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0.1 Summary

The present thesis represents my work as a Ph.D. fellow in the geometry
group at the university of Aarhus. The overarching theme of my Ph.D.
has been to study how certain algebraic structures and conditions can be
useful for studying metric structures near the boundary or singularities of
moduli spaces. In the first part, [[ of the thesis, this mainly manifests itself
in explicit work with the Hilbert modular cusp singularities. This part
contains mostly classical material, and the most original contribution of
the author will be the perspective on the possible relationship between the

metric geometry and the non-Archimedean geometry found in proposition
1.2.13|and section [1.3} where we modify an ansatz by Collins and Li [CL22).

In recent years, the notion of K-stability has played an important role
in forming moduli spaces of projective varieties with good properties. By a
famous result of Chen, Donaldson and Sun |[CDS14a],|[CDS14b|,|[CDS14c],
in the smooth fano case, K-stability is equivalent to the existence of a
Kahler Einstein metric on the variety. The stability condition is algebraic
and measures, roughly speaking, the limiting behaviour along algebraic
paths in the space of compatible Kéhler potentials. The second part, [T}
contains a review of some algebraic aspects of K-stability and original work
undertaken with Lars Martin Sektnan from [3.2] and onwards. We consider
an analogous stability criterion for families of varities, dubbed fibrational
stability by Dervan and Sektnan in [DS21a]. It restricts to K-stability when
the family is over a point and, in this case, there is a valuative obstruction
for K-stability. We introduce a special class of valuations called horizontal
and show that these provide a valuative obstruction for fibration stability.
Finally we illustrate this obstruction in the case where the fibration is a
projective bundle and show that exceptional divisors obtained by blowing
up subbundles give a relation with slope stability of the bundle.

To the best of my ability I have named any results and definitions from
the literature with references to the original article. Results which are not
named are either "standard" or original. In order to make the exposition
more self contained, I have included some proofs of results from the litera-
ture with more details. In accordance with GSNS rules, parts of [I[| were also
used in the progress report for the qualifying examination.



Resumé

Denne athandling repraesenterer mit arbejde som Ph.D fellow i geometri-
gruppen ved Aarhus Universitet. Det overordnede tema har veeret at stud-
ere hvordan bestemte algebraiske strukturer og betingelser kan bruges til at
studere metriske strukturer teet pa randen eller naer singulariter af moduli
rum. I den forste del af athandlingen, [, kommer dette primeert til udtryk
ved explicit arbejde med Hilbert modular cusp singulariteterne. Denne
del indeholder fortrinsvis klassiske resultater og forfatterens mest originale
bidrag er saledes perspektivet pa en mulig relation mellem den metriske ge-
ometri og den ikke-Arkimediske geometri som forefindes i proposition
og [L.3| hvor vi modificerer en ansatz af Collins og Li [CL22].

I de senere ar, har begrebet K-stabilitet spillet en vigtig rolle i be-
streebelserne pa at konstruere moduli rum af projektive varieteter med
seerligt gode egenskaber. Et bergmt resultat af Chen, Donaldson og Sun
[CDS14a],|CDS14b],|CDS14c| siger at i det ikke singuleere Fano tilfeelde, s&
er K-stabilitet sekvivalent til eksistensen af en Kéhler Einstein metrik pa
varieteten. Stabilitetsbetingelsen er algebraisk og maler groft sagt opfgrslen
i greensen langs stier i rummet af kompatible Kahler potentialer. Afhandlin-
gens anden del, [T} indeholder en gennemgang af nogle algebraiske aspekter
af K-stabilitet og indeholder originalt arbejde foretaget med Lars Martin
Sektnan fra afsnit og frem. Vi betragter en analog stabilitetsbetingelse
for familier af varieteter, kaldet fibrationsstabilietet som blev introduceret
af Dervan og Sektnan i [DS21a] og reducerer til K-stabilitet nar familien er
over et punkt. Der er en obstruktion for K-stabilitet givet ved en invari-
ant for veerdissetninger associeret til szerlige divisorer. Vi introducerer en
klasse af veerdiseetninger kaldet horisontale og viser at de giver en analog
obstruktion for fibrations stabilitet. Slutteligt illustrerer vi denne obstruk-
tion i tilfeeldet hvor fibrationen er et projektivt bundt, og viser at den for
ekseptionelle divisorer i et blow up af et delbundt, er relateret til heeld-
ningsstabiliteten for bundtet.

Jeg har efter bedste evne navngivet resultater of definitioner fra lit-
teraturen med referencer til ophavsartiklen. Resultater uden navn er en-
ten "standard" eller originale. For at ggre fremstillingen lettere at folge
har jeg inkluderet beviser for resultater i litteraturen med flere detaljer.
I overensstemmelse med GSNS regler er dele af [[] brugt i min rapport i
forbindelse med min kvalifikationseksamen.
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Part 1

On certain cusp singularities






1 On certain cusp singularities

Introduction

Negative Kédhler Einstein metrics defined away from a singular set or divi-
sor have been the focus of a lot of research over the years. Following the
resolution of the Calabi conjecture by Yau [Yau7§|, a lot of attention was
devoted to the study of complete metrics on non-compact spaces and their
asymptotics at infinity, for instance |[CY80],[Kob84],|TY87|. More recently,
metrics with cone-type singularities along a divisor in projective space were
studied and used in the proof of the celebrated Yau-Tian-Donaldson con-
jecture. A common theme in this work has been to try to find metrics
W= i 00 ¢ on a compact Kihler manifold X with Ky + D ample, which is
Einstein away from a simple normal crossing divisor D = Y d;D;, d; € [0, 1]
and with a prescribed behaviour of its local potential ¢ near the support
of D. This situation arises, for example, on log smooth pairs (X, D) with
ample log canonical class in the sense of the minimal model programme
(see |[KK13],|KM9S§|). If one requires the metric to extend over D as a cur-
rent, then the state of the art is the results of [GW16|, [BG14] who show
that there is a unique such metric, which is Kahler Einstein away from D.
Moreover, they show that the metric is locally holomorphically bilipschitz
equivalent to a model metric which splits as a product metric with cone
and cusp singularities dependent on the coefficients d;.

In a more local direction, [DFS21|, Datar, Fu and Song study the nega-
tive Einstein Dirichlet problem near certain isolated log canonical singular-
ities, which are not log terminal (purely log canonical), and they show that
any two potentials giving complete metrics must be asymptotically close
as one approaches the singularity in a strong sense. Building on this, Fu,
Hein and Jiang [FHJ21] gave a description of the asymptotics of the Kéah-
ler Einstein metrics obtained in [DFS21| in the case of cones over elliptic
curves. The results suggest, that the asymptotics of complete Kahler Ein-
stein metrics defined near isolated, purely log canonical singularities are in
some sense canonical. It is then a natural question to ask, if the asymptotic
behaviour of a complete Kéhler Einstein metric can be related to some local
algebraic structure associated to the log canonical singularity. To a resolu-
tion of a singularity, one can associate a dual complex, which captures how
the exceptional divisors of the resolution intersect. Although dependent
on the particular resolution, a first venture would be to try to establish a
correspondence between the dual complex and the asymptotic behaviour of
the Kéahler Einstein metric. As a first step in this programme, we consider
the Hilbert modular cusps in dimension 2, equipped with a special choice of
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negative Kéhler Einstein metric. In this case, our main result is the obser-
vation that one can relate the dual complex to the non-collapsed part of the
link via a geometrically induced homeomorphism [I.2.13] This is done by
considering the limit of a special class of analytic geodesics, starting from
points in the link arising from scaling the cone underlying the construction
of the cusp singularity Since this result relies on an essentially com-
plete description of the singularity and its resolution, it appears difficult to
make generalizeations. Finally, we make a remark that the Hilbert mod-
ular cusps fit in a modification of a new ansatz by Collins and Li |CL22]
regarding Calabi-Yau metrics near the zero section of product of line bun-
dles, which under a certain proportionality assumption produce negative
Einstein metrics [L.3]

In this part of the thesis, we review the construction of certain family
of cuspidal singularities due to Tsuchihashi, which generalizes the Hilbert-
Modular cusps [I.1} Afterwards, we specialize the discussion to metric as-
pects of the Hilbert modular cusps|l.2, and we introduce the concept of the
dual complex associated to an exceptional divisor of a good resolution. We
also define a map from a neighbourhood of the exceptional divisor to the
dual complex [I.2] Then, we consider the case of Hilbert modular cusps in
dimension 2 [I.2] Finally, we make a remark on a non-Archimedean ansatz

L3l

1.1 Tsuchihashi cusps

In this section, we sketch the general construction of Tsuchihashi cusp sin-
gularities [Tsu83| from "permissible pairs" (C,I'), which form a type of
isolated normal singularities equipped with a natural metric, whose geom-
etry models the cusp. The construction generalizes the Hilbert modular
cusps, and their minimal toric resolution. Imperative to the construction
of these cusps are certain characteristic functions ¢: C' — R, which enable
the contraction of the boundary at infinity to a point.
In order to fix notation, we let

e N =7 be a lattice and M = Homgz(N,Z) its dual.

e SI(N) C Autz(N) be the index 2 subgroup of elements with determi-
nant 1.

e Set Ng = N ®g R so that we can identify SI(/N) with its image in
GI(Ng).

homeo

o ray(Ng) = (Ng \ {0}/Rsq) =~ S™ L



Definition 1.1.1. We say a pair (C,I") is Tsuchihashi cusp data for N, if

e C' C Mg is an open strongly convex cone, i.e., C N {—C} = {0} of
maximal dimension.

o I' C Stab(C, Ng) = {g € GI(Ngr)|gC = C} is a subgroup such that
the induced action on ray(Cg) is effective, properly discontinuous and
ray(Cr)/T" is compact.

Given Tsuchihashi cusp data (C,T") for N, then there is a dual cusp data.
Indeed, if we equip M with the dual I'- action, i.e., the action such that
(g-m)(z) =m(g'z), then we see that the dual cone,

C'={me M|(m,c) >0,Yce C\{0}},

has an induced I'-action and that (C’,T") is Tsuschihashi cusp data for M.
In particular, when C' is self dual, i.e., when C’ = C under the identification
Ngr — Mg, then we have an involution on the set of Tsuchihashi cusp data.
While this symmetry is certainly nice, we shall not pursue it further.

The setup

Given Tsuchihashi cusp data (C,T") for N, one can consider the convex hull
© = convh(NNC),

along with its Euclidean boundary 00O. It is shown in [Tsu83| that the
boundary 0© can be decomposed into (possibly infinitely many) convex
polytopes with vertices in N. Write P(00) for this collection. There is
a natural I action on points in N N 0O, and since I' acts by matrices of
determinant 1, no convex polytope gets dilated, and there is an induced
action on P(00) uniquely determined by the action on the vertices defining

the respective polytope. Since we are given the data 0© with a I'-action on
P(00©), we can form the fan

Y ={0}uU U Coneg(a),

a€EP(00O)

where Coneg(a) C Ng is the cone generated by the polytope with a I'-action
and support |X| = CU{0}. By standard toric geometry, there is then a toric
variety T2 with an action of I' associated to this data. The space T is
smooth if, and only if, all Coneg(«) are regular, meaning that Coneg(a) N
N contains a Z basis for N. In general, it might happen that Ty has
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singularities, but these can be resolved equivariantly by constructing a new
fan from subdivision of the cones of ¥. Now, these cones must also be
preserved by the action of I', so this resolution also has an induced action
by I'. Therefore, in the following, we can safely assume T is smooth.

Remark 1.1.2. If v - Coneg(a) = Coneg(B), then dually v - Coner() =
Conegr(a)’. Hence, one has the map of character rings

v C[Xm]mGConeR(B)’ﬂM — (C[Xm]meConeR(a)’ﬁM

given on generators by v(x™) = x?™. Thus, when the cones are regular, we
can pick generators to obtain ring isomorphisms

F5: (C[Xm]mGC'oneR(,B)/ﬂM = C[Z1, . 727‘]

Foz: C[Xm]mGConeR(a)’ﬂM = C[gla ce 721“]
giving rise to the conjugate map F, ovyo F; !, which takes z; — F,(x"™) =
H§:1 ,2;”, where Y = 2 %% Therefore, when TyY is smooth, then
the action of v maps the open subsets isomorphic to C" determined by a
cone to each other by a transformation of the type

7'(217"'727") = (Hg;?lj?"ng]c'rj)a

and the integral matrix (c;;) represents the dual action of v, i.e., is equal
to the transpose of the matrix representing ~.

Recall that one has a map to a manifold with corners, which is given by
the quotient map with respect to the compact torus U(1)" C C* acting on
TnY (see e.g. |Oda88|). This map is ['-equivariant and coincides up to a
sign change with the Euclidean tropicalization map

trop : TnX — (Ty%)"oP

given on points (identified to be morphisms p: Coneg(a) N M — C, p(0) =
L p(m+m') = p(m)p(m’)) by p— —log(|p|). Now, C' is naturally embed-
ded as an open I'-invariant subset in (TxX)"°?, because the image of the
torus trop(N ®z C*)" = Ng is open. Consider the set

C =CU((TyX)" \ Ng),

which is open in (TyX)" as U = trop~'(C) is a neighbourhood of the
boundary divisor D = U\ U N (N ®z C*). The subset U is I-stable since C'
and the toric boundary is so. Moreover, the action is properly discontinuous

10



and without fixed points because it is so on C'. In particular, we can form
the quotient

Dcu """ ¢

| [
D/T c U)T =2, ¢Jr,

where D/T" is a compact analytic subspace, because C//T" is compact, hence
there is a finite number of equivalence classes of convex polytopes in P(00)
and thus D/T" is compact. Finally, in order to obatin the cusp, we want to
contract D /T, which is done by the contraction criterion of Grauert |Gra62).

There is a natural plurisubharmonic function ¢: C' — Ry called the
characteristic function of the cone[I.1.3] invariant under the I'-action. This
admits a continuous extension ¢: C' — R>( by setting d(p) = 0 for p €
C \ C. The characteristic function is convex on C', hence pulling back the
characteristic function trop*¢ yields a plurisubharmonic function on U \ D,
which is smooth and vanishes along the boundary. Evidently the function
descends to the quotient U/T" by equivariance. By a theorem of Grauert
[Gra62|, the boundary divisor can then uniquely be blown down to a point
in a holomorphic way. The resulting normal pointed space (V,xzq) is the
Tsuchihashi cusp associated to the cusp data (C,I"). We have the diagram

(U\D)U{zy} +——DCU —"2

| L

(V, o) +—— DT C U/T 225 T

Unwinding the definition of the quotient map trop, one may describe the
cusp complex analytically as the quotient of a tube domain

{Nr +iC}/(N xT)U{xo}

with distinguished open neighbourhoods of z( given by W(e) = ¢(V (¢)) U
{zo} where
V(e) ={n+ice€ Ngr +iC|p(c) < €}.

In this decription, the action of N x I' is given by
(n',9) - (n+ic) = g(n) + n" +ig(n).

Moreover, holomorphic functions on W (e) can be described via its lifting to
V' (€) as having a special Fourier expansion |Oga86|. The relation between
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the two descriptions is given by the diagram

Ng +1:C
%Im
e2mi(+)
U\ D cC (C)" v y C,
where ?mi(nFic) .= (g2milnitic) - eilnaticn)) hecomes biholomorphic after

taking the N quotient.

The characteristic function associated to a Tsuchihashi
cusp

In this section, we define the characteristic function associated to a cone as
in |Oda88|. It was originally considered by Vinberg in [Vin63].

Definition 1.1.3. For an open cone C' C V = R" with dual C’, we set

o) = [ et

where (w, c) = w(c), and dz is the Lebesgue measure. We call ¢ the char-
acteristic function of C.

Thus, the characteristic function of C' is an averaged Gaussian function.
It is clearly finite away from the boundary of C, since there (c,z) > 0,Vx
and it diverges as one approaches the boundary of C. The following prop-
erties are straightforward.

Lemma 1.1.4. The characteristic function of a cone satisfies the following
properties

o for L € Stab(C,V), one has

. 1
Lo =1aam®

e ¢ is conver and log(p) is strictly conver.

Proof. The first property follows directly from the coordinate change for-
mula for the Lebesgue measure. The second property is a simple calculation.
If 21,..., 2, are coordinates on V = R", and z',..., 2" are coordinates on

12



V* then the pairing (-,-) is the standard inner product. Let a,b € T,C,
then we have

O0;p(x) —/ By "% duw
C/
:/ —wle i dy
Cl
do.(a) :/ —(w, aye™ ) dw
Cl

dlog(¢), = ;%

Taking second order derivatives gives
9;0;0(x) _/ w'w'e '  dw

Hess(¢)z(a,b) :/<w,a)(w,b>6_<w’m>dw

o 000(@) _ 0,0@)d6)
Op0iog o)) =25 - BN
Hess(log())a(a,0) =" ) (0
L e gy — L g e—twaly?
¢(:r)(/a< afe ¢(x)(/,< e ))

>0.

The last inequality follows by Cauchy-Schwartz

(/ (w,a}e’%<w’”>e’%<w’z>dw)2 g/
:¢(m)/ (w, a)?e "9 dw

/ !

(w,a>26<w’“>dw/ e~ W) dyy

with equality iff (w, ca)e’%(““”> = ke~ 2(w) for some constant k, which can-
not hold for w € C" when a € C. In particular, we see that the form
(0;0;¢,) is positive semidefinite at any point x € C| i.e., ¢ is convex, and
similarly, log(¢) is strictly convex, since its Hessian is positive definite at
any point. 0

The characteristic function has other neat relationships with the cone,
which we shall not pursure further, see for example |[Oda8§].
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Ezxample 1.1.5. When C' = RY,, the characteristic function is

(Y1, -, Yn) —/ e Zico Uitk g

>0
n

R>o

k=0
n t

In particular, log(¢)(y) is a potential for the product Kéhler-Einstein metric
on (H')" =R"+iC c C".

From the calculation above [1.1] it follows that one can equip any open
real cone C' with an intrinsically defined Riemannian metric g = (9;0;log(¢)).
Moreover, as the example above indicates, when one considers the complex
tube domain

R" +iC C C",

then the pullback metric is automatically Kéhler. This is made more con-
crete in the following statement whose proof is a standard calculation (see
[Neelb5, prop. 2.3]).

Proposition 1.1.6. Suppose we have a manifold of the type R™ +:C C C"
where C C R, and Mo = (R*+14V)/Z", where " act on the real part R"
by translations. Let Im: R" +iC — C and denote the induced map from
Me the same. Then,

o [ e C®(C) is (strictly) convez, if and only if, the pullback Im* f(z) is
(strictly) plurisubharmonic. Moreover, one has the following identity

2

1
E(i@@]m*f)” = det( Ydzy Adyy A -+ A dxy, A dy,,.

0y;0y;
In particular, since the flat fiber tori have volume 1, we have an iden-
tity
1 - o0 f
— i@@]m*f”:/det dy; A -+ A dy,.
n! Mc( ) 1% (ayiayj) '
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In other words, we have an identity of Monge- Ampére operators

e Suppose w is a smooth, R" /Z"-invariant, exact and positive (1,1)-
form on Mg, then there exists a smooth function f € C*(C) with
Hessc(f) > 0 such that w = i00Im*f.

Since dlog(¢), = 5323 # 0 at any point z € C, one can use the N x I’
invariant characteristic function s = log(¢) as a coordinate to obtain an
N x T equivariant smooth decomposition of Ng + iC into R x log(¢)~1(0).
Indeed, one can consider the mapping (n + ic) — (log(é(c)), n + id(c)'/"c)
with inverse (s,n + ic) — n + ie”®c. Moreover, by equivariance, it follows
that we have an identification of the respective quotients. Hence, we have
an alternative C'*° description of the distinguished neighbourhoods

V(€) = (=00, log(€)) x log(¢)~(0)

and
W (e) \ {zo} = (—00,log(e)) x log(¢p~")(0)/N x T.

Definition 1.1.7. We call
log(¢)~'(0)/N x T = ¢~'(1)/N T
the characteristic link of the Tsuchihashi cusp singularity.

Usually, the link of an isolated singularity (X, z) C C" is given by the
manifold(X, zo) N S?" (o) when e is sufficiently small [Mil74]. Since we
think of ¢ as a "metrically relevant" radial coordinate this partly justifies
the terminology. The link of the cusp associated to (C,I") is topologically
a U(1)"-bundle over ¢|;*(1)/T = ray(¢|;*(1))/T, which we shall call the
base of the characteristic link. Since ray is the quotient map by the scaling
action, it follows that one can identify the base of the link with the rays on
C'/T obtained by scaling the cone.

15



1.2 Hilbert modular cusps

In this section, we specialize the construction of Tsuschihashi cusps to the
case of Hilbert-Modular cusps, and we explain how the construction from
the previous section fits with the resolution construction due to Hirzebruch
(dimension 2) and Ehlers (dimension > 2) |Hir73|,[Ehl75]. The main impe-
tus for studying these singularities arose from my initial research question

Are there singularities equipped with a natural metric structure such that
the metric behaviour is reflected in the dual complex of the singularity?

The Hilbert modular cusps arise from the data

e K a totally real degree r field extension of ). I.e., there are exactly r
embeddings a;: K — R, 1 <14 <r, giving an identification K ®gR =
R" by k ® r — r(ai(k),...,a,(k)). This identification is unique up
the action of the symmetric group.

e N C K a Z-lattice of maximal rank, i.e., Np = K, and so one can
identify NR = KR.

Considering the cone RY, pulled back via the identification, R" = Ng gives
a cone C'y. A totally positive k € K is an element of C'y. The group

'y = {g € K|g totally positive unit gN = N}

is a rank r — 1 |[Oda88|, p. 155 commutative group. There is then an action
of 'y on Ng preserving Cy, and if I' C '}, is a finite index subgroup,
then the action of ' is properly discontinuous and ray(Cy)/T’ = R™'/Z"!
is compact. Hence, (Cy,I") define Tsuchihashi cusp data. The associated
cusp can then be described as before. More concretely we have

U\ D
trop
27” log(+) \
(H')"/N = (Nr +iCy)/N
where 5 log(+) = 5= >0, n;(log(| - |) + iArg(-)) now is a biholomorphism
and nq,...,n.is a Z-basis for N . The cusp is then obtained as the I'-

quotient with a point added at infinity.

As discussed earlier, in the model (H')" the function log(¢), where ¢
is the characteristic function of R is exactly the Kéahler-Einstein product
metric:

w=—1i 852 log(y;)-
i=1
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Splitting as before
(H')" =R x log(¢)"1(0) = R (R x{(y1,-...y,) € RLo | [J v = 1)
i=1

by the map (s,Z1,...,Tn, Y1,- -, Yn) — (i + i€ °Y;)1<i<r, We see that the
link of a Hilbert modular cusp is a U(1)" bundle over a quotient of

{(y1,---5ur) |Hyl—1}

by a discrete group. When r = 2, we have in particular a U(1)* = T torus
bundle over a circle S*. If we write the metric g associated to w in terms
of the parametrization

—S

H::_ll Yi

),

~ ~ —s —s
(valw"axﬁyla--'?yr—l) — (57$17"'axr76 Yi,-- € Yr_1,

we see that the metric becomes

g= Z (dz? + dy?)

—1
1 1
> dal + > = (€7 GRS — e~ (ds © di + i © ds) + )

- —2s
S —
(1= 3)% , 5
+ Td%)
r—1 1 r—1 1 1 r 1
=(r —1)ds* + ) ~—2d;g§ =Y (s @ dj; + djj @ ds) + — ?d:ﬁ?
=1 i=1 i=1 “?

(HT fgl) 6_28 _2 j;éz y] ~
+ == (= ds + ° ——L——(dy; ® ds + ds ® dy;)
e (IS 5)? 2 [Tz n)?

oo Ll U5 Tk U
+ Z 2 J?é TJ . ~7£: dij; dyk)
=1 Je)

=rds® +Z~2d Z ——2 )(ds ® dy; + dy; & ds)

+Z

1 1
dy; @ dy, +— Z —d7?.
yzyk i=1 Yi
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Making the coordinate change 7; = €%, we can simplify a bit further

r—1 r—1
1
g=rds® +> dif +> (1— —)(ds @ djji + djj ® ds) + > _ dij; @ iy
=1 =1

eYi
i,k

r

1 1,

=1

So, when s — oo, then the fibre directions of the U(1)" fibration collapse
leaving the "limit metric" towards the cusp to be

r—1 r—1
1
~ords? di? 1— —)(ds ® dj; + dij; @ d dij; @ dij..
grs+izlyl+izl( eyi)(8®y+y®8)+;y®yk

Hence, after a logarithmic change of coordinates on the link of the cone,
one has the data of a metric on a cylinder over the quotient of

{(yla--wyr)‘Hyi = 1}.

Next, we consider special geodesics with the cusp as its limit point.

Definition 1.2.1. Given an inclusion U C V' of topological spaces with
U CV,wesayarayy: R — U has limit point p € U\ U if limy_,o. ¥(t) = p.

Lemma 1.2.2. The rays in (H')" starting at a point (z1,...,z.) = (x1 +
Wi, ..., 2+ 1y,) of the following type

Y(t) = (2 +ie'yy, ...,z +iety,)
are geodesics with respect to the product Kdhler-Finstein metric.

Proof. These curves project to curves on H!, which are all classically known
to be unit speed geoedesics. Therefore, the v are also geodesics with speed
T. H

Geodesics on (H!')" descend to geodesics on the quotient by N x T when
taking the quotient metric. Any two of these induced geodesics 7,7’ have
the same image, if, and only if, (z1,...,2,) ~ (2],...,2.) under the N x T’
action.

Corollary 1.2.3. The geodesics of the previous lemma descent to geodesics
on a neighbourhood of the Hilbert-modular cusps with the cusp as their limit
point.
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Proof. 1t only remains to show that these curves indeed have the cusp as
limit. In general, there is a basis for the topology at the cusp {z¢} given
by W(€) = a(V(€)) U {0}, where

V(e) = {n +ic € Ng +iC|log(¢(c)) < log(e)}.

In the case of Hilbert modular cusps, log(é(y1, ..., y:)) = log(ﬁ), SO a
curve on (H')" descends to a curve with the cusp as its limit, if any cone
coordinate goes to infinity. This is indeed the case for the geodesics in

question, since

log(61(1)) = o8 2r—)
R L | ——

[]

Following the same line of reasoning, there are many more geodesic rays
on (H')"/N x T going to the cusp. For example, the curves obtained from

tes (o + iy, 4kl

for any tuple k = (ki,...,k;) € R" such that ) .k, > 0. Therefore,
geodesics from[I.2.2] are special in that they exactly correspond to the curves
obtained as the orbit of a point under the rescaling action on the cone C'.

Definition 1.2.4. We call the geodesics on (H')"/N x T from lemma
cone type geodesics.

The dual complex

In the following, we review the construction of the dual complex associated
to a resolution of a singular pair, following [dFKX]|. Roughly speaking, the
dual complex is a cell complex one can attach to a resolution of a complex
analytic space, which contains information of how the exceptional divisors
intersect. We fix a variety X. Denote for a = (ay,...,a,) € RZ; the
weighted standard simplex A?™:= {z € R%)| Y0 | oy = 1}

Definition 1.2.5. A finite A-complex of dimension 7 is the data of a topo-
logical space X and a finite collection M = {0;}ic; of maps o;: AZ% — X
such that

1. o0; is injective when restricted to the interior, and for any x € X

o

il € 0i(Ba@)} = 1.
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2. o; restricted to a face is another map o; € M such that

s X

n(j) 75
Aali) /
n(i)
Aoz(i)

commutes, where a(j) = (a(i)1, a(i)p—1, ..., (i), , A()pg1 - -, A()ni)41)
and ¢ is the obvious linear inclusion map.

3. The topology is given by A C X open, if, and only if, o; '(A) is open
forall i € I.

A morphism between two delta complexes (X, M) and (X', M’) is a map
¢: X — X' such that it is linear when restricted to simplexes.

It is clear that given just the data of (weighted)-simplexes satisfying
compatibility as in point 2, then one can glue these to a delta complex.
Suppose D = Z:’il a;D; is an effective Weil-divisor on X. For any I C
{1,2,...,m}, write Dy := (,.; Di and ay := (a;)icr. Suppose D satisfies
the following :

el

1. Each D; is normal,

2. For any I with D; # (), any connected component of D is irreducible
and of codimension |I] in X.

The second condition ensures connected components are the same as irre-
ducible ones, so it implies that any irreducible component of D is in a
unique irreducible component of D; whenever I C J and D # ().

We associate a A-complex A(D) to D, built inductively in the following
way: for any irreducible component D;, we have a vertex v; corresponding
to a O-simplex Agi. The n-cells correspond to irreducible components of
the D; # 0, where |I| = n + 1. Each component W;; of D; corresponds
to a copy of A}, attached to the (n — 1)-skeleton according to the unique
inclusions of components in Dp ;3 when i € I varies. That is, by the obvious
linear maps A7-1 - — A7

Note that one obtains a simplicial complex, i.e., nonempty intersection
of two simplexes is a single face in both, if, and only if, for any I, D; # ()
implies Dy is irreducible. The above conditions 1.,2. clearly hold, if X is
smooth and D is simple normal crossing.
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Definition 1.2.6. Suppose X is smooth and D is a simple normal cross-
ing divisor. Then, the complex constructed above is called the weighted
dual complex associated to D, and we denote it by A, (D). If we consider
A(D) constructed without considering multiplicities, i.e., all simplexes in
the construction are A7, we simply call A(D) the dual complex.

Although topologically equivalent, one typically considers weighted com-
plexes, when one wants to encode multiplicity information, for instance
when dealing with degenerations and unweighted complexes when consid-
ering singularities.

Definition 1.2.7. Suppose X is a singular complex space. Given a good
resolution f: Y — X of singularities such that the exceptional divisor D is
a simple normal crossings divisor. Then, we call A(D) the dual complex of
the resolution.

By considering the behaviour of dual complexes under blow-ups of smooth
subvarieties, it is then possible to show that the homotopy type of complex
A(D) associated to a resolution only depends on the singularity [Ste06].

The Log map associated to a resolution

Following Boucksom-Jonnson |[BJ17] there is a way of attaching the Dual
complex of a resolution of singular complex anlaytics to form a Hybrid space.

Definition 1.2.8. Let D =", d;D; be a snc divisor on a complex mani-
fold X, and suppose V' C X is a coordinate neighbourhood in a coordinate
system C7 . where DNC" = {[[,c; 2, = 0|1 C {1,...,m}} for some
injection i — k; € {1,...,n}. Then, we say V is adapted to D if

1. VC{(z,...,2n) € C"|2,| < 1,Vi € I},

2. VN Dy # 0 implies V. Dy = V N (ce(Dr) \ Ujeqr,..myvs Dj)s where

cc(Dy) is some connected component of Dj.

In other words, adapted coordinates are in polydiscs of the coordinates
corresponding to the equations of the snc divisor, and they are localized at
a connected component of D; such that it does not intersect a component
D;,je{l,...,m}\ 1. We always have adapted coordinates near any point
of the exceptional divisor on a resolution of singularities. Now, we define a
rescaled local "tropicalization" map.
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Definition 1.2.9. Suppose V., . are adapted to a snc divisor D =

Yo diD; on X such that DNV = {[[,c; 2z, = 0|1 C {1,...,m}}. Then

we define a map to the dual complex Logy: V\ DNV — A‘f'fl C A(D)

given by log(lz. )
(21, 2n) — (log(Hi€[|2ki ))161.

The Alln_l corresponds to Dy in the notation from the definition of the dual

complex [1.2]

We have the following simple observations

Lemma 1.2.10. For an adapted neighbourhood V', the image of the map

Logy defined above is dense, and if two pointsp = (z1,...,2n),q = (21, ..., 2,
map to the same point in the interior of the simplex then
log(lzx,]) _ log(|zk,l)

= , for any pairi,j € I.

log(lz,1)  log(lz,[)
If V' is another adapted neighbourhood of D such that V NV’ # 0, then on
the intersection we have:

-1
LOgV - LOgV/ = O(

10g<Hi6]|Zi )

Suppose (ck,)icr € Alll‘_l is an interior point, then the fiber is topo-

K,
logically Logy'((cx,)ier) = {(z1, .-, 2n) € V|2k,| = |25, | ™ } = Cr T x
(SHMI=1 That is, it is generically a torus fibration. Now suppose X is
compact and consider small tubular open neighbourhoods around each of
the components of D. This gives a covering of D. Let U be the union of
these neighbourhoods. Passing to a suitable subcover of U, we can assume
U to be covered by charts adapted to D. Details of such a construction
can be found in [Cle77]. So, we have an open covering U of D consisting
of adapted neighbourhoods. Pick a partition of unity subordinate to &/ and
glue the locally defined Logy maps to a smooth map Logy,: U\ D — A(D).

Note that by the previous lemma, this map is uniformally approximated
by any locally defined Logy coming from an adapted chart.

).

Remark 1.2.11. In the case where X is a smooth toric variety and D =
X\ (C*)" is a simple normal crossing boundary divisor, then the logarithm
map is simply the part of the map trop relevant for the boundary divisor,
rescaled by m. In light of this, the limit value of the log map as
one approaches tll;le boundary divisor, can be thought of as moving to the
tropicalization of the Berkovich space associated to X with respect to the

trivial valuation on C. For more on this see for example [Jon15].
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Two dimensional Hilbert-Modular cusps

We now shift attention to the generic two dimensional case r = 2 and prove
that there is a geometrically realized homeomorphism between the base of
the characteristic link and the dual complex of the singularity. Thus giving
a class of examples where the answer to seems to be in the affirmative.
For the explicit description of the resolution, see [Hir73|.

In this case, the cusp arises from a totally real degree 2 field extension
Q C K. Consider the maximal Z-lattice N generated by (1,wp) € R. Under
the identification Kp = R?, these map to (1,1), (w(()l),w(()2)) respectively.
Thus, in order to construct the toric resolution one needs to decompose
the boundary of convh(R2,N(Z(1,1) + Z(w},w?)) into line segments and
take the cones over them in order to produce the fan . The pairs of
integral points giving the polyhedral decomposition of this boundary can be
identified with certain totally positive bases for N. These can be obtained
cyclically as follows: since the extension is of degree two, there is a periodic
function b: Z — N>, such that one has a continued fraction expansion

wo = [[6(0)]] := b(0) —

Now, let wy to be the numbers obtained by cyclically permuting the con-
tinued fraction expansion of wy k times. Defining the numbers A, =
(wo...wp) P for k>1,and A = wy...w_py1, for £ > 1 and Ay := 1
gives pairs Ay, Ax_1 which form totally positive Z bases for N. Indeed,
Ap, A_; form a basis, and one has the invertible relation

()= (5 0 G

with period equal to the period of b. Therefore, the vectors (A,(:), A,(f)) and

(A,(Clzl, A,@l), for k € Z generate the cones for the fan giving a covering of
the associated toric variety by the local models

Ui, = Spec(Clzy, 29])

and transition morphisms Uy — Uiy given by (z1, z5) — (zi’(k)zg,zfl) =
(y1,12) in accordance with [1.1.2] One has I' = (A,), where p is the period
of b. So, since Ayy, = A, Ay, it follows that I' takes points Uy, — Uy, via
the identity map.

Since the boundary divisor corresponds to the one dimensional rays
in the fan |Oda88, p. 66], it follows that the numbers A; modulo the
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period of b parametrize the irreducible components of the boundary divisor
D/T. Moreover, these are P!’s as the local equation is {z; = 0} in the
k’th corodinate system, which is transformed into {y» = 0} in the second.
Therefore, except in the case where b has period < 2, the boundary divisor
consists of a cycle of P!’s, which intersect in a single point with precisely
two other such components in a simple normal crossing way. Thus, the
dual complex A(D/T) is homeomorphic to S'. Denote the neighbourhood
of the boundary divisor D, where the cusp is defined by U and the cusp by
(V,29) = R* +iR% ) /N x ' U {xo}. Then, the resolution morphism

m: U/T — (V,xg)
is given (before taking the I quotient) in the k’th coordinate system by

1
(21, 22) = %(A&)l log(z1) + A,(:) log(22), A,(i)l log(z1) + A,(f) log(22))

with inverse (before taking the I quotient) given by

(1) (2)
-Akflzl_Akle_2

AI(f)zlngcl)zfQ i

21

(21, C ,ZQ) — (6 det(My) e det(M),) >’
where " o
1 1
N R
Al A

From this description, we see that the cusp is strictly log canonical in the
terminology of the minimal model programme. That is, the discrepancy
between canonical divisors is given by prime divisors with multiplicity —1.
Indeed, one computes it straightforwardly by pulling back a (2, 0)-form

det(M
W*(dgl VAN diz) = %;)dzl N ng.
1<2

Pulling back the product Kihler-Einstein metric w = —i 90 log(Im(21)Im(Z,))
by this map gives a metric with singularities along the boundary divisor D.

m'w = — i 001og( (4,2 log(|z1]) + A log(|22) (A2, log(|z1]) + A log(|=2)))

= —i00log [A,(Cl_)lA,g_)l log(|21])* + A,(:)A,(f) log(|z2])?
+ (AP AY + AP AP ) log(|21]) log(|z])].

Thus, the pullback metric has worse singularities than analytic singularities
in the sense of potential theory.
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Map to dual complex

When considering the two dimensional Hilbert Modular cusp, the circle S*
comes up in two ways. First, it is the base B of the U(1)?-fibration obtained
as the characteristic link. In this section, we give a geometrically induced
homeomorphism between these two. Recall the equivariant splitting

(HY)? = R x log(6) ™ (0) = R, x R

Z1,T2

X R>O

given by
—s —s 1
(8,21, 2, y1) = (v + e *y1, 20 + € y_)
1

The N x I' action on the coordinates (s, 1, za,y1) is given by
(n, Ap) - (5,21, 2,51) = (s, Aél)% +n, A§,2)x2 +n@, A;()I)yl)a

hence after taking the quotient, the base of the U(1)? fibration B ~ S*
can be identified with the equivalence class of [y;| under the multiplicative
action by A,.

Definition 1.2.12. Let F': B — A(D/I') be the map defined by
F(ln]) = lim Logue(m" o 7(1)

where 7 is a cone type geodesic starting from a point on the characteristic
link projecting to [y;] on the base of the fibration and Logy,r is the log map
associated to A(D/T").

We need to ensure that this is well defined. We show that 771 o y(¢) is
independent of such choices, from which it follows that the limit is as well.
Suppose 7 is a cone type geodesic ray with the cusp as its limit starting
at an equivalence class (s, [11,Z2,¥1]). Then we can pick a lift to (H')?/N
starting from any point (s, 2,25, vy)) ~ (8,1, 22,71). We know that this
geodesic has the form

r?(t) - (S - t? x/17 $/2, yi)

After applying 7~! to this, one has the following expression in the k’th
coordinate system

2 1 2 (1) 7 42 s (1) @)
1 et (A APkt AT -,
™ O’y(t) = (6 det(My,) e det(My,) ,€ det (M) e det (M)
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where y) = i This does not depend on the choice of 2, z,. Thus, the only
ambiguity comes from the choice of y;. But by I' equivariance of , it follows
by slight abuse of notation that gom ™l o5(t) = 7 toqoF(t) = 7L o(t).
Hence, the value depends only the equivalence class of y;. Therefore, the
limit, when it exists, is also independent of such choices.

Note, that the charts for U give adapted charts for U/I" in the sense of
[BJ17]. Therefore, the locally defined maps satisfy Logy,rogq = qo Logy in
these coordinates. Here we think of A(D/T") as being a quotient of A(D) by
the I'-action. In particular, their limiting value in the dual complex agrees.
We can therefore compute the value for £ > 0 as

LOQU/F(W*l o7(t)) :LogU(7f1 o 7(t))
1 2
=( A,(f)yl - A;(gl)yz Aé_)lyz - A,(f_)lyl
- 2 1 1 2 ) 2 1 1 2
Al(q )3/1 — A;(C )yz + Aé,)lyz — A,gjly1 A,(g )y1 — A,(C )yg + A,(Czlyg — A,(g,)lw

(1)

)

where, again y, = yil Thus the limit is well defined for any such curve.
Proposition 1.2.13. The map F' is a homeomorphism.

Proof. 1t suffices to show that F'is a continuous bijection. By the expression
[, the map is clearly continuous. We first show that F' is surjective, and
since we quotient by I', we will also write F for the lift to R.( before taking

the quotient by I' = <A,(31)). In view of the relation y, = i , the inequalities
1) AWM
A = Ay > 0.4y — Ay > 0 imply that {y < of < T

which then gives a fundamental domain for the coordlnate functions Fi, FQ

F — Ag)yl A;(gl)yz
1) =5 6 @
Ak Uy — Ak Y2 + Ak 1Y2 — Ak,191

The function Fj is monotonely increasing when writing y, = y—ll Indeed,
rewriting slightly one has

(2) (1)
F1(y1) _ Ak y% — Ak
2 2 1 1)?

(AY — APyt + AL, — A
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making the monotone substitution b = y? one has

@y AL = AZ )b+ A, — AD) = (AP = AD (AP — AY)
v (AP — AP )+ 4D, — AD):
2) 41 2 1
AP AR Ay
(AP — AP )b+ AD, — AV
(AP — AP )b+ AD, — A2
>0.

Since the map is to the standard 1-simplex, it follows by

2 1 1 2
. Al(cl))_ \/Aé)Aé)—\/Ai)Aé)
! -
AP 2) (1 1) 42 1 AP 2 [all
J O APAD A AP AR A AR,
=0

(1)
k—1 (1) k—1
aSSS

(2)
AN @ ne

k

—1 k—1
AL 1 A® 1 2 2 1
R e T I N P

1
A,

that F' is onto the piece of the dual complex given by the k’th coordinate
system from U. As this holds for all k£ € Z, it follows that F' is surjective.
Moreover, by the argument above, it follows that F' restricted to fundamen-
tal domains for I' is injective. To see that F' is injective, simply observe
that the action of I' is the identity between the £'th and k + p’th coordinate
system and that boundary values for F, F» match up with the gluing of
A(D/T). O
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Figure 1: An illustration of the family of cone type geodesics going to the
cusp.
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1.3 A remark on a non-Archimedean ansatz

Recently, Li and Collins [CL22| found a generalized Calabi-ansatz [Cal79)
for producing approximate Calabi-Yau metrics near the zero section of a
direct sum of line bundles. These satisfy a Monge-Ampére type equation
which they dubbed the non-Archimedean Monge-Ampére equation, and are
supposed to model the geometry generically at the intersection of smooth
prime divisors which have simple normal crossings.

The set up for the ansatz is as follows. One is given a compact (con-
nected) Calabi-Yau manifold Y of dimension m and k positive line bundles
L; on'Y. Then, one seeks a Calabi-Yau metric on an open neighbourhood of
the zero section in the total space Z = Tot(@F_, L;). We write 7: Z — Y
for the projection map. Picking hermitian metrics h; on the L;, one obtains
a splitting Z = (RU{oc})” x U via the map

ULI ULk

Tnlon)” o)

(Vs -.-vp,) = (=log(hi(v,)), ..., —log(hk(vr,))

Here U denotes the total space of the direct sum of circle bundles associated
to h; over Y. Thus, one has global coordinate functions r; = hy,(vy,), y; =
— log(r;) smooth away from the divisor {h; = 0}. Over any trivializing open
V C Y such that Z| 1) 2 V x (C’zch...,zw one may write y; = — log(|z;|)+ @i,
where ¢; is a smooth strictly plurisubharmonic function on V.

Now, the ansatz is to consider potentials of the form wu(yi, ..., yx) which
satisfy the equation

det(D?u) / (Du)™ = const,
Y

in a region {oo > y1,...,y; > 0} C Z where
e u: R¥ — R is smooth and (strictly) convex
e det(D?u) is the determinant of the Hessian in the coordinates y1, . . . , Y.

o Du=)", ¢ (L) is a function Z — H*(Y,R).
As explained in |[CL22|, the two extreme cases m = 0,k = 1 are familiar.
They correspond respectively to the case of the real Monge-Ampére on the
cone R”  in the U(1)*-quotient R* of (C*)* (hence by correspond to
torus invariant metrics on the open polydisc A¥) and the classical Calabi-
ansatz on a line bundle over a compact Calabi-Yau manifold. Collins and
Li, subsequently show that in the case of proportional line bundles, say
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L; L®d' then the generalized Calabi ansatz, produces genuine Calabi-
Yau metrics when w is strictly convex and Z <d; > 0 |CL22, Lemma
2.1].

Following the same line of reasoning as in [CL22|, it is tempting (and
makes sense) to consider the same ansatz when trying to find Kéhler-
Einstein metrics, which are not necessarily Calabi-Yau, by modifying the
non-archimedean Monge-Ampére equation accordingly to:

7,1d

det(Du) /Y(Du)m = e,

As in the Calabi-Yau setting, the extreme case m = 0 correspond to a
real Monge-Ampére and the case k = 1 to the Calabi ansatz. Since the
logarithm of the characteristic function ¢ for the cone C' = R’;O is negative
Kéhler-Einstein, one has a solution for the ansatz by setting u = log(¢)
when m = 0, which is valid near the maximal intersection of divisors on the
equivariant resolutions of the Hilbert Modular cusps.

By essentially the same argument, we show that the conclusion of [CL22,
Lemma 2.1] holds in this setting as well. Assume L; = L$ and choose
hr, = hCLlil, where hy, is picked to be the unique hermitian metric that one
obtains from the solution of the Calabi Conjecture [Yau78|. That is, whose
curvature form in ¢;(L;) is Ricci-flat. Since Y is Calabi-Yau, there is a
holmorphic volume form 2y on Y such that

/ POy A Qy = 1.
Y

Then, computing locally
—aa =0 Za 83/1/\334]—{—2 03y2)

Ay; A Dy; + Z aa )

o - 8yi8

au

o2 _
“ayz«myﬁ( B,

T or = 0y;0y;

d;) 90 1),

where ¢; is a local potential for hy,. Since the y; define coordinates and ¢,
comes from the base, we have

2
u _
— Ay A Oy;)* =0
2 Py 8yl(9yj Y yj)
-
90 ¢,)" ! =0.
<27T o1

30



. . m+k
i m U \m +k
(5= 00u)™* =() +k<§j(m ) a 5,00 A Ouy)"

n=1

A YD

K2 m+k(m+ k)! 0*u Ak o o= \m
_(27'(') k'm‘ ( > Gyzﬁy] ayl A ayj) A (< p 8yz dz) aa (bl)
. k
g (M E)! 5 o A —
=(5)" s det(DPu)( i 8y¢d2> gaymﬁyz/\ GEEN)

:(i)m+kw det(Dzu)(Z ou ;)™ H 0log(|zi]) A dlog(zil)

2m m! y;
A (0D ¢y)™
(m+ k) e N
:Tdet(D Z H —0log(|z]) A dlog(]z)))

Ao 961)"

Here, we used that the only nonzero term occures when n = k and the fact
that (00 ¢;)™ gives a volume form, so wedging with dy; = - —0log(|zi]) +
d;0¢ is the same as wedging with —01log(|z]). Now, since 5= 99 ¢; is Ricci
flat on Y, we have

(i 85(251)’” = CQY A\ Qy

for some constant ¢. Thus, the normalization fY i™Qy A Qy = 1 implies

that
C = Z2m/ Cl(Ll)m.
Y

Therefore, one has a solution to

det(D?u) /Y(Du)m —

if, and only if,

k

H(%mog(w) A dlog(|zi]) A (iQy A Qy).

1=1

(m + k)' —Au
—F€
m!

(o 00 u)™* =

2
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Hence, if, and only if, ﬁ 00w has Ricci curvature equal to .

It is not clear to the author, if the proportionality condition imposed on
the line bundles is reasonable in general, when one considers model metrics
near the simple normal crossing divisors on good resolutions of singulari-
ties, since exceptional divisors appearing on such resolutions typically are
not Q-linearly equivalent. If one restricts attention to a "maximal inter-
section" (say in a point) of exceptional divisors in a single chart, then the
proportionality is void, and one gets back the real Monge-Ampére equation
on the manifold R%, C trop((C*)*).
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Part 11

Stability of fibrations
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2 The classical setting

Introduction

The search for special Kéhler metrics representing cohomology classes of line
bundles on compact Kéhler manifolds has a long and rich history. From
the problem of Calabi |[Cal54] over to its eventual solution by Yau [Yau77],
[Yau78| and the subsequent development of K-stability, designed to obstruct
the existence of Kahler-Einstein or constant scalar curvature Kéhler metrics
(cscK) [Tia97|,|[Don02]. From the perspective of moduli theory, one of the
key applications of the existence of such special metrics is to include it as
part of the data for moduli problems in order to obtain a moduli space
with better properties. For instance, the moduli space of Fano manifolds of
dimension n with finite automorphism group, which admit Kéhler-Einstein
metrics is seperated |Odal2|, and the moduli space of certain Fano surfaces
is proper [OSS16]. In recent years, K-stability has taken on a life of its own,
and has been used to prove, that the moduli space of K-polystable log fano
pairs is projective [LXZ22].

In this chapter, we review some algebraic aspects of K-stability. This is
done to motivate the development of fibration stability and, to give some
details which will be needed later on in chapter 3l First, we describe an
approach to the the cscK problem to motivate the introduction of test
configurations and the notion of K-stability of ample test configura-
tions. We introduce the Donaldson-Futaki invariant 2.2 and describe how
to compute it intersection theoretically on the compactification of a test
configuration. Afterwards, we describe a recent generalization of Fujita’s
invariant and sketch how it gives rise to a notion of stability. Finally,
we sketch the link between filtrations of the section ring, test configurations
and divisorial valuations, which provide the main conceptual background
for the work in chapter 3| and the relation of the [ invariant with the
Donaldson-Futaki invariant 2.3]

2.1 CscK metrics - a motivating problem

In the following, we sketch the cscK problem and try to convey how one
eventually is led to K-stability as a means for testing whether or not a given
polarized manifold has a constant scalar curvature Kéhler metric represent-
ing the first Chern class of the polarizing bundle. To fix a notation, let
(X,wp) be a compact Kéhler manifold of dimension n with Kéhler class
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[wo] € H*(X,R), and let
]C(Wo) :{qb S COO(X, ]R)|w¢ =wp + 285¢ > 0}
be the space of potentials parametrizing the Kéhler metrics in the class [wo].

Definition 2.1.1. A metric wy € [wy] is a constant scalar curvature Kdhler

metric (cscK) if

ney (M) - fwo]" ™
[wo]”

where the latter is the intersection number in cohomology.

S(W¢) = S =

Y

The Mabuchi functional

CscK metrics in a given cohomology class have by now several variational
interpretations. They can be seen as extremal metrics with vanishing Futaki
invariant. That is, they are critical points of the Calabi functional

Callw) = [ S

such that, another functional, the Futaki invariant, vanishes on the space
of holomorphic vector fields, admitting a holomorphy potential [Szé14].
Another variational interpretation of cscK metrics was given by Mabuchi
[Mab85|, who defined a functional on K(wy), having precisely cscK metrics
as its critical points. The space K(wp) is an open cone in the vector space
C*°(X,R). Therefore, it has a natural differentiable structure, and one may
identify T,/ C(w) = C*°(X,R). In particular, one can define the 1-form

Futy(f) = /X £(5 — S(we))eh

which can be shown to be closed. Therefore, since K(wy) is a cone containing
0, it is contractible. Thus, it follows by the infinite dimensional Poincaré
Lemma [KM97| that there is a functional M: K(wy) — R unique up to the
addition of a constant such that dM, = Futs.

Definition 2.1.2. The functional M: K(wy) — R is called the Mabuchi
functional.

It is clear that dM, = 0, if, and only if, w, is a cscK metric in the
Kahler class of wyg. One may introduce a Riemannian metric on KC(wyp),
which at a point ¢ is given by the formula
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(f. 9o = /X fou.

In turn, one obtains a notion of geodesics t — ¢y on K(wp). One then has

Proposition 2.1.3 (|[Mab87|). The Mabuchi functional M: K(wy) — R is
convex when restricted to any geodesic.

In particular, an obstruction to the criticality of a point ¢ arises. If
t — M is asymptotically nonpositive for some geodesic path ¢;
emmanating from ¢, then w, cannot be a cscK metric. This suggests that
in order to have existence of a cscK metric, then for any geodesic ray t — ¢,
the slope at infinity

o M)
t—o00 t

must be nonnegative. Geodesic rays in K(wg) give rise to trivial families
X x A7 — A}, where A7 is the punctured unit disc, such that the fibre X;
is equipped with the metric wy_,_ ., - Conversely, any S Linvariant trivial
family of fibrewise Kéhler metrics represents a geodesic ray in XC(wy) when
it satisfies a certain Monge-Ampére equation [Don99] on X x A;.

Rephrased in this way, one might try to define a positivity notion on
potential limits over 0, and then relate it to the slope at infinity for the
Mabuchi functional in order to determine whether (X,wg) carries a cscK
metric or not. This is morally the philosophy of K-stability introduced by
G. Tian in [Tia97] and later refined by Donaldson in [Don02|, which viewed
this way is a means of probing the slopes at infinity for geodesics arising
"algebraically", i.e., from C*-degenerations in projective space, when the
Kahler class in question is the first Chern class of a line bundle.

2.2 K-stability

In the following, let (X, L) be a polarized variety. That is, L is an ample
line bundle on the variety X.

Definition 2.2.1 (|Don02|). A test configuration for (X, L) is the following
data (X, £) where

e X is a normal flat C*-equivariant family X — C, where C is equipped
with the standard action.

e The C* action lifts to £, making the bundle map £ — X, C*-
equivariant.

37



o (X1, L) = (X,L") for some r € Ny.

One calls r the exponent of the test configuration. We say the test config-
uration is ample, if L is relatively ample. If the central fibre is integral, we
say the test configuration is integral.

From the definition, C*-equivariance of £ — X — C implies that for all

t£0,
(Xt,ﬁt) = (X1,£1> = (X, L)

Hence, one has £|x\x, = piL, as C* linearized line bundles, where p;: X x
C* — X is the projection. Moreover, there is an induced C* action on the
central fibre (Xp, Lo).

Definition 2.2.2. For at test configuration (X', L") of(X, L), we call a map
[ (X, L) --» (X', L") a modification of (X', L) if it is equivariant, proper
and birational over C, and (X, £) is also a test configuration for (X, L). We
say (X, L) dominates (X', L"), if f is a morphism.

Example 2.2.3. Given any X with a polarization L, we always have the
trivial test configuration, which is X = X x C equipped with the action on
the second component and with the same action on £ = pjL = L xC. More
generally, given an effective action p: C* — Aut(X, L) one can similarly
define X = X x C, £ = pjL and equip the pair with the action

X xCxCr—= X xC

given by (z,t,t") — (p(t')z,t't). A test configuration arising in this fashion
is called a product test configuration.

Any test configuration (X, £) is a modification of the trivial test configu-
ration (X x C, p{L), since we by definition have an equivariant isomorphism

(X X C*upTL> = (X(C*JEXC*)

over C*. This means that the interesting geometry of a test configuration
all takes place near or at the central fibre.

A slightly less trivial, but prototypical example of a test configuration
is the following:
Example 2.2.4. Given the elliptic curve X = {2® + ayz — 23 = 0} C
P% with L = O(1)pz|x and take X = {t?M1a? 4 thithathogy, — ¢3hs,3 =
0} C P2 x C with £ = p{L. Now, clearly we have X, = X for ¢t # 0,
since this is nothing but the closure of the orbit of X under the action
telx,y, 2] = [thra, th2y, ths 2] where ky, ko, k3 € Z. The action lifts to O(1)
as t - l(z,y, z) = l(th12, t*2y, tk32). Therefore, this is a test configuration of
exponent r = 1.
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In fact, the above example illustrates the principle that ample test con-
figurations arise as flat completions of C* orbits inside a projective space.

Proposition 2.2.5 (JRT06a, prop. 3.7|). Any ample test configuration
(X, L) of (X, L) is isomorphic to the Zariski closure of a C*-orbit inside a
projective space.

We shall need the following Lemma, whose proof is well known:

Lemma 2.2.6. For any locally closed i: X — 'Y into a Noetherian scheme
and f:Y — C flat such that X C f~Y(C*) is closed, there exists a unique
subscheme j: X' — Y such that f o j is flat and X}_l(@) ~ X, X' is
scheme theoretic closure of i(X) with its induced subscheme structure.

Proof. Since flatness is a local property, we can prove existence by consid-
ering the local case, i.e., when Y = Spec(B)) is affine. Then, since X is a
Zariski closed subset of the generic fibre, one has that X = Spec((B ®cyy
C[t#])/I) for some ideal I C B ®cpj C[t*]. The scheme theoretic closure is

X' = Supp(coker: Oy — i,(Ox))
Hence, X' has as its defining ideal the kernel I’ of the morphism
B — (B ®cpy C[t*])/I — 0

which defines the inclusion X — Y. Therefore X' = Spec(B/I"). Since we
are over a discrete valuation ring, we have that B/I’ is flat, if it is torsion free
as a C[t]-module (see e.g. |Eis95|). But since B/I’ is isomorphic as a C[t]-
module to B¢ C[t*]/1, the result follows if one knows that B&cy C[t+]/1
is torsion free as a C[t]-module. However, this is automatic as B¢y C[t+]/1
is a flat C[t*]-module, and C[t*] is a flat C[t]-module. Indeed, from this
it follows that B ®cp C[t*]/1 is a flat C[t]-module. Therefore, the Zariski
closure is flat and

B/I' ®cpy C[t¥] = B ®cpy C[t7)/1,

so it satisfies the conditions of the lemma. Next we show uniqueness of
this subscheme, which allows us to glue the previous construction. Suppose
X', X" are two closed subschemes of Y satisfying the conditions of the
lemma. Then, the defining ideals J', J” must satisfy

B/J' @cpy Clt*] = B/J" @cpy CItY].
Since B/J', B/J" are both flat over C[t], it follows that the maps
B/J' = B/J @cy C[t"]
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given by f — f®cpy1 are both injective (kernel is given by torsion elements).
Hence, precomposing gives that the map

B — B/J ®cp C[tT]

has kernel exactly J'. The same goes for the map B — B/J" ®@¢y C[t*], and
so we have J' = J”, from which is follows that X’ = X" as subschemes. [J

We call the X’ in the previous Lemma the flat limit, or the flat comple-
tion of X.

Proof. (2.2.5) Denote the map m: X — C. By relatively ampleness of £
there is for some k sufficiently big an equivariant embedding

X = Pspecicy) (7 (kL))

over C = Spec(C[t]). Note that X must be the flat limit of X \ A, which
is isomorphic to X x C*, which agrees with the orbit of X; = X under the
C*-action.

Now, m,(kL) is flat over C[t] and finitely generated, hence it is projec-
tive, and thus free, since C[t] is a principal ideal domain. In other words,
Pspec(c) (7« (kL))) is a trivial projective bundle over C of the form P(V') xC,
where V' is a finite dimensional C vector space. By embedding C equivari-
antly in P!, one obtains an equivariant embedding

X — P(V) % ]P>1 N ]P)Q(dim(V)-‘r-l)—l

identifying X with the Zariski closure of the orbit X = X} under a C*-
action.

]

For a test configuration, there is in many circumstances a correspon-

dence between scheme theoretic properties of X, Xy and the total space
X.

Proposition 2.2.7 (|BHJ17| prop. 2.6). Let X be a (not necessarily nor-
mal) test configuraiton for X, then

e X is reduced, if, and only if, X is reduced.
o [f X is normal and X is reduced, then X is normal
e X is a variety if, and only if, X is a variety.

In particular, we see that a C*-equivairant family (X, £) — C extending
(X, L) is normal when the central fibre is integral.
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The Donaldson-Futaki Invariant

In the geometric invariant theory developed by Mumford [MFK94|, the
stability with respect to a group action of a point p in a projectice variety,
can be characterized by the sign of the weights on a lift to affine space of the
limit lim;_,o p(t)-p = g under the action of any C*-subgroup. The celebrated
Kempf-Ness theorem [KN79|, [MFK94| gives another characterization of
stability for points on an equivariantly polarized manifold (X, L) in terms
of a moment-map p of the action with respect to any Kéahler metric in
c1(L). Roughly speaking, the stability of a point depends on how the orbit
intersects 11~!(0). The moment map picture forms the basis for the notion
of K-stability of a polarized variety. Indeed, a test configuration can be
thought of as the closure of a C*-orbit in the category of polarized varieties,
and the scalar curvature can be thought of as a moment map for this action
whose norm squared is zero, if, and only if, the metric is cscK (see [Szél4)).

In this section, we introduce the Donaldson-Futaki invariant associated
to a given test configuration. Intuitively, this should be thought of as a
weight attached to the limit of the C*-orbit of (X, L), measuring the degen-
eration. Since X; has a C*-action, there is a C*-action on H°(Xy, kLy), and
the Donaldson-Futaki invariant is defined in terms of the ratio between the
asymptotic growth in dimension of H°(Xy, kLy) and its total weight. By
analyzing the asymptotic behaviour of Bergman kernels, Donaldson [Don05)|
proved that the negative of the Donaldson-Futaki invariant provides a lower
bound for the norm of the moment map for any metric w € ¢;(L). Thus,
if there is a test configuration for (X, L), with negative Donaldson-Futaki
invariant, then there cannot be a cscK metric in ¢;(L).

Definition 2.2.8. The weights of a C*-action, p: C* — GI(V), on C-
vector space V' is the collection of exponents appearing in the eigenspace

decomposition
V=PV,

nel

where V), = {v € Vip(t)(v) = xn(t)v} and x,(t) = t". The total weight
wt(V, p) is the weight of the action on det(V'). In particular, if nq, ..., Ngim(v)
are the weights of the action, then the total weight is

dim(

V)
wt(V, p) = Z n;.
i=1

Alternatively, when writing Dp;: 71 C* = C — gl(V'), the total weight
is Tr(Dp1(1)). Observe that when one has an equivariant short exact se-
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quence,
0= (par, M) L (o, N) 2 (py, V) = 0.

Then the natural equivariant isomorphism
det(N) = det(M) @ det(V)
given by
AN A @UIA - AUy = f(ma) A A f(myran) Ana A Ay
where n; is arbitrary in the fibre g7 (v;), shows that the total weight satisfies
wt(pn, N) = wt(par, M) + wt(py, V).

If f is merely an injection such that the image is preserved by py, then we
have

wi(pr, N) = wt(pw | im(py, Im(£)) + wi(py, V).

Thus, the weight determines a map
wt: {(V7 pV)} - Z?

which is is additive on equivariant short exact sequences.

Remark 2.2.9. We note here a convention. Given a linear action p: C* —
GI(V) on V| with weights Ay, ..., A\, and weight vectors v;, then we equip
the dual vector space V¥ with the unique C*-action such that the pairing
(wY,v) = wY(v) satisfies (t-w",t-v) = (w¥,v) for all, v € V;w" € VV.
Thus, the action is given by - w"(v) = w"(t~! - v), and the dual basis v’
become weight vectors of weight —\;. We call this the dual action. From an
action on V| there is an induced action on P (V') such that O(—1) becomes
an equivariant line bundle. Indeed, the action is just given by the action on
V', so O(1) also has the structure of an equivariant line bundle, along with
the dual action.

It is well known that the global sections are H°(P¢(V),O(1)) = V'V,
which has the dual action. Therefore, the weights of the global sections
are —\1, ..., —\,. In particular, since H°(Pc(V), O(k)) = Symk(VV), we
have weights given by (—1)¥X;, ... \;,, where 1 <i; < n,Vj. The standard
action on the vector space C is of weight 1, hence the trivially extended
action to C? has weights 0,1. Therefore, the weights of Oﬂ”(lc (1) with this
action is 0, —1.

When C* acts algebraically on an affine scheme X = Spec(A), then
this is equivalent to a Z grading of A say A = @,., A\, where A, is a C-
module. Here, A) consists of the algebraic functions which are homogeneous
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of degree A\ with respect to the C*-action. When A = Clxy,...,z,| and
the C*-action is linear, then the relation between weights of the associated
vector space and this decomposition is given as follows. The associated
vector space has weights Ay,..., A, ,if, and only if, there are generators
21, ..., %, of the C-algebra A such that z; € A,,. One has a similar result
when considering X = Projp(,, Ax), with Ay = B. If there is a graded
decomposition as a B-algebra

P A = PEP A

k>0 k>0 AeZ

where A, = @AGZ A is a decomposition of B-modules. Then there is
a C*(B) = Spec(B[t*])-action on Projp(@,-, Ax). Indeed, one considers
the graded comorphism

P Ar — (EP Ar) @5 BJt]

k>0 k>0

given on homogeneous components by ay — >, ar\ ® ¢*. Upon localiz-
ing to any affine given by some element a € Ay, this gives a morphism
D(a) x C*(B) — D(a). Since the graded ring can be generated by such
elements, these then glue to a global morphism X x C*(B) — X. In the
case where Aj, = 0 whenever A # 0, then the morphism is over Spec(B),
corresponding to a C*-action on the fibres of X — Spec(B). In the special
case where B = Clt], then C*(B) = Spec(C[t*]) = C* gives a C*-action
such that the map X — C is equivariant, because we have commutativity
of the diagram

(@kzo Ay) ®cpry C[tF] +— @kzo A

I |

C[t']| ® C[tF] +——— C[t'].

Continuing in this special case, assume X is complete, then one has a finite
dimensional C vector space H°(X,O(k)) = A with an induced C-linear
C*-action A, x C* — A induced by the comorphism A4, — Ay ® C[t*].
This is constructed in such a way that the weight spaces are Ay 5. Thus the
total weight is

wt(H(X,0(k)) =Y dime(Ag )\,

ANEZ
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Lemma 2.2.10. For any C*-linearized ample line bundle L on a variety X,
the total weight on the global sections wt(H°(X, L*)) is a degree dim(X)+1
polynomial in k for k> 0.

Proof. We proceed by induction on the dimension of X. Assume dim(X) =
0, then a C*-linearized line bundle is just a 1-dimensional C-vector space L
with an equivariant identification H°(X, L) & L. Therefore H°(X, kL) =
L®* and the comments above show that

wt(H°(X, kL)) = kwt(L) = kwt(H°(X, L))
a polynomial of the desired type. Assume the claim holds for any pair
(Y, H), where dim(Y") < dim(X) and H ample. Then, since L is ample we
can (by tensoring if necessary) assume that the space of invariant sections

H°(X, L)% #0, and that H'(X, L*) = 0 for all k > 0. Pick s € H(X, L)®

nonzero and consider the equivariant short exact sequence
1 ®
0— LM 3B LF 5 LF =0

where ¢: V(s) — X is the inclusion of the vanishing locus for s. Then,
there is an equivariant short exact sequence

0— HYX, LMY — HY(X, L*) — H°(V(s),.*LF) — 0
SO

det(H°(X, L*)) = det(H°(X, LF™")) ® det(H°(V (s), (¢*L)*))

_ ®det(H0(v<s),L‘”>>,

which implies that
wt(H(X, LF)) = iwt(Ho(V(s), (L L)F)).

=0

Since ¢*L is ample, we can use the induction hypothesis to (by potentially
tensoring L further) assume that wt(H°(V(s), (¢:*L)™)) is a polynomial
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P(m) for all m > 0. Thus
1 1 k—1
Ewt(HO(X, LF) = . ZO P(k —1i)
1 k
=22 P
=1

k )
1 Z 7
- k i=1 P(Ek)
1

— P(tk)dt.

k—o0 0

So since wt(H(X, L*)) is integer valued we must have the equality

wt(H(X, LF)) :k/l P(tk)dt = /k P(t)dt

for k> 0. O

From the previous lemma, we see that when dim(X) = n, then we can
expand for £ > 0 as follows:

wt(H (X, kLo)) = bok™™ + b1k + O(k™ ).
Similarly, we can expand the Hilbert polynomial
hO(X(), k)ﬁg) = aok:” + alk"_l + O(k’n_Q))

which coincides with the Hilbert polynomial for h°(X, kL), since X — C is
flat, and £ is relatively ample, so t — h(X;, kL|x,) = x(X;, kL] x,) is locally
constant for £ > 0 [Harl0, III thm. 9.9]. We are now ready to define the
Donaldson-Futaki invariant of a test configuration.

Definition 2.2.11. [Don02] The Donaldson-Futaki invariant of a test-
configuration (X, L) of (X, L) is the integer

DF(X,L) = M_
Qo

This coefficient is the —C' term in the asymptotic expansion

wt(HO(X(), k’ﬁo))

_ —1 -2
RO, kL) 0Tk O™,
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The invariant is a generalization of the classical Futaki invariant for po-
larized varieties. In fact, in the case of product test configurations the
differential geometric Futaki invariant is —4m times the Donaldson-Futaki
invariant [Szél4], chapter 7).

Definition 2.2.12. [Don02| A polarized variety (X, L) is
o K-semistable if DF(X, L) > 0 for any test configuration (X, L)
o K-stable if DF (X, L) > 0 for all nontrivial test configurations.

e K-polystable if (X, L) is K-semistable and DF(XL) = 0, if, and only
if, it is a product test configuration (X x C,piL").

We clearly have the implications
K-stable = K-polystable = K-semistable.

As alluded to earlier, K-stability is important, because it conjectured
to be an algebraic criterion for the existence of a cscK metrics in the Chern
class of L.

Congecture 1 (Yau-Tian-Donaldson (YTD)). A smooth polarized variety
(X, L) has a cscK metric in ¢ (L), if, and only ifk (X, L) is K-polystable.

Various parts and modifications of the YTD conjecture has been estab-
lished in numerous special cases, for instance the Fano case L = —Kx in
the breakthrough papers [CDS14a][CDS14b| [CDS14c|. It is however ex-
pected that a slightly stronger condition than K-polystability is needed for
the statement above to hold in general [Szél15].

Importantly, the Donaldson-Futaki invariant of a test configuration can
be computed intersection theoretically after completing it over P&, [Wan12],[Odal3].
Concretely, the completion of a test configuration is constructed as follows:
since a test configuration is equivariantly trivial away from the central fibre
(X \ X, L) = (X x C,piL = L x C*), one can extend this portion
over infinity to a pair (X, £) — P& by gluing the two pieces (X x C,p;L)
along the portion, where one has an equivariant splitting. That is, it is the
pushout of the following diagram

- Idx ()~ 1 .
(X\ X, L]anay) = (X x CpiL), 2 (X x €, piL)

i

(X, L)
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where the action on (X, x C) is such that Id x (-)~! becomes equivariant.
This operation gives £ a C*-linearized line bundle on X such that the C*-
action L|p_ = L is trivial. Observe that the extension operation

L— L

is multiplicative, in the sense that it preserves tensor products when ten-
soring with line bundles M such that M|\ x, = piM, i.e.,

LOAM—LIM=LRM.

From the multiplicative property and the fact that the trivial bundle extends
trivially, it follows that the assignment £ — L is injective for all such line
bundles.

There is a notion of a norm of a test configuration first introduced by
Dervan [Der16]

Definition 2.2.13. The (minimum)-norm of a completed test configura-
tion is the number

—n—+1

o T .
X, L)||min = —— — L (L — ¢"piL),
| D) lin = -~ T (E = L)
where ¢: )Y — X x P{ is a resolution of indeterminacy of X' --» X X P
and we have surpressed the pullback of L.

It is then a theorem [Der16|, [BHJ17| that the vanishing of this quantity
exactly detects when a completed test configuration comes from a product
test configuration. The fact that there is an intersection theoretic criterion
detecting product test configurations is an instance of the general principle,
that the invariants arising from test configurations can be interpreted and
calculated as intersection numbers on its completion.

Lemma 2.2.14. Denote the completed test configuration by p: (X,L) —
Pg. If the test configuration (X, L) is ample, then one can compute the
weight polynomial wt(H®(Xy, kLo)) as a Hilbert polynomial

wt(H(Xy, kLo)) = hO(X,L" © p" Oy (—1)).
Proof. The space X is clearly normal when X is so, hence, there is a well

defined theory of Weil divisors on X. Moreover, it is irreducible since it
is glued together from two irreducibles over an open affine subset. Note
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that the bundle £ is p-ample, since the restriction to any fibre is am-
ple. Moreover, for any coherent sheaf F on X, the derived sheaves satisfy
Rip.(F ® L*¥) = 0,Vi > 0, when k> 0 (see |Laz04, pp 94-97]) .

By definition, the two fibres Xy = &}, X = X are rationally equivalent
effective divisors on X. Hence, their associated line bundles are isomorphic.
Indeed, they are both vanishing loci of 0, 0o € HO(X, p*O%(l)) of weight
—1, 0 respectively.

Multiplication by oy, 04 gives two families of short exact sequences of
sheaves

—k ®a0 =k =k

0= L ®@pOp(-1) = L = L|x =0
0L ® p*Opi (—1) S T Zk];w — 0.
Taking the pushforward of these short exact sequences by p, one obtains
by the vanishing R'(p.(L ® p*Op.(—1))) = 0,7 > 0 another pair of short
exact sequences of sheaves on PL. Taking global sections of these, one
gets long exact sequences in cohomology. But by the vanishing R (p,(L ®
p*(’)]pé (—1))) = 0 for i > 0, the Leray spectral sequence degenerates on page
2, s0

H'(X, L" @ p*Op1(=1)) = H'(Pg, pe(L") ® Op1(~1)) = 0,¥i > 0.

One reaches similar conclusions for the other terms in the sequence, so when
k > 0, one has short exact sequences of global sections given by

0/ 7F * ®30 170/ Pk 0
0= HY(X,L @p Op (1)) = H(X,L") = H" (X, Lo) — 0

— =k . Q0 — =k = =k

0= H(X,L ®@p Op(-1)) = HY(X,L") = H'(Xs, L |3_) = 0.
Observe, that the second short exact sequence is equivariant because o,
is invariant, so from the additive property of the weight, it follows that we

have
wt(HO (X, L") = wt(Im(®0s)) + wt(H (X s, LF)). (2)

The first short exact sequence is not equivariant, however, it comes from
multiplication by a section oy of weight —1, hence the image is an invariant
subspace and thus

wt(H(X, L)) = wt(Im(®0y)) + wt(H"(Xy, £5)). (3)

. =k, . = . . . :
Since £ is generated by global sections, and X is irreducible, we can with
no essential loss of information consider the C*-invariant Zariski dense open
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subset U where 2= is defined. Then, any s € Im(®0y) satisfies

0o -
S|U = —S|U
0o
for some uniquely determined § € I'm(®o). The assignment s +— § is a
linear isomorphism Im(®o) — Im(®0s). Moreover, it shifts the weight
spaces by 1. Indeed suppose t - s = t}s, then

- g
t-8ly=1t-(—slv)
0o

o
=t—t-s|y
Jo
— Oco

00

Slu

8|U

_ P
Hence ¢t - 5§ = t**'5. Therefore,
wt(Im(®0.)) = wt(Im(®o)) + KX, L @ p*Opr (~1)).
Combining the two formulas 23] with this relation we get
wh(HO(Xy, £5)) = h(X.L" © p*Opy(~1) + wi(H*(Xns, LL)).

which is the desired equation once we note that the action on (X, L) &
(X, L) is trivial, hence all global sections must be invariant and so the total
weight is 0. O

Theorem 2.2.15 (|[Wan12|,|Odal3|). If 7: X — PL is a completed test con-
figuration associated to an ample test configuration (X, L) andn = dim(X),
then one has

n

2(n)DF(X, L) =

= 1,VL(X, L)L+ L Ky

L"l
the relative canonical class given by K5 — T Kp1 .

where p(X, L) = “Ex L' s the slope of L with respect to X and Ky py is

Proof. The Hirzebruch-Riemann-Roch theorem holds for normal quasi-projective
varieties |Full4l, chapter 18], so we have

RO (X, kLo) =h°(X, kL)
_kn . kn—l

K
v v rn—1 __X n—2
=gl T ) o),
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when k£ > 0. By the previous lemma, we can calculate by Riemann-Roch
wt(H(Xy, kLoy)) =h°(X, kL + 7?*(9@(11:(—1))

_ / ch(LF @ 7Oy (~1))td( )

I{ZTL-H - kn n+1 . )

Gt G O ()
+ %Entdl(é‘() + Ok
_ k;nJ.rl Lty k™ Yo (—Ky + 270 (_1))+O(k”_1)
C(n+1)! oy~ TR TR
. kn—l-l En+1 kn Zn P o kn_l
C(n+1)! G +O(k"),
where we used that tdy(X) = 1,td,(X) = c1(2)?) . On(-2).

From this we obtain

DF(X, L) :%bo — b
0
nl(-Kx)-L* 1 1
— n n K’
(n—1)12L" (n+ 1)!£ * 2(n!)£ /P
1

n _ _
:m( (X, L)L+ L K pr).

n+1

Fujita’s § invariant and its generalization

In this section, we define and describe an invariant associated to prime
divisors defined over a polarized variety (X, L) originally defined by Fujita
[Fujl9] and recently generalized by Dervan and Legendre [DL22|. We fix a
polarized variety (X, L). First we need some definitions:

Definition 2.2.16. The slope of (X, L) is the number

—Kx.Ln_l

w(X,L) = i

Definition 2.2.17. A prime divisor D C Y is over X if there is a birational
morphism f:Y — X.
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Definition 2.2.18. The log discrepancy function
Ax: {D divisor over X} — Q
is given by

Ax(D) =1 + OTdD(Ky — f*Kx),

where f: Y — X is the given birational morphism with D C Y.

The log discrepancy function is a measure of the multiplicity of the
local equations for D, which one has when pulling back (n,0)-forms over
the regular part of X along f.

Volume of divisors

Definition 2.2.19. The volume of a Cartier divisor D C Y over X is

(Y, kD)

VOZ(D) = lim sup W,

k—o0

if Vol(D) > 0 we say D is big. The big divisors form an open cone inside
Pic(X).

The volume is a birational invariant of normal varieties in the sense
that if g: Y/ — Y is a birational morphism of normal varieties such that
H = ¢*D, then Vol(H) = Vol(D). For any Cartier divisor D over X we
shall set

Vol(L —tD) :=Vol(f*L —tD).

The following are a list of properties of the volume function:
Proposition 2.2.20 (|Laz04]|). The volume function satisfies

e Vol(kD) = kv ol(D)

e Vol(D) depends only on the numerical equivalence class of D.

e Choosing a norm on the finite dimensional vector space Ni(X), then
there is a constant C(||-||) > 0 such that

Vol(D) = Vol(E)| < C - (max(|| D], || E]]))*)~* - ||D — BJ]
for any two D, E € N§(X).
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In particular, we can extend the initial definition from Pic(X) to Picg(X)
by using the homogeneity property and from Picg(X) to Picg(X) by uti-
lizing the continuity estimate. By doing so, the set of Big R-divisors

Big(X) C Picg(X)

form an open cone (closed under addition by effective divisors), and one
can prove that the volume actually has slightly more regularity on Big(X).

Theorem 2.2.21 (|BFJ08|). Vol is a C* function on the Big cone, moreover
one has that for any D big and E arbitrary, then

d

%VOZ(D +tE)|imo = n(D" ) - E,

where () denotes the positive intersection product [BEJ0S8], which is also ho-
mogeneous and superadditive in all entries and coincides with the standard
intersection product when all entries are nef.

In this setup, the slope of (X, L) can be thought of quite literally as the
slope of the volume in the direction of the anticanonical divisor, since we

have p
nu(X, L)Vol(L) = %VOZ(L — tKx)|t=o-

Definition 2.2.22. Let L be a big divisor. Then, the pseudoeffective
threshold of a divisor D with respect to a divisor L is the quantity

11.(D) = sup{t > 0|Vol(L — tD) > 0}.
Alternatively, one can decribe the pseudoeffective threshold to be
71(D) = sup{t > 0|L —tD > 0}.

Indeed, if Vol(L —iD) > 0, then L — iD is in particular effective so
11(D) < sup{t > 0|L —tD > 0}. But since the big cone is the interior of
the pseudoeffective cone (|[Laz04] p. 147 ) (i.e., closure of the effective cone),
it follows that for ¢ > 71,(D), we must have H°(Y, f*L—iD) = 0. Therefore,
we have equality. Another property to remark is the scaling properties

TkL(D) = ]{TTL(D)

ro(kD) = (D)

for any k£ > 0, which follow directly from the scaling property of the volume
2.2.20)
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Definition 2.2.23 (|DL22|). For any prime divisor D over (X, L), the (3
invariant with respect to L is

71,(D)
BL(D) =Ax(D)Vol(L) + np(X, L) / Vol(L — tD)dt
0
T1(D)
—f- / —VOZ(L — tD —I— SKx)|8:0dt.
0 ds

It is shown in [DL22| that this gives back Fujita’s original invariant from
[Fujl9] in the Fano case, i.e., when the polarization L = —Kx the formula
for the S-invariant reduces to

TL(D)
5_KX (D) = Ax(D)VOl(—Kx) — / VOl(—KX — tD)dt
0

Note that the § invariant also scales as
Ber(D) = k™) (D).

Very recently, Boucksom and Jonsson [BJ22| extended the f invariant to
positive convex linear combinations of divisorial valuations, which they in-
terpret as certain probability measures supported finite subsets of divisorial
points in an associated Berkovich space. From this, Boucksom and Jonsson
obtain a valuative stability condition implying uniform K-stability, which
is the requirement that the Donaldson Futaki invariant is bounded from
below by a constant times the minimum norm of the test configuration.

Having defined the (8 invariant, we are now in a position to define a
stability condition for (X, L) coming from divisors.

Definition 2.2.24. We say (X, L) is valuatively

o semistable if S (D) > 0 for all non-trivial prime divisors D over X.
e stable if B (D) > 0 for all nontrivial prime divisors D over X
o uniformly stable if there is an € > 0 such that

71,(D)
BL(D) > e/ Vol(L) — Vol(L — tD)dt
0

for all nontrivial prime divisors over D over X.
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Note that this differs slightly from the convention in [DL22|, where they
only define valuative stability with respect to dreamy divisors. Uniformly
valuatively stable means that when

we are forced to have Vol(L) = Vol(L —tD),¥0 < t < 7,(D). But this
cannot be when D is non-trivial as we will now explain. The volume satisfies
Vol(L—tD) < Vol(L),t € (0, 7,(D)) with equality for all such ¢ if and only
if D =,.mn 0, since in that case

0= %Vol(L —tD)|i=o = —n(f*(L)" ) - D = —n(L"") - fu(D),

which contradicts ampleness of L. Now, by Kleiman’s characterization of
numerically trivial bundles |[Laz04, p. 19|, one has that nD ~ 0i.e. D =0
in Picg(Y). Therefore we have the implications

uniformly stable = stable = semistable.

2.3 A link between valuative stability and
K-stability

We describe how there is a relation between the notion of valuative stability
for a special class of divisors over X and K-stability of integral test config-
urations. First, we sketch a construction arising from filtrations of modules
and graded algebras, due to Rees |Eis95, chapter 5|, which is implicitly
used in much of what follows. Fix a given s-module M and a seperated
descending filtration F': Z — s — subm(M), i.e.,

o I — F;,Vj.
o [;= M , when j is sufficiently small.
o Nie; FM =0 in M.

Then, one can form the s[t]-submodule

M=t F; c M[tH).

jez
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Lemma 2.3.1. One has for any M that

M is flat over CJ[t]

(M)@ 2= M[t*]

M/t —c)M =M

M/tM = Gr(M, F) = @, F;/Fjn

Proof. The statements are shown in the same order.

A module is flat over a discrete valuation ring R, if it torsion free as
an R-module. Therefore, it suffices to check that multiplication by ¢
is injective. We have

t) ts) =) t70 Vs, =0 <= Vj,0=s,€ Fj_; <= Vj5;,=0€F,
j k

J

since the inclusions Fj;; — F} are all injective. Hence, M is flat over

C[t].
By exactness of localization, one has
(M) C M[E @y = M[EH,

but this inclusion is surjective since any element mt’ 7 > 0 is in the

image by definition and mt* i < 0 is in the image of m tL.

Consider the s-linear map ¢.: M — M givein by ¢.(>_; tis;) =
Y ¢ 7s;. It is surjective, and one has (¢t — ¢)M C ker(¢.). To show
the converse containment, it is enough to find a factorization

Zt_ij = (t — C) Zt_lkj
JEZ JEZ

=D (k1 — cky)

jEL
whenever > ez t77s; € ker(¢.). Thus, one solves the equation s; =

kj_1—ck;. Since M is direct sum, there is a minimal j, and a maximal
J1 such that s;,,s;, # 0. So one can set kj, = ¢ s, kjo—p = 0Vp € N.
Now, we solve recursively to obtain

J
kj = —c™ E sy

k=jo
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This terminates for k;, 41 = 0, if, and only if, Z:l:jo t=s;, € ker(¢,.),
because

Ji Ji
kj+1 = c’llcjl = —h Z s, = —cj1<bc(z t7%sp).
k=0 J=Jjo
Thus ker(¢.) C (t —¢)M.

e Consider the map ¢o: M — Gr(M, F) given by G0 jent7si) =
([sj])jez- Then > ., t~7s; € ker(¢y), if, and only if, s; € F;;; for all
j € Z. But this is equivalent to the factorization M as

sy =t(> ¢ Uts)).

= JEZ
O

Next, we extend the same reasoning to graded systems of filtrations,
which enables us to define projective degenerations of schemes by applying
the proj or relative proj functors. Suppose one has a graded system of
filtrations for a N-graded ring R = €,., Rx of s-modules with Ry = s.
Le., for all k € Z~ one has a filtration

Fr: 7 — s — subm(Ry,)
such that it is compatible with the graded multiplication:
Fij - Py C Frir g

Then one can form the graded ring of s(¢)-modules:

R=@P R = PEt 7 Fy) C Rt

k>0 k>0 jEZ

Lemma 2.3.2. The ring R has the following properties
o Ry = R[t*]
e R/(t—c)R=R
o R/(t)R =P, Gr(Ri, Fr)
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Proof. e Localization commutes with arbitrary direct sums, i.e,

Ry = (B Rr)wy

k>0

=~ PR )

k>0

>~ P Rilt*]

k>0

=~ (D R[]

k>0

= R[t*"].
e The ideal (t — ¢)R = Diso(t — ¢)Ry, is homogenous so

R/(t—c)R= D Ri/(t — c) Ry

k>0

e The ideal tR is again homogeneous, so

RIR= @ R/ (1) Ry

k>0

k>0
[l

A natural source of filtrations arise as seen in the following example.

Ezample 2.3.3. Given D an effective divisor over (X, L), then we always
have an injection
0— f"L—D — f*L,

so we have
HO(Y, kf*L —\D) C HO(Y, kf*L) = HO(X, kL).

In particular, one has a Z-filtration of the vector space H(X, kL) with a
natural multiplication in the section ring R(L) = @, H°(X, kL) given by
the tensor product.
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From divisors to test configurations

We give a class of divisors over X that always give rise to an integral test
configuration. Moreover, we show that the weight function £ — wt; has a
nice description.

Definition 2.3.4 (|Fujl9]). An effective prime divisor D C Y Iy X over
X is L-dreamy if there is an integer r > 0 such that the graded ring

R(rL,D) = @@t *H (Y krf*L — AD))

k>0 A€Z

is finitely generated as a C[t]-algebra. Write R(rL, D), for the k graded
piece, and write R(L, D)>; for the truncated subring

R(L, D)z = @ R(L, D)

k>j
with its R(L, D)-module structure.

As in the Rees construction, we think of @, _,t *H(Y,kf*L — AD) C
HO(Y,kf*L) ®c C[t,t~!] with the inherited C[t]-module structure, and the
multiplication is defined by the multiplication of sections

0— H' Y, kf*L-AD)QH (Y, K f*L—ND) — H°(Y, (k+k") f*L—(M\-X)D).
Definition 2.3.5. Given D an L-dreamy divisor, then we call the scheme
(Projspec(cin (R(L, D)), O(1))

the test configuration for (X, L) associated to D.

Lemma 2.3.6. The test configuration associated to an L-dreamy divisor is
an ample integral test configuration

Proof. The scheme has a natural morphism
T PTOjSpec(C[t])(R(L, D)) —C

given by the identification C[t| = R(L, D)o. The morphism 7 is flat, because
all R(L, D), are flat C[t]-modules and thus all homogeneous localization

is flat. Moreover, it is naturally C*-equivariant, since the C*-action on
R(L, D) is defined by the Z-grading as in [2.2.9
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By compatibility or relative proj with base change and the Rees con-
struction, the fibre over 1 is

PTOjgpec((c[t])(R(L, D)) X(C Spec(C[t]/(t — 1)) = PTOjSpec((C[t]/(t—l))(R(L> D)/(t — 1)R(L, D))
= Projspecc) (€D H*(X, kL))

k>0

I

X,
and the fibre over 0 is

Projspeeicin) (R(L, D)) xc¢ Spec(C[t]/ (1)) = Projspee(ci ) (R(L, D) /tR(L, C))
= Projspec(c (GT(R( ,D))),

where

Gr(R(L, D)) = @EP H (X, kf*L — AD)/H*(X,kf*L — (A+1)D)).

k>0 AeZ

This ring is integral since any two sections s; € HY(X,kf*L — AD), s, €
HO(X, K f*L — X' D) has nonzero product s;so € H*(X, (k+ k) f*L — (A +
N)D)/H(X, (k+K)f*L —(A+ X +1)D), when s; vanish exactly to order
A and vanish exactly to order X along D. Thus, the central fibre is integral
as well. It only remains to be seen that O(1) is relatively ample. By
finite generation of R(L, D), there is a j sufficiently big such that O(1)%7 =
O(j) is the line bundle associated to the graded R(L, D)-module R(L, D)>;,
which is generated in degree 1. Therefore, one has a graded surjection

S((R(L,D)>;)) = R(L, D)>; — 0.

Here, S denotes the symmetric algebra. This surjection induces a closed
immersion

7. PT’OjspeC((c[t])(R(L, D)) — ]PSpec(C[t])(R(L7 D)Zj)
such that O(j) = *O(1). O
From the explicit description, one readily obtains the weight.

Lemma 2.3.7. The weight of the induced test configuration is given by

>\maa¢
wty = (Apin (k) = DRO(X kL) + Y B(X,kf*L - AD)),
A=Xmin (k)
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where

Amin (k) = inf{\|H*(X, kf*L — AD) # H°(X,kf*L)}
Amaz (k) =sup{\ H(X, kf*L — AD) # 0}.

Proof. Since the central fibre is
Xo = Projspecc(Gr(R(L, D))),

and the bundle is O(1)|y,, one knows by the remark that the weight
is

wty, =Y dime(Gr(R(L, D))\

AEZ
=3 [W°(X kf*L = AD) = h°(X,kf*L — (A\+1)D)] A
AEZ )
=(Amin(k) = DRO(X Ef L)+ Y B(X,kf*L —AD).
A=A min (k)

From test configurations to filtrations

From a test configuration (X, L) of (X, L), there is a natural filtration of
the section ring R(L) = @), H°(X, kL) originally investigated by David
Nystrom in [Wit12].

Definition 2.3.8. A filtration of a graded ring R = @kzo Ry is an assign-
ment of Ry-submodules (\, k) — F*Ry, C Ry, for (\, k) € Z xN such that
the multiplication respects the grading

] F)‘Rk . FXRk/ - F)‘+)‘/Rk+k/.

We say it is decreasing if for each k fixed, A\ — F?Ry, is decreasing, i.e.,
FMIR, C FARy,. We say the filtration is permissible if it has these bounds:

e There is a )y such that FMY R, = R, for all k.
e There is a constant C' such that F¢*R, = 0 for all k.

Example 2.3.9. The filtration induced by an effective divisor over (X, L) is
permissible when D is L-dreamy.
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Lemma 2.3.10 (|Wit12]). Any ample test configuration induces a permis-
sible filtration.

Proof. (Sketch) We set
FAHY(X kL) = {s € H'(X,kL)|t 5 € H*(X,kL)},

where § is the invariant extension §(u,t) = t-s(u, 1) obtained by identifying
equivariantly L\ x, = p]L where p;: X x C — C. This is clearly a decreas-
ing filtration of the section ring R(L) in the sense above. It is permissible
by the argument in [Wit12, proposition 6.4].

O

Lemma 2.3.11 ([Witl12|). The weight polynomial of a test configuration
can be described in terms of the filtration as

wty, =Y j(dim(F*H(X, kL)) — dim(F*H(X, kL)))

J

A'Ilﬂnﬂ..’])
= Y dim(F*H(X, kL) + (AL, — 1)hO(X, kL),
where again
M = inf{\|[FAHY(X, kL) # H°(X,kL)}

A e = SUD{A|[FAHY (X, kL) # 0}.

So, this is analogous with the test configurations arising from dreamy
divisors. From the Rees construction [2.3.2] it follows that the permissi-
ble filtration associated to a test configuration gives rise to another test
configuration, which has the same total weight as the original test configu-
ration, hence these two test configurations have the same Donaldson-Futaki
invariants as observed in [Szél5|.

Filtrations of test configurations described by divisors

In this section, we follow [BHJ17| to see how filtrations associated to certain
test configurations can be described by divisors over X.
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Definition 2.3.12. Given a field C C K, then a valuation v on K is a map
v: K — R :=RU{oo} such that for all f,g € K one has

e U(f)=0 <= f=0,
(fg) = v(f) +v(9),
v(f +g) = min{v(f),v(g)},
o v(z) =0, VzeC.

[
e

By the correspondence v — e~", this notion of a valuation is equivalent
to a non-Archimedean norm on K which extends the trivial norm on C.
Associated to a valuation v are

e The valuation ring v~} (Rxg), which is a local subring of K with max-
imal ideal v™!(Rx),

e the value group (v(R), +),

e the residue field v(Rx)/v(Rso).

Given a dominant morphism f: X — Y of varieties, then the map on
function fields f*: K(Y) — K(X) is an injection, and one can consider
the pushforward f.v of a valuation v on K(X) given by f.v(h) = v(f*h).
Abhyankar [Abh56| proved the following general inequality for valuations v
on a field K regarding restriction to smaller field extensions C C F C K.

tr.deg(v) + rko(v) < tr.deg(v|r) + rko(v|r) + tr.deg(K/F)

here tr.deg(v) denotes the transcendence degree of the residue field over C,
and rkg(v) is the rank over Q of the value group. Taking K = F = K(Y)
for some variety, then one has in particular

tr.deg(v) + rkg(v) < dim(Y'). (4)

From this inequality, one identifies classes of valuations on K (Y’) which are
special:

Definition 2.3.13. A valuation v on K(Y)) is
o Abhyankar if there is equality in [4]

e Diwvisorial if rkg(v) = 1 and tr.deg(v) = dim(Y) — 1.
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The general Abhyankar inequality then gives some control of the types of
valuations one obtains when considering for example dominating morphisms
Y — X and corresponding injection K(X) — K(Y). In fact, we shall
consider only the case

p: X xC—X

with corresponding injection pj: K(X) — K(X x C) = K(X)(t). We
denote (p1).«v = v|k(x)-
From the Abhyankhar inequalities, one has

Lemma 2.3.14 (|[BHJ17|). If v is Abhyankhar on K(X x C) = K(X)(t),
then 50 is v|k(x). Moreover, if v is divisorial, then v|k x) is either divisorial
or trivial.

Proof. If v is Abhyankhar, then
tr.deg(v) + rkg(v) = dim(X) + 1.
Thus, from the Abhyankhar inequality applied twice one has
dim(X) < tr.deg(v|x(x)) + rko(v|x(x)),

but, tr.deg(v|k(x)) + rko(v|k(x)) < dim(X) always holds, hence the result.
If v is divisorial, then it is in particular Abhyankhar so

tr.deg(’u\K(X)) + Tk@(U‘K(X)) = dim(X).

Since the value group of v|g(x) is contained in the one for v, it follows that
rko(v|k(x)) < 1. In the case rkg(v|k(x)) = 0, one has v|x(x) = Vi, and
in the case rkg(v|k(x)) = 1, one has that v|x(x) is divisorial. O

We shall consider K(X)(¢) with the dual action of the standard C*
action on C, that is z - f(z,t) = f(x,271t) for f € K(X)(t). There is yet
another action on valautions v given by dualizing the dual action, i.e.,(z -

v)(f) =v(z" fa),

Lemma 2.3.15 (|BHJ17]). A valuation v on K(X)(t) is C* invariant, if,
and only if, it has the normal form

v(f) = %2%(”|K(X)(f#) + po(t)),

where f = Zuez fut", fu € K(X). In particular, a C* invariant valuation
restricts as v|k(x) = Vv, if, and only if, v = cord, for some ¢ > 0.
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Proof. Observe that

Z: Z fut" = Z(fuz_#)t# :

HEZ HEZ

Therefore the expression

ho(f) = min(v|xx)(fu) + po(t))

WEZ

must be invariant, since v|x(x)(27*f.) = v|xx)(fu)-
In general one has

To see the converse inequality when v is invariant, consider the set I' =
{u|f. # 0}, and consider the finite dimensional vector space spanc(f,t"|u €
) = C" with its induced C*-action. Picking distinct z, € C* for each
p € I', one has a C-basis z, - f. Indeed,

O:Zcuz#'f

nel’
WO
A H
0 :Zcuz‘f‘, vaerl
o
0=Zcm

where Z = (2,%)aer and ¢ = (¢u)uer. But Z is invertible, since it is
a multiple of a Vandermonde matrix, hence ¢ = 0. Thus, we can write
uniquely

fﬂt“ = ZCAZ)\ . f

A
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So, it follows that

> 1}r\1€1%1(v(cA) +v(zx - f))

=i S)

:minAeFv(f)

—u(f).

From this characterization, one sees that the central fibre X x {0} of
the trivial test configuration is, up to strict transforms, the only irreducible
component of a central fibre of a test configuration for X which induces
the valuation ord, on K (X x C). In particular, for nontrivial integral test
configurations it follows that the induced valuation on K (X) is divisorial.

Proposition 2.3.16 (|[BHJ17]). A divisorial valuation v on K(X)(t) sat-
isfies v(t) > 0 and is C*-invariant, if, and only if, v = cordp, ¢ > 0 and D
s an irreducible component of the central fibre of a test configuration X for

X.

Proof. (Sketch) Since any test configuration is equivariantly birational to
the trivial one p: & --» X x C, there is an isomorphism K (X xC) = K(X).
It is clear that p.ordp(t) = ordp(p*t) > 0 since Xy = {p*t = 0} is effective.
The valuation is C*-invariant, because D is C*-invariant. For the converse,
suppose v is a C*-invariant divisorial valuation on K (X x C). Then, upon
compactifying the trivial test configuration and blowing up the centres of
v iteratively, it follows by a theorem of Zariski , [KMO98| lemma 2.45]
that there is a divisor D on one of these dominating models p: Y — X x P¢,
such that cp.ordp = v for some ¢ > 0. Since the blown up centres are
C*-invariant and contained in the central fibre at each step, the resulting
composition of maps p will be C*-equivariant and define a test configuration
for X. O]
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Proposition 2.3.17 (|[BHJ17|). Let (X,L) be a test configuration domi-
nating the trivial test configuration ((X x C),piL) via a map g, such that
L= (pyog) L+ D. Then, the filtration of the section ring R(L), induced
by a test configuration satisfies for m > 0 and all X that

FPHY(X,mL) = ({s € H(X,mL)|vg(s) +m - ordp(Xo) 'ords(D) > A},

g*ordE|X

geords () and E are all irreducible components of Xy.

where vy =

Proof. From the definition of the filtration associated to a test configura-
tion, one has that s € FAH?(X,mL), if, and only if, t s € H(X,mL),
with § being the invariant rational extension over X'\ Xy. Thus for any F
irreducible component of X, one has ordg(t=*5) > 0 as it extends holomor-
phically. This is equivalent to ordg(s) > Ag.ordg(t) = Aordg(Xy). The re-
sult follows, since mL = m(p;0g)*(mL)+mD gives locally 5 = (p1og)*sf™,
where f is the equation for D. Hence,

ordg(s) =ordg(pig*s) +m - ordg(D)
=g.ordp(s)|x +m - ordg(D)
=ordg(Xy)ve(s) + m - ordg(D).

]

When the central fibre of a test donfiguration dominating the trivial
one is irreducible, then the proposition says that the filtration associated
to a test configuration comes from a divisor. Since it is always possible
to put oneself in the situation of the previous proposition, by considering,
for example an equivariant resolution of the graph of p: X --» X x C,
one should be able to characterize K-stability with respect to integral test
configurations in terms of valuative stability. In fact, this is exactly what is
done first by Fujita [Fujl9| in the Fano case and later in [DL22| by relating
the £ invariant with the Donaldson Futaki invariant.

Integral K-stability and valuative stability

In this section, we reference the main result in [DL22|, and give an idea of
how one might prove the result.

Theorem 2.3.18 (|DL22|). K-stability of the pair (X, L) with respect to
integral test configurations coincides with the valuative stability with respect
to L-dreamy divisors.
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The argument in the proof is structured as follows. To any dreamy
divisor D, there is an associated integral test configuration (X, L£). Since
this test configuration is relatively concrete, one can obtain an asymptotic
expression for its Donaldson-Futaki invariant. Then, by using techniques
from the minimal model programme to calculate the integrals involved in
the computation of 57, on models, where the volume can be computed poly-
nomially, they eventually obtain an equality

Bu(D) = DF(X, £)2(n — 1)\, (5)

Therefore, K-stability implies dreamy valuative stability. To show the con-
verse, they observe that any integral test configuration gives rise to an
L-dreamy divisor such that the filtration associated to the dreamy divisor
coincides with the filtration of the test configuration. Then, finally, one
can show that [l is satisfied with the Donaldson-Futaki invariant of the
given test configuration. This uses the description of the weight of the test
configuration in terms of the filtration [2.3.11]
From equation [f] one then has

Theorem 2.3.19 (|[DL22|). K-semistability of (X, L) with respect to inte-
gral test configurations is equivalent to valuative semistability with respect
to L-dreamy divisors.
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3 Fibration degenerations

Introduction

In this chapter, we start by describing fibration degenerations and an asso-
ciated notion of stability as defined by Dervan-Sektnan in [DS21a]. It is a
stability condition on a family of varieties, defined from an asymptotic ex-
pansion of the Donaldson-Futaki invariant, which arises by degenerating the
family inside a projective bundle and then tensoring with ample line bundles
pulled back from the base [3.1] The original contributions in this chapter
(from 3.2 and onwards) come from forthcoming joint work with Lars Martin
Sektnan. Motivated by the relation between the Donaldson-Futaki invari-
ant with the beta invariant, we define a special class of divisors/divisorial
valuations for which there is an asymptotic expansion of the 3 invariant
3.3l In order to conclude that there is an asymptotic expansion for the /3
invariant for these divisors, we use equation 5| and the fact that there is an
aymptotic expansion for the Donaldson-Futaki invariant of a fibration de-
generation. Therefore we need to show that our special class of divisors give
rise to fibration degenerations[3.2.20 and that the divisors become dreamy
after twisting with sufficiently high tensor powers of any ample bundle from
the base We also show that our class of divisors arise naturally from
the data of a fibration degeneration The § invariant makes sense
for any divisorial valuation, so we also make steps towards showing that
one has an asymptotic expansion of the f invariant when the divisor in
question satisfies milder conditions [3.3] In the case of projective bundles,
we calculate to second order the asymptotic expansion of the beta invari-
ant of the exceptional divisor blown up in a subbundle, and we show that
nonnegativity of the subleading order term corresponds to an inequality of
slopes [3.4f This gives a partial proof from the S-invariant side of a fact
established in [DS21a|, which is motivated by a similar result in the work
of [RT06b| concerning slope stability with respect to subvarieties.

Canonical families of cscK metrics

Let f: X — B be a holomorphic submersion with a relatively ample line
bundle H on X, suppose wx/p € ¢1(H) is a family of cscK metrics. That
is, wX/B|Xb is cscK for each b € B. Such a wx,/p depends on a fibrewise
choice, since cscK metrics in a given Kahler class are only unique up to
automorphisms preserving this class. Fixing a polarization L of B and a
metric wp € ¢1(L), a natural question arises: can one determine a canonical
choice for wx,/p from the data of the family f and wpg?
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Recently, Dervan and Sektnan [DS21b| found an equation for wx,p,
namely

p(AV(AwB,UJ*(F’H)) + Apr’H) = 07

whose solutions they dubbed optimal symplectic connections. Shortly after
conjecturing that optimal symplectic connections give a canonical choice
of fibrewise cscK metrics Dervan-Sektnan |[DS21c| confirmed this as they
showed that any two optimal symplectic connections wx,g, W /B differ by

Wy/p = g 'wx/p + [7(i 99 o),

where g € Aut(X/B) and ¢p € C*(B,R). Hence, the family of cscK
metrics wx/p|x, is indeed uniquely determined. A compelling property of
optimal symplectic connections shown in [DS21a| is the following: when
wp can be chosen to be cscK, then for any j > 0 there is a cscK metric
in the class ¢;(H) + jf*ci(L). Having K-stability in mind, this suggests
that one should be able to at least find an obstruction for the existence of
an optimal symplectic connection in terms of suitably modified asymptotic
version K-stability of the pair (X, H + jf*L) for all j big enough. Since
the family structure f: X — B is relevant for the optimal symplectic con-
nection equation, the test configurations to consider should then also have
some sort of morphism to the base. Considerations like these led Dervan-
Sektnan [DS21a] to introduce the notion of a fibration degeneration [DS21a]
and a notion of stability for fibrations, which they conjecture in some form
to be sufficient for the existence of an optimal symplectic connection for

f:(X,H) = (B,L) .

3.1 Fibration degenerations

In this section, we introduce the notion of a fibration degeneration as defined
in [DS21a]. We shall fix the following data: (X, B, f), where f: X — B
is a proper flat morphism between normal projective varieties such that

f:Ox = Op and dim(X) > dim(B).

Definition 3.1.1. An f-degeneration of an f-ample divisor H, is a C*-
equivariant coherent sheaf £ on B x C flat over C (i.e., when py(b,t') = ¢/,
then &4 is a flat C[t]y-module), so that equivariantly &|pxc+ = pifi(kH)
for some k such kH is f-very ample and pj f.(kH) has the trivial C*-action.
We call k the exponent of the f-degeneration.
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Remark 3.1.2. If B is a point, then f-ample just means ample, and thus a
degeneration means a coherent sheaf £ on C, which is flat, and hence free
and equipped with a C*-action making the map

P(C[t] (5) — C

equivariant. Thus, taking a subvariety X C Py (€)1 = Pc(H(X, kH))
and considering the closure of its C*-orbit recovers the notion of an ample
test configuration.

For an f-degeneration £ of H, one can consider the flat limit & of the
C*-orbit of the Kodaira Embedding induced by H,

X = Ppyc(é),

equipped with its induced C*-equivariant line bundle H = Ox (1) = O(1)|«.
By composing
X — PBX@((C:) — B x (C,

one obtains maps 7m: X — B x C such that py o is flat by definition. Since
X\ Xy =y X x C* over B x C*, one sees that m|x\x, = (f x Id) 09 via this

isomorphism.

Definition 3.1.3 (|DS21a]). A fibration degeneration of (X, H, B, f) is
given by (X,H) — B x C arising from an f-degeneration of H. We say the
fibration degeneration has exponent k, if the f-degeneration of H giving
rise to the fibration degeneration has exponent k.

Thus, fibration degenerations are completely analogous to and can
be viewed as a special relative version of test configurations. Indeed, in
[DS21a|, they prove among other things the following

Lemma 3.1.4. Let (X,H) be a fibration degeneration of exponent k for
(X,H,B, f) and L ample on B. Then pyor: (X, H + kjr*piL) — C is a
test configuration for (X, H + jf*L) of exponent k for all j > 0.

This suggests that one should be able to come up with a notion of stabil-
ity for fibration degenerations of (X, H, B, f) by studying the asymptotics
of the invariants of the test configurations for (X, H +jf*L). The intuition
that fibration degenerations correspond to families of test configurations
can be made more precise. Indeed, this is true generically on the base.

Proposition 3.1.5 ([DS21a|,|[Hat22, lemma 4.8|). For a fibration degener-
ation (X, H) of (X, H, B, L, f), there is a dense Zariski open set U C B,
such that for any b € U the fibre X, — b x C = C is flat, and (X, Hp) is a
test configuration for (Xy, Hy) of exponent k.
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Completions of fibration degenerations

Given an f-degeneration £ of H, we can "complete" £ trivially over Bx {oco}
to a C*-equivariant coherent sheaf on B x P{. restricting to £ by gluing the
two pieces

e pif.(kH) over B x C equipped with the inverse trivial action.

e & with its given action over B x C,

which are defined on different open affines of B x P{ and glued along the
equivariant isomorphism &|pxc+ = pif«(kH) from the definition.

Definition 3.1.6. The C*-equivariant coherent sheaf & on B x PL obtained
as above we call the completion of £.

Note that the action on &| Bx{oo} = fu(kH) is then trivial by construc-
tion.

Suppose & is the completion of £. Then since &|zxc = & one has

PBX(C(E) = PBXC(z’BXC)
= ]P)BX]P’%:(E) X pxpL (B x C)

Thus if £ gives rise to a fibration degeneration X', then we can consider the
closed subscheme X C PP BxPL (€) defined to be the subscheme obtained by
gluing together the flat limits over 0 in either affine chart. Note that we
have X|pxc = & and X \ &y = X x C and a natural C*-equivariant line
bundle H = O(1)|5, which agrees with 7 when restricted to X

Definition 3.1.7. We call X the completed fibration degeneration.

Given a line bundle L on B, then we can pull back to a line bundle pjL
on B x P{ and further via the morphism 7 : Ppxpr (§) = B x PL to a line
bundle. Now, by naturality of the construction, this bundle must restrict
to X as (p; o7)*L, where 7: X — B x PL and similarly to X as (p; om)*L.

Lemma 3.1.8. When j > 0 is such that (X, H+ jkm*piL) is a test config-
uration, then the notion of completed fibration degeneration and completed
test configuration coincide. Moreover, the induced line bundle on the com-
pleted test configuration H + jkm*pt L coincides with H + jk(p; o 7)* L.
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Proof. Since the C* action is trivial on fibres over the affine where &|pyc =
pif«(kH), the flat limit of X is simply X x C. Hence the underlying spaces
of the two completions are obtained in the same way.

The claim for the line bundles is analogous, since both H and (p; o
7)*L are the trivial extensions of H and (p; o m)* L respectively, hence the
trivial extension H + jkm*piL = H + jk(p; o 7)*L, by multiplicativity of
the extension operation.

O

Fibrational stability

Lemma 3.1.9 (|[DS21al). For a fibration degeneration (X, H) of (X, H, B, f)
the asymptotic Donaldson-Futaki invariant DF (X, H+kjr*piL) has an ex-
pansion as a Laurent polynomial in j of leading order dim(B).

DF(Xj H + k-jﬂ-*pTL) — W()(X, H)jdim(B) + Wl(.)(, f}_[>jdim(B)—1 + ..
Here, the W;(X,H) have a dependancy on the exponent k.

Proof. Consider the completion (X, H+jk(p;o7)*L). Suppose n = dim(X).
By the formula for the Donaldson-Futaki invariant of a completed test con-
figuration, we have, up to multiplication by a positive dimensional constant

DF(X,H + jk(p o m)'L) == (X H + jk[* L)(H + jh(p o 7)"L)"""

+ (H A+ jk(p1oT)"L)" K e

Analyzing the terms, we see that the slope is a quotient of two polynomials
in j of degree at most dim(B) in the enumerator and degree at most dim(B)
in the denominator, because any intersection involving terms of the type
AdmX)—dim(B)+k (1 )dim(B)+k for | > 0 and A arbitrary is zero by the push-
pull formula. Hence, the slope admits a Laurent expansion in j with leading
term of order 0. Since the extensions of (p; o m)*L are also pullbacks, the
intersection numbers (H + jk(py o7)*L)"*t, (H + jk(p: oT)*L)". Kp. must
also be polynomials in j of degree at most dim(B), hence the result. O

Performing the expansion in j and letting n = dim(X), m = dim(B)
such that n —m = /¢ is the fibre dimension, then one has the following
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formulas in terms of intersection numbers [DS21a]:
n 1 _KX/B . f*Lm . Héil

X = "
+(prom) L™ -H' - Kx/p1) (6)

(pro7) L™ - H™)

Wi(X,H) = (m”_ 1) K™ CL(X,H) + Co( X, H) + C5(X,H) + Cy(X,H))

*Tm /—1
CL(X H) =5 —f 5 KX/J]”S*LJ; .LHe & (prom) L™t H™*?)
/ (_KX/B . f*Lm—l . Héfl)(f*mel ) HZ+1)
S+ (f<Lm- H*)?
Ky frLm 1Y
f*Lm . HY
Cy(X,H) =(prom) L™ - H™ - Kgpy,

Co(X,H) =

Cs(X,H) = (prom) L™ H™!

where Kx = Kp + Kx/p. Similarly, by considering a resolution of inde-
terminacy of the canonical map from the compactified test configuration to
X x P&, Dervan-Sektnan |[DS21a] obtain an expansion in j for the norm of
the family of test configurations DF(X,H + kjn*p;L). The leading term
then gives a notion of norm for a fibration degeneration.

Definition 3.1.10 (|DS21a]). The norm of a fibration degeneration (X, H)

is

L™
(41

Here we have supressed the various pullbacks and completions involved in

the expression.

(X, H)I = + L™ A1 (M- H)

Now, we can give a notion of a "K-stability for families" from the asymp-
totic expension of the Donaldson-Futaki invariant and the notion of a norm.

Definition 3.1.11 (|DS21a|). Given a fibration f: (X, H) — (B, L) such
that the fibres (X,, Hp,) are K-semistable, then the fibration is

((pro@) L™ H™T)

o semistable if Wy (X, H) > 0 and when there is equality one has Wy (X', H) >

0

e stable if it is semistable and whenever Wy(X,H) = 0, W (X, H) =0
then the norm is 0

e polystable if it is semistable and when Wy (X, H) = 0, W1 (X, H) = 0,
then either the normalization of (X, H + kjn*piL) is a product test
configuration for j > 0 or the norm is 0

73



for any fibration degeneration of (X, H, B, f). We say the fibration is in-
tegrally semistable (resp. stable, polystable), if it holds for all fibration
degenerations with irreducible central fibre.

In the original definition of fibration stability [DS21a|, they require the
fibres to be K-polystable. This comes from the accompanying differential
geometric construction in [DS21b|[DS20], where they consider cscK fibra-
tions, i.e., fibrations where all fibres admit a cscK metric. Recent work by
Ortu |Ort22| shows that fibrations with analytically K-semistable fibres also
give a cscK metric in asymptotic classes when one can solve the optimal
symplectic connection equation, hence we have chosen to allow K-semistable
fibres as well. To get a feeling of the nature of the stability conditions, we
display an explicit interpretation of the first coefficient

Proposition 3.1.12 (|DS21a]). For any fibration degeneration (X, H) of
(X,H,B, L, f) one has

Wo(X, H) = (:,L) [TL"DF(Xy, Hy),

where (X, Hp) — b x C = C is an induced test configuration for a generic
beB.

Proof. Let U C B be the open subset, such that b € U implies that (X}, Hy)
is a test configuration for (X;.H). Then 7|1 «c) is flat, hence, for b € U
one has that (p; o m)*[b] = [A}] is a well defined element in the chow ring
of X. In particular, for any class A representing the intersection of line

bundles
(prom)*[b]- A= [X] - A= A|x,.

Similarly, since f is flat, f*[b] = [X}], and one arrives at a similar conclusion
when intersecting with this class. Since L is ample on B, it follows that
L™ ~ ¢[b] for some point b € U, ¢ > 0. Hence, one can write

(prom) L™ - HT =cH™ |4,
frLm - HY =cH'|x,.
Now applying the formula [f]

n\ m, {  (=Kxp-H)|x, - -
W0<X7H) = (m> Ck (g + 1( /HélX Hngl‘Xb + (Hf : K.)?/]P’(l:)le)
b
_[(n m 4 _KXb i H‘g_l 7041 U _
- (m) Mo m TR

n m
= <m> k™ DF (Xy, Hy).
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where we used the equation [2.2.15] and the compatibility of the relative
canonical class under base change [Harl0, II, prop. 8.10]. The result then
follows, since the intersection number of f*L™ is c.

O

Recently M. Hattori [Hat22| defined a stronger notion of stability for
fibrations called f-stability involving all the terms in the asymptotic expan-
sion of the Donaldson-Futaki invariant. Hattori shows that f-stability of a
fibration implies some control on the singularities of a pair (X, D), where
X is the total space of the family. The difference between the two stability
notions for families seem formally similar to the difference between slope
stability and Gieseker stability of sheaves |[HL10, chapter 1.
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3.2 A valuative obstruction for fibrational
stability

Horizontal valuations

In this section we define a class of valuations appearing later, where we
give a valuative interpretation of the asymptotic Donaldson-Futaki invari-
ant. Let f: X — B be a dominant morphism of varieties and denote the
comorphism by f*: Op — f,Ox. Recall that one can push forward any
valuation v: K (X) — R in this situation as follows

Definition 3.2.1. A valuation v: K(X) — R is f-horizontal, if
J¥U = Vgrin,

0 f+#0

where the trivial valuation is vy, (f) =
oo f=0.

Remark 3.2.2. Geometrically this means that v does not provide a measure
of multiplicity for any nontrivial algebraic function (or divisor) defined on
an open subset of B.

Recall the notion of a center for a valuation:

Definition 3.2.3. A valuation v on K (X), with value ring R has a center
on a variety X, if there is a scheme point p € X such that the canonical
map

OXJ) — K(X)

factors through R as a local morphism and R dominates Ox,, that is,
mg N @) Xp = Mp.

Intuitively, having a center means that there is a subvariety such that
v measures multiplicity along that subvariety. By the valuative critetion of
properness [Harl0, 1T, thm. 4.7, it follows that a valuation on the function
field of a complete variety has a unique center on that variety.

Suppose one is given a valuation v on K(X) with value ring R =
v} (R>g). Then, pushing v forward by f to w = f,v with value ring
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S = w ' (Rs) yields a commutative diagram

0 Ly K(X)

g

o
oO—n— =

*

f
LI

[
(B
|

0.

If v has a center on X, there is a prime p € X such that Oy, C R and
mp N Ox, = m,, in particular by taking any affine neighbourhood U of p
and considering Ox|y — Ox, — R there is a map

Spec(R) — X,

whose unique closed point corresponding to mz maps to p. It is similar if
w has a center on B. Now, since S — R is local we get a commutative
diagram
Spec(R) —— X
L)
Spec(S) —— B.
Thus, in this case, the centers satisfy cp(w) = f(cx(v)). Note that the

trivial valuation vy,.;, has the generic point of B as its center. Therefore the
center of horizontal valuations must map to the generic point of B.

Ezample 3.2.4. Consider trivially (although prototypical for what we want),
the coordinate projection map p;: X = Spec(Clt,w]) — B = Spec(C[t]).
Then, a valuation v is p; horizontal, if, and only if v(t—c) = 0, for all ¢ € C.
Indeed, it suffices to check on polynomials hence by algebraic closedness of
C, we can check onf = [[_,(t — ¢;). Thus,

n

v(f) =) v(t—c).

=1

In this case, we can also easily classify the horizontal valuations v. On a
w-monomial g = f(t)w' € C(t)(w) = K(X) we have v(g) = v(w") and so
in general for g = > fi(t)w’, we have

v(g) > miin iv(w)

7



with equality whenever v(w) # 0, in which case v = ¢- ord,, for ¢ # 0 is a
multiple of the order of vanishing along w, and when v(w) = 0, then v(g) >
0 for all g # 0, and so v must be trivial. Therefore, we see that the center
of a horizontal v must be the generic point of the zero section {w = 0}, or
else the center must be on some compactification of Spec(C[t, w]).

A basic property of f-horizontal valuations is that the notion is invariant
under birational morphisms over B in the following sense:

Lemma 3.2.5. Suppose g: Y --+ X is a birational morphism of varieties
over B, and v is an f-horizontal divisor. Then w = g ‘v is a h-horizontal
divisor, where h = f o g.

Proof. g induces an identification of function fields K (X) = K(Y'). Hence,

how = (f o g)ug v

= VUtriv-
]

Next, we relate the notion of an f-horizontal valuation to a geometric
property of Cartier divisors appearing on X.

Definition 3.2.6. A divisor D C X is f-horizontal if f(Supp(D)) is Zariski
dense.

In particular, when f is proper, then f(Supp(D)) = B for a horizontal
divisor D. Any divisor D = )" a;D; is then f-horizontal, if, and only if,
each D; is so. Therefore they form a subspace of the Weil divisors Div(X).
Consider the morphism P% \ {z; = x5 = 0} — P{ given by projection to
{z3 = 0}. Then, the global sections. z,zs,23 € H'(P% \ {z1 = x5 =
0},0(1)) give linearly equivalent divisors with {z3 = 0} horizontal but
{z1 = 0}, {xos = 0} are not horizontal. This shows by example that the
notion is not preserved by linear equivalence. It is clear that an f-horizontal
divisor cannot be the pullback of a divisor on B (or the flat pullback of a
Weil divisor), however, they are in general not all the divisors, which are not
pullbacks, since f might contract some divisors onto subsets of codim > 2,
e.g. if the divisor in question is the exceptional set of a blowup along a
generic smooth subvariety. Therefore, f-horizontal divisors are special in
the sense that they are the divisors that are contracted the least by f in
terms of dimension. A way to produce such divisors is, if one is given a
map ¢g: Y — B, and one then blows up a subvariety A C Y such that g|4
is dominant.
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Proposition 3.2.7. For a proper dominant morphism f: X — B, then
a prime Cartier divisor D is f-horizontal, if, and only if, the associated
valuation ordp is f-horizontal.

Proof. Suppose first that ordp is f-horizontal. The center of ordp is the
generic point n € D. So f(n) is the generic point of of B. Therefore
{f(m} C f(D), but {f(n)} is Zariski dense, so B C f(D) since f(D) is
closed. For the converse, suppose f(D) = B. We argue that any s € Og(V)
such that

ordp(f*s) #0

must satisfy s = 0. It suffices to do this in any stalk b € V. The local
comorphisms f;: Op, — Ox,q4 where d € D is such that f(d) = b are
all injections. Thus, s, € my, if it maps to my;. But this has to be the
case because near D, we can write f*s = t"g for n € N and g invertible.
Therefore, s, € my, for all b € V', and so when V is affine, s sits in every
prime ideal, which means it must be in the nilradical. But this is 0 as B is
reduced. O

Corollary 3.2.8. If f: X — B is a dominant proper morphism of varieties,
then any prime Cartier divisor D on'Y over X is h-horizontal, if, and only
if, its associated valuation on X is f-horizontal.

Proof. We have g: Y — X proper birational and h: Y — B proper and
dominant such that f o g = h. Thus, ordp h-horizontal, if, and only if,
gsordp is f-horizontal by [3.2.5] so the result follows from [3.2.7], because h
is proper and dominant.

]

This shows that the notion of being a horizontal prime divisor on the
birational models dominating f: X — B is independent of such a model.
In fact, the theorem shows that horizontal divisorial valuations are
precisely characterized by the corresponding geometric property on some
model dominating f: X — B. Therefore, we shall introduce the definition

Definition 3.2.9. A divisor D on a model g: Y — X over f: X — B is
horizontal, if it is h = g o f horizontal.

Theorem 3.2.10 (|ZS97, section 14, thm. 31]). For any divisorial val-
uation v € K(X) with center cx(v) on X, there is a birational model
g:Y = X and a divisor D C 'Y, such that cv = g,ordp on X for some

c#0.
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Since €Uy = Vgriv, Ve # 0, it follows directly that any such divisor
D from the theorem must be horizontal, when v is f-horizontal. Next, we
want to give a partial justification for the introduction of horizontal divisors
when studying fibration degenerations.

A fibration degeneration (X, H) of f: (X,H) — B gives rise to the
following commutative diagram

X \ > ]P)Bxc(g)
B xC
D2
% \
B C,

where X is equal to the flat limit over C of orbc«(X) = X x C* inside
Ppyc(E). The central fibre Xj surjects onto B, because X'\ Xy Zpxc X X C*,
S0

m(x \ xo) = B x C7,

and therefore

w(x) D7(x\ xo) =B xC*=B xC,

which means

W(Xo) D Bx {O},
Le., Xo =7 1B x {0}).

Lemma 3.2.11. Any non-trivial integral fibration degeneration of f: (X, H) —
B gives rise to a horizontal divisor on a birational model Y — X over B.

Proof. We have a C*-equivariant birational diagram over B x C

X oo » X xC
B xC
l’”
C

The central fibre of py o7 is then a prime divisor, which by surjectivity onto
B gives rise to a pryom-horizontal valuation vy, on K (X'). By commutativity
of the diagram, it follows that the induced valuation on K (X x C) is pry o
(f x Id)-horizontal. Let us, by abuse of notation also denote this by wva,.
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Finally, since K (X x C) = K(X)(t), this is equivalent to vx|x(x) being f-
horizontal. Now, by the general theory from [BHJ17|, v, |k (x) is divisorial
when the test configuration is nontrivial. In any case, there is a divisor
giving rise to vy, realized on some birational model of X over B by [3.2.10]
The fact that this divisor is horizontal follows by the birational invariance
of the notion. O

The relative Rees construction

We show that horizontal divisors are precisely the divisors such that one
may carry out a relative version of the classical construction by Rees, giving
a geometric meaning to Z filtrations of the global sections of a bundle.

Definition 3.2.12. Let f: X — B be a proper surjective morphism of
varieties. Let D be an f-horizontal divisor on X. Then, for any line bundle
L on X, we define the value of any s € ['(U, f.(L)) = T(f~Y(U), L) to be

ordp(s) = ordp(s;),

where s; = ¢;s|y, in some local trivialization L]y, % Ox|u,, such that

Ul’ NnD 7é @ and Ul C f_1<V)

Firstly, we note that there always exists such a trivialization U; as in the
definition: one can pick any trivialization, since the divisor must map sur-
jectively onto B. In fact, one could extend this definition to any horizontal
valuation, because there is a point in every fibre that is a specialization (in
the Zariski closure) of the centre.

The value v(s) does then not depend on the chosen trivialization, since
any two such are Ox-linearly isomorphic over their intersection by ¢;; =
¢; o ¢; which is determined as multiplication by the unit ¢;;(1). But this
does not change the order along D. This is also true for any horizontal
valuation in the adapted definition.

A second benefit of the horizontal condition is that ordp(s) is well be-
haved when multiplying by functions from B. Indeed, let b € Og(V) and
consider f*b € Ox(f~*(V)), then, by definition,

ordp(f*bs) = ordp(f*blu,s:)
= ordp(f*bly,) + ordp(s;)
= ordp(f*b) + ordp(s;)
=0+ ordp(s;)
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because f*b|y, ~ f*bin K(X). The sets
Forap F(L)(V) = {s € f(L)(V)|ordp(s) = A}

are then Op(V')-submodules, and we obtain a filtration of the sheaf f.(L)
of Op-modules by considering the subsheaves

A= Fr o fo(L).

OTdD

Moreover, when considering f,(kL) for any k > 0, one obtains a decreasing
multiplicative filtration by considering

(A k) = Fopa, fo(KH).

Remark 3.2.13. When f: X — Spec(C) is the canonical map, then being
f-horizontal is void, so any divisor D satisfies this condition. In this case

our definition of the value of a section [3.2.12]is the same as the one used in
[BHJ17].

Definition 3.2.14. Let f: X — B be a proper surjective morphism and
v an f-horizontal valuation with value group I' = Z". Then, we call the
graded Opg-algebra

Ru(L) = P EPtF) fu(kL))

k>0 Ael

the associated relative degeneration algebra or relative Rees algebra. We
write R, (L) for the k’th piece.

We shall only consider the case of horizontal divisorial valuations I' = Z.

Proposition 3.2.15. When f: X — B s proper, surjective, and f,Ox =
Op, then, the relative Rees algebra for an f-horizontal divisor v induces a
family over B x C with irreducible central fibre, and a C*-action such that
the map to B x C is equivariant.

Proof. In this case the degree k = 0 piece is

D1 F0x) =Pt FIOp

AEZ ANEZ

= 6}9 tiACDB

—AeN
= Op ®@c C[t],
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where we used that

O A<0
0 A > 0.

Vtriv

F)Op = F),0p=F) Op= {

In particular, the R, x pieces have an Op ®¢ C[t] module structure, and we
can form the relative proj

Projpxc(Ry(L)) — B x C

with its canonical map. There is by a natural action of the group
scheme C*(B) = BxC”" on this space such that the canonical map commutes
with the C*(B)-action on B x C*. But this is equivalent to a C*-action on
Projpxc(R,(L)) such that the canonical map to B x C* is equivariant since
the group sheme acts trivially on the B component. The central fibre is the

proj
Projp(Gr(R,(L))),

where

Gr(R.(L)) = BEP 7. fo(kL) ) F) " fu(kL)).

k>0 AeZ
But this sheaf certainly forms an integral ring over open affines U C B.
Hence the central fibre is integral. O

Now, imposing certain local finiteness conditions for F) f,(kL) on B one
can ensure that the space has desirable properties, i.e., such that it defines
a fibration degeneration. This is in fact exactly what we shall do to obtain
fibration degenerations from divisors.

Relatively Dreamy divisors

Suppose we are given the data (X, B, f) as in section

Definition 3.2.16. Let H be an f-ample divisor on X and D a prime
divisor over X. Then we say D is relatively H-dreamy, if there is an r > 0
such that rH is Cartier and

R(rH,D) = P (@t *h.(g"krH — AD))

k>0 XeZ

is locally finitely generated as an Op|t]-algebra. Here, we think of h, (¢g*krH —
AD) C f.(krH) as a subsheaf.
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When D is horizontal, then the algebra from the relatively dreamy con-
dition agrees with
ROTdD (H )

defined in 3.2.14, Indeed, if s € f.(kH)(V) = kH(f~'(V)), then s €
Fra fo(kH)(V), if, and only if,

ordp
A < giordp(s) = gwordp(s;) Vi
=ordp(g*s;) Vi
for all s; representing s in a trivialization over U; C f~1(V'). By resolution
of singularities [Hir64], we can by considering the strict transform assume
the model g: Y — X, where D appears is a smooth variety. Hence that
D is Cartier. Let t be the local equation for D on an open affine subset
Wi; € g Y (U;). Then, A < ordp(g*s;) <= ¢*s; = t*w;j, where w;; is
some function on W;;. The decomposition glues so we also have g*s =
t*w for some section w € ¢g*kH (g *(f~1(V)). But this is by definition

what it means to be in the image of g*s € h.(¢*kH — AD) under the map
ho(g*kH — AD) — h,g*(kH) = f.(kH). Let us summarize:

Lemma 3.2.17. If D is a horizontal divisor, then
R(H,D) = Rora,(H).

If D is relatively H-dreamy then Rora, (H) is locally finitely generated as
an Oglt]-algebra.

Remark 3.2.18. Until the day of writing this document, it is unknown to
the author if the conditions of D being relatively H-dreamy has a relation
with the property that D is horizontal. One might wonder, if D relatively
H-dreamy implies that D is Q-linearly equivalent to a horizontal divisor.

Lemma 3.2.19. If D s relatively H-dreamy, then for some ko big enough
R(koH, D)
is locally generated in degree 1 as an Oglt]-algebra.

Proof. This follows from the fact that the base B has a finite affine cover
Ui,i € {1,...,n} such that R(rH, D)|y is finitely generated. If R(rH, D)|y
is generated in degree d;, we know that the subalgebra R(d;rH, D)|y, is
generated in degree 1. The same is true upon replacing d; by md;, m € N.
Now, set ko = lem(r U{d;|i € {1,...,n}}), then

R(koH, D)|y,
is generated in degree 1 for all U;. O]
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Proposition 3.2.20. A horizontal and relatively H-dreamy divisor D in-
duces a fibration degeneration (X, H) isomorphic to the relative projective
spectrum

X = Projpxc(R(koH, D))

with ko some sufficiently large constant and H = Ox(1) = ¢*O(1), where
¢: X = Ppuc(@t hilg*koH — (D).
tez

Proof. By construction of a fibration degeneration, one picks kg > 0 such
that kgH is f-very ample. Since this is also true for even larger k, we can
ensure that R(koH, D) is locally generated in degree 1.

Then one has by the Rees construction [2.3.2] a projective bundle degen-
eration induced by the coherent sheaf

D(koH,D) = @t “(h).(g"koH — (D),

LeZ

That is, given by
Ppxc(D(koH, D)) = Projpxc(Sym(D(koH, D))).

By general considerations of the Rees construction the fibre over any
t#0is
Pp((h)«(g"koH)) = Pp(f(koH)),

since h,(g*koH) = f.(koH). Thus, X embeds in this fibre as

X = PTOjB(@ fi(kokH)),

k>0

and the C*-orbit is isomorphic to

orbe-(X) & Projpc-(EP fu(kokH)[t*").

k>0

X is obtained as the flat limit of the orbit inside Ppyc(D(koH, D)) — C.
Note that X" is uniquely determined as a closed subscheme by the diagram

orbe+(X) —2— Pyyc(D(koH, D)) 25 C

l/
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where ¢ is a closed immersion such that (py o) o ¢ is flat. But the scheme
})TOjBxc(7€(k0}],l)))

also extends orbc+(X) and local generation in degree 1 ensures that it em-
beds into Ppyxc(D(koH, D)), because of the surjections

S*(Ry(koH, D)) — Ri(koH, D) — 0
from Ry (koH, D) = D(koH, D). Moreover,

}DrojBX@(73(k0]J,17))

also restricts to orbc+(X) over C*, and it is flat over C[t] by the Rees
construction The C*-equivariance follows from [2.2.9]
[l

The remainder of this section will be dedicated to the proof of the fol-
lowing;:

Theorem 3.2.21. If D is a horizontal and relatively H-dreamy divisor,
then for any ample bundle L on B, D is a dreamy divisor for H + jf*L,
when j 1is sufficiently big.

We shall need a couple of lemmata along the way. First we recall the
setup:

DCY—>

\lf

g, f are proper, g birational and f is flat with connected fibres. That is
f«Ox = Op. H is moreover f-ample, and L is ample on B. In particular,
H + jf*L is ample for j sufficiently big (|Laz04] prop. 1.7.10).

Setting » = 1 in the relative dreamy condition, the statement of the
theorem is:

If
R(H,D) = PEPt ‘h.(kg"H — (D))

k>0 ¢>0

is locally finitely generated over Oplt], then for j > 0,

R(H +jf*L,D) = @PEPt ‘H(Y, (kg"(H + jf*L) — (D))

k>0 ¢>0

86



is finitely generated over C[t]. In the following, we denote

Ri(H, D) = @t "h.(kg"H — (D),

>0
so that R(H, D) = @, Ri(H, D).

Lemma 3.2.22. Let X be the induced test configuration from a relatively
H-dreamy divisor D, and denote the canonical map m: X — B x C, then
for all j, we have

(Projpxc(R(H, D)), 0(1) @ m*piL?) = (Projpxc(R(H + jf*L, D)), O(1)).

Proof. Then this is a consequence of the general theory [Harl0, 11, Lemma
7.9], which says that

(Projsx«c(R(H,D)),0()@n*piL?) = (Projp.c(@D Ri(H, D)@p; L), O(1))

k>0

and the following computation, where we write L = Og(F’) for some divisor.

Ri(H, D) @0, piL¥ = (@Dt~ h.(g"Ox (kH) ®0, Oy(—LD))) ®oy piLY

>0

~ Pt h.(g"Ox(kH) ®0, Oy(—LD)) ®0, L¥

>0

=~ D t~h.(g" Ox (kH) ©o, Oy (—£D) @0y (fy) LM)

>0

>~ Pt (g (Ox(kH) @0y f*L}) ®0, Oy(—LD))

>0

=Pt h(g"(Ox(k(H + jf*F))) ®o, Oy(—LD))
>0
— Ry(H + jf*L, D).
]

Lemma 3.2.23. For j > 0, there are embeddings making the following
diagram commute

Projpxc(R(H + jf*L,D)) ———— Ppuc(R:(H + jf*L, D))

| |

Projpxc(pspeR(H +jf*L, D)) — Ppxc(pip2sRa(H +jf*L, D))
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Proof. 1t suffices to show that the commutative diagram

0

[

PiposRe(H + jf*L, D) ————  Ry(H+ jf*L,D) —— 0

[

H+jf*L,D)) — S@BXC(Rl(HHf*L,D)) ——0

— T —o

—~

Sé)BXc (pSPQ*Rl

obtained by canonical maps and the sheaf morphisms yielding ¢ from Lemma
is exact, when j > 0.

Exactness of the second column follows by local generation in degree 1
of R(H + jf*L, D). Since L is ample on B, the sheaf m,O(1) = Ri(H +
jf*L, D), is generated by global sections when j > 0. Therefore, we have

ptpt.Ra(H + jf*L, D),

— T

psp2Ra(H + 5 f*L, D) » Ra(H +jf*L, D)

T

0

So, we have exactness of the bottom row:
Sk (pspeRa(H + jf*L, D)) = Sk _(Ri(H + jf*L, D)) = 0.

The first column is trivially exact in the case K = 1. The general case
follows since pip2.R(H + jf*L, D) is locally generated in degree 1, hence
one obtains a surjection from the symmetric powers. The top row is then
automatically exact.

O

Lemma 3.2.24. One has po, R(H + jf*L,D) = R(H + jf*L, D), i.e., it
is the sheaf associated to the module R(H + jf*L, D).

Proof. We have

P2R(H + jf*L, D) = po. (D Re(H + jf*L, D))

k>0

= @pZ*Rk(H +3jf°L, D).

k>0
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Thus it suffices to consider these C[t]-modules.

£>0

~ Pt H(Y, kg*(H + j f*L) — £D)
>0

—_——

The first isomorphism follows, since any quasi-coherent sheaf on an affine
variety is the sheaf associated to its global sections, and the global sections
[Har10, III, prop. 8.5] are

HY(BXC, @t h.(kg* (H+jf*L)—LD)) = @t "H(Y, kg"(H+jf*L)—(D),

£>0 >0

from which the claim follows, since the sheaf associated to a module is
compatible with the direct sum. O

Proof. (Theorem [3.2.21)) From these lemmata, we see by the base change
property of pullbacks, that

Projc(R(H + jf*L, D))

is finite dimensional, hence R(H + jf*L, D) is finitely generated and D is
dreamy with respect to H + jf*L for 7 > 0. Indeed, we have

Projpxc(pspex(R(H + jf*L, D))) = Projc(p2s(R(H + jf*L, D)) x¢c (B x C)
=~ Projc(R(H + jf*L,D)) x¢c (B x C)
=~ Projc((R(H +jf*L,D)) x B,

where C = Spec(CJt]), which by the same operations and the previous
lemma [3.2.24] then embeds into

Po(Ri(H + jf°L. D)) x B.
This space has to be finite dimensional as

Ry(H + f*L, D) = @t "H(Y, g"(H + jf*L) — {D)

el

is a finitely generated C[t]-module. O
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Filtrations of fibration degenerations

The aim of this seciton is to prove that when py o m: (X, H) — C is a
fibration degeneration associated to the data f: (X, H) — (B, L), then we
have an natural filtration of sheaves (A, k) — F3f.(kH), which is locally
finitely generated. Moreover, we want to prove that this filtration is induced
by a valuation, when (X', ) — C has irreducible central fibre.

Definition 3.2.25. A multiplicative filtration of sheaves (), k) — F*&,
of Op-modules is locally finitely generated, if the relative Rees algebra is
locally finitely generated.

We want to associate a filtration
(A, k) = FrfokH) C f.(kH)

of Op-submodules for any H f-ample with an associated fibration degener-
ation. For this, we aim to mimick the case over a point first used in [Wit12].
We have X = &) via some morphism ¢ and 0: X xC* — X'\ &; over BxC*
given by o(x,t) = p(t) - ¢(x), where p is the induced C*-action on X'. Note
o also induces C*-equivariant identification o,pikH = kH|x\x,. In particu-
lar, for any C*-invariant open subset of X'\ Xy, say 71 (U x C*) = (U xC*)
where U is affine, there is an equivariant isomorphism of sections

PrkH(f7H(U) x C) = oupikH((f~H(U) x C)) = pikH((x~'(U x C*))
= kH| a0 (7 (U x C))
= T (kH|x\x,) (U x C7).

Let us by abuse of notation call this isomorphism ¢ as well. There is a
natural morphism

§: [u(kRH)(U) — pikH(f71(U) x C7)
given by §(u,t) = s(u). Finally, we set s = ¢(§). This gives a map to the

invariant sections of 7, (kH|x\x,)(U x C). Indeed, denoting all actions by
p, we get

because the action on pfkH is given by multiplication on the C*-factor. We
are now ready to define the filtration.

90



Definition 3.2.26. Set
(A k) = FR(fu(kH)) » = {s € fu(kH )|t 5 € 7. (Oy(k))oxc}
and then define subsheaves by setting
U FafokH)YU) = {s € fu(kH)(U)|sy, € F . (kH)yVb € U}.

Here, ¢t acts by multiplication, which comes from the module structure
dictated by the morphism p; om: X — C.

Remark 3.2.27. We might as well have defined it over affines U C B, and
then glue the locally defined subsheaves. F3f.(kH) is indeed a sheaf of
Op-submodule, since if m € Op(U), then for s € Ff,(kH)(U)

tMNm5) =t frm-s)
=t f*ms
= f*mt™5 € 7, (0Ox(k))(U x C),
because f = p; om over U x C* and pjm naturally extends.

Lemma 3.2.28. If s1,...,s, are local generators for f.(kH) around b € B
such that s; € Fy f.(kH)y, then there is a neighbourhood b € U such that

o FRUN fu(kH)|u = fu(kH)|y
o Fperdtl g (LH)|y = 0.

Proof. Pick local generators si,...,s, for f.(kH),. We can assume there
is an open neighbourhood U, where s; € F* f,(kH)|y, so there is some
hiluxcs = t=5;. Let u = min;\;, then any s = > gis; satisfies

tHs=t# Z gzgz
= Z git s
= (Z gi(t# N hy)) e

Therefore, s € F*f.(kH)|y. Conversely, if s € F*f.(kH)|y, then the
extension h of 75 satisfies

tA_Hh|U><(c* =t"Hs

= Z git™"'s;

= (Z git "N h) e
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So, since extensions are uniquely determined, we have

A1 h = Z git "y,

h = Z gitAi_)\h’i)

which is only defined over ¢ = 0, when A < min; \;, where the minimum
is taken over all ¢ where g; # 0. Thus, taking A\ = max; A\; + 1, one has a
contradiction. O

hence

Proposition 3.2.29. For any fibration degeneration, the filtration of sub-
sheaves

(A k) = FRf.(kH)
1s decreasing and locally right and linearly left bounded.

Proof. We first show that we can bring ourselves in a position where [3.2.28
holds. Pick any ample line bundle L on the base B. Then, by Dervan-
Sektnan [3.1.4] we know that changing the polarization to (X, H + jm*L) for
j > 0 sufficiently big, gives an ample test configuration for (X, H + jf*L).
It follows that there is a filtration

(A k) —F HY (X, k(H 4 jf*L))
= {s € HYX,k(H + jf*L))|t7*5 € H*(X,k(Ox(1) + jn*L))},

which is linearly left and right bounded, say by a constant C' and \g respec-
tively [2.3.10} Fixing j big enough, we can assume that k(H + jn*L), k(H +
jf*L) is globally generated for all k. Hence, we have a surjection of sheaves

HY(X,k(H +jf*L)) — k(H+jf*L) — 0.

Restricting this morphism to an affine U C B trivializing L, we have that
the targets of the morphism is

K(H +5fL)(f 1 (U)) = fu(kH)(U).

In particular, any finite set of local generators s; € f.(kH)(U) are re-
strictions of sections §; € H°(B, f.(kH) + jkf*L). Since we have a filtra-
tion of these vector spaces, there are \; such that 3; € FY¥H(X, k(H +
jf*L)). It follows by definition of the filtration that $;|y = s; must be in
F f.(kH)(U). Therefore, by[3.2.28) the bounds of (A, k) + F3HO(X, k(H+
jf*L) are inherited by (\, k) — Fyf.(kH) near b. O
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The proof tells us that the optimal local bounds on the filtration are
smaller than the global bounds on the filtrations

(A k) = FAH (X, k(H + jf*L)),

where L can vary over the entire ample cone of B, and j is picked so that
H + jf*L is ample on X.

Lemma 3.2.30. The filtration associated to an integral fibration degen-
eration comes from a horizontal divisor, i.e., there is a horizontal divisor

D CY over X such that for all (X, k) we have

FyfukH) = F), f.(kH).

ordp

Proof. 1f (X, H) is a fibration degeneration with irreducible central fibre,
then the induced horizontal valuation vy, from [3.2.11] can be used to de-
scribe the filtration as

Fafo(kH)Y(U) = {s € f(kH)(U)|[t 5 € m,(kH)(U x C)}
= {s € fi(kH)(U)|vx,(5) = A}

Indeed, t = 0 gives an equation for Ay when A} is irreducible. Therefore,
we have vy, (5) > A, if, and only if, we can write 5y, = t*h and h €
kH(r 1 (UxC)) = 7, (kH)(U xC). Recall the equivariant map o: X xC* —
X\ Xy C &, which gives us an isomorphism of function fields K(X) =
K(X x C) = K(X)(t). In particular, since &p is a C*-invariant divisor
on X, it follows that vy, is also C*-invariant when considered on K (X)(t).
Therefore, by [2.3.15] we can write it as

UXo(f) = HEH<UX0|X(fM) + HUx, (t))7

where f =3, fut", f, € K(X). Now

U (5) = v, (0(3))
= U*_IUXO (5)
= 0, x| x(50)
= 0, v |x ().
Here we used that s + § is the invariant extension, hence § has weight

0 in K(X)(t) and one has 5, = s. If the test configuration is not trivial,
then the valuation o 'vy,|x is divisorial, so by theorem [3.2.10| there is a

93



divisor D c Y % X such that gsordp = o, "vx,|x. This divisor D has to
be horizontal by since o} vy, |x is horizontal by [3.2.11 and [3.2.8]
Thus we can write

FalkH)(U) = {s € f.(kH)|o, va,|x(s) > A}
= F2 o fo(kH).

rdp

Now, combining the results one can conclude:

Theorem 3.2.31. An integral fibration degeneration (X, H), for (X, H, B, f)
gives rise to a horizontal relatively H-dreamy divisor.

Proof. In view of the previous lemma, the only thing that remains to be
proven is that a locally linearly right and left bounded filtration of f,(kH)
is locally finitely generated. Indeed, then the induced horizontal divisor D
is relatively H-dreamy by definition.

If H is a relatively f-ample, then the algebra

D f.(kH)

is locally finitely generated. Then, considering the local bounds any element

Pt F f.(kH))

k>0 AeZ

can be written locally as

k}/

Z(t_)‘ Z Spa t+ Z t_/\gk,,\),

k=0 Ck>A>Xo A<Xo
which in turn can be written in terms of local generators mg,...,m, for
@kzo fo(kH) as

kl

Z( Z t’)‘Pk,,\(ml,...,mn)—l— Zt*’\Qk,A(ml,...,mn))

k=0 Ck>A<Xo A<Ao

for some polynomials with Og-coefficients. This sum then consists of finitely
many terms, so indeed, one has locally finite generation. O]

This completes the programme of characterizing the relevant subclass
of divisors/divisorial valuations that needs to be considered in relation to
fibration degenerations.

94



3.3 An asymptotic valuative invariant for
fibration degenerations

In analogy with the notion of stability for fibration degenerations obtained
in [DS21a|, we shall introduce an asymptotic expansion of the § invari-
ant, which gives a notion of stability for fibration degenerations. It follows
essentially by definition that this notion of valuative stability gives an ob-
struction to the stability of a fibration. Finally, we compute the invariant
for a class of examples.

Remark 3.3.1. Suppose one has a fibration degeneration 7: (X,H) — BxC
of (X, H, B, f) obtained by a relatively H-dreamy divisor D. Then, D is
H + jf*L dreamy for j > 0 for any ample L on B and (X, H + jn*piL) is
a test configuration for H + jf*L by lemma [3.1.4] of [DS21a]. By the work
of Dervan-Legendre |[DL22|, the Donaldson-Futaki invariants of these test
configurations can be computed as

Brjf1(D) = DF(X, H + jo"pi L)2(dim(X) — 1)L, (7)
but the Donaldson-Futaki invariant DF(X,H + jn*p; L) admits an expan-

sion in j by lemma [3.1.9] when j > 0, hence, By (D) admits such an
expansion as well of the same degree.

In the following, we set

Bea.ry(D)(j) := Buyjr(D),

so that when we think of it as a function or polynomial of j, we simply
write B¢y r). Hence, we can write

5(H,L)(D) = BO(D)jdim(B) + 51(D)jdim(B)—1 I
Definition 3.3.2. We say f: (X, H) — (B, L) is valuatively

o semistable, if for any relatively H-dreamy horizontal divisor D, we
have fy(D) > 0 and when y(D) = 0 then 51(D) > 0

e stable, if for any relatively H-dreamy horizontal divisor D, we have
Bo(D) > 0 and whenever it is zero, then (D) > 0.
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Proposition 3.3.3. If f: (X,H) — (B, L) is with K-semistable fibres,
then it is integrally fibrationally semistable, if, and only if, it s valuatively
semistable.

Proof. On one hand, a horizontal relatively H-dreamy divisor D gives rise
to a fibration degeneration (X, #H) with integral central fibre. On the other
hand, any (X', H) gives rise to a horizontal relatively H-dreamy divisor. In
both cases, the formula[7 holds by (J[DL22], prop. 3.9 and 3.15). Therefore,

up to multiplication by a positive constant the coefficients agree, so one has
Bo(D) = 2(dim(X) — DIWo(X, H),

and
f1(D) = 2(dim(X) — 1)W1 (X, H),

from which the claim follows. ]

Remark 3.3.4. The same argument also immediately gives that valuative
stability of the fibration implies integral fibration stability. The converse
then depends on whether f;(D) = 0 implies that the norm is 0. Since
valuative stability characterizes K-stability in the Fano case [Fujl9, main
thm. 1.4], there is hope to have a similar result in the case of Fano fibrations.
In general our valuative interpretation is only an obstruction to fibration
stability, so it seems important to develop more tools to characterize it. It
would be interesting to extend the obstruction to a more general setting as
in [BJ22|, [BHJ17|. This would require a non-Archimedean interpretation
of stability in the setting of fibrations.

Towards a stronger stability condition

In this section, we aim to make progress towards showing that the family
of B invariants By (D) is polynomial in j for any D horizontal, but
omitting the dreamy hypothesis. This enables us to extend the same val-
uative stability condition to a larger class of prime divisors. The terms in
the By ¢+ invariant, which are not a priori polynomial in j, are the terms
involving the integral of the volume and its derivative. In particular, the
interval over which one integrates (0, 7g4,f+1) depends on j. We show here
that in good circumstances when j is sufficiently large, then the interval
integrated over is fixed.
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Definition 3.3.5 (|[dFEM14} prop.1.6.33]). A Cartier divisor H € Pic(X)
is f-big for f: X — B projective, if, and only if, there are Cartier divisors
A, E on X and a constant d > 0 such that

e Ais f-ample,
o [ is f-effective, i.e. f,.Ox(E)#0
e dH=A+F.

In particular, f-ample divisors are f-big. When B is projective itself,
then the condition that E is f-effective can be restated as follows.

There exists an ample divisor C' on B and an effective divisor £’ on X
such that

E=E — fC.

Where C can be chosen to be a sufficiently big multiple of any ample bundle
on B. Thus, one can refine the decomposition in the definition of an f-big
divisor to be

H=A-f"C+FE,

where now all divisors are Q-divisors. Observe f-big divisors are f-effective:
in fact, the pushforward is supported fully on B. Conversely, if a divisor is
f-effective, then adding any small multiple of an f-ample divisor gives an
f-big divisor. Therefore, the cone of f-big divisors are the interior of the
cone of f-effective divisors.

Definition 3.3.6. Let f: X — B be a projective morphism. Then, the rel-
ative pseudoeffective threshold of a horizontal prime divisor D with respect
to an f-ample divisor H is the number

71 (D) =sup{t > 0|H — tD is f — big}
=sup{t > 0|H —tD is f — effective}
=inf{t > 0|f.(Ox(k(H —tD))) = 0,Vk € N}.

The fact that these descriptions are equivalent follows by the fact that
the f-big divisors are the interior of the f-effective divisors [dFEM14].

Remark 3.3.7. The relative pseudoeffective threshold is equal to the supre-
mum the pseudoeffective divisors restricted to the fibres. Indeed, if H|x, =
Hb, D|Xb = Db then

7u,(Ds) < (D)
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for all b € B. Since

{t > 0|f.(H —tD) = 0} = [ |{t > 0|f.(H — tD), # 0}

beB
C{t > O‘H()(Xb,Hb — tDb) 7£ O}

if supyep 7H,(Dy) < 7 (D), then one clearly has a contradiction, because

for any s such that supycy 7, (Dy) < s < 74,(D), there can be no sections

restricted to any fibres, yet f.(H — sD) # 0. Thus,

(D) = EEETHb(Db)-

Next, we show how the relative pseudoeffective threshold relates to the
asymptotic pseudoeffective threshold 741 (D).

Lemma 3.3.8. For a horizontal prime divisor D over f: (X, H) — (B, L),
we have
To (D) < 74 (D).

Proof. Let s € HY(X, H + jf*L — tD) be nonzero. Then, for U C B affine
s|f-1) cannot vanish everywhere. Therefore s|fj1 )y € fu(H + jf*L —
tD)(U) is nontrivial. By the push-pull formula

fo(H+jf*L—tD)(U) =(f(H —tD) + jL)(U)
~f.(H—tD)(U),

because jL(U) = Op(U). Hence, f.(H —tD) # 0 and so 7y4jp(D) <

(D). O

Next, we show that in fortunate circumstances, the bound from the
previous lemma is in fact achieved for j sufficiently big.

Proposition 3.3.9. If D is a horizontal prime divisor over f: (X, H) —
(B, L) such that f.(H — 75,(D)D) # 0, then there exists a jo(D) such that
for all j > jo one has
TH+‘ * (D) - Tf (D)
3L H

Proof. By definition one knows that for each t < T{I(D) there are A;, C;, E,
such that H —tD = A; — f*Cy + E; and

o A;is f-ample

e (, is ample on B
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o F, is effective on X

Since A; is f-ample, there is a j;(t) such that A; + jf*L, is ample when

J > j1(t) and since L is ample on B, there is a j3(t) such that —C} + jL is

ample on B when j > ji(t). Therefore, when j > ji(t) + j2(t) one has that
— f*Cy + 5 f*L is ample. For such j

is the sum of an ample divisor and an effective divisor. In particular, H +
Jf*L —tD is big. It follows that we have im; ,o Tp4jp (D) = TI];(D).
In order to achieve our result, we need to show that we can bound the
J1(t), j2(t) needed uniformly in ¢.

Write M; = H — tD. We supposed that f,(M_ f) # 0, which might not
be true in general. By the remark “ there is C s ample on B and FE .
effective on X such that

MTf = —f*CTf + ETf.
H H H
Then, for all s € [0, 1], we have

STH

:(1 — S)H — Sf*OTf =+ SETf.
H H

H is f-ample, so there is a j; such that for all j > j; H + jf*L is ample.
In particular,

(1—s)H+jf*L=01—s)(H+jf"L)+sjf"L

is ample too for s € [0,1), since it is the sum of an ample and nef divisor.
There is a j, such that jL — sC g = 0is effective when s € [0, 1] for j > js.

So, the pullback is effective too. Therefore for j > j1 + jo, one has that
H—STHD+jfL =M, f+jfL

is the sum of an ample and effective divisor whenever s € [0, 1), i.e., it is
big for all such s. Therefore, 7441 (D) > T{I(D), when 7 > j; + jo.
O

This shows that in good circumstances (ie., f,(H — 7{,(D)D) # 0),
the existence of a polynomial expansion for Spy (D) only depends on
whether the volume Vol(H + jf*L — tD) can be described piecewise poly-
nomially in j for ¢ € (0,74(D)).
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3.4 The case of projective bundles

In the following section, we compute the asymptotic § invariant up to sub-
leading order in the case when the fibration f: (X, H) — (B, L) is a projec-
tive bundle with n = dim(B). Write X = Pg(&) for some locally free sheaf
of Op-modules € of rank r, f for the canonical map, and H = Ox (1) for the
hyperplane bundle. We shall also fix an injection of 0 — F — £ of locally
free sheaves or equivalently a surjection £* — F* — 0 of locally free sheaves
such that F has rank r — s, giving rise to an embedding Pg(F) — Pp(E)
of projective bundles. Note, that unlike the previous sections we shall use
the convention

Ps(E) = Projp(S(£)),

so that projectivization of vector bundles becomes a covariant functor.
Moreover, we shall often supress the base B, as it is understood to be fixed.
This convention is standard when considering for example slope stability.

The main result of this section is the following, and the calculations
involved in its proof will take up substantial space.

Theorem 3.4.1. Let E be the exceptional divisor in the blow-up of X along
the subbundle Pg(F). Then, the B invariant of E with respect to H + jm* L
admits an expansion as

M(ner—l

F) =
B (B) = == ("0

) (1) — u(FNF™" + 0™

It is known that one can relate slope stability with fibrational stability
in this case (see |[DS21a] thm. 2.3.6 , which relies on [RT06b|). Here, we
pick an explicit divisor appearing on a dominating model for the projective
bundle, which realizes this correspondence. Moreover, it provides a first
example of asymptotic £ invariant calculations. Recall the notion of slope
stability of coherent sheaves (see [HL10]): Given a polarized variety (Y, L)
and a coherent sheaf G on Y. Then, G has slope

o . 7dim(Y)-1

By Riemann-Roch, this number corresponds to the subleading order term
in the monic expansion of the Euler characteristic X(Y,G ® L*) as k > 0.

Definition 3.4.2. Given an ample line bundle L on B, then a coherent
sheaf &€ is slope semistable with respect to L, if for each proper subsheaf
0 — F — & one has ur(F) < ur(€), it is slope stable, if the inequality is
always strict.
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Then, one has directly from the theorem above that

Corollary 3.4.3. Slope stability of £ with respect to L implies valuative sta-
bility of the fibration m: (Pg(E),O(1)) — (B, L) with respect to all divisors
appearing as blow-ups along subbundles. Conversely, valuative stability of
the fibration implies slope stability with respect to L of smooth subbundles.

The Chow ring of the Blow-up

In this section, we recall a description of the Chow-ring of the blowup of
P(F) in P(€) as described in [EH16| chapter 13. We write

e X =P(&)
o 7/ =P(F)
e m:Y =BlzX - Xand7=fornr

e D =nYZ) 2 Py(N) where N = Oz(1) ® f5(E/F) is the normal
bundle of Z in X.

Then, we have a diagram

DY

lﬂD .

Z 5 X,

where 7 is proper birational and 7p is projection to the zero section. This
gives maps between Chow groups

ju: A¥(D) — AMT(Y),

where A* denote codimension k varieties modulo rational equivalence. The
intersection ring A(Y") is generated by 7*A(X) and j.A(D) with multipli-
cation given by

ma - b = 7*(ab)

™ a - j.b = 7. (b 7hita)

Jsa - jub=—j.(a-b-hp).
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Here, hp is the first Chern class of the hyperplane bundle of D. Moreover,
one has an exact sequence which determines the relations among these
generators

*

0— A(Z) ST AX) @ AD) " AY) — 0. (8)

Here, ¢ is the map ¢(a) = —c;-1(Q) - mpa, where Q = 75,N/Op,(v)(—1)
is the universal quotient bundle for D.

In the calculations to follow, we shall need

Lemma 3.4.4. Let n = m*hy,e = j.(1) € AYY), where h represents
is the hyperplane class Ox(1). Then, the subring of A(Y) generated by
codimension 1-subvarieties is generated by classes

7 A(B)[n, €.

Moreover, one has the following relations between the generators

® o Cs—k(E/F)n—e)f =0
o X&) =0
o o (Cioa(PmT) =0,
where we have supressed pullbacks in the notation.

Proof. We know that AY(Y) = m*AY(X) @ (j.(1)) = 7AY(B) & (n) ® (€), so
these classes definitely generate the subring. The two last relations follow
from the well known descriptions [EH16| chapter 9]

r

A(X) = A(B)[hx]/(z ci(E) - h™")

r—S

A(Z) = AB)/(Y_ ei(F)hi ")

1=0
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by pulling back the relations to Y. Indeed,

=0
=) al@n™
=0
e (O el =) 7 (3 a(Fme)

=0 =0

= ]*W*D(Z Ci(.F)hZ_S_i)

=0
= 0,

since hy = 1*hx. For the last relation, note that we have

=3 (73 ) astermm,

§=0
on Z. Now, by the projectivized normal bundle description, one has

S

A(D) = A(Z) [hD]/(Z ci(N)hp").

0= Zj*(cz-(N) hiy )

- mez (75 estermm) niy

S

=S (S (75 ) e - 0iy)

i=0 §=0

- ii(_l)s_i (S _;- +j> Cij(E/F NP -

=Y o wl€/F)n—e),

where we used that

Ju(Wp) = Ju(hp - 1) = —ju(hp ') - ju(1) = -+ = (=1)")(1)" = (=1)*e".
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In the following, we shall make the change of generators

=1 —¢,

B =,
and the corresponding relations from the previous lemma
* > o cs—i(E/F)ak =0
e > (&)t =0
o (B-a) X ga(F)p ) =0

Calculations

We want to find explicitly the two leading terms in the asymptotic expansion
of

Bruif(D) =Ax(D)Vol(H + jf*L)

7;(D)
+(n+T—1)M(X,H+jf*L)/ Vol(H + f*L — tD)dt
0

(D) 4
+ / %VOZ(H + f*L —tD + SKx)dt,
0

for j very large. We do this simply by computing the terms individually for
j big. First, we note the following well known facts:

Lemma 3.4.5. When X is a smooth variety, Y = Blz(X) and Z is a
smooth subvariety of codimension s, then the canonical divisors are related

by
KY :W*Kx—f-(S—l)D

where D 1is the exceptional divisor.

Proof. This is a local compuation, so it follows by considering the blow-up
of C" along the ideal I = (z1, ..., z,). By definition, this is the subvariety

Bl (C™) = {(21, -y 2n), [1 1 .o 2] |mizy = 252 € C" P!

and the blow-up map is p;: Bl;(C") — C", so the exceptional divisor is
p; (V(I)). In any chart C" x{z; # 0} we have

BlI(C") NnCc" X{SEi % 0} = {(21, Ce ,Zn), (jlia .. .;i’(s_l)z-)|zj = QNZ‘jZ’Zi}
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where 7; = i—ﬂ Thus the exceptional divisor has equation z; = 0 here.
Pulling back a top degree volume form we have

pT(le VANREEIVAY dZn> == :td(.%MZl) VANRREIVAY d(i(s_l)zzz) VAN dZi A dZs+1 VAN dZn
= :EZf_ldi'li VANEERIVAY d.ﬁ%(sfl)i A\ dZZ A d28+1 VANRERIAN dZn

Here the sign only depends on the chosen chart. In either case, it implies
that 7*Kx = Ky — (s — 1) D hence the result.
O

From this it follows directly that the log discrepancy is
Ax(D) =ordp(Ky —m"Kx)+1=s. 9)
Lemma 3.4.6. The canonical bundle of X = Pg(E) is given by
Kx =—rO(1) + f*(Kp — det(£))
Proof. We have the short exact sequence

0— fQp = Qx = Qx/p—0

where {2y denotes the sheaf of Kahler differentials. From this it follows that
Kx = f"Kp+ Kx/B
Recall the relative Euler sequence |Har10} II, thm 8.13]
0= Qxp = (P Ox(-1) @ f1€ = Ox =0
i=1
from which it follows that

thus
Kx = —rO(1) + f*(Kp + det(£)).

O

In particular since ¢;(det(£)) = ¢;(F), one has for purposes of intersec-
tion number calculations the identity

KX =-—rH+ f*(KB + Cl(g))
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Lemma 3.4.7. There is a jo such that for all 7 > 7o, the pseudoeffective
threshold Ty jpr,(D) =1, in fact for all those j and x € [0,1), the bundle
H+jf*L —xD is ample, so the Seshadri constant egjpr,(D) =1 as well.

Proof. By [3.3.9 the pseudoeffective threshold

Tiajpr(D) = H(D), j>0.

Therefore, it suffices to analyze the condition on the fibres. By functoriality
of the blow-up, the fibre X, is blown up in Z,. le. X, = IP’TC_l and Z, =
Pr*~!. But

Blzb(Xb) C Xy X ng

shows that the ample cone of Blyz (X,) contains positive linear combina-
tions of pullback of the hyperplane sections hy, and hps. Moreover, in
AY(Blz,(X;)) we have that the exceptional divisor

Db = hXb — h]pé

|[EH16, cor. 9.12] where we have supressed the pullback. Since H|y, = hx,
it follows that for ¢ € [0,1) that

H|x, — tDy = (1 — t)hx, + thes

is ample. Therefore 7h4 -, > 1 and we see that it is less than 1 by
considering the volume for ¢ = 1.

VOZ(H|Xb — Db) :VOZ(h]p(s:)
=hj
C
=0.
[

Thus the integrals involved in the [ invariant are for j sufficiently big
over the unit interval, which we shall assume from now on.

The first term of 3 then expands polynomially in j as
Ax(D)Vol(H + jf*L) = s(H + jf*L)"*!
_ n+r—1 n pxrn pgr—1 n+r—1 n—1rn—-1 pgr
—s(( . )jfL H —l—(n_l )j L H")

+0(5"72).
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Next we calculate the slope

—Kx - (H+jf" L)

(H + jf'*L)nJrrfl
_ (rH = f*(ei(det(€)) + K)) - (H + f*L)"2
o (H 4 jf*L)n+r—1 ’

W(X,H +jf°L) =

Expanding this asymptotically in j gives

; r(r—1)
WX, H + f°L) = R
s n (f"‘L”_1 CH™ - f*(ei(det(E)) + Kp) - fL" - H™)
n—+r— 1 f*L'rL . Hr—l f*Ln . Hr—l
+037?).

Next we simplify the volume in the integrand. As we know by the lemma
3.4.7] we can assume H + jf*L — tD is ample as long as its big, hence we
can use intersection numbers to calculate the volume as a polynomial

Vol(H + jf*L —tD) =(f + ji*L — te)™*"~!
=(jA* L+ (1 —t)B + ta)" !
= (” e 1) JURCL (1 —1)8 + ta) !

n

N (n +r— 1) jn_l’fr*Ln_l . ((1 _ t)ﬂ + tCY)T + O(]n—2)

n—1

r—1
n

(7" ; 1) (1- t)ktr—l—kﬁkar—l—k)

k

+ (n +r— ]-) jn_l’fF*Ln_l X ( (;) (1 o t)ktr_k,ﬁkar_k)
0

n—1
k=

0

+0(")

where we used that ¢ = j,(1) = D. The next goal is to write the terms
above in the form A - 7!, where A € A™(B) since these give intersection
numbers computed on B.

Intersecting the relations [3.4] with #* L™ give

0=n"L"-a° (10)
0=r*L"- " (11)
ﬁ'*Ln ca- ﬂrfs :ﬁ_*Ln . ﬁr75+1. (12>
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These equations also hold if we replace 7*L"™ by any other element pulled
back from A™(B). In particular if V' is a bundle on B then

0=a*(L"" ¢ (V)) o (13)
0=7"(L"" (V) - B (14)
ﬁ_*(Ln—l . Cl(V)) Ca - ﬁr—s :ﬁ'*(Ln_l . 01<V)) . BT_S—H' (15)
Similarly, if we intersect the relations with #*L"~1, then we obtain

Lot =L (E)F) ot (16)
’f(*Ln_l . Br - _ ﬁ*Ln_l . Cl(‘g) X 57‘—1 (17)

,ﬁ_*Ln—l C - ﬁr—s :A*Ln—l . ﬁr—s—&—l 4 ﬁ_*Ln—l . cl(]:) . (67'—5 — - BT_S_I)'
(18)

Now, the leading order term in Vol(H + jf*L — tD) reduces to

r—1
AL (Z (T ; 1) (1 _ t)ktr_l_kﬁkafr_l_k)

k=0

ﬁ
H

r—= 1 r 1_ktk’f(*Ln . Br—l—k . CYk

w
Il
- o

I
VR

=
> |

w
Il
= o

r—= 1 r 1_ktk’f(*Ln . Br—l

1) . r 1_ktk’f(*Ln . Br—l—k . CYk

£
I
o

=f"L"- " 1(}; (T & 1) (L —t) ' Feh).

Here, we first used equation [I0]and then equation [I2] which applies exactly
when k£ < s — 1, since then r — 1 — k > r — s. Computing the subleading
order term, we first note that equation [16| applied twice yields

T S

L (Y (2) (1—t) ka5 kaky = 7L (Y <;;) (1—t)"Fthgrhak),

k=0 k=0
Indeed, when k > s+ 1, then

7%*Lnfl . Oék . /Brfk — 7i_*(Lnfl . Cl<5/f>) . akfl . ﬁrfk
*(Ln—l . 01(5/]_—)2) . ak;—Q . Br—k‘
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because 7*(L""t - ¢ (E/F)?*) € #*A"T(B) = 0. When k < s, then one
obtains by equation [I§ and [12] that

T N L L oy e L0 B e
AL BT R L e (F) - (BT — afT ) skt gk
AL QR grkEL g pnl e (F) L bl gk
L (F) ok gkt
=Ll bl grektl L pe =l (F) L ghl L gk
L e (F) okl g
—RF [l gkl gk
e a4
=7 L" e (8)- 870

The last two equation follow by [I2)and [I7]respectively. The final term k = s
gives by [I6 and repeated use of [15]

’ﬁ'*Ln_l . ﬁr—s ot = — ﬁ_*Ln—l . 01(5/]_-) . as—l . 57‘—5
- _ ﬁ,*Lnfl . C1<S/.F) . Oé572 . /87‘784»1
= — 7L e (E)F)- BN

In conclusion, the subleading order term of the volume is

P (i (};) (1 — )Rtk gr—Fak) = — (Z) (1 —t) 7" (L - ey (E)F) - 7Y

k=0

. Z <]:> (1 _ t)r—ktk,ﬁ_*(Ln—l . 61(5)) . Br—l
b=

Z) (1 - t)r_stsﬁ'*([/n_l . Cl(f) . Br—l)

o <]7;) (1 o t)rfktk,ﬁ_*<Ln71 . Cl(g)) . ﬁrfli

Thus, expanding the integral of the volume as

/ VOl(H + jf'L — D) = 10j" + ™ + O("2),
0

109



rl

n+r—1 lA* n r—1
vy = " L™ (1 —t)B+ta)"dt
0
n+r—1 L —[(r—1 r—l—kk
= n T L™ BT 1 (1—1) tr)dt
0 k=0
s—1 1
:<”+£_1) Fpn . gl (7“21)/@ ) Rk
k=0 0
s—1
N+7r—1\ csrn orelesrn  or r—1\ (r—1—Fk)k!
:< . )wLﬁleﬁl(Z<k>( )
k=0
s—1
— 1
:<7”L+77/; 1)ﬁ*Ln'6T_IZ_
=0
:§<n+£_1) ﬁ_*Ln /BT_17
,
and
-1 1
m:("” )/ AL (1= 0B+ ta) dt
n—1 0

eSS a0

(B O e e

n+r—1 1 Ax/Tn—1 r—1 - 1
1

—_

k=0

n+r—1 s+1
— ~ sk Ln—l_ f Cpr—=1 2T ek
( n—1 )(7‘+17T( alf))-f T—|—17T

In the above, we have used the following identities

1 1p!
l—tatbdt:L
/0( ) (a+b+1)!
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r\ (r—k)E 1

k) (r+1)! 41
Next we aim to perform a similar reduction of the derivative of the volume
in the direction Kx. Recall that one has the formula

%VOZ(A +tB)|j=0 = n(A" B

and that the positive intersection product is the standard intersection prod-
uct when A is nef. Therefore, we have

d
—Vol(H +jf*L—tD+ sKx)|s=o
=n+7r—1)GT L+ (1 —t)B+ta)"" . Ky
—(n+r—1) (” +7’; - 2) FAL((1 =18 +ta) 2 1 Ky

n+r—2
n—1

+(n+r—1) (
+ 05" ?).

) FRLH (1 =) B + ta) It K x

Recall that 7" Kx = —rf + 7*(Kp + ¢1(€) by lemma so expanding
the leading term yields

FL"((1 = t)B +ta) *r*Kx = —ra*L™((1 — t)3 + ta) 2B

r—2 r—2— r—k— AX TN
:—rz I )(1 t)yr R gl gk g
k=0
s—1
= —7r Z (T - 2) (1 _ t)T*Z*ktkﬁrfkflakﬁ_*Ln
k
k=0
s—1
— r—ls*xg1mn r—2 _ p\r—k—24k
=—rg ALY P EE

k=0

Here, we used that the base has dimension n, that the terms £ > s vanish
by [10] and then applying [12| repeatedly for k < s. For the second term, one
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has

r—1
’ﬁ'*Ln_l((]_ . t)ﬁ + tO{)T_lﬂ-*KX _ TZ <T ; 1> (1 o t)T_l_ktkﬁT_kO{kﬁ'*Ln_l
— (r—1
- r—1—kyk or—1-k k~x/7n—1
+Z( B )(1—t) a1k kg (LK)

r—1 r=1—kyk gr—1—kJoax -1
+Z( R (L (E).
The three terms in the sum are handled by using the following relations,

which all follow from the equations 16}, [17] and [18]

>
ﬁ_*(Ln—l X KB)BT—l—k k _ ? k Z S
AL Kp) B k<

0 k>s
~ % Lnfl . £ r—1-k k _ -
R {fr*(L”_l ()BT k<
0 k>s
L bR = SR (L e (E)F))BT k=

—a* (L (€))7 k<s.
Using these, we get

LN (1= )8+ ta) ' K ( 1) Jr1-sgoe (€ ) F)it Ll grt
”S ( ) — TR - ()8

=

o

- (7“ ) 1) (1= )07 (er (€ ) F) LB

+ (r o 1) i (7‘ ; 1) (1 . t)r_l_ktkﬁ'*(Ln_l . Cl(g»ﬁr_l

k=0

s—1
+ ﬁ_*(Ln—l . KB)BT—I Z (7’ ; 1) (1 . t)r—l—ktk

k=0
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So, we have the first two coefficients in the expansion

d
GoVOUH 4 J*L—tD 4 sKx)|umo = "wo + 5" wn + O("2).

These are

and

n+r—2

““:(““—1)( n-1 >[r (7";1) N NIRRT

+(r—1) Y (r ; 1) (1 — )" Mrae (Lt - e (€))7

k

+ 7i_*(Lnfl . KB)Brfl Z_: (T ; 1) (1 . t)rflfktk:}

k=0
+r—1 -1 ~ % n— r— r—1—sys
:ﬁ(”nil )(rs )w(q(smL N1 — )
+ _1 s—1 1
+r(r+1) (”nil )fr*(cl(ﬁ’)Lnl)ﬁTl (T . )(1—t)”1’“tk
k=0
n+r—1 = r—1
- Ax T N— r— - r—1-k ik
+r( M >7rL 'Kpp 1;( ) )(1—15) L=k,

Here, we used the idenitities

(ntr—1) (n+r—2) _(r—1) (n—l—?“—l)
n n
n+r—2 n+r—1
(n+r—1)( "1 )—r( n— 1 )
We want to integrate the asymptotic expansion, so by using we get
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0 S
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e R [
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+jr<n—1)LKBZO<k a1

r
k=0

+ jnil’f’Q (n +7r— 1> 7?*([/”101(5/?))51"1%

n—1
n+r—1 i1
O R G EXVROIEE) St
k=0

n—1

:—jnTS (n—f_;;_]-) A*Lnﬁr 1+]n 1 ( n+r-— 1> ﬁ_*(Lnflcl(g/F))ﬁrfl

n —

] e e ] UM XUV e
+0(").

s—1
‘n— n+r—1 A% (T N— r— 1
" 1r< )w(L 13 L
k=0

<

Using the fact that #*(A) - 87! = A as numbers when A is a top
intersection number on B, we can summarize the calculations above as
follows:
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Proposition 3.4.8.

1
/ Vol(H + jf*L —tD)dt = Voj™ + V13" 1 4+ O(5"?)
0

/01 Vol(H + jf*L —tD)dt = Woj™ + W™t + O(j"?),
where
V, = (n+r—1) 5rn
n r
= (" Ziz 1) (H%L"_lcl(}") — ﬂLn_lCl(“-::))

r+1
Wy =— (n—l—;;—l) srL"

Wﬁ:(nZizl)Wq@ﬁﬂLm4+s@—1kﬂ&L”4+sKﬂW*)

To finish up the computations needed for theorem we simply need
to put all these expressions together. Recall that

w(X, H+jf*L) = My+j M, +0(57?),

where

My — r(r—1)
n+r—1
Mo (f*L”_l -H" (a(det(€)) + K5) - L"‘l)
g1 L L"
_n L e (E)  (cr(det(€)) + Kp) - L1
ST L a L )
n Kgp N Ml
 on4r-—1 L»
- " (B, Kp).
n+r—1'u( B

Here we used that we have equation[17giving 7*(f* L1 H") = #*(L" 11 (€))7,
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which gives f*L" 'H" = f*(L"" !¢, (€))H" . Writing

Vol(H + f*L) = Noj™ + N1j" ' + O(j"7?),
+r— 1 *xTn
Ny = (” :; )f L
N, = <n;tr_1) Hrf*Ln—l

_ (n—l—r—l) cl(S)f*L”_l,

we know that the asymptotic expansion of the § invariant is

Bu.r = Boj" + Bi" Tt + 03" )

with

ﬁo :Ax<D)N0 + (n +7r— 1)M0‘/0 + WO
ﬁl :Ax(D)Nl —|— (TL —|— T — 1)(M0‘/1 + Ml‘/()) + Wl.

Therefore, we have

n r

—(s+s(r —1) — sr) <”+;; - 1) L
0.

Bo =s (n—l—g—l) L"+r(r—1) (n+7"—1> fL”— <n+£—1) srL™

Performing the same calculations with n = dim(B) = 0, one may prove
that the exceptional divisor D of a blow up of projective space in a linear
subspace gives beta invariant 0, corresponding to a product test configu-
ration. Hence, the fibrewise statement holds and the fact that the leading
coefficient is 0 is thus given by proposition [3.1.12]
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Similarly, we compute

Bi=—s <n:iz 1) ()L +r(r—1) (nZiI 1) (FllL”_lcl(}")

1 _
_ S + Ln—lcl(g)) —i—n,u(B,KB) (n—i—r ].) an

r+1 n r
+ (n :i; 1) (rcl(S/f)L”_l +s(r—1D)e (&)L + sKpL™™t)

= (") e R st - e

+ (T(;Jll) —7)er (F)L"

- (” - 1) i ea

2r(r—s) (n4+r—1\ (ca(E)L" o (F)Lm
:7”—1——1(71—1>[ r  r—s )
S (T ) - )

In the calculation, we used that the terms involving K cancel, since

n n+r—1\ (n+r—1
r n “\n—-1 )7

This finishes the computation and the proof of theorem [3.4.1]
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