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Corrections

Below follow corrections found after submitting this disertation. The page num-
bers refers to the pages in this PDF.

• Page 8. The matrix model should read;

ZN (y, η;α(1),α(2),β(1),β(2), ri,j;p)

=
1

Vol(H3
N )

∫

H3
N

dAdBdM e−NTrVy,η,α,β(A,B,M ;Λ1,Λ2,Λ).

• Page 8. The potential should read;

Vy,η,α,β(A,B,M ; Λ1,Λ2,Λ)

= AB +
1

2
M2 −

∑

i≥0

yiη

{

+ α
(1)
i (M + η−1/2Λ)(A+ y−1/2Λ1)i(M + η−1/2Λ)(B + y−1/2Λ2)i

+ α
(2)
i (M + η−1/2Λ)(B + y−1/2Λ2)i(M + η−1/2Λ)(A+ y−1/2Λ1)i

+ β
(1)
i (M + η−1/2Λ)

(
(A+ y−1/2Λ1)(B + y−1/2Λ2)

)[i/2]

× (A+ y−1/2Λ1)i%2(M + η−1/2Λ)(B + y−1/2Λ2)i%2

×
(
(A+ y−1/2Λ1)(B + y−1/2Λ2)

)[i/2]

+ β
(2)
i (M + η−1/2Λ)

(
(B + y−1/2Λ2)(A+ y−1/2Λ1)

)[i/2]

× (B + y−1/2Λ2)i%2(M + η−1/2Λ)(A+ y−1/2Λ1)i%2

×
(
(B + y−1/2Λ2)(A+ y−1/2Λ1)

)[i/2]

}

• Page 10, 1st line should read; “we can improve the prediction accuracy of an
existing software programme (table 3).”

• Page 11, 6th line from the bottom. “to 1% of the volum of SO(3) (table 5)”.

• Page 25, 18th line from the top. “...the random matrix under consideration,
is well-defined.”

• Page 54, 10th line from the top. “The total number l of unpaired”.

• Page 54, 12th line from the top.

l

2
=
∑

K≥1

∑

(i1,...,iK)

∑

(j1,...,jK)

K∑

L=1

iL`(i1,...,iK)(j1,...,jK)

• Page 55, equation 42.

〈AabBcd〉 =
1

Vol(H2
N )

∫

H2
N

dAdB AabBcde
−TrAB = δadδbc,

A



• Page 55–57, the integral is over H2
N , not H⊗2

N .

• Page 60, definition 5. The partition function should read;

ZN (y;α(1),α(2),β(1),β(2), rij)

=
1

Vol(H3
N )

∫

H3
N

dAdBdM exp

[
−NTr

(
AB +

1

2
M2

+
∑

i≥0

yi

{
α

(1)
i M(A+ y−1/2Λ1)iM(B + y−1/2Λ2)i

+ α
(2)
i M(B + y−1/2Λ2)iM(A+ y−1/2Λ1)i

+ β
(1)
i M

(
(A+ y−1/2Λ1)(B + y−1/2Λ2)

)[i/2]
(A+ y−1/2Λ1)i%2

×M(B + y−1/2Λ2)i%2
(
(A+ y−1/2Λ1)(B + y−1/2Λ2)

)[i/2]

+ β
(2)
i M

(
(B + y−1/2Λ2)(A+ y−1/2Λ1)

)[i/2]
(B + y−1/2Λ2)i%2

×M(A+ y−1/2Λ1)i%2
(
(B + y−1/2Λ2)(A+ y−1/2Λ1)

)[i/2]

})]

=
1

Vol(H3
N )

∫

H3
N

dAdBdM e−NTrVα,β(A,B,M ;Λ1,Λ2),

where [i/2] denotes the integer part of i/2, and i%2 denotes i modulo 2.

• The proof for theorem 4.8 should be changed accordingly.

Proof. First, we consider the derivative ∂/∂Λ1 of the partition function ZN (y;α(1),α(2),β(1),β(2), rij).

∂

∂Λ1ba
ZN (y;α

(1)
i ,α

(2)
i ,β(1),β(2), rij)

=
1

Vol(H3
N )

∫

H3
N

dAdBdM N
∑

i≥1

yi−1/2

×
(
α

(1)
i

i−1∑

k=0

(
(A+ y−1/2Λ1)kM(B + y−1/2Λ2)iM(A+ y−1/2Λ1)i−k−1

)
ab

+ α
(2)
i

i−1∑

k=0

(
(A+ y−1/2Λ1)kM(B + y−1/2Λ2)iM(A+ y−1/2Λ1)i−k−1

)
ab

+ β
(1)
i

{[i/2]−1∑

k=0

(B + y−1/2Λ2)((A+ y−1/2Λ1)(B + y−1/2Λ2))k

× (A+ y−1/2Λ1)i%2M(B + y−1/2Λ2)i%2((A+ y−1/2Λ1)(B + y−1/2Λ2))[i/2]

×M((A+ y−1/2Λ1)(B + y−1/2Λ2))[i/2]−k−1

+M(B + y−1/2Λ2)((A+ y−1/2Λ1)(B + y−1/2Λ2))[i/2]

×M((A+ y−1/2Λ1)(B + y−1/2Λ2))[i/2](i%2)

+

[i/2]−1∑

k=0

(B + y−1/2Λ2)((A+ y−1/2Λ1)(B + y−1/2Λ2))k

B



×M((A+ y−1/2Λ1)(B + y−1/2Λ2))[i/2](A+ y−1/2Λ1)i%2

×M(B + y−1/2Λ2)i%2((A+ y−1/2Λ1)(B + y−1/2Λ2))[i/2]−k−1
}
ab

+ β
(2)
i

{[i/2]−1∑

k=0

((B + y−1/2Λ2)(A+ y−1/2Λ1))k(B + y−1/2Λ2)i%2

×M(A+ y−1/2Λ1)i%2((B + y−1/2Λ2)(A+ y−1/2Λ1))[i/2]

×M((B + y−1/2Λ2)(A+ y−1/2Λ1))[i/2]−k−1(B + y−1/2Λ2)

+ ((B + y−1/2Λ2)(A+ y−1/2Λ1))[i/2]M

× ((B + y−1/2Λ2)(A+ y−1/2Λ1))[i/2](B + y−1/2Λ2)M(i%2)

+

[i/2]−1∑

k=0

((B + y−1/2Λ2)(A+ y−1/2Λ1))kM((B + y−1/2Λ2)(A+ y−1/2Λ1))[i/2]

× (B + y−1/2Λ2)i%2M(A+ y−1/2Λ1)i%2

× ((B + y−1/2Λ2)(A+ y−1/2Λ1))[i/2]−k−1(B + y−1/2Λ2)
}
ab

)

× e−NTrVy,α,β(A,B,M ;Λ1,Λ2)

=
1

Vol(H3
N )

∫

H3
N

dXdY dM N
∑

i≥1

yi−1/2

×
(
α

(1)
i

i−1∑

k=0

XkMY iMXi−k−1

+ α
(2)
i

i−1∑

k=0

XkMY iMXi−k−1

+ β
(1)
i

[i/2]−1∑

k=0

(
Y (XY )kXi%2MY i%2(XY )[i/2]M(XY )[i/2]−k−1

+MY (XY )[i/2]M(XY )[i/2](i%2)

+ Y (XY )kM(XY )[i/2]Xi%2MY i%2(XY )[i/2]−k−1
)

+ β
(2)
i

[i/2]−1∑

k=0

(
(Y X)kY i%2MXi%2(Y X)[i/2]M(Y X)[i/2]−k−1Y

+ (Y X)[i/2]M(Y X)[i/2]YM(i%2)

+ (Y X)kM(Y X)[i/2]Y i%2MXi%2(Y X)[i/2]−k−1Y
))

ab

× e−NTrWy,α,β(X,Y,M ;Λ1,Λ2),

where X = A+ y−1/2Λ1, Y = B + y−1/2Λ2, and

Wy,α,β(X,Y,M ; Λ1,Λ2)

= (X − y−1/2Λ1)(Y − y−1/2Λ2) +
1

2
M2

−
∑

i≥0

yi{α(1)
i MXiMY i + α

(2)
i MY iMXi

C



+ β
(1)
i M(XY )[i/2]Xi%2MY i%2(XY )[i/2]

+ β
(2)
i M(Y X)[i/2]Y i%2MXi%2(Y X)[i/2]}.

We now compute the derivative
∑N
a,b=1 ∂/∂Λ2ab to find

Tr
∂2

∂Λ1∂Λ2
ZN (y;α(1),α(2),β

(1)
i ,β

(2)
i , rij)

=
1

Vol(H3
N )

∫

H3
N

dXdY dM N2
∑

i≥1

yi−1

× Tr

((
α

(1)
i

i−1∑

k=0

XkMY iMXi−k−1 + α
(2)
i

i−1∑

k=0

XkMY iMXi−k−1

+ β
(1)
i

[i/2]−1∑

k=0

(
Y (XY )kXi%2MY i%2(XY )[i/2]M(XY )[i/2]−k−1

+MY (XY )[i/2]M(XY )[i/2](i%2)

+ Y (XY )kM(XY )[i/2]Xi%2MY i%2(XY )[i/2]−k−1
)

+ β
(2)
i

[i/2]−1∑

k=0

(
(Y X)kY i%2MXi%2(Y X)[i/2]M(Y X)[i/2]−k−1Y

+ (Y X)[i/2]M(Y X)[i/2]YM(i%2)

+ (Y X)kM(Y X)[i/2]Y i%2MXi%2(Y X)[i/2]−k−1Y
)

× (X − y−1/2Λ1)

)
e−NTrWy,α,β(X,Y,M ;Λ1,Λ2)

=
1

Vol(H3
N )

∫

H3
N

dXdY dM N2
∑

i≥1

yi−1e−NTrWy,α,β(X,Y,M ;Λ1,Λ2)

× Tr
(
α

(1)
i

i−1∑

k=0

MXi−k−1(X − y−1/2Λ1)XkMY i

+ α
(2)
i

i−1∑

k=0

MY iMXi−k−1(X − y−1/2Λ1)Xk

+ β
(1)
i

[i/2]−1∑

k=0

(
M(XY )[i/2]−k−1(X − y−1/2Λ1)Y (XY )kXi%2MY i%2(XY )[i/2]

+M(XY )[i/2](X − y−1/2Λ1)MY (XY )[i/2](i%2)

+M(XY )[i/2]Xi%2MY i%2(XY )[i/2]−k−1(X − y−1/2Λ1)Y (XY )k
)

+ β
(2)
i

[i/2]−1∑

k=0

(
M(Y X)[i/2]−k−1Y (X − y−1/2Λ1)(Y X)kY i%2MXi%2(Y X)[i/2]

+M(Y X)[i/2]YM(X − y−1/2Λ1)(Y X)[i/2](i%2)

+M(Y X)[i/2]Y i%2MXi%2(Y X)[i/2]−k−1Y (X − y−1/2Λ1)(Y X)k
))

D



Exchanging the role of (X,Λ1) and (Y,Λ2), we find

Tr
∂2

∂Λ2∂Λ1
ZN (y;α(1),α(2),β

(1)
i ,β

(2)
i , rij)

=
1

Vol(H3
N )

∫

H3
N

dXdY dM N2
∑

i≥1

yi−1e−NTrWy,α,β(X,Y,M ;Λ1,Λ2)

× Tr
(
α

(1)
i

i−1∑

k=0

MXiMY i−k−1(Y − y−1/2Λ2)Y k

+ α
(2)
i

i−1∑

k=0

MY i−k−1(Y − y−1/2Λ2)Y kMXi

+ β
(1)
i

[i/2]−1∑

k=0

(
M(XY )[i/2]−k−1X(Y − y−1/2Λ2)(XY )kXi%2MY i%2(XY )[i/2]

+M(XY )[i/2]XM(Y − y−1/2Λ2)(XY )[i/2](i%2)

+M(XY )[i/2]Xi%2MY i%2(XY )[i/2]−k−1X(Y − y−1/2Λ2)(XY )k
)

+ β
(2)
i

[i/2]−1∑

k=0

(
M(Y X)[i/2]−k−1(Y − y−1/2Λ2)X(Y X)kY i%2MXi%2(Y X)[i/2]

+M(Y X)[i/2](Y − y−1/2Λ2)MX(Y X)[i/2](i%2)

+M(Y X)[i/2]Y i%2MXi%2(Y X)[i/2]−k−1(Y − y−1/2Λ2)X(Y X)k
))

Finally, we compute the derivative with respect to y to find

∂

∂y
ZN (y;α(1),α(2),β

(1)
i ,β

(2)
i , rij)

=
1

Vol(H3
N )

∫

H3
N

dAdBdM
N

2

∑

i≥1

yi−1

× Tr

[
α

(1)
i

i−1∑

k=0

(
M(A+ y−1/2Λ1)kA(A+ y−1/2Λ1)i−k−1M(B + y−1/2Λ2)i

+M(A+ y−1/2Λ1)iM(B + y−1/2Λ2)kB(B + y−1/2Λ2)i−k−1
)

+ α
(2)
i

i−1∑

k=0

(
M(B + y−1/2Λ2)kB(B + y−1/2Λ2)i−k−1M(A+ y−1/2Λ1)i

+M(B + y−1/2Λ2)iM(A+ y−1/2Λ1)kA(A+ y−1/2Λ1)i−k−1
)

+ β
(1)
i

[i/2]−1∑

k=0

(
M
(
(A+ y−1/2Λ1)(B + y−1/2Λ2)

)k(
A(B + y−1/2Λ2) + (A+ y−1/2Λ1)B

)

×
(
(A+ y−1/2Λ1)(B + y−1/2Λ2)

)[i/2]−k−1

× (A+ y−1/2Λ1)i%2M(B + y−1/2Λ2)i%2
(
(A+ y−1/2Λ1)(B + y−1/2Λ2)

)[i/2]

+M
(
(A+ y−1/2Λ1)(B + y−1/2Λ2)

)[i/2](
AM(B + y−1/2Λ2) + (A+ y−1/2Λ1)MB

)

E



×
(
(A+ y−1/2Λ1)(B + y−1/2Λ2)

)[i/2]
(i%2)

+M
(
(A+ y−1/2Λ1)(B + y−1/2Λ2)

)[i/2]
(A+ y−1/2Λ1)i%2M(B + y−1/2Λ2)i%2

×
(
(A+ y−1/2Λ1)(B + y−1/2Λ2)

)k(
A(B + y−1/2Λ2) + (A+ y−1/2Λ1)B

)

×
(
(A+ y−1/2Λ1)(B + y−1/2Λ2)

)[i/2]−k−1
)

+ β
(2)
i

[i/2]−1∑

k=0

(
M
(
(B + y−1/2Λ2)(A+ y−1/2Λ1)

)k(
B(A+ y−1/2Λ1) + (B + y−1/2Λ2)A

)

×
(
(B + y−1/2Λ2)(A+ y−1/2Λ1)

)[i/2]−k−1

× (B + y−1/2Λ2)i%2M(A+ y−1/2Λ1)i%2
(
(B + y−1/2Λ2)(A+ y−1/2Λ1)

)[i/2]

+M
(
(B + y−1/2Λ2)(A+ y−1/2Λ1)

)[i/2](
BM(A+ y−1/2Λ1) + (B + y−1/2Λ2)MA

)

×
(
(B + y−1/2Λ2)(A+ y−1/2Λ1)

)[i/2]
(i%2)

+M
(
(B + y−1/2Λ2)(A+ y−1/2Λ1)

)[i/2]
(B + y−1/2Λ2)i%2M(A+ y−1/2Λ1)i%2

×
(
(B + y−1/2Λ2)(A+ y−1/2Λ1)

)k(
B(A+ y−1/2Λ1) + (B + y−1/2Λ2)A

)

×
(
(B + y−1/2Λ2)(A+ y−1/2Λ1)

)[i/2]−k−1
)]

× e−NTrVy,α,β(A,B;Λ1,Λ2)

=
1

2N

(
Tr

∂2

∂Λ1∂Λ2
+ Tr

∂2

∂Λ2∂Λ1

)
ZN (y;αi,βi, rij).

• Page 65, definition 6. The partition function should read;

ZN (y, η;α(1),α(2),β(1),β(2), ri,j;p)

=
1

Vol(H3
N )

∫

H3
N

dAdBdM exp

[
−NTr

(
AB +

1

2
M2

−
∑

i≥0

yiη

{

+ α
(1)
i (M + η−1/2Λ)(A+ y−1/2Λ1)i(M + η−1/2Λ)(B + y−1/2Λ2)i

+ α
(2)
i (M + η−1/2Λ)(B + y−1/2Λ2)i(M + η−1/2Λ)(A+ y−1/2Λ1)i

+ β
(1)
i (M + η−1/2Λ)

(
(A+ y−1/2Λ1)(B + y−1/2Λ2)

)[i/2]

× (A+ y−1/2Λ1)i%2(M + η−1/2Λ)(B + y−1/2Λ2)i%2

×
(
(A+ y−1/2Λ1)(B + y−1/2Λ2)

)[i/2]

+ β
(2)
i (M + η−1/2Λ)

(
(B + y−1/2Λ2)(A+ y−1/2Λ1)

)[i/2]

× (B + y−1/2Λ2)i%2(M + η−1/2Λ)(A+ y−1/2Λ1)i%2

×
(
(B + y−1/2Λ2)(A+ y−1/2Λ1)

)[i/2]

})]

F



=
1

Vol(H3
N )

∫

H3
N

dAdBdM e−NTrVy,η,α,β(A,B,M ;Λ1,Λ2,Λ).

• The proof for theorem 4.9 should be changed accordingly.

Proof. The first equation is proven in the same way as the previous model
(i.e. Λ = 0). Here we focus on the proof of the second equation.

Consider the derivative with respect to Λ;

Tr
∂2

∂Λ2
ZN (y, η;α(1),α(2),β(1),β(2), rij;p)

=
1

Vol(H3
N )

∫

H3
N

dXdY dT N2
∑

i≥0

yie−NTrWy,η,α,β(X,Y,T ;Λ1,Λ2,Λ)

× Tr

{
α

(1)
i

(
(T− η−1/2Λ)XiTYi + TXi(T− η−1/2Λ)Yi

)

+ α
(2)
i

(
(T − η−1/2Λ)Y iTXi + TY i(T − η−1/2Λ)Xi

)

+ β
(1)
i

(
(T − η−1/2Λ)(XY )[i/2]Xi%2TY i%2(XY )[i/2]

+ T (XY )[i/2]Xi%2(T − η−1/2Λ)Y i%2(XY )[i/2]
)

+ β
(2)
i

(
(T − η−1/2Λ)(Y X)[i/2]Y i%2TXi%2(Y X)[i/2]

+ T (Y X)[i/2]Y i%2(T − η−1/2Λ)Xi%2(Y X)[i/2]
)
}
,

where T = M + η−1/2Λ and

Wy,η,α,β(X,Y, T ; Λ1,Λ2,Λ)

= (X − y−1/2Λ1)(Y − y−1/2Λ2) +
1

2
(T − η−1/2Λ)2

−
∑

i≥0

yi(α
(1)
i TXiTY i + α

(2)
i TY iTXi)

−
∑

i≥0

yi
(
β

(1)
i T (XY )[i/2]Xi%2TY i%2(XY )[i/2]

+ β
(2)
i T (Y X)[i/2]Y i%2TXi%2(Y X)[i/2]

)
.

The derivative with respect to η is given by

∂

∂η
ZN (y, η;α(1),α(2),β(1),β(2), rij;p)

=
1

Vol(H3
N )

∫

H3
N

dAdBdM
N

2

∑

i≥0

yie−NTrVy,ζ,α,β(A,B;Λ1,Λ2,Λ)

× Tr

{
α

(1)
i

(
M(A+ y−1/2Λ1)i(M + η−1/2Λ)(B + y−1/2Λ2)i

+ (M + η−1/2Λ)(A+ y−1/2Λ1)iM(B + y−1/2Λ2)i
)

+ α
(2)
i

(
M(B + y−1/2Λ2)i(M + η−1/2Λ)(A+ y−1/2Λ1)i

G



+ (M + η−1/2Λ)(B + y−1/2Λ2)iM(A+ y−1/2Λ1)i
)

+ β
(1)
i

(
M
(
(A+ y−1/2Λ1)(B + y−1/2Λ2)

)[i/2]

× (A+ y−1/2Λ1)i%2(M + η−1/2Λ)(B + y−1/2Λ2)i%2

×
(
(A+ y−1/2Λ1)(B + y−1/2Λ2)

)[i/2]

+ (M + η−1/2Λ)
(
(A+ y−1/2Λ1)(B + y−1/2Λ2)

)[i/2]

× (A+ y−1/2Λ1)i%2M(B + y−1/2Λ2)i%2

×
(
(A+ y−1/2Λ1)(B + y−1/2Λ2)

)[i/2]
)

+ β
(2)
i

(
M
(
(B + y−1/2Λ2)(A+ y−1/2Λ1)

)[i/2]

× (B + y−1/2Λ2)i%2(M + η−1/2Λ)(A+ y−1/2Λ1)i%2

×
(
(B + y−1/2Λ2)(A+ y−1/2Λ1)

)[i/2]

+ (M + η−1/2Λ)
(
(B + y−1/2Λ2)(A+ y−1/2Λ1)

)[i/2]

× (B + y−1/2Λ2)i%2M(A+ y−1/2Λ1)i%2

×
(
(B + y−1/2Λ2)(A+ y−1/2Λ1)

)[i/2]
)}

Comparing these two results, we obtain the heat equation (51).

• Page 92, 2nd line from the top. “Different values of a in the combined score
function (57) only had...”.

• Page 92, 8th line from the top. “algorithm using 4, 5, and 6 % for pre-
selection.”

• Page 96, 16th line from the bottom. “..by the model as the best, and the true
best candidate.”

• Page 104, 10th line from the top. “One of the classical descriptors of protein
local structures...”.

• Page 118, 8th line from the bottom. “When we consider more practical ap-
plications,”.
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Abstract

This thesis presents the results from my PhD studies at Aarhus University,
supervised by Professor Jørgen Ellegaard Andersen. The main focus of the PhD
project was to investigate applications of the fatgraph model of proteins, which
was first proposed by Andersen and others [72]. The studies are exploratory
in nature, but are designed with the intention of contributing to the protein
folding problem using the fatgraph model.

In the first part of the thesis, a review of mathematical objects and theories
related to the project is presented. It is followed by a review of the works
utilising fatgraphs in the study of another biological macromolecule, RNA. We
review the recursion relations obtained by the so-called cut and join method,
matrix models and topological recursion.

In the second part of the thesis, we present new results in relation to the
study of protein structures. First the basic fatgraph model of proteins is intro-
duced, and recursion relations for the protein diagrams, obtained by cut and
join method, are presented. We construct matrix models that encode gener-
ating functions for protein diagrams, and derive partial differential equations,
which express the cut and join equations. We then discuss three experimental
studies in applications of fatgraph models. In the first project, we introduce a
novel model of proteins, which we call protein metastructures, and an associated
topological model, which is a modification of the basic fatgraph model. These
are used to study β-sheet topology of proteins, which is the configuration of
β-strands in β-sheets. We show that the proteins favour less complex β-sheet
topologies by comparing the data from the actual proteins and simulated data.
Some applications of the models are presented, including an example for com-
bining the method with an existing program for predicting β-sheet topology. As
a result, prediction accuracy was improved by 8 percentage points in Precision
and 3 percentage points in Recall. The second project takes inspiration from
CASP assessment of model quality, and attempts to select the best structure
from a set of candidate structures, which aim to reproduce the target protein
structure from its primary sequence. We show the topological information con-
tained in our model is enough to predict, if not the best, a structure close to
the best candidate structure. The third project aims to predict local geometry
of the proteins, expressed as a rotation between peptide units (expressed as an
element in the rotation group SO(3)) that are connected by a hydrogen bond,
from their topology. The topological information is expressed as a pattern of
other hydrogen bonds around the bond in question. We show that the rotation
can be predicted to a high accuracy; close to 90% of the predictions lie within a
ball centred at the true rotation occupying 1% of the SO(3) space. We conclude
the thesis by a brief discussion of potential future challenges and benefits of the
use of fatgraph models in the protein structure research.
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Resumé

Vi præsenterer resultaterne fra mit PhD studie p̊a Aarhus Universitet, under ve-
jledning af Professor Jørgen Ellegaard Andersen. Målet for PhD projektet var,
at undersøge anvendelsesmulighederne for fatgraf-modeller af proteiner, som
først foresl̊aet af Andersen, sammen med Penner, Knudsen og Wiuf [72]. Pro-
jektet er eksplorativt, men det er vores hensigt at bidrage til foldningsproblemet
for proteiner ved at bruge fatgraf-modellerne.

I første del af afhandlingen præsenteres der en redegørelse af de matematiske
objekter og teorier, som indg̊ar i projektet. Derefter følger en redegørelse af
studier, der har anvendt fatgrafer i en anden biologisk makromolekyle; RNA.
Vi beskriver en rekursion for RNA stukturer, opn̊aet ved s̊akaldt cut-and-join
metode, matrixmodel og topologisk rekursion.

I anden del præsenteres der nye resultater i forbindelse med proteinstruk-
tuerer. Vi introducerer den grundlæggende fatgraf-model for proteiner, og
derefter anvender vi cut-and-join metoden til at finde rekursionsrelationer for
proteindiagrammer. Vi konstruerer matrixmodeller, som koder genererende
funktioner for proteindiagrammer, og udleder partielle differentialligninger, som
udtrykker cut-and-join ligningerne. Derefter diskuterer vi tre eksperimentelle
studier af anvendelse af fatgrafmodeller. I det første projekt introducerer vi en
ny og original model for proteiner, som vi kalder proteinmetastrukturer, samt en
dertilhørende topologisk model, som er en modificering af den grundlæggende
fatgraf model. Vi bruger disse for at studere proteiners β-ark topologi, som
er konfigurationen af β-strenge i β-foldede ark. Vi viser, at proteinerne fore-
trækker mindre komplekse β-ark topologier, ved at sammenligne data fra reelle
proteiner og simulerede data. Anvendelser af modellerne præsenteres, samt et
eksempel p̊a at kombinere metoden med et eksisterende software-program for
forudsigelsen af β-ark topologi. Vi forbedrede forudsigelsesnøjagtigheden med 8
procentpoint i præcisionen og 3 procentpoint i sensitiviteten. Det andet projekt
er inspireret af CASP “assessment of model quality”. Målet er at udvælge den
bedste struktur fra en gruppe kandidatstrukturer, som alle forsøger at gengive
strukturen af “target” proteinet ud fra dets primærsekvens. Vi viser, at den
topologiske information, som er indeholdt i vores model, er nok til at forudsige,
om ikke den bedste, s̊a en struktur tæt p̊a den bedste kandidatstruktur. Det
tredie projekts m̊al er at forudsige, ud fra et proteins topologi, dets lokale ge-
ometri, repræsenteret i en rotation mellem to peptideenheder forbundet med
en hydrogenbinding. Den topologiske information er angivet som et møster af
andre hydrogenbindinger omkring den binding, der undersøges. Vi viser at rota-
tionen forudsiges med en høj nøjagtighed; næsten 90% af forudsigelserne ligger
indenfor en kugle omkring den sande rotation, med volumen svarende til 1% af
SO(3)-rum. Afhandlingen afsluttes med en kort diskussion af mulige fremtidige
udfordringer og fordele ved anvendelsen af fatgraf-modeller indenfor forskning i
proteinstrukturer.
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1 Introduction

1.1 Protein and the folding problem

Proteins are large biological molecules, or macromolecules, which are essential
to a vast array of biological structures and processes, including, but not limited
to, replication of DNA, catalysis of biochemical reactions in cells, transport of
molecules within and between cells, and as structural elements in cells and or-
ganisms. Chemically, a protein is a chain of amino acid residues, or polypeptide.
The polypeptide chain is also called the backbone of a protein. There are 20
so-called standard genetic coded amino acids that form proteins. This sequence
of amino acids, which can also be thought of as a finite word in an alphabet
with 20 letters, is called the primary structure of a protein. In nature, pro-
teins exist as folded, three-dimensional structure unique to each protein. These
three-dimensional structures are called native conformations or tertiary struc-
tures. In the folded structures of proteins, there are certain commonly occurring
local structures, with α-helices and β-sheets being the two most frequently ob-
served examples [5]. The collection of such local structures in a protein’s native
conformation is called its secondary structure. In some cases, several protein
molecules form a structure, that functions as a single protein complex. Such
structures are called the quaternary structure of a protein complex.

It is widely accepted that the function of a protein is largely determined by
its three-dimensional folded structure [32], and Anfinsen famously postulated in
his Nobel Lecture [16], that in theory, one should be able to determine a protein’s
structure from its primary sequence alone. This is the so-called protein folding
problem, and it has since been an area of major research interest [32]. The
potential implications of a solution to the problem are wide-ranging. Not only
will it represent a significant advancement in our understanding of molecular
biology, but it will also have a far-reaching impact on our understanding of
certain diseases thought to be caused by malformed proteins, and drug discovery,
such as the recent development of COVID-19 vaccines [49].

There has been much progress over the years towards the solution of the
protein folding problem [33, 32], partly driven by the biannual CASP : Critical
Assessment of protein Structure Prediction [62, 58] events, and aided by the
ever-increasing amount of protein structural data available at the Protein Data
Bank (PDB) [20]. With the increase in the available computing power, super-
computers have been built to tackle the problem [4], and in the latest CASP
competitions (CASP13; [58] and CASP14; [49]), AlphaFold and AlphaFold 2,
deep learning programs developed by a team at DeepMind, have made signifi-
cant advances [83, 82]. In particular, in the 14th and the latest round of CASP,
AlphaFold 2 has achieved prediction accuracy, which is comparable to the ac-
curacy of the experimental methods used to obtain the “correct” structure of
proteins [49]. In some ways, therefore, it can be said that we are very close to
a solution to the problem. Nevertheless, we are still a long way from being able
to consider the problem closed. In particular, the methods based on machine
learning/deep learning do not make it easy to model the process of protein fold-
ing. It is akin to having a still picture of a folded protein, but not a movie, that
shows the entire folding process. While the final image is a highly significant
achievement, the true understanding of the protein folding problem is achieved
only when we understand the entire folding mechanism of proteins.
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1.2 Protein folding problem and fatgraph model of pro-
teins

Andersen, together with others, [72] proposed a model of proteins based on
the mathematical object called fatgraphs, which can be thought of as a graph,
whose vertices and edges are “fattened” to discs and ribbons. Fatgraphs are
objects that originate in mathematics and physics, but in recent years they have
been successfully used in the study of RNA structures [48, 93, 92]. Proteins’
molecular structures are more complex than that of RNA (for example there are
20 different amino acids as “building blocks” for proteins, as opposed to 4 for
RNA), but they also share some similarities, such as their structure in nature as
a folded strand. These earlier results, therefore, provide an inspiration for using
fatgraphs in the study of protein structures. One advantage of using fatgraphs
is that each fatgraph corresponds to a surface, whose genus can be used as a
measure of complexity in the structure being modelled. Later in this thesis,
following the work by Penner, Knudsen, Wiuf and Andersen [72], we will recall
that a protein can naturally be considered as a surface, so in that way fatgraphs
are very natural objects to consider when modelling proteins.

In this thesis, we will explore the application of protein models based on
fatgraphs to the protein folding problem. Our intended, novel approach to the
protein folding problem is in two steps, and relies on an intermediate structure
which we call the protein graph structure. It is the structure as presented in
[72], and consists of the protein’s primary structure together with the hydrogen
bonds that form between non-adjacent residues along the polypeptide chain.
We describe the protein graph structure in more details in section 4.1, but note
here that these hydrogen bonds are an important factor in stabilising the folded
structure of a protein [5]. In the first step, we predict a protein’s graph struc-
ture from its primary structure. Here the idea is to enumerate all possible graph
structures from a given primary sequence, and using an appropriate energy func-
tion that assigns a pseudoenergy or a“score” to each graph structure, to produce
a set of most likely structures. In the second step we use the resulting graphs
to predict the tertiary structure. This is done by first predicting the structure
locally around each hydrogen bond, then determining the entire tertiary struc-
ture that is compatible with the predicted local structures. This approach is
inspired by the two previous works of Andersen and others ([74, 73]). In the
first paper, they have shown certain topological invariants associated with a
protein’s graph structure are good descriptors of its three-dimensional structure
[74]. In the second, they associated a rotation in R3 to each hydrogen bond
in proteins and showed that they are concentrated around localised clusters,
which correspond well to common local structures [73]. The inspiration also
comes from earlier works by Andersen, Chekhov, Penner, Reidys, Su lkowski
and others, on the structure of another macromolecule, RNA [3, 7, 77, 8, 15, 14,
13]. We will review these earlier studies, together with the construction of the
RNA fatgraph model in detail in section 3. We note here, that studying topolog-
ical structures of RNA molecules filtered by genus has allowed identification of
the basic building blocks for these structures, and development of an algorithm
to build higher-genus structures using these basic structures ([77, 7]). It also
allowed computation of the theoretically possible numbers of certain classes of
(simplified) RNA structures [8]. Furthermore, the technique can be adopted to
lower levels of abstraction by considering more parameters, thus allowing for
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enumeration of more realistic structures [3, 15]. In [3], the lengths of boundary
components and the numbers of bivalent (unpaired) vertices in the boundary
components are considered to construct corresponding matrix models, which is
a technique for enumerating fatgraphs using a formal matrix integral (We will
discuss matrix models in more detail in section 2.3). In [15], these two param-
eters are combined to a unified parameter to produce a single model. In both
papers, a method called cut and join is used to solve the matrix model and ob-
tain recursion relations for the number of distinct structures. One advantage of
the fatgraph model is that one may utilise the tools developed in mathematics,
independent of what is being modelled. This is demonstrated in [14], where
the recursion relation is obtained as a series of partial differential equations,
and in [13], where the solution is obtained using a technique called topologi-
cal recursion. One interesting aspect of this enumeration is that the class of
RNA structure called shapes are in one-to-one correspondence with the cells
in a decomposition of Riemann’s moduli space of a surface with one boundary
component [8]. Of course, the composition and structure of proteins are differ-
ent from that of RNA, but these studies provide us with the guiding principle,
that the graph structures of proteins can be studied effectively by considering
their topology. The RNA model will be adapted to proteins, largely following
the procedure described in [72], and adjusted further for particular applications.

1.3 Content of this thesis

This thesis is divided into two parts. In the first part we will provide a detailed
review of the theoretical foundations for the project, primarily based around,
but not limited to, the earlier work on RNA structures. The topics such as
fatgraphs, matrix model and topological recursion will be explored in more gen-
erality. Fatgraph is an object first studied in mathematics for indexing a certain
decomposition of Riemann’s moduli space [71, 88], and in theoretical physics
as index sets of large-N limit of certain matrix models [21, 1]. It has been
applied in geometry [45, 71], physics [54], and in study of RNA structures [8].
In section 2.1 we will give a mathematical definition of fatgraphs, and describe
how we can associate a topological surface to a fatgraph. We also review how
fatgraphs can be efficiently stored as a pair of permutations, which is especially
convenient for large-scale computations. To demonstrate the historical back-
ground of the subject, we then review the theory of Penner and Strebel [70,
88], which states that there is a one-to-one correspondence between cells in the
mapping class group invariant cell decompositions of a (decorated) Teichmüller
space and homotopy classes of fatgraphs (section 2.2). We will then introduce
the theory of matrix integrals as a way of enumerating fatgraphs, filtered by
their genera, in section 2.3. The study of the link between matrix integrals and
fatgraphs goes back to 1970’s, when ’t Hooft [1] found that fatgraphs (called
planar diagrams in the paper) appear naturally in quantum chromodynamics,
when the size of the gauge group U(N) tends to infinity. This has lead to other
studies, where matrix models are used as a method for enumerating fatgraphs
[25, 21], although there are many more applications of matrix models (see [38]
for examples). Next in section 2.4, we describe the theory of topological recur-
sion, which is a powerful framework developed by Chekhov, Eynard and Orantin
[28, 43], with application in a number of fields (see [36]), including providing a
solution for a matrix model, such as the ones that can be constructed for RNA
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structures.
In section 3, we review the application of the above theories in the study

of RNA structures, based on the earlier works by Andersen, Chekhov, Penner,
Reidys, Su lkowski and others [7, 8, 9, 12, 3, 14, 15, 13]. We will start by a brief
review of the molecular structure of RNA, and the construction of the RNA
fatgraph model in section 3.1. We will also introduce a number of relevant classes
of RNA structures. In section 3.2, based on the materials presented in [3, 15], we
demonstrate the so-called cut and join method to find recursion relations for the
number of distinct RNA structures, filtered by their topological characteristics.
We then construct a matrix model for RNA structures in section 3.3, following
[14]. In the final part of section 3, we will describe how the topological recursion
framework, introduced in section 2.4 can be applied to the RNA matrix model
to obtain the solution.

Cα
i

Ci

Oi

Ni+1

Hi+1

Cα
i+1

Ri Ri+1

Oi

Ni+1

Figure 1: Basic fatgraph model of proteins. Idealised peptide
units are glued together, before edges representing the hydrogen
bonds are added.

In the second part, we will discuss the main part of this project; the appli-
cation of the protein fatgraph model to the study of topological and geometric
structure of proteins. We begin by giving a brief review of the molecular struc-
ture of proteins (section 4.1). We then introduce our basic protein model, as
proposed in [72] in section 4.2. It is a model based on the so-called peptide units
of proteins, to which hydrogen bonds are added as edges connecting carboxyl
oxygens and amino hydrogens (figure 1). Here we will also describe how we can
assign an element of the rotation group SO(3) to each of the hydrogen bonds in
proteins [72]. A natural question to ask about such fatgraph models is whether
there is a recursion relation, similar to that identified for RNA structures in
[3, 15] (section 3.2). In section 4.3, we prove a recursion relation for the num-
ber Ng,k,l(b; q) oriented, multi-backbone protein diagrams by the so-called cut
and join method. Here g, k, l denote the genus, the number of hydrogen bond
edges, and the number of unbonded edges, respectively. b = (b0, b1, . . . ) records
the number bi of backbones with precisely i paired or unpaired vertices, and
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q = (qpK , . . . ) is the sequence of the numbers qpK , indexed by another sequence
pK , which records the sequence of unpaired carboxyl oxygens denoted by the
letter “O”, and amino hydrogens denoted by the letter “N” (see section 4.3 for
detailed descriptions).

Theorem. Ng,k,l(b; q) satisfies the following recursion relation;

kNg,k,l(b; q) =
∑

K≥1

∑

pK

(qpK + 1)
∑

1≤I≤K
pI 6=pJ

∑

I<J≤K
Ng,k−1,l+2(b; q + sI,J(pK))

+
1

2

∞∑

K=1

∞∑

L=1

∑

pK

∑

rL

(qpK + 1)(qrL + 1 + δpK ,rL)

∑

1≤I≤K
pI 6=rJ

∑

1≤J≤L
Ng−1,k−1,l+2(b; q + tI,J(pK , rL))

+
1

2

∞∑

K=1

∞∑

L=1

∑

pK

∑

rL

∑

g1+g2=g

∑

k1+k2=k−1

∑

b(1)+b(2)=b

∑

1≤I≤K
pI 6=rJ

∑

1≤J≤L

∑

q(1)+q(2)

=q+tI,J (pK ,rL)

q(1)
pK q

(2)
rL

b!

b(1)!b(2)!
Ng1,k1,l1(b(1); q(1))Ng2,k2,l2(b(2); q(2)),

where b(a) =
∑∞
i=1 b

(a)
i , a = 1, 2 and

sI,J(pK) = epK − e(p1...pI−1pJ+1...pK) − e(pI+1pI+2...pJ−2pJ−1)

tI,J(pK , rL) = epK + erL − e(p1...pI−1rJ+1...rLr1...rJ−1pI+1...pK).

We will also prove the corresponding result for the number Mh,k,l(b; q) of
orientable and non-orientable protein diagrams, where h is twice the genus if
the diagram is orientable, and the number of cross-caps if not.
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Theorem. Mh,k,l(b; q) satisfies the following relation.

kMh,k,l(b; q) =
∑

K≥1

∑

pK

(qpK + 1)
∑

1≤I≤K
pI 6=pJ

∑

I<J≤K

[
2Mh,k−1,l+2(b; q + sI,J(pK))

+Mh−1,k−1,l+2(b; q + uI,J(pK))
]

+
1

2

∞∑

K=1

∞∑

L=1

∑

pK

∑

rL

(qpK + 1)(qrL + 1 + δpK ,rL)

×
∑

1≤I≤K
pI 6=rJ

∑

1≤J≤L

[
Mh−1,k−1,l+2(e2k+l; q + tI,J(pK , rL))

+Mh−2,k−1,l+2(b; q + t̃I,J(pK , rL))
]

+
1

2

∞∑

K=1

∞∑

L=1

∑

pK

∑

rL

∑

h1+h2=h

∑

k1+k2=k−1

∑

b(1)+b(2)=b

∑

1≤I≤K
pI 6=rJ

∑

1≤J≤L




∑

q(1)+q(2)

=q+tI,J (pK ,rL)

q(1)
pK q

(2)
rL

b!

b(1)!b(2)!
Mh1,k1,l1(b(1); q(1))Mh2,k2,l2(b(2); q(2))

+
∑

q(1)+q(2)

=q+t̃I,J (pK ,rL)

q(1)
pK q

(2)
rL

b!

b(1)!b(2)!
Mh1,k1,l1(b(1); q(1))Mh2,k2,l2(b(2); q(2))



,

where sI,J and tI,J are as above, and

uI,J(pK) = epK − e(p1···pI−1pJ−1pJ−2···pI+1pJ+1···pK),

t̃I,J(pK , rL) = epK + erL − e(p1...pI−1rJ−1...r1rL...rJ+1pI+1...pK).

We also invesigate the enumeration problem using matrix model. By using
a combinatorial parameter `ij that records the unpaired vertices similarly to
q introduced above, we construct the protein 2-matrix model which gives the
generating function for the number of protein diagrams of a certain type, where
restrict the connection along the backbone to either untwisted or twisted, but
not mixed (figure 2 and figure 3).

Figure 2: A protein diagram with an untwisted backbone.
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Figure 3: A protein diagram with a twisted backbone.

Theorem. Let ZN (y;α,β, rij) denote the exponential of the generating func-
tion:

ZN (y;α,β, rij) = exp
[
F (1/N, y;α,β, rij)

]
.

ZN (y;α,β, rij) is given as the partition function of the hermitian 2-matrix
model with external fields Λ1 and Λ2:

ZN (y;α,β, rij)

=
1

Vol2N

∫

H⊗2
N

dAdB exp

[
−NTr

(
AB −

∑

i≥0

αiy
i(A+ y−1/2Λ1)i(B + y−1/2Λ2)i

−
∑

i≥0

βiy
i((A+ y−1/2Λ1)(B + y−1/2Λ2))i

)]

=
1

Vol2N

∫

H⊗2
N

dAdB e−NTrVy,α,β(A,B;Λ1,Λ2),

where VolN = NN(N+1)/2Vol(HN ), and rij ’s are defined by the single trace for
Λ1 and Λ2’s such as

r(i1,...,iK),(j1,...,jK) =
1

N
Tr(Λi11 Λj12 Λi21 Λj22 · · ·ΛiK1 ΛjK2 ).

We then prove the generating function obeys the heat equation, which can
also be expressed as cut and join equation.

Theorem. The generating function ZN (y;α,β, rij) satisfies the heat equation:

∂

∂y
ZN (y;α,β, rij)

=
1

2N

(
Tr

∂2

∂Λ1∂Λ2
+ Tr

∂2

∂Λ2∂Λ1

)
ZN (y;α,β, rij),

where Tr ∂2

∂Λ1∂Λ2
denotes

Tr
∂2

∂Λ1∂Λ2
=

N∑

a,b=1

∂2

∂Λ1ab∂Λ2ba
.

We extend the model further by introducing another matrix and then an-
other external matrix, to find the model for the diagrams, where the two types of
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Figure 4: An extended proten diagram.

backbones can be connected to each other (figure 4). It is given by the hermitian
3-matrix model;

ZN (y, η;α(1),α(2),β(1),β(2), ri,j;p)

=
1

Vol(HN )3

∫

H⊗3
N

dAdBdM e−NTrVy,η,α,β(A,B,M ;Λ1,Λ2,Λ),

where the potential Vy,η,α,β(A,B,M ; Λ1,Λ2,Λ) is given by;

Vy,η,α,β(A,B,M ; Λ1,Λ2,Λ)

= AB +
1

2
M2 −

∑

i≥0

yiη(M + η−1/2Λ)

{

+ α
(1)
i (A+ y−1/2Λ1)i(B + y−1/2Λ2)i

+ α
(2)
i (B + y−1/2Λ2)i(A+ y−1/2Λ1)i

+ β
(1)
i

(
(A+ y−1/2Λ1)(B + y−1/2Λ2)

)i

+ β
(2)
i

(
(B + y−1/2Λ2)(A+ y−1/2Λ1)

)i
}

(M + η−1/2Λ)

)
.

We will prove ZN (y, η;α(1),α(2),β(1),β(2), ri,j;p) also obeys the heat equa-
tion;

Theorem. The partition function ZN (y, η;α(1),α(2),β(1),β(2), rij;p) obeys heat
equations:


 ∂

∂y
− 1

2N

(
∂2

∂Λ1∂Λ2
+

∂2

∂Λ2∂Λ1

)
ZN (y, η;α(1),α(2),β(1),β(2), rij;p) = 0,

(1)(
∂

∂η
− 1

2N

∂2

∂Λ2

)
ZN (y, η;α(1),α(2),β(1),β(2), rij;p) = 0. (2)
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One of the important research areas within the protein folding problem is
the identification of β-sheets, both in terms of which parts of the backbone par-
ticipate in β-sheet structures and how these segments are configured within each
β-sheet. We introduce a new structure, which we call protein metastructure, to
model β-sheet configurations in proteins (section 5.2). This is a simplification of
protein β-sheet structures, yet retains essential information to understand the
configuration of β-sheets. Furthermore, there is a natural fatgraph structure
associated with each protein metastructure, which enables the study of topolog-
ical invariants in β-sheet structures (section 5.3). In section 5.4, we will show
that a class of protein metastructures, which we call the extended metastruc-
tures, satisfy a the same recursion relation relation for RNA diagrams, which
was discovered by Harer and Zagier [45] and recalled in [8]. By comparing the
topological characteristics of proteins from the existing database and simulated
protein structures, we discover that the real protein metastructures tend to have
lower genera than simulated structures (section 5.5). This may be an indication
that when protein folds, more complex (i.e. higher genus) structures are ener-
getically unfavourable. We then describe a series of experiments carried out as
potential applications of protein metastructures, all based around prediction of
metastructure (section 5.7). In the first experiment, we use topological invari-
ants of protein metastructures to classify “candidate” structures generated for
a target protein (section 5.7.1). The quality of predicted structures is measured
in Recall and Precision, given by

Precision =
TP

TP + FP

Recall =
TP

TP + FN
,

where TP,FP and FN stand for the number of true positive, false positive, and
false negative strand pairings. We find that our filter based on metastructure
topology rejects more than 90% of candidate structures, while retaining the
high-quality candidates (table 1). This effect became more pronounced when
we removed four (out of 189) proteins, which accounted for more than 99% of
candidate structures (table 2).

Quality Precision Recall
Low 7.38% (4850914/65738106) 7.42% (4819915/64953828)
Medium 7.88% (82780/1050828) 6.19% (112857/1824369)
High 89.42% (93/104) 9.36% (1015/10841)

Table 1: Acceptance rate and number of acceptance (in paren-
theses, {# accepted}/{#candidates}) by quality classes. The
topology filter effectively reduces the number of candidate struc-
tures, while retaining high-quality structures.

In the second experiment, we try to predict a metastructure for a given pro-
tein by using a sequence alignment and topological invariants (section 5.7.2).
Finally, we present another prediction method, which utilises an established
β-sheet prediction programme called Betapro [29] and topological invariants of
metastructures (section 5.7.3). We show that by utilising the metastructure

9



Quality Precision Recall
Low 15.18% (13136/86540) 21.27% (11729/55150)
Medium 9.07% (9929/109416) 7.86% (11042/140460)
High 91.18% (93/102) 86.38% (387/448)

Table 2: Acceptance rate and number of acceptance (in paren-
theses, {# accepted}/{#candidates}) by quality classes, exclud-
ing four proteins with > 5000 candidate structures. The accep-
tance rates for high-quality structures are improved further.

topology, we can improve the prediction accuracy of an existing software pro-
gramme.

Program Precision Recall
Betapro [29] 0.59 0.54

Current Study 0.67 0.57

Table 3: We were able to improve the prediction accuracy of
Betapro programme.

A major driving force behind the advancement in the protein folding prob-
lem has been the biannual series of community-wide experiments called CASP:
Critical Assessment of protein Structure Prediction [62]. In each round of CASP,
a set of protein primary structures are published, while their secondary and ter-
tiary structures are kept secret. The participants’ goal is to predict the tertiary
structures of these proteins. CASP includes model accuracy estimate as one of
the sub-categories, where one attempts to estimate the quality of the submitted
entries. Inspired by this, we designed algorithms for model quality estimation,
which uses the primary structure and information about the hydrogen bonds
of the target proteins, instead of the primary structure alone. The project is
presented in section 6. We begin the section by reviewing the primary metric
called GDT (Global Distance Test), which CASP uses to measure the close-
ness of two protein tertiary structures (section 6.1), before briefly describing
the dataset used for this project (section 6.2). We then describe the first of our
two algorithms, which is a linear regression method with information about the
hydrogen bonds as independent variables (section 6.3). The other algorithm
attempts to mimic the GDT algorithm, but based only on the two proteins’
hydrogen bond structures (section 6.4). We show that these relatively simple
algorithms, together with the information about the hydrogen bonds which is
not available in CASP experiments, can predict the best candidate structures
to accuracy levels comparable to those observed in CASP (table 4). We then
end the section by presenting a brief discussion of the results from the two
algorithms (section 6.5).

In section 7, we shift our focus from the topology to the geometry of pro-
teins, and present our project to investigate the relationship between the local
geometric structure of proteins, represented by the rotation along a given hy-
drogen bond, and the topological structure, given as the primary structure and
the hydrogen bonds as a graph. In section 7.1, we define the primary object of
our investigation, which we call the H-bond local pattern. We then present two
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Linear Regression graph-GDT CASP11 CASP12
5.5 19.1 4.6-11 5.0-20

Table 4: Average ∆GDT for the two methods, together with re-
sults from all models in CASP10 [55] and CASP12 [56]. ∆GDT
is the difference between the highest GDT score among the sub-
mitted predictions and the score of the prediction selected by
the model.

Range of d By pattern matching By pattern alignment
0 ≤ d < 0.2664 (0.1%) 64.75 51.31

0.2664 ≤ d < 0.4567 (0.5%) 83.47 69.55
0.4567 ≤ d < 0.5766 (1.0%) 89.05 76.67
0.5766 ≤ d < 0.7862 (2.5%) 94.02 84.94
0.7862 ≤ d < 0.9968 (5.0%) 96.24 89.74
0.9968 ≤ d < 1.2689 (10.0%) 97.64 93.08
1.2689 ≤ d < 1.7663 (25.0%) 98.99 96.24
1.7663 ≤ d < 2.3099 (50.0%) 99.77 98.31
2.3099 ≤ d < 2.7437 (75.0%) 99.93 99.22
2.7437 ≤ d < 3.1416 (100%) 100.00 100.00

Table 5: Accumulative % of hydrogen bonds whose predicted
rotation values lie within the specified distance from the true
rotation values. Results from H-bond pattern matching and
alignment of H-bond patterns. The numbers in the parentheses
show the volume of the ball whose radius is the upper limit of
the range, as a proportion of the volume of entire SO(3).

methods, designed to predict the rotation along a given hydrogen bond from the
H-bond local pattern around the bond. The first method tries to find an exact
match for the given H-bond local pattern in the database constructed from the
training dataset (section 7.2), while the second method uses an alignment algo-
rithm to find the H-bond local pattern in the training dataset, that best aligns
with the given pattern (section 7.3). We achieved high accuracy in predicting
the rotations, particularly with the pattern matching algorithm, where close to
90% of the prediction was within 0.5766 from the true rotations, corresponding
to 1% of the volume of SO(3). In each section, we present a detailed description
of the method and the results. The section ends with a brief discussion where
we compare the results from the two methods (section 7.4).

We end this thesis by a brief discussion, where we compare the results from
our three projects on protein structures, and the earlier results from RNA,
before presenting some concluding remarks on future prospects.
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2 Mathematical foundation for the project

2.1 Fatgraph

Let τ be a finite graph consisting of a set of vertices V = V (τ) and a set of
edges E = E(τ), where the edges do not contain their endpoints. Construct a
set of half-edges H = H(τ) by removing a single point from each edge in E. We
have, by construction, #H = 2#E, where #X denotes the cardinality of a set
X. A half-edge is incident on a vertex u ∈ V , if u is contained in its closure.
The number of half-edges that are incident on a vertex is called the valency of
the vertex.

A fatgraph τ is a finite graph, together with a cyclic ordering of half-edges
incident at each vertex. This ordering of half-edges gives rise to “cycles” of (ori-
ented) edges in the graph as follows. Pick an edge e1 and choose an orientation
for e1. Let v1 be the vertex at the end of the oriented edge e1. We set the next
edge in the cycle, e2, to be the edge immediately following e1 in the cyclic or-
dering at v1, with the orientation pointing away from v1. At the endpoint of the
(oriented) edge e2, the procedure is repeated until we encounter an (oriented)
edge which has already been traversed. If a vertex has a single edge incident
upon it, we take the single incident edge, with the orientation pointing away
from the vertex, as the next edge. The cycles of oriented edges thus obtained
are called boundary cycles.

The above construction is perhaps easier to visualise with an alternative
presentation of fatgraphs, which can be obtained by “fattening” the underly-
ing graph τ ; i.e. by expanding the vertices to discs, and edges to “ribbons”
connecting these discs. More precisely, the construction is done as follows:

For each k-valent vertex u ∈ V with k ≥ 2, we associate an oriented surface
diffeomorphic to a polygon Pu with 2k sides containing a single k-valent vertex
in its interior. Each half-edge incident on u is also incident on the mid-point
on every other side of Pu. These sides are identified with half-edges incident
on u such that the induced counter-clockwise cyclic ordering of the sides of Pu
agrees with the cyclic ordering of half-edges at u. For a univalent vertex u, the
corresponding surface Pu is diffeomorphic to a 2-gon, with one side containing u
and the other side identified with the single half-edge incident on u. The surface
F (τ) associated to τ is the quotient of the disjoined union

⊔
u∈V Fu, where the

sides, oriented with the interior of Pu to the left, are identified by an orientation-
reversing homeomorphism that preserve mid-points, if the corresponding half-
edges are contained in a common edge of τ . The subgraphs in Pu for u ∈ V
then combine to give a fatgraph embedded in F (τ), which we identify with τ in
the natural way, so we consider τ ⊆ F (τ). We thus obtain an oriented surface

u

u u

Figure 5: 1-, 2-, and 3-valent vertex u with associated surfaces.
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with boundary F (τ) associated to τ . Note the boundary components of F (τ)
correspond to the boundary cycles defined above (figure 6).

1

2

3 45

6

1

2

3 45

6

Figure 6: Two fatgraphs with two three-valent vertices, drawn
with their associated surfaces.

Let τ be a connected fatgraph, with v vertices, e edges, and r boundary
cycles. The Euler characteristic of τ is given by

χ(τ) = v − e+ r = 2− 2g,

where g is the genus of τ . Given a connected fatgraph τ with v vertices, e
edges and r boundary cycles, we may adjoin one once-punctured disc to each
boundary to obtain a surface F rg of genus g with r punctures. We then have
inclusions τ ⊂ F (τ) ⊂ F rg . We call the fatgraph τ a spine of F = F rg (see
figure 10b for an example).

One way of expressing fatgraphs is as a pair of permutations, σ and ι. σ is
the product of cycles, given as follows. We first choose one vertex in the graph
and number the half-edges around it, then choose the next vertex and number
its half-edges, and so on. In this way each k-valent vertex defines a k-cycle
and σ is the product of all of them. ι is a product of 2-cycles, each defining
which half-edge is connected to which. For example the first fatgraph in figure 6
will have σ = (123)(456), ι = (14)(26)(35), whereas the second graph will have
σ = (123)(456), ι = (15)(26)(34). Note cycles in σ and ι are disjoint, so these
expressions are independent of the order in which the vertices are chosen.

A useful feature of this expression is that the boundary cycles of a fatgraph
τ given by σ, ι are the cycles in ρ = σ ◦ ι. In this way we can describe the “dual”
of a fatgraph given by (σ, ι) by (ρ, ι) (figure 7). An automorphism of a fatgraph
given by σ and ι is a bijection φ from the set H of half-edges to itself, such that
σ = φ ◦ σ ◦ φ−1 and ι = φ ◦ ι ◦ φ−1. For graphs where all vertices have valency
at least three, we have the following elementary lemma, (see e.g. [37]).

1

2

3 45

6

1

6

3

5

2

4

Figure 7: Fatgraph to the left, given by
((123)(456), (15)(26)(34)) is dual to the fatgraph to the
right, given by ((163524), (15)(26)(34)).
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Lemma 2.1. Let τ be a fatgraph consisting of n3 three-valent vertices, n4 four-
valent vertices, . . . , and nd d-valent vertices, given by (σ, ι), Let #Aut(τ) be the
number of automorphisms, and let #Glu(τ) be the number of “gluings”, i.e. the
number of ways of gluing together the given n3, n4, . . . , nd vertices to obtain the
graph τ . Then #Aut and #Glu satisfy

#Aut×#Glu =
d∏

j=3

jnjnj !.

Proof. Let τ be a fatgraph and define

Gτ = {φ | σ = φ ◦ σ ◦ φ−1}

to be the subgroup of the group of bijections from the set of half-edges to itself,
which leaves σ invariant. Then

Aut(τ) = {φ ∈ Gτ | ι = φ ◦ ι ◦ φ−1}

is the stabiliser of ι under the Gτ action, and

Glu(τ) = {φ ◦ ι ◦ φ−1 | φ ∈ Gτ}

is the orbit of ι. By the orbit-stabiliser theorem, we have #Aut×#Glu = #Gτ .
There are j permutations for each j-valent vertex which leaves σ invariant, and
we may also permute nj j-valent vertices. The result follows.

A metric on a fatgraph τ is an assignment of some non-negative real number
µ(e) to each edge e of τ , such that there are no cycles in τ whose constituent
edges all have vanishing µ value. Note this no-vanishing cycle condition ensures
that each component of the (possibly empty) forest Φ ⊂ τ , consisting of the
edges with vanishing µ values, can be contracted to a distinct vertex to produce
a fatgraph τΦ with a strictly positive metric.

The construction of fatgraphs can be extended to include non-orientable fat-
graph, by endowing each edge with an extra binary information, which we refer
to as “twisted” and “untwisted”. When constructing the associated surface, the
identification of the sides corresponding to half-edges is orientation-preserving,
if and only if the corresponding edge is twisted. An example of non-orientable
fatgraph and the associated surface is given in figure 8. Note the representation
of fatgraphs as pairs of permutations, described above, will not work for non-
orientable fatgraph. The term non-oriented fatgraphs is used to mean a union
of orientable and non-orientable fatgraphs.

2.2 The Penner-Strebel decomposition

In this section, we provide a brief summary of the Penner-Strebel theory fol-
lowing the discussion in [70]. The theory proves a deep link between fatgraphs
and certain cell decomposition of decorated Teichmüller spaces, and sets the
enumeration problems of protein fatgraphs, which we present later in the thesis,
in more classical mathematical context.

Consider a three-dimensional real vector space V with a non-degenerate
quadratic form 〈·, ·〉, such that the corresponding metric has an expression

−dx2
0 + dx2

1 + dx2
2.
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1

2

3 45

6

Figure 8: Non-orientable fatgraph and its associated surface. A
twisted edge is denoted by an “x”.

We call V equipped with this metric Minkowski three-space M. The set

{v ∈ V : 〈v, v〉 = −1} = {x ∈M : −x2
0 + x2

1 + x2
2 = −1}

has two components, and the component H with x0 > 0 is a model of the
hyperbolic plane. The form 〈·, ·〉 restricts to a Riemannian metric on tangent
spaces to H. An isometry of H with the Poincaré disk model is given by the
projection onto the unit disk D = {x ∈ M : x0 = 0, x2

1 + x2
2 < 1} along the line

from (−1, 0, 0) to a point on H. We define the light-cone L ⊂M to be

L = {v ∈ V : 〈v, v〉 = 0} = {x ∈M : x2
0 = x2

1 + x2
2}

and the positive light-cone to be

L+ = {x ∈ L : x0 > 0}.

We say a point x ∈M lies “on” L+ if x ∈ L+, “inside” L+ if x lies in the com-
ponent of (1, 0, 0) of M−L, and “outside” L+ otherwise. The radial projection
from H to D extends to the map

·̄ : H ∪ L+ → D ∪ S1
∞,

where S1
∞ = {x ∈ M : x0 = 0, x2

1 + x2
2 = 1} and the map sends the ray

on L+ from the origin to the point where the ray’s projection onto the plane
{x0 = 0} intersects S1

∞. We let a point w = (w0, w1, w2) ∈ L+ correspond to
the horocycle

h = {x ∈ H : 〈w, x〉 = −1}.
The centre of h̄ is the point w̄ and the Euclidean radius of h̄ ⊂ D is (1 +w0)−1.
Hence we see that ·̄ induces an identification of L+ with the bundle of horocycles
over S1

∞.
The group of linear isomorphisms of M preserving the quadratic form is the

indefinite orthogonal group O(V ) = O(1, 2). The subgroup of O(1, 2) preserving
the orientation of V and H is the component of identity denoted SO+(1, 2)
and is isomorphic to PSL2(R). An element of PSL2(R) is called hyperbolic
(parabolic, elliptic), if the square of its trace is > 4 (= 4, < 4, respectively).
The corresponding elements in SO+(1, 2) are also called hyperbolic, parabolic
and elliptic. Hyperbolic elements of SO+(1, 2) have two eigenvectors on L+,
one with the corresponding eigenvalue λ, which is real and positive with |λ| 6= 1,
and the other with λ−1. The third lies outside L+ with eigenvalue 1. Parabolic
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elements have a unique eigenvector on L+ with eigenvalue 1, and no eigenvector
inside L+. Elliptic elements have all their eigenvalues on the unit circle and one
eigenvector inside L+.

Consider a closed surface Fg of genus g with a set of distinguished points
P = {x1, x2, . . . , xs}, with 2g − 2 + s > 0. Let F sg = Fg − P be a punctured
surface of genus g with s punctures. We will consider the Teichmüller space of
F sg , which is the space of marked complete hyperbolic structures of finite area
on F sg .

Definition 1. The Teichmüller space T sg of F sg is

T sg = {(M,f)}/ ∼,
where M is F sg equipped with a complete hyperbolic structure, and f : F sg →M
is a homeomorphism, called a marking. The relation is given by (M,f) ∼ (N, g)
if and only if there is an isometry ı : M → N such that ı ◦ f is homotopic to g.

Note because of the completeness of the metric, each puncture gives rise
to a cusp. It will be useful to give an equivalent definition of T sg as a set of
equivalence classes of representations.

Definition 2. The Teichmüller space T sg of F sg is

T sg = DF(π1(F sg ),PSL2(R))/PSL2(R),

where DF denotes the set of discrete, faithful representations of π1(F sg ) into
PSL2(R), and PSL2(R) acts by conjugation.

Lemma 2.2. (Aramayona [17]) The two difinitions are equivalent.

Proof. A point [(M,f)] ∈ T sg determines a conjugacy class of faithful represen-
tations of π1(M) ∼= π1(F sg ) via the holonomy map. Conversely, given a rep-
resentation ρ, M = H/ρ(π1(F sg )) comes equipped with a hyperbolic structure.
Then ρ induces a homotopy equivalence h : F sg → M which is then homotopic
to a homeomorphism f : F sg → M . Finally, any two conjugate representations
produce isometric surfaces.

We now define a slight generalisation of the Teichmüller space, called the
decorated Teichmüller space. Let ρ ∈ T sg and Γm = ρ(π1(F sg )), which is a

subgroup of SO+(1, 2). There is a corresponding covering map H → F sg =
H/Γm. We shall also consider the corresponding action on D with the covering
map D → F sg . Note the Poincaré metric on D projects to a metric on F sg
with the corresponding geodesics, which we call “Γ-geodesics”. Similarly, the
projected image of horocycles are called “Γ-horocycles”. Represent a point in T sg
by Γm < SO+(1, 2), and choose a distinguished Γ-horocycle hi around each cusp
xi corresponding to the puncture xi. Let zi ∈ L+ be the point corresponding
to hi and set Bi = Γzi. The decorated Teichmüller space of F sg is

T̃ sg = {(Γm, B1, . . . , Bs) : Γm ∈ T sg }/SO+(1, 2).

Let MCsg denote the full mapping class group of isotopy classes of orientation-

preserving homeomorphisms of F sg . MCsg acts on T̃ sg in the natural way by
change of marking.

Let Γ̃m = (Γm, B1, . . . , Bs) ∈ T̃ sg . Set B = B1 ∪ · · · ∪ Bs and let C be the
closed convex Euclidean hull of B in M. Then we have
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Proposition 2.3. (Penner [70]) The boundary of C inside L+ consists of a
countable set of codimension 1 “faces”, each of which is the convex hull of a
finite number of points in B.

For Γ̃m ∈ T̃ sg , let ∆(Γ̃m) to be the collection of geodesics on F sg arising in
the following way: Consider, by proposition 2.3, the boudnary ∂C of C, which
is the convex hull of B = B1 ∪ · · · ∪Bs. The edges of ∂C inside L+ has ends in
B. If z, w ∈ B are two ends of an edge, the geodesic in D connecting z̄, w̄ ∈ S1

∞
projects to a geodesic connecting the corresponding cusps of F sg . ∆(Γ̃m) is the

collection of such geodesics. In fact, ∆(Γ̃m) defines a cell decomposition of F sg .

Theorem 2.4. (Penner [70]) ∆(Γ̃m) consists of a finite collection of simple
geodesic arcs disjointly embedded in F sg connecting punctures. Furthermore,

components of F sg −∆(Γ̃m) are simply connected.

The isotopy class of such a decomposition is called an ideal cell decomposi-
tion, or an i.c.d. of F sg . Let ∆ be an i.c.d. of F sg , and define

C0(∆) = {Γ̃m ∈ T̃ sg : ∆(Γ̃m) = ∆},
C(∆) = {Γ̃m ∈ T̃ sg : ∆(Γ̃m) ⊆ ∆}.

The result we need is the following;

Theorem 2.5. (Penner [70]) If ∆ is an i.c.d. of F sg , then C0(∆) is an open
cell of dimension #∆. {C(∆) : ∆ is an i.c.d. of F sg } is a MCsg -invariant cell

decomposition of T̃ sg itself.

The proof is rather long and technical, so we present only a sketch of it.
The idea is to first establish the equivalence between the condition Γ̃m ∈ C0(∆)
and so-called face condition between the “length” of geodesic arcs around each
e ∈ ∆. The “length” Λ(e) of an arc e ∈ ∆ connecting cusps xi and xj is defined
as follows. Lift e to D and let z̄, w̄ ∈ S1

∞ be two points in the lift of xi and xj ,
respectively. Let z ∈ Bi and w ∈ Bj be the points that lie on the rays in L+

corresponding to z̄ and w̄, respectively, and define

Λ(e) =
√
−〈z, w〉.

Note Λ(e) depends on Γ̃m, it does not, however, depend on the choice of z̄, w̄ ∈
S1
∞, nor the group Γm. To define the face condition, we assume ∆ is maximal

with respect to inclusion, so that the lengths of the geodesics in ∆ provides
a coordinate for T̃ sg . In particular, a lift e separates two triangles. Label the
edges in the two triangles as in figure 9 and let π : D → F sg , so that π(ã) =

a, . . . , π(d̃) = d. The face condition on e ∈ ∆ is the inequality

F (e) =Λ(a)Λ(b)
(

Λ2(c) + Λ2(d)− Λ2(e)
)

+ Λ(c)Λ(d)
(

Λ2(a) + Λ2(b)− Λ2(e)
)
> 0.

The proof of this equivalence depends on the Λ-length relations in H and L+,
but we omit the details here. We then claim there is an embedding of T̃ sg in

RE , where E = E(∆) is the set of ends of the triangles in ∆. To see this, let
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Figure 9: Labelling of edges and ends around a lift of an arc e.

Γ̃m ∈ T̃ sg and let T ⊂ F be a triangle in ∆, with sides {c, d, e}. Let T̃ be a lift
of T in D, and let C,D,E be the ends opposite to lifts of c, d, e, respectively.
Define a map

I : T̃ sg ≈ R∆
+ → RE+

by

h(E, Γ̃m) =
Λ(e)

Λ(c)Λ(d)

for each end E ∈ E(∆). We see immediately

Λ−2(e) = h(C, Γ̃m)h(D, Γ̃m),

so I is indeed an embedding. Moreover, if e ∈ E “abuts” on ends A,B,C,D as
in figure 9, then we have a relation

h(A, Γ̃m)h(B, Γ̃m) = h(C, Γ̃m)h(D, Γ̃m),

which we call the coupling equation of e. It follows that I(T̃ sg ) ⊂ RE+ is charac-

terised by the coupling equations. Now define a pair of vectors Be, Ce ∈ RE for
each e ∈ ∆, where Be and Ce lie in the coordinate subspace of RE corresponding
to the ends A,B,C,D around e. Specifically Be has an entry (1, 1, 1, 1) and Ce
has (1,−1, 1,−1). It can be shown that {Be, Ce : e ∈ ∆} is a basis for RE , and
that the face condition depends only on Be’s. More precisely, if z ∈ RE , we
may write z =

∑
xeBe +

∑
yeCe, where the sums run over all e ∈ ∆. Then z

satisfies the face relation on ∆ (recall the embedding I of R∆ in RE), if and only
if xe > 0 for all e ∈ ∆. Let X = {∑xeBe : xe ∈ R}, Y = {∑ yeCe : ye ∈ R},
X̄ = {∑xeBe : xe ≥ 0}, X0 = {∑xeBe : xe > 0} be subspaces of RE . Note
X̄ has a structure as a cone on a simplex, with the faces of X̄ corresponding to
subsets ∆′ ⊂ ∆, where F (e) > 0 on e ∈ ∆′ and F (e) = 0 on e ∈ ∆ −∆′. Call
a face F of X̄ finite if the corresponding subset ∆′ = {e : xe 6= 0} of ∆ is an
i.c.d., and define

X+ = X0 ∪ {faces F of X̄ : F is finite} ⊂ X̄.

We think of T̃ sg as a subset of RE+ ⊂ RE determined by the coupling equations,

and consider the projection Π of RE along Y onto X. It turns out Π induces a
homeomorphism of C(∆) onto X+ for each maximal i.c.d. ∆. Theorem 2.5 then
follows. Note by definition,

Csg = {C(∆) : ∆ is an i.c.d. of F sg }
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is isomorphic to the poset of i.c.d.’s of F sg with the relation of inclusion. Fur-
thermore, an i.c.d. of F sg corresponds to a spine of F sg via the duality described
in section 2.1 (figure 10). Hence we obtain

(a) (b)

Figure 10: Duality correspondence between an i.c.d. of F 2
1 (fig-

ure 10a) and a fatgraph spine on F 2
1 (figure 10b).

Theorem 2.6. (Penner [69]) Suppose 2g−2+s > 0. Then there is a MC(F sg )-

invariant cell decomposition of decorated Teichmüller space T̃ sg which is iso-
morphic to the combinatorial space of all homotopy classes of positive metric
fatgraph spines τ ⊂ F , with each vertex having valence at least three.

We will need an extension of this result to bordered surfaces Fg,r with genus
g, r boundary components denoted ∂i with i = 1, . . . , r, and no punctures. In
this setup, univalent vertices correspond to points di ∈ ∂i for each i. A metric
on Fg,r does not assign any value to an edge incident on a point on a boundary,
and only those edges with metric values can be contracted, still subject to the
no-vanishing cycle condition (see section 2.1).

Let D = {d1, . . . , dr}. A quasi hyperbolic metric on Fg,r is a hyperbolic
metric on F −D, such that ∂i−{di} is totally geodesic for all i. The decorated
Teichmüller space of Fg,r is the space T̃g,r = T̃ (Fg,r) of all quasi hyperbolic
metrics on F − D, together with a specification of a segment of a horocycle
centred at di for each i, modulo push-forward by diffeomorphisms of F − G
which are isotopic to the identity. We require that the mapping class group
MC(Fg,r) of homeomorphisms fix the boundary distinguished points setwise
and homotopies of homeomorphisms must fix them pointwise. Gluing two copies
of Fg,r along their boundaries produces a closed surface, to which we can apply
the arguments for the punctured surfaces, as described in [68]. Thus we obtain

Theorem 2.7. (Penner [69]) Suppose g+r−1 > 0. Then there is a MC(Fg,r)-

invariant cell decomposition of decorated Teichmüller space T̃g,r which is ho-
motopy equivalent to the combinatorial space of all isotopy clases of positive
metric fatgraph spines τ ⊂ Fg,r. The univalent vertices of τ lie in the boundary,
with exactly one in each boundary component, and the remaining vertices have
valence at least three.

We end this section by noting that the quotient of Teichmüller space T (F )
of possibly punctured or bordered surface by the mapping class group is the
Riemann moduli space

M(F ) = T (F )/MC(F ).
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From theorems 2.6 and 2.7, we have cell decompositions of the space

M̃(F ) = T̃ (F )/MC(F ).

Since M(F ) and M̃(F ) are homotopy equivalent, the Penner-Strebel cell de-
composition can be considered as the cell decomposition of M(F ).

2.3 Matrix model

A matrix model is characterised by a space of matrices E (also called a matrix
ensemble), and a measure dM on E. Given a function (also called the potential)
V on E, we define the partition function or matrix integral by

Z =

∫

E

e−NTrV (M) dM. (3)

V must satisfy some requirements for the integral to be well-defined, but that
will not be an issue for us, as we will see later. There are three matrix ensembles
called the Gaussian ensembles, which are:

• the ensemble of real symmetric matrices, called the Gaussian Orthogonal
Ensemble (GOE),

• the ensemble of complex Hermitian matrices, called the Gaussian Unitary
Ensemble (GUE),

• and the ensemble of quaternionic Hermitian matrices, called the Gaussian
Symplectic Ensemble (GSE).

We denote these Gaussian ensembles by EβN , where β ∈ {1, 2, 4}, depending
on whether it is GOE (β = 1), GUE (β = 2), or GSE (β = 4). Each of the
ensembles can be realised as a space of N ×N matrices, whose coefficients are
real if β = 1, complex if β = 2, and quaternionic if β = 4.

A matrix M in a Gaussian ensemble has real eigenvalues, and can be diag-
onalised as

M = UΛU−1, Λ = diag(λ1, . . . , λN ),

where U belongs to O(N) if M ∈ E1
N , U(N) if M ∈ E2

N , and Sp(2N) if M ∈ E4
N .

Each of the above Gaussian ensembles EβN has a Lebesgue measure given by

dM =

N∏

i=1

dMi,i

∏

i<j

β−1∏

α=0

dM
(α)
i,j ,

where M
(α)
i,j denotes the real and imaginary components of Mi,j . If, for example

β = 2, we have

dM =

N∏

i=1

dMi,i

∏

i<j

dReMi,j dImMi,j .

Given a potential V , we can obtain another measure dµ by

dµ = e−NTrV (M) dM.
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Surprisingly the problem of enumerating orientable fatgraphs turns out to be
solvable by considering the integrals of certain functions over GUE, the ensemble
of Hermitian matrices ([1, 25]). To illustrate this remarkable connection, let us
start with a toy example given in [64]. A fundamental result for this section
and beyond is Wick’s theorem, which states the expectation value of a product
of Gaussian random variables can be computed as the sum over all pairings of
product of expectation values of pairs;

Theorem 2.8. (Wick; see Bessis et al. [21]) Let x = (x1, . . . , xn) ∈ Rn and let
A be a symmetric, positive definite n× n matrix. Consider the integral

〈xi1xi2 · · ·xik〉 =

∫
xi1xi2 · · ·xik exp

(
− 1

2

∑
µ,ν xµAµνxν

)
dx

∫
exp

(
− 1

2

∑
µ,ν xµAµνxν

)
dx

.

Then we have

〈xi1xi2 · · ·xi2k+1
〉 = 0,

〈xi1xi2〉 =
(
A−1

)
i1i2

,

〈xi1xi2 · · ·xi2k〉 =
∑

parings

∏

(s,t)

〈xisxit〉,

where the sum is over all pairings of the indices i1, . . . , i2k.

For the toy example, let x, y ∈ Rn and (x, y) be the Euclidean inner product
in Rn. For a function f(x) on Rn, set

〈f〉 =

∫
Rn exp

(
− 1

2 (x, x)
)
f(x) dx∫

Rn exp
(
− 1

2 (x, x)
)

dx
.

Then we see that
〈xixj〉 = δij .

So Wick’s theorem implies, for example,

〈xixjxkxl〉 = 〈xixj〉〈xkxl〉+〈xixk〉〈xjxl〉+〈xixl〉〈xjxk〉 = δijδkl+δikδjl+δilδjk.

The different pairings of indices i, j, k, l can be represented as the different ways
of pairing the four indexed half-edges of a four-valent vertex (figure 11).

i

k

j l

i

k

j l

i

k

j l

Figure 11: Three different pairings of indices i, j, k, l.
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Now consider E2
N , the ensemble of N ×N Hermitian matrices and let f be a

conjugation-invariant function on it. We will consider the expectation of f(M),

〈f(M)〉 =

∫
E2
N

exp(− 1
2TrM2)f(M) dM

∫
E2
N

exp(− 1
2TrM2) dM

.

Since f is conjugation-invariant, and the measure dM is invariant under changes
of bases, this is just a Gaussian integral, and we may apply Wick’s theorem.
Since

TrM2 =
∑

i,j

MijMji, (4)

we deduce that the so-called Wick contraction is given by

〈MijMkl〉 = δilδkj .

This can be seen by writing the matrix M in vector form, and expressing the
quadratic form TrM2 as a N2 ×N2 matrix. This matrix A has the form

AN(i−1)+j,N(j−1)+i = 1, 1 ≤ i, j ≤ N
and 0 everywhere else. In particular, A−1 = A and the index that corresponds
to MijMkl is (N(i− 1) + j,N(k − 1) + l). Thus by Wick’s theorem, we obtain
(4).

Again using Wick’s theorem, we compute

〈
TrM4

〉
=

〈∑

i,j,k,l

MijMjkMklMli

〉

=
∑

i,j,k,l

〈MijMjkMklMli〉

=
∑

i,j,k,l

(
〈MijMjk〉〈MklMli〉+ 〈MijMkl〉〈MjkMli〉+ 〈MijMli〉〈MjkMkl〉

)

=
∑

i,j,k,l

(
δikδjjδkiδll + δilδkjδjiδlk + δiiδjlδjlδkk

)
(5)

=
(

2N3 +N
)
. (6)

For the graphical representation of the different pairings of entries in the matrix
M , we use the “fattened” version of the four-valent vertex we used above, with
the half-edges now shown as double lines labelled by double indices. Each half-
edge has one line oriented away from, and one oriented towards the vertex. We
also require that the orientation of the half-edges are consistent, so that the
inward-pointing edge i is connected to the outward pointing edge of the same
label (figure 12). Now we can interpret the first summand in equation (5) as
connecting i-out with k-in, j-out with j-in, k-out with i-in, and l-out with l-in.
This results in the first surface in figure 13. Similarly the second and third
summands correspond to the second and third surfaces in figure 13. Note in
equation (6), the powers of N correspond to the number of boundary cycles in
the associated surfaces, and the integral coefficients of N j is the number of ways
of obtaining the same graph by gluing the available half-edges, i.e. #Glu. We
can in general obtain the number of fatgraphs with one m-valent vertex in this
manner.
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Figure 12: “Fattened” four-valent vertex with the oriented dou-
ble half-edges.
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ij
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Figure 13: Three different surfaces obtained by connecting the
half-edges of the fattened four-valent vertex in figure 12.

Lemma 2.9. Let M ∈ E2
N , the ensemble of N × N Hermitian matrices, and

j ∈ N. Then we have
〈

TrM j
〉

=
∑

τ

#Glu(τ)Nn(τ),

where n(τ) is the number of boundary cycles of fatgraph τ , and the sum is over
all topologically distinct fatgraphs with one j-valent vertex and no unconnected
half-edges.

Wick’s theorem further implies that products of traces correspond to mul-
tiple vertices, valencies of which are determined by the powers of M . In other
words, 〈

m∏

k=1

TrM jk

〉
=
∑

τ

#Glu(τ)Nn(τ), (7)

where the sum is now over all fatgraphs withm vertices of valencies j1, j2, . . . , jm,
which may not be connected.

Let us consider another integral by setting

V (M) =
N

2
M2

and

〈f〉 =
1

Z0

∫
e−NTrM

2

2 f(M) dM,

where Z0 is the normalisation constant, given in this case by

Z0 =

∫

E2
N

dMe−NTrM
2

2 = 2N
(
π

N

)N2

2

.
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Then we have 〈
MijMkl

〉
=

1

N
δilδjk.

Suppose we have kj j-valent vertices, j = 1, . . . ,m. Using lemma 2.1, we
can express (7) in another way;

〈
m∏

j=1

1

kj !
(
tN

j
TrM j)kj

〉
=
∑

τ

1

#Aut(τ)
Nχ(τ)t

∑
j kj , (8)

where χ(τ) is the Euler characteristic, and the sum is now over all fatgraphs
with m vertices, mj of which are j-valent. For the power of N , we have a
negative contribution from 1/N in the Wick contraction counting the number
of edges. By lemma 2.9, we have a positive contribution from the number of
boundary components, and from tN in equation (8), which counts the number
of vertices. In other words, the power of N is given by

#vertices−#edges + #boundaries = χ(τ).

Let

V (M) =
M2

2
−
∞∑

j=3

tj
j
M j (9)

and define a formal matrix integral by setting

1

Z0

∫

formal

dMe−NTrV (M) =
∑

τ

1

#Aut(τ)
Nχ(τ)t

kj
j , (10)

where the sum is over all fatgraphs, with any number of vertices, and any
combinations of valencies. It is important to note that this is a formal integral,
with no implication that the integral is convergent. However, the definition is a
natural one, if we think of it as expanding the exponential of the non-quadratic
part of V (M) and then exchanging the integral and the summation;

1

Z0

∫

formal

dMe−NTrV (M) =
1

Z0

∫

formal

dMe−NTrM
2

2 eN
∑∞
j=3

tj
j TrMj

“=”

〈 ∞∑

k=0

1

k!



∞∑

j=3

Ntj
j

TrM j



k〉

“=”

∞∑

k=0

1

k!

∑

j1,...,jk

〈
k∏

l=1

Ntjl
jl

TrM jl

〉
,

where the second sum is over all values of jl, l = 1, . . . , k. This sum con-
tains permutations of jl’s that do not change the number of jl’s with the same
value, which correspond to the relabelling of vertices of the same valencies. The
number of such permutations is given by k!∏

kj !
, which cancels the k! in the de-

nominator and replaces it with
∏

1
kj !

in equation (8). Thus we see that the

definition of the formal integral (10) is indeed a natural one.
Up to now we have only considered GUE, E2

N in our formal integral. Similar
constructions are possible for the two other ensembles, E1

N and E4
N . In general,
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as discussed in [38], for β ∈ {1, 2, 4}, with the potential

V (M) =
M2β

4
−
∞∑

j=3

βtj
2j

M j ,

we get the Wick contraction
〈
MijMkl

〉
= ε1δilδkj − (ε1 + ε2)δikδlj ,

where

ε1 =
1

N
, ε2 = − 2

Nβ
.

Graphically, we can represent the second term in the propagator δikδjl by a
twisted band. This allows us to extend the formal integral to count the number
of non-orientable graphs. We see that E2

N is in fact a special case where ε1 + ε2
vanishes.

2.4 Topological recursion

In this section we describe topological recursion, a framework developed by
Chekhov, Eynard and Orantin [28, 43]. Topological recursion provides a recur-
sive formula for all terms in the large N expansion of the formal matrix integral.
The central object in topological recursion is a so-called spectral curve, which
arises from the leading order loop equation of a matrix model. The spectral
curve can be characterised as a curve on which the resolvent, which is related to
the density of eigenvalues of the random matrix under consideration. An impor-
tant aspect of topological recursion is that it does not depend on the underlying
matrix model, but on the spectral curve. In other words, topological recursion
can be utilised beyond matrix models (see [43] or [10] for some examples). Here
we start by reviewing the formal setup of topological recursion, following the
discussion given in [11]. We then describe different objects in the formal setup
in more details in the context of matrix models, following the discussion in [12].

2.4.1 Formal setup

Let U = tiUi be a Riemann surface, where each Ui is a neighbourhood of a
point oi, and let x : U → V be a branched covering branched at O = ti{oi}
with oi ∈ Ui for each i. If we assume that x has only simple ramifications, then
we can choose a coordinate zi on each Ui, such that x(zi) = (zi)

2/2 + x(oi).
Furthermore, let σi be a holomorphic involution on Ui, which sends zi to −zi.
Let ∆ = ∪i{(zi, zi) ∈ U2 | zi ∈ Ui} be the diagonal of U × U and KU be the
canonical bundle of U .

Before describing the topological recursion, let us give the following defini-
tion.

Definition 3. Let E1 → X1 and E2 → X2 be two vector bundles over manifolds
X1 and X2. The product manifold X1 ×X2 has two natural pullback bundles,
π∗1E1 → X1×X2 and π∗2E2 → X1×X2, where π1 and π2 are the projection onto
the first and second factors, respectively. The external tensor product E1 �E2

is given by
E1 � E2 := π∗1E1 ⊗ π∗2E2. (11)

Note E1�E2 is a bundle over X1×X2. If E1 = E2 = E, we write E�2 := E�E.
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The initial data of topological recursion is as follows. To simplify the nota-
tion, we omit the index i in zi where there is no ambiguity.

• A holomorphic 1-form ω0,1 ∈ H0(U,KU ), such that ω0,1(z)−ω0,1(σ(z)) =
2ω0,1(z) has at most double zeros at oi.

• A symmetric, holomorphic form ω0,2 ∈ H0(U2,K�2
U (2∆))S2 , where K�2

U

denotes the tensor product of pullback bundles as defined above, and 2∆
denotes that ω0,2 has double poles along ∆. S2 denotes the invariance
under the action of the symmetric group S2 on the U factors.

In local coordinates, we can write the form ω0,1 as

ω0,1(z) =
∑

d≥0

ω
(i;d)
0,1 zd dz (12)

for z ∈ Ui, with the extra condition ω
(i;0)
0,1 6= 0 or ω

(i;2)
0,1 6= 0, corresponding to

the condition that ω0,1(z)−ω0,1(σ(z)) has at most double zeros in O. The form
ω0,2 can be written as

ω0,2(zi1 , zi2) =
δi1i2ti1 dzi1 dzi2

(zi1 − zi2)2
+

∑

d1,d2≥0

ω
(i1,i2;d1,d2)
0,2 zd1i1 z

d2
i2

dzi1 dzi2 , (13)

for zi1 ∈ Ui1 and zi2 ∈ Ui2 . It is usually assumed ti = 1 for all i. Using these
two forms, we define the recursion kernel

Ki(y, z) =
1

2

∫ z
σi(z)

ω0,2(·, y)

ω0,1(z)− ω0,1(σi(z))
. (14)

If we let ∆σ = ti{(z, σi(z)) | z ∈ Ui}, we see that Ki has poles in ∆t∆σ, since
ω0,2 has poles in ∆ and ω0,1(z) − ω0,1(σi(z)) has zeros in ∆σ. We also see Ki
has the form ϕi(y, z) dy ⊗ ∂

∂z for some function ϕi. In other words, we have

Ki ∈ H0(U × Ui, [KU �K−1
Ui

(O)](∆ t∆σ)). (15)

The topological recursion provides a sequence of symmetric n-forms

ωg,n ∈ H0(Un, (KU (?O))�n)Sn (16)

for 2g− 2 + n > 0. Let I = (zi2 , . . . , zin). The recursion formula for topological
recursion is

ωg,n(zi1 , I) =
∑

oi∈O
Res
z→oi

Ki(zi1 , z)
{
ωg−1,n+1(z, σi(z), I)

+
∑

(h,J)

ωh,1+|J|(z, J)⊗ ωh′,1+|J′|(σi(z), J
′)



 , (17)

where the second sum is over all non-trivial partitions of the pair (g, I); i.e. the
pairs (h, J) and (h′, J ′), such that h+h′ = g and J tJ ′ = I, with the condition
(h, J) 6= (0, ∅) and (h, J) 6= (g, I). We observe that ωg,n is symmetric in the
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factors of I by construction. However the symmetry in all factors, in particular
between zi1 and zi2 , is not trivial. See, for example, [10] for a proof of full
symmetry. We also obtain a sequence of numbers (Fg)g≥2, given by

Fg =
1

2− 2g

∑

oi∈O
Res
z→oi

(∮ z

oi

ω0,1

)
ωg,1(z). (18)

2.4.2 Topological recursion and matrix models

We will now apply the topological recursion framework to matrix models, fol-
lowing the presentation in [12].

Let us now consider a general Hermitian matrix model,

Z =

∫
dMe−

1
} TrV (M), (19)

where we have replaced N in equation (3) by 1
} . The two are related by the

so-called ’t Hooft coupling
T = }N = const,

which is kept fixed. For the purpose of fatgraph enumeration, we can simply
set T = 1.

We start by showing how to find the spectral curve in the matrix model
setting. The spectral curve is related to the resolvent, which is the leading
order term in the expansion of the all-order resolvent, defined as

ω1(x) = }
〈

Tr
1

x−M

〉
=

∞∑

g=0

}2gω
(g)
1 (x). (20)

The resolvent ω
(0)
1 is also related to the density of eigenvalues ρ(x), which be-

comes continuous in large N limit, with the support suppρ being compact in-
tervals, also called cuts. We have that

ω
(0)
1 (x) =

1

t0

∫

suppρ

ρ(x′)
x− x′ dx′, (21)

where

t0 =

∫

suppρ

ρ(x) dx.

This implies that for large x, ω
(0)
1 behaves as

ω
(0)
1 (x) ∼

x→∞
1

x
.

Furthermore, the resolvent satisfies

ω
(0)
1 (x− iε) + ω

(0)
1 (x+ iε) =

V ′(x)

T
.

The resolvent can be determined from these conditions, or by the Migdal for-
mula, which, if we assume that there is a single cut with endpoints a and b, is
given by

ω
(0)
1 (x) =

1

2T

∮

C

dz

2πi

V ′(z)
x− z

√
(x− a)(x− b)√
(z − a)(z − b)

, (22)
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where the contour C surrounds the cut. We now define a new variable

y =
1

2
V ′(x)− Tω(0)

1 (x) =
T

2

(
ω

(0)
1 (x− iε)− ω(0)

1 (x+ iε)
)
. (23)

This variable y is related to x by a polynomial equation, which is the equation
that defines the spectral curve. We denote it by

A(x, y) = 0. (24)

In the context of the topological recursion, a parametric form of this equation,
A(x(p), y(p)) = 0 is required.

We now move onto defining the two initial data of topological recursion, W
(0)
1

and W
(0)
2 , corresponding to ω0,1 and ω0,2 in section 2.4.1. These are defined by

the correlators
〈

Tr

(
1

x(p1)−M

)
· · ·Tr

(
1

x(pn)−M

)〉

conn

=
∞∑

g=0

}2g−2+nW
(g)
n (p1, . . . , pn)

dx(p1) . . . dx(pn)
,

(25)
where 〈·〉conn denotes the part of the correlator arising from connected diagrams,
computed as a formal integral (see section 2.3) with the formal power series

Tr
1

x−M =
∑

k≥0

Tr
Mk

xk+1
. (26)

Equation (25) generalises the all-order resolvent in equation (20). In particular,

the one-point correlator is given by the 1-form W
(g)
1 (x) = ω

(g)
1 (x) dx.

The 2-form is given by the so-called Bergman kernel B(p, q), which for the
one-cut solution takes the form

B(p, q) =
dp dq

(p− q)2
. (27)

We now have the two forms, given by

W
(0)
1 (p) = 0, W

(0)
2 (p1, p2) = B(p1, p2). (28)

The recursion kernel has the form;

K(q, p) =
1

2

∫ q
σq
B(·, p)

(y(q)− y(σ(q))) dx(p)
.

With the above components, we can now use the recursion formula (equa-
tion (17)) to compute the multi-point correlators;

W (g)
n (p, I) =

∑

q∗i

Res
q→q∗i

K(q, p)


W (g−1)

n+1 (q, σ(q), I) (29)

+

g∑

m=0

∑

J⊂I
W

(m)
1+|J|(q, J)W

(g−m)
1+n−|J|(σ(q), I \ J)


 , (30)

where I = (p1, . . . , pn).
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3 Topology of RNA

RNA is a macromolecule essential in many biological processes, which, apart
from carrying information from DNA for protein synthesis, include protein
synthesis itself, production of RNA, and regulation of gene expression. RNA
molecules that carries the coding sequence for protein production are called
coding RNAs, and it is naturally their coding sequence, that is of the primary
interest. The RNA molecules that perform other functions are called non-coding
RNAs, first of which were discovered in the early 1980s [6, 26].

RNA is a polymer consisting of nucleotides, or bases, together with ribose
and phosphate that link nucleotides. The nucleotides in an RNA molecule
can form bonds with each other, resulting in the molecule folding. It is widely
accepted that the function of a non-coding RNA is deeply related to its structure
[47, 85]. In particular, a class of structure called pseudoknots are known to be
functionally important in different non-coding RNAs [59, 86]. A pseudoknot is
a structure containing bonds between nucleotides that cross each other, and it
turns out that fatgraphs provide a framework particularly suited to describing
pseudoknot structures [8, 7, 23, 92].

One of the first studies to utilise fatgraphs for investigation of RNA structure
was [23], where the authors took RNA structures from available databases and
studied their genera. They found that the genus remains small even for large
RNA structures, compared to the genus of a randomly generated structure from
the same number of nucleotides. Genus was also used to study pseudoknot struc-
tures generated by a model [94]. Later Andersen et al. [8] computed generating
functions for certain classes of RNA structures by using the fatgraph model of
RNA structures. In [77], the genus is used to obtain a (multiple context free)
grammar for decomposing pseudoknot structures. The grammar is extended to
RNA-RNA interaction structures (i.e. two backbones) in [7]. The same ideas
(i.e. decomposition into irreducible structures and topological characteristics of
RNA structures) are implemented in an algorithm in [92]. Fatgraphs’ relation
to matrix model theory (see section 2.3) was used to study enumeration problem
for RNA structures [67, 93, 3, 8]. In [12] and [13] Andersen et al. used topo-
logical recursion framework to obtain the solution to the matrix model for the
structures, where there are no unpaired bases. In order to extend the solutions
to RNA structures with unpaired bases, extra combinatorial parameters were
introduced in [15, 14].

In what follows, we present a brief overview of these studies, as examples
of successful attempts to utilise fatgraphs as a framework for studying biologi-
cal structures. They will serve as an inspiration to our study of proteins using
fatgraphs as a framework. We will start by presenting a brief description of
molecular structures of RNA, and how they can be modelled using fatgraphs.
We will then present recursion relations for RNA structures in section 3.2, with
an emphasis on cut and join methodology. In section 3.3, we present a matrix
model for RNA structures. As described in section 2.3, it is a generating func-
tion for the number of distinct structures, and these numbers satisfy recursion
relations given in section 3.2.
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3.1 RNA model

An RNA molecule is a linear sequence of nucleotides, which consist of the fol-
lowing;

• A nucleic acid residue, or “base”

• A ribose sugar containing five carbon atoms

• A phosphate group

The nucleic acid is one of the four compounds; Adenine, Guanine, Uracil and
Cytosine, represented by letters A, G, U, and C. It is bonded to the 1’ carbon
atom in the ribose sugar by a covalent bond. The 5’ carbon in the ribose sugar
is bonded to the previous phosphate and the 3’ carbon to the subsequent phos-
phate, forming the backbone (figure 14). The RNA primary structure is the

Figure 14: Detailed structure of an RNA. Taken from Wikime-
dia, W. Sahib, “Diagram to illustrate 5’ to 3’ directionality in a
nucleic acid”.

sequence of the bases, and it can be represented as a word in an alphabet with
four letters. The acid residues may participate in hydrogen bond according to
the Watson-Crick rules, which allow pairings A-U, G-C, and U-G. The set of
base pairings, together with the primary structure, is called the RNA secondary
structure. An RNA molecule can be represented by a diagram, where the back-
bone is drawn as a horizontal line, and each pairing is drawn as an arc, called
a chord, above the horizontal line between the paired residues (figure 15). Note
we have a natural orientation along the backbone induced by the orientation
from 5’ end to 3’ end, and we will typically draw a backbone with the 5’ end
to the left. Furthermore, we will only allow at most one chord at any given
letter along the backbone. A representation of RNA molecule in this manner
is called a partial linear chord diagram or simply a partial chord diagram. A
partial chord diagram is called a linear chord diagram or a chord diagram, if
it contains no unpaired vertex. Since no multiple chords are allowed at any
given vertex in our model, the number of vertices in a (linear) chord diagram is
necessarily even. A chord between two consecutive letters along the backbone
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(a) (b)

(c) (d) (e)

Figure 15: Examples of (a) partial chord diagram, (b) chord
diagram, (c) seed, (d) shape, and (e) shadow.

is called a 1-chord, and a chord between the first and the last vertices in the
backbone is called a rainbow. Let {1, 2, . . . , n} be the numbering of letters in
the backbone from left to right (according to the orientation induced by 5’ to
3’ orientation). Then each chord may be expressed as a pair of indices (i, j)
with i < j, showing the positions of start- and end points along the backbone.
Two chords (i1, i2) and (j1, j2) are called consecutively parallel, if i1 = j1 − 1
and i2 = j2 + 1. (i1, i2) and (j1, j2) are called parallel, if there exists a sequence
of consecutively parallel chords linking (i1, i2) with (j1, j2). More precisely, if
there exists an n ∈ N and a sequence γ0 = (i1, i2), γ1, . . . , γn−1, γn = (j1, j2) of
chords, such that γk−1 and γk are consecutively parallel for k ∈ {1, . . . , n}. Be-
ing parallel is clearly an equivalent relation, and an equivalence class of parallel
chords is called a stack. A chord diagram where every stack contains at most
one chord is called a seed. A seed is called a shape if it contains the rainbow and
if it contains no 1-chord. A seed is called a shadow if it contains no non-crossing
arc. A shadow S is irreducible, if for any two chords α and β in S, there is a
sequence γ0 = α, γ1, . . . , γn−1, γn = β of chords such that each pair (γi−1, γi)
cross each other.

Given a (partial) chord diagram, there is a natural way to equip it with
a fatgraph structure, namely by defining an ordering of edges incident at each
vertex. This allows us to talk about the genus of a given (partial) chord diagram.
Let τ be a shape with one backbone. Then the backbone of τ may be collapsed
to a single vertex without altering the number of boundary components, the
number of chords, or the Euler characteristic. Hence we have

2− 2g − n = 1− k,

where n is the number of boundary components in τ , and k is the number of
chords. We may further take the dual of this collapsed graph (see section 2.1),
to obtain a graph with one univalent vertex, and the other vertices having
valence at least three (figure 16). Here we recall theorem 2.7, and emphasise
the remarkable link between the (dual) fatgraph of RNA shapes of genus g (e.g.
figure 16c) and the Penner-Strebel cell decomposition of the Riemann moduli
space for a surface M(Fg,b) of genus g with one boundary component.

An important problem is the enumeration of RNA structures for a given
number of chords. We start the discussion with the case of chord diagrams on
one backbone. Let Cg(k) be the set of all chord diagrams with genus g and k
chords (i.e. 2k vertices), and let cg(k) be the cardinality of this set, and write
Cg(z) =

∑
k≥0 cg(k)zk for the generating function. Looking at the graph where

the backbone is collapsed to a single vertex, we see that the enumeration of such
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(a) (b) (c)

Figure 16: An example of correspondence between a shape and
a fatgraph with one univalent vertex. The backbone of a shape
(a) is collapsed to obtain a fatgraph with one vertex (b), where
the single non-crossing edge corresponds to the rainbow. Its
dual (c) is the desired fatgraph with one univalent vertex and
all other vertices at least three-valent.

chord diagrams is equivalent to finding the number of ways one can glue the
sides of 2n-gon to produce a closed, orientable surface. Surprisingly the solution
to this problem was found by Harer and Zagier in their work on computing Euler
characteristics of the moduli space of curves [45]. We present their result here;

Theorem 3.1. (Harer and Zagier [45]) cg(k) satisfies the following recursion;

(k + 1)cg(k) = 2(2k − 1)cg(k − 1) + (2k − 1)(k − 1)(2k − 3)cg−1(k − 2).

It follows, for g ≥ 1, we have

Cg(z) = Pg(z)

√
1− 4z

(1− 4z)3g
,

where Pg(z) =
∑
j p

(j)
g zj is a polynomial with integral coefficients, and with

degree at most (3g − 1). Furthermore, we have Pg(1/4) 6= 0, the coefficient of
z2g is non-zero and the coefficient of zh is zero for 0 ≤ h ≤ 2g − 1.

Similarly, let Sg(k) and Tg(k) be respectively the collections of all seeds and
shapes with genus g and k chords (i.e. 2k vertices), and let sg(k) and tg(k)
be the cardinalities of these sets. Write Sg(z) =

∑
k≥0 sg(k)zk and Tg(z) =∑

k≥0 tg(k)zk for the generating functions. We will also consider Cg(k,m) and
Sg(k,m), which are respectively the collections of all chord diagrams and seeds
with k chords and m 1-chords. Let Cg(x, y) =

∑
k,m≥0 cg(k,m)xkym and

Sg(x, y) =
∑
k,m≥0 sg(k,m)xkym be the respective generating functions.

Theorem 3.2. (Andersen et al. [8]) For any g ≥ 1 we have the following
relations.

Cg(x, y) =
1

x+ y − xyCg

(
x

(1 + x− xy)2

)
,

Sg(x, y) =
1 + x

1 + 2x− xyCg

(
x(1 + x)

(1 + 2x− xy)2

)
,

Tg(z) = z(1 + 2z)6g−2Pg

(
z(1 + z)

(1 + 2z)2

)

=

3g−1∑

j=2g

p(j)
g zj+1(1 + z)j(1 + 2z)2(3g−1−j),
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where Pg(z) =
∑
j p

(j)
g zj is as defined in theorem 3.1.

We define an RNA σ-structure to be a partial chord diagram without any
1-chord, where all stacks have cardinality at least σ ∈ N. The definition is
chosen for its biological relevance; 1-chords are prohibited because of the tensile
rigidity of the RNA sugar-phosphate backbone, and σ arises from the fact that
stacks of small cardinalities are energetically unfavourable. Let Dσ(n) be the
set of all RNA σ-structures on n vertices, and Dg,σ(n) be the subset consisting
of structures with genus g, with the generating function

Dg,σ(z) =
∑

n≥0

dg,σ(n)zn.

We have the following result for Dg,σ(z).

Theorem 3.3. (Andersen et al. [8]) Suppose g, σ ≥ 1 and let uσ(z) = z2(σ−1)

z2σ−z2+1 .
The generating function Dg,σ is given by

Dg,σ(z) =
1

uσ(z)z2 − z + 1
Cg

(
uσ(z)z2

(uσ(z)z2 − z + 1)2

)
.

Let P(k) be the set of all partial chord diagrams with k chords. Any chord
diagram can be obtained by removing isolated vertices from some partial chord
diagram. In other words, we have a projection map

% : tk≥0P(k)→ tg≥1 tk≥0 Cg(k),

which clearly preserves genus and the number of boundary components. Simi-
larly, the reduction of each stack to a single chord defines a projection map

ϑ : tg≥1 tk≥0 Cg(k)→ tg≥1 tk≥0 Sg(k),

which preserves genus, since at each stack, the reduction by a single chord
results in the reduction of both the number of boundary components and the
number of chords by 1. Finally, let Kg(k) be the set of all shadows of genus g
on k chords. The removal of all non-crossing chords defines yet another genus-
preserving projection

κ : tg≥1 tk≥0 Sg(k)→ tg≥1 tk≥0 Kg(k).

Hence the composition

π = κ ◦ ϑ ◦ % : tk≥0P(k)→ tg≥1 tk≥0 Kg(k)

defines a genus-preserving projection from all RNA structures to the set of
shadows. Furthermore, the genus of a shadow is equal to the sum of the genera
of its irreducible components;

g(S) = g(π(S)) =
∑

S′ irred. component of π(S)

g(S′).

Therefore the natural filtering of RNA structure could be by the maximum
genus in its irreducible components. For this we may introduce another class
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of structures. An RNA γ-structure is a partial chord diagram S, such that the
genera of the irreducible components of π(S) is bounded by γ, i.e.

g(S′) ≤ γ ∀S′ ∈ {S′ ∈ π(S) | S′ is an irreducible component in π(S)}.

Reidys et al. [77] have devised a folding algorithm for RNA γ-structures with γ ≤
1, based on the decomposition into irreducible shadows. This allowed an efficient
implementation of topology-dependent energy penalties for pseudoknots. The
resulting software achieved 10-20% increases in the prediction accuracy of base
pairs.

Up to now the discussion has been on RNA structures with one backbone
component. But the concepts of shadows, irreducibility and hence γ-structures
apply equally well to the structures with more than one backbone components.
In particular the analysis of structures over two backbone is relevant for the
modelling of RNA-RNA interaction structures. A decomposition grammar for
the γ-structures over two backbones with γ = 0 has been developed by Andersen
et al. [7].

3.2 Recursion relation for RNA model

We will now discuss the enumeration of connected partial chord diagrams on
multiple backbones, following the material presented in [3] and [15]. Let us con-
sider a connected partial chord diagram, with b backbones, k chords, l marked
points (unpaired vertices), and n boundary components. Note the diagram con-
tains 2k + l vertices, of which 2k are 3-valent, and l are 2-valent. Let g be the
genus of the diagram, which obeys Euler’s formula,

b− k + n = 2− 2g.

We then introduce the following combinatorial parameters.

• The backbone spectrum b = (b0, b1, . . . ), where bi is the number of back-
bones with i vertices (of degree either two or three).

• The boundary point spectrum l = (l0, l1, . . . ), where li is the number of
boundary components with i marked points. Note a marked point is
contained in the boundary component that traverses above it.

• The boundary length spectrum n = (n1, n2, . . . ), where nK is the number
of boundary components of length K. The length of a boundary com-
ponent is defined to be the number of chords it traverses counted with
multiplicity, plus the number of backbone underside it traverses. We note
that a boundary component of length K can be divided into K boundary
segments, by removing chords and backbone undersides. Each boundary
segment contains zero or more marked points.

• The boundary length and point spectrum m = (mdK , . . . ), where mdK is
the number of boundary components of length K with the marked point
spectrum dK = (d1, . . . , dK), which is defined to be the sequence of number
of marked points in each boundary segment along a boundary component,
modulo cyclic ordering. So in a boundary component with the marked
point spectrum dK = (d1, . . . , dK), we have d1 marked points followed
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by a chord or backbone underside, then d2 marked points followed by a
chord or backbone underside, and so on all the way around the boundary
component.

Let ej denote the sequence (0, . . . , 0, 1, 0, . . . ), where 1 appears at the j’th entry
and all other entries are 0. We say a diagram is of a certain type if it has the
specified parameters and spectra; for example, a diagram of type {g, k, l; b,m}
has genus g, k chords, l marked points, with the backbone spectrum b and the
boundary length and point spectrum m (see figure 17 for an example).

Figure 17: This chord diagram has 2 backbones, 4 chords, 5
marked points and 4 boundary components. By the Euler’s
formula, its genus is 0. It has the backbone spectrum (e5 +e8),
the boundary point spectrum (3e0 + e5), the boundary length
spectrum (e1 + 2e2 + e5), and the boundary length and point
spectrum (m(0) = 1,m(0,0) = 2,m(1,2,0,2,0) = 1).

The following relations follow immediately from the definitions.

b =
∑

i≥0

bi,

n =
∑

i≥0

li =
∑

i≥1

ni =
∑

K≥1

∑

dK

mdK ,

2k + l =
∑

i≥0

ibi,

l =
∑

i≥0

ili =
∑

K≥1

∑

dK

|dK |mdK ,

2k + b =
∑

i≥1

ini =
∑

K≥1

∑

dK

KmdK ,

nK =
∑

dK

mdK ,

li =
∑

K≥1

∑

|dK |=i
mdK ,

where |dK | =
∑K
j=1 dj .

Let Ng,k,l(b, l,n,m) be the number of distinct connected partial chord
diagrams of type {g, k, l, b, l,n,m}. Note the parameters are not indepen-
dent, as evident from the above relations. We set Ng,k,l(b, l,n,m) = 0, if
a partial chord diagram of the given type is not possible. We will also con-
sider the number of distinct partial chord diagrams, where we sum one or
more of the parameters, such as Ng,k,l(b, l,n) =

∑
mNg,k,l(b, l,n,m) and

Ng,k,l(b,m) =
∑

l

∑
nNg,k,l(b, l,n,m). For a sequence indexed by integer

such as b, l, and n, and a variable t = (t0, t1, . . . ), we denote

tb =
∏

i≥0

tbii = tb00 t
b1
1 · · · .
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For the variable m, indexed by ordered sets dK = (d1, . . . , dK), we consider the
variable indexed by the same sets u = (udK ) and denote

um =
∏

K≥1

∏

dK

u
mdK

dK
.

With these notations, the orientable, multi-backbone, boundary point spectrum
generating function F (x, y; s; t) is given by

F (x, y; s; t) =
∑

b≥1

Fb(x, y; s; t) (31)

=
∑

b≥1

1

b!

∞∑

k=b−1

∑

l

∑
∑
bi=b

Ng,k,l(b, l)x2g−2yksltb. (32)

F satisfies the following differential equations. We also present its proof to
illustrate the cut and join method.

Theorem 3.4. (Alexeev et al. [3]) Consider the linear differential operators

L0 =
1

2

∞∑

i=0

i∑

j=0

(i+ 2)sjsi−j ∂
∂si+2

,

L2 =
1

2

∞∑

i=2

si−2

i−1∑

j=1

j(i− j) ∂2

∂sj∂si−j

and the quadratic differential operators

QF =
1

2

∞∑

i=2

si−2

i−1∑

j=1

j(i− j)∂F
∂sj

∂F

∂si−j
.

Then the following differential equations hold;

∂F1

∂y = (L0 + x2L2)F1,

∂F
∂y = (L0 + x2L2 + x2Q)F. (33)

These equations, together with the initial condition given by x−2
∑
i≥1 siti for

y = 0, determines the generating functions F1 and F uniquely.

Proof. We note first that equation (33) is equivalent to the following recursion
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relation for Ng,k,l(b, l):

kN g,k,l(b, l) =

1

2

∞∑

i=0

i∑

j=0

(i+ 2)(li+2 + 1)Ng,k−1,l+2(b, l− ej − ei−j + ei+2) +

1

2

∞∑

i=0

i+1∑

j=1

j(i+ 2− j)(lj + 1 + δj,i+2−j − δi,j)(li+2−j + 1− δj,2) ×

Ng−1,k−1,l+2(b, l+ ej + ei+2−j − ei) +

1

2

∞∑

i=0

i+1∑

j=1

∑

g1+g2=g

∑

k1+k2=k−1

∑

l(1)+l(2)=l−ei

∑

b(1)+b(2)=b

j(i+ 2− j)(l(1)
j + 1)(l

(2)
i+2−j + 1)

b!

b(1)!b(2)!
×

Ng1,k1,l1+j(b
(1), l(1) + ej)Ng2,k2,l2+i+2−j(b

(2), l(2) + ei+2−j), (34)

where

b(r) =

∞∑

i=1

b
(r)
i , lr =

∞∑

i=1

il
(r)
i ,

∞∑

i=0

l
(r)
i = kr − 2gr − b(r) + 2,

for r = 1, 2. Checking this is a straightforward computation looking at the coef-
ficients of x2−2gyk−1sltb in both sides of equation (33). The recursion relation
(34) is then proved by the cut and join method, similarly to theorem 4.1. The
idea is to express the number of diagrams of type {g, k, l, b, l} with one marked
chord in two different ways, one by simply marking a chord on a diagram of type
{g, k, l, b, l}, and the other by adding a marked chord to a diagram, such that the
resulting diagram is of type {g, k, l, b, l}. The former is straightforward; given
a diagram of type {g, k, l, b, l}, there are k chords to choose from for marking,
so this gives the l.h.s. in equation (34). We do the latter by first removing a
chord from a diagram of type {g, k, l, b, l} (“cut”), then adding an appropriate
marked chord (“join”). See theorem 4.1 for more details in proof.

The recursion relations for other spectra, such as the boundary length spec-
trum (for chord diagrams) [3], and the boundary length and point spectrum (for
partial chord diagrams) [15] have been established using the same method.

Recursion relation for non-oriented chord diagrams

Non-oriented (partial) chord diagrams can be considered by assigning an extra
binary data to each chord, showing whether the chord is twisted or not. If C is
such a (partial) chord diagram, on the associated surface F = F (C), the twisted
chord then become twisted bands. Clearly this construction produces 2k dif-
ferent orientable and non-orientable partial chord diagrams from one orientable
partial chord diagram with k chords. We have the following definition for the
Euler characteristic in the non-oriented case. The Euler characteristic χ of the
non-oriented surface F is give by

χ(F ) = 2− h,
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where h is the number of cross-caps and we have Euler’s relation

2− h = b− k + n.

We also need to introduce a small change for the boundary point and length
spectrum m. Since we are no longer able to traverse a boundary component
using the induced orientation in the non-orientable case, we also need to consider
the order-reversing, as well as cyclic, permutation. So we have

dK = (d1, d2, . . . , dK) = (dK , . . . , d2, d1).

With these definitions, it is possible to derive the recursion relations for the
number of orientable and non-orientable (partial) chord diagrams, filtered by
different spectra. The specific expressions and derivations can be found in [3,
15].

3.3 Enumeration of RNA chord diagrams via matrix mod-
els

Let us recall and modify the (formal) matrix integral defined in section 2.3 to
enumerate RNA linear chord diagrams, as discussed in [12]. The potential for
the model is

V (M) =
M2

2
− stM

1− tM =
M2

2
− s

∑

k≥1

(tM)k, (35)

with the partition function

logZ(s, t,N) =
1

Z0

∫
dMe−NTrV (M) =

∑

τ

Nχ(τ)sb(τ)t2n(τ)

#Aut(τ)
, (36)

where χ(τ), b(τ) and n(τ) denote respectively the Euler characteristic, the num-
ber of backbones, and the number of chords for a chord diagram τ , and the sum
is over all connected chord diagrams. Indeed, compared to equation (9), the
variables tj there are replaced by a single variable s, thus tracking the total
number of backbones (instead of the number for each valency), and the variable
t here tracks the total number of half-edges, which is equal to twice the number
of chords in a linear chord diagram.

In [12], Andersen, Chekhov, Penner, Reidys and Su lkowski applied the topo-
logical recursion framework (section 2.4) to solve the matrix model for RNA
linear chord diagrams. The challenge, in some ways, lies in the determination of
the spectral curve. We will not reproduce the details here, but in this particular
case the cut end points were determined as perturbative expansions in variables
s and t, and some scaling of variables were required to obtain more manageable
expression for the spectral curve. In [13], the results were generalised for the
RNA matrix model for non-oriented linear chord diagrams using so-called the
β-deformed topological recursion [27].

To construct a matrix model for partial chord diagrams, we need external
matrices ΛP to represent unpaired half-edges, which do not participate in Wick
contractions. We present the construction below, following the materials pre-
sented in [14].
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Let us first consider the number of partial chord diagrams filtered by the
boundary point spectrum l = (l0, l1, . . . ), where li is the number of boundary
components with i marked points (a marked point is contained in the boundary
component that traverses above it). What we require is a bijective correspon-
dence between partial chord diagrams and sets of Wick contractions. This is
given by the following set of rules, which is illustrated in figure 18. Let C be a
partial chord diagram and F (C) the associated surface. Let ΛP be an N × N
matrix. We assign matrix elements to F (C) by the following rules [14];

P1: A matrix element Mαβ is assigned to a chord end on a backbone. Indices
α, β = 1, 2, . . . , N are assigned to the two vertical segment by each vertex
along a backbone.

P2: A matrix element ΛPαβ is assigned to a marked point.

P3: Suppose, after applying rules P1 and P2, Uαjβj and Vαj+1βj+1
are adjacent

chord ends or marked points on the same backbone with U, V = M or ΛP.
Then we assign the sum

N∑

βj ,αj+1=1

δβjαj+1

to the horizontal boundary segment between them.

P4: Suppose, after applying P3, we have a matrix product

(Mv1Λw1

P Mv2Λw2

P · · ·MviΛwiP )α1βi , vj , wj ∈ Z≥0,

i∑

j=1

(vj + wj) = i

corresponding to a backbone with i vertices. Then we assign

N
N∑

α1,βi=1

δβi,α1

to the bottom edge of this backbone. It follows, by going around the
backbone, that the trace

NTr(Mv1Λw1

P Mv2Λw2

P · · ·MviΛwiP )

is assigned to this backbone.

P5: To a band connecting Mαjβj and Mα′
j′β
′
j′

, we assign a Wick contraction

N
〈
MαjβjMα′

j′β
′
j′

〉
= δαj ,β′j′ δβj ,α

′
j′
.

Note, all possible traces NTr(Mv1Λw1

P · · ·MviΛwiP ) on a backbone with i
vertices are generated by NTr(M + ΛP)i. Hence, given a backbone spectrum b,
all possible sequences of M and ΛP on b are generated by the product

∏

i≥0

(
NTr(M + ΛP)i

)bi
.
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α1 β1 α2 β2 αf βf αj βj αj+1 βj+1 αi βi α′
f′ β

′
f′

M ΛP M M ΛP M M

N∑
βj ,αj+1=1

δβjαj+1

N
N∑

α1,βi=1

δβiα1

δα1βj δβ1αj
δαfβ

′
f′
δβfα′

f′

Figure 18: Assignment of matrix elements to a partial chord
diagram.

The above rules imply that all partial chord diagrams with the backbone spec-
trum b correspond bijectively to all matchings among M ’s in the expansion of
the Gaussian average

WP
N (b, r) =

〈∏

i≥0

(
NTr(M + ΛP)i

)bi
〉
, (37)

where r = (r1, r2, · · · ) with ri = 1
NTrΛiP. In a chord diagram with the boundary

point spectrum l, there are li boundary components with i marked points. Each
of the li boundary components contributes to WP

N (b, r) with the factor

N∑

αj1 ,...,αji=1

ΛPαj1αj2
ΛPαj2αj3

· · ·ΛPαjiαj1
= TrΛiP,

so the total contribution is with the factor (TrΛiP)li . It follows, for partial chord
diagrams with the backbone spectrum b and the boundary point spectrum l,
the corresponding term in WP

N (b, r) has the factor

N b−k+l0
∏

i≥0

(
TrΛiP

)li
= N b−k+n

∏

i≥0

rlii .

Note we get l0 in the power of N , since a Wick contraction
〈
MαjβjMα′

j′β
′
j′

〉

contributes with a factor N if and only if the boundary component formed by
the corresponding band does not contain any marked point. Thus we obtain,

Proposition 3.5. (Andersen et al. [14]) The Gaussian average (37) is the gen-

erating function for the numbers N̂k,b,l(b, r) of connected and disconnected par-
tial chord diagrams with the backbone spectrum b and the boundary point spec-
trum l;

WP
N (b, r) =

∑

l

N̂k,b,l(b, r)N b−k+n
∏

i≥0

rnii ,

where the summation is constrained by
∑
ini =

∑
ibi − 2k.
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With the above proposition, we wish to express the orientable, multi-backbone,
boundary point spectrum generating function using matrix integral. Recall the
generating function for connected diagrams given in equation (32). The corre-
sponding generating function for connected and disconnected diagrams is given
by the exponential;

ZP(x, y; s; t) = exp
(
F (x, y; s; t)

)

=
∑

b

∑

l

N̂k,b,l(b, l)x−b+k−nyk
∏

i≥0

sltb. (38)

On the other hand, the full generating function with variables s and r is
given by

ZP
N (y; t; r) =

∑

b

∑

l

N̂k,b,l(b, l)N b−k+nyk
∏

i≥0

tbrl

=
∑

b

y
∑
i bi/2WP

N (b; y−i/2r)
∏

i

sbii
bi!

=
∑

b

∏

i≥0

sbii y
ibi/2

bi!

〈(
NTr(M + y−1/2ΛP)i

)bi〉
,

where bi! in the denominator comes from the fact that the number of partial
chord diagrams is invariant under permutations of its backbones. Doing the
summation over b, we find that ZP

N is given by the (formal) matrix integral

ZP
N (y; t; r) =

∏

i≥0

exp

(
siy

i/2
〈
NTr(M + y−1/2ΛP)i

〉)

=
1

VolN

∫

HN
dM exp


−NTr


M

2

2
−
∑

i≥0

si(y
1/2M + ΛP)i





 . (39)

Finally, we identify ZP(x, y; s; t) and ZPN (y; t; r) by a change of variables.
For i = 0, we have

r0 =
1

N
TrΛ0

P = 1,

so we are forced to take the following change of variables;

N → t0N, y → t0y, , s→ t−1
0 s, r → t−1

0 t.

We have now proved,

Theorem 3.6. (Andersen et al. [14]) The generating function ZP(x, y; s; t) and
the matrix integral ZP

N (y; t; r) satisfy

ZP(x, y; s; t) = ZP
t0N (t0y; t−1

0 s; t−1
0 t).

Relations corresponding to the other spectra listed in section 3.2 can also be
found in [14].
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4 Protein Model

4.1 Structure of proteins

A protein is a linear polymer of amino acids, of which there are 20 different
kinds. All but one of the 20 amino acids have a standard structure, as shown
in figure 19a. It is the so-called residues (marked with “R”) connected to the
α-carbon atom (marked with “Cα”), which characterise amino acids. The last
amino acid proline has a slightly different structure, containing a ring CCCCN
(figure 19b). Proline occurs relatively infrequently in proteins, although they
have a structural importance for their association with turns in protein struc-
ture. We will nonetheless use the typical amino acid structure shown in fig-
ure 19a to depict all amino acids in the following text, keeping in mind that
some of them may be replaced by a proline. The OH in the right-hand side

1

H

H

N Cα

H

R

C

O

OH

(a) Typical amino acid

H

N

CH2

CH2

CH2

Cα

H

C

O

OH

(b) Proline

Figure 19: Chemical structure of amino acids

and H in the left-hand side of another amino acid can combine to produce a
water molecule, resulting in a covalent bond called a peptide bond between C
and N atoms. A chain of multiple amino acids combined in this manner is
called a polypeptide (figure 20). A polypeptide is oriented from the N- to the
C-terminus by convention. Now let Ni, Cαi , Ci, Ri, Oi denote respectively the
N,Cα,C,R,O in the i’th amino acid in a polypeptide, i ∈ {1, 2, . . . , L}, where L
is the length of a polypeptide measured in the number of amino acids. Let also
Hi denote the H atom connected to Ni, i ∈ {2, 3, . . . , L}. Then the i’th peptide
unit of a polypeptide consists of the six atoms around the i’th peptide bond
(Cαi ,Oi,Ci,Ni+1,Hi+1,C

α
i+1), and we say two consecutive peptide units are con-

nected by an α-carbon links. We will make the following assumptions, as was
done in [72] and are generally accepted to hold for the polypeptide structures.

Assumptions. Let Ni, Cαi , Ci, Ri, Oi,Hi as above. We have;

• Six atoms in a peptide unit (Cαi ,Oi,Ci,Ni+1,Hi+1,C
α
i+1) lie on a common

plane.

• The angles around Ci and Ni+1 that form a peptide bond are 120◦.

• The angles around the α-carbon atoms are tetrahedral.

• In each peptide unit, the centres of the two alpha-carbon atoms lie on either
side of the line determined by the peptide bond, except occasionally for the
peptide unit preceding proline.
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Peptide

bond
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Figure 20: Chemical structure of polypeptide

Note these geometric constraints are not mathematical in nature; they must
be understood as having some flexibility; i.e. “nearly” lying on a common plane,
etc. The last point expresses the dominance of so-called trans-conformation.
The complementary possibility is called the cis-conformation, which, as stated,
occurs infrequently. The pairs of rotation angles ϕ and ψ around the Ni − Cαi
and Cαi − Ci axes are called conformational angles, and the sequence of atoms

N1 − Cα1 − C1 −N2 − Cα2 − · · · −NL − CαL − CL

in a polypeptide with L amino acids is called its backbone. The primary structure
of a polypeptide is the sequence of its constituent residues ordered from the N-
to C-terminus, which can also be thought of as a word in an alphabet with
20 letters. Hi in one peptide unit and Oj in another may form a hydrogen
bond, in which case the Ni atom is called the donor and Oj the acceptor of
the hydrogen bond. By the H-graph structure of a protein we mean its primary
structure together with all its hydrogen bonds. The secondary structure of a
protein is the collection of its local structures, categorised into common patterns
such as α-helix or β-sheet. An α-helix is a structure where the backbone forms
a right-handed helix with every amino hydrogen bonded to a carboxyl oxygen
with three residues in between (figure 21a). A β-sheet consists of two or more β-
strands connected laterally by hydrogen bonds, forming a sheet. Two adjacent
β-strands in a β-sheet may be arranged in a parallel (figure 21b) or antiparallel
configuration (figure 21c), depending on the orientations of the two backbones.
The folded, 3-dimensional structure of a protein is called its tertiary structure,
and it is determined by the primary and secondary structures, along with various
other weaker forces and interactions, such as the van der Waals forces and the
hydrophobicity of the residues, to name two.
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(c) Anti-parallel

Figure 21: Schematic representations of α-helix (21a), parallel
β-sheet (21b) and anti-parallel β-sheet (21c). Hydrogen bonds
are shown in dotted lines. The arrows indicate backbone orien-
tations.

4.2 The protein model

Let us consider the standard structure of a peptide unit. Our model is the one
described in [72], which is a very natural abstraction of the standard structure,
where the backbone is shown as a horizontal line from Cαi to Cαi+1, with the Oi

and Hi+1 atoms shown as the edge above and below the backbone edge, respec-
tively (figure 22a). The edges below the backbone are denoted by N instead
of H, to represent the donor-acceptor relation described above. These building
blocks are concatenated to build a model of the given backbone (figure 23).
Note the positions of O- and N-edges correspond to those of trans isomers. In
a peptide unit preceding cis-proline, the more accurate representation would be
to have O- and N-edges on the same side of the backbone (figure 22b). Even
though our model allows for such a representation of cis-proline, they are known
to relatively rare [2]. We will therefore use a standard, single building block here
for our model for the ease of computation. The inclusion of a special cis-proline
building block is certainly a possibility for a future investigation. A hydrogen
bond is represented by an edge (which we call chords, in keeping with the other
literature on RNA modelling, e.g. [3, 15]) between the corresponding donor (N-
) and acceptor (O-) half-edges (figure 24). This means that the chords always
have one endpoint in the upper half-plane and the other endpoint in the lower
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Figure 22: Model of a standard peptide unit (a) and of a peptide
unit preceding cis-proline (b). The more geometrically accurate
position of N half-edge in is shown by the dotted line in (b).
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N

Figure 23: Model of a backbone.

half-plane. Note the orientation of the backbone from the N- to O- terminus
and of the hydrogen bond from the N-donor to the O-acceptor.

Figure 24: Model of α-helix structure.

A natural generalisation of this model is to include the information on rota-
tional angles at α-carbon links or hydrogen bonds. We do this by following the
method in [72], which we briefly describe here. First we associate a three-frame
Fi = (u, v, w), u, v, w ∈ R3 to the i’th peptide unit Pi, i = 1, 2, . . . as follows. u

is the unit vector parallel to the displacement vector
−−−−→
CiNi+1 along the peptide

bond. Let u⊥ be the vector in the plane of peptide unit which is perpendicular

to u. Let v̄ be the projection of the vector
−−−→
Cαi Ci onto the subspace Ru⊥ and

set v = v̄/‖v̄‖. Finally, we set w = u× v. Let Fj be the three frame associated
to another peptide unit Pj . Then there is a unique element of the group SO(3)
which takes Fi to Fj . However, this element of SO(3) is not invariant under
rotation of the entire protein. The solution to this problem is to rotate the en-
tire protein so that Fi becomes the standard three-frame in R3. If Ai ∈ SO(3)
is the matrix with columns consisting of u, v, and w, and Aj corresponds to Fj
in the same way, then Rij = A−1

i Aj ∈ SO(3) maps the identity I to A−1
i Aj . If

there is an edge (α-carbon link or hydrogen bond) from Pi to Pj in our model,
we assign Rij ∈ SO(3) to this edge. The rotation information at each α-carbon
link and hydrogen bond is then discretised to a binary decoration consisting of
values “twisted” or “untwisted” by seeing which of the associated Rij ∈ SO(3)

or its “flipped” counterpart R̂ij lies closest to the identity, with respect to the
unique bi-invariant metric on SO(3). More precisely, write Rij = (u, v, w),

where u, v, w are vectors in R3. Set R̂ij = (u,−v,−w). This is the element of

SO(3) that corresponds to taking Fi to F̂j , which is Fj turned upside down by
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rotating it by 180◦ about the line containing Cj and Nj+1. The edge (α-carbon
link or hydrogen bond) between the i’th and j’th peptide units is twisted, if
and only if d(I,Rij) ≥ d(I, R̂ij), where d is the unique bi-invariant metric on
SO(3). Clearly the resulting fatgraph model may not be orientable, depending
on the number of twisted edges. It is nonetheless possible to define topological
invariants such as the number of boundary components and genus (section 2.1).
These invariants have been successfully used to classify local structures within
proteins [74].

In this thesis, unless otherwise specified, we will consider the undecorated,
orientable fatgraph model of proteins. The choice was made so that we can
utilise the computational efficiency of the expression of fatgraphs as a pair of
permutations (section 2.1), and as a purely combinatorial and discrete object,
it was expected be simpler to work with.

4.3 Recursion relation for the protein model

Since our model of proteins, like the RNA model, is based on fatgraphs, it is
natural to expect that it satisfies recursion relations similar to the ones de-
scribed in section 3.2. An important difference is that we now have two types
of half-edges; O and N half-edges, with an extra condition that O-O and N-N
propagators are not allowed. We therefore require a way of tracking presence of
O and N half-edges around the backbone. Let us describe how it can be done,
and present the recursion relation.

As in section 3.2, we let g, k, l, n denote respectively the genus, the number
of chords, the number of marked points (i.e. unbonded O and N half edges),
and the number of boundary components, of a protein diagram. We also define
one further combinatorial parameter.

• The boundary type spectrum q = (qpK , . . . ), where qpK is the number
of boundary components with the type signature pK = (p1, p2, . . . , pK),
which is a sequence of pi ∈ {O,N}, showing the type of marked points
along the boundary component.

As an example, consider figure 24. We have l = 6, k = 4, n = 5, so
g = 0. The backbone spectrum is e14, and the boundary type spectrum is
(q() = 3, q(NNN) = 1, q(OOO) = 1).

We will consider the single-backbone case, so we have b = e2k+l. Let
Ng,k,l(e2k+l; q) be the number of distinct diagrams of type {g, k, l, e2k+l, q}.
Theorem 4.1. Ng,k,l(e2k+l; q) satisfies the following recursion relation;

kNg,k,l(e2k+l; q) =
∑

K≥1

∑

pK

(qpK + 1)

∑

I<J≤K
pI 6=pJ

∑

1≤I≤K
Ng,k−1,l+2(e2k+l; q + sI,J(pK))

+
1

2

∞∑

K=1

∞∑

L=1

∑

pK

∑

rL

(qpK + 1)(qrL + 1 + δpK ,rL)

∑

1≤I≤K
pI 6=rJ

∑

1≤J≤L
Ng−1,k−1,l+2(e2k+l; q + tI,J(pK , rL)),
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where

sI,J(pK) = epK − e(p1...pI−1pJ+1...pK) − e(pI+1pI+2...pJ−2pJ−1)

and
tI,J(pK , rL) = epK + erL − e(p1...pI−1rJ+1...rLr1...rJ−1pI+1...pK)

Proof. As described in theorem 3.4, we will express the number of diagrams
of type {g, k, l, e2k+l, q} in two different ways; one by removing and adding a
marked chord, and the other by simply marking a chord. For removing a chord,
there are two cases to consider; the first is when the chord to be removed is
part of two distinct boundary components, and the second is when it is part of
a single boundary component.

For the first case, when we remove the chord the two boundary components
which the removed chord was part of are merged to one. The resulting diagram
therefore has k−1 chords and n−1 boundary components, hence the genus g is
unchanged. It has l+ 2 marked points, since the two end points of the removed
chord become marked points. Suppose the merged boundary component has
the signature pK = (p1p2 . . . pK). Then prior to merging the signatures p1 and
p2 of two boundary components are

p1 = (p1p2 . . . pI−1pJ+1pJ+2 . . . pK),

p2 = (pI+1pI+2 . . . pJ−2pJ−1),

for some 1 ≤ I < J ≤ K with the condition pI 6= pJ . So if the diagram had
the boundary point and type spectrum q prior to the chord removal, then its
spectrum after the removal is given by

q − ep1
− ep2

+ epK = q + sI,J(pK).

In order to obtain a diagram of type {g, k, l; e2k+l; q} with a marked chord, we
can add a marked chord to one of the qpK + 1 boundary components formed as
the result of a chord removal, so the total number of diagrams in this case is

∑

K≥1

∑

pK

(qpK + 1)
∑

1≤I≤K
pI 6=pJ

∑

I<J≤K
Ng,k−1,l+2(e2k+l; q + sI,J(pK)). (40)

In the second case, removing the chord splits the boundary component in
two. So after the removal there are k−1 chords and n+1 boundary components,
hence the genus becomes g−1. If we suppose the signatures of the two boundary
components after the removal are pK and rL, the original boundary component
had the signature

p̃ = (p1 . . . pI−1rJ+1 . . . rLr1 . . . rJ−1pI+1 . . . pK),

for 1 ≤ I ≤ K and 1 ≤ J ≤ L with the condition pI 6= rJ . If the spectrum prior
to the removal was q, then after the removal it becomes

q − ep̃ + epK + erL = q + tI,J(pK , rL).
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Now there are (qpK + 1)(qrL + 1) choice of boundary components, if pK 6= rL,
and (qpK + 1)(qpK + 2)/2 if pK = rL. Therefore the total number of diagrams
in this case is

1

2

∞∑

K=1

∞∑

L=1

∑

pK

∑

rL

(qpK + 1)(qrL + 1 + δpK ,rL)

×
∑

1≤I≤K
pI 6=rJ

∑

1≤J≤L
Ng−1,k−1,l+2(e2k+l; q + tI,J(pK , rL)). (41)

On the other hand, there are k chords to choose for removal in the original
diagram, so the two expressions (40) and (41) must add up to kNg,k,l(e2k+l; q).

The corresponding result for the multi-backbone case is the following.

Theorem 4.2. Ng,k,l(b; q) satisfies the following recursion relation;

kNg,k,l(b; q) =
∑

K≥1

∑

pK

(qpK + 1)
∑

1≤I≤K
pI 6=pJ

∑

I<J≤K
Ng,k−1,l+2(b; q + sI,J(pK))

+
1

2

∞∑

K=1

∞∑

L=1

∑

pK

∑

rL

(qpK + 1)(qrL + 1 + δpK ,rL)

∑

1≤I≤K
pI 6=rJ

∑

1≤J≤L
Ng−1,k−1,l+2(b; q + tI,J(pK , rL))

+
1

2

∞∑

K=1

∞∑

L=1

∑

pK

∑

rL

∑

g1+g2=g

∑

k1+k2=k−1

∑

b(1)+b(2)=b

∑

1≤I≤K
pI 6=rJ

∑

1≤J≤L

∑

q(1)+q(2)

=q+tI,J (pK ,rL)

q(1)
pK q

(2)
rL

b!

b(1)!b(2)!
Ng1,k1,l1(b(1); q(1))Ng2,k2,l2(b(2); q(2)),

where b(a) =
∑∞
i=1 b

(a)
i , a = 1, 2 and sI,J(pK) and tI,J(pK , rL) are defined as

in theorem 4.1.

Proof. The proof proceeds similarly to theorem 4.1, but we have to consider
different cases when removing a chord from a diagram of type {g, k, l; b; q}; after
the removal of a chord, the diagram may be either connected or disconnected. In
the first case, there are two subcases to consider; the chord to be removed may
be adjacent to either two or one boundary component(s). Note in the second
case, the chord to be removed must be adjacent to a single boundary component,
since otherwise the two boundary components adjacent to the removed chord
merge after the removal, which is absurd. So there are no subcases to consider
in the second case.

The first case is exactly the same as theorem 4.1, so let us consider the
second case. Suppose the resulting two connected components are of the type
{g1, k1, l1; b(1); q(1)} and {g2, k2, l2; b(2); q(2)}, with k1+k2 = k−1, l1+l2 = l+2,
g1 + g2 = g, and b(1) + b(2) = b. Suppose also, that the two new boundary
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components created as a result of the chord removal have the signatures pK and
rL. Then signature of the original boundary component prior to the removal is

p̃ = (p1 · · · pI−1rJ+1rJ+2 · · · rLr1r2 · · · rJ−1pI+1pI+2 · · · pK),

with 1 ≤ I ≤ K, 1 ≤ J ≤ L, and pI 6= rJ . If the point and type spectrum prior
to the chord removal was q, the sum of the spectra q(1) and q(2) is given by

q − ep̃ + epK + erL = q + tI,J(pK , rL).

When adding a marked chord to obtain a diagram of type {g, k, l; b; q}, there

are q
(1)
pK boundary components to choose from the component b(1), and q

(2)
rL from

b(2). So the number of diagrams in this case is

1

2

∞∑

K=1

∞∑

L=1

∑

pK

∑

rL

∑

g1+g2=g

∑

k1+k2=k−1

∑

b(1)+b(2)=b

×
∑

1≤I≤K
pI 6=rJ

∑

1≤J≤L

∑

q(1)+q(2)

=q+tI,J (pK ,rL)

q(1)
pK q

(2)
rL

b!

b(1)!b(2)!

×Ng1,k1,l1(b(1); q(1))Ng2,k2,l2(b(2); q(2)),

with the factor 1
2 accounting for the permutation of the two connected compo-

nents, and b!
b(1)!b(2)!

for the ordered splitting of b backbone components. Together
with the two terms from theorem 4.1, we obtain the claimed recursion.

Recursion relation for non-oriented protein diagrams

Non-oriented diagrams can be considered in the same way as in the RNA model,
by assigning to each chord an extra binary datum to indicate whether it is
twisted or not.

Let Mh,k,l(b; q) be the number of both orientable and non-orientable dia-
grams of type {h, k, l; b; q}, where h is twice the genus in the orientable case
and the number of cross-caps in the non-orientable case (see section 3.2). We
start by considering one-backbone case.

Theorem 4.3. Mh,k,l(e2k+l; q) satisfies the following relation.

kMh,k,l(e2k+l; q) =
∑

K≥1

∑

pK

(qpK + 1)
∑

1≤I≤K
pI 6=pJ

∑

I<J≤K

[
2Mh,k−1,l+2(e2k+l; q + sI,J(pK))

+Mh−1,k−1,l+2(e2k+l; q + uI,J(pK))
]

+
1

2

∞∑

K=1

∞∑

L=1

∑

pK

∑

rL

(qpK + 1)(qrL + 1 + δpK ,rL)

×
∑

1≤I≤K
pI 6=rJ

∑

1≤J≤L

[
Mh−1,k−1,l+2(e2k+l; q + tI,J(pK , rL))

+Mh−2,k−1,l+2(e2k+l; q + t̃I,J(pK , rL))
]
,
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where sI,J and tI,J are given in theorem 4.1, and

uI,J(pK) = epK − e(p1···pI−1pJ−1pJ−2···pI+1pJ+1···pK),

t̃I,J(pK , rL) = epK + erL − e(p1...pI−1rJ−1...r1rL...rJ+1pI+1...pK).

Proof. When removing a chord, the removed chord is either twisted or not
twisted. If it is not twisted we get the same expression as in theorem 4.1.
So suppose the removed chord is twisted. We need to consider two cases; the
removed chord is adjacent to two boundary components, or it is adjacent to just
one. Let us start with the first case. The two boundary components adjacent
to the removed chord are merged after the removal. This is clear from figure 25.
So we have, after the chord removal, n− 1 boundary components, k− 1 chords,

Figure 25: Removing a twisted chord where it is adjacent to two
boundary components. The points represent marked points (the
red points become marked points after the chord removal), and
the dashed twisted band is the (twisted) chord to be removed.
Observe the two boundary components are merged to one after
the chord removal.

l+2 marked points, and the non-orientable genus h remain unchanged. Suppose
the signature of the merged boundary is pK = (p1 · · · pK). Then prior to the
removal, the two boundary components have the signatures

p1 = (p1p2 · · · pI−1pJ+1pJ+2 · · · pK),

p2 = (pI+1pI+2 · · · pJ−1)

for 1 ≤ I < J ≤ K with pI 6= pJ . We see that this case is the same as the
removal of non-twisted chord that is adjacent to two boundary components, in
theorem 4.1.

In the second case where the removed chord is adjacent to one boundary
component, we have two subcases, one where the boundary component becomes
split after the chord removal, and the other where the boundary component
remains as a single component. The first subcase is illustrated in figure 26. If
the two components after the removal have signatures pK and rL, then prior to
the removal the single boundary component has the signature

p̃ = (p1p2 · · · pI−1rJ−1rJ−2 · · · r1rLrL−1 · · · rJ+1pI+1pI+2 · · · pK),

with 1 ≤ I ≤ K, 1 ≤ J ≤ L and pI 6= rJ . if the spectrum prior to the removal
was q, then after the removal it becomes

q − ep̃ + epK + erL = q + t̃I,J(pK , rL).
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Figure 26: Removing a twisted chord where it is adjacent to a
single boundary component, and the component splits after the
removal. Note the orientation of the boundary before and after
the removal.

There is a choice of (qpK + 1)(qrL + 1) boundary components with signatures
pK and rL, if pK 6= rL, and (qpK + 1)(qpK + 2)/2 is pK = rL. So in this case
the number of diagrams is

1

2

∞∑

K=1

∞∑

L=1

∑

pK

∑

rL

(qpK + 1)(qrL + 1 + δpK ,rL)

×
∑

1≤I≤K
pI 6=rJ

∑

1≤J≤L
Mh−2,k−1,l+2(e2k+l; q + t̃I,J(pK , rL)).

The second subcase is illustrated in figure 27 After the removal, we have n

Figure 27: Removing a twisted chord where it is adjacent to a
single boundary component, and the component remains con-
nected after the removal. Note the orientation of the boundary
before and after the removal.

boundary components, k− 1 chords, l+ 2 marked points and h− 1. If, after the
removal, the boundary component has signature pK = (p1 · · · pK), the prior to
removal the signature is

p̃ = (p1p2 · · · pI−1pJ−1pJ−2 · · · pI+1pJ+1pJ+2 · · · pK),

with 1 ≤ I < J ≤ K and pI 6= pJ . So if the spectrum prior to removal was give
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by q, then after the removal it becomes

q − ep̃ + epK = q + uI,J(pK).

There is a choice of (qpK + 1) boundary components with signature pK , so the
number in this case is

∑

K≥1

∑

pK

(qpK + 1)
∑

1≤I≤K
pI 6=pJ

∑

I<J≤K
Mh−1,k−1,l+2(e2k+l; q + uI,J(pK)).

Adding all three terms to the r.h.s. of theorem 4.1, we obtain the claimed rela-
tion.

The multi-backbone case is as follows.

Theorem 4.4. Mh,k,l(b; q) satisfies the following relation.

kMh,k,l(b; q) =
∑

K≥1

∑

pK

(qpK + 1)
∑

1≤I≤K
pI 6=pJ

∑

I<J≤K

[
2Mh,k−1,l+2(b; q + sI,J(pK))

+Mh−1,k−1,l+2(b; q + uI,J(pK))
]

+
1

2

∞∑

K=1

∞∑

L=1

∑

pK

∑

rL

(qpK + 1)(qrL + 1 + δpK ,rL)

×
∑

1≤I≤K
pI 6=rJ

∑

1≤J≤L

[
Mh−1,k−1,l+2(e2k+l; q + tI,J(pK , rL))

+Mh−2,k−1,l+2(b; q + t̃I,J(pK , rL))
]

+
1

2

∞∑

K=1

∞∑

L=1

∑

pK

∑

rL

∑

h1+h2=h

∑

k1+k2=k−1

∑

b(1)+b(2)=b

∑

1≤I≤K
pI 6=rJ

∑

1≤J≤L




∑

q(1)+q(2)

=q+tI,J (pK ,rL)

q(1)
pK q

(2)
rL

b!

b(1)!b(2)!
Mh1,k1,l1(b(1); q(1))Mh2,k2,l2(b(2); q(2))

+
∑

q(1)+q(2)

=q+t̃I,J (pK ,rL)

q(1)
pK q

(2)
rL

b!

b(1)!b(2)!
Mh1,k1,l1(b(1); q(1))Mh2,k2,l2(b(2); q(2))



,

where sI,J and tI,J are given in theorem 4.1, and uI,J and t̃I,J are given in
theorem 4.3.

Proof. In addition to the one-backbone case, we need to consider the case where
the removal of a twisted chord makes the diagram to be disconnected. If we
concentrate on the boundary component to which the removed chord is part of,
we have the situation illustrated in figure 26. So the same argument applies in
the current case, and the claimed relation follows.
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4.4 The protein matrix model

We now present a matrix model for protein diagrams. The basic building block
is the model of peptide units, as described in section 4.2. For the purpose of
this section (and in accordance with the presentation in section 3.3), we draw
this as a surface by thickening edges (figure 28).

Cαi

Ci

Oi

Ni+1

Hi+1

Cαi+1
A

B

Figure 28: Peptide unit and its fatgraph representation.

We attach matrices A and B to the half-edges representing the carboxyl
oxygen and amino hydrogen, respectively. The backbone is constructed by con-
necting two or more peptide units together at the half-edges representing the
α-carbon atoms. There are two ways to connect peptide units; twisted or not
twisted. To start wih, we will not allow mixing of twisted and untwisted con-
nections on a single backbone, but we will relax this requirement later. We
present the two backbone configurations in figure 29. These two configurations
correspond to the two typical secondary structures, α-helix and β-sheet. In the
α-helix configuration, the peptide units are connected without any twists, while
in the β-sheet configuration, all connections between peptide units are twisted.
In the language of the matrix model, each backbone structure gives rise to a
vertex. We assign the trace TrAiBi to the α-helix backbone with i peptide
units, and the trace TrAiBi to the β-sheet backbone with i peptide units.

Figure 29: Two types of backbones; α-helix (above) and β-sheet
(below).

The hydrogen bonds are represented as the bands, also called the propagators
in the matrix model, which connect A and B. To represent unpaired H’s and
N’s, univalent vertices are introduced to cap A and B ends. The univalent
vertex replaces the matrix A by the external matrix Λ1, and the matrix B by
the external matrix Λ2. In the fatgraph diagram, external matrices Λ1 and
Λ2 are represented by marked points with different colors. We construct the
protein fatgraphs by decorating one or more α- and β-backbones with bands
and marked points. (See figures 30 to 31.)
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Figure 30: A fatgraph model for α-helix.

Figure 31: A fatgraph model for β-sheet.

For each boundary component in the fatgraph, we have a (possibly empty)
sequence of unpaired hydrogens and oxygens, represented by the external ma-
trices Λ1 and Λ2. To record these sequences, we introduce a combinatorial
parameter, which we call the boundary point type spectrum, `ij = {`ij}. It
is a sequence of numbers `ij , indexed by two sequences i = (i1, . . . , iK) and
j = (j1, . . . , jK). For each boundary component, i records the numbers of con-
secutive unpaired oxygens, and j records the numbers of consecutive hydrogens.
So for example, the diagram in figure 30 has the boundary point type spectrum
(`(1),(2) = 1, `(2),(0) = 1, `(0),(1) = 1), while the diagram in figure 31 has the spec-
trum (`(0),(0) = 1, `(1,1),(1,1) = 1, `(1),(1) = 1). The total number 2l of unpaired
hydrogens and oxygens is given by

l =
∑

K≥1

∑

(i1,...,iK)

∑

(j1,...,jK)

K∑

L=1

iL`(i1,...,iK)(j1,...,jK)

=
∑

K≥1

∑

(i1,...,iK)

∑

(j1,...,jK)

K∑

L=1

jL`(i1,...,iK)(j1,...,jK).

We also require two backbone spectra, a = {ai} and b = {bi}, for the
numbers of backbone segments of each type with i peptide units. For the di-
agram in figure 30, we have {ai} = e5, {bi} = 0, and for figure 31 we have
{ai} = 0, {bi} = e5.

Let a =
∑
i≥1 be the total number of peptide units in the α-helix backbones,

and b =
∑
i≥1 be the total number in the β-sheet backbones.

Definition 4. Let Ng,k,l(a, b, `ij) denote the number of protein fatgraphs with
genus g, k propagators, 2l marked points, a backbone spectrum for the un-
twisted backbones (i.e. α-helix), b backbone spectrum for the twisted backbones
(i.e. β-sheet), and `ij boundary point spectrum. The generating function of the
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number Ng,k,l(a, b, `ij) is defined by

F (x, y;α,β, rij) =
∑

b≥0

Fa,b(x, y;α,β, rij),

Fa,b(x, y;α,β, rij)

=
1

a!b!

∑

g≥0

∑

k≥a+b−1

∑

`ij

∑
∑
ai=a

∑
∑
bi=b

Ng,k,l(a, b, `ij)x2g−2yk

×
∏

i≥0

αaii β
bi
i

∏

ij

r
`ij
ij .

Using Wick’s theorem with the Wick conrtaction

〈AabBcd〉 =
1

Vol(HN )2

∫

HN
dAdB AabBcde

−TrAB = δadδbc, (42)

we can express the generating function as a hermitian matrix integral.

Theorem 4.5. Let ZN (y;α,β, rij) denote the exponential of the generating
function:

ZN (y;α,β, rij) = exp
[
F (1/N, y;α,β, rij)

]
.

ZN (y;α,β, rij) is given as the partition function of the hermitian 2-matrix
model with external fields Λ1 and Λ2:

ZN (y;α,β, rij)

=
1

Vol2N

∫

H⊗2
N

dAdB exp

[
−NTr

(
AB −

∑

i≥0

αiy
i(A+ y−1/2Λ1)i(B + y−1/2Λ2)i

−
∑

i≥0

βiy
i((A+ y−1/2Λ1)(B + y−1/2Λ2))i

)]

=
1

Vol2N

∫

H⊗2
N

dAdB e−NTrVy,α,β(A,B;Λ1,Λ2), (43)

where VolN = NN(N+1)/2Vol(HN ), and rij ’s are defined by the single trace for
a product of Λ1’s and Λ2’s as

r(i1,...,iK),(j1,...,jK) =
1

N
Tr(Λi11 Λj12 Λi21 Λj22 · · ·ΛiK1 ΛjK2 ).

Proof. The construction is done similarly to section 3.3, by assigning the ap-
propriate elements to the diagram elements as described above.

This generating function obeys the heat equation.

Theorem 4.6. The generating function ZN (y;α,β, rij) satisfies the heat equa-
tion:

∂

∂y
ZN (y;α,β, rij)

=
1

2N

(
Tr

∂2

∂Λ1∂Λ2
+ Tr

∂2

∂Λ2∂Λ1

)
ZN (y;α,β, rij), (44)
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where Tr ∂2

∂Λ1∂Λ2
denotes

Tr
∂2

∂Λ1∂Λ2
=

N∑

a,b=1

∂2

∂Λ1ab∂Λ2ba
.

Proof. The heat equation for the partition function ZN (y;α,β, rij) is obtained
by the shift invariance of the matrix integral measure dA and dB.

∂

∂Λ1ba
ZN (y;α,β, rij)

=
1

Vol2N

∫

H⊗2
N

dAdB N
∑

i≥1

yi−1/2

×
(
αi

i−1∑

k=0

(
(A+ y−1/2Λ1)k(B + y−1/2Λ2)i(A+ y−1/2Λ1)i−k−1

)
ab

+iβi
(
(B + y−1/2Λ2)((A+ y−1/2Λ1)(B + y−1/2Λ2))i−1

)
ab

)

×e−NTrVy,α,β(A,B;Λ1,Λ2)

=
1

Vol2N

∫

H⊗2
N

dXdY N
∑

i≥1

yi−1/2

(
αi

i−1∑

k=0

(XkY iXi−k−1) + iβiY (XY )i−1

)

ab

×e−NTrWy,α,β(X,Y ;Λ1,Λ2),

where X = A+ y−1/2Λ1, Y = B + y−1/2Λ2, and

Wy,α,β(X,Y ; Λ1,Λ2)

= (X − y−1/2Λ1)(Y − y−1/2Λ2)−
∑

i≥0

αiy
iXiY i −

∑

i≥0

βiy
i(XY )i.

We then compute the derivative
∑N
a,b=1 ∂/∂Λ2ab to find

Tr
∂2

∂Λ1∂Λ2
ZN (y;α,β, rij)

=
1

Vol2N

∫

H⊗2
N

dXdY N2
∑

i≥1

yi−1

×Tr

(
αi

i−1∑

k=0

XkY iXi−k−1 + iβiY (XY )i−1


 (X − y−1/2Λ1)

)

×e−NTrWy,α,β(X,Y ;Λ1,Λ2).
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Exchanging the role of (X,Λ1) and (Y,Λ2), we find

Tr
∂2

∂Λ2∂Λ1
ZN (y;α,β, rij)

=
1

Vol2N

∫

H⊗2
N

dXdY N2
∑

i≥1

yi−1

×Tr

(
αi

i−1∑

k=0

Y kXiY i−k−1 + iβi(XY )i−1X


 (Y − y−1/2Λ2)

)

×e−NTrWy,α,β(X,Y ;Λ1,Λ2). (45)

On the other hand, the derivative with respect to y is

∂

∂y
ZN (y;α,β, rij)

=
1

Vol2N

∫

H⊗2
N

dAdB
N

2

∑

i≥1

yi−1

×Tr

[
αi

i−1∑

k=0

(
(A+ y−1/2Λ1)kA(A+ y−1/2Λ1)i−k−1(B + y−1/2Λ2)i

+(B + y−1/2Λ2)kB(B + y−1/2Λ2)i−k−1(A+ y−1/2Λ1)i
)

+iβi

(
A(B + y−1/2Λ2) + (A+ y−1/2Λ1)B

)(
(A+ y−1/2Λ1)(B + y−1/2Λ2)

)i−1
]

×e−NTrVy,α,β(A,B;Λ1,Λ2)

=
1

2N

(
Tr

∂2

∂Λ1∂Λ2
+ Tr

∂2

∂Λ2∂Λ1

)
ZN (y;α,β, rij).

The initial condition for this heat equation is found by setting y = 0 in (43).

ZN (y = 0;α,β, rij) = eN
∑
i≥0 Tr(αiΛ

i
1Λi2+βi(Λ1Λ2)i).

The above heat equation can be expressed as a cut-and-join equation.

Theorem 4.7. Let L0 and L2 denote the following differential operators with
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respect to parameters rij ;

L0 =
∑

K≥1

∑

{iL,jL}KL=1

K∑

L=1

K∑

M=1

iL∑

k=1

jM∑

`=1

r(iL−k−1,iL+1,...,iM ),(jL,...,jM−1,`)r(k,iM+1,...,iL−1),(jM−`−1,jM+1,...,jL−1)

× ∂

∂r(i1,...,iK),(j1,...,jK)
,

L2 =
∑

K,V≥1

∑

{iL,jL}KL=1

∑

{sQ,tQ}VQ=1

K∑

L=1

V∑

Q=1

iL∑

k=1

tQ∑

u=1

r(iL−k−1,iL+1,...,iL−1,k,sQ+1,...,sQ−1,sQ),(jL,jL+1,...,jL−1,tQ−u−1,tQ+1,...,tQ−1,u)

× ∂2

∂r(i1,...,iK),(j1,...,jK)∂r(s1,...,sV ),(t1,...,tV )
,

where the labels L,M are defined modulo K, and the label Q is defined modulo
V .

The heat equation (44) is rewritten as the cut-and-join equation:

∂ZN (y;α,β, rij)

∂y
=

(
L0 +

1

N2
L2

)
ZN (y;α,β, rij).

Proof. By the chain rule applied to the right hand side of the heat equation
(44), we find

Tr
∂2

∂Λ1∂Λ2
ZN (y;α,β, rij)

=
∑

K≥1

∑

{iL,jL}KL=1

Tr
∂2r(i1,...,iK),(j1,...,jK)

∂Λ1∂Λ2

∂ZN (y;α,β, rij)

∂r(i1,...,iK),(j1,...,jK)

+
∑

K,V≥1

∑

{iL,jL}KL=1

∑

{sQ,tQ}VQ=1

Tr
∂r(i1,...,iK),(j1,...,jK)

∂Λ1

∂r(s1,...,sV ),(t1,...,tV )

∂Λ2

× ∂2ZN (y;α,β, rij)

∂r(i1,...,iK),(j1,...,jK)∂r(s1,...,sV ),(t1,...,tV )
. (46)
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The coefficients in (46) are;

Tr
∂2r(i1,...,iK),(j1,...,jK)

∂Λ1∂Λ2

=
1

N

K∑

L,M=1

iL∑

k=1

jM∑

`=1

Tr(ΛiL−k−1
1 ΛjL2 · · ·ΛiM1 Λ`2)

×Tr(ΛjM−`−1
2 Λ

iM+1

1 Λ
jM+1

2 · · ·ΛiL−1

1 Λ
jL−1

2 Λk1)

= N
K∑

L,M=1

iL∑

k=1

jM∑

`=1

r(iL−k−1,iL+1,...,iM ),(jL,...,jM−1,`)

×r(k,iM+1,...,iL−1),(jM−`−1,jM+1,...,jL−1),

Tr
∂r(i1,...,iK),(j1,...,jK)

∂Λ1

∂r(s1,...,sV ),(t1,...,tV )

∂Λ2

=
1

N2

K∑

L=1

V∑

Q=1

iL∑

k=1

tQ∑

u=1

Tr(ΛiL−k−1
1 ΛjL2 Λ

iL+1

1 Λ
jL+1

2 · · ·ΛiL−1

1 Λ
jL−1

2 Λk1

·ΛtQ−u−1
2 Λ

sQ+1

1 Λ
tQ+1

2 · · ·ΛsQ−1

1 Λ
tQ−1

2 Λ
sQ
1 Λu2 )

=
1

N

K∑

L=1

V∑

Q=1

iL∑

k=1

tQ∑

u=1

r(iL−k−1,iL+1,...,iL−1,k,sQ+1,...,sQ−1,sQ),(jL,jL+1,...,jL−1,tQ−u−1,tQ+1,...,tQ−1,u).

Thus we find the operators L0 and L2. Summing with the results of Tr ∂2

Λ2Λ1

accounts for the factor 1
2N in (44).

Merging backbones

We will now slightly relax the initial requirement that a backbone can only
contain one type of connection between the peptide units by introducing another
matrix M . To the endpoints of backbones, we attach the matrix M , with
propagators connecting these endpoints to create a loop structure (figure 32).

Figure 32: Connecting α-helix and β-sheet backbones.
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Definition 5. The partition function of the protein matrix model for merged
backbones is defined as the following hermitian 3-matrix model:

ZN (y;α(1),α(2),β(1),β(2), rij)

=
1

Vol(HN )3

∫

H⊗3
N

dAdBdM exp

[
−NTr

(
AB +

1

2
M2

+
∑

i≥0

yi

{
α

(1)
i M(A+ y−1/2Λ1)i(B + y−1/2Λ2)iM

+α
(2)
i M(B + y−1/2Λ2)i(A+ y−1/2Λ1)iM

+β
(1)
i M

(
(A+ y−1/2Λ1)(B + y−1/2Λ2)

)i
M

+β
(2)
i M

(
(B + y−1/2Λ2)(A+ y−1/2Λ1)

)i
M

})]

=
1

Vol(HN )3

∫

H⊗3
N

dAdBdM e−NTrVα,β(A,B,M ;Λ1,Λ2).

The propagator 〈AabBcd〉 of this matrix model represents the hydrogen bond-
ings and the propagator 〈MabMcd〉 represents the the loop that connects the
α-helices and β-sheets in the backbones.

The heat equation for the model is as follows.

Theorem 4.8. The partition function ZN (y;α(1),α(2),β(1),β(2), rij) obeys the
heat equation,

∂ZN (y;α(1),α(2),β(1),β(2), rij)

∂y

=
1

2N
Tr

(
∂2

∂Λ1∂Λ2
+

∂2

∂Λ2∂Λ1

)
ZN (y;α(1),α(2),β(1),β(2), rij).
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Proof. First, we consider the derivative ∂/∂Λ1 of the partition function ZN (y;α(1),α(2),β(1),β(2), rij).

∂

∂Λ1ba
ZN (y; {α(1)

i }, {α
(2)
i },β(1),β(2), rij)

=
1

Vol3N

∫

H⊗3
N

dAdBdM N
∑

i≥1

yi−1/2

×
(
α

(1)
i

i−1∑

k=0

(
(A+ y−1/2Λ1)k(B + y−1/2Λ2)iM2(A+ y−1/2Λ1)i−k−1

)
ab

+α
(2)
i

i−1∑

k=0

(
(A+ y−1/2Λ1)kM2(B + y−1/2Λ2)i(A+ y−1/2Λ1)i−k−1

)
ab

+β
(1)
i

i−1∑

k=0

(
(B + y−1/2Λ2)((A+ y−1/2Λ1)(B + y−1/2Λ2))kM2

×((A+ y−1/2Λ1)(B + y−1/2Λ2))i−k−1
)
ab

+β
(2)
i

i−1∑

k=0

(
((B + y−1/2Λ2)(A+ y−1/2Λ1))kM2

×((B + y−1/2Λ2)(A+ y−1/2Λ1))i−k−1(B + y−1/2Λ2)
)
ab

)

×e−NTrVy,α,β(A,B,M ;Λ1,Λ2)

=
1

Vol3N

∫

H⊗3
N

dXdY dM N
∑

i≥1

yi−1/2

(

+α
(1)
i

i−1∑

k=0

(XkY iM2Xi−k−1) + α
(2)
i

i−1∑

k=0

(XkM2Y iXi−k−1)

+β
(1)
i

i−1∑

k=0

Y (XY )kM2(XY )i−k−1 + β
(2)
i

i−1∑

k=0

(Y X)kM2(Y X)i−k−1Y

)

ab

×e−NTrWy,α,β(X,Y,M ;Λ1,Λ2),

where X = A+ y−1/2Λ1, Y = B + y−1/2Λ2, and

Wy,α,β(X,Y,M ; Λ1,Λ2)

= (X − y−1/2Λ1)(Y − y−1/2Λ2) +
1

2
M2

−
∑

i≥0

yi(α
(1)
i MXiY iM + α

(2)
i MY iXiM)

−
∑

i≥0

yi(β
(1)
i M(XY )iM + β

(2)
i M(Y X)iM).
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We now compute the derivative
∑N
a,b=1 ∂/∂Λ2ab to find

Tr
∂2

∂Λ1∂Λ2
ZN (y;α(1),α(2), {β(1)

i }, {β
(2)
i }, rij)

=
1

Vol3N

∫

H⊗3
N

dXdY dM N2
∑

i≥1

yi−1

×Tr

((
α

(1)
i

i−1∑

k=0

XkY iM2Xi−k−1 + α
(2)
i

i−1∑

k=0

XkM2Y iXi−k−1

+β
(1)
i

i−1∑

k=0

Y (XY )kM2(XY )i−k−1 + β
(2)
i

i−1∑

k=0

(Y X)kM2(Y X)i−k−1Y
)

×(X − y−1/2Λ1)

)
e−NTrWy,α,β(X,Y,M ;Λ1,Λ2)

=
1

Vol3N

∫

H⊗3
N

dXdY dM N2
∑

i≥1

yi−1e−NTrWy,α,β(X,Y,M ;Λ1,Λ2)

×Tr

((
α

(1)
i

i−1∑

k=1

MXi−k−1(X − y−1/2Λ1)XkY iM

+α
(2)
i

i−1∑

k=1

MY iXi−k−1(X − y−1/2Λ1)XkM

+β
(1)
i

i−1∑

k=1

M(XY )i−k−1(X − y−1/2Λ1)Y (XY )kM

+β
(2)
i

i−1∑

k=1

M(Y X)i−k−1Y (X − y−1/2Λ1)(Y X)kM

)
. (47)

Exchanging the role of (X,Λ1) and (Y,Λ2), we find

Tr
∂2

∂Λ2∂Λ1
ZN (y;α(1),α(2), {β(1)

i }, {β
(2)
i }, rij)

=
1

Vol3N

∫

H⊗3
N

dXdY dM N2
∑

i≥1

yi−1e−NTrWy,α,β(X,Y,M ;Λ1,Λ2)

×Tr

((
α

(1)
i

i−1∑

k=1

MXiyi−k−1(Y − y−1/2Λ2)Y kM

+α
(2)
i

i−1∑

k=1

MY i−k−1(Y − y−1/2Λ2)Y kXiM

+β
(1)
i

i−1∑

k=1

M(XY )i−k−1X(Y − y−1/2Λ2)(XY )kM

+β
(2)
i

i−1∑

k=1

M(Y X)i−k−1(Y − y−1/2Λ2)X(Y X)kM

)
. (48)
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Finally, we compute the derivative with respect to y to find

∂

∂y
ZN (y; {αi}, {βi}, rij)

=
1

Vol3N

∫

H⊗3
N

dAdBdM
N

2

∑

i≥1

yi−1

×Tr

[
α

(1)
i

i−1∑

k=0

(
M(A+ y−1/2Λ1)kA(A+ y−1/2Λ1)i−k−1(B + y−1/2Λ2)iM

+M(A+ y−1/2Λ1)i(B + y−1/2Λ2)iB(B + y−1/2Λ2)i−k−1M
)

+α
(2)
i

i−1∑

k=0

(
M(B + y−1/2Λ2)kB(B + y−1/2Λ2)i−k−1(A+ y−1/2Λ1)iM

+M(B + y−1/2Λ2)i(A+ y−1/2Λ1)kA(A+ y−1/2Λ1)i−k−1
)

+β
(1)
i

i−1∑

k=0

(
(A+ y−1/2Λ1)(B + y−1/2Λ2)

)k

×
(
A(B + y−1/2Λ2) + (A+ y−1/2Λ1)B

)(
(A+ y−1/2Λ1)(B + y−1/2Λ2)

)i−k−1

+β
(2)
i

i−1∑

k=0

(
(B + y−1/2Λ2)(A+ y−1/2Λ1)

)k

×
(
B(A+ y−1/2Λ1) + (B + y−1/2Λ2)A

)(
(B + y−1/2Λ2)(A+ y−1/2Λ1)

)i−k−1
]

×e−NTrVy,α,β(A,B;Λ1,Λ2)

=
1

2N

(
Tr

∂2

∂Λ1∂Λ2
+ Tr

∂2

∂Λ2∂Λ1

)
ZN (y; {αi}, {βi}, rij). (49)

For the initial condition of the heat equation, we find

ZN (y = 0;α(1),α(2),β(1),β(2), rij)

=
1

Vol(HN )

∫

HN
dM e

−N2 TrM
(
IN−2

∑
i≥0(α

(1)
i Λi1Λi2+α

(2)
i Λi2Λi1+β

(1)
i (Λ1Λ2)i+β

(2)
i (Λ2Λ1)i)

)
M

= det


IN − 2

∑

i≥0

(α
(1)
i Λi1Λi2 + α

(2)
i Λi2Λi1 + β

(1)
i (Λ1Λ2)i + β

(2)
i (Λ2Λ1)i)



−1/2

= exp



∞∑

n=1

1

n
Tr


∑

i≥0

(α
(1)
i Λi1Λi2 + α

(2)
i Λi2Λi1 + β

(1)
i (Λ1Λ2)i + β

(2)
i (Λ2Λ1)i)



n

 ,

where the Plemelj’s formula is used

det(IN +X) = exp



∞∑

n=1

(−1)n−1

n
TrXn


 .
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Introducing N- and C-termini

We extend the protein matrix model further by introducing yet another exter-
nal matrix Λ, which labels N- and C-termini of the backbones (figure 33 and
figure 34). The boundary cycles containing p backbone ends are labelled by the

set of numbers (i
(1)
1 , . . . , i

(1)
K1

: · · · : i
(p)
1 , . . . , i

(p)
Kp

) that count the number of un-

paired carboxyl oxygens (Λ1) and (j
(1)
1 , . . . , j

(1)
K1

: · · · : j(p)
1 , . . . , j

(p)
Kp

) that count

the number of unpaired amino hydrogens (Λ2) keeping their ordering on the
boundary cycle.

Figure 33: Adding C- and N-ends of backbone

Figure 34: Two backbones with C- and N-ends

Let nij,p denote the extended boundary point type spectrum that counts
the number nij;p of boundary components containing a sequence of i Λ1’s a
sequence of j Λ2’s, and p backbone end points.

Definition 6. The partition function of the protein matrix model with back-
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bone endpoints is defined as the following hermitian 3-matrix model;

ZN (y, η;α(1),α(2),β(1),β(2), ri,j;p)

=
1

Vol(HN )3

∫

H⊗3
N

dAdBdM exp

[
−NTr

(
AB +

1

2
M2

−
∑

i≥0

yiη(M + η−1/2Λ)

{

+α
(1)
i (A+ y−1/2Λ1)i(B + y−1/2Λ2)i

+α
(2)
i (B + y−1/2Λ2)i(A+ y−1/2Λ1)i

+β
(1)
i

(
(A+ y−1/2Λ1)(B + y−1/2Λ2)

)i

+β
(2)
i

(
(B + y−1/2Λ2)(A+ y−1/2Λ1)

)i
}

(M + η−1/2Λ)

)]

=
1

Vol(HN )3

∫

H⊗3
N

dAdBdM e−NTrVy,η,α,β(A,B,M ;Λ1,Λ2,Λ). (50)

The parameter ri,j;,p is given by

ri,j;,p

= r
(i

(1)
1 ,...,i

(1)
K1

:i
(2)
1 ,...,i

(2)
K2

:...:i
(p)
1 ,...,i

(p)
Kp

),(j
(1)
1 ,...,j

(1)
K1

:j
(2)
1 ,...,j

(2)
K2

:...:j
(p)
1 ,...,j

(p)
Kp

)

=
1

N
Tr

(
Λ
i
(1)
1

1 Λ
j
(1)
1

2 · · ·Λi
(1)
K1

1 Λ
j
(1)
K1

2 ΛΛ
i
(2)
1

1 Λ
j
(2)
1

2 · · ·Λi
(2)
K2

1 Λ
j
(2)
K2

2 Λ · · ·Λi
(p)
1

1 Λ
j
(p)
1

2 · · ·Λ
i
(p)
Kp

1 Λ
j
(p)
Kp

2 Λ

)
.

The heat equations are as follows.

Theorem 4.9. The partition function ZN (y, η;α(1),α(2),β(1),β(2), rij;p) obeys
heat equations:

 ∂

∂y
− 1

2N

(
∂2

∂Λ1∂Λ2
+

∂2

∂Λ2∂Λ1

)
ZN (y, η;α(1),α(2),β(1),β(2), rij;p) = 0,

(51)(
∂

∂η
− 1

2N

∂2

∂Λ2

)
ZN (y, η;α(1),α(2),β(1),β(2), rij;p) = 0. (52)

Proof. The first equation is proven in the same way as the previous model (i.e.
Λ = 0). Here we focus on the proof of the second equation (52).

Consider the derivative with respect to Λ

Tr
∂2

∂Λ2
ZN (y, η;α(1),α(2),β(1),β(2), rij;p)

=
1

Vol3N

∫

H⊗3
N

dXdY dTN2
∑

i≥0

yie−NTrWy,η,α,β(X,Y,T ;Λ1,Λ2,Λ)

×
{
α

(1)
i XiY i + α

(2)
i Y iXi + β

(1)
i (XY )i + β

(2)
i (Y X)i

}

×
(

(T − η−1/2Λ)T + T (T − η−1/2Λ)

))]}
,
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where T = M + η−1/2Λ and

Wy,η,α,β(X,Y, T ; Λ1,Λ2,Λ)

= (X − y−1/2Λ1)(Y − y−1/2Λ2) +
1

2
(T − η−1/2Λ)2

−
∑

i≥0

yi(α
(1)
i TXiY iT + α

(2)
i TY iXiT )

−
∑

i≥0

yi(β
(1)
i T (XY )iT + β

(2)
i T (Y X)iT ).

The derivative with respect to η is given by

∂

∂η
ZN (y, η;α(1),α(2),β(1),β(2), rij;p)

=
1

Vol3N

∫

H⊗3
N

dAdBdM
N

2

∑

i≥0

yie−NTrVy,ζ,α,β(A,B;Λ1,Λ2,Λ)

×Tr

[{
α

(1)
i (A+ y−1/2Λ1)i(B + y−1/2Λ2)i

+α
(2)
i (B + y−1/2Λ2)i(A+ y−1/2Λ1)i

+β
(1)
i

(
(A+ y−1/2Λ1)(B + y−1/2Λ2)

)i

+β
(2)
i

(
(B + y−1/2Λ2)(A+ y−1/2Λ1)

)i
}

×(M(M + η−1/2Λ) + (M + η−1/2Λ)M)

]
.

Comparing these two results, we obtain the heat equation (51).

For the initial condition with y = 0 and η = 0, we find

ZN (y = 0, η = 0; {α(1)
i }, {α

(2)
i }, {β

(1)
i }, {β

(2)
i }, {r{i},{j};{K},p})

= exp


∑

i≥0

TrΛ(α
(1)
i (Λi1Λi2) + α

(2)
i (Λi2Λi1) + β

(1)
i (Λ1Λ2)i + β

(2)
i (Λ2Λ1)i)Λ


 .

The initial condition that keeps η can also be considered as follows:

ZN (y = 0, η; {α(1)
i }, {α

(2)
i }, {β

(1)
i }, {β

(2)
i }, {r{i},{j};{K},p})

=
1

Vol(HN )

∫

HN
dM exp

[
−NTr

{
M2

2
− (M + η−1/2Λ)

(
α

(1)
i (Λi1Λi2) + α

(2)
i (Λi2Λi1)

+β
(1)
i (Λ1Λ2)i + β

(2)
i (Λ2Λ1)i

)
(M + η−1/2Λ)

}]
.

Finally, we express the heat equations as the cut-and-join equations. The
indexing of r makes the notation cumbersome, but a systematic computation
gives the following result.
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Theorem 4.10. Let L0 and L2 denote the derivatives following differential
operators;

L0 =
∑

p≥1

∑

{K}

∑

{i},{j}

p∑

q=1

p∑

r=1

Kq∑

L=1

Kr∑

M=1

i
(q)
L −1∑

`=0

j
(r)
M −1∑

m=0

r
(i

(r)
1 , . . . , i

(r)
M

, `, i
(q)
L+1

, . . . , i
(q)
Kq

: i
(q+1)
1 , . . . : · · · : . . . , i(r−1)

Kr−1
)

, (j
(r)
1 , . . . , j

(r)
M−1

, j
(r)
M
−m − 1, j

(q)
L

, . . . , j
(q)
Kq

: j
(q+1)
1 , . . . : · · · : . . . , j(r−1)

Kr−1
)

×r
(i

(q)
1 , . . . , i

(q)
L−1

, i
(q)
L
− ` − 1, i

(r)
M+1

, . . . , i
(r)
Kr

: i
(r+1)
1 , . . . : · · · : . . . , i(q−1)

Kq−1
)

, (j
(q)
1 , . . . , j

(q)
L−1

,m, j
(r)
M+1

, . . . , j
(r)
Kr

: j
(r+1)
1 , . . . , : · · · : . . . , j(q−1)

Kq−1
)

× ∂

∂r
(i

(1)
1 ,...:···:...,i(p)Kp ),(j

(1)
1 ,...:···:...,j(p)Kp

)

,

L2 =
∑

p,u≥1

∑

{K},{V }

∑

{i,j}

∑

{s,t}

p∑

q=1

u∑

w=1

Kq∑

L=1

Vw∑

R=1

i
(q)
L −1∑

`=0

t
(w)
R −1∑

b=0

r
(s

(w)
1 , . . . , s

(w)
R

, `, i
(q)
L+1

, . . . , i
(q)
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Let M0 and M2 denote the following differential operators;
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The heat equations (51) and (52) can be rewritten as the cut-and-join equa-
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tions:

∂ZN (y, η;α(1),α(2),β(1),β(2), rij;p)

∂y
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)
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Proof. First we will derive L0 and L2 operators from the chain rule. The L0

operator comes from the following derivative:
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The L2 operator is from
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For the second heat equation, the M0 operator is from
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Finally, the M2 operator is from
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We note the first cut-and-join equation (53) expresses the cut/join manipu-
lation of the hydrogen bonds, while the second cut-and-join equation (54) is for
loops (or turns) in the backbones.
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5 Topology of protein β-sheets

5.1 β-sheet topology

The α-helix and the β-sheet are two common protein secondary structures.
While the α-helix is essentially a local structure with the participating residues
all lying together along the backbone, the β-sheet involves interactions between
residues which are far apart in the backbone (section 4.1). It is also more
heterogeneous as a structure, consisting of both parallel and anti-parallel con-
figurations of the participating β-strands. Furthermore, β-sheet has an intrinsic
structural flexibility compared to α-helix, complicating the structural analyses
[30]. A better understanding of their structures and foldings is therefore crucial,
if we are to understand the folding mechanism of entire proteins.

The configurations of β-strands in a protein, often called β-sheet topolo-
gies, have been studied since the 1970’s [79]. Early studies ([79, 78, 87]) have
identified some general rules (such as the preference for the right-handedness
in parallel β-sheets) from investigation of individual proteins. As the amount
of available data increased, studies have used computer programmes to survey
the database and found frequent patterns in the β-strand configurations [99,
80]. The information can be used to filter and rank a series of candidate struc-
tures by computing probabilities for different patterns [80]. Another approach
is to assign pseudoenergy to each pair of β-strand residues and solve the β-sheet
topology prediction problem as an optimisation problem [29]. At least one study
[44] has compared the two methods, and found that the latter’s performance to
be better. One may also combine the two methods by, for example, forbidding
certain β-strand configurations that are not found in the database [89], or by
incorporating the two in Bayesian modelling [18]. Other studies used integer
programming techniques to predict β-sheet topologies [81, 34].

In order to study β-sheet topology of proteins, we introduce a new model
inspired by the protein fatgraph model described in section 4, which we call pro-
tein metastructure. This model greatly simplifies the study of β-sheet topologies
by amalgamating consecutive residues belonging to the same secondary struc-
ture, but still retains the information needed to understand the configuration of
β-strands. We give a detailed definition in section 5.2. Furthermore, each metas-
tructure corresponds to a fatgraph, and this transition to fatgraphs allows us
to compute topological invariants such as the number of boundary components
and the genus associated to each protein. The details of this correspondence
are described in section 2.1. Compared to the model described in section 4, our
construction is much simpler, and only takes into account the hydrogen bonds
that are part of β-sheets. In the following sections, we will analyse the topol-
ogy of fatgraphs associated to proteins and suggest potential applications in the
study of β-sheet topology.

5.2 Protein metastructure

Given a protein, its primary structure is the sequence of amino acids in the
polypeptide chain. There are 20 different amino acids in the standard gene
code, so a primary structure can be expressed as a finite word in an alphabet
with 20 letters;

EKKSINECDLKGKKVLIRVDFNVPVKNGKITNDYRIRSALPTLKKV...
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The secondary structure of a protein can be defined as a set of local substruc-
tures, most frequent of which are α-helices and β-sheets. The DSSP-algorithm
[51] is an algorithm commonly used to classify residues into 3 or 7 secondary
structure classes. When used (with 3-class output) on the above protein it
produces a word in an alphabet with 3 letters;

γγγγαααγγγγγγββββββγγγγγββγγββγγγααααααααααααα... (55)

Here we used the letter α for [H]elices, β for [S]heets, and γ for [C]oils. With this
reduction from 20 to 3 classes, we begin to see some patterns in the proportion of
these classes in proteins. There are, for example, few proteins which contain less
than 25% γ residues, or more than 75% of any one class (figure 35a). This can
be explained by the rigidness of helix and sheet structures; a protein composed
(almost) exclusively of α or β residues will not have the necessary flexibility to
bend and fold into its native structure. For that to occur, a certain proportion
of γ residues are required. On the other hand, too much γ residues would most
likely result in lack of stability and will be energetically unfavourable. The
largest concentration appears to be around 30∼50% α, 10∼30% β, and 30∼50%
γ residues (figure 35a).

We now introduce reduced secondary structure sequence by reducing each
segment of identical letters in a secondary structure sequence (55) to a single
letter;

γαγβγβγβγα...

Not surprisingly, the distribution of proportions of the 3 classes in such reduced
sequences are concentrated around γ = 50% (figure 35b), since the reduced
sequences are mostly sequences of γα and γβ by construction.

In a reduced sequence, each letter β corresponds to a β-strand. We may
therefore add an additional data to a reduced sequence to specify β-sheet struc-
ture of the protein. To do this, we define protein metastructure as the triple
(r, P,A), where r is a finite word in an alphabet of three letters, α, β and γ, and
P and A are sets of pairs of integers (i, j) for some 1 ≤ i < j ≤ s, where s is the
number of letter β in r. We also put a further condition, that P ∩A = ∅. Then
for a given protein, we obtain its metastructure by setting r to be the reduced
sequence, and populating P and A as follows;

1. Number the letters β in r along the backbone, starting from the N-
terminus.

2. Identify all pairs (i, j), where there is at least one hydrogen bond between
ith and jth strands.

3. Let I be the set of all pairs (i, j) identified in the previous step. Partition
I into two sets P and A, where P consists of all parallel pairs and A all
anti-parallel pairs.

If there is only a single bond between two strands, thus making it impossible to
determine the configuration between the two, we extend the strands by up to
three residues. If it is still not possible to determine the configuration (because
the extended strands has a single bond between them), then we assign the
pair to P , as parallel configuration. This is because the standard anti-parallel
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(a) Proportion of 3 classes in secondary structure sequences

(b) Proportion of 3 classes in reduced sequences

Figure 35: Proportion of 3 classes in 13107 selected proteins
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configuration requires two hydrogen bonds between a pair of residues, thus
making it less likely that there is only one hydrogen bond present.

Let S be the set of all possible metastructures, and let Sbif ⊂ S be the
subset consisting of all metastructures, where at least one β-strand is connected
to more than 2 other strands (bifurcations). Similarly, let Sbar be the subset of
metastructures with β-barrels, and Siso be the subset with at least one unpaired
β-strand. Consider S̃ = S\(Sbif ∪ Sbar ∪ Siso). For each s ∈ S̃, we can associate
a metastructure motif diagram (figure 36) as follows;

Figure 36: An example metastructure motif di-
agram. The associated metastructure may be
(γβγαγβγβγβγβγ, {(1, 2)}, {(3, 4), (2, 5)})

1. Each β-strand is denoted by a straight line segment with an arrowhead in
the middle.

2. If (i, j) ∈ P , draw ith and jth strands next to each other, with arrowheads
on both segments pointing the same direction.

3. If (i′, j′) ∈ A, draw i′the and j′th strands next to each other, with arrow-
heads pointing the opposite direction.

4. Draw a “sheet” around each stack of strands.

5. Connect the strands, from the 1st to last, following the directions of ar-
rowheads, and avoiding the interior of the sheets.

6. N-terminus is denoted by ◦, and C-terminus is denoted by ⊗.

7. Note for each sheet, we have a choice of 2 strands to draw on the top, (see
figure 37; orientation of all other strands are then decided by parallel/anti-
parallel configurations). We can make this canonical by requiring that the
top strand comes before the bottom strand in the backbone-ordering.

We note that the metastructure of a protein with n β-strands can be recorded
in an n × n matrix, whose entries are either 0 or 1. This can be done by
setting (i, j)’th entry to 1 if the i’th and j’th strands are paired in the parallel
configuration, and setting (j, i)’th entry to 1 if the pairing is anti-parallel. All
other entries (where there is no pairing observed) are set to 0. We call this matrix
P the protein’s pairing matrix (figure 38). The 1’s in the upper-triangular part
show parallel pairings, and the 1’s in the lower-triangular part show anti-parallel
pairings. The number of paired strands the ith strand has can be computed as
the total number of 1 cells in the ith row and column. A β-sheet manifests itself
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Figure 37: Two metastructure diagrams with two choices of the
top-strand.
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Figure 38: Pairing matrix and the corresponding protein metas-
tructure diagram. The 1 in (1,2)-th entry corresponds to the
parallel configuration between the first and the second strand
in the backbone, and the two 1’s in the lower-triangular part
correspond to the anti-parallel configurations between the third
and the fourth strands, and the second and the fifth strands.

as a “chain” of strands, with the edge strand having only one non-zero entry in
the corresponding row or column.

If we have more detailed information about the protein structure, it is pos-
sible to make the choice of the top strand for each sheet more natural;

1. Choose a β-sheet and identify the first strand (ordered along the backbone)
in the sheet.

2. On the first strand, identify the first hydrogen bond (ordered along the
backbone) that participate in a β-strand pairing.

3. If the first hydrogen bond is connected to a carboxyl oxygen acceptor, the
strand paired to the first strand is drawn to the left of the first strand. If
the hydrogen bond is connected to an amino hydrogen donor, it is drawn
to the right of the first strand.

4. Configuration of the remaining strands in the sheet is decided by the
information on parallel/anti-parallel pairings.

5. Repeat for all β-sheets in the protein.

We call the protein metastructure with this extra information the extended
metastructure. An extended metastructure can again be defined as the triple
(r, P,A), with the reduced sequence as r, but with P and A now being sets of
(unordered) pairs (i, j) for some −s ≤ i, j ≤ s, where s is the number of strands.
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Figure 39: An extended metastructure diagram. A barrel is
denoted by the dashed circle around the first sheet. Note the
isolated strand in the middle.
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Figure 40: A pairing matrix corresponding to the extended
metastructure diagram in figure 39. The first sheet is a bar-
rel with strands 1, 2, and 3. The strands 1 and 2 are paired
in anti-parallel configuration, and the bond between strands 1
and 2 is to the right of 1 and 2. The corresponding entry is the
number 3 in (2,1).

If i < 0, we connect the left side of the ith strand, and if i > 0, we connect the
right side of the ith strand. We will also allow barrels and isolated strands in
the extended metastructures (figure 39). The pairing matrix P for an extended
metastructure has entries in integers {0, 1, 2, 3, 4}. For a pair of strands i, j, the
pairing information is recorded as follows;

Pi,j =





0 if no bond between ith and jth strands

1 if bond between the left side of i and the left side of j

2 if bond between the left side of i and the right side of j

3 if bond between the right side of i and the right side of j

4 if bond between the right side of i and the left side of j

all in the parallel configuration if i < j and in the anti-parallel configuration
if j < i (see figure 40). Note the definition allows a single strand forming a
barrel, which does not occur in nature. In a pairing matrix for an extended
metastructure, an isolated strand can be seen as zero row and column; the ith
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strand is isolated (has no pairing), if and only if the ith row and the ith column
only contain 0. A β-barrel is a circular “chain” of strands without an edge
strand (see figure 40).

Note, if T is the set of metastructure diagrams, the map ϕ : S̃ → T described
above corresponds to “forgetting” r in (r, P,A) ∈ S̃.

5.3 Protein metastructure and fatgraph

In order to understand topological characteristics of protein metastructures, we
need to pass from metastructure diagrams to topological surfaces. The main
idea is to “thicken” the non-β segments in a given metastructure diagram to
(untwisted) bands or ribbons, as in figure 41, to produce a fatgraph D.

Figure 41: Thickening edges of metastructure diagrams to ob-
tain fatgraphs (or more precisely, surfaces associated to fat-
graphs). The surface on the left has genus 0, whereas the one
on the right has genus 1.
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Figure 42: Construction of fatgraph from metastructure dia-
grams. Note the two different motifs result in an identical fat-
graph.

We recall that a fatgraph D is a graph D together with a cyclic ordering of
the incident half-edges at each vertex (section 2.1). It can be obtained from a
metastructure diagram by contracting each sheet to a point, and ordering the
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resulting half-edges at each vertex anti-clockwise from the N-terminus, or the
starting end of the first strand in the sheet (figure 42). A fatgraph D gives rise
to a unique (orientable) surface XD by thickening each edge to a band and each
vertex to a disc. As an orientable surface, it obeys the Euler’s formula

χ(XD) = v − e+ n = 2− 2g,

where v is the number of vertices (which correspond to the β-sheets in the
metastructure diagram), e the number of edges or bands (corresponding to the
non-β segments, excluding the N- and C-terminal segments), n the number of
boundary components, and g the genus of XD.

Note this map ψ from T to the set Σ of fatgraphs with two marked half-
edges is not injective (figure 42). Nonetheless the composition ψ ◦ ϕ allows
us to compute topological invariants, such as genus and number of boundary
components for protein metastructures.

5.4 Recursion relation for extended metastructure

We present a recursion relation for the extended protein metastructures. Let us
consider a protein metastructure diagram as in figure 43.

Figure 43: An example protein metastructure diagram

If we straighten the backbone and represent the strands as points on the
backbone, we obtain a diagram shown in figure 44, where the pairings between
strands are represented by arcs above and below the backbone. Each strand has
left and right side, induced by the natural orientation of the backbone from the
N-terminus to the C-terminus. We note that an anti-parallel pairing connects
the same side of the two paired strands, while a parallel pairing connects different
sides. Indeed, we see in figure 44, that it has two arcs that cross the backbone,
and two that do not, representing parallel and anti-parallel pairings, respectively.

Furthermore, we may rotate the part of the diagram below the backbone by
180 degrees about the C-terminus (represented by the circle with a cross) to
obtain a diagram where all the arcs representing the strand pairings are shown
above the backbone (figure 45). Here the vertices to the left of the C-terminus
(the centre of the backbone) represent the left side of the strands (ordered from
the first to the fifth strand), while the vertices to the right represent the right
side of the strands (ordered from the fifth to the first strand).

We note that neither the straightening of the backbone or the rotation of
the lower half of the diagram change the genus or the number of boundary
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Figure 44: A metastructure diagram with the backbone as the
horizontal, straight line.

Figure 45: A metastructure diagram with all arcs above the
straight backbone. The C-terminus is shown for reference.

components of the diagram. Therefore, the situation becomes exactly the same
as for the RNA chord diagrams, as discussed in, for example, [3] or [15].

Let g, m, and p denote the genus, the number of strands and the number of
strand pairings for a metastructure diagram. We also define the boundary point
spectrum n = (n0, n1, n2, . . . ), where ni is the number of boundary components
that contain i unpaired sides. In the representation in figure 45, the number of
unpaired sides is counted when a boundary component traverses a strand above
the backbone. By considering the representation in figure 45, we find that the
recursion relation has the same form as the one-backbone version of (34) [3];

pN g,m,p(n) =

1

2

∞∑

i=0

i∑

j=0

(i+ 2)(ni+2 + 1)Ng,m,p−1(n− ej − ei−j + ei+2) +

1

2

∞∑

i=0

i+1∑

j=1

j(i+ 2− j)(nj + 1 + δj,i+2−j − δi,j)(ni+2−j + 1− δj,2) ×

Ng−1,m,p−1(n+ ej + ei+2−j − ei).

Another, simpler recursion can be obtained by considering the enumeration
of complete chord diagrams by Harer and Zagier (theorem 3.1;[45]). As before,
let g, and p denote the genus and the number of strand pairings. The recursion
relation for the complete chord diagrams is given by;

(p+ 1)Cg(p) = 2(2p− 1)Cg(p− 1) + (2p− 1)(p− 1)(2p− 3)Cg−1(p− 2), (56)

with Cg(p) = 0 for 2g > p.
Now let l be the number of unpaired sides. To produce a (partial chord)

diagram of the type in figure 45, we choose the l unpaired vertices from the
2p+ l available slots. So we have a relation

Ng(p, l) =

(
2p+ l
l

)
Cg(p) =

(2p+ l)!

2p! l!
Cg(p).
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Substituting this in equation (56), we obtain

4p(p+ 1)Ng(p, l) = 4(2p+ l)(2p+ l − 1)Ng(p− 1, l)+

(2p+ l)(2p+ l − 1)(2p+ l − 2)(2p+ l − 3)Ng−1(p− 2, l).

We show the numbers Ng(p, l) computed for p up to 7 and l = 2 in table 6.

g = 0 g = 1 g = 2 g = 3
p = 1 6
p = 2 30 15
p = 3 140 280
p = 4 630 3150 945
p = 5 2772 27720 31878
p = 6 12012 210210 588588 135135
p = 7 51480 1441440 7927920 6795360

Table 6: The numbers Ng(p, l) for l = 2

5.5 Topological characteristics of protein metastructures

We compute genera and numbers of boundary components for metastructures
generated from 8913 selected proteins from PDB ([20]; see section 5.6 for details
of the selection process), which are not α-only structures, and do not contain
β-barrels or bifurcations in β-sheets. Figure 46 shows frequency distribution of
actual proteins by their genera and numbers of boundary components.

Figure 46: Frequency distribution (extract) of protein metas-
tructures by genus and number of boundary components

The same distribution was also computed from the same number of simulated
metastructures, produced as follows;

1. Reduced sequences were generated in the following manner.

(a) The length was chosen randomly from log-normal distribution fitted
to the distribution of PDB data.
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Figure 47: Frequency distribution (extract) of simulated protein
metastructures by genus and number of boundary components
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(b) Each pair of letters (1st and 2nd, 3rd and 4th, and so on) was given
50% chance of being “γα” and 50% chance of being “γβ”. If the
sequence has odd number of letters, the letter “γ” was attached at
the end.

2. To each reduced sequence generated as above, a fatgraph structure was
assigned as follows.

(a) Let U be the set of letter βs in a given sequence, indexed with their
positions in the sequence; β1, β2, . . . . Then we partition U into a
random number of subsets, each containing at least 2 elements.

(b) For each subset Ui, choose a random ordering of βis in the subset.
This defines the ordering of strands in a beta-sheet.

(c) For each ordered subset Ui with ni elements, choose a random se-
quence of 1 and -1, of length ni, but starting with 1. This sequence
defines parallel/anti-parallel orientation of each strand with respect
to the previous strand in a sheet.

We observe that the actual data tends to favour lower genera (and higher number
of boundary components) compared to the simulated data (figure 47). This
implies that metastructures whose associated surfaces have lower genera are
favoured over those that result in high genera in the nature. Inspired by this
observation, we will develop a method for prediction of β-sheet topology using
the characteristics of the protein’s associated surface in section 5.6.

For later use, we compute the distribution of the actual protein data by
genus, number of boundary components and number of β-strands in the largest
β-sheet. We call this the 3-dimensional genus-boundary distribution (see ap-
pendix B).

5.6 Dataset

The dataset used was based on HQ60 dataset in [73]. Here we give a brief sum-
mary of this dataset. PISCES [95] is a service that, among other things, creates
subsets of sequences from PDB based on specified threshold for structure qual-
ity and sequence identity. For the HQ60 dataset, we use only X-ray structures,
with a resolution threshold of 2.0Å, Rfac threshold of 0.2, and maximum se-
quence homology of 60%. This produced a list of 15548 proteins (as of March
2020). The hydrogen bonds are taken from the DSSP program [51], with the
additional conditions [19];

HO-distance < 2.7Å

angle(NHO), angle(COH) > 90◦.

The secondary structures are also determined by DSSP, and they are recorded
with three main secondary classes; [H]elix for H, G or I 8-state classes, [S]heet
for E, and [C]oil for others. Thus we obtain, for each protein (of length n) in
the dataset, a primary sequence a1a2 · · · an, where ai is one of the 20 standard
gene code amino acids, and a secondary structure sequence b1b2 · · · bn, where
bi = α, β, or γ. We superimpose these two sequences to obtain a hybrid se-
quence c1c2 · · · cn, where ci = bi if bi = α or β, and ci = ai otherwise. Together
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with the information about hydrogen bonds, we are able to identify β-strands,
their pairings and whether the pairing is parallel or anti-parallel (see section 5.2
for details). We will use the protein metastructures, not the extended metas-
tructures, for purpose of the current analysis. This choice was made because
it was not possible to obtain the extended metastructure information from the
reference software we used for the analysis, Betapro [29], as well as for the ease
of programming the model. For the analyses of metastructures, we are only
interested in proteins containing β-sheets. Furthermore, proteins containing β-
barrels, isolated strands and bifurcations in β-sheets are removed. This resulted
in 8913 proteins. See table 7 for the number of proteins in each category.

α only 1471 (9.4%)
Bifurcation 3647 (23.5%)
β-barrel & Isolated strand 1517 (9.8%)
Accepted for analysis 8913 (57.3%)
Total (HQ60) 15548

Table 7: Number of proteins filtered from the dataset.

5.7 Applications

We will now describe a series of experiments to attempt to utilise the topological
characteristics of protein metastructures described in section 5.5.

5.7.1 Binary classification of candidate structures by their topology

200 proteins are randomly chosen for validation from the dataset, and the re-
maining 8713 proteins are used as the learning data. The idea is to use the
learning data to decide the local configuration of β-strands, i.e. those strands,
that are close to each other along the backbone. We then use the global topo-
logical data to decide the global configuration of the local blocks. We will now
describe the first part of the method below. The aim is to first populate the
pairing matrix P along the super- and sub-diagonals (i.e. the entries directly
above and below the diagonal). We then repeat the procedure to populate the
second entries above and below the diagonal, then the third entries, and so on.
Pseudocode for populating the super- and sub-diagonals in the pairing matrix
is given in algorithm 1.

1. From each protein in the validation data, we consider its hybrid sequence
and extract segments between two β-strands.

2. For each extracted segment s, compute alignment score for all segments
from the learning data using the Needleman-Wunsch algorithm1 [66].

3. Let t be the segment from the learning data with the highest alignment
score. The configuration of two strands at either end of segment t (whether
they are paired by hydrogen bonds, and if so whether parallel or anti-
parallel) determines the configuration of two strands at either end of s.

1For the substitution matrix we use blosum62 [46], extended by setting a match score with
α or β to 4 and mismatch involving α or β to -4. See appendix A for more details.
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4. Normalise the alignment score by dividing it by the score for perfect match,
and record it in the appropriate entry in the pairing matrix P. Specifically,
if p(s, t) is the alignment score for segments s and t, the normalised score
p̃(s, t) is given by p(s, t)/p(s, s). Suppose s is the segment between i-th
and i + 1-th β-strands, and that they should be paired in the parallel
configuration. Then set P(i,i+1) = p̃(s, t).

5. If there is a tie for the highest alignment score, compute average of pairing
scores (which is 1 if the two strands are paired, and 0 if not) among the
highest-scoring segments. The two strands at either end of s are paired, if
and only if the average is ≥ 0.5. The parallel/anti-parallel configuration
of the two strands is determined similarly.

The above procedure allows us to populate P along the super- and sub-
diagonals. We now repeat the procedure with s being a segment containing k
β-strands, k = 1, 2, 3, . . . , such that s is the segment between i-th and i+k+ 1-
th β-strands. We do this to populate P up to d entries above and below the
diagonal, where d is given by;

d =





1 if n < 7

n− 5 if 7 ≤ n < 11

5 if 11 ≤ n.

Here the limit of 5 for d is forced by the fact that the learning data contains too
few segments containing more than 4 β-strands. Furthermore, as the segments
get longer it becomes harder to obtain high alignment scores, resulting in the
chance of having P(i,j) = 1 being extremely small, when |i− j| > 4 (We were
not able to get 1 in these cells in our tests). This is possibly related to the
fact that the above method is essentially a method based on local data, and
thus is not suited for predicting non-local configuration of β-strands. For that,
another approach is needed which takes into account the global characteristics,
which we will describe in the second part of the method. Before that, we need
to translate the entries of the partial pairing matrix computed above, which are
real numbers between 0 and 1, to either 0 or 1. We do this by changing the
non-zero entries to 1, starting from the largest to the smallest. If, at any point,
setting an entry to 1 results in a bifurcation or a β-barrel, the entry is set to
0 and we move onto the next largest entry (figure 48). For later use, we name
this procedure MakeBinary(), which takes a (partial) matrix of pairing scores
as an input and returns a (partial) pairing matrix.

We now have a partial pairing matrix, populated up to d entries above and
below the diagonal, without bifurcations or barrels. We populate the remain-
ing entries (the entries outside the d entries above and below the diagonal) by
going through all possibilities, while avoiding bifurcations and β-barrels. We
also require that the resulting matrix does not contain any isolated strand. The
result is a number of candidate matrices, whose number depends on the partial
pairing matrix computed in the first part of the method. We now construct
a fatgraph from each candidate matrix, and compute its genus and number
of boundary components, together with the number of strands in the largest
sheet. We compare this data with the 3-dimensional genus-boundary distribu-
tion computed in section 5.5. By a layer in the 3-dimensional genus-boundary
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Algorithm 1 Pseudocode for populating the first diagonal in the pairing matrix
P

Let t1, t2, . . . , tm be the hybrid segments (consisting of some or all of 20
residues and α for helix segments) between two β-strands, extracted from
all proteins in the learning dataset.
Let s1, s2, . . . , sn be the hybrid segments between two β-strands in a given
protein in the validation data.
Let P by an empty n× n matrix.
for si in s1, s2, . . . , sn do

for tj in t1, t2, . . . , tm do
Compute alignment score p(si, tj).

end for
Let j̃ ∈ {1, 2, . . . ,m} such that p(si, tj̃) = maxj{p(si, tj)}.
if j̃ is uniquely determined then

if The two segments at either ends of tj̃ are paired then
Set p̃i = p(si, tj̃)/p(si, si).
if The two segments are paired in parallel configuration then

Set P(i,i+1) = p̃i and P(i+1,i) = 0.
else

Set P(i+1,i) = p̃i and P(i,i+1) = 0.
end if

else
Set P(i,i+1) = P(i+1,i) = 0.

end if
else

Let j̃1, j̃2, . . . , j̃k be such that p(si, tj̃h) = maxj{p(si, tj)} for all h ∈
{1, 2, . . . , k}.

Set q̄ = 1
k

∑
h qh, where qh = 1 if the two segments at either ends of

tj̃h are paired, qh = 0 if not.
if q̄ ≥ 0.5 then

Set p̃i = p(si, tj̃)/p(si, si).

Let x be the number of j̃h, where the two segments at either ends
of are paired in parallel configuration. Let y be the number for anti-parallel
configuration.

if x ≥ y then
Set P(i,i+1) = p̃i and P(i+1,i) = 0.

else
Set P(i+1,i) = p̃i and P(i,i+1) = 0.

end if
else

Set P(i,i+1) = P(i+1,i) = 0.
end if

end if
end for
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Figure 48: Construction of a partial pairing matrix (right) from
a partial score matrix (left). We start with the highest alignment
score and set the first two, 0.98 and 0.95 to 1. The third highest,
0.87, would result in bifurcation, so it is set to 0. The next three
scores are set to 1, but the last non-zero entry, 0.23 will result
in a barrel involving strands 4, 5, and 6, so it is set to 0. The
resulting partial pairing matrix has three blocks, listed as a set
of strands, (1,2,3), (4,5,6) and (7,8). Filling this matrix by either
0 or 1 would result in 220 = 1048576 different matrices, but the
restrictions placed on pairing matrices means there are only 97
valid completions.

distribution, we mean the 2-dimensional distribution of genus and number of
boundary components for a specific value of number of strands in the largest
sheet. Let g, n, l denote the genus, the number of boundary components and
the number of strands in the largest sheet. Let f(g, n, l) be the frequency of
the cell (g, n, l) in the 3-dimensional genus-boundary distribution. We define
the topology score stopo(τ) for a metastructure τ with genus g, n boundary
components and l strands in the largest sheet, by

stopo(τ) =
f(g, n, l)

Tl
,

where Tl is the sum of frequencies for the lth layer. For a cutoff value v ∈
(0, 1), a candidate metastructure τ is accepted, if stopo(τ) ≥ v, and rejected if
stopo(τ) < v. We also compute accuracy of each candidate structure, and look
at the relationship between accuracy and acceptance of candidate structures.

5.7.2 Metastructure prediction by sequence alignment and topology

The method described in section 5.7.1 was modified to provide a single, “best
candidate” metastructure. The modification was made such that instead of
classifying candidate metastructures as either accepted or rejected, a weighted
sum of all candidate pairing matrices was produced, with weight given by the 3-
dimensional genus-boundary distribution. More precisely, suppose a candidate
pairing matrix P results in a structure with genus g, n boundary components
and l strands in the largest sheet. Let f(g, n, l) be the frequency of the cell
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(g, n, l) in the 3-dimensional distribution, and Tl be the sum of frequencies for

the lth layer, as before. Then our final score matrix P̂score is given by

P̂score =
∑

P

f(g, n, l)

Tl
P,

where the sum is over all candidate pairing matrices for a protein. The final
pairing matrix P̂ is computed from P̂score as before. A pseudocode for this
procedure is shown in algorithm 2.

Algorithm 2 Pseudocode for computation of prediction pairing matrix P̂.

Let Ppartial be a given partial pairing matrix.

Let P̂score be a zero matrix of the same size as Ppartial.
for all Completion P of Ppartial do

if P contains a barrel, a bifurcation or an isolated strand then
Move to next completion

end if
Compute genus g, number of boundary components n, and size of the

largest sheet l for the metastructure corresponding to P.
Find the frequency of the cell (g, n, l) and the sum of frequencies for the

lth layer Tl.

P̂score = P̂score + f(g,n,l)
Tl

P
end for
Set P̂ = MakeBinary(P̂score)

5.7.3 Metastructure prediction by Betapro and topology

Betapro is a computer programme for predicting β-sheet topology using recur-
rent neural network (RNN) [29]. It takes a primary structure sequence as input,
or a primary and secondary structure sequences, if the secondary structure is
available from other sources. The output is a score matrix, where the entries are
not restricted to (0, 1), but positive real numbers computed as a sum of pseu-
doenergy for each residue pair in a β-strand pairing. The reported performances
of Betapro are 0.54 for Recall and 0.59 for Precision [29].

In order to predict protein metastructure, we run Betapro using the primary
and secondary structure sequences as input. From the output score matrix, we
choose m entries with the highest scores, where m equals 4% of the number of
entries in the score matrix, excluding the main diagonal. The entries that result
in a bifurcation or a barrel, are ignored. The chosen entries are considered as
β-strand pairings, and they are set to 1 in the partial pairing matrix. Next,
all valid (i.e. avoiding isolated strands, bifurcations and barrels) completions of
the partial pairing matrix are generated. Each completion is given two scores,
one based on Betapro score matrix, and the other based on the genus-boundary
distribution. The first, sbp, is the sum of all scores in Betapro score matrix,
where there is 1 in the pairing matrix. The second, stopo, is given by f(g, n, l)/Tl,
where g, n, l is the genus, the number of boundary components, and size of
the largest sheet, as before. Our prediction is the structure with the highest
combined score,

ŝ = asbp + bstopo, (57)
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where a, b ∈ [0, 1] with a + b = 1. The corresponding pseudocode is shown in
algorithm 3.

Algorithm 3 Pseudocode for computation of prediction pairing matrix P̂ from
Betapro score matrix Pbp.

Let Pbp be the pairing score matrix produced by Betapro.
Let Ppartial be an empty matrix of the same size as Pbp.
Order the entries in Pbp from largest to smallest.
Set c = 0.
while c ≤ m do

Let (i, j) be the index for the first element in the ordered list of entries in
Pbp.

Set Ppartial(i,j) = 1.
if Ppartial results in a barrel or a bifurcation then

Set Ppartial(i,j) = 0.
c = c− 1.

end if
Remove the first element from the ordered list of entries in Pbp.
c = c+ 1

end while
for all Completion P of Ppartial do

if P contains a barrel, a bifurcation or an isolated strand then
Move to next completion

end if
Compute genus g, number of boundary components n, and size of the

largest sheet l for the metastructure corresponding to P.
Find the frequency of the cell (g, n, l) and the sum of frequencies for the

lth layer Tl.

Set stopo(P) = f(g,n,l)
Tl

.

Set Pscore = P×̇Pbp, where ×̇ denotes the entry-wise multiplication.
Set sbp(P) =

∑
i,j Pscore(i,j).

Set ŝ(P) = asbp(P) + bstopo(P).
end for
Set P̂ to be the completion P′, such that ŝ(P′) =
max{ŝ(P)|P is a completion of Ppartial}.

5.7.4 Results

Some of the larger proteins in the 200 test proteins could not be analysed using
the method described, as there were too many possible ways to complete the
pairing matrix. We therefore limit the analysis to the 189 proteins containing
up to 20 β-strands. Their frequency distribution by the number of β-strands is
shown in figure 49.

The algorithm from section 5.7.1 produced 66,789,038 candidate structures
in total, but there are significant variations in the number of candidate struc-
tures per protein (figure 50), as the possible number of candidates also depends
on the partial structure determined using alignment of the α/γ segments be-
tween β-strands. In the current analysis, one protein (1H16A) accounted for
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Figure 49: Frequency distribution of 200 proteins by the number
of strands

45,714,440 candidate structures, representing 68% of the total number. Note,
although some of these numbers are large, they still represent a significant re-
duction from the theoretically possible number of candidate structures, which
is given by n! · 2n−2 for a protein with n strands, when considering only those
structures with a single sheet. Naturally the numbers are even larger when
considering multiple-sheet structures. We list the first few terms in table 8.

Figure 50: Number of candidate structures per protein, filtered
by the number of strands. Note the log scale. There are large
variations in the number of candidates among the proteins with
the same number of strands.

The topology filter, depending on the cutoff value and the number of strands,
further reduces the number of candidate structures (figure 51). Upon consider-
ing the balance between the ability to reduce the number of candidate structures
and still retain high quality candidate structures, we decided to use the cutoff
stopo value of 0.02 for the subsequent analysis. The actual number of accepted
candidate structures are shown in figure 52. As we also can see from figure 51,
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Strands
Number of structures

Single sheet Multiple sheets
2 2 2
3 12 12
4 96 108
5 960 1200
6 11520 15960
7 161280 246960

Table 8: The number of theoretically possible structures for a
protein with n strands.

the topology filter is very effective at reducing the number of structures for
proteins with larger number of strands (i.e. large number of candidates). In
the current analysis, there were only 4 out of 189 proteins, where the number
of accepted candidates were more than 5,000. For these the topology filter re-
duced the number of candidates by 92-95%. When using any positive cutoff
value for such a filter, there is a chance that no candidate structure for a pro-
tein is accepted. If it happens, we reduce the cutoff value only for the proteins
with no accepted candidate structure, until one or more candidate structures
are accepted. In the current analysis, the cutoff values were reduced by 0.005
down to 0.005. If, at the end of this iteration, we have proteins with no accepted
structure, we randomly select one candidate structure for acceptance. This pro-
cedure, however, was not necessary for the current analysis, and all proteins had
at least one candidate structure accepted at the cutoff value of 0.02.

Figure 51: Percentages of accepted structures by cutoff values
and the number of strands.

In order to examine how well our topological filter distinguishes between
“good” and “bad” candidates, we investigate how the rate of acceptance changes
for “good” and “bad” candidate structures. Precision and Recall are two mea-
sures often used for judging quality of predicted protein structures. They are
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Figure 52: Number of accepted candidate structures per protein,
filtered by the number of strands. Note the log scale. Compared
to figure 50, the numbers are significantly lower where there are
large number (> 104) of candidate structures.

# candidates # accepted % accepted
45714440 3718300 8.1%
12528000 586277 4.7%
7445742 536820 7.2%
904798 69232 7.7%

Table 9: The numbers and percentages of accepted structures for
the four proteins with most candidate structures. The topology
filter rejects more than 90% of candidates.

given by

Precision =
TP

TP + FP

Recall =
TP

TP + FN
,

where TP,FP and FN stand for the number of true positive, false positive and
false negative strand pairings.

For a given quality measure Q (=Precision or Recall), we divide the candi-
date structures into three classes; low quality (structures with Q < 0.6), medium
quality (0.6 ≤ Q < 0.9), and high quality (0.9 ≤ Q). We then compute the ac-
ceptance rate for each class. The results are shown in table 10. We see that for
Precision, the acceptance rate for high quality structures is ten times as high
as either low or medium quality structures. For Recall the difference is smaller
but still higher for high quality structures.

If we exclude the four proteins with more than 5000 candidate structures,
which together account for 99.7% of all candidate structures, the differences are
greater (table 11), particulary for Recall.

Metastructure prediction by sequence alignment and topology (section 5.7.2)
and by Betapro and topology (section 5.7.3) were performed on the same set
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Quality Precision Recall
Low 7.38% (4850914/65738106) 7.42% (4819915/64953828)
Medium 7.88% (82780/1050828) 6.19% (112857/1824369)
High 89.42% (93/104) 9.36% (1015/10841)

Table 10: Acceptance rate and number of acceptance (in paren-
theses, {# accepted}/{#candidates}) by quality classes.

Quality Precision Recall
Low 15.18% (13136/86540) 21.27% (11729/55150)
Medium 9.07% (9929/109416) 7.86% (11042/140460)
High 91.18% (93/102) 86.38% (387/448)

Table 11: Acceptance rate and number of acceptance (in paren-
theses, {# accepted}/{#candidates}) by quality classes, exclud-
ing four proteins with > 5000 candidate structures.

of proteins. The average Precision and Recall for the predictions are shown
in table 12. Different values of a in 57 only had a very small effect (< 0.005)
on Precision or Recall values. We also applied logarithm to the strand pairing
scores from Betapro and used them in the algorithm, which resulted in an
increase in Precision but a (smaller) decline in Recall (table 12) This change
was seen across different number of strands (figure 53). To investigate the effect
of the number of selected pairings before computing completions, we ran the
algorithm using 4,5,6% for pre-selection, together with the “fewest possible”
pre-selections, which is the number where a computation is possible within a
reasonable amount of time (24 hours). The number p of pre-selected pairs for a
protein with n strands was;

p =





0 if n ≤ 8

n− 8 if 9 ≤ n ≤ 11

n− 7 if 12 ≤ n ≤ 20

by alignment by Betapro by logBetapro
a=0.1 a=1

Precision 0.36 0.56 0.56 0.67
Recall 0.36 0.62 0.62 0.57

Table 12: Average Precision and Recall for two metastructure
prediction methods.

5.8 Discussion

The difference in the distributions of the genera and the numbers of boundary
components from the actual (figure 46) and simulated data (figure 47) indicate
that the folding of β-sheets is not a completely random process. Indeed, it does
appear that an increase in genus is costly and a structure that has lower genus
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(a) Average Recall (b) Average Precision

Figure 53: Average Recall (a) and Precision (b) by number of
strands, Betapro and logBetapro scores.

Fewest 4% 5% 6%
Precision 0.567 0.567 0.572 0.577
Recall 0.667 0.667 0.659 0.650

Table 13: Average Precision and Recall for different levels of
pre-selection.

is favoured over one with higher genus. This observation agrees with previous
studies, which do not look at genus of β-sheets, but finds that certain β-sheet
structures, many of which correspond to an increase in genus, are absent or
very rare in proteins [80, 99]. The result of our binary classification analysis
(section 5.7.1) agrees with this observation. Even though the result is skewed
by a highly uneven distribution of the number of candidate structures per pro-
tein, and the response of acceptance rate for an increase in quality is not linear,
it does appear that the topology of protein metastructure captures some in-
formation about the native structure. Extending this result to prediction of
metastructures proved more challenging. We did achieve a result comparable
to that reported for Betapro when using strand-pairing scores as is, which was
improved to be better than Betapro with an application of logarithm to the
pairing scores. This is likely to be because the unprocessed Betapro scores are
strictly greater than zero, thus encouraging formation of larger sheets in order
to maximise the final score ŝ, even though the contribution from the topology
score stopo should, to some extent, prevent the formation of sheets that are too
large and topologically complex. By applying logarithm to the Betapro scores,
we encourage fewer pairings (and thus discourage large sheets), which resulted
in improved Precision. We were, however, not able to outperform the figures
reported by other, more recent studies (table 14). The structure of the BCov
and BetaProbe programs meant that it was not possible to combine them with
our method in a similar manner to section 5.7.3. It would be interesting to see if
we can improve the results of Top-DBS program by combining with our method.
Unfortunately the program code for Top-DBS was not available for inspection.

One of the reasons for why the results from our study could not match those
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Program Precision Recall
Betapro [29] 0.59 0.54
BCov [81] 0.60 0.62

BetaProbe [34] 0.67 0.70
Top-DBS [31] 0.75 0.78
Current Study 0.67 0.57

Table 14: Comparison of Precision and Recall values for predic-
tion of β-sheet topology.

from more recent studies may be that the topology filter, in its current form,
is too coarse. Suppose we have a protein with three β-strands. There are 12
different protein metastructure configurations possible, but 8 of them have genus
0 and 3 boundary components, with the rest having genus 1 and 1 boundary
component. This suggests a “finer” filter, which can distinguish between the
structures having the same genus and number of boundary components (and
maximum sheet size), may be able to produce a better result. However, with
the size of the currently available dataset, making the filter finer would result
in the frequency in each cell being too small for looking at the distribution of
genera or numbers of boundary components (or some other topological data).

The term β-sheet topology is commonly used to describe the configuration
of β-strands in a β-sheet. However, to our knowledge, it has not been studied
in relation to topological invariants. We have shown in this project that the
topological invariants such as genus and the number of boundary components
can describe certain aspects of β-sheet topology of proteins, and how they might
be used in prediction of β-sheet topologies. In the following chapters we will
investigate how topology of an entire protein may be used to study different
aspects of the protein folding problem.
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6 Protein fatgraph and GDT

6.1 CASP and GDT

CASP: Critical Assessment of protein Structure Prediction is a large-scale, bian-
nual experiment held since 1994, with an aim to improve the science of protein
structure prediction [62, 58]. At the start of each round a set of primary se-
quences for proteins, whose structural data (also called the target structures)
are kept secret, is published. The participating research groups makes struc-
tural predictions based on the published primary sequences, and submit their
predictions for assessment. The submitted structures are assessed for accuracy
using a number of metrics including GDT (global distance test) [57]. GDT is a
metric first proposed in [98] as an improvement to another metric, the overall
root mean square deviation (RMSD). RMSD is given by

RMSD =

√√√√ 1

n

n∑

i=1

δ2
i ,

where n is the number of residues in the protein being assessed, and δi is the
deviation in the positions of i’th Cα atoms in the two structures being compared.
One can see from this definition, that RMSD can be sensitive to large deviations
in a small, limited region of the protein structures in assessing their similarity.
Note in Biology, the term RMSD is sometimes used to mean the above quantity
computed specifically for the optimal alignment between two structures. Here
we use the term more generally for any alignment between two structures with
the same primary structure. GDT attempts to address this issue by providing
more global measure of similarity. It is computed as follows;

We start by the representation of a protein as a sequence of Cα’s, A =
(a1, a2, . . . , an), each ai ∈ R3, representing the position of a residue (Cα atom).
Let D = (d1, . . . , dn) be a candidate protein and T = (t1, . . . , tn) be the target.
Let D0 = (d1, d2, d3) be the first three-residue segment of the candidate D and
T 0 = (t1, t2, t3) be the corresponding segment of the target T .

a Obtain a transform (translation & rotation) R0, which minimises RMSD

betweenR0D0 := (R0d1, R
0d2, R

0d3) and T 0, where RMSD =
√

(
∑n

1‖R0di − ti‖2)/n,

with n = 3 in this case. Kabsch algorithm [50] is a widely used algorithm
for obtaining the RMSD-minimising transform.

b Apply R0 to D to obtain R0D := (R0d1, . . . , R
0dn).

c Measure the distance between each pair of residues,
∥∥ti −R0di

∥∥, to identify

the subset J0 of I := {1, 2, 3, . . . , n}, given by J0 := {i ∈ I :
∥∥ti −R0di

∥∥ >
x}, where x is a given distance cutoff.

d Let D1 be the subset of D, obtained by removing from D all di with
i ∈ J0. Similarly we obtain a subsequence T 1 of T . We then obtain the
RMSD-minimising transform R1 for D1 and T 1.

e We apply R1 to D and repeat the procedure to obtain R2. The algorithm
terminates when J i = J i−1.
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In this way we obtain the largest subset D1 of D that can be superimposed
onto T within the given cut-off distance x, for the seed segmentD0 = (d1, d2, d3).
Let I1 be the index set corresponding to this largest subset of D, i.e. I1 := {i ∈
I : di ∈ D1}. The entire procedure is then repeated for each three-residue
segment (di, di+1, di+2), i = 1, . . . , n − 2, to obtain subsets Ii of I. Finally, we
choose the largest subset Imax among Ii’s, and report GDT for cut-off value x;

GDT = GDTx = |Imax| /|I| ,

where |I| is the cardinality of the set I. Note here, the dependence on the cutoff
value x. The metric used in CASP, called GDT TS, is an average of GDTs for
four different values of x [57]. It is given by;

GDT TS = (GDT1 + GDT2 + GDT4 + GDT8)/4.

One of the experiments in CASP, performed since CASP7, is the model
quality assessment, where the participants are asked to estimate the quality
of all submitted models [57]. Inspired by this experiment, we investigated to
what extent our protein model can be used to select the candidate with the
best GDT TS scores of CASP structures. We investigated two different meth-
ods; one is a linear regression where independent variables are certain similarity
scores computed from the protein model, while the other attempts to follow
the algorithm for computing GDT TS, but with only the protein’s topological
information (from our protein model) as inputs. Our methods are not intended
as an attempt for the model quality assessment. Indeed, both methods require
the target structure’s fatgraph model as part of the input data, which is not
available in CASP. Rather, they are intended as an investigation into the useful-
ness of protein topology in the model quality assessment. Ultimately, it is hoped
that a method will be developed which is able to predict a protein’s fatgraph
model with high accuracy, so that the information therein can be used for the
model quality assessment.

In CASP, participating models are assessed by the difference between the
GDT TS score of the candidate identified by the model as the best, and the
best candidate. This difference is also called ∆GDT. The assessment is usually
performed for the targets, for which at least one candidate had a GDT TS score
of over 40. In CASP10, on which this analysis is based on, the best performing
predictor had an average ∆GDT of 4.6 GDT TS points, and it was able to
identify a candidate with ∆GDT < 2 for approximately 33% of the time [55]. If
we allowed for ∆GDT < 10, the figure was 90%. In CASP12, which is the latest
round that reports this metric, the best performing predictor had an average
∆GDT of 5.0 GDT TS points. It should however be noted that in CASP12,
unlike in CASP10, one distinguished between so-called clustering methods and
single-model methods, and the figure of 5.0 GDT TS points is for the best single-
model method. The best performing predictor was able to identify a candidate
with ∆GDT < 2 for 40% of the time [56].

6.2 Dataset

The dataset consists of 91 target proteins and the submitted candidate struc-
tures from CASP10 [61]. The size of proteins, measured in the number of
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residues, ranged from 33 to 770 (figure 54). The range of the number of can-
didate structures per protein was from 228 to 584 (Participants are allowed to
submit more than one candidate structure). The histogram for the number of
candidates per target is given in figure 55. It appears the distribution has two
peaks, and that the targets with fewer submitted candidates had higher quality
predictions. Indeed, there were 47 targets with number of candidates less than
400, of which all 47 had a candidate with GDT TS higher than 40, while of the
44 targets with number of candidates more than 400, only 27 had a candidate
with GDT higher than 40. This may be a result of there being fewer submissions
for the easier targets, as participants are more certain of their prediction, while
for the more difficult targets, the number of submissions were larger, reflecting
increased uncertainties.

Figure 54: Frequency of target structures by length

The data was processed to obtain information about hydrogen bonds, in a
manner similar to the method described in section 5.6. The hydrogen bonds
were determined by DSSP program [51], with the additional conditions [19];

HO-distance < 2.7Å

angle(NHO), angle(COH) > 90◦.

6.3 Linear regression based on the protein fatgraph model

The first method is a linear regression on the similarity scores which we compute
based on the hydrogen bonds in the candidate and target structures. Each
hydrogen bond is identified by the position of its donor- and acceptor atoms, so
each bond can be expressed as a 2-tuple of integers (p, q), where the donor is
the p’th atom along the backbone and the acceptor the q’th.

The first of our similarity scores is the proportion of the bonds, which are
correctly identified in the candidate structure. In other words, if T,C are the
sets of hydrogen bonds respectively in the target structure and in the candidate
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Figure 55: Number of candidate structures for ’Easy’ (the best
candidate has GDT TS>40) and ’Hard’ (the best candidate has
GDT TS≤40) targets.

structure, then the first score P is defined as;

P =
#(T ∩ C)

#T
,

where we use the fact that for two bonds (p, q) and (p′, q′), (p, q) = (p′, q′) iff
p = p′ and q = q′.

The second similarity score Sn depends on a parameter n ∈ N. For a non-
negative integer x ∈ Z, define

fn(x) =

{
1− x/n if x ≤ 2n

−1 otherwise
.

For a bond (p, q) ∈ C, set

sC((p, q)) = max
{
fn(
∣∣p− p′

∣∣) + fn(
∣∣q − q′

∣∣) | (p′, q′) ∈ T \ C
}
.

Similarly for (p, q) ∈ T , set

sT ((p, q)) = max
{
fn(
∣∣p− p′

∣∣) + fn(
∣∣q − q′

∣∣) | (p′, q′) ∈ C \ T
}
.

Sn is then given by

Sn =

∑
(p,q)∈C\T sC((p, q)) +

∑
(p′,q′)∈T\C sT ((p′, q′))

#((T \ C) ∪ (C \ T ))
.

So for a given candidate structure, we can compute Sn for different n’s.
Having calculated P and Sn, n ∈ I, where I is some subset of N, for all

candidate structures, we perform a linear regression with P , Sn as independent
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variables and GDT as the dependent variable. After testing for various subset
I ⊂ N, we found that setting I = {6, 8, 10} gave the best results. Using I =
{6, 8, 10}, we selected the best candidate structure for each target. The average
difference in the GDT’s of the best candidate and our prediction (∆GDT) was
5.52 (figure 56). We were able to identify a candidate with ∆GDT < 2 for 31%
of the targets.

Figure 56: Frequency distribution of ∆GDT for 91 target struc-
tures, by linear regression method.

6.4 GDT-like algorithm based on the protein fatgraph
model

Another approach for predicting GDT score based on our protein model is to
mimic the GDT algorithm, but based on protein graphs, i.e. based on informa-
tion about the protein’s hydrogen bonds, but not its geometric structure.

Let T be the graph of the target protein, with vertices {v1, . . . , vl} repre-
senting the residues, ordered along the backbone, and edges {e1, . . . , em} rep-
resenting primary and secondary bonds. Similarly, let D be the graph of the
candidate protein, with vertices {w1, . . . , wl} representing the residues, ordered
along the backbone, and edges {f1, . . . , fn} representing primary and secondary
bonds. Note l = # of vertices in T (= # of vertices in D). Let r ∈ (0,∞). The
idea is to start with small subgraphs of D and T (corresponding to the same
backbone segment), and to “grow” them incrementally, until the difference be-
tween the subgraphs is over a pre-determined limit value. We repeat this for
different initial subgraphs, and determine the maximum subgraph of D, whose
difference from the corresponding subgraph of T is below the limit value. We
present the pseudocode for the algorithm in algorithm 4.

The pseudocode in algorithm 4 can be roughly described as follows.

1. Set i = 1.

2. We select a subgraphDsub(i) ofD, consisting of three vertices {wi, wi+1, wi+2}
starting from the ith position and the edges connecting them. Select a
subgraph Tsub(i) of T in the same way.
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Algorithm 4 Pseudocode for GDT-like algorithm

for i in {1, . . . , l − 2} do
Let Dsub(i) be the subgraph of D obtained by taking three vertices

{wi, wi+1, wi+2} and the edges connecting them in D
Let Tsub(i) be the subgraph of T obtained by taking three vertices

{vi, vi+1, vi+2} and the edges connecting them in T
Compute the distance measure d(i) = d(Tsub(i), Dsub(i))
if d(i) ≥ r then #initial seed segment is already over the limit value

Continue to next i
end if
while True do

Let Tsub2(i) be the subgraph of T obtained by taking Tsub(i) together
with all edges connected to the vertices in Tsub(i), and the end-vertices of
these edges (i.e. ”grow” the subgraph by 1 edge+vertex pair)

Let Dsub2(i) be the subgraph of D obtained in the same manner
Compute the distance measure d(i) = d(Tsub2(i), Dsub2(i))
if d(i) ≥ r then

Break
end if
Set Tsub(i) = Tsub2(i)
Set Dsub(i) = Dsub2(i)
if Tsub(i) == T then #We can’t grow Tsub(i) any more

Break
end if

end while
end for
Dsub max = max

{
Dsub(i)

∣∣i ∈ {1, . . . , l − 2}
}

Score = 100 ·# of vertices in Dsub max /# of vertices in D
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3. Compute the distance measure d(i) = d(Tsub(i), Dsub(i)).

4. If d(i) ≥ r, where r is the pre-determined limit, the initial segment is
already over the limit value. Increment i by 1, go to 2.

5. If d(i) < r, “grow” the subgraph Dsub(i) by one edge/vertex pair by
selecting all edges connected to the vertices inDsub(i), and the end-vertices
of these edges. Call the selected edges and vertices, together with Dsub(i),
Dsub2(i). Select Tsub2(i) from T in the same way.

6. Compute the distance measure d(i) = d(Tsub2(i), Dsub2(i)).

7. If d(i) < r, “grow” the subgraphs by one edge/vertex pair again and com-
pute d(i). If d(i) ≥ r, move to the next starting segments by incrementing
i by 1.

8. If Dsub(i) == D, we have the entire graph under the limit value.

9. After going through all starting segments, we have a set S =
{
Dsub(i)

∣∣i ∈ {1, . . . , l − 2}
}

of maximal Dsub(i)’s. Select the longest Dsub(i) in S, which we call
Dsub max.

10. Score = 100× # of vertices in Dsub max
# of vertices in D .

For the current analysis we define the distance function d by

d(A,B) = #
(
(E(A) \ E(B)) ∪ (E(B) \ E(A))

)
,

where E(A) is the set of edges in the graph A. Using this distance function, we
predicted the best candidate structure for each target by selecting the structure
with the highest score, which we call graph-GDT. The distribution of ∆GDT is
shown in figure 57. The average ∆GDT for all targets was 19.1, and we were
able to identify a candidate with ∆GDT < 2 in 3.2% of the targets. We also
compute the proportions of predictions with with ∆GDT < 2, 2 ≤ ∆GDT ≤ 10
and ∆GDT > 10 for both methods and compare them with the results from
CASP10 [55] and CASP12 [56] (figure 58).

6.5 Discussion

Even though we were note able to outperform the best performing predictors,
we were able to show that a similarity in proteins’ geometric structures can be
explained by similarity in their topology to a certain extent. The algorithm used
in the second method was probably too naive, in that it does not differentiate
between the backbone and hydrogen bond edges, nor the residue information
given in the form of primary sequence. It may be possible to develop the algo-
rithm further by utilising these data. The fact that it was nonetheless able to
achieve the average ∆GDT of 19.1 can be seen as an indication of the magnitude
of the influence, the topology of proteins has on their geometric structure.

There are broadly two types of methods used in CASP model accuracy es-
timation. Consensus, or clustering methods take multiple candidate structures
as input and tries to identify a structure, that is the “best match” for the in-
put structures according to some criteria. Single-model methods, on the other
hand, takes a single candidate structure as an input and tries to estimate its

101



Figure 57: Frequency distribution of ∆GDT for 91 target struc-
tures, predicted using graph-GDT.

Figure 58: Percentages of the predictions with ∆GDT < 2,
2 ≤ ∆GDT ≤ 10 and ∆GDT > 10. The figures for CASP10 are
averages of 12 best-performing models, and for CASP12 they
are averages of 10 best-performing models.

accuracy, independent of other candidate structures. The consensus methods
have generally outperformed the single-model methods, and this resulted in the
development effort being concentrated on the consensus methods in the past
[76]. More recently the single-model methods have received more attention and
development effort [56], as the potential issues with the consensus methods are
recognised. One issue, for example, is that the consensus methods may not be
very useful in the environment outside the CASP-setup, where a large number
of candidate structures may not be available for the input. Another potential
issue, related to the first, is that the consensus methods may simply be taking
advantage of the fact that many CASP models are now able to produce high-
quality candidate structures, which are, naturally, similar to each other [96].
Our method is, by construction, unlikely to be improved to outperform the best
accuracy estimation methods, as it ignores the geometric data in the candidate
structures and only utilises the topological data. However, it may be able to

102



be combined with an existing method to improve its performance. Of course,
it depends on a method to predict a target protein’s hydrogen bonds by, for
example, prediction of residue-residue contacts, where there has been a signifi-
cant recent progress [84]. When a high-accuracy prediction of hydrogen bonds
becomes possible, our method has the advantage that it could be combined with
both a consensus method and a single-model method.
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7 Local pattern and hydrogen bond rotation in
proteins

In the previous two sections we have reviewed two projects for studying topology
of proteins using fatgraph models. In the current section we will investigate the
relation between topology of proteins in the form of graph structure consisting
of the backbone and the hydrogen bonds, and geometry of proteins in the form
of SO(3) rotations along hydrogen bonds (see section 4.2).

The space of possible protein structures appears vast, but when we look at
the space of local structures, we see that the actual structures are restricted
to certain regions in the space of all possible structures. One of the classical
descriptor of protein local structures is a set of conformational angles ϕ and
ψ at each Cα (see section 4.1). The well-known Ramachandran plot, where
the actual conformational angles are plotted with ϕ in one axis and ψ in the
other, shows clearly that the values are concentrated in relatively small regions
[75]. Such concentration of the actual values is also observed, when we look at
the spatial rotations between each pair of hydrogen bonded peptide planes [73].
Furthermore, it is found that these hydrogen bond rotations correspond well to
the concrete secondary structures and other local structural motifs [73]. The
question we wish to answer in this section is in some ways the opposite of the
findings in [73]; given a protein’s primary structure and its hydrogen bonds, can
we predict SO(3) rotations along each of its hydrogen bonds? In other words,
we wish to predict local geometry of a protein from its topology. In doing so, we
focus on the local topological information around the bond in question, which
we call H-bond local pattern (see section 7.1). It is a subgraph, centred around
the hydrogen bond, of the graph consisting of the backbone and all hydrogen
bonds in a protein. We discuss two different methodologies; one that tries to
find an exact match for a given H-bond local pattern, and the other that finds
a pattern, that best aligns with the given pattern.

7.1 H-bond local pattern

Our model of protein structure is as described in section 4.2. We draw the
backbone horizontally with the N-terminus to the left. The half-edges repre-
senting the amino hydrogen are drawn below the backbone, and those repre-
senting the carboxyl oxygen are drawn above the backbone. Hydrogen bonds
are represented by an edge between the corresponding half-edges. We show an
example of such graph in figure 59. Often we think of the model as a sequence of
three-atom segments N-C-O, and refer to the half-edge representing the amino
hydrogen (below the backbone) as N-atom, and the carboxyl oxygen as O-atom.
This construction also applies to a protein with multiple backbones, in which
case the model is determined up to the permutation of backbones.

For a given hydrogen bond a, the H-bond local pattern or simply the H-bond
pattern of window size w around a is the subgraph of the H-graph structure
consisting of the set of backbone atoms whose distance along the backbone to
one of the endpoints of a is no more than w atoms, together with all backbone
and hydrogen bond edges between them. We call a the central bond of the
pattern. The central bond determines the signed length of the bond, which is
the distance, measured from the donor to the acceptor, between the central
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Figure 59: An example H-graph structure

bond’s endpoints. Formally, if the donor of the bond is in the i’th peptide unit
and the acceptor in the j’th peptide unit, the the signed distance d is defined
to be j − i if i < j and j − i− 1 otherwise (figure 60). We will also record the
hydrogen bonds whose two endpoints are no more than w atoms away from one
of the endpoints of a along the backbone. An H-bond pattern may be expressed
as a sequence of letters as follows (figure 61a);

bIXaIXIbXIaXII

Each pair of lowercase letters indicate a pair of atoms with a hydrogen bond
between them. The letter “a” is given a special meaning as an indication of the
central bonds. The remaining hydrogen bonds are ordered by the position of
the donor atoms (starting from the N-terminus) and given letters “b, c, ... ”.
The uppercase letter X indicates a Cα atom, and the uppercase letter I indicates
an “isolated” N or O atom (with no hydrogen bond attached). Hence we see
that the above pattern corresponds to the structure shown in figure 59, with
the second hydrogen bond as the central bond. If the distance between the two
endpoints of the central bond is greater than 2w, the H-bond pattern is not
connected, which may be indicated by “:”. So we may obtain a pattern such
as (figure 61b);

IIXaIXb:IXIaXIb

-2-3-4-5-6L 2 3 4 5 6 L

Figure 60: Signed length of hydrogen bonds. Peptide units are
shaded grey. All bonds longer than ±6 are denoted by L.

This local pattern description can be enhanced further by encoding various
extra pieces of information:

• A backbone atom within the window may have a hydrogen bond attached,
whose other endpoint lies outside the window. In the basic pattern descrip-
tion, this would be indistinguishable from an unbonded backbone atom;
using the letter R (for Remotely bonded) instead of I allows us to distin-
guish these cases. We may also restrict this information for atoms located
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b

I X

a

I(R) X

I

b X

I(R)

a X

I

I

(a) Connected pattern. The pattern can be expressed as bIXaIXIbXIaXII -3.

X X X X

I(R)

I

a

I

b

I

I

a

I(R)

b

(b) Disconnected pattern. The pattern can be expressed as IIXaIXb:IXIaXIb L.

Figure 61: Connected (figure 61a) and disconnected (figure 61b)
H-bond local patterns of window size 3. The parts of backbone
and hydrogen bonds, that do not participate in the pattern are
shown by dotted lines. Note the remotely-bonded atoms may be
replaced by the letter R, depending on the parameter specified
(see text for details).

at most r from either endpoint of the central bond, for some 0 ≤ r ≤ w.
Atoms which are remotely bonded but lie further than r from the central
bond are then treated as if they were isolated atoms.

• We may record whether a hydrogen bond is twisted or not. Formally, this
is determined by whether the inner product between the normal vectors to
the peptide planes is positive or negative. If the inner product is negative
(that is, if the bond is twisted), we replace the lowercase letter with the
corresponding letter from the other end of the alphabet (that is, z instead
of a, y instead of b etc.). Similarly to the remote bonds, this informa-
tion may be restricted to the atoms located at most t atoms from either
endpoint of the central bond, for some 0 ≤ t ≤ w.

• Beside the local pattern itself, we may record separately the residues at the
four Cα’s closest to the central bond’s endpoints. To reduce the number
of possible bond descriptions and obtain reasonable clusters, we choose
a grouping of the 20 residues into 1, 2, 3 or 4 groups according to their
chemical properties (section 7.1), and simply record the 4-tuple of group
identifiers.

The resulting pattern description may look as follows:

10XbRXcRXdRXzbXvcXIdXIvXRzXRRXRRXRRX 5 4LLLL (58)

Here the number 10 indicates the window size, and the central bond is twisted;
as shown by the use of letter z instead of a. There are several remotely-bonded
atoms, indicated by the letter R. The last segment, 4LLLL, indicates the number
of groups used in the grouping of residues and the four group identifiers.
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No. of groups
Amino acids 1 2 3 4
Leucine (L)

X

L

L L
Valine (V)

Isoleucine (I)
Phenylalanine (F)

Methionine (M)
Alanine (A)

A A
Glycine (G)

Serine (S)
Cysteine (C)

Glutamic acid (E)

E E
E

Lysine (K)
Arginine (R)

Aspartic acid (D)
Threonine (T)

Tyrosine (Y)
Asparagine (N)
Glutamine (Q)

Histidine (H)
Tryptophan (W)

Proline (P) P
N/A (X) X X X

Table 15: Grouping scheme for amino acids and group labels.

The above description of H-bond pattern only relies on the H-graph structure
of a protein. It is also possible to generate a local pattern which includes
more information about a protein’s structure. An tertiary bond is an object
that identifies the closeness of various atoms in a tertiary structure, where no
peptide or hydrogen bond is present. Note a tertiary bond is not necessarily
a well-defined bond, but rather an indication of presence of some interaction,
inferred from the tertiary structure. Suppose we have a protein’s tertiary bond
information along with its secondary structure. Then we may include in a
pattern all atoms that are no more than w away from either end of the central
bond, measured along the backbone and the tertiary bonds. H-bond patterns
produced in this way may better reflect the local structure around the central
bond. A pattern produced in this way can no longer be presented in the form
(58), but may be presented as a graph.

7.2 Rotation prediction by H-bond pattern matching

7.2.1 Method

Our analysis is done in two phases; training and prediction. We start with the
description of the training phase. The training dataset consists of a collection of
proteins whose geometric structures, in particular the rotations along hydrogen
bonds, are known. We then perform the local pattern identification on each
hydrogen bond using various combinations of the parameters;
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• Window size

• Whether to indicate remote bonds, and how far from the central bond

• Whether to indicate twisted bonds, and how far from the central bond

• The number of residue classes

Thus we obtain, for each hydrogen bond in the training dataset, a number of
H-bond patterns, one for each parameter combination. These are then grouped,
so that each set contains only the identical H-bond patterns. We may, at this
point, discard the patterns with the number of occurrences fewer than some pre-
determined threshold. This will increase our chance of obtaining a reasonable
cluster later on in the analysis. For each of the remaining H-bond patterns,
we collect the associated SO(3) rotations for each bond, which is then fed into
a clustering algorithm. Each of these clustering runs is then evaluated and
assigned a score, which reflects the extent to which all observed bonds with the
same H-bond pattern fall into a single well-defined cluster.

A description of the clustering algorithm can be found in [73] (Method sec-
tion). We note that the algorithm uses a discretised rotational space; it divides
the cube (−π, π)3 into 81× 81× 81 small boxes, and finds a mode box for each
well-defined cluster. Each box can belong to at most one cluster, even when the
algorithm finds several clusters.

The score s for each clustering run is determined by the following formula;

s =

{
π −m if there is only one cluster

−1 if there are more than one cluster,
(59)

where m is the mean distance between all boxes in the cluster and the mode
box, which is by definition bounded by π. In this way we associate a score
for each bond description. The result is a table where each row contains an
H-bond pattern, a rotation value (which is the centre of the mode box of the
largest cluster) and a score. This data is then used to predict rotation of a given
hydrogen bond from a topological model of the protein.

Prediction is done using the same procedure as the training, but applied on
a protein with unknown geometric structure. Suppose we have a protein whose
backbone sequence and the set of hydrogen bonds are known. In other words,
the protein’s H-graph structure is assumed to be known, but not its tertiary
structure. For each hydrogen bond in the protein, we obtain H-bond patterns
using the same sets of parameter combinations as used in the training stage.
Each resulting H-bond pattern is looked up in the table of clustering results. If
a match is found, we obtain an estimate for the bond’s rotation, which is the
centre of the largest cluster, along with a score for that estimate, which is the
score associated to the cluster. Our final prediction for the rotation associated
to the hydrogen bond is the estimate with the highest associated score. If two
estimates have the same score, the result with more detailed H-bond pattern is
used for the prediction.

7.2.2 Results

The dataset used for the analysis was a collection of 8182 proteins of known
geometric structures taken from the protein data bank [20], containing approx-
imately 1.16 million hydrogen bonds. The dataset was processed in the way
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Range of d Run 1 Run 2 Run 3 Total
0 ≤ d < 0.2664 (0.1%) 60.41 58.55 59.44 59.47

0.2664 ≤ d < 0.4567 (0.5%) 80.30 78.89 79.55 79.58
0.4567 ≤ d < 0.5766 (1.0%) 86.61 85.75 86.08 86.15
0.5766 ≤ d < 0.7862 (2.5%) 92.45 92.42 92.26 92.38
0.7862 ≤ d < 0.9968 (5.0%) 95.32 95.13 95.29 95.24
0.9968 ≤ d < 1.2689 (10.0%) 97.23 96.82 97.14 97.06
1.2689 ≤ d < 1.7663 (25.0%) 98.73 98.56 98.71 98.67
1.7663 ≤ d < 2.3099 (50.0%) 99.72 99.62 99.65 99.66
2.3099 ≤ d < 2.7437 (75.0%) 99.89 99.91 99.87 99.89
2.7437 ≤ d < 3.1416 (100%) 100.00 100.00 100.00 100.00

Number of bonds 25612 25623 23998 75233

Table 16: Accumulative % of hydrogen bonds whose predicted
rotation values lie within the specified distance from the true
rotation values. The numbers in parentheses show the volume
of the ball whose radius is the upper limit of the range as a
proportion of the volume of entire SO(3), w.r.t. the invariant
metric on SO(3).

described in section 5.6. A subset of 200 proteins was randomly selected from
the collection, and the training procedure was performed on the remaining 7982
proteins. The H-bond pattern identification was performed with the following
combinations of parameters;

• Window size: 0 (only the central bond), 1, 2, . . . , 10

• Remote bonds: 0 (do not indicate remote bond), 1, 2, . . . , window size

• Twisted bonds: none (-1), only the central bond (0), window size

• Number of residue classes: 1, 2, 3, 4

This resulted in 792 parameter combinations. For each of these parameter
combinations, the H-bond patterns with less than 30 occurrences were discarded.
For each of the remaining H-bond patterns with the associated SO(3) rotations,
we performed the clustering analysis (see [73] for the description of clustering
algorithm), and computed a score for each of them.

Next, we applied the prediction procedure outlined above to the remaining
200 proteins. We assessed the quality of each prediction by measuring the dis-
tance between the predicted and the actual rotation. The analysis was repeated
three times with different choices of 200 proteins to be used for prediction. In the
following, unless otherwise specified, the accuracy figures quoted are averages
over three runs. The results are shown in table 16.

We see in 59.47% of all cases, the predicted rotation lies within a ball com-
prising just 0.1% of the total volume of SO(3) centred at the true rotation, and
in 86.15% of all cases, the prediction was within a ball corresponding to 1%
of the volume of SO(3). Since the size of PDB is continuously increasing, we
updated our dataset in 2017 to obtain an expanded dataset with 13115 proteins,
containing approximately 1.89 million hydrogen bonds. The results from this
expanded dataset were very similar, with 85.99% of the prediction lying inside a

109



Range of d Dataset 1 Dataset 2
0 ≤ d < 0.2664 (0.1%) 59.47 59.26

0.2664 ≤ d < 0.4567 (0.5%) 79.58 79.52
0.4567 ≤ d < 0.5766 (1.0%) 86.15 85.99
0.5766 ≤ d < 0.7862 (2.5%) 92.38 92.29
0.7862 ≤ d < 0.9968 (5.0%) 95.24 95.17
0.9968 ≤ d < 1.2689 (10.0%) 97.06 97.16
1.2689 ≤ d < 1.7663 (25.0%) 98.67 98.69
1.7663 ≤ d < 2.3099 (50.0%) 99.66 99.66
2.3099 ≤ d < 2.7437 (75.0%) 99.89 99.85
2.7437 ≤ d < 3.1416 (100%) 100.00 100.00

Table 17: Accumulative % of hydrogen bonds whose predicted
rotation values lie within the specified distance from the true
rotation values, comparison between the old (Dataset 1) and
the new (Dataset 2) datasets

DSSP class DSSP symbol Local structure
α-helix H

Helix310-helix G
π-helix I
Strand E Sheet

Isolated β-bridge residue B
CoilTurn T

Bend S
Unclassified - Unclassified

Table 18: DSSP classes and corresponding local structure pat-
terns.

ball corresponding to 1% of the volume of SO(3) (table 17). We have therefore
chosen to perform the following analysis using the smaller dataset due to the
extra time required to analyse the larger dataset. To analyse the prediction
results further, we have looked at the DSSP classes [51] of four residues around
each hydrogen bond. DSSP assigns seven secondary structure classes (plus “un-
classified”) to each residue (table 18). The four residues around a hydrogen
bond are chosen and recorded in the following order;

• The residue preceding the N-donor amino acid residue.

• The N-donor amino acid residue.

• The O-acceptor amino acid residue.

• The residue following the O-acceptor amino acid residue.

We analysed the frequencies of four-tuples of DSSP classes and the associated
prediction accuracies (figure 62). We can observe the frequencies concentrated
on a few classes, which is also evident if we look at the ten most frequent DSSP
class combinations (table 19). We also observe that the residue class combina-
tion for the sheet structure (“EEEE”) has the high frequency and relatively low
accuracy.
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(a) Accuracy of predictions by the DSSP classes of four residues around the hydrogen
bond; % of predictions lying within 1% SO(3) volume.

(b) Frequency by the DSSP classes of four residues around the hydrogen bond.

Figure 62: Accuracy and frequency of predictions by DSSP
classes. The horizontal and vertical axes show the donor-side
and the acceptor-side residues, respectively.

111



Residues around H-bond Frequency Accuracy
HHHH 9296 99.83%
EEEE 5604 79.59%
HH-H 780 99.36%
HTHH 694 97.84%
T–T 405 80.74%

TTHH 390 96.15%
T-HH 339 88.79%
GG-G 290 93.45%
TS-T 281 87.54%
H-HH 263 91.25%

Table 19: 10 most frequent combinations of DSSP classes around
hydrogen bonds, together with the proportions of predictions,
which lie inside a ball centred at the true rotation having a
volume corresponding to 1% of the total volume of SO(3).

We then analysed each prediction and looked at the parameters used to
produce it. By looking at the distance between predicted and true rotations
(∆) and the mean distance to cluster mode (m) for each prediction, we found a
group of predictions made using small window sizes, with many of them having
large ∆ values (figure C.1). This could happen, for example, if the H-bond
pattern matched with a smaller window size has the associated cluster with
a well-defined “peak” (thus having a low m value and high score), while the
cluster for a match with a larger window size has a lower “peak” (and a high
m value). To encourage the use of larger pattern for prediction, we modified
the score function (59) to penalise the use of smaller patterns. The new score
function is given by

s =

{
π −m− exp(3− w) if there is only one cluster

−1 if there are more than one cluster,
(60)

wherem is the mean distance to the cluster mode, andm = max{3,window size}.
Using the new score function, we achieved the prediction accuracy of 89.05%
inside 1% SO(3) volume (table 20). Analyses of the other parameters (Remote
bonds, Twisted bonds, and Residue groups) did not show any similar anomalies,
and applying similar modifications to the score function to prioritise matches
with more detailed patterns did not result in an improvement.

We have also run the analysis using the local H-bond patterns generated
including the tertiary bond information, where a tertiary bond counts as one
backbone bond in computing window size, and we do not consider atoms more
than one tertiary bond away from the central bond. In other words, an atom
is only included in the H-bond pattern if the distance (along the backbone and
the tertiary bond edges) from it to either end of the central bond is less than or
equal to the window size, and that no more than one tertiary bond is traversed
in computing the distance. This criteria was applied to limit the pattern to the
atoms most likely to exert some influence on the central H-bond. We found that
82.01% of all predictions lay within 1% SO(3)-volume of true values (table 20).
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Range of d Reference New score Tertiary
0 ≤ d < 0.2664 (0.1%) 59.47 64.75 53.16

0.2664 ≤ d < 0.4567 (0.5%) 79.58 83.47 74.51
0.4567 ≤ d < 0.5766 (1.0%) 86.15 89.05 82.01
0.5766 ≤ d < 0.7862 (2.5%) 92.38 94.02 89.70
0.7862 ≤ d < 0.9968 (5.0%) 95.24 96.24 93.60
0.9968 ≤ d < 1.2689 (10.0%) 97.06 97.64 96.16
1.2689 ≤ d < 1.7663 (25.0%) 98.67 98.99 98.16
1.7663 ≤ d < 2.3099 (50.0%) 99.66 99.77 99.69
2.3099 ≤ d < 2.7437 (75.0%) 99.89 99.93 99.95
2.7437 ≤ d < 3.1416 (100%) 100.00 100.00 100.00

Table 20: Accumulative % of hydrogen bonds whose predicted
rotation values lie within the specified distance from the true
rotation values, for reference data (table 16), with the new score
function (60), and with tertiary bonds.

7.3 Rotation prediction by H-bond pattern alignment

In this section we describe another analysis utilising H-bond local patterns.
Instead of trying to find an exact match in the list of H-bond patterns generated
from known structures, we find the H-bond pattern that best aligns with the H-
bond pattern, whose rotation is to be predicted. To do this, we translate a given
H-bond pattern to a sequence indicating the presence or absence of hydrogen
bond together with its length, if present. Alignment score between two such
sequences are computed using Needleman-Wunsch algorithm [66].

7.3.1 Method

We start again with the training dataset with known geometric structures. An
H-bond pattern is computed for each hydrogen bond in the training dataset, in
the same manner as in the previous section. It is however not necessary to use
multiple parameter combinations, since in the current analysis an exact match
is not required. Each H-bond pattern is then translated to a sequence, which
we call an H-bond sequence, as follows (see figure 63).

1. Recall that each H-bond pattern corresponds to a repeated sequence of N-
Cα-O atoms, representing an amino acid, in our protein model. At either
end of the pattern we may have only a part of this three-atoms sequence;
for example it may start with Cα or O atom. Given an H-bond pattern,
we split it into three-atom segments corresponding to amino acids (we
may end up with segments at either end of the pattern which consist of
fewer than three atoms). In the following procedure we only consider the
atoms in the H-bond pattern.

2. For each of the resulting segments, check whether the N atom is a donor.
If so, we assign a symbol encoding the signed length followed by the twist-
edness of the bond (“+” for twisted, and “-” for not twisted). E.g. “+4-”
for a bond of length +4, which is not twisted (“-”).
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3. For each of the remaining segments, check whether the O atom is an
acceptor. If so, we assign a symbol “A” to the segment.

4. The remaining segments are assigned a symbol “U” for unbonded.

b

I X

a

R X

I

b X

R

a X

I

I

A A L- -3- -3+ U

Figure 63: Translation of H-bond pattern to H-bond sequence.
Amino acid residues are shaded grey. A twisted bond is shown
in red.

Using the above translation method, we can compute the list of H-bond
sequence and associated rotation value from our training dataset. The same
procedure is applied to the proteins whose H-bond rotations are to be predicted.
For an H-bond a in the prediction dataset, let s(a) be the corresponding H-bond
sequence. Our prediction for the rotation along a is the rotation value associated
to the H-bond sequence which best aligns with s(a).

7.3.2 Results

The dataset used was the same as in section 7.2.2, with 200 proteins selected
for prediction. The parameter combination used to compute H-bond patterns
were; window size = 10, remote bonds = 10, twisted bonds = 10, residue class
= 1. Note the parameter residue class does not have any effect on the resulting
H-bond sequence. The substitution matrix used for the Needleman-Wunsch
algorithm was computed as follows. Let

S1 = {−6−,−5−, . . . ,+5−,+6−,−6+,−5+, . . . ,+5+,+6+}
S2 = {L−, L+}
S = S1 ∪ S2

K = S ∪ {U,A}.

Define l : S → Z∪{L} to be the function that returns the length part of x ∈ S,
i.e. it removes the last character in x. Define also t : S → {+,−} to be the
function that returns the twistedness of x ∈ S. Construct the substitution ma-
trix M with entries Mk1,k2 , k1, k2 ∈ K by the pseudocode shown in algorithm 5.
The gap score was set to -1.

The results of the analysis is shown in table 21, under the column titled
“Linear”. We could only achieve accuracy of 72.91% inside 1% SO(3) volume.

To investigate the effect of the difference between the lengths and twistedness
of bonds when a replacement occurs, we have run the analysis with modified
substitution matrices. In the first the penalty for when k1, k2 ∈ S1 (“short to

114



Algorithm 5 Pseudocode for the construction of substitution matrix M .

1: for k1 ∈ K do
2: for k2 ∈ K do
3: if k1 == k2 then
4: s = 1
5: else if {k1, k2} ∩ (K \ S) 6= ∅ then
6: s = −1
7: else if l(k1) == l(k2) then
8: s = 0
9: else if {k1, k2} ∩ S2 6= ∅ then

10: s = −0.75
11: else
12: s = −

∣∣l(k1)− l(k2)
∣∣ /20

13: end if
14: if {k1, k2} ⊂ S and t(k1) 6= t(k2) then
15: s = s− 0.1
16: end if
17: M(k1, k2) = s
18: end for
19: end for

short” substitution) was made exponential instead of linear, by replacing line
12 with

d = −
∣∣l(k1)− l(k2)

∣∣
s = −0.6

(
(exp d− 1)/(exp 12− 1)

)
.

In the second the penalty was made logarithmic by replacing line 12 with

d = −
∣∣l(k1)− l(k2)

∣∣
s = −0.6

(
log (d+ 1)/ log (12 + 1)

)
.

Finally, the effect of twistedness was tested by replacing line 15 by

s = s− 0.8.

The results for the three substitution matrices are shown in table 21.
We also investigated the effect of different gap scores by using the simplest

substitution matrix; 1 along the diagonal (match) and -1 elsewhere (mismatch),
with different gap scores. Perhaps surprisingly, the prediction accuracy using
this simple substitution matrix was very similar to the result obtained by using
large twistedness penalty (table 22). There was a reduction in accuracy when
the gap score was set to 0, and a relatively large improvement when it was set
to -5.

7.4 Discussion

In the first method, where the rotation prediction was done by finding an exact
match for a given H-bond pattern, we were able to achieve close to 90% of our
predictions lying inside 1% SO(3) volume of the true rotations. We believe there
are potentials for further improvement, since an analysis of the clustering results
show that if we could choose the “best” clustering result, i.e. the clustering result
that lies closest to the true value, it will result in over 97% of “predictions” inside
1% SO(3)-volume. So it is possible that a better score function than (59) may
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Range of d Linear Exp Log Twisted
0 ≤ d < 0.2664 (0.1%) 49.56 49.57 49.64 49.74

0.2664 ≤ d < 0.4567 (0.5%) 66.49 66.47 66.55 66.91
0.4567 ≤ d < 0.5766 (1.0%) 72.91 72.91 72.98 73.55
0.5766 ≤ d < 0.7862 (2.5%) 80.65 80.66 80.72 81.48
0.7862 ≤ d < 0.9968 (5.0%) 85.33 85.34 85.39 86.22
0.9968 ≤ d < 1.2689 (10.0%) 89.17 89.16 89.21 90.02
1.2689 ≤ d < 1.7663 (25.0%) 94.49 94.47 94.50 95.11
1.7663 ≤ d < 2.3099 (50.0%) 97.48 97.47 97.50 98.05
2.3099 ≤ d < 2.7437 (75.0%) 98.86 98.85 98.86 99.24
2.7437 ≤ d < 3.1416 (100%) 100.00 100.00 100.00 100.00

Table 21: Accumulative % of hydrogen bonds whose predicted
rotation values lies within the specified distance from the true
rotation values, for different substitution matrices. The num-
bers in parentheses show the volume of the ball whose radius is
the upper limit of the range as a proportion of the volume of
entire SO(3), w.r.t. the invariant metric.

give the necessary improvement. It is also clear from the results of the DSSP
class analysis, that we need to improve our predictions in the sheet structure, if
we are to reach our goal. Our hypothesis is that due to the structural flexibility
of sheets compared to helices, the bonds in sheets are affected by the nearby
atoms (which are not necessarily near the bond in the secondary structure) to
a greater extent than the bonds in helices. We have attempted, unsuccessfully
so far, to take this into account by using tertiary bond information in our H-
bond pattern generation. A better understanding of β-sheet structures and
their topology may be needed to improve prediction of hydrogen bond rotations
inside β-sheets.

The prediction accuracy was worse in the second method, where H-bond
pattern alignment score was used to find the best match. Changing the substi-
tution matrices to simulate non-linear penalties did not result in any significant
change in prediction accuracy. A minor improvement was observed when the
penalty for the twistedness was increased (table 21). This may indicate the
fact that the twistedness of a hydrogen bond is directly related to its associated
rotation value; if a bond is twisted and another is not twisted, it is unlikely
that the two have similar rotation values. More surprisingly, an improvement
similar to using large twistedness penalty was observed when using the “simple”
substitution matrix where a match is given the score of 1 and a mismatch -1. A
further, even larger improvement was observed by using the gap score of -5. As
the window size is constant for the training and test datasets, larger gap score
has the effect of making the algorithm more like the one that simply counts
the match/mismatch between the two H-bond sequences. It is however not
immediately clear why this may increase the prediction accuracy compared to
allowing gaps, or making penalties dependent on the change in the bond lengths.
It should be noted, that even though the Needleman-Wunsch algorithm itself
does not place any restriction on its use, in the study of protein structures it is
typically used for aligning segments of primary sequences. Accordingly, there
are substitution matrices which are generally accepted in the field and tested
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Range of d Gap=-1 Gap=-5 Gap=0
0 ≤ d < 0.2664 (0.1%) 50.01 51.31 47.19

0.2664 ≤ d < 0.4567 (0.5%) 67.12 69.55 62.97
0.4567 ≤ d < 0.5766 (1.0%) 73.71 76.67 69.46
0.5766 ≤ d < 0.7862 (2.5%) 81.80 84.94 77.41
0.7862 ≤ d < 0.9968 (5.0%) 86.60 89.74 82.39
0.9968 ≤ d < 1.2689 (10.0%) 90.43 93.08 86.43
1.2689 ≤ d < 1.7663 (25.0%) 95.47 96.24 93.21
1.7663 ≤ d < 2.3099 (50.0%) 98.27 98.31 96.64
2.3099 ≤ d < 2.7437 (75.0%) 99.29 99.22 98.48
2.7437 ≤ d < 3.1416 (100%) 100.00 100.00 100.00

Table 22: Accumulative % of hydrogen bonds whose predicted
rotation values lie within the specified distance from the true
rotation values, for different gap scores. The numbers in paren-
theses show the volume of the ball whose radius is the upper
limit of the range as a proportion of the volume of entire SO(3),
w.r.t. the invariant metric.

in various applications [63]. The sequences considered in this study have not
been studied previously, and the substitution matrix was developed specifically
for this study. The fact that we were still able to achieve a prediction accuracy
of more than 75% lying inside 1% SO(3) volume of the true rotations indicates
that the sequence consisting of bond lengths contains a certain amount of infor-
mation about H-bond rotations. It is also possible that a further development
of the substitution matrix may improve the prediction accuracy.
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8 Future perspectives

In the three projects discussed in this thesis, we have investigated how our fat-
graph models of proteins can contribute to our understanding of protein struc-
tures in relation to the protein folding problem. We started with focusing on the
topology of β-sheets, an important protein sub-structure. We have shown our
filter based on the topology of β-sheets is able to substantially reduce the num-
ber of possible candidate structures while retaining the best candidates. Our
method, when combined with another method that does not utilise the topol-
ogy of β-sheets, was able to improve the prediction accuracy. We then looked
at the topology of entire proteins, in an experiment inspired by CASP Model
Quality Assessment. With the extra information about hydrogen bonds which
is not available in CASP experiment, we showed that the topology of proteins
can be used to predict the geometric structure closest to the target structure
to an accuracy level comparable to the best performing models in CASP10 and
CASP12. Indeed, it seems clear that topology of proteins is important in their
foldings, after seeing how the fatgraph model produced positive results in the
study of RNA structures, and the difference between topology of simulated pro-
tein metastructure data and the data generated from PDB. We do not know at
this stage, whether the current method can be improved to achieve better re-
sults, or that we should be looking at a different experiment to apply our ideas.
Lastly we investigated the extent to which proteins’ local topology determines
their local geometry. We were able to determine the local geometry, expressed
as the rotation along each hydrogen bond, to a high accuracy level, even though
our results were unlikely to be able to match the recent achievements by Al-
phaFold2 [49], although a direct comparison is not possible as we do not produce
the final prediction of the folded structures. Nonetheless, our results points to
the important link between topology and geometry of proteins.

The three projects are based on the theoretical foundations, which we also
discussed in this thesis. We have used the fatgraph model of proteins introduced
in [72] to prove the recursion relation for the number of protein diagrams, both
combinatorially and by the matrix model, which we also constructed in this
thesis. A possiblity for the future development of the project is to investigate
whether the 2- (and 3-) matrix models we constructed here satisfy topological
recursion. 2-matrix models have been extensively studied and there are number
of literatures by Chekhov, Eynard, Orantin and others [28, 42, 39, 35, 41, 40,
43, 24]. But as far as we are aware, the potentials studied for these models have
been of the form

AB + V1(A) + V2(B).

So it seems a further invesigation into the protein matrix model could lead to a
new development in relation to topological recursion.

When we consider more practical appication, there are further challenges
if the fatgraph model of proteins is to be truly useful for the study of protein
structures and foldings. The first of which is the chemical diversity of amino acid
residues. Our protein model, in its most basic form, only models the topological
structure of a protein, and does not consider the residues. However, the residues,
in particular their size and their chemical characteristics, are clearly important
in determining the native structure of a protein, and it will be necessary to
consider them in the future development of our proposed programme. This is
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also true in the case of RNA structures, but in RNA there are only 4 types
of nucleotides, and we know that the formation of hydrogen bonds is limited
to between adenine and uracil, guanine and cytosine, and uracil and guanine.
Proteins consist of 20 different residues, and there is no deterministic rule for
hydrogen bond formation similar to the Watson-Crick rules. As the number
of theoretically possible sequence increases exponentially with their lengths, it
is not difficult to imagine the computation will be too onerous much earlier
with proteins than with RNA. This issue could be addressed by considering
each residue’s propensity to form a hydrogen bond, or to participate in certain
secondary structure [22, 65, 97]. Then different weights can be applied to the
protein graph structures to account for the different primary sequences.

The second challenge is related to the relative structural rigidity of proteins.
As described in section 4.1, there is an intrinsic rigidity in the protein backbone
that comes from the structure of peptide units. This rigidity will make some
conformations energetically unfavourable, and in some cases prevent certain
conformations. This obstruction manifests itself in some of the empty regions in
the Ramachandran plot [75]. The third challenge is the propensity of proteins
to form certain recurring structures, such as α-helices and β-sheets [5]. This
implies that the formation of hydrogen bonds in proteins is not random, but
to a large extent linked to the formation of these recurring structures. This,
in the context of our approach, means that the formation of hydrogen bonds
that participate in these structures should be favoured over those that result
in less common structures, while still being compatible with desirable overall
shapes for the protein under consideration. These two issues can be addressed
to an extent, if we can identify the grammar for construction of protein graph
structures, similar to [7]. With the decomposition grammar, a (pseudo-)energy
functional can be constructed, which assigns appropriate energy cost for each
basic structures and for each “move” needed to construct a given protein graph
structure. The energy cost can be computed from the relative frequencies of
the structure in question in the existing database of protein structures, such as
PDB [20].

Despite these challenges, there is a strong motivation for pursuing the use of
the protein fatgraph model in the folding problem, and more generally, in the
study of protein structures. Apart from the mathematical interest in finding a
novel application of fatgraph and matrix model theories, it provides a common
language for describing and studying various biological macromolecules. For
the time being the application is limited to RNA and proteins, but there are
possibilities for extending fatgraph model to, for example, study of polysaccha-
rides [69]. Having a common language for studying RNA and protein structures
is particularly useful, as a class of proteins (called RNA-binding proteins) are
thought to participate in the regulation of RNAs during and after transcrip-
tion [60, 52]. The importance of these protein-RNA interactions are becoming
clearer with the advance in the methods for analysing them [53, 91]. A common
modelling framework for RNA and protein could be an ideal tool for study-
ing these interactions. Our hope is that the fatgraph model of proteins will
provide a foundation for the common framework, and contribute to the fuller
understanding of this fascinating field.
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Orantin, Nicolas. The ABCD of topological recursion. WorkingPaper. arXiv.org,
June 2017.

[11] Andersen, Jørgen Ellegaard, Borot, Gaëtan, and Orantin, Nicolas. “Mod-
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Appendices

A Extension of Blosum62

In section 5, an extension of the blosum62 substitution matrix [46], which is
a commonly used substitution matrix for the protein sequence alignment, was
used. We give a detailed description of the extension below.

The sequences we align consists of 20 letters representing standard gene
code amino acids and two extra letters, α and β. We therefore need to extend
the blosum62 substitution matrix to include scores for these two extra letters.
We use 4 and -4 respectively for match and mismatch involving α and β. We
investigated the effect of these scores by computing average Recall and Precision
for different scores as follows;

1. For each match/mismatch score combination, compute alignment scores
for the first and second diagonal (i.e. for the sequences involving zero or
one β-strand).

2. Let v be a number between 0 and 1. For each cell P(i,j) in the pairing
matrix P, where the alignment scores have been computed, set the value
to 1 if P(i,j) > v, 0 otherwise.

3. Compute Recall and Precision for each protein.

The average Recall and Precision for various cutoff values and score combina-
tions are shown in figure A.1. We see the variation in Precision is very small
across different score combinations. The same holds for Recall, for small cutoff
values. We also note that, compared to the average Recall, the average Precision
does not vary much for different cutoff values. We therefore choose the cutoff
value of 0 and match/mismatch score combination of 4 and -4 for the current
analysis.

(a) Average Recall (b) Average Precision

Figure A.1: Average Recall (figure A.1a) and Precision (fig-
ure A.1b) for various cutoff values. The different lines represent
different match/mismatch score combinations.
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B The topology filter

The topology filter, as used in section 5, is the distribution of genera and num-
bers of boundary components for the protein metastructures filtered by the
number of strands in the largest sheet. The filtering was done to be able to
reflect the difference in the distributions between proteins with a small num-
ber of strands and those containing more strands, as one would expect those
proteins with a large number of strands to have more (topologically) complex
structures. The number of strands in the largest sheet was chosen as the filter-
ing variable, because we expect the largest contribution to the genus (and the
number of boundary components) to come from the largest sheet. We show the
distributions up to the maximum sheet size of 10 in figure B.1. We also show
the distributions of the same data, filtered by the number of sheets figure B.2
and by the number of strands figure B.3. It was thought that filtering by the
number of sheets results in too few layers and will make the resulting topology
filter less powerful, as it will not be able to distinguish subtler differences. To
investigate whether filtering by the number of strands produces better results,
we ran the binary classification (see section 5.7.1) using the topology filter with
the maximum sheet size as the third axis, and one with the number of strands
as the third axis. The classification results were analysed by computing the
proportion of the candidate structures above certain quality thresholds, that
were accepted (figure B.4). For a good filter, we expect the percentages of ac-
ceptance to increase, as we restrict to candidate structures to only look at the
high-quality structures. Put another way, we expect the lines to lie diagonally
from the bottom-left to top-right. It was found the filter using the maximum
sheet size performed better, particularly with Recall. We did not investigate
why it is the case, but it may be that folding several large sheets into energeti-
cally favourable structure is complex, and in nature a combination of one large
sheet and several smaller ones is more common.

129



Figure B.1: The distribution of genus and number of boundary
components, filtered by the size of the largest sheet.
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Figure B.2: The distribution of genus and number of boundary
components, filtered by the number of sheets.
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Figure B.3: The distribution of genus and number of boundary
components, filtered by the size of the largest sheet.

(a) Maximum sheet size (b) Number of strands

Figure B.4: Acceptance rates for candidates above quality
thresholds (measured in Recall and Precision). The topology
filter with maximum sheet size (figure B.4a) shows increasing
acceptance rates when the candidates are restricted to high-
quality structures. On the other hand, the filter with number of
strands (figure B.4b) shows relatively high acceptance rates for
lower-quality candidates, and the rate drops for Recall, when
the candidates are restricted to high-quality structures.
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C SO(3) prediction: analysing results

The analysis of prediction results showed a number of predictions, that were
made using small H-bond patterns, when a match with larger H-bond patterns
may have been available (see section 7.2). As a result the score function (59)
was modified to penalise the use of smaller patterns for prediction (60).
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Figure C.1: Distance to the true rotation (∆) and mean distance
to cluster mode (m), filtered by the window size used. The red
line indicates the mean for each plot.
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D Code files

The code files used in this thesis are available from the following addresses.

1. Protein Metastructure

• https://github.com/yukikoyanagi/python-alignment: Package for im-
plementation of sequence alignment. Required for sequence align-
ment in metastructure binary classification and prediction using align-
ment. The code is based on work by Eser Aygün (https://github.com/eseraygun/python-
alignment).

• https://github.com/yukikoyanagi/fatgraph: Package for implemen-
tation of fatgraph. Required for metastructure analyses.

• https://github.com/yukikoyanagi/metastructure: Scripts for protein
metastructure analyses.

2. GDT algorithms

• https://github.com/yukikoyanagi/gdt: Scripts for GDT algorithms

3. Local pattern analyses

• https://github.com/yukikoyanagi/localpattern: Scripts for local pat-
tern analyses

Many of the analyses were performed with GNU parallel program [90].
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