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Preface

This dissertation is a result of my PhD studies in the period from August 1, 2018
to July 31, 2021 at the Laboratory for Applied Statistics at the Department of
Mathematics, Aarhus University. All the work in this dissertation were supervised
by Senior Researcher (with special qualification, MSK) Rodrigo Labouriau. The
dissertation is a collection of six papers. Paper V is included as a draft whereas
the remaining papers are included in their published format apart from layout and
minor insignificant adjustments. The papers can be read independently but contains
natural links to each other. The papers included in the thesis are:

Paper 1 Pelck, Labouriau: Conditional Inference for Multivariate Generalized
Linear Mized Models.

Paper 11 Pelck, Labouriau: Multivariate Generalised Linear Mized Models
With Graphical Latent Covariance Structure.

Paper 111 Pelck, Labouriau: Using Multivariate Generalised Linear Mixed
Models for Studying Roots Development.

Paper IV Pelck, Maia, Pinhero & Labouriau: A Multivariate Methodology for
Analysing Students’ Performance Using Register Data.

Paper V Pelck, Labouriau: Simultaneously Analysis of Time to Emergence of
Different Weed Species.

Paper VI Pelck, Luca, Holthusen, Edelenbos & Labouriau: Multivariate
Method for Detection of Rubbery Rot in Storage Apples by
Monitoring Volatile Organic Compounds: An Example of
Multivariate Generalised Linear Mized Models.

Parts of the material in Paper I, I and III were included in my progress report
used for the qualifying exam that was held January 31, 2020, in accordance with
the Graduate School of Natural Sciences rules (GSNS). The material used in the
progress report was further developed with new ideas and results after the qualifying
exam, which form the basis of the papers. Paper IV-VI are primarily a result of the
last part of my studies after the qualifying exam. I have contributed comprehensively
in both the writing as well as the research phase of all the papers.

This dissertation consists of an introductory section and six self-contained papers.
The purpose of the introduction is threefold. Firstly, it provides a review section
presenting an overview of relevant parts of the literature related to the content
of the dissertation. Secondly, it contains one introductory section for each paper
including a description of the research questions, the applied methodology and



summary of the results. Thirdly, it gives a short description of other work done
during my PhD studies, not included in the dissertation.

Paper I and II are theoretical papers presenting a new inference method for
an extended class of multivariate generalised linear mixed models with random
intercepts, and a method for combining the theory of graphical models together with
a statistical test to draw conclusions regarding the latent covariance structure in
this class of models. Paper III-VI are all applications of the methods in Paper I
and II, applied in very different contexts showing the high flexibility of the presented
methodologies.

My three years of PhD studies have been an instructive experience both personally
and academically but also challenging. I owe several people huge thanks for helping,
guiding and supporting me through this journey. First of all, I would like to thank
my supervisor Rodrigo Labouriau for giving me the opportunity of pursuing a PhD
degree, and for his huge support throughout the studies. I feel honoured that Rodrigo
has invested so much time and effort in me, which by far exceeds what could be
expected from a supervisor. His high ambitions and trust in my abilities has definitely
made me a better researcher.

I would also like to thank my co-authors Hildete P. Pinheiro and Rafael Pimentel
Maia from the Department of Statistics, University of Campinas, Brazil. During
Rafael’s visit to the Laboratory for Applied Statistics, Aarhus University, in January
2020, we planned that I would visit the University of Campinas in June 2020, where
we all would collaborate on an analysis of students’ performance at the University
of Campinas using the at that time developed parts of the methods described in
Paper I and II. Unfortunately, the COVID-19 pandemic made this visit impossible,
but instead, we managed to do the collaboration online which resulted in Paper IV.
[ am deeply grateful for their interest in my research and their willingness to adapt
to the impossible situation we all found ourselves in. I hope that I will get the
opportunity to visit them at the University of Campinas at some point. I would also
like to thank my co-authors Hinrich H.F. Holthusen, Merete Edelenbos, Alexandru
Luca from the department of FOOD Science, Aarhus university for an interesting
collaboration on Paper I.

I thank as well my colleagues at the Department of Mathematics, Aarhus Univer-
sity, for creating a pleasant work environment. A particular thanks goes to my office
mates during the first part of my PhD studies, Svend Vendelbo Nielsen and Johanna
Bertl, for all the small talks and the friendly working atmosphere. Moreover, I would
like to thank the local KTEX expert Lars ‘daleif” Madsen for helping me with the
technical typesetting. I would also like to thank my friends Majka Cilleborg Bilde
and Simone Fredin Mikkelsen for all the nice breakfasts, lunches and cake meetings
during our time at the university. Due to the COVID-19 pandemic, the second part
of my PhD studies was primarily spent working from home with my dog, Charlie, as
office mate and sometimes also my husband. I would like to thank both of you for
the nice company, and also, my friends Katrine Badkergaard Nielsen and Kathrine
Marie Graversen for the enjoyable (virtual) lunches.
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Finally, my family and friends deserve a deep gratitude for their indispensable
support and love. I am deeply grateful to my husband who always believe in me and
encourage me in everything I do.

Jeanett Snitgaard Pelck
July, 2021
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Abstract

This dissertation develops aspects of multivariate generalised linear mixed models
including new methodologies for inference and analysis of the latent covariance
structure. It is based on six self-contained papers, where the first two papers are
methodology papers and the remaining papers are applications of the developed
methods. These applications illustrate the great flexibility of the developed methods
and the wide range of applications arising from very different fields of research.

Generalised linear mixed models (GLMMs) offer a flexible system of statistical
models that can represent dependence in the data. These types of models include
latent random variables which define the dependency structure in the model. Typically,
these latent random variables are assumed to follow Gaussian distributions but
in Paper I and II, we allow for other distributions satisfying minimal requirements.
Moreover, the papers formulate multivariate versions of the univariate models defined
in literature. These multivariate models apply to responses of very different nature,
e.g., discrete and continuous variables as in Paper VI.

First, in Paper I, we present an inference method to be used in (multivariate)
GLMMs with random intercepts. This inference method differs from existing in-
ference methods by allowing more general distributional assumptions, both for the
responses and the random components. Next, in Paper II, we present a method to
analyse the latent covariance structure that is present in the class of multivariate
GLMMs introduced in Paper I, but with the restriction that the random components
follow a multivariate elliptical contoured distribution. Moreover, this method allows
us to characterise the correlation structure among the responses under the model.
Paper IIT — VI are applications of the methodologies presented in Paper I and II,
each contributing with new aspects of multivariate GLMMs. These applications
derive from various fields of research and illustrate the high flexibility of the de-
veloped methods. Paper 111 characterises simultaneously the spatial and temporal
distribution of the root system in a cultivated field using a multivariate GLMM.
Paper IV presents a method for jointly modelling students’ results in the university’s
admission exams and their performance in subsequent courses at the university. This
multivariate analysis includes a marginal frailty discrete-time Cox proportional model
combined with standard marginal Gaussian mixed models. Paper V consists of an
analysis of a weed emergence follow up study, where the time to emergence of each
propagule present in the soil for different species of weed were modelled simultane-
ously using a multivariate piecewise constant frailty Cox proportional model inferred
by estimating a suitable multivariate GLMM on a specially constructed dataset.
Paper VI describes a multivariate GLMM for screening potential chemical markers
for early detection of post-harvest disease in storage fruit.






Resumé

Denne afhandling omhandler aspekter af multivariate generaliserede linesere mixede
modeller, herunder en ny inferensmetode samt en metode til at analysere den latente
kovariansstruktur, der er til stede i disse modeller. Afhandlingen er baseret pa
seks selvstaendige artikler, hvor de to forste artikler er metodiske artikler, mens de
resterende artikler er anvendelser af de udviklede metoder. Anvendelserne illustrerer
den hgje fleksibilitet af de udviklede metoder samt de mange anvendelsesmuligheder
inden for meget forskellige forskningsomrader.

Generaliserede linezere mixede modeller (GLMMer) er statistiske modeller, der
tilbyder en hgj fleksibilitet samt giver mulighed for at repraesentere afhsengige data.
Denne type modeller inkluderer latente tilfeeldige variabler der typisk antages at fglge
en Gaussisk fordeling, men i Artikel I and II tillader vi andre fordelinger, der opfylder
nogle minimale betingelser. Artiklerne definerer ydermere multivariate udgaver af de
univariate modeller, der er defineret i litteraturen, som kan anvendes til at analysere
responser af meget forskellig karakter, f.eks. diskrete og kontinuerte variabler som i
Artikel VI.

Forst introducerer vi en inferensmetode for (multivariate) GLMMer med tilfzeldig
skeeringskoefficienten i Artikel I. Denne inferensmetode adskiller sig fra eksisterende
metoder ved at tillade mere generelle fordelingsantagelser, bade for responsevariab-
lerne og de tilfeeldige komponenter. Derngest praesenterer vi i Artikel IT en metode
til at analysere den latente kovariansstruktur, der er tilstede i klassen af multiva-
riate GLMMer defineret i Artikel I. Denne metode giver desuden mulighed for at
karakterisere afheengighedsstrukturen mellem responserne i modellen. Artikel III-VI
indeholder anvendelser af metoderne praesenteret i Artikel I og II, der hver iszer
bidrager med nye aspekter inden for multivariate GLMMer. Disse anvendelser, der
stammer fra meget forskellige forskingsomrader, illustrerer den hgje fleksibilitet af de
udviklede metoder. Artikel III karakteriserer den rumlige og temporale fordeling af
et rodsystem i en dyrket mark pa samme tid ved at anvende en multivariat GLMM.
Artikel IV praesenterer en metode til samtidig at modellere de studerendes resultater
i adgangsprgver fra universitetet samt deres praestation i et efterfglgende kursus pa
universitet. Denne multivariate analyse inkluderer diskrete marginale frailty Cox
proportionale modeller kombineret med standard marginale Gaussiske mixed model-
ler. Artikel V indeholder en analyse af et follow-up studie af forekomst af forskellige
arter af ukrudt, hvor tiden til tilsynekomst for hvert frg tilstede i jorden modelleres
simultant for hver art ved at anvende en multivariat stykvis konstant frailty cox
proportionel model. Artikel VI beskriver en multivariat GLMM til at screene for
potentielle kemiske markgrer for tidlig opdagelse af sygdom i lagret frugt efter hgst.
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Introduction

This introduction consists of three parts. First, it includes a review section, relating the
included papers to the existing literature within the research field. Second, it presents
several introductory sections, one for each paper included in the dissertation. Each
introductory section describes the proposed research questions in the corresponding
paper and summarises the key results. Thirdly, the introduction discusses other
applications related to the content of the papers included in the dissertation, and
shortly describes the developed R-package implementing the developed methods.
This R-package was used for inference in the models presented in this dissertation.

All papers in this dissertation treat aspects of multivariate generalised linear
mixed models which are of particular interest for applications in areas where we
often find examples of several simultaneously observed characteristics requiring
multivariate statistical models. The framework of generalised linear mixed models is
very applicable in analyses with dependent observations. Therefore, many authors
have worked on aspects of these models. However, in literature it is often only
univariate models that are described and to the best of my knowledge there exist no
methods connecting the theory of multivariate generalised linear mixed models with
the theory of graphical models as presented in Paper II. Likewise, we are not aware
of any inference methods equivalent to the introduced inference method in Paper I,
however, there exists inference methods in the literature that are related.

Relating Developed Methods to Literature

The historical development of generalised linear mixed models can briefly be out-
lined by the following papers. Univariate generalised linear mixed models (GLMMs)
were introduced in Breslow & Clayton (1993), where random components, repre-
senting unobservable random variables, were added to the linear predictor defined
in generalised linear models as a scalar product of a vector of coefficients and a
vector of explanatory variables (Nelder & Wedderburn (1972), McCullagh & Nelder
(1989)). Generalised linear models are extensions of the linear models allowing for
non-Gaussian distributions and non-linear link functions relating the linear predictors
to the expectations of the responses under the model. In this class of models it is
assumed that the responses follow an exponential dispersion model (Tweedie (1984),
Jorgensen (1987)).

The model assumptions in a GLMM include distributional assumptions for the
conditional distributions of the responses given the random components, typically
exponential dispersion models with a link function connecting the conditional ex-
pectations to the linear predictors. Moreover, we assume Gaussian distributions
for the random components (in the multivariate case, this is multivariate Gaussian
distributions). In Paper I, we extend these assumptions by letting the conditional
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distributions follow dispersion models ( Jorgensen (1997), Jorgensen & Lauritzen
(2000), Artes & Jorgensen (2000), Jorgensen & Labouriau (2012), Barndorff-Nielsen
(2014), Labouriau (2020), Cordeiro et al. (2021)), and by letting the distributions of
the random components belong to a larger family of distributions including for ex-
ample the Gaussian and t-distribution. We call this model a (multivariate) extended
(GLMM). In Paper II, the multivariate distribution of the random components are
assumed to belong the the family of elliptically contoured distributions (Anderson
2003).

The likelihood function of GLMMs involves an integral integrating the conditional
densities with respect to the distribution of the random components. Often, this
integral cannot be evaluated in closed form. Therefore, Breslow & Clayton (1993)
presents a Laplace approximation of the likelihood function for a GLMM in the
case of a univariate model as a way of avoiding integration of conditional likelihood
quantities. In McCulloch (1997) several ideas on maximum likelihood algorithms
for inference in GLMMs were exposed. These algorithms are based on Monte-Carlo
simulation either as a part of an EM algorithm or combined with a Newton-Raphson
maximisation. Later, various research have originated from these historical papers,
see for example Booth & Hobert (1999) and the references related to h-likelihood
below. Inference in a GLMM can also be done using Gauss-Hermite quadrature
approximation, restricted maximum likelihood (also multivariate), the h-likelihood
described below and many others (see McCulloch & Searle (2001), Berridge &
Crouchley (2011), Demidenko (2004) and references therein). There exists several
implementations for different software programs, e.g., the Imej package in R ( Bates
et al. (2015)) and the GLIMMIX procedure in SAS (SAS Institute Inc. (2017))

The inference method introduced in Paper I is related to the ideas behind h-
likelihood (Lee & Nelder (1996), Lee & Nelder (2001), Lee & Nelder (2005), (Nelder
et al. 2006)). The two inference methods share some of the same ideas, namely the
idea to perform inference in a family of probability measures treating the values of
the unobservable random variables as parameters to be estimated along with the
other parameters in the model. The two inference procedures uses different families
of probability measure to perform inference. Moreover, h-likelihood includes a change
of scale of the random components that the conditional inference method do not.
After the introduction of h-likelihood, several papers debating and further developing
the theory of h-likelihood have been published. In the discussion part of Nelder et al.
(2006) and in Lee et al. (2007), the authors of h-likelihood answer to some of the
criticism there have been made of the theory of h-likelihood, specially when working
with binary data. Meng (2009) discusses the developed theory of h-likelihood with a
critical Bayesian approach.

Graphical models (Pearl (1988), Whittaker (1990), Lauritzen (1996), Edwards
(2000) and Perl (2009)) are a combination between probability and graph theory
which provide an intuitively way to model and understand the (conditional) depen-
dence structure in a joint probability distribution. Abreu et al. (2010) and Edwards
et al. (2010) show how graphical models can be inferred by minimising the AIC
(Akaike information criterion) or BIC (Bayesian information criterion). The theory
of graphical models can be combined with the methodology introduced in Paper I
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to obtain a graphical model for the latent variables under a multivariate GLMM
as described in Paper II. Below, we briefly discuss other multivariate approaches
not directly connected to GLMM. These models have a very different structure
and cannot simultaneously model responses of different nature requiring different
marginal distributions which is the case in the applications in Paper III, IV and VL.
In Jgrgensen (2013) and Jgrgensen & Lauritzen (2000), methods for constructing
multivariate dispersion models are presented expanding the ideas of the univari-
ate dispersion models (Jgrgensen (1987) and Jorgensen (1997)). These models are
an alternative to multivariate GLMMs which offer another structure but looses
the marginal distributional assumptions for the responses which exists under the
multivariate GLMMs. Therefore, we can not simultaneously model responses with
different supports. Xue-Kun Song (2000) introduces a multivariate dispersion model
generated from a Gaussian Copula. This is an extension of the multivariate disper-
sion model described in Jgrgensen (1987) which possesses the property that the
marginal distributions are closed. However, this cannot be directly combined with
the methods presented in this dissertation because the distribution of the random
components changes after applying the copula. Other multivariate models using
copulas that are worth mentioning are Mikosch (2005), Song et al. (2009), Krupskii
& Joe (2013) and Krupskii & Joe (2015). In Bonat & Jgrgensen (2016) a framework
called multivariate covariance generalised linear models for non-normal multivariate
data analysis is presented. These models separate from other types of multivariate
modelling frameworks by introducing a covariance link function combined with a
matrix linear predictor involving known matrices.

Paper 1

In this paper, we present an inference method for an extended class of (multivariate)
GLMMs with random intercepts. In literature, it is often assumed that the random
components in a GLMM are normally distributed with expectation zero and an
unknown variance. In the class of models defined in this paper, we allow for other
distributions for the random components as long as they satisfy some minimal
requirements. Examples of distributions satisfying these requirements are the normal
and the t-distribution. Another property of this class of models is the assumption
regarding the conditional distributions of the responses given the random components.
Usually in literature, these distributions are assumed to follow exponential dispersion
models but in this class, we allow general dispersion models that satisfy some
regularity assumptions. Thus, using the conditional inference method it is possible
to perform inference in a class of (multivariate) GLMMs, and avoid the integration
that enters the likelihood functions of these models, which often cannot be evaluated
in closed form.

The conditional inference method is introduced for univariate models and then
generalised to the multivariate case. This step is quite simple because of the structure
of the inference method. For this reason, the paper fist describes the inference method
for a one dimensional model followed by an extension to the multivariate case. The



reasoning behind the presented inference method can be explained by considering
two families of probability measures denoted by P and P* defined below. P* contains
the conditional distributions under the model, where the values of the unobservable
random components are treated as parameters, denoted by b, along with the fixed
effects denoted by B and the dispersion parameter, A. On the other hand, the family
P contains all marginal distributions of the responses, that is, distributions including
integration of conditional densities. These integrals are non-trivial which often cannot
be evaluated in closed form as mentioned above.

We introduce inference functions for 8 and b that are equivalent to the score
equations of the probability measures in P*. Moreover, we define an inference function
for 8 under P as a function of the predicted values of the random components obtained
as the roots of the inference functions under P*. The dispersion parameter is treated
as a nuisance parameter in these inference functions, and the variance parameter can
be estimated based on the predicted values of the random components. After finding
the roots of the defined inference functions, the predicted values of the random
components are projected onto the subspace of all vectors with mean zero to ensure
an identifiable parametrisation.

In the paper, we show that the defined inference functions under P* are regular.
Moreover, we show that the sequence of roots (when the number of observations
increases) of the inference functions are consistent under P* and conditionally
asymptotically Gaussian distributed under some regularity conditions. Moreover, we
prove, under some regularity conditions, that the sequence of roots of the inference
function under P are consistent and asymptotically Gaussian for small variances of
the random components.Thus, the presented inference method preserve some of the
desirable properties of classical likelihood-based inference methods.

A multivariate model is formulated by assuming a joint distribution of the random
components associated with the same experimental unit across the different marginal
models. The parameters of this distribution can be inferred using the predicted values
of the random components obtained by estimating each marginal model separately.

We performed two simulation studies in which we simulated a two dimensional
GLMM. Here, we study the distribution of the fixed effects for three different
covariance matrices obtained by increasing the values of each entry by multiplying
the matrix with different constants. Furthermore, we study the bias of the estimated
parameters and compare with other inference methods for three different numbers of
random components and observations. We concluded, that in this simulation study,
the conditional inference method performed equally as good as other known inference
methods, and that the multiplying constant had to be relatively high in order to
lead to non-Gaussian distributed estimates.

Paper 11

This paper introduces a method for representing the latent covariance structure in
a multivariate GLMM via graphical models. A class of multivariate GLMMs, as
defined in Paper I, is introduced with the additional assumption that the random

4



components follow a multivariate elliptically contoured distribution. This class of
models is combined with the theory of graphical models by inferring a graphical
model based on the predicted values of the random components under the model.
Predictions of the random components can be obtained using the inference procedure
presented in Paper I or another inference method, e.g., the Laplace approximation
described in the appendix of Paper I and in Breslow & Clayton (1993).

We present two types of graphical models both containing a set of vertices and a
set of edges. An undirected graphical model satisfies that two vertices are connected
by an edge if, and only if, they are not conditional independent given the remaining
vertices in the model. In a directed acyclic graph the definition is the same but
with the conditioning set modified. In this graph, the edges have arrows in the ends
indicating which variable that caries information on another. Therefore, we only need
to condition on the vertices that carries information on the two vertices in question
either directly or indirectly through other vertices in the graph.

In an undirected graph, we say that there exists a path connecting two vertices if
there exists a sequence of vertices, connected by edges, connecting the two vertices.
Moreover, we say that a set of vertices, S, separates two disjoint subsets of vertices
A and B in the graph when every path connecting a vertex in A to a vertex in
B necessarily contains a vertex in S. An undirected graphical model satisfies the
separation principle, which states that if a set of vertices S, separates two disjoint
subsets of vertices A and B in the graph, then all variables in A are conditionally
independent of all variables in B given S.

In the paper we define a combination of the two types of graphs which allow us to
study the dependence structure among the random components and the responses. In
the case of Gaussian distributed random components, we can interpret the graphical
representation in terms of independence. However, when the random components
are elliptically contoured distributed, independence should be interpret in terms of
covariances equal to zero. In the paper, we formulate a principle, called the induced
separation principle, stating that if A, B and S are subsets of random components
satisfying the separation principle given above, then the responses corresponding
to the random components in A are conditionally independent of the responses
corresponding to the random components in B given S.

The graphical model can be inferred using adaptions of statistical tests presented
in Anderson (2003). Here, an exact test of independence between sets of variables
in a multivariate Gaussian distribution is presented. This test is adapted to the
multivariate GLMM, introduced in the paper, in the case of Gaussian random
components. When the random components are not normally distributed, Anderson
(2003) describes an asymptotic test for (conditional) uncorrelation between sets of
variables in an elliptically contoured distribution. An adaption of this test is also
presented in the paper. Using the tests described above, we can construct a graphical
model representing the covariance structure of the random components by testing
if the conditional covariance between each pair of vertices is equal to zero given
the remaining vertices (possibly correcting for multiple comparisons). Moreover,
these tests allow us to test for covariances equal to zero for multiple sets of random
components using only one test, and thus, we can reduce the number of tests if we



test for a specific graphical structure.

The statistical tests described above are based on an estimate of the covariance
matrix. Under a model with Gaussian random components, the tests described above
are only exact when using an estimator proportional to the maximum likelihood
estimate. Using a consistent estimator of the covariance matrix yields in both the
Gaussian and the elliptically contoured case an asymptotic test.

The paper includes a simulation study to examine the power of the tests as
a function of the sample size in a four dimensional Gaussian- and t-distribution.
As expected, we need more observations in a multivariate t-distribution than for a
multivariate Gaussian distribution in order to reach the correct significance level.
Furthermore, the paper includes another simulation study examining the power
of the two tests when the off-diagonal entries in the covariance matrix in a two
dimensional extended GLMM are varied. We simulate two models, one where the
random components follow a multivariate Gaussian distribution, and another where
the random components follow a multivariate t-distribution. In both models it is
assumed that the conditional distributions are Gamma and Poisson distributed.
This study indicated that when the random components are Gaussian distributed,
the power curve for the test based on normality is steeper than the curve for the
elliptical test when the off-diagonal values are close to zero. However, when the
random components are multivariate t-distributed, the normality test rejects too
often under the null hypothesis compared to the elliptical test.

Paper 111

This paper presents a multivariate GLMM for studying roots’ development based on
minirhizotron observations, that is, observations obtained by inserting a special tube
(minirhizotron) in the soil, where roots can be counted in special observation windows
using a camera. The models described in this paper can be applied, with minor
adaptions, in many experiments inside this field of research, e.g., in Shanmugam
et al. (2021) which was a result of a collaboration arranged through the Laboratory
for Applied Statistic, Aarhus University. Here, Rodrigo Labouriau and I did the
statistical analysis using models similar to the univariate models presented in the
paper summarised in this Section.

The introduced multivariate model is combined with the theory of graphical
models and the methods described in Paper II to characterise the dependence
structure between the root scatter and intensity (described below) over three observed
development stages of the culture in the field. The root scatter is a measure of the
soil volume occupied by the root system in the field, whereas the root intensity
is a measure of the root colonisation in the field. The root scatter is measured by
counting the number of windows with a root present in each depth zone in each tube.
The root intensity is measured by counting the number of roots crossing a reference
line in each observation window in the minirhozotrons. The number of crossings
can be used to obtain estimates of the length of the root system using a stochastic
geometric argument.



A six dimensional model is formulated modelling the root scatter and root intensity
at three different days (corresponding to the different development stages of the
plants). The models for the root scatter at the three different observation days are
all instances of GLMMSs with a binomial distribution and a logit link function. The
structure of the three models are assumed to be identical for each development stage,
and therefore, we describe the model for a fixed development stage. Each model
includes a random component taking the same value for all observations arising from
the same tube. The responses consists of counts of the number of observation windows
with a root present for the development stage in question for each combination of
depth zone and tube. For each response, the depth zone and fertilisation of the
observation are included in the model (as fixed effects) to adjust for the expected
differences due to the different fertilisations and the soil depth zones. According to
the model, the presence or not of roots are conditionally independent and Binomial
distributed, given the random components, with probability parameters depending
on the fixed effects and the given value of the random component representing the
tube of the observation.

The root intensity at the three different observation days are modelled using
GLMMs with a Poisson distribution and a logarithm link function. We only describe
the model for one of the observation days since we assume that the structure of the
models are identical. Analogues to the model for the root scatter, random components
taking the same value for all observations arising from the same tube are included in
the model. According to the model, the counts are conditionally independent and
Poisson distributed given the random components with a conditional expectation
depending on the fixed effects (soil depth zone and fertilisation), the given value
of the random component representing the tube of the observation and an offset
corresponding to the number of observational windows present in the tube and
depth zone of the observation. The included offset plays an importing role in the
interpretation of the expectation under the model. Because of the logarithm link
function, we obtain a model were we can write the expectation as the mean number
of crossings per window, which according to a stochastic geometric argument is
proportional to the length of the roots that are visible in the observation windows.

Each marginal model is formulated as a GLMM with a random component taking
the same value for all observations arising from the same tube. A multivariate model is
constructed by assuming a multivariate Gaussian distribution, with expectation zero,
of the random components representing the same tube in the six marginal models (the
distributions of the different tubes are independent and identical). Observations from
different tubes are assumed to be independent under the model. The multivariate
model was inferred using the inference method described in Paper 1. Moreover, the
latent covariance structure was analysed as a graphical model by minimising the
BIC (Bayesian Information Criterion) of a graphical model based on the predicted
values of the random components and interpret using the methodology presented in
Paper II.

The inferred graphical model indicates a first-order Markovianity dependency
pattern between the random components related to models for the root intensity and
scatter at the three development stages. This means that the random components
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related to the models for the root intensity and scatter at the first and third observa-
tional days are conditionally independent given the random components associated
to the models for the second observation day. At each observation day, we found
that the random components related to the root scatter and intensity are positively
correlated after conditioning on the random components included in the models for
the other days. Therefore, these random components carry information on each other
that is not contained in the other random components. Thus, there is evidence of
specific common or cooperative underlying mechanisms determining the root scatter
and intensity, specific for each day (development stage). This result rules out the
possibility that the plants would be compensating a reduced occupation of the soil
by increasing the intensity of the root system.

Using the extended separation theorem stated in Pelck & Labouriau (2021b), we
were able to draw conclusions regarding the dependence structure of the responses
based on the graphical model for the random components. The theorem states that
if two sets of random components are conditional independent given a separating
set, then the associated sets of responses are conditional independent given the same
separating set (consisting of random components). For the inferred graphical model
in this paper, this result implies that the root intensity and root scatter at the first
development stage is conditional independent of the root intensity and root scatter at
the third development stage given the random components associated to the models
for the second development stage.

Paper IV

In this paper, a multivariate model that allows simultaneously analysis of the results
in the university’s admission exams and the performance in subsequent courses is
presented. The introduced model is based on an example of data containing results
of students enrolled at the University of Campinas, Brazil, in 2014 to evening studies
programs in educational branches related to exact science. For these students, the
results of seven admission exams together with the performance in the university
course Geometry are analysed to characterise the information that the results of the
admission exams carry on the performance in Geometry.

An affirmative action program implemented at the university gives students who
went to a public high school (for all high school years) a bonus added to their final
scores in the admission exams. Moreover, students who were self declared African or
Indigenous Brazilian descendants received an additional bonus. We would expect,
that these two different groups of students (either receiving a bonus or not) would
present very different patterns, and therefore, the analysis were stratified into two
separate analyses for the two groups of students.

The models used in the two analyses are similarly defined, and thus, we only
specify the model for the students that received the bonus. We define a multivariate
model with eight marginal models of which seven are marginal linear mixed models
(Gaussian distributions), with identity link functions. The eighth marginal model
describes the number of attempts needed to pass Geometry. This is modelled using a



frailty discrete-time Cox proportional model which can be represented using a GLMM,
with a Binomial distribution and logarithm link function, on a transformed dataset.
All models include two random components that accounted for the variation between
different study branches and individual variation. Moreover, all models include fixed
effects correcting for age and gender. In the model for the number of attempts to
pass Geometry, we further add a fixed effect to the linear predictor, taking the same
value for each number of trial possible. This implies, that the conditional hazard
is formulated as a product of a baseline function, taking the same value for each
number of attempts, and the exponential to the sum of the fixed effects and the
given values of the random components.

The marginal models are combined into a multivariate model by assuming a
joint multivariate Gaussian distribution for the random components representing
the individuals. We assume that the random components representing different
individuals are mutually independent, and independent of the random components
representing the variation between the different study branches. Moreover, it is
assumed that the random components representing the study branches are mutually
independent. The multivariate models (one for each of the two populations of students
analysed) were inferred using the methodology described in Paper I. The predicted
values of the random components representing the individuals were used to infer
graphical models by minimising the BIC for each analysis. The resulting graphical
models were interpret using the methodology presented in Paper II. A summary of
the results is given below.

The covariance structure of the random components representing individuals
variation after adjusting for differences in age, gender and educational branch was
analysed for each of the two populations of students. We were able to draw conclusions
regarding the dependence structure among the responses in the model by applying
the induced separation principle stated in Paper II. The results are discussed shortly
below. For a student receiving bonus, we found that the performance in Geometry is
conditionally independent of the results in all admission exams except Mathematics,
given the value of the random component corresponding to the entrance scores in
Mathematics. Moreover, the conditional correlation between the random components
corresponding to the performance in Geometry and the random components included
in the model for the admission scores in Mathematics is positive, given the random
components corresponding to the other responses. This result implies that there
exist some characteristics or abilities that are individual to each student which are
common to the result in the admission exam in Mathematics and the performance
in Geometry but not shared by the other disciplines. Furthermore, this result shows
that the prediction of the random components corresponding to the results in the
admission exam in Mathematics suffices for predicting the performance in Geometry.

We obtain a different covariance structure for a student not receiving any bonus.
Here, the performance in Geometry is conditional independent of the results in all the
admission exams except Portuguese, given the predictions of the random components
associated with the model for the results in the Portuguese admission exam. Thus,
the interpretation of the results for a student not receiving the bonus is the same as
for a student receiving a bonus just with Portuguese replacing Mathematics.
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Comparing the results of the analyses for the two groups of students might
indicate that among students receiving a bonus, the quality of their high school
education in Mathematics has a much higher variability than in the group of students
not receiving the bonus. Therefore, the result in the admission exam in mathematics
has a stronger influence on the performance in Geometry for this group of students.
On the other hand, one might speculate whether the results in the admission exam
in Portuguese reflects the social-economic class of the students which play a key role
in the performance in Geometry for the students not receiving the bonus.

Paper V

In this paper, we illustrate a multivariate method for analysing times to emergence
of different species of weed. The times to emergence of the propagules present in the
soil are modelled using a multivariate piecewise constant frailty cox proportional
model with marginal models representing the species. A simultaneous modelling will
allow us to make comparisons between the species and study the latent covariance
structure of random components representing local characteristics of the locations in
the field.

In each marginal model, we model the time to emergence for each propagule
present in the soil given a random component representing the experimental unit of
the propagule (the observation ring in the field), i.e., each random component takes
the same value for all observations of the same species arising from the same ring.
A conditional hazard function for the time to emergence of each propagule, given
the random components, is formulated in the paper. According to the model, the
conditional hazard function is a product of a piecewise constant baseline function of
time and the exponential of the given value of the random component representing
the observation ring of the propagule in question. The piecewise constant baseline
functions are assumed to be constant on intervals between different observation days.

The marginal models are combined into a multivariate model by assuming a joint
multivariate Gaussian distribution for the random components. Under this model,
the random components representing the different observation rings are independent.
The likelihood function for this model coincides with the likelihood function for a
GLMM applied to a transformed dataset. Therefore, the multivariate model was
inferred using the inference method described in Paper 1. Based on the predictions
of the random components, a graphical model was estimated using the techniques
described in Paper II.

The inferred graphical model showed that the random components associated
with two of the species were isolated in the graph implying that they are independent
of the other random components. Moreover, by the separation theorem stated in
Paper II, the random components connected to three out of the remaining four species
are conditional independent given the random components related to the fourth
species. Therefore, the induced separation principle, presented in Paper II, indicates
that that the times to emergence of two of the species are mutual independent,
and independent from the times to emergence of the remaining species. Moreover,
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knowing the values of the random components associated with the model for one
specific species renders the times to emergence of all other species independent.

In the appendix of this paper we discuss the counting process related to defined
survival model and present details on the coincidence of the likelihood function with
the likelihood function of a multivariate GLMM applied to a constructed dataset.
Moreover, we present model control of the inferred model.

Paper VI

This paper describes the non-standard statistical method applied in (Holthusen et al.
2021a). Infection of fruit in storage leads to serious losses in commercial production.
Therefore, the analysis in this paper studies predictors of rubbery rot at an early
stage of the infection development. We construct a multivariate method for screening
potential chemical markers for early detection of post-harvest disease in storage
fruit based on an example on detection of rubbery rot caused by Phacidiopycnis
washingtonensis in apples.

In this experiment, a range of volatile organic compounds (VOCs) are measured
simultaneously together with two measures of severity of disease infection; the number
of fruit presenting visible symptoms and the lesion area. The analysed data contains
observations from 10 glass jars (denoted by glasses below), each containing nine
inoculated apples observed at three different observation times (given as the number
of weeks post-inoculation). For each glass at each observation time, the concentrations
of the VOCs were observed together with the number of infected apples out of the nine
apples contained in the glass. Moreover, the total lesion area of the infected apples
in each glass was observed (zero if none of the apples in the glass were infected).

We formulate a 16-dimensional multivariate GLMM representing concentrations
of 14 VOCs and the two measures of severity of infection. All 16 marginal models
are formulated as GLMMs including random components taking the same value for
observations arising from the same glass in each marginal model. By including these
random components, we take into account that observations within the same glass
at different times might be correlated.

The marginal models for the VOCs are formulated as GLMMs with a Gamma
distribution and logarithm link function modelling the positive VOC concentrations
in each glass at each time. The marginal model representing the observed number of
apples presenting symptoms in each glass is a GLMM with a binomial distribution
(size 9) and a logit link function. The observation regarding the lesion area of infection
in each glass is positive when at least one apple is infected and zero otherwise.
Therefore, the marginal model representing these observations is formulated as a
GLMM with a Gamma Compound Poisson distribution and logarithm link function,
putting mass on zero and otherwise being a continuous positive distribution. The
marginal models are combined into a multivariate model by assuming a multivariate
Gaussian distribution, with expectation zero, of the random components representing
the same glass in the different the marginal models (the distributions for the different
glasses are independent and identical).
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A graphical model based on the predicted values of the random components was
inferred by minimising the BIC (Baysian Information Criterion). The predicted values
of the random components were estimated using the Laplace approximation of the
likelihood function. Based on the resulting graphical representation, we concluded that
the random components associated with four of the VOC’s carry all the information
that the random components included in the models for the fourteen VOCs might hold
on the random components included in the models for the two measures of severity
of the fungal infection. According to the model and the induced separation principle
stated in Paper I, this imply that knowing the values of the four random components
referred above (corresponding to the responses anisole, 3-pentanone, 2-methyl-1-
propanol and 2-phenylethanol) renders the measures of infection independent of the
remaining VOCs.

Additional Work

During my PhD studies I have worked on other projects related to the content in
the papers in this dissertation. As a part of my work for the Laboratory for Applied
Statistics, Aarhus University, I analysed in collaboration with Rodrigo Labouriau an
experiment regarding measure of physiological effects of sugar beet seed priming on
different developmental stages (Salimi et al. (n.d.)). A part of these data contained
right censored observations which were accounted for in the analysis using a frailty
cox proportional model inferred by estimating a GLMM on a transformed dataset
using the inference method discussed in Paper 1.

Furthermore, I analysed in collaboration with Rodrigo Labouriau two experiments
regarding local root intensity and root colonization in an field experiment using
faba bean, grown as vegetable, and pointed cabbage grown in monocropping and
intercropping systems (Shanmugam et al. (2021)). This analysis use the methodology
described in Paper III, however, in this case it is only univariate analyses.

R Package Implementing the Conditional Inference Method
and Methods for Analysing the Graphical Latent Covariance
Structure in GLMM

Rodrigo Labouriau, and I have developed a R-package implementing the methods
described in Paper I (including the (multivariate) Laplace approximation) and II.
This package is a tool for inference in both univariate and multivariate generalised
linear mixed models and only because of this implementation, we were able to do the
analyses presented in Paper III-VI. At this stage, the package is only developed as a
prototype for internal use at the Applied Statistic Laboratory, Aarhus University.
However, we plan to further develop the package and publish a version in the future.
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Paper 1

Conditional Inference for Multivariate
Generalised Linear Mixed Models

Jeanett S. Pelck

Aarhus University

Rodrigo Labouriau
Aarhus University

Abstract. We propose a method for inference in generalised linear mixed models
(GLMMs) and several extensions of these models. First, we extend the GLMM
by allowing the distribution of the random components to be non-Gaussian, that
is, assuming an absolutely continuous distribution with respect to the Lebesgue
measure that is symmetric around zero, unimodal and with finite moments up to
fourth-order. Second, we allow the conditional distribution to follow a dispersion
model instead of exponential dispersion models. Finally, we extend these models
to a multivariate framework where multiple responses are combined by imposing a
multivariate absolute continuous distribution on the random components representing
common clusters of observations in all the marginal models.

Maximum likelihood inference in these models involves evaluating an integral
that often cannot be computed in closed form. We suggest an inference method
that predicts values of random components and does not involve the integration of
conditional likelihood quantities. The multivariate GLMMs that we studied can be
constructed with marginal GLMMs of different statistical nature, and at the same
time, represent complex dependence structure providing a rather flexible tool for
applications.

I.1 Introduction

Generalised linear mixed models (GLMMs) form a flexible class of statistical models,
which combines the capability to incorporate non-Gaussian distributions and non-
linear link functions, inherited from standard generalised linear models, with the
power of representing complex dependence structures using random components in
the same fashion as classic (Gaussian) mixed models. Therefore, GLMMs appear
as a natural tool in many applications (see Demidenko, 2004; McCulloch & Searle,
2001; Fahrmeir & Tutz, 2001 and Agresti, 2002). However, the power of GLMMs
comes with a price: the required inference tools are more demanding than standard
statistical models. For instance, the likelihood-based inference requires a non-trivial
integration of conditional likelihood quantities. Moreover, some of the simplifications
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of the integration used in the classic Gaussian mixed models (e.g., the result of
conditioning a Gaussian distribution on Gaussian random components yields a
Gaussian marginal distribution) do not apply in general for GLMMs. For this reason,
several inferential tools are discussed in the literature; see Breslow & Clayton (1993),
McCulloch & Searle (2001); see also McCulloch (1997) for a comprehensive study
comparing several methods ranging from simple numeric (quadrature) integration of
the conditional likelihood to several versions of the EM algorithm.

In this paper we present an alternative method of inference for GLMMs, con-
structed using inference functions, which avoids integrating likelihood quantities
while preserving some of the desirable properties of classic likelihood-based methods.
Moreover, this new method applies to GLMMs with minimal requirements for the
distribution of the random components, which are not necessarily assumed to be
normally distributed, as in the standard setup of GLMMs. For instance, we will be
able to consider models with heavy-tailed random components as the multivariate
t-distribution.

The methods we expose allow us to construct natural extensions to multivariate
GLMMs. The main idea is to construct one GLMM describing each response. It is
assumed that there is a natural cluster of observations (e.g., individuals or exper-
imental units). Each of those GLMMs contains random components representing
those clusters, i.e., taking the same value for all the observations belonging to the
same cluster. The multivariate GLMM is then constructed by assuming that the
distributions of the random components representing the clusters are the marginal
distributions of a multivariate distribution (e.g., a multivariate normal distribution
or a multivariate t-distribution). Note that the multivariate generalised linear mixed
models (MGLMMs), that we obtain in this way, can have marginal models of different
nature which might be defined with different distributions and different link func-
tions. In this way, those multivariate models can simultaneously describe responses of
varying nature in a way that is not possible to do with classic multivariate Gaussian
models. Furthermore, since we defined the random components of the marginal
GLMMs using minimal distributional assumptions, we will also obtain a MGLMM
constructed with a flexible class of multivariate random components. For instance,
the multivariate random components can be multivariate normally distributed or
regular elliptical contoured distributed.

The paper is structured as follows. In Section 1.2, we introduce an extension of
GLMDMs constructed using random components that are not normally distributed, and
by extending the family of conditional distributions. We use a simple case, containing
random components representing a grouping of the observations (denoted clusters)
due to the observational scheme used in the experiment, to present the ideas behind
the inference techniques we propose in Section 1.2.2, and expose the basic asymptotic
properties of those techniques in Section 1.2.3. Section 1.2.4 extends the inference
techniques to the case of models with complex clustering structures. In Section 1.3,
we discuss the inference for multivariate versions of GLMMSs. Section 1.3.1 presents
two simulation studies. The appendices [.A.1, I.A.2 and [.A.3 expose some technical
details and involved calculations. Appendix I.A.4 presents a multivariate extension
of the classical inference method based on a Laplace approximation for GLMMs.
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1.2 Extended One Dimensional Generalised
Linear Mixed Models

This section will study a one-dimensional extension of standard GLMMs defined
with random intercepts, and discuss an estimation technique based on conditional
inference for those models. The GLMMs that we consider contain random components
that are not necessarily Gaussian distributed. Moreover, they allow the conditional
distributions to follow a general dispersion model, and therefore, they enlarge the
class of standard GLMMs. We extend the models and inferential techniques described
here to a multivariate context in Section I.3.

I[.2.1 Generalised Linear Mixed Models with Simple
Random Components

Consider the situation where we observe the responses of n individuals or experimental
units. Those responses are viewed as realisations of n random variables taking values
in )V C R, which we denote by Yj,...,Y,. Here Y is typically R, R,, a compact
real interval or Z, (corresponding to models defined using for example the Normal,
Gamma, von Mises or the Poisson distributions). Suppose that each individual belongs
to one, and only one, of ¢ groups of individuals, referred as clusters. We assume that
there exist ¢ independent unobservable random variables taking values in R, say
By, ..., By, termed the random components, that will be associated to the clusters
as described below. Denote the random vector (By, ..., B;) by B. According to the
model, the responses Y7, ..., Y, are conditionally independent given B. Furthermore,
fori = 1,...,n and each b € R?, Y, is conditionally distributed according to a
dispersion model (see Jorgensen, 1997 and Cordeiro et al., 2021, or equation (I1.2))
given B, with conditional expectation given by

g(E[Yi|B=0b])=z/B+2'b, forallbeRY. (1.1)

Here g is a given link function, x; is a vector of k explanatory variables associated
to the i*® individual and B € Q C R* is a vector of coefficients, referred as the
fized effects. Furthermore, z; is a ¢-dimensional allocation vector associating the ith
individual to one of the ¢ clusters. The jth entry of the vector z; takes the value 1 if
the i*? individual belongs to the j* cluster and 0 otherwise. Other forms of allocation
vectors are possible, but we restrict to the particular form above to simplify the
exposition of ideas.

It is convenient to introduce the following nomenclature and notation for the
right side of (I.1). The linear predictor and the conditional mean response for
the " individual (i = 1,...,n) are defined by 7; = 7; (8,b) & 278 + 27b and
i = ;i (B, b) def g1 (n;), respectively. The parameter space of the conditional means
is denoted by U C R and we write u; € U. Additionally, denote the random vector
of observations (Y7,...,Y,) by Y, and the vector of observed responses (y1,. .., Yn)

by y.
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The specification of the extended GLMM that we consider is completed by
defining the distribution of the random components as follows. We assume that
By, ..., B, are independent and identically distributed according to a distribution
that is absolutely continuous with respect to the Lebesgue measure on R, symmetric
around zero, unimodal, and possessing finite moments up to the fourth-order. Note

that the random components have expectation zero due to the symmetry. Denote

the density of this distribution by ¢(-,0?), where o € V LR, is a parameter

describing the dispersion of the distribution. Here a typical choice would be a normal
or a regular absolute continuous one-dimensional elliptically contoured family of
distributions and in this case 02 would be the variance parameter. !

Under the model defined above, the conditional distribution of the it obser-
vation Y; given B (for i = 1,...,n), has a density with respect to a dominating
measure v (defined on the measurable space (Y, .4)), taking the form of a dispersion
model (see Jorgensen, 1997 and Cordeiro et al., 2021). Therefore, the referred density
takes the form

f(yi|B =b;8,)\) = aly;; ) exp [—% d{yi;g_l(az;fpﬁ + zZTb)H (1.2)
= a(ys N exp{—x d(yi;m)}, Yy €Y, VbeR?,

where g € Q and A € A = R,. The function d : Y x U — R, is the unit deviance
and, by definition, satisfies that d(u, ) = 0 and d(y, ) > 0 for all (y,u) € Y xU
such that y # p. The function a : Y x Ry — R, is a given normalising function. We
assume that the unit deviance is regular, that is, d is twice continuously differentiable
in Y x U and 8%d(ju; 1) /Opu® > 0 for all u € U. The function V : U — R, given by
Vi(p) = 2/{0%d(u, u)/0u*} for all pin U is termed the variance function (Cordeiro
et al. 2021). The conditional variance of Y; given the random components is V'(1;)/A.
The following families of distributions are examples of dispersion models: Normal,
Gamma, inverse Gaussian, von Mises, Poisson, and Binomial families.
We formally define the extended GLMM described above as the family

P={Porm:B€Q NcA=R,, o*cV=R}

of probability measures defined on the product measurable space (Y™, A™) (where A"
is the related product o-algebra) corresponding to the probability measures defining
the extended GLMM described above. Let v be the product measure induced by v.
The density of the distributions in P, with respect to v, are given by

. d o2 n q
p(u: 8.7 %) d:f]w = [ T1/@iB =680 TLobiio®) db,  (13)
=1

J=1

forally e V", BcQ, A€ Aando?cV.
We will use the following set of regularity conditions on the generalised linear
mixed model P:

'Here a one-dimensional elliptically contoured family of distributions is a location and scale
family of distributions, with location and scale parameters p and o, for which the characteristic
functions ¢, satisfy the functional equation ¢(t) = e”“‘/@/;(—%toQt) for all t € R, for a given function

0.
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(i) The matrices X and Z have full rank (i.e., rank k and g, respectively)

(ii) The link function is strictly monotone, invertible and twice continuously differ-
entiable with bounded first order derivative

(iii) The unit deviance, d(y, p), is twice continuous differentiable with respect to u

(iv) The functions %d{ g N el B+ zin)} and %d{ g N2l B+ zin)} are dom-
inated by integrable functions (not necessarily the same dominating functions)
for each B € R* and b € R%.

These mild regularity conditions turn out to be minimal requirements for the inference
theory that we construct.

Let y = (y1,...yn) be a realisation of the random vector Y’ def (Y1,...,Y,) of
responses. Under the model P, the likelihood function for the parameters 8, A and
0%, based on y, is

LB X 0% y) =p (B, ) 07) . (14)

Usually, the integral in the right side of (I.3) involved in the calculation of the
likelihood function in (I.4), cannot be evaluated in closed form. In Section 1.2.2, we
introduce an inference method that includes predictions of values of the random
components, By, ..., By, and avoids the integration. This inferential procedure will
be justified using asymptotic arguments in Section 1.2.3.

We introduce below two families of probability measures related to P, which will
be convenient for presenting and discussing the conditional inference for the GLMMs
under discussion. First, consider a statistical model, P, constructed on Y™ x RY,
collecting the joint distributions of the n responses and the ¢ random components.
This model, called the joint-model, represents the hypothetical situation in which the
random components would be observable. We will use the joint-model to introduce
and motivate the inferential techniques we propose.

It is convenient to introduce also the following family of probability measures
on (Y", A"), obtained by collecting the distributions constructed with the realisable

values of the random components By, ..., B,, in the following way
* dP* *
P* — PB,b,/\ : 557/\ (y) = .f (y7 /87 ba >‘) . (15)
forally e YY", BeQ,beRI e A

The density of the probability measure referred above is given by

n

£ (y: 8,6, ) =TI f(wi B = b;8,0) = [[ alyis \) exp {— 55 d [yis i (B,b)]} ,

i=1 =1

forally e Y", B € Q, A € A and b € R?. We call the family P* the conditional
model. This family will be used for defining inference functions, and establishing the
basic properties of the inference procedures we will propose.
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I1.2.2 Conditional Inference for Models with a Single
Random Component

Under the joint model P, the log-likelihood function for estimating 3, A and o2 based
on realisations y and b of Y and B, respectively, is

n q
(B, M 0%y, b) =Y log (il B =b;8,)) + Y logp(bjio®) . (16)
i—1 j=1
From this perspective, b is a S-sufficient statistic with respect to o2 (since the term
of the likelihood function that contains 0? depends only on b and not on y), and
S-ancillary with respect to 8 and A (since the term of the likelihood function that
contains B and A involves b only conditionally). See Barndorff-Nielsen (2014, page
50) or Jgrgensen & Labouriau (2012, Section 3.2) for formal definitions.
The decomposition of the likelihood function of the joint model P, defined in
(1.6), motivates that the inference on o should be performed using the term

q
> log p(bj; 0%,
j=1

corresponding to base the inference on o2 on a sufficient statistic. Following the same
line, the inference on B and A should be performed only using the term

> log f(y:|B = b; B, ), (1.7)
=1

which corresponds to perform conditional likelihood-based inference given an ancillary
statistic. Therefore, we propose to estimate B and A by inserting a reasonable
prediction of b, say b as defined below, into (I.7) and maximising for 8 and A. We
argue in Section 1.2.3 that the procedure informally defined here yields sensible
estimates.

We turn now to the problem of predicting b. Under the joint model P, it is
natural to predict b by maximising [ (8, A, 0%;y, b) given in (1.6), i.e., by

b(B,\, 0% y) = al;gmaX{Znilog f(yi| B =b,B8,X)+ Y logp(b;; 02)}- (1.8)

~~~~~ ¢ li=1 j=1

However, it is convenient, as we will demonstrate in Section 1.2.3, to use the following
approximation to b,

B(B, \y) def I, <aig maxzn: log f(y;| B =0b, 8, A)), (L.9)

Lsbg =1
where By & {beR?: % >9_1 bj = 0} is the subspace of the vectors in R? with mean

zero, and Ilg, : R? — By is the projection function given by I, (y) def y—1/q3%1y;.
Note, that b is an approximation of B, because the last term of the right side of
(1.8) is maximised by setting b equal to zero. The approximation follows from the
continuity of the function ¢(+; 0?), which has a unique mode at zero, and because b
is in By.
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I.2.3 Asymptotic Properties of the Conditional Inference
Method

In this section, we formulate the inferential techniques presented in Section 1.2.2
using the theory of inference functions (Jergensen & Labouriau (2012) and Barndorff-
Nielsen (2014)). We show that the estimated value of 8 and the predicted values
of b are asymptotically Gaussian distributed when the variance, 2, of the random
component is small.

We consider below the inference functions

5 QOxRIx Y = R and ¢ : @ x R x Y — R,

which are equivalent to the score functions for estimating B and b, under P*, with A
treated as a nuisance parameter. The inference functions 95 and v referred above
are defined by

w;w,b;y):éa%d(y@, Y@lB + 2Tb)) = Z i)”) (110)
n n d i i
Vy(B,b;y) = ;ﬁ,d(yz, (@B +2/b)) = Z;zlg((i/mﬂ)' (L11)

Note that the score functions for estimating 8 and b are given by 95 and ¢y multiplied
by —=. However, since A is a positive number the solution to the score equations for
B and b are exactly the roots of 15 and ¢y; in this sense they are equivalent. The
inference function 1* : Q x R? x ) — R¥*9 given by

v (B.y) = { o8, b)] (8 by}

will be used for estimating 8 and predicting b. We denote the sequences of roots of
the inference functions 95 and 13 by {Bn}neN and {Bn}neN, respectively, obtained
when the number of observations, n, increases.

According to the classic theory of inference functions (see Jorgensen & Labouriau,
2012, Chapter 4), the estimating functions 15 and ¢y yield consistent estimates under
P*. Moreover, the estimates of 8 and b are conditionally asymptotically normally
distributed (see the details in Appendix [.A.2). However, our primary interest is on
estimating B under the extended generalised linear mixed model P. For this purpose,
we define below the inference function ¢g : Q x Y — R given by

Va(By) LB, by), forall B Qandally € Y, (1.12)

where b is obtained from the joint solution, (B, 5), of the estimating equation
Y5(8,b;y) = 0 and ¢3(B,b;y) = 0. The theorem below shows that, under the
assumed mild regularity conditions, the root of ¢z are consistent and asymptotically
Gaussian distributed when the variance of the random components converges to zero.
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Theorem 1.2.1. Under the reqularity conditions i-iv, the sequences {Bn}neN and
{b, }nen are consistent (in probability) under P*. Moreover, {Bn}nen is consistent
(in probability) under P. Both sequences are asymptotically Gaussian distributed,
when n — oo and o | 0.

Proof. See Lemma 1.A .4 for the consistency of {ﬁn}neN and {Bn}neN under P*. See
Lemma I.A.5 for the consistency in probability of { Bn}neN under P and Theorem I.A.7
in Appendix [.A.2 for the asymptotic normality when the variance of the random
components is sufficiently small. O

The parametrisation of the family P* defined above is not identifiable. Note,
that a natural parametrisation of P* using the triplet (8,b,A) € Q x R? x A is not
identifiable. Indeed, according to the Lemma [.A.1 proved in the Appendix [.A.1,
for any i € {1,...,n} and any choice of B, b and § > 0 there exists a Bs € {2 such
that n; (8,b) = n; (Bs, b — J). A convenient solution to this issue is to introduce a
constraint and require that b takes values in By (i.e., the sub-space of R? of vectors
with mean zero), which yields an identifiable parametrisation of P*. We adopt this
parametrisation and re-write here (1.5) in the form

APg * * *
pr_ VPt 2572 (y) = f7(y; 87,07, N) |
forally e Y", 8" € Q" b* € By, A € A

so the mapping from Q x By x A to P* given by (8*,b*, \) — Pg-p+ 5 is a bijection.

The sequences of estimates {87 }nen and {b* }en obtained as roots to the inference
functions defined as above but with the new identifiable parametrisation, yields the
same maximum likelihood values as a consequence of Lemma [.A.1 proved in the
Appendix LA.1. By the law of large numbers and Lemma LA 4, (8%, b*) converges
to (Bn, En) in probability under Pj, , for ¢ and n converging to infinity.

In Section 1.3.2, we study the distribution of B in a simulated example, where we
assume that the random components follow a Gaussian distribution.

I.2.4 A Simple Algorithm for Conditional Inference

The following algorithm implements the inference method described above. The
algorithm starts by setting the initial values B and A\ for the parameters 8 and .
We used the estimated values of the corresponding parameters of a generalised linear
model defined with the same distribution and link function as in the extended GLMM
in study, and with the linear predictor given by the fixed effects of the extended
GLMM in discussion. The algorithm repeats the following two steps, starting with
m = 0, until convergence:

1. Let B and A(™ be the current estimates of the parameters 8 and \. Set

") = argmax Y log f(y;| B = b, B, \™),

b1,..bg  j=1
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and
bz*erl) — B(B(m)7 )\(m); y) = Ilg, (b(m+1)) ’
with b is defined as in (1.9).

2. Given the latest predicted values of the random components denoted b{,, ),
B+ and Am+1) are estimated by maximising [T7", f*(v:; B, b, 11y, A) With

respect to 8 and A.

After convergence has been obtained, we estimate the variance, finding the value of
o? that maximises the integral

R q
/. 966, 3,) [] olbs: o), (L13)
BO ]:1

where b denotes the value of bV in the last round of the algorithm. Here, g(+; b, %;)
denotes the density of the predicted values from the final iteration, f), with expectation
b and covariance X;. In the case where o is small enough and n is large enough, this
density is close to the multivariate Gaussian density, see Theorem 1.2.1 for details.
In Appendix 1.A.3, calculations of the above integral are given in the case where g
and ¢ are densities of Gaussian distributions.

I[.2.5 Conditional Inference for Models with Complex
Random Components

This section extends the methods introduced in section 1.2.3 to a context with
complex random components. We first consider non-nested random components, and
then we study a scenario where the random components are nested or a combination
of the two cases.

When the random components are not nested, the values of the random com-
ponents are easily predicted using the already described method. To simplify the
notation, consider a one dimensional extended GLMM with two vectors of non-nested
random components (each corresponding to a clustering of the observations), say B
and By with length ¢; and ¢o, respectively. We assume that Y7, ..., Y, are conditional
independent random variables given By and Bs, and conditionally distributed ac-
cording to a dispersion model, with conditional density f(-|B; = by, Bs = by, 8, A),
where f is defined in (I1.2).

Recall, that values of the random components were predicted using Equation (1.9),
which is equivalent to solving the inference functions in (I.10) and (I.11). This equa-

tion can easily be adapted to the situation with multiple non-nested random com-
ponents. We replace By by By d:e{{(bl7 by) € R1% : by € By(R?") and by € By(R?)}

(where By(R?) is the space of vectors of R? with mean zero) and define

6(57 A y) d:efngo arg max Zlog f(ilB1 = b1, By = by; B,\)] .

(b1,b2)ER1T92 ;=
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We turn now to the case of two nested vectors of random components B; and
Bs, where By is nested in By, that is, the clusters corresponding to the entries in By
groups multiple clusters associated with B;. Therefore, the variation in B; should be
interpreted as the remaining variation not explained by Bs. In this case, we estimate
the model including only the random component Bj. After predicting (temporary)
values for B; denoted by by, we predict the final values of by by

82 - (Z’2TZ2)71Z2TI_)17

where Zy a ¢ X g2 dimensional matrix with the (i, j)’th entry equal to one if the
cluster corresponding to the ith entry of B is contained in the jth cluster associated
with the j™ entry of Bs, and zero otherwise. Next, the predicted values of b; is
updated to the final values by

61 = I_)l - ZQEQ.

These methods can easily be generalised to the multivariate case by using the
approach described in Section 1.3.

1.3 Multivariate Models

In this section, we extend the methods described so far in one dimension to a
multivariate context. Consider d response vectors simultaneously observed, each of
them following an GLMM described in Section 1.2. Here the d responses might follow
different dispersion models, use different link functions, but the d marginal extended
GLMMs must have a common random component with the same clusters for each
of the response vectors. The inference method presented in the Sections 1.2.2— 1.2.5
yields predicted values of the random components directly as an additional product
of the estimation process.

1.3.1 Basic Setup

We introduce the following notation required for formally defining the multivariate
model we have in mind. Let Y = {Y},...,Y;} be a n x d dimensional response
variable matrix, and B = {B,...,B@a} = {Bi,..., B}’ a ¢ x d dimensional
matrix of random components. Each column of Y corresponds to n response variables
in a univariate model. We assume, that the rows of B are independent and identical
distributed according to a multivariate distribution which is absolute continuous with
respect to the Lebesgue measure, symmetric around the vector of zeros, unimodal,
and with finite moments up to fourth order. We will let 3 denote a covariance matrix
of the distribution and ¢(-, ¥) the density. Often, this distribution will be assumed
to be multivariate Gaussian with expectation zero and covariance matrix given by 3.

Fori=1,...,nand j =1,...,d, we assume that Y;; is conditional distributed
according to a dispersion model given By;) = b;). That is, Y;;|B(j) = by ~ D(ui;, Aj)
fori = 1,...,n and j = 1,...,d, where D(u;\) denotes the dispersion model
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distribution with expectation p and dispersion A. The conditional expectation, f;;,
is connected to the linear predictor, n;;, through the known link function denoted
gj, that is, g;(ui;) = ni; = x;8; + 2['b(j), where x;; and z; denote the vector of
explanatory variables and a location vector, respectively. Notice, that like in the one
dimensional model, z; has one entry equal to one and the remaining entries are equal
to zero. Thus, z; has a one in the entry corresponding to the cluster that the ith
individual belongs to. The conditional density of Y;; given By;) is denoted by f;.

We assume, that Y;; and Yj/; are conditionally independent given By;) = by;) for
i #14 (i, = 1,...,n). Moreover, the structure of the model implies that Y;; and
Yy are conditionally independent given By;, and By for all 4,7 = 1,...,n and
j,j =1... dsuch that j # 7.

1.3.2 Simulation Studies

In this section, we present results of two simulation studies illustrating basic properties
of the proposed estimation procedure. Moreover, we compare the behaviour of the
proposed estimates with two other inference methods: the multivariate Laplace
approximation suggested by Breslow & Clayton (1993) (see Appendix I.A.4 for
details) and a Hermite quadrature estimation procedure. Two simulation studies
are presented to study the distribution of the estimates when the entries in the
covariance matrix are varied, and the bias of the estimated parameters when we
increase the numbers of clusters of the random component (and thereby the number of
observations). In both simulation studies, we simulate a two dimensional generalised
linear mixed model, where Y;; for i = 1,...,n and j = 1,2 denotes the response
variables. We follow the notation introduced above and let B(;) and By denote
g-dimensional random vectors representing the random components in the model. We
assume that Y71, ..., Y, are conditionally independent given B ;) and B(s). Moreover,
we assume that given B(;) and B2), Y;; and Y, are conditionally distributed according
to a Gaussian and a Poisson distribution, respectively, with conditional expectations
given by

E[Ya|Bay =bl=z,8+2/b fori=1,...,n,

E[Yi2|B2) = b] = exp (azgﬁ + zin) fori=1,...,n,
where 8 = (1, f2) = (1.90,0.21). The Gaussian conditional distribution is assumed
to have a variance of 0.5 which is not varied in the simulations.

We assume that BT = (B(}), Bly)) is Gaussian distributed with expectation zero
and covariance structure given by

Cov(Bél), BéQ)) =3 forl=1,..q,
Cov(Bfyy, By) = 0 for [,k =1,...,q such that [ # k,

where Béj) denotes the ') entry in By for j = 1,2, and

(1.14)

S — const <0.28 0.09) |

0.09 0.12
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with the constant depending on the simulation study. That is,
B ~ Ny, (0, X ®1I,),

where I,,, denotes a m-dimensional identity matrix.

In the first simulation study, we simulate the above described model for three
different covariance matrices, corresponding to three different values of the constant in
(I.14). In that way, we can examine the sensitivity in the normality of the estimates
to an increase in the variance. Theorem [.2.1 states that under some regularity
conditions, the estimated values of 8 should be Gaussian distributed when the
variance of the random components goes to zero. That is, the lower the constant
in (I.14) is, the closer is the distribution of B to a Gaussian distribution. In this
simulation study, we used the following constants: ¢; = 1, co = 50 and ¢3 = 100. In
each of the three simulation studies we simulate 500 datasets and estimate the above
described model for each simulation. The results are presented in Figure I.1.

In the second simulation study, we fix the covariance matrix of the random
components to 3 defined in (I.14) with the constant set to one. In this study, we
vary the lengths of B(;) and B,y between the values 10, 50 and 100, whereas the
lengths was fixed to 60 in the above described simulation study. For each value of ¢
(the length of each vector of random components), we simulate the model 500 times
and estimate the bias and standard errors of the parameters.
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Figure 1.1: QQ-plot of the theoretical Gaussian quantiles versus the sample quantiles
of the estimated values of 8; and (35 in the described multivariate generalised linear

mixed model for different sizes of 3. The numbers in the plots are the resulting
p-values from Shapiro Wilk tests for normality.
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Figure 1.2: Estimated bias calculated from simulations of the described model for
three different lengths of the vectors of random components using three different
inference methods. The error bars show the estimated bias plus/minus the estimated
standard errors. The Hermite approximation was applied to each univariate marginal
model; therefore, there are no estimates for covariances when using this method.
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1.4 Discussion

The inference method introduced in this paper extends the applicability of standard
GLMDMs in two ways: first, it allows for defining and inferring multivariate GLMMs,
provided there exist random components representing clusters of observations defined
in the same way in each of the marginal GLMMs; second, it allows to use non-Gaussian
distributions for the random components.

Remarkably, the marginal models of the defined MGLMMs can be of different
statistical nature and at the same time represent complex dependence structures.
Therefore, those models provide a rather flexible tool for applications. For instance,
in Pelck & Labouriau (2020) the MGLMM contained marginal GLMMs for binomial
and for Poisson distributed responses, which appeared naturally in the process of
modelling a system for monitoring the development of roots over time. Moreover, the
MGLMM used in Pelck & Labouriau (2020) could be used to detect and represent a
first-order Markovian dependence induced by repeated measurements applied at the
same experimental units over time (see also Shanmugam et al. (2021) for a similar
application on roots development studies). Another example of MGLMMs including
marginal GLMMs of different nature can be found in Pelck et al. (2021b), where
marginal GLMMs defined with the Gamma, binomial and the compound Poisson
families of distributions were used for simultaneously modelling the development
of a fungal infection in apples and the concentration of a series of volatile organic
compounds, observed along time. In a third study, Pelck et al. (2021a) used MGLMMs
to simultaneously describe the students’ marks obtained in different admission exams
at the University (Gaussian distributed), and the performance in the course of
geometry measured as the number of attempts required to pass the course (a Cox
proportional model with discrete time). Those examples illustrate the usefulness of
the MGLMMs studied in this paper.

The inference method proposed in this paper does not involve integration of
conditional likelihood quantities, which might be advantageous with respect to
naive integration based methods, as illustrated in the simulation study presented
in Section 1.3.2. The performance of the new introduced method is similar to the
method introduced by Breslow & Clayton (1993), when we assume the random
components to be Gaussian distributed. Indeed, when the random components are
Gaussian distributed, the inference functions 5 and ¢ are similar (but not the
same) to the approximate score functions used in Breslow & Clayton (1993), which
are based on a Laplace approximation of the likelihood function of the GLMM P. In
this case, the inference function in (I1.10) is equivalent to the score equation of the
fixed effects in Breslow & Clayton (1993), whereas the inference function in (I.11)
differs from the score equation for the random effects by the additive term o2I,b,
which has expectation zero. We extend the Laplace approximation method proposed
by Breslow & Clayton (1993) to a multivariate context in the Appendix I.A 4.

The GLMMs and MGLMMs described in this paper are constructed using disper-
sion models instead of exponential dispersion models as usually done in the literature
of GLMMs, see Breslow & Clayton (1993) and the literature referred there. We
remark that the class of dispersion models defined in Jgrgensen (1987), Jorgensen
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et al. (1996) is much larger than the class of exponential dispersion models; see
Cordeiro et al. (2021) and Labouriau (2020) for a list of examples and a discussion
of the extension of the class of dispersion models.
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I.LA Appendix

I.LA.1 On the identifiability of the family of conditional
densities P*

Here, we show that the family of conditional densities given by (I.5) is not identifiable
parametrised by (8,b,A) € Q x R? x A.

Lemma I.A.1. For any i € {1,...,n} and any choice of B , b and 6 > 0, there
exist Bs € 2 such that n; (B,b) = n; (Bs, b — 0).

Proof. Take arbitrary 7, (8,b) and 6 > 0. Note that z] (b — §) = z]'b — § because,
by construction, there is one entry of the allocation vector z; that is equal to one and
the other entries vanish. Assume, without loss of generality, that the first entry of the
vector x; is equal to 1 (i.e., the fixed effect of the GLMM contains an intercept) so
that 7 8 = B, +&! B, where &; and f are the (k—1)-dimensional vectors obtained by
eliminating the first entry of @; and 8, respectively. Taking Bs = (81 + 6, B2, ..., Bk)
we have that

n(B,b)=axlB+2Ib=p+&B+2'b= (B +6)+ & B+ 2'(b—0)
=] Bs+ 2 (b—06) =1 (Bs,b—9)

The proof follows since i, (3,b) and 6 were taken arbitrarily. ]
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I.A.2 Technical Proofs of the Asymptotic Distribution of
the Conditional Inference Based Estimates

In this appendix, we present a sequence of lemmas and propositions that will culminate
with the proof of the Theorem 1.2.1, which establishes consistency and joint asymptotic
normality of the proposed estimator of 8 and the predictor of b for small values of
the variance of the random components.

Regular Inference Functions

We recall the definition of regular inference functions used in this appendix for
the easy of the reader (see the details in Jorgensen & Labouriau, 2012, Chapter
4, from which we draw heavily). Consider a parametric family of distributions
P ={Py:0¢c O CR} and a o-finite measure u defined on a given measurable
space (X, .A). For each Py € P, we chose a version of the Radon-Nikodym derivative
(with respect to u), denoted by

AP
— (T(.)_
1
Definition 1. A function ¥ : X x © — RF is said to be a reqular inference
function when the following conditions are satisfied for all = (6,...,0;) € © and
fori,j=1,...,k.
(i) Eo[W(0)] = 0;

(ii) The partial derivative OV(z;0)/00; exists for p-almost every x € X ;

p(+0)

(7ii) The order of integration and differentiation may be interchanged as follows:

a%i/x\lf(m;e)p(%e)du(:c):/Xaaei[\ll($;€)p(x;9)]du(m);

() E{1;(0)¢;(8)} € R and the k x k matriz
Vi (0) = E{w(0)¥" (0)}

is positive definite;
(v) B{22(0)55:(0)} € R and the k x k matriz
Sy(0) =E{Ve¥(0)}
s nonsingular.

Here 1); denoted the it component of the vector function

\Ij() = (@Z)l(), s 7¢k2(>>T )
and Vg denotes the gradient operator relative to the vector 6, defined by

Vol (6) = o1-(0).
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Some Key Lemmas

We denote the sequences of roots of the inference functions 5 and v} by { B nen

and {Bn}neN respectively, obtained when the number of observations, n, increases.
Moreover, define @ = (B,b) and 8,, = (B,,b,) (for each n € N). Recall, that the
inference function 1* : Q x RY x ) — R¥*9 for estimating @ under P*, is defined by

T
08,5 = { [3(8.0)] i8]}
for all B € Q and b € RY.

Lemma I.A.2. Under the regularity conditions i-iv, the partial inference functions
Vg and Yy are unbiased, that is,

]EPﬁ*ﬁA W; (,3> b; Y)}
Ep;, , [t (8.5:;Y)]

Jor all B € Q, b€ RY and A € A. Moreover, the partial inference functions ¢ and
vy, are reqular.

0,
0

Proof. We show that ¢ is unbiased since the unbiasedness of ¢ follows from the
same arguments. Take arbitrarily 8 € Q, b € R? and A € A. We aim to show that

0= [ 5(B.b:9)f" (y: B.b, Nw(y).

The regularity conditions ensure that it is allowed to interchange the order of
differentiation and integration in the following:

/y V5(8,b:9) 1 (y; B, b, \dv(y)
- Z / D {d(y g @B+ 2TB) Y (s B, b N (y,)
- —2AZ / ol i 8,6 N)dv(y:)

~ —mg 36 /y £* (952 B. b, N (y:) = 0.

The proof follows since 8 € 2, b € R? and A € A are arbitrarily chosen.
The other regularity conditions for the inference functions follow straightforwardly
from the assumed regularity conditions i-iv for the GLMM in play. ]

We introduce some required notation before presenting the next lemma. Define
the sensitivity block matrices

Sep = E[Ves(B.;Y)],  Ses = E[Vei3(8,b;Y ),
S = E[Vs5(8,b;Y)], Sps = E[Vgi5(8,b,Y)],
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and the variability matrices

Varr =E[W;(8,6:;Y)U3(8,b;Y)"], Vi = E[5(8,b;Y )05 (8,b;Y )],
Vio = B[ (8,6, V)05 (B,b: Y)T],  Vag =E[3(8,b;Y)yj(B,b;Y)].

Using these, we define

W=D"1!= Spp — SBbS[;éSbﬂ, A= Sﬂﬂ + SﬁﬁleBW Sngﬁﬂ,
E - _Slglé-SbﬂW_l, C — _W 1Sﬁb5ﬁﬁ

Lemma 1.A.3. The inverse Godambde information for the inference function ¢* is
the matriz-valued function JJ} c Q) x RI — REFOXE+9) defined by

-1
)
T

b
with
J;?j = AVgg A" + EVgp A" + AVygE" + EVip ET
T = OV AT + DV AT + CViyg ET + DVi BT
Jyi = CVgCT + DV CT + CVyg DT + DV D™
for all B € Q and b € R? using the above introduced notation.

Proof. The result follows from the formulas in Chapter 4 in Jorgensen & Labouriau
(2012) and inversion of block matrices. O

Lemma 1.A.4. Assume the regularity conditions i-iv. Then, for all B € €, b € R?
and X\ € A, it is true that

B. n"“ B and b, 2% b.
Moreover,
V(8, — 0)|B = b —— Ni.4(0, J;(B,b)),
implying that
Vi(By = B)|B = b —— Ny(0, J;1(8.b))
and
Vi(b, — b)|B = b —— N,(0,J;!(8,b)).

Proof. The proof follows from the results in Chapter 4 in Jorgensen & Labouriau
(2012), and the fact that ¢35 and v} are regular inference functions as a consequence
of Lemma I1.A.2. O
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On the asymptotic variance of 6,, under the family P

Lemma I.A.5. Assume the reqularity conditions i-iv. The partial solution {Bn}neN
of ¥ is also a solution to g = 0 defined in (I.12), and the unconditionally asymptotic
covariance matrices (for n converging to infinity and q fized), denoted AV, of Bn and
b, are given by

AV (B.) = E[J; (8, B)] + V[B.(B)], (1.15)
AV (b,) = E[J,1(8, B)] + I,0”, (1.16)

with Bn(B) denoting the estimator of B as a function of B for alln € N, B8 €
and B € R?. Moreover,

~ P

B\, 02
Bn ——— B,

n—oo
forallBeQ, A€ A and o*> € R,

Proof. If B, is a solution to (I.12) then it is also a solution to (I.10) when inserting
Bn and Bn for a given n € N.

Take B € Q, A € A and 02 € R, arbitrarily. The asymptotic covariance matrices
follows from the law of total variance and Lemma I.A.4, which also implies that for
all e >0

Psro2(1Bn — Bl > €)

q
— * ) . 9
_/RqP@b,A(Wn—m>6‘B_b>jnl¢(bj,a)dbm&

since Pg’b’)\(@n — B > ¢ ‘ B =b) — 0 for all e > 0 and b € R?. By the regularity
assumptions i-iv, we can interchange the order of limit and integration. The proof
follows since B € Q, A € A and 02 € R, are arbitrarily chosen. O

Often the distribution of the random components can be easily simulated in a
computational efficient way (e.g., when the random components are normally or t-
distributed). In those cases, the expectations and variances referred in (I1.15) and
(I.16) can be easily obtained using Monte Carlo methods (this includes simulations
of B and calculations of estimates of 3 as a function of the simulated values).

Proof of the Theorem 1.2.1

The lemma below provides the calculation of the characteristic function of the
asymptotic distribution of the sequence of estimated values of 8, and b,,, which will
be crucial to prove Theorem 1.2.1.
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Lemma I.A.6. Assume the reqularity conditions i-iv. There exist two random
vectors Zg and Zy, with characteristic functions

Elexp(it; Zp)]
Elexp(it, Zy)]

E[exp(—%tf%l(ﬁ, B)t,)], for allt, € R,
]E[exp(—%tér(]z;;l(,@, B)t,)], for allty € RY,

respectively, such that
VilBu = B) o Zs and (b, —b) = Zy.
Proof. By Lemma 1.A.4 we have that
. I~ .
Vi(B. = B)|B =b =3 Ni((0,J;1(8.b)).
Let Zg denote a random variable distributed according to the above defined condi-

tional asymptotically Gaussian distribution. By the Portmanteau theorem the above
is equivalent to

E|h(VlB, ~ B))|B =b] — E[n(Z5)|B = b

for all continuous bounded functions h. Thus, we have that

h(VilBa — B))B - b} 1 e(byi )b —

7=1

E|h(vVa(B. - 8)| = [ =

/RqE[ (Z5)|B = b] rq[ (bj: 02)d
= E[h(Zp)],

since we can interchange the order of limit and integration due to the assumed
regularity conditions. Therefore, we conclude that

V(B —B) = Zs.

n—o0

The characteristic function of Zg is given by:

Elexp(it) Zg)] = E[E[exp(it] Zp)|B]]
= E[exp(—%t{(};g(ﬂ, B)t,)], for all t; € R”.

The proof for b,, follows by similar arguments by changing Bn to En, and Zg to Z
(by changing legl(ﬁ, B) to legl(ﬁ, B)) in the above. O

The theorem below corresponds to the second part of Theorem 1.2.1.
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Theorem 1.A.7. Under the reqularity conditions i-iv, the sequences {,én}neN and
{b, }nen are asymptotically Gaussian distributed, when n — oo and 0? — 0+ in the
following way

a2 —0+
and
V(b — b) —2— N,(0,.J;1(8,0)).

020+

Proof. Consider the characteristic function of Zg found in Lemma I.A.6:
Elexp(it’ Z3)] = ]E[exp(—%tTJJ/g(,B, B)t)], for all t € R”. (1.17)

Using a first order Taylor approximation, we find that

k
exp (447732 (8. B)t) = exp( 4 0, (U2 (8. B} )
=1 j=1
k Jk:
—exp(~5 D 730800, )
i=1j=1

+ R(B), for all t € R¥,

where R(-) is the remainder term which converges to zero when B converges to zero.
Thus, for o2 converging to zero, B converges to the expectation which is zero. This
imply, that the remainder term converges to zero. Notice, that the second term has
expectation zero since E[B] = 0, so inserting the above in (1.17) yields

o lexp(it” Z5)] = exp(— 372 (8,00) + R(B) — exp(~1t"J1(.0)t).
This proves that the asymptotically distribution of { Bn}neN converges to a Gaussian
distribution when o2 converges to zero. The argument for {by, }nen is equivalent and
follows by changing 3, to b, and Zz to Z; (changing JJZ;(B, B) to JJ;;I(B, B)) in
the above. O
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I.A.3 Variance Estimation in for Models with Gaussian
Random Components

In this section, we calculate the integral in Equation (I.13) under the assumption

that 1
g(b; b, 35) = 2755 2 exp(—}

1
(,0([), 02) - (2770'2)75 exp(_LbQ)'

Plugging into the integral yields

(b—b)"S-'(b—b))

/ng(& b, %;)e(b; (I, — %EQ)UQ)db

1 ~ ~ 1
- /R 2755 72 exp(—5 (b — 0TS (b — b)) 2o I, 2 exp(— b7 L 1,b)db

N[

1 _a rain . .
= [2n35; |72 (2mo?) 2 exp(—%bT231b> ’2#[231 + 51, 1’
x exp(3bTS N[B! + L1715 h).

In the case of multiple random components, we maximise the integral above for
each random component. If the random components are nested, we only predict
values for the random components with the highest number of clusters and then
uses least squares to predict values for each random component, see Section 1.2.5.
Therefore, the calculations above are changed by replacing oI, with 3%, a%,j c;C’,
where By, ..., Bk denotes the K € N nested random components, and C,, the
¢ X qm dimensional matrix specifying for each level [ (I*' row) which entry of B,
that enters the [th entry of b. Here ¢m is the dimension of the random vector B,,.

In the multivariate model described in Section 1.3.1, the above integral can be
adapted by letting b7 = (5{1)7 . Ba)) (and thus changing the dimension of ) and
replacing 021, with ¥ ® I,.

I.A.4 Multivariate Extension of the Laplace Approximation
Method

We outline how the Laplace approximation in Breslow & Clayton (1993) can be
extended to the multivariate model described in Section 1.3.1, when the random
components follow a multivariate Gaussian distribution. This extension follows
directly from Breslow & Clayton (1993) by redefining some matrices and vectors.
We shortly describe how this was done in the simulation study in Section 1.3.2.
The extension given below assumes that the marginal GLMMs are defined with
exponential dispersion models (as in Breslow & Clayton (1993)) but this can easily
be extended to include general dispersion models.

We assume that B, ..., B, are i.i.d according to a d-dimensional Gaussian
distribution with zero mean and covariance matrix 3. Let B(; denote a vector
containing all the jth entries of By, ..., B, for j =1,...,d. The above distributional

assumptions implies that BT = [(B(l))T, e (B(d))T} is Gaussian distributed with
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mean zero and covariance matrix X ® I, where I, is the ¢ X g-dimensional identity
matrix and ® denotes the Kronecker product.

Recall that the it (¢ = 1,...,n;) response in the 4t (j = 1,...,d) marginal
model was denoted yzm. Define for j = 1,...,d, the n; x k;-dimensional matrix
XUl =[xy, ... , Ty,;]", and likewise the n; x ¢ matrix ZVl = [z, ... , Zn,;]". Based
on these definitions, we define for k = k1 + -+ kg and n = ny + - -+ + ng, the
n x k-dimensional matrix X = diag[X[M ..., X] and the n x dg-dimensional
matrix Z = diag[Z!, ..., Z!¥]. Moreover, we define for each dimension j = 1,...,d,
the n; x nj-dimensional diagonal glm weight matrix Wl with diagonal entries

wl[f-'] = im, and the n x n matrix W = diag[Wl ... W],
i A ~
By redefining the matrices X, Z, W, D = 3 ® I, and the vectors B and
yl = (ygl], e ,y%), we can use the Laplace approximation in Breslow & Clayton

(1993) to estimate the multivariate model.
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Multivariate Generalised Linear Mixed
Models With Graphical Latent Covariance
Structure

Jeanett S. Pelck

Aarhus University

Rodrigo Labouriau
Aarhus University

Abstract. This paper introduces a method for studying the correlation structure
of a range of responses modelled by a multivariate generalised linear mixed model
(MGLMM). The methodology requires the existence of clusters of observations and
that each of the several responses studied is modelled using a generalised linear
mixed models (GLMM) containing random components representing the clusters.
We construct a MGLMM by assuming that the distribution of each of the random
components representing the clusters is the marginal distribution of a (sufficiently reg-
ular) multivariate elliptically contoured distribution. We use an undirected graphical
model to represent the correlation structure of the random components representing
the clusters of observations for each response. This representation allows us to draw
conclusions regarding unknown underlying determining factors related to the clusters
of observations. Using a combination of an undirected graph and a directed acyclic
graph (DAG), we jointly represent the correlation structure of the responses and the
related random components. Applying the theory of graphical models allows us to
describe and draw conclusions on the correlation and, in some cases, the dependence
between responses of different statistical nature (e.g., following different distributions,
different linear predictors and link functions). We present some simulation studies
illustrating the proposed methodology.

II.1 Introduction

This paper introduces a method for studying the dependence structure of a range
of responses modelled by a multivariate generalised linear mixed model (MGLMM)
(see Pelck & Labouriau, 2021a, for details). The methodology we suggest requires
the existence of clusters of observations (or experimental units) and that each of
the responses studied is modelled using a GLMM containing random components
representing the clusters. We will construct an MGLMM by assuming that the
distribution of each of the random components representing the clusters is the
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marginal distribution of a sufficiently regular multivariate elliptically contoured
distribution (see Anderson, 2003). This choice of the distribution of the random
components includes, as a particular case, the multivariate normal distribution used
in standard generalised linear mixed models (GLMMs), as the models considered in
Breslow & Clayton (1993), McCulloch & Searle (2001), McCulloch (1997).

We will use an undirected graphical model (see Lauritzen 1996, Whittaker 1990,
Abreu et al. 2010) to represent the correlation structure of the random components
representing the clusters of observations for each response. This representation will
allow us to conclude on unknown underlying determining factors related to the
clusters of observations. Furthermore, using a combination of an undirected graph
and a directed acyclic graph (DAG), we jointly represent the correlation structure
of the responses and the related random components. This representation arises
naturally from the construction of the MGLMM we use and yields a known type
of graphical model, namely a block chain independence graph (BCG) as defined
in Whittaker (1990). Remarkably, this construction will allow us to describe and
draw conclusions on the correlation between the responses of different statistical
nature, e.g., responses modelled with GLMMs defined using various combinations of
distributions, linear predictors and link functions (not necessarily the same for each
response).

We will base the inference for the proposed graphical models on variants of tests
for correlation under multivariate normality or multivariate elliptically contoured
distributions studied in detail in Anderson (2003), from which we draw heavily. In the
particular case where the random components are multivariate normally distributed,
non-correlation will imply independence, which makes the conclusions of the analysis
stronger. When the random components are not normally distributed but follow an
elliptically contoured distribution, we will obtain slightly weaker conclusions since,
in that case, lack of correlation implies only mean independence. *

The paper is organised as follows. In Section I1.2.1, we formulate a version of
a multivariate generalised linear mixed model. For simplicity, we only specify one
common clustering structure but the theory can easily be extended to include multiple
clustering. In Section I1.3.1, we introduce essential concepts of graphical models
that we will use to study the covariance structure of the random components and
the response variables. These concepts are connected to the introduced multivariate
model in Section I1.3.2. In Section I1.3.3, we describe statistical tests adapted from
Anderson (2003) and draw the connection to the theory of graphical models. In
Section 11.3.4, we perform a simulation study to study the distribution of the p-values
in the simulated examples under the null hypothesis obtained using the statistical
tests. Moreover, we study the power of the tests in the simulated examples on a
grid consisting of values of the off-diagonal entry in the covariance matrix. Some
concluding remarks are given in Section II.4. Appendix II.A.1 discusses how an
estimate of the covariance matrix can be obtained based on consistent predictions

'Recall that a random vector X is mean independent of the random vector Y when E(X|Y =
y) = E(X) for all y in the support of the distribution of Y. It is well known that independence
implies mean independence which implies non-correlation, but the reversed implications are in
general not valid, see Wooldridge (2010).
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of the random components. Appendix I1.A.2 presents details on how the density
of the introduced test statistic can be evaluated in the case of Gaussian random
components.

I1.2 Multivariate Generalised Linear Mixed
Models

In this section, we formulate a version of the multivariate generalised linear mixed
model described in Pelck & Labouriau (2021a). These models are based on marginal
GLMDMs that extend the standard GLMMSs in two directions: we assume the random
components to be distributed according to an elliptical contoured distribution, instead
of following a multivariate Gaussian distribution, and we assume the conditional
distributions of each response, given the random components, to belong to a dispersion
model, instead of an exponential dispersion model. The MGLMMs we will define
require, however, the existence of clusters of observations and the presence of random
components representing those clusters in each of the marginal GLMMs representing
the responses. The result of this process is a rather flexible class of models that can
be used in many practical applications; see for example Pelck & Labouriau (2020,
2021c), Pelck et al. (2021a,b).

11.2.1 Model Definition

We define a d-dimensional multivariate generalised linear mixed model (i.e., a
MGLMM representing d responses) with n observations of the jth marginal model,
taking values in J; C R, for j = 1,...,d. Here ); is typically R, R, a compact
real interval or Z,. Denote by Y;m the random variable representing the i ob-
servation of the jth response, for j = 1,...,d and i = 1,...,n. We assume that
there exists a natural clustering of the observations causing dependence between
observations arising from the same cluster (e.g., grouping of observations within the
same individual). We denote the cluster of the i observation, Yz-[j ! by (i) taking
one of the values 1, ..., q. Moreover, we assume that the clustering of the responses
is independent of d, that is, the clusters are represented in each marginal model. To
ease the notation throughout the paper, we only consider one clustering mechanism
but the methodology can be applied to a model with multiple clustering structures
(e.g., Pelck et al. (2021a)). Likewise, we assume the same number of observations
for each response to simplify the notation. However, the methods described in this
paper applies also to the case with n depending on j.

In each marginal model, we consider random components each taking the same
value for all responses within the corresponding cluster. These random components are
denoted by BEJ(}i) fori=1,...,nand j =1,...,d. Define the d-dimensional random

vectors of random components, taking values in R?, by BUl = (BY .. | BUNT the
vector of responses YU = (Yl[j b , YUY and the vector of realisations YV by yl]
(denoted observations) of for 7 = 1,...,d. Moreover, consider the d-dimensional
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random vector B; = (Blm, e ,Bl[d])T which we assume to be elliptically contoured

distributed (Anderson 2003) satisfying the following regularity conditions, for [ =
1,...,q,

1. The moments up to fourth order of each marginal distribution exist

2. Each of the marginal distributions is absolute continuous with respect to the
Lebesgue measure

3. All the conditional distributions exist and are elliptically contoured distributions
also

4. The location parameter vector is equal to zero.

Furthermore, we assume that B; is independent of By for [, =1,...,q such that
[ #1, i.e., we assume that the random vectors representing different clusters are
independent. We define the density with respect to the Lebesgue measure of the
elliptically contoured distribution by

p(b; A) = |A["2h(b"A'D), (IL.1)

where A is a positive definite scatter matrix. The function A(-) is non-negative and
satisfies that

/R h(b"b)db = 1. (I1.2)

When the density exists, the covariance matrix, 3, is proportional to A, i.e., the
correlation matrix can be equivalently calculated from both ¥ and A. An example of
a commonly used distribution satisfying these regularity conditions is a multivariate
Gaussian distribution with expectation zero and covariance matrix given by 3.
Another example, that we will study later is the multivariate t-distribution. This
distribution allows us to consider different degrees of tail heaviness. Note that because
the moments of fourth order must exist in the multivariate t-distribution, the degrees
of freedom should be larger than four.

According to the model, we assume that Y;[j]

is conditional distributed according
to a dispersion model with dispersion parameter \; € R, given Bg(]z

conditional expectation

) and with

g; (1" (0) € g, €Y |BY,) = 1) = B2 +b, VbeR,

foralle=1,...,nand 5y = 1,...,d. The vector a:y] is a p; dimensional vector of
explanatory variables corresponding to the vector of coefficients, 3;. The explanatory
variables might differ for the different responses. The function g;(-) is a given link
function, which is assumed to be strictly monotone, invertible and continuously
differentiable. Below, we will suppress the dependence in MEJ ](b) of b to lighten the

notation and denote the parameter space of the conditional means by U;. We define
the conditional density corresponding to the conditional distribution of YZ-[J ] given
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B [(]) = b with respect to a domination measure v, (defined on the measurable space

(Y;,A)) by
FEPNBYL = b Y N) = pys i, Aj) = a; (4 Ay expl— - d(?/,m,uzm)]- (11.3)

The function d; : YV; x U; — Ry is the unit deviance and, by definition, satisfies
that d;(p, ) = 0 and d;j(y,p) > 0 for all (y,p) € Y; x U; such that y # p.
The function a; : J; x Ry — R, is a given normalising function. We assume
that the unit deviance is regular, that is, d is twice continuously differentiable in
YV; x U; and 0%d(p; ) /Op® > 0 for all u € U;. The function V; : U; — R, given by
Vi(p) = 2/{0%d;(p, ) /Op*} for all p in U; is termed the variance function (Cordeiro
et al. 2021). The following families of distributions are examples of dispersion models:
Normal, Gamma, inverse Gaussian, von Mises, Poisson, and Binomial families. This
setup defines a version of the multivariate GLMM described in Pelck & Labouriau
(2021a) with the additional assumption that the multivariate distribution of the
random components follow an elliptical contoured distribution.

I1.3 Representation of the Latent Covariance
Structure via Graphical Models

In this section, we describe and illustrate how we can use the theory of graphical
models to examine the latent covariance structure of the random components in the
multivariate model described above, and how this covariance structure affects the
correlation between the responses. First, we give a short account for the theory of

graphical models. For a more comprehensively description see Lauritzen (1996) and
Whittaker (1990).

I1.3.1 Basic Theory of Graphical Models

Let G = (V, &) denote a graph defined with a set of vertices, )V, composed of random
variables and a set of edges, £ € V x V. The set of edges, £, consists of pairs of
elements taken from V. We distinguish between undirected independence graphs
(UGs) and directed acyclic independence graphs (DAGs) but the two types of graphs
can be combined as we will see below. The two types of graphs differ because of
the underlying assumption of symmetry in the roles played by the variables in an
UG, whereas in a DAG one variable can carry information on another without the
converse being necessarily true. In the DAG we use an arrow from one variable
pointing to another variable to indicate that the first variable carries information on
the second. In an UG, two vertices are connected by an edge if, and only if, they are
not conditionally independent given the remaining variables in V. This is the same
definition used for DAGs with the conditioning set modified from the remaining
variables to a set containing all remaining variables that carry information on one of
the two vertices either direct or through the other vertices in V.
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In an UG, we say that there is a path connecting two vertices, say v; and v, if
there exists a sequence of vertices vy, ..., v, such that, for i =1,...,n — 1, the pair
(vi,v41) 18 in €. A set of vertices S, separates two disjoint sets of vertices A and B
in the graph G = (V,€) when every path connecting a vertex in A to a vertex in
B necessarily contains a vertex in S. According to the theory of graphical models
(see Lauritzen, 1996 and Perl, 2009), the UG defined above satisfies the separation
principle, which states that if a set of vertices S, separates two disjoint subsets of
vertices A and B in the graph G = (V, ), then all variables in A are independent of
all variables in B given S. Moreover, if the subsets A and B are isolated (i.e., there
are no paths connecting a vertex in A to a vertex in B), then the variables in A are
independent of the variables in B.

A DAG possesses the Markov properties of its associated moral graph. Here the
associated moral graph of a DAG is the UG obtained by the same vertex set but
with a modified set of edges. The modified set of edges is formed by all the existing
edges in the DAG replaced by undirected edges together with all edges necessary to
eliminate forbidden Wermuth configurations. The latter means that for each vertex,
we connect all vertices that have a directed edge towards the vertex in question with
an undirected edge.

The two types of graphs can be combined into a block chain independence graph
(BCG). In this graph, we assume that the vertex set V can be partitioned into
subsets, called blocks, which are connected by directed edges but where all edges
within the same block are undirected. As for the DAG, the BCG processes the same
independence interpretation as its associated moral graph. For more information see
Lauritzen (1996) and Whittaker (1990).

I1.3.2 Connecting the Multivariate Model with the Theory
of Graphical Models

We connect the model formulated in Section I1.2.1 with the theory of graphical
models by defining an undirected graph G = (V,&), with V = {Bll ... B},
where B, ... Bl are the vectors of random components in the multivariate model
described in Section I1.2.1. In this context, the edges can only be interpret in terms of
independence when the random components are Gaussian distributed. In the case of
a non-Gaussian elliptically contoured distribution, two vertices are connected by an
edge if, and only if, they are conditionally correlated given the remaining variables,
which in this context implies conditional mean independence. The set of vertices
can also be formulated in terms of each variable in the model instead of vectors as
above. In this case, the graphical representation will consist of ¢ separated cliques
each containing the respective entry of the vectors B!, ... Bl¥ due to the model
assumptions. The choice of representation depends on the analysis and which choice
that leads to the best discussion of the results. Note, that the results does not change
only the visualisation. We will consider the vector representation below.

The graph defined above is interpret in terms of the random components as
follows: if, for example, Bl and BP are connected with an edge, then these two
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random variables are conditionally correlated given {BPl, ... B}, Therefore, B!
carries some information on B not contained in the other variables. For example
if the random components represent variation between different blocks in a field
experiment, this means that there are some latent factors affecting the blocks, could
be some characteristics of the soil, which affect the first and second response differently
than the other responses.

We introduce an extension of the separation principle below, which we call the
induced separation principle. This can be used to draw general conclusions on the
response variables. According to the model, the responses are independent given the
random components. Therefore, conditional uncorrelation between, say, B!l and
B given {BP, ... B} imply that Y and Y are conditionally uncorrelated
given {BB! ... Bl4}. By including the random variables Yim (for j = 1,...,d
and ¢ = 1,...n) in the set of vertices, and by taking the model assumptions into
considerations, it is possible to formulate a block chain independence graph (BCGQG)
that represents the covariance structure both among the random components but
also within the response variables. The theory of BCG makes it possible to extend
the separation principle to a version that applies to the total graph including both
the random components and the response variables. That is, by looking at the moral
graph, we can determine all conditional uncorrelations (Whittaker 1990, Theorem.
3.6.1).

We will describe how the BCG can be constructed in the multivariate model
described in Section I1.2.1. For simplicity we only consider one common cluster-
ing mechanism in this model, however, below we will argue how the BCG can be
constructed in the case of multiple clustering mechanisms. We define a block chain in-
dependence graph G’ = (V', £') (Whittaker 1990) by letting V' = VU{Yll ... Y}
and &' = EUEy, where V and & are defined as above. Here, £y includes directed edges
from BV to YV for j = 1,...,d, whereas & only include undirected edges. Usually,
the way to separate undirected and directed edges in £’ is to use the notation that if
there is a directed edge from V; to V}, the edge (i, j) is included in £’. However, if
there is an undirected edge from V; to V; both the edge (4, j) and (j,4) are included in
E'. The essential property of this graph is that by construction, any edge is undirected
for intra-block vertices, and directed for inter-block vertices with direction from the
random components to the response variables (the blocks are here defined by V and
Vy = {Y . Y} The induced separation principle implies that if S separates
two disjoint subsets of vertices, A and B in V, and A’ and B’ are the sets of the
corresponding response variables, respectively, then all response variables in A’ are
conditionally uncorrelated of the variables in B’ given the random components in S.

In the case of multiple clustering mechanisms, we redefine ' to be the union of all
sets of random components and the responses, that is, V' =V, U...UV, U Vy, where
b is the total number of clustering mechanisms, and V; is the set containing random
vectors corresponding to the random components associated with the ith clustering.
The edges in this graph consist of the undirected edges inside each block together
with directed edges from each random vector pointing towards the corresponding
response variable (between the blocks). Under the model, we assume that each block
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of random components is independent of the others. Therefore, we do not need to
connect the blocks Vi, ..., V, with an edge. This structure is illustrated in Figure II.1.

The moral version of such a graph can be difficult to interpret in terms of
conditional uncorrelation between the response variables. In that case, we suggest to
either only consider the undirected graphs for the random components excluding the
response vectors, or if one of the clustering mechanisms are of particular interest,
we can restrict ourselves to only examining the graph that includes the random
components and the response variables of interest. In the latter case, we are only
able to interpret the graph on individual level. For example, in a study with two
clustering mechanisms: one representing individual variation and another clustering
the individuals in different groups, we might only be interested in examining the
correlation between different responses caused by the individual clustering structure.
Therefore, we can consider a graphical representation of the covariance structure of
the individual variation for each individual and thus, avoid comparing individuals
within the same group for which the corresponding responses will be correlated do to
the random component grouping the individuals. Thus, in the complete block chain
independence graph, many of the responses will only be conditional uncorrelated
after conditioning on multiple clustering.

An example of a block chain independence graph representing a three dimen-
sional model with two clustering and it’s corresponding moral graph is presented in
Figure 11.2. In this example we observe from the moral graph that Y and Yl are
conditionally uncorrelated given B?] and Bg]. If there was an edge connecting BF}
and BY, then Y1 and Y would only be conditionally independent given all the
random components.

d i
B£ ] > yld

B! ¥y

Figure II.1: [lustration of the structure of a block chain independence graph, ignoring
the undirected edges inside each of the (b+ 1) blocks.
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Figure I1.2: Example of a BCG for a three dimensional multivariate generalised linear
mixed model with two random components, and it’s corresponding moral graph (to
the right).

I1.3.3 Testing the Covariance Structure

In this section, we formulate a statistical test based on the results in Anderson (2003).
Using this test, it is possible to test for (conditional) uncorrelation between pairs or
groups of variables.

We introduce some general notation that we will use to describe the statistical test
in the case where the random components are assumed to be Gaussian distributed
and the more general setup where we assume an elliptical contoured distribution. In
both cases, we can test for uncorrelation between groups of variables either directly
or conditional on a separating set. We show the conditional test but the approach is
equivalent in the direct case.

Let X = (X[, X())" be a d-dimensional random vector distributed accord-
ing to an elliptically contoured distribution (including the special case of a Gaussian
distribution) with location parameter equal to zero and a positive definite scatter
matrix

A A - Ay
Aoi Az -+ Ay AE=D)  A(k=1k)
A=, : | T ARRD AL |
A1 Ape - A
which is proportional to the covariance matrix 3. Below, we let dy, ..., d; denotes

the length of the k sub-vectors of X such that d = d; + ... + di. We assume that
the density of X exists with respect to the Lebesgue measure. Moreover, we assume
that the conditional distribution of X *~1 = (X[,,..., X(;_,)) given X3 exists.
The distribution of X *~1| X, is also elliptically contoured distributed with scatter
matrix

Ay =AFD - Ak-LR) AL A (RED) (IL.4)

which is proportional to the covariance matrix in the conditional distribution (An-
derson 2003). Consequently, the formulas which apply in the normal case apply in
this more general setting as well.
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We would like to test the null hypothesis that the subvectors X(i),..., Xx_1)
are independent given X(). This is equivalent to examining if A is on the form

Ay 0 .- 0

0 Aoxyy - 0

Ap=1 . . .
0 0 - Ap—1)—1)k

We first treat the special case where X is Gaussian distributed below. In this
case, the statistical test will be exact. Second, we present an asymptotic test when
the number of realisations of X, denoted ¢, goes to infinity which is valid in the case
of a general elliptically contoured distribution.

Normally Distributed Random Component

Here, we show a test for conditional independence for subsets of variables in a
Gaussian distributed vector. Let A.; be the maximum likelihood estimate of A
or another estimate proportional to the maximum likelihood estimate based on ¢
observations (A., can also be calculated from a maximum likelihood estimate of X
using the formula in (I1.4)).

The test statistic we will consider is given by

. det(Ak)
I det(Ayg)

that is, V' = A2 where X is the likelihood ratio statistic and ¢ the number of
observations (in the setup of multivariate GLMMs this is the number of groups of
the random component).

It can be shown that under the null hypothesis (Anderson 2003) the distribution
of V' is given by

k—1 d;
vV~ 111 % (IL.5)
i=2 j=1
where the random variables Zs;, ..., Z(—1)a,_, are independent and Z;; ~ Beta(%[q—

Ji—j],%cﬂ) withd; =dy +...+dj_q fori=2,...,(k—1)and j=1,...,d;.

The continuity of the determinant function implies that V' remains constant for
any estimated scatter matrix proportional to the maximum likelihood estimate, and
thus the distribution is still exact. For a consistent estimator of the covariance matrix
or scatter matrix, the distribution is only asymptotic.

Elliptical Contoured Distributed Random Component

Under the assumption of a general elliptical contoured distribution, Anderson (2003)
shows that the following test statistic can be used to test asymptotically if the
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correlation between groups of variables are zero for ¢ going to infinity (either direct
or conditioning on a separating set).

Let A.; denote the sample estimate of the covariance matrix of X*~1 given
X.. This can be estimated directly or calculated using the formula in (IT1.4) on the
sample covariance matrix given by

1 q
1 i:l( ) )
Define A(A_ as the d; x d; dimensional sub-matrix of A, with the first d; =

di+---+d;_1 rows and columns of A.,. Moreover, let A 41 denote the sub-matrix
correspondmg to the first d; columns and the rows d; + 1 .d; + d; of A, Define

H;, = (q— )A(“ 1)AZ U(A” 1))T
G, = (q - 1)Aii-k — H;
G|
G+ Hi|’
where A;; is the (4,7)"" block matrix of A ..

The test statistic for the null hypothesis that (Xi,..., X,_1) are conditionally
independent given X} is formulated as

‘/;-:

k—1
—q Z lOg V;'?

=2
which converges in distribution to (1 + k) Xfc for ¢ going to infinity,
f =17 did; and
k= (di(d 4+ 2)TE[(XE DTt x k-D]12 _ 1,

We can estimate the kurtosis parameter by

q
fo= (d(dy, +2))" Z N A 212 -

1:1

Simulation Study of Convergence Rate

In this section we study the power of the introduced tests as a function of ¢ in a simu-
lated example, that is, the probability of accepting the hypothesis of independence/un-
correlation when it is true. Working with a five percent significance level this should
be close to 95 percent when ¢ is large enough. For different values of ¢, we simulate
10000 times ¢ random variables from a 4 dimensional Gaussian and t-distribution,
respectively, with expectation zero and covariance matrix

0.4083  0.000000  0.000000  0.000000
5 _ 0.0000 0.456510 —0.451965 0.265170
~10.0000 —0.451965 0.837030 —0.491090

0.0000 0.265170  —0.491090  0.524365
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For each of the 10000 simulations, we estimate the sample covariance matrix and
apply the appropriate test described above. Based on the calculated p-values, we
can examine how many times the estimated p-value is below five percent and divide
this by the number of simulations in order to obtain an estimate of the probability
of rejecting the hypothesis of independence/un-correlation when it is true (at a five
percent significance level). If the distributional assumption of the test statistic is
correct, the estimated value will be close to five percent when working with a five
percent significance level.

We formulate the simulated model formally by letting X = (Xj,...,Xy) and
Y = (Y3,...,Y)) denote random vectors distributed according to a multivariate
Gaussian and t-distribution, respectively, with mean zero and covariance matrix
3. In the multivariate t-distribution, the degrees of freedom is assumed to be
five. Let X4,...,X, and Y7, ...,Y, denote i.i.d. copies of X and Y, respectively,
corresponding to the simulated random variables in each of the 10 000 rounds. Using
the realizations of these variables denoted xy,...,x, and yi, ..., y,, we estimate in
each of the 10000 rounds ¥ by

q

Q1=
-
I
—

T

3, = (vi—y)(yi —y)",

Q=
MQ

@
Il
—

where  and y are the estimated means. In each of the the 10000 rounds, we test
the hypothesis that

H: 33 =233 =0,

for both the multivariate Gaussian and t-distribution based on the estimated covari-
ance matrices 3, and ﬁ]y, respectively, with X;; denoting the (3, j)th entry in 3.
Note, that vi also tested 315 = 0 and X4 = 0 but since the estimated power curves
are similar, we only present one of them here. The estimated power curve (probability
of rejecting the hypothesis when it is true) for H can be found in Figure I1.3 and
I1.4 for the Gaussian and t-distribution, respectively. We conclude, that we need a
much higher number of levels in the multivariate t-distribution, as expected. This is
a result of the heavier tail and the fact that the distribution of the test statistic is
only asymptotic where the distribution is exact in the Gaussian case.
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Figure I1.3: Estimated power as a function of ¢ based on x, ..., z,. The values in

parenthesis is p-values from a Kolmogorov Smirnoff test for a Uniform distribution.
When the hypothesis is true and the distributional assumption is correct, the p-values
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Figure 11.4: Estimated power as a function of ¢ based on i, ..., y,. The values in
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When the hypothesis is true and the distributional assumption is correct, the p-values
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Graphical Representation of the Latent Covariance Structure in the
Multivariate Model using a Statistical Test

We can draw conclusions regarding the covariance structure of the random compo-
nents by applying the tests described above to the estimated covariance matrix of
the random components in the multivariate model described in Section 11.2.1, and
by using the theory of graphical models as described in Section I1.3.1.

Under the model formulated in Section II1.2.1, we can estimate the covariance
matrix of the random components consistently based on consistent predictions of
the random components by applying Proposition 1. In this case, the distribution of
the above-described tests will be asymptotically for the number of levels, ¢, and the
number of observations, n, increasing. In the case where we use the asymptotically
approximately maximum likelihood estimator of the covariance matrix as described
in Section II.A.1, the estimator is also consistent. Therefore, the tests still apply
asymptotically. The same applies to another consistent estimate of the covariance
matrix.

We can examine the latent covariance structure in general by testing if the value
of each off-diagonal entry in the conditional covariance matrix is equal to zero. If the
p-value (possibly corrected for multiple testing) is below a given significance level,
we connect the corresponding nodes by and edge. After constructing an undirected
graph, we can combine the undirected independence graph with the responses as
described in Section I1.3.1. On the other hand, it might be of interest to test for a
specific covariance structure of the latent variables. Here, the number of tests can
be reduced using the structure of graphical models. It is possible to apply the test
for independence between different groups of variables, without conditioning on a
separating set, to test for independence between the isolated subgraphs in the graph

(if any).

11.3.4 Simulation Studies

In this section, we perform a simulation study to examine the power of the two types
of tests introduced in this paper under multivariate generalised linear mixed models
in the case of Gaussian and t-distributed random components. We simulate a two
dimensional generalized linear mixed model with the conditional distributions being
Gamma and Poisson, respectively. We use a logarithm link function in both marginal
models. Since our primary interest in these simulations study is the covariance
structure of the random components, we will simulate a model only including a
constant in the fixed effects (the value of this constant was set to 0.6). The data
was simulated with the length of the vectors of random components being g = 800
(corresponding to 800 experimental units or clusters), and with 40 replicates for
each unit giving 32000 observations. Three models were simulated with different
distributional assumptions for the random components (all having expectation zero),
i.e., a multivariate Gaussian, a multivariate t-distribution with 11 degrees of freedom,
and a multivariate t-distribution with 7 degrees of freedom. We estimated the power
(probability of rejecting the null hypothesis) of the tests for the different models on
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a grid of values for the off-diagonal entry in the covariance matrix of the random
components representing the same experimental unit. The covariance matrix is given
by

> 0.8166 0192
B 019 0.91302 [’

where 015 is varied on the grid G = (0,0.02,0.04,0.1).
In each round of the simulation study, we test the hypothesis

Hy: 012 =0,

and the resulting p-values are used to estimate the power for each point in GG. Notice,
that in the Gaussian case, Hy implies independence, whereas, in the elliptical case it
implies un-correlation. We limit ourselves to a two dimensional model partly because
of the computational time and the preference of a high dimension of the vector of
random components (as we saw in I1.3.3, we need a high number of levels of the
random components when these are assumed to be multivariate t-distributed), but
also because it is difficult to control that a high dimensional covariance matrix stay
positive definite when changing the off-diagonal values.

We would expect that the probability of rejecting the null hypothesis increases
when the corresponding entry in the covariance matrix is moved away from zero. For
each grid point in G, the model was simulated 500 times and a p-value for testing
H, was calculated for each simulation. Thus, for each grid point, the probability of
rejecting the null hypothesis could be estimated based on the p-values. Figure I1.5
shows the estimated probabilities of rejecting the hypothesis (at a significance level of
five percent) as a function of the off-diagonal value in the covariance matrix for each
combination of model and test. From the figure, we conclude that when the random
components are Gaussian distributed both tests reach the correct significance levels
under the null hypothesis. However, the curve for the Gaussian test is steeper than
the elliptical test in the part close to zero meaning that the test has a higher power to
detect small deviations from the null hypothesis. In the case of t-distributed random
components, the test based on normality rejects too often under the null hypothesis
which lead to a power curve with a higher intersection with the y-axis. Moreover, we
see that the shape of the curve differs from the power curve for the elliptical test.
This result imply that it would be preferable to use the elliptical test in cases where
the normality of the random components are uncertain.

We would expect, that the p-values follow a uniform distribution on zero to one
under the hypothesis Hy. In Figure I1.6, we present a Q-Q plot of the observed quan-
tiles of the calculated p-values versus the theoretical uniform quantiles based on 500
simulations for each model and for each test. Recall, that we simulated three different
models, where the random components followed either a multivariate Gaussian, a
multivariate t-distribution with 11 degrees of freedom or a multivariate t-distribution
with 7 degrees of freedom. For each model, we compared two different tests: a test
based on normality and a test based on a general elliptically contoured distribution.
The number added to each plot is the resulting p-values from a Kolmorogov-Smirnov
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Figure I1.5: Power curves showing the estimated probability of rejecting the hypothe-
ses Hy as a function of the off diagonal values in the covariance matrix for each test
and distributional model for the random components.

test comparing the empirical distribution with the uniform distribution. As expected,
the test based on an assumption of normality performs badly for the models where
the random components follow a t-distribution.
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Figure I1.6: QQ-plots showing the quantiles of the p-values under the null hypothesis
against the theoretical quantiles of the uniform distribution for each test and distri-
butional model for the random components. We used the Kolmogorov-Smirnov test
comparing the empirical distribution with the uniform distribution. The resulting
p-values are shown in the plots.

II.4 Discussion and Conclusion

The method for studying the dependence structure of multivariate responses de-
scribed in this paper combines MGLMMs with the theory of graphical models and a
variation of the tests for correlation and conditional correlation described in Ander-
son (2003). We constructed the MGLMMs used in this paper by joining marginal
GLMMs that are based on weaker assumptions as compared to the literature (e.g.,
Breslow & Clayton, 1993, McCulloch & Searle, 2001, McCulloch, 1997). Indeed, we
do not assume the random components to be multivariate normally distributed.
Moreover, we use dispersion models (which includes exponential dispersion models
as a particular case) to define the conditional distributions of the responses given
the random components. While Pelck & Labouriau (2021a) developed techniques
for estimating fixed effects and predicting random components of those MGLMMs,
we concentrated here on the construction of methods for studying the correlation
structure of multivariate responses. The nature of the tests we used here forced us to
restrict the distribution of the random components to be regular elliptically contoured
distributions (including the multivariate normal distribution), which is less general
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than the class of distributions of the random components used in Pelck & Labouriau
(2021a). Still, the assumptions on the distribution of the random components used
here are weak and yield a flexible class of MGLMMs. For example, we can use models
with multivariate t-distributed random components, which have heavier tails than
Gaussian random components.

Remarkably, the proposed test for elliptically contoured distributed random com-
ponents does not depend on the choice of the elliptically contoured distribution used.
Indeed, the test statistic of those tests depends only on the estimate of the covariance
matrix. Therefore, we might view this test as a semiparametric test since the class
of regular elliptically contoured distributions is not finite-dimensional. Naturally, the
test based on the multivariate normal distribution is advantageous relative to the
generic test based on elliptically contoured distributions when the random compo-
nents are Gaussian distributed. We illustrate this claim in the simulation studies
presented.

Multivariate generalised linear models (and MGLMMSs) can be constructed by
connecting several marginal generalised linear models (or GLMMSs) using copulas.
For instance Song et al. (2009) use Gaussian copulas for constructing multivariate
dispersion models. While this approach might be fruitful in some contexts, it cannot
be directly applied in the type of analysis we discuss in this paper because the
distribution of the random components after applying the copula transformation
are in general not elliptically contoured and therefore the tests we use here are not
applicable.

The inferential techniques described in this paper were applied in several fields
recently. For instance, in Pelck & Labouriau (2020) the method described above
was used in a study of a system for monitoring the development of roots over time,
which involved binomial, and Poisson distributed responses. Another example is
presented in Pelck et al. (2021b) where our methods were applied to study the
dependence structure of responses representing the development of a fungal disease
and the concentration of volatile organic compounds. Those responses were modelled
by Pelck et al. (2021b) using Gamma, binomial and compound Poisson families of
distributions. Furthermore, in a third study, Pelck et al. (2021a) used the methods
studied here to discuss the covariance structure of the students’ marks obtained in
different admission exams at the University (Gaussian distributed) and the number
of attempts required to pass the course of geometry (a Cox proportional model with
discrete-time). Those examples illustrate the usefulness of the statistical tools studied
in this paper.
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II.A  Appendix

II.A.1 Estimation of Covariance Matrix

The methods presented in this paper rely on either an estimate of the covariance
matrix proportional to the maximum likelihood estimate or a consistent estimate. In
this section, we discuss how such an estimate can be obtained based on consistent
predictions of the random components. Such predictions can be obtained using the
inference method described in Pelck & Labouriau (2021a).

A consistent estimate (for n and ¢ increasing) of the covariance matrix can be
found by calculating the sample covariance of the predicted values as we will see in
Proposition 1. In the case where we only have few cluster, i.e., ¢ is small, we suggest
a method to obtain an approximated maximum likelihood estimate of the covariance
matrix. Here, we consider the general case were the random components follow an
elliptically contoured distribution, and the special case where this distribution is
assumed to be multivariate Gaussian separately.

Proposition 1. Consider the model described in Section 11.2.1. For j =1,...,q, let
b} denote a d-dimensional vector of predicted values of the random components cor-

responding to the qth cluster, Bj, based on at least n = min{ny,...,n,} observations.
Moreover, assume that

fn P
b; — B; forn — oo,

Then,

SO
(bl

A 1
Eq:ﬁ, Sy for q,n — oo,
J

(& -

1

o) (B} —b,)"

q
q

:n _ 19 n
where by = g 2j=10].

Proof. The proof follows from the fact that the predicted values of the random
components are consistent, the continuity of the sample covariance mapping and
that the average converges to the expectation for ¢ increasing. O]

We present below an approximation of the maximum likelihood function for
estimating 3 based on the predicted values of the random components in the case of
a multivariate Gaussian distribution, which can be used to estimate 3.
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Approximated maximum likelihood for estimating ¥ in the case of
Gaussian random components

Consider the model described in Section I1.2.1, where we assume that By, ..., B,
are i.i.d Gaussian distributed with expectation zero and covariance matrix 3. We
let for j = 1,...,q, l;? denote a d-dimensional vector of predicted values of the
random components corresponding to the jth cluster, Bj, based on at least n =
min{ny,...,n,} observations. Moreover, we assume that the predicted values are
conditional asymptotically Gaussian distributed (as in Pelck & Labouriau (2021a))
for n increasing given B; = b; with conditional expectation b; and covariance matrix
V;. Notice, that by the model assumptions, Vj is a diagonal matrix.

When ¢ is small, we can maximise the following with respect to 3 by inserting
an estimate V of Vj:

L0, b H / (bj; )h(b2: b;, V;)db,

_ —-1/2 13 Tsv—1p
_E/Rdmzy exp (— 1675 'b))
27 V5|2 exp (— 3 (b; — b))V, (b; — b)) db,

q A A

= [I@n) 1=V} exp (- 5(B})"S7'8})

7j=1

/ exp (bTV; 102 exp (—3b7 (V1 +271)b,) db,

R4 J 77 J 277 J J J

q A A

= [[en) =V V2 exp (—4(b7)"2 70}
2m(V; 4+ B2 exp (5(V 00T (V2T YY)

q
= [Ln) 22V 2|V =)

J

Approximated maximum likelihood for estimating ¥ in the case of
general elliptical contoured random components

Consider the model described in Section I1.2.1, where we assume that By, ..., B, are
i.i.d elliptically contoured distributed with expectation zero and covariance matrix
3. for a given choice of the function h in (I1.1). We let for j =1,... ¢, IA);1 denote a
d-dimensional vector of predicted values of the random components corresponding to
the jth cluster Bj, based on at least n = min{ny, ..., n,} observations. Moreover, we
assume that the predicted values are conditional asymptotically Gaussian distributed
(as in Pelck & Labouriau (2021a)) for n increasing given B, = b; with conditional
expectation b; and covariance matrix V. Notice, that by the model assumptions, V;
is a diagonal matrix.
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When ¢ is small, we can maximise the following with respect to 3 by inserting
an estimate Vj of V; and using a Gaussian Hermite approximation of the integral:

L(S: b7, 87) =TI [ o(bs Dh(b): ;. V)b

q A
=11 [, obss D)l2nVi 2 exp (= L(b; = )V, (b, — b)) b

j=1
q ~ A ~ ~ ~
=T d/2 H /d (\/5‘/}1/2113‘ -+ b?, 2) exXp ( — bfl%)db]
j=1 R
~ T —d/2 H Z wkl . wkd (\/ﬁ‘zlﬂwk + IA);L, E),
j=1kek
with K = {1,...,1}%, wy, = (wiy, ..., we,), T = (Thy, - - ., Tx,), where x5, denotes

the k]t-h root of the Hermite polynomial with I nodes and wy,; is the associated weight.

II.A.2 Density of V in Case of Gaussian Random
Components

In this section we present a formula for the density of the distribution of V' defined
in Equation (IL.5). Recall, that V' is distributed according to

k—1 d;

vV~ 111 %

i=2 j=1
where the random variables Zy1, ..., Z(;_1)q, , are independent and Z;; ~ Beta(%[q—
d; — j, 3di) with di = dy + ...+ diy for i =2, (k—1)and j = 1,....d;.

Let d = dy+ ...+ di_1. We adapt the notation in Tang & Gupta (1984) to obtain

the density of V. Define t; = (2,1),...,ta, = (2,d2),tay+1 = (3,1),. .., taytds =

(3, dg), e ,td2+._.+dk_2+1 == (k - 1, 1), ey
tdst. +d,_, = (k—1,di_1). The density of V' can then be formulated as

fv(v) = K" D711 —v)h 120 —v)" for0<wv<1l, (IL.6)

where

M& I E&

<.
Il
—
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with I'(-) denoting the Gamma function, b(j) = %(q—cit(;) —t§2)) and c(j) = %Jt(_l)—kb(j)

for t; = (t§~1), t§~2)). The term ¢(® can be calculated by the recursive relation:

y _ TG -1 +7] ¢ [c(j)—b(j—l) - |
0) — U r=0,1,2,..., 7=2,3,....d
or Clh(j) + 7] SZ:;) 5! Or—s |, T 1,200 .3,....,d,

with initial values 0" = (D[h(1)])~! and 6V = 0 for r = 1,2, .. .. Notice, that

TG =D ]

j=oo  T[h(]) + 7] ’

such that the infinite sum in (I1.6) can be truncated after some point.
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Models for Studying Roots’ Development
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Abstract. The characterisation of the spatial and temporal distribution of the
root system in a cultivated field depends on the soil volume occupied by the root
systems (the scatter), and the local intensity of the root colonisation in the field
(the intensity). We introduce a multivariate generalised linear mixed model for
simultaneously describing the scatter and the intensity using data obtained with
minirhizotrons (i.e., tubes with observation windows, which are inserted in the soil,
enabling to observe the roots directly). The presented models allow studying intricate
spatial and temporal dependence patterns using a graphical model to represent the
dependence structure of latent random components.

The scatter is described by a binomial generalised linear mixed model (presence
of roots in observation windows). The number of roots crossing the reference lines
in the observation windows of the minirhizotron is used to estimate the intensity
through a specially defined Poisson generalised linear mixed model. We explore the
fact that it is possible to construct multivariate extensions of generalised linear mixed
models that allow to simultaneously represent patterns of dependency of the scatter
and the intensity along with time and space.

We present an example where the intensity and scatter are simultaneously deter-
mined at three different time points. A positive association between the intensity and
scatter at each time point was found, suggesting that the plants are not compensating
a reduced occupation of the soil by increasing the number of roots per volume of soil.
Using the general properties of graphical models, we identify a first-order Markovian
dependence pattern between successively observed scatters and intensities. This
lack of memory indicates that no long-lasting temporal causal effects are affecting
the roots’ development. The two dependence patterns described above cannot be
detected with univariate models.
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II1.1 Introduction

The characterisation of the spatial and temporal distribution of the root system of
a cultivated field depends, among other factors, on two key features: the volume
occupied by the root systems in the field, here called the scatter (or root frequency
in the terminology of Kristensen & Thorup-Kristensen 2004), and the local intensity
of the root colonisation in the field, termed intensity. These two characteristics
might vary with time and the use of different cultivation practices or treatments (see
Kristensen & Thorup-Kristensen 2004, 2007, Kristensen & Stavridou 2017, Hefner
& Labouriau 2019, Christensen et al. 2021). This article introduces and discusses
a multivariate statistical model for simultaneously describing the root scatter and
intensity using data obtained with a device called minirhizotron (briefly described
below). Additionally, the models presented will allow us to study intricate spatial
and temporal dependence patterns using a version of the so called graphical model,
representing the dependence structure of latent random components.

A minirhizotron consists of a tube along with there are several transparent
observation windows. According to the methodology, several tubes are inserted in the
soil, allowing for observing the development of the roots at several depths, positions,
and time points in the field. After a given growth period, the observation windows
are examined using a camera introduced in the tube, and the presence or absence of
roots in each window is registered. Fach observation window has reference lines and
the number of times the roots cross (if any) the reference lines are also recorded.

The main idea explored here is that the presence or not of roots in the observation
windows is the result of sampling in the field and, therefore, can be used to characterise
the volume occupied by the root system in the field, 7.e., to quantify the scatter.
Furthermore, we will argue that the number of times the roots cross the reference
lines can be used to estimate the intensities.

The intensity and scatter will both be modelled using suitable generalised linear
mixed models, as described below. The scatter will be described by a binomial model
(presence or not of roots in observation windows). The number of roots crossing the
reference lines will be modelled using a specially defined Poisson model. A stochastic
geometric argument will allow us to use the number of crosses to obtain estimates of
the length of the root system in the region surrounding the observation windows of
the minirhizotrons. The models used here will contain random components, allowing
to represent the dependence structure induced by the experimental designs typically
used in the applications we have in mind.

We will explore the fact that it is possible to construct multivariate extensions of
generalised linear mixed models that allow to simultaneously represent, in a single
model, patterns of dependence of the scatter and the intensity along with time and
space. This achievement is remarkable since the nature of these two quantities is
very different. We will show an example where the intensity and the scatter are
simultaneously determined at three different time points. Jointly modelling these
six quantities will allow us to identify a first-order Markovian dependence pattern
between successively observed scatters and intensities. Moreover, we will show a
positive association between the intensity and the scatter, quantify the magnitude of
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those associations at the three different observation times, and show that there is a
decay of the association between the intensity and the scatter at the last observation
time. This type of characterisation of the time development of the root system cannot
be obtained using only univariate analyses.

This article is organised as follows. Section II1.2.1 presents a motivational real
example. The basic models for the scatter and the intensity are discussed in the
sections I11.2.2 and II1.2.3, respectively. In Section I11.3, we introduce a multivariate
model for describing the roots’ colonisation at different developing stages simul-
taneously. After defining a multivariate generalised linear model connecting the
univariate models in Section II1.3.1, we model the covariance structure of those
random components using a graphical model in Section I11.3.2, and briefly describe
techniques for inferring this graphical model in Section II1.3.3. The motivational
example presented in Section I11.2.1 is analysed in Section II1.4 using the multivariate
model described. Section II1.5 presents a brief discussion of the methods exposed.

II1.2 Models for Scatter and Intensity of the
Roots’ Colonisation

II1.2.1 A Motivational Reference Example

We consider below a real example arising from a study on the effects of different
liming and phosphorous fertilisation techniques in a field experiment (see Christensen
2017 and Christensen et al. 2021). This example will be used to expose the modelling
approach studied in this article. In this study, an experimental field cultivated with
spring barley was split into three blocks containing four plots; in each block, four
fertilisation treatments were randomly allocated to the plots. In each plot, two
minirhizotron tubes were installed. Three soil depth zones were considered in the
analyses below: the superficial layer (termed horizon A), the intermediate layer (called
horizon B), and the subsoil (termed horizon C). The minirhizotron tubes had six
observation windows in the superficial layer and twelve windows in the other two
layers. The observation windows of all the 24 tubes were examined in three time
points corresponding to different development stages of the culture of spring barley
(see details in Christensen 2017). For simplicity of the exposition, we ignore the block
and plot structure of the experiment.

The primary interest in the study referred above was to characterise the develop-
ment of the root system in each soil depth zone when different fertilisation treatments
are used. Here we approach a different question of characterising how the depen-
dence between the intensity and scatter vary over the three observed development
stages of the culture in the field. This problem involves studying the dependence
of quantities of different stochastic nature. Indeed, while we will characterise the
intensity using the counts of number of times the roots cross the reference lines in
the observation windows, the scatter will be characterised examining the incidence
of roots in observation windows.

The strategy we will adopt to analyse this example is to construct suitable
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multivariate generalised linear mixed models describing the rooting intensities and the
scatters at the three developmental stages (so the model will be six-dimensional). The
one-dimensional generalised linear mixed models describing these two characteristics
of the rooting system were first described in Labouriau (2019) and are presented in
detail in Section I11.2. The idea we will explore is that the fixed effects of the models
will adjust for the expected differences due to the treatments and the soil depth zones.
Each of these models will contain a Gaussian random component taking the same
value for each observation arising from the same minirhizotron tube (here we interpret
the tubes as the experimental units). Those random components represent the local
variation of the intensity or the scatter present at each experimental unit after having
corrected for the effects of the depth zones and the fertilisation treatments. The
multivariate model we will consider will allow us to represent different covariance
structure of the six Gaussian random components corresponding to the six observed
responses. The covariance structure of the random components will determine the
covariance structure of the responses, as we discuss below.

I11.2.2 Modelling the Scatter

We model the scatter at a fixed development stage by studying the occurrence of
roots in the different observation windows of the minirhizotron tubes. Denote by
Ytﬂ the random variable representing the number of windows where a root is present
in the 2zt soil depth zone (z = A, B, C representing the soil horizons) at the jth
tube (k= 1,...,6) exposed to the t™ treatment (¢ =1,...,4), observed at the
development stage (d = 1,2,3). We keep the development stage fixed in this section
and in Section II1.2.3. Moreover, following the same convention for the sub-indices
used above, denote the number of observation windows at the tkz"™® observation by
nyk.. Note that by design, the number of observation windows does not change in
the different observation times.

Denote, fort =1,...,4and k =1,...,6, by U}Z] an unobservable random variable
taking the same value for all observations arising from the k™ tube. We assume
that those random variables, corresponding to the 24 tubes used in the experi-
ment, are independent and normally distributed with expectation zero and variance

cr?][d]. According to the model in discussion, the random variables Yl[ﬂ‘, e ,Kl[g]c,
representing the observations, are conditionally independent given the random com-
ponents Ul[cll], cee U4[66l]. Moreover, we assume that, fort =1,...,4, k=1,...,6 and

z = A, B,C, the random variable Y¢_ is conditionally binomial distributed given
Ut[,f], with Y;Eﬂ\Ut[Z} =un~ Bi(ntkz,p%z), where

10git(ph:) = Brega) + u, for all u € R (IIL.1)

The model described above coincides with a generalised linear mixed model (GLMM)
defined with the binomial distribution, the logistic link function, a fixed effect repre-
senting the interaction of treatment and soil depth zone, and a random component
representing the tubes.

The parameter ;. 4 in (II1.1) is clearly related to the scatter. Indeed, according
to the model above, the probability of finding a root which is visible in an observation
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window at the 2zt soil depth of the plots that received the ™ treatment (z=A,B,C
and t =1,...,4) at the dth development stage is

Yt[kdz]] B exp(Biziq + u)

E[ _
R 1+ exp(Be,iq + u

def def . [d
-~ )SO(U; 0,08 ) du ™ o (B, o) € 612 . (111.2)
tkz

Here ¢(+; 0, J?][d]) denotes the density of a normal distribution with expectation 0

and variance O?JM, which is the distribution of the random component U},‘f]. The

quantity dg can easily be evaluated once we have estimated the parameters ;. 4

and O%[d] by numerically integrating the integral in (II1.2) or using a straightforward
Monte Carlo integration.

I11.2.3 Modelling the Intensity

Let C’t[ZL be a random variable representing the total number of times the roots cross
the reference lines in all the observation windows at the 2™ soil depth zones (z =
A, B,C) at the k™ tube (k=1,...,6) exposed to the ™ treatment (t=1,...,4),
observed at the dtt development stage (d = 1,2, 3, fixed along this section).
Denote, fort =1,...,4and k =1,...,6, by Vtgf] an unobservable random variable
taking the same value for all observations arising from the same tube. Those random
variables are assumed to be independent and normally distributed with expectation
zero and variance a%/[d]. The random components defined above are analogous to
the random components used for modelling the scatter. According to the model, the

random variables Cﬁ} VR CAEdG]C, representing the observations of numbers of crosses,
are conditionally independent given the random components Vl[‘f], ey V4[Ué]. Moreover,

we assume that, fort =1,...,4,k=1,...,6 and z = A, B, C, the random variable
C}ZL is conditionally Poisson distributed given Vtgj], with conditional expectation
given by

1og (E[CHL VA = 0]) = 6,14 + v + log (nz) for all v € R. (I11.3)

The model above allows us to estimate the local length of the roots visible in
the observation windows, characterising in this way the root intensity, as described
below. Exponentiating both sides of (I11.3) and taking expectations with respect to
the distribution of the random components yields for t =1,...,4, k=1,...,6 and
z=A,B,C, that

C[d]z def
B[ = [ exp(Bre ) exp(@)p(v:0, 0t )dv = exp(breja) exp(ody/2) =i
(I11.4)

The factor exp(o7,;/2) in the right side of (II1.4) is the expectation of the corre-
sponding log-normal distribution (see Aitchison & Brown 1957).

The quantity wie. defined in (IIL.4) is straightforwardly related to the intensity
since the more intense the root colonisation process in a region around the tube is,
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the more likely will be the occurrence of roots crossing the reference lines in the
observation windows. Additionally, wt[z]z can be interpreted as an estimate of the
length of the roots that are visible in an observation window using the argument
sketched below. A classic argument for the Buffon’s needle problem allows one to
calculate the length of a rigid straight needle by randomly throwing the needle in
a surface with parallel reference lines (see Klain & Rota 1997), the length of the
needle being proportional to the probability of the needle cross a line. The Buffon’s
needle problem can be extended by dropping the assumption that the needle has a
perfect straight form, yielding the so called Buffon’s noodle problem. According to
Ramaley (1969) the length of a one dimensional structure (the "noodle" replacing
the needle) is proportional to the mean of the number of times the structure crosses
the reference lines. Taking this approach, the left size of (II1.4) is interpreted as the
expected value of the Buffo’s noodle estimate of the length of the roots that are
visible in the observation windows.

The model described above coincides with a generalised linear mixed model
(GLMM) defined with the Poisson distribution, the logarithm link function, a fixed
effect representing the interaction of treatment and soil depth zone, an offset repre-
senting the logarithm of the number of observation windows and a random component
representing the tubes.

II1.3 Multivariate Simultaneous Models for the
Scatter and the Intensity of the Roots’
Colonisation

I11.3.1 The Multivariate Construction

In Section II1.2; we introduced GLMMs representing, separately, the scatter and the
intensity of the root colonisation at a given development stage. Here, we construct
a multivariate model for simultaneously describing these two characteristics at the
three observed development stages. First, we define a GLMM for the scatter and
for the intensity for each of the three development stages, as we explained above. In
each of these models, there is a random component taking the same value for all the
observations arising from the same experimental unit (i.e., the same tube). Therefore,
we might connect the models by assuming that the six random components are
multivariate normally distributed. As we will argue below, the covariance structure of
the multivariate distribution of the random components will allow us to characterise
a type of association between the scatters and the intensities observed in the same
or at different development stages. The details of this construction are given below.

According to the multivariate GLMM that we propose, for t = 1,...,4, k =
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1,...,6,z=A,B,C,and d =1,2, 3,

§/t[kl,1|Ut[k] =u; ~ Bi gntkz, 10g1t Bz + uli ,Vup € R
Y;t[l?z|U[k = uy ~ Bi (1., logit ™ Bizjo +u2yp), Vus €R
Yifzw[k = ug ~ Bi (ntkza logit™ Biz3 + Ug}) , Vus € R
SJJV = vy ~ Po (exp {01 + Ul} , Vv € R
15[129]z|‘/t =wvy ~ Po(exp by g +v2p), Vo €ER

i , Yuz € R.

(I11.5)

CLIVE = v ~ Po (exp 0213 + U3

Here Ut[,f] and Vtgj] (ford=1,2,3,t=1,...,4and k = 1,...,6) are Gaussian random
components representing the k™ tube exposed to the ™ treatment belonging to
a marginal model describing the scatter and the intensity, respectively, at the dth
development stage. We assume that (Ut[,i],U 2] U ] V;E],Vtm th]) is multivariate
normally distributed with ex ectatlon zero and covarlance matrix 3. Furthermore
we assume that (Utk,U[Q] Ut,i’},V;k ,V; : V ly and (Ut/k, U,k,,U[,?}l, Vt,k/ Vﬁ]/,‘/;/k,)
are independent when (¢, k) # (', k'), i.e., we assume that the random components
corresponding to different tubes are independent.

I11.3.2 Modelling the Covariance Structure of the Random
Components

The next step in the construction of the multivariate model we have in mind is to
model the covariance structure of the random components by a graphical model.
Before embracing this project, we give a short account of the theory of graphical
models. For a comprehensive description see Lauritzen (1996) and Whittaker (1990).

Consider a graph G = (V,€) with a set of vertices, V, composed of random
variables. The set of edges £ C V x V is formed with the convention that two vertices
are connected by an edge if, and only if, they are not conditionally independent
given the remaining random variables in V. We say that there is a path between
two vertices, say V; and V5, if there exist a sequence of pairs of vertices in £ such
that 1V, and V5 belong to at least one vertex of the sequence. A set of vertices &
is said to separate the sets of vertices A and B in the graph, if and only if, each
path connecting an element of A to an element of B contains at least one element
of §. The separation principle (or global Markov property) is a crucial property of
graphical models stating that if a set of vertices, S, separates two disjoint subsets of
vertices A and B, then all variables in A are independent of all variables in B given
the variables in S, see Lauritzen (1996) and Perl (2009).

In the construction of the multivariate model in question here, we consider a
graph G = (V, &) with vertices V = {U“], Ul Bl vl iR v[iﬂ} formed by the
random variables representing the random components of the multivariate GLMM
described in Section II1.3.1 (with the obvious notational convention, e.g., , U is the
random variable with the same distribution as Ut[,i], fort=1,...,4, k=1,...,6).
Clearly, (U[”, vl psl yil vy V[S]) ~ N (0,X) by construction. Here we define
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the set of edges £ using the conditional independence of pairs of random variables
as in the paragraph above.

The interpretation of the graph above in terms of the random components of the
multivariate generalised mixed model defined in Section II1.3.1 is straightforward. For
example, if there is an edge connecting UM and VU, then these two random variables
are not conditionally independent given the other random components; therefore,
UMW carries some information on V! and this information is not contained in the
other random components. Note that UY and V! represent a latent variation on
the scatter and the intensity, respectively, after having corrected for the effects of the
treatment and the depth zone. Therefore, we would conclude that we have evidence
that some latent mechanisms governing the scatter and intensity are related. The
strength of this association can be estimated by inferring the entry of the precision
matrix (i.e., 3') corresponding to the random components UM and V1!,

Note that the separation principle also holds in this graph, which is crucial for
the interpretation of the model in terms of the covariance structure of the random
components. Moreover, it is possible to extend the separation principle, obtaining
what we call the induced separation principle, to draw some general conclusions on the
response variables, as we explain below using a putative example. Consider the groups
of random components A = {Um, V[”} and B = {U[3], V[S]} and S = {U[Q], V[z]}
contained in V. Define (for any choice oft=1,...,4, k=1,....6, 2= A, B,C) the
sets of response variables A = { oz C’m } and B = { e C } The sets A and B
are the sets of response variables of the marginal models for Which the elements of
A and B are random components. According to the induced separation principle, if
S separates A and B in the graph G = (V, £), then the random variables in A are
conditionally independent of the random variables in B given the random variables
in §. The proof of the induced separation principle can be done by using basic
properties of conditional densities and using the factorisation of the joint densities
of the distributions of V, see the details in Pelck & Labouriau (2021b).

We stress that in the putative example above, conditioning on the responses in
S = { t[:l, C’t } (i.e., the corresponding response variables to the elements of S)

does not necessarily render the random variables in A independent of the random
variables in B. Still in the putative example in discussion, the fact that the group
of random components S separates A and B implies, in the present setup, that
the responses at the first development stage are conditionally independent of the
responses at the third development stage, given the random components related to
the second development stage. We will see in Section I11.4 that this indeed the case.

I11.3.3 Inferring the Covariance Structure

The graph G = (V, £) with vertices V = {U[l], Ul gl vy V[3]} defining the
covariance structure of the random components introduced in Section II1.3.2 can be
inferred by predicting the random components and using those predictors to infer a
graphical model that minimises the BIC, as proposed and implemented in Abreu et al.
(2010) and Edwards et al. (2010). The predictors of the random components of the

74



generalised linear mixed models can be obtained with inference procedures yielding
consistent and normally distributed predictors. We used the procedure described
in Pelck & Labouriau (2021a). Additionally, we tested each of the possible vertices
using the conditional test for random components under multivariate generalised
linear mixed models described in Pelck & Labouriau (2021b).

II1.4 Analysing the Motivational Example

The example described in Section I11.2.1 is analysed below. Figure III.1 displays a rep-
resentation of the graph G = (V, ) with vertices V = {U[”, Ul Bl vl yiE B
estimated by minimising the BIC. Additionally, we tested whether the conditional
covariances of each of the possible pairs of elements of V), given the other elements
of V, is zero. The conditional covariances corresponding to the edges in the graph G
displayed in Figure III.1 were all significantly different than zero (at a significance
level of 0.05). Moreover, the conditional covariances corresponding to the pairs of
elements of V that are not in £ were not significantly different than zero (at a
significance level of 0.05).

According to the graph G = (V, £) displayed in Figure I11.1, the scatter and the
intensity are positively conditionally correlated at each of the three development
stages studied, suggesting the presence of underlying mechanisms associated to
the scatter and the intensity that are positively associated. The information that
scatter carries on the intensity (and vice-versa), for each development stage, are
not contained in the other random components, i.e., there is evidence of specific
common or cooperative underlying mechanisms determining the scatter and the
intensity, specific for each development stage. This result rules out the possibility
that the plants would be compensating a reduced occupation of the soil by increasing
the intensity of the colonisation of the soil by the radicular system. Moreover, the
strength of these associations is essentially the same in the first two development
stages (testing the equality of the two conditional correlations yields the p-value
0.979), but decreases in the last development stage (p-values for comparing the first
and the third stage and the second and the third stage are <0.001 and <0.0001,
respectively).

The inferred graph G indicates the presence of a temporal Markovianity in the
sense that the random components related to the first and the third development
stages are conditionally independent given the random components associated to the
second development stage. To see that, note that the set S = {U 2 V[2]} separates
the sets A = {UMN, VIU} and B = {UB!, VBI} in the graph G. It follows then from the
separation principle that the random components of A are conditionally independent
of the random components of B given S.

Using the induced separation principle, we conclude that for any ChOlce of treat-

ment ¢t = 1,...,4 and tube £ = 1,...,6, the group of responses { tkA, [,IC]A,

1] 3 3 3]
Y;S[kBaCkB? tkCa tkC’} and B = {Y;[kz]é&? [k]A>Y;t[kB7CkB7 tk07 tkC} are conditional
independent given the group of random components S = {Utk}, Vtk }. That is, all
the information that the response variables observed in the first development stage
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(i.e., the variables in j) might carry on the response variables in the third stage
(i.e., the variables in B) is entirely contained in the informational contents contained
in the random components associated to the second development stage, and this
conclusion holds for any combination of fertilisation treatment and depth zone. This
lack of memory result described above indicates that there are no long lasting tem-
poral causal effects affecting the roots’ development (in terms of the scatter and the
intensity), which is a non-trivial conclusion that cannot be reached with univariate
models for describing the scatter and the intensity.
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Figure III.1: Representation of the graph G = (V,&) with vertices V =
{U WUk u [3],V[1],V[2],V[3}} formed by the random variables representing ran-
dom components of the multivariate GLMM discussed in Section I1I1.4. The graph
was estimated by minimising the BIC of a covariance selection model inferred using
the prediction of the random components. The super-indices in the vertices indicate
in which development stage the response is observed. The letter V' indicates that
the random component correspond to the intensity while U represents the random
components associated to the scatter. The numbers placed beside the edges are
the estimated partial correlations with the corresponding confidence intervals (with
coverage of 0.95).
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II1.5 Discussion and Conclusion

In this article, we combine multivariate GLMMs and graphical models (GMs) to
characterise the spatial and temporal development of roots systems in a cultivation
field. The use of graphical models in biological and agricultural research is not new,
see Labouriau (2000), Labouriau & Amorim (2008, see the SOM), Holmstrup et al.
(2011), Baral et al. (2017) and Taghizadeh-Toosi et al. (2019) were GMs are applied
in different agricultural and biological contexts. In all these applications, the nature
of the multivariate responses is essentially the same in the sense that whether the
responses are continuous multivariate normally distributed or discrete multivariate
multinomial distributed.

In Lamandé et al. (2011) and Azeez et al. (2020, using different data from the
same experiment described here), the GM is of mixed type involving continuous
multivariate normal distributed responses and discrete multivariate multinomial
distributed responses. There, the GM uses the so-called CG (Conditional Gaussian)
distributions as defined in Edwards et al. (2010) see also Abreu et al. (2010) for
implementation and further discussions. However, in the current application, it
is not possible to use multinomial based- graphical models since the supports of
the distribution of counts (used to model the intensity) are not bounded and the
binomial distributions (used for modelling the scatter) have different sizes for different
observations. Therefore, one cannot do the analysis we discussed here using standard
graphical models. The price we pay for modelling responses of varying nature (using
graphical models that are not based on the CG distribution) is that we are forced to
use random components, whether by directly interpreting the random components
or by using the induced separation principle.

From the applied point of view, this article exemplifies the use of a combination
of GLMMs and GMs, which allows exploring biological aspects such as the temporal
development of two quantities of different nature. Here the close interface between
Statistics and Biology played a crucial role in the modelling process.
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III.A Representation of the Covariance Structure
in Terms of Direct Acyclic Graphs

The covariance structure of the responses and the random components at different
developing stages can be represented in terms of a Direct Acyclic Graph (DAG) as
follows. Here we use the terminology and properties of graphical models represented
as DAGs exposed in Lauritzen (1996). This representation follows from the induced
separation principle exposed in Section II1.3.2 and the properties of the GLMM.

According to the inferred multivariate model, for any possible choice of treatment
t=1,...,4,tube k =1,...,6, and depth zone z = A, B, C, the covariance structure
of the responses and random components is expressed by the DAG represented in
Figure II1.2.

3 3
Ciia Yica
3 3 3 3
Ciip [« Vit Uil )| Yikn
3 3
Ciko Vit
2 2
Ciia Vi
2 2 2 2
Crp [+ Vi, Uy )| Yarn
2 2
Civo Yo
1 1
Ciia Yiia
1 1 1 1
Cips [+ Vi U )| Yiun
1 1
Cixo Yo

Figure I11.2: DAG representation of the covariance structure of the responses and
the random components for the k™ tube at different developing stages induced by
the graph G = (V,€). Edges without arrows represent arrows in both directions.
The structure disputed holds for any choice of treatment ¢t (¢ = 1,...,4) and tube k
(k=1,...,6).
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Abstract. We present a new method for jointly modelling the students’ results in
the university’s admission exams and their performance in subsequent courses at the
university. The case considered involved all the students enrolled at the University
of Campinas in 2014 to evening studies programs in educational branches related to
exact sciences. We collected the number of attempts used for passing the university
course of geometry and the results of the admission exams of those students in seven
disciplines. The method introduced involved a combination of multivariate generalised
linear mixed models (GLMM) and graphical models for representing the covariance
structure of the random components. The models we used allowed us to discuss
the association of quantities of very different nature. We used Gaussian GLMM for
modelling the performance in the admission exams and a frailty discrete-time Cox
proportional model, represented by a GLMM, to describe the number of attempts
for passing Geometry.

The analyses were stratified into two populations: the students who received a
bonus giving advantages in the university’s admission process to compensate social
and racial inequalities and those who did not receive the compensation. The two
populations presented different patterns. Using general properties of graphical models,
we argue that, on the one hand, the predicted performance in the admission exam of
Mathematics could solely be used as a predictor of the performance in geometry for
the students who received the bonus. On the other hand, the Portuguese admission
exam’s predicted performance could be used as a single predictor of the performance
in geometry for the students who did not receive the bonus.
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IV.1 Introduction

In this paper, we study the admission system to a Brazilian university and the bonus
system for compensating social and racial inequalities. The data analysed below is
based on the registers of entrance and performance at the University of Campinas,
Brazil (UNICAMP). In 2005, UNICAMP implemented an affirmative action program
giving extra bonus in the final entrance examination score for students who were
enrolled for their entire high school years in the public system (with an additional
bonus for those who self declared to be African / Indigenous Brazilian descendants).
See Maia et al. (2016), Pedrosa et al. (2007), Pinheiro et al. (2019, 2020) for more
details.

The main difficulty of the study of those registers is the multivariate nature of
the characterisations of the object of interest, and the (unavoidable) presence of
spurious associations. The responses observed in the data referred above are of very
different nature but can be analysed in one multivariate model as we will describe
below. The performance at the university is measured by the number of attempts
required to pass the course of geometry, which is a key course in the beginning of the
university education of the group of students we study. This response is typically
right-censored, in the sense that there might be some students that have not passed
the course when the data was collected, dropped out during the study or who’s
enrollment has been cancelled. The enrollment is cancelled if the student fails all
the subjects in the first or second semester or reached the maximum number of
semesters allowed without graduating (e.g. in Statistics this is 6 years). On the other
hand, the performances at the admission exams are measured in a standardised scale
using a scoring system. Those two types of responses are modelled differently: the
time for passing a course is modelled using a variant of the frailty Cox proportional
model with discrete-time; the scores at the entrance exam are described using a
Gaussian mixed model. In both cases, the models can be represented as instances of
generalised linear mixed models (GLMMSs). The introduced GLMMs contain two
common random components (one taking different values for each individual, and
one taking the same value for individuals enrolled at the same branch of study).
The random component related to the individuals allows us to connect the models
describing the different responses, and in this way, characterise how much information
each response carries on the other responses. This methodology differs from Pinheiro
et al. (2020) where parts of the same data were analysed but in a different context.

The analyses performed were stratified into two populations: the students who
received a bonus, and the students who did not receive the compensation. The two
populations are different and presented different patterns, justifying the stratification.

This study aims to present statistical tools that allow to study the different facets
of the type of data described above and to understand the associations between the
different responses. These aims are fulfilled by using suitable multivariate versions
of GLMMSs and by using the theory of graphical models to describe the covariance
structure of the common random component giving the variation between individuals
(Pelck & Labouriau 2021b). We illustrate, in this way, a process of modelling responses
of very different nature in a multivariate model that arises when working with
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educational register data.

The paper is organised as follows. Section IV.2 describes the data used. The
multivariate GLMM are introduced in Section 1V.3, including details on the marginal
Gaussian GLMMs and the frailty discrete-time Cox Proportional model. Section IV.4
describes the graphical model used for representing the covariance structure of the ran-
dom components, and Section IV.5 presents and discusses the results. Appendix IV.A
presents some model control, while some details of the representation of the graphical
models are given in Appendix IV.B.

IV.2 Data Description

The data we used contain records on all the 299 students enrolled at the UNICAMP
in 2014, in evening studies programs in one of the educational branches related to
exact sciences listed in Table IV.1. Among those students, 151 received a bonus
giving advantages in the university’s admission process. The bonus group consists of
students from a public high school and students from a public high school who are
self-declared African or Indigenous Brazilian descendants.

Chemical engineering Electrical engineering Economical science
Mathematics Physics Computer science
Automation engineering Technological chemistry Bachelor in Chemistry
Medical Physics

Table IV.1: Educational branches included in the population studied.

The data includes eight responses recorded for each student. The first seven responses
correspond to the student’s performance in the university admission exam in the
disciplines: Mathematics, Physics, Chemistry, Biology, History, Geography, and Por-
tuguese. The last response was the number of attempts the students used to pass
the (first year) geometry course at the university. This response was right censored
(with 24.08% of censoring) since some students used at least the observed number
of attempts, but it was unknown whether the enrollment had been cancelled or the
student passed the course after the data was collected. Additionally, the registers
contain a range of information on each individual including gender and age.

IV.3 A Multivariate Model for for
Simultaneously Describing the Admission
Scores and the Performance in Geometry

The eight responses described above were jointly analysed using a multivariate
generalised linear mixed model as described below. We performed separate parallel

analyses for the students who received the bonus and those who did not receive the
bonus, which, we anticipate, will yield contrasting results.
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In each of the two separate analyses, we used a multivariate model combining
seven Gaussian mixed models describing the seven admission exams, and a frailty
Cox proportional model with discrete-time for modelling the number of attempts
to pass the course of geometry. Each of the marginal models above included two
random components: one accounting for the variation between the different study
branches, and one representing each individual. The eight marginal models referred
above were combined by assuming a joint multivariate Gaussian distribution for the
random component representing the individuals. The precise model definition for
the students who received bonus is given below. The models for the students that
did not receive bonus are similarly defined.

In order to describe the models we will use, we index the individuals by ¢
(1t = 1,...,n, with n = 151), the eight responses by j (7 = 1,...,8) and the
educational branches listed in Table IV.1 by k& (k = 1,...,10). Moreover, the
educational branch of the i*® student is denoted by e(i). We describe below the
covariance structure of the multivariate generalised linear mixed models we want to
introduce using two random components. The random component representing the
educational branches is defined by assuming that there exist 10 unobservable random
variables Ul[j ], ceey Ul[{)] for each of the eight responses (j = 1,...,8) corresponding
to the 10 educational branches. The random variable U, ,Lj I takes the same value for
the jth response for each student that is enrolled in the k™ educational branch
(k=1,...,10, j = 1,...,8). The random component representing the individuals
are specified for the jth response (j = 1,...,8) by defining the unobservable random
variables Vl[j ], ..., VIl representing the n individuals.

According to the model, for j,j' = 1,...,8, the random vectors U o (Ul[j],
- Ul%])T and V& (Vl[j L VDT are independent and multivariate Gaussian

distributed as given below,
UY ~ Ny (0, 05[1'1110)

Here I,, denotes a m-dimensional identity matrix (for m € N'). Furthermore, for
4,7 =1,...,8, with j # j', we assume that UV is independent of UU'l, and that
V;[j] is independent VZP l}, where 7,7 = 1,...,n with ¢ # 7' . Additionally, we assume
that fore=1,...,n,

Cov (v;.[”, o v}sl) =y, (IV.1)

with diag (Zy) = (0‘2/[1], . ,0‘2/[8]). Therefore, defining V7 & (V[”T, o V[S]T) we
have that

COV (V) = EV ® In

We will use the matrix 3y, to characterise the dependence structure of the eight
responses. In particular, in Section IV.4, we will use a graphical model structure by
imposing zeroes in the inverse of 3y, corresponding to assume that some pairs of the
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random variable Vi[l], L Vil are conditionally independent given the other random

variables. For improving the readability of the discussion below, when relevant, we
denote VI ... VI8 by yIMathl - yzlGeom] ;o we identify the superindices of the
individual random components with a recognisable short form of the corresponding
response.

We formulate the marginal generalised linear mixed models for the seven re-
sponses related to the admission exams by specifying the conditional expectation
of the random variable Y;U ], representing the ™! individual (t=1,...,n) in the 4t

dimension (j = 1,...,7), given (Ui{]i), V;m) for j =1,...,7, that is,
EYNUY =u, VP =v] =afpl + u+v, YuveR

In all the models above, the term =!8V (j = 1,...,7) adjusts for gender (female or
male) and age (divided into two groups:under 21 or 21 and above). The conditional
distributions are assumed to be Gaussian with identity link functions.

We formulate the discrete time frailty Cox proportional hazard model describing
the number of attempts to pass the course of geometry. According to the model,
for the student ith (i = 1,...,n), the discrete conditional hazard function given

(U, Vi) is

/\i(t|Ue[?1) =1u, v = v)

7

EP(T, =T, > t, UG =u, V;¥ =)

= N exp(zl BB exp(u) exp(v), fort =1,2,... for all u,v € R.

Here T; is the random variable representing the number of attempts to pass the
course of geometry used by the i1 individual and the term x! B adjusts for gender
(female or male) and age (divided into two groups: under 21 or 21 and above). The
model above coincides with a generalised linear mixed model defined with a binomial
distribution and a logarithmic link function, applied to a specially constructed
data representing the risk set of the related counting process. We used a Poisson
approximation for avoiding numerical issues. See Maia et al. (2014).

IV.4 Modelling the Covariance Structure of the
Random Components

We complete the specification of the multivariate generalised linear mixed model

introduced in Section IV.3 by defining the covariance structure of the random
components representing the individual’s variation. Since the random components

V;[l], ey V;[S] have the same distribution for ¢ = 1,...,n, we suppress the subindex ¢
from the notation and write VIU, ..., VI to denote Vim, e ,Vi[g} for an arbitrary
individual.

The random components VI ... VI represent the individual variation of the

abilities of each of the n students affecting the performance in the seven admission
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exams and in the course of geometry, respectively. Note that according to the model,
the covariance of the random variables Vim, cee Vi[g} is the same for all the individuals,
namely Xy, see (IV.1). Here, we will characterise this covariance structure common
to all the individuals using graphical models, which will allow us to draw general
conclusions on the interdependence between the eight responses studied. Before
pursuing this task, we give a short account of the theory of graphical models; for a
comprehensive description of this theory see Lauritzen (1996) and Whittaker (1990).
Let G = (V, &) denote a graph with a set of vertices, V, and edges, € CV x V.
Each vertex represents a random variable, and two vertices are connected with an
edge if, and only if, they are not conditionally independent given the remaining
random variables. We say that there is a path between two vertices if there exist a
sequence of pairs of vertices connected with an edge connecting the two vertices.
In the multivariate models described above, we consider a graph, G = (V,€),
with V = {VII . VEI} = {yMath] = y/[Geomd “The set of edges contains pairs
of random variables which are not conditionally independent given the remaining
random variables, and thus, they carry some information on each other that are
not contained in the other random variables in V. For example, suppose that there
is an edge between VIGeoml and VIMath associated to the individual responses re-
lated to the performance in the course of geometry and the admission exam in
mathematics, respectively. This means that after correcting for differences in age,
gender and education branch, the random variables V[Geom] and VIMath] are condition-
ally dependent given V '\ {V[Geom], V[M““h}}; therefore VIMath] carries information on

V1Geoml that is not contained in the informational contents of the random variables
V\ {V[Geom], V[Math]}. Conversely, the absence of an edge connecting two vertices
indicates that the random variables associated to those vertices are conditionally
independent given the other random variables in play; therefore, the knowledge of the
other random variables renders the two random variables in question independent.

According to the theory of graphical models, a set of vertices, say S, separates two
sets of vertices A and B in the graph, if, and only if, each path connecting an element
of A to an element of B contains at least one element of S. A key result in the theory
of graphical models is that if a set of vertices, S, separates two disjoint subsets of
vertices A and B, then all the variables in A are independent of the variables in
B given the variables in §. This result is called the separation principle or global
Markov property for undirected graphical models (Lauritzen 1996, page 32). For
example, if the random variable VIMah] geparates the random variable V1Geom! from
the other vertices, then conditioning on solely VM2t renders VIGeoml independent
of the other vertices (i.e., V'\ {V[Geom], V[Math]}).

Note that the graph G = (V, £) defined with V = {V[Mathl /[Geom]1 jpyolves
the unobservable random variables associated with the individual random components,
not the observed responses. However, it is possible to extend the separation principle
using the multivariate generalised linear mixed model’s properties to discuss the
interdependence of the observed responses. We explain this extended principle using
an example. Suppose that the random variable VIMath] separates the random variable
V1Geom] from the other vertices in V, then, according to the induced separation
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principle, each response corresponding to a vertex in V'\ {V[Geom], V[Math]} , say Y,

is independent of T; = Ti[Geom} (i.e., the number of attempts the i individual uses
to pass the course of geometry) given VIMah  Here it is required to condition on the
random variable VIM#h for obtaining independency of Y;[*] and 7;; conditioning on
the observable responses Y;[Math] does not necessarily renders the variables Y;[*] and
T; independent. See the Appendix IV.Band Pelck & Labouriau (2021b) for a general
formulation of the induced separation principle using undirected graphical models.

The graph G = (V,€) with vertices V = {VI ... VEI} was inferred using
predicted values of the random variables to infer a graphical model that minimises
the BIC. A method and implementation for minimising the BIC are described in
Abreu et al. (2010), and an inference method for predicting values of the random
components is presented in Pelck & Labouriau (2021a). Notice, that this method only
yields normally distributed predictors in cases with small variance of the random
components. However, in Labouriau (1998) it is shown that treating graphical models
involving non Gaussian random variables as being normally distributed corresponds to
using optimal inferential procedure for semiparametric models under mild regularity
conditions.

The survival model presented was controlled using the methods described in Maia
et al. (2014), Edwards et al. (2010). We found no indication of a lack of fit of the
models. The marginal Gaussian mixed models where controlled by standard residual
analyses. See Appendix [V.A.

IV.5 Results and Discussion

Figure IV.1 displays the graphs representing the estimated graphical models describ-
ing the covariance structure of the individual random components for the students
that received bonus and the students that did not. The two populations of students
presented different covariance structures which we discuss below. We stress that each
of the individuals’ random components represents latent individual abilities affecting
the performance related to the respective responses. The covariance structures de-
scribed in Figure IV.1 are obtained after adjusting for differences in age, gender and
educational branch.

In the population of students that received bonus, the random component related
to the performance in the course of geometry, V9™l is only connected to the
random component related to the result in the admission exam of mathematics,
VIMath (see the left panel in Figure IV.1 and Figure IV.4). The conditional correlation
between V1Geoml and V[IMath] j5 positive. This result suggests the existence of common
cognitive mechanisms associated with the latent abilities related to the performance
in the admission exam of mathematics and in the course of geometry. Since V/Math]
separates V1™ from the other individual random components, according to the
separation principle, VIG®™! is conditionally independent of the other individual
random components given VIM*  This conditional independence indicates that
the putative common cognitive mechanisms referred above are specific to these
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two disciplines and are not shared by the other disciplines’ abilities. Regarding the
results of the admission exams, according to the extended separation principle, the
observed performance in the course of geometry is conditionally independent of the
observed results of the admission exams given the individual random component
VIMath] “Eyom the practical point of view, this result shows that the prediction of the
random component VMath] guffices for predicting the performance of the students
that received the bonus in the course of geometry. After predicting VM2 both
the results of the other admission exams and their corresponding individual random
components become uninformative concerning the performance in the course of
geometry.

We obtain a different scenario for the population of the students that did not
receive the bonus. There, the individual random component VP!l (associated with
the performance in the admission exam of Portuguese) is the only random component
connected with the random component VIGe™l: moreover, VIFotl separates V/[Geom]
from the other individual random components (see the right panel of Figure IV.1
and Figure IV.3). Therefore, using a similar rationale as above, we conclude that for
the population of students that did not receive the bonus, the prediction of VIFort
suffices for predicting the performance of the students that received the bonus in the
course of geometry.

The variance of the predictions of VIMathl is 43% larger in the population of
students that received the bonus, as compared with the variance in the group that
did not receive the bonus. A combination of two factors might cause this difference: in
the population of students who received the bonus, there might be more considerable
variability in the quality of the high school teaching in Mathematics; furthermore, the
students with a lower level in Mathematics could enter the University by receiving
a bonus. Therefore, the mathematics skills detected in the admission exam play
an essential role in the performance in geometry among the students who received
the compensation. One might speculate whether the random component VIFortl ig
representing social-economic class which plays a key role in the performance in the
course of geometry population of students that did not receive the bonus.

There are also some similarities between the inferred covariance structures of
the two populations of students studied. For example, in both populations, the
individuals random component V[P (related to the performance in the admission
exam of biology) separates VIMathl /IPhys] apq VIChem] from VIHisl and VIGeol We
let the reader explore further aspects of the results presented here. In this paper,
we have exposed a new method based on a combination of multivariate generalised
linear mixed models and graphical models for modelling and predicting students’
performance using responses of different nature, namely, some Gaussian responses
and a discrete right-censored response. Other response types can also be modelled
by choosing different distributions and different link functions for constructing the
marginal models.
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(a) No bonus (b) Bonus

Figure IV.1: Independence graph representing the estimated graphical model describ-
ing the covariance structure of the individual random components Vim, e VZ-[S] for
an arbitrarily chosen individual (i = 1,...,n, suppressing the index 7 in the graph).
The estimated conditional correlations are reported for each edge.
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IV.A Some Model Control

We briefly discuss below the validity of the models used. The residual analyses in
the marginal Gaussian mixed models, representing the the responses related to the
seven admission exams, show that there is no indication of serious lack of fit, see
Figure IV.2.

Comparing the observed and the expected number of students that passed the
course of geometry at each time for each combination of age and gender allowed us to
conclude that there is no evidence of lack of global adjustment of the survival model.
More precisely, the predicted number of events at time ¢ (t = 1,...,7T), denoted n(t),
is calculated as the number of individuals "at risk" (the number of students that
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Figure IV.2: Normal QQ-plot of the responses related to the seven admission exams
and a scatter plot of the observed number of events versus expected number of events
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for each time and combination of age and gender.

have not passed the course yet and are still studying the course) times the average
estimated hazard at time t. More precisely,

where Ry = {i € {1,...,n} : t; >t} denote the set of all individuals at risk at time .
Here t; denotes the observed time the student passes the course or is censored, and

n(t) = |Rt| Z :\t eXP(“x’?B) eXp(ae(i)) eXP(@z‘)a

i€ Ry

10 20 30 40
Expected number of events

| R;| the number of individuals in R;. The results can be found in Figure IV.2.
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IV.B Detailed Representation of the Graphical
Models Involving the Random Components
and the Response variables

For the reader acquaint with the theory of graphical models (see Whittaker, 1990),
the extended separation principle can be formulated in general by defining an directed
acyclic graph (DAG, i.e., a graph formed by vertices and directed edges represented by
arrows obtained by eliminating the symmetry property in the set of edges £). Using
basic properties of the generalised linear mixed models of the type discussed here and
the factorisation of the joint densities of the distributions of the individual random
component, it is possible to show that the interdependence of the the observable
responses and the random components related to the individuals can be represented by
an acyclic graph, where there is an arrow from each random component pointing to the
random variables representing the corresponding observable responses. Additionally,
the graphical representation referred above contains an undirected edge connecting
the vertices that are not conditionally independent in the graph representing the
individual random components (see Pelck & Labouriau, 2021b for the detailed
construction). Noting that this acyclic graph satisfies the Wermuth condition (see
Whittaker, 1990, page 75), which implies that the moral graph obtained, in this case,
by making all the edges undirected, satisfies the separation principle (see Whittaker,
1990, theorem 3.5.2 on page 76). This construction yields the Induced separation
principle which states that "two sets of observable responses, say A and B, are
conditionally independent given a set S of individual random components, provided
S separates the sets of individual random components A and B corresponding to the
sets of observable responses A and B".
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Figure 1V.3: Independence graph (central rectangle) representing the estimated
graphical model describing the covariance structure of the individual random compo-
nents V;[l], e ‘/;[8] for an arbitrarily chosen individual (¢ = 1,...,n, suppressing the
index 7 in the graph), for the students who did not receive bonus.
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Figure 1V.4: Independence graph (central rectangle) representing the estimated
graphical model describing the covariance structure of the individual random compo-
nents V;»m, cee V;»[S] for an arbitrarily chosen individual (i = 1, ..., n, suppressing the
index 7 in the graph), for the students who received bonus.
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Paper V

A Multivariate Survival Model for
Studying Time to Emergence of Different
Species of Weed

Jeanett S. Pelck

Aarhus University

Rodrigo Labouriau
Aarhus University

Abstract. This paper presents an analysis of the times to emergence of different
species of weeds using a multivariate frailty piecewise constant Cox proportional
model. In the multivariate model, we assume a joint Gaussian distribution on
the frailty terms with expectation zero. We show how one can analyse the latent
covariance structure of the frailty terms by inferring an undirected graphical model
based on predicted values of the frailties. Moreover, we study how the dependence
structure of the frailties influences the dependency structure between the emergence
times of the several species. Furthermore, we show how we can estimate conditional
expectations of the times to emergence given that the emergence is observed during
the experiment period.

V.1 Introduction

We present a multivariate survival model for analysing the times to emergence of
different species of weed, which takes into consideration that propagules emerging
at the same physical location in the field might be correlated. This model is illus-
trated using part of a data from a field experiment performed at the Department of
Agroecology in Flakkebjerg, Denmark, obtained as a part of a project of studying
the cumulative emergence dynamics of annual weeds ( see Scherner et al. (2017) for
details).

The formulated model describes the time to emergence of each propagule known
to be present in the soil for a given species using a frailty piecewise constant
cox proportional model. A multivariate model is constructed by assuming a joint
multivariate Gaussian distribution on the frailty terms. Since we do not know the
number of propagules present in the soil, we only model the time to emergence for
each propagule in the soil given that it emerges during the observation period.

The likelihood function of the formulated model coincides with the likelihood
function of a multivariate generalised linear mixed model inferred on a specially
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constructed dataset representing a related counting process. Therefore, we can use
the methodology described in Pelck & Labouriau (2021a) and Pelck & Labouriau
(2021Db) to analyse the latent covariance structure between the random components
and how this influences the dependence structure between the responses, that is, the
times to emergence of the different species.

We infer an undirected graphical model based on predictions of the frailties
to study the covariance structure in the multivariate Gaussian distribution. This
representation can be used to study underlying unknown factors affecting the emer-
gence times for the different species, and to eliminate spurious correlation (i.e., the
correlation between two variables is only present because of the presence of a third
variable correlated with both variables). Combining the results of the undirected
graphical model (UG) with the model assumptions, we construct a combination of
an UG and a directed acyclic graph (DAG) to study how the dependence structure
among the frailties affect the responses (Whittaker (1990) and Lauritzen (1996)).

In the analysis in this paper, we focus on the analysis of the latent covariance
structure of the random components. However, we also show how we can estimate
conditional expectations of the time to emergence given that the propagule in question
emerges during the experiment period. These conditional expectations are estimated
using the inferred conditional hazard function that is estimated according to the
model.

The paper is structure as follows. In Section V.2, we give a description of the
data for which we formulate a multivariate model in Section V.3. In Section V .4,
we give a short introduction to the theory of graphical models and describe how
we can draw non-trivial conclusions using a graphical representation of the latent
covariance structure under the introduced model. We will see, that knowing the
frailties included in the marginal survival model for one of the species renders
all other responses (emergence times of the different species) independent. A more
comprehensive description of the theory of graphical models can be found in Lauritzen
(1996) and Whittaker (1990). Section V.5 presents and discusses the results of the
analysis. The appendix includes some details on the counting process representing
the survival model, the coincidence of the likelihood function with the likelihood of a
multivariate generalised linear mixed model applied to a specially constructed dataset,
some model controls and some details regarding approximation of the covariance of
the estimated conditional expectations.

V.2 Data Description

We use a partial data of the project of studying the cumulative emergence dynamics
of annual weeds Scherner et al. (2017) for illustrating how the techniques in Pelck
& Labouriau (2021a) and Pelck & Labouriau (2021b) can be applied to model
the time to emergence using a multivariate frailty cox proportional model. The
data contains counts of emergence of different weed species in the agricultural year
2015 in a cultivated field with winter wheat. We study six species of weed which
is given in Table V.1. The two species Apera spica-venti and Vulpia myuros were
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registered together and counted together as one species. This was because they had
demonstrated very similar germination in the same experimental area and because

it is difficult to differentiate them at an early stage of development (Scherner et al.
2017).

Species Short form
Apera spica-venti+ Vulpia myuros AV
Poa annua PA
Tripleurospermum maritimum ™
Veronica persica Poir. VS
Viola arvensis VA
Papaver rhoeas L. PR

Table V.1: The different species analysed.

The experimental design used was a split-plot with repetitions. The experiment
consisted of four plots, and each plot was split into three sub-plots. Three types
of tillage were randomly allocated to the three sub-plots of each plot. The three
tillage used were: direct drilling(D), mouldboard plowing(P) to 20 cm soil depth and
pre-sowing tine tillage(HW) to 8-10 cm soil depth (Scherner et al. 2017). In each
sub-plot, eight physical locations were marked using metal rings. Those locations
were kept fixed during the entire experiment and will be referred below as the rings.

The number of emerged plants of each species were registered at each of a range of
observation days, not equally spaced over the experiment’s period. After registering
all plants were removed. The observation days will be indexed as the number of days
after sowing.

V.3 Multivariate Model

We consider a multivariate model that takes into account that their might exist
some unknown factors affecting the physical locations in the field differently which
implies that counts might be correlated within the same physical location in the field.
However, we assume that counts from different locations are independent. We analyse
the data using a multivariate survival model that models the time to emergence of
each propagule known to be present in the soil. That is, we only model the propagules
that actually emerge during the observed period. At the end of the experiment only
few propagules emerged, and thus, at some observational days only few or none
species were represented (consequently not all rings were represented). Therefore, we
analyse a shorter period of time and treat these observations as right censored.

Let T; U be a random variable representing the time to emergence of the ith
propagule of the j™ species for j = 1,...,6 and i = 1,..., n;. We will use the
notation that b; € {1,...,4} denotes the block and ¢; € {1,2,3} the tillage of the
subplot that the ith propagule belongs to for each species.
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For each j = 1,...,6, we let UY) = (Ul(j) ..., USNT be a random vector corre-
sponding to the physical locations in the field affecting the jth response (¢ = 32).
We assume that Up = (Ul(l) ce Ul(6))T is multivariate Gaussian distributed with
expectation zero and covariance matrix given by 3 for [ = 1,...,q. Moreover, we
assume that Uy, ..., Ul are independent. That is, different physical locations in
the field are independent for all responses, and the covariance structure within the
same location is given by X.

We assume that Ti(j ) and Tl(,] " are conditionally independent given UY) and UU",
for j #j5 e{1...6},7 =1,...,ny and i = 1,...,n;. Moreover, we assume that

i#14 and j =1,...,d. We formulate the conditional distribution of Ti(j ) given U )
in terms of the conditional hazard function given by

7Y and TZ(,J ) are conditional independent given UV for i,4' =1, ... ,n; such that

j : e Pit<TY « t L AlUD = . TV > ¢
AU = ) g ST <tH A u, TV > 1]
A—)0+ A

where zl-(j ) is the allocation vector giving the observed location of the ith plant of
species 7, and 5\5,]2(776) denoting a piecewise constant stratified baseline function,
taking the same form for all plants in the same block that are exposed to the same
tillage for the jth species. In Appendix V.A.1, we describe how the conditional hazard
described above enters the intensity process of a counting process describing the
survival model defined in this paper. We let 0 = 70 < 11 < ... < T < 00 denote the
observation days (as the number of days after sowing) and assume that the hazard
function is constant on each interval (r;_;, 7] fori =1,... K.

The likelihood function of model defined above coincides with the likelihood
function for a generalised linear mixed model defined with a Poisson distribution and
a logarithmic link function applied to a specially constructed data representing the
risk set of the related counting process, see Appendix V.A.2 for details. The model

was inferred using the inference method described in Pelck & Labouriau (2021a).

V.4 Graphical Models

This section gives a short introduction to graphical models, for a more comprehensive
description see Whittaker (1990) and Lauritzen (1996).

We define a graph G = (V, F) as a mathematical object containing a set of vertices,
V', and a set of edges, E. The set of vertices consists of random vectors, whereas the
set of edges contains edges between the vertices indicating the dependency structure
between the vectors.

We distinguish between two types of graphs and a combination of both. In an
undirected graph (UG), two vertices are connected with an edge if, and only if, they
are not conditionally independent given the remaining vertices in V. A directed
acyclic graph (DAG) consist of directed edges with an arrow pointing to one of
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the vertices indicating which vector that carries information on the other. An edge
between two vertices might have an arrow in each end, implying that the vertices
carry information on each other corresponding to an undirected edge. A directed
edge between two vertices indicates that those two vertices are not conditional
independent given a subset of the remaining vertices containing all vectors that
carries information, directly or indirectly, on the vertices in question.

A DAG processes the same independence interpretation as there associated moral
graph. This is a graph constructed from the originally graph by connecting, with an
undirected edge, all vertices that have a directed edge towards a given vertex, and
by replacing existing directed edges by undirected edge.

We say that there is a path between two vertices, say V; and V5, if there exist a
sequence of pairs of vertices in £ such that V; and V5 belong to at least one vertex
of the sequence. According to the theory of graphical models, a set of vertices, say
S, separates two sets of vertices A and B in the graph, if, and only if, each path
connecting an element of A to an element of B contains at least one element of S. A
key result in the theory of graphical models is that if a set of vertices, S, separates
two disjoint subsets of vertices A and B, then all the variables in A are independent
of the variables in B given the variables in §. This result is called the separation
principle or global Markov property for undirected graphical models (Lauritzen 1996,
page 32). An undirected graph and moral graph satisfies the separation principle.

In Pelck & Labouriau (2021b) an extension of the separation principle is formu-
lated called the induced separation principle. It states that if we denote A’ and B’
as the sets of responses corresponding to two sets of random components, A and B,
and let S denote a set of random components that separates A and B in the graph
as described above, then A’ and B’ are conditionally independent given S.

V.5 Results and Discussion

In this section we present and discuss the results of the analysis. We will focus on
the graphical latent covariance structure but we will also estimate the expectation of
the time to emergence for each propagule. The estimated expectations of the times
to emergence of the propagules allow us to draw conclusions regarding the three
types of tillage. This differs from the analysis of the latent covariance structure which
makes it possible to examine how local characteristics represented by the observation
rings affect the times to emergence of the species differently (some species might
be more sensitive to some local characteristics than others). Model control for the
estimated models can be found in Appendix V.A.3.

The graphical model in Figure V.1 shows the estimated dependency structure
for the vectors of random components U, ..., U® and the responses T\”) for
t =1,...,n; and j = 1,...,6. The structure inside the square represents the
dependency structure between the random components (with estimated conditional
correlations given the other random components), whereas the responses are drawn
outside the square using circled vertices. In that way, we are able to study the
latent covariance structure of the random components, but also how this affects
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the dependency structure between the responses. The undirected graph inside the
square can be interpret using the theory of undirected graphical models. However, to
interpret the whole graph, we need the theory of DAGs and the induced separation
principle.

The conditional correlation between the random components representing the
species TM and PA, denoted U™ and U®)| is significant positive given the
other random components. This indicates that the intrinsic local environmental
characteristics between those species are not the same but not antagonist either. The
fact that the covariance is significant positive suggests that there are common intrinsic
environmental characteristics affecting both species. The conditional correlations
between U2 and UM as well as between UFA) and U(VS) are significant negative
given the other random components. This suggests the existence of antagonist
environmental local characteristics affecting the emergence of the two species in
question. For example, there might exist environmental characteristics that positively
affect the emergence intensity of VA but negatively affect the emergence intensity of
PA. Note that it would be expected that these antagonist effects should be contained
in the specific local environmental conditions that affect the emergence of PA but
not the emergence of TM, otherwise we would have believed that the conditional
correlation between VA and TM was significant different from zero.
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Figure V.1: The estimated graphical model in the multivariate model described in
Section V.3. The squared vertices and edges inside the rectangle show an UG for
the random components under the model. Estimated conditional correlations were
added to the edges. The round vertices represents the responses and here the induced
separation principle should be used to interpret the dependence structure.

In order to interpret the effect that the choice of tillage has on the expected times
to emergence, we calculate the conditional expectations given that the propagules
emerge before a time 7. During the inference procedure, we estimate the parameters
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entering the conditional hazard. However, using the below formulas, we are able to
estimate the conditional expectations and perform approximate asymptotic tests
comparing if two conditional expectations are significant different. Moreover, we will
be able to estimate approximate asymptotic confidence intervals.

Based on the estimated values of :\é{gl(m) (t=1,...,n;, 7 = 1,...,6, and
k=1,...,K), we estimate the following conditional expectations given that the
propagule emerges before the right censoring time 7™

k=1
T k

:Z(Tk_Tk 1 GXP{ ZTl_Tl 1 )(Tz)]
k=1 =1

where
2 (m) :/ N @|UY = w)e(u; 2551,)du
R4

Mo () [ exp(ul =) o(ws 551, du
R4
b, (11) exp(3355),

with ¢(+; X,;1,) denoting the ¢-dimensional Gaussian density with expectation zero
and covariance matrix X;;I,, where X;; is the (j, /)™ entry in X.

The estimated conditional expectations given that the propagule emerge before
day T = 61 are presented in Figure V.2. The letters in the figure indicate pairwise
comparisons using a Wald test for each comparison based on an approximated
covariance matrix for the estimated conditional expectations. This approximation is
based on a first order Taylor approximation, and is also used to calculate 95 percent
confidence intervals. The calculations of the approximated covariance matrix are
given in Appendix V.A 4.

From the estimated conditional expectations, we conclude that there is an inter-
action between the blocks and treatments implying that there are some unknown
factors affecting the emergence in the different blocks which were not accounted for
in the model. In the fourth block, we see that the expected times to emergence for

the different treatments are very close. Moreover, we observe similar patterns for the
species TM and VS.
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Figure V.2: Plot of the estimated conditional expectations of the times to emergence
for each species and each combination of block and tillage given that the time is less
or equal to the time of the end of the experiment.

Acknowledgement

The data analysed in this paper was kindly supplied by Dr. Ananda Scherner and the
associate professor Bo Melander. The experiment was performed at the Department
of Agroecology in Flakkebjerg, Denmark. The authors were partially financed by
the Applied Statistics Laboratory (aStatLab) at the Department of Mathematics,
Aarhus University.

References

Allison, P. D. (2014), Event history and survival analysis: Regression for longitudinal
event data, Vol. 46, SAGE publications.

Ebner, B. & Henze, N. (2020), ‘Tests for multivariate normality—a critical review
with emphasis on weighted [?-statistics’, 29.

104



Kalbfleisch, J. D. & Prentice, R. L. (2002), The Statistical Analysis of Failure Time
Data, second edn, Wiley series in probability and statistics, New York.

Lauritzen, S. L. (1996), Graphical models, Vol. 17, Clarendon Press.

Maia, R. P., Madsen, P. & Labouriau, R. (2014), ‘Multivariate survival mixed models
for genetic analysis of longevity traits’, Journal of Applied Statistics 41(6), 1286
1306.

Martinussen, T. & Scheike, T. H. (2006), Dynamic regression models for survival
data, Springer Science & Business Media.

Pelck, J. S. & Labouriau, R. (2021a), Conditional inference for multivariate generalised
linear mixed models. arXiv:2107.11765.

Pelck, J. S. & Labouriau, R. (2021b), Multivariate generalised linear mixed models
with graphical latent covariance structure. Submitted to arXiv.

Scherner, A., Melander, B., Jensen, P. K., Kudsk, P., Avila, L. A. & Riemens, M.
(2017), ‘Reducing tillage intensity affects the cumulative emergence dynamics of
annual grass weeds in winter cereals’, Weed Research 57(5).

Whittaker, J. (1990), Graphical models in applied multivariate analysis, Chichester
New York et al: John Wiley & Sons.

V.A Appendix

V.A.1 Survival Model Represented through a Counting
Process

Here we show how the defined conditional hazards can be viewed as intensities of a
counting process Consider a given propagule, i, of a given species, j. Recall, that
we observe Tz(] which is a non-negative random Varlable representing elther the
observed time to emergence or censoring time of the it propagule of the 5™ species.
Let D; U) be an indicator variable taking the value one if the propagule in question
emerged before the censoring tlme and zero otherwise. Define the counting process
(ND(4) . t € R}, where NP(t) = 1(TY < t, DY = 1). This process is equal
to zero until emergence of propagule ¢ of species j. If the propagule in question
was censored, the process will stay at zero. Furthermore, define the risk process
{Y(j)( t): t € R}, where the random variable Y(j)( t)y=1I(t< T(j)) takes the value
one when the propagule is at risk at time ¢, and zero otherwise. The counting process
and the at rlsk process are both adapted to the filtration {.E .t € Ry}, where
Fu J{N ( ) Y,;(J)( ): 0 <s <t} is the g-algebra representing the history of

N; 0 )( ) and Y,”)(-) for each time up to and including time ¢.
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: @) N
Let dNi(’)(t) = limayo A (HAA) N7 This s equal to one if the propagule in

question emerges right after time ¢ and zero otherwise. Conditional on the random
component U, the intensity of the counting process is given by

=YV 0N (U =),

where A7) (t{lUY) = u) is defined in (V.1). For more details see Maia et al. (2014),
Martinussen & Scheike (2006) and Allison (2014).

V.A.2 Coincidence of Likelihood Function of Survival
Model with the Likelihood Function of a
Constructed GLMM

Consider the model described in Section V.3. Let tgj ) denote the observed value of Tl-(j ),

and define for k=1,... ,K,i=1,...,n;jand j=1,...,d (d =6), Ay =7, — Ts—1

and 0;; = 1(mp—1 < tl(-j ) < 7). The contribution to the likelihood function for the

propagules emerging in the [*2 ring is formulated as

d ne)

0l7 / H H H Tk exp< ())]szk
i€T j=1 k=1
exp(—Ak)\,()iti (T%) exp(ulm))go(ul; ) duy,
where Z; denotes the set of propagules emerging in the [th ring for [ = 1,...,q,
ul = (u (1), : (d)) and 6, is the vector of parameters containing /\( ;. (1) for i € 1,
k=1,..., Z]) and j=1,...,d (see Kalbfleisch & Prentice (2002) for more details

on the likelihood functlon of the model).
The likelihood function for all the rings can then be formulated as

d tgj) ‘
L(6,.....0 H/HHH ) (1) exp(uf?) (V.2)
i€Z; =1 k=1
eXp(—Ak)\z(;Zti(Tk) exp(u? )))go(ul; 3)duy, (V.3)
which coincides with the likelihood function for é;;, (k=1,...,K,i=1,...,n; and
j=1,...,d) under the assumption of a multivariate generalised linear mixed model

with a conditional Poisson distribution with conditional expectation
]E[ ’ij| c(zg ugj() ] - Al}‘gzz(Tk> exp(ugj(z?,j)%

where ¢(i, j) denotes the ring of the it propagule of the j*™ species with c(i,j) €

{1,...,q} fori=1,...,n; and j =1,...,d. Therefore, we can perform statistical
inference for the model by constructing a pseudo data with the variables d;;;, for
k=1,...,K,i=1,...,n;and j = 1,...,d, and inferring a multivariate generalised

linear mixed models, assuming a Poisson distribution with logarithm link function
(Maia et al. (2014)).
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V.A.3 Model Control

We will check the model assumptions by examining if the number of predicted
events are consistent with the observed number of events for each species, for each
observation day and for each combination of block and tillage. Moreover, we will
check the multivariate normality assumption of the frailties.

We calculate the estimated and predicted number of events using the formulas
presented in the supplementary material to Maia et al. (2014). Let RY)(¢) denote
the set of propagules "at risk" of emerging at time ¢ for the ]th species, that is,
propagules that either emerged or were censored after time ¢. Let m;(t) = |[RY)(¢)| be
the number of elements in R (t). Moreover, let &l(,{,l denote the number of predicted
propagules of the jth species (j = 1,...,6), emerging in the pth block, exposed to

tillage ¢ at the k™™ observation day under the model. Then aé{,l is given by

O‘z(ygl)c ()| Nowk| Z )‘b(l )(l) (7k) exp(uTzl(])),

USIPN

with thk ={l:b()=0b,t() =t, 1 € RY(r)} and * denotes the estimated value.
Figure V.3 shows the predicted number of events against the observed for different
valuesof b (b=1,...,4),t (t=1,2,3),k (k=1,...,K)and j (j=1,...,6). We
see that the number of predicted events and the number of observed events are very
close but not equal. Therefore we found no evidence against this model.

We tested the multivariate Gaussian assumption of the predicted values of the
frailties. First we considered marginal QQ-plots and used Shapiro-Wilk’s test to test
for deviations from marginal normality. We found no evidence against marginal nor-
mality. Moreover we used the Henze-Jimenes-Gamero-Meintanis test of multivariate
normality suggested in Ebner & Henze (2020) which do not lead to any evidence
against the multivariate normality.
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Figure V.3: The predicted number of events under the estimated model against the

observed.

V.A.4 Covariance of Conditional Expectations

Here, we will show how we can approximate the covariance matrix of the calcu-

lated conditional expectations in Section V.5. Let )\b = (/\b 4 (1), -

denote the estimated values of Ay 4 = ()\b 4 (1), -
conditional expectation by

h(Abt)é

Mﬂ

ﬁ)

T < 717

£
Il

1

k
(Th — Th—1 eXp[ ZTl_Tl 1
=1

)\b tz(TT»T

- Ap,e, (77))T. Define the estimated

2~

bit; (1) exp(%Ejj)}.

We will consider a first order Taylor approximation of h around Ay,:

with

h(xbiti) ~ h(xbzt) + Vh(Ab t; ) (

Vh(j‘bztz) =
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2 S 2 S T
where A], = ((7'1 — 70)Aoit; (T1)s (T2 = T1) Apt, (T2)s « oy (70 — Tr—1) Aot (TT)> . Then

we can approximate the covariance by
Cov (IE[TZ@EU) < T, RITO|TY < T])
~ ( )\bt >\bt S\b-t-), Vh(j\b tm)T<§\bmtm - 5\bmtm)>
5

- Vh( b; tz) COV(Ab ti» Abmtm)vh(Ab tz)
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Abstract. This article is a case study illustrating the use of a multivariate statistical
method for screening potential chemical markers for early detection of post-harvest
disease in storage fruit. We simultaneously measure a range of volatile organic
compounds (VOCs) and two measures of severity of disease infection in apples
under storage: the number of apples presenting visible symptoms and the lesion
area. We use multivariate generalised linear mixed models (MGLMM) for studying
association patterns of those simultaneously observed responses via the covariance
structure of random components. Remarkably, those MGLMMs can be used to
represent patterns of association between quantities of different statistical nature.
In the particular example considered in this paper, there are positive responses
(concentrations of VOC, Gamma distribution based models), positive responses
possibly containing observations with zero values (lesion area, Compound Poisson
distribution based models) and binomially distributed responses (proportion of apples
presenting infection symptoms). We represent patterns of association inferred with
the MGLMMs using graphical models (a network represented by a graph), which
allow us to eliminate spurious associations due to a cascade of indirect correlations
between the responses.
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VI.1 Introduction

Rubbery rot is a post-harvest disease in apples caused by the fungus Phacidiopycnis
washingtonensis, leading to significant storage losses in commercial production (Ali
et al. 2018). Therefore, it is interesting to find predictors of rubbery rots onset at
early stages of the infection development under fruit storage. To this purpose, a com-
prehensive study involving the emission of a range of specially chosen volatile organic
compounds (VOCs) under apple storage conditions was performed by Holthusen
et al. (2021a). In this study, experimentally induced rubbery rots infections were
monitored and contrasted with the concentration of 14 VOCs along the development
of the disease, aiming to find chemical predictors for rubbery rot. This article exposes
details of some non-standard statistical tools used in Holthusen et al. (2021a).

The experiment we will model can be shortly described in the following way.
Ten glass jars (below referred as glasses), containing nine inoculated apples were
observed at three fixed observation times (6, 12 and 18 weeks post-inoculation). The
following quantities were determined at each observation time: the number of apples
presenting visible symptoms, the area of lesions caused by the fungal infection, and
the air concentration of 14 VOCs. The details of the experiment setup and the choice
of the VOCs are exposed in Holthusen et al. (2021a), see also Holthusen et al. (2021b)
and Holthusen & Weber (2021).

The proper statistical modelling of the complex of experiments referred to above
presents several challenges. Indeed, the simultaneously observed responses are of
different statistical nature. For example, while the number of apples showing vis-
ible symptoms (used to monitor the disease development) is naturally binomially
distributed, the VOC concentrations follow continuous positive non-Gaussian distri-
butions with high skewness. Furthermore, the area of lesions (characterising disease
severity) presents many zero values (absence of infection) but otherwise follows a
continuously skewed distributed and therefore is not adequately described by purely
continuous distributions. Thus, the first challenge we encountered was to develop
methods for establishing associations between these responses of different nature.
We propose to solve this problem by using suitably constructed multivariate gen-
eralised linear mixed models (MGLMMs) simultaneously describing the responses
referred to above. In this way, we will model the concentrations of the VOCs using
Gamma distributions, representing positive valued responses with different degrees
of skewness. Moreover, the lesion area will be modelled using Gamma compound
Poisson distributions with positive mass at zero and otherwise continuous with
variable degrees of skewness. All these families of distributions are particular cases
of dispersion models, which are the families of distributions that form the basis of
generalised linear mixed models (GLMMs).

The MGLMM we propose to use is composed of marginal GLMMs describing each
of the responses studied. Each of those GLMMs will contain a random component
representing the basic experimental unit (the glass), which we use to model the
covariance structure of the different responses. We use the tools of graphical models
to describe this covariance structure in a suitable compact form, which will allow
us to draw valid general conclusions on the association between the responses, even
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though they are of different statistical nature. For instance, we will eliminate spurious
correlations between the responses, i.e., correlations between two responses that
can be explained by a cascade of correlations between those responses and the
other responses in play. In this way, we will identify a minimal group of VOCs
sufficient to predict the rubbery rots onset, avoiding redundancy and the pitfalls of
multicollinearity:.

The MGLMMs we construct allow for incorporating corrections for determining
factors know to have a strong influence in the responses (e.g., the observation week)
and temporal correlation due to repeated observations at the same experimental
unit.

This paper is structure as follow. Section VI.2 introduces the marginal GLMMs
for each of the responses considered. Those models are used to construct a MGLMM
in Section VI.3. The details of the construction are given in Section VI.3.1, and the
graphical model representing the covariance structure of the random components is
discussed in section VI.3.2. Section VI.4 briefly discusses the results obtained.

V1.2 Models for Several Responses with Different
Nature

We introduce below a range of GLMMs describing each of the observed responses.
Those models contain a random component representing the glass (which is viewed
as the basic experimental unit) and a fixed effect representing the observation time
(week). We used a GLMM defined with the binomial distribution and logistic link
function for describing the number of apples presenting visible symptoms. The con-
centrations of VOCs were modelled using GLMMs defined with a Gamma distribution
and the logarithmic link function. Finally, we used a GLMM defined with the family
of Gamma compound Poisson distributions and a logarithmic link to describe the
lesion area. We give the full details of those models below using a notation suitable
for defining the multivariate model for simultaneously describing the 16 responses in

play.

VI.2.1 Concentrations of Volatiles Organic Compounds -
Positive Responses

We describe below the GLMM used for modelling the concentration of each of the 14
VOCs. We label those VOCs by the index j (j = 1,...,14), which is kept fixed along
this section (referring to a choice of one of the VOCs). Denote by Xt[g]
variable representing the concentration of the value of the jth VOC measured at the
th week (t =6,12,18) in the g™ glass (9 =1,...,10). According the GLMM we
are defining, there exist 10 unobservable random variables, denoted by Ul[j ], ceey Ul%],
such that for t = 6,12,18 and g = 1, ..., 10 the response Xt[g] is conditional Gamma

the random
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distributed given U, g[j] with conditional expectation given by
log(EXZNUV = u)) = 67 +u  for all u € R.

Moreover, according to the GLMM the responses, ngt'] fort = 6,12,18 and g =

1,...,10, are conditionally independent given Ul[j }, ce 1[%] The specification of the

GLMM is completed by stating that Ul[j ], ey 1[{)] are independent and identically
normally distributed with expectation 0. Here 06[;]],49;]2} and ngsl are fixed effects
describing the variation of the concentration of the jth VOC at different observation

times.

VI1.2.2 Number of apples Presenting Symptoms - Binomial
Counts

Let Y}, be a random variable representing the number of apples presenting symptoms
in the ¢t glass (g =1,...,10), at the at the th week (t = 6,12,18) out of the nine
apples contained in each glass. We assume that there exist 10 unobservable random
variables, denoted by Vi, ..., Vig such that, for ¢ =6,12,18 and g = 1,...,10, Y}, is
conditionally binomially distributed given V, with size 9 and conditional expectation
given by

logit(E[Yy|V, =v]) = +v  forall v € R.

According to the model the responses, Yy for ¢ = 6,12,18 and g = 1,...,10, are
conditionally independent given Vi,...,Vig. Moreover, the random components
Vi,..., Vip are assumed to be independent and identically normally distributed with
expectation zero.

VI.2.3 Lesion Area of Infection - Positive Responses with
Zero Values

Denote by Z;, the random variable describing the observed lesion area in the gth
glass (g = 1,...,10), at the ¢™ week (t = 6,12,18). We assume that there exist
10 independent and normally distributed random variables with expectation zero,
denoted by Wy, ..., Wig, such that, fort = 6,12,18 and g = 1, .. ., 10, the response Z;,
is distributed according to a Gamma-compound Poisson distribution with conditional
expectation given by

log(E[Ziy|Wy = w]) = B +w, forall weR.

Note that the Gamma-compound Poisson family of distributions is an exponential
dispersion model (see Jgrgensen,1987); therefore, the model we are defining is a
genuine GLMM. Furthermore, the distributions in the Gamma-compound Poisson
family have the peculiarity of attributing positive probability to the value zero
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and otherwise being a continuous distribution taking positive values, making them
suitable for describing the lesion area.

The Gamma-compound Poisson family has been known for a long time (see
Tweedie, 1984; Jorgensen,1987, and Cordeiro et al.,2021), however, these distributions
are not routinely used in applications of generalised linear models (or GLMMs).
Therefore, we shortly describe the inference procedure we used (for a detailed study
see Labouriau, 2021). The Gamma-compound Poisson family is characterised by
having a power variance function (i.e., a function expressing the variance as a function
of the expectation) of the form V(u) = ku? for p in the open interval (1,2) (see
Cordeiro et al.,2021), where different power indices p yield different Gamma-compound
Poisson families. The probability of observing a zero value can be calculated as
a function of the power index p and the expectation (see Jorgensen,1987). In the
analysis described above, we calculated the probability of each observation taking
the value zero using a grid of values of the power index p. We estimated the expected
number of zeroes for each observation week by summing the probability of observing
a zero for each observation made in this week. This process was repeated for each
value of the power index p in a grid of possible values. We used in the analysis
the value of the power index p that minimised the Euclidean distance between the
vector containing the observed proportions of zeroes for each week and the vector of
expected number of zeroes for each week.

VI.3 Multivariate Simultaneous Models for

Responses of Different Statistical Nature

VI.3.1 A Multivariate Construction

We use now the marginal GLMMs described above to formulate a MGLMM that
simultaneously describe the 16 responses observed in this experiment. The idea
explored here is to combine the marginal models into a MGLMM by constructing a
16-dimensional multivariate Gaussian random component (corresponding to the 16
responses) for each glass. More precisely, define, for ¢ =1, ..., 10,

B, = (U}, UM v, W)

According to the MGLMM we define here, the random components By, ..., By are
independent and multivariate normally distributed with distribution given by

B, ~ N (0,%), forg=1,...,10.

Moreover, we assume that the multivariate vectors of responses, (Xt[;], X
Yig, Ziy), for t = 6,12,18 and g = 1,...,10, are conditionally independent given
the random components By, ..., Bjg. Moreover, according to the MGLMM, for
t =6,12,18 and g = 1,..., 10, the vector of responses (Xt[;}, X[ Yig, Zig) is

tg >
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conditionally distributed given B, as specified below

X};}\Ugm =u; ~ Ga (exp {GP] + ul} ,)\1) ,Vu, € R

Xt[;4]|Ug[14} = uyy ~ Ga (exp {9?4] + u14} , )\14) , Vus €R (VL1)
Y|V, = v ~ Bi (9,10git_1 {a + v}) , Vv eR
Zig|Wy = w ~ ComPo (exp {5 + w}, \z), Vw € R.

Here the notation X ~ Ga (u, A\) and Z ~ ComPo (p, \) indicates that X and Z are
distributed according to the Gamma and Gamma-compound Poisson distributions
with mean p and dispersion parameter A, respectively. Y ~ Bi (n,p) denotes that Y
is binomially distributed with size n and probability parameter p.

VI1.3.2 The Covariance Structure of the Random
Components

The covariance structure of the random components (given by the covariance matrix
3}) will be characterised using the tools of graphical models. Before embracing this
task, we give a short account of the basic theory of graphical models required for the
exposition (see Whittaker, 1990 and Lauritzen, 1996 for details).

Let G = (V, E) denote an undirected graph with vertices composed of random
variables. A pair of vertices belong to the set of edges & C V x V if, and only if, the
corresponding variables are conditionally dependent given the remaining variables in
the set of vertices V. Usually, we represent the graph G = (V, E') by a set of points
in the plane corresponding to the vertices in V; an edge connecting two vertices
is represented by a line connecting the two points corresponding to the vertices.
The following basic definitions of graph theory will be necessary to characterise
the covariance structure of the MGLMM we work with. We say that there is a
path connecting two vertices, say v; and v, if there exists a sequence of vertices
v1, ..., such that, for i = 1,...,n — 1, the pair (v;,v;41) is in €. A set of vertices
S, separates two disjoint sets of vertices A and B in the graph G = (V, E) when
every path connecting a vertex in A to a vertex in B necessarily contains a vertex in
S. According to the theory of graphical models (see Lauritzen, 1996 and Perl, 2009),
the graph defined above satisfies the separation principle, which states that if a set of
vertices 5, separates two disjoint subsets of vertices A and B in the graph G = (V, F),
then all variables in A are independent of all variables in B given S. Moreover, if
the subsets A and B are isolated (i.e., , there are no paths connecting a vertex in A
to a vertex in B), then the variables in A are independent of the variables in B.

We characterise the covariance structure of the MGLMM defined in Section VI.3.1
by defining a graphical model constructed with its random components. In this way,
for each g in {1,...,10}, we might construct the graph G, = (V,,&,) with the set
of vertices V, = { U, £E1]’ LU £E14], V,, W, } using the conventions defined above. Since
the random vectors, (UM, ..., UMV, W) for g =1,...,10, are per construction
independent and identically distributed, the graphs G, ... Gy are identical; therefore,
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we suppress the subindex ¢ in the discussion below and use the notation G = (V, F)
to refer to a generic graph representing the (common) covariance structure of the
random components.

Suppose that the multivariate random components of the MGLMM have a covari-
ance structure encoded by the graph G = (V| E). This covariance structure allows
us to draw conclusions on the dependence of the unobservable random components,
which is not our primary interest. In order to extend those conclusions to the ob-
served responses, we should use the induced separation principle, defined in Pelck &
Labouriau (2021b), which states that if two disjoint sets of random components, for
example A = {UP ... UM} and B = {V, W}, are conditional independent given a
separating set of random components S = {U!1, ... UM}, then the corresponding
set of conditional responses A = {X P . XU} and B = {Y, Z} are conditional
independent given the set of random components S. This result implies that the
knowledge of the random components in S renders the VOC’s in A uninforma-
tive with respect to the lesion area and the proportion of apples presenting visible
symptoms.

In the analysis of the experiment described above, we adjusted the GLMMs
introduced in Section VI.2 using the Laplace approximation method proposed by
Breslow and Clayton (1993). We modelled the predicted values of the random
components of those models by finding the graph which minimises the BIC (Bayesian
Information Criterion) as exposed in Abreu et al. (2010) (see also Edwards et al.,
2010).

V1.4 Results

We give below a brief description of the results obtained, see Holthusen et al. (2021a)
for a full discussion. Figure V1.1 displays the representation of the estimated graph
describing the covariance structure of the random components of the MGLMM we
adjusted. It is remarkable that a group of only four random components related to
VOCs (composed by anisole, 3-pentanone, 2-methyl-1-propanol and 2-phenylethanol)
separates the random components associated to the two infection responses (i.e., ,
the infection proportion and the lesion area) from the random components connected
with the other VOCs. Therefore, by the extended separation principle, the knowledge
of the random components corresponding to the concentration of anisole, 3-pentanone,
2-methyl-1-propanol and 2-phenylethanol renders the concentrations of the other
VOCs independent of the infection proportion and the lesion area.

We verified the adequacy of the MGLMM described in the following way. First,
we checked the marginal GLMMs by plotting the Pearson residuals against the
fitted values (not shown). No anomalies were encountered. Moreover, we applied the
cumulative distribution function of the putative distribution to each observation (with
the estimated mean and dispersion) and verified whether the resulted transformed
observations adhered to the uniform distribution in the interval between 0 and 1.
All the p-values found were larger than 0.10.
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Figure VI.1: Graphical model representing the covariance structure of the random
components related to the 14 VOCs, the lesion area and the proportion of infection.
The vertices related to the infection responses (lesion area and proportion of infection)
are represented as black circles. The vertices directly connected to the infection
responses (depicted as grey circles) separate the vertices related to the infection
responses from the vertices related to the other VOCs (represented as write circles).
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