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Preface

This dissertation is a product of my PhD studies at the Department of Mathematics,
Aarhus Univeristy, from August 2015 to December 2019. The studies where done
under the supervision of Andreas Basse-O’Connor (main supervisor) and Jan Pedersen
(co-supervisor), and fully funded by Andreas’ grant (DFF-4002-00003) from the
Danish Council for Independent Research.

This dissertation is based around the following nine self-contained papers:

Paper A On infinite divisibility of a class of two-dimensional vectors in the second
Wiener chaos. Submitted.

Paper B The polylogarithmic distribution. Working paper.

Paper C Stochastic delay differential equations and related autoregressive models.
Stochastics (forthcoming), 24 pages.

Paper D Multivariate stochastic delay differential equations and CAR representa-
tions of CARMA processes. Stochastic Processes and their Applications 129.10,
4119-4143.

Paper E Stochastic differential equations with a fractionally filtered delay: a semi-
martingale model for long-range dependent processes. Bernoulli (forthcom-
ing), 30 pages.

Paper F Recovering the background noise of a Lévy-driven CARMA process using
an SDDE approach. Proceedings ITISE 2017 2, 707–718.

Paper G On non-negative modeling with CARMA processes. Journal of Mathematical
Analysis and Applications 476.1, 196-214.

Paper H Multivariate continuous-time modeling of wind indexes and hedging of
wind risk. Submitted.

Paper I A statistical view on a surrogate model for estimating extreme events with
an application to wind turbines. Working paper.

Besides layout, all published or submitted papers correspond to their published
or submitted versions. Each paper introduces notational conventions that may not
be consistent with the remaining papers, and the notation is therefore only to be
understood in the context of the corresponding paper.

I have made major contributions to the research and writing of Papers A-E and
G-H. Paper F and I are written jointly with Mikkel Slot Nielsen, and we have made
equal contribution to these. Papers A, C, and F where largely written during the first
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delay differential equations to wind power production. In this way, Paper A is the
paper most concerned with infinitely divisible distributions and Paper I deals most
exclusively with wind power production. This progression of the papers through the
main themes is not chronological.

Together with the conclusion of my PhD studies belongs a sincere thanks to a lot
of people. I wish to express my gratitude to my supervisor Andreas Basse-O’Connor
for many insightful comments, considerate attitude, and cheerful mood. My other
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advise and laughter.

I would like to thank Fred Espen Benth for being the central figure in a very
pleasant visit to the University of Oslo. I enjoyed my time there immensely, and the
conversations in Oslo and the following correspondence via email have always been
insightful and enjoyable. Our collaborations have inspired me to pursue different
areas of mathematics, and have therefore sparked a lot of passion in me. I would
also like to express my gratitude to Mikkel Slot Nielsen for the many interesting
collaborations and discussions. Furthermore, a warm thank you goes out to Troels
Sønderby Christensen for a very pleasant collaboration and visits, both the visit to
Aarhus and when I went to Aalborg, and for the good times in the office and on the
skis in Oslo. James Nichols and Vestas Wind Systems also deserve a big thank you for
a great collaboration and interesting meetings.

Many fellow PhD student at Aarhus University also deserve a big praise for the
many joyful experiences over the years, in particular, Julie, Thorbjørn, Mikkel, Jeanett,
Patrick, Mads, Claudio, and Mathias.

Finally, my most heartfelt thanks goes to my family. I am deeply grateful to my
significant other, Line, who is always loving, considerate, takes an interest in me, and
forgives my flaws. My greatest affection goes to my kids Theodor and Albert; your
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your development gives a profound meaning to it all. To my whole family, I look
forward to our future together, and I am truly grateful that you have been with me
during my PhD studies.

Victor Rohde
Aarhus, December 2019
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Summary

Infinitely divisible distributions play a pivotal role in an abundance of statistical
models. From models of the movement of stock prices to models of wind speed, very
often, an infinitely divisible distribution is used to capture the noisy behavior. This
dissertation consider infinitely divisible distributions and models based on them.
A particular focus is on applications to wind power production. The dissertation is
divided into three smaller parts: infinitely divisible distributions, stochastic delay
differential equations (SDDEs), and wind power production.

The topic of the first paper is the infinte divisibility of two-dimensional sums
of Gaussian squares. This is related to the infinite divisibility of a two-dimensional
Wiener chaos. The second paper introduces the polylogarithmic distribution which is
a class of infinitely divisible distributions that has applications to models based on
non-negative Ornstein-Uhlenbeck (OU) processes and continuous-time autoregres-
sive moving average (CARMA) processes. These two papers make up the first part of
the dissertation.

The next part consists of four papers devoted to SDDEs. These equations will
be connected to the popular CARMA processes. Exploring this connection leads to
a new understanding of and to theoretical results concerning CARMA processes.
Both univariate and multivariate settings are considered, and a model that builds
on SDDEs to introduce a semi-martingale process with a long memory property is
examined. Finally, a simulation study of SDDEs ability to recover the driving Lévy
process is presented.

Statistical models with application to wind power production are studied in
the last three papers. Here, both theoretical and applied considerations are done.
First, a class of processes with a potential application to short-term wind forecasting
is introduced. This class of processes combines ideas from two popular processes:
the CARMA process and the Cox-Ingersoll-Ross process. Next, two multivariate
continuous-time models for the wind power utilization in Germany based on OU
processes are proposed. The models are applied in a minimum variance hedging
setup and the risk premiums are investigated. Finally, a non-parametric regression
technique is examined for use as a surrogate model for the distribution of extreme
loads on wind turbines. Using the surrogate model has the potential to relieve a heavy
computational burden when analyzing extreme loads on wind turbines.
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Resumé

Uendeligt delelige fordelinger spiller en central rolle i mange statistiske modeller.
Fra modeller for udviklingen af aktiekurser til modeller for vindhastigheder gælder
at der ofte bruges en uendeligt delelig fordeling til at fange støjens opførsel. Denne
afhandling betragter uendeligt delelige fordelinger og modeller baseret på dem. Et
særligt fokus er på anvendelser indenfor produktionen af vindkraft. Afhandlingen
er opdelt i tre mindre dele: uendeligt delelige fordelinger, stokastiske forsinket
differential ligninger (SDDE’er) og produktion af vindkraft.

Emnet for den første artikel er uendelig deleligheden af to-dimensionelle sum-
mer af Gaussiske kvadrater. Dette er relateret til den uendelige delelighed af et
to-dimensionelt Wiener-kaos. Den anden artikel introducerer den polylogaritmiske
fordeling, som er en klasse af uendeligt delelige fordelinger, der har anvendelse i
modeller baseret på ikke-negative Ornstein-Uhlenbeck (OU) processer og kontinuert-
tids autoregressive glidende gennemsnit (CARMA) processer. Disse to artikler udgør
den første del af afhandlingen.

Den næste del består af fire artikler, der beskæftiger sig med SDDE’er. Disse lig-
ninger bliver forbundet til de populære CARMA processer. Undersøgelsen af denne
forbindelse fører til en ny forståelse af og til teoretiske resultater vedrørende CAR-
MA processer. Både endimensionelle og flerdimensionelle udgaver bliver udforsket,
og brugen af SDDE’er til at introducere en semi-martingale proces med en lang
hukommelsesegenskab undersøges. Endelig præsenteres en simuleringsundersøgelse
af SDDE’ers evne til at gendanne den drivende Lévy proces.

Statistiske modeller med anvendelse indenfor produktion af vindkraft studeres
i de sidste tre artikler. Her gøres både teoretiske og anvendte overvejelser. Først
introduceres en klasse af processer med en potentiel anvendelse indenfor kortvarig
vind forudsigelse. Denne klasse af processer kombinerer ideer fra de to populære
processer: CARMA processen og Cox-Ingersoll-Ross processen. Dernæst foreslås
to flerdimensionelle kontinuerttidsmodeller til udnyttelsen af vindkraft i Tyskland
baseret på OU processer. Modellerne anvendes til at danne et minimumsvarians
hedge, og risikopræmierne undersøges. Endelig undersøges en ikke-parametrisk
regressionsteknik med henblik på at konstruere en surrogat-model for fordelingen
af ekstreme belastninger på vindmøller. Brugen af surrogat-modellen har potentiale
til at aflaste en tung beregningsbyrde, når man analyserer ekstreme belastninger på
vindmøller.
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Introduction

1 Infinitely divisible distributions

A random variable U is said to be infinitely divisible if, for any n ∈N, there exist
independent random variables U1, . . . ,Un such that U1 + · · ·+Un has the same distri-
bution as U . Infinitely divisible distributions can also be characterized through the
so-called Lévy-Khinchin representation of the characteristic function. In particular, a
random variable U is infinitely divisible if and only if

logE[exp{ixU }] = ibx − 1
2
ax2 +

∫
R\{0}

(
e−xy − 1− ixy1‖y‖<1(y)

)
ν(dy) (1.1)

for b ∈R, a ≥ 0, and a Borel measure ν on R \ {0} such that
∫
R\{0}(‖y‖

2 ∧1)ν(dy) <∞
(see [17]). It is a desirable property of the infinitely divisible random variables to
have the expression in (1.1) for the characteristic function, especially if the integral
with respect to the measure ν can be calculated analytically. Characteristic functions
play a crucial role in many applications, for example when calculating the moments
(which can be found by differentiation of the characteristic function) or in Fourier
pricing of financial derivatives (see [9]). Often, it may also be reasonable to consider
an infinitely divisible distribution from an applied perspective, where the behaviour
of many phenomena can be seen as the accumulation of many independent small
effects. For example a pollen subdued in water which famously led Robert Brown to
describe the Brownian motion or the noisy, short term behaviour of the return of a
financial asset.

Every infinitely divisible distribution can be associated with a Lévy process. Lévy
processes are continuous-time versions of random walks, and they are a very valuable
modeling tool; offering a rich class of distributions and tractability. Lévy processes
play an important part in a variety of models, for example, models of financial assets
(see [1, 8]) and, more recently, in models related to wind energy, temperature, and
electricity prices (see [3, 4, 5, 11]). Lévy processes are also at the core of most of the
models considered in this dissertation. In particular, Paper B-H will to a varying
extend consider Lévy driven models.

The class of infinitely divisible distributions covers many popular distributions,
including the Gaussian, lognormal, gamma, Weibull, Gumbel and Pareto distribu-
tion (see [14] and references therein). These distributions will play a role in this
dissertation. For example, in Paper H where we consider models where the stationary
distributions are described by the gamma and lognormal distribution. While the
Weibull, Gumbel and Pareto distribution are not central to the models considered
in Paper I, application of the models would often rely on these distributions to es-
timate so-called 50-year return loads as in [16]. The distribution of the solutions
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Introduction

to the stochastic delay differential equations considered in Paper C, D, E, and F are
also infinitely divisible when the noise is a Lévy process. This is a consequence of
the solutions being moving averages with respect to the noise process. The Lévy
process constitute the primary example of a noise process and is the most frequently
considered example in practise.

In the following, Paper A and B are introduced which studies infinitely divisible
distributions. An introduction of the remaining papers is deferred to the next sections.

Paper A

For a four-dimensional mean zero multivariate Gaussian vector (X1,X2,X3,X4), Paper
A investigates under which conditions

(X2
1 +X2

2 ,X
2
3 +X2

4 ) (1.2)

is infinitely divisible. This problem is motivated by an interest in understanding the
infinite divisibility of the two-dimensional Wiener chaos which consists of limits of a
two-dimensional sum of Gaussian squares multiplied by either 1 or −1.

We give sufficient conditions for (1.2) being infinitely divisible that goes beyond
the results in the literature. It is still an open question whether (1.2) is always
infinitely divisible.

Paper B

In Paper B the polylogarithmic distribution, a family of infinitely divisible distribu-
tions, is introduced. A random variable is said to have a polylogarithmic distribution
of order n ∈N0 with parameter α > 0 and β > 0 if the cumulant-generating function
of U , ψU , is given by

ψU (z) = logE[ezu] = αLin(z/β), z ∈C \ ([β,∞)× iR).

where Lin is the polylogarithm of order n (see Paper B for a definition of the polylog-
arithm). The polylogarithm has a long history in mathematics dating back to 1696
and has been studied by some of the great mathematicians of the past such as Euler,
Abel, and Ramanujan.

The distribution of a compound Poisson process with exponential jumps is a poly-
logarithmic distribution of order 0 and the gamma distribution is a polylogarithmic
distribution of order 1.

If consider a Lévy process (L(t))t∈R where L(1) has a polylogarithmic distribution
of order n ∈N0 and with parameter α > 0 and β > 0, then the Ornstein-Uhlenbeck
process with mean reversion λ > 0 driven by (L(t))t∈R has a polylogarithmic distri-
bution of order n+ 1 with parameter α/λ and β as its stationary distribution. This
makes it possible to do fast calculation of the cumulant-generating function, and
therefore also the characteristic function and moment-generating function, for a poly-
logarithmic driven Ornstein-Uhlenbeck process. We also investigate the stationary
distribution of certain CARMA processes driven by a polylogarithmic Lévy process.
The results obtained have been used in Paper H to improve the computation time of
one of the employed models.

2



2 · Stochastic delay differential equations

2 Stochastic delay differential equations

This section explores a connection between stochastic delay differential equations
(SDDEs) and CARMA processes. This connection has motivated the introduction
of a class of stationary processes that have a long-memory property and are semi-
martingales. Also, writing a CARMA process as an SDDE gives a straightforward way
to recover the driving noise process which we also investigate.

2.1 Ornstein-Uhlenbeck processes

Continuous-time stationary processes are a key ingredient in a vast amount of proba-
bilistic models. The class of all continuous-time stationary processes is enormous, and
subclasses need to be considered in applications. Such a subclass is for example the
class of Ornstein-Uhlenbeck processes, which are stationary processes that are widely
applicable. Ornstein-Uhlenbeck processes are analytically tractable and giving rise
to a good description of a diverse range of data (such as in [1, 4]). They also serve as a
powerful building block for more complicated models.

An example of an Ornstein-Uhlenbeck process severing as a building block for
a more complicated probabilistic model is the CARMA process, which is a linear
transformation of a multivariate Ornstein-Uhlenbeck process. CARMA processes are
extensively studied and have found numerous applications, for example in modelling
wind speed, electricity prices, stochastic volatility, and temperature (see [3, 5, 7, 11,
18]).

Another stationary process that can be formed by considering Ornstein-Uhlenbeck
processes is the Cox-Ingersoll-Ross (CIR) process (see [10]). The sum of squared
independent and identically distributed zero mean, Gaussian Ornstein-Uhlenbeck
processes gives a CIR process. Not all CIR processes can be obtained this way, and a
slight generalization is needed to extend to the full class of CIR processes (see Paper
G). The CIR process is, amongst other things, well-known as a model for interest rate
(see [10]) and for its role in the Heston model (see [13]) where it models the evolution
of the volatility of a financial asset. More recently, the CIR process has also been
proposed as a model for wind speed with a particular focus on short term forecasting
in [2].

2.2 Continuous-time autoregressive moving average processes

While the Ornstein-Uhlenbeck process is widely applicable it lacks flexibility in the
auto-covariance function (since it is just an exponential function). Many applications
call for models with a more rich auto-correlation structure. CARMA processes are
an example of a class of stationary processes that have a more rich auto-correlation
structure and can be seen as a natural generalization of Ornstein-Uhlenbeck processes
(see [6] for a thorough treatment of CARMA processes). Intuitively, an Ornstein-
Uhlenbeck process, (X(t))t∈R, solves

DX(t) = −λX(t) +DL(t), λ > 0. (2.1)

Here, D denotes the differential operator with respect to t, and (L(t))t∈R is a Lévy
process. Of course, the differential operator is not defined for (L(t))t∈R, and (2.1) is

3



Introduction

therefore only understood heuristically. The CARMA process generalizes this by
instead considering the solution to

P (D)X(t) =Q(D)DL(t) (2.2)

where P (z) = zp + a1z
p−1 + · · ·+ ap and Q(z) = b0 + b1z+ · · ·+ bqzq, p > q. Again, (2.2) is

only understood heuristically. The auto-correlation function of a CARMA process is
for example given in Proposition 4.1, Paper G, and it offers a significant increase in
the flexibility of the auto-correlation function compared to the Ornstein-Uhlenbeck
process as shown in Figure 2, Paper G (the Ornstein-Uhlenbeck and CIR process have
the same auto-correlation function).

2.3 Stochastic delay differential equations

A stochastic delay differential equation (SDDE) is an equation where the increments
of a solution depend on the past of the solution (and in some case also the future)
and some noise. In particular, we say (X(t))t∈R solves an SDDE if

Xt −Xs =
∫ t

s

∫
[0,∞)

Xu−v η(dv) du +Zt −Zs, s < t, (2.3)

where the noise process (Z(t))t∈R is an integrable stationary increment process and
the delay measure η is a finite signed measure. This type of equation is the primary
object of study in Paper C-F. In [12, 15] SDDEs are also studied but we consider the
general setup where η may have unbounded support which allows us to connect
SDDEs and CARMA processes. This connection has not been explored before.

Paper C

This paper suggest two continuous-time models which exhibits an auto-regressive
structure. The first model is the SDDE given in (2.3). The second model, the so-called
level model, is given by

X(t) =
∫ ∞

0
X(t −u)φ(du) +

∫ t

−∞
θ(t −u) dL(u), t ∈R

for a suitably integrable function θ : R → R. Most effort is dedicated to SDDEs
where existence and uniqueness results are developed. Furthermore, the connection
to CARMA processes is indicated and the possibility of introducing long memory
through the noise is explored. For the level model, existence and uniqueness of a
solution are considered and it is shown that the level model can be chosen to be a
discrete-time ARMA model when observed discretely.

Paper D

With the results developed in Paper C, a very natural next step is to consider the
connection between SDDEs and CARMA processes. This led to Paper D where SDDEs
are treated in a multivariate setting and where the connection between SDDEs and
CARMA processes is explored in detail. The multivariate version of SDDEs (MSDDEs)
is considered both to make the model more general and as a key ingredient in the

4



3 · Wind power production

connection to CARMA processes. A CARMA process can be associated with a higher
order SDDE (that is, where differentials of X also appear in (2.3)) and this setup falls
naturally into the multivariate setting. Multivariate CARMA processes (MCARMA)
are also connected to MSDDEs. The SDDE setup allows for a very general noise
process, and we therefore also obtain connections between SDDEs and fractional
integrated CARMA (FICARMA) processes and between MSDDEs and multivariate
FICARMA processes. Besides the connection between SDDEs and CARMA processes,
a prediction formula is also presented.

Paper E

A way to introduce long-memory (that is, a non integrable auto-correlation function)
to the solution of an SDDE is through the noise process. In particular, if the process Z
in (2.3) is a fractional Lévy process on the form IβL with β > 0 (see Section 1, Paper E,
for notation) then the solution to the associated SDDE will have long-memory. While
this can be a very convenient way to introduce long-memory, it also forces other,
possibly undesirable, properties on to the model. For example, the behaviour of the
auto-correlation function changes around zero and the solution process is not a semi-
martingale. This motivates introducing long-memory through the delay measure
η. By doing so, we obtain a model for stationary processes with long-memory, but
without changes to the auto-correlation function around zero and where the solution
is still a semi-martingale.

Paper F

As opposed to the previous papers where focus was on theoretical properties of
SDDEs and their solutions, Paper F studies numerical aspects of SDDEs. In particular,
the SDDE gives a straight-forward inversion formula. That is, from observation of
the solution process, the increments of the noise process can be computed directly
by exploiting the SDDE relation. This inversion is explored numerically where a
simulated CARMA process is written as an SDDE and the driving noise is recovered.
Inversion of CARMA processes is also studied in [7] using a different approach that
is not based on SDDEs.

3 Wind power production

Following a demand for more renewable energy generation, wind power production
has seen a rapid growth in the last decades. As of 2018, the world’s wind power
capacity was the world’s second largest among the renewable energy sources, sur-
passed only by hydropower. The installed world capacity of wind energy in 2018
has increased 9.44% from the year before to 591 GW and thereby accounting for
24.85% of the worlds renewable energy capacity. Wind energy accounted for 28.18%
of the world’s increase of renewable energy capacity from 2017 to 2018. The other
major source of increase in the world’s capacity of renewable energy comes from
solar photovoltaic which accounted for 55.25% of the increase in renewable energy
capacity from 2017 to 2018.1

1see ren21.net
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The increasing reliance on wind for energy generation puts emphasis on a better
understanding of statistical properties of wind speed and wind energy generation. In
this section focus will be on statistical models that are applicable in wind power pro-
duction setting. We consider a model which we argue is likely to have an application
to short-term wind forecasting (Paper G). Next, two multivariate continuous-time
models for wind utilization in Germany are proposed where the application is aimed
at hedging volumetric risk for wind power producers and on quantifying the risk
premium (Paper H). Finally, we consider a surrogate model for extreme loads on wind
turbines (Paper I). The models considered in Paper G and H are based on stationary
processes with particular attention towards Ornstein-Uhlenbeck, CIR, and CARMA
processes. As the aim of Paper I is to create a surrogate model, a different approach
has been taken. In particular, the model is based on a non-parametric regression
technique (k-nearest neighbours). This model is still an area of active research and cur-
rently, another non-parametric regression technique (random forest) is investigated
with a promising performance.

The models considered in this section are not limited to applications to wind data.
Most notably, the CIR-CARMA and CARMA process in Paper G are also considered
in the context of pricing zero-coupon bonds.

Paper G

Modeling the short-term statistical behaviour of wind speed is of high relevance
to several aspects of managing wind turbines. For example, a short term power
production forecast and wind turbine control both benefit from a good short-term
wind speed forecast. In [2] the CIR process is successfully applied to provide a short-
term wind forecast. As we argue in Paper G, more flexibility in the auto-correlation
function than the CIR process have a potential for further improving the forecast.

The fundamental idea of the CIR-CARMA process, introduced in Paper G, is
to generalize the CIR process with inspiration from the way CARMA processes
generalize Ornstein-Uhlenbeck processes. In this way, we obtain a process that closely
resembles the CIR process but has a more flexible auto-covariance structure. It
therefore seems that the CIR-CARMA process has a potential for improving the
short-term wind forecast.

There are still open questions regarding the CIR-CARMA process, and more
research into this class of processes would support many applications. In particular,
a filtering technique for estimating the hidden Wishart process based on observation
of the CIR-CARMA process is needed to calculate the zero-coupon bond price, and it
would also be relevant in other applications (see the discussion after Theorem 3.5,
Paper G).

We also consider a CARMA process driven by a compound Poisson process with
exponential jumps, and show that this process also captures the auto-correlation
structure induced by the wind speed data. The stationary distribution of certain
CARMA processes driven by a compound Poisson process with exponential jumps
is also investigated, where we show that it can be written as an infinite sum of
independent gamma distributions.

6



3 · Wind power production

Paper H

A wind power producer faces several risk factors in term of future revenue streams.
Two major risks are the price of electricity (market risk) and utilization of the installed
capacity which is uncertain due to the dependence on weather (volumetric risk).
Market risk is addressed by so-called power purchase agreements and government
subsidies. More recently, volumetric risk has been addressed in Germany with the
introduction of exchange-traded wind power futures contracts. The futures contracts
are written on an index (which we call the German wind index) that measure the
overall utilization on a daily basis of the installed wind energy capacity in Germany.
These contracts can be used to form a hedge against low utilization of the installed
capacity at given wind site in Germany. Alternatively, the futures contracts can be
used as the basis for wind site specific over-the-counter contract that can be sold to a
wind power producer in order to completely alleviate the volumetric risk. The seller
of the over-the-counter contract can hold several such instruments in a portfolio and
use the exchange-traded wind power futures contracts to minimize the risk exposure.

The German wind index has been analysed in an one-dimensional model in
[4] where focus is on pricing of derivatives and risk premiums. In Paper H two
multivariate continuous-time models for three wind site utilization indexes and
the German wind index are employed. The first model is based on a multivariate
Ornstein-Uhlenbeck process driven by a multivariate compound Poisson process
with exponential jumps. The second model is based on a multivariate Gaussian
Ornstein-Uhlenbeck process. We show how both models capture several key statistical
properties of the data, but also that there are some aspect of the data that the non-
Gaussian model is better able to capture (see Table 3, Paper H). We argue that the
models can be applied to determine a minimum variance hedge. Both an in-sample
and out-of-sample context is considered, and a significant variance reduction is
obtained thereby relieving a large part of the volumetric risk. We also analyse a
portfolio consisting of all the three wind site indexes, and show how a further variance
reduction can be obtained by combining indexes. This motivates the possibility of
third party selling over-the-counter futures contracts for site specific wind utilization
to wind power producers, and thereby obtaining a large portfolio of wind site indexes
that can then be more effectively hedged against the German wind index.

Lastly, the models are applied to calculate risk premiums of futures contracts.
Both the yearly and quarterly risk premiums are accessed, with the quarterly futures
contract showing a seasonal pattern in the risk premium.

Paper I

A reliable estimate of the probabilistic properties of the extreme loads on a wind
turbine is of importance to the design, control, and lifetime assessment of the turbine.
The 10-minute maximum loads on a wind turbine in a certain environment can be
found through a simulation tool but this is computationally heavy. The basic idea
proposed in Paper I is to circumvent this computational burden by introducing a
so-called surrogate model. The simulation tool generates the 10-minute maximum
loads at different places on the wind turbine in a wide variety of environments. The
simulation also generates associated covariates such as the 10-minute maximum,
minimum, mean, and standard deviation of the generator speed, electrical power,

7
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and blade angle (see Paper I for a full list of covariates). The surrogate model learns
the relation between the covariates and the distribution of the 10-minute maximum
loads. The extreme loads at a given location can then quickly be evaluated based on
observation of covariates on a site and the surrogate model.

In the paper, we consider two models that can be used as a surrogate model
for the distribution of the 10-minute extreme loads. We evaluate the performance
of the models on a physical wind turbine that, as a part of a measuring campaign,
is equipped with extra loads measurement equipment. We argue that it is indeed
possible for the surrogate model to capture the distribution of the extreme loads.
With the distribution of the 10-minute maximum loads, the extreme loads can then be
estimated by extrapolation (using extreme value distributions or a Pareto distribution
with a peak-over-threshold method, see [16]).
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A
On Infinite Divisibility Of A Class Of

Two-Dimensional Vectors In The Second
Wiener Chaos

Andreas Basse-O’Connor, Jan Pedersen, and Victor Rohde

Abstract

Infinite divisibility of a class of two-dimensional vectors with components in
the second Wiener chaos is studied. Necessary and sufficient conditions for infinite
divisibility is presented as well as more easily verifiable sufficient conditions. The
case where both components consist of a sum of two Gaussian squares is treated
in more depth, and it is conjectured that such vectors are infinitely divisible.
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1 Introduction

Paul Lévy [11] raised the question of infinite divisibility of Gaussian squares, that
is, for a centered Gaussian vector (X1, . . . ,Xn) when can (X2

1 , . . . ,X
2
n) be written as a

sum of m independent identical distributed random vectors for any m ∈N? Several
authors have studied this problem. We refer to [4, 5, 6, 7, 8, 13] and reference therein.
These works include several novel approaches and gives a great understanding of
when Gaussian squares are infinitely divisible. In this paper we will provide a char-
acterization of infinite divisibility of sums of Gaussian squares which to the best of
our knowledge has not been studied in the literature except in special cases. This
problem is highly motivated by the fact that sums of Gaussian squares are the usual
limits in many limit theorems in the presence of either long range dependence, see [2]
or [16], or degenerate U-statistics, see [9]. In the following we will go in more details.
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Paper A · On infinite divisibility of a class of two-dimensional vectors in the second Wiener
chaos

Let Y be random variable in the second (Gaussian) Wiener chaos, that is, the
closed linear span in L2 of {W (h)2 − 1 : h ∈ H,‖h‖ = 1} for a real separable Hilbert
space H and an isonormal Gaussian process W . For convenience, we assume H is
infinite-dimensional. Then there exists a sequence of independent standard Gaussian
variables (ξi) and a sequence of real numbers (αi) such that

Y
d=
∞∑
i=1

αi(ξ
2
i − 1),

where the sum converges in L2 (see for example [9, Theorem 6.1]). Since the ξi ’s
are independent, (ξ2

1 , . . . ,ξ
2
d ) is infinitely divisible for any d ≥ 1 and therefore, Y is

infinitely divisible. Such a sum of Gaussian squares appears as the limit of U-statistics
in the degenerate case (see [9, Corollary 11.5]). In this case the αi are certain binomial
coefficients times the eigenvalues of operators associated to the U-statistics. We note
that the sequence (ξi) depends heavily on Y , so one can not deduce joint infinite
divisibility of random vectors with components in the second Wiener chaos. In
particular, for a vector with dimension greater than or equal to three and components
in the second Wiener chaos it is well known (cf. Theorem 1.1 below) that it need not
be infinite divisibility. In between these two cases is the open question of infinite
divisibility of a two-dimensional vector with components in the second Wiener chaos.
Let (X1, . . . ,Xn1+n2

) be a mean zero Gaussian vector for n1,n2 ∈ N. That any two-
dimensional vector in the second Wiener chaos is infinitely divisible is equivalent
to

(d1X
2
1 + · · ·+ dn1

X2
n1
,dn1

X2
n1+1 + · · ·+ dn1+n2

X2
n1+n2

) (1.1)

being infinitely divisible for any d1, . . . ,dn1+n2
= ±1, any covariance structure of

(X1, . . . ,Xn1+n2
), and any n1,n2 ∈N (something that follows by the definition of the

second Wiener chaos).
The following theorem, which is due to Griffiths [8] and Bapat [1], is an important

first result related to infinite divisibility in the second Wiener chaos. We refer to
Marcus and Rosen [12, Theorem 13.2.1 and Lemma 14.9.4] for a proof.

Theorem 1.1 (Griffiths and Bapat). Let (X1, . . . ,Xn) be a mean zero Gaussian vector
with positive definite covariance matrix Σ. Then (X2

1 , . . . ,X
2
n) is infinitely divisible if and

only if there exists an n×n matrix U on the form diag(±1, . . . ,±1) such that U tΣ−1U has
non-positive off-diagonal elements.

This theorem resolved the question of infinite divisibility of Gaussian squares. For
n ≥ 3 there is an n×n positive definite matrix Σ where there does not exist an n×n
matrixU on the form diag(±1, . . . ,±1) such thatU tΣ−1U has non-positive off-diagonal
elements. Consequently, there are mean zero Gaussian vectors (X1, . . . ,Xn) such that
(X2

1 , . . . ,X
2
n) is not infinite divisible whenever n ≥ 3.

Eisenbaum [3] and Eisenbaum and Kapsi [5] found a connection between the
condition of Griffiths and Bapat and the Green function of a Markov process. In
particular, a Gaussian process has infinite divisible squares if and only if its covariance
function (up to a constant function) can be associated with the Green function of a
strongly symmetric transient Borel right Markov process.
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2 · Main Results

When discussing the infinite divisibility of the Wishart distribution Shanbhag [15]
showed that for any covariance structure of a mean zero Gaussian vector (X1, . . . ,Xn),

(X2
1 ,X

2
2 + · · ·+X2

n)

is infinitely divisible. Furthermore, it was found that infinite divisibility of any
bivariate marginals of a centered Wishart distribution can be reduced to infinite
divisibility of (X1X2,X3X4). By the polarization identity,

(X1X2,X3X4) = 1
4 ((X1 +X2)2 − (X1 −X2)2, (X3 +X4)2 − (X3 −X4)2).

Consequently, infinite divisibility of any bivariate marginals of a centered Wishart dis-
tribution is again related to the question of infinite divisibility of a two-dimensional
vector from the second Wiener chaos.

We will be interested in the infinite divisibility of

(X2
1 + · · ·+X2

n1
,X2

n1+1 + · · ·+X2
n1+n2

),

i.e., the case d1 = · · · = dn1+n2
= 1 in (1.1). The general case, where di = −1 for at least

one i, seems to require new ideas going beyond the present paper. We will have a
special interest in the case n1 = n2 = 2.

Despite the simplicity of the question, it has proven rather subtle, and a definite
answer is not presented. Instead, we give easily verifiable conditions for infinite
divisible in the case n1 = n2 = 2 as well as more complicated necessary and sufficient
conditions in the general case that may or may not always hold. We will, in addition,
investigate the infinite divisibility of (X2

1 +X2
2 ,X

2
3 +X2

4 ) numerically which, together
with Theorem 2.4 (ii), leads us to conjecture that infinite divisibility of this vector
always holds.

The main results without proofs are presented in Section 2. Section 3 contains
two examples and a small numerical discussion. We end with Section 4 where the
proofs of the results stated in Section 2 are given.

2 Main Results

We begin with a definition which is a natural extension to the present setup (see the
proof of Corollary 2.7) of the terminology used by Bapat [1].

Definition 2.1. Let n1,n2 ∈N. An (n1 + n2)× (n1 + n2) orthogonal matrix U is said to
be an (n1,n2)-signature matrix if

U =
(
U1 0
0 U2

)
where U1 is an n1 ×n1 matrix and U2 is an n2 ×n2 matrix, both orthogonal, and for 0’s of
suitable dimensions.

Let n1,n2 ∈ N and consider a mean zero Gaussian vector (X1, . . . ,Xn1+n2
) with

positive definite covariance matrix Σ. Now we present a necessary and sufficient
condition for infinite divisibility of

(X2
1 + · · ·+X2

n1
,X2

n1+1 + · · ·+X2
n1+n2

). (2.1)

13



Paper A · On infinite divisibility of a class of two-dimensional vectors in the second Wiener
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For a > 0, let Q = I − (I + aΣ)−1 and write

Q =
(
Q11 Q12
Q21 Q22

)
where Q11 is an n1 ×n1 matrix, Q22 is an n2 ×n2 matrix, and Q12 =Qt21 (where Qt21 is
the transpose of Q21) is an n1 ×n2 matrix. Note that if λ is an eigenvalue of Σ, aλ

1+aλ is
an eigenvalue of Q. Since Q is symmetric and has positive eigenvalues, it is positive
definite.

Theorem 2.2. The vector in (2.1) is infinitely divisible if and only if for all k,m ∈N0 and
for all a > 0 sufficiently large,∑

trace Qk1
11Q12Q

m1
22 Q21Q

k2
11 · · ·Q

kd
11Q12Q

md
22 Q21Q

kd+1
11

+
∑

trace Qm1
22 Q21Q

k1
11Q12Q

m2
22 · · ·Q

md−1
22 Q21Q

kd
11Q12Q

md+1
22 ≥ 0,

(2.2)

where the first sum is over all k1, . . . , kd+1 and m1, . . . ,md such that

k1 + · · ·+ kd+1 + d = k and m1 + · · ·+md + d =m,

and the second sum is over all m1, . . . ,md+1 and k1, . . . , kd such that

m1 + · · ·+md+1 + d =m and k1 + · · ·+ kd + d = k.

Remark 2.3. By applying Theorem 2.2 we can give a new and simple proof of
Shanbhag’s [15] result that (X2

1 ,X
2
2 + · · · + X2

1+n2
) is infinite divisible. To see this,

consider the case n1 = 1 and n2 ∈N. Then Q11 is a positive number and Q12Q
m
22Q21

is a non-negative number for any m ∈N. In particular, we have

traceQk1
11Q12Q

m1
22 Q21 · · ·Q12Q

md
22 Q21Q

kd+1
11

=Qk1
11 · · ·Q

kd+1
11 Q12Q

m1
22 Q21 · · ·Q12Q

md
22 Q21 ≥ 0

for any k1, . . . , kd+1,m1, . . . ,md ∈N0. Consequently, the first sum in (2.2) is a sum of
non-negative numbers. A similar argument gives that the other sum is non-negative
too. We conclude that (X2

1 ,X
2
2 + · · ·+X2

1+n2
) is infinite divisible.

In order to get a concise formulation of the following results we will need some
terminology and conventions. To this end, consider a 2×2 symmetric matrix A. Let v1
and v2 be the eigenvectors of A, and λ1 and λ2 be the corresponding eigenvalues. We
say that vi is associated with the largest eigenvalue if λi ≥ λj for j = 1,2. Furthermore,
whenever A is a multiple of the identity matrix, we fix (1,0) to be the eigenvector
associated with the largest eigenvalue.

Now consider the special case n1 = n2 = 2, i.e., the vector

(X2
1 +X2

2 ,X
2
3 +X2

4 ) (2.3)

where (X1,X2,X3,X4) is a mean zero Gaussian vector with a 4 × 4 positive definite
covariance matrix Σ. We still let Q = I − (I + aΣ)−1 and write

Q =
(
Q11 Q12
Q21 Q22

)
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where Qij is a 2× 2 matrix for i, j = 1,2. Let W be a (2,2)-signature matrix such that

W tQW =
(
W t

1Q11W1 W t
1Q12W2

W t
2Q21W1 W t

2Q22W2

)
=


q11 0 q13 q14
0 q22 q23 q24
q13 q23 q33 0
q14 q24 0 q44

 ,
where q11 ≥ q22 > 0 and q33 ≥ q44 > 0 which exists by Lemma 4.1. Note that qij is
not the (i, j)-th entry of Q but of W tQW . Let v1 = (v11,v21) be the eigenvector of
W t

1Q12Q21W1 associated with the largest eigenvalue. If q11 = q22 or q33 = q44, any
orthogonal W1 or W2 gives the desired form. In this case, we may always choose W1
or W2 such that v11q13(v11q13 + v21q23) ≥ 0 (see the proof of Lemma 4.2, (ii)⇒ (iii)),
and it is such a choice we fix. The following theorem addresses the non-negativity of
the sums in (2.2) when n1 = n2 = 2,.

Theorem 2.4. Let n1 = n2 = 2. Then, in the notation above, we have the following.

(i) For all d ∈N0 and k1, . . . , kd+1,m1, . . . ,md ∈N0,

traceQk1
11Q12Q

m1
22 Q21Q

k1
11 · · ·Q

kd
11Q12Q

md
22 Q21Q

kd+1
11 ≥ 0

if and only if v11q13(v11q13 + v21q23) ≥ 0. In particular, (2.3) is infinitely divisible
if the latter inequality is satisfied for all sufficiently large a.

(ii) For any k,m ∈N0 such that at least one of the following inequalities is satisfied: (i)
k ≤ 2, (ii) m ≤ 2, or (iii) k +m ≤ 7, the sum in (2.2) is non-negative.

Remark 2.5. When v11q13(v11q13 +v21q23) < 0, we know that there are k,m ∈N0 such
that (2.2) with n1 = n2 = 2 contains negative terms cf. Theorem 2.4 (i). If k = 0 or
m = 0 then Theorem 2.4 (ii) gives that the sum in (2.2) is non-negative. If k,m ≥ 1, the
sum in (2.2) always contains terms on the form

traceQk1
11Q12Q

m1
22 Q21. (2.4)

Since Q11 is positive definite and traceAB = traceBA for any matrices A and B such
that both sides make sense,

traceQk1
11Q12Q

m1
22 Q21 = traceQk1/2

11 Q12Q
m1
22 Q21Q

k1/2
11 .

UsingQ12 =Qt21 we conclude that (2.4) is equal to the trace of a positive semi-definite
matrix and therefore non-negative. Consequently, there are always non-negative
terms in (2.2).

It is an open problem if there exists a positive definite matrix Q with eigenvalues
less than 1 and k,m ∈N0 such that (2.2) is negative, which would be an example of
(2.3) not being infinite divisible, or if the non-negative terms always compensate for
possible negative terms, which is equivalent to (2.3) always being infinitely divisible.

Continue to consider the case n1 = n2 = 2 and write

Σ−1 =
(
Σ11 Σ12

Σ21 Σ22

)
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where Σij is a 2× 2 matrix for i, j = 1,2. Let W be a (2,2)-signature matrix such that

W tΣ−1W =
(
W t

1Σ
11W1 W t

1Σ
12W2

W t
2Σ

21W1 W t
2Σ

22W2

)
=


σ11 0 σ13 σ14
0 σ22 σ23 σ24
σ13 σ23 σ33 0
σ14 σ24 0 σ44


where σ11 ≥ σ22 > 0 and σ33 ≥ σ44 > 0 which exists by Lemma 4.1. Note that σij is
not the (i, j)-th entry of Σ−1 but of W tΣ−1W . Let v1 = (v11,v21) be the eigenvector of
W t

1Σ
12Σ21W1 associated with the largest eigenvalue. If σ11 = σ22 or σ33 = σ44, any

orthogonal W1 or W2 gives the desired form. In this case, we may chose W1 or W2
such that v21σ24(v21σ24 + v11σ14) ≥ 0, and it is such a choice we fix. Then we have the
following theorem.

Theorem 2.6. The vector (X2
1 +X2

2 ,X
2
3 +X2

4 ) is infinitely divisible if one of the following
equivalent conditions is satisfied.

(i) There exists a (2,2)-signature matrix U such that U tΣ−1U has non-positive off-
diagonal elements.

(ii) The inequality v21σ24(v21σ24 + v11σ14) ≥ 0 holds.

Example 3.2 builds intuition about condition (ii) above, in particular that the
condition holds in cases where (X2

1 ,X
2
2 ,X

2
3 ,X

2
4 ) is not infinitely divisible, but also that

it is not always satisfied.
Theorem 2.6 (i) holds for general n1,n2 ≥ 1 as the following result shows. We give

the proof below since it is short and makes the need for signature matrices clear. The
proof of the more applicable condition (ii) in Theorem 2.6 is postponed to Section 4
since it relies on results that will be establish in that section.

Corollary 2.7 (to Theorem 1.1). Let (X1, . . . ,Xn1+n2
) be a mean zero Gaussian vector

with positive definite covariance matrix Σ. Then

(X2
1 + · · ·+X2

n1
,X2

n1+1 + · · ·+X2
n1+n2

) (2.5)

is infinitely divisible if there exists an (n1,n2)-signature matrix U such that U tΣ−1U has
non-positive off-diagonal elements.

Proof. Write X = (X1, . . . ,Xn1
) and Y = (Xn1+1, . . . ,Xn1+n2

), and note that

(X2
1 + · · ·+X2

n1
,X2

n1+1 + · · ·+X2
n1+n2

) = (‖X‖2,‖Y ‖2)

= (‖U1X‖2,‖U2Y ‖2)
(2.6)

for any n1×n1 orthogonal matrix U1 and n2×n2 orthogonal matrix U2. Consequently,
any property of the distribution of (2.5) is invariant under transformations of the
form (

U t
1 0

0 U t
2

)
Σ

(
U1 0
0 U2

)
of the covariance matrix Σ. Therefore, when there exists an (n1,n2)-signature matrix
U such that U tΣ−1U has non-positive off-diagonal elements, Theorem 1.1 ensures
infinite divisibility of (2.6). �
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3 Examples and numerics

We begin this section by presenting two examples treating the inequalities in Theorem
2.2 (ii) and Theorem 2.6 (ii) in special cases. Then we calculate the sums in Theorem
2.2 numerically with n1 = n2 = 2 for a specific value of Q for k and m less than 60.

Example 3.1. Fix a > 0 and assume that Q is on the form

Q =
(
Q11 Q12
Q21 Q22

)
=


q1 0 ε ε
0 q2 ε −δ
ε ε q3 0
ε −δ 0 q4


where δ,ε > 0, q1 > q2 > 0, and q3 > q4 > 0. Let v1 = (v11,v21) be the eigenvector of

Q12Q21 =
(

2ε2 ε(ε − δ)
ε(ε − δ) ε2 + δ2

)
associated with the largest eigenvalue λ1. We will argue that the inequality in Theo-
rem 2.4 (i), which reads

v11(v11 + v21) ≥ 0 (3.1)

in this case, holds if and only if δ ≤ ε. Then the same theorem will imply that

trace Qk1
11Q12Q

m1
22 Q21Q

k1
11 · · ·Q

kd
11Q12Q

md
22 Q21Q

kd+1
11 ≥ 0

for all d ∈N0 and k1, . . . , kd+1m1, . . . ,md ∈N0 if and only if δ ≤ ε, and therefore also
that the sum in (2.2) is non-negative whenever this is the case.

Since −v1 also is an eigenvector of Q12Q21 associated with the largest eigenvalue,
we assume v11 ≥ 0 without loss of generality. Assume δ ≤ ε. If δ = ε, v1 = (1,0) and
the inequality in (3.1) holds. Assume δ < ε. Since λ1 is the largest eigenvalue,

λ1 = sup
|v|=1

vtQ12Q21v ≥ 2ε2

which implies that

2ε2 −λ1 ≤ 0 ≤ ε(ε − δ).

Since v1 is an eigenvector, (Q −λ1)v1 = 0 and we therefore have that

0 = (2ε2 −λ1)v11 + ε(ε − δ)v21 ≤ ε(ε − δ)(v11 + v21).

We conclude that (3.1) holds.
On the other hand, assume δ > ε and v11 ≥ 0. Since λ1 is the largest eigenvalue,

λ1 ≥ δ2 + ε2 > δε+ ε2 and therefore,

(λ1 − 2ε2) > ε(δ − ε).

Note that v11 can not be zero since the off-diagonal element in Q12Q21 is non-zero.
We conclude that

0 = (λ1 − 2ε2)v11 + ε(δ − ε)v21 > ε(δ − ε)(v11 + v21).

This implies that (3.1) does not hold.
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Example 3.2. Assume Σ−1 is on the form

Σ−1 =
(
Σ11 Σ12

Σ21 Σ22

)
=


σ1 0 −δ ε
0 σ2 ε ε
−δ ε σ3 0
ε ε 0 σ4

 (3.2)

where σ1 > σ2 > 0, σ3 > σ4 > 0, and δ,ε > 0. Let v1 = (v11,v21) be the eigenvector
of Σ12Σ21 associated with the largest eigenvalue. We will argue that the inequality
in Theorem 2.6 (ii) holds if and only if δ ≤ ε. Then the same theorem implies that
(X2

1 +X2
2 ,X

2
3 +X2

4 ) is infinitely divisible whenever δ ≤ ε. On the other hand, Theorem
1.1 implies that (X2

1 ,X
2
2 ,X

2
3 ,X

2
4 ) is never infinite divisible under (3.2) since there

does not exists a matrix D on the form diag(±1,±1,±1,±1) such that DΣ−1D has non-
positive off-diagonal elements. Indeed, for any two matrices D1 and D2 on the form
diag(±1,±1), D1Σ

12D2 has either three negative and one positive or one negative and
three positive entrances.

To see that v21(v11 + v21) ≥ 0 if and only if δ ≤ ε, let

P =
(
0 1
1 0

)
and Q12 be given as in Example 3.1. Then PΣ12P = Q12, implying that (v21,v11) is
the eigenvector associated with the largest eigenvalue of Q12Q21. We have argued
in Example 3.1 that v21(v11 + v21) ≥ 0 holds if and only if δ ≤ ε which is the desired
conclusion.

Now we investigate infinite divisibility of (X2
1 +X2

2 ,X
2
3 +X2

4 ) numerically. More
specifically, we consider the sums in (2.2) with n1 = n2 = 2 for a specific choice of
positive definite matrix and different values of k and m. We will scale Q to have its
largest eigenvalue equal to one to avoid getting too close to zero. Due to Theorem 2.4
the case where v11q13(v11q13 + v21q23) < 0 (in the notation from Theorem 2.4) is the
only case where the infinite divisibility of (X2

1 +X2
2 ,X

2
3 +X2

4 ) is open.
Let

Q =
1
λ


0.8 0 0.01 0.01
0 0.3 0.01 −0.2

0.01 0.01 0.8 0
0.01 −0.2 0 0.3


where λ > 0 is chosen such that Q has its largest eigenvalue equal to 1. Note that by
Example 3.1, v11q13(v11q13 +v21q23) < 0. In Figure 1 the logarithm of the sums in (2.2)
for k and m between 0 and 60 is plotted. It is seen that the logarithm seems stable
and therefore, that the sums in (2.2) remain positive in this case. A similar analysis
have been done for other positive definite matrices, and we have not encountered any
k,m ∈N0 such that (2.2) is negative. This, together with Theorem 2.4 (ii), leads us to
conjecture that (X2

1 +X2
2 ,X

2
3 +X2

4 ) is infinite divisible for any covariance structure of
(X1,X2,X3,X4).
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4 · Proofs

Figure 1: The logarithm of the sums in (2.2) for k and m between 0 and 60.

4 Proofs

We start this section with two lemmas on linear algebra. Lemma 4.2 will be very
useful in the proofs that make up the rest of this section.

Lemma 4.1. Let A be a n×n positive definite matrix. Let n1,n2 ∈N be such that n1 +n2 =
n and write

A =
(
A11 A12
A21 A22

)
where A11 is an n1 × n1 matrix, A22 is an n2 × n2 matrix, and A12 = At21 is an n1 × n2
matrix. Then there exists an (n1,n2)-signature matrix W such that W tAW has the form(

Ã11 Ã12
Ã21 Ã22

)
where Ã11 = diag(a1, . . . , an1

) and Ã22 = diag(an1+1, . . . , an1+n2
) with ai > 0 for i = 1, . . . ,n1+

n2, and where Ã12 = Ãt21. Furthermore, we may choose W such that a1 ≥ a2 ≥ · · · ≥ an1

and an1+1 ≥ an1+2 ≥ · · · ≥ an1+n2
.

Proof. Since A is positive definite, A11 and A22 are positive definite. Consequently,
by the spectral theorem (see for example [10, Corollary 6.4.7]), there exists an n1 ×
n1 matrix W1 and an n2 × n2 matrix W2, both orthogonal, such that W t

1A11W1 and
W t

2A22W2 are diagonal with positive diagonal entries. Since permutation matrices are
orthogonal matrices, we may assume the diagonal is ordered by size in bothW t

1A11W1
and W t

2A22W2. Consequently, letting

W =
(
W1 0
0 W2

)
,

implies that W tAW has the right form. �
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For a fixed eigenvector vi we call the system Avi = λivi , the system of eigenequa-
tions. The k’th equation in this system will be called the k’th eigenequation associated
with vi .

Let A be a 4× 4 positive definite matrix, and let W be a (2,2)-signature such that

W tAW =
(
W t

1A11W1 W t
1A12W2

W t
2A21W1 W t

2A22W2

)
=


a11 0 a13 a14
0 a22 a23 a24
a13 a23 a33 0
a14 a24 0 a44

 ,
where a11 ≥ a22 > 0 and a33 ≥ a44 > 0 which exists by Lemma 4.1. Note that aij is not
the (i, j)-th entry of A but of W tAW . Let v1 = (v11,v21) be the eigenvector associated
with the largest eigenvalue of W t

1A12A21W1. If a11 = a22 or a33 = a44, any orthogonal
W1 or W2 give the desired form. In this case, we may chose W1 or W2 such that
v11a13(v11a13 + v21a23) ≥ 0, and it is such a choice we fix. Then the lemma below will
play a central role in the proofs of the previously stated results.

Lemma 4.2. In the notation above, the following are equivalent.

(i) There exists a (2,2)-signature matrixU such thatU tAU has all entries non-negative.

(ii) For any d ∈N and k1, . . . , kd+1,m1, . . .md ∈N0,

traceAk1
11A12A

m1
22 A21A

k2
11 · · ·A

kd
11A12A

md
22 A21A

kd+1
11 ≥ 0.

(iii) The inequality v11a13(v11a13 + v21a23) ≥ 0 holds.

Proof. (i)⇒ (ii). Let

U =
(
U1 0
0 U2

)
be such that Bij =U t

i AijUj has non-negative entries for i, j = 1,2. Then

traceAk0
11A12A

m1
22 A21A

k1
11 · · ·A

kd−1
11 A12A

md
22 A21A

kd
11

= traceBk0
11B12B

m1
22 B21B

k1
11 · · ·B

kd−1
11 B12B

md
22 B21B

kd
11.

This trace is non-negative since all matrices in the product only contain non-negative
entries.

(ii)⇒ (iii). By the spectral theorem, we may write W t
1A12A21W1 = VΛV t where

V is a 2 × 2 orthogonal matrix and Λ = diag(λ1,λ2) with λ1 ≥ λ2 ≥ 0. Note that
v1, the eigenvector associated with largest eigenvalue of W t

1A12A21W1, is the first
column of V . If λ1 = λ2, v1 = (1,0) and the inequality holds. If a11 = a22 or a33 = a44,
W t

1A11W1 = A11 or W t
2A22W2 = A22, and choosing W1 or W2 such that a23 = 0 then

ensures the inequality in (iii) holds.
Assume now that λ1 > λ2, a11 > a22, and a33 > a44. It follows by assumption that

0 ≤ 1

ak11

1

ak33

1

λk1
traceAk11A12A

k
22A21(A12A21)k

= trace
(
1 0
0 ( a22

a11
)k

)
W t

1A12W2

(
1 0
0 ( a44

a33
)k

)
W t

2A21W1V

1 0
0 (λ1

λ2
)k

V t
→ trace

(
1 0
0 0

)
W t

1A12W2

(
1 0
0 0

)
W t

2A21W1V

(
1 0
0 0

)
V t
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as k→∞. This gives the inequality in (iii) since

trace
(
1 0
0 0

)
W t

1A12W2

(
1 0
0 0

)
W t

2A21W1V

(
1 0
0 0

)
V t

= v11a13(v11a13 + v21a23).

(iii)⇒ (i). To ease the notation and without loss of generality assume that W = I .
We are then pursuing two 2×2 orthogonal matricesU1 andU2 such thatU t

1A11U1,U
t
1A12U2,

and U t
2A22U2 all have non-negative entrances. Initially consider D1 and D2 on the

form diag(±1,±1). Then clearly, D1A11D1 = A11 and D2A22D2 = A22 since A11 and
A22 are diagonal matrices. Next, note that either it is possible to find D1 and D2 such
that D1A12D2 has all entrances non-negative or such that

D1A12D2 =
(
a13 a14
a23 −a24

)
(4.1)

where a13, a23, a14, a24 > 0. Consequently, we will assume A12 is on the form in (4.1)
since otherwise choosing U1 =D1 and U2 =D2 would be sufficient.

As one of two cases, assume a13a23 − a14a24 ≥ 0, and define

U2 =
(
α a14a24

a23
βa23

αa14 −βa24

)
where α,β > 0 are chosen such that each column in U2 has norm one. Then U2 is
orthogonal,

A12U2 =
(
α(a2

14 + a13a14a24
a23

) β(a13a23 − a14a24)
0 β(a2

23 + a2
24)

)
,

and

U t
2A22U2 =

α2
(
a33

(
a14a24
a23

)2
+ a44a

2
14

)
αβa14a24(a33 − a44)

αβa14a24(a33 − a44) β2a2
23 + β2a2

24

 .
Since a33 ≥ a44, all entries in A12U2 and U t

2A22U2 are non-negative. Choosing U1 = I
then gives a pair of orthogonal matrices with the desired property.

Now assume a13a23 − a14a24 < 0. Note that A12 on the form (4.1) can not be
singular and consequently, there exists λ1 ≥ λ2 > 0 and an orthogonal matrix V
such that A12A21 = VΛV t , where Λ = diag(λ1,λ2). Furthermore, since V contains the
eigenvectors of A12A21 we may assume v11 and v12 have the same sign where vij is
the (i, j)-th component of V . Define

W = A21V (Λ1/2)−1, (4.2)

and note that this is an orthogonal matrix which, together with V , decomposes A12
into its singular value decomposition, that is, V tA12W = Λ1/2. Then

V tA11V =
(
a11v

2
11 + a22v

2
21 v11v12(a11 − a22)

v11v12(a11 − a22) a11v
2
12 + a22v

2
22

)
.
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All entries in V tA11V are non-negative since we chose v11 and v12 to have the same
sign, and since a11 ≥ a22 > 0.

To see thatW tA22W also have all entries non-negative, consider the first line in the
eigenequations for A12A21 associated with the eigenvector (v12,v22), the eigenvector
associated with the smallest eigenvalue λ2,

(a2
13 + a2

14 −λ2)v12 + (a13a23 − a14a24)v22 = 0. (4.3)

Since λ2 is the smallest eigenvalue of A12A21,

λ2 = inf
|v|=1

vtA12A21v,

and since the off-diagonal elements in A12A21 are non-zero, (1,0) and (0,1) cannot
be eigenvectors. Consequently, λ2 is strictly smaller than any diagonal element of
A12A21, and in particular a2

13 + a2
14 − λ2 > 0. Since we also have a13a23 − a14a24 < 0,

(4.3) gives that v12 and v22 need to have the same sign for the sum to equal zero. Let
wij be the (i, j)-th component of W and note that by (4.2),

w11w12 =
v11a13 + v21a23

λ1/2
1

v12a13 + v22a23

λ1/2
2

.

The assumption v11a13(v11a13 + v21a23) ≥ 0 implies that v11a13 + v21a23 and v11 have
the same sign. Since v11 and v12 were chosen to have the same sign, and v12 and v22
have the same sign, we conclude that (v11a13 +v21a23)(v12a13 +v22a23) is non-negative
and therefore, w11w12 is non-negative too. Then writing

W tA22W =
(
a33w

2
11 + a44w

2
21 w11w12(a33 − a44)

w11w12(a33 − a44) a33w
2
12 + a44w

2
22

)
makes it clear that W tA22W has non-negative elements. Thus, letting U1 = V and
U2 =W completes the proof. �

Corollary 4.3. Let A and v1 be given as in Lemma 4.2. Then there exists a (2,2)-signature
matrix U such that U tAU has non-positive off-diagonal elements if and only if

v21a24(v21a24 + v11a14) ≥ 0. (4.4)

Proof. Let W be defined as in Lemma 4.2. Define

P1 =
(
0 1
1 0

)
and P =

(
P1 0
0 P1

)
.

Then P1v1 = (v21,v11) is the eigenvector of P1W
t
1A12A21W1P1 associated with the

largest eigenvalue. Let

Ã =
(
W t

1A11W1 P1W
t
1A12W2P1

P1W
t
2A21W1P1 W t

2A22W2

)
=


a11 0 a24 a23
0 a22 a14 a13
a24 a14 a33 0
a23 a13 0 a44

 .
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By Lemma 4.2, there exists a (2,2)-signature matrix

Ũ =
(
Ũ1 0
0 Ũ2

)
such that Ũ tÃŨ has non-negative entries if and only if v21a24(v21a24 + v11a14) ≥ 0.
Define now the (2,2)-signature matrix U as

U =
(
U1 0
0 U2

)
=

(
−W1P1Ũ1 0

0 W2P1Ũ2

)
.

Let ũij be the (i, j)-th component of Ũ1. Since Ũ1 is orthogonal, ũ12ũ22 = −ũ11ũ21
implying that

U t
1A11U1 =

(
ũ2

11a22 + ũ2
21a11 ũ11ũ12(a22 − a11)

ũ11ũ12(a22 − a11) ũ2
12a22 + ũ2

22a11

)
and

Ũ t
1W

t
1A11W1Ũ1 =

(
ũ2

11a11 + ũ2
21a22 ũ11ũ12(a11 − a22)

ũ11ũ12(a11 − a22) ũ2
12a11 + ũ2

22a22

)
.

Consequently Ũ t
1W

t
1A11W1Ũ1 has non-negative elements if and only if U t

1A11U1
has non-positive off-diagonal elements. Similarly, Ũ t

2W
t
2A22W2Ũ2 has non-negative

elements if and only if U t
2A22U2 has non-positive off-diagonal elements by a similar

argument. Finally we note that

U t
1A12U2 = −Ũ t

1P1W
t
1A12W2P1Ũ2,

and it follows that U tAU has non-positive off-diagonal elements if and only if

Ũ t
1P1W

t
1A12W2P1Ũ2, Ũ t

1W
t
1A11W1Ũ1 and, Ũ t

2W2A22W2Ũ2

have all entries non-negative. We conclude that we can find a (2,2)-signature matrix
U such that U tAU has non-positive off-diagonal element if and only if (4.4) holds. �

The following lemma will be useful in the proof of Theorem 2.2. A proof can be
found in [12, Lemma 13.2.2].

Lemma 4.4. Let ψ : Rn+ → (0,∞) be a continuous function. Suppose that, for all a >
0 sufficiently large, logψ(a(1 − s1), . . . , a(1 − sn)) has a power series expansion for s =
(s1, . . . , sn) ∈ [0,1]n around s = 0 with all its coefficients non-negative, except for the
constant term. Then ψ is the Laplace transform of an infinitely divisible random variable
in R

n
+.

We now give the proof of Theorem 2.2, where all the main steps follow similar as
in [12, Proof of Theorem 13.2.1], but with several modifications to adjust to a different
setting. E.g. there is a difference in the S matrix appearing in the proof.

Proof (Proof of Theorem 2.2). By [12, Lemma 5.2.1],

P (s1, s2) = Eexp{−1
2a((1− s1)(X2

1 + · · ·+X2
n1

) + (1− s2)(X2
n1+1 + · · ·+X2

n2
))}

=
1

|I +Σa(I − S)|1/2
,
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where S is the (n1 + n2) × (n1 + n2) diagonal matrix with s1 on the first n1 diagonal
entries and s2 on the remaining n2 diagonal entries. Recall that Q = I − (I + aΣ)−1.
Then

P (s1, s2)2 = |I + aΣ− aΣS |−1

= |(I −Q)−1 − ((I −Q)−1 − I)S |−1

= |I −Q||I −QS |−1,

from which it follows that

2logP (s1, s2) = log |I −Q| − log |I −QS |

= log |I −Q|+
∞∑
n=1

trace{(QS)n}
n

,
(4.5)

where the last equality follows from [12, p. 562]. Now assume that the vector (X2
1 +

· · ·+X2
n1
,X2

n1+1 + · · ·+X2
n1+n2

) is infinitely divisible, and write

(X2
1 + · · ·+X2

n1
,X2

n1+1 + · · ·+X2
n1+n2

) d= Y n1 + · · ·+Y nn

where Y n1 , . . .Y
n
n are 2-dimensional independent identically distributed stochastic

vectors. Let Y nij be the j-th component of Y ni and note that Y nij ≥ 0 a.s. for all i, j,n.
Then

P (s1, s2)1/n = Eexp{−1
2a((1− s1)Y n11 + (1− s2)Y n12)}.

That P 1/n(s1, s2) has a power series expansion with all coefficient non-negative follows
from writing

exp{−1
2a((1− sj )Y

n
1j )} = exp{−1

2aY
n
1j )})

∞∑
k=0

(sjaY
n
1j )

k

2kk!
.

We have that

logP (s1, s2) = lim
n→∞

(n(P 1/n(s1, s2)− 1)). (4.6)

Note that (s1, s2) 7→ n(P 1/n(s1, s2) − 1) and all its derivatives converge uniformly on
[0,1) × [0,1) by a Weierstrass M-test (see for example [14, Theorem 7.10]). Conse-
quently, we may use [14, Theorem 7.17] to conclude that

∂α+β

∂sα1∂s
β
2

lim
n→∞

(n(P 1/n(s1, s2)− 1)) = lim
n→∞

∂α+β

∂sα1∂s
β
2

(n(P 1/n(s1, s2)− 1))

for any α,β ∈N0. Thus, that all the terms in the power series expansion of P 1/n(s1, s2)
are non-negative implies that all the terms in the power series representation of
logP (s1, s2) except the constant term are non-negative by (4.6). By (4.5) we conclude
that any coefficient in front of sk1s

m
2 in trace{(QS)k+m} has to be non-negative for all

k,m ∈ N and a > 0. Expanding out the trace then gives that this is equivalent to
non-negativity of the sum in (2.2) for all k,m ∈N0.
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On the other hand, if the sum in (2.2) is non-negative for all k,m ∈N0 and a > 0
sufficiently large, (4.5) and Lemma 4.4 imply that

(X2
1 + · · ·+X2

n1
,X2

n1+1 + · · ·+X2
n1+n2

)

is infinitely divisible. �

Proof (Proof of Theorem 2.4). Lemma 4.2 implies the equivalence in (i). Now we
set out to show (ii), i.e., to show that the sum in Theorem 2.2 is non-negative for
k,m ∈N0 such that k ≤ 2, m ≤ 2, or k +m ≤ 7 in the special case n1 = n2 = 2. To this
end, consider a 4× 4 positive definite matrix Q and write

Q =
(
Q11 Q12
Q21 Q22

)
where Qij is a 2 × 2 matrix for i, j = 1,2. Let W1 and W2 be two 2 × 2 orthogonal
matrices and define Pij =WiQijWj . Then

traceQk1
11Q12Q

m1
22 Q21 · · ·Q12Q

md
22 Q21Q

kd+1
11

=traceP k1
11P12P

m1
22 P21 · · ·P12P

md
22 P21P

kd+1
11 .

(4.7)

Consequently (see Lemma 4.1), we may assume, without loss of generality, that Q11
and Q22 are diagonal with the first diagonal element greater than or equal the other
and all entries non-negative.

Either there exists D1 and D2 on the form diag(±1,±1) such that D1Q12D2 has all
entries non-negative or such that

D1Q12D2 =
(
q13 q23
q14 −q24

)
where q13,q23,q14,q24 > 0. If D1Q12D2 has all entries non-negative, writing as in (4.7)
with Wi replaced by Di implies non-negativity of each individual trace. We conclude
that we may assume

Q =


λ1 0 q13 q14
0 λ2 q23 −q24
q13 q23 λ3 0
q14 −q24 0 λ4

 ,
where λ1 ≥ λ2 ≥ 0 and λ3 ≥ λ4 ≥ 0 and q13,q23,q14,q24 > 0, without loss of generality.

We now write out the traces in (2.2) for specific values of k and m and show
non-negativity in each case.

k = 0 or m = 0

Assume k = 0 and fix some m ∈N. Then the terms in the sum in Theorem 2.2 reduce
to traceQm22. Since Q22 is positive definite, Qm22 is positive definite. Consequently,
traceQm22 > 0. Similarly, when m = 0 and k ∈N, the terms in the sum in Theorem 2.2
reduce to traceQk11, which again is positive since Q11 is positive definite.
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k = 1 or m = 1

Assume k = 1 and fix some m ∈N. Then (2.2) reduces to

traceQ12Q
m
22Q21 +

m−1∑
m1=0

traceQm1
22 Q21Q12Q

m−1−m1
22 ,

which equals

(m+ 1)traceQ12Q
m
22Q21.

Since Q12 =Qt21 and Q22 is positive definite, Q12Q
m
22Q21 is positive semi-definite. We

conclude that traceQ12Q
m
22Q21 ≥ 0.

Assume m = 1 and fix some k ∈N. Similar to above, (2.2) reduces to

traceQ21Q
k
11Q12 +

k−1∑
k1=0

traceQk1
11Q12Q21Q

k−1−k1
11 .

That this trace is non-negative follows by arguments similar to those above.

k = 2 or m = 2

Assume that k = 2 and let m ∈N. The case m = 1 is discussed above. Assume m ≥ 2.
Then (2.2) reduces to

traceQ11Q12Q
m−1
22 Q21

+
∑

m1+m2+1=m

traceQm1
22 Q21Q11Q12Q

m2
22

+
∑

m1+m2+2=m

traceQ12Q
m1
22 Q21Q12Q

m2
22 Q21

+
∑

m1+m2+m3+2=m

traceQm1
22 Q21Q12Q

m2
22 Q21Q12Q

m3
22 .

All the traces above are non-negative. To see this, consider for example

traceQm1
22 Q21Q12Q

m2
22 Q21Q12Q

m3
22

for some m1,m2,m3 ∈ N0. Since Q22 is positive definite it has a unique positive
definite square root Q1/2

22 . We conclude that

traceQm1
22 Q21Q12Q

m2
22 Q21Q12Q

m3
22

= traceQ(m1+m3)/2
22 Q21Q12Q

m2
22 Q21Q12Q

(m1+m3)/2
22 . (4.8)

Note that

Q
(m1+m3)/2
22 Q21Q12 = (Q21Q12Q

(m1+m3)/2
22 )t ,

which implies that (4.8) is the trace of positive semi-definite matrix and therefore
non-negative.

Non-negativity of the traces when m = 2 and k ∈N follows by symmetry.
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k = 3 and m = 3

In the following we will need to expand traces, and we therefore note that

trace Qk11Q12Q
m
22Q21 = λk1λ

m
3 q

2
13 +λk1λ

m
4 q

2
14 +λk2λ

m
3 q

2
23 +λk2λ

m
4 q

2
24 (4.9)

for any k,m ∈N, and

trace Qk1
11Q12Q

m1
22 Q21Q

k2
11Q12Q

m2
22 Q21

= λk1+k2
1 λm1+m2

3 q4
13 +λk1+k2

1 λm1+m2
4 q4

14

+λk1+k2
2 λm1+m2

3 q4
23 +λk1+k2

2 λm1+m2
4 q4

24

+λk1+k2
1 (λm1

3 λm2
4 +λm1

4 λm2
3 )q2

13q
2
14

+λk1+k2
2 (λm1

3 λm2
4 +λm2

3 λm1
4 )q2

23q
2
24

+λm1+m2
3 (λk1

1 λ
k2
2 +λk2

1 λ
k1
2 )q2

13q
2
23

+λm1+m2
4 (λk1

1 λ
k2
2 +λk2

1 λ
k1
2 )q2

14q
2
24

− (λk1
1 λ

k2
2 +λk2

1 λ
k1
2 )(λm1

3 λm2
4 +λm2

3 λm1
4 )q13q23q14q24

(4.10)

for any k1, k2,m1,m2 ∈N.
Assume now k = 3 and m = 3 and consider the sum in Theorem 2.2. The sum

contains all terms on the form

traceQk1
11Q12Q

2
22Q21Q

k2
11

where k1 + k2 = 2 and

traceQm1
22 Q21Q

2
11Q12Q

m2
22

where m1 +m2 = 2. All these traces equal

traceQ2
11Q12Q

2
22Q21,

and there are all together 6 of these terms. Next, the sum in Theorem 2.2 also contains
all terms on the form

traceQk1
11Q12Q

m1
22 Q21Q

k2
11Q12Q

m2
22 Q21Q

k3
11

where k1 + k2 + k3 = 1 and m1 +m2 = 1, and

traceQm1
22 Q21Q

k1
11Q12Q

m2
22 Q21Q

k2
11Q12Q

m3
22

where m1 +m2 +m3 = 1 and k1 + k2 = 1. Using both that traceAB = traceBA and
traceAt = traceA for any two square matrices A and B of the same dimensions we get
that all these traces share the common trace

traceQ11Q12Q21Q12Q22Q21.

All together there are 12 of these terms. Finally, the sum in Theorem 2.2 contains the
two terms

trace(Q12Q21)3 and trace(Q21Q12)3,
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which share a common trace. We conclude that the sum in Theorem 2.2 reads

trace {6Q2
11Q12Q

2
22Q21 + 12Q11Q12Q21Q12Q22Q21 + 2(Q12Q21)3}. (4.11)

SinceQ12 =Qt21,Q12Q21 is positive semi-definite and consequently, trace(Q12Q21)3 ≥ 0.
Furthermore, we have

trace Q2
11Q12Q

2
22Q21 = trace Q11Q12Q

2
22Q21Q11 ≥ 0.

Contrarily, there exists a positive definite matrix Q such that

traceQ11Q12Q21Q12Q22Q21 < 0.

(To see this, consider Q on the form in Example 3.1 with ε small and δ large relative
to ε.) We will now argue that despite this,(4.11) remains non-negative. Initially we
note that

Qki11Q12Q
mi
22Q21 =

 λki1 (λmi3 q2
13 +λmi4 q2

14) λki1 (λmi3 q13q23 −λ
mi
4 q14q24)

λki2 (λmi3 q13q23 −λ
mi
4 q14q24) λki2 (λmi3 q2

23 +λmi4 q2
24)


and

Qmi22Q21Q
ki
11Q12 =

 λmi3 (λki1 q
2
13 +λki2 q

2
23) λmi3 (λki1 q13q14 −λ

ki
2 q23q24)

λmi4 (λki1 q13q14 −λ
ki
2 q23q24) λmi4 (λki1 q

2
14 +λki2 q

2
24)

 .
Since λ1 ≥ λ2 and λ3 ≥ λ4, we see that if q13q14 ≥ q23q24 or q13q23 ≥ q14q24, then
one of two matrices above have only non-negative entrances for any ki ,mi ∈ N0.
Consequently,

traceQk1
11Q12Q

m1
22 Q21Q

k2
11Q12Q

m2
22 Q21 = traceQm1

22 Q21Q
k1
11Q12Q

m2
22 Q21Q

k2
11Q12

would be non-negative if this was the case. Especially, we would have

traceQ11Q12Q21Q12Q22Q21 ≥ 0.

Assume now that q13q14 ≤ q23q24 and q13q23 ≤ q14q24. By (4.9) and (4.10),

trace {12Q
2
11Q12Q

2
22Q21 +Q11Q12Q22Q21Q12Q21}

= 1
2λ

2
1λ

2
3q

2
13 + 1

2λ
2
1λ

2
4q

2
14 + 1

2λ
2
2λ

2
3q

2
23 + 1

2λ
2
2λ

2
4q

2
24

+λ1λ3q
4
13 +λ1λ4q

4
14 +λ2λ3q

4
23 +λ2λ4q

4
24

+λ1(λ3 +λ4)q2
13q

2
14 +λ2(λ3 +λ4)q2

23q
2
24

+λ3(λ1 +λ2)q2
13q

2
23 +λ4(λ1 +λ2)q2

14q
2
24

− (λ1 +λ2)(λ3 +λ4)q13q23q14q24.

(4.12)

We are going to bound the term (λ1 +λ2)(λ3 +λ4)q13q23q14q24 by the positive terms to
show non-negative of this trace. We recall that λ1 ≥ λ2 > 0 and λ3 ≥ λ4 > 0. Initially,
note that

λ2λ3q13q23q14q24 ≤ λ2λ3q
2
13q

2
23

λ2λ4q13q23q14q24 ≤ λ1λ4q
2
13q

2
14

λ1λ4q13q23q14q24 ≤ λ1λ3q
2
13q

2
14.
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This leaves only λ1λ3q13q23q14q24 to be bounded. If λ1λ3q13q23q14q24 ≤ 1
2λ

2
1λ

2
3q

2
13,

we have a bounding term in (4.12). Therefore, assume 2q23q14q24 ≥ λ1λ3q13. Since Q
was assumed positive definite, λ2λ4 ≥ q2

24. Consequently,

λ1λ3q13q23q14q24 ≤ 2q2
23q

2
14q

2
24

≤ 2λ2λ4q
2
23q

2
13

≤ λ2λ4(q4
23 + q4

13)

≤ λ2λ3q
4
23 +λ1λ3q

4
13.

We conclude that (4.12) and hence (4.11) is non-negative.

k +m = 7

Now consider k,m ∈N such that k +m = 7. Whenever k,m = 1,2, we already know
that the sum in Theorem 2.2 is non-negative. Let k = 3 and m = 4. Then the sum in
Theorem 2.2 reads

trace {14Q11Q12Q21Q12Q
2
22Q21 + 7Q2

11Q12Q
3
22Q21

7Q11(Q12Q22Q21)2 + 7Q12Q22Q21(Q12Q21)2}.
(4.13)

Initially we note that

traceQ11(Q12Q22Q21)2 ≥ 0 and traceQ12Q22Q21(Q12Q21)2 ≥ 0

since they both can be written as the trace of positive semi-definite matrices (see
above for more details). Next, by (4.9) and (4.10),

trace {12Q
2
11Q12Q

3
22Q21 +Q11Q12Q

2
22Q21Q12Q21}

= 1
2λ

2
1λ

3
3q

2
13 + 1

2λ
2
1λ

3
4q

2
14 + 1

2λ
2
2λ

3
3q

2
23 + 1

2λ
2
2λ

3
4q

2
24

+λ1(λ2
3 +λ2

4)q2
13q

2
14 +λ2(λ2

3 +λ2
4)q2

23q
2
24

+λ2
3(λ1 +λ2)q2

13q
2
23 +λ2

4(λ1 +λ2)q2
14q

2
24

+λ1λ
2
3q

4
13 +λ1λ

2
4q

4
14 +λ2λ

2
3q

4
23 +λ2λ

2
4q

4
24

− (λ1 +λ2)(λ2
3 +λ2

4)q13q23q14q24.

(4.14)

Again we bound the negative term by positive terms. Recall that λ1 ≥ λ2 and λ3 ≥ λ4,
and that we may assume q23q24 ≥ q13q14 and q14q24 ≥ q13q23 without loss of generality.
Consequently,

λ1λ
2
4q13q23q14q24 ≤ λ1λ

2
4q

2
14q

2
24

λ2λ
2
3q13q23q14q24 ≤ λ2λ

2
3q

2
23q

2
24

λ2λ
2
4q13q23q14q24 ≤ λ2λ

2
4q

2
14q

2
24,

leaving λ1λ
2
3q13q23q14q24 to be bounded. First note that

1
2λ

2
1λ

3
3q

2
13 −λ1λ

2
3q13q23q14q24 = λ1λ

2
3q13( 1

2λ1λ3q13 − q23q14q24),
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so that non-negativity holds if 1
2λ1λ3q13 ≥ q23q14q24. Assume λ1λ3q13 ≤ 2q23q14q24

and recall that λ2λ4 ≥ q2
24 since Q is positive definite. Then

λ1λ
2
3q13q23q14q24 ≤ 2λ3q

2
23q

2
14q

2
24

≤ 2λ2λ3λ4q
2
23q

2
14

≤ λ2λ
2
3q

4
23 +λ2λ

2
4q

4
14

≤ λ2λ
2
3q

4
23 +λ1λ

2
4q

4
14

so we have found bounding terms for the last expression. We conclude that (4.14)
is non-negative and therefore, (4.13) is non-negative too. The case k = 4 and m = 3
follows by symmetry. It follows that the sum in Theorem 2.2 is non-negative for
k +m = 7. �

Proof (Proof of Theorem 2.6). Corollary 4.3 gives that (i) and (ii) are equivalent and
Corollary 2.7 gives that (i) implies infinite divisibility. �
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The Polylogarithmic Distribution

Victor Rohde

Abstract

This study introduces a family of infinitely divisible distributions: the poly-
logarithmic distribution. The polylogarithmic distribution is closely connected to
the stationary and conditional distribution of Ornstein-Uhlenbeck processes, and
we explore this connection. We show that the characteristic function and moment-
generating function of an Ornstein-Uhlenbeck process driven by a polylogarithmic
Lévy process can be calculated analytically. Furthermore, the stationary and condi-
tional distribution of a CARMA process driven by a polylogarithmic Lévy process
is examined, and, under certain conditions, algorithms for fast calculation of the
characteristic and moment-generating function are proposed. Algorithms for fast
computation of the polylogarithm of order 2 and 3 are suggested.

Keywords: polylogarithm; Ornstein-Uhlenbeck processes; CARMA processes; infinitely
divisible distributions

1 Introduction

Continuous-time Lévy driven moving averages are a valuable tool for modeling many
types of phenomena. They introduce a wide range of auto-correlation structures and,
for certain classes of kernels, they offer a lot tractability. If the kernel of the moving
average is non-negative and the Lévy process has non-negative increments, then the
moving average will too be non-negative. This is an attractive property when, for
example, modeling wind power, stochastic volatility of a financial asset, temperature,
or the price of electricity.

When the Lévy process is not a Brownian motion, the stationary distribution of the
moving average can be difficult to characterize. This can be a hurdle for employing a
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moving average model. For example, if we consider the moving average,

X(t) =
∫
R

g(t −u)dL(u)

then the characteristic function of X is given by

φX(s) = E[exp{isX(0)}] = exp
{∫

R

ψL(isg(u))du
}

(1.1)

where ψL(z) = logE[exp{zL(1)}] is the cumulant-generating function of L(1), see [11].
(Here, we are ignoring technical assumption about g and L.) To do, for example,
Fourier pricing (see [8]) using this model, it is crucial to calculate the Fourier trans-
form fast, and the integral in (1.1) may prohibit this. It would therefore be of large
benefit to have an analytical expression or a fast approximation scheme. We will
consider a class of Lévy processes with non-negative increments where the integral in
(1.1) can be calculated analytically for an Ornstein-Uhlenbeck (OU) kernel and where
a fast approximation scheme can be formulated for a continuous-time autoregressive
moving average (CARMA) kernel under some conditions. This class of Lévy processes
include the compound Poisson process with exponential jumps and the gamma Lévy
process. An OU or CARMA porcess driven by a compound Poisson process with
exponential jumps or a gamma Lévy process have, for example, been used to model
stochastic volatility of financial assets and wind power utilization, see [1, 3, 4, 7].

2 Motivation

Let (L(t))t∈R be a Lévy process with log moments (that is, E[log(1∨|L(1)|)]) <∞). Then
we define a Lévy driven OU process (X(t))t∈R by

X(t) =
∫ t

−∞
e−λ(t−u) dL(u) t ∈R, (2.1)

for λ > 0. The class of possible distributions for (2.1) is exactly the self-decomposable
distributions, see [12]. For fixed s ∈R, we also consider the process (Xs(t))t≥s defined
by

Xs(t) =
∫ t

s
e−λ(t−u) dL(u), t ≥ s. (2.2)

This process is important to consider when considering the distribution of X(t)
conditional on σ {X(u) : u ≤ s} since

X(t) =
∫ t

−∞
e−λ(t−u) dL(u) = Xs(t) + e−λ(t−s)X(s).

We will also consider a subclass of CARMA processes. We will not go into a
detailed introduction of CARMA processes but refer to [6] for a thorough treatment.
In [5, Remark 4.9] it is argued that the subclass considered covers a large class of the
CARMA processes employed in the literature. We will consider a CARMA(p,p − 1)
process, p ∈N, (Y (t))t∈R given by

Y (t) =
∫ t

−∞

p∑
i=1

aie
−bi (t−u) dL(u), t ∈R, (2.3)
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and, again for fixed s ∈R, the process (Ys(t))t≥s defined by

Ys(t) =
∫ t

s

p∑
i=1

aie
−bi (t−u) dL(u), t ≥ s, (2.4)

where ai ,bi > 0, i = 1, . . . ,p and
∑p
i=1 ai = 1. We have

Y (t) =
∫ t

−∞

p∑
i=1

aie
−bi (t−u) dL(u) = Ys(t) +

∫ s

−∞

p∑
i=1

aie
−bi (t−u) dL(u).

If we impose the additional assumption that (Y (t))t∈R is invertible (see [2, Remark 4.9]),
then L(v) − L(u), s ≥ v > u, is measurable with respect to σ {Y (u) : u ≤ s}, and there-
fore so is

∫ s
−∞

∑p
i=1 aie

−bi (t−u) dL(u). We therefore see that Ys(t) is the critical part for
assessing the conditional distribution of Y (t).

3 The Polylogarithmic distribution

In this section we introduce a family of infinitely divisible distributions. This family of
distributions, as we will explore later, is closely connected to the Ornstein-Uhlenbeck
process. Two special cases include the distribution of a compound Poisson process
with exponential jumps and the gamma distribution.

3.1 The polylogarithm

The polylogarithm (see [10] for a review on the polylogarithm) of order s ∈R, Lis, is
defined as the power series

Lis(z) =
∞∑
k=1

zk

ks
(3.1)

for z ∈C with |z| < 1. It is possible to analytically extend the polylogarithm to |z| ≥ 1
except the line [1,∞). The polylogarithm can be shown to satisfy the integral relation

Lis+1(z) =
∫ z

0

Lis(t)
t

dt, z ∈C \ [1,∞) (3.2)

or equivalently,

d
dz

Lis+1(z) =
Lis(z)
z

, z ∈C \ ({0} ∪ [1,∞)). (3.3)

Special cases include

Li1(z) = − log(1− z), Li0(z) =
z

1− z
, and Li−1(z) =

z

(1− z)2 . (3.4)

Using (3.3) and (3.4), closed expression for Lis when s = −2,−3, . . . is readily attainable.
On the other hand, there are no closed form expressions for Lis when s > 1 or s <Z.

The polylogarithm has a long history in the field of mathematics, first appearing
in one of the letters from Leibniz to Johann Bernoulli in 1696. It has later been
studied by some of the great mathematicians of the past such as Euler, Abel, and
Ramanujan (cf. [10]). The polylogarithm is also related to the Riemann zeta function
ζ. In particular, ζ(s) = Lis(1).
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3.2 Connection to Ornstein-Uhlenbeck processes

For a random variable U , the cumulant-generating function, ψU is defined by

ψU (z) = logE[exp{zU }],

for z ∈C such that the expectation is well-defined and finite. We will say that U has a
polylogarithmic distribution of order n ∈N0 and with parameters α > 0 and β > 0 if

ψU (z) = αLin(z/β), z ∈C \ ([1,∞)× iR) (3.5)

and, with a slight abuse of notation, write U ∼ Lin(α,β). In Theorem 3.3 below we
will argue that there exists random variables with a polylogarithmic distribution of
order n for any n ∈N0. Assuming it exists, we note that it is an infinitely divisible
distribution. To see this, consider U1 ∼ Lin(α1,β) and U2 ∼ Lin(α2,β) independent.
Then U1 +U2 ∼ Li1(α1 +α2,β) by the definition of the cumulant-generating function.
Since the polylogarithmic distribution is infinitely divisible, we can associate a Lévy
process to it (for more on Lévy processes see for example [13]).

Definition 3.1. A Lévy process (L(t))t∈R is said to be a polylogarithmic Lévy process of
order n ∈N0 and with parameters α > 0 and β > 0 if L(1) ∼ Lin(α,β).

Remark 3.2. Let (L(t))t∈R be a compound Poisson process with intensity α > 0 and
exponential distributed jumps with parameter β > 0. Then it is not too difficult to
show that the cumulant-generating function of L(1), ψL(1), is

ψL(1)(z) = logE[ezL(1)] = α
z

β − z
= αLi0(z/β), z ∈C \ ([β,∞)× iR)

by (3.4). We therefore see that (L(t))t∈R is a polylogarithmic Lévy process of order 0
with parameters α and β.

Additionally, we recognize αLi1(z/β) = −α log(1−z/β) as the cumulant-generating
function for the gamma distribution with shape α and rate β, and therefore conclude
that the polylogarithmic distribution of order 1 is the gamma distribution.

The following result is a central reason for studying polylogarithmic distributions.
One of the implications is that an OU process driven by a polylogarithmic Lévy
process of order n has a polylogarithmic distribution of order n+ 1.

Theorem 3.3. Let (X(t))t∈R be the OU process in (2.1) and (Xs(t))t≥s be given by (2.2)
where (L(t))t∈R is a polylogarithmic Lévy process of order n ∈N0 and with parameters
α > 0 and β > 0. Then

ψX(0)(z) = logE[exp{zX(0)}] =
α
λ

Lin+1 (z/β) (3.6)

and

ψXs(t)(z) = logE[exp{zXs(t)}] =
α
λ

(
Lin+1 (z/β)−Lin+1

(
ze−λ(t−s)/β

))
(3.7)

for z ∈C \ ([β,∞)× iR).

36



3 · The Polylogarithmic distribution

Proof. Initially, using (3.3), we find

d
du

Lin+1(ze−λu/β)
−λ

= Lin(ze−λu/β).

Now we have

logE[exp{zX(t)}] = logE
[
exp

{
z

∫ t

−∞
e−λ(t−u) dL(u)

}]
= α

∫ ∞
0

Lin(ze−λu/β) du

=
[

Lin+1(ze−λu/β)
−λ

]∞
0

=
Lin+1(z/β)

λ

and

logE[exp{zXs(t)}] = logE
[
exp

{
z

∫ t

s
e−λ(t−u) dL(u)

}]
= α

∫ t−s

0
Lin(ze−λu/β) du

= α
[

Lin+1(ze−λu/β)
−λ

]t−s
0

=
α
λ

(
Lin+1 (z/β)−Lin+1

(
ze−λ(t−s)/β

))
. �

Remark 3.4. From Theorem 3.3 we conclude that the polylogarithmic distribution
has support on [0,∞) by an induction argument: the polylogarithm of order 0 has
support on [0,∞) because it is the distribution of a compound Poisson process with
exponential jumps. An OU process driven by a non-negative Lévy process is again
non-negative, and it therefore follows from Theorem 3.3 that the polylogarithmic
distribution of order 1 has support on [0,∞) (this also follows since it is a gamma
distribution). This argument can now be continued.

Remark 3.5. Since the polylogarithmic distribution of order n ∈N can be realized as
the stationary distribution of an OU process, it follows that it is a self-decomposable
distribution.

Example 3.6. Let (L(t))t∈R be a gamma Lévy process with shape α > 0 and rate β > 0,
that is,

ψL(1)(z) = −α log(1− z/β) = αLi1(z/β), z ∈C \ ([β,∞)× iR).

Then the cumulant-generating function of the OU process with mean reversion λ > 0
and driven by (L(t))t∈R is

z 7→ α
λ

Li2(z/β), z ∈C \ ([β,∞)× iR).
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Paper B · The polylogarithmic distribution

The function Li2 is known as the Dilogarithm or Spence’s function. It does not have a
closed form but the integral representation

Li2(z) = −
∫ z

0

log(1− y)
y

dy, , z ∈C \ ([1,∞)× iR).

An efficient algorithm for computing Li2(z) is presented in Section 5.

3.3 Properties of the polylogarithmic distribution

We now turn to proving some useful properties of the polylogarithmic distribution.
We start by giving the first moment, and the second and third centralized moments.
In principle, any centralized moment could be calculated using the approach of the
proof, but the calculations quickly become rather cumbersome and we therefore
restrain ourselves.

Proposition 3.7. Let U be a random variable with a polylogarithmic distribution of order
n ∈N0 and with parameters α > 0 and β > 0. Then

E[U ] =
α
β

E[(U −E[U ])2] =
α

2n−1β2

E[(U −E[U ])3] =
2α

3n−1β3 .

Proof. Since U has a polylogarithmic distribution of order n and with parameters α
and β,

ψU (ix) = exp(αLin(ix/β)).

We find that
d

dxψU (ix)

ψU (ix)
=
αLin−1(ix/β)

ix

d2

dx2ψU (ix)

ψU (ix)
=α

(
Lin−2(ix/β)−Lin−1(ix/β)

(ix)2

)
+
(
αLin−1(ix/β)

ix

)2

d3

dx3ψU (ix)

ψU (ix)
=α

(
Lin−3(ix/β)− 3Lin−2(ix/β) + 2Lin−1(ix/β)

(ix)3

)
+ 3α2 Lin−1(ix/β)

ix

(
Lin−2(ix/β)−Lin−1(ix/β)

(ix)2

)
+
(
αLin−1(ix/β)

ix

)3

.

(3.8)

It follows from (3.1) that

Lin−1(x) = x+O(x2)

Lin−2(x)−Lin−1(x) =
x2

2n−1 +O(x3)

Lin−3(x)− 3Lin−2(x) + 2Lin−1(x) =
2x3

3n−1 +O(x4) �
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4 · CARMA processes

for x→ 0. The result now follow from letting x→ 0 in (3.8).

The next result is a direct consequence of the definition of the polylogarithmic
distribution.

Proposition 3.8. For α1,α2,β > 0 and n ∈N0, let U1 ∼ Lin(α1,β) and U2 ∼ Lin(α2,β)
be independent. Consider c > 0. Then

cU1 ∼ Lin(α1,β/c) and U1 +U2 ∼ Lin(α1 +α2,β).

Furthermore, U1 has exponential moment of any order below β. That is,

E[exp{xU1}] <∞

for any x < β.

Proof. This is a consequence of (3.5). �

Finally, using Fourier inversion, we plot some densities of the polylogarithmic
distribution in Figure 1. The polylogarithmic distribution of order 0 is not included
since it is not absolutely continuous with respect to the Lebesgue measure. All
densities correspond to a polylogarithmic distribution with mean and variance equal
to 1.

0 1 2 3 4 5 6

0

0.2

0.4

0.6

0.8

1

1.2

n=1

n=2

n=3

n=4

Figure 1: The densities of a polylogarithmic distribution of order n = 1,2,3,4 with mean and variance
equal to 1.

4 CARMA processes

This section develops a theory for fast approximation of the cumulant-generating
function of a CARMA process driven by a polylogarithmic Lévy process under some
conditions. This can then, in turn, be used to do fast approximation of the corre-
sponding characteristic function and moment-generating function. In [5] the question
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of the stationary distribution of a CARMA process driven by a compound Poisson
process with exponential jumps is also treated, and the result we present here can be
seen as an extension to [5, Section 4]. Furthermore, the relation in (4.1) plays a role
in the calculation of covariances in [3] where it helps speed up the computation time.

4.1 Distribution of CARMA processes driven by polylogarithmic Lévy
processes

The following theorem gives an expression for the cumulant-generating function of a
subclass of CARMA processes driven by a polylogarithmic Lévy process.

Theorem 4.1. Let (Y (t))t∈R be the CARMA process in (2.3) and (Ys(t))t≥s be given by
(2.4) where (L(t))t∈R is a polylogarithmic Lévy process of order n ∈N0 and with parameters
α > 0 and β > 0. Let g(t) =

∑p
i=1 aie

−bi t be the kernel function in (2.3) and (2.4). Then

ψY (0)(z) = logE[exp{zY (0)}]

= −αLin+1

(
z
β

)
1

g ′(0)
−α

∫ ∞
0

Lin+1

(
zg(s)
β

)(
g(s)
g ′(s)

)′
ds

= −αLin+1

(
z
β

)
1

g ′(0)
+αLin+2

(
zg(0)
β

)
1

g ′(0)

(
1

g ′(0)

)′
+α

∫ ∞
0

Lin+2

(
zg(s)
β

)(
g(s)
g ′(s)

(
g(s)
g ′(s)

)′)′
ds

(4.1)

and

ψYs(t)(z) = logE[exp{zYs(t)}]

= αLin+1

(
zg(t − s)

β

)
g(t − s)
g ′(t − s)

−αLin+1

(
z
β

)
1

g ′(0)

−α
∫ t−s

0
Lin+1

(
zg(u)
β

)(
g(u)
g ′(u)

)′
du

= αLin+1

(
zg(t − s)

β

)
g(t − s)
g ′(t − s)

−αLin+1

(
z
β

)
1

g ′(0)

−αLin+2

(
zg(t − s)

β

)
g(t − s)
g ′(t − s)

(
g(t − s)
g ′(t − s)

)′
+αLin+2

(
zg(0)
β

)
1

g ′(0)

(
1

g ′(0)

)′
+α

∫ t−s

0
Lin+2

(
zg(u)
β

)(
g(u)
g ′(u)

(
g(u)
g ′(u)

)′)′
du,

(4.2)

for z ∈C \ ([β,∞)× iR), where∣∣∣∣∣∣
(
g(u)
g ′(u)

)′∣∣∣∣∣∣ ≤ maxi,j (bi − bj )2

2mini b
2
i

(4.3)

and

∣∣∣∣∣∣
(
g(u)
g ′(u)

(
g(u)
g ′(u)

)′)′∣∣∣∣∣∣ ≤ maxi,j (bi − bj )4

4mini b
4
i

+
maxj,i>j,k

∣∣∣∣∣(bi − bj )2
(
bk −

bibj
bk

)∣∣∣∣∣
2mini |bi |3

(4.4)

for all u ∈R.

40



4 · CARMA processes

Proof. We start by proving (4.2). First, note that

d
du

Lin+1

(
zg(u)
β

)
= Lin

(
zg(u)
β

)
g ′(u)
g(u)

for any n ∈N0, where we have used (3.3). Note g(0) = 1 since
∑d
i=1 ai = 1. Then, using

integration by parts twice,

logE[exp{zYs(t)}] = α
∫ t−s

0
Lin

(
zg(u)
β

)
du

= α
∫ t−s

0

d
du

Lin+1

(
zg(u)
β

)
g(u)
g ′(u)

du

= αLin+1

(
zg(t − s)

β

)
g(t − s)
g ′(t − s)

−αLin+1

(
z
β

)
1

g ′(0)

−α
∫ t−s

0
Lin+1

(
zg(u)
β

)(
g(u)
g ′(u)

)′
du

= αLin+1

(
zg(t − s)

β

)
g(t − s)
g ′(t − s)

−αLin+1

(
z
β

)
1

g ′(0)

−αLin+2

(
zg(t − s)

β

)
g(t − s)
g ′(t − s)

(
g(t − s)
g ′(t − s)

)′
+αLin+2

(
z
β

)
1

g ′(0)

(
1

g ′(0)

)′
+α

∫ t−s

0
Lin+2

(
zg(u)
β

)(
g(u)
g ′(u)

(
g(u)
g ′(u)

)′)′
du

(4.5)

We now prove (4.3). Initially, we have(
g(u)
g ′(u)

)′
=

(g ′(u))2 − g(u)g ′′(u)
(g ′(u))2 . (4.6)

We find

(g ′(u))2 − g(u)g ′′(u) =

 d∑
i=1

aibie
−biu


2

−

 d∑
i=1

aie
−biu


 d∑
i=1

aib
2
i e
−biu


= −

d−1∑
j=1

d∑
i=j+1

aiaj (bi − bj )2e−(bi+bj )u

(4.7)

and therefore,∣∣∣∣∣∣
(
g(u)
g ′(u)

)′∣∣∣∣∣∣ ≤ maxi,j (bi − bj )2

mini b
2
i

∑d−1
j=1

∑d
i=j+1 aiaje

−(bi+bj )t(∑d
i=1 aie

−bi t
)2

=
maxi,j (bi − bj )2

mini b
2
i

∑d−1
j=1

∑d
i=j+1 aiaje

−(bi+bj )t∑d
i=1 a

2
i e
−bi t + 2

∑d−1
j=1

∑d
i=j+1 aiaje

−(bi+bj )t

≤
maxi,j (bi − bj )2

2mini b
2
i

.
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Next we consider (4.4). Let f (u) = g(u)/g ′(u). Then∣∣∣∣(f (u) (f (u))′
)′∣∣∣∣ ≤ |(f ′(u))2|+ |f (u)f ′′(u)|

≤
maxi,j (bi − bj )4

4mini b
4
i

+
1

mini |bi |
|f ′′(u)|

where we have used (4.3). Next, note

f ′′(u) =
g ′′(u)((g ′(u))2 − g(u)g ′′(u))− g(u)((g ′′(u))2 − g ′(u)g ′′′(u))

(g ′(u))3 .

From (4.7) it follows that

|g ′′(u)((g ′(u))2 − g(u)g ′′(u))− g(u)((g ′′(u))2 − g ′(u)g ′′′(u))|

=

∣∣∣∣∣∣∣∣
d−1∑
j=1

d∑
i=j+1

aiaje
−(bi+bj )u

d∑
k=1

ake
−bku(bi − bj )2(b2

k − bibj )

∣∣∣∣∣∣∣∣
≤ max
j,i>j,k

∣∣∣∣∣∣(bi − bj )2
(
bk −

bibj
bk

)∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
d−1∑
j=1

d∑
i=j+1

aiaje
−(bi+bj )u

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
d∑
k=1

akbke
−bku

∣∣∣∣∣∣∣
The bound now follows since

|g ′(u)3| =

∣∣∣∣∣∣∣∣
d∑
i=1

a2
i b

2
i e
−biu + 2

d−1∑
j=1

d∑
i=j+1

aiajbibje
−(bi+bj )u

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
d∑
k=1

akbke
−bku

∣∣∣∣∣∣∣
≥ 2min

i
b2
i

∣∣∣∣∣∣∣∣
d−1∑
j=1

d∑
i=j+1

aiaje
−(bi+bj )u

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
d∑
k=1

akbke
−bku

∣∣∣∣∣∣∣ .
Finally, to prove (4.1) we initially note that

logE[exp{zY (0)}] = α
∫ ∞

0
Lin

(
zg(u)
β

)
du = lim

s→−∞
α

∫ t−s

0
Lin

(
zg(u)
β

)
du (4.8)

Now (4.3) and (4.4), and that Lin(z) =O(z) as |z| → 0, which follows from (3.1), justifies
letting s→−∞ in (4.5) to conclude (4.1). �

4.2 Comments on approximation

Considering Theorem 4.1 and the proof there are three approaches to calculate ψY (0)
or ψYs(t). We focus on ψY (0). We have

ψY (0)(z) = α
∫ ∞

0
Lin

(
zg(u)
β

)
du (4.9)

= −αLin+1

(
z
β

)
1

g ′(0)
−α

∫ ∞
0

Lin+1

(
zg(u)
β

)(
g(u)
g ′(u)

)′
du (4.10)

= −αLin+1

(
z
β

)
1

g ′(0)
+αLin+2

(
z
β

)
1

g ′(0)

(
1

g ′(0)

)′
+α

∫ ∞
0

Lin+2

(
zg(u)
β

)(
g(u)
g ′(u)

(
g(u)
g ′(u)

)′)′
du (4.11)
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From (4.3) and (4.4) we conclude the integrals in (4.10) and (4.11) are small when the
bi ’s are close to each other. When the integrals are small, a more coarse approximation
of them is possible for the same level of accuracy. Thus, the integrals in (4.10) and
(4.11) can be approximated fast when the bi ’s are close. On the other hand, the
polylogarithm in the kernels of (4.9), (4.10), and (4.11) have different order. This
makes a direct comparison more difficult but we have Lin(z) = z+O(|z|2) as |z| → 0 for
any n ∈N0 (by (3.1)), so the polylogarithms are close, at least for small arguments.

We can also argue that (4.9) is larger than the integral in (4.10) for any real and
positive z, that is,∣∣∣∣∣∣

∫ ∞
0

Lin+1

(
xg(u)
β

)(
g(u)
g ′(u)

)′
du

∣∣∣∣∣∣ <
∣∣∣∣∣∣
∫ ∞

0
Lin

(
xg(u)
β

)
du

∣∣∣∣∣∣
for x ∈ (0,β). To see this, first note that g ′(0) < 0. By (4.6) and (4.7), we also have(
g(u)
g ′(u)

)′
< 0. Finally, from (3.1), it is apparent that the polylogarithm is positive for

positive input, and since g(u) ≥ 0 we therefore have that both terms in (4.10) are
positive from which the claim follows.

With the parameters estimated in [3] (where bi should be considered as the i’th
mean reversion λi) the bound in (4.3) is 0.0695 and the bound in (4.4) is 0.0307 which
makes the integrals in (4.1) close to negligible. Theorem 4.1 is therefore suitable for
decreasing the compute time in the situation considered in [3].

5 Algorithms for fast calculation of the polylogarithm

To apply the results of this paper it is crucial to be able to calculate the polylogarithm
fast. We will only consider the polylogarithm of order 2 and 3 here. Polylogarithms
of order 1 or a smaller integer can be found analytically as argued in Section 3.1.
Polylogarithms of order larger than 3 are increasingly difficult to study, and the
literature becomes more sparse on this topic.

The polylogarithm of order 2 satisfies the relations (see [10]):

Li2(z) = −Li2
( z
z − 1

)
− 1

2 log2(1− z) (5.1)

Li2(z) = Li2
( 1
z − 1

)
− 1

6π
2 − log(−z) log(1− z) + 1

2 log2(1− z). (5.2)

for z ∈ C with Re(z) ≤ 0 and z , 0. These two equations together with (3.1) makes it
possible to make fast numerical calculations of the function (−∞,0]× iR 3 z 7→ Li2(z)
which is useful for calculating the characteristic function and the moment-generating
function for non-positive argument of the polylogarithmic distribution of second
order. In particular, note that the convergence of (3.1) is fastest for |z| small. Thus,
when |z| < 1 we use (5.1) to calculate Li2(z) and when |z| ≥ 1 we use (5.2). Furthermore,
Li2(z) may also be calculated for z ∈ [0,1) using (3.1) directly however, as z approaches
1, an increasing number of terms in the sum in (3.1) is required to reach a reasonable
level of accuracy. This can hurt the computational speed.

As an example we consider 10,000 evaluations of x 7→ Li2(ix) (x = 1, . . . ,1000),
which takes approximately 0.03 seconds using (5.1) and (5.2) where the sum in (3.1)
is cut at k = 30 giving a maximal error of 3 · 10−8.1

1implemented in MATLAB R2018b on a standard laptop.
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The polylogarithm of order 3 satisfies (see [9, Section 5.2])

Li3(z) = Li3(1/z)− π
2

6
log(−z)− 1

6
log3(−z)

for z ∈ C with Re(z) ≤ 0 and z , 0. Again, the same 10,000 evaluations as above have
a computational time of approximately 0.03 seconds.
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Abstract

In this paper we suggest two continuous-time models which exhibit an au-
toregressive structure. We obtain existence and uniqueness results and study
the structure of the solution processes. One of the models, which corresponds to
general stochastic delay differential equations, will be given particular attention.
We use the obtained results to link the introduced processes to both discrete-time
and continuous-time ARMA processes.
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1 Introduction

Let (Lt)t∈R be a two-sided Lévy process and ψ : R→ R some measurable function
which is integrable with respect to (Lt)t∈R (in the sense of [23]). Processes of the form

Xt =
∫
R

ψ(t −u)dLu , t ∈R, (1.1)

are known as (stationary) continuous-time moving averages and have been studied
extensively. Their popularity may be explained by the Wold-Karhunen decomposition:
up to a drift term, essentially any stationary and square integrable process admits a
representation of the form (1.1) with (Lt)t∈R replaced by a process with second order
stationary and orthogonal increments. For details on this type of representations, see

47



Paper C · Stochastic delay differential equations and related autoregressive models

[28, Section 26.2] and [2, Theorem 4.1]. Note that the model (1.1) nests the discrete-
time moving average with filter (ψj )j∈Z (at least when it is driven by an infinitely
divisible noise), since one can choose ψ(t) =

∑
j∈Zψj1(j−1,j](t). Another example of

(1.1) is the Ornstein-Uhlenbeck process corresponding to ψ(t) = e−λt1[0,∞)(t) for λ > 0.
Ornstein-Uhlenbeck processes often serve as building blocks in stochastic modeling,
e.g. in stochastic volatility models for option pricing as illustrated in [4] or in models
for (log) spot price of many different commodities, e.g., as in [26]. A generalization
of the Ornstein-Uhlenbeck process, which is also of the form (1.1), is the CARMA
process. To be concrete, for two real polynomials P and Q, of degree p and q (p > q)
respectively, with no zeroes on {z ∈ C : Re(z) = 0}, choosing ψ : R → R to be the
function characterized by ∫

R

e−ityψ(t)dt =
Q(iy)
P (iy)

, y ∈R,

results in a CARMA process. CARMA processes have found many applications, and
extensions to account for long memory and to a multivariate setting have been made.
For more on CARMA processes and their extensions, see [9, 10, 14, 19, 27]. Many
general properties of continuous-time moving averages are well understood. This
includes when they have long memory and have sample paths of finite variation (or,
more generally, are semimartingales). For an extensive treatment of these processes
and further examples we refer to [5, 6] and [3], respectively.

Instead of specifying the kernel ψ in (1.1) directly it is often preferred to view
(Xt)t∈R as a solution to a certain equation. For instance, as an alternative to (1.1),
the Ornstein-Uhlenbeck process with parameter λ > 0, respectively the discrete-
time moving average with filter ψj = αj1j≥1 for some α ∈ R with |α| < 1, may be
characterized as the unique stationary process that satisfies

dXt = −λXt dt + dLt , t ∈R, (1.2)

respectively,
Xt = αXt−1 +Lt −Lt−1, t ∈R. (1.3)

The representations (1.2)-(1.3) are useful in many aspects, e.g., in the understanding
of the evolution of the process over time, to study properties of (Lt)t∈R through
observations of (Xt)t∈R or to compute prediction formulas (which, enventually, may
be used to estimate the models). Therefore, we aim at generalizing equations (1.2)-
(1.3) in a suitable way and studying the corresponding solutions. Through this study
we will argue that these generalizations lead to a wide class of stationary processes,
which enjoy many of the same properties as the solutions to (1.2)-(1.3).

The two models of interest: Let η and φ be finite signed measures concentrated
on [0,∞) and (0,∞), respectively, and let θ : R→ R be some measurable function
(typically chosen to have a particularly simple structure) which is integrable with
respect to (Lt)t∈R. Moreover, suppose that (Zt)t∈R is a measurable and integrable
process with stationary increments. The equations of interest are

dXt =
(∫

[0,∞)
Xt−u η(du)

)
dt + dZt , t ∈R, (1.4)
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and

Xt =
∫ ∞

0
Xt−uφ(du) +

∫ t

−∞
θ(t −u)dLu , t ∈R. (1.5)

We see that (1.2) is a special case of (1.4) with η = −λδ0 and Zt = Lt , and (1.3) is a
special case of (1.5) with φ = αδ1 and θ = 1(0,1]. Here δc refers to the Dirac measure
at c ∈ R. Equation (1.4) is known in the literature as a stochastic delay differential
equation (SDDE), and existence and (distributional) uniqueness results have been
obtained when η is compactly supported and (Zt)t∈R is a Lévy process (see [13, 16]).
As indicated above, models of the type (1.4) are useful for recovering the increments
of (Zt)t∈R as well as prediction and estimation. We refer to [7, 17, 21] for details.

Another generalization of the noise term is given in [24]. Other parametrizations
of φ in (1.5) that we will study in Examples 3.4 and 3.6 are

φ(du) = αe−βu1[0,∞)(u)du

for α ∈R and β > 0 and

φ =
p∑
j=1

φjδj

for φj ∈ R. As far as we know, equations of the type (1.5) have not been studied
before. We will refer to (1.5) as a level model, since it specifies Xt directly (rather
than its increments, Xt −Xs). Although the level model may seem odd at first glance
as the noise term is forced to be stationary, one of its strengths is that it can be used
as a model for the increments of a stationary increment process. We present this
idea in Example 3.5 where a stationary increment solution to (1.4) is found when no
stationary solution exists.

Our main results: In Section 2 we prove existence and uniqueness in the model (1.4)
under the assumptions that∫

[0,∞)
u2 |η|(du) <∞ and iy −

∫
[0,∞)

e−iuy η(du) , 0

for all y ∈R (|η| being the variation of η). In relation to this result we provide several
examples of choices of η and (Zt)t∈R. Among other things, we show that long memory
in the sense of a hyperbolically decaying autocovariance function can be incorporated
through the noise process (Zt)t∈R, and we indicate how invertible CARMA processes
can be viewed as solutions to SDDEs. Moreover, in Corollary 2.6 it is observed that as
long as (Zt)t∈R is of the form

Zt =
∫
R

[
θ(t −u)−θ0(−u)

]
dLu , t ∈R,

for suitable kernels θ,θ0 : R→ R, the solution to (1.4) is a moving average of the
type (1.1). On the other hand, Example 2.14 provides an example of (Zt)t∈R where
the solution is not of the form (1.1). Next, in Section 3, we briefly discuss existence
and uniqueness of solutions to (1.5) and provide a few examples. Section 4 contains
some technical results together with proofs of all the presented results.

Our proofs rely heavily on the theory of Fourier (and, more generally, bilateral
Laplace) transforms, in particular it concerns functions belonging to certain Hardy
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spaces (or to slight modifications of such). Specific types of Musielak-Orlicz spaces
will also play an important role in order to show our results.

Definitions and conventions: For p ∈ (0,∞] and a (non-negative) measure µ on the
Borel σ -fieldB (R) on R we denote by Lp(µ) the usual Lp space relative to µ. If µ is
the Lebesgue measure, we will suppress the dependence on the measure and write
f ∈ Lp. By a finite signed measure we refer to a set function µ :B (R)→R of the form
µ = µ+ − µ−, where µ+ and µ− are two finite measures which are mutually singular.
Integration of a function f : R→R is defined in an obvious way whenever f ∈ L1(|µ|),
where |µ| := µ+ +µ−. For any given finite signed measure µ set and z ∈C such that∫

R

eRe(z)u |µ|(du) <∞,

we define the bilateral Laplace transform L[µ](z) of µ at z by

L[µ](z) =
∫
R

ezu µ(du).

In particular, the Fourier transform F [µ](y) := L[µ](iy) is well-defined for all y ∈R.
(Note that the Laplace and Fourier transforms are often defined with a minus in
the exponent; we have chosen this alternative definition so that F [µ] coincides
with the traditional definition of the characteristic function.) If f ∈ L1 we define
L[f ] := L[f (u)du]. We note that F [f ] ∈ L2 when f ∈ L1 ∩ L2 and that F can be
extended to an isometric isomorphism from L2 onto L2 by Plancherel’s Theorem.

For two finite signed measures µ and ν we define the convolution µ ∗ ν as

µ ∗ ν(B) =
∫
R

∫
R

1B(u + v)µ(du)ν(dv)

for any Borel set B. Moreover, if f : R :→ R is a measurable function such that
f (t − ·) ∈ L1(|µ|) we define the convolution f ∗µ(t) at t ∈R by

f ∗µ(t) =
∫
R

f (t −u)µ(du).

Recall also that a process (Lt)t∈R, L0 = 0, is called a (two-sided) Lévy process if it
has stationary and independent increments and càdlàg sample paths (for details, see
[25]). Let (Lt)t∈R be a centered Lévy process with Gaussian component σ2 and Lévy
measure ν. Then, for any measurable function f : R→R satisfying∫

R

(
f (u)2σ2 +

∫
R

(
|xf (u)|2 ∧ |xf (u)|

)
ν(dx)

)
du <∞, (1.6)

the integral of f with respect to (Lt)t∈R is well-defined and belongs to L1(P) (see [23,
Theorem 3.3]).

2 The SDDE setup

Recall that, for a given finite signed measure η on [0,∞) and a measurable process
(Zt)t∈R with stationary increments and E[|Zt |] < ∞ for all t, we are interested in
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the existence and uniqueness of a measurable and stationary process (Xt)t∈R with
E[|X0|] <∞ which satisfies

Xt −Xs =
∫ t

s

∫
[0,∞)

Xu−v η(dv)du +Zt −Zs (2.1)

almost surely for each s < t.

Remark 2.1. In the literature, (2.1) is often solved on [0,∞) given an initial condition
(Xu)u≤0. However, since we will be interested in (possibly) non-causal solutions, it
turns out to be convenient to solve (2.1) on R with no initial condition (see [12, p. 46
and Section 3.2] for details).

In line with [13], we will construct a solution as a convolution of (Zt)t∈R and a
deterministic kernel x0 : R→ R characterized through η. This kernel is known as
the differential resolvent (of η) in the literature. Although many (if not all) of the
statements of Lemma 2.2 concerning x0 should be well-known, we have not been
able to find a precise reference, and hence we have chosen to include a proof here.
The core of Lemma 2.2 as well as further properties of differential resolvents can be
found in [12, Section 3.3].

In the formulation we will say that η has n-th moment, n ∈N, if v 7→ vn ∈ L1(|η|)
and that η has an exponential moment of order δ ≥ 0 if v 7→ eδv ∈ L1(|η|). Finally, we
will make use of the function

h(z) := −z −L[η](z), (2.2)

which is always well-defined for z ∈ C with Re(z) ≤ δ if η admits an exponential
moment of order δ ≥ 0.

Lemma 2.2. Suppose that h(iy) , 0 for all y ∈ R. Then there exists a unique function
x0 : R→ R, which meets u 7→ x0(u)ecu ∈ L2 for all c ∈ [a,0] and a suitably chosen a < 0,
and satisfies

x0(t) = 1[0,∞)(t) +
∫ t

−∞

∫
[0,∞)

x0(u − v)η(dv)du (2.3)

for all t ∈R. Furthermore, x0 is characterized by L[x0](z) = 1/h(z) for z ∈ C with Re(z) ∈
(a,0), and the following statements hold:

(i) If η has n-th moment for some n ∈ N, then (u 7→ x0(u)un) ∈ L2. In particular,
x0 ∈ Lq for all q ∈ [1/n,∞].

(ii) If η has an exponential moment of order δ > 0, then there exists ε ∈ (0,δ] such that
u 7→ x0(u)ecu ∈ L2 for all c ∈ [a,ε] and, in particular, x0 ∈ Lq for all q ∈ (0,∞].

(iii) If h(z) , 0 for all z ∈C with Re(z) ≤ 0, then x0(t) = 0 for all t < 0.

By (2.3) it follows that x0 induces a Lebesgue-Stieltjes measure µx0
. From Lemma 2.2

we deduce immediately the following properties of µx0
:

Corollary 2.3. Suppose that h(iy) , 0 for all y ∈R. Then x0 defines a Lebesgue-Stieltjes
measure, and it is given by

µx0
(du) = δ0(du)+

(∫
[0,∞)

x0(u − v)η(dv)
)
du.
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A function θ : R→R is integrable with respect to µx0
if and only if∫

[0,∞)

∫
R

|θ(u + v)x0(u)|du |η|(dv) <∞. (2.4)

Example 2.4. Let the setup be as in Corollary 2.3. We will here discuss a few impli-
cations of this result.

(i) Suppose that η has n-th moment for some n ∈ N. By using the inequality
|u + v|n−1 ≤ 2n−1(|u|n−1 + |v|n−1) we establish that

1
2n−1

∫
[0,∞)

∫
R

|(u + v)n−1x0(u)|du |η|(dv)

≤ |η|([0,∞))
∫
R

|x0(u)un−1|du +
∫

[0,∞)
|v|n−1 |η|(dv)

∫
R

|x0(u)|du.
(2.5)

The last term on the right-hand side of (2.5) is finite, since x0 ∈ L1 by Lemma 2.2((i)).
The Cauchy-Schwarz inequality and the same lemma once again imply(∫

|u|>1
|x0(u)un−1|du

)2

≤
∫
|u|>1

(
x0(u)un

)2
du

∫
|u|>1

u−2 du <∞.

Consequently, since u 7→ x0(u)un−1 is locally bounded, we deduce that (u 7→
x0(u)un−1) ∈ L1 and that the first term on the right-hand side of (2.5) is also
finite. It follows that (2.4) is satisfied for θ(u) = |u|n−1, so µx0

has moments up
to order n− 1.

(ii) Suppose that η has an exponential moment of order δ > 0. Let γ be any number
in (0, ε), where ε ∈ (0,δ) is chosen as in Lemma 2.2((ii)). With this choice it is
straightforward to check that (u 7→ x0(u)eγu) ∈ L1, and hence∫

[0,∞)

∫
R

eγ(u+v)|x0(u)|du |η|(dv) =
∫

[0,∞)
eγu |η|(dv)

∫
R

|x0(u)|eγu du <∞.

This shows that (2.4) holds with θ(u) = eγu , so µx0
has as an exponential moment

of order γ > 0.

(iii) Whenever η has first moment, x0 is bounded (cf. Lemma 2.2((i))). Thus, under
this assumption, a sufficient condition for (2.4) to hold is that θ ∈ L1.

With the differential resolvent in hand we present our main result of this section:

Theorem 2.5. Let (Zt)t∈R be a measurable process which has stationary increments and
satisfies E[|Zt |] <∞ for all t. Suppose that η is a finite signed measure with second moment
and h(iy) , 0 for all y ∈R. Then the process

Xt = Zt +
∫
R

Zt−u

∫
[0,∞)

x0(u − v)η(dv)du, t ∈R, (2.6)

is well-defined and the unique integrable stationary solution (up to modification) of
equation (2.1). If h(z) , 0 for all z ∈ C with Re(z) ≤ 0, (Xt)t∈R admits the following causal
representation:

Xt =
∫ ∞

0
[Zt−u −Zt]

∫
[0,∞)

x0(u − v)η(dv)du, t ∈R. (2.7)
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Often, (Zt)t∈R is given by

Zt =
∫
R

[
θ(t −u)−θ(−u)

]
dLu , t ∈R, (2.8)

for some integrable Lévy process (Lt)t∈R with E[L1] = 0 and measurable function
θ : R→R such that u 7→ θ(t +u)−θ(u) satisfies (1.6) for t > 0. The next result shows
that the (unique) solution to (2.1) is a Lévy-driven moving average in this particular
setup.

Corollary 2.6. Let the setup be as in Theorem 2.5 and suppose that (Zt)t∈R is of the form
(2.8). Then the unique integrable and stationary solution to (2.1) is given by

Xt =
∫
R

θ ∗µx0
(t −u)dLu , t ∈R. (2.9)

In particular if Zt = Lt for t ∈R, we have that

Xt =
∫
R

x0(t −u)dLu , t ∈R.

Remark 2.7. Let the situation be as in Corollary 2.6 with h(z) , 0 whenever Re(z) ≤ 0.
In this case we know from Theorem 2.5 that (Xt)t∈R has the causal representation
(2.7) with respect to (Zt)t∈R. Now, if (Zt)t∈R is causal with respect to (Lt)t∈R in the
sense that θ(t) = 0 for t < 0, (Xt)t∈R admits the following causal representation with
respect to (Lt)t∈R:

Xt =
∫ t

−∞
θ ∗µx0

(t −u)dLu , t ∈R.

This follows from (2.9) and the fact that θ ∗µx0
(t) = 0 for t < 0 (using Lemma 2.2((iii))).

Remark 2.8. The assumption h(0) = −η([0,∞)) , 0 is rather crucial in order to find
stationary solutions. It may be seen as the analogue of assuming that the AR coeffi-
cients in a discrete-time ARMA setting do not sum to zero. For instance, the setup
where η ≡ 0 will satisfy h(iy) , 0 for all y ∈ R \ {0}, but if (Zt)t∈R is a Lévy process,
the SDDE (2.1) cannot have stationary solutions. In Example 3.5, we show how one
can find solutions with stationary increments for a reasonably large class of delay
measures η with η([0,∞)) = 0.

Remark 2.9. It should be stressed that for more restrictive choices of η, and in case
(Zt)t∈R is a Lévy process, solutions sometimes exist even when E[|Z1|] =∞. Indeed,
if η is compactly supported and Re(z) ≤ 0 implies h(z) , 0, one only needs that
E[log+ |Z1|] <∞ to ensure that a stationary solution exists. We refer to [13, 24] for
more details.

We now present some concrete examples of SDDEs. The first three examples con-
cern the specification of the delay measure and the last two concern the specification
of the noise.

Example 2.10. Let λ , 0 and consider the equation

Xt −Xs = −λ
∫ t

s
Xudu +Zt −Zs, s < t. (2.10)
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In the setup of (2.1) this corresponds to η = −λδ0. With h given by (2.2), we have
h(z) = λ− z , 0 for every z ∈ C with Re(z) , λ, and hence Theorem 2.5 implies that
there exists a stationary process (Xt)t∈R with E[|X0|] <∞ satisfying (2.10). According
to Lemma 2.2 the differential resolvent x0 can be determined through its Laplace
transform on {z ∈C : a < Re(z) < 0} for a suitable a < 0 as

L[x0](z) =
1

λ− z
=

 L
[
1[0,∞)e

−λ·
]
(z) if λ > 0

L
[
−1(−∞,0)e

−λ·
]
(z) if λ < 0.

Consequently, by Theorem 2.5,

Xt =

 Zt −λe−λt
∫ t
−∞Zue

λu du if λ > 0

Zt +λe−λt
∫∞
t
Zue

λu du if λ < 0.
(2.11)

Ornstein-Uhlenbeck processes satisfying (2.10) have already been studied in the
literature, and representations of the stationary solution have been given, see e.g. [2,
Theorem 2.1, Proposition 4.2].

Example 2.11. Let (Lt)t∈R be a Lévy process with E[|L1|] <∞. Recall that (Xt)t∈R is
said to be a CARMA(2,1) process if

Xt =
∫ t

−∞
g(t −u)dLu , t ∈R,

where the kernel g is characterized by

F [g](y) =
b0 − iy

−y2 − a1iy − a2
, y ∈R,

for suitable b0, a1, a2 ∈R, such that z 7→ z2 +a1z+a2 has no roots on {z ∈C : Re(z) ≥ 0}.
To relate the CARMA(2,1) process to a solution to an SDDE we will suppose that the
invertibility assumption b0 > 0 is satisfied. In particular, b0 − iy , 0 for all y ∈R and,
thus, we may write

F [g](y) =
1

−iy + a1 − b0 + a2−b0(a1−b0)
b0−iy

, y ∈R.

By choosing η(dv) = (b0 − a1)δ0(dv)− (a2 − b0(a1 − b0))e−b0v1[0,∞](v)dv (a finite signed
measure with exponential moment of any order δ < b0) it is seen that the function h
given in (2.2) satisfies 1/h(iy) = F [g](y) for y ∈ R. Consequently, we conclude from
Theorem 2.5 that the CARMA(2,1) process with parameter vector (b0, a1, a2) is the
unique solution to the SDDE (2.1) with delay measure η. In fact, any CARMA(p,q)
process (p,q ∈ N0 and p > q) satisfying a suitable invertibility condition can be
represented as the solution to an equation of the SDDE type. See [7, Theorem 4.8] for
a precise statement.

Example 2.12. In this example we consider a delay measure η where the correspond-
ing solution to the SDDE in (2.1) may be regarded as a CARMA process with fractional
polynomials. Specifically, consider

η(dv) = α1δ0(dv) +
α2

Γ (β)
1[0,∞)(v)vβ−1e−γv dv,
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where β,γ > 0 and Γ is the gamma function. In this case, h(z) = −z−α1−α2(γ−z)−β , and
hence h is of the form P1(γ−·)/P2(γ−·), where Pi(z) = zai +bizci +di for suitable ai , ci > 0
and bi ,di ∈ R. In this way, one may think of h as a ratio of fractional polynomials
(recall from Example 2.11 that the solution to (2.1) will sometimes be a regular
CARMA process when β ∈N). By Lemma 2.2 and Theorem 2.5 the associated SDDE
has a unique solution with differential resolvent x0 satisfying x0(t) = 0 for t < 0, if

Re(z) ≤ 0 =⇒ −z −α1 −α2(γ − z)−β , 0. (2.12)

Each of the following two cases is sufficient for (2.12) to be satisfied:

(i) α1 + |α2|γ−β < 0: In this case we have in particular that α1 < 0, so

| − z −α1 −α2(γ − z)−β | ≥ −α1 − |α2||(γ − z)−β | ≥ −α1 − |α2|γ−β > 0

whenever Re(z) ≤ 0.

(ii) α1,α2 < 0 and β < 1: In this case Re((γ − z)−β) > 0 and, thus, Re(−z −α1 −α2(γ −
z)−β) > 0 as long as Re(z) ≤ 0

Example 2.13. Let η be any finite signed measure with second moment, which satis-
fies h(iy) , 0 for all y ∈R. Consider the case where (Zt)t∈R is a fractional Lévy process,
that is,

Zt =
1

Γ (1 + d)

∫
R

[
(t −u)d+ − (−u)d+

]
dLu , t ∈R,

where d ∈ (0,1/2) and (Lt)t∈R is a centered and square integrable Lévy process. Let

θ(t) =
1

Γ (1 + d)
td+, t ∈R.

Then it follows by Corollary 2.6 that the solution to (2.1) takes the form

Xt =
∫
R

θ ∗µx0
(t −u)dLu , t ∈R.

It is not too difficult to show that θ ∗ µx0
coincides with the left-sided Riemann-

Liouville fractional integral of x0, and hence Xt =
∫
R
x0(t −u)dZu , where the integral

with respect to (Zt)t∈R is defined as in [18]. Consequently, we can use the proof
of [18, Theorem 6.3] to deduce that (Xt)t∈R has long memory in the sense that its
autocovariance function is hyperbolically decaying at∞:

γX(t) := E[XtX0] ∼ Γ (1− 2d)
Γ (d)Γ (1− d)

E[L2
1]

h(0)2 t
2d−1, t→∞. (2.13)

In particular, (2.13) shows that γX < L1.

Our last example, presented below, deals with a situation where Theorem 2.5 is
applicable, but (Zt)t∈R is not of the form (2.8). It is closely related to [2, Corollary 2.3].

Example 2.14. Consider a filtration F = (Ft)t∈R and let (Bt)t∈R be an F -Brownian
motion. Moreover, let (σt)t∈R be a predictable process with σ0 ∈ L2(P). Finally, assume
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that (σt ,Bt)t∈R and (σt+u ,Bt+u − Bu)t∈R have the same finite-dimensional marginal
distributions for all u ∈R. In this case

Zt =
∫ t

0
σsdBs, t ∈R,

is well-defined, continuous and square integrable, and it has stationary increments.
Here we use the convention

∫ t
0 := −

∫ 0
t

when t < 0. Under the assumptions that h(z) , 0
for all z ∈C with Re(z) ≤ 0 and η has second moment, Theorem 2.5 implies that there
exists a unique stationary solution (Xt)t∈R to (2.1) and, since x0(t) = 0 for t < 0, it is
given by

Xt = Zt +
∫ ∞

0
Zt−s

∫
[0,∞)

x0(s − v)η(dv)ds

= −
∫ ∞

0

∫ t

t−s
σu dBu

∫
[0,∞)

x0(s − v)η(dv)ds

= −
∫ t

−∞
σu

∫ ∞
t−u

∫
[0,∞)

x0(s − v)η(dv)dsdBu

=
∫ t

−∞
x0(t −u)σu dBu

for t ∈R, where we have used Corollary 2.3, (4.10) and an extension of the stochastic
Fubini given in [22, Chapter IV, Theorem 65] to integrals over unbounded intervals.

3 The level model

In this section we consider the equation

Xt =
∫ ∞

0
Xt−uφ(du) +

∫ t

−∞
θ(t −u)dLu , (3.1)

where φ is a finite signed measure on (0,∞), (Lt)t∈R is an integrable Lévy process
with E[L1] = 0 and θ : R→ R is a measurable function, which vanishes on (−∞,0)
and satisfies (1.6).

Remark 3.1. Due to the extreme flexibility of the model (3.1), one should require
that φ and θ take a particular simple form. To elaborate, under the assumptions
of Theorem 3.2 or Remark 3.3, a solution to (3.1) associated to the pair (φ,θ) is a
causal moving average with kernel ψ. On the other hand, this solution could also
have been obtained using the pair (0,ψ). However, it might be that φ and θ have a
simple form while ψ has not, and hence (3.1) should be used to obtain parsimonious
representations of a wide range of processes. This idea is similar to that of the
discrete-time ARMA processes, which could as well have been represented as an
MA(∞) process or (under an invertibility assumption) an AR(∞) process.

Equation (3.1) can be solved using the backward recursion method under the
contraction assumption |φ|((0,∞)) < 1, and this is how we obtain Theorem 3.2. For the
noise term we will put the additional assumption that E[L2

1] <∞, and hence (in view
of (1.6)) that θ ∈ L2. In the formulation we will denote by φ∗n the n-fold convolution
of φ, that is, φ∗n := φ ∗ · · · ∗φ for n ∈N and φ∗0 = δ0.
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Theorem 3.2. Let (Lt)t∈R be a Lévy process with E[L1] = 0 and E[L2
1] <∞, and suppose

that θ ∈ L2, and |φ|((0,∞)) < 1. Then there exists a unique square integrable solution to
(3.1). It is given by

Xt =
∫ t

−∞
ψ(t −u)dLu , t ∈R,

where ψ :=
∑∞
n=0θ ∗φ∗n exists as a limit in L2 and vanishes on (−∞,0).

Remark 3.3. One can ask for the existence of solutions to (3.1) under weaker condi-
tions on φ than |φ|((0,∞)) < 1 (as imposed in Theorem 3.2). In particular, suppose
still that E[L1] = 0, E[L2

1] <∞ and θ ∈ L2, but instead of |φ|((0,∞)) < 1 suppose for
some a < 0 that L[φ](z) , 1 whenever Re(z) ∈ (a,0) and

sup
a<x<0

∫
R

∣∣∣∣∣ L[θ](x+ iy)
1−L[φ](x+ iy)

∣∣∣∣∣2dy <∞. (3.2)

Under these assumptions one can find a function ψ ∈ L2, such that (u 7→ ecuψ(u)) ∈ L1

for all c ∈ (a,0) and

L[ψ] =
L[θ]

1−L[φ]
on {z ∈C : a < Re(z) < 0}. (3.3)

This is shown in Lemma 4.1. With this choice ofψ it follows thatL[ψ](z) = L[ψ](z)L[φ](z)+
L[θ](z), and hence

L[ψ(t − ·)](−z) = e−zt
(
L[ψ](z)L[φ](z) +L[θ](z)

)
= L

[∫ ∞
0
ψ(t −u − ·)φ(du) +θ(t − ·)

]
(−z)

for each fixed t ∈ R and all z ∈ C with Re(z) ∈ (a,0). By uniqueness of Laplace
transforms, this establishes that

ψ(t − r) =
∫ ∞

0
ψ(t −u − r)φ(du) +θ(t − r) (3.4)

for Lebesgue almost all r ∈R and each fixed t ∈R. By integrating both sides of (3.4)
with respect to dLr and using a stochastic Fubini result (e.g., [2, Theorem 3.1]) it
follows that the moving average Xt =

∫
R
ψ(t − r)dLr , t ∈R, is a solution to (3.1).

To see that the conditions on φ imposed here are weaker than |φ|((0,∞)) < 1
as imposed in Theorem 3.2, observe that L[φ](z) , 1 whenever Re(z) ∈ (a,0) by the
inequality |L[φ](z)| ≤ |φ|((0,∞)), and

sup
a<x<0

∫
R

∣∣∣∣∣ L[θ](x+ iy)
1−L[φ](x+ iy)

∣∣∣∣∣2dy ≤ 2π
(1− |φ|((0,∞)))2

∫ ∞
0
θ(u)2 du. (3.5)

In (3.5) we have made use of Plancherel’s Theorem. Suppose that |φ|((0,∞)) < 1 so
that Theorem 3.2 is applicable, let ψ be defined through (3.3) and set ψ̃ =

∑∞
n=0θ ∗φ∗n.

Then it follows by uniqueness of solutions to (3.1) and the isometry property of the
integral map that

0 = E

[(∫
R

ψ(t −u)dLu −
∫
R

ψ̃(t −u)dLu

)2]
= E[L2

1]
∫
R

(ψ(u)− ψ̃(u))2 du.

57



Paper C · Stochastic delay differential equations and related autoregressive models

This shows that ψ = ψ̃ almost everywhere and that
∑∞
n=0θ ∗ φ∗n is an alternative

characterization of ψ when |φ|((0,∞)) < 1. Another argument, which would not rely
on the uniqueness of solutions to (3.1), would be to show that ψ and ψ̃ have the same
Fourier transform.

Example 3.4. Suppose that (Lt)t∈R is a Lévy process with E[L1] = 0 and E[L2
1] <∞,

and let θ ∈ L2. For α ∈R and β > 0, consider

φ(du) = αe−βu1[0,∞)(u)du

and define the measure

ξ(du) = eαuφ(du) = αe−(β−α)u1[0,∞)(u)du.

We will argue that a solution to (3.1) exists as long as α/β < 1 by considering the two
cases (i) −1 < α/β < 1 and (ii) α/β ≤ −1 separately.

(i) −1 < α/β < 1: In this case |φ|((0,∞)) = |α|/β < 1, and the existence of a solution
is ensured by Theorem 3.2. To determine the solution kernel ψ, note that
φ∗n(du) = αn

(n−1)!u
n−1e−βu1[0,∞)(u)du for n ∈N and, thus,

N∑
n=0

θ ∗φ∗n(t) = θ(t) +α
∫ t

0
θ(t −u)e−βu

N−1∑
n=0

(αu)n

n!
du→ θ(t) +θ ∗ ξ(t)

as N →∞ by Lebesgue’s Theorem on Dominated Convergence. This shows that
ψ = θ +θ ∗ ξ.

(ii) α/β ≤ −1: In this case |φ|((0,∞)) ≥ 1, so Theorem 3.2 does not apply. However,
observe that L[φ](z) = α/(β − z) , 1 and

L[θ](z)
1−L[φ](z)

=
L[θ](z)

1−α 1
β−z

= L[θ](z) +L[θ](z)
α

β −α − z
= L[θ +θ ∗ ξ](z)

when Re(z) < 0. The latter observation shows that

sup
x<0

∫
R

∣∣∣∣∣ L[θ](x+ iy)
1−L[φ](x+ iy)

∣∣∣∣∣2 dy ≤ 2π
∫
R

(θ(u) +θ ∗ ξ(u))2 du <∞

by Plancherel’s Theorem. Now Remark 3.3 implies that a solution to (3.1) also
exists in this case and ψ = θ +θ ∗ ξ is the solution kernel.

The next example relates (3.1) to (2.1) in a certain setup.

Example 3.5. We will give an example of an SDDE where Theorem 2.5 does not pro-
vide a solution, but where a solution can be found by considering an associated level
model. Consider the SDDE model (2.1) in the case where η is absolutely continuous
and its cumulative distribution function Fη(t) := η([0, t]), t ≥ 0, satisfies∫ ∞

0
|Fη(t)|dt < 1. (3.6)
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This means in particular that η([0,∞)) = limt→∞Fη(t) = 0, and hence h defined in
(2.2) satisfies h(0) = 0 and Theorem 2.5 does not apply (cf. Remark 2.8). In fact, using
a stochastic Fubini theorem (such as [2, Theorem 3.1]) and integration by parts on
the delay term, the equation may be written as

Xt −Xs =
∫ ∞

0

[
Xt−u −Xs−u

]
Fη(u)du +Zt −Zs, s < t. (3.7)

This shows that uniqueness does not hold, since if (Xt)t∈R is a solution then so is
(Xt + ξ)t∈R for any ξ ∈ L1(P). Moreover, as noted in Remark 2.8, we cannot expect to
find stationary solutions in this setup. In the following let us restrict the attention to
the case where

Zt =
∫
R

[f (t −u)− f0(−u)]dLu , t ∈R,

for a given Lévy process (Lt)t∈R with E[L1] = 0 and E[L2
1] <∞, and for some functions

f , f0 : R → R, vanishing on (−∞,0), such that u 7→ f (t + u) − f0(u) belongs to L2.
Using Theorem 3.2 we will now argue that there always exists a centered and square
integrable solution with stationary increments in this setup and that the increments
of any two such solutions are identical.

To show the uniqueness part, suppose that (Xt)t∈R is a centered and square inte-
grable stationary increment process which satisfies (3.7). Then, for any given s > 0,
we have that the increment process X(s)t = Xt −Xt−s, t ∈R, is a stationary, centered
and square integrable solution to the level equation (3.1) with φ(du) = Fη(u)du and
θ = f − f (· − s). By the uniqueness part of Theorem 3.2 and (3.6) it follows that

X(s)t =
∫
R

ψs(t −u)dLu , t ∈R,

where ψs(t) =
∑∞
n=0

∫∞
0 [f (t−u)− f (t− s−u)]φ∗n(du) (the sum being convergent in L2).

Consequently, by a stochastic Fubini result, (Xt)t∈R must take the form

Xt = ξ +
∞∑
n=0

∫ ∞
0

[Zt−u −Z−u]φ∗n(du), t ∈R, (3.8)

for a suitable ξ ∈ L2(P) with E[ξ] = 0. Conversely, if one defines (Xt)t∈R by (3.8) we
can use the same reasoning as above to conclude that (Xt)t∈R is a stationary increment
solution to (2.1). It should be stressed that one can find other representations of
the solution than (3.8) (e.g., in a similar manner as in Example 3.4). For more on
non-stationary solutions to (2.1), see [20].

A nice property of the model (3.1) is that it can recover the discrete-time ARMA(p,q)
process. Example 3.6 gives (well-known) results for ARMA processes by using Re-
mark 3.3. For an extensive treatment of ARMA processes, see e.g. [8].

Example 3.6. Let p,q ∈N0 and define the polynomials Φ ,Θ : C→C by

Φ(z) = 1−φ1z − · · · −φpzp and Θ(z) = 1 +θ1z+ · · ·+θqzq,

where the coefficients are assumed to be real. Let (Lt)t∈R be a Lévy process with
E[L1] = 0 and E[L2

1] <∞, and consider choosing φ(du) =
∑p
j=1φjδj(du) and θ(u) =
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1[0,1)(u) +
∑q
j=1θj1[j,j+1)(u). In this case (3.1) reads

Xt =
p∑
i=1

φiXt−i +Zt +
q∑
i=1

θiZt−i , t ∈R, (3.9)

with Zt = Lt − Lt−1. In particular, if (Xt)t∈R is a solution to (3.9), (Xt)t∈Z is a usual
ARMA process. Suppose that Φ(z) , 0 for all z ∈ C with |z| = 1. Then, by continuity
of Φ , there exists a < 0 such that 1−L[φ](z) = Φ(ez) is strictly separated from 0 for
z ∈ C with Re(z) ∈ (a,0). Thus, since θ ∈ L2, Remark 3.3 implies that there exists a
stationary solution to (3.1), and it is given by Xt =

∫
R
ψ(t − u)dLu , t ∈ R, where ψ is

characterized by (3.3). Choose a small ε > 0 and (ψj )j∈Z so that the relation

Θ(z)
Φ(z)

=
∞∑

j=−∞
ψjz

j

holds true for all z ∈C with 1− ε < |z| < 1 + ε. Then

L[ψ](z) = L[1[0,1)](z)
Θ(ez)
Φ(ez)

=
∞∑

j=−∞
ψjL[1[j,j+1)](z) = L

[ ∞∑
j=−∞

ψj1[j,j+1)

]
(z)

for all z ∈ C with a negative real part sufficiently close to zero. Thus, we have the
well-known representation Xt =

∑∞
j=−∞ψjZt−j for t ∈R.

4 Proofs and technical results

The first result is closely related to the characterization of the so-called Hardy spaces
and some of the Paley-Wiener theorems. For more on these topics, see e.g. [11, Section
2.3] and [15, Chapter VI (Section 7)]. We will use the notation Sa,b = {z ∈ C : a <
Re(z) < b} throughout this section.

Lemma 4.1. Let −∞ ≤ a < b ≤∞. Suppose that F : C→C is a function which is analytic
on the strip Sa,b and satisfies

sup
a<x<b

∫
R

|F(x+ iy)|2dy <∞. (4.1)

Then there exists a function f : R → C such that (u 7→ f (u)ecu) ∈ L1 for c ∈ (a,b),
(u 7→ f (u)ecu) ∈ L2 for c ∈ [a,b], and L[f ](z) = F(z) for z ∈ Sa,b.

Remark 4.2. If a = −∞, the property u 7→ f (u)eau ∈ L2 is understood as f (u) = 0 for
almost all u < 0 and similarly, f (u) = 0 for almost all u > 0 if u 7→ f (u)ebu ∈ L2 for
b =∞.

Proof (Proof of Lemma 4.1). Fix c1, c2 ∈ (a,b) with c1 < c2. For any y > 0 and u ∈ R,
consider (anti-clockwise) integration of z 7→ e−zuF(z) along a rectangular contour Ry
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with vertices c1 − iy, c2 − iy, c2 + iy, and c1 + iy:

0 =
∮
Ry

e−zuF(z)dz

=
∫ c2

c1

e−(x−iy)uF(x − iy)dx+ ie−c2u
∫ y

−y
e−ixuF(c2 + ix)dx

−
∫ c2

c1

e−(x+iy)uF(x+ iy)dx − ie−c1u
∫ y

−y
e−ixuF(c1 + ix)dx.

(4.2)

Since ∫
R

∣∣∣∣∣∫ c2

c1

e−(x+iy)uF(x+ iy)dx
∣∣∣∣∣2dy

≤ e−2(c1u∧c2u)(c2 − c1)2 sup
a<x<b

∫
R

|F(x+ iy)|2dy <∞,

we deduce the existence of a sequence (yn)n∈N ⊆ (0,∞), such that yn→∞ and∫ c2

c1

e−(x±iyn)uF(x ± iyn)dx→ 0.

Furthermore, for k = 1,2 it holds that(
u 7→

∫ y

−y
e−ixuF(ck + ix)dx

)
→

(
u 7→ 2πF −1[F(ck + i·)](u)

)
in L2 as y→∞ by Plancherel’s Theorem. In particular, this convergence holds along
the sequence (yn)n∈N and, eventually by only considering a subsequence of (yn)n∈N,
we may assume that

lim
n→∞

∫ yn

−yn
e−ixuF(ck + ix)dx = 2πF −1[F(ck + i·)](u), k = 1,2,

for almost all u ∈ R. Combining this with (4.2) yields e−c1uF −1[F(c1 + i·)](u) =
e−c2uF −1[F(c2 + i·)](u) for almost all u ∈ R. Consequently, there exists a function
f : R→C with the property that f (u) = e−cuF −1[F(c+ i·)](u) for almost all u ∈R for
any given c ∈ (a,b). For such c we compute∫

R

|ecuf (u)|2du =
∫
R

|F −1[F(c+ i·)](u)|2du ≤ sup
x∈(a,b)

∫
R

|F(x+ iy)|2dy <∞.

Consequently, (u 7→ f (u)ecu) ∈ L2 for any c ∈ (a,b) and by Fatou’s Lemma, this holds
as well for c = a and c = b. Furthermore, if c ∈ (a,b), we can choose ε > 0 such that
c ± ε ∈ (a,b) as well, from which we get that(∫

R

|f (u)|ecudu
)2

≤
(∫ ∞

0
|f (u)e(c+ε)u |2du +

∫ 0

−∞
|f (u)e(c−ε)u |2du

)∫ ∞
0
e−2εudu <∞
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by Hölder’s inequality. This shows that (u 7→ f (u)ecu) ∈ L1. Finally, we find for z =
x+ iy ∈ Sa,b (by definition of f ) that

L[f ](z) =
∫
R

eiyuexuf (u)du = F [F −1[F(x+ i·)]](y) = F(z),

and this completes the proof. �

Proof (Proof of Lemma 2.2). Observe that, generally, h(z) , 0 if Re(z) ≤ 0 and |z| >
|η|([0,∞)), and thus, under the assumption that h(iy) , 0 for all y ∈R and by continuity
of h there must be an a < 0 such that h(z) , 0 for all z ∈ Sa,0. The fact that |h(z)| ∼ |z|
as |z| → ∞ when Re(z) ≤ 0 and, once again, the continuity of h imply that (4.1) is
satisfied for 1/h, and thus we get the existence of a function x̃0 : R→ R such that
L[x̃0] = 1/h on Sa,0 and t 7→ ect x̃0(t) ∈ L2 for all c ∈ [a,0]. Observe that this gives in
particular that x̃01(−∞,0] ∈ L1 and thus, since x̃0 ∈ L2, we also get that x̃01(−∞,t] ∈ L1

for all t ∈R. This ensures that x0 : R→R given by

x0(t) = 1[0,∞)(t) +
∫ t

−∞

∫
[0,∞)

x̃0(u − v)η(dv)du, t ∈R,

is a well-defined function. To establish the first part of the statement (in particular
(2.3)) it suffices to argue that L[x0] = 1/h on Sa,0. However, this follows from the
following calculation, which holds for an arbitrary z ∈ Sa,0:

L
[
1[0,∞) +

∫ ·
−∞

∫
[0,∞)

x̃0(u − v)η(dv)du
]
(z)

= −z−1
[
1 +L[x̃0](z)L[η](z)

]
= −z−1 z

z+L[η](z)
=

1
h(z)

.

Suppose now that η has n-th moment for some n ∈N and note that

|Dkh(iy)| ≤ 1 +
∫

[0,∞)
vk |η|(dv) <∞,

for k ∈ {1, . . . ,n} (Dk denoting the k-th order derivative with respect to y). Since
Dk[1/h(iy)] will be a sum of terms of the form D lh(iy)/h(iy)m, l,m = 1, . . . , k, and
(y 7→ 1/h(iy)) ∈ L2, this means in turn that Dk[1/h(i·)] ∈ L2 for k = 1, . . . ,n. Since F −1

maps L2 functions to L2 functions, F −1[Dn[1/h(i·)]] ∈ L2. Moreover, it is well-known
that if f ,Df ∈ L1, we have the formula F −1[Df ](u) = iuF −1[f ](u) for u ∈ R, and
by an approximation argument it holds when f ,Df ∈ L2 as well (although only for
almost all u), cf. [1, Corollary 3.23]. Hence, by induction we establish that

F −1
[
Dn

1
h(i·)

]
(u) = (iu)nF −1

[
1
h(i·)

]
(u) = (iu)nx0(u).

This shows the first part of ((i)). For any given q ∈ [1/n,2) it follows by Hölder’s
inequality that∫

R

|x0(u)|q du

≤
(∫

R

(
x0(u)(1 + |u|n)

)2
du

)q/2(∫
R

(1 + |u|n)−2q/(2−q) du

)1−q/2
<∞,
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which shows x0 ∈ Lq. By using the relation (2.3), which was verified just above, we
obtain

|x0(t)| ≤ 1 +
∫ t

−∞

∫
[0,∞)
|x0(u − v)| |η|(dv)du ≤ |η|([0,∞))

∫
R

|x0(u)|du.

Since x0 ∈ L1, the inequalities above imply x0 ∈ L∞, and thus we get x0 ∈ Lq for
q ∈ [1/n,∞], which shows the second part of ((i)). If η has an exponential moment of
order δ then we can find a < 0 < b ≤ δ such that 1/h satisfies (4.1) and therefore, we
have that u 7→ x0(u)ecu ∈ L2 for c ∈ [a,b]. If h(z) , 0 for all z ∈ C with Re(z) ≤ 0 we can
argue that (4.1) holds with a = −∞ (and b = 0) in the same way as above and, thus,
Lemma 4.1 implies x0(u) = 0 for u < 0. �

The following lemma is used to ensure uniqueness of solutions to (2.1):

Lemma 4.3. Fix s ∈ R. Suppose that h(iy) , 0 for all y ∈ R and that, given (Yt)t≤s, a
process (Xt)t∈R satisfies

Xt =

Xs +
∫ t
s

∫
[0,∞)Xu−v η(dv)du, t ≥ s

Yt , t < s
(4.3)

almost surely for each t ∈R (the P-null sets are allowed to depend on t) and supt∈RE[|Xt |] <
∞. Then

Xt = Xsx0(t − s) +
∫ ∞
s

∫
(u−s,∞)

Yu−v η(dv)x0(t −u)du (4.4)

for Lebesgue almost all t ≥ s outside a P-null set.

Proof. Observe that, by Fubini’s Theorem, we can remove a P-null set and have that
(4.3) is satisfied for Lebesgue almost all t ∈ R. Let a < 0 be such that h(z) , 0 for all
z ∈ Sa,0 (this is possible due to the assumption h(iy) , 0 for all y ∈R). Note that

E

[∫ ∞
s
e−n

−1t |Xt |dt
]
≤ nsup

t∈R
E[|Xt |] <∞

for any given n ∈N by Tonelli’s Theorem. This means that
∫∞
s
e−n

−1t |Xt |dt <∞ for
all n almost surely and, hence, L[X1[s,∞)] is well-defined on Sa,0 outside a P-null set.
For z ∈ Sa,0 we compute

L[X1[s,∞)](z) =L
[
1[s,∞)

{
Xs +

∫ ·
s

∫
[0,∞)

Xu−v η(dv)du
}]

(z)

=− Xse
zs

z
+
∫ ∞
s
ezt

∫ t

s

∫
[0,∞)

Xu−v η(dv)dudt

=− Xse
zs

z
+
∫

[0,∞)

∫ ∞
s
Xu−v

∫ ∞
u
ezt dt du η(dv)

=− 1
z

(
Xse

zs +
∫

[0,∞)

∫ ∞
s−v
Xue

z(u+v) duη(dv)
)

=− 1
z

Xsezs +L[η](z)L[X1[s,∞)](z)

+L
[
1[s,∞)

∫
(·−s,∞)

Y·−v η(dv)
]

(z)
)
.
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In the calculations above we have used Fubini’s Theorem several times; specifically,
in the third and fifth equality. These calculations are valid (at least after removing yet
another P-null set) by the same type of argument as used to establish that L[X1[s,∞)]
is well-defined on Sa,0 almost surely. For instance, Fubini’s Theorem is applicable in
the third equality above for any z ∈ Sa,0 almost surely, since

E

[∫ ∞
s

∫ t

s

∫
[0,∞)

e−n
−1t |Xu−v | |η|(dv)dudt

]
= |η|([0,∞))

∫ ∞
s

(t − s)e−n
−1t dt sup

t∈R
E[|Xt |] <∞

for an arbitrary n ∈N. Returning to the computations, we find by rearranging terms
that

L[X1[s,∞)](z) =
Xse

zs

h(z)
+
L
[
1[s,∞)

∫
(·−s,∞)Y·−v η(dv)

]
(z)

h(z)
. (4.5)

By applying the expectation operator, we note that∫ ∞
s

∫
(u−s,∞)

|Yu−v | |η|(dv) |x0(t −u)|du <∞ (4.6)

almost surely for each t ∈R if
∫∞
s
|η|((u − s,∞))|x0(t −u)|du <∞. Since |η|([0,∞)) <∞,

it is sufficient that x01(−∞,t−s] ∈ L1, but this is indeed the case (see the beginning of
the proof of Lemma 2.2). Consequently, Tonelli’s Theorem implies that (4.6) holds
for Lebesgue almost all t ∈R outside a P-null set. Furthermore, again by Lemma 2.2,
there exists ε > 0 such that∫

R

e−εt
∫ ∞
s
|x0(t −u)|dudt =

∫
R

e−εt |x0(t)|dt
∫ ∞
s
e−εu du <∞.

From this it follows that, almost surely,
∫∞
s

∫
(u−s,∞)Yu−v η(dv)x0(t − u)du is well-

defined and that its Laplace transform exists on S−ε,0. We conclude that

L
[∫ ∞

s

∫
(u−s,∞)

Yu−v η(dv)x0(· −u)du
]

(z) =
L
[
1[s,∞)

∫
(·−s,∞)Y·−v η(dv)

]
(z)

h(z)

for z ∈ S−ε,0, and the result follows since we also have L[x0(· − s)](z) = ezs/h(z) for
z ∈ S−ε,0. �

When proving Theorem 2.5, [2, Corollary A.3] will play a crucial role, and for
reference we have chosen to include (a suitable version of) it here:

Corollary 4.4 ([2, Corollary A.3]). Let p ≥ 1 and (Xt)t∈R be a measurable process with
stationary increments and E[|Xt |p] <∞ for all t ∈R. Then (Xt)t∈R is continuous in Lp(P),
and there exist α,β > 0 such that E[|Xt |p]1/p ≤ α + β|t| for all t ∈R.

Proof (Proof of Theorem 2.5). We start by noting that if (Xt)t∈R and (Yt)t∈R are two
measurable, stationary and integrable (E[|X0|],E[|Y0|] <∞) solutions to (2.1) then, for
fixed s ∈R,

Ut =Us +
∫ t

s

∫
[0,∞)

Uu−v η(dv)du (4.7)
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almost surely for each t ∈R, when we set Ut := Xt −Yt . In particular, for a given t ∈R,
we get by Lemma 4.3,

Ur =Usx0(r − s) +
∫ ∞
s

∫
(u−s,∞)

Uu−v η(dv)x0(r −u)du (4.8)

for Lebesgue almost all r > t −1 and all s ∈Q with s ≤ t −1. For any such r we observe
that the right-hand side of (4.8) tends to zero in L1(P) as Q 3 s→−∞, from which we
deduce Ur = 0 or, equivalently, Xr = Yr almost surely. By Corollary 4.4 it follows that
(Ur )r∈R is continuous in L1(P), and hence we get that Xt = Yt almost surely as well.
This shows that a solution to (2.1) is unique up to modification.

We have E[|Zu |] ≤ a + b|u| for any u,v ∈ R with suitably chosen a,b > 0 (see
Corollary 4.4), and this implies that

E

[∫
R

|Zu |
∫

[0,∞)
|x0(t −u − v)| |η|(dv)du

]
≤a|η|([0,∞))

∫
R

|x0(u)|du + b
∫
R

|u|
∫

[0,∞)
|x0(t −u − v)| |η|(dv)du

≤
(
a|η|([0,∞)) + b

∫
[0,∞)

v|η|(dv)
)∫

R

|x0(u)|du

+ b|η|([0,∞))
∫
R

(|t|+ |u|)|x0(u)|du.

This is finite by Lemma 2.2 and Example 2.4, and
∫
R
Zu

∫
[0,∞) x0(t −u − v)η(dv)du is

therefore almost surely well-defined.
To argue that Xt = Zt +

∫
R
Zu

∫
[0,∞) x0(t − u − v)η(dv)du, t ∈ R, satisfies (2.1), let

s < t and note that by Lemma 2.2 we have∫ t

s

∫
[0,∞)

Xu−v η(dv)du −
∫ t

s

∫
[0,∞)

Zu−v η(dv)du

=
∫ t

s

∫
[0,∞)

∫
R

Zr

∫
[0,∞)

x0(u − v − r −w)η(dw)dr η(dv)du

=
∫
R

Zr

∫
[0,∞)

∫ t−r−w

s−r−w

∫
[0,∞)

x0(u − v)η(dv)duη(dw)dr

=
∫
R

Zr

∫
[0,∞)

[x0(t − r −w)− x0(s − r −w)]η(dw)dr

−
∫
R

∫
[0,∞)

Zr [1[0,∞)(t − r −w)−1[0,∞)(s − r −w)]η(dw)dr

=
∫
R

Zr

∫
[0,∞)

[x0(t − r −w)− x0(s − r −w)]η(dw)dr

−
∫ t

s

∫
[0,∞)

Zr−w η(dw)dr.

Next, we write

Xt =
∫
R

(Zt −Zt−u)
∫

[0,∞)
x0(u − v)η(dv)du, t ∈R, (4.9)
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using that∫
R

∫
[0,∞)

x0(u − v)η(dv)du =
∫
R

x0(u)duη([0,∞)) = h(0)η([0,∞)) = −1 (4.10)

Since (Zt)t∈R is continuous in L1(P), one shows that the process

Xnt :=
∫ n

−n
(Zt −Zt−u)

∫
[0,∞)

x0(u − v)η(dv)du, t ∈R,

is stationary by approximating it by Riemann sums in L1(P). Subsequently, due to
the fact that Xnt → Xt almost surely as n→∞ for any t ∈R, we conclude that (Xt)t∈R
is stationary. This type of approximation arguments are carried out in detail in [7,
p. 20]. In case h(z) , 0 for all z ∈C with Re(z) ≤ 0, the causal representation (2.7) of
(Xt)t∈R follows from (4.9) and the fact that x0(t) = 0 for t < 0 by Lemma 2.2((iii)). This
completes the proof. �

Proof (Proof of Corollary 2.6). It follows from (4.10) and Corollary 2.3 that

Zt +
∫
R

Zt−u

∫
[0,∞)

x0(u − v)η(dv)du

=
∫
R

[Zt−u −Zt]
∫

[0,∞)
x0(u − v)η(dv)du

=
∫
R

∫
R

[θ(t −u − r)−θ(t − r)][µx0
(du)− δ0(du)]dLr

=
∫
R

∫
R

θ(t −u − r)µx0
(du)dLr

=
∫
R

θ ∗ x0(t − r)dLr ,

where we have used that µx0
(R) = 0 since x0(t)→ 0 for t→±∞ by (2.3). �

Proof (Proof of Theorem 3.2). First, observe that there exists ψ : R→ R such that∑n
k=0θ ∗φ

∗k → ψ in L2 as n→∞. To see this, set ψn =
∑n
k=0θ ∗φ

∗k , let m < n and note
that ∫

R

(ψn(t)−ψm(t))2 dt =
1

2π

∫
R

∣∣∣∣∣F [ n∑
k=m+1

θ ∗φ∗k
]
(y)

∣∣∣∣∣2 dy (4.11)

for m < n by Plancherel’s Theorem. For any y ∈R we have that

∣∣∣∣∣F [ n∑
k=m+1

θ ∗φ∗k
]
(y)

∣∣∣∣∣ ≤ |F [θ](y)|
n∑

k=m+1

|φ|((0,∞))k ≤
|F [θ](y)|

1− |φ|((0,∞))
. (4.12)

The first inequality in (4.12) shows that |F [
∑n
k=m+1θ ∗φ

∗k](y)| → 0 as n,m→∞, and
hence we can use the second inequality of (4.12) and dominated convergence together
with the relation (4.11) to deduce that (ψn)n∈N is a Cauchy sequence in L2. This
establishes the existence of ψ. Due to the fact that ψn is real-valued and vanishes on
(−∞,0) for all n ∈N, the same holds for ψ almost everywhere.
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Suppose now that we have a square integrable stationary solution (Xt)t∈R. Then,
using a stochastic Fubini (e.g., [2, Theorem 3.1]), it follows that for each t ∈ R and
almost surely,

Xt = X ∗φ∗n(t) +
n−1∑
k=0

(∫
R

θ(· −u)dLu

)
∗φ∗k(t)

= X ∗φ∗n(t) +
∫
R

ψn−1(t −u)dLu

(4.13)

for an arbitrary n ∈N. By Jensen’s inequality and stationarity of (Xu)u∈R,

E[X ∗φ∗n(t)2] ≤ E

[(∫ ∞
0
|Xt−u | |φ∗n|(du)

)2]
≤ |φ∗n|((0,∞))E[X2

0 ].

Since E[X2
0 ] < ∞ and |φ∗n|((0,∞)) = |φ|((0,∞))n → 0 as n → ∞, it follows that X ∗

φ∗n(t)→ 0 in L2(P) as n→∞. Consequently, (4.13) shows that
∫
R
ψn(t −u)dLu → Xt

in L2(P) as n→∞. On the other hand, by the isometry property of the stochastic
integral we also have that

E

[(∫
R

ψ(t −u)dLu −
∫
R

ψn(t −u)dLu

)2]
= E[L2

1]
∫
R

(ψ(u)−ψn(u))2 du→ 0

as n→∞, and hence Xt =
∫
R
ψ(t − u)dLu almost surely by uniqueness of limits in

L2(P).
Conversely, define a square integrable stationary process (Xt)t∈R by Xt =

∫
R
ψ(t −

u)dLu for t ∈R. After noting that ψn ∗φ =
∑n+1
k=1θ ∗φ

∗k = ψn+1 −θ for all n, we find

0 = limsup
n→∞

∫ ∞
0

[
ψn+1(u)−θ(u)−ψn ∗φ(u)

]2
du

=
∫ ∞

0

[
ψ(u)−θ(u)−ψ ∗φ(u)

]2
du

= E

[(
Xt −X ∗φ(t)−

∫
R

θ(t −u)dLu

)2]
E[L2

1]−1.

Thus, (Xt)t∈R satisfies (3.1). �
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Multivariate Stochastic Delay Differential
Equations And Their Relation To CARMA

Processes

Andreas Basse-O’Connor, Mikkel Slot Nielsen, Jan Pedersen, and Victor Rohde

Abstract

In this study we show how to represent a continuous time autoregressive
moving average (CARMA) as a higher order stochastic delay differential equation,
which can be thought of as an AR(∞) process. Furthermore, we show how the
AR(∞) representation gives rise to a prediction formula for CARMA processes. To
be used in the above mentioned results we develop a general theory for multivari-
ate stochastic delay differential equations, which will be of independent interest,
and where we focus on existence, uniqueness and representations.

MSC 2010: 60G10, 60G22, 60H10, 60H20

Keywords: multivariate stochastic delay differential equations; multivariate Ornstein-Uhlenbeck
processes; CARMA processes; FICARMA processes; MCARMA processes; noise recovery; predic-
tion; long memory; continuous time

1 Introduction and main ideas

The class of autoregressive moving averages (ARMA) is one of the most popular
classes of stochastic processes for modeling time series in discrete time. This class
goes back to the thesis of Whittle in 1951 and was popularized in [5]. The continuous
time analogue of an ARMA process is called a CARMA process, and it is the formal
solution (Xt)t∈R to the equation

P (D)Xt =Q(D)DZt , t ∈R, (1.1)
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where P and Q are polynomials of degree p and q, respectively. Furthermore, D
denotes differentiation with respect to t, and (Zt)t∈R is a Lévy process, the continuous
time analogue of a random walk. In the following we will assume that p > q and
P (z),Q(z) , 0 whenever Re(z) ≥ 0. In this case one can give precise meaning to (Xt)t∈R
as a causal stochastic process through a state-space representation as long as (Zt)t∈R
has log moments. Lévy-driven CARMA processes have found many applications, for
example, in modeling temperature, electricity, and stochastic volatility, cf. [4, 14, 26].
Moreover, there exists a vast amount of literature on theoretical results for CARMA
processes (and variations of these), and a few references are [7, 10, 6, 8, 18, 19, 25].

It is well-known that any causal CARMA process has a moving average represen-
tation of MA(∞) type

Xt =
∫ t

−∞
g(t −u)dZu , t ∈R,

cf. Section 4.3. This representation may be very convenient for studying many of
their properties. A main contribution of our work is that we obtain an autoregressive
representation of CARMA processes of AR(∞) type

R(D)Xt =
∫ ∞

0
Xt−uf (u)du +DZt , t ∈R, (1.2)

where R is a polynomial of order p − q and f : R→ R is a deterministic function,
both defined through P and Q. Since (Xt)t∈R is p − q − 1 times differentiable, see
[19, Proposition 3.32], the relation (1.2) is well-defined if we integrate both sides.
A heuristic argument why (1.2) is a reasonable continuous time equivalent of the
discrete time AR(∞) representation is as follows. If q = 0, Q is constant and we get
the (finite order) AR representation immediately:

P (D)Xt =DZt .

If q ≥ 1, let (φj )j∈N0
be the coefficients in the power series expansion of P /Q on

{z ∈C : Re(z) > −δ} for a sufficiently small δ > 0 and write (1.1) as

∞∑
j=0

φjD
jXt =DZt . (1.3)

Except in trivial cases, (Xt)t∈R is no more than p − q − 1 times differentiable, and thus
we still need to make sense of the left-hand side of (1.3). By polynomial long division
we may choose a polynomial R of order p − q such that

S(z) :=Q(z)R(z)− P (z), z ∈C,

is a polynomial of at most order q − 1. Now observe that

F
[ ∞∑
j=0

φjD
jX

]
(y) =

( ∞∑
j=0

φj (−iy)j
)
F [X](y)

=
(
R(−iy)−

S(−iy)
Q(−iy)

)
F [X](y)

= F [R(D)X](y)−F [f ](y)F [X](y),
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where f : R→R is the L2 function characterized by F [f ](y) = S(−iy)/Q(−iy) for y ∈R.
(In fact, we even know that f is vanishing on (−∞,0) and decays exponentially fast at
∞, cf. Remark 4.10.) Combining this identity with (1.3) results in the representation
(1.2).

We show in Theorem 4.8 that (1.2) does indeed hold true for any invertible
(Lévy-driven) CARMA process. Similar relations are shown to hold for invertible
fractionally integrated CARMA (FICARMA) processes, where (Zt)t∈R is a fractional
Lévy process, and also for their multi-dimensional counterparts, which we will refer
to as MCARMA and MFICARMA processes, respectively. We use these representations
to obtain a prediction formula for general CARMA type processes (see Corollary 4.11).
A prediction formula for invertible one-dimensional Lévy-driven CARMA processes
is given in [9, Theorem 2.7], but prediction of MCARMA processes has, to the best of
our knowledge, not been studied in the literature.

AR representations such as (1.2) are useful for several reasons. To give a few
examples, they separate the noise (Zt)t∈R from (Xt)t∈R and hence provide a recipe
for recovering increments of the noise from the observed process, they ease the
task of prediction (and thus estimation), and they clarify the dynamic behavior of
the process. These facts motivate the idea of defining a broad class of processes,
including the CARMA type processes above, which all admit an AR representation,
and it turns out that a well-suited class to study is the one formed by solutions to
multi-dimensional stochastic delay differential equations (MSDDEs). To be precise,
for an integrable n-dimensional (measurable) process Zt = (Z1

t , . . . ,Z
n
t )T , t ∈R, with

stationary increments and a finite signed n×nmatrix-valued measure η, concentrated
on [0,∞), a stationary process Xt = (X1

t , . . . ,X
n
t )T , t ∈R, is a solution to the associated

MSDDE if it satisfies

dXt = η ∗X(t)dt + dZt . (1.4)

By equation (1.4) we mean that

X
j
t −X

j
s =

n∑
k=1

∫ t

s

∫
[0,∞)

Xku−v ηjk(dv)du +Zjt −Z
j
s , j = 1, . . . ,n, (1.5)

almost surely for each s < t. This system of equations is an extension of the stochastic
delay differential equation (SDDE) in [3, Section 3.3] to the multivariate case. The
overall structure of (1.4) is also in line with earlier literature such as [16, 20] on uni-
variate SDDEs, but here we allow for infinite delay (η is allowed to have unbounded
support) which is a key property in order to include the CARMA type processes in
the framework.

The structure of the paper is as follows: In Section 2 we introduce the notation
used throughout this paper. Next, in Section 3, we develop the general theory for
MSDDEs with particular focus on existence, uniqueness and prediction. The general
results of Section 3 are then specialized in Section 4 to various settings. Specifically,
in Section 4.1 we consider the case where the noise process gives rise to a reasonable
integral, and in Section 4.2 we demonstrate how to derive results for higher order
SDDEs by nesting them into MSDDEs. Finally, in Section 4.3 we use the above
mentioned findings to represent CARMA processes and generalizations thereof as
solutions to higher order SDDEs and to obtain the corresponding prediction formulas.
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2 Notation

Let f : R → C
m×k be a measurable function and µ a k × n (non-negative) matrix

measure, that is,

µ =


µ11 · · · µ1n
...

. . .
...

µk1 · · · µkn


where each µjl is a measure on R. Then, we will write f ∈ Lp(µ) if∫

R

|fil(u)|pµlj (du) <∞

for l = 1, . . . , k, i = 1, . . . ,m and j = 1, . . . ,n. Provided that f ∈ L1(µ), we set

∫
R

f (u)µ(du) =
k∑
l=1


∫
R
f1l(u)µl1(du) · · ·

∫
R
f1l(u)µln(du)

...
. . .

...∫
R
fml(u)µl1(du) · · ·

∫
R
fml(u)µln(du)

 . (2.1)

If µ is the Lebesgue measure, we will suppress the dependence on the measure and
write f ∈ Lp, and in case f is measurable and bounded Lebesgue almost everywhere,
f ∈ L∞. For two (matrix) measures µ+ and µ− on R, where at least one of them are
finite, we call the set function µ(B) := µ+(B) − µ−(B), defined for any Borel set B, a
signed measure (and, from this point, simply referred to as a measure). We may and
do assume that the two measures µ+ and µ− are singular. To the measure µ we will
associate its variation measure |µ| := µ+ +µ−, and when |µ|(R) <∞, we will say that µ
is finite. Integrals with respect to µ are defined in a natural way from (2.1) whenever
f ∈ L1(µ) := L1(|µ|). If f is one-dimensional, respectively if µ is one-dimensional, we
will write f ∈ L1(µ) if f ∈ L1(|µij |) for all i = 1, . . . , k and j = 1, . . . ,n, respectively if
fij ∈ L1(|µ|) for all i = 1, . . . ,m and j = 1, . . . , k. The associated integral is defined in an
obvious manner.

We define the convolution at a given point t ∈R by

f ∗µ(t) =
∫
R

f (t −u)µ(du)

provided that f (t − ·) ∈ L1(µ). In case that µ is the Lebesgue-Stieltjes measure of a
function g : R→R

k×n we will also write f ∗ g(t) instead of f ∗µ(t) (not to be confused
with the standard convolution between functions). For a given measure µ we set

D(µ) =
{
z ∈C :

∫
R

eRe(z)u |µij |(du) <∞ for i = 1, . . . , k and j = 1, . . . ,n
}

and define its Laplace transform L[µ] as

L[µ]ij (z) =
∫
R

ezu µij (du), for i = 1, . . . , k, j = 1, . . . ,n,

for every z ∈D(µ). If µ is a finite measure, we will also refer to the Fourier transform
F [µ] of µ, which is given as F [µ](y) = L[µ](iy) for y ∈R. If µ(du) = f (u)du for some
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measurable function f , we write L[f ] and F [f ] instead. We will also use that the
Fourier transform F extends from L1 to L1 ∪L2, and it maps L2 onto L2. We will say
that µ has a moment of order p ∈N0 if∫

R

|u|p |µjk |(du) <∞

for all j,k = 1, . . . ,n. Finally, for two functions f ,g : R→R and a ∈ [−∞,∞], we write
f (t) = o(g(t)), f (t) ∼ g(t) and f (t) =O(g(t)) as t→ a if

lim
t→a

f (t)
g(t)
→ 0, lim

t→a

f (t)
g(t)

= 1 and limsup
t→a

∣∣∣∣∣ f (t)
g(t)

∣∣∣∣∣ <∞,
respectively.

3 Stochastic delay differential equations

Consider the general MSDDE in (1.4). The first main result provides sufficient con-
ditions to ensure existence and uniqueness of a solution. To obtain such results we
need to put assumptions on the delay measure η. In order to do so, we associate to η
the function h :D(η)→C

n×n given by

h(z) = −zIn −L[η](z). (3.1)

where In is the n×n identity matrix.

Theorem 3.1. Let h be given in (3.1) and suppose that det(h(iy)) , 0 for all y ∈ R.
Suppose further that η has second moment. Then there exists a function g : R→R

n×n in
L2 characterized by

F [g](y) = h(iy)−1, (3.2)

the convolution

g ∗Z(t) := Zt +
∫
R

g ∗ η(t −u)Zu du (3.3)

is well-defined for each t ∈R almost surely, and Xt = g ∗Z(t), t ∈R, is the unique (up to
modification) stationary and integrable solution to (1.4). If, in addition to the above stated
assumptions, det(h(z)) , 0 for all z ∈C with Re(z) ≤ 0 then the solution in (3.3) is casual
in the sense that (Xt)t∈R is adapted to the filtration

{σ (Zt −Zs : s < t)}t∈R.

The solution (Xt)t∈R to (1.4) will very often take form as a (Zt)t∈R-driven moving
average, that is,

Xt =
∫
R

g(t −u)dZu (3.4)

for each t ∈ R (cf. Section 4.1). This fact justifies the notation g ∗ Z introduced in
(3.3). In case n = 1, equation (1.4) reduces to the usual first order SDDE, and then
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the existence condition becomes h(iy) = −iy −F [η](y) , 0 for all y ∈R, and the kernel
driving the solution is characterized by F [g](y) = 1/h(iy). This is consistent with
earlier literature (cf. [3, 16, 20]).

The second main result concerns prediction of MSDDEs. In particular, the content
of the result is that we can compute a prediction of future values of the observed
process if we are able to compute the same type of prediction of the noise.

Theorem 3.2. Suppose that det(h(z)) , 0 for all z ∈ C with Re(z) ≤ 0 and that η has
second moment. Furthermore, let (Xt)t∈R be the stationary and integrable solution to (1.4)
and let g be given by (3.2). Fix s < t. Then, if we set

Ẑu = E[Zu −Zs | Zs −Zr , r < s], u > s, (3.5)

it holds that

E[Xt | Xu , u ≤ s]

= g(t − s)Xs +
∫ t

s
g(t −u)η ∗

{
1(−∞,s]X

}
(u)du + g ∗

{
1(s,∞)Ẑ

}
(t),

using the notation(
η ∗ {1(−∞,s]X}(u)

)
j

:=
n∑
k=1

∫
[u−s,∞)

Xku−v ηjk(dv) and

(
g ∗ {1(s,∞)Ẑ}(u)

)
j

:=
n∑
k=1

∫
[0,u−s)

Ẑku−v gjk(dv)

for u > s and j = 1, . . . ,n.

Remark 3.3. In case (Zt)t∈R is a Lévy process, the prediction formula in Theorem 3.2
simplifies, since Ẑu = (u − s)E[Z1] and thus

E[Xt | Xu , u ≤ s]

= g(t − s)Xs +
∫ t

s
g(t −u)η ∗

{
1(−∞,s]X

}
(u)du +

∫ t

s
g(t −u)duE[Z1],

using integration by parts. Obviously, the formula takes an even simpler form if
E[Z1] = 0. If instead we are in a long memory setting and (Zt)t∈R is a fractional
Brownian motion, we can rely on [15] to obtain (Ẑu)s<u≤t and then use the formula
given in Theorem 3.2 to compute the prediction E[Xt | Xu , u ≤ s].

In Section 4.3 we use this prediction formula combined with the relation between
MSDDEs and MCARMA processes to obtain a prediction formula for any invertible
MCARMA process.

4 Examples and further results

In this section we will consider several examples of MSDDEs and give some additional
results. We begin by defining what we mean by a regular integrator, since this makes it
possible to have the compact form (3.4) of the solution to (1.4) in most cases. Next, we
show how one can nest higher order MSDDEs in the (first order) MSDDE framework.
Finally, we show that invertible MCARMA processes (and some generalizations) form
a particular subclass of solutions to higher order MSDDEs.
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4.1 Regular integrators and moving average representations

When considering the form of the solution in Theorem 3.1 it is natural to ask if this
can be seen as a moving average of the kernel g with respect to the noise (Zt)t∈R, that
is, if

X
j
t =

(∫
R

g(t −u)dZu

)
j

=
n∑
k=1

∫
R

gjk(t −u)dZku , t ∈R, (4.1)

for j = 1, . . . ,n. The next result shows that the answer is positive if (Zkt )t∈R is a "reason-
able" integrator for a suitable class of deterministic integrands for each k = 1, . . . ,n.

Proposition 4.1. Let h be the function given in (3.1) and suppose that, for all y ∈ R,
det(h(iy)) , 0. Suppose further that η has second moment and let (Xt)t∈R be the solution
to (1.4) given by (3.3). Finally assume that, for each k = 1, . . . ,n, there exists a linear map
Ik : L1 ∩L2→ L1(P) which has the following properties:

(i) For all s < t, Ik(1(s,t]) = Zkt −Zks .

(ii) If µ is a finite Borel measure on R having first moment then

Ik

(∫
R

fr (t − ·)µ(dr)
)

=
∫
R

Ik(fr (t − ·))µ(dr) (4.2)

almost surely for all t ∈R, where fr = 1[0,∞)(· − r)−1[0,∞) for r ∈R.

Then it holds that

X
j
t =

n∑
k=1

Ik(gjk(t − ·)), j = 1, . . . ,n, (4.3)

almost surely for each t ∈R. In this case, (Zt)t∈R will be called a regular integrator and we
will write

∫
·dZk = Ik .

The typical example of a regular integrator is a multi-dimensional Lévy process:

Example 4.2. Suppose that (Zt)t∈R is an n-dimensional integrable Lévy process. Then,
in particular, each (Zjt )t∈R is an integrable (one-dimensional) Lévy process, and in

[3, Lemma 5.3] it is shown that the integral
∫
R
f (u)dZju is well-defined in the sense

of [21] and belongs to L1(P) if f ∈ L1 ∩ L2. Moreover, the stochastic Fubini result
given in [2, Theorem 3.1] implies in particular that condition (ii) of Proposition 4.1 is
satisfied, which shows that (Zt)t∈R is a regular integrator and that (4.1) holds.

We will now show that a class of multi-dimensional fractional Lévy processes can
serve as regular integrators as well (cf. Example 4.4 below). Fractional noise processes
are often used as a tool to incorporate (some variant of) long memory in the corre-
sponding solution process. As will appear, the integration theory for fractional Lévy
processes we will use below relies on the ideas of [17], but is extended to allow for
symmetric stable Lévy processes as well. For more on fractional stable Lévy processes,
the so-called linear fractional stable motions, we refer to [22, p. 343]. First, however,
we will need the following observation:
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Proposition 4.3. Let f : R→ R be a function in L1 ∩ Lα for some α ∈ (1,2]. Then the
right-sided Riemann-Liouville fractional integral

Iβ− f : t 7→ 1
Γ (β)

∫ ∞
t
f (u)(u − t)β−1 du (4.4)

is well-defined and belongs to Lα for any β ∈ (0,1− 1/α).

Example 4.4. Let α = (α1, . . . ,αn) with αj ∈ (1,2] and f = (fjk) : R→ R
n×n be a func-

tion such that fjk ∈ L1∩Lαk for j,k = 1, . . . ,n. Consider an n-dimensional Lévy process
(Lt)t∈R where its j-th coordinate is symmetric αj-stable ifαj ∈ (1,2) and mean zero and
square integrable if αj = 2. Then, for a given vector β = (β1, . . . ,βn) with βj ∈ (0,1−1/αj )
for j = 1, . . . ,n the corresponding fractional Lévy process (Zt)t∈R with parameter β is
defined as

Z
j
t =

∫
R

(
I
βj
− [1(−∞,t] −1(−∞,0]]

)
(u)dLju

=
1

Γ (1 + βj )

∫
R

[
(t −u)

βj
+ − (−u)

βj
+

]
dL

j
u

for t ∈ R and j = 1, . . . ,n, and where x+ = max{x,0}. In light of Proposition 4.3, this
definition makes it natural to define the integral of a function f : R→R in L1 ∩Lαj

(particularly in L1 ∩L2) with respect to (Zjt )t∈R as∫
R

f (u)dZju =
∫
R

(
I
βj
− f

)
(u)dLju

for j = 1, . . . ,n. Note that the integral belongs to L2(P) for αj = 2 and to Lγ (P) for
any γ < αj if αj ∈ (1,2). Using Proposition 4.3 and the stochastic Fubini result given

in [2, Theorem 3.1] for (Ljt )t∈R it is straightforward to verify that assumption (ii) of
Proposition 4.1 is satisfied as well, and thus (Zt)t∈R is a regular integrator and the
solution (Xt)t∈R to (1.4) takes the moving average form (4.1).

At this point it should be clear that the conditions for being a regular integrator
are mild, hence they will, besides the examples mentioned above, also be satisfied for
a wide class of semimartingales with stationary increments.

4.2 Higher order (multivariate) SDDEs

An advantage of introducing the multivariate setting (1.4) is that we can nest higher
order MSDDEs in this framework. Effectively, as usual and as will be demonstrated
below, it is done by increasing the dimension accordingly.

Let $0,$1, . . . ,$m−1 be (entrywise) finite n × n measures concentrated on [0,∞)
which all admit second moment, and let (Zt)t∈R be an n-dimensional integrable
stochastic process with stationary increments. For convenience we will assume that
(Zt)t∈R is a regular integrator in the sense of Proposition 4.1. We will say that an
n-dimensional stationary, integrable and measurable process (Xt)t∈R satisfies the
corresponding m-th order MSDDE if it is m− 1 times differentiable and

dX
(m−1)
t =

m−1∑
j=0

$j ∗X(j)(t)dt + dZt (4.5)
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where (X(j)
t )t∈R denotes the entrywise j-th derivative of (Xt)t∈R with respect to t. By

(4.5) we mean that

(
X

(m−1)
t

)k
−
(
X

(m−1)
s

)k
=
m−1∑
j=0

n∑
l=1

∫ t

s

∫
[0,∞)

(
X

(j)
u−v

)l
($j )kl(dv)du +Zkt −Zks

for k = 1, . . . ,n and each s < t almost surely. Equation (4.5) corresponds to the mn-
dimensional MSDDE in (1.4) with noise (0, . . . ,0,ZTt )T ∈Rmn and

η =



0 Inδ0 0 · · · 0
0 0 Inδ0 · · · 0
...

...
...

. . .
...

0 0 0 · · · Inδ0
$0 $1 $2 · · · $m−1


. (4.6)

(If n = 1 then η =$0.) With η given by (4.6) it follows that

D(η) =
m−1⋂
j=0

D($j )

and

h(z) = −



Inz In 0 · · · 0
0 Inz In · · · 0
...

...
. . .

. . .
...

0 0 · · · Inz In
L[$0](z) L[$1](z) · · · L[$m−2](z) Inz+L[$m−1](z)


for z ∈D(η). In general, we know from Theorem 3.1 that a solution to (4.5) exists if
det(h(iy)) , 0 for all y ∈R, and in this case the unique solution is given by

Xt =
∫
R

g1m(t −u)dZu , t ∈R, (4.7)

where F [g1m] is characterized as entrance (1,m) in the n×n block representation of
h(i·)−1. In other words, if ej denotes the j-th canonical basisvector of Rm and ⊗ the
Kronecker product,

F [g1m](y) = (e1 ⊗ In)T h(iy)−1(em ⊗ In)

for y ∈R. However, due to the particular structure of η in (4.6) we can simplify these
expressions:

Theorem 4.5. Let the setup be as above. Then it holds that

det(h(z)) = det
(
In(−z)m −

m−1∑
j=0

L[$j ](z)(−z)j
)

(4.8)
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for all z ∈D(η), and if det(h(iy)) , 0 for all y ∈R, there exists a unique solution to (4.5)
and it is given as (4.7) where g : R→R

n×n is characterized by

F [g1m](y) =
(
In(−iy)m −

m−1∑
j=0

F [$j ](y)(−iy)j
)−1

(4.9)

for y ∈R. The solution is causal if det(h(z)) , 0 whenever Re(z) ≤ 0.

Observe that, as should be the case, we are back to the first order MSDDE when
m = 1 and (4.8)-(4.9) agree with Theorem 3.1. As we will see in Section 4.3 below,
one motivation for introducing higher order MSDDEs of the form (4.5) and to study
the structure of the associated solutions, is their relation to MCARMA processes.
However, we start with the multivariate CAR(p) process, where no delay term will be
present, as an example:

Example 4.6. Let P (z) = Inzp +A1z
p−1 + · · ·+Ap, z ∈ C, for suitable A1, . . . ,Ap ∈ Rn×n.

The associated CAR(p) process (Xt)t∈R with noise (Zt)t∈R can be thought of as formally
satisfying P (D)Xt = DZt , t ∈ R, where D denotes differentiation with respect to t.
Integrating both sides and rearranging terms gives

dX
(p−1)
t = −

p−1∑
j=0

Ap−jX
(j)
t dt + dZt , t ∈R, (4.10)

which is of the form (4.5) with m = p and $j = −Ap−jδ0 for j = 0,1, . . . ,p − 1. Proposi-
tion 4.5 shows that a unique solution exists if

det
(
In(iy)p +

p−1∑
j=0

Ap−j (iy)j
)

= det(P (iy)) , 0

for all y ∈ R, and in this case F [g1m](y) = P (−iy)−1 for y ∈ R. This agrees with the
rigorous definition of the CAR(p) process, see e.g. [19]. In case p = 1, (4.10) collapses
to the multivariate Ornstein-Uhlenbeck equation

dXt = −A1Xt dt + dZt , t ∈R,

and if the eigenvalues ofA1 are all positive, it is easy to check that g1m(t) = e−A1t1[0,∞)(t)
so that the unique solution (Xt)t∈R is causal and takes the well-known form

Xt =
∫ t

−∞
e−A1(t−u) dZu (4.11)

for t ∈R. Lévy-driven multivariate Ornstein-Uhlenbeck processes have been studied
extensively in the literature, and the moving average structure (4.11) of the solution
is well-known when (Zt)t∈R is a Lévy process. We refer to [1, 23, 24] for further
details. The one-dimensional case where (Zt)t∈R is allowed to be a general stationary
increment process has been studied in [2].
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4.3 Relations to MCARMA processes

Let p ∈N and define the polynomials P ,Q : C→C
n×n by

P (z) = Inz
p +A1z

p−1 + · · ·+Ap and

Q(z) = B0 +B1z+ · · ·+Bp−1z
p−1

(4.12)

for z ∈C and suitable A1, . . . ,Ap,B0, . . . ,Bp−1 ∈Rn×n. We will also fix q ∈N0, q < p, and
set Bq = In and Bj = 0 for all q < j < p. It will always be assumed that det(P (iy)) , 0
for all y ∈R. Under this assumption there exists a function g̃ : R→R

n×n which is in
L1 ∩L2 and

F [g̃](y) = P (−iy)−1Q(−iy) (4.13)

for every y ∈ R. Consequently, for any regular integrator (Zt)t∈R in the sense of
Proposition 4.1, the n-dimensional stationary and integrable process (Xt)t∈R given by

Xt =
∫
R

g̃(t −u)dZu , t ∈R, (4.14)

is well-defined. If it is additionally assumed that det(P (z)) , 0 for z ∈C with Re(z) ≥ 0
then it is argued in [19] that

g̃(t) = 1[0,∞)(t)(e
p
1 ⊗ In)T eAtE (4.15)

where

A =



0 In 0 · · · 0
0 0 In · · · 0
...

...
. . .

. . .
...

0 0 · · · 0 In
−Ap −Ap−1 · · · −A2 −A1


and E =


E1
...
Ep

 ,

with E(z) = E1z
p−1 + · · ·+Ep chosen such that

z 7→ P (z)E(z)−Q(z)zp

is at most of degree p − 1. (Above, and henceforth, we use the notation ekj for the j-th

canonical basis vector of Rk .) We will refer to the process (Xt)t∈R as a (Zt)t∈R-driven
MCARMA(p,q) process. For instance, when (Zt)t∈R is an n-dimensional Lévy process,
(Xt)t∈R is a (Lévy-driven) MCARMA(p,q) process as introduced in [19]. If (Lt)t∈R is
an n-dimensional second order Lévy process with mean zero, and

Z
j
t =

1
Γ (1 + βj )

∫
R

[
(t −u)

βj
+ − (−u)

βj
+

]
dL

j
u , t ∈R,

for βj ∈ (0,1/2) and j = 1, . . . ,n, then (Xt)t∈R is an MFICARMA(p,β,q) process, β =
(β1, . . . ,βn), as studied in [18]. For the univariate case (n = 1), the processes above
correspond to the CARMA(p,q) and FICARMA(p,β1,q) process, respectively. The class
of CARMA processes has been studied extensively, and we refer to the references in
the introduction for details.
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Remark 4.7. Observe that, generally, Lévy-driven MCARMA (hence CARMA) pro-
cesses are defined even when (Zt)t∈R has no more than log moments. However, it
relies heavily on the fact that g̃ and (Zt)t∈R are well-behaved enough to ensure that
the process in (4.14) remains well-defined. At this point, a setup where the noise does
not admit a first moment has not been integrated in a framework as general as that of
(1.4).

In the following our aim is to show that, under a suitable invertibility assumption,
the (Zt)t∈R-driven MCARMA(p,q) process given in (4.14) is the unique solution to
a certain (possibly higher order) MSDDE of the form (4.5). Before formulating the
main result of this section we introduce some notation. To P and Q defined in (4.12)
we will associate the unique polynomial R(z) = Inzp−q +Cp−q−1z

p−q−1 + · · ·+C0, z ∈ C
and C0,C1, . . . ,Cp−q−1 ∈Rn×n, having the property that

z 7→Q(z)R(z)− P (z) (4.16)

is a polynomial of at most order q−1 (see the introduction for an intuition about why
this property is desirable).

Theorem 4.8. Let P andQ be given as in (4.12), and let (Xt)t∈R be the associated (Zt)t∈R-
driven MCARMA(p,q) process. Suppose that det(Q(z)) , 0 for all z ∈ C with Re(z) ≥ 0.
Then (Xt)t∈R is the unique solution to (4.5) with

m = p − q, $0(du) = −C0δ0(du) + f (u)du, and $j = −Cjδ0,

for 1 ≤ j ≤m− 1 or, written out,

dX
(m−1)
t = −

m−1∑
j=0

CjX
(j)
t dt+

(∫ ∞
0
XTt−uf (u)T du

)T
dt + dZt , (4.17)

where C0, . . . ,Cm−1 ∈Rn×n are defined as in (4.16) above, (X(j)
t )t∈R is the j-th derivative of

(Xt)t∈R, and where f : R→R
n×n is characterized by

F [f ](y) = R(−iy)−Q(−iy)−1P (−iy). (4.18)

It follows from Theorem 4.8 that p−q is the order of the (possibly multivariate) SDDE
we can associate with a (possibly multivariate) CARMA process. Thus, this seems as a
natural extension of [3], where the univariate first order SDDE is studied and related
to the univariate CARMA(p,p − 1) process.

Remark 4.9. An immediate consequence of Theorem 4.8 is that we obtain an inver-
sion formula for (Zt)t∈R-driven MCARMA processes. In other words, it shows how to
recover the increments of (Zt)t∈R from observing (Xt)t∈R. For this reason it seems nat-
ural to impose the invertibility assumption det(Q(z)) , 0 for all z ∈C with Re(z) ≥ 0,
which is the direct analogue of the one for discrete time ARMA processes (or, more
generally, moving averages). It is usually referred to as the minimum phase property
in signal processing. The inversion problem for (Lévy-driven) CARMA processes has
been studied in [3, 7, 8, 9] and for (Lévy-driven) MCARMA processes in [11]. In both
cases a different approach, which does not rely on MSDDEs, is used.
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Remark 4.10. Since the Fourier transform F [f ] of the function f defined in Theo-
rem 4.8 is rational, one can determine f explicitly (e.g., by using the partial fraction
expansion of F [f ]). Indeed, since the Fourier transform of f is of the same form
as the Fourier transform of the solution kernel g̃ of the MCARMA process we can
deduce that

f (t) = (eq1 ⊗ In)T eBtF, t ≥ 0, (4.19)

with

B =



0 In 0 · · · 0
0 0 In · · · 0
...

...
. . .

. . .
...

0 0 · · · 0 In
−B0 −B1 · · · −Bq−2 −Bq−1


and F =


F1
...
Fq

 ,

where F(z) = F1z
q−1 + · · ·+Fq is chosen such that

z 7→Q(z)F(z)− [Q(z)R(z)− P (z)]zq

is at most of degree q − 1 (see (4.13) and (4.15)).

In Corollary 4.11 we formulate the prediction formula in Theorem 3.2 in the
special case where (Xt)t∈R is a (Zt)t∈R-driven MCARMA process. In the formulation
we use the definition

Ẑu = E[Zu −Zs | Zs −Zr , r < s], u > s,

in line with (3.5).

Corollary 4.11. Let (Xt)t∈R be a (Zt)t∈R-driven MCARMA process and set

g̃j (t) = (ep1 ⊗ In)T eAt
p−q∑
k=j

Ak−jECk , t ≥ 0,

for j = 1, . . . ,p − q, where C0, . . . ,Cp−q−1 are given in (4.16) and Cp−q = In. Suppose that
det(P (z)) , 0 and det(Q(z)) , 0 for all z ∈ C with Re(z) ≥ 0. Fix s < t. Then the following
prediction formula holds

E[Xt | Xu , u ≤ s] =
p−q∑
j=1

g̃j (t − s)X
(j−1)
s

+
∫ s

−∞

∫ t

s
g̃(t −u)f (u − v)duXv dv + g̃ ∗ {Ẑ1(s,∞)}(t),

where g̃ and f are given in (4.15) and (4.19), respectively, and

g̃ ∗ {Ẑ1(s,∞)}(t) = 1{p=q+1}Ẑu + (ep1 ⊗ In)TAeAt
∫ t

s
e−AvEẐv dv.
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Example 4.12. To illustrate the results above we will consider an n-dimensional
(Zt)t∈R-driven MCARMA(3,1) process (Xt)t∈R with P and Q polynomials given by

P (z) = Inz
3 +A1z

2 +A2z+A3,

Q(z) = B0 + Inz

for matrices B0,A1,A2,A3 ∈Rn×n such that det(P (z)) , 0 and det(Q(z)) , 0 for all z ∈C
with Re(z) ≥ 0. According to (4.15), (Xt)t∈R may be written as

Xt =
∫ t

−∞
(e3

1 ⊗ In)T eA(t−u)EdZu

where E1 = 0, E2 = In, and E3 = B0 −A1. With

C1 = A1 −B0, C0 = A2 +B0(B0 −A1)

and

F = B0(A2 −B0(A1 −B0))−A3,

Theorem 4.8 and Remark 4.10 imply that

dX
(1)
t =−C1X

(1)
t dt −C0Xt dt+

(∫ ∞
0

(FXt−u)T e−B
T
0 u du

)T
dt + dZt .

Moreover, by Corollary 4.11, we have the prediction formula

E[Xt | Xu , u ≤ s] =(e3
1 ⊗ In)T eAt

[
(EC1 +AE)Xs +EX(1)

s

+
∫ t

s
e−AuE

(
eB0u

∫ s

−∞
e−B0vFXv dv + Ẑu

)
du

]
.

5 Proofs and auxiliary results

We will start this section by discussing some technical results. These results will then
be used in the proofs of all the results stated above.

Recall the function h : D(η)→ C
n×n defined in (3.1). Note that we always have

{z ∈ C : Re(z) ≤ 0} ⊆ D(η) and h(iy) = −iyIn − F [η](y) for y ∈ R. Provided that η is
sufficiently nice, Proposition 5.1 below ensures the existence of a kernel g : R→R

n×n

which will drive the solution to (1.4).

Proposition 5.1. Let h be given as in (3.1) and suppose that det(h(iy)) , 0 for all y ∈R.
Then there exists a function g = (gjk) : R→R

n×n in L2 characterized by

F [g](y) = h(iy)−1 (5.1)

for y ∈R. Moreover, the following statements hold:

(i) The function g satisfies

g(t − r)− g(s − r) = 1(s,t](r)In +
∫ t

s
g ∗ η(u − r)du

for almost all r ∈R and each fixed s < t.
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(ii) If η has moment of order p ∈N, then g ∈ Lq for all q ∈ [1/p,∞], and

g(t) = 1[0,∞)(t)In +
∫ t

−∞
g ∗ η(u)du (5.2)

for almost all t ∈R. In particular,∫
R

g ∗ η(u)du = −In. (5.3)

(iii) If
∫

[0,∞) e
δu |ηjk |(du) <∞ for all j,k = 1, . . . ,n and some δ > 0, then there exists ε > 0

such that

sup
t∈R

max
j,k=1,...,n

|gjk(t)|eε|t| ≤ C

for a suitable constant C > 0.

(iv) If det(h(z)) , 0 for all z ∈ C with Re(z) ≤ 0 then g is vanishing on (−∞,0) almost
everywhere.

Proof. In order to show the existence of g it suffices to argue that

y 7→
(
h(iy)−1

)
jk

is in L2 for j,k = 1, . . . ,n, (5.4)

since the Fourier transform F maps L2 onto L2. (Here (h(iy)−1)jk refers to the (j,k)-th
entry in the matrix h(iy)−1.) Indeed, in this case we just set gjk = F −1[(h(i·)−1)jk].

Let ̂h(iy) denote the n×n matrix which has the same rows as h(iy), but where the
j-th column is replaced by the k-th canonical basis vector (that is, the vector with all
entries equal to zero except of the k-th entry which equals one). Then it follows by
Cramer’s rule that (

h(iy)−1
)
jk

=
det(̂h(iy))
det(h(iy))

.

Recalling that h(iy) = −iyI −F [η](y) and that F [η](y) is bounded in y we get by the
Leibniz formula that |det(h(iy))| ∼ |y|n and |det(̂h(iy))| = O(|y|n−1) as |y| → ∞. This
shows in particular that ∣∣∣(h(iy)−1

)
jk

∣∣∣ =O
(
|y|−1

)
(5.5)

as |y| → ∞. Since j and k were arbitrarily chosen we get by continuity of (all the
entries of) y 7→ h(iy)−1 that (5.4) holds, which ensures the existence part. The fact
that F [g](−y) = F [g](y), y ∈R, implies that g takes values in R

n×n.
To show ((i)), we fix s < t and apply the Fourier transform to obtain

F
[
g(t − ·)− g(s − ·)−

∫ t

s
g ∗ η(u − ·)du

]
(y)

= (eity − eisy)F [g](−y)−F [1(s,t]](y)F [g](−y)F [η](−y)

= F [1(s,t]](y)h(−iy)−1(iyI −F [η](−y))

= F [1(s,t]](y)In,
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which verifies the result.
We will now show ((ii)) and for this we suppose that η has a moment of order

p ∈N. Then it follows that h̃ : y 7→ h(iy) is (entry-wise) p times differentiable with the
m-th derivative given by

−
(
iδ0({m− 1}) + im

∫
[0,∞)

eiuyumηjk(du)
)
, m = 1, . . . ,p,

and in particular all the the entries of (Dmh̃)(y) are bounded in y. Observe that, clearly,
if a function A : R→C

n×n takes the form

A(t) = B(t)C(t)D(t), t ∈R, (5.6)

where all the entries of B,D : R→ C
n×n decay at least as |y|−1 as |y| →∞ and all the

entries of C : R→C
n×n are bounded, then all the entries of A decay at least as |y|−1 as

|y| →∞. Using the product rule for differentiation and the fact that(
Dh̃−1

)
(y) = −h̃(y)−1(Dh̃)(y)h̃(y)−1, y ∈R,

it follows recursively that Dmh̃−1 is a sum of functions of the form (5.6), thus all its
entries decay at least as |y|−1 as |y| →∞, form = 1, . . . ,p. Since the entries ofDmh̃−1 are
continuous as well, they belong to L2, and we can use the inverse Fourier transform
F −1 to conclude that

F −1[Dph̃](t) = (it)pF −1[h̃](t) = (it)pg(t), t ∈R,

is an L2 function. This implies in turn that t 7→ gjk(t)(1 + |t|)p ∈ L2 and, thus,∫
R

|gjk(t)|q dt ≤
(∫

R

(
gjk(t)(1 + |t|)p

)2
dt

) q
2
(∫

R

(1 + |t|)−
2pq
2−q dt

)1−
q
2
<∞

for any q ∈ [1/p,2) and j,k = 1, . . . ,n. By using the particular observation that g ∈ L1

and ((i)) we obtain that

g(t) = 1[0,∞)(t)I +
∫ t

−∞
g ∗ η(u)du (5.7)

for (almost) all t ∈R. This shows that

|gjk(t)| ≤ 1 +
∫
R

|(g ∗ η(u))jk |du ≤ 1 +
n∑
l=1

∫
R

|gjl(u)|du |ηlk |([0,∞))

for all t ∈R and for every j,k = 1, . . . ,n which implies g ∈ L∞ and, thus, g ∈ Lq for all
q ∈ [1/p,∞]. Since g(t)→ 0 entrywise as t→∞, we get by (5.7) that∫

R

g ∗ η(u)du = −In,

which concludes the proof of ((ii)).
Now suppose that

∫
[0,∞) e

δu |ηjk |(du) <∞ for all j,k = 1, . . . ,n and some δ > 0. In

this case, Sδ := {z ∈C : Re(z) ∈ [−δ,δ]} ⊆D(η) and

z 7→ det(h(z)) = det
(
− zI −

∫
[0,∞)

ezu η(du)
)
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is strictly separated from 0 when |z|, z ∈ Sδ, is sufficiently large. Indeed, the dominat-
ing term in det(h(z)) is (−1)nzn when |z| is large, since∣∣∣∣∣(∫

[0,∞)
ezu η(du)

)
jk

∣∣∣∣∣ ≤ max
l,m=1,...,n

∫
[0,∞)

eδu |ηlm|(du)

for j,k = 1, . . . ,n. Using this together with the continuity of z 7→ det(h(z)) implies
that there exists δ̃ ∈ (0,δ] so that z 7→ det(h(z)) is strictly separated from 0 on Sδ̃ :=
{z ∈ C : Re(z) ∈ [−δ̃, δ̃]}. In particular, z 7→ (h(z)−1)jk is bounded on any compact set
of Sδ̃, and by using Cramer’s rule and the Leibniz formula as in (5.5) we get that
|(h(z)−1)jk | =O(|z|−1) as |z| →∞ provided that z ∈ Sδ̃. Consequently,

sup
x∈[−δ̃,δ̃]

∫
R

∣∣∣(h(x+ iy)−1
)
jk

∣∣∣2 dy <∞,
and this implies by [3, Lemma 5.1] that t 7→ gjk(t)eεt ∈ L1 for all ε ∈ (−δ̃, δ̃). Fix any
ε ∈ (0, δ̃) and j,k ∈ {1, . . . ,n}, and observe from (5.7) that gjk is absolutely continuous on
both [0,∞) and (−∞,0) with density (g ∗η)jk . Consequently, for fixed t > 0, integration
by parts yields

|gjk(t)|eεt ≤ |gjk(0)|+
∫
R

|(g ∗ η(u))jk |eεu du + ε
∫
R

|gjk(u)|eεu du. (5.8)

Since ∫
R

|(g ∗ η(u))jk |eεu du ≤
n∑
l=1

∫
R

|gjl(u)|eεu du
∫

[0,∞)
eεu |ηlk |(du)

it follows from (5.8) that

max
j,k=1,...,n

|gjk(t)| ≤ Ce−εt

for all t > 0 with

C := 1

+ max
j,k=1,...,n

( n∑
l=1

∫
R

|gjl(u)|eε|u| du
∫

[0,∞)
eεu |ηlk |(du) + ε

∫
R

|gjk(u)|eε|u| du
)
.

By considering −ε rather than ε in the above calculations one reaches the conclusion
that

max
j,k=1,...,n

|gjk(t)| ≤ Ceεt , t < 0,

and this verifies ((iii)).
Finally, suppose that det(h(z)) , 0 for all z ∈ C with Re(z) ≤ 0. Then it holds that

h, and thus z 7→ h(z)−1, is continuous on {z ∈ C : Re(z) ≤ 0} and analytic on {z ∈
C : Re(z) < 0}. Moreover, arguments similar to those in (5.5) show that |(h(z)−1)jk | =
O(|z|−1) as |z| →∞, and thus we may deduce that

sup
x<0

∫
R

|(h(x+ iy)−1)jk |dy <∞.
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From the theory on Hardy spaces, see [3, Lemma 5.1], [12, Section 2.3] or [13], this
implies that g is vanishing on (−∞,0) almost everywhere, which verifies ((iv)) and
ends the proof. �

From Proposition 5.1 it becomes evident that we may and, thus, do choose the ker-
nel g to satisfy (5.2) pointwise, so that the function induces a finite Lebesgue-Stieltjes
measure g(du). We summarize a few properties of this measure in the corollary below.

Corollary 5.2. Let h be the function introduced in (3.1) and suppose that det(h(iy)) , 0
for all y ∈ R. Suppose further that η has first moment. Then the kernel g : R → R

n×n

characterized in (5.1) induces an n×n finite Lebesgue-Stieltjes measure, which is given by

g(du) = Inδ0(du) + g ∗ η(u)du. (5.9)

A function f = (fjk) : R→C
m×n is in L1(g(du)) if∫

R

|fjl(u)(g ∗ η)lk(u)|du <∞, l = 1, . . . ,n,

for j = 1, . . . ,m and k = 1, . . . ,n. Moreover, the measure g(du) has (p − 1)-th moment
whenever η has p-th moment for any p ∈N.

Proof. The fact that g induces a Lebesgue-Stieltjes measure of the form (5.9) is an
immediate consequence of (5.2). For a measurable function f = (fjk) : R → C

m×n

to be integrable with respect to g(du) = (gjk(du)) we require that fjl ∈ L1(|glk(du)|),
l = 1, . . . ,n, for each choice of j = 1, . . . ,m and k = 1, . . . ,n. Since the variation measure
|glk |(du) of glk(du) is given by

|glk |(du) = δ0({l − k})δ0(du) + |(g ∗ η(u))lk |du,

we see that this condition is equivalent to the statement in the result. Finally, suppose
that η has p-th moment for some p ∈N. Then, for any j,k ∈ {1, . . . ,n}, we get that∫

R

|u|p−1 |gjk |(du) ≤
n∑
l=1

(
|ηlk |([0,∞))

∫
R

|up−1gjl(u)|du

+
∫

[0,∞)
|v|p−1 |ηlk |(dv)

∫
R

|gjl(u)|du
)
.

From the assumptions on η and Proposition 5.1((ii)) we get immediately that |ηlk |([0,∞)),∫
[0,∞) |v|

p−1 |ηlk |(dv) and
∫
R
|gjl(u)|du are finite for all l = 1, . . . ,n. Moreover, for any

such l we compute that∫
R

|up−1gjl(u)|du

≤
∫
{|u|≤1}

|up−1gjl(u)|du+
(∫
{|u|>1}

u−2 du

)1
2
(∫
{|u|>1}

(upgjl(u))2 du

)1
2

which is finite since u 7→ upgjl(u) ∈ L2, according to the proof of Proposition 5.1((ii)),
and hence we have shown the last part of the result. �
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We now give a result that both will be used to prove the uniqueness part of
Theorem 3.1 and Theorem 3.2.

Lemma 5.3. Suppose that det(h(iy)) , 0 for all y ∈R and that η is a finite measure with
second moment, and let g be given by (3.2). Furthermore, let (Xt)t∈R be a measurable
process, which is bounded in L1(P) and satisfies (1.5) almost surely for all s < t. Then, for
each s ∈R and almost surely,

Xt =g(t − s)Xs +
∫ ∞
s
g(t −u)η ∗

{
1(−∞,s]X

}
(u)du

+ g ∗
{
1(s,∞)(Z −Zs)

}
(t)

(5.10)

for Lebesgue almost all t > s, using the notation

(η ∗ {1AX})j (t) :=
n∑
k=1

∫
[0,∞)

1A(t −u)Xkt−u ηjk(du) and

(g ∗ {1(s,∞)(Z −Zs)})j (t) :=
n∑
k=1

∫
R

1(s,∞)(t −u)
(
Zkt−u −Zks

)
gjk(du)

for j = 1, . . . ,n and t ∈R.

Proof. By arguments similar to those in the proof of Proposition 5.1((iii)) we get that
the assumption det(h(iy)) , 0 for all y ∈R implies that we can choose δ ∈ (0, ε), such
that det(h(z)) , 0 for all z ∈C with −δ < Re(z) ≤ 0 and

sup
x∈(−δ,0)

∫
R

∣∣∣(h(x+ iy)−1
)
jk

∣∣∣2 dy <∞.
for all j,k = 1, . . . ,n. Thus, [3, Lemma 5.1] ensures that L[g](z) = h(z)−1 when Re(z) ∈
(−δ,0). From this point we will fix such z and let s ∈R be given. Since (Xt)t∈R satisfies
(1.4),

1(s,∞)(t)Xt = 1(s,∞)(t)Xs +
∫ t

−∞
1(s,∞)(u)η ∗X(u)du +1(s,∞)(t)(Zt −Zs)

for Lebesgue almost all t ∈R outside a P-null set (which is a consequence of Tonelli’s
theorem). In particular, this shows that

− zL[1(s,∞)X](z)

=− z
{
XsL[1(s,∞)](z) +L

[∫ ·
−∞

1(s,∞)(u)η ∗X(u)du
]
(z)

+L[1(s,∞)(Z −Zs)](z)
}

=L[Xsδ0(· − s)](z) +L[1(s,∞)η ∗X](z)− zL[1(s,∞)(Z −Zs)](z).

By noticing that

L[1(s,∞)η ∗X](z) = L
[
1(s,∞)η ∗

{
1(−∞,s]X

}]
(z) +L

[
η ∗

{
1(s,∞)X

}]
(z)

= L
[
1(s,∞)η ∗

{
1(−∞,s]X

}]
(z) +L[η](z)L[

{
1(s,∞)X

}]
(z)
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it thus follows that

h(z)L[1(s,∞)X](z)

=L
[
Xsδ0(· − s) +1(s,∞)η ∗

{
1(−∞,s]X

}]
(z)− zL[1(s,∞)(Z −Zs)](z).

(The reader should observe that since both (Xt)t∈R and (Zt)t∈R are bounded in L1(P),
the Laplace transforms above are all well-defined almost surely. We refer to the
beginning of the proof of Theorem 3.1 where details for a similar argument are
given.) Now, using that L[g](z) = h(z)−1, we notice

−zh(z)−1L[1(s,∞)(Z −Zs)](z) = L[g(du)](z)L[1(s,∞)(Z −Zs)](z)

= L
[
g ∗

{
1(s,∞)(Z −Zs)

}]
(z),

and thus

Xt =g(t − s)Xs +
∫ ∞
s
g(t −u)η ∗

{
1(−∞,s]X

}
(u)du + g ∗

{
1(s,∞)(Z −Zs)

}
�

for Lebesgue almost all t > s with probability one.

With Lemma 5.3 in hand we are now ready to prove the general result, Theorem 3.1,
for existence and uniqueness of solutions to the MSDDE (1.4).

Proof (Proof of Theorem 3.1). Fix t ∈R. The convolution in (3.3) is well-defined if
u 7→ ZTt−u is gT -integrable (by Corollary 5.2) which means that u 7→ Zkt−u belongs to
L1(|gjk |(du)) for all j,k = 1, . . . ,n. Observe that, since (Zku)u∈R is integrable and has
stationary increments, [2, Corollary A.3] implies that there exists α,β > 0 such that
E[|Zku |] ≤ α + β|u| for all u ∈R. Consequently,

E

[∫
R

|Zkt−u |µ(du)
]
≤ (α + β|t|)µ(R) + β

∫
R

|u|µ(du) <∞

for any (non-negative) measure µ which has first moment. This shows that u 7→ Zkt−u
will be integrable with respect to such measure almost surely, in particular with
respect to |gjk |(du), j = 1, . . . ,n, according to Corollary 5.2 as η has second moment.

We will now argue that (Xt)t∈R defined by (3.3) does indeed satisfy (1.4), and thus
we fix s < t. Due to the fact that∫ t

s
XT ∗ ηT (u)du =

∫ t

s
ZT ∗ ηT (u)du +

∫ t

s

(∫
R

g ∗ η(r)Z·−r du
)T
∗ ηT (u)du

it is clear by the definition of (Xt)t∈R that it suffices to argue that∫ t

s

(∫
R

g ∗ η(r)Z·−r du
)T
∗ ηT (u)du

=
∫
R

ZTr [g ∗ η(t − r)− g ∗ η(s − r)]T dr −
∫ t

s
ZT ∗ ηT (r)dr.
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We do this componentwise, so we fix i ∈ {1, . . . ,n} and compute that(∫ t

s

(∫
R

g ∗ η(r)Z·−r dr
)T
∗ ηT (u)du

)
i

=
n∑
j=1

n∑
k=1

n∑
l=1

∫ t

s

(∫
R

gjl ∗ ηlk(v)Zk·−r dr
)
∗ ηij (u)du

=
n∑
j=1

n∑
k=1

n∑
l=1

∫
R

Zkr

∫
[0,∞)

∫ t

s

∫
[0,∞)

gjl(u − v − r −w)ηij (dv)duηlk(dw)dr

=
n∑
k=1

n∑
l=1

∫
R

Zkr

∫
[0,∞)

∫ t

s
(g ∗ η)il(u − r −w)duηlk(dw)dr

=
n∑
k=1

n∑
l=1

(∫
R

Zkr

∫
[0,∞)

[gil(t − r −w)− gil(s − r −w)]ηlk(dw)dr

−
∫
R

Zkr

∫
[0,∞)

δ0({i − l})1(s,t](r +w)ηlk(dw)dr
)

=
n∑
k=1

(∫
R

Zkr [(g ∗ η)ik(t − r)− (g ∗ η)ik(s − r)]dr −
∫ t

s
Zk ∗ ηik(r)dr

)
=
(∫

R

ZTr [g ∗ η(t − r)− g ∗ η(s − r)]T dr −
∫ t

s
ZT ∗ ηT (r)dr

)
i

where we have used ((i)) in Proposition 5.1 and the fact that g and η commute in a
convolution sense, g ∗ η = (gT ∗ ηT )T (compare the associated Fourier transforms).

Next, we need to argue that (Xt)t∈R is stationary. Here we will use (5.3) to write
the solution as

Xt =
∫
R

g ∗ η(u) [Zt−u −Zt]du

for each t ∈R. Fix m ∈R. Let −m = tk0 < t
k
1 < · · · < t

k
k =m be a partition of [−m,m] with

maxj=1,...,k(t
k
j − t

k
j−1)→ 0, k→∞, and define the Riemann sum

Xm,kt =
k∑
j=1

g ∗ η(tkj−1) [Zt−tkj−1
−Zt] (tkj − t

k
j−1).

Observe that (Xm,kt )t∈R is stationary. Moreover, the i-th component of Xm,kt converges
to the i-th component of

Xmt =
∫ m

−m
g ∗ η(u) [Zt−u −Zt]du

in L1(P) as k→∞. To see this, we start by noting that

E

[∣∣∣(Xmt )
i
−
(
Xm,kt

)
i

∣∣∣] ≤ n∑
j=1

∫
R

k∑
l=1

1(tkl−1,t
k
l ](u)E

[∣∣∣(g ∗ η)ij (u)
[
Z
j
t−u −Z

j
t

]
− (g ∗ η)ij

(
tkl−1

)[
Z
j

t−tkl−1
−Zjt

]∣∣∣]du.
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Then, for each j ∈ {1, . . . ,n},

max
l=1,...,k

1(tkl−1,t
k
l ](u)E

[∣∣∣(g ∗ η)ij (u)
[
Z
j
t−u −Z

j
t

]
− (g ∗ η)ij

(
tkl−1

)[
Z
j

t−tkl−1
−Zjt

]∣∣∣]
≤ max
l=1,...,k

1(tkl−1,t
k
l ](u)

(
|(g ∗ η)ij (u)|E

[∣∣∣Zjt−u −Zjt−tkl−1

∣∣∣]
+E

[∣∣∣Zj
t−tkl−1

−Zjt
∣∣∣] ∣∣∣(g ∗ η)ij (u)− (g ∗ η)ij

(
tkl−1

)∣∣∣)→ 0

as k → ∞ for almost all u ∈ R using that (Zjt )t∈R is continuous in L1(P) (cf. [2,
Corollary A.3]) and that (g ∗ η)ij is càdlàg. Consequently, Lebesgue’s theorem on

dominated convergence implies that Xm,kt → Xmt entrywise in L1(P) as k→∞, thus
(Xmt )t∈R inherits the stationarity property from (Xm,kt )t∈R. Finally, since Xmt → Xt
(entrywise) almost surely as m→∞, we obtain that (Xt)t∈R is stationary as well.

To show the uniqueness part, we let (Ut)t∈R and (Vt)t∈R be two stationary, inte-
grable and measurable solutions to (1.4). Then Xt := Ut − Vt , t ∈ R, is bounded in
L1(P) and satisfies an MSDDE without noise. Consequently, Lemma 5.3 implies that

Xt = g(t − s)Xs +
∫ ∞
s
g(t −u)η ∗ {1(−∞,s]X}(u)du

holds for each s ∈R and Lebesgue almost all t > s. For a given j we thus find that

E

[∣∣∣Xjt ∣∣∣] ≤ C n∑
k=1

(
|gjk(t − s)|+

n∑
l=1

∫ ∞
s
|gjk(t −u)| |ηkl |([u − s,∞))du

)

where C := maxkE[|U k
0 |+ |V

k
0 |]. It follows by Proposition 5.1(ii) that g(t) converges

as t → ∞, and since g ∈ L1 it must be towards zero. Using this fact together with
Lebesgue’s theorem on dominated convergence it follows that the right-hand side of
the expression above converges to zero as s tends to −∞, from which we conclude
that Ut = Vt almost surely for Lebesgue almost all t. By continuity of both processes
in L1(P) (cf. [2, Corollary A.3]), we get the same conclusion for all t.

Finally, under the assumption that det(h(z)) , 0 for z ∈C with Re(z) ≤ 0 it follows
from Proposition 5.1((iv)) that g ∗η is vanishing on (−∞,0), and hence we get that the
solution (Xt)t∈R defined by (3.3) is causal since

Xt = Zt +
∫ ∞

0
g ∗ η(u)Zt−u du = −

∫ ∞
0
g ∗ η(u)[Zt −Zt−u]du

for t ∈R by (5.3). �

Proof (Proof of Theorem 3.2). Since (Xt)t∈R is a solution to an MSDDE,

σ (Xu : u ≤ s) = σ (Zs −Zu : u ≤ s)

and the theorem therefore follows by Lemma 5.3. �

Proof (Proof of Proposition 4.1). We start by arguing why (4.2) is well-defined. To
see that this is the case, note initially that Ik(fr(t − ·)) = Zkt − Zkt−r and thus, since
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(Zkt )t∈R is integrable and has stationary increments, there exists α,β > 0 such that
E[|Ik(fr (t − ·))|] ≤ α + β|r | for all r ∈R (see, e.g., [2, Corollary A.3]). In particular

E

[∫
R

|Ik(fr (t − ·))| |µ|(dr)
]
≤ α|µ|(R) + β

∫
R

|r | |µ|(dr) <∞,

which shows that Ik(fr (t − ·)) is integrable with respect to µ, thus the right-hand side
of (4.2) is well-defined, almost surely for each t ∈R. To show that the left-hand side
is well-defined, it suffices to note that u 7→

∫
R
fr(u)µ(dr) belongs to L1 ∩ L2 by an

application of Jensen’s inequality and Tonelli’s theorem.
To show (4.3) we start by fixing t ∈ R and j,k ∈ {1, . . . ,n}, and by noting that

µ(dr) = (g ∗ η)jk(r)dr is a finite measure with having first moment according to
Corollary 5.2. Consequently, we can use assumptions (i)-(ii) on Ik to get∫

R

(g ∗ η)jk(r)
[
Zkt−r −Zkt

]
dr =

∫
R

Ik(1(t,t−r])(g ∗ η)jk(r)dr

= Ik

(∫
R

1(t,t−r](g ∗ η)jk(r)dr
)

= Ik

(
δ0({j − k})1[0,∞)(t − ·) +

∫ t−·

−∞
(g ∗ η)jk(u)du

)
= Ik(gjk(t − ·))

using (5.2) and the convention that 1(a,b] = −1(b,a] when a > b. By combining this
relation with (5.3) and (3.3) we obtain

X
j
t =

n∑
k=1

∫
R

(g ∗ η)jk(r)[Z
k
t−r −Zkt ]dr =

n∑
k=1

Ik(gjk(t − ·)). �

Proof (Proof of Proposition 4.3). Let α ∈ (1,2] and β ∈ (0,1 − 1/α), and consider a
function f : R→R in L1 ∩Lα . We start by noticing that∫ ∞

t
|f (u)|(u − t)β−1 du =

∫ 1

0
|f (t +u)|uβ−1 du +

∫ ∞
1
|f (t +u)|uβ−1 du.

For the left term we find that∫
R

(∫ 1

0
|f (t +u)|uβ−1 du

)α
dt

≤
(∫ 1

0
uβ−1 du

)α−1 ∫
R

∫ 1

0
|f (t +u)|αuβ−1 dudt

=
(∫ 1

0
uβ−1 du

)α∫
R

|f (t)|α dt <∞.

For the right term we find∫
R

(∫ ∞
1
|f (t +u)|uβ−1 du

)α
dt

≤
(∫

R

f (u)du
)α−1 ∫

R

∫ ∞
1
|f (t +u)|uα(β−1) dudt

=
(∫

R

f (u)du
)α∫ ∞

1
uα(β−1) du <∞.
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We conclude that
(
I
β
− f

)
(u) ∈ Lα . �

Proof (Proof of Theorem 4.5). The identity (4.8) is just a matter of applying stan-
dard computation rules for determinants. For instance, one may prove the result
when z , 0 by induction using the block representation

−h(z) =
[
A B
C D

]
(5.11)

with A = Inz, B = (e1 ⊗ In)T ∈Rn×(m−1)n, C = em−1 ⊗L[$0](z) ∈R(m−1)n×n, and

D =



Inz In 0 · · · 0
0 Inz In · · · 0
...

...
. . .

. . .
...

0 0 · · · Inz In
L[$1](z) L[$2](z) · · · L[$m−2](z) Inz+L[$m−1](z)


.

Here e1 and em−1 refer to the firs and last canonical basis vector of Rm−1, respectively.
The case where z = 0 follows directly from the Leibniz formula. In case det(h(iy)) , 0
for all y ∈R, we may write h(iy)−1 as an m×m matrix, where each element (h−1(iy))jk
is an n×n matrix. We then know from Theorem 3.1 that the unique solution to (4.5)
is a (Zt)t∈R-driven moving average of the form (4.7) with F [g1m](y) = (h−1(iy))1m.
Similar to the computation of det(h(z)), when h(z) is invertible, block (1,m) of h(z)−1

can inductively be shown to coincide with(
In(−z)m −

m−1∑
j=0

L[$j ](z)(−z)j
)−1

using the representation (5.11) and standard rules for inverting block matrices. This
means in particular that (4.9) is true. �

Proof (Proof of Theorem 4.8). We start by arguing that that there exists a function
f with the Fourier transform in (4.18). Note that, since z 7→ det(Q(z)) is just a polyno-
mial (of order nq), the assumption that det(Q(z)) , 0 whenever Re(z) ≥ 0 implies in
fact that

H(z) := R(−z)−Q(−z)−1P (−z) =Q(−z)−1[Q(−z)R(−z)− P (−z)]

is well-defined for all z ∈ Sδ := {x + iy : x ≤ δ, y ∈ R} and a suitably chosen δ > 0.
According to [3, Lemma 5.1] it suffices to argue that there exists ε ∈ (0,δ] such that

sup
x<ε

∫
R

|H(x+ iy)jk |2 dy <∞ (5.12)

for all j,k = 1, . . . ,n. Let ‖·‖ denote any sub-multiplicative norm on C
n×n and note

that |H(z)jk | ≤ ‖Q(−z)−1‖‖Q(−z)R(−z)− P (−z)‖. Thus, since ‖Q(z)R(z)− P (z)‖ ∼ c1|z|q−1

and ‖Q(z)−1‖ ∼ c2|z|−q as |z| → ∞ for some c1, c2 ≥ 1 (the former by the choice of R
and the latter by Cramer’s rule), |H(z)jk | =O(|z|−1). Consequently, the continuity of
H ensures that (5.12) is satisfied for a suitable ε ∈ (0,δ], and we have established the
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existence of f with the desired Fourier transform. This also establishes that the n×n
measures $0,$1, . . . ,$p−q−1 defined as in the statement of the theorem are finite and
have moments of any order. Associate to these measures the n(p−q)×n(p−q) measure
η given in (4.6). Then it follows from (4.8) that

det(h(iy)) = det
(
In(−iy)p−q +

p−q−1∑
j=0

Rj (−iy)j −F [f ](y)
)

=
det(P (−iy))
det(Q(−iy))

,

and hence is non-zero for all y ∈R. In light of Proposition 4.5, in particular (4.9), we
may therefore conclude that the unique solution to (4.5) is a (Zt)t∈R-driven moving
average, where the driving kernel has Fourier transform(

In(−iy) +
p−q−1∑
j=0

Rj (−iy)j −F [f ](y)
)−1

= P (−iy)−1Q(−iy)

for y ∈ R. In other words, the unique solution is the (Zt)t∈R-driven MCARMA(p,q)
process associated to the polynomials P and Q. �

Before giving the proof of Corollary 4.11 we will need the following lemma:

Lemma 5.4. Let C0, . . . ,Cp−q−1 be given in (4.16) and Cp−q = In. Define

Rj (z) =
p−q∑
k=j

Ckz
k−j , j = 1, . . . ,p − q − 1.

Then g̃ is p − q − 2 times differentiable and Dp−q−2g̃ has a density with respect to the
Lebesgue measure which we denote Dp−q−1g̃. Furthermore, we have that

(ep−q1 ⊗ In)T g = (g̃R1(D), . . . , g̃Rp−q−1(D), g̃) (5.13)

where

g̃Rj (D)(t) =
p−q∑
k=j

Dk−j g̃(t)Ck

= 1[0,∞)(t)(e
p
1 ⊗ In)T eAt

p−q∑
k=j

Ak−jECk

(5.14)

for j = 1, . . . ,p − q − 1 and g : R → R
n×n is characterized by F [g](y) = h(iy)−1 with

h : C→C
n(p−q)×n(p−q) given by

h(−z) =



Inz −In 0 · · · 0
0 Inz −In · · · 0
...

...
. . .

. . .
...

0 0 · · · Inz −In
Q−1(z)P (z)− zR1(z) C1 · · · Cp−q−2 Inz+Cp−q−1


.
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Proof. That g̃ is p − q − 2 times differentiable and Dp−q−2g̃ has a density with respect
to the Lebesgue measure follows form the relation in (5.2). Furthermore, by Theorem
4.8 we know that F [g̃](y) = P −1(−iy)Q(−iy). Consequently, (5.13) follows since

(P −1(−iy)Q(−iy)R1(−iy),

. . . , P −1(−iy)Q(−iy)Rp−q−1(−iy), P −1(−iy)Q(−iy))h(z) = (ep−q1 ⊗ In)T .

The relation in (5.14) follows by the representation of g̃ given in (4.15). �

Proof (Proof of Corollary 4.11). The prediction formula is a consequence of Lemma
5.4 combined with Theorem 3.2 and Theorem 4.8. Furthermore, to get the expression
for g̃ ∗ {Ẑ1(s,∞)}, note that

g̃(dv) = 1{p=q+1}δ0(dv) + (ep1 ⊗ In)T eAvAEdv,

which follows from the representation of g̃ in (4.15) �
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E
Stochastic Differential Equations With A

Fractionally Filtered Delay: A Semimartingale
Model For Long-Range Dependent Processes

Richard A. Davis, Mikkel Slot Nielsen, and Victor Rohde

Abstract

In this paper we introduce a model, the stochastic fractional delay differen-
tial equation (SFDDE), which is based on the linear stochastic delay differential
equation and produces stationary processes with hyperbolically decaying autoco-
variance functions. The model departs from the usual way of incorporating this
type of long-range dependence into a short-memory model as it is obtained by
applying a fractional filter to the drift term rather than to the noise term. The
advantages of this approach are that the corresponding long-range dependent
solutions are semimartingales and the local behavior of the sample paths is un-
affected by the degree of long memory. We prove existence and uniqueness of
solutions to the SFDDEs and study their spectral densities and autocovariance
functions. Moreover, we define a suitable subclass of SFDDEs which we study
in detail and relate to the well-known fractionally integrated CARMA processes.
Finally, we consider the task of simulating from the defining SFDDEs.

Keywords: long-range dependence; stochastic delay differential equations; moving
average processes; semimartingales

1 Introduction

Models for time series producing slowly decaying autocorrelation functions (ACFs)
have been of interest for more than 50 years. Such models were motivated by the
empirical findings of Hurst in the 1950s that were related to the levels of the Nile
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River. Later, in the 1960s, Benoit Mandelbrot referred to a slowly decaying ACF as
the Joseph effect or long-range dependence. Since then, a vast amount of literature
on theoretical results and applications have been developed. We refer to [6, 12, 24,
27, 28] and references therein for further background.

A very popular discrete-time model for long-range dependence is the autoregres-
sive fractionally integrated moving average (ARFIMA) process, introduced by [14] and
[18], which extends the ARMA process to allow for a hyperbolically decaying ACF.
Let B be the backward shift operator and for γ > −1, define (1−B)γ by means of the
binomial expansion,

(1−B)γ =
∞∑
j=0

πjB
j

where πj =
∏

0<k≤j
k−1−γ
k . An ARFIMA process (Xt)t∈Z is characterized as the unique

purely non-deterministic process (as defined in [8, p. 189]) satisfying

P (B)(1−B)βXt =Q(B)εt , t ∈Z, (1.1)

where P and Q are real polynomials with no zeroes on {z ∈ C : |z| ≤ 1}, (εt)t∈Z is an
i.i.d. sequence with E[ε0] = 0, E[ε2

0] <∞, and β ∈ (0,1/2). The ARFIMA equation (1.1)
is sometimes represented as an ARMA equation with a fractionally integrated noise,
that is,

P (B)Xt =Q(B)(1−B)−βεt , t ∈Z. (1.2)

In (1.1) one applies a fractional filter to (Xt)t∈Z, while in (1.2) one applies a fractional
filter to (εt)t∈Z. One main feature of the solution to (1.1), equivalently (1.2), is that
the autocovariance function γX(t) := E[X0Xt] satisfies

γX(t) ∼ ct2β−1, t→∞, (1.3)

for some constant c > 0.
A simple example of a continuous-time stationary process which exhibits long-

memory in the sense of (1.3) is an Ornstein-Uhlenbeck process (Xt)t∈R driven by a
fractional Lévy process, that is, (Xt)t∈R is the unique stationary solution to

dXt = −κXt dt + dIβLt , t ∈R, (1.4)

where κ > 0 and

IβLt :=
1

Γ (1 + β)

∫ t

−∞

[
(t −u)β − (−u)β+

]
dLu , t ∈R, (1.5)

with (Lt)t∈R being a Lévy process which satisfies E[L1] = 0 and E[L2
1] <∞. In (1.5),

Γ denotes the gamma function and we have used the notation x+ = max{x,0} for
x ∈ R. The way to obtain long memory in (1.4) is by applying a fractional filter to
the noise, which is in line with (1.2). To demonstrate the idea of this paper, consider
the equation obtained from (1.4) but by applying a fractional filter to the drift term
instead, i.e.,

Xt −Xs = − κ
Γ (1− β)

∫ t

−∞

[
(t −u)−β − (s −u)−β+

]
Xu du +Lt −Ls, s < t. (1.6)

100



1 · Introduction

One can write (1.6) compactly as

dXt = −κDβXt dt + dLt , t ∈R, (1.7)

with (DβXt)t∈R being a suitable fractional derivative process of (Xt)t∈R defined in
Proposition 3.6. The equations (1.6)-(1.7) may be seen as akin to (1.1). It turns out
that a unique purely non-deterministic process (as defined in (3.10)) satisfying (1.7)
exists and has the following properties:

(i) The memory is long and controlled by β in the sense that γX(t) ∼ ct2β−1 as
t→∞ for some c > 0.

(ii) The L2(P)-Hölder continuity of the sample paths is not affected by β in the sense
that γX(0)−γX(t) ∼ ct as t ↓ 0 for some c > 0 (the notion of Hölder continuity in
L2(P) is indeed closely related to the behavior of the ACF at zero; see Remark
3.9 for a precise relation).

(iii) (Xt)t∈R is a semimartingale.

While both processes in (1.4) and (1.7) exhibit long memory in the sense of ((i)), one
should keep in mind that models for long-memory processes obtained by applying
a fractional filter to the noise will generally not meet ((ii))-((iii)), since they inherit
various properties from the fractional Lévy process (IβLt)t∈R rather than from the un-
derlying Lévy process (Lt)t∈R. In particular, this observation applies to the fractional
Ornstein-Uhlenbeck process (1.4) which is known not to possess the semimartingale
property for many choices of (Lt)t∈R, and for which it holds that γX(0)−γX(t) ∼ ct2β+1

as t ↓ 0 for some c > 0 (see [20, Theorem 4.7] and [1, Proposition 2.5]). The latter
property, the behavior of γX near 0, implies an increased L2(P)-Hölder continuity
relative to (1.7). See Example 4.4 for details about the models (1.4) and (1.7).

The properties ((ii))-((iii)) may be desirable to retain in many modeling scenarios.
For instance, if a stochastic process (Xt)t∈R is used to model a financial asset, the semi-
martingale property is necessary to accommodate the No Free Lunch with Vanishing
Risk condition according to the (First) Fundamental Theorem of Asset Pricing, see
[10, Theorem 7.2]. Moreover, if (Xt)t∈R is supposed to serve as a "good" integrator, it
follows by the Bichteler-Dellacherie Theorem ([7, Theorem 7.6]) that (Xt)t∈R must
be a semimartingale. Also, the papers [4, 5] find evidence that the sample paths of
electricity spot prices and intraday volatility of the E-mini S&P500 futures contract
are rough, suggesting less smooth sample paths than what is induced by models such
as the fractional Ornstein-Uhlenbeck process (1.4). In particular, the local smoothness
of the sample paths should not be connected to the strength of long memory.

Several extensions to the fractional Ornstein-Uhlenbeck process (1.4) exist. For
example, it is worth mentioning that the class of fractionally integrated continuous-time
autoregressive moving average (FICARMA) processes were introduced in [9], where it
is assumed that P and Q are real polynomials with deg(P ) > deg(Q) which have no
zeroes on {z ∈ C : Re(z) ≥ 0}. The FICARMA process associated to P and Q is then
defined as the moving average process

Xt =
∫ t

−∞
g(t −u)dIβLu , t ∈R, (1.8)
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with g : R→R being the L2 function characterized by

F [g](y) :=
∫
R

eiyug(u)du =
Q(−iy)
P (−iy)

, y ∈R.

In line with (1.2) for the ARFIMA process, a common way of viewing a FICARMA
process is that it is obtained by applying a CARMA filter to fractional noise, that is,
(Xt)t∈R given by (1.8) is the solution to the formal equation

P (D)Xt =Q(D)DIβLt , t ∈R.

(See, e.g., [20].) Another class, related to the FICARMA process, consists of solutions
(Xt)t∈R to fractional stochastic delay differential equations (SDDEs), that is, (Xt)t∈R is
the unique stationary solution to

dXt =
∫

[0,∞)
Xt−u η(du)dt + dIβLt , t ∈R, (1.9)

for a suitable finite signed measure η. See [3, 21] for details about fractional SDDEs.
Note that the fractional Ornstein-Uhlenbeck process (1.4) is a FICARMA process
with polynomials P (z) = z+κ and Q(z) = 1 and a fractional SDDE with η = −κδ0, δ0
being the Dirac measure at zero.

The model we present includes (1.6) and extends this process in the same way as
the fractional SDDE (1.9) extends the fractional Ornstein-Uhlenbeck (1.4). Specifi-
cally, we will be interested in a stationary process (Xt)t∈R satisfying

Xt −Xs =
1

Γ (1− β)

∫ t

−∞

[
(t −u)−β − (s −u)−β+

] ∫
[0,∞)

Xu−v η(dv)du +Lt −Ls (1.10)

almost surely for each s < t, where η is a given finite signed measure. We will refer to
(1.10) as a stochastic fractional delay differential equation (SFDDE). Equation (1.10) can
be compactly written as

dXt =
∫

[0,∞)
DβXt−u η(du)dt + dLt , t ∈R, (1.11)

with (DβXt)t∈R defined in Proposition 3.6. Representation (1.11) is, for instance,
convenient in order to argue that solutions are semimartingales.

In Section 3 we show that, for a wide range of measures η, there exists a unique
purely non-deterministic process (Xt)t∈R satisfying the SFDDE (1.10). In addition, we
study the behavior of the autocovariance function and the spectral density of (Xt)t∈R
and verify that ((i))-((ii)) hold. We end Section 3 by providing an explicit (prediction)
formula for computing E[Xt | Xu , u ≤ s]. In Section 4 we focus on delay measures η of
exponential type, that is,

η(du) = −κδ0(du) + f (u)du, (1.12)

where f (t) = 1[0,∞)(t)bT eAte1 with e1 = (1,0, . . . ,0)T ∈Rn, b ∈Rn, and A an n×nmatrix
with a spectrum contained in {z ∈ C : Re(z) < 0}. Besides relating this subclass to
the FICARMA processes, we study two special cases of (1.12) in detail, namely the
Ornstein-Uhlenbeck type presented in (1.7) and

dXt =
∫ ∞

0
DβXt−uf (u)dudt + dLt , t ∈R. (1.13)
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Equation (1.13) is interesting to study as it collapses to an ordinary SDDE (cf. Pro-
postion 4.2), and hence constitutes an example of a long-range dependent solution
to equation (1.9) with IβLt − IβLs replaced by Lt −Ls. While (1.13) falls into the over-
all setup of [2], the results obtained in that paper do, however, not apply. Finally,
based on the two examples (1.6) and (1.13), we investigate some numerical aspects in
Section 5, including the task of simulating (Xt)t∈R from the defining equation. The
proofs of all the results presented in Section 3 and 4 are given in Section 6.2. We start
with a preliminary section which recalls a few definitions and results that will be
used repeatedly.

2 Preliminaries

For a measure µ on the Borel σ -fieldB (R) on R, let Lp(µ) denote the Lp space relative
to µ. If µ is the Lebesgue measure we suppress the dependence on µ and write Lp

instead of Lp(µ). By a finite signed measure we refer to a set function µ :B (R)→R of
the form µ = µ+ −µ−, where µ+ and µ− are two finite singular measures. Integration
of a function f with respect to µ is defined (in an obvious way) whenever f ∈ L1(|µ|)
where |µ| := µ+ + µ−. The convolution of two measurable functions f ,g : R→ C is
defined as

f ∗ g(t) =
∫
R

f (t −u)g(u)du

whenever f (t − ·)g ∈ L1. Similarly, if µ is a finite signed measure, we set

f ∗µ(t) =
∫
R

f (t −u)µ(du)

if f (t − ·) ∈ L1(|µ|). For such µ set

D(µ) =
{
z ∈C :

∫
R

eRe(z)u |µ|(du) <∞
}
.

Then we define the bilateral Laplace transform L[µ] :D(µ)→C of µ by

L[µ](z) =
∫
R

ezuµ(du), z ∈D(µ),

and the Fourier transform by F [µ](y) = L[f ](iy) for y ∈ R. If f ∈ L1 we will write
L[f ] = L[f (u)du] and F [f ] = F [f (u)du]. We also note that F [f ] ∈ L2 when f ∈
L1 ∩L2 and that F can be extended to an isometric isomorphism from L2 onto L2 by
Plancherel’s theorem.

Recall that a Lévy process is the continuous-time analogue to the (discrete time)
random walk. More precisely, a one-sided Lévy process (Lt)t≥0, L0 = 0, is a stochastic
process having stationary independent increments and cádlág sample paths. From
these properties it follows that the distribution of L1 is infinitely divisible, and the dis-
tribution of (Lt)t≥0 is determined from L1 via the relation E[eiyLt ] = exp{t logE[eiyL1 ]}
for y ∈R and t ≥ 0. The definition is extended to a two-sided Lévy process (Lt)t∈R by
taking a one-sided Lévy process (L1

t )t≥0 together with an independent copy (L2
t )t≥0

and setting Lt = L1
t if t ≥ 0 and Lt = −L2

(−t)− if t < 0. If E[L2
1] <∞, E[L1] = 0 and f ∈ L2,
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the integral
∫
R
f (u)dLu is well-defined as an L2 limit of integrals of step functions,

and the following isometry property holds:

E

[(∫
R

f (u)dLu

)2]
= E[L2

1]
∫
R

f (u)2 du.

For more on Lévy processes and integrals with respect to these, see [25, 30]. Finally,
for two functions f ,g : R→ R and a ∈ [−∞,∞] we write f (t) = o(g(t)), f (t) =O(g(t))
and f (t) ∼ g(t) as t→ a if

lim
t→a

f (t)
g(t)

= 0, limsup
t→a

∣∣∣∣∣ f (t)
g(t)

∣∣∣∣∣ <∞ and lim
t→a

f (t)
g(t)

= 1,

respectively.

3 The stochastic fractional delay differential equation

Let (Lt)t∈R be a Lévy process with E[L2
1] < ∞ and E[L1] = 0, and let β ∈ (0,1/2).

Without loss of generality we will assume that E[L2
1] = 1. Denote by η a finite (possibly

signed) measure on [0,∞) with ∫
[0,∞)

u |η|(du) <∞. (3.1)

Then we will say that a process (Xt)t∈R with E[|X0|] < ∞ is a solution to the corre-
sponding SFDDE if it is stationary and satisfies

Xt −Xs =
1

Γ (1− β)

∫ t

−∞

[
(t −u)−β − (s −u)−β+

]∫
[0,∞)

Xu−v η(dv)du +Lt −Ls (3.2)

almost surely for each s < t. Note that equation (3.2) is indeed well-defined, since η is
finite, (Xt)t∈R is bounded in L1(P) and(

Dβ−1(s,t]

)
(u) :=

1
Γ (1− β)

[
(t −u)−β+ − (s −u)−β+

]
, u ∈R, (3.3)

belongs to L1. In line with [12] we write Dβ−1(s,t] rather than Dβ1(s,t] in (3.3) to
emphasize that it is the right-sided version of the (Riemann-Liouville) fractional
derivative of 1(s,t]. As noted in the introduction, we will often write (3.2) shortly as

dXt =
∫

[0,∞)
DβXt−u η(du)dt + dLt , t ∈R, (3.4)

where (DβXt)t∈R is a suitable fractional derivative of (Xt)t∈R (defined in Proposi-
tion 3.6).

In order to study which choices of η that lead to a stationary solution to (3.2) we
introduce the function h = hβ,η : {z ∈C : Re(z) ≤ 0} → C given by

h(z) = (−z)1−β −
∫

[0,∞)
ezu η(du). (3.5)

Here, and in the following, we define zγ = rγeiγθ using the polar representation
z = reiθ for r > 0 and θ ∈ (−π,π]. This definition corresponds to zγ = eγ logz, using
the principal branch of the complex logarithm, and hence z 7→ zγ is analytic on
C \ {z ∈R : z ≤ 0}. In particular, this means that h is analytic on {z ∈C : Re(z) < 0}.

104



3 · The stochastic fractional delay differential equation

Proposition 3.1. Suppose that h(z) defined in (3.5) is non-zero for every z ∈ C with
Re(z) ≤ 0. Then there exists a unique g : R→R, which belongs to Lγ for (1− β)−1 < γ ≤ 2
and is vanishing on (−∞,0), such that

F [g](y) =
(−iy)−β

h(iy)
(3.6)

for y ∈R. Moreover, the following statements hold:

(i) For t > 0 the Marchaud fractional derivative Dβg(t) at t of g given by

Dβg(t) =
β

Γ (1− β)
lim
δ↓0

∫ ∞
δ

g(t)− g(t −u)
u1+β du (3.7)

exists, Dβg ∈ L1 ∩L2 and F [Dβg](y) = 1/h(iy) for y ∈R.

(ii) The function g is the Riemann-Liouville fractional integral of Dβg, that is,

g(t) =
1

Γ (β)

∫ t

0
Dβg(u)(t −u)β−1 du

for t > 0.

(iii) The function g satisfies

g(t) = 1 +
∫ t

0

(
Dβg

)
∗ η(u)du, t ≥ 0, (3.8)

and, for v ∈R and with Dβ−1(s,t] given in (3.3),

g(t − v)− g(s − v) =
∫ t

−∞

(
Dβ−1(s,t]

)
(u)g ∗ η(u − v)du +1(s,t](v). (3.9)

Before formulating our main result, Theorem 3.2, recall that a stationary process
(Xt)t∈R with E[X2

0 ] <∞ and E[X0] = 0 is said to be purely non-deterministic if⋂
t∈R

sp {Xs : s ≤ t} = {0}, (3.10)

see [1, Section 4]. Here sp denotes the L2(P)-closure of the linear span.

Theorem 3.2. Suppose that h(z) defined in (3.5) is non-zero for every z ∈C with Re(z) ≤ 0
and let g be the function introduced in Proposition 3.1. Then the process

Xt =
∫ t

−∞
g(t −u)dLu , t ∈R, (3.11)

is well-defined, centered and square integrable, and it is the unique purely non-deterministic
solution to the SFDDE (3.2).

Remark 3.3. Note that we cannot hope to get a uniqueness result without imposing
a condition such as (3.10). For instance, the fact that∫ t

−∞

[
(t −u)−β − (s −u)−β+

]
du = 0,

shows together with (3.2) that (Xt +U )t∈R is a solution for any U ∈ L1(P) as long as
(Xt)t∈R is a solution. Moreover, uniqueness relative to condition (3.10) is similar to
that of discrete-time ARFIMA processes, see [8, Theorem 13.2.1].
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Remark 3.4. It is possible to generalize (3.2) and Theorem 3.2 to allow for a heavy-
tailed distribution of the noise. Specifically, suppose that (Lt)t∈R is a symmetric
α-stable Lévy process for some α ∈ (1,2), that is, (Lt)t∈R is a Lévy process and

E

[
eiyL1

]
= e−σ

α |y|α , y ∈R,

for some σ > 0. To define the process (Xt)t∈R in (3.11) it is necessary and sufficient
that g ∈ Lα , which is indeed the case if β ∈ (1,1−1/α) by Proposition 3.1. From this
point, using (3.9), we only need a stochastic Fubini result (which can be found in
[1, Theorem 3.1]) to verify that (3.2) is satisfied. One will need another notion (and
proof) of uniqueness, however, as our approach relies on L2 theory. For more on stable
distributions and corresponding definitions and results, we refer to [29].

Remark 3.5. The process (3.11) and other well-known long-memory processes do
naturally share parts of their construction. For instance, they are typically viewed
as "borderline" stationary solutions to certain equations. To be more concrete, the
ARFIMA process can be viewed as an ARMA process, but where the autoregressive
polynomial P is replaced by P̃ : z 7→ P (z)(1−z)β . Although an ordinary ARMA process
exists if and only if P is non-zero on the unit circle (and, in the positive case, will be
a short memory process), the autoregressive function P̃ of the ARFIMA model will
always have a root at z = 1. The analogue to the autoregressive polynomial in the
non-fractional SDDE model (that is, (3.2) with Dβ−1(s,t] replaced by 1(s,t]) is

z 7→ −z −L[η](z), (3.12)

where the critical region is on the imaginary axis {iy : y ∈ R} rather than on the
unit circle {z ∈ C : |z| = 1} (see [3]). The SFDDE corresponds to replacing (3.12) by
z 7→ −z − (−z)βL[η](z), which will always have a root at z = 0. However, to ensure
existence both in the ARFIMA model and in the SFDDE model, assumptions are
made such that these roots will be the only ones in the critical region and their order
will be β. For a treatment of ARFIMA processes, we refer to [8, Section 13.2].

The solution (Xt)t∈R of Theorem 3.2 is causal in the sense that Xt only depends on
past increments of the noise Lt −Ls, s ≤ t. An inspection of the proof of Theorem 3.2
reveals that one only needs to require that h(iy) , 0 for all y ∈ R for a (possibly
non-causal) stationary solution to exist. The difference between the condition that
h(z) is non-zero when Re(z) = 0 rather than when Re(z) ≤ 0 in terms of causality is
similar to that of non-fractional SDDEs (see, e.g., [3]).

The next result shows why one may view (3.2) as (3.4). In particular, it reveals
that the corresponding solution (Xt)t∈R is a semimartingale with respect to (the
completion of) its own filtration or equivalently, in light of (3.2) and (3.11), the one
generated from the increments of (Lt)t∈R.

Proposition 3.6. Suppose that h(z) is non-zero for every z ∈ C with Re(z) ≤ 0 and let
(Xt)t∈R be the solution to (3.2) given in Theorem 3.2. Then, for t ∈R, the limit

DβXt :=
β

Γ (1− β)
lim
δ↓0

∫ ∞
δ

Xt −Xt−u
u1+β du (3.13)
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exists in L2(P), DβXt =
∫ t
−∞D

βg(t −u)dLu , and it holds that

1
Γ (1− β)

∫ t

−∞

[
(t −u)−β − (s −u)−β+

]∫
[0,∞)

Xu−v η(dv)du

=
∫ t

s

∫
[0,∞)

DβXu−v η(dv)du

(3.14)

almost surely for each s < t.

We will now provide some properties of the solution (Xt)t∈R to (3.2) given in
(3.11). Since the autocovariance function γX takes the form

γX(t) =
∫
R

g(t +u)g(u)du, t ∈R, (3.15)

it follows by Plancherel’s theorem that (Xt)t∈R admits a spectral density fX which is
given by

fX(y) = |F [g](y)|2 =
1

|h(iy)|2
|y|−2β , y ∈R. (3.16)

(See the appendix for a brief recap of the spectral theory.) The following result
concerning γX and fX shows that solutions to (3.2) exhibit a long-memory behavior
and that the degree of memory can be controlled by β.

Proposition 3.7. Suppose that h(z) is non-zero for every z ∈ C with Re(z) ≤ 0 and let γX
and fX be the functions introduced in (3.15)-(3.16). Then it holds that

γX(t) ∼
Γ (1− 2β)

Γ (β)Γ (1− β)η([0,∞))2 t
2β−1 and fX(y) ∼ 1

η([0,∞))2 |y|
−2β

as t→∞ and y→ 0, respectively. In particular,
∫
R
|γX(t)|dt =∞.

While the behavior of γX(t) as t→∞ is controlled by β, the content of Proposi-
tion 3.8 is that the behavior of γX(t) as t→ 0, and thus the L2(P)-Hölder continuity
of the sample paths of (Xt)t∈R (cf. Remark 3.9), is unaffected by β.

Proposition 3.8. Suppose that h(z) is non-zero for every z ∈C with Re(z) ≤ 0, let (Xt)t∈R
be the solution to (3.2) and denote by ρX its ACF. Then it holds that 1− ρX(t) ∼ t as t ↓ 0.

Remark 3.9. Recall that for a given γ > 0, a centered and square integrable process
(Xt)t∈R with stationary increments is said to be locally γ-Hölder continuous in L2(P)
if there exists a constant C > 0 such that

E

[
(Xt −X0)2

]
t2γ

≤ C

for all sufficiently small t > 0. By defining the semi-variogram

γV (t) := 1
2E[(Xt −X0)2], t ∈R,

we see that (Xt)t∈R is locally γ-Hölder continuous if and only if γV (t) = O(t2γ ) as
t→ 0. When (Xt)t∈R is stationary we have the relation γV = γX(0)(1−ρX ), from which
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it follows that the L2(P) notion of Hölder continuity can be characterized in terms of
the behavior of the ACF at zero. In particular, Proposition 3.8 shows that the solution
(Xt)t∈R to (3.2) is locally γ-Hölder continuous if and only if γ ≤ 1/2. The behavior of
the ACF at zero has been used as a measure of roughness of the sample paths in for
example [4, 5].

Remark 3.10. As a final comment on the path properties of the solution (Xt)t∈R to
(3.2), observe that

Xt −Xs =
∫ t

s

∫
[0,∞)

DβXu−v η(dv)du +Lt −Ls

for each s < t almost surely by Proposition 3.6. This shows that (Xt)t∈R can be chosen
so that it has jumps at the same time (and of the same size) as (Lt)t∈R. This is in
contrast to models driven by a fractional Lévy process, such as (1.9), since (IβLt)t∈R
is continuous in t (see [20, Theorem 3.4]).

We end this section by providing a formula for computing E[Xt | Xu , u ≤ s] for any
s < t. One should compare its form to those obtained for other fractional models (such
as the one in [2, Theorem 3.2] where, as opposed to Proposition 3.11, the prediction
is expressed not only in terms of its own past, but also the past noise).

Proposition 3.11. Suppose that h(z) is non-zero for every z ∈ C with Re(z) ≤ 0 and let
(Xt)t∈R denote the solution to (3.2). Then, for any s < t, it holds that

E[Xt | Xu , u ≤ s]

= g(t − s)Xs +
∫

[0,t−s)

∫ s

−∞
Xw

∫
[0,∞)

(
Dβ−1(s,t−u]

)
(v +w)η(dv)dwg(du)

where g(du) = δ0(du) + (Dβg) ∗ η(u)du is the Lebesgue-Stieltjes measure induced by g.

4 Delays of exponential type

Let A be an n×n matrix where all its eigenvalues belong to {z ∈C : Re(z) < 0}, and let
b ∈Rn and κ ∈R. In this section we restrict our attention to measures η of the form

η(du) = −κδ0(du) + f (u)du, with f (u) = bT eAue1, (4.1)

where e1 := (1,0, . . . ,0)T ∈ Rn. Note that e1 is used as a normalization; the effect of
replacing e1 by any c ∈ Rn can be incorporated in the choice of A and b. It is well-
known that the assumption on the eigenvalues of A imply that all the entries of
eAu decay exponentially fast as u →∞, so that η is a finite measure on [0,∞) with
moments of any order. Since the Fourier transform F [f ] of f is given by

F [f ](y) = −bT (A+ iyIn)−1e1, y ∈R,

it admits a fraction decomposition; that is, there exist real polynomials Q,R : C→C,
Q being monic with the eigenvalues of A as its roots and being of larger degree than
R, such that

F [f ](y) = −
R(−iy)
Q(−iy)

(4.2)
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for y ∈R. (This is a direct consequence of the inversion formula B−1 = adj(B)/ det(B).)
By assuming that Q and R have no common roots, the pair (Q,R) is unique. The
following existence and uniqueness result is simply an application of Theorem 3.2 to
the particular setup in question:

Corollary 4.1. Let Q and R be given as in (4.2). Suppose that κ+ bTA−1e1 , 0 and

Q(z)
[
z+κzβ

]
+R(z)zβ , 0 (4.3)

for all z ∈ C \ {0} with Re(z) ≥ 0. Then there exists a unique purely non-deterministic
solution (Xt)t∈R to (3.2) with η given by (4.1) and it is given by (3.11) with g : R→ R

characterized through the relation

F [g](y) =
Q(−iy)

Q(−iy)
[
− iy +κ(−iy)β

]
+R(−iy)(−iy)β

, y ∈R. (4.4)

Before giving examples we state Proposition 4.2, which shows that the general
SFDDE (3.2) can be written as

dXt = −κDβXt dt +
∫ ∞

0
Xt−uD

βf (u)dudt + dLt , t ∈R, (4.5)

when η is of the form (4.1). In case κ = 0, (4.5) is a (non-fractional) SDDE. However,
the usual existence results obtained in this setting (for instance, those in [3] and [17])
are not applicable, since the delay measure Dβf (u)du has unbounded support and
zero total mass

∫∞
0 Dβf (u)du = 0.

Proposition 4.2. Let f be of the form (4.1). Then Dβf : R→ R defined by Dβf (t) = 0
for t ≤ 0 and

Dβf (t) =
1

Γ (1− β)
bT

(
AeAt

∫ t

0
e−Auu−β du + t−βIn

)
e1

for t > 0 belongs to L1∩L2. If in addition, (4.3) holds, κ+ bTA−1e1 , 0, and (Xt)t∈R is the
solution given in Corollary 4.1, then∫ ∞

0
DβXt−uf (u)du =

∫ ∞
0
Xt−uD

βf (u)du

almost surely for any t ∈R.

Remark 4.3. Due to the structure of the function g in (4.4) one may, in line with the
interpretation of CARMA processes, think of the corresponding solution (Xt)t∈R as a
stationary process that satisfies the formal equation(

Q(D)
[
D +κDβ

]
+R(D)Dβ

)
Xt =Q(D)DLt , t ∈R, (4.6)

whereD denotes differentiation with respect to t andDβ is a suitable fractional deriva-
tive. Indeed, by heuristically applying the Fourier transform F to (4.6) and using
computation rules such as F [DX](y) = (−iy)F [X](y) and F [DβX](y) = (−iy)βF [X](y),
one ends up concluding that (Xt)t∈R is of the form (3.11) with g characterized by (4.4).
For two monic polynomials P and Q with q := deg(Q) = deg(P )− 1 and all their roots
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contained in {z ∈ C : Re(z) < 0}, consider the FICARMA(q + 1,β,q) process (Xt)t∈R.
Heuristically, by applying F as above, (Xt)t∈R may be thought of as the solution to
P (D)DβXt =Q(D)DLt , t ∈R. By choosing the polynomial R and the constant κ such
that P (z) = Q(z)[z + κ] + R(z) we can think of (Xt)t∈R as the solution to the formal
equation (

Q(D)
[
D1+β +κDβ

]
+R(D)Dβ

)
Xt =Q(D)DLt , t ∈R. (4.7)

It follows that (4.6) and (4.7) are closely related, the only difference being that D +
κDβ is replaced by D1+β + κDβ . In particular, one may view solutions to SFDDEs
corresponding to measures of the form (4.1) as being of the same type as FICARMA
processes. While the considerations above apply only to the case where deg(P ) = q+1,
it should be possible to extend the SFDDE framework so that solutions are comparable
to the FICARMA processes in the general case deg(P ) > q by following the lines of [2],
where similar theory is developed for the SDDE setting.

We will now give two examples of (4.5).

Example 4.4. Consider choosing η = −κδ0 for some κ > 0 so that (3.2) becomes

Xt −Xs = − κ
Γ (1− β)

∫ t

−∞

[
(t −u)−β − (s −u)−β+

]
Xu du +Lt −Ls (4.8)

for s < t or, in short,

dXt = −κDβXt dt + dLt , t ∈R. (4.9)

To argue that a unique purely non-deterministic solution exists, we observe that
Q(z) = 1 and R(z) = 0 for all z ∈ C. Thus, in light of Corollary 4.1 and (4.3), it suffices
to argue that z +κzβ , 0 for all z ∈C \ {0} with Re(z) ≥ 0. By writing such z as z = reiθ

for a suitable r > 0 and θ ∈ [−π/2,π/2], the condition may be written as(
r cos(θ) +κrβ cos(βθ)

)
+ i

(
r sin(θ) +κrβ sin(βθ)

)
, 0. (4.10)

If the imaginary part of the left-hand side of (4.10) is zero it must be the case that
θ = 0, since κ > 0 while sin(θ) and sin(βθ) are of the same sign. However, if θ = 0,
the real part of the left-hand side of (4.10) is r +κrβ > 0. Consequently, Corollary 4.1
implies that a solution to (4.9) is characterized by (3.11) and F [g](y) = ((−iy)βκ−iy)−1

for y ∈R. In particular, γX takes the form

γX(t) =
∫
R

eity

y2 + 2κ sin(βπ2 )|y|1+β +κ2|y|2β
dy. (4.11)

In Figure 1 we have plotted the ACF of (Xt)t∈R using (4.11) with κ = 1 and β ∈
{0.1,0.2,0.3,0.4}. We compare it to the ACF of the corresponding fractional Ornstein-
Uhlenbeck process (equivalently, the FICARMA(1,β,0) process) which was presented
in (1.4). To do so, we use that its autocovariance function γβ is given by

γβ(t) =
∫
R

eity

|y|2(1+β) +κ2|y|2β
dy. (4.12)
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From these plots it becomes evident that, although the ACFs share the same behavior
at infinity, they behave differently near zero. In particular, we see that the ACF of
(Xt)t∈R decays more rapidly around zero, which is in line with Proposition 3.8 and the
fact that the L2(P)-Hölder continuity of the fractional Ornstein-Uhlenbeck process
increases as β increases (cf. the introduction).
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Figure 1: The left plot is the ACF based on (4.11) with β = 0.1 (yellow), β = 0.2 (green), β = 0.3 (black) and
β = 0.4 (blue). With β = 0.4 fixed, the plot on the right compares the ACF based on (4.11) with κ = 1 (blue)
to the ACF based on (4.12) for κ = 0.125,0.25,0.5,1,2 (red) where the ACF decreases in κ, in particular, the
top curve corresponds to κ = 0.125 and the bottom to κ = 2.

Example 4.5. Suppose that η is is given by (4.1) with κ = 0, A = −κ1, and b = −κ2 for
some κ1,κ2 > 0. In this case, f (t) = −κ2e

−κ1t and (4.5) becomes

dXt =
κ2

Γ (1− β)

∫ ∞
0
Xt−u

(
κ1e
−κ1u

∫ u

0
eκ1vv−β dv −u−β

)
dudt + dLt , (4.13)

and since Q(z) = z+κ1 and R(z) = κ2 we have that

zQ(z) +R(z)zβ = z2 +κ1z+κ2z
β .

To verify (4.3), set z = x+ iy for x > 0 and y ∈R and note that

z2 +κ1z+κ2z
β =

(
x2 − y2 +κ1x+κ2 cos(βθz)|z|β

)
+ i

(
κ1y + 2xy +κ2 sin(βθz)|z|β

) (4.14)

for a suitable θz ∈ (−π/2,π/2). For the imaginary part of (4.14) to be zero it must be
the case that

(κ1 + 2x)y = −κ2 sin(βθz)|z|β ,

and this can only happen if y = 0, since x,κ1,κ2 > 0 and the sign of y is the same as
that of sin(βθz). However, if y = 0 it is easy to see that the real part of (4.14) cannot
be zero for any x > 0, so we conclude that (4.3) holds and that there exists a stationary
solution (Xt)t∈R given through the kernel (4.4). The autocovariance function γX is
given by

γX(t) =
∫
R

eity
y2 +κ2

1

y4 + 2κ2

(
κ1γ2|y|1+β −γ1|y|2+β

)
+κ2

1y
2 +κ2

2 |y|2β
dy (4.15)
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where γ1 = cos(βπ/2) and γ2 = sin(βπ/2). The polynomials to the associated FICARMA(2,β,1)
process are given by P (z) = z2 +κ1z+κ2 and Q(z) = z+κ1 (see Remark 4.3) and the
autocovariance function γβ takes the form

γβ(t) =
∫
R

eity
y2 +κ2

1

|y|4+2β + (κ2
1 − 2κ2)|y|2+2β +κ2

2 |y|2β
dy. (4.16)

In Figure 2 we have plotted the ACF based on (4.15) for κ1 = 1 and various values of
κ2 and β. For comparison we have also plotted the ACF based on (4.16) for the same
choices of κ1, κ2 and β.
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Figure 2: First row is ACF based on (4.15), second row is ACF based on (4.16), and the columns correspond
to κ2 = 0.5, κ2 = 1 and κ2 = 2, respectively. Within each plot, the lines correspond to β = 0.1 (yellow),
β = 0.2 (green), β = 0.3 (black) and β = 0.4 (blue). In all plots, κ1 = 1.

5 Simulation from the SFDDE

In the following we will focus on simulating from (3.2). We begin this simulation
study by considering the Ornstein-Uhlenbeck type equation discussed in Example 4.4
with κ = 1 and under the assumption that (Lt)t∈R is a standard Brownian motion. Let
c1 = 100/∆ and c2 = 2000/∆. We generate a simulation of the solution process (Xt)t∈R
on a grid of size ∆ = 0.01 and with 3700/∆ steps of size ∆ starting from −c1 − c2 and
ending at 1600/∆. Initially, we set Xt equal to zero for the first c1 points in the grid
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5 · Simulation from the SFDDE

and then discretize (4.8) using the approximation∫
R

[
(n∆−u)−β+ − ((n− 1)∆−u)−β+

]
Xu du

' 1
1− β

∆1−βX(n−1)∆

+
n−1∑

k=n−c1

1
2

(Xk∆ +X(k−1)∆)
∫ k∆

(k−1)∆

[
(n∆−u)−β+ − ((n− 1)∆−u)−β+

]
du

=
1

1− β
∆1−βX(n−1)∆ +

1
1− β

n−1∑
k=n−c1

1
2 (Xk∆ +X(k−1)∆)

·
(
2((n− k − 1)∆)1−β − ((n− k)∆)1−β − ((n− k − 2)∆)1−β

)
for n = −c2 + 1, . . . ,3700/∆ − c2 − c1. Next, we disregard the first c1 + c2 values of
the simulated sample path to obtain an approximate sample from the stationary
distribution. We assume that the process is observed on a unit grid resulting in
simulated values X1, . . . ,X1600. This is repeated 200 times, and in every repetition the
sample ACF based on X1, . . . ,XL is computed for t = 1, . . . ,25 and L = 100,400,1600.
In long-memory models, the sample mean X̄L can be a poor approximation to the
true mean E[X0] even for large L, and this may result in considerable negative (finite
sample) bias in the sample ACF (see, e.g., [22]). Due to this bias, it may be difficult to
see if we succeed in simulating from (3.2), and hence we will assume that E[X0] is
known to be zero when computing the sample ACF. We calculate the 95% confidence
interval [

ρ̄(k)− 1.96 σ̂ (k)√
200
, ρ̄(k) + 1.96 σ̂ (k)√

200

]
,

for the mean of the sample ACF based on L observations at lag k. Here ρ̄(k) is the
sample mean and σ̂ (k) is the sample standard deviations of the ACF at lag k based on
the 200 replications. In Figure 3, the theoretical ACFs and the corresponding 95%
confidence intervals for the mean of the sample ACFs are plotted for β = 0.1,0.2 and
L = 100,400,1600. We see that, when correcting for the bias induced by an unknown
mean E[X0], simulation from equation (4.8) results in a fairly unbiased estimator of
the ACF for small values of β. When β > 0.25, in the case where the ACF of (Xt)t∈R is
not even in L2, the results are more unstable as it requires large values of c1 and c2 to
ensure that the simulation gives a good approximation to the stationary distribution
of (Xt)t∈R. Moreover, even after correcting for the bias induced by an unknown mean
of the observed process, the sample ACF for the ARFIMA process shows considerable
finite sample bias when β > 0.25, see [22], and hence we may expect this to apply to
solutions to (3.2) as well.

In Figure 4 we have plotted box plots for the 200 replications of the sample ACF
for β = 0.1,0.2 and L = 100,400,1600. We see that the sample ACFs have the expected
convergence when L grows and that the distribution is more concentrated in the case
where less memory is present.

Following the same approach as above, we simulate the solution to the equation
discussed in Example 4.5. Specifically, the simulation is based on equation (3.2),
restricted to the case where η(dv) = −e−v dv and (Lt)t∈R is a standard Brownian
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Figure 3: Theoretical ACF and 95% confidence intervals of the mean of the sample ACF based on 200
replications of X1, . . . ,XL. Columns correspond to L = 100, L = 400 and L = 1600, respectively, and rows
correspond to β = 0.1 and β = 0.2, respectively. The model is (4.8).
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Figure 4: Box plots for the sample ACF based on 200 replications of X1, . . . ,XL together with the theoretical
ACF. Columns correspond to L = 100, L = 400 and L = 1600, respectively, and rows correspond to β = 0.1
and β = 0.2, respectively. The model is (4.8).

motion. In this case, we use the approximation∫
R

[
(n∆−u)−β+ − ((n− 1)∆−u)−β+

] ∫ ∞
0
Xu−v e

−v dv du

=
∫ ∞

0
Xn∆−v

∫ v

0

[
(u −∆)−β+ −u

−β
+

]
eu−v dudv

'1
2
∆X(n−1)∆f (∆)

+
c1∑
k=2

1
4
∆(X(n−k)∆ +X(n−k+1)∆)(ϕ(k∆) +ϕ((k − 1)∆))
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where ϕ : R→R is given by

ϕ(v) =
∫ v

0

[
(u −∆)−β+ −u−β

]
eu−v dv.

We approximate ϕ recursively by noting that

ϕ(k∆) =
∫ k∆

0

[
(u −∆)−β+ −u−β

]
eu−k∆ dv

' 1
2

(1 + e−∆)
∫ k∆

(k−1)∆

[
(u −∆)−β+ −u

−β
+

]
dv + e−∆ϕ((k − 1)∆)

=
1

2(1− β)

(
1 + e−∆

)[
((k − 1)∆)1−β − (k∆)1−β)

]
+ e−∆ϕ((k − 1)∆)

for k ≥ 1. The theoretical ACFs and corresponding 95% confidence intervals are
plotted in Figure 5 and the box plots in Figure 6. The findings are consistent with
first example that we considered.
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Figure 5: Theoretical ACF and 95% confidence intervals of the mean of the sample ACF sample based on
200 replications of X1, . . . ,XL. Columns correspond to L = 100, L = 400 and L = 1600, respectively, and
rows correspond to β = 0.1 and β = 0.2, respectively. The model is (4.13).
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Figure 6: Box plots for the sample ACF based on 200 replications of X1, . . . ,XL together with the theoretical
ACF. Columns correspond to L = 100, L = 400 and L = 1600, respectively, and rows correspond to β = 0.1
and β = 0.2, respectively. The model is (4.13).

6 Supplement

6.1 Spectral representations of continuous-time stationary processes

This appendix provides an exposition of the spectral representation for continuous-
time stationary, centered and square integrable processes with a continuous autoco-
variance function. The proofs are found in Appendix 4 For an extensive treatment we
refer to [15, Section 9.4] and [19, Appendix A2.1].

Recall that if S = {S(t) : t ∈R} is a (complex-valued) process such that

(i) E[|S(t)|2] <∞ for all t ∈R,

(ii) E[|S(t + s)− S(t)|2]→ 0 as s ↓ 0 for all t ∈R, and

(iii) E[(S(v)− S(u))(S(t)− S(s))] = 0 for all u ≤ v ≤ s ≤ t,

we may (and do) define integration of f with respect to S in the sense of [15, pp
388-390] for any f ∈ L2(G), where G is the control measure characterized by

G((s, t]) = E

[
|S(t)− S(s)|2

]
for s ≤ t. We have the following stochastic Fubini result for this type of integral:

Proposition 6.1. Let S = {S(t) : t ∈R} be a process given as above. Let µ be a finite Borel
measure on R, and let f : R2 → C be a measurable function in L2(µ ×G). Then all the
integrals below are well-defined and∫

R

(∫
R

f (x,y)µ(dx)
)
S(dy) =

∫
R

(∫
R

f (x,y)S(dy)
)
µ(dx) (6.1)

almost surely.
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Suppose that (Xt)t∈R is a stationary process with E[X2
0 ] <∞ and E[X0] = 0, and

denote by γX its autocovariance function. Assuming that γX is continuous, it follows
by Bochner’s theorem that there exists a finite Borel measure FX on R having γX as
its Fourier transform, that is,

γX(t) =
∫
R

eityFX(dy), t ∈R.

The measure FX is referred to as the spectral distribution of (Xt)t∈R.

Theorem 6.2. Let (Xt)t∈R be given as above and let FX be the associated spectral distribu-
tion. Then there exists a (complex-valued) process ΛX = {ΛX(y) : y ∈R} satisfying (i)-(iii)
above with control measure FX , such that

Xt =
∫
R

eityΛX(dy) (6.2)

almost surely for each t ∈R. The process ΛX is called the spectral process of (Xt)t∈R and
(6.2) is referred to as its spectral representation.

Remark 6.3. Let the situation be as in Theorem 6.2 and note that if there exists
another process Λ̃X = {Λ̃X(y) : y ∈R} such that

Xt =
∫
R

eity Λ̃X(dy)

for all t ∈R, then its control measure is necessarily given by FX and∫
R

f (y)ΛX(dy) =
∫
R

f (y)Λ̃X(dy)

almost surely for all f ∈ L2(FX ).

6.2 Proofs

Proof (Proof of Proposition 3.1). For a given γ > 0 define hγ (z) = (−z)γ /h(z) for z ∈
C \ {0} with Re(z) ≤ 0. By continuity of h and the asymptotics |hγ (z)| ∼ |η([0,∞))|−1|z|γ ,
|z| → 0, and |hγ (z)| ∼ |z|γ−1, |z| →∞, it follows that

sup
x<0

∫
R

|hγ (x+ iy)|2 dy <∞ (6.3)

for γ ∈ (−1/2,1/2). In other words, hγ is a certain Hardy function, and thus there exists
a function fγ : R→ R in L2 which is vanishing on (−∞,0) and has L[fγ ](z) = hγ (z)

when Re(z) < 0, see [3, 11, 13]. Note that fγ is indeed real-valued, since hγ (x − iy) =
hγ (x + iy) for y ∈ R and a fixed x < 0. We can apply [23, Proposition 2.3] to deduce
that there exists a function g ∈ L2 satisfying (3.6) and that it can be represented as
the (left-sided) Riemann-Liouville fractional integral of f0, that is,

g(t) =
1

Γ (β)

∫ t

0
f0(u)(t −u)β−1 du

117



Paper E · Stochastic differential equations with a fractionally filtered delay: a semimartingale
model for long-range dependent processes

for t > 0. Conversely, [23, Theorem 2.1] ensures that Dβg given by (3.7) is a well-
defined limit and that Dβg = f0. In particular, we have shown ((ii)) and if we can
argue that f0 ∈ L1, we have shown ((i)) as well. This follows from the assumption in
(3.1), since then we have that y 7→ L[f0](x+ iy) is differentiable for any x ≤ 0 (except
at 0 when x = 0) and

L[u 7→ uf0(u)](x+ iy) = −i d
dy
L[f0](x+ iy)

=
L[uη(du)](x+ iy)− (1− β)(x+ iy)−β

h(x+ iy)2 .

(6.4)

The function L[u 7→ uf0(u)] is analytic on {z ∈ C : Re(z) < 0} and from the identity
(6.4) it is not too difficult to see that it also satisfies the Hardy condition (6.3). This
means u 7→ uf0(u) belongs to L2, and hence we have that f0 belongs to L1. Since g is
the Riemann-Liouville integral of f0 of order β and f0 ∈ L1 ∩L2, [2, Proposition 4.3]
implies that g ∈ Lγ for (1− β)−1 < γ ≤ 2.

It is straightforward to verify (3.9) and to obtain the identity∫ t

s

(
Dβg

)
∗ η(u − ·)du =

∫
R

(
Dβ−1(s,t]

)
(u)g ∗ η(u − ·)du

almost everywhere by comparing their Fourier transforms. This establishes the rela-
tion

g(t − v)− g(s − v) =
∫ t

s

(
Dβg

)
∗ η(u − v)du +1(s,t](v)

By letting s→−∞, and using that Dβg and g are both vanishing on (−∞,0), we
deduce that

g(t) = 1[0,∞)(t)
(
1 +

∫ t

0
(Dβg) ∗ η(u)du

)
,

for almost all t ∈R which shows (3.8) and, thus, finishes the proof. �

Proof (Proof of Theorem 3.2). Since g ∈ L2, according to Proposition 3.1, andE[L2
1] <

∞ and E[L1] = 0,

Xt =
∫ t

−∞
g(t −u)dLu , t ∈R,

is a well-defined process (e.g., in the sense of [25]) which is stationary with mean zero
and finite second moments. By integrating both sides of (3.9) with respect to (Lt)t∈R
we obtain

Xt −Xs =
∫
R

(∫
R

(
Dβ−1(s,t]

)
(u)g ∗ η(u − r)du

)
dLr +Lt −Ls.

By a stochastic Fubini result (such as [1, Theorem 3.1]) we can change the order of
integration (twice) and obtain∫

R

(∫
R

(
Dβ−1(s,t]

)
(u)g ∗ η(u − r)du

)
dLr =

∫
R

(
Dβ−1(s,t]

)
(u)X ∗ η(u)du.
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This shows that (Xt)t∈R is a solution to (3.2). To show uniqueness, note that the
spectral process ΛX of any purely non-deterministic solution (Xt)t∈R satisfies∫

R

F [1(s,t]](y)(iy)βh(−iy)ΛX(dy) = Lt −Ls (6.5)

almost surely for any choice of s < t by Theorem 6.2 and Proposition 6.1. Using
the fact that (Xt)t∈R is purely non-deterministic, FX is absolutely continuous with
respect to the Lebesgue measure, and hence we can extend (6.5) from 1(s,t] to any
function f ∈ L2 using an approximation of f with simple functions of the form
s =

∑n
j=1αj1(tj−1,tj ] for αj ∈C and t0 < t1 < · · · < tn. Specifically, we establish that∫

R

F [f ](y)(iy)βh(−iy)ΛX(dy) =
∫
R

f (u)dLu (6.6)

almost surely for any f ∈ L2. In particular we may take f = g(t−·), g being the solution
kernel characterized in (3.6), so that F [g(t − ·)](y) = eity(iy)−β/h(−iy) and (6.6) thus
implies that

Xt =
∫ t

−∞
g(t −u)dLu , �

which ends the proof.

Proof (Proof of Proposition 3.6). We start by arguing that the limit in (3.13) exists
and is equal to

∫ t
−∞D

βg(t −u)dLu . For a given δ > 0 it follows by a stochastic Fubini
result that

β

Γ (1− β)

∫ ∞
δ

Xt −Xt−u
u1+β du =

∫
R

D
β
δ g(t − r)dLr , (6.7)

where

D
β
δ g(t) =

β

Γ (1− β)

∫ ∞
δ

g(t)− g(t −u)
u1+β du

for t > 0 and Dβδ g(t) = 0 for t ≤ 0. Suppose for the moment that (Lt)t∈R is a Brownian
motion, so that (Xt)t∈R is γ-Hölder continuous for all γ ∈ (0,1/2) by (3.2). Then,
almost surely, u 7→ (Xt −Xt−u)/u1+β is in L1 and the relation (6.7) thus shows that∫

R

[
D
β
δ g(t − r)−Dβδ′g(t − r)

]
dLr

P→ 0 as δ,δ′→ 0,

which in turn implies that (Dβδ g)δ>0 has a limit in L2. We also know that this limit

must be Dβg, since Dβδ g→Dβg pointwise as δ ↓ 0 by (3.7). Having established this
convergence, which does not rely on (Lt)t∈R being a Brownian motion, it follows
immediately from (6.7) and the isometry property of the integral map

∫
R
·dL that the

limit in (3.13) exists and that DβXt =
∫ t
−∞D

βg(t −u)dLu . To show (3.14) we start by

recalling the definition of Dβ−1(s,t] in (3.3) and that F [Dβ−1(s,t]](y) = (iy)βF [1(s,t]](y).
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This identity can be shown by using that the improper integral
∫∞

0 e±ivvγ−1 dv is equal
to Γ (γ)e±iπγ/2 for any γ ∈ (0,1). Now observe that

F
[∫

R

(
Dβ−1(s,t]

)
(u)g ∗ η(u − ·)du

]
(y) = (iy)βF [1(s,t]](y)F [g](−y)F [η](−y)

= F [1(s,t]](y)F
[(
Dβg

)
∗ η

]
(−y)

= F
[∫ t

s
(Dβg

)
∗ η(u − ·)du

]
(y),

and hence
∫
R

(
D
β
−1(s,t]

)
(u)g ∗ η(u − ·)du =

∫ t
s

(Dβg
)
∗ η(u − ·)du almost everywhere.

Consequently, using that DβXt =
∫ t
−∞D

βg(t −u)dLu and applying a stochastic Fubini
result twice,∫ t

s

(
DβX

)
∗ η(u)du =

∫
R

∫ t

s

(
Dβg

)
∗ η(u − r)dudLr

=
∫
R

∫
R

(
Dβ−1(s,t]

)
(u)g ∗ η(u − r)dudLr

=
1

Γ (1− β)

∫
R

[
(t −u)−β+ − (s −u)−β+

]
X ∗ η(u)du.

The semimartingale property of (Xt)t∈R is now an immediate consequence of (3.2). �

Proof (Proof of Proposition 3.7). Using (3.16) and that h(0) = −η([0,∞)), it follows
that fX(y) ∼ |y|−2β/η([0,∞))2 as y→ 0. To show the asymptotic behavior of γX at∞
we start by recalling that, for u,v ∈R,∫ ∞

u∨v
(s −u)β−1(s − v)β−1 ds =

Γ (β)Γ (1− 2β)
Γ (1− β)

|u − v|2β−1

by [16, p. 404]. Having this relation in mind we use Proposition 3.1((ii)) and (3.15) to
do the computations

γX(t) =
1

Γ (β)2

∫
R

∫
R

∫
R

Dβg(u)Dβg(v)(s+ t −u)β−1
+ (s − v)β−1

+ dv duds

=
1

Γ (β)2

∫
R

∫
R

Dβg(u)Dβg(v)
∫ ∞

(u−t)∨v
(s − (u − t))β−1(s − v)β−1 dsdv du

=
Γ (1− 2β)

Γ (β)Γ (1− β)

∫
R

∫
R

Dβg(u)Dβg(v)|u − v − t|2β−1 dv du

=
Γ (1− 2β)

Γ (β)Γ (1− β)

∫
R

γ(u)|u − t|2β−1 du, (6.8)

where γ(u) :=
∫
R
Dβg(u + v)Dβg(v)dv. Note that γ ∈ L1 since Dβg ∈ L1 by Proposi-

tion 3.1 and, using Plancherel’s theorem,

γ(u) =
∫
R

eiuy
∣∣∣F [

Dβg
]
(y)

∣∣∣2 dy = F
[
|h(i·)|−2

]
(u).

In particular
∫
R
γ(u)du = |h(0)|−2 = η([0,∞))−2, and hence it follows from (6.8) that

we have shown the result if we can argue that∫
R
γ(u)|u − t|2β−1 du

t2β−1 =
∫
R

γ(u)
|ut − 1|1−2β du→

∫
R

γ(u)du, t→∞. (6.9)
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It is clear by Lebesgue’s theorem on dominated convergence that∫ 0

−∞

γ(u)
|ut − 1|1−2β du→

∫ 0

−∞
γ(u)du, t→∞.

Moreover, since |h(i·)|−2 is continuous at 0 and differentiable on (−∞,0) and (0,∞)
with integrable derivatives, it is absolutely continuous on R with a density φ in L1.
As a consequence, γ(u) = F [φ](y)/(−iy) and, thus,∫ ∞

t/2

γ(u)
|ut − 1|1−2β du =

∫ ∞
1/2

tγ(tu)
|u − 1|1−2β du = i

∫ ∞
1/2

F [φ](tu)
u|u − 1|1−2β du. (6.10)

By the Riemann-Lebesgue lemma and Lebesgue’s theorem on dominated convergence
it follows that the right-hand side of expression in (6.10) tends to zero as t tends to
infinity. Finally, integration by parts and the symmetry of γ yields∫ t/2

0
γ(u)

(
1− 1
|ut − 1|1−2β

)
du

=
∫ 1/2

0
tγ(tu)

(
1− 1

(1−u)1−2β

)
du

=
(
21−2β − 1

)∫ −t/2
−∞

γ(u)du − (1− 2β)
∫ 1/2

0

1
(1−u)2−2β

∫ −tu
−∞

γ(v)dv du,

where both terms on the right-hand side converge to zero as t tends to infinity. Thus,
we have shown (6.9), and this completes the proof. �

Proof (Proof of Proposition 3.8). Observe that it is sufficient to argue E[(Xt−X0)2] ∼
t as t ↓ 0. By using the spectral representation Xt =

∫
R
eityΛX(dy) and the isometry

property of the integral map
∫
R
·dΛX : L2(FX )→ L2(P), see [15, p. 389], we have that

E

[
(Xt −X0)2

]
t

= t−2
∫
R

∣∣∣1− eiy ∣∣∣2fX(y/t)dy

=
∫
R

∣∣∣1− eiy ∣∣∣2
|y|2β

∣∣∣(−iy)1−β − t1−βF [η](y/t)
∣∣∣2 dy. (6.11)

Consider now a y ∈ R satisfying |y| ≥ C1t with C1 := (2|η|([0,∞)))1/(1−β). In this case
|y|1−β/2− |t1−βF [η](y/t)| ≥ 0, and we thus get by the reversed triangle inequality that∣∣∣1− eiy ∣∣∣2

|y|2β
∣∣∣(−iy)1−β − t1−βF [η](y/t)

∣∣∣2 ≤ 2

∣∣∣1− eiy ∣∣∣2
y2 .

If |y| < C1t, we note that the assumption on the function in (3.5) implies that

C2 := inf
|x|≤C1

∣∣∣(−ix)1−β −F [η](x)
∣∣∣ > 0,

which shows that ∣∣∣(−iy)1−β − t1−βF [η](y/t)
∣∣∣ ≥ t1−βC2 ≥

C2

C
1−β
1

|y|1−β .
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This establishes that ∣∣∣1− eiy ∣∣∣2
|y|2β

∣∣∣(−iy)1−β − t1−βF [η](y/t)
∣∣∣2 ≤ C

2(1−β)
1

C2
2

∣∣∣1− eiy ∣∣∣2
y2 .

Consequently, it follows from (6.11) and Lebesgue’s theorem on dominated conver-
gence that

E

[
(Xt −X0)2

]
t

→
∫
R

∣∣∣1− eiy ∣∣∣2
y2 dy =

∫
R

|F [1(0,1]](y)|2 dy = 1

as h ↓ 0, which was to be shown. �

Proof (Proof of Proposition 3.11). We start by arguing that the first term on the
right-hand side of the formula is well-defined. In order to do so it suffices to argue
that

E

[∫ t−s

0

∫ s

−∞
|Xw |

∫
[0,∞)

∣∣∣(Dβ−1(s,t−u]

)
(v +w)

∣∣∣ |η|(dv)dw |g |(du)
]

≤ E[|X0|]
∫ t−s

0

∫
[0,∞)

∫ s

−∞

∣∣∣(Dβ−1(s,t−u]

)
(v +w)

∣∣∣dw |η|(dv) |g |(du)

(6.12)

is finite. This is implied by the facts that

Γ (1− β)
∫ s

−∞

∣∣∣(Dβ−1(s,t−u]

)
(v +w)|dw

≤
∫ 0

u+s−t
(t − s −u +w)−β dw+

∫ 1

0
w−β − (t − s −u +w)−β dw

+ (1 + β)
∫ ∞

1
w−1−β(t − s −u)dw

=
1

1− β
(
2(t − s −u)1−β + 1− (t − s −u + 1)1−β

)
+

(1 + β)
β

(t − s −u)

≤ 2
1− β

(t − s)1−β +
(1 + β)
β

(t − s)

for u ∈ [0, t− s] and g(du) is a finite measure (since Dβg ∈ L1 by Proposition 3.1). Now
fix an arbitrary z ∈C with Re(z) < 0. It follows from (3.2) that

L[X1(s,∞)](z) =XsL[1(s,∞](z) +L[1(s,∞)(L· −Ls)](z)

+L
[
1(s,∞)

∫
R

Xu

∫
[0,∞)

(
Dβ−1(s,·]

)
(u + v)η(dv)du

]
(z).

(6.13)

By noting that (Dβ−1(s,t])(u) = 0 when t ≤ s < u we obtain

L
[
1(s,∞)

∫ ∞
s
Xu

∫
[0,∞)

(
Dβ−1(s,·]

)
(u + v)η(dv)du

]
(z)

=
1

Γ (1− β)
L
[∫ ∞

s
Xu

∫
[0,∞)

(· −u − v)−β+ η(dv)du
]
(z)

= L[1(s,∞)X](z)L[η](z)(−z)β−1.
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Combining this observation with (6.13) we get the relation(
− z − (−z)βL[η](z)

)
L[1(s,∞)X](z)

=Xs(−z)L[1(s,∞)](z) + (−z)L[1(s,∞)(L−Ls)](z)

+ (−z)L
[
1(s,∞)

∫ s

−∞
Xu

∫
[0,∞)

(
Dβ−1(s,·]

)
(u + v)η(dv)du

]
(z),

which implies

L[1(s,∞)X](z)

=L[g](z)L[Xsδ0(s − ·)](z) +L[g](z)(−z)L[1(s,∞)(L−Ls)](z)

+L[g](z)(−z)L
[
1(s,∞)

∫ s

−∞
Xu

∫
[0,∞)

(
Dβ−1(s,·]

)
(u + v)η(dv)du

]
(z)

=L[g(· − s)Xs](z) +L
[∫ ·

s
g(· −u)dLu

]
(z)

+L
[∫ ·−s

0

∫ s

−∞
Xw

∫
[0,∞)

(
Dβ−1(s,·−u]

)
(v +w)η(dv)dwg(du)

]
(z).

This establishes the identity

Xt =g(t − s)Xs +
∫ t

s
g(t −u)dLu

+
∫ t−s

0

∫ s

−∞
Xw

∫
[0,∞)

(
Dβ−1(s,t−u]

)
(v +w)η(dv)dwg(du)

(6.14)

almost surely for Lebesgue almost all t > s. Since both sides of (6.14) are continuous
in L1(P), the identity holds for each fixed pair s < t almost surely as well. By applying
the conditional mean E[· | Xu , u ≤ s] on both sides of (6.14) we obtain the result. �

Proof (Proof of Corollary 4.1). In this setup it follows that the function h in (3.5) is
given by

h(z) = (−z)1−β +κ+
R(−z)
Q(−z)

,

where Q(z) , 0 whenever Re(z) ≥ 0 by the assumption on A. This shows that h is
non-zero (on {z ∈C : Re(z) ≤ 0}) if and only if

Q(z)
[
z1−β +κ

]
+R(z) , 0 for all z ∈C with Re(z) ≥ 0. (6.15)

Condition (6.15) may equivalently be formulated as Q(z)[z+κzβ] +R(z)zβ , 0 for all
z ∈ C \ {0} with Re(z) ≥ 0 and h(0) = κ + bTA−1e1 , 0, which by Theorem 3.2 shows
that a unique solution to (4.5) exists. It also provides the form of the solution, namely
(3.11) with

F [g](y) =
(−iy)−β

(−iy)1−β +κ+ R(−iy)
Q(−iy)

=
Q(−iy)

Q(−iy)
[
− iy +κ(−iy)β

]
+R(−iy)(−iy)β

for y ∈R. This finishes the proof. �
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Proof (Proof of Proposition 4.2). We will first show that Dβf ∈ L1. By using that∫∞
0 eAu du = −A−1 we can rewrite Dβf as

Dβf (t) =
1

Γ (1− β)
bTA

(∫ t

0
eAu

[
(t −u)−β − t−β

]
du −

∫ ∞
t
eAut−β du

)
e1

for t > 0, from which we see that it suffices to argue that (each entry of)

t 7→
∫ t

0
eAu

[
(t −u)−β − t−β

]
du

belongs to L1. Since u 7→ eAu is continuous and with all entries decaying exponentially
fast as u→∞, this follows from the fact that, for a given γ > 0,∫ ∞

0

∫ t

0
e−γu

∣∣∣(t −u)−β − t−β
∣∣∣dudt

≤
∫ ∞

0
e−γu

(∫ u+1

u

(
(t −u)−β + t−β

)
dt + βu

∫ ∞
1
t−β−1 dt

)
du <∞.

Here we have used the mean value theorem to establish the inequality∣∣∣(t −u)−β − t−β
∣∣∣ ≤ βu(t −u)−β−1

for 0 < u < t. To show that Dβf ∈ L2, note that it is the left-sided Riemann-Liouville
fractional derivative of f , that is,

Dβf (t) =
1

Γ (1− β)
d
dt

∫ t

0
f (t −u)u−β du

for t > 0. Consequently, it follows by [26, Theorem 7.1] that the Fourier transform
F [Dβf ] of f is given by

F
[
Dβf

]
(y) = (−iy)βF [f ](y) = −(−iy)βbT (A+ iy)−1e1, y ∈R,

in particular it belongs to L2 (e.g., by Cramer’s rule), and thusDβf ∈ L2. By comparing
Fourier transforms we establish that (Dβg) ∗ f = g ∗ (Dβf ), and hence it holds that∫ ∞

0
DβXt−uf (u)du =

∫
R

(
Dβg

)
∗ f (t − r)dLr =

∫ ∞
0
Xt−uD

βf (u)du

using Proposition 3.6 and a stochastic Fubini result. This finishes the proof. �

Proof (Proof of Proposition 6.1). First, note that (6.1) is trivially true when f is of
the form

f (x,y) =
n∑
j=1

αj1Aj (x)1Bj (y) (6.16)

for α1, . . . ,αn ∈ C and Borel sets A1,B1, . . . ,An,Bn ⊆ R. Now consider a general f ∈
L2(µ ×G) and choose a sequence of functions (fn)n∈N of the form (6.16) such that
fn→ f in L2(µ×G) as n→∞. Set

Xn =
∫
R

(∫
R

fn(x,y)µ(dx)
)
S(dy), X =

∫
R

(∫
R

f (x,y)µ(dx)
)
S(dy)

and Y =
∫
R

(∫
R

f (x,y)S(dy)
)
µ(dx).
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Observe that X and Y are indeed well-defined, since x 7→ f (x,y) is in L1(µ) for G-
almost all y, y 7→ f (x,y) is in L2(G) for µ-almost all x,∫

R

∣∣∣∣∣∫
R

f (x,y)µ(dx)
∣∣∣∣∣2G(dy) ≤ µ(R)

∫
R

2
|f (x,y)|2 (µ×G)(dx,dy) <∞

and E

[∫
R

∣∣∣∣∣∫
R

f (x,y)S(dy)
∣∣∣∣∣2µ(dx)

]
=

∫
R

2
|f (x,y)|2 (µ×G)(dx,dy) <∞.

Next, we find that

E[|X −Xn|2] =
∫
R

∣∣∣∣∣∫
R

(f (x,y)− fn(x,y)µ(dx)
∣∣∣∣∣2G(dy)

≤ µ(R)
∫
R

2
|f (x,y)− fn(x,y)|2 (µ×G)(dx,dy)

which tends to zero by the choice of (fn)n∈N. Similarly, using thatXn =
∫
R

(∫
R
fn(x,y)S(dy)

)
µ(dx),

one shows that Xn→ Y in L2(P), and hence we conclude that X = Y almost surely. �

Proof (Proof of Theorem 6.2). For any given t ∈R set ft(y) = eity , y ∈R, and let HF
and HX be the set of all (complex) linear combinations of {ft : t ∈R} and {Xt : t ∈R},
respectively. By equipping HF and HX with the usual inner products on L2(FX ) and
L2(P), their closures HF and HX are Hilbert spaces. Due to the fact that

〈Xs,Xt〉L2(P) = E[XsXt] =
∫
R

ei(t−s)x FX(dy) = 〈fs, ft〉L2(FX ), s, t ∈R,

we can define a linear isometric isomorphism µ :HF →HX as the one satisfying

µ

( n∑
j=1

αjftj

)
=

n∑
j=1

αjXtj

for any given n ∈N, α1, . . . ,αn ∈ C and t1 < · · · < tn. Since 1(−∞,y] ∈HF for each y ∈R,
cf. [31, p. 150], we can associate a (complex-valued) process ΛX = {ΛX(y) : y ∈R} to
(Xt)t∈R through the relation

ΛX(y) = µ(1(−∞,y]).

It is straight-forward to check from the isometry property that ΛX is right-continuous
in L2(P), has orthogonal increments and satisfies

E

[
|ΛX(y2)−ΛX(y1)|2

]
= FX((y1, y2])

for y1 < y2. Consequently, integration with respect to ΛX of any function f ∈ L2(FX )
can be defined in the sense of [15, pp 388-390]. For any n ∈ N, α1, . . . ,αn ∈ C and
t0 < t1 < · · · < tn, we have∫

R

( n∑
j=1

αj1(tj−1,tj ](y)
)
ΛX(dy) =

n∑
j=1

αjµ(1(tj−1,tj ]) = µ
( n∑
j=1

αj1(tj−1,tj ]

)
.
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Since f 7→
∫
R
f (y)ΛX(dy) is a continuous map (from L2(FX ) into L2(P)), it follows by

approximation with simple functions and from the relation above that∫
R

f (y)ΛX(dy) = µ(f )

almost surely for any f ∈HF . In particular, it shows that

Xt = µ(ft) =
∫
R

eityΛX(dy), t ∈R,

which is the spectral representation of (Xt)t∈R. �
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Recovering The Background Noise Of A

Lévy-Driven CARMA Process Using An SDDE
Approach

Mikkel Slot Nielsen and Victor Rohde

Abstract

Based on a vast amount of literature on continuous-time ARMA processes,
the so-called CARMA processes, we exploit their relation to stochastic delay
differential equations (SDDEs) and provide a simple and transparent way of
estimating the background driving noise. An estimation technique for CARMA
processes, which is particularly tailored for the SDDE specification, is given along
with an alternative and (for the purpose) suitable state-space representation.
Through a simulation study of the celebrated CARMA(2,1) process we check the
ability of the approach to recover the distribution.

Keywords: continuous-time ARMA process; Lévy processes; noise estimation; stochastic
volatility

1 Introduction

Continuous-time ARMA processes, specifically the class of CARMA processes, have
been studied extensively and found several applications. The most basic CARMA
process is the CAR(1) process, which corresponds to the Ornstein-Uhlenbeck process.
This process serves as the building block in stochastic modeling, e.g., [1] use it as
the stochastic volatility component in option pricing modeling and [13] models (log)
spot price of many different commodities through an Ornstein-Uhlenbeck specifica-
tion. More recently, several researchers have paid attention to higher order CARMA
processes. To give a few examples, [8] model turbulent wind speed data as a CAR(2)
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process, [11] and [3] fit a CARMA(2,1) process to electricity spot prices, and [4] find
a good fit of the CAR(3) to daily temperature observations (and thus, suggests a
suitable model for the OTC market for temperature derivatives). In addition, as for
the CAR(1) process, several studies have concerned the use of CARMA processes in
the modeling of stochastic volatility (see, e.g., [7, 14, 16]).

From a statistical point of view, as noted in the above references, the ability to
recover the underlying noise of the CARMA process is important. However, while it is
possible to recover the driving noise process, it is a subtle task. Due to the non-trivial
nature of the typical algorithm, see [7], implementation is not straightforward and
approximation errors may be difficult to locate. The recent study of [2] on processes
of ARMA structure relates CARMA processes to certain stochastic (delay) differential
equations, and this leads to an alternative way of backing out the noise from the
observed process which is transparent and easy to implement. The contribution of
this paper is exploiting this result to get a simple way to recover the driving noise.
The study both relies and supports the related work of [7].

Section 2 recalls a few central definitions and gives a dynamic interpretation of
CARMA processes by relating them to solutions of stochastic differential equations.
Section 3 briefly discusses how to do (consistent) estimation and inference in the
dynamic model and, finally, in Section 4 we investigate through a simulation study
the ability of the approach to recover the distribution of the underlying noise for two
sample frequencies.

2 CARMA processes and their dynamic SDDE representation

Recall that a Lévy process is interpreted as the continuous-time analogue to the
(discrete-time) random walk. More precisely, a (one-sided) Lévy process (Lt)t≥0,
L0 = 0, is a stochastic process having stationary independent increments and cádlág
sample paths. From these properties it follows that the distribution of L1 is infinitely
divisible, and the distribution of (Lt)t≥0 is determined by the one of L1 according to
the relation

E[eiyLt ] = E[eiyL1 ]t

for y ∈ R and t ≥ 0. The definition is extended to a two-sided Lévy process (Lt)t∈R,
L0 = 0, which can be constructed from a one-sided Lévy process (L1

t )t≥0 by taking
an independent copy (L2

t )t≥0 and setting Lt = L1
t if t ≥ 0 and Lt = −L2

(−t)− if t < 0.
Throughout, (Lt)t∈R denotes a two-sided Lévy process, which is assumed to be square
integrable.

Next, we will give a brief recap of Lévy-driven CARMA processes. (For an extensive
treatment, see [5, 7, 9].) Let p ∈N and set

P (z) = zp + a1z
p−1 + · · ·+ ap and Q(z) = b0 + b1z+ · · ·+ bp−1z

p−1 (2.1)
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for z ∈C and a1, . . . , ap,b0, . . . ,bp−1 ∈R. Define

Ãp =



0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−ap −ap−1 −ap−2 · · · −a1


,

ep =
[
0 0 · · · 0 1

]′
∈ Rp, and b =

[
b0 b1 · · · bp−2 bp−1

]′
. In order to ensure

the existence of a casual CARMA process we will assume that the eigenvalues of Ãp
or, equivalently, the zeroes of P all have negative real parts. Then there is a unique
(strictly) stationary R

p-valued process (Xt)t∈R satisfying

dXt = ÃpXt dt + ep dLt , (2.2)

and it is explicitly given by Xt =
∫ t
−∞ e

Ãp(t−u)ep dLu for t ∈R. For a given q ∈N0 with
q < p, we set bq = 1 and bj = 0 for q < j < p. A CARMA(p,q) process (Yt)t∈R is then the
strictly stationary process defined by

Yt = b′Xt (2.3)

for t ∈R. This is the state-space representation of the formal stochastic differential
equation

P (D)Yt =Q(D)DLt , (2.4)

where D denotes differentiation with respect to time. One says that (Yt)t∈R is causal,
since Yt is independent of (Ls−Lt)s>t for all t ∈R. We will say that (Yt)t∈R is invertible
if all the zeroes of Q have negative real parts. The word "invertible" is justified by
Theorem 2.1 below and the fact that this is the assumption imposed in [7] in order
to make the recovery of the increments of the Lévy process possible. In Figure 1 we
have simulated a CARMA(2,1) process driven by a gamma (Lévy) process and by a
Brownian motion, respectively.

Figure 1: A simulation of a CARMA(2,1) process with parameters a1 = 1.3619, a2 = 0.0443, and b0 = 0.2061.
It is driven by a gamma (Lévy) process with parameters λ = 0.2488 and ξ = 0.5792 on the left and a
Brownian motion with mean µ = 0.1441 and standard deviation σ = 0.2889 on the right.

For a given finite (signed) measure η concentrated on [0,∞) we will adopt a
definition from [2] and say that an integrable measurable process (Yt)t∈R is a solution
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to the associated Lévy-driven stochastic delay differential equation (SDDE) if it is
stationary and satisfies

dYt =
∫

[0,∞)
Yt−v η(dv)dt + dLt . (2.5)

In the formulation of the next result we denote by δ0 the Dirac measure at 0 and use
the convention

∏
∅ = 1 and

∑
∅ = 0. Furthermore, we introduce the finite measure

ηβ = 1[0,∞)(v)eβv dv for β ∈ C with Re(β) < 0, and let η0 = δ0 and ηj = ηj−1 ∗ ηβj for
j = 1, . . . ,p − 1. By relying on [2, Theorem 3.12] we get the following dynamic SDDE
representation of an invertible CARMA(p,p − 1) process:

Theorem 2.1. Let (Yt)t∈R be an invertible CARMA(p,p −1) process and let β1, . . . ,βp−1
be the roots of Q. Then (Yt)t∈R is the (up to modification) unique stationary solution to
(2.5) with the real-valued measure η given by

η =
p−1∑
j=0

αjηj , (2.6)

where α0, . . . ,αp−1 ∈C are chosen such that the relation

P (z) = z
p−1∏
k=1

(z − βk)−
p−1∑
j=0

αj

p−1∏
k=j+1

(z − βk) (2.7)

holds for all z ∈C. In particular, if β1, . . . ,βp−1 are distinct,

η(dv) = γ0δ0(dv)+
(
1[0,∞)(v)

p−1∑
i=1

γie
βiv

)
dv (2.8)

where

γ0 = −
(
a1 +

p−1∑
j=1

βj

)
and γi = −

P (βi)
Q′(βi)

for i = 1, . . . ,p − 1.

Proof. It follows immediately from [2, Theorem 3.12] that (Yt)t∈R is the unique
stationary solution to (2.5) with η given by (2.6). Assume now that the roots of Q
are distinct. Then relation (2.7) implies in particular that γ0 = α0 = −(a1 +

∑p−1
j=1 βj ).

Moreover, an induction argument shows that

ηj (dv) = 1[0,∞)(v)
j∑
i=1

eβiv
j∏

k=1,k,i

(βi − βk)−1 dv,

from which it follows that

η(dv)−α0δ0(dv) =
p−1∑
j=1

αj

(
1[0,∞)(v)

j∑
i=1

eβiv
j∏

k=1,k,i

(βi − βk)−1 dv

)

= 1[0,∞)(v)
p−1∑
i=1

eβiv
p−1∑
j=i

αj

j∏
k=1,k,i

(βi − βk)−1 dv.
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Finally, observe that the definition of α0,α1, . . . ,αp−1 implies that

γi =

∑p−1
j=i αj

∏p−1
k=j+1(βi − βk)∏p−1

k=1,k,i(βi − βk)
=
p−1∑
j=i

αj

j∏
k=1,k,i

(βi − βk)−1, i = 1, . . . ,p − 1,

which concludes the proof. �

Remark 2.2. In [7] they assume that the roots of P are distinct. This makes it possible
to write (Yt)t∈R as a sum of dependent Ornstein-Uhlenbeck processes, which they
in turn use to recover the driving Lévy process. In Theorem 2.1 above we invert the
CARMA process by using that it is a solution to an SDDE and thereby circumvent
the assumption of distinct roots. On the other hand, when q ≥ 2, the roots of Q may
complex-valued and this would make an estimation procedure that is parametrized
by these roots (such as the one given in Section 3) more complicated in practice.

Theorem 2.1 gives an insightful intuition about inverting CARMA processes as
well. Let F be the Fourier transform where F [f ](y) =

∫
R
eiyxf (x)dx for f ∈ L1. If we

then heuristically take this Fourier transform on both sides of (2.4) we get

P (−iy)F [Y ](y) =Q(−iy)F [DL](y).

For γ0 ∈R, this can be rewritten as

F [DL](y) =
(
P (−iy) + (iy +γ0)Q(−iy)

Q(−iy)
−γ0

)
F [Y ](y) +F [DY ](y).

If we let γ0 = −
(
a1 +

∑p−1
j=1 βj

)
then

y 7→
P (−iy) + (iy +γ0)Q(−iy)

Q(−iy)
∈ L2,

and consequently, there exists f ∈ L2 such that(
P (−iy) + (iy +γ0)Q(−iy)

Q(−iy)
−γ0

)
F [Y ](y) = F [−f ∗Y −γ0Y ](y).

We conclude that (Yt)t∈R satisfy the formal equation DYt = f ∗ Yt + γ0Yt +DLt . By
integrating this equation we get an equation of the form (2.5), and in the case where
Q has distinct roots, contour integration and Cauchy’s residue theorem imply that

f (v) = 1[0,∞)(v)
p−1∑
i=1

−
P (βi)
Q′(βi)

eβiv

in line with Theorem 2.1.

The simplest example beyond the (Lévy-driven) Ornstein-Uhlenbeck process is
the invertible CARMA(2,1) process:

Example 2.3. Suppose that a0, a1 ∈ R are chosen such that the zeroes of P (z) = z2 +
a1z + a2 have negative real parts and let b0 > 0 so that the same holds for Q(z) =
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b0 + z. Then there exists an associated invertible CARMA(2,1) process (Yt)t∈R, and
Theorem 2.1 implies that

dYt = α0Yt dt +α1

∫ ∞
0
eβ1vYt−v dv dt + dLt ,

where β1 = −b0, α0 = b0 − a1, and α1 = (a1 − b0)b0 − a2. Note that, in this particular
case, we have γ0 = α0 and γ1 = α1.

We end this section by giving the mean and the autocovariance function of the
invertible CARMA(p,p −1) process. To formulate the result we introduce the p × p-
matrix

Ap =



β1 0 0 · · · 0 1
1 β2 0 · · · 0 0
0 1 β3 · · · 0 0
...

...
. . .

. . .
...

...
0 0 · · · 1 βp−1 0
α1 α2 · · · αp−2 αp−1 α0


, (2.9)

where α0,α1,β1, . . . ,αp−1,βp−1 ∈ C are given as in Theorem 2.1. In case p = 1, respec-
tively p = 2, the matrix in (2.9) reduces to A1 = α0, respectively

A2 =
[
β1 1
α1 α0

]
.

Proposition 2.4. Let (Yt)t∈R be an invertible CARMA(p,p − 1) process and let η be the
associated measure introduced in Theorem 2.1. Then

E[Yt] = −
µ

η([0,∞))
and γ(t) := Cov(Yt ,Y0) = σ2e′pe

Ap |t|Σep, t ∈R,

where

µ = E[L1], σ2 = Var(L1), and Σ =
∫ ∞

0
eApyepe

′
pe
A′py dy.

In particular, (Yt)t∈R is centered if and only if (Lt)t∈R is centered.

Proof. The mean of Yt is obtained from (2.5) using the stationarity of (Yt)t∈R. The
autocovariance of (Yt)t∈R function is given in [2, p. 14]. �

3 Estimation of the SDDE parameters

Fix ∆ > 0 and n ∈ N, and suppose that we have n + 1 equidistant observations
Y0,Y∆,Y2∆, . . . ,Yn∆ of an invertible CARMA(p,p − 1) process (Yt)t∈R. Our interest will
be on estimating the vector of parameters

θ0 = (α0,α1,β1,α2,β2, . . . ,αp−1,βp−1)′

of η in (2.6). We will restrict our attention to the case where θ0 ∈ R2p−1. For sim-
plicity, we will also assume that (Yt)t∈R or, equivalently, (Lt)t∈R is centered. For any
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given θ let Pk−1(Yk∆ | θ) be the L2(Pθ)-projection of Yk∆ onto the linear span of
Y0,Y∆,Y2∆, . . . ,Y(k−1)∆ and set εk(θ) = Yk∆ − Pk−1(Yk∆ | θ). Then the least squares esti-
mator θ̂n of θ0 is the point that minimizes

θ 7→
n∑
k=1

εk(θ)2.

In practice, the projections Pk−1(Yk∆ | θ), k = 1, . . . ,n, can be computed using the
Kalman recursions (see, e.g., [6, Proposition 12.2.2]) together with the state-space
representation given in Proposition 3.1 below. We stress that one can compute the
projections without a state-space representation, e.g., using the Durbin-Levinson
algorithm (see [6, p. 169]), but this approach will be very time-consuming for large
n and a cut-off is necessary in practice. (This technique is used by [12] in the SDDE
framework (2.5) when η is compactly supported and (Lt)t∈R is a Brownian motion.)
Under weak regularity assumptions, following the arguments in [7, Proposition 4-5]
that rely on [10], one can show that the estimator θ̂n of θ0 is (strongly) consistent and
asymptotically normal.

Proposition 3.1 provides a convenient state-space representation of (Yk∆)k∈N0
in

terms of α0,α1,β1, . . . ,αp−1,βp−1 (rather than the one from the definition of (Yt)t∈R in
terms of the coefficients of P and Q).

Proposition 3.1. Let the setup be as above and let Ap be the matrix given in (2.9). Then
(Yk∆)k∈N0

has the state-space representation Yk∆ = e′pZk , k ∈N0, with (Zk)k∈N0
satisfying

the state-equation

Zk = eAp∆Zk−1 +Uk , k ∈N,

where (Uk)k∈N is a sequence of i.i.d. random vectors with mean 0 and covariance matrix∫ ∆

0 e
Apuepe

′
pe
A′pu du.

Proof. It follows by [2, Proposition 3.13] that Yt = e′pZ̃t , t ∈ R, where (Z̃t)t∈R is the
R
p-valued Ornstein-Uhlenbeck process given by

Z̃t =
∫ t

−∞
eAp(t−u)ep dLu

for t ∈R. Thus, by defining Zk = Z̃k∆ so that Yk∆ = e′pZk , k ∈N0, and observing that

Zk =
∫ (k−1)∆

−∞
eAp(k∆−u)ep dLu +

∫ k∆

(k−1)∆
eAp(k∆−u)ep dLu = eAp∆Zk−1 +Uk

with Uk :=
∫ k∆

(k−1)∆ e
Ap(k∆−u)ep dLu for k ∈N, the result is immediate. �

4 A simulation study, p = 2

The simulation of the invertible CARMA(2,1) is done in a straightforward manner
by the (defining) state-space representation of (Yt)t∈R and an Euler discretization
of (2.2). In order to ensure that X0 is a realization of the stationary distribution we
take 20,000 steps of size 0.01 before time 0. Given X0 the simulation is based on
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200,000 steps each of size 0.01, and then it is assumed that we have n+ 1 = 2,000,
respectively n + 1 = 20,000, observations of the process Y0,Y∆,Y2∆, . . . ,Y(n−1)∆ on a
grid with distance ∆ = 1, respectively ∆ = 0.1, between adjacent points. We will be
considering the case where the background noise (Lt)t∈R is a gamma (Lévy) process
with shape parameter λ > 0 and scale parameter ξ > 0. Recall that the gamma process
with parameters λ and ξ is a pure jump process with infinite activity, and the density
f (at time 1) is given by

f (x) =
1

Γ (λ)ξλ
xλ−1e

− xξ , x > 0,

where Γ is the gamma function. In line with [7] we will choose the parameters to be λ =
0.2488 and ξ = 0.5792. For comparison we will also study the situation where (Lt)t∈R
is Brownian motion with mean µ = λξ = 0.1441 and standard deviation σ = ξ

√
λ =

0.2889 (these parameters are chosen so that the Brownian motion matches the mean
and standard deviation of the gamma process). After subtracting the sample mean
Ȳn = n−1 ∑n−1

k=0Yk∆ from the observations, the vector of true parameters θ0 = (α0,α1,β1)
is estimated as outlined in Section 3. We will choose θ0 = (−1.1558,0.1939,−0.2061)
as in [7] (this choice corresponds to a1 = 1.3619, a2 = 0.0443, and b0 = 0.2061, which
are certain estimated values of a stochastic volatility model by [15]). We repeat the
experiment 100 times and the estimated parameters are given in Table 1.

Sample Sample
Noise Spacing Parameter mean Bias std deviation

Gamma

∆ = 1
α0 -1.2075 - 0.0517 0.1155
α1 0.2157 0.0218 0.0501
β1 -0.2190 -0.0129 0.0366

∆ = 0.1
α0 -1.1688 -0.0130 0.0466
α1 0.1934 -0.0005 0.0315
β1 -0.2053 0.0008 0.0296

Gaussian

∆ = 1
α0 -1.1967 - 0.0409 0.1147
α1 0.2117 0.0178 0.0524
β1 -0.2201 -0.0140 0.0358

∆ = 0.1
α0 -1.1653 -0.0095 0.0469
α1 0.2002 0.0062 0.0353
β1 -0.2121 -0.0060 0.0324

Table 1: Estimated SDDE parameters based on 100 simulations of the CARMA(2,1) process on [0,2000]
with true parameters α0 = −1.1558, α1 = 0.1939, and β1 = −0.2061.

It appears that the (absolute value of the) bias of (α0,α1,β1) is very small when
∆ = 0.1. The general picture is that the bias is largest for α0, and it is also consistently
negative. This observations should, however, be seen in light of the relative size of α0
compared to α1 and β1.

Once we have estimated θ0 we can estimate the driving Lévy process by exploiting
the relation presented in Theorem 2.1 and using the trapezoidal rule. Note that, as in
the estimation, we use the relation in Theorem 2.1 on the demeaned data so that we
in turn recover the centered version of the Lévy process. Finally, to obtain an estimate
of the true Lévy process we estimate µ = E[L1] using Proposition 2.4. In order to
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get a proper approximation of the integral
∫∞

0 eβ1v(Yt−v −Eθ0
[Y0])dv we will only be

estimating Lk∆ −L(k−1)∆ for m := 50∆−1 ≤ k ≤ n. If one is interested in estimating the
entire path L(m+1)∆−Lm∆,L(m+2)∆−Lm∆, . . . ,Ln∆−Lm∆, one will need data observed at a
high frequency, that is, small ∆, since the approximation errors accumulate over time.
Typically, one is more interested in estimating the distribution of L1, which is less
sensitive to these approximation errors, and this is our focus in the following. For this
reason, we have in Figure 2 plotted five estimations of the distribution function of L1
in dashed lines against the true distribution function (represented by a solid line) in
the low frequency case (∆ = 1). The left, respectively right, figure corresponds to the
gamma, respectively Gaussian, case. Due to the above conventions, each estimated
distribution function is based on 1,950 estimated realizations of L1. Generally, the
estimated distribution functions in the figures seem to capture the true structure
and give a fairly precise estimate, however, there is a slight tendency to over-estimate
small values and under-estimate large values.

Due to the high degree of precision of the estimated distribution functions, we
plot an associated histogram, based on 1,950 realizations of L1 and a sampling
frequency of ∆ = 1, against the theoretical probability density function in order
to detect potential (smaller) biases. We compare this to a histogram of the actual
increments. For simplicity, we have restricted ourselves to the Gaussian case as the
gamma case is difficult to analyze close to zero (specifically, this will require more
observations). The plots are found in Figure 3. We see that the two histograms have
very similar appearances, but the histogram based on estimated parameters has a
slightly smaller mean.

5 Conclusion and further research

In this paper we have studied the ability to recover the underlying Lévy process
from an observed invertible CARMA process using the SDDE relation presented in
Theorem 2.1. In particular, after discussing the theoretical foundations, we did a
simulation study similar to the one in the classical approach presented in [7] and
estimated the underlying Lévy noise. Our findings supported the theory and it seemed
possible to (visually) detect the distribution of the underlying Lévy process.

Future research could include a further study of the performance of the presented
SDDE inversion technique compared to the classical approach in [7]. Specifically, in
light of Remark 2.2, a suggestion could be to consider a situation where P has a root
of multiplicity strictly greater than one or where q ≥ 2 and some of the roots of Q
are not real numbers. Such situations may complicate the analysis in one approach
relative to the other. Furthermore, it may be interesting to study inversion formulas
for invertible CARMA(p,q) processes when p > q + 1. In particular, a manipulation of
the equation (2.4) yields

dLt =
(
P (D)
Q(D)

Yt

)
dt. (5.1)

The content of Theorem 2.1 is that the right-hand side of (5.1) is meaningful when
p = q + 1 and it should be interpreted as dYt −

∫
[0,∞)Yt−v η(dv)dt. It seems that this

statement continues to hold when p > q + 1 as well when dYt is replaced by a suitable

linear combination of dYt ,dY
(1)
t , . . . ,dY

(p−q−1)
t .
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Figure 2: Five estimations of the distribution function of L1, based on estimates of α0, α1, and β1, plotted
against the true distribution function for a sampling frequency of ∆ = 1. The left corresponds to gamma
noise and the right to Gaussian noise.

Figure 3: Histograms of the true increments on the left and estimated increments, based on estimates of
α0, α1, and β1 for a sampling frequency of ∆ = 1, on the right plotted against the theoretical (Gaussian)
probability density function.

References

[1] Barndorff-Nielsen, O.E. and N. Shephard (2001). Non-Gaussian Ornstein-
Uhlenbeck-based models and some of their uses in financial economics. J. R.
Stat. Soc. Ser. B Stat. Methodol. 63(2), 167–241.

[2] Basse-O’Connor, A., M.S. Nielsen, J. Pedersen and V. Rohde (2019). Stochastic
delay differential equations and related autoregressive models. Stochastics.
Forthcoming. doi: 10.1080/17442508.2019.1635601.

[3] Benth, F.E., C. Klüppelberg, G. Müller and L. Vos (2014). Futures pricing in
electricity markets based on stable CARMA spot models. Energy Econ. 44, 392–
406.
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On non-negative modeling with CARMA

processes

Fred Espen Benth and Victor Rohde

Abstract

Two stationary and non-negative processes that are based on continuous-
time autoregressive moving average (CARMA) processes are discussed. First, we
consider a generalization of Cox-Ingersoll-Ross (CIR) processes. Next, we consider
CARMA processes driven by compound Poisson processes with exponential jumps
which are generalizations of Ornstein-Uhlenbeck (OU) processes driven by the
same noise. The way in which the two processes generalize CIR and OU processes
and the relation between them will be discussed. Furthermore, the stationary
distribution, the autocorrelation function, and pricing of zero-coupon bonds are
considered.

MSC 2010: 60G10, 91G30

Keywords: continuous-time ARMA processes; Lévy processes; Ornstein-Uhlenbeck processes;
stationary processes; square-root process

1 Introduction

The CIR process has been studied extensively and found many applications, in partic-
ular, as a model for the volatility of a financial asset (known as the Heston volatility
model [24]) and as a model for spot interest rates (see [19]). More recently, a CIR
process has been proposed to model wind speeds in [5] where a significant reduc-
tion in the mean-square prediction error is obtained compared with more classical
static models. The OU process is another extensively studied process that is popular
in modeling volatility (see [35]), interest rates (known as the Vasicek model [38]),
and wind (see [7]). Both the CIR and OU processes have the desirable trait of being
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continuous-time processes that are relatively simple, analytically tractable, stationary
and, when the OU process is driven by a subordinator, non-negative. On the other
hand, a drawback of CIR and OU processes is that the correlation structure is not
very flexible; the autocorrelation function (ACF) is simply an exponential function.
This often results in models that do not capture some of the correlation structure. For
example, in their application of a CIR process to wind, we see in [5, Figure 1] (see also
Figures 1 and 2 in this paper) that the model ACF overshoots the population ACF for
small lags and undershoots it for large lags. This motivates studying non-negative
and stationary processes that generalize CIR and OU processes but with a correlation
structure that is more flexible.

A natural generalization of OU processes is CARMA processes. CARMA processes
are stationary, there are conditions for non-negativity (see [13, 37]), and they have a
more flexible correlation structure (cf. Proposition 4.1). Many results about CARMA
processes are given in the literature, for example, a prediction formula, a multivariate
extension, noise recovery, an extension to Hilbert space valued processes, an extension
to incorporate long memory, and a CAR(∞) representation (see [4, 9, 13, 15, 16,
30]). Moreover, there exists a large body of literature on the application of CARMA
processes. For example, CARMA processes have been used to model realized volatility,
interest rates, electricity prices, and temperature (see [1, 6, 8, 13, 17, 22, 36]).

CIR and OU processes are closely related in two ways. First, sums of independent
copies of squared Gaussian OU processes constitute special cases of CIR processes.
Second, both a CIR process and an OU process driven by a compound Poisson process
with exponentially distributed jumps have a gamma distribution as their stationary
distribution and an exponential function as their ACF. In this paper we discuss two
stationary and non-negative models based on CARMA processes that build on these
two connections between CIR and OU processes.

Firstly, we consider a sum of independent copies of squared Gaussian CARMA
processes which, motivated by the discussion above, we will call a CIR-CARMA
process. Using a connection between the sum of independent copies of squared
CARMA processes and Wishart processes, we are able to extend this class of non-
negative stationary processes that naturally generalizes CIR processes.

Secondly, we will discuss a CARMA process driven by a compound Poisson process
with exponential jumps. This model is very tractable but its stationary distribution is
not well understood. We show that, under assumptions frequently satisfied in practice,
the stationary distribution is an infinite sum of independent gamma distributed
random variables.

In both models we also discuss the ACF, which we will compare with the ACF of a
CIR process (or, equivalently, an OU process), and we price zero-coupon bonds when
the spot interest rate is governed by the models to show their analytical tractability.

We start with Section 2 where we briefly introduce the setup. Section 3 introduces
the CIR-CARMA model and Section 4 discusses CARMA processes with a focus on
when the Lévy process is a compound Poisson process with exponential jumps.
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2 Preliminaries

Let (Ω,F ,P) be a complete probability space, equipped with a filtration (Ft)t≥0
satisfying the usual hypotheses (complete and right-continuous).

We now introduce CARMA processes. We will only consider causal CARMA
processes that is, where the auto-regressive polynomial P has roots with negative real
part, and we therefore limit our discussion to those. For a more thorough discussion
see for example [12]. For p ∈N,q ∈N∪ {0}, consider two polynomials P and Q given
by

P (z) = zp + a1z
p−1 + · · ·+ ap and

Q(z) = b0 + b1z+ · · ·+ bq−1z
q−1 + zq,

where p > q, and assume that the roots of P have negative real part. Then a causal
CARMA(p,q) process (Y (t))t∈R satisfies the formal differential equation

P (D)Y (t) =Q(D)DL(t) (2.1)

where (L(t))t∈R is a two-sided square integrable Lévy process. In the case (L(t))t∈R
is a standard Brownian motion, we denote it by (B(t))t∈R. CARMA processes may
be defined for Lévy processes possessing only finite log-moments (see [14]) but, for
convenience, we restrict ourselves to the square integrable case. The representation
(2.1) can be made rigorous by considering the state-space representation. In particular,
let (X(t))t∈R be a p-dimensional Ornstein-Uhlenbeck process that satisfies

dX(t) = AX(t)dt + epdL(t),

where ep is the p-th standard basis vector in R
p and

A =



0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . .

. . .
...

0 0 · · · 0 1
−ap −ap−1 · · · −a2 −a1


. (2.2)

Then (Y (t))t∈R is defined by Y (t) = b>X(t) where

b = (b0, . . . , bq−1,1,0, . . . ,0)> ∈Rp, (2.3)

and x> denotes the transpose of x. We call (X(t))t∈R the state-space process associated
to the CARMA process (Y (t))t∈R.

CARMA processes have a moving average representation, that is,

Y (t) =
∫
R

g(t −u)dL(u), t ∈R, (2.4)

where g : R→R is characterized by

F [g](y) :=
∫
R

e−iyxg(x)dx =
Q(iy)
P (iy)

, y ∈R.
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If (Y (t))t∈R is causal then g(x) = b>eAxep for x ≥ 0 and zero otherwise.
If the polynomial P has distinct roots with negative real part then the spectral

decomposition of g takes the simple form

g(x) =
p∑
i=1

Q(αi)
P ′(αi)

eαix, x ≥ 0, (2.5)

where α1, . . . ,αp are the roots of P and P ′ denotes the differential of P . In general, if P
does not have distinct roots, g still has a spectral decomposition but, to remain brief,
we will not give the details here (see [12] for more on this case).

We will say a random variable has an exponential distribution with parameter
κ > 0 if it has density

x 7→ κe−κx, x > 0,

and say it has a gamma distribution with shape α > 0 and rate β > 0 if it has density

x 7→
βα

Γ (α)
xα−1e−βx, x > 0.

Here, Γ denotes the gamma function.

3 The CIR-CARMA process

A sum of independent copies of squared OU processes constitutes a special case of a
CIR process. In this section we will investigate what happens if the OU processes are
replaced by CARMA processes. In particular, we will connect a sum of independent
copies of squared CARMA processes to the Wishart process, which is an extension of
CIR processes to the matrix valued case. As we will see, the Wishart process will play
a similar role to a sum of independent copies of squared CARMA processes as the
state-space process does for CARMA processes.

We start by introducing CIR processes. A process (r(t))t≥0 is said to be a CIR
process if it has dynamics given by

dr(t) = a(b − r(t))dt + σ
√
r(t)dB(t), r(0) = r0 ≥ 0, (3.1)

where a,b,σ > 0 are constants and (B(t))t∈R is a standard Brownian motion. The
process (r(t))t≥0 is mean-reverting and non-negative (even positive under the Feller
condition 2ab ≥ σ2).

Another extensively studied mean-reverting stochastic process is the OU process
(see, for example, [2, 34]). We say (X(t))t≥0 is a Gaussian OU process with mean-
reversion λ > 0 and volatility σ2

OU > 0 if

dX(t) = −λX(t)dt + σOU dB(t), X(0) = X0 ∈R.

The stationary distribution of (X(t))t≥0 is a mean zero Gaussian distribution with
variance σ2

OU /2λ. The following connection between CIR and Gaussian OU processes
is well-known (see, for example, [23, Proposition 4] or [26, Chapter 6]).
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Proposition 3.1. Let (Xi(t))t∈R, i = 1, . . . ,n, be OU processes driven by independent stan-
dard Brownian motions (Bi(t))t∈R, i = 1, . . . ,n, all with mean-reversion λ > 0 and volatility
σ2
OU > 0. Then r(t) =

∑n
i=1X

2
i (t) is a CIR process of the form in (3.1) with

a = 2λ, b =
nσ2

OU

2λ
, and σ = 2σOU .

Remark 3.2. From Proposition 3.1 we see that not all CIR processes are squared OU
processes. In particular, for a and σ fixed, λ and σOU are determined. Then b needs

to be an integer times
σ2
OU
2λ for the CIR process to be a squared OU process. A CIR

process makes sense for general b, and, in this way, CIR processes generalize sums of
squared OU processes.

Instead of summing independent copies of squared Gaussian OU processes as in
Proposition 3.1 we will now consider a sum of independent copies of squared causal
Gaussian CARMA processes. Let n ∈ N and (Yi(t))t∈R, i = 1, . . . ,n, be independent
copies of a causal CARMA(p,q) process driven by (σBi(t))t∈R, i = 1, . . . ,n, for σ > 0,
where (Bi(t))t∈R, i = 1, . . . ,n are independent standard Brownian motions, and let
(Xi(t))t∈R, i = 1, . . . ,n be the associated state-space processes. Finally, we define the
process (C(t))t∈R by

C(t) =
n∑
i=1

Y 2
i (t) = b>Z(t)b (3.2)

where (Z(t))t∈R is given by

Z(t) =
n∑
i=1

Xi(t)X
>
i (t). (3.3)

We will say that (C(t))t∈R is a CIR-CARMA(p,q) process.
The following proposition is a direct consequence of the definition of (C(t))t∈R

but we still highlight the result since it is an important point for the model.

Proposition 3.3. Let (C(t))t∈R be given by (3.2). Then C(t) is gamma distributed with
scale n/2 and rate (2σ2‖g‖22)−1, where g : R→R is given by

g(x) = b>eAxep, x ≥ 0,

and zero otherwise, and ‖ · ‖2 is the L2(R)-norm.

Proof. It follows by the moving average representation of a CARMA process in (2.4)
that Yi(t)/(σ‖g‖2) has a standard Gaussian distribution. Since

C(t) = σ2‖g‖22
n∑
i=1

(
Yi(t)
σ‖g‖2

)2

we therefore have that C(t) is the product of σ2‖g‖22 and a chi-square distributed
variable with n degrees of freedom, or, equivalently, C(t) is gamma distributed with
scale n/2 and rate (2σ2‖g‖22)−1. �
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We now state the ACF of a CIR-CARMA process.

Proposition 3.4. Let (C(t))t∈R be given by (3.2). Then, for s ≤ t,

corr(C(t),C(s)) =

b>eA(t−s)
∫∞

0 eAuepe
>
p e

A>u du b∫∞
0 (b>eAuep)2 du


2

. (3.4)

Proof. Initially, we note that for any mean zero two-dimensional Gaussian variable
(G1,G2) it follows from Isserlis’ Theorem (cf. [25]) that

E[G2
1G

2
2] = E[G2

1]E[G2
2] + 2(E[G1G2])2,

and therefore

cov(G2
1,G

2
2) = E[G2

1G
2
2]−E[G2

1]E[G2
2]

= 2(E[G1G2])2.

Next note that we may assume n = 1 in (3.2) since C(t) is a sum of independent copies.
Then, since (Y1(t))t∈R is a mean zero Gaussian process and

E[Y1(t)Y1(s)] = E

[∫ t

−∞
g(t −u)dB(u)

∫ s

−∞
g(s −u)dB(u)

]
=

∫
R

g(t −u)g(s −u)du

= b>
∫ ∞

0
eA(t−s+u)epe

>
p e

A>u du b,

the result follows. �

If the roots of P are distinct, then it is argued in [12, section 3] that

b>eA(t−s)
∫ ∞

0
eAuepe

>
p e

A>u du b

=
p∑
i=1

Q(αi)Q(−αi)
P ′(αi)P (−αi)

eαi (t−s)
(3.5)

where α1, . . . ,αp are the roots of P , which simplifies calculating the correlation given
in Proposition 3.4.

In Figure 1 the population ACF for the wind speeds at the turbine rotor height
every 10 minutes over 365 days in 2005 (ID 24500 located 43.48N and 107.29W in
Wyoming, USA) is plotted.1 We also plot the ACFs of the CIR and CIR-CARMA(2,1)
that minimize the squared distance between the 10 minutes lags for a total of 4 days.
A similar plot can be found in [5, Figure 1] where the population ACF is compared
with the CIR ACF calibrated using maximum likelihood estimation on the same data.
The CIR process given by (3.1) has ACF

t 7→ e−at , t ≥ 0,

1These data have been made available to us by Alexandre Brouste and corresponds to the same data
used in [5]. Unfortunately, these data are not anymore available on wind.nrel.gov as referred to in [5].
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(see, for example, [5]). Here, t is measured in units of ten minutes. For the CIR process
we find a = 0.0069 as the calibrated parameter and for the CIR-CARMA(2,1) process
we find the calibrated parameters

α1 = −0.0024, α2 = −0.0296, and β1 = −0.0165,

where α1 and α2 are the roots of P and β1 is the root of Q. The CIR-CARMA process
is seen to capture the correlation structure very well and, in particular, overcome the
difficulties of the CIR process in both capturing the rapid decay for small lags and
slow decay for large lags of the population ACF.
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Figure 1: Population ACF in gray, CIR ACF (dotted line), and CIR-CARMA(2,1) ACF (solid line).

Next, to show the analytical tractability of the CIR-CARMA process, we apply it to
zero-coupon bond pricing. We assume that the short rate is given by the CIR-CARMA
process in (3.2), that is, r(t) = C(t), and where we use P as the pricing measure.
Following the standard theory for pricing based on short rate processes, see e.g. [21],
we define the zero-coupon bond price P (t,T ) at time t ≥ 0 for a contract maturing at
time T ≥ t by

P (t,T ) = E

exp
{
−
∫ T

t
r(s)ds

}∣∣∣∣∣∣Ft
 . (3.6)

We find the following result:

Theorem 3.5. Let (C(t))t∈R and (Z(t))t∈R be given by (3.2) and (3.3), respectively. Then,
for 0 ≤ t ≤ T <∞,

P (t,T ) =exp{nφ(T − t) + tr(Φ(T − t)Z(t))}, (3.7)

where tr is the trace operator,

Φ(t) = Φ1(t)Φ2(t)−1 (3.8)
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with Φ1 : R→R
p×p,Φ2 : R→R

p×p, and φ : R→R given by(
Φ1(t)
Φ2(t)

)
= exp

((
A> −bb>

−2σ2epe
>
p −A

)
t

)(
0p
Ip

)
(3.9)

and

φ(t) = σ2
∫ t

0
e>p Φ(s)ep ds.

Here, Ip is the p × p identity matrix and 0p is the matrix in R
p×p of zeros.

Proof. Initially, we note that, by independence, we may assume n = 1 in (3.2). For
u : [0,∞)×Rp→R, consider the parabolic partial differential equation

∂tu(t,x) = 1
2σ

2∂2
pu(t,x) +∇xu(t,x)Ax − (b>x)2u(t,x)

u(0,x) = 1.
(3.10)

Here, x ∈Rp, t ≥ 0, and ∂p denotes the differentiation with respect to the p’th entry
of x. Assume that the solution u is given by

u(t,x) = exp{φ(t) + x>Φ(t)x}. (3.11)

Then

∂tu(t,x) = (φ′(t) + x>Φ ′(t)x)u(t,x)

∇xu(t,x) = x>(Φ(t) +Φ>(t))u(t,x)

∂2
pu(t,x) = (2e>p Φ(t)ep + x>(Φ(t) +Φ>(t))epe

>
p (Φ(t) +Φ>(t))x)u(t,x),

and it therefore follows that u solves (3.10) if Φ is symmetric, and φ and Φ solves

φ′(t) = σ2e>p Φ(t)ep,

φ(0) = 0,

Φ ′(t) = 2σ2Φ(t)epe
>
p Φ(t) +Φ(t)A+A>Φ(t)− bb>,

Φ(0) = 0p, t ≥ 0.

(3.12)

Here, we have used that x>2Φ>Ax = x>A>Φx+x>Φ>Ax. Given Φ , φ is readily found
by integration. To find Φ we recognize the equation as a matrix Riccati equation (see
for example [28] where a simple change of variable is necessary since the Riccati
equation is considered backward). It follows from [28, Theorem 8] that (3.12) has a
unique solution on [0,∞). Since the transpose of a solution again is a solution, it is
symmetric. By [28, Theorem 9] we have that the solution is negative semi-definite
and therefore that u of the form in (3.11) is bounded and, in particular, of at most
polynomial growth. Furthermore, by [29], the solution is given by (3.8) and (3.9).

By the Feynman-Kac formula (see for example [27, Theorem 7.6, Chapter 5]), the
solution u is unique with representation

E

exp
{
−
∫ T

t
(b>X(s))2 ds

}∣∣∣∣∣∣X(t) = x

 = u(T − t,x).
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Since

E

exp
{
−
∫ T

t
r(s)ds

}∣∣∣∣∣∣Ft
 = E

exp
{
−
∫ T

t
(b>X(s))2 ds

}∣∣∣∣∣∣Ft


= E[exp{φ(t) +X(t)>Φ(t)X(t))}|Ft]
= exp{φ(t) + tr(Φ(t)Z(t))}, �

the result now follows.

Some comments are in place. Firstly, by considering the case p = 1 where we are
back to the classical CIR process, it is simple to see that Theorem 3.5 reduces to
the known zero-coupon bond price for CIR short rate models (see [19]). Next, in
mathematical finance, one usually differentiates between the market probability
and pricing measures, sometimes called equivalent martingale measures, denoted
Q ∼ P. In the theorem above, we simply used Q = P. We may, however, assume that
the CIR-CARMA model is formulated under some Q ∼ P directly, and obtain the
price for P (t,T ) under a conditional expectation with respect to Q. We obtain, of
course, the price as in Theorem 3.5. The market prices of P (t,T ) is, on the other
hand, observed under the market probability P, and to have its dynamics under P we
must specify the P-dynamics of (Z(t))t∈R. As we have a Brownian-based model for
(Z(t))t∈R, this can be done by referring to Girsanov’s Theorem. Further, we note that
the zero-coupon bond price is represented in terms of the process (Z(t))t∈R, which is
not directly observable. This is contrary to the CIR model, where the price is explicit
in terms of the current state of the interest rate r(t). To make inference, say filtering
techniques are called for in the general CIR-CARMA case.

We now connect the CIR-CARMA model to Wishart processes. This will allow us
do define more general processes that still are generalizations of CIR processes. The
main idea of the proof is to connect multivariate Gaussian OU processes to a Wishart
process. This is also discussed in [18].

Theorem 3.6. Let (C(t))t∈R be defined as in (3.2) and assume n ≥ p. Then

C(t) = b>Z(t)b, (3.13)

where (Z(t))t∈R is an p × p dimensional process with dynamics

dZ(t) = (nσ2epe
>
p +AZ(t) +Z(t)A>)dt

+Z(t)1/2dW (t)σepe
>
p + σepe

>
p dW (t)>Z(t)1/2,

(3.14)

and (W (t))t∈R is a p×p dimensional standard matrix Brownian motion, that is, the entries
consist of independent standard Brownian motions.

Proof. We have

n∑
i=1

Yi(t)
2 = b>

 n∑
i=1

Xi(t)Xi(t)
>

b.
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By the multivariate version of Ito’s lemma (see for example [32, Theorem 4.2.1])

d(Xi(t)Xi(t)
>) = Xi(t)dXi(t)

> + (dXi(t))Xi(t)
> + dXi(t)dXi(t)

>

= (Xi(t)Xi(t)
>A> +AXi(t)Xi(t)

> + σ2epe
>
p )dt

+ (Xi(t)e
>
p + epXi(t)

>)σdBi(t).

Since n ≥ p,
∑n
i=1Xi(s)Xi(s)

> is positive definite almost surely. Let

W̃ (t) =
∫ t

0

 n∑
i=1

Xi(s)Xi(s)
>

−1/2 n∑
i=1

Xi(s)e
>
p dBi(s),

where we have used the notation A−1/2 = (A1/2)−1 for a positive definite matrix A.
Denote by [·, ·] the quadratic covariation and by Bi,j the (i, j)’th entry of a p×p matrix
B. Consider 1 ≤ i1, i2, j1, j2 ≤ p. Then

[
W̃i1,j1 , W̃i2,j2

]
(t) =

n∑
i=1

∫ t

0


 n∑
i=1

Xi(s)Xi(s)
>

−1/2

Xi(s)e
>
p


i1,j1

×


 n∑
i=1

Xi(s)Xi(s)
>

−1/2

Xi(s)e
>
p


i2,j2

ds.

(3.15)

If either j1 or j2 is not equal to p then (3.15) is zero. Furthermore,

n∑
i=1


 n∑
i=1

Xi(s)Xi(s)
>

−1/2

Xi(s)e
>
p


i1,p

×


 n∑
i=1

Xi(s)Xi(s)
>

−1/2

Xi(s)e
>
p


i2,p

=
n∑
i=1


 n∑
i=1

Xi(s)Xi(s)
>

−1/2

Xi(s)Xi(s)>

 n∑
i=1

Xi(s)Xi(s)
>

−1/2
i1,i2

= (Ip)i1,i2 .

It follows that (W̃ (t))t∈R is a p × p dimensional Brownian motion by Lévy’s charac-
terization of Brownian motion (see for example [32, Theorem 8.6.1]) of the form
W (t)epe>p , where (W (t))t∈R is a p × p standard matrix Brownian motion, that is, the
entries of (W (t))t∈R are independent standard Brownian motions. Let Z(t) be given
by (3.3). We then conclude that

dZ(t) = (nσ2epe
>
p +AZ(t) +Z(t)A>)dt

+Z(t)1/2dW (t)σepe
>
p + σepe

>
p dW (t)>Z(t)1/2

and the proof is complete. �

It is natural to generalize the level nσ2epe
>
p in the dynamics of (Z(t))t≥0 given in

(3.14) to a general level as a direct parallel to the way sums of squared OU processes
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can be generalized by a CIR process to accommodate a general level. Thus, we are
interested in finding a solution to

dZ(t) = (κepe
>
p +AZ(t) +Z(t)A>)dt

+Z(t)1/2dW (t)σepe
>
p + σepe

>
p dW (t)>Z(t)1/2, Z(0) = Z0

(3.16)

for some general κ and positive semi-definite p × p matrix Z0. Such processes are
Wishart processes and have been studied in [18, 20, 31]. In particular, in [20], it is
argued that whenever κ ≥ (p − 1)σ2 then there exists an affine Markov process on
the space of positive semi-definite matrices with the dynamics in (3.16). We are led
to extending the class of CIR-CARMA(p,q) processes to be a process (C(t))t∈R of the
form

C(t) = b>Z(t)b (3.17)

where b is given in (2.3), A is given in (2.2), and where (Zt)t≥0 is the affine Markov
process given in [20] with dynamics given by (3.16).

The definition of a CIR-CARMA process has a similar structure to that of a CARMA
process. In particular, it is defined as a linear transformation of a higher dimensional
process. It therefore seems natural to consider the process (Z(t))t≥0 as a state-space
process associated to the CIR-CARMA process (C(t))t≥0.

It follows immediately from the definition of b and the CIR-CARMA(p,q) process
that its paths are p − q − 1 times continuously differentiable. This is a direct parallel
to CARMA processes where a similar statement holds.

If we have κ ≥ (p + 1)σ2 in (3.16) then [31] shows that there is a strong unique
solution, and it is argued that if, additionally, Z0 is positive definite then Z(t) remains
positive definite for all t ≥ 0. This result may be regarded as a version of the Feller
condition for Wishart processes. We summarize in the following Proposition:

Proposition 3.7 ([31]). Let (C(t))t≥0 be a CIR-CARMA(p,q) process and assume that
Z0 is positive definite and κ ≥ (p+ 1)σ2. Then C(t) > 0 for all t ≥ 0.

4 CARMA processes driven by a subordinator

In this section we will consider causal CARMA processes as an alternative to CIR-
CARMA. We are mainly interested in the case where the background driving Lévy
process is a compound Poisson process with exponentially distributed jumps and
specifications of the CARMA parameters such that the kernel function is non-negative.
In this case, the CARMA process will itself become non-negative.

Modeling with a non-negative CARMA process as opposed to the CIR-CARMA
discussed above has the advantage of, in many respects, being a simpler non-negative
model that still maintains a large class of possible correlation structures. A downside
is, however, that the stationary distribution is more complicated. We address the
question of characterizing the stationary distribution under some specific assump-
tions, but start by considering the ACF and pricing of zero-coupon bonds when the
spot interest is modeled by the CARMA process.

The following proposition is well-known (see for example [12, Section 3]).
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Proposition 4.1. Let (Y (t))t∈R be a causal CARMA(p,q) process driven by a square
integrable Lévy process. Then

corr(Y (t),Y (s)) =
b>eA(t−s)

∫∞
0 eAuepe

>
p e

A>u du b∫∞
0 (b>eAuep)2 du

, s ≤ t.

Remark 4.2. The above result should be compared with Proposition 3.4. Further-
more, (3.5) may be applied to easily calculate the ACF if the roots of P are distinct.

We again compare the correlation structure of a CARMA(2,1) with that of a
CIR process when calibrated to the wind data described in Section 3. The resulting
correlations are given in Figure 2. The calibrated CARMA parameters are

α1 = −0.0049, α2 = −0.0339, and β1 = −0.0179, (4.1)

where α1 and α2 are the roots of P and β1 is the root of Q. Appealing to [37], these
parameters corresponds to a non-negative CARMA kernel.
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Figure 2: Population acf in gray, CIR ACF (dotted line), and CARMA(2,1) ACF (solid line).

For comparison with the CIR-CARMA case, we give the zero-coupon bond price
when the short rate is modeled as a CARMA(p,q) process.

Proposition 4.3. Let (Y (t))t∈R be a causal CARMA(p,q) process driven by a compound
Poisson process with intensity µ > 0 and exponentially distributed jumps with parameter
κ > 0. Assume that the kernel of the CARMA process is non-negative. Then

P (t,T ) :=E

exp
{
−
∫ T

t
Y (s)ds

}∣∣∣∣∣∣L(t)−L(u), u < t


=exp

b>A−1
(
Ip − eA(T−t)

)
X(t)

+µ
∫ T−t

0

b>A−1
(
Ip − eAu

)
ep

κ+ b>A−1(eAu − Ip)ep
du
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where (X(t))t∈R is the associated state-space process.

Before proving Proposition 4.3 we first give the following expression for the
moment generating function of a moving average process, which also will be useful
in the proof of Theorem 4.8:

Lemma 4.4. Let f ∈ L1(R) be a right-continuous and non-negative bounded function
with support on [0,∞) and define d = supu≥0 |f (u)|. Let (L(t))t∈R be a compound Poisson
process with intensity µ > 0 and exponentially distributed jumps with parameter κ > 0.
Then

logE
[
exp

{
x

∫ t

−∞
f (t −u)dL(u)

}]
= µ

∫ ∞
0

xf (u)
κ − xf (u)

du

for x ∈ (−∞,κ/d), and ∫ ∞
0

xf (u)
κ − xf (u)

du =
∞∑
n=1

( x
κ

)n∫ ∞
0
f (u)n du

for x ∈ (−κ/d,κ/d).

Proof. Initially we note that for s < t and any x ∈ (−∞,κ),

logE[exp{x(L(t)−L(s))}] = (t − s)µ x
κ − x

. (4.2)

Since f is right-continuous and non-negative there exists an increasing sequence of
piece-wise constant functions (fn)n∈N of the form

fn(t) =
∞∑
m=0

am,n1[m/2n,(m+1)/2n)(t) (4.3)

with fn→ f which implies that
∫
R
fn(t −u)dL(u)→

∫
R
f (t −u)dL(u) in probability as

n→∞ (cf. [33]). Since (L(t))t∈R is non-decreasing and fn is given by (4.3),
∫
R
fn(t −

u)dL(u) is non-decreasing in n. We therefore also have almost sure convergence. Let
x ∈ (−∞,κ/d), and note that

|κ − xf (u)| ≥ κ − |x|d > 0.

Now it follows from (4.2) and (4.3) that

logE
[
exp

{
x

∫ t

−∞
f (t −u)dL(u)

}]
= lim
n→∞

logE
[
exp

{
x

∫ t

−∞
fn(t −u)dL(u)

}]
= µ lim

n→∞

∫ ∞
0

xfn(u)
κ − xfn(u)

du

= µ
∫ ∞

0

xf (u)
κ − xf (u)

du,

(4.4)
�

where we have used both monotone and dominated convergence. The last statement
of the lemma is straightforward.
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Proof (Proof of Proposition 4.3). Since (X(t))t∈R is a multivariate OU process,∫ T

t
X(s)ds = A−1(X(T )−X(t)− ep(L(T )−L(t)),

and therefore∫ T

t
Y (s)ds =

∫ T

t
b>X(s)ds = b>A−1(X(T )−X(t)− ep(L(T )−L(t))).

Note that

X(T ) =
∫ T

t
eA(T−u)ep dL(u) + eA(T−t)X(t)

and, since the kernel is non-negative,

b>A−1
(
eAt − Ip

)
ep =

∫ t

0
b>eAuep du ≥ 0.

Consequently, by Lemma 4.4, with f (t) = b>A−1(eAt − Ip)ep and x = −1, we conclude
that

E

exp
{
−
∫ T

t
Y (s)ds

}∣∣∣∣∣∣L(t)−L(u), u ≤ t


= exp{b>A−1(Ip − eA(T−t))X(t)}

×E
[
exp

{
−b>A−1

(∫ T

t
eA(T−u)ep dL(u)− ep(L(T )−L(t))

)}]
= exp

b>A−1(Ip − eA(T−t))X(t) +µ
∫ T−t

0

b>A−1(Ip − eAu)ep
κ+ b>A−1(eAu − Ip)ep

du

 .
The proof is complete. �

The following Corollary follows from Lemma 4.4, and gives a series representation
of the cumulant function of Y .

Corollary 4.5. Let (Y (t))t∈R be a causal CARMA(p,q) process driven by a compound
Poisson process with intensity µ > 0 and exponentially distributed jumps with parameter
κ > 0. Let d = supu≥0 |g(u)|. Then

logE[exY (t)] = µ
∞∑
n=1

an
n

( x
κ

)n
, x ∈ (−κ/d,κ/d), (4.5)

where

an = n
∫ ∞

0

(
b>eAuep

)n
du. (4.6)

Let us consider the case of an OU process:
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Example 4.6. Let (Y (t))t∈R be an OU process (corresponding to the CARMA(1,0)
case). Then A is a negative scalar and therefore

an = n
∫ ∞

0
enAu du = − 1

A
.

Consequently, the expression in (4.5) reduces to

logE[exY (t)] = −
µ

A

∞∑
n=1

1
n

( x
κ

)n
=
µ

A
log

(
1− x

κ

)
,

which we recognize as the cumulant of the gamma distribution with shape −µ/A
and rate κ. In particular, by Corollary 4.5, we recover the well-known result that an
OU process driven by a compound Poisson process with exponential jumps has the
gamma distribution as its stationary distribution (see for example [3]).

We now constrain our analysis to the case of CARMA(p,p − 1) processes.

Lemma 4.7. Let (Y (t))t∈R be a causal CARMA(p,p − 1) process driven by a compound
Poisson process with intensity µ > 0 and exponentially distributed jumps with parameter
κ > 0. Let (an)n∈N be given by (4.6) and assume

d
du
b>eAuep = b>AeAuep < 0, u > 0.

Then (an)n∈N is a convergent sequence with

a1 = −b>A−1ep and a∞ := lim
n→∞

an = − 1
b>Aep

.

Proof. Using integration by parts we find that

an = n
∫ ∞

0
(b>eAuep)n du

=
∫ ∞

0

d
du

(
(b>eAuep)n

) b>eAuep

b>AeAuep
du

=

 (b>eAuep)n+1

b>AeAuep

∞
0

−
∫ ∞

0
(b>eAuep)n

d
du

b>eAuep

b>AeAuep
du

= − 1
b>Aep

−
∫ ∞

0
(b>eAuep)n

1−
b>eAuepb

>A2eAuep

(b>AeAuep)2

 du.
(4.7)

Since the function u 7→ b>eAuep is continuous, converges to zero when u → ∞, is
1 at u = 0, and is strictly decreasing on (0,∞) by assumption, we conclude that
0 < b>eAuep < 1 for all u > 0. Thus, by monotone convergence, (an)n∈N is convergent
with limit − 1

b>Aep
. The statement about a1 is a simple calculation. �

Let Γ (η,θ) denote the gamma distribution with rate η and scale θ. The following
is the main result of this section.

155



Paper G · On non-negative modeling with CARMA processes

Theorem 4.8. For p ≥ 2, let (Y (t))t∈R be a causal CARMA(p,p − 1) process driven by a
compound Poisson process with intensity µ > 0 and exponentially distributed jumps with
parameter κ > 0. Let α1, . . . ,αp be the roots of P and assume that they are distinct and real.
Furthermore, assume

Q(αi)
P ′(αi)

> 0, i = 1, . . . ,p. (4.8)

Then G+
∑m
i=1Gi,m converges to Y (t) in distribution as m→∞ where

G ∼ Γ (µη,κ) and Gi,m ∼ Γ (µηi,m,κθi,m)

are independent. Here η = −1/(b>Aep), and ηi,m > 0 and θi,m > 1, for i = 1, . . . ,m, are such
that

m∑
i=1

ηi,m
θni,m

→−
∫ ∞

0
(b>eAuep)n

d
du

b>eAuep

b>AeAuep
du (4.9)

as m→∞.

Proof. By the spectral decomposition,

b>eAtep =
p∑
i=1

cie
αi t

where ci = Q(αi )
P ′(αi )

> 0. Since the CARMA process is causal, αi < 0, i = 1, . . . ,p, and we

conclude that the derivative of t 7→ b>eAtep is negative. It follows that the assumptions
of Lemma 4.7 are satisfied. Furthermore,

∆

∞∑
i=0

(b>eA∆(i+1/2)ep)n
 b>eA∆iepb>AeA∆iep

−
b>eA∆(i+1)ep

b>AeA∆(i+1)ep


→−

∫ ∞
0

(b>eAuep)n
d
du

b>eAuep

b>AeAuep
du

(4.10)

as ∆→ 0. From the assumption in (4.8) we have 0 < b>eA∆(i+1/2)ep < 1, and we find
that

(b>AeAuep)2 =
p∑
i=1

c2
i α

2
i e

2αiu +
p∑
i=1

p∑
j>i

cjci2αjαie
(αj+αi )u

<

p∑
i=1

c2
i α

2
i e

2αiu +
p∑
i=1

p∑
j>i

cjci(α
2
j +α2

i )e(αj+αi )u

= b>eAuepb
>A2eAuep,

which implies d
du

b>eAuep
b>AeAuep

< 0. Let

θi,m =
1

b>eA∆m(i+1/2)ep
(4.11)
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and

ηi,m = ∆m

( b>eA∆miep
b>AeA∆miep

−
b>eA∆m(i+1)ep

b>AeA∆m(i+1)ep

)
, (4.12)

for i = 1, . . . ,m and a sequence (∆m)m∈N such that ∆m→ 0 and m∆m→∞ as m→∞.
Then we conclude that (4.9) is satisfied. Now, since convergence of the moment gen-
erating function implies convergence in distribution (see, for example, [10, Example
5.5]), the result follows from Corollary 4.5 and (4.7). �

Remark 4.9. The condition in (4.8) ensures that the kernel function of the CARMA
process is a sum of positive scalars times exponential function by the spectral decom-
position in (2.5). This is often the case when CARMA(p,p−1) processes are calibrated
to data, for example, it holds for all the applications of CARMA(p,p − 1) processes
discussed in the introduction in which the calibrated parameters are reported, that is,
for [13, 17, 22, 36]. Additionally, it also holds for the parameters in (4.1).

Remark 4.10. The distributional result in Theorem 4.8 is closely related to gener-
alized gamma convolutions albeit slightly different since the gamma distributed
variables are dependent on m. A distribution µ is a generalized gamma convolution if
there exists a sequence of independent gamma distributed random variables (Gi)i∈N
such that

∑m
i=1Gi converges to µ in distribution as m → ∞. For more on gamma

convolutions see for example [11].

Remark 4.11. From (4.11) and (4.12) in the proof of Theorem 4.8 we have available
an explicit expression of shapes and rates of gamma distributions where the sum
approximates the stationary distribution of the CARMA(p,p−1). In practice however,
it may be more natural to find coefficients that minimize

M∑
n=1

|η +
m∑
i=1

ηi,m
θni,m
− an|2.

for some M ∈N, where (an)n∈N is given by (4.7). This works well for small m, but
we quickly face an identification problem for large m. In such cases, the explicit
expression of the approximating coefficients have been found to work well.

We now investigate numerically the approximating sequence of the gamma distri-
bution given in Theorem 4.8. We will consider two CARMA(2,1) processes, the first
with

α1 = −0.5, α2 = −1, and β1 = −0.75,

and the second with

α1 = −0.5, α2 = −2, and β1 = −0.75,

where α1 and α2 are the roots of P and β1 is the root of Q. We will also consider a
CARMA(3,2) process with

α1 = −0.5, α2 = −1, α3 = −1.2, β1 = −0.75, and β2 = −1.1,
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where α1, α2, and α3 are the roots of P , and β1 and β2 are the roots of Q. The com-
pound Poisson process has intensity µ = 1 and the exponential jumps have parameter
κ = 1 in all three CARMA models. A simulation of the stationary distributions to-
gether with the approximating sum of gamma distributions are given in Figure 3,
4, and 5. We have also plotted the gamma distribution with a probability density
function (pdf) that minimizes the squared error to the empirical pdf for comparison.
The shape and rate in the approximating gamma distribution are calculated using
the approximation in (4.11) and (4.12) with ∆ = 1 and where we truncate the sum
at i = 3, resulting in a sum of 4 gamma distributed variables that approximate the
distribution of the CARMA process. The stationary distribution of the CARMA pro-
cesses is simulated by discretizing the state-space equation over an interval of length
1,000,050. We simulate on a grid with grid-size 1/10 but only consider every tenth
simulated value, and we disregard the first 50 observations to approximately be in
the stationary distribution. The simulation of the stationary distribution is therefore
based on 1,000,000 observations.

0 1 2 3 4 5 6

0

0.1

0.2

0.3

0.4

0.5

Figure 3: Histogram for simulated stationary distribution of a CARMA(2,1) process in grey, pdf of sum of
4 independent gamma distributed variables (solid line), and pdf of the gamma distribution minimizing
the squared error to the histogram (dotted line). Here, α2 = −1.

We see that the sum of independent gamma distributed variables approximates
the stationary distribution of the CARMA process well and that there is a significantly
better fit than the gamma distribution.
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Figure 4: Histogram for simulated stationary distribution of a CARMA(2,1) process in grey, pdf of sum of
4 independent gamma distributed variables (solid line), and pdf of the gamma distribution minimizing
the squared error to the histogram (dotted line). Here, α2 = −2.
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Figure 5: Histogram for simulated stationary distribution of a CARMA(3,2) process in grey, pdf of sum of
4 independent gamma distributed variables (solid line), and pdf of the gamma distribution minimizing
the squared error to the histogram (dotted line).
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Wind Indexes And Hedging Of Wind Risk
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Abstract

With the introduction of the exchange-traded German wind power futures,
opportunities for German wind power producers to hedge their volumetric risk
are present. We propose two continuous-time multivariate models for the wind
power utilization at different wind sites, and discuss the properties and estimation
procedures for the models. Employing the models to wind index data for wind
sites in Germany and the underlying wind index of exchange-traded wind power
futures contracts, the estimation results of both models suggest that they capture
key statistical features of the data. We argue how these models can be used to
find optimal hedging strategies using exchange-traded wind power futures for the
owner of a portfolio of so-called tailor-made wind power futures. Both in-sample
and out-of-sample hedging scenarios are considered, and, in both cases, significant
variance reductions are achieved. Additionally, the risk premium of the German
wind power futures is analysed, leading to an indication of the risk premium of
tailor-made wind power futures.

MSC 2010: 60G10, 60G22, 60H10, 60H20

Keywords: multivariate Ornstein-Uhlenbeck process; wind power futures; hedg- ing; risk premium

1 Introduction

In the power market, producers in general face market risk in the sense of uncertainty
of the prices at which they can sell their generated power. The intermittent nature of
renewable energy sources such as wind and photo voltaic power production adds yet
another layer of risk, known as volumetric risk in the sense that the produced amount
of electricity is uncertain due to the dependence on weather. Globally, so-called
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power purchase agreements and subsidies from governments have minimized the
market risk for renewable power producers. In contrast, the volumetric risk has only
recently been addressed in Germany—and only for wind power producers (WPPs)—
by the introduction of the exchange-traded wind power futures (WPF) contracts.
The underlying of a WPF contract is an index between zero and one representing
the overall utilization of the installed German wind power production. By taking
an appropriate position in WPF contracts, the lost income of the WPPs implied
by low wind scenarios is (partially) offset by the position in WPF contracts, hence
minimizing the volumetric risk. Due to the prioritization of the cheapest power
producers in Germany, the opposite part of the WPF market is typically conventional
power producers (CPPs) such as gas-fired power plants. By taking an appropriate
position in exchange-traded WPF contracts, CPPs can hedge their exposure to the
cheap electricity generated by WPPs.

The WPF market is considered in detail in [10], where the authors propose an
equilibrium pricing model. They find that the willingness to engage in the WPF
market is greater for the WPPs compared to CPPs. In other words, the hedging
benefits of the WPF contracts are greater for WPPs than CPPs. This is supported
by the results in [8] who employ an ARMA-GARCH copula framework to the joint
modelling of one site-specific wind index and the underlying WPF index. In [5]
modeling of the underlying WPF index is considered and closed-form formulas for
the WPF price and the price of European options written on the WPF index are
derived.

Continuous-time modeling using univariate Ornstein-Uhlenbeck (OU) processes
driven by non-decreasing Lévy processes, like the compound Poisson process with
exponential jumps, have been studied extensively, and used to model, for example,
stochastic volatility of financial assets, wind, electicity prices, and temperature (see
[3, 7, 4, 5]). A detailed treatment of Lévy processes can be found in [15]. The mul-
tivariate modeling of more than two stochastic processes using multidimensional
non-Gaussian Lévy processes is, however, more limited. Here we mention the work
of [12] and [16] that introduce the multivariate construction by subordination of
Brownian motions, and the work of [2] using linear transformations of Lévy processes.

Our contribution to the literature is twofold. Firstly, we propose a joint model
for the simultaneous behaviour of wind indexes that allows for a parsimonious
representation of the correlation structure. This model can be seen as the multivariate
version of the model presented in [5]. As a consequence of the scarce literature on
such multivariate models, we propose an alternative model for comparison reasons.
Secondly, we suggest the idea of so-called tailor-made WPF contracts to eliminate the
volumetric risk of WPPs completely. Employing our proposed joint model of wind
indexes, we investigate the hedging benefits of exchange-traded WPF contracts for a
owner of a portfolio of tailor-made WPF contracts, and comment on the risk premium
of tailor-made WPF contracts. We show that this construction is beneficial for both
parties of the tailor-made WPF contracts.

The rest of the paper is organized as follows. Sec. 2 presents the data of wind
indexes we later analyze in greater detail and also serves as motivation for the pro-
posed model. In Sec. 3 we present models for the joint behaviour of wind indexes and
corresponding estimation procedures. In Sec. 4 we present the estimation results of
the two models. Sec. 5 discusses the hedging of wind power production using WPF
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contracts implied by the proposed models. Lastly, Sec. 6 concludes.

2 Data presentation

The empirical observation period spans from 1 July 2016 to 30 June 2019, which
corresponds to 1095 daily observations for each considered wind index. The data set
consists of

1. A daily wind index at three wind sites provided by Centrica Energy Trading.
The wind index at wind site i is calculated by

Qi(t)
h(t)Ci

,

where h(t) is the number of hours in day t,Qi(t) is the power production at day t
at site i, and Ci is the installed capacity at site i. Figure 1 shows the approximate
geographical locations for the three wind sites.1

2. A daily German wind index provided by Nasdaq, representing the German
utilization of wind power plants. The acronym used for it is NAREX WIDE
(NAsdaq REnewable indeX WInd DE (Germany)) and is used as the underlying
for WPF contracts traded on Nasdaq. We will simply denote it as the German
wind index in the remaining part of the paper.

1

3

2

Figure 1: Locations of wind sites with site ID in Germany.

The wind indexes are bounded between zero and one. Fig. 2 shows all four wind
indexes, and the corresponding autocorrelation function for each wind index. In all
four cases, the wind index displays a pronounced yearly cycle consistent with the

1The locations are approximate due to confidentially issues.
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observations made in [5] and [8]. Since the German wind index is by construction
made up of all wind power production in Germany, the behaviour of the German
wind index is less extreme compared to the individual wind indexes. To concretize, a
value of zero for the German wind index is not observed in our observation period,
whereas it is for all three wind sites. Also the maximum attained value for each site
wind index is higher than the maximum value of the German index; however, it does
not reach one in any of the cases.

3 Model description

3.1 General model considerations

Let n denote the number of wind sites and Pi(t) the ith wind index. We assume that
the ith wind index can be described by

Pi(t) = 1− e−Si (t)Xi (t), i = 1, . . . ,n, (3.1)

where Si(t) : R → R
+ is a deterministic function intended to filter out potential

seasonal effects, and Xi(t) is a mean-reverting stochastic process satisfying Xi(t) ≥
0 for all t. The intention of X(t) = (X1(t), ...,Xn(t))> is to capture the short-term
uncertainty and the dependence between the n wind indexes. By this specification
we are ensured that Pi(t) ∈ [0,1).

The proposed model in Eq. (3.1) distinguishes itself from the specification in [5],
where the natural extension of their univariate setup to the present multivariate setup
would be

Pi(t) = Si(t)e
−Xi (t). (3.2)

with appropriate choices of Xi(t) and Si(t). We do, however, prefer Eq. (3.1) over
Eq. (3.2). Due to our specification with regard to the deterministic part Si(t) of the
model, we do not face any potential model inconsistencies as is the case of Eq. (3.2).
We refer the interested reader to [5] more information and discussion. Additionally,
as discussed in Sec. 2, the wind index at a given site can attain a value of zero,
whereas, on the other hand, we have not observed full utilization of the capacity
at a single wind site. Since [5] consider the German wind index separately, which
is never zero or one due to the construction of it, Eq. (3.2) is applicable without
any modifications. Lastly, Eq. (3.1) implies that increased values of Si(t) and Xi(t)
translate to an increased value of Pi(t), which is more intuitively appealing.

Moving on to the seasonal components of the model, we include the following
yearly seasonality motivated by the observations made in Fig. 2,

Si(t) = ai + bi sin(2πt/365) + ci cos(2πt/365), i = 1, . . . ,n,

where ai ,bi , ci ∈ R. With N being the number of observations, the coefficients are
determined by

min
ai ,bi ,ci

N∑
t=1

[− log(1− Pi(t))− Si(t)]2 , i = 1, . . . ,n.
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Figure 2: All four wind indexes with corresponding empirical auto-correlation function.
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Having obtained the estimated seasonal functions, the observed values of Xi(t) im-
plied by the estimated seasonal function Ŝi(t) can then be calculated as

Xi(t) =
− log(1− Pi(t))

Ŝi(t)
. (3.3)

We will in the following discuss two approaches for modeling Xi(t).

3.2 A gamma model

In this section a multivariate model for n − 1 wind indexes and the German wind
index is discussed, which we refer to as the gamma model in the sequel. In Sec. 4 we
will consider the case n = 4. We start by introducing the noise process. In particular,
we say a Lévy process L is a compound Poisson process with exponential jumps and
parameters α > 0 and β > 0 if

L(t) =
N (t)∑
i=1

Ji

where (N (t))t∈R is a Poisson process with intensity α and Ji , i ∈N, are independent
exponentially distributed random variables with parameter β. We say a random
variable has an exponential distribution with parameter β if it has density x 7→
1[0,∞)(x)βe−βx.

The gamma model assumesX is a multidimensional Lévy-driven Ornstein-Uhlenbeck
(OU) process,

dX(t) = −ΛX(t)dt +ΣLdL(t). (3.4)

Here, L is an n-dimensional Lévy process where the i’th entry is an independent
compound Poisson process with exponential jumps, variance equal to one, and param-
eters αi and βi for i = 1, . . . ,n. Furthermore, Λ is a diagonal matrix, diag(λ1, . . . ,λn)
with λi > 0 for i = 1, . . . ,n. We assume ΣL is given by

ΣL =



σ1,1 0 . . . 0 σ1,n
0 σ2,2 . . . 0 σ2,n
...

...
. . . 0

...
0 0 0 σn−1,n−1 σn−1,n
0 0 0 0 σn,n


(3.5)

and that all entries of ΣL are non-negative. Due to the form of ΣL, each individual
wind index has an idiosyncratic risk associated to it through one of the first n − 1
compound Poisson process L1, . . . ,Ln−1. Furthermore, all sites and the German index
share a systematic risk through the n’th compound Poisson process Ln. A similar
construction is also considered in [2] where a multivariate model is proposed for
modeling financial products written on more than one underlying asset.

Distribution of Pn(t) in the gamma model

Since Xn, the process associated with the German wind index, is an OU process
driven by one compound Poisson process with exponential jumps, it has a gamma
distribution as its stationary distribution. Thus, we conclude the following:
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Proposition 3.1. The stationary distribution of Pn(t) in the gamma model has density

fPn(t)(x) =
(− log(1− x))αn−1(1− x)βn/Sn(t)−1

Sn(t)αn
x ∈ (0,1) (3.6)

Proof. This is a direct consequence of Xn(t) being gamma distributed with shape αn
and rate βn (see for example [3]). �

In Figure 3 the density of Pn is depicted for different αn and βn (with Sn(t) = 1).
We see that the densities implied by the gamma model are rather flexible and able to
cover both low and high utilization scenarios.
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Figure 3: Different variations of the density in (3.6)

The processes X1, . . . ,Xn−1 are sums of two independent gamma distributions,
and thus, there does not, in general, exist simple expressions for the densities of the
individual site index similar to the one for the German index stated in Prop. 3.1.

Covariance between wind indexes in the gamma model

We now give (semi-)analytical expressions of the covariances implied by the gamma
model, which will be useful for fast calculation of the minimum variance hedges
discussed in Section 5. The integral in Eq. (3.7) is the only non-analytical part of the
expression, but we argue in Remark 7.3 that this integral is small and can be coarsely
approximated without significant effect. We thereby maintain fast computation time.

Before we state the result, let us introduce some notation to help making a concise
statement. To this end define the n× (n+ 1) matrix Σ̃L by

Σ̃L =



σ1,1 0 . . . 0 0 σ1,n
0 σ2,2 . . . 0 0 σ2,n
...

...
. . . 0 0

...
0 0 0 σn−1,n−1 0 σn−1,n
0 0 0 0 0 σn,n
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where σi,j is the (i, j)’th entry of ΣL. Let σ̃i,j denote the (i, j)’th entry of Σ̃L. Further-
more, define α̃, β̃ ∈Rn+1 by

α̃ = (α1, . . . ,αn−1,0,αn)> and β̃ = (β1, . . . ,βn−1,1,βn)>,

and denote the i’th entry of α̃ and β̃ by α̃i and β̃i . We now give the expressions of the
covariances of the gamma model. The proof is relegated to Section 7.

Proposition 3.2. Consider s ≤ t and define

fi,j (u) = Si(t)σ̃i,n+1e
−λi (t−s+u) + Sj (s)σ̃j,n+1e

−λju , i, j = 1, . . . ,n.

Then

cov(Pi(t), Pj (s))

=
(

β̃i
β̃i + σ̃i,iSi(t)

)α̃i /λi ( β̃n+1 + σ̃i,n+1Si(t)e−λi (t−s)

β̃n+1 + σ̃i,n+1Si(t)

)α̃n+1/λi

×
 β̃j

β̃j + σ̃j,jSj (s)

α̃j /λj
(1 +

fi,j (0)

β̃n+1

)α̃n+1fi,j (0)/f ′i,j (0)

× exp

α̃n+1

∫ ∞
0

d
du

 fi,j (u)
d
du fi,j (u)

 log
(
1 +

fi,j (u)

β̃n+1

)
du


−

(
β̃n+1

β̃n+1 + σ̃i,n+1S4(t)e−λi (t−s)

)α̃n+1/λi
 β̃n+1

β̃n+1 + σ̃j,n+1Sj (s)

α̃n+1/λj


(3.7)

for i, j = 1, . . . ,n, i , j, and

cov(Pi(t), Pi(s))

=
(
β̃i + σ̃i,iSi(t)e−λi (t−s)

β̃i + σ̃i,iSi(t)

)α̃i /λi ( β̃n+1 + σ̃i,n+1Si(t)e−λi (t−s)

β̃n+1 + σ̃i,n+1Si(t)

)α̃n+1/λi

×


 β̃i

β̃i +
(
Si(t)e−λi (t−s) + Si(s)

)
σ̃i,i


α̃i /λi

×

 β̃n+1

β̃n+1 +
(
Si(t)e−λi (t−s) + Si(s)

)
σ̃i,n+1


α̃n+1/λi

−

 β̃2
i(

β̃i + σ̃i,iSi(t)e−λi (t−s)
)(
β̃i + σ̃i,iSi(s)

)
α̃i /λi

×

 β̃2
n+1(

β̃n+1 + σ̃i,n+1Si(t)e−λi (t−s)
)(
β̃n+1 + σ̃i,n+1Si(s)

)
α̃n+1/λi



(3.8)

for i = 1, . . . ,n.

Identification of parameters in the gamma model

Let Λvar be the n×n matrix given by

(Λvar )i,j =
1

λi +λj
.
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Furthermore, denote by ◦ the Hadamard product. Then the following result will be
used to estimate the parameters of the gamma model. Again, we relegate the proof of
Proposition 3.3 to Section 7.

Proposition 3.3. The mean of X is

E[X(0)] = Λ−1ΣLβ/2 (3.9)

and the auto-covariance of X is

cov(X(0),X(t)) =
(
Λvar ◦

(
ΣLΣ

>
L

))
e−Λt (3.10)

for t ≥ 0.

The parameters of the gamma model will be estimated in three steps. First, the
mean-reversion matrix Λ will be fitted to the empirical auto-correlation function
based on the first 25 lags. From (3.10), it follows that the model auto-correlation
function of Xi is t 7→ e−λi t . To find λ̂i , the estimate of λi , we therefore minimize

25∑
t=1

(
ρ̂i(t)− e−λ̂i t

)2

such that λ̂i > 0 for i = 1, . . . ,n, where ρ̂i(t) is the empirical auto-correlation function
of Xi .

Next, Σ̂L is chosen such that the model matches the empirical covariances. In
particular, we choose Σ̂L to minimize∥∥∥∥Σ̂X −Λvar ◦

(
Σ̂LΣ̂

>
L

)∥∥∥∥2

where Σ̂X is the sample covariance of X, ‖ · ‖ is the Frobenius norm and the minimiza-
tion is done over matrices Σ̂L with non-negative entries of the form in (3.5).

Finally, we discuss how the parameters α and β are estimated. First, we choose
β̂ = (β̂1, . . . , β̂n) to minimize ∥∥∥µ̂X −Λ−1Σ̂Lβ̂/2

∥∥∥2

such that β̂i > 0, where µ̂X is the empirical mean of X.
It is not too difficult to show that var(Li(1)) = 2αi /β

2
i and, since the compound

Poisson processes are assumed to have unit variance, it therefore follows that

1 = var(Li(1)) =
2αi
β2
i

Consequently, we take α̂i = β̂2
i /2.

3.3 A lognormal model

In this section we present a lognormal model relying on different assumptions than
the gamma model. We assume that G(t) := logX(t) can be modelled as a multidimen-
sional Gaussian Ornstein-Uhlenbeck process,

dG(t) = −Υ (G(t)−Θ)dt +ΣdB(t), (3.11)
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where (B(t))t∈R is an n-dimensional Brownian motion, Υ ∈Rn×n is a diagonal matrix,
Σ ∈Rn×n is a lower triangular matrix, and Θ ∈Rn.

It is well-known (see e.g. [13]) that the stationary distribution of G(t), when the
diagonal elements of Υ all are positive, is normal with mean Θ. The autocovariance
of G(t) is given in, for example, [13], and it is the same as for the gamma model found
in Prop. 3.3. In particular, we find

ΣG(t) :=cov(G(0),G(t))) =
(
Υvar ◦

(
ΣΣ>

))
e−Υ t , t ≥ 0. (3.12)

Here, Υvar is the n×n matrix given by

(Υvar )i,j =
1

υi +υj
,

where υi is the i’th entry of Υ , i = 1, . . . ,n.
Consequently, the stationary distribution of X(t) is multivariate lognormal with

expected value of Xi(0) being

E[Xi(0)] = exp
(
Θi +

ΣG(0)ii
2

)
,

while the autocovariance is

cov(Xi(0),Xj (t)) = E[Xi(0)]E[Xj (0)](eΣG(t)ij − 1) (3.13)

for i, j = 1, . . . ,n (see e.g. [11] for more information on the multivariate lognormal
distribution). This implies that the autocorrelation of X(t) is

corr(Xi(0),Xj (t)) =
exp

(
ΣG(0)ije

−tυj
)
− 1√

(eΣG(0)ii − 1)(eΣG(0)jj − 1)
, (3.14)

for i, j = 1, . . . ,n.

Distribution of Pi(t) in the lognormal model

Having the results for X(t) from the previous section in mind, the stationary distribu-
tion of Pi(t) follows and is given in Prop. 3.4.

Proposition 3.4. The stationary distribution of Pi(t) is characterized by the density

fPi (t)(x) =
−1

(1− x) log(1− x)
√
ΣG(0)i,i

φ

 log
(
− log(1−x)

Si (t)

)
−Θi√

ΣG(0)i,i

 , (3.15)

where ΣG(0)i,i is the i’th element of the diagonal of ΣG(0), Θi is the i’th element of Θ, and
φ(·) is the density of the standard normal distribution.

To investigate the density of Pi(t) in more detail, consider for a moment a more generic
version of Eq. (3.15), given by

f (x|µ,σ ) =
−1

(1− x) log(1− x)σ
φ

(
log(− log(1− x))−µ

σ

)
. (3.16)

As can be seen in Fig. 4, showing examples of the density given different values of µ
and σ in Eq. (3.16), the distribution is rather flexible and capable of attaining quite
different forms.
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Figure 4: Different variations of the density in Eq. (3.16).

Covariance between wind indexes in the lognormal model

Deriving the covariances between wind indexes in the lognormal model is closely
related to the derivation of the Laplace transform of the lognormal distribution. To
the best of our knowledge, no closed-form has been derived for the Laplace transform
of the lognormal distribution, but there exist approximations, see e.g. [1]. With regard
to this paper, we refer the interested reader to [1] and the references herein for further
information, and employ numerical integration by exploiting our knowledge of the
distribution of G(t) to determine the covariances between the wind indexes.

Identification of parameters in the lognormal model

To identify the parameters of the model, we employ the method of moments as in the
gamma model case. We first identify ΣG(0) by exploiting Eq. (3.13),

ΣG(0)ij = log

 Σ̂X,ijµ̂i µ̂j
+ 1

 , (3.17)

with µ̂i being the empirical mean ofXi(t), and Σ̂X,ij is the (i, j)th entry of the empirical
covariance between Xi(0) and Xj (0).

Having obtained an estimate of ΣG(0) and remembering the model implied auto-
correlation in Eq. (3.14), we identify υi by minimizing

25∑
t=1

ρ̂i(t)− exp
(
Σ̂G(0)iie−tυi

)
− 1√

(eΣ̂G(0)ii − 1)(eΣ̂G(0)ii − 1)


2

,

where ρ̂i(t) is the empirical autocorrelation function of Xi(0) and Xi(t). Here, as in
the gamma model, we use the first 25 lags of the empirical auto-covariance function
to estimate λi . With Υ̂ , consisting of the estimated υi for i = 1, . . . ,n in the diagonal,
at hand, we identify ΣΣ> by

ΣΣ> = Σ̂G(0)� Υ̂var ,
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where � is the Hadamard division defined for two matrices A and B by A�B = Aij /Bij .
Lastly, we determine Θ by

Θi = log(µi)−
Σ̂G(0)ii

2
, i = 1, . . . ,n. (3.18)

3.4 Comparison of the gamma and lognormal model

The covariances between indexes in the gamma model can be calculated fast using
Proposition 3.2 to find the optimal hedging strategy (see Sec. 5). The noise in the
gamma model also has a compelling interpretation, where an idiosyncratic risk is
associated to each site index and a systematic risk is associated to all site indexes and
the German index. On the other hand, the lognormal model gives rise to closed-form
expressions of the densities of all indexes as opposed to only the German index in
the gamma model. The lognormal model is simple in the sense that the underlying
process is a Gaussian driven OU process. This makes it possible to do numerical
analysis based on Gaussian theory.

Both the gamma and lognormal model have straightforward and fast estimation
procedures, making them easy to implement. Furthermore, as we will see in Sec. 4,
both models capture the autocorrelation of Xi , the cross-autocorrelations between Xi
and Xj , and the stationary distribution of Xi well.

4 Estimation results

In this section we summarize and discuss the estimation results. As a starting point,
we consider the fitted seasonal functions. In Table 1 we report the fitted parameters
for all four wind indexes.

âi b̂i ĉi

Site 1 0.1721 -0.0491 -0.0804
Site 2 0.2848 -0.0405 -0.0956
Site 3 0.2294 -0.0322 -0.1226
German 0.2732 -0.0298 -0.1285

Table 1: Fitted seasonal parameters for the four wind indexes.

4.1 Gamma model

Fig. 5 shows the theoretical autocorrelation implied by the estimated gamma model
compared to the empirical autocorrelation. The fit to the empirical autocorrelation is
convincing, and it is worth noticing that the cross-autocorrelations match well even
though the model has only been estimated to the marginal autocorrelation functions.

In Fig. 6 the histogram of Xi and the model density based on a simulation are
shown. We see that the distribution of the data is captured well by the model.

We report the estimated parameters in Table 2. The parameters α4 and β4 are
considerably larger than αi and βi for i = 1,2,3. This implies that the systematic risk
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Figure 5: Empirical autocorrelation and theoretical autocorrelation implied by the fitted gamma model.
The (i, j)’th panel shows cor(Xi (0),Xj (t)) for t = 0,1, . . . ,25.
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(a) Site 1 (b) Site 2

(c) Site 3 (d) German

Figure 6: Histograms of Xi (t) with the fitted densities of the gamma model.

factor L4 jumps much more frequently than Li , i = 1,2,3, but that the jumps of L4
are relatively small compared to the jumps of Li , i = 1,2,3. This aligns well with the
intuition that the systematic risk is associated to the wind utilization of the whole of
Germany.

α̂i β̂i λ̂i σ̂i,i σ̂i,4

Site 1 0.0271 0.2328 0.8977 1.0305 1.1593
Site 2 0.0538 0.3282 0.7589 0.6101 0.9792
Site 3 0.1383 0.5260 0.8513 1.1674 0.8247
German 0.8960 1.3387 0.6539 (-) 0.9781

Table 2: Estimated parameters in the gamma model.

To further assess the model, we report in Table 3 the mean, variance, skewness,
and kurtosis of the gamma model along with the empirical and lognormal equivalents
for the German wind index2. The gamma model captures the first two moments very
well as expected from the estimation procedure, where we match the gamma model
to the empirical mean and variance. Further, the empirical skewness and kurtosis are
also captured very well by the gamma model.

2Since the same quantities for the site wind indexes are not relevant in the remaining part of the paper,
we have chosen to omit them.
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5 · Hedging wind power production

Mean Variance Skewness Kurtosis

Gamma 1.00 0.73 1.71 7.38
Lognormal 1.00 0.73 3.17 24.98
Empiricial 1.00 0.73 1.67 6.27

Table 3: Mean, variance, skewness, and kurtosis of the German wind index in the gamma and lognormal
model together with the empirical values for the German wind index.

4.2 Lognormal model

Fig. 7 shows the theoretical autocorrelation implied by the estimated lognormal
model compared to the empirical autocorrelation. As in the gamma model case, the
lognormal model captures the autocorrelation and cross-autocorrelation well, in
particular taking into account that only the autocorrelation is used to estimate the
parameters affecting both the autocorrelations and the cross-autocorrelations.

Fig. 8 shows histograms of the marginal distributions and the fitted lognormal
densities. The lognormal model provides overall a decent fit, but seems to capture the
distribution of the German wind index better than the site indexes. The estimated Θ

and Υ for the lognormal model is reported in Table 4 and the estimated Σ is

Σ̂ =


1.0987 0 0 0
0.6763 0.5886 0 0
0.4902 0.3505 0.8376 0
0.6381 0.2539 0.2162 0.3035

 .
Although the speed of mean reversion parameters υ̂i differ in the lognormal model
compared to the gamma model, the same pattern is observed, with the German wind
index being the most persistent.

Θ̂i υ̂i

Site 1 -0.4282 0.7080
Site 2 -0.3215 0.6341
Site 3 -0.3803 0.6837
German -0.2711 0.5607

Table 4: Estimated parameters in the lognormal model.

Returning to Table 3, the lognormal model matches the empirical mean and
variance as a results of the estimation procedure, but it does not capture the higher
order standardized moments. This indicates that the lognormal model does not
capture the whole distribution of the data as well as the gamma model.

5 Hedging wind power production

In the following we denote the German wind index at day t by Pn(t). An exchange-
traded WPF contract is written on the underlying daily wind index, Pn(t). The payoff
of a long position in such a contract is

H(P̄n(S,T )− Pn(t0,S,T ))X, (5.1)

177



Paper H · Multivariate continuous-time modeling of wind indexes and hedging of wind risk

0
5

1
0

1
5

2
0

2
5

L
a

g

0

0
.5 1

Autcorrelation

0
5

1
0

1
5

2
0

2
5

L
a

g

0

0
.5 1

Autcorrelation

0
5

1
0

1
5

2
0

2
5

L
a

g

0

0
.5 1

Autcorrelation

0
5

1
0

1
5

2
0

2
5

L
a

g

0

0
.5 1

Autcorrelation

0
5

1
0

1
5

2
0

2
5

L
a

g

0

0
.5 1

Autcorrelation

0
5

1
0

1
5

2
0

2
5

L
a

g

0

0
.5 1

Autcorrelation

0
5

1
0

1
5

2
0

2
5

L
a

g

0

0
.5 1

Autcorrelation

0
5

1
0

1
5

2
0

2
5

L
a

g

0

0
.5 1

Autcorrelation

0
5

1
0

1
5

2
0

2
5

L
a

g

0

0
.5 1

Autcorrelation

0
5

1
0

1
5

2
0

2
5

L
a

g

0

0
.5 1

Autcorrelation

0
5

1
0

1
5

2
0

2
5

L
a

g

0

0
.5 1

Autcorrelation

0
5

1
0

1
5

2
0

2
5

L
a

g

0

0
.5 1

Autcorrelation

0
5

1
0

1
5

2
0

2
5

L
a

g

0

0
.5 1

Autcorrelation

0
5

1
0

1
5

2
0

2
5

L
a

g

0

0
.5 1

Autcorrelation

0
5

1
0

1
5

2
0

2
5

L
a

g

0

0
.5 1

Autcorrelation
0

5
1

0
1

5
2

0
2

5

L
a

g

0

0
.5 1

Autcorrelation

Site 1Site 2Site 3German

E
m

p
. a

u
to

c
o
rr.

T
h
e
o
. a

u
to

c
o
rr.

S
ite

 2
S

ite
 3

G
e
r
m

a
n

S
ite

1

Figure 7: Empirical autocorrelation and theoretical autocorrelation implied by the fitted lognormal model.
The (i, j)’th panel shows cor(Xi (0),Xj (t)) for t = 0,1, . . . ,25.
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(a) Site 1 (b) Site 2

(c) Site 3 (d) German

Figure 8: Histograms of Xi (t) with fitted lognormal densities.

where H is the number of hours during the delivery period [S,T ], Pn(t0,S,T ) is the
WPF price agreed on at time t0 < S < T , X is a specified tick size, and

P̄n(S,T ) =
1

T − S + 1

T∑
t=S

Pn(t).

From Eq. (5.1) it is apparent that a short position results in a positive payoff in low
wind scenarios according to the short position equivalent to Eq. (5.1),

H(Pn(t0,S,T )− P̄n(S,T ))X.

That is, if the realization of P̄n(S,T ) is lower than Pn(t0,S,T ). This is favourable for a
WPP, since this payoff will offset the loss in income from the long position in wind
power production.

To be more specific, let Ci denote the capacity of WPP i, and let Pi(t) denote the
daily wind index/utilization of WPP i such that CiPi(t) is the actual production of
power. Further assume that the WPP receives a fixed price Qi per produced MWh.
The long position in wind power production for WPP i doing the period [S,T ] is
therefore

P̄i(S,T )CiHQi , (5.2)
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where

P̄i(S,T ) =
1

T − S + 1

T∑
t=S

Pi(t). (5.3)

Assume that the WPP takes a position γi ∈Z in WPF contracts with delivery period
being [S,T ]. The payoff from taking this position and the long position in wind power
production results in a portfolio with payoff

HP̄i(S,T )CiQi +γiH(P̄n(S,T )− Pn(t0,S,T ))X. (5.4)

From Eq. (5.4) it is clear that perfectly hedging the volumetric risk would mean to
choose γi such that HP̄i(S,T )CiQi = −γiHP̄n(S,T )X, resulting in the deterministic
payoff γiHPn(t0,S,T )X. However, the problem for the WPP is that the stochastic
terms P̄i(S,T ) and P̄n(S,T ) are not perfectly dependent, and hence obtaining the
deterministic payoff γiHPn(t0,S,T )X is not possible. In fact, as shown in [8], it is far
from optimal using the exchange-traded WPF contracts for hedging purposes for a
single WPP, depending on the dependence structure between the site-specific wind
index and the underlying index of the WPF contract.

5.1 Perfect hedging of volumetric risk using tailor-made wind power
futures

Tailor-made over-the-counter WPF contracts is a way of perfectly hedging the vol-
umetric risk. Instead of going short the exchange-traded WPF contract, the WPP
could instead go short an over-the-counter WPF contract with the underlying being
Pi(t) instead of Pn(t). In the following we therefore consider the situation of an en-
ergy management company (EMC) acting as counterparty of these tailor-made WPF
contracts from n− 1 different WPPs in Germany. Let H(P̄i(S,T )− Pi(t0,S,T ))CiQi be
the payoff of a long position in a tailor-made WPF contract for WPP i. Thus, from
the point of view of the EMC, the payoff of acting as counterparty for n− 1 different
WPPs and taking a position γ ∈Z in the exchange-traded WPF contract is

RC(γ) =
n−1∑
i=1

H(P̄i(S,T )− Pi(t0,S,T ))CiQi +γH(P̄n(S,T )− Pn(t0,S,T ))X, (5.5)

while the payoff from the point of view of the ith WPP is

RWP P ,i =HP̄i(S,T )CiQi +H(Pi(t0,S,T )− P̄i(S,T ))CiQi
=HPi(t0,S,T )CiQi .

We argue that this construction can be beneficial for both the individual WPPs and
the EMC: Firstly, the individual WPPs obtain a perfect hedge of their volumetric risk,
and secondly, with an appropriate number of WPPs and distribution of the WPPs
geographically, the portfolio of tailor-made WPF contracts approximately replicates
the exchange-traded WPF contract.
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5.2 Minimum variance hedge of a tailor-made WPF contracts portfolio

In this section we discuss a minimum variance hedge of a portfolio consisting of
tailor-made WPF contracts for the EMC. I.e., from Eq. (5.5) we define the objective to

min
γ

var(RC(γ)).

The variance is

var(RC(γ)) =var

 n−1∑
i=1

H

 1
T − S + 1

T∑
t=S

Pi(t)− Pi(t0,S,T )

CiQi
+γH

 1
T − S + 1

T∑
t=S

Pn(t)− Pn(t0,S,T )

X


=
n−1∑
i=1

n−1∑
j=1

( H
T − S + 1

)2
CiQiCjQj

T∑
t=S

T∑
s=S

cov(Pi(t), Pj (s))

+
(
γ

H
T − S + 1

X
)2 T∑

t=S

T∑
s=S

cov(Pn(t), Pn(s))

+ 2
n−1∑
i=1

( H
T − S + 1

)2
γXCiQi

T∑
t=S

T∑
s=S

cov(Pn(t), Pi(s)). (5.6)

It follows from Eq. (5.6) that the optimal position of WPF contracts is

γ = −
∑n−1
i=1 CiQi

∑T
t=S

∑T
s=S cov(Pn(t), Pi(s))

X
∑T
t=S

∑T
s=S cov(Pn(t), Pn(s))

. (5.7)

Besides the fact that the dependencies between the stochastic variables impact the
size of γ , the size of each wind site measured by Ci and the price paid for each MWh
to each wind site measured by Qi both translate linearly to the size of γ . Therefore,
the larger the wind site or the higher the price paid for each MWh, the larger γ will
be in absolute terms (all other things being equal).

In-sample hedging effectiveness

In the following we consider the case of an EMC that needs to hedge its portfolio
of tailor-made WPF from one year ahead to two years ahead. The considered wind
sites are the ones depicted in Fig. 2. We assume that the contract specifications for
each site is as shown in Table 5. Further, we assume that X = 100 EUR. The estimated
parameters of the gamma and lognormal model are the ones reported in Sec. 4.

Site ID Capacity in MW, Ci Price in EUR/MWh, Qi

1 100 30
2 100 30
3 100 30

Table 5: Fictional contract specifications for the sites in Fig. 2.

In Table 6 we present the hedging results for the gamma and lognormal model.
We include the case with all three sites and the German WPF in the portfolio, and
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then three cases where we only include one of the wind sites and the German WPF.
In each case, we report the model-implied optimal position of exchange-traded
WPF contracts, γ̂ , and the variance reduction (in percentage) implied by the model
calculated by [var(RC(0))− var(RC(γ̂))]/ var(RC(0)). It is apparent that the portfolio
with all three sites outperforms the three other cases, confirming the diversification
approach of the EMC discussed in Sec. 5.1.

The fact that the difference regarding γ̂ is small indicate that both models could
be used interchangeably to determine an appropriate hedge, though the difference
in variance reduction will mislead in a risk management context. In other words,
if the wind indexes are driven by the gamma (lognormal) model, and one uses the
lognormal (gamma) model to determine hedges, the variance reduction implied by
the used model is wrong, while the hedging quantity is relatively close to the optimal
hedge.

Case Sites in portfolio γ̂ var(RC (0)) var(RC (γ̂)) Variance reduction (%)

Gamma

1 1,2,3 -63.60 8.12 · 1011 1.31 · 1011 83.83
2 1 -18.87 8.55 · 1010 2.56 · 1010 70.12
3 2 -26.79 1.55 · 1011 3.41 · 1010 77.96
4 3 -17.94 1.25 · 1011 7.07 · 1010 43.42

Lognormal

1 1,2,3 -64.00 7.06 · 1011 1.21 · 1011 82.89
2 1 -18.97 8.12 · 1010 2.98 · 1010 63.33
3 2 -25.10 1.34 · 1011 4.42 · 1010 67.04
4 3 -19.92 1.13 · 1011 5.66 · 1010 50.05

Table 6: Optimal hedging quantity γ implied by the gamma and lognormal model for different portfolios
consisting of different wind sites, and the corresponding variance of the portfolio excluding the exchange-
traded WPF contract, and the variance of the portfolio when the optimal hedge is employed. Additionally,
we show in all cases the associated variance reduction in percentage.

Comparing Eq. (5.4) to Eq. (5.5), the cases 2, 3, and 4 represent the variance
reduction implied by the model if the individual wind sites were to hedge their
power production themselves by using the exchange-traded WPF contract. From a
social welfare point of view, the sum of variances of case 2, 3, and 4 is approximately
8% larger for both models. So not only does the model suggest that tailor-made
WPF contracts constitute an obvious way of mitigating uncertainty for wind power
producers, but also as a way of optimizing the integration of wind power penetration
in the electricity grid.

Out-of-sample hedging effectiveness

In this section we consider the same portfolio of wind sites as in the previous case
study, and the specifications of the sites are therefore specified in Table 5. However,
here we assess the model on out-of-sample observations. We assume that an EMC
has bought tailor-made WPF contracts at the three sites for the period from 2 July
2018 to 30 June 2019, corresponding to 364 days or 52 weeks. We employ a weekly
minimum variance hedging strategy, meaning that the EMC has a naked position
in a portfolio of tailor-made WPF contracts for the entire period with the exception
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of the front week. To concretize, the first position taken in exchange-traded WPF
contracts is the contract with a weekly delivery period from 2 July 2018 to 8 July
2018. The position is taken based on a model that is estimated by using two years
of observations ending the last trading day before the delivery period of the weekly
exchange-traded WPF contract. With the delivery period starting the 2 July 2018,
the last trading day turns out to be 29 June 2018. Then we step one week ahead and
determine the appropriate hedge for the week starting 9 July 2018 and ending 15 July
2018, but again only by employing two years of in-sample observations to estimate
the model (the estimation period again ends on the last day where one can trade
the weekly exchange-traded WPF contract). In this way we end up with 52 hedging
quantities, where each quantity is calculated using different estimated parameters of
the model due to the moving two-year observation period.

A comment on the model specifications is in place. The stationarity of the models
in Sec. 3 might seem unreasonable in the present context, given the short period of
time between an estimation date and the corresponding start date of delivery of the
exchange-traded WPF contract. However, we also implemented the models that take
the conditional distribution into account, resulting in similar results. For the sake
of keeping the presentation as clear as possible, we have therefore only chosen to
present the stationary versions of the models.

The resulting optimal hedge quantities are depicted in Fig. 9, indicating a seasonal
pattern with more exchange-traded WPF contracts needed during spring compared
to autumn. Considering Eq. (5.7), this is the result of the fact that the difference
between the sum of the autocovariances of the German wind index and the sum of
the autocovariances between the German wind index and the site indexes increases.
To assess the hedging effectiveness, we calculate the corresponding implied weekly
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Figure 9: Variance minimizing hedge quantitiy, γ̂ , implied by (a) the gamma model and (b) the lognormal
model for the 52 weeks covering the period from 2 July 2018 to 30 June 2019.

payoff,RC(γ̂), for each weekly hedge quantity, γ̂ . Since we have a variance minimizing
perspective, we force a simplistic view on Pi(t0,S,T ) for all wind indexes. Specifically,
we assume that for each i, Pi(t0,S,T ) for all weeks during the out-of-sample period
from 2 July 2018 to 30 June 2019 is the mean of Pi(t) over the first estimation period
spanning 1 July 2016 to 29 June 2018,

Fig. 10 shows a histogram of the payoffs of the portfolio of tailor-made WPF
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contracts and the exchange-traded WPF contract acting as hedging instrument. Com-
pared to Fig. 10(a), the variances in Fig. 10(b) and Fig. 10(c) are clearly reduced. In
fact, the variance reduction in percentage of using the exchange-traded WPF contracts
as hedging instrument is 93.64% for the gamma model and 93.62% for the lognormal
model.
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Figure 10: Histograms of (a) the payoff for EMC by not hedging the portfolio of tailor-made WPF contracts
with exchange-traded WPF contracts, and (b)-(c) using the gamma and lognormal model to find the
position in exchange-traded WPF contracts used as a hedging instrument for the portfolio of tailor-made
WPF contracts.

Risk premium of wind power futures

Since tailor-made WPF contracts are, by construction, traded over-the-counter, it is
worth to discuss the risk premium of such contracts. As a reference point, we consider
the risk premium of the exchange-traded WPF contracts. We define the risk premium
as the model implied WPF contract price under the physical measure subtracted
from the observed exchange-traded WPF contract price. The model implied price is
defined by E[P̄n(S,T )], meaning that the risk premium RP (to,S,T ) is

RP (t0,S,T ) = P̄n(t0,S,T )−E[P̄n(S,T )] (5.8)

on day t0 for the delivery period [S,T ]. The observed quoted exchange-traded WPF
prices are obtained from NASDAQ OMX. As concluded in Sec. 5.2, the stationarity of
the models does not imply different results compared to the conditional versions of
the models for such long time periods, so to ease the presentation, we only consider
the unconditional expected value here3.

We limit ourselves to yearly and quarterly exchange-traded WPF contracts for
two reasons. First, it is unlikely that the tailor-made WPF contracts in general will
be specified for a short delivery such as a week as a result of such non-standardized
instrument. Secondly, as concluded in [5], fundamentals impact the information
premium of exchange-traded WPF contracts with a short delivery period (e.g. a week)
and a short period of time to delivery, which we would like to avoid. Thirdly, to assess
the seasonal differences we also consider quarterly contracts.

For the period from 1 July 2016 to 30 June 2019, we show E[P̄n(S,T )] and P̄n(t0,S,T )
in Fig. 11 for the front year (that is, for a given date, the front year denotes the next

3Despite the fact that RP (t0,S,T ) still depends on t0 thorugh P̄n(t0,S,T ), the assumption of stationarity
is to some degree confirmed by the constant pattern of P̄n(t0,S,T ) observed in Figs. 11 and 12(a).

184



5 · Hedging wind power production

year). The quoted prices are fairly constant throughout the entire period, which could
be a consequence of illiquidity of exchange-traded WPF contracts. The risk premium
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Figure 11: The model implied and quoted price for the front year for the period from 1 July 2016 to 30
June 2019. Notice that the date refers to the observation date; i.e., the date where the contract is quoted.

is -0.011 for the gamma model and -0.013 for the lognormal model on average. Since
we are considering a yearly WPF contract we can ignore the seasonality and use the
empirical mean to assess the risk premium. The empirical risk premium is -0.011,
agreeing with the gamma model. This is likely a consequence of the gamma model
having a better fit to the distribution of the German wind index as discussed in Sec. 4
(see also Table 3).

Fig. 12(a) shows the model implied and quoted prices for the front quarter, and
Fig. 12(b) shows the corresponding risk premium. The mean of the risk premium in
this case is -0.014 for the gamma model and -0.016 for the lognormal model. The
seasonal variation in the prices peaks for contracts with delivery during Q4 and Q1,
simply since more wind is present during these quarters. This is also reflected in the
model-implied prices. The peaks in the risk premium are observed for contracts with
delivery during Q1 and Q2. One explanation of this could be non-aligned incentives
to engage in the WPF market throughout the year for the buying and selling side. [9]
shows that the hedging benefits are greater for CPPs during Q3 and Q4 compared to
Q1 and Q2; hence, during Q3 and Q4, CPPs are more interested in WPF contracts
and thus willing to pay more.

A negative risk premium is in line with the findings in [5] and [10]. One might
argue that this is expected from a hedging benefit perspective, since the hedging
benefits in general are greater for the selling side than the buying side (see [8], [9],
and [10]). Continuing this argument, the risk premium is likely to be even more
negative in the tailor-made WPF contracts market as a result of the perfect hedge
implied by the tailor-made WPF contracts for WPPs. However, from the perspective
of the individual WPP, this extra risk premium associated with the tailor-made WPF
contract compared to the exchange-traded WPF contract has to be weighted against
the deterministic payoff implied by the tailor-made WPF contract.
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Figure 12: (a) the model implied and quoted price for the front quarter, and (b) and the risk premium for
the front quarter. The observations period is from 1 July 2016 to 30 June 2019. Notice that the date refers
to the observation date; i.e., the date where the contract is quoted.

6 Conclusion

In this paper, we propose and compare two multivariate continuous-time models, the
gamma and lognormal model, for the joint behaviour of wind indexes. We discuss
the properties of the models, and propose estimation procedures. Empirically, we
employ the models to a joint model for the wind indexes at three different wind sites
in Germany, and the German wind index that represents the overall utilization of
wind power production in Germany. We find that both models are able to capture the
autocorrelation structure well. However, the gamma model captures the skewness
and kurtosis of the German wind index better than the lognormal model.

The models are applied to a variance-minimizing hedging strategy of a portfolio
consisting of long positions in so-called tailor-made wind power futures contracts at
the three wind sites, and a short position in the exchange-traded wind power futures
contract. The hedging effectiveness is assessed in an in-sample and out-of-sample
context. Both models indicate that a significant variance reduction can be obtained
by hedging the portfolio with the exchange-traded wind power futures contracts
in-sample as well as out-of-sample. Further, the hedging benefits are greater for the
portfolio of tailor-made wind power futures compared to hedging each individual
wind site with exchange-traded wind power futures contracts.

The risk premium of the exchange-traded wind power futures contracts is exam-
ined, where we find that the gamma model implies a more reliable estimate of the
risk premium. A negative risk premium is observed in line with other findings in the
literature for both yearly and quarterly contracts. Even though the tailor-made wind
power futures contracts give each wind power producer a perfect volumetric hedge
of her wind power production, we argue that it is likely that the risk premium for
a tailor-made wind power futures contract is even more negative compared to the
exchange-traded contract.
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7 Theoretical results for the gamma model

This section is dedicated to proving Prop. 3.2 and Proposition 3.3. We start by proving
Prop. 3.3, which the lemma below is a first step towards. We will use some standard
results about continuous-time moving averages, all of which can be found in [14].

The following Lemma is well-known, but we give a proof for the sake of complete-
ness.

Lemma 7.1. Let t ≥ 0 and consider the two one-dimensional processes

Y1(t) =
∫ t

−∞
f1(t −u)dZ(u) and Y2(t) =

∫ t

−∞
f2(t −u)dZ(u) (7.1)

for functions f1 and f2 in L1(R)∩L2(R), and where Z is a one-dimensional Lévy process
with second moment. Then

E[Y1(0)] =
∫ ∞

0
f1(u)duE[Z(1)]

and

E[(Y1(0)−E[Y1(0)])(Y2(t)−E[Y2(t)])] =
∫ ∞

0
f1(u)f2(t +u)du var(Z(1)).

Proof. Let ψY1(0),Y2(t) be the cumulant generating function of (Y1(0),Y2(t)) and ψZ be
the cumulant generating function of Z. Then

ψY1(0),Y2(t)(x) = logE[exp{x1Y1(0) + x2Y2(t)}]

=
∫ t

0
ψZ (x2f2(u))du +

∫ ∞
0
ψZ (x1f1(u) + x2f2(t +u))du.

It follows that for n1,n2 ∈N0 with n1 +n2 ≤ 2,

dn1+n2

dxn1
1 dx

n2
2

ψY1,Y2
(x) =

∫ t

0
f n2

2 (u)ψ(n2)
Z (x2f2(u))du

+
∫ ∞

0
f n1

1 (u)f n2
2 (u)ψ(n1+n2)

Z (x1f1(u) + x2f2(u))du.

where ψ(n1+n2)
Z denotes the n1 +n2 times derivative of ψZ . We conclude that

E[Y1(0)] =
d
dx1

ψY1(0),Y2(t)(0) =
∫ ∞

0
f1(u)duE[Z(1)].

Assume now, without loss of generality, E[Z(1)] = 0. Then

E[(Y1(0)−E[Y1(0)])(Y2(t)−E[Y2(t)])]

=
d2

dx1dx2
ψY1(0),Y2(t)(0)

=
∫ ∞

0
f1(u)f2(t +u)du var[Z(1)] �
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Proof (Proof of Prop. 3.3). Let σi,k denote the (i,k)’th entry ofΣL. Then, using Lemma
7.1,

E[Xi(t)] =
n∑
k=1

E

[∫ t

−∞
e−λi (t−u)σi,kdLk(u)

]

=
n∑
k=1

1
λi
σi,kβk/2

=
(
Λ−1ΣLβ/2

)
i
.

This gives (3.9). Assume now, without loss of generality, E[L(1)] = 0. Then, using
Lemma 7.1 again,

E[Xi(0)Xj (t)]

= E


 n∑
k=1

∫ 0

−∞
e−λi (−u)σi,kdLk(u)


 n∑
k=1

∫ t

−∞
e−λj (t−u)σj,kdLk(u)




=
n∑
k=1

σi,kσj,k

∫ ∞
0
e−λj (t+u)e−λiudu

=
e−λj t

λi +λj

n∑
k=1

σi,kσj,k

= ((Λvar ◦ΣLΣ>L )e−Λt)i,j

from which (3.10) follows. �

We now turn to proving Prop. 3.2. Initially, we give the next result which is a spe-
cial case of [6, Theorem 4.8], but again, we give a proof for the sake of completeness.

Proposition 7.2. Let L be a compound Poisson process with intensity α > 0 and exponen-
tial jumps with parameter β > 0. Consider t ∈R, λ,µ > 0 and x1,x2 ∈R with x1 + x2 < β.
Furthermore, assume x1x2 ≥ 0 and x1 , 0, and let f (t) = x1e

−λt + x2e
−µt . Then

logE
[
exp

{∫ t

−∞
f (t −u)dL(u)

}]
= α

f (0)
f ′(0)

log
(
1−

f (0)
β

)
+α

∫ ∞
0

(
f (u)
f ′(u)

)′
log

(
1−

f (u)
β

)
du,

(7.2)

where ∣∣∣∣∣∣
(
f (u)
f ′(u)

)′∣∣∣∣∣∣ ≤ (λ−µ)2

2λµ
(7.3)

for all u ≥ 0.
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Proof. Initially, note that f /f ′ is bounded and∣∣∣∣∣∣
(
f (u)
f ′(u)

)′∣∣∣∣∣∣ =
|f ′(u)2 − f (u)f ′′(u)|

f ′(u)2

=
x1x2(λ−µ)2e−(λ+µ)u

x2
1λ

2e−2λu + x2
2µ

2e−2µu + 2x1x2λµe−(λ+µ)u

≤
(λ−µ)2

2λµ
.

This gives the bound on (f /f ′)′ . Additionally, we find that∣∣∣∣∣∣
(
f (u)
f ′(u)

)′∣∣∣∣∣∣ =
x1x2(λ−µ)2e−(λ+µ)u

x2
1λ

2e−2λu + x2
2µ

2e−2µu + 2x1x2λµe−(λ+µ)u

=
x1x2(λ−µ)2

x2
1λ

2e−(λ−µ)u + x2
2µ

2e−(µ−λ)u + 2x1x2λµ
.

We conclude that (f (u)/f ′(u))′ =O(e−|λ−µ|u) as u→∞. Thus, all integrals below are
convergent and the integration by parts is justified. Next let

ψ(u) = logE[exp(uL(1))] = α
u

β −u

be the cumulant-generating function of L(1) and let φ(u) = −α log(1 − u/β) be the
cumulant-generating funciton of a gamma distribution with shape α and rate β (see
for example [5]). Note that ψ(u) = uφ′(u). Then, using integration by parts,

logE
[
exp

{∫ t

−∞
f (t −u)dL(u)

}]
=

∫ ∞
0
ψ(f (u))du

=
∫ ∞

0

f (u)
f ′(u)

(φ(f (u)))′du

= −
f (0)
f ′(0)

φ(f (0))−
∫ ∞

0

(
f (u)
f ′(u)

)′
φ(f (u))du. �

Remark 7.3. Considering the proof of Prop. 7.2 there are two approaches to calculate

logE
[
exp

{∫ t

−∞
f (t −u)dL(u)

}]
. (7.4)

Either by calculating ∫ ∞
0
ψ(f (u))du (7.5)

or

−
f (0)
f ′(0)

φ(f (0))−
∫ ∞

0

(
f (u)
f ′(u)

)′
φ(f (u))du. (7.6)
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Here, ψ and φ are the cumulant-generating function of L(1) and of a gamma distribu-
tion with shape α and rate β as defined in the proof of Prop. 7.2. By (7.3), the integral
in (7.6) will be small whenever (λ−µ)2/(2λµ) is small. In the application we consider
we are concerned with the case where λ = λ̂i and µ = λ̂j for some i, j = 1,2,3,4, where
λ̂i and λ̂j are given in Table 2. We have

max
i,j

(λ̂i − λ̂j )2

2λ̂i λ̂j
= 0.0695,

and therefore, indeed, that (λ − µ)2/(2λµ) is small in the case relevant to us. The
integral in (7.6) has φ in the kernel whereas (7.5) has ψ, making a direct comparison
more difficult. We do, however, have

φ(u) = αu +O(u2) and ψ(u) = αu +O(u2) as u→ 0

(by a Taylor approximation argument), indicating that φ and ψ are of comparable size,
at least for small values. Furthermore, by numerical comparison, we have found them
to be of similar size. We conclude that the kernel of (7.6) is expected to be considerably
smaller than the kernel of (7.5). We therefore prefer to do the calculation in (7.6)
instead of (7.5) since we can do a much more coarse approximation for a desired
precision of a approximation of (7.4).

Proposition 7.4. Let L be a compound Poisson process with intensity α > 0 and exponen-
tial jumps with parameter β > 0. Consider s < t, λ > 0 and x < β. Then

E

[
exp

{
x

∫ t

s
e−λ(t−u)dL(u)

}]
=

(
β − xe−λ(t−s)

β − x

)α/λ
and

E

[
exp

{
x

∫ t

−∞
e−λ(t−u)dL(u)

}]
=

(
β

β − x

)α/λ
(7.7)

Proof. Let

ψ(t) = logE[exp(tL(1))] = α
t

β − t

be the cumulant-generating function of L. Then

logE
[
exp

{∫ t

s
f (t −u)dL(u)

}]
=

∫ t−s

0
ψ(e−λu)du

=
α
λ

(
log(β − xe−λ(t−s))− log(β − x)

)
.

A similar calculation gives (7.7). �

Proof (Proof of Theorem 3.2). For notional convenience, let

L̃(t) = (L1(t), . . . ,Ln−1(t),0,Ln(t))> ∈Rn+1.
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First consider (3.7) and assume i , j. We have

Xi(t) =
∫ t

−∞
e−λi (t−u)σ̃i,idL̃i(u) +

∫ t

s
e−λi (t−u)σ̃i,n+1dL̃n+1(u)

+
∫ s

−∞
e−λi (t−u)σ̃i,n+1dL̃n+1(u)

and

Xj (s) =
∫ s

−∞
e−λj (s−u)σ̃j,jdL̃j (u) +

∫ s

−∞
e−λj (s−u)σ̃j,n+1dL̃n+1(u).

Next, note that cov(UV ,W ) = cov(V ,UW ) = E[U ]cov(V ,W ) for a random variable
U independent of the random variables V and W . Applying this, and the above, we
conclude that

cov(Pi(t), Pj (s))

=cov
(
e−Si (t)Xi (t), e−Sj (s)Xj (s)

)
=E

[
exp

{
−Si(t)

∫ t

−∞
e−λi (t−u)σ̃i,idL̃i(u)

}]
×E

[
exp

{
−Si(t)

∫ t

s
e−λi (t−u)σ̃i,n+1dL̃n+1(u)

}]
×E

[
exp

{
−Sj (s)

∫ s

−∞
e−λj (t−u)σ̃j,jdL̃j (u)

}]
×cov

(
exp

{
−Si(t)

∫ s

−∞
e−λi (t−u)σ̃i,n+1dL̃i(u)

}
,

exp
{
−Sj (s)

∫ s

−∞
e−λj (s−u)σj,n+1dL̃n+1(u)

})

(7.8)

Expressions of the three expectations in Eq. (7.8) are given in Prop. 7.4. Furthermore,

cov
(
exp

{
−Si(t)

∫ s

−∞
e−λi (t−u)σ̃i,n+1dL̃i(u)

}
,

exp
{
−Sj (s)

∫ s

−∞
e−λj (s−u)σ̃j,n+1dL̃n+1(u)

})
=E

[
exp

{
−
∫ s

−∞
fi,j (s −u)dL̃n+1(u)

}]
−E

[
exp

{
−Si(t)

∫ s

−∞
e−λi (t−u)σ̃i,n+1dL̃n+1(u)

}]
×E

[
exp

{
−Sj (s)

∫ s

−∞
e−λj (s−u)σ̃j,n+1dL̃n+1(u)

}]
for which expressions are given in Prop. 7.2 and Prop. 7.4.

Next, consider (3.8). We write

Xi(t) =
∫ t

s
e−λi (t−u)

(
σ̃i,idL̃i(u) + σ̃i,n+1dL̃n+1(u)

)
+
∫ s

−∞
e−λi (t−u)

(
σ̃i,idL̃i(u) + σ̃i,n+1dL̃n+1(u)

)
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and

Xi(s) =
∫ s

−∞
e−λi (s−u)

(
σ̃i,idL̃i(u) + σ̃i,n+1dL̃n+1(u)

)
.

Consequently,

cov(Pi(t), Pi(s))

=cov
(
e−Si (t)Xi (t), e−Si (s)Xi (s)

)
=E

[
exp

{
−Si(t)

∫ t

s
e−λi (t−u)

(
σ̃i,idL̃i(u) + σ̃i,n+1dL̃n+1(u)

)}]
×cov

(
exp

{
−Si(t)

∫ s

−∞
e−λi (t−u)

(
σ̃i,idL̃i(u) + σ̃i,n+1dL̃n+1(u)

)}
,

exp
{
−Si(s)

∫ s

−∞
e−λi (s−u)

(
σ̃i,idL̃j (u) + σ̃i,n+1dL̃n+1(u)

)})
Again, expressions for the expectation in (7.8) can be found using Prop. 7.4. Finally,

cov
(
exp

{
−Si(t)

∫ s

−∞
e−λi (t−u)

(
σ̃i,idL̃i(u) + σ̃i,n+1dL̃n+1(u)

)}
,

exp
{
−Si(s)

∫ s

−∞
e−λi (s−u)

(
σ̃i,idL̃i(u) + σ̃i,n+1dL̃n+1(u)

)})
=E

[
exp

{
−
∫ s

−∞
σ̃i,i

(
Si(t)e

−λi (t−s) + Si(s)
)
e−λi (s−u)dL̃i(u)

}]
×E

[
exp

{
−
∫ s

−∞
σ̃i,n+1

(
Si(t)e

−λi (t−s) + Si(s)
)
e−λi (s−u)dL̃n+1(u)

}]
−E

[
exp

{
−
∫ s

−∞
σ̃i,iSi(t)e

−λi (t−u)dL̃i(u)
}]

×E
[
exp

{
−
∫ s

−∞
σ̃i,n+1Si(t)e

−λi (t−u)dL̃n+1(u)
}]

×E
[
exp

{
−
∫ s

−∞
σ̃i,iSi(s)e

−λi (s−u)dL̃i(u)
}]

×E
[
exp

{
−
∫ s

−∞
σ̃i,n+1Si(s)e

−λi (s−u)dL̃n+1(u)
}]

where expressions are given in Prop. 7.4. �
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I
A Statistical View On A Surrogate Model For

Estimating Extreme Events With An
Application To Wind Turbines

Mikkel Slot Nielsen and Victor Rohde

Abstract

In the present paper we propose a surrogate model, which particularly aims
at estimating extreme events from a vector of covariates and a suitable simulation
environment. The first part introduces the model rigorously and discusses the
flexibility of each of its components by drawing relations to literature within fields
such as incomplete data, statistical matching, outlier detection and conditional
probability estimation. In the second part of the paper we study the performance
of the model in the estimation of extreme loads on an operating wind turbine
from its operational statistics.

AMS 2010 subject classifications: 62P30; 65C20; 91B68

Keywords: extreme event estimation; wind turbines; surrogate model

1 Introduction

Suppose that we want to assess the distributional properties of a certain one-dimensional
random variable Y . For instance, one could be interested in knowing the probability
of the occurrence of large values of Y as they may be associated with a large risk
such as system failure or a company default. One way to evaluate such risks would
be to collect observations y1, . . . , yn of Y and then fit a suitable distribution (e.g., the
generalized Pareto distribution) to the largest of them. Extreme event estimation is
a huge area and there exists a vast amount on literature of both methodology and
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applications; a few references are [4, 5, 12, 17]. This is one example where knowledge
of the empirical distribution of Y ,

P̂Y (δy1
, . . . ,δyn ) =

1
n

n∑
i=1

δyi , (1.1)

is valuable. (Here δy denotes the Dirac measure at the point y.) If one is interested in
the entire distribution of Y , one may use the estimator (1.1) directly or a smoothed
version, e.g., replacing δyi by the Gaussian distribution with mean yi and variance
σ2 > 0 (the latter usually referred to as the bandwidth). The problem in determining
(1.1) arises if Y is not observable. Such a situation can happen for several reasons,
e.g., it may be that Y is difficult or expensive to measure or that its importance has
just recently been recognized, and hence one have not collected the historic data that
is needed. Sometimes, a solution to the problem of having a latent variable could be
to set up a suitable simulation environment and, by varying the conditions of the
system, obtain various realizations of Y . Since we cannot be sure that the variations in
the simulation environment correspond to the variations in the physical environment,
the realizations of Y are not necessarily drawn from the true distribution. This is
essentially similar to any experimental study and one will have to rely on the existence
of control variables.

By assuming the existence of an observable d-dimensional vector X of covariates
carrying information about the environment, a typical way to proceed would be
regression/matching which in turn would form a surrogate model. To be concrete,
given a realization x of X, a surrogate model is expected to output (approximately)
f (x) = E[Y | X = x], the conditional mean of Y given X = x. Consequently, given
inputs x1, . . . ,xn, the model would produce f (x1), . . . , f (xn) as stand-ins for the missing
values y1, . . . , yn of Y . Building a surrogate for the distribution of Y on top of this could
now be done by replacing yi by f (xi) in (1.1) to obtain an estimate P̂Y (δf (x1), . . . ,δf (xn))
of the distribution of Y . This surrogate model for the distribution of Y can thus be
seen as a composition of two maps:

(x1, . . . ,xn) −→ (δf (x1), . . . ,δf (xn)) −→ P̂Y (δf (x1), . . . ,δf (xn)). (1.2)

In the context of an incomplete data problem, the strategy of replacing unobserved
quantities by the corresponding conditional means is called regression imputation
and will generally not provide a good estimate of the distribution of Y . For instance,
while the (unobtainable) estimate in (1.1) converges weakly to the distribution of
Y as the sample size n increases, the one provided by (1.2) converges weakly to the
distribution of the conditional expectation E[Y | X] of Y given X. In fact, any of the so-
called single imputation approaches, including regression imputation, usually results
in proxies ŷ1, . . . , ŷn which exhibit less variance than the original values y1, . . . , yn, and
in this case P̂Y (δŷ1

, . . . ,δŷn ) will provide a poor estimate of the distribution of Y (see
[15] for details).

The reason that the approach (1.2) works unsatisfactory is that δf (X) is an (unbi-
ased) estimator for the distribution of E[Y | X] rather than of Y . For this reason we
will replace δf (x) by an estimator for the conditional distribution µx of Y given X = x
and maintain the overall structure of (1.2):

(x1, . . . ,xn) −→ (µx1
, . . . ,µxn ) −→ P̂Y (µx1

, . . . ,µxn ). (1.3)
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2 · The model

In Section 2 we introduce the model (1.3) rigorously and relate the assumptions on
the simulation environment needed to estimate µx to the classical strong ignorability
(or unconfoundedness) assumption within a matching framework. Given a simulation
environment that satisfies this assumption, an important step in order to apply the
surrogate model (1.3) is of course to decide how to estimate µx, and hence we discuss
in Section 2.1 some methods that are suitable for conditional probability estimation.
In Section 2.2 we address the issue of checking if the simulation environment meets
the imposed assumptions. Finally, in Section 3 we apply the surrogate model to real-
world data as we estimate extreme tower loads on a wind turbine from its operational
statistics.

2 The model

Let P be the physical probability measure. Recall that Y is the one-dimensional
random variable of interest, X is a d-dimensional vector of covariates and x1, . . . ,xn
are realizations of X under P. We are interested in a surrogate model that delivers an
estimate of P(Y ∈ B) for every measurable set B. The model is given by

P̂Y =
1
n

n∑
i=1

µ̂xi , (2.1)

where µ̂x is an estimator for the conditional distribution µx of Y given X = x. Since
each xi is drawn independently of µx under P, each µ̂xi provides an estimator of PY ,
and the averaging in (2.1) may be expected to force the variance of the estimator P̂Y
to zero as n tends to infinity. In order to obtain µ̂x we need to assume the existence of
a valid simulation tool:

Condition 2.1. Realizations of (X,Y ) can be obtained under an artificial probability
measure Q which satisfies

(i) The support of P(X ∈ ·) is contained in the support of Q(X ∈ ·).

(ii) The conditional distribution of Y given X = x is the same under both P and Q, that
is,

Q(Y ∈ · | X = x) = µx

for all x in the support of P(X ∈ ·).

In words, Condition 2.1 says that any outcome of X that can happen in the real
world can also happen in the simulation environment and, given an outcome of X, the
probabilistic structure of Y in the real world is perfectly mimicked by the simulation
tool. Note that, while this is a rather strict assumption, it may of course be relaxed to
Q(Y ∈ B | X = x) = µx(B) for all x in the support of P(X ∈ ·) and any set B of interest.
For instance, in Section 3 we will primarily be interested in B = (τ,∞) for a large
threshold τ .

Remark 2.2. We can assume, possibly by modifying the sample space, the existence
of a random variable Z ∈ {0,1} and a probability measure P̃ such that

P = P̃(· | Z = 0) and Q = P̃(· | Z = 1).
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Effectively,Z indicates whether we are using the simulation tool or not, and P̃(Z = 1) ∈
(0,1) defines the probability of drawing (X,Y ) from the simulation environment (as
opposed to drawing X from the measurement environment). In this case, according
to Bayes’ rule, Condition 2.1 is equivalent to

P̃(Z = 1 | X,Y ) = P̃(Z = 1 | X). (2.2)

In words, (2.2) means that Y and Z are conditionally independent under P̃ given X.
The assumption (2.2) was introduced in [13] as the strong ignorability assumption in
relation to estimating heterogeneous treatment effects. In the literature on incomplete
data, where Z indicates whether Y is observed or not, (2.2) is usually known as the
Missing at Random (in short, MAR) mechanism, referring to the pattern of which Y
is missing. This assumption is often imposed and viewed as necessary in order to do
inference. See [9, 14, 15] for details about the incomplete data problem and the MAR
mechanism.

Remark 2.3. Usually, to meet Condition 2.1((ii)), one will search for a high-dimensional
X (large d) to control for as many factors as possible. However, as this complicates
the estimation of µx, one may be interested in finding a function b : Rd →R

m, m < d,
maintaining the property

P(Y ∈ · | b(X) = b(x)) = Q(Y ∈ · | b(X) = b(x)) (2.3)

for all x in the support of P(X ∈ ·). This is a well-studied problem in statistical
matching with the main reference being [13], who referred to any such b as a balancing
function. They characterized the class of balancing functions by first showing that
(2.3) holds if b is chosen to be the propensity score under P̃ (cf. Remark 2.2), π(x) =
P̃(Z = 1 | X = x), and next arguing that a general function b is a balancing function if
and only if

f (b(x)) = π(x) for some function f . (2.4)

2.1 Estimation of the conditional probability

The ultimate goal is to estimate µx = Q(Y ∈ · | X = x), e.g., in terms of the cumulative
distribution function (CDF) or density function, from a sample (xs1, y

s
1), . . . , (xsm, y

s
m)

of (X,Y ) under the artificial measure Q. (We use the notation xsi rather than xi to
emphasize that the quantities are simulated values and should not be confused with
xi in (2.1).) The literature on conditional probability estimation is fairly large and in-
cludes both parametric and non-parametric approaches varying from simple nearest
neighbors matching to sophisticated deep learning techniques. A few references are
[7, 8, 10, 18]. In Section 3 we have chosen to use two simple but robust techniques in
order to estimate µx:

(i) Smoothed k-nearest neighbors: for a given k ∈N, k ≤m, let Ik(x) ⊆ {1, . . . ,m} denote
the k indices corresponding to the k points in {xs1, . . . ,xsm} which are closest to x
with respect to some distance measure. Then µx is estimated by

µ̂x =
1
k

∑
i∈Ik(x)

N (ysi ,σ ),
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where N (ξ,σ ) denotes the Gaussian distribution with mean ξ and standard
deviation σ ≥ 0 (using the conventionN (ξ,0) = δξ ).

(ii) Smoothed random forest classification: suppose that one is interested in the CDF
of µx at certain points α1 < α2 < · · · < αk and consider the random variable C ∈
{0,1, . . . , k} defined by C =

∑k
j=11{Y>αj }. From ys1, . . . , y

s
m one obtains realizations

c1, . . . , cm of C under Q and, next, random forest classification (as described in
[2]) can be used to obtain estimates of the functions

pj (x) = Q(C = j | X = x), j = 0,1, . . . , k − 1.

Given these estimates, say p̂0, p̂1, . . . , p̂k−1, the CDF of µx is estimated by

µ̂x((−∞,αi]) =
k∑
j=1

p̂j−1(x)Φ
(αi −αj

σ

)
, i = 1, . . . , k,

where Φ is the CDF of a standard Gaussian distribution (using the convention
Φ(·/0) = 1[0,∞)).

Both techniques are easily implemented in Python using modules from the scikit-
learn library (see [11]). The distance measure d, referred to in ((i)), would usually be
of the form

d(x,y) =
√

(x − y)TM(x − y), x,y ∈Rd ,

for some positive definite d × d matrix M. If M is the identity matrix, d is the Eu-
clidean distance, and if M is the inverse sample covariance matrix of the covariates,
d is the Mahalanobis distance. Note that, since the k-nearest neighbors (kNN) ap-
proach suffers from the curse of dimensionality, one would either require that X
is low-dimensional, reduce the dimension by applying dimensionality reduction
techniques or use another balancing function than the identity function (i.e., finding
an alternative function b satisfying (2.4)).

2.2 Validation of the simulation environment

The validation of the simulation environment concerns how to evaluate whether
or not Condition 2.1 is satisfied. Part ((i)) of the condition boils down to checking
whether it is plausible that a realization x of X under the physical measure P could
also happen under the artificial measure Q or, by negation, whether x is an outlier
relative to the simulations of X. Outlier detection methods have received a lot of at-
tention over decades and, according to [6], they generally fall into one of three classes:
unsupervised clustering (pinpoints most remote points to be considered as potential
outliers), supervised classification (based on both normal and abnormal training data,
an observation is classified either as an outlier or not) and semi-supervised detection
(based on normal training data, a boundary defining the set of normal observations is
formed). We will be using a kNN outlier detection method, which belongs to the first
class, and which bases the conclusion of whether x is an outlier or not on the average
distance from x to its k nearest neighbors. The motivation for applying this method
is two-fold: (i) an extensive empirical study [3] of the unsupervised outlier detection
methods concluded that the kNN method, despite its simplicity, is a robust method
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that remains the state of the art when compared across various datasets, and (ii) given
that we already compute the distances to the k nearest neighbors to estimate µx, the
additional computational burden induced by using the kNN outlier detection method
is minimal. For more on outlier detection methods, see [1, 3, 6, 19] and references
therein.

Following the setup of Section 2.1, let xs1, . . . ,x
s
m be realizations of X under Q and

denote by Ik(x) the set of indices corresponding to the k realizations closest to x with
respect to some metric d (e.g., the Euclidean or Mahalanobis distance). Then, for
observations x1, . . . ,xn under P, the algorithm goes as follows:

(1) For i = 1, . . . ,n compute the average distance from xi to its k-nearest neighbors

d̄i =
1
k

∑
j∈Ik(xi )

d(xi ,x
s
j ).

(2) Obtain a sorted list d̄(1) ≤ · · · ≤ d̄(n) of d̄1, . . . , d̄n and detect, e.g., by visual in-
spection, a point j at which the structure of the function i 7→ d̄(i) changes
significantly.

(3) Regard any xi with d̄i ≥ d̄(j) as an outlier.

Part ((ii)) of Condition 2.1 can usually not be checked, since we do not have any
realizations of Y under P; this is similar to the issue of verifying the MAR assumption
in an incomplete data problem. Of course, if such realizations are available we can
estimate the conditional distribution of Y given X = x under both P and Q and
compare the results.

3 Application to extreme event estimation for wind turbines

In this section we will consider the possibility of estimating the distribution of the
10-minute maximum down-wind bending moment (load) on the tower top, middle
and base on an operating wind turbine from its 10-minute operational statistics. The
data consists of 19,976 10-minute statistics from the turbine under normal operation
over a period from February 17 to September 30, 2017. Since this particular turbine is
part of a measurement campaign, load measurements are available, and these will be
used to assess the performance of the surrogate model (see Figure 1 for the histogram
and CDF of measured loads).

To complement the measurements, a simulation tool is used to obtain 50,606
simulations of both the operational statistics and the corresponding tower loads. We
choose to use the following eight operational statistics as covariates:

. Electrical power (maximum and standard deviation)

. Generator speed (maximum)

. Tower top down-wind acceleration (standard deviation)

. Blade flap bending moment (maximum, standard deviation and mean)

. Blade pitch angle (minimum)
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Figure 1: Measured load distributions. Left and right plots correspond to histograms and CDFs, respec-
tively, based on 19,976 observations of the tower top (first row), middle (second row) and base (third row)
down-wind bending moments.

The selection of covariates is based on a physical interpretation of the problem
and by leaving out covariates which from a visual inspection (i.e., plots of the two-
dimensional coordinate projections) seem to violate the support assumption imposed
in Condition 2.1((i)). The loads and each of the covariates are standardized by sub-
tracting the sample mean and dividing by the sample standard deviation (both of
these statistics are computed from the simulated values). In the setup of Section 2,
this means that we have realizations of X ∈ R

8 and Y ∈ R under both P and Q

(although the typical case would be that Y is not realized under P). This gives us
the opportunity to compare the results of our surrogate model with the, otherwise
unobtainable, estimate (1.1) of P(Y ∈ ·).

In order to sharpen the estimate of µx for covariates x close to the measured ones,
we discard simulations which are far from the domain of the measured covariates.
Effectively, this is done by reversing the kNN approach explained in Section 2.2 as
we compute average distances from simulated covariates to the k nearest measured
covariates, sort them and, eventually, choosing a threshold that defines the relevant
simulations. We will use k = 1 and compute the sorted average distances in terms
of the Mahalanobis distance. The selection of threshold is not a trivial task and,
as suggested in Section 2.2, the best strategy may be to inspect visually if there
is a certain point, at which the structure of the sorted average distances changes
significantly. To obtain a slightly less subjective selection rule, we use the following
ad hoc rule: the threshold is defined to be d(τ), the τ-th smallest average distance,
where τ is the point that minimizes the L1 distance

d1(f , fτ ) :=
∫ m

1
|f (x)− fτ (x)|dx (3.1)

between the function f that linearly interpolates (1,d(1)), . . . , (m,d(m)) and fτ that
linearly interpolates (1,d(1)), (τ,d(τ)), (m,d(m)) over the interval [1,m] (see the left plot
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of Figure 2). This selection rule implies a threshold of 6.62 with τ = 46,100, which in
turn implies that 4,506 (8.90 %) of the simulations are discarded before estimating the
conditional load distributions. See the right plot of Figure 2 for a visual illustration
of the threshold selection. Of course, a more (or less) conservative selection rule can
be obtained by using another distance measure than (3.1).

Figure 2: Blue curve: sorted distance from simulated covariates to nearest measured covariates. Left: linear
interpolation of (1,d(1)), (τ,d(τ)), (m,d(m)) with shaded region representing the corresponding L1 error for

τ = 48,500. Right: the orange curve is the normalised L1 error as a function of τ and the dashed black lines
indicate the corresponding minimum and selected threshold.

The same procedure is repeated, now precisely as described in Section 2.2, to
detect potential outliers in the measurements. In this case, k = 10 is used since this
will be the same number of neighbors used to estimate µx. The threshold is 2.45 with
τ = 18,400, and hence 1,577 (8.57 %) of the measurements are found to be potential
outliers (see also Figure 3).

To assess which points that have been labeled as potential outliers, two-dimensional
projections of the outliers, inliers and simulations are plotted in Figure 4 (if a point
seems to be an outlier in the projection plot the original eight-dimensional vector
should also be labeled an outlier). To restrict the number of plots we only provide 18
(out of 28) of the projection plots corresponding to plotting electrical power (max-
imum), blade flap bending moment (maximum) and generator speed (maximum)
against each other and all the remaining five covariates. The overall picture of Figure 4
is that a significant part of the observations that seem to be outliers is indeed labeled
as such. Moreover, some of the labeled outliers seem to form a horizontal or vertical
line, which could indicate a period of time where one of the inputs was measured
to be constant. Since this is probably caused by a logging error, such measurements
should indeed be declared invalid (outliers).

Next, we would need to check if the distributional properties of the load can be
expected to change by removing outliers. In an incomplete data setup, the outliers
may be treated as the missing observations, and hence we want to assess whether
the Missing (Completely) at Random mechanism is in force (recall the discussion in
Remark 2.2). If the operation of removing outliers causes a significant change in the
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Figure 3: The blue curve is the sorted distance from measured covariates to the 10 nearest simulated
covariates, the orange curve is the L1 error as a function of τ , and the dashed black lines indicate the
corresponding minimum and selected threshold. All points with average distance larger than the threshold
are labeled possible outliers.

Figure 4: Some of the two-dimensional projections of the covariates. Blue dots are simulations, orange
dots are inliers and green dots are potential outliers.
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load distribution, then the outliers cannot be ignored and would need to be handled
separately. In Figure 5 the histograms of tower top, middle and base load obtained
from all measurements (the same as those in the three rows of Figure 1) are compared
to those where the outliers have been removed. It becomes immediately clear that
the distributions are not unchanged, since most of the outliers correspond to the
smallest loads of all measurements. However, it seems reasonable to believe that the
conditional distribution of the load given that it exceeds a certain (even fairly small)
threshold is not seriously affected by the exclusion of outliers. Since the interest is on
the estimation of extreme events, i.e., one often focuses only on large loads, it may
be sufficient to match these conditional excess distributions. Hence, we choose to
exclude the outliers without paying further attention to them. It should be noted
that, since the outlier detection method only focuses on covariates, it does not take
into account their explanatory power on the loads. For instance, it might be that a
declared outlier only differs from the simulations with respect to covariates that do
not significantly help explaining the load level. While this could suggest using other
distance measures, this is not a direction that we will pursue here.

Figure 5: Histograms of measurements on tower top (left), middle (mid) and base (right) down-wind
bending moments. Measurements including and excluding outliers are represented in blue and orange,
respectively.

We will rely on (2.1) together with the two methods presented in Section 2.1 to
estimate the load distributions. The unsmoothed version of both methods (i.e., σ = 0)
will be used, and for the kNN method we will choose k = 10. There are at least two
reasons for initially choosing the bandwidth σ to be zero: (i) it can be a subtle task to
select the optimal bandwidth as there is no universally accepted approach, and (ii)
given that we have a fairly large dataset, most of the estimated values of the CDFs
should be fairly insensitive to the choice of bandwidth. In Figure 6 we have plotted the
empirical CDF of the loads (i.e., the CDF of (1.1) based on measured loads) together
with the estimates provided by the kNN and random forest approach. Since the loads
are 10-minute maxima, it is natural to compare the CDFs to those of GEV type (cf.
the Fisher-Tippett-Gnedenko theorem). For this reason, and in order to put attention
on the estimation of the tail, we have also plotted the − log(− log(·)) transform of the
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CDFs. Recall that, when applying such a transformation to the CDF, the Gumbel,
Weibull and Fréchet distributions would produce straight lines, convex curves and
concave curves, respectively. From the plots it follows that, generally, the estimated
CDFs are closest to the empirical CDF for small and large quantiles. Estimated α-
quantiles tend to be smaller than the true ones for moderate values of α. One would
expect that, given only the eight covariates as considered here, a significant part
of errors would be due to differences between the simulation environment and the
real-world environment. From an extreme event estimation perspective, the most
important part of the curve would be the last 10-20 % corresponding to quantiles
above 0.8 or 0.9. On this matter, the − log(− log(·)) transform of the CDFs reveals that
the estimated CDFs have some difficulties in replicating the tail of the distribution
for middle and base load. However, since there are few extreme observations, this is
also the part where a potential smoothing (positive bandwidth) would have an effect.
To test the smoothing effect, we choose σ according to Silverman’s rule of thumb, that
is, σ = 1.06(kn)−1/5σ̂s, where n = 18,399 is the number of measurements (without
outliers) and σ̂s is the sample standard deviation of the kn load simulations (top,
middle or base) used for obtaining the kNN estimate of the given load distribution.
For details about this choice of bandwidth, and bandwidth selection in general, see
[16]. In Figure 7 we have compared the − log(− log(·)) transforms of the smoothed
estimates of the CDFs and the empirical CDF.

Figure 6: Plots of CDFs (first column) and the corresponding − log(− log(·)) transforms (second column) of
tower top (first row), middle (second row) and base (third row) down-wind bending moments. The blue
curve is the empirical distribution of the measurements, and the orange and green curves are the kNN and
random forest predictions, respectively.

It seems that the smoothed versions of the estimated curves generally fit the
tail better for the tower top and middle loads, but tend overestimate the larger
quantiles for the tower base load. This emphasizes that the smoothing should be
used with caution; when smoothing the curve, one would need to decide from which
point the estimate of the CDF is not reliable (as the Gaussian smoothing always
will dominate the picture sufficiently far out in the tail). When no smoothing was
used, the uncertainty of the estimates was somewhat reflected in the roughness of
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Figure 7: Plots of − log(− log(·)) transforms of CDFs of tower top (left), middle (center) and base (right)
down-wind bending moments. The blue curve is the empirical distribution of the measurements, and
the orange and green curves are the smoothed kNN and random forest predictions, respectively, using
Silverman’s rule of thumb.

the curves. We end this study with Table 1 which compares some of the estimated
quantiles with the true (empirical) ones. From this table we see that the errors tend
to be largest for the 25 %, 50 % and 75 % quantiles and fairly small for the 95 %,
99 % and 99.5 % quantiles, which is in line with the conclusion based on Figure 6.
Moreover, it also appears that no consistent improvements of the tail estimates are
obtained by using the smoothed CDF estimates.

Quantile (%)
kNN kNN Random forest Random forest Empirical

(smoothed) (smoothed)

25
Top −1.7349 −1.7344 −1.7941 −1.7315 −1.5528
Mid −1.4252 −1.4434 −1.3607 −1.2773 −1.1427
Base −1.4689 −1.4794 −1.4474 −1.3653 −1.3576

50
−0.7111 −0.7106 −0.9544 −0.8928 −0.3204

— 0.2181 0.2114 0.1587 0.2147 0.5002
0.1018 0.1152 0.0047 0.0547 0.2087

75
0.1643 0.1626 −0.0501 −0.0055 0.1991

— 1.1114 1.1076 1.1819 1.2192 1.5460
0.9407 0.9366 0.9978 1.0247 1.2192

95
0.6936 0.7122 0.6951 0.7414 0.7161

— 1.6855 1.7090 1.7283 1.7913 1.8670
1.6782 1.4653 1.4651 1.5184 1.4957

99
0.9611 0.9815 1.0068 1.0631 1.0271

— 1.8583 1.9383 1.9386 2.0385 1.9917
1.5877 1.6676 1.6245 1.7240 1.6179

99.5
1.0313 1.0687 1.0944 1.1522 1.1155

— 1.9180 2.0113 2.0195 2.1213 2.0418
1.6341 1.7337 1.6716 1.7910 1.6594

Table 1: Some quantiles of the empirical load distributions and of the corresponding kNN and random
forest estimates.

4 Conclusion

In this paper we presented a surrogate model for the purpose of estimating extreme
events. The key assumption was the existence of a simulation environment which
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produces realizations of the vector (X,Y ) in such a way that the conditional dis-
tribution of the variable of interest Y equals the true one given a suitable set of
observable covariates X. It was noted that this corresponds to the Missing at Random
assumption in an incomplete data problem. Next, we briefly reviewed the literature
on conditional probability estimation as this is the critical step in order to translate
valid simulations into an estimate of the true unconditional distribution of Y . Fi-
nally, we checked the performance of the surrogate model on real data as we used
an appropriate simulation environment to estimate the distribution of the tower top,
middle and base down-wind loads on an operating wind turbine from its operational
statistics. The surrogate model seemed to succeed in estimating the tail of the load
distributions, but it tended to underestimate loads of normal size.
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