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Summary

In this dissertation, we deal with modeling of data from Photoactivated Localization
Microscopy (PALM), and in particular the various imaging artifacts that affect it. Of
these, the multiple blinking problem is of principal interest, and is the focal point of
papers A and B. Paper C is an applied study of protein clustering and interactions, and
modeling of imaging artifacts here takes a back seat to more biologically motivated
analyses.

More specifically, Paper A is concerned with modeling and estimation of image
artifacts in PALM, taking an approach based on point process theory. The method-
ological development here has been guided by a strong desire to obtain methods
that can be used without a need for calibration data, which is typically required by
competing methods. As a way to realize this, we develop the Independent Blinking
Cluster point process (IBCpp) family of models intended for Single-Molecule Local-
ization Microscopy (SMLM) modalities, and importantly the PALM-IBCpp for PALM
data. We present a useful result on the mark correlation function for IBCpp models,
and use it as a basis for an estimation scheme that can be used without assumptions
on the distribution of proteins. We validate our methods on nuclear pore complex
reference data, and we can show a close correspondence between expectations and
model predictions. We also develop a test for complete spatial randomness (CSR) that
is corrected for blinking biases, and illustrate its use on a real PALM recording of the
protein Linker for Activation of T cells (LAT).

As a natural extension of this work, Paper B goes a step further, and attempts
to clean PALM images of the artifacts. We achieve this by combining the estimated
artifact parameters, obtained via Paper A, with a Bayesian model for the full spatio
temporal data. On the basis of this model and the parameters, we generate various
proposals for cleaned images, and pick the proposal with the largest posterior proba-
bility. We demonstrate this method on simulated data, and compare it with a state of
the art, threshold-based method, where we show superior results, as measured on
counting error, Wasserstein distance, and Ripley’s L-function. We show that PALM
images can be sufficiently cleaned up to allow for CSR testing at the correct level.

Finally, in Paper C, we imaged renal epithelial cells expressing the water channel
protein Aquaporin-2 (AQP2), and the cytoskeletal protein F-Actin (ACT). Using
3D PALM, we could uncovered the organization of AQP2 into vesicular structures,
and ACT into a fibrous layer. We extracted and modeled the vesicles, and tested for
significant interactions with ACT for wildtype AQP2. Similar analyzes were carried
out for cells expressing phosphorylation mutants of AQP2, and we could demonstrate
differences in vesicle sizes and strength of ACT association.






Resumeé

Denne afhandling omhandler modellering af data fra Photoactivated Localization
Microscopy (PALM), og neermere bestemt de billedartefakter, som pavirker denne
form for mikroskopi. Af disse har multiple blinking problemet den sterste interesse,
og er i fokus i artiklerne A og B. Artikel C er et anvendt studie af sammenklumpning
af, og interaktioner mellem, proteiner. Modellering af billedartefakter spiller saledes
en birolle her ift. mere biologisk motiverede analyser.

Mere specifikt underseges der i artikel A, hvordan billedartefakter kan modelle-
res og estimeres, med teoretisk udgangspunkt i punktprocesser. Den metodologiske
udvikling er her pavirket af et enske om metoder, som kan benyttes uden kalibrerings-
data, som typisk forlanges af konkurrerende metoder. For at opna dette udvikler vi
en familie af punktprocesser, Independent Blinking Cluster point processes (IBCpp),
tilteenkt modellering af data fra Single-Molecule Localization Microscopy (SMLM),
og seerligt udvikles PALM-IBCpp modellen til PALM data. Vi preesenterer et nyt-
tigt resultat om den markerede korrelationsfunktion, som danner baggrund for en
estimationsmetode, hvor igen antagelser om den rumlige fordeling af proteiner er
neodvendig. Vi validerer vores metoder pé referencedata af nukleare porekomplekser,
og vi kan herigennem demonstrere en tet samhorighed mellem forventninger og
modellens forskrivelser. Vi udvikler et test for complete spatial randomness (CSR),
der er korrigeret for bias fra artefakter, og illustrerer brugen pa en PALM optagelse
af proteinet Linker for Activation of T cells (LAT).

Som en naturlig videreforelse af dette projekt gar vi i artikel B skridtet videre,
og forseger helt at fjerne billedartefakterne. Vi kombinerer estimerede artefaktpa-
rametre, opndet gennem artikel A, med en Bayesiansk model for det observerede
rumtidsdata. Med det udgangspunkt betragter vi adskillelige forslag til rengjorte
billeder, og vi veelger imellem dem pa baggrund af deres posterior sandsynlighed. Vi
demonstrerer denne fremgangsmade pa simulerede data, hvor vi ogsa sammenligner
resultater med en etableret, teerskelbaseret metode. Vi kan derved vise, at vores me-
tode har bedre ydeevne malt pa taellefejl, Wasserstein-afstand og Ripleys L-funktion.
Vi viser ogsa, at PALM-billeder kan rengeres i en sadan grad, at et test for CSR kan
foretages pa det korrekte niveau.

Afslutningsvist tager vi i artikel C udgangspunkt i epithelceller i nyrevaev. Disse
celler udtrykker proteinet Aquaporin-2(AQP2), der fungerer som vandkanal i cel-
lemembranen, og proteinet F-Actin (ACT), som giver struktur til cytoskelettet. Ved
brug af 3D PALM kan vi afdakke, at AQP2 og ACT organiserer sig i hhv. vesikuleere
strukture og et lag bestaende af fibre. Vi segmenterer og modellerer vesiklerne, og te-
ster for signifikante interaktioner med ACT-laget. Analyserne gentages for muterede
celler med forandret fosforyleringstilstand, og vi kunne herved demonstrere, at der
er forskelle i vesikelstorrelse og interaktionsgraden med ACT.

vii






Introduction to papers A and B

This chapter serves as an introduction to the background and main results of papers
A and B, which are closely related. In particular, we go over conventional fluorescence
microscopy and PALM, the imaging artifacts inherent to PALM, and commonly em-
ployed correction methodologies. In this light, the main results and new correction
ideas of papers A and B are then presented.

We assume the reader is familiar with point process theory, including moment
measures and the mark- and pair correlation functions. A quick rundown of these
concepts can be found in Section A.2.1 of paper A, which also provides references to
a more formal treatment.

1 Fluorescence microscopy

As a starting point towards an understanding of imaging artifacts in Photoactivated
Localization Microscopy (PALM) [5], it is necessary to first understand the basics of
fluorescence microscopy (FM), a generic term that covers a large number of techniques.
What all FM modalities have in common is the use of fluorescent emissions from target
structures, which can then be captured and observed by a camera. These fluorescent
targets are referred to as fluorophores, and FM methods differ primarily in their choice
of fluorophore, and the implementation modifications necessary to accommodate
this choice. For this work we are interested in FM for its ability to image proteins,
and in this context we can separate FM modalities into two broad categories. Single-
Molecule Localization Microscopy (SMLM) [17] methods are capable of uncovering
the positions of individual proteins, whereas Conventional Fluorescence Microscopy
(CFM) methods can at best hope to recover a density map of protein positions [32].

Although PALM, which is an SMLM modality, is the main interest of our work, it
is instructive to first consider CFM, which has all the same building blocks as SMLM.
Fundamentally, CFM is a selectively magnifying device that zooms in on fluorescent
emissions of a desired wavelength. In particular, for the imaging of proteins, it is
necessary that the target protein is able to fluoresce, which can be accomplished in
several ways. Notably, the protein can be genetically engineered into a fluorescent
protein (FP), a mutant of the original protein carrying a fluorescent label [6]. Al-
ternatively, antigen proteins can be tagged with fluorophore-carrying antibodies, a
technique referred to as immunofluorescence [38]. Whichever method is used, the
sample of proteins is made fluorescent, and imaging can proceed. Very briefly, the
fluorophores are illuminated with an excitation laser, and begin to fluoresce. Owing to
the Stokes shift, the emitted light will differ in wavelength from that of the excitation
light, and the excitation light can thus be filtered out using a spectral filter, leaving
only the signal of interest, which is ultimately digitized by a camera.
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Figure 1: PA-FP switch states according to a Markov process. The inactivated I state corresponds to a PA-FP
that has not yet switched to its activated form. After this initial switch, the PA-FP will emit fluorescence
while in the F state. The D state is a temporary nonfluorescent state, and B is the absorbing, permanently
nonfluorescent state, corresponding to a photobleaching event.

As mentioned, the shortcoming of CFM is its inability to uncover individual
proteins. Owing to the diffraction of light, photons emitted from an FP will appear
as a blurry spot on the camera, with a shape described by the point spread function
(PSF). Mathematically, the observed signal can then be thought of as the convolution

I =P+PSF, (1.1)

where I is the observed image, and P is the sample of proteins. Because of this,
fluorophores become increasingly difficult to tell apart as their spatial separation is
decreased. In fact, for distances smaller than the full width at half maximum (FWHM)
of the PSF, the fluorophores become entirely indistinguishable [31, p. 1090]. The
FWHM is given as approximately
A

d=~ INA’ (1.2)
where 1 is the wavelength, and NA is the numerical aperture of the microscope lens.
This smallest resolvable distance is sometimes called the Abbe diffraction limit, in
honor of German physicist Ernst Abbe who discovered it in 1873. Achievable values
of d are bounded in practice by microscope construction limits and the cytotoxicity
associated with low wavelengths - a realistic best case value is around d ~ 180nm
[21]. Unfortunately, in the study of protein interactions, relevant distances may
be measured in just a few nanometers, and the resolution of CFM is then clearly
insufficient.

1.1 Photoactivated Localization Microscopy

The principal observation allowing PALM to circumvent the diffraction limit, is that
isolated fluorescent proteins can be localized with high precision. Problems only
occur when several fluorophores are observed simultaneously in close proximity; in
fact, the uncertainty (standard deviation) about the location of a single FP can be
approximated by the expression

o~ JBSE (1.3)

VN

where opgp is the ”size” of the PSF, and N is the number of photons emitted during
the experiment [14]. For instance, in a standard case where the PSF is modeled with
an isotropic Gaussian function, opgp is the standard deviation of this Gaussian [9]. In
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Figure 2: Imaging a biological sample with conventional fluorescence microscopy produces a diffraction-
limited image, whereas PALM results in a list of coordinates by a series of localization steps. This is made
possible by the sequential activation and bleaching of PA-FPs, the fluorophore type used in PALM.

principle there is therefore nothing stopping us from obtaining arbitrarily accurate
measurements of isolated FPs, assuming they are sufficiently bright.

To exploit this fact, PALM uses a particular class of FPs, namely the photoactivate-
able fluorescent proteins (PA-FP) [6]. These fluorophores operate slightly differently
from regular FPs, in that they can exist in an activated and an inactivated form. When
illuminated with a light of the correct wavelength (the activation laser) they will enter
the activated form after a stochastic waiting time, and only from the activated form
can they then fluoresce upon illumination with an excitation laser. The important
part is that the excitation and activation lasers use different frequencies, and can
consequently be operated at different intensities. To understand why this is useful, we
need a slightly more detailed understanding of the PA-FPs used in PALM. Each PA-FP
in a given sample is believed to operate independently and identically according to a
Markov process [12, 29,7, 18, 10, 35], see Figure 1. The inactivated form corresponds
to the state I, and I is always the initial state. After activation, the PA-FP will fluoresce
in the F state, from which it will cycle to and from the nonfluorescent D state a num-
ber of times (commonly referred to as blinking), before permanently photobleaching
in the nonfluorescent B state. This 4 state model is the most commonly used, as it is
a parsimonious choice that has been found to work well in practice [10], but more
complex descriptions have also been investigated [25, 35, 15].

The rate out of I, rg, depends on the intensity of the activation laser, whereas
the remaining rates depend on the excitation laser. For intensities used in practice,
the mean activation time can be several minutes, whereas the lifetime (time from
activation to absorption in B) is measured in seconds. This means that the fluorescent
signal coming from different PA-FP will tend to occur in disjoint windows of time.
In particular, even if two PA-FP are closer than the diffraction limit, they can still be
distinguished so long as their fluorescent signals are observed separately. To make use
of this, PALM records both the spatial and temporal coordinates of fluorescent signals.
The entire experiment is recorded by a camera, resulting in a stack of sequential
camera frames, each containing the fluorescent signals of a specific time interval.
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Figure 3: Under an idealized camera, we see each camera frame that overlaps with a visit to the F state.
The continuous signal S(t) is shown in black, and the discretized timepoints in S(kA) are in red. In this
example, the total fluorescent signal would give rise to 6 appearances of the protein, observed at timepoints
(1A,2A,5A,6A,7A,8A).

Each frame can then be searched for spots of activity, corresponding to the locations
of PA-FPs active at that time, and the spot center coordinates are estimated [34], see
Figure 2. In this way, PALM ultimately results in a list of coordinates, resolved with a
mean uncertainty in the 10-30nm range [36].

2 Imaging artifacts in PALM

Although PALM is capable of localizing proteins individually, interpretation of the
final image is hindered by imaging artifacts. This is in part due to the discretization
of the fluorescent signal on camera frames, in part due to the temporary dark state D,
and in part due to background noise coming from non-protein sources.

The most problematic imaging artifact is the multiple blinking (or multiple ap-
pearances) problem [10, 2], which is multiple inclusions of the same protein. The
reason this occurs is easy to realize in light of the switching model of Figure 1, com-
bined with a discretization of the temporal dimension. Consider the fluorescent signal
coming from a single PA-FP, and make the indicator process

1 if the PA-FP is in state F at time ¢
S(t) = (2.1)

0 otherwise.

Now, assume the camera operates at a framerate of A~'hz, so that the length of a
single frame is A seconds, and the observable timepoints are then on the form kA for
some integer k. The camera in PALM sums the photons on each camera frame when
forming an image. Thus, if the camera had perfect sensitivity, such that any non-zero
amount of fluorescence could be observed, we would model the activity at timepoint
kA with the expression

Ak
S(kA) = ]1(%]([ S(t)dt), (2.2)

A(k-1)

such that S(kA) = 1 corresponds to an observable signal [25]. Depending on the
framerate, number of visits to the F state, and the length of each stay in F, there
could be several k for which S(kA) = 1, see Figure 3. The trouble with these multiple
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appearances is that they they can be both spatially and temporally separated by a
significant distance, and it then becomes highly nontrivial to attribute them all to the
same PA-FP, as there can be nearby signal from several other PA-FP.

In addition to the multiple appearances, it can happen that random bursts of
light will find their way into the recording. There are a large number of possible
sources of such background noise, and it is not possible to discriminate PA-FPs from
background with complete certainty. The amalgamation of all background sources
can often be approximated with a Poisson process of random points in the image [27].

3 Correction methods

Localizations that were generated from the same PA-FP will form clusters in space
and time, so it is no surprise that most correction methods for multiple blinking
artifacts are based on clustering techniques. Most commonly, points are grouped by
thresholding of pairwise distances [4], a technique that is built in to most localization
software [23]. The general idea is to group points that can be connected by a series of
steps no larger than the thresholds. Each group is then merged down to its estimated
center, and the uncertainty of the center is computed on the basis of the uncertainty
of each localization in the group.

The problem with all such correction methods is that they rely on hyperparame-
ters. For the dense samples encountered in practice, the correct choice of hyperpa-
rameters is far from obvious, while the wrong choice will bias subsequent analysis
[3]. Optimal hyperparameters would have to account for the blinking rates of the
PA-FP being imaged, which are apriori unknown. Although blinking artifacts have
the potential to seriously bias studies on proteins, correction details are often absent
or poorly justified in SMLM studies [11, 26, 20].

One way to make a well-founded choice of correction method is through calibra-
tion data. Calibration data consists of specially procured samples of PA-FP, sparsely
and randomly positioned on a large surface. In this way, clustered spots can be as-
sumed to be the multiple appearances of a single protein. The blinking dynamics
can then be extracted from the segmented clusters - this can be done simply by
exponential curve fitting [19, 10], but more complex description of photoblinking
have also been modeled using Hidden Markov Models [25]. Once the blinking rates
are known, hyperparameters for correction algorithms can be rigorously chosen; an
optimal thresholding method was determined this way in [18].

Although calibration data simplifies statistical analysis greatly, it has two serious
drawbacks. First, the preparation and analysis of calibration data is a time and re-
source drain, especially for experiments involving several conditions. More critically,
blinking dynamics are known to depend on both the chosen PA-FP and the experi-
mental conditions [24, 35]. As such, it is unclear whether parameters obtained from
a calibration sample are truly transferable to the dataset of interest.

3.1 Corrections tied to specific analyses

Rather than attempt to clean the entire image of artifacts, it may be easier to correct
only those analyses that are of interest. For instance, protein clustering is often
investigated by means of Ripley’s K-function [28], so a blinking-corrected K-function
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Figure 4: The PC-PALM method takes the observed localizations (left) and splits the observed pair
correlation function into contributions from proteins and blinking clusters (right).

is sufficient if no other analyses are desired. Similarly, if counting of proteins is of
interest, it is sufficient to know the mean number of appearances per PA-FP [15].
Correcting for blinking in a particular analysis is done by explicitly modeling both
proteins and their multiple appearances. Perhaps the most well-known such approach
is ”PC-PALM”, which models the pair correlation function [33, 37]. Under a simple
model for the blinking clusters and a Gaussian PSF, and assuming no background
noise, the pair correlation function in PALM is shown to split into a blinking and a

protein term

1 _ eyl
e s + (gjprotein * PSF)(x, }/); (3.1)

globs(xfy) = 47'((72p

where g is the observed pair correlation function, 8protein 18 the pair correlation
function of the true protein coordinates, * indicates convolution, ¢ is the (assumed
known and constant) localization uncertainty, and p is a parameter. To use this
method, gprotein is parameterized by an assumed model for the proteins, and a mini-
mum contrast procedure [22] is used for fitting parameters, see Figure 4. The authors
of [33] suggest an exponential term for the proteins, so that

_lx=2ll
gg)roteins(xfy) =Ae" B +1, (3.2)

where A and B are parameters that need to be fit. This choice is of course most natural
for modeling of clustered conditions, but it also allows for Poisson proteins as an edge
case (A = 0). In addition to parameters governing the organization of proteins, the
estimated p can be used to estimate the number of appearances per protein (under
additional modeling assumptions). The PC-PALM method is placed into a larger
framework in [1], where a general class of doubly-clustered point process models
are constructed, motivated by the hierarchy of real and artificial clusters inherent to
PALM, and fit via the pair correlation function.

Other than correlation functions, some work has gone into the correction of
protein counts [15, 16, 18]. For instance, in [15], a general parametric form for the
probability of observing m localizations from n proteins is derived. Based on counts
from several spots, the number of proteins is then obtained via maximum likelihood.
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4 A new correction methodology

In paper A we model and estimate PALM artifacts directly from any given dataset.
Importantly, the estimation procedures can be carried out without a need to specify
the distribution of proteins, making the method universally applicable. On this
background, we develop a new correction methodology for PALM in paper B, which
can be used without calibration data.

4.1 Paper A and IBCpp models

We introduce the Independent Blinking Cluster point process (IBCpp) family of
models for SMLM microscopy. The family consists of spatio-temporal point process
models with a cluster structure that is motivated by blinking clusters in SMLM. More
specifically, we model the observed data with a process on the form

ny]UE, (4.1)

xeX

0=

where X is the unobserved process of proteins, Y, is a blinking cluster associated
with the protein x € X, and E is a space-time background noise process. The noise
process has intensity function

1(t, < b)

/\E(eJte):/\E b ’

' (4.2)

where b is the length of the SMLM experiment in seconds, and 0 < Ap < oo is the
spatial noise intensity. The blinking clusters are assumed independent and on the
form

Y, =

1

G
(x+eity,) (4.3)

=1

where the €; are centered i.i.d. localization errors, G is the total number of appearances

of the protein, and ty, is the time at which localization i was observed. The timepoints

and G are allowed to depend on eachother, but we require both G and the timepoints

to be independent of the localization errors.

This construction is natural for SMLM; note first that the collection {Y,},cx is
assumed independent, just as fluorophores in SMLM are assumed to be independent
[15, 29, 35]. Each location is on the form x + ¢;, corresponding to a noisy observation
of the true protein location, with the noise being the result of PSF fitting to the
pixellated fluorescent signal. The distribution of G and {t,, }I-G:1 are left unspecified in
general, as their distribution can differ between SMLM modalities. By putting specific
distributional assumptions on G, €;, and the timepoints, we create the PALM-IBCpp
which is tailored to PALM data, the main focus of paper A. Specifically, the timepoints
and G are determined from the discretized 4-state model of PA-FP photophysics, as
in Figure 3.

For a general IBCpp process, we show a useful result for the mark correlation

function. Denote by k;, the mark correlation function of O under a symmetrical
non-negative function f, and by go the (spatial) pair correlation function of O. Given
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a stationary and rotation invariant X, we then find

V(PG (Rgo(r) = 01 (f)=72(f) [%ncme *he)(r)]ﬂ/z(f) 500 -1]+72(H). (4.4)
!

The involved quantities are explained in full in paper A, and will not be explained
again here in the interest of brevity. The first takeaway is that the y’s and n, are
functions only of the distribution of timepoints and G, and in particular independent
of the locations in O. The second takeaway is that the distribution of X enters only
through go, which can be nonparametrically estimated. Finally, the term (h, * k) is
just the autoconvolution of the PSF, and this can be estimated from the localization
uncertainties, which are always included in SMLM data.

We devise a way to estimate the background noise intensity, and combining this
with Equation (4.4), we show that the quantities

C(f) =) =r2(fNne (4.5)

can be estimated for any f, without parametric assumptions on X. For each choice of
f, C(f) contains information about the process that generated the timepoints, and
hence the blinking artifacts. We pick a collection of functions {f,},cr indexed by a set
T, and solve a weighted minimum contrast [22] problem between é(fu) and C(f,). We
derive expressions for C(f,) in the PALM-IBCpp, on the basis of which three of the
four blinking rates can be estimated. The last blinking rate is estimated separately
afterwards, using an estimating equation.

Although we motivate the estimation procedures on stationary and rotation in-
variant X, we show that the same techniques can be expected to work for arbitrary X.
Thus, we are in a position to estimate the parameters that control imaging artifacts in
a general setting.

4.2 Paper B and the MBC algorithm for artifact removal

With the artifact parameters now estimable from arbitrary data, it is natural to want
to use them for correction. To that end, we develop the Model-Based Correction
(MBC) algorithm for PALM artifacts, which is built on a Bayesian model for the
spatio-temporal data. We imagine the data as a set of coordinates (X;,Y;)"_, in R?,
with associated timepoints {T;};_,. Additionally, we have access to localization uncer-
tainties {0;}!" | associated with each localization. We observe the data in the spatial
window R = [xg, x1] % [9g,1], which we refer to as the region of interest (ROI).

We let a data partitioning with N categories be given, such that the partition
postulates which points belong to the same blinking cluster (or is noise). We are
interested in the posterior probability of this partition given the data, which provides
a basis for choosing between different partitions. By using this posterior as a scoring
scheme, we combine it with a clustering algorithm to find a likely candidate for the
artifact-free image, an idea that was inspired by [30]. We put a uniform prior on the
partitions, and it then turns out that we need only compute the converse posterior of
the data given the partition. This is because maximization of the two posteriors with
respect to the partition is then equivalent by Bayes’ theorem.

Using a similar model for blinking clusters and background noise as in paper A,
points belonging to different partition groups are independent. Starting with non-
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noise points, a particular cluster (X;,Y;, Ti);il of size m < n with true protein location
# = (px, py), has conditional probability given the partition and y that is factorizable
as

P((X;, Y, Ti)iLy lp) = P((X0)iZy W) P((Y3)iZy ) P((T)Z ), (4.6)
where we show that P((X;)i”,|u) is given as

m -1 m m
]_loi] exp{—%Zm(Xi—X)z}exp{_#(yx—)?)z},
i=1

i=1

P((Xi)", | p) = (2m) "2

(4.7)
with
1
i = ‘7_1‘2 (4.8)
m
- ; i X;
% = Lzt i, (4.9)
i=1 i

We place a uniform prior on y over the ROI, and show that the marginal posterior is

m -1 m
P((Xl):il):(ZTC)_,Zn[]_[O'l] €Xp{—% Zﬁl (XI—X)Z} (410)
i=1

i=1
X(Xl—xo)_l(ZH);{im D LX_ ) LX_
= (Z0y i) (25 m)

where @ is the CDF of the standard normal distribution. The expression for P((Y;)!",)
is computed identically. For the timepoints, we show that

_1
3 ~ -~

, (4.11)

D=
Nl—=

HF—I

P((T)Ly) = Pa)P(Tyi) (1= p)" | [PCRO | | P, (4.12)
k=1 k=1

where

- B (4.13)
p+1g

is the probability of bleaching (an F — B transition), and n is the number of F state
visits. f; and dy are respectively the length of stay in the k’th visit to the F and D state.
All these quantities are computed on the basis of the sorted timepoints; to accomplish
this, we ignore discretization errors, and set f; to be the length of the k’th unbroken
streak of contiguous frames of activity in the sorted timepoints. The dark times dj are
computed similarly, but for the lengths of the gaps in the fluorescent activity. Finally,
T,in is the smallest observed timepoint, and u is the time between the last observed
fluorescent activity and the end of the experiment. Given the 4-state PA-FP model,
we then find that

P(T,p) = rpe”Emini Ti (4.14)
P(fi) = (rp + rg)e 0+ (4.15)
P(dy) = rge "®% (4.16)
Pu)=(1-p)e®" +p (4.17)
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Figure 5: The MBC workflow. The localizations, timepoints, and localization uncertainties are given as
input to the algorithm. On this basis, the artifact parameters are estimated, and several clustering proposals
are then considered and scored via their posterior probability. The best proposal is used to construct a
corrected dataset.

where P(u) comes from the possibility that the blinking cluster could have continued
after the end of the experiment, given a sufficiently long dark state visit. Finally, by
allowing for uniform noise points with probability a, the final probability of the
group is shown to be

(1 -a)P((Xi)iZy, (Yi)iZy, (T)iZy) m>1
V4 (1= )PPy, (V) (T) m=1,
(4.18)
where V = T(x; —x¢)(y1 — o) and T is the length of the PALM recording. Since the
clusters are independent, the posterior probability of all data is then given simply as
the product over the groups.
In order to find a likely partition of the data, corresponding to the blinking

n((Xi);‘ﬂ:p (Yl):ill (Tl);i]) = {

clusters and noise points, we then use the following two step procedure (see Figure 5).
First, we estimate the blinking rates and a via paper A, and using these we can then
immediately compute the posterior probability of a given partition. The parameters
also provide us with an estimate of N, the total number of groups to look for in
the partition. Next, as direct maximization over partitions is a notoriously hard
undertaking, we must be satisfied with approximations. One way to get good solutions
is to use a clustering algorithm that respects the nature of the clusters we expect
to find. Particularly, as blinking clusters are Gaussian in space and i.i.d., we should
expect reasonably compact and homogeneous clusters. To do this in a way that is fast
and easy to implement, we use a custom hierarhical clustering (HC) [8] algorithm.
HC computes all pairwise distances between points using any desired metric (or
dissimilarity measure). The distances are generalized to clusters by means of a linkage
criterion, and the algorithm merges the closest clusters in a greedy fashion until a
partition with a desired number of clusters is achieved. The choice of metric and
linkage criterion determine the sort of clusters found. We chose Ward’s linkage
criterion [8] which is well-suited for compact clusters. For the metric, let spacetime
locations (X3, Yy, T1) and (X5, Y,, T,) with associated uncertainties o7 and o, be given.
Then, we define the distance between them as

(X1, Y1) = (Xp, Vo)l

dS((Xer’ Tl)r (XZ’ Y, T2)) = ol + 0,

+S-|T - Ty, (4.19)
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where S > 0 is a tuneable parameter. This distance weighs spatial distance by un-
certainty, and the temporal distance by S. By varying S, and fixing the number of
clusters to find at N, we get a large number of likely partitions to choose from, which
we accomplish by comparing their posterior probabilities. Finally, we take each found
blinking cluster and estimate its center by maximum likelihood, which corresponds
to taking the inverse variance weighted average, and compute an updated localization
uncertainty, reflecting the increased certainty about the protein position.

It should be noted that many other clustering algorithms could be considered.
For the revised version of paper B, we will also look at the Bayesian hierarchical
clustering [13] algorithm, which attempts to directly maximize the posterior in a
greedy fashion.
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PAPER

Semiparametric point process modeling of
blinking artifacts in PALM.

Louis G. Jensen, David ]. Williamson, Ute Hahn

In review (revision round 1) at The Annals of Applied Statistics.

Abstract

Photoactivated localization microscopy (PALM) is a powerful imaging technique
for characterization of protein organization in biological cells. Due to the stochas-
tic blinking of fluorescent probes, and camera discretization effects, each protein
gives rise to a cluster of artificial observations. These blinking artifacts are an ob-
stacle for quantitative analysis of PALM data, and tools for their correction are in
high demand. We develop the Independent Blinking Cluster point process (IBCpp)
family of models, which is suited for modeling of data from single-molecule lo-
calization microscopy modalities, and we present results on the mark correlation
function. We then construct the PALM-IBCpp - a semiparametric IBCpp tailored
for PALM data, and we describe a procedure for estimation of parameters, which
can be used without parametric assumptions on the spatial organization of pro-
teins. Our model is validated on nuclear pore complex reference data, where the
ground truth was accurately recovered, and we demonstrate how the estimated
blinking parameters can be used to perform a blinking corrected test for protein
clustering in a cell expressing the adaptor protein LAT. Finally, we consider simu-
lations with varying degrees of blinking and protein clustering to shed light on
the expected performance in a range of realistic settings.

Keywords: Photoactivated localization microscopy; Multiple blinking; Spatiotemporal
point patterns; Mark correlation function; Moment-based estimation; Second-order
characteristics
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Paper A - Semiparametric point process modeling of blinking artifacts in PALM.

A.1 Introduction

Breaking the resolution limit imposed on classical fluorescence microscopy has been
made possible by the advent of super resolution methods [12]. Among these, PALM [5]
has become a popular tool for the acquisition of point maps of individual molecules,
achieved by the use of photoactivatable fluorescent proteins (PA-FPs). PA-FPs can be
activated, read, and permanently photobleached in stochastic fashion. The resulting
separation of fluorescent signal in time-space will, with high probability, be sufficient
to individually localize the PA-FPs present in a given sample [39].

Unfortunately, it is the nature of PA-FPs to enter and reemerge from dark states
a number of times before permanently bleaching, leading to multiple appearances
of the same protein [3, 9]. For analysis of the spatial organization of molecules,
these reappearances lead to erroneous conclusions, unless explicitly dealt with [30].
In particular, analysis of the clustering properties of proteins, a common goal in
PALM studies, is an increasingly contentious topic [26]. Making matters worse, direct
modeling of the blinking artifacts is complicated due to camera discretization of
the continuous fluorescent signals [11, 22], and an understanding of both PA-FP
photophysics and discretization effects is required to properly remedy the situation.

Although such artifacts are best understood by considering the spatio-temporal
behavior of PA-FPs, established methods for analysis of blinking artifacts have so
far focused on one dimension or the other. In methods such as [1, 29], the spatial
data alone is used, and require a model for protein behavior. Other methods use the
temporal fluorescence traces to estimate the number of proteins in local regions [13,
15, 18], which require either manual segmentation or external calibration samples.
More recently, complex descriptions of PA-FP photophysics have been modeled by
means of Hidden Markov Models (HMM) [33, 22]. In [22], estimation is carried out
by means of a calibration sample of well-separated fluorophores. More recently, [33]
model the conglomerate fluorescent intensity trace over a sequence of time points,
as originating from some unknown number of PA-FP. This means that additional
parameters have to be estimated, and the information in the spatial dimension is not
exploited.

In this paper, we define the family of Independent Blinking Cluster point processes
(IBCpp) for single-molecule localization microscopy (SMLM) data, and present a
result on the mark correlation function that is useful for estimation. We propose a
particular model from the family, the PALM-IBCpp, for modeling of PALM data, and
motivate the construction in terms of a discretized, 4-state PA-FP blinking model. We
present an algorithm for estimating the parameters that control data artifacts, which
can be run quickly even on large datasets. Our approach leads to estimates of the
kinetic rates that govern photoblinking, which can be used to quantify the effect of
blinking artifacts on a given sample, and correct downstream analyses for blinking
induced biases. The modeling efforts are validate on established reference data of
nuclear pore complexes (NUP) [36].

To help facilitate the debate on whether real protein clustering is present in a
given sample, we devise a blinking corrected test for complete spatial randomness
(CSR) on the basis of estimated blinking dynamics, and demonstrate it on a real
biological sample of a cell expressing the protein Linker for Activation of T cells
(LAT), observed at the plasma membrane. In this way, we can show that there are both
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areas of significant and non-significant protein clustering at different sites in the cell.
This analysis serves as an example on the use of this universal test, and additionally
provides yet more evidence for protein clustering in LAT, a research area of interest
in its own right [38].

The paper is organized as follows. In Section A.2, we briefly go over the needed
point process theory that will be used for modeling or estimation, and we give a quick
rundown of the principles of PALM imaging, and how camera artifacts come into
play. In Section A.3, we define the IBCpp class of models, and present a useful result
on the mark correlation function. We then construct and motivate the PALM-IBCpp
for modeling of PALM data.. In Section A.4, we describe an algorithm for estimation
of the kinetic rates in the PA-FP blinking model. We validate our methods on nuclear
pore complex reference data in Section A.5 by demonstrating a close alignment with
expected blinking targets. Section A.6 considers a dataset expressing LAT-mEos3.2
PA-FP, and we demonstrate how a blinking corrected CSR test can be performed on
the basis of estimated blinking dynamics. Finally, in Section A.7, we simulate PA-FP
with a range of different spatial organizations and blinking behaviors, and illustrate
the ability of our estimation methods to precisely recover the kinetic rates. We also
consider what happens when the blinking model is misspecified, and we find that
important PA-FP descriptors, such as the total number of reappearances and time to
activation and bleaching, can still be recovered.

A.2 Prerequisites

In this section we present the notation and point process concepts that we will be
needing below, including moment measures, mark distributions, and the mark corre-
lation function. We also describe some of the modeling difficulties that arise in SMLM
experiments, namely those associated with discretization of the temporal information
and background noise. For the general exposition, we work with processes on R4 xR,,
but it is instructive to imagine d = 2, corresponding to 2D microscopy, which is the
most common modality. For a more rigorous introduction to point process theory, we
refer to [7]. For more on mark distributions, see [34]. Finally, more on the acquisition
and preparation of SMLM data can be found in [8].

A.2.1 Point processes and moment measures

For the purpose of this paper, a spatio-temporal point process, V = {(v;, t,,)};2;, s a

random, locally finite point configuration with distinct points in RY x R,.. We call V
stationary if

VEVis={v+56,)2, (A.2.1)
for all s € RY, where £ denotes equality in distribution. Similarly, we call V rotation-
invariant if

VLRV = {Rv;, 1, ), (A.2.2)

for any rotation R. If V is both stationary and rotation-invariant, it is motion-invariant.
Write |V = {v;};2, (ground V) for the random object obtained by stripping V' of
its times. Assume |V is well-defined as a spatial point process on R4, having finite
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intensity function Ay and second-order product density /\(5). Then we compute

the (ground) intensity measure, Ay, and (ground) second-order factorial moment

(2)
measure, &y, as

Ay(A)=E Z ]lA(v)} = f Ay (v)dv, (A.2.3)
|velV A
(2) - 2)
oA =B ) L= [ aPEudenn), (24
»(Vl,VZ)GLVZ A1><A2

working everywhere on Borel sets, and )} * means summation over distinct pairs of
points. The pair correlation function gy is then defined in the usual way

2
Afv) (v,v2)

Av () Ay (v2) (4.25)

&V(Vl:vz) =

Next, the 1-point mark distribution, Mifl)v' is defined via the space-time intensity

measure. When it exists, it is the conditional probability measure on R, satisfying

1
Av(AxB)=E| )~ ]lA(v)]lB(t,,)] = f My (BAy (v). (A.2.6)
(v,5)eV A
Similarly, the 2-point mark distribution, Mg/zlzvl ) satisfies the conditional measure

representation of the space-time second-order factorial moment measure

ES

2
o\ (<2 [Apx By]) = E Y a0 vl gty t,) | (A2)
(Vi,ty) W(v2sty, )EV?
2 2
:_[ My, 0,)(B1 x Bo)day (v, v2). (A.2.8)
Alez

From these conditional measures, the mark correlation function, k{,, is defined as

2
[ Flto to)dMy | (hyt,)

Y YD , (A.2.9)
ij(tvl’tvz) Mv|vl(tv1) MV|-V2(tV2)

ké(”l,vz) =

for f : R2 + R, a non-negative Borel function of two times. We will refer to f as a
query function.

A.2.2 PALM, discretization, and noise

To understand how PALM works, we imagine a single PA-FP located at the position
x. Whenever fluorescence is emitted, it is captured by the camera, and the signal is
integrated over the acquisition time lasting 1 frame. Based on the intensity profile
observed on pixels, the position x is estimated, by assuming a shape for the point
spread function (PSF) [32, 20], which models the blurry shape observed on a camera
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when imaging a point-source of light. The localization uncertainty associated with
the estimate of x can then be computed, and is included in the dataset for each lo-
calization. This localization procedure is possible because we assumed only a single,
isolated fluorescent emitter. In a real biological sample, there can be several emitters
at nearly the same position, and the assumption of an isolated signal is thus often
violated. However, if we only receive a signal of finite length from each emitter, in
non-overlapping windows of time, the spatial proximity becomes irrelevant, and we
can again determine the position of each emitter. In PALM, this temporal separation
is made possible using PA-FPs, which activate at different times, and turn off perma-
nently after finite emission of fluorescence. In this way, only a single emitter should
be active at a given space-time location, and it can then be precisely localized.

Note that, using the procedure outlined above, each emitter will give rise to several
localizations. To see why this is true, assume that the PA-FP at position x sends out a
(sufficiently bright) signal lasting in total T seconds, and the frame acquisition time
is A seconds. We can then expect the signal to result in roughly TA™! estimates of
x, all of which will be included in the sample as separate localizations. Depending
on the total fluorescence observed from the PA-FPs, and the camera framerate, this
can lead to a large number of reappearances per protein. It is natural to think that
this problem can be solved by grouping localization that are close in space-time,
and although such procedures are often used in practice [2, 17], they are typically
heuristic in nature due to the lack of precise knowledge about the temporal behavior
of the PA-FPs in the sample. Without such knowledge, we have no principled guide
for determining the merging thresholds, which must allow both for varying spatial
uncertainty, and extended temporal separation occurring due to PA-FPs visiting dark
states. As a result, localizations arising from the same emitter can be easily confused
with those arising from a nearby, or nonexistent, emitter.

In addition to reappearances, background noise will invariably affect the dataset.
Each time fluorescence is observed on the camera, it must be attributed as spurious
background or coming from a PA-FP emission event, by means of a separating thresh-
old. Since we cannot set the threshold too high without losing the signal of real PA-FP,
some background noise points will always be present in PALM recordings.

A.3 Independent Blinking Cluster point processes

In this section we introduce and motivate the IBCpp family of models, which is a
subset of clustered spatio-temporal point processes with a particular spatio-temporal
clustering structure that is natural for modeling of SMLM data. We then consider
a moment result with particular importance for parameter estimation. Finally, we
construct the PALM-IBCpp, which is a semiparametric IBCpp model tailored for
PALM data.

A.3.1 Definition

A point process following the IBCpp model, denoted by O throughout, has 3 com-
ponents: the process of protein locations, | X, the blinking cluster of all localizations
and timepoints associated with a protein x, Y,, and an independent Poisson process
of noise points, E. The IBCpp O is then constructed hierarchically as the union of all
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blinking clusters, Z, with the noise process, E, as

o) :ZUE, (A.3.1)
7 = U Y, (A.3.2)
xeX

Ye={ J(x+epty) (A.3.3)

where the ¢; are i.i.d. with distribution P, and further independent of {tyl.}?:1 and

G. Finally, the spatio-temporal intensity of the noise process is assumed to be on the

form
1(t, < b)

T
where b is the length (in seconds) of the data recording and 0 < AE <oo.

To explain why this construction is natural for SMLM data, we now consider each
component and assumption above in more detail. Starting with the overall structure
of O, essentially all SMLM modalities should be modeled naturally with this general
idea of (possibly repeated) noisy observations of the proteins in the sample, corrupted
by spurious background noise. This is certainly the case for commonly used modalities
such as PALM, STORM [27], DNA-PAINT [28], and many others.

The real meat of the definition is in the parametrization of a blinking cluster,
Y,, and the dependence assumptions within and between different blinking clusters.
Starting from the assumption of independently blinking fluorophores (and thus
blinking clusters), this is a standard convenience assumption in the literature [25,
33], albeit likely an approximation in samples with extreme local density. For the
timepoints and the number of points in Y,, |Y,| = G, we allow general distribution and
dependence structure. We need this level of generality as both are typically derived
from the same, underlying source of stochasticity. Taking PALM as an example, the
PA-FP in the sample switch between fluorescent and non-fluorescent states according
to a continuous time absorbing Markov process, S(t), and the observed times then
correspond to the camera frames that overlap a fluorescent state visit. More broadly
we can imagine the observed timepoints in Y, arising as

Ap(ete) = Ap (A.3.4)

v

D(S) = {ty]f tyzl"'l tyG }; (A35)

where D is a “discretization operator” (the camera, localization software, filtering,...),
transforming S into the observed signal. In particular, the distribution and depen-
dence structures of G and {ifyl.}i1 are both derived in some complex way from the
same stochastic process, see Figure A.1 and Figure A.2.

Finally, for the locations in Y,, {;u,-}?:l, recall that positions are estimated on the
basis of fitting to a blurry point spread function (PSF) centered on x. This motivates

why the locations in Y, are modeled on the form
Vg = X+ €g, (A.3.6)

where ey is a random variable on R reflecting our uncertainty about the true position
x. The distributional shape and scale of €, depends on the PSF and on the number
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of photons detected by the camera during the associated camera frame. As a practi-
cally necessary assumption, we modeled the collection {ek}f:1 as i.i.d., and further
independent of the timepoints and G. These assumptions can all be motivated by the
time-homogeneous Markov processes underlying photon statistics [33], which imply
that the number of photons hitting different frames are approximately independent,
and further independent of which frame number is currently being imaged.

A.3.2 A result on the mark correlation function

Let O be an IBCpp with motion-invariant X. We present here a key result on the
mark correlation function, which we use to motivate the estimation procedures of
Section A.4. The derivations of the results in this section and more can be found in
Supplement A.

Let f : R2 > R, be a symmetric query function of 2 arrival times, and assume
P_ has radially symmetric density function k.. Then, the pair- and mark correlation
functions are functions only of the distance between two points, r, and for the product
between them we have the result

+72(N[g0( 1]+ 75 ()

V?(f)ké(r)&o(r) =(0n(f)=r2) [/\ionc(he *he)(r)
!

(A.3.7)
where
E[G2]
"= iG] -1, (A.3.8)
Az
n= Al_o' (A.3.9)
B[L{ o1 16 % )f (1, 1y,)
7i(f)= | (’])El[G(G—l)] e ] (A.3.10)
B[LE L, f(ty,t)]
y2(f) = (G , (A.3.11)
YO(f) = fff(tl,tz>dM8)<t1>dM8><t2), (A3.12)
and
(el = [ helyn =0y = ), (A.3.13)

for |ly; — v»ll = r. In the above, (G, {tyl,}lil) should be thought of as the timepoints in a
G/

typical blinking cluster Y, at arbitrary location x, and (G, {tl’,], }]-:1) is an independent

copy of (G, {t,, }iG:l). Finally, Mg) is the 1-point mark distribution of O, which does

not depend on the conditioning point, which is therefore omitted in the notation.
We unpack this result now in some detail, providing first some intuition on the
involved quantities. We also cover some related moment expression that will be
needed in the following. Starting with #, it is the expected fraction of points in O that
arose from blinking clusters (as opposed to background noise), and in particular we
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have the alternative expression
AE
n=1-—, (A.3.14)
Ao
as 1 minus the expected fraction of noise points. This is a simple consequence of the
fact that the points in O are either from Z or E, so that

/\lo = /\lZ+/\lE' (A315)

A useful related expression is
Az =E[G]Ax, (A.3.16)

which states the natural result that the number of points (per area) from blinking
clusters can be written as the number of proteins (per area) times the number of
repeats per protein.

Moving on to the second-order quantities, y1(f) is essentially the mean value of
f(ty,t,,) when (t,,t,,) are sampled randomly from the distinct pairs of timepoints
in a typical blinking cluster. It should be clear that, depending on the choice of f,
y1(f) will contain information about the blinking dynamics of the fluorophores in
the sample, a fact we will exploit for estimation. Similarly, y,(f) is the mean value
of f(ty,,t;,) when the timepoints are sampled randomly from 2 different (and thus
independent) blinking clusters. Lastly, y9(f) is as before, but where each timepoint is
an independently sampled timepoint among all timepoints in O, including those from
noise points - it is also known as the normalization constant of the mark correlation
function. Lastly, the spatial term (h, = h.)(r) is simply the autoconvolution of the
localization uncertainty density.

The expression in Equation (A.3.7) is important from the standpoint of semipara-
metric estimation due to the split of terms into products of spatial and temporal
components. The temporal components (the y’s) and the spatial components (go
and (h, * h.)) are in this sense separable, which hints at the possibility of extracting
information about the temporal behavior of fluorophores, independently of their
spatial coordinates. To make more explicit how this should be done, note the simple
algebraic manipulation

(121501~ 72, [0 ~1]-79()) o
(he*he)(T)TI '

The significance of this identity is that the left hand side depends only on the process
that generated blinking, whereas the right hand side can be estimated from O, without
a need to model |X. The idea is then to set these estimated quantities, for various

()= r2(f)ne = (A.3.17)

f,in relation to their theoretical value under the parameters of a specified blinking
model. We show how to do this in more detail in Section A.4.

A.3.3 An IBCpp model for PALM data

In order to use the IBCpp family in practice, we get more specific about the construc-
tion of the blinking clusters. The choices we make here are based on realistic models
for PALM fluorophore photophysics, camera discretization effects, and localization
errors, and lead to the PALM-IBCpp model. The PALM-IBCpp is most appropriate
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for modeling of 2D data, as 3D PALM generally has unequal uncertainty in the xy
versus z plane [31], and a radial noise profile is then no longer a valid assumption.
As a workaround for 3D data, the z-coordinates can simply be discarded.

As in the general IBCpp formulation, we write the typical blinking cluster on the
form

G
Y, = U(x +epty,), (A.3.18)

k=1
and we need to specify the distributions of €;, G, and by Starting with e, recall that
a point source of light appears as a blurry spot on the camera, with shape described
by the PSF. For PALM data we model this PSF using a symmetric Gaussian with
random variance o>. We model o as random since its magnitude depends on the
number of photons detected and various other nuisance factors that will vary for each

observation. Denoting by P, the distribution of o, we thus write

(exlo) ~N(0,0?), (A.3.19)
o~F, (A.3.20)

where (-|o) denotes the o-conditional distribution, and N(0,?) is the centered Gaus-
sian distribution with variance 2. Since localization software outputs an estimate ¢
for each observation, we do not need to parametrize P;. The use of Gaussian PSFs is
standard practice, and generally provides a highly accurate approximation [40], but
another model for the PSF can be used without serious complications, so long as it is
radially symmetric on average (across the typical observation).

Moving on to G and the timepoints, we take as basis a well-established 4-state
model for continuous time fluorophore behavior [11, 25, 6]. We imagine the PA-FP
are independently following a Markov processes, with a single fluorescent state F,
and 3 non-fluorescent states, see Figure A.1. A PA-FP always begins in the inactive
state I, and eventually moves to the F state. From here, it can either go dark in D
temporarily, or permanently photobleach in B.

We cannot observe the process in continuous time. In fact, if we write A for the
length of 1 camera frame, the temporal resolution allows observations to occur only
on the fixed grid AIN. To describe the fluorescent signal that is ultimately observed
on this grid, from a single PA-FP during the experiment, we consider a discretization
operation under an idealized camera. Consider the indicator process

1 if the PA-FP is in state F at time ¢
t) = (A.3.21)

0 otherwise.

We imagine that any (measurable) amount of fluorescent signal hitting a given camera
frame gives rise to an observation. Defining

Ak
S(kA) =1 g (L(kl) S(t)dt), (A.3.22)

the observed timepoints are then kA whenever S(kA) = 1. This corresponds to a
camera with perfect sensitivity, which is of course an approximation to the truth. In
reality there is a non-zero threshold on the amount of signal that must be observed
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o @ o

Figure A.1: The transition diagram for the continuous time, photophysical model of fluorophores. Transi-
tions are Markovian, with rates indicated next to the transition arrows.

o * * -+ -+
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oA 1A 2A 3A 4A 5A BA 7A 8A SA

Figure A.2: Camera discretization transforms the continuous process S(t) (in black) into the discrete process
S(kA) (in red). The observed timepoints are the kA with S(kA) = 1; in this example there are 6 such time-
points, observed on frames {1,2,5,6,7,8}, and we thus have G = 6 and {ytk }2:1 =(1A,2A,5A,6A,7A,8A).

during a given integration period, but this threshold is generally very low in SMLM
recordings [22], so we have ignored it here to avoid the complications that arise from
modeling it.

From the above, we can write G and {t,, },?:1 more formally as

G= ZS(kA), (A.3.23)
k=1
S
t,, =min{sA:s € N and Zsﬁ(m) =k}, 1<k<G. (A.3.24)

i=1

In this way, the timepoints of a typical cluster correspond precisely to the discretized
signal obtained from S(t), see Figure A.2.

A.4 Estimation

We suggest now a stepwise estimation procedure, leading eventually to estimates
of 11 and (rg,7p, 7R, rp). As the implementation details are somewhat long-winded,
we describe the methods here at the intuitive level, and refer to Supplement B and
Algorithm 1 for more details. For clarity of exposition, we motivate our approach on
the assumption that X be motion-invariant, but we stress that this is not a necessary
assumption in practice, as Algorithm 1 will produce meaningful estimates also for
general X, cf. Supplement D. Further, since the PALM-IBCpp is most appropriate
for 2D data, as previously noted, we assume the spatial dimension is d = 2 in the
following. An efficient implementation of Algorithm 1, and various other helpful
tools, are available, see Code availability.
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A.4.1 Data format and requirements

In the following, we assume that we have data {(og, tok)}f-\il from a PALM-IBCpp
observed with N points in the space-time window W x [0,b], where W c R? and
b is the length of the PALM recording in seconds. Additionally, we require access
to localization uncertainties associated with each position, and we denote these by
{ék}szl. Note that it is assumed the timepoints f,_ are recorded in seconds. Often
it is the case that PALM data is recorded in terms of frame numbers, and it is then
necessary to first transform the times by multiplying the frame numbers by the
camera integration length, A, which can be obtained from the framerate by

1

= A.4.1
framerate ( )

and is also a required component in its own right.

If the fitting procedures should account for background noise, it is also necessary
to have access to an observation of pure noise, which will allow us to quantify the
fraction of points arising as noise. Thus, we assume that we have N, observations
{ek, tek}lljfl of E in a separate space-time window Wg x [0, b]. Access to E in this way
is typically possible without a need to perform additional experiments, as standard
PALM recordings generally extend to regions outside the cell being imaged, see
Figure A.3 and Figure A .4.

A.4.2 Choice of query functions

The foundation for estimation of kinetic rates is the identity in Equation (A.3.17),
which allow us to extract a purely temporal information from the observed space-time
data, principally via y1(f) and n.. The type and quality of this information depends
crucially on our choice for the query function f. In the following, we pick the set of
functions

fult,t2) =1(t; =t <u), ueT, (A.4.2)
b
T = (in)3). (A.4.3)

This choice exhausts the information present in functions acting on times only
through their difference, while eliminating absolute time information. To see why
this can be desirable, imagine a typical blinking cluster Y,. The timepoints in Y, can
be written approximately (up to rounding-induced errors) on the form

to, = Wi +wp, (A.4.4)

25



Paper A - Semiparametric point process modeling of blinking artifacts in PALM.

Algorithm 1: PALM-IBCpp model fit, part 1

Input :Space-time observations {oy, fo, }sz1 observed in window W x [0, b], where b is the length
of the PALM recording in seconds.
Input :Localization uncertainties {‘fk}]i\]:y

Input :Camera integration length, A = f%
- ramerate .

Input :Quality parameters #, and n; (default values of 500 and 10000 are used everywhere in

this work, respectively).
Input :(optional) The noise process E = {ey, f,, }fjfl observed separately in window Wg x [0, b].
Output:Estimated fraction of non-noise points #j and kinetic rates (7¢, 7p, g, 7).
Initialization
(1) If {to, }sz1 are stored as frame numbers, update each timepoint as

top < to A

k

(2) Define the spatial range ., and grid R, by
1 N T,
_ A _ (Tmax .\n
Tmax = ﬁ};()'kr R—{Trl}i:r]'

(3) Define the temporal grid T and query functions f;, for u € T by

L2
T ={Ai}; 4], fulty,t2) =1(lt; —t2| <u).
end
Estimation of 7
Set /ilo = |NW| If E was observed in a separate window, set /&E = %, and otherwise set
XLE = 0. Return the estimator
AE
f=1--t.
/\io
end

where Wr ~ Exp(rp) is the time spent in the inactive I state before first activation,
and wy is the waiting time separating the k’th appearance from the temporal origin,
which depends only on the remaining rates (rp, g, ). When extracting information
from a query function through y;(f), we then obtain

| B 162107 W We )

E[GG=T) (A.4.5)

n(f

Since rf is typically orders of magnitudes smaller than the remaining rates, Wg will
tend to dominate and obscure the information on the remaining parameters. On the
other hand, for f, we have

E[Z(Gi,j):l 1(i # j)(lw; —wj| < u)]
7/1(_’(14)z E[G(G—l)] ,

(A.4.6)
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Algorithm 1: PALM-IBCpp model fit, part 2

end

Estimation of kinetic rates

(1) Let {@1,1«}211 and {62,;(}:5:1 be independent samples of size ng with replacement from

{(fk}]y:l. Estimate the blinking cluster autoconvolution via

2
T2 22

o 1 ng e 2("1,k+02,k>
(he *he)(r) = —
N

a2 ag2y TR

i=1 27(S1 + Gpp)

(2) Let {to, , }Zil and {t"zk}zil be independent samples of size ng with replacement from
{toy }i\]:l. Estimate yzo(fu) via

g

R 1
PR =) Wtk—toxl<u) uel,
s =1

(3) Define the distribution function

NI g <u) - (1)

~ (1
M () ;

.. . . - n - n . .. . ~ (1)
Sample i.i.d. collections of variates {tlfk}k5:1 and {t2,k}k5:1 with distribution M,

the estimator

,and use

Mg

1 o
% == 1(|f1 - £ <u), T.
Y2(fu) Py 1; (IFr—Fokl<u), wue

(4) Using (any) standard estimators for the mark- and pair correlation functions, IQJ(; and grlo,
set

o Lrer |79 Rk (1§00 = p2(fulgotn) - 1= 72 (f)] e o))

A T rer[(ie < he)n)]”

(:u =

’

foreachueT.
(5) Using the approximate expressions for y1(f;) and n, in Supplement B, solve the weighted
least squares problem

2

f)) (Cu— 1) - 72 fune)

'Y

min > Z
7p,7R,7B

—

ueT reR \ V2

to obtain estimators (7p, 7r, 7g)-
(6) Obtain an estimator of rr by setting

1L yvN b -1
& to, —(1-H% .
fF_[N):-kzl 02 (1-1M3 —Az—le )

where A and B, are defined in Supplement B.
(7) Obtained a censoring-corrected estimate of rr by numerically solving
2C
L ff:b -1 1
T
7R(e'F = 1) F
in 7 over the interval (0, 7¢].
(8) Return the rate estimates (7f, 7p, 7g, 7).

eliminating the influence of r¢ entirely. This suggests a two step approach where rf is
treated separately from (rp, g, ).
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A.4.3 Estimating parameters

The estimation procedures consist roughly of two phases: estimation of #, and esti-
mation of the kinetic rates. The idea is that once 7 is known, we can obtain location
invariant statistics, that allow estimation of the kinetic rates. The second phase is
further divided into two steps, as ry is treated separately from the remaining rates.
Estimating # is easy when E is observed separately, since
n=1- E, (A.4.7)

Ao

so the problem reduces to intensity estimation, which is routinely performed by
setting the observed number of points in relation to the area of the observation
window. Next, to estimate the kinetic rates, the primary ingredients are the quantities

Cu = (7/1 (fu) - )/Z(fu))nC’ ueT, (A-4-8)

which can be extracted from the data using the identity in Equation (A.3.17), which
states that

(Vg(f)ké(f)&o(r)—Vz(f)[&o(r)— 1] —y?(f))ao
(he+he)(r)

which is estimable on the basis of the observed data and #]. From the collection {C,,},er
we set up a weighted minimization problem

A n 2
,min ZZ(M 0 ) =) =P2(fne) (A.4.10)

ueT reR

Cu = 5 ue T, (A49)

over the involved rates where R is a set of spatial distances that must be specified,
and the weights - (f j are chosen to put more weight on temporal distances that are
most 1nf0rmat1ve The rates control the values of y;(f,) and n., and expressions for
these are available in Supplement B. As the minimization leads only to 3 of the 4
rates, rg is obtained separately via

1 vN A\ b
LyN t,-1-m% .
P = N Liz 9% (=13 ~A,-B,| , (A.4.11)

where A, and B, are statistics computed on the basis of (#p,7g,7g). Since we only
observe a finite recording of lenght b, 7 will be subject to a censoring bias. A corrected
estimate is found by solving

eréb—rlib—l 1
T 71 =0, (A.4.12)
rp(e’F? —

: c
mn T’F.

A.5 Validation of methods on a nuclear pore complex reference
cell line

The nuclear pore complex (NPC) is quickly becoming a reference standard for quan-
titative SMLM imaging. In a recently developed NPC cell line [36], the nucleoporin
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Figure A.3: Nuclear pore complexes in Nup96 cell lines. Left: an example dataset of a cell expressing
Nup96-mMaple. The red complexes are those that were confidently segmented by SMAP (see main text),
and were used for further analysis. The rectangular region is picked only for visualization purposes, and
can be seen magnified in the center plot. Center: magnified region of segmented complexes. The color
indicates which points are determined as belonging to the same complex. Right: Top view schematic of an
idealized Nup96 complex. A grid of separation 10nm is overlaid for scale.

Nup96 is endogenously tagged with fluorescent labels. Each complex forms a ring of
approximately 55nm in radius, comprising 32 Nup96 arranged into 8 equally spaced
corners of 4 Nup96 each, see Figure A.3. Due to this well-characterized organization
of proteins, these cells offer the rare opportunity of checking results against a known
ground truth on a real biological sample.

We analyze the publicly available datasets [35] comprising PALM recordings of
Nup96 tagged with mMaple, using a buffer of 50mM Tris in D,O, recorded with a
camera integration length of A = %. In total, this amounts to localized data from
16 cells, preprocessed according to the procedures in [36]; briefly, using the pro-
vided open-source software SMAP [23], localizations were corrected for drift, and
emitters with large uncertainty or poor fit likelihood were filtered out. This data
presents a challenging setting for the PALM-IBCpp analysis, as the filtering steps are
a clear breach of model assumptions, and the low framerate of 10hz challenges the
approximations used in fitting, which are only exact in the limit of large framerates.

For each cell, we used SMAP with the established procedures to first segment out
high-quality NPCs, and then estimated the effective labeling efficacy (ELE), which
describes the fraction of Nup96 that are sufficiently bright to be detected in the SMLM
recording. For each cell, we then computed the “target” number of reappearances per
Nup96 (Es[G], ”S” indicating SMAP) according to the formula

Es[G] = , (A.5.1)

Nypc-ELE-32
where Ny pc is the number of segmented NPC, and N, is the total number of local-
izations observed across all segmented complexes. In addition, the target number of
F state visits (IEg[Nj]) is computed as
Nioc grouped
Eg[Ny]|= ——————, A5.2

s[Np] Nupc-ELE 32 ( )
where Njy¢ groupea 18 the number of localizations from the segmented complexes,
after grouping together localizations close in space (35nm) and time (1 frame), again
according to the procedures of [36]. As the number of F state visits has a Geometric
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CfrD is the bleaching

distribution (starting at 1), we have N}, ~ Geom(p), where p =
probability. An SMAP estimate of p is thus naturally found via

1
PS = BgINy]'
Finally, we fit the IBCpp model on the segmented NPCs. To get the most fair
comparison with the SMAP targets, we set 7/j = 1 when fitting. This is because SMAP
does not account for background localizations, and thus assumes all observations
are generated by PA-FP. After fitting, we computed the estimated values of the above
targets. We also include the derived statistic

— Nioc
%PY = NnpcE[G]ELE’
where E[G] is the estimated mean of G, on the basis of the PALM-IBCpp fit. N,
has a ground truth target value of 32, the copy number of Nup96 per complex.

While the true blinking rates of the data remain unknown, and have no direct
SMAP analogue, we can nevertheless compare our model predictions on the derived
blinking statistics against the targets, and in this way validate important aspects
of our modeling and estimation framework. In Table A.1 the means and standard
deviations from fitting to the 16 datasets can be seen. Interestingly, in spite of the
model violations incurred by data filtering, we obtained encouraging results. The most
intuitive reference quantity, Ncopy, is estimated at 32.3+1.82, in close correspondence
with the ground truth value of 32. The accurate recovery is due to the tight control
on E[G], the total number of appearances per Nup96, estimated at 7.40 + 0.72 by our
model, versus 7.46 for the SMAP analysis. One slight deviation from the targets is
the number of F state visits, estimated at 2.32 +0.08 versus 2.93 for SMAP. A possible
explanation for this difference lies in how SMAP estimates it; since the grouping
procedure only looks for repeat localizations within a spatial radius of 35nm, it
should be expected that some F state visits are broken up into multiple subsegments,
potentially biasing results in favor of larger values. This would also explain the slight
disagreement for p.

As mentioned, we unfortunately do not have an SMAP reference for the blinking
rates. Nevertheless, as both the total number of reapperances and number of blinking
cycles are well-estimated, it seems plausible that the estimated blinking dynamics
as a whole can be trusted. Looking at the rates, we see that there is surprisingly
low variability between datasets, indicating that the replications were performed
with careful attention to the experimental conditions. In addition, we notice quite a
long-lived dark state, lasting on average 3 seconds. Using the mean rates across all 16
datasets, we find that the Nup96-mMaple had a mean bleaching time of 4.61 seconds,
and 99% of Nup96 bleached within 31 seconds.

Results from each individual dataset, including the ELE, number of NPC, and
dataset ids, are also available, see Table A.2. Although not used in this analysis, we
also included estimates of # for completeness.

B

(A.5.3)

N (A.5.4)

opy

A.6 Blinking corrected cluster analysis of LAT-mEos3.2

Cluster analysis is perhaps the most common goal of SMLM experiments, and a great
deal of effort has been put towards that end. A shared complication among all such
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Table A.1: Estimates and standard deviations of blinking rates and derived statistics on the basis of our
model fit to 16 datasets of Nup96 NPC. The target values are based on the SMAP analysis, or are known in
the case of Ncopy (see main text).

Estimate Target Sd
re-103 0.73 - 0.29
B 2.00 - 0.28
D 2.64 - 0.37
R 0.32 - 0.06
Neopy 32.30 32.00 1.82
E[G] 7.40 7.46 0.72
E[N,] 2.32 2.93 0.08
p 0.43 0.34 0.01

Table A.2: Results from 16 datasets of Nup96 nuclear pore complexes. The data ids allow identification
of the exact dataset analyzed, as stored on the Biolmage Archive [35]. The estimated rates can be seen
in columns 2 through 5. E[G] and [E[Np] are the estimated total number of reappearances per Nup96
and number of F state visits on the basis of the PALM-IBCpp model fit, and Eg[G] and Eg[Nj,] are the
associated targets, on the basis of the SMAP analysis. ELE is the estimated fraction of Nup96 that are
detectable in the dataset, as determined by SMAP. N,py is the PALM-IBCpp estimated number of Nup96
per NUP complex, after account for the ELE, which has a target value of 32. Nypc is the number of
segmented complexes. Finally, 7 is the estimated fraction of non-noise points.

Data id rp-103 I ™ v E[G] Es[G] E[Ny] Es[Ny] Nepy, ELE  Nypc 1
181123_6 0.90 2.28 291 030 6.64 643  2.28 264 31.0 045 313 0.98
181123_7 023 1.91 2.87 034 7.72 691 251 285 286 0.60 239 1.00
181123_8 0.67 2.00 251 030 7.25 6.69  2.26 2.75  29.5 0.57 179 0.99
190110_1 037 1.71 210 030 807 820 223 3.06 325 0.65 184 0.97
190110_2 0.40 1.81 233 053 7.76 820  2.28 3.05 33.8 0.60 420 0.96

190111_10 0.75 1.81 254 0.32 7.89 7.78 2.40 3.06 31.6 0.65 713 0.97
190111_11 0.63 1.69 237 0.33 8.30 8.15 2.40 3.16 31.4 0.63 846 0.95
190111_9 048 1.71 243 033 8.25 8.26 242 3.22 320 0.64 1080 0.97
190118_12 0.59 218 3.08 0.32 6.97 6.84 2.41 2.85 31.4 0.60 1040 0.99
190118_13 094 223 281 030 6.72 6.66 2.26 2,77  31.7 0.61 567 0.98
190118_14 0.63 233 3.03 030 6.56 7.21 2.30 2.89 351 0.57 648 0.98

190123_3 1.37 232 296 0.30 6.56 7.09 2.27 2.72  34.6 0.55 207 0.98
190123_4 1.25 236 3.03 0.30 6.49 7.02 2.28 2.88 34.6 0.58 303  0.96
190123_5 071 237 3.17 031 6.54 7.14 2.34 2.86 349 0.60 578 0.96

190502_15 0.86 1.62 2.02 0.29 8.39 8.55 2.24 312 326 0.64 396 0.99
190502_16 0.89 1.67 210 0.30 8.22 8.21 2.26 3.04 319 0.62 440 0.98

analyses is the need to deal with artificial clustering caused by blinking artifacts, and
most methods require the data to be first pre-proccessed to correct this [16]. This sort
of pre-processing often relies on grouping of localizations on the basis of thresholds
determined heuristically or by calibration data [3, 2], and can have quite variable
performance [17]. Other methods can deal with blinking by explicitly modeling it
alongside the proteins [29], but this limits the analyses that can be done, and requires
parametric modeling of the proteins.

To overcome the challenges of quantitative cluster analysis, we suggest estimating
first the blinking dynamics directly from the dataset using the PALM-IBCpp model,
and subsequently correcting the desired clustering analysis for blinking biases. To
exemplify this general methodology, we devise a blinking corrected test for CSR,
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Figure A.4: Left: the full dataset with green region of interest used for fitting the IBCpp model, and blue
noise regions used for estimating 7. Center: magnified xy scatter plot of the ROI. Right: timepoints are
plotted against the x-axis for the region of interest, demonstrating the space-time blinking dynamics.

and demonstrate it on a Jurkat T cell expressing LAT-mEo0s3.2 PA-FP. The dataset
was recorded using PALM at a framerate of A~! = 25hz, and was then resolved and
corrected for drift using ThunderSTORM [21].

We base our approach on the L(r) — r function, a commonly used transformation
of Ripley’s K-function [24], which has better variance properties, and is easier to
interpret. The function measures spatial clustering, with values of L(r) —r > 0 indicat-
ing clustering, L(r) —r = 0 for CSR-like behavior, and L(r) —r < 0 indicates repulsive
behavior. To test whether a given dataset follows a prescribed null model, such as
CSR, one can compare the observed L(r) — r function to realizations from the null
model, as obtained via simulations. This approach can be made rigorous using the
class of global envelope tests [19], which produce an envelope that is global in the
sense that, if the observed statistic breaches the envelope at any point, it corresponds
to a significant test.

At afirst glance, we cannot apply this idea directly to our data, as the null model we
are testing is not just CSR, but rather CSR observed under blinking and background
noise. This means that we do in fact expect to observe large values of L(r)—r, even for
CSR proteins, and the question is rather how large this function must be to indicate
significant protein clustering. Fortunately, as we are able to estimate the blinking
rates, we can perform simulations from a model that approximates the null, and get
a better handle on the true clustering behavior of the proteins. Of course, as this
method is based on parametric bootstrapping, the significance level of the test is
only guaranteed to be at the specified level if the rates are estimated perfectly, and
some care is advised when interpreting results. To ensure the level of the test is
approximately as specified, we suggest using simulation - we demonstrate this below.

For the analysis we first subset out a region of interest (ROI) of manageable size.
In addition to the ROI we also subset out 2 large regions from the coverslip outside
the cell, which were used for estimation of #, see Figure A.4. The ROI had 21742
points {(og, tok)}ii?u with associated localization uncertainties {cfk}]%g“. Similarly,
the noise regions had 1063 points in total, and the fraction of non-noise points (per
area) was estimated at 1§ = 0.995. We fit the PALM-IBCpp model to this ROI, and we
are thus in a position to simulate from the CSR (with blinking) null model, using the
estimated blinking dynamics. To do this, the number of proteins to simulate was first
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Figure A.5: Blinking corrected CSR test. Top row. Center: the observed data. Left and right: representative
simulations of blinking CSR proteins with background noise. The blinking rates, number of proteins, and
noise parameters used in simulations were obtained from the PALM-IBCpp fit to the observed data (see
main text). Bottom row. Blinking corrected, 2-sided CSR global envelope test for the observed data, on
the basis of the L(r) —r function. The observed L(r)—r function (solid line) was compared to the L(r)—r
functions of 500 simulations of blinking CSR proteins with noise, and a global envelope was constructed
(shaded gray). The breach of the observed curve above the envelope indicates significant protein clustering
in the ROI which cannot be explained by blinking alone (p = 0.004).

Figure A.6: Blinking corrected CSR testing on the entire cell. Left: the interior of the cell was segmented
out, and an evenly spaced grid with separation 500nm was overlaid. Right: around each gridpoint, a
centered 1000 x 1000nm observation window was used to subset out a local portion of the data, and a
blinking corrected CSR test was performed for that region (see main text and Figure A.5). For visualization
purposes we extrapolated p-values to the entire cell using the p-value associated with the nearest-neighbor
point in the grid.
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determined on the basis of Equation (A.3.16), which states that

. Az 1o
*TE[G]  E[G]

(A.6.1)

so that by plugging in our estimates for 77, Ao, and E[G], and multiplying by the
window area, we get the number of proteins at

0.995-21742
N o 2

protein ~ 316 ~ 2651. (A.6.2)

Each localization in the blinking clusters was then simulated by adding Gaussian
noise around the position of a protein, with a standard deviation sampled from
{(fk}]%zu, and the timepoints were simulated according to the discretized 4 state
model. Finally we added 109 Poisson background noise points, as indicated by .
Examples of simulations can be seen in the top row of Figure A.5 on the left and
right.

Using this simulation scheme, we tested for CSR proteins on the basis of the L(r)—r
function. We computed L(r)—r for the observed ROI, and obtained 500 realizations of
it from the CSR null model via simulation. We then performed a global envelope test,
see Figure A.5. The envelopes indicate the sort of clustering that we would expect
to see from blinking clusters. The observed L(r) —r breaches above the envelope,
indicating that there is significant clustering of proteins (p = 0.004). The observed
ROI has spots of clustering that, upon visual inspection and comparison with the null
model simulations, are clearly too large to be blinking alone. The results of fitting to
the ROI can be seen in Table A.3, where also the results of refitting to 100 simulations
of the CSR null model are included. The refits indicate approximate unbiasedness,
and low uncertainty of rate estimates. To validate that our test is approximately at
the 5% level, we performed the CSR test for each of the 100 simulations, resulting in
3 rejections, in close correspondence with expectations.

To complete this analysis, we next performed the CSR test on the entire cell
by means of a rolling window, see Figure A.6. This revealed regions of strongly
significant clustering, but also regions indistinguishable from CSR. In fact roughly
half the cell presented as clustered, with 47% of the cell clustered at the 5% percent
level, and 26% at the 1% level.

A.7 Simulation study

We evaluate the performance of our method under different protein distributions
and blinking models. We will also consider what happens when the blinking model
is misspecified. We consider 3 different cases of protein distributions: CSR, spherical
clustering, and fibrous structures, see Figure A.7. We fix the number of proteins at 500
for all simulations, with localization uncertainties drawn i.i.d. from the Gamma(6.5,
0.375) distribution (shape and rate parameterization), which is the maximum likeli-
hood fit to the observed uncertainties in the LAT data of Section A.6, and we consider
n =1 known.

For the kinetic rates, we consider short and long lived PA-FPs. Additionally, in a
misspecified case, we use a model with 3 distinct dark states, each selected with the
same probability, but with very different holding time distributions. For the values of
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Figure A.7: Typical simulations from each of the 3 protein configurations (CSR, clusters, fibers) in the
columns, before and after adding blinking clusters in the top and bottom rows, respectively. The CSR
data is simulated as 500 i.i.d. uniform points in the ROI. The clusters data consists of 100 CSR points and
further 20 uniformly located Gaussian clusters with standard deviation 50, each having 20 points. Finally,
for the fiber data, 450 points are sampled uniformly along the edges of a fixed fiber structure, and 50 CSR
points are added to the background.
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(c) 3 dark-state PA-FP.

Figure A.8: The three models of PA-FP photophysics considered in simulations.
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Table A.3: Estimates (Est) obtained from the fit to the observed data. Included is average (Avg) and standard
deviation (Sd) of estimates obtained from fitting to 100 simulations from the CSR null model. Included
derived quantities are: the mean number of appearances per protein, IE[G], the bleaching probability,
p= r;TBrD' and the (0.25,0.50,0.75,0.99)-quantiles (40.25,90.50,40.75,490.99) of the total PA-FP lifetime
distribution (time in seconds from activation to bleaching). For example, 75% of PA-FP bleach within gq 75
seconds.

Est Avg Sd
re-103 5.16 5.17 0.13
g 4.92 5.07 0.13
D 10.50 11.40 0.55
R 1.11 1.15 0.04
E[G] 8.16 8.13 0.17
p 0.32 0.31 0.01
9025 0.10 0.10 0.00
90.50 1.04 1.08 0.04
90.75 3.10 3.13 0.05
40.99 15.70 12.70 0.15

the kinetic rates in the 3 PA-FP models, see Figure A.8. We simulated 100 realizations
from each combination of spatial organization and blinking behavior, and discretized
signals according to a framerate of 25hz.

The results of the simulation study can be seen in Table A.4. For the short and long
lived PA-FPs, we see that there is close correspondence between the true parameter
values and their estimates, especially for the smaller rates and all derived blinking
statistics. The mean number of reappearances is well estimated, as is the bleaching
probability p, and the total lifetime quantiles. Some bias appears to exist for the
dark-state entrance rate, rp, which also has the highest uncertainty of the rates. This
is likely due to bias in the utilized approximations for low framerate to rate ratios.
Importantly, for the misspecified 3 dark-states model, the number of reappearances
and the lifetime quantiles are again well estimated. Unsurprisingly, both rg and p
are biased in this case, as the model attempts to fit to an average blinking cycle, and
cannot exactly capture the nuances of having 3 different dark states. Overall, the
effect of the protein distribution is small compared to the effect of different PA-FP
models, with a slight increase in variance for more clustered conditions.

To put this analysis into a broader perspective, we compared with results ob-
tained from the PC-PALM (pair correlation PALM) method of [29]. This method is
not capable of extracting the kinetic rates, but it can estimate E[G] for sufficiently
simple models on the distribution of G. The PC-PALM method requires modeling
of the proteins via an assumed form for the protein pair correlation function gx (7).
Following the authors, we set

gx(r)=Ae b +1, (A.7.1)

where A and B are parameters that need to be estimated. The PC-PALM method fits a
model to the observed pair correlation function, from which #, is readily estimated.
In order to then estimate IE[G], the authors use the approximation

E[G] ~ n,, (A.7.2)
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Table A.4: Results of fitting to 100 simulations from each combination of protein distribution (CSR, cluster,
fibers) and PA-FP model (short lived, long lived, 3 dark-states). The average (Avg) and standard deviation
(Sd) of estimates is included.

CSR

Short lived Long lived 3 dark-states
Truth Avg Sd Truth Avg Sd Truth Avg Sd
rp-103 4.00 3.98 0.23 4.00 4.04 0.26 4.00 3.98 0.23
g 3.00 3.10  0.20 3.00 315 0.27 2.50 231 0.19
D 6.00 6.59 0.67 12.00 13.40 1.22 7.08 0.56
R 1.00 1.08 0.09 0.50 0.54 0.05 0.44 0.06
E[G] 11.30 11.20  0.68 13.25 1320 0.83 15.38  14.97 1.04
p 0.33 0.32 0.02 0.20 0.19 0.01 0.17 0.25 0.01
90.25 0.16 0.16  0.02 0.76 0.89 0.18 0.44 0.39  0.11
050 112 117  0.16 492 501 0.56 416 427  0.69
q0.75 3.36 3.35 0.33 12.00 12.00 1.26 12.20 11.10 1.68
q0.99 13.80 13.50 1.17 45.50 44.70 4.53 50.00 42.82 6.32

Clusters

Short lived Long lived 3 dark-states
Truth Avg Sd Truth Avg Sd Truth Avg Sd
rp-103 4.00 4.00 0.27 4.00 3.98 0.24 4.00 3.99 0.26
g 3.00 3.06 0.20 3.00 3.10 0.26 2.50 229 0.23
D 6.00 6.53 0.62 12.00 13.10 1.39 6.97 0.63
R 1.00 1.06  0.09 0.50 0.53  0.06 0.43  0.06
E[G] 11.30 11.30 0.69 13.25 13.30 0.79 15.38 15.03 1.23
p 0.33 0.32 0.02 0.20 0.19 0.01 0.17 0.25 0.02
q0.25 0.16 0.16 0.02 0.76 0.90 0.16 0.44 0.38 0.11
050 112 119 0.18 492 509 0.52 416 433 074
q0.75 3.36 3.41 0.39 12.00 12.30 1.23 12.20 11.30 1.80
q0.99 13.80 13.70 1.37 45.50 45.50 4.56 50.00 43.68 6.82

Fibers

Short lived Long lived 3 dark-states
Truth Avg Sd Truth Avg Sd Truth Avg Sd
rp-103 4.00 4.01 0.25 4.00 4.03 0.24 4.00 4.02 0.24
B 3.00 3.11 0.21 3.00 3.21 0.30 2.50 2.28 0.20
[95) 6.00 6.66 0.64 12.00 13.60 1.29 7.02  0.58
R 1.00 1.09 0.12 0.50 0.54 0.05 0.43 0.06
E[G] 11.30 11.20 0.66 13.25 13.10 0.93 15.38 15.13 1.12
p 0.33 0.32 0.02 0.20 0.19 0.01 0.17 0.25 0.01
G025 016 016 0.02 076  0.89 0.21 044 040 0.11
q0.50 112 117 015 492 501 0.64 416 433 0.69
q0.75 336 335 0.32 12.00 12.00 1.41 1220 11.24  1.68
90.99 13.80 1350 1.19 45.50  44.70  5.01 50.00 43.34 6.30
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which, as noted by [37] and [1], holds exactly if G has a Poisson distribution. Given
the 4-state model of PA-FP photophysics, we argue a Geometric distribution is more
appropriate, in which case we would have

E[G] = %+1. (A.7.3)
Using both these estimators, referred to as PC-PALM 1 and PC-PALM 2, respectively,
we compared performance with the IBCpp fit on the simulated data, the results of
which can be seen in Table A.5. We see that the IBCpp fit has lower bias and variance
in every case, and is less sensitive to the blinking and clustering properties of PA-FP.
PC-PALM is sensitive to the assumed distribution for G and gy, which is particularly
clear in the 3 dark-state model, which has the most complex blinking behavior, and
for the fibers, which has the most heterogeneous spatial distribution.

Table A.5: Comparison with the PC-PALM method for estimating IE[G]. Average (Avg), bias (Bias) given
as the true value minus Avg, and standard deviation (Sd) of estimates is included. The first PC-PALM
method assumes a Poisson distribution for G, whereas the second assumes a Geometric distribution. Best
values are in bold.

CSR
Short lived Long lived 3 dark-states
Avg Bias Sd Avg Bias Sd Avg Bias Sd
PC-PALM 1 21.10 9.80 1.52 25.40 12.15 1.92 41.20 25.82 4.40
PC-PALM 2  11.50 0.20 0.76 13.70 0.45 0.96 21.60 6.22  2.20
IBCpp 11.20 -0.10 0.68 13.20 -0.05 0.83 15.00 -0.38 1.04
Clusters
Short lived Long lived 3 dark-states
Avg Bias Sd Avg Bias Sd Avg Bias Sd
PC-PALM1  18.10 6.80 270 21.70 8.45 276 25.20 9.82  3.40
PC-PALM 2 10.00 -1.30 1.35 11.90 -1.35 1.38 13.60 -1.78 1.70
IBCpp 11.30 0.00 0.69 13.30 0.05 0.79 15.00 -0.38 1.23
Fibers
Short lived Long lived 3 dark-states
Avg Bias Sd Avg Bias Sd Avg Bias Sd
PC-PALM1 2570 1440 1.95 30.50 17.25  2.49 36.60 21.22 292
PC-PALM 2  13.80 250  0.98 16.20 295 1.25 19.30 392  1.46
IBCpp 11.20 -0.10 0.66 13.10 -0.15 0.93 15.10 -0.28 1.12

A.8 Summary and discussion

In the present paper we have established the IBCpp family of spatio-temporal clus-
tered point processes, which is suitable for SMLM data, and we have provided a useful
result on the mark correlation function. We constructed the PALM-IBCpp, which is
an IBCpp model particularly well-suited for PALM data, and we have presented an
algorithm for estimation of the blinking dynamics. The special structure of the mark
correlation function in the IBCpp family allows for a semiparametric, moment-based
approach to estimation, which can be carried out without having to specify a model
for the proteins. The methods were validated on nuclear pore complex reference
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data, where we could demonstrate a close correspondence between the model fit and
expected blinking targets.

To demonstrate how the PALM-IBCpp can aid cluster analysis in PALM studies, we
considered a real dataset expressing the adaptor protein LAT. We devised a blinking
corrected global envelope test for CSR, and demonstrated it on the LAT data. In this
way we could show that roughly half of the cell was subject to significant protein
clustering, while the other half was not significantly different from CSR. We also
performed a refitting study, again demonstrating the ability of the PALM-IBCpp
model to accurately recover blinking dynamics in a realistic setting.

The ability to obtain blinking dynamics from any given ROI, without a need for
calibration data or parametric modeling of protein locations, is perhaps the most
important feature of our method, as it ensures that the estimated kinetic rates are
relevant to the ROI being analyzed. The well-known sensitivity of PA-FP photody-
namics to the experimental conditions [3, 33] means that kinetic rates obtained via a
calibration sample may not be entirely applicable in another sample, emphasizing
the importance of being able to directly estimate data artifacts from a given ROI.
Another key aspect of our method is how quickly it can be carried out, even on large
ROIs. Fitting to the LAT ROI in Section A.6, which consisted of 21742 localizations,
took 45 seconds to complete, on a laptop with an Intel Core i7 Processor (4x 1.80
GHz). The RAM usage was similarly modest, requiring 1.5GB at the peak.

The drawbacks of our method are as follows. First, although the IBCpp family
is generally applicable to SMLM data, the estimation algorithm developed here is
specifically for the PALM-IBCpp, and estimation in other SMLM modalities would
require additional work. The 4-state photoblinking model will be appropriate for
some PA-FP, whereas it will be a surrogate model for other PA-FP with more complex
blinking dynamics. As we have seen, the PALM-IBCpp fit is still able to capture
important descriptors of blinking dynamics when the model is misspecified, but
the parameters of the true blinking model will remain unknown. Finally, as the
methods are built on a semiparametric model, and a complex set of estimation
choices, theoretical results on the estimators are not forthcoming. The simulation
studies suggest that the estimators are well behaved, but we can only guess at this in
general.
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A.I Supplementary material

Supplement A: Moment results for IBCpp models

Let O be an IBCpp with motion-invariant protein process | X. Deriving the results

of Section 3.2 is perhaps most easily done by taking as starting point the f-weighted

. 2 .
second factorial moment measure, a;’, given as

#
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for A€ RY xR? a Borel set. By use of a Cambell theorem we obtain
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so that, comparing the above with the definition of the mark correlation function, we
get the alternative characterization
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and we need merely compute the involved factors. We first compute the 1-point mark
distributions. Let A c R? and B c R, be Borel sets, then we obtain
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where we exploited that the €; are independent of |X, G, and {t, } .1, when going
from the second to the third line. We also used the assumed form for the intensity
function of E in this step. From the above, we see that all involved mark distributions
are independent of locations, with

E|L7, La(ty,)
M‘Z“(B)z—[ EI[GI]? 4 ] (A.L8)
MY (B) = L—ﬂ(t eb[o’b])dt, (AL9)
My (B) = yMy (B)+ (1 - ML (B), (A.L10)
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based on which the normalization for ké is found

Jff o1-t0,) dM ol)dM (02) (A.L.11)
=12y (f) + (=0 Yy (f)+ 200 = ny5Z (f), (A.L12)
where
= fJf(tlrtZ)de(gl)(tl)dM,(gl)(tz)x (A.I.13)
= fff(tl, t)dMy (4)dMY (1), (AL14)
(2)

Next, we consider the second factorial moment measure of the typical cluster, ay_,
which will be needed below. For arbitrary blinking cluster Y, and Borel sets A C
R xR4, BC R, xR,, we have

G
a(AxB)=B| Y 10 ¢j)]lA(x+e,-,x+e]-)]lB(tyi,tyj)} (A.L15)
[ (i,j)=1
[ G
-E Z 1(i # j)Lp(ty,, y])] (A.L16)
| (4,/)=1

X J he(xg —x)he(xp — X)d(xlwa)’
A

obtained by averaging out the €; by conditioning on (G, {t,, }?:1 ), from which follows

(by observing what happens for B = R2)
al}) () =E[G(G-1)] helxy = x)he(ey = x)d(x,x2), (AL17)
) B[XE 0 16 = sty 1)
MY G.0= e AL18
= E[G 1] (AL18)

and we see that Mg) is independent of x. Finally, for the density of a}((z)’ we split the

summation according to the process memberships of each pair (respectively, two
points from the same cluster, points from different clusters, one cluster and one noise
point, two noise points):

G
a}Z)(A):]E Z Z ]l(i¢j)]lA(x+ei,x2+ej)f(tyi,tyj)] (A.L19)

[ G
+E Z Z ]lA(x1+ei,x2+e]f)f(tyi,t;j)

+E Ta(z,e)f(ty,te) |+ E

+E ﬂA(eliEZ)f(tel’tez) .
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Using Equation (A.I.17) and A.I.18, recalling that E is a Poisson process independent
of Z, and using that f is symmetrical, we see that

@) =p1(6) [ A~ txoadx (A1.20)
) [ (A4 - 1, x2)Ma Y 30
292 Az Apd(oq,
22 (f)L zAed(01,07)
+y§<f>f Ajgdml,oz),
=1 (fE[G(G-1)] lef (01 = x)he(09 = x)dxd(0y,0,) (A.121)
7l IKEIGE | [ axln=sallhlor =1 htoz ~2d(x1 (o 02)
“2yFF g [ dlon,o0)
7501} | dovoa)

Write m for the Lebesgue measure on R?. Then, using the rotational symmetry of h,

(2)
and gy, it follows that - i (01,02) depends only on r = ||o; — 05|, and
2a'?
L (1) = (P nedz (e xhe) (1) + y2(HAG (e * gx)(r) + 2757 (F)AZ Ag + V5 (F)AZ
o2 = 71 Nz 72 hz\Me * §x 72 ZAET V) B’
(A.L22)
where
(he*g)() = [ gl = xallhon = x1)hios = )1 ), (A123)
for |lo; — 05| = r, and in particular
da'?
¥9 (F1g0kb(r) = 4G =L (1) (AL24)
= Y1) melhe k() + 2 (F (e g)(r) = 1)+ 721, (AL25)
l
By setting f = 1 we see that
g0 = f—onc(he B () + 2 ((hex gx)(r) 1) + 1, (A.L26)

L

and using this above we obtain the desired equation

V(KD (Ngo(N = (1 ()= 72(f)) [f—oncwe *hexr)] 7280 -1]+ ¥2(f)
!
(A.L.27)
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Supplement B: Estimation procedures in the PALM-IBCpp

Extracting spatially invariant statistics from data

In this section we will consider how to extract estimators for the quantities

Cu Z(Vl(fu)—)/z(fu))nc, ueT.

Recall that for an IBCpp, we have

(¥ ks (Ng0(n) = 72f) 800 -1] =49 fu) ) Ao
. = . ueT, (A.1.28)
! (he *he)(r)n

and estimation of ,, is thus naturally done via estimators for each component on
the right hand side. Starting with # and /\i , these are both functions of the spatial
intensities of O and E. The standard estimator for the spatial intensity of a point
process is the relative number of points per area. In particular, if we have access to O
and E in separate windows, we set

. Ng

= E A.L29
E = T ( )
. N
A= —, A.L30
10 |W| ( )
where e.g. |[W| is the area of W, and consequently we get
A
H=1-E. (A.L31)
Ao

If we do not have access to E in this way, or if we do not wish to account for background
noise, we set instead 7§ = 1.
Moving on to estimators for the pair- and mark correlation functions, go(r) and

IAcg‘ (r), these are easily obtained using a number of standard implementations, for
instance using the kernel smoothing estimators in the R package Spatstat, or by
numerical differentiation of the mark-weighted K function [4, p. 646], which is signif-
icantly faster for large datasets, and is the method used in the supplied code. One
detail that must be dealt with, however, is which spatial distances, r, we wish to
consider. A default choice that emphasizes distances reflecting the spatial scale of
blinking clusters is suggested in Algorithm 1 of the main text.

Next, for the cluster autoconvolution (h * hi.), note first that the density of P, h,
can be obtained as a mean over Gaussian densities where the variance follows P,. By
changing the order of mean and the integration we thus obtain

2

2,2
Z(fr1 +02)

e

(he+ho)(r) = fhe@l e (yy—X)dx = B , (AL32)

2n(of +03)

where the mean is with respect to oy and o, independently following P,. We do
not know P,, but we do have predictions of oy in &y for each k € {1,2,..,N}, and the
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natural estimator of (h, * h.) is then to replace P, with the empirical distribution, P;,

of the observed localization uncertainties, that is

2

— (4 2(612+622)
(he < ho)(r) = B —— |, reR (A.L.33)
271(65 + 65)

with &, and 6, independently following P;. This mean can be computed e.g. via
sampling 4, and &, a larger number of times with replacement from {c%k}szl.

Finally, we need estimators of y,(f,) and yé)(fu). Here, yzo is more well-known as
the normalization constant in the mark correlation function, and a standard estimator
is

V5 (fu) = m Zﬂ(ltoi —to | <u), (A.1.34)
)

see [10, p. 393]. As the number of pairs in this sum can be quite large, a less computa-
tionally expensive estimator first sub-samples a smaller number of pairs to sum over.
Next, for y,(f,), note first that yg(fu) has a more formal description as the mean

y?(fu)zfo L F(t1,1)dMY (1)dMY) (1), (A.L35)

where Mg) is the 1-point mark distribution of O. This is important in the context of
estimating y,(f,) since we have similarly

72<fu)=f0 L Flty, t2)dM) (1)dM (1), (A.136)

where M(Zl) is the 1-point mark distribution of the blinking clusters in Z, which is
connected to Mg) by the identity

1 1 t
M(O)(t):nM(Z)(t)+(1—i7)E, (A.L37)
c.f. Supplement A. This suggests that we can estimate y,(f,) by first estimating the

M(Zl) using the empirical mark distribution MS) via

M () = (A.1.38)

and finally computing

P2(fu) = B[L(|t; - t2])], (A.139)

where t; and ¢, follow M(Zl). This can be done by sampling from M(Zl) a large number of

times, which can be accomplished using for instance the method of inverse transform
sampling.

We are finally in a position to extract C,. Since Equation (A.I.28) states that the
denominator and enumerator on the right hand side are proportional for each r, a
least squares fit suggests the estimators

; ol P FIRE (Ng0(r) = 72 fu)Go(n) = 1) = 79 (£ [(he T )]
Co ¥ er[(he she)(n)]

foreachueT.

, (A.140)
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Kinetic rate estimation

With the spatially invariant statistics in {C,)uer at hand, we are able to estimate the
kinetic rates. We set up the weighted minimum contrast problem

~ 2
mln ZZ( CAM ) (éu_(yl(fu)_)?z(fu))nc)zf (A'I'41)

ol o reR \ V2 fu)

where are weights chosen to emphasize the C, that are most informative. These

72 u
weights are motivated by the fact that

Cu _ Vl(fu)_ )
Vz(fu)_(VZ(fu) He

puts most weight on u € T where y;(f,) moves between 0 and 1, while down-weighing
large u for which y;(f,) is constantly 1 and weakly informative. In order to solve
the minimization problem in A.I.41, we need to know how y;(f,) and n, depend
on (rp,tg,tg), which leads to some rather gritty computations. In fact, we must be
satisfied with asymptotically (A — 0) exact approximations, derivations of which can
be found in Supplement C. Define the following random variables and associated
characteristic functions

Ny ~ Geomy(p),
Wg ~ Exp(rp + 1),
Wp ~ Exp(rr),

Wi ~ ExP(fF)

(PR E[ wWR]
(PF 7/ = E[EWWP]
¢(F+R) E[ vaF]E[ WWR]

rDM is the bleaching probability, and Geom, is a geometric distribution
starting from 1. Here, N; has the interpretation as the number of blinks (F-state
visits), and W is the holding time in state F, and similarly for Wp and W;. Next,
define the following quantities

where p =

| 2B[Np)(ppw)e A7 4 (B - 1) ediv 1) 1)
a (1—ehiv)2 ’

B(v) = pr() (E[d(rer)(v Nb]—l—E[Nb1q>p+R v)-1)),

B 2efivA2 ¢F(v)ei7’A7 -1
cl)= (1—€‘Ai7’)2[ Prer)(v)-1 |7
E(W2|-E[Ws]?
R

and the CDF u + y,(f,) then has characteristic function given as approximately

d(v) ~ w. (A.L42)
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All the involved mean values are elementary to compute, and we can thus obtain
our approximate y;(f,) by numerically inverting ¢(v), which can be done efficiently
using the fast Fourier transform, see e.g. [14].
For n., we recall that
E[G?
ne = - 11
E[G]

and we simply plug in the approximations

(A.1.43)

E[G] zE[Nb](E[ZVF] +1)—E[Nb—1];4}{,

2] 2
E[G2] E[Nz](E[WF]+1)2+E[Nb]E[WF]A2E[WF]

+IE[Nb—1 2] Hy) +E[Nb—1]( ~ (ug) )

—2IE[N;,(NI,—1)](M+1);4}2,

A
with
1 rRA+e_'RA -1
PR = TRA ’
o _ 2(1-e A —rgh) +(rRA)
iR (rzA)?

The functions f,, were selected precisely to eliminate the influence of rp, and r¢
consequently plays no role in the minimization problem above. In order to estimate r¢
we thus need an additional step. We have the following asymptotically exact relation

1 -1
R~ (572(f+) -A; —Bz) ,

where f+(t1, tz) = tl + tz, and

o el 3
S P
B, - (B 1y JGENy(Ny = DI (E[W] + B[Wr]) + EINp]AS)

E[N,] (B | 1)

Write A, and B, for A, and B, computed with the estimated (7p, 7g, 7) in the previous
step. We estimate y,(f,) directly from the observed timepoints using (A.I.38), and
obtain an estimator for rf as

1 N A\ b
Ly N ot —(1-9)% . .
pp = | X==L Og( '7)2—,42—32 . (A.L.44)

If the dataset recording was stopped too early, 7/ may be subject to censoring biases,
as we then only observed blinking clusters beginning before time b, and 75! is then
rather estimating the mean of the conditional distribution (W;|W < b). A corrected
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estimate can be found by equating this mean with its theoretical counterpart, i.e.
solving

: c
mn T’P.

Supplement C: Approximate discretized statistics

Approximate ¢(v)
The mean value to compute is formally

[Zl el ”’lmn J2|]
o= GG )

(A.1.45)

where we have dropped the heavier notation of timepoints in the main text, so that
(mj ,mj,) are arrival times (marks) j; and j, in the typical blinking cluster. Denote
again by N, the number of F-state visits (number of blinks), and by F, the observed
timepoints between the entrance to the s’th and (s + 1)’th F-state visits for s < N,
and Fy, are all observed timepoints after the last entrance to the F-state. Below,
we will assume w.l.0.g. that the timepoints are sorted, that is m;, <m;j, for (j» > ji)
when (m; ,m;,) € F; - this is entirely as a notational convenience. We can split the
summation according to whether mj, and m;j, are from the same F,, and otherwise
how many F-state visits are separating them. Thus

BT T e, €1
o) = E[G G— 1)] (A.L46)
]E[Zsl 1 Sy= 1]]-(51 ¢s2)Zm]1 eF, ijze 52 i?/lmjl_mjzl]
E[G(G~ )]

To compute these terms, referred to as the "non-separated” and ”separated” terms,
respectively, we write the involved quantities in terms of a continuous part, and an
error part, and demonstrate that the errors vanish asymptotically, and in particular
can be ignored for a given framerate as a valid approximation.

First, we consider the number of timepoints in F;, |F,|. Since only those frames
that do not fully overlap the signal from the s’th F-visit (of which there are at most 2)
cause discretization effects, we can write

WE
|Fs| =—

o Ef, (A.1.47)

where WE_is the waiting time that was spent on the s’th visit to the F state, and Efis
an error term with
P(Ef e(-1,2)) =1, (A.1.48)

and in particular, we obtain for G

Ny Ny WF
G= Z|F5| - Z A
s=1 s=1

Ny
+ ZESF. (A.1.49)
s=1
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Next, consider the inner sum from the non-separated term:

*
Z eI = (A.L50)

(mj, ,mj,)€Fs
Here, note that the first observed timepoint in F, msl, can be written as

s—1
m$ = El" + W, + Z(wpk + Wg,), (A.L51)
k=1

since there is always a waiting time of W} spent in the inactive state, and (s — 1) visits
in and out of the F state before the s’th visit. E{'"! is again a discretization error, with

magnitude
P(E5" €(0,A)) =1. (A.152)

Since each member of F; is a whole number of A-increments away from mi, this in
particular means that, for (m; ,m;,) € Fs with j, > j;:

Imj, —mj,| = (j2 = j1)A, (A.L53)

and any discretization effects, and the time spent in the I-state, can be seen to disap-
pear here. We can now expand on the non-separate term enumerator:

- .
E Z Z e/l =, (A.L54)
| s=1 (mj;,mj, )eF;
[ Ny #
-E Z V1 Viz=jiAj2)A (A.L55)
[ =T (j1,j2)€l1,2,. | )
Nb |F5| 1
—2F Z Z |E;| - j)e'id (A.L.56)
5:1 ]:l
[ Nb eivA (|Fs]-1) —ivA
_ )+ e VA(IFg| - 1) - |F|
=2F Z A1) (A.157)
Nb Z‘I/WpselvA( -1) 4 —sz( Wr, +EF—1) WFs EP
=2F , (A.L58)
(e—lvA_l)
| s=1

At this point, consider what happens in the limit as A — 0 for the complete non-
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separate term:

ivlm;, —m;, |
E[Z WL (mj, mj,)eF, € ’2]

li Al
AD0 E[G(G-1)] (A1:59)
oE [limAHo N v Wi ivAEE-1) %(eﬂm 1)+ EF(evA _1)— efivA]
_ . (A.L60)
. : Ny W, N, Ny W, N
lima o(eiv8 ~1)2 [E (200 S+ 2 EE) ]—E[zszl ;S+2521E5]]
N . iW,
2E(Y b 1+ivWg —e'VEs
- [ =1 L ] (A1.61)
2 Np
v E[(ZS:l WFS) :|
2E [Ny (1 + ivIE[Wg] -
_ [Np] (1 +ivE[Wg] - ¢pp(u)) _ (AL62)

V(B[N E[W2 ]|+ E[Ny(N, - )] E[W;]*)

Predictably the rounding errors play no role in the limit, and as a simple approxi-
mation we therefore set EI' = % to the midpoint of its domain for all s, to obtain the
asymptotically exact approximation:

iv|m; |
e 17 M2
I:Z Z m]] GF :|

E[G =) (A.I.63)
F [ZNb P ivAL + e—ivA(% _ %) _ % _ %]
=~ 5 " (A.I.64)
=12 || (2 % ) |- [ S 4]
2E[N, ) (pp(v)e ™2 + e AET - 4) B 1) (A.L65)

by
= 2 y
(e—ivA_l)z(]E[N;](%_,_i) +E[N, ][E[Wz -E[Wr] E[K/F]_%])

which is %.

Now, consider the separate summation enumerator. We use similar techniques as
before. Note that for F and F;, there are |s; —s; — 1| W waiting times, and [s; —s,| Wg
waiting times, separating the closest pair in F;, x F, , up to rounding error. Thus, if
we enumerate the timepoints in F;, instead starting from the end (so that m]' €F, is
the j’th largest value in F;, j > 1), the differences in timepoints m’ € F,, and mj, € F,,

i
with s, > s;, can be written on the form.

$2—51

il =gl = W, + ) (W L+ Wr, )+ (1 + j2 = 2)A+Egs, ), (A.L.66)
k=1

where E ) only depends on (s,s;) and has

P(E(s,5,) € (<A, A) = 1. (A.L67)
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Therefore:
N, N, ‘
Z Zn s1 # 59) Z Z eIy =] (A.1.68)
s1=1sy= i) €Fsy mj, €Fs,
Ny-1 N,

ZZZ Z Z Z eIy —mj, | (A.1.69)

s1=1 sy=s1+1mj €Fg mj, €F;,

Ny-1 Ny

-5 .
_5 Z Z Sze 1 (WR51+k+WP51+k)elVE(51'52) (A.I.70)
s1= 152 s1+1
Fo | IFy|
omivA2 Z Z v(j1+j2)A
hi=1j=1
Ny-1 Ny
-2 Z Z H}Wsz elvzk ( sl+k +Wr, 51+k)elVE(51'52) (AI71)

s1=1 sp=s51+1

(eiVAlpsl | _ 1)(eiVA|F52| _ 1)

(eivA _ 1)2

% e—szZ

At this point, it should be clear that discretization effects again have no impact in the
limit. For the sake of completion, we compute also this asymptotic value:

E[Zsll 521 (Slisil)Zm 1€Fs Z i, €Fs eW|mh—mj2|]

pim, E[G (G- 1)] (A.L72)
-E 22?1];’:11 Zsz 51+1 ZSZ ! s1+k +Wr 51+k)(eivWF51 — l)(eiVWFSZ - 1)]
) 2(1E[Nb]1E[w£]+E[Nb<Nb—1>]1E[wF12)
(A.L73)
2220 o) (1 + BN @r-r )~ 1)~ B[y 0]
_ . (A.L.74)

v2(E[N, | E[W2]+ B[Ny (N, - 1) E[W])

Thus, replacing again all discretization errors with the midpoints of their domains

(EF = %,Esl,sz = 0), we get an asymptotically exact approximation:
E[Z’Sl 1 L=sy= 11[(51 * SZ)Zm L €F5, Zm ,€F,, ewlmh _mf2|]
IE[G )] (A.1.75)
2e—ivA2((’)¢((F+)R—) or(v E[(j) F+R)( )Nb]—l—]E[Nb] P(Eer)(v) - 1))
N , (AL76)

21_
(e-ivh — 1)2(]E[N§](E[ZVF1 N %)2 CEN] [E[wp ]A;E[Wp] B %])

1 i B)C()
which is =~
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Approximate n,
We wish to compute
E[G?]
"SRGl T
Instead of approximating the moments directly, we first approximate the distribution
of G, from which the moments can be obtained. We can write somewhat loosely

(A.L77)

b Np-1
G= Z#(frames hit by the s’th F-signal) — Z 1(F-signals s and s+1 share a frame),

s=1 s=1

(A.L78)
where by "sharing"we mean that the continuous time signals emitted from the 2
F-state visits hit the same frame. Now, computing the distribution of G from this
representation is made intractable due to the dependence and complicated behavior
in the summands caused by disretization to the fixed grid AZ. Instead, we replace
the summands with their mean under disretization to grids AZ + U, where U ~
Uni(0,A). Write Ey [] for this mean, and let |a] and {a} denote the integer and
fractional parts, respectively, of a number a. Write T/ and T for the entrance and
exit times, respectively, for the s’th F-state visit, and D, for the distance from TSI to
the nearest gridpoint larger than T/. Then, we obtain for any s

U [#(frames hit by the s’th F-signal)] (A.1.79)
= W A7 |+ By [21(D; < (Wp, A7) + 1(D; > (W, A7))] (A.1.80)
= [We A7+ 2{Wp A7+ (1= {We A7) (A.L81)
=Wp AT+ (A.1.82)

Now, for the second sum, we get
Ey [1(F-signals s and s+1 share a frame)] ( )
=1-Ey []l(there is a gridpoint between TO and TSI+1 )] ( )
=1—(Wr AT'L(Wg, <A)+1(Wg, > A)) (A.1.85)
=L(Wr A7 <1)(1-Wg AT ( )

, and our approximation for G is thus

 We,
G~ Z Syl- 1) (A.L87)
from which we obtain
E
E[G]zE[Nb](%+l)—E[Nb—l]y}e, (A.L.88)
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where yR = JO deR( x), and

E[W?]- B W]’
A2
+B[(N, - 1?](4)> + B[Ny = 1] (1% — (11)?)

E[G2]~E[Nb2](E[WF] +1) +E[N,] (A.1.89)

—2E[Nb(Nb—1>1( [ZVF]H);J}Q,

with i3 = [ (1 -x)dPwg (x).
A
If we write n,(A) for the approximation of 7, given a framerate of A~!, we have
that n.(A) is asymptotically exact in the sense that, after appropriate normalization,

we have

lim Ang(A) = lim An,, A.190
lim nc(A) lim An, ( )

where this asymptotic value is given as

E [N E[W2]|+E[Ny(N, - 1)]E[ W]’

ilir})An B[N, E[We] (A.1.91)
Approximate y,(f,)
By definition, we have
BlLC, XY fulmem)|  BILE, LY, my+m]
y2(fi) = | ! i) = [ ! ]], (A.1.92)

E[G]? E[G]?

where we again drop the drop the heavier time point notation, such that e.g. my is
arrival time k in a typical cluster, and m]' is arrival time j in an independent copy of
the typical cluster. Clearly, then,

1 E[Z]?:] mk]

2720 = g (A.L93)

Now, write T/ for the (continuous) entrance time to the s’th F-state visit. Then the
first observed timepoint in F; can be written as T/ + E,, where E; is a discretization
error with P(0 < E; < A) = 1. Note further, that

s—1
T = Wy + Z(wpi + Wg), (A.L94)
i=1

and we arrive at the expression

X IE[Z IF(T +E)+Z|F|kA]
572(f+) E[G]
_B[Z IR B AB[LE FI(E]+1)]
E[G] " 2E[G]

(A.1.95)

(A.1.96)
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Now, settmg everywhere |Fy| = WFS + 2 as in Supplement C.1, and similarly setting all
E, = AL 5, we get

e - E[G] , (A.L97)
and
E[Z |F|TI+E)] A Los
E[G] (A.L98)
B[ (5 + D W, + W)+ AD)]

=E[Wr]+ E[C] (A.1.99)

E[We] | 1)1 _ 1
_Ew]s A ) GE[Ny(Ny = D](E[WE] + E[WR]) + E[N,] A7) (AL100)

E[G] ’

so that using E[G] = E[Ny] (% + %) yields the approximation. Again, the approxi-
mation is asymptotically exact, with limiting value

E[W](LE[N,(N, - D] (B[W]+ B[Wg])  E[W7]

B[N, JE[Wr] TE[W,]
(A.1.101)

1
ilngz(f+)—E[W1]+

Supplement D: Use on general general protein samples

In this section we show that we can use the same estimation procedures from the
main text on samples with general distribution for | X, and still expect meaningful
estimates. We assume here that the spatial dimension is 2, but the same arguments
can be made in arbitrary dimension with minor changes.

Assume that the IBCpp O is observed with N points in W x [0,b]. Standard

estimators of 7/? (f )k{) and 80, if O were motion-invariant, are given as

Yizj f(to to;)xc(lloj — 0jll = r)w(oj, 0j) L (05, 05)

NI
72 (Fko(r) = Yoy w0 o~ rwlop o) w(o o) (A.L102)
go(r) =c(r) ZK(”Oi —0jll=r)w(o;,01)Lw (0}, 0;). (A.1.103)

i#]

Here, c(r) = (2rnr)"'N72|W|, x is a smoothing kernel, w(x,v) are edge correction
weights, and 1yy(0;,0;) is the indicator that both o; and o; are in the set W, see
e.g.[10, p. 308, 393]. To avoid most complications from edge effects we imagine in the
following that |X is finite, and the observation window W is chosen large enough that
every point in Z is observed with probability ~ 1. Further, we set w = 1 for all pairs.
Although these simplifying assumptions can often be satisfied in practice, as | X is
naturally finite and typically entirely observable, smaller ROIs are more convenient
to work with, and will then be subject to edge effects. Fortunately, for the size of a
typical ROI in SMLM, edge effects should be negligible.
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[

Choosing the same kernel for both estimators above, an estimator of S is

éé(r) = go(r)??(f)ké(r) =c(r) Zf(to,», to;)k(llo; —ojll = r)Lw(0;,05).  (A.L104)

i#]

Rather than computing the mean of S% directly, we consider the mean of N2§é(r),
which yields slightly more elegant computations. By splitting the summation accord-
ing to the cluster and process relationships of pairs, using the symmetry of f, and
writing &(r) = N2¢(r), we obtain

E[Nzéguﬂ (A.L105)

%
—Blean Y Yl teliv - el - Al (0132)
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+E|é(r) Z Z Z [ty ty)x(lyr = poll = 1) Lw (v1,2)

(Xl»XZ)ELXZ (ylrtyl )EYxl (ertyz )Gsz
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x€ X (

V)Y, (et )eE
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Using the spatio-temporal dependence structure of our model, we average out the
clusters to arrive at

E[N285(n] = n(FmEIGIE|er) ) (he *ha,’:(r)} (A1.106)

xe X

#

“PBIGPE|er) ) (heh)f, (1)

(x1,%2)€ X2

+ 25X (FIBIGIALE|E(r) ) (hexhe)(r)

XELXZ
+ 73 (FIAZE[E(r) (e he)(r)],

where
(hexhe)x(r) = J-K(”tl —toll=r)he(t)he(t2)Lw (x + 11, x + tr)dtydty,  (AL107)
(he *he)y, 2, (1) = JK(||t1 +x1 = by = Xoll = r)he(t1)he (1) Ly (x1 + 11, %2 + £r)d tydt,
(A.L.108)
(he *he)i(r) = JK(||x+ B — bl =) (b)) Ly (x + £y, t)dt 1 d iy, (A.I.109)
(he*he)*(r) = fK(||t1 —toll = r)Lw(ty, t2)dty dt,. (A.L110)
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By considering what happens for f = 1 (in which case y1(f) = y2(f) = yf(f) =
yfz(f) = 1), we see that we can rewrite the above as

E[N285n] = 01(H) - naInEIGIE

&(r) Z(hs *h€)§(r)] (AL111)

xe X
+72(f)E[N?go(r)]

+2(5%(f) = 12 )E[G] AL E

&r) ) (he *h»,’:(r)}

xelX
+ (75 () = ya FDAFE[E(r) (R = he)* (1),
and we already have a very similar expression to the motion-invariant case. The

obstacle to further exact computations come from edge and kernel biases. For the
pure cluster term, since we assumed that Z is contained in W with large probability,

we have
(he *he)x(r) ~ jK(IIh —tall = r)he(t1)he(t2)dt  dt, (AI112)

= JK(lItIH — P)he(ty + )t he(ty)dts (AL113)

= Jlk(l — 1)he(I[cos(0),5in(0)] + t2)d1dOh,(t,)dt, (AL114)

= ZRJlk(l—r)(he*he)(l)dl, (AL115)

obtained by polar integration, which is a kernel-smoothed version of the cluster
autoconvolution. In particular, for small kernel bandwidths, we have

E[G]E|é(r) Z(he*he)§(f) = E[G](27r)  WIAX(W)(he +he)5(r)  (AL116)

xe X

~ [WIA Z(W)(he * he)(r), (A.L117)

since Az(W)~ Ax(W)E[G] as Z is contained in W with large probability. Using the
same tricks for the mixed term, we have

(e k50~ [l b=l () dty (AL118)
:JK(“tz“—T’)dtzjhe(tl)dfl, (A1119)
so that, for small kernel bandwidths we have
E[G]E|é(r) Z(he *he)§(r)] ~ WA Z(W). (A.1.120)
XElX

Finally, for the pure noise term, note that

AFE[E(r)(he + he)5(r)] = B[IE A WPge(r)], (A.L121)
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where §g(r) is the estimator of the pair correlation function of a stationary Poisson
process, so that we can reasonably expect

AFE[E(r)(he + he) 25 (r)] ~ B [lEnwP]. (A.1.122)
Thus, assuming the kernel bandwidth is not too large, we obtain
E[N285()] = 01(F) = 72N WIA - (W)he <)) (A1123)
+72(fIE[N?go(r)]

+ 2057 () = y2(FDAE(W)AZ(W)
+5 (N =y ME[ENWP],

Using simple Taylor expansions for the mean values, we have
: W)
B[$50)|= 0n(h)ratfome 5

(W)W
+72(f)B[go(r)]
+ 252 (F) = 72 )n(W)(L = (W)
+(VE(F)=r2)A=n(W))?,

(hexhe)(r) (A.1.124)

or
R w
B[ S50~ 015 727 ) 5 b+ v NE[Go ()] - 1)+ 725, W),
(A1125)
where
_Az(W)
1) = 22 (A.L.126)

YO W) = (W) pa(f) + (1= (W) Y5 (F) + 2n(W)(1 - n(W))yEZ(f).  (AL127)

Thus, whether X is motion-invariant or not, the mean of the involved summary
statistics take approximately the same shape. Note that, since a general distribution
for | X does not change the spatio-temporal dependence structures, and since all
intensity estimation is done for the entire ROI (e.g. the local intensity of O is not
needed, only Ap(W)), each term above is naturally estimated by the exact same
procedures we developed for the motion-invariant case - the only difference is in
interpretation, which must now be conditional on W.
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Abstract

Photoactivated localisation microscopy (PALM) produces an array of localisation
coordinates by means of photoactivatable fluorescent proteins. However, observa-
tions are subject to fluorophore multiple-blinking and each protein is included in
the dataset an unknown number of times at different positions, due to localisation
error. This causes artificial clustering to be observed in the data. We present a
workflow using calibration-free estimation of blinking dynamics and model-based
clustering, to produce a corrected set of localisation coordinates now representing
the true underlying fluorophore locations with enhanced localisation precision.
These can be reliably tested for spatial randomness or analysed by other clustering
approaches, and previously inestimable descriptors such as the absolute number
of fluorophores per cluster are now quantifiable, which we validate with simu-
lated data. Using experimental data, we confirm that the adaptor protein, LAT,
is clustered at the T cell immunological synapse, with its nanoscale clustering
properties depending on location and intracellular phosphorylatable tyrosine

residues.
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B.1 Introduction

Single molecule localisation microscopy (SMLM) methods, such as PALM, circumvent
the diffraction limit of light by separating fluorophore detections in time through
stochastic activation and photobleaching, and then localizing the resulting sparse
distribution of point spread functions[7]. The resulting point-pattern is a purported
realisation of the underlying ground truth positions of the fluorophores, but is cor-
rupted by a number of artefacts resulting from the photophysical behaviour of the
probes as well as the imaging and localisation steps. Most problematic is the multi-
ple appearance (multiple-blinking) problem where fluorophores undergo multiple
on-off cycles before permanently bleaching, combined with the discretization effects
that result from observing fluorescent signals on discrete camera frames[1]. The
multiple-blinking problem results in data sets that are artificially clustered and
overly populated (Figure B.1 a). As such, quantitative cluster analysis of SMLM data,
in particular testing for spatial randomness of the underlying fluorophores, remains
a challenge.

The most commonly employed method for correction of the multiple-blinking
problem is to merge events that appear close in space and time[2, 3, 16]. Such methods
require a means of determining the best spatial and temporal thresholds for merging.
This determination typically relies on heuristic methods, since the blinking behavior
of the fluorescent probes is often unknown, and can vary between experiments. Apart
from the challenges involved in determining optimal thresholds, these methods have
variable performance, depending on the underlying protein organization and blinking
characteristics. Instead of attempting to produce a corrected version of the data which
can then be used for any subsequent analysis, other approaches have looked to correct
specific spatial statistics to account for multiple-blinking. For example, it is possible
to estimate a multiple-blink corrected pair correlation curve[28, 26]. However this
cannot then be used to find a cluster map.

In this work, we present a new method for correction of multiple-blinking artefacts
in PALM data, which estimates, directly from the sample data set, the parameters of a
realistic model of fluorescent protein photophysics [15]. Cluster analysis of the spatio-
temporal (x,v,t,0) data set then allows computation of the marginal likelihood of any
given blink-merge proposal, under a full generative model for the data. We select the
most likely of several proposals generated using a customised hierarchical clustering
algorithm. Finally, each blinking cluster is consolidated into a single position, now
free from multiple-blinking and with improved localisation precision. The overall
effect is to convert the set of raw (x,y,t,0) localisation data into a new set, (x,y,0),
with enhanced resolution.

We validate the method on simulated PALM data, varying both the ground-truth
organization (regular, random, clustered) and photophysical properties of the fluo-
rescent proteins (light and heavy multiple-blinking). In each case, we compare to
the state-of-the-art method of dark time thresholding (DTT). Our method allows
for testing the completely spatially random (CSR) hypothesis at the correct signifi-
cance level, whereas the thresholding method fails to do so, and also outperforms
the state-of-art in every other metric (including ground truth recovery and extracted
cluster properties). PALM is increasingly used in the biological sciences and owing
to the properties of commonly used total internal reflection fluorescence (TIRF) illu-
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mination, the distributions of membrane proteins have been especially well studied.
Despite this, because of artificial clustering resulting from multiple-blinking, the
question of whether membrane proteins are randomly distributed or not has become
increasingly contentious[23]. Using our validated method combined with subsequent
testing of the corrected protein locations, we show that the adaptor protein Linker
for Activation of T cells (LAT) is clustered in the plasma membrane of CD4+ Helper
T cell lines after the formation of an artificial immunological synapse[29, 17] against
an activating, antibody-coated surface. However, subsequent Bayesian cluster analy-
sis[25, 14] shows the clustering properties to be dependent on its macro-scale location
within the synapse and on the presence of intracellular phosphorylatable tyrosine
residues which mediate protein binding. We now propose that PALM, combined
with the method we present here, can be used to test for spatial randomness in other
membrane protein species.

B.2 Results

B.2.1 Description of the algorithm

We work with the space-time localisations and uncertainties that result from localisa-
tion software (here ThunderSTORM [18]) that is run on the raw microscope data. We
apply drift correction, but otherwise no pre-processing is used. The data points are
then modeled as a collection of independent and identically distributed fluorophore
blinking clusters, with times following a realistic 4-state model[11, 8], discretized by
the camera frames. The spatial locations for each cluster are independently drawn
from a circular Gaussian distribution of fixed centre (the true molecule position) and
variable but known standard deviation (the localisation uncertainty). The centres are
given a uniform prior over the region of interest (ROI).

We refer to our algorithm as model-based correction (MBC), and a schematic of
its workflow is shown in Figure B.1 b. We first estimate the temporal rates governing
the switching behaviour of fluorescent proteins under the 4-state model [15], and the
fraction of background noise points. This is done directly using the experimental data,
requiring no additional calibration experiments. A recently developed mathematical
technique extracts a component from the empirical mark and pair correlation func-
tions which depends only on the spatio-temporal dynamics of the multiple-blinking
process, and not the underlying protein distribution. The parameters of the 4-state
model drive the theoretical shape of this component, and so they can be optimised to
best fit the empirical version [15]. The rate-estimates allow computation of the likeli-
hood of a sequence of timepoints purported to correspond to one multiple-blinking
fluorescent protein, and further yields an estimate on the total number, N, of proteins
and noise points in the ROI. Using a custom agglomerative hierarchical clustering
(HC) algorithm[9], we split the data in the ROI into partitions with N categories.
HC takes as input a dissimilarity matrix and a linkage criterion. The dissimilarity
matrix determines the distances between pairs of points, and the linkage criterion
determines the way to generalise this distance to pairs of clusters. To favour groups
likely to correspond to multiple-blinking clusters, we first scale the temporal dimen-
sion by a time-dilation hyperparameter, S, and then compute the sum of Euclidean
distances in space and in time. For linkage, we choose Ward’s Minimum Variance
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Method[9], which is well-suited for Gaussian clusters, and consistently resulted in
the most likely partitions across all tested linkage criteria. By varying S, we obtain a
large sequence of blinking cluster proposals, and evaluate the marginal likelihood of
each using a uniform prior on the partitions. Finally, using the best found partition
and the localisation uncertainties, we optimally merge the clusters down to their esti-
mated centres, using inverse-variance weighted averages, and update the uncertainty
associated with that centre.

B.2.2 PALM data simulation setup

For a given set of protein positions, corresponding PALM data were generated as fol-
lows. We simulated fluorescent protein time traces according to the 4-state switching
model (see Figure B.1 b), and the continuous signals were discretised to emulate a
camera operating at 25 frames per second (40 ms integration time). This was done for
2 different sets of rates (given in Table B.1), with the light blinking resulting in 5.36
appearances per protein on average, and the heavy blinking resulting in 14.94 appear-
ances. For each of these appearances, the observed spatial coordinates were simulated
by adding Gaussian localisation noise to the ground-truth position of the associated
fluorescent protein, with standard deviation following a Gamma distribution with
mean 30 nm and standard deviation 13.4 nm, emulating the localisation uncertainties
that can be observed in real PALM data [29]. Each simulated ROI was corrected using
MBC and compared to correction using DTT (Figure B.2 a). For DTT, points were
considered to have come from the same fluorophore if they were separated by at
most 4 times the mean localisation uncertainty in space, and were no further than T
apart in time, where the optimal T was determined for each ROI using the method of
Annibale et al [3].

B.2.3 Testing for complete spatial randomness

We first evaluate our algorithm for testing for complete spatial randomness of the
underlying ground-truth proteins. In each run (n = 30 per condition), 500 proteins
were placed at random in a noiseless 3000 nm x 3000 nm ROI. For each ROI, we
compute the function L(r)-r (Figure B.2 b), where L is Besag’s L function[10], testing
its maximum (Figure B.2 c¢) under a CSR null hypothesis. The standard DTT correction
method was unable to recover the ground-truth functions and resulted in rejection
of the CSR null hypothesis in 24 and 30 out of the 30 regions, for light and heavy
blinking respectively. On the other hand, MBC resulted in the CSR null hypothesis
being rejected for 2 and 4 of the regions for light and heavy blinking respectively.
These numbers are within the expected range at a 5% confidence level. Thus, we were
able to reliably test the CSR hypothesis using MBC, but not using DTT. The estimated
total number of fluorescent proteins in each ROI is shown in Figure B.2 d. Under
CSR, DTT tends to overestimate the number of proteins in the ROI whereas MBC
closely recovers the ground truth.

B.2.4 Cluster analysis

In this experiment, we demonstrate that a clustering algorithm can extract correct
cluster descriptions from underlying clustered ground truth protein distributions
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when coupled with MBC, and we compare performance with DTT. We simulated
data from 2 clustered protein distributions (n = 30 per condition). In each run, 500
ground-truth proteins were placed in a 3000 nm x 3000 nm ROI, with either 10
clusters of 10 molecules each, overlaid with 400 CSR molecules (light clustering) or
10 clusters of 40 molecules each, with 100 overlaid CSR molecules (heavy clustering).
Clustered points were simulated as symmetric Gaussian clusters with a standard
deviation of 30 nm, and the cluster centres were uniformly distributed over the ROI.
Again, both light and heavy blinking was then added to the localisations, resulting in
4 conditions of spatial organisation and blinking characteristics (Figure B.3 a). We
used Bayesian cluster analysis [25] for detection of clusters in MBC and DTT corrected
data sets. Only MBC could consistently recover the 10 clusters under varying degrees
of blinking severity (Figure B.3 b). The failure of DTT to recover the correct number
of clusters is even more evident in the case of heavy clustering (Figure B.3 c and d).

B.2.5 Recovery of the ground truth

In addition to simulating realistic data, we also consider a more controlled, synthetic
setup wherein ~500 fluorescent proteins are regularly positioned on a ~3000 nm x
3000 nm grid. The nature of this dataset allows for easier comparative visualisation
of the performance of MBC and DTT (Figure B.4 a), and the improvements offered by
our method are visually clear. To validate this, we also compute the 1st Wasserstein
distance between the true and corrected grids. This can be thought of as the cost of
transporting a standardised mass between two sets of points, and is also known as
the earth mover’s distance. For a perfectly reconstructed grid, this distance is zero,
with any discrepancy increasing the distance. For 50 realisations of both light and
heavy blinking on the grid, we see that MBC presents an improvement over DTT,
with a lower distance to the true grid, particularly under heavy blinking conditions
(Figure B.4 b). Because MBC is robust to heavy blinking, relative to DTT, it is in fact
able to use heavy blinking to its advantage, by averaging localisation precisions from
large groups of merged observations (Figure B.4 c).

B.2.6 Determining optimal imaging conditions

As a final test using known ground-truth simulated data, we used Virtual-SMLM[13]
to simulate raw camera frames. This allowed us to test the effect of varying both the
camera frame rate and the intensity of the 405 nm activation laser on the performance
of MBC. A ground truth of CSR fluorescent proteins were simulated (Figure B.6 a),
imaged using the virtual microscope and output analysed with ThunderSTORM.
The camera integration time was set to either 10 ms or 40 ms and the 405 nm laser
intensity either kept constant, or ramped to maintain a constant density of point
spread functions (PSFs) per frame over the course of the acquisition. Raw localisations
(Figure B.6 a) were then corrected using MBC (Figure B.6 b). The Wasserstein distance
shows marginally superior performance of the reconstruction when using constant
405 laser power and when using longer, 40 ms frames. We attribute this to the lower
density of PSFs per frame in the constant-405 case leading to fewer overlapped PSFs
during localisation and to the increased localisation precision offered by the longer
frames (Figure B.6 c). The performance of MBC itself is only weakly dependent on the
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imaging conditions, and in each condition we were able to recover the ground truth
number of molecules to within around 10% error. We conclude therefore that when
using MBC, PALM imaging conditions should be chosen to maximise conventional
notions of data quality — low density of PSFs and high signal-to-noise ratio. Because
of this, we also conclude that MBC is also backwards compatible with all historically
acquired PALM data.

B.2.7 Analysis of experimental data

Nanoscale clustering is posited to play a role in regulating protein-protein interac-
tions and therefore the efficiency of signalling propagation along pathways[22]. In the
context of an immune response, T cell microclusters of proximal signalling molecules
have been widely documented by conventional total internal reflection fluorescence
(TIRF) microscopy[12, 20]. Many of these have recently been studied by SMLM and
shown to also be clustered on the nanoscale[29, 17, 24, 21]. The claim has proved
controversial however, with counter-proposals that, in some circumstances, proteins
may in fact be randomly distributed on the cell surface, with observed clustering
attributed to multiple-blinking artefacts inherent to SMLM [23]. For PALM data,
MBC should enable researchers to navigate this controversy.

To demonstrate the application of MBC to experimental data, we analysed the
distribution of the adaptor protein LAT[5] in the plasma membrane of the Jurkat
CD4+ Helper T cell line at an artificial immune synapse formed against an activating,
antibody coated coverslip (see Supplementary material). To assess the role of intracel-
lular phosphorylation in maintaining this distribution, we also mutated intracellular
tyrosine residues to phenylalanine (YF LAT). Both wild-type (WT) LAT and YF LAT
were fused to the photoconvertible fluorescent protein mEos3.2 with cells imaged
under TIRF illumination. Raw localisations were obtained using ThunderSTORM
and then corrected using MBC. The resulting corrected localisations were then tested
for spatial randomness using the L-function, and any regions found to be clustered
subjected to Bayesian cluster analysis[25].

Figure B.5 shows WT and YF LAT-mEos3.2 from representative regions (from n
=12 - 25 ROIs from 3-6 cells) acquired from the central regions of the cell synapse
and from the synapse periphery, both before (Figure B.5 a) and after (Figure B.5 b)
correction using MBC. Clearly, the large, dense clusters evident in the uncorrected
data in all conditions are reduced in the corrected regions. However, by analysing
the L-function curves from the ROIs (Figure B.5 c) and extracting the maximum
value of those curves (Figure B.5 d), we were able to perform significance testing
on whether the LAT distributions were truly CSR. For the two WT LAT conditions,
the null hypothesis that LAT is randomly distributed was rejected in most regions.
Therefore, it is likely that WT LAT was clustered in most analysed WT ROIs. This was
not true for the YF mutant however, with the null hypothesis of randomly distributed
LAT not rejected in the majority of peripheral regions (Figure B.5 d). This therefore
may point to a role of intracellular tyrosine phosphorylation in maintaining LAT
clustering.

For all regions where the CSR null hypothesis was rejected (treated as clustered
regions) we then further interrogated the data using Bayesian cluster analysis. In
addition to existing cluster descriptors output by the algorithm, the number of points
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per cluster (cluster membership) is now biologically relevant, since this now repre-
sents the number of real fluorophores, not detected localisations. For WT LAT the
data showed no statistically significant difference in cluster membership between
central and peripheral regions. However, the YF mutant showed a significant decrease
in the number of molecules per cluster in peripheral regions, both when compared to
YF central regions (p = 0.026) and compared to WT peripheral regions (p = 0.001)
(Figure B.5 e). Other outputs from the cluster analysis: number of clusters per ROI,
cluster radius, percentage of molecules in clusters, total molecules per ROI and the
relative density of molecules inside and outside clusters are shown in Figure B.7, with
p-values summarised in Table B.2. The decrease in cluster membership and, in some
ROIs, the loss of clustering altogether, in peripheral regions of the T cell synapse
resulting from the YF mutation, is a strong indication that intracellular tyrosine
phosphorylation is involved in maintaining LAT signalling clusters. Signalling phos-
phorylation events are known to originate in the synapse periphery and it is therefore
consistent that the effect of the mutation is most pronounced there, compared to the
central region where signalling is terminated[27].

B.3 Discussion

Super-resolution fluorescence microscopy by SMLM, such as PALM, results in a
pointillist data representing an attempted realisation of the underlying ground-truth
fluorophore locations1. A common goal in the biological sciences is to test whether
such underlying distributions are clustered or randomly distributed and, if clustered,
to determine their clustering properties. Achieving this goal has proved difficult
however, because the generated localisations are corrupted by artefacts, principally
the repeated localisation of the same fluorophore due to multiple-blinking[1]. This
has led to controversy about whether proteins are truly clustered in cells, hindering
our understanding of the causes and function of nanoscale protein clustering.

Here, we develop an algorithm, MBC, for correcting multiple-blinking that re-
quires no user input, no additional calibration data, and is not limited to a specific
analysis goal. We show that it can be used to reliably test for spatial randomness or
recover other clustering properties from the ground truth. A number of methods have
been put forward to test for spatial randomness in SMLM data. These include, for
example, methods based on varying the labelling density and observing the effects on
specific cluster analysis outputs[6] or by labelling the same species with two different
fluorophores allowing a cross-comparison to be made[4]. These methods, however,
require multiple sample preparation rounds and are therefore more complex and
time-consuming. Correction can also be made by measuring blinking behaviour
in a separate sample of well-isolated fluorophores, but this again adds complexity
and experimental effort and requires the assumption that probe photophysics is
maintained between the sample and the calibration. It is also possible to measure
or simulate multiple-blinking using realistic photophysical models and use these
to derive new CSR confidence intervals for the L-function curves[19]. It should be
noted however that while all of these competing methods can be used to account
for multiple-blinking, none produce a new set of corrected positions and therefore
none can be used to extract rich descriptors such as those output by a clustering
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algorithm. MBC therefore represents a new capability - of obtaining a set of corrected
ground-truth locations of sufficient quality that any subsequent statistical analysis
can be conducted with assurance.

The limitations of MBC are as follows. The method is only applicable to the four-
state photophysical model typical of PALM acquisitions, and therefore cannot be used
to correct dSTORM or other SMLM modalities. Performance of the correction will
decrease as the clustering of the ground-truth increases, however, it tested favourably
with realistic and heavily clustered scenarios. The method also adds computational
time to any analysis pipeline. For a 3000 nm x 3000 nm ROI containing 500 ground-
truth proteins, we estimate the MBC step to take 3-5 minutes per ROI on a standard
desktop computer. Of course, as it results in fewer points per ROI, subsequent analysis
will typically be accelerated. While here the correction is limited to 2D data, it
can in principle be adapted to 3D x,y,z coordinates. In conclusion, MBC allows for
accurate recovery of ground-truth fluorophore positions, with enhanced precision,
from PALM data sets subjected to multiple-blinking artefacts. For the first time,
these corrected sets are of sufficient quality to allow accurate cluster analysis and
the statistical testing for complete spatial randomness. We therefore believe that
PALM combined with MBC will be an invaluable tool for addressing questions on
the existence, determinants and functions of protein nanoscale clustering.

Data and code availability

Raw experimental data available upon request. MBC code is available as Supple-
mentary Material together with installation instructions and example simulated data
sets.
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B.I Supplementary material
Blinking simulation parameters

Table B.1: Rate parameters used to simulate multiple-blinking for the light and heavy blinking cases,
using the 4-state model shown in Figure B.1 b.

Rate parameter Light blinking (LB) Heavy blinking (HB)
e 0.005s7! 0.005s7!
g 8s~1 2.5571
%) 10571 10571
R 0.75s71 0.75571

Sample preparation

For LAT images, Jurkat E6.1 cells (ECACC 88042803) expressing LAT-mEos3.2 (wild-
type, WT LAT, or signaling deficient mutant, YF LAT) were introduced to anti-CD3
(at 2 pg/ml; eBioscience clone OKT3, 16-0037-81) and anti-CD28 (at 5 ug/ml; RnD
Systems, clone CD28.2, 16-0289-85) coated glass-bottomed chamber slides (#1.5
glass, ibidi pSlides) at 50 x 10 cells/cm? in warm HBSS and incubated at 37°C for 5
minutes to allow for synapse formation. The chamber wells were gently washed with
warm HBSS and then fixed in 3% paraformaldehyde in phosphate-buffered saline
(PBS) for 20 minutes at 37°C. Fixed cells were washed five times in PBS and used
immediately for PALM imaging.

Imaging

PALM image sequences were acquired on a Nikon N-STORM system in a TIRF
configuration using a 100 x 1.49 NA CFI Apochromat TIRF objective for a pixel
size of 160 nm. Samples were continuously illuminated with 561 nm laser light at
approximately 2 kW/cm? and 405 nm laser light (to induce photo-conversion) at
approximately 2 W/cm?. Images were recorded on an Andor IXON Ultra 897 EMCCD
with an electron multiplier gain of 200 and pre-amplifier gain profile 3 to a centered
256 x 256 pixel region at 40 ms per frame for 5,000 to 15,000 frames.

Virtual microscope simulations

Raw camera frames were generated using Virtual-SMLM [13] operating in PALM
mode (i.e., using a 4 state photophysical model). The frame rate was set to 25 or
100 frames per second. The activation laser (i.e. initial state transition) was either
fixed or ramped up over the acquisition. In the first case, the number of fluorophores
emitting per frame decreases over time. In the second case, it remains constant over
the acquisition. Emission traces were generated independently for each fluorophore
and imaging continued until all fluorophores had been imaged and bleached. All
other state transition probabilities and photophysics properties were fixed to mimic
mEos blinking characteristics. The PSFs were recorded on a virtual EMCCD camera,
with an EM gain fixed at 300. Virtual-SMLM took as input ground truth maps of
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mEos2 positions. 5556 mEos proteins were placed randomly over a 10000 nm x 10000
nm 2D area. Generated camera frames were then analysed using ThunderSTORM
[18] and the data cropped into non-overlapping 3000 x 3000 nm regions.

Localisation

Localisation of fluorophore coordinates were reconstructed using ThunderSTORM
and corrected for sample drift using cross-correlation of images from 5 bins at a
magnification of 5. No further post-processing was performed.

Mathematical details
Marginal likelihood of clusters

We represent the observed process by a series of localisations (X;, Y;)i_, with as-
sociated ‘blink’ times Tj,..., T,;, and localisation uncertainties (712,..,03, where R =
[x0,%1] % [v0,¥1] is the region of interest. For a given partition of the localisations
into groups, we compute the marginal likelihood of the data as follows. Consider a
group comprising the observations 1,...,m, with 1 < m < n (without loss of generality),
posited to correspond to one, distinct, molecule. In particular, we defer until later the
treatment of background noise. The independence assumptions set out in the main
article result in the following marginal likelihood factorisation:

P((Xi)iZy (Yi)ing, (T)izy) = PUXG)iZ)P((Yi)iZ ) PU(T)L, ). (B.L.1)

Denoting by p = (ux, py) the true position of the molecule, the spatial components
above have likelihood (given only for (X;)!" )

n o 1(Xi—px\°
P o) = [(2o?) Fenp) -3 (F2) (B.12)

i=1 G
1
= (271)'51[1_[ Ui] exp{—%Zm (Xi—,ux)z}r (B.1.3)

where 7; = ﬁ Defining the weighted mean

o LilliXi
X= o (B.14)
we find
-1
P3N | x) = <2n)-’%’[]f[ai] exP{—%Zm(Xi -x)z}exp{-¥(yx_x)2}.
l l (B.15)
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Placing a uniform prior on py, we find

-1
P((X)!, L px) = (2m0)72 [I_[ ai] exp {—% Z"" (X - X)z} (B.L6)

X (x1 —x0) 7! jXI exp {—%(ﬂX—X)Z}dﬂX (B.L.7)

0

-1
= (2n)—?[r[ai] exp{—%Zm (Xi—X)z} (B.I.8)

1

x(xl—xo)l(zn)%[zm {(D Lxl —® Lxl } (B.L9)
i (Limi)? (Ximi) 2
The temporal component has likelihood
P((T)}) = Pa)P(Toin) | [PUR | [ P(0), (B.L10)
k k

each term is computed as follows. The blink times T3, ..., T;, are not typically observed
exactly, and instead one has access only to associated frame numbers Fy, ..., F,,, taken
to represent (small) windows of time containing them. We therefore consider a
visit to the fluorescent state to be a block of L > 1 contiguous fluorescent frames (or
consecutive frame numbers), and impute the length of this visit to be the time elapsed
over L —1 frames, to obtain auxiliary quantities

fx : time spent in fluorescent state (kth visit). (B.I.11)

Up to discrete-approximation error, each f; represents the minimum of two expo-
nential random variables with respective rates r and r, with likelihood contribution
P(fi) = (rp + rg)e 078l

Similarly, let dj. denote the time elapsed over the kth interval between noncon-
tiguous frames, taken to represent

dy : time spent in dark state (kth visit). (B.I.12)

The likelihood contribution is

r
P(dy) = rpe "®% —D__ (B.I.13)
p+71B
The initial switch of the fluorophore to the activated state happens at time Ty,
computed simply as the minimum T; value, and this contributes

P(Typip) = rpe” " Tmin, (B.1.14)

to the likelihood.

Finally, let u denote the time since the last blink (a period during which it is
unknown whether the process has entered a dark or bleached state). The final contri-
bution is

P(u)= —2 ey B (B.115)
rg+71p rgs+7p
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To finalise calculations, one must account for background noise (in the case m =
1). Such points are assumed to be uniform in spacetime. The complete marginal
likelihood is:

m m m (I=a)P((X;)i2, (V)2 (T)iZ)) m>1
(Xi)iZ, (Yi)ily, (Tl =4~ i i i
m( 1 (V)2 (T)iZy) {aV L (1= a)P(P((X) (Y L (TH)) m=1,
(B.I.16)

where V = T(x; —x0)(v1 —vo), T is the length of the period of observation, and « is
the background probability.

Identifying and summarizing clusters

For both MBC and DTT clustering, an expected number of clusters, N, is first esti-
mated, and a version of agglomerative hierarchical clustering (AHC) is then used to
partition the dataset into N clusters. In AHC, each point is initially considered to be
a distinct cluster. Using a user-specified metric and a linkage criterion, a stepwise
greedy merging of the closest clusters is repeated until a partition with a predeter-
mined number of clusters is obtained, or until no more clusters can be merged with
a distance less than some specified number. The metric determines the distances
between pairs of points, and the linkage criterion generalises these to a distance
between clusters. Once the final partition has been identified, we merge each cluster
down to its estimated centre, and the uncertainty of the centre is computed. In the
following, we use the notation

L=(X,Y) (B.I.17)
ALy Lo) = \J(Xy = X2 + (V) - Vp)? (B.L18)
di(Ty, o) =Ty — Tol. (B.I.19)

MBC clustering

For MBC, the number of desired clusters, N, is an output of the rate-estimation step,
and is thus decoupled from the clustering problem. For the AHC step, we use the
family of metrics

di(Ly, L)

ds((leTl)l(LZfTZ)): o1 +0,

+S5-di(Tq, Ty), (B.I.20)
for S > 0, which is simply the sum of the (scaled) Euclidean distance between the
locations and times. For the linkage criterion we chose Ward’s Minimum Variance
Method, as implemented via the Lance-Williams formula [9], as it tends to find
homogeneous clusters of spherical shape.

By varying S, we obtain a sequence of partitions, each slightly different but all
chosen to have N clusters. The marginal likelihood is computed for each of the
resulting partitions, and the most likely partition is selected.

DTT clustering

DTT, or dark time thresholding, is a general idea in SMLM blinking correction lit-
erature, but implementation details are rarely discussed. The general principle is
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to merge locations that are close in space and time, with hard thresholds on the
maximally allowed bridging distances in space and time. As a way to implement this
idea in the AHC framework, we define the distance between 2 observations as

deg, (L1, T1), (Lo, T2)) = dj(Ly, Ly) + dy(Ty, To) + 00 - 1(d)(Ly, Ly) > s or di(Ty, To) > 14),

(B.I.21)
where oo - 0 = 0. Although not strictly a metric, this distance measure allows us to
implement the dark time thresholding idea. We use the single-linkage criterion for
cluster merging, which considers the distance between two clusters to be the smallest
pairwise distance between them. Combined with our metric, this means that the
clustering algorithm is allowed to merge points and clusters, so long as they can
be combined via paths that do not violate the hard thresholds. Finally, a clustering
is achieved by continuing to merge clusters until only infinite distances between
clusters remain (no more legal merges can be made). For 7, we used 4 times the
mean localisation uncertainty. The temporal threshold, t;, was determined as follows.
First, the method of Annibale [3] was used to determine N. Next, 7; was increased
incrementally until the AHC algorithm produced a partition with N clusters, or as
close to N as possible.

Cluster centres and uncertainty

Let (X;, Y;)!Z, be the coordinates of an arbitrary cluster with centre y. Once a particu-
lar clustering is given, it makes sense to treat the cluster centres as fixed parameters
to be estimated. Thinking therefore of y as fixed, the maximum likelihood estimator,
i, maximizes the likelihood of the cluster coordinates

i . .
log (P((X;, Y)),)) = —17’7’ ((x =X+ (uy + 1))+ C, (B.1.22)
where C does not depend on y, and it follows immediately that
o o [ i MiXi Zi’7in‘)
—(%.7)= , _ B.1.23
A=l ) ( Yifi o Lifi ( )

Using ji, we can estimate the position of the molecule associated with a given
cluster. As the coordinates of ji are independent, the covariance matrix of ji is given
as

V[p] = 6°1, (B.1.24)

where I, is the 2 x 2 identity matrix, and

zi’%‘z"f: 1
(i) Xiﬁ

1

62 =V[X]=

(B.1.25)

and the updated localisation uncertainty is then simply the associated standard

deviation
5 1
6= —. (B.1.26)
Yis

Oi
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Significance testing

The p-values reported in Table B.2 are based on a permutation test of the difference
of means, using 10,000 simulations.
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Figure B.1: [llustration of the MBC workflow. a) During PALM image acquisition and subsequent localisa-
tion steps, the ground-truth protein positions are corrupted by multiple-blinking in combination with
discretisation by the camera frames and scrambling by the localisation uncertainty, resulting in a data
set which is over-populated and over-clustered. b) Our algorithm (MBC) takes as input (x,y,t,0) data and
estimates the rate parameters of a 4-state photophysical model, from which it derives the total number of
molecules in the ROI. This is then used as input to a hierarchical clustering step (experimental data shown
with colours representing the clusters found), after which clusters are merged to their centres, creating a
new dataset free from multiple-blinking and with enhanced localisation precision.
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Figure B.2: Testing for spatial randomness. a) Representative simulated data of ground-truth CSR points
with light or heavy blinking (LB or HB) either corrected by MBC or DTT as a comparison. b) L(r)-r (mean
in solid line) with pointwise 95% quantile bands (dashed line). ¢) max(L(r)-r) derived from these functions.
Points in red correspond to ROIs that were rejected as CSR in a Monte-Carlo test (p < 0.05). Note that
DTT often (and sometimes always) incorrectly rejects the CSR null hypothesis, whereas MBC does not. d)
Number of molecules per ROI (log-scaled) showing superior correction of MBC compared to DDT in light
and heavy blinking cases.
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Figure B.3: Testing on clustered ground-truth data sets. a) Low levels of clustering with either light or
heavy blinking, corrected by MBC or DDT. b) Number of detected clusters (true number of clusters in
dashed line) by Bayesian analysis. c¢) High levels of clustering with either light or heavy blinking, corrected
by MBC or DDT. d) Number of detected clusters (true number of clusters in dashed line) by Bayesian
analysis. MBC has superior performance in all cases except heavy clustering/light blinking, where results
are comparable.
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Figure B.4: Testing against molecules on a fixed grid. a) Ground truth and representative simulated data.
b) Wasserstein distances between simulated data and ground truth showing that MBC generates output
closer to the ground truth. c¢) Normalised histograms of localisation uncertainties of individual molecules
(nm) showing that MBC also generates increased localisation precisions compared to uncorrected data or
DDT.

Table B.2: Summary of means and p-values for experimental data analysis of WT LAT and YF LAT at the
immunological synapse.

WT WT YF Centre YF WT WT WT YF Centre
Centre Periphery =~ mean Periphery  Centre vs Periphery  Centre vs YF
mean mean mean YF Centre vs YF vs WT  Periphery
p-value Periphery  Periphery  p-value
p-value p-value

Number 10.0 16.5 4.76 4.25 0.006 <1073 0.043 0.701

of clusters

Number 29.7 18.3 421 4.26 0.574 0.001 0.316 0.026

of

molecules

per clus-

ter

Cluster ra- 73.5 52.5 100 38.6 0.372 0.167 0.075 0.027

dius (nm)

Percentage 22.6 21.8 35.2 23.4 0.151 0.568 0.761 0.172

of

molecules

in clusters

Total 931 866 226 79.6 <10-5 <10-5 0.794 0.003

number of

molecules

Relative 15.7 20.8 53.0 217 <10-5 <10-5 0.162 0.006

density of

clustered

vs un-

clustered

molecules
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Figure B.5: Cluster analysis of LAT-mEos3.2 at the T cell immunological synapse. a) Representative, raw
3000 nm x 3000 nm ROIs from each of the 4 conditions (WT Centre, WT Periphery, YF Centre and YF
Periphery). b) Representative MBC-corrected ROIs, on which analysis was conducted. c) L(r)-r (mean in
solid line) with pointwise 95% quantile bands (dashed line). d) max(L(r)-r) derived from these functions.
Points coloured in red correspond to ROIs where the CSR null hypothesis was rejected in a Monte Carlo
test (p < 0.05). These ROI were then retained for subsequent Bayesian cluster analysis. e¢) Number of
proteins per cluster detected by Bayesian analysis.
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Figure B.6: MBC Performance as a function of camera frame rate and the activating, 405 nm laser power. a)
Example ground-truth and raw localisation maps for the different conditions. b) Example MBC-corrected
maps. c) Wasserstein distances. d) Normalised histograms of localisation uncertainty. e) Percentage error
in estimated number of ground-truth molecules (mean in dashed line).
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Figure B.7: Additional statistics from the Bayesian cluster analysis of non-CSR LAT-mEos3.2 regions. a)
Number of detected clusters, b) cluster radii (nm), c¢) percentage of molecules in clusters, d) number of
molecules per ROI and e) relative density of molecules located in clusters as compared to the surrounding
region.
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Abstract

Regulated vesicle exocytosis is a key response to extracellular stimuli in diverse
physiological processes, but the nano-scale size of these vesicles has limited analy-
sis of their 3D organization. Using 3D super resolution microscopy, we provide
the first direct analysis of the 3D network of exocytic vesicles containing the
renal water channel, Aquaporin-2 (AQP2). We show that AQP2 vesicles are 43
+ 3nm in diameter, similar to synaptic vesicles, and that there are two pools of
vesicles, one associated with sub-cortical F-actin and the other localized close to
the plasma membrane. AQP2 vesicle association with F-actin is enhanced in a
serine 256 phospho-mimic of AQP2, whose phosphorylation is a key event in
antidiuretic hormone-mediated AQP2 vesicle exocytosis. Our results indicate a
conserved structure and organization of regulated exocytic vesicles in neurons
and non-neuronal cells.
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C.1 Main text

Cellular responses to extracellular stimuli are mediated via different signaling cas-
cades. Nevertheless, a fundamental response is regulated vesicle exocytosis that is
conserved in hormone regulated urine concentration, acidification of stomach con-
tents, and neurotransmission. Signal-mediated vesicle exocytosis to the target plasma
membrane alters the plasma membrane composition of ion and water channels, and
induces the secretion of signaling molecules.

Immuno-electron microscopy and biochemical analysis of vesicles in neuronal
synapses revealed that they contain specific proteins, their size is below the diffraction
limit of light, and they localize close to the target plasma membrane with actin
filaments (F-actin) [22]. In contrast, the 3D organization and physical interactions
of regulated exocytic vesicles in other cell types have been generally limited to
light microscopy and are poorly understood. Here, we circumvented these indirect
and low resolution methods by utilizing recent advances in 3D super resolution
microscopy (Interferometric Photoactivated Localization Microscopy (iPALM) [8, 18]
that enable imaging of the nano-spatial organization of vesicular populations in
cells at a resolution down to 20nm in the xy-axis (lateral) and 10-15nm in the z-axis
(vertical).

As a generic example of regulated exocytosis in non-neuronal cells, we analyzed
aquaporin-2 (AQP2) vesicular organization in a renal epithelial cell culture model
system (MDCK cells). Aquaporins (AQPs) form homo-tetrameric water channels that
facilitate passive transport of water across biological membranes. In renal collecting
ducts, urine concentration is fine-tuned by regulated exocytosis of a subset of small
subapical AQP2 vesicles to the plasma membrane in response to circulating levels of
the antidiuretic hormone arginine vasopressin (AVP) [5, 10]. We used our previously
described cell system, FRT-AQP2 cells, were AQP2 is expressed in MDCK cells under
the control of a doxycycline inducible promoter [6, 21] and where AQP2 has been
shown to shuttle to and from the plasma membrane (both apical and basolateral) in
subconfluent cells in response to increased levels of cAMP, the signaling downstream
of AVP. First, to confirm vesicular localization of AQP2, we employed expansion
microscopy (ExM) [2], which increases resolution to approximately 70nm, allowing
visualization of both large and smaller endosomal structures. ExM confirmed that
AQP2 localized in the membranes of different sized vesicle structures, distributed
throughout the cell cytoplasm (Figure C.4). Next, to enable iPALM imaging we used
the cell setup in combination with transiently transfected AQP2 tagged with mEos3.2,
a photoconvertible green/yellow fluorescent protein. Untagged AQP2 and mEos3.2-
AQP2 were co-expressed in a ratio of ~ 3:1 (referred to as AQP2 hereafter), which
has been shown to prevent aggregation of the tetramer and enable imaging with
fluorescently tagged AQP2 [1, 6]. Furthermore, F-actin has been suggested to form
a barrier between AQP2 vesicles and the plasma membrane [9, 12, 20] but it has
never been possible to obtain insight in the actual positioning of vesicles in respect
to F-actin at this close localization to the plasma membrane. To enable imaging of
F-actin in conjunction with AQP2 vesicles we used Alexa647 labeled phalloidin,

iPALM datasets consist of points with (x,y,z) coordinates, and we employed sta-
tistical methods for spatial point patterns to analyze the shape, size and spacing
of AQP2-containing vesicles. To ensure we were imaging whole transport vesicles,
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and not vesicles undergoing scission or fusion with the basal plasma membrane, nor
micro domains in the basal plasma membrane, we used the coverslip as a reference
zero-point and performed vesicle analysis in the niche 100-400nm above the cov-
erslip (imaging setup in Figure C.5 A). The imaging revealed a network of AQP2
clusters (Figure C.1 A-B and movie 1), which we modeled as proteins lying on the
surface of hollow spheres (similar to vesicles) observed with noise (Figure C.1 C).
The average AQP2 vesicle diameter was 43 + 3nm (Figure C.1 D), with 197 + 60nm
spacing (Figure C.1 E). The analysis showed that the z-range with the largest vesicle
population was positioned 150-400nm from the coverslip. Our results support that
AQP2 vesicles have similar sizes to that of pre-synaptic vesicles [17], but have smaller
sizes compared to the larger diameter of transport vesicles in the secretory pathway
and endocytic vesicles (reviewed in [13]).

We examined the blinking behavior of mEos3.2 tagged AQ2 in samples imaged
with the iPALM system. As expected, we noted areas of high localization density
that were consistent with the apparent vesicles seen in the ExM images shown in
Figure C.4. Interestingly, we noted that the localizations corresponding to putative
vesicles tended to be temporally clustered, rather than appearing randomly through-
out the acquisition time, as shown in Figure C.5 B. We speculate that this unexpected
behavior may be due to a self-activation mechanism, either due to the high fluo-
rophore density or the fact that AQ2 exists as tetramers or both. However, as shown
in the plot in Figure C.5 B, the localization density in these areas cannot be solely
attributed to abnormally long on-times of the mEos3.2. Analysis of this plot indicates
an average “on-time” of 66ms (or approximately 1.3 frames) within these areas.

Next, we imaged F-actin, which revealed a dense layer of F-actin in the cytoplasm
approximately 200nm distal to the plasma membrane (Figure C.2 A-C). The major-
ity (66.91%) of AQP2 vesicles were positioned between the plasma membrane and
the dense F-actin layer (Figure C.2 D and movie 2) indicating that the F-actin layer
did not compose a barrier towards the plasma membrane for this fraction of AQP2
vesicles. To tests in 3D if AQP2 vesicles associates with F-actin or if the proximity is
random, we examined the spatial relationship of AQP2 vesicles with F-actin using a
Monte Carlo test for independence of localizations. The distance from each AQP2
vesicle shell to the nearest 1000 neighboring (NN) F-actin localizations in central and
peripheral regions of cells was computed, as was a mean-curve for all vesicles. We
first assumed distributional invariance of AQP2 vesicle centers under shifts in the
XY-plane and then simulated new mean-curves from the null-hypothesis of indepen-
dence by randomly shifting AQP2 vesicles in XY, while keeping Z-coordinates for
AQP2 fixed and XYZ-coordinates for F-actin fixed. Based on the simulated curves we
performed a global envelope test based on extreme rank lengths [15]. The observed
mean-curves for central and edge regions of the cells were both entirely outside their
respective envelopes, indicating AQP2-to-F-actin distances that were shorter than
expected if they were independent of each other (Figure C.2 E, pval = 0.002). Thus,
the analysis revealed an association between AQP2 vesicles and F-actin (Figure C.2
A-C). Larger vesicles resembling recycling endosomes were also observed (Figure C.6).
Our results indicate that there are two pools of small AQP2 transport vesicles, one
closely associated with the F-actin layer distal to the plasma membrane, and the other
localized between the F-actin layer and proximal to the plasma membrane. AVP bind-
ing to the AVP receptor elicits signaling cascades that culminate in phosphorylation
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of several residues in the AQP2 COOH-terminal tail, and subsequent fusion of AQP2
vesicles with the PM (recently reviewed in [5]). AQP2 serine 256 (S256) phospho-
rylation by protein kinase A downstream of AVP is a key event [11], which can be
mimicked by the AQP2-S256D mutation, and its nonphospho-mimic AQP2-S256A.
The diameter of AQP2-S256A vesicles (41 + 4nm) was similar to AQP2-wt vesicles
(pval = 0.718) (Figure C.3 A-C), whereas AQP2-S256D (31 + 4nm) vesicles were
significantly smaller (pval = 0.022). Spacing between vesicles was not significantly
different between AQP2-wt, AQP2-5256D and AQP2-S256A (pval = 0.06096) in the
cell center or periphery (pval = 0.60049), when controlling for the number of vesicles
per nm3.

Next, we examined the distribution of AQP2-S256D and AQP2-S256A vesicles
in relationship to F-actin (Figure C.3 D). In the peripheral cytoplasm, AQP2-5256A
vesicles were less associated with F-actin than AQP2-wt with a 58% larger distance be-
tween vesicles and the nearest 1000 neighboring F-actins (pval = 0.011). AQP2-5256D
vesicles were 11% farther from F-actin than AQP2-wt, but this was not significantly
different (pval = 0.531). In the cytoplasm central in the cell, AQP2-S256A vesi-
cles were localized 86% (pval < 0.001) farther from F-actin than AQP2-wt vesicles,
whereas AQP2-5256D had a similar distance to F-actin as AQP2-wt (pval = 0.356),
indicating that non-phosphorylated AQP2 in 5256 is less associated with F-actin than
phosphorylated. These results suggest that phosphorylation of 5256 AQP2 regulates
the size of AQP2 vesicle clusters and their association with F-actin both in the central
and peripheral region of the cell.

A key event in AVP mediated AQP?2 vesicle exocytosis and urine concentration
is AQP2-5256 phosphorylation. Our results indicate that the phospho-mimic 5256
AQP2 correlates with increased AQP2 vesicle-F-actin association compared to the
non-phospho-mimic AQP2-S256A. Previous studies reported that global F-actin
depolymerisation results in AQP2 targeting to the plasma membrane [7, 9, 20], but it
was unknown whether the F-actin layer constitutes a physical barrier between AQP2
vesicles and the plasma membrane and/or facilitates AQP2 vesicle delivery to the
plasma membrane upon AQP2 S256 phosphorylation [16]. Rather than acting as a
barrier to AQP2 vesicle exocytosis, our results support a model that association of
AQP2 vesicles with F-actin is enhanced upon AQP2 5256 phosphorylation, and that
this increases the propensity for vesicle accumulation with F-actin near the plasma
membrane, and thus the likelihood of vesicle fusion with the plasma membrane.
AQP2-wt and AQP2-5256D vesicles may have similar transport capacities along F-
actin tracks, but differences in their plasma diffusion coefficients [1] and endocytosis
rates [14] may result in an increased plasma membrane localization of AQP2-S256D
compared to AQP2-wt. Moreover, small increases in circulating AVP may mobilize
AQP?2 vesicles in the niche between the F-actin layer and the plasma membrane
without, or prior to, dissociation from the F-actin layer, thereby ensuring a rapid
exocytic response.

Regulated vesicle exocytosis is a conserved response to many extracellular signals
that result in the acidification of stomach contents, neurotransmission and hormone
regulated urine concentration. Detailed analysis of these vesicles and F-actin has
focused on the neuronal synapse, where specialized ~40nm vesicles associate with
F-actin close to the plasma membrane at the synaptic cleft [17, 22]. Our analysis of
the spatial organization and physical associations of AQP2 vesicles with F-actin is
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the first direct analysis of a 3D network of exocytic vesicles in a non-neuron cell
type, and reveals striking similarities with synaptic vesicles in size, localization and
clustering. This suggests that different signal-mediated vesicle exocytosis pathways
have conserved mechanisms and organizations.

C.2 Materials and Methods

All reagents were purchased from Sigma Aldrich unless otherwise stated.

C.2.1 DNA preparation

The mEOs3.2-AQP2 constructs were generated by swapping the pPAGFP coding
sequence of the pPAGFP-AQP2 plasmids (8) with the mEOs3.2 coding sequence. The
mEOQOs3.2 sequence was amplified using the mEOs3.2C1 plasmid as template and
the following primers: Forward 5’-CATCAAGTGTATCATATGCCAAG and Reverse
5’-caagacgtcgactccggatcgtctggcattgtc. The PCR product and the different pPAGFP-
AQP2 plasmids were digested with Ndel and Sall restriction enzymes (ThermoFisher
Scientific). The digested plasmids (lacking the pPAGFP sequence) were ligated with
mEQOs3.2. All sequences were verified by sequencing (Eurofins GATC, Cologne, Ger-
many). cDNA encoding mEos3.2-C1 was a kind gift from Michael Davidson & Tao
Xu (Addgene plasmid # 54550; http://n2t.net/addgene:54550).

C.2.2 Cell culture and setup for microscopy

FTM-AQP2 cells [6, 21] were grown at 5 % CO2 and 37°C in Dulbecco’s Modified
Eagle Medium with 1 g/L D-glucose (DMEM, Gibco), 10% fetal bovine serum (FBS,
Gibco), 5 ug/ml Blasticidin S HCL (Gibco) and 100 pg/ml Hygromycin B (Invitro-
gen). Cells were induced with 10 ng/ml doxycycline to express AQP2, AQP2-S256A
or AQP2-5256D and transiently transfected to express mEos3.2-tagged AQP2 and
phosphor-mutants 24 hours prior to fixation. Cells were transiently transfected with a
mixture of 0.5 pug cDNA constructs and 10 pg sheared salmon sperm DNA (AM9680,
Thermo Fischer Scientific) using a Genepulser Xcell (Biorad) for electroporation ac-
cording to the manufacturer guidelines. After electroporation cells were seeded out
on 25mm diameter #1.5 thickness glass coverslips containing gold nanorod fiducial
markers (A12-40-600, Nanopartz, Inc.). Cells were fixed at room temperature with
cytoskeleton fixation buffer containing 10 mM MES, 3 mM MgCl2, 138 mM KCl, 2
mM EGTA, 0.32 M sucrose (pH 6.1) and 4 % PFA for 20-25 min. Cells were perme-
abilized for 10 min with 0.1 % Triton X-100 in blocking buffer containing 3 % BSA
in PBS, washed and placed in blocking buffer for 20 min. Cells were then stained
with 1:200 Alexa647-Phalloidin for 30 min. After fixation and staining, cells were
immersed in dSTORM buffer [3] containing 50 mM Tris (pH 8), 10 mM NacCl, 100
mM mercaptoethanol amine, 0.5 mg/mL glucose oxidase, and 0.03 mg/mL catalase
(all from Sigma). An 18 mm diameter, #1.5 thickness coverslip was adhered atop the
fiducial-containing coverslip with epoxy and sealed.
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C.2.3 Expansion microscopy

ExM was performed as previously described with minor modifications [2, 3]. FTM-
AQP2 cells [6, 21] were seeded on 22x22 mm collagen coated coverslips. After 24
h, AQP2 expression was induced with 10 ng/mL doxycycline and cells were also
incubated with 50 uM indomethacine for 24 h. Cells were washed 3x in PBS and
fixed for 10 min with 4% PFA solution at RT. Next, cells were permeabilized with
0.1% Triton X-100 + 3% BSA in PBS for 10 min. Cells were blocked in 3% BSA in
PBS for 30 min and incubated with primary antibody (mouse anti-AQP2 antibody,
sc-515770, Santa Cruz Biotechnology, 1:20) in 3% BSA in PBS for 1 h. Cells were
washed and incubated with secondary antibody (Dylight-594, donkey-anti-mouse,
ImmunoReagents inc., 1:100) in 3% BSA in PBS for 1 h. After wash in PBS, cells
were post-fixed with 0.25% glutaraldehyde in PBS for 10 min. After PBS wash,
cells were incubated with 100 4L monomer solution 8.1 % Na acrylate (Sigma, cat.
No.: 408220), 2.66% w/v Acrylamide (Sigma, cat. No.: A9099), 0.32% w/v N,N’-
Methylenebisacrylamide (Sigma, cat. no.: M7279), 11.2% NaCl w/v, in PBS) for 1 h at
RT. The coverslip was placed upside down on a drop of 190 uL gelation solution (10
uL of 10% v/v TEMED (Sigma cat. No.: T7024) and 10 uL of 10% w/v APS (Sigma
cat. No.: A3678) was added to 480 pL of monomer solution) and incubated for 1 h at
RT. Subsequently, digestion was performed for 1 h at 37°C (0.5% Triton X-100, 0.8M
guanidine HCL (Sigma cat. No: 50-01-1), 8U/mL Proteinase K in TAE buffer). The gel
was cut into a smaller piece and placed into 3 mL of MilliQ water in a 6-well plate and
incubate overnight at 4°C. The next day, the water was replaced and the gel incubated
for 30 min at RT with gentle shaking. This was repeated and subsequently, the MilliQ
water was removed and the gel incubated with fresh MilliQ water containing Hoechst
(1:500) for 30 min. The gel was washed in MilliQ water for 30 min, placed in an
imaging chamber and imaged on a Nikon Eclipse Ti-E system equipped with a 100x
1.45 NA objective and a Zyla sCMOS camera, controlled by NIS Elements from Nikon.
The fluorescence illumination system was CoolLED-pE-300white. Fluorescence filter
sets for DAPI and TexasRed were used to detect Hoechst and Dylight-594, respectively.
Images were deconvolved with Huygens Software (Scientific Volume Imaging, The
Netherlands, http://svi.nl).

C.2.4 Imaging

Samples were imaged using interferometric photoactivation localization microscopy
(iPALM), as described previously [18, 19]. Samples were placed in the iPALM and
sequentially illuminated in TIRF mode with 640nm and 561nm diode lasers, re-
spectively (Opto Engine) through a 60x APO TIRF, 1.49NA objective (Nikon) at
1-3kW/cm?2 irradiance. mEos molecules were photoconverted using ca. 1W/cm?2
405nm laser illumination (Coherent).For each cell 50.000-75.000 fluorescence im-
ages were captured per channel at 30-50 ms exposure time, through a 647nm long
pass filter (Semrock) for Alexa Fluor 647 images, or a 593 +/- 20nm bandpass filter
(Semrock) for mEos images, onto 3 EM-CCD detectors (iXon, Andor Technology Ltd.).
The different channel data sets were aligned using fiducial markers, consisting of
gold nanorods (40nm long axis diameter, 25nm short axis diameter from Nanopartz,
Inc.). Typical alignment accuracies are on the order of the localization precision
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(~20nm) [19].

C.2.5 Analysis

Single fluorophores were localized in x,y, and z dimensions, and images rendered us-
ing the PeakSelector software (Janelia Research Campus). The analyzed data consists
of 76 regions of interest (ROI), coming from a total of 19 unique cells. From each cell,
4 ROIs were cropped out, 2 from a central site in the cell, and 2 from an edge site. The
number of cells corresponding to different degrees of phosphorylation (WT, A, D),
was (7, 6, 6) spread over three independent experiment days, respectively. Regions
coming from the same site type in the same cell were treated as a single region by tak-
ing averages of any statistics computed on them. For detection of AQP2 clusters (used
interchangeably with “vesicles” below), the DBSCAN algorithm [4] was employed,
with parameter choices MinPts = 10 and Eps = 50nm. Eps was chosen relatively large
to account for the scale of localization uncertainty. Results were not sensitive to these
choices for sensible parameter values, due to the large degree of spatial separation
of vesicles, relative to their size. The vesicles thus found were modeled as proteins
lying on the surface of a hollow sphere following a von Mises-Fisher distribution,
observed with Gaussian noise added to each point. The covariance matrix of the noise
added to each point in the vesicle was estimated automatically by PeakSelector as
part of the localization routine, and was used in place of the true covariance matrix
when estimating vesicle parameters, which was done by maximum likelihood. In this
manner, we obtain estimates of the vesicle centers and diameters.

Analysis of AQP2 vesicle characteristics, such as their diameter and association
with nearby actin, was carried out by first computing a statistic of interest on each
vesicle, and then averaging over the vesicles sharing ROI. Linear mixed effects models
were used for summarizing results across different ROIs, and model assumptions
were checked by residual tests. All models included a random effect shared for the
ROIs coming from the same cell, and fixed effects for the degree of phosphorylation,
and the ROI cell site (central/edge).

For investigation of colocalization between AQP2 and actin, we first considered if
there was significant statistical association for S256-WT. For each ROI, AQP2 vesicle
centers were computed, and overlayed on actin. The centers demonstrated spatial
stationarity in the XY-plane, but not in the Z-plane. For this reason, we tested for
significant association using shifts in the XY-plane only. This was accomplished by
a random superposition hypothesis test, based on distances to the 1000 (NN) actin
proteins from vesicle shells. To investigate if the degree of colocalization differs based
on phosphorylation status, we similarly computed the distances to the 1000 NNs for
the S256-A and S256-D type ROIs. For an overall test of differences between mutant
types, we modeled the mean distance of these 1000 NNs. Additional tests at each of
the k’th nearest actin proteins was done analogously and summarized graphically.
We look at the 1000 NN, as opposed to the raw number of actin molecules within a
set of ranges, because the NNs lend themselves more easily to statistical modeling.
In addition, the raw number of molecules is significantly more affected by outlier
behavior, and a single actin fiber passing close to a vesicle may exhibit 100 or even
1000-folds of artificially increased association scores when compared to the typical
vesicle - this effect is much less pronounced for NN distances. The specific choice

89



Paper C - Regulated exocytosis: Renal aquaporin-2 3D vesicular network organization and
association with F-actin

to look at 1000 NNs was made primarily so as to correspond to a relevant range of
interactions, which in turn depends on the expected range of interactions, protein
expression levels, and some additional range to account for noisy observations. The
1000 NNs here corresponds to looking at interactions with actin structures primarily
in the 0-300nm distance range, which allows us to look for both very close interactions,
and also any indirect interactions mediated by unseen structures. Additionally, by
looking at a large number of NNs we obtain a mean distance that is less influenced
by the uncertainty in both protein localizations and vesicle parameters.
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Figure C.1: iPALM localization of AQP2 to small vesicles close to the PM. (A) Upper left, differential
interference contrast (DIC) image of cell monolayer and lower left maximum projected micrograph of
iPALM renderings of MDCK cells expressing mEo0s3.2-AQP2 and untagged AQP2, scale bars 10 ym. Upper
and lower right maximum projected images show examples of regions of interest chosen for analysis, scale
bars 1 ym. (B) Right image shows the zoom ROI from lower right image (A) of a Z-layer with spherical
clusters positioned close to the PM, scale bar 100 nm. (C) Clusters found using the DBSCAN algorithm
were fitted to a model assuming AQP2 on spherical vesicles observed with noise. The shaded circle/sphere
indicate the estimated vesicle. The bars extending from the sphere surface indicate 1 and 2 times the
standard deviation of the location uncertainty in the given direction. (D) The distribution of WT vesicle
diameters for different sections of depth into the cell. (E) The distance between one vesicle to the nearest
other vesicle, as a function of the number of vesicles per nm-3. The shaded area indicates a 95% confidence

global envelope.
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Figure C.2: AQP2 is positioned in vesicles between the PM and the F-actin layer. (A) Representative
iPALM renderings of MDCK cells expressing mEo0s3.2-AQP2 and untagged AQP2 (green), stained with
Phalloidin-647 to label F-actin (magenta), scale bars 1 ym. (B) Examples of Z-layers with spherical clusters
positioned between the PM and the F-actin layer, scale bar 100 nm. (C) A small, typical cross-section of
actin (black points) and the vesicles found using DBSCAN (colored points). F-actin is seen located primarily
as a layer structure, and AQP2 localize in close proximity to this layer. AQP2 locations considered as noise
by the DBSCAN algorithm are not shown. (D) The z-coordinates of actin and AQP2 vesicle centers, relative
to the F-actin layer position. The actin layer position was found as the z coordinate with maximal actin
density. (E) The distance from vesicle shells to the K’th nearest F-actin location was computed, and the
resulting neighbor-curve was used as a means for quantifying the spatial relations between AQP2 vesicles
and actin. This was done both for central (gray) and edge (red) parts of cells. As a test for co-localization,
AQP2 vesicles were shifted relative F-actin in the XY-plane, and the neighbor-curves were again computed.
Based on 500 shifts, a global envelope test was performed, yielding a region within which the curve would
have to lie, assuming independence of AQP2 and actin. The curve lying outside and under the envelope
indicates closer AQP2-to-actin distances than would be expected under independence.
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Figure C.3: Phosphorylation of AQP2 at S256 affects vesicle size and F-actin association. (A) Representative
iPALM renderings of MDCK cells expressing mEo0s3.2-AQP2 (left images), mEos3.2-AQP2-S256A and
untagged AQP2-S256A (middle images) and mEos3.2-AQP2-S256D and untagged AQP2-S256D (right
images). All stained with Alexa647-phalloidin to label F-actin, scale bars 1 ym. The inset zooms show
localizations in z-layers under the F-actin layer, scale bars 100 nm. (B) The average vesicle diameter in each
data region was used for modeling the mean vesicle diameter size as a function of the cell type. (C) The
distribution of observed vesicle diameters across all data regions, for each cell type. (D) Neighbor-graphs
computed for each cell and region type, shown on a log-scale. Full lines indicate the mean curves across
regions, and dashed lines are curves from individual data regions. The average distance from a vesicle
shell to its nearest 1000 actin neighbors was used as a statistic for comparing the degree of association.
(E) The distance to the K’th nearest actin location from vesicle surfaces was modelled as a function of
cell type, and mean contrasts with WT were estimated. Pointwise confidence intervals were computed for
each K between 1 and 1000. These provide a visual description of whether cell mutants are differently, or
similarly, associated with actin for varying spatial proximity.
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Figure C.4: Localization of endosomal AQP2 by ExM. Cells stably expressing AQP2 were seeded on
glass, fixed, stained with ab against AQP2 and Hoechst. Cells were estimated to be expanded 4.5x. This
was estimated by measuring nuclei length and comparing expanded with non-expanded cell nuclei. The
expansion enabled imaging in x-y with a resolution ~ 45 nm/pixel. Scale bar in left micrograph is 5 ym
and 500 nm in right insets.
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Figure C.5: Setup of iPALM sandwich imaging chamber and Spatio-temporal signal output. (A) Cells were
grown on 18-mm coverslips coated with 100-nm gold bead fiducials. After fixation and labelling cells were
placed in chambers assembled from the 18-mm cell-containing fiducialed coverglass, 5-min epoxy (ITW
Performance Polymers) and vaseline (Unilever), emerged with PHEM buffer and a 25-mm coverglas on
top. Imaging chamber was loaded into the microscope and objectives were aligned before iPALM. Corner
cells with a medium expression of mEos3.2-AQP2 signal were chosen for imaging. iPALM imaging area
is indicated by the red rectangle. (B) Sideview of a region of interest shows the spatio-temporal imaging
behavior of detected signal points in a representative ROI. Colored points correspond to the detected
groups posited to be vesicles, while black points were considered background and omitted from analysis.
The dense clustering structure observed in time indicates an unusually large amount of fluorescent activity
in these groups, which may be the result of atypical blinking behavior in tightly packed, fluorescing probes.
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Figure C.6: iPALM positions AQP2 in spherical vesicles and larger endosomes close to the F-actin layer.
Representative iPALM renderings of MDCK cells expressing mEOS3.2-AQP2 and untagged AQP2 (green),
stained with Phalloidin-647 to label actin (magenta). Small spherical vesicles where localized between the
plasma membrane and the F-actin layer (red circles). At the F-actin layer, AQP2 localizations also draw a
positioning in endosome-like organelles (blue circles). Scale bars 1 ym.
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Movie S1

iPALM localization of AQP2 to small vesicles close to the PM. IMARIS software was
used to visualize the vesicular network of rendered 3D micrographs of AQP2 from
Figure C.1.

Movie S2

AQP2 is positioned in vesicles between the PM and the F-actin layer. IMARIS software
was used to visualize the vesicular network of rendered 3D micrographs of AQP2
in relation to F-actin from bottom located plasma membrane to the F-actin layer
positioned ~ 200 nm into the cell.
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Mathematical details for paper C

Given the short-form nature of paper C, the mathematical details had to be consid-
erably compressed. We aim here to provide some additional insight into the more
interesting modeling efforts.

CS.1 The data

The data consists of ACT and AQP2 localized in 3D. A total of 19 cells were analyzed,
with each cell split into two central and two edge ROIs, see Figure CS.1. Of the 19
cells, 7 expressed wildtype AQP2-WT, 6 the phospho-mimicking AQP2-D mutant,
and another 6 the non-phospho-mimicking AQP2-A mutant. In addition to the 3D
positions of each protein, we also had access to localization uncertainties in the xy
and z planes, and the camera frame numbers associated with each observation. The
data shows that ACT is positioned in a layer consisting of dense fibers, whereas
AQP2 is more homogeneous and sparse, organizing into small spherical clusters, see
Figure CS.2.

CS.1.1 On blinking artifacts in paper C

As noted also in the paper, the data exhibited large spatio-temporal clusters. The
question of whether these clusters were the result of individual blinking PA-FP with
unusually long lifetimes, or several close-by PA-FP interacting in some unforeseen
way, could not be determined on the basis of the data alone, with some authors
(myself) believing the clusters to be artifacts that needed correction, while the majority
believed the clusters were too large to be blinking alone. As a compromise, we
analyzed the data in its raw form, while being open about this shortcoming. In this
light, the statistical analysis of vesicles and interactions should be interpreted with
some care.

CS.2 Analysis of aquaporin vesicles

Aquaporin localizations demonstrated an organization into well-separated (especially
in 3D), compact clusters. These clusters were segmented out automatically using
the DBSCAN (2] algorithm, with hyperparameters chosen manually to best align
the resulting grouping with the visual impression of clustering. Biologists had an
expectation that AQP2 would organize into vesicles, and it was desirable to apply this
interpretation to the DBSCAN clusters. To validate this interpretation, we imaged
a cell of the same type using expansion microscopy (ExM) [1]. ExM is essentially
conventional fluorescence microscopy, but where the sample is first isotropically
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Figure CS.1: A representative cell. Four ROIs are segmented from each cell, with two edge regions (blue)
and two central regions (yellow).

enlarged by means of a polymer network, allowing for better effective resolution. ExM
showed that AQP2 does indeed organize into vesicular structures of a size consistent
with the DBSCAN clusters, allowing us to continue with our interpretation.

CS.2.1 Obtaining vesicle parameters

Vesicles are spherical, hollow objects. For AQP?2 trafficking, AQP2 proteins line the
surface of the vesicle [5], which serves as a starting point for modeling of the DBSCAN
clusters. Let (u;)i2, = (X;,Y;, Z;)/L, be the 3D localizations associated with a vesicle,
and (0yy,i,0,)i~; be localization uncertainties in the xy and z planes, respectively.
For iPALM the uncertainty in the z dimension is typically lower than in the xy plane,

and we thus need to treat them separately. We assume each localization is i.i.d., and
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take as basis the model

U; =Cc+rs;+€;, (CS.2.1)
si ~vMF(p, 1), (CS.2.2)
€; ~N(0,X;) (CS.2.3)

where ¢ € R? is the vesicle center, r > 0 is the vesicle radius, €; is the localization
error, and s; is the protein location on the unit-sphere, following a von Mises-Fisher
distribution with mean direction y and concentration parameter 7. Specifically, the
density of s; is given as

fi(x) = C(r)e™ ¥, (CS.2.4)

where the normalization C is given as
3/2-1

= L ()

, (CS.2.5)
where I3/,_; is the modified Bessel function of the first kind of order 3/2 —1. In order
to estimate parameters via maximum likelihood in a way that is quick enough to be
performed on thousands of vesicles, we need a sufficiently simple expression for the
density of u;, which is only forthcoming in the case where ¥; = 62I3 is constantly a
diagonal matrix. To approximate this situation, let

1 m

oxzy = ny’i (CS.2.6)
i=1
1 m

022 =— GZi, (CS.2.7)

and assume the uncertainty of each localization in the xy-plane is exactly o,,, and
similarly for o, in the z-plane, that is ¥; = ¥ with

gg 0 0
L= 0 a3 O (CS.2.8)
0 0 of
Next, define the covariance matrix
0 0 0
0 0 0 if oy >0,
2 2
yaug _ J\ 00 oy =0z (CS.2.9)
o? - cr,?y 0 0
0 o2 - ny 0 | ifoy <oy
0 0

and define the i.i.d. augmentation variables

€8 ~N(0,2%8). (CS.2.10)
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Figure CS.2: A representative ROI of ACT and AQP2 (top). A small subset of the ROI (in yellow) is
magnified in the bottom row, showing the complex organization of ACT (left) and the spherical clusters of
AQP2 (right). The AQP2 colors indicate the clustering found by the DBSCAN algorithm, and the circles
indicate the fitted vesicle parameters. Note that the vesicles were found and parameters estimated on the
basis of the 3D data, but we only show the projection unto the xy-plane here for easier visualization.

Finally, we add noise to the observed u; in order to make the covariance matrix
isotropic, so let
" =y, + e;mg, (CS.2.11)

1

and uiaug then has localization uncertainty with diagonal covariance matrix ¥ = 0213,
with 02 = max{crfy,af}. On the basis of (u?ug)l”;l, the parameters have likelihood [3]

m
)(2mo?)~3/2 { 1 aug o 2}
L(c,r,u,7) = exps——=([lu; ° —c||*+719);, CS.2.12
o ]_[ |T,M+T ey el Lt ) B

i=

which is maximized numerically. We optimized over ¢ in the neighborhood of the
average cluster position, ¢y, which was also the initializing value for c. As an initializ-
ing value for r, we can notice that in the case where s; is uniform on the sphere, it is
easy to show that

E[nuf”guz] =12 +|c|]? + tr(Z) (CS.2.13)
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and consequently we initialized r with the value

1 m
o= J m ;lluf”gIIZ ~llcoll® = tr(2), (Cs.2.14)

whenever this value is well-defined, and otherwise we set ry = 0. Examples of vesicle
fits can be seen in the bottom right subplot of Figure CS.2.

CS.3 Association between aquaporin and actin

Association is a term that is used somewhat loosely in the literature on protein
colocalization analysis. For the test of significant association between AQP2 and
ACT, we treated it as a matter of statistical dependence between point processes.
For a given ROI, let X be a point process of the 3D localizations of AQP2, and Y
similarly a point process of localizations of ACT. Broadly we are interested in testing
the null-hypothesis of independence

Hy:X 1L Y. (CS.3.1)

To perform this test in a way that also provides information on the nature of depen-
dence, let S be a function of X and Y, measuring some facet of their simultaneous
organization. In the paper, S is a curve of the average distances to the 1000 nearest
neighbors in Y from the vesicle shells in X. This choice puts particular focus on
spatial proximity between vesicles and ACT, which was of primary interest for this
study.

Testing Hy is done by comparing the observed value of S(X,Y) with the distri-
bution of S when X and Y are drawn from Hj. Rather than specify the marginal
distributions in full, it is sufficient to have a degree of stationarity. Given the observed
AQP2 organization, we postulate that X = (xh-,xzi,x&-)fil is invariant to shifts in the
xy-plane, in the sense that

d
X £ (14 + 51, %01 + 52, %31)1 (CS.3.2)

for any (s1,s,) € R2. On the basis of several such shift-vectors, a realization of S under
the null (strictly speaking, a conditional version of the null) was obtained. Since S is
a curve, we performed the test for dependence using a global envelope test [4].
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