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0.1 Summary

The present thesis represents my work as a Ph.D. fellow in the geometry
group at the university of Aarhus. The overarching theme of my Ph.D.
has been to study how certain algebraic structures and conditions can be
useful for studying metric structures near the boundary or singularities of
moduli spaces. In the first part, I, of the thesis, this mainly manifests itself
in explicit work with the Hilbert modular cusp singularities. This part
contains mostly classical material, and the most original contribution of
the author will be the perspective on the possible relationship between the
metric geometry and the non-Archimedean geometry found in proposition
1.2.13 and section 1.3, where we modify an ansatz by Collins and Li [CL22].

In recent years, the notion of K-stability has played an important role
in forming moduli spaces of projective varieties with good properties. By a
famous result of Chen, Donaldson and Sun [CDS14a],[CDS14b],[CDS14c],
in the smooth fano case, K-stability is equivalent to the existence of a
Kähler Einstein metric on the variety. The stability condition is algebraic
and measures, roughly speaking, the limiting behaviour along algebraic
paths in the space of compatible Kähler potentials. The second part, II,
contains a review of some algebraic aspects of K-stability and original work
undertaken with Lars Martin Sektnan from 3.2 and onwards. We consider
an analogous stability criterion for families of varities, dubbed fibrational
stability by Dervan and Sektnan in [DS21a]. It restricts to K-stability when
the family is over a point and, in this case, there is a valuative obstruction
for K-stability. We introduce a special class of valuations called horizontal
and show that these provide a valuative obstruction for fibration stability.
Finally we illustrate this obstruction in the case where the fibration is a
projective bundle and show that exceptional divisors obtained by blowing
up subbundles give a relation with slope stability of the bundle.

To the best of my ability I have named any results and definitions from
the literature with references to the original article. Results which are not
named are either "standard" or original. In order to make the exposition
more self contained, I have included some proofs of results from the litera-
ture with more details. In accordance with GSNS rules, parts of I were also
used in the progress report for the qualifying examination.
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Resumé

Denne afhandling repræsenterer mit arbejde som Ph.D fellow i geometri-
gruppen ved Aarhus Universitet. Det overordnede tema har været at stud-
ere hvordan bestemte algebraiske strukturer og betingelser kan bruges til at
studere metriske strukturer tæt på randen eller nær singulariter af moduli
rum. I den første del af afhandlingen, I, kommer dette primært til udtryk
ved explicit arbejde med Hilbert modular cusp singulariteterne. Denne
del indeholder fortrinsvis klassiske resultater og forfatterens mest originale
bidrag er således perspektivet på en mulig relation mellem den metriske ge-
ometri og den ikke-Arkimediske geometri som forefindes i proposition 1.2.13
og 1.3 hvor vi modificerer en ansatz af Collins og Li [CL22].

I de senere år, har begrebet K-stabilitet spillet en vigtig rolle i be-
stræbelserne på at konstruere moduli rum af projektive varieteter med
særligt gode egenskaber. Et berømt resultat af Chen, Donaldson og Sun
[CDS14a],[CDS14b],[CDS14c] siger at i det ikke singulære Fano tilfælde, så
er K-stabilitet ækvivalent til eksistensen af en Kähler Einstein metrik på
varieteten. Stabilitetsbetingelsen er algebraisk og måler groft sagt opførslen
i grænsen langs stier i rummet af kompatible Kähler potentialer. Afhandlin-
gens anden del, II, indeholder en gennemgang af nogle algebraiske aspekter
af K-stabilitet og indeholder originalt arbejde foretaget med Lars Martin
Sektnan fra afsnit 3.2 og frem. Vi betragter en analog stabilitetsbetingelse
for familier af varieteter, kaldet fibrationsstabilietet som blev introduceret
af Dervan og Sektnan i [DS21a] og reducerer til K-stabilitet når familien er
over et punkt. Der er en obstruktion for K-stabilitet givet ved en invari-
ant for værdisætninger associeret til særlige divisorer. Vi introducerer en
klasse af værdisætninger kaldet horisontale og viser at de giver en analog
obstruktion for fibrations stabilitet. Slutteligt illustrerer vi denne obstruk-
tion i tilfældet hvor fibrationen er et projektivt bundt, og viser at den for
ekseptionelle divisorer i et blow up af et delbundt, er relateret til hæld-
ningsstabiliteten for bundtet.

Jeg har efter bedste evne navngivet resultater of definitioner fra lit-
teraturen med referencer til ophavsartiklen. Resultater uden navn er en-
ten "standard" eller originale. For at gøre fremstillingen lettere at følge
har jeg inkluderet beviser for resultater i litteraturen med flere detaljer.
I overensstemmelse med GSNS regler er dele af I brugt i min rapport i
forbindelse med min kvalifikationseksamen.
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1 On certain cusp singularities

Introduction

Negative Kähler Einstein metrics defined away from a singular set or divi-
sor have been the focus of a lot of research over the years. Following the
resolution of the Calabi conjecture by Yau [Yau78], a lot of attention was
devoted to the study of complete metrics on non-compact spaces and their
asymptotics at infinity, for instance [CY80],[Kob84],[TY87]. More recently,
metrics with cone-type singularities along a divisor in projective space were
studied and used in the proof of the celebrated Yau-Tian-Donaldson con-
jecture. A common theme in this work has been to try to find metrics
ω = i

2π
∂∂ φ on a compact Kähler manifold X with KX +D ample, which is

Einstein away from a simple normal crossing divisor D =
∑
diDi, di ∈ [0, 1]

and with a prescribed behaviour of its local potential φ near the support
of D. This situation arises, for example, on log smooth pairs (X,D) with
ample log canonical class in the sense of the minimal model programme
(see [KK13],[KM98]). If one requires the metric to extend over D as a cur-
rent, then the state of the art is the results of [GW16], [BG14] who show
that there is a unique such metric, which is Kähler Einstein away from D.
Moreover, they show that the metric is locally holomorphically bilipschitz
equivalent to a model metric which splits as a product metric with cone
and cusp singularities dependent on the coefficients di.

In a more local direction, [DFS21], Datar, Fu and Song study the nega-
tive Einstein Dirichlet problem near certain isolated log canonical singular-
ities, which are not log terminal (purely log canonical), and they show that
any two potentials giving complete metrics must be asymptotically close
as one approaches the singularity in a strong sense. Building on this, Fu,
Hein and Jiang [FHJ21] gave a description of the asymptotics of the Käh-
ler Einstein metrics obtained in [DFS21] in the case of cones over elliptic
curves. The results suggest, that the asymptotics of complete Kähler Ein-
stein metrics defined near isolated, purely log canonical singularities are in
some sense canonical. It is then a natural question to ask, if the asymptotic
behaviour of a complete Kähler Einstein metric can be related to some local
algebraic structure associated to the log canonical singularity. To a resolu-
tion of a singularity, one can associate a dual complex, which captures how
the exceptional divisors of the resolution intersect. Although dependent
on the particular resolution, a first venture would be to try to establish a
correspondence between the dual complex and the asymptotic behaviour of
the Kähler Einstein metric. As a first step in this programme, we consider
the Hilbert modular cusps in dimension 2, equipped with a special choice of
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negative Kähler Einstein metric. In this case, our main result is the obser-
vation that one can relate the dual complex to the non-collapsed part of the
link via a geometrically induced homeomorphism 1.2.13. This is done by
considering the limit of a special class of analytic geodesics, starting from
points in the link arising from scaling the cone underlying the construction
of the cusp singularity 1.2.3. Since this result relies on an essentially com-
plete description of the singularity and its resolution, it appears difficult to
make generalizeations. Finally, we make a remark that the Hilbert mod-
ular cusps fit in a modification of a new ansatz by Collins and Li [CL22]
regarding Calabi-Yau metrics near the zero section of product of line bun-
dles, which under a certain proportionality assumption produce negative
Einstein metrics 1.3.

In this part of the thesis, we review the construction of certain family
of cuspidal singularities due to Tsuchihashi, which generalizes the Hilbert-
Modular cusps 1.1. Afterwards, we specialize the discussion to metric as-
pects of the Hilbert modular cusps 1.2, and we introduce the concept of the
dual complex associated to an exceptional divisor of a good resolution. We
also define a map from a neighbourhood of the exceptional divisor to the
dual complex 1.2. Then, we consider the case of Hilbert modular cusps in
dimension 2 1.2. Finally, we make a remark on a non-Archimedean ansatz
1.3.

1.1 Tsuchihashi cusps
In this section, we sketch the general construction of Tsuchihashi cusp sin-
gularities [Tsu83] from "permissible pairs" (C,Γ), which form a type of
isolated normal singularities equipped with a natural metric, whose geom-
etry models the cusp. The construction generalizes the Hilbert modular
cusps, and their minimal toric resolution. Imperative to the construction
of these cusps are certain characteristic functions φ : C → R, which enable
the contraction of the boundary at infinity to a point.

In order to fix notation, we let

• N ∼= Zr be a lattice and M = HomZ(N,Z) its dual.

• Sl(N) ⊂ AutZ(N) be the index 2 subgroup of elements with determi-
nant 1.

• Set NR = N ⊗R R so that we can identify Sl(N) with its image in
Gl(NR).

• ray(NR) = (NR \ {0}/R>0)
homeo' Sr−1.
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Definition 1.1.1. We say a pair (C,Γ) is Tsuchihashi cusp data for N , if

• C ⊂ NR is an open strongly convex cone, i.e., C ∩ {−C} = {0} of
maximal dimension.

• Γ ⊂ Stab(C,NR) = {g ∈ Gl(NR)|gC = C} is a subgroup such that
the induced action on ray(CR) is effective, properly discontinuous and
ray(CR)/Γ is compact.

Given Tsuchihashi cusp data (C,Γ) for N , then there is a dual cusp data.
Indeed, if we equip M with the dual Γ- action, i.e., the action such that
(g ·m)(x) = m(g−1x), then we see that the dual cone,

C ′ = {m ∈M |〈m, c〉 > 0,∀c ∈ C \ {0}},

has an induced Γ-action and that (C ′,Γ) is Tsuschihashi cusp data for M .
In particular, when C is self dual, i.e., when C ′ ∼= C under the identification
NR →MR, then we have an involution on the set of Tsuchihashi cusp data.
While this symmetry is certainly nice, we shall not pursue it further.

The setup

Given Tsuchihashi cusp data (C,Γ) for N , one can consider the convex hull

Θ = convh(N ∩ C),

along with its Euclidean boundary ∂Θ. It is shown in [Tsu83] that the
boundary ∂Θ can be decomposed into (possibly infinitely many) convex
polytopes with vertices in N . Write P (∂Θ) for this collection. There is
a natural Γ action on points in N ∩ ∂Θ, and since Γ acts by matrices of
determinant 1, no convex polytope gets dilated, and there is an induced
action on P (∂Θ) uniquely determined by the action on the vertices defining
the respective polytope. Since we are given the data ∂Θ with a Γ-action on
P (∂Θ), we can form the fan

Σ = {0} ∪
⋃

α∈P (∂Θ)

ConeR(α),

where ConeR(α) ⊂ NR is the cone generated by the polytope with a Γ-action
and support |Σ| = C∪{0}. By standard toric geometry, there is then a toric
variety TNΣ with an action of Γ associated to this data. The space TNΣ is
smooth if, and only if, all ConeR(α) are regular, meaning that ConeR(α)∩
N contains a Z basis for N . In general, it might happen that TNΣ has
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singularities, but these can be resolved equivariantly by constructing a new
fan from subdivision of the cones of Σ. Now, these cones must also be
preserved by the action of Γ, so this resolution also has an induced action
by Γ. Therefore, in the following, we can safely assume TNΣ is smooth.

Remark 1.1.2. If γ · ConeR(α) = ConeR(β), then dually γ · ConeR(β)′ =
ConeR(α)′. Hence, one has the map of character rings

γ : C[χm]m∈ConeR(β)′∩M → C[χm]m∈ConeR(α)′∩M

given on generators by γ(χm) = χγm. Thus, when the cones are regular, we
can pick generators to obtain ring isomorphisms

Fβ : C[χm]m∈ConeR(β)′∩M ∼= C[z1, . . . , zr]

Fα : C[χm]m∈ConeR(α)′∩M ∼= C[z̃1, . . . , z̃r]

giving rise to the conjugate map Fα ◦γ ◦F−1
β , which takes zi 7→ Fα(χγmi) =∏r

j=1 z̃
cij
j , where χγmi = χ

∑
j cijsj . Therefore, when TNΣ is smooth, then

the action of γ maps the open subsets isomorphic to Cr determined by a
cone to each other by a transformation of the type

γ · (z̃1, . . . , z̃r) = (
∏

z̃
c1j
j , . . . ,

∏
z̃
crj
j ),

and the integral matrix (cij) represents the dual action of γ, i.e., is equal
to the transpose of the matrix representing γ.

Recall that one has a map to a manifold with corners, which is given by
the quotient map with respect to the compact torus U(1)n ⊂ C∗ acting on
TNΣ (see e.g. [Oda88]). This map is Γ-equivariant and coincides up to a
sign change with the Euclidean tropicalization map

trop : TNΣ→ (TNΣ)trop

given on points (identified to be morphisms ρ : ConeR(α)∩M → C, ρ(0) =
1, ρ(m+m′) = ρ(m)ρ(m′)) by ρ 7→ − log(|ρ|). Now, C is naturally embed-
ded as an open Γ-invariant subset in (TNΣ)trop, because the image of the
torus trop(N ⊗Z C∗)r = NR is open. Consider the set

C̃ = C ∪ ((TNΣ)trop \NR),

which is open in (TNΣ)trop as U = trop−1(C̃) is a neighbourhood of the
boundary divisor D = U \U ∩ (N ⊗ZC∗). The subset U is Γ-stable since C
and the toric boundary is so. Moreover, the action is properly discontinuous
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and without fixed points because it is so on C. In particular, we can form
the quotient

D ⊂ U C̃

D/Γ ⊂ U/Γ C̃/Γ,

trop

q q

trop

where D/Γ is a compact analytic subspace, because C/Γ is compact, hence
there is a finite number of equivalence classes of convex polytopes in P (∂Θ)
and thus D/Γ is compact. Finally, in order to obatin the cusp, we want to
contractD/Γ, which is done by the contraction criterion of Grauert [Gra62].

There is a natural plurisubharmonic function φ : C → R>0 called the
characteristic function of the cone 1.1.3, invariant under the Γ-action. This
admits a continuous extension φ̃ : C̃ → R≥0 by setting φ̃(p) = 0 for p ∈
C̃ \ C. The characteristic function is convex on C, hence pulling back the
characteristic function trop∗φ yields a plurisubharmonic function on U \D,
which is smooth and vanishes along the boundary. Evidently the function
descends to the quotient U/Γ by equivariance. By a theorem of Grauert
[Gra62], the boundary divisor can then uniquely be blown down to a point
in a holomorphic way. The resulting normal pointed space (V, x0) is the
Tsuchihashi cusp associated to the cusp data (C,Γ). We have the diagram

(U \D) ∪ {x0} D ⊂ U C̃

(V, x0) D/Γ ⊂ U/Γ C̃/Γ.

q

trop

q q

trop

Unwinding the definition of the quotient map trop, one may describe the
cusp complex analytically as the quotient of a tube domain

{NR + iC}/(N o Γ) ∪ {x0}

with distinguished open neighbourhoods of x0 given by W (ε) = q(V (ε)) ∪
{x0} where

V (ε) = {n+ ic ∈ NR + iC|φ(c) < ε}.

In this decription, the action of N × Γ is given by

(n′, g) · (n+ ic) = g(n) + n′ + ig(n).

Moreover, holomorphic functions on W (ε) can be described via its lifting to
V (ε) as having a special Fourier expansion [Oga86]. The relation between
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the two descriptions is given by the diagram

NR + iC

U \D ⊂ (C∗)n C,
e2πi(·)

1
2π
Im

trop

where e2πi(n+ic) := (e2πi(n1+ic1), . . . , ei(nn+icn)) becomes biholomorphic after
taking the N quotient.

The characteristic function associated to a Tsuchihashi
cusp

In this section, we define the characteristic function associated to a cone as
in [Oda88]. It was originally considered by Vinberg in [Vin63].

Definition 1.1.3. For an open cone C ⊂ V ∼= Rr with dual C ′, we set

φ(c) =

∫
C′
e−〈w,c〉dx,

where 〈w, c〉 = w(c), and dx is the Lebesgue measure. We call φ the char-
acteristic function of C.

Thus, the characteristic function of C is an averaged Gaussian function.
It is clearly finite away from the boundary of C, since there 〈c, x〉 > 0,∀x
and it diverges as one approaches the boundary of C. The following prop-
erties are straightforward.

Lemma 1.1.4. The characteristic function of a cone satisfies the following
properties

• for L ∈ Stab(C, V ), one has

L∗φ =
1

|det(L)|
φ .

• φ is convex and log(φ) is strictly convex.

Proof. The first property follows directly from the coordinate change for-
mula for the Lebesgue measure. The second property is a simple calculation.
If x1, . . . , xr are coordinates on V ∼= Rr, and x1, . . . , xr are coordinates on
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V ∗, then the pairing 〈·, ·〉 is the standard inner product. Let a, b ∈ TxC,
then we have

∂iφ(x) =

∫
C′
∂ie
−wixidw

=

∫
C′
−wie−wixidw

dφx(a) =

∫
C′
−〈w, a〉e−〈w,x〉dw

dlog(φ)x =
dφx
φ(x)

.

Taking second order derivatives gives

∂j∂iφ(x) =

∫
C′
wiwje−w

ixidw

Hess(φ)x(a, b) =

∫
C

〈w, a〉〈w, b〉e−〈w,x〉dw

∂j∂ilog(φ)(x) =
∂j∂iφ(x)

φ(x)
− ∂jφ(x)∂iφ(x)

φ(x)2

Hess(log(φ))x(a, a) =
Hess(φ)x(a, a)

φ(x)
− (

dφx(a)

φ(x)
)2

=
1

φ(x)
(

∫
C′
〈w, a〉2e−〈w,x〉dw − 1

φ(x)
(

∫
C′
〈w, a〉e−〈w,a〉)2)

>0.

The last inequality follows by Cauchy-Schwartz

(

∫
C′
〈w, a〉e−

1
2
〈w,x〉e−

1
2
〈w,x〉dw)2 ≤

∫
C′
〈w, a〉2e−〈w,a〉dw

∫
C′
e−〈w,x〉dw

=φ(x)

∫
C′
〈w, a〉2e−〈w,a〉dw

with equality iff 〈w, a〉e− 1
2
〈w,x〉 = ke−

1
2
〈w,x〉 for some constant k, which can-

not hold for w ∈ C ′ when a ∈ C. In particular, we see that the form
(∂i∂iφx) is positive semidefinite at any point x ∈ C, i.e., φ is convex, and
similarly, log(φ) is strictly convex, since its Hessian is positive definite at
any point.

The characteristic function has other neat relationships with the cone,
which we shall not pursure further, see for example [Oda88].
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Example 1.1.5. When C = Rn
>0, the characteristic function is

φ(y1, . . . , yn) =

∫
Rn>0

e−
∑n
k=0 ykxkdx

=
n∏
k=0

∫
R>0

e−ykxkdxk

=
n∏
k=0

lim
t→∞

∫ t

0

e−ykxkdxk

=
n∏
k=0

lim
t→∞

[
−1

yk
e−ykxk ]t0

=
1∏n

k=0 yk
.

In particular, log(φ)(y) is a potential for the product Kähler-Einstein metric
on (H1)n = Rn +iC ⊂ Cn.

From the calculation above 1.1, it follows that one can equip any open
real cone C with an intrinsically defined Riemannian metric g = (∂i∂jlog(φ)).
Moreover, as the example above indicates, when one considers the complex
tube domain

Rn +iC ⊂ Cn,

then the pullback metric is automatically Kähler. This is made more con-
crete in the following statement whose proof is a standard calculation (see
[Nee15, prop. 2.3]).

Proposition 1.1.6. Suppose we have a manifold of the type Rn + iC ⊂ Cn

where C ⊂ Rn
>0 and MC = (Rn + iV )/Zn, where Zn act on the real part Rn

by translations. Let Im : Rn +iC → C and denote the induced map from
MC the same. Then,

• f ∈ C∞(C) is (strictly) convex, if and only if, the pullback Im∗f(z) is
(strictly) plurisubharmonic. Moreover, one has the following identity

1

n!
(i∂∂̄Im∗f)n = det(

∂2f

∂yi∂yj
)dx1 ∧ dy1 ∧ · · · ∧ dxn ∧ dyn.

In particular, since the flat fiber tori have volume 1, we have an iden-
tity

1

n!

∫
MC

(i∂∂̄Im∗f)n =

∫
V

det(
∂2f

∂yi∂yj
)dy1 ∧ · · · ∧ dyn.
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In other words, we have an identity of Monge- Ampére operators

MAC(Im∗f) = n!MAR(f).

• Suppose ω is a smooth, Rn /Zn-invariant, exact and positive (1, 1)-
form on MC, then there exists a smooth function f ∈ C∞(C) with
HessC(f) ≥ 0 such that ω = i∂∂̄Im∗f .

Since d log(φ)x = dφx
φ(x)
6= 0 at any point x ∈ C, one can use the N o Γ

invariant characteristic function s = log(φ) as a coordinate to obtain an
N o Γ equivariant smooth decomposition of NR + iC into R× log(φ)−1(0).
Indeed, one can consider the mapping (n+ ic) 7→ (log(φ(c)), n+ iφ(c)1/nc)
with inverse (s, n + ic) 7→ n + ie−sc. Moreover, by equivariance, it follows
that we have an identification of the respective quotients. Hence, we have
an alternative C∞ description of the distinguished neighbourhoods

V (ε) ∼= (−∞, log(ε))× log(φ)−1(0)

and
W (ε) \ {x0} ∼= (−∞, log(ε))× log(φ−1)(0)/N o Γ.

Definition 1.1.7. We call

log(φ)−1(0)/N o Γ = φ−1(1)/N o Γ

the characteristic link of the Tsuchihashi cusp singularity.

Usually, the link of an isolated singularity (X, x0) ⊂ Cn is given by the
manifold(X, x0) ∩ S2n−1

ε (x0) when ε is sufficiently small [Mil74]. Since we
think of φ as a "metrically relevant" radial coordinate this partly justifies
the terminology. The link of the cusp associated to (C,Γ) is topologically
a U(1)r-bundle over φ|−1

C (1)/Γ ∼= ray(φ|−1
C (1))/Γ, which we shall call the

base of the characteristic link. Since ray is the quotient map by the scaling
action, it follows that one can identify the base of the link with the rays on
C/Γ obtained by scaling the cone.
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1.2 Hilbert modular cusps
In this section, we specialize the construction of Tsuschihashi cusps to the
case of Hilbert-Modular cusps, and we explain how the construction from
the previous section fits with the resolution construction due to Hirzebruch
(dimension 2) and Ehlers (dimension > 2) [Hir73],[Ehl75]. The main impe-
tus for studying these singularities arose from my initial research question

Are there singularities equipped with a natural metric structure such that
the metric behaviour is reflected in the dual complex of the singularity?

The Hilbert modular cusps arise from the data

• K a totally real degree r field extension of Q. I.e., there are exactly r
embeddings ai : K → R, 1 ≤ i ≤ r, giving an identification K⊗QR ∼=
Rr by k ⊗ r 7→ r(a1(k), . . . , ar(k)). This identification is unique up
the action of the symmetric group.

• N ⊂ K a Z-lattice of maximal rank, i.e., NQ = K, and so one can
identify NR = KR.

Considering the cone Rr
>0 pulled back via the identification, Rr ∼= NR gives

a cone CN . A totally positive k ∈ K is an element of CN . The group

Γ+
N = {g ∈ K|g totally positive unit gN = N}

is a rank r−1 [Oda88, p. 155] commutative group. There is then an action
of Γ+

N on NR preserving CN , and if Γ ⊂ Γ+
N is a finite index subgroup,

then the action of Γ is properly discontinuous and ray(CN)/Γ ∼= Rr−1/Zr−1

is compact. Hence, (CN ,Γ) define Tsuchihashi cusp data. The associated
cusp can then be described as before. More concretely we have

U \D

(H1)r/N ∼= (NR + iCN)/N CN ,

1
2πi

log(·)
trop

Im(·)

where 1
2πi

log(·) = 1
2πi

∑r
i=1 ni(log(| · |) + iArg(·)) now is a biholomorphism

and n1, . . . , nris a Z-basis for N . The cusp is then obtained as the Γ-
quotient with a point added at infinity.

As discussed earlier, in the model (H1)r the function log(φ), where φ
is the characteristic function of Rr

>0 is exactly the Kähler-Einstein product
metric:

ω = −i ∂∂
r∑
i=1

log(yi).
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Splitting as before

(H1)r ∼= R× log(φ)−1(0) = R×(Rr×{(y1, . . . , yr) ∈ Rr
>0 |

r∏
i=1

yi = 1})

by the map (s, x1, . . . , xn, y1, . . . , yn) 7→ (xi + ie−syi)1≤i≤r, we see that the
link of a Hilbert modular cusp is a U(1)r bundle over a quotient of

{(y1, . . . , yr)|
r∏
i=1

yi = 1}

by a discrete group. When r = 2, we have in particular a U(1)2 = T torus
bundle over a circle S1. If we write the metric g associated to ω in terms
of the parametrization

(s, x1, . . . , xr, ỹ1, . . . , ỹr−1) 7→ (s, x1, . . . , xr, e
−sy1, . . . , e

−syr−1,
e−s∏r−1
i=1 yi

),

we see that the metric becomes

g =
r∑
i=1

1

y2
i

(dx2
i + dy2

i )

=
1

e−2s
(

r∑
i=1

1

ỹ2
i

dx2
i +

r−1∑
i=1

1

ỹ2
i

(e−2sỹ2
i ds

2 − e−2s(ds⊗ dỹi + dỹi ⊗ ds) + e−2sdỹ2
i )

+
(
∏r−1

i=1 ỹi)
2

e−2s
dy2

r)

=(r − 1)ds2 +
r−1∑
i=1

1

ỹ2
i

dỹ2
i −

r−1∑
i=1

1

ỹ2
i

(ds⊗ dỹi + dỹi ⊗ ds) +
1

e−2s

r∑
i=1

1

ỹ2
i

dx̃2
i

+
(
∏r−1

i=1 ỹi)
2

e−2s
(

e−2s

(
∏r−1

i=1 ỹi)
2
ds2 +

r−1∑
i=1

e−2s

∏
j 6=i ỹj

(
∏r−1

k=1 ỹk)
3
(dỹi ⊗ ds+ ds⊗ dỹi)

+
∑
i,k

e−2s

∏
j 6=i ỹj

∏
j 6=k ỹk

(
∏r−1

`=1 ỹ`)
4

dỹi ⊗ dỹk)

=rds2 +
r−1∑
i=1

1

ỹ2
i

dỹ2
i +

r−1∑
i=1

(
1

ỹi
− 1

ỹ2
i

)(ds⊗ dỹi + dỹi ⊗ ds)

+
∑
i,k

1

ỹiỹk
dỹi ⊗ dỹk +

1

e−2s

r∑
i=1

1

ỹi
dx̃2

i .
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Making the coordinate change ỹi = eŷi , we can simplify a bit further

g = rds2 +
r−1∑
i=1

dŷ2
i +

r−1∑
i=1

(1− 1

eŷi
)(ds⊗ dŷi + dŷi ⊗ ds) +

∑
i,k

dŷi ⊗ dŷk

+
1

e−2s

r∑
i=1

1

eŷi
dx̃2

i .

So, when s→∞, then the fibre directions of the U(1)r fibration collapse
leaving the "limit metric" towards the cusp to be

g ≈rds2 +
r−1∑
i=1

dŷ2
i +

r−1∑
i=1

(1− 1

eŷi
)(ds⊗ dỹi + dỹi ⊗ ds) +

∑
i,k

dŷi ⊗ dŷk.

Hence, after a logarithmic change of coordinates on the link of the cone,
one has the data of a metric on a cylinder over the quotient of

{(y1, . . . , yr)|
r∏
i=1

yi = 1}.

Next, we consider special geodesics with the cusp as its limit point.

Definition 1.2.1. Given an inclusion U ⊂ V of topological spaces with
Ū ⊂ V , we say a ray γ : R→ U has limit point p ∈ Ū \U if limt→∞ γ(t) = p.

Lemma 1.2.2. The rays in (H1)r starting at a point (z1, . . . , zr) = (x1 +
iy1, . . . , xr + iyr) of the following type

γ(t) = (x1 + iety1, . . . , xr + ietyr)

are geodesics with respect to the product Kähler-Einstein metric.

Proof. These curves project to curves on H1, which are all classically known
to be unit speed geoedesics. Therefore, the γ are also geodesics with speed
r.

Geodesics on (H1)r descend to geodesics on the quotient by N oΓ when
taking the quotient metric. Any two of these induced geodesics γ, γ′ have
the same image, if, and only if, (z1, . . . , zr) ∼ (z′1, . . . , z

′
r) under the N o Γ

action.

Corollary 1.2.3. The geodesics of the previous lemma descent to geodesics
on a neighbourhood of the Hilbert-modular cusps with the cusp as their limit
point.
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Proof. It only remains to show that these curves indeed have the cusp as
limit. In general, there is a basis for the topology at the cusp {x0} given
by W (ε) = q(V (ε)) ∪ {x0}, where

V (ε) = {n+ ic ∈ NR + iC| log(φ(c)) < log(ε)}.

In the case of Hilbert modular cusps, log(φ(y1, . . . , yr)) = log( 1∏r
i=1 yi

), so a
curve on (H1)r descends to a curve with the cusp as its limit, if any cone
coordinate goes to infinity. This is indeed the case for the geodesics in
question, since

log(φ(γ(t))) = log(
1

ert
∏

i yi
)

=− rt+ log(φ(y1, . . . , yr)) →
t→∞
−∞.

Following the same line of reasoning, there are many more geodesic rays
on (H1)r/N o Γ going to the cusp. For example, the curves obtained from

t 7→ (x1 + iek1ty1, . . . , xr + iekrtyr)

for any tuple k = (k1, . . . , kr) ∈ Rr such that
∑

i ki > 0. Therefore,
geodesics from 1.2.2 are special in that they exactly correspond to the curves
obtained as the orbit of a point under the rescaling action on the cone C.

Definition 1.2.4. We call the geodesics on (H1)r/N oΓ from lemma 1.2.2
cone type geodesics.

The dual complex

In the following, we review the construction of the dual complex associated
to a resolution of a singular pair, following [dFKX]. Roughly speaking, the
dual complex is a cell complex one can attach to a resolution of a complex
analytic space, which contains information of how the exceptional divisors
intersect. We fix a variety X. Denote for α = (α1, . . . , αn) ∈ Rn

>0 the
weighted standard simplex ∆n−1

α := {x ∈ Rn
≥0|
∑n

i=1 αixi = 1}.

Definition 1.2.5. A finite ∆-complex of dimension n is the data of a topo-
logical space X and a finite collection M = {σi}i∈I of maps σi : ∆

n(i)
α(i) → X

such that

1. σi is injective when restricted to the interior, and for any x ∈ X

|{i|x ∈ σi(
◦
∆α(i))}| = 1.

19



2. σi restricted to a face is another map σj ∈M such that

∆
n(j)
α(j) X

∆
n(i)
α(i)

ι

σj

σi

commutes, where α(j) = (α(i)1, α(i)k−1, . . . , α̂(i)k, , α(i)k+1 . . . , α(i)n(i)+1)
and ι is the obvious linear inclusion map.

3. The topology is given by A ⊂ X open, if, and only if, σ−1
i (A) is open

for all i ∈ I.

A morphism between two delta complexes (X,M) and (X ′,M ′) is a map
φ : X → X ′ such that it is linear when restricted to simplexes.

It is clear that given just the data of (weighted)-simplexes satisfying
compatibility as in point 2, then one can glue these to a delta complex.
Suppose D =

∑m
i=1 aiDi is an effective Weil-divisor on X. For any I ⊂

{1, 2, . . . ,m}, write DI :=
⋂
i∈I Di and aI := (ai)i∈I . Suppose D satisfies

the following :

1. Each Di is normal,

2. For any I with DI 6= ∅, any connected component of DI is irreducible
and of codimension |I| in X.

The second condition ensures connected components are the same as irre-
ducible ones, so it implies that any irreducible component of DJ is in a
unique irreducible component of DI whenever I ⊂ J and DJ 6= ∅.

We associate a ∆-complex ∆(D) to D, built inductively in the following
way: for any irreducible component Di, we have a vertex vi corresponding
to a 0-simplex ∆0

ai
. The n-cells correspond to irreducible components of

the DI 6= ∅, where |I| = n + 1. Each component WI,j of DI corresponds
to a copy of ∆n

aI
attached to the (n − 1)-skeleton according to the unique

inclusions of components inDI\{i} when i ∈ I varies. That is, by the obvious
linear maps ∆n−1

aI\{i}
→ ∆n

aI
.

Note that one obtains a simplicial complex, i.e., nonempty intersection
of two simplexes is a single face in both, if, and only if, for any I, DI 6= ∅
implies DI is irreducible. The above conditions 1., 2. clearly hold, if X is
smooth and D is simple normal crossing.
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Definition 1.2.6. Suppose X is smooth and D is a simple normal cross-
ing divisor. Then, the complex constructed above is called the weighted
dual complex associated to D, and we denote it by ∆w(D). If we consider
∆(D) constructed without considering multiplicities, i.e., all simplexes in
the construction are ∆n

1 , we simply call ∆(D) the dual complex.

Although topologically equivalent, one typically considers weighted com-
plexes, when one wants to encode multiplicity information, for instance
when dealing with degenerations and unweighted complexes when consid-
ering singularities.

Definition 1.2.7. Suppose X is a singular complex space. Given a good
resolution f : Y → X of singularities such that the exceptional divisor D is
a simple normal crossings divisor. Then, we call ∆(D) the dual complex of
the resolution.

By considering the behaviour of dual complexes under blow-ups of smooth
subvarieties, it is then possible to show that the homotopy type of complex
∆(D) associated to a resolution only depends on the singularity [Ste06].

The Log map associated to a resolution

Following Boucksom-Jonnson [BJ17] there is a way of attaching the Dual
complex of a resolution of singular complex anlaytics to form a Hybrid space.

Definition 1.2.8. Let D =
∑m

i=1 diDi be a snc divisor on a complex mani-
fold X, and suppose V ⊂ X is a coordinate neighbourhood in a coordinate
system Cn

z1,...,zn
, where D ∩ Cn = {

∏
i∈I zki = 0|I ⊂ {1, . . . ,m}} for some

injection i 7→ ki ∈ {1, . . . , n}. Then, we say V is adapted to D if

1. V ⊂ {(z1, . . . , zn) ∈ Cn||zki | < 1,∀i ∈ I},

2. V ∩ DI 6= ∅ implies V ∩ DI = V ∩ (cc(DI) \
⋃
j∈{1,...,m}\I Dj), where

cc(DI) is some connected component of DI .

In other words, adapted coordinates are in polydiscs of the coordinates
corresponding to the equations of the snc divisor, and they are localized at
a connected component of DI such that it does not intersect a component
Dj, j ∈ {1, . . . ,m} \ I. We always have adapted coordinates near any point
of the exceptional divisor on a resolution of singularities. Now, we define a
rescaled local "tropicalization" map.
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Definition 1.2.9. Suppose Vz1,...,zn are adapted to a snc divisor D =∑m
i=1 diDi on X such that D ∩ V = {

∏
i∈I zki = 0|I ⊂ {1, . . . ,m}}. Then

we define a map to the dual complex LogV : V \D ∩ V → ∆
|I|−1
1 ⊂ ∆(D)

given by

(z1, . . . , zn) 7→ (
log(|zki|)

log(
∏

i∈I |zki |)
)i∈I .

The ∆
|I|−1
1 corresponds to DI in the notation from the definition of the dual

complex 1.2.

We have the following simple observations

Lemma 1.2.10. For an adapted neighbourhood V , the image of the map
LogV defined above is dense, and if two points p = (z1, . . . , zn), q = (z′1, . . . , z

′
n)

map to the same point in the interior of the simplex then
log(|zki |)
log(|z′ki |)

=
log(|zkj |)
log(|z′kj |)

, for any pair i, j ∈ I.

If V ′ is another adapted neighbourhood of D such that V ∩ V ′ 6= ∅, then on
the intersection we have:

LogV − LogV ′ = O(
−1

log(
∏

i∈I |zi|)
).

Suppose (cki)i∈I ∈ ∆
|I|−1
1 is an interior point, then the fiber is topo-

logically Log−1
V ((cki)i∈I) = {(z1, . . . , zn) ∈ V ||zki | = |zkj |

cki
ckj } ' Cn−|I|+1 ×

(S1)|I|−1. That is, it is generically a torus fibration. Now suppose X is
compact and consider small tubular open neighbourhoods around each of
the components of D. This gives a covering of D. Let U be the union of
these neighbourhoods. Passing to a suitable subcover of U , we can assume
U to be covered by charts adapted to D. Details of such a construction
can be found in [Cle77]. So, we have an open covering U of D consisting
of adapted neighbourhoods. Pick a partition of unity subordinate to U and
glue the locally defined LogV maps to a smooth map LogU : U \D → ∆(D).

Note that by the previous lemma, this map is uniformally approximated
by any locally defined LogV coming from an adapted chart.
Remark 1.2.11. In the case where X is a smooth toric variety and D =
X \ (C∗)n is a simple normal crossing boundary divisor, then the logarithm
map is simply the part of the map trop relevant for the boundary divisor,
rescaled by 1

− log(
∏
|zi|) . In light of this, the limit value of the log map as

one approaches the boundary divisor, can be thought of as moving to the
tropicalization of the Berkovich space associated to X with respect to the
trivial valuation on C. For more on this see for example [Jon15].
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Two dimensional Hilbert-Modular cusps

We now shift attention to the generic two dimensional case r = 2 and prove
that there is a geometrically realized homeomorphism between the base of
the characteristic link and the dual complex of the singularity. Thus giving
a class of examples where the answer to 1.2 seems to be in the affirmative.
For the explicit description of the resolution, see [Hir73].

In this case, the cusp arises from a totally real degree 2 field extension
Q ⊂ K. Consider the maximal Z-lattice N generated by (1, ω0) ∈ R. Under
the identification KR ∼= R2, these map to (1, 1), (ω

(1)
0 , ω

(2)
0 ) respectively.

Thus, in order to construct the toric resolution one needs to decompose
the boundary of convh(R2

>0 ∩(Z(1, 1) + Z(ω1
0, ω

2
0)) into line segments and

take the cones over them in order to produce the fan Σ. The pairs of
integral points giving the polyhedral decomposition of this boundary can be
identified with certain totally positive bases for N . These can be obtained
cyclically as follows: since the extension is of degree two, there is a periodic
function b : Z→ N≥2 such that one has a continued fraction expansion

ω0 = [[b(0)]] := b(0)− 1

b(1)− 1

...

.

Now, let ωk to be the numbers obtained by cyclically permuting the con-
tinued fraction expansion of ω0 k times. Defining the numbers Ak =
(ω0 . . . ωk)

−1 for k ≥ 1, and A−k = ω0 . . . ω−k+1, for k ≥ 1 and A0 := 1
gives pairs Ak, Ak−1 which form totally positive Z bases for N . Indeed,
A0, A−1 form a basis, and one has the invertible relation(

Ak
Ak−1

)
=

(
b(k − 1) −1

1 0

)(
Ak−1

Ak−2

)
with period equal to the period of b. Therefore, the vectors (A

(1)
k , A

(2)
k ) and

(A
(1)
k−1, A

(2)
k−1), for k ∈ Z generate the cones for the fan giving a covering of

the associated toric variety by the local models

Uk = Spec(C[z1, z2])

and transition morphisms Uk → Uk+1 given by (z1, z2) 7→ (z
b(k)
1 z2, z

−1
1 ) =

(y1, y2) in accordance with 1.1.2. One has Γ = 〈Ap〉, where p is the period
of b. So, since Ak+p = ApAk, it follows that Γ takes points Uk → Uk+p via
the identity map.

Since the boundary divisor corresponds to the one dimensional rays
in the fan [Oda88, p. 66], it follows that the numbers Ak modulo the

23



period of b parametrize the irreducible components of the boundary divisor
D/Γ. Moreover, these are P1’s as the local equation is {z1 = 0} in the
k’th corodinate system, which is transformed into {y2 = 0} in the second.
Therefore, except in the case where b has period ≤ 2, the boundary divisor
consists of a cycle of P1’s, which intersect in a single point with precisely
two other such components in a simple normal crossing way. Thus, the
dual complex ∆(D/Γ) is homeomorphic to S1. Denote the neighbourhood
of the boundary divisor D, where the cusp is defined by U and the cusp by
(V, x0) = R2 +iR2

>0 /N o Γ ∪ {x0}. Then, the resolution morphism

π : U/Γ→ (V, x0)

is given (before taking the Γ quotient) in the k’th coordinate system by

π(z1, z2) =
1

2πi
(A

(1)
k−1 log(z1) + A

(1)
k log(z2), A

(2)
k−1 log(z1) + A

(2)
k log(z2))

with inverse (before taking the Γ quotient) given by

(z1, . . . , z2) 7→ (e
2πi

A
(2)
k

z1−A
(1)
k

z−2

det(Mk) , e
2πi

A
(1)
k−1

z1−A
(2)
k−1

z−2

det(Mk) ),

where

Mk =

(
A

(1)
k−1 A

(1)
k

A
(2)
k−1 A

(2)
k

)
> 0.

From this description, we see that the cusp is strictly log canonical in the
terminology of the minimal model programme. That is, the discrepancy
between canonical divisors is given by prime divisors with multiplicity −1.
Indeed, one computes it straightforwardly by pulling back a (2, 0)-form

π∗(dz̃1 ∧ dz̃2) =
det(Mk)

4π2z1z2

dz1 ∧ dz2.

Pulling back the product Kähler-Einstein metric ω = −i ∂∂ log(Im(z̃1)Im(z̃2))
by this map gives a metric with singularities along the boundary divisor D.

π∗ω =− i ∂∂ log(
1

4π2
(A

(1)
k−1 log(|z1|) + A

(1)
k log(|z2|))(A(2)

k−1 log(|z1|) + A
(2)
k log(|z2|)))

=− i ∂∂ log
[
A

(1)
k−1A

(2)
k−1 log(|z1|)2 + A

(1)
k A

(2)
k log(|z2|)2

+ (A
(1)
k1
A

(2)
k + A

(1)
k A

(2)
k−1) log(|z1|) log(|z2|)

]
.

Thus, the pullback metric has worse singularities than analytic singularities
in the sense of potential theory.

24



Map to dual complex

When considering the two dimensional Hilbert Modular cusp, the circle S1

comes up in two ways. First, it is the base B of the U(1)2-fibration obtained
as the characteristic link. In this section, we give a geometrically induced
homeomorphism between these two. Recall the equivariant splitting

(H1)2 ∼= R× log(φ)−1(0) ∼= Rs×R2
x1,x2
×R>0

given by

(s, x1, x2, y1) 7→ (x1 + e−sy1, x2 + e−s
1

y1

)

The N o Γ action on the coordinates (s, x1, x2, y1) is given by

(n,Ap) · (s, x1, x2, y1) = (s, A(1)
p x1 + n(1), A(2)

p x2 + n(2), A(1)
p y1),

hence after taking the quotient, the base of the U(1)2 fibration B ' S1

can be identified with the equivalence class of [y1] under the multiplicative
action by Ap.

Definition 1.2.12. Let F : B → ∆(D/Γ) be the map defined by

F ([y1]) = lim
t→∞

LogU/Γ(π−1 ◦ γ(t))

where γ is a cone type geodesic starting from a point on the characteristic
link projecting to [y1] on the base of the fibration and LogU/Γ is the log map
associated to ∆(D/Γ).

We need to ensure that this is well defined. We show that π−1 ◦ γ(t) is
independent of such choices, from which it follows that the limit is as well.
Suppose γ is a cone type geodesic ray with the cusp as its limit starting
at an equivalence class (s, [x1, x2, y1]). Then we can pick a lift to (H1)2/N
starting from any point (s, x′1, x

′
2, y
′
1) ∼ (s, x1, x2, y1). We know that this

geodesic has the form

γ̃(t) = (s− t, x′1, x′2, y′1).

After applying π−1 to this, one has the following expression in the k’th
coordinate system

π−1◦γ̃(t) = (e
−2πets(

A
(2)
k

y′1−A
(1)
k

y′2
det(Mk)

)
e

2πi(
A

(2)
k

x′2−A
1
kx
′
1

det(Mk)
)
, e
−2πets(

A
(1)
k1

y′2−A
(2)
k−1

y′1
det(Mk)

)
e

2πi(
A

(1)
k−1

x′2−A
(2)
k−1

x′1
det(Mk)

)
),
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where y′2 = 1
y′1
. This does not depend on the choice of x′1, x′2. Thus, the only

ambiguity comes from the choice of y′1. But by Γ equivariance of π, it follows
by slight abuse of notation that q ◦ π−1 ◦ γ̃(t) = π−1 ◦ q ◦ γ̃(t) = π−1 ◦ γ(t).
Hence, the value depends only the equivalence class of y1. Therefore, the
limit, when it exists, is also independent of such choices.

Note, that the charts for U give adapted charts for U/Γ in the sense of
[BJ17]. Therefore, the locally defined maps satisfy LogU/Γ ◦ q = q ◦LogU in
these coordinates. Here we think of ∆(D/Γ) as being a quotient of ∆(D) by
the Γ-action. In particular, their limiting value in the dual complex agrees.
We can therefore compute the value for t� 0 as

LogU/Γ(π−1 ◦ γ(t)) =LogU(π−1 ◦ γ̃(t))

=(
A

(2)
k y1 − A(1)

k y2

A
(2)
k y1 − A(1)

k y2 + A
(1)
k−1y2 − A(2)

k−1y1

,
A

(1)
k−1y2 − A(2)

k−1y1

A
(2)
k y1 − A(1)

k y2 + A
(1)
k−1y2 − A(2)

k−1y1

)

(1)

where, again y2 = 1
y1
. Thus the limit is well defined for any such curve.

Proposition 1.2.13. The map F is a homeomorphism.

Proof. It suffices to show that F is a continuous bijection. By the expression
1, the map is clearly continuous. We first show that F is surjective, and
since we quotient by Γ, we will also write F for the lift to R>0 before taking
the quotient by Γ = 〈A(1)

p 〉. In view of the relation y2 = 1
y1
, the inequalities

A
(1)
k−1y2 − A

(2)
k−1y1 ≥ 0, A

(2)
k y1 − A

(1)
k y2 ≥ 0 imply that A

(1)
k

A
(2)
k

≤ y2
1 ≤

A
(1)
k−1

A
(2)
k−1

,

which then gives a fundamental domain for the coordinate functions F1, F2.

F1(y1) =
A

(2)
k y1 − A(1)

k y2

A
(2)
k y1 − A(1)

k y2 + A
(1)
k−1y2 − A(2)

k−1y1

.

The function F1 is monotonely increasing when writing y2 = 1
y1
. Indeed,

rewriting slightly one has

F1(y1) =
A

(2)
k y2

1 − A
(1)
k

(A
(2)
k − A

(2)
k−1)y2

1 + A
(1)
k−1 − A

(1)
k

,
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making the monotone substitution b = y2
1 one has

d

db
F1(b) =

A
(2)
k ((A

(2)
k − A

(2)
k−1)b+ A

(1)
k−1 − A

(1)
k )− (A

(2)
k − A

(2)
k−1)(A

(2)
k b− A(1)

k )

((A
(2)
k − A

(2)
k−1)b+ A

(1)
k−1 − A

(1)
k )2

=
A

(2)
k A

(1)
k−1 − A

(2)
k−1A

(1)
k

((A
(2)
k − A

(2)
k−1)b+ A

(1)
k−1 − A

(1)
k )2

=
det(Mk)

((A
(2)
k − A

(2)
k−1)b+ A

(1)
k−1 − A

(1)
k )2

>0.

Since the map is to the standard 1-simplex, it follows by

F1(

√√√√A
(1)
k

A
(2)
k

) =

√
A

(2)
k A

(1)
k −

√
A

(1)
k A

(2)
k√

A
(2)
k A

(1)
k −

√
A

(1)
k A

(2)
k + A

(1)
k−1

√
A

(2)
k

A
(1))
k

− A(2)
k−1

√
A

(1)
k

A
(2)
k

=0

F1(

√√√√A
(1)
k−1

A
(2)
k−1

) =

A
(2)
k

√
A

(1)
k−1

A
(2)
k−1

− A(1)
k

√
A

(2)
k−1

A
(1)
k−1

A
(2)
k

√
A

(1)
k−1

A
(2)
k−1

− A(1)
k

√
A

(2)
k−1

A
(1)
k−1

+
√
A

(1)
k−1A

(2)
k−1 −

√
A

(2)
k−1A

(1)
k−1

=1,

that F is onto the piece of the dual complex given by the k’th coordinate
system from U . As this holds for all k ∈ Z, it follows that F is surjective.
Moreover, by the argument above, it follows that F restricted to fundamen-
tal domains for Γ is injective. To see that F is injective, simply observe
that the action of Γ is the identity between the k’th and k+p’th coordinate
system and that boundary values for F1, F2 match up with the gluing of
∆(D/Γ).
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Figure 1: An illustration of the family of cone type geodesics going to the
cusp.
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1.3 A remark on a non-Archimedean ansatz

Recently, Li and Collins [CL22] found a generalized Calabi-ansatz [Cal79]
for producing approximate Calabi-Yau metrics near the zero section of a
direct sum of line bundles. These satisfy a Monge-Ampére type equation
which they dubbed the non-Archimedean Monge-Ampére equation, and are
supposed to model the geometry generically at the intersection of smooth
prime divisors which have simple normal crossings.

The set up for the ansatz is as follows. One is given a compact (con-
nected) Calabi-Yau manifold Y of dimension m and k positive line bundles
Li on Y . Then, one seeks a Calabi-Yau metric on an open neighbourhood of
the zero section in the total space Z = Tot(

⊕k
i=1 Li). We write π : Z → Y

for the projection map. Picking hermitian metrics hi on the Li, one obtains
a splitting Z ∼= (R∪{∞})r × U via the map

(vL1 , . . . vLk) 7→ (− log(h1(vL1)), . . . ,− log(hk(vLk)),
vL1

h1(vL1)
, . . .

vLk
hk(vLk)

).

Here U denotes the total space of the direct sum of circle bundles associated
to hi over Y . Thus, one has global coordinate functions ri = hLi(vLi), yi =
− log(ri) smooth away from the divisor {hi = 0}. Over any trivializing open
V ⊂ Y such that Z|π−1(V )

∼= V ×Ck
z1,...,zk

, one may write yi = − log(|zi|)+φi,
where φi is a smooth strictly plurisubharmonic function on V .

Now, the ansatz is to consider potentials of the form u(y1, . . . , yk) which
satisfy the equation

det(D2u)

∫
Y

(Du)m = const,

in a region {∞ > y1, . . . , yi � 0} ⊂ Z where

• u : Rk → R is smooth and (strictly) convex

• det(D2u) is the determinant of the Hessian in the coordinates y1, . . . , yk.

• Du =
∑k

i=1
du
dyi
c1(Li) is a function Z → H2(Y,R).

As explained in [CL22], the two extreme cases m = 0, k = 1 are familiar.
They correspond respectively to the case of the real Monge-Ampére on the
cone Rk

>0 in the U(1)k-quotient Rk of (C∗)k (hence by 1.1.6 correspond to
torus invariant metrics on the open polydisc ∆k

1) and the classical Calabi-
ansatz on a line bundle over a compact Calabi-Yau manifold. Collins and
Li, subsequently show that in the case of proportional line bundles, say
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Li ∼= L⊗di1 , then the generalized Calabi ansatz, produces genuine Calabi-
Yau metrics when u is strictly convex and

∑k
i=1

du
dyi
di > 0 [CL22, Lemma

2.1].
Following the same line of reasoning as in [CL22], it is tempting (and

makes sense) to consider the same ansatz when trying to find Kähler-
Einstein metrics, which are not necessarily Calabi-Yau, by modifying the
non-archimedean Monge-Ampére equation accordingly to:

det(D2u)

∫
Y

(Du)m = e−λu.

As in the Calabi-Yau setting, the extreme case m = 0 correspond to a
real Monge-Ampére and the case k = 1 to the Calabi ansatz. Since the
logarithm of the characteristic function φ for the cone C = Rk

>0 is negative
Kähler-Einstein, one has a solution for the ansatz by setting u = log(φ)
when m = 0, which is valid near the maximal intersection of divisors on the
equivariant resolutions of the Hilbert Modular cusps.

By essentially the same argument, we show that the conclusion of [CL22,
Lemma 2.1] holds in this setting as well. Assume Li ∼= Ldi1 , and choose
hLi = hdiL1

, where hL1 is picked to be the unique hermitian metric that one
obtains from the solution of the Calabi Conjecture [Yau78]. That is, whose
curvature form in c1(L1) is Ricci-flat. Since Y is Calabi-Yau, there is a
holmorphic volume form ΩY on Y such that∫

Y

i2mΩY ∧ Ω̄Y = 1.

Then, computing locally

i

2π
∂∂ u =

i

2π
(
∑
ij

∂2u

∂yi∂yj
∂yi ∧ ∂̄yj +

∑
i

∂u

∂yi
∂∂ yi)

=
i

2π
(
∑
ij

∂2u

∂yi∂yj
∂yi ∧ ∂̄yj +

∑
i

∂u

∂yi
∂∂ φi)

=
i

2π
(
∑
ij

∂2u

∂yi∂yj
∂yi ∧ ∂̄yj + (

∑
i

∂u

∂yi
di) ∂∂ φ1),

where φ1 is a local potential for hL1 . Since the yi define coordinates and φ1

comes from the base, we have

(
i

2π

∑
ij

∂2u

∂yi∂yj
∂yi ∧ ∂̄yj)k+1 =0

(
i

2π
∂∂ φ1)m+1 =0.
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Then,

(
i

2π
∂∂ u)m+k =(

i

2π
)m+k(

m+k∑
n=1

(
m+ k
n

)
(
∑
ij

∂2u

∂yi∂yj
∂yi ∧ ∂̄yj)n

∧ ((
∑
i

∂u

∂yi
di) ∂∂ φ1)m+k−n)

=(
i

2π
)m+k (m+ k)!

k!m!
(
∑
ij

∂2u

∂yi∂yj
∂yi ∧ ∂̄yj)k ∧ ((

∑
i

∂u

∂yi
di) ∂∂ φ1)m

=(
i

2π
)m+k (m+ k)!

m!
det(D2u)(

∑
i

∂u

∂yi
di)

m

k∏
i=1

∂yi ∧ ∂̄yi ∧ (∂∂ φ1)m

=(
i

2π
)m+k (m+ k)!

m!
det(D2u)(

∑
i

∂u

∂yi
di)

m

k∏
i=1

∂ log(|zi|) ∧ ∂̄ log(|zi|)

∧ (∂∂ φ1)m

=
(m+ k)!

m!
det(D2u)(

∑
i

∂u

∂yi
di)

m

k∏
i=1

(
i

2π
∂ log(|zi|) ∧ ∂̄ log(|zi|))

∧ (
i

2π
∂∂ φ1)m.

Here, we used that the only nonzero term occures when n = k and the fact
that (∂∂ φ1)m gives a volume form, so wedging with ∂yi = −∂ log(|zi|) +
di∂φ1 is the same as wedging with −∂ log(|zi|). Now, since i

2π
∂∂ φ1 is Ricci

flat on Y , we have

(
i

2π
∂∂ φ1)m = cΩY ∧ Ω̄Y

for some constant c. Thus, the normalization
∫
Y
i2mΩY ∧ Ω̄Y = 1 implies

that
c = i2m

∫
Y

c1(L1)m.

Therefore, one has a solution to

det(D2u)

∫
Y

(Du)m = e−λu,

if, and only if,

(
i

2π
∂∂ u)m+k =

(m+ k)!

m!
e−λu

k∏
i=1

(
i

2π
∂ log(|zi|) ∧ ∂̄ log(|zi|)) ∧ (i2mΩY ∧ Ω̄Y ).
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Hence, if, and only if, i
2π
∂∂ u has Ricci curvature equal to λ.

It is not clear to the author, if the proportionality condition imposed on
the line bundles is reasonable in general, when one considers model metrics
near the simple normal crossing divisors on good resolutions of singulari-
ties, since exceptional divisors appearing on such resolutions typically are
not Q-linearly equivalent. If one restricts attention to a "maximal inter-
section" (say in a point) of exceptional divisors in a single chart, then the
proportionality is void, and one gets back the real Monge-Ampére equation
on the manifold Rk

>0 ⊂ trop((C∗)k).
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Part II

Stability of fibrations
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2 The classical setting

Introduction

The search for special Kähler metrics representing cohomology classes of line
bundles on compact Kähler manifolds has a long and rich history. From
the problem of Calabi [Cal54] over to its eventual solution by Yau [Yau77],
[Yau78] and the subsequent development of K-stability, designed to obstruct
the existence of Kähler-Einstein or constant scalar curvature Kähler metrics
(cscK) [Tia97],[Don02]. From the perspective of moduli theory, one of the
key applications of the existence of such special metrics is to include it as
part of the data for moduli problems in order to obtain a moduli space
with better properties. For instance, the moduli space of Fano manifolds of
dimension n with finite automorphism group, which admit Kähler-Einstein
metrics is seperated [Oda12], and the moduli space of certain Fano surfaces
is proper [OSS16]. In recent years, K-stability has taken on a life of its own,
and has been used to prove, that the moduli space of K-polystable log fano
pairs is projective [LXZ22].

In this chapter, we review some algebraic aspects of K-stability. This is
done to motivate the development of fibration stability and, to give some
details which will be needed later on in chapter 3. First, we describe an
approach to the the cscK problem 2.1 to motivate the introduction of test
configurations and the notion of K-stability 2.2 of ample test configura-
tions. We introduce the Donaldson-Futaki invariant 2.2 and describe how
to compute it intersection theoretically on the compactification of a test
configuration. Afterwards, we describe a recent generalization of Fujita’s β
invariant 2.2 and sketch how it gives rise to a notion of stability. Finally,
we sketch the link between filtrations of the section ring, test configurations
and divisorial valuations, which provide the main conceptual background
for the work in chapter 3 and the relation of the β invariant with the
Donaldson-Futaki invariant 2.3.

2.1 CscK metrics - a motivating problem

In the following, we sketch the cscK problem and try to convey how one
eventually is led to K-stability as a means for testing whether or not a given
polarized manifold has a constant scalar curvature Kähler metric represent-
ing the first Chern class of the polarizing bundle. To fix a notation, let
(X,ω0) be a compact Kähler manifold of dimension n with Kähler class
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[ω0] ∈ H2(X,R), and let

K(ω0) ={φ ∈ C∞(X,R)|ωφ = ω0 + i ∂∂ φ > 0}

be the space of potentials parametrizing the Kähler metrics in the class [ω0].

Definition 2.1.1. A metric ωφ ∈ [ω0] is a constant scalar curvature Kähler
metric (cscK) if

S(ωφ) = Ŝ =
nc1(M) · [ω0]n−1

[ω0]n
,

where the latter is the intersection number in cohomology.

The Mabuchi functional

CscK metrics in a given cohomology class have by now several variational
interpretations. They can be seen as extremal metrics with vanishing Futaki
invariant. That is, they are critical points of the Calabi functional

Cal(ω) =

∫
X

S(ω)2ωn

such that, another functional, the Futaki invariant, vanishes on the space
of holomorphic vector fields, admitting a holomorphy potential [Szé14].

Another variational interpretation of cscK metrics was given by Mabuchi
[Mab85], who defined a functional on K(ω0), having precisely cscK metrics
as its critical points. The space K(ω0) is an open cone in the vector space
C∞(X,R). Therefore, it has a natural differentiable structure, and one may
identify TφK(ω) ∼= C∞(X,R). In particular, one can define the 1-form

Futφ(f) =

∫
X

f(Ŝ − S(ωφ))ωnφ ,

which can be shown to be closed. Therefore, sinceK(ω0) is a cone containing
0, it is contractible. Thus, it follows by the infinite dimensional Poincaré
Lemma [KM97] that there is a functionalM : K(ω0)→ R unique up to the
addition of a constant such that dMφ = Futφ.

Definition 2.1.2. The functional M : K(ω0) → R is called the Mabuchi
functional.

It is clear that dMφ = 0, if, and only if, ωφ is a cscK metric in the
Kähler class of ω0. One may introduce a Riemannian metric on K(ω0),
which at a point φ is given by the formula
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〈f, g〉φ =

∫
X

fgωnφ .

In turn, one obtains a notion of geodesics t 7→ φt on K(ω0). One then has

Proposition 2.1.3 ([Mab87]). The Mabuchi functionalM : K(ω0)→ R is
convex when restricted to any geodesic.

In particular, an obstruction to the criticality of a point φ arises. If
t 7→ M(φt)−M(φ)

t
is asymptotically nonpositive for some geodesic path φt

emmanating from φ, then ωφ cannot be a cscK metric. This suggests that
in order to have existence of a cscK metric, then for any geodesic ray t 7→ φt
the slope at infinity

lim
t→∞

M(φt)

t

must be nonnegative. Geodesic rays in K(ω0) give rise to trivial families
X ×∆∗1 → ∆∗1, where ∆∗1 is the punctured unit disc, such that the fibre Xt

is equipped with the metric ωφ− log(|t|) . Conversely, any S1-invariant trivial
family of fibrewise Kähler metrics represents a geodesic ray in K(ω0) when
it satisfies a certain Monge-Ampére equation [Don99] on X ×∆1.

Rephrased in this way, one might try to define a positivity notion on
potential limits over 0, and then relate it to the slope at infinity for the
Mabuchi functional in order to determine whether (X,ω0) carries a cscK
metric or not. This is morally the philosophy of K-stability introduced by
G. Tian in [Tia97] and later refined by Donaldson in [Don02], which viewed
this way is a means of probing the slopes at infinity for geodesics arising
"algebraically", i.e., from C∗-degenerations in projective space, when the
Kähler class in question is the first Chern class of a line bundle.

2.2 K-stability
In the following, let (X,L) be a polarized variety. That is, L is an ample
line bundle on the variety X.

Definition 2.2.1 ([Don02]). A test configuration for (X,L) is the following
data (X ,L) where

• X is a normal flat C∗-equivariant family X → C, where C is equipped
with the standard action.

• The C∗ action lifts to L, making the bundle map L → X , C∗-
equivariant.
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• (X1,L1) ∼= (X,Lr) for some r ∈ N>0.

One calls r the exponent of the test configuration. We say the test config-
uration is ample, if L is relatively ample. If the central fibre is integral, we
say the test configuration is integral.

From the definition, C∗-equivariance of L → X → C implies that for all
t 6= 0,

(Xt,Lt) ∼= (X1,L1) = (X,L).

Hence, one has L|X\X0
∼= p∗1L, as C

∗ linearized line bundles, where p1 : X ×
C∗ → X is the projection. Moreover, there is an induced C∗ action on the
central fibre (X0,L0).

Definition 2.2.2. For at test configuration (X ′,L′) of(X,L), we call a map
f : (X ,L) 99K (X ′,L′) a modification of (X ′,L′) if it is equivariant, proper
and birational over C, and (X ,L) is also a test configuration for (X,L). We
say (X ,L) dominates (X ′,L′), if f is a morphism.

Example 2.2.3. Given any X with a polarization L, we always have the
trivial test configuration, which is X = X ×C equipped with the action on
the second component and with the same action on L = p∗1L = L×C. More
generally, given an effective action ρ : C∗ → Aut(X,L) one can similarly
define X = X × C,L = p∗1L and equip the pair with the action

X × C×C∗ → X × C

given by (x, t, t′) 7→ (ρ(t′)x, t′t). A test configuration arising in this fashion
is called a product test configuration.

Any test configuration (X ,L) is a modification of the trivial test configu-
ration (X×C, p∗1L), since we by definition have an equivariant isomorphism

(X × C∗, p∗1L) ∼= (XC∗ ,LXC∗ )

over C∗. This means that the interesting geometry of a test configuration
all takes place near or at the central fibre.

A slightly less trivial, but prototypical example of a test configuration
is the following:
Example 2.2.4. Given the elliptic curve X = {x3 + xyz − z3 = 0} ⊂
P2
C with L = O(1)P2

C
|X and take X = {t3k1x3 + tk1+k2+k3xyz − t3k3z3 =

0} ⊂ P2
C × C with L = p∗1L. Now, clearly we have Xt ∼= X for t 6= 0,

since this is nothing but the closure of the orbit of X under the action
t · [x, y, z] = [tk1x, tk2y, tk3z], where k1, k2, k3 ∈ Z. The action lifts to O(1)
as t · l(x, y, z) = l(tk1x, tk2y, tk3z). Therefore, this is a test configuration of
exponent r = 1.

38



In fact, the above example illustrates the principle that ample test con-
figurations arise as flat completions of C∗ orbits inside a projective space.

Proposition 2.2.5 ([RT06a, prop. 3.7]). Any ample test configuration
(X ,L) of (X,L) is isomorphic to the Zariski closure of a C∗-orbit inside a
projective space.

We shall need the following Lemma, whose proof is well known:

Lemma 2.2.6. For any locally closed i : X → Y into a Noetherian scheme
and f : Y → C flat such that X ⊂ f−1(C∗) is closed, there exists a unique
subscheme j : X ′ → Y such that f ◦ j is flat and X ′f−1(C∗)

∼= X. X ′ is
scheme theoretic closure of i(X) with its induced subscheme structure.

Proof. Since flatness is a local property, we can prove existence by consid-
ering the local case, i.e., when Y = Spec(B)) is affine. Then, since X is a
Zariski closed subset of the generic fibre, one has that X = Spec((B ⊗C[t]

C[t±])/I) for some ideal I ⊂ B ⊗C[t] C[t±]. The scheme theoretic closure is

X ′ = Supp(coker : OY → i∗(OX))

Hence, X ′ has as its defining ideal the kernel I ′ of the morphism

B → (B ⊗C[t] C[t±])/I → 0

which defines the inclusion X → Y . Therefore X ′ = Spec(B/I ′). Since we
are over a discrete valuation ring, we have thatB/I ′ is flat, if it is torsion free
as a C[t]-module (see e.g. [Eis95]). But since B/I ′ is isomorphic as a C[t]-
module to B⊗C[t]C[t±]/I, the result follows if one knows that B⊗C[t]C[t±]/I
is torsion free as a C[t]-module. However, this is automatic as B⊗C[t]C[t±]/I
is a flat C[t±]-module, and C[t±] is a flat C[t]-module. Indeed, from this
it follows that B ⊗C[t] C[t±]/I is a flat C[t]-module. Therefore, the Zariski
closure is flat and

B/I ′ ⊗C[t] C[t±] ∼= B ⊗C[t] C[t±]/I,

so it satisfies the conditions of the lemma. Next we show uniqueness of
this subscheme, which allows us to glue the previous construction. Suppose
X ′, X ′′ are two closed subschemes of Y satisfying the conditions of the
lemma. Then, the defining ideals J ′, J ′′ must satisfy

B/J ′ ⊗C[t] C[t±] ∼= B/J ′′ ⊗C[t] C[t±].

Since B/J ′, B/J ′′ are both flat over C[t], it follows that the maps

B/J ′ → B/J ′ ⊗C[t] C[t±]
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given by f 7→ f⊗C[t]1 are both injective (kernel is given by torsion elements).
Hence, precomposing gives that the map

B → B/J ′ ⊗C[t] C[t±]

has kernel exactly J ′. The same goes for the map B → B/J ′′⊗C[t]C[t±], and
so we have J ′ = J ′′, from which is follows that X ′ = X ′′ as subschemes.

We call the X ′ in the previous Lemma the flat limit, or the flat comple-
tion of X.

Proof. (2.2.5) Denote the map π : X → C. By relatively ampleness of L
there is for some k sufficiently big an equivariant embedding

X → PSpec(C[t])(π∗(kL)))

over C = Spec(C[t]). Note that X must be the flat limit of X \ X0 which
is isomorphic to X × C∗, which agrees with the orbit of X1

∼= X under the
C∗-action.

Now, π∗(kL) is flat over C[t] and finitely generated, hence it is projec-
tive, and thus free, since C[t] is a principal ideal domain. In other words,
PSpec(C[t])(π∗(kL))) is a trivial projective bundle over C of the form P(V )×C,
where V is a finite dimensional C vector space. By embedding C equivari-
antly in P1, one obtains an equivariant embedding

X → P(V )× P1 → P2(dim(V )+1)−1

identifying X with the Zariski closure of the orbit X ∼= X1 under a C∗-
action.

For a test configuration, there is in many circumstances a correspon-
dence between scheme theoretic properties of X,X0 and the total space
X .

Proposition 2.2.7 ([BHJ17] prop. 2.6). Let X be a (not necessarily nor-
mal) test configuraiton for X, then

• X is reduced, if, and only if, X is reduced.

• If X is normal and X0 is reduced, then X is normal

• X is a variety if, and only if, X is a variety.

In particular, we see that a C∗-equivairant family (X ,L)→ C extending
(X,L) is normal when the central fibre is integral.
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The Donaldson-Futaki Invariant

In the geometric invariant theory developed by Mumford [MFK94], the
stability with respect to a group action of a point p in a projectice variety,
can be characterized by the sign of the weights on a lift to affine space of the
limit limt→0 ρ(t)·p = q under the action of any C∗-subgroup. The celebrated
Kempf-Ness theorem [KN79], [MFK94] gives another characterization of
stability for points on an equivariantly polarized manifold (X,L) in terms
of a moment-map µ of the action with respect to any Kähler metric in
c1(L). Roughly speaking, the stability of a point depends on how the orbit
intersects µ−1(0). The moment map picture forms the basis for the notion
of K-stability of a polarized variety. Indeed, a test configuration can be
thought of as the closure of a C∗-orbit in the category of polarized varieties,
and the scalar curvature can be thought of as a moment map for this action
whose norm squared is zero, if, and only if, the metric is cscK (see [Szé14]).

In this section, we introduce the Donaldson-Futaki invariant associated
to a given test configuration. Intuitively, this should be thought of as a
weight attached to the limit of the C∗-orbit of (X,L), measuring the degen-
eration. Since X0 has a C∗-action, there is a C∗-action on H0(X0, kL0), and
the Donaldson-Futaki invariant is defined in terms of the ratio between the
asymptotic growth in dimension of H0(X0, kL0) and its total weight. By
analyzing the asymptotic behaviour of Bergman kernels, Donaldson [Don05]
proved that the negative of the Donaldson-Futaki invariant provides a lower
bound for the norm of the moment map for any metric ω ∈ c1(L). Thus,
if there is a test configuration for (X,L), with negative Donaldson-Futaki
invariant, then there cannot be a cscK metric in c1(L).

Definition 2.2.8. The weights of a C∗-action, ρ : C∗ → Gl(V ), on C-
vector space V is the collection of exponents appearing in the eigenspace
decomposition

V ∼=
⊕
n∈Z

Vχn

where Vχn = {v ∈ V |ρ(t)(v) = χn(t)v} and χn(t) = tn. The total weight
wt(V, ρ) is the weight of the action on det(V ). In particular, if n1, . . . , ndim(V )

are the weights of the action, then the total weight is

wt(V, ρ) =

dim(V )∑
i=1

ni.

Alternatively, when writing Dρ1 : T1 C∗ = C → gl(V ), the total weight
is Tr(Dρ1(1)). Observe that when one has an equivariant short exact se-
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quence,
0→ (ρM ,M)

f→ (ρN , N)
g→ (ρV , V )→ 0.

Then the natural equivariant isomorphism

det(N) ∼= det(M)⊗ det(V )

given by

m1∧· · ·∧mrk(M)⊗v1∧· · ·∧vrk(V ) 7→ f(m1)∧· · ·∧f(mrk(M))∧n1∧· · ·∧nrk(V )

where ni is arbitrary in the fibre g−1(vi), shows that the total weight satisfies

wt(ρN , N) = wt(ρM ,M) + wt(ρV , V ).

If f is merely an injection such that the image is preserved by ρN , then we
have

wt(ρN , N) = wt(ρN |Im(f), Im(f)) + wt(ρV , V ).

Thus, the weight determines a map

wt : {(V, ρV )} → Z,

which is is additive on equivariant short exact sequences.

Remark 2.2.9. We note here a convention. Given a linear action ρ : C∗ →
Gl(V ) on V , with weights λ1, . . . , λn and weight vectors vi, then we equip
the dual vector space V ∨ with the unique C∗-action such that the pairing
〈w∨, v〉 = w∨(v) satisfies 〈t · w∨, t · v〉 = 〈w∨, v〉 for all, v ∈ V,w∨ ∈ V ∨.
Thus, the action is given by t · w∨(v) = w∨(t−1 · v), and the dual basis v∨i
become weight vectors of weight −λi. We call this the dual action. From an
action on V , there is an induced action on PC(V ) such that O(−1) becomes
an equivariant line bundle. Indeed, the action is just given by the action on
V , so O(1) also has the structure of an equivariant line bundle, along with
the dual action.

It is well known that the global sections are H0(PC(V ),O(1)) = V ∨,
which has the dual action. Therefore, the weights of the global sections
are −λ1, . . . ,−λn. In particular, since H0(PC(V ),O(k)) = Symk

C(V ∨), we
have weights given by (−1)kλi1 . . . λik , where 1 ≤ ij ≤ n,∀j. The standard
action on the vector space C is of weight 1, hence the trivially extended
action to C2 has weights 0, 1. Therefore, the weights of OP1

C
(1) with this

action is 0,−1.
When C∗ acts algebraically on an affine scheme X = Spec(A), then

this is equivalent to a Z grading of A say A =
⊕

λ∈ZAλ, where Aλ is a C-
module. Here, Aλ consists of the algebraic functions which are homogeneous
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of degree λ with respect to the C∗-action. When A = C[x1, . . . , xn] and
the C∗-action is linear, then the relation between weights of the associated
vector space and this decomposition is given as follows. The associated
vector space has weights λ1, . . . , λn ,if, and only if, there are generators
z1, . . . , zn of the C-algebra A such that zi ∈ Aλi . One has a similar result
when considering X = ProjB(

⊕
k≥0Ak), with A0 = B. If there is a graded

decomposition as a B-algebra⊕
k≥0

Ak =
⊕
k≥0

(
⊕
λ∈Z

Ak,λ),

where Ak =
⊕

λ∈ZAk,λ is a decomposition of B-modules. Then there is
a C∗(B) = Spec(B[t±])-action on ProjB(

⊕
k≥0Ak). Indeed, one considers

the graded comorphism⊕
k≥0

Ak → (
⊕
k≥0

Ak)⊗B B[t±]

given on homogeneous components by ak 7→
∑

λ ak,λ ⊗ tλ. Upon localiz-
ing to any affine given by some element a ∈ Ak,λ, this gives a morphism
D(a) × C∗(B) → D(a). Since the graded ring can be generated by such
elements, these then glue to a global morphism X × C∗(B) → X. In the
case where A0,λ = 0 whenever λ 6= 0, then the morphism is over Spec(B),
corresponding to a C∗-action on the fibres of X → Spec(B). In the special
case where B = C[t], then C∗(B) = Spec(C[t±]) = C∗ gives a C∗-action
such that the map X → C is equivariant, because we have commutativity
of the diagram

(
⊕

k≥0Ak)⊗C[t′] C[t±]
⊕

k≥0Ak

C[t′]⊗ C[t±] C[t′].

Continuing in this special case, assume X is complete, then one has a finite
dimensional C vector space H0(X,O(k)) = Ak with an induced C-linear
C∗-action Ak × C∗ → Ak induced by the comorphism Ak → Ak ⊗ C[t±].
This is constructed in such a way that the weight spaces are Ak,λ. Thus the
total weight is

wt(H0(X,O(k)) =
∑
λ∈Z

dimC(Ak,λ)λ.
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Lemma 2.2.10. For any C∗-linearized ample line bundle L on a variety X,
the total weight on the global sections wt(H0(X,Lk)) is a degree dim(X)+1
polynomial in k for k � 0.

Proof. We proceed by induction on the dimension of X. Assume dim(X) =
0, then a C∗-linearized line bundle is just a 1-dimensional C-vector space L
with an equivariant identification H0(X,L) ∼= L. Therefore H0(X, kL) ∼=
L⊗k and the comments above show that

wt(H0(X, kL)) = kwt(L) = kwt(H0(X,L))

a polynomial of the desired type. Assume the claim holds for any pair
(Y,H), where dim(Y ) < dim(X) and H ample. Then, since L is ample we
can (by tensoring if necessary) assume that the space of invariant sections
H0(X,L)C

∗ 6= 0, and that H1(X,Lk) = 0 for all k > 0. Pick s ∈ H0(X,L)C
∗

nonzero and consider the equivariant short exact sequence

0→ Lk−1 ⊗s→ Lk → ι∗ι
∗Lk → 0

where ι : V (s) → X is the inclusion of the vanishing locus for s. Then,
there is an equivariant short exact sequence

0→ H0(X,Lk−1)→ H0(X,Lk)→ H0(V (s), ι∗Lk)→ 0

so

det(H0(X,Lk)) = det(H0(X,Lk−1))⊗ det(H0(V (s), (ι∗L)k))

= . . .

=
k−1⊗
i=0

det(H0(V (s), Lk−i)),

which implies that

wt(H0(X,Lk)) =
k−1∑
i=0

wt(H0(V (s), (ι∗L)k−i)).

Since ι∗L is ample, we can use the induction hypothesis to (by potentially
tensoring L further) assume that wt(H0(V (s), (ι∗L)m)) is a polynomial
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P (m) for all m ≥ 0. Thus

1

k
wt(H0(X,Lk)) =

1

k

k−1∑
i=0

P (k − i)

=
1

k

k∑
i=1

P (i)

=
1

k

k∑
i=1

P (
i

k
k)

→
k→∞

∫ 1

0

P (tk)dt.

So since wt(H0(X,Lk)) is integer valued we must have the equality

wt(H0(X,Lk)) = k

∫ 1

0

P (tk)dt =

∫ k

0

P (t)dt

for k � 0.

From the previous lemma, we see that when dim(X) = n, then we can
expand for k � 0 as follows:

wt(H0(X0, kL0)) = b0k
n+1 + b1k

b +O(kn−1).

Similarly, we can expand the Hilbert polynomial

h0(X0, kL0) = a0k
n + a1k

n−1 +O(kn−2))

which coincides with the Hilbert polynomial for h0(X, kL), since X → C is
flat, and L is relatively ample, so t→ h0(Xt, kL|Xt) = χ(Xt, kL|Xt) is locally
constant for k � 0 [Har10, III thm. 9.9]. We are now ready to define the
Donaldson-Futaki invariant of a test configuration.

Definition 2.2.11. [Don02] The Donaldson-Futaki invariant of a test-
configuration (X ,L) of (X,L) is the integer

DF (X ,L) =
a1b0 − a0b1

a0

.

This coefficient is the −C1 term in the asymptotic expansion

wt(H0(X0, kL0))

kh0(X0, kL0)
= C0 + C1k

−1 +O(k−2).
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The invariant is a generalization of the classical Futaki invariant for po-
larized varieties. In fact, in the case of product test configurations the
differential geometric Futaki invariant is −4π times the Donaldson-Futaki
invariant [Szé14, chapter 7].

Definition 2.2.12. [Don02] A polarized variety (X,L) is

• K-semistable if DF (X ,L) ≥ 0 for any test configuration (X ,L)

• K-stable if DF (X ,L) > 0 for all nontrivial test configurations.

• K-polystable if (X,L) is K-semistable and DF (XL) = 0, if, and only
if, it is a product test configuration (X × C, p∗1Lr).

We clearly have the implications

K-stable =⇒ K-polystable =⇒ K-semistable.

As alluded to earlier, K-stability is important, because it conjectured
to be an algebraic criterion for the existence of a cscK metrics in the Chern
class of L.

Conjecture 1 (Yau-Tian-Donaldson (YTD)). A smooth polarized variety
(X,L) has a cscK metric in c1(L), if, and only ifk (X,L) is K-polystable.

Various parts and modifications of the YTD conjecture has been estab-
lished in numerous special cases, for instance the Fano case L = −KX in
the breakthrough papers [CDS14a][CDS14b] [CDS14c]. It is however ex-
pected that a slightly stronger condition than K-polystability is needed for
the statement above to hold in general [Szé15].

Importantly, the Donaldson-Futaki invariant of a test configuration can
be computed intersection theoretically after completing it over P1

C, [Wan12],[Oda13].
Concretely, the completion of a test configuration is constructed as follows:
since a test configuration is equivariantly trivial away from the central fibre
(X \ X0,L|X\X0) ∼= (X × C∗, p∗1L = L × C∗), one can extend this portion
over infinity to a pair (X ,L) → P1

C by gluing the two pieces (X × C, p∗1L)
along the portion, where one has an equivariant splitting. That is, it is the
pushout of the following diagram

(X \ X0,L|X\X0) ∼= (X × C∗, p∗1L), (X × C, p∗1L)

(X ,L)

Id×(·)−1

i
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where the action on (X,×C) is such that Id × (·)−1 becomes equivariant.
This operation gives L a C∗-linearized line bundle on X such that the C∗-
action L|X∞ ∼= L is trivial. Observe that the extension operation

L 7→ L

is multiplicative, in the sense that it preserves tensor products when ten-
soring with line bundlesM such thatM|X\X0

∼= p∗1M , i.e.,

L ⊗M 7→ L⊗M ∼= L ⊗M.

From the multiplicative property and the fact that the trivial bundle extends
trivially, it follows that the assignment L 7→ L is injective for all such line
bundles.

There is a notion of a norm of a test configuration first introduced by
Dervan [Der16]

Definition 2.2.13. The (minimum)-norm of a completed test configura-
tion is the number

||(X ,L)||min =
Ln+1

n+ 1
− Ln.(L − φ∗p∗1L),

where φ : Y → X × P1
C is a resolution of indeterminacy of X 99K X × P1

C
and we have surpressed the pullback of L.

It is then a theorem [Der16], [BHJ17] that the vanishing of this quantity
exactly detects when a completed test configuration comes from a product
test configuration. The fact that there is an intersection theoretic criterion
detecting product test configurations is an instance of the general principle,
that the invariants arising from test configurations can be interpreted and
calculated as intersection numbers on its completion.

Lemma 2.2.14. Denote the completed test configuration by p : (X ,L) →
P1
C. If the test configuration (X ,L) is ample, then one can compute the

weight polynomial wt(H0(X0, kL0)) as a Hilbert polynomial

wt(H0(X0, kL0)) = h0(X ,Lk ⊗ p∗OP1
C
(−1)).

Proof. The space X̄ is clearly normal when X is so, hence, there is a well
defined theory of Weil divisors on X̄ . Moreover, it is irreducible since it
is glued together from two irreducibles over an open affine subset. Note
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that the bundle L̄ is p-ample, since the restriction to any fibre is am-
ple. Moreover, for any coherent sheaf F on X̄ , the derived sheaves satisfy
Rip∗(F ⊗ L̄k) = 0,∀i > 0, when k � 0 (see [Laz04, pp 94-97]) .

By definition, the two fibres X 0 = X0,X∞ ∼= X are rationally equivalent
effective divisors on X . Hence, their associated line bundles are isomorphic.
Indeed, they are both vanishing loci of σ0, σ∞ ∈ H0(X , p∗OP1

C
(1)) of weight

−1, 0 respectively.
Multiplication by σ0, σ∞ gives two families of short exact sequences of

sheaves
0→ Lk ⊗ p∗OP1

C
(−1)

⊗σ0→ Lk → Lk|X0 → 0

0→ Lk ⊗ p∗OP1
C
(−1)

⊗σ∞→ Lk → Lk|X∞ → 0.

Taking the pushforward of these short exact sequences by p, one obtains
by the vanishing Ri(p∗(L̄ ⊗ p∗OP1

C
(−1))) = 0, i > 0 another pair of short

exact sequences of sheaves on P1
C. Taking global sections of these, one

gets long exact sequences in cohomology. But by the vanishing Ri(p∗(L̄ ⊗
p∗OP1

C
(−1))) = 0 for i > 0, the Leray spectral sequence degenerates on page

2, so

H i(X̄ , L̄k ⊗ p∗OP1
C
(−1)) = H i(P1

C, p∗(Lk)⊗OP1
C
(−1)) = 0,∀i > 0.

One reaches similar conclusions for the other terms in the sequence, so when
k � 0, one has short exact sequences of global sections given by

0→ H0(X ,Lk ⊗ p∗OP1
C
(−1))

⊗σ0→ H0(X ,Lk)→ H0(X0,L0)→ 0

0→ H0(X ,Lk ⊗ p∗OP1
C
(−1))

⊗σ∞→ H0(X ,Lk)→ H0(X∞,L
k|X∞)→ 0.

Observe, that the second short exact sequence is equivariant because σ∞
is invariant, so from the additive property of the weight, it follows that we
have

wt(H0(X ,Lk)) = wt(Im(⊗σ∞)) + wt(H0(X∞,Lk∞)). (2)

The first short exact sequence is not equivariant, however, it comes from
multiplication by a section σ0 of weight −1, hence the image is an invariant
subspace and thus

wt(H0(X ,Lk)) = wt(Im(⊗σ0)) + wt(H0(X0,Lk0)). (3)

Since Lk is generated by global sections, and X is irreducible, we can with
no essential loss of information consider the C∗-invariant Zariski dense open
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subset U where σ∞
σ0

is defined. Then, any s ∈ Im(⊗σ0) satisfies

s|U =
σ0

σ∞
s̃|U

for some uniquely determined s̃ ∈ Im(⊗σ∞). The assignment s 7→ s̃ is a
linear isomorphism Im(⊗σ0) → Im(⊗σ∞). Moreover, it shifts the weight
spaces by 1. Indeed suppose t · s = tλs, then

t · s̃|U = t · (σ∞
σ0

s|U)

= t
σ∞
σ0

t · s|U

= tλ+1σ∞
σ0

s|U

= tλ+1s̃|U

Hence t · s̃ = tλ+1s̃. Therefore,

wt(Im(⊗σ∞)) = wt(Im(⊗σ0)) + h0(X ,Lk ⊗ p∗OP1
C
(−1)).

Combining the two formulas 2,3 with this relation we get

wt(H0(X0,Lk0)) = h0(X ,Lk ⊗ p∗OP1
C
(−1)) + wt(H0(X∞,Lk∞)),

which is the desired equation once we note that the action on (X∞,L∞) ∼=
(X,L) is trivial, hence all global sections must be invariant and so the total
weight is 0.

Theorem 2.2.15 ([Wan12],[Oda13]). If π̄ : X̄ → P1
C is a completed test con-

figuration associated to an ample test configuration (X ,L) and n = dim(X),
then one has

2(n!)DF (X ,L) =
n

n+ 1
µ(X,L)L̄n+1 + L̄n ·KX̄/P1

C

where µ(X,L) = −KX ·Ln−1

Ln
is the slope of L with respect to X and KX̄/P1

C
is

the relative canonical class given by KX̄ − π̄∗KP1
C
.

Proof. The Hirzebruch-Riemann-Roch theorem holds for normal quasi-projective
varieties [Ful14, chapter 18], so we have

h0(X0, kL0) =h0(X, kL)

=
kn

n!
Ln +

kn−1

(n− 1)!
Ln−1 · (−KX

2
) +O(kn−2),
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when k � 0. By the previous lemma, we can calculate by Riemann-Roch

wt(H0(X0, kL0)) =h0(X̄ , kL̄+ π̄∗OP1
C
(−1))

=

∫
X

ch(L̄k ⊗ π̄∗OP1
C
(−1))td(X̄ )

=(
kn+1

(n+ 1)!
L̄n+1 +

kn(n+ 1)

(n+ 1)!
L̄n · π̄∗OP1

C
(−1))td0(X̄ )

+
kn

n!
L̄ntd1(X̄ ) +O(kn−1)

=
kn+1

(n+ 1)!
L̄n+1 +

kn

2(n!)
L̄n · (−KX̄ + 2π̄∗OP1

C
(−1)) +O(kn−1)

=
kn+1

(n+ 1)!
L̄n+1 − kn

2(n!)
L̄n ·KX̄/P1

C
+O(kn−1),

where we used that td0(X̄ ) = 1, td1(X̄ ) = c1(X̄ )
2

= −KX̄
2
, KX = OP1

C
(−2).

From this we obtain

DF (X ,L) =
a1

a0

b0 − b1

=
n!(−KX) · Ln−1

(n− 1)!2Ln
1

(n+ 1)!
L̄n+1 +

1

2(n!)
L̄n ·KX̄/P1

C

=
1

2(n!)
(

n

n+ 1
µ(X,L)L̄n+1 + L̄n ·KX̄/P1

C
).

Fujita’s β invariant and its generalization

In this section, we define and describe an invariant associated to prime
divisors defined over a polarized variety (X,L) originally defined by Fujita
[Fuj19] and recently generalized by Dervan and Legendre [DL22]. We fix a
polarized variety (X,L). First we need some definitions:

Definition 2.2.16. The slope of (X,L) is the number

µ(X,L) =
−KX .L

n−1

Ln
.

Definition 2.2.17. A prime divisor D ⊂ Y is over X if there is a birational
morphism f : Y → X.
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Definition 2.2.18. The log discrepancy function

AX : {D divisor over X} → Q

is given by

AX(D) = 1 + ordD(KY − f ∗KX),

where f : Y → X is the given birational morphism with D ⊂ Y .

The log discrepancy function is a measure of the multiplicity of the
local equations for D, which one has when pulling back (n, 0)-forms over
the regular part of X along f .

Volume of divisors

Definition 2.2.19. The volume of a Cartier divisor D ⊂ Y over X is

V ol(D) = lim sup
k→∞

h0(Y, kD)

kdim(X)
,

if V ol(D) > 0 we say D is big. The big divisors form an open cone inside
Pic(X).

The volume is a birational invariant of normal varieties in the sense
that if g : Y ′ → Y is a birational morphism of normal varieties such that
H = g∗D, then V ol(H) = V ol(D). For any Cartier divisor D over X we
shall set

V ol(L− tD) := V ol(f ∗L− tD).

The following are a list of properties of the volume function:

Proposition 2.2.20 ([Laz04]). The volume function satisfies

• V ol(kD) = kdim(X)V ol(D)

• V ol(D) depends only on the numerical equivalence class of D.

• Choosing a norm on the finite dimensional vector space N1
R(X), then

there is a constant C(||·||) > 0 such that

|V ol(D)− V ol(E)| ≤ C · (max(||D||, ||E||))dim(X)−1 · ||D − E||

for any two D,E ∈ N1
Q(X).
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In particular, we can extend the initial definition from Pic(X) to PicQ(X)
by using the homogeneity property and from PicQ(X) to PicR(X) by uti-
lizing the continuity estimate. By doing so, the set of Big R-divisors

Big(X) ⊂ PicR(X)

form an open cone (closed under addition by effective divisors), and one
can prove that the volume actually has slightly more regularity on Big(X).

Theorem 2.2.21 ([BFJ08]). V ol is a C1 function on the Big cone, moreover
one has that for any D big and E arbitrary, then

d

dt
V ol(D + tE)|t=0 = n〈Dn−1〉 · E,

where 〈〉 denotes the positive intersection product [BFJ08], which is also ho-
mogeneous and superadditive in all entries and coincides with the standard
intersection product when all entries are nef.

In this setup, the slope of (X,L) can be thought of quite literally as the
slope of the volume in the direction of the anticanonical divisor, since we
have

nµ(X,L)V ol(L) =
d

dt
V ol(L− tKX)|t=0.

Definition 2.2.22. Let L be a big divisor. Then, the pseudoeffective
threshold of a divisor D with respect to a divisor L is the quantity

τL(D) = sup{t > 0|V ol(L− tD) > 0}.

Alternatively, one can decribe the pseudoeffective threshold to be

τL(D) = sup{t > 0|L− tD ≥ 0}.

Indeed, if V ol(L − iD) > 0, then L − iD is in particular effective so
τL(D) ≤ sup{t > 0|L − tD ≥ 0}. But since the big cone is the interior of
the pseudoeffective cone ([Laz04] p. 147 ) (i.e., closure of the effective cone),
it follows that for i > τL(D), we must have H0(Y, f ∗L−iD) = 0. Therefore,
we have equality. Another property to remark is the scaling properties

τkL(D) = kτL(D)

τL(kD) =
1

k
τL(D)

for any k > 0, which follow directly from the scaling property of the volume
2.2.20.
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Definition 2.2.23 ([DL22]). For any prime divisor D over (X,L), the β
invariant with respect to L is

βL(D) =AX(D)V ol(L) + nµ(X,L)

∫ τL(D)

0

V ol(L− tD)dt

+

∫ τL(D)

0

d

ds
V ol(L− tD + sKX)|s=0dt.

It is shown in [DL22] that this gives back Fujita’s original invariant from
[Fuj19] in the Fano case, i.e., when the polarization L = −KX the formula
for the β-invariant reduces to

β−KX (D) = AX(D)V ol(−KX)−
∫ τL(D)

0

V ol(−KX − tD)dt.

Note that the β invariant also scales as

βkL(D) = kdim(X)βL(D).

Very recently, Boucksom and Jonsson [BJ22] extended the β invariant to
positive convex linear combinations of divisorial valuations, which they in-
terpret as certain probability measures supported finite subsets of divisorial
points in an associated Berkovich space. From this, Boucksom and Jonsson
obtain a valuative stability condition implying uniform K-stability, which
is the requirement that the Donaldson Futaki invariant is bounded from
below by a constant times the minimum norm of the test configuration.

Having defined the β invariant, we are now in a position to define a
stability condition for (X,L) coming from divisors.

Definition 2.2.24. We say (X,L) is valuatively

• semistable if βL(D) ≥ 0 for all non-trivial prime divisors D over X.

• stable if βL(D) > 0 for all nontrivial prime divisors D over X

• uniformly stable if there is an ε > 0 such that

βL(D) ≥ ε

∫ τL(D)

0

V ol(L)− V ol(L− tD)dt

for all nontrivial prime divisors over D over X.
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Note that this differs slightly from the convention in [DL22], where they
only define valuative stability with respect to dreamy divisors. Uniformly
valuatively stable means that when

βL(D) = 0,

we are forced to have V ol(L) = V ol(L − tD),∀0 ≤ t < τL(D). But this
cannot be whenD is non-trivial as we will now explain. The volume satisfies
V ol(L− tD) ≤ V ol(L), t ∈ (0, τL(D)) with equality for all such t if and only
if D ≡num 0, since in that case

0 =
d

dt
V ol(L− tD)|t=0 = −n(f ∗(L)n−1) ·D = −n(Ln−1) · f∗(D),

which contradicts ampleness of L. Now, by Kleiman’s characterization of
numerically trivial bundles [Laz04, p. 19], one has that nD ∼ 0 i.e. D = 0
in PicQ(Y ). Therefore we have the implications

uniformly stable =⇒ stable =⇒ semistable.

2.3 A link between valuative stability and
K-stability

We describe how there is a relation between the notion of valuative stability
for a special class of divisors over X and K-stability of integral test config-
urations. First, we sketch a construction arising from filtrations of modules
and graded algebras, due to Rees [Eis95, chapter 5], which is implicitly
used in much of what follows. Fix a given s-module M and a seperated
descending filtration F : Z→ s− subm(M), i.e.,

• Fj+1 ↪→ Fj, ∀j.

• Fj ∼= M , when j is sufficiently small.

•
⋂
i∈I FiM = 0 in M .

Then, one can form the s[t]-submodule

M̃ :=
⊕
j∈Z

t−jFj ⊂M [t±1].
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Lemma 2.3.1. One has for any M that

• M̃ is flat over C[t]

• (M̃)(t)
∼= M [t±1]

• M̃/(t− c)M̃ ∼= M

• M̃/tM̃ ∼= Gr(M,F ) =
⊕

j∈Z Fj/Fj+1.

Proof. The statements are shown in the same order.

• A module is flat over a discrete valuation ring R, if it torsion free as
an R-module. Therefore, it suffices to check that multiplication by t
is injective. We have

t(
∑
j

t−jsj) =
∑
k

t−(j−1)sj = 0 ⇐⇒ ∀j, 0 = sj ∈ Fj−1 ⇐⇒ ∀j, sj = 0 ∈ Fj

since the inclusions Fj+1 ↪→ Fj are all injective. Hence, M̃ is flat over
C[t].

• By exactness of localization, one has

(M̃)(t) ⊂M [t±1](t) = M [t±1],

but this inclusion is surjective since any element mti i ≥ 0 is in the
image by definition and mti i < 0 is in the image of m 1

t−i
.

• Consider the s-linear map φc : M̃ → M given by φc(
∑

j t
−jsj) =∑

c−jsj. It is surjective, and one has (t − c)M̃ ⊂ ker(φc). To show
the converse containment, it is enough to find a factorization∑

j∈Z

t−jsj = (t− c)
∑
j∈Z

t−1kj

=
∑
j∈Z

t−j(kj−1 − ckj)

whenever
∑

j∈Z t
−jsj ∈ ker(φc). Thus, one solves the equation sj =

kj−1−ckj. Since M̃ is direct sum, there is a minimal j0 and a maximal
j1 such that sj0 , sj1 6= 0. So one can set kj0 = c−1sj0 , kj0−p = 0∀p ∈ N.
Now, we solve recursively to obtain

kj = −c−j
j∑

k=j0

ck−1sk.
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This terminates for kj1+1 = 0, if, and only if,
∑j1

k=j0
t−ksk ∈ ker(φc),

because

kj1+1 = c−1kj1 = −cj1
j1∑
k=0

cksk = −cj1φc(
j1∑
j=j0

t−ksk).

Thus ker(φc) ⊂ (t− c)M̃ .

• Consider the map φ0 : M̃ → Gr(M,F ) given by φ0(
∑

j∈Z t
−jsj) =

([sj])j∈Z. Then
∑

j∈Z t
−jsj ∈ ker(φ0), if, and only if, sj ∈ Fj+1 for all

j ∈ Z. But this is equivalent to the factorization M̃ as∑
j∈Z

t−jsj = t(
∑
j∈Z

t−(j+1)sj).

Next, we extend the same reasoning to graded systems of filtrations,
which enables us to define projective degenerations of schemes by applying
the proj or relative proj functors. Suppose one has a graded system of
filtrations for a N-graded ring R =

⊕
k≥0Rk of s-modules with R0 = s.

I.e., for all k ∈ Z>0 one has a filtration

Fk : Z→ s− subm(Rk)

such that it is compatible with the graded multiplication:

Fk,j · Fk′,j′ ⊂ Fk+k′,j+j′ .

Then one can form the graded ring of s(t)-modules:

R̂ =
⊕
k≥0

R̃k =
⊕
k≥0

(
⊕
j∈Z

t−jFk,j) ⊂ R[t±1].

Lemma 2.3.2. The ring R̂ has the following properties

• R̂(t)
∼= R[t±1]

• R̂/(t− c)R̂ ∼= R

• R̂/(t)R̂ =
⊕

k≥0Gr(Rk, Fk)
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Proof. • Localization commutes with arbitrary direct sums, i.e,

R̂(t) = (
⊕
k≥0

R̃k)(t)

∼=
⊕
k≥0

(R̃k )(t)

∼=
⊕
k≥0

Rk[t
±1]

∼= (
⊕
k≥0

Rk)[t
±1]

= R[t±1].

• The ideal (t− c)R̂ =
⊕

k≥0(t− c)R̃k is homogenous so

R̂/(t− c)R̂ ∼=
⊕
k≥0

R̃k/(t− c)R̃k

∼=
⊕
k≥0

Rk

= R.

• The ideal tR̂ is again homogeneous, so

R̂/(t)R̂ ∼=
⊕
k≥0

R̃k/(t)R̃k

∼=
⊕
k≥0

Gr(Rk, Fk).

A natural source of filtrations arise as seen in the following example.

Example 2.3.3. Given D an effective divisor over (X,L), then we always
have an injection

0→ f ∗L−D → f ∗L,

so we have

H0(Y, kf ∗L− λD) ⊂ H0(Y, kf ∗L) ∼= H0(X, kL).

In particular, one has a Z-filtration of the vector space H0(X, kL) with a
natural multiplication in the section ring R(L) =

⊕
k≥0H

0(X, kL) given by
the tensor product.
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From divisors to test configurations

We give a class of divisors over X that always give rise to an integral test
configuration. Moreover, we show that the weight function k → wtk has a
nice description.

Definition 2.3.4 ([Fuj19]). An effective prime divisor D ⊂ Y
f→ X over

X is L-dreamy if there is an integer r > 0 such that the graded ring

R(rL,D) =
⊕
k≥0

(
⊕
λ∈Z

t−λH0(Y, krf ∗L− λD))

is finitely generated as a C[t]-algebra. Write R(rL,D)k for the k graded
piece, and write R(L,D)≥j for the truncated subring

R(L,D)j≥k =
⊕
k≥j

R(L,D)k

with its R(L,D)-module structure.

As in the Rees construction, we think of
⊕

λ∈Z t
−λH0(Y, kf ∗L− λD) ⊂

H0(Y, kf ∗L)⊗C C[t, t−1] with the inherited C[t]-module structure, and the
multiplication is defined by the multiplication of sections

0→ H0(Y, kf ∗L−λD)⊗H0(Y, k′f ∗L−λ′D)→ H0(Y, (k+k′)f ∗L−(λ+λ′)D).

Definition 2.3.5. Given D an L-dreamy divisor, then we call the scheme

(ProjSpec(C[t])(R(L,D)),O(1))

the test configuration for (X,L) associated to D.

Lemma 2.3.6. The test configuration associated to an L-dreamy divisor is
an ample integral test configuration

Proof. The scheme has a natural morphism

π : ProjSpec(C[t])(R(L,D))→ C

given by the identification C[t] ∼= R(L,D)0. The morphism π is flat, because
all R(L,D)k are flat C[t]-modules and thus all homogeneous localization
is flat. Moreover, it is naturally C∗-equivariant, since the C∗-action on
R(L,D) is defined by the Z-grading as in 2.2.9.
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By compatibility or relative proj with base change and the Rees con-
struction, the fibre over 1 is

ProjSpec(C[t])(R(L,D))×C Spec(C[t]/(t− 1)) ∼= ProjSpec(C[t]/(t−1))(R(L,D)/(t− 1)R(L,D))

∼= ProjSpec(C)(
⊕
k≥0

H0(X, kL))

∼= X,

and the fibre over 0 is

ProjSpec(C[t])(R(L,D))×C Spec(C[t]/(t)) ∼= ProjSpec(C[t]/(t))(R(L,D)/tR(L,C))
∼= ProjSpec(C)(Gr(R(L,D))),

where

Gr(R(L,D)) =
⊕
k≥0

(
⊕
λ∈Z

H0(X, kf ∗L− λD)/H0(X, kf ∗L− (λ+ 1)D)).

This ring is integral since any two sections s1 ∈ H0(X, kf ∗L − λD), s2 ∈
H0(X, k′f ∗L− λ′D) has nonzero product s1s2 ∈ H0(X, (k + k′)f ∗L− (λ+
λ′)D)/H0(X, (k+ k′)f ∗L− (λ+ λ′+ 1)D), when s1 vanish exactly to order
λ and vanish exactly to order λ′ along D. Thus, the central fibre is integral
as well. It only remains to be seen that O(1) is relatively ample. By
finite generation of R(L,D), there is a j sufficiently big such that O(1)⊗j ∼=
O(j) is the line bundle associated to the graded R(L,D)-module R(L,D)≥j,
which is generated in degree 1. Therefore, one has a graded surjection

S((R(L,D)≥j))→ R(L,D)≥j → 0.

Here, S denotes the symmetric algebra. This surjection induces a closed
immersion

i : ProjSpec(C[t])(R(L,D))→ PSpec(C[t])(R(L,D)≥j)

such that O(j) = i∗O(1).

From the explicit description, one readily obtains the weight.

Lemma 2.3.7. The weight of the induced test configuration is given by

wtk = (λmin(k)− 1)h0(X, kf ∗L) +
λmax∑

λ=λmin(k)

h0(X, kf ∗L− λD)),
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where

λmin(k) = inf{λ|H0(X, kf ∗L− λD) 6= H0(X, kf ∗L)}
λmax(k) = sup{λ|H0(X, kf ∗L− λD) 6= 0}.

Proof. Since the central fibre is

X0
∼= ProjSpecC(Gr(R(L,D))),

and the bundle is O(1)|X0 , one knows by the remark 2.2.9 that the weight
is

wtk =
∑
λ∈Z

dimC(Gr(R(L,D)k,λ))λ

=
∑
λ∈Z

[
h0(X, kf ∗L− λD)− h0(X, kf ∗L− (λ+ 1)D)

]
λ

=(λmin(k)− 1)h0(X, kf ∗L) +

λmax(k)∑
λ=λmin(k)

h0(X, kf ∗L− λD).

From test configurations to filtrations

From a test configuration (X ,L) of (X,L), there is a natural filtration of
the section ring R(L) =

⊕
k≥0H

0(X, kL) originally investigated by David
Nyström in [Wit12].

Definition 2.3.8. A filtration of a graded ring R =
⊕

k≥0Rk is an assign-
ment of R0-submodules (λ, k) 7→ F λRk ⊂ Rk for (λ, k) ∈ Z×N such that
the multiplication respects the grading

• F λRk · F λ′Rk′ ⊂ F λ+λ′Rk+k′ .

We say it is decreasing if for each k fixed, λ → F λRk is decreasing, i.e.,
F λ+1Rk ⊂ F λRk. We say the filtration is permissible if it has these bounds:

• There is a λ0 such that F λ0Rk = Rk for all k.

• There is a constant C such that FCkRk = 0 for all k.

Example 2.3.9. The filtration induced by an effective divisor over (X,L) is
permissible when D is L-dreamy.
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Lemma 2.3.10 ([Wit12]). Any ample test configuration induces a permis-
sible filtration.

Proof. (Sketch) We set

F λH0(X, kL) = {s ∈ H0(X, kL)|t−λs̄ ∈ H0(X, kL)},

where s̄ is the invariant extension s̄(u, t) = t ·s(u, 1) obtained by identifying
equivariantly LX\X0

∼= p∗1L where p1 : X×C→ C. This is clearly a decreas-
ing filtration of the section ring R(L) in the sense above. It is permissible
by the argument in [Wit12, proposition 6.4].

Lemma 2.3.11 ([Wit12]). The weight polynomial of a test configuration
can be described in terms of the filtration as

wtk =
∑
j

j(dim(F λH0(X, kL))− dim(F λH0(X, kL)))

=

λkmax∑
j=λkmin

dim(F λH0(X, kL) + (λkmin − 1)h0(X, kL),

where again

λkmin = inf{λ|F λH0(X, kL) 6= H0(X, kL)}
λkmax = sup{λ|F λH0(X, kL) 6= 0}.

So, this is analogous with the test configurations arising from dreamy
divisors. From the Rees construction 2.3.2, it follows that the permissi-
ble filtration associated to a test configuration gives rise to another test
configuration, which has the same total weight as the original test configu-
ration, hence these two test configurations have the same Donaldson-Futaki
invariants as observed in [Szé15].

Filtrations of test configurations described by divisors

In this section, we follow [BHJ17] to see how filtrations associated to certain
test configurations can be described by divisors over X.
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Definition 2.3.12. Given a field C ⊂ K, then a valuation v on K is a map
v : K → R̄ := R ∪ {∞} such that for all f, g ∈ K one has

• v(f) = 0 ⇐⇒ f = 0,

• v(fg) = v(f) + v(g),

• v(f + g) ≥ min{v(f), v(g)},

• v(z) = 0, ∀z ∈ C∗ .

By the correspondence v 7→ e−v, this notion of a valuation is equivalent
to a non-Archimedean norm on K which extends the trivial norm on C.
Associated to a valuation v are

• The valuation ring v−1(R̄≥0), which is a local subring of K with max-
imal ideal v−1(R̄≥0),

• the value group (v(R),+),

• the residue field v(R̄≥0)/v(R̄>0).

Given a dominant morphism f : X → Y of varieties, then the map on
function fields f ∗ : K(Y ) → K(X) is an injection, and one can consider
the pushforward f∗v of a valuation v on K(X) given by f∗v(h) = v(f ∗h).
Abhyankar [Abh56] proved the following general inequality for valuations v
on a field K regarding restriction to smaller field extensions C ⊂ F ⊂ K.

tr.deg(v) + rkQ(v) ≤ tr.deg(v|F ) + rkQ(v|F ) + tr.deg(K/F )

here tr.deg(v) denotes the transcendence degree of the residue field over C,
and rkQ(v) is the rank over Q of the value group. Taking K = F = K(Y )
for some variety, then one has in particular

tr.deg(v) + rkQ(v) ≤ dim(Y ). (4)

From this inequality, one identifies classes of valuations on K(Y ) which are
special:

Definition 2.3.13. A valuation v on K(Y ) is

• Abhyankar if there is equality in 4.

• Divisorial if rkQ(v) = 1 and tr.deg(v) = dim(Y )− 1.
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The general Abhyankar inequality then gives some control of the types of
valuations one obtains when considering for example dominating morphisms
Y → X and corresponding injection K(X) → K(Y ). In fact, we shall
consider only the case

p1 : X × C→ X

with corresponding injection p∗1 : K(X) → K(X × C) ∼= K(X)(t). We
denote (p1)∗v = v|K(X).

From the Abhyankhar inequalities, one has

Lemma 2.3.14 ([BHJ17]). If v is Abhyankhar on K(X × C) = K(X)(t),
then so is v|K(X). Moreover, if v is divisorial, then v|K(X) is either divisorial
or trivial.

Proof. If v is Abhyankhar, then

tr.deg(v) + rkQ(v) = dim(X) + 1.

Thus, from the Abhyankhar inequality applied twice one has

dim(X) ≤ tr.deg(v|K(X)) + rkQ(v|K(X)),

but, tr.deg(v|K(X)) + rkQ(v|K(X)) ≤ dim(X) always holds, hence the result.
If v is divisorial, then it is in particular Abhyankhar so

tr.deg(v|K(X)) + rkQ(v|K(X)) = dim(X).

Since the value group of v|K(X) is contained in the one for v, it follows that
rkQ(v|K(X)) ≤ 1. In the case rkQ(v|K(X)) = 0, one has v|K(X) = vtriv, and
in the case rkQ(v|K(X)) = 1, one has that v|K(X) is divisorial.

We shall consider K(X)(t) with the dual action of the standard C∗
action on C, that is z · f(x, t) = f(x, z−1t) for f ∈ K(X)(t). There is yet
another action on valautions v given by dualizing the dual action, i.e.,(z ·
v)(f) = v(z−1 · fx).

Lemma 2.3.15 ([BHJ17]). A valuation v on K(X)(t) is C∗ invariant, if,
and only if, it has the normal form

v(f) = min
µ∈Z

(v|K(X)(fµ) + µv(t)),

where f =
∑

µ∈Z fµt
µ, fµ ∈ K(X). In particular, a C∗ invariant valuation

restricts as v|K(X) = vtriv, if, and only if, v = cordt for some c > 0.
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Proof. Observe that

z ·
∑
µ∈Z

fµt
µ =

∑
µ∈Z

(fµz
−µ)tµ :

Therefore the expression

hv(f) := min
µ∈Z

(v|K(X)(fµ) + µv(t))

must be invariant, since v|K(X)(z
−µfµ) = v|K(X)(fµ).

In general one has

v(f) =v(
∑
µ∈Z

fµt
µ)

≥min
µ∈Z

(v(fµt
µ)

= min
µ∈Z

(v(fµ) + µv(t))

= min
µ∈Z

(v|K(X)(fµ) + µv(t))

=hv(f).

To see the converse inequality when v is invariant, consider the set Γ =
{µ|fµ 6= 0}, and consider the finite dimensional vector space spanC(fµt

µ|µ ∈
Γ) ∼= C|Γ| with its induced C∗-action. Picking distinct zµ ∈ C∗ for each
µ ∈ Γ, one has a C-basis zµ · f . Indeed,

0 =
∑
µ∈Γ

cµzµ · f

=
∑
λ

fλ(
∑
µ

cµz
−λ
µ )tλ

0 =
∑
µ

cµz
−λ
µ , ∀λ ∈ Γ

0 =Zcm

where Z = (z−λµ )µ,λ∈Γ and c = (cµ)µ∈Γ. But Z is invertible, since it is
a multiple of a Vandermonde matrix, hence c = 0. Thus, we can write
uniquely

fµt
µ =

∑
λ

cλzλ · f.
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So, it follows that

v|K(X)(fµ) + µv(t) =v(fµt
µ)

=v(
∑
λ

cλzλ · f)

≥min
λ∈Γ

(v(cλ) + v(zλ · f))

= min
λ∈Γ

v(zλ · f)

=minλ∈Γv(f)

=v(f).

From this characterization, one sees that the central fibre X × {0} of
the trivial test configuration is, up to strict transforms, the only irreducible
component of a central fibre of a test configuration for X which induces
the valuation ordt on K(X × C). In particular, for nontrivial integral test
configurations it follows that the induced valuation on K(X) is divisorial.

Proposition 2.3.16 ([BHJ17]). A divisorial valuation v on K(X)(t) sat-
isfies v(t) > 0 and is C∗-invariant, if, and only if, v = cordD, c > 0 and D
is an irreducible component of the central fibre of a test configuration X for
X.

Proof. (Sketch) Since any test configuration is equivariantly birational to
the trivial one ρ : X 99K X×C, there is an isomorphismK(X×C) ∼= K(X ).
It is clear that ρ∗ordD(t) = ordD(ρ∗t) > 0 since X0 = {ρ∗t = 0} is effective.
The valuation is C∗-invariant, because D is C∗-invariant. For the converse,
suppose v is a C∗-invariant divisorial valuation on K(X × C). Then, upon
compactifying the trivial test configuration and blowing up the centres of
v iteratively, it follows by a theorem of Zariski 3.2.10, [KM98, lemma 2.45]
that there is a divisor D on one of these dominating models ρ : Y → X×P1

C,
such that cρ∗ordD = v for some c > 0. Since the blown up centres are
C∗-invariant and contained in the central fibre at each step, the resulting
composition of maps ρ will be C∗-equivariant and define a test configuration
for X.
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Proposition 2.3.17 ([BHJ17]). Let (X ,L) be a test configuration domi-
nating the trivial test configuration ((X × C), p∗1L) via a map g, such that
L = (p1 ◦ g)∗L + D. Then, the filtration of the section ring R(L), induced
by a test configuration satisfies for m� 0 and all λ that

F λH0(X,mL) =
⋂
E

{s ∈ H0(X,mL)|vE(s) +m · ordE(X0)−1ordE(D) ≥ λ},

where vE = g∗ordE |X
g∗ordE(t)

and E are all irreducible components of X0.

Proof. From the definition of the filtration associated to a test configura-
tion, one has that s ∈ F λH0(X,mL), if, and only if, t−λs̄ ∈ H0(X ,mL),
with s̄ being the invariant rational extension over X \ X0. Thus for any E
irreducible component of X0 one has ordE(t−λs̄) ≥ 0 as it extends holomor-
phically. This is equivalent to ordE(s̄) ≥ λg∗ordE(t) = λordE(X0). The re-
sult follows, sincemL = m(p1◦g)∗(mL)+mD gives locally s̄ = (p1◦g)∗sfm,
where f is the equation for D. Hence,

ordE(s̄) =ordE(p∗1g
∗s) +m · ordE(D)

=g∗ordE(s)|X +m · ordE(D)

=ordE(X0)vE(s) +m · ordE(D).

When the central fibre of a test donfiguration dominating the trivial
one is irreducible, then the proposition says that the filtration associated
to a test configuration comes from a divisor. Since it is always possible
to put oneself in the situation of the previous proposition, by considering,
for example an equivariant resolution of the graph of ρ : X 99K X × C,
one should be able to characterize K-stability with respect to integral test
configurations in terms of valuative stability. In fact, this is exactly what is
done first by Fujita [Fuj19] in the Fano case and later in [DL22] by relating
the β invariant with the Donaldson Futaki invariant.

Integral K-stability and valuative stability

In this section, we reference the main result in [DL22], and give an idea of
how one might prove the result.

Theorem 2.3.18 ([DL22]). K-stability of the pair (X,L) with respect to
integral test configurations coincides with the valuative stability with respect
to L-dreamy divisors.
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The argument in the proof is structured as follows. To any dreamy
divisor D, there is an associated integral test configuration (X ,L). Since
this test configuration is relatively concrete, one can obtain an asymptotic
expression for its Donaldson-Futaki invariant. Then, by using techniques
from the minimal model programme to calculate the integrals involved in
the computation of βL on models, where the volume can be computed poly-
nomially, they eventually obtain an equality

βL(D) = DF (X ,L)2(n− 1)!. (5)

Therefore, K-stability implies dreamy valuative stability. To show the con-
verse, they observe that any integral test configuration gives rise to an
L-dreamy divisor such that the filtration associated to the dreamy divisor
coincides with the filtration of the test configuration. Then, finally, one
can show that 5 is satisfied with the Donaldson-Futaki invariant of the
given test configuration. This uses the description of the weight of the test
configuration in terms of the filtration 2.3.11.

From equation 5, one then has

Theorem 2.3.19 ([DL22]). K-semistability of (X,L) with respect to inte-
gral test configurations is equivalent to valuative semistability with respect
to L-dreamy divisors.
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3 Fibration degenerations

Introduction

In this chapter, we start by describing fibration degenerations and an asso-
ciated notion of stability as defined by Dervan-Sektnan in [DS21a]. It is a
stability condition on a family of varieties, defined from an asymptotic ex-
pansion of the Donaldson-Futaki invariant, which arises by degenerating the
family inside a projective bundle and then tensoring with ample line bundles
pulled back from the base 3.1. The original contributions in this chapter
(from 3.2 and onwards) come from forthcoming joint work with Lars Martin
Sektnan. Motivated by the relation between the Donaldson-Futaki invari-
ant with the beta invariant, we define a special class of divisors/divisorial
valuations 3.2 for which there is an asymptotic expansion of the β invariant
3.3. In order to conclude that there is an asymptotic expansion for the β
invariant for these divisors, we use equation 5 and the fact that there is an
aymptotic expansion for the Donaldson-Futaki invariant of a fibration de-
generation. Therefore we need to show that our special class of divisors give
rise to fibration degenerations 3.2.20, and that the divisors become dreamy
after twisting with sufficiently high tensor powers of any ample bundle from
the base 3.2.21. We also show that our class of divisors arise naturally from
the data of a fibration degeneration 3.2.31. The β invariant makes sense
for any divisorial valuation, so we also make steps towards showing that
one has an asymptotic expansion of the β invariant when the divisor in
question satisfies milder conditions 3.3. In the case of projective bundles,
we calculate to second order the asymptotic expansion of the beta invari-
ant of the exceptional divisor blown up in a subbundle, and we show that
nonnegativity of the subleading order term corresponds to an inequality of
slopes 3.4. This gives a partial proof from the β-invariant side of a fact
established in [DS21a], which is motivated by a similar result in the work
of [RT06b] concerning slope stability with respect to subvarieties.

Canonical families of cscK metrics

Let f : X → B be a holomorphic submersion with a relatively ample line
bundle H on X, suppose ωX/B ∈ c1(H) is a family of cscK metrics. That
is, ωX/B|Xb is cscK for each b ∈ B. Such a ωX/B depends on a fibrewise
choice, since cscK metrics in a given Kähler class are only unique up to
automorphisms preserving this class. Fixing a polarization L of B and a
metric ωB ∈ c1(L), a natural question arises: can one determine a canonical
choice for ωX/B from the data of the family f and ωB?
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Recently, Dervan and Sektnan [DS21b] found an equation for ωX/B,
namely

p(∆V(ΛωBµ
∗(FH)) + ΛωBρH) = 0,

whose solutions they dubbed optimal symplectic connections. Shortly after
conjecturing that optimal symplectic connections give a canonical choice
of fibrewise cscK metrics Dervan-Sektnan [DS21c] confirmed this as they
showed that any two optimal symplectic connections ωX/B, ω′X/B differ by

ω′X/B = g∗ωX/B + f ∗(i ∂∂ φB),

where g ∈ Aut(X/B) and φB ∈ C∞(B,R). Hence, the family of cscK
metrics ωX/B|Xb is indeed uniquely determined. A compelling property of
optimal symplectic connections shown in [DS21a] is the following: when
ωB can be chosen to be cscK, then for any j � 0 there is a cscK metric
in the class c1(H) + jf ∗c1(L). Having K-stability in mind, this suggests
that one should be able to at least find an obstruction for the existence of
an optimal symplectic connection in terms of suitably modified asymptotic
version K-stability of the pair (X,H + jf ∗L) for all j big enough. Since
the family structure f : X → B is relevant for the optimal symplectic con-
nection equation, the test configurations to consider should then also have
some sort of morphism to the base. Considerations like these led Dervan-
Sektnan [DS21a] to introduce the notion of a fibration degeneration [DS21a]
and a notion of stability for fibrations, which they conjecture in some form
to be sufficient for the existence of an optimal symplectic connection for
f : (X,H)→ (B,L) .

3.1 Fibration degenerations

In this section, we introduce the notion of a fibration degeneration as defined
in [DS21a]. We shall fix the following data: (X,B, f), where f : X → B
is a proper flat morphism between normal projective varieties such that
f∗OX ∼= OB and dim(X) > dim(B).

Definition 3.1.1. An f -degeneration of an f -ample divisor H, is a C∗-
equivariant coherent sheaf E on B × C flat over C (i.e., when p1(b, t′) = t′,
then Eb,t′ is a flat C[t]t′-module), so that equivariantly E|B×C∗ ∼= p∗1f∗(kH)
for some k such kH is f -very ample and p∗1f∗(kH) has the trivial C∗-action.
We call k the exponent of the f -degeneration.
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Remark 3.1.2. If B is a point, then f -ample just means ample, and thus a
degeneration means a coherent sheaf E on C, which is flat, and hence free
and equipped with a C∗-action making the map

PC[t](E)→ C

equivariant. Thus, taking a subvariety X ⊂ PC[t](E)|1 ∼= PC(H0(X, kH))
and considering the closure of its C∗-orbit recovers the notion of an ample
test configuration.

For an f -degeneration E of H, one can consider the flat limit X of the
C∗-orbit of the Kodaira Embedding induced by H,

X → PB×C(E)1,

equipped with its induced C∗-equivariant line bundleH = OX (1) = O(1)|X .
By composing

X → PB×C(E)→ B × C,
one obtains maps π : X → B×C such that p2 ◦π is flat by definition. Since
X \X0

∼=ψ X ×C∗ over B×C∗, one sees that π|X\X0 = (f × Id) ◦ψ via this
isomorphism.

Definition 3.1.3 ([DS21a]). A fibration degeneration of (X,H,B, f) is
given by (X ,H)→ B×C arising from an f -degeneration of H. We say the
fibration degeneration has exponent k, if the f -degeneration of H giving
rise to the fibration degeneration has exponent k.

Thus, fibration degenerations are completely analogous to 3.1.2 and can
be viewed as a special relative version of test configurations. Indeed, in
[DS21a], they prove among other things the following

Lemma 3.1.4. Let (X ,H) be a fibration degeneration of exponent k for
(X,H,B, f) and L ample on B. Then p2 ◦ π : (X ,H + kjπ∗p∗1L)→ C is a
test configuration for (X,H + jf ∗L) of exponent k for all j � 0.

This suggests that one should be able to come up with a notion of stabil-
ity for fibration degenerations of (X,H,B, f) by studying the asymptotics
of the invariants of the test configurations for (X,H+ jf ∗L). The intuition
that fibration degenerations correspond to families of test configurations
can be made more precise. Indeed, this is true generically on the base.

Proposition 3.1.5 ([DS21a],[Hat22, lemma 4.8]). For a fibration degener-
ation (X ,H) of (X,H,B,L, f), there is a dense Zariski open set U ⊂ B,
such that for any b ∈ U the fibre Xb → b× C ∼= C is flat, and (Xb,Hb) is a
test configuration for (Xb, Hb) of exponent k.
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Completions of fibration degenerations

Given an f -degeneration E ofH, we can "complete" E trivially over B×{∞}
to a C∗-equivariant coherent sheaf on B×P1

C restricting to E by gluing the
two pieces

• p∗1f∗(kH) over B × C equipped with the inverse trivial action.

• E with its given action over B × C,

which are defined on different open affines of B × P1
C and glued along the

equivariant isomorphism E|B×C∗ ∼= p∗1f∗(kH) from the definition.

Definition 3.1.6. The C∗-equivariant coherent sheaf E on B×P1
C obtained

as above we call the completion of E .

Note that the action on E|B×{∞} ∼= f∗(kH) is then trivial by construc-
tion.

Suppose E is the completion of E . Then since E|B×C = E one has

PB×C(E) = PB×C(E|B×C)

= PB×P1
C
(E)×B×P1

C
(B × C)

Thus if E gives rise to a fibration degeneration X , then we can consider the
closed subscheme X ⊂ PB×P1

C
(E) defined to be the subscheme obtained by

gluing together the flat limits over 0 in either affine chart. Note that we
have X|B×C = X and X \ X0

∼= X × C and a natural C∗-equivariant line
bundle H = O(1)|X , which agrees with H when restricted to X .

Definition 3.1.7. We call X the completed fibration degeneration.

Given a line bundle L on B, then we can pull back to a line bundle p∗1L
on B × P1

C and further via the morphism π̂ : PB×P1
C
(E)→ B × P1

C to a line
bundle. Now, by naturality of the construction, this bundle must restrict
to X as (p1 ◦ π)∗L, where π : X → B×P1

C and similarly to X as (p1 ◦ π)∗L.

Lemma 3.1.8. When j � 0 is such that (X ,H+ jkπ∗p∗1L) is a test config-
uration, then the notion of completed fibration degeneration and completed
test configuration coincide. Moreover, the induced line bundle on the com-
pleted test configuration H + jkπ∗p∗1L coincides with H + jk(p1 ◦ π)∗L.
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Proof. Since the C∗ action is trivial on fibres over the affine where E|B×C =
p∗1f∗(kH), the flat limit of X is simply X×C. Hence the underlying spaces
of the two completions are obtained in the same way.

The claim for the line bundles is analogous, since both H and (p1 ◦
π)∗L are the trivial extensions of H and (p1 ◦ π)∗L respectively, hence the
trivial extension H + jkπ∗p∗1L = H + jk(p1 ◦ π)∗L, by multiplicativity of
the extension operation.

Fibrational stability

Lemma 3.1.9 ([DS21a]). For a fibration degeneration (X ,H) of (X,H,B, f)
the asymptotic Donaldson-Futaki invariant DF (X ,H+kjπ∗p∗1L) has an ex-
pansion as a Laurent polynomial in j of leading order dim(B).

DF (X ,H + kjπ∗p∗1L) = W0(X ,H)jdim(B) +W1(X ,H)jdim(B)−1 + . . .

Here, the Wi(X ,H) have a dependancy on the exponent k.

Proof. Consider the completion (X ,H+jk(p1◦π)∗L). Suppose n = dim(X).
By the formula for the Donaldson-Futaki invariant of a completed test con-
figuration, we have, up to multiplication by a positive dimensional constant

DF (X ,H + jk(p1 ◦ π)∗L) =
n

n+ 1
µ(X,H + jkf ∗L)(H + jk(p1 ◦ π)∗L)n+1

+ (H + jk(p1 ◦ π)∗L)n.KX/P1
C
.

Analyzing the terms, we see that the slope is a quotient of two polynomials
in j of degree at most dim(B) in the enumerator and degree at most dim(B)
in the denominator, because any intersection involving terms of the type
Adim(X)−dim(B)+k.(f ∗L)dim(B)+k for k > 0 and A arbitrary is zero by the push-
pull formula. Hence, the slope admits a Laurent expansion in j with leading
term of order 0. Since the extensions of (p1 ◦ π)∗L are also pullbacks, the
intersection numbers (H+jk(p1 ◦π)∗L)n+1, (H+jk(p1 ◦π)∗L)n.KX/P1

C
must

also be polynomials in j of degree at most dim(B), hence the result.

Performing the expansion in j and letting n = dim(X),m = dim(B)
such that n − m = ` is the fibre dimension, then one has the following
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formulas in terms of intersection numbers [DS21a]:

W0(X ,H) =

(
n
m

)
km(

`

`+ 1
(
−KX/B · f ∗Lm ·H`−1

f ∗Lm ·H`
(p1 ◦ π̄)∗Lm · H̄`+1)

+ (p1 ◦ π̄)∗Lm · H̄` ·KX̄/P1
C
) (6)

W1(X ,H) =

(
n

m− 1

)
km−1(C1(X ,H) + C2(X ,H) + C3(X ,H) + C4(X ,H))

C1(X ,H) =
`

`+ 2
(
−KX/B · f ∗Lm ·H`−1

f ∗Lm ·H`
(p1 ◦ π̄)∗Lm−1 · H̄`+2)

C2(X ,H) =− `

`+ 1

(−KX/B · f ∗Lm−1 ·H`−1)(f ∗Lm−1 ·H`+1)

(f ∗Lm ·H`)2
((p1 ◦ π̄)∗Lm · H̄`+1)

C3(X ,H) =
−KX · f ∗Lm−1 ·H`

f ∗Lm ·H`
(p1 ◦ π̄)∗Lm · H̄`+1

C4(X ,H) =(p1 ◦ π̄)∗Lm−1 · H̄`+1 ·KX̄/P1
C
,

where KX = KB + KX/B. Similarly, by considering a resolution of inde-
terminacy of the canonical map from the compactified test configuration to
X × P1

C, Dervan-Sektnan [DS21a] obtain an expansion in j for the norm of
the family of test configurations DF (X ,H + kjπ∗p∗1L). The leading term
then gives a notion of norm for a fibration degeneration.

Definition 3.1.10 ([DS21a]). The norm of a fibration degeneration (X ,H)
is

||(X ,H)|| = Lm · H`

`+ 1
+ Lm · H` · (H−H)

Here we have supressed the various pullbacks and completions involved in
the expression.

Now, we can give a notion of a "K-stability for families" from the asymp-
totic expension of the Donaldson-Futaki invariant and the notion of a norm.

Definition 3.1.11 ([DS21a]). Given a fibration f : (X,H) → (B,L) such
that the fibres (Xb, Hb) are K-semistable, then the fibration is

• semistable ifW0(X ,H) ≥ 0 and when there is equality one hasW1(X ,H) ≥
0

• stable if it is semistable and whenever W0(X ,H) = 0,W1(X ,H) = 0
then the norm is 0

• polystable if it is semistable and when W0(X ,H) = 0,W1(X ,H) = 0,
then either the normalization of (X ,H + kjπ∗p∗1L) is a product test
configuration for j � 0 or the norm is 0
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for any fibration degeneration of (X,H,B, f). We say the fibration is in-
tegrally semistable (resp. stable, polystable), if it holds for all fibration
degenerations with irreducible central fibre.

In the original definition of fibration stability [DS21a], they require the
fibres to be K-polystable. This comes from the accompanying differential
geometric construction in [DS21b][DS20], where they consider cscK fibra-
tions, i.e., fibrations where all fibres admit a cscK metric. Recent work by
Ortu [Ort22] shows that fibrations with analytically K-semistable fibres also
give a cscK metric in asymptotic classes when one can solve the optimal
symplectic connection equation, hence we have chosen to allow K-semistable
fibres as well. To get a feeling of the nature of the stability conditions, we
display an explicit interpretation of the first coefficient

Proposition 3.1.12 ([DS21a]). For any fibration degeneration (X ,H) of
(X,H,B,L, f) one has

W0(X ,H) =

(
n
m

)
f ∗LmDF (Xb,Hb),

where (Xb,Hb) → b× C ∼= C is an induced test configuration for a generic
b ∈ B.

Proof. Let U ⊂ B be the open subset, such that b ∈ U implies that (Xb,Hb)
is a test configuration for (Xb.Hb). Then π|π−1(U×C) is flat, hence, for b ∈ U
one has that (p1 ◦ π)∗[b] = [Xb] is a well defined element in the chow ring
of X̄ . In particular, for any class A representing the intersection of line
bundles

(p1 ◦ π̄)∗[b] · A = [Xb] · A = A|Xb .
Similarly, since f is flat,f ∗[b] = [Xb], and one arrives at a similar conclusion
when intersecting with this class. Since L is ample on B, it follows that
Lm ∼ c[b] for some point b ∈ U, c > 0. Hence, one can write

(p1 ◦ π̄)∗Lm · H̄`+1 =cH̄`+1|Xb
f ∗Lm ·H` =cH`|Xb .

Now applying the formula 6

W0(X ,H) =

(
n
m

)
ckm(

`

`+ 1
(
(−KX/B ·H`−1)|Xb

H`|Xb
H̄`+1|Xb + (H̄` ·KX̄/P1

C
)|Xb)

=

(
n
m

)
ckm(

`

`+ 1

−KXb ·H|`−1
b

H`
b

H̄`+1
b + H̄`

b ·KX̄b)

=

(
n
m

)
ckmDF (Xb,Hb).
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where we used the equation 2.2.15 and the compatibility of the relative
canonical class under base change [Har10, II, prop. 8.10]. The result then
follows, since the intersection number of f ∗Lm is c.

Recently M. Hattori [Hat22] defined a stronger notion of stability for
fibrations called f-stability involving all the terms in the asymptotic expan-
sion of the Donaldson-Futaki invariant. Hattori shows that f-stability of a
fibration implies some control on the singularities of a pair (X,D), where
X is the total space of the family. The difference between the two stability
notions for families seem formally similar to the difference between slope
stability and Gieseker stability of sheaves [HL10, chapter 1].
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3.2 A valuative obstruction for fibrational
stability

Horizontal valuations

In this section we define a class of valuations appearing later, where we
give a valuative interpretation of the asymptotic Donaldson-Futaki invari-
ant. Let f : X → B be a dominant morphism of varieties and denote the
comorphism by f ∗ : OB → f∗OX . Recall that one can push forward any
valuation v : K(X)→ R in this situation as follows

f∗v(s) = v(f ∗s).

Definition 3.2.1. A valuation v : K(X)→ R is f -horizontal, if

f∗v = vtriv,

where the trivial valuation is vtriv(f) =

{
0 f 6= 0

∞ f = 0.

Remark 3.2.2. Geometrically this means that v does not provide a measure
of multiplicity for any nontrivial algebraic function (or divisor) defined on
an open subset of B.

Recall the notion of a center for a valuation:

Definition 3.2.3. A valuation v on K(X), with value ring R has a center
on a variety X, if there is a scheme point p ∈ X such that the canonical
map

OX,p → K(X)

factors through R as a local morphism and R dominates OX,p, that is,
mR ∩ OX,p = mp.

Intuitively, having a center means that there is a subvariety such that
v measures multiplicity along that subvariety. By the valuative critetion of
properness [Har10, II, thm. 4.7], it follows that a valuation on the function
field of a complete variety has a unique center on that variety.

Suppose one is given a valuation v on K(X) with value ring R =
v−1(R≥0). Then, pushing v forward by f to w = f∗v with value ring
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S = w−1(R≥0) yields a commutative diagram

0 R K(X)

0 S K(B)

0 0.

i

i

f∗

If v has a center on X, there is a prime p ∈ X such that OX,p ⊂ R and
mR ∩ OX,p = mp, in particular by taking any affine neighbourhood U of p
and considering OX |U → OX,p → R there is a map

Spec(R)→ X,

whose unique closed point corresponding to mR maps to p. It is similar if
w has a center on B. Now, since S → R is local we get a commutative
diagram

Spec(R) X

Spec(S) B.

f

Thus, in this case, the centers satisfy cB(w) = f(cX(v)). Note that the
trivial valuation vtriv has the generic point of B as its center. Therefore the
center of horizontal valuations must map to the generic point of B.

Example 3.2.4. Consider trivially (although prototypical for what we want),
the coordinate projection map p1 : X = Spec(C[t, w]) → B = Spec(C[t]).
Then, a valuation v is p1 horizontal, if, and only if v(t−c) = 0, for all c ∈ C.
Indeed, it suffices to check on polynomials hence by algebraic closedness of
C, we can check onf =

∏n
i=1(t− ci). Thus,

v(f) =
n∑
i=1

v(t− ci).

In this case, we can also easily classify the horizontal valuations v. On a
w-monomial g = f(t)wi ∈ C(t)(w) ∼= K(X) we have v(g) = v(wi) and so
in general for g =

∑
i fi(t)w

i, we have

v(g) ≥ min
i
iv(w)
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with equality whenever v(w) 6= 0, in which case v = c · ordw for c 6= 0 is a
multiple of the order of vanishing along w, and when v(w) = 0, then v(g) ≥
0 for all g 6= 0, and so v must be trivial. Therefore, we see that the center
of a horizontal v must be the generic point of the zero section {w = 0}, or
else the center must be on some compactification of Spec(C[t, w]).

A basic property of f -horizontal valuations is that the notion is invariant
under birational morphisms over B in the following sense:

Lemma 3.2.5. Suppose g : Y 99K X is a birational morphism of varieties
over B, and v is an f -horizontal divisor. Then w = g−1

∗ v is a h-horizontal
divisor, where h = f ◦ g.

Proof. g induces an identification of function fields K(X) ∼= K(Y ). Hence,

h∗w = (f ◦ g)∗g
−1
∗ v

= f∗v

= vtriv.

Next, we relate the notion of an f -horizontal valuation to a geometric
property of Cartier divisors appearing on X.

Definition 3.2.6. A divisor D ⊂ X is f -horizontal if f(Supp(D)) is Zariski
dense.

In particular, when f is proper, then f(Supp(D)) = B for a horizontal
divisor D. Any divisor D =

∑
aiDi is then f -horizontal, if, and only if,

each Di is so. Therefore they form a subspace of the Weil divisors Div(X).
Consider the morphism P2

C \ {x1 = x2 = 0} → P1
C given by projection to

{x3 = 0}. Then, the global sections. x1, x2, x3 ∈ H0(P2
C \ {x1 = x2 =

0},O(1)) give linearly equivalent divisors with {x3 = 0} horizontal but
{x1 = 0}, {x2 = 0} are not horizontal. This shows by example that the
notion is not preserved by linear equivalence. It is clear that an f -horizontal
divisor cannot be the pullback of a divisor on B (or the flat pullback of a
Weil divisor), however, they are in general not all the divisors, which are not
pullbacks, since f might contract some divisors onto subsets of codim ≥ 2,
e.g. if the divisor in question is the exceptional set of a blowup along a
generic smooth subvariety. Therefore, f -horizontal divisors are special in
the sense that they are the divisors that are contracted the least by f in
terms of dimension. A way to produce such divisors is, if one is given a
map g : Y → B, and one then blows up a subvariety A ⊂ Y such that g|A
is dominant.
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Proposition 3.2.7. For a proper dominant morphism f : X → B, then
a prime Cartier divisor D is f -horizontal, if, and only if, the associated
valuation ordD is f -horizontal.

Proof. Suppose first that ordD is f -horizontal. The center of ordD is the
generic point η ∈ D. So f(η) is the generic point of of B. Therefore
{f(η)} ⊂ f(D), but {f(η)} is Zariski dense, so B ⊂ f(D) since f(D) is
closed. For the converse, suppose f(D) = B. We argue that any s ∈ OB(V )
such that

ordD(f ∗s) 6= 0

must satisfy s = 0. It suffices to do this in any stalk b ∈ V . The local
comorphisms f ∗b : OB,b → OX,d where d ∈ D is such that f(d) = b are
all injections. Thus, sb ∈ mb, if it maps to md. But this has to be the
case because near D, we can write f ∗s = tng for n ∈ N and g invertible.
Therefore, sb ∈ mb for all b ∈ V , and so when V is affine, s sits in every
prime ideal, which means it must be in the nilradical. But this is 0 as B is
reduced.

Corollary 3.2.8. If f : X → B is a dominant proper morphism of varieties,
then any prime Cartier divisor D on Y over X is h-horizontal, if, and only
if, its associated valuation on X is f -horizontal.

Proof. We have g : Y → X proper birational and h : Y → B proper and
dominant such that f ◦ g = h. Thus, ordD h-horizontal, if, and only if,
g∗ordD is f -horizontal by 3.2.5, so the result follows from 3.2.7, because h
is proper and dominant.

This shows that the notion of being a horizontal prime divisor on the
birational models dominating f : X → B is independent of such a model.
In fact, the theorem 3.2.10 shows that horizontal divisorial valuations are
precisely characterized by the corresponding geometric property on some
model dominating f : X → B. Therefore, we shall introduce the definition

Definition 3.2.9. A divisor D on a model g : Y → X over f : X → B is
horizontal, if it is h = g ◦ f horizontal.

Theorem 3.2.10 ([ZS97, section 14, thm. 31]). For any divisorial val-
uation v ∈ K(X) with center cX(v) on X, there is a birational model
g : Y → X and a divisor D ⊂ Y , such that cv = g∗ordD on X for some
c 6= 0.
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Since cvtriv = vtriv,∀c 6= 0, it follows directly that any such divisor
D from the theorem must be horizontal, when v is f -horizontal. Next, we
want to give a partial justification for the introduction of horizontal divisors
when studying fibration degenerations.

A fibration degeneration (X ,H) of f : (X,H) → B gives rise to the
following commutative diagram

X PB×C(E)

B × C

B C,

π

p2

p1

where X is equal to the flat limit over C of orbC∗(X) ∼= X × C∗ inside
PB×C(E). The central fibre X0 surjects onto B, because X\X0

∼=B×C X×C∗,
so

π(χ \ χ0) = B × C∗,

and therefore
π(χ) ⊃ π(χ \ χ0) = B × C∗ = B × C,

which means
π(X0) ⊃ B × {0}.,

i.e., X0 = π−1(B × {0}).

Lemma 3.2.11. Any non-trivial integral fibration degeneration of f : (X,H)→
B gives rise to a horizontal divisor on a birational model Y → X over B.

Proof. We have a C∗-equivariant birational diagram over B × C

X X × C

B × C

C

π

f×Id

p2

The central fibre of p2 ◦π is then a prime divisor, which by surjectivity onto
B gives rise to a pr1◦π-horizontal valuation vX0 onK(X ). By commutativity
of the diagram, it follows that the induced valuation on K(X ×C) is pr1 ◦
(f × Id)-horizontal. Let us, by abuse of notation also denote this by vX0 .
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Finally, since K(X × C) = K(X)(t), this is equivalent to vX |K(X) being f -
horizontal. Now, by the general theory from [BHJ17], vX0|K(X) is divisorial
when the test configuration is nontrivial. In any case, there is a divisor
giving rise to vX0 realized on some birational model of X over B by 3.2.10.
The fact that this divisor is horizontal follows by the birational invariance
of the notion.

The relative Rees construction

We show that horizontal divisors are precisely the divisors such that one
may carry out a relative version of the classical construction by Rees, giving
a geometric meaning to Z filtrations of the global sections of a bundle.

Definition 3.2.12. Let f : X → B be a proper surjective morphism of
varieties. Let D be an f -horizontal divisor on X. Then, for any line bundle
L on X, we define the value of any s ∈ Γ(U, f∗(L)) = Γ(f−1(U), L) to be

ordD(s) = ordD(si),

where si = φis|Ui in some local trivialization L|Ui
φi→ OX |Ui , such that

Ui ∩D 6= ∅ and Ui ⊂ f−1(V ).

Firstly, we note that there always exists such a trivialization Ui as in the
definition: one can pick any trivialization, since the divisor must map sur-
jectively onto B. In fact, one could extend this definition to any horizontal
valuation, because there is a point in every fibre that is a specialization (in
the Zariski closure) of the centre.

The value v(s) does then not depend on the chosen trivialization, since
any two such are OX-linearly isomorphic over their intersection by φij =
φi ◦ φj which is determined as multiplication by the unit φij(1). But this
does not change the order along D. This is also true for any horizontal
valuation in the adapted definition.

A second benefit of the horizontal condition is that ordD(s) is well be-
haved when multiplying by functions from B. Indeed, let b ∈ OB(V ) and
consider f ∗b ∈ OX(f−1(V )), then, by definition,

ordD(f ∗bs) = ordD(f ∗b|Uisi)
= ordD(f ∗b|Ui) + ordD(si)

= ordD(f ∗b) + ordD(si)

= 0 + ordD(si)
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because f ∗b|Ui ∼ f ∗b in K(X). The sets

FλordDf∗(L)(V ) = {s ∈ f∗(L)(V )|ordD(s) ≥ λ}

are then OB(V )-submodules, and we obtain a filtration of the sheaf f∗(L)
of OB-modules by considering the subsheaves

λ 7→ FλordDf∗(L).

Moreover, when considering f∗(kL) for any k ≥ 0, one obtains a decreasing
multiplicative filtration by considering

(λ, k)→ FλordDf∗(kH).

Remark 3.2.13. When f : X → Spec(C) is the canonical map, then being
f -horizontal is void, so any divisor D satisfies this condition. In this case
our definition of the value of a section 3.2.12 is the same as the one used in
[BHJ17].

Definition 3.2.14. Let f : X → B be a proper surjective morphism and
v an f -horizontal valuation with value group Γ ∼= Zn. Then, we call the
graded OB-algebra

Rv(L) =
⊕
k≥0

(
⊕
λ∈Γ

t−λFλv f∗(kL))

the associated relative degeneration algebra or relative Rees algebra. We
write Rv,k(L) for the k’th piece.

We shall only consider the case of horizontal divisorial valuations Γ = Z.

Proposition 3.2.15. When f : X → B is proper, surjective, and f∗OX ∼=
OB, then, the relative Rees algebra for an f -horizontal divisor v induces a
family over B × C with irreducible central fibre, and a C∗-action such that
the map to B × C is equivariant.

Proof. In this case the degree k = 0 piece is⊕
λ∈Z

t−λFλv f∗(OX) ∼=
⊕
λ∈Z

t−λFλvOB

∼=
⊕
−λ∈N

t−λOB

= OB ⊗C C[t],

82



where we used that

FλvOB = Fλf∗vOB = FλvtrivOB =

{
OB λ ≤ 0

0 λ > 0.

In particular, the Rv,k pieces have an OB ⊗CC[t] module structure, and we
can form the relative proj

ProjB×C(Rv(L))→ B × C

with its canonical map. There is by 2.2.9 a natural action of the group
scheme C∗(B) = B×C∗ on this space such that the canonical map commutes
with the C∗(B)-action on B ×C∗. But this is equivalent to a C∗-action on
ProjB×C(Rv(L)) such that the canonical map to B×C∗ is equivariant since
the group sheme acts trivially on the B component. The central fibre is the
proj

ProjB(Gr(Rv(L))),

where
Gr(Rv(L)) =

⊕
k≥0

(
⊕
λ∈Z

Fλv f∗(kL)/Fλ+1
v f∗(kL)).

But this sheaf certainly forms an integral ring over open affines U ⊂ B.
Hence the central fibre is integral.

Now, imposing certain local finiteness conditions for Fλv f∗(kL) on B one
can ensure that the space has desirable properties, i.e., such that it defines
a fibration degeneration. This is in fact exactly what we shall do to obtain
fibration degenerations from divisors.

Relatively Dreamy divisors

Suppose we are given the data (X,B, f) as in section 3.1.

Definition 3.2.16. Let H be an f -ample divisor on X and D a prime
divisor over X. Then we say D is relatively H-dreamy, if there is an r > 0
such that rH is Cartier and

R(rH,D) =
⊕
k≥0

(
⊕
λ∈Z

t−λh∗(g
∗krH − λD))

is locally finitely generated as anOB[t]-algebra. Here, we think of h∗(g∗krH−
λD) ⊂ f∗(krH) as a subsheaf.

83



When D is horizontal, then the algebra from the relatively dreamy con-
dition agrees with

RordD(H)

defined in 3.2.14. Indeed, if s ∈ f∗(kH)(V ) = kH(f−1(V )), then s ∈
FλordDf∗(kH)(V ), if, and only if,

λ ≤ g∗ordD(s) = g∗ordD(si) ∀i
= ordD(g∗si) ∀i

for all si representing s in a trivialization over Ui ⊂ f−1(V ). By resolution
of singularities [Hir64], we can by considering the strict transform assume
the model g : Y → X, where D appears is a smooth variety. Hence that
D is Cartier. Let t be the local equation for D on an open affine subset
Wij ⊂ g−1(Ui). Then, λ ≤ ordD(g∗si) ⇐⇒ g∗si = tλwij, where wij is
some function on Wij. The decomposition glues so we also have g∗s =
tλw for some section w ∈ g∗kH(g−1(f−1(V )). But this is by definition
what it means to be in the image of g∗s ∈ h∗(g∗kH − λD) under the map
h∗(g

∗kH − λD)→ h∗g
∗(kH) = f∗(kH). Let us summarize:

Lemma 3.2.17. If D is a horizontal divisor, then

R(H,D) = RordD(H).

If D is relatively H-dreamy then RordD(H) is locally finitely generated as
an OB[t]-algebra.

Remark 3.2.18. Until the day of writing this document, it is unknown to
the author if the conditions of D being relatively H-dreamy has a relation
with the property that D is horizontal. One might wonder, if D relatively
H-dreamy implies that D is Q-linearly equivalent to a horizontal divisor.

Lemma 3.2.19. If D is relatively H-dreamy, then for some k0 big enough

R(k0H,D)

is locally generated in degree 1 as an OB[t]-algebra.

Proof. This follows from the fact that the base B has a finite affine cover
Ui, i ∈ {1, . . . , n} such that R(rH,D)|U is finitely generated. If R(rH,D)|U
is generated in degree di, we know that the subalgebra R(dirH,D)|Ui is
generated in degree 1. The same is true upon replacing di by mdi, m ∈ N.
Now, set k0 = lcm(r ∪ {di|i ∈ {1, . . . , n}}), then

R(k0H,D)|Ui
is generated in degree 1 for all Ui.
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Proposition 3.2.20. A horizontal and relatively H-dreamy divisor D in-
duces a fibration degeneration (X ,H) isomorphic to the relative projective
spectrum

X ∼= ProjB×C(R(k0H,D))

with k0 some sufficiently large constant and H = OX (1) = φ∗O(1), where

φ : X → PB×C(
⊕
`∈Z

t−`h∗(g
∗k0H − `D)).

Proof. By construction of a fibration degeneration, one picks k0 � 0 such
that k0H is f -very ample. Since this is also true for even larger k, we can
ensure that R(k0H,D) is locally generated in degree 1.

Then one has by the Rees construction 2.3.2 a projective bundle degen-
eration induced by the coherent sheaf

D(k0H,D) =
⊕
`∈Z

t−`(h)∗(g
∗k0H − `D),

That is, given by

PB×C(D(k0H,D)) = ProjB×C(Sym(D(k0H,D))).

By general considerations of the Rees construction 2.3.2 the fibre over any
t 6= 0 is

PB((h)∗(g
∗k0H)) = PB(f∗(k0H)),

since h∗(g∗k0H) ∼= f∗(k0H). Thus, X embeds in this fibre as

X ∼= ProjB(
⊕
k≥0

f∗(k0kH)),

and the C∗-orbit is isomorphic to

orbC∗(X) ∼= ProjB×C∗(
⊕
k≥0

f∗(k0kH)[t±1]).

X is obtained as the flat limit of the orbit inside PB×C(D(k0H,D)) → C.
Note that X is uniquely determined as a closed subscheme by the diagram

orbC∗(X) PB×C(D(k0H,D)) C

χ ,

ι1

ι2 p2◦π

φ
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where φ is a closed immersion such that (p2 ◦ π) ◦ φ is flat. But the scheme

ProjB×C(R(k0H,D))

also extends orbC∗(X) and local generation in degree 1 ensures that it em-
beds into PB×C(D(k0H,D)), because of the surjections

Sk(R1(k0H,D))→ Rk(k0H,D)→ 0

from R1(k0H,D) = D(k0H,D). Moreover,

ProjB×C(R(k0H,D))

also restricts to orbC∗(X) over C∗, and it is flat over C[t] by the Rees
construction 2.3.2. The C∗-equivariance follows from 2.2.9.

The remainder of this section will be dedicated to the proof of the fol-
lowing:

Theorem 3.2.21. If D is a horizontal and relatively H-dreamy divisor,
then for any ample bundle L on B, D is a dreamy divisor for H + jf ∗L,
when j is sufficiently big.

We shall need a couple of lemmata along the way. First we recall the
setup:

D ⊂ Y (X,H)

(B,L)

g

h
f

g, f are proper, g birational and f is flat with connected fibres. That is
f∗OX = OB. H is moreover f -ample, and L is ample on B. In particular,
H + jf ∗L is ample for j sufficiently big ([Laz04] prop. 1.7.10).

Setting r = 1 in the relative dreamy condition, the statement of the
theorem is:

If
R(H,D) =

⊕
k≥0

(
⊕
`≥0

t−`h∗(kg
∗H − `D))

is locally finitely generated over OB[t], then for j � 0,

R(H + jf ∗L,D) =
⊕
k≥0

(
⊕
`≥0

t−`H0(Y, (kg∗(H + jf ∗L)− `D))
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is finitely generated over C[t]. In the following, we denote

Rk(H,D) =
⊕
`≥0

t−`h∗(kg
∗H − `D),

so that R(H,D) =
⊕

k≥0Rk(H,D).

Lemma 3.2.22. Let X be the induced test configuration from a relatively
H-dreamy divisor D, and denote the canonical map π : X → B × C, then
for all j, we have

(ProjB×C(R(H,D)),O(1)⊗ π∗p∗1Lj) ∼= (ProjB×C(R(H + jf ∗L,D)),O(1)).

Proof. Then this is a consequence of the general theory [Har10, II, Lemma
7.9], which says that

(ProjB×C(R(H,D)),O(1)⊗π∗p∗1Lj) ∼= (ProjB×C(
⊕
k≥0

Rk(H,D)⊗p∗1Lkj),O(1))

and the following computation, where we write L = OB(F ) for some divisor.

Rk(H,D)⊗OB [t] p
∗
1L

kj = (
⊕
`≥0

t−`h∗(g
∗OX(kH)⊗OY OY (−`D)))⊗OB [t] p

∗
1L

kj

∼=
⊕
`≥0

t−`h∗(g
∗OX(kH)⊗OY OY (−`D))⊗OB Lkj

∼=
⊕
`≥0

t−`h∗(g
∗OX(kH)⊗OY OY (−`D)⊗OY (fY )∗Lkj)

∼=
⊕
`≥0

t−`h∗(g
∗(OX(kH)⊗OX f ∗Lkj)⊗OY OY (−`D))

=
⊕
`≥0

t−`h∗(g
∗(OX(k(H + jf ∗F )))⊗OY OY (−`D))

= Rk(H + jf ∗L,D).

Lemma 3.2.23. For j � 0, there are embeddings making the following
diagram commute

ProjB×C(R(H + jf ∗L,D)) PB×C(R1(H + jf ∗L,D))

ProjB×C(p∗2p2∗R(H + jf ∗L,D)) PB×C(p∗2p2∗R1(H + jf ∗L,D))
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Proof. It suffices to show that the commutative diagram

0 0

p∗2p2∗Rk(H + jf ∗L,D) Rk(H + jf ∗L,D) 0

SkOB×C
(p∗2p2∗R1(H + jf ∗L,D)) SkOB×C

(R1(H + jf ∗L,D)) 0

obtained by canonical maps and the sheaf morphisms yielding φ from Lemma
3.2.22 is exact, when j � 0.

Exactness of the second column follows by local generation in degree 1
of R(H + jf ∗L,D). Since L is ample on B, the sheaf π∗O(1) = R1(H +
jf ∗L,D), is generated by global sections when j � 0. Therefore, we have

pt∗pt∗R1(H + jf ∗L,D),

p∗2p2∗R1(H + jf ∗L,D) R1(H + jf ∗L,D)

0

So, we have exactness of the bottom row:

SkOB×C
(p∗2p2∗R1(H + jf ∗L,D))→ SkOB×C

(R1(H + jf ∗L,D))→ 0.

The first column is trivially exact in the case k = 1. The general case
follows since p∗2p2∗R(H + jf ∗L,D) is locally generated in degree 1, hence
one obtains a surjection from the symmetric powers. The top row is then
automatically exact.

Lemma 3.2.24. One has p2∗R(H + jf ∗L,D) = ˜R(H + jf ∗L,D), i.e., it
is the sheaf associated to the module R(H + jf ∗L,D).

Proof. We have

p2∗R(H + jf ∗L,D) = p2∗(
⊕
k≥0

Rk(H + jf ∗L,D))

=
⊕
k≥0

p2∗Rk(H + jf ∗L,D).
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Thus it suffices to consider these C[t]-modules.

p2∗Rk(H + jf ∗L,D) = p2∗
⊕
`≥0

t−`(fY )∗(kg
∗(H + jf ∗L)− `D)

∼=
⊕
`≥0

t−` ˜H0(Y, kg∗(H + jf ∗L)− `D)

= ˜Rk(H + jf ∗L,D).

The first isomorphism follows, since any quasi-coherent sheaf on an affine
variety is the sheaf associated to its global sections, and the global sections
[Har10, III, prop. 8.5] are

H0(B×C,
⊕
`≥0

t−`h∗(kg
∗(H+jf ∗L)−`D)) =

⊕
`≥0

t−`H0(Y, kg∗(H+jf ∗L)−`D),

from which the claim follows, since the sheaf associated to a module is
compatible with the direct sum.

Proof. (Theorem 3.2.21) From these lemmata, we see by the base change
property of pullbacks, that

ProjC(R(H + jf ∗L,D))

is finite dimensional, hence R(H + jf ∗L,D) is finitely generated and D is
dreamy with respect to H + jf ∗L for j � 0. Indeed, we have

ProjB×C(p∗2p2∗(R(H + jf ∗L,D))) = ProjC(p2∗(R(H + jf ∗L,D))×C (B × C)
∼= ProjC(R(H + jf ∗L,D))×C (B × C)
∼= ProjC((R(H + jf ∗L,D))×B,

where C = Spec(C[t]), which by the same operations and the previous
lemma 3.2.24 then embeds into

PC(R1(H + jf ∗L,D))×B.

This space has to be finite dimensional as

R1(H + f ∗L,D) =
⊕
`∈Z

t−`H0(Y, g∗(H + jf ∗L)− `D)

is a finitely generated C[t]-module.

89



Filtrations of fibration degenerations

The aim of this seciton is to prove that when p2 ◦ π : (X ,H) → C is a
fibration degeneration associated to the data f : (X,H)→ (B,L), then we
have an natural filtration of sheaves (λ, k) 7→ FλXf∗(kH), which is locally
finitely generated. Moreover, we want to prove that this filtration is induced
by a valuation, when (X ,H)→ C has irreducible central fibre.

Definition 3.2.25. A multiplicative filtration of sheaves (λ, k) 7→ FλEk
of OB-modules is locally finitely generated, if the relative Rees algebra is
locally finitely generated.

We want to associate a filtration

(λ, k) 7→ FλXf∗(kH) ⊂ f∗(kH)

of OB-submodules for any H f -ample with an associated fibration degener-
ation. For this, we aim to mimick the case over a point first used in [Wit12].
We have X ∼= X1 via some morphism φ and σ : X×C∗ → X \X0 over B×C∗
given by σ(x, t) = ρ(t) · φ(x), where ρ is the induced C∗-action on X . Note
σ also induces C∗-equivariant identification σ∗p∗1kH ∼= kH|X\X0 . In particu-
lar, for any C∗-invariant open subset of X \X0, say π−1(U×C∗) = σ(U×C∗)
where U is affine, there is an equivariant isomorphism of sections

p∗1kH(f−1(U)× C∗)→ σ∗p
∗
1kH((f−1(U)× C∗)) = p∗1kH((π−1(U × C∗))

= kH|X\X0(π−1(U × C∗))
= π∗(kH|X\X0)(U × C∗).

Let us by abuse of notation call this isomorphism σ as well. There is a
natural morphism

s̃ : f∗(kH)(U)→ p∗1kH(f−1(U)× C∗)

given by s̃(u, t) = s(u). Finally, we set s = σ(s̃). This gives a map to the
invariant sections of π∗(kH|X\X0)(U × C∗). Indeed, denoting all actions by
ρ, we get

ρ(t) · s = σ(ρ(t) · s̃)
= σ(s̃)

= s,

because the action on p∗1kH is given by multiplication on the C∗-factor. We
are now ready to define the filtration.
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Definition 3.2.26. Set

(λ, k) 7→ FλX (f∗(kH)) b = {s ∈ f∗(kH)b|t−λs̄ ∈ π∗(Oχ(k))b×C}

and then define subsheaves by setting

U 7→ FλXf∗(kH)(U) = {s ∈ f∗(kH)(U)|sb ∈ Fλf∗(kH)b∀b ∈ U}.

Here, t acts by multiplication, which comes from the module structure
dictated by the morphism p1 ◦ π : X → C.

Remark 3.2.27. We might as well have defined it over affines U ⊂ B, and
then glue the locally defined subsheaves. FλXf∗(kH) is indeed a sheaf of
OB-submodule, since if m ∈ OB(U), then for s ∈ Fλf∗(kH)(U)

t−λ(m · s) = t−λ(f ∗m · s)
= t−λf ∗ms̄

= f ∗mt−λs̄ ∈ π∗(OX (k))(U × C),

because f = p1 ◦ π over U × C∗ and p∗1m naturally extends.

Lemma 3.2.28. If s1, . . . , sn are local generators for f∗(kH) around b ∈ B
such that si ∈ FλiX f∗(kH)b, then there is a neighbourhood b ∈ U such that

• FminiλiX f∗(kH)|U = f∗(kH)|U

• Fmaxiλi+1
X f∗(kH)|U = 0.

Proof. Pick local generators s1, . . . , sn for f∗(kH)b. We can assume there
is an open neighbourhood U , where si ∈ Fλif∗(kH)|U , so there is some
hi|U×C∗ = t−λi s̄i. Let µ = miniλi, then any s =

∑
gisi satisfies

t−µs̄ = t−µ
∑

gis̄i

=
∑

git
−µs̄i

= (
∑

gi(t
−µ+λihi))|U×C∗

Therefore, s ∈ Fµf∗(kH)|U . Conversely, if s ∈ Fλf∗(kH)|U , then the
extension h of t−λs̄ satisfies

tλ−µh|U×C∗ = t−µs̄

=
∑

git
−µs̄i

= (
∑

git
−µ+λihi)|U×C∗ .
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So, since extensions are uniquely determined, we have

tλ−µh =
∑

git
−µ+λihi,

hence
h =

∑
git

λi−λhi,

which is only defined over t = 0, when λ ≤ mini λi, where the minimum
is taken over all i where gi 6= 0. Thus, taking λ = maxi λi + 1, one has a
contradiction.

Proposition 3.2.29. For any fibration degeneration, the filtration of sub-
sheaves

(λ, k) 7→ FλXf∗(kH)

is decreasing and locally right and linearly left bounded.

Proof. We first show that we can bring ourselves in a position where 3.2.28
holds. Pick any ample line bundle L on the base B. Then, by Dervan-
Sektnan 3.1.4, we know that changing the polarization to (X ,H+jπ∗L) for
j � 0 sufficiently big, gives an ample test configuration for (X,H + jf ∗L).
It follows that there is a filtration

(λ, k) 7→F λH0(X, k(H + jf ∗L))

= {s ∈ H0(X, k(H + jf ∗L))|t−λs̄ ∈ H0(X , k(OX (1) + jπ∗L))},

which is linearly left and right bounded, say by a constant C and λ0 respec-
tively 2.3.10. Fixing j big enough, we can assume that k(H+ jπ∗L), k(H+
jf ∗L) is globally generated for all k. Hence, we have a surjection of sheaves

H0(X, k(H + jf ∗L))→ k(H + jf ∗L)→ 0.

Restricting this morphism to an affine U ⊂ B trivializing L, we have that
the targets of the morphism is

k(H + jf ∗L)(f−1(U)) ∼= f∗(kH)(U).

In particular, any finite set of local generators si ∈ f∗(kH)(U) are re-
strictions of sections ŝi ∈ H0(B, f∗(kH) + jkf ∗L). Since we have a filtra-
tion of these vector spaces, there are λi such that ŝi ∈ F λiH0(X, k(H +
jf ∗L)). It follows by definition of the filtration that ŝi|U = si must be in
FλiX f∗(kH)(U). Therefore, by 3.2.28, the bounds of (λ, k) 7→ F λ

XH
0(X, k(H+

jf ∗L) are inherited by (λ, k) 7→ FλXf∗(kH) near b.
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The proof tells us that the optimal local bounds on the filtration are
smaller than the global bounds on the filtrations

(λ, k) 7→ F λH0(X, k(H + jf ∗L)),

where L can vary over the entire ample cone of B, and j is picked so that
H + jf ∗L is ample on X.

Lemma 3.2.30. The filtration associated to an integral fibration degen-
eration comes from a horizontal divisor, i.e., there is a horizontal divisor
D ⊂ Y over X such that for all (λ, k) we have

FλXf∗(kH) = FλordDf∗(kH).

Proof. If (X ,H) is a fibration degeneration with irreducible central fibre,
then the induced horizontal valuation vX0 from 3.2.11 can be used to de-
scribe the filtration as

FλXf∗(kH)(U) = {s ∈ f∗(kH)(U)|t−λs̄ ∈ π∗(kH)(U × C)}
= {s ∈ f∗(kH)(U)|vX0(s̄) ≥ λ}.

Indeed, t = 0 gives an equation for X0 when X0 is irreducible. Therefore,
we have vX0(s) ≥ λ, if, and only if, we can write s|Wi

= tλh and h ∈
kH(π−1(U×C)) = π∗(kH)(U×C). Recall the equivariant map σ : X×C∗ →
X \ X0 ⊂ X , which gives us an isomorphism of function fields K(X ) ∼=
K(X × C) ∼= K(X)(t). In particular, since X0 is a C∗-invariant divisor
on X , it follows that vX0 is also C∗-invariant when considered on K(X)(t).
Therefore, by 2.3.15, we can write it as

vX0(f) = min
µ

(vX0|X(fµ) + µvX0(t)),

where f =
∑

µ∈Z fµt
µ, fµ ∈ K(X). Now

vX0(s) = vX0(σ(s̃))

= σ−1
∗ vX0(s̃)

= σ−1
∗ vX0|X(s̃0)

= σ−1
∗ vX0|X(s).

Here we used that s 7→ s̃ is the invariant extension, hence s̃ has weight
0 in K(X)(t) and one has s̃0 = s. If the test configuration is not trivial,
then the valuation σ−1

∗ vX0|X is divisorial, so by theorem 3.2.10 there is a
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divisor D ⊂ Y
g→ X such that g∗ordD = σ−1

∗ vX0|X . This divisor D has to
be horizontal by 3.2.5 since σ−1

∗ vX0|X is horizontal by 3.2.11 and 3.2.8.
Thus we can write

FλXf∗(kH)(U) = {s ∈ f∗(kH)|σ−1
∗ vX0|X(s) ≥ λ}

= FλordDf∗(kH).

Now, combining the results one can conclude:

Theorem 3.2.31. An integral fibration degeneration (X ,H), for (X,H,B, f)
gives rise to a horizontal relatively H-dreamy divisor.

Proof. In view of the previous lemma, the only thing that remains to be
proven is that a locally linearly right and left bounded filtration of f∗(kH)
is locally finitely generated. Indeed, then the induced horizontal divisor D
is relatively H-dreamy by definition.

If H is a relatively f -ample, then the algebra⊕
k≥

f∗(kH)

is locally finitely generated. Then, considering the local bounds any element
in ⊕

k≥0

(
⊕
λ∈Z

t−λFλf∗(kH))

can be written locally as

k′∑
k=0

(t−λ
∑

Ck≥λ≥λ0

sk,λ +
∑
λ<λ0

t−λgk,λ),

which in turn can be written in terms of local generators m1, . . . ,mn for⊕
k≥0 f∗(kH) as

k′∑
k=0

(
∑

Ck≥λ≤λ0

t−λPk,λ(m1, . . . ,mn) +
∑
λ<λ0

t−λQk,λ(m1, . . . ,mn))

for some polynomials withOB-coefficients. This sum then consists of finitely
many terms, so indeed, one has locally finite generation.

This completes the programme of characterizing the relevant subclass
of divisors/divisorial valuations that needs to be considered in relation to
fibration degenerations.
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3.3 An asymptotic valuative invariant for
fibration degenerations

In analogy with the notion of stability for fibration degenerations obtained
in [DS21a], we shall introduce an asymptotic expansion of the β invari-
ant, which gives a notion of stability for fibration degenerations. It follows
essentially by definition that this notion of valuative stability gives an ob-
struction to the stability of a fibration. Finally, we compute the invariant
for a class of examples.

Remark 3.3.1. Suppose one has a fibration degeneration π : (X ,H)→ B×C
of (X,H,B, f) obtained by a relatively H-dreamy divisor D. Then, D is
H + jf ∗L dreamy for j � 0 for any ample L on B and (X ,H+ jπ∗p∗1L) is
a test configuration for H + jf ∗L by lemma 3.1.4 of [DS21a]. By the work
of Dervan-Legendre [DL22], the Donaldson-Futaki invariants of these test
configurations can be computed as

βH+jf∗L(D) = DF (X ,H + jπ∗p∗1L)2(dim(X)− 1)!, (7)

but the Donaldson-Futaki invariant DF (X ,H+ jπ∗p∗1L) admits an expan-
sion in j by lemma 3.1.9, when j � 0, hence, βH+jf∗L(D) admits such an
expansion as well of the same degree.

In the following, we set

β(H,L)(D)(j) := βH+jf∗L(D),

so that when we think of it as a function or polynomial of j, we simply
write β(H,L). Hence, we can write

β(H,L)(D) = β0(D)jdim(B) + β1(D)jdim(B)−1 + . . .

Definition 3.3.2. We say f : (X,H)→ (B,L) is valuatively

• semistable, if for any relatively H-dreamy horizontal divisor D, we
have β0(D) ≥ 0 and when β0(D) = 0 then β1(D) ≥ 0

• stable, if for any relatively H-dreamy horizontal divisor D, we have
β0(D) ≥ 0 and whenever it is zero, then β1(D) > 0.
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Proposition 3.3.3. If f : (X,H) → (B,L) is with K-semistable fibres,
then it is integrally fibrationally semistable, if, and only if, it is valuatively
semistable.

Proof. On one hand, a horizontal relatively H-dreamy divisor D gives rise
to a fibration degeneration (X ,H) with integral central fibre. On the other
hand, any (X ,H) gives rise to a horizontal relatively H-dreamy divisor. In
both cases, the formula 7 holds by ([DL22], prop. 3.9 and 3.15). Therefore,
up to multiplication by a positive constant the coefficients agree, so one has

β0(D) = 2(dim(X)− 1)!W0(X ,H),

and

β1(D) = 2(dim(X)− 1)!W1(X ,H),

from which the claim follows.

Remark 3.3.4. The same argument also immediately gives that valuative
stability of the fibration implies integral fibration stability. The converse
then depends on whether β1(D) = 0 implies that the norm is 0. Since
valuative stability characterizes K-stability in the Fano case [Fuj19, main
thm. 1.4], there is hope to have a similar result in the case of Fano fibrations.
In general our valuative interpretation is only an obstruction to fibration
stability, so it seems important to develop more tools to characterize it. It
would be interesting to extend the obstruction to a more general setting as
in [BJ22], [BHJ17]. This would require a non-Archimedean interpretation
of stability in the setting of fibrations.

Towards a stronger stability condition

In this section, we aim to make progress towards showing that the family
of β invariants βH+jf∗L(D) is polynomial in j for any D horizontal, but
omitting the dreamy hypothesis. This enables us to extend the same val-
uative stability condition to a larger class of prime divisors. The terms in
the βH+jf∗L invariant, which are not a priori polynomial in j, are the terms
involving the integral of the volume and its derivative. In particular, the
interval over which one integrates (0, τH+jf∗L) depends on j. We show here
that in good circumstances when j is sufficiently large, then the interval
integrated over is fixed.
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Definition 3.3.5 ([dFEM14, prop.1.6.33]). A Cartier divisor H ∈ Pic(X)
is f -big for f : X → B projective, if, and only if, there are Cartier divisors
A,E on X and a constant d > 0 such that

• A is f -ample,

• E is f -effective, i.e. f∗OX(E) 6= 0

• dH = A+ E.

In particular, f -ample divisors are f -big. When B is projective itself,
then the condition that E is f -effective can be restated as follows.

There exists an ample divisor C on B and an effective divisor E ′ on X
such that

E = E ′ − f ∗C.

Where C can be chosen to be a sufficiently big multiple of any ample bundle
on B. Thus, one can refine the decomposition in the definition of an f -big
divisor to be

H = A− f ∗C + E ′,

where now all divisors are Q-divisors. Observe f -big divisors are f -effective:
in fact, the pushforward is supported fully on B. Conversely, if a divisor is
f -effective, then adding any small multiple of an f -ample divisor gives an
f -big divisor. Therefore, the cone of f -big divisors are the interior of the
cone of f -effective divisors.

Definition 3.3.6. Let f : X → B be a projective morphism. Then, the rel-
ative pseudoeffective threshold of a horizontal prime divisor D with respect
to an f -ample divisor H is the number

τ fH(D) = sup{t > 0|H − tD is f − big}
= sup{t > 0|H − tD is f − effective}
= inf{t > 0|f∗(OX(k(H − tD))) = 0,∀k ∈ N}.

The fact that these descriptions are equivalent follows by the fact that
the f -big divisors are the interior of the f -effective divisors [dFEM14].

Remark 3.3.7. The relative pseudoeffective threshold is equal to the supre-
mum the pseudoeffective divisors restricted to the fibres. Indeed, if H|Xb =
Hb, D|Xb = Db then

τHb(Db) ≤ τ fH(D)
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for all b ∈ B. Since

{t > 0|f∗(H − tD) = 0} =
⋂
b∈B

{t > 0|f∗(H − tD)b 6= 0}

⊂{t > 0|H0(Xb, Hb − tDb) 6= 0}

if supb∈B τHb(Db) < τ fH(D), then one clearly has a contradiction, because
for any s such that supb∈B τHb(Db) < s < τ fH(D), there can be no sections
restricted to any fibres, yet f∗(H − sD) 6= 0. Thus,

τ fH(D) = sup
b∈B

τHb(Db).

Next, we show how the relative pseudoeffective threshold relates to the
asymptotic pseudoeffective threshold τH+jf∗L(D).

Lemma 3.3.8. For a horizontal prime divisor D over f : (X,H)→ (B,L),
we have

τH+jf∗L(D) ≤ τ fH(D).

Proof. Let s ∈ H0(X,H + jf ∗L− tD) be nonzero. Then, for U ⊂ B affine
s|f−1(U) cannot vanish everywhere. Therefore s|f−1(U) ∈ f∗(H + jf ∗L −
tD)(U) is nontrivial. By the push-pull formula

f∗(H + jf ∗L− tD)(U) ∼=(f∗(H − tD) + jL)(U)
∼=f∗(H − tD)(U),

because jL(U) ∼= OB(U). Hence, f∗(H − tD) 6= 0 and so τH+jf∗L(D) ≤
τ fH(D).

Next, we show that in fortunate circumstances, the bound from the
previous lemma is in fact achieved for j sufficiently big.

Proposition 3.3.9. If D is a horizontal prime divisor over f : (X,H) →
(B,L) such that f∗(H − τ fH(D)D) 6= 0, then there exists a j0(D) such that
for all j > j0 one has

τH+jf∗L(D) = τ fH(D).

Proof. By definition one knows that for each t < τ fH(D) there are At, Ct, Et
such that H − tD = At − f ∗Ct + Et and

• At is f -ample

• Ct is ample on B
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• Et is effective on X

Since At is f -ample, there is a j1(t) such that At + jf ∗L, is ample when
j > j1(t) and since L is ample on B, there is a j2(t) such that −Ct + jL is
ample on B when j > j2(t). Therefore, when j > j1(t) + j2(t) one has that
At − f ∗Ct + jf ∗L is ample. For such j

H + jf ∗L− tD = At − f ∗Ct + Et + jf ∗L

is the sum of an ample divisor and an effective divisor. In particular, H +
jf ∗L − tD is big. It follows that we have limj→∞ τH+jf∗L(D) = τ fH(D).
In order to achieve our result, we need to show that we can bound the
j1(t), j2(t) needed uniformly in t.

Write Mt = H − tD. We supposed that f∗(MτfH
) 6= 0, which might not

be true in general. By the remark 3.3.7, there is CτfH ample on B and EτfH
effective on X such that

MτfH
= −f ∗CτfH + EτfH

.

Then, for all s ∈ [0, 1], we have

MsτfH
=(1− s)M0 + sMτfH

=(1− s)H − sf ∗CτfH + sEτfH
.

H is f -ample, so there is a j1 such that for all j > j1 H + jf ∗L is ample.
In particular,

(1− s)H + jf ∗L = (1− s)(H + jf ∗L) + sjf ∗L

is ample too for s ∈ [0, 1), since it is the sum of an ample and nef divisor.
There is a j2 such that jL− sCτfH ≥ 0 is effective when s ∈ [0, 1] for j > j2.
So, the pullback is effective too. Therefore, for j > j1 + j2, one has that

H − sτ fHD + jf ∗L =MsτfH
+ jf ∗L

is the sum of an ample and effective divisor whenever s ∈ [0, 1), i.e., it is
big for all such s. Therefore, τH+jf∗L(D) ≥ τ fH(D), when j > j1 + j2.

This shows that in good circumstances (i.e., f∗(H − τ fH(D)D) 6= 0),
the existence of a polynomial expansion for βH+jf∗L(D) only depends on
whether the volume V ol(H + jf ∗L− tD) can be described piecewise poly-
nomially in j for t ∈ (0, τ fH(D)).
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3.4 The case of projective bundles
In the following section, we compute the asymptotic β invariant up to sub-
leading order in the case when the fibration f : (X,H)→ (B,L) is a projec-
tive bundle with n = dim(B). Write X = PB(E) for some locally free sheaf
of OB-modules E of rank r, f for the canonical map, and H = OX(1) for the
hyperplane bundle. We shall also fix an injection of 0→ F → E of locally
free sheaves or equivalently a surjection E∗ → F∗ → 0 of locally free sheaves
such that F has rank r − s, giving rise to an embedding PB(F) → PB(E)
of projective bundles. Note, that unlike the previous sections we shall use
the convention

PB(E) = ProjB(S(E∗)),
so that projectivization of vector bundles becomes a covariant functor.
Moreover, we shall often supress the base B, as it is understood to be fixed.
This convention is standard when considering for example slope stability.

The main result of this section is the following, and the calculations
involved in its proof will take up substantial space.

Theorem 3.4.1. Let E be the exceptional divisor in the blow-up of X along
the subbundle PB(F). Then, the β invariant of E with respect to H + jπ∗L
admits an expansion as

βH,L(E) =
2r(r − s)
r + 1

(
n+ r − 1
n− 1

)
(µL(E)− µL(F))jn−1 +O(jn−2).

It is known that one can relate slope stability with fibrational stability
in this case (see [DS21a] thm. 2.3.6 , which relies on [RT06b]). Here, we
pick an explicit divisor appearing on a dominating model for the projective
bundle, which realizes this correspondence. Moreover, it provides a first
example of asymptotic β invariant calculations. Recall the notion of slope
stability of coherent sheaves (see [HL10]): Given a polarized variety (Y, L)
and a coherent sheaf G on Y . Then, G has slope

µL(G) =
c1(G) · Ldim(Y )−1

rk(G)
.

By Riemann-Roch, this number corresponds to the subleading order term
in the monic expansion of the Euler characteristic X (Y,G ⊗ Lk) as k � 0.

Definition 3.4.2. Given an ample line bundle L on B, then a coherent
sheaf E is slope semistable with respect to L, if for each proper subsheaf
0 → F → E one has µL(F) ≤ µL(E), it is slope stable, if the inequality is
always strict.
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Then, one has directly from the theorem above that

Corollary 3.4.3. Slope stability of E with respect to L implies valuative sta-
bility of the fibration π : (PB(E),O(1))→ (B,L) with respect to all divisors
appearing as blow-ups along subbundles. Conversely, valuative stability of
the fibration implies slope stability with respect to L of smooth subbundles.

The Chow ring of the Blow-up

In this section, we recall a description of the Chow-ring of the blowup of
P(F) in P(E) as described in [EH16] chapter 13. We write

• X = P(E)

• Z = P(F)

• π : Y = BlZX → X and π̂ = f ◦ π

• D = π−1(Z) ∼= PZ(N) where N = OZ(1) ⊗ f ∗Z(E/F) is the normal
bundle of Z in X.

Then, we have a diagram

D Y

Z X,

πD

j

π

i

where π is proper birational and πD is projection to the zero section. This
gives maps between Chow groups

π∗ : Ak(X)→ Ak(Y )

π∗D : Ak(Z)→ Ak(D)

i∗ : A
k(Z)→ Ak+s(X)

j∗ : A
k(D)→ Ak+1(Y ),

where Ak denote codimension k varieties modulo rational equivalence. The
intersection ring A(Y ) is generated by π∗A(X) and j∗A(D) with multipli-
cation given by

π∗a · π∗b = π∗(ab)

π∗a · j∗b = j∗(b · π∗Di∗a)

j∗a · j∗b = −j∗(a · b · hD).
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Here, hD is the first Chern class of the hyperplane bundle of D. Moreover,
one has an exact sequence which determines the relations among these
generators

0→ A(Z)
−i∗×q→ A(X)⊕ A(D)

π∗+j∗→ A(Y )→ 0. (8)

Here, q is the map q(a) = −cs−1(Q) · π∗Da, where Q = π∗DN/OPZ(N)(−1)
is the universal quotient bundle for D.

In the calculations to follow, we shall need

Lemma 3.4.4. Let η = π∗hX , ε = j∗(1) ∈ A1(Y ), where h represents
is the hyperplane class OX(1). Then, the subring of A(Y ) generated by
codimension 1-subvarieties is generated by classes

π̂∗A(B)[η, ε].

Moreover, one has the following relations between the generators

•
∑s

k=0 cs−k(E/F)(η − ε)k = 0

•
∑r

i=0 ci(E)ηr−i = 0

• ε · (
∑r−s

i=0 ci(F)ηr−s−i) = 0,

where we have supressed pullbacks in the notation.

Proof. We know that A1(Y ) = π∗A1(X)⊕ 〈j∗(1)〉 = π̂A1(B)⊕ 〈η〉 ⊕ 〈ε〉, so
these classes definitely generate the subring. The two last relations follow
from the well known descriptions [EH16, chapter 9]

A(X) = A(B)[hX ]/(
r∑
i=0

ci(E) · hr−iX )

A(Z) = A(B)/(
r−s∑
i=0

ci(F)hr−s−iZ )
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by pulling back the relations to Y . Indeed,

0 = π∗(
r∑
i=0

ci(E)hr−iX )

=
r∑
i=0

ci(E)ηr−i

ε · (
r−s∑
i=0

ci(F)ηr−s−i) = j∗(1) · π∗(
r−s∑
i=0

ci(F)hr−s−iX )

= j∗π
∗
D(

r−s∑
i=0

ci(F)hr−s−iZ )

= 0,

since hZ = i∗hX . For the last relation, note that we have

ci(N) =
i∑

j=0

(
s− i+ j

j

)
ci−j(E/F)hjZ

on Z. Now, by the projectivized normal bundle description, one has

A(D) = A(Z)[hD]/(
s∑
i=0

ci(N)hs−iD ).

so

0 =
s∑
i=0

j∗(ci(N) · hs−iD )

=
s∑
i=0

j∗(π
∗
Di
∗(

i∑
j=0

(
s− i+ j

j

)
ci−j(E/F)hjX) · hs−iD )

=
s∑
i=0

(π∗(
i∑

j=0

(
s− i+ j

j

)
ci−j(E/F)hjX) · j∗(hs−iD ))

=
s∑
i=0

i∑
j=0

(−1)s−i
(
s− i+ j

j

)
ci−j(E/F)ηj · εs−i

=
s∑

k=0

cs−k(E/F)(η − ε)k,

where we used that

j∗(h
k
D) = j∗(h

k
D · 1) = −j∗(hk−1

D ) · j∗(1) = · · · = (−1)kj∗(1)k = (−1)kεk.
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In the following, we shall make the change of generators

α = η − ε,
β = η,

and the corresponding relations from the previous lemma

•
∑s

k=0 cs−k(E/F)αk = 0

•
∑r

i=0 ci(E)βr−i = 0

• (β − α) · (
∑r−s

i=0 ci(F)βr−s−i) = 0.

Calculations

We want to find explicitly the two leading terms in the asymptotic expansion
of

βH+jf∗L(D) =AX(D)V ol(H + jf ∗L)

+ (n+ r − 1)µ(X,H + jf ∗L)

∫ τj(D)

0

V ol(H + f ∗L− tD)dt

+

∫ τj(D)

0

d

ds
V ol(H + f ∗L− tD + sKX)dt,

for j very large. We do this simply by computing the terms individually for
j big. First, we note the following well known facts:

Lemma 3.4.5. When X is a smooth variety, Y = BlZ(X) and Z is a
smooth subvariety of codimension s, then the canonical divisors are related
by

KY = π∗KX + (s− 1)D

where D is the exceptional divisor.

Proof. This is a local compuation, so it follows by considering the blow-up
of Cn along the ideal I = 〈z1, . . . , zs〉. By definition, this is the subvariety

BlI(Cn) = {(z1, . . . , zn), [x1 : . . . xs]|xizj = xjzi} ⊂ Cn×Ps−1
C

and the blow-up map is p1 : BlI(Cn) → Cn, so the exceptional divisor is
p−1

1 (V (I)). In any chart Cn×{xi 6= 0} we have

BlI(Cn) ∩ Cn×{xi 6= 0} = {(z1, . . . , zn), (x̃1i, . . . x̃(s−1)i)|zj = x̃jizi}
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where x̃ji =
xj
xi
. Thus the exceptional divisor has equation zi = 0 here.

Pulling back a top degree volume form we have

p∗1(dz1 ∧ · · · ∧ dzn) = ±d(x̃1izi) ∧ · · · ∧ d(x̃(s−1)izi) ∧ dzi ∧ dzs+1 ∧ . . . dzn
= ±zs−1

i dx̃1i ∧ · · · ∧ dx̃(s−1)i ∧ dzi ∧ dzs+1 ∧ · · · ∧ dzn

Here the sign only depends on the chosen chart. In either case, it implies
that π∗KX = KY − (s− 1)D hence the result.

From this it follows directly that the log discrepancy is

AX(D) = ordD(KY − π∗KX) + 1 = s. (9)

Lemma 3.4.6. The canonical bundle of X = PB(E) is given by

KX = −rO(1) + f ∗(KB − det(E))

Proof. We have the short exact sequence

0→ f ∗ΩB → ΩX → ΩX/B → 0

where ΩX denotes the sheaf of Kähler differentials. From this it follows that

KX = f ∗KB +KX/B

Recall the relative Euler sequence [Har10, II, thm 8.13]

0→ ΩX/B → (
r⊕
i=1

OX(−1))⊗ f ∗E → OX → 0

from which it follows that

rO(−1) + det(f ∗E) = KX/B

thus
KX = −rO(1) + f ∗(KB + det(E)).

In particular since c1(det(E)) = c1(E), one has for purposes of intersec-
tion number calculations the identity

KX ≡ −rH + f ∗(KB + c1(E)).
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Lemma 3.4.7. There is a j0 such that for all j ≥ j0, the pseudoeffective
threshold τH+jf∗L(D) = 1, in fact for all those j and x ∈ [0, 1), the bundle
H + jf ∗L− xD is ample, so the Seshadri constant εH+jf∗L(D) = 1 as well.

Proof. By 3.3.9 the pseudoeffective threshold

τH+jf∗L(D) = τ fH(D), j � 0.

Therefore, it suffices to analyze the condition on the fibres. By functoriality
of the blow-up, the fibre Xb is blown up in Zb. I.e. Xb

∼= Pr−1
C and Zb ∼=

Pr−s−1
C . But

BlZb(Xb) ⊂ Xb × PsC
shows that the ample cone of BlZb(Xb) contains positive linear combina-
tions of pullback of the hyperplane sections hXb and hPsC . Moreover, in
A1(BlZb(Xb)) we have that the exceptional divisor

Db = hXb − hPsC

[EH16, cor. 9.12] where we have supressed the pullback. Since H|Xb = hXb
it follows that for t ∈ [0, 1) that

H|Xb − tDb = (1− t)hXb + thPsC

is ample. Therefore τH+jf∗L ≥ 1 and we see that it is less than 1 by
considering the volume for t = 1.

V ol(H|Xb −Db) =V ol(hPsC)

=hr−1
PsC

=0.

Thus the integrals involved in the β invariant are for j sufficiently big
over the unit interval, which we shall assume from now on.

The first term of β then expands polynomially in j as

AX(D)V ol(H + jf ∗L) = s(H + jf ∗L)n+r−1

= s(

(
n+ r − 1

n

)
jnf ∗Ln ·Hr−1 +

(
n+ r − 1
n− 1

)
jn−1Ln−1 ·Hr)

+O(jn−2).
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Next we calculate the slope

µ(X,H + jf ∗L) =
−KX · (H + jf ∗L)n+r−2

(H + jf ∗L)n+r−1

=
(rH − f ∗(c1(det(E)) +KB)) · (H + f ∗L)n+r−2

(H + jf ∗L)n+r−1
.

Expanding this asymptotically in j gives

µ(X,H + f ∗L) =
r(r − 1)

n+ r − 1

+ j−1 n

n+ r − 1
(
f ∗Ln−1 ·Hr

f ∗Ln ·Hr−1
− f ∗(c1(det(E)) +KB) · f ∗Ln−1 ·Hr−1)

f ∗Ln ·Hr−1
)

+O(j−2).

Next we simplify the volume in the integrand. As we know by the lemma
3.4.7, we can assume H + jf ∗L− tD is ample as long as its big, hence we
can use intersection numbers to calculate the volume as a polynomial

V ol(H + jf ∗L− tD) =(β + jπ̂∗L− tε)n+r−1

=(jπ̂∗L+ (1− t)β + tα)n+r−1

=

(
n+ r − 1

n

)
jnπ̂∗Ln · ((1− t)β + tα)r−1

+

(
n+ r − 1
n− 1

)
jn−1π̂∗Ln−1 · ((1− t)β + tα)r +O(jn−2)

=

(
n+ r − 1

n

)
jnπ̂∗Ln · (

r−1∑
k=0

(
r − 1
k

)
(1− t)ktr−1−kβkαr−1−k)

+

(
n+ r − 1
n− 1

)
jn−1π̂∗Ln−1 · (

r∑
k=0

(
r
k

)
(1− t)ktr−kβkαr−k)

+O(jn−2)

where we used that ε = j∗(1) = D. The next goal is to write the terms
above in the form A · βr−1, where A ∈ An(B) since these give intersection
numbers computed on B.

Intersecting the relations 3.4 with π̂∗Ln give

0 =π̂∗Ln · αs (10)
0 =π̂∗Ln · βr (11)

π̂∗Ln · α · βr−s =π̂∗Ln · βr−s+1. (12)
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These equations also hold if we replace π̂∗Ln by any other element pulled
back from An(B). In particular if V is a bundle on B then

0 =π̂∗(Ln−1 · c1(V )) · αs (13)
0 =π̂∗(Ln−1 · c1(V )) · βr (14)

π̂∗(Ln−1 · c1(V )) · α · βr−s =π̂∗(Ln−1 · c1(V )) · βr−s+1. (15)

Similarly, if we intersect the relations 3.4 with π̂∗Ln−1, then we obtain

π̂∗Ln−1 · αs =− Ln−1 · c1(E/F) · αs−1 (16)
π̂∗Ln−1 · βr =− π̂∗Ln−1 · c1(E) · βr−1 (17)

π̂∗Ln−1 · α · βr−s =π̂∗Ln−1 · βr−s+1 + π̂∗Ln−1 · c1(F) · (βr−s − α · βr−s−1).
(18)

Now, the leading order term in V ol(H + jf ∗L− tD) reduces to

π̂∗Ln · (
r−1∑
k=0

(
r − 1
k

)
(1− t)ktr−1−kβkαr−1−k)

=
r−1∑
k=0

(
r − 1
k

)
(1− t)r−1−ktkπ̂∗Ln · βr−1−k · αk

=
s−1∑
k=0

(
r − 1
k

)
(1− t)r−1−ktkπ̂∗Ln · βr−1−k · αk

=
s−1∑
k=0

(
r − 1
k

)
(1− t)r−1−ktkπ̂∗Ln · βr−1

=π̂∗Ln · βr−1(
s−1∑
k=0

(
r − 1
k

)
(1− t)r−1−ktk).

Here, we first used equation 10 and then equation 12, which applies exactly
when k ≤ s − 1, since then r − 1 − k ≥ r − s. Computing the subleading
order term, we first note that equation 16 applied twice yields

π̂∗Ln−1·(
r∑

k=0

(
r
k

)
(1−t)r−kxkβr−kαk) = π̂∗Ln−1·(

s∑
k=0

(
r
k

)
(1−t)r−ktkβr−kαk),

Indeed, when k ≥ s+ 1, then

π̂∗Ln−1 · αk · βr−k = π̂∗(Ln−1 · c1(E/F)) · αk−1 · βr−k

= π̂∗(Ln−1 · c1(E/F)2) · αk−2 · βr−k

= 0,
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because π̂∗(Ln−1 · c1(E/F)2) ∈ π̂∗An+1(B) = 0. When k < s, then one
obtains by equation 18 and 12 that

π̂∗Ln−1 · βr−k · αk =(π̂∗Ln−1 · α · βr−s) · αk−1 · βs−k

=(π̂∗Ln−1 · βr−s+1 + π̂∗Ln−1 · c1(F) · (βr−s − αβr−s−1)) · αk−1 · βs−k

=π̂∗Ln−1 · αk−1 · βr−k+1 + π̂∗Ln−1 · c1(F) · αk−1 · βr−k

− π̂∗Ln−1 · c1(F) · αk · βr−k−1

=π̂∗Ln−1 · αk−1 · βr−k+1 + π̂∗Ln−1 · c1(F) · αk−1 · βr−k

− π̂∗Ln−1 · c1(F) · αk−1 · βr−k

=π̂∗Ln−1 · αk−1 · βr−k+1

=π̂∗Ln−1 · βr

=− π̂∗Ln−1 · c1(E) · βr−1.

The last two equation follow by 12 and 17 respectively. The final term k = s
gives by 16 and repeated use of 15

π̂∗Ln−1 · βr−s · αs =− π̂∗Ln−1 · c1(E/F) · αs−1 · βr−s

=− π̂∗Ln−1 · c1(E/F) · αs−2 · βr−s+1

=−−π̂∗Ln−1 · c1(E/F) · βr−1.

In conclusion, the subleading order term of the volume is

π̂∗Ln−1 · (
r∑

k=0

(
r
k

)
(1− t)r−ktkβr−kαk) =−

(
r
s

)
(1− t)r−stsπ̂∗(Ln−1 · c1(E/F) · βr−1)

−
s−1∑
k=0

(
r
k

)
(1− t)r−ktkπ̂∗(Ln−1 · c1(E)) · βr−1

=

(
r
s

)
(1− t)r−stsπ̂∗(Ln−1 · c1(F) · βr−1)

−
s∑

k=0

(
r
k

)
(1− t)r−ktkπ̂∗(Ln−1 · c1(E)) · βr−1.

Thus, expanding the integral of the volume as∫ ∞
0

V ol(H + jf ∗L− tD) = v0j
n + v1j

n−1 +O(jn−2),
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one has

v0 =

(
n+ r − 1

n

)∫ 1

0

π̂∗Ln · ((1− t)β + tα)r−1dt

=

(
n+ r − 1

n

)∫ 1

0

π̂∗Ln · βr−1(
s−1∑
k=0

(
r − 1
k

)
(1− t)r−1−ktk)dt

=

(
n+ r − 1

n

)
π̂∗Ln · βr−1

s−1∑
k=0

(
r − 1
k

)∫ 1

0

(1− t)r−1−ktkdt

=

(
n+ r − 1

n

)
π̂∗Ln · βr−1π̂∗Ln · βr−1(

s−1∑
k=0

(
r − 1
k

)
(r − 1− k)!k!

r!
)

=

(
n+ r − 1

n

)
π̂∗Ln · βr−1

s−1∑
k=0

1

r

=
s

r

(
n+ r − 1

n

)
π̂∗Ln · βr−1,

and

v1 =

(
n+ r − 1

n− 1

)∫ 1

0

π̂∗Ln−1 · ((1− t)β + tα)r dt

=

(
n+ r − 1

n− 1

)
·
∫ 1

0

(
r

s

)
(1− t)r−stsπ̂∗Ln−1 · c1(F) · βr−1dt

−
(
n+ r − 1

n− 1

)
·
∫ 1

0

s∑
k=0

(
r

k

)
(1− t)r−ktkπ̂∗(Ln−1 · c1(E)) · βr−1dt

=

(
n+ r − 1

n− 1

)((
r

s

)
(r − s)!s!
(r + 1)!

π̂∗(Ln−1 · c1(F)) · βr−1

)
−
(
n+ r − 1

n− 1

)( s∑
k=0

(
r

k

)
(r − k)!k!

(r + 1)!
π̂∗(Ln−1 · c1(E)) · βr−1

)

=

(
n+ r − 1

n− 1

)(
1

r + 1
π̂∗(Ln−1 · c1(F)) · βr−1 −

s∑
k=0

1

r + 1
π̂∗(Ln−1 · c1(E)) · βr−1

)

=

(
n+ r − 1

n− 1

)(
1

r + 1
π̂∗(Ln−1 · c1(F)) · βr−1 − s+ 1

r + 1
π̂∗(Ln−1 · c1(E)) · βr−1

)
.

In the above, we have used the following identities∫ 1

0

(1− t)atbdt =
a!b!

(a+ b+ 1)!
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(
r

k

)
(r − k)!k!

(r + 1)!
=

1

r + 1
.

Next we aim to perform a similar reduction of the derivative of the volume
in the direction KX . Recall that one has the formula

d

dt
V ol(A+ tB)|t=0 = n〈An−1〉B

and that the positive intersection product is the standard intersection prod-
uct when A is nef. Therefore, we have

d

ds
V ol(H + jf ∗L− tD + sKX)|s=0

=(n+ r − 1)(jπ̂∗L+ (1− t)β + tα)n+r−2 · π∗KX

=(n+ r − 1)

(
n+ r − 2

n

)
jnπ̂∗Ln((1− t)β + tα)r−2 · π∗KX

+ (n+ r − 1)

(
n+ r − 2
n− 1

)
jn−1π̂∗Ln−1((1− t)β + tα)r−1π∗KX

+O(jn−2).

Recall that π∗KX = −rβ + π̂∗(KB + c1(E) by lemma 3.4.6, so expanding
the leading term yields

π̂∗Ln((1− t)β + tα)r−2π∗KX =− rπ̂∗Ln((1− t)β + tα)r−2β

=− r
r−2∑
k=0

(
r − 2
k

)
(1− t)r−2−ktkβr−k−1αkπ̂∗Ln

=− r
s−1∑
k=0

(
r − 2
k

)
(1− t)r−2−ktkβr−k−1αkπ̂∗Ln

=− rβr−1π̂∗Ln
s−1∑
k=0

(
r − 2
k

)
(1− t)r−k−2tk.

Here, we used that the base has dimension n, that the terms k ≥ s vanish
by 10, and then applying 12 repeatedly for k < s. For the second term, one
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has

π̂∗Ln−1((1− t)β + tα)r−1π∗KX =− r
r−1∑
k=0

(
r − 1
k

)
(1− t)r−1−ktkβr−kαkπ̂∗Ln−1

+
r−1∑
k=0

(
r − 1
k

)
(1− t)r−1−ktkβr−1−kαkπ̂∗(Ln−1 ·KB)

+
r−1∑
k=0

(
r − 1
k

)
(1− t)r−1−ktkβr−1−kαkπ̂∗(Ln−1 · c1(E)).

The three terms in the sum are handled by using the following relations,
which all follow from the equations 13,15,16, 17 and 18.

π̂∗(Ln−1 ·KB)βr−1−kαk =

{
0 k ≥ s

π̂∗(Ln−1 ·KB)βr−1 k < s

π̂∗(Ln−1 · c1(E))βr−1−kαk =

{
0 k ≥ s

π̂∗(Ln−1 · c1(E))βr−1 k < s

π̂∗Ln−1αkβr−k =


0 k > s

−π̂∗(Ln−1 · c1(E/F))βr−1 k = s

−π̂∗(Ln−1 · c1(E))βr−1 k < s.

Using these, we get

π̂∗Ln−1((1− t)β + tα)r−1π∗KX =r

(
r − 1
s

)
(1− t)r−1−stsc1(E/F)π̂∗Ln−1βr−1

+ r
s−1∑
k=0

(
r − 1
k

)
(1− t)r−1−ktkπ̂∗(Ln−1s · c1(E))βr−1

+
s−1∑
k=0

(
r − 1
k

)
(1− t)r−1−ktkπ̂∗(Ln−1 ·KB)βr−1−k

−
s−1∑
k=0

(
r − 1
k

)
(1− t)r−1−ktkπ̂∗(Ln−1 · c1(E)βr−1

=r

(
r − 1
s

)
(1− t)r−1−stsπ̂∗(c1(E/F)Ln−1)βr−1

+ (r − 1)
s−1∑
k=0

(
r − 1
k

)
(1− t)r−1−ktkπ̂∗(Ln−1 · c1(E))βr−1

+ π̂∗(Ln−1 ·KB)βr−1

s−1∑
k=0

(
r − 1
k

)
(1− t)r−1−ktk
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So, we have the first two coefficients in the expansion

d

ds
V ol(H + f ∗L− tD + sKX)|s=0 = jnw0 + jn−1w1 +O(jn−2).

These are

w0 =− r(n+ r − 1)

(
n+ r − 2

n

)
βr−1π̂∗Ln

s−1∑
k=0

(
r − 2
k

)
(1− t)r−k−2tk

=− r(r − 1)

(
n+ r − 1

n

)
βr−1π̂∗Ln

s−1∑
k=0

(
r − 2
k

)
(1− t)r−k−2tk,

and

w1 = (n+ r − 1)

(
n+ r − 2
n− 1

)[
r

(
r − 1
s

)
(1− t)r−1−stsπ̂∗(c1(E/F)Ln−1)βr−1

+ (r − 1)
s−1∑
k=0

(
r − 1
k

)
(1− t)r−1−ktkπ̂∗(Ln−1 · c1(E))βr−1

+ π̂∗(Ln−1 ·KB)βr−1

s−1∑
k=0

(
r − 1
k

)
(1− t)r−1−ktk

]
= r2

(
n+ r − 1
n− 1

)(
r − 1
s

)
π̂∗(c1(E/F)Ln−1)βr−1(1− t)r−1−sts

+ r(r + 1)

(
n+ r − 1
n− 1

)
π̂∗(c1(E)Ln−1)βr−1

s−1∑
k=0

(
r − 1
k

)
(1− t)r−1−ktk

+ r

(
n+ r − 1
n− 1

)
π̂∗Ln−1KBβ

r−1

s−1∑
k=0

(
r − 1
k

)
(1− t)r−1−ktk.

Here, we used the idenitities

(n+ r − 1)

(
n+ r − 2

n

)
= (r − 1)

(
n+ r − 1

n

)
(n+ r − 1)

(
n+ r − 2
n− 1

)
= r

(
n+ r − 1
n− 1

)
.

We want to integrate the asymptotic expansion, so by using 3.4 we get
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∫ ∞
0

d

ds
V ol(H + jf ∗L− tD + sKX)|s=0dt

=− jnr(r − 1)

(
n+ r − 1

n

)
π̂∗Lnβr−1

s−1∑
k=0

(
r − 2
k

)
(r − k − 2)!k!

(r − 1)!

+ jn−1r2

(
n+ r − 1
n− 1

)(
r − 1
s

)
π̂∗(Ln−1c1(E/F))

(r − 1− s)!s!
r!

+ jn−1r(r − 1)

(
n+ r − 1
n− 1

)
π̂∗(c1(E)Ln−1)βr−1

s−1∑
k=0

(
r − 1
k

)
(r − 1− k)!k!

r!

+ jn−1r

(
n+ r − 1
n− 1

)
π̂∗(Ln−1KB)βr−1

s−1∑
k=0

(
r − 1
k

)
(r − 1− k)!k!

r!

+O(jn−2)

=− jnr(r − 1)

(
n+ r − 1

n

)
π̂∗Lnβr−1

s−1∑
k=0

1

r − 1

+ jn−1r2

(
n+ r − 1
n− 1

)
π̂∗(Ln−1c1(E/F))βr−1 1

r

+ jn−1r(r − 1)

(
n+ r − 1
n− 1

)
π̂∗(Ln−1c1(E))βr−1

s−1∑
k=0

1

r

+ jn−1r

(
n+ r − 1
n− 1

)
π̂∗(Ln−1KB)βr−1

s−1∑
k=0

1

r

=− jnrs
(
n+ r − 1

n

)
π̂∗Lnβr−1 + jn−1r

(
n+ r − 1
n− 1

)
π̂∗(Ln−1c1(E/F))βr−1

+ jn−1(r − 1)s

(
n+ r − 1
n− 1

)
π̂∗(Ln−1c1(E))βr−1 + jn−1s

(
n+ r − 1
n− 1

)
π̂∗(Ln−1KB)βr−1

+O(jn−2).

Using the fact that π̂∗(A) · βr−1 = A as numbers when A is a top
intersection number on B, we can summarize the calculations above as
follows:
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Proposition 3.4.8.

∫ 1

0

V ol(H + jf ∗L− tD)dt = V0j
n + V1j

n−1 +O(jn−2)∫ 1

0

V ol(H + jf ∗L− tD)dt = W0j
n +W1j

n−1 +O(jn−2),

where

V0 =

(
n+ r − 1

n

)
s

r
Ln

V1 =

(
n+ r − 1
n− 1

)
(

1

r + 1
Ln−1c1(F)− s+ 1

r + 1
Ln−1c1(E))

W0 =−
(
n+ r − 1

n

)
srLn

W1 =

(
n+ r − 1
n− 1

)
(rc1(E/F)Ln−1 + s(r − 1)c1(E)Ln−1 + sKBL

n−1).

To finish up the computations needed for theorem 3.4.1 we simply need
to put all these expressions together. Recall that

µ(X,H + jf ∗L) = M0 + j−1M1 +O(j−2),

where

M0 =
r(r − 1)

n+ r − 1

M1 =
n

n+ r − 1
(
f ∗Ln−1 ·Hr

Ln
− (c1(det(E)) +KB) · Ln−1

Ln
)

=
n

n+ r − 1
(
f ∗Ln−1c1(E)

Ln
− (c1(det(E)) +KB) · Ln−1

Ln
)

= − n

n+ r − 1

KB · Ln−1

Ln

=
n

n+ r − 1
µ(B,KB).

Here we used that we have equation 17 giving π∗(f ∗Ln−1·Hr) = π̂∗(Ln−1c1(E))βr−1,
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which gives f ∗Ln−1Hr = f ∗(Ln−1c1(E))Hr−1. Writing

V ol(H + f ∗L) = N0j
n +N1j

n−1 +O(jn−2),

N0 =

(
n+ r − 1

n

)
f ∗Ln

N1 =

(
n+ r − 1
n− 1

)
Hrf ∗Ln−1

=−
(
n+ r − 1
n− 1

)
c1(E)f ∗Ln−1,

we know that the asymptotic expansion of the β invariant is

βH,L = β0j
n + β1j

n−1 +O(jn−2)

with

β0 =AX(D)N0 + (n+ r − 1)M0V0 +W0

β1 =AX(D)N1 + (n+ r − 1)(M0V1 +M1V0) +W1.

Therefore, we have

β0 =s

(
n+ r − 1

n

)
Ln + r(r − 1)

(
n+ r − 1

n

)
s

r
Ln −

(
n+ r − 1

n

)
srLn

=(s+ s(r − 1)− sr)
(
n+ r − 1

n

)
Ln

=0.

Performing the same calculations with n = dim(B) = 0, one may prove
that the exceptional divisor D of a blow up of projective space in a linear
subspace gives beta invariant 0, corresponding to a product test configu-
ration. Hence, the fibrewise statement holds and the fact that the leading
coefficient is 0 is thus given by proposition 3.1.12.
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Similarly, we compute

β1 =− s
(
n+ r − 1
n− 1

)
c1(E)Ln−1 + r(r − 1)

(
n+ r − 1
n− 1

)
(

1

r + 1
Ln−1c1(F)

− s+ 1

r + 1
Ln−1c1(E)) + nµ(B,KB)

(
n+ r − 1

n

)
s

r
Ln

+

(
n+ r − 1
n− 1

)
(rc1(E/F)Ln−1 + s(r − 1)c1(E)Ln−1 + sKBL

n−1)

=

(
n+ r − 1
n− 1

)[
(−s− r(r − 1)(s+ 1)

r + 1
) + s(r − 1) + r)c1(E)Ln−1

+ (
r(r − 1)

r + 1
− r)c1(F)Ln−1

]
=

(
n+ r − 1
n− 1

)[2(r − s)
r + 1

c1(E)Ln−1 − 2r

r + 1
c1(F)Ln−1

]
=

2r(r − s)
r + 1

(
n+ r − 1
n− 1

)[c1(E)Ln−1

r
− c1(F)Ln−1

r − s
]

=
2r(r − s)
r + 1

(
n+ r − 1
n− 1

)
(µL(E)− µL(F)).

In the calculation, we used that the terms involving KB cancel, since

n

r

(
n+ r − 1

n

)
=

(
n+ r − 1
n− 1

)
.

This finishes the computation and the proof of theorem 3.4.1.
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