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Preface

This dissertation is the result of my PhD studies at the Department of Mathematics at
Aarhus University. The dissertation consists of two papers together with an introduc-
tion to the research question and a chapter containing some background information
on reach.

The papers are:

Paper A Pointwise normal reach. Paper draft.

Paper B Is an encoder within reach? Submitted to The 26th Internation Conference
on Artificial Intelligence and Statistics (AISTATS).

Paper B is the result of my research stay at DTU where I visited Professor Søren
Hauberg. The targeted audience of the paper is the Machine Learning community,
and the paper should be read as such. I have contributed significantly to both the
theoretical analysis, to the experimental developments, as well as to the writing. The
paper is identical except for layout to a version which has currently been submitted
to the conference AISTATS, and appears on arXiv with id 2206.01552.

Paper A is a mathematical exploration of the pointwise normal reach explored
in Paper B. The results in Paper A have been developed by me in collaboration with
Andrew du Plessis. The paper is written solely by me, except for Appendix A.B
which have been written by Andrew du Plessis, and edited by me in order to make it
consistent with the rest of the paper.

In addition to the two papers a chapter about reach is included. The results in
the chapter are previously known results and results done by Andrew du Plessis. It
is included as it represents a large part of my time as a PhD student, however, in
the end the project ended up in a different direction. As a consequence, most of the
results in this chapter are not relevant for the results in the two papers.

As is the case with any good projects, this project had its share of unforeseen
challenges to overcome. From the beginning the project was the first of its type at the
department and there was no clear research question. In addition, it was hit with a
global pandemic, so much of the time was carried out in isolation. For this reason, the
project did not hit its stride until my stay at the DTU in the autumn of 2021. Looking
back, I wish that the first years of the project had played out differently. My time as a
PhD student has definitely been a learning experience. Ultimately I am very proud of
what I have managed to achieve, and the project opens the door to many unanswered
questions.

None of it had, of course, been possible without the support of a great many people!
I would like to thank my advisor Andrew du Plessis for introducing me to reach
and for his help in completing the mathematical results. This dissertation could not

iii

https://arxiv.org/abs/2206.01552


Preface

have been completed without the guidance of Søren Hauberg who kindly welcomed
me into his research group during my stay at the DTU. Our many discussions gave
much needed direction to my otherwise aimless endeavors. Much thanks should be
given to the entire Geometric Machine Learning group for making my stay at their
group an incredible experience. I would like to especially thank my co-authors Pablo
Moreno-Muñoz, Nicki Skafte Detlefsen and Rasmus Berg Palm, who in addition to
great company, are much better at coding than me.

A big thank you goes out to my officemates Jacob Thøstesen, Ragnhild Laursen
and Kenneth Borup, for many great talks and afternoon trips for coffee and cake. I
also want to thank Rikke Eriksen for being just far enough ahead to answer all my
questions about being a PhD student, and for great friendship for many years.

Finally I will say, I am evermore grateful to Thomas and Panda for being my home
base, always cheering me on and supporting me at all times and in all matters.

Helene Hauschultz
Aarhus, November 2022
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Summary

In manifold learning the aim is to represent data sets in lower dimension by fitting
a manifold to the data. Here the word manifold refers to the more general idea
of a subsets which can be described in fewer variables than the ambient space, as
opposed to the stringent mathematical definition of a manifold. Lower dimensional
representations can be found by projecting a data point to the (unique) nearest point
on the manifold. However, for any non-linear manifold, such a unique projection
does not exist everywhere.

One way to study where a unique projection does exist is through reach. Reach
gives a global bound on how far one can move from the manifold while ensuring that
a unique nearest point exists. However, this bound is too restrictive in a practical
setting, as many points further away will still have a unique nearest point. Instead
we introduce a new uniqueness bound called the pointwise normal reach, which gives
a bound on how far one can move in a normal direction while ensuring unique
projections. In addition to the pointwise normal reach, we introduce a related unique-
ness bound on immersed manifolds. This bound is beneficial as it utilises standard
analytical tools to compute the bound.

Finally, we use these bounds in practice, as we aim to understand the uniqueness
of representation in the autoencoder algorithm. We create a test which asks if a
datapoint is within reach of the assigned latent representation. A datapoint which
fails this test is not ensured to have a unique best choice of latent representation.
We employ Monte Carlo Sampling to estimate the pointwise normal reach of three
autoencoders. We find that the algorithms fail this test for most data points. Thus,
almost no data points are certain to have a unique best choice of representation.
To improve this, we introduce a regularising term into the training algorithm. This
significantly improves the amount of points which passes the reach test. However,
the experimental setup is currently too expensive to employ for non-toy datasets.
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Resumé

Formålet med manifold learning er at kunne repræsenterer et datasæt i lavere dimen-
sioner ved at fitte en mangfoldighed til datasættet. Ordet mangfoldig henviser her til
en mere generel idé om en delmængde der kan repræsenteres ved færre variable end
det omgivende rum, frem for den stringente matematiske definition. Når man har
fundet en mangfoldighed kan datasættet repræsenteres ved at projektere punkterne
til det nærmeste punkt på mangfoldigheden. Vi ved dog at for enhver ikke-lineær
mangfoldighed findes en sådan projektion ikke overalt.

I matematikken kan vi undersøge hvor en sådan projektion eksisterer ved hjælp af
reach. Reach giver en begrænsning på hvor langt vi kan bevæge os fra en delmængde
således at der stadig findes et entydigt nærmeste punkt. Det viser sig dog i praksis at
denne grænse er for restriktiv, da mange punkter længere væk end reach stadig har et
entydigt nærmeste punkt i mængden. Vi introducerer derfor pointwise normal reach,
som er en lokal grænse for hvor langt man kan bevæge sig fra i punkt i en normal
retning, samtidig med at man er sikker på at der findes et entydigt nærmest punkt.
Derudover introducerer vi en relateret grænse for immersioner, hvor vi kan udnytte
differentialet af immersionen i udregningen.

Vi udnytter disse grænser i praksis, da vi undersøger entydigheden af repræ-
sentationer lært af en auto-encoder algoritme. Vi konstruerer en test som spørger
hvilke datapunkter er indenfor pointwise normal reach af dens repræsentation. Hvis
et datapunkt fejler denne test betyder det at vi ikke kan være sikker på at der er
et entydigt bedste valg af repræsentation. Vi bruger Monte Carlo simulering til at
estimerer pointwise normal reach i trænede auto-encoders. Vi finder at næsten alle
datapunkter fejler testen. For at forbedre dette introducerer vi reach-regularisering
under træningen af auto-encoderen. Med denne regularisering forbedres antallet af
punkter der består testen betydeligt. Udfordringen er at reach-regulariseringen for
nuværende er for dyr til at bruge på andet end meget små modeller.
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Introduction

This chapter serves as an introduction to the topics and themes of the dissertation.
The work presented in this dissertation falls in the intersection of two different fields,
mathematics and machine learning. The motivation was to find ways where the
theoretical knowledge of mathematics could give new insights into manifold learning,
which is a type of machine learning which takes inspiration from geometry. The
question we ended up tackling was: Can latent representations be expected to be
unique?

A problem which can arise when the work is done in two different fields is that
words have different meanings. This problem arises in this dissertation as well.
Throughout this text, the word manifold is used not only to refer to the stringent
mathematical definition of a manifold, but also to refer to the general idea of a subset
which can be represented in fewer variables than the ambient space. This choice has
been made since in the topic of manifold learning the word is used in this way. To
make the confusion complete, at some point we need the assumption that a subset is
a smooth submanifold. Thus any mention of smooth (sub)manifold will always refer
to the mathematical definition (e.g. see [6]).

Machine learning

The goal of machine learning is to develop an algorithm which knows how to behave
in a certain situation. For instance, given a picture of a handwritten digit, it should
know which digit it is. Or a more complex situation; should a self-driving car turn,
accelerate og slow down at any given time. To achieve this goal, one could try to
encode our prior knowledge about the phenomenon by hand into the algorithm,
but it turns out that this is not an effective method [3]. Instead a better approach is
to let the program discover the expected behaviour by finding patterns in a set of
example behaviours. This automatic pattern discovery in a data set is what is known
as machine learning.

The fastest growing field of machine learning is deep learning. Here the desired
behaviour from above is modelled as a mapping, F, sending an input state to the
expected behaviour. This mapping is approximated by a neural network. A neural
network is the composition of a sequence of functions. Traditionally, the sequence
alternates between a linear transformation with an added bias term, and a simple
non-linear function applied element wise. The latter is called an activation function.
Thus, such an network is a composition of functions of the form

F̃(x) = l1 ◦ · · · ◦ lk(x),
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Introduction

where li(z) = φ(Wix+ bi) for some activation function φ and weights Wi and bi . The
dimensions of the weights and the activation function are determined ahead of the
training. The weights are found during the training process by minimising some
predetermined loss function on the data set. In the simplest situation, we minimise
the difference between the output of F and the output of F̃, that is

W ∗,b∗ = argmin
W,b

∑
x∈D
||F(x)− F̃(x)||,

where D is the set of training data.

Data representations

In machine learning it is important to have well suited representations of the data
in order to have successful learning outcomes. Such representation can be found
manually through a process called feature engineering, where human investigators
use their prior knowledge of the data to say which features are significant. However,
such an approach is time consuming and difficult to scale [3]. Instead, it is beneficial
to learn good representations. This approach is known as representation learning.
Representation learning covers many different approaches. However, for our endeav-
ours we are only interested in one type; dimensionality reduction. Dimensionality
reduction is a type of learning scheme where the goal is to reduce the dimension of
the data. The benefits of this are three fold: Firstly, in practice most data sets are very
high dimensional, thus the computational cost of training the models is very high. If
we are able to reduce the dimension while keeping the same intrinsic information,
we are able to reduce computation cost. Secondly, the expectation is that reducing
the dimension also reduces the noise in the data by removing axes, which do not
contribute significant information. Thirdly, by removing redundant information one
can extract the most important information in the data. Thus making successful
learning more likely.

In order for dimensionality reducing schemes to be beneficial, it needs to be
feasible to representent the data in fewer dimensions while still maintaining most of
the information. The reasoning behind this is known as the manifold hypothesis. The
manifold hypothesis states that most real world occurring data sets lie near a lower
dimensional submanifold of the ambient data space [3]. Because of this hypothesis,
learning lower dimensional representations is often called manifold learning, as we
aim to learn the submanifold the data lies near.

Unique latent representations

Under the manifold hypothesis it follows that data points can be represented in lower
dimensions by projecting them onto the manifold. The most natural being that the
new representation must correspond to the closest point on the manifold from the
original data point. It is also clear that any submanifold with non-zero curvature
somewhere, will result in points in the ambient space which does not have a unique
projection. Thus we risk that a data point does not have a unique representation. In
practice, dimensionality reducing algorithms produce singular latent representations,
and do not take into account that multiple best choices of such representations exist.

2
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The uses of such representations include visualisation, such as scatter plots which
are used to form scientific hypotheses as well as latent space statistics such as finding
clusters in the latent representations (see Paper B). Thus, there is a hidden assumption
that the latent representations are unique, but no investigations into whether or not
this assumption is valid are conducted.

To our knowledge, the work presented in this dissertation is the first to discuss
the risk of non-unique representations in representation learning. However, in the
general field of data science there is other work on such non-uniqueness. For instance,
Laursen & Hobolt [5] studies non-unique representations using non-negative matrix
factorization in cancer genomics.

Reach in manifold learning

In the previous section we discussed how manifold learning attempts to learn lower
dimensional latent representations by fitting a lower dimensional manifold to the
data. The study of manifolds is a big field in mathematics, thus there is a natural
interest from mathematicians into manifold learning. The perhaps most famous
example of this is the paper “Testing the Manifold Hypothesis” by Fefferman et.al.
[2], in which the authors develop a statistical test for the manifold hypothesis. The
method described in the paper tests if a given data set fits a manifold of dimension k
and a certain reach. The reach of a subset is the maximal distance one can move from
the set while ensuring that there exists a unique nearest point in the set. The reasons
for including the reach as a parameter in their test is given as follows: “We consider a
bound on the reach to be a natural constraint since if the data lie within a distance
less than the reach of the manifold, it can be denoised by mapping data points to the
nearest point on the manifold.” [2, p.958]

The global reach has also been used in results on manifold estimation. Here the use
of reach differs from the work of Fefferman et.al. (and the work in this dissertation)
as the reach of the underlying manifold from the data is generated which is used,
instead of the reach of the learned manifold which is fitted to the data. In [4] the reach
of the underlying manifold is used as a regularity condition as a minimax bound
on the estimation of the manifold is found. In [7] the global reach influences how
densely the data points must be sampled on the underlying manifold to be able to
accurately estimate the topology. This use of reach as a regularity condition lies closer
to the original motivation for introducing reach, than how the use of reach to ensure
unique projection.

Sets of positive reach were introduced by Federer in his 1959 paper “Curvature
Measures” [1]. Prior to Federer’s work, similar integral geometric theories had been
developed for convex sets and differentiable manifolds, respectively. Concretely,
Steiner’s formula and Weyl’s formula were two tube formulas with the same result for
the two classes of sets, but with different assumptions, such that neither follows from
the other [9]. Federer’s aim was to unite the two into one general theory, something
he managed with the introduction of sets with positive reach [1]. The intention of this
dissertation is not to give a thorough background on the history of integral geometry.
Instead we show how Federer’s intent was not directly to understand which points
in the ambient space have a unique projection onto the set. In fact, the global reach
value which Federer introduced, finds the worst case situation. A point within reach
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distance of the set is guaranteed a unique nearest point, but many, in fact most, points
further away still have one.

Pointwise normal reach and autoencoders

The global reach gives a very rough bound on which points have a unique nearest
point on the manifold. To remedy this we introduce pointwise normal reach. The
pointwise normal reach gives a local bound on how far one can move from a point on
the manifold in a normal direction while ensuring that a unique nearest point still
exists. A big benefit of the pointwise normal reach is that it is computable. Thus we
are able to use it to analyse the uniqueness of latent representations.

We consider the type of dimensionality reducing algorithm called an autoencoder.
In its basic form the algorithm is a composition of two functions f and g, where g
maps from the ambient space of the data set into a lower dimensional space called
the latent space, and f maps the latent space back into the data space. Then the
optimal f and g are found by minimising the distance between the data points and
the reconstructed points, that is

f ∗, g∗ = min
f ,g∈F ×G

∑
x∈D
‖x − f (g(x))‖.

Here F and G are the predetermined function classes of f and g. These are typically
chosen to be some type of neural network. f is called the decoder, and g is called the
encoder.

For our setup, we consider the image of the decoder f to be the manifold. The
optimal encoder is then a function g such that the reconstructed point f (g(x)) is the
closest point on the manifold to x. The use of the word manifold is not reasonable
from a mathematical perspective. There is no guarantee that the image of f is a
(smooth) manifold. A more reasonable assumption is that f is an immersion [8]. For
this reason we consider how one can find a similar bound to the pointwise normal
reach under this assumption.

In this dissertation we present two papers. In Paper A we develop the mathe-
matical theory of pointwise normal reach, and how we can calculate bounds on the
distance which ensures that a unique nearest point exists. In Paper B we investigate
how these bounds can be used to analyse the uniqueness of the autoencoder algo-
rithm. This paper covers both the theoretical motivation as well as an experimental
section where we try to implement the ideas in practice. Paper B is written as a
conference paper. It thus had a strict page limit. In addition, it is also written to target
the machine learning community.
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Global reach

This chapter contains background information on reach. Unless otherwise noted,
the results in this chapter are based on lectures and lecture notes made by Andrew
du Plessis. Some of the results also appeared in the dissertation of Helene Mathilde
Svane [8].

1.1 Definitions and properties

Let A be an arbitrary subset of Rn. Then we denote the set Unp(A) to be the set
of points which have a unique nearest point in A. It follows that we can define a
projection onto A by

PA : Unp(A)→ A

which associates a point x ∈Unp(A) to its nearest point in A.

Definition 1.1. A subset A of Rn has reach r, if r is the maximal distance such that all
points x in Rn with d(x,A) < r have a unique nearest point in A.

Here d(x,A) = inf {‖x − a‖ : a ∈ A}. It is clear that if x has a unique nearest point, then
there exists a ∈ A such that d(x,A) = ‖x − a‖. Consider a subset A which is not closed,
then there exists a convergent sequence a1, a2, . . . in A with limit a < A. Then it is clear
that a does not have a unique nearest point in A, as for any given point in A we can
always find one nearer. Hence, this implies that if reachA > 0 then A is closed. So
from now on we only consider closed sets.

We can also define reach as a local feature, such that for a point a ∈ A we denote

reach(A,a) = sup {r > 0 : {x : ‖x − a‖ < r} ⊂Unp(A)}

Then reach(A) = infa∈A reach(A,a).

Definition 1.2. Let A ⊂Rn and a ∈ A. We then say u ∈Rn is a tangent vector to A at a if
u = 0 or if for all ε > 0 there exists b ∈ A such that

0 < ‖b − a‖ < ε and ‖ b − a
‖b − a‖

− u
‖u‖
‖ < ε.

Let TaA denote the space of tangent vectors of A at a, and call it the tangent cone. We
define the normal cone of A at a to be the dual cone.

NaA = {u ∈Rn : 〈u,v〉 ≤ 0∀v ∈ TaA} .

The normal cone is a convex cone, but this is not necessarily true for the tangent
cone. We will not go into details about cones. The definition and more details are
found in Federer’s remark 4.5 [3].

7



Paper 1. Global reach

The following theorem from Federer [2, Theorem 4.8] gives a number of important
properties of spaces with positive reach. These results only require the tangent- and
normal cones defined above, and not for them to be full vector spaces.

Theorem 1.3 ([3] Theorem 4.8). Let A ⊂Rn be a non-empty, closed subset of Rn. Writ-
ing d(·, a) = d(·), and U = Unp(A), the following statements holds:

1. |d(x)− d(y)| ≤ |x − y| for all x,y ∈Rn,

2. If a ∈ A and P = {v ∈Rn : PA(a+ v) = v}, Q = {v ∈Rn : d(a+ v) = ‖v‖} . Then P and
Q are convex and P ⊂Q ⊂NaA.

3. Let x ∈Rn \A and suppose d is differentiable in x, then x ∈U and ∇d(x) = x−PA(x)
d(x) .

4. PA is continuous.

5. d is continuously differentiable on the interior Int(U \A) and d2 is continuously
differentiable on IntU with ∇d2(x) = 2(x − PA(x)).

6. Let a ∈ A and v ∈ Rn such that 0 < T = sup {t : PA(a+ tv) = a} <∞, then a+ T v <
IntU .

7. Let x ∈ U with PA(x) = a and reach(A,a) > 0 and let b ∈ A, then 〈x − a,a− b〉 ≥
− ‖a−b‖

2‖x−a‖
2reach(A,a) .

8. Let 0 < r < q <∞. For x,y ∈U with and d(x) < r, d(y) < r and reach(A,PA(x)) > q,
reach(A,PA(y)) > q, then ‖PA(x)− PA(y)‖ ≤ q

w−r ‖x − y‖.

9. If 0 < s < r < reach(A), then ∇d is Lipschitz on {x ∈Rn|s < d(x) < r} and ∇d2 is
Lipschitz on {x ∈Rn|d(x) < r}.

10. If a ∈ A, TaA =
{
u ∈Rn| liminft→0+ t−1d(a+ tu) = 0

}
.

11. Let a ∈ A and reach(A,a) > r > 0, and let u ∈Rn with 〈u,v〉 ≤ 0 whenever PA(a+v) =
a, and ‖v‖ = r, then limt→0+ t−1d(a+ tu) = 0.

12. If a ∈ A with reach(A,a) > r > 0, then NaA = {λv|λ ≥ 0,‖v‖ = r,PA(a+ v) = a} . TaA
is the convex dual cone to NaA and limt→0+ t−1d(a+ tu) = 0 for u ∈ TaA.

Lemma 1.4. Let A ⊂Rn be a closed subset. Then the following are equivalent:

1. reachA > r,

2. For all x,y ∈ A with ` = ‖x − y‖ ≤ 2r, the angles between NxA and NyA and the line
L between x and y are greater than cos−1(`/2r).

Let V ⊂Rn be a vector space and L ⊂Rn a line. We define the angle θ between V and
L to be the acute angle between L and its projection onto V , in the plane spanned by
the two lines. Let u be a unit vector in the direction of L, then it is clear that

sinθ =
‖u −πV u‖

1
= ‖u −πV u‖.

This calculation also shows that θ is indeed the smallest possible angle, as the distance
from u to any other point in V must be larger.

8



1.1 · Definitions and properties

Proof. (1)⇒ (2): Let x,y ∈ Awith ` = ‖x−y‖ ≤ 2r. By translating the set we can assume
without loss of generality that x = 0. Let z ∈ NxA with ‖z‖ = r. Now x is the unique
nearest point to z inA, so ‖y−z‖ > r. The law of cosines tell us ‖z−y‖2 = r2+`2−2r` cosθ
thus

r2 < r2 + `2 − 2r` cosθ⇔ 2r` cosθ < `2

⇔ cosθ <
`

2r
⇔ θ > cos−1(`/2r). �

The last inequality holds as cosine is a decreasing function between 0 and π/2.
(2)⇒ (1): Let z ∈Rn\A and suppose y1, y2 ∈ A satisfy d(z,A) = ‖z−y1‖ = ‖z−y2‖ = s.

Next we need to prove s > r. Suppose by contradiction that s ≤ r, then ‖y1 − y2‖ ≤
2s ≤ 2r. Then we get that the angle θ between z − yi and L is greater than cos−1(`/2r).
Using the law of sines we get 1

2` = s sin( 1
2α) = s sin(π/2−θ) = scos(θ) < s`

2r , thus r < s.

Proposition 1.5. Let A ⊂ Rn with reachA > r. Let x,y ∈ A with ‖x − y‖ ≤ 2r, and let L
be the line segment between them. Then

1. L ⊂Unp(A) and PA(L) is a simple curve in A from x to y.

2. Let B be an s-ball with s ≤ r and x,y ∈ B. Then PA(L) ⊂ B.

Proof. (i): Since ‖x − y‖ ≤ 2r all points on L must have distance less or equal to r to
either x or y. So L ⊂Unp(A).

PA
∣∣∣
L

: L→ A gives rise to a parametrisation of a curve, but it is not necessarily
an injective parametrisation. We want to show that we can find a parametrisation
of PA(L) which is injective. First notice if y1, y2 ∈ L with PA(y1) = PA(y2) = a. Then
y1, y2 ∈ a +NaA, and as NaA is a convex cone the line segment L′ between the two
points will also lie in a+NaA. Hence PA(L′) = {a}. Furthermore Theorem 1.3 tells us
PA is continuous, hence P −1

A (a) will be closed, so especially will it be a closed interval.
Let ρ : [0,1]→ A be a parametrisation of PA(L) given by ρ(t) = PA ((1− t)x+ ty). We

can construct an equivalence relation as

t1 ∼ t2 ⇔ ρ(t1) = ρ(t2).

This then induces a map
ρ̄ : [0,1]

�∼→ PA(L)

which is bijective and continuous in the quotient topology.
Furthermore [0,1]

�∼ is compact and we show that it is Hausdorff. For that suppose
[a], [b] ∈ [0,1]

�∼with [a] , [b]. Then we have a,b ∈ [0,1] with ρ(a) , ρ(b). As ρ(a),ρ(b) ∈
PA(L) ⊂Rn we can find two open neighbourhoods ρ(a) ∈Ua ⊂Rn and ρ(b) ∈Ub ⊂Rn
such that Ua ∩Ub = ∅. Now both Ua and Ub are relatively open in A so the preimages
ρ−1Ua, ρ−1Ub are open in [0,1] then the quotients are open in the quotient topology.
As we chose Ua ∩ Ub = ∅, it follows that we have constructed two disjoint open
neighbourhoods of [a] and [b].

We claim that [0,1]
�∼ is homeomorphic to an interval. Theorem 1.3 also tells us

that PA is Lipschitz, so the curve PA(L) must have finite length. Hence we can define

9
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s(t) to be the arc-length from x to (1− t)x+ y. This gives a function s : [0,1]→ [0,L]
where L is the arc-length of PA(L). It is clear that s is surjective and continuous. The
map induces a commutative diagram

S : [0,1] [0,L]

[0,1]
�∼

We claim that the map s̄ : [0,1]
�L→ [0,L] is injective. Notice that

s(a) > s(b) for a > b,a / b,

since if a / b then PA(a) , PA(b) so there must be some distance between them. Thus
s̄ : [0,1]

�L→ [0,L] is bijective, and as [0,1]
�L is compact and Hausdorff, we get that

[0,1]
�∼ is homeomorphic to [0,L]. Thus, we get an injective parametrisation of PA(L).

(2): Let z ∈ L \ A with PA(z) = a. We can then write z = a + tna, with na ∈ NaA
and t ∈ (0, r]. Let B′ be the ball with radius r and centre a + rna. Since reachA > r,
B′ ∩A = {a}.

Now, let P be the plane spanned by L and z − a, and let C = B∩ P , D = B′ ∩ P and
M = D ∩ L. As the centre of B′ is included in P , D is an r-disk. M is a line segment
which is properly contained in L.

x

y

za

a+ rna

B

B′

S(C) S(D)

Figure 1: Illustration of the proof from Theorem 1.5 (II).

Now let ` denote the line containing L, and let

S(C) = C ∩ {C’s reflection in `}
S(D) =D ∩ {D’s reflection in `} .

Then a ∈ S(D) ⊂ S(C) ⊂ C ⊂ B. �

We can strengthen the proposition in the case that NaA is a full vector space for all
a ∈ A.

10
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Corollary 1.6. If in addition NaA is a full vector space for all a ∈ A, then PA
∣∣∣
L

is injective.

Proof. If PA(z1) = PA(z2) = a for two points on L with z1 , z2, it follows that z1, z2 ∈
NaA. Then all of L must lie in NaA, especially will the endpoints x,y ∈ NaA + a,
however this contradicts lemma 1.4. �

Theorem 1.7. For A ⊂Rn a closed subset,

reach(A) = inf
{
‖x − y‖2

2d(y − x,TxA)
: x,y ∈ A,y − x < TxA

}
.

Proof. Let r > 0. First assume that x,y ∈ A with ‖x − y‖ > 2r. Note that d(y − x,TxA) ≤
‖x − y‖ as x ∈ TxA+ x. Hence we get

2r < ‖x − y‖ ≤
‖x − y‖2

d(y − x,TxA)
.

Now suppose ‖x− y‖ ≤ 2r and that the angle θ between NxA and the line between
x and y satisfy cosθ < ‖x−y‖2r . Using the fact that cosθ = d(y−x,TxA)

‖x−y‖ we get that

d(y − x,TxA)
‖x − y‖

<
‖x − y‖

2r
⇔ r <

‖x − y‖2

2d(y − x,TxA)
.

This proves that the second statement of lemma 1.4 is equivalent to

r <
‖x − y‖2

2d(y − x,TxA)
∀x,y ∈ Ay − x < TxA.

Now applying lemma 1.4 gives us

r < reachA ⇔ r <
‖x − y‖2

2d(y − x,TxA)
∀x,y ∈ Ay − x < TxA. (1.1)

Thus we have that

reach(A) = inf
{
‖x − y‖2

2d(y − x,TxA)
: x,y ∈ A,y − x < TxA

}
. �

The next theorem we will state without proof. It shows that a topological manifold
is ensured to be C1,1.

Theorem 1.8. [7] Let A ⊂Rn be a subset with reachA > r > 0, and suppose for n > k ≥ 1
TaA is a k–dimensional vector space for all a ∈ A. Then A is a C1,1 manifold of dimension
k.

A function is C1,1 if it is differentiable with Lipschitz continuous derivative. In fact, a
C1,1 function is ‘almost’ C2, a fact which follows from Radermacher’s Theorem below.
Later we are going to utilise the fact that for a C1,1 curve, the curvature exists almost
everywhere.

Theorem 1.9 (Radermacher’s Theorem). [3, Theorem 3.1.6] If f : Rm → R
n is Lips-

chitz, then f is differentiable almost everywhere.

11
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1.2 Spindles and their properties

We now introduce the concept of spindles and how they relate to reach.

Definition 1.10. Let L be a closed line-segment in R
n of length |L| ≤ 2r. Then the r-

spindle S(L,r) generated by L is the intersection of all r-balls whose boundaries each
contain both endpoints of L

In the case that L has length 2r, there is only one such ball, so S(L,r) is this ball.
Considering the case n = 2, there are two such balls, each the mirror image of the
other in the line L. Hence, S(L,r) is the intersection of these two balls. It is a well
known fact that the angle from a chord subtended from two points on a circle is
constant corresponding to the two arcs. So by computing this angle we get

S(L,r) =
{
x ∈R2 : The angle ∠axv is obtuse, with sin(∠axb) ≤ |L|

2r

}
(1.2)

Lemma 1.11. Let 0 < s ≤ r, and let M ⊂N ⊂R2 be the closed line segments of length less
than 2s. Then S(M,r) ⊂ S(N,s).

Proof. Let a,b denote the endpoints of M and c,d denote the endpoints of N . Let
x ∈ S(M,r). Using (1.2) we get that the angle ∠axb is obtuse, so the larger angle ∠cxd
is also obtuse, and

|M |
2r
≤ |N |

2s
,

as |M | ≤ |N | and r ≥ s. So x ∈ S(N,s). �

Lemma 1.12. Let L be a line in Rn, n ≥ 3 with |L| ≤ 2r. Then we can describe S(L,r) as
the union of the two dimensional spindles SP (L,r) in P generated by L ⊂ P , P ∈ P , where
P consists of all the planes which contain L.

Proof. Let x ∈ S(L,r). If x ∈ L it follows directly that x ∈ SP (L,r) for all P ∈ P . Suppose
that x does not lie on L, then there exists a unique plane Px ∈ P , such that it contains
both L and x. So we have to show that x ∈ SPx (L,r).

We noted earlier that SPx (L,r) is the intersection of exactly two disks of radius
r. An r-disk containing L must lie in an r-ball containing L, so it follows from the
definition of the spindle that x ∈ SPx (L,r).

Suppose conversely that x ∈ SP0
(L,r) for some P0 ∈ P . Let B be any ball of radius r

which contains L. Now B∩ P0 is not empty as both contain L, hence it must be a disk
of radius s ≤ r. Now using the definition of spindles and lemma 1.11 we get that

x ∈ SP0
(L,r) ⊆ SP0

(L,s) ⊂ B,

which proves the claim. �

We can now extend lemma 1.11 to arbitrary dimensions.

Corollary 1.13. Let 0 < s ≤ r, and let M ⊂N ⊂Rn be the closed line segments of length
less than 2s. Then S(M,r) ⊂ S(N,s).

12
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Proof. We consider the intersections with affine planes P containing M. We observe

S(M,r)∩ P = SP (M,r),

and we know S(M,r) =
⋃
P SP (M,r), for P affine planes containingM. Similarly, S(N,s)

is the union of SP (N,s). From the two dimensional case we know that SP (M,r) ⊂
SP (N,s) for all P , so S(M,r) ⊂ S(N,s). �

Lemma 1.14. Let M be a closed line segment of length |M | < 2r in Rn. Then S(M,r) is
the intersection of all closed balls of radius at most r which contains M.

Proof. Let C be a closed s-ball which contains M and s ≤ r. Let ` be the affine line
containing M. Then C ∩ ` is a closed line segment N , which contains M. So from (1)
we know that S(M,r) ⊂ S(M,s) ⊂ C, so S(M,r) ⊂ S. �

Lemma 1.15. Let M be a closed line segment of length |M | < 2r in Rn. Then S(M,r) is
the intersection of all closed balls of radius strictly less than r, which contains M.

Proof. Let S denote the intersection of all balls with radius strictly less than r which
contains M. Now, lemma 1.14 gives that S ⊂ S(M,r).

Next let x ∈ S. We want to prove that x ∈ S(M,r). First we observe that lemma
1.14 also gives that x ∈ S(M,s) for all s ∈ ( 1

2 |M |, r). We can restrict the situation to the
two-dimensional spindle in the plane containing M and x. Denote the end-points of
M a,b we get

sin(∠axb) ≤ |M |
2s

for all s ∈ ( 1
2 |M |, r). Now taking the limit s→ r gives

sin(∠axb) ≤ |M |
2r
.

So x is contained in the two-dimensional spindle in the plane, and hence it is con-
tained in S(M,r).

�

Corollary 1.16. Let A ⊂ Rn have reachA > r. Let x,y ∈ A with ‖x − y‖ ≤ 2r and let L
denote the line segment between them. Then PA(L) ⊂ S(L,r).

Proof. This follows directly from Proposition 1.5 as PA(L) is contained in all balls
with radius s ≤ r which contain x and y. �

Proposition 1.17. Let A ⊂Rn be a closed subset, then the following are equivalent:

1. A has reachA > r,

2. For all x,y ∈ A with 0 < ‖x − y‖ < 2r

S(L,r)∩ (A \ {x,y}) , ∅,

where L is the line segment from x to y.

13
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Proof. The implication (1)⇒ (2) follows directly from Corollary 1.5. Conversely,
we assume that A does not have reachA > r, then there exist z ∈ Rn \A such that
d(z,A) = s ≤ r and there is x,y ∈ A with ‖x − z‖ = ‖y − z‖ = s. There must exist
w ∈ S(L,r)∩ (A \ {x,y}) as it is non-empty. However we also have that S(L,r) \ {x,y} is
contained in the open ball B(z, s), hence d(z,A) < s giving the contradiction. �

Definition 1.18. For a two dimensional spindle S(L,r), the spindle angle is the acute
angle between L and the boundary arcs of S(L,r). An easy calculation shows that sinϕ = |L|2r .
The spindle angle of a higher dimensional spindle S(L,r) is the spindle angle of SP (L,r)
for any affine plane P containing L.

Definition 1.19. Let α be a curve. Suppose for all x,y ∈ α with ‖x − y‖ ≤ 2r, the sub-arc
of α from x to y is contained in the r-spindle with endpoints x and y. Then we say α has
the r-spindle property.

Proposition 1.20. Let α ⊂ Rn be a C1 arc with the r-spindle property. Let ` be the line
segment joining the endpoints of α and assume the length of ` is ≤ 2r. Let ϕ be the spindle
angle of the r-spindle S generated by `. Then the angle between ` and any tangent vector
to α is at most ϕ.

Proof. The result follows directly for the tangent vectors at the endpoints x and y.
Let z be another point in α, and let `′ be the line between x and z and let S ′ be the
r-spindle generated by `′. As α ⊂ S, the sub-arc from x to z is contained in S, and
hence `′ ⊂ S. So in particular `′ is contained in any closed ball of radius at least r
containing `. So by the characterisation from lemma 1.14 (2), S ′ ⊂ S.

The angle between the tangent vector t at z to α is at most the spindle angle ϕ′

of S ′. So the angle between t and ` is at most ϕ′ plus the angle θ between `′ and `.
However, θ +ϕ′ is also the maximum angle between ` and the tangent vectors to S ′

at x since S ′ ⊂ S. So θ +ϕ′ ≤ ϕ, which completes the proof. �

Proposition 1.21. Let ψ : I → R
n be a C1 arc-length parametrisation of a curve C.

Suppose C has the r-spindle property. Then the following holds

1. ‖ψ′(t1)−ψ′(t2)‖ ≤ 1
r ‖t1 − t2‖ for all t1, t2 ∈ I .

2. ψ is twice differentiable almost everywhere, and the curvature is ≤ 1
r almost every-

where.

Proof. Suppose t1, t2 ∈ I with ‖ψ(t1)−ψ(t2)‖ ≤ 2r. Then ψ([t1, t2]) ⊂ S([ψ(t1),ψ(t2)], r),
so it follows from proposition 1.20 that the angles between ψ′(t1),ψ′(t2) and the
line [ψ(t1),ψ(t2)] are less than the spindle angle φ for S([ψ(t1),ψ(t2)], r). Hence the
angle between ψ′(t1) and ψ′(t2) is ≤ 2r. Then using the double-angle formula and the
spindle angle calculation we get

‖ψ′(t1)−ψ′(t2)‖2 =2− 2cosθ

≤2− 2cos2φ

=2− 2(1− 2sin2φ) = (2sinφ)2

=
(1
r
‖ψ(t1)−ψ(t2)‖

)2
.
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Since ψ is arc-length parameterised, ‖t1 − t2‖ is the arc-length from ψ(t1) to ψ(t2),
hence

‖ψ′(t1)−ψ′(t2)‖ ≤ 1
r
‖ψ(t1)−ψ(t2)‖ ≤ 1

r
‖t1 − t2‖.

Now suppose that ‖ψ(t1)−ψ(t2)‖ > 2r. As ‖t1 − t2‖ <∞, the arc-length of ψ ([t1, t2])
is finite. Hence, we can create a sequence

t1 = t1 < t2 < · · · < tn = t2,

such that ‖ψ(ti)−ψ(ti+1)‖ ≤ 2r for all i = 1, . . . ,n− 1. Then

‖ψ′(t1)−ψ′(t2)‖ ≤
n−1∑
i=1

‖ψ′(ti)−ψ′(ti+1)‖

≤
n−1∑
i=1

1
r
‖ψ(ti)−ψ(ti+1)‖

≤1
r

n−1∑
i=1

{
arc-length from ψ(ti) to ψ(ti+1)

}
=

1
r
{arc-length from ψ(t1) to ψ(t2)} =

1
r
‖t1 − t2‖.

We have now shown that ψ′ is Lipschitz, hence Radermachers theorem tells us
that ψ′ is differentiable almost everywhere. Suppose ψ′ is differentiable in t ∈ I . Using
the first part of the proof we get that

‖ψ′(t + h)−ψ′(t)‖ ≤ 1
r
‖h‖.

Dividing with ‖h‖ and letting h→ 0 we get that ‖φ′′(t)‖ ≤ 1
r . �

Proposition 1.22. Let α ⊂Rn be a closed arc with the r-spindle property. Then reachα >
r.

Proof. Suppose that there exists x ∈ Rn and z1, z2 ∈ α such that ‖z1 − x‖ = ‖z2 − x‖ =
d = d(x,α). Suppose for contradiction that d ≤ r, then ‖z1 − z2‖ ≤ 2r. We then have
a closed ball B with radius d and centre x and z1, z2 ∈ ∂B. As d < r, the r-spindle
S with endpoints z1 and z2 is contained in B by lemma 1.14 (2), and furthermore
S ∩∂B = {z1, z2}. As α has the r-spindle property, the sub-arc α′ with endpoints z1, z2
is contained in S, but then there must be points in α′ contained in the interior of B.
So especially there must be z3 ∈ α with ‖z3 − x‖ < d. This contradicts the assumption
that d = d(x,α), so we must have d > r. Then it follows that α must have reach r. �

1.3 Schur’s Theorem for C1,1 curves

Schur’s Theorem is usually stated for C2 curves, however, as a manifold with positive
reach is only certain to be C1,1 we here prove it for that situation.

Theorem 1.23 (Schur’s Theorem). Suppose that α is a closed, C1,1 arc in Rn and that
ᾱ is a closed, simple C2 plane closed, both arc-length parametrised. Suppose ᾱ, together
with a line between the end-points, is the boundary of a convex set. Suppose that both are
arc-length parametrised. Furthermore suppose
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• ᾱ has curvature K̄ always positive,

• α has curvature K with K̄(s) ≥ K(s) almost everywhere.

Then
‖α(L)−α(0)‖ ≥ ‖ᾱ(L)− ᾱ(0)‖.

Radermachers theorem tells us that a Lipschitz function is differentiable almost ev-
erywhere. Thus in our situation where the curve is C1,1 the derivative is differentiable
almost everywhere, which in turn implies that we can find the curvature almost
everywhere. For the proof of Schur’s theorem we need the following result on the
length of a Lipschitz curve.

Lemma 1.24. Let f : [a,b]→R
n be a Lipschitz curve. Then there exists s : [a,b]→ [0,L],

where s(t) is the arc-length from f (a) to f (t). Furthermore, for a ≤ α ≤ β ≤ b,∫ β

α
|f ′(t)|dt = s(β)− s(α).

Proof. As f is Lipschitz, it is rectifiable, that is, it has finite length. This is easy to
verify, as the definition of the arc-length is the supremum of

n∑
i=1

|f (ti)− f (ti−1)|

over all partitions a = t0 < . . . tn = b. Given such a partition,

n∑
i=1

|f (ti)− f (ti−1)| =
n∑
i=1

∣∣∣∣∣∣
∫ ti

ti−1

f ′(t)dt

∣∣∣∣∣∣ ≤ n∑
i=1

∫ ti

ti−1

∣∣∣f ′(t)∣∣∣ dt,
hence, it follows that

s(β)− s(α) ≤
∫ β

α

∣∣∣f ′(t)∣∣∣ dt. (1.3)

We know that |f (β)− f (α)| ≤ s(β)− s(α), for all α ≤ β, so

|f (t + h)− f (t)|
h

≤ s(t + h)− s(t)
h

≤ 1
h

∫ t+h

t

∣∣∣f ′(u)
∣∣∣ du.

If we let h→ 0, the left hand side will go to |f ′(t)|. Using the fundamental theorem of
calculus for the Lebesgue integral, we get that the right hand side will go to |f ′(t)|.
Hence s′ exists almost everywhere, and s′(t) = |f ′(t)| almost everywhere.

We know that s is a non-decreasing function. We can extend s to the interval
[α − a,β + 1] by

s(t) = s(α), for t ∈ [α − 1,α],

s(t) = s(β), for t ∈ [β,β + 1].

s is still non-decreasing, so s′ is non-negative and Lebesgue integrable. Furthermore,

s′(t) = lim
n→∞

s(t + 1
n )− s(t)
1
n

,
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for almost all t ∈ [α,β].
Using Fatout’s lemma we get that∫ β

α
s′(t)dt ≤ liminf

n→∞

∫ β

α

s(t + 1
n )− s(t)
1
n

=liminf
n→∞

n

[∫ β

α
s
(
t +

1
n

)
dt −

∫ β

α
s(t)dt

]
=liminf

n→∞
n

∫ β+ 1
n

α+ 1
n

s(t)dt −
∫ β

α
s(t)dt


=liminf

n→∞
n

∫ β+ 1
n

β
s(t)dt −

∫ α+ 1
n

α
s(t)dt

 .
However, ∫ β+ 1

n

β
s(t)dt =

1
n
s(β) and

∫ α+ 1
n

α
s(t)dt ≥ 1

n
s(α),

so combining the above gives∫ β

α
s′(t)dt ≤ liminf

n→∞
n
(1
n
s(β)− 1

n
s(α)

)
= s(β)− s(α).

Combining this with equation (1.3) gives us

s(β)− s(α) ≤
∫ β

α
|f ′(t)|dt =

∫ β

α
s′(t)dt ≤ s(β)− s(α),

which completes the proof. �

Proof (Proof of Schur’s Theorem). Radermachers theorem tells us that a Lipschitz
function is differentiable almost everywhere, hence the curvature of α exists almost
everywhere.

There must exist s0 such that ᾱ′(s0) is parallel to the line ` between the end-points
of ᾱ.

ᾱ(0)

ᾱ(L)

ᾱ

`

Considering ᾱ as a curve in Rn, we can, using a rigid motion, assume α(s0) = ᾱ(s0),
and ᾱ(s0) = T0. Denote α′(s) = T (s) and ᾱ′(s) = T̄ (s). Then

‖α(L)−α(0)‖ ≥ 〈α(L)−α(0),T0〉 =
∫ L

0
〈T (s),T0〉 ds,

‖ᾱ(L)− ᾱ(0)‖ = 〈ᾱ(L)− ᾱ(0),T0〉 =
∫ L

0

〈
T̄ (s),T0

〉
ds,
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where the equality in the latter equation comes from the fact that ᾱ(L)−ᾱ(0) is parallel
to T0. This tells us that it is enough to show that 〈T (s),T0〉 ≥

〈
T̄ (s),T0

〉
.

Both T and T̄ are parametrised curves on Sn−1. As ᾱ is a plane curve, T̄ moves
with positive speed K̄ along a great circle. So the length of T̄ from s0 to s becomes

L(T̄
∣∣∣
[s0,s]

) =
∫ s

s0

K̄(s)ds = cos−1
〈
T0, T̄ (s)

〉
.

As α is a C1,1 curve, α′ is Lipschitz and hence almost everywhere differentiable,
per Radermachers theorem. So by letting K be the function which is α′′ almost
everywhere, we get from Lemma 1.24 that

L(T
∣∣∣
[s0,s]

) =
∫ s

s0

K(s)ds ≥ cos−1 〈T (s),T0〉 ,

where the inequality comes from the fact that cos−1 〈T (s),T0〉 is the length of the great
circle arc which is the shortest path between the two points.

Now

cos−1
〈
T̄ (s),T0

〉
=

∫ s

s0

K̄(s)ds ≥
∫ s

s0

K(s)ds ≥ cos−1 〈T (s),T0〉 .

cos−1 : [0,1] → [0,π] is decreasing, so
〈
T̄ (s),T0

〉
≤ 〈T (s),T0〉, which completes the

proof. �

Lemma 1.25. If ‖α(L)−α(0)‖ = ‖ᾱ(L)− ᾱ(0)‖ then we obtain α from ᾱ via a rigid motion.

Proof. The equality combined with the first inequalities from the previous proof
gives us ∫ L

0

〈
T̄ (s),T0

〉
ds ≥

∫ L

0
〈T (s),T0〉 ds,

but since
〈
T̄ (s),T0

〉
≤ 〈T (s),T0〉 we get equality in both places. Thus

‖α(L)−α(0)‖ =
∫ L

0
〈T (s),T0〉 ds.

and cos−1
〈
T0, T̄ (s)

〉
= cos−1 〈T0,T (s)〉. Once again considering the lengths

L(T̄
∣∣∣
[s0,s]

) =
∫ s

s0

K̄(s)ds = cos−1
〈
T0, T̄ (s)

〉
L(T

∣∣∣
[s0,s]

) =
∫ s

s0

K(s)ds ≥ cos−1 〈T0,T (s)〉 ,

we get that ∫ s

s0

K(s)ds ≥
∫ s

s0

K̄(s)ds

which implies K ≡ K̄ , and ∫ s

s0

K(s)ds = cos−1 〈T0,T (s)〉 . �

Thus T lies on a great circle, so α is a plane curve. Now the result follows from the
fundamental theorem of plane curves.
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Lemma 1.26. α is a simple curve.

Proof. It is clear that ᾱ is a simple curve. Let x,y ∈ Imα with two different parameter
values. Let x̄, ȳ ∈ Imᾱ be the points corresponding to the same parameter values. Let
β ⊂ α be the arc with x,y as endpoints, and β̄ ⊂ ᾱ be the arc with x̄, ȳ as endpoints.
We know x̄ , ȳ as ᾱ is simple, and then x , y since

‖x − y‖ ≥ ‖x̄ − ȳ‖. �

Corollary 1.27 (Schwartz’ Theorem). Let α be a closed C1,1 arc in Rn with curvature
≤ 1

r almost everywhere, such that the distance between the endpoints x,y is ≤ 2r. We write
Lα as the length of α. Let C be a circle of radius r which contains x and y. Let A0,A1 be
arcs on the circle with x and y as endpoints, with length L0,L1. Assume L1 ≥ L0. Then
Lα ≥ L1 or Lα ≤ L0.

Proof. Let θ be the angle in the centre of C between α(0) and α(Lα).

α(0)

α(Lα)

A1
A1

a

θ

θ

Let ᾱ be an arc on C with ᾱ(0) = α(0) and length Lα . We observe that we are
in the situation from Schur’s theorem, hence we find that the distance between the
endpoints of ᾱ is less than the distance between α(0) and α(Lα). Thus we get that
ᾱ(Lα) lies in the arc between α(Lα) and a. Hence it follows that if Lα < L1 then Lα ≤ L0
and otherwise Lα ≥ L1.

1.4 Reach and curvature

Intuitively it is clear that there is a connection between reach and curvature. In this
section we delve further into this relationship.

Lemma 1.28. LetM⊂Rn be a smooth manifold of dimension k ≥ 2.M has a Riemannian
structure from the embedding in Rn with the usual Euclidean structure. Let p ∈M and
assume that the absolute value of all the normal curvatures ofM at p is bounded by κ.
Then all the sectional curvatures ofM at p lie in the interval [−min(n− k)κ2,κ2].

Proof. Let v ∈ TpM be a unit vector, and let γ : J →M be a smooth curve defined in
an open neighbourhood of 0 ∈R, such that γ(0) = p and γ ′(0) = v. For a unit normal
vector n, the n-normal curvature is given by γ ′′(0) ·n.
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The normal curvature is related to the sectional curvature through the second
fundamental form ofMat p,

II : TpM× TpM→NpM. (1.4)

We need the following properties of the second fundamental form [5],

• II is symmetric and bilinear,

• the n-normal curvature in p in the direction v is II(v,v) ·n,

• the sectional curvature KP ofMat p with respect to the plane P ⊂ TpM spanned
by an orthonormal basis {v,w} is equal to

II(v,v) · II(w,w)− ‖II(v,w)‖2.

Let n0 ∈NpM be a unit vector. Let κv = ‖II(v,v)‖, κw = ‖II(w,w)‖ and

nv =

 1
κv

II(v,v), κv , 0

n0, otherwise
,

nw =

 1
κv

II(w,w), κw , 0,

0, otherwise
.

This implies that κv = II(v,v) · nv and κw = II(w,w) · nw are normal curvatures, so
κv ,κw ≤ κ. Hence

KP = II(v,v) · II(w,w)− ‖II(v,w)‖2

≤ II(v,v) · II(w,w)

= κvκwnv ·nw
≤ κ2.

If II(v,w) = 0, then
KP = κvκwnv ·nw ≥ −κ2.

Alternatively let λ = ‖II(v,w)‖, and m = 1
λ II(v,w). Let p = 1√

2
(v + w) and q =

1√
2

(v −w). Now p and q are unit vectors, and since II is symmetric and bilinear,

II(v,w) =
1
2

(II(p,p)− II(q,q)) .

So λ = II(v,w) ·m = 1
2 (II(p,p) ·m− II(q,q) ·m). However, II(p,p) ·m and II(q,q) ·m are

normal curvatures, so |λ| ≤ 1
2 (κ+κ) = κ. Hence

KP = II(v,v) · II(w,w)− ‖II(v,w)‖2

= κvκwnv ·nw − |λ|2

≥ −κ2 −κ2 = −2κ2.

What is left is to consider the special situation of n− k = 1. In that case NpM has
dimension 1, and the normal space is spanned by n0. Then the inner product between
II and n0 is an quadratic form on TpM, so it can be orthogonally diagonalised. Hence
it can be orthogonal diagonalised, which means we can find an orthonormal basis
{a,b} for TpM such that II(a,b) ·n0, which implies II(a,b) = 0. �
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1.4 · Reach and curvature

Proposition 1.29. Let M be a C2 manifold with reachM > r. Let x,y ∈ M, and γ :
[0,L]→M a geodesic from x to y. Then the curvature of γ is less than 1

r everywhere.

γ(s0)

γ(s0) + r γ̈(s)
K

γ(s0) + 1
K2 γ̈(s0)

B1

B2

Proof. Suppose γ is arc-length parametrised. Let s0 ∈ [0,L]. We want to show that

K = ‖γ̈(s0)‖ ≤ 1
r
.

We know that γ̈(s0)⊥Tγ(s0))M, so γ̈(s0) ∈Nγ(s0)M, hence

PM

(
γ(s0) + t

γ̈(s0)
K

)
= γ(s0)

for all t ≤ r.
Now, suppose that K > 1

r , equivalently r > 1
K . Let B1 be the ball with radius r and

centre γ(s0) + r γ̈(s)
K and B2 the ball with radius 1

K and centre γ(s0) + 1
K γ̈(s0). By the

definition of the curvature K there exists ε > 0 such that

γ(s0 − ε,s0 + ε) \γ(s0) ⊂ Int(B1),

but since we assumed that M has reach greater than r we have a contradiction. �

In fact the relationship between reach and curvature goes both ways, but we need
an additional requirement apart from the curvature.

Theorem 1.30. LetM ⊂ Rn be a closed smooth submanifold. Then, for any r > 0, the
following are equivalent

1. M has reach > r,

2. All normal curvatures onM have absolute value < 1
r , and for any p ∈M,B(p,2r)∩M

is connected.

We need to ensure that B(p,2r)∩M is connected, as we risk that while the curvature
of the manifold stays low, it slowly bends back and ends up near itself again.

Proof. (i) ⇒ (ii): Let r ′ ∈ (r,τM), where τM = reachM. Let p ∈ M and let t be an
arbitrary unit tangent vector toM at p, and let n be an arbitrary unit normal vector
toM at p.

Now, let γ : (−ε,ε) → M be a smooth curve with γ(0) = p and γ ′(0) = t. Let
F : (−ε,ε)→ [0,∞) be given by

F(t) = ‖γ(t)− (p+ r ′n)‖2, t ∈ (−ε,ε).
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SinceMhas reach greater than r ′ we know that PM(p + r ′n) = p, so the sphere with
radius r ′ and centre p + r ′n will intersectM only in {p}. This means that F must have
a minimum in 0. So

F′(0) = (γ(0)− (p+ r ′n)) ·γ ′(0) = r ′n · t = 0

F′′(0) = ‖γ ′(0)‖2 − (γ(0)− (p+ r ′n)) ·γ ′′(0) = 1− r ′n ·γ ′′(0) ≥ 0.

Hence
n ·γ ′′(0) ≤ 1

r ′
<

1
r
.

By changing n to −n in the calculations we get that −n ·γ ′′(0) < 1
r , so n ·γ ′′(0) > −1

r .
Since p, t and n were chosen arbitrarily, it follows that the absolute values of all

the normal curvatures on M must be less than 1
r .

Let p ∈M and let p′ ∈M∩B(p,2r). Then ‖p−p′‖ = 2s ≤ 2r. Let L be the line segment
between two points. Then it follows from Proposition 1.5 that PM(L) ⊂ B(p+p′

2 ,2), and
thus

PM(L) ⊂ B(
p+ p′

2
, s) ⊂ B(p,2r).

HenceM∩B(p,2r) is connected, and as p was chosen arbitrarily it holds for all p ∈M.
(ii)⇒ (i): First we recall for a Riemannian manifold with sectional curvature less

than K > 0 everywhere, we have the following estimate of the injectivity radius by
Klingenberg [4]:

inj(M) ≤min
{
π
√
K
,
1
2
{the length of the shortest geodesic loop though p}

}
.

Returning to our situation,M⊂Rn inherits a Riemannian structure from R
n. As

all normal curvatures have absolute value less than 1
r , it follows that all sectional

curvatures are less than
(

1
r

)2
. The condition on the normal curvatures also gives that

the curvature of an arbitrary geodesic arc is less than 1
r everywhere.

Then it follows from Schurs’ Theorem (1.23) that if a geodesic arc has length less
than 2πr, then the distance between the endpoints d is greater than the distance
between the endpoints of a circular arc of the same length. Hence d > 0, and thus it
follows that a geodesic loop onMmust have length strictly greater than 2πr. Now
Klingenberg’s estimate gives that the injectivity radius ofM at each point p must be
> πr.

Using Schurs’ Theorem again, we see that if a geodesic inMhas length πr, then
the distance between the endpoints must be greater than 2r. Now let p ∈ M and
let S ⊂ M be the geodesic sphere of radius πr centred at p. Then all points in S
must have distance greater than 2r from p. So S ∩B(p,2r) is empty, and especially is
S ∩ (B(p,2r)∩M) empty.

We now know thatM∩ S is not connected, and that one of the connected compo-
nents must be the open geodesic ball O centred at p. Since B(p,2r)∩M is connected
and intersects O at p,

B(p,2r)∩M⊂O.

We are now ready to prove thatMhas reach greater than r. Suppose otherwise.
Then there must be a point z ∈ Rn with d(z,M) = s ≤ r, and two points p1,p2 ∈ M
such that

‖z − p1‖ = ‖z − p2‖ = s.
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1.5 · Reach and shortest paths

Then ‖p1−p2‖ ≤ 2s, so p2 must lie in the open geodesic ball with radius πr and centre
p1. Thus there is a geodesic arcA from p1 to p2 of length < πr. As the normal curvature
is strictly less than 1

r everywhere, we can find r ′ > r, for instance by letting 1
r ′ be the

maximum curvature on A, such that A is contained in the r ′-spindle with endpoints
p1 and p2. This follows from Proposition 1.16. But since s ≤ r < r ′, the r ′-spindle is
contained in the interior of the s-ball with centre z, except for the endpoints. And
thus the same holds for A. Since A ⊂M this contradicts s = d(z,M), so reachM > r. �

1.5 Reach and shortest paths

Theorem 1.31. [6] Let A ⊂Rn be closed. Suppose there is a continuous rectifiable curve
from x to y in A. Then there exists a continuous rectifiable curve of shortest length joining
x and y.

Theorem 1.32. [1] Let A ⊂Rn be closed. Then A has reach r if and only if for each pair
x,y ∈ A with ‖x − y‖ < 2r there exists a continuous rectifiable curve joining x and y of
length less or equal to 2r arcsin

( ‖x−y‖
2r

)
.

Observe that 2r arcsin
( ‖x−y‖

2r

)
is the length of the minor arc of a circle of radius

r and endpoints x and y. The angle subtended at the centre of the circle is thus
2arcsin

( ‖x−y‖
2r

)
. We call this angle the r-associated angle of the arc [x,y].

Proof. Suppose that we have rectifiable curves with the stated bounds on the length.
We want to show thatA has reach r. Suppose on the contrary that there exists z ∈Rn\A
and x,y ∈ A with

d(z,A) = ‖x − z‖ = ‖y − z‖ = s < r.

Then ‖x − y‖ ≤ 2s < 2r. Using the assumption and Theorem 1.31 together, we know
that there exists a curve of shortest length γ : [0,1]→ A from x to y, and the the
length of γ must be less or equal to 2r arcsin

( ‖x−y‖
2r

)
.

We now claim that Imγ ⊂ S(L,r), where L is the line segment from x to y. To
show this, it is enough to prove that Imγ ⊂ B for an arbitrary ball B of radius r which
contains x and y.

Suppose that is not the case. Then there exists t0 < t1 in [0,1], such that γ(t0),γ(t1) ∈
B and

γ ((t0, t1)) ⊂Rn \B.

The radial projection onto the boundary of B is a smooth map ρ :Rn \B→ δB which
decreases length, so

2r arcsin
(
‖γ(t0)−γ(t1)‖

2r

)
≥length

(
γ
∣∣∣
[t0,t1]

)
>length

(
ρ ◦γ

∣∣∣
[t0,t1]

)
≥length(the short geodesic on ∂B from γ(t0) to γ(t1))

=2r arcsin
(
‖γ(t0)−γ(t1)‖

2r

)
,

which is a contradiction, hence Imγ ⊂ S(L,r).
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However S(L,r)\ {x,y} ⊂ Bo
(z, s), so there must exists an element x̂ ∈ Imγ ⊂ A with

‖x̂ − z‖ < s, which is also a contradiction. Hence A must have reach γ .
Now assume that A has reach r. Let x,y ∈ A with ‖x − y‖ < 2r. Let θ denote the r-

associated angle for [x,y]. LetH be the hyperplane through x+y
2 which is orthogonal to

[x,y]. As PA([x,y]) is connected and contained in S([x,y], r), there must be an element

m ∈ A∩ S([x,y], r)∩H.

Let c be the points where the line starting in x+y
2 and passing through m intersects

∂S([x,y], r). Then
‖x −m‖ = y −m ≤ ‖x − c‖ = ‖y − c‖.

The line segments [x,c] and [y,c] both have r-associated angle 1
2θ, to the segments

[x,m] and [y,m] has r-associated angle ≤ 1
2θ.

x y

x+y
2

m

c

H

We can apply the same procedure to the segments of PA([x,y]) from x to m and
from m to y. Then we find new points and line segments which have r-associated
angle less than 1

r θ. By continuing this process k times for an arbitrary k ∈N, we get a
sequence S consisting of 2k + 1 points, p1, . . . ,p2k+1 in A∩ S([x,y], r), which starts in x
and ends in y, such that each segment [pi ,pi+1] has r-associated angle ≤ 1

2k
θ.

Consider the minor arc of a circle of radius r joining x and y. Since [x,y] has
r-associated angle θ, then the length of this arc is rθ. Divide the arc into 2k arcs of
the same length r

2k
θ. Let T be the collection of line segments between the endpoints

of the arcs. Then each segment in T has r-associated angle 1
2k
θ.

Then

rθ ≥sum of the lengths of the segments in T

≥sum of the lengths of the segments in S.

Next we want to apply PA to the line segments from S. First consider, for an
arbitrary line segment L of length ` < 2r and en points in A, then

length(PA(L)) ≤ r

r − 1
2`
`.
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This follows from Theorem 1.3 (8). If L is a segment from S, then ` = 2r sin( 1
2θL) ≤

2r sin( 1
2k
θ), where θL is the r-associated angle for L. So it follows that the length of

PA(∪L∈SPA(L)) is ≤ 1
1−2sin( 1

2k
rθ. Letting k→∞, we see that

inf {length(γ) : γ is a curve joiningx and y} ≤ rθ. �

From Theorem 1.31 it follows that this infimum is attained. Hence, there is a curve of
length ≤ rθ joining x and y. This completes the proof.

Corollary 1.33. Suppose A ⊂Rn with reachA > r. Suppose C is a curve in A of shortest
length between two points in A. Then C has the r-spindle property.

Proof. Let x,y ∈ C with ‖x − y‖ ≤ 2r. Let B be a ball with radius r and x and y in the
boundary of B. Let γ : [0,1]→ C be a parametrisation of the curve between x and y.
Suppose that γ ([0,1]) is not included in B. Then there exists t1, t2 ∈ [0,1] such that
γ(t1),γ(t2) ∈ ∂B and γ (t1, t2) ⊂ Bc.

As C is a curve of shortest length, γ ([t1, t2]) must be the shortest path from γ(t1)
to γ(t2). Hence by Theorem 1.32 length (γ ([t1, t2])) ≤ 2r arcsin

( ‖γ(t1)−γ(t2)‖
2r

)
. However,

this is also the length of the short curve of the boundary of B from γ(t1) to γ(t2),
but this curve is also the radial projection of γ ([t1, t2]) down to B. However, this
is a contradiction, as the radial projection would strictly shorten the length of the
curve. �

Corollary 1.34. Let A ⊂ Rn with reachA = r. Suppose C is a path from x to y in A of
shortest length. Then C has reach r.

Proof. Combining Corollary 1.33 and Proposition 1.22 gives the result. �

References

[1] Boissonnat, J.-D., A. Lieutier and M. Wintraecken (2019). The reach, metric
distortion, geodesic convexity and the variation of tangent spaces. eng. Journal
of Applied and Computational Topology 3(1), 29–58.

[2] Federer, H. (1959). Curvature Measures. eng. Transactions of the American
Mathematical Society 93(3), 418–491.

[3] Federer, H. (1969). Geometric measure theory. eng. Die Grundlehren der mathe-
matischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichti-
gung der Anwendungsgebiete ; 153. Berlin: Springer.

[4] Klingenberg, W. (1959). Contributions to Riemannian Geometry in the Large.
eng. Annals of mathematics 69(3), 654–666.

[5] Lee, J.M (1997). Riemannian manifolds : an introduction to curvature. eng. Grad-
uate texts in mathematics ; 176. New York: Springer.

[6] Myers, S.B. (1945). Arcs and Geodesics in Metric Spaces. eng. Transactions of
the American Mathematical Society 57(2), 217–227.

25



Paper 1. Global reach

[7] Rataj, J. (2007). Three lectures on geometric measure theory. URL: http://thiel
e.au.dk/fileadmin/www.thiele.au.dk/Events/2007/WS/Rataj.pdf, Last
visited: 29/03/2022.

[8] Svane, H.M (2019). “Reconstructing R-regular Objects from Trinary Digital
Images”. PhD dissertation. Aarhus Universitet, Institut for Matematik.

26

http://thiele.au.dk/fileadmin/www.thiele.au.dk/Events/2007/WS/Rataj.pdf
http://thiele.au.dk/fileadmin/www.thiele.au.dk/Events/2007/WS/Rataj.pdf


P
a
p
e
r

A
Pointwise normal reach

Helene Hauschultz and Andrew du Plessis

A.1 Introduction

In modern machine learning many data sets are very high dimensional. The goal of
manifold learning is to find lower dimensional representations of such high dimen-
sional data. This is done by fitting a submanifold of lower dimension than the ambient
space to the data. The data can then be represented by the projection onto the learned
manifold. As these representations are used to further analyse the data, it is, from
a theoretical perspective, important that the representations are unique. However,
in practice manifold learning algorithms never consider that such a projection is
actually unique.

In the influential paper Testing the manifold hypothesis by Fefferman et.al. [3] the
authors tackle the problem of uniqueness by asking if the given data set fit a manifold
of a certain reach. The reach of a subset is the maximal distance you can move from
the subset while ensuring a unique nearest point. Aamari et.al [1] in their paper tackle
the estimation of the reach on smooth closed manifolds. Reach is a concept widely
used in geometric measure theory, and sets with positive reach behaves nicely, so the
use of reach is also beneficial in the theory of manifold estimation [6, 8]. This paper
originates from the idea of using reach in concrete manifold learning algorithms,
to ensure that the data points have a unique representation. However, from this
perspective, the global reach is too restrictive, and we found that a finer-grained
analysis was needed.

For a given subset M of Rn we denote Unp(M) the set of points in R
n which

has a unique nearest point inM. To learn trustworthy representations we should
require the data to lie in the set with unique nearest points to the learned manifold.
However, for arbitrary subsets, or even smooth manifolds, the set Unp(M) is not
easily computed. Introduced by Federer [2], reach(M) is the largest number such
that any point at distance less than reach(M) toM lies inside Unp(M). It is clear
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that enforcing that the data stays within the reach distance of the manifold ensures
unique representation. However, many points with distance larger than the reach
still have a unique nearest point. Thus we develop a new local reach value, called the
pointwise normal reach. The pointwise normal reach gives a bound on how far we can
move in a normal direction from a given point while ensuring unique projection onto
the subset.

Inside reach
Inside pointwise normal reach Manifold

As our efforts come from applying the concept to actual algorithms, the pointwise
normal reach can be directly calculated as

rN (x) = inf
y∈M

‖y − x‖2

2d(y − x,TxM)
,

where TxM denotes the general tangent cone as defined by Federer [2]. IfM is a
manifold, TxM is the standard tangent space. We will prove that the pointwise normal
reach is continuous on smooth submanifolds which are closed subsets of Rn. The
need for continuity also comes from concrete applications. As learning algorithms
often embed noise, we might end up calculating the pointwise normal reach in a
point close to, but not exactly the nearest point to a given data point. By ensuring
continuity, we do ensure that we are at least close to the correct value.

In practice, it is not feasible to obtain the general tangent cones of the learned
manifolds. Instead we would like to utilise standard analytical tools, such as the
Jacobians. As done by Shao, Kumar & Fletcher [9], we assume that our learned man-
ifold is the image of an immersion f : Rm→ R

n, m < n. That is, f is a smooth map
with injective differential at each point. We then develop a new bound for ensuring
uniqueness, which uses the Jacobian matrix to estimate the distance to the tangent
space.

A.2 Background

In this paper we considerRn with the standard Euclidean inner product 〈·, ·〉 and norm
‖·‖. We denote by B(z, r) the open ball with centre z ∈Rn and radius r. For any given
subsetA ⊂Rn we define the distance from a point z ∈Rn toA as d(z,A) = infx∈A‖x−z‖.
For a vector or vector space V we denote by πV orthogonal projection onto V .
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As done by Federer [2], for an arbitrary subset A ⊂ Rn we consider the set
Unp(A) = {z ∈ Rn : z has a unique nearest point in A}. We define the function PA :
Unp(A)→A as the function sending z in Unp(A) to its unique nearest point in A.
For a point x inA the local reach ofA at x is reach(A,x) = sup{r > 0 : B(x,r) ⊂Unp(A)},
and the global reach of A is reach(A) = infx∈A reach(A,x). It is easy to see that if A is
not closed then reach(A) = 0.

For a subset A ⊂Rn and a point x ∈ A, we say that t ⊂Rn is a tangent vector if for
all ε > 0 there is a point y ∈ A such that

0 < ‖y − x‖ < ε and ‖
y − x
‖y − x‖

− t

‖t‖
‖ < ε.

We denote TxA the set of all tangent vectors ofA at x. We denote the set of all normal
vectors as the dual of the tangent cone TxA,NxA = {n ∈Rn : 〈n,t〉 < 0 for all t ∈ TxA} .
Note that ifA is a manifold, the tangent and normal cones correspond to the standard
tangent and vector spaces.

Next we recall some useful results from Federer.

Lemma A.1 ([2] Theorem 4.8). Let A be a closed subset of Rn and let x ∈ A.

1. Let PA : Unp(A)→A denote the projection onto the unique nearest point and let

P = {v ∈Rn : PA(x+ v) = x} , Q = {v : d(x+ v,A) = ‖v‖} .

Then P and Q are convex and P ⊂Q ⊂NxA.

2. If z ∈Unp(A), x = PA(z), reach(A,x) > 0 and y ∈ A, then

〈
z − x,y − x

〉
≤
‖y − x‖2‖x − z‖
2reach(A,x)

.

From Federer we also get an explicit computation of the global reach.

Theorem A.2 ([2] Theorem 4.18). For a closed subset A in Rn,

reach(A)−1 = sup
y∈A,y,x

2d(y − x,TxA)
‖y − x‖2

.

Here we say if reach(A)−1 = 0 then reach(A) =∞ and vice versa.

A.3 Introducing pointwise normal reach

The motivation behind this work is to ensure unique representations in dimensional-
ity reducing algorithms. Unique representations can be ensured by requiring data
points to be within reach, by which we mean the distance from the point to the fitted
manifold is less than the reach of the manifold. Thus the global reach provides a
bound which ensures uniqueness. However, this bound is too rough, and many points
which do have a unique nearest point on the manifold are discarded. The local reach
defined by Federer does give a finer-grained analysis of Unp(M), but reach(M,x) is
generally not computable except in very simple cases. Thus the goal is to develop
tools to give a computable finer-grained analysis of the set Unp(M).
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Definition A.3. LetM⊂Rn be a closed subset. Let x be a point inM. Then, for y ∈M
with y − x < TxM we define

R(x,y) =
‖y − x‖2

2d(y − x,TxM)
.

If y − x ∈ TxM we say R(x,y) =∞. We define the pointwise normal reach to be

rN (x) = inf
y∈M

R(x,y). (A.1)

Thus pointwise normal reach is the pointwise minimisation of the computation from
Theorem A.2. We can interpret R(x,y) as the radius of the sphere tangent toM at x
and passing through y.

x

yR(x,y)

M

TxM

Figure 2: For two points x,y ∈M the fraction R(x,y) is the radius of ball tangent to
M at x and passing through y.

In the following theorem we shall see the motivation behind the name the point-
wise normal reach. The theorem shows that rN (x) gives a bound on how far we can
move away from x in a normal direction, while staying inside Unp(M). In other
words, if for some z ∈Rn the distance from z toM satisfies d(z,M) = ‖z − x‖ for some
x ∈M, with ‖z − x‖ < rN (x), then z ∈Unp(M).

Theorem A.4. LetM⊂Rn be closed. For all x ∈M

B(x,rN (x))∩ (NxM+ x) ⊂Unp(M). (A.2)

In order to prove the theorem we first prove the following technical lemma.

Lemma A.5. LetM⊂Rn be closed and let x ∈M. Then the following holds true:

1. For v ∈ NxM and u ∈ Rn with 〈v,u〉 ≥ 0, then ‖πv(u)‖ ≤ d(u,TxM), where π
denotes the orthogonal projection.

2. Suppose z ∈Rn with z − x ∈NxM, and suppose there exists y ∈M, y , x, such that
‖z − y‖ ≤ ‖z − x‖, then R(x,y) ≤ ‖z − x‖.
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Proof. To prove 1. we first prove that d(u,dual(v)) = ‖πv(u)‖. Note that we can write
u = uv +uv⊥ , for uv = πv(u) and uv⊥ ∈ v⊥.

d(u,dual(v)) = inf
w∈dual(v)

‖u − v‖ = inf
w∈dual(v)

‖uv +uv⊥ −w‖

=‖uv‖+ ‖uv⊥ −w‖ − 2〈uv ,w〉 .

As 〈uv ,w〉 ≤ 0, it follows that the infimum is achieved when w = uv⊥ . By the definition
of the dual, if follows that

dual(v) ⊃ dual(NxM) ⊃ TxM.

Hence, d(u,TxM) = infw∈TxM‖u −w‖ ≥ infw∈dual(v)‖u −w‖ = ‖πv(u)‖.
To prove 2. note that, as ‖z − y‖ ≤ ‖z − x‖, it follows that

〈
z − x,y − x

〉
≥ 0. Thus

we can consider the triangle with vertices x,y,z, where the angle θ at the vertex x
is acute. Combining the inequality with the law of cosine gives ‖z − x‖2 ≥ ‖z − y‖2 =
‖z − x‖2 + ‖y − x‖2 − 2‖z − x‖‖y − x‖cosθ, which is equivalent to

‖z − x‖ ≥
‖y − x‖2

2‖y − x‖cosθ
=

‖y − x‖2

2‖πz−x(y − x)‖
.

Following 1. we have that ‖πz−x(y − x)‖ ≤ d(y − x,TxM), hence

‖y − x‖2

2d(y − x,TxM)
≤

‖y − x‖2

2‖πz−x(y − x)‖
.

Combining the two inequalities, we get that R(x,y) ≤ ‖z − x‖. �

Proof (Proof of theorem A.4). Suppose for the sake of contradiction that there exists
z ∈ (B(x,rN (x))∩ (NxM+ x)) with z < Unp(M). That is, there exists y1, y2 ∈ M such
that d(z,M) = ‖y1 − z‖ = ‖y2 − z‖. In particular, there must be at least one y ∈M with
y , x such that ‖y − z‖ ≤ ‖x − z‖ < rN (x). Applying Lemma A.4 then gives R(x,y) ≤
‖z − x‖ < rN (x), which gives a contradiction. �

Relation to local reach

In the following section we discuss how the pointwise normal reach relates to the
local reach defined by Federer.

Proposition A.6. For any x ∈M, reach(M,x) ≤ rN (x).

Proof. If reach(M,x) = 0, the result follows directly. Hence, suppose reach(M,x) > 0.
Let y ∈M. If y−x ∈ TxM, then R(x,y) =∞, otherwise we can find a unit normal vector
w ∈NxM such that

〈
w,y − x

〉
≥ 0. In that case〈

w,y − x
〉

= ‖w‖‖y − x‖cosθ = ‖πw(y − x)‖,

where θ is the acute angle between w and y − x so cosθ = ‖w‖ ‖πw(y−x)‖
‖y−x‖ .

Applying Lemma A.1 (2) then gives us

reach(M,x) ≤
‖y − x‖2‖w‖
2
〈
w,y − x

〉 ≤ ‖y − x‖2

2‖πw(y − x)‖
≤ R(x,y). �
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Corollary A.7. For any x ∈M, reach(M,x) ≤ infy∈M rN (y) + ‖x − y‖.

Proof. Let x ∈ M and consider an arbitrary y ∈ M. There is a sequence {zk} ⊂
Unp(M)c such that the distance to y converges down to reach(M, y) as k goes to
infinity. For any k ∈ N we have that ‖x − zk‖ ≤ ‖y − zk‖ + ‖x − y‖. Thus ‖x − zk‖ →
reach(M, y) + ‖x − y‖ as k→∞. Thus it follows that

reach(M,x) ≤ inf
y∈M

reach(M, y) + ‖x − y‖.

Combining this result with Proposition A.6 gives the result. �

Proposition A.8. For any x ∈M,

reach(M,x) ≥ inf
y∈B(x,2rN (x))∩M

rN (y).

Proof. By the definition reach(M,x) = infz∈Unp(M)c‖z − x‖, and from the proceding
proposition we know that reach(M,x) ≤ rN (x). So suppose there exists z ∈ B(x,rN (x))
with z <Unp(M). Then there exists y1, y2 ∈M such that d(z,M) = ‖y1 − z‖ = ‖y2 − z‖ ≤
‖x− z‖. It follows that ‖yi −x‖ ≤ 2rN (x) for i = 1,2, and that ‖yi − z‖ ≥ rN (yi) for i = 1,2.
Hence it follows that ‖x−z‖ ≥ rN (yi) ≥ infy∈B(x,2rN (x))∩M rN (y), which proves the claim.

�

The lower bound on reach(M,x) is, in fact, quite weak. Points near the edge of the
2rN (x)–radius with a small normal reach rN will have a large impact on the bound.
However, we can strengthen the bound in the following way:

Corollary A.9.

reach(M,x) ≥ inf
y∈B(x,2rN (x))∩M

max
{
rN (y),

1
2
‖y − x‖

}
Proof. Let z ∈Rn and suppose ‖y −z‖ ≤ ‖x−z‖. Using the triangle inequality ‖y −x‖ ≤
‖y − z‖+ ‖z − x‖ ≤ 2‖x − z‖, which implies ‖x − z‖ ≥ 1

2‖y − x‖. �

Restricting to convex tangent cones

We now restrict the study of the pointwise normal reach to the case where the tangent
cones are convex. Indeed, we see that the normal reach is not necessarily informative
otherwise.

NxM

rn(x)

In the case of the cross, the pointwise normal reach in the centre will be ∞. How-
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ever, this is not very informative as none of the points in R
n will project onto the

centre, and the normal cone is empty. On the other hand, in the case of the heart, the
pointwise normal reach in the lower vertex, will be bounded. However, we can move
infinitely far away in any normal direction while staying inside Unp(M).

In the following lemma we prove that if the tangent cones are convex, the point-
wise normal reach does indeed tell us the maximal distance we can move in any
normal direction from x ∈M while still ensuring the unique nearest point is x.

Lemma A.10. LetM denote a closed subset of Rn and let x ∈M with TxM convex. Let
τv = sup {t > 0 : PM(x+ tv) = x} for each unit vector v ∈NxM, then

rN (x) = inf
v∈NxM,‖v‖=1

τv .

Proof. Let τ = infv∈NxM τv . Suppose there exists a unit vector v ∈NxM and t < rN (x)
such that ξ(x + tv) , x. Then there exists y ∈ M with ‖x + tv − y‖ ≤ ‖x + tv − x‖ = t.
However, then Lemma A.5 gives R(x,y) ≤ t < rN (x), which is a contradiction. Hence,
rN (x) ≤ τ .

Next let t < τ . Let v be a unit vector in NxM, such that ξ(x + tv) = x. Hence for all
y ∈M ‖x + tv − y‖ > t. Using the same idea as in Lemma A.5, but with the opposite
inequality, we get that

t2 < ‖x+ tv − y‖2 = ‖x − y‖2 + t2 − 2t‖πv(y − x)‖,

which is equivalent to

t <
‖x − y‖

2‖πv(y − x)‖

for all y ∈M with
〈
v,y − x

〉
≥ 0. Especially, for an arbitrary y ∈M\ TxM,

PNxM(y−x)
‖PNxM(y−x)‖

will be a unit normal vector. Hence

t <
‖y − x‖2

2‖PNxM(y − x)‖
= R(x,y).

Hence τ ≤ rN (x), which proves the lemma. �

Normal reach in smooth manifolds

As we work towards proving that the pointwise normal reach is continuous, we
tighten the assumptions and assume thatM is a smooth manifold, in addition to
a closed subset. In the following example we show that the C1 is not sufficient to
ensure continuity.

Example A.11. We consider a function h : R2 → R
3, and letM = h(R2), where h is

given by

h(x,y) =


2
√
r2 −

(
y
2

)2
−
√
r2 − x2 − r if 0 ≤ |x| ≤ y

2√
r2 − (x − y)2 − r if y

2 ≤ x ≤ y√
r2 − (x+ y)2 − r if − y ≤ x ≤ − y2

0 otherwise

In Appendix A.A we show that the pointwise normal reach is in fact not continuous
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Figure 3: The graph of the function h from Example A.11.

in the point (0,0,0). AsM is C1,1 we see that it is not sufficient to ensure the conti-
nuity. This is perhaps natural as the pointwise normal reach is closely related to the
curvature of a manifold, which is a C2 property.

Proposition A.12. SupposeM⊂Rn is closed and is a smooth submanifold. Then rN (x) >
0 for all x ∈M.

Proof. This follows from the fact that around any point inM we can find a neigh-
bourhood in the normal bundle, which can be embedded into Rn ([4], Theorem 5.1).

�

Suppose M ⊂ Rn is a smooth submanifold and let x ∈ M. Let t be a unit tangent
vector forM at x, and let n be a unit normal vector forM at x. Suppose γ : I →M
is a smooth curve from an open neighbourhood I of 0 in Rn, such that γ̇(0) = t and
γ(0) = x. Then the n-normal curvature at x in the direction t is given by γ̈(0) ·n. This
is equivalent to II(t,t) ·n, where II(·, ·) denotes the second fundamental form. This
implies that the normal curvature is continuous.

Proposition A.13. Let M ⊂ Rn be a smooth submanifold and let x ∈ M. Suppose for
some r > 0 that rN (x) > r then all normal curvatures at x inM have absolute value less
than 1

r .

Proof. Let r ′ ∈ (r, rN (x)). Let t be an arbitrary unit tangent vector toM at x, and let n
be an arbitrary unit normal vector toM at x. Now, let γ : (−ε,ε)→M be a smooth
curve with γ(0) = x and γ̇(0) = t. We then define a function F : (−ε,ε)→ [0,∞) to be
given by

F(t) = ‖γ(t)− (x+ r ′n)‖2, t ∈ (−ε,ε).

Since rN (x) > r ′ , we know that PM(x+ r ′n) = x, so the sphere with centre x+ r ′n and
radius r ′ will intersectM only in x. This implies that F has a minimum in 0. Thus we
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have that

F′(0) = (γ(0)− (x+ r ′n)) · γ̇(0) = r ′n · t = 0,

F′′(0) = ‖γ̇(0)‖2 − (γ(0)− (x+ r ′n)) · γ̈(0) = 1− r ′n · γ̈(0) ≥ 0.

Thus n · γ̈(0) ≤ 1
r ′ <

1
r . By changing n to −n in the calculation we get that −n · γ̈(0) < 1

r ,
so n · γ̈(0) > −1

r . �

Next we need to recall the definition of spindles:

Definition A.14. Let L be a closed line-segment in R
n of length |L| ≤ 2r. Then the r-

spindle S(L,r) generated by L is the intersection of all r-balls whose boundaries each
contain both endpoints of L.

In fact we have that the r-spindle S(L,r) is the intersection of all closed balls of radius
at most r which contains L. Suppose x and y are points in A, then the spindle with
endpoints x and y, is the spindle generated by the line between these two points.

Before moving on we recall the following result which follows from Corollary
A.57 in [10]:

Lemma A.15. Suppose x,y ∈M are points on a smooth manifold with ‖x − y‖ ≤ 2r and
suppose there is a curve α between them with curvature ≤ 1

r everywhere and length ≤ rπ.
Then α is contained in the r-spindle with endpoints x and y.

Lemma A.16. SupposeM is a smooth submanifold and closed subset of Rn. Then

B(x,rN (x))∩NxM⊂ ˚Unp(M).

Proof. Let x ∈M with rN (x) > 0. Suppose there exists z ∈ B(x,rN (x))∩ (NxM+x) with
z < ˚Unp(M). Then there must exists a sequence zk → z with zk <Unp(M) for all k ∈N.
For each k, zk has two distinct associated points pk ,qk ∈M, pk , qk , and

d(zk ,M) = ‖zk − pk‖ = ‖zk − qk‖.

As these sequences are bounded we can choose appropriate subsequences such that
pk → p and qk → q for k→∞. We now claim that p = q = x. AsM is closed, p,q ∈M.
Suppose p , x. First notice that ‖zk − pk‖ ≤ ‖zk − x‖ ≤ ‖zk − z‖+ ‖z − x‖.

‖z − p‖ ≤‖z − zk‖+ ‖zk − p‖
≤‖z − zk‖+ ‖zk − pk‖+ ‖pk − p‖
≤‖z − x‖+ 2‖zk − z‖+ ‖pk − p‖.

As ‖zk − z‖ → 0 and ‖pk −p‖ → 0 for k→∞, we have that ‖z−p‖ ≤ ‖z−x‖, but then we
have a contradiction.

Now let r = ‖z − x‖ and rN (x) = r + a. Then 1
τ ≥ r + a, for all normal curvatures τ

forM at x. As the normal curvature is continuous, we can find a radius s > 0 such
that 1

τy
≥ r + 1

2a, for all normal curvatures in y with ‖y − x‖ < s. In particular, we can

choose s ∈ (0, r + 1
2a). For sufficiently large k ∈N we have that

pk ,qk ∈M∩ B̄(x,s).
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Then there is a geodesic from pk to qk , and due to the bound on the normal curvature,
there is a bound on the curvature of the geodesic, thus it lies in the (r+ 1

2a)-spindle with
endpoints pk ,qk . However, for sufficiently large k, d(zk ,M) < (r+ 1

2a), hence the spindle
sans the endpoints lies in the open ball B(zk ,d(zk ,M)), which is a contradiction. �

Corollary A.17. SupposeM is a smooth manifold, then

rN (x) = d(x, (NxM+ x)∩ (Unp(M))c).

Proof. Lemma A.16 tells us that rN (x) ≤ d(x, (NxM+ x)∩ (Unp(M))c). Using lemma
A.10 it is sufficient to show that

d(x, (NxM+ x)∩ (Unp(M))c) ≤ inf
v∈NxM

Tv .

For any ε > 0, there is a v ∈ NxM such that Tv < T + ε. From Federer [2] (see Global
reach, Theorem 1.3 6.) we know that x + Tvv < ˚Unp(M), hence x + Tvv ∈ Unp(M)c.
Hence the claim is proved. �

Continuity of pointwise normal reach

We are now ready to show that the pointwise normal reach is continuous on smooth
manifolds. The continuity of the pointwise normal reach implies that the value in y is
close to the value in x if y is close to x. This is beneficial from a practical perspective,
as we expect our model to embed some noise. That is, the learned representation
of a data point z ∈ Rn might not be the actual nearest point on the manifold. We
do, however, expect it to be close to the nearest point, and thus continuity implies
that the calculated pointwise normal reach is close to the actual normal reach in the
nearest point to z.

Theorem A.18. SupposeM is a closed subset and smooth submanifold inRn of dimension
m, then rN :M→ [0,∞) is continuous.

In order to prove the theorem we need the following result.

Lemma A.19. Let the situation be as in Theorem A.18. For any ε > 0 there exists z ∈
NxM+ x such that z <Unp(M) and ‖z − x‖ < rN (x) + ε.

Proof (Rough sketch of proof). We know that there is a sequence {zk} ⊂ Unp(M)c

such that limk→∞‖x−zk‖ = rN (x) and limk→∞ zk = z ∈NxM+x. For each k we can find
y1
k , y

2
k ∈M such that

d(zk ,M) = ‖y1
k − zk‖ = ‖y2

k − zk‖.

As all these sequences are bounded, we can find appropriate convergent subsequences
such that limk→∞ y

1
k = y2 and limk→∞ y

2
k = y2. If either y1 or y2 is not equal to x, then

we are done. Otherwise x = y1 = y2. We can prove that rN (x) is a normal curvature of
M in x, which proves the claim. �

Proof (Proof of Theorem). Let x ∈M and suppose {yk}∞k=1 is a sequence inM which
converges to x. We need to show that limk→∞ rN (yk) = rN (x). As M is a smooth
submanifold, we can find a neighbourhood U 3 x inM around x, and a smooth frame
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v1, . . . , vn−m for the normal bundle in U . Hence for each y ∈U , v1(y), . . .vn−m(y) is an
orthonormal basis for NyM. We can assume {yk}∞k=1 ⊂U by only considering the tail
of the sequence if necessary. As rN is invariant with regards to translations ofM we
can assume without loss of generality that x = 0.

First suppose there is δ > 0 such that rN (yk) < rN (x) − δ for all k ∈N. Hence for
each k ∈N there is a normal vector nk ∈NykM with ‖nk‖ ≤ rN (x)− δ2 such that

nk + yk <Unp(M).

For each k ∈Nwe can find scalars a1(yk), . . . , an−m(yk) such that nk = a1(yk)v1(yk)+ · · ·+
an−m(yk)vn−m(yk). For each i = 1, . . . ,n−m, {ai(yk)}∞k=1 is a bounded sequence, hence
we can find an appropriate subsequence, such that

lim
k→∞

ai(yk) = ai ,

for i = 1, . . . ,n−m.
Let n = a1v1(x) + · · ·+ an−mvn−m(x), then

‖nk −n‖ =‖
n−m∑
i=1

ai(yk)vi(yk)− aivi(x)‖

≤
n−m∑
i=1

|ai(yk)− ai |+ |ai |‖vi(x)− vi(yk)‖.

As vi is smooth, vi(yk)→ vi(x) as k →∞, hence nk → n as k →∞. Thus it follows
n < ˚Unp(M). However, ‖n‖ = limk→∞‖nk‖ ≤ rN (x)−δ < rN (x), which is a contradiction
due to Lemma A.16.

rN (x) + δ

2ε

rN (x) + δ
2

yk

λnk + yk

nk + yk

Figure 4: Illustration of the second part of the proof of Theorem A.18. We show that a
point z lies outside the ball B(λnk + yk , rN (x) + δ) and inside the ball B(nk + yk , rN (x) +
δ
2 +2ε), which correspond to the red area in the figure. As ε→ 0, the red area becomes
smaller until it disapears at ε = 0.

Next suppose there is a δ > 0 such that rN (yk) > rN (x) + δ for all k ∈N. Then there
exists n ∈NxM with ‖n‖ < rN (x) + δ

2 such that we can find z ∈M, z , x = 0 such that
d(n,M) = ‖n− z‖ ≤ rN (x) + δ

2 . We can write

n = a1v1(x) + · · ·+ an−mvn−m(x).
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Let nk = a1v1(yk) + . . . an−mvn−m(yk) and consider the distance from nk + yk to z

‖z − (nk + yk)‖ ≤ ‖z −n+n−nk − yk‖ ≤ ‖z −n‖+ ‖n−nk‖+ ‖yk‖.

Let ε > 0, then we can find K ∈N such that for k ≥ K ,

‖z − (nk + yk)‖ ≤ ‖z −n‖+ 2ε ≤ rN (x) +
δ
2

+ 2ε. (A.3)

Let λ = rN (x)+δ
‖n‖ , then ‖λnk‖ = rN (x) + δ < rN (yk), hence nk + yk ∈Unp(M), hence

‖z − (λnk + yk)‖ > rN (x) + δ. (A.4)
�

Hence, for every k ≥ K we get that z lies inside the B̄(nk + yk , rN (x) + δ
2 + 2ε) and

outside the ball B(λnk + yk , rN (x) + δ), see Figure 38. In the supplemental material
(Section A.A) we prove in Proposition A.27 that for every ε′ > 0 we can find K ∈ N
such that the norm of any point in B̄(nk + yk , rN (x) + δ

2 + 2ε)∩B(λnk + yk , rN (x) + δ)c is
bounded by ε′ . This implies that z = x which is a contradiction.

To finish the proof, assume yk → x is a sequence where {rN (yk)}∞k=1 does not
converge to rN (x). Then there must be a subsequence which satisfies either the first
or the second situation. Hence, we have a contradiction.

A.4 Calculating uniqueness bounds for immersions

The motivation behind the pointwise normal reach is to obtain a computable local
bound which ensures the existence of unique nearest points. The problem is that we,
in general, have no easy way of computing general tangent cones. Instead, in this
section, we want to utilise standard analytic tools to obtain tangent vectors.

Definition A.20. Consider f :Rm→R
n an immersion and let Pu = I − Ju(JTu Ju)−1JTu for

u ∈Rm, where Ju is the Jacobian in the point u. Then Pu is the projection matrix onto the
orthogonal complement of span(Ju).

For u,v ∈Rm denote

R̂(u,v) =
‖f (v)− f (u)‖2

2‖Pu(f (v)− f (u))‖
(A.5)

for ‖Pu(f (v)− f (u))‖ , 0, otherwise R̂(u,v) =∞. Then let

r̂(u) = inf
v∈Rm

R̂(u,v). (A.6)

Suppose x = f (u), then it is clear that if TxM = span(Ju) then d(y−x,TxM) = ‖Pu(y−x)‖.
Hence, r̂ :Rm→ [0,∞] is associated to the pointwise normal reach in the following
way

Corollary A.21. For u ∈Rm, r̂(u) = rN (f (u)) if span(Ju) = Tf (u)M.

For an immersion f , its differential Dfu is injective, hence we know from the
Inverse Function Theorem that f is locally diffeomorphic. Thus the image of f
behaves locally as a manifold. As the image of f might have intersections, it is not
necessarily globally a manifold. We thus characterise the points u in Rm regarding
whether or not f (Rm) behaves as a manifold around f (u).
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Definition A.22. A point u ∈ Rm is called a manifold point if there is an ε > 0 and a
neighbourhood U ⊂Rm, u ∈U such that

f
∣∣∣
U

:U →M∩B(f (U ), ε)

is a diffeomorphism. Otherwise, we call u a non-manifold point.

As Dfu is injective, there exists a neighbourhood U ⊂Rm, u ∈U such that

f
∣∣∣
U

:U → f (U ) (A.7)

is a diffeomorphism. Hence u is a manifold point if and only if there is an ε > 0 such
that

M∩B(f (u), ε) ⊂ f (U ).

Characterising continuity of r̂

In this section we characterise the continuity of the r̂ estimator. It turns out each
point in Rm satisfies one of three situations.

Theorem A.23. Suppose f : Rm → R
n is a smooth immersion, then the normal reach

estimator r̂ :Rm→ [0,∞] can be characterised in the following way

1. If u ∈Rm is a manifold point, then r̂(u) = rN (f (u)) and r̂ is continuous in u.

2. If u ∈ Rm is a non-manifold point and span(Ju) , Tf (u)M, then r̂(u) = 0 and r̂ is
continuous in u.

3. If u ∈Rm is a non-manifold point and span(Ju) = Tf (u)M, then r̂(u) = rN (f (u)) and
we do not know a priori if r̂ is continuous in u.

f(u)
f(u)=f(v) f(u)=f(v)

Span(Ju)

Span(Ju) Span(Ju)=

Span(Jv)

Span(Jv)

Figure 5: The left image shows the situation where u is a manifold point. The centre
shows the situation where u is a non-manifold point, and the Jacobian does not span
the tangent cone. The right image shows the situation where u is a non-manifold
point, but the Jacobian does span the tangent cone.

Statement 1. follows from Lemma A.18. We will prove statement 2. in the subsequent
Lemmas A.24 and A.25. The situation in the 3. statement is discussed in the following
subsection.
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Lemma A.24. Suppose u ∈Rm and span(Ju) , Tf (u)M, then r̂(u) = 0.

Proof. Let x = f (u), and assume without loss of generality that x = 0. As span(Ju) ,
TxM there must be a w ∈ TxM, ‖w‖ = 1 and w < span(Ju). As span(Ju) is closed,
d(w,span Ju) = sinθ for some angle θ such that sinθ > 0. As w is a tangent vector in
TxM, it follows that for every ε > 0 there is a y inM such that

0 < ‖y − x‖ < ε and ‖
y − x
‖y − x‖

−w‖ < ε.

We observe that ‖ y‖y‖ −w‖ < ε if and only if ‖y − ‖y‖w‖ < ‖y‖ε. Suppose such an ε and
y has been given, then

‖Pu(y)‖ =‖Pu (y − ‖y‖w+ ‖y‖w)‖
=‖Pu (‖y‖w)− (−1)Pu (y − ‖y‖w)‖
≥
∣∣∣‖Pu(‖y‖w)‖ − ‖Pu(y − ‖y‖w)‖

∣∣∣
Notice Pu is a projection, so ‖Pu(y − ‖y‖w)‖ ≤ ‖y − ‖y‖w‖ and we have that Pu(‖y‖w) =
‖y‖sinθ. Hence for ε < sinθ, we have that

‖Pu(y)‖ > ‖y‖sinθ − ‖y‖ε.

Hence for sufficiently small ε and corresponding y we have that

‖y‖2

2‖Pu(y)‖
≤

‖y‖2

2‖y‖(sinθ − ε)
≤ ε

2(sinθ − ε)
.

As ε/2(sinθ − ε)→ 0 as ε→ 0, it follows that we can find y and hence corresponding
v with y = f (v) such that R̂(u,v) < ε for any 0 < ε < sinθ. �

Lemma A.25. Suppose u ∈Rm and that span(Ju) , Tf (u)M, then r̂ :Rm→R is continu-
ous in u.

Proof. To prove that r̂ is continuous in u we need to prove that for every ε > 0 there is
a δ > 0 such that for v ∈ Rm with ‖v −u‖ < δ, then r̂(v) < ε. Without loss of generality
assume that f (u) = 0.

As span(Ju) , T0M, there must be a t ∈ T0M, ‖t‖ = 1 with t < span(Ju) such that
‖Pu(t)‖ = sinθ > 0. As t is a tangent vector, for each ε > 0 there is a y ∈ M with
0 < ‖y‖ < ε such that ‖ y‖y‖ − t‖ < ε.

Let 0 < ε < sinθ be given. For any y ∈ M with y , 0, we have that ‖Pu (y)‖
‖y‖ =

‖Pu( y
‖y‖ − t+ t)‖, thus∣∣∣∣∣∣‖Pu(t)‖ − ‖Pu

(
y

‖y‖
− t

)
‖
∣∣∣∣∣∣ ≤ ‖Pu(y)‖

‖y‖
≤ ‖Pu

(
y

‖y‖
− t

)
‖+ ‖Pu(t)‖

As Pu is continuous and Pu(0) = 0, we can find y0 such that ‖Pu
(
y0
‖y0‖
− t

)
‖ < ε, thus for

ε satisfying 0 < ε < sinθ, we get that

sinθ − ε <
‖Pu(y0)‖
‖y0‖

< sinθ + ε. (A.8)
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f(u) f(v)

y0

t

Span(Ju)

Span(Jv)

f(U)

Figure 6: Illustration of the proof of Lemma A.25. If span(Ju) , Tf (u)M there is a
tangent vector which is not spanned by the Jacobian. In that case we can find points
y0 ∈M for which the angle between t and the line from f (u) to y0 is arbitrarily close.
As f is smooth, for v ∈Rm close to u then the span of Jv is close to the span of Ju .

Next let v ∈Rm and for ease of notation denote x = f (v). We consider the fraction

‖y0 − x‖2

2‖Pv(y0 − x)‖
=

‖y0 − x‖2

2‖(Pu + Pv − Pu)(y0 − x)‖
≤

‖y0 − x‖2

2
∣∣∣‖Pu(y0 − x)‖ − ‖(Pv − Pu)(y0 − x)‖

∣∣∣ . (A.9)

To start, we consider the denominator of the right hand side. We see that

‖Pu(y0 − x)‖ − ‖(Pv − Pu)(y0 − x)‖ ≥‖Pu(y0 − x)‖ − ‖Pv − Pu‖‖y0 − x‖

=‖y0 − x‖
(
‖Pu(y0 − x)‖
‖y0 − x‖

− ‖Pv − Pu‖
)

which if greater than 0 if and only if

‖Pu(y0 − x)‖
‖y0 − x‖

− ‖Pv − Pu‖ > 0.

Let δ0 be given such that ‖v‖ < δ0 implies ‖x‖ = ‖f (v)‖ < ‖y0‖. As f is smooth, u 7→
Pu = I − Ju

(
JTu Ju

)−1
JTu is continuous. Thus we can find δ1 such that ‖v−y‖ < δ1 implies

‖Pv − Pu‖ < ε. Let δ2 = min{δ0,δ1}, then for ‖v −u‖ < δ2,

‖Pu(y0 − x)‖
‖y0 − x‖

≥
‖Pu(y0)‖ − ‖Pu(x)‖
‖y0‖+ ‖x‖

≥
‖Pu(y0)‖ − ‖Pu(x)‖

2‖y0‖

=
‖Pu(y0)‖

2‖y0‖
− ‖Pu(x)‖

2‖y0‖
.

As f is differentiable, we can find δ3 > 0 such that for v which satisfies ‖v−u‖ < δ3,
we have that

f (v) = Ju(v −u) +Φ(v −u)‖v −u‖,
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where Φ : B(u,δ3)→R
n is an o-function, that is Φ(0) = 0 and Φ is differentiable in 0.

Thus it follows that

‖Pu(x)‖ = ‖Pu(f (v))‖ = ‖Pu
(
Ju(v −u) +Φ(v −u)‖v − y‖

)
‖ ≤ ‖v −u‖‖Pu(Φ(v −u))‖.

This implies that we can find δ4 < δ3 such that for v which satisfies ‖v −u‖ < δ4,

‖Pu(x)‖ ≤ ‖v −u‖‖Pu(Φ(v −u))‖ < ‖y0‖ε.

From the inequality (A.8) we know that ‖Pu (y0)‖
‖y0‖

> sinθ − ε. Combining that with the
inequality above we get that

‖Pu(y0 − x)‖
‖y0 − x‖

≥
‖Pu(y0)‖

2‖y0‖
− ‖Pu(x)‖

2‖y0‖
>

sinθ − ε
2

− ε
2

=
sinθ

2
− ε.

Without loss of generality we can assume ε < sinθ
4 , Combining all our hard work,

we let δ = min{δ2,δ4, ε} and get that

‖Pu(y0 − x)‖
‖y0 − x‖

− ‖Pv − Pu‖ >
sinθ

2
− 2ε > 0,

Applying the above to (A.9) we get that for v satisfying ‖u − v‖ < δ

‖y0 − x‖2

2‖Pv(y0 − x)‖
≤

‖y0 − x‖2

2
∣∣∣‖Pu(y0 − x)‖ − ‖(Pv − Pu)(y0 − x)‖

∣∣∣
=

‖y0 − x‖2

2(‖Pu(y0 − x)‖ − ‖(Pv − Pu)(y0 − x)‖)

≤
‖y0 − x‖2

2(‖Pu(y0 − x)‖ − ‖Pv − Pu‖‖y0 − x‖)

=
‖y0 − x‖

2
( ‖Pu (y0−x)‖
‖y0−x‖

− ‖Pv − Pu‖
)

<
ε

2( sinθ
2 − 2ε)

=
ε

sinθ − 4ε
.

As ε
sinθ−4ε → 0 as ε→ 0, it is clear that for any ε′ > 0 we can find δ such that ‖v−u‖ < δ

implies

r̂(v) ≤
‖y0 − x‖2

2‖Pv(y0 − x)‖
<

ε
sinθ − 4ε

< ε′ . �

r̂(u) for a non-manifold point with span(Ju) = Tf (u)M

In this situation we cannot say if r̂ is continuous or not. To understand why we first
consider the following result..

Lemma A.26. Suppose u ∈Rm is a non-manifold point and let x = f (u), then reach(M,x) =
0.

Proof (Sketch of proof). In this proof we use the results in Appendix A.B. Suppose
for contradiction that reach(M,x) > 0. Then it follows from Proposition A.40 that
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there is an s > 0 such thatM∩ B̄(x,s) has positive reach. It then follows from the
arguments in Remark A.34 that span(Ju) = TxM.

LetU ⊂Rm be a neighbourhood around u such that f
∣∣∣
U

:U → f (U ) is a diffeomor-
phism. From Proposition A.40 we get that we can restrict U such that reach(f (U )) >
r > 0 for some r > 0. As u is a non-manifold point we know that there exists a sequence
{yk}k∈N with yk → x as k→∞, and yk < f (U ) for all k. For sufficiently large k, we must
have that yk ∈Unp(f (U )). We denote xk the unique nearest point to yk in f (U ). For
sufficiently large k we get that both points xk and yk lie inM∩ B̄(x,s). From results in
the Global reach chapter, we know that there exists a geodesic between them which
is contained in a spindle.

From arguments like Remark A.34 we get that span(Juk ) = TxkM, however the
tangent vector given by the geodesic will not be spanned by Juk . �

The lemma implies that there is a sequence of points yk inM such that yk → x for
k→∞, and rN (yk)→ 0, due to Proposition A.8. Then if rN (x) > 0, r̂ is not continuous
in u. However, if we have that rN (x) = 0, we do not have sufficient information to say
that r̂ is continuous.

43



Paper A · Pointwise normal reach

A.A Appendix

Example A.11

The goal of this section is to prove that the pointwise normal reach is not continuous
on the graph of h, where h is given by

h(x,y) =


2
√
r2 −

(
y
2

)2
−
√
r2 − x2 − r if 0 ≤ |x| ≤ y

2√
r2 − (x − y)2 − r if y

2 ≤ x ≤ y√
r2 − (x+ y)2 − r if − y ≤ x ≤ − y2

0 otherwise

for a given r > 0. Let M denote the graph of h. Then,M can be parametrised by

Figure 7: The graph of the function h.

(x,y) 7→ (x,y,h(x,y)). We want to prove that rN is not continuous in the point (0,0,0).

Pointwise normal reach in (0,0,0)

To compute the pointwise normal reach, we start by finding the tangent plane in the
point. Consider the curve onM given by γ : t 7→ (0, t,h(0, t)). Then γ̇(t) = − y√

4r2−y2
,

and thus γ̇(0) = 0. Hence, it follows that T0M is spanned by the x and y axis.
Using Definition A.3 the calculation for the pointwise normal reach is then the

infimum of

R ((0,0,0), (x,y,h(x,y))) =
x2 + y2 + h(x,y)2

2|h(x,y)|
.

For ease of notation, denote F(x,y) = R ((0,0,0), (x,y,h(x,y))).
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Suppose y
2 ≤ |x| ≤ y, then the numerator of F(x,y) becomes

x2 + y2 + h(x,y)2 =x2 + y2 +
(√

(r2 − (x∓ y)2)− r
)2

=± 2xy + 2r2 −
√
r2 − (x∓ y)2

≥y2.

Next, considering the denominator, we get that

2|h(x,y)| =2r − 2
√
r2 − (x∓ y)2

≤2r − 2

√
r2 −

(y
2

)2
= |h(0, y)|.

Combining the two gives

F(x,y) ≥
y2

|h(0, y)|
.

We claim that y2

|h(0,y)| ≥ 2r. This follows from the fact that y2 = y2 + 4r2 − 4r2 =

4r2 −
(√

4r2 − y2
)
≥ 4r2 − 2r

√
4r2 − y2.

Next we consider F(x,y) for |x| ≤ y
2 . Again we want to show that F(x,y) ≥ 2r.

Consider that
x2 + y2 + h(x,y)2

2|h(x,y)|
≥ 2r

is equivalent to
x2 + y2 + h(x,y)2 ≥ 4r |h(x,y)|. (A.10)

We start by considering the left hand side of (A.10):

’LHS’ =x2 + y2 +
(√

4r2 − y2 −
√
r2 − x2 − r

)2

=6r2 − 2
√
r2 − x2

√
4r2 − y2 − 2r

√
4r2 − y2 + 2r

√
r2 − x2.

The right hand side of the equation is:

’RHS’ = 4r2 + 4r
√
r2 − x2 − 4r

√
4r2 − y2.

Combining the two sides we get that (A.10) is equivalent to

2r2 − 2
√
r2 − x2

√
4r2 − y2 ≥ 2r

√
r2 − x2 − 2r

√
4r2 − y2

⇔ 2r2 + 2r
√

4r2 − y2 ≥ 2r
√
r2 − x2 + 2

√
r2 − x2

√
4r2 − y2

⇔ 2r(r +
√

4r2 − y2) ≥ 2
√
r2 − x2(r +

√
4r2 − y2).

Here, the last inequality holds as r ≥
√
r2 − x2 for all |x| ≤ y

2 , thus proving the claim.
Thus we have shown that F(x,y) ≥ 2r for all x,y. Next we consider

lim
y→0

F(0, y) = lim
y→0

y2 +
(√

4r2 − y2 − 2r
)2

2
(
2r −

√
4r2 − y2

) = lim
y→0

y2

2
(
2r −

√
4r2 − y2

) +
(
2r −

√
4r2 − y2

)
.
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The second term of the sum goes to 0 as y goes to 0. Using L’Hôpital’s rule we
can show that the first term goes to 2r. Thus limy→0F(x,y) = 2r. This shows that
rN ((0,0,0)) = 2r.

Pointwise normal reach in (0, y,h(0, y))

To prove that rN is not continuous in (0,0,0) we consider rN (0, y,h(0, y)) as y goes
to 0. For a given y > 0 we consider the curve γ : x 7→ (x,y,h(x,y)). We now want to
compute the normal curvature at (0, y,h(0, y)) given by γ . We find the unit normal

vector n =
√

4r2

4r2−y2

(
0, y√

4r2−y2
,1

)
, and γ̈(0) =

(
0,0, 1

r )
)
. Thus computing the normal

curvature gives

n · γ̈ =
1
r

2r√
2r2 − y2

=
2√

4r2 − y2
,

where the latter goes to 1
r as y goes to 0. This implies that for any ε > 0 we can find

δ > 0 such that for y < δ, then the normal curvature at y generated by γ is larger than
1
r+ε . This implies rN (0, y,h(0, y)) ≤ r + ε. However as rN ((0,0,0)) = 2r, the pointwise
normal reach is not continuous in (0,0,0).

Supplement to continuity

Proposition A.27. Let v be a unit vector in Rn. Let r1, r2 > 0 with r1 < r2. Consider a ball
B2 with centre r2v and radius r2, and B1 with centre r1v and radius r1 + ε, for some ε > 0.
For points which satisfies z ∈ B1 ∩Bc2, then ‖z‖ → 0 as ε→ 0.

Proof. Suppose n = 2. Consider the intersection points of the two boundary circle,
that is the points which satisfy

x2 + (y − r2)2 = r2
2

x2 + (y − r1)2 = (r1 + ε)2

Solving these equations gives

x̂2 = 2ŷr2 − ŷ2,

ŷ =
2r1ε+ ε2

2(r2 − r1)
.

Let α = 2r1ε+ε2

2(r2−r1) , then B1 ∩Bc2 ⊂ [−
√

2αr2 −α2,
√

2αr2 −α2] × [−ε,α]. However, α→ 0
as ε→ 0, which proves the claim.

Suppose n > 2, then for z ∈ B1 ∩Bc2, z and v lie in a plane P which passes through
origo. Then the claim follows from the two dimensional case. �
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r2

ε

r1

2
√

2r2α −α2

α + ε

A.B Local reach for immersions

Dimension Theory

Definition A.28. ([5], III 1) Let A be a topological space. We define the topological
dimension of A as follows.

• The empty set, and only the empty set, has dimension −1.

• A has dimension ≤ k at x ∈ A if x has arbitrarily small neighbourhoods in A whose
boundaries have dimension ≤ k − 1.

• A has dimension ≤ k if it has dimension ≤ k at every point in A. A has dimension k
if it has dimension ≤ k but not dimension ≤ k − 1.

It is immediate that the property of having dimension k is topological invariant.
In what follows in this section we assume that the topological spaces considered

are metrisable and second-countable (which certainly holds for spaces which can be
embedded in Euclidean space). We will make use of two classical results of dimension
theory:

Theorem A.29. ([5], III 2) Let the topological space A be a countable union of closed
subsets, each of dimension ≤ k. Then the dimension of A is ≤ k.

Theorem A.30. ([5], IV 3 and Corollary 1, p. 46)

1. A subset of Rn has dimension n if and only if the subset has non-empty interior.

2. A subset of an n-dimensional manifold has dimension n if only if the subset has
non-empty interior.

These allow us to determine the dimension of an immersed manifold:

Proposition A.31. Let P be a smooth k-dimensional manifold (paracompact and Haus-
dorff) and let f : P →R

n be a smooth immersion. Then f (P ) is of dimension n.
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Proof. For each p ∈ P there exists an open neighbourhood Up of p in P such that
f
∣∣∣
Up

:Up→ f (Up) is a smooth diffeomorphism. Choose now an open neighbourhood

U ′p of p in P such that U ′p ⊂Up. The collection
{
U ′p : p ∈ P

}
is an open covering of P .

Since P is paracompact there exists a countable refinement
{
U ′λ : λ ∈Λ

}
covering P .

It follows that
⋃
λ∈Λ f (U ′λ) = f (P ), and thus⋃

λ∈Λ
f (U ′λ) = f (P ).

By Theorem A.30 (2), the closed set U ′λ has dimension k, since its interior U ′λ is non-
empty. Thus, since f

∣∣∣
Up

:Up→ f (Up) is a homeomorphism, f (U ′λ) is also a closed set

of dimension k. Thus by Theorem A.30, f (P ) is of dimension k. �

The topological dimension also plays a role in Federer’s work on reach. Recall
that we denote the tangent and normal cones at a in a subset A, TaA and NaA. We use
the same notation to denote the tangent and normal space for a smooth manifold, as
in this situation the two coincide.

Proposition A.32. ([2], 4.15 (4)) Let A ⊂Rn have dimension k and positive reach, and
let a ∈ A. Then the topological dimension of the normal cone satisfy

dimNaA ≥ n− k,

where if dimNaA = n− k then TaA is a k-dimensional vector space.

Corollary A.33. Suppose, in the situation of Proposition A.32, that TaA ⊃ L, where L is
a vector space of dimension k. Then TaA = L.

Proof.

NaA = {v ∈Rn : 〈v,u〉 ≤ 0 for all u ∈ TaA}
⊂ {v ∈Rn : 〈v,u〉 ≤ 0 for all u ∈ L}
= L⊥.

Thus the topological dimension dimNaA ≤ dimL⊥ = n − k. Applying Proposition
A.32, TaA is a k-dimensional vector space. Thus TaA = L. �

Remark A.34. Let f (P ) be as in Proposition A.31 , covered by
{
f (Up) : p ∈ P

}
as in

the proof of Proposition A.31. Since f
∣∣∣
Up

:Up→ f (Up) is a smooth diffeomorphism,

the tangent cone satisfies

Tf (p)f (Up) = T (f (Up))f (p) = dfu(T (Up)p) = dfp(TpP ),

and thus Tf (p)f (M) ⊃ dfp(TpP ) for all p ∈ P .
Suppose now that f (P ) has positive reach. Applying Corollary A.33 with L re-

placed by dfp(TpP ) and A replaced by f (P ), we find that

Tf (p)f (P ) = dfp(TpP )

for all p ∈ P .
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Transversality

Definition A.35. Let f : P → M, g : Q → M be two smooth maps between smooth
manifolds. Then f , g are transverse if, for all p ∈ P , q ∈ Q,m ∈M such that f (p) = g(q) =
m,

dfp(TpP ) + dgq(TqQ) = TmM.

Lemma A.36. Let f : P →M, g :Q→M be two smooth maps between smooth manifolds.
Then f , g are transverse if and only if the product mapping

f × g : P ×Q→M×M

is transverse to the diagonal ∆M = {(m,m) ∈M×M : m ∈M}.

Proof. This is left to the reader; it is often posed as an exercise in books on differential
topology (see for example [4], Exercise 2.14(a), or [7], Problem 6-13(a)). �

Corollary A.37. Let f : P → R
n be a smooth map, let z ∈ Rn and for any s ∈ (0,∞) let

Gs : Sn−1→R
n be given by Gs(v) = v + sv for all v ∈ Sn−1 (the unit sphere centred at 0 in

R
n). Then f and Gs are transverse for almost all s ∈ (0,∞).

Proof. Let G : Sn−1 × (0,∞)→ R
n be defined by G(v,s) = Gs(v) for all v ∈ Sn−1 and

s ∈ (0,∞). It is immediate that G is a diffeomorphism onto its image Rn \ {z}, and it
follows that G is transverse to f . According to Lemma A.36 this is equivalent to f ×G
being transverse to the diagonal ∆

R
n in Rn ×Rn.

Now f ×G is a smooth parameterised family of maps f ×Gs. Applying the param-
eterised transversality theorem (e.g. [7], Theorem 6.35), f ×Gs is transverse to ∆

R
n

for almost all s ∈ (0,∞). By Lemma A.36 then f and Gs are transverse for almost all
s ∈ (0,∞).

We now introduce another of Federer’s theorems on reach:

Theorem A.38. ([2], Theorem 4.10 (5)) Let A,B be closed subsets of Rn, with B compact.
Let C = A∩ B be non-empty. Suppose reach(A,c),reach(B,c) > r for all c ∈ C. Suppose
also that there exists no c ∈ C and v ∈Rn \ {0} such that v ∈NcA and −v ∈NcB. Let

η = inf
{
‖w+ v‖
‖w‖+ ‖v‖

: c ∈ C,v ∈NcA,w ∈NcB,‖w‖+ ‖v‖ > 0
}
.

Then η ∈ (0,1] and C has reach ≥ 1
2ηr.

We will need to deal with the case when A is not open:

Lemma A.39. Let A ⊂Rn, and let a ∈ A be such that reach(A,a) > r > 0. Then

A∩B(a, r) = A∩B(a, r)

and reach(A,r) > 1
2 r.
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Proof. We can find r ′ > r such that reach(A,a) > r ′ . Since no point inA\A has a nearest
point in A, the intersection (A\A)∩Unp(A) is empty, and thus, since B(a, r ′) ⊂Unp(A),
we have that (A\A)∩B(a, r ′) is empty. Furthermore, we have thatA∩B(a, r) = A∩B(a, r).

Next suppose z ∈ Rn \ Unp(A), so there exists two points a1, a2 ∈ A such that
‖z − a1‖ = ‖z − a2‖ = d(z,A) = d(z,A). If a1, a2 ∈ A then z < Unp(A), and so ‖a− z‖ > r ′.
Otherwise, if one of a1 or a2, let us say a1, is contained in A \A, so ‖a1 − a‖ > r ′ . Since
‖a1 − x‖ = d(z,A), the distance ‖a1 − z‖ ≤ ‖z − a‖. By the triangle inequality,

‖a1 − a‖ ≤ ‖a1 − z‖+ ‖z − a‖ ≤ 2‖z − a‖,

thus ‖z − a‖ ≥ 1
2‖a1 − a‖ > 1

2 r
′ , completing the proof. �

Proposition A.40. Let f : P →R
n be a smooth immersion and let z ∈ f (P ). Suppose that

reach(f (P ), z) > 0. Then there exists s > 0 such that f (P )∩B(z, s) has positive reach.

Proof. Let r > 0 be such that reach(f (P ), z) > 4r. Then according to Lemma A.39

f (P )∩B(z,4r) = f (P )∩B(z,4r)

and reach(f (P ), z) > 2r. It follows that reach(f (P ), z′) > r for all z′ ∈ B(z, r).
According to Corollary A.37 we can find s ∈ (0, r] such that Gs is not transverse to

f . Let B = B(z, s). We claim that there exists no c ∈ f (P )∩B and v ∈Rn \ {0} such that
−v ∈Ncf (P ) and v ∈NcB.

This is clear for c in the interior of B, since NcB = {0} at such points. Otherwise, let

c ∈ f (P )∩∂B = f (P )∩∂B = f (M)∩Gs(Sn−1). (A.11)

Thus for some x ∈ P and w ∈ Sn−1, c = f (x) = Gs(w). Since f and Gs are transverse,

(dGs)w(T (Sn−1
w )) + dfx(TxP ) =Rn.

NcB as a 1-dimensional half-space spanned by the unique outward pointing unit
vector to ∂B – which is w.

Clearly, dfx(TxP ) ⊂ Tcf (P ) ⊂ Tcf (P ) so

c = dual
(
Tcf (P )

)
⊂ dual(dfx(TxP )) = (dfx(TxP ))⊥ .

Thus if there exists a non-zero vector v ∈NcB with −v ∈Ncf (P ) then v ∈ (dfx(TxP ))⊥.
But v is a positive multiple of w, so w ∈ (dfx(TxP ))⊥. Dualising

dfx(TxM) ⊂ w⊥ = T (∂B)c = d(Gs)w(T (Sn−1)w).

But this contradicts (A.11), så no such v exists, and the claim is proved. It now follows
directly from Theorem A.38 that f (P )∩B = f (P )∩B is of positive reach. �
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Is an encoder within reach?
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Abstract

The encoder network of an autoencoder is an approximation of the nearest point
projection onto the manifold spanned by the decoder. A concern with this approxi-
mation is that, while the output of the encoder is always unique, the projection can
possibly have infinitely many values. This implies that the latent representations
learned by the autoencoder can be misleading. Borrowing from geometric measure
theory, we introduce the idea of using the reach of the manifold spanned by the
decoder to determine if an optimal encoder exists for a given dataset and decoder.
We develop a local generalization of this reach and propose a numerical estimator
thereof. We demonstrate that this allows us to determine which observations can
be expected to have a unique, and thereby trustworthy, latent representation. As
our local reach estimator is differentiable, we investigate its usage as a regularizer
and show that this leads to learned manifolds for which projections are more often
unique than without regularization.

B.1 Encoders as projectors

A good learned representation has many desiderata [2]. The perhaps most elementary
constraint placed over most learned representations is that a given observation x
should have a unique representation z, at least in distribution. In practice this is
ensured by letting the representation be given by the output of a function, z = g(x),
often represented with a neural network.

The autoencoder [18] is an example where uniqueness of representation is explicitly
enforced, even if its basic construction does not suggest unique representations. In
the most elementary form, the autoencoder consists of an encoder gψ :RD →R

d and
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a decoder fφ :Rd →R
D , parametrized by ψ and φ, respectively. These are trained by

minimizing the reconstruction error of the training data {x1, . . . ,xN },

ψ∗,φ∗ = argmin
ψ,φ

N∑
n=1

‖fφ(gψ(xn))− xn‖2.

Here d is practically always smaller than D, such that the output of the encoder is a
low-dimensional latent representation of high-dimensional data. The data is assumed
to lie near a d-dimensional manifoldM spanned by the decoder.

Figure 8: The projection of a point (yellow) onto a nonlinear manifold can take
unique (green) or multiple values (red) depending on the reach of the manifold.
When training data is inside the reach, the encoder can match the projection resulting
in more trustworthy representations.

For a given decoder, we see that the optimal choice of the encoder is the projection
ontoM, i.e.

goptimal(x) = projM(x) = argmin
z
‖x − f (z)‖2.

For any nonlinear choice of decoder f , this optimal encoder does not exists everywhere.
That is, multiple best choices of latent representation may exist for a given point, as
the projection is not unique everywhere. As the learned encoder enforces a unique
representation, it will choose arbitrarily among the potential representations (see
Fig. 8). In this case, any analysis of the latent representations can be misleading, as
it does not contain the information that another choice of representation would be
equally good.

But does uniqueness of representations matter? Learned latent representations
are used for a variety of tasks, most of which implicitly rely on the representations
being unique. The simplest use case of learned representations is visualization, i.e.
a scatter plot of the latent coordinates. Such plots are often used to form scientific
hypotheses about the mechanics of the phenomena that generated the data, e.g.
protein evolution [17, 6], or identifying unexplored molecular structures [19]. Scatter
plots explicitly assume uniqueness of representations (one dot per observation), yet
the non-uniqueness of projections (B.1) suggests that this assumption does not have
mathematical backing.

Another common use case is latent space statistics. For example, it is common to
perform clustering of high-dimensional data by finding low-dimensional represen-
tations, which are then clustered (either during training or post hoc; see e.g. recent
surveys [14]). This may take the form of k-means-style latent clustering [9], which
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assumes that representation averages are well-defined. Another example is Bayesian
optimization [15, 21] over the latent representations. This assumes the ability to fit
stochastic processes to the latent representations. Both of these examples rely on the
ability to perform statistical calculations with respect to the learned representations.
Unfortunately, practically all statistical calculations rely on the assumption that ob-
servation representations are unique. For example, the average of a set of observations
with non-unique representations is ill-defined; see e.g. the celebrated work of [4] for
an excellent discussion of this issue.

The above examples of assuming unique representations are ever-present through-
out the literature, yet the mathematical justification is lacking. We investigate meth-
ods for ensuring uniqueness, but one could alternatively fully embrace the lack of
uniqueness. The latent representation of a single observation would in this case
form a set rather than a vector. We do not investigate this direction but note that
working with sets is feasible [22] albeit somewhat more complicated than vectorial
representations.

In this paper we investigate the reach of the manifoldM spanned by the decoder
f . This concept, predominantly studied in geometric measure theory, informs us
about regions of observation space where the projection ontoM is unique, such that
trustworthy unique representations exist. If training data resides inside this region
we may have hope that a suitable encoder can be estimated, leading to trustworthy
representations. The classic reach construction is global in nature, so we develop a
local generalization that gives a more fine-grained estimate of the uniqueness of a
specific representation. We provide a new local, numerical, estimator of this reach,
which allows us to determine which observations can be expected to have unique
representations, thereby allowing investigations of the latent space to disregard
observations with non-unique representations. Empirically we find that in large
autoencoders, practically all data is outside the reach and risk not having a unique
representation. To counter this, we design a reach-based regularizer that penalizes
decoders for which unique representations of given data do not exist. Empirically,
this significantly improves the guaranteed uniqueness of representations with only a
small penalty in reconstruction error.

B.2 Reach and uniqueness of representation

Our starting question is which observations x have a unique representation z for a given
decoder f ? To answer this, we first introduce the reach [7] of the manifold spanned by
decoder f . This is a global scalar that quantifies how far points can deviate from the
manifold while having a unique projection. Secondly, we contribute a generalization
of this classic geometric construct to characterize the local uniqueness properties of
the learned representation.
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Defining reach

The nearest point projection projM (Eq. B.1) is a well-defined function1 on all points
for which there exists a unique nearest point. We denote this set

Unp(M) = {x ∈RD : x has a unique nearest point inM},

whereM = f (Rd) is the manifold spanned by mapping the entire latent space through
the decoder. Observations that lie within Unp(M) are certain to have a unique optimal
representation, but there is no guarantee that the encoder will recover this. With the
objective of characterizing the uniqueness of representation, the set Unp(M) is a good
starting point as here the encoder at least has a chance of finding a representation
similar to that of a projection. However, for an arbitrary manifoldM it is generally
not possible to explicitly find the set Unp(M). Introduced by [7], the reach of M
provides us with an implicit way to understand which points are in and outside
Unp(M).

Definition B.1. The global reach of a manifoldM is

reach(M) = inf
x∈M

rmax(x),

where

rmax(x) = sup{r > 0 : Br (x) ⊂Unp(M)}.

Here Br denotes the open ball of radius r.

Hence, reach(M) is the greatest radius r such that any open r-ball centered on the
manifold lies in Unp(M). In the existing literature, the global reach is referred to as
the reach; we emphasize the global nature of this quantity as we will later develop
local counterparts.

Definition B.1 does not immediately lend itself to computation. Fortunately, [7]
provides a step in this direction, through the following result.

Theorem B.2 ([7]). SupposeM is a manifold, then

reach(M) = inf
x,y∈M

y−x<TxM

‖x − y‖2

2‖PNxM(y − x)‖
,

where PNxM is the orthogonal projection onto the normal space ofM at x. If y − x ∈ TxM
for all pairs x,y ∈M we let reach(M) =∞, asM will be flat and the projection is unique
everywhere.

For our objective of understanding which observations have a unique representa-
tion, i.e. are inside Unp(M), the global reach provides some information. Specifically,
the set

Mr =
{
x| inf
y∈M
‖y − x‖ < reach(M)

}
1We here stress that a function always returns a single output for a given input.
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Figure 9: The global reach defines a region around the manifoldM consisting of all
points below a certain distance toM. This captures both local manifold curvature as
well as global shape.

is a subset of Unp(M). This implies that observations x that are insideMr will have
a unique projection, such that we can expect the representation to be unique. The
downside is that since reach(M) is a global quantity,Mr is an overly restrictive small
subset of Unp(M). Fig. 9 illustrates this issue. Note how the global reach in the
example is determined by the bottleneck2 of the manifold. Even if this bottleneck only
influences the uniqueness of projections of a single point, it determines the global
reach of the entire manifold. This implies that many points exist outside the reach
which nonetheless has a unique projection.

Pointwise normal reach

Figure 10: Notation for the proof of theorem B.4.

In order to get a more informative notion of reach, we develop a local version,
which we, for reasons that will be clear, call the pointwise normal reach. For ease of
notation denote

R(x,y) =
‖x − y‖2

2‖PNxM(y − x)‖

for x,y with y −x < TxM, else we let R(x,y) =∞. We then define the pointwise normal
reach as the local infimum of eq. B.2.

Definition B.3 (Pointwise normal reach). At a point x ∈ M, the pointwise normal
reach is

rN (x) = inf
y∈M

R(x,y).

2Not to be confused with bottleneck network architectures or the information bottleneck.

57



Paper B · Is an encoder within reach?

In theorem B.4 below we prove that the local estimate rN (x) describes how far we can
move along a normal vector at x and still stay within Unp(M). This is useful as we
know that x will lie in the normal space ofM at projM(x) ([7] Thm. 4.8).

Theorem B.4. For all x ∈M

BrN (x)(x)∩NxM⊂Unp(M),

where NxM denotes the normal space at x.

Proof. Suppose for the sake of contradiction that there exists w ∈
(
BrN (x)(x)∩NxM

)
∩

Unp(M)c. That is, there exists y1, y2 ∈M such that

d(w,M) = ‖y1 −w‖ = ‖y2 −w‖,

where d(w,M) = infx∈M‖x −w‖. In particular, we know there exists y ∈M such that

‖y −w‖ ≤ ‖x −w‖ < rN (x).

Now, let θ1 denote the (acute) angle between TxM and y −x, and let θ2 denote the
angle between y −x and w−x. The sum of θ1 and θ2 is a right angle, see Fig. 10. Let t
be the distance from x to y. The altitude through the vertex w divides y − x into two
line segments. Denote the length of the segment from the foot of the altitude to x, t1,
and the length of the segment from the foot to y, t2. Note, t2 will always be less or
equal to t1, as ‖y −w‖ ≤ ‖x −w‖.

By the definition of cosine, cosθ2 = t1
‖w−x‖ ≥

t/2
‖w−x‖ . At the same time cosθ2 =

cos(π/2−θ1) = sinθ1 = d
t , where d = ‖Pw−x(y −x)‖, and as w−x ∈NxM, d ≤ ‖PNxM(y −

x)‖. Thus, we have t/2
‖w−x‖ <

d
t <

‖PNxM(y−x)‖
t , implyingR(x,y) ≤ ‖w−x‖, which contradicts

rN (x) ≤ R(x,y). �

In lemma B.6 below we show that the pointwise normal reach bounds the reach.
For this, we need theorem 4.8(7) from [7]

Lemma B.5 ([7]). Let x,y be points onM with rmax(x) > 0, and let n be a normal vector
in NxM, then 〈

n, y − x
〉
≤
‖y − x‖2‖n‖

2rmax(x)

Lemma B.6. For all x ∈M we have that

inf
y∈B2rN (x)(x)∩M

rN (y) ≤ rmax(x) ≤ rN (x).

Proof. Applying the result from Federer to the vector n =
PNxM(y−x)
‖PNxM(y−x)‖ gives

rmax(x) ≤
‖x − y‖2‖n‖

2‖n‖‖x − y‖cosθ
,

where θ is the angle between x − y and n. Hence, cosθ =
‖PNxM(y−x)‖
‖y−x‖ . Thus, for all

y ∈M

rmax(x) ≤
‖x − y‖2

2‖PNxM(y − x)‖
,
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proving the right inequality. Consider B = BrN (x)(x). Suppose there exists w ∈ B with
w <Unp(M). Then w <NxM. Hence there exists y1, y2 ∈M such that d(w,M) = ‖y1 −
w‖ = ‖y2 −w‖ < rN (x). From [7] theorem 4.8 we know that w ∈Ny1

M,Ny2
M. Combin-

ing this with lemma B.4 gives that rN (y1), rN (y2) ≤ d(w,M) and that d(x,M) < ‖w− x‖.
We also have that ‖y1−x‖,‖y2−x‖ ≤ 2rN (x). Combining these inequalities gives us that
the distance from x to any point not in Unp(M) is greater than infy∈B2rN (x)(x)∩M rN (y),
which implies that

inf
y∈B2rN (x)(x)∩M

rN (y) ≤ rmax(x).

�

We presented the theoretical analysis under the assumption thatM = f (Rd) is
a manifold. Although the theoretical results can be extended to arbitrary subsets
of Euclidean space, the experimental setup requires the Jacobian to span the entire
tangent space. This might not be the case ifM has self-intersections. The theory can
be extended to handle such self-intersections, but this significantly complicates the
algorithmic development. See the appendix for a discussion.

Estimating the pointwise normal reach

The definition of rN , prompts us to minimize R(x,y) over all ofM, which is generally
infeasible and approximations are in order. As a first step towards an estimator,
assume that we are given a finite sample S of points on the manifold. We can then
replace the infimum in definition B.3 with a minimization over the samples. Using
that the projection matrix onto NxM is given by PNxM = I − J(JᵀJ)−1Jᵀ, we get the
following estimator

r̂N (x) = min
y∈S

‖y − x‖2

2‖(I− J(JᵀJ)−1JT )(y − x)‖
, (B.1)

where J ∈RD×d is the Jacobian matrix of f at x. Note that since we replace the infimum
with a minimization over a finite set, we have that r̂N (x) ≥ rN (x).

There are different choices of sampling sets S. Given a trained autoencoder, a
cheap way to obtain samples is to use the reconstructed training data as the sampling
set. This will generally be sufficient if the training data is dense on the manifold, but
this is rarely the case in high data dimensions. The following lemma provides us a
way to restrict the area over which we must minimize.

Lemma B.7. For any x,y ∈M

R(x,y) ≥ 1
2
‖x − y‖.

Proof. Recall that y − x = PNxM(y − x) + PTxM(y − x), as RD = TxM⊕NxM. Hence
‖y − x‖ ≥ ‖PNxM(y − x)‖. The statement, thus, follows from the definition of R. �
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Algorithm 1 Sampling-based reach estimator
radius← r0
reach←∞
for i← 1, . . . , num_batches do

samples← sample_ball(x,radius,batch_size)
projected← decode(encode(samples))
reach←min(reach,reach_est(x,projected))
radius← 2· reach

end for

The lemma points towards a simple computational procedure for numerically
estimating the pointwise normal reach, which is explicated in algorithm 1. Here
reach_est refers to the application of eq. B.1. The algorithm samples uniformly
inside a ball centered on x and repeatedly shrinks the radius of the ball as tighter
estimates of the reach are recovered. We further use the autoencoding reconstruction
as an approximation to the projection of x ontoM.

Is a point within reach?

Suppose that a point x ∈ RD is represented by a point on the manifold f (z). From
definition B.1 we know that x has a unique nearest point on the manifold if

‖x − f (z)‖ < rmax(f (z)).

A point xwhich does not satisfy this inequality risks not having a unique nearest point,
and hence no unique representation. From lemma B.6 we know that rmax(f (z)) ≤
rN (f (z)). So x risks not having a unique nearest point if

‖x − f (z)‖ ≥ rN (f (z)) ≥ rmax(f (z)).

We note that to show that ‖x − f (z)‖ ≥ rN (f (z)), it is enough to compute

r̂N (f (z)) = inf
y∈M∩B2‖x−f (z)‖(f (z))

y,f (z)

R(f (z), y),

i.e. limit the search to a ball of radius 2‖x − f (z)‖. Thus, when we only need to
determine if a point is inside the pointwise normal reach, we can pick r0 = 2‖x− f (z)‖
in Algorithm 1.

Notice that given any set of points on the manifold, the resulting estimation of rN
will always be larger than the true value. It means that any point which lies outside
the estimated normal reach, will in fact lie outside the true normal reach. However,
a point which lies inside the estimated normal reach, risks lying outside the true
normal reach, and thus not having a unique projection.

Regularizing for reach

The autoencoder minimizes an l2 error which is directly comparable to the pointwise
normal reach. This suggests a regularizer that penalizes if the l2 error is larger than
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the pointwise normal reach. In practice, we propose to use

R(x) = Softplus (‖f (g(x))− x‖ − r̂N (f (g(x)))) .

The reach-regularized decoder then minimizes

L =
N∑
n=1

‖f (g(xn))− xn‖2 +λ
N∑
n=1

R(xn),

while we do not regularize the encoder. We also experimented with a ReLU activation
instead of Softplus, but found the latter to yield more stable training. When esti-
mating the pointwise normal reach, r̂N , we apply Algorithm 1 with an initial radius
of r0 = 2‖f (g(xn))− xn‖.

B.3 Experiments

Having established a theory and algorithm for determining when a representation can
be expected to be unique, we next investigate its use empirically. We first compute
the pointwise local reach across a selection of models to see if it provides useful
information. We then carry on to investigate the use of reach regularization. 3

Figure 11: Left: An autoencoder trained on noisy points scattered along a circular arc.
Right: The manifold spanned by the decoder of an autoencoder trained with reach
regularization. In both panels, the gray circles illustrates the estimated pointwise
normal reach at points along the autoencoder curve.

Analysing reach

Toy circle

We start our investigations with a simple toy example to get an intuitive under-
standing. We generate observations along a circular arc with added Gaussian noise

3The code is available at https://github.com/HeleneHauschultz/is_an_encoder_within_reach.
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Figure 12: CelebA validation set reconstructions.

of varying magnitude. Specifically, we generate approximately 400 points as z 7→
t (sin(z),−cos(z)) + 1.5cos(z)ε, where ε ∼ N (0,1). On this, we train an autoencoder
with a one-dimensional latent space. The encoder and decoder both consist of linear
layers, with three hidden layers with 128 nodes and with ELU non-linearities.

Figure 11(left) shows the data alongside the estimated manifold and its pointwise
normal reach. We observe that the manifold spanned by the decoder has areas with
small reach, where the manifold curves to fit the noisy data. The pointwise normal
reach seems to well-reflect the curvature of the estimated manifold. The plot illus-
trates how some of the points end up further away from the manifold than the reach.
For some of the points, this is not a problem, as they still have a unique projection
onto the manifold. However, some of the points are equally close to different points
on the manifold, such that their representation cannot be trusted.

CelebA

To investigate the reach on a non-toy dataset, we train a deep autoencoder on the
CelebA face dataset [13]. The dataset consists of approximately 200000 images of
celebrity faces.

We train a symmetric encoder-decoder pair that maps the 64 × 64 × 3 images
to a 128 dimensional latent space, and back. The encoder consists of a single 2d
convolution operation without stride followed by six convolution operations with
stride 2, resulting in a 1× 1×C image. We use C = 128 channels for all convolutional
operations, a filter size of 5 and Exponential Linear Unit (ELU) non-linearities. The
decoder is symmetric, using transpose convolutions with stride 2 to upsample and
ending with a convolution operation mapping to 64× 64× 3. The model is trained for
1M gradient updates on the mean square error loss, with a batch size of 128, using
the Adam optimizer with a learning rate of 10−4. Example reconstructions on the
validation set are provided in Fig. 12.

After training we estimate the reach of the validation set using the sampling
based approach (Alg. 1). Fig. 13(left) plots the reconstruction error ‖x − f (z)‖ versus
the pointwise normal reach. We observe that almost all observations lie outside the
pointwise normal reach, implying that we cannot guarantee a unique representation.
This is a warning sign that our representations need not be trustworthy.

Next we analyze the empirical convergence properties of our estimator on the
CelebA autoencoder. Fig. 13(center) shows the average pointwise normal reach over
the validation set as a function of the number of iterations in the sampling based esti-
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Figure 13: Left: Estimated reach for CelebA validation samples plotted against the
L2 error. Samples below the diagonal red line does not have a unique encoder. Center:
Normalized reach as a function of batches used to estimate the reach. The normalized
reach is the estimated pointwise normal reach divided by the estimated pointwise
normal reach after the first batch. The hyperball sampling reach estimator quickly
converges. Right: Sensitivity analysis of the hyperball sampling reach estimator to the
initial hyperball radius. The reach of CelebA validation samples are estimated with
initial radii r0 = 1.0 and r0 = 0.01 respectively and their final reach after 100 batches
are plotted against each other.

mator. We observe that the estimator converges after just a few iterations, suggesting
that the estimator is practical.

The estimator relies on an initial radius for its search. Fig. 13(right) shows the
estimated pointwise normal reach on the validation set, plotted for two different
initial radii. We observe that the estimator converges to approximately the same
value in both cases, suggesting that the method is not sensitive to this initial radius.
However, initializing with a tight radius will allow for faster convergence.

Reach regularization

Having established that the pointwise normal reach provides a meaningful measure
of uniqueness, we carry on to regularize accordingly.

Toy circle

Returning to the example from section B.3, we train an autoencoder of the same ar-
chitecture with the reach regularization. We pretrain the network 100 epochs without
regularization, and then 2000 iterations with reach regularization.

Fig. 11 (right) shows that reach regularization gives a significantly smoother man-
ifold than without regularization (left panel). The gray circles on the plot indicate
that almost all the points are now within the pointwise normal reach, and arguably
the associated representations are now more trustworthy.

MNIST

Next we train an autoencoder on 5000 randomly chosen images from the classes
2, 4 and 8 from MNIST [12]. We use a symmetric architecture reducing to two
dimensional representation through a sequence of 784→ 500→ 250→ 150→ 100→
50→ 10 linear layers with ELU non-linearities. We pretrain 5000 epochs without
any regularization, and proceed with reach regularization enabled. Figure 14 (left)

63



Paper B · Is an encoder within reach?

shows the percentage of points which lies within reach of the estimated manifold.
We observe that reach regularization slightly increases the reconstruction error (see
example reconstructions in fig. 15), as any regularization would, while significantly
increasing the percentage of points that are known to have a unique representation.
This suggests that reach regularization only minimally changes reconstructions while
giving a significantly more smooth model, which is more reliable.

Figure 14 (center) shows the latent representations given by the pretrained autoen-
coder without regularization, while fig. 14 (right) shows the latent representations
after an additional 200 epochs with reach regularization. The latent representations
with corresponding data points outside reach, that is, where the reconstruction error
is greater than the pointwise normal reach at the reconstructed point is plotted in
red. The points inside reach are plotted in green. We observe that after regularization,
significantly more points can be expected to be unique and thereby trustworthy. Note
that the latent configuration is only changed slightly after reach regularization, which
suggests that the expressive power of the model is largely unaffected by the reach
regularization.

Effect of reach regularization Before reach regularization After reach regularization

Figure 14: The effect of reach regularization on an MNIST model. Left: The plot
shows that the percentage of points within reach increases, while the l2-loss is nearly
unchanged. We plot the loss curve from the initial 5000 epochs without regular-
ization, to show how the l2-loss behaves when regularizing. Center & right: Latent
representations of the MNIST autoencoder before and after the reach regularization
(visualized using PCA). The red numbers are outside the reach, while the green are
within. Reach regularization smoothens the decoder to increase reach with minimal
changes to both reconstructions and latent configuration.

Figure 15: Reconstructions of MNIST images before (top) and after (bottom) reach reg-
ularization. The reach regularization only minimally reduces reconstruction quality,
while significantly improving upon representation uniqueness.
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B.4 Related work

Representation learning is a foundational aspect of current machine learning, and
the discussion paper by [2] is an excellent starting point. As is common, [2] defines a
representation as the output of a function applied to an observation, implying that a
representation is unique. In the specific context of autoencoders, we question this
implicit assumption of uniqueness as many equally good representations may exist
for a given observation. While only studied here for autoencoders, the issue applies
more generally when representations span submanifolds of the observation space.

In principle, probabilistic models may place multimodal distributions over the
representation of an observation in order to reflect lack of uniqueness. In practice,
this rarely happens. For example, the highly influential variational autoencoder [11,
16] amortizes the estimation of p(z|x) such that it is parametrized by the output
of a function. Alternatives relying on Monte Carlo estimates of p(z|x) do allow for
capturing non-uniqueness [10], but this is rarely done in practical implementations.
That Monte Carlo estimates provide state-of-the-art performance is perhaps indicative
that coping with non-unique representations is important. Our approach, instead,
aim to determine which observations can be expected to have a unique representation,
which is arguably simpler than actually finding the multiple representations.

Our approach relies on the reach of the manifold spanned by the decoder. This
quantity is traditionally studied in geometric measure theory as the reach is informa-
tive of many properties of a given manifold. For example, manifolds which satisfy
that reach(M) > 0 are C1,1, i.e. the transition functions are differentiable with Lip-
schitz continuous derivatives. In machine learning, the reach is, however, a rarely
used concept. [8] investigates if a manifold of a given reach can be fitted to observed
data, and develops the associated statistical test. Further notable exceptions are the
multichart autoencoder by [20], and the adaptive clustering of [3]. Both works rely
on the reach as a tool of derivation. Similarly, [5] relies on the assumption of positive
reach when deriving properties of deep generative models. These works all rely on
the global reach, while we have introduced a local generalization.

The work closest to ours appears to be that of [1] which studies the convergence
of an estimator of the global reach (B.2). This only provides limited insights into the
uniqueness of a representation as the global reach only carries limited information
about the local properties of the studied manifold. We therefore introduced the point-
wise normal reach alongside an estimator thereof. This gives more precise information
about which observations can be expected to have a unique representation.

B.5 Discussion

The overarching question driving this paper is when can representations be expected
to be unique? Though commonly assumed, there is little mathematical reason to
believe that the choice of optimal representation is generally unique. The theoretical
implication of this is that enforcing uniqueness on non-unique representations leads
to untrustworthy representations.

We provide a partial answer for the question in the context of autoencoders,
through the introduction of the pointwise normal reach. This provides an upper
bound for a radius centered around each point on the manifold spanned by the
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decoder, such that any observation within the ball has a unique representation. This
bound can be directly compared to the reconstruction error of the autoencoding to
determine if a given observation might not have a unique representation. This is
a step towards a systematic quantification of the reliability and trustworthiness of
learned representations.

Empirically, we generally find that most trained models do not ensure that repre-
sentations are unique. For example, on CelebA we found that almost no observations
were within reach, suggesting that uniqueness was far from ensured. This is indica-
tive that the problem of uniqueness is not purely an academic question, but one of
practical importance.

We provide a sampling estimator of the pointwise normal reach, which is guar-
anteed to upper bound the true pointwise normal reach. The estimator is easy to
implement, with the main difficulty being the need to access the Jacobian of the
decoder. This is readily accessible using forward-mode automatic differentiation, but
it can be memory-demanding for large models.

It is easy to see that the sample-based pointwise normal reach estimator converges
to the correct value in the limit of infinitely many samples. We, however, have no
results on the rate of convergence. In practice we observe that the estimator converges
in a few iterations for most models, suggesting the convergence is relatively fast. In
practice, the estimator, however, remains computationally expensive.

While we can estimate the pointwise normal reach quite reliably even for large
models within manageable time, the estimator is currently too expensive to use for
regularization of large models. On small models, we observe significant improvements
in the uniqueness properties of the representations at minimal cost in terms of
reconstruction error. This is a promising result and indicative that it may be well
worth using this form of regularization. While more work is needed to speed up the
estimating of pointwise normal reach, our work does pave a path to follow.
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B.A Appendix

Extending the pointwise normal reach to the non-manifold setting

[7] introduces reach for arbitrary subsets of Euclidean space. In this situation TxM
and NxM denote the tangent- and normal cone.

Definition B.8. LetM⊂RD denote an arbitrary subset and let x ∈M. Then v ∈RD is a
tangent vector forM at x if either v = 0 or if for every ε > 0 exists y ∈M with

0 < ‖y − x‖ < ε and ‖
y − x
‖y − x‖

− v
‖v‖
‖ < ε. (B.2)

Let TxM denote the set of tangent vectors forM at x. A vector w ∈RD is a normal vector
forM at x if

〈w,v〉 ≤ 0 for all v ∈ TxM. (B.3)

Let NxM denote the set of all normal vectors forM at x.

We can extend theorem B.4 and Lemma B.6 to the general situation as defined
by Federer. To extend Theorem B.4 it is sufficient to prove that for any v ∈NxM and
u ∈RD , ‖Pv(u)‖ ≤ d(u,TxM).

Lemma B.9. For any v ∈NxM and u ∈RD with 〈v,u〉 ≥ 0, ‖Pv(u)‖ ≤ d(u,TxM).

Proof. For a subset A ⊂RD , dual(A) = {v ∈RD : 〈a,v〉 ≤ 0 for all a ∈ A}. First we prove
that d(u,dual(v)) = ‖Pv(u)‖. Note that we can write u = uv +uv⊥ , where uv = Pv(u) and
uv⊥ ∈ v⊥. Then

d(u,dual(v)) = inf
w∈dual(v)

‖u −w‖ = inf
w∈dual(v)

‖uv +uv⊥ −w‖

= inf
w∈dual(v)

‖uv‖+ ‖uv⊥ −w‖ − 2〈uv ,w〉 .
(B.4)

As 〈uv ,w〉 ≤ 0, it follows that the infimum is achieved when w = uv⊥ . By the defi-
nition of the dual it follows that dual(v) ⊃ dual(NxM) ⊃ TxM. Hence d(u,TxM) =
infw∈TxM‖u −w‖ ≥ infw∈dual(v)‖u −w‖ = ‖Pu(v)‖. �

To extend lemma B.6 note that if rmax(x) > 0, then TxM is convex [7, Thm 4.8 (12)].
Let y ∈M. If y − x ∈ TxM then R(x,y) =∞. Otherwise, as TxM is a convex cone, there
exists n ∈NxM such that

〈
n,y − x

〉
≥ 0. In that case

〈
n,x − y

〉
= ‖Pn(y−x)‖, so applying

Lemma 2.5 gives the result.
Though the theory can be extended to general subspaces, the manifold assumption

is important for the experimental setup. An important assumption for the estimator
(B.1) is that the Jacobian spans the entire tangent space. If this is not the case, this
estimator does not estimate the pointwise normal reach. The reason being, the length
of the projection onto the orthogonal complement of the Jacobian is not necessarily the
distance to the tangent space. It is clear that when we want to study the uniqueness
of latent representations, if the decoder is not injective, it automatically has areas
without unique representations. So if the decoder is not injective, we should already
be wary about trusting the latent representations.
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Reach estimation in increasing ambient dimension

In the following experiment we want to see the behavior of the reach estimator when
the dimension in which the manifold is embedded increases. We consider the graph
(x,y) 7→Un(x,y,x2 + y2,0, . . . ,0), where Un ∈O(n) is an orthogonal matrix. That is, we
embed the quadratic surface (x,y,x2 + y2) isometrically into Rn. We then estimate
the pointwise normal reach in 0 with one iteration of Algorithm 1 with an initial
radius of 5 and a sample size of 10. We estimate the pointwise normal reach 100 times
in each dimension and take the average of these. The true value of the pointwise
normal reach is rN (0) = 0.5. Figure B.A shows how the average overestimation of the
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Figure 16: The plot shows how the average overestimation of the pointwise normal
reach of an 2-dimensional quadratic surfaces isometrically embedded into a higher
dimensional space goes down as the ambient dimension goes up.

pointwise normal reach goes down as the ambient dimension goes up.

Reconstruction error in test set during reach regularization

We extend the experiment from Section B.3 where we perform the reach regularization
on an autoencoder trained on a subset of the MNIST data. At each iteration we
compute the reconstruction error of a test set. We see that the test error is similar
to the training error, suggesting that the model generalizes well to the data. This
implies that a model having data points outside reach does not determine that the
model does not generalize well to the data. Furthermore, reach regularization does
necessarily impact the generalization of the model.
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Figure 17: The plot shows 160 iterations of reach regularization of the autoencoder
trained on the MNIST dataset, as in Section B.3. The blue line shows the average
reconstruction error on the test set, the green line shows the average reconstruction
error on the training set, and the orange line shows the reach loss.
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