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Abstract

Let (G,H) be the pair (GL(n+ 1,R),GL(n,R)) where we considerH as a subgroup of G
embedded in the upper left corner. This dissertation focuses on the branching problem,
also known as the restriction problem, concerning the restriction of representations of G
to the subgroup H . Specifically, we delve into the study of symmetry breaking operators, as
elements of HomH(πξ,λ|H , τη,ν) where πξ,λ and τη,ν are principal series representations of
G and H respectively. We consider a meromorphic family of symmetry breaking opera-
tors and study it by the corresponding meromorphic family of integral kernels. For these
kernels we find Bernstein–Sato identities that enable us to normalize the family such that
it becomes holomorphic therefore giving us a holomorphic family of symmetry breaking
operators. For this holomorphic family we find functional equations with the Knapp–
Stein intertwining operators as well as some sets of codimension two, where the family of
symmetry breaking operators vanish.

In the case of n = 2we obtain direct integral decompositions for all unitary irreducible
representations of G restricted to H . Some of these decompositions are found by first es-
tablishing a Plancherel formula for the unitary principal series πξ,λofG and then by using
an analytic continuation procedure in λ to move this Plancherel formula to the comple-
mentary series and then further on to points of reducibility, where the degenerate series
and the generalized principal series sits as quotients in the principal series. To do this an-
alytic continuation all the results obtained for the family of symmetry breaking operators
for (G,H) play a crucial role. Alas, the analytic continuation method can not decompose
all unitary irreducible representations ofG. However, we also present an argument using
the Whittaker Plancherel formula, that establishes the direct integral decomposition for
all the unitary representations of G except degenerate series.

To obtain the Plancherel formula for the unitary principal series we restrict to the open
H-orbit in G/P where P is a minimal parabolic subgroup of G. This restriction is a H-
equivariant isomorphism meaning instead of obtaining a Plancherel formula directly for
πξ,λ we rather have to find a Plancherel formula for the space of L2-section of homoge-
neous Hermitian line bundles over X = H/MA whereMA is the subgroup of diagonal
matrices in H . This is obtained by looking at a family of H-intertwining operators be-
tween the L2-sections and principal series representations which is holomorphic in its
parameters. This family of operators is essentially the Fourier–Jacobi transform, and the
Plancherel formula follows from the spectral decomposition of the corresponding ordi-
nary second order differential operator.

iii





Resumé

Lad (G,H) være parret (GL(n + 1,R),GL(n,R)), hvor vi betragter H som en under-
gruppe af G ved at indlejre den i øverste venstre hjørne af G. Denne afhandling omhan-
dler forgreningsproblemet, også kendt som restriktionsproblemet, der beskæftiger sig
med at studere restriktionen af repræsentationer af G til undergruppen H . Mere speci-
fikt kigger vi på såkaldte symmetribrydendeoperatorer, som vi betragter som elementer af
HomH(πξ,λ|H , τη,ν), hvor πξ,λ og τη,ν er principalrække-repræsentationer for respektivt G
og H . Vi betragter en meromorf familie af symmetribrydende operatorer, som vi stud-
erer via dens meromorfe familie af integralkerner. For disse kerner finder vi såkaldte
Bernstein–Sato-identiteter, der gør, at vi kan normaliserer familien, så den bliver holo-
morf og på denmåde giver dette os en holomorf familie af symmetribrydende operatorer.
For denne holomorfe familie finder vi funktionalligninger med Knapp–Stein-fletnings-
operatorerne samt noglemængder af kodimension to, hvor den holomorfe familie af sym-
metribrydendeoperatorer forsvinder.

I tilfældet hvor n = 2, opnår vi en direkte integraldekomposition af alle unitære irre-
ducible repræsentationer af G restringeret til H . Nogle af disse dekompositioner bliver
fundet ved at først at etablere en Plancherel-formel for den unitære principale række πξ,λ
forG også bruge en analytisk fortsættelses-procedure i λ til at flytte Plancherel formlen til
den komplementære række og derfra videre til reducibilitetspunkter, hvor den degener-
erede række og den generaliserede principale række sidder som kvotienter af den princi-
pale række. For at lave denne analytiske fortsættelses-procedure er resultaterne omkring
de symmetribrydende operatorer altafgørende. Desværre kan den analytiske udvidelse
ikke opnå dekompositioner af enhver unitær irreducibel repræsentation. Vi præsenterer
også et argument, der benytter Whittaker-Plancherel-formlen, som giver en direkte in-
tegraldekomposition for alle de unitære irreducible repræsentationer af G undtagen de
degenererede række-repræsentationer.

For at opnå en Plancherel formel for den unitære principale række restringerer vi
til den åbne tætte H-bane i G/P , hvor P er en minimal-parabolsk undergruppe af G.
Dette er en isomorfi, så i stedet for at finde en Plancherel-formel direkte for πξ,λ, kan vi
i stedet finde en Plancherel-formel for rummet af L2-sektioner af homogene Hermitiske
linje-bundter over X = H/MA, hvor MA er undergruppen af diagonale matricer i H .
Dette er opnået ved at betragte en familie af fletningsoperatorer mellem L2-sektionerne
og principalrække-repræsentationer forH , som er holomorf i sine parametre. Denne fam-
ilie er essentielt Fourier–Jacobi transformationen og Plancherel-formlen følger fra spektral
dekomponeringen af den tilhørende ordinære anden-ordens differential operator.
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Preface
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I am also thankful tomy colleagues at theDepartment ofMathematics, AarhusUniver-
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Introduction

In representation theory there are two fundamental problems, classifying the smallest ob-
jects (i.e. irreducible representations) and decomposing representations into these small-
est objects. An example of the latter is a branching problem, by which wemean the problem
of understanding how an irreducible representation of a group behaves as a representa-
tion of a subgroup.

Let G be a real reductive Lie group, H a closed subgroup of G and π an irreducible
unitary representation of G. The restricted representation π|H is in general no longer
irreducible, however it is unitary and thus has a decomposition as a direct integral

π|H ≃
∫ ⊕

Ĥ
mπ(τ)τ dµπ(τ),

where Ĥ is the unitary dual of H i.e. the irreducible unitary representations of H up
to equivalence, mπ(τ) ∈ N0 ∪ {∞} are the multiplicities and µπ a measure on Ĥ . Given
Ĥ is known, a complete answer to the unitary branching problem consists of finding the
multiplicities mπ(τ) and the measure µπ. We call the support of µπ the spectrum, it can
in general contain both a discrete part and a continuous part. If for example we consider
the case where G is compact then

π|H ≃
⊕
τ∈Ĥ

mπ(τ)τ,

where each τ is finite dimensional and mπ(τ) are all finite. In this case the spectrum is
purely discrete.

Consider the example of G = SL(2,R) and π = L2(R) with action of G given as

π(g)f(x) = |cx+ d|−1f
(ax+ b

cx+ d

)
, g−1 =

(
a b

c d

)
.

If H is the subgroup of upper triangular matrices with 1’s on the diagonal we have

π|H(n)f(x) = f(x− b), n =
(

1 b

0 1

)
.

Letting χξ denote the character x 7→ eiξx we can consider the intertwining map

Aξ : S(R) → Cχξ, f 7→ f̂(ξ)χξ,

1



2 Introduction

where f̂ denotes the Fourier transform of f and S(R) is the Schwartz space. We restrict to
the Schwartz space as L2-function famously are not defined point-wise. Defining a map

A : S(R) →
∫ ⊕

R
Cχξ dξ, Af = (Aξf)ξ∈R,

we see immediately from the Plancherel theorem for the Fourier transform that it is an
isometry since

||Af ||2 =
∫
R

|Aξf |2dξ =
∫
R

|f̂(ξ)|2dξ = ||f̂ ||2 = ||f ||2.

As the Schwartz space is dense in L2(R) we can extend A to all of L2(R) and as Cχξ are
irreducible and each Aξ is non-zero we also get that A is surjective and in total that

π|H ≃
∫ ⊕

R
Cχξ dξ,

which has purely continuous spectrum.
This example highlights multiple aspects of the unitary branching problem. The first

key step was finding intertwining operators in HomH(π|H , τ). However, these maps are
only defined in an L2-sense and not point-wise, so we have to restrict ourselves to the
smooth vectors of the representation. Thus we consider the space of symmetry breaking
operators

HomH(π∞|H , τ∞),

which makes the map

A : π∞|H →
∫ ⊕

Ĥ
mπ(τ) · τ dµπ(τ), Av = (Ajτv)

τ∈Ĥ,j=1,...,mπ(τ),

point-wise defined for some Ajτ ∈ HomH(π∞|H , τ∞). It turns out that it is often useful to
study families of symmetry breaking operators and sowe stray away fromour assumption
on π and τ to be unitary and instead assume them to be a admissible representations, as
many of the members of these families will fit into this more general setup.

We call the dimension of the space of symmetry breaking operators for the multiplic-
ity. These multiplicities might be infinite and therefore a good selection of groups (G,H)
is on order for a nice branching problem. Work by Kobayashi–Oshima in [KO13] shows
that when G and H are algebraically defined over R then finite multiplicity is equivalent
to the pair (G,H) being strongly spherical i.e. (G × H)/diag(H) is real spherical. A full
classification of strongly spherical pairs have been done in the case of symmetric pairs by
Kobayashi–Matsuki in [KM14], and and in general by Knop–Krötz–Pecher–Schlichtkrull
in [KKPS19]. Going back to the example, we could easily argue that the map to the direct
integral was surjective by noting that it was a non-zero map to an irreducible representa-
tion, this along with many other aspects makes multiplicity one much easier to deal with.
Fortunately Sun-Zhu found in [SZ12] that the following pairs have at most multiplicity
one

(GL(n+ 1,R),GL(n,R)), (GL(n+ 1,C),GL(n,C)), (U(p, q + 1),U(p, q)),
(SO(n+ 1,C),SO(n,C)), (SO(p, q + 1),SO(p, q)).
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Having determined the nice pairs to study, we need amodel for the representations π and
τ to study explicit symmetry breaking operators. Consider minimal parabolic subgroups

PG = MGAGNG ⊆ G, PH = MHAHNH ⊆ H,

with AH ⊆ AG. Then letting ξ ∈ M̂G, λ ∈ a∗
G,C and η ∈ M̂H , ν ∈ a∗

H,C we can consider the
principal series representations

πξ,λ = C∞ − IndGPG
(ξ ⊗ eλ ⊗ 1), τη,ν = C∞ − IndHPH

(η ⊗ eν ⊗ 1).

By the Casselman embedding theorem, every irreducible unitary representation is a sub-
representation of the principal series representations. When (G,H) is one of the multi-
plicity one pairs Frahm showed in [F21] that for generic (λ, ν) ∈ a∗

G,C × a∗
H,C

dim HomH(πξ,λ|H , τη,ν) = dim HomM (ξ|M , η|M ) ∈ {0, 1}, (for someM ⊆ MG ∩MH),

and in the case of = 1 there exists an explicit family Aη,νξ,λ of symmetry breaking operators
that depends meromorphically on the induction parameters (λ, ν).

Methods

For λ ∈ ia∗
G the principal series representation πξ,λ is unitary on L2(G/PG,Vξ,λ) where

Vξ,λ is the homogeneous vector bundle Vξ,λ = G×PG
(ξ⊗ eλ+ρG ⊗ 1) → G/PG. As (G,H)

is a multiplicity one pair, H acts on G/PG by a single open dense orbit O ⊆ G/PG. Then
the restriction to this open orbit becomes an isometric isomorphism

L2(G/PG,Vξ,λ) ∼−→ L2(O,Vξ,λ|O).

Given an explicit Plancherel formula for the space L2(O,Vξ,λ|O) is known, we can decom-
pose

πξ,λ|H ≃
⊕
η∈M̂H

∫ ⊕
mξ,λ(η, ν)τη,ν dµξ,λ,η(ν),

with the corresponding Plancherel formula

||f ||2ξ,λ =
∑
η∈M̂H

∫
||Aη,νξ,λf ||2η,ν dµξ,λ,η(ν).

The left-hand side of this equation can be made holomorphic for λ ∈ a∗
G,C by ||f ||2ξ,λ =

⟨f, Twξ,λf⟩ where Twξ,λ is a Knapp–Stein intertwining operator. The idea is then to ana-
lytically extend the right hand side to λ ∈ a∗

G,C, and as the two holomorphic functions
coincide on ia∗

G they coincide everywhere. We then get a direct integral decomposition of
πξ,λ|H for the (ξ, λ) where πξ,λ is unitary or contains a unitary quotient.

To make the analytic extension, the meromorphic properties of the Knapp–Stein op-
erators, the measure µξ,λ,η(ν) and the family of symmetry breaking operators must be
established. The Knapp–Stein operators are often well studied, and the measure depends
on how explicit the Plancherel formula at hand is. The symmetry breaking operatorsAη,νξ,λ
can via the Schwartz kernel theorem be identified to a distributional kernelKη,ν

ξ,λ on G by

Aη,νξ,λf(h) =
∫
KG

Kη,ν
ξ,λ (h−1k)f(k) dk,
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whereKG is the maximal compact subgroup forG and the integral should be understood
in distributional sense. The distributional kernel will have the form

Kη,ν
ξ,λ (g) = |Φ1(g)|s1

ε1 . . . |Φn(g)|sn
εn
, (|x|sε = sgn(x)ε|x|s, (x ∈ R))

where Φi are analytic functions on G and (ε, s) is an affine transformation of (ξ, λ, η, ν).
This kernel is L1

loc for s in some domain and the goal is to normalize it, and analytically
extend it as a distribution, obtaining a holomorphic family Aη,νξ,λ of symmetry breaking
operators. To do this we employ the so-called Clerc–Beckmann trick, found in [BC12,
Section 3.3]. This involves "conjugating" a multiplication operatorM : Kη,ν

ξ,λ 7→ ΦiK
η,ν
ξ,λ by

Knapp–Stein intertwining operators. Loosely speaking, as the multiplication operator
shifts (ε, s) to (ε, s+ ei) the conjugation will shift (ε, s) to (ε, s− ei). If one can show that
this conjugation is in fact a differential operator D(s, t), then a Bernstein–Sato identity

D(ε, s)Kε,s = b(ε, s)Kε,s−ei ,

where b(ε, s) is a polynomial in s, is established. Using this identity we can normalize
Kε,s such that D(ε, s) simply shifts the parameters (ε, s) of Kε,s and use this to define an
analytic extension ofKη,ν

ξ,λ .

Results

Paper A

For G = SL(2,R) and H = MA where MA is the subgroup of diagonal matrices of G
we consider L2(G/H,Lε,λ), the L2-section of a homogeneous line bundle associated to a
unitary character χε,λ(h) = |t|λε of H or alternatively IndGH(χε,λ). We study holomorphic
families of intertwining operators Aξλ,µ : IndGH(χε,λ) → IndGP (ε ⊗ eµ ⊗ 1) to the principal
series representations of G. The main result is:

Theorem. For f ∈ IndGH(χε,λ), λ ∈ iR and ε ∈ {0, 1} we have

||f ||2 =
∫
iR

1∑
ξ=0

||Aξλ,µ f ||2 dµ

|a(µ, ε)|2 +
∑

µ∈1−ε−2N
c(µ, ε)||Aελ,µ||2,

where Aλ,µ and Aελ,µ are some combinations of A0
λ,µ and A1

λ,µ.

The proof consists of two steps. First, we prove the theorem in the case where λ = 0
on each K-type. On a fixed K-type Aξ0,µ behaves as the Fourier–Jacobi transform and
the Plancherel formula follows from a spectral decomposition. The second step we show
that as a representation ofG the space IndGH(χε,λ) is independent of λ, and by composing
with an explicit isomorphism IndGH(χε,λ) → IndGH(χε,0) we deduce the claimed Plancherel
formula. One of the major obstacles in the proof is dealing with consequences of hav-
ing multiplicity two in the continuous spectrum, but only multiplicity one in the discrete
spectrum.
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Paper B

In this paper we consider the pair of groups (G,H) = (GL(n+ 1,R),GL(n,R)) and inter-
twining operatorsAη,νξ,λ : πξ,λ → τη,ν between principal series representations πξ,λ and τη,ν
of respectivelyG andH . There is one meromorphic family of such intertwining operators
which can be identified by a corresponding meromorphic family of integral kernelsKη,ν

ξ,λ .
This family of kernels is locally integrable in some domain of (λ, ν) ∈ C2n+1 and the main
result of the paper is to do analytic continuation to extend this domain.
Theorem. Let Kη,νξ,λ = Kη,ν

ξ,λ/n(ξ, λ, η, ν), where n(ξ, λ, η, ν) is an explicit function given in
terms of Gamma-functions. Kη,νξ,λ extends analytically as a distribution to all of (λ, ν) ∈ C2n+1.

We prove this theorem by finding Bernstein–Sato identities ofKη,ν
ξ,λ using the method out-

lined in the methods subsection. Using the normalized integral kernels we can get the
corresponding intertwining operators Aη,ν

ξ,λ. We argue that the normalization n(ξ, λ, η, ν)
is most likely optimal in the sense that it does not introduce any redundant zeroes, while
simultaneously keeping Aη,ν

ξ,λ holomorphic.
Theorem. We have the following functional equations when composing Aη,νξ,λ by the Knapp–Stein
intertwining operators Twξ,λ and Tw′

η,ν :

Aη,νw(ξ,λ) ◦Twξ,λ = c(ξ, λ, η)Aη,νξ,λ, Tw′
η,ν ◦Aη,νξ,λ = d(ξ, η, ν)Aw

′(η,ν)
ξ,λ ,

where c, d are explicit holomorphic functions given in terms of Gamma-functions.

This Theorem follows by a direct computation. Lastly, we find a family of zeroes for
Aη,ν
ξ,λ .

Paper C

In this unfinished paper we decompose unitary representations of GL(3,R) restricted to
GL(2,R) in terms of unitary irreducible GL(2,R) representations. We use the results of
paper A and B and apply the method of analytic continuation explained in the methods
section.
Theorem. The unitary principal series, complementary series and unitarily induced generalized
principal series of GL(3,R) all decomposes as

π|H ≃
⊕

η∈(Z/2Z)2

∫ ⊕

iR2
τη,ν dν ⊕

⊕
η∈Z/2Z

⊕
ν−∈1+η−2N

∫ ⊕

iR
τdsη,ν dν+,

whereas the unitarily induced degenerate series decomposes as

πλ|H ≃
⊕

η∈Z/2Z

∫
iR
τ(η,η),(λ,z) dz, (λ ∈ iR)

where τη,ν is the unitary principal series for GL(2,R) and τdsη,ν is the almost discrete series for
GL(2,R).

In the argumentation of this theorem there are a few gaps, but the framework for the proof
is there. We also prove the first part of the theorem using a completely different method
that relies on the Whittaker Plancherel formula.
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Related work & Outlook

Paper A

For ε = 0 and λ ∈ iR the same Plancherel formula was obtained by Zhu in [Z18]. More-
over, for ε = 0 and λ = 0, corresponding to decomposing L2(G/H), our Plancherel for-
mula is a special case of the one for pseudo-Riemannian real hyperbolic spaces O(p, q)/
O(p, q−1)with p = 1 and q = 2whichwas obtained by Faraut, Rossmann and Strichartz in
[F79], [R78], [S73]. The corresponding abstract Plancherel formula, i.e. the description
of the representations occurring in the direct integral decomposition, also follows from
general theory (see e.g. [B05]). The techniques in this paper are very centered around
calculations of SL(2,R) and will most likely not apply in a broader setting.

Paper B

The study of symmetry breaking operators (SBOs) have gained a lot of attention in the
past few years. They have found applications in analytic number theory, unitary branch-
ing and partial differential equations (see e.g. [FS18], [MZØ15], [MØ17]) but are also in-
teresting objects in their own right. Looking at Kobayashi’s ABC-program ([K15]) which
describes different steps for solving branching problems, the C-part of the program can
divided into subcategories as:

1. Construct SBOs explicitly,

2. Classify SBOs,

3. Find residue formlas for SBOs,

4. Study functional equations among the SBOs,

5. Determine the image of sub-quotients of SBOs.

These sub-steps was suggested by Kobayashi–Speh in their book [KS17] which contains
a complete answer for the pair (O(n+ 1, 1), O(n, 1)). Later their work was generalized by
Frahm andWeiske to strongly spherical real reductive (G,H) where both G andH are of
real rank one, in [FW20].

The work of paper B fits into step 1 of this subprogram. The techniques used for ob-
taining Bernstein–Sato identities have good chances of working for other families of sym-
metry breaking operators. The computation boils down to a rank one reduction, which
seems feasible for other families of symmetry breaking operators, but we have no gen-
eral proof or intuition for why the conjugation of the multiplication operator by standard
intertwining operators should give a differential operator.

Paper C

For real reductive groups there is no general theory available for solving branching prob-
lems. In the case of nilpotent Lie groups the orbit method provides a complete answer. In
the 90s Kobayashi initiated the study of the discretely decomposable branching problem
(see [K94]) where the measure is discrete and the direct integral is in fact a direct sum, in
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this case more algebraic methods are available see e.g. [DV10], [SØ08], [EW04]. On the
other hand if the restricted representation has purely continuous spectrummore analytic
methods can be applied see e.g. [R79] and [CKØP11].

In the case of mixed continuous and discrete spectrum no systematic approach has
been developed. In [W21]Weiske obtained branching laws for unitary representations of
O(1, n + 1) for the scalar principal series, using similar techniques we have used in this
paper. The main difference between this paper and Weiske’s is that we are considering
groups of higher rank than one. Before starting the projectwe thought that the higher rank
would complicate the analysis of the SBOs significantly but as Paper B shows this was not
the case. However, the analytic continuation process is way more involved and technical
then for rank one. In view of Paper B and C it might be feasible to obtain branching
laws for (GL(n+ 1,R),GL(n,R)), but the limiting factors would be if there exists explicit
Plancherel formulas for the open orbit and the complication of the analytic continuation
process introducing even more variables.
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Paper A

An explicit Plancherel formula for
line bundles over the one-sheeted

hyperboloid
Frederik Bang–Jensen & Jonathan Ditlevsen

Abstract
In this paper we consider G = SL(2,R) and H the subgroup of diagonal matrices.

Then X = G/H is a unimodular homogeneous space which can be identified with the
one-sheeted hyperboloid. For each unitary character χ of H we decompose the induced
representations IndGH(χ) into irreducible unitary representations, known as a Plancherel
formula. This is done by studying explicit intertwining operators between IndGH(χ) and
principal series representations of G. These operators depends holomorphically on the
induction parameters.

Introduction

The Plancherel formula for a unimodular homogeneous space X = G/H of a Lie group
G describes the decomposition of the left-regular representation of G on L2(X) into ir-
reducible unitary representations. More generally, one can ask for the decomposition of
L2(G×H Vχ), the L2-sections of a homogeneous vector bundle associated with a unitary
representation (χ, Vχ) ofH . In representation theoretic language, this corresponds to the
induced representation IndGH(χ) of G, and for the trivial representation χ = 1 we recover
L2(G/H).

By abstract theory, the unitary representation IndGH(χ) decomposes into a direct inte-
gral of irreducible unitary representations ofG, i.e. there exists ameasure µ on the unitary
dual Ĝ of G and a multiplicity functionm : Ĝ → N ∪ {∞} such that

IndGH(χ) ≃
∫ ⊕

Ĝ
m(π) · π dµ(π).

An abstract Plancherel formula describes the support of the Plancherel measure µ as well
as the multiplicity function m. Such abstract Plancherel formulas have been established
for certain classes of homogeneous spaces such as semisimple symmetric spaces (see e.g.
[B05]).

However, for some applications an abstract Plancherel formula is not sufficient, and
a more explicit version is needed (see e.g. [FW, W21]). By this, we mean an explicit

11
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formula for the measure µ as well as explicit linearly independent intertwining operators
Aπ,j : IndGH(χ)∞ → π∞, j = 1, . . . ,m(π), for µ-almost every π ∈ Ĝ such that

∥f∥2
IndG

H(χ) =
∫
Ĝ

m(π)∑
j=1

∥Aπ,jf∥2
π dµ(π) (f ∈ IndGH(χ)∞).

Such an explicit Plancherel formula is for instance known for Riemannian symmetric
spaces X = G/K, where the Plancherel measure µ is explicitly given in terms of Harish-
Chandra’s c-function, and the intertwining operators Aπ,j can be described in terms of
spherical functions (see e.g. [H08], and also [S94] for the case of line bundles overHermi-
tian symmetric spaces). This explicit Plancherel formula has recently been applied in the
context of branching problems for unitary representations, where the explicit Plancherel
measure and in particular its singularities play a crucial role (see e.g. [FW, W21]). In or-
der to apply the same strategy to other branching problems, explicit Plancherel formulas
are needed for more general homogeneous spaces.

In this paper, we determine the explicit Plancherel formula for line bundles over the
one-sheeted hyperboloidX = G/H , whereG = SL(2,R) andH the subgroup of diagonal
matrices. This specific Plancherel formula has direct applications to branching problems
for the pairs (SL(2,R) × SL(2,R), diag(SL(2,R)) and (GL(3,R),GL(2,R)). The homoge-
neous Hermitian line bundles over X are parameterized by ε ∈ Z/2Z and λ ∈ iR, the
corresponding unitary character of H being

χε,λ

(
t 0
0 t−1

)
= sgn(t)ε|t|λ (t ∈ R×).

We find intertwining operators Aξλ,µ : IndGH(χλ,ε) → IndGP (ε ⊗ eµ ⊗ 1), ξ = 0, 1 between
the line bundles over X and the principal series representation (see Proposition 5.1).

Theorem (See Corollary 7.6). For f ∈ IndGH(χλ,ε), λ ∈ iR and ε ∈ {0, 1} we have

∥f∥2 =
∫
iR

1∑
ξ=0

∥Aξ
λ,µf∥2 dµ

|a(µ, ε)|2 +
∑

µ∈1−ε−2N
c(µ, ε)∥Aελ,µf∥2, (0.1)

where Aλ,µ and Aλ,µ are some combinations of A0
λ,µ and A1

λ,µ.

The proof of (0.1) consists of two steps. First, we prove (0.1) in the case λ = 0 separately
for eachK-isotypic component. On a fixedK-isotypic component, the intertwining oper-
ators Aξλ,µ are essentially Fourier–Jacobi transforms, and the Plancherel formula follows
from the spectral decomposition of the corresponding ordinary second order differential
operator by Sturm–Liouville theory. The main difficulty is that the continuous spectrum
occurs withmultiplicity two, while the discrete part occurs withmultiplicity-one, and it is
non-trivial to find the right linear combination of A0

µ and A1
µ that corresponds to a direct

summand. In fact, this linear combination is very different for the cases ε = 0 and ε = 1.
In the second step, we show that, as a representation of G, L2(G/H,Lε,λ) is independent
of λ, and by finding an explicit unitary isomorphism L2(G/H,Lε,λ) → L2(G/H,Lε,0) we
deduce the claimed formula.
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We remark that for ε = 0 and general λ ∈ iR the Plancherel formula was recently
obtained by Zhu [Z18]. Moreover, for ε = 0 and λ = 0 our Plancherel formula can
be viewed as a special case of the one for pseudo-Riemannian real hyperbolic spaces
O(p, q)/O(p, q − 1) with p = 1 and q = 2 which was obtained by Faraut [F79], Ross-
mann [R78] and Strichartz [S73]. Note also that the corresponding abstract Plancherel
formula, i.e. the description of the representations occurring in the direct integral decom-
position, also follows from the general theory (see e.g. [B05]).
Acknowledgements: We would like to thank our supervisor Jan Frahm for his help and
input on the topics of this paper.
Notation: N = {1, 2, 3 . . . }, N0 = N ∪ {0}. For A ⊆ R and b, c ∈ R we denote by b+ cA =
{b + ca | a ∈ A}. The Pochhammer symbol is (x)n = x(x + 1) · · · (x + n − 1). We denote
Lie groups by Roman capitals and their corresponding Lie algebras by the corresponding
Fraktur lower cases. For m ∈ Z we let [m]2 ∈ {0, 1} be the remainder of m after division
by 2.

1 The principal series of SL(2,R)

In this sectionwe recall some results about the representation theory of SL(2,R) following
[C20]. Let G = SL(2,R) and consider the following subgroups

M = {±I}, A =
{(

t 0
0 t−1

)
: t ∈ R>0

}
, N =

{(
1 x

0 1

)
: x ∈ R

}
,

then P = MAN is a minimal parabolic subgroup of G. Identify M̂ ∼= Z/2Z by mapping
ε ∈ Z/2Z to the character

M → {±1},
(

±1 0
0 ±1

)
7→ (±1)ε.

Further, we identify a∗
C

∼= C by mapping λ 7→ λ
(

diag(1,−1)
)
. We can then observe that

any character of H := MA is of the form χε,λ = ε⊗ eλ where

χε,λ

(
t 0
0 t−1

)
= |t|λε := sgn(t)ε|t|λ, (t ∈ R×).

As the commutator subgroup of P is N the characters of P is of the form ε ⊗ eµ ⊗ 1 and
these characters are unitary exactly when λ ∈ iR.

Let ε ∈ Z/2Z and µ ∈ C. For any character ε ⊗ eµ ⊗ 1 of P define the principal series
representation πε,µinduced by it to be the left regular representation of G on

IndGP (ε⊗ eµ ⊗ 1) =
{
f ∈ C∞(G) | f(gman) = |t|−µ−1

ε f(g), m ∈ M, a ∈ A, n ∈ N
}
,

wherema = ( t 0
0 t−1 ) ∈ MA. We introduce the notation

kθ =
(

cos θ sin θ
− sin θ cos θ

)
,
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and ζm(kθ) = eimθ. According to the theory of Fourier series we have theK-type decom-
position

IndGP (ε⊗ eµ ⊗ 1) ∼=
⊕̂

m∈2Z+ε
Cζm.

We let IndGP (ε ⊗ eµ ⊗ 1)m denote the set of functions contained in the K-type given by
m ∈ Z, that is IndGP (ε⊗ eµ ⊗ 1)m = Cζm.

A basis of g is given by

H =
(

1 0
0 −1

)
, E =

(
0 1
0 0

)
, F =

(
0 0
1 0

)
.

Consider the Casimir operator

∆µ = dπ(H)2 + dπ(E + F )2 − dπ(E − F )2,

where π = πε,µ.

Proposition 1.1 (See e.g. [C20, Prop. 10.7]). For f ∈ IndGP (ε⊗ eµ ⊗ 1) we have

∆µf = (µ2 − 1)f.

Proposition 1.2 (See [C20, Prop. 10.8]). The representation IndGP (ε ⊗ eµ ⊗ 1) is irreducible
except when µ ∈ 1−ε−2Z . If µ ∈ 1−ε−2N then IndGP (ε⊗eµ⊗1) decomposes as V0 ⊕V1 ⊕V2
where V0 is an irreducible representation containing exactly the K-types with |m| ≤ −µ. The
quotient πdsε,µ is a direct sum of two infinite dimensional representations πholε,µ and πaholε,µ .

Let w0 = ( 0 1
−1 0 ), a representative of the longest Weyl group element of G. Recall the

definition of the Knapp–Stein intertwining operator

T εµ : IndGP (ε⊗ eµ ⊗ 1) → IndGP (ε⊗ e−µ ⊗ 1), T εµf(g) = 1
Γ(µ+ε

2 )

∫
N
f(gw0n)dn,

for Re (µ) > 0. The normalization is chosen such that T εµ extends holomorphically to
µ ∈ C.

Proposition 1.3. For f ∈ IndGP (ε⊗ eµ ⊗ 1)m we have

T εµf = bεm(µ)f,

where

bεm(µ) =
√
πi[ε]2(−1)

m+|m|
2 −[ε]2

(1+ε−µ
2

)
|m|−ε

2

Γ
(µ+1+|m|

2
) .

For ε = 0 and µ ∈ 1 − 2N we have b0
m(µ) ≥ 0 for all m ∈ 2Z. Whereas for ε = 1, m odd and

µ ∈ −2N we have −ib1
m(µ) ≥ 0 form > 0 and ib1

m(µ) ≥ 0 form < 0.

Proof. As T εµ mapsK-types toK-types we have T εµf = T εµf(e)f . Now decompose

w0nx = kan = 1√
1 + x2

(
x 1

−1 x

)(√
x2 + 1 0

0 1√
1+x2

)(
1 x

x2+1
0 1

)
,
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then applying f ’s equivariance properties, we arrive at
∫
R
f(w0nx) dx =

∫
R

(x+ i)
m−µ−1

2 (x− i)
−m−µ−1

2 dx = 21−µπimΓ(µ)
Γ
(µ−|m|+1

2
)
Γ
(µ+|m|+1

2
) ,

where in the last equality we used Lemma A.1. Now dividing by Γ(µ+ε
2 ) and shuffling

around Gamma-factors we arrive at the result.

For µ ∈ iRwe equip the space IndGP (ε⊗eµ⊗1) with the usualL2-norm. Using Proposition
1.3 we can for ε = 0 and µ ∈ 1 − 2N equip IndGP (0 ⊗ eµ ⊗ 1) with the norm

∥f∥2 =
∫
K
f(k)T 0

µf(k) dk.

Similarly, for ε = 1 and µ ∈ −2N we can equip IndGP (1 ⊗ eµ ⊗ 1) with the norm

∥f∥2 =
∫
K
f(k)T̂ 1

µf(k) dk

where

T̂ 1
µf =

iT 1
µf, form > 0,

−iT 1
µf, form < 0

for f ∈ IndGP (1 ⊗ eµ ⊗ 1)m. The operator T̂ 1
µ is still an intertwining operator as it vanishes

on V0 per Proposition 1.3, and thus we just altered it by a scalar on each of the summands
in Proposition 1.2.

2 The homogeneous space G/H

For a unitary character χε,λ = ε ⊗ eλ with λ ∈ iR the left-regular action τε,λ of G on the
space of L2-sections associated to the line bundle G×H Cε,λ → G/H , given by

IndGH(ε⊗eλ) =
{
f : G → C, measurable | f(gh) = χε,λ(h)−1f(g),

∫
G/H

|f(g)|2d(gH) < ∞
}
,

defines a unitary representation of G. The goal of this paper is to decompose this space.
Furthermore we consider the subspace of compactly supported smooth functions

C∞
c - IndGH(ε⊗ eλ) =

{
f ∈ C∞(G) ∩ IndGH(ε⊗ eλ) | supp(f) ⊆ Ω, ΩH is compact in G/H

}
We will denote the smooth vectors in IndGH(ε ⊗ eλ) by IndGH(ε ⊗ eλ)∞. We introduce the
notation

bu =
(

cosh u sinh u
sinh u cosh u

)
, nx =

(
1 0
x 1

)
.

Using the decomposition G = KBA, where B = {bu |u ∈ R}, we consider G/H in the
global coordinates (θ, u) ∈ [0, π) × R where xH = kθbuH and the invariant measure is
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d(xH) = cosh(2u)dudθ, see e.g. [M84]. Now in terms of these coordinates we have the
K-type decomposition

C∞
c - IndGH(ε⊗ eλ) =

⊕̂
m∈2Z+ε

Cζm ⊗ C∞
c (R) (2.1)

with ζm(kθ) = eimθ. We let IndGH(ε ⊗ eλ)m denote the set of functions contained in the
K-type given bym ∈ 2Z + ε, that is IndGH(ε⊗ eλ)m = Cζm ⊗ C∞

c (R).
We denote by ∆λ the Casimir operator for the representation IndGH(ε⊗ eλ) defined in

a similar fashion as for the principal series.

Proposition 2.1. Written in the coordinates (θ, u) the Casimir operator ∆λ is given by

∆λ = λ2

cosh2(2u)
+ 2λtanh(2u)

cosh(2u) ∂θ + 2 tanh(2u)∂u − 1
cosh2(2u)

∂2
θ + ∂2

u.

Proof. This is a standard computation.

Another set of coordinates can be obtained by using the Iwasawa decomposition G =
KAN with (θ, y) ∈ [0, π) × R where xH = kθnyH . The invariant measure is given by
d(xH) = 1

2dydθ see [K16, Chap. 5, §6].

3 Constructing an isomorphism

The goal of this section is to construct the explicit isomorphism in the following theorem,
of which the proof was in large presented to us by Jan Frahm.

Theorem 3.1. For ν, λ ∈ iR the map

�νλ : IndGH(ε⊗ eλ) → IndGH(ε⊗ eν)

given by

�νλ f(g) = 1
√
π2

λ−ν
4

Γ
(

2+ν−λ
4

)
Γ
(
λ−ν

4

) ∫
R

|x|
λ−ν

2 −1f(gnx) dx

defines a unitary isomorphism intertwining IndGH(ε⊗ eλ) and IndGH(ε⊗ eν).

To this extent we consider the minimal parabolic subgroup P = NAM ⊂ G and let

IndPMA(ε⊗eλ) =
{
f : NAM → C | f(gma) = sgn(m)εa−λ−1f(g),

∫
P/MA

|f(g)|2 dg < ∞
}
,

where aλ := eλ(X) for a = eX and λ ∈ a∗
C

∼= C.

Lemma 3.2 (Induction in stages).

IndGMA(ε⊗ eλ) ≃ IndG
MAN

(IndMAN
MA (ε⊗ eλ)),

where the map is given by f 7→ F where F (g)(p) = f(gp) and thus the inverse is given by
f(g) = F (g)(1).
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Proof. See e.g. [G12, Chapter VI, section 9]

Proof of Theorem 3.1. We first show the isomorphism claim of Theorem 3.1. By Lemma 3.2
it suffices to show that IndPMA(ε⊗eλ) ≃ IndPMA(ε⊗eν). Let restN : IndPMA(ε⊗eλ) → L2(N)
be the restriction from P toN . We let Φ be the inverse map which is given by ΦF (nam) =
sgn(m)εa−λ−1F (n). Let πε,λ be the left regular representation on IndPMA(ε⊗eλ) and define
π̃ε,λ(g) = restN ◦ πε,λ(g) ◦ Φ. Then P acts on L2(N) via π̃ε,λ, and the above statement
reduces to showing that π̃ε,λ ∼= π̃ε,ν for λ, ν ∈ iR.

To construct an isomorphism H : L2(R) → L2(R) intertwining π̃ε,λ and π̃ε,ν we note
that the action of P = NAM on f ∈ L2(N) is given by

π̃ε,λ(n)f(n′) = f(n−1n′) n, n′ ∈ N,

π̃ε,λ(ma)f(n) = sgn(m)εaλ+1f
(
(ma)−1n(ma)

)
, m ∈ M, a ∈ A, n ∈ N.

Identifying N ≃ R,M ≃ {±1} and A ≃ R>0, the above becomes

π̃ε,λ(y)f(x) = f(x− y), x, y ∈ R,

π̃ε,λ(t)f(x) = tλ+1f(t2x), x ∈ R, t ∈ R>0.

SinceN acts by translation any such intertwining operatorH must be a translation invari-
ant operator on L2(R), hence there exists some tempered distribution u ∈ S ′(R) such that
H is given by convolution with u, that is HF (x) = ⟨u, τxF̌ ⟩, where τxF (y) = F (y − x)
and F̌ (x) = F (−x). Furthermore let dtf denote the dilation of f by t ∈ R \ {0}, i.e.
dtf(x) = f(tx), then

H ◦ π̃ε,λ(t)F (x) = π̃ε,ν(t) ◦HF (x).

Evaluating at x = 0 then yields ⟨dt−2u, F̌ ⟩ = tν−λ+2⟨u, F̌ ⟩. Hence u is a homogeneous
distribution of degree λ−ν−2

2 and we conclude that

Hf = f ∗ |x|
λ−ν−2

2
δ for some δ ∈ {0, 1}.

Comparingwith LemmaB.2we see that these are both necessary and sufficient conditions
for H to establish an isomorphism between IndPMA(ε ⊗ eλ) and IndPMA(ε ⊗ eν). Putting
δ = 0, composing with the map from Lemma 3.2 then yields the desired isomorphism. To
see that the normalization indeed makes �νλ unitary, it suffices to note that for λ, ν ∈ iR
Lemma B.2 gives ∣∣∣∣∣∣ 1

√
π2

λ−ν
4

Γ
(

2+ν−λ
4

)
Γ
(
λ−ν

4

) F(|x|
λ−ν

2 −1)

∣∣∣∣∣∣ = 1.

4 Eigenfunctions for the Casimir operator

By Theorem 3.1 a Plancherel formula on IndGH(ε ⊗ eλ) for some fixed λ ∈ iR can be ex-
tended to all ν ∈ iR by compositon with the unitary isomorphism �νλ from Theorem 3.1.
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Following this, we will therefore mostly consider the cases of which λ = 0, which often
simplifies matters considerably.

For f ∈ IndGH(ε⊗ e0)m with f(kθbu) = eimθ · h(u), h ∈ C∞
c (R) we have

∆0f = eimθ∆̃mh(u),

for some differential operator ∆̃m.
Lemma 4.1. Let h ∈ C∞

c (R) andm ∈ Z. Then we have

∆̃m cosh
m
2 (2u)h

(
− sinh2(2u)

)
= cosh

m
2 (2u)□mh

(
− sinh2(2u)

)
.

For t = − sinh2(2u) the operator □m is given by

□m = m(m+ 2) + 8(−1 + (3 +m) t) d
dt

− 16t · (1 − t) d
2

dt2
.

Proof. Follows directly from Proposition 2.1.
Recall that a hypergeometric differential equation has the form

t(1 − t) d
2

dt2
+ [c− (a+ b+ 1)t] d

dt
− ab = 0.

If c is not a non-positive integer there are two independent solutions (around t = 0)
2F1(a, b; c; t) and t1−c

2F1(1 + a− c, 1 + b− c; 2 − c; t),

expressed in terms of the hypergeometric function 2F1(a, b; c; t).
We note that the eigenvalue problem □mf = (µ2 − 1)f is a hypergeometric differen-

tial equation, thus giving us two linearly independent solutions φmµ and ψmµ . Using the
notation from Appendix C, we can express these solutions as

φmµ (u) = ϕ
− 1

2 ,
m
2

−µ
2

(u), ψmµ (u) = i sinh(u) · ϕ
1
2 ,

m
2

−µ
2

(u),

where u ∈ [0,∞). Note that these functions allow for natural extensions from [0,∞) to R.
We now restate the results from Appendix C in terms of φmµ and ψmµ .
Proposition 4.2. For f ∈ C∞

c ([0,∞)), let (Jjf)(µ), j = 0, 1, denote the Fourier–Jacobi trans-
forms of f given by

J0f(µ) =
∫ ∞

0
f(t)φmµ (t) coshm+1(t) dt,

J1f(µ) =
∫ ∞

0
f(t)ψmµ (t) sinh(t) coshm+1(t) dt.

Then we have the following inversion formulas

f(t) = 1
8π2

∫
iR
J0f(µ)φmµ (t) dµ

|ℓ0(µ)|2 − 1
2π

∑
µ∈D0

J0f(µ)φmµ (t)Res
ν=µ

(ℓ0(ν)ℓ0(−ν))−1

sinh(t)f(t) = −1
2π2

∫
iR
J1f(µ)ψmµ (t) dµ

|ℓ1(µ)|2 + 2
π

∑
µ∈D1

J1f(µ)ψmµ (t)Res
ν=µ

(ℓ1(ν)ℓ1(−ν))−1.

with Dj = {η ∈ R | η = 4k + 1 + 2j − |m| < 0, k ∈ N0} and

ℓj(µ) =
Γ(µ2 )

Γ(µ+1+2j+|m|
4 )Γ(µ+1+2j−|m|

4 )
.
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Remark 4.3. As φmµ and ψmµ are given in terms of hypergeometric functions we get

φmµ = φm−µ, and ψmµ = ψm−µ,

as 2F1(a, b; c; t) = 2F1(b, a; c; t). The Euler transformation 2F1(a, b; c; t) = (1−t)c−a−b
2F1(c−

a, c− b; c; t) amounts to

φmµ (u) = cosh−m(u)φ−m
µ (u), and ψmµ (u) = cosh−m(u)ψ−m

µ (u).

5 Intertwining operators

To obtain an explicit Plancherel formula for representation theoretic purposes, we require
expressions for intertwining operators between the representation spaces introduced in
earlier sections. More explicitly we consider intertwining operators

P : IndGP (δ ⊗ eµ ⊗ 1) → IndGH(ε⊗ eλ)∞,

A : C∞
c – IndGH(ε⊗ eλ) → IndGP (δ ⊗ eµ ⊗ 1),

and their realizations in terms of the coordinates introduced in earlier sections. Such
operators only exist when ε = δ asM lies in the center of G.

We fix ε ∈ Z/2Z and supress it in the notation for the rest of this section. When ε
appear in formulas we will consider it as number in {0, 1} where we will use the notation
[ · ]2 when confusions can occur.

For ξ ∈ Z/2Z and λ ∈ iR consider the kernel

Kξ
λ,µ(g) = |g11|

λ+µ−1
2

ξ+ε |g21|
µ−λ−1

2
ξ , g ∈ G,

where gij is the (i, j)’th entry in G. As g11 and g21 does not simultaneously vanish in G
this kernel enjoys many of the similar properties as a Riesz distribution (see Appendix
B). Γ(µ+1

2 )−1Kξ
λ,µ is locally integrable for Re (µ) > −1 and admits a holomorphic contin-

uation as a distribution to µ ∈ C.

Proposition 5.1. The map given by

P ξλ,µf(g) =
∫
K
Kξ
λ,µ(g−1k)f(k) dk,

defines an intertwining operator IndGP (ε ⊗ eµ ⊗ 1) → IndGH(ε ⊗ eλ)∞. Similarly the map given
by

Aξλ,µf(g) =
∫
G/H

Kξ
−λ,−µ(x−1g)f(x) d(xH),

defines an intertwining operator C∞
c – IndGH(ε⊗ eλ) → IndGP (ε⊗ eµ ⊗ 1). Both integrals should

be understood in the distributional sense.

Proof. The equivariance properties follows by direct verification.
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Proposition 5.2. For ξ, ε ∈ Z/2Z we have the following relation

T εµ ◦Aξλ,µ = dξλ,µA
ξ+ε
λ,−µ,

where

dξλ,µ = (−1)⌊ ε+ξ
2 ⌋√π

Γ
(1−λ−µ+2[ξ+ε]2

4
)
Γ
(1+λ−µ+2ξ

4
)

Γ
(1+λ+µ+2[ξ+ε]2

4
)
Γ
(1−λ+µ+2ξ

4
)
Γ
(1−µ+ε

2
) .

Proof. Fix g ∈ G and put z = x−1g. Then the set {xH ∈ G/H | z11z21 = 0} is a d(xH)-null
set. Using Lemma B.2 for 0 < Re (µ) < 1 we get∫

N
Kξ

−λ,−µ(zw0n)dn = |z11|
−µ−λ−1

2
ξ+ε |z21|

λ−µ−1
2

ξ

∫
R

|x|
−λ−µ−1

2
ξ+ε |x− 1

z11z21
|

λ−µ−1
2

ξ dx

= Γ
(µ+ ε

2
)
dξλ,µK

ξ+ε
−λ,µ(z), a.e.

The claim then follows by analytic continuation.

We introduce the notation
ωξm = (−1)ξ + (−1)mim.

Note that ωξ−m = ωξm and as ε ≡ m mod 2 we have

ωξm =

(−1)ξ + (−1)
m
2 , ε = 0,

(−1)ξ + i(−1)
m+1

2 , ε = 1,
and ω0

mω
1
m =

0, ε = 0,
2i(−1)

m−1
2 , ε = 1.

Proposition 5.3. For µ ∈ C andm ∈ Z we have

1
Γ
(µ+1

2
)P ξµζm(kθbu) = ζm(kθ) cosh

m
2 (2u)

(
ωξmcm(µ)φmµ (2u) + i

2ω
ξ+1
m cm(µ− 2)ψmµ (2u)

)
,

where

cm(µ) = 21−µπei
mπ

4

Γ(µ+3+|m|
4 )Γ(µ+3−|m|

4 )
.

Proof. As P ξµ intertwines πε,µ and τε,0 it also intertwines the derived representations dπε,µ
and dπε,0. Hence P ξµ intertwines ∆0 and ∆µ and therefore the image of P ξµ is contained in
the eigenspace of ∆0 to the eigenvalue µ2 − 1 by Proposition 1.1. Fix µ with Re (µ) > 1.
From Lemma 4.1 it follows for generic µ that

P ξµζm(kθbu) = cosh
m
2 (2u)ζm(kθ)

(
aξm(µ) · φmµ (2u) + bξm(µ) · ψmµ (2u)

)
for some aξm(µ), bξm(µ) ∈ C. Hence, it only remains to compute aξm(µ) and bξm(µ). Note
that φmµ (0) = 1 and ψmµ (0) = 0, and hence P ξµζm(kθ) = ζm(kθ)aξm(µ) so

aξm(µ) = P ξµζm(e) =
∫
K
Kξ
µ(kθ)ζm(kθ)dkθ = 2

∫ π

0
| cos θ|

µ−1
2

ξ+ε | − sin θ|
µ−1

2
ξ eimθ dθ

= 2
1−µ

2 ωξm

∫ π

0
(sin θ)

µ−1
2 ei

m
2 θdθ =

21−µπωξme
imπ

4 Γ(µ+1
2 )

Γ(µ+3+|m|
4 )Γ(µ+3−|m|

4 )
,
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by Lemma A.4.
To compute bξm(µ) it suffices to note that d

duφ
m
µ (2u) |u=0= 0 and d

duψ
m
µ (2u) |u=0= 2i,

hence

2i · bξm(µ) = d

du
P ξµζm(bu)

∣∣
u=0 =

∫
K

d

du
Kξ
µ(b−ukθ)

∣∣
u=0ζm(kθ)dkθ

= 1 − µ

2

∫
K
Kξ+1
µ−2(kθ)ζm(kθ)dkθ

= 1 − µ

2 aξ+1
m (µ− 2),

from which the result follows by analytic continuation.

Let f ∈ IndGH(ε ⊗ e0)m and write f(kθbu) = ζm(kθ)h(u) for some h ∈ L2(R, cosh(2u)du).
Now let he(u) be the even part of h and ho(u) the odd part. We introduce the following
notation

J0f(µ, θ) = ζm(kθ)J0(cosh− m
2 (x)he(bx

2
))(µ),

J1f(µ, θ) = ζm(kθ)J1(sinh−1(x) cosh− m
2 (x)ho(bx

2
))(µ)

where the x denotes the variable the Fourier–Jacobi transform is done with respect to.
Proposition 5.4. Let f ∈ IndGH(ε⊗ e0)m then

1
Γ
(1−µ

2
)Aξµf(kθ) = ωξm

2 c−m(−µ)J0f(µ, θ) + i
ωξ+1
m

4 c−m(−µ− 2)J1f(µ, θ).

Proof. As Aξµ is an intertwining operator, it maps K-types to K-types, thus Aξµf(kθ) =
Aξµf(e) × ζm(kθ). Now

Aξµf(e) =
∫ π

0

∫
R
Kξ

−µ(b−1
u k−1

θ )f(kθbu) cosh(2u)dudθ = 1
2

∫
R

cosh(2u)h(u)P ξ−µζ−m(bu)du.

From Proposition 5.3 and Remark 4.3 we have
Aξµf(e)
Γ(1−µ

2 )
= 1

2

∫
R
h(u) cosh− m

2 +1(2u)
(
ωξ−mc−m(−µ)φ−m

−µ (2u)

× + i

2ω
ξ+1
−m c−m(−µ− 2)ψ−m

−µ (2u)
)
du

=
∫ ∞

0
he(u) cosh

m
2 +1(2u)ωξmc−m(−µ)φmµ (2u)du

+ i

2

∫ ∞

0
ho(u) cosh

m
2 +1(2u)ωξ+1

m c−m(−µ− 2)ψmµ (2u)du

= 1
2ω

ξ
mc−m(−µ)(J0 cosh− m

2 (u)he(x2 ))(µ)

+ i

4ω
ξ+1
m c−m(−µ− 2)(J1 sinh−1(x) cosh− m

2 (x)ho(x2 ))(µ).

Combining Proposition 5.3 and Proposition 5.4 yields an explicit intertwining operator

P ξµA
ξ′
µ

Γ(1+µ
2 )Γ(1−µ

2 )
: C∞

c – IndGH(ε⊗ e0)m → IndGH(ε⊗ e0)∞
m .
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By Propositions 5.3 and 5.4, the above intertwining operator is holomorphic in µ, i.e. the
above defines a holomorphic family of intertwining operators, intertwining IndGH(ε⊗e0)m
with itself.

6 Combining intertwining operators

In this section we consider a function f ∈ C∞
c – IndGH(ε⊗ e0)m and then write

f(kθbu
2
) = cosh

m
2 (u)

[(
cosh− m

2 (u)fe(kθbu
2
)
)

+ sinh(u)
(

cosh− m
2 (u) sinh−1(u)fo(kθbu

2
)
)]
,

then apply the two inversion formulas fromProposition 4.2 to each of the two terms giving

f(kθbu
2
) = cosh

m
2 (u)

[ 1
π2

∫
iR
J0f(µ, θ)φmµ (u) dµ

8|ℓ0(µ)|2 − 1
π2

∫
iR
J1f(µ, θ)ψmµ (u) dµ

2|ℓ1(µ)|2

− 1
2π

∑
µ∈D0

J0f(µ, θ)φmµ (u)Res
ν=µ

(
ℓ0(ν)ℓ0(−ν)

)−1+ 2
π

∑
µ∈D1

J1f(µ, θ)ψmµ (u)Res
ν=µ

(
ℓ1(ν)ℓ1(−ν)

)−1
]

The goal is then to express this decomposition in terms of some combination of the oper-
ators P ξµAξ

′
µ f(kθbu

2
) which by a quick glance at Propositions 5.3 and 5.4 appears plausible.

The following identity will be used multiple times in the following subsections
24cm(ν)c−m(−ν)ℓ0(ν)ℓ0(−ν) = cm(ν − 2)c−m(−ν − 2)ℓ1(ν)ℓ1(−ν)

= 25(−1)1+ε

π

cos2 (π(ν+ε)
2

)
ν sin

(
πν
2
) , (6.1)

which follows from Gamma-function identities and recalling thatm ≡ ε mod 2.

6.1 The continuous part

For µ ∈ C we introduce the following maps

Pξµ =
P ξµ

Γ(µ+1
2 )

, Aξ
µ =

Aξµ

Γ(1−µ
2 )

,

which are holomorphic in µ.
Proposition 6.1. We have

1∑
ξ=0

Pξ
µAξ

µf(kθbu) = cosh
m
2 (2u)

[
2cm(µ)c−m(−µ)J0f(µ, θ)φmµ (2u)

− 1
2cm(µ− 2)c−m(−µ− 2)J1f(µ, θ)ψmµ (2u)

]
.

Combining this with (6.1) we get

∫
iR

1∑
ξ=0

Pξ
µAξ

µf(kθbu
2
) dµ

|a(µ)|2

= cosh
m
2 (u)

[ 1
π2

∫
iR
J0f(µ, θ)φmµ (u) dµ

8|ℓ0(µ)|2 − 1
π2

∫
iR
J1f(µ, θ)ψmµ (u) dµ

2|ℓ1(µ)|2
]
,
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where

a(µ) = 4π
Γ(µ2 )

Γ(1+µ+ε
2 )Γ(1+µ−ε

2 )
.

Proof. When computing∑1
ξ=0 Pξ

µAξ
µf(kθbu

2
) we apply Proposition 5.3 and 5.4. We obtain

some cross-terms, containing factors like J0f(µ, θ)ψmµ (u), but since

1∑
ξ=0

ωξmω
ξ+1
m = 0 and

1∑
ξ=0

ωξmω
ξ
m = 4,

no cross-terms survive and the assertion follows.

To express the discrete part in terms of P ξµAξ
′
µ f is a bit more delicate as we cannot simply

take a sum to make the cross terms disappear, thus we need to make a suitable choice of
normalization. The cases for ε = 0 and ε = 1 will be treated differently and the main
culprit as to why is the factor ωξm which for ε = 0 vanishes depending on the parity of m2
and for ε = 1 never vanishes.

6.2 The discrete part for ε = 0

In this subsection we fix ε = 0. Consider the following normalizations

P̂ ξµ =
Γ(µ+3−2ξ

4 )
Γ(µ+1

2 )Γ(µ+1+2ξ
4 )

P ξµ , Âξµ =
Γ(−µ+3−2ξ

4 )
Γ(−µ+1

2 )Γ(−µ+1+2ξ
4 )

Aξµ,

which, by the duplication formula for the Gamma-function, does not introduce any poles.
Now introduce the operators

Pµ := P̂ 0
µ + P̂ 1

µ and Aµ := Â0
µ + Â1

µ.

Lemma 6.2. For a fixedm ∈ 2Z we have

Pµζm(kθbu) = ζm(kθ) cosh
m
2 (2u)

(
αm(µ)φmµ (2u) + βm(µ)ψmµ (2u)

)
,

where

αm(µ) = cm(µ)
(
ω0
m

Γ(µ+3
4 )

Γ(µ+1
4 )

+ ω1
m

Γ(µ+1
4 )

Γ(µ+3
4 )

)
,

and

βm(µ) = i

2cm(µ− 2)
(
ω1
m

Γ(µ+3
4 )

Γ(µ+1
4 )

+ ω0
m

Γ(µ+1
4 )

Γ(µ+3
4 )

)
.

Furthermore if µ ∈ 1−2N then αm(µ) is only non-zero when µ ∈ D0 and βm(µ) is only non-zero
when µ ∈ D1.
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Proof. The first identity is a direct consequence of Proposition 5.3. To see the second as-
sertion rewrite

αm(µ) = 21−µπe
πim

4

Γ
(µ+3+|m|

4
)(ω0

m

(µ+3−|m|
4

)
|m|

4

Γ
(µ+1

4
) + ω1

m

(µ+3−|m|
4

)
|m|−2

4

Γ
(µ+3

4
) )

.

As either ω0
m or ω1

m is vanishing this makes sense term by term. When µ is of the form
µ = 4k + 3 − |m| for k ∈ Z then term by term Γ(µ+1

4 )−1 and Γ(µ+3
4 )−1 vanishes. When

µ has the form µ = 4k + 1 − |m| for k ∈ −N then Γ(µ+3+|m|
4 )−1 vanishes. A similarly

argument applies to βm(µ).

Lemma 6.3. We have

Aµf(kθ) = α̃m(µ)J0f(µ, θ) + β̃m(µ)J1f(µ, θ),

where

α̃m(µ) = 1
2c−m(−µ)

(
ω0
m

Γ(3−µ
4 )

Γ(1−µ
4 )

+ ω1
m

Γ(1−µ
4 )

Γ(3−µ
4 )

)
,

β̃m(µ) = i

4c−m(−µ− 2)
(
ω1
m

Γ(−µ+3
4 )

Γ(−µ+1
4 )

+ ω0
m

Γ(−µ+1
4 )

Γ(−µ+3
4 )

)
.

Furthermore, if µ ∈ 1 − 2N of the form µ = 4k + 1 − |m| we have β̃(µ) = 0 and similarly for µ
of the form µ = 4k + 3 − |m| we have α̃m(µ) = 0.

Proof. This follows from Proposition 5.4 and considerations similar to those in the proof
of Lemma 6.2.

Lemma 6.4. For µ ∈ D0:

PµAµf(kθbu) = cosh
m
2 (2u)αm(µ)α̃m(µ)J0f(µ, θ)φmµ (2u),

and for µ ∈ D1:

PµAµf(kθbu) = cosh
m
2 (2u)βm(µ)β̃m(µ)J1f(µ, θ)ψmµ (2u).

Furthermore, if µ ∈ (1 − 2N) \ (D0 ∪D1) then PµAµf(kθbu) = 0.

Proof. This is a direct consequence of the two preceding lemmas.

Consider the non-vanishing entire analytic function

é(µ) = 1
Γ
(1+µ

4
)2Γ

(1−µ
4
)2 + 1

Γ
(3+µ

4
)2Γ

(3−µ
4
)2 .

Lemma 6.5. For µ ∈ D0

(−2π)αm(µ)α̃m(µ)ℓ0(µ)ℓ0(−µ) = 16π2 cot
(πµ

2
)
é(µ)

µ
.

For µ ∈ D1
π

2βm(µ)β̃m(µ)ℓ1(µ)ℓ1(−µ) = 16π2 cot
(πµ

2
)
é(µ)

µ
.
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Proof. This follows from (6.1). One trick is used which arises when a term like

|ω0
m|2

Γ
(µ+1

2
)2 ,

is obtained. As ω0
m is either 0 or 2 we can set ω0

m = 2 as Γ(µ+1
2 )−1 vanishes in the same

cases as ω0
m.

Proposition 6.6. We have

1
(2π)3

∑
µ∈1−2N

−µ
é(µ)PµAµf(kθbu) = cosh

m
2 (2u)

×
[−1

2π
∑
µ∈D0

J0f(µ, θ)φmµ (2u)Res
ν=µ

(
ℓ0(ν)ℓ0(−ν)

)−1

+ 2
π

∑
µ∈D1

J1f(µ, θ)ψmµ (2u)Res
ν=µ

(
ℓ1(ν)ℓ1(−ν)

)−1
]
.

Proof. Apply Lemma 6.4 to the right hand side. Now, note that cm(µ)c−m(−µ) is reg-
ular for µ ∈ D0 and cm(µ − 2)c−m(−µ − 2) is regular for µ ∈ D1, thus they can be
moved inside the residues. Then everything follows from Lemma 6.5 after recalling that
Resν=µ tan(πν2 ) = − 2

π .

6.3 The discrete part for ε = 1

In this subsection we fix ε = 1. The proof will proceed using the same ideas as for ε = 0.
For µ ∈ −2N let

Aµ = 1
Γ
(1−µ

2
)A0

µ, and Pµζm = (−1)
m+|m|−2

2

Γ
(1+µ

2
) P 1

µζm,

that is we define Pµ by its eigenvalues on K-types. By Proposition 5.3 we get Pµ is inter-
twining by the same argument we used for T̂ 1

µ in section 1.

Lemma 6.7. For µ ∈ D0 we have

PµAµf(kθbu) = αm(µ) cosh
m
2 (2u)φmµ (2u)J0f(µ, θ),

where
αm(µ) = i(−1)

|m|+1
2 cm(µ)c−m(−µ)

For µ ∈ D1 we have

PµAµf(kθbu) = βm(µ) cosh
m
2 (2u)ψmµ (2u)J1f(µ, θ),

where
βm(µ) = 1

4 i(−1)
|m|+1

2 cm(µ− 2)c−m(−µ− 2).

Furthermore if µ ∈ −2N then αm(µ) is only non-zero if µ ∈ D0 and βm(µ) is only non-zero if
µ ∈ D1.
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Proof. The proof is an application of Propositions 5.3 and 5.4.

Lemma 6.8. For µ ∈ D0

(−2π)αm(µ)ℓ0(µ)ℓ0(−µ) = 4i(−1)
|m|−1

2
sin
(πµ

2
)

µ
,

and for µ ∈ D1
π

2βm(µ)ℓ1(µ)ℓ1(−µ) = 4i(−1)
|m|+1

2
sin
(πµ

2
)

µ
.

Proof. This is a direct consequence of (6.1).

Proposition 6.9. We have

1
2πi

∑
µ∈−2N

µPµAµf(kθbu) = cosh
m
2 (2u)

[
− 1

2π
∑
µ∈D0

J0f(µ, θ)φmµ (2u)Res
ν=µ

(
ℓ0(ν)ℓ0(−ν)

)−1

+ 2
π

∑
µ∈D1

J1f(µ, θ)ψmµ (2u)Res
ν=µ

(
ℓ1(ν)ℓ1(−ν)

)−1
]
.

Proof. This follows in the same manner as the proof for Proposition 6.6, where we here
note for µ = 4k + 1 − |m| ∈ D0 that Resν=µ sin

(
πν
2
)−1 = 2

π (−1)
|m|−1

2 , and for µ ∈ D1 we
have Resν=µ sin

(
πν
2
)−1 = 2

π (−1)
|m|+1

2 .

7 The Plancherel formula

The intertwining operators P ξµ and Aξµ are continuous maps and hence the intertwining
operators introduced in the previous section are also continuous. This allows for an ex-
tension of the results obtained for K-types, described by the first theorem of this section.
We then extend this theorem to arbitrary λ ∈ iR by virtue of Theorem 3.1

Recall that

a(µ) = 4π
Γ(µ2 )

Γ(1+µ+ε
2 )Γ(1+µ−ε

2 )
, and é(µ) = 1

Γ
(1+µ

4
)2Γ

(1−µ
4
)2 + 1

Γ
(3+µ

4
)2Γ

(3−µ
4
)2 .
(7.1)

Theorem 7.1 (Plancherel formula for λ = 0). For ε = 0 and f ∈ C∞
c – IndGH(ε⊗ e0) we have

the following inversion formula

f(kθbu) =
∫
iR

1∑
ξ=0

PξµAξµf(kθbu) dµ

|a(µ)|2 + 1
(2π)3

∑
µ∈1−2N

−µ
é(µ)PµAµf(kθbu),

and the corresponding Plancherel formula

∥f∥2 =
∫
iR

1∑
ξ=0

∥Aξµf∥2 dµ

|a(µ)|2 + 1
(2π)3

∑
µ∈1−2N

2Γ(1 − µ)
Γ
(−µ

2
)
é(µ)

∥Aµf∥2.
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For ε = 1 and f ∈ C∞
c – IndGH(ε⊗ e0) we have the following inversion formula

f(kθbu) =
∫
iR

1∑
ξ=0

PξµAξµf(kθbu) dµ

|a(µ)|2 + 1
2πi

∑
µ∈−2N

µPµAµf(kθbu),

and the corresponding Plancherel formula

∥f∥2 =
∫
iR

1∑
ξ=0

∥Aξµf∥2 dµ

|a(µ)|2 + 1
2π

∑
µ∈−2N

Γ(−µ)µ2

Γ
(1−µ

2
) ∥Aµf∥2.

Proof. The inversion formulas follow directly from the introduction and results of Section
6. To get the Plancherel formula write

∥f∥2 =
∫ π

0

∫
R
f(kθbu)f(kθbu) cosh(2u) dudθ,

and use the inversion formula on f(kθbu) and apply that∫
G/H

P ξµf(xH)g(xH) d(xH) =
∫
K
f(k)Aξ−µg(k) dk,

for f ∈ IndGP (ε⊗eµ) and g ∈ IndGH(ε⊗e0). Lastly for the discrete part, we apply Proposition
5.2 to get

T 0
µAµ =

√
π2µ

Γ
(1−µ

2
)A−µ and T 1

µAµ =
√
π2µ

Γ
(2−µ

2
)
Γ
(1+µ

2
)A1

−µ,

giving the final result.

We now extend the previous result from λ = 0 to λ ∈ iR using Theorem 3.1. We want to
compose Aµ and �0

λ but as we cannot ensure the regularity of the functions in the image
of �0

λ we end up doing this in an L2-sense using direct integrals. Consider the following
operators

Aλ,µ :=
2

1+µ
2

√
πΓ
(1+µ

4 + λ
4
)

Γ
(1−µ

4
)
Γ
(1+µ

4
)
Γ
(1−µ

4 − λ
4
)A0

λ,µ +
2

1+µ
2

√
πΓ
(3+µ

4 + λ
4
)

Γ
(3−µ

4
)
Γ
(3+µ

4
)
Γ
(3−µ

4 − λ
4
)A1

λ,µ,

Aξ
λ,µ :=

Aξλ,µ

Γ(1−µ
2 )

, and Aλ,µ :=
2

1+µ
2

√
πΓ
(1+µ

4 + λ
4
)

Γ
(1−µ

4
)
Γ
(3+µ

4
)
Γ
(1−µ

4 − λ
4
)A0

λ,µ,

which are extensions of Aµ, Aξ
µ and Aµ e.g. A0,µ = Aµ. Furthermore let

Hε =
∫ ⊕

iR
πε,µ ⊗ C2 dµ⊕

⊕
µ∈1−ε−2N

πdsε,µ.

where ∫⊕
U Hµdµ denotes a direct integral of Hilbert spaces, see e.g [F22] for a short expo-

sition. The inner-product on Hε is given by Theorem 7.1, i.e. for ε = 0 and f, h ∈ H0

⟨g, h⟩H =
∫
iR

1∑
ξ=0

⟨gξµ, hξµ⟩L2(K)
dµ

|a(µ)|2 + 1
16π

∑
µ∈1−2N

Γ(1 − µ)
Γ(−µ

2 )é(µ)
⟨T 0
µgµ, h⟩L2(K).
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For simplicity we shall assume that ε = 0 for the remainder of the section. All arguments
made can be done for ε = 1 as well using the corresponding results from the previous
section.

Abusing notation, Theorem 7.1 defines an isometry A0 : C∞
c (G/H) → H0 which ex-

tends to an isometry
A0 : IndGH(ε⊗ 1) → H0.

For f ∈ H0 with f = (f0, f1, fd) we introduce the following map

P0 : H0 → L2(G/H)

f = (f0, f1, fd) 7→
∫
iR

1∑
ξ=0

Pξµf ξµ
dµ

|a(µ)|2 + 1
(2π)3

∑
µ∈1−2N

−µ
é(µ)Pµf

d
µ .

Lemma 7.2. For f ∈ IndGH(ε⊗ e0) and h ∈ H0 we have the following relation:

⟨A0f, h⟩H = ⟨f, P0h⟩L2(G/H).

Proof. Let f ∈ IndGH(ε⊗ eλ) and h ∈ C∞
c (H0). We then find

⟨A0f, h⟩H =
1∑
ξ=0

∫
iR

∫
K
Aξ
µf(k)hξµ(k)dk dµ

|a(µ)|2 + 1
(2π)3

∑
µ∈1−2N

2Γ(1 − µ)
Γ(−µ

2 )é(µ)
⟨T 0
µ ◦ Aµf, hξµ⟩

=
1∑
ξ=0

∫
iR

∫
G/H

f(x)Pξµh
ξ
µ(x)d(xH) dµ

|a(µ)|2 + 1
(2π)3

∑
µ∈1−2N

2Γ(1 − µ)
Γ(−µ

2 )é(µ)

√
π2µ

Γ
(1−µ

2
)⟨A−µf, h

d
µ⟩

=
1∑
ξ=0

∫
iR

⟨f,Pξµhξµ⟩L2(G/H)
dµ

|a(µ)|2 + 1
(2π)3

∑
µ∈1−2N

−µ
é(µ)⟨f,Pµhdµ⟩L2(G/H)

= ⟨f, P0h⟩L2(G/H).

Lemma 7.3 (See [P76, Theorem 1]). Suppose S : H∞ → H∞ is a continuous intertwining
operator forH∞. Then for a.e µ ∈ iR∪(1−ε−2N) there exists uniqueH∞ intertwining operators
Sµ for π∞

ε,µ ⊗ C2 if µ ∈ iR and for πdsε,µ if µ ∈ 1 − ε− 2N such that

(Sf)µ = Sµfµ a.e µ ∈ iR ∪ (µ ∈ 1 − ε− 2N), f ∈ H∞.

Proposition 7.4. ThemapAε0 : IndGH(ε⊗e0) → H0 is surjective. In particularA0 is an isometric
isomorphism.

Proof. Since the discrete and continuous part of H0 consist of pairwise inequivalent repre-
sentations of G, it suffices to show that the projection ofW = Image(A0) onto the contin-
uous part and the discrete part respectively, is surjective. For the projection to the discrete
part, we can consider the projection ofW onto each summand πds0,µ. Proposition 1.2 gives
πds0,µ = πhol0,µ⊕πahol0,µ and since these representations are inequivalent it again suffices to show
that the projection on each of them are onto. Lemma 6.3 then shows that projπhol

0,µ
(W ) ̸= 0

and projπahol
0,µ

(W ) ̸= 0. But since the projection is G-equivariant the image is a subrepre-
sentation and it follows that both projections must be onto.
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Since the projection onto an integrand of the continuous part of H0 is in general not
point-wise defined, the proof differs to that of the discrete part. Abusing notation slightly
we shall write fµ = (f0

µ, f
1
µ) when µ ∈ iR and f ∈ H0, omitting the discrete part.

By Lemma 7.2 (A0)∗ = P0 and since the adjoint is G-equivariant we have

P0(H∞
0 ) ⊆ L2(G/H)∞ and A0(L2(G/H)∞) ⊆ H∞

0 .

Let A∞
0 = A0|L2(G/H)∞ and P∞

0 = P0|H∞
0
. Then

S = A∞
0 ◦ P∞

0 : H∞
0 → H∞

0

is a H∞
0 intertwining map and by Lemma 7.3 there exists a family of H∞

0 intertwining
operators (Sµ) such that ((A∞

0 ◦P∞
0 )f)µ = Sµfµ for a.e µ ∈ iR and all f ∈ H∞

0 . By Schur’s
lemma this implies Sµ = (id ⊗Bµ) for a.e µ ∈ iR, with Bµ : C2 → C2 a linear map. Let N
denote the corresponding null-set, we then show that for µ ∈ iR \N we have Sµ = id.

To this extent let µ ∈ iR \ N and let f be a K-finite vector in H∞
0 and note that this

implies fµ must be a K-finite vector in π∞
µ . Assume therefore without loss of generality

that fµ = (c1ζm, c2ζn) for some m,n ∈ 2Z and pick by Proposition 5.4 a K-finite vector
in L2(G/H)∞ such that A0(w)µ = fµ. One can e.g pick w of the form w = ζmf1 + ζnf2
with f1 an even function and f2 an odd function of correct regularity and growth. Then
we have

(A∞
0 ◦ P∞

0 f)µ = A∞
0 ◦ P∞

0 ◦A∞
0 (w)µ = A∞

0 (w)µ = (A0
µw,A

1
µw),

where the second equality follows from the inversion formula given by Theorem 7.1. On
the other hand we have

(A∞
0 ◦ P∞

0 f)µ = Sµfµ = (id ⊗Bµ)A∞
0 (w)µ

= ((b11)µA0
µw + (b12)µA1

µw, (b21)µA0
µw + (b22)µA1

µw)

hence

(A0
µw,A

1
µw) = (aµA0

µw + bµA
1
µw, cµA

0
µw + dµA

1
µw).

Since A0
µ and A1

µ are linearly independent for µ ∈ iR it follows that Bµ = id and hence
Sµ = id on theK-finite vectors of H0, for a.e µ ∈ iR and since theK-finite vectors form a
dense subset the result follows.
Theorem 7.5. For λ ∈ iR and ε ∈ Z/2Z we have

IndGH(ε⊗ eλ) ∼=
∫ ⊕

iR
πε,µ ⊕ πε,µ

dµ

|a(µ)|2 ⊕
⊕

µ∈1−ε−2N
πholε,µ ⊕ πaholε,µ ,

where the map is given by

f 7→ (p0
λ,µA0

λ,µf, p
1
λ,µA1

λ,µf,Aλ,µf), for f ∈ IndGH(0 ⊗ eλ)
f 7→ (p0

λ,µA0
λ,µf, p

1
λ,µA1

λ,µf,Aλ,µf), for f ∈ IndGH(1 ⊗ eλ)

with

pξλ,µ =
Γ
(1−µ+2ξ

4
)
Γ
(µ−λ+1+2ξ

4
)

2
λ
4 Γ
(1+µ+2ξ

4
)
Γ
(λ−µ+1+2ξ

4
) .
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Proof. For λ ∈ iR the map A0 : IndGH(ε⊗ 1) → H0 gives rise to an isometric isomorphism
IndGH(ε⊗ eλ) → H0 by composition with �0

λ : IndGH(ε⊗ eλ) → IndGH(ε⊗ e0) from Theorem
3.1. Let λ ∈ iR, f ∈ IndGH(ε⊗ eλ) and h ∈ C∞

c (H0). Then by Lemma 7.2 we have

⟨A0 ◦ �0
λ f, h⟩H = ⟨�0

λ f, P0h⟩L2(G/H)

=
1∑
ξ=0

∫
iR

⟨�0
λ f,Pξµhξµ⟩L2(G/H)

dµ

|a(µ)|2 + 1
(2π)3

∑
µ∈1−2N

−µ
é(µ)⟨�0

λ f,Pµhdµ⟩L2(G/H)

=
1∑
ξ=0

∫
iR

∫
K

∫
G/H

�0
λ f(x)

Kξ
−µ(x−1k)
Γ(1−µ

2 )
hξµ(k)d(xH)dk dµ

|a(µ)|2

+ 1
(2π)3

∑
µ∈1−2N

−µ
é(µ)⟨�0

λ f,Pµhdµ⟩L2(G/H).

Using the coordinates xH = kθnyH and applying Lemma B.2 in the distributional sense,
we find

1
Γ(1−µ

2 )

∫
G/H

Kξ
−µ(x−1k)�0

λ f(x)d(xH)

=
Γ(2−λ

4 )
√
π2

λ
4 Γ(1−µ

2 )Γ(λ4 )

∫ π

0

∫
R

| cos θ|−µ−1
ε f(gkθnz)

∫
R

|x|
−λ−2

2
ε |z − tan θ − x|

−µ−1
2

ξ

1
2dxdzdθ

= pξλ,µA
ξ
λ,µf(k),

An analogous calculation applies to the discrete part after applying that

A−µ =
Γ
(1−µ

2
)

√
π2µ T 0

µAµ.

In conclusion we find

⟨A0 ◦ �0
λ f, h⟩H =

1∑
ξ=0

∫
iR

⟨pξλ,µA
ξ
λ,µf, h

ξ
µ⟩ dµ

|a(µ)|2

+ 1
(2π)3

∑
µ∈1−2N

2Γ(1 − µ)
Γ(−µ

2 )é(µ)
⟨T 0
µAλ,µf, hdµ⟩.

Hence A0 ◦ �0
λ = Aλ with Aλ : IndGH(λ⊗ eλ) → H0 given by

⟨Aλf, h⟩H =
1∑
ξ=0

∫
iR

⟨pξλ,µA
ξ
λ,µf, h

ξ
µ⟩ dµ

|a(µ)|2 + 1
(2π)3

∑
µ∈1−2N

2Γ(1 − µ)
Γ(−µ

2 )é(µ)
⟨T 0
µAλ,µf, hdµ⟩.

Corollary 7.6. For ε = 0 and IndGH(ε⊗ eλ) we have the following Plancherel formula

∥f∥2 =
∫
iR

1∑
ξ=0

∥Aξλ,µf∥2 dµ

|a(µ)|2 + 1
(2π)3

∑
µ∈1−2N

2Γ(1 − µ)
Γ
(−µ

2
)
é(µ)

∥Aλ,µf∥2.

For ε = 1 and f ∈ IndGH(ε⊗ eλ) we have the following Plancherel formula

∥f∥2 =
∫
iR

1∑
ξ=0

∥Aξλ,µf∥2 dµ

|a(µ)|2 + 1
2π

∑
µ∈−2N

µ2Γ(−µ)
Γ
(1−µ

2
) ∥Aλ,µf∥2.

with a(µ) and é(µ) given by (7.1).
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Proof. Since |pξλ,µ| = 1 for λ, µ ∈ iR the assertion follows.

A Integral formulas

Lemma A.1 (See [C20, Proposition 16.8]). For Re (α+ β) > 0 we have

∫
R

dx

(x− i)α(x+ i)β = 22−α−βπiα−βΓ(α+ β − 1)
Γ(α)Γ(β)

Lemma A.2 (See [GR94, Section 3.631]). For Re ν > 0 we have

∫ π

0
sinν−1(x) cos(ax) dx =

21−νπ cos
(
aπ
2
)
Γ(ν)

Γ
(
ν+1−a

2
)
Γ
(
ν+1+a

2
) .

Lemma A.3 (See [GR94, Section 3.631]). For Re ν > 0 we have

∫ π

0
sinν−1(x) sin(ax) dx =

21−νπ sin
(
aπ
2
)
Γ(ν)

Γ
(
ν+1−a

2
)
Γ
(
ν+1+a

2
) .

Lemma A.4. For Re ν > 0 we have
∫ π

0
sinν−1(x)eiax dx = 21−νπe

aiπ
2 Γ(ν)

Γ
(
ν+1−a

2
)
Γ
(
ν+1+a

2
) .

Lemma A.5 (See [GR94, Section 3.251]). For Reβ > −1 and Re (α+ β) < −1 we have∫ ∞

1
xα(x− 1)β dx = B

(
− α− β − 1, β + 1

)
.

Lemma A.6 (See [GR94, Section 3.194]). For Reβ > −1 and Re (α+ β) < −1 we have∫ ∞

0
xα(x+ 1)β dx = B

(
− α− β − 1, α+ 1

)
.

B The Fourier Transform and Riesz distributions

Define the Fourier transform of φ ∈ Cc(R) as

F [φ](ξ) =
∫
R
φ(x)eixξ dx

which makes the inversion formula FF [φ](x) = 2πφ(−x). Extend this to distributions in
the usual way.

For α ∈ C with Reα > −1 and ε ∈ {0, 1} the function

uεα(x) = 1
2

α
2 Γ
(
α+1+ε

2
) |x|αε ,

is locally integrable and can thus be considered as a distribution.
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Lemma B.1. The family of distributions uεα extends analytically to a holomorpic family in α ∈ C.
For α = 1 − ε− 2n ∈ 1 − ε− 2N we have

uε1−ε−2n(x) = (−1)n+ε−1(n− 1)!
2

1−ε
2 −n(2n+ ε− 2)!

δ(2n+ε−2)(x),

where δ(x) is the Dirac δ–function.

Lemma B.2. For α ∈ C we have

F [uεα] =
√

2πiεuε−α−1.

Furthermore for α, β ∈ C with Reα,Reβ > −1 and Re (α+ β) < −1 we get

∫
R
uεα(x)uξβ(y − x) dx = (−1)⌊ ε+ξ

2 ⌋√2π
Γ
(−1−α−β+[ε+ξ]2

2
)

Γ
(−α+ε

2
)
Γ
(−β+ξ

2
) uε+ξα+β+1(y),

for y ̸= 0.

Proof. The first assertion can be found in [GS64, p.170]. For y ̸= 0 we have∫
R

|x|αε |y − x|βξ dx = |y|α+β+1
ξ+ε

∫
R

|x|αε |1 − x|βξ dx,

by change of variables. Now writing
∫
R

|x|αε |1−x|βξ dx = (−1)ε
∫ ∞

0
xα(1+x)β dx+

∫ 1

0
xα(1−x)β dx+(−1)ξ

∫ ∞

1
xα(x−1)β dx,

we can use the integral formula for the Beta-function, apply Lemma A.5, A.6 and arrive
at

(−1)εB(α+ 1,−α− β − 1) +B(α+ 1, β + 1) + (−1)ξB(β + 1,−α− β − 1).

Now rewriting the Beta-function in terms of the Gamma-function, applying Euler’s re-
flection formula for the Gamma-function, and factoring out common factors we get

π−1Γ(α+ 1)Γ(β + 1)Γ(−α− β − 1)
[

sin
(
(α+ β)π

)
+ (−1)ε+1 sin(βπ) + (−1)ξ+1 sin(απ)

]
.

We can now apply the identity

sin
(
(α+ β)π

)
+ (−1)ε+1 sin(βπ) + (−1)ξ+1 sin(απ)

= 4(−1)⌊ 1+ε+ξ
2 ⌋ sin

((α+ ε)π
2

)
sin
((β + ξ)π

2
)

sin
((α+ β + 2 + [ε+ ξ]2)π

2
)
,

which can be verified on a case by case basis depending on ε, ξ ∈ {0, 1}. Lastly rewrite
the sine-functions as Gamma-functions using Euler’s reflection formula and cancel out
Gamma-functions case by case for ε, ξ ∈ {0, 1}.
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C Fourier-Jacobi transform

This section is a condensed form of [FJ77, Appendix 1]. For α, β ∈ C with α /∈ −N and
Reβ > −1, define the Fourier–Jacobi transform of f ∈ C∞

c (R≥0) by

Jα,βf(µ) =
∫ ∞

0
f(t)ϕα,βµ (t) sinh2α+1(t) cosh2β+1(t) dt,

where ϕα,βµ are the Jacobi functions given by

ϕα,βµ (t) = 2F1

(
α+ β + 1 + µ

2 ,
α+ β + 1 − µ

2 ;α+ 1; − sinh2(t)
)
.

Then we have the following inversion formula:

f(t) = 1
4π

∫
iR
Jα,βf(µ)ϕα,βµ (t) dµ

|cα,β(µ)|2

−
∑

µ∈Dα,β

Jα,βf(µ)ϕα,βµ (t)Res
ν=µ

(
cα,β(ν)cα,β(−ν)

)−1

where
cα,β(µ) = Γ(µ)Γ(α+ 1)

Γ
(α+|β|+1+µ

2
)
Γ
(α−|β|+1+µ

2
) ,

and
Dα,β = {x ∈ R | k ∈ N0, x = 2k + 1 + α− |β| < 0}.
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Paper B

Analytic continuation of symmetry
breaking operators of the pair

(GL(n + 1,R), GL(n,R))
Jonathan Ditlevsen

1 Introduction

A continuous representation π of a real reductive Lie group G defines a representation
of a closed subgroup H by restriction. Given an irreducible representation τ of H , we
can consider the so-called symmetry breaking operators, that is elements of HomH(π|H , τ).
Following Kobayashi’s ABC-program [K15] the symmetry breaking operators play an es-
sential role for studying restrictions of representations of reductive groups.

The classification and construction of symmetry breaking operators between spherical
principal series representations, has been studied in the past for certain pairs of groups
(G,H), such as (O(n + 1, 1), O(n, 1)) by Kobayashi and Speh [KS15] which later was ex-
tended to all strongly spherical reductive pairs (G,H) where bothG andH have real rank
one by Frahm and Weiske[FW20]. The real rank two case of (O(1, n) × O(1, n), O(1, n))
was considered by Clerc [C16].

In this paper we consider the pair (G,H) = (GL(n+1,R),GL(n,R)) of real rank n+1
and n. We study symmetry breaking operators between principal series representations
πξ,λ and τη,ν of G and H respectively. The main results of this paper concerns a family
of symmetry breaking operators Aη,ν

ξ,λ ∈ HomH(πξ,λ|H , τη,ν) which is holomorphic in its
paramters. These constitute "most" of the symmetry breaking operators as in [F21] it is
shown that dim HomH(πξ,λ|H , τη,ν) ≥ 1 and equal to one for generic parameters.

1.1 Methods and results

For 1 ≤ p ≤ n + 1 and 1 ≤ q ≤ n define the following polynomial functions for g ∈
GL(n+ 1,R):

Φp(g) = det((w0g)1≤i,j≤p), Ψq(g) = det((w0g)2≤i≤q+1,1≤j≤q),

where w0 is a representative for the longest Weyl-group element given by

w0 =


1

. .
.

1

 .
37
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Consider the functions

Kη,ν
ξ,λ (g) = |Φn+1(g)|λn+1+ n

2
ξn+1

n∏
i=1

|Φi(g)|λi−νn+1−i− 1
2

ξi+ηn+1−i
|Ψi(g)|νn+1−i−λi+1− 1

2
ηn+1−i+ξi+1

,

which are locally integrable for (λ, ν) in some open subset of Cn+1 × Cn. Here we used
the notation

|x|µξ := sgn(x)ξ|x|µ, x ∈ R×, µ ∈ C, ξ ∈ Z/2Z.

For (ξ, η) in (Z/2Z)n+1 × (Z/2Z)n we normalizeKη,ν
ξ,λ by Kη,ν

ξ,λ = n(ξ, λ, η, ν)−1Kη,ν
ξ,λ where

n(ξ, λ, η, ν) =
n∏
j=1

[ n+1−j∏
i=1

Γ
(λi − νj + 1

2 + [ξi + ηj ]
2

)][ n+1∏
i=n+2−j

Γ
(νj − λi + 1

2 + [ξi + ηj ]
2

)]
.

(1.1)

Theorem 1.1. The family of distributions Kη,νξ,λ can be analytically extended such that it depends
holomorphically on (λ, ν) in all of Cn+1 × Cn.

In [F21] it is shown thatKη,ν
ξ,λ satisfies equivariance properties such that it defines an inte-

gral kernel for a symmetry breaking operator between principal series representations of
πξ,λ of GL(n+1,R), and τη,ν of GL(n,R). In this light Theorem 1.1 shows that we have an
explicit holomorphic family of symmetry breaking operators Aη,ν

ξ,λ ∈ HomH(πξ,λ|H , τη,ν).
Alternatively, Theorem 1.1 can be phrased in terms of L-factors or Euler–factors. For

a character χε,µ(x) = |x|µε of GL(1,R) the L-factor is given by

L(s, χε,µ) = π− 1
2 (µ+ε+s)Γ

(µ+ ε+ s

2
)
.

By fixing χi = χξi,λi
and ψj = χηj ,νj we can write πξ,λ as IndGPG

(χ1 ⊗ · · · ⊗ χn+1) and τη,ν
as IndHPH

(ψ1 ⊗ · · · ⊗ ψn) and then the normalization of (1.1) is
n∏
j=1

L(1
2 , χ1ψ

−1
j ) . . . L(1

2 , χn+1−jψ
−1
j )L(1

2 , χ
−1
n+2−jψj) . . . L(1

2 , χ
−1
n+1ψj),

up to some power of π.
We reviewhow to analytically extend theRiesz distribution since the proof of Theorem

1.1 use many of the same ideas. For Re(µ) > −1 and ε ∈ Z/2Z consider the locally
integrable function

|x|µε = sgn(x)ε|x|µ, x ∈ R×. (1.2)
Step 1: Considering |x|µε as a distribution we have the Bernstein–Sato identity

d

dx
|x|µε = µ|x|µ−1

ε−1 ,

that relates |x|µε to itself with shifted parameters via a differential operator. Now for
Re(µ) > −1 consider the distribution

uε,µ(x) = |x|µε
Γ(µ+ 1) .
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For all φ ∈ C∞
c (R) the map µ 7→ ⟨uε,µ, φ⟩ is holomorphic and by d

dxuε,µ = uε−1,µ−1 it
analytically extends to all µ ∈ C.
Step 2: Notice that as u0,0 = 1, we get d

dxu0,0 = 0, implying that the extension of uε,µ is
identically zero when µ is either a negative even integer (if ε = 0) or negative odd integer
(if ε = 1). Therefore the normalization Γ(µ+ 1)−1 has more zeroes than is necessary for
the analytical extension. As a result we get the family of distributions

ûε,µ = |x|µε
Γ(µ+1+ε

2 )
, ε ∈ Z/2Z,

is holomorphic in µ ∈ C.
Step 3: For Re(µ) > −1 we have x|x|µε = |x|µ+1

ε+1 and after normalization both sides of the
equality extends analytically, and so a similar identity is obtained for ûε,µ. For n ∈ Z>0
we get

x2nûε,µ =
Γ(µ+2n+1+ε

2 )
Γ(µ+1+ε

2 )
ûε,µ+2n =

(µ+ 1 + ε

2
)
n
ûε,µ+2n,

where (x)n is the Pochhammer symbol. Thus when µ = 1−ε−2kwe get that the support
of ûε,µ is contained in {0}. This implies that ûε,µ can be expressed as a linear combination
of derivatives of the Dirac delta function, and by comparing even/odd-ness and homo-
geneity of the distributions we get

ûε,µ
∣∣∣
µ=−1−ε−2n

= αk,εδ
2k−ε(x),

where αk,ε is a constant which can be found by testing ûε,µ|µ=−1−ε−2n against a test-
function.

Analogously to Step 1, a collection of Bernstein–Sato identities are established. The
method for finding these is inspired by [BC12], whereby conjugating multiplication op-
erators of Φp or Ψq by Knapp–Stein intertwining operators we obtain explicit differential
operators that relateKη,ν

ξ,λ to itself with parameters shifted (See Theorem 6.5). Using these
Bernstein–Sato identities we find a renormalizationKη,ν

ξ,λ ofKη,ν
ξ,λ such that it can be analyt-

ically continued as a family of distributions. We find the following functional identities:

Theorem 1.2 (See Section 5). Composing Kη,ν
ξ,λ by normalized Knapp–Stein intertwining oper-

ators Tw (normalized to be holomorphic) gives functional equations of the type

Kη,ν
ξ,λ = βw(ξ, λ, η, ν)Tw ◦ Kη,ν

w(ξ,λ),

where βw(ξ, λ, η, ν) is found explicitly as a ratio of Gamma-functions or L-factors.

Considering these functional identities we see that Tw ◦ Kη,ν
w(ξ,λ) is holomorphic so the

zeroes of βw(ξ, λ, η, ν) is also zeroes for Kη,ν
ξ,λ. This gives a collection of zeroes just like in

Step 2, so we can re-normalize Kη,ν
ξ,λ to Kη,ν

ξ,λ, giving Theorem 1.1.
Lastly, we are able to extract some information about the support of Kη,ν

ξ,λ for the pa-
rameters where the normalization have zeroes by the same arguments as Step 3. Unfor-
tunately a similar argument to reduce to a sum of Dirac functions does not apply as the
support does not reduce to a single point.



40 Paper B

1.2 Notation

Let 1 be the vector having 1’s in all entries. ei ∈ Rk is the i’th standard basis vector.
Ei,j is the matrix with zeroes in all entries except the (i, j)′th entry which contains a one.
|x|µε := sgn(x)ε|x|µ. For ξ, ν ∈ Z/2Z and z ∈ C we write z + [ξ + ν] to mean the addition
ξ + ν should be done in Z/2Z first and then either a 0 or 1 should be added to z.

2 Principal Series representations and symmetry breaking
operators

Let G be a real reductive Lie group, and g its Lie algebra with Cartan decomposition
g = k ⊕ p. Let K be the maximal compact subgroup given by the elements invariant to
the Cartan involution. Fix a ⊆ p a maximal abelian subspace and put A = exp(a). We
consider the restricted roots of (g, a) and introduce an ordering allowing us to define n

as the sum of the positive root spaces and N = exp(n). Furthermore we putM to be the
centralizer of A inK.

Now P = MAN ⊆ G is a minimal parabolic subgroup defined by its Langlands
decomposition. Let (ξ, Vξ) be a finite-dimensional representation ofM and λ ∈ a∗

C a char-
acter. Then (ξ⊗ eλ ⊗ 1, Vξ) is a finite-dimensional representation of P = MAN where 1 is
the trivial representation ofN . Using smooth parabolic induction we obtain the principal
series representation πξ,λ = IndGP (ξ ⊗ eλ ⊗ 1) as the left-regular representation of G on

{f ∈ C∞(G,Vξ) | f(gman) = ξ(m)−1a−λ−ρf(g) ∀man ∈ MAN},

where ρ is the half sum of the positive roots.
Let W := NK(A)/ZK(A) be the Weyl-group of G. The Weyl group carries an action

to M̂ by [wξ](m) = ξ(w̃−1mw̃) where w = [w̃] ∈ W and similarly to a∗
C by [wλ](a) =

λ(w̃−1aw̃). LetN be the nilradical of the parabolic opposite to P . For every w = [w̃] ∈ W

the integral
Twξ,λf(g) =

∫
N∩w̃−1Nw̃

f(gw̃n) dn,

converges absolutely in some range of a∗
C and defines an intertwining operator πξ,λ →

πw(ξ,λ) known as the Knapp–Stein intertwining operator. These operators satisfies that
for w,w′ ∈ W we have

Tw
′w

ξ,λ = Tw
′

w(ξ,λ) ◦ Twξ,λ (2.1)
when ℓ(w′w) = ℓ(w′)+ℓ(w), where ℓ denotes the length of an element inW see e.g. [K16].

Let (G,H) be a strongly spherical pair of real reductive groups, e.g. (G,H) = (GL(n+
1,R),GL(n,R)). Fix parabolic subgroups PG = MGAGNG of G and PH = MHAHNH of
H as in [F21] and let

πξ,λ = IndGPG
(ξ ⊗ eλ ⊗ 1) and τη,ν = IndHPH

(η ⊗ eν ⊗ 1),

denote the principal series representations induced from (ξ, Vξ) ∈ M̂G, λ ∈ a∗
G,C and

(η,Wη) ∈ M̂H , ν ∈ a∗
H,C. A symmetry breaking operator is an continuous H-intertwining

map between πξ,λ|H and τη,ν . Following [F21], identify

HomH(πξ,λ|H , τη,ν) ≃ D′(G)η,νξ,λ,
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where

D′(G)η,νξ,λ = {K ∈ D′(G) ⊗ Hom(Vξ,Wη) : K(mHaHnHgmGaGnG)

= aλ−ρG
G aν+ρH

H η(mH) ◦K(g) ◦ ξ(mG)},

in the sense that K ∈ D′(G)η,νξ,λ defines a symmetry breaking operator A ∈ HomH(πξ,λ|H ,
τη,ν) by

Af(h) =
∫
KG

K(h−1g)f(g) dg,

where the integral has to be understood in the distribution sense. Note that using [K16,
formula (5.25)] one can show that whenever K is given by a locally integrable function,
the operator A can also be computed in the non-compact picture:

Af(h) =
∫
NG

K(h−1g)f(g) dg.

3 Principal Series representations and the Knapp-Stein
Intertwiners for GL(k,R)

We now set G = GL(k,R) and make some choices to make the notions of Section 2 more
explicit for calculations. Let P ⊆ G be the group of upper triangular matrices with Lang-
lands decomposition P = MAN . HereM is the group of diagonal matrices with entires
from {±1}, A is the group of diagonal matrices with positive real entries and N is the
group of upper triangular matrices with 1’s on the diagonal.

Identify M̂ ≃ (Z/2Z)k by taking ξ = (ξ1, . . . , ξk) ∈ {0, 1}k to the character

M → {−1, 1}
diag(ε1, . . . , εk) 7→ sgn(ε1)ξ1 · · · sgn(εk)ξk .

Furthermore make the identification a∗
C ≃ Ck bymapping λ 7→

(
λ(E1,1), . . . , λ(Ek,k)

). We
can then consider the principal series representations as functions f ∈ C∞(G) where

f(gman) = |x1|−λ1− k−1
2

ξ1
. . . |xk|

−λk− 1−k
2

ξk
f(g), ma = diag(x1, . . . , xn) ∈ MA, n ∈ N,

since ρ = 1
2(k − 1, k − 3, . . . , 3 − k, 1 − k).

As alluded to in the introduction it can simplify the notation quite a bit if we denote
by characters χi(x) = |x|λi

ξi
, so that we can describe the L-function as

L(s, χi) = π− s+ξi+λi
2 Γ

(s+ ξi + λi
2

)
.

The Weyl groupW of G can be identified with the symmetric group Sk and the action of
W on M̂ and a∗

C then corresponds to permuting the entries of vectors in (Z/2Z)k and Ck.
Abusing notation, we do not distinguish between elements ofW , Sk and the permutation
matrices corresponding to elements of Sk.
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Now for i = 1, . . . , k − 1 let wi denote the simple transposition swapping i and i + 1
considered as thematrix having 1’s in the (i, i+1) and (i+1, i) entries and zero everywhere
else. Then N ∩ w−1

i Nwi = eREi+1,i . Let ni(x) = exEi+1,i . Using the GL(2,R) computation(
0 1
1 0

)(
1 0
x 1

)
=
(
x 1
1 0

)
=
(

1 0
1
x 1

)(
x 0
0 −1

x

)(
1 1

x

0 1

)
, (x ̸= 0),

we can decompose wini(x) intoNMAN , in the sense that wini(x) is contained in a copy
of GL(2,R) embedded into G as block matrices

( Ii−1
GL(2,R)

Ik−i−1

)
,

where Ij is the j × j identity matrix. This allows us to get a more explicit formula for the
Knapp–Stein intertwiner in the case where w is a simple transposition:

Twi
ξ,λf(g) =

∫
N∩wiNwi

f(gwini(x)) dx

= (−1)ξi+1

∫
R

|x|λi−λi+1−1
ξi+ξi+1

f(gni(x)) dx,

= (−1)ξi+1

∫
R
χi(x)χ−1

i+1(x)f(gni(x)) dx
|x|
.

by change of variables x → x−1. This operator has poles and we therefore consider the
normalized version

Twi
ξ,λ = 1

L(0, χiχ−1
i+1)

Twi
ξ,λ,

which has a holomorphic extention to all of Ck see e.g. [K16]. This normalization makes
Twi
ξ,λ holomorphic and nowhere vanishing, see e.g. [BD22, Prop 1.3]. For a general w ∈ W

we normalize Twξ,λ by writing w in terms of simple transpositions wi and then using the
normalization for each Twi

ξ,λ which is justified by (2.1).
Similarly, we can decompose ni(x) = k(x)a(x)n(x) to the compact picture KAN by

the GL(2,R)-computation(
1 0
x 1

)
=
[ 1√

1 + x2

(
1 −x
x 1

)](√
1 + x2 0

0 1√
1+x2

)(
1 x

1+x2

0 1

)
. (3.1)

Which allows for another form for the Knapp–Stein intertwiner

Twi
ξ,λf(g) =

∫
R

(1 + x2)
λi+1−λi−1

2 f(gwik(x)) dx.

4 Symmetry breaking operators between principal series
representations

Now fix (G,H) = (GL(n+ 1,R),GL(n,R)) and the corresponding principal series repre-
sentations

πξ,λ = IndGPG
(ξ ⊗ eλ ⊗ 1) = IndGPG

(χ1 ⊗ · · · ⊗ χn+1),
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and
τη,ν = IndHPH

(η ⊗ eν ⊗ 1) = IndHPH
(ψ1 ⊗ · · · ⊗ ψn).

Following [F21] consider the functions

Φ̃p(g) = det
(
(gij)1≤i,j≤p) and Ψ̃q(g) = det

(
(gij)2≤i≤q+1,1≤j≤q

)
,

where g ∈ G. Let

w0 =


1

. .
.

1

 ,
be a representative of the longest Weyl group element and set Φp(g) = Φ̃p(w0g) and
Ψq(g) = Ψ̃q(w0g). Now consider the kernel

Kη,ν
ξ,λ (g) = |Φ1(g)|s1

δ1
· · · |Φn+1(g)|sn+1

δn+1
|Ψ1(g)|t1ε1 · · · |Ψn(g)|tnεn

,

for g ∈ G, where si = λi − νn+1−i − 1
2 , ti = νn+1−i − λi+1 − 1

2 for i = 1, . . . , n and
sn+1 = λn+1 + n

2 . Likewise δi = ξi − ηn+1−i, εi = ηn+1−i − ξi+1 for i = 1, . . . , n and
δn+1 = ξn+1. The exponents (s, t) are related to (λ, ν) ∈ Cn+1 × Cn by an invertible affine
linear coordinate transformation given by



s1
t1
...

tn
sn+1


=



1 −1 0 · · · 0 0
0 1 −1 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1 −1
0 0 0 · · · 0 1





λ1
νn
λ2
...

ν1
λn+1


− 1

2



1
1
1
...

1
−n


,

with inverse 

λ1
νn
λ2
...

λn+1


=



1 1 · · · 1 1
0 1 · · · 1 1
...

...
. . .

...
...

0 0 · · · 1 1
0 0 · · · 0 1





s1
t1
...

tn
sn+1


+ 1

2



n

n− 1
...

−(n− 1)
−n


.

The same coordinate transformation holds between (ξ, η) and (δ, ε) if we disregard the
affine part. Then Kη,ν

ξ,λ belongs to D′(G)η,νξ,λ. Hence we get a meromorphic family of inter-
twining operators Aη,νξ,λ : πξ,λ|H → τη,ν defined by

Aη,νξ,λf(h) =
∫
KG

Kη,ν
ξ,λ (h−1k)f(k)dk =

∫
NG

Kη,ν
ξ,λ (h−1n)f(n)dn.

The distribution kernel Kη,ν
ξ,λ is L1

loc(G) when Re(λ1) ≫ Re(νn) ≫ Re(λ2) ≫ · · · ≫
Re(ν1) ≫ Re(λn+1), or even better when Re(si),Re(ti) ≥ 0 for i = 1, . . . , n. This is most
likely not the largest domain whereKη,ν

ξ,λ is L1
loc(G) but it will suffice for our purposes.
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5 Functional identity between Knapp–Stein intertwiners and
the distribution kernel

By [F21] the space D′(G)η,νξ,λ is one-dimensional for generic (λ, ν). Moreover we note that
for a fixed h ∈ H , the distribution g 7→ Kη,ν

ξ,λ (h−1g) can we viewed as a distribution section
of the homogeneous vector bundle over G/PG.

By duality we can apply the Knapp–Stein intertwiners to get maps D′(G)η,νξ,λ →
D′(G)η,νw(ξ,λ) meaning we are aiming for functional identities of the type

Twξ,−λK
η,ν
ξ,λ = cw(ξ, λ, η, ν)Kη,ν

w(ξ,λ),

as the spaces D′(G)η,νξ,λ are generically of dimension one. The first thing we notice in our
quest is

Φj(gwini(x)) =


Φj(g), j < i,

Φj(gwi) + xΦj(g), j = i,

−Φj(g), j > i.

Ψj(gwini(x)) =


Ψj(g), j < i,

Ψj(gwi) + xΨj(g), j = i,

−Ψj(g), j > i.

Φj(ni(x)wig) =


Φj(g), j < n+ 1 − i,

Φj(wig) + xΦj(g), j = n+ 1 − i,

−Φj(g), j > n+ 1 − i.

Ψj(ni(x)wig) =


Ψj(g), j < n− i,

Ψj(wig) + xΨj(g), j = n− i,

−Ψj(g), j > n− i.

All of these identities follow from basic properties of the determinant. Multiplying g by
ni(x) from the right corresponds to adding x times the (i + 1)’th column of g to the i’th
column of g. So if the determinant contains none of the columns or both of them nothing
happens, but in the case it only contains the i’th column and not the (i + 1)’th, multilin-
earity of the determinant can be applied. Multiplying by wi from the right correspond
to swapping the i’th and (i + 1)’th column, so if a determinant contains none of the two
columns nothing happens, if it contains both we get a sign. Similar reasoning can be ap-
plied to multiplying from the left and considering rows instead of columns.

Lemma 5.1. For g ∈ GL(n+ 1,R) we have the following two identities:

Φi(g)Ψi(gwi) − Φi(gwi)Ψi(g) = Ψi−1(g)Φi+1(g),

Φn+1−i(wig)Ψn−i(g) − Φn+1−i(g)Ψn−i(wig) = Ψn−i−1(g)Φn+2−i(g),

where we define Ψ0 = 1.
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Proof. We show the first identity and the second one follows by analogous arguments. We
notice that both sides of the identity have the same equivariance properties from the left
by PH . Similarly both sides have the same equivariance properties from the right by PG
e.g. for n ∈ NG we have winwi = n′ni(x) for some n′ ∈ NG and x = ni,i+1 thus

Φi(gn)Ψi(gnwi) − Φi(gnwi)Ψi(gn) = Φi(g)
[
Ψi(gwi) + xΨi(g)

]
− Ψi(g)

[
Φi(gwi) + xΦi(g)

]
= Φi(g)Ψi(gwi) − Φi(gwi)Ψi(g).

As we are proving an equality of continuous functions it suffices to check that they coin-
cide on a dense subset. There is an open dense double PHg0PG inGwhere g0 given as w0
multiplied with thematrix with only 1′s on the diagonal and subdiagonal and zero every-
where else, see [F21, Lemma 6.3 & Lemma 3.6]. The two sides of the equation coincide
on g0 and hence on ω by the equvariance properties.

Remark 5.2. To avoid technical considerations about restrictions of distributions to sub-
manifolds we use the convention that Twi

η,νK
η,ν
ξ,λ means the distributional kernel of the in-

tertwining operator Twi
η,ν ◦Aη,νξ,λ.

Theorem 5.3. For fixed iwhereRe(λi−νn+1−i),Re(νn+1−i−λi+1) > −1
2 andRe(λi−λi+1) <

0 we have
Twi
ξ,−λK

η,ν
ξ,λ = ci(ξ, λ, η, ν)Kη,ν

wi(ξ,λ),

where

ci(ξ, λ, η, ν) =
(−1)(ξi+ξi+1)(ηn+1−i+1)+ξiξi+1L(1

2 , χiψ
−1
n+1−i)L(1

2 , χ
−1
i+1ψn+1−i)√

πL(1, χiχ−1
i+1)L(1

2 , χ
−1
i ψn+1−i)L(1

2 , χi+1ψ
−1
n+1−i)

.

Similarly, for Re(λn+1−i − νi),Re(νi+1 − λn+1−i) > −1
2 and Re(νi+1 − νi) < 0 we have

Twi
η,νK

η,ν
ξ,λ = di(ξ, λ, η, ν)Kwi(η,ν)

ξ,λ .

where

di(ξ, λ, η, ν) =
(−1)(ηi+ηi+1)(ξn+1−i+1)+ηiηi+1L(1

2 , χn+1−iψ
−1
i )L(1

2 , χ
−1
n+1−iψi+1)

√
πL(1, ψi+1ψ

−1
i )L(1

2 , χ
−1
n+1−iψi)L(1

2 , χn+1−iψ
−1
i+1)

.

Proof. To ease notation we put |Ψn+1|tn+1
εn+1 = 1. For g in the open dense set where Φi(g),

Φi(gwi),Ψi(g),Ψi(gwi) ̸= 0 we have

Twi
ξ,−λK

η,ν
ξ,λ (g) =

∫
R
Kη,ν
ξ,λ (gwini(x))dx

= (−1)δn+1+
∑n

j=i+1(δj+εj)
( n+1∏
j=1
j ̸=i

|Φj(g)|sj

δj
|Ψj(g)|tjεj

)

×
∫
R

|Φi(gwi) + xΦi(g)|si
δi

|Ψi(gwi) + xΨi(g)|tiεj
dx.

The latter integral can be evaluated by Corollary A.2 giving

(−1)εit(si, ti, δi, εi)|Φi(g)|−ti−1
εi

|Ψi(g)|−si−1
δi

|Φi(g)Ψi(gwi) − Φi(gwi)Ψi(g)|si+ti+1
εi+δi

.
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Lastly, applying Lemma 5.1, we arrive at the first result. For the second assertion we recall
Remark 5.2 and by switching the integrals we get

Twi
η,νA

η,ν
ξ,λf(h) =

∫
N
f(n)

∫
R
Kη,ν
ξ,λ (ni(x)wih−1n)dxdn.

This allows us to do the same type calculation as for the first assertion but inside the
integrals, in turn the constant is given by (−1)ηi+ηi+1+ξn+1−it(sn+1−i, tn−i, δn+1−i, εn−i).

Remark 5.4. By replacing (ξ, λ) by wi(ξ, λ) we can phrase the result in a slightly different
way for Re(λi+1 − νn+1−i),Re(νn+1−i − λi) > −1

2 and Re(λi+1 − λi) < 0

Kη,ν
ξ,λ = c̃i(ξ, λ, η, ν)Twi

wi(ξ,−λ)K
η,ν
wi(ξ,λ),

where

c̃i(ξ, λ, η, ν) =
√
πL(1, χ−1

i χi+1)L(1
2 , χ

−1
i+1ψn+1−i)L(1

2 , χiψ
−1
n+1−i)

(−1)(ξi+ξi+1)(ηn+1−i+1)+ξiξi+1L(1
2 , χi+1ψ

−1
n+1−i)L(1

2 , χ
−1
i ψn+1−i)

.

Corollary 5.5. Let

A+ =
n⋂
j=i

{
(λ, ν)| Re(λj+1 − νn+1−j),Re(νn+1−j − λi) > −1

2 ,Re(λj+1 − λi) < 0
}

̸= ∅,

and

A− =
n⋂
j=i

{
(λ, ν)| Re(λi − νn+1−j),Re(νn+1−j − λj) > −1

2 ,Re(λi − λj) < 0
}

̸= ∅.

For i = 1, . . . , n let w+ = wiwi+1 . . . wn and w− = wi−1wi−2 . . . w1. For (λ, ν) ∈ A± we have

Kη,ν
ξ,λ = b±

i (ξ, λ, η.ν)Tw±
w−1

± (ξ,−λ)K
η,ν

w−1
± (ξ,λ),

where

b+
i (ξ, λ, η, ν) = α+

n∏
j=i

L(1, χj+1χ
−1
i )L(1

2 , χ
−1
j+1ψn+1−j)L(1

2 , χiψ
−1
n+1−j)

L(1
2 , χj+1ψ

−1
n+1−j)L(1

2 , χ
−1
i ψn+1−j)

,

and

b−
i (ξ, λ, η, ν) = α−

i−1∏
j=1

L(1, χiχ−1
j )L(1

2 , χ
−1
i ψn+1−j)L(1

2 , χjψ
−1
n+1−j)

L(1
2 , χiψ

−1
n+1−j)L(1

2 , χ
−1
j ψn+1−j)

,

and α± are powers of π and (−1) that depend on ξ and η.

Proof. Using (2.1) we get that the right-hand side of the (+)–equation is

bi(ξ, λ, η, ν)Twi

wi(ξ,−λ) ◦ · · · ◦ Twn

wn...wi(ξ,−λ)K
η,ν
wn...wi(ξ,λ)

thus by successive use of Remark 5.4, we get

b+(ξ.λ, η, ν) = c̃i(ξ, λ, η, ν)
n∏

j=i+1
c̃j(wj−1 . . . wi(ξ, λ), η, ν).
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6 Bernstein–Sato identities for the distribution kernel

For w ∈ WG and f : G → C we consider the left/right regular action ℓ(w)f = f(w−1 · )
and r(w)f = f( ·w). Define

wi,j =


wiwi+1 · · ·wj , for i < j,

wiwi−1 · · ·wj , for i > j,

wi, for i = j.

We let λi,j := λi − λj − 1, νi,j := νi − νj − 1, εi,j :=
∑n+1
k=1 gk,i∂gk,j

, εi,j :=
∑n+1
k=1 gi,k∂gj,k

and ε̃i,j = (−1)i+j+1εi,j . Now, consider the differential operators

Di(λ) = (−1)i+1

∣∣∣∣∣∣∣∣∣∣∣∣∣

Φ1 λ1,i+1 0 · · · 0
r(w1,1)Φ1 ε2,1 λ2,i+1 · · · 0

...
...

...
. . .

...

r(wi−1, 1)Φ1 εi,1 εi,2 · · · λi,i+1
r(wi,1)Φ1 εi+1,1 εi+1,2 · · · εi+1,i

∣∣∣∣∣∣∣∣∣∣∣∣∣
, i = 1, 2, . . . , n,

Ci(ν) = (−1)n−i

∣∣∣∣∣∣∣∣∣∣∣∣∣

Ψ1 νn,i 0 · · · 0
ℓ(wn−1,n−1)Ψ1 εn−1,n νn−1,i · · · 0

...
...

...
. . .

...

ℓ(wi+1,n−1)Ψ1 εi+1,n εi+1,n−1 · · · νi+1,i
ℓ(wi,n−1)Ψ1 εi,n εi,n−1 · · · εi,i+1

∣∣∣∣∣∣∣∣∣∣∣∣∣
, i = 1, 2, . . . , n− 1,

Fi(λ) = (−1)n+1−i

∣∣∣∣∣∣∣∣∣∣∣∣∣

Ψn λi,n+1 0 · · · 0
r(wn,n)Ψn ε̃n+1,n λi,n · · · 0

...
...

...
. . .

...

r(wi+1,n)Ψn ε̃n+1,i+1 ε̃n,i+1 · · · λi,i+1
r(wi,n)Ψn ε̃n+1,i ε̃n,i · · · ε̃i+1,i

∣∣∣∣∣∣∣∣∣∣∣∣∣
, i = 1, 2 . . . , n.

where | · |denotes the determinant. As the entries of this determinant are non-commuting,
we specify that this determinant should be considered as

|A| =
∑
σ∈Sn

sgn(σ)aσ(1),1aσ(2),2 · · · aσ(n),n.

In the case of Di(λ) this implies each term of the determinant has the form
r(w1,j)Φ1ε

j1,1εj2,2 · · · εji,i if we put εk,k = λk,i+1. With this settled, we can notice that the
differential operator Di(λ) has order i, Ci(ν) has order n− i and Fi(λ) has order n+ 1 − i.

Lemma 6.1. Fix i = 1, 2, . . . , n. For Re(λi − λi+1) ≫ 1 and f ∈ πwi(ξ,−λ) we have∫
R
∂x
(
|x|λi−λi+1−1

ξi+ξi+1

)
f(gni(x)) dx = −

∫
R

|x|λi−λi+1−1
ξi+ξi+1

∂xf(gni(x)) dx

= −εi+1,i
∫
R

|x|λi−λi+1−1
ξi+ξi+1

f(gni(x)) dx.
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In fact, if D,D′ are differential operators on G satisfying (Df)(gni(x)) = D′[f(gni(x))] then∫
R

|x|λi−λi+1−1
ξi+ξi+1

[Df ](gni(x)) dx = D′
∫
R

|x|λi−λi+1−1
ξi+ξi+1

f(gni(x)) dx,

where on the right hand sides, D′ should be considered as differentiating in g.

Proof. For the first equality, we argue there is no boundary term in partial integration.
Considering ni(x) as an SL(2,R)-element, we can use (3.1) and find

|x|λi−λi+1−1
ξi+ξi+1

f(gni(x)) = |x|λi−λi+1−1
ξi+ξi+1

(1 + x2)
λi+1−λi−1

2 f(gk(x))

= |x|−1
ξi+ξi+1

(1 + x2)− 1
2
( |x|√

1 + x2

)λi−λi+1
f(gk(x)),

which vanishes at±∞. As gni(x) is the same as g, but where in the i’th column x times the
i+ 1’th column of g is added, we get that ∂x[f(gni(x))] = (εi+1,if)(gni(x)). Furthermore,
as differentiatingwith respect to the i’th columnandmultiplying by elements of the i+1’th
column is not affected by multiplying by ni(x) from the right, we get (εi+1,if)(gni(x)) =
εi+1,i[f(gni(x))]. Thus it suffices to show the last assertion. For g in a compact subset of
Gwe get, using the Iwasawa decomposition, that∣∣∣|x|λi−λi+1−1

ξi+ξi+1
D′[f(gni(x))]

∣∣∣ =
∣∣∣|x|λi−λi+1−1

ξi+ξi+1
(1 + x2)

λi+1−λi−1
2 D′[f(gk(x))]

∣∣∣
≤ c(1 + x2)

Re(λi+1−λi−1)
2 |x|Re(λi−λi+1−1),

where the c is a constant depending on f ,g and D′. The right hand side is integrable,
allowing us to pull the differential operator out of the integral.
Remark 6.2. Consider r the right regular representation of eREi+1,i on C∞(G). Then

∂xr(exEi+1,i) = r(exEi+1,i)dr(Ei+1,i) = dr(Ei+1,i)r(exEi+1,i),

corresponds to
∂x[f(gni(x))] = (εi+1,if)(gni(x)) = εi+1,i[f(gni(x))]

as argued in the proof. That is εi+1,i = dr(Ei+1,i)which could be useful for generalizations
to other groups.

For a C-valued function f letMf be the multiplication operator given byMfφ = fφ.
Proposition 6.3. For (generic) (λ, ν) such that Re(λ1) ≫ · · · ≫ Re(λn+1) and Re(νn) ≫
· · · ≫ Re(ν1) the differential operators can be expressed in the following way

D1(λ) = λ1,2T
w1
−w1(ξ,λ)−(e1,e1) ◦MΦ1 ◦

(
Tw1

−w1(ξ,λ)

)−1
,

Di(λ) = λi,i+1T
wi

−wi(ξ,λ)−(ei,ei) ◦ Di−1(wiλ) ◦
(
Twi

−wi(ξ,λ)

)−1
,

Cn−1(ν) = νn,n−1T
wn−1
wn−1(η,ν)+(en,en) ◦MΨ1 ◦

(
T
wn−1
wn−1(η,ν)

)−1
,

Ci(ν) = νi+1,iT
wi

wi(η,ν+(ei+1,ei+1)) ◦ Ci+1(wiν) ◦
(
Twi

wi(η,ν)

)−1
,

Fn(λ) = λn,n+1T
wn

−wn(ξ,λ)−(1−en+1,1−en+1) ◦MΨn ◦
(
Twn

−wn(ξ,λ)

)−1
,

Fi(λ) = λi,i+1T
wi

−wi(ξ,λ)−(1−ei+1,1−ei+1) ◦ Fi+1(wiλ) ◦
(
Twi

−wi(ξ,λ)

)−1
.
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Proof. We start off by showing that this indeed holds for the family Di(λ) using induction
in i. Let f ∈ π−w1(ξ,λ) then using Lemma 6.1 we get

λ1,2T
w1
−w1(ξ,λ)−(e1,e1)(Φ1f)(g) = λ1,2(−1)ξ1

∫
R

|x|λ1−λ2−2
ξ1+ξ2+1 (Φ1f)(gn1(x)) dx

= λ1,2(−1)ξ1

∫
R

|x|λ1−λ2−2
ξ1+ξ2+1

[
Φ1(g) + xr(w1)Φ1(g)

]
f(gn1(x)) dx

= Φ1(g)(−1)ξ1

∫
R
∂x
(
|x|λ1−λ2−1

ξ1+ξ2

)
f(gn1(x)) dx

+ λ1,2r(w1)Φ1(g)Tw1
−w1(ξ,λ)f(g)

= −[Φ1(g)ε2,1 − r(w1)Φ1(g)λ1,2]Tw1
−w1(ξ,λ)f(g).

This shows the base case for induction as D1(λ) = −[Φ1(g)ε2,1 − λ1,2r(w1)Φ1(g)].
Assume the assertion holds for i − 1 and let f ∈ π−wi(ξ,λ). For j ≤ i − 1, we have

[r(wj,1)Φ1](gni(x)) = [r(wj,1)Φ1](g) + δi−1,jx[r(wi)r(wj,1)Φ1](g) and for k < j ≤ i, we
have (εj,kf)(gni(x)) = (εj,k + δi,jxε

j+1,k)[f(gni(x))] where δi,j is the Kronecker delta.
Thus, only the last row of the matrix is affected, and by multilinearity of the determinant
we get

(Di−1(wiλ)f)(gni(x)) = Di−1(wiλ)[f(gni(x))] + xD̃i−1(wiλ)[f(gni(x))],

where D̃i−1(wiλ) is the determinant of the same matrix as Di−1(wiλ), but where r(w1,i−1)
is replacedwith r(w1,i), and εi,k is replaced by εi+1,k for 1 ≤ k ≤ i−1. Nowusing the same
steps as for i = 1 where Di−1(wiλ) + xD̃i−1(wiλ) plays the role of Φ1(g) + xr(w1)Φ1(g),
we get

λi,i+1T
η,ν
−wi(ξ,λ)−(ei,ei)(Di−1(wiλ)f)(g)

= −
[
Di−1(wiλ)εi+1,i − D̃i−1(wiλ)λi,i+1

]
T η,ν−wi(ξ,λ)f(g).

By multilinearity of the determinant, we can write

−Di−1(wiλ)εi+1,i + D̃i−1(wiλ)λi,i+1 = Di(λ),

showing the assertion for i.
The proof for Ci(ν) is identical, but where everything is acting from the left. For Fi(λ)

it is again similar, but with a little twist. As for k ≥ i, we have [r(wk,n)Ψn](gni−1(x)) =
[r(wk,n)Ψn](g) + δi,jx[r(wk−1r(wk,n)Ψn](g) and (εk+1,if)(gni−1(x)) = [εk+1,i − xεk+1,i−1]
f(gni−1(x)), meaning we do not get addition with same signs in the last row. But by
changing to the ∼-notation, we get (ε̃k+1,if)(gni−1(x)) = [ε̃k+1,i + xε̃k+1,i−1]f(gni−1(x))
and the proof follows in the same manner as for Di(λ).

Remark 6.4. For generic (λ, ν) the principal series representations π(ξ,λ), τ(η,ν) are irre-
ducible, thus by Schur’s lemmawe get Tw−1

w(ξ,λ) ◦Twξ,λ is non-zero constant times the identity
allowing us to talk about the inverse of Twξ,λ.
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Theorem 6.5. We have the following Bernstein–Sato identities

Di(λ)Kη,ν
ξ,λ = pDi(λ, ν)Kη,ν

(ξ+ei+1,λ+ei+1),

Ci(ν)Kη,ν
ξ,λ = pCi(λ, ν)K(η+ei,ν+ei)

(ξ+e1,λ+e1),

Fi(λ)Kη,ν
ξ,λ = pFi(λ, ν)K(η+1,ν+1)

(ξ+1−ei,λ+1−ei),

where

pDi(λ, ν) = (−1)i+1
n∏

j=n+1−i

(
νj − λi+1 − 1

2
)
,

pCi(λ, ν) = (−1)n−i
n+1−i∏
j=2

(
λj − νi − 1

2
)
,

pFi(λ, ν) =
n+1−i∏
j=1

(
λi − νj − 1

2
)
.

Proof. As the identities of Theorem 5.3 and Proposition 6.3 are identities of distribu-
tions that can be meromorphically extended, we can regard them as formal distribu-
tional equalities and disregard the domain of parameters (λ, ν) for which they hold. Let
c′
i(ξ, λ, ν, η) = L(0, χ−1

i χi+1)ci(ξ, λ, ν, η) that is ci(ξ, λ, η, ν) multiplied by the normaliza-
tion of Twi

ξ,−λ. Now by definition of D1(λ) and Theorem 5.3 we get

λ1,2c
′
1(w1(ξ, λ) + (e1, e1), η, ν)Kη,ν

(ξ,λ)+(e2,e2) = λ1,2T
w1
−w1(ξ,λ)−(e1,e1)(Φ1K

η,ν
w1(ξ,λ))

= D1(λ)Tw1
−w1(ξ,λ)K

η,ν
w1(ξ,λ) = c′

1(w1(ξ, λ), η, ν)D1(λ)Kη,ν
ξ,λ ,

so we get pD1(λ, ν) = λ1,2c′
1(w1(ξ,λ)+(e1,e1),η,ν)
c′

1(w1(ξ,λ),η,ν) . Arguing like this, we arrive at

pDi(λ, ν) = λi,i+1c
′
i(wi(ξ, λ) + (ei, ei), η, ν)
c′
i(ξ, λ, η, ν) pDi−1(wiλ, ν).

As Γ(z + 1) = zΓ(z) we can, by checking cases for ε ∈ {0, 1}, confirm the following
identity:

Γ( z−1+[ε+1]
2 )Γ(1−z+[ε]

2 )
Γ( z+[ε]

2 )Γ(2−z+[ε+1]
2 )

= (−1)ε+1 2
z − 1 .

Using this we get
λi,i+1c

′
i(wi(ξ, λ) + (ei, ei), η, ν)
c′
i(ξ, λ, η, ν) = (−1)

(
νn+1−i − λi+1 − 1

2
)
.

Similarly setting d′
i(ξ, λ, η, ν) = L(0, ψiψ−1

i+1)di(ξ, λ, η, ν) we get

νi+1,id
′
i(ξ + e1, λ+ e1, wi(η, ν) + (ei+1, ei+1))

d′
i(ξ, λ, wi(η, ν)) = (−1)

(
λn+1−i − νi − 1

2
)
,

and
λi,i+1c

′
i(wi(ξ, λ) + (1− ei+1,1− ei+1), (η, ν) + (1,1))

c′
i(wi(ξ, λ), η, ν) = λi − νn+1−i − 1

2 .
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Remark 6.6. The differential operators Di(λ), Ci(ν), and Fi(λ) are somewhat arbitrary
as there are many of choices in the process. As we will see below the choices are made
so we get 2n differential operators which can be used to analytically extend Kη,ν

ξ,λ . Many
different choices of multiplication operators of Φi or Ψj and permutationsw, can also give
a collection of differential operators that can extend Kη,ν

ξ,λ , but there are a few immediate
limitations.

For a choice of Φi or Ψj , say Φi, there is only one choice of simple transposition where
one picks up any differential operator since Twj

−wj(ξ,λ)−(ei,ei) andMΦi commutewhen j ̸= i.
We can also mix Knapp–Stein intertwiners from πξ,−λ and τη,ν in one differential op-

erator, but as these intertwiners commute, it ends up being the composition of two differ-
ential operators. If we let n = 2 and consider every outcome of conjugating Φi or Ψj with
only intertwiners Twξ−λ for πξ,−λ, then a collection of differential operators extendingKη,ν

ξ,λ

can not be obtained, which suggest that at some point the intertwiners Twη,ν for τη,ν must
be used.

We could hope to find a collection of differential operators where the amount of times
we need to conjugate by intertwiners from simple transpositions are minimal, thus mak-
ing the order of the differential operators smaller. But as analytic extensions are unique
the Bernstein–Sato polynomials must have the same roots no matter the collection. If we
arrange (λ, ν) as (λ1, νn, λ2, . . . , ν1, λn+1) then each conjugation by an intertwiner from a
simple transposition grants a linear factor as a difference between two adjacent element
in this vector. So to obtain a factor like λ1 − ν1 − 1

2 , a minimum of n simple transpositions
must be done.

7 Analytic extension of the integral kernel

Consider the normalized kernel

Kη,ν
ξ,λ =

Kη,ν
ξ,λ

n∏
j=1

[ n+1−j∏
i=1

Γ
(
λi − νj + 1

2

)]
×
[ n+1∏
i=n+2−j

Γ
(
νj − λi + 1

2

)] .
Rewriting the Bernstein–Sato identities of Theorem 6.5 in terms of Kη,ν

ξ,λ, we have

Di(λ)Kη,ν
ξ,λ = Kη,ν

(ξ+ei+1,λ+ei+1),

Ci(ν)Kη,ν
ξ,λ = K(η+ei,ν+ei)

(ξ+e1,λ+e1),

Fi(λ)Kη,ν
ξ,λ = K(η+1,ν+1)

(ξ+1−ei,λ+1−ei).

Proposition 7.1. Kη,ν
ξ,λ extends analytically to a family of distributions that depends holomorphi-

cally on (λ, ν) ∈ Cn+1 × Cn and Kη,ν
ξ,λ ∈ D′(G)η,νξ,λ for all (λ, ν).

Proof. Rewriting the Bernstein–Sato identities in terms of (δ, s, ε, t), we get

Di(s, t)Kε,t
δ,s = K(ε−ei,t−ei)

(δ+ei+1,s+ei+1),

Ci(s, t)Kε,t
δ,s = K(ε+en+1−i,t+en+1−i)

(δ+e1−en+1−i,s+e1−en+1−i),

F1(s, t)Kε,t
δ,s = Kε,t

(δ−e1+en+1,s−e1+en+1).
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As Kε,t
δ,s is already defined for all sn+1 ∈ Cwe can use F1(s, t) to extend Kε,t

δ,s to all s1 ∈ C.
Then using Dn(s, t) we can extend Kε,t

δ,s to all tn ∈ C. Now using C1(s, t) we can extend to
all sn ∈ C and so forth, switching between Di(s, t) and Cj(s, t) we can extend to all (s, t)
and therefore (λ, ν).

Using the duplication formula write

Γ
(
λi − νj + 1

2
)

= 2λi−νj− 1
2

√
π

Γ
(λi − νj + 1

2 + [ξi + ηj ]
2

)
Γ
(λi − νj + 3

2 − [ξi + ηj ]
2

)
.

For ξ, η ∈ Z/2Z and z ∈ C we write z + [ξ + η] to mean the addition ξ + η should be
done in Z/2Z first and then either a 0 or 1 should be added to z. Comparing this with the
analytically extended Remark 5.4, we get

Kη,ν
ξ,λ = βi(ξ, λ, η, ν)Twi

wi(ξ,−λ)K
η,ν
wi(ξ,λ),

where βi(ξ, λ, η, ν) is given as

Γ(λi+1−λi+1+[ξi+ξi+1]
2 )Γ(λi+1−νn+1−i+ 3

2 −[ξi+1+ηn+1−i]
2 )Γ(νn+1−i−λi+ 3

2 −[ξi+ηn+1−i]
2 )

cΓ(νn+1−i−λi+1+ 3
2 −[ξi+1+ηn+1−i]
2 )Γ(λi−νn+1−i+ 3

2 −[ξi+ηn+1−i]
2 )

and c is a product of powers of π, 2 and −1. AsKη,ν
ξ,λ and Twi

wi(ξ,−λ)K
η,ν
wi(ξ,λ) are holomorphic

in (λ, ν), we see that Kη,ν
ξ,λ has zeroes given by the zeroes of βi(ξ, λ, η, ν). This shows that

Kη,ν
ξ,λ is over-normalized and the factors Γ(λi−νn+1−i+ 1

2), Γ(νn+1−i−λi+1 + 1
2) can be re-

placed by Γ(λi−νn+1−i+ 1
2 +[ξi+ηn+1−i]
2 ), Γ(νn+1−i−λi+1+ 1

2 +[ξi+1+ηn+1−i]
2 ) in the normalization

ofKη,ν
ξ,λ .
Consider the re-normalized kernel

Kη,ν
ξ,λ =

Kη,ν
ξ,λ∏n

j=1 L(1
2 , χ1ψ

−1
j ) . . . L(1

2 , χn+1−jψ
−1
j )L(1

2 , χ
−1
n+2−jψj) . . . L(1

2 , χ
−1
n+1ψj),

,

which, by the duplication formula, can be seen as a product between Kη,ν
ξ,λ,

n∏
j=1

[ n+1−j∏
i=1

2λi−νj− 1
2

√
π

Γ
(λi − νj + 3

2 − [ξi + ηj ]
2

)]

×
[ n+1∏
i=n+2−j

2νj−λi− 1
2

√
π

Γ
(νj − λi + 3

2 − [ξi + ηj ]
2

)]
(7.1)

and some powers of π.

Theorem 7.2. The normalized kernel Kη,νξ,λ extends analytically to a family of distributions that
depends holomorphically on (λ, ν) ∈ Cn+1 ×Cn andKη,νξ,λ ∈ D′(G)η,νξ,λ for all (λ, ν) ∈ Cn+1 ×Cn.

Proof. To prove this, it suffices to show Kη,ν
ξ,λ vanishes at all the poles from (7.1). Arguing

like above instead of using Remark 5.4 we can use Corollary 5.5. Considering all i =
1, 2, . . . , n the functions b±

i (ξ, λ, η, ν) contains all the different Gamma-factors appearing
in the new normalization.
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Remark 7.3. With this new normalization Theorem 5.3 can be stated in the slightly more
crisp way

Twi
ξ,−λK

η,ν
ξ,λ =

√
π(−1)(ξi+ξi+1)(ηn+1−i+1)+ξiξi+1

L(1, χiχ−1
i+1)

Kη,ν
wi(ξ,λ),

and
Twi
η,νK

η,ν
ξ,λ =

√
π(−1)(ηi+ηi+1)(ξn+1−i+1)+ηiηi+1

L(1, ψ−1
i ψi+1)

Kwi(η,ν)
ξ,λ .

8 On the zeroes for the symmetry breaking operators

As explained in Section 2 from the integral kernel Kη,ν
ξ,λ, we obtain a symmetry breaking

operator Aη,ν
ξ,λ : πξ,λ|H → τη,ν by

Aη,ν
ξ,λf(h) =

∫
NG

Kη,ν
ξ,λ(h−1n)f(n) dn,

where the integral has to be considered in the distributional sense and Theorem 7.2 allows
us to do this for every (λ, ν) ∈ Cn+1 ×Cn. The functional equations with the Knapp–Stein
intertwining operators from Remark 7.3, can then be rephrased as

Aη,ν
ξ,λ ◦ Twi

wi(ξ,λ) =
√
π(−1)(ξi+ξi+1)(ηn+1−i+1)+ξiξi+1

L(1, χiχ−1
i+1)

Aη,ν
wi(ξ,λ),

and
Twi
η,ν ◦ Aη,ν

ξ,λ =
√
π(−1)(ηi+ηi+1)(ξn+1−i+1)+ηiηi+1

L(1, ψ−1
i ψi+1)

Awi(η,ν)
ξ,λ .

To investigate if the normalization found in Section 7 is optimal, a good place to start is to
see if we can evaluate the symmetry breaking operator on theK-invariant vector 1λ, that
is the vector that is constant on K with normalization 1λ(e) = 1. Consider the analytic
function β(λ, ν) defined by

Aν
λ1λ = β(λ, ν)1ν ,

where we suppress the trivialM -representations in the notation. Now by Proposition A.3

Twi
λ 1λ(e) = 1

L(0, χiχ−1
i+1)

∫
R

(1 + x2)
λi+1−λi−1

2 dx = 1
L(1, χiχ−1

i+1)
1wiλ(e). (8.1)

Using this and the functional equations above we get that

β(wiλ, ν) =
L(1, χiχ−1

i+1)
L(1, χ−1

i χi+1)
β(λ, ν) & β(λ,wiν) = L(1, ψ−1

i ψi+1)
L(1, ψiψ−1

i+1)
β(λ, ν). (8.2)

As β(λ, ν) is analytic this implies that β(λ, ν) = 0 when λi − λj ∈ −2N0 − 1 or νj − νi ∈
−2N0 − 1 and i < j, which corresponds to points of reducibility for πλ and τν see [SV80].
In [FS22] Frahm and Su calculated β(λ, ν) in the case where n = 2, that is for the pair
(GL(3,R),GL(2,R)), and found that

β(λ, ν) = π
3
2

L(1, χ1χ
−1
2 )L(1, χ2χ

−1
3 )L(1, χ1χ

−1
3 )L(1, ψ−1

1 ψ2)
.
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The L-factors that appear are related to the Harish–Chandra c-function c(λ), which is
given by the equation

Tw0
λ 1λ(e) = c(λ),

wherew0 is the longestWeyl-group element. A formula for c(λ) was found by Gindikin &
Karpelevič in [GK62]. We consider normalizedHarish–Chandra c-functions (also known
as the e-function) defined by

Tw0
λ 1λ(e) = cG(λ), Tw

′
0

ν 1ν(e) = cH(ν),

where w′
0 is the longest Weyl-group element of H . In the case n = 2, we can calculate

cG(λ) directly by decomposing w0 = w1w2w1 and using (8.1) and (2.1) to get

cG(λ) = Tw0
λ 1λ(e) = Tw1

w2w1λ
Tw2
w1λ

Tw1
λ 1λ = 1

L(1, χ1χ
−1
2 )L(1, χ2χ

−1
3 )L(1, χ1χ

−1
3 )

.

In [FS21] Frahm and Su conjectures:

Conjecture 8.1 (Frahm & Su 2021).

β(λ, ν) = cG(λ)cH(−ν).

The identities of (8.2) supports this conjecture. In the case where this conjecture is true
then the following Theorem also holds for n > 2 with the same proof.

Theorem 8.2. For n = 2 the normalization used for Aνλ is optimal, in the sense that the zeroes of
Aνλ are of codimension two in (λ, ν) ∈ Cn+1 × Cn.

Proof. The zeroes of Aν
λ can only occur at places where the normalization multiplies by a

zero. At a zero either λi − νj + 1
2 ∈ −2N0 or νj − λi + 1

2 ∈ −2N0 must be satisfied. The
zeroes of β(λ, ν) are of the form λi − λj + 1 ∈ −2N0 and νj − νi + 1 ∈ −2N0. Thus at least
one more equation must be satisfied in order to have a zero for Aν

λ.

Proposition 8.3. For 1 ≤ j ≤ n + 1 − i ≤ n and m ∈ N0 if λi − νj + 1
2 + [ξi + ηj ] = −2m,

the support of Kη,νξ,λ is contained in

{Φi = 0} ∩ {Ψi = 0} ∩ · · · ∩ {Φn+1−j = 0}.

For 2 ≤ n + 2 − j ≤ i ≤ n + 1 and m ∈ N0 if νj − λi + 1
2 + [ηj + ξi] = −2m, the support of

Kη,νξ,λ is contained in

{Ψn+1−j = 0} ∩ {Φn+2−j = 0} · · · ∩ {Ψi−1 = 0}.

Proof. The proof follows in the same way as for the Riesz distribution. As functions, for
Re(s),Re(t) > 0 andm ∈ N, we have

Φ2m
i Kε,t

δ,s =
( i∏
k=1

αk,i,m(δ, s, ε, t)
)( i−1∏

k=1
γk,i,m(δ, s, ε, t)

)
Kε,t
δ,s+2mei

,

Ψ2m
i Kε,t

δ,s =
( i∏
k=1

αk,i+1,m(δ, s, ε, t)
)( i∏

k=1
γk,i,m(δ, s, ε, t)

)
Kε,t+2mei
δ,s ,
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where for i ≤ k

αk,i,m(δ, s, ε, t) =
n∏
j=k

(si + ti + · · · + tj−1 + sj + j + 1 − k + [δi + εi + · · · + εj−1 + δj ]
2

)
m

γk,i,m(δ, s, ε, t) =
n∏
j=k

( ti + si+1 + · · · + sj + tj + j + 1 − k + [εi + δi+1 + · · · + δj + εj ]
2

)
m

Both sides of these equations extends analytically as distributions to all (s, t). If λi − νj +
1
2 + [ξi+ηj ] = −2ℓ then si+ ti+ · · · + sn+1−j +n+ 1 − j− i+ [δi+ εi+ · · · + δn+1−j ] = −2ℓ.
Thus by keeping track of which αk,i,m(δ, s, ε, t) and γk,i,m(δ, s, ε, t) vanishes, we get the
result.
Theorem 8.4. The operator Aη,νξ,λ vanishes on the the sets

Ni,j,k = {λi − νk + 1
2 + [ξi + ηk] ∈ −2N0} ∩ {νk − λj + 1

2 + [ηk + ξj ] ∈ −2N0},

where i < j and k ∈ {1, . . . , n} and

Mi,j,k = {νj − λk + 1
2 + [ηj + ξk] ∈ −2N0} ∩ {λk − νi + 1

2 + [ξk + ηi] ∈ −2N0},

where i < j and k ∈ {1, . . . , n+ 1}.

We prove this theorem in a series of lemmas.
Lemma 8.5. Let t1 + 1 = 0. If Re(si) ≥ 0, and Re(tj) ≥ 0 for i = 1, . . . , n, and j = 2, . . . , n
then

Kts(g) =
δ(gn,1)|gn+1,1|s1+s2 |gn,2|s2+t2 |gn−1,1|t2

∏n+1
i=3 |Φi(g)|si

∏n
j=3 |Ψj(g)|tj

n′(s, t) ,

where n′(s, t) = (n(s, t)/Γ( t1+1
2 ))|t1=−1. Furthermore, Ats vanishes when s1 + 1 ∈ −2N0 and

s2 + 1 ∈ −2N0.

Proof. For the (s, t) considered, we have that |Φi|si and |Ψi|tj are continuous functions.
The Riesz distribution |Ψ1(g)|t1/Γ( t1+1

2 ) = δ(gn,1) is a distribution on continuous func-
tions with compact support. Thus, the product above is defined and as Diracs delta func-
tion satisfies f(x)δ(x) = f(0)δ(x), we get the form for Kt

s as claimed. Strictly speaking,
Kt
s is defined by its analytic continuation which comes from the Bernstein–Sato identities,

but as it is continuous we can consider setting t1 = −1 as taking a limit from the right.
The normalization n(s, t) contains the Gamma-factors Γ( s1+1

2 ) and Γ( s2+1
2 ). Consid-

ering the case for s1 + 1 ∈ −2N0, if we let s1 = −2n − 1 and Re(s2) ≥ 2n + 1 along with
the rest of the exponents having a real-part ≥ 0, then we still have a continuous function
multiplied on a Dirac delta function, but n′(s, t)−1 = 0 so the whole thing vanishes. AsKt

s

is entire holomorphic in si, ti for i ≥ 2 and vanishes on an open set it is identically zero.
The case with s2 + 1 ∈ −2N0 follows in a similar way.

We now use the Bernstein–Sato identities to shift the condition on t1 + 1 to even negative
integers. Let D̃1(s, t) = D1(s+ e2, t− e1)D1(s, t) and note that

D̃1(s, t)Kt
s = t1(t1 − 1)n(s+ 2e2, t1 − 2e1)

n(s, t) Kt−2e1
s+2e2 = t1(s2 + 1)Kt−2e1

s+2e2 . (8.3)
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Lemma 8.6. Let t1 + 1 ∈ −2N0 then Ats vanishes for s1 + 1 ∈ −2N0 and for s2 + 1 ∈ −2N0.

Proof. We do this by induction on t1 + 1 = −2k in k, where the base case have been done
in Lemma 8.5. Assume that for t1 + 1 = −2k then At

s vanishes for s1 + 1 ∈ −2N0 and for
s2 + 1 ∈ −2N0. By (8.3), we have

D̃1(s− 2e2, t+ 2e1)Kt+2e1
s−2e2 = (t1 + 2)(s2 − 1)Kt

s.

By the induction hypothesis the left hand side vanishes for t1 + 3 = −2k, and either
s1 + 1 ∈ −2N0 or s2 − 1 ∈ −2N0. If t1 + 1 = −2(k + 1), s1 + 1 ∈ −2N0, and s2 ̸= 1 we
get that Kt

s = 0 and by continuity of Kt
s, we can remove the condition s2 ̸= 0. For n ≥ 0 if

t1 + 1 = −2(k + 1), s2 − 1 = −2n and s2 ̸= 1 then Kt
s = 0, but the two conditions on s2

corresponds to s2 + 1 ∈ −2N0.

We now extend the zeroes to the non-spherical case.

Lemma 8.7. Let t1 + ε1 + 1 = −2k then Aε,t
δ,s vanishes for s1 + δ1 + 1 ∈ −2N0, and for

s2 + δ2 + 1 ∈ −2N0.

Proof. Consider the identity,

Kε,t
δ,s = n(0, s− δ, 0, t− ε)

n(δ, s, ε, t)
( n+1∏
i=1

Φδi
i

n∏
j=1

Ψεj

j

)
K0,t−ε

0,s−δ.

As Φδi
i and Ψεj

j are just polynomials if we can argue that generically n(0, s − δ, 0, t −
ε)/n(δ, s, ε, t) does not have poles at the zeroes we found for Kt−ε

s−δ in Lemma 8.6 then we
get the claimed result. The first kind of factors that appears in n(0, s−δ, 0, t−ε)/n(δ, s, ε, t)
is

Γ( s1+1−δ1
2 )

Γ( s1+1+δ1
2 )

=

1, δ1 = 0,
2
s1
, δ1 = 1,

which are regular for the points considered. The next kind of factor consists of sums of si
and tj with an odd number of terms e.g.

Γ( s1+t1+s2+2−δ1−ε1−δ2
2 )

Γ( s1+t1+s2+2+[δ1+ε1+δ2]
2 )

=


1, δ1 + ε1 + δ2 = 0,

2
s1+t1+s2+1 , δ1 + ε1 + δ2 = 1,

2
s1+t1+s2+2 , δ1 + ε1 + δ2 = 2,

4
(s1+t1+s2+1)(s1+t1+s2−1) , δ1 + ε1 + δ2 = 3,

in either case we are at most restricting two variables so generically this type of factor is
regular.

We are now ready to prove Theorem 8.4.

Proof. The zeroes we found in Lemma 8.7 in (ξ, λ, η, ν)-coordinates are

N1,2,n = {λ1 − νn + 1
2 + [ξ1 + ηn] ∈ −2N0} ∩ {νn − λ2 + 1

2 + [ηn + ξ2] ∈ −2N0}
Mn−1,n,2 = {νn − λ2 + 1

2 + [ηn + ξ2] ∈ −2N0} ∩ {λ2 − νn−1 + 1
2 + [ξ2 + ηn−1] ∈ −2N0}.
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Consider the two functional identities

Aη,ν
ξ,λ ◦ Twi

wi(ξ,λ) = c

Γ(λi−λi+1+1+[ξi+ξi+1]
2 )

Aη,ν
wi(ξ,λ),

Twi
η,ν ◦ Aη,ν

ξ,λ = c′

Γ(νi+1−νi+1+[ηi+1+ηi]
2 )

Awi(η,ν)
ξ,λ ,

for some constants c, c′ that depends on (ξ, η). Using the first one for i = 2 we can for
λ2 −λ3 + 1 + [ξ2 + ξ3] /∈ −2N0 conclude that the zeroes of Aη,ν

ξ,λ from N1,2,n are also zeroes
for Aη,ν

w2(ξ,λ). This implies that N1,3,n ∩ {λ3 − λ2 + 1 + [ξ2 + ξ3] /∈ −2N0} are zeroes for
Aη,ν
ξ,λ. If (ξ, λ, η, ν) ∈ N1,3,n ∩ {λ3 − λ2 + 1 + [ξ3 + ξ2] ∈ −2N0}, then Aη,ν

ξ,λ vanishes on
the sequence (ξ, λ + 1

n+1e2, η, ν), and by continuity we get Aη,ν
ξ,λ vanishes on all of N1,3,n.

Applying this procedure for both the functional identities and all permutations wi we get
all the vanishing sets from Theorem 8.4. We note that using the first identity for i = 1
would not provide any new zeroes, as the Gamma-factor vanishes on all of N1,2,n which
means we are not allowed to swap the order i < j.

A Integral Formulas

Proposition A.1 (See [BD22][Prop. B.2]). For Re(α),Re(β) > −1 with 0 > Re(α + β + 1)
we have ∫

R
|y|αε |x− y|βξ dy = t(α, β, ε, ξ)|x|α+β+1

ε+ξ ,

where

t(α, β, ε, ξ) = (−1)εξ
√
π

Γ(α+1+ε
2 )Γ(β+1+ξ

2 )Γ(−α−β−1+[ε+ξ]2
2 )

Γ(−α+ε
2 )Γ(−β+ξ

2 )Γ(α+β+2+[ξ+ε]2
2 )

.

Corollary A.2. Let a, c ∈ R× and either b or d non-zero in R. For Re(α),Re(β) > −1 with
0 > Re(α+ β + 1) we have∫

R
|ax+ b|αε |cx+ d|βξ dx = (−1)εt(α, β, ε, ξ)|a|−β−1

ξ |c|−α−1
ε |ad− bc|α+β+1

ε+ξ .

Proposition A.3. For Re (µ) > 0 and Re (ν + µ
2 ) < 1 we have∫ ∞

0
xµ−1(1 + x2)ν−1 dx = 1

2B
(µ

2 , 1 − ν − µ

2
)
.
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Paper C

Unitary branching from GL(3,R) to
GL(2,R)
Jonathan Ditlevsen

1 Introduction

This is a unfinished paper on the branching problem of restricting unitary representa-
tions of GL(3,R) to GL(2,R). By using analytic methods we show how to decompose
any unitary representation of GL(3,R) into a direct integral of unitary representations of
GL(2,R), with a few arguments missing which we highlight in one of the sections.

1.1 Results and methods

The unitary dual of GL(3,R) consists of characters, unitary principal series, complemen-
tary series, unitarily induced generalized principal series and unitarily induced degener-
ate series.

Theorem 1.1. The unitary principal series, complementary series and unitarily induced general-
ized principal series all decomposes as

π|H ≃
⊕

η∈(Z/2Z)2

∫ ⊕

iR2
τη,ν dν ⊕

⊕
η∈Z/2Z

⊕
ν−∈1+η−2N

∫ ⊕

iR
τdsη,ν dν+,

whereas the unitarily induced degenerate series decomposes as

πλ|H ≃
⊕

η∈Z/2Z

∫
iR
τ(η,η),(λ,z) dz, (λ ∈ iR)

where τη,ν is the unitary principal series for GL(2,R) and τdsη,ν is the almost discrete series for
GL(2,R).

We essentially obtain the first part of this result in two distinct ways. The first method
comes from restricting principal series representations πξ,λ for λ ∈ iR3 to the open
GL(2,R)-orbit in GL(3,R)/P where P is a minimal parabolic of GL(3,R). Using a
Plancherel formula we can decompose vectors in f ∈ πξ,λ by

||f ||2 =
∑
η

∫
iR2

||Aη,ν
ξ,λ f ||2 dν1dν2

|a(λ, ν)|2 +
∑

η,ν1−ν2

∫
iR

||Aη,ν
ξ,λ f ||2d(ν1 + ν2)

|b(λ, ν)|2 ,

61
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where Aη,ν
ξ,λ is a holomorphic family of intertwinining operators. The way to obtain the

direct integral decomposition comes from analytically extending the right hand side in
terms of λ from iR3 to parameters λ, where πξ,λ is unitary or contains a unitary quo-
tient. To do so we need to know the meromorphic nature of a(λ, ν), b(λ, ν) and Aη,ν

ξ,λ.
The Plancherel formula used is from [BJD23], and is very explicit giving us the functions
a(λ, ν), b(λ, ν) in terms of Gamma-functions. The operators Aη,ν

ξ,λ have been studied in
Paper B, where all the necessary zeroes, functional equations and a normalization which
makes Aη,ν

ξ,λ holomorphic in (λ, ν) have been established.
The second method comes from considering generalized principal series representa-

tions and again restricting them to an open GL(2,R)-orbit of GL(3,R)/P ′, where P ′ is
a maximal parabolic subgroup of GL(3,R). This restriction is in most cases the space
IndGL(2,R)

S (ω), where S is the ax + b-group, and ω is its only unitary irreducible infinite
dimensional representation. Picking a non-trivial character χ of N , the group of upper
triangular matrices in GL(2,R) with 1’s on the diagonal, we can express ω = IndSN (χ)
and by induction in stages, the restriction is a Whittaker model. The decomposition then
follows from the Whittaker Plancherel formula.

Notation: We denote by N = {1, 2, 3, . . . } and by N0 = {0, 1, 2, . . . }. For operators
we use normal letters for the unnormalized meromorphic version and bold letters for the
normalized holomorphic versions.

2 Structure of GL(3,R) and GL(2,R)

Let (G,H) = (GL(3,R),GL(2,R)), where we consider GL(2,R) as a subgroup of GL(3,R)
by embedding it into the upper left corner. We introduce the notation d(s, t, u) for the
diagonal matrix in G with entries s, t, and u starting in the upper left corner. Abusing
notation, we use similar notation for diagonal matrices in H , namely d(s, t, 1) = d(s, t).

InG, we fix the minimal parabolic subgroup PG as the upper triangular matrices with
Langlands decomposition PG = MGAGNG where

MG = {d(m1,m2,m3) |mi ∈ {±1}}, AG = {d(a1, a2, a3) | ai ∈ R>0},

and

NG = {n(x, y, z) |x, y, z ∈ R} , where n(x, y, z) =

1 x z

0 1 y

0 0 1

 .
Similarly we define NG, the nilradical of the opposite parabolic, as

NG = {n(x, y, z) : x, y, z ∈ R} , where n(x, y, z) =

1 0 0
x 1 0
z y 1

 .
LetWG be the Weyl group of G which is isomorphic to the symmetric group of 3 letters.
We can considerWG as a subgroup ofG as the subgroup of permutation matrices. Fixing
the maximal compact KG = O(3) of G allows us to write any element in terms of the
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Iwasawa decomposition G = KGAGNG (or more rudimentary, in terms of the Gram–
Schimidt process). As an example we can decompose n(x, y, z) = kan where

k =


1
α

−(x+zy)
αβ

xy−z
β

x
α

1+z(z−xy)
αβ

−y
β

z
α

y(1+x2)−xz
αβ

1
β

 , α =
√

1 + x2 + z2, β =
√

1 + y2 + (z − xy)2. (2.1)

InH we fix theminimal parabolic subgroup PH as the group of upper triangular matrices
with Langlands-decomposition PH = MHAHNH where

MH = {d(m1,m2) |mi ∈ {±1}}, AH = {d(a1, a2) | ai ∈ R>0},

and
NH = {n(x) |x ∈ R}, where n(x) =

(
1 x

0 1

)
.

Similarly we define NH as

NH = {n(x) |x ∈ R}, where n(x) =
(

1 0
x 1

)
.

The Weyl groupWH ofH is isomorphic to the symmetric group of 2 letters. We can con-
sider it as a subgroup ofH as the identity matrix and the permutationmatrix correspond-
ing to the simple transposition (1, 2). Lastly, we set the maximal compact KH = O(2).
All the subgroups for H have been selected such that they are embedded into their G-
counterparts, allowing the decomposition of elements inH in terms ofG-decompositions
to be done inH . As an example, we get the k of the Iwasawa decomposition of n(x) simply
by setting y = z = 0 in (2.1) as

k =


1√

1+x2 − x√
1+x2 0

x√
1+x2

1√
1+x2 0

0 0 1

 =
( 1√

1+x2 − x√
1+x2

x√
1+x2

1√
1+x2

)
.

In G, we also have two maximal parabolic subgroups containing PG, namely

P0 =

∗ ∗ ∗
∗ ∗ ∗
0 0 ∗

 , and P1 =

∗ ∗ ∗
0 ∗ ∗
0 ∗ ∗

 ,
which have the Langlands decompositions Pi = MiAiNi where

M0 =
(

SL±(2,R)
±1

)
, M1 =

(
±1

SL±(2,R)

)
,

A0 =
{
d(a, a, b) : a, b ∈ R>0

}
, A1 =

{
d(a, b, b) : a, b ∈ R>0

}
,

N0 =
{1 α

1 β

1

 : α, β ∈ R
}
, N1 =

{1 β α

1
1

 : α, β ∈ R
}
.
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3 Unitary principal series representations

3.1 Unitary dual of SL(2,R) in terms of principal series representations

Let SL±(2,R) be the group of 2 × 2 matrices with determinant ±1 and consider the
parabolic subgroup PS = MSASNS of upper triangular matrices in SL±(2,R) where
MS = MH , AS = {d(t, t−1) : t > 0} and NS = NH .

For ε ∈ (Z/2Z)2 ≃ {0, 1}2 and µ ∈ C the principal series representation ρε,µ = IndSL±(2,R)
PS

(ε⊗ eµ ⊗ 1) of SL±(2,R) is the left regular action of SL±(2,R) on f ∈ L2(O(2)/MS) satis-
fying the equivariance properties

f(gm) = mε1
1 m

ε2
2 f(g), (d(m1,m2) ∈ MS)

f(ga) = t−µ−1f(g), (a = d(t, t−1) ∈ AS)
f(gn) = f(g), (n ∈ NS).

Proposition 3.1 ([B98]). Let ε ∈ {0, 1}2 and set ε+ = ε1 + ε2. The unitary irreducible repre-
sentations of SL±(2,R) can be listed in terms of principal series representations as follows:

1. The unitary principal series, ρε,µ where µ ∈ iR≥0.

2. The complementary series, ρε,µ where ε+ = 0 and µ ∈ (−1, 0).

3. The discrete series representations, ρdsε,µ which appears as a quotient inside ρε,µ where µ ∈
1 − ε+ − 2N.

4. The trivial representation and the sign character which appears as a subrepresentation of ρε,µ
where µ = −1.

The above are non-isomorphic except for the discrete series representations which are isomorphic
under ε+ (1, 1).

3.2 Unitary dual of GL(2,R) in terms of principal series representations

For η ∈ (Z/2Z)2 and ν ∈ C2 the principal series representations τη,ν = IndHPH
(η⊗eν ⊗1) ofH

is the left regular action of H on smooth functions f : H → C satisfying the equvariance
properties

f(gm) = mη1
1 m

η2
2 f(g), (d(m1,m2) ∈ MH)

f(ga) = a
−ν−1− 1

2
1 a

−ν2+ 1
2

2 f(g), (a = d(a1, a2) ∈ AH)
f(gn) = f(g), (n ∈ NH).

Denote by wH a representative of the longest (and only non-trivial) Weyl group element
inWH , that is the 2 × 2 matrix with 1’s on the off-diagonal. We define the normalized the
Knapp–Stein intertwining operator TwH

η,ν : τη,ν → τwH(η,ν) as

TwH
η,ν f(h) = 1

Γ(ν1−ν2+[η1+η2]
2 )

∫
R
f(hwHn(x)) dx,
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where wH acting on η and ν simply swaps their first and second entry. Here z + [η + η′]
mean adding η + η′ in Z/2Z first and then adding either a 0 or 1 to z.

The integral only converges for ν in some domain, but with the chosen normalization
it can be analytically extended to all ν ∈ C2. In order for the principal series to be unitary
we need the parameter ν1 + ν2 coming from the action of the center to be pure imaginary,
and the rest ν1 − ν2 to essentially be a unitary representation of SL±(2,R). Thus, we can
consider the discrete series representations for ν1 +ν2 ∈ iR and ν1 −ν2 ∈ 1− [η1 +η2]−2N

τdsη,ν = τη,ν/ ker(TwH
η,ν ).

These are equivalent when adding (1, 1) to η, sowe parameterize them by a single element
from Z/2Z corresponding to the sum η1 +η2. When ν ∈ iR2, the space τη,ν comes with the
usual L2-norm from L2(KH/MH) whereas when ν ∈ (0, 1) or ν1 − ν2 ∈ 1 − [η1 + η2] − 2N,
we use the norm

∥f∥2 =
∫
KH/MH

f(k)TwH
η,ν f(k)d(kMH).

These norms makes τη,ν and τdsη,ν a pre-Hilbert space but we will not explicitly state when
we are talking about τη,ν or its completion, as this should be clear from context.

Theorem 3.2 ([B98]). Let ν ∈ C2 and η ∈ Z/2Z with ν± = ν1 ± ν2 and η+ = η1 + η2. All the
unitary irreducible representations of GL(2,R) can be described as follows: In all cases ν+ ∈ iR

1. The characters h 7→ | det(h)|−
ν+
2

η+ , which sits inside τη,ν as a subrepresentation for ν− = −1.

2. The unitary principal series τη,ν for ν ∈ iR2.

3. The complementary series τη,ν for η+ = 0 and ν− ∈ (0, 1).

4. The discrete series τdsη+,ν which sits inside τη,ν as a quotient for ν− ∈ 1 − η+ − 2N.

3.3 Unitary dual for GL(3,R) in terms of principal series representations and
generalized principal series representations

For ξ ∈ (Z/2Z)3 ≃ {0, 1}3 and λ ∈ C3 the principal series representations πξ,λ = IndGPG
(ξ ⊗

eλ ⊗ 1) of G, is the left regular action of G on smooth functions f : G → C satisfying the
equivariance properties from PG as following

f(gm) = mξ1
1 m

ξ2
2 m

ξ3
3 f(g), (d(m1,m2,m3) ∈ MG)

f(ga) = a−λ1−1
1 a−λ2

2 a−λ3+1
3 f(g), (a = d(a1, a2, a3) ∈ AG)

f(gn) = f(g), (n ∈ NG).

Between the principal series representations, we have the Knapp–Stein intertwining op-
erators Twξ,λ : πξ,λ → πw(ξ,λ) which are defined by

Twξ,λf(g) =
∫
NG∩w−1NGw

f(gwn) dn
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where w is a representative of an element inWG, and w acts on ξ and λ by permuting the
entries. This integral converges only for λ in some domain, but can be meromorpically
extended to all λ ∈ C3. The Knapp–Stein intertwining operator satisfies that

Tw1w2
ξ,λ = Tw1

w2(ξ,λ) ◦ Tw2
ξ,λ . (3.1)

By considering the case where w = (i, i + 1) is a simple reflection then inspired by the
GL(2,R)-case, we can use the normalization

Twξ,λ = 1
Γ(λi−λi+1+[ξi+ξi+1]

2 )
Twξ,λ,

to analytically extend this to all λ ∈ C3 and then use (3.1) to define Twξ,λ for any w by
writing w as a product of simple reflections.

Let ρ be an irreducible representation of SL±(2,R), ε a character of {0, 1} and λ ∈ C2

the generalized principal series representation σρ,ε,λ = IndGP0((ρ⊗ ε) ⊗ eλ ⊗ 1) of G is the left
regular action on the smooth functions f : G → ρwith the equivariance properties

f(gm) = ρ−1(m)f(g), (m ∈ M0)
f(ga) = a−λ1−1

1 a−λ2+1
2 f(g), (a = d(a1, a1, a2) ∈ A0)

f(gn) = f(g), (n ∈ N0).

By induction in stages, the generalized principal series representations often coincidewith
the principal series representations, so we give names to the instances where this is not
the case.

If ρ is a discrete series representation ρdsε,µ of SL±(2,R) µ = −m and λ ∈ iR2 then
we call σρ,ε,λ the unitarily induced generalized principal series representation, and denote it by
π
gen
m,ε,λ. As we are mostly going to be working with unitary representation we may use

generalized series representation for short.
The discrete series representation ρdsε,µ sits inside a principal series representation ρε,µ

for SL±(2,R) as quotient for µ = −m and δ1 + δ2, the same parity as m. By induction
in stages, (see [K16, (7.5)]) we get that πgenm,ε,λ sits inside πξ,λ′ as quotient since parabolic
induction is functorial where

ξ = (δ1, δ2, ε), λ′ = (λ1 −m

2 ,
λ1 +m

2 , λ2).

By [SV80, Corrolary 2.8] the composition factors are independent of the parabolic used,
so we can instead consider πgenm,ε,λ as a quotient inside πξ′,λ′′ , where

ξ′ = (δ1, ε, δ2), λ′′ = (λ1 −m

2 , λ2,
λ1 +m

2 ).

For δ = 0, 1, let χδ(h) = sgn(det(h))δ be a unitary character of SL±(2,R), and λ ∈ iR2 then
we call σχδ,ε,λ the unitarily induced degenerate series representation, and denote it by πdeg

δ,ε,λ. We
may use degenerate series representation for short. The character χδ sits inside the principal
series representation ρδ′,µ for SL±(2,R) as a quotient for µ = 1, where δ′

1 + δ′
2 = δ. By

induction in stages, we get that πdeg
δ,ε,λ sits inside πξ,λ′ as a quotient where

ξ = (δ′
1, δ

′
2, ε), λ = (λ1 + 1

2 ,
λ1 − 1

2 , λ2),
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and as the composition factors are independent of the parabolic used, we can instead
consider πdeg

δ,ε,λ as a quotient inside πξ′,λ′′ , where

ξ′ = (δ′
1, ε, δ

′
2), λ′′ = (λ1 + 1

2 , λ2,
λ1 − 1

2 ).

Theorem 3.3 ([S80]). The unitary irreducible representations of GL(3,R) are

1. The characters g 7→ | det(g)|sε, where s ∈ iR and ε ∈ {0, 1}

2. The unitary principal series πξ,λ, where λ ∈ iR3.

3. The complementary series πξ,λ, where ξ1 = ξ3, λ1+λ3 = 0, λ2 ∈ iR andRe(λ1) ∈ (−1
2 ,

1
2).

4. The unitarily induced generalized principal series πgenm,ε,λ, where λ ∈ iR2.

5. The unitarily induced degenerate series πdeg
δ,ε,λ, where λ ∈ iR2.

With the embedding into the principal series as described above, we have that at each end
of the complementary series, sits πgen1,ξ2,λ

and πdeg
0,ξ2,λ

.

4 Symmetry breaking operators between principal series
representations

In this sectionwe introduce a family of symmetry breaking operator and recall some prop-
erties about it which shown in Paper B. Consider the polynomials

Φ1(g) = g31, Φ2(g) = g31g22 − g32g21, Φ3(g) = − det(g)

Ψ1(g) = g21, Ψ2(g) = g21g12 − g22g11,

and the integral kernel

Kη,ν
ξ,λ (g) = |Φ1(g)|s1

δ1
|Ψ1(g)|t1ε1 |Φ2(g)|s2

δ2
|Ψ2(g)|t2ε2 |Φ3(g)|s3

δ3
,

where

s1 = λ1 − ν2 − 1
2 , t1 = ν2 − λ2 − 1

2 , s2 = λ2 − ν1 − 1
2 , t2 = ν1 − λ3 − 1

2 , s3 = λ3 + 1,

and
δ1 = ξ1 + η2, ε1 = η2 + ξ2, δ2 = ξ2 + η1, ε2 = η1 + ξ3, δ3 = ξ3.

Wewill use the parameters (δ, s, ε, t) and (ξ, λ, η, ν) interchangeably as they are related by
an invertible affine transformation. This kernel satisfy the equivariance properties

Kη,ν
ξ,λ (gmGaGnG) = |ℓ1|λ1−1

ξ1
|ℓ2|λ2

ξ2
|ℓ3|λ3+1

ξ3
Kη,ν
ξ,λ (g), (d(ℓ1, ℓ2, ℓ3) ∈ MGAG, nG ∈ NG),

Kη,ν
ξ,λ (mHaHnHg) = |ℓ1|ν1+ 1

2
η1 |ℓ2|ν2− 1

2Kη,ν
ξ,λ (g), (d(ℓ1, ℓ2) ∈ MHAH , nH ∈ NH),

and is locally integrable when Re(si),Re(ti) ≥ 0 for i ∈ {1, 2} and s3 ∈ C. For those
parameters it defines an intertwining operator Aη,νξ,λ : πξ,λ|H → τη,ν by

Aη,νξ,λf(h) =
∫
NG

Kη,ν
ξ,λ (h−1n)f(n) dn =

∫
KG

Kη,ν
ξ,λ (h−1k)f(k) dk,
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where the last equality follows from Knapp [K16, (5.25)]. By [F21] the space HomH(
πξ,λ|H , τη,ν) is for generic parameters (λ, ν) of dimension 1. The kernel Kη,ν

ξ,λ in the non-
compact picture NG is given by

Kη,ν
ξ,λ (n(x, y, z)) = |z|λ1−ν2− 1

2
ξ1+η2

|x|ν2−λ2− 1
2

η2+ξ2
|z − xy|λ2−ν1− 1

2
ξ2+η1

. (4.1)
We now state some Bernstein–Sato identitites given in the non-compact picture coordi-
nates. The result in global coordinates can be found in Paper B. Consider the following
differential operators

D1(λ) = z(∂x + y∂z) − (λ1 − λ2 − 1)y,
C1(ν) = x∂x − (ν2 − ν1 − 1),
F1(λ) = ∂y(y∂z + ∂x) + (λ1 − λ2 − 1)∂z
D2(λ) = z∂x∂y + (y∂y − (λ2 − λ3 − 1))∂z

− (λ1 − λ3 − 1)∂y + (λ1 − λ2 − 1)(λ1 − λ3 − 1).

Theorem 4.1. We have the following Bernstein–Sato identities

D1(λ)Kε,t
δ,s = (ν2 − λ2 − 1

2)Kε−e1,t−e1
δ+e2,s+e2

D2(λ)Kε,t
δ,s = (ν1 − λ3 − 1

2)(ν2 − λ3 − 1
2)Kε−e2,t−e2

δ+e3,s+e3
,

C1(ν)Kε,t
δ,s = (λ2 − ν1 − 1

2)Kε+e2,t+e2
δ+e1−e2,s+e1−e2

,

F1(λ)Kε,t
δ,s = (λ1 − ν1 − 1

2)(λ1 − ν2 − 1
2)Kε,t

δ+e3−e1,s+e3−e1
.

Let
n0(λ, ν) = Γ(λ1 − ν2 + 1

2)Γ(ν2 − λ2 + 1
2)Γ(λ2 − ν1 + 1

2)
× Γ(ν1 − λ3 + 1

2)Γ(λ1 − ν1 + 1
2)Γ(ν2 − λ3 + 1

2),

and set Kη,ν
ξ,λ = n0(λ, ν)−1Kη,ν

ξ,λ . Then using Theorem 4.1, we can analytically extend Kη,ν
ξ,λ,

as a distribution to (λ, ν) ∈ C3 ×C2. This normalization is however not optimal, so instead
we use

n(ξ, λ, η, ν) = Γ
(
λ1−ν2+ 1

2 +[ξ1+η2]2
2

)
Γ
(
λ1−ν1+ 1

2 +[ξ1+η1]2
2

)
Γ
(
λ2−ν1+ 1

2 +[ξ2+η1]2
2

)
× Γ

(
ν2−λ2+ 1

2 +[ξ2+η2]2
2

)
Γ
(
ν2−λ3+ 1

2 +[ξ3+η2]2
2

)
Γ
(
ν1−λ3+ 1

2 +[ξ3+η1]2
2

)
.

Let
Kη,ν
ξ,λ = n(ξ, λ, η, ν)−1Kη,ν

ξ,λ , and Aη,ν
ξ,λ = n(ξ, λ, η, ν)−1Aη,νξ,λ.

The family Aη,ν
ξ,λ is defined for (λ, ν) ∈ C3 × C2 and is holomorphic in these parameters.

ComposingAη,ν
ξ,λ by the Knapp–Stein intertwining operators as described in the following

diagram, we get the following result.

πξ,λ
∣∣
H

τη,ν πξ,λ
∣∣
H

τη,ν

πw(ξ,λ)
∣∣
H

τwH(η,ν)

Aη,ν
ξ,λ

Tw
ξ,λ Aη,ν

w(ξ,λ)
TwH

η,ν

Aη,ν
ξ,λ

AwH (η,ν)
ξ,λ



4. Symmetry breaking operators between principal series representations 69

Theorem 4.2. For wi = (i, i+ 1), a simple transposition, we have

Aη,νξ,λT
wi
ξ,λ =

√
π(−1)(ξi+ξi+1)(η3−i+1)+ξiξi+1

Γ(λi−λi+1+1+[ξi+ξi+1]
2 )

Aη,νwi(ξ,λ).

Similarly, we have

TwH
η,ν A

η,ν
ξ,λ =

√
π(−1)(η1+η2)(ξ2+1)+η1η2

Γ(ν2−ν1+1+[η1+η2]
2 )

AwH(η,ν)
ξ,λ .

By writing the longest Weyl group element w0 = (1, 3) as w1w2w1 and applying this the-
orem thrice, we get

Corollary 4.3.

Aη,νξ,λT
w0
ξ,λ = π

3
2 (−1)(ξ1+ξ3)(η1+η2+ξ2)+ξ1ξ3α(ξ, λ)Aη,νw0(ξ,λ),

where α is the holomorphic function given by

α(ξ, λ) = 1
Γ(λ1−λ2+1+[ξ1+ξ2]

2 )Γ(λ2−λ3+1+[ξ2+ξ3]
2 )Γ(λ1−λ3+1+[ξ1+ξ3]

2 )
.

We denote by N the vanishing set for Aη,ν
ξ,λ i.e.

N = {(ξ, λ, η, ν)|Aη,ν
ξ,λ = 0}.

Theorem 4.4. For i, j ∈ {1, 2, 3} where i < j and k ∈ {1, 2} then

Ni,j,k = {λi − νk + 1
2 + [ξi + ηk] ∈ −2N0} ∩ {νk − λj + 1

2 + [ηk + ξj ] ∈ −2N0},

and

Mi = {ν2 − λi + 1
2 + [η2 + ξi] ∈ −2N0} ∩ {λi − ν1 + 1

2 + [ξi + η1] ∈ −2N0},

are subsets of N .

This shows when restricting to certain hyperplanes, we only need some of the factors
from n(ξ, λ, η, ν) and on those hyperplanes we can renormalize the symmetry breaking
operators and obtain potentially non-zero symmetry breaking operators. Restricting to
the hyperplane λi − νk + 1

2 + [ξi + ηk] = −2n, we can consider the operator

Bη,ν
ξ,λ =

( ∏
k<ℓ≤2

Γ(νℓ−λi+ 1
2 +[ξi+ηℓ]
2 )

∏
i<j≤3

Γ(νk−λj+ 1
2 +[ξj+ηk]
2 )Aη,ν

ξ,λ

)∣∣∣
λi−νk+ 1

2 +[ηk+ξi]=−2n
,

and similarly for νk − λj + 1
2 + [ηk + ξj ] = −2n the operator

Bη,ν
ξ,λ =

( ∏
1≤ℓ<k

Γ(λj−νℓ+ 1
2 +[ξj+ηℓ]
2 )

∏
1≤i<j

Γ(λi−νk+ 1
2 +[ξi+ηk]
2 )Aη,ν

ξ,λ

)∣∣∣
νk−λj+ 1

2 +[ηk+ξj ]=−2n
,

where we consider the empty product to be equal to one. These operators are still holo-
morphic in the parameters (λ, ν) on their respective hyperplanes. We have hidden which
hyperplane we are restricting to in the notation, as it would be too cumbersome, but we
will be very explicit about which hyperplane and thus which Bη,νξ,λ we are considering.
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5 Restricting to an open orbit

Consider the base point

g0 =

0 1 0
1 0 0
1 0 1

 ,
for the open dense H-orbit in G/PG. Then

hg0 =

h12 h11 0
h22 h21 0
1 0 1

 , g−1
0 hg0 =

 h22 h21 0
h12 h11 0

1 − h22 −h21 1

 ,
which shows that the open denseH-orbit of g0 inG/PG has stabilizerD0 := {d(s, 1) : s ∈
R×}. In terms of NGMGAGNG, we can decompose hg0 as

hg0 =

 1
h22
h12

1
1
h12

h11
det(h) 1


h12

−det(h)
h12

1


1 h11

h12
1

1

 . (5.1)

For computing the Iwasawa decomposition we can use the classical trick of writing g =
kan then g⊺g = n⊺a2n. So to decompose elements hg0 in the orbit in terms of the Iwasawa
decomposition the following suffices

g⊺0hg0 =

 1
h12
h22+1 1

−1
h22+1

h21
det(h)+h11

1



h22 + 1

det(h)+h11
h22+1

det(h)
det(h)+h11


1 h21

h11+1
−1

h22+1
1 h12

det(h)+h11

1


(5.2)

Consider the H-intertwining map

O : πξ,λ|H → IndHD0(ξ2 ⊗ eλ2),
f 7→ F,

where F (h) = f(hg0) where the equivariance property follows from

Of(gd(t, 1)) = f(gd(t, 1)g0) = f(gg0d(1, t)) = |t|−λ2
ξ2

Of(g).

Proposition 5.1. The image of O is contained inL2(H/D0) when −1 < Re (λ1), Re(λ1 −λ2) >
−1

2 , −1
2 < Re(λ2) Re (λ3) < 1

2 . Furthermore, it is unitary when λ ∈ iR3.

Proof. Let D = {d(s, t) : s, t ∈ R×} then decomposing H = NHMHAHNH we get the
coordinates n(x)n(y)D on H/D with the invariant measure as dydx see [K16, Chap. 5].
Now note that H/D0 ≃ H/D ×D0, so we get∫

H/D0
|Of(g)|2 d(gD0) =

∫
H/D

∫
R×

|Of(gd(1, t))|2 dt
|t|
d(gD)

=
∫
R

∫
R

∫
R×

|f(n(x)n(y)d(1, t)g0)|2 dt
|t|
dydx

=
∫
R

∫
R

∫
R×

|f(n(x)n(yt−1)d(1, t)g0)|2dt
t2
dydx.



5. Restricting to an open orbit 71

Using (5.2) we decompose n(x)n(yt−1)d(1, t)g0 = kan, and the integral becomes∫
R3

(1 + y2 + (t− xy)2)Re(λ2−λ1−1)(1 + x2 + t2)Re(λ3−λ2−1)|t|−2 Re(λ3)|f(k)|2dxdydt.

(5.3)
We can bound |f(k)| by some some non-negative constant cf , giving us

≤ cf

∫
R3

(1 + x2)−2 Re(λ2)−1(1 + y2)Re(λ2−λ1−1)(1 + z2)Re(λ3−λ1− 3
2 )|z|−2 Re(λ3) dxdydz

which converges for

Re(λ2) > −1
2 , Re(λ1 − λ2) > −1

2 , Re(λ3) < 1
2 , Re(λ1) > −1.

In the case where λ ∈ (iR)3 then
e−2ρH(n(x,y,z)) = (1 + x2 + z2)−1(1 + y2 + (z − xy)2)−1,

so transforming (5.3) by [K16, (5.25)] we see O is unitary.

5.1 The Mellin fibration

Consider the Mellin transform given by

M′f(s) = 1√
2π

∫ ∞

0
tisf(t)dt

t
.

This can be regarded as a unitary map between L2(R+,
dt
t ) and L2(R, dt), since if g(u)

= f(eu) then

∥M′f∥2 = 1
2π

∫
R

∣∣∣ ∫ ∞

0
tisf(t)dt

t

∣∣∣2ds =
∫
R

∣∣∣ ∫ ∞

0
g(u)eiusdu

∣∣∣2ds = ∥Fg∥2 = ∥g∥2 = ∥f∥2,

by the Plancherel formula for the Fourier transform. Let D = {d(s, t) : s, t ∈ R×}, and
consider the map

Mδ,s : IndHD0(ξ2 ⊗ eλ2) → IndHD((ξ2, δ) ⊗ e(λ2,s))

given by

Mδ,sf(h) = 1√
2π

∫ ∞

0
ts[f(hd(1, t)) + (−1)δf(hd(1,−t))]dt

t

= 1
2
√
π

∫
R×

|t|sδf(hd(1, t))dt
|t|
,

where it is easily checked that Mδ,sf has the desired equivariance properties.
Proposition 5.2. The map

M : IndHD0(ξ2 ⊗ eλ2) →
1⊕
δ=0

∫ ⊕

iR
IndHD((ξ2, δ) ⊗ e(λ2,s))ds,

f 7→ (Mδ,sf)δ=0,1, s∈iR,

is a unitary isomorphism.
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Proof. For a fixed h ∈ H/D we consider the δ-part (that is even or odd part) of f given by
f̃hδ (t) = 1

2f(hd(1, t)) + (−1)δ 1
2f(hd(1,−t)) then

∥Mf∥2 =
1∑
δ=0

∫
iR

∥Mδ,s
ξ,λf∥2ds =

1∑
δ=0

∫
H/D

∫
iR

|
√

2[M′f̃hδ ](−is)|2dsd(hD)

= 2
1∑
δ=0

∫
H/D

∫ ∞

0
|f̃hδ (t)|2dt

t
dh =

∫
H/D

∫
R×

|f(hd(1, t))|2 dt
|t|
d(hD) = ∥f∥2

H/D0
,

wherewe used the Plancherel formula for theMellin transform, and that the even and odd
part of a function are orthogonal to one another. Being an isometry it is an injection and
being a surjection then follows from the inversion formula for the Mellin transformation.

5.2 A Plancherel formula for H/D

Consider the operator

Bη,ν
ε,µ : IndHD(ε⊗ eµ) → IndHPH

(η ⊗ eν ⊗ 1), Bη,ν
ε,µf(g) =

∫
H/D

Kη,ν
ε,µ (x−1g)f(x) d(xD),

where
Kη,ν
ε,µ (g) = |g11|

ν2−ν1−(µ1−µ2)−1
2

η1+ε2 |g21|
ν2−ν1+(µ1−µ2)−1

2
η2+ε2 | det(g)|

1
2 −ν2
η2 .

By acting by the center of H , we see that

ε1 + ε2 = η1 + η2, µ1 + µ2 = ν1 + ν2.

Theorem 5.3 ([BJD23]). Let µ ∈ iR2 and put µ± = µ1 ± µ2 and ε∗ = ε1 + ε2. For f ∈
IndHD(ε⊗ eµ)

∥f∥2 =
∫
iR

1∑
σ=0

∥Bη(σ),ν(t)
ε,µ f∥2 dt

|a(ε∗, t)|2

+
1∑

σ=0

∑
t∈1−ε∗+2σ−4N

b(ε∗, σ(1 − ε∗), t)∥Bη(σ(1−ε∗)),ν(t)
ε,µ f∥2,

where
(η(σ), ν(t)) =

(
ε+ σ(1, 1), (µ++t

2 , t
µ+ − t

2 )
)
,

and

b(δ, σ, µ−, t) =
2t−2+3δ(−t)δΓ(1 − t)

∣∣Γ(1+2σ+t+µ−
4 )

∣∣2
π2Γ( δ−t2 )

∣∣Γ(1+2σ−t−µ−
4 )

∣∣2 , a(δ, t) =
2

3
2πΓ( t2)Γ(1−t

2 )
Γ(1+t+δ

2 )Γ(1+t−δ
2 )

.

Composing the maps above we get an H-intertwining map

Bη,ν
(ξ2,δ),(λ2,s)Mδ,sO : πξ,λ|H → τη,ν ,

and for generic parameters HomH(πξ,λ|H , τη,ν) has dimension at most one so this compo-
sition should give us multiple of Aη,νξ,λ.



6. The Plancherel formula on the unitary axis 73

Proposition 5.4. Let t ∈ C and σ ∈ Z/2Z and put η = (ξ2 + σ, δ + σ) and ν = 1
2(λ2 + s +

t, λ2 + s− t). We have the following relation

Bη,ν
(ξ2,δ),(λ2,s)Mδ,sO = (−1)ξ2

2
√
π
Aη,νξ,λ. (5.4)

Proof. Using (5.1) we get that

Mδ,sOf
(
n(x)n(y)

)
= 1

2
√
π

∫
R×

|t|sδf(n(x)n(y)d(1, t)g0) dt
|t|

=
|y|λ2−λ1−1

ξ1+ξ2
(−1)ξ2

2
√
π

∫
R×

|t|λ1−s
ξ1+δ f

(
n(x+ y−1, t, (ty)−1)

)
dt.

As both maps are H-intertwining it suffices to show the relation at the identity element.
The left hand side of (5.4) at the identity element is

(−1)ξ2+η2+δ

2
√
π

∫
R3

|y|λ2−λ1−1
ξ1+ξ2

|t|λ1−s
δ+ξ1

|1 + xy|
t+s−λ2−1

2
ξ2+σ+δ

× |x|
t+λ2−s−1

2
σ f

(
n(x+ y−1, t, (ty)−1)

)
dxdtdy

Next changing variables (x+ y−1, t, (ty)−1) → (x, y, z), we get
(−1)ξ2

2
√
π

∫
R3

|z − xy|λ2− s+λ2+t

2 − 1
2

σ |z|λ1− λ2+t+s

2 − 1
2

ξ1+σ+δ |x|
λ2+s−t

2 −λ2− 1
2

ξ2+σ+δ f
(
n(x, y, z)

)
dxdydz.

Comparing with (4.1) shows (5.4).

6 The Plancherel formula on the unitary axis

On πξ,λ × πξ,−λ, we have the bilinear pairing

⟨f, f ′⟩ =
∫
KG

f(k)f ′(k) dk,

and the corresponding sesquilinear pairing on πξ,λ ×πξ,−λ given by (f | f ′) = ⟨f , f ′⟩. For
λ ∈ iR3 and (f, f ′) ∈ πξ,λ × πξ,−λ, we have that

⟨f, f ′⟩ = (f | f ′) = (MOf | MOf ′) =
1∑
δ=0

∫
iR

(Mδ,sOf | Mδ,sOf ′)ds.

Let ε(δ) = ξ2 + δ and (f, f ′) ∈ πξ,λ × πw0(ξ,−λ) . For λ ∈ iR3 and ξ1 = ξ3 we get, using
Theorem 5.3, that

⟨f,Tw0
w0(ξ,−λ)f

′⟩ =
1∑
δ=0

∫
iR

(Mδ,sOf | Mδ,sOTw0
w0(ξ,λ)f

′)ds

=
1∑
δ=0

∫
iR

[ ∫
iR

1∑
σ=0

(
B
η(σ,δ),ν(s,t)
(ξ2,δ),(λ2,s)Mδ,sOf

∣∣∣Bη(σ,δ),ν(s,t)
(ξ2,δ),(λ2,s)Mδ,sOTw0

w0(ξ,λ)f
′
) dt

|a(ε(δ), t)|2

+
1∑

σ=0

∑
t∈1−[ε(δ)]+2σ−4N

b(ε(δ), σ(1 − ε(δ)), s+ λ2, t)

×
(
B
η(σ(1−ε(δ),δ),ν(s,t)
(ξ2,δ),(λ2,s) Mδ,sOf

∣∣∣Bη(σ(1−ε(δ),δ),ν(s,t)
(ξ2,δ),(λ2,s) Mδ,sOTw0

w0(ξ,λ)f
′
)]
ds,
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where ν(s, t) = 1
2(λ2 + s+ t, λ2 + s− t) and η(σ, δ) = (ξ2 +σ, δ+σ). Applying Proposition

5.4, we get

1∑
σ,δ=0

∫
iR2

(
A
η(σ,η),ν(s,t)
ξ,λ f

∣∣∣Aη(σ,δ),ν(s,t)
ξ,λ Tw0

w0(ξ,λ)f
′
) dtds

4π|a(ε(δ), t)|2

+
1∑

σ,δ=0

∫
iR

∑
t∈1−ε(δ)+2σ−4N

b(ε(δ), σ(1 − ε(δ)), s+ λ2, t)
4π

×
(
A
η(σ(1−ε(δ)),δ),ν(s,t)
ξ,λ f

∣∣∣Aη(σ(1−ε(δ)),δ),ν(s,t)
ξ,λ Tw0

w0(ξ,λ)f
′
)
ds (6.1)

We will refer to this equation often and we will call the first line of this expression for the
continuous part and the remaining for the discrete part even though strictly speaking it is
not discrete.

The primary objective is now to consider the right hand side as a holomorphic function
in λ, and analytically extend it to λ, where πξ,λ is unitary or contains a unitary quotient.
We know that for λ ∈ iR3, this expression coincides with ⟨f,Tw0

w0(ξ,−λ)f
′⟩ which is an

entire holomorphic function, so by the identity theorem for holomorphic functions they
coincide for all λ. When we then restrict (ξ, λ) to the parameters for which πξ,λ is unitary
(or contains a unitary quotient), and set f ′ = f we get something along the lines of

||f ||2 = ⟨f,Tw0
ξ,λ
f⟩ =

∑
η

∫
iR2

||Aη,ν
ξ,λ f ||2 dν1dν2

|a(λ, ν)|2 +
∑

η,ν1−ν2

∫
iR

||Aη,ν
ξ,λ f ||2d(ν1 + ν2)

|b(λ, ν)|2 ,

this is then a Plancherel formula for

πξ,λ
∣∣
H

≃
⊕
η

∫ ⊕

iR2
τη,ν dν ⊕

⊕
η,ν1−ν2

∫ ⊕

iR
τη,ν d(ν1 + ν2),

giving a unitary branching law.
But before we start cheering in pure ecstasy let us talk about some limitations about

this approach. Looking at the expression ⟨f,Tw0
ξ,λ
f⟩ we see that it can only be an inner

product if ξ1 = ξ3, as w0 swap ξ1 and ξ3. This implies that outside of the unitary axis
we can at best hope to decompose representations with ξ1 = ξ3. However, this contains
the complementary series, the generalized series induced from an odd discrete series of
SL±(2,R), and the degenerate series induced from the trivial representation of SL±(2,R),
which is still a big portion of the unitary representations.

We introduce the following meromorphic function which will show up in both the
continuous part and the discrete part:

p(ξ, λ, η, ν) := n(ξ, λ, η, ν)n(ξ,−λ, η,−ν) =
3∏
i=1

pi(ξ, λ, η, ν),

where

pi(ξ, λ, η, ν) = Γ(λi−ν1+ 1
2 +[ξi+η1]
2 )Γ(ν1−λi+ 1

2 +[ξi+η1]
2 )Γ(λi−ν2+ 1

2 +[ξi+η2]
2 )Γ(ν2−λi+ 1

2 +[η2+ξi]
2 ).
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6.1 The continuous part

Recall that we are still assuming that λ ∈ iR3, ξ1 = ξ3 and (f, f ′) ∈ πξ,λ × πw0(ξ,−λ). Only
considering the continuous part of (6.1). We make the change of variables in the sums
η1 = ξ2 + σ and η2 = δ + σ and in the integrals µ1 = 1

2(λ2 + s) and µ2 = 1
2 t and abusing

notation we set η = (η1, η2) and ν(µ) = (µ1 + µ2, µ1 − µ2), so we get
∑

η∈(Z/2Z)2

∫
iR2

〈
A
η,ν(µ)
ξ,λ f,A

η,−ν(µ)
ξ,−λ Tw0

w0(ξ,−λ)f
′
〉 dµ1dµ2
π|a(η1 + η2, 2µ2)|2 .

By artificially introducing n(ξ, λ, η, ν) and using Corollary 4.3, we get

(−1)ξ1
√
π

∑
η∈(Z/2Z)2

α(ξ,−λ)
∫
iR2

〈
Aη,ν(µ)
ξ,λ f, Aη,−ν(µ)

w0(ξ,−λ)f
′
〉 p(ξ, λ, η, ν(µ))

|a(η1 + η2, 2µ2)|2dµ1dµ2. (6.2)

As the symmetry breaking operators have been normalized to be holomorphic, the poles
are given by the functions in the measure. Abusing notation, we write p(ξ, λ, η, µ) for
p(ξ, λ, η, ν(µ)). The poles of p(ξ, λ, η, µ) are

µ1 = λi − µ2 + 1
2 + [ξi + η1] + 2n, µ1 = λi − µ2 − 1

2 − [ξi + η1] − 2n,

µ1 = λi + µ2 + 1
2 + [ξi + η2] + 2n, µ1 = λi + µ2 − 1

2 − [ξi + η2] − 2n,
(6.3)

where n ∈ N0. Let q be the meromorphic function defined by

q(η, µ2) = a(η1 + η2, 2µ2)−1a(η1 + η2,−2µ2)−1 =
Γ
(1+[η1+η2]

2 + µ2
)
Γ
(1+[η1+η2]

2 − µ2
)

23π2Γ
( [η1+η2]

2 + µ2
)
Γ
( [η1+η2]

2 − µ2
) ,

which has poles at

µ2 = −1 + [η1 + η2]
2 − n, µ2 = 1 + [η1 + η2]

2 + n,

and vanishes at
µ2 = − [η1 + η2]

2 − n, µ2 = [η1 + η2]
2 + n,

where n ∈ N0. Lastly, we set

Q(ξ, λ, η, µ) =
〈
Aη,ν(µ)
ξ,λ f, Aη,−ν(µ)

w0(ξ,−λ)f
′
〉
,

which is holomorphic as a function in (λ, µ). Up to constants we can then express each
summand of the continuous part as

I(ξ, λ, η) := α(ξ,−λ)
∫
iR

∫
iR
Q(ξ, λ, η, µ)p(ξ, λ, η, µ)q(η, µ2) dµ1dµ2. (6.4)

Now that we have repacked everything into a complex analysis problem, we can start to
view this as a function of λ and in doing so we see that none of the functions have poles
as long as Re(λ) ∈ (−1

2 ,
1
2)3.
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As a service to the reader, we will briefly explain some notational choices before the
forthcoming technical analytic continuation part begins. We denote by lower case Latin
letters p, q, r, q′ meromorphic functions which has poles we need to be concerned about.
By upper case Latin letters Q, Q′, R, R′ we denote holomorphic functions which we need
to be less concerned about. At times, we restrict our parameters to certain hyperplanes
where factors of the meromorphic functions have first order poles at the same time as the
holomorphic function has zeroes, we then move the corresponding meromorphic factor
into the holomorphic function and update our notation which is the reason for so many
different functions introduced.

6.2 The discrete part

Recall that λ ∈ iR3 with f ∈ πξ,λ and f ′ ∈ πw0(ξ,−λ) and consider the discrete part of (6.1)

1∑
σ,δ=0

∫
iR

∑
t∈1−ε(δ)+2σ−4N

b(ε(δ), σ(1 − ε(δ)), s, t)
4π

×
(
A
η(σ(1−ε(δ)),δ),ν(s,t)
ξ,λ f

∣∣∣Aη(σ(1−ε(δ)),δ),ν(s,t)
ξ,−λ Tw0

w0(ξ,λ)f
′
)
ds. (6.5)

Separating the analysis into the cases where ε(δ) = 0 and ε(δ) = 1, that is the term where
δ = ξ2 and δ ̸= ξ2, turns out to be a bit cleaner. In both cases we will do the substitutions
µ1 = 1

2(s+λ2) andµ2 = t
2 and set ν(µ) = (µ1+µ2, µ1−µ2). As the sumputs the parameters

in certain hyperplanes, we can renormalize Aη,ν
ξ,λ on these hyperplanes as follows.

Lemma 6.1. Let ν1 − ν2 + 1 + [η1 + η2] = −2n. Then for f ∈ πξ,λ and f ′ ∈ πw0(ξ,−λ) the
function

R(ξ, λ, η, ν) =
⟨Aη,νξ,λ f,A

η,−ν
w0(ξ,−λ) f

′⟩∏3
i=1(λi−ν2+ 1

2 +[ξi+η2]
2 )n+1−mi(

ν1−λi+ 1
2 +[ξi+η1]
2 )n+1−mi

,

where mi = mi(ξ, η) = (1 − [η1 + η2])[ξi + η1], is holomorphic. That is, the pairing vanishes
exactly at the zeroes of the Pochhammer symbols in the denominator.

Proof. Note that for k = 0, 1, . . . , n−mi the set

{ν2 − ν1 + 1 + [η1 + η2] = −2n} ∩ {λi − ν1 + 1
2 + [ξi + η1] = −2k},

is contained in Mi, that is Aη,ν
ξ,λ vanishes on it. Thus, we get that

Cη,−ν
w0(ξ,−λ) :=

Aη,−ν
w0(ξ,−λ)∏3

i=1(ν1−λi+ 1
2 +[ξi+η1]
2 )n+1−mi

,

is regular. Furthermore, we see that im(Cη,−ν
w0(ξ,−λ)) ⊆ ker(TwH

η,−ν) as by Theorem 3.1

TwH
η,−ν Cη,−ν

w0(ξ,−λ) =
cΓ(ν1−ν2+1+[η1+η2]

2 )−1∏3
i=1(ν1−λi+ 1

2 +[ξi+η2]
2 )n+1−mi

AwH(η,−ν)
w0(ξ,−λ) = 0.
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On the other hand, we have

TwH
η,ν Aη,ν

ξ,λ = c′Γ(ν2−ν1+1+[η1+η2]
2 )−1 AwH(η,ν)

ξ,λ ,

which vanishes for λi − ν2 + 1
2 + [ξi + η2] = −2k for k = 0, 1, . . . , n − mi i.e. im(Aη,ν

ξ,λ) ⊆
ker(TwH

η,ν ) for λi−ν2+ 1
2 +[ξi+η2] = −2kwhere k = 0, 1, . . . , n−mi. At these parameterswe

conclude that one entry of the KH -pairing is in the finite dimensional subrepresentation
of τη,ν , and the other entry is in the infinite dimensional subrepresentation of τη,−ν , giving
us that theKH -pairing is zero.

Proposition 6.2. For δ = ξ2 the expression the discrete part in (6.1) reduces to

π
5
2α(ξ,−λ)

1∑
σ=0

(−1)ξ1+ξ2+σ
∞∑
n=1

16σ−2n(4n− 2σ − 1)

×
∫
iR

Γ(λ1−µ1−σ+2n)Γ(µ1−λ1−σ+2n)Γ(λ3−µ1−σ+2n)Γ(µ1−λ3−σ+2n)
cos2

(
π
2 (µ1−λ2)

) R(ξ, λ, η, ν) dµ1,

and for δ ̸= ξ2 it reduces to

π
1
2α(ξ,−λ)(−1)ξ1

∞∑
n=1

161−2nn

×
∫
iR

Γ(λ1−µ1+ 1
2 +n)Γ(µ1−λ1+ 1

2 +n)Γ(λ3−µ1+ 1
2 +n)Γ(µ1−λ3+ 1

2 +n)
cos(π(λ2−µ1)) R(ξ, λ, η, µ)dµ1.

In both cases this is holomorphic for Re(λ1),Re(λ3) ∈ (−1, 1) and Re(λ2) ∈ (−1
2 ,

1
2).

Proof. Using Lemma 6.1, we can for ν1 − ν2 + 1 + [η1 + η2] = −2n define

p′
i(ξ, λ, η, ν) = p(ξi, λi, η, ν)(λi−ν2+ 1

2 +[ξi+η2]
2 )n+1−mi(

ν1−λi+ 1
2 +[ξi+η1]
2 )n+1−mi

= Γ(λi−ν1+ 1
2 +[ξi+η1]
2 )Γ(ν1−λi+ 1

2 +[ξi+η2]
2 + n+ 1 −mi)

× Γ(λi−ν2+ 1
2 +[ξi+η2]
2 + n+ 1 −mi)Γ(ν2−λi+ 1

2 +[η2+ξi]
2 ),

and set p′ =
∏3
i=1 p

′
i. Like before we will abuse notation and write p′

i(ξ, λ, η, µ) for p′
i(ξ, λ,

η, ν(µ)).
If δ = ξ2 then we have η(σ) = (ξ2 + σ, ξ2 + σ) and the discrete part becomes

1
2π

1∑
σ=0

∑
µ2∈ 1

2 +σ−2N

∫
iR
p(ξ, λ, η(σ), ν(µ))b(0, σ, 2µ1 − λ2, 2µ2)

×
〈
Aη(σ),ν(µ)
ξ,λ f,TwH

η(σ),ν(µ) A
η(σ),ν(µ)
ξ,λ Tw0

w0(ξ,λ) f
′
〉
dµ1.

By using Corollary 4.3 we have

πα(ξ,−λ)
2

1∑
σ=0

(−1)ξ1+ξ2+σ ∑
µ2∈ 1

2 +σ−2N

∫
iR

p(ξ, λ, η(σ), ν(µ))b(0, σ, 2µ1 − λ2, 2µ2)
Γ(1

2 − µ2)

×
〈
Aη(σ),ν(µ)
ξ,λ f,Aη(σ),−ν(µ)

w0(ξ,−λ) f ′
〉
dµ1. (6.6)
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We let µ2 = 1
2 + σ− 2n then ν(µ)1 − ν(µ)2 + 1 = −2(2n− 1 − σ) andmi = [ξi + ξ2 + σ] so

that

p′
i(ξ, λ, η, µ) = Γ(λi−µ1+[ξi+ξ2+σ]−σ

2 + n)Γ(µ1−λi+1−σ−[ξi+ξ2+σ]
2 + n)

× Γ(λi−µ1+1−σ−[ξi+ξ2+σ]
2 + n)Γ(µ1−λi+[ξi+ξ2+σ]−σ

2 + n)
= π22+2σ−4nΓ(λi − µ1 − σ + 2n)Γ(µ1 − λi − σ + 2n),

by the duplication formula for the Gamma-function. Similarly we get that

p2(ξ2, λ2, ν, µ)b(0, σ, 2µ1 − λ2, 2µ2) = 2−1+2σ−4nΓ(4n− 2σ)
Γ(2n− 1

2 − σ) cos2 (π
2 (µ1 − λ2)

) ,
by the reflection formula for the Gamma-function. Collecting all of the above we get the
desired form for δ = ξ2.

If δ ̸= ξ2 then η = (ξ2, ξ2 + 1) where we set η′ = (ξ2 + 1, ξ2) and the discrete part
becomes

1
2π

∫
iR

∑
µ2∈−N

b(1, 0, 2µ1 − λ2, 2µ2)
(
A
η,ν(µ)
ξ,λ f

∣∣∣Aη,ν(µ)
ξ,λ Tw0

w0(ξ,λ)f
′
)
dµ1,

and applying Corollary 4.3, we get
πα(ξ,−λ)(−1)ξ1

2
∑

µ2∈−N

∫
iR

p(ξ,λ,η,ν(µ))b(1,0,2µ1−λ2,2µ2)
Γ(1−µ2)

〈
Aη,ν(µ)
ξ,λ f,Aη′,−ν(µ)

w0(ξ,−λ) f
′
〉
dµ1, (6.7)

We let µ2 = −n then ν(µ)1 − ν(µ)2 + 2 = −2(n− 1), andmi = 0, so that

p′
i(ξ, λ, η, µ) = Γ(λi−µ1+ 1

2 +n
2 )Γ(λi−µ1+ 3

2 +n
2 )Γ(µ1−λi+ 1

2 +n
2 )Γ(µ1−λi+ 3

2 +n
2 )

= π21−2nΓ(λi − µ1 + 1
2 + n)Γ(µ1 − λi + 1

2 + n),

by the duplication formula for the Gamma-function. Similarly

b(1, 0, 2µ1 − λ2, 2µ2)p2(ξ, λ, η, µ) = 23−2nnΓ(1 + 2n)
Γ(1

2 + n) cos(π(λ2 − µ1))
,

by the reflection formula. Collecting all the above, we get the desired form for δ ̸= ξ2.

We are now ready to prove our first direct integral decomposition. We established the
Plancherel formula for λ ∈ iR3, but both the continuous and discrete parts are defined for
Re(λ) ∈ (−1

2 ,
1
2) and so the Plancherel formula also holds for the complementary series.

Theorem 6.3. The unitary principal series decomposes as

πξ,λ|H ≃
⊕

η∈(Z/2Z)2

∫ ⊕

iR2
τη,ν dν ⊕

⊕
η∈Z/2Z

⊕
ν−∈1+η−2N

∫ ⊕

iR
τdsη,ν dν+.

The complementary series decomposes as

πξ,λ|H ≃
⊕

η∈(Z/2Z)2

∫ ⊕

iR2
τη,ν dν ⊕

⊕
η∈Z/2Z

⊕
ν−∈1+η−2N

∫ ⊕

iR
τdsη,ν dν+.
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Proof. Restricting to the parameters λ ∈ iR3 with λ1 = λ3 and ξ1 = ξ3 then by (6.2) and
Proposition 6.2 with f ′ = f we get

⟨f,Tw0
ξ,−λ f⟩ = (−1)ξ1π

1
2

|Γ(λ1−λ2+1+[ξ1+ξ2]
2 )|2

(∫
iR2

|n(ξ, λ, η, ν(µ))|2

|a(η, ν(µ))|2 ||Aη,ν(µ)
ξ,λ f ||2 dµ

+
1∑

σ=0

∞∑
n=1

16σ−2n(4n− 2σ − 1)Γ(2n− 2σ − 1)π2

×
∫
iR

|Γ(λ1−µ1−σ+2n)|2

cos2( π(µ1−λ2)
2 )

||Bη(σ),ν(µ1,
1
2 +σ−2n)

ξ,λ f ||2dµ1

+
∞∑
n=1

161−2nΓ(n+ 1)n
∫
iR

|Γ(λ1−µ1+ 1
2 +2n)|4

cos(π(µ1−λ2)) ||B(ξ2,ξ2+1),ν(µ1,−n)
ξ,λ f ||2dµ1

)
,

we see that everything is definite so the map

f 7→ (Aη,ν
ξ,λ f)η∈(Z/2Z)2, ν∈iR2 ∪ (Bη,νξ,λ f)η∈Z/2Z, ν1−ν2+η+∈1−2N, ν1+ν2∈iR,

mapping from πξ,λ|H to the direct integral is injective as it preserves norm. On the other
hand, we see that it is surjective as each Aη,ν

ξ,λ and Bη,νξ,λ are non-vanishing and each τη,ν is
irreducible. The other direct integral decomposition follows by similar observations.

7 Decomposing the unitarily induced generalized principal
series

In this section we decompose the "first" unitarily induced generalized principal series. As
we noted in Section 3, the generalized principal series πgen1,ξ2,µ

sits inside πξ,λ as a quotient
when ξ1 = ξ3, λ1 + λ3 = 0, λ2 ∈ iR and Re(λ1) = −1

2 where µ = (i Im(λ1), λ2). However,
our initial Plancherel formula is only holomorphic for Re(λ) ∈ (−1

2 ,
1
2)3, but the discrete

part is holomorphic for Re(λ1),Re(λ3) ∈ (−1, 1) and Re(λ2) ∈ (−1
2 ,

1
2), so we need to

analytically extend the continuous part. We start by stating the theorem and then spend
the subsection proving it.

Theorem 7.1. Let ν± = ν1 ± ν2. The unitarily induced generalized principal series decomposes
as

π
gen
1,ξ2,µ

|H ≃
⊕

η∈(Z/2Z)2

∫ ⊕

iR2
τη,ν dν ⊕

⊕
η∈Z/2Z

⊕
ν−∈1+η−2N

∫ ⊕

iR
τdsη,ν dν+.

In example B.3 we showcase a toy example of the analytic continuation procedure about
to be employed.

Lemma 7.2. Let η1 = ξ1. Consider the holomorphic function

R′(ξ, λ, η, µ2) = Γ( [η1+η2]
2 − µ2)−1〈Aη,ν′(µ2)

ξ,λ f,Aη,−ν
′(µ2)

w0(ξ,−λ) f
′〉,

where ν ′(µ2) is ν(µ) for µ1 ∈ {λ1 − µ2 + 1
2 , λ3 − µ2 + 1

2}. For i = 1, 2 let

ri(σ, δ, µ2) = Γ(σi+δi
2 + µ2)Γ(1+δi−σi

2 − µ2), q′(δ1, µ2) =
Γ(1+δ1

2 + µ2)Γ(1+δ1
2 − µ2)

Γ( δ1
2 − µ2)

,
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where ((ξ1, δ), (λ1, σ)) is an invertible linear transformation of (ξ, λ) where δ ∈ (Z/2Z)2 and
σ ∈ C2. The function

J(δ, σ) =
∫
iR
r1(σ, δ, µ2)r2(σ, δ, µ2)q′(δ1, µ2)R′((ξ1, δ), (λ1, σ), η, µ2) dµ2,

is originally defined for Re(σ) ∈ (0, 1)2 but analytically extends to Re(σ1 − σ2) ∈ (0, 1) and
Re(σ1) ∈ (−2, 2), where it is given as∫

iR+ 1−δ1
4

r1(σ, δ, µ2)r2(σ, δ, µ2)q′(δ, µ2)R′((ξ1, δ), (λ1, σ), η, µ2) dµ2

+ 2(1 − δ1)π
3
2

Γ(1+σ2−σ1+δ2
2 )Γ(σ1−σ2+δ2

2 )Γ(1 + σ1
2 )Γ(1 − σ1

2 )
Γ(σ1−1

2 )
R′((ξ1, δ), (λ1, σ), η, 1−σ1

2 ).

(7.1)

Proof. In the case where δ1 = 1, then (7.1) is the same as the initial expression for J(δ, σ),
so we let δ1 = 0. The poles of ri are at

µ2 = −σi + δi
2 − n, µ2 = 1 + δi − σi

2 + n,

for n ∈ N0. Restricting J(δ, σ) to Re(σ1) ∈ (1
2 , 1) and Re(σ2) ∈ (0, 1

2) we see that the poles
for ri are at

Re(µ2) ∈ (−1
2 ,−

1
4) − n, Re(µ2) ∈ (0, 1

4) + n,

Re(µ2) ∈ (−1
4 , 0) − δ2

2 − n, Re(µ2) ∈ (1
2 , 1) + δ2

2 + n.

So, if we shift the contour of integration we get∫
iR+ 1

4

r1r2q
′R′dµ2 − 2πRes(r1r2q

′R′, µ2 = 1−σ1
2 ),

and by calculating the residue we get the result.

Proposition 7.3. The integral I(ξ, λ, η) from (6.4) analytically extends to

U =
{
λ ∈ C3 : Re(λ) ∈ (−1, 0) × (0, 1)2,Re(λ3 − λ1) ∈ (0, 2),Re(λ3 − λ2) ∈ (0, 1)

}
.

Restricting I(ξ, λ, η) to λ1 − λ3 + 1 = 0 it is holomorphic for Re(λ1) ∈ (−3
2 ,

1
2) and Re(λ2) ∈

(−1
2 ,

1
2) and is given as

I(ξ, λ, η) = α(ξ,−λ)π
∫
iR2

p2(ξ, λ, η, µ)Q′(ξ, λ, η, µ)q(η, µ2)

×
2∏

k=1
Γ(λ1 − µ1 + (−1)kµ2 + 3

2)Γ(µ1 + (−1)kµ2 − λ1 + 1
2) dµ1dµ2,

where

Q′(ξ, λ, η, µ) = Q(ξ, λ, η, µ)∏2
k=1(λ1−νk+ 1

2 +[ξ1+ηk]
2 )1−[ξ1+ηk](

νk−λ3+ 1
2 +[ηk+ξ3]
2 )1−[ξ1+ηk]

.
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Proof. Restrict I(ξ, λ, η) to Re(λ1) ∈ (−1
2 , 0) and Re(λ2),Re(λ3) ∈ (0, 1

2), then by a shift in
contour we have

α

∫
iR2

qpQdµ = α

∫
iR

(
q

∫
iR+ 1

2

pQdµ1 − 2(1 − [ξ1 + η1])πRes(pQ, µ1 = λ1 − µ2 + 1
2)

− 2(1 − [ξ1 + η2])πRes(pQ, µ1 = λ1 + µ2 + 1
2)
)
dµ2. (7.2)

We now argue that the right hand side is defined on U . The first term

α(ξ,−λ)
∫
iR

∫
iR+ 1

2

q(η, µ2)p(ξ, λ, η, µ)Q(ξ, λ, η, µ)dµ1dµ2,

is holomorphic for Re(λ1) ∈ (−1, 0) and Re(λ2),Re(λ3) ∈ (0, 1). For ξ1 = η1 we calculate
the residue as

Res(p, µ1 = λ1 − µ2 + 1
2) = −2

√
πΓ( [ξ1+η2]

2 + µ2)Γ(1+[ξ1+η2]
2 − µ2)Γ(λ2−λ1+[ξ1+ξ2]

2 )

× Γ(λ1−λ2+1+[ξ1+ξ2]
2 )Γ(λ2−λ1+[η2+ξ2]

2 + µ2)Γ(λ1−λ2+[η2+ξ2]
2 − µ2)

× Γ(λ3−λ1
2 )Γ(λ1−λ3+1

2 )Γ(λ3−λ1+[η2+ξ3]
2 + µ2)

× Γ(λ1−λ3+1+[ξ3+η2]
2 − µ2).

When restricting Q to µ1 = λ1 − µ2 + 1
2 , we are restricting Aη,ν

ξ,λ and Aη,ν
w0(ξ,−λ) to λ1 − ν1 +

1
2 + [η1 + ξ1] = 0 which means we can renormalize as follows

Q̃(ξ, λ, η, µ2) =
〈

A(ξ1,η2),(λ1+ 1
2 ,λ1+ 1

2 −2µ2)
ξ,λ f

Γ(λ1−λ2+ 1
2 +[ξ1+ξ2]
2 )−1Γ(λ1−λ3+1

2 )−1Γ(1+[ξ1+η2]
2 − µ2)−1

,

A(ξ1,η2),−(λ1+ 1
2 ,λ1+ 1

2 −2µ2)
w0(ξ,−λ) f ′

Γ(λ1−λ2+ 1
2 +[ξ1+ξ2]
2 )−1Γ(λ1−λ3+1

2 )−1

〉
,

and Q′(ξ, λ, η, µ2) is still holomorphic. Collecting all of this, we have that the integral of
the residue becomes

−
√
πα(ξ,−λ)

Γ(λ2−λ1+[ξ1+ξ2]
2 )Γ(λ3−λ1

2 )
Γ(λ1−λ2+1+[ξ1+ξ2]

2 )Γ(λ1−λ3+1
2 )

×
∫
iR

Γ(λ2−λ1+[η2+ξ2]
2 + µ2)Γ(λ1−λ2+1+[η2+ξ2]

2 − µ2)Γ(λ3−λ1+[η2+ξ3]
2 + µ2)

× Γ(λ1−λ3+1+[ξ1+η2]
2 − µ2)

Γ(1+[ξ1+η2]
2 + µ2)Γ(1+[ξ1+η2]

2 − µ2)
Γ( [ξ1+η2]

2 − µ2)
Q̃(ξ, λ, η, µ2)dz. (7.3)

Notice that if we had looked at the case where ξ1 = η2, we would get the same integral but
with (µ2, η2) changed to (−µ2, η1), and the entries of ν in Aη,ν

ξ,λ switched. We can rewrite
the factor in front of the integral as

−
cos(π(λ3−λ1)

2 ) cos(π(λ2−λ1)+π[ξ2+ξ3]
2 )Γ(λ3−λ1

2 )Γ(λ2−λ1+[ξ2+ξ1]
2 )

π
3
2 Γ(λ3−λ2+1+[ξ2+ξ1]

2 )
,
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using the reflection formula for the Gamma-function. By setting σ1 = λ3 − λ1, σ2 =
λ2 − λ1, δ1 = ξ1 + η2, and δ2 = η2 + ξ2, we see that the integral is in fact J(δ, σ) from
Lemma 7.2, which gives us analytic continuation of the residue to Re(λ3 −λ1) ∈ (0, 2) and
Re(λ3 − λ2) ∈ (0, 1). In total the right hand side of (7.2) is thus defined for U defining an
analytic extension, giving us the first part of the result.

We notice that this new region contains an open subset of the hyperplane λ3 − λ1 = 1
and that from the factor in front of the J integral, we have cos(π(λ3−λ1)

2 ) which vanishes,
so we are left with

α(ξ,−λ)
∫
iR

∫
iR+ 1

2

q(η, µ2)p(ξ, λ, η, µ)Q(ξ, λ, η, µ)dµ1dµ2,

which is holomorphic for Re(λ1) ∈ (−1, 0) and Re(λ2),Re(λ3) ∈ (0, 1). When restricted to
λ1−λ3+1 = 0, thenQ vanishes at λ1−νk+ 1

2 +[ξ1+ηk] = 0, and at νk−λ3+ 1
2 +[ξ1+ηk] = 0

when ξ1 = ηk, making Q′ regular. Then by the duplication formula for the Gamma-
function we get

p1(ξ, λ, η, ν)p3(ξ, λ, η, ν)
2∏

k=1
(λ1−νk+[ξ1+ηk]

2 )1−[ξ1+ηk](
νk−λ3+[ξ1+ηk]

2 )1−[ξ1+ηk]

= π
2∏

k=1
Γ(λ1 − νk + 3

2)Γ(νk − λ1 + 1
2),

which has poles at λ1 = νk − 3
2 − k and λ1 = νk + 1

2 + k. Restrict Re(λ1) ∈ (−1, 0) and
Re(λ2) ∈ (0, 1

2), then shifting the contour of integration we get

α(ξ,−λ)π
∫
iR2

q(η, µ2)p2(ξ, λ, η, µ)Q′(ξ, λ, η, µ)

×
2∏

k=1
Γ(λ1 − µ1 + (−1)kµ2 + 3

2)Γ(µ1 + (−1)kµ2 − λ1 + 1
2)dµ1dµ2,

which is holomorphic for Re(λ1) ∈ (−3
2 ,

1
2) and Re(λ2) ∈ (−1

2 ,
1
2).

We are now ready to begin the proof of Theorem 7.1

Proof. In Proposition 7.3 we have essentially argued for why we can just let f ′ = f , λ1 +
λ3 = 0, λ2 ∈ iR and Re(λ1) = −1

2 and plug it into I(ξ, λ, η). If we call a = i Im(λ1), then
the continuous part of (6.1) looks like

(−1)ξ1

24√
π

∑
η∈(Z/2Z)2

∫
iR2

∥∥∥ Aη,ν
ξ,λ

f∏2
k=1(

λ1−νk+ 1
2 +[ξ1+ηk]
2 )1−[ξ1+ηk]

∥∥∥2

× |Γ(a−ν1+1)|2|Γ(a−ν2+1)|2|Γ(
λ2−ν1+ 1

2 +[η1+ξ2]
2 )|2|Γ(

λ2−ν2+ 1
2 +[η2+ξ2]
2 )|2|Γ( 1+[η1+η2]+ν1−ν2

2 )|2

|Γ(
λ2−a+ 3

2 +[ξ1+ξ2]
2 )|2|Γ( [η1+η2]+ν1−ν2

2 )|2
dν,

which is beautifully definite and gives the Plancherel formula in combination with the
discrete part.
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8 Decomposing the unitarily induced degenerate series
representations

In this section, we will decompose the unitarily induced degenerate series using similar
arguments to those of Section 7
Theorem 8.1. The unitarily induced degenerate series representation decomposes as

πdegδ,ε,λ|H ≃
⊕

η∈Z/2Z

∫ ⊕

iR
τ(η,η),(λ1,z) dz.

Proof. As the degenerate generalized principal series for ξ1 = ξ3, λ1+λ3 = 0 and λ2 ∈ iR is
at the point Re(λ1) = 1

2 . It turns out, it gives a much clearer picture if we first analytically
extend the formula and then restrict it to λ1 − λ3 = 1.

The first thing we notice is that if λ1 − λ3 = 1, then α(ξ,−λ) = 0 so as the discrete
part of (6.1) is regular for Re(λ1),Re(λ3) ∈ (−1, 1) and Re(λ2) ∈ (−1

2 ,
1
2) the whole thing

vanishes. So we turn our focus towards the continuous part of (6.1).
Let Re(λ1),Re(λ2) ∈ (0, 1

2), and Re(λ3) ∈ (−1
2 , 0), then the shifting the contour of the

integral

I(ξ, λ, η) = α

∫
iR

∫
iR+ 1

2

Qpq dµ1dµ2−2π(1−[ξ1+η1])α
∫
iR
qRes(Qp, µ1 = λ3−µ2+ 1

2)dµ2

− 2π(1 − [ξ1 + η2])α
∫
iR
qRes(Qp, µ1 = λ3 + µ2 + 1

2)dµ2. (8.1)

As ∫iR ∫iR+ 1
2
Qpq dµ1dµ2 is regular for Re(λ1),Re(λ2) ∈ (0, 1), Re(λ3) ∈ (−1, 0) we move

our attention to the residues and as Q is holomorphic, we look at the residue of p first.
Assume that ξ1 = η1, then
Res(p, µ1 = λ3 − µ2 + 1

2) = −2
√
πΓ(λ1−λ3

2 )Γ(λ3−λ1+1
2 )Γ(λ2−λ3+[ξ2+ξ1]

2 )Γ(λ3−λ2+1+[ξ2+ξ1]
2 )

× Γ( [η1+η2]
2 + µ2)Γ(λ1−λ3+[ξ1+η2]

2 + µ2)Γ(λ3−λ1+1+[ξ1+η2]
2 − µ2)

× Γ(1+[η1+η2]
2 − µ2)Γ(λ2−λ3+[ξ2+η2]

2 )Γ(λ3−λ2+1+[ξ2+η2]
2 − µ2).

When we restrictQ to µ1 = λ3 −µ2 + 1
2 , it corresponds to restricting to λ3 − ν1 + 1

2 = 0 on
which one of the symmetry breaking operators have a zero, so we renormalize

Q′(ξ, λ, η, µ2) =
〈Aη,(λ3+ 1

2 ,λ3+ 1
2 −2µ2)

ξ,λ f

Γ(1+[ξ1+η2]
2 − µ2)−1

,Aη,−(λ3+ 1
2 ,λ3+ 1

2 −2µ2)
w0(ξ,−λ) f ′

〉
For ξ3 = η2 the other residue is given in the same way, but with (η2, µ2) swapped to
(η1,−µ2), and Aη,ν

ξ,λ is the restriction to λ3 − ν2 + 1
2 = 0. In total the residue is then given

by

π
3
2 Γ( λ1−λ3

2 )Γ( λ2−λ3+[ξ1+ξ2]
2 )

Γ( λ2−λ1+1+[ξ1+ξ2]
2 )

∫
iR

Γ(λ1−λ3+[ξ1+η2]
2 + µ2)Γ(λ3−λ1+1+[ξ1+η2]

2 − µ2)

× Γ(λ2−λ3+[ξ2+η2]
2 + µ2)Γ(λ3−λ2+1+[ξ2+η2])

2 − µ2)

× Γ( 1+[ξ1+η2]
2 +µ2)Γ( 1+[ξ1+η2]

2 −µ2

Γ( [ξ1+η2]
2 −µ2)

Q′(ξ, λ, η, µ2)dµ2.
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Letting σ1 = λ1 − λ3, σ2 = λ2 − λ3, δ1 = ξ1 + η2 and δ2 = ξ2 + η2, we see that the
integral is our good friend from Lemma 7.2, so the integral can be analytically extended
to Re(λ1 − λ3) ∈ (−2, 2) and Re(λ1 − λ2) ∈ (0, 1). In total the right hand side of (8.1) is
defined for{

λ ∈ C3 : Re(λ) ∈ (0, 1)2 × (−1, 0),Re(λ1 − λ2) ∈ (0, 1),Re(λ2 − λ3) > 0
}
.

Restricting to the hyperplane λ1 − λ3 = 1, we have that α(ξ,−λ) = 0 so α ∫iR ∫iR+ 1
2

Qpq′dµ1dµ2 vanishes and similarly the residue from Lemma 7.2 vanishes as we set σ1 = 1.
The only remaining term is the integral J , which after shifting the contour back to the

imaginary axis for ξ1 = η1, has been reduced to

π2
∫
iR

|Γ(1+[ξ1+η2]
2 + µ2)|2Γ(λ1−λ2+[ξ2+η2]

2 + µ2)Γ(λ2−λ1+1+[ξ2+η2]
2 − µ2)

×
〈A(ξ1,η2),(λ1− 1

2 ,λ1− 1
2 −2µ2)

ξ,λ f

Γ(1+[ξ1+η2]
2 − µ2)−1

,
A(ξ1,η2),−(λ1− 1

2 ,λ1− 1
2 −2µ2)

ξ,−w0λ
f ′

Γ(1+[ξ1+η2]
2 + µ2)−1

〉
dz

Summing up the different I(ξ, λ, η) and setting λ1 +λ3 = 0 with i Im(λ1) = a and λ2 ∈ iR,
we get some terms with norms containing Aη,(a−2µ2,a)

ξ,λ and some containing Aη,(a,a−2µ2)
ξ,λ ,

but as (a − 2µ2, a) ∈ iR2, we are on the unitary axis and the Knapp–Stein intertwining
operator is an isometry, so we can collect those terms and in total (6.1) becomes

(−1)ξ1
1∑

η=0

∫
iR

|Γ(λ2+ 1
2 +[ξ2+η]−z

2 )|2|Γ(1+η+a−z
2 )|2(1 + |Γ(1+η+a−z

2 )|−2)||A(η,η),(a,z)
ξ,λ ||2 dz,

which gives us the Plancherel formula for

πdeg
0,ε,λ|H ≃

⊕
η∈Z/2Z

∫ ⊕

iR
τ(η,η),(λ1,z) dz.

To get the decomposition for πdeg
1,ε,λ|H , notice that

πdeg
1,ε,λ = IndGP0((χ1 ⊗ ε) ⊗ eλ ⊗ 1) = IndGP0((χ0 ⊗ (ε+ 1)) ⊗ eλ ⊗ 1) ⊗ sgn(det),

so by decomposing the first factor of the right hand side and then tensoring with
sgn(det)|H on each term of the decomposition, we get the full result.

9 Gaps in the argument

In the line of argumentation above there are a few missing links that we highlight in this
section.

Firstly, when doing the shift of contour from ∫
iR f(λ, z)dz to ∫iR+ 1

2
f(λ, z)dz, there

needs to be some conditions on f to ensure that the top and bottom edges of the con-
tour actually vanishes in the limit. Furthermore, we argue since ∫iR+ 1

2
f(λ, z)dz does not

have any poles for λ in some region, then it defines a continuation of the original function,
but strictly speaking, we need to ensure that the integral actually converges in this region
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as well. Both of these issues boils down to finding a growth condition in the parameters
of the bilinear pairing of the symmetry breaking operators.

Secondly, when making the Plancherel formulas into direct integral decompositions,
we do not argue that the symmetry breaking operators does not vanish, which is an es-
sential step for establishing the surjectivity of the direct integral map. In most cases, this
can be done by arguing that the integral kernel is non-zero on some Bruhat cell where
its more explicit. However, in the case where the representation we are decomposing is
a quotient inside a principal series representation, it is more difficult to argue that even
if the symmetry breaking operator is non-zero, that it does in fact not vanish on the quo-
tient. This would require a more detailed analysis maybe by looking at the quotient as a
collection ofKG-types and evaluate the symmetry breaking operator on these.

10 Branching laws using the Whittaker Plancherel formula

10.1 Unitary branching of GL(3,R)

The proof in this section was presented to me by Jan Frahm. Recall we use σπ,ε,λ for the
generalized principal series, given by

σπ,δ,λ = IndGP0

(
(π ⊗ δ) ⊗ eλ ⊗ 1

)
.

By induction in stages we have that

• σπ,δ,λ is the unitary principal series for Gwhen π = ρε,µ where µ ∈ iR

• σπ,δ,λ is the complementary series for Gwhen ϕ = ρε,µ where µ ∈ (0, 1) and ε+ = 0.

• σπ,δ,λ is the unitarily induced generalized principal series for Gwhen π = ρdsε,µ.

• σπ,δ,λ is the unitarily induced degenerate series for Gwhen π is a unitary character.

Recall that H = GL(2,R) is the subgroup of G embedded into the upper left corner. The
subgroup H acts by multiplication on G/P ≃ RP 2 =

{
Rv : v ∈ R3\{0}

}with the orbits

O1 = H · Re1 = {Rv : v3 = 0},
O2 = H · Re3 = {Re3},
O3 = {R(v1, v2, 1) : (v1, v2) ̸= 0}.

The orbit O3 is open and dense in G/P , and we pick the base-point

x0 =

1 0 0
0 1 0
0 1 1

 ,
which has stabilizer

S =
{(a b

0 1

)
: a ∈ R×, b ∈ R

}
,
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also known as the ax + b-group. We denote the elements of S by s(a, b). S has one infi-
nite dimensional unitary representation which we call ω see more in Appendix A. Now
consider the orbit restriction map

R : τπ,δ,λ → IndHS
(
((π ⊗ δ) ⊗ eλ)|S

)
, f 7→ F,

where F (h) = f(hx0). That F has the desired equivariances follows from

F
(
hs
)

= f(hsx0) = f(hx0s) =
(
(π ⊗ ε) ⊗ eλ

)
(s)−1F (h),

where s ∈ S. Furthermore we see that

Lemma 10.1. If π is an infinite dimensional irreducible unitary representation of SL±(2,R) then

IndGP0

(
(π ⊗ δ) ⊗ eλ ⊗ 1

)∣∣
H

≃ IndHS (ω).

Proof. Note that

(
(π ⊗ δ) ⊗ eλ

)
(s(a, b)) = π

(
sgn(a)|a|

1
2 |a|−

1
2 b

|a|−
1
2

)
eλ
(

|a|
1
2

|a|
1
2

)
= π

(
ϕ(s(a, b))

)
|a|

λ1
2 ,

where ϕ is the isomorpism(
a b

1

)
7→ |a|−

1
2

(
a b

1

)
=
(

sgn(a)|a|
1
2 |a|−

1
2 b

|a|−
1
2

)
,

from S to the ax+b-group embedded into SL±(2,R). Thus showing that ((π⊗δ)⊗eλ
)
|S =

π|S ⊗ χ0,λ1
2
, and if π is infinite dimensional then by Proposition A.2 we get π|S ≃ ω and

as ω ⊗ χ0,λ1
2

is still a infinite dimensional irreducible unitary representation it must be
equivalent to ω by Proposition A.1.

Theorem 10.2. The unitary principal series, complementary series and unitarily induced gener-
alized principal series all decomposes as

π|H ≃
⊕

η∈(Z/2Z)2

∫ ⊕

iR2
τη,ν dν ⊕

⊕
η∈Z/2Z

⊕
ν−∈1+η−2N

∫ ⊕

iR
τdsη,ν dν+.

Proof. The representation ω can be realized as IndSNH
(ψα) where ψ is a non-trivial charac-

ter of NH . Using induction in stages, we get that

IndHS (ω) ≃ IndHS (IndSNH
(ψ)) ≃ IndHNH

(ψα) ≃ L2(H/NH , ψ),

where the right hand side can be recognized as the Whittaker model. The Whittaker
Plancherel formula for reductive groups tell us how this space decomposes as [W92,
p.423]

L2(H/NH , ψ) ≃
⊕

[P ]∈P

⊕
τ∈M̂P,ds

∫ ⊕

ia∗
P

πτ,λ ⊗ π
∗,(N,ψ)
τ,λ dλ.

Here P are the parabolic subgroups of H up to conjugation, and in this case we have
P = {[H], [PH ]}. Every element P of P has a Langlands decomposition P = MAN . In
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the case [H], we have the decompositionM = SL±(2,R), A = R+I ,N = I and in the case
[PH ], we have M = MH , A = AH and N = NH . The space M̂P,ds is the discrete series
representations in the unitary dual ofM . In the casewhereP = H , we get M̂P ,ds = {ρdsε,µ :
µ ∈ 1 + ε+ − 2N}. In the case where P = PH , we get M̂P ,ds = {0, 1}2 given as characters
of Z/2Z. The space is aP ≃ AP is the Lie algebra of AP and aH = R and aPH

= R2. We
can then find characters of AP as λ ∈ a∗

P,C by eλ. Lastly, we have

πτ,λ = IndHP (τ ⊗ eλ ⊗ 1).

In the case where P = H , we get that πρds
ε,µ,λ

≃ ρdsε,µ⊗ eλ ≃ τds
ε, 1

2 (λ+µ,λ−µ). In the case where
P = PH and τ = η ∈ {0, 1}2 and λ = ν ∈ C2, we get that πη,ν = τη,ν . Here we think of
π

∗,(N,ψα)
τ,λ as a multiplicity space and by [GW80] it is of dimension 1. We can now rewrite

the Whittaker Plancherel formula

L2(H/N,ψα) =
⊕

η∈(Z/2Z)2

∫ ⊕

iR2
ττ,ν dν ⊕

⊕
η∈Z/2Z

⊕
ν−∈1+η−2N

∫ ⊕

iR
τdsη,νdν+,

giving us the desired result. We note that the unitary principal series, the complementary
series and the unitarily induced generalized principal series are all induced from infinite
dimensional unitary representations of SL±(2,R), and thus by Lemma 10.1 the result fol-
lows.

A Restriction representations of SL±(2,R) to the ax + b-group

Consider the ax+ b-group which is the semi-direct product of R× and Rwith group law

(a, b)(a′, b′) = (aa′, ab′ + b), (a, a′ ∈ R×, b, b′ ∈ R).

This group can be realized as a subgroup of GL(2,R) by the isomorphism s given by

(a, b) 7→
(
a b

1

)
,

or alternatively as a subgroup of SL±(2,R) by the isomorphism ϕ given by(
a b

1

)
7→ |a|−

1
2

(
a b

1

)
=
(

sgn(a)|a|
1
2 |a|−

1
2 b

|a|−
1
2

)
.

The following Proposition is a common exercise in theMackeymachine and can be found
in [F15, Example 6.7]

Proposition A.1 (The unitary dual of the ax+b-group). The following list of non-isomorphic
representations exhausts all the irreducible unitary representations of the ax+ b-group:

1. The one-dimensional representations, parameterized by ν ∈ iR and η ∈ Z/2Z ≃ {0, 1}
given by the characters χη,ν((a, b)) = |a|νη .
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2. There is one infinite-dimensional representation ω, which for any α ∈ C and ε ∈ Z/2Z can
be realized on L2(R, |x|2 Re(α)−1dx) by the action

ω((a, b))f(x) = |a|αε eibxf(ax),

where a ∈ R×, b ∈ R.

The goal is now to describe how all the unitary representations of SL±(2,R) restrict as
representations of the ax+ b-group. To do so we first describe an L2-model for the com-
plementary series. Consider the restriction of σε,µ to the non-compact picture L2(R) by
f 7→ f |N , where N ≃ R. On L2(R) we use the inner product given by (Twε,µf |f ′) where

Twε,µf(ny) =
∫
R
f(nywnx)dx, where nt =

(
1
t 1

)
, w =

(
1

−1

)

and (f |f ′) being the usual L2 inner product on N ≃ R. Now decomposing

wnx =
(

1
− 1
x 1

)(
x

1
x

)(
1 1

x

1

)
,

and changing variables x → 1
x , we see that

Twε,µf(ny) =
∫
R

|x|µ−1
ε+ f(ny−x)dx.

We notice that this is a convolution and thus applying the Fourier transform, we see the
convolution becomes multiplication

F [Twε,µf ](ξ) = F
[
|x|µ−1

ε+

]
(ξ)F [f ](ξ).

By [GS64, p.170] we get

F
[
|x|µ−1

ε+

]
(ξ) =

√
π

Γ(µ+ε+
2 )

Γ(1−µ+ε+
2 )

iε+ |ξ|−µε+ .

As we are trying to get an L2-model for the complementary series, we restrict ourselves
to the case where ε+ = 0 or equivalently ε1 = ε2. In this case we denote the constant
in front of |ξ|−µ by c(µ) and notice that c(µ) > 0 when µ ∈ (0, 1). Thus, we have used
the Fourier transform to change L2(R) with the convoluted convolution inner product to
L2(R, |ξ|−µdξ) with the regular L2 inner product multiplied by c(µ). We define the action
π̃µ of SL±(2,R) on L2(R, |ξ|−µ) by π̃µF [f ] = F [π0,µf ]. We specify the action for certain
elements of SL±(2,R):

π0,µ

(
1
x 1

)
f(ny) = f(ny−x), π0,µ

(
a

a−1

)
f(ny) = |a|µ+1f(na2y), (x ∈ R, a ∈ R+),

π0,µ

(
δ1

δ2

)
f(ny) = δε1

1 δ
ε2
2 f(nδ1δ2y), (δi ∈ {±1}).
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Using basic properties of the Fourier transformwe get similar actions in the Fouriermodel

π̃µ

(
1
b 1

)
F [f ](ξ) = eibξF [f ](ξ), π̃µ

(
a

a−1

)
F [f ](ξ) = |a|µ−1F [f ](a−2ξ)

π̃µ

(
δ1

δ2

)
F [f ](ξ) = δε1

1 δ
ε2
2 F [f ](δ1δ2ξ).

Using the embedding of the ax+ b–group in the lower corner of SL±(2,R)

(a, b) 7→ |a|−
1
2

(
1
b a

)
,

we have the action

π̃µ
(
|a|−

1
2

(
1
b a

))
F [f ](ξ) = eibx|a|−

µ−1
2

ε2 F [f ](aξ),

which is exactly the L2-model of ω from Proposition A.1 with α = 1−µ
2 and ε = ε2. As the

copy of the ax + b-group in the lower corner of SL±(2,R) is conjugate to the one in the
upper corner by

w′ =
(

1
1

)
,

it follows that π̃µ(w′) is an intertwiner between π̃µ restricted to the ax + b-group in the
upper corner and π̃µ restricted to the ax+ b-group in the lower corner.

Proposition A.2. Restricting any of the infinite-dimensional representations of Proposition 3.1
to the ax+ b-group is isomorphic to the representation ω from Proposition A.1.

Proof. In the case of the unitary principal series and discrete series representations this
has been done in [FWZ23, Lemma 3.5] and for the complementary series we have just
argued above.

B Complex analysis

Proposition B.1. Suppose g is an analytic function on a domainU with g′(b) ̸= 0 for some b ∈ U .
If f is an analytic function on g(U) that has a simple pole at g(b) then

Res(f ◦ g, b) = Res(f, g(b))
g′(b) .

Proposition B.2.

Res(Γ,−n) = (−1)n

n! .

Example B.3. Consider the multi-variable meromorphic function

p(λ, ν, δ) = Γ
(λ− ν + 1

2 + δ

2
)
Γ
(ν − λ+ 1

2 + δ

2
)
, (δ ∈ {0, 1}),
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which has poles at

ν = λ+ 1
2 + δ + 2n, or λ = ν − 1

2 − δ − 2n,

ν = λ− 1
2 − δ − 2n, or λ = ν + 1

2 + δ + 2n,

where n ∈ N0. For Re(λ) ∈ (−1
2 ,

1
2) let

I(λ, δ, f) =
∫
iR
f(λ, ν, δ)p(λ, ν, δ) dν,

where f is a holomorphic function with sufficiently strong decay at imaginary infinity. In
the case where δ = 1 we can actually extend the definition of I(λ, δ, f) to Re(λ) ∈ (−3

2 ,
3
2)

but we will refrain from doing so as this example is presented to showcase a simpler
version of the analytic continuation in Section 7. Restricting the domain of I(λ, δ, f) to
Re(λ) ∈ (0, 1

2) we have that the poles are at

Re(ν) ∈ (1
2 , 1) + δ + 2N0, & Re(ν) ∈ (−1

2 , 0) − δ − 2N0,

and so shifting the contour of integration we get

I(λ, δ, f) =
∫
iR+ 1

2

f(λ, ν, δ)p(λ, ν, δ) dν. (B.1)

When Re(ν) = 1
2 the poles in terms of λ are at

Re(λ) ∈ −δ − 2N0, & Re(λ) ∈ 1 + δ + 2N0,

and so the right hand side of (B.1) is defined for Re(λ) ∈ (0, 1) meaning we have an
analytic continuation of I(λ, δ, f). On this new domain we restrict I(λ, δ, f) to Re(λ) ∈
(1

2 , 1) then the poles are at

Re(ν) ∈ (1, 3
2) + δ + 2N0, & Re(ν) ∈ (0, 1

2) − δ − 2N0,

so in the case of δ = 0 we pass the through a pole whenwe shift the contour of integration
back∫

iR+ 1
2

f(λ, ν, δ)p(λ, ν, δ) dν

=
∫
iR
f(λ, ν, δ)p(λ, ν, δ) dν − 2π(1 − δ) Res

(
f(λ, ν, δ)p(λ, ν, δ), ν = λ− 1

2

)
. (B.2)

Here the residue is only non-zero if δ = 0 (as otherwise the function does not have a pole)
so the factor 1 − δ is just here to remind us of this. Calculating the residue we get

Res(f(λ, ν, 0)p(λ, ν, 0), ν = λ− 1
2) = 2

√
πf(λ, λ− 1

2 , 0),

which is holomorphic in λ. Looking at the poles of p(λ, δ, ν) when Re(ν) = 0 we see that
the interval that overlapswithRe(λ) ∈ (1

2 , 1) isRe(λ) ∈ (1
2 ,

5
2) if δ = 0 andRe(λ) ∈ (−3

2 ,
3
2)
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if δ = 1. In either case the interval Re(λ) ∈ (1
2 ,

3
2) works. Thus we have an analytic

continuation of I(λ, δ, f) to Re(λ) ∈ (1
2 ,

3
2) given by∫

iR
f(λ, ν, δ)p(λ, ν, δ) dν − 4π

3
2 (1 − δ)f(λ, λ− 1

2 , 0).

Here we note that in the case δ = 1 this is not a continuation as the original domain is
Re(λ) ∈ (−3

2 ,
3
2), but this "continuation" coincides with the original expression in this

case.
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Appendix
Jonathan Ditlevsen

1 A non-result

In this section we show different approaches to solve the problem of evaluating the sym-
metry breaking operator of (GL(n + 1,R),GL(n,R)) on the K-invariant vector. None of
these approaches worked out in the end but we still include them here as we think it is a
fun and interesting problem. Let the notation be as in Paper B.

One of the result we have worked hard on is trying to evaluate the symmetry breaking
operator Aη,ν

ξ,λ on theK-invariant vector 1λ. For n = 2 the integral to be computed is∫
R3

|z|s1 |x|t1 |z − xy|s2(1 + x2 + z2)− s1+t1+2
2 (1 + y2 + (z − xy)2)− s2+t2+2

2 d(x, y, z), (1.1)

this was done by Frahm and Su in [FS21]. The computation is quite involved and contains
lots of tricks along the way. We found a more direct way to compute this integral and we
tried to generalize it such that we would either compute it via induction or directly.

Lemma 1.1. Let φ(x, y, z) = (1 + x2 + z2)a(1 + y2 + (z − xy)2)b and φ̃(x, y, z) = (1 + x2)a
(1 + y2)b(1 + z2)a+b+ 1

2 then∫
R3
f(x, y, z)φ(x, y, z)d(x, y, z) =

∫
R3
f
(
x, y

√
1+z2+xz√

1+x2 , z
√

1 + x2)φ̃(x, y, z)d(x, y, z). (1.2)

Proof. By completing the square write

1 + y2 + (z − xy)2 = (1 + x2)
[
(y − xz

1 + x2 )2 + 1 + x2 + z2

(1 + x2)2

]
.

Doing the substitutions y → y + xz
1+x2 then y → y

√
1+x2+z2

1+x2 and lastly z → z
√

1 + x2 we
arrive at the result.

We can then use this substitution to compute (1.1).

Proposition 1.2. The integral (1.1) evaluates to

Γ
(
λ1−ν2+ 1

2
2

)
Γ
(
λ1−ν1+ 1

2
2

)
Γ
(
λ2−ν1+ 1

2
2

)
Γ
(
ν2−λ2+ 1

2
2

)
Γ
(
ν2−λ3+ 1

2
2

)
Γ
(
ν1−λ3+ 1

2
2

)
π− 1

2 Γ
(
λ1−λ2+1

2

)
Γ
(
λ1−λ3+1

2

)
Γ
(
λ2−λ3+1

2

)
Γ
(
ν2−ν1+1

2

)
Proof. Use (1.2) to change (1.1) into
∫
R3

|x|ν2−ν1−1(1 + x2)
ν1−ν2−1

2

∣∣∣ z
x

√
1+z2 − y

∣∣∣λ2−ν1− 1
2 (1 + y2)

λ3−λ2−1
2

× |z|λ1−ν2− 1
2 (1 + z2)

λ2+λ3−ν1−λ1− 3
2

2 d(x, y, z).
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Now only considering the y-integral we can apply Corollary 1.6 and obtain
∫
R

∣∣∣ z

x
√

1 + z2
− y

∣∣∣λ2−ν1− 1
2 (1 + y2)

λ3−λ2−1
2 dy =

Γ(λ2−ν1+ 1
2

2 )Γ(ν1−λ3+ 1
2

2 )
Γ(λ2−λ3+1

2 )
F
(

− t
x2
)
,

where F (w) = 2F1(ν1−λ3+ 1
2

2 ,
ν1−λ2+ 1

2
2 ; 1

2 ;w) and t = z2

1+z2 . Note the remaining integrands
are invariant under (x, z) 7→ (−x,−z), so it suffices to integrate x and z over (0,∞). Ap-
plying Proposition 1.7 to the x-integral after the substitution s = t/x2 we get

t
ν2−ν1

2

∫ ∞

0
s−1/2(t+ s)

ν1−ν2−1
2 F (−s)ds =

Γ(1
2)Γ(ν2−λ3+ 1

2
2 )Γ(ν2−λ2+ 1

2
2 )

Γ(ν1−ν2+1
2 )Γ(ν1+ν2−λ2−λ3+1

2 )
t

ν2−ν1
2 G(t),

where G(w) = 2F1(ν2−λ3+ 1
2

2 ,
ν2−λ2+ 1

2
2 ; ν1+ν2−λ2−λ3+1

2 ; 1 − w). Now apply (1.4) to the re-
maining z-integral after the substitution t = z2

1+z2 to arrive at
∫ 1

0
t

λ1−ν1− 3
2

2 (1 − t)
ν1+ν2−λ2−λ3−1

2 G(1 − t)dt =
Γ(λ1−ν1+ 1

2
2 )Γ(ν1+ν2−λ2−λ3+1

2 )

Γ(λ1+ν2−λ2−λ3+ 3
2

2 )
H(1),

where

H(1) = 2F1
(
ν2−λ3+ 1

2
2 ,

ν2−λ2+ 1
2

2 ; λ1+ν2−λ2−λ3+ 3
2

2 ; 1
)

=
Γ(λ1+ν2−λ2−λ3+ 3

2
2 )Γ(λ1−ν2+ 1

2
2 )

Γ(λ1−λ2+1
2 )Γ(λ1−λ3+1

2 )
.

This follows from the 3F2 we got from (1.4) collapses into an 2F1 and then using (1.5).
Now collecting all the Gamma-factors we picked up along the way we arrive at the result.

This might seem very complicated but we just did a smart substitution and then com-
puted the integrals one at a time. This smart choice of substitution (1.2) comes from the
following Lemma found in [K16].
Lemma 1.3. Let MAN , MAN ′ and MAN ′′ be parabolic subgroups with the same MA, and
suppose n′′ ∩ n ⊆ n′ ∩ n. If N , N ′, and N ′′ denote the Cartan involution of N , N ′ and N ′′ and if
Haar measures are suitably normalized, then∫

N∩N ′′
f(n) dn =

∫
N ′∩N ′′

[ ∫
N∩N ′

f(n′n) dn
]
dn′,

for every nonnegative measurable function f.

The general integral we are trying to compute is∫
NG

Kν
λ(n)1λ(n) dn,

by using [K16, (5.25)] we can change it to∫
KG

Kν
λ(k) dk =

∫
KG

Kν
λ(k′k) dk,
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for any k′ ∈ KG and then change it back∫
NG

Kν
λ(k′n)1λ(n) dn.

If k′ = wH0 the longest Weyl-group element of H then if we write n in block form

n =
(
nH
x⊺ 1

)
= nHnx

where x ∈ Rn and nH ∈ NH .The kernel then has the particularly simple form

Kν
λ(wH0 n) = |x1|s1 . . . |xn|sn .

If k′ = w0 the longest Weyl-group element of G then the kernel has the form

Kν
λ(w0n) = |Ψ1(w0nH)|t1 . . . |Ψn−1(w0nH)|tn−1 |Ψn(w0n)|tn .

In either case one would think this simplifies the integral significantly but it turns out it
does not, as computing integrals containing 1(n) is complicated as it is.

Another trick to apply is using Lemma 1.3 we can write the integral as∫
Rn

∫
NH

Kν
λ(nxnH)1λ(nxnH)dnHdx.

We can recognize the inner integral as the Knapp–Stein intertwining operator

T
wH

0
−ρG

(Kν
λ1λ)(nxwH0 ).

If we decompose nxwH0 into k(nxwH0 )eH(nxwH
0 )n0 fromKAN we can use the equivariance

properties of the Knapp–Stein intertwining operator

T
wH

0
−ρG

(Kν
λ1λ)(nxwH0 ) = e−(−wH

0 ρG+ρG)H(nxwH
0 )T

wH
0

−ρG
(Kν

λ1λ)(k(nxwH0 )),

reducing the inner integral to∫
NH

Kν
λ(nxwH0 n−1

0 e−H(nxwH
0 )nH)1λ(nH) dnH .

Which at first glance might not seem like a reduction but notice howwe have split 1λ into
two pieces, one that only depends on nH and the other on nx. Another thing we can note
is that if det(g) = 1 then

1λ(g) = Φ1(w0g
⊺g)− s1+t1+2

2 . . .Φn(w0g
⊺g)− sn+tn+2

2 ,

where si + ti + 2 = λi − λi+1 + 1. This follows from the age old trick where if we want to
decompose with the Iwasawa decomposition g = kan then writing g⊺g = n⊺a2n we just
have to find theNMAN decomposition of g⊺g. In classical linear algebra this corresponds
to finding the LDU -decomposition of g⊺g and the diagonal part has entries given by quo-
tients of consecutive principal minor determinants which is exactly what Φi describes.
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This comes in handy if we are trying to make a rank one reduction. Let n1(y) = eyE2,1

then using Lemma 1.3 we get∫
N

′

∫
R
Kν
λ(nn1(y))1λ(nn1(y))dydn,

and considering only the inner integral we get
∫
R

|Φ1(n) + yΦ1(nw1)|s1 |Ψ1(n) + yΨ1(nw1)|t1

×
(
Φ1(w0n

⊺n) + 2yΦ1(w0n
⊺nw1) + Φ1(w1w0n

⊺nw1)
)− s1+t1+2

2 dy,

which wemiraculously can evaluate but the answer contains a 2F1 with an argument that
contains Φ1 and Ψ1 and the next integral then becomes hard to evaluate. This is where
our story ends because no matter what fancy tricks we use to rewrite the integral after
evaluating the first integral the second one becomes impossible for us to evaluate.

1.1 Integral formulas

Proposition 1.4. For Re(uβ ) > 0, Re(λ) > 0 and Re(µ) > 0 we have∫ u

0
xλ−1(u− x)µ−1(β2 + x2)ν dx = β2νuλ+µ−1B(λ, µ)3F2(−ν, λ2 ,

λ+1
2 ; λ+µ

2 , λ+µ+1
2 ; −u2

β2 ).

For ε ∈ {0, 1}, Re(βu ) > 0 and Re(µ) > 0 we have

∫ ∞

u
xε(x− u)µ−1(β2 + x2)ν dx

= u2ν+µ+εB(−µ− ε− 2ν, µ)2F1(−µ−ε−2ν
2 , 1−µ−ε−2ν

2 ; 1
2 − ν − ε; −β2

u2 ).

Proof. The first formula comes from [GR94, 3.254]. The second integral follows from the
first one by considering ∫ u

0
xλ−1(u− x)µ−1(β2 + x2)− λ+µ+ε

2 dx,

and then doing the change of variables x → x−1. Here we used that

3F2(λ+µ+ε
2 , λ2 ,

λ+1
2 ; λ+µ

2 , λ+µ+1
2 ; −u2

β2 ) = 2F1(λ2 ,
λ+1

2 ; λ+µ+1−ε
2 ; −u2

β2 ).

Following [FS21, Appendix A] we can analytically extend the second formula by

2F1(a, b; c;x) = Γ(c)Γ(b−a)
Γ(c−a)Γ(b)(−x)−a

2F1(a, a− c+ 1; a− b+ 1;x−1)

+ Γ(c)Γ(a−b)
Γ(c−b)Γ(a)(−x)−b

2F1(b, b− c+ 1; b− a+ 1;x−1).

By the duplication formula for the Gamma-function we then obtain
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Proposition 1.5. For u ∈ R, ε ∈ {0, 1}, Re(µ) > 0 and β > 0∫ ∞

u
xε(x− u)µ−1(β2 + x2)νdx

= βµ+2ν+ε

2Γ(−ν)

[
Γ(µ+ε

2 )Γ(−µ−2ν−ε
2 )2F1

(
−µ−2ν−ε

2 , 1+ε−µ
2 ; 1

2 ; −u2

β2

)
− u

2β
(µ−1

2
)
Γ(µ−1+ε

2 )Γ(−ε−µ−2ν
2 )2F1

(
1−ε−µ−2ν

2 , 2+ε−µ
2 ; 3

2 ; −u2

β2

)]
. (1.3)

Proposition 1.6. Let u ∈ R, ε ∈ {0, 1}, Re(µ) > 0 and β > 0. If ε+ σ ≡2 0 then∫
R
xε|u−x|µ−1

σ (β2+x2)νdx = (−1)σβµ+2ν+εB(µ+ε
2 , −µ−2ν−ε

2 )2F1(−µ−2ν−ε
2 , 1+ε−µ

2 ; 1
2 ; −u2

β2 ).

If ε+ σ ≡2 1 then∫
R
xε|u− x|µ−1

σ (1 + x2)νdx = (−1)σ+1uβµ+2ν+ε−1(µ−1
2 )

× Γ( µ−1+ε
2 )Γ( −ε−µ

2 −ν)
2Γ(−ν) 2F1(−µ−2ν+1−ε

2 , 2+ε−µ
2 ; 3

2 ; −u2).

Proof. If we consider the right hand side of (1.3) as a function F (u) then we see that the
first term is even in u and the second term is odd. Writing the integral as∫ u

−∞
xε(u− x)µ−1(β2 + x2)ν dx+ (−1)σ

∫ ∞

u
xε(x− u)µ−1(β2 + x2)νdx,

and changing variables x → −x in the first integral we see that it has the form
(−1)εF (−u) + (−1)σF (u) and thus depending on ε and σ either the odd or the even part
of F cancels out.
Proposition 1.7 ([GR94, 7.512]). We have forRe(γ) > 0,Re(α−γ+ν) > 0 ,Re(β−γ+ν) > 0
and | arg z| > 0 :∫ ∞

0
xγ−1(z + x)−ν

2F1(α, β; γ; −x)dx

= Γ(γ)Γ(α+ ν − γ)Γ(β + ν − γ)
Γ(ν)Γ(α+ β + ν − γ) 2F1(α+ ν − γ, β + ν − γ;α+ β + ν − γ; 1 − z).

Proposition 1.8 ([GR94, 7.512]). We have for Re(µ) > 0, Re(ν) > 0 and p ≤ q + 1:∫ 1

0
tµ−1(1 − t)ν−1

pFq(a1, . . . , ap; b1, . . . , bq; tx)dt

= B(µ, ν)p+1Fq+1(a1, . . . , ap, µ; b1, . . . , bq, µ+ ν;x).

Setting x = 1 and using the substitution s = 1 − twe get∫ 1

0
(1 − s)µ−1sν−1

pFq(a1, . . . , ap; b1, . . . , bq; 1 − s)ds

= B(µ, ν)p+1Fq+1(a1, . . . , ap, µ; b1, . . . , bq, µ+ ν; 1). (1.4)
Lastly, for completeness sake we include the Gauss formula for the hypergeometric func-
tion

2F1(α, β; γ; 1) = Γ(γ)Γ(γ − α− β)
Γ(γ − α)Γ(γ − β) . (1.5)
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2 Extending the Plancherel formula

The attentive reader will have noticed that in Paper A we prove a Plancherel formula for
SL(2,R)/MA but in Paper C we apply a Plancherel formula for GL(2,R)/MA. In this
section we will describe how to get from the one to the other. We first recall the central
parts of Paper A.

2.1 Principal series for SL(2,R)

In this sectionwe recall some results about the representation theory of SL(2,R) following
[C20]. Let S = SL(2,R) and consider the following subgroups

MS = {±I}, AS =
{(

t 0
0 t−1

)
: t ∈ R>0

}
, NS =

{(
1 x

0 1

)
: x ∈ R

}
,

then PS = MSASNS is a minimal parabolic subgroup of S. Identify M̂S
∼= Z/2Z by

mapping ε ∈ Z/2Z to the character

MS → {±1},
(

±1 0
0 ±1

)
7→ (±1)ε.

Further, we identify a∗
C

∼= C by mapping λ 7→ λ
(

diag(1,−1)
)
.We then observe that any

character of DS := MSAS is of the form χε,λ = ε⊗ eλ where

χε,λ

(
t 0
0 t−1

)
= |t|λε := sgn(t)ε|t|λ, (t ∈ R×).

As the commutator subgroup of PS isNS the characters of PS is of the form ε⊗eµ⊗1 and
these characters are unitary exactly when λ ∈ iR.

Let ε ∈ Z/2Z and µ ∈ C. For any character ε⊗ eµ ⊗ 1 of PS define the principal series
representation πε,µ to be the left regular representation of S on

IndSPS
(ε⊗ eµ ⊗ 1) =

{
f ∈ C∞(S) | f(gman) = |t|−µ−1

ε f(g), m ∈ MS , a ∈ AS , n ∈ NS

}
,

wherema = ( t 0
0 t−1 ) ∈ MSAS . We introduce the notation

kθ =
(

cos θ sin θ
− sin θ cos θ

)
,

and ζm(kθ) = eimθ. According to the theory of Fourier series we have theK-type decom-
position

IndSPS
(ε⊗ eµ ⊗ 1) ∼=

⊕̂
m∈2Z+ε

Cζm.

We let IndSPS
(ε ⊗ eµ ⊗ 1)m denote the set of functions contained in the K-type given by

m ∈ Z, that is IndSPS
(ε⊗ eµ ⊗ 1)m = Cζm.

Proposition 2.1. The representation IndSPS
(ε⊗eµ⊗1) is irreducible except when µ ∈ 1−ε−2Z

. If µ ∈ 1 − ε− 2N then IndSPS
(ε⊗ eµ ⊗ 1) decomposes as V0 ⊕V1 ⊕V2 where V0 is an irreducible

representation containing exactly the K-types with |m| ≤ −µ. The quotient πdsε,µ is a direct sum
of two infinite dimensional representations πholε,µ and πaholε,µ .



2. Extending the Plancherel formula 101

Let w0 = ( 0 1
−1 0 ), a representative of the longest Weyl group element of S. Recall the

definition of the Knapp–Stein intertwining operator

Tε,µ : IndSPS
(ε⊗ eµ ⊗ 1) → IndSPS

(ε⊗ e−µ ⊗ 1), Tε,µf(g) = 1
Γ(µ+ε

2 )

∫
N
f(gw0n)dn,

for Re (µ) > 0. The normalization is chosen such that Tε,µ extends holomorphically to
µ ∈ C.
Proposition 2.2. For f ∈ IndSPS

(ε⊗ eµ ⊗ 1)m we have

Tε,µf = bεm(µ)f,

where

bεm(µ) =
√
πi[ε]2(−1)

m+|m|
2 −[ε]2

(1+ε−µ
2

)
|m|−ε

2

Γ
(µ+1+|m|

2
) .

For ε = 0 and µ ∈ 1 − 2N we have b0
m(µ) ≥ 0 for all m ∈ 2Z. Whereas for ε = 1, m odd and

µ ∈ −2N we have −ib1
m(µ) ≥ 0 form > 0 and ib1

m(µ) ≥ 0 form < 0.

Forµ ∈ iRwe equip the space IndSPS
(ε⊗eµ⊗1)with the usualL2-norm. Using Proposition

2.2 we can for ε = 0 and µ ∈ 1 − 2N equip IndSPS
(0 ⊗ eµ ⊗ 1) with the norm

∥f∥2 =
∫
KS/MS

f(k)T0,µf(k) dk.

Similarly for ε = 1 and µ ∈ −2N we can equip IndSPS
(1 ⊗ eµ ⊗ 1) with the norm

∥f∥2 =
∫
KS/MS

f(k)T̂1,µf(k) dk

where
T̂1,µf =

iT1,µf, form > 0,
−iT1,µf, form < 0

for f ∈ IndSPS
(1⊗eµ⊗1)m. The operator T̂1,µ is still an intertwining operator as it vanishes

on V0 per Proposition 2.2 and thus we just altered it by a scalar on each of the summands
in Proposition 2.1.

2.2 The homogeneous space S/DS and H/D

Let DS = MSAS and D = MHAH . For a unitary character χε,λ = ε ⊗ eλ with λ ∈ iR
the left-regular action τε,λ of S on the space of L2-sections associated to the line bundle
S ×DS

Cε,λ → S/DS , given by

IndSDS
(ε⊗ eλ) =

{
f : S → C, | f(gh) = χε,λ(h)−1f(g),

∫
S/DS

|f(g)|2d(gDS) < ∞
}
,

defines a unitary representation of S. The goal of this paper is to decompose this space.
We introduce the notation

bu =
(

cosh u sinh u
sinh u cosh u

)
, nx =

(
1 0
x 1

)
.
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Using the decomposition S = KSBAS , where B = {bu |u ∈ R}, we consider S/DS in the
global coordinates (θ, u) ∈ [0, π) × R where xDS = kθbuDS and the invariant measure is
d(xDS) = cosh(2u)dudθ, see e.g. [M84]. Now in terms of these coordinates we have the
K-type decomposition

C∞
c - IndSDS

(ε⊗ eλ) =
⊕̂

m∈2Z+ε
Cζm ⊗ C∞

c (R) (2.1)

with ζm(kθ) = eimθ. We let IndSDS
(ε ⊗ eλ)m denote the set of functions contained in the

K-type given bym ∈ 2Z + ε, that is IndSDS
(ε⊗ eλ)m = Cζm ⊗ C∞

c (R).
Another set of coordinates can be obtained by using the Iwasawa decomposition S =

KSASNS with (θ, y) ∈ [0, π) × R where xDS = kθnyDS . The invariant measure is given
by d(xDS) = 1

2dydθ see [K16, Chap. 5, §6].
Similarly we can define the space

IndHD(ε⊗ eµ) =
{
f : H → C, | f(gh) = χε,µ(h)−1f(g),

∫
H/D

|f(g)|2d(gD) < ∞
}
,

where χε,µ = ε ⊗ eµ is a unitary character on D with µ ∈ iR2 and ε ∈ (Z/2Z)2. We note
that S/DS ≃ H/D and for f ∈ IndHD(ε⊗ eµ) we have∫

H/D
f(xD) d(xD) =

∫
S/DS

f(xDS) d(xDS).

This can be seen by noticing NS = NH and considering S = NSNSMSAS and H =
NHNHMHAH and the integral formula by writing both integrals in NN -coordinates.

2.3 Principal series representations for GL(2,R) and the Extension map

2.4 Principal series for GL(2,R)

In this section we recall some results about the representation theory of GL(2,R). Let
H = GL(2,R) and consider the following subgroups of H

MH =
{(

ε1 0
0 ε1

)
: ε1, ε2 ∈ {±1}

}
, AH =

{(
a1 0
0 a2

)
: a1, a2 ∈ R>0

}
, NH = NS .

Then PH = MHAHNH is a minimal parabolic subgroup for H . In a similar fashion as for
S we can identify M̂H ≃ (Z/2Z)2 and a∗

C ≃ C2. The characters of PH are then of the form
η ⊗ eν ⊗ 1 where η ∈ (Z/2Z)2, ν ∈ C2 and for any such character we define the principal
series representations given as the left regular representation of H on

IndHPH
(η ⊗ eν ⊗ 1) =

{
f ∈ C∞(H) | f(gman) = |b|−ν1− 1

2
η1 |c|−ν2+ 1

2
η2 f(g), man ∈ MHAHNH

}
,

wherema = diag(b, c). Consider the map

Lδ,s : IndSPS
(ε⊗ et ⊗ 1) → IndHPH

((ε+ δ, δ) ⊗ e(t+s,s) ⊗ 1), f 7→ F,
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where F (h) = | det(h)|
1
2 −s
δ f(h diag(1, det(h))−1). This map creates a family of natural

extensions as Lsf |S = f and it intertwines the S action. As KH/MH ≃ KS/MS we can
use the pairing

⟨f, f ′⟩ =
∫
KS/MS

f(k)f ′(k) d(kMS),

on both IndHPH
(η⊗ eν ⊗ 1) × IndHPH

(η⊗ e−ν ⊗ 1) and IndSPS
(ε⊗ et ⊗ 1) × IndSPS

(ε⊗ e−t ⊗ 1).
Furthermore we can pick a representative,

w0 =
(

0 1
−1 0

)
,

for the longest Weyl group element in both H and S. As NH = NS we can use the same
expression for theKnapp–Stein intertwinersTη,ν for IndHPH

(η⊗eν⊗1) andTε,t for IndSPS
(ε⊗

et ⊗ 1), namely
f 7→ Tf, where Tf(g) =

∫
NS

f(gw0n) dn.

Lemma 2.3. For f ∈ IndSPS
(ε⊗ et ⊗ 1) we have the following

1. IfF ∈ IndHPH
(η⊗eν⊗1) satisfiesF |S = f thenF = Lη2,ν2f and (ε, t) = (η1+η2, ν1−ν2).

2. ⟨Lδ,sf, Lδ,−sf ′⟩ = ⟨f, f ′⟩, where f ′ ∈ IndSPS
(ε⊗ e−t ⊗ 1)

3. T(ε+δ,δ),(t+s,s)Lδ,s = Lδ+ε,s+tTε,t.

4. ⟨f, Tε,tf⟩ = ⟨Lδ,sf, T(δ,δ+ε),(−s,−s−t)Lδ+ε,−s−tf⟩ for t ∈ R.

Proof. (1): The first results follows from

F (g) = F
(
g diag(1, det(g))−1 diag(1,det(g))

)
= | det(g)|

1
2 −ν2
η2 F

(
g diag(1, det(g))−1) = Lδ,sf(g).

For a ∈ R we have

|a|ν2−ν1−1
η1+η2 F (1) = F

(
diag(a, a−1)

)
= f

(
diag(a, a−1)

)
= |a|−t−1

ε f(1),

and as F (1) = f(1) this completes the proof of (1).
(2): Follows from the pairing being done as a integral over a subgroup of S.
(3): By definition we have

T(ε+δ,δ),(t+s,s)Lδ,sf(g) =
∫
NH

| det(gw0n)|
1
2 −s
δ f(gw0n diag(1, det(gw0n))−1) dn.

Now we move d := diag(1,det(g))−1 past n, by doing the change of variables n → d−1nd

and by conjugation of d by w0 we get

= | det(g)|−
1
2 −s

δ

∫
NH

f(g diag(det(g), 1)−1w0n) dn.
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We recognize the integral as being the Knapp–Stein intertwiner Tε,tf evaluated at

g diag(det(g), 1)−1 = g diag(1, det(g))−1 diag(det(g)−1,det(g)).

Using the equivariance properties of Tε,tf we get that

= | det(g)|
1
2 −s−t
δ+ε Tε,tf(g diag(1,det(g))−1) = Lδ+ε,s+tTε,t.

(4): Follows directly from (2) and (3).

Consider the restriction map

Rη,ν : IndHPH
(η ⊗ eν ⊗ 1) → IndSPS

(η1 + η2 ⊗ eν1−ν2 ⊗ 1), f → f |S ,

which satisfies

R(ε+δ,δ),(s+t,s) ◦ Lδ,s = id, and Lη2,ν2 ◦Rη,ν = id,

as S-intertwining maps. We can now consider the KH -types for H , for ζm ∈ IndSPS
(η1 +

η2 ⊗ eν1−ν2 ⊗ 1)m let ζ̃m := Lη2,ν2ζm ∈ IndHPH
(η ⊗ eν ⊗ 1). As

KH = KS ∪KSκ, where κ =
(

1 0
0 −1

)
,

and Cζm is fixed on the action of KS so we need to consider what happens when acting
with κ. Considering the two cases of the argument being in each connected components
ofKH at once, we let ε = 0, 1 and get

ζ̃m(κkθκε) = (−1)η2(1+ε)ζm(κkθκ) = (−1)η2(1+ε)ζ̃−m(kθ) = (−1)η2 ζ̃−m(kθκε),

as κkθκ = k−θ. Therefore we get that the KH -types are Cζ̃m ⊕ Cζ̃−m as κ maps Cζm to
Cζ−m giving us theKH -type decomposition

IndHPH
(η ⊗ eν ⊗ 1) ≃

⊕
m∈2N0+[η1+η2]

Cζ̃m ⊕ Cζ̃−m.

For ν ∈ (iR)2 we equip IndHPH
(η⊗eν⊗1)with the norm coming from ⟨ · , · ⟩. For η1+η2 = 0

and ν1 − ν2 ∈ 1 − 2N we equip IndHPH
(η ⊗ eν ⊗ 1)/ ker(Tη,ν) with the norm

∥f∥2 = ⟨f, Tη,νf⟩,

which is positive as by (3) in Lemma 2.3 and Proposition 2.2 we have

Tη,ν ζ̃m = Tη,νLη2,ν2ζm = Lη1,ν1T0,ν1−ν2ζm = b0
m(ν1 − ν2)Lη1,ν1ζm = b0

m(ν1 − ν2)ζ̃m,

where the last equality follows from η1 = η2 and that the second parameter in the exten-
sion map does not matter in theKH -picture. For η1 + η2 = 1 and ν1 − ν2 ∈ −2N consider
the S-intertwining operator

T̂ην = Lη2,ν1 T̂1,ν1−ν2Rη,ν : IndHPH
(η ⊗ eν ⊗ 1) → IndHPH

(η ⊗ e(ν2,ν1) ⊗ 1),
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to see that this is a H-intertwining operator we need to check that it intertwinines the
center ofH and the action of κ. The centre action follows directly by looking at the equiv-
ariance of the domain and the codomain. To see that it intertwines the action of κ we get
by Proposition 2.2 that

T̂η,ν(c0ζ̃m + c1ζ̃−m) = Lη1,ν2am(ν1 − ν2)(c0ζm + c1ζ−m) = am(ν1 − ν2)(c0ζ̃m + c1ζ̃−m),

where c0, c1 ∈ C,m ∈ 2N0 + 1 and

am(ν1 − ν2) =
√
π

(2−ν1+ν2
2 ) m−1

2

Γ(ν1−ν2+1+m
2 )

.

This also shows that we can equip IndHPH
(η ⊗ eν ⊗ 1)/ ker(T̂η,ν) with the norm

∥f∥2 = ⟨f, T̂η,νf⟩.

2.5 Extending the Plancherel formula from SL(2,R) to GL(2,R).

In Paper A we introduced the S-intertwining operators

Aσ,tε,µ : IndSDS
(ε⊗ eµ) → IndSPS

(ε⊗ et ⊗ 1), Aσ,tε,µf(g) =
∫
S/DS

Kσ,t
ε,µ(x−1g)f(x) d(xDS),

for σ = 0, 1 where
Kσ,t
ε,µ(g) = |g11|

−µ−t−1
2

ε+σ |g21|
µ−t−1

2
σ .

We then proved the following Plancherel formula for the hyperboloid S/DS .

Proposition 2.4. For f ∈ C∞ − IndSDS
(ε⊗ eµ) we have

∥f∥2 =
∫
iR

1∑
σ=0

∥Aσ,t
ε,µf∥2 dt

|a(ε, t)|2 +
∑

t∈1−ε−2N
d(ε, t)∥Atε,µf∥2,

where

a(ε, t) = 23/2π
Γ( t2)

Γ(1+t+ε
2 )Γ(1+t−ε

2 )
, L(t) = 1

Γ(1+t
4 )2Γ(1−t

4 )2 + 1
Γ(3+t

4 )2Γ(3−t
4 )2 ,

and
d(0, t) = Γ(1 − t)

8π3Γ(−t
2 )L(t)

, d(1, t) = t2Γ(−t)
2πΓ(1−t

2 )
.

The operators are given by

At0,µ =
2

1+t
2

√
πΓ
(1+t

4 + µ
4
)

Γ
(1−t

4
)
Γ
(1+t

4
)
Γ
(1−t

4 − µ
4
)A0,t

0,µ +
2

1+t
2

√
πΓ
(3+t

4 + µ
4
)

Γ
(3−t

4
)
Γ
(3+t

4
)
Γ
(3−t

4 − µ
4
)A1,t

0,µ,

Aσ,t
ε,µ =

Aσ,tε,µ

Γ(1−t
2 )

, and At1,µ =
2

1+t
2

√
πΓ
(1+t

4 + µ
4
)

Γ
(1−t

4
)
Γ
(3+t

4
)
Γ
(1−t

4 − µ
4
)A0,t

1,µ.



106 Paper C

Here we can notice for t ∈ 1 − ε− 2N that Kσ,t
ε,µ is locally integrable as g11 and g21 cannot

vanish simultaneously and Re
(−λ−µ−1

2
)
,Re

(−λ−µ−1
2

)
> −1. So in the case that ε = 0 we

have

Γ
(1 + t

4
)−1∣∣

t=1−2n = Γ
(1 − n

2
)−1

, & Γ
(3 + t

4
)−1∣∣

t=1−2n = Γ
(
1 − n

2
)−1

,

meaning that one of the two terms in At0,µ vanishes in the sum over t ∈ 1 − 2N in the
Plancherel formula. Allowing us to rewrite it in the following way

∥f∥2 =
∫
iR

1∑
σ=0

∥Aσ,t
0,µf∥2 dt

|a(0, t)|2 +
1∑

σ=0

∑
t∈1+2σ−4N

d′(0, t)∥Aσ,t0,µf∥2,

where
Aσ,tε,µ =

Γ(1+2σ+t+µ
4 )

Γ(1+2σ−t−µ
4 )

Aσ,tε,µ, d′(0, t) = 2tΓ(1 − t)
4π2Γ(− t

2)
.

To reduce the amount of different A’s flying around we also express the Plancherel for-
mula for ε = 1 for the newly introduced A:

∥f∥2 =
∫
iR

1∑
σ=0

∥Aσ,t
1,µf∥2 dt

|a(1, t)|2 +
∑

t∈1−ε−2N
d′(1, t)∥A0,t

1,µf∥2,

where
d′(1, t) = 21+tt2Γ(−t)

π2Γ(1−t
2 )

,

where we used here that for t ∈ −2N we get Γ(1−t
4 )2Γ(3+t

4 )2 = 1
2 .

2.6 Extending the intertwining operators

Now we wish to extend the operators Aσ,tε,µ in the following way

IndHD(ε⊗ eµ) IndHPH
((ε1 + ε2 + δ, δ) ⊗ e(t+s,s) ⊗ 1)

IndSD′(ε1 + ε2 ⊗ eµ1−µ2) IndSPS
(ε1 + ε2 ⊗ et ⊗ 1)

ResS

Aσ,t
ε1+ε2,µ1−µ2

Lδ,s

where the maps ResS is the map f 7→ f |S . Following the diagram we get

Bη,ν
ε,µf(g) := (Lδ,s ◦Aσ,tε1+ε2,µ1−µ2 ◦ ResS)f(g) =

∫
S/DS

Kη,ν
ε,µ (x−1g)f(x) d(xDS),

where
Kη,ν
ε,µ (g) = |g11|

µ2−µ1−t−1
2

σ+ε1+ε2 |g21|
µ1−µ2−t−1

2
σ | det(g)|

1
2 −s
δ ,

and (η, ν) =
(
(ε1 + ε2 + δ, δ), (t+ s, s)

). The operator Bη,ν
ε,µ maps between the right spaces

but is not necessarily intertwining, to ensure that we need to change the integral from
S/DS to H/D meaning we need to find (δ, s) such that x 7→ Kη,ν

ε,µ (x−1g)f(x) is a map on
H/D. For d = diag(d1, d2) we have

Kη,ν
ε,µ (d−1g) = |d1|

µ1−µ2+t

2 +s
σ+ε1+ε2+δ|d2|

µ2−µ1+t

2 +s
σ+δ Kη,ν

ε,µ (g), f(gd) = |d1|−µ1
ε1 |d2|ε2

−µ2f(g),
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implying that s = µ1+µ2−t
2 and δ = ε2 +σ. Thus changing the coordinates we arrive at the

operator

Bη,ν
ε,µ : IndHD(ε⊗ eµ) → IndHPH

(η ⊗ eν ⊗ 1), Bη,ν
ε,µf(g) =

∫
H/D

K̂η,ν
ε,µ (x−1g)f(x) d(xD),

where
K̂η,ν
ε,µ (g) = |g11|

ν2−ν1−(µ1−µ2)−1
2

η1+ε2 |g21|
ν2−ν1+(µ1−µ2)−1

2
η2+ε2 | det(g)|

1
2 −ν2
η2 .

By acting by the centre of H we see that
ε1 + ε2 = η1 + η2, µ1 + µ2 = ν1 + ν2.

Note here that Bη,ν
ε,µ maps into different spaces for different σ’s whereas this was not the

case for Aσ,tε,µ.
We are now ready to extend the Plancherel formulas to GL(2,R). For µ ∈ iR2, t ∈ iR

and f ∈ IndHPH
(ε⊗ eµ) we have

∥Aσ,tε1+ε2,µ1−µ2 Res f∥2 = ∥Lη2,ν2A
σ,t
ε1+ε2,µ1−µ2 Res f∥2 = ∥Bη,ν

ε,µf∥2,

by Lemma 2.3, if instead t ∈ R we have
⟨Aσ,tε1+ε2,µ1−µ2 Res f, Tε1+ε2,tA

σ,t
ε1+ε2,µ1−µ2 Res f⟩

= ⟨Lη2,ν2A
σ,t
ε1+ε2,µ1−µ2 Res f, Lη2,ν1Tε1+ε2,tA

σ,t
ε1+ε2,µ1−µ2 Res f⟩

= ⟨Bη,ν
ε,µf, Lη2,ν1Tε1+ε2,tRη,νLη2,ν2A

σ,t
ε1+ε2,µ1−µ2 Res f⟩

= ⟨Bη,ν
ε,µf, Lη2,ν1Tε1+ε2,tRη,νB

η,ν
ε,µf⟩

(2.2)

In the case where ε1 + ε2 = 0 we have that
Lη2,ν1Tε1+ε2,tRη,νB

η,ν
ε,µ = T(η2,η2+ε1+ε2),νLη2+ε1+ε2,ν2Rη,ν = Tη,ν

by Lemma 2.3 and the fact that η1 = η2. For ε1 + ε2 = 1 and Tε1+ε2,t replaced by T̂1,t in
(2.2) we have

Lη2,ν1 T̂1,tRη,ν = T̂η,ν .

Theorem 2.5. Let µ ∈ (iR)2 and put µ± = µ1 ± µ2. For f ∈ IndHD(ε⊗ eµ) when ε1 + ε2 = 0

∥f∥2 =
∫
iR

1∑
σ=0

∥Bη(σ),ν(t)
ε,µ f∥2 dt

|a(0, t)|2 +
1∑

σ=0

∑
t∈1+2σ−4N

b(0, t)∥Bη(σ),ν(t)
ε,µ f∥2,

whereas if ε1 + ε2 = 1

∥f∥2 =
∫
iR

1∑
σ=0

∥Bη(σ),ν(t)
ε,µ f∥2 dt

|a(1, t)|2 +
∑
t∈−2N

b(1, t)∥Bη(0),ν(t)
ε,µ f∥2,

where

Bη,νε,µ = Bη,ν
ε,µ

Γ( 1−t
2 ) , Bη,νε,µ = Γ( 1+2σ+t+µ−

4 )
Γ( 1+2σ−t−µ−

4 )
Bη,ν
ε,µ , (η(σ), ν(t)) =

(
ε+ σ(1, 1), (µ++t

2 , µ+−t
2 )

)
,

and

b(δ, t) = 2t−2+3δ(−t)δΓ(1 − t)
π2Γ( δ−t2 )

, a(δ, t) =
2

3
2πΓ( t2)

Γ(1+t+δ
2 )Γ(1+t−δ

2 )
, (δ ∈ Z/2Z).
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We can slightly reformulate this result which is more useful for computations. As the
normalization used for Bη,νε,µ does not contain any zeroes for t ∈ iR the normalization can
be moved to a(ε, t). The normalization used for Bη,νε,µ does not have zeroes or poles for t
being summed over in the discrete part

Theorem 2.6. Let µ ∈ iR2 and put µ± = µ1 ± µ2 and ε∗ = ε1 + ε2. For f ∈ IndHD(ε⊗ eµ)

∥f∥2 =
∫
iR

1∑
σ=0

∥Bη(σ),ν(t)
ε,µ f∥2 dt

|a(ε∗, t)|2

+
1∑

σ=0

∑
t∈1−ε∗+2σ−4N

b(ε∗, σ(1 − ε∗), t)∥Bη(σ(1−ε∗)),ν(t)
ε,µ f∥2,

where
(η(σ), ν(t)) =

(
ε+ σ(1, 1), (µ+ + t

2 ,
µ+ − t

2 )
)
,

and

b(δ, σ, t, µ−) =
2t−2+3δ(−t)δΓ(1 − t)

∣∣Γ(1+2σ+t+µ−
4 )

∣∣2
π2Γ( δ−t2 )

∣∣Γ(1+2σ−t−µ−
4 )

∣∣2 , a(δ, t) =
2

3
2πΓ( t2)Γ(1−t

2 )
Γ(1+t+δ

2 )Γ(1+t−δ
2 )

,

where δ ∈ (Z/2Z)2.

This is the result presented in Paper C.
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