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Abstract

We study the generalised configuration space of points in a manifold depending
on a graph, originally defined by Eastwood and Huggett. In particular, we
examine its cohomology through graph complexes. One of those is the graph
complex defined by Baranowsky and Sazdanović, denoted by CBS that is the
E1 page of a spectral sequence converging to the homology of this type of
configuration space. We compare CBS with the graph complex GC defined by
Kontsevich by defining a map between them.

In order to compute the rational homotopy type of the classical configura-
tion space, Kriz and Totaro define a commutative differential graded algebra
that serves as a rational model for it in the case the manifold is a complex
projective variety. We generalise this commutative differential graded algebra
by describing the complex R(Γ, A), that depends on a graph Γ and on a com-
mutative differential graded algebra A. We prove that the dual complex of
CBS is quasi equivalent to R(Γ, A). In the case Γ is a complete graph and M is
an even dimensional manifold, R(Γ, A) is the commutative differential graded
algebra that Idrissi proves to be a real model for the classical configuration
space of points in M .

Finally, we compute the cohomology of the configuration space dependent
on a graph of points in Rr, r ≥ 0. This is a generalization of the classical
computation due to Arnold and Cohen that correspond to the case where the
graph is complete. The cohomology of this graph configuration space is the
cohomology of the painted little disks operad, that we define as a variation
depending on a graph of the classical little disks operads.
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Resumé

Vi studerer et generaliseret konfigurationsrum af punkter p̊a en mangfoldighed,
som oprindeligt blev defineret af Eastwood og Huggett og afhænger af en
graf. Vi bruger grafkomplekser til undersøge dets kohomologi. Et af disse er
grafkomplekset CBS , som blev defineret af Baranowsky og Sazdanović, og er
den første side i en spektralføgle, der konvergerer til homologien for denne type
konfigurationsrum. Vi sammenligner CBS med grafkomplekset GC, defineret
af Kontsevich, ved at beskrive et afbildning mellem dem.

For at beregne den rationelle homotopitype af det klassiske konfigura-
tionsrum definerer Kriz og Totaro en differentieret algebra, der fungerer som
en model for den rationelle homotopitype i tilfældet, hvor mangfoldigheden
er en kompleks projektiv varietet. Vi konstruerer en ny algebra, R(Γ, A), som
er en generalisering af Kriz og Totaro’s algebra, der ydderligere afhænger af
en graf. Vi beviser at den er quasi-ækvivalent med det duale grafkompleks til
CBS . N̊ar Γ er en komplet graf og dimensionen af M er en lige, s̊a er R(Γ, A)
en gradueret kommutativ, differential algebra, som Idrissi har bevist giver
en model for den reelle homotopitype af det klassiske konfigurationsrum af
punkter p̊a M .

Endelig, beregner vi kohomologien af det generaliserede konfigurationsrum,
som afhængigt af en graf, af punkter i Rr, r ≥ 0. Dette er en generalisering
af en klassisk beregning af Arnold og Cohen, n̊ar grafen er komplet. Dette
konfigurationsrums kohomologi er isomorft til kohomologien af painted little
disks operads, som vi definerer til at være en variation, der afhænger af en
graf, af de klassiske little disks operads.
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Introduction

The present thesis is the result of my three year Ph.D. program at Aarhus
University. The work focuses on the topological properties of a type of config-
uration space where some points are allowed to coincide. This can be encoded
in a graph where the vertices correspond to the points in the configuration
space and the edges record which of them are not allowed to overlap.

In the case where Γ is the complete graph this is the usual configuration
space of n ordered points in a space X. We denote it by C(X,n), where

C(X,n) = Xn \
⋃

∆i,j

∆i,j = {(x1, . . . , xn) ∈ Xn : xi = xj}. If the graph Γ is not necessary
complete, the configuration space obtained has been defined by Eastwoodand
Huggett [12], in the study of the chromatic polynomial. Let M be a manifold
and Γ a graph with set of vertices V = {v1, . . . , vn}. Then the configuration
space of n points in M , which we denote C(M,Γ), is defined as

C(M,Γ) = Mn \
⋃

e∈E(Γ)

∆e,

where E(Γ) is the set of edges in Γ, ∆e = {(m1, . . . ,mn) ∈ Mn;mi = mj}
and e is a directed edge from vi to vj . In 2012 Baranovsky and Sazdanović [2]
define a graph cohomology inspired by the one defined by Helme-Guizon and
Rong [16]. We will call this graph complex CBS(Γ) and it is defined by

CBS(Γ) =
⊕

S⊂E(Γ)

eS ⊗A⊗l(S)

where A is a graded commutative algebra. This is related to the cohomology
of configuration space. In [2] it is proven that there is a spectral sequence with
E1 page isomorphic to CBS(Γ), converging to the homology of the Eastwood
and Huggett’s configuration space C(M,Γ). The spectral sequence for the case
where the graph is the complete graph was given in 1991 by Bendersky and
Gitler [3]. Moreover, the complex CBS(Γ) appears to be linked with Hochschild
homology [33].
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viii Introduction

In 1992 Kontsevich [23][24] defined the graph homology complex (GC, d).
This is given by

GC =
⊕
k

GCk

where GCk is the Q-vector space generated by the isomorphism classes of
graphs with k vertices, for every k ∈ N. The differential is

d(Γ) =
∑

e∈E(Γ)

Γ/e,

here Γ/e is the graph obtained from Γ by contracting an edge e belonging to
the set of edges E(Γ). The classes of graphs are equipped with an orientation
whose definition depends on the parity of a number n that represent the
dimension of a manifold. Moreover, in the proof of formality of little disks
operads, Kontsevich defines other graphs complexes. These latter, as well as
the GC complex are involved in the computation of the real homotopy type of
configuration spaces, as proved by Willwacher [8] and Idrissi [19], who define
a rational model for the classical configuration space of points in a manifold,
C(X,n).

However, the study of the rational homotpopy type of C(X,n) has a longer
history. In 1994 Fulton and MacPherson [14] constructed a rational model for
the configuration space when X is a non singular, compact, complex variety.
This model depends on the cohomology ring H∗(X,Q), the orientation and
the Chern classes. The same year, Kriz in [26] described a differential graded
algebra E[n] that is a rational model for C(X,n) and that is independent from
the Chern classes. E[n] is described in the same time in the work by Totaro
[37] and it appeared to be isomorphic to the E2 page of the Larey spectral
sequence of the inclusion C(X,n) ↪→ Xn. Later, Lambecht and Stanley studied
the rational models for configurations spaces where X is a simply connected
closed manifold. In 2004 they described the case k = 2, a configuration space
of 2 points in a manifold [28]. In 2008 Lambecht and Stanley [30] presented a
potential model, called GA, for the general case such that the previous models,
for example E[n] are special cases of it. In 2019 Idrissi [19] proves that this
is an actual model for the real homotopy type of configuration spaces. The
proof makes use of the graph complexes introduced by Kontsevich.

In this thesis we compare the various graph complexes related to the homology
or cohomology of configuration spaces and we extend some of the definitions
to generalised configuration spaces depending on a graph. The work is divided
in six chapter, of which the first three are background notions and previous
results on which the final three chapters are based. These last present results
that I have obtained under the supervision of M. Bökstedt. To summarize the
content of this work, we briefly describe the various chapters, starting by the
introductory ones.
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The first chapter recalls the basic definitions of the theory of operads and
describes little disks operads, the partial operad of configuration spaces and the
construction of spiders that occurs in [10]. In the second chapter we present the
aforementioned graph complexes. We first give the definition of Kontsevich’s
graph complexes followed by the definition of CBS , together with results on
the homology of configuration spaces. A brief introduction to homotopy theory
and Poincarè duality commutative differential graded algebras is given in the
third chapter. This serves as a background to the later section in the same
chapter where the rational homotopy type of configuration spaces is discussed.
Here we also give a short history of the study of rational homotopy types of
configuration spaces. Moreover, we describe the Kontsevich graph complexes
involved in the description of the real model for C(X,n) carried out in [19]
and [8].

The last three chapter are the core of this thesis. In Chapter 4 we compare
the complex CBS , described above, with the graph complex GC defined by
Kontsevich. In particular, we construct a variation of CG, called K(Γ). This
chain complex differs from GC by the fact that it depends on a graph Γ and
it is generated by graphs obtained from Γ by collapsing a subgraph, without
considering isomorphism classes. The definition of K(Γ) varies, as in the case
of GC according to the parity of a natural number. We therefore discuss the
map between CBS and K(Γ) in two cases: even and odd. We then build the
complex KΣ(Γ), generated by isomorphism classes of graphs obtained from Γ
by contracting a subgraph. We build again a map for even and odd case from
K(Γ) to KΣ(Γ), and we discuss the relation between this last complex and
GC.

The fifth chapter is based on the article by Bökstedt and Minuz [6], and it
examines some results arising from the study of the rational homotopy type of
configuration spaces. We compare the model E[n], mentioned above, with the
complex CBS . We generalise the definition of E[n] by defining the differential
graded algebra R(Γ, A) depending on a graph Γ and with coefficients in any
Frobenius algebra A. In the case where Γ is the complete graph, and A =
H∗(M) where M is a closed oriented compact manifold of even dimension,
then R(Γ, A) = GA where GA is the commutative differential graded algebra
that Idrissi [19] proved to be a real model for C(X,n). We define a map
between the dual of CBS(Γ) and R(Γ, A), F : CBS(Γ)∗ → R(Γ, A). The main
theorem of the chapter is

Theorem. The map

F : CBS(Γ)∗ → R(Γ, A)

is a quasi equivalence.

The aim of the sixth and last chapter is to generalise the definition of little
disks operads to the case of a configuration space depending on a graph. Little
disks operads are operads given by embeddings of disjoint unions of disks. We
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describe in detail this construction in the first chapter, as well as the definition
of the partial operad of configuration space. Little disks operads are formal
and their cohomology is related to the cohomology of configuration spaces of
points over Rr, r ≥ 0. We generalise the definition of the partial operad of
configuration spaces and little disks operads to configuration spaces of the type
C(Rr,Γ) over Rr, that we call Cr(Γ). We call this last operad painted little disks
operad. Moreover, we compute the cohomology of this configuration space. In
the case where Γ is complete, the computation is a classical result due to
Arnold [1] and Cohen [9]. We adapt this result to Cr(Γ) and we discuss two
separate cases, when r is even and then when it is odd. It is a conjecture, that
the construction of the Fulton and McPherson-operad can be extended to the
generalised case. Moreover, if that is the case, one can ask if the painted little
disks operad is formal.

Finally, one can inquire if the constructions presented in this thesis can
be reproduced for a more general type of configuration space depending on a
graph Γ and a function k on the set of vertices. This appears in two recent
papers by Bökstedt and Nuno Romão [7] and Bökstedt [5] and it is related to
the groups of generalised braids on Σ. The strands of the braids are colored,
and some are allowed to pass through each other according to some rules.
These are encoded in a graph Γ, where each vertex represents a color, and
if there is an edge between two vertices, then the strands of these two colors
are not allowed to intersect. On the other hand strands of the same color or
of colors not connected by an edge can pass through each other. There can
be multiple strands of the same color and this is represented by a function
k : V (Γ)→ N assigning a number of strands for every vertex. The equivalence
classes of homotopic generalised braids on Σ with composition, denoted by
DBk(Σ,Γ), is the fundamental group of a generalised kind of configuration
space Ck(Σ,Γ), depending on Γ and k : V (Γ) → N. Let Σ be a connected,
oriented and closed surface, let Si(Σ) be the symmetric product of Σ. We
define SkΣ =

∏
i∈V (Γ) S

k(i)Σ and

Ck(Σ,Γ) = {(x1, ..., xr) ∈ SkΣ : xi 6= xj if αi,j ∈ E(Γ) }

where αi,j denote an edge between the vertices i and j, in the set of edges of Γ,
E(Γ). In this regard, this thesis represents a departure for future investigation.
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Chapter 1

Operads

1.1 Conventions and notation regarding graphs

We define a graph to be a 1-dimensional CW-complex, defined by the set of
vertices, that we denote by V (Γ), and the set of edges between them E(Γ).
We denote αa,b an edge between the vertices a, b and α : a→ b when the edge
is directed from a to b. In general we consider edges to be undirected, while we
will specify when we add a direction on them. We call loop an edge between
the same vertex αa,a, while cycle will denote a subset of edges of the form
{α1,2, α2,3, . . . , αk,1}. A tree is then a non empty connected graph without
loops or cycles and forest is the disjoint union of trees. Finally, if e ∈ E(Γ),

3

21

3

21

3

21

Figure 1.1: A tree, a graph with a cycle and a graph with a loop.

we denote by Γr e the graph obtained from Γ by deleting the edge e and Γ/e
the graph obtained from Γ by contracting the edge e.

1.2 Operads

In this section we introduce the basics of the theory of operads. Operads are
objects that encode the structure of an algebra. In particular, they describe its
operations, and the word operad itself comes from the composition of operation
and monad, as operad can be seen as a monad defining operations [38]. The
operad was defined for the first time in 1972 in the article The geometry

1



2 Chapter 1. Operads

of iterated loop spaces by May [32]. However, the idea appeared earlier, for
example in the works of Boardman and Vogt. Recently, the theory of operad
has found applications in different branches of mathematics, from category
theory to mathematical physics and it is in constant development.

We first give the definition of an operad. Then we focus on one type of
operad, namely the little disks operad, that will be defined and characterized
by some results that will be used later in this thesis. Finally, we discuss the
partial operad of configuration spaces.

1.2.1 Definition of operad

We present operads over a symmetric monoidal category. Our definition cor-
responds to the one originally given by May, but in the language of category
theory. We refer additionally to [31] and [13].

Definition 1.2.1 ([31], [22]). A monoidal category (C,⊗,1) is a category C
with a covariant functor

⊗ : C × C → C

and an object 1 in C called unit object that fulfill the following conditions.

• There is a commutative diagram

C × C × C C × C

C × C C

⊗×id

id×⊗ ⊗
⊗

• Let 1 be the category with only one element 1, and one morphism. There
is a functor η : 1→ C such that the diagrams commute.

1× C C × C

C

η×id

p ⊗

C × 1 C × C

C

id×η

p ⊗

here p is the projection.

A monoidal category C is said to be symmetric if for every two objects X, Y
in C there is a natural transformation, called twist map

τX,Y : X ⊗ Y → Y ⊗X
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such that

τY,XτX,Y = idX⊗Y

and the commutativity of the diagrams is satisfied.

X ⊗ Y ⊗ Z Y ⊗X ⊗ Z

Y ⊗ Z ⊗X

τX,Y ⊗id

τX,Y⊗Z
id⊗τX,Z

X ⊗ Y ⊗ Z X ⊗ Z ⊗ Y

Z ⊗X ⊗ Y

id⊗τY,Z

τX⊗Y,Z
τX,Z⊗id

Remark 1.2.2. We denote the operation in a general monoidal category by⊗,
which is an abuse of notation, since generally ⊗ denotes the tensor product
in the category of vector spaces, algebras or graded algebras. However, this
choice is justified by the fact that this simplifies the notation, since we will
mostly consider monoidal categories with multiplication given by the tensor
product.

Example 1.2.3. Examples of symmetric monoidal categories are the category
of vector spaces over a field K with tensor product (VectK,⊗,K), the category
of sets with the Cartesian product (Set,×, {∗}), the category of Frobenius
algebras over K with tensor product (FrobK,⊗,K).

Definition 1.2.4. ([13]) An operad O on a symmetric monoidal category C
is a sequence of objects O(n) in C, n ∈ N, such that there is

• an action of the symmetric group Σn on O(n)

• a composition

◦ : O(n)⊗O(k1)⊗ · · · ⊗ O(kn)→ O(k1 + · · ·+ kn)

for all k1, . . . , kn ≥ 1 and we write

x(n) ◦ x(k1)⊗ · · · ⊗ x(kn) ∈ O(k1 + · · ·+ kn)

for every element x(n)⊗x(k1)⊗· · ·⊗x(kn) ∈ O(n)⊗O(k1)⊗· · ·⊗O(kn)

• an element 1 ∈ O(1) called unit and a unit morphism

µ : 1→ O(1)
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Moreover the composition and the unit morphisms are required to satisfy some
axioms expressed by the commutativity of the following diagrams

• Associativity:

(O(n)⊗O(k1)⊗ · · · ⊗ O(kn))

⊗O(k1,1)⊗ · · · ⊗ O(kn,kn) O(k1,1 + · · ·+ kn,kn)

O(n)⊗ (O(k1)⊗ · · · ⊗ O(kn)

⊗O(k1,1)⊗ · · · ⊗ O(kn,kn))

l

∼=
h

where l = ◦(◦ ⊗ id⊗ · · · ⊗ id) and h = ◦(id⊗ ◦ ⊗ · · · ⊗ ◦)

• Equivariance: Let σ ∈ Σn be a permutation, σi ∈ Σki and we define
σ′ ∈ Σk1+···+kn to be composition of the permutations σ and (σ1, . . . , σn).
Finally, σ∗ : O(k1) ⊗ · · · ⊗ O(kn) → O(kσ(1)) ⊗ · · · ⊗ O(kσ(n)) is the
permutation of the factors of the tensor product by σ.

O(n)⊗O(k1)⊗ · · · ⊗ O(kn) O(n)⊗O(k1)⊗ · · · ⊗ O(kn)

O(n)⊗O(kσ(1))⊗ · · · ⊗ O(kσ(n)) O(k1 + · · ·+ kn)

O(kσ(1) + · · ·+ kσ(n))

σ
⊗
i σi

id⊗σ∗ ◦

◦ σ′

• Unit:

1⊗O(n) O(1)⊗O(n)

O(n)

µ⊗id

∼= ◦

O(n)⊗ 1⊗n O(n)⊗O(1)⊗n

O(n)

id⊗µ⊗n

∼= ◦

We can think of an operad O(n) as an n-ary operation with n input and
one output. The next picture illustrates the operadic composition.
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x(2)

1 2

x(3)

1 2 3

x(4)

11 2 3 4

◦ ⊗

x(2)

x(3)

1 2 3

x(4)

4 5 6

=

7

Figure 1.2: Operadic composition.

As mentioned, operads encode the structure of operations on an algebra.
We call the algebra described by an operad algebra over an operad, and it is
defined as follows:

Definition 1.2.5. ([13]) Let O be an operad over a symmetric monoidal
category C. An algebra A over an operad O, or O-algebra, is an object A in
the category C with morphisms

λ : O(n)⊗A⊗n → A

given for all n ≥ 0, that respects the equivariance, associativity and unit
relations. That is, the following diagrams commute for all n ≥ 0:

• equivariance: Let σ ∈ Σn be a permutation.

O(n)⊗A⊗n O(n)⊗A⊗n

O(n)⊗A⊗n A

σ⊗id

id⊗σ∗ λ

λ

• unit:

1⊗A O(1)⊗A

A

µ⊗id

∼= ◦
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• associativity: Let X = (O(n) ⊗ O(k1) ⊗ · · · ⊗ O(kn)) ⊗ A⊗
∑
ki and

Y = O(n)⊗ (O(k1)⊗Ak1 ⊗ · · · ⊗ O(kn)⊗A⊗kn).

X
∼= //

µ⊗id
��

Y

id⊗λ⊗···⊗λ
��

O(k1 + · · ·+ kn)⊗A⊗
∑
ki

λ

((

O(n)⊗A⊗n

λ
yyA

Example 1.2.6. Examples of operads are the commutative operads and as-
sociative operads that encode the structure of commutative ad associative
algebras. Another is the little disks operads, that we describe in the next para-
graph.

In the next section we will consider cyclic operads in the category of real
vector spaces with tensor product. We therefore, describe the condition for an
operad to be cyclic.

Definition 1.2.7. ([31]) A cyclic operad is an operad O such that the action
of Σn on O(n) extends to an action of Σn+1 fulfilling the axioms given by the
following commutative diagrams.

We denote by Σ+
n the group of automorphisms of the set {0, 1, . . . , n}. Σ+

n

is isomorphic to Σn+1, and Σn can be interpret as a subgroup of Σ+
n given by

permutation σ such that σ(0) = 0. We denote by σn the permutation in Σ+
n

given by σn(0) = 1, σn(1) = 2, . . . , σn(n) = 0.

• Identity:

1 O(1)

O(1)

µ

µ
σ1

• The permutation s changes the position of O(n) and O(k) in the multi-
plication

O(n)⊗O(k)⊗ 1⊗ · · · ⊗ 1 O(n+ k − 1)

O(k)⊗O(n)⊗ 1⊗ · · · ⊗ 1

O(k)⊗ 1⊗ · · · ⊗ 1⊗O(n) O(n+ k − 1)

σn⊗σk

σn+k−1

s
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and

O(n)⊗ 1⊗ · · · ⊗ O(k)︸ ︷︷ ︸
i

⊗ · · · ⊗ 1 O(n+ k − 1)

O(n)⊗ 1⊗ · · · ⊗ O(k)︸ ︷︷ ︸
i−1

⊗ · · · ⊗ 1 O(n+ k − 1)

σn⊗id
σn+k−1

We can think of a cyclic operad O(n) as obtained from an n-ary operation
where the output is interpret as an input labeled by 0.

p

1 2 3

· · ·
n

p̂

1 2 3

· · ·
n0

7−→

Figure 1.3: In a cyclic operad O(n) the action of the symmetric group Σn extend to
an action of Σn+1[31].

1.2.2 Little disks operads

The Little disks operad, or LDO, is an operad such that for every n natural
number the space Dr(n) is the space of linear embeddings of n disks of dimen-
sion r in the r-dimensional unit disk. Little disks operads, were introduced
in the 70s in the works by Boardman and Vogt [4] and May [32]. They have
applications in topology, algebra and mathematical physics.

In this section we refer to [31] and [13] for the definitions.

Definition 1.2.8. ([13]) Let the standard r-disk be

Dr = {(x1, . . . , xr) ∈ Rr;x2
1 + · · ·+ x2

r ≤ 1} ⊂ Rr.

A linear embedding c : Dr → Dr is given for every (x1, . . . , xr) ∈ Dr by

c(x1, . . . , xr) = (a1, . . . , ar) + t(x1, . . . , xr),

where (a1, . . . , ar) ∈ Dr and t ∈ R are such that if c(x1, . . . , xr) = (y1 . . . yr),
then

∑
i y

2
i (xi) ≤ 1. So a linear embedding of a disk is an embedding given by

translations and shrinks.
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Definition 1.2.9. ([13],[31]) The little r-disks operad Dr is given for every
n ∈ N by the set of liner embeddings of the disjoint union of n little r-disks
in Dr

Dr(n) = {(c1, . . . , cn) : Dtnr → Dr}

such that ci : Dr → Dr is a linear embedding, and if D̊r denotes the interior
of Dr, ci(D̊r) ∩ cj(D̊r) = ∅ for all i 6= j.

The operadic composition

◦ : Dr(n)⊗Dr(k1)⊗ · · · ⊗Dr(kn)→ Dr(k1 + · · ·+ kn)

is given for c ∈ Dr(n) and ci ∈ Dr(ki) by

c ◦ c1 ⊗ · · · ⊗ cn :
n∐
i=1

ki∐
j=1

Di,jr → Dr

such that the restriction to one little disk is given by the composition

(c ◦ c1 ⊗ · · · ⊗ cn)|Di,jr = c(ci)

The symmetric group Σn acts on Dr(n) by permuting the order of the n disks.
More precisely, let σ ∈ Σn and c = (c1, . . . , cn) ∈ Dr(n) then

c ∗ σ = (cσ(1), . . . , cσ(n))

The unit element 1 is the identity 1 = id : Dr → Dr.

Remark 1.2.10. The cohomology of little disks operads is known. In fact,
the spaces Dr(n) is homotopy equivalent to Cr(n), where

Cr(n) = {(x1, . . . , xn) ∈ Rrn;xi 6= xj for i 6= j, 0 < i, j ≤ n}

is the configuration space of n points in Rr.
The cohomology of Cr(n) has been computed by Arnold [1] in the case

r = 2 and Cohen [9] for r ≥ 3. The ring H∗(Cr(n)) is given by

H∗(Cr(n)) = Z[eαi,j ]/∼

where 0 < i, j ≤ n, Z[eαi ] is the free commutative graded algebra generated
by eαi,j of degree r − 1 and ∼ are the relations

• eαi,j = (−1)reαj,i

• e2
αi,j = 0 if r is odd

• eαa,beαb,c + eαb,ceαc,a + eαc,aeαa,b = 0

This last relation is called in the literature Arnold relation.
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We introduce the notion of formality for operads.

Definition 1.2.11. An operad O is called formal if there is a zig-zag of
morphisms of operads which induce an isomorphism in homology

O ← · · · → H(O).

The following result holds for LDO.

Theorem 1.2.12 ([25], ([27])). The little disks operads are formal.

Remark 1.2.13. A brief history of this result appears in [25]. The first at-
tempt on the proof is due to Getzler and Jones, and Tamarkin. Later, Kontse-
vich [25] gave a sketch of the proof, that was finally stated fully by Lambrechts
and Volić in [27]. A brief description of this result will be discussed at the end
of Section 2.1.

1.2.3 The partial operad of configuration spaces

Definition 1.2.14. ([31]) A partial operad, O in a based category C is a
sequence of objects O(n) in C, n ∈ N, with a composition

◦ : O(m)⊗O(n1)⊗ · · · ⊗ O(nm)→ O(n1 + · · ·+ nm)

defined only for a subset of composable elements in O(m)⊗O(n1)⊗· · ·⊗O(nm)
that satisfy the associativity, unit and equivariance axioms of the definition
of operad.

Definition 1.2.15. ([31]) Let Cr(n) be the configuration space of n points
over Rr

Cr(n) = {(x1, . . . , xn) ∈ Rrn;xi 6= xj if i 6= j}

where 1 ≤ i, j ≤ n.
We define Cr to be the collection {Cr(n)}n for every n ∈ N with a compo-

sition
◦ : Cr(n)⊗ Cr(k1)⊗ · · · ⊗ Cr(kn)→ Cr(k1 + · · ·+ kn)

given for every

(a, x1, . . . , xn) ∈ Cr(n)⊗ Cr(k1)⊗ · · · ⊗ Cr(kn)

where a = (a1, . . . , an) by

x ◦ (x1, . . . , xn) = ((a1, . . . , a1)︸ ︷︷ ︸
k1 times

+x1, . . . , (an, . . . , an)︸ ︷︷ ︸
kn times

+xn)

The unit 1 ∈ Cr(1) is the set with one point and the unit morphism is

µ : {0} → Cr(1) = Rr

.
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Remark 1.2.16. ([31]) Cr is a partial operad. The axioms of being an operad
are satisfied, but the composition

x ◦ (x1, . . . , xn) = ((a1, . . . , a1)︸ ︷︷ ︸
k1 times

+x1, . . . , (an, . . . , an)︸ ︷︷ ︸
kn times

+xn)

is not necessarily in Cr(k1 + · · ·+kn) since al+(xl)i is not necessarily different
from ah + (xh)j for i 6= j and 1 ≤ h, l ≤ n.

Remark 1.2.17. The partiality in the definition of configuration space op-
erads can be avoided by considering FMM (n), the Fulton and McPherson
compactification of configuration spaces of n points over M [14]. This can be
assembled to form an operad, called Fulton and McPherson-operad, that is
weak equivalent to the little disks operad [15].

1.3 Spiders

This section introduces the mathematical notion of spider, a construction that
will be used in the next chapters.

The objects are considered to be in the category of real vector spaces,
therefore we specialize to operads in this category.

Definition 1.3.1. ([10]) An operad O in the category of real vector spaces,
also called linear operad, is a collection of real vector spaces O(n), n ≥ 1
together with a a right action of the symmetric group Σn over O(n) and
composition law

◦ : O(n)⊗O(k1)⊗ · · · ⊗ O(kn)→ O(k1 + · · ·+ kn)

that satisfy the associativity and equivariance axioms, and a unit 1O ∈ O[1]
satisfying the unit axioms.

Let an m-star ∗m be a tree with m + 1 vertices and m edges such that
there is a vertex v that is a common vertex for every edge. A labeling of the
edges in a graph Γ, is a bijection

L : E(Γ)→ {0, . . . , |E(Γ)|}

where |E(Γ)| is the cardinality of the set of edges in Γ. Therefor a labeled
m-star is an m-star together with a function L.

We can now define a spider as follows.

Definition 1.3.2. ([10]) Let O be a cyclic operad, L the set of labelings of
an m-star, m ≥ 2. OS[m], the space of O-spiders with m legs is the space of
coinvariants

OS[m] = (⊕LO(m− 1))Σm

The symmetric group Σm acts by σ(oL) = σ(o)σL for some σ ∈ Σm and
o ∈ O(n− 1).
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λ2

λ1λ6

λ5

λ4 λ3

3

2
0

5

4
1

Figure 1.4: A labeled 6-star. In the picture λi are the edges, while the integers k,
k = 0, . . . , 5 the labelings of the edges [10].

We can think of a spider as superposition of an element of the cyclic operad
O(m− 1) and an m-star, where the labeling of the m-star correspond to the
inputs and output of the operad. Dividing out by the action of Σm erases the
labelings.

λ2

λ1λ6

λ5

λ4 λ3

Figure 1.5: A spider with six legs. Dividing out by the action of Σ6 erases the labelings
[10].

The composition of operads induces a composition in the space of spiders,
picturesquely called mating law.

Definition 1.3.3. ([10]) Let

OS =
⊕
m≥2

OS[m]

be the space of O-spiders.
Let S1 and S2 be two spiders with m and n legs respectively and the

elements in the corresponding operads o1 ∈ O(m) and o2 ∈ O(n). The spider

(S1, λ) ◦ (µ, S2)

obtained by mating S1 and S2 along the legs λ and µ corresponds to the
composition

o2 ◦ o1 ⊗ 1O · · · ⊗ 1O
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obtained by composing o1 and o2. The composition is carried out by choosing
a labeling L1(λ) = 0 and L2(µ) = 1 so that λ is the output of o1 and µ
the first input of o2. The edges in the underlying graph of the spiders that
correspond to λ and µ are contracted, the remaining edges renamed and the
inputs are relabeled so that the legs of S1 are inserted in their order, into
the ordered set of legs of S2, at the former place of µ. The mated spider
S = (S1, λ) ◦ (µ, S2) is the equivalence class under the action of Σm+n−2 of
the result of this operation.

The following picture adapted from [10] illustrates the composition in the
arachnid world.

λ = λ2

λ1λ6

λ5

λ4 λ3

S1 λ2

λ1

µ = λ4

λ3

S2

Figure 1.6: The spiders S1 and S2 to be mated along the legs λ and µ.[10]

λ4λ8

λ7

λ6 λ5

S1 λ2

λ1

λ3

S2

λ2

λ1

λ4λ8

λ7

λ6 λ5λ6

λ3

S

Figure 1.7: The spiders S1 and S2 mating along the legs λ and µ. In the second
picture, the mated spider after the contraction of the edge.[10]



Chapter 2

Graph cohomologies

2.1 Kontsevich’s graph cohomologies

The graph complex GC was introduced by Kontsevich [24][23] in the context
of knots invariants and it was used to compute the homology of infinite di-
mensional Lie algebras. In the next paragraph we will describe two ways of
defining GC and we give some results about its homology. In the proof of the
formality of little disks operads Kontsevich [25] introduced other graph com-
plexes, these will be constructed in the last paragraph of the section called
Formality of the little disks operads.

2.1.1 The complex GC

In this section we present the graph complex defined by Kontsevich in [24].
We will refer for the definition and results to [24]. We call the graph complex
GC, following the notation used by Willwacher in [40].

Definition 2.1.1. [24] Let GCk be the abstract vector space over Q spanned
by equivalence classes of pairs (Γ, o) where Γ is a connected non empty graph
with k vertices, such that all vertices have valence ≥ 3 and o is the orientation
of Γ.

• If the manifold M has odd dimension, o is the orientation of the real
vector space RE(Γ) ⊕H1(Γ,R). The following relation holds

(Γ,−o) = −(Γ, o).

• If M is even dimensional, o is the orientation of RE(Γ) and

(Γ, o) = Sgn(σ)(Γ, o′)

where o′ differ from o by a permutation σ.

13
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GC =
⊕
k

GCk

The differential d : GCk → GCk−1 is given by

d(Γ, o) =
∑

e∈E(Γ)

(Γ/e, oΓ/e)

where Γ/e is the graph obtained from Γ by contracting the edge e. oΓ/e is

the induced orientation, defined to be the natural orientation on RE(Γ)\e ⊕
H1(Γ/e,R), in the odd case, while the induced orientation is the orientation
on RE(Γ)\e in the even case.

Definition 2.1.2. ([40]) The full graph complex fGC is the graph complex
given by linear combinations of equivalence classes of graphs, not necessary
connected and without any valence condition, with differential and orientation
defined as before. We have that GC is a subcomplex of fGC.

Remark 2.1.3. If follows from the definition that in the odd case changing
the direction of one edge changes the sign of the orientation and

(Γ,−o) = −(Γ, o).

It follows that graphs with loops are zero.

In the even case the relation

(Γ, o) = Sgn(σ)(Γ, o′)

implies that graphs with double edges are zero.

Remark 2.1.4. The differential preserves the dimension of H1(Γ), so the
complex GC decomposes into the direct sum of subcomplexes CGχ given by
the graphs with the same Euler Characteristic χ. In [23] Kontsevich denotes
these complexes by Gm∗ where χ = 1−m.

Remark 2.1.5. ([41]) The complex (GC, d∗), where d∗ is the dual differential
carries the structure of a dg Lie algebra. The differential d∗ is defined by

d∗(Γ) =
∑

v∈V (Γ)

split(Γ, v).

Here split(Γ, v) is the operation that replaces the vertex v by two vertices
connected by an edge and summing over all ways of reconnecting the edges
incident at v to the two new vertices. Let n be an integer, one can define
GCn to be the differential graded Q-vector space generated by isomorphism
classes of graphs with an orientation. The orientation is defined as before, with
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the distinction between n being even or odd. The number n determines the
cohomological degree of a graph. A graph γ ∈ GCn has degree

|γ| = (|V (γ)| − 1)n− |E(γ)|(n− 1)

here |V (γ)| and |E(γ)| are the cardinalities of the set of vertices and edges.
The Lie bracket is defined by inserting one graph in the vertices of the other
and vice versa

[γ, ν] = γ • ν + (−1)|γ||ν|ν • γ

where γ • ν =
∑

v∈V (γ) (inserting ν in v).

Remark 2.1.6. The homology of CG is notoriously hard to compute. Most
of the work in this direction is due to Kontsevich and Willwacxher [40] and
[20]. Some computations can be found in the article by Barnatan and McKay
[11]. A feature characterizing the cohomology of GCn is that it depends on
the parity of n since

Hj(GCχ
n+2) = Hj+2k(GCχ

n)

where k is the number of cycles in the graphs with Euler characteristic χ [41].
A remarkable result due as well to Willwacher [40] is that

H0(GC2) = grt1

where grt1 is the Grothendieck-Teichmüller Lie algebra, moreover
H1(GC2) ∼= K and H≤1(GC2) = 0.

2.1.2 The spiders definition

We present here the construction of GC given by Conant and Vogtmann in
[10]. This definition corresponds to the one given by Kontsevich described
above in the case where the manifold M is odd dimensional, with the difference
that here the vertices in the graphs need to have valence ≥ 2.

Let Γ be a graph, for every edge e ∈ E(Γ) we denote by e+, e− the half
edges composing e.

Definition 2.1.7. ([10]) An orientation of a graph is determined by a choice
of an ordering of the vertices and the half edges. Given a graph Γ with n
vertices and m edges we then specify the orientation of Γ,

o(Γ) = Sgn(v1, . . . , vn, e
+
1 , e

−
1 , . . . , e

+
m, e

−
m)

to be the equivalence classes of permutations up to sign of the word obtained
by ordering the vertices and then the half edges of Γ.

Remark 2.1.8. As proved in [10], this definition of orientation is equivalent
to the definition given by Kontsevich as orientation of the vector space RE(Γ)⊕
H1(Γ,R).
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Definition 2.1.9. ([10]) An O-graph G is an oriented graph without univalent
vertices such that every vertex is colored by an O-spider in a way that the
half edges incident to the vertex are identified with the legs of the spider.

The graph cohomology chain complex is defined as follows:

Definition 2.1.10. ([10]) For all k in N the group OGk is the quotient of the
vector space spanned by the O-graphs with k vertices

OGk = R{O-graphs with k vertices}/relations

where the relations are given by:

• (Orientation) o(−Γ) = −o(Γ)

• (Vertex linearity) If a vertex v in Γ is colored by an element Sv = aF+bT
a, b ∈ R and S, T in OS[m] then Γ = aΓS + bΓT where ΓS and ΓT are
obtained by coloring v by S and T respectively.

Given an O-graphs G and given an edge e in the underlying graph Γ we
define a new O-graphs Ge as follows. If e is a loop then Ge is zero. Otherwise,
if e is not a loop, let Γ/e the graph obtained from Γ by collapsing the edge e.
The induced orientation o(Γ/e) is defined by:

Definition 2.1.11. ([10]) Let e be an edge in E that is not a loop, oriented
so that vi is the source and vj the target, and let Γ have an orientation given
by o(Γ) = Sgn(vi, vj , . . . , vn, e1, . . . , em). Then Γ/e has an induced orientation
o(Γ/e) = Sgn(vi, v̂j , . . . , vn, e1, . . . , ê, . . . , em), obtained by removing the target
vertex and the edge e.

Then the O-graphs Ge has Γ/e as underlying graph, orientation o(Γ/e) and
the vertices are colored as follows. The vertices that are not in e are colored
in the same way as in G, while suppose that v and w are the vertices in e and
they are colored by the spiders S and T then the vertex formed by collapsing
e is colored by the spider obtained by mating of the spiders S and T along
the legs of the spiders corresponding to the half edges of e.

Definition 2.1.12. ([10]) The boundary operator δ : OGk → OGk−1 is defined
by

δ(G) =
∑

e∈E(Γ)

Ge.

The graph chain complex is (OG, δ)

OG =
⊕
k

OGk,

together with the differential.
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Remark 2.1.13. If O is a commutative cyclic operad, the vector spaces
O[n] = R are 1-dimensional and the action of the symmetric group is trivial.
The composition law is given by the multiplication R×R→ R. An O-spider is
given by an m-star weighted by a real number, and mating two spiders gives
rise to a third spider weighted by the product of the weights of the first two.
In this case OG corresponds to the complex GC.

2.1.3 Formality of the little disks operads

In [25] Kontsevich proves that the little disks operad is formal. In the proof
he introduces various graph complexes, of which we will give here a short
description and we show how GC comes into the picture. We refer to [40], [8]
and [19] for the construction of the complexes.

Definition 2.1.14. ([19]) Let Gran(N) be the commutative differential graded
algebra generated by ea,b, a, b ∈ {1, . . . , N} of degree n− 1.

Gran(N) = (Z[ea,b]/e
2
a,b = 0, ea,b = (−1)neb,a; d = 0)

It can be interpreted as the commutative differential graded algebra spanned
by graphs without loops or multiple edges, with N vertices, where the edges
are the generators ea,b of degree n − 1. The product Gran(N) ⊗ Gran(N) →
Gran(N) consists of gluing two graphs together along their vertices. Moreover,
Gran(N) for N ∈ N assembles to form a cooperad. The cooperadic structure
is given by

Gran(n)→ Gran(m)⊗Gran(k1)⊗ · · · ⊗Gran(km)

and it sends a graph Γ to
∑

Γ′ ⊗ Γ1 ⊗ · · · ⊗ Γk where the sum runs over all
(k+1)-tuples of graphs such that when each graph Γi is inserted at the vertex
i of Γ′, there is a way of reconnecting the loose edges such that one obtains Γ
[8].

The next complex is defined with the technique of operadic twisting. We
will define it combinatorially in terms of graphs, without explaining the con-
struction behind, since it would go out of the scope of this thesis. For the
detail of twisting an operad we refer to Appendix I in [40].

Definition 2.1.15. ([19]) We define TwGran(N) to be the differential graded
module spanned by graphs with two kind of vertices:N vertices called external,
and some unlabeled internal vertices. The edges have degree n − 1 and the
internal vertices have degree −n. The differential is given by

d(Γ) =
∑

e∈E(Γ)

±Γ/e

where e is an edge in Γ connecting an internal vertex to another vertex of
either kind. The sign in the differential is given by the orientation of the
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graph defined as in the Definition 2.1.1, with distinction between n being odd
or even. The product of two graphs glues them along their external vertices.
Moreover, TwGran has the structure of a coopered.

Let Graphn(N) ⊂ TwGran(N) be the subcomplex spanned by graphs with
all internal vertices at least trivalent and and with no connected component
consisting entirely of internal vertices.

This last result is due to Kontsevich [25], and Lambrechts and Volić [27].

Theorem 2.1.16. Consider FMn, the Fulton and McPherson compactifica-
tion of the configuration space. There is a map of cooperads

H∗(Dr(n))← Graphsn → Ω∗PA(FMn)

that is a zigzag weak equivalence.

The result follows from the fact that the Fulton and McPherson operad
FM is formal, so for all n FMn

∼= Ω∗PA(FMn), and that it is weakly equivalent
as topological operad to the little disks operad Dr (Propostion 5.6 [27]).

Remark 2.1.17. The Lie algebra (GC, d∗), discussed in Remark 2.1.5 acts
on Graphn, as follows: let γ be an element in GCn and Γ in Graphsn, there
is an element

Γ ◦ γ ∈ Graphsn

given by the contraction of subgraphs of shape γ in Γ (page 1255 in [41]).

2.2 Baranovsky-Sazdanović’s graph cohomology

2.2.1 The complex CBS(Γ)

This section presents the graph complex defined by Baranovsky and Saz-
danović in [2]. Their definition is inspired by the work by Helme-Guizon and
Rong [16], whose construction develops from the cohomology theory defined by
M. Khovanov in [21]. There he associates to each link a family of cohomology
groups whose Euler characteristic is the Jones polynomial of the link. Helme-
Guizon’s and Rong’s graph cohomology expands the Khovanov’s definition
associating to each graph, graded cohomology groups whose Euler character-
istic is the chromatic polynomial of the graph. Baranovsky and Sazdanović
in [2] prove that there is a spectral sequence that relates the graph cohomol-
ogy defined by Helme-Guizon and Rong with the cohomology of configuration
spaces, verifying a conjecture posed by Khovanov.

We give here the definition of the graph cohomology complex. We refer to
[2] for the definitions and the notation with the exception of the notation of
the complex that we will call CBS(Γ). Then, we state some results relating the
complex to the homology of configuration spaces.
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Let A be a graded commutative algebra over a commutative ring R, and
assume that A is a projective R-module. Let Γ be a finite graph, V = V (Γ)
be the set of vertices and E(Γ) the set of edges. We choose an order on the
vertices. This gives an orientation on every edge α in E(Γ), if α connects the
vertices i and j and i ≤ j, α : i→ j. For any subset S of E(Γ), we denote by
[Γ : S] the subgraph that has as vertices the same vertices of Γ and as edges
the edges in S, we denote by l(S) the number of connected components of
[Γ : S].

Definition 2.2.1 ([2]). Let Λ be an exterior algebra over R with generators
eα, α ∈ E(Γ), and eS be the exterior product of eα, α ∈ S, ordered with the
lexicographic order of the pair (i, j) where α : i→ j.

The bigraded complex, that we will here denote by CBS(Γ), is defined as

CBS(Γ) = Λ⊗A⊗n/eα ⊗ (a[i]− a[j]),

the algebra Λ⊗ A⊗n quotient by the relation eα ⊗ (a[i]− a[j]), where a ∈ A,
α : i→ j ∈ E(Γ) and a[i] denotes the element 1⊗i−1 ⊗ a⊗ 1⊗n−i ∈ A⊗n. The
complex has a bigrading given by the sum of the grading of the elements eα of
bidegree (0, 1) and the elements 1⊗a1⊗· · ·⊗an with bidegree (

∑n
i=1 degA ai, 0),

so the degree of eS ⊗ a1 ⊗ · · · ⊗ an in CBS(Γ) is (
∑n

i=1 degA ai, |S|).
The differential of degree (0, 1) is given by the exterior product

∂ =
∑

α∈E(Γ)

eα

Remark 2.2.2. The assumption of A be a projective R-module is used in
the proof of the convergence of the spectral sequence. We refer to [2] for the
definition of the spectral sequence and the proof.

Remark 2.2.3. The complex CBS(Γ) is isomorphic to⊕
S⊆E(Γ)

eS ⊗Al(S).

That is for every n ∈ N

CnBS(Γ) =
⊕

S⊆E(Γ),|S|=n

eS ⊗Al(S).

For S ⊂ E(Γ), each term ai of the element eS ⊗ a1 ⊗ · · · ⊗ al(S) ∈ Al(S),
corresponds to a component in [Γ : S]. In the case S = ∅, the components of
[Γ : ∅] are the vertices in Γ. We can construct a map

φ : (Λ⊗A⊗n/∼)→
⊕

S⊆E(Γ)

eS ⊗Al(S)
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such that if α is an edge in E(Γ), α : i→ j, then

φ(eα ⊗ a1 ⊗ · · · ⊗ an) = eα ⊗ a1 ⊗ · · · ⊗ (−1)τaiaj ⊗ · · · ⊗ al(α).

The terms ai and aj are multiplied with a sign that is the Kozul sign given
by the permutation in the tensor product that brings aj close to ai, here
l(α) = n− 1. The inverse is given by

φ−1(eα ⊗ a1 ⊗ · · · ⊗ (−1)τaiaj ⊗ · · · ⊗ an−1)

= eα ⊗ a1 ⊗ · · · ⊗ (−1)τaiaj ⊗ · · · ⊗ 1⊗ · · · ⊗ an−1

where 1 is in the position j. Then, it is enough to notice that

eα ⊗ a1 ⊗ · · · ⊗ (−1)τaiaj ⊗ · · · ⊗ 1⊗ · · · ⊗ an−1

is in the same equivalence class of eα ⊗ a1 ⊗ · · · ⊗ an, since for a,b ∈ A,

a⊗ b = (a⊗ 1)(1⊗ b) ∼ (1⊗ a)(1⊗ b) = (1⊗ ab)

and
(a⊗ 1)(1⊗ b) ∼ (a⊗ 1)(b⊗ 1) = (ab⊗ 1).

Remark 2.2.4 ([2]). The differential ∂ : CkBS → C
k+1
BS induced by Φ on

C∗BS(Γ) =
⊕

S⊆E(Γ)

eS ⊗Al(S)

is

∂(eS ⊗ a1 ⊗ · · · ⊗ al(S)) =
∑

α∈E(Γ),l(S∪α)=l(S)

eαeS ⊗ a1 ⊗ · · · ⊗ al(S)

+
∑

α∈E(Γ),l(S∪α)=l(S)−1

(−1)τeαeS ⊗ a1 ⊗ · · · ⊗ ai · aj ⊗ · · · ⊗ al(S).

The first term of the sum represents the case where the edge α connects
two vertices of the edges in S that are in the same component. Therefore, the
number of components of [Γ : S] and [Γ : S∪α] are the same, so l(S) = l(S∪α).
The second term of the sum refers to the case where the edge α connects two
different components, so l(S ∪α) = l(S)− 1. Suppose that α : i→ j, and that
ah is the term corresponding to the component containing i, and ak to the
component containing j. Then τ is the Kozul sign given by the permutation
in the tensor product that moves ak to the position immediate to the right of
ah.

Example 2.2.5. Let Γ be K3, the complete graph with 3 vertices. The order
of the vertices induces an order on the edges given by the lexicographic order
E(K3) = {e0,1, e0,2, e1,2} and an orientation on the edges.
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1

20

Figure 2.1: The graph K3.

The chain CBS(Γ) in this case is the following

A⊗3 → A⊗2 ⊕A⊗2 ⊕A⊗2 → A⊕A⊕A→ A

The chain groups are given by

CBS(Γ)n =
⊕
|S|=n

A⊗l(S)

where S is a subset of E(Γ), and l(S) is the number of components of [Γ : S].
The picture shows the components of [Γ : S] with increasing cardinality of
S and the differential that adds every time an edge in [Γ : S], connecting its
components.
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Figure 2.2: An example of CBS(Γ) when Γ = K3, the complete graph with three
vertices.

Let a0 ⊗ a1 ⊗ a2 ∈ C0
BS , then

∂(a0 ⊗ a1 ⊗ a2)

= e0,1 ⊗ a0a1 ⊗ a2 + e1,2 ⊗ a0 ⊗ a1a2 + (−1)|a1||a2|e0,2 ⊗ a0a2 ⊗ a1



22 Chapter 2. Graph cohomologies

Notice that the fact that ∂2 = 0 is provided by the sign coming from the
graded commutativity of A. For example,

∂e0,1((−1)|a1||a2|e0,2 ⊗ a0a2 ⊗ a1)

= (−1)|a1||a2|e0,1e0,2 ⊗ a0a2a1 = e0,1e0,2 ⊗ a0a1a2

and

∂e0,2(e0,1 ⊗ a0a1 ⊗ a2) = e0,2e0,1 ⊗ a0a1a2 = −e0,1e0,2 ⊗ a0a1a2.

All the terms in ∂2 given by adding an edge ei and then ej cancel with the
terms given by adding the edges in opposite order, so ∂2 = 0.

2.2.2 Results about the homology of configuration spaces

As anticipated, the complex CBS is related to the homology of configuration
spaces depending on a graph, as defined by Eastwood and Hugget [12].

Let M be simplicial complex and Γ a graph as defined in the first section.
Let α : i→ j be an edge in E(Γ), Zα be the diagonal of the Cartesian product
Mn corresponding to the edge α,

Zα = {(m1, . . . ,mn) ∈Mn;mi = mj}

and
ZΓ =

⋃
α∈E(Γ)

Zα.

We define the graph configuration space of M dependent on Γ to be

C(M,Γ) = Mn\ZΓ.

If M is a manifold the definition corresponds to the generalized configuration
space depending on a graph studied by Eastwood and Hugget in [12].

Baranovsky and Sazdanović in [2] prove that CBS is the E1 page of a
spectral sequence converging to the cohomology of such configuration space.
This confirms a conjecture by Khovanov that there is a spectral sequence
between the graph homology defined by L.Helme-Guizon and Y. Rong and
the work by Eastwood and Huggett.

Theorem 2.2.6 ([2]). Assume that the cohomology algebra A = H∗(M,R) is
a projective R-module and that Γ has no loops or multiple edges. There exist
a spectral sequence with E1 term isomorphic to C∗BS which converges to the
relative cohomology H∗(Mn, ZΓ;R).

Remark 2.2.7 (Remark 4 [2]). When M is a compact R-oriented manifold of
dimension m, the relative cohomology groups H∗(Mn, ZΓ;R) are isomorphic
to the homology groups Hnm−∗(C(M,Γ);R) by Lefschetz duality.
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Moreover in the case where M is a Kähler manifold the following result
holds.

Remark 2.2.8 ([2]). If M is a compact Kähler manifold and the coefficient
ring R is the rationals Q the spectral sequence degenerates at page E2.





Chapter 3

Rational homotopy theory

3.1 Basic definitions and results

We recall here some basic definitions and results in homotopy theory that will
be needed in the following chapters. We refer to [36], [18] and [29].

Two topological spaces X and Y have the same homotopy type if there
are continuous maps f and g

f : X � Y : g

such that the compositions are homotopic to the identity maps on X and
Y , fg ∼ idY and gf ∼ idX . Homotopy theory is the study of properties
of topological spaces that depend on the homotopy type of the spaces, for
example the homology and cohomology groups or the fundamental group.

Rational homotopy theory is a variation of homotopy theory where the
properties of spaces are studied in their rationalization. For example the
groups Hi(X) and πi(X) can be rationalized in the vector spaces Hi(X,Q)
and πi(X) ⊗ Q. This leads to a loss of information, because the torsion sub-
groups are ignored, but it creates a theory where computations are easier to
carry out. We now describe the process in details.

Definition 3.1.1 ([18]). A simply connected space X is called rational if the
equivalent conditions are satisfied:

• the collection of the homotopy groups π∗(X) is a Q-vector space

• the reduced homology H̃∗(X,Z) is a Q-vector space

• the reduced homology of the loop space H̃∗(ΩX,Z) is a Q-vector space

The next definition and theorem show that a rational space X0 can be
associated to every simply connected topological space X.

25
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Definition 3.1.2 ([18]). Let X be a simply connected space. A continuous
map l : X → X0 is a rationalization of X if X0 is simply connected and
rational and

π∗(l) : π∗(X)⊗Q→ π∗(X0)

is an isomorphism.

Theorem 3.1.3 (1.5 [18]). Let X be a simply connected topological space.
There exists a relative CW complex (X0, X), with no zero-cells and no one-
cells such that the inclusion i : X → X0 is a rationalization. Moreover, such
space is unique up to homotopy equivalence, relative to X.

We then introduce the rational homotopy type of a simply connected topo-
logical space X. We recall the fact that two topological spaces have the same
weak homotopy type if they are connected by a zig-zag of morphisms between
them that induces an isomorphism in all homotopy groups.

Definition 3.1.4 ([18]). The rational homotopy type of a simply connected
space X is the weak homotopy type of its rationalization X0.

We can now redefine rational homotopy theory as the study of properties
of topological spaces that depend on the rational homotopy type of the spaces.

3.1.1 Commutative differential graded algebra

Definition 3.1.5. A commutative differential graded algebra, or in short
CDGA, is a graded algebra A over a ring R such that the multiplication

· : An ×Am → Am+n

is graded commutative, in the sense

a · b = (−1)|a||b|b · a

here | − | denotes the degree of the element −, and An denotes the set of
elements of degree n. Moreover, A is equipped with a differential d : An →
An+1 that makes A into a cochain complex. The differential satisfies the graded
Leibniz rule

d(ab) = d(a) · b+ (−1)|a|a · d(b)

Definition 3.1.6 (2.1 [29]). An oriented Poincarè duality algebra of dimen-
sion n is an algebra A over a field K together with a linear map ε : Ak → K
such that the induced bilinear forms

Ak ⊗An−k → K

a⊗ b 7→ ε(a · b)

are non degenerate.
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Definition 3.1.7 (2.2 [29]). An oriented Poincarè duality CDGA is a CDGA
(A, d) such that the underlying algebra (A, ε) is an oriented Poincaré duality
algebra and ε(dA) = 0.

Poincaré duality CDGAs have applications in computing the rational ho-
motopy type of configuration spaces, as we will see in the next section. In [29]
Lambecht and Stanley prove the following results.

Theorem 3.1.8 (1.1 [29]). Let k be a field of any characteristic and let (A, d)
be a CDGA over k such that H∗(A, d) is a simply connected Poincaré duality
algebra of dimension n. Then there exists a CDGA (A′, d′) weakly equivalent
to (A, d) and such that A′ is a simply-connected algebra satisfying Poincaré
duality in dimension n.

Definition 3.1.9 ([30], [28]). Let (A, ε) be an oriented Poincaré duality al-
gebra. The diagonal class ∆ is the element

∆ =
∑
i

(−1)|ai|ai ⊗ a∗i ∈ A⊗A

where {ai}i is a basis for A and {a∗i }i the Poincaré dual basis with respect to
the orientation, that is

ε(ai · a∗j ) = δi,j

where δi,j is the Kroneker delta.

Remark 3.1.10. Let M be a closed oriented manifold of dimension m. Then
H∗(M) is a Poincaré duality algebra and there is a preferred generator [M ] ∈
Hm(M). Choosing a basis {ai}i for H∗(M) there is a Poincaré dual basis {a∗i }i
characterized by the equation

〈ai ∪ a∗j , [M ]〉 = δi,j

The diagonal class is the element of top degree in H∗(M)⊗H∗(M)

∆ =
∑
i

(−1)|ai|ai ⊗ a∗i .

3.1.2 Sullivan models

In the context of rational homotopy theory, we are interested in CDGA over
the rationals. In 1977, Sullivan [34] constructed a functor from the category
of topological spaces to the category of rational CDGA

APL : Top→ CDGAQ

such that if X is a simply connected space with rational homology of finite
type, then the rational homotopy type of X is encoded in any CDGA weakly
equivalent to APL(X). APL(X) is the CDGA of differential forms on X with
coefficients in Q.
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Definition 3.1.11 ([36]). A Sullivan algebra is CDGA of the form (ΛV, d),
where

• V = {V p}p≥1 and ΛV denotes the free graded commutative algebra on
V ;

• V =
⋃∞
k=0 V (k) where V (0) ⊂ V (1) ⊂ . . . is an increasing sequence of

graded subspaces such that d = 0 in V (0) and d : V (k) → ΛV (k − 1),
k ≥ 1.

Now we can define the Sullivan model.

Definition 3.1.12 ([36]). A Sullivan model for a CDGA (A, d) is a quasi
isomorphism

m : (ΛV, d)→ (A, d)

from a Sullivan algebra (ΛV, d). If X is a path connected topological space
then a Sullivan model for APL

m : (ΛV, d)
'−→ APL(X)

is called Sullivan model for X. A minimal Sullivan model is a Sullivan model
such that d(V ) ⊂ Λ≥2V .

Sullivan models encode the rational homotopy information of the space,
as the following results shows.

Remark 3.1.13. If (ΛV, d) be a Sullivan model for X then

H∗(ΛV, d) ∼= H∗(X;Q).

If X and Y are simply connected topological spaces with the same rational
homotopy type then APL(X) and APL(Y ) are weak equivalent. Moreover, X
and Y have the same rational homotopy type if and only if their Sullivan
minimal models are isomorphic. In fact, there is a bijection between the sets{

rational
homotopy types

}
←→

{
isomorphism classes of

minimal Sullivan algebras

}
.

Definition 3.1.14. We will call a rational model for X any CDGA (A, d)
weakly equivalent to APL(X), and so

H∗(A, d) ∼= H∗(X,Q).
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3.2 Rational and real homotopy type of
configuration spaces

Let X be a topological space. The ordered configuration space of n points in
X that we denote by C(X,n) is defined as

C(X,n) = Xn \
⋃

∆i,j

where ∆i,j = {(x1, . . . , xn) ∈ Xn : xi = xj}
We recall here the most important results about the rational homotopy

type of this space. We give first a general overview and then analyze more in
detail some constructions that will be needed later in this thesis.

3.2.1 Historical notes

The study of the rational homotopy type of configuration spaces C(X,n) dates
back to 1994 when Fulton and MacPherson [14] constructed a rational model
A.(X,n) for C(X,n), where X is a non singular, compact, complex variety.
This model depends on the cohomology ring H∗(X,Q), the orientation and
the Chern classes.

The same year, Kriz in [26] described a differential graded algebra E[n]
that is a rational model for C(X,n) and that is independent from the Chern
classes. He defined it as

E[n] = H∗(Xn,Q)[Ga,b]/∼

where Ga,b are generators of degree 2m− 1, a, b ∈ {1, . . . , n}, a 6= b and ∼ are
the relations

• Ga,b = Gb,a

• p∗a(x)Ga,b = p∗b(x)Ga,b, x ∈ H∗(X)

• Ga,bGb,c +Gb,cGc,a +Gc,aGa,b = 0,

and p∗a is the pullback of the projection pa : Xn → X. The differential is given
by

d(Ga,b) = p∗a,b∆

where ∆ is the class of the diagonal.
E[n] was described in the same time in the work by Totaro [37] and it

appeared to be isomorphic to the E2 page of the Larey spectral sequence of
the inclusion C(X,n) ↪→ Xn. The algebra E[n] will be here discussed in details
in Theorem 5.2.1.

Later, Lambecht and Stanley studied the rational models for configurations
spaces where X is a simply connected closed manifold. They showed that a
simply connected closed manifold always admits a Poincaré duality model A
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[29]. In 2004 they described the case k = 2, a configuration space of 2 points
in a manifold [28] and they defined a model for its rational homotopy type,
GA(2), that is

GA(2) = A⊗2/∆,

where ∆ is the diagonal class in A. In 2008 they presented a potential model
for the general case [30]. They conjectured that if X is a simply connected
m-manifold, GA(n) is a rational model for C(X,n), where GA(n) is defined as
follows.

GA(n) = A⊗n[Ga,b]/∼

where Ga,b are generators of degree m− 1, a, b ∈ {1, . . . , n}, a 6= b, and ∼ are
the relations

• Ga,b = (−1)mGb,a

• p∗a(x)Ga,b = p∗b(x)Ga,b, x ∈ A

• Ga,bGb,c +Gb,cGc,a +Gc,aGa,b = 0,

here p∗a is the pullback of the projection pa : Xn → X. The differential is given
by

d(Ga,b) = p∗a,b∆

where ∆ is the class of the diagonal.
In 2019 Idrissi [19] proved the conjecture true for the real homotopy type

and manifolds of dimension at least 4. Campos and Willwacher few years
before [8] constructed a real model for the configuration space of points in a
manifold.

3.2.2 A real model for configuration spaces

In [30] Lambecht and Stanley conjectured that GA is a rational model for
configuration spaces of points C(X,n) for any simply connected manifold. In
[19] Idrissi gives a positive answer to the problem in the case of real homotopy
type. We will give a brief description of the construction leading to the proof
since we will refer to it later in this thesis.

The proof is inspired by the one of formality of little disks operad that
we described at the end of Section 2.1 and it involves variations of the graph
complexes defined there.

Let M be a manifold of dimension n, A a Poincarè duality CDGA with
its linear map ε, and Ω∗PA(M) the CDGA of piecewise algebraic differential
forms on M .

Theorem 3.2.1 ([30]). There exists a zigzag of weak equivalences of CDGAs

A
ρ←−− R σ−−→ Ω∗PA(M)
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such that:

• A is a Poincaré duality CDGA of dimension n;

• R is a quasi-free CDGA generated in degrees ≥ 2;

• for all x ∈ R, ε(ρ(x)) =
∫
M σ(x)

Definition 3.2.2 ([19]). Let Gra	R(N) be the differential graded commutative
algebra spanned by graphs with loops with N vertices such that every vertex
is colored by an element in R.

Gra	R(N) = (R⊗N ⊗ Z[ea,b]/ea,b = (−1)neb,a; d(ea,b) = p∗a,b(∆))

where ea,b are edges in the graphs and their degree is n − 1. One can define
∆ to be the inverse image under ρ ⊗ ρ of the class of the diagonal in A, as
described in Proposition 3.3 in [19]. For N ∈ N Gra	R(N) assemble to form
Hopf right Gra	n -comodule. Here Gra	n is the cooperad Gran where loops are
allowed.

The second step is to construct the twisted operad TwGra	R, analogously
to the construction of TwGran in Section 2.1.

Definition 3.2.3 ([19]). TwGra	R(N) is the dg module spanned by graph
with two kind of vertices: N external vertices and unlabeled internal vertices.
All vertices are labeled by element in R. The edges have degree n − 1 while
the internal vertices have degree −n. The differential is given by

d = d1 + d2 + dR

where dR is the differential coming from R, d2(ea,b) = p∗a,b(∆) is the differential
coming from GraR(N) and d1 is defined as

d1(Γ) =
∑

e∈E(Γ)

±Γ/e

and e is an edge in Γ connecting an internal vertex to another vertex of either
kind, multiplying the labels. As Gra	R(N), TwGra	R assemble to form Hopf
right TwGra	n -comodule. We denote by TwGraR ⊂ TwGra	R the sub CDGA
spanned by graphs with no loops.

The last step of the proof is to define a restriction of TwGraR. We need
first to define the partition function.

Definition 3.2.4. The partition function Zφ : fGCR → Z is the restriction of
w : TwGraR → Ω∗PA(FMM ) to fGCR = TwGraR(0). The map w is defined

as follows:

w(Γ) =

∫
pN :FM(N+I)→FM(N)

w′(Γ) = (pN )∗(w
′(Γ))

where FMM (n) is the Fulton-McPherson operad, pN the projection and I the
number of internal vertices.
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Definition 3.2.5 ([19]). Let

fGCR = TwGraR(0)

and let Rφ be the fGCR -module of dimension one induced by Zφ : fGCR → R.

We define GraphsφR to be

GraphsφR = Rφ ⊗fGCR TwGraR(N)

GraphsφR is spanned by graphs in TwGraR with no component containing only
internal vertices. The orientation on the graphs is given as in the Definition
2.1.1, with distinction between odd and even case.

The main result of the paper is the following

Theorem 3.2.6 (Theorem 4.14 [19]). Let FMM (N) be the Fulton and McPher-
son compactification of the configuration space of N points over M . For all
N ∈ N there is a zigzag sequence of quasi-isomorphisms of CDGA

GA(N)← · · · → GraphsφR → Ω∗PA(FMM (N)).

Since FMM (n), the Fulton and McPherson compactification of the con-
figuration space is homotopy equivalent to C(M,n) [14] then if follows that
Ω∗PA(FMM (n)) ∼= Ω∗PA(C(M,n)) and so we can conclude that GA is a real
model for C(X,n).



Chapter 4

Relation between graph
complexes

4.1 Introduction

In this chapter we build a chain map between the complex defined by Bara-
novsky and Sazdanović in [2], described in Section 2.2, and the Kontsevich’s
graph complex fGC. In the first sections we define a chain complex that is
a variation of fGC. This complex, differently from fGC, depends on a graph
Γ and has ordered vertices colored by elements in a graded algebra, that is
the cohomology of a manifold M . However, similarly to fGC, it has two dif-
ferent definitions according to the parity of an integer n, that stands for the
dimension of the manifold M . We denote this intermediate complex by K(Γ).
In Section 4.3 we build a map between CBS(Γ) and K(Γ) for the even and odd
case. Then, in Section 4.4 we introduce the complex K/Σ(Γ) that differs from
K(Γ) by having unordered vertices, and we build a map between K(Γ) and
K/Σ(Γ). In the last section we describe the relation between this complex and
Kontsevich’s graph complex fGC.

4.2 A variation of fGC: the chain K(Γ)

We define here the chain complex K(Γ). As anticipated, it is a variation of
Kontsevich’s complex fGC, depending on a graph Γ with ordered vertices
colored by elements in a graded algebra. Kk(Γ) is the vector space generated
by graphs Γ/S with k vertices obtained from Γ by contracting S, a subset
of E(Γ). The definition depends on an integer n and varies according to the
parity of this number.

Definition 4.2.1. Let M be a compact manifold of dimension n and A a
k-CDG algebra that is a model for the cohomology of M with coefficient in
k, where k is a field of characteristic 0. Let Γ be a graph without loops or

33



34 Chapter 4. Relation between graph complexes

multiple edges with an order on the vertices, that gives an orientation on every
edge α in E(Γ) in a way that, if α connects the vertices i and j and i ≤ j,
then α : i → j. Let S be a subset of E(Γ) such that S is a forest. We define
the chain K(Γ) to be

K(Γ) =
⊕
S⊂E

Γ/S ⊗A⊗l(S)

where Γ/S stands for the k vector space generated by Γ/S, l(S) is the number
of components of [Γ : S]. For every k ∈ N Kk(Γ) we have

Kk(Γ) =
⊕

S⊂E,|S|=k

Γ/S ⊗A⊗l(S)

We have the following two cases:

• If n is odd, we assign to the graph Γ the orientation o as defined in
Definition 2.1.7, that is given by a choice of an order on the vertices and
half edges. Let e be an edge in Γ, to the graph Γ/e is assign an induced
orientation as defined in Definition 2.1.11. In the odd case the following
relation holds

o(−Γ) = −o(Γ)

• If n is even we assign to Γ an orientation given by a choice of an order
on the set of edges and an induced orientation on Γ/e as in Definition
4.2.2. The following relation holds

σ(o)(Γ) = Sgn(σ)o(Γ)

where σ is a permutation of the set edges.

The differential δ : K(Γ)n → K(Γ)n+1 is defined by

d =
∑

e∈E(Γ)

de,

and for e ∈ Γ/S such that e : i→ j

de(Γ/S ⊗ a1 ⊗ · · · ⊗ al(S))

= o(Γ/S/e)(−1)νΓ/S ∪ e⊗ a1 ⊗ · · · ⊗ aiaj ⊗ . . . al(S∪e)

where (−1)ν is the Kozul sign given by moving aj to the immediate right of
ai in the tensor product.
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Figure 4.1: An example of K(Γ) where Γ = K3. According to the case being odd or
even the loops or the double edges are zero.

We can define the induced orientation in the even case in the definition of
GC as follows.

Definition 4.2.2. Let Γ be a graph and e an edge in E(Γ) that is not a loop. If
Γ has an orientation given by the order of the edges o(Γ) = Sgn(e1, . . . , e|E(Γ)|),
then Γ/e has an induced orientation o(Γ/e) = Sgn(ê, e1, . . . , e|E(Γ)|), obtained
by moving the edge e in the first place and then removing it.

Theorem 4.2.3. The differential d : Kk(Γ) → Kk+1(Γ) makes K(Γ) into a
chain complex, that is d2 = 0.

Proof. The fact that d2 = 0 is a consequence of the definition of orientation
of a graph. We therefore divide the proof in the odd and even case.

Suppose first that the complex is defined in the odd case. Let o(Γ/S)Γ/S⊗
a1⊗· · ·⊗al(S) be an element in Kk, let e and f be edges in Γ/S. Suppose that
they are not loops, we shall show that the orientation obtained by removing
from Γ/S first e and then f is the opposite of the orientation obtained by re-
moving first f and then e. Suppose without loss of generality that e is the edge
e : vi → vj and f : vk → vl and we give an orientation to the graph Γ/S in a
way that the edges vi, vj , vk, vl comes first in this order and the others follow.
We first remove e and then f , the removing of e implies the removing of the ver-
tex vj and Sgn(vi, vj , vk, vl . . . ) = Sgn(vi, vk, vl . . . ) = Sgn(vk, vl, vi . . . ) and re-
moving the edge f gives Sgn(vk, vi . . . ) = −Sgn(vi, vk . . . ). On the other hand
if we first remove f we obtain that Sgn(vi, vj , vk, vl . . . ) = Sgn(vk, vl, vi, vj , . . . )
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and deleting the vertex vl we have Sgn(vk, vi, vj , . . . ) = Sgn(vi, vj , vk, . . . ) =
Sgn(vi, vk, . . . ). Suppose now K(Γ) to be defined in the even case, then the
orientation of a graph is given by an ordering of the set of edges E(Γ). Suppose
that e and f are edges in Γ/S that are not loops. Let o(Γ/S) be the orien-
tation given by ordering the edges in increasing order, then o((Γ/S)/e) =
Sgn(e, e1, . . . , ek) = (−1)τo(Γ/S), where τ is the number of edges before e.
Removing then the edge f gives a sign (−1)ν , where ν is the number of
edges before f in Γ/S if f comes before e, otherwise we get a sign (−1)ν−1.
Now, removing first f and then e gives signs (−1)ν and (−1)τ−1 if f comes
before e, while (−1)ν and (−1)τ otherwise. So, if f comes before e then
o((Γ/S)/e/f) = (−1)τ+ν and o((Γ/S)/f/e) = (−1)τ+ν−1. If f comes after
e then o((Γ/S)/e/f) = (−1)τ+ν−1 and o((Γ/S)/f/e) = (−1)τ+ν .

This shows that terms in d2 given by removing first e and then f cancel
out with terms obtained by removing first f and then e. We can conclude that
d2 = 0.

4.3 From CBS(Γ) to K(Γ)

We will first discuss the case where M is an odd dimensional manifold and
then the case where it has even dimension.

Let Γ be a graph as before, M an odd dimensional manifold and A a
CDGA as before. We consider the chain complex CBS(Γ) as in Definition 2.2,

CBS(Γ) =
⊕

S⊂E(Γ)

eS ⊗A⊗l(S)

where eS denotes the product eS = ei1 ·. . .·ei|S| in increasing order of generators
eα corresponding to edges α in S, and l(S) is the number of components of
[Γ : S].

Definition 4.3.1. Let M be an odd dimensional manifold. We define the map
ψ : CBS(Γ)→ K(Γ) for all n ∈ N as the map of k-modules,

ψn : CnBS(Γ)→ K(Γ)n

eS ⊗ a 7→

{
0 if S is not a forest

ηΓ/SΓ/S ⊗ a otherwise

where ηΓ/S is the sign given by the induced orientation obtained by contracting
from Γ the edges in S in decreasing order. That is, if S = {e1, . . . , ek}, ηΓ/S

is the product of the induced orientations obtained by removing the edges in
S, ηΓ/S = o(Γ/ek) · o((Γ/ek)/ek−1) · . . . · o((Γ/ek/ek−1/ · · · /e2)/e1).

Theorem 4.3.2. ψ : CBS(Γ)→ K(Γ) is a chain map.
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Proof. Let S ⊆ E(Γ), |S| = n and l(S) = k, where l(S) is the number of
components of the graph [Γ : S]. If e is an edge in E such that S ∪ e is a forest
then

de(ηΓ/SΓ/S ⊗ a1 ⊗ · · · ⊗ ak)
= o((Γ/S)/e)ηΓ/SΓ/S ∪ e⊗ a1 ⊗ · · · ⊗ ak−1

where o((Γ/S)/e) ∈ {1,−1} is the sign given by the orientation of (Γ/S)/e
induced from Γ/S. By the relation o((Γ/e)/f) = −o((Γ/f)/e), we have that

o((Γ/S)/e)ηΓ/S = (−1)τηΓ/S∪e (4.1)

where τ is the number of edges smaller than e. The notation o((Γ/S)/e)ηΓ/S

indicates the sign of the graph Γ/en/en−1/ · · · /e1/e obtained by contracting
first the edges ei ∈ S in decreasing order and then the edge e in E(Γ) not
belonging to S, while ηΓ/S∪e is the sign of the graph Γ/en/en−1/ · · · /e/ · · · /e1

obtained from Γ by contracting the edges in S ∪ e in decreasing order. There-
fore,

o(Γ/S/e)ηΓ/SΓ/S ∪ e⊗ a1 ⊗ · · · ⊗ ak−1

= (−1)τηΓ/S∪eΓ/S ∪ e⊗ a1 ⊗ · · · ⊗ ak−1.

If e is an edge in Γ such that S ∪ e is not a forest then

de(ηΓ/SΓ/S ⊗ a1 ⊗ · · · ⊗ ak) = 0.

On the other hand, the sign given by applying the differential of the chain
CBS(Γ) to an element eS ⊗ a1 ⊗ · · · ⊗ ak ∈ CnBS(Γ) is

∂e(eS ⊗ a1 ⊗ · · · ⊗ ak)
= e · eS ⊗ a1 ⊗ · · · ⊗ ak−1 = (−1)τeS∪e ⊗ a1 ⊗ · · · ⊗ ak−1.

Again, τ is the number of edges smaller than e and the sign is given by
permuting the factor in the multiplication in the exterior algebra,

e · eS = e · e1 · . . . · en = (−1)τe1 · . . . · e · . . . · en = eS∪e.

Suppose that S ⊂ E(Γ) is a forest and e and edge that is not in S, we want
to prove the commutativity of the diagram

CBS(Γ)n
ψ //

∂e
��

K(Γ)n

de
��

CBS(Γ)n+1 ψ // K(Γ)n+1

eSa1 ⊗ · · · ⊗ ak
ψ //

∂e

��

ηΓ/SΓ/S ⊗ a1 ⊗ · · · ⊗ ak

de
��

eS∪ea1 ⊗ · · · ⊗ ak−1
ψ// ηΓ/S∪eΓ/S ∪ e⊗ a1 ⊗ · · · ⊗ ak−1
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Let first e : i→ j be an edge such that S ∪ e is a forest

de ◦ ψ(eS ⊗ a1 ⊗ · · · ⊗ ak)
= de(ηΓ/Sa1 ⊗ · · · ⊗ ak)
= o((Γ/S)/e)ηΓ/S(−1)νa1 ⊗ · · · ⊗ aiaj ⊗ · · · ⊗ ak−1

= (−1)τηΓ/S∪e(−1)νa1 ⊗ · · · ⊗ aiaj ⊗ · · · ⊗ ak−1,

where the last equality is due to 4.1. (−1)ν is the Kozul sign given by moving
aj in the tensor product. On the other hand,

ψ ◦ ∂e(eS ⊗ a1 ⊗ · · · ⊗ ak)
= ψ((−1)τeS∪e(−1)ν ⊗ a1 ⊗ · · · ⊗ aiaj ⊗ · · · ⊗ ak−1)

= (−1)τηΓ/S∪e(−1)νa1 ⊗ · · · ⊗ aiaj ⊗ · · · ⊗ ak−1

If S is a graph such that Γ/S has a loop then for every edge e in E(Γ) \ S
that is not a loop, Γ/S ∪ e also has a loop. Then

(de ◦ ψ)((eS ⊗ a1 ⊗ · · · ⊗ ak) = 0

and

(ψ ◦ ∂e)((eS ⊗ a1 ⊗ · · · ⊗ ak) = 0

since Γ/S = 0. The same equation holds in the case where e is a loop.

We now describe the even dimensional case.

Definition 4.3.3. Let M be an even dimensional manifold. The map φ :
CBS(Γ)→ K(Γ) is defined for all n ∈ N as the map of k-modules,

φn : C(Γ)nBS → K(Γ)n

eS ⊗ a 7→

{
0 if S is not a forest or Γ/S contains a loop

µΓ/SΓ/S ⊗ a otherwise

where µΓ/S is the sign of the induced orientation obtained by contracting from
Γ the edges in S in decreasing order.

Theorem 4.3.4. φ is a chain map.

Proof. Suppose that S is a subset of the set of edges E(Γ) that is a forest and
e an edge that is not in S, we want to prove the commutativity of the diagram

C(Γ)nBS
φ //

∂e
��

K(Γ)n

de
��

C(Γ)n+1
BS

φ // K(Γ)n+1
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eSa1 ⊗ · · · ⊗ ak
φ //

∂e

��

µΓ/SΓ/S ⊗ a1 ⊗ · · · ⊗ ak

de
��

eS∪ea1 ⊗ · · · ⊗ ak−1
φ// µΓ/S∪eΓ/S ∪ e⊗ a1 ⊗ · · · ⊗ ak−1

Note that, if S = {e1, . . . , es} the induced orientation µ(Γ/S) = (−1)lS , where
lS =

∑s
i=1 nei and nei are the number of edges in Γ before ei. The differential

∂e adds a sign that is (−1)nS,e , where nS,e is the number of edges before e
in S. The differential de gives a sign (−1)nΓ/S,e where nΓ/S,e is the number of
edges before e in Γ/S. Since the number of edges before e in Γ is the sum of
the number of edges before e in Γ/S and the number of edges before e in S,
that is ne = nΓ/S,e + nS,e. We have that

(−1)lS∪e(−1)nS,e = (−1)lS (−1)nΓ/S,e(−1)2nS,e ,

this implies

(−1)lS∪e(−1)nS,e = (−1)lS (−1)nΓ/S,e (4.2)

Suppose that S ∪ e is a forest, then

de ◦ φ(eS ⊗ a1 ⊗ · · · ⊗ ak) = de(µΓ/SΓ/S ⊗ a1 ⊗ · · · ⊗ ak)
= o((Γ/S)/e)µΓ/S(−1)νΓ/S ∪ e⊗ a1 ⊗ · · · ⊗ aiaj ⊗ · · · ⊗ ak−1

= (−1)nΓ/S,e+lS (−1)νΓ/S ∪ e⊗ a1 ⊗ · · · ⊗ aiaj ⊗ · · · ⊗ ak−1

where (−1)ν is the Kozul sign given by moving aj in the tensor product. On
the other hand,

φ ◦ ∂e(eS ⊗ a1 ⊗ · · · ⊗ ak)
= φ((−1)nS,e(−1)νeS∪e ⊗ a1 ⊗ · · · ⊗ aiaj ⊗ · · · ⊗ ak−1)

= (−1)nS,eηΓ/S∪e(−1)νa1 ⊗ · · · ⊗ aiaj ⊗ · · · ⊗ ak−1

= (−1)nS,e(−1)lS∪e(−1)νa1 ⊗ · · · ⊗ aiaj ⊗ · · · ⊗ ak−1

By the argument above 4.2, the last expression equals

(−1)lS+nΓ/S,e(−1)νa1 ⊗ · · · ⊗ aiaj ⊗ · · · ⊗ ak−1.

Let S be a graph such that Γ/S has a loop or a double edge. Then for every
edge e in E(Γ) \ S that is not a loop

(de ◦ ψ)(eS ⊗ a1 ⊗ · · · ⊗ ak) = 0

and

(ψ ◦ ∂e)(eS ⊗ a1 ⊗ · · · ⊗ ak) = 0

since Γ/S ∪ e is a graph with a loop or a double edge.
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4.4 From K(Γ) to KΣ(Γ)

We define KΣ(Γ) to be the complex K(Γ) such that the vertices are unordered
in the following sense:

Definition 4.4.1. Let Γ be a graph without loops or multiple edges with an
order on the vertices that gives an orientation on every edge α in E(Γ) in a
way that if α connects the vertices i and j and i ≤ j then α : i→ j. We define
KΣ(Γ) to be the complex given for every n ≥ 0 by the set of coinvariants

KnΣ(Γ) =
( ⊕
S⊂E(Γ),|S|=n

Γ/S ⊗Al(S)
)

Σl(S)

where Σl(S) acts on the vertices of Γ/S and to Al(S).
The differential is given by dΣ : KΣ(Γ)n → KΣ(Γ)n+1 such that

dΣ =
∑

e∈E(Γ)

dΣ,e

and for e ∈ Γ/S such that e : i→ j

dΣ,e([Γ/S]Σ ⊗ a1 ⊗ · · · ⊗ al(S))

= o((Γ/S)/e)(−1)ν [Γ/S ∪ e]Σ ⊗ a1 ⊗ · · · ⊗ aiaj ⊗ · · · ⊗ al(S∪e)

here (−1)ν is the Kozul sign given by moving aj to the immediate right of ai
in the tensor product. In particular, for x ∈ Kk(Γ)

dΣ,e([x]Σ) = [de(x)]Σ.

Theorem 4.4.2. The differential dΣ : KkΣ(Γ) → Kk+1
Σ (Γ) makes KΣ(Γ) into

a chain complex, that is d2 = 0.

Proof. The fact that d2 = 0 is a consequence of the definition of orientation
of a graph. This is defined as in the complex K(Γ), so the proof follows the
same argument as in Theorem 4.2.3.

Remark 4.4.3. Note that Γ and Γ′ are graphs that differ for a permutation
of the vertices σ ∈ Σ or an inversion of the direction of the edges, then
Γ′ = (−1)|σ|(−1)mΓ where |σ| is the sign of the permutation and m in the
number of flipped edges. Therefor, [Γ′]Σ = (−1)|σ|(−1)m[Γ]Σ

Remark 4.4.4. As for K, the definition of orientation of the graph varies
according to the parity of an integer n, that is the dimension of he manifold
M , such that A is a CGD model for M .

Moreover, we have a map of k-module for every n ∈ N

φn : Kn(Γ)→ KnΣ(Γ)

x 7→ [x]Σ
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Theorem 4.4.5. The map φ : K(Γ)→ KΣ(Γ) is a chain map.

Proof. We want to prove the commutativity of the following diagram

K(Γ)n
φ //

de
��

K(Γ)nΣ

dΣ,e

��
K(Γ)n+1 φ // K(Γ)n+1

Σ

Let S be a subset of E(Γ), x = Γ/S ⊗ a1 ⊗ · · · ⊗ al(S) an element in Kn and
let [x]Σ be a representative of the class of x with a specific orientation o.

Now, for an edge e in Γ/S,

dΣ,e ◦ φ(x) = dΣ,e([x]Σ) = [de(x)]Σ,

the last equality is a direct consequence of the definition of the differential in
K/Σ. On the other hand

φ ◦ de(x) = [o(x/e)de(x)]Σ = [de(x)]Σ.

4.5 The full graph complex fGCR

We describe in details the definition of fGCR, briefly mentioned in 3.2.5. The
full graph complex fGCR was defined by Idrissi in [19], and in a particular
case by Campos and Willawacher [8].

Let R be the CDGA introduced in Theorem 3.2.1. Then, the full graph
complex fGCR is the CDGA TwGraR(0). It is the free algebra generated by
unlabeled connected graphs whose vertices are colored by elements in R. The
product is given by the disjoint union of graphs. More precisely

fGCR =
⊕

Z
[[
γ ⊗A⊗V (γ)

]
ΣV (γ)

]
here ΣV (γ) is the the symmetric group on V (γ). As before, the definition
depends on a natural number n, equivalence classes of graphs are equipped
with orientation as defined in Definition 2.1.1, with the distinction between n
being even or odd. The edges have degree n− 1 while the vertices have degree
−n.

The differential is given by d : fGCk
R → fGCk+1

R is defined by

d =
∑
e

de + dsplit

such that e is an edge between i and j that is not a loop

de(γ ⊗ a1 ⊗ · · · ⊗ al) = o(γ/e)γ/e⊗ a1 ⊗ · · · ⊗ aiaj ⊗ · · · ⊗ al−1
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and
dsplit(γ ⊗ a1 ⊗ · · · ⊗ al) = p∗i,j(∆)γ r e⊗ a1 ⊗ · · · ⊗ al

where ∆ is the class of the diagonal as defined in Proposition 3.3. in [19], and
p∗i,j is the pull back of the projection.

Remark 4.5.1. The complex KΣ(Γ) can be interpret as a version the full
graph complex fGCR but relative to a graph and with differential given only by
the term

∑
e de. Note that fGCR depends on a natural number n, in addition

edges have degree n − 1 and vertices have degree −n. On the other hand,
KΣ(Γ) depends only on the parity of this number, and edges have degree −1.



Chapter 5

Graph cohomologies and
rational homotopy type of
configuration spaces

5.1 Introduction

In the present chapter we compare the graph cohomology complex CBS(Γ)
defined by Baranovsky and Sazdanović in [2] and described in Section 2.2, with
the model for the rational homotopy type given by Kriz and Totaro denoted
by E[n]. We first describe this commutative differential graded algebra, that
was briefly introduced in Section 3.2. Then we define Frobenius algebras and
give some technical results that will be later used. In Section 5.4 we define the
dual of the complex (CBS(Γ), ∂) that we will call (CBS(Γ)∗, δ). The complex
(CBS(Γ), ∂) is the E1 page of a spectral sequence converging to the relative
cohomology H∗(Mn, ZΓ, R), and by Remark 4 in [2], if the space M is a
compact oriented manifold of dimension m, the cohomology is isomorphic to
the homology Hmn−∗(C(M,Γ), R). In this case the dual complex (C∗BS(Γ), δ)
converges to the cohomology of the configuration space Hmn−∗(C(M,Γ), R).
On the other hand, the cohomology of the complex E[n] is the cohomology of
the configuration space. By Remark 2.2.8, if M is a compact Kähler manifold
and the coefficient ring is R = Q, the spectral sequence degenerates at page E2.
In this case the two complexes are quasi equivalent. In the following sections
we prove that there is in general a quasi equivalence between CBS(Γ)∗ and a
generalized version of E[n], called R(Γ, A). In the definition of this generalised
complex, a ring ∆[Ga,b]/ ∼ is involved. This is the exterior algebra over the
generator corresponding to the edges in the graph Γ quotient by a relation,
that we call the generalised Arnold relation. We denote this ring by R(Γ).
Section 5.5 describes it for a complete graph Kn, and in this case the relation
is the usual Arnold relation. We will call it R(Kn). In the following section we
define R(Γ, A) for an even dimensional manifold. It depends on a graph Γ not

43



44 Chapter 5. Graph cohomologies and rational homotopy type...

necessarily complete, and a Frobenius algebra A over any field. In the case of
an even dimensional manifold and a complete graph Γ, R(Γ, A) coincide with
the CDGA that Idrissi [19] proves to be a real model for C(M,n). Section
5.6.1 contains the main theorem of the chapter.

Theorem. Let S ⊆ Γ. The map

F : CBS(Γ)∗ → R(Γ, A)

F (GS ⊗ x) = [GS ⊗ x]

is a quasi equivalence.

In [35] Thomas and Felix prove that the mn suspension of the E2 term of
the Bendersky-Gitler spectral sequence is isomorphic to the E2 term of of the
Cohen and Taylor spectral sequence of which the Kriz ’s model is a special
case. Our theorem presents an alternative proof and generalization of this
result. In the last section we discuss the chain complex CBS(Γ)∗/I(Γ), where
I(Γ) is the ideal generated by the generalised Arnold relation and we show
that it is isomorphic to R(Γ, A).

All the sections in this chapter refer to the article by Bökstedt and Minuz
[6].

5.2 The Kriz model

In this section we describe the rational model for the configuration space of
points in a complex projective variety defined by Kriz in [26] and introduced
in Section 3.2.

Let X be a smooth projective variety over C and C(X,n) be the ordered
configuration space of n points in a space X,

C(X,n) = Xn \
⋃
i 6=j

∆i,j

∆i,j = {(x1, . . . , xn) ∈ Xn;xi = xj}. For a, b ∈ {1, . . . , n}, a 6= b, let p∗a :
H∗(X) → H∗(Xn) the pullback of the projection pa : Xn → X to the a-th
coordinate and let p∗a,b : H∗(X2) → H∗(Xn) the pullback of the projection

pa,b : Xn → X2. Let ∆ ∈ H∗(X2) be the class of the diagonal.

Theorem 5.2.1 ([26]). Let X be a complex projective variety of complex
dimension m. Then the space C(X,n) has a model E(n) that is isomorphic to

H∗(Xn,Q)[Ga,b]

where Ga,b are generators of degree 2m − 1, a, b ∈ {1, . . . , n}, a 6= b modulo
the relations
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• Ga,b = Gb,a

• p∗a(x)Ga,b = p∗b(x)Ga,b, x ∈ H∗(X)

• Ga,bGb,c +Gb,cGc,a +Gc,aGa,b = 0

The differential is given by d(Ga,b) = p∗a,b∆.

Remark 5.2.2. The third relation Ga,bGb,c+Gb,cGc,a+Gc,aGa,b = 0 is known
in the literature as Arnold relation.

The definition of this graded algebra presents some similarities with the
graded complex defined in Section 2.2: the structure of the exterior algebra
with generators Ga,b and the first two relations. However, the differential in
CBS(Γ) ”adds edges” while the one in E[n] ”removes edges”. Therefore, we
would like to relate the dual of the graded complex CBS(Γ) with the DGA
E(n).

Moreover, the complex CBS(Γ) makes perfect sense in positive characteris-
tic, so that we will also consider the following situation. Let k be a ground ring,
which could typically be Z, Q, or a prime field Fp. Assume that A = H∗(X,k)
is an algebra over k which is free as a k-module. We extend the definition given
by Kriz to this case by defining E[n] as A[Ga,b]/ ∼, where the relations are
given by exactly the same three formulas as in the theorem above. It will be
convenient to extend the definition further to the case where A is a Frobenius
algebra. To do this, we have to give a definition of ∆ in this case, we do that
in the next section.

5.3 Structures of tensor powers of Frobenius
algebras

We will consider a graded version of Frobenius algebras. To be precise about
how we understand that term in this chapter:

Definition 5.3.1. A graded commutative Frobenius algebra A over a commu-
tative ground ring k is a graded commutative ring, free and finite over k = A0

as a module, together with a perfect, graded symmetrical pairing

〈−,−〉 : A⊗A→ k,

such that
〈ab, c〉 = 〈a, bc〉.

Remark 5.3.2. Main example: Let X be a compact, connected k-orientated
manifold such that each cohomology group H i(X; k) is a free k-module. The
cohomology ring H∗(X,k) is a graded commutative Frobenius algebra over k.
In this case, the pairing has degree −dim(X).
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If A is a graded Frobenius algebra, so is A⊗A. The multiplication is given
by the usual tensor product of DGAs, involving the Koszul sign

(a⊗ b)(c⊗ d) = (−1)|b|·|c|ac⊗ bd,

and the pairing is given by

〈a⊗ b, c⊗ d〉2 = (−1)|b|·|c|〈a, c〉〈b, d〉

where | − | stands for the degree of the an element in the graded algebra.

We can construct the dual A∗ = hom(A,k) and we have an isomorphism
of vector spaces given by

k : A ∼= A∗

a 7→ k(a)(−) = 〈−, a〉

A is equipped with a multiplication m : A⊗A→ A and A∗ a dual map given
by m∗ : A∗ → (A⊗A)∗ ∼= A∗ ⊗A∗. Therefore we have a map µ∗ : A→ A⊗A
defined by composing the map k that gives the isomorphism with the dual:

µ∗ : A
k−→ A∗

m∗−−→ A∗ ⊗A∗ k−1⊗k−1

−−−−−−→ A⊗A.

Alternatively, µ∗ is defined by that

〈x⊗ y, µ∗(a)〉2 = 〈xy, a〉

We see from this definition that µ∗ : A → A ⊗ A is an A ⊗ Aop module
map, since

〈x⊗ y, (a⊗ 1)µ∗(b)(1⊗ c)〉2
= (−1)|a|·|xy|+|b|·|c|〈(a⊗ 1)(x⊗ y)(1⊗ c), µ∗(b)〉2
= (−1)|a|·|xy|+|b|·|c|〈axyc, b〉
= 〈xy, abc〉.

We define ∆ ∈ A⊗A by the property

〈a⊗ b,∆〉2 = 〈ab, 1〉.

Remark 5.3.3. In the case A = H∗(M,k) as considered above, A ⊗ A ∼=
H∗(M ×M,k), and ∆ corresponds under this isomorphism to the Poincaré
dual of the homology class of the diagonal M ⊂M ×M .

Lemma 5.3.4. The class ∆ satisfies that (a ⊗ b)∆ = µ∗(ab). In particular,
µ∗ : A→ A⊗A is given by µ∗(a) = (a⊗ 1)∆.
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Proof. Because the paring 〈−,−〉2 is perfect, it suffices to prove that for any
x, y ∈ A, we have that 〈x⊗ y, µ∗(ab)〉2 = 〈x⊗ y, (a⊗ b)∆〉2. We do the com-
putation

〈x⊗ y, (a⊗ b)∆〉2 = 〈(x⊗ y)(a⊗ b),∆〉2
= 〈xyab, 1〉
= 〈xy, ab〉
= 〈x⊗ y, µ∗(ab)〉2.

Remark 5.3.5. ∆ has the property that (1⊗ a)∆ = (a⊗ 1)∆, a ∈ A.

We introduce some notation. Let S be a subset of the set of edges E(Γ).
Each S determines a partition of the set of vertices so we have a map

Φ : E(Γ)→ P(Γ)

where P(Γ) is the set of all partitions of V (Γ) and E(E) the set of subsets of
E(Γ). The sets E(Γ) form a partially ordered set by inclusion, and P(Γ) form
partially ordered sets by refinement. The map Φ is order preserving.

Note that the number l(S) introduced in Definition 2.2 corresponds to the
number of sets in the partition P = Φ(S), that is the cardinality of φ(S). We
denote also by |P | the number l(S).

There is a contravariant functor Ψ from P(Γ) to graded algebras given by

Ψ(P ) = A⊗|P |.

The dual of the canonical surjective map Ψ(P → V (Γ)) : A⊗n → A⊗|P | is
a canonical injective map

A⊗|P | ∼= (A⊗|P |)∗ ↪→ (A⊗n)∗ ∼= A⊗n.

For any partition P we consider the image ∆P ∈ A⊗n of 1 ∈ A⊗|P |. Using
lemma 5.3.4 inductively, we see that multiplying with this element is dual to
the multiplication map in the sense that the following diagram commutes:

A⊗|P | A⊗n

(A⊗|P |)∗ (A⊗n)∗

k⊗|P |

∆P ·

k⊗n

Ψ(P→V (Γ))∗

This element is invariant under any permutation in Sn preserving P . If Q
is a refinement of P , there is similarly a relative element ∆Q,P ∈ A⊗|Q| such
that the following diagram commutes:

A⊗|Q| A⊗|P |

A⊗n
∆Q

∆Q,P

∆P
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Each algebra A⊗|P | is a module over A⊗n, and multiplication by ∆P,Q is a
map of A⊗n-modules.

5.4 The dual graded complex

Using the notation of the previous section, we can re-write CBS(Γ) as the
graded chain complex

CBS(Γ) =
⊕

S⊆E(Γ)

eS ⊗A⊗l(S) =
⊕
P∈P

(
⊕

S,φ(S)=P

eS ⊗A⊗|P |).

The differential is given by

∂ =
∑

e∈E(Γ)

∂e

∂e(eS ⊗ x) = (−1)τeS∪{e} ⊗Ψ(S ∪ {e}).

The sign (−1)τ is determined by the number τ of edges in S that precede e
in the chosen ordering of the edges.

We note that as a graded vector space

CBS(Γ) = Λ(eα)⊗ (A⊗n)/∼

where ∼ indicates the relation eα ⊗ (a[i]− a[j]), a ∈ A, α : i→ j ∈ E(Γ) and
a[i] denotes the element 1⊗i−1⊗a⊗1⊗n−i ∈ A⊗n, described in the first section
in Definition 2.2.1. This relation corresponds to the second relation of the
definition of the DGA defined by Kriz, since pa(x) = 1⊗· · ·⊗x⊗· · ·⊗1 ∈ A⊗n
where x is the a-th component of the tensor product.

We want to describe the dual graded chain complex

(CBS(Γ))∗ =
( ⊕
S⊆E(Γ)

eS ⊗A⊗l(S)
)∗
.

We will denote by Gα the dual of the element eα, for the edge α : i → j.
We can so write the dual graded chain complex

(CBS(Γ))∗ =
( ⊕
S⊆E(Γ)

eS ⊗A⊗l(S)
)∗

=
⊕

S⊆E(Γ)

(eS)∗ ⊗ (A∗)⊗l(S) =
⊕

S⊆E(Γ)

GS ⊗A⊗l(S).

Equivalently

(CBS(Γ))∗ = Λ(Gα)⊗A⊗n/∼ .
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The dual of the differential ∂, that we denote by δ, acts by removing edges in
the graph and therefore increasing the number of components. Let GS be the
product of all the Gij where α : i→ j is an edge in S,

δ(GS) =
∑
i<j

(−1)νδi,j(GS) =
∑
i<j

(−1)νGSrαi,j

where ν is the number corresponding to the position of the edge αi,j in the
ascending order. We have

δ(GS ⊗ a1 ⊗ · · · ⊗ al(S)) =
∑
i<j

(−1)νδi,j(GS ⊗ a1 ⊗ · · · ⊗ al(S))

and
δi,j(GS ⊗ a1 ⊗ · · · ⊗ al(S))

= (−1)τGSrα ⊗ (∆S,Srα · a1 ⊗ · · · ⊗ al(S))

in the case α : i → j is an edge belonging to S and l(S r α) = l(S) − 1, and
τ is the Kozul sign given by moving the factor in µ(a) in the j-th position.
While

δi,j(GS ⊗ a1 ⊗ · · · ⊗ al(S)) = GSrα ⊗ a1 ⊗ ai ⊗ · · · ⊗ al(S)

in the case α : i→ j is an edge belonging to S and l(S r α) = l(S). Finally,

δij(GS ⊗ a1 ⊗ · · · ⊗ al(S)) = 0

if α does not belong to S.

Remark 5.4.1. We discuss here the grading of the dual complex. Let S ⊆
E(Γ). We assign to an element GS ⊗ a1 ⊗ · · · ⊗ al(S) in CBS(Γ)∗ the grading

(m− 1)rext − rint +
∑
i

|ai|,

where m is the dimension of the manifold. rext is the number of external edges,
that are the edges that, if removed, disconnect components, rint the number
of internal edges, that are the edges that do not disconnect components if
removed and |ai| is the degree of the element ai in A. The differential has
degree 1 since

δ(GS ⊗ a1 ⊗ · · · ⊗ al(S))

=


0 if α /∈ S∑

α∈E(Γ)GSrα ⊗∆S,Srα · a1 ⊗ · · · ⊗ al(S), if α disconnects S∑
α∈E(Γ)GSrα ⊗ a1 ⊗ · · · ⊗ al(S), if α non disconnects S

and ∆S,Srα has degree m. If S is a forest, the grading of CBS(Γ)∗ and the
DGA R(Γ, A) that we define later, coincide.
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5.5 The ring R(Kn)

In this section we want to study the ring defined by the exterior algebra
Λ[Ga,b], where Ga,b are edges in a complete graph with n vertices Kn, quotient
by the relations introduced by Kriz in Theorem 5.2.1.

Let Kn be a complete graph with n vertices and Λ[Ga,b] be the exterior
algebra with generators Ga,b given corresponding to the edges in Kn. We define

R(Kn) = Λ[Ga,b]/∼

where ∼ is the Arnold relation Gi,jGj,k + Gj,kGk,i + Gk,iGi,j . We call I(Kn)
the ideal generated by this relation, in order to simplify the notation this will
be denoted also by I.

The following lemmas characterize the ideal I. We denote by GΓ the prod-
uct of the generators corresponding to edges in Γ.

Lemma 5.5.1. Let v = (v1, . . . , vk), k > 3 a set of vertices in Kn and denote
by s(v) the product s(v) = Gv1,v2 · . . . · Gvi,vi+1 · Gvk,v1 where Gvi,vi+1 is the
generator in the exterior algebra corresponding to the edge α : vi → vi+1,
so s(v) is the product of the generators corresponding to edges of a cycle of
length k. Let J be the ideal generated by the elements s(v) with k > 3. Let I
be the ideal generated by δ(s(v)) with k > 3. Then J is contained in I and I
is generated by δ(s(v1, v2, v3)) = Gv1,v2Gv2,v3 +Gv2,v3Gv3,v1 +Gv3,v1Gv1,v2.

Proof. We first show that J is contained in I.

Gv1,v2 · δ(s(v))

= Gv1,v2 · (Gv2,v3 · . . . ·Gvi,vi+1 ·Gvi+1,vi+2 · . . . ·Gvk,v1)

−Gv1,v2 · (Gv1,v2 ·Gv3,v4 · . . . ·Gvi,vi+1 ·Gvi+1,vi+2 · . . . ·Gvk,v1)

+ · · ·
= Gv1,v2 ·Gv2,v3 · . . . ·Gvi,vi+1 ·Gvi+1,vi+2 · . . . ·Gvk,v1 = s(v).

(5.1)

Now we want to show that I is generated by δ(s(v1, v2, v3)) = Gv1,v2Gv2,v3 +
Gv2,v3Gv3,v1 + Gv3,v1Gv1,v2 . Let Ik the ideal generated by δ(s(v)) where v =
(v1, . . . , vl), l 6 k. I = ∪Ik, we want to show by induction that Ik = I3, k > 3
where I3 is generated by δ(s(v1, v2, v3)). It is obviously true for k = 3. Suppose
it true for k−1, we want to show that for every s(v1, . . . , vk), δ(s(v1, . . . , vk)) ∈
Ik−1. Consider X = δ(s(vk, v1, v2))δ(Gv2,v3 · . . . ·Gvk−1,vk) ∈ I3 = Ik−1, we can
expand the expression

X = (Gv1,v2 ·Gv2,vk −Gvk,v1 ·Gv2,vk +Gvk,v1 ·Gv1,v2)·

·
( ∑

2≤j≤k−1

(−1)jGv2,v3 · . . . · Ĝvj ,vj+1 · . . . ·Gvk−1,vk

)
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= (Gv1,v2) ·
( ∑

2≤j≤k−1

(−1)jGvk,v2 ·Gv2,v3 · . . . · Ĝvj ,vj+1 · . . . ·Gvk−1,vk

)
− (Gvk,v1) ·

( ∑
2≤j≤k−1

(−1)jGvk,v2 ·Gv2,v3 · . . . · Ĝvj ,vj+1 · . . . ·Gvk−1,vk

)
+

∑
2≤j≤k−1

(−1)jGvk,v1 ·Gv1,v2 ·Gv2,v3 · . . . · Ĝvj ,vj+1 · . . . ·Gvk−1,vk

= (Gv1,v2) · (− δ(s(vk, v2, . . . , vk−1))

+Gv2,v3 · . . . ·Gvj ,vj+1 · . . . ·Gvk−1,vk)

− (Gvk,v1)
(
− δ(s(vk, v2, . . . , vk−1))

+Gv2,v3 · . . . ·Gvj ,vj+1 · . . . ·Gvk−1,vk

)
+ δ(s(vk, v1, . . . , vk−1))−Gv1,v2 ·Gv2,v3 · . . . ·Gvj ,vj+1

+Gvk,v1 ·Gv2,v3 · . . . ·Gvj ,vj+1

= −Gv1,v2 · δ(s(vk, v2, . . . , vk−1))

+Gvk,v1δ(s(vk, v2, . . . , vk−1)) + δ(s(vk, v1, . . . , vk−1)).

Note that the third equality comes from the fact that

δ(s(vk, v2, . . . , vk−1))

=
∑

2≤j≤k
(−1)j−1Gvk,v2 · . . . · Ĝvj ,vj+1 · . . . ·Gvk−1,vk

that equals the first term in the sum in the expression apart from the missing
term Gv2,v3 · . . . ·Gvj ,vj+1 · . . . ·Gvk−1,vk .

Now, δ(s(vk, v1, . . . , vk−1)) = (−1)kδ(s(v1, v2, . . . , vk)), so we can write

δ(s(v1, v2, . . . , vk))

= −Gv1,v2 · δ(s(v2, v3, . . . , vk)) +Gvk,v1δ(s(v2, v3, . . . , vk))−X.

We can conclude that δ(s(v1, v2, . . . , vk) ∈ Ik−1 = I3. This end the proof by
induction, so Ik = I3 for all k and so I = I3.

Corollary 5.5.2. If the graph Kn contains a cycle, then GΓ ∈ I.

We conclude that every element in Rn(Γ) where Γ = Kn can be written
as a linear combination of the classes GΓ′ where Γ′ are graphs which do not
contain any cycles. Such a graph is a disjoint union of trees, that is, it is a
forest. However, these classes are not linearly independent in Rn(Γ). We can
rewrite the complex Rn(Γ) as

Rn(Γ) = Λ[Ga,b]/ ∼=
⊕⊗

Z[T ]/∼

where Z[T ] is the free group generated by the trees. We have from a result by
Vassilev [39] that Z[T ] = Z(n−1)!.
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5.6 The generalised DGA

We want to extend the definition of E[n] to any graph Γ and to a Frobenius
algebra over any ring. In order to do so, we need to modify the ideal I(Kn)
and introduce the following definition:

Definition 5.6.1. Let Γ be a graph and (v1, . . . , vk), k > 3 a set of ver-
tices in Γ, we call a cycle w a subset of the set of edges of Γ of the form
{(v1, v2), . . . , (vi, vi+1), . . . , (vk, v1)}. Let Λ[Ga,b] be the exterior algebra with
generators Ga,b given corresponding to the edges in Γ. We denote by Gw the
product Gw = Gv1,v2 · . . . ·Gvi,vi+1 · . . . ·Gvk,v1 . We define

R(Γ) = Λ[Ga,b]/∼

where ∼ is the relation

δ(Gwj ) =
∑
i

(−1)iGv1,j ,v2,j · . . . · Ĝvi,j ,vi+1,j · . . . ·Gvk,j ,v1,j = 0

for all j, where wj is a cycle in Γ. We call generalised Arnold relations these
last relations and I(Γ) the ideal generated by them.

Remark 5.6.2. Note that by the results in the previous section, if Γ = Kn

then I(Γ) = I(Kn).

Lemma 5.6.3. If v is a cycle in Γ then Gv ∈ I(Γ).

Proof. Let v be the cycle with edges {(v1, v2), . . . , (vi, vi+1), . . . , (vk, v1)}

Gv1,v2 · d(Gv)

= Gv1,v2 · (Gv2,v3 · . . . ·Gvi,vi+1 ·Gvi+1,vi+2 · . . . ·Gvk,v1)

−Gv1,v2 · (Gv1,v2 ·Gv3,v4 · . . . ·Gvi,vi+1 ·Gvi+1,vi+2 · . . . ·Gvk,v1)

+ · · ·
= Gv1,v2 ·Gv2,v3 · . . . ·Gvi,vi+1 ·Gvi+1,vi+2 · . . . ·Gvk,v1 = Gv.

Corollary 5.6.4. If Γ contains a cycle then GΓ ∈ I(Γ).

We can conclude that the elements in Rn(Γ) are linear combinations of
forests. We now define the generalized complex.

Definition 5.6.5. Let M a compact, connected k-orientated manifold of even
dimension m, A = H∗(M,k) be a Frobenius algebra, where k is the ground
ring. Let Γ be a graph with n edges and k cycles wj j = 0, . . . , k. We define
the complex

R(Γ, A) = Λ[Ga,b]⊗A⊗n/ ∼
where Ga,b are generators of degree m − 1, (a, b) ∈ E(Γ), and ∼ are the
relations
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• Ga,b = Gb,a

• p∗a(x)Ga,b = p∗b(x)Ga,b, x ∈ H∗(X)

• δ(Gwj ) =
∑

i(−1)iGv1,j ,v2,j · . . . · Ĝvi,j ,vi+1,j · . . . · Gvh,j ,v1,j = 0, for all
j = 0, . . . , k

The differential is given by

d(Ga,b) = p∗a,b∆

here ∆ is the class of the diagonal as described in Section 5.3.

5.7 A quasi equivalence

Let M be an even dimensional, compact, connected k-orientated manifold of
dimension m, A = H∗(M,k) a graded commutative Frobenius algebra and Γ
be any graph. Let (CBS(Γ)∗, δ) be the dual complex defined in Section 5.4 as
CBS(Γ)∗ =

⊕
S⊆E(Γ)GS ⊗A⊗l(S). We consider the generalized complex given

in Definition 5.6.5

R(Γ, A) = Λ[Ga,b]⊗A⊗n/∼

where ∼ are the relations introduced in Definition 5.6.5 and Λ[Ga,b] is the
exterior algebra with generators given by the edges in Γ. We want to show
that there is a quasi equivalence between (CBS(Γ)∗, δ) and (R(A,Γ), d).

Remark 5.7.1. The differential in CBS(Γ)∗ can be written as

δ = δint + δext

where δint is the differential that removes internal edges, meaning edges such
that if removed they don’t disconnect components, and δext is the differential
that removes external edges, that are the edges that if removed they disconnect
components. By Lemma 5.6.3 we have thatR(Γ) is given by linear combination
of forests and therefore d = δext.

Definition 5.7.2. Let S ⊆ E(Γ). We define the following map of graded
groups:

F : CBS(Γ)∗ → R(Γ, A)

F (GS ⊗ x) = [GS ⊗ x]∼.

In order to simplify the notation we will write GS ⊗ x instead of [GS ⊗ x]∼.

Lemma 5.7.3. The map F is compatible with the differential.
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Proof. Let GΓ′ ⊗ x ∈ CBS(Γ)∗, where Γ′ is a subgraph of Γ. We want to check
the commutativity of the following diagram.

CBS(Γ)∗
F //

δ
��

R(A,Γ)

d
��

CBS(Γ)∗
F // R(A,Γ)

We consider first the case where Γ′ does not contain any cycle. If Γ′ does not
contain any cycle

d ◦ F (GΓ′ ⊗ x) = d(GΓ′ ⊗ x).

On the other hand by Remark 5.7.1

F ◦ δ(GΓ′ ⊗ x) = F ◦ δext(GΓ′ ⊗ x) = d(GΓ′ ⊗ x).

Now, suppose that Γ′ contains a cycle, that we denote by S, then

d ◦ F (GΓ′ ⊗ x) = d(0) = 0,

by definition of F . To prove the commutativity of the diagram we want to
show that F ◦ δ(GΓ′ ⊗ x) = 0. By the previous remark,

δ(GΓ′ ⊗ x) = δint + δext(GΓ′ ⊗ x),

the first summand is given by δint(GΓ′ ⊗ x) = δ(GS∪S′)GΓ′/S∪S′ ⊗ x, where
S′ is the graph given by the internal edges in Γ′ that are not in S. The
differential δint doesn’t change the number of components and so it doesn’t
act on x ∈ A⊗l(Γ). Now,

δ(GS∪S′) = δ(GS)GS′ +GSδ(GS′) ∈ I(Γ)

by Lemma 5.6.3 becauseGS and δ(GS) belongs to I(Γ), so F ◦δint(GΓ′⊗x) = 0.
The second summand is

δext(GΓ′ ⊗ x) = δext(GΓ′/S∪S′)GSGS′ ⊗ x′

where x′ ∈ A⊗l(Γ′)−1. The term belongs to the ideal I(Γ) since GS ∈ I(Γ) and
so

F ◦ δext(GΓ′ ⊗ x) = 0.

Theorem 5.7.4. The map F is a quasi equivalence.
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Proof. We want to introduce two filtrations on CBS(Γ)∗ and on R(A,Γ), and
prove that F is compatible with them and that it induces a quasi equivalence
on the filtrations’ quotients.

Let Γ be a graph with n vertices, S be a subset of the set of edges E(Γ).
S determines a partition of the set of vertices, so we have a map Φ : E → P
where P is the set of all partitions of V (Γ) and E the set of subsets of E(Γ).
As noted in Section 5.4 we can rewrite the complex CBS(Γ)∗ as

CBS(Γ)∗ =
⊕
P∈P

(
⊕

S,φ(S)=P

GS ⊗A⊗|P |)

|P | is the number of classes in the partition P .
There is a filtration of CBS(Γ)(A)∗ given by

Fk =
⊕

P∈P,|P |≥k

( ⊕
S,φ(S)=P

GS ⊗A⊗|P |
)
.

Fk is a subcomplex of CBS(Γ)∗ since the differential δ acts by removing edges
and so increasing the number of components. So

Fn ⊆ · · · ⊆ Fk ⊆ Fk−1 ⊆ · · · ⊆ CBS(Γ)∗

and |V (Γ)| = n.
Similarly we have a filtration on R(A,Γ) in terms of partitions. Since

R(Γ) =
⊕
P∈P

⊕
S,φ(S)=P

GS

/ ⊕
S,φ(S)=P

GS ∩ I(Γ)

we can define

F ′k =
⊕

P∈P,|P |≥k

( ⊕
S,φ(S)=P

GS

/ ⊕
S,φ(S)=P

GS ∩ I(Γ)
)
⊗A⊗|P |

as before F ′k is a subcomplex of R(A,Γ) since the differential d acts by re-
moving edges and so increasing the number of components. So

F ′n ⊆ · · · ⊆ F ′k ⊆ F ′k−1 ⊆ · · · ⊆ R(A,Γ)

and |V (Γ)| = n. We want to show that F is compatible with the filtrations,
that is F (Fk) ⊆ F ′k. This is clearly true since F (GΓ ⊗ x) = GΓ ⊗ x is Γ if a
forest and 0 otherwise.

There are two short exact sequences given by inclusion and quotient map

Fk−1 −→ Fk −→ Fk−1/Fk

and
F ′k−1 −→ F ′k −→ F ′k−1/F ′k.
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The last step of the proof consists in showing that for every k,

F : Fk−1/Fk −→ F ′k−1/F ′k

is a quasi equivalence and then use the long exact sequences in homology
induced from the short exact sequences to prove the result. Now,

Fk−1/Fk =
⊕

P∈P,|P |=k−1

( ⊕
S,φ(S)=P

GS ⊗A⊗|P |
)

is determined by the partitions with exactly k − 1 classes.
Let S be a subset of E(Γ) that determines a partition of the set of vertices

P = {P1, . . . , Pl} and let ΓSi , 0 ≤ i ≤ l, be the connected subgraph of S
corresponding to the element Pi in the partition. By Remark 5.7.5 we can
rewrite Fk−1/Fk as

Fk−1/Fk =
⊕

P∈P,|P |=k−1

⊕
S,φ(S)=P

( ⊗
1≤i≤k−1

Ccon(ΓSi )
)
⊗A⊗|P |.

We define the chain complex Ccon(Γ) for connected graphs with h vertices, and
for every 0 ≤ i ≤ h, Ccon(Γ)i is the free group generated by all connected sub-
graphs of Γ with i edges. Let S be a connected subgraph of Γ, the differential
is given by

dcon(S) =
∑

e∈E(Γ)

(−1)ν(S r e)

where ν is the position of edge e ∈ E(Γ) in ascending order. If S r e is not
connected dcon(S) = 0.
F ′k−1/F ′k can be written as

F ′k−1/F ′k =
⊕

P∈P,|P |=k−1

⊕
S,φ(S)=P

( ⊗
1≤i≤k−1

Ccon(Γ′i)
)
⊗A⊗|P |

where now Γ′i are spanning trees, in particular Ccon(Γ′) = Ccon(Γ)/I(Γ). By
the Künneth formula, the problem reduces to checking if

q : Ccon(Γ)→ Ccon(Γ)/I(Γ)

is a quasi equivalence. Here by I(Γ) we mean the subgroup given by α(I(Γ))
and α is the isomorphism defined in Lemma 5.7.5. By Lemma 5.7.8 the ho-
mology of Ccon(Γ) is concentrated in degree n − 1. Now, Ccon(Γ)/I(Γ) is a
complex concentrated in dimension n − 1 by Remark 5.7.6, that is the chain
group generated by the trees and

(Ccon(Γ)/I(Γ))n−1 = Ccon(Γ)n−1/dcon(Ccon(Γ)n)

because by Lemma 5.7.7 dcon(Ccon(Γ)n) = I(Γ). Since Cn−2
con = 0, we have

Hn−1(Ccon(Γ)) = Ccon(Γ)n−1/I(Γ) = Hn−1(Ccon(Γ)/I(Γ))
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and
Hi(Ccon(Γ)) = Hi(Ccon(Γ)/I(Γ)) = 0

for i 6= n− 1. Then

H∗(Ccon(Γ)) = H∗(Ccon(Γ)/I(Γ)),

so q : Ccon(Γ)→ Ccon(Γ)/I(Γ) is a quasi equivalence.
Finally we consider the long exact sequences in homology

Hi+1(Fk−1/Fk) //

'
��

// Hi(Fk) //

F∗
��

Hi(Fk−1) //

F∗
��

Hi(Fk−1/Fk)

'
��

Hi+1(F ′k−1/F ′k) // Hi(F ′k) // Hi(F ′k−1) // Hi(F ′k−1/F ′k)

Since Fn = F ′n, we have that Hi(Fn) = Hi(F ′n) for every i ≥ 0. We
can then use the Five Lemma and induction on k with initial step given by
Hi(Fn) = Hi(F ′n).

Hi(Fn−1/Fn) //

'
��

// Hi−1(Fn) //

=

��

Hi−1(Fn−1) //

q

��

Hi−1(Fn−1/Fk) //

'
��

Hi−2(Fn)

=

��
Hi(F ′n−1/F ′n) // Hi−1(F ′n) // Hi−1(F ′n−1) // Hi−1(F ′n−1/F ′n) // Hi−2(F ′n)

Therefore Hi(Fk) ' Hi(F ′k) for every k and i. This concludes the proof that
F is a quasi equivalence.

Lemma 5.7.5. Let

Fk−1/Fk =
⊕

P∈P,|P |=k−1

( ⊕
S,φ(S)=P

GS ⊗A⊗|P |
)
.

The map

α :
⊕

P∈P,|P |=k−1

⊕
S,φ(S)=P

GS ⊗A⊗|P |

−→
⊕

P∈P,|P |=k−1

⊕
S,φ(S)=P

( ⊗
1≤i≤k−1

Ccon(Γi)⊗A⊗|P |
)

is a group isomorphism.

Proof. Let P be a partition with k − 1 classes and consider S ⊆ E(Γ), such
that Φ(S) = P . Consider a class Pi corresponding to a connected subgraph
of S, Γi. Since the tensor product A⊗|P | is not affected by the differential, we
can reduce to building a map

α : {GS′ ∈ Λ[GS ];φ(S′) = P} →
⊗

1≤i≤k−1

Ccon(Γi)
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where Λ[GS ] is the exterior algebra with generators given by the edges in S.
Let S′ be a subgraph of S. It can be written as S′ = S′1 ∪ · · · ∪S′k−1, where S′i
are connected subgraphs of Γi. Then

α(GS′) = α(GS′1 · . . . ·GS′k−1
)

= S′1 ⊗ · · · ⊗ (−1)ξiS′i ⊗ · · · ⊗ (−1)ξiS′k−1,

ξi is the number of edges smaller (in S′) than the smallest edge in S′i plus the
sum of the edges in S′1 ∪ · · · ∪ S′i−1. We can suppose that the edges is Si are
ordered in increasing order and the edges in Si are smaller then the edges in
Sj is i > j. In this case the map α reduces to

α(GS′) = S′1 ⊗ · · · ⊗ S′i ⊗ · · · ⊗ S′k−1.

We show that α commutes with the differentials δ and d⊗con that is the differ-
ential of the tensor product of complexes,

d⊗con(α(GS′)) = d⊗con(S′1 ⊗ · · · ⊗ S′i ⊗ · · · ⊗ S′k−1)

=
∑

(−1)ν1,jS′1 r e1,j ⊗ · · · ⊗ S′i ⊗ · · · ⊗ S′k−1

+ · · ·+ S′1 ⊗ · · · ⊗ S′i ⊗ · · · ⊗
∑

(−1)νk−1,j (−1)τk−1,jS′k−1 r ek−1,j

where τk−1,j are the number of edges in S′ smaller than ek−1,j . Moreover,

α(δ(GS)) = α
(∑

(−1)νiS r ei

)
=
∑

S′1 ⊗ · · · ⊗ (−1)νiSj r ei ⊗ · · · ⊗ Sk−1,

and (−1)νi = (−1)νi,j+τi,j . It is a group isomorphism, since there is a bijection
between elements of the base of {GS′ ∈ Λ[GS ];φ(S′) = P} and elements
S1 ⊗ · · · ⊗ (−1)νiSi ⊗ (−1)νiSl of the base of

⊗
1≤i≤k−1Ccon(Γi).

Remark 5.7.6. As a consequence of Lemma 5.6.3 we have that α(I(Γ))∩Ccon

contains the connected graphs with cycles, so the connected graphs that are
not spanning trees. Therefore, Cicon/I(Γ) is trivial for all i 6= n− 1.

Lemma 5.7.7. Let (Ccon(Γ), dcon) be the chain complex defined in the proof,
Γ a connected graph with n vertices, then dcon(Cncon) = I(Γ) ∩ Cn−1

con .

Proof. Cncon is the free group generated by connected subgraph S of Γ with n
edges. That is the image under the map α of the algebra⊕

S⊆E(Γ),|S|=n

GS .

Since Γ has n vertices, S must contain a cycle. We call C the cycle, and the
exterior algebra GS is given by the product of the edges in C and the product
of the rest of the edges, that we call S′. Now dcon(S) =

∑
e dcon,e(C)S′, since

removing one edge in S′ will give a non connected graph. By Lemma 5.7.7 the
ideal generated by dcon(Cn) is α(I(Γ)) ∩ Cn−1

con .



5.7. A quasi equivalence 59

Lemma 5.7.8. Let Γ be a graph with n vertices. The homology of the complex
Ccon(Γ) is concentrated in degree n− 1.

Proof. Let Γ be a connected graph with n vertices and let e be an edge in
E(Γ). We order the edges in Γ so that e is the last edge. We denote by Γ r e
the graph obtained from Γ by deleting the edge e and Γ/e the graph obtained
from Γ by contracting the edge e. We have a short exact sequence

0→ Ccon(Γ r e)
α−→ Ccon(Γ)

β−→ Ccon(Γ/e)→ 0.

The map α is the inclusion of subgraphs and is injective since ker(α) is given
by graphs that are mapped to 0, but these are the disconnected graph that
are 0 also in Cicon(Γr e), so ker(α) = 0. β is the contraction of the edge e and
it is surjective since every element in Cicon(Γ/e) is the image of an element in
Cicon(Γ), and if a graph is disconnected in Cicon(Γ/e) so it is in Cicon(Γ). Now
we want to show that α and β are chain maps, so that the squares in the
following diagram commute.

0 //

��

// Ci+1
con (Γ r e)

α //

dcon

��

Ci+1
con (Γ)

β //

dcon

��

Cicon(Γ/e) //

dcon

��

0

��
0 // Cicon(Γ r e)

α // Cicon(Γ)
β // Ci−1

con (Γ/e) // 0

The right and left square are clearly commutative. Consider the second square,
let S ∈ Cicon(Γ r e) then

α(dcon(S)) = α
( ∑
l∈E(S)

(−1)νlS r l
)

=
∑

l∈E(S)

(−1)νlS r l

and

dcon(α(S)) = dcon(S) =
∑

l∈E(S)

(−1)νlS r l.

Consider now the third square, let S ∈ Cicon(Γ),

β(dcon(S)) = β
( ∑
l∈E(S)

(−1)νlS r l
)

=
∑

l∈E(Sre)

(−1)νl(S r l)/e

and

dcon(β(S)) = dcon(S/e) =
∑

l∈E(Sre)

(−1)νlS/er l,

since we ordered the edges in Γ so that e is the last edge. Reordering the edges
of Γ commutes with the differential so considering the chain where the edge
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e is the last edge in Γ doesn’t affect the computation of the homology. There
are long exact sequences in homology and we proceed by induction.

Hi−1(Ccon(Γ/e)) −→ Hi−1(Ccon(Γ r e)) −→ Hi−1(Ccon(Γ))

−→ Hi−2(Ccon(Γ/e)) −→ Hi−2(Ccon(Γ r e))

From the long exact sequence follows that if the homology of Ccon(Γ r e) is
concentrated in degree n−1 and the homology of Ccon(Γ/e) is concentrated in
degree n− 2, that are the degrees represented by trees, then the homology of
Ccon(Γ) is concentrated in degree n−1. We prove by induction on the number
of edges in Γ that the homology of Ccon(Γ) is concentrated in degree n − 1,
where n is the number of vertices in Γ. Let Γ be a connected graph with one
edge e and two vertices, then Γr e is a disconnected graph and so Ccon(Γr e)
is trivial. Γ/e is a graph with one vertex and no edges, the complex Ccon(Γ/e)
is concentrated in degree 0. H∗(Ccon(Γ/e)) is concentrated in degree 0 that is
n − 2 and so H∗(Ccon(Γ)) is concentrated in degree 1 = n − 1. Now suppose
by induction that the statement is true for any graph Γ with |E(Γ)| < k. We
want to prove it for |E(Γ)| = k. Then Γ r e is either disconnected or it is a
connected graph with k−1 edges and n vertices. In the first case the homology
is trivial, in the second case the homology H∗(Ccon(Γ r e)) is concentrated in
degree n−1 by inductive hypothesis. Γ/e is a graph with k−1 edges and n−1
vertices, it can have a loop or a multiple edge, by Lemma 5.7.10 the homology
H∗(Ccon(Γ/e)) is either trivial or concentrated in degree n− 2.

Remark 5.7.9. This lemma provides an alternative proof of the result given
by Vassilev in [39] regarding the homology of the complex of connected sub-
graphs of the complete graph. The proof could be already present in the lit-
erature but we are not aware of any references.

Lemma 5.7.10. Let Γ be a graph. If Γ contains a loop, then the homology
groups Hi(Ccon(Γ)) are trivial, and replacing a multiple edge by a single edge
doesn’t change the homology.

Proof. Let Γ be a graph with a loop l, then Γr l and Γ/l are the same graph
and so H(Ccon(Γ r l)) = H(Ccon(Γ/l)). By the long exact sequence we have
that H(Ccon(Γ)) = 0. Let now Γ have a multiple edge e. Then Γre is a graph
with single edges and Γ/l is a graph with a loop, and so H(Ccon(Γ/e)) = 0.
By the long exact sequence we have that H(Ccon(Γ r e)) = H(Ccon(Γ)).

Remark 5.7.11. The idea in the proof of Lemma 5.7.10 is the same as the
proof of the similar statement in Corollary 3.2 in [17].

5.8 The chain C∗BS(Γ)/I(Γ)

In this chapter we want to discuss the complex C∗BS(Γ)/I(Γ) and show that it
is isomorphic to R(A,Γ).
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The complex R(A,Γ) is defined as Λ[Ga,b]⊗A⊗n quotient by the relations

• Ga,b = Gb,a

• p∗a(x)Ga,b = p∗b(x)Ga,b, x ∈ H∗(X)

• δ(wi) = 0

where wi is a cycle in Γ, and with differential

d(Ga,b) = p∗a,b∆.

Let R̃(A,Γ) be Λ[Ga,b]⊗A⊗n quotient only by the first two relations, with
the same differential d and let (C∗BS(Γ), δ) be the complex defined in Section
5.4.

Remark 5.8.1. The complexes (C∗BS(Γ), δ) and R̃(A,Γ) are the same as vector
spaces and they differ only for the differentials. The differential of the first
complex is defined as

δ(GS ⊗ a1 ⊗ · · · ⊗ al(S))

=


0 if α /∈ S∑

α∈E(Γ)GSrαpi,j(∆)⊗ a1 ⊗ · · · ⊗ an, if α disconnects S∑
α∈E(Γ)GSrα ⊗ a1 ⊗ · · · ⊗ an, if α non disconnects S

Here α : i → j and pi,j(∆) is the pullback of the projection. Note that
GSrαpi,j(∆)⊗a1⊗· · ·⊗an = GSrα∆S,Srα⊗a1⊗· · ·⊗al(S), due to the relation
in the definition of CBS(Γ). The differential multiplies by the diagonal class
only when removing the edge disconnects components. On the other hand, the
differential in E[n], given by

d(Ga,b) = p∗a,b∆,

always multiplies by the diagonal class. The differentials δ and d can be there-
fore written as δ = δint + δext and d = dint + dext (see Remark 5.7.1), and
dext = δext. Removing an edge in a cycle leaves the number of components
unchanged, while removing edges in a forest disconnects components, so from
the point where S is a spanning forest the two complexes are the same.

We now prove that there is an isomorphism of chain complexes between
C∗BS(Γ)/I(Γ) and R(A,Γ).

Theorem 5.8.2. There is an isomorphism of chain complexes,

id : (C∗BS(Γ), δ)/I(Γ)→ (R(A,Γ), d)
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Proof. Consider the identity map id : C∗BS(Γ)/I(Γ) → R(A,Γ). By Remark

5.8.1, the complexes C∗BS(Γ) and R̃n(A,Γ) differ only from the internal dif-
ferential since the two differentials agree in the case where the subgraph S of
the set of vertices E(Γ) is a forest. By Lemma 5.6.3 the third relation assures
that elements in the complexes corresponding to graphs S with a component
containing cycles are zero. Therefore C∗BS(Γ)/I(Γ) and R(A,Γ) agree as vector
spaces, as the two differentials δ = d, since dint = δint = 0.



Chapter 6

Generalised configuration
spaces

6.1 Introduction

As described in the first chapter, little disks operads are operads such that for
every natural number n, Dr(n) is the space of linear embeddings of n disks of
dimension r into the r-dimensional unit disk,

Dr(n) = Emb(Dtnr ,Dr).

Moreover, we have an homotopy equivalence Dr(n) ∼= Cr(n), where

Cr(n) = {(x1, . . . , xn) ∈ Rrn;xi 6= xj for i 6= j, 0 < i, j ≤ n}

is the configuration space of n points in Rr.
The operadic composition

Dr(n) ◦Dr(k1) ◦ · · · ◦Dr(kn)

is given by inserting the disk Dr(ki) in the i-th disk of Dr(n).
Little disks operads have been introduced in the 70′s with the works by

Boardman and Vogt [4] and May [32], and they had been applied in topology,
algebra and mathematical physics. The cohomology of LDO is known, and
it is related to the cohomology of the configuration space of n points in Rd,
Cr(n). This has been computed by Arnold [1] in the case r = 2 and Cohen [9]
for r ≥ 3. The ring H∗(Cr(n)) is given by

Z[eαi,j ]/∼

where 0 < i, j ≤ n, Z[eαi ] is the free commutative graded algebra generated
by eαi,j of degree r − 1 and ∼ are the relations

• eαi,j = (−1)reαj,i

63
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• e2
αi,j = 0 if r is odd

• eαa,beαb,c + eαb,ceαc,a + eαc,aeαa,b = 0

In the present chapter we generalise the definition of little disks operads
to the configuration space depending on a graph defined by Heaswood and
Huggett [12], and described in Section 2.2. In particular, we consider the con-
figuration spaces of points in Rr depending on a graph Γ, and we denote it by
Cr(Γ). We define a partial operad of this generalised configuration space over
R, and a generalised version of the little disks operads, that we call painted
little disks operads. Moreover, we compute the cohomology of Cr(Γ). In the
first section we give the definition of painted little disks operads. Then, in the
second section we define Cr(Γ) and a candidate for its cohomology, denoted
by Rr(Γ). We then have two cases according to r being even or odd. We first
prove that in the even case the candidate ring is isomorphic to the cohomology
of Cr(Γ). Then we reproduce the proof for the odd case.

6.2 Painted little disks operads

We extend the idea of configuration space partial operad and little disks op-
erads, defined in Section 1.2, to configuration spaces over Rr depending on a
graph.

Definition 6.2.1. Let Γ be a graph and V (Γ) its set of vertices. Let, by abuse
of notation, denote by V (Γ) the cardinality of the set V (Γ). The generalised
configuration space over Rr r ≥ 0, is

Cr(Γ) = {(x1, . . . , xV (Γ)) ∈ RrV (Γ);xi 6= xj if ei,j ∈ E(Γ)}

where ei,j is an edge in Γ.

6.2.1 The partial operad of generalised configuration spaces

We now define an operad indexed by natural numbers such that for every n ∈
N, we associate the space of disjoint unions of configuration spaces dependent
on a graph with n vertices.

Definition 6.2.2. Let Γ be a graph and V (Γ) its set of vertices. We define the
partial operad of generalised configuration spaces to be a collection of spaces

C̃r(n) =
∐

Γ;V (Γ)=n

Cr(Γ)

for every n ∈ N, with composition

◦ : C̃r(n)⊗ C̃r(k1)⊗ · · · ⊗ C̃r(kn)→ C̃r(k1 + · · ·+ kn)
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given for every

(a, x1, . . . , xn) ∈ Cr(n)⊗ Cr(k1)⊗ · · · ⊗ Cr(kn)

where a = (a1, . . . , an), by

x ◦ (x1, . . . , xn) = ((a1, . . . , a1)︸ ︷︷ ︸
k1 times

+x1, . . . . , (an, . . . , an)︸ ︷︷ ︸
kn times

+xn).

The composition is defined for the elements (a, x1, . . . , xn) such that

x ◦ (x1, . . . , xn) ∈ Cr(Γ
′)

where Γ′ is a graph with k1 + · · · + kn vertices obtained by inserting in the
i-th vertex of Γ the graph Γi, and connecting the vertices of Γi with a vertex
v of Γ if there was an edge in Γ between the i-th vertex and v.

Let C̃r(1) be the configuration space Cr(Γ) where Γ = ∗ the graph with
only one vertex. The unit 1 ∈ C̃r(1) is the set with one point and the unit
morphism is

µ : {0} → Cr(∗) = Rr.

An example of composition is shown in the following picture.

Example 6.2.3. We give an example of composition of generalised configu-
ration space operad. Let Γ be the graph given by two vertices 1 and 2, and
an edge e1,2 between them. Let Γ1 be the graph given by two vertices and no
edges, and Γ2 the graph with vertices 1, 2, 3 and edges e1,2 and e2,3. Now,

Cr(Γ) and Cr(Γ1) are contained in C̃r(2) and Cr(Γ2) in C̃r(3). The composition

◦ : C̃r(2)⊗ C̃r(2)⊗ C̃r(3)→ C̃r(5)

can be represented as in Figure 6.1.

Figure 6.1: The composition law in generalised configuration space operads and in
painted little disks operads.
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So if

(x, x1, x2) ∈ Cr(Γ)⊗ Cr(Γ1)⊗ Cr(Γ2)

then

x ◦ (x1, x2) ∈ Cr(Γ5)

where Γ5 is the graph with five vertices on the right.

Proposition 6.2.4. The generalised configuration space operad is a partial
operad.

Proof. We want to check that it satisfies the properties defining operads. To
simplify the notation we denote by d̃r(n) an element in C̃r(n).

Associativity: We want to prove that for every C̃r(n), n operads

C̃r(k1),. . . ,C̃r(kn) and k1+· · ·+kn operads the associativity property holds

d̃r(n) ◦ (d̃r(k1) ◦ (d̃r(k1,1), . . . , d̃r(k1,l1)),

. . . , d̃r(kn) ◦ (d̃r(kn,1), . . . , d̃r(kn,ln)))

= (d̃r(n) ◦ (d̃r(k1), . . . , d̃r(kn))) ◦ (d̃r(k1,1), . . . , d̃r(kn,ln)).

This property holds for the standard partial operad of configuration spaces,
that is the case where all graphs are complete. On the other hand, if two
vertices for example v1 and v2 in the graph defining Cr(Γ) 3 d̃r(n) are not
connected by any edge, then the graphs inserted in v1 in the composition
d̃r(k1) ◦ (d̃r(k1,1), . . . , d̃r(k1,l1)) and in v2 in d̃r(k2) ◦ (d̃r(k2,1), . . . , d̃r(k2,l2))

will not be connected by edges. Similarly, in d̃r(n) ◦ (d̃r(k1), . . . , d̃r(kn)) the
graph inserted in the first two vertices will not be connected by edges.

Equivariance: Let σ ∈ Σn be a permutation and let σ′ ∈ Σk1+···+kn the
function that permutes by t the n blocks given by ki terms. Then

(d̃r(n) ∗ σ) ◦ (d̃r(kσ(1)), . . . , d̃r(kσ(n)))

= d̃r(n) ◦ (d̃r(k1), . . . , d̃r(kn)) ∗ σ′

since σ permutes the vertices in Γ and σ′ permutes in the same way the block
of vertices in the graphs inserted in the vertices of Γ. Let σi ∈ Σki then in a
similar way

d̃r(n) ◦ (d̃r(k1) ∗ σ1, . . . , d̃r(kn) ∗ σn)

= d̃r(n) ◦ (d̃r(k1), . . . , d̃r(kn)) ∗ (σ1, . . . , σn)

Unit: Let d̃r(n) ∈ Cr(Γ), and d̃r(n) ◦ (d̃r(1), . . . , d̃r(1)) be contained in a
configuration space dependent on a graph Γ′ obtained from Γ by inserting in
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each vertex a graph given by only one vertex. Then Γ′ clearly is Γ itself and
we have diagrams

1⊗ C̃r(n) C̃r(1)⊗ C̃r(n)

C̃r(n)

µ⊗id

∼= ◦

C̃r(n)⊗ 1⊗n C̃r(n)⊗ C̃r(1)⊗n

C̃r(n)

id⊗µ⊗n

∼= ◦

These diagrams commute since

d̃r(n) ◦ (1, . . . , 1) = d̃r(n) = 1 ◦ d̃r(n)

where 1 is the unit that is (0, . . . , 0) ∈ Rr.
Since the composition is defined for a subset of C̃r(n)⊗C̃r(k1)⊗· · ·⊗C̃r(kn)

then C̃r is a partial operad.

Remark 6.2.5. We conjecture that, as in the case of LDO and the partial
operad of configuration spaces, one can construct a generalised version of the
Fulton and McPherson-operad.

6.2.2 Painted little disks operads

Analogously to the definition of LDO we can define a generalised version of
them, where we consider linear embeddings of union of disks of which some
are disjoint.

Definition 6.2.6. Let Γ be a graph. The painted little r-disks operad D̃r is
defined for every n ∈ N to be a disjoint union of sets of linear embeddings of
the union of n little r-disks in Dr. That is

D̃r(n) =
∐

Γ,|V (Γ)|=n

Emb(Γ)

where

Emb(Γ) = {(c1, . . . , cn) :

n⋃
i=1

Dir → Dr}

and Dir ∪D
j
r is a disjoint union if there is an edge α in Γ with vertices i and j.

Here, ci : Dr → Dr is a linear embedding such that, if D̊r denotes the interior
of Dr, ci(D̊r) ∩ cj(D̊r) = ∅ for all α, edge between i and j.
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The operadic composition

◦ : D̃r(n)⊗ D̃r(k1)⊗ · · · ⊗ D̃r(kn)→ D̃r(k1 + · · ·+ kn)

is given for c ∈ Emb(Γ) ∈ D̃r(n) and ci ∈ Emb(Γi) ∈ D̃r(ki) by

c ◦ c1 ⊗ · · · ⊗ cn :
n⋃
i=1

ki⋃
j=1

Di,jr → Dr

where the unions Di,jr ∪ Dh,kr are disjoint if there is an edge α between i and
h in Γ, and/or when i = h there is an edge β between j and k in Γi. The
operadic composition is defined by the composition of embeddings

(c ◦ c1 ⊗ · · · ⊗ cn)|Di,jr = c(ci)

The symmetric group Σn acts on D̃n by permuting the order of the n disks.
More precisely, if σ ∈ Σn and c = (c1, . . . , cn) ∈ D̃r(n), then

c ∗ σ = (cσ(1), . . . , cσ(n)).

The unit element 1 is the identity 1 = id : Dr → Dr.

Remark 6.2.7. The composition of painted little disks operads can be de-
picted as in Figure 6.1, where the edges represent the disks that cannot inter-
sect.

Lemma 6.2.8. The painted little disks operads satisfy the axioms of operad.

Proof. This follows from the fact that LDO is an operad and it goes analo-
gously to the proof for the generalised configuration space partial operad. Let
d̃(n) be an element in D̃(n).
Associativity: This property holds for standard LDO. On the other hand, if
there is no edge between two vertices so the two corresponding disks are al-
lowed to overlap, then they will overlap also after the insertion. This is because
the inserted disks belong to

⋃n
i=1

⋃ki
j=1 D

i,j
r where the unions Di,jr ∪ Dh,kr are

disjoint if there is an edge α between i and h in Γ, and/or when i = h there
is an edge β between j and k in Γi.
Equivariance: The proof works analogously to the one for the partial operad
of generalised configuration spaces.
Unit: The following equation holds, since 1 = id.

d̃r(n) ◦ (1, . . . , 1) = d̃r(n) = 1 ◦ d̃r(n).
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6.3 The cohomology of the generalised
configuration space over Rr

In this section we define a candidate for the cohomology of Cr(Γ), that later we
show being actually isomorphic to it. We introduce the graded commutative
ring Rr(Γ). We give first a general definition, and in the next sections we
describe the cases of r odd and even. We refer to the literature (Getzler and
Jones [15], Kontsevich [24], Willwacher [40]) for the choice of denoting the
even (respct. odd) case in relation to the dimension of the space on which the
configuration space is defined. So with this convention r even (respect. odd)
corresponds to odd (respect. even) generators.

Definition 6.3.1. Let Γ be a graph, with an orientation on the edges. Let r be
a natural number and Z[eαi ] the free commutative graded algebra generated
by eαi,j of degree r − 1, where αi,j is an edge in Γ between the vertices i
and j oriented from i to j. Let w be a cycle in Γ and we denote by ew =
ev1,2 · ev2,3 . . . · evs,1 the product of the generators corresponding to the edges
in the cycle w. We define the graded commutative ring

Rr(Γ) = Z[eαi,j ]/∼

where ∼ are the relations

• eαi,j = (−1)reαj,i

• e2
αi,j = 0 if r is odd

• d(ewj ) =
∑

i(−1)(r−1)iev1,2 · · · êvi,j · · · evsj ,1 = 0 for every cycle wj in Γ.

We call these last relations the generalised Arnold relations, and we denote
by I(Γ) the ideal generated by them.

6.4 Algebraic description of Rr(Γ), the even case

In this section we describe the case where r is an even natural number. We
suppose r even for the rest of the section.

Definition 6.4.1. Let Γ be a graph, not oriented and let E(Γ) be its set of
edges. Let r be an even natural number and Λ[eαi ] be the exterior algebra
over the generators eαi of degree r − 1 where αi ∈ E(Γ). Let w be a cycle in
Γ and we denote by ew = ev1,2 · ev2,3 . . . · evs,1 the product of the generators
corresponding to the edges in the cycle w. We define the graded commutative
ring

Rr(Γ) = Λ[eα]/∼

where ∼ are the relations
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• eαi,j = eαj,i

• d(ewj ) =
∑

i(−1)iev1,2 · · · êvi,j · · · evsj ,1 = 0, for every cycle wj in Γ.

Notation. We will sometimes denote Λ[eα], the exterior algebra generated
by the edges α ∈ E(Γ) by Λ[E(Γ)] in order to simplify the notation.

We can suppose that Γ has no multiple edges, since the following lemma
holds.

Lemma 6.4.2. Let r be an even natural number. Let Γ be a graph with a
double edge, that is two edges e and e′ incident to the same vertices. Let
Γ′ = Γ− e′. Then, the rings Rr(Γ) and Rr(Γ′) are isomorphic.

Proof. In Rr(Γ) we have the generalised Arnold relation relation d(ee′) = 0.
This is d(ee′) = e′ − e = 0 that implies e′ = e.

6.4.1 Deletion-contraction short exact sequence for Rr(Γ)

Let Γ be a graph without multiple edges and α ∈ E(Γ). Let Λ[eαi ] be the
exterior algebra over the generators eαi . Then there is a diagram of ring maps

Λ(Γ r α) Λ(Γ/α)

Λ(Γ) Λ(Γ/α)⊗ Λ[eα]

fΛ

ιΛ iΛ

lΛ

where iΛ is the inclusion map, the map fΛ : Λ[Γ r α] → Λ[Γ/α] is defined
for every edge η ∈ E(Γ), f(eη) = eη. The map lΛ : Λ[Γ] → Λ(Γ/α)⊗ Λ[eα] is
defined by lΛ(eη) = eη ⊗ 1 if η 6= α and lΛ(eα) = 1⊗ eα.

Lemma 6.4.3. The diagram above is commutative and the maps are compat-
ible with the generalised Arnold relation.

Proof. We first show that the image under these maps of an element in the
ideal generated by the generalised Arnold relations is still in the ideal. If w
is a cycle in Γ r α then it is a cycle in Γ/α and in Γ. If d(ew) ∈ I(Γ r α)
then fΛ(d(ew)) ∈ I(Γ/α) and ιΛ(d(ew)) ∈ I(Γ). iΛ is the inclusion so it sends
element in the ideal generated by the Arnold relation to themselves. Suppose
that w is a cycle in Γ, if w contains α then it is also a cycle in Γ/α (we can
suppose Γ without double edges by lemma 6.4.2) and so lΛ(d(ew)) ∈ I(Γ/α)⊗
Λ[eα]. If w does not contain α then lΛ(d(ew)) = d(ew) ⊗ 1 ∈ I(Γ/α) ⊗ Λ[eα].
The diagram is commutative since for a subgraph S in Γ r α,

lΛ(ιΛ(eS)) = eS ⊗ 1 = iΛ(fΛ(eS)).
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Theorem 6.4.4. The diagram

Rr(Γ r α) Rr(Γ/α)

Rr(Γ) Rr(Γ/α)⊗ Λ[α]

fR

ιR iR

lR

is a pullback diagram, in particular the map

ιR : Rr(Γ r α)→ Rr(Γ)

is injective.

As consequences of the previous theorem we have

Corollary 6.4.5. Suppose that Γ′ is a subgraph of Γ such that V (Γ′) = V (Γ),
then ι : Rr(Γ′)→ Rr(Γ) is injective.

Corollary 6.4.6. For every α ∈ E(Γ) there is a short exact sequence

0→ Rr(Γ r α)k → Rr(Γ)k → Rr(Γ/α)k−r+1 → 0

where the indices k and k − r + 1 denote the grading in the ring.

6.4.2 Proof of Theorem 6.4.4

Let I(Γ) denote the ideal of Λ[E(Γ)] generated by the generalised Arnold
relations. Let r be an even natural number. We notice that

Λ[E(Γ)] = Λ[E(Γ/α)]⊗ Λ[α],

and so

Λ[E(Γ/α)]⊗ eα = (Λ[E(Γ/α)]⊗ Λ[α])/(Λ[E(Γ/α)]⊗ 1).

We define gΛ : Λ[E(Γ)]→ Λ[E(Γ/α)]⊗ eα by g(eS) = 0 if S does not contain
α, and g(eS) = e1 · · · es ⊗ eα if S contains α and S is the subgraph of Γ with
edges 1,. . . ,s, α. There is a diagram

0 0

0 I(Γ r α) Λ[E(Γ r α)] Rr(Γ r α) 0

0 I(Γ) Λ[E(Γ)] Rr(Γ) 0

0 I(Γ/α)⊗ eα Λ[E(Γ/α)]⊗ eα Rr(Γ/α)⊗ eα 0

0 0 0

ιR

gI gΛ gR

(6.1)
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Lemma 6.4.7. There is a map ιR : Rr(Γrα)→ Rr(Γ) such that the diagram
6.1 is commutative. Moreover, the three rows and the middle column are exact.

Proof. The map ιR is well defined: if w is a cycle in Γrα then it is a cycle in
Γ, and elements in the ideal generated by d(w) are sent to the same element
in the ideal in Rr(Γ). Let w′ be a cycle in Γ, if α is not in w′ then it is a cycle
in Γ r α. If α is an edge in w′ then w′ r α is not a cycle in Γ r α.

Consider first the left upper square. If w is a cycle in Γrα then it is a cycle
in Γ. The diagram commutes since all the maps in the square are inclusions.
We move now to the lower square on the left. Suppose that w is a cycle in Γ,
if w contains α then its image in Γ/α is also a cycle and

ι(g
Ĩ
(d(w))) = d(w)⊗ α = gΛ(ι(d(w))).

If w does not contain α then ι(g
Ĩ
(d(w))) = 0 = gΛ(ι(d(w))). Now the upper

square on the right is commutative since the maps are compatible with the
generalised Arnold relations. The lower right square also commutes since the
maps are compatible with the relations, and if w contains α then the image
in Γ/α is also a cycle, so

q(gΛ(d(w))) = 0 = gRq((d(w))).

If w does not contain α then q(gΛ(d(w))) = 0 = gRq((d(w))). If the set S in
Γ does not contain any cycle, clearly

q(gΛ(S)) = gR(q(S)).

The three rows are exact by definition, since the maps are left and right
row maps are given by inclusion and quotient respectively. The middle column
is also exact since the upper map ι : Λ[E(Γrα)]→ Λ[E(Γ)] is injective, gΛ is
surjective and im(ι) = Λ[E(Γ r α)]⊗ 1 = Λ[E(Γ/α)]⊗ 1 = ker(gΛ).

Lemma 6.4.8. The last column is exact.

Proof. The map gR is surjective since gΛ is surjective and if w is a cycle in Γ
not containing α then it is mapped to zero, while if w contains α then w/α
is a cycle in Γ/α. We need to check that im(ιR) = ker(gR). Consider the long
exact sequence in cohomology. Since the second and third rows are exact then
H∗(Λ[E(Γ)]) = 0 and H∗(Γ/α⊗ eα) = 0, that implies

H∗(R(Γ)) ∼= H∗(I(Γ/α)⊗ eα).

So im(ιR) = ker(gR) if and only if gI is surjective. We want to check this last
condition, that is we want to show that every generator in I(Γ/α) is the image
of an element in I(Γ). Let v1 and v2 be the two vertices incident to α and their
common image in V (Γ/α) be v. Now, let ew = e1 · · · es be the product of the
generators corresponding to edges in a cycle w in Γ/α. If the vertex v does not
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occur in w then w is a cycle in Γ. There is then an element y = d(ew)eα ∈ I(Γ)
such that gI(y) = d(w)⊗α. If v is a vertex in w incident to exactly two edges
in Γ/α, suppose them e1 and es, then there is a cycle w′ = αe1 · · · es in Γ. So
d(ew′) is the corresponding generator in I(Γ) and its image under the map gI
is

gI(d(αe1 · · · es)) = g(e1 · · · es)− g(αd(e1 · · · es)) = −d(w)⊗ α

Finally, if v is incident to more then two edges in w then we can decompose
w in a product of cycles where v is incident to only two vertices and deduce
the result from the single factors using that d is a derivation.

We conclude the proof of Theorem 6.4.4 with an inductive argument. We
proceed with a double induction on the number of vertices m and edges n of
a graph Γ(m,n). If n = 0, Γ(m, 0) is the graph with m vertices and no edges.
In this case the theorem holds since Rr(m, 0) = Λ[Γ(m, 0)]. The case where
m = 0 corresponds to the empty graph. As inductive step we want to prove
that if all graphs Γ(m,n− 1) and Γ(m− 1, n− 1) satisfy Theorem 6.4.4, then
it also holds for Γ(m,n). In order to prove the inductive step we need that
Γ(m,n) satisfies the following property.

Property 1. For e ∈ E(Γ), let ker(geR) be the kernel of the map geR : Rr(Γ)→
Rr(Γ/e)⊗ e. Then ∩e ker(geR) = Z.

We prove the property by induction. The following lemma provides the
inductive step.

Lemma 6.4.9. Assume that all graphs Γ(m,n−1) and Γ(m−1, n−1) satisfy
Theorem 6.4.4 and that Γ(m,n− 1) and Γ(m− 1, n− 1) satisfy Property 1.
Then Γ(m,n) satisfy Property 1.

Proof. Let ε : Rr(Γ) → Z be the canonical map which sends all edges to 0.
There is a split short exact sequence

0→ ker(ε)→ Rr(Γ)→ Z→ 0.

The sequence splits by the inclusion i : Z → Λ[E(Γ)], since the composition
ε ◦ i = idZ. The image of i is contained in ∩e ker(geR) since ker(geR) = {eS} ∈
Rr(Γ) and S is a subset of Γ that does not contain the edge e ∈ E(Γ). In order
to prove the lemma it’s enough to check⋂

e

ker(geR) ∩ ker(ε) = {0}.
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Let x ∈
⋂
e ker(geR) ∩ ker(ε). We have to prove that x = 0. Consider the

following commutative diagram

Rr(Γ r e)
∏
f∈E(Γre)R

r(Γ r e/f)⊗ f

Rr(Γ)
∏
f∈E(Γ)R

r(Γ/f)⊗ f

∏
f∈E(Γre)R

r(Γ/f)⊗ fRr(Γ/e)⊗ ee

∏
f∈E(Γre) g

f
R

ιR ∏
f∈E(Γre) ιR

∏
f∈E(Γ) g

f
R

geR

P

where P is the projection map. Now, from Lemma 6.4.8 we have that there is
some class y ∈ Rr(Γ r e) such that iR(y) = x. Since x ∈ ker(ε) ∈ Rr(Γ) then
it comes from a class in ker(ε) ∈ Rr(Γ r e). By hypothesis Γ(m,n − 1) and
Γ(m − 1, n − 1) satisfy Theorem 6.4.4 so Γ r e and Γ/f do. Then the right
vertical map is injective. By using the commutativity of the diagram we see
that

∏
f∈E(Γre) g

f
R(y) = 0. Since Γr e satisfies Property 1 and we have that

x belongs to ∩f∈(Γre) ker(gfR), it follows that y = 0, so that x = 0.

We can conclude the proof of Theorem 6.4.4 by proving that if it holds for
Γ(m,n− 1) and Γ(m− 1, n− 1) so it does for Γ(m,n). We want to prove that

ιR : Rr(Γ r e)→ Rr(Γ)

is injective, so that if ιR(x) = 0, x ∈ Rr(Γr e) then x = 0. Consider the com-
mutative diagram in Lemma 6.4.9, we have that ιRg

f
R(x) = gfR

∏
f∈E(Γre) ιR

so if ιRg
f
R(x) = 0, then x = 0 since the right vertical map is injective and

the upper horizontal map is injective on ker(ε). The injectivity of this last
map is due to the fact that by inductive hypothesis

⋂
f ker(gfR) = Z and that⋂

f ker(gfR) ∩ ker(ε) = {0} in Rr(Γ r e).

6.5 Deletion-contraction in the space Cr(Γ)

In this section we describe a type of deletion-contraction exact sequence that
occurs for configuration spaces. The main result in this section, provided by
Corollary 6.5.3, is the existence of a short exact sequence of the form

0→ H∗(Cr(Γ r e))→ H∗(Cr(Γ))→ H∗−r+1(Cr(Γ/e))→ 0.

We start by proving the following theorem.

Theorem 6.5.1. There is a long exact sequence in cohomology

· · · −→ H∗(Cr(Γ r e)) −→ H∗(Cr(Γ))

−→ H∗−r+1(Cr(Γ/e)) −→ H∗+1(Cr(Γ r e)) −→ · · ·
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Proof. Let e be an edge in Γ between the vertices a and b. The space Cr(Γ) is
an open subspace of Cr(Γ r e). The complement

Ae(Γ) = Cr(Γ r e)− Cr(Γ)

is a closed subspace in Cr(Γ r e) and

Ae(Γ) = {(x1, . . . , xn) ∈ Rrn;xi 6= xj if αi,j ∈ E(Γ) r {e} while xa = xb}.

There is a canonical homeomorphism between Ae(Γ) and Cr(Γ/e) sending
(x1, . . . , xn) to (x1, . . . , xa, . . . , x̂b, . . . , xn−1). We define an open neighborhood
Ve(Γ) of Cr(Γ r e) for a fix ε > 0 in the following way

Ve(Γ) = {(x1, . . . , xn) ∈ Cr(Γ r e); |xa − xb| < ε}

We then have two open subspaces Cr(Γ) and Ve(Γ) of Cr(Γ r e) such that
Cr(Γ) ∪ Ve(Γ) = Cr(Γ r e). There is a pushout diagram

Ve(Γ) ∩ Cr(Γ) Ve(Γ)

Cr(Γ) Cr(Γ r e)

We obtain a Mayer-Vietoris long exact sequence in cohomology

· · · −−−→ H∗(Cr(Γ r e))
φ∗−−−→ H∗(Cr(Γ))⊕H∗(Ve(Γ))

ψ∗−−−→ H∗(Cr(Γ) ∩ Ve(Γ))
δ∗−−→ H∗+1(Cr(Γ r e)) −−−→ · · ·

where φ is the map assigning to each cohomology class x its restrictions
(x|Cr(Γ), x|Ve(Γ)) and ψ(x, y) = x− y.

Finally, we notice that Ve is homotopy equivalent to Cr(Γ/e) and by Lemma
6.5.2 below Cr(Γ)∩Ve is homotopy equivalent to Sr−1×Cr(Γ/e). Let [µ] denote
the fundamental class of Sr−1. By the Kunneth formula, we can rewrite the
long exact sequence as

· · · −→ H∗(Cr(Γ r e)) −→ H∗(Cr(Γ))⊕H∗(Cr(Γ/e))

−→
⊕
k+l=∗

Hk(Sr−1)⊗H l(Cr(Γ/e)) −→ H∗+1(Cr(Γ r e) −→ · · ·

This implies the existence of the long exact sequence

· · · −→ H∗(Cr(Γ r e)) −→ H∗(Cr(Γ))

−→ [µ]H∗(Cr(Γ/e)) −→ H∗+1(Cr(Γ r e)) −→ · · ·
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Finally, replacing [µ]H∗−r+1(Cr(Γ/e) ∼= H∗−r+1(Cr(Γ/e) we have the deletion-
contraction long exact sequence for generalised configuration spaces:

· · · −→ H∗(Cr(Γ r e)) −→ H∗(Cr(Γ))

−→ H∗−r+1(Cr(Γ/e)) −→ H∗+1(Cr(Γ r e)) −→ · · ·

Lemma 6.5.2. Cr(Γ) ∩ Ve is homotopy equivalent to Sr−1 × Cr(Γ/e).

Proof. Cr(Γ) ∩ Ve is the space

{(x1, . . . , xn) ∈ Cr(Γ) : 0 < |xa − xb| < ε}

We define the maps

f : Cr(Γ) ∩ Ve → Sr−1 × Cr(Γ/e)

by

f((x1, . . . , xn)) =

(
xa − xb
|xa − xb|

, (x1, . . . , xa, . . . , x̂b, . . . , xn)

)
and

g : Sr−1 × Cr(Γ/e)→ Cr(Γ) ∩ Ve
by

g(y, (x1, . . . , xn)) =
(
x1, . . . , xa, . . . , xa + ε

2y, . . . , xn
)

Now gf is clearly homotopic to the identity and fg equals the identity.

Corollary 6.5.3. There is a short exact sequence

0→ H∗(C(rΓ r e))→ H∗(Cr(Γ))→ H∗−r+1(Cr(Γ/e))→ 0

Proof. Consider the long exact sequence

· · · → H∗(Cr(Γ r e))
φ∗−→ H∗(Cr(Γ))

ψ∗−→ H∗−r+1(Cr(Γ/e))→ · · ·

The map φ∗ is injective since it is defined to be the restriction to H∗(Cr(Γ)).
The proof that ψ∗ is surjective is contained in Lemma 6.6.2.

6.6 The isomorphism, the even case

Let r be an even natural number. For any edge e = e(v, w) ∈ E(Γ), there is a
map

pe : Cr(Γ)→ Sr−1

defined by

pe(x) 7→ xi − xj
|xi − xj |

∈ Sr−1 ⊂ Rr \ {0}.
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Combining them, we obtain a map

p(Γ) : Cr(Γ)→ (Sr−1)E(Γ).

We identify H∗((Sr−1)E(Γ)) with the ring Λ[E(Γ)] and we choose a standard
generator [Sr−1] ∈ Hr−1(Sr−1). The following definition will depend on the
above choice.

Definition 6.6.1. Let r be an even number, the maps pr(Γ) induce ring
homeomorphisms

pr(Γ)∗ : Λ[E(Γ)]→ H∗(Cr(Γ)); pr(Γ)(e) = p∗e([S
r−1]).

Lemma 6.6.2. The map pr(Γ)∗ is surjective.

Proof. We prove it by induction on the number of edges in Γ. The lemma is
true if Γ has one edge. Now we suppose the result true for graphs with n− 1
edges. We have the diagram

0 // Λ[E(Γ r e)]

pr(Γ−e)
��

// Λ[E(Γ)]

pr(Γ)

��

g // Λ[E(Γ/e)]

pr(Γ/e)
��

// 0

· · · // H∗(Cr(Γ r e))
φ∗
// H∗(Cr(Γ))

ψ∗
// H∗(Cr(Γ/e)) // · · ·

The first and last vertical maps are surjective by hypothesis and g is also
surjective. By the commutativity of the diagram pr(Γ/e) ◦ g = ψ∗ ◦ pr(Γ).
Moreover pr(Γ/e)◦g is surjective since it is the composition of surjective maps.
It follows that ψ∗ is surjective. The map φ∗ is injective since it is defined to be
the restriction to H∗(Cr(Γ)). Therefore we obtain the short exact sequences

0 // Λ[E(Γ r e)]

��

// Λ[E(Γ)]

��

g // Λ[E(Γ/e)]

��

// 0

0 // H∗(Cr(Γ r e))
φ∗
// H∗(Cr(Γ))

ψ∗
// H∗(Cr(Γ/e)) // 0

By the five lemma the middle map is also surjective.

Lemma 6.6.3. The map pr(Γ)∗ maps elements in the ideal generated by the
generalised Arnold relations to 0.

Proof. Let wn be a cycle of length n in Γ and I(Γ) the ideal in Rr(Γ) generated
by the generalised Arnold relation. We want to prove by induction that the
image of I(Γ) under the map pr(Γ)∗ is trivial. It is sufficient to show it for the
generators d(wi), so we can prove the theorem for Λ[wn] for all n. We proceed
by induction.
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Let n = 3. In this case the generalised Arnold relation corresponds to
the standard Arnold relation and the theorem holds. Suppose now that the
theorem is true for wn, we want to show the result for wn+1. Let e be an edge
in wn+1, by Corollary 6.5.3 we have a short exact sequence

0 −→ H∗(Cr(wn+1 r e)) −→ H∗(Cr(wn+1)) −→ H∗(Cr(wn+1/e)) −→ 0

Now wn+1 r e is a tree with n edges and wn+1/e is a cycle with n edges. Let
T be a tree with k vertices such that every vertex has valence smaller or equal
then 2, then

Cr(T ) = {(x1, . . . , xk) ∈ Rkr : x1 6= x2, . . . , xk−1 6= xk}

that is

Cr(T ) = {(x1, . . . , xk) ∈ Rkr : x1 − x2 6= 0, . . . , xk−1 − xk 6= 0}
⊂ (Rr \ {0})k.

Since r is even then r − 1 is odd and so Rr(T ) = Λ[E(T )] = H∗(Sk(r−1)). It
follows that the two rings are isomorphic H∗(Cr(T )) ∼= Rr(T ).

We have the following two short exact sequences:

0 // Λ[E(wn+1 r e)]

∼=
��

f // Λ[E(wn+1)]

pr(wn+1)
��

g // Λ[E(wn+1/e)]

pr(wn+1/e)
��

// 0

0 // H∗(Cr(wn+1 r e))
φ∗
// H∗(Cr(wn+1))

ψ∗
// H∗(Cr(wn+1/e)) // 0

Let x ∈ I(wn+1) be d(wn+1) the generator of the generalised Arnold identity.
Then g(x) ∈ I(wn+1/e) and by inductive hypothesis pr(wn+1/e) ◦ g(x) = 0.
Since ψ∗ is surjective and the diagram is commutative, pr(wn+1/e)◦g(x) is the
image of an element y = pr(wn+1)(x). The sequences are exact, so y in in the
image of φ∗, y = φ∗(z) for some z ∈ H∗(Cr(Γre)). The map pr(wn+1re) is an
isomorphism so there is an element k = z such that φ∗◦pr(wn+1re)(k) = y =
pr(wn+1) ◦ f(k). Now suppose that y 6= 0, since f is injective then z 6= 0 and
f(z) 6= x since x is not in the kernel of g. Now consider the element x− f(z).
We have that pr(Γ)(x− f(z)) = 0. So x− f(z) is in the kernel of pr(Γ). Since
the symmetric group acts on Λ[E(Γ)] and on H∗(Cr(Γ)) and they are invariant
under cyclic permutation of the edges, then the kernel is invariant under cyclic
permutation of the edges. But the elements in Λ[wn+1 r e] are not invariant,
so also x − f(z) is not. This is a contradiction. That means that y = 0, and
proves the theorem.

Corollary 6.6.4. The map pr(Γ)∗ : Λ[E(Γ)] → H∗(Cr(Γ)) factors uniquely
over maps λr : Rr(Γ)→ H∗(Cr(Γ)).
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Theorem 6.6.5. There is a isomorphism of graded commutative rings

λr : Rr(Γ)→ H∗(Cr(Γ)).

Proof. We prove the theorem by double induction on the number of edges and
vertices in the graph. Let Γ(m,n) be a graph with m vertices and n edges.
The theorem clearly holds for every m for the graphs Γ(m, 0). Now, suppose
that it is true for Γ(m,n− 1) and Γ(m− 1, n− 1), we want to prove that it is
true also for Γ(m,n).Let e be an edge in Γ = Γ(m,n), by the previous sections
we have the short exact sequences.

0 // Rr(Γ r e)

∼=
��

// Rr(Γ)

��

// Rr(Γ/e)

∼=
��

// 0

0 // H∗(Cr(Γ r e))
φ∗
// H∗(Cr(Γ))

ψ∗
// H∗(Cr(Γ/e)) // 0

By the five lemma if follows that the middle map is also an isomorphism.

6.7 The odd case

In this section we want to adapt the arguments used to compute the cohomol-
ogy of the generalised configuration space Cr(Γ), to the case when when r is
odd.

6.7.1 Algebraic description of the ring P r(Γ)

Let r be an odd natural number and let Γ be a graph. In this case the ring
Rr(Γ) is defined as follows:

Definition 6.7.1. Let Γ be a graph with an orientation on the edges and let
r be an odd natural number. Let Z[eαi ] the free commutative graded algebra
generated by eαi,j of degree r − 1 where αi,j is an edge in Γ between the
vertices i and j, oriented from i to j. Let w be a cycle in Γ, and we denote
by ew = ev1,2 · ev2,3 . . . · evs,1 the product of the generator corresponding to the
edges in the cycle w. We define the graded commutative ring

P r(Γ) = Z[eαi,j ]/∼

where ∼ are the relations

• eαi,j = −eαj,i

• e2
αi,j = 0

• d(ewj ) =
∑
ev1,2 · · · êvi,j · · · evsj ,1 = 0 for every cycle wj in Γ.
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P r(Γ) is the symmetric algebra Z[E(Γ)]/e2
i,j quotient by the generalised Arnold

relations.

Remark 6.7.2. The first relation implies that edges that are loops are zero
in P r(Γ).

6.7.2 Deletion-contraction short exact sequence for P r

There is a diagram of ring maps

Z[Γ r α]/e2
i,j Z[Γ/α]/e2

i,j

Z[Γ]/e2
i,j Z[Γ/α]/e2

i,j ⊗ Z[α]/e2
i,j

fS

ιS iS

lS

where iS is the inclusion map, the map fS : Z[Γ r α]/e2
i,j → Z[Γ/α]/e2

i,j

is defined for every edge η ∈ E(Γ), fS(eη) = eη. The map lS : Z[Γ]/e2
i,j →

Z[Γ/α]/e2
i,j⊗Z[α]/e2

i,j is defined by lS(eη) = eη⊗1 if η 6= α and lS(eα) = 1⊗eα.

We prove the respective of Theorem 6.4.4 for the odd case.

Theorem 6.7.3. The diagram

P r(Γ r α) P r(Γ/α)

P r(Γ) P r(Γ/α)⊗ Z[α]/α2

fP

ιP iP

lP

is a pullback diagram. In particular the map ιP : P r(Γ r α) → P r(Γ) is
injective and we have a short exact sequence

0→ P r(Γ r α)→ P r(Γ)→ P r(Γ/α)→ 0.

Proof. Let I(Γ) the ideal generated by the Generalised Arnold relations for
r odd. Following the definitions and notation introduced in Section 6.4.2 we
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have a commutative diagram

0 0

0 I(Γ r α) Z[E(Γ r α)]/e2
i,j P r(Γ r α) 0

0 I(Γ) Z[E(Γ)]/e2
i,j P r(Γ) 0

0 I(Γ/α)⊗ eα Z[E(Γ/α)]/e2
i,j ⊗ eα P r(Γ/α)⊗ eα 0

0 0 0

ιP

gI gΛ gP

where the rows and the middle column are exact. We want to show that the
last column is also exact.

The map gP is surjective. We need to check that im(ιP ) = ker(gP ). Con-
sider the long exact sequence in cohomology. Since the second row and third
rows are exact then H∗(Z[E(Γ)]/e2

i,j) = 0 = H∗(Z[E(Γ)]/e2
i,j ⊗ eα), that im-

plies

H∗(P (Γ)) = H∗(I(Γ/α)⊗ α).

So im(ιP ) = ker(gP ) if and only if gI is surjective. We want to check this
last condition, that is we want to show that every generator in I(Γ/α) is the
image of an element in I(Γ). Let v1 and v2 be the two vertices incident to
α and their common image in V (Γ/α) be v. Now, let ew = e1 · · · es be the
product of the generators corresponding to edges in a cycle w in Γ/α. If the
vertex v does not occur in w, then w is a cycle in Γ. There is then an element
y = d(ew)eα ∈ I(Γ) such that gI(y) = d(w)⊗ α. If v is a vertex in w incident
to exactly two edges in Γ/α, suppose them e1 and es then there is a cycle
w′ = αe1 · · · es in Γ. So d(ew′) is the corresponding generator in I(Γ) and its
image under the map gI is

g
Ĩ
(d(αe1 · · · es)) = g(e1 · · · es) + g(αd(e1 · · · es)) = d(w)⊗ α.

Finally, if v is incident to more then two edges in w then we can decompose
w in product of cycles where v is incident to only two vertices and deduce the
result from the single factors using that d is a derivation.

We conclude the proof by double induction on m, n that are respectively
the vertices and the edges of a graph Γ(m,n). The proof proceeds analogously
to the even case. The following property can be proved by induction in the
same way as the even case since Lemma 6.4.9 holds also for P r. Therefore, we
have the following
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Property 1. For e ∈ E(Γ), let ker(geP ) be the kernel of the map geP : P r(Γ)→
P r(Γ/e)⊗ e. Then

⋂
e ker(geP ) = Z.

Lemma 6.7.4. Assume that Γ(m,n−1) and Γ(m−1, n−1) satisfy Theorem
6.7.3 and that Γ(m,n− 1) and Γ(m− 1, n− 1) satisfy the property above. For
e ∈ E(Γ), let ker(geP ) be the kernel of the map geP : P r(Γ) → P r(Γ/e) ⊗ e.
Then

⋂
e ker(geP ) = Z.

As in the even case, the inductive step of the proof of Theorem 6.7.3 uses
the property above.

6.7.3 The isomorphism, the odd case

For any edge e = e(v, w) ∈ E(Γ), consider the map

pe : Cr(Γ)→ Sr−1

defined by

pe(x) 7→ xi − xj
|xi − xj |

∈ Sr−1 ⊂ Rr \ {0}

as before. Combining them, we obtain a map

p(Γ) : Cr(Γ)→ (Sr−1)E(Γ).

Since r is odd we identify H∗((Sr−1)E(Γ)) with the ring Z[E(Γ)]/{e2
i,j}. We

choose a standard generator [Sr−1] ∈ Hr−1(Sr−1), for each edge in E(Γ) we
chose one of the two orientations of this edge and denote it by e ∈ Ẽ(Γ), so
that every oriented edge can be written uniquely as either e or ē. We define
the following map.

Definition 6.7.5. Let r be an odd number, the maps pr(Γ) induce ring home-
omorphisms

pr(Γ)∗ : Z[E(Γ)]/{e2
i,j} → H∗(Cr(Γ))

pr(Γ)(e) = p∗e([S
r−1])

pr(Γ)(ē) = −p∗e([Sr−1])

Lemma 6.7.6. The map pr(Γ)∗ is surjective.

Proof. As in the even case, we prove the lemma by induction on the number
of edges in Γ. The lemma is true if Γ has one edge. Now we suppose the result
true for graph with less then n edges. By Corollary 6.5.3 we have the two
short exact sequences

0 // Z[E(Γ r e)]/{e2
i,j}

��

// Z[E(Γ)]/{e2
i,j}

��

// Z[E(Γ/e)]/{e2
i,j}

��

// 0

0 // H∗(Cr(Γ r e))
φ∗

// H∗(Cr(Γ))
ψ∗

// H∗(Cr(Γ/e)) // 0
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The first and last map are surjective by hypothesis. By the five lemma the
middle map is also surjective.

Lemma 6.7.7. The map pr(Γ)∗ maps elements in the ideal generated by the
generalised Arnold relations to 0.

Proof. We can repeat the same argument of Lemma 6.6.3 for the odd case.

Finally, we have the isomorphism.

Theorem 6.7.8. There is a isomorphism of graded commutative rings

λr : P r(Γ)→ H∗(Cr(Γ)).

Proof. We prove the theorem by double induction on the number of edges and
vertices in the graph. Let Γ(m,n) be a graph with m vertices and n edges.
The theorem clearly holds for every m for the graphs Γ(m, 0). Now, suppose
that it is true for Γ(m,n − 1) and Γ(m − 1, n − 1), we want to prove that it
is true also for Γ(m,n). Let e be an edge in Γ = Γ(m,n), we have the short
exact sequences.

0 // P r(Γ r e)

∼=
��

// P r(Γ)

��

// P r(Γ/e)

∼=
��

// 0

0 // H∗(Cr(Γ r e))
φ∗
// H∗(Cr(Γ))

ψ∗
// H∗(Cr(Γ/e)) // 0

By the five lemma if follows that the middle map is also an isomorphism.
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Corrections to the submitted
version

Page 28, Definition 3.1.14:” We will call a rational model for X any CDGA
(A, d) weakly equivalent to APL(X)”.

Page 30, definition of GA(n): ”Ga,b are generators of degree m − 1”, in the
first relation ”Ga,b = (−1)mGb,a”.

Page 69 definition of Rr, Definition 6.4.1 and page 79 Definition 6.7.1: ”ew =
ev1,2 · ev2,3 . . . · evs,1” in the product of the generators corresponding to the
edges in the cycle ”w”, ”

∑
ev1,2 · · · êvi,j · · · evsj ,1” in the third relation in the

same definitions.
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