a non-vanishing local
holomorphic section on a contractible complex coordinate neighbourhood U centered at x0.
We write s⇤ : U ! L⇤ for the dual section. This induces a local smooth section a : U ! X.
Now define F by

F = log(h0(s⇤)) = � log(h(s)).

Now let F̃ 2 C•(U ⇥ U) be an almost analytical extension of F along the diagonal. This means
the following. Write y = (z1, z2) for the holomorphic coordinates on U ⇥ U naturally in-
duced by the coordinates z, and let D : U ! U ⇥ U be the map given by D(z) = (z, z). That
F̃ extends F on the diagonal means that the following equation holds

F̃ � D = F. (6.2)

That F̃ 2 C•(U ⇥ U) is almost analytical along the diagonal means that for any (possibly
empty) string (v1, ..., vm) with vi 2 {z1, z1, z2, z2} we have

0 =
∂m+1F̃

∂v1 · · · ∂vm∂z1
� D =

∂m+1F̃
∂v1 · · · ∂vm∂z2

� D. (6.3)
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For the existence of almost analytical extensions please see [KS01]. For i = 1, 2 let pi :
U ⇥ U ! U be the projection. We define c 2 C•(U ⇥ U) as follows

c = F̃ � 1/2(F � p1 + F � p2).

Shrinking U further if necessary, we can assume that for yU ⇥ U \ D(U) we have

Re(c)(y) < 0 (6.4)

See [KS01] for an explanation of this.

Theorem 6.1.4 ([Zel98], [KS01]). We have a Poincaré asymptotic expansion

K̂(k)(a(x1), a(x2)) ⇠k!• ekc(x1,x2)
•

Â
v=0

b̃v(x1, x2)kn0�v, (6.5)

where, for each v 2 N, the function b̃v is an almost analytic extension of the bv from Theorem 6.1.3.

We have the following important theorem due to Bordemann-Meinrenken-Schlichenmaier
and Schlichenmaier.

Theorem 6.1.5 ( [BMS94], [Sch00, Sch01]). For every ( f , g) 2 C•(M)2 there is a unique se-
quence (C(

j f , g))•
j=0 ⇢ C•(M) such that for every M 2 N we have

kT(k)
f � T(k)

g �

M

Â
j=0

T(k)
Cj( f ,g)k

�j
k = O(k�M�1),

This induces a so-called ? product, giving a deformation quantization. See [KS01] for
more details.

6.1.4 The Hitchin connection

In the last few sections, we considered a fixed Kähler structure. From a physical point
of view, this is auxillary data. A natural way to remedy this is to consider a family of
Kähler structures and provide natural isomorphisms between the quantum Hilbert spaces
parametrized by this family. From now on we will write Hk(J) to stress the dependence of
a specific Kähler structure J. For any smooth bundle p : W ! M and any manifold T a
smooth map T ! G•(M, W) is defined to be a smooth section of p⇤

M(W) ! T ⇥ M.

Definition 6.1.5. A smooth family of Kähler structures parametrized by a manifold T is a
smooth map

J : T ! G•(M, End(TM))

such that (M, w, J(s)) is a Kähler manifold for each s 2 T .

We will only consider families of Kähler structures for which we can define a smooth
vector bundle Hk ! T whose fiber at a point s 2 T is Hk(J(s)). We shall asssume they
form a smooth subbundle of the trivial bundle G•(M, Lk) ! T . To identify the fibers of the
bundle of quantization we introduce the notion of a Hitchin connection.
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Definition 6.1.6. A Hitchin connection is a connection on Hk ! T which is the restriction of
a connection on G•(M, Lk) ! T of the form

r
t + u

where rt is the trivial connection and u is a differential form on T with values in differential
operators on Lk.

There is natural way to differentiate J along a vector field V on T which we denote
by V[J]. By differentiating the equation J2 = �Id, one can show that V[J] decompose
V[J]s = V[J]00s + V[J]0s 2 G•(M, (T(1,0)Ms ✏C (T(0,1)M⇤

s � T(0,1)Ms ✏C (T(1,0)Ms)⇤). Here
Ms = (M, J(s)). We will asume that J is holomorphic in the sense that for any complex vector
field V on T with (1, 0)-part V0 and (0, 1)-part V00 we have

V0[J]s = V[J]0s, V00[J]s = V[J]00s .

As w is non-degenerate we can define G̃ : G•(T , TCT ) ! G•(p⇤
M(TC M ✏C TC M)) such

that G̃(V) · w = V[J]. Hence there is a map G defined on the real vector fields on T with
G̃(V) = G(V) + G(V) for all real vector fields V on T . We observe that for each s 2 T we
have G(V)s 2 C•(S2(Ts)). Now we are ready to define the notion of rigidity.

Definition 6.1.7. A holomorphic family J of Kähler structures is rigid if ∂s(G(V)s) = 0 for
all vector fields on T and all points s 2 T .

For any B 2 C•(M, S2(TC M)) we define a second-order differential operator by DB :=
r2

B +rdB where dB is the divergence of B. For each s 2 T we get a Ricci potential Fs

satisfying
R

M Fswm = 0. This gives a smooth family of Ricci potentials F : T ! C•(M). We
have the following existence result.

Theorem 6.1.6 ([And12],[AL14]). Suppose J is a rigid holomorphic family of Kähler structures,
and that there exists n1 2 Z such that the first Chern class of w is n1[w] 2 H2(M, Z) and
H1(M, R) = 0. Then the following expression defines a Hitchin connection

r
H,k
V = r

t
V +

1
4k + 2n1

⇣
DG(V) + 2 d F · G(V) + 4kV0[F]

⌘
.

If (M, J(s)) have no non-zero global holomorphic vector field for any s 2 T , then rH,k is projec-
tively flat.

We shall often refer to rH,k as the level k Hitchin-connection. We remark that there is
also a notion of a Hitchin connection suitable for metaplectic quantization and an analo-
gous existence theorem. See [AGL12, AL14]. There are also stronger existence theorems
concerning Hitchin connections due to Andersen-Rasmussen [AR17].

Asymptotic expansion of parallel transport of the Hitchin connection

Let g : [0, 1] ! T be a path. Write g(t) = st. We let

P(k)
g 2 Hom(Hk(s0), Hk(s1)) (6.6)

denote parallel transport with respect to the Hitchin connection along g. Below we will
introduce a sequence of functions fu to be used for an asymptotic expansion of (6.6).
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Definition 6.1.8. Let n1 2 Z be as in Theorem 6.1.6. We define the shifted Berezin-Toeplitz
star product ?̃ by

f ?̃g =
•

Â
j=0

C̃j( f , g)(k + n1/2)�j

where
•

Â
j=0

Cj( f , g)h�j =
•

Â
j=0

C̃j( f , g)(k + n1/2)�j.

For a vector field V on T and a family of smooth functions f on M let A(V) be the
formal operator defined by

A(V)( f ) = V[F]?̃ f � V[F] f + (c0(V)?̃ f � C(V)( f )) k�1.

Here
C(V) = 1/4

⇣
DG̃(V)� 2rG̃(V)d F � DG̃(V)(F) + 2n1V[F]

⌘
,

and
c0(V) = 1/2

�
�DG̃(V)(F) + n1V[F]

�
.

Let g : [0, 1] ! C•(M) be the curve with
8
<

:
ġ = �(p(1,0)(ġ(t))[F]g(t),

g(0) = 1.

Let gg = g(1), and let Aj(V) be the part of degree �j in k.Let f0 = gg. Define fu recursively
by

•

Â
u=0

⇣
p(1,0)(ġ)

⌘
( fu)k�u =

•

Â
u=0

Au

⇣
p(1,0)(ġ)

⌘
( fu)k�u.

Finally, for a function f 2 C•(M), we let T(k)
f ,(s1,s0)

= (T(k)
f ,s1

)|Hk(s0), where T(k)
f ,s denote the

Toeplitz operator associated to f with respect to J(s). We have the following asymptotic
expansion due to Andersen.

Theorem 6.1.7 ([And06]). With respect to the operator norm, we have

kP(k)
g �

m

Â
u=0

T(k)
fu ,(s1,s0)

(k + n1/2)�u
k = O(k�(m+1)). (6.7)

Stricly speaking, this result is not stated explicitly in [And06] but follows from results
obtained in that paper.

6.2 Quantum representations

Fix a holomorphic rigid family of Kähler structures J : T ! G•(M, End(TM)). satisfying
the condition of Theorem 6.1.6, and let rH,k be the associated projectively flat Hitchin
connection defined in Theorem 6.1.6. From now on, we shall assume in addition that M is
simply connected. As we have fixed the family, we will often suppress J from the notation.
For all s 2 T we write Hk(J(s)) = Hk(s).
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6.2. Quantum representations

6.2.1 prequantum actions and quantum actions

Definition 6.2.1. Let G be a group. A prequantum action of G consists of an action of G
on M by symplectomorphisms and an action of G on T by diffeomorphisms which are
compatible with each other in the sense that for all j 2 G and for all s 2 T the associated
symplectomorphism j : (M, J(s)) ! (M, J(j.s)) is holomorphic.

Fix a prequantum action of G on (T , M). We note the following proposition.

Proposition 6.2.1. For each j 2 G and each k 2 N, there is a unique (up to a U(1)-factor)
smooth section j̃k 2 G•(M, j⇤(Lk)✏ L�k) which is parallel with respect to the induced connection
erk = j⇤(r(k))✏ I + I ✏r(�k) and unitary with respect to j⇤(h(k))✏ h(�k). The section induces
an isomorphism of bundles j⇤

k : Hk ! j⇤(Hk) which covers j and preserves the Hitchin connection.
One can choose j̃k = j̃✏k

1 .

Remark 6.2.2. We can and will always assume that j̃k = j̃✏k
1 .

Proof. As L is a prequantum line bundle and as j is a symplectomorphism, it is easily
seen that erk is a flat connection. As M is assumed to be simply connected, existence and
uniqueness of the parallel section follow, and the two properties follow from the fact that
r(k) and h(k) are compatible, and from the construction of the Hitchin connection.

We shall consider prequantum actions compatible with a real analytic structure.

Definition 6.2.2. A real analytic structure on (T , M, L) is given by a real analytic structure
on L and M such that the projection L ! M is a real analytic map and such that the
Hermitian metric h is real analytic and such that for any s 2 T it is true that any local
holomorphic section of L ! (M, J(s)) is real analytic. A prequantum action of G on a triple
(T , M, L) with a real analytic structure is said to be a real analytic prequantum action if for
any j 2 G, the associated symplectomorphism j : M ! M is real analytic.

We now define the projective action associated to the prequantum action.

Definition 6.2.3. For any k 2 N and any s 2 T we have a homomorphism

Zk : G ! PGL(Hk(s)) (6.8)

which for each element j 2 G admits a representative Zk(j) constructed as follows. Choose
a smooth curve g : I ! T starting at j.s and ending at s. By definition Zk(j) acts via the
composition

Zk(j) : Hk(s)
j⇤

k
�! Hk(j.s)

P(k)
g

�! Hk(s).

The homomorphism (6.8) is referred to as the quantum representation.

Quantum representations are related to the problem of quantizing a symplectomor-
phism. This has been considered by several authors in other contexts, see for instance the
works of Zeldith [Zel97, Zel03], Bolte [BK98] or the works of Galasso and Paoletti [GP18].
We note the following proposition.
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Proposition 6.2.3. Assume that Mj is a smooth submanifold. Observe that j̃ restricts to a unitary
endomorphism of the line bundle L|Mj ! Mj. This endomorphism can be written as multiplication
by eiq where q mod 2pZ is constant along connected components of Mj.

Proof. Let g : I ! Mj be a smooth curve contained in an open subset of M on which
L admits a smooth local frame a. Write ra = y ✏ a where y is a 1-form. Write j̃ =

J (a⇤ ✏ j⇤(a)) where J is a smooth function. We must show that d
d t (J � g) = 0. As j̃n is

parallel we have 0 = er(j̃) = (d J � y + j⇤(y)) (a⇤ ✏ j⇤(a)) . Therefore d J = y � j⇤(y),
and from this we conclude

d
d t

(J � g) = d J(ġ) = y(ġ)� j⇤(y)(ġ) = y(ġ � d j(ġ)) = y(ġ � ġ) = 0.

This concludes the proof.

6.2.2 Asymptotic expansions of quantum characters

Fix s 2 T . Let j 2 G and let g : I ! T be a smooth curve starting at j.s and ending at s.
We are interested in calculating the asymptotic of tr(Zk(j)) as k ! +•. We introduce the
parameter k̃ = k + n1

2 .
We shall use Theorem 6.1.7 and Theorem 6.1.4 to give an expansion of tr(Zk(j)) in terms

of oscillatory integrals. To do this, we must use the fact that the two Bergman kernels are
naturally related.

Lemma 6.2.4. For two unit norm sections y1 : U1,! L, y2 : U2 ! L we have for all p1 2 U1

and p2 2 U2 that

K(k)
s (p1, p2) = B(k)

s (y⇤
1 (p1), y⇤

2 (p2))
⇣

yk
1(p1)

⌘
✏
⇣

yk
2(p2)

⌘⇤

where for a frame h of L, we let h⇤ be the dual co-frame.

Choose an open covering {Uw}w2W of Mj = {x 2 M : j(x) = x} such that Uw is an
open complex coordinate ball with centre zw 2 Mj and which admits a holomorphic non-
vanishing section sw : Uw ! L. By shrinking Uw if necessary, we can and will assume that sw

is defined on j(Uw). We may assume that sw is defined on j(Uw). Define {cw 2 C•(Uw ⇥

Uw)}w2W as in Theorem 6.1.4. Let aw = sw/(|sw|) and define q 2 C•(Uw, R/2pZ) by

j̃1(aw) = eiqw j⇤(aw).

Definition 6.2.4. Let R = (Id, j) : M ! M ⇥ M. Define bjw 2 C•(Uw, C) by

bjw = iqw + cw � R.

We are now ready to expand tr (Zk(j)) as a sum of products of powers of k̃ and oscilla-
tory integrals.
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Theorem 6.2.5 ([AP18b]). There exists a sequence of smooth compactly supported top forms
Ww

n (j) 2 W2n0(Uw) giving an asymptotic expansion

tr (Zk(j)) = k̃n0
N

Â
n=0

Â
w

✓Z

Uw
ek̃bj Ww

n (j)

◆
k̃�n + O(kn0�(N+1)) (6.9)

for each N 2 N. If the prequantum action is real analytic, there is a function bj : V ! C/2piZ
where V is an open neighbourhood of Mj whose imaginary part and real part are both real analytic
and which satisfies

bj|Uw = bjw mod 2piZ.

Proof. By (6.7) we have for any m 2 N

tr (Zk(j)) =
m

Â
u=0

tr
⇣

T(k)
fu ,(s,j.s) � j⇤

k

⌘
k̃�u + O(k�(m+1)).

As j is a symplectomorphism, the following formula is valid for any holomorphic sec-
tion s of Lk and any x 2 M.

(p(k)
s1 � ( f j⇤

k )(s))(x)

=
Z

M
K(k)

s1 (x, y) f (y)j̃✏k(s)(j�1(y)) W(y)

=
Z

M
K(k)

s1 (x, j(y)) f (j(y))j̃✏k(s)(y) W(y).

An operator P =
R

B(x, y) d y given by a smooth integral kernel is trace class and its trace
is given by

tr(P) =
Z

B(y, y) d y.

From equation 5.3 in [KS01] it follows that away from the diagonal the Bergman kernel is lo-
cally uniformly O(k�N) for every N 2 N. By choosing a partition of unity (µw) subordinate
to the cover {Uw} of Mj and combining the above considerations, we arrive at

tr
⇣

T(k)
f ,(s0,s1)

� j⇤

k

⌘
⇡ Â

w

Z
µw(y) f (j(y))B(k)

s1 (a⇤w(y), a⇤w(j(y)))ekiqw(y) W(y), (6.10)

where ⇡ means equality up to addition of a function of k which is O(k�N) for every N > 0.
Recall {b̃v} from Theorem 6.1.4 and define for u, v � 0 the function f w

u,v 2 C•(Uw) as
follows

f w
u,v = µw · fu � j · b̃v � R.

Applying (6.5) to the integrand of (6.10) we obtain the following expansion

tr (Zk(j)) =
m

Â
u=0

tr
⇣

T(k)
fu ,(s0,s1)

� j⇤

k

⌘
k̃�u + O

⇣
k�(m+1)

⌘

= kn0
N

Â
u,v=0

Â
w

✓Z

Uw
f w
u,vekbjw W

◆
k�vk̃�u

+ O(kn0�(N+1)).
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Here bjw is as defined in Definition 6.2.4. This proves the first part of the theorem by a simple
power series substitution relating k�1 to k̃�1.

In order to prove the second half, we first make the following observation. Suppose
V ⇢ C

n is an open neighborhood of the origin and g a real analytic function on V, then there
is a preferred almost analytical extension ĝ to V ⇥ V which satisfies ĝ(v1, v2) = ĝ(v2, v1),
and the map g 7! ĝ is R-linear. Writing g(v) = Â ca,bvavb, near 0 for a, b 2 N

n, we take
ĝ(v1, v2) = Â ca,bva

1v2
b. As g is real-valed we have cb,a = ca,b. Hence ĝ satisfies all of the

desired properties.
Assume that the prequantum action is real analytic. Note that this entails that the real

and imaginary parts of bjw are both real analytic. The potential ambiguity in defining bj lies
in the choice of the section s = sw the choice of a real analytic extension F̃s(y1, y2) of Fs,
and the choice of qw gives a 2piZ ambiguity which we shall ignore for now for notational
convenience. Write bjw = bjs, where s is the chosen section. We claim that if we choose
F̃s = F̂s then bjs will in fact be independent of s. Any other choice of s will be of the form
s0 = egs for some holomorphic function g. With the obvious notation we have that

Fs0 = �g � g + Fs, iqs0 = iqs + 2�1(g � g � j + g � j � g). (6.11)

From (6.11), holomorphicity of g and linearity of r 7! r̂ we observe F̂s0(y1, y2) = �g(y1)�

g(y2) + F̂s(y1, y2). Combining these observations, we can make the following computation

bjs0(z) = iqs0(z) +
⇣

F̂s0(z, j(z))� 2�1 (Fs0(j(z)) + Fs0(z))
⌘

= iqs(z) +
⇣

F̂s(z, j(z))� 2�1 (Fs(j(z)) + Fs(z))
⌘

+ 2�1(g(z)� g(j(z)) + g(j(z))� g(z))

� g(z)� g(j(z))

+ 2�1 (g(z) + g(z) + g(j(z)) + g(j(z)))

= iqs(z) +
⇣

F̂s(z, j(z))� 2�1 (Fs(j(z)) + Fs(z))
⌘

= bjs(z).

This concludes the proof.

In order to analyze further the expansion given in (6.9) we turn to the integrals

I(w, n, k) =
Z

Uw
ek̃bj Ww

n (j).

The large k behavior of I(w, n, k) localize to Uw \ Mj, as the real part of bjw is strictly negative
away from the fixed point set cf. (6.4). This follows from Proposition 5.1.1. We prove that
the set of fixed points of j correspond to stationary points and we proceed to examine the
Hessian of bjw at a fixed point.

As the analysis of the phases are purely local, we may omit the index w. We focus on
a holomorphic coordinate chart U centered at a fixed point p with Kähler coordinates z
satisfying

�iw(p) = 2�1 Â
l

d zl ^ d zl . (6.12)
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Let y = (y1, y2) be the holomorphic coordinates on U ⇥ U which are naturally induced by
z. For the rest of Subsection 6.2.5 we use the coordinates z on U, and the coordinates y on
U ⇥ U.

Recall that the construction of the phase bj function involves a choice of holomorphic
frame

s : U ! L \ {0}. (6.13)

Define z = zs by writing the lift j̃ with respect to the frames s and j⇤(s) as follows

j̃(s)(z) = z(z)s(j(z)).

As z is non-vanishing, we can write (shrinking U if necessary) z = exp(l + iq) where q and
l are smooth real valued functions. In the notation above, qw = q. As j̃ is unitary we can
write j̃(exp(2�1F)s) = exp(iq)

�
exp(2�1F � j)j⇤(s)

�
. From this we conclude that

l = 2�1(F � j � F). (6.14)

We shall now prove that all fixed points of j are indeed stationary points of bj. Moreover,
we can arrange that c has a stationary point at (p, p) by choosing the holomorphic section s
in (6.13) suitably. Write

I = In0⇥n0

for the identity matrix of dimension n0.

Lemma 6.2.6 ([AP18b]). We have

U \ Mj
⇢ {q 2 U | d bjq = 0}.

Moreover, we can choose the holomorphic section s in (6.13) such that

d Fp = 0, d c(p,p) = 0,
∂2F
∂z2 (p) = 0,

∂2F
∂z∂z

(p) = 2�1 I . (6.15)

Proof. Let q be a fixed point of j and let us show that q is a stationary point by comparing
the derivatives of c � R with the derivatives of iq. By differentiating (6.2) and using (6.3) we
get

∂F
∂z

=
∂F̃
∂y1

� D,
∂F
∂z

=
∂F̃
∂y2

� D. (6.16)

By using (6.3) and (6.16) one obtains

∂c � R
∂z

(q) = 2�1
✓

∂F
∂z

+
∂F
∂z

∂j

∂z
�

∂F
∂z

∂j

∂z

◆
(q),

∂c � R
∂z

(q) = 2�1
✓

∂F
∂z

∂j

∂z
�

∂F
∂z

�
∂F
∂z

∂j

∂z

◆
(q).

(6.17)

In order to calculate the derivatives of iq at q we shall first relate the derivatives of log(z)
to F using that j̃ is parallel with respect to er, and then calculate the derivatives of iq using
the identity (6.14). Here er is the connection on j⇤(L)✏ L⇤ naturally induced from r. Write
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J = log(z). Define the (1, 0)-form y by rs = y ✏ s. Write er(j⇤(s) ✏ s⇤) = k ✏ j⇤(s) ✏ s⇤

where k is a 1-form. We have k = j⇤(y)� y. Thinking of j̃ as a section of j⇤(L) ✏ L⇤ we
can write j̃ = exp(J)j⇤(s)✏ s⇤. By parallelity of j̃ we get

0 = erj̃ = (d J + k) (exp(J)j⇤(s)✏ s⇤)

which is equivalent to d J = y � j⇤(y). In particular

∂J

∂zl
= yl

� Â
j

yj
� j

∂jj

∂zl
,

∂J

∂zl
= �Â

j
yj

� j
∂jj

∂zl
.

As h,r are compatible, we have

d F = �d (log(h(s, s)) v = �y � y

from which we get

∂F
∂zl

= �yl ,
∂F
∂zl

= �yl . (6.18)

Combining this with the expressions for the derivatives of J given above, we get

∂J

∂z
=

✓
∂F
∂z

� j

◆
∂j

∂z
�

∂F
∂z

,
∂J

∂z
=

✓
∂F
∂z

� j

◆
∂j

∂z
.

Combining with (6.14) this gives

∂iq
∂z

=
∂
�
J � 2�1 (F � j � F)

�

∂z

= 2�1
✓✓

∂F
∂z

� j

◆
∂j

∂z
�

✓
∂F
∂z

� j

◆
∂j

∂z
�

∂F
∂z

◆
.

As q, F are real functions, we obtain

∂iq
∂z

= 2�1
✓✓

∂F
∂z

� j

◆
∂j

∂z
�

✓
∂F
∂z

� j

◆
∂j

∂z
�

∂F
∂z

◆
,

∂iq
∂z

= �2�1
✓✓

∂F
∂z

� j

◆
∂j

∂z
�

✓
∂F
∂z

� j

◆
∂j

∂z
�

∂F
∂z

◆
.

(6.19)

Comparing (6.19) with (6.17) we see that q is a stationary point of bj.
We now proceed to prove (6.15). We see that if we perform the transformation s 7!

exp(r)s then the (1, 0)-form y transform as follows y 7! y + ∂r. Consider the holomorphic
function r given by r = Âl

∂F
∂zl

(p)zl + Âlj
∂2F

∂zl∂zj
(p)zlzj. Replace s by ś = exp(r)s, and

observe that by (6.18) we have

d F́p = 0,
∂2F́

∂zl∂zj
(p) = 0.

We now turn to the fourth equation. We recall that as r is the Chern connection of h, and
as L is a prequantum line bundle, we have

∂∂ log(h(ś))p = Fr(p) = �iw(p) = 2�1 Â
l

d zl ^ d zl .
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Thus we obtain the desired equation which is seen to hold independently of the choice of
section

∂2F́
∂z∂z

(p) = 2�1 I .

We now turn to the remaining equation. By (6.16) we see that

∂ć

∂y
� D =

⇣
2�1 ∂F́

∂z , �2�1 ∂F́
∂z

⌘
,

∂ć

∂y
� D =

⇣
�2�1 ∂F́

∂z , 2�1 ∂F́
∂z

⌘
.

Therefore ć has a stationary point at (p, p) as F́ has.

From now on we assume s : U ! L \ {0} from (6.13) has been chosen as in Lemma 6.2.6.

Lemma 6.2.7. Assume Q : U ! C is a smooth function defined on an open subset U of C
m.

Assume R : V ! U is a smooth map defined on an open subset V of C
l . If R(z) is a stationary point

of Q then the Hessian of G at z is given by Hess(Q � R) = d RtHess(Q)d R.

Assume that Mj is a smooth submanifold or that the action is real analytic such that Mj

is a real algebraic subvariety. For each component Y ⇢ Mj there exists q 2 R/2pZ such
that for any q 2 Y the linear endomorphism j̃✏k

q : Lk
q ! Lk

q is given by multiplication by
eikq . Let {qj 2 R/2pZ} be the set of arguments defined in this way. Recall (from Section
1.2.1) that the fixed point set Mj is said to be non-degenerate if every component Y ⇢ Mj

is a smooth submanifold of M and TY = Ker (d j � Id)
|Y . We have the following theorem.

Theorem 6.2.8 ([AP18a]). Assume Mj is non-degenerate. For each qj, define 2mj as the maximal
integer occuring as the dimension of a component of Mj on which j̃ is given by multiplication by
exp(iqj). There exists a sequence of smooth densities Wj

a on Mj giving an asymptotic expansion

tr (Zk(j)) ⇠ Â
j

eik̃qj k̃mj
•

Â
a=0

k̃�
a
2

Z

Mj
Wj

a. (6.20)

Proof. The proof consists in three steps. First we compute the Hessian at a stationary point,
second we adress the question of non-degeneracy, and third we apply stationary phase
approximation. Only the last step uses the assumption that Mj is non-degenerate.

We now give the computation of the Hessian. The equations (6.15) makes it significantly
easier to analyze the Hessian of P at a fixed point, together with Lemma 6.2.7. Write

∂j

∂z
(p) = H,

∂j

∂z
(p) = K.

The Hessian of bj at p with respect to (∂z, ∂z) is given as follows

Hess(bj)p = 4�1

0

BBB@

I 0
H K
0 I
K H

1

CCCA

t0

BBB@

0 0 � I 2 I
0 0 0 � I
� I 0 0 0
2 I � I 0 0

1

CCCA

0

BBB@

I 0
H K
0 I
K H

1

CCCA
. (6.21)

In fact this can be can be rephrased with the following formula valid at our fixed point p

Hess(bj) = d RtHess(c)d R
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where R = (Id, j). We first show that the Hessian of iq vanish at p from which we conclude
that Hess(bj)p = Hess(c � R)p, and we then derive a coordinate expression for Hess(c � R)p

using Lemma 6.2.6 and Lemma 6.2.7.
From (6.12) we see that the fact that d jp is a symplectomorphism with respect to wp is

equivalent to the following two equations

HtH � KtK = I, HtK � KtH = 0. (6.22)

Combining equation (6.19) with equation (6.15) and equation (6.22)

∂2iq
∂z2 (p) = 2�1

 
∂j

∂z

t ✓∂2F
∂z2 � j

◆
∂j

∂z

!
(p)

+ 2�1

 
∂j

∂z

t ✓ ∂2F
∂z∂z

� j

◆
∂j

∂z

!
(p)

� 2�1

 
∂j

∂z

t ✓ ∂2F
∂z∂z

� j

◆
∂j

∂z

!
(p)

� 2�1

 
∂j

∂z

t ✓∂2F
∂z2 � j

◆
∂j

∂z

!
(p)

� 2�1 ∂2F
∂z2 (p)

= 4�1 �KtH � HtK
�
= 0.

Similarly one can use the equations (6.19), (6.15) together with (6.22) to show that ∂2iq
∂z∂z (p) =

∂2iq
∂z∂z

t
(p) = 0. This shows that Hess(bj)p = Hess(c � R)p.

We claim that the Hessian of c at (p, p) with respect to the ordered basis (∂y1, ∂y2, ∂y1, ∂y2)

is equal to the following matrix

Hess(c)(p,p) = 4�1

0

BBB@

0 0 � I 2 I
0 0 0 � I
� I 0 0 0
2 I � I 0 0

1

CCCA
.

We shall calculate the Hessian of c as four block matrices and we start with ∂2c
∂y2 � D(p).

Differentiating equation (6.16) and using (6.3) we get

∂2F
∂z2 =

∂2F̃
∂y2

1
� D. (6.23)

Combining equation (6.15) and equation (6.23) we obtain

∂2c

∂y2
1
� D(p) =

∂2F̃
∂y2

1
� D(p)� 2�1 ∂2F

∂z2 (p) = 0.

Another two applications of (6.3) gives

∂2c

∂y1∂y2
� D(p) =

∂2c

∂y2∂y1

t

� D(p) = 0
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and
∂2c

∂y2
2
� D(p) = �2�1 ∂2F

∂z2 (p) = 0.

Thus we see
∂2c

∂y2 � D(p) =

 
0 0
0 0

!
.

The computations of ∂2c
∂y∂y � D(p) and ∂2c

∂y2 � D(p) are similar. We can now appeal to Lemma
6.2.7 as

d R =

0

BBB@

I 0
H K
0 I
K H

1

CCCA
.

This concludes the computation of the Hessian.
We now address the question of non-degeneracy of the Hessian of bj. Denote the sym-

metric bilinear form associated to Hess(bj)p by Y. We shall prove that

{x 2 Tp MC : Y(x, h) = 0, 8h 2 Tp MC} = Ker(d jp � Id). (6.24)

Moreover, we shall prove that Y is non-degenerate on any real complementary subspace to
Ker(d jp � Id).

Let h 2 Tp MC be any vector not fixed by d j. We shall argue that

Y(h, h) 6= 0 (6.25)

which will imply that the symmetric bilinear form Y is non-degenerate on any subspace
which is complimentary to Ker(d jp � Id) and closed under conjugation.

Write d Rp(h) = (v0, w0, v00, w00). We have d Rp(h) = (v00, w00, v0, w0), as d j is the complex-
linear extension of a real linear endomorphism of Tp M. Let ( · , · ) be the standard Hermitian
metric on C

n0 , given by (u, y) = uty where we recall that n0 = dimC(M). According to (6.21)
we have

�4Y(h, h) = (v0, v0) + (w0, w0)� 2(v0, w0) + (v00, v00) + (w00, w00)� 2(w00, v00).

For any two vectors k, µ the real part of (k, k) + (µ, µ)� 2(k, µ) is equal to |k � µ|2. Thus
(6.25) holds, as

�4 Re (Y(h, h)) = |v0 � w0
|
2 + |v00 � w00

|
2
6= 0.

We finish by proving the inclusion

{x 2 Tp MC : Y(x, h) = 0, 8h 2 Tp MC} � Ker
�
d jp � Id

�
.

To that end, assume x is fixed by d jp. Write x 0 for the (1, 0) part of x and write x 00 for the
(0, 1) part of x. We compute

�4Y( · , x) =
⇣

p(1,0)t
d0 jp

t
p(0,1)t

d00 jp
t
⌘

0

BBB@

0 0 I �2 I
0 0 0 I
I 0 0 0

�2 I I 0 0

1

CCCA

0

BBB@

x 0

x 0

x 00

x 00

1

CCCA

=
⇣

p(0,1)
� d00 jp

⌘t
x 0 +

⇣
d0 jp � p(1,0)

⌘t
x 00.
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That x is fixed by d jp is equivalent to

x 0 = Hx 0 + Kx 00, x 00 = Kx 0 + Hx 00.

We have

d0 jp =
⇣

H K
⌘

, d00 jp =
⇣

KH
⌘

, p(1,0) =
⇣

I 0
⌘

, p(0,1) =
⇣

0 I
⌘

.

Thus we can write

⇣
p(0,1)

� d00 jp

⌘t
x 0 +

⇣
d0 jp � p(1,0)

⌘t
x 00 =

 
�Kt

x 0

x 0 � Htx 0

!
+

 
Htx 00 � x 00

Ktx 00

!
.

=

 �
HtK � KtH

�
x 0 +

�
HtH � KtK � I

�
x 00�

I � HtH + KtK
�

x 0 +
�
KtH � HtK

�
x 00

!
= 0.

The last equation follows from (6.22).
We are now ready to apply Theorem to tr(Zk(j)). For notational convenience we shall

assume that all the components of Mj are of the same dimension 2m0. Let e0 be the co-
dimension of Mj, i.e. 2n0 � 2m0 = e0. Choose each holomorphic trivialization sw : Uw !

L \ {0} appearing in the covering of Mj, such that each Uw admits smooth real coordinates
(uw, vw) : Uw ! R

2n0 that satisfies {uw = 0} = Uw \ Mj. With notation as in Theorem
6.2.5, define gw

n 2 C•(Uw) by Ww
n (j) = gw

n d uw ^ d vw. We can now rewrite the expansion
in Theorem 6.2.5 as

tr(Zk(j)) = k̃n0
M

Â
n=0

Â
w

k̃�n
Z ✓Z

gw
n (uw, vw)ek̃bjw(uw ,vw) d uw

◆
d vw + O(kn0�(M+1)).

(6.26)
As the real part of c is negative away from the diagonal, we see that (6.24) that the phase
function bjw satisfy condition (5.1). We now wish to apply stationary phase approximation
to the double integrals

I(n, w, k̃) =
Z ✓Z

gw
n (uw, vw)ek̃bjw(uw ,vw) d uw

◆
d vw.

We shall use freely that a function of k or k̃ is O(k�M) if and only if it is O(k̃�M). Let I be
the ideal generated by ∂bjw

∂u1
w

, ..., ∂bjw
∂ue0

w
. With notation as above, we observe that for any smooth

function G(uw, vw), we have G0(vw) = G(0, vw) as ∂bjw
∂uw

(0, vw) = 0 by Lemma 6.2.6 and
G(uw, vw)� G0(vw) 2 I . Thus by Hörmander’s theorem of stationary phase approximation
with parameters (Theorem 5.1.2 above) we get the following expansion

Z
gw

n (uw, vw)ek̃bjw(uw ,vw) d uw + O
⇣

k̃�(N+1+e0/2)
⌘

(6.27)

= ek̃bj(0,vw) k̃�2�1e0

vuut
2ip

det
⇣

∂2 bjw
∂u2

w
(0, vw)

⌘
N

Â
r=0

k̃�rLbjw ,r(gw
n )(0, vw).

From Lemma 6.2.6 we easily deduce that bjw(0, vw) = iqj, for some j. Define Ww
n,r by

Ww
n,r(vw) =

vuut
2ip

det
⇣

∂2 bjw
∂u2

w
(0, vw)

⌘ Lbjw ,r(gw
n )(0, vw) d vw.
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This form has compact support inside Ul \ Mj. Using (6.27) we have the following estimate

I(n, w, k̃) = eik̃qj k̃�2�1e0
N

Â
r=0

k̃�r
Z

Mj
Ww

n,r + O(k�(N+1+e0/2)). (6.28)

For each qj let Wj be the set of w0 such that Uw0 \ Mj lies in a component of Mj on which j̃ is
given by multiplication by exp(iqj). Define Wj

n,r = Âw2Wj
Ww

n,r. Observe that n0 �
1
2 e0 = m0.

Using (6.28), we can rewrite (6.26) as follows

tr (Zk(j)) = k̃m0 Â
j

eikqj
N

Â
n,r=0

k̃�n�r
Z

Mj
Wj

n,r + O(km0�(N+1)).

Defining Wj
a = Ân+r=a Wj

n,r, we see that the theorem holds.

By appealing to the results of Chapter 5, we can prove a stronger result if we impose the
real analycity condition.

Theorem 6.2.9 ([AP18a]). Assume the prequantum action is real analytic. Assume that all z 2 Mj

satisfy one of the following three conditions:

• z is a smooth point with Tz Mj = Ker(d jz � Id),

• dim(Ker(d jz � Id))  1, or

• z is an isolated saddle point of the germ of bjC at z.

Then there exists for each qj an unbounded set Aj ⇢ Q0, nj 2 Q�0, dj 2 N, and a sequence
{cj

a,b}a2Aj , 0bdj ⇢ C giving an asymptotic expansion

tr (Zk(j)) ⇠k!• Â
j

ek̃qj k̃nj Â
a2Aj

dj

Â
b=0

cj
a,b k̃a log(k̃)b.

If the first or second condition holds for all z 2 Mj \ bj�1(qj) then dj = 0 and nj = mj.

Proof. By Theorem 6.2.5 we have

tr (Zk(j)) = k̃n0
N

Â
n=0

Â
w

✓Z

Uw
ek̃bj Ww

n (j)

◆
k̃�n + O(kn0�(N+1)).

Hence it will be enough to show the existence of an asymptotic expansion of integrals of
the following form

I(k̃) =
Z

U
ek̃bj(x)f(x) d x

where U is an open neighborhood of a fixed point z and f is a smooth function of compact
support concentrated in a small coordinate ball centered at z. The case where z is a smooth
point of Mj with Tz Mj = Ker(d jz � Id) is dealt with in the proof of Theorem 6.2.8. The
case with dim Ker(d jz � Id)  1 can be dealt with by appealing to the first part of Theorem
5.2.10 and the second step in the proof of Theorem 6.2.8. The case where bjC has an isolated
stationary case is dealt with by appealing to the second part of Thereom 5.2.10. Here we use
that any maximum of Re(bj) is a fixed point by (6.4) and therefore a stationary point of bj by
Lemma 6.2.6 and therefore a stationary point of bjC.
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6.3 The moduli space of flat connections on a surface

This section is influenced by Hitchin’s article [Hit90]. We turn our attention to the situation
where M is the moduli space of flat connections over surface. Recall the notation from
the beginning of Section 1.2.1. We let M⇤(G, S, P, C) ⇢ M(G, S, P, C) denote the subset
of gauge equivalence classes of irreducible connections. Now let S be a closed oriented
surface of genus � 2. Choose p 2 S together with a projective tangent p. As in Section 1.2.1
we choose m 2 N with (m, n) = 1 and consider the generator Cm = exp( 2pim

n ) 2 Z(G).
We have M⇤(G, S, p, Cm) = M(G, S, p, Cm), i.e., in the coprime case the moduli space
introduced in Section 1.2.1 consists of irreducible connections.

Theorem 6.3.1 ([Fre95] Propositions 3.17 and 5.19). Let M 2 {M(G, S, P, Cm),M⇤(G, S)}.
Then M is smooth manifold which supports a symplectic form w and there exists a prequantum
bundle

LCS ! M.

The symplectic form w is called the Atiyah-Bott-Goldman form and was introduced
in [AB83, Gol84]. The prequantum bundle LCS is induced from the Chern-Simons lines
introduced in Chapter 2.

Theorem 6.3.2. The spaces M⇤(G, S) and M(G, S, p, Cm) are both simply connected and for
both of these spaces the Atiyah-Bott-Goldman form satisfy the integrality condition. The space
M(G, S, p, Cm) is compact whereas M⇤(G, S) is non-compact.

We note that this implies that the two moduli spaces in question support a prequantum
line bundle as in Theorem 6.3.1.The statement concerning compactness is easily verified
using the character variety description. The simple connectedness is proven in for instance
[DW97]. Let [A] 2 M⇤(G, S). There exists an isomorphism T[A]M

⇤(G, S) ' H1(S, AdA).
For tangents represented by AdA valued 1-forms h, n the symplectic form is defined by

w(h, n) =
Z

S
hh ^ ni

where h · , · i is the invariant, non-degenerate symmetric bilinear form on g choosen in
Chapter 2.

6.3.1 The Narasimhan-Seshadri correspondence

Let TS be Teichmüller space. Fix for now a complex structure s 2 TS on S. Let X = Ss be
the resulting Riemann surface.

Definition 6.3.1. Define the slope µ(E) of a holomorphic vector bundle E ! X to be
µ(E) = deg(E)

rank(E) . A holomorphic vector bundle is said to be semistable if for every holo-
morphic subbundle F ⇢ E we have µ(E) � µ(F). It is said to be stable, if for every proper
subbundle F ⇢ E we have µ(E) > µ(F).

Semi-stable bundles admits what is called a Harder-Narasimhan filtration.
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Theorem 6.3.3. Any semi-stable vector bundle E admits a unique filtration of destabilizing subbun-
dles of maximal rank E = E0 � E1 � · · · � Em = 0, i.e. Ei/Ei+1 is stable and the isomorphism
type of the bundle Gr(E) =

Lm
i=1 Ei/Ei+1 is an invariant.

We make the following definition.

Definition 6.3.2. Two semistable bundles E, E0 are S-equivalent if Gr(E) is isomorphic to
Gr(E0) as a holomorphic vector bundle.

The following is due to Mumford, and is an example of a moduli space construced
through geometric invariant theory. For the theorem to hold, the assumption that we are
considering a Riemann surface of genus g � 2 is important.

Theorem 6.3.4. There exists a moduli space N (X, r,OX) of S-equivalence classes of semistable
holomorphic vector bundles E ! X of rank r and trivial determinant. The space N (X, r,OX) is a
projective variety and the smooth locus N ⇤(X, r,OX) consists of the S-equivalence classes of stable
holomorphic vector bundles. Moreover, there exists a moduli space N (X, r, [p]) of stable holomorphic
vector bundles E ! X of rank r and with fixed determinant given by the divisor [p]. This is a smooth
projective variety.

For a precise definition of what it means that the projective variety N (X, r,OX) is a
moduli space, see for instance [New78]. Morally, it means that a holomorphic map Y !

N (X, r,OX) is equivalent to a family of semistable bundles (of rank r and trivial determi-
nant) parametrized by Y. Let N be either of these moduli spaces introduced above. This
variety supports a holomorphic line bundle L ! N constructed by Quillen [Qui85].

Remark 6.3.5. Two stable holomorphic vector bundles are S-equivalent if and only if they
are isomorphic as holomorphic vector bundles.

We have the following important theorem due to Narasimhan and Seshadri.

Theorem 6.3.6 ([NS64]). Let P ! S be a flat G bundle, and let E ! S be the induced hermi-
tian vector bundle with a unitary connection r and a parallel unit norm section of det(E). There
exists a holomorphic structure on E ! X such that r is the Chern connection. This induces a
homeomorphism M(G, S) ' N (X, n,OX) which maps the irreducible flat connections diffeomor-
phically to the smooth locus of stable holomorphic bundles, and the induced complex structure J(s)
on M(G, S) is compatible with Atiyah-Bott-Goldman form w. Similarly, there exists a diffemor-
phism M(G, S, p, Cm) ' N (X, n, [p]), and the induced complex structure J(s) is compatible
with the symplectic form on M(G, S, p, Cm). Through these identifications, the Chern-Simons line
bundles are identified with Quillen’s line bundle L.

These correspondences are both known under the name of the Narasimhan-Seshadri corre-
spondence. Let us remark that the complex structures induced by the Narasimhan-Seshadri
correspondence can also be described purely in terms of gauge theory in the following
way. The complex structure s induces a unique Riemaniann metric of scalar curvature �1
and hence a Hodge ⇤ operater W1(S, AdA) ! W1(S, AdA) (here we use that AdA is a
Hermitian vector bundle). Thus we can define an almost complex structure J(s) through
J(s)[a] = [� ⇤ (a)], where a is the unique harmonic representative of its cohomology class.
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6.3.2 The Verlinde bundle

We have the following theorem.

Theorem 6.3.7 ([Hit90]). Let M 2 {M⇤(G, S),M(G, S, p, Cm)}, and equip M with the Atiyah-
Bott-Goldman form. The family of Kähler structures J : TS ! G•(M, TM) form a rigid family.

We stress that this result is a reformulation of results due to Hitchin [Hit90] and Axelrod-
Della Pietra-Witten [ADPW91]. We make the following definition.

Definition 6.3.3. The level k Verlinde bundle Hk ! TS is the complex vector bundle whose
fiber at a point s 2 TS is Hk(s) = H0

⇣
(M, J(s)),L✏k

⌘
.

Remark 6.3.8. As Teichmüller space is contractible the Verlinde bundle is topologically trivial
and one may wonder: what is the importance of the Hitchin connection in this setup? The
answer is that the Hitchin connection is compatible with the action of the mapping class
group, and therefore it can be used to define the so-called quantum representations whereas
a mapping class group invariant trivialization does not exists.

6.4 The asymptotic expansion conjecture for mapping tori

6.4.1 The coprime case

We now focus on the co-prime case and write M = M(G, S, p, Cm). Let G = G(S, p, vp, Cm).

Remark 6.4.1. We remark that we could of course neglect Cm from the notation and write
G = G(S, p, vp), as there is only one puncture. Our choice of notation is meant to emphasize
the connection to the modular functor VG,k .

Proposition 6.4.2. The mapping class group G acts on TS and M and these combine to form a
prequantum action which is real analytic.

Proof. It is shown in [AHJ+17] that the setup of the co-prime case fit together to form a
prequantum action. This is seen to be a real analytic action as follows. Consider the cor-
responding character variety X̃ in this co-prime case for the complexified group SL(n, C),
which carries a natural complex structure coming from SL(n, C). Once we choose a point
s 2 TS we get a holomorphic family of rank n semi-stable complex vector bundles with
trivial determinant parametrized by an open neighborhood V of M in X̃. This gives a holo-
morphic map from V to (M, J(s)) which therefore restricts to a real analytic isomorphism
from M to (M, J(s)), showing that the Narasimhan-Seshadri identification is real-analytic.
Concerning the prequantum Chern-Simons line bundle, we see that it is the restriction
of a holomorphic line bundle to M, thus also real analytic. Further, the Takhtajan-Zograf
formula [TZ87, TZ88, TZ89, TZ91] for its Hermitian structure proves its real analyticity.

Definition 6.4.1. The induced level k quantum representation is denoted by ZG,k .

These projective representations are the ones constructed by Hitchin [Hit90] and Axel-
rod, Della Pietra and Witten [ADPW91] and introduced above in (1.4). We can now give a
proof of the main theorems from Section 1.2.1.
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6.4. The asymptotic expansion conjecture for mapping tori

Proofs of Theorems 1, 2 and 3. Theorem 1 is simply an application of Theorem 6.2.8 together
with the following fact. It is shown in [AHJ+17] that there is a unique choice of j̃ such
that on a component Y of the fixed point set Mj the lift j̃ is given by multiplication by
exp(2pi S(x)) for any x 2 i⇤�1(Y), where i⇤ : M(G, Tj, L, Cm) ! Mj is the pullback of the
inclusion iS ,! Tj. We implicitly assume that j̃ has been choosen accordingly. Theorem 2
follows from Theorem 6.2.5 and Theorem 3 follows from Theorem 6.2.9.

Let us also adress the projective ambiguity. In [AP16] Andersen and Poulsen are able to
calculate the curvature of what is now known to be the Hitchin-connection.

Theorem 6.4.3 ([AP16, AP17b, AP18c]). We have

F
rH =

ik(n2 � 1)
12(k + n)p

wT .

Here wT is the Weil-Petersson form.

Using this, it is easy to control the k-dependence of the framing corretion. See [Ioo18].

Remark 6.4.4. In the case of Theorem 2, we remark that one can in fact say more about the
contributions to the sets Aq , which come from non-smooth points of Mj. A contribution
from an isolated saddle z can be characterized in terms of the monodromy of (ejC, z). For
the details, we appeal to Remark 5.2.12. A similar remark holds for the dq .

6.4.2 The punctured torus case

We now discuss the punctured torus case. Recall that G = SU(2) in this case. We consider the
surface (S1 ⇥ S1, p, vp) where p 2 S1 ⇥ S1 is a puncture and vp 2 TpS1 ⇥ S1 \ {0}/R>0. For
l 2 (�2, 2) let Ml be the moduli space introduced in Section 1.2.1. Let a, b be the standard
generators of p1(S1 ⇥ S1). The trace coordinates on the character variety construction of the
full moduli space gives an identification

Ml
⇠
! {(x, y, z) 2 R

3 : x2 + y2 + z2
� 2 � xyz = l}. (6.29)

For more details, see Goldman’s article [Gol97]. For l 2 (�2, 2) we remark thatMl is smooth
and diffeomorphic to S2. Through the identification (6.29) the spaces Ml form concentric
spheres, so we have a fixed isomorphism

H2(Ml , R) ' H2(S2, R) ' R. (6.30)

The space M�2 consists of a single point, while M2 is isomorphic to T
2/{±1}, and contains

four singularities. This moduli space is known as the pillow case.
For l 2 (�2, 2), let us discuss in more detail the integrality condition. The moduli

space Ml is quantizable at level k exactly when wl satisfy the integrality condition [ wl
k2p ] 2

H2(Ml , Z). Recall that l determines a choice of a conjugacy class Cl 2 CG, such that for
any cl 2 Cl we have tr(cl) = l. Recall that U(1) ⇢ G is a maximal torus. Let h ' iR be
its Lie algebra. We can write l = 2 cos(ll) where ill 2 h satisfy that exp(ill) 2 Cl . Here
exp denotes the exponential exp : g ! G. By Proposition 6.7 in [Jef94] the symplectic
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form wl depend linearly on ll . Because of the fixed isomorphisms (6.30), this means that
there exists a non-empty lattice Q̃(k) ⇢ iR, such that for l 2 2 cos(Q̃) \ (�2, 2) the (level
k) integrality condition is fulfilled. With notation as in 1.2.1 we have that Q = [k2NQ(k),
where Q(k) = cos(Q̃(k)) \ (�2, 2). This is a dense subset.

The general construction of a Hitchin connection in [And12] applies to the case of Ml ,
for all l 2 Q, with its Chern-Simons line bundle constructed in [AHJ+17] and its family
of complex structures parametrized by Teichmüller space T of S1 ⇥ S1 constructed in the
works of Daskalopoulos and Wentworth and Mehta and Seshadri [DW97, MS80]. The map-
ping class group G = G(S1 ⇥ S1, p, vp, Cl) acts on this setup and the same argument as in
the co-prime case shows that this is in fact a real analytic action (the analogue of Remark
6.4.1 applies here as well). Further, we get in this case, since the complex dimension of T
is one, by Theorem 4.8 of [AL14] that any of the Hitchin connections provided above will
be projectively flat. Thus we get a projective representation of G(S1 ⇥ S1, p, vp). For any
mapping class j 2 G and any l 2 Q, we consider a lift

Zl,k(j) 2 GL(Hk(s)).

In this case, parallel transport also has an asymptotic expansion in terms of Toeplitz oper-
ators as in (6.7). We stress that if k0 is minimal with l 2 Q(k0), then Zl,k defined for levels
k 2 k0N.

Proof of Theorem 4. This is an application of Theorem 6.2.8 and Theorem 6.2.9 to this situa-
tion together with the proof of Proposition 5.1 in [Bro98] which shows that for l inside an
open dense subset A ⇢ (�2, 2) the fixed point set Mj

l is finite and non-degenerate.

Example with degenerate fixed point set

In this subsection, we consider in more detail the action of G on Ml . We compute the fixed
point set Mj

l in two examples. Our findings illustrate that 1) for Anasov mapping classes
the fixed point set is generically non-degenerate as proven by Brown [Bro98] and 2) one
can find examples where M

j
l is degenerate but satisfies the condition of Theorem 2.

Let ta 2 G be the Dehn-twist about a, and let tb 2 G be the Dehn-twist about b. We have a
explicit expression of the action of ta, tb on the moduli space Ml in terms of the coordinates
(x, y, z) introduced above. As explained in [Gol97] we have

ta(x, y, z) = (x, z, xz � y), tb(x, y, z) = (xy � z, y, x). (6.31)

Consider the composition
j = t�1

b � ta. (6.32)

It follows by Penner’s work [Pen88] that j is a Anasov homeomorphism.
We shall consider the action of j, j2 on M�1/4. Let p =

⇣
�1, 1

2 , 1
2

⌘
and q =

⇣
1
2 ,�1,�1

⌘
.

We shall prove that Mj
�1/4 = {p, q}, and we have

dim(Ker(d jp � I)) = dim(Ker(d jq � I)) = 0,

dim(Ker(d j2
p � I)) = dim(Ker(d j2

q � I)) = 1.
(6.33)
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These assertions are proven by a direct calculation presented below.
We analyze the fixed point set of the mapping class (6.32) in detail. Introduce the function

L(x, y, z) = x2 + y2 + z2 � 2 � xyz such that Manl is the level-set L(x, y, z) = l. We start by
giving a coordinate expression for the action of j. We observe that t�1

b (x, y, z) = (z, y, zy� x)
as is easily deduced from (6.31). From this we get the expression

j(x, y, z) = (xz � y, z, z(xz � y)� x). (6.34)

From the coordinate expression (6.34) one verifies that j(p) = p, and j(q) = q. As any
fixed point of j is a fixed point of j2, we can prove the set-theoretical identities by arguing

that Mj2

�1/4 ⇢ {p, q}. Observe that q0 is a fixed point of j2 if and only if j(q0) = j�1(q0).
From the coordinate expression (6.34) one sees that

j�1(x, y, z) = (yx � z, y(yx � z)� x, y).

Thus we see by comparing that (x, y, z) is a fixed point of j2 if and only if

xz � y = yx � z, y(yx � z)� x = z, z(zx � y)� x = y. (6.35)

The first of the equations appearing in (6.35) is equivalent to

x(z � y) = y � z. (6.36)

Now, let (x, y, z) be a fixed point. From (6.36) we see that we must either have that x = �1,
or that z = y.

We shall start by assuming that x = �1. Hence the two lower equations appearing in
(6.35) reads

�y2
� yz + 1 = z, �z2

� yz + 1 = y (6.37)

from which we learn that

y � z = �z2
� yz + 1 � (�y2

� yz + 1) = y2
� z2 = (y � z)(y + z).

Hence we can assume that either y = z or y + z = 1. If y = z we have

0 = L(�1, y, y) +
1
4
= 3y2

�
3
4

.

This equation has exactly two solutions given by y = �1/2 and y = 1/2. We see however
that the identities y = z = �1/2 would violate (6.37). It follows that we must have y = z =
1
2 , which corresponds to the solution p. Assume now that z + y = 1. Then we have

0 = L(�1, y, 1 � y) +
1
4
= y2

� y + 1/4.

This equation has only one solution y = 1/2 which again corresponds to the point p.
We now assume that z = y. The second equation of (6.35) now reads z2x � z2 � x = z.

This is equivalent to (z2 � 1)x = z + z2 which can be rewritten as

(z + 1)(z � 1)x = z(z + 1). (6.38)
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Observe that this implies that z 6= 1. If z = �1, we get

0 = L(x,�1,�1) +
1
4
= x2

� x + 1/4.

This has precisely one solution namely x = 1/2, and we recover the solution p. Assume
now that z 6= �1. Then (6.38) implies that x = z

z�1 . Thus we get

0 = L(z/(z � 1), z, z) +
1
4
=

(z + 1)(2z � 1)(2z2 � 7z + 7)
(z � 1)2 .

This equation has exactly two real solutions z = �1 and z = 1/2. As we have discarded
�1, this implies that z = 1/2, and as we also have x = z

z�1 , we conclude x = �1. This
corresponds to the point q.

We have now proven the claims about the fixed point sets (6.33), and it remains to com-
pute the differentials. We start with some general considerations. From (6.34) we compute
that with respect to the ∂x, ∂y, ∂z basis of TR

3 we have

d j =

0

B@
z �1 x
0 0 1

z2 � 1 �z 2xz � y

1

CA .

We have
TpM�1/4 = Ker(d L), d L = (2x � yz, 2y � xz, 2z � xy).

We now turn to the point p. As d Lp =
�
0, �3

2 , �3
2
�

we conclude that TpM�1/4 = R∂x �

R(∂y � ∂z). With respect to the basis ∂x, ∂y, ∂z of TpR
3 we have

d jp =

0

B@
�1 �1 1/2
0 0 1
0 1 0

1

CA .

Introduce the basis v1 = ∂x, v2 = ∂y � ∂z. With respect to the (v1, v2) basis we have

d jp =

 
�1 �3/2
0 �1

!
.

It follows that 1 is not an eigenvalue of d jp. We now consider d j2
p. With respect to the

basis (v1, v2) it has matrix given by

d j2
p =

 
1 3
0 1

!
.

It follows that dim(Ker(d j2
p � I)) = 1.

We now turn to the point q. We have

d jq =

0

B@
1/2 �1 �1

0 0 1
�3/4 �1/2 �3/2

1

CA .
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We have d Lq =
�
�9
4 , 3

2 , 3
2
�

. Thus we have TqM�1/4 = R(∂y � ∂z) � R(∂x + 3/2∂y).
Introduce the basis w1 = ∂y � ∂z, w2 = ∂x + 3/2∂y. We have d jq(w1) = �w1 and
d jq(w2) = 3w1 � w2. Thus we see that with respect to w1, w2, we have

d jq =

 
�1 3
0 �1

!
, d j2

q =

 
1 �6
0 1

!
.

From these expressions, it is easy to conclude that dim(Ker(d jq � I)) = 0 and dim(Ker(d j2
q �

I)) = 1. Thus (6.33) holds.

89





C H A P T E R 7
Resurgence in quantum topology

The use of concepts from resurgence in quantum topology was pioneered by Witten [Wit11],
Garoufalidis [Gar08] and more recently Gukov-Marino-Putrov [GMP16]. For this chapter,
the reader may wish to recall the notations and definitions from the introduction and Sec-
tions 3.2.1, 3.2.2 and 3.2.2.

7.1 Seifert fibered homology spheres

Let X = S((p1/q1), ..., (pn/qn)) be as in the Section 1.2.3. Without loss of generality we
can assume that p2, ..., pn are odd. The homeomorphism type of X is unaltered under a
transformation qj 7! qj + yj for any choice of integers y1, ..., yn such that (pj, qj + yj) = 1
and

n

Â
j=1

qj

pj
= Â

j=1

qj + yj

pj
. (7.1)

If qj is odd for j > 1, we perform the transformation qj 7! qj + pj and q1 7! q1 � p1

which does not change the sum (7.1). Hence we can assume without loss of generality that
q2, ..., qn are all even. Finally, changing the sign of pj and qj simultaneously if needed, we
can assume that pj > 0 for each j. In fact, we shall only need to assume P > 0. Recall that
±1 = H = P Âj=1

qj
pj . Note that this implies that q1 is odd.

7.1.1 Computation of the quantum invariant

We shall present the computation of tk(X) from [LR99]. It shows the usefullness of rewriting
quantum invariants as contour integrals, an idea we pursue in Section ??.

Proposition 7.1.1 ([LR99],[Hik05b]). We have

tk(X) = Bk

2kP

Â
r=0,
k-r

exp
✓
�r2pi

2Pk

◆ ’n
j=1 sin

⇣
rp
kpj

⌘

sin
� rp

k
�n�2 , (7.2)

where

Bk =
exp

⇣
H3pi

4 �
ip
2k

⇣
3 � H

P + 12 Ân
j=1 S(qj, pj)

⌘⌘

sin
�

p
k
�p

P2k
.
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Sketch of proof. The proof is an application of the formula for rational surgeries (3.15). Let
L be the surgery link, as depicted in Figure~1.2. We order the components as follows: the
unlink with framing 0 (corresponding to the SL(2, Z) matrix S) is first, and the rest of the
components are ordered from left to right in the diagram. Choose

(
Uj =

 
pj rj

qj sj

!)n

j=1

⇢ SL(2, Z).

We denote a coloring of L by (a, b) = (a, b1, b2, ..., bn) 2 {1, ..., k � 1}n+1. We have the

identity J(a,b)(L) = ’n
j=1 sin

⇣
ab jp

k

⌘ ⇣
sin
�

p
k
�

sin
�

ap
k
�n�1

⌘�1
. This is easily proven using

induction on n, the definition of colored Jones polynomial in terms of the graphical calculus
and the formula for the Si,j-matrix given in Theorem 3.2.10. We compute

Â
l2Col(L)

Jl(L) ’
c2p0(L)

rk(L(c))l(c),1 =
k�1

Â
a,b1,...,bn=1

’n
j=1 sin

⇣
ab jp

k

⌘

sin
�

p
k
�

sin
�

ap
k
�n�1 rk(S)a,1

n

’
j=1

rk(Uj)b j ,1

=
k�1

Â
a=1

rk(S)a,1

sin
�

p
k
�

sin
�

ap
k
�n�1

k�1

Â
b1,...,bn=1

n

’
j=1

sin
✓

ab jp

k

◆
rk(Uj)b j ,1

=

q
2
k

sin
�

p
k
�

k�1

Â
a=1

1

sin
�

ap
k
�n�2

⇥

k�1

Â
b1,...,bn=1

✓
k
2

◆ n
2 n

’
j=1

⇣
rk(S)a,b j rk(Uj)b j ,1

⌘

=

q
2
k

sin
�

p
k
�

0

B@
k�1

Â
a=1

⇣
k
2

⌘ n
2

’n
j=1 rk(SUj)a,1

sin
�

ap
k
�n�2

1

CA .

(7.3)

For the third equality we used (3.11). We now focus on the term

 

Âk�1
a=1

( k
2 )

n
2 ’n

j=1 rk(SUj)a,1

sin( ap
k )

n�2

!
.

By (3.12) we get
✓

k
2

◆ n
2 n

’
j=1

rk(SUj)a,1 =

✓
k
2

◆ n
2 n

’
j=1

sign(pj)q
2k|pj|

exp

 
�pi

4
F(SUj) +

pi
2kpj

rj

!

⇥ Â
tj mod 2kpj ,
tj⌘a mod 2k

exp

 
�piqjt2

j

kpj

!
2 sin

 
ptj

kpj

!

=

 
sign(P)p

|P|
exp

 
n

Â
j=1

�pi
4

F(SUj) +
pi

2kpj
rj

!!

⇥

 
P�1

Â
l=0

⇥ exp
✓
�piH(a + 2kl)2

kP

◆ n

’
j=1

sin

 
p(a + 2kl)

kpj

!!
.

(7.4)

For the third equality we used that the j’th factor only depends on lj mod pj and that the
pj’s are pairwise coprime. For the fourth equality we used Ân

j=1
qj
pj

= H
P . Observe that our
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assumption that pj > 0 implies that sign(P)
p

|P|
= 1p

P
. We now assemble the label independent

factors in (7.3), (7.4) and (3.15). We have s(L) = Ân
j=1 sign(pjqj)� sign

⇣
H
P

⌘
, so by using

(3.14), we obtain

Â
c2p0(L)

F(Uc)� 3s(L) = 3sign
✓

H
P

◆
+

n

Â
j=1

F(SUj) = 3H +
n

Â
j=1

F(SUj).

Observe that sign
⇣

H
P

⌘
= H, as P > 0 and H = ±1. We compute

C(k) =

q
2
k

sin
�

p
k
�p

P
exp

 
n

Â
j=1

�pi
4

F(SUj) +
pi

2kpj
rj +

pi(k � 2)
4k

 
3H +

n

Â
j=1

F(SUj)

!!

=

q
2
k

sin
�

p
k
�p

P
exp

 
H3pi

4
�

ip
2k

 
3 �

H
P

+ 12
n

Â
j=1

S(qj, pj)

!!
= 2Bk.

The second equality follows from a straightforward computation using the definition of F
equation (3.13) and that Âj qj/pj = H/P. Combining (3.15) with (7.3) and (7.4) we get

tk(X) = C(k)
k�1

Â
a=1

P�1

Â
l=0

exp
⇣
�piH(a+2kl)2

kP

⌘
’n

j=1 sin
⇣

p(a+2kl)
kpj

⌘

sin
�

ap
k
�n�2

= C(k) Â
r=a+2kn
1ak�1
0nP�1

exp
⇣
�piHr2

kP

⌘
’n

j=1 sin
⇣

pr
kpj

⌘

sin
� rp

k
�n�2 .

Define h(r) = exp
⇣
�piHr2

kP

⌘
’n

j=1 sin
⇣

pr
kpj

⌘ �
sin
� rp

k
��2�n . We have h(r) = h(�r) and

h(r) = h(r + 2kPm) for all m 2 Z. Using this and (P � j)2k + a ⌘ �j2k + a mod 2kP,
we see

Â
r=a+2kn
1ak�1
0nP�1

h(r) =
1
2

0

BBBB@
Â

r=a+2kn
1ak�1
0nP�1

h(r) + Â
r=2kn�a
1ak�1

1nP

h(r)

1

CCCCA
=

1
2

2kP

Â
r=0
k-r

h(r).

This finishes the proof.

Define the meromorphic function F 2 M(C) and g 2 C[y] by

F(y) = �

⇣
sinh

⇣y
2

⌘⌘2�n n

’
j=1

sinh

 
y

2pj

!
, g(y) =

Hiy2

8pP
.

Define g = g(H) to be the contour from (�1 � i)• to (1 + i)• when H > 0, and from
(�1 + i)• to (�i + 1)• when H < 0. Define

Z•(x) =
1

2pi

p
Ppi8
p

H

•

Â
n=0

F(2n)(0)
⇣

i8Pp
H

⌘n

(2n)!

G
⇣

n + 1
2

⌘

xn+ 1
2

.

Observe that g(H) is a steepest descent path for g. Recall the definition of the normalized
quantum invariant eZk given in (1.14). Lawrence and Rozansky shows the following result.
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Theorem 7.1.2 ([LR99]). We have

eZk(X) =
1

2pi

Z

g
F(y)ekg(y) d y �

2P�1

Â
m=1

Res

 
F(y)ekg(y)

1 � e�ky , y = 2pim

!
. (7.5)

There exists a set R(X) of finitely many non-zero rational numbers modulo the integers and non-
vanishing polynomials Zq(z) 2 C[z], q 2 R(X) of degree at most n � 3 such that

Â
q2R(X)

e2pikq Zq(k) = �

2P�1

Â
m=1

Res

 
F(y)ekg(y)

1 � e�ky , y = 2pim

!
. (7.6)

We have an asymptotic expansion

eZk(X) ⇠ Â
q2R(X)

e2pikq Zq(k) + Z•(k). (7.7)

Recall the following elementary result.

Proposition 7.1.3. Let z0 2 C and let g 2 Mz0(C) be the germ of a meromorphic function with a
pole at z0. Assume w0 2 C and that z 2 Ow0(C) satisfies z(w0) = z0, ż(w0) 6= 0. If either z0 is a
simple pole, or z(w) is linear in w, then we have

Res(g(z(w)), w = w0) =
Res(g(z), z = z(w0))

ż(w0)
.

We now turn to Theorem 7.1.2.

Proof of Theorem 7.1.2. We start with (7.5). Define the functions hn(b, x) and fn(b, x) given
by

hn(b, x) =
�ie�

Hpi
2kP b2

e
2pibx

k

2
⇣

sin
⇣

bp
k

⌘⌘n�2 �
1 � e�2pib�

=
fn(b, x)

1 � e�2pib .

Let C be a contour in C which follows a line through the origin from (�1 + i)• to (1 � i)•,
except for a deviation close to the origin around a clockwise semi-circle below the line. If H

P
is negative, this line is rotated p/2 in the clockwise direction. We claim that for every y 2 R

there exists a positive constant a > 0 with the property that hn(b, x) = O(e�ab) for any
sufficiently large |b| on C + y. Consider first the case H/P > 0 and parametrize C + y by
t 7! b(t) = t(�1 + i) + y. Observe that the numerator of hn(b) becomes dominated by the

factor e�
t2 H

P whereas the denominator becomes unbounded. The case H/P < 0 is similar.
It follows that whenever C + y, y 2 R does not meet any poles of hn(b, x), we can define
Qy

n(x) by

Qy
n(x) =

Z

C+y
hn(b, x) d b.

We shall write Q0
n = Qn.

Clearly the denominator
⇣

2 sin
⇣

bp
k

⌘⌘n�2 �
1 � e�2pib� is invariant under b 7! b + 2Pk.

Thus we get

hn(b + 2Pk, x) = hn(b, x � Hk)e4pPix (7.8)
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and similarly
hn(b � 2Pk, x) = hn(b, x + Hk)e�4pPix.

Recall that H 2 {±1}. Let us assume for now that H = 1 so that H/P > 0. We will keep
H in the notation, as a convenience to the reader who wishes to consider the case H = �1
also. Observe that hN(b, x) have poles at Z ⇢ R. It follows that when we push the contour
C 7! C + 2PK, we move it across the poles 0, 1, 2, ..., 2PK � 1. By proposition 7.1.3, we get
for m 2 Z \ kZ that Res(hm(b, x), b = m) = fn(m,x)

2pi . By using the residue Theorem and the
transformation property (7.8) we obtain

Qn(x) =
Z

C
hn(b, x) d b

=
Z

C+2Pk
hn(b, x) d b + 2pi

2Pk�1

Â
m=0

Res(hm(b, x), b = m)

= qn(x � Hk)e4piPx + 2pi
2P�1

Â
l=0

Res(hm(b, x), b = lk) +
2Pk�1

Â
m=0,
k-m

fn(m, x).

(7.9)

When 2Px 2 Z, the computation (7.9) yields

2Pk�1

Â
m=0,
k-m

fn(m, x) = Qn(x)� Qn(x � Hk) + 2pi
2P�1

Â
l=0

Res(hm(b, x), b = lk).

As we are assuming H = 1 we get

Qn(x)� Qn(x � Hk) =
Z

C
hn(b, x)� hn(b, x � Hk) d b =

Z

C
fn(b, x) d b.

Thus we can write

2Pk�1

Â
m=0,
k-m

fn(m, x) =
Z

C
fn(b, x) d b + 2pi

2P�1

Â
l=0

Res(hm(b, x), b = lk). (7.10)

Observe that (7.2) can be rewritten as follows

tk = Bk

2Pk�1

Â
m=0,
k-m

Â
e2{±1}

 
n

’
j=1

e(j)

!
fn(m, xe)

where xe = 1
2 Ân

j=1
e(j)
pj

. As (7.10) is linear in fn, we obtain the following equation

tk
Bk

=
Z

C
f (b)d b � 2pi

2P�1

Â
m=1

Res
✓

f (b)

1 � e�2pib , b = mk
◆

where f (b) = q�
Hb2
4P

⇣
sin
⇣

bp
k

⌘⌘2�n
’n

j=1 sin
⇣

bp
2pj

⌘
. Now (7.5) follows upon making the

change of variable y = 2pib
k , recalling tk(S2 ⇥ S1) =

q
k
2

sin( p
k )

and observing that iC = g and

that f (b) = ekg(y)F(y).
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We now turn to (7.6). We claim that

Res

 
F(y)ekg(y)

1 � e�ky , y = 2pim

!
2 k�1ekg(2pim)

C[k].

To see this, we start by noting that as sinh(z/2) have a simple zero at z = 2pikm, we have
an expression of the form

1
1 � e�ky =

2ek y
2

sinh
⇣

ky
2

⌘ =
c�1

k(y � 2pim)
+

•

Â
j=0

cjkj(y � 2pim)j

which is valid for y near 2pikm. The sequence {cj}
•
j=�1 ⇢ C is independent of k, m because

of periodicity. We can write

F(y) =
n�2

Â
j=1

a�j(m)

(y � 2pim)j +
•

Â
j=0

aj(m)(y � 2pim)j.

Thus it is clear that

Res

 
F(y)ekg(y)

1 � e�ky , y = 2pim

!
= ekg(2pim)

 
k�1c�1a0(m) +

n�2

Â
j=1

a�j(m)cj�1kj�1

!

Now it is a matter of defining R(X) to be the set of q 2 {g(2pim)} with non-vanishing
contribution, and then checking that the k�1 terms cancel.

Finally, we turn to (7.7). We must compute the asymptotic expansion of the Laplace
integral I(k) = 1

2pi
R

g F(y)ekg(y) d y. To that end, we indtroduce the variable t defined by

�t = g(y) = Hiy2

8pP . Thus we have

I(k) =
1

2pi

Z

g
F(y)ekg(y) d y =

1
2pi

Z •

0
e�kt

Z

g=t

F
d g

d t

=
1

2pi

Z •

0
e�kt

p
Ppi8

p
t
p

H
F

 r
i8Ppt

H

!
d t

=
Z •

0
e�kt

p
P2

p
t
p

pHi
F

 r
i8Ppt

H

!
d t.

(7.11)

For the third equation we used that d y =
p

piP8
2
p

t
p

H
d t, and that F(y) = F(�y). From this fact

we also deduce that for y near 0 we have F(y) = Â•
n=0

F(2n)(0)
(2n)! y2n. By Proposition 5.2.15, we

get the following asymptotic expansion

I(k) ⇠k!•
1

2pi

p
Ppi8
p

H

•

Â
n=0

F(2n)(0)
⇣

i8Pp
H

⌘n

(2n)!

Z •

0
e�kttn� 1

2 d t

=
1

2pi

p
Ppi8
p

H

•

Â
n=0

F(2n)(0)
⇣

i8Pp
H

⌘n

(2n)!

G
⇣

n + 1
2

⌘

kn+ 1
2

= Z•(k).

This completes the proof.
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7.1.2 The moduli space and complex Chern-Simons values

We now begin our investion of M(SL(2, C), X). We build on [FS90] and to align with the
choices of orientation made therein we can and will assume that H = 1, as only H

P is fixed.
We have the following presentation of p1(X) (which can be obtained by the procedure
described in Section 3.1.2)

p1(X) '
D

h, x1, ..., xn | x1x2 · · · xn, x
pj
j h�qj , [xj, h], j = 1, ..., n

E
.

Due to work of Fintushel and Stern [FS90] much is known about M(SU(2), X), and
we shall now recall a few of their results. As X is an integral homology sphere, the only
reducible representation into SU(2) is the trivial one. For an irreducible representation
r : p1(X) ! SU(2) at most n � 3 of the r(xj) are ±I, and if exactly n � m of the r(xj) are
equal to ±I, then the component of r in M(SU(2), X) is of dimension 2(n � m)� 6.

Let L(p1, ..., pn) ⇢ N
n be the the set of n-tuples l = (l1, ..., ln) which satisfies the follow-

ing condition. We have 0  l1  p1 � 1 and 0  lj 
pj�1

2 , for j = 2, ..., n and there exists at
least three distinct lj1 < lj2 < lj3 with ljt 6= 0 for t = 1, 2, 3. The following proposition is an
adaption of Lemma 2 in [BC06] and Lemma 2.1 and Lemma 2.2 in [FS90].

Proposition 7.1.4. Let l = (l1, l2, ..., ln) 2 L(p1, ..., pn). Then there exists matrices Qj 2 SL(2, C)

and a representation rl : p1(X) ! SL(2, C) with

rl(x1) = Q1

0

@e
pil1
p1 0

0 e
�lpi

p1

1

AQ�1
1 , rl(xj) = Qj

0

B@
e

2pilj
pj 0

0 e
�2pilj

pj

1

CAQ�1
j

for j = 2, . . . n. For any non-trivial representation r : p1(X) ! SL(2, C) there exists l0 2 N
n

with at most n � 3 of the elements of the set {l0j} being divisible by pj such that r is of the form

r(x1) = S1

0

B@
e

pil01
p1 0

0 e
�pil01

p1

1

CA S�1
1 , r(xj) = Sj

0

BB@
e

2pil0j
pj 0

0 e
�2pil0j

pj

1

CCA S�1
j . (7.12)

for some S1, ..., Sn 2 SL(2, C).

For the representation rl we can in fact choose Qj = I for j 6= j2, j3. Before commencing
the proof let us introduce the following notation

exp(x) =

 
ex 0
0 e�x

!

which should not cause any ambiguities as long as the context shows that we are dealing
with a matrix.

Proof. We start with the construction of rl . Introduce the matrices

X1 = exp(pil1/p1), Xj = exp(2pilj/pj)

97



7 . R E S U R G E N C E I N Q U A N T U M T O P O L O G Y

for j 2 {2, ...., n} \ {j2, j3}. Rewrite the relation ’n
j=1 xj = 1 as the equivalent relation

xj3+1 · · · xnx1 · · · xj1 · · · xj2 · · · xj3�1 = x�1
j3

. Assume we have chosen Qj2 , Qj3 2 SL(2, C)

such that

Xj3+1 · · · XnX1 · · · Xj1 · · · Qj2 Xj2 Q�1
j2

· · · Xj3�1 = Q�1
j3

X�1
j3

Qj3 . (7.13)

Taking Qj = I for j /2 {j2, j3}, we can define r : p1(X) ! SL(2, C) by

r(xj) = QjXjQ�1
j , r(h) = Xp1

1 .

To see this, observe that B := Xp1
1 = (�I)l1 is central and as q1 is odd whereas qj is even for

j � 2, we also have X
pj
j = Bqj , 8j. The last relation in p1(X) is ensured by (7.13). Observe

that it will suffice to choose Q 2 SL(2, C) with

tr
⇣

Xj3+1 · · · XnX1 · · · Xj1 · · · QXj2 Q�1
· · · Xj3�1

⌘
= 2 cos

 
2plj3

pj3

!
< 2 (7.14)

because this will ensure that there exists some T 2 SL(2, C) with

TXj3+1 · · · XnX1 · · · Xj1 · · · QXj2 Q�1
· · · Xj3�1T�1 = Xj3 .

For (7.14) we used our assumption on j3. Write

Xj3+1 · · · XnX1 · · · Xj1 · · · Xj2�1 = exp(ia),

Xj2 = exp(ib),

Xj2+1 · · · Xj3�1 = exp(ic),

Xj3 = exp(id).

Define Q =

 
u �v
1 1

!
for u, v to be chosen below. Assume u + v = 1 so that Q 2 SL(2, C).

We compute

Xj3+1 · · · XnX1 · · · Xj1 · · · QXQ�1
· · · Xj3�1

=

 
uei(a+b+c) + vei(a�b+c) uvei(a+b�c) � uvei(a�b�c)

ei(b+c�a) � ei(c�a�b) ue�i(a+b+c) + vei(b�a�c)

!
.

We have

tr

 
uei(a+b+c) + vei(a�b+c) uvei(a+b�c) � uvei(a�b�c)

ei(b+c�a) � ei(c�a�b) ue�i(a+b+c) + vei(b�a�c)

!

= 2u cos(a + b + c) + 2v cos(a + c � b).

It follows that we must solve
 

cos(a + b + c) cos(a + c � b)
1 1

! 
u
v

!
=

 
2 cos(d)

1

!
. (7.15)
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Using the trigonometric identity cos(x + y) = cos(x) cos(y)� sin(x) sin(y) we get

det

 
cos(a + b + c) cos(a + c � b)

1 1

!
= cos((a + c) + b)� cos((a + c)� b)

= �2 sin(a + c) sin(b).

Thus it remains to argue a + c /2 pZ and b /2 pZ. Assume towards a contradiction that
a + c = pm for some m 2 Z. Hence we would have P(a + c) = Pmp which would imply

lj12e ’
t 6=j1

pt = 0 mod pj1

for e 2 {0, 1}, with e = 0 for j1 = 1. This is a contradiction, as 2e ’t 6=j1 pt is invertible
in Z/pj1Z and 1  lj1  (pj1 � 1)/2e. Here we use co-primality. Similarly, one sees that
b /2 pZ. Thus we can solve (7.15), and this concludes the first part of the proposition.

Now let r : p1(X) ! SL(2, C) be an arbitrary non-trivial representation. As remarked
before any non-trivial representation is irreducible since X is integral homology three sphere.
Since r(h) computes with the image of r, we see that r(h) = ±I. Hence the relation x

pj
j = hqj

implies that r(xj)
pj = ±I, and for j = 2, ..., n we must have r(xj)

pj = I, since qj is even.
Hence r must be of the form (7.12) for some l0 2 N

n. It only remains to argue that at most
n � 3 of the r(xj) are ±I. If not, the relation x1x2 · · · xn = 1 implies that there is j1 < j2 with
r(xj1)r(xj2) = ±I. As pj1 and pj2 are relatively coprime, this is only possible if r(xj1) = ±1
and r(xj2) = ±1. This would imply that r(p1(X)) ⇢ {±1} = Z(SU(2)) which contradicts
the fact that r is irreducible since it was assumed non-trivial.

We now compute the Chern-Simons values of the representations constructed above.

Proposition 7.1.5 ([AP18b]). For l = (l1, ..., ln) 2 L(p1, ..., pn), let rl : p1(X) ! SL(2, C) be
the associated representation defined in Proposition 7.1.4. We have that

S (rl) =
�

⇣
P
⇣

l1
p1

+ Ân
j=2

2lj
pj

⌘⌘2

4P
mod Z. (7.16)

The formula (7.16) was proven for SU(2) connections by Kirk and Klassen and it is stated
in Theorem 5.2 in [KK90].

Proof of Proposition 7.1.5. Let K ⇢ X be the n’th exceptional fiber. Let Y be the complement
of a tubular neighborhood of K in X. Removing K has the effect on p1 of removing the
relation xpn

n = h�qn , i.e. we have a presentation

p1(Y) '
D

h, x1, ..., xn | x1x2 · · · xn, 8j, [xj, h], and xp1
1 h�q1 , ..., xpn�1

n�1 h�qn�1
E

. (7.17)

As the meridian and longitude of ∂Y we can take µ = xpn
n hqn and l = x�p1···pn�1

n hc respec-
tively, where c = Ân�1

j=1
p1···pn�1qj

pj
.

Let r : p1(X) ! SL(2, C) be any irreducible representation. Let l 2 N
n be the n-tuple

such that (7.12) holds. To prove formula (7.16) it will suffice to show

S (r) =
�

⇣
P
⇣

l1
p1

+ Ân
j=2

2lj
pj

⌘⌘2

4P
mod Z.
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Introduce the two quantitites e = P
⇣

l1
p1

+ Ân
j=2

2lj
pj

⌘
and h = e

P .
The proof of (7.16) presented here consists analogously with the proof of Theorem 5.2 in

[KK90] of two parts. In the first part, we find a path of SL(2, C) connections on X connecting
rl to an abelian representation r0. In fact r0 will be an SU(2) connection on X. In the second
part, we then find a path from r0 to the trivial representation rtriv and we then apply Kirk
and Klassens formula (2.2.2). The only difference from the proof in [KK90] is that we need
to explicitly ensure that our paths stay away from parabolic representations. The relevant
paths are chosen such that l, µ are mapped to the maximal C

⇤ torus of diagonal matrices.
After conjugating by S�1

n we have r(xn) = expM

⇣
2piln

pn

⌘
. Consider the subset S ⇢

Hom (p1(Y), SL(2, C)) of representations r̃ satisfying

r̃(h) = r(h), tr(r̃(x1)) = 2 cos
✓

pil1
p1

◆
, tr(r̃(xj)) = 2 cos

 
2pilj

pj

!
, for j � 2.

By considering the presentation (7.17), we see that S is naturally homeomorphic to the
product of n � 1 conjugacy classes

S '


expM

✓
pil1
p1

◆�
⇥

n�1

⇥
j=2

"
expM

 
2pilj

pj

!#
.

Here [Q] denotes the SL(2, C) conjugacy class of Q 2 SL(2, C). Therefore the connected-
ness of SL(2, C) implies that S is connected. Write r = r1. Choose a smooth path rt in S
connecting r1 to r0 2 S given by

r0(x1) = expM

✓
�

pil1
p1

◆
, r0(xj) = expM

 
�

2pilj

pj

!
, j = 2, ..., n � 1

and r0(xn) = expM

⇣
pil1
p1

+ Ân�1
j=2

2pilj
pj

⌘
. We can choose the arc rt such that rt(xn) =

expM(2pi f (t)) for a smooth function f (t). In particular, we must have f (0) = l1
2p1

+Ân�1
j=1

lj
pj

and f (1) = ln
pn

. Notice that f (0) = h
2 � f (1). As qn is even and c is odd we have the follow-

ing two equalities

rt(µ) = rt(xn)
pn rt(h)qn = expM(2pipn f (t)),

rt(l) = rt(xn)
�p1···pn�1 rt(h)c = expM (�2pip1 · · · pn�1 f (t) + pi) .

Define a1(t) = pn f (t) and b1(t) = �
P
pn

f (t) + 1
2 . We have that

�2
Z 1

0
a01(t)b1(t) d t = �

e2

4P
+

pne

2P
+

eln
pn

mod Z. (7.18)

For the second part we use the fact that H1(Y) ' Z with generator µ to conclude that
the abelian SU(2) connection r0 can be connected to the trivial representation rtriv by a path
of SU(2) representations st with st(µ) = expM(2pita1(0)) and st(l) = expM(2pib(0)). Let
a0(t) = ta1(0) and b0(t) = b(0). As S(rtriv) = 0, we can apply Kirk and Klassen’s formula
(2.2.2) to obtain

� S(r) = S(rtriv)� S(r) = �2
Z 1

0
a00(t)b0(t) d t � 2

Z 1

0
a01(t)b1(t) d t.
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We have

�2
Z 1

0
a01(t)b1(t) d t = 2

e2

4P
+ 2P( f (1))2

�
pne

2P
� 2e f (1) + ln.

Comparing this with (7.18) we get that

� S(r) = �
e2

4P
+

pne

2P
+

eln
pn

+ 2
e2

4P
+ 2P( f (1))2

�
pne

2P
� 2e f (1) mod Z

=
e2

4P
+ 2 f (1)(P f (1)� e/2) mod Z

=
e2

4P
+ 2 f (1)P

 
�

l1
2p1

�

n�1

Â
j=2

lj

pj

!
mod Z

=
e2

4P
mod Z.

This is what we wanted.

Brieskorn integral homology spheres

The family of Brieskorn integral homology spheres (n = 3) is very special due to the fact
that the moduli space of flat SL(2, C)-connections M(SL(2, C), S(p1, p2, p3)) is finite with
cardinality given by the SL(2, C) Casson invariant introduced by Curtis [Cur01, Cur03]

lSL(2,C)(S(p1, p2, p3)) = (p1 � 1)(p2 � 1)(p3 � 1)/4.

This is shown by Boden and Curtis [BC06]. Prior to this and in relation to Floer homology,
Fintuschel and Stern [FS90] analyzed the SU(2) moduli space M(SU(2), X) of the Seifert
fibered three-manifold X considered in this thesis and their work shows that the compo-
nents are even dimensional manifolds with top dimension 2n � 6. This is in stark contrast
to the finiteness of the moduli space M(SL(2, C), S(p1, p2, p3)). Moreover, the situation at
hand is also special because all the Chern-Simons values of flat SL(2, C)-connections we en-
counter are in R/Z. In the three fibered case, this is naturally explained by work of Kitano
and Yamaguchi [KY16] which gives a decomposition

M(SL(2, C), S)) = M(SL(2, R), S))
[

M(U(1),S)

M(SU(2), S)).

Where S = S(p1, p2, p3). Thus we pay special attention to the class of Brieskorn integral
homology spheres and we obtain the following corollary.

Corollary 7.1.6. If p1, p2, p3 are odd primes and X = S(p1, p2, p3), the Chern-Simons action
SC : M(SL(2, C)(X)) ! R/Z is injective.

Proof. The number of representations found in Proposition 7.1.4 is equal to (p1 � 1)(p2 �

1)(p3 � 1)/4. This is equal to the number of squares in the ring Z/4PZ ' Z/4Z �3
j=1

Z/pjZ whose components in the last three factors are invertible. We can now appeal to
(1.17) which will be proven below.
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7.1.3 The Borel transform and complex Chern-Simons

We now present the proof of Theorem 7.

Proof of Theorem 7. We start by giving a characterization of which of the phases in (7.5) give
a non-zero contribution. Recall the definition of T (µ) given in (1.18).

The set of phases R(X)2pi in (7.7) consists of the values g(2pim) = �m22pi
4P , m =

1, ..., 2P � 1 for which

Â
x2T (�m2/4P)

Res

 
F(y)ekg(y)

1 � e�ky , y = 2pix

!
6= 0. (7.19)

Thus we must prove that if (7.19) holds, then there exists r : p1(X) ! SL(2, C) with
S(r) = �m2

4P mod Z. We start by noting that the set of poles of F is given by

PF = {2pim | m 2 Z and m is divisible by at most n � 3 of the pj’s}. (7.20)

It follows that if m̃ is divisible by at least n � 2 of the pj, then F(y) does not have a pole at
y = 2pim̃ and we get for integral k

Res

 
F(y)ekg(y)

1 � e�Ky , y = 2pim̃

!
= F(2pim̃)ekg(2pim̃)Res

✓
1

1 � e�ky , y = 2pim̃
◆

= F(2pim̃)ekg(2pim̃) 1
k

.

As we already noted above, Lawrence and Rozansky checked that all the k�1 terms cancels,
so it follows that

Â
m̃2T (�m2/4P),

and m̃ is divisible by at least n � 2 of the pj

Res

 
F(y)eKg(y)

1 � e�Ky , y = 2pim̃

!
= 0.

Therefore we see that if (7.19) holds, then there is some m̃ 2 T (�m2/4P) which is divisible
by at most n � 3 of the pj. By Proposition 7.1.5 this implies that there exists some l 2

L(p1, ..., pn) with
�m2

4P
=

�m̃2

4P
= S(rl),

where the first equality is by definition of T (�m2/4P). This establishes R(X) ⇢ CS⇤
C

and
we get (1.15).

We now compute CS⇤
C

. We want to show it is equal to the set

W(p1, ..., pn) :=
⇢
�m2

4P
mod Z : m 2 Z and m is divisible by at most n � 3 of the pj’s

�
.

It is clear that CS⇤
C
⇢ W(p1, ..., pn). We must show that for any y 2 Z which is not divisible

by more than at most three of the pj we can find l = (l1, ..., ln) 2 L(p1, ..., pn) which solves
the congruence equation

y2 =
�

⇣
P
⇣

pl1
p1

+ Ân
j=2

2plj
pj

⌘⌘2

4P
mod Z (7.21)
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For x 2 Z and d 2 N let [x]d denote the congruence class of x in the quotient ring Z/dZ.
Since pj is odd for j � 2, it follows that 4p1, p2, ..., pn are also pairwise co-prime. Hence
the Chinese remainder theorem applies and the natural ring homomorphism q : Z !

Z/4p1Z �n
j=2 Z/pjZ, given by x 7! ([x]4p1 , ..., [x]pn), descends to an isomorphism of rings

q : Z/4PZ
⇠
! Z/4p1Z

nM

j=2
Z/pjZ.

It follows that (7.21) is in fact equivalent to the following n congruence equations

[y]24p1
=

"
l1

n

’
j=2

pj + 2p

 
n

Â
j=2

lj ’
t 6=j

pt

!#2

4p1

, (7.22)

[y]2pj
=

"
2lj ’

t 6=j
pt

#2

pj

, 8j � 2.

The coprimality conditions ensures that 2 ’t 6=j pt is an invertible element in Z/pjZ and
therefore solving the last n � 1 of the equations in (7.22) can indeed be done with 0  lj 

(pj � 1)/2. It remains only to consider the first of the equations in (7.22). We note that

(cp1 + j)2
� (dp1 � j)2 = (2(c + d) + (c2

� d2)p1)p1

and if c and d have the same parity this is divisible by 4p1. Here we use that [2(c + d)]4 =

[c2 � d2] = 0, if c and d have the same parity. It follows that the squares [x]24p1
occur in a

repeating pattern which is symmetric around multiples of p1

x : p1 � j ... p1 � 1 p1 p1 + 1 ... p1 + j
[x]24p1

: [p1 � j]24p1
... [p1 � 1]24p1

[p1]24p1
[p1 � 1]24p1

... [p1 � j]24p1

In particular [y]24p1
2 {[0]4p1 , [1]24p1

, [2]24p1
, ..., [p1 � 2]24p1

[p1 � 1]24p1
}, and equation (7.22) is

reduced to

[y]24p1
=

"
l1

n

’
t=2

pt

#2

4p

,

which is independent of l2, ..., ln. As ’n
t=2 pt is invertible modulo 4p1, we can for every

m = 1, .., p1 � 1 find a unique xm 2 {1, ..., p � 1} and dm 2 N with xm ’n
t=2 pt = m + dm p1.

As multiplication is linear, we must have xp1�m = p1 � xm hence (p1 � xm)’n
t=2 pt =

p1 � m + dp�m p1. Thus

p1(dm + dm�p + 1) =

 
xm

n

’
t=2

pt � m

!
+

 
(p1 � xm)

n

’
t=2

pt � (p1 � m)

!
+ p1

= p1

n

’
t�2

pt = P.

As p2, ..., pn are all odd, this implies that dm and dp�m have the same parity which imply
8
<

:

"
xm

n

’
t=2

pt

#2

4p1

,

"
xp�m

n

’
t=2

pt

#2

4p1

9
=

; = {[m]24p1
, [p1 � m]24p1

}.
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It follows that we can in fact solve (7.22) with l1 2 {0, ..., p � 1}. Thus we have shown that
CS⇤

C
= W(p1, ..., pn).

We now turn to B(Z•). The expression for the Borel transform (1.16) is a direct con-
sequence of (7.11) and the Proposition 5.3.1. As F(�y) = F(y) we note that the factor
F(
p

8piPz) gives a well-defined meromorphic function. Thus B(Z•)(z) is a multival-
ued meromorphic function with a square root singularity at 0 and with singularities for
p

8piPz 2 PF where PF is the set of poles of F(y). This set was computed above (see equa-
tion (7.20)) and we conclude that the poles of B(Z•)(z) occur at zm = �pm2

2iP = �m2

4P
2p
i with

m 2 Z being divisible by less than or equal to n � 3 of the pj’s. This concludes the proof of
(1.17).

7.1.4 Resummation of the quantum invariant

We now prove Theorem 8.

Proof of Theorem 8. It easily follows from (1.16) that

F(z) = B(Z•)

✓
z2

i8Pp

◆
zH
P4

. (7.23)

Now (1.20) and (1.21) follows from the residue Theorem, equation (7.11) and Theorem 7.1.2.
Here it is understood that in definition (1.19) the integrals

H
y=2pix d y are understood to be

over sufficiently small loops encircling 2pix.

7.1.5 The q-series, modularity and Ẑ invariants

By first considering the rational function (zP � z�P)�2�n ’n
j=1(z

P
pj � z

�
P
pj ) it is easy to see

that F(y) = Â•
m=0 c(m)e

ym
2P 2 Z[[e

y
2P ]].

Definition 7.1.1. Introduce for |q| < 1 the q-series Yp1,...,pn = Y defined by

Y(q) =
•

Â
m=0

c(m)q
m2
2p .

Observe that we can rewrite (1.16) as

B(Z•)(z) =

p
Pp2

p
z
p

Hi
F(
p

i8Ppz).

Thus one can clearly relate the q series to eZk through the Borel transform as observed by
Gukov-Putrov-Marino in [GMP16]. This is also clear from the equation (7.23). It is believed
that Y is (a normalization of) the new topological invariants bZa(q)(M).

For n = 3, Lawrence and Zagier have shown in [LZ99] that the quantum invariant
can be recovered as a certain radial limit of Y. This was extended (in some cases) to n =

4 by Hikami in [Hik05d]. The series Y have interesting aritmetic properties, for n = 3
the coefficients c(m) are periodic functions of period 2P. For n = 3 it is the so-called
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Eichler integral of a mock modular form with weight 3/2. The connection between quantum
invariants and number theory was further pursued by Hikami in a number of articles,
including [Hik04, Hik05b, Hik05a, Hik06, Hik11], and by Hikami et al. in [BHL11, HL14].
Let us also mention the work [DG15] by Dimofte-Garoufalidis which connects modularity
in quantum topology with complex Chern-Simons theory.

It is interesting to observe that Y is obtained [GMP16] from the Borel transform through
a resummation process reminiscent of the median resummation of [CG11]. Moreover as
explained in [CCF+18] there is a Mock/false modular form duality related to bZa(q)(M),
i.e. there exists an associated pair of a so-called Mock modular form and a so-called false
modular form, and these are related by a q 7! q�1 transformation and have the same
transseries expression near q ! 1. This is quite possibly connected to the conjecture 2 in
[Gar08] (called the symmetry conjecture).

7.2 Surgeries on the figure eight knot

We now turn to the hyperbolic three-manifolds Mr/s. We have the following result, due to
Andersen-Hansen

Theorem 7.2.1 ([AH06]). Choose c, d 2 Z with rd � cs = 1. Define

cn,K(x, y) = sin
⇣p

s
(x � nd)

⌘
e2piK

⇣
dn2

s + r
4s x2� n

s x�xy
⌘

Sk (�p + 2p(x � y))
Sk (�p + 2p(x + y))

.

Then we have that

tk(Mr/s) = nkqµ Â
n2Z/|s|Z

Z

C1(k)⇥C2(k)
cot(pkx) tan(pky)cn,k(x, y) d y d x

where n, µ 2 C
⇤ and C1(k) is a simple closed contour which encircles the set {m/k : m =

1, 2, ..., k � 1}, and C2(k) is a simple closed contour encircling {(m + 1/2)/k : m = 0, 1, ..., k � 1}.
Both contours are oriented anti-clockwise.

We now introduce Faddeev’s quantum dilogarithim [AK15, Fad95, FK94, Kas97].

Definition 7.2.1. The quantum dilogarithm with parameter k = p/k 2 (0, 1) is given as
follows

Sk(z) = exp
✓

1
4

Z

eC

ezy

sinh(py) sinh(ky)y
d y
◆

,

for |Re(z)| < k + p, and eC is the contour (�•,�1/2) [ D [ (1/2, •) where D is the half-
circle from �1/2 to 1/2 in the upper halfplane.

The quantum dilogarithm satisfies the following functional equation.

Proposition 7.2.2. For |Re(z)| < p we have

(1 + eiz)Sk(z + k) = Sk(z � k). (7.24)

The function x 7! Sk(�p + 2px) admits an analytic extension to

Ak := C \

⇢
m
k
+

1
2k

: m = k, k + 1, ...,
�

.
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If m 2 N then the set { n
k + 1

2k : n = mk, mk + 1, ..., (m + 1)k � 1} consists of poles of order m
whereas the set { n

k + 1
2k : n = �mk,�mk + 1, ...,�mk + k � 1} consists of zeroes of order m.

These properties of the quantum dilogarithm are due to Faddeev. A proof can be found
in an appendix in [AH06]. It is well-known that the semiclassical asymptotics of Faddeev’s
quantum dilogarithm S is given by Euler’s dilogarithm.

Theorem 7.2.3. For z 2 ({Re(z) = ±p} \ {Im(z) � 0}) [ {Re(z) < p} we have

Sk(z) = exp
✓

k
2pi

Li2
⇣
�eiz

⌘
+ Ik(z)

◆

where Ik(z) = 1
4
R

C(R)
ezz

z sin(pz)

⇣
1

sinh(kz) �
1
kz

⌘
d z.

This is the motivation behind Conjecture 1. We now recall the parametrization of the
moduli space of flat SL(2, C) connections on Mr/s. As mentioned in the introduction, this
builds on work by Riley [Ril85], Klassen [Kla91] and Kirk-Klassen [KK90, KK91]. We have
the following presentation of the fundamental group of Mr/s

p1(Mr/s) ' hx, y | [x�1, y]x = y[x�1, y], xr(yx�1y�1x2y�1x�1y)s = 1i

where µ = x and l = yx�1y�1x2y�1x�1y correspond to the preferred meridian and longi-
tude. Consider the following two equations

8
<

:
v�r =

⇣
w�v2

1�v2w

⌘s
,

v2w = (1 � v2w)(w � v2).
(7.25)

Given a solution (v, w) to (7.25) with v2 6= 1, one can define for (s, u + 1) = (v, w) a
representation r(s,u+1) : p1(Mr/s) ! SL(2, C) where r(t,l) is given by

r(t,l)(x) =

 
t t�1

0 t�1

!
, r(t,l)(y) =

 
t 0

�tl t�1

!
.

We have

Theorem 7.2.4 (Andersen-Hansen, [AH06] Theorem 2). The map (x, y) 7! [r(epix ,e2piy�1)]

gives a surjection from the set of critical points (x, y) of the phase functions Fa,b
n with x /2 Z onto

M⇤(SL(2, C), Mr/s), and [r(epix ,e2piy�1)] is conjugate to an SU(2) representation if and only if
(x, y) 2 {(x, y) 2 R ⇥ C : e2piy 2]� •, 0[}. Moreover, we have that

Fa,b
n (x, y) = SC([r(epix ,e2piy�1)) mod Z.

Before we give the proof of Theorem 9, we make the following remark.

Remark 7.2.5. As we are only interested in the large k asymptotic, we may consider the
restriction of the phase functions Fa,b

n to bounded subsets of C
2, containing finitely many

saddle points, that are mapped surjectively to CS . Thus the phase restricted phase func-
tions are proper smooth submersions over the complement of their critical values. By the
Ehresmann Lemma, this implies that they are resurgence phases, and thus it is meaningfull
to speak of Picard-Lefschetz thimbles.
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Proof of Theorem 9. The proof is an application of Theorem 5 and of Theorem 6.
The existence of the expansion (1.23) follows from (1.22) and (5.16). The fact that the

Borel transforms B(Zq) have singularities corresponding to (shifted) Chern-Simons val-
ues as given in (1.24) follows from the very first part of Theorem (6). The existence of a
decomposition (1.25) giving the resurgence relations (1.26) follows from (1.13).
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C H A P T E R 8
Analytic extensions of quantum

invariants

In this section, we present details on work in progress, which is joint with Andersen.

8.1 Analytic expressions for R matrices

At this point, the reader may want to recall the definitions and notations from Section 3.2.1.
For the convenience of the reader we here recall some of the notation. Let

k(k) = p/k, t(k) = exp(ik/2), s(k) = (t(k))2, q(k) = (s(k))2,

Below we shall simply write k, t, s and q but we make the obvious remark that these can be
extended to analytic functions.

Recall that the colored Jones polynomial is constructed using the graphical calculus and
the modular tensor category assoicated with the Ũq(sl(2, C))-modules V(1), V(2), ..., V(k�1)

introduced in Section 3.2.1. Recall that for each V(l) we introduced a distinguished basis
e(m)
�lm , ..., e(m)

lm , l = 2lm + 1. We have the following expression for the inverse C�1(n, m) braid-
ing.

Proposition 8.1.1. Let 0 < n, m < k, and consider the inverse braiding isomorphism C�1(n, m) :
V(n) ✏ V(m) ! V(m) ✏ V(n). Write

C�1(n, m)
⇣

e(n)i ✏ e(m)
j

⌘
= Â C�1(n, m)v,w

i,j e(m)
v ✏ e(n)w .

With this notation we have

C�1(n, m)v,w
i,j =

(s � s)v�j

[v � j]!
[lm + v]!
[lm + j]!

[ln � w]!
[ln � i]!

t�(v�j)(v�j+1)+4ij�2(v�j)(j�i)
d

i+j
v+w, (8.1)

for (i, j, v, w) satisfying

lm � v � j � �lm,

ln � i � w � �ln.
(8.2)

The proof is a modification of the proof of Corollary 2.32 in [KM91].
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Proof. Recall that the braiding is given by C(z) = P(R.z), where P(x ✏ y) = y ✏ x and R is
the universal R matrix given by Theorem 3.2.7

R =
1
4k Â

n,a,b

(s � s)n

[n]!
tab+(b�a)n+nXnKa ✏ YnKb

where the sum is over all 0  n < k and 0  a, b < 4k. Observe that C�1(z) = R�1.P(z)
and as explained in [RT91] and [KM91], the inverse of R is given by R�1 = (S ✏ Id)(R),
where S is the antipode. By Definition 3.2.8 we have S(X) = �sX and S(K) = K. As S is
anti-multiplicative we get S(XnKa) = (�s)nKaXn. As sl = t2l = t(�2l) this implies

R�1 =
1
4k Â

n,a,b

(s � s)n

[n]!
tab+(b�a)n�n

· KaXn ✏ YnKb.

Recall that by Definition 3.2.9 the left action of Ũq(sl(2, C)) on V(r) is given by

Xe(r)j = [lr + j + 1]e(r)j+1, Ye(r)j = [lr � j + 1]e(r)j�1, Ke(r)j = sje(r)j .

Thus we readily compute that

C�1(n, m)
⇣

e(n)i ✏ e(m)
j

⌘
=R�1.(e(m)

j ✏ e(n)i )

=
1
4k Â

u,a,b

(s � s)u

[u]!
tab+(b�a)u�u

· KaXu
⇣

e(m)
j

⌘
✏ YnKb

⇣
e(n)i

⌘

=
1
4k Â

u,a,b

(s � s)u

[u]!
tab+(b�a)u�u+2(j+u)a�2ib

⇥
[lm + j + u]!
[lm + j]!

[ln � i + u]!
[ln � i]!

⇣
e(m)

j+u ✏ e(n)i�u

⌘
.

(8.3)

Introduce now v = i � u and w = j + u. We now focus on the exponent of the t factor in
C�1(n, m)w,v

i,j . For every u 2 Z and x, y 2
1
2 Z we have

4k = Â
0a,b<4k

tab = Â
0a,b<4r

t(a+u�2y)(b+u�2x).

We can rewrite the exponent of t in the coefficient of e(m)
j+u ✏ e(n)i�u in (8.3) as follows

ab + (b � a)u � u + 2a(j + u)� 2ib = (a + u � 2i)(b + u + 2j)� u(u + 1)� 2u(j � i) + 4ij.

So for fixed 0 < u < k we have
1
4k Â

0a,b<4r
tab+(b�a)u�u+2a(j+u)�2ib = t�u(u+1)�2u(j�i)+4ij. (8.4)

Introduce now v = i � u and w = j + u. Thus u = w � j. Comparing (8.4) and (8.3) we get

C�1(n, m)w,v
i,j =

(s � s)w�j

[w � j]!
[lm + w]!
[lm + j]!

[ln � v]!
[ln � i]!

t�(w�j)(w�j+1)+4ij�2(w�j)(j�i)
d

i+j
v+w,

valid for w 2 {j, ..., j+ k� 1}\ {�lm, ..., lm}, v 2 {i� k+ 1, ..., i}\ {�ln, ..., ln}. However, by
definition of lm, ln we have {j, ..., j+ k � 1}\ {�lm, ..., lm} = {j, ..., lm} and {i � k + 1, ..., i}\
{�ln, ..., ln} = {�ln, ..., i}. This finishes the proof

110



8.1. Analytic expressions for R matrices

We next introduce a meromorphic function needed to extend the R-matrixes analytically.

Definition 8.1.1. Define X = Xk 2 M(C) by

X(z) =
Sk (p � (2z + 1)k)

Sk (p � k)
.

We have the following result.

Lemma 8.1.2. The function X has poles in the negative integers and zeros in {k, k + 1, . . .}, and
for a positive integer m we have

[m]! =
tm(m+1)

(i2 sin(k))m X(m).

Proof. We have

[m]! =
m

’
j=1

q
j
2 � q�

j
2

q
1
2 � q�

1
2
=

qÂm
j=1

j
2

(2i sin(p
k ))

m

m

’
j=1

(1 � q�j) =
q

m(m+1)
4

(2i sin(p
k ))

m

m

’
j=1

(1 � q�j). (8.5)

The functional equation (7.24) gives

1 + ei(z+p) =
Sk(z + p � k)
Sk(z + p + k)

.

Taking z = �2p j/k gives

(1 � q�j) =
Sk

⇣
�p(2j+1)

k + p
⌘

Sk

⇣
�p(2j�1)

k + p
⌘ .

It follows that

m

’
j=1

(1 � q�j) =
Sk

⇣
�p(2m+1)

k + p
⌘

Sk
�
�p

k + p
� =

Sk (�(2m + 1)k + p)
Sk (�k + p)

.

Inserting this expression into (8.5) gives the desired result.

We now work our way towards an analytic expression for C±(n, m)v,w
i,j in terms of the

indices n, m, i, j, v, w which we want to think of as complex variables.

Definition 8.1.2. Define R+
k = R+ 2 M(C2 ⇥ C

4) by

R+(y1, y2, z1, z2, z3, z4) =

X((y1 � 1)/2 + z4)Xx((y2 � 1)/2 � z3)
Xx(z4 � z1)X((y1 � 1)/2 + z1)X((y2 � 1)/2 � z2)

⇥ tQ+((y1�1)/2,(y2�1)/2,z1,z2,z3,z4)

(8.6)

where Q+ 2 Z[y1, y2, z1, z2, z3, z4] is given by

Q+(y1, y2, z1, z2, z3, z4) =4z1z2 � 2(z4 � z1)(z1 � z2)� (z4 � z1)(z4 � z1 + 1)

+ (y1 + z4)(y1 + z4 + 1) + (y2 � z3)(y2 � z3 + 1)

� (z4 � z1)(z4 � z1 + 1)� (y1 + z1)(y1 + z1 + 1)

� (y2 � z2)(y2 � z2 + 1).
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Define R�

k = R� 2 M(C2 ⇥ C
4) by

R�(y1, y2, z1, z2, z3, z4) =

(�1)z3�z2
X((y2 � 1)/2 + z3)X((y1 � 1)/2 � z4)

X(z3 � z2)X((y2 � 1)/2 + z2)X((y1 � 1)/2 � z1)

⇥ tQ�((y1�1)/2,(y2�1)/2,z1,z2,z3,z4)

(8.7)

where Q� 2 Z[y1, y2, z1, z2, z3, z4] is defined by

Q�(y1, y2, z1, z2, z3, z4) =(z3 � z2)(z3 � z2 + 1)� 4z1z2 + 2(z3 � z2)(z2 � z1)

(y1 � z4)(y1 � z4 + 1) + (y2 + z3)(y2 + z3 + 1)

� (z3 � z2)(z3 � z2 + 1)� (y1 � z1)(y1 � z1 + 1)

� (y2 + z2)(y2 + z2 + 1).

The functions R+, R� are analytic extensions of the coefficients of the R matrices.

Theorem 8.1.3. For (i, j, v, w) satisfying (3.6) we have

C(n, m)v,w
i,j = R+(n, m, i, j, v, w)d

i+j
v+w (8.8)

For (i, j, v, w) satisfying (8.2) we have

C�1(n, m)v,w
i,j = R�(n, m, i, j, v, w)d

i+j
v+w. (8.9)

Let N
⇤ = N \ {0}. The pole divisor D+ of R+ is equal to

{z4 � z1 2 k + N} [ {(y1 � 1)/2 + z2 2 k + N} [ {(y2 � 1)/2 � z2 2 k + N}

[ {(y2 � 1)/2 + z4 2 �N
⇤
} [ {(y2 � 1)/2 � z3 2 �N

⇤
} ⇢ C

2
⇥ C

4.
(8.10)

The pole divisor D� of R� is equal to

{(y2 � 1)/2 + z3 2 �N
⇤
} [ {(y1 � 1)/2 � z4 2 �N

⇤
} [ {z3 � z2 2 k + N}

[ {(y2 � 1)/2 + z1 2 k + N} [ {(y1 � 1)/2 � z1 2 k + N} ⇢ C
2
⇥ C

4.
(8.11)

Proof. The equations (8.10) and (8.11) follow from Lemma 8.1.2. The proofs of (8.8) and (8.9)
are straightforward computations using Lemma 8.1.2.

We begin with (8.8). It follows from the equation (3.5) that if we define the polynomial
P(X1, X2, X3, X4) 2 Z[X1, X2, X3, X4] by

P(X1, X2, X3, X4) = 4X1X2 � 2(X4 � X1)(X1 � X2)� (X4 � X1)(X4 � X1 + 1),

then

C(n, m)v,w
i,j = d

i+j
v+w

(s � s)w�i

[w � i]!
[ln + w]!
[ln + i]!

[lm � v]!
[lm � j]!

tP(i,j,v,w).
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8.1. Analytic expressions for R matrices

We now rewrite the quantum factorials using Lemma 8.1.2

C(n, m)v,w
i,j t�P(i,j,v,w)

= d
i+j
v+w

(s � s)w�i

t(w�i)(w�i+1)

(2i sin(k))(w�i) X(w � i)

t(ln+w)(ln+w+1)

(2i sin(k))(ln+w) X(ln + w)

t(ln+i)(ln+i+1)

(2i sin(k))(ln+i) X(ln + i)

t(lm�v)((lm�v+1)

(2i sin(k))(lm�v) X(lm � v)

t(lm�j)(lm�j+1)

(2 sin(k))(lm�j) X(lm � j)

d
i+j
v+w =

X(ln + w)X(lm � v)
X(w � i)X(ln + i)X(lm � j)

⇥ (2i sin(k))2(w�i)�(ln+w)+(ln+i)�(lm�v)+(lm�j)

⇥ t(ln+w)(ln+w+1)+(lm�v)(lm�v+1)

⇥ t�(w�i)(w�i+1)�(ln+i)(ln+i+1)�(lm�j)(lm�j+1)

= d
i+j
v+w

X(ln + w)X(lm � v)
X(w � i)X(ln + i)X(lm � j)

(2i sin(k))�i+v�j+w

⇥ t(ln+w)(ln+w+1)+(lm�v)(lm�v+1)

⇥ t�(w�i)(w�i+1)�(ln+i)(ln+i+1)�(lm�j)(lm�j+1).

(8.12)

Put (y1, y2, z1, z2, z3, z4) = (n, m, i, j, v, w) and compare (8.12) with (8.6). This gives (8.8). We
now turn to (8.9). It follows from (8.1) that if we define N(X1, X2, X3, X4) 2 Z[X1, X2, X3, X4]

by

N(X1, X2, X3, X4) = �(X3 � X2)(X3 � X2 + 1) + 4X1X2 � 2(X3 � X2)(X2 � X1),

then we have

C�1(m, n)w,v
i,j = d

i+j
v+w

(s � s)w�j

[w � j]!
[lm + w]!
[lm + j]!

[ln � v]!
[ln � i]!

tN(i,j,w,v).

Just as above, we can use Lemma 8.1.2 to get

C�1(n, m)w,v
i,j tN(i,j,w,v)

= d
i+j
v+w

(s � s)w�j

t(w�j)(w�j+1)

(2i sin(k))(w�j) X(w � j)

t(lm+w)(lm+w+1)

(2i sin(k))(lm+w) X(lm + w)

t(lm+j)(lm+j+1)

(2i sin(k))(lm+j) X(lm + j)

t(ln�v)((ln�v+1)

(2i sin(k))(ln�v) X(ln � v)

t(ln�i)(ln�i+1)

(2i sin(k))(ln�i) X(ln � i)

= d
i+j
v+w

(�1)w�jX(lm + w)X(ln � v)
X(w � j)X(lm + j)X(ln � i)

⇥ (2i sin(k))2(w�j)�(lm+w)+(ln�i)�(ln�v)+(lm+j)

⇥ t(ln�v)(ln�v+1)+(lm+w)(lm+w+1)

⇥ t�(w�j)(w�j+1)�(ln�i)(ln�i+1)�(lm+j)(lm+j+1)

= d
i+j
v+w(�1)w�j X(lm + w)X(ln � v)

X(w � j)X(lm + j)X(lm � i)
(2i sin(k))w�i+v�j

⇥ t(ln�v)(ln�v+1)+(lm+w)(lm+w+1)

⇥ t�(w�j)(w�j+1)�(ln�i)(ln�i+1)�(lm+j)(lm+j+1).

(8.13)

Now it is a matter of putting (y1, y2, z1, z2, z3, z4) = (n, m, i, j, w, v) and comparing (8.13)
with (8.7). This finishes the proof.
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The R matrix approach to the Jones polynomial

We now take a closer look at how to compute the colored Jones polynomial using the
graphical calculus or, in other words, using the Reshetikhin-Turaev functor F. Recall the
colored tangles X±

V,W ,[V ,[�

V ,\V ,\�

V , fV , f�

V depicted in Section 8.1.

Proposition 8.1.4. Let dl
j be the Kronecker delta. We have

F([�
n )(1) = Â

j
s2je�(n)

j ✏ e(n)j , F(\�
n )
⇣

e(n)j ✏ e�(n)
l

⌘
= dl

j s
2j,

where e�(n)
�ln , ..., e�(n)

ln 2 V(n)⇤ is the dual basis of the distinguished basis of V(n).

Proof. Let (A, R, v) be a Ribbon Hopf algrebra, let V be a finitely generated left A module,
and let µ in A be any invertible element satisfying (3.4). According to Theorem 3.6 in [KM91]
we have F(\�

V )(x ✏ f ) = f (µ.x) for any (x ✏ f ) 2 V ✏ V⇤ and F([�

V )(1) = Âj ej ✏ µ�1.ej

for any basis ej of V (and dual basis ej of V⇤). Now turn to the Ũq(sl(2, C)) case. We know

from Theorem 3.2.10 that µ = K2. We recall from Theorem 3.2.9 that K.e(n)j = sje(n)j .

Motivated by this, we make the following definitions.

Definition 8.1.3. A factorized diagram of a framed oriented link L is a blackboard framed
diagram D such that every component is involved in at least one crossing, and every cross-
ing c is of type X± with notation as in Definition 3.1.12. The framed graph G have its set of
vertices V given by the crossings C, and its set of directed edges E is given by the connected
components of D \ C. In accordance with the framing, an edge may contain directed kinks.

We fix from now on a factorized diagram D. We introduce some helpful notation. From
now on, we write p0(L) = p0 and m = |p0|. With notations as in Definition 3.1.12 we denote
the crossings by c± 2 C±, the kinks by j± 2 F±, the caps by \± 2

T
± and the the cups

are denoted by [± 2
S
± . We introduce maps the maps i, j, v, w : C ! E, according to the

Figure 8.1 We also have obvious inclusion maps [� t \� ! E, and E t F+ t F� ! p0(L),

ji

v w

Figure 8.1: The edge maps

for which we shall not introduce any notation. Given l 2 Col(L, L(k)), define T(l) to be

the subset of x 2

⇣
1
2 Z

⌘E
with the following property. For every crossing c of type X+ or X�

respectively, the tuple (l(i(c)), l(j(c)), x(i(c)), x(j(c)), x(v(c)), x(w(c)) satify (3.6) or (8.2)
respectively (with n = l(i(c)) and m = l(j(c))) and further we have that

x(i(c)) + x(j(c))� x(v(c))� x(w(c)) = 0.
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8.2. Semi-classical analysis and complex Chern-Simons theory

The set T(l) is independent of k.

Definition 8.1.4. Define Jl(L) 2 M(C) by

Jl(L)(z) = Â
x2T(l)

’
[2

S
�

(s(z))�2x([) ’
\2

T
�

(s(z))2x(\�)

⇥ ’
j2F+

(t(z))�l(j)(l(j)+1) ’
j2F�

(t(z))l(j)(l(j)+1)

⇥ ’
c2C+

R+
z (l(i(c)), l(j(c)), x(i(c)), x(j(c)), x(v(c)), x(w(c)))

⇥ ’
c2C�

R�
z (l(i(c)), l(j(c)), x(i(c)), x(j(c)), x(v(c)), x(w(c))).

Proof of Theorem 11 . This follows from Theorem 8.1.3 and Proposition 8.1.4. It can be seen
by using the graphical calculus introduced in Section and the write out the morphism in
matrix notation. The fact that every component is involved in a least one crossing ensures
that we can think of the basis vectors as labelled by T(l).

8.2 Semi-classical analysis and complex Chern-Simons theory

We define the semi-classical approximation F from Conjecture 2, and compare it with Yoon’s
potential to support the conjecture. The idea is that (1.29) should follow from this compari-
son and Theorem 2.2.6.

We define for each crossing c the map pc : C
p0 ⇥ C

E ! C
6 given by

pc = (yi(c), yj(c), zi(c),j(c) , zv(c), zw(c)).

Motivated by Theorem 7.2.3 and Proposition and Theorem 11 we introduce the following
function.

Definition 8.2.1. Define F+ 2 M(C2 ⇥ C
4) by

F+(y1, y2, z1, z2, z3, z4) =� Li2
⇣

e�pi(y1+2z4)
⌘
� Li2

⇣
e�pi(y2�2z3)

⌘

+ Li2
⇣

e�pi(2z4�2z1)
⌘
+ Li2

⇣
e�pi(y1+2z1)

⌘

+ Li2
⇣

e�pi(y2�2z2)
⌘
� (ip)2 eQ+(y1, y2, z1, z2, z3, z4)

Define F� 2 M(C2 ⇥ C
4) by

F�(y1, y2, z1, z2, z3, z4) =� Li2
⇣

e�pi(y2+2z3)
⌘
� Li2

⇣
e�pi(y1�2z4)

⌘

+ Li2
⇣

e�pi(2z3�2z2)
⌘
+ Li2

⇣
e�pi(y2+2z2)

⌘

+ Li2
⇣

e�pi(y1�2z1)
⌘
+ (ip)2 eQ�(y1, y2, z1, z2, z3, z4).

Define the formal semiclassical approximation of J to be the meromorphic multivalued func-
tion F 2 M(Cp0 ⇥ C

E) given by

F = Â
c2C+

F+ � pc + Â
c2C�

F� � pc.
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Let R denote the set of connected components of R
2 \ D. Recall that these are the regions

in Yoon’s terminology [Yoo18]. We introduce for each crossing c a complex variable uc, and
for each region r we introduce a complex variable wr. This gives coordinates on C

C and C
R.

Let b denote the number of regions.

Proposition 8.2.1. Let K : C
p0 ⇥ C

E ! C
C be the map defined by

uc = zv(c) + zw(c) � zi(c) � zj(c).

We have
K
⇣

C
p0 ⇥ C

E
⌘
⇢ {Â

c2C
uc = 0}.

Proof. This follows easily from the fact that every edge is associated with exactly two cross-
ings.

Definition 8.2.2. Define I : C
p0 ⇥ C

R ! C
p0 ⇥ C

E by

ze = wr(e) � wl(e), ye = 2me,

where wr(e) is the region to the right of ze and wl(e) is the region to the left of ze. Define
I0 : C2 ⇥ C

4 ! C
2 ⇥ C

4 by

I0(m1, m2, wl , wr, wd, w0) =
⇣m1

2
,

m2
2

, wl � wd, wd � wr, wl � wo, wo � wr

⌘
.

Recall the linear map K introduced above.

Theorem 8.2.2. Let D : C ! C
R be the linear map given by D(z) = (z, ..., z). Let C0 = C

p0 ⇥

D(C) ⇢ C
p0 ⇥ C

R. The map I induces a linear isomorphism

I : C
p0 ⇥ C

R/C0
⇠
! Ker(K).

Let us now compare the I⇤(F) with W0. Define I0 : C2 ⇥ C
4 ! C

2 ⇥ C
4 by

I0(m1, m2, wl , wr, wd, w0) =
⇣m1

2
,

m2
2

, wl � wd, wd � wr, wl � wo, wo � wr

⌘
.

For every crossing c we have
I0 � p̃c = pc � I.

Using the functional equations for the dilogarithm stated in Theorem 2.2.4, one can show

W+ � F+ � I0 = 4p2(ml + wl � wd)(mr + wr � wd) + (ip)2Y+

W� � F� � I0 = 4p2(wl � wd � ml)(wr � wd � mr)� (ip)2Y�

where Y± is a polynomial of degree at most 2.
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