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Abstract

In Paper A we consider the real reductive Lie group SL(2,R) and its subgroup H consisting
of diagonal matrices. The homogeneous space G/H can be identified with the one-sheeted
hyperboloid. For y a "trivial" unitary character of H we decompose the induced representations
Ind%(x), by using the known spectral theory for the Casimir operator A. We obtain an explicit
Plancherel formula by studying intertwining operators between Ind%(x) and principal series
representations of SL(2,R). We then generalize the result to all unitary characters x of H, by
constructing an explicit isomorphism. From here we obtain the general Plancherel formula and
we derive the corresponding direct integral decomposition of Ind% ().

In Paper B we study tensor products of unitary irreducible representations of G = PGL(2, R)
and their restriction the the diagonal subgroup A(G). We study the corresponding branching
problem by studying symmetry breaking operators and give a detailed description of their mero-
morphic nature. We derive Bernstein-Sato relations which allows for a holomorphic extension of
the symmetry breaking operators, in the sense of distribution theory. We investigate the result-
ing families of zeroes and functional equations, by evaluating on lowest K-types for G x G. Using
the detailed description of symmetry breaking operators, we reduce the problem of decomposing
the restriction tensor products of unitarily induced principal series representations of G x G,
to A(G), to the study of the Plancherel formula on the open dense orbit O = G/GL(1,R).
By applying the results in Paper A, we derive the Plancherel formula on L?(O, ), for unitary
characters x of GL(1,R), and in turn achieve the decomposition of tensor products of unitarily
induced principal series representations of G. From the holomorphic dependence of the family
of bilinear pairings on principal series representations, of G x GG, we extend this result to non-
unitarily induced principal series representations, by means of an analytic continuation process.
With some minor technical assumptions we solve the full branching problem for the strongly
spherical pair (G x G, A(G)).

Lastly, in Paper C, we investigate the invariant inner product on discrete series represen-
tations of the group SOy(4,1) by studying the Fourier-transform on principal series represen-
tations, in the non-compact picture. We derive a formula for the invariant inner-product by
studying the action of the nilradical N in the Fourier transformed picture. The correspond-
ing invariant inner-product is described in terms of a multiplication operator acting on the
eigenspaces of an operator, appearing from the action of Lie algebra of M = SO(3).
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Resumé

Afhandlingen bestar af tre manuskripter Paper A, Paper B og Paper C.

I Paper A betragter vi den reelle reduktive Lie-gruppe SL(2,R) og dens undergruppe H,
der bestar af diagonalmatricer. Det homogene rum G/H kan identificeres med hyperboloiden
med en enkelt flade. For y en "triviel" uniteer karakter af H dekomponerer vi rummet af induc-
erede repraesentationer Ind%(x) ved hjzlp af den kendte spektralteori for Casimir-operatoren
A. Vi opnar en eksplicit Plancherel-formel ved at studere intertwining operatorer mellem
Indf](x) og principale rsekke-repraesentationer af SL(2,R). Derefter generaliserer vi resultatet
til alle uniteere karakterer y af H ved at konstruere en eksplicit isomorfi. Herfra opnar vi
den generelle Plancherel-formel, og vi udleder den tilsvarende direkte integral dekomposition af
rummet Ind% (x).

I Paper B studerer vi tensorprodukter af uniteere irreducible repraesentationer af G =
PGL(2,R) og deres restriktion til diagonal-undergruppen A(G). Vi studerer det tilhgrende
branching problem gennem symmetry breaking operatorer og giver en detaljeret beskrivelse af
deres meromorfe natur. Vi udleder Bernstein-Sato-relationer, som tillader en holomorf udvidelse
af symmetry breaking operatorene i distributions-teoriens perspektiv. Vi undersgger familien
af nulpunkter for disse og udleder funktionalligninger ved at evaluere pa laveste K-typer for
G x (. Fra den detaljerede beskrivelse af familien af symmetry breaking operatorer, reducerer
vi problemet at dekomponere restriktionen af tensorprodukter af uniteert inducerede principale
rackke-repraesentationer af G x G til A(G), til studiet af Plancherel-formlen pa den abne teette
bane O = G/ GL(1,R). Ved hjelp af resultaterne i Paper A udleder vi Plancherel-formlen pa
L?(0,x) for unitzere karakterer af GL(1,R) og opnar dermed dekomponeringen af tensorpro-
dukter af uniteert inducerede principale serie-repraesentationer af G. Fra den holomorfe natur
af familien af bilinesere paringer pa principal raekke-representationer, udvider vi dette resultat
til principale reekke-repraesentationer, som ikke er uniteert inducerede, ved hjalp af en analytisk
fortseettelsesproces. Med nogle mindre tekniske antagelser lgser vi derved det fulde branching
problem for det strongly spherical par (G x G, A(G)).

I det afsluttende manuskript Paper C undersgger vi det invariante indre produkt pa diskrete
rackke-repraesentationer af gruppen SOq(4,1), ved at studere Fourier-transformen pa principale
raekke-repraesentationer, i det ikke-kompakte billede. Vi udleder en formel for det invariante
indre produkt ved at studere virkningen af nilradikalen IV, i det Fourier-transformerede billede.
Det tilhgrende invariante indre produkt beskrives i form af en multiplikationsoperator, der
virker pa egenrummene af en bestemt operator, som opstar fra virkningen af Lie-algebraen

for M = SO(3).
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ultimately T am happy with the results obtained.

The thesis consists of an introduction and 3 manuscripts

e Paper A: An explicit Plancherel formula for line bundles over the one-sheeted hyperboloid.
o Paper B: Tensor products of unitary irreducible representations of PGL(2, R).

o Paper C: A L?-model for discrete series representations of SOy(4,1).
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progress report for the qualifying examination. Furthermore parts of section 1.1 in Paper C was
used in a project that was part of some coursework completed during my PhD studies.

Paper B was originally meant to study tensor products of the group SL(2,R) instead of
PGL(2,R). But due to some unforeseen technical difficulty, we pivoted to the group PGL(2,R)
instead. The paper thus additionally contain some results for statements about tensor products
of representations of SL(2,R), and the general methods used in the paper are influenced by this
"detour".

The ideas presented in Paper C were developed during my stay at Chalmers university of
technology, where I visited Professor Genkai Zhang and Postdoctoral researcher Clemens Weiske.
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and references.
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Introduction

Let G be a group and H a subgroup. For a representation m of G its restriction to H naturally
defines a representation of H. If GG is a compact Lie group and = is a irreducible representation
of G then 7 is finite dimensional and its restriction to H need not be irreducible anymore. In
this case the restriction decomposes into irreducible representations of H

g = P mim, )T, m(m,7) € Np.
rel

Here H denotes the unitary dual of H, i.e the irreducible unitary representations of H up
to equivalence and m(m, ) denotes the multiplicity of 7 in 7|gz. The question of how such
irreducible representations of G, when restricted to H, decomposes as irreducible representations
of H is called a branching problem or branching law and solving it requires explicitly determining
the multiplicities m(m, 7). Branching laws for the classical compact groups O(n),U(n) and
Sp(n), and the respective subgroups O(n —1),U(n — 1) and Sp(n — 1), was studied by Weyl,
Murnaghan and Zhelobenko in the early 1930°s and early 1960’s. Later Kostant proved the
Kostant Multiplicity Formula, which provided a uniform method of proof for branching problems
in the compact setting. However if G is a real reductive non-compact Lie group, then the
irreducible representations of G need not be finite dimensional and such branching problems
may be ill-defined. But when 7 is unitary then its restriction to H instead admits a direct
integral decomposition

|y = /?169 m(m,7) - T dr(T)

with multiplicities m(m, 7) € No U {oo} and dy(7) some measure on H. In this case one can
study the branching problems. Understanding the corresponding branching problem boils down
to determining both the multiplicity function m(m,7) and the measure d.(7) explicitly. The
support of the measure d.(7) may both have a discrete and continuous part.

Kobayashi proposed a program for studying branching problems in [Kob15] for smooth ad-
missable representation of real reductive groups, consisting of three parts

Stage A Abstract features of 7|z.
Stage B Branching laws.
Stage C Construction of symmetry breaking operators.

With a symmetry breaking operator being a continuous H-homomorphism from the representa-
tion 7| to an irreducible representation 7 of H. In recent times Stage C has received growing

1



2 Introduction

amounts of attention (See e.g [KS15], [KS18], [Fra23], [Clel6], [Clel7] and [FW20]). However
most results that have been produced in this setting are for groups are of rank 1, and not until
recently has a systematical approach been applied to rank one groups (G, H), where the measure
dr(7) admits both discrete and continuous spectrum (See [Wei20] and [Wei2l]).

This thesis takes some steps toward applying the result outside the rank 1 cases, namely to
the case G = PGL(2,R) x PGL(2,R) and H is the diagonal subgroup of G. The thesis is split
into three Papers, Paper A, Paper A and Paper C.

Paper A concerns itself with the study of the Plancherel formula for the one-sheeted hyper-
boloid SL(2,R)/M A, with M A the subgroup of diagonal matrices in SL(2,R), and the corre-
sponding direct integral decomposition.

Paper B concerns itself with the branching problem for tensor products of irreducible unitary
representations of PGL(2,R) and the surrounding theory.

Lastly, Paper C concerns discrete series representations for the group SOg(4,1) and their
realizations as L?-spaces in the Fourier picture.

We now give a brief overview of some topics relevant to the papers.

Strongly spherical pairs of real reductive Lie groups

Let G be a real reductive Lie group and H be a reductive subgroup of . Unlike the case for
compact Lie groups, the multiplicities m(m, 7) need no longer be finite. A suitable condition for
the pair (G, H), in which the multiplicities are finite, was singled out by Kobayashi-Oshima in
[KO13]. Assuming that both groups are defined algebraically over R, then the corresponding
multiplicities m(7, 7) are finite for all smooth irreducible admissible representations 7 of G and
7 of H if and only if the pair (G, H) is strongly spherical, i.e if a minimal parabolic subgroup
Pg x Pg of G x H has an open orbit. Such reductive pairs were fully classified by Knop-
Krotz-Pecher-Schlittkrull in [KKPS19]. The case where G = PGL(2,R) x PGL(2,R) and H
the diagonal subgroup of G is an example of a strongly spherical pair and the corresponding
branching problem is equivalent to the branching problem for tensor products of representations
of PGL(2,R).

Symmetry breaking operators

Let (G, H) be a strongly spherical pair and m¢ , and 7,, be principal series representations of
G and H, induced from characters of minimal parabolic subgroups Pg and Py of G and H
respectively. The space of symmetry breaking operators

Homp (me A i, 7,0)

can be realized as distribution sections on G/Pg with specific Py equivariances. Under this
setup the symmetry breaking operators can be identified by their corresponding distribution
kernels, determined by their values on the Py orbits in G/Pg. The kernels are often given
as meromorphic families of distributions, in terms of the induction parameters, and can under
suitable conditions often be extended to a holomorphic family by means of normalization. For
the case where G = PGL(2,R) x PGL(2,R) and H = A(PGL(2,R)), the space of symmetry
breaking operators

Hompy (e ) @ mpulm, mew)
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is generically spanned by a single family of symmetry breaking operators

HOmH (7757)\ ® 7r777,U|H7 WC:V) = CAE\,/,L,V’

depending meromorphically on the induction parameters. This family of symmetry breaking
operators can then be normalized to a family depending holomorphically on the induction pa-
rameters.

Knapp—Stein intertwining operators and functional equations
for symmetry breaking operators

For a principal series representation m¢ y of a real reductive Lie group G the maps

Téu,])\ TTEN T Twg whs

o) = [ flgumdn
Nnw—1Nw
defines a meromorphic family of G intertwining operators, which can be extended to a holo-
morphic family by normalization. Here w denotes a representative of an element of the Weyl
group of G. For a principal series representation 7, of a real reductive subgroup H of G and
a symmetry breaking operator

A € Hompg (Tye,wr|H, Tyv)

the composition A o T¢"\ again defines a symmetry breaking operator

Ao Tgu’})\ S HOHlH(T('g’)JH, 7—777’/)'

If A depends meromorphically on the induction parameters A and v, the composition again
defines a meromorphic family of symmetry breaking operators. When the space of symme-
try breaking operators is generically one dimensional, a functional equation necessarily exists.
Determining such functional identities can be difficult by means of direct computation, but
may instead be understood through evaluation on a sufficiently nice choice of vector ¢ € m¢ .
Such functional identities can also be used to investigate the holomorphic extension of sym-
metry breaking operators, for cases of potential "over normalization', i.e determine for which
parameters £,m, A and v the corresponding symmetry breaking operator is zero, for the chosen
normalization. The Knapp-Stein intertwiners also play an essential role in the unitarization
of non-unitarily induced principal series representations and unitarizable composition factors.
Such representations are typically unitarized by equipping them with their canonical K-pairing,
and then composing with a Knapp—Stein intertwiner in a single argument. In this picture one
gets a family, depending holomorphically on the induction parameters, of bilinear pairings that
unitarize the unitarizable principal series representations, at the corresponding induction pa-
rameters.
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Plancherel formulas and symmetry breaking

For a strongly spherical pair (G, H) for which Py acts with a unique open orbit on G/Pg, the
subgroup H also acts with an open orbit O on G/Pg;. Picking a basepoint xy € O one can
consider the restriction of a principal series representation m¢  to the open orbit O, by letting
H act on the basepoint xg. This induces a natural H-intertwining map

O, : 7T§7)\’H — COO(H XHaco X)
to the smooth section of some homogeneous vector bundle
H XHmO VX|Hm0 — H/on-

This map can be understood to depend holomorphically on the parameter A. If ¢ ) is a unitarily
induced principal series representation and C'*°(H x Ha, x) has unitary closure L?(H x Hay X), then
O, extends to a unitary isomorphism between Hilbert spaces. In this case the decomposition
of the unitary principal series representation reduces to the study of the Plancherel formula
on the corresponding L?-sections, for the associated homogeneous vector bundle. In the case
where G = PGL(2,R) x PGL(2,R) and H = A(PGL(2,R)) the corresponding open orbit is
O = PGL(2,R)/GL(1,R) and the homogeneous H space to study becomes the one-sheeted
hyperboloid. We study this in detail in Paper A and give the explicit Plancherel formula and
the corresponding direct integral decomposition. In Paper B we study how the Plancherel
formula extends to principal series representations which are not unitarily induced, by means of
analytic continuation.

A brief summary of results

In Paper A we study the Plancherel formula on the one-sheeted hyperboloid SL(2,R)/M A with

M A being the subgroup of SL(2,R) consisting of diagonal matrices. We do so by studying the
action of the Casimir operator A, on the space Ind%ﬁf’R)(e ®1). Using the known spectral the-
ory for the Casimir operator, in some well chosen coordinates on G/H, we derive the Plancherel

formula for Indﬁ}f’R) (e ® 1), written in terms of SL(2,R) intertwining operators

A ndyCP e o1) - Indy G e @et @1),

between the induced representations Ind]SVI;f’R) (¢ ® 1) and the principal series representations
Ind?\;f]’\,R) (e®et®1), of SL(2,R). We then show that Ind%ﬁf’R) (e®1) = Ind%ﬁf’R) (e @ e*) for

all unitary characters ¢ ® e* of H, by constructing an explicit isometry. Using this we obtain
the general Plancherel formula on Ind]SVi(f’R) (e®e) and derive the corresponding direct integral

decomposition of Ind?};f’R)(e ® €), in terms of unitary irreducible representations of SL(2, R).

Paper B is about decomposing tensor products of unitary irreducible representations of
G = PGL(2,R). We study symmetry breaking operators Ai .. for the strongly spherical pair
(G x G,A(G)) via their corresponding distributional kernels, investigating their meromorphic
nature, Bernstein—Sato identities and resulting holomorphic extensions. We derive functional
equations for their composition with Knapp—Stein intertwining operators by studying the asso-
ciated invariant trilinear forms on S* x S' x S, of the symmetry breaking operators A3 v This
allows us to give a detailed description of most zeroes of the holomorphic family of symmetry
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breaking operators. We obtain direct integral decompositions of the restriction of tensor prod-
ucts of unitary irreducible representations of G x G. Excluding some minor technical details,
we thus describe the full branching law for the pair (G x G, A(G)).

In Paper C we investigate the invariant inner product on discrete series representations of
G = SOy(4,1), realized as quotients inside principal series representations of G, by studying
the Fourier-transform of the principal series representations in the non-compact picture. We
investigate the action of the nilradical N in this framework and derive an explicit formula for
the G invariant sesquilinear form on the discrete series. We thus obtain a L2-model for all
discrete series representations of G = S0q(4,1).

Outlook

In Paper B we examine the theory of symmetry breaking operators for tensor products of prin-
cipal series representations for PGL(2,R) by first studying the problem for SL(2,RR). Hence it
would be natural to use this theory to give a uniform proof for the branching laws found by
Repka in [Rep78]. This is however a tricky endeavour, as the framework used for the proof is
not necessarily well suited to handle the holomorphic and anti-holomorphic discrete series repre-
sentations of SL(2,R). We also make some minor technical assumptions in order to achieve the
full branching laws for tensor products of PGL(2,R). Absolving these assumptions is of course
a natural place to start, for further research. The methods used in Paper B are in principal
also suited for vector valued principal series representations. Hence it would be interesting to
attempt to apply the methods used in Paper B to study branching laws for certain representa-
tions of e.g SO(4,1). This may prove to be too technical in practice though, since the analysis
required in Paper B is already quite challenging.

The results of Paper C potentially allow for the study of branching laws for tensor products of
discrete series representations of SOg(4,1). L?-models for complementary series representations
of rank 1 groups was used by Zhang in [Zhal7] to study discrete components appearing in the
tensor product of complementary series representations, for SOp(n,1).

Similarly Mollers and Oshima studied branching laws for all unitary representations con-
tained in spherical principal series representations of O(1,n + 1), restricted to the subgroup
O(1,m + 1) x O(n —m), in [MO15]. If one can find a suitable generalization of the methods
used in Paper C to all rank 1 indefinite orthogonal groups SO(n, 1), one could in principle find
L2-models for all discrete series representations of SO(n, 1) and in turn study the corresponding
branching laws by using similar methods to those used in either [Zhal7] or [MO15].






References

[Cle16]

[Clel7]

[Fra23]

[FW20]

[KKPS19]

[KO13]

[Kob15]

[KS15]

[KS18]

[MO15]

[Rep78]

[Wei20]

Jean-Louis Clerc. Singular conformally invariant trilinear forms, i the multiplicity
one theorem. Transformation Groups, 21(3):619-652, Sep 2016.

Jean-Louis Clerc. Singular conformally invariant trilinear forms, ii the higher multi-
plicity case. Transformation Groups, 22(3):651-706, Sep 2017.

Jan Frahm. Symmetry breaking operators for strongly spherical reductive pairs.
Publications of the Research Institute for Mathematical Sciences, 59(2), 2023. 57

pages.

Jan Frahm and Clemens Weiske. Symmetry breaking operators for real reductive
groups of rank one. Journal of Functional Analysis, 279(5):108568, Sep 2020.

Friedrich Knop, Bernhard KrOtz, Tobias Pecher, and Henrik Schlichtkrull. Classi-
fication of reductive real spherical pairs i. the simple case. Transformation Groups,
24(1):67-114, Mar 2019.

Toshiyuki Kobayashi and Toshio Oshima. Finite multiplicity theorems for induction
and restriction. Advances in Mathematics, 248:921-944, nov 2013.

Toshiyuki Kobayashi. A program for branching problems in the representation theory
of real reductive groups, pages 277-322. Springer International Publishing, Cham,
2015.

Toshiyuki Kobayashi and Birgit Speh. Symmetry breaking for representations of rank
one orthogonal groups. Memoirs of the American Mathematical Society, 238(1126):0—
0, nov 2015.

Toshiyuki Kobayashi and Birgit Speh. Symmetry Breaking for Representations of
Rank One Orthogonal Groups II. Springer Singapore, 2018.

Jan Mollers and Yoshiki Oshima. Restriction of most degenerate representations
of O(1,n) with respect to symmetric pairs. Journal of Mathematical Sciences-the
University of Tokyo, 22, 2015.

Joe Repka. Tensor products of unitary representations of SL(2,R). American Journal
of Mathematics, 100(4):747-774, 1978.

Clemens Weiske. Branching laws for representations of real reductive groups of rank
one. PhD thesis, 2020.



i References

[Wei2l]  Clemens Weiske. Branching of unitary O(1,n + 1)-representations with non-trivial
(g, K)-cohomology. 2021.

[Zhal7]  GenKai Zhang. Tensor products of complementary series of rank one lie groups.
Science China Mathematics, 60(11):2337-2348, Nov 2017.



Paper A

An explicit Plancherel formula for
line bundles over the one-sheeted
hyperboloid

Frederik Bang—Jensen and Jonathan Ditlevsen

Abstract

In this paper we consider G = SL(2,R) and H the subgroup of diagonal matrices. Then
X = G/H is a unimodular homogeneous space which can be identified with the one-sheeted
hyperboloid. For each unitary character x of H we decompose the induced representations
Ind% () into irreducible unitary representations, known as a Plancherel formula. This is done
by studying explicit intertwining operators between Indg (x) and principal series representations
of G. These operators depends holomorphically on the induction parameters.

Introduction

The Plancherel formula for a unimodular homogeneous space X = G/H of a Lie group G
describes the decomposition of the left-regular representation of G on L?(X) into irreducible
unitary representations. More generally, one can ask for the decomposition of L?(G x g Vy), the
L2-sections of a homogeneous vector bundle associated with a unitary representation (X, Vy) of
H. In representation theoretic language, this corresponds to the induced representation Indg(x)
of G, and for the trivial representation x = 1 we recover L?(G/H).

By abstract theory, the unitary representation Indg(x) decomposes into a direct integral of
irreducible unitary representations of G, i.e. there exists a measure y on the unitary dual G of
G and a multiplicity function m : G — NU {oc} such that

®
Ind$(x) ~ /5 m(m) - 7 du(r).
An abstract Plancherel formula describes the support of the Plancherel measure u as well as the
multiplicity function m. Such abstract Plancherel formulas have been established for certain
classes of homogeneous spaces such as semisimple symmetric spaces (see e.g. [B05]).

However, for some applications an abstract Plancherel formula is not sufficient, and a more
explicit version is needed (see e.g. [FW, W21]). By this, we mean an explicit formula for the
measure /4 as well as explicit linearly independent intertwining operators A ; : Indg (x)>° — 7,
j=1,...,m(x), for p-almost every 7 € G such that

m(m)

o = [ O Mnid2dutr)  (F € mdG00%)
j=1

9



10 Paper A

Such an explicit Plancherel formula is for instance known for Riemannian symmetric spaces
X = G/K, where the Plancherel measure p is explicitly given in terms of Harish-Chandra’s c-
function and the intertwining operators A, ; can be described in terms of spherical functions (see
e.g. [HO8], and also [S94] for the case of line bundles over Hermitian symmetric spaces). This
explicit Plancherel formula has recently been applied in the context of branching problems for
unitary representations where the explicit Plancherel measure and in particular its singularities
play a crucial role (see e.g. [F'W, W21]). In order to apply the same strategy to other branching
problems, explicit Plancherel formulas are needed for more general homogeneous spaces.

In this paper, we determine the explicit Plancherel formula for line bundles over the one-
sheeted hyperboloid X = G/H, where G = SL(2,R) and H the subgroup of diagonal matrices.
This specific Plancherel formula has direct applications to branching problems for the pairs
(SL(2,R) x SL(2,R), diag(SL(2,R)) and (GL(3,R), GL(2,R)). The homogeneous Hermitian line
bundles over X are parameterized by € € Z/27Z and \ € iR, the corresponding unitary character
of H being

Xen (3 ,ﬂ) — sl (¢ e RY).
We find intertwining operators Ai# :Ind%(xae) — IndG(e @ e @ 1), € = 0,1 between the line
bundles over X and the principal series representation (see Proposition 5.1).

Theorem 0.1 (See Corollary 7.6). For f € Ind%(xa:), A € iR and € € {0,1} we have

I£11* = /ZHA fH2 )‘2+ > el A LI, (0.1)

pnel—e—2N
. . 0 1
where Ay, and Ay, are some combinations of AA,M and A)W

The proof of (0.1) consists of two steps. First, we prove (0.1) in the case A = 0 separately for each
K-isotypic component. On a fixed K-isotypic component, the intertwining operators Ai’ , are
essentially Fourier—Jacobi transforms, and the Plancherel formula follows from the spectral de-
composition of the corresponding ordinary second order differential operator by Sturm—Liouville
theory. The main difficulty is that the continuous spectrum occurs with multiplicity two, while
the discrete part occurs with multiplicity-one, and it is non-trivial to find the right linear com-
bination of Ag and Allt that corresponds to a direct summand. In fact, this linear combination
is very different for the cases ¢ = 0 and € = 1. In the second step, we show that, as a represen-
tation of G, L*(G/H, L) is independent of ), and by finding an explicit unitary isomorphism
L*(G/H, L. ) — L*(G/H,L.) we deduce the claimed formula.

We remark that for ¢ = 0 and general A € iR the Plancherel formula was recently obtained
by Zhu [Z18]. Moreover, for ¢ = 0 and A\ = 0 our Plancherel formula can be viewed as a special
case of the one for pseudo-Riemannian real hyperbolic spaces O(p,q)/ O(p,q — 1) with p = 1
and ¢ = 2 which was obtained by Faraut [F'79], Rossmann [R78] and Strichartz [S73]. Note also
that the corresponding abstract Plancherel formula, i.e. the description of the representations
occurring in the direct integral decomposition, also follows from the general theory (see e.g.
[B05]).

Acknowledgements: We would like to thank our supervisor Jan Frahm for his help and input
on the topics of this paper.

Notation: N = {1,2,3...}, Ny = NU{0}. For A C R and b,c € R we denote by b+ cA =
{b+ ca|a € A}. The Pochhammer symbol is (z), = z(z + 1)---(z + n — 1). We denote Lie
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groups by Roman capitals and their corresponding Lie algebras by the corresponding Fraktur
lower cases. For m € Z we let [m]s € {0,1} be the remainder of m after division by 2.

1 The principal series of SL(2,R)

In this section we recall some results about the representation theory of SL(2, R) following [C20].
Let G = SL(2,R) and consider the following subgroups

M = {+I}, A:{(é t91> :tER>0}, N:{(é 3;) :xE]R},

then P = M AN is a minimal parabolic subgroup of G. Identify M = Z/2Z by mapping
e € Z/2Z to the character

M = {+1}, (j;l j?l)r—)(:l:l)g.

Further, we identify af = C by mapping A — A(diag(1,—1)). We can then observe that any
character of H := M A is of the form y.\ =e® e where

t 0
Xe (0 t_1> = [t = sgn( ), (e RY),

As the commutator subgroup of P is N the characters of P is of the form ¢ ® e ® 1 and these
characters are unitary exactly when A € iR.

Let € € Z/27Z and p € C. For any character € ® e ® 1 of P define the principal series
representation . ,induced by it to be the left regular representation of G' on

mdf(e@et @1) = {f € C™®(G) | flgman) = |t|-* 1 f(g),meE M,a € A, n¢c N},

where ma = (! t91 ) € M A. We introduce the notation

0
joo — [ €08 0 sinf
7\ —sind cosd)’
and (n(kg) = €. According to the theory of Fourier series we have the K-type decomposition

—

hdf(e®@e®1) = P Cén.
me27Z+e

We let Indg(e ® e* @ 1),, denote the set of functions contained in the K-type given by m € Z,
that is Ind%(e @ e* @ 1), = Cépn.
A basis of g is given by

Consider the Casimir operator
A, =dr(H)? +dn(E+ F)? —dn(E — F)?,

where ™ = 7, .
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Proposition 1.1 (See e.g. [C20, Prop. 10.7]). For f € Ind%(e ® e ® 1) we have

Auf= (M2 -1f.

Proposition 1.2 (See [C20, Prop. 10.8]). The representation Ind%(e ® e @ 1) is irreducible
except when p € 1 —e —27 . If p € 1 —e —2N then Ind% (e ® e @ 1) decomposes as Vo ® Vi @ Vs

where Vi is an irreducible representation containing exactly the K-types with |m| < —u. The

ds hol and 7.‘_ahol

e s a direct sum of two infinite dimensional representations w2, Py

quotient

Let wo = (Y §), a representative of the longest Weyl group element of G. Recall the definition
of the Knapp—Stein intertwining operator
TS df(e et ©1) - d(e@e 0 1), Tf(g) = F(%) /Nf(gwgﬁ)dﬁ,
for Re () > 0. The normalization is chosen such that T} extends holomorphically to p € C.
Proposition 1.3. For f € Ind%(e ® e ® 1),, we have
Tof = o () f,

where

1te—
m+|m\_[€]2( ; M)%

bin(p) = Vil (=1)72 — T
a (£

Fore =0 and u € 1 — 2N we have b2, (i) > 0 for all m € 2Z. Whereas for e = 1, m odd and
p € —2N we have —ibL (1) > 0 for m > 0 and bl (1) > 0 for m < 0.

Proof. As T maps K-types to K-types we have T} f = T/ f (e)f. Now decompose

wﬁ—k‘an—il v 1 v+l v Lo
ot Vita? \-1 @ 0 A=)l 1)

then applying f’s equivariance properties, we arrive at
A m=p—1 —m—pu—1 217“'71—27-”]?(/1)
- —|m[+1 +m|+1y’
NG Igll NE Igll )

where in the last equality we used Lemma A.1. Now dividing by F(“TJFE) and shuffling around

Gamma-factors we arrive at the result. O

For p € iR we equip the space Indg(fs ® e ® 1) with the usual L?-norm. Using Proposition 2
we can for e = 0 and p € 1 — 2N equip Ind%(0 ® e# ® 1) with the norm

1712 = | ST a.
Similarly for ¢ = 1 and p € —2N we can equip Ind%(1 ® e* ® 1) with the norm

1712 = [ fTEr(k)ak

where
Tlf: iTﬁf, for m > 0,
a —iTﬁf, for m <0
for f € Ind(1®e* ®1),,. The operator Tﬁ is still an intertwining operator as it vanishes on Vj

per Proposition 2 and thus we just altered it by a scalar on each of the summands in Proposition
1.



2. The homogeneous space G/H 13

2 The homogeneous space G/H

For a unitary character x.» =€ ® e with A € iR the left-regular action 7. of G on the space
of L?-sections associated to the line bundle G x j C.\» — G/H, given by

Indfj (e ® e!) = {f : G — C, measurable | f(gh) = x=a(h) "' f(9), /G/H |f(9)]?d(gH) < OO} ,

defines a unitary representation of G. The goal of this paper is to decompose this space. Fur-
thermore we consider the subspace of compactly supported smooth functions

CX-IndG (e @ e) = {f e C%(@)NInd% (e ® €*) | supp(f) C Q, QH is compact in G/H} .

We will denote the smooth vectors in Ind% (e @ e*) by Ind% (e ® e*)*. We introduce the notation
b coshu sinhu —_— 10
“ \sinhu coshu)’ " \z 1)°
Using the decomposition G = KBA, where B = {b, |u € R}, we consider G/H in the global
coordinates (0,u) € [0,7) x R where vH = kgb,H and the invariant measure is d(zH) =

cosh(2u)dudf, see e.g. [M84]. Now in terms of these coordinates we have the K-type decompo-
sition

CX-Indf(e@e) = P Cln @ CF(R) (2.1)
me22Z+e

with G (kg) = ™. We let Ind% (e ® ), denote the set of functions contained in the K-type
given by m € 2Z + ¢, that is Ind% (e ® €*),, = CGn @ C°(R).

We denote by Ay the Casimir operator for the representation Ind% (e ® e*) defined in a
similar fashion as for the principal series.

Proposition 2.1. Written in the coordinates (0,u) the Casimir operator Ay is given by

B A2 i tanh(2u)
 cosh?(2u) cosh(2u)

Op + 2tanh(2u)0, — oF + 02.

cosh?(2u)
Proof. This is a standard computation. O

Another set of coordinates can be obtained by using the Iwasawa decomposition G = K AN
with (0,y) € [0,7) x R where zH = kgnyH. The invariant measure is given by d(zH) = +dydf
see [K16, Chap. 5, §6].

3 Constructing an isomorphism

The goal of this section is to construct the explicit isomorphism in the following theorem, of
which the proof was in large presented to us by Jan Frahm.

Theorem 3.1. For v, A € iR the map

T} : Ind (e @ ) — IndG (e ® )
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given by

1 T (2+IZ;/\

'Y'; f(g) = - ()\y>) /R|$’%ilf(gﬁx) dx

Vm27a
defines a unitary isomorphism intertwining Ind% (e ® ) and Ind% (e @ e).

To this extent we consider the minimal parabolic subgroup P = NAM C G and let

Indj (e ®e) = {f : NAM — C| f(gma) = sgn(m)°a "' f(g), & 1f(9)?dg < oo} :

P/MA

A AX)

where a e fora =eX and \ € ag =

Lemma 3.2 (Induction in stages).

Ind§; 4 (e ® e*) ~ IndﬁAﬁ(Ind%ﬁN (e®eh)),
where the map is given by f — F where F(g)(p) = f(gp) and thus the inverse is given by
flg) = F(g)(1).

Proof. See e.g. [G12, Chapter VI, section 9] O

Proof of Theorem 3.1. We first show the isomorphism claim of Theorem 3.1. By Lemma 3.2 it
suffices to show that Ind}; (e ® €*) ~ Ind};4(c ® €¥). Let resty : Ind};4(e ® €*) — L*(N)
be the restriction from P to N. We let ® be the inverse map which is given by ®F (nam) =
sgn(m)fa *"'F(m). Let m. be the left regular representation on Ind};4(¢ ® e*) and define
Tz A(g) = restyy o . A (g) o . Then P acts on L?(N) via ., and the above statement reduces
to showing that 7.y = 7., for A, v € iR.

To construct an isomorphism H : L*(R) — L%*(R) intertwining #. , and #., we note that
the action of P = NAM on f € L?(N) is given by

TeaM)f() = f(n~'n') n,m €N,
e x(ma) f(7) = sgn(m)°a* f((ma) ' 7(ma)), me M, ac A, meN.

Identifying N ~ R, M ~ {41} and A ~ R~q, the above becomes

’ﬁ-E,)\(y)f(w) :f(x_y)v z,y ER,
Tex()f(x) = " f(#%2), xR, t € Ray.

Since N acts by translation any such intertwining operator H must be a translation invariant
operator on L?(R), hence there exists some tempered distribution u € &'(R) such that H is given

by convolution with u, that is HF(z) = (u, 7,F), where 7, F(y) = F(y — x) and F(2) = F(—z).
Furthermore let d;f denote the dilation of f by ¢t € R\ {0}, i.e. dif(x) = f(tzx), then

Ho#\(t)F(x) = #,(t) o HF(2).

Evaluating at = 0 then yields (d,—2u, F') = t*~**2(u, F'). Hence u is a homogeneous distribu-

tion of degree % and we conclude that

A—v—2

Hf = fx*|z|; ? for some 0 € {0,1}.
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Comparing with Lemma B.2 we see that these are both necessary and sufficient conditions for
H to establish an isomorphism between Ind%; (¢ ® ¢*) and Ind{; (¢ ® ¢). Putting § = 0,
composing with the map from Lemma 3.2 then yields the desired isomorphism. To see that the
normalization indeed makes '?'; unitary, it suffices to note that for A, € {R Lemma B.2 gives

4

\/7?25” r (ﬁ”)

! Feﬂ/wfmﬂ?JA):1.

4 Eigenfunctions for the Casimir operator

By Theorem 3.1 a Plancherel formula on Ind% (¢ ® e*) for some fixed A € iR can be extended
to all v € ‘R by compositon with the unitary isomorphism '?'; from Theorem 3.1. Following
this we will therefore mostly consider the cases of which A = 0, which often simplifies matters
considerably.

For f € Ind% (e ® €°),,, with f(kgby) = €™ - h(u), h € C2(R) we have

AOf = eim@Amh(u)’
for some differential operator A,,.

Lemma 4.1. Let h € C(R) and m € Z. Then we have
A cosh® (2u)h( — sinh?(2u)) = cosh’? (2u)T,,h( — sinh?(2u)).

For t = —sinh?(2u) the operator O, is given by
O = m(m +2) + 8(—1+ 3+ m) )% — 166 (1 - )%
m = T a2’

Proof. Follows directly from Proposition 2.1. O

Recall that a hypergeometric differential equation has the form

2

d d
Hl=t)25 +le—(a+b+ 1)t —ab=0.

If ¢ is not a non-positive integer there are two independent solutions (around ¢ = 0)
oFi(a,b;¢;t) and t1C9Fi(14+a—c,14+b—c;2—c;t),

expressed in terms of the hypergeometric function oFi(a,b;c;t).

We note that the eigenvalue problem [J,,f = (u? — 1)f is a hypergeometric differential
equation thus giving us two linearly independent solutions ¢;" and ¢ Using the notation from
appendix C we can express these solutions as

| Nl=

o (u) = ¢_i"* (u), ' (u) = isinh(u) - G (w),

where u € [0,00). Note that these functions allow for natural extensions from [0, 00) to R. We
now restate the results from Appendix C in terms of ¢};' and 9"
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Proposition 4.2. For f € C°([0,00)), let (J;f)(r), 7 = 0,1, denote the Fourier—Jacobi trans-
forms of f given by

Do) = [ SO0 cosh™ (0 .
Jif(p / f (@), (t) sinh(t t) cosh™ "L (t) dt.

Then we have the following inversion formulas

m#;%wm%%d% %th%mmwwanl
(2 eDO
sinh(¢ =53 / Jif(p |£ ;1 Jif(p Reb(ﬁl( Yoy (—v)) 7L

with Dj ={neR|n=4k+1+2j—|m| <0, k€ Ny} and

0 () = r(4) |
J F(u+1+ij+\m\ )F(u+1+ir|m| )

Remark 4.3. As ¢} and )" are given in terms of hypergeometric functions we get

e =9, and =97,
as oFy(a,b;c;t) = oF1(b,a;c;t). The Euler transformation o Fy(a,b;c;t) = (1 — )% 3 Fy(c —
¢ — b;c;t) amounts to

@ (u) = cosh™(u)p,™(u), and ;' (u) = cosh™ (u)yp, ™ (u).

5 Intertwining operators

To obtain an explicit Plancherel formula for representation theoretic purposes, we require expres-
sions for intertwining operators between the representation spaces introduced in earlier sections.
More explicitly we consider intertwining operators

P:IndS(6 @ e’ ®1) — Ind% (e @ e*)>®
A:C® Ind% (e ®e) - Indb(0 @ et @ 1)

and their realizations in terms of the coordinates introduced in earlier sections. Such operators
only exist when € = § as M lies in the center of G.

We fix ¢ € Z/2Z and supress it in the notation for the rest of this section. When & appear
in formulas we will consider it as number in {0,1} where we will use the notation [-]o when
confusions can occur.

For € € Z/27 and X € iR consider the kernel

Afp—1 p—A—1

K5, (9) = lonles? lgule 2 . g€G,

where g;; is the (z, j)'th entry in G. As g1 and g2; does not simultaneously vanish in G this kernel
enjoys many of the similar properties as a Riesz distribution (see Appendix B). F(“TH)_lKi u
is locally integrable for Re (i) > —1 and admits a holomorphic continuation as a distribution to
ue C.
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Proposition 5.1. The map given by
P{uf() = [ K5, (7 01 k) d
defines an intertwining operator Ind%(e ® et ® 1) — Ind% (e ® ). Similarly the map given by

Auf@) = [, Ko u@” 0f @) d(zH),

defines an intertwining operator C2°~Ind% (e @ e*) — Ind%(e @ e @ 1). Both integrals should
be understood in the distributional sense.

Proof. The equivariance properties follows by direct verification. O
Proposition 5.2. For £, e € 7/27 we have the following relation

TS0 A5, =d5 A5,

df = (=1 E+£J\f .
A (=1) I—\(1+)\+uz2[£+s} )F(l /\+4,u+2§)1—\(17;2¢+6)

Proof. Fix g € G and put z = x~'g. Then the set {vtH € G/H | 211221 = 0} is a d(zH)-null
set. Using Lemma B.2 for 0 < Re () < 1 we get

£ —p—A—1 A—p—1 —A—p 71 1 A—p—1
/ K>y (zwon)dn = |z211gy ° |zo1fe ° / |27|ngE |z — P ¢ 2 de

wte
2

+
=TI )diuKé)\i(z), a.e.
The claim then follows by analytic continuation. O

We introduce the notation
WS, = (=1)¢ + (—=1)™™.

Note that wg_m = @&, and as € =m mod 2 we have

M 07 :07
o il and w?nwin = I c
(1 +i(-1)%, e=1, 2i(-1)"T, e=1.

- {(—1)5+(—1)’?Z, e=0

Proposition 5.3. For u € C and m € Z we have

1
L) "

PG (kaba) = (ko) cosh ¥ (20) (e () + 508 eml ~ 20 (20))

where

=TT
U —bpetT

F(M+3Zr\m\ )F(M+34*|m| ) ’

Cm (M) =
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Proof. As PE intertwines ., and 7. it also intertwines the derived representations dm. , and
dmeo. Hence PS intertwines Ap and A, and therefore the image of Pﬁ is contained in the
eigenspace of Ag to the eigenvalue pu? — 1 by Proposition 1.1. Fix pu with Re (1) > 1. From
Lemma 4.1 it follows for generic u that

PS¢ (kgby) = cosh (2u)(m (ko) (S, (1) - 07 (2u) + b5, (1) - ¥ (2u))

for some a$,(p), b5, (1) € C. Hence, it only remains to compute a$,(x) and b5,(1). Note that
©'(0) =1 and +,;'(0) = 0 and hence Png(k‘g) = (m(kg)as, (1) so

af, (1) = qu / Kg (ko)Cm(ko)dke = 2/ \6059’g+5| S11119|é ™9 d4g

21- “Ww,fne’ 1 F(“TH)

P(M+32-|m|)r(/ﬁ+34—|m\)’

1

:2%0)51/ (sinf) e B0dg =
0

by Lemma 4.
To compute b5, (12) it suffices to note that %gpz"@u) |u=0= 0 and %@ZJL”(Zu) lu=0= 21, hence

206, (1) = PG 0|y = [ B b-k0)] o)l
_ 1;/ K& (k) G (i) kg
- 5 —Fab (u-2),
from which the result follows by analytic continuation. O

Let f € Ind% (e ® €°),, and write f(kgby) = Cn(ko)h(u) for some h € L*(R, cosh(2u)du). Now
let he(u) be the even part of h and h,(u) the odd part. We introduce the following notation

Jof (18,0) = G (kg)Jo(cosh™ 2 () he(bz)) (1),
J1£(1,0) = G (kig) J1 (sinh ™ () cosh™ 2 () ho (b)) (1)

where the x denotes the variable the Fourier—Jacobi transform is done with respect to.

Proposition 5.4. Let f € Ind% (e @ €°),, then

o e+
i) A5 00) = om0 R ) + 7o 2T (1),

Proof. As Ai is an intertwining operator, it maps K-types to K-types, thus Aif(kig) = Aﬁf(e) X
Cm(kg). Now

A fle / / K® (b Ky ") £ (kgby) cosh(2u)dudf = % / cosh(2u) (1) P2, ¢ (by)du

R
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From Proposition 5.3 and Remark 4.3 we have

ﬁ?lf(u 5 /h ) cosh™ 2+1(2u)( ¢ mCm (=) (2u) + - 5 g_tnlc_m(—,u,— 2)¢:lT(2u))du
= / cosh7+1(2u)w§nc_m(—u)cpl’f(2u)du
2 / (1) cosh® 1 Q)@ ¢ (— 1 — 2)4 (2u)du
= 5hem() o cosh ™% (he(3) (1)
4 L8 e (- — 2)( sind ™ (@) cosh % () () (). m
Combining Proposition 5.3 and Proposition 5.4 yields an explicit intertwining operator
PSAS

— P 0% IndG (e @ €),, — IndG (e @ 0)°

By Propositions 5.3 and 5.4, the above intertwining operator is holomorphic in yu, i.e. the above
defines a holomorphic family of intertwining operators, intertwining Ind$ (e ® €%),,, with itself.

6 Combining intertwining operators

In this section we consider a function f € C°~Ind% (e ® ), and then write

f(kobu) = cosh’z (u) [( cosh™ % (u) fe(kobz)) + sinh(u)( cosh™ % (u) sinh_l(u)fo(kgb;))] :

then apply the two inversion formulas from Proposition 4.2 to each of the two terms giving

f(keb%):cosh% [ / Jof (1, 0))) (u )8%6% 7Tg/ Jf (s O)" (u )2|g1d('u)|

- Z Jof (1, 0)py (u )52‘33(60(’/)50( - Z Jif (ks )0y (u )Bfﬁ(gl(y)fl(—’/))l]-
uEDo ueDl

The goal is then to express this decomposition in terms of some combination of the operators
PELA;?Z f(k?gb%) which by a quick glance at Propositions 5.3 and 5.4 appears plausible. The
following identity will be used multiple times in the following subsections

24 (V) e (=)o ()l (—v) = e (v — 2)c—m(—v — 2)01 (V)01 (—V)
25(—1)1+< cos? (T5H))

T vsin (%)

: (6.1)

which follows from Gamma-function identities and recalling that m = ¢ mod 2.

6.1 The continuous part

For p € C we introduce the following maps

which are holomorphic in u.
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Proposition 6.1. We have

1
> PLAS f(kgby)
£=0
= cosh® (20)[2em () ()0 (1, 005 (2u) — (1 = 2)c—(—1a = 2.1 1, O 20|
Combining this with (6.1) we get
€ AL dp
A ZP Al Bl o
m 1 d
= cosh¥ )| 5 [ o O gt = % [ D000
where
I'(3)
a(p) = 4WF(1+’§+‘€)12“(1+’5_8).

Proof. When computing Z%:o PfLAf; f (k‘gb%) we apply Proposition 5.3 and 5.4. We obtain some
cross-terms, containing factors like Jo f (11, 0)v)" (u), but since

no cross-terms survive and the assertion follows. O

To express the discrete part in terms of PE Ag f is a bit more delicate as we cannot simply take a
sum to make the cross terms disappear thus we need to make a suitable choice of normalization.
The cases for € = 0 and € = 1 will be treated differently and the main culprit as to why is the
factor wé, which for ¢ = 0 vanishes depending on the parity of % and for € = 1 never vanishes.

6.2 The discrete part for ¢ =0
In this subsection we fix € = 0. Consider the following normalizations

F(IH_?Z;_%) F(—u+43—2£)

3

Iz I-\(,LLTH)F(,LL+14+2£) o M F(—,LL2+1)F(—/L+41+2§)

which, by the duplication formula for the Gamma-function, does not introduce any poles. Now
introduce the operators

P, := ]33 + ]3; and A, = ﬁg + A;l;
Lemma 6.2. For a fired m € 27 we have

PG (kobu) = G (ko) cosh’® (2u) (cum ()@ (20) + B (1001 (20)),
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where
_ L&) P4
s = () (i) + b gy )
and
j NCOINCD
Bn(p) = gem(p —2) (winr(,%l) +wglr(,é+3)> :

Furthermore if p € 1—2N then amy(p) is only non-zero when p € Do and By, (1) is only non-zero
when p € Dy.

Proof. The first identity is a direct consequence of Proposition 5.3. To see the second assertion

rewrite - -
; p+3—|m p+3—|m
Ql—pre™ 1 ( 0 (= )% ) (53 )vnj;?)

00 = e gy e

As either w0, or w} is vanishing this makes sense term by term. When y is of the form pu =

4k + 3 — |m| for k € Z then term by term 1“(’%“1)_1 and F(“Tﬁ)_l vanishes. When p has the
form p = 4k + 1 —|m| for k € —N then F(%Hm')*1 vanishes. A similarly argument applies to

B (1) O

Lemma 6.3. We have

Ay f(kg) = Gum (1) Jof (11, 0) + B (10) Jf (1, 0),

where

Furthermore, if u € 1 — 2N of the form p = 4k + 1 — |m| we have B(u) = 0 and similarly for u
of the form p = 4k + 3 — |m| we have & (1) = 0.

Proof. This follows from Proposition 5.4 and considerations similar to those in the proof of
Lemma 6.2. U

Lemma 6.4. For p € Dy:

Py f (kobu) = cosh (2u) et (1)@ (1) Jo f (1, 0) o)) (2u),
and for p € Dy:

Pyl f (kobu) = cosh® (2u) B (1) B (10)J1 £ (12, 0) 477 (20
Furthermore, if i € (1 —2N)\ (Do U Dy) then P A, f(kgby,) = 0.

Proof. This is a direct consequence of the two preceding lemmas. O
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Consider the non-vanishing entire analytic function

6(,&) = F(#)QF(%)z + F(%)zr(%)l

Lemma 6.5. For p € Dy

(=2 () () o) o 1) = 167222V B,

=

For e Dy
g oot () B(n)

3 Om 0 5m ()1 (1)1 () = 167° =2

Proof. This follows from (6.1). One trick is used which arises when a term like

ptl
2
as wo. U

is obtained. As w?, is either 0 or 2 we can set wl, = 2 as I'(£1=)~! vanishes in the same cases

Proposition 6.6. We have

L il = cosh? (2u -1 ™ (2u)Res (£o(v)lo(—v)) "
s 3, e o) = cosh )| o 3 Tofl D) 2uRes(to(v) o)
F205 B0 2u)Res(t () ()|
neD1

Proof. Apply Lemma 6.4 to the right hand side. Now note that ¢, (u)c—m,(—p) is regular for
p € Dy and ¢, (0 — 2)c_p(—p — 2) is regular for p € Dy, thus they can be moved inside the
2

residues. Then everything follows from Lemma 6.5 after recalling that Res,—, tan(%) = —=. [

6.3 The discrete part for ¢ =1

In this subsection we fix ¢ = 1. The proof will proceed using the same ideas as for ¢ = 0. For
u € —2N let

m+|m|—2
1 0 (-1) > 1
L T C TR
that is we define P, by its eigenvalues on K-types. By Proposition 5.3 we get P, is intertwining
by the same argument we used for T/} in section 1.

Lemma 6.7. For p € Dy we have

PuAuf (kgbu) = om (1) cosh’® (2u)¢l7(2u) Jo f (1, 6),

where

For p € Dy we have

PuAuf (kgbu) = B (i) cosh® (2u)yr (2u) J1 f (1, 6),
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where
1. |m|+1

T e (p— 2)emm(—p — 2).

Furthermore if p € —2N then o, (1) is only non-zero if u € Dy and By (p) is only non-zero if
we Di.

Proof. The proof is an application of Propositions 5.3 and 5.4. O
Lemma 6.8. For u € Dy

(—2m)m()o() o (— ) = 4i(—1) = 22 L> |

and for p € Dy

mi+1 sin (Z&

| \2+1sm(2).
1

T .

5 Om (W) ()b (—p) = 4i(-1)
Proof. This is a direct consequence of (6.1). O
Proposition 6.9. We have
50 P f(kab) = cosh (2u)| = 3= 3 Jof (s, 0)7 (2u)Res(ov)o( 1)

pne—2N nEDg

—i—; > Jif(u0)yr (2u)Res(£1( )ﬁl(—y))fl :

pneDy

2mi

Proof. This follows in the same manner as the proof for Proposition 6.6, where we here note
_ |m|—1
for p = 4k +1 — |m| € Dy that Res,—, sin (%) ' = 2(~1)"=z, and for u € D; we have

™
1 2 [m|+1

Res,—,sin (&) = 2(-1) = . O

™

7 The Plancherel formula

The intertwining operators PE and Az are continuous maps and hence the intertwining operators
introduced in the previous section are also continuous. This allows for an extension of the results
obtained for K-types, described by the first theorem of this section. We then extend this theorem
to arbitrary A € iR by virtue of Theorem 3.1
Recall that
I(
a(p) = 47TF(1+L2L+5)
Theorem 7.1 (Plancherel formula for A = 0). Fore = 0 and f € C®°-Ind$ (e ® €°) we have
the following inversion formula

) 1 1

g S e e

(7.1)

o

du 1 "
b = ZP& AL ol S+ e, 22, iy e (o)

and the corresponding Plancherel formula

2 £ 712 dﬂ 1 2I'(1 — p) 2
2= [ ZHA M o * @ 2, T a1

pnel—2N
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Fore=1 and f € C°-Ind% (e ® €°) we have the following inversion formula

£ (kobu) / ZPﬁAff Bobu) s 45— S iPuAuf (b,
a < 9] =
and the corresponding Plancherel formula

1
_ ¢ dp 1 T (—p)p?
I = [ S 14501 Cosp + 5 2 Tty 14T

pne—2N

Proof. The inversion formulas follow directly from the introduction and results of Section 6. To
get the Plancherel formula write

712 = [ [ #(0kob) Tabu) cosh () dud,

and use the inversion formula on f(kgb,) and apply that
| BitemgH)dt) = [ f(0)A gk dr.
G/H K

for f € Ind%(e ® e*) and g € Ind% (e ® €°). Lastly for the discrete part, we apply Proposition
5.2 to get

2K N
ToA, = VI L and T4, = —
1 I 1 2— 1t —p
I L(ZH)T(HH)

giving the final result. O
We now extend the previous result from A = 0 to A € iR using Theorem 3.1. We want to

0 . . . . 0
compose A, and t \ but as we cannot ensure the regularity of the functions in the image of t A
we end up doing this in an L?-sense using direct integrals. Consider the following operators

A,\ = — 4 Ag + — 4 A}\ ,
S N I o R GO C DI C TR M
¢ RET
13 _ A and .A,\ 272 WF(ITTN—'_%) AO
TR ST TR - )

which are extensions of A, Aft and A, e.g. Ag, = A,. Furthermore let
@ 2 7d
Hom [ mpeClpe @ =l
R pel—c—2N

where féB H,dp denotes a direct integral of Hilbert spaces, see e.g [F22] for a short exposition.
The inner-product on H. is given by Theorem 7.1, i.e. for e =0 and f,h € Hg

du 1 I'(1—
(0= [ Z“’whg PO+ 6w, 35 T a0 e i)

For simplicity we shall assume that ¢ = 0 for the remainder of the section. All arguments made
can be done for € = 1 as well using the corresponding results from the previous section.



7. The Plancherel formula 25

Abusing notation, Theorem 7.1 defines an isometry Ao : CS°(G/H) — Ho which extends to
an isometry

Ap:nd§ (e ® 1) — Ho.
For f € Ho with f = (f°, f%, %) we introduce the following map

PO : Ho — LQ(G/H)

f (fO fl fd '_>/ ZPg E d,ul 27r Z 6 ,ufd

pnel—2N

Lemma 7.2. For f € Ind§ (e ® €°) and h € Ho we have the following relation:

(Aof, hyn = (f, Poh) 12/ m)-

Proof. Let f € Ind% (e ® ¢*) and h € C2°(H). We then find

1
. 3 d/L 1 o
of =3 [ ASSIEBCET s X Fpl T o el s

YN du 1
- Z/l /G )P i ( )d(xH)la(u)lz + @) > r(%ﬂ)z(u)r(l-ﬂ)m‘“f’ hY 2 k)

d
_Z/z (fs PRl L2 G/m, (:)‘2 277 > 6( (f, Py hd>L2(G/H)

nel—2N
= (f, Poh) 12/ m)- O

Lemma 7.3 (See [P76, Theorem 1]). Suppose S : H> — H> is a continuous intertwining
operator for H*. Then for a.e p € iR U (1 — ¢ — 2N) there exists unique H™ intertwining
operators S,, for w2, ® C? if u € iR and for 7T S i w €1 —e—2N such that

(SfHu=5ufy aepciRU(pel—ec—2N), feH™.

Proposition 7.4. The map A5 : Ind§ (e ® €°) — Hg is surjective. In particular Ag is an
isometric isomorphism.

Proof. Since the discrete and continuous part of Hg consist of pairwise inequivalent representa-
tions of G it suffices to show that the projection of W = Image(Ag) onto the continuous part
and the discrete part respectively, is surjective. For the projection to the discrete part we can

consider the projection of W onto each summand 7§3,. Proposition 1 gives Wgsu = ﬂ(})l(:} & 71'8}2?1
and since these representations are inequivalent it agaln suffices to show that the projection on
each of them are onto. Lemma 6.3 then shows that proj hol( ) # 0 and pI‘OJﬂ.ahol( ) # 0. But
since the projection is G-equivariant the image is a subrepresentatlon and it follows that both
projections must be onto.

Since the projection onto an integrand of the continuous part of Hg is in general not point-
wise defined, the proof differs to that of the discrete part. Abusing notation slightly we shall
write f, = ( B, f;) when p € iR and f € Hg, omitting the discrete part.

By Lemma 7.2 (Ap)* = Py and since the adjoint is G-equivariant we have

Py(HS®) C LA(G/H)>® and  A(L*(G/H)™®) C HE.
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Let A(O)o = A0|L2(G/H)oo and Py = PO‘H(O]O Then
S = AP o P° : Hg® — Hg®
is a Hg° intertwining map and by Lemma 7.3 there exists a family of Hg® intertwining operators
(Sy) such that ((Ag° o P°)f)u = Sufu for a.e p € iR and all f € HF®. By Schur’s lemma this
implies S, = (id®B,,) for a.e p € iR, with B, : C> — C? a linear map. Let N denote the
corresponding null-set, we then show that for y € iR\ N we have S, = id.
To this extent let © € {R\ N and let f be a K-finite vector in H{® and note that this

implies f, must be a K-finite vector in 7;°. Assume therefore without loss of generality that

fu = (c1Cm, c2¢y) for some m,n € 2Z and pick by Proposition 5.4 a K-finite vector in L*(G/H)>
such that Ag(w), = fu. One can e.g pick w of the form w = (;, f1 +(p f2 with fi an even function
and fo an odd function of correct regularity and growth. Then we have

(A3° 0 P5°f) = AY o P50 AP (w), = A (w), = (Ahw, Al w),

where the second equality follows from the inversion formula given by Theorem 7.1. On the
other hand we have

(AF° 0 P5° ) = Sufu = (iId®@B,) AF (w), = ((bi1) pAdw + (b12)pApw, (ba1) pAdw + (ba2) A w)
hence
(ADw, Ajw) = (ag ADw + by Ajw, cu AQw + dy Al w).

Since Ag and Ab are linearly independent for p € iR it follows that B, = id and hence S, = id
on the K-finite vectors of Hy, for a.e y € iR and since the K-finite vectors form a dense subset
the result follows. O

Theorem 7.5. For A € iR and € € Z/2Z we have

Ind%(a@e’\) g/@ Teu D Tep i 7 @ @ 77?,(:11@”?,};15)]7
iR lal)l* a1~ o
where the map is given by
o (AR o P8 AN S Asg), for f € IndG(0® )
I (AR oA W AR S A for fendf(1we?)
with

e _ DI
pA”u -

2%1—1(1+;1+2§)F()\7,u421+2€) ’

Proof. For A\ € iR the map Ay : Ind% (s ® 1) — Ho gives rise to an isometric isomorphism

Ind% (e ® e*) — Hoy by composition with '?‘g : Ind% (e ® ) — Ind§ (e ® ) from Theorem 3.1.
Let A € iR, f € Indj(e ® ¢*) and h € C°(H). Then by Lemma 7.2 we have

(Ag o T3 1. 1) =<+gf,P0 h) L2 ay

d
- Z/@ )\f) L2 G/H)’ (/3‘2 27T Z 6( ) )\faPuhZ>L2(G/H)

pnel—2N

(@) dyu
[/bﬂ F@%mwmm%ww

2

> /\f7IP WY L2 (G-
27T pnel— 2N6( ) m (
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Using the coordinates *H = k¢nyH and applying Lemma B.2 in the distributional sense, we
find

1

R S <ot D f@)aD)

L(37) T P _ A2 —u=1]
B W2AF(1‘“)F(A)/0 /R|C°S9la” f(gkenz)/R|x’a |z —tan0 -zl 7 Sdwdzdd
maal (=717
:pi,u

A, f(k),

(izs
An analogous calculation applies to the discrete part after applying that A_, = \(/;22) TOA,.

In conclusion we find

1
Ao ot £ R)y = € A FREY e O = A=)
oo g =32 | AW ) e e + e, 2, T e

(TOAuf WD) 12k

Hence Ag o 'T'(/)\ = A, with Ay : Ind§(\ ® ) — Ho given by

1
du 1 2l(1—p) 0
Arf,h :§:/ 5 AS f K + S (T,
< )\f >H = iR< AL Ahuf M>L2(K)’a<u>‘2 (27T)3 P F( 2#)6(M)< Au M>L2(K)

O
Corollary 7.6. Fore =0 and Indg(e ® e*) we have the following Plancherel formula
1 20(1 — ) )
7=/ Z 45,717 Y A
el TG T @R | 2 D) B()
Fore=1and f € Indg(&? ® e*) we have the following Plancherel formula
du p’T
72 = [ 2 145,01 it + 5r 2 li) Ara I
pne—2N 2
with a(p) and () given by (7.1).
Proof. Since |p§’#| =1 for A, u € iR the assertion follows. O

A Integral formulas

Lemma A.1 (See [C20, Proposition 16.8]). For Re (a+ ) > 0 we have

/ dx 2270 B fr(a+ B — 1)
R (z—9)(z+i)7 INCOING))

Lemma A.2 (See [GR94, Section 3.631]). For Rev > 0 we have

T 2177 cos (45)I(
/0 sin””*(z) cos(ax) dr = F(”*%”)F(Q”*

)
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Lemma A.3 (See [GR94, Section 3.631]). For Rev > 0 we have

s 21—1’ an
/0 sin’~!(z) sin(az) dr = F<V+7£S:I;é(2 1

)

Lemma A.4. For Rev > 0 we have

u - 217V7T6%F(V)
sin’Y(2)e'* dx = .
Jy e EEEy e

Lemma A.5 (See [GR94, Section 3.251]). For Re8 > —1 and Re (a4 3) < —1 we have
/ ¥z —1)Pde=B(-a—-B-1,8+1).
1
Lemma A.6 (See [GR94, Section 3.194]). For Re8 > —1 and Re (a4 3) < —1 we have

/Ooxa(xﬂ)ﬁdx:B(—a—ﬁ—1,a+1).
0

B The Fourier Transform and Riesz distributions

Define the Fourier transform of ¢ € C.(R) as

O = [ pla)eda

which makes the inversion formula FF[p](x) = 2mp(—x). Extend this to distributions in the
usual way.
For o € C with Reaw > —1 and ¢ € {0,1} the function

1

w0 = (e

a
|z,

is locally integrable and can thus be considered as a distribution.

Lemma B.1. The family of distributions ui, extends analytically to a holomorpic family in
a€eC. Fora=1—¢—-2n¢€1—¢e— 2N we have
(_1)n+871(n _ 1)]

U _oop () = —— §2nte=2) (z),
tremn 25 1 (2n 4 £ — 2)!

where §(x) is the Dirac d—function.

Lemma B.2. For a € C we have
Flug] = V2mitus o,
Furthermore for o, € C with Rea,Re 8 > —1 and Re (o + ) < —1 we get
1-a B+[5+£]2) .

/Rug(m)u%(y—a:)dm: (—1) =5 /ar ((—a+s);(,32+§) O:fﬂ+1(y)7

2

fory #0.
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Proof. The first assertion can be found in [GS64, p.170]. For y # 0 we have

+B+1
[ty = alf do = gt [ Jal2 - aff da,

by change of variables. Now writing

/\x| \1—x\ﬂdx—(—)/ooo “(14x) dw—i—/ (1 —z)P dx + (- 1)5/Ooxa(x—1)ﬁdx,

1

we can use the integral formula for the Beta-function, apply Lemma A.5, A.6 and arrive at
(-1)°Bla+1,—a—=B-1)+Bla+1,8+1)+ (-1)*B(8+1,—a— B —1).

Now rewriting the Beta-function in terms of the Gamma-function, applying Euler’s reflection
formula for the Gamma-function and factoring out common factors we get

70 (a+ 0B + DI (—a — B 1)[sin ((a + B)7) + (~1)* sin(Br) + (1) sin(ar)|.
We can now apply the identity

sin (o + B)7) + (1) sin(Br) + (—1)* sin(an)

— (1) i (0L DT i (B Oy g (05 E2 4 £ Sy

which can be verified on a case by case basis depending on ¢, € {0, 1}. Lastly rewrite the sine-
functions as Gamma-functions using Euler’s reflection formula and cancel out Gamma-functions
case by case for ¢,£ € {0,1}.

O

C Fourier-Jacobi transform

This section is a condensed form of [FJ77, Appendix 1]. For «,5 € C with a ¢ —N and
Re 8 > —1, define the Fourier—Jacobi transform of f € C°(Rx>q) by

Jagf(p / f(t) QSO"B( )81nh20‘+1( )coshw"'l( t)dt,

where gbl‘j"ﬂ are the Jacobi functions given by

a+pf+1+p a+B+1—p
2 ’ 2

¢fj’ﬂ(t) = oF} ( sa+ 1, —sinh2(t)> :

Then we have the following inversion formula:

1 . _
10) = 3= [ Jest ey )t " 2 Tl OB s )ens() g
where
Ca,p(1t) = ROILAR) :
’ F(a+\6|2+1+u)r(a—lﬁl2+1+u)
and

Dog={r € R|k €Ny, z=2k+1+a— |8 <0}
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Paper B

Tensor products of unitary
irreducible representations of

PGL(2,R)

Frederik Bang-Jensen

Introduction

Let G be a group, H a subgroup of G and 7 a unitary irreducible representation of G. The
restriction of 7 to H again defines a unitary representation of H, but 7|y need not be irreducible
anymore. If G is a compact Lie group, then 7 is necessarily finite dimensional and its restriction
7| decomposes into a direct sum of irreducible unitary representations of H

Ty = @ m(m,T) - T,

reH

with multiplicities m(m, 7) € Ny.

However when G is non-compact the unitary irreducible representations of G' need not be finite
dimensional and thus one can not expect a direct sum decomposition of the restriction of such
representations. Instead the restriction decomposes into a direct integral

@
g & /A m(m,7) - 7 d(7),
H

with the multiplicities m(m, 7) € NgU{oco} and measure d. (7). Hence understanding the branch-
ing problem in the non-compact case requires both understanding the multiplicity function
m(m,7) and the measure d,(7) explicitly. The measure d.(7) may both have a discrete and
continuous part for certain pairs of Lie groups and subgroups (G, H).
In the case where the measure d.(7) has both discrete and continuous parts, the branching
problem appears to require detailed analysis (See e.g. [Rep78], [MO15], [Zhal7] for examples).
Recently a uniform method of study has been applied to the case where both G and H are real
reductive Lie groups of rank 1 by Frahm and Weiske (See [Wei21] and [Wei20]).

In this paper we apply this method to the rank 2 case where G = PGL(2,R) x PGL(2,R)
and H = A(G), providing a uniform method of proof for results obtained by Repka in [Rep78].
We obtain the following results:

Main results

Let G = PGL(2,R) and P = MgAgNg be a minimal parabolic subgroup of G. Then A(G)
acts on G x G/Pg x Pg with an open dense orbit O = PGL(2,R)/ GL(1,R). For m¢ y and m,,

33
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unitary principal series representations of G, the restriction of the tensor product m¢ \ ® 7, to
the open dense orbit O induces a unitary isomorphism

Oxp t (Ten @ Ty p)|a) — Ind]\G/[GAG((g + 1) @ e THHTA)

onto a line-bundle over the one-sheeted hyperboloid G/MgAg. The Plancherel formula and
corresponding direct integral decomposition of the one—sheeted hyperboloid was computed in
[BJD23]. Using the restriction map ©, , we obtain the corresponding (explicit) direct integral
decomposition for tensor products of unitarily induced principal series representations of G.

Theorem 1. For A\, € iR the tensor product of unitary principal series representations e x
and 7y, of G decomposes as

®
W{,A®7Tn,u‘Gg @ /R Wa,udV@ @ FSS.

0=0,1"" vel-N

The Plancherel formula used to obtain the decomposition is given explicitly in terms of
symmetry breaking operators Ai uy € Homg (m¢ \ ® 7y, u|G, m¢,) depending meromorphically on
the induction parameters A, u € C. We give a detailed description of such operators, finding a
holomorphic extension of the operators by constructing differential operators and studying the
subsequent Bernstein—Sato identities. We also give a detailed description of the zeroes of these
holomorphic families of symmetry breaking operators by considering the associated Bernstein—
Reznikov integrals. Using the holomorphic extensions of the symmetry breaking operators we
extend the Plancherel formula (with some slight assumptions) from the unitary setting to C2
by method of analytic continuation. By this process we obtain an extension to A\, u € C, for
which the principal series representations m¢ y and m, , are unitarizable or contain unitarizable
quotients. In the process we collect residues of the symmetry breaking operators which, in the
special case of tensor products of complementary series, becomes discrete components in the

decomposition:

Theorem 2. For A, i € (—1,0) with A+ p < —% and &,n € Z/27 we have

®
c c ~ ds c
7r§7/\®7TE,M‘G* @ / Tow dv @ @ v @ﬂ§+n,>\+u+%'
o0=0,1 iR’ VG%*N



Part 1

Principal series representations

Let G be a real reductive Lie group and P = M AN a minimal parabolic subgroup of GG. For a
unitary irreducible representation (&, V¢) and a character A = af, we construct a representation
(E®er®1, Ve) of P = M AN, by letting N act trivially on V. This P representation gives rise
to a principal series representation of G

Te N = Indg(f ® e &® 1)
as the left regular representation of G' on the function space
[f € C=(G, V) | flgman) = £(m)~ e~ O+0)1%2 f(g) ¥man € P},

with p := %tr ad [y. Denote by Ve x := G xp Vg a, — G/P the homogeneous vector bundle
associated to V¢ x1,. Then m¢ x may be interpreted as the left regular action of G' on the space
of smooth sections C>°(G, Vg »).

1 Principal series representations of SL(2,R), GL(2,R) and
PGL(2,R)

Let G = PGL(2,R) and let P = MgAgNg C G denote the minimal parabolic subgroup of G
with corresponding Langlands decomposition. We identify G with 2 by 2 matrices with at least
one entry in the second row equal to 1. Under this identification we have

+1 0 a 0 1 =z
Mg—<0 1), Ag—<0 1) Ng—<0 1.)7 a€eR\{>0},zeR.

Furthermore we identify PSL(2,R) as a subgroup of G as the image of SL(2,R) C GL(2,R)
under the quotient map. We identify Mg = Z/27Z and ai;c = Cand let K¢ = O(2)/ +id denote
the maximal compact subgroup of G. The principal series representations of G can be equipped
with the canonical K¢ pairing on e )\ X m¢ )

(F ke = / FOR)f (k) dk,

Kg /Mg

and the corresponding sesquilinear form (f, ')k, = (f, f)k- Let € € Mg and A € ag ¢, for
me,» the corresponding principal series representation we can extend m¢ y to a representation
of GL(2,R) by composing with the quotient ¢ : GL(2,R) — PGL(2,R), i.e letting the center

35
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of GL(2,R) act trivially. Under the above identification the corresponding representation for
GL(2,R) is again a principal series representation T(¢1,62),(M,h2) OF GL(2,R), corresponding to
the induction parameters (A1, A2) = (A, —\) € a*GL(Q’RLC ~ C? and (&1,6) = (£,¢) € Mcror) &
(Z/27)?. Likewise, the restriction map Res : T(¢,6),(\—\) — woz2x maps the principal series
representation 7(¢ ¢y (y ) to the principal series representation w¢, of SL(2,R), corresponding
to the inductions parameters { = 0 € M\SL(z,R) > 7/27 and v € agL(Q,R),(C = C. Hence the
compositions give a natural map

q Res
TEN T T(£,8),(\ =) —* W02\

Naturally the restriction commutes with the action of SL(2,R) and for this specific choice of
parameters it defines a bijection. To make this process a bit more clear we consider the following
lemma relating principal series representations of GL(2,R) to principal series representations of

SL(2,R):

SL(2,R)

Lemma 1. Let f € IndPSL(2 R)

(e@er®1) and let

Ind?}s'f Blewer®1) 5 nde®® (e +6,6) @) @1), fo F (1.1)

Par(2,r)

- 1
with F(g) = |det(g)|§ /\f(g diag(1,det(g))™'). Then we have the following:

GL(2,R i ) ~ -
1. IfF e IndPGIS( R))((n m) @ eV172) @ 1) satisfies Flsrer) = f then F' = Ly, ., f and

(&, A) = (m + m2, 11 — 12).

SL(2,R)
Psp(2,r)

' <L5 Sf? L(S Sf >KGL(2 R) <f f >KSL(2 R)’ whe'f’e f, E Ind (8 ® e_x ® 1)

3. T(5+5,5),()\+s,s)-i5,s = E5+E,S+)\TE,>\'

4- ([ Ts,Af) = <E6,sf’ T(5,6+e),(—§,—§—A)E5+e,—§—Af> for A € R.

with T; » denoting the standard intertwining operator

SL(2,R)
Psp(2,R)

Ton:Indpy® c@e* ©1) - Ind

L(2,R)

(e@e™®1)
and Tic c15),(\+s,5) denoting the standard intertwining operator

GL(2,R)

8,8 GL(2,R
Tce46),(Ats,s) IndpGL(2 R)((E,E +0) ® M8 © 1) — Ind 2R)

Pari2,r)

((e40,e) @ e ) @ 1),

both given by

f—=Tf, where Tf(g)= /Nif(gwoﬁ) dn, Wo = <_01 (1)>

Proof. 1: Assume that F € Ind$ L )((771,772) ® e12) 1) such that ﬁ|SL(2’R) = f. Then we

Par(2,r)
have

F(g)=F (g (é det(og)_1> (é deg(g)» — | det(g)|3 " F (g diag(1, det(9)) 1) = Lypn f(9)
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Further more for a € R we have
lal2 i F(1) = F(diag(a,a™")) = f(diag(a,a™")) = |al7*7 (1),

hence (g, A\) = (m + n2,v1 — 12).
2: Since the map

1 0

has kernel KGL(Q,R) = 0(2) it fOHOWS that KGL(Q,R)/MGL(Q,R) = KSL(?,R)/MSL(Q,R)' We then
have that

/ F(RM)dgM — FOK M) DM,
Kare,r) /MaLe,r) Ksi(2,r)/MsL(2,r)

from which the result follows

3: Let f € Indg;g;i))( ® e* ®1). Then we have

—S

= | det(g)]5 ®

_ L 0
T Y :/ det(gwom)|2 dm
cranOsalost(9) = [0 | detlguon)]; ) ( <0 det(gwom)~ 1))
g(

/ det(g) > wo”) dn
NSL(2R>

— |det(g)]; ° Mf( (det(g (1)>>

= |det(g)|7,27 . “f< ((1) det() 1))

= Eé—&—s,s—&—)\Ts,)\f(g)'
4: This follows directly from combining properties 2 and 3 O

By the discussion preceding the lemma, any principal series representation of G can be iden-
tified as a principal series representation of GL(2,R), with the center acting trivially. Similarly
any principal series representation of PSL(2,R) can be identified with a principal series repre-
sentation of SL(2, R), again with the center acting trivially. For the purpose of this paper it will
be convenient to restate the lemma in these terms:

PSL(2,R
Lemma 2. Let f € IndPPSL( 2Rg(o ®er®1) and let
PSL(2,R PGL(2,R)
+In dPPSTE(Q 1(0®€ ®1>_>I dPPGL(QR)(£®62®1) f'_>F (12)

with F((g]) = |det<g>|? i ([g (3 detfq)lﬂ). Let

apar s d, (€@ e @1) = Indp ) (6, ) @ MV @ 1)

Par2,r)

and
PSL(2,R)

SL
qpSL - dPPSL(2 R) 1)

— In dPS(QR) O®e®1)

L(2
denote the map mapping a function to its composition with the respective quotient. Then L¢ is

e ®

well-defined and we have the following
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—1 -1
1. L¢ = gpgy, © Lg,_% © dpg,

PSL(2,R Y
2 (Lefs Lel ) Kpariom = U ') Kosp o where [ € Indipn 20 (0@ e ©1),

3. T?%Lé = LTYSE.
4. (f,TYSLf) = (Leaf, TS%L&_%]’) for X € R.

with TgA and T/\PSL defined analogously to Lemma 1.

Proof. Tt suffices to check that L¢ is well-defined, since the rest follows from direct verification
or directly from Lemma 1. Let f € Ind?i?ﬁiiim ®e* ®1) and let g,¢' € GL(2,R) such that

lg] = [¢], i.e there exists a € R\ {0} such that ¢’ = g -a-id. Then

Lef(lg)) = |det(g)] Ialmf([g-@ det((;)_l)] [(O 0)])

= !det(g)!?f ([g- ((1) det(og)_1>D = Lef(lg])-

2 The unitary dual of SL(2,R), GL(2,R) and PGL(2,R)

Let us briefly recall the description of the unitary dual Sm) of SL(2,R) in terms of the
induction parameters for principal series representations (&, u) C ]T/I\SL(Q,R) X agL(ZR)’C. To this
extend we introduce some notation. Let Ps = MgAgsNg C SL(2,R) denote the usual minimal
parabolic subgroup in SL(2,R), i.e

Mg = {£I}, AS:{G) t91> :t€R>0}, NS:{G) f) ::EG]R}.

We furthermore let Kg = SO(2) denote the maximal compact subgroup of SL(2,R). We then
identify Mg = Z/27 and af¢ 2 C. Under this identification psyog) = 1. Let e € Z/2Z and
p € C. For any character e ® e ® 1 of Pg define the principal series representation 7., to be
the left regular representation of SL(2,R) on

nd *® (e @ e ©1) = {f € C¥(SL(2,R)) | f(gman) = [t|-"7* f(g), man € MsAsNs},

where ma = (! t91 ) € MgAg. We introduce the notation

0
o — [ cos 6 sinf
7 \—sing cosf)’
and the characters 1, (kg) = €™ on Kg. According to the theory of Fourier series we have the

Kg-type decomposition

mdp*ewer©)2 @ Chm.

me2Z+¢

We let Ind?;I;(z’R) (e ® e* ® 1), denote the set of functions contained in the Kg-type given by

m € Z, that is Indp,*™ (e @ ¢ © 1), = Cfn. Then we have:
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Proposition 1 (See [Cas20, Prop. 10.8]). The representation IndSL(2 ®) (e®e!®1) is irreducible

except when p € 1—e—27 . If u € 1—e—2N then Ind?DL(2 ) (£®e“®1) decomposes as Vo Vi d Vs
where Vg is an irreducible representation containing exactly the K-types with |m| < —u. The

quotient sz is a direct sum of two infinite dimensional representations T, hf} and Ta};fl. For

uwe€e—1+2NIn dSL(2 R) (e®et®1) decomposes as Vo @ Vi @ Vo where Vi and Va are irreducible
representations wzth V1 containing exactly the K -types with m > p and Vo containing the K-types
m < —u. The quotient is a finite dimensional representation.

SL

For ¢ = 0 and p € iR the principal series representations Indp (2R) (0® et ®1) can be

unitarized by being equipped with the canonical L?(Kg/Mg) inner-product. Similarly for ¢ = 1
and p € iR\ {0} the principal series representation I]rldSL(2 ®) (1®e”®1) can be unitarized in the
same way. However for y € 1—¢—27Z the infinite dlmensmnal representations Tgh‘;} and TahOI does
not come with such a simple unitarization. Instead let wy = (% §) denote a representatwe of
the longest Weyl group element of SL(2,R). Recall the definition of the normalized Knapp—Stein
intertwining operator

5 pgSLER)

Ty Indpy®® (e @ e © 1) — Indp®(

1
COHBN, Tout0) = b [ o,
T

for Re (1) > 0. The normalization is chosen such that T; ,, extends holomorphically to p € C.

SL(2, ]R)(

Proposition 2 (See [BJD23, Prop. 2.3]). For f € Indp, e®et®1), we have

Ta,/tf = bEm(M)ﬂ

where -

e—p
m+|m| ( 2 ) [m]
—5— —[el2

F(u+l2+|m|) '

Fore =0 and u € 1 — 2N we have b2, () > 0 for all m € 2Z. Whereas for e = 1, m odd and
p € —2N we have —ibL (1) > 0 for m > 0 and bl (1) > 0 for m < 0.

b, () = Vi (~1)

Using Proposition 2 we can for e = 0 and p € 1 — 2N equip IndS 2 R)(() ® et @ 1) with the
norm

IF1? = (f. Touf) = f(R)Touf (k) dk

/KSL(z,R)/Ms

Similarly when e = 1 and p € —2N we equip Indg;(ZR)(l ® et ® 1) with

L1 = (f, Tiuf) = F(k)Th, f (k) ds

/KSL(Q,R>/MS

where fl,u is given by

~ o iTh u f, for m > 0,
* —iTy,f, form <0

for f € IndP L@ R)(l ®e* @ 1),,. By Lemma 1 the restriction map

GL

Res;, : Ind P @ R)(

8 (1, m) ® €72 © 1) — Ind}y;

L(2,R)

771+772®€V17V2®1)7 f_>f|S7
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satisfies
Res(c14,6),(s+t,s) © Los =1d, and Ly, ., o Res,, =id.

Furthermore, since both maps are SL(2,R) intertwining the image P 1= En271,2wm of ¥, €
In d?;L@ R) (m +m ®e*™"2 ® 1), is fixed under the action of SL(2,R). Since Kqr,2r) can be
written as the disjoint union

1
Kgrer) = KsU Kgk, where £ = (0 _01> ,

the action of Kqro,r) on U is determined by the action of k. Let £ € {0,1}, then

T (ko) = | det(x+) 2 b (M:ekf (é (_10)1+e>> = (=1)" 3 (kor')

GL(2,R)
Por2,r)

Hence the K-type decomposition for Ind ((m1,m2) ® e"172) @ 1) becomes

@ (Cwm @ Cw—m @ Cwo
meE2N+[n1+n2]
L(2,R)
PGL(2 R)
SL(2,R). For n1+n2 = 0 and v; —vs € 1—2N we equip IndPGéiﬂi)) (1, m2) @12 @ 1)/ ker(fm,)
with the norm

For (v1,v2) € (iR)? we unitarize Ind% ((n1,m2) ® e1#2) @ 1) analogously to the case for

HfH2 < ~771,?72) (V17I/2)f>7

which is positive by (3) in Lemma 1 and Proposition 2. We then have

T(nmL(Vl,Vz)(Zm = T(nm),(lq,uz)f/nz,z/z@bm LO L0~y Um = (Vl - V2)L0 nWUm = b2 by, (V1 — 1/2)7Zm,

where the last equality follows from the second parameter, in the extension map, not mattering
in the Kgp,2,r)-picture. For 1 +mn2 = 1 and v1 — 1o € —2N the SL(2, R)-intertwining operator

GL(2,R)

T(m,m) (vi,2) — L7727V1 o Tl wvi—vo © ReSSL(2 R) - IndPGL(2 R) ((77 772)®6(V17V2) ® 1)

GL(2,R)

— IndPGL(2 o

(n@ e @1).

defines a GL(2, R)-intertwining operator. To see this it suffices to check that it intertwines the
center of GL(2,R) and the action of k. To see that it intertwines the action of x we get by
Proposition 2 that

TH,V(COTZm + Cl@;fm) = f’m,l/zam(yl - V2>(Co¢m + Clw*m) = am(V1 - VQ)(CO"Zm + Cllzfm)’
where cg,c1 € C, m € 2Ng + 1 and

2

(727V1+V2)m71
am (11 — 1g) = \/EF(VTM;)
2

To see that it also intertwines the action of the center we note that the action of ¢id is multipli-
cation by ]t|*(l’ 1172) which is invariant under permutation of 11, 5. We remark that the above

a].SO ShOWS that Indggﬁ?;i))((nl77]2) X e(Vlyl/Z) (%) 1)/ker(f(7]17772),(1/1,l/2)) can be equipped Wlth the
norm

Hf”2 (fs 771,772) (V17V2)f>



2. The unitary dual of SL(2,R), GL(2,R) and PGL(2,R) 41

Theorem 3 ([Bum97]). Let v € C? and n € (Z/2Z)%. Let ve = 11 + v and n. = m + 2. The
unitary dual of GL(2,R) can be described as follows: In all cases we vy € iR:

1. For v_ € iR we have 7, ,, unitary induced principal series.
2. Forn, =0 and v_ € (—1,0) we have 7,,, the complementary series.

3. Forv_ €1 —n, — 2N we have Tn7y/ker(f§%(2’m)

, the discrete series representations.
4. Forn, =1 and v_ = 0 then 7,, is a limit of discrete series representations

From this we immediately obtain the unitary dual of PGL(2,R) by only considering the
principal series representations for which the center acts trivially:

Corollary 1. Let v € C and n € (Z/27)%. The unitary dual of PGL(2,R) can be described as
follows:

1. For v € iR we have m,,, unitary induced principal series.

2. Forv € (—1,0) we have ¢

nvs the complementary series.

3. Forv € 3 — N we have n& =, ,/ ker(fgy), the discrete series representations.

We have purposefully omitted the trivial representations from the lists.






Part 11

Symmetry breaking operators

Let G’ := A(G) C G x G. The space of symmetry breaking operators for principal series
representations of G x G and G’

Homgy ((Wg,x ® ) la)s Wg,y)

identifies with distribution sections on G x G/(Pg X Pg) with certain P’ := A(Pg)-equivariance,
by the Schwartz Kernel Theorem. Such kernels are for generic induction parameters in corre-
spondence with the double co-sets Pg/\G/Pgxq. Especially, for G = PGL(2,R) one has

dim Hom¢y ((7['57)\ &® 7T777M) ‘Gl,ﬂ'g,y) <1,

for generic A\, pu,v € ag and &,7,¢ € M. Since principal series representations of PSL(2,R)
can be identified with principal series representations of SL(2,R) and principal series rep-
resentation of PGL(2,R) can be identified with principal series representations of GL(2,R),
with the center acting trivially, we use Lemma 2 to extend symmetry breaking operators for
the pair (SL(2,R) x SL(2,R), A(SL(2,R))) to symmetry breaking operators of (PGL(2,R) x
PGL(2,R), A(PGL(2,R)))

3 Symmetry breaking operators for tensor products of SL(2,R)
Let A\, u,v € C and &,n,( € Z/27Z and note that

dim Homa (sp,(2,r) ((Wg,A ® ) [SL2,R)s 7T<,u> =0 if(#E+n

since the center of SL(2, R) is precisely Mg. Using the compact picture, any intertwining operator
Ak Ten @ T ulsLe,r) = Teqnw can be written as

AKf(g)=/K x K(g1,92)f(991,992)d(g1,92),

with K € D/(SL(2,R) x SL(2,R)) satisfying the equivariance properties:

K (mang;, mangs) = f(m)n(m)e(”+p) 1Og"LK(gl, 92)
K(giman, g2) = f(m)e(/\_p) logaK(gl, 92)
K (g1, g2man) = n(m)e# PP K (g, gy)

43
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for all g1, 92 € SL(2,R) and man € Ps. Since (SL(2,R) x SL(2,R),SL(2,R)) is a real spherical
pair, A(Ps)\ SL(2,R) x SL(2,R)/(Ps x Pg) contains an open dense double co-set. Let

e [0 1
"= 1{-1 0

be a representative of the longest Weyl-group element for SL(2,R). Then (e, wp) € SL(2,R) x
SL(2,R) is a representative the open dense co-set, and the possible kernels K € D’(SL(2,R) x
SL(2,R)) is generically determined by their values on (pop1, powopz) for p; € Ps. For g1, g2 €
SL(2,R) we put

Po(g1,92) = (92)11(91)21 — (91)11(g2)21,  P1(91,92) = (91)21,  P2(91,92) = (92)21,  (3.1)
with (gx)i; denoting the (7, 7)'th entry of g € SL(2,R). Then we obtain the following result:
Theorem 4. For \,p,v € C and §,n € Z/2Z any kernel K € D'(SL(2,R) x SL(2,R)) N
L} ..(SL(2,R)) such that the corresponding distribution Ay satisfies

Ax € Homasoz) ((Tea ® T [asL.m) T

is up to normalization given by

K5 (91,.92) = [®0(g1, 92)15 [@1(91, 92) |2 4| @91, 92) 5 (32)

with |z|2 = sgn(z)%|x|®, and s1, s2,s3 € C being affine linear transformations of A\, i and v given
by

1 1 1
31:§(A+u+u—1), 32:§(A—u—y—1), 3325(—)\+u—u—1).

To simplify notation we will at times consider the dependence of the kernels in Theorem 4
in the parameters s, s9, s3 € C instead of A\, u, v € C. Abusing notation we will often write

K5 = 190(g1,92) 151 ®@1(91, 92) 2, | 291, 92) [ (3.3)

for the kernels in Theorem 4, and instead treat them in generality, as a family of distribution
valued maps in the powers s1, o, S3.

The existence of the kernels from Theorem 4 is not necessarily immediately obvious from their
definition. To see that there indeed exists choices of s1, s2,s3 € C such that the kernels define
locally integrable functions on SL(2,R) x SL(2,R) we use the non-compact picture for the prin-
cipal series representations, i.e we realize the kernels on Ng x Ng with Ng := N&. Using the
integral formula

Fdk = [ fnm)e e P,
Ks Ng
with 7 = k(7)) u(m)e?™n’ € G = KsMgsAgNg, we instead consider expressions of the form
Ai’i’”yf(ﬁ) = /f _ Kgf§§2,33(ﬁlyﬁQ)f(WbWQ)d(ﬁlvﬁ2)7 f € meN®myu.
R NSXNS
o . . 10
Identifying Ng = R by letting 7, = (a 1) , a € R we find

(I)O(ﬁxaﬁy) =T —Y, (I)l(ﬁl‘aﬁy) =, ‘b2(ﬁxvﬁy) =Y.
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Hence the integral kernels K ;55233 may be realized on R? as

K751 o, (e, ) = |z =yl 2|2, lylo- (3-4)
For the spherical case £ = n = o = 0, the integrability of such kernels were classified in [OC11]
and from this we obtain

Theorem 5 (Clerc-Orsted [OC11, p. 9)). The kernels K357 . are locally integrable as functions

$1,52,83
on R? in the region

Q = {(s1,52,53) € C3 | Re(s;) > —1, i =1,2,3, Re(sy + 59+ s3) > —1}.

In terms of the original parameters, the kernels Kgiz are locally integrable as functions on R?
in the region

Q={(\uv)€C|Re(\),Re(u) > -1, —1 < Re(v) < 1}.
4 Symmetry breaking operators for tensor products of
PGL(2,R)

Let &,m,(,0 € Z/2Z and A, u,v € C. We consider the following diagram in light of Lemma 2

md§ ((®@e* ®1) @ Indf (n® e @ 1) md§, ((@ef @ 1)
0,0,0

[
2X,24,v SL

Indps(2’R)(0 ®e’®1)

lReSPSL x PSL

mdy M (0@ e? © 1) @ mdy*M (0@ e @ 1)

which is PSL(2, R) intertwining by Lemma 2.
Lemma 3. For ( = o+ £ +n the above diagram is PGL(2,R) intertwining, making the compo-
sition
Aﬁw = L¢o AZL\O,’QO#,,, o Respsr, x PSL
a symmetry breaking operator for the strongly spherical pair (PGL(2,R)xPGL(2,R), A(PGL(2,R)))

Proof. Since

PGL(2,R) = PSL(2,R) U[s] PSL(2,R), &= (é _01>

it suffices to check that AS

3, intertwines the action of []. To this extend let f € ¢\ @ w0y

and realize Ag;\O,’QO#’y in the non-compact picture. Note that by the Iwasawa decomposition
G = KgAgNg it suffices to evaluate at [k] € Kg. Note that k = k! and kkx = k=1, thus we
have

mea (WD AS  F () = A4S, f (5K]) = | det(sb)| 7 AS,, f ([m (3 det?ﬁk)ﬂ)

-1
S 5 (0 (3 ) ) s

:(_1></N - Kgfé(l)w (k(m1,m2)) f(71, ne)d(7y, Ta).
S S
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Meanwhile we have

Ao Fer((s) © mu (RDAED = [ KG00, (K7 (7)) Foms, o), 7o)

= (_1)£+n/ﬁ 7 K3\ b0 (kilfi(ﬁl,@)ﬂ) f(m1, m2)d(7y, 2)
S S

= (_1)§+n/ﬁ - Kgg,’\(,)’g(;,y (kk(n1,m2)K) f(P1, n2)d(Tr, i)
SXINg

e [

K32 (k(my, 7 i1, 7o )d(Tiy, 70
X Ao (B(M1,M2)) f (A1, T2)d(M1, Tiz)

where the last equality follows directly from (3.2). O

Note that as a distribution
- 0,0
A5, 1 (g) = det(g)|Z (K550, f(g-).

Since det(g) # 0 for any g € GL(2,R) the analytic properties of AC , depends only on the ana-

7 sV

lytic properties K. /\OQ(L _» or in other words the analytic properties of A%’ 20 Hence it suffices to
study such properties for the symmetry breaking operators of (SL(2,R) x SL(2,R), A(SL(2,R)).
Going forward we shall abuse notation and write ASl 59,55 Similarly to the case for AN . Note

51,82,53
however that the s;’s do not coincide with those for A;’lfsz S5

5 Analytic continuation of symmetry breaking operators

The family of kernels Ksalfsg s; defines a holomorphic family of distributions on {2, in the sense

that for any ¢ € C*°(SL(2,R) x SL(2,R)) the map (s1, s2,53) — <K§1§8’27 s3> ®) is a holomorphic
map on 2. This notion of holomorphic dependence makes sense, since the compact picture for
principal series representations does not depend on the induction parameters A, u, v € C.

To extend the domain on which this family is defined, we can construct a meromorphic extension
of Kgfsg’ s; Dy deriving explicit Bernstein—Sato identities for the kernels. To do this we employ

a trick introduced in [BC12]. Let (G, H) be a strongly spherical pair of real reductive groups.
Fix parabolic subgroups Pg = MgAgNg and Py = My AgNg of G and H respectively. Let

me s = Ind, L(E® A1) and Ty = IndIGDG(n@) e’ ®1)

denote principal series representations of G and H induced from (§, V¢) € ]\7(;, A € (a5)c and
(n,W,) € Mu, v € aj; ¢ respectively. We identify
Hompy (e A1, 7o) = D'(G) e 0, ()

with ’DI(G>(€,/\)7( given by

V)
D'(G)ex), () = 1K € D'(G) @ Hom(Ve, W) | K(mpapnngmaacne)
= A P a P () o K (g) o n(ma)},

by the map mapping K € D'(G) ¢ x),(n,v) to the intertwining operator

Afn) = [ K091 (g)dg
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with the integral being understood in the distributional sense. We quickly remark that using
the integral formula [Knal6][Formula (5.25)]

[ sy = /ﬁ ) Flr(m)e2raHM) g (5.1)

the intertwining operator A can also be computed in the non-compact picture whenever the

kernel K € D’ (G)(e\),(n,v) 18 given by a locally integrable function;

"77”

Af(h)= | K(h~'n)f(n)dn.
Ng
We also remark that the distribution g — K(h~'g) can be viewed as a distribution section
of the homogeneous vector bundle over G/Pg defining mev _y, with the check denoting the
contragradient representation to (¢, Ve). Similarly h — K (h™'g) can be viewed as a distribution
section of the homogeneous vector bundle over H/Py defining 7,v ,. We shall write K(h™!-) €
Tev s and K((-)'g) € 7,2° for short. Suppose that the space D'(G)
family of distributions KJ!7 as

KJ0r(9) = |21(9)15) -+ 120 (9)13
where ®q,...,®, are analytic functions on G and si,...,s, correspond to (\,v) € (a&)c
(aj;)c via an affine coordinate transformation. This is for instance the case for (G,H) =
(GL(n + 1,R),GL(n,R)), (G, H) = (SL(2,R) x SL(2,R),SL(2,R)) and (G, H) = (PGL(2,R) x
PGL(2,R), PGL(2,R)). Multiplication with ®, then maps KZtZi=0r to KIl7if b ang

yeeesSiyenns S1,..0y8i+1,...,8r
. / / .
hence it maps D (G)(01,...,Ui,...,ar),(sl,...,si,...,sr) toD (G)(01,...,ai+1,...UT),(sl,...,si+1,...,sr)7 assuming that

nv) 18 given by some

X

(01,...,0;+ 1,...0) still corresponds to some pair (£',7n') € Mg x My. The trick used in
[BC12] is to conjugate the multiplication operator by standard intertwining operators to find
Bernstein-Sato identities that relate Kgl7¢ 7" to K;lgl__llsi’“ We briefly explain how
standard intertwining operators can be used on D’ (G)em),0O0):

Let Wg = Nk (Ac)/Zk,(Ag) denote the Weyl group of G. Then for every w = [@] € W the

integral

Tucaflo) = [ flgim)

NgNiw—Ngw

converges absolutely in some range of (af;)c and defines an intertwining operator m¢ x — Mg w-
It can be meromorphically extended in (af;)c to a family of intertwining operators. For K €
D'(G)(em), () We have K(h™1) € Tevy and hence Typev 2K (h1) € Toev —wy- Since this
does not influence the equivariance properties of the kernel with respect to h we obtain a new
kernel Ky, € D'(G) (we,wn),(Av) given by

Kulg) =Tuer Klg) = [ K(gan)
NN~ INgd
Similarly we let Wy = Ni,, (Ac)/ZKk, (An) denote the Weyl group of H. For w € Wy we define
the standard intertwining operator Sy . : Tpy — Twnwe analogously to the case for G. For
every K € D'(G) ¢, (nv) we have K((-)71)g) € 7, 2° and we obtain Sy, K((-)71)g) € 7005,
This does not change the equivariance properties in g and hence we obtain a new kernel ,K €

D/(G)(ém),(w/\,wy) given by

WK (9) = Sy K () g) = L K (ig)dn.

NHﬂﬁ)leH’lI)
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In this setting we can also realize this in a slightly different way, avoiding the direct application
of standard intertwining operators on D'(G) ¢ ), ()¢ For every A € Hom(mg,|H, 7y,,) we have
Swny © A € Hom(mg p|H, Tum,wy). Hence, if A is given by the kernel K then

Suars o A (D) = [ K (a1 g) f(g)dgdm

Nygnw—INpgw Kg

- (L Ko ') dnlg)dg
Kg NgNw—INgw
= [ WKt (o)ds.
Kg
Hence Sy 5, o A is given by the kernel S, o A. In summary we have two maps

we Wg : D(G) e, = DD wewn),0n)y K = Ku,
w € WH : D/(G)(€7n)7()\7,,) — D/(G)(€7n)7(w)\7wy), K — wK.

Note that the two maps commute and that for when the Weyl group element is chosen to be
the identity the respective map is also the identity. For w € Wy and w’ € Wy we define the
conjugation map A, . by

Aw,w’ : D/(G)(§,n),()\,l/) — D/(G)(wf,w’n),(wk,w’u)
K w’Kw

with the kernel K, given by

w Ky = /7 /7 K(ﬁHﬁJlflg@ﬁg)dﬁHdﬁg.
NgNw—INgw JNgNd' Ngw'—1
Let

M‘Pi : D/(G)517~--75r — D,(G)517-~-75i+11-~,37‘
K—®, K

denote the multiplication operator by ®;. If wi,wy € Wg and wi,wh € Wy is such that
Aw%wé oMsp, kohwi is a differential operator that maps D'(GQ)s, ... s, t0 D'(G)s,....s,~1,....s,, then
the result is a Bernstein-Sato identity which can be used to meromorphically extend K, . ..
To see how this works for the case when (G, H) = (SL(2,R) x SL(2,R), A(SL(2,R)) let wg be
a representative for the longest Weyl group element of SL(2,R) and put w) = wp if i = 1 and
w) = id if i = 0. Then we have

K% = const x K77

A (i oty KX (1A (1) (~1) 1

Meanwhile we have the multiplication maps
Mg, : (A p,v) = (A+ 1 p+1,v)

Mg, : M\ p,v) = A+ 1,u,v—1)
M<I>2 : ()\,/,L,I/)—)()\,,u—i-l,lj—l)
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This suggests that the relevant composition maps are

D1s = Afwo,wo),id © Mag © Agugwe),id * (51,52, 83) = (51 — 1, 52, 53)

DQ,S = A(wg,id),wo o Mq)1 o A(wo,id),wg : (817 52, 33) — (Sla 52 — 17 53)

D3 s = Aid,wo),wo © Ma, © Afid,we)wo © (51552, 83) = (51,852,853 — 1)

To see that these are indeed differential operators we note that since T}, o T),-1 = const x id
and Sy 0 Sy,-1 = const X id we have D o Ay, ¢ = Ay, © Mo, Realising Ay wp)ia in the
non-compact by decomposing won, = nya;n we find ¢ =z and y = —% and hence

Alwpwo)id © K50 (2, ) = L L [t 2 i KT (AT, T Ti2) ) d(7T, )
Ng JNg
= (0 [l T KOS, (2w y)dady.
On the other hand we find
A(wo,wo),id o Mq’o 0 K;:/ii?/(ﬁm ﬁw)
= O [ [ el 2yl 20 (e T KRS, 2+ w0+ y)dady
_ (—1)EH /R/R 2l A2yl — g+ 2 — W) KOS (5 4+ @, w + y)dady.

We get similar setups for Dy s and D3 . The corresponding differential operator is then obtained
by using partial integration to relate the expressions. This yields the following

Theorem 6. For s = (s1,s2,83) € C> and A = (0,&,m) the composition maps D, s, in the
non-compact picture, are given by

Dy = (x —y)0,0y + (51 + 53)0r — (51 + 52)0y (5.2)
Dy s = (514 252 + 53)0y + (81 + 52)0y — (0205 + 0,0y)
D37s = (81 + Sg)@x + (81 + so + 283)8y — y(é?y@y + 6m8y)

For KM = K941 . we have the following Bernstein—Sato identities:

51,92,53
Di KD = bi(s) Ko™ 2 (5.5)

where e; = (014, 02, 03;) and
bi(s1,82,83) = si(1 + s1 + s2 + s3). (5.6)

The Bernstein—Sato relations allow for a meromorphic continuation of the kernels since

KA = !

D, KX
s b,-(s—f—ei) LSTiste

If we normalize the kernels by canceling out the zeroes of the Bernstein—Sato polynomials b;(s),
we obtain a new family of kernels K2, which depend holomorphically on the parameters s =
(Sla 52, 83):

Ko:€n

R | 57
s F(Sl + 1)F(82 + 1)F(83 + 1)F(81 + 8o + 83 + 2) ( )
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Remark. The classical Riesz distribution r¢ y(x) = |:c|g‘ on R, defined for Re(\) > —1, satisfies
the Bernstein—Sato relation % = )\]a;|g‘ 1, and the procedure we deployed above would then
imply that the holomorphic extension to A € C should be 7) = % However it is well known
that this normalization introduces unnecessary zeroes, i.e there exists an analytic extension of
ryx to A € C such that ry # 0 for any A € C. The same problem happens to occur for our
normalization K 2 however the problem is a bit more finicky in this setting, since we are dealing

with several complex variables.
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Zeroes of the Kernels K2

Analogously to the case of the holomorphic extension of the Riesz distributions 7, we can
investigate the set of zeroes

Z(KM) = {(s1,50,83) € C3 | AZ80 . f(g) =0 Vf € C°(SL(2,R) x SL(2,R)},

51,52,53

by evaluating the kernel against against a specific test-function f € C*°(SL(2,R) x SL(2,R)).
The kernels arise from a representation theoretic viewpoint and this suggests that for the case
A = (0,0,0) a suitable candidate for f should be the spherical vector ¢y ® @o in SL(2,R) x
SL(2,R). However for arbitrary choice of A we don’t necessarily have a K-finite vector. A
suitable alternative is the tensor product of lowest K-types of SL(2,R). The value of A%%0

S1, 52 53

on ¢y ® o is already well documented in the literature, see e.g. [OC11][p. 15], however this
does not seem to be the case for lowest K-types. We employ the method used in [CKOP11],
extending the result for n = 1 to the signed case.

6 Bernstein—Reznikov integrals

Consider the integral operators on C*°(Kg) given by

Rfw)= [ s =yl fade and BfG) = [ |sintx )l costx — ) ().

S

Let ¢, = € and recall that the K g-finite vectors for a principal series representation e, of

SL(2,R) are given by @ C-p,. We realize C®(Kg) as C*(Kg) = C*(S'). Then we have
me2Z+-¢

<Agfsz,33 wm ®1/)n) w(m+n>
= [ R o - Ko - Y G Y () ()l i
Ks JKg JKg

_ /K /K /K [sin (0 — 01)[3 | sin(0r — 05[22, | sin(0 — 05) |33, ™ O =09 im02=0) 4, Ao,
S S S
Meanwhile we also have
27
RS2 o RS o RS f(y) = / |sin(8; — )2 RS o RS f(61)dby

2w 2w p2w
/ / / |sin(01 — )[22[sin(fy — 01)[2 [ sin(6s — 6)[S2 F(03)d0:d02d0s,

o1
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and hence we find that
21 21 27
/O /0 /0 |sin(0s — 01)[3 | sin(8; — 03)[52 | sin (0 — B3)|52 dBy dfadfy = (—1)7 tr(RS2 o RS o RS:).

By the same computation we also find

2 2T 27
/0 /0 /0 [sin(0y — 01|52 | sin(0y — 05)[52 | sin(0s — 05)[52 cos(0y — O5)dbdBads
= (1) tr(B;2 o Ry} o R?).

o1

Hence for m,n € {—1,0,1} the evaluation of Agfg;,sg, against the lowest Kg-type can be de-
scribed by computing the spectrum of Rj2 o Rj! o R33 and Bj2 o R3! o RZ3. In principle,
evaluation against any Kg-finite vector can be computed using this method in combination with
the classical trigonometric identities, however the corresponding computation might be exceed-
ingly difficult to carry out or the result might be hard to interpret in terms of poles and zeroes
of Agf;’;sg. As such we shall focus on the cases when m,n € {—1,0,1} and the special case
when m = 2 and n = 0. An easy calculation shows that the integral operators RS and B have

shared eigenvectors v, and using the integral formula

Lemma 4. For Re(v) > 0 we have

u : 21’V7re%lﬂ(u)
sin’ Y (2)e' dx = .
Jy e D)2

We then find that their corresponding eigenvalues are given by

2 .
RSt () = /0 | sin(6 — 2)[Se™do

2m—x .
= | sin(0)]2e™0d0 - by, ()
O0—x

= (14 (=17 /0 sin(0)e"™df) - P ()

275 (s + 1)

=(1+ (—1)U+m)r(s+Tm T2 +1)

= Wil (8)¥m(2),
with £, (s) = o %;: flr;ll:((fi;)ﬂ). Likewise we also get
27 ) 1 [2r—=z . )

Bt (x) = /0 [sin(6 — )3 cos(0 — z)e™do = /O SO (Y ) gy (1)

Wi
= 2“ (bmt1(5) 4 lm—1(8))¥m(x)
=w9 277 al (s + 1)im ! - ! Y ()

m r(stmtl o p(s=m=t gy peeteel gopp(esgt 4oy )
1 s—m—1 s+m-—1

= Wl 275 (s 4+ 1)t ( 1__1) »

Wim+1 ™ (S + )Z F(s+7721+1 + 1)F(sfn21+l 4 1) 2 + 2 7!) (SU)

m
D(stmtl 4o )p(s=mtl 4 )

=w?, 275 (s + 1)i™

= W;TnJrIQm(S)wm(x)a
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: — 9—s ym—1 m : :
with ¢, =27%7['(s + 1)1 (e ) We note the recursion relation

lms2(s) _ (-1 D2 + D)2 +1) o

SIS
—+ [l
[

fmls) DR +20(5") 5+
which implies
tn(s) ((g%:l))k lo(s), o=0and m =2k
S) = 21—3
" (5(+12+)1k)k€1(8)’ oc=1and m=2k+1,
2

where (a)y =a-(a+1)---(a+k — 1) denotes the Pochhammer symbol. Analogously, for ¢,, we
find

gmya(s) _ (m+2)(m—s—1)

am(s)  m(s+3+m)
Hence for m = 2k we have
k—1 s+1 k—2 s+1
Jt1i—"5 JjH1-5
= S _— e k; .
Q2 Q2()j:1 j j—l—# g2(s) ]1;[0]4_1_1_553
(155 k-1 k-1 (55
=k- 2 q2(s) 2 q2(s)
(522 + 1) (Dr—1 (2 + 1)
and for m = 2k + 1 we find
B = g <s>kﬁ1 U8 T E okt o) gt — () 2
2%k+1 = q1 1 = q
B 027+ 1j+35 3 (552 + 1x (2 (552 + D

Evaluation on lowest Kg-types

Let at first £ =n = 1. Then ¢; ® Y_1 € 7\ ® 7, and we find that
<Agﬁé,ss w ) ”¢o>
2 r2m 2w .
= / / / | SlIl 92 — 91)‘81 ’ sm(01 93)|0+1‘ sin(02 — 93)’21161(91792)d91d92d93
2 r2m 2w
= / / / | sin(92 — 01)‘21 | sin(@l — 93)|§2+1| sin( 93)’0’4—1 COS(9 -0 )d91d92d93
0

2r 2w P27
_ Z/ / / | sin(B2 — 61)[S54 [sin(6r — 63)[3% | sin(fa — 03)[3,  d01dO2d05.
0 0 0
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For o = 0 the second integral is not invariant under the transformation (61, 62, 03) — (—61, —62, —
and hence vanishes. Hence we find

(A s (V1 ®Uo1) Y0k = (1) tr(RY? 0 By' 0 RP®) = (=1) D (W) G (51)lin (52)im (53)

meZ
[e%9) 3 S 1—s 1=s
e G 2 (FP 1
= 24q1(s1)1(s2) 1 (s3 Dk : k!
( ) ( ) ( )Z( ) % 51+2+1) (82;1+1)k (%‘Fl)k k!
13 = 12 52
= 2 q1(51)€1 52 fl 53 5F4 % 51+2 +1 SQTH +1 % + 1; 1

_ w2 + D5y + D + 1) (1

T T (T (AT (T (3T (1)
T2 + DR + 1) (1

T e )

[SIEE NI
(N

—;1 1—252 1—s2
5142 so+1 s3+1 i1
3 +1 5 +1 +1

[SIER NIV

—S1 1—s2 1—s9
15 s IS
S1 S2 83 9 Y
2 +1 2 +1 2 +1

where 5Fy denotes the generalized hypergemeotric funciton. Using the Dougall-Ramanujan
identity

7 m—1 =y —y —z .\ _T@+m)Iy+m)(z+m)'(z+y+z+m)
prd 2l oz4m o oy+m o z+m Fm)z+y+m)(y+z+m)(x+z+m)

then gives

<A87117312,33 (1/)1 @ Qp—l)a ¢0>K

3 —s1 1—s9 1—s3
:(—1)24Q1(51)fl(52)fl(53)];)(1)’“%% (22 k k(52(“2—|—)’;) (85;12 )k) kl

+1)
_ W%Q4F(s1;-1) (?2 )I‘(53 + l)F )]_—\(83-1-3) (51+522+53 + 1)
i )

)

A[\D

(5
S (=

+

2

F(812+4) ( ;r) (532 ) F(2) (s1+sz+ F(51+S3+3)F(‘92;33—|—1)

_ 2SS 4 DU + R 4
F(s1+§2+3)r( ) (32+53 +1)

73
2
+

To make the calculations to follow a bit more manageable we introduce the following meromor-
phic function

B(s1, s9,53) = —tr(Rj? o Byt o R}®).
1 0 1

By the above we have

243 D(SFND(% + DI(S + DT 4 1)

B(s1,s92,83) =
( 1,92 3) F(51+32+3)F(51+§3+3)F(82—5‘93 +1)

(6.1)

For o0 = 1 the first integral vanishes and we find

(ALLL (1 @ ), o)k = —itr(Ri o Ry o RE?).
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However the Dougall-Ramanujan identity is not available in this case. We instead note that

(AbhL (1 @ Y1), vo) i

2r 27 P27
_/ / / | sin(fy — 601)]5] sin(61 — 03)]32] sin(By — 3)]32e' 01703 =402=95) 4, 49, d6;
2 P27 27
y / / / [sin(0s — 01)[5*| sin(0y — 03)[32+ | sin(0s — 03)|52 cos(0s — 02)d0 dB>dbs

2T 21 2T
_ z/ / / |sin(Ba — 015 sin(6; — 03)52] sin(fz — 04)[3+ cos(81 — 0)d6r dbadds
= i(tr(R2 o RS o B3®) + tr(BS? o RS o R$*T1)) = —i(B(s3, 50 + 1, 51) + B(sa, 51,53 + 1))

?

D255 + TN (25 (S 1 (s 4 o)1 (et
T(3 + 1)[(Sxtsztsatd) .
F(81+;2+3)F(52'583 +2)F(%) ( 5 ) (
— —i247r% (% + 1) F(%l —+ 1)F(52;'1)1‘(53;‘1)F(51+823-53+3)
F(51+;2+3)F(52-553 _'_2)1_‘(%)
0l SF(SI +1>F(52+1)F(s3;-1)F(sl+52;_53+3)

= 1
F(51+82+3)F(52'553 + 1)F(%)

s3+1
2

s9+ 1

R )

) 3
= %73

As before we introduce the following notation:
R(s1,89,83) = —itr(R5? o RS\ o R33) (6.2)

and we note that the previous computations show that

2471_% T(& + 1)F(sg+1)F(ss+1)r(81+82+83+3)
1,1,1 _ 2 2 2 2
R(s1,52,83) = (Ag; .55 (V1 @ V1), Y0) K = T (s0EszE8) T (saken 4 )T (2E5)

(6.3)

First spherical and second non-spherical, i.e £ =1 and n =0
Let £ =1 and n = 0. Then we have that ¢ ® 1y € m¢ \ ® 7, and we find that
(AL s (01 @ o), ¥n) ke

2r 2 p2m .
= / / / | sin(f — 01)[3 | sin(01 — 03)]32, ;| sin(02 — 05)|52" 1 =0)d0, A0y dbs
2 2w 27
/ / / [sin(fs — 61)[21] sin(61 — 65)[2, 1| sin(8s — 05)[ cos(8y — B3)d6: dB>dbs

2 r2wm p2w
* l/ / / [ sin(f — 61)|5! | sin(61 — 05) [+ sin(fa — 63)|52d61dB2db3
0 0 0

For o = 0 the first integral vanishes and we find
(1427117(;02783 (11 @ o), V1)K = itr(RSQH o Ri' o R®) = itr(Rg! o R(sf“ o Ry?) = —R(s2, s1, 53)
For 0 =1 we find

(ASND o (1 @ 1o), 1)k = —tr(Bg? o Ri' o Rf®) = —tr(R}" o By? o R*) = B(sa, 51, 53)

_ 1 (247r21—1(53;—1)r(52;-3)1-\(s21+1)F(51+52;-53+3) 247T%F(52;1)F(%+1)F(53;3)F(51+52;—S3+3)

)
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First non-spherical and second spherical, i.e { =0 and =1

Let £ = 0 and n = 1. Since permuting A and p permutes so and s3, this computation is in
practice redundant, but acts as a nice sanity check. We have that 1o ® ¢ € m¢\ ® 7, and it
follows from symmetry that we must have that for ¢ =0

(A0 (o ®@11), 1) = itr(RY? o Ry o RGP = itr(R' o REPT o R§?) = —R(s3, 51, 52).

For 0 =1 we find

(ALOL (g @ ), 1) i = — tr(RS2 o RS 0 BE) = — tr(RSY 0 B o RS?) = B(ss, 51, 52).

51,52,83

The Spherical case, i.e £ =0and n=0

Let £ =0 and n = 0. Then we have that ¢y ® g € m¢ \ ® 7, and we have

2r 27 P27
(AZ%9 .. (Yo ® o), Yo) K _/ / / |sin(fy — 61)|2! | sin(fy — 63)|52| sin(fz — 63)|%3dOydOodbs.

For o0 = 0 we have
(AD%D (Yo ® o), o)k = tr(RE? o RY! o R§?) = iR(s1 — 1, 52, 53)
For o = 1 then (A%%0 _ (4o®1),10) k = 0. Hence we instead consider the following expression:
<A§f£,53 (12 @ o), 2) K
N /27r /27T /2” | sin(6y — 01)[5] sin(6y — 05)[§2] sin (6 — 0s)[§2e*" =) d6, dO2d03
= /0% /Oaﬂ /02” | sin(fy — 01)]5*| sin(6; — 63)[32| sin(f — 63)[5* sin(2(6; — 63))d6dh2dbs
— 9 /0 o /0 o /O T sin (B — 61)[27 sin(01 — 03|22 sin (0 — 6)[5 sin(61 — Os) cos(6r — 03)dB:dBadBy

2 2 27
= Qi/ / / |sin(92 — 91)‘11 ’ 5111(01 — 93) 82+1‘ sin(92 93)’1 COS( 93)d91d92d93
0 0 0
= —2itr(B2T o R o R{®) = —2itr(RS! o B2t o R33) = 2iB(sy + 1, 51, 53).

In conclusion we have found

(A 811,512,53(7/)1 ®_1),%0)k = B(s1,52,53)

(ALl (W1 ® Y1), v0) k = R(s1, 52, 83)
<A(5)1152 53 (W1 @ Yo), Y1)k = R(s2, 51, 83)
<A;11,£,53( ® o), Y1)k = B(s2, 51, 53)
<A(S)1?812, (o @ 1), 1)k = —R(s3, 81, 52)
(AL (o ® 1), v0) i = B(s3, 51, 52)
(AR (1ho ® o), o)k = iR(s1 — 1, 52, 53)
(ALLL (9 ® o), a) i = 2iB(s1, 52, 53).-
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51,52,53

with

o4 3 T( + 1)F(S2;1)F(83;1)F(81+82;53+3)

R ) ’ = B 2
(81 S9 33) i F(S1+32+3)1—‘(32—§33 +1)F(%)
24%FLHFQ+1F§ 1)[(s1ts2tss | q
B(s1,52,53) = m2D(EN(F + DI + DI )

F(51+§2+3 )F(51+;3+3)1—‘(82;83 + 1)

7 Functional equations and the renormalization of A7 . .

We saw in the previous chapter that the symmetry breaking operators

o
51,52,53

F(Sl + 1)F(82 + 1)F(83 + 1)F(81 + 89 + 83 + 2)

extends holomorphically, as a distribution, to C3. It turns out that this normalization introduces
some unnecessary zeroes. Hence we can normalize through different complex lines through
(s1, 82, 83) to obtain new non-zero kernels. To do this we show some functional identities using
the Knapp-Stein intertwining operators and use these to find a suitable renormalization.

Recall from the discussion in chapter 2 that for m¢ y,m, , € G with the G x G invariant form
is given by

<f7 f/>)\,,u = <f7T)Efi)fl>Kg><Kgu f7 f/ € Ff,)\@ﬂ—n,u

with T)(\ii) =T ® T, /4,7 = 0,1 with T =id if i = 0 and the standard (normalized) Knapp—
Stein intertwiner for G if ¢ = 1. By the third property in Lemma 2 the composition AS

T((Ul))i)\( 1)i, can be computed by computing Aglfsg s3 (TS)EZE)UM,( )i

defined analogously to T( 7 but with respect to SL(2,R) (or PSL(2,R)).

LWINY
with (TS)U) being

Lemma 5. For (0,£,1) € (Z/27)% we have the following

AZS (TS)( ) - da?)7£(517 52, 53)Ag+l£+ﬂ7 o 77’ 1,7 =0,1

51,82,53 (=1 (-1)ip s7,55,8%

where (T5)\7)(f1 ® fo) = (TS \(f1) @ (T9),(f2) with (T5)),, = id, (T9)}, = (T%),, and
(8], 5, 85) given by (7.2), (7.3) and (7.4) for the 3 cases (ij) = (10), (01), (11) respectively.

51»32733

Proof. Note that AZS7 . o (T )E” i) A (—1)ip again defines a symmetry breaking operator and
hence is on the form

AZED o T\ = 3 a, AT (7.1)

51,52,53 31752785
o=0,1

Both sides of the above are completely determined by their corresponding integral kernel. The
(s} 8h,s4) indices are determined by the coordinate change (A, i) — ((—1)%A,(—1)7u). These
coordinate changes corresponds to the following in the s, so, s3 picture:

(=, 1) = (81, 82,83) — (8],85,85) = (—s2 —1,—s1 — 1,81 + 83+ s3+ 1) (7.2)

(A, =) = (s1,52,83) > (57,85, 83) = (—s3 — 1,51+ s2+s3+1,—s1 — 1) (7.3)

(=, —p) = (s1,82,83) > (s, 55, 85) = (—s1 — 52 — 83 — 2, 53, 52).
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By computing both sides of (7.1) in the non-compact picture we can note that the kernel of
the left hand side has specific equivariance property under a the coordinate change (z,y) —
(—x,—vy), hence the kernel of the right hand side of (7.1) must have the same equivariance
property. By symmetry it suffices to only check the cases (ij) = (10) and (ij) = (11). Here we
find

AT G TEAf 0 1)) = [ [ o=yl al2ielylsnfole + 1) [ i@ sonm,) dudady,
Decomposing won, = ny,an gives t = w and u = —w~1. Hence we have
AT TEA N () = [ [ 1o = ol el i ol +9) [ A0y ulg> dwdody

£///|$_ |Sl‘x|a+£‘y|o+nf2(z+?/)f1(2+x+w)!w|§‘1dwdxdy
:/R/R!leiinf2<z+y)f1(z+u) ([ o=l o — ol s ) duy
Z//K’(u,y)fl(z+u)f2(z+y)dudy
R JR

. 10
Since K'(—z, —y) = (1)K (z, y) we must have AT 53OT( )\L = d‘(’7€)77(51, S2,53)ATTEST A
similar calculation for A7 oTE ) , shows that A7 ng\l’l by d‘(’fl)"(sl, Sg,83) AZFTEFmEN,
O

By Lemma 5 it suffices compute the Knapp-Stein intertwiners (7° S )( 9 on the Kg-types
considered in chapter 6. Since (T )(’ 7 g SL(2,R) x SL(2,R) intertwining we have

(U (¢m ® Pn) = (Tg,)\wm ® Tg,uwn) = (c1(m, &, N))* (02(71 s 1))’ (wm ® Pn),

for some ci(m,(,v) € C. To compute these constants we decompose woTi, = kgain

woi — [ F 1\ [ cosf sinf\ (t 0O 1 y\ [ tcost tycos® +t 1sinf
0= -1 0/  \—sin® cosd)\0 ¢1)\0o 1) \—tsind t~lcos —tysinf )’

SL(2,R)
(

Hence t = v/1 + 22 and cosf = \/T Then, since ¥, € Ind E@er®1) we get

B T4 m 1 A+1
oo~ (5] ()
1+ 1+x
We therefore find

T5A¢m(”0):A%lﬁm(wonx)dz:/ﬂ{(\/%)m(\/ﬁ)/\ﬂ .
= [ dm(wgm)dr = [ (@)™ (1+2%) 7T da
R R

A—1

:/R(x—i-i)m((:c—i)(i—i-x))_mg dx
R

2 AmmT())
F()‘+12_m)r()‘+12+m)

where we used the integration formula:
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Lemma 6 (Casselman 16.7).

o N 8 . 2a+5+2ﬂ.z‘5*alﬂ(_a o 5 o 1)
[@=(e+ e = Ty

Going forward it will be convenient to consider the normalized Knapp-Stein intertwining
~ ~ TS ~
operators (TS)&)\ Mg\ — e\ given by (TS)&)\ = 1“(§7r5)’ making T¢ y holomorphic in A. We
=
define (T° )g\”#) accordingly. Denote dé’f)’n()\ i, V) the corresponding coefficients from Lemma 5.

For our intents and purposes we only require d‘éf)o()\, i, v) but we refer to the Appendix for the
remaining cases. To this extend recall that s; +so = A —1 and s; +s3 = pu — 1. Then

AGDS oy 0 (T, (0 @ o) (€) = F(/f_) A8, (Yo @ o) )
_ VT iR(sp —1,89,583)
I(=52) 2
= A (1.2, 53) A", (0 © o) ()

= P00(s, 59 s )R(_S2_27_31_1;31+82+$3+1)
(10) 1,92,93 27‘(‘ .

Hence moving things around we find

\/,TT R(Sl - ]-a 52, 53)
F(;Sl?_sg) R(—SQ —2,—81— 1,81+ 582+ s3+ 1)

fl“( s1+ )F(%SQ-F%)
D(=3s)T (3ot bs+1)0(=1s)

50,0,0
d(id) (517 52, 83) =

Since the tensor product is symmetric we obtain

ﬁ R(Sl - ]-7 52, 53)
D(=3%3) R(—s3— 2,51 +s2+s3+1,—s1— 1)

fl“( s1+ )F(%Si’ri—%)
T (~4s1)T(5si+3ss+1)0(=4ss)

d(él) (317 52, 33) =

Lastly, using the same method of computation, we find

JT NG R(s1 —1,592,53)
F(*S1782) F(*312*33) R(—31 — 89 — 83 — 3, s3, 32)

2
7TF( 1+ 5 82+ 83+1)F(%81—|—%)
F(—%Sl)r(%81+§82+1>f‘( s1+ 5 83+1)P(—%81— S —%S —%)

0,0,0
d(ll) (817 52, 83) -

N[
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When o = 0 we instead find

1+A ;2 .
10) 2- AT (= A 2iB(s2 + 1,1, 83
Ail?sg 53 (TS)( (w ® wO) = —)\—1( —))\+3 ( 2 )
()P (=) (=5) u
. ﬁ 1+)\2iB(SQ+1,81,83)
r(52)1-A 2m
. —ﬁ 81+82+22iB(82+1,51,83)
N F(#) S1 + S2 2T
B(sh+1, s}, st
_ C’Z\%i%)o(ShSQ,Sg) ( 2 o 1 3)
QiB(—Sl, —S9 — 1,81 + 82+ s3+ 1)
= d(io) (51782733) ot :
Thus we get
—/T S1+sSs2+2 B(52+1781,S3)

&170’0(81732733) =
(10) F(%) S1 + S92 B(—Sl,—82—1,81+82+83+1)

B VAl ($s1+1)T (5o +1)
—F( s1+ 5 32+1>F(_§31+%)F<—%82+%>'

Again, using the symmetry properties, we get

\/7>T B(SQ + 1751733)
I(=8) B(s1 +s2+s3+2,—s3—1,—s1 — 1)

ff( 81+1)F(%53+1)
T = e

71,0,0
d((’)f) (Sla 52) 83) -

Lastly, by direct computation, we get

V(R332 4+1) 7 B(s2 + 1,51, 53)
F(;SIQ_SQ + 1) F(7—812—83) B(Sg +1,—s1 — 59— 53 —2 82)

_ 771“( s1+ 35 52+ Lgs 4+ ) (51+1)
_F( s1t 3 52+1)F< 51+ 35 s;»,—i—l)l“( %51_%52 %

d(i]f) (517 82) 83) -

83> T (—% S1 + %)
Abusing the notation slightly, we obtain from a case by case analysis the following closed formulas

\/7?1“ (A+u+u4+1+2a) T (/\—u—u4+1+20)

3?1%)0()"“’ v) = T (*)\*H*:+1+2a> T (f)\+u+i/+1+2o) T (%) (7.5)
. fl“ M utrv+1+420 T —A+pu—v+1420
d(og)o(/\, W, v) = T (7::54”_,_1_,_240) T (ZMST_H_;) T (22,_1) (7.6)
A v o Ap—v o
d?l(i)O(/\7M’ . AT ( +pt 4+1+2 ) T ( +u 4+1+2 ) -

—A—p—v+1+2 —A—pt+v+1+2 A +1)°
P (Steptetn) D (S r (g0 (55
Lemma 7. For generic \,u,v € C , o,n,§ € Z/2Z and [ € m¢ \ @ ™, we have

o+E+n (i) _ 50,0,0 o+&+n
A 0 T yin 1y = iy A 20 v) AT 1y
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Proof. Using Lemma 5 we have

otétn (i 0,0,0 Lj
Amfu "o T((ijl))u,(—lw = Lotern © Ag) oy © Ressizr)xsL(2 ) OT((?I))Z‘A,(—IW

0.0 o
= Lot1n © A% 2y © T((ijl))u,(,l)ju o Resgr,(2,r)xSL(2,R)

70,0,0 0,0
- d?ij) (22,21, V) L4 © Ag(_nix,z(_nju,y o Resgp(2,R)xSL(2,R)

_ 50,0,0 o+€+
= digy X 20,0) AT (1

Proposition 3. The (renormalized) symmetry breaking operator

A°
o 51,52,53

51,852,583 ' P(S1+21+U>F( 52+21+0)F( 53+21+0)F(81+82+283+2+0)

extends holomorphically to s1,ss,s3 € C.

Proof. Recall that the symmetry breaking operator

g
Ao . 51,852,583

A =
F9258 0 (g1 4+ 1) (s2 + D) (s3 + 1)T'(s1 + s2 + s3 + 2)

extends holomorphically to (si,s2,s3) € C3. Using the functional identity we just found, we

have
do o A0 _ A% 0 TR
= A,V Ap T F(—2)\—&—22“—}—1/—}—1)11(—2)\—22u—1/+1)r(2)\+2;;—1/+1)F(—2A+22u—y+1)
F<2)\+2;§+V—|—1)F(2>\—2;£—1/+1)A\K
J— 7””7,/
d?i(())’)o(_2)‘7 2“7 I/)F( 72>\+22u+11+1 )F( 72)\722;qu+1)
—2A+2u+v+1+42 —2A—2u—v+1+42 2A+2u+v+1 2A—2u—v+1\ 7
_\/77'1_‘( +MZ++U>F( u4++a>r( +’;++)F( ;; +)AK%V
- T (2,\72;hu+1+2a> T (2)\+2,u+u+1+20) T (1—2>\) F(72/\+2u+u+1)r(72)\72u71/+1)
1 1 2 2 2
- \/ﬂ“ (—2)\—&—2#1-1/4-1—1-20) r (—2>\—2uzu+1+20) F(31 + l)F(32 + 1)11271,52,53

T (132A) 1—\(—2)\+22;L+V+1)11(—2)\—2211—1/—1—1)11 (52+21+g> r <51+21+U>

Since the far left hand side is holomorphic in A, u, v, the far right hand side must also be
holomorphic in A, p, v. Using the duplication formula for the Gamma function we then find that

Do+ Do+ D8 2770 (32T ()T ()T (452) 7,0,

51,52,53

r (82+21+0) T (s1+21+a) o ar (82+21+U) r (S1+21+0)

Since the right hand side must be holomorphic in s1, s2, s3 by the previous computation, we
must have that Aghswg = 0 when s; +2 € —2Nj and/or sg + 1 € —2Nj and A;1,52,53 = (0 when

s1+2 € —2Ny and/or sy + 1 € —2Np, showing that

s1+2+0._ .. 59+2+0 ~
P2 A L

is holomorphic in s1, s9, s3. Using the other functional identities we obtain that

s1+2+o0. . s2o4+2+0._ S3+2+0._ S1+S2+s3+3+0, ~
F( 2 )F( 2 )F( 2 )F( 2 )Ag1,52,53
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is holomorphic in s1, s9, s3. The claim then follows from the duplication formula for the Gamma

g

function, and the definition of ASI’S%SL%.

O]

Considering this new family of symmetry breaking operators, we can restate the functional

identities for the Knapp—Stein intertwiners in terms of A(j\' Ly 8S
\/Eiﬂjﬂ . .
A'lj\' o T(U) ) . _ (_l)zkf(_l)J."wV
sV —1 ZA, —1)7 - 14+M\4 F ) .
(=D A(=1)Ip T2y
We also note that
- ~ 1 -~
G
TO'+§+77»V © Aiv#’vlj‘f = 1" 1—v AKHUW_V
(%%)

which can be seen using the same method we used to compute Ai,uw o (TG)Ei_j)l)i/\’(_l)j#.

8 The zero set of A%0Y

51,52,53

As we saw previously the symmetry breaking operators A‘;ﬁ;’;’% can be realised as invariant

trilinear forms on the sphere Kg = SO(2) = S! using the natural Kg-pairing to make the
identification

Homg(me x @ i, ¢ ) = Homg (me s © 7y, @ m¢, -, C).

We also saw how to evaluate such trilinear forms on some simple Kg invariant functions, i.e
functions on S' x S! x 8! that are invariant under the diagonal action of Kg. Similarly we
define Kg-invariant distributions by duality. In [Clel16] Clerc showed that the study of zeroes
of K-invariant distributions reduces to evaluation on the algebra of K-invariant polynomials.
Using this method Clerc was able to give a detailed description of the zeroes of trilinear invariant
forms on S~ x S"71 x §"~! with n > 4. In this chapter we intend to study the special case
n = 2. For the sake of completeness we restate some key lemmas, the proof of which are rather
simple and can be found in [Clel6].

Lemma 8 ([Clel6, Lem. 3.2]). The space of K-invariant polynomial functions is dense in the
space of K-invariant functions on C(S' x St x S1).

Lemma 9. A K-invariant distribution A on S' x S' x St is identically 0 if and only if A is
zero on every K -invariant polynomial function on S' x S' x S*.

Lemma 10. The algebra of K-invariant polynomial functions on S* x S' x S is generated by
the elements

1, (zjzj), det(z;,z ) i1 #£7=123, x,x;€ St (8.1)
Proof. See e.g. [Wey66] Theorem 2.9.A O

Lemma, 10 is what separates the n = 2,3 case from n > 4, since for n > 4 the determinants
are generated by the other elements. Using the natural parameterization of S! we find that (8.1)
becomes

1, cos(6; —¥6;), sin(6; —0;) i #j=1,23.
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51,582,853

Lemma 11. Let s1,82,83 € C and o € Z/2Z. Then Ag&g& = 0 if and only if the corresponding
trilinear form

- 2r 2w 27
A8 (1) s= (=17 [ [ [ sin(0y = 02) | in(0h = 02) 7 sin(02 — 03)]3 (01, 0z, 02) 102
is zero on elements of the form

COS(Qi — 9]')6 sin(91 — 02)a1 sin(91 — 03)(12 sin(92 — 03)0,3 ) 7& J, ai,a9,a3 € Ng, e =0,1

Proof. We have that %Csri?ég,% = 0 if and only if A;’i?;g,sg = 0. Furthermore by the previous
lemmas we have that AZ%" . = 0 if and only if it vanishes on (8.1). But since cos(f; — ;) =
1 —sin(#; — 0;)? it suffices to vanish on elements of the desired form. O

Since the integral kernel of .ng;g s, transforms with (—1)7 under the coordinate transforma-
tion (61,02,03) — (—601,—02, —03) it follows that it vanishes on any function that does not have
the same equivariance. Hence at least two of the exponents a; must have same parity. However
we also have
A0 o (sin(01 — B2)" sin(61 — 03)% sin(02 — 02)*) = (=1)7 tr(R3LG1 o R o R)

which is zero if o + [a;] # o + [a;] for i # j, where [a] denotes the remainder of a by division
with 2, by looking at their eigenvalues. Hence if ¢ = 0 all as must have same parity and since
the corresponding function must also transform as (—1) under the reflection (61,02,63) —
(—01,—02,—03) we conclude that a; = 2k; + 0 when ¢ = 0. Likewise if ¢ = 1 we can use
a similarly argument, but with one Rf,fczl replaced with Bifa‘zl Looking at the eigenvalues
again we conclude that the a; corresponding to cosine factor must satisfy a; = 2k; + o and the
remaining a; for j # i must satisfy a; = 1 — o + 2k; with k;, k; € Np.

Theorem 7. Let s1,82,83 € C and 0 € Z/27. Then, up to permutation of the indices, the

trilinear form A% . wvanishes if

51,52,83

s1+1+o0=-2ky and sys+1+4+0=—2ks, (8.2)

or if

s1+s2+s3+2+0=—-2k and s1+14+0=2({+0)+1, l,a € Ny. (8.3)
Proof. By symmetry, and the discussion preceding the Theorem, it suffices to check if

"Igi?ég,s;; (sin(6 — 02)2a1+0 sin(6; — 93)2a2+0 sin(fs — 93)21134-0) -0

and

j‘;{?g2753 (cos(fy — 03) sin(0; — 92)2“1+‘7 sin(6; — 03)1_"+2a2 sin(fy — 93)1_"+2a3) =0

for all aq, a9, a3 € Ny. Since we have

AZOD (sin(fy — 02)>177 sin(01 — 03)7F sin(0y — 03)**37) = tr(R)™ 17 0 R§™T7 0 RE™T7)
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and
jgi?;(;’% (cos(fy — 03) sin(f; — 62)>1F7 sin(f; — 03)1 77292 5in(hy — g3)1 7o F29)
— tr(RSanglfa o B§a1+o o R(2)a3+17cr)
we find, for s1 + 1+ 0 = —2k; and so + 1 + 0 = —2ko that (up to some non-zero constant)

./TU’O’O (sin(@l — 92)2a1+0 Sin(91 — 93)2a2+a Sin(HQ — 93)2@3—1—0)

51,852,853
(81+1+a) (s2+1+a) (s3+1+a> (51+52+S3+2+0)
2 ai 2 as 2 a3 2 ai1taz+as+o

:F(%+1+a+a1+a2)F(%+1+a+a1+a3)r(%+1+a+a2+a3)

_ _ s3tlto s1+sa+s3+2+0
( kl)dl ( kQ)CLZ ( 2 >a3 ( 2 )a1+a2+a3+a

= X ...
F(a1+ag—k1—k2)

If a1 + a2 < k1 + ko then the Gamma factor in the denominator has a pole and the resulting
expression is 0. Otherwise, if a; + ag > ki + ko then either a; > k; and/or ag > ko which results
in the corresponding Pochhammer symbol being 0. Likewise we have (up to some non-zero
constant)

ﬂg;?;g)s‘,) (cos(6y — 03) sin(f; — 62)2a1+" sin(f; — 93)1_‘”’2“2 sin(fy — 03)1_"+2a3)

<81+1+a) <s2+1+o) (53+1+o) <81+82+83+2+G)
_ 2 a1 2 1—o+as 2 1—o+as 2 a1+as+asz+1—o

D(2E52 42 4 ay + ag) (252 + 2+ a1 + a3)T (52558 42 — 0 + ay + a3)

_ (_kl)al (_k2)1—0+a2 <

I(l1—0+a1+as— ki — ko)

If a1 +1— 04 as < k1 + ko the Gamma factor in the denominator has a pole and thus yields a
0. Otherwise if a; + 1 — o + ag > k1 + k2 then a; > k; and/or 1 — 0 + ay > kg resulting in the
Pochhammer symbol in the numerator to yield a 0. Since the above is no longer symmetric in
the s;’s, we also need to check the "special case" when so +1+0 = —2ks and s3+1+ 0 = —2ks.
Here we find
ﬂg;?;g’sg (cos(0; — 03) sin(0; — 02)2‘““’ sin(6; — 93)1*(’*2“2 sin(6o — 03)1*‘”2“3)
(_k2)1—0+a2 (_k3)1—0+a3
F(1—20+a2+a3—k2—k3)

If 1—204as+as < ko+ ks then the Gamma factor in the denominator has a pole and thus yields
a 0. Otherwise if 1 —20+ag+ag > ko + k3 we especially have that 1 —o+as+1—0+4ag > ko+k3
and thus 1 — o +ag > kg and/or 1 — o + az > k3 and the Pochhammer symbol in the numerator
yields a 0. Assume now that s; +ss+$3+2+0 = —2k and s;1+1+ 0 =20+ 1. Then we have
that % = —k — ¢ —1 and hence

ﬂ?;?;gﬁs (Sin(01 - 92)2a1+a sin(¢91 - 03)2a2+a sin(92 — 93)2a3+g)

(_k)o+a1+a2+a3
F(ag—i—ag—k:—ﬁ)

If ao+as < k+/ then the denominator has a pole and thus yields a 0. Otherwise if as+a3 > k+4£
then o + a1 + a2 + a3 > k and the Pochhammer symbol in the numerator yields a 0. Likewise
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51,582,853

we have

AZO00 (cos(By — B3) sin(fy — 62)>* 7 sin(6) — 03)' 77292 sin(fy — f5)' 72%)

_ (_k)170+a1+a2+a3 %

I'l—20+azs+a3—k—1)

If 1 —20+as+ as < k+ £ the Gamma factor in the denominator has a pole and thus yields a
0. Otherwise if 1 — 20 +ag+a3 > k+ £ then 1 — o + a1 + as + a3 > k and the Pochhammer
symbol yields a 0. Since the ladder expression is not symmetric we also need to check the case
where s1 +s9+5s3+2+0 = -2k and so +1+ 0 = 2¢ + 1. Here we find
.ng;g’% (COS(el — 93) sin(91 — 92)2(11—’_0 sin(91 — 93)1—0—}—2(12 Sin(€92 — 93)1_J+2a3>
(_k)l—cr+a1+a2+a3

:F(l—i—al—{—ag—k—f—a) S

If 14+a2+a3 < k+£+ 0 the Gamma factor in the denominator has a pole and the corresponding
expression is hence 0. Otherwise if 1 — o 4+ a1 + a2 + ag > k the Pochhammer symbol in the
numerator yields a 0. ]

This method can in principle be applied to find zeroes for symmetry breaking operators for
(SL(2,R),SL(2,R),SL(2,R)) as well, but requires some tedious technical work. We remark that
for 0 = 0 the result we obtained is a weaker version of that obtained by Clerc in [Clel6], since
he was able to obtain a full classification (for n > 4). Due to time constraints we were not able
to obtain this full classification, at the time of writing this paper, however we conjecture that
the converse statement of the theorem also holds in this case, and that the same methods used
by Clerc should carry over with minor modifications.






Part IV

The unitary Plancherel formula

Let G = PGL(2,R) and consider the strongly spherical pair (G x G, A(G)). Then (eP,wyP)
is a representative for the dense open orbit and since A(P) C A(G), we must have that A(G)
also acts with a dense orbit O. Let xo = (e, wp) and denote by G, the stabilizer of z9A(P) in
A(G) = G. Then the stabilizer G, is

Gz, = Stabg(zo) = PN wopwal = MgAg.

For principal series representations m¢ y and 7, , of G, the completion of the tensor product
e n ® Ty, is given by the smooth sections of the line bundle (Véo)\er) (nv-4p)’ G/P x G/P, q)

with V(ng,Aer),(n,qup) = (G x Q) X pgxPg Cem),(\tputp)- Hence the restriction map

@A’# : (71'57)\ & 71',77#)00 g — COO(G/MGAG’Vé(:)\—i—p),(mu—ﬁ—p))

defines a continuous linear G-map to the sections of the associated homogeneous bundle

(V@Hﬂ)y(muﬂ)’ G/PxG/P, q)

with respect to the representation twisted at zg, i.e
gEGL, — (€@ ®1)R (n® e @ 1)(xy gro),

by restricting elements of ¢ \®m¢ ,, to O and letting G act on the basepoint. Hence the restriction
map is given by O ,f(g9) = f(g-xo) for g € G. Note that for h = (ma, ma) € G, = MgAg we
have

Oxuf(gh) = f(g - (ma,mawo)) = f(g - (ma, wo(ma)™"))
= a*MNE+n)(M)OA LS (9) = Xetya_u(ma) f(9).
For A — p € ia = iR the map ©), extends to a unitary map between the L?-sections of
(mex @ Tyu) | and the L2-sections of G/G, associated to the character Xg¢ipr—, i.e the L-
sections of the line bundle over G'/MgA¢ associated to Xeynr—u;

Ind§y,a, (€ +n @) = {f G = C| f(gh) = Xetnru (M) I (9), /G 1f(9)IPd(gMaAa) < OO} :

/MgAg

with xeinr_p(ma) = a*#(€ + n)(m), ma € MgAg. Similar to the case of principal series
representation, the space Indf/[G AcE+n® e ") identifies with

Ind%GAG (E+n® e)‘_“) =~ Ind LG (E+nE+n)® e(A—u,u—/\)),

Marier)AaLer)

by composing the relevant quotient function.
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9 The Plancherel formula for the one—sheeted hyperboloid.

In [BJD23] Bang—Jensen & Ditlevsen introduced the SL(2, R)-intertwining operators

A5 ndf 8P (e o) s ndf (c@et @ 1), A5 f(g) = /S/D K57 (") f(x) d(zDs),

for 0 = 0,1, where the kernels Ki:z are given by

—A—p—1 A—p—1

Ki:;‘,c(g) = ‘gll‘s+o'2 ’921’0' 2 . (91)

They proved Plancherel formula for the one-sheeted hyperboloid SL(2,R)/MgAg

Proposition 4 ([BJD23]). For f € C*™ — Indjs\;s(i’f) (e ® e") we have

1=/ ZIIA”fIIQ( E Y demIALI

pel—e—2N
where
INE)) 1 1
a(e, p) = 2°*x 2 A = — + —,
P () P(EEpr(SEe T T ()2
and
I'(l—p) 1°T (=)
40, = L (1) =
STO0(F)4 (1) 2
The operators are given by
14p 1 E) 3
A - 272yl (H* +3) 00 272 VAl (% + 3) A01
N 1 1— , 3= 3 3= L
YOTEMT(ENT(EE - ) M TETETEE - )
o 1t+p
€,0 i,u and A\l _ 272 ﬁr(l% %) Al,O.
() T TN E T - )
g

Note that when we have u € 1 —e — 2N the kernels K5’ . are locally integrable since g1; and

g21 does not vanish simultaneously and Re (#),Re (#) > —1. So in the case that
€ =0 we find

) 15 1) (-3

implying that one of the two terms in A\?\’ u vanish when summing over p € 1 — 2N. Thus we

rewrite the above as

I£11* = /ZHAOU}CHQ +Z > dO.pIAYIR,

o=0 pel+20—4N

with
1420 +p+A oI (] —
Aii = (1+20 ,\)Af\(;’ d'(0, ) = 2( /ﬁi)
’ (=) 4m2I(—-5)
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GL(2,R)
Mgre,r)AcL(2,r)
"extension” of A’f\i in the following sense:

To extend the Plancherel formula to Ind ((5, £) @ er12) @ 1) we first require an

GL(2,R) AL\ GL(2,R) ESERYETRSERC LT
IndMGL(z,R)AGL(Q,R) ((5, 6) X (A1, 2)) IndPGL(z,R) ((E +o0,e+ O') X e( 2 2 ) ® 1)
lReSSL(Q,R) ng_'_a,%()\l_“?_#)
AO,o’
SL(2,R _ A1—Xg, SL(2,R
Ind5y 45 (0 @ M) e ndp 0@ et o 1)
Following the above diagram we let
0 T 0,0'
Bi»# T L€+U:%(>\1+>\2—M) © A>\1—>\2,M © ReSSL(ZaR)
and thus we have
By f(g) = [ det(g)] N / K37 ] S f(z)d(zMsAs)
A,,U, g - g eto SL(27R)/MSAS Al—)\27l,l, g O det(g)_l SAs
1+pu—A1—Xo 0.0 1
= |det 2 / Ky x~ x)d(xMgAg). 9.2
14t @lere ™ [ ons Koo (719) F(@) d(eMsAs) (9:2)
By Lemma 1 Bi‘; is already SL(2,R) intertwining.
Lemma 12. The map
o GL(2,R A1, GL(2,R MHAgtp Atrg—p
Bi‘; : IndMG(L(z]])%)AGL(Q,R) ((5, £)® e(M 2)) s IndPG]E(Q’R)) (e+0,e+0)® (73 ) ® 1)
given by (9.2) is GL(2,R) intertwining.
Proof. Since any g € GL(2,R) can be written as
1 0 1 0
97910 det(g)~! 0 det(g)
. co - . . ‘ 10
it suffices to check that By’ ,, intertwines the action of elements of the form j; = 0 ¢)° t e

GL(2,R)
MaLe,r)AcL(2,R)

R\ {0}. To this extend let f € C° — Ind ((6,6) ® e12) ® 1) and let

GL(2,R)

ArtAotu >\1+>\2*M)
2 ) 2
Par(2,r) ®

Tetoeto)(2ipte 2trpn) = Ind (e+oe+o)@el 1).
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Then we have

By fGi )

14p— Al Ao

1 0
= | det / K)° —1i-t = d(zMgA
| det(j; )|s+cr SLE.R)MsAs N /\2,u< 91 det(j; ' g) ! f(x)d(xMgAg)

Te—2-dg 0,0 I |
= | det(j; 'g)l 1, ? /S Lmy sy N (" (jez ™5 ") 9) £(=) d(zMs As)
e ety R v (3710749) 107 i) daMs As)
= € T X X
et+o 9)leto SL(2,R)/ Mg Ag A1 —A2, J g Jt Jt S4As
Ao ,W m 0.0 -1 1 1
= ‘t‘s |t|€+cr ’det(g)’€+a ~/SL(2,]R)/MSAS K)\l—)\%u (]t z g) f(]t IL') d(:EMsAs)
1+pu—A1—Xo 0 1 1
= | det o 2 / K° x” ; x)d(zMgA
19et0)lero ™ [ npon Koo (79) £ 0) d(@Ms As)

iz (E+O’,E+o’)’(wf2+“’ )‘1+;‘2—H)(jt)f(g)

Where the second equality follows from (9.1). O
Recall that for A1, A9 € iR the restriction map

Ressr2,R) : Indg(f(Q’R) ((g,6) @ €M) ©1) = In d}iL(Z B0weh 1),

L(2,R)

GL

is an isometry. For p € iR and f € IndPG(2 R) ((e,€) ® eP122) @ 1) we then have

L(2,R)

IAS” s © RessLer) fllkg/ars = Lo, L (A1+Aa—p) © AT, O RessLRr) J"’HKGL(2 2 /MaL(z.z)

e,0
= HB f”KGL(z Rr)/McL(2,R)

by Lemma 1.

Going forward we suppress the subscript on the norms and inner-products for the sake of
readability.
For i € R the last property in Lemma 1 gives

<A§f’ o © RessLr) fo Tou 0 A%” X, © Resspor) f)

= (BY Uf’ (e+oet0),(3 M+datp), 2 A1 +da—p)) © Bi’f;ﬁ'
Using Proposition 4 we then obtain the Plancherel formula for Ind%, Po ((Qﬂi)) ((e,¢) @ eP1A2) @ 1)
, GL(2,R) (A1, 22)
Theorem 8. Let \; — \g € iR and € € Z/27Z. For f € IndMGL(2 AL R)((a,e) ® e\MA2)) e
have 7 ’

117 = /ZHB“’,ﬂP LIS S SR

o=0 pel+20—4N

where
o Bi:z Bs,o - F(1+20+ 4+)\1_>\2) £,0
A F(I—Tu)’ A 1—\(1+207;i;/\1+/\2) A
and
3
2421(1 — ) 22T ()
b(p) = T(E) a(p) = T (%02
2 2
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10 Tensor-products of unitary principal series representation
of PGL(2,R)

Let &,m € Z/27 and A, u, € C and recall that the restriction map

defines a continuous G-intertwining map.
Lemma 13. When Re()\) > —1 we have

GL(2,R)
Mgr2,r)AcL(2,r)

im (©,,,) € Ind ((5 +n,E+1)® eA—Hau—)\)

Proof. Let f € (mex @ )™ |g. Then by the discussion in the start of the chapter it is clear
that ©) , f has the desired equivariance properties. It only remains to show that ©) , f is square
integrable in the desired region:

100l = [ [Oauf(a)d (@MaAq)
G/MgAg

N /KG/MG /Nc |f (ke - (e, wo))|*dOdy

T —ox—1|2
- /0 /R ‘(1 + yz) 2 ‘f(kgo(O,y)7 k9w0)|2d9dy

< ¢y /R(l _|_y2)—Re(2)\+1)dy'

The last integral converges when Re(\) > —1. O

Lemma 14. For f € C*°(SL(2,R)/MgAg) N L?(SL(2,R)/MsAs) we have

/ flaMgAg)d(xMsAg) = / f(Many)dydz.

SL(2,R)/MsAg R2

Proof. Recall that NgMgAgNg exhausts SL(2,R) except on a lower dimensional set. Further-
more NgMgAsNg = NgNsMgsAg hence SL(2,R)/MsAs = Ng x Ng = R? except on a set of
measure zero. The Jacobian of this transformation may be computed as follows.

We write

/ flaMgAg)d(xMsAs) :/ f(Many)J (Rany)dyda.
SL(2.R)/MsAs R?

Since the measure on the left-hand side is invariant under the left action of g € SL(2,R) we get
the following equations:

d _ . _
0= @’tzo /R2 f(A; 1ﬁxny)J(ﬁxny)dydx, Ay = diag(e™!, e,
/R? f(@any)J (igny)dyde = /R2 f(Mgny)J(x + h,y)dydz.

Note that the second equation implies that J(x,y) = J(y). Noting that A, = M2, Ar and
Agny = ny—2, Ay we find

d

d
Y _
0=—J("y)l,_, deyJ(y)-
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Hence the Jacobian .J(z,y) is constant. To compute its value we note f(g) = (g2, +g5;) " 2(g35 +
g%,)~2 € L*(SL(2,R)/MsAg). An explicit computation then shows that

/ f(gMsAs)d(gMsAs) = /f f (zny)dngdn,.
SL(2,R)/MsAs Ng JNg
]

GL(2,R) ((é- + 0, &+ 77) ® e(A—t,u—X) ® 1)

Since the restriction map Oy, : (m¢ ) ® m0)~ @ — IndPGL(2 o

is G equivariant the composition

E+n,0 .
Bz()\ ) ° Oxp : Ten @ T = Tetntow

is G equivariant and hence defines a symmetry breaking operator. For generic parameters this
immediately implies that Bg;&rﬁ‘;)’y 0 ©), = const x Agﬁj 7. An explicit computation shows
that:

By 0 Onuf(9) = Leyyy v 0 AY5 ), 0 Ressiom) 0O f (9)
1+v

— 2 0,0 —

= 1det(g)leinro /Sm R)/MsAs Ko(rx—p) (m 9) Resgy(2,r) 0O f (@)dx (Mg Asg)

=1|d 5 KO _ 1 0 L dud

= | det(g |§+T]+a|// o) (M—yT—a)f | g 0 det(g)! (g, Tanywo) | dody

— 5y Ocr — 1 0 - =21

= |det(g \g+n+o/ / K, (n_yn—a)f <g (O det(g)1> (nm,nH;)) | — vl dzdy

_ v 0,0 _ 1 0 _ 2t1 —2
= \det(g)\gfrm_a/R/RKQ(/\_N)W(TL(:E_Z)An_JC)f (g <0 det(g)_1> (nx,nz)> |z — 2| (x — 2) “dxdz

2A+22u v—1 2A—2u—v—1 2u—1 1 0 _
= |det(g |£+n+g 1 R |—x|, 2 |z — z| flyg 0 det(g)"! (Mg, 7,) | dedz
tv 22+2ptv—1 72,\+2H v—1 22—2u—v—1 1 0 L
= |det( )|£+’q+o’/R/R |ZL' - Z|U ° |z‘o' |:I"‘o' 2 f <g (0 det(g)1> (n-T?nZ)) drdz
+n+§
- Aa,unl/

This together with Theorem 8 then gives the following Plancherel formula:

Proposition 5. Let f € m¢ \ ® m,,, with Re(\) = Re(p) € (—3,3). Then we have that

(o f) = (Oxpuf,Onpuf)
1
:/Z_RZHB;’&_M) S e +Z S 0BG, 0 OrufI

oc=0vel+20—4N

- [ ZIIA”,#,yfIIQ Lo HenlAg

0=0 v€1+2[0]2—4N

with the coefficients a(o, 1) and E(U, @) given by

2 3
~ 2V*2F<1 _ 1/) F(W) 2§7TF(%)
b(O', l/) - 71_21—1(_71/) F(1+2[0—}_V4_2(>\_’u)) ) CL(O’, V) - F HTV) ) (U € Z/ZZ)




Part V

Analytic continuation of the
Plancherel formula

For the final chapter of this paper, due to time constraints, we unfortunately have to make some
assumptions in order to achieve the full decomposition for tensor products of unitary irreducible
representations of PGL(2,R). At the end we discuss why the assumptions are "reasonable" and
we also briefly discuss possible methods of proof. The definitions of the relevant quantities below
can be found in Theorem 9.

11 Assumptions

We make the following assumptions for the remainder of the paper:

1. For A\, u,v € C and o € Z/27 we assume there ezxists R > % and Cr > 0 such that when
Al A iy )
E"/(ij)()‘uuf’l”e)
Y4 RY4
(A)\’M7Vf ‘ A(_l)i+1A7(_1)j+1M7_Vf/)
a(lj) ()‘7 v, E)

|Re(v)| < R and (

is regular we have the bound

< Cr(1+ )N for all N € N.

We make this assumption for two reasons. First it guarantees that we can make the contour
shift iR — iR + %, since the square contour with vertices ¢ P, —i P, % — 1P and % + 1P will
have the horizontal lines vanish as P — oo.

Secondly it guarantees that the contour along iR and R + % converges when A, u € C such
(Bt

E(lj) (A,M,V,Z)

that is regular along the contour.

2. We assume that the expressions

(Avg"/"’l’f | Avffl)i+1>‘:(71)j+l:u77”f/)
a(zg) ()‘7 v, E)

Resyzi(g(x+;4)+1+2€)

and

(Avg"“’l’f | gffl)i-'—l/\’(*l)jﬁ_l:uv*l’f/)
a(1]) ()‘7 v, E)

Res,—to00—p)+1+20)

73
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are holomorphic in A, u. This assumption implies that the bilinear pairing cancels any
potential poles of the measure, when restricting (A, u, ) to some specific hyperplanes
determined by A, p.

3. We assume that
T A-b' !
b(ij)(Avua V’U) ( uyf ‘ o+§+n, (_1)i+1>\7(_1)j+1uyyf>
depends holomorphically on A, 4 when v € 1 4+ 20 — 4N.
4. We assume that
b (A A o A? '
(Z])( y s Vs U) ( PWIR l/f ‘ —|—§-|—777 (*1)"""1)\,(71)3"*1#,1/]0 )

is non-zero when restricted to f € m¢ \ ® m,, for \,u € iIRU (—%,0), fenrtemn,, for
p€iRU(—3,0) and f € 7 @ mls,

12 The analytic continuation theorem

With the assumptions we are now ready to prove the main technical result:

Theorem 9. Let A € (—00,0) and p € (—00,00 UiR , &, € Z)2Z, [ € mey @ my, and
fh € e (ciyinin @y (C1yitr,. For X+ p € (=% —k,0) and X — pp € (—3 — m, 0] we have

=(37) o dv
(T D eeir Z/ T B e whenws
1
+ Z Z b(ll) ()‘7 w, v, U) ( A1, zxf | +£+17, A?—l)i+1/\,(—1)j+1u,yf/>
0c=0vel+2[c+&+n]2—4N
k-1 ( fl A . . f/)
PN —1)IN(—1)IH p,—v
—2m Res,—_ 1
Zz:;) 2(A+p)—1-2¢ ( )()\ 1L, v, E)
- (AL f 1AL iy e f!)
+ 27 ) Res,— Aoty DTN e,y
;:% 2(A+p)+1+2¢ a1 0)
m—1 ( f ‘ A A _ f/)
PN —1)IN(—1)It 1 p,—v
— 27 Res,— _oi—u)—1—
= (Ao | ALy i)

+ 27 Res,—o\—
;:% 2(A—p)+142¢ (”)(}\“u’ )
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with a5y (A, p, v, £) and g(ij)()\,,u, v,l) given by

a(zg) ()‘7 oy Vs U)_l

:F<2)\—2,u—1/+1+2[0]>F(—2/\+2,u—u+1+2[0})r(2)\+2u—y+1+2[0]>

4 4 4
y F(2)\+2u+u+1+2[0])r(—2)\—2,u+y+1+2[0])r(2/\—2,u+u+1+2[o])
4 4 4
a1 —2)\—2u—v+1+42[0] —2)\+2p+v+1+20]
01 G T e ) Rl G
3 N i '
B 1 () T ()

E(ij) (\, p,v,0)
2”*2I‘(1 . V)F (2,\+2H+Z+1+2[o}) T (2)\—2;1—1/4-1—1—2[0}) T <2>\+2}L—Z+1+2[0’]> T (—2,\—2p—u+1+2[o})

4 4
WQF(%V)
F( 2/\72u+z+1+2[0] )F( 72/\+2,u+41/+1+2[a] )F (72)\72;HZ/+1+2[0} ) T (72)\+2,u741/+1+2[a])

X

o1\ (—2u1)7
r(=) T (=%4)
Proof. Assume first that A\, u € iR and let f € ¢\ ® m,, and f' € e (—1)i+1x @ Ty (_1)it+1y
Then we have

(f7 T((ijl))iﬂ)\,(,l)ﬁl f) <f7 1)z+1)\( 1)J+1#f> <@>\ ,ufa 1)t (—1 )J+1uT((iJ1))i+1)\7(,1)j+1ﬂf/>
where (- | -) denotes the usual K-pairing. Interpolating the umtary Plancherel formula then
gives

(f7 T(wl) 1+1)\( )Hluf,)

o l) dv
_/ Z ,,uyfaA PWINY ! 1)i+1N, (1) +1p f,>W

+ Z Z g(aa V)< K,,u,z/.ﬂ TUG+£+17,V o Ai,y,u o T((ijl))i+1)\7(_1)j+1uf,>
0=0vel+2[o]2—4N

1
70,0,0 dv
- /z']R Z_jod(ij) (=2, =2p, —v) (A/\ﬂVf | AT a1+, ,,f/) [a(o, v)]?

1
~070’0 7 g ~G o
+ Z Z d(ij) (—=2\, —2u,v) b(o,v) (A/\#Wf, T einy © A(*l)”l/\,(fl)ﬂlu,,,f,)
o=0 u€1+2[a]z AN

50,0, 0 o o dv
= / Z diyy (=2X, =2p, —v) (A)\,u,l/f ‘ A(_1)i+1)\,(_1)j+1#,_yf,) (o, )P

50,0,0 7
+ Z Z d(”) ( 2A7 _2/1’7 V) b( ) ( AL, llf | +§+n v © A( 1)iHIN (- 1)j+lu7yf/) ’
0=0vel+2[o]2—4N

We let

N(/\,u,u,a):F(A+“+V4+1+2[0])F(A_“_”4+1+2[0])p(_)‘+“_’ZI+1+2[U])

XF<)\+M—I/+1+2[U]>'

4
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Then A9 S = % extends holomorphically to C* and we find
~(ij) - dv
(£ T ian capeg / Z (A pod VAT sy i d) agij) (A 1y v, 0)

+ Z Z g(z'j)()\a v, 0) (A)\,u v | +§+n, A((T—l)“‘l/\,(—l)j'*‘lu,uf/) :
oc=0vel+2[c+&+n]2—4N
(12.1)
with
a(o,v)a(o,—v)
( 2/\7 _2M7 _V) N<2)‘7 2”7 v, 0—>N((_1)i+12/\7 (_1)j+12:u'7 -V, U)

a(ij)()‘huayv U) ~7,0,0
d,;
(i5)
and

Biig) (A 1, v) = (o, )N (2X, 201, v, 0) N ((—1) 12X, (~ 1) 1241, ,0)d7 00 (—2X, ~2p,v)

Using Lemma 7 we find that a;; (A, 1, v, 0) is given by

a(lj) ()\7 M, Vs O-)_l

_F<2)\—2M—1/+1—|—2[0]>F<—2)\+2,u—1/+1+2[0])F(Z)\—I-?,u—l/—i-l—i-Q[a})
B 4 4 4
XF<2)\—|—2M+V+1+2[0]>F<—2)\—2u+u+1+2[a])F(ZA—2u+l/+1+2[a])
4 4 4
14w 1-vy T —2\—2u—v+1+20 r =2 +2u+v+1+420
L TN 1 Z
ERp— i ‘ ’
23m2T ()T () 1‘(*2’2\“) F( zg+1>ﬂ

and E(ij)(A, W, v, o) given by

g(z]) (A7 w, v, U)
2/=2D(1 — ) (2A+2u+z+1+2[o}) T <2A—2u—z+1+2[ol> T (2A+2u—z+1+2[a]) T (—2A—2u—4u+1+2[o})
m2T(5)
F(2)\—2,u+11+1+2[a] )F( —2)\+2,u-tlz/+1+2[o] )F (—2)\—2,u+1/+1+2[0}) T <—2)\+2,u—1/+1+2[0]>

4 4 4

P (=)o (=22

X

Lettngx =A+pu,y=X—pand

P(z,y,a):F(Qz_y+1+2 )F( 2z—u+1—|—2[ ]>

(22—1—1/—1-14—2 ) (22+V+1+2[]>

x I’ T

we can simplify a;; (A, i, v, o)~! and b (i) (A i, v, 0) as

1+1/ 1-v
'd(ij)(/\,u,u,a)*l = i i ) P (x,v, o)P(y,v,0)

237T%F( T(5 )F(l 2>\) F(l 2#)

221 —v) o o
ripr () T ()T

g(lj) ()\7 M, v, U) =
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Abusing notation slightly we shall write a;;)(z,y, v, o)~! and g(ij)(az, y,v,0) instead. We carry
out the proof for the case (ij) = (11), however the other cases follow be identical computations.
The left hand side of (12.1) depends holomorphically on A, u € C. Meanwhile the right hand
side becomes

('LJ o dv
T A P S —
/ E )\,u,yf | LTS yf ) (11)()\ v, )

+ Z Z 5(11)()‘7M>V>0—) <A)\u7 f’ +§+77VOA)\M7 f)

0=0v€1+2[c+&+n]2—4N

Note the integral in (12.1) is defined when Re(z), Re(y) € (—% —o, i+ 0'). By assumption it
suffices to find an extension to each of the integrals
dv

e Bt 1 8808 3 ey

We do this by moving the contour of the integral to obtain an extension in . In doing so we
pick up some residues in x, which are holomorphic by the assumption at the start of the chapter.
Assume that Re(z) € (—% —o,—1— J) and Re(y) € ( T 4) Then a(11)(z,y, v, o) has exactly
a single pole in the range Re(v) € (0, 3) at v = 2z + 1 + 20. Hence shifting the contour of the
integral from ¢R to ‘R + % we find

~ ~ dv
g y Aa‘ . ! -
/iR ( Aok f ‘ Aok f ) a’(ll)()\’p“vyv U)

dv (AC/{,LLVf | gc){,ufz/f,)
= AU v - 2 Res,,: T o ~, i S .
/iRJré ( A,u,yf | Mokt f) (11)()‘ K, v, 0) " SR a(ll)(Aaﬂaya U)
(12.3)

(12.2)

The right hand side of (12.3) is then well-defined for Re(z) € (—% —0,—1— a) and Re(y) €

(—i, i), hence (12.3) defines an analytic continuation of (12.2) in z. If we fix the same y as

before but let z € C with Re(x) € (—% —0,—3— J) then a@(11)(z,y,v,0) has a single pole at
v = —2z — 1 — 20 in the range Re(v) € (0,1). Shifting the contour of the integral back to iR
we thus find

- ~ dv ( DWIRZ f A/\ W *Vf/)
AT FIAS, ) 9nResy_ oy 12e ’
/i]R-‘r% ( Aot f | Aokt f ) 11)(>‘ v, U) Zemie? (11)(>‘7.LL7 l/,O')

~ dv
— (e Ao’ /
/iR < )\7M7Vf ’ /\,M,*Vf ) a(ll) ()\7 M, V, U)

AS i 1A f!
+ 27 Resy—204 1420 ( i i ) — 27 Resy=—2:-1-25
a(ir) ()‘a My Vs U)

(A8 f | A5, f")

a(11) ()‘a M, v, U)
(12.4)

—0). Note that ifz = —3 —¢o

The right hand side of (12.4) is well-defined for Re(z) € (—3—0,—3
-1
5 a

then @(11)(z,y,v,0) has no poles in the range Re(v) € (0, 1) and any(z,y,v,0)
Re(v) = 0, hence

is regular for

~ ~ dv ~ ~ dv
AS L F1AS ) =——————— :/ AS L VAS ) =———
/ﬂmé( Suar 1 A3 f>a(1o)()\ {1, v, 0) iR ( S 145 f)a(lo)(A [, v,0)
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Thus (12.4) in combination with (12.3) defines an analytic extension of (12.2) to z € C with
Re(z) € (=3 —0,—1 — 0] and Re(y) € (-1, i) Assume now we have found an an analytic
continuation to z € C with Re(z) € (—3 —2k — o0, —% —2k — o) and Re(y) € (—1, 1) for k € Ny.

Then the integral

~ dv
(e A . / -
/Z'R ( Aty f ’ Aokt ) a/(ll)()\ﬂluvyv J)

has exactly one pole at v = 2z + 1 4 20 + 4k in the range Re(v) € (0, 5). Hence shifting the
contour we find

~ ~ dv
A9 A9 /
/’L'R ( A#Wf ‘ A7M7_Vf ) a(11) ()\7 wm, v, U)

- dv
= iR+% ( )\,u,zzf ’ A ’M,fuf) (10)()\ L, V, O')
( PWINZ f | ,p,,—u )

— 2m Resy=2p1 142044k
TR a(ll)()HM? V7J)

For Re(v) = § we have that ay(x,y,v,0) " is regular for Re(x) € (=3 —-2k—0,—1—2k—0) and
hence the right hand side defines an analytic continuation of (12.2) to Re(z) € (—2—2k—0, — 1 —
2k — o) and Re(y) € (—3,3). We now consider z € C with Re(z) € (=2 —2k — 0, -1 — 2k — o).
Then ay(w,y,v,0)" ! has exactly one pole at v = —2x — 1 — 20 — 4k in the range v € (0, %)
Hence shifting the contour back to ‘R we find

~ ~ dv ( PWIRY f’A)\M—l/ /)
A5 A f ) = —27Resy—_2: 1 25— Y ’
/iR+§ ( )"“’Vf | Aot f) a(ll)()‘aﬂvljv o) " e (11)(/\7,% v,0)
dv
= A" AS f)———
/ A f ‘ Aot ) 5(11)()\7M7 1/70)

(A5, f 1 A3, ")

(A5, f 1 4, f")

—2m Resy,—_2;1-20—4k

+ 2w Resy—op+ 142044k

6(11) ()\’M7 V7U) a(ll) ()\):U’a v, U)

Since d(11)(z, y, v, 0) " is regular for Re(z) € (—3 —2(k+1) — 0, — — 2k — o) the right hand side
together with previous extension defines an analytic contlnuatlon of (12.2) to (—3—2(k+1)—0,0].
The desired extension in x then follows by induction. Note that the assumption that Re(y) €
(—3.3) is essentially redundant. We could have assumed that Re(y) € (—3 — o, 5 + o), since
fixing y in this region at every step causes any residue with respect to y to cancel when we move
the contour back. Since a(11)(z,y,v,0) = aqy(y,z,v,0) and a1y (z, —y,v,0) = aqn (@, y,v,0)
the analytic continuation with respect to y follows immediately after the continuation from the

continuation in x . UJ

13 Decomposition of tensor products of principal series
representations of PGL(2,R)

Using the analytic continuation found in the previous section we obtain the following unitary
branching laws:
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Corollary 2. For A\, u € iR and &,n € Z/27 we have

e @ Tpula = @/ o AV @ @ 71' (13.1)

o=0,1 VG*—

For A € (—=1,0), &,n € Z/2Z and p € iR we have

@/ oy dv & ED nd (13.2)

o=0,1 6*—

For A\, € (—1,0) with A+ > —% and &,m € Z/2Z we have

TEA @ T ule = @/ o AV @ @ nd (13.3)

o= 01 Ve,_

For A\, p € (—%,0) with A+ p < —3 and &,n € Z/2Z we have

TN @ el = EB/ o dv & @ wds@ﬂ$+n)\+u+7 (13.4)
o= 01 VG*—N

For)\G%—N,UGZ/QZ and p € iR we have

@/ oy dV & @ s, (13.5)

0=0,1 VE*—N

For A€ 3 —N and p € (—1,0) we have

7TA

@/ Tovdv® P w0 (13.6)

0=0,1 VeffN

For/\E%—Nanduef—Nwehave
d @ d
e Tle = @ /R Topdv® @ w3° (13.7)

Proof. We start by showing how to achieve (13.1). Consider the map

VTN @ Tyl — @/ Tou AV @ @ 7r

0=0,1 ye,_
[ ((Ag,u,yf)uem? (A} Fveir, (AR o fver—an, (A%\,,u,uf)ue?)fllN) :

By proposition 5 this map is injective. Since A§ v # 0 when A\, € iR and v € iRU1 — 2N
we have that 1) is surjective since the image is a sub-representation. Hence 1) is an isomorphism
and the result follows.

(13.2) follows from Theorem 9 as follows. We let A € (—3,0), u € iR and n € Z/2Z. Then we
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let f' = f to get

dv

1
=(10) 7 2 _ Ao Ao A
BTG =11 = 3 [ (Aaf 1 85 T) 55

1
+Z Z b(ll)(Aaﬁ% V70)< K,u,uf‘ o'Jrnzz /\ ,u,yf)

0=0vel+2[oc+E&+n]2—4N
1

—Z O DD DI CW AL £ WO (D

) (A v, 0) =0 ve1+2[o+E+n]a—4N

and the result then follows from Lemmas 2 and 3. Note that we can with out loss of generality
assume that Re(\) < Re(u) since the tensor product is symmetric.

Then (13.3) follows from the same line of reasoning.

For (13.4) we can use the same reasoning as before for the continuous and discrete parts, but
Theorem 9 yields two additional residues to consider. To investigate these we first recall that

- 1 -,
TG ”U,I/f ( 5 )A)‘7)u7_l/

Applying this we find

( /\ul/f ’ A/\,u—lli)
~(11) ()" K Y, 0)

( )\/LVf‘ )\u, )
a(ll)()‘ My Vs 0)

PS)IAR 1P
a(ll) ()\a v, 0) '

—2m Res,— a(xyp)-1 2m Res,—a(A )41

=A4r Resyzg()\+#)

The result then follows by the same arguments as used previously. We remark that the residues
can in this case be seen to be non-zero by evaluating on the Spherical vector ¥y ® 1.

To show (13.5) it suffices to show that any residue from Theorem 9 vanishes when A = % —m
for m € N and p € iR . The residues to consider are

m—1 (Ai f AVZ 7) m—1 ( f ?)
47.(. ReSV: ~),U‘)l/ ’ )\1_M7V _|_47.r ReSV: -~ ~),U‘) ’ )\ — Y
EE:O 2(Ap)+-14-2¢ a(lo)()\ 10,0, 0) ;:0 2(A—p)+14-2¢ (10)()\7% v, 0)
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with ago) (X, g, v, €) " at v = 2(A + p) + 1 + 2¢ given by

Res, —o(as )+ 1+20(ag0) (A 11, 2,0) ™)
g

:(‘1);2r(—u+m;€)r<—x+m;€> <)\+ +1+MM> <—)\ M+1+[z]+e>

([L’]T—é). 2 2 2 2

T+ 5+ 8T 0+ p+ 1+ 002 == OT (A= p+ BT (14 BF)
BT A+ p+ L+ DT(=A—p—0—1) r(=2%)

(—1)[£]{ZF (—M i [e];) T ([@]—5—21+2m) T (1 tut [z]+€2—2m> T (M + [£]+€2+2m>
(%)
D1+ B2 Tt 3+ 0= mD(F = = 4 m) T (=5 =+ =52 T (14 )
237T%F(1—|—,u—i—€—m)1’(—1—u—{—m—ﬁ) L' (m)

X

X

When p € iR\ {0} then the above only has a single pole for each 0 < ¢ < m — 1, but since we
also have

_2>\+2u—4v+1+2a:m+[€]—2€+1 >0 and 2/\+2u—41/+1+2<7: [E]—é—2m§0

and the second case of Theorem 7 implies that /K’iwjf =0at v=2(A+ pu)+ 1+ 2¢ making

-1
the product vanish. If 4 = 0 then I" (—% — 1+ W+2m) = 0 and the result again follows by
Theorem 7. The residues of the form

( PWINZ f A)\ ;,L,fl/?)
~(10) ()‘7 w, v, e)

Res,—o(a—p)+142¢

vanish by the same reasoning, but by the first case of Theorem 7 instead.
The decompositions in (13.6) and (13.7) follows along a similar line of reasoning. O

14 Discussion of assumptions

We start by first remarking that the general method used to obtain the analytic extension in
Theorem 9 has been used previously in literature, see e.g. [Wei2l]. Furthermore the bilinear
form on ¢ \ @ ;) X e ) ® Ty, —,, depends holomorphically on A, 4 € C. Hence its composition
with the Knapp-Stein intertwiner Tizi) again depends holomorphically on A, x. This suggests
that the residues picked up in the analytic continuation process should depend holomorphically
on A, u as well. Since most poles of a;;) (A, p, v, 0) comes directly from the normalization of the
symmetry breaking operators, these can in most cases be neutralized by appealing to Theorem 7.

However in some cases a more detailed understanding of the bilinear pairing (A§ o f A% H,yy/)

appears to be needed. The same goes for the discrete part and E(ij)()\, i, V). Due to time restric-
tion we were unfortunately not able to carry out the full analysis of this problem, and hence we
had to make assumptions 2 and 3.

Assumption 4 is made to guarantee that the Plancherel formula actually carries the full
information about the desired branching laws. It seems unlikely that any terms of the dis-
crete part should vanish, but to check this we would require some vector (or family of vectors)
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) € me \ ® my,, such that we can explicitly compute fT‘,(%,ﬂﬁ- A good candidate for v is the K-
finite vectors of m¢ \ ® m;, ,. However since the norm in the discrete part contains a Knapp-Stein
intertwiner, the terms of the discrete part will vanish on any fixed K-finite vector at some point.
However if one could find an explicit formula to evaluate on any K-finite vector assumption 4
would be redundant. Note that such a formula would potentially also resolve assumptions 2 and
3. Since we already saw how to evaluate on lowest K-types in chapter 111, it is perhaps possible
to understand evaluation on any K-type by finding recurrence relations between evaluation on
different K-types. Indeed such a method has been used previously in the literature, see e.g

[F©19] Theorem 4.1 and Proposition 4.6.

Assumption 1 is perhaps, like assumption 4, a bit redundant. The symmetry breaking opera-
tors AK . heuristically play the role of a Fourier-transform in e.g. (13.8). Hence the assumption
made in 1 is in the nature of existence of some Paley—Wiener type theory for such operators. This
is perhaps not so far fetched since the unitary Plancherel formula from Proposition 5 originates
from the theory described in [BJD23], where the operators considered are Jacobi-transforms, for
which a Paley—Wiener type theory does exist, see e.g. [Koo75].

We end by remarking that (13.1), (13.2), (13.3) and (13.4) does not need assumptions 2 and
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Appendix

Listed below are the results for the composition of symmetry breaking operators A§ i?l with the

standard intertwining operators T(( Jl)) A1) given in terms of the parameters

1 1 1
51:§(A+M+V—1), 52:§(A—u—y—1), 5325(—)\—#/1—1/—1).

(L ) (1o )

0,0,0 B
d(10) (s1,82,83) = - (_% 31) - (7 ol et 1) - (_% 32) (0.1)
g(()oci)o(sl, 59,83) = . (_l\fr ( 51+ ) r (% 53+ %) 0.2)

581)F<§$1+*83—|—1>F(—183>
T (3s1+ 5o+ dss+1)0 (314 3)
F(—%Sl)F(%Sl—FiSQ—Fl)F( S1+ 5 53+1)F< %Sl—%SQ—%Sg—%)

70,0,0
d(il’) (317 52, 53) =

(0.3)
( 81+1) ( 32+1)
1,0,0 B
d(lO) (81752353)_ F( 51+ 32+1)F(7551+§)F<7%52+%) (04)
(e ) (e 1)
1,0,0 B
d(m)(shsw?))_r( si+ 3 33+1)r( Lo+ )r( Lo+ 1) 09

WF( s1+ 382+ 5s3+ )F(%51+1>
SRy A € P P B S Tes)

71,0,0
d(ll) (817 52, 53) =

83
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—ﬁr‘(%sl—F%)F(%Sz—f-l)

30,1,1 —
d(lo) (s1,52,83) = T <_%51) T (% s1+ %32 + %) T <_%32 + %) (0.7)
Cz[()611’)1(81, $2,83) = r ( 1 vl (% 51+ %> I (% 8t 1) (0.8)

—gsl)F(%Sl+%83+%)F(—%53+%)

WP<%81+%SQ+%53+1)F(%31_|_%)

diiyy (51,9, 83) =
(11) F(—%Sl)F(%Sl+%82+%)F<%81+%S3+%)P<—%81—%82—%83—%)
(0.9)
S1,1,1 _ V7l (% 31+1)F (% 32"‘%)
diig) (s1,82,83) = . <% St et %) - (_%51 n %) - (—%32> (0.10)
~1,1,1 B —/al (% 51 +1)F(% 53"’%)
d(oy) (51,52, 83) = - (% Lot %) - (—%31 N %) . (_%33) (0.11)

ﬂF(%sl—f—%Sg+%53+%)F<%81+1)
R (e e I C R P I G RES)

=1,1,1
d(il’) (s1,52,53) =

(0.12)
_ _F<%51+§>F(%52+1)
d(lO) (s1,82,83) = (—% 81) r (% s1+ 382+ %) r (_% o+ %> (0.13)
R (RS L e
d(Ol) (s1,82,83) = (—% 81) r (% s1+ %33 + 1) r (—% 53) (0.14)

B0 (51 59 s53) = —WF(%&—1—5524—%534—%)1“(%514_%)
(11) (81,52, 53 F(_%Sl)r(%81+%82+%)F(%S1+%83+1)F(—%81—%32—%33)
(0.15)
ﬁr(%81+1)F(%32+%)
F(%&+%32+%)F<—%51+%)r(_%32>
ﬁr(%81+1)F<%83+1)
oo )EC e JE( )

diigy (51,9, 83) = (0.16)

&%611’)0(81,82,53) = (0.17)

(0.18)
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71,1,0
d(if) (81782783) =

70,0,1
d(id) (517 52, 83) =

70,0,1
d(()l) (817 52, 33) =

70,0,1
d(ll) (517 52, 83) =

71,0,1
d(lO) (517 52, 53) =

1,0,1
dgy) (s1,52,83) =

51,0,1
d(ll) (817 827 83) =

Wr(%sl+%32+%83+1)F(%81+1)

R O e & e e e Ll S Ty

(0.19)

Vil (Lsi+ )T (3524 3)
D (~3s)T(bsi+ss+1)0 (1) (0-20)
—/7l (% S1+%>F(% 33—1—1) 01

N R O e AL S E A
T (31 +gmthss +3)T (30 +b)
N e L (R R R I C R R

(0.22)

VAl (3s1+1)T (3s2+1) 05
i O i (07 |

L L LI LAL) (0.24)

F(%81+%S3+%)F(—%Sl+%)F(—%83)

—WF(%Sl—I-%SQ+%83+1)F<%81—|—1>

F(%81+%82+1)F<%S1—l—%s;»,—l—%)l“(—%sl—%52—%83—%)F(—%31+%)
(0.25)
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Paper C

A L?-model for discrete series
representations of SOgy(4, 1)

Frederik Bang-Jensen

Introduction

When studying the representation theory of real reductive Lie groups in an analytical setting it is
often fruitful to consider the restriction of a principal series representation 7y to the non-compact
picture. The restriction induces an isomorphism and allows one to realize 7y on a L? space. If 7y
is not unitarily induced and irreducible (or contains an irreducible quotient /sub-representation),
the unitarization of 7y (or the quotient/sub-representation) then typically involves the use of
the Knapp-Stein intertwining operators

JY i —=moy, fe | f(guwm)dn.
Nnw—1Nw
For the case of the group SO(n,1) then N =2 R"~! acts via translations, in the non-compact
picture, which implies that J{’ becomes a convolution operator in the Fourier picture. Thus it
is often useful to study m (or its quotient/sub-representations) in terms of its Fourier trans-
form. This allows one to realize the unitarization of 7y as an explicit L?-space. This setup was
used by Zhang in [Zhal7] to study discrete components of tensor products of complementary
series representations of SO(n, 1) and by Mollers and Oshima to study branching problems for
(O(1,n),(0O(1,m) x O(n —m)) for spherical principal series representations.

In this paper we study the G = SOy(4, 1) invariant sesquilinear form on a principal series rep-
resentation 7, y via its Fourier-transform 7, , when 7, ) contains a discrete series representation
of G. The sesquilinear form is necessarily on the form

(Fl9) = [ (@), Amg(m)v, dn

for some multiplication operator A € C*°(N) ® End(V,). We study A by studying the action of
the minimal parabolic subgroup P = M AN in the Fourier transformed picture. The Nilradical
N acts via a differential operator similar to that in [MO15] and this differential operator plays
a vital role in understanding the behavior of A when expanded in a specific Eigenbasis V;,,(£) of
do(Bg), for some specific element Be € m = su(2). This gives the G-invariant form

Theorem 0.1.

(Fl9)= [ €. A9, Il fog € FL ()

89
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defines a G-invariant form on 7, x, with A(g) given by
A©)F(€) = am (&) € V(&)
and a., given by the recursion
am(m — 22+ 1) = appa(m + 22+ 1). (0.1)

A similar approach was used by Liu-Oshima-Yu in [LOY21] to construct such L?-models for
Spin(m +1,1) and O(m + 1,1) when o € M can be realized on the space of p-forms.
At the end of the paper we discuss possible applications of such models.

1 Preliminaries

Let G = SO(4,1)p € GL(5,R) denote the identity component of the Lie group of matrices
g € GL(5,R) leaving the quadratic form

R5 3>z 2'ly 2, I = diag(1,1,1,1, 1)

invariant. The Lie algebra of G can be written in block form as

g:{(é@ 8) la € o(4), beR4.}

We fix the Cartan involution on G given by 6(g) = (¢°)!, g € G. Then g decomposes into the
—1 and +1 Eigenspaces £ and p of 6 on g. We fix a maximal abelian subspace a C p by letting
a:= RHy, with

Hy:= E45 + Es 4,

where E; ; denotes the 5 x 5 matrix whose (¢, 7) entry is equal to 1 and 0 everywhere else. The
root system for the pair (g,a) consists of the roots v, with v € af such that v(Hy) = 1. We
let

n:=g,, n:=g_,=0n,
and we put
N := exp(n), N :=exp(n) = O(N)

for the corresponding analytic subgroups of G. Then the half sum of the positive roots becomes
p= %'y. We introduce the following coordinates on N and N respectively: For 1 < j < 3 let

Nj:=Ejs— Ej5 — Eqj — Es 5,

Nj:=Ejs+ Ej5 — Eqj+ Es ;.

for = € R? we let

3 3
Ng = exp (Z achj> , Ty = exp (Z achj> )
=1 =1
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Furthermore we put K = exp(f) = G% = SO(4), M = Zg(a) and A := exp(a). Let W :=
Nk (a)/Zk(a) be the Weyl group corresponding to a. Then W = {1, [wp]} with the non-trivial
Weyl group element given by

wy = diag(—1,-1,—1,—-1,1).
Then NP C G forms an open dense subset of G and a straight forward computation gives

Lemma 1.1. for x € R3, 2 # 0 we have won, = ﬁymetHOnZ € NP with

t

x xx

y=-———5, m=2—->—id3, t=2log|z|

[ Bk ’

Lemma 1.2. For x,y € R? with ||y||?z — y # 0 we have n,tng = aymeon, € NP with

2 2 2, _

o WP Lely) (HHyH v yu>
Hyl*z =yl lyll
ly[I?

m = idz —2yz’ — 2 (@ = llz[Py) (lyl*z — y)

2
lyl*z = yll

1.1 The unitary dual of G

We shall briefly recall some aspects of the representation theory of G, using the spectrum
generating method introduced in [BO©96]. We refer to [BO®96] for the general theory and
details. The setup is as follows:

The (normalized) Killing form on g is given by

B(X,Y) =~ tr(XY)
and the spectrum generating element P of U(£) is given by
P = Casp — Casp, .
The unitary dual of K = SO(4) is paramatized via highest weights 7 = (71, 72) € Z? with
T > |72l
The value of the Cassimir Casg,(4), with respect to the Killing form B, is
T(Casgo(a)) = (T + 2P50(4)5 T)

where 2p50(4) = (2,0), on the irreducible SO(4) module with highest weight 7. Likewise we can
parametrize the unitary dual of M = SO(3) via highest weights 7 € Z*. The Branching rule
from K-to-M is for 7 = (11, 72) an irreducible representation of SO(4) given as follows:

1, T >0 > |1

(1.1)

dim Hom s (7|pr,0) =
0, else.

Since the K-to-M branching is multiplicity free, the spectrum generating element acts by some

scalar R, on the K-type o € K. We find that

Rp — Ro = B(Casgoq)) — a(Casge(a)) = (B + 2Ps0(1), B) — (@ + 2pg0(4), @)
=(a+B+(2,0),8—a). (1.2)
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Figure 1.1: K-Isotypic components

Theorem 1.3 ([BOOI6]). Suppose V is a G invariant subspace of the K-finite vectors of my »,
and let V(a) denote the projection of V' to the K-isotopic component o € K. Then each map

{aeK|V(a)#£0} > C, a—T,
satisfying
(Rg — Ra +2\)T3 = (Rg — Ro + 2\)T,, (1.3)
for alla, B € {a € K | V(a) # 0}, gives rise to an intertwiner T : V — T -
If we consider \ as a parameter we can rewrite (1.3) as an equation of rational functions
(Rg — Ro —2X)Z(N;0,8) = (Rg — Ro — 20 Z(X; 0, 1),
with Z(\; 0, ) being the spectral function, which was computed in [BOX96]

FG+ar+r)TE+o-r)TE+as+r) T(E-7)
FEG+o+r)TE+ar—r) TG+r) TE+ar—1)
+0 40— TG +as+r) T(E-r)

+0—")a—e TG+7) Th4+a—1)

Z(r;o;a) =

(1.4)

3
_

3

(2
The poles and zeroes of (1.4) indicate invariant subspaces. The invariant subspaces are given
by

Vg = span{a | Z(\,0,0) =0, o | o}
V2 =span{a | Z(\,0,a) # 00, a ] o}

with a | 0 meaning that o appears as a K-type in 7, . We thus obtain

Proposition 1.4. The principal series representations ms \ 0 € M )\ eC are irreducible, except
for when X € (3 +Z) \ {£(c + 1)}
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When X € (5 +Z) \ {£(c + )} and XA < 0 the representation (dng,x,T,) contains an infinite
dimensional invariant subspace VO)‘ given by

VO)\:{span{a:(al,az)ef(\|a¢a, o > S -2} fA<Z3 -0 (15)

span{a = (a1, a0) € K | a | o, “A—3<aroras<A—3} else.

When X € 5+Z and XA > 0 the representation (dm, x, 7,) contains a (possibly finite-dimensional)
invariant subspace W(;\O given by

W(;\O:{span{a:(al,ag)Ef(\|a¢0,a1<_214-/\} if)\Z%—i-a (1.6)

span{a = (a1, a9) € K | a | 0, “A—i<ar<A—1} else.

The spectrum generating function defines an intertwiner 7' for generic parameters A € C,
intertwining 7,y and 7, _y by T'(va) = Z(X;0;a)vs. Using this intertwiner we obtain an
invariant non-degenerate sesquilinear form on 7, ), for generic A € C, by

(%@@/\ = <907T¢>L2(K;U)> Y, p € To,\ (17)

However for "non-generic" A € C, i.e at the poles and zeroes of the spectrum generating function
Z(X;o;a), (1.7) cannot yield a non-degenerate positive definite form on 7, \. However Proposi-
tion 1.4 imply that (1.7) define a non-degenerate invariant form on subspace or sub-quotient of
7o, x for these non generic A. Hence the question of unitarity of these representations reduces to
the positive definiteness of (1.7), which depends entirely on if the spectrum generating function
has constant sign on these sub-representations.

Lemma 1.5 ([BOOY6)). Let o € M. If r € (—Ry, Ry) with
1
Cazimin{\Rg—ROA |a, B8l o, a+ B} (1.8)

then the sesquilinear form given by (1.7) is positive definite.

To compute R, for G = SOy(4, 1) we need the following Lemma, the proof of which is follows
from the theory of highest weights. We write

a4+ < Homg(p® a, B) # 0,
then

Lemma 1.6. Leto € M and a, B € K with a,Blo. Then o+ Bifand only if B = atey, a =
1,2.

Using (1.2) we then find
’Rﬁiea — Rﬁ’ = |2,3a +1+4— 2@’
In conclusion we have

Proposition 1.7. Leto € M. Then the complementary series for is parametrized by A € (—%, %)
ifo#0and \€ (—3,3) ifo=0.
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From Proposition 1.4 we have that at certain points A € % + Z the representation m, x
contains an irreducible sub-representation and an irreducible sub-quotient, depending on the
sign of \. By the earlier discussion if the spectrum generating function Z(\, o; «) has constant
sign on these sub-representations or sub-quotients, we obtain a G invariant positive definite form
on the corresponding sub-representation or quotient. In conclusion we have

Theorem 1.8. The unitary dual G of G consists of the following representations:

The unitary principal series A € iR and the complementary series )\ € (—%, %) ifo#0

and \ € (—%7%) if o = 0. If o = 0 the principal series contains a irreducible sub-quotient
VI (A) at X € %, g, ...} and if o # 0 the principal series representation contains two irreducible
subquotients V5(X) and Vg(A) at A € {3,...,0 — 3}. The sub-quotients V. (X), VS (N), Vg (N)

are given by

= 1

Vi) = spanf{a = (a1, 0) € K | a | 0, ag 2)\—1—5} (1.9)
= 1

Vo (A) =span{a = (a1, a0) € K | L o, =\ — 5 > an} (1.10)
_ ~1

V2 (A) = span{a = (a1, a0) € K |a ] o, ag > 5 + A}, (1.11)

with the span understood in the sense of a quotient.

&~
L[] [ ] L] L] ° L) [ ]

V()
€] + ege . . . . . .

g

\
7
€1 — €ege ° . . . . )

Vo (7)
. . . . . . )

~

Figure 1.2: ng(r) forc =2 and r = %

By aresult of Harish-Chandra G admits discrete series representations if an only if rank(G) =
rank(K). Since rank(G) = 2 = rank(K) for G = SOy(1,4) it is natural to investigate which
representations of Theorem 1.8 are discrete series representations.

Let us shortly review how to find discrete series representations for connected linear real semisim-
ple Lie groups whose complexification is simply connected.

Assume that rank(G) = rank(K). Let gc denote the complexification of g and let T C K
be a maximal compact Cartan subgroup of G, which exists by assumption. Denote by t its
Lie algebra, tc its complexification and X(gc, tc) the set of roots with respect to this choice of
Cartan sub-algebra. Fix a set of positive roots X of ¥(gc,tc). Then X(tc,tc) € ¥(gc, tc)
and the intersection E? = X(tc, tc) N Z; yields a positive system Zj of X(tc,tc). Denote by
%¢ the complement of 3 in 3. The corresponding root spaces go for o € ¥ U —XF span
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sc. Let a € ity be a E; dominant integral linear form and denote by pg the half sum of roots
in E;, pe the half sum of roots in E; and ps the half sum of roots in ¥f. Then a + py is
¥ f-dominant regular integral and ps is ¥ -dominant integral. Let w(\ + py) be the discrete
series representation of G with Harish-Chandra parameter A + pg. We then have the following
result on discrete series representations:

Theorem 1.9 (See [Parl5, Theorem 1.1.1)). Let m be an irreducible unitary representation of
G. Suppose that the finite-dimensional K representation Toy2,, with Z? highest weight o + 2ps4
occurs in |k ; then one of the following cases occurs:

1. There is no T € ©F such that a + 2ps — 7 is & -dominant. In this case 7 = w(a + py).

2. Thereis an T € 3F such that a+2ps—T is 3 -dominant; but no X irreducible constituent
of mle is of this form. In this case ™ = w(o + pyg).

3. There is an T € X} such that o+ 2ps — 7 is Z;r—dominant and is the highest weight of an
irreducible €-constituent of e In this case m % w(a + py).

Now for G = SOq(4,1) the story goes as follows: The Lie algebra of G is g = so0(4, 1) and
its complexification is gc = s0(5,C). The maximal compact subgroup is K = SO(4) embedded
in the top left corner, and the Cartan subgroup is 7' = SO(2) x SO(2) — K — G. The
complexification is therefore t¢ = s0(2,C) & s0(2,C) — ¢ = s0(4,C) — gc = s0(5,C). The
roots are given by X(gc, tc) = {*e1 teq, £e1, tea}. We will work with two notions of positivity:
Fix first a notion of positivity by declaring that an element ¢ = a1e; +ages € tg is positive if the
first non-zero coefficient is positive. Then the positive roots becomes E; = {e1,e2,e1+e€2,e1—€2}
and the intersection with ¥(€c, tc) is ¥ = {e1 = e2}. The non-compact positive roots becomes
2+ = {e1,e2}. The half sums then become py = (3, 3), pr = (1,0) and ps = (3,3). The by
dominant integral linear forms « are parameterized by (m,n) € Z?* with m > n > 0 and the X
dominant integral forms are those for which m > |n|.

We may also fix a second notion of positivity such that the positive roots become A; =
{e1 £ eg,e1,—e2} and define A = {e1, —ea}. This choice doesn’t affect the compact roots, but
interchanges ey with —es in the non-compact roots. Note that integral dominant weights of E;
and the integral dominant weights of A; exhaust the set of K-types. Denote by pg = (%, —%)
and p}, = (3, —%) the half sum of positive roots for Al and Af respectively.

Let us start by showing that V/ (\) is not a discrete series representation; Assume that \ > %
and o = 0. Then V/ (\) is a unirrep and any a | VJ ()\) must have ap = 0. If o is X} integral
dominant then a + 2ps )/ VI () as this would imply as = —1 contradicting that o was E;
dominant. The same argument works for @ being ] dominant and as these together exhaust
the K-isotypic components we conclude that V5 (\) 2 w(a + pg) for any K-isotypic component
«. Since these parameterize all discrete series representations the claim follows.

Assume now that o # 0 and that 0 < A < 2 + o with A € (3 +Z) \ {£(c + 3)}. Consider then
a+2ps = (0,0) L V;5(N). Then a+ps—es is By dominant but does not occur in V5 (r) and since
a=(0—1,0—-1)is ¥} dominant Theorem 1.9 (2) implies that V{ (1) = w(a+py). An analogous
argument with « + 2p, = (0, —0) shows that V() is also a discrete series representation. In
conclusion we have

Theorem 1.10. The discrete series representations of G are exactly the subquotients VX for
rxe{d,...,o—3} foro>0.
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2 Induced representations - the non-compact picture and its
Fourier-transform

We identify ag. with C by C > A — Ay € a.. Then p = % under this identification. We define a
character e* on A for A € aX by declaring that e*(exp(tHp)) = e** for t € R. For 0 € M, \ € a}.

we induce a representation of G from the character o ® e ® 1 by letting

I,(\):=Ind$(c®@e* ®1)
= {f € C®(G,V,) | flgman) = a~*Po(m)" f(g) Vg € G,man € P}.

G acts on I,(\) by the}eft—regular representation, which we will denote by 7, . Denote by fx
the restriction of f € I,(\) to N. The restriction map f ~ f is one-to-one and denote by
I,(\) the completion of its image. I,(\) then defines a representation of G, denoted 7, ), by
letting G act on I,(\) as m,\(9) f5 = (To(9)f)7. Note that N, N = (R3,+) as groups, hence
going forward we shall abbreviate f(n,) = f(z),z € R3 and f € I,(\). The action of 7, \ can
then be described using Lemma 1.1 and some basic computations:

Toa(My) f(2) = f(z —y), y e R3
Toa(m)f(z) = a(m)f(m™'z), m e M = SO(3)
oA (etHO) flx) = e()‘+p)tf(et:c), etfo ¢ A

_ — gl 20+0) L‘”t_i s
ea(wo) f(z) = [lxf =270 (2\9;”2 d3>f< HwHQ)'

This also yields the following expressions for the derived action dm »

dro \(Nj) f(z) = =0; f (@), j=1,2,3
Te(T) f(z) = do(T) — Drs f(x), T €m=o(3)
Toa(Ho)f(z) = (E+A+p)f(2)
Tox(N;) f(z) = —|lz|? 0j +2z;(E+ X+ p) — 2do(z e] — €T zh), j=1,2,3

3
Where D, denotes the directional derivative in the direction of @ € R? and E = 3 z;9; is the
i=1
Euler operator on R3. The last identity is obtained using Lemma 1.2.

2.1 The F picture

As remarked earlier N = (R3,+), which induces an injection I,(v) — L2*(R3 V,) to some
subspace of L?(R3,V,). We define a Fourier-transform on (a dense subset of) I,()\) using the
above identification and the Euclidean Fourier transform:

F© = @mF [ e fa)da.
R
For A € af and 0 € M we define a representation 7o of G on F ((I,(v)) by

ToA(g) o F =Fotsa(g), g€G.
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The action of P = M AN follows by some easy computations:

TU,A(ﬁy)f(g) = ei<§’y>f(§), Ny € N
ToA(m) f(§) =a(m)f(m™'¢), meM
oA€Y f(&) = P Plf(ete),  etoe A

From the classical properties of the Fourier transform:

xjoF =F o(—i0y),
9j o F = F o (—ig;)

we easily obtain the action of the derived representation dr, x:

dro\(Nj)f(€) = i€ £(8), =123 (2.1)
dro (1) f(6) = ( )f(€) — Dref(€), Tem=o(3) (22
dro\(Ho)f(§) = —(E = A+ p)f (&) (2.3)
droA(N))F(€) =i (§A = 2(B = X+ p)d; — 2do(de} — ¢0)) f(€),  j=1,2,3 (2.4)
(2.5)

with 0 = Z Oker and e, for k = 1,2,3 denoting the standard basis of R?. Going forward we

will abbrev1ate
B ;= &A = 2(E — X+ p)d; — 2do (D¢} — e;0"). (2.6)

For A € iR the L% inner product

(Fl9) = [ (F@ho@vdn,  fge L)

where (- | )y, is a M-invariant inner product on V,, provides unitarizations for the representa-
tions m, ) on L?*(R3,V,). However elsewhere in the unitary dual, the natural L2-inner product
does not allow for unitarizations of the forementioned representations. Such unitarizations in-
volves considering intertwining operators

Jo  Io(N) = Io(—=X)
and then constructing a G-invariant Hermitian form

(f:9) = (f | Jong)r2

For the case of G = SO(4,1) and ¢ = 1 this hermitian form is given by convolution with a Riesz
kernel and using the Plancherel theory of the Fourier transform on L?(R3), one can obtain a
explicit expression for this G-invariant Hermitian form in the Fourier picture, see e.g [MO15].
However for the non-spherical case the representations are vector-valued and the Fourier picture
is more involved. Suppose

Ja)\ : Ia()‘) — Ia(*)‘)
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is such an intertwiner. Restricting to the non-compact picture we have that .J, \ is an translation
invariant operator on L?(R3)®V,,. Hence Jo.) is given by a convolution operator, or equivalently,
in the Fourier picture

~

Jox i F(lo(A) = F(I5(=X))

is given by a multiplication operator A € C*®°(R3\ {0}) ® End(V,)

Joaf(€) = A f(©). (2.7)
Since jU,A must be M A equivariant we find that A(e™*¢) = €2 A(¢) and hence
A© = 1724 () = Il Ao

Furthermore the M equivariance implies that
a(m™)A(€)a(m) = A(m™1¢). (2.8)

For convenience we parameterize M via the highest weight theory of M = SO(3), i.e we shall
identify M = Ny with o = 0 corresponding to the trivial representation. We will then show that

Theorem 2.1. Let o € Ng with o # 0 and let X € {%, %, N %} Then

(F 190 = [ € A9 16l de, .9 € FI,(N)

R3
defines a G-invariant positive definite form on F(I5(\)), with A(f) given by
A (&) = anf(&) € Vin(€)
with ag = 1 and a,, given by the recursion

am(m —2XA+1) = apmya(m+ 21+ 1). (2.9)

3 Sub-representations of L*(R3 V)

We start by introducing some coordinates on m = o(3) as follows: Let X;; = 2(e;e} — ejel) and

let Be = &X1,3 — &3X1,0 — &1 X3 for € = (&1,&2,&3) € R®. Then o(3) = span{X1 2, X1,3, X2 3}
with the usual commutator relations

(X192, X13] = —2X03, [Xi192,X23] =2X13, [Xi3,Xo3]=-2X1>

If we put B; = (%Bg we have the following useful relations

[X],kaB]] = X],kB] + XZ,kBZ = _QBku iaja k= 172737 { 7é j? 7’7.7 7& k (31)
[B]7X],k]:2Bk7 ]7k:172737 ]#k
1
2(56% - ekft) = _§[B§7Bk’]7 k= 172737 f = (61752753) € R3' (33)

For £ # 0 B¢ spans a Cartan-subalgebra of 0(3) = su(2) and the representation theory of SU(2)
implies that do(Bg) acts with eigenvalues {—2im||{||, —2i(m —1)||£]], ..., 2i(m — 1)||&]|, 2im||£||}
on Vg, with dim(V;) = 20 + 1.
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Lemma 3.1. Let 0 € M, f € C®°(R3\ {0}, V,) such that do(Be)f(€) = iml||€]| f(E)VE € R3 for
some m € 27Z and k € {1,2,3}. Then we have the following identities:

do(Be)f (€) = H%” () + i€k F(€) — do(Bi) F(€) (3.4)
do(B)Ef(€) = im|[€| EF(€) (3.5)
do(By)Ef(€) + do(Be) o B (£) = zmni’“”Ef( )+ iml|E|OLEF(€) (3.6)
2
200 (B0 (€) + do(Be)o} = im <|f||—1f<s> - H?ﬁg(&) f;”akf( )+ ||fra,%f<f>>

(3.7)
mda(fek —ex") f(§)

=Y do(X;p)do(B;) f(€) + Y do([Be, X; )0 £(€)  (3.8)
7k 7k

2do(Bg)do(dej, — e0") f(€) = 2im|[€||do (D), — exd") f(£) +2

Proof. Let f be as in the lemma. Then (3.4) follows directly from taking partial derivatives of
the eigenvalue equation do(Bg)f (&) = im||&]| f(§).
Equation (3.5) follows from (3.4) by

do(Be)Ef(§) = im|[€][f(£ +szHEH§m9kf) do(Bg)f(§) = im[|¢[|Ef(£)-

(3.6) follows directly from (3.5) by taking partial derivatives on both sides. (3.7) follows directly
by taking partial derivatives of (3.4). Lastly, to obtain (3.8), we have

2do(Bg)do(dej, — exd') f(€) = ) _ do(Be)do(X;x)9; £ (€)

J#k
=" (do(X;)do(Be)d; + do([Be, X;1))9;) (€)
ik
— % (dO'(Xj’k zmm +1im||£]|0; — do(By)) + dU([Bﬁan,k])aj> £

( Tl do(&ej, — ex€’) + 2im||¢||do (D¢}, — ex0") + Y do([Be, X;1])0; — da(Xj,k)dg(Bj)) F9),
j#k

which proves (3.8). ]

Using Lemma 3.1 we can now give a complete description of the action of n on the Eigenspaces
of do(Bg). The result is contained in the following Lemmas:

Lemma 3.2. Let o € M, f € C®(R3,V,) such that do(Bg)f(€) = iml||€|| V&€ € R3 for some
m € 2Z. Then

(B = (B = 2024 2= )01 ) £(6) € Vn(©

with Vi (&) the Eigenspace corresponding to the eigenvalue im||§|| of do(Be).
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Proof. Using Lemma 3.1 we have
do(Be)BS 1/ (€) = do(Be) (wrh — 20,E +2(1 4+ A - - 2do (e, ekaw) 7©)

— im (21\&\\-#(&) 2 L Bre) + el Af(E ) - mzda

Tl
—2im B BF(E) - 2im €| 0EF(€) + 2do(Br) EF(€)

€]l

+2im(1+ A — P) F(&) 4 2im(1+ A = p)[[§l|0kf(§) — 2(1 + A — p)do(By) f(£)

€]l
— 2im|[¢||do(De, — exd") f(€) — 2-—do(Eef, — exé') f(€)
Héll

+ ) do(X;)do(B)) f(€) — Y do([Be, X)) f(€)
ik ik

Grouping relevant terms and applying the identities (3.1),(3.2) and (3.3) we obtain

iml[€]l (6D = 200 +2(1 4 A = p)3 — 2do (Def, — ")) £(€)

3
— 26y do(B;)0;f(§) + 2do(Br)Ef(€) = Y do([Be, X;x]); f (€)
—~

J#k
—2(14 A= p)do(Bi)f(£) + Y _ do(X;k)do(B;) f(€)
Jj#k
) - g—k Zm o(Eel. — eps!

= im||&|| Bk f(§) — 2(2+ A — p)do(By) f(§)
— > do([Be, X;1])05f(§) +2_ do(&;Bi — &B;); £ (€)

j#k #k
. §k T
= im||&||BS 1 f(€) +2(2+ A — o) (im-E — do(By) £(€)

€]

+ g1 (o Be)do(B £(€) = im€ldo(5,) £(6)

where the last equality follows from the eigenvalue equation and from (3.2) since
[Be, Xkl = &[Bj, Xjk] — &k B, X,j] = 2(&; Br — &1.B;).-

Rearranging the terms and applying (3.4) we find

- m
do(B) (BM o]

do(By) —2(2+ X\ — p)c%) f(€)
— il (B4 - 5

mdg(gk) —22+ - p)8k> (€

as wanted. O
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Lemma 3.3. Let o € M and let f € C>®(R,V,) such that f(€) € Vi (€) for all € € R3 for some
m € 27. Then Orf = finvo + fim + fin—o with

fusal€) = qre7s (590(1Be B + 6m (€ +il€ldo(BAF©)) € Via®) (39
fu-2(6) = qre7s (597(1Be B = 6m () = il€ldo(BAF©)) € Via®) (310
Ful€) = 965 = qreado((Be B € Viul©) (3.11)

Proof. Let f be as in the lemma and denote by f;(§) the projection of f(£) onto Vp(§). Then
for £ € R3 the matrix B € 0(3) spans a Cartan sub-algebra h = span{Bc¢} of 0(3,C) and we
have the corresponding root-space decomposition

0(3,C) =g+ S g- .

With g4 = Span{Bgi} satisfying [Be, Bgi] = :|:2ZH.£HB£i By (3.4) we have

(do(Bg) — i(m = 2)[|€[)Okf(€) = mef( ) + 2il|§ |0k f (&) — do(Bk) f(S)

which implies
(do(Bg) —i(m + 2)||€]) (do( Bs) —i(m — 2)|€[)) Ok f

— 6 1() + 20l (7 me—Hﬂ )+ imlgof(€) — da(BUS(©) ) — do(Bodo(Br)1(€)

i(m+ D)€ (im gk £6)+ 20€016) = dr(BSE) )
= 4€lP0kf (€) — do([Be, Bi)) £(€).

We claimn that 9 ()~ gripdo([Be, Bi) F(€) € Vin(€) and griprdo([Be, BU)S(E) € Vinsa®Vinoa.
To see this note first that for By, = a1 B¢ + ang + ang we have

[Be, [Be, Bi]] = —4|¢]|° By, + 4€,Be.

Then (3.4) gives

do(Be) (041(6) = o (Be. B ©))
— iml|E 0 F(€) + Exdo(Be) F(€) — do(Bi) £(€) — 4”2” (im|€]ldo([Be, By]) + do((Be, [Be, Byl]) /€)
— il (on11€) - Mda([B@Bknf(@) .

The other claims follows from similar computations. This implies that O, f = fina2+ fin + fm—2
and thus

4|l fn+2(8) = (do(Be) — i(m — 2)) do([Be, Bl) f(€)

4II$H2

4”5,,2 (2z||£!|do([Bg, Bi)) f(€) + 4&aml|€| £ (&) — 4\|§||2da(Bk)f(£))



102 Paper C

A similar computation for f,, o yields

1 1 .
HEE (zd”@Ba»BkDf () + &mf () + ZHfIIdJ(Bk)f(f)>

Fu-2(®) = 777z (590 (B B = 6em () = il€lldo (B 1(6))

Jm+2(§)

Fnl€) = OuF () M;PdauBg, Bu)F(6).

as wanted. O

Similarly, we require the Eigenspace decomposition of the do(By)f(§) term in Lemma 3.2.

Lemma 3.4. Let o € M and let f € C>™(R,V,) such that f(€) € Vi (€) for all € € R3 for some
m € 27Z. Then do(By)f(§) = fm+2 + fimn + fim—2 with

l

1 )
fuse = g7t (540 (Bes BDI(©) = i6m (O + |€ldn(BS©)) (312

fueal€) = gy (5901 B = i6sm (€) + |€lldo (B f©)) (313)

funl€) = imni’]f@)- (3.14)

Proof. Let f be as in the Lemma and write 9, f (&) = f1,,12(&) + f1, (&) + fh,_o(€) for £ € R3 with

tat2> fr and f)_5 as in Lemma 3.3. Then using (3.4) we find

do(By) f(€) = immf(f) - iml|€ 0k (€) — do(Be)oy ()

_ imHi']f(E) FAllEN (2Fs — 2Fhss)

From which it follows that

1 .
Fuse = 57 (~50(Be: BISE) — i (€) + eldo (B)1(6))
fueal€) = gy (59018 B — i6sm (€) + I€lldo (B F©))
&
Fun€) = imreks £(6)
as wanted. Il

Using Lemmas 3.3 and 3.4 it is clear by Lemma 3.2 that the operators Bik maps V,, to
Viniz @ Vi @ Vo, For f € C®(R3,V,) with f(¢) € V;u(€) denote by (BS k. f(§))m+2 the
projection of By i f(§) to Vip+2(§). Then we have
2+A—pxF)

2(|¢]I>

Remark 3.5. Equation (3.15) implies that for A = 1 £m for some m € 27 such that im||¢]| is
an eigenvalue of do(Bg) then 7, contains a n-stable subspace. By (3.5), —=2(E — X+ p) leaves
the Eigenspaces of do(By) invariant and since

do(Be) T (k) (€) = o (k)do(By-1¢) f(k™'€) = im|[€[|lTon (k) f(€), k€ M = SO(3)

it follows that the n-stable subspace is actually g=ndm P adn stable.

(B (€)= (3o((Be Bu) () £ &um(€) £ i€dor(BS©)) - (3.15)
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Combining the previous lemmas we can now prove Theorem 2.1:

Proof of Theorem 2.1. Let f,g € F(I,(\)) and A € R. Suppose that
(1910 = /Rg<f(€),g(ﬁ)ﬂ(i))vgﬂf\l_nd& f9 € F(Is(N))

defines an G-invariant form on F(I,()\)). Since A(£) commutes with do(Bg) we must have that
A(€) acts on V, diagonally with respect to the basis of Eigenvectors of do(Bg). The action of
M preserves the Eigenspaces of do(B¢) and since do(By) is skew-adjoint the Eigenspaces are
orthogonal. Furthermore assume that f(£), g(¢) € V,,(€) for all ¢ € R3, then we have

(W) [ 7o) = [ (o F(h10). Ao () S (7 €)vs €2, he M

Since M preserves V;,(£) we must have that a,,(€) = a,(h~1€) by (2.8). Hence A(€) is both
homogeneous of degree 0 and SO(3) invariant, hence constant. Assume f(£), g(§) are contained
in a single Eigenspace. Then A(€) acts as a scalar a,, € C on Vy,(€). To determine a,, let
fr9 € F(I,(N\)) such that f(£) € Viui2(€) and g(€) € Vi, (€) for all € € R3. Then by (2.4) we
have

(F1B359) = [ amiaa(€), (B i9(€))msalvs €l

=GR [ o (1€ (aot(Be B + -+ l€ldn(B0 ) a(e)) Nl
_ 2+ —2p +3) /RS U2 <— <;do—([B§, By]) — &m — i||g|,dg(3k)> f(g)’g(£)>va el -2 2de
= e A [ (O an0(©), 1€

e B 0)

Hence a,, must satisfy the recurrence relation
am(m — 22+ 1) = apmia(m+ 21+ 1)

as wanted. O

4 Outlook

We finish by discussing some potential applications of the results. In [MO15] Méllers and Os-
hima constructed a L? model for some representations of O(1, N) in the spherical case. They
used such L? models to study branching problems to the subgroup O(1,m + 1) x O(n — m),
reducing the branching problem to the spectral theory of a Bessel type differential operator
acting on the L?-model, with the Bessel type operator analogously to the one appearing in this
paper. A similar approach might work, if one can generalize the result in this paper to O(1, N),
to study branching laws outside the spherical domain. The results may also prove useful in
studying tensor-products of discrete series representations. Such a generalization would require
a suitable substitute for B¢ in the more general setting.
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In [Zhal7] Zhang successfully used the existence of an L? model for complementary series rep-
resentations of rank one Lie groups to find discrete components in the tensor product of com-
plementary series representations. A similar approach might be possible to apply in our setting.
In fact one might make an ansatz for an intertwining operator

YTy = TN @ T

by taking inspiration from the approach used in [MO15]. Based on the equivariance properties
with respect to the action of n, M and A and the approach used by Oshima and Mollers, we
attempted to make an ansatz for such an operator

2
V()@ y) =z +y|*F <:i+§:2> T(f(@+y))py, T €Hompy(Ve,Ve®Vy®Hy)

with Hj, denoting the spherical harmonics of degree k and F' € C*°(R). Moéllers and Oshima
made a similar ansatz and was able to determine a differential equation on F', the spectral
theory of which in turn described the corresponding branching law. However after spending a
considerable amount of time at this approach, it appears to too technical in this setting and
another angle of approach appears to be needed. The method employed by Zhang in [Zhal7]
appears to be well suited for this purpose and would be the next natural step to consider. But
due to time constrains we were not able to pursue this any further.
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