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Not yet submitted.

Papers I and II were written jointly with Jevgenijs Ivanovs, with the research and writing

being divided more or less equally between us. Large parts of these two papers were also

included in the progress report for my qualifying exam. Paper III is the result of a solo

project in the beginning of part B of my studies. Lastly, Paper IV has been written jointly

with Sebastian Engelke and Jevgenijs Ivanovs. Sebastian Engelke is an associate professor at

the University of Geneva in Switzerland and I visited him for nearly four months during the

spring of 2022. For Paper IV, I contributed significantly to both the research and writing.

The introductory chapter is mostly there to set the scene and motivate the four projects.

Each paper has its own section which discusses the general idea, main results and methodol-

ogy. It also contains a brief conclusion on the project, including references to relevant work

and some ideas for further research.

Here, at the end of my studies, I would like to thank my supervisor Jevgenijs Ivanovs for

guiding me during the past four years. I have enjoyed not only our scientific collaboration

but also the occasional hike, swim or bouldering session. Our trip through the snow to Les

Rochers-de-Naye was particularly memorable.

Being a PhD student at the Department of Mathematics at Aarhus University has been

great and my colleagues have played a big part in this. In particular, I would like to thank Jan

Pedersen for our many discussions. The same applies to my office mates Helene Hauschultz,

Ragnhild Laursen, Lota Copic and Kenneth Borup although our discussions have been less

mathematical and more about things like politics, bouldering and Formula 1.

During my PhD I was fortunate to spend a few months in Geneva. Here I would like to

thank Sebastian Engelke for letting me visit and the rest of the group for welcoming me. I

had an excellent time with wine tasting, climbing, swimming in the lake and much more.

I thank also Lars Madsen for assisting me with LATEX in the preparation of this dissertation.

I only wish that I had asked for his input earlier as it has been very helpful.

i



Preface

Finally, my family and friends deserve my biggest thanks for always being interested in

my work even though it may have been difficult to completely understand. In particular, I

want to thank my girlfriend Malene. Your support means a lot and I am especially thankful

that you took the time to come and visit me in Switzerland on several occasions.

ii



Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
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Abstract

Abstract

Stochastic processes are used to model quantities that exhibit random fluctuations over time,

such as stock prices, temperatures, wind speeds, etc. Lévy processes make up a popular class

of models due to their theoretical properties and applications in e.g. finance and physics.

From a theoretical point of view these processes evolve in continuous time but in practice

only a finite number of observations are available. Understanding the implications of this

discretization is essential and in many cases it requires knowledge of the local properties of the

process. The first paper in this dissertation is concerned with a specific discretization scheme

for positive self-similar Markov processes. To describe this we rely on knowledge about

small-time fluctuations of Lévy processes. In another paper we examine the local properties

of diffusions. At a fixed time point such a process behaves locally as a scaled Brownian

motion and we prove a similar result for the small-time fluctuations at the supremum. The

theory which describes a univariate Lévy process before and after its supremum is well-known

and relies on the notion of a Lévy process conditioned to stay positive or negative. In a third

paper we extend this to the multivariate setting, constructing the law of a Lévy process

conditioned to stay in a half-space. This is related to splitting the process at its directional

supremum and we further conjecture how it can be used to describe the local behavior of the

process when it is farthest from the origin.

One of the big challenges in modern statistics is dealing with high-dimensional data.

Classical models are faced with an increased risk of overfitting, large computational cost and

low interpretability. The concept of sparsity addresses these issues by taking advantage of

lower-dimensional structures in the data. The use of graphical models is one way of promoting

sparsity and has recently been introduced in multivariate extreme value theory. The final

paper in this dissertation introduces graphical models in the context of Lévy processes. To

do this we exploit a subtle connection to extremes.
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Resumé

Stokastiske processer anvendes til at modellere værdier, der udviser tilfældige udsving over

tid, s̊asom aktiekurser, temperaturer, vindhastigheder osv. Lévy-processer udgør en populær

klasse af modeller p̊a grund af deres teoretiske egenskaber samt anvendelser inden for f.eks.

finans og fysik.

Ud fra et teoretisk synspunkt udvikler disse processer sig i kontinuert tid, men i praksis

er kun et endeligt antal observationer tilgængelige. Det er vigtigt at forst̊a konsekvenserne

af denne diskretisering, og ofte kræver dette kendskab til processens lokale egenskaber.

Den første artikel i denne afhandling drejer sig om et konkret diskretiseringsproblem for

positive selvsimilære Markov-processer. Til at behandle dette benytter vi viden om Lévy-

processers opførsel p̊a kort tidsskala. I en anden artikel undersøger vi de lokale egenskaber for

diffusionsprocesser. P̊a et fast tidspunkt opfører en s̊adan proces sig lokalt som en skaleret

Brownian motion, og vi viser et lignende resultat for fluktuationerne omkring supremum.

Teorien, der beskriver en univariat Lévy-proces før og efter dens supremum, er velkendt

og bygger p̊a begrebet om en Lévy-proces betinget til at forblive positiv eller negativ. I en

tredje artikel udvider vi dette til højere dimensioner, hvor vi konstruerer fordelingen af en

Lévy-proces betinget til at forblive i et halvrum. Dette er relateret til at dele processen ved

dens retningsbestemte supremum, og vi præsenterer en formodning om, hvordan dette kan

bruges til at beskrive processens lokale opførsel, n̊ar den befinder sig længst væk fra origo.

En af de store udfordringer inden for moderne statistik er h̊andteringen af højdimensionelt

data. Klassiske modeller st̊ar over for en øget risiko for overfitting, høje beregningsomkost-

ninger samt lav fortolkningsevne. Konceptet om sparsitet adresserer disse problemer ved

at udnytte lavdimensionelle strukturer i data. Brugen af grafiske modeller er en måde at

fremme sparsitet, og disse er for nyligt blevet introduceret i multivariat ekstremværditeori.

Den sidste artikel i denne afhandling introducerer grafiske modeller for Lévy-processer. Til

at gøre dette udnytter vi en subtil forbindelse til ekstremværditeori.

vi



Introduction

This chapter has two purposes, the first of which is to introduce the reader to certain

areas which are essential for the papers in this dissertation. These are both relatively

standard topics such as Lévy processes and extreme value theory but also more specialized

concepts such as Lévy processes conditioned to stay positive and conditional independence

for multivariate Pareto distributions. Some ideas and definitions may be reiterated in the

introductory sections of each of the papers. The other purpose of this chapter is to provide

an introduction to each of the four papers, including some motivation and connection to the

literature.

Notation

The notation will not be entirely consistent across this introductory chapter and the papers.

One thing which will differ is the way we write the value of a stochastic process at some time

point. Depending on the context we will write either Xt or X(t) for the value of a process

X at time t. In connection with Paper IV we will also use bold letters to emphasize that

something is a stochastic process and not just a random vector. That is, we will write X

when we are talking about a process and X(t) when we are talking about its value at time t.

1.1 Lévy processes

Lévy processes should be seen as the result of wanting to extend random walks to continuous

time. The first steps in this direction were taken nearly 100 years ago and today there

is a large number of books and research papers dealing with Lévy processes and related

topics. Standard references include Bertoin (1996), Sato (1999) and Applebaum (2009). Over

time other research areas have put the theory of Lévy processes to use. For example, Lévy

driven models have become popular in financial disciplines such as option pricing and risk

management, see e.g. Cont and Tankov (2004). The role of Lévy processes in other fields

such as quantum mechanics is described by Barndorff-Nielsen et al. (2001).

A Lévy process is an Rd-valued stochastic process X = (Xt)t≥0, defined on a probability

space (Ω,F ,P), which satisfies the following properties.

1. X0 = 0 P-a.s.

2. Xt −Xs
d
= Xt−s for any 0 ≤ s ≤ t.

3. Xt −Xs is independent of σ(Xu | 0 ≤ u ≤ s) for any 0 ≤ s ≤ t.

4. The path t 7→ Xt is càdlàg (right continuous with left limits) P-a.s.

1



Introduction

Another common definition replaces 4 by continuity in probability. That is, for any ε > 0

and t ≥ 0

P(‖Xt −Xs‖ > ε)→ 0 as t→ s,

where ‖ · ‖ is a norm on Rd. In this case one may construct a version with almust surely

càdlàg paths, see e.g. Kallenberg (2021, Thm. 16.2).

1.1.1 Connection to infinitely divisible distributions

An important consequence of points 1–3 above is that the distribution of Xt is infinitely

divisible for any t ≥ 0. That is, for any n ≥ 1 there exists i.i.d. random variables Y1, . . . , Yn
such that Xt

d
= Y1 + · · ·+ Yn. Indeed, we simply take Yi = Xi/n·t −X(i−1)/n·t. While this

shows that every Lévy process induce many infinitely divisible distributions, the connection

actually is much stronger. In fact, for every infinitely divisible distribution µ on Rd there

exists a unique (in law) Lévy process X such that X1 ∼ µ, see Sato (1999, Cor. 11.6).

It is well-known that the distribution of a random vector is characterized by its charac-

teristic function. A consequence of the infinite divisibility is that the characteristic function

of Xt can be written as

E[ei〈u,Xt〉] = etψ(u), u ∈ Rd,

where ψ(u) is given by

ψ(u) = i〈u, γ〉 − 1

2
〈u,Σu〉+

∫

Rd
ei〈u,x〉 − 1− i〈u, x〉1{‖x‖≤1} Λ(dx),

see Sato (1999, Thm. 8.1). Here γ ∈ Rd, Σ is a positive semidefinite d× d matrix, and Λ is a

measure on Rd. The latter is typically referred to as the Lévy measure and it satisfies

Λ({0}) = 0 and

∫

Rd
(1 ∧ ‖x‖2) Λ(dx) <∞.

This identity for the characteristic function is known as the Lévy–Khintchine formula

and is one of the most fundamental results about infinitely divisible distributions. Typically,

the process X is said to have has characteristic triplet (γ,Σ,Λ) and it is unique when ψ is

written like above. However, it is worth noting that the indicator 1{‖x‖≤1} may be replaced

by any c(x), where c(x) = 1 + o(‖x‖) as ‖x‖ → 0 and c(x) = O(1/‖x‖) as ‖x‖ → ∞, see

Sato (1999, Rem. 8.4). This does not affect Σ and Λ but the vector γ must be modified

accordingly.

1.1.2 The path behavior of a Lévy process

To work with Lévy processes it is important to understand how they behave. Point 4 in

the definition does provide some immediate restrictions on what a sample path might look

like. Since the sample paths are almost surely càdlàg it makes sense (except on a P-null

set) to consider the jump ∆Xt = Xt −Xt− at any time point t > 0. One can easily show

that for any ε > 0 and any bounded time interval [T1, T2] there can be only finitely many

time points t ∈ [T1, T2] with ‖∆Xt‖ ≥ ε. This implies, in particular, that X has at most

countably many jumps. However, some Lévy processes will actually have infinitely many

infinitesimally small jumps during any time interval of positive length.

It is immediately clear from points 2 and 3 in the definition that a Lévy process is also

a Markov process. Specifically, for any deterministic time T ≥ 0 we see that the restarted

process (Xt+T −XT )t≥0 is independent of σ(Xu | 0 ≤ u ≤ T ) and it has the same law as X.

2



1.2. Lévy processes conditioned to stay positive

A standard argument, relying on t 7→ Xt being almost surely right-continuous, extends the

Markov property to also hold when T is a (finite) stopping time wrt. the filtration generated

by X. This is commonly known as the strong Markov property.

Obvious examples of Lévy processes are a compound Poisson process, a Brownian motion,

and a linear drift. If these are independent then their sum is also a Lévy process. This shows

that the path of a Lévy process may contain both jumps, Brownian fluctuations and a drift.

The Lévy–Itô decomposition states that for any Lévy process X there exists a Brownian

motion B (possibly with a drift), a compound Poisson process C and a square integrable

martingale M such that B, C and M are independent and Xt can be written as

Xt = Bt + Ct +Mt, t ≥ 0,

see Applebaum (2009, Thm. 2.4.16). The process B is often referred to as the Brownian part

of X while the sum C +M is referred to as the jump part. Indeed, B is continuous so all

jumps of X are contained in C +M .

The covariance matrix of B is the matrix Σ from the characteristic triplet of X. The

processes C and M are not unique but one option is to let C contain all large jumps and M

contain all small jumps. For example, C and M might be constructed to contain jumps with

norm respectively larger and strictly smaller than 1. In this case C will have rate λ = Λ({x |
‖x‖ ≥ 1}) and jump distribution λ−1Λ( · ∩ {x | ‖x‖ ≥ 1}), while M is a Lévy process with

no Brownian part and Lévy measure Λ( · ∩ {x | ‖x‖ < 1}).

1.2 Lévy processes conditioned to stay positive

A key concept in this dissertation is that of a Lévy process conditioned to stay positive. For

many Lévy processes the probability of being positive at all times t > 0 is zero. Conditioning

to stay positive should therefore not be understood in the usual sense. This section contains

a brief overview of the properties which are central to this dissertation. The topic has been

treated in much greater detail in numerous papers and books. Some of the typical references

are Bertoin (1993), Chaumont (1996) and Chaumont and Doney (2005).

Throughout the section we let D denote the space of càdlàg functions ω : [0,∞)→ R∪{†},
where † is an absorbing cemetery state. This is equipped with the Skorokhod topology

and F is the resulting Borel σ-field. We further denote the coordinate process by X = (Xt),

i.e. Xt(ω) = ω(t), and its natural filtration by (Ft). The lifetime of X is a random variable

given by ζ = inf{t ≥ 0 |Xt = †}.
We let P be a measure on (D,F) such that X is a Lévy process (starting at 0) under P.

For any x ∈ R we use Px to denote the law of X + x under P. As usual we will assume

w.l.o.g. that for these and any other laws on (D,F) the filtration (Ft) is complete.

We make the typical assumption that X is not a compound Poisson process under P. To

deal with such processes one is usually able to use the tools and ideas from discrete time.

1.2.1 Bertoin’s construction

There are different ways of constructing a Lévy process to stay positive. In this subsection

we look at the one by Bertoin (1993). Another approach is given by Tanaka (1989). This

was originally meant for discrete time, i.e. random walks, but it was extended to continuous

time in Doney (2005).

Since the Lévy process X is also a semimartingale we may consider the semimartingale

3
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local time L of X at 0 which is given by the Meyer–Tanaka formula,

X+
t −X+

0 =

∫ t

0

1{Xs−>0} dXs +
∑

0<s≤t

(
1{Xs−≤0}X

+
s + 1{Xs−>0}X

−
s

)
+ 1

2Lt

for t ≥ 0. Now, let Y − and Y + be the processes given by

Y −t = Xt −
∑

0<s≤t

(
1{Xs≤0}X

+
s− + 1{Xs>0}X

−
s−
)
− 1

2Lt,

Y +
t = Xt +

∑

0<s≤t

(
1{Xs≤0}X

+
s− + 1{Xs>0}X

−
s−
)

+ 1
2Lt.

(1.1)

We further define two continuous and non-decreasing processes A− and A+ which track the

time spent in (−∞, 0] and (0,∞) respectively. These are given by

A−t =

∫ t

0

1{Xs≤0} ds and A+
t =

∫ t

0

1{Xs>0} ds

for t ≥ 0. The right-continuous inverses of A± are denoted by α±t = inf{s ≥ 0 |A±s > t}. It

is now possible to define two processes X↓ and X↑ by

X↓t = Y −
α−t

and X↑t = Y +

α+
t

. (1.2)

If we ignore the local time in the definition of Y − we see that X↓ is the juxtaposition of

the excursions of X in (−∞, 0]. That is, X↓ is obtained by ‘gluing’ together the parts of

the path of X in the non-positive numbers including the jumps where Xs− > 0 and Xs ≤ 0.

Similarly, X↑ comes from gluing together the excursions in (0,∞) (if we ignore the local

time contribution).

The laws of X↓ and X↑ under P are denoted by P↓ and P↑ and we shall refer to these as

the laws of X conditioned to stay non-positive and conditioned to stay positive respectively.

The convergence in (1.7) below provides some justification of this terminology.

To understand why the processes X↓ and X↑ are interesting we will look at the infimum

of X. Let X denote the running infimum of X. That is,

Xt =

{
inf0≤s≤tXs for t < ζ,

I for t ≥ ζ,

where I = Xζ−. The time of the ultimate infimum is denoted by τ = sup{0 ≤ t < ζ |
Xt ∧Xt− = I}. We further define the pre-infimum and post-infimum processes by

X←−t =

{
X(τ−t)− − I for t < τ,

† for t ≥ τ,
and X−→t =

{
Xτ+t − I for t < ζ − τ,
† for t ≥ ζ − τ.

Note that the pre-infimum process is reversed in time such that it ‘looks back’ from the

infimum.

For any fixed T > 0 we denote by PT the law of X killed at time T under P. Then

(−X←−, X−→)
d
= (X↓, X↑) under PT , (1.3)

see Bertoin (1993, Thm. 3.1). This fact can be seen as the primary motivation behind

studying the laws P↓ and P↑. We will see an application of this in §1.3 below.

4



1.2. Lévy processes conditioned to stay positive

1.2.2 Properties

The processes X↓ and X↑ defined in (1.2) are Markov processes under P, see Bertoin (1993,

Thm. 3.4). In the following we will focus on X↑ and simply remark that X↓ = −(−X)↑ a.s.

In order to write down the semigroup of X↑ we first recall that the reflected process X −X
is a Markov process, see e.g. Bertoin (1996, Prop. VI.1). Let L denote a Markov process

local time at 0 for X −X and define

h(x) = E
[ ∫

[0,∞)

1{Xt≥−x} dLt

]
, x > 0. (1.4)

Recall that the local time L is only unique up to multiplication by a positive constant and

that scaling of the local time will result in the same scaling of h. However, in the following it

should be clear that this scaling is irrelevant as we always consider ratios such as h(y)/h(x).

Generally, we have the inequality

Ex[h(Xt) 1{Xt>0}] ≤ h(x), (1.5)

and when X does not drift to −∞ it is an equality, see Chaumont and Doney (2005, Lem. 1).

We define

p↑t (x, dy) =
h(y)

h(x)
Px(Xt ∈ dy,Xt > 0), x, y, t > 0. (1.6)

The collection (p↑t ) is the semigroup of X↑ in (0,∞) under P. We denote the law of the

Markov process starting at x > 0 and having semigroup (p↑t ) by P↑x.

Note that p↑t (x, · ) need not be a probability measure since the inequality in (1.5) may

be strict. In that case X has finite lifetime under P↑x. In the literature P↑ is typically only

referred to as the law of X conditioned to stay positive when (1.5) is an equality for all t > 0.

In this case the construction of p↑t in (1.6) can be viewed as a so-called Doob h-transform.

The latter is a general technique which allows one to condition a Markov process to stay in a

certain set even if that event has a probability of zero. Other examples include conditioning

the Lévy process to hit an interval continuously, see Döring and Weissmann (2020), and

conditioning it to avoid an interval, see Döring et al. (2019).

While the terminology ‘conditioned to stay positive’ can be explained via the Doob

h-transform, there is a much more intuitive way to justify this. If x > 0 and eq is an

independent exponential variable with rate q then

lim
q→0

Px(Λ, T < eq | Xeq
> 0) = P↑x(Λ, T < ζ) (1.7)

for any (Ft)-stopping time T and Λ ∈ FT , see Chaumont and Doney (2005, Prop. 1). In

other words, to obtain the law P↑x we take X under Px, condition it to stay positive (at least)

until eq, and finally let E[eq] = 1/q →∞.

1.2.3 The case of self-similarity

Recall that X is called strictly α-stable under P if there exists a constant α ∈ (0, 2] such

that (Xct)
d
= c1/αX for all c > 0 under P. This is the same as saying that X is 1/α-self-similar.

If α = 2 then X is a Brownian motion and if α ∈ (0, 2) then X has no Brownian component.

When X is strictly α-stable the function h from (1.4) takes the simple form h(x) = xαρ

where ρ = P(X1 < 0), see Caballero and Chaumont (2006, §3.2).

Assume that X is strictly α-stable and that neither X nor −X is a subordinator. Then X

is oscillating, see e.g. Kyprianou and Pardo (2022, §3.4), meaning that lim supt→∞Xt =∞
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a.s. and lim inft→∞Xt = −∞ a.s. Since X does not drift to −∞ we have that (p↑t ) defined

in (1.6) is the semigroup of a Markov process with infinite lifetime. Furthermore, it follows

that this process is 1/α-self-similar. More precisely, for any x > 0 and c > 0 the process

(Xct) under P↑x has the same law as c1/αX under P↑
c−1/αx

.

For x > 0 the process X is a positive self-similar Markov process (pssMp) under P↑x. It

was shown by Lamperti (1972) that there exists a Lévy process ξ such that

Xt = x exp(ξτ(tx−α)), τ(r) = inf{s > 0 | Is ≥ r}, Is =

∫ s

0

exp(αξu) du.

This representation is called the Lamperti representation of X. The particular case where the

pssMp is a Lévy process conditioned to stay positive has been further studied by Caballero

and Chaumont (2006).

To end the section on an example, assume that X is a standard Brownian motion under

P. Then X is strictly α-stable with α = 2 and ρ = 1/2. Hence, h(x) = x and one may

deduce that X↑ is, in fact, a Bessel-3 process. In this case the Lévy process ξ in the Lamperti

representation is a Brownian motion with unit variance and drift 1/2, see e.g. Caballero and

Chaumont (2006, p. 969).

1.3 Zooming in on a Lévy process

Zooming out is a classical idea in the theory of stochastic processes. For example, Donsker’s

theorem states that zooming out from a symmetric random walk results in a Brownian motion.

In this section we briefly discuss the idea of zooming in on a Lévy process. Throughout we

consider a probability space (Ω,F ,P) and a Lévy process X defined on this space.

1.3.1 Zooming in at the origin

We say that X has a zooming-in limit if there exists a random variable X̂1 and a positive

scaling function a : (0,∞)→ (0,∞) such that P(X̂1 = 0) < 1 and

a(ε)Xε
d−−→ X̂1 as ε ↓ 0. (1.8)

The limiting random variable X̂1 is necessarily infinitely divisible so we may view it as a

Lévy process X̂ evaluated at time 1. Furthermore, the convergence in (1.8) is equivalent to

the functional convergence

(a(ε)Xεt)
d−−→ X̂ as ε ↓ 0,

see Jacod and Shiryaev (1987, Cor. VII.3.6). Using standard ‘convergence to types’ arguments

it follows that the limiting process X̂ must be strictly stable, see Ivanovs (2018, Thm. 1).

If (1.8) holds we say that X is in the domain of attraction of X̂. If X has a non-zero

Brownian component then X is necessarily attracted to a (driftless) Brownian motion. If

not, one has to look at the Lévy measure close to the origin to determine the domain of

attraction (and if it exists). This is characterized in detail by Ivanovs (2018, Thm. 2).

1.3.2 Zooming in at the infimum and supremum

We assume that the Lévy process X is attracted to a strictly α-stable Lévy process X̂ with

scaling function a. As in §1.2.1 we let X←− and X−→ denote the pre-infimum and post-infimum

processes for some fixed time interval [0, T ]. As shown by Ivanovs (2018, Thm. 4) the identity

in law (1.3) and the zooming-in assumption can be combined to obtain the join convergence

(
(a(ε)X←−εt), (a(ε)X−→εt)

) d−−→
(
−X̂↓, X̂↑

)
as ε ↓ 0, (1.9)
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where X̂↓, X̂↑ are created from X̂ as described in §1.2.1. Note that Ivanovs (2018) considers

the supremum rather than the infimum but by duality this is no different.

In Bisewski and Ivanovs (2020) the convergence in (1.9) was used to study threshold

exceedance of a Lévy process X. If one defines M = supt∈[0,1]Xt and M (n) = max0≤i≤nXi/n

then p(n) = P(M > x,M (n) ≤ x) denotes the probability of failing to observe exceedance

above the level x > 0 given the observations Xi/n where i = 0, 1, . . . , n. It turns out that the

asymptotic behavior of p(n) (as n→∞) can be described using the scaling function a and

the limit pair (−X̂↓, X̂↑).
Another application of the result concerns estimation of the supremum M given the

observations Xi/n, i = 0, 1, . . . , n. The obvious estimator is the maximum M (n) and Ivanovs

(2018, Thm. 5) gives the convergence rate of the difference M −M (n). Again this can be

formulated using a and (−X̂↓, X̂↑). This is explored further by Ivanovs and Podolskij (2022).

1.4 Graphical models for extremes

Graphical models and extreme value theory are two rather classical topics. More recently

there has been advances in the area of graphical models within multivariate extreme value

theory. This section aims to introduce some of these ideas.

1.4.1 Multivariate extreme value theory

We consider a sequence Z(1), Z(2), . . . of i.i.d. d-dimensional random vectors with distribution

function F . One approach in multivariate extremes studies the vector of component-wise

maxima M(n) where Mi(n) = maxk=1,...,n Zi(k). We are then interested in any multivariate

distribution function G which has non-degenerate marginals and can arise as the limit

G(x) = lim
n→∞

P
(M1(n)− b1(n)

a1(n)
≤ x1, . . . ,

Md(n)− bd(n)

ad(n)
≤ xd

)

= lim
n→∞

Fn(a1(n)x1 + b1(n), . . . , ad(n)xd + bd(n))

for x ∈ Rd, where a(n) ∈ (0,∞)d and b(n) ∈ Rd for all n. In this case we say that F is

in the domain of attraction of G. The collection of these limit distributions is called the

class of multivariate extreme value distributions and it turns out to coincide with the class

of max-stable distributions, see e.g. Resnick (2008, Prop. 5.9). A distribution function G is

called max-stable if, for any t > 0, there exist α(t) ∈ (0,∞)d and β(t) ∈ Rd such that

Gt(x) = G(α1(t)x1 + β1(t), . . . , αd(t)xd + βd(t))

for x ∈ Rd.
It is common practice to standardize the marginals of G through a transformation of the

random vectors as this allows one to focus on the dependence between components. For

each k ∈ N and i ∈ {1, . . . , d} we apply the transformation x 7→ (1 − Fi(x))−1 to Zi(k),

where Fi is the distribution function of Zi(1). We denote by F̃ the distribution function

for the standardized vectors. Then, if F is in the domain of attraction of a max-stable

distribution we have the convergence

F̃n(nx)→ G̃(x) as n→∞ (1.10)

for x ∈ Rd, see Resnick (2008, Prop. 5.10). The limit G̃ is a max-stable distribution function

with marginals G̃i(x) = exp(−x−1) 1(0,∞)(x) for all i. A consequence of having standardized

marginals is that

G̃t(tx) = G̃(x) for all t > 0, x ∈ Rd,
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see Resnick (2008, 5.24). This implies, in particular, that G̃ is max-infinitely divisible, i.e.

for every n ∈ N there exists i.i.d. random vectors U(1), . . . , U(n) such that the vector of

component-wise maxima has distribution function G̃.

The distribution function G̃ is characterized by its so-called exponent measure Λ. This is

a measure on the cone E = [0,∞)d \ {0} and is related to G̃ by the formula

G̃(x) = exp(−Λ(E \ [0, x])),

where [0, x] = [0, x1] × · · · × [0, xd] for any x ∈ E . Furthermore, Λ is homogeneous in the

sense that Λ(tB) = t−1Λ(B) for any t > 0 and any Borel set B ⊆ E .

The vector of component-wise maxima is just one object of interest in multivariate

extremes. Another popular idea is the so-called peaks-over-threshold approach which considers

the distribution of a random vector Z̃ conditioned on the event that at least one component

is large. We assume that Z̃ has been normalized as above such that its distribution function

F̃ satisfies (1.10). Then we have the convergence

n(1− F̃ (nx))→ Λ(E \ [0, x]) as n→∞
for any x ∈ E , see Resnick (2008, Prop. 5.17). We can now look at n−1Z̃ conditioned on the

event {‖Z̃‖∞ > n}. For x ∈ E we find that

P(n−1Z̃ ≤ x | ‖Z̃‖∞ > n) =
P({n−1Z̃ ≤ x} \ {n−1Z̃ ≤ 1d})

1− F̃ (n1d)

=
P({n−1Z̃ ≤ x} \ {n−1Z̃ ≤ 1d ∧ x})

1− P(n−1Z̃ ≤ 1d)

=
1− F̃ (n(1d ∧ x))− (1− F̃ (nx))

1− F̃ (n1d)

→ Λ(E \ [0, 1d ∧ x])− Λ(E \ [0, x])

Λ(E \ [0, 1d])

as n → ∞, where 1d ∈ Rd has 1 in each component and 1d ∧ x is the component-wise

minimum of 1d and x. The limit is the distribution function of a so-called multivariate Pareto

distribution. If Y has this distribution function then the support of Y is contained in the

L-shaped space L = {x ∈ E | ‖x‖∞ > 1}, and for any measurable A ⊆ L we have that

P(Y ∈ A) =
Λ(A)

Λ(L)
.

1.4.2 Conditional independence and graphical models

For d ∈ N let V = {1, . . . , d} and consider a random vector Z taking values in Rd. For any non-

empty A ⊆ V we denote by ZA the A-component of Z. For disjoint subsets A,B,C ⊆ V we

can ask if ZA is conditionally independent of ZB given ZC , typically written as ZA ⊥⊥ ZB | ZC .

If C = ∅ this is just regular independence and we write ZA ⊥⊥ ZB .

Pairing V with an edge set E ⊆ V × V results in the graph G = (V,E). The latter

is assumed to be undirected, meaning that we do not distinguish between the edges (i, j)

and (j, i) for i, j ∈ V . The distribution of Z is said to satisfy the pairwise Markov property

wrt. G if Zi ⊥⊥ Zj | ZV \{i,j} for any (i, j) /∈ E. Furthermore, the distribution of Z satisfies

the stronger global Markov property wrt. G if ZA ⊥⊥ ZB | ZC for any disjoint A,B,C ⊆ V
such that C separates A and B in G. Generally, the pairwise Markov property does not

imply the global Markov property. However, a sufficient condition for equivalence of the two

properties is that Z has a positive and continuous density wrt. a product measure on Rd, see

Lauritzen (1996, Thm. 3.9).
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1.4.3 Conditional independence in extremes

Studying the vector of component-wise maxima of n i.i.d. d-dimensional random vectors is,

in the limit, the same as studying an associated max-stable distribution as we saw in the

previous subsection. If Z is a d-dimensional max-stable vector and we further assume it has

a positive and continuous Lebesgue density on (0,∞)d then, in fact, there is the implication

ZA ⊥⊥ ZB | ZV \(A∪B) ⇒ ZA ⊥⊥ ZB ,

see Papastathopoulos and Strokorb (2016, Thm. 1). A consequence of this is that the

graphical structure of such a max-stable distribution is somewhat trivial. Indeed, Z will

satisfy the global Markov property wrt. a graph which consists entirely of isolated cliques.

Conditional independence is less straightforward when we consider a multivariate Pareto

distributed vector Y with exponent measure Λ. Even independence of e.g. Y1 and Y2 becomes

an issue since the support of Y might not be a product set. To work around this problem one

can look at Y k, a vector with the distribution of Y conditioned on the event {Yk > 1}. Since

the only restriction on the support of Y k is that it must be contained in the set {x ∈ [0,∞)d |
xk > 1} it is, in particular, allowed to be on product form. Thus, it is more natural to look

at independence and conditional independence for Y k. If A,B,C ⊆ V are disjoint and we

have Y kA ⊥⊥ Y kB | Y kC for all k ∈ V then Engelke and Hitz (2020) say that YA is conditionally

independent of YB given YC . This is written YA ⊥e YB | YC . The distribution of Y is then

called an extremal graphical model relative to a graph G if it satisfies the pairwise Markov

property wrt. G. The pairwise Markov property implies the global Markov property when Y

has a positive and continuous Lebesgue density on L, see Engelke and Hitz (2020, Thm. 1).

1.5 Paper I

Positive self-similar Markov processes play an important role in studying, for example, the

supremum or infimum of a strictly stable Lévy process, with a couple of examples already

mentioned in §1.3. In applied probability theory it is sometimes difficult to do calculations

and typically one must resort to simulation methods. But how can we simulate a Lévy

process conditioned to stay positive? This question was the inspiration for Paper I as the

literature did not provide any good answers.

Initially one might suggest using Bertoin’s construction from §1.2.1. That is, we simulate

the Lévy process on a fine grid and glue together the parts of the path that are positive.

With this approach, simulation of the conditioned process until some time T > 0 requires

simulation of the Lévy process until time α+
T , which is the time point when the process has

been positive for a total time of T . However, E[α+
T ] = ∞ for many Lévy processes, such

as the standard Brownian motion. Therefore, this approach is not suited for Monte Carlo

methods as it will take a significant amount of time to run many simulations.

The idea in the paper is to use the Lamperti representation. Recall that a pssMp X,

starting at x > 0, can be represented as

Xt = x exp(ξτ(tx−α)),

where ξ is a Lévy process, 1/α is the self-similarity index and

τ(r) = inf{s > 0 | Is ≥ r}, Is =

∫ s

0

exp(αξu) du.

It is assumed that the process ξ is available at times i/n, i ∈ N and in the paper we suggest

a simple approximation scheme. With ξ(n) being the discretization of ξ, i.e. ξ(n)
t = ξ[tn]/n,
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we define

X(n)
t = x exp(ξ(n)

τn(tx−α)),

where

τn(r) = inf{s > 0 | I(n)
s ≥ r}, I(n)

s =

∫ s

0

exp(αξ(n)
u ) du.

The main quantity of interest is the discretization error Xt −X(n)
t .

Some kind of regularity of the Lévy process ξ is essential and the zooming-in property

in (1.8) turns out to be what we need. Therefore, we assume throughout that there exist a

scaling function a and a random variable ξ̂1 (which is not a.s. zero) such that a(ε)ξε
d−→ ξ̂1

as ε ↓ 0. One of the first main results provides a convergence rate for the scaled relative

error. That is, for t > 0 we establish bounds `(n)(t), u(n)(t) such that

`(n)(t) ≤ a(n−1)
Xt −X(n)

t

Xt
≤ u(n)(t),

and it is further shown that the pair (`(n)(t), u(n)(t)) converges in distribution to a non-trivial

limit as n→∞. A limit theorem for the scaled relative error is also proved but doing this

requires an additional assumption. Namely that (τ(r), ξτ(r)) is absolutely continuous for

every small r > 0.

While it does not seem immediately related to the original problem the paper also briefly

considers the zooming-in property for a pssMp X. It turns out that X has such a property

if and only if the Lévy process ξ satisfies the zooming-in assumption. This result has a

rather useful consequence; if X0 is a strictly α-stable Lévy process and X has the law of X0

conditioned to stay positive then the Lévy process ξ satisfies the zooming-in assumption

with ξ̂1 = X0
1 and a(ε) = ε−1/α.

The paper gets somewhat technical in certain places but outlining the general ideas is not

too difficult. Firstly, one can rewrite the scaled relative error using the mean value theorem.

The result is the identity

a(n)
Xt −X(n)

t

Xt
= a(n−1)(ξτ(r) − ξ[τn(r)n]/n)(1 + oP(1)),

where r = tx−α and oP(1) is a term converging to zero in probability. Then, if we further

write [τn(r)n] = τ(r) + ([τn(r)n]− τ(r)n)/n we see that we are essentially zooming in on ξ

at time τ(r), and it becomes clear that the zooming-in assumption is natural.

In order to proceed we must study the quantity [τn(r)n] − τ(r)n as n → ∞. Here we

rely on a result by Jacod et al. (2003) which provides a functional limit theorem for the

discretized integration error

(∆(n)
t )t≥0 = n(I[tn]/n − I(n)

[tn]/n)t≥0.

Initially, this lets us derive a convergence result for n(τn(r)− τ(r)). Writing the quantity of

interest as

[τn(r)n]− τ(r)n = [{τ(r)n}+ n(τn(r)− τ(r))]− {τ(r)n}
suggests that we should control {τ(r)n}. The previously mentioned assumption about

absolute continuity of τ(r) ensures that {τ(r)n} converges in distribution to a standard

uniform random variable.

An important point is that the sequence (∆(n)
t )t≥0 actually converges stably. This means

that it converges in distribution jointly with any σ(ξ)-measurable random variable, see Podol-

skij and Vetter (2010) for more details. This additional property is used frequently throughout

the paper and most convergence results are again formulated with stable convergence.
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The paper does not solve the original simulation problem but it reduces it to simulation of

the Lévy process ξ. The latter is a separate issue but it is worth noting that the characteristic

triplet of ξ is provided in Caballero and Chaumont (2006, Cor. 2). It might be worth

investigating if the approximate simulation method treated by Asmussen and Rosiński (2001)

could be applied here.

An interesting question is if it is possible to infer the characteristics of ξ given high-

frequency observations of the pssMp X. It is possible to obtain ξ from X using the fact

that

τ(t) =

∫ xαt

0

X−αs ds Px-a.s.,

see Caballero and Chaumont (2006). However, obtaining results similar to those in this

paper requires a different approach. For example, the convergence result for n(τn(r)− τ(r))

is essential and the proof relies heavily on the result by Jacod et al. (2003). However, the

latter does not apply in this case so one must deal with it differently.

The idea in this paper could possibly be applied in other areas as identities similar to the

Lamperti representation exist elsewhere. For instance, a continuous-state branching processes

can be represented as a time-changed Lévy process, see e.g. Kyprianou (2006, Thm. 10.2).

One technical difference is that the underlying Lévy process no longer has infinite lifetime.

1.6 Paper II

Conditioning a univariate Lévy process to stay positive is a useful concept because of its

relation to the post-infimum process. The goal of Paper II was to come up with a multivariate

generalization of this particular type of conditioning as this did not exist in the literature at

the time.

The seemingly natural multivariate analogue of conditioning to be positive is to condition

the process to stay in a certain half-space. For a fixed normal vector η ∈ Rd we associate

the half-space S = {x ∈ Rd | 〈x, η〉 > 0}. Conditioning a d-dimensional Lévy process X

to stay in S corresponds to conditioning the projected process Z( · ) = 〈X( · ), η〉 to stay

positive. Since Z is a univariate Lévy process it would be natural define a function h as in

(1.4) (with Z playing the role of X) and then study the semi-group

p↑t (x, dy) =
h(〈y, η〉)
h(〈x, η〉)Px(Xt ∈ dy, Zt > 0), t > 0, x, y ∈ S. (1.11)

However, what we really want is a construction like the one given by Bertoin (1993) since it

provides the connection to the post-infimum process.

To generalize Bertoin’s construction one must define a multivariate version of the pro-

cess Y + from (1.1). Right away this looks like it involves coming up with an appropriate

multivariate generalization of the local time L. Note that the local time at 0 of the multi-

variate process X cannot be used since it is still a univariate process. To get around this we

use ideas from the proof of Bertoin (1993, Thm. 3.1) to define

Y +
t = −

∫

[−t,0]

1{〈X̃s−,η〉>0} dX̃s, t ≥ 0,

where X̃t = X(−t)−. In a similar fashion we construct Y − and through time-changes (like

in the univariate case) we can define two processes X↑ and X↓. This leads to the desired

distributional identity

(X←−, X−→)
d
= (−X↓, X↑)
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under the measure PT . Here X←− is the reversed directional pre-infimum process and X−→ is the

directional post-infimum process, i.e. the processes looking back and forward respectively

from the time of the infimum of the projected process Z.

We establish some of the fundamental properties of the processes X↑ and X↓. As in the

univariate case these are independent Markov processes and we show that the semigroup of

the former is indeed given by (1.11). The convergence in (1.7) showed that the terminology

conditioned to stay positive is sensible since this law can be obtained by conditioning the

process to stay positive until an independent exponential time where the rate vanishes. In

the multivariate case we show that a similar result holds.

We further show how the construction of X↑ behaves under linear transformations. This

is used to study the example where X is a driftless Brownian motion. By multiplying with

appropriate matrices we show that this reduces to the case where η is the first standard basis

vector and Var(X) is the identity matrix.

In §1.3 we discussed how zooming in at the infimum of a Lévy process is described using

a limiting Lévy process conditioned to stay positive. To illustrate how this looks in the

multivariate setting we assume that the Brownian part B of X is such that 〈B1, η〉 is not a.s.

zero. We have the convergence

√
n(X←−·/n, X−→·/n) : P1 d−−→ (−B↓, B↑),

where the notation : P1 means that the left-hand side should be viewed under P1, i.e. where X

is killed at time 1.

It seems interesting to go beyond studying the directional infimum, i.e. the value of X

at the time of the infimum of the projected process Z, for some time interval [0, T ]. What

we want to consider instead is the value of X when it is farthest from the origin (also for a

bounded time interval). Again we can define associated pre- and post-maximum processes
←−
X

and
−→
X but analyzing these turns out to be significantly more difficult since it is not clear

how to obtain a result similar to the rather essential distributional identity in (1.3). Instead

we provide a conjecture for zooming in at the point farthest from the origin. The proposed

limiting object is of the form (−B↓, B↑) where the direction η is now a random variable. We

simulate an example in dimension d = 2 and the results look promising.

As mentioned above it is completely straightforward to obtain a multivariate analogue of

conditioning a Lévy process to stay positive since one can just define a semigroup as in (1.11)

and proceed from there. However, conditioning just for the sake of conditioning was not

our goal. Instead we succeeded in providing a multivariate version of Bertoin’s construction

along with an identity like the one in (1.3).

1.7 Paper III

Knowledge about zooming-in properties of stochastic processes is useful. This is evident

from Paper I below and also from e.g. Ivanovs (2018), Bisewski and Ivanovs (2020) and

Ivanovs and Podolskij (2022). These papers all consider Lévy processes and the idea behind

Paper III was instead to analyze the zooming-in properties of diffusions. This particular

class was chosen because a diffusion process behaves locally as a scaled Brownian motion,

and for the latter we understand the zooming-in properties quite well. Hence, the hope was

to make use of this knowledge and intuition.

The paper considers a weak solution (X,W ) to the SDE

dXt = µ(Xt) dt+ σ(Xt) dWt and X0 = x0,
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where x0 ∈ R and W is a standard Brownian motion. Assuming certain regularity conditions

on the functions µ and σ the paper presents two zooming-in results. These are distributional

limit theorems and just like in Paper I we even have stable convergence. The first result

concerns zooming in at a fixed time point T > 0 and the result provides a distributional limit

for the process (ε−1/2(XT+εt −XT ))t∈R. The limit is a two-sided Brownian motion scaled

by σ(XT ) where the two sides, corresponding to t < 0 and t > 0, are conditionally independent

given the scaling σ(XT ). The second result establishes a zooming-in limit at the supremum

over a bounded time interval. We consider the two-sided process (ε−1/2(Xm+εt −X))t∈R
where m is the time of supremum and X is the value of the supremum. The limiting object is

constructed using two independent Bessel-3 processes, one for t < 0 and the other for t > 0,

which are both scaled by −σ(X). As an application of the second result the paper studies

the problem of estimating the supremum based on equidistant discrete observations. This is

similar to the problem considered in Ivanovs (2018, §6.1).

As mentioned we rely on zooming-in knowledge for the Brownian motion, both at fixed

times but also at the supremum. Another key ingredient in the proofs is a certain way

of representing the diffusion X. If x0 = 0 and µ ≡ 0 then X may be represented as a

time-changed Brownian motion. To be precise, Xt = W̃[X]t , where [X] denotes the quadratic

variation of X and W̃ is a Brownian motion. Zooming in is, in some sense, similar to

differentiating and this allows us to employ a ‘chain rule’ approach. It remains to argue that

the assumption µ ≡ 0 can be dropped. Intuitively, this is rather easy since the drift vanishes

linearly with ε whereas we only scale by ε−1/2.

The result for zooming in at a fixed time is essentially just a precise formulation of the

intuitive understanding of a diffusion process; locally it behaves as a scaled Brownian motion.

This should be rather straightforward to prove for t > 0, but including t < 0 makes it a

bit more difficult. An alternative approach would be to consider time-reversal but for this

we would need that the time-reversed process, say (X1−t)t∈[0,1], is a diffusion. This is not

necessarily satisfied. For example, to prove that this holds Haussmann and Pardoux (1985)

need assume that µ and σ are locally Lipschitz continuous.

Zooming in at the supremum of a Lévy process has already been characterized by Ivanovs

(2018) and Paper III deals with diffusions. In addition to these there seem to be other classes

of processes which could be suitable for further study. Two examples are already mentioned

in Paper III; positive self-similar Markov processes and continuous-state branching processes.

Both can be represented as time-changed Lévy processes, suggesting that one might be able

to employ ideas like the one mentioned above. Solutions to Lévy driven SDEs is another

direction that could be explored. Zooming in at a fixed time is studied by Reker (2023),

although only t > 0 is considered. One can imagine that results for zooming in at the

supremum are also obtainable in this setting using the existing results for Lévy processes.

1.8 Paper IV

Recently Engelke and Hitz (2020) defined a notion of conditional independence for the

components of a multivariate Pareto distributed vector Y using the vectors Y k introduced

in §1.4. This idea was extended by Engelke et al. (2022), resulting in a generalized notion of

conditional independence for measures on Rd. The interesting case is to consider measures

that may have infinite mass, such as exponent measures or Lévy measures. For disjoint

sets A,B,C ⊆ V = {1, . . . , d} they define what it means for A and B to be conditionally

independent given C with respect to a measure Λ, and in this case they write A ⊥ B | C [Λ].

For a d-dimensional Lévy process we know that the dependence between components is

13
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determined by the covariance matrix Σ and the Lévy measure Λ. The motivation behind

Paper IV was to study the above mentioned conditional independence in the context of Lévy

measures in order to understand what it means in terms of the distribution of the process.

We recall that a Lévy process X can be written as the sum X = B+J of its Brownian and

jump parts. We first show that the conditional independence XA ⊥⊥ XB | XC is equivalent

to having the same conditional independence for both B and J. This implies that we can

study conditional independence for these parts separately. In the case of the Brownian

part it is well-understood how the dependence between components is characterized by the

covariance Σ. For example, if Σ is invertible then Bi and Bj are conditionally independent

given all the other components if (Σ−1)ij = 0. Then one might ask how the conditional

independence structure of the jump part is characterized by the Lévy measure. Our main

result provides an answer to this question. We show that

JA ⊥⊥ JB | JC ⇔ A ⊥ B | C [Λ].

For this to hold we require a certain somewhat technical assumption which ensures that

we are always working with either no jumps or with infinite jump activity. If the process

is α-stable then this assumption is automatically satisfied due to homogeneity of the Lévy

measure. For the class of stable processes we study graphical models, where the underlying

graph is given by a tree. This includes theoretical properties of the Lévy measure but also a

method for consistent estimation of the tree given discrete observations. This is illustrated

with both simulations and stock price data.

In order to prove the results we employ ideas from the typical proof of the Lévy–Itô

decomposition. More precisely, we use the fact that the Brownian and jump parts can be

constructed from the full path of the Lévy process. This is important when we want to

condition on XC for some C ⊆ {1, . . . , d}. Indeed, for an integrable random variable Z it

lets us write

E[Z |XC ] = E[Z |BC ,JC ]

almost surely. To prove results specifically for stable processes we rely heavily on homogeneity

of the measure. In fact, we can borrow ideas from Engelke and Volgushev (2022) since many

of these can be extended to any homogeneous measure. There is, however, a difference when

we want to estimate the underlying graph from discrete observations. In extremes one uses

attraction to a multivariate Pareto distribution but for Lévy processes we must do something

different. In the end we use a result which follows from Sato (1999, Cor. 8.9). If E ∈ B(Rd)
is bounded away from the origin then

Λ(E) = lim
t→0

t−1P(X(t) ∈ E).

Hence, as we increase the sampling frequency we get closer to ‘observing’ the Lévy measure.

This lets us learn the conditional independence structure of Λ and therefore also that of the

process.

It is our understanding that spatial conditional independence and graphical models for

Lévy processes are rather unexplored topics. The introduction in Paper IV already contains

an overview of related works but we will give brief recap here. For time series there is the

famous concept of Granger causality, see Granger (1969), and for continuous time processes

this idea has been generalized to various notions of local independence, see e.g. Didelez (2008).

The general idea is to study how the past of one component influences influences the next

‘step’ of another component. However, this is not particularly interesting for Lévy processes

due to the Markov property. Misra and Kuruoglu (2016) define what they call α-stable
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graphical models. This is, in fact, related to the work in Paper IV, see Engelke et al. (2022,

§7.3), but the models they obtain are very simple since the resulting Lévy measures are

forced to have a particular structure.
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Journal of Applied Probability, page 1–16, 2023.

16



References

S. I. Resnick. Extreme values, regular variation and point processes. Springer Series in

Operations Research and Financial Engineering. Springer, New York, 2008. ISBN 978-0-

387-75952-4. Reprint of the 1987 original.
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Discretization of the Lamperti representation

of a positive self-similar Markov process
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Abstract. This paper considers discretization of the Lévy process appearing in the Lamperti

representation of a strictly positive self-similar Markov process. Limit theorems for the resulting

approximation are established under some regularity assumptions on the given Lévy process.

Additionally, the scaling limit of a positive self-similar Markov process at small times is provided.

Finally, we present an application to simulation of self-similar Lévy processes conditioned to stay

positive.

Keywords: Exponential functional, Lamperti representation, positive self-similar Markov process,

small time behavior, stable Lévy process conditioned to stay positive
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I.1 Introduction

Positive self-similar Markov processes (pssMp) have received a lot of attention in recent

years, see Baurdoux et al. (2016), Chaumont et al. (2012) and the survey by Pardo and

Rivero (2013). One class of examples is given by self-similar Lévy processes ‘conditioned’ to

stay positive, which arise in various limit theorems concerned with extremes, first passage

times and Skorokhod reflection (Asmussen and Ivanovs, 2018; Ivanovs, 2018; Ivanovs and

Podolskij, 2020). Recall that X = (Xt)t≥0 is a pssMp if it is a positive strong Markov process

with the self-similarity property: (Xtc)t≥0 with X0 = x > 0 has the law of (c1/αXt)t≥0 with

X0 = c−1/αx for any c > 0, where 1/α > 0 is sometimes called the Hurst index. Throughout

this work we restrict our attention to strictly positive X.

The fundamental result of Lamperti (1972) states that every pssMp X (not hitting 0)

can be represented via a Lévy process ξ as follows:

Xt = x exp(ξτ(tx−α)), τ(r) := inf{s > 0 | Is ≥ r}, Is :=

∫ s

0

exp(αξu) du (I.1)

where lim supt→∞ ξt =∞ a.s., and x > 0 is a given starting position. Moreover, this relation

can be inverted to obtain ξ in terms of X. The Lamperti representation is key for deriving

various properties of pssMp (Pardo, 2009). Furthermore, it also provides a way to simulate
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from the law of X, which is important in application of the above mentioned limit theory

and beyond.

The purpose of this paper is to investigate the basic discretization scheme, where the

path of the Lévy process ξ is sampled at equidistant times i/n, i ∈ N. Throughout this

work we assume that the increment ξ1/n can be sampled exactly and efficiently. This allows

to approximate the integral function I, which is then used to construct an approximation

X(n) of X at the times of interest. Our main result is the limit theorem for the scaled error

an(Xt −X(n)
t ) as n→∞, as well as its multidimensional version concerning a finite set of

times, see Corollary I.6. This result crucially depends on the limit theory for the integrated

process error in Jacod et al. (2003), which is extended to include zooming-in on ξ (Ivanovs,

2018) at inverse times.

A result of independent interest is presented in Theorem I.11, which complements the

classical law of the iterated logarithm for a pssMp at small times (Lamperti, 1972, Thm. 7.1).

We show that an(Xt/n − x)t≥0 has a non-trivial weak limit as n → ∞ under the obvious

regularity condition that there is weak convergence to a non-zero limit for some fixed x, t > 0

and some positive function an. Furthermore, this assumption is equivalent to the regularity

of the underlying Lévy process, which we assume in the above discussed approximation

theory.

This work has been initially motivated by the problem of simulating a strictly stable

Lévy processes conditioned to stay positive, see Engelke and Ivanovs (2016, §4) for various

available representations. Importantly, the most obvious methods result in infinite expected

running times. One of the reasons is that for an oscillating Lévy process the first passage

time over a fixed level has infinite expectation. In this regard we note that González Cázares

et al. (2019) recently provided an ε-strong simulation algorithm for the convex minorants of

stable meanders, which are closely related to conditioned processes. Our method amounts to

discretization of the Lévy process ξ in (I.1) which is applicable to a much broader class of

pssMps. We supplement this method with a limit theorem for the relative error showing that

it decays with the rate n−1/α in the case of a strictly α-stable Lévy processes conditioned to

stay positive.

Even though there is a large body of literature on high-frequency statistics and discretiza-

tion of stochastic processes, see the monograph by Jacod and Protter (2011), discretization

of the Lamperti transform has not yet been considered neither in the context of pssMps

nor for continuous-state branching processes. Our results build upon existing limit theory,

but also employ various novel ideas and methods. One of the main technical challenges was

to incorporate the convergence of the fraction part of τ(r)n into the main limit result in

Theorem I.5.

The structure of this paper is as follows. We start with the definitions, assumptions and

necessary basic theory in §I.2. The limit theory for the approximation is derived in §I.3

relying on the joint stable convergence of some fundamental objects which is proven later in

§I.4. The scaling limit of a pssMp is studied in §I.5 relying on a basic convergence result for

Lévy processes which may be of an independent interest. In §I.6 these results are applied to

self-similar Lévy processes conditioned to stay positive, where we also provide a numerical

illustration in the simplest setting of a standard Brownian motion. We conclude with §I.7

providing comments about the density assumption and the trapezoidal approximation of the

integral.
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I.2 Definitions and prerequisites

I.2.1 Fundamentals

We work with càdlàg processes on a filtered probability space (Ω,F , (Ft)t≥0,P) and use the

Skorokhod J1 topology. Let ξ = (ξt)t≥0 be a Lévy process, that is, an adapted càdlàg process

starting at the origin with the property that ξt+s − ξt is independent of Ft and has the law

of ξs for any t, s ≥ 0. Furthermore, as indicated above we assume that

lim sup
t→∞

ξt =∞ a.s., (I.2)

which is satisfied, for example, if ξ1 is integrable and Eξ1 ≥ 0, excluding the trivial 0 process.

To make the results slightly cleaner we shall extend ξ to the real line. We do so by letting

(−ξ(−t)−)t≥0 be an independent copy of the Lévy process (ξt)t≥0, where the left limit is

needed to get a càdlàg path over the real line. Note that the increments are still stationary

and independent. Furthermore,

ξT
d
= sign(T )ξ|T | (I.3)

for any random T ∈ R independent of ξ, because Lévy processes do not jump at fixed times.

The concept of stable convergence (Aldous and Eagleson, 1978; Rényi, 1963) is fundamental

in discretization of processes (Jacod and Protter, 2011; Podolskij and Vetter, 2010). Consider

a sequence of random variables Zn defined on (Ω,F ,P) and taking values in some Polish

space. The sequence Zn is said to converge stably to Z (Zn
st−→ Z) defined on an extension

(Ω̃, F̃ , P̃) if

E[f(Zn)Y ]→ Ẽ[f(Z)Y ] (I.4)

for all bounded continuous functions f and all bounded F-measurable Y , see also (I.16)

below for further intuition. The standard example concerns Z being independent of F , and

then the term mixing convergence is sometimes used.

I.2.2 Approximation

Consider the discretized process ξ(n) given by ξ(n)
t = ξ[tn]/n, where [x] denotes the integer

part of x. Later we also use the fractional part {x} = x− [x]. The basic approximation of

the integrated process It in (I.1) is given by the left Riemann sum

I(n)
t :=

∫ t

0

exp(αξ(n)
s ) ds =

1

n

[tn]∑

k=1

exp(αξ(k−1)/n) +
{tn}
n

exp(αξ[tn]/n).

In §I.7.1 below we also comment on the use of the trapezoid rule.

Note that the integrals It and I(n)
t are continuous and strictly increasing from 0 to ∞

a.s., which is an easy consequence of (I.2). Since ξ has countably many jumps, we see that

I(n) converges to I pointwise a.s. Define the respective inverse

τn(r) := inf{s > 0 | I(n)
s ≥ r}, r ≥ 0,

and observe that a.s. both τ(r) and τn(r) are finite and

τn(r)→ τ(r).

Finally, we use the approximation

X(n)
t := x exp(ξ(n)

τn(tx−α)) = x exp(ξ[τn(tx−α)n]/n),
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since ξ is sampled at i/n only.

Let us note that X(n)
t → Xt a.s., because of the continuity of ξ at τ(r). The latter

readily follows from quasi left-continuity of ξ (Bertoin, 1998, Prop. I.7) and the fact that

It is continuous and strictly increasing. Hence the main question concerns the speed of

convergence. Finally, observe that X(n)
t coincides with XT (n) for some T (n) → t a.s., that is,

sampling is exact up to time perturbation. More precisely, such T (n) is given by

T (n) = xαI[τn(tx−α)n]/n, (I.5)

so that τ(T (n)x−α) = [τn(tx−α)n]/n. The corresponding limit result is also given in the

following.

Figure I.1a below illustrates the discretization of ξ in the case where n = 10, α = 2 and ξ

is a Brownian motion with unit variance and drift 1/2 (corresponding to X being a standard

Brownian motion conditioned to stay positive, see §I.6). In Figure I.1b we see the integrals I

and I(n) and their inverses at r = 1.
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(a) The processes exp(αξt) in blue and
exp(αξ(n)t ) in red with n = 10.
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(b) Integrals of the processes in Figure
I.1a. The colored dashed lines mark τ(1)
and τn(1).

Figure I.1: An illustration of the discretization and how it affects calculation of τ(1).

I.2.3 Integrated process error

Integrated discretization error for Itô semimartingales has been studied in Jacod et al.

(2003), see also Jacod and Protter (2011, Ch. 6). In our case the function of interest is

f(x) = exp(αx). Let us first describe the limiting process defined on an extension of the

original probability space:

∆t =
σ2

√
12

∫ t

0

f ′(ξs) dW ′s

+
∑

m:Tm≤t
(f(ξTm)− f(ξTm−))(κm − 1

2 ) + 1
2 (f(ξt)− f(0)).

(I.6)

Here W ′ is a standard Brownian motion and (κm)m≥1 is an i.i.d. sequence of standard

uniforms, independent of each other and of F . Furthermore, (Tm)m≥1 denotes a weakly

exhausting sequence (Jacod and Protter, 2011, p. 100) of the jump times of ξ, and σ2 is

the variance of the Brownian component of ξ. The filtered extension is taken to be ‘very

good’ (Jacod and Protter, 2011, p. 36) so that, in particular, ∆t is adapted to F̃t.
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Theorem I.1 (Jacod and Protter (2011, Thm. 6.1.2)). There is the convergence

(∆(n)
t )t≥0 := n(I[tn]/n − I(n)

[tn]/n)t≥0
st−−→ (∆t)t≥0, (I.7)

where ∆t is defined in (I.6).

The result is stated for the difference of the integral and its approximation up to the last

epoch [tn]/n rather than time t. In fact, there is no functional convergence in Skorokhod’s

J1-topology in the latter setting unless ξ is continuous, see also Jacod et al. (2003). The

problem here is that the jumps enter into the limit expression, whereas the pre-limit evolves

continuously approximating these jumps by steep (almost linear) curves. Intuitively, this can

be remedied by switching to Skorokhod’s weaker M1-topology, where the completed graphs

of paths are compared. We do not pursue this question in the present paper, though.

I.2.4 Regularity of the Lévy process

Not surprisingly, our limit result requires certain regularity of the process ξ. Following Ivanovs

(2018) we assume that there exists a positive scaling function an > 0 and a random variable

ξ̂1 6= 0 such that

anξ 1
n

d−−→ ξ̂1 as R 3 n→∞. [I.A1]

Each anξ 1
n

is infinitely divisible and consequently so is ξ̂1. Importantly, this convergence

extends to the weak convergence for processes:

(anξt/n)t≥0
d−−→ (ξ̂t)t≥0. (I.8)

Intuitively, this is understood as zooming in on ξ at the origin. The Lévy process ξ̂ is

necessarily self-similar with index 1/β for some β ∈ (0, 2], whereas an is regularly varying at

infinity with the same index 1/β, see Ivanovs (2018). This follows by a standard argument

relying on the ‘convergence to types’ lemma. It must be noted that [I.A1] can be formulated in

terms of the Lévy triplet of ξ, yielding the parameters of ξ̂ and the scaling function an (Ivanovs,

2018, Thm. 2). See also Bisewski and Ivanovs (2020) for further examples and simple sufficient

conditions. Finally, it will be shown in Lemma I.7 that the convergence in (I.8) is, in fact,

stable and the limiting ξ̂ is independent of F . Again, to make everything a little cleaner we

extend ξ̂ to the real line.

Our limit theory will also require convergence of {τ(r)n}. The classic result of Kosulajeff

(1937) states that such a sequence converges to a standard uniform random variable if the

distribution of τ(r) is absolutely continuous, see also Tukey (1938) for sufficient and necessary

conditions. Again the convergence is stable and the limiting uniform is independent of τ(r),

see Jacod and Protter (2011). We impose a slightly stronger assumption:

The law of (τ(r), ξτ(r)) is absolutely continuous for every (small) r > 0. [I.A2]

This assumption on the inverse can be replaced by an assumption on the integral I. More

precisely, in §I.7.2 we show that it is sufficient to assume that the pair

(∫ t

0

exp(αξs) ds, exp(αξt)
)

has a density gt(x, y) which is jointly continuous in t, x, y > 0. The latter question concerns

the exponential functional and has been studied in a number of papers, see Salminen and

Vostrikova (2018), Carmona et al. (2001) and Pardo et al. (2013). Verification of this

condition, however, is still non-trivial and thus we avoid assuming [I.A2] in various places,

including §I.3.2 which establishes the rate of convergence of our approximation.
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I.3 Approximation results

Throughout this paper we assume (I.2). The assumptions [I.A1] and [I.A2] are needed only

for some results, and this is stated at the corresponding places.

Our main aim is to establish a limit result (as n→∞) for the scaled relative error, which

according to (I.1) is given by

an
Xt −X(n)

t

Xt
= an(ξτ(r) − ξ[τn(r)n]/n)(1 + oP(1)), r = tx−α, (I.9)

where we also use the mean value theorem and the fact that ξ is continuous at τ(r). The

notation oP(1) is used to denote a term which converges to zero in probability (as n→∞).

The scaling sequence an > 0 will be chosen according to [I.A1] in the following. Letting

ξ̂(n) = an(ξτ(r)+s/n − ξτ(r))s∈R

be the two-sided process arising upon zooming in on ξ at (τ(r), ξτ(r)), we find that

an(ξτ(r) − ξ[τn(r)n]/n) = −ξ̂(n)
[τn(r)n]−τ(r)n. (I.10)

Hence we need to establish the joint limit of the two-sided process ξ̂(n) and the scaled

time difference τ(r)n − [τn(r)n], and to further extend it to the multivariate setting with

0 < t1 < · · · < td. It will be shown that the scaled time differences n(τ(ri)− τn(ri)) are not

affected by infinitesimally small time intervals, whereas the zoomed-in processes are given by

the local behavior of ξ at τ(ri) and in the limit result in independent copies of ξ̂.

I.3.1 Time variable and the inverse

Our first result concerns the error in the inverse τn(r). The limiting random variable L(r),

defined below, will play an important role in the following.

Proposition I.2. For any r > 0 it holds that

n(τ(r)− τn(r))
st−−→ L(r) := −∆τ(r) exp(−αξτ(r)), (I.11)

where the process ∆t is defined in (I.6).

Proof. First, we show that

n(Iτ(r) − I(n)
τ(r))

st−−→ ∆τ(r). (I.12)

Recall that ξ is continuous at τ(r) a.s., and note that the same is true for the ∆ process.

Hence by Theorem I.1 and the continuous mapping theorem we have the stated convergence,

where τ(r) in the left-hand side of (I.12) is replaced by tn(r) := [τ(r)n]/n. It is left to show

that the remaining term vanishes. Looking at this difference, we see that

n(Iτ(r) − I(n)
τ(r))− n(Itn(r) − I(n)

tn(r))

= n

∫ τ(r)

tn(r)

exp(αξs)− exp(αξtn(r)) ds

≤ exp(α sup{ξt | t ∈ [tn(r), τ(r)]})− exp(αξtn(r)),

since n(τ(r)− tn(r)) ≤ 1. Note that the right-hand side converges to 0 a.s. by the continuity

of ξ at τ(r). The lower bound is treated analogously.
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Next, observe that

n

∫ τn(r)

τ(r)

exp(αξ(n)
t ) dt = n(r − I(n)

τ(r)) = n(Iτ(r) − I(n)
τ(r))

st−−→ ∆τ(r).

Similar bounds to above show that the left-hand side is given by

n(τn(r)− τ(r)) exp(αξτ(r))

times a term converging to 1 a.s. The result readily follows.

Observe that Proposition I.2 above easily extends to a multivariate version with 0 < r1 <

· · · < rd.

I.3.2 Rate of convergence

In order to proceed we need to supplement the convergence in Theorem I.1 by zooming in

on ξ at the times τ(ri).

Theorem I.3. Assume [I.A1]. For any 0 < r1 < · · · < rd and rni → ri there is the stable

convergence

(
(∆(n)

t )t≥0, (an(ξτ(rni )+t/n − ξτ(rni ))t∈R)i=1,...,d

) st−−→
(
(∆t)t≥0, ((ξ̂

i)t∈R)i=1,...,d

)
,

where ξ̂i are independent copies of ξ̂, also independent of everything else.

The proof of this result is postponed to §I.4.1. We will use rni dependent on n in the proof

of the multivariate version of Theorem I.5. It is very important that the time t is allowed

to be negative, which is a non-trivial extension of the case t ≥ 0. This is needed, because

the discretized epoch [τn(r)n]/n may be smaller than τ(r). Now the arguments underlying

Proposition I.2 readily yield the joint stable convergence:

(
n(τ(ri)− τn(ri)), an(ξτ(ri)+t/n − ξτ(ri))t∈R

)
i=1,...,d

st−−→
(
L(ri), (ξ̂

i)t∈R
)
i=1,...,d

. (I.13)

Next, we turn our attention to the pssMp and reconsider (I.9) and (I.10). Note that (I.13)

readily yields the result for the error in approximation of X where τn(r) is used instead of

[τn(r)n]/n, but we do not observe ξτn(r). Our main limit theorem presented in §I.3.3 requires

further work and assumptions, whereas here we establish the rate of convergence in our

pssMp approximation up to a bounded stochastic term.

Consider (I.9) and the respective upper bound:

an(ξτ(r) − ξ[τn(r)n]/n) ≤ an(ξτ(r) − inf
t∈[0,1]

ξτn(r)−t/n) =: B
(n)

(r),

and analogous lower bound B(n)(r) when using sup. According to (I.13) we have

B
(n)

(r) = − inf
t∈[0,1]

ξ̂(n)
−n(τ(r)−τn(r))−t

st−−→ − inf
t∈[0,1]

ξ̂−L(r)−t,

because ξ̂ does not jump at fixed times. Since (−ξ̂(−t)−)t∈R has the same law as (ξ̂t)t∈R, we

conclude that

(
B

(n)
(ri), B

(n)(ri)
)
i=1,...,d

st−−→
(

sup
t∈[0,1]

ξ̂L(ri)+t, inf
t∈[0,1]

ξ̂L(ri)+t

)
i=1,...,d

. (I.14)

The following result is now immediate from (I.9). It establishes the rate of convergence a−1
n

and provides explicit limiting bounds.
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Corollary I.4. Assuming [I.A1], for any x > 0 and 0 < t1 < · · · < td it holds that

B(n)(tix
−α) + oP(1) ≤ an

(
Xti −X(n)

ti

Xti

)
≤ B(n)

(tix
−α) + oP(1), i = 1, . . . , d,

where the joint limit for the bounds is given in (I.14).

I.3.3 Discretization error in pssMp

More precise analysis requires further work and it hinges on the assumption [I.A2] implying,

in particular, that {τ(r)n} converges to the standard uniform distribution. We have the

following generalization of Theorem I.3.

Theorem I.5. Consider 0 < r1 < · · · < rd and assume [I.A1] and [I.A2]. Then

(
(∆(n)

t )t≥0, ({τ(ri)n}, an(ξτ(ri)+t/n − ξτ(ri))t∈R)i=1,...,d

)

st−−→
(
(∆t)t≥0, (Ui, (ξ̂

i
t)t∈R)i=1,...,d

)
,

where Ui are independent standard uniforms, also independent of the rest.

The proof of this result is given in §I.4 below. This readily yields an extension of (I.13)

including the variables {τ(ri)n} and their uniform limits. Thus we arrive at our main result.

Corollary I.6. Assume [I.A1] and [I.A2]. Then for any x > 0 and 0 < t1 < · · · < td we

have (
an
Xti −X(n)

ti

Xti

)

i=1,...,d

st−−→ (ξ̂iL(tix−α)+Ui)i=1,...,d,

where L(·) is defined in (I.11). The standard uniforms Ui and ξ̂i
d
= ξ̂ are mutually independent

and independent of the rest.

Proof. Using the identity

a− [b] = {a} − [{a} − (a− b)]
and Proposition I.2 we observe that

n(τ(ri)− [τn(ri)n]/n) = τ(ri)n− [τn(ri)n]
st−−→ Ui − [Ui − L(ri)] =: L(ri) + U ′i , (I.15)

because Ui − L(ri) has no mass at integers and thus continuous mapping can be applied. It

is easy to verify that U ′i = {Ui − L(ri)} are again standard uniforms independent of L(ri)

and the rest (excluding the respective Ui). Furthermore, jointly with the above we also

have the zooming-in limits ξ̂i, and so the representations (I.9) and (I.10) yield the limit

(−ξ̂i−L(ri)−U ′i
)i=1,...,d. The result follows from the definition of (ξ̂i)t∈R.

It is noted that the limiting vector has dependent components and its realization depends

on the realization of ξ via L. Recall that ξ̂i is 1/β-self-similar, which together with (I.3) and

its independence of the rest yields an alternative representation of the limit components in

Corollary I.6:

sign(L(tix
−α) + Ui) · |L(tix

−α) + Ui|1/β ξ̂i1.
Finally, we also have the limit result for the time shift defined in (I.5):

n(t− T (n)) = xαn(Iτ(tx−α) − I[τn(tx−α)n]/n)
st−−→ (L(tx−α) + U)Xα

t ,

by means of (I.15), where U is a standard uniform, independent of the rest. That is, our

procedure yields the samples of Xt up to a time shift of order n−1.
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I.4 Proof of the joint convergence

Reconsider the definition of stable convergence in (I.4). In this paper Zn is derived from the

Lévy process ξ, and the limit Z is constructed from ξ and some additional random variables

independent of F . Thus it is sufficient to take σ(ξ)-measurable Y in (I.4) to ensure the stable

convergence, see also Jacod and Protter (2011, p. 110). Furthermore, it is sufficient to show

(Zn, ξt1 , . . . , ξtk)
d−−→ (Z, ξt1 , . . . , ξtk) (I.16)

for an arbitrary finite set of times t1, . . . , tk > 0, which can be seen using the monotone class

theorem as in Kallenberg (2002, Prop. 3.2).

I.4.1 Reinforcement of convergence results

This subsection consists of sequential reinforcement of convergence results stated in (I.8) and

in Theorem I.1, and culminates with the proof of Theorem I.3.

Lemma I.7. Assume [I.A1] and let τn be a sequence of finite stopping times. Then

(ξ̂(n)
t )t≥0 := an(ξτn+t/n − ξτn)t≥0

st−−→ (ξ̂t)t≥0,

where ξ̂ is independent of F .

Proof. It is sufficient to consider the process ξ̂(n) on some time interval [0, T ] jointly with ξ

at some times t1 < · · · < tk, see (I.16). That is, we need to show that

(
(ξ̂(n)
t )t∈[0,T ], (ξti)i=1,...,k

) d−−→
(
(ξ̂t)t∈[0,T ], (ξti)i=1,...,k

)

with an independent ξ̂t. Write ξti = X(n)
i +Y (n)

i , where Y (n)
i are independent of ξ̂(n)

t , t ∈ [0, T ]

and X(n)
i

P−→ 0, which can be achieved by considering independent increments over time

intervals separated by τn, τn + T/n and ti. Specifically we can use

X(n)
i = ξti∧(τn+T/n) − ξti∧τn and Y (n)

i = ξti∧τn + (ξti∨(τn+T/n) − ξτn+T/n).

Note how X(n)
i is an increment over (part of) the interval [τn, τn+T/n] and thus is negligible

in the limit, while Y (n)
i satisfies the required independence property.

Since we may ignore X(n)
i , the stated convergence is immediate from independence and

the weak convergence (ξ̂(n)
t )t∈[0,T ]

d−→ (ξ̂t)t∈[0,T ]. Note that the limit process ξ̂ does not jump

at T a.s. and hence the latter is a consequence of (I.8).

Lemma I.8. Assume [I.A1] and let τn be a sequence of finite stopping times. It holds as

n→∞ that (
(∆(n)

t )t≥0, (ξ̂
(n)
t )t≥0

) st−−→
(
(∆t)t≥0, (ξ̂t)t≥0

)
,

where ξ̂ is independent of everything else.

Moreover, if 0 ≤ τ1
n < · · · < τdn < ∞ are stopping times for each n and such that

n(τ i+1
n − τ in)

P−→ ∞ for all i = 1, . . . , d − 1 then the multivariate version holds with the

corresponding limits ξ̂i being independent copies of ξ̂, also independent of everything else.

Proof. Again we may restrict the processes ξ̂(n) to some time interval [0, T ]. Let τn be the

discretization epoch right after τn + T/n, and note that τn is a stopping time independent of

ξ̂(n). The idea is to replace ∆(n) with the integrated difference ∆̃(n), where the interval [τn, τn]

and the respective space increment are ignored. More precisely, the new ξ is kept constant on
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[τn, τn] and then it has the original increments. Observe that supt≤T ′ |∆̃(n)
t −∆(n)

t | = oP(1)

using the strong Markov property at τn, see also the proof of Proposition I.2. But now the

two parts are independent and the arguments from Lemma I.7 can be repeated, additionally

using Theorem I.1 for the joint convergence of ∆(n) and ξti .

The multivariate version follows the same reasoning. Note, that the intervals [τ in, τ
i
n+T/n]

do not intersect with probability tending to 1 by assumption. Hence we may assume this

property which then yields independent ξ̂i.

Proof of Theorem I.3. We use Lemma I.8 with τ in = τ(rni − T/n) for a fixed T > 0. Note

that

n(τ(rni )− τ(rni − T/n))→ T exp(−αξτ(ri)) =: si a.s.,

see also the proof of Proposition I.2. Thus we can add the required time shifts to the limit

result, and these limiting shifts si are independent of the processes (ξ̂it)t≥0. But for any

T ′ > 0 we can choose T large enough so that with arbitrarily large probability si > T ′, and

on this event (ξ̂isi+t − ξ̂isi)t≥−T ′ has the law of (ξ̂t)t≥−T ′ and is independent of si. It is left

to apply the continuous mapping theorem.

In conclusion, the stopping time τ(r) has a particular structure allowing to extend

zooming in at τ(r) also to the negative times.

I.4.2 Fractional parts and the standard uniform

Here we prove the joint convergence in Theorem I.5 for d = 1. For the purpose of extending

it from d = 1 to d ≥ 1 later we need to allow for perturbations in r. We state this result as a

separate lemma.

Lemma I.9. Assuming [I.A1] and [I.A2] we have for any rn → r > 0:

(
∆(n), an(ξτ(rn)+t/n − ξτ(rn))t∈R, {τ(rn)n}

) st−−→
(
∆, (ξ̂t)t∈R, U

)
,

where U is a standard uniform independent of everything else.

The independent uniform will arise via the following lemma. Consider a random variable

Z and a sequence of random variables (Un, Vn, Yn) defined on the same probability space. Let

Pz be the regular conditional distribution P( · | Z = z), which is unique almost everywhere

with respect to the law PZ of Z (Kallenberg, 2002, Thm. 6.3).

Lemma I.10. Assume that Yn
d−→ Y , and that for PZ-almost all z we have under Pz:

• Un is independent of (Vn, Yn) for each n.

• The distribution of Un has no atoms and converges weakly to the standard uniform

distribution.

Then (Yn, {Un + Vn}) d−→ (Y, U) with a standard uniform U independent of Y .

Proof. Below we work with PZ -almost all z. Let Fn,z be the continuous distribution function

of Un | Z = z. Define

U ′n = Fn,Z(Un)

and note that, given Z = z, U ′n is a standard uniform independent of (Vn, Yn). Note that

P(Yn ∈ B, {Vn + U ′n} ≤ u) = uP(Yn ∈ B)
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by conditioning on Z, Yn, Vn and the fact that {v + U ′n} is standard uniform. Hence

(Yn, {Vn + U ′n})
d−−→ (Y, U)

with Y and U independent.

It is left to show that

{Vn + U ′n} − {Vn + Un} P−−→ 0. (I.17)

Since Fn,z(x)−x→ 0 and the convergence is necessarily uniform in x, we see that U ′n−Un
P−→ 0.

Hence for any small δ > 0 we have |U ′n − Un| < δ with probability at least 1− δ for large n.

Moreover, P({Vn + U ′n} < δ) = P({Vn + U ′n} > 1 − δ) = δ and thus the left-hand side of

(I.17) does not exceed δ in absolute value with probability at least 1− 3δ.

Proof of Lemma I.9. Choose 0 < δ < r and δ′ > 0, and consider the process ξ′t = ξτ(r−δ)+t−
ξτ(r−δ) independent of Fτ(r−δ). Let τ be the time such that

∫ τ

0

exp(αξ′t) dt = δ′.

We consider the regular conditional distribution Pz corresponding to conditioning on ξ′τ = z.

Note that for almost every z the variable τ has a density under Pz according to the

assumption [I.A2], and so the distribution of Un = {τn} has no atoms and it converges

weakly to a standard uniform law. Furthermore,

(Iτ(r−δ)+τ , ξτ(r−δ)+τ ) = (r − δ + exp(αξτ(r−δ))δ
′, ξτ(r−δ) + z),

and we assume that the first component is smaller than rn ∧ (r − δ/2); we may do so

since this is true for small enough δ′ with arbitrarily high probability. Now letting Rn =

τ(rn)− (τ(r − δ) + τ) be the remaining time, we note the decomposition of the fractional

part of interest:

{τ(rn)n} = {(τ(r − δ) +Rn)n+ {τn}} =: {Vn + Un},

where Un is independent of Vn under Pz.
Next, we define the quantities of interest, which will be assembled into Yn. The integrated

difference process stopped at τ(r − δ) is denoted by ∆̂(n). We consider this quantity jointly

with ξti 1{ti<τ(r−δ)} for some fixed times ti, i ≤ k. Furthermore, consider the epoch τn
following τ(r + δ) with the corresponding incremental process ξ̃t = ξτn+t − ξτn , which is

independent of Fτ(r+δ). The integrated difference process for the times τn + t, t ≥ 0 is given

by exp(αξτ(r+δ))(1 + oP(1))∆̃(n), which is our second object of interest. It is considered

jointly with ξτ(r+δ)+t̃i
= ξτ(r+δ) + ξ̃t̃i + oP(1) for some fixed t̃i, i ≤ k̃. Thirdly, we consider

the zoomed-in process ξ̂(n)
t = an(ξτ(rn)+t/n − ξτ(rn)) for t ∈ [−T, T ]. The event where

τ(r+ δ) > τ(rn) +T/n and τ(r− δ/2) < τ(rn)−T/n occurs with arbitrarily high probability,

and we assume these inequalities in the following. The above objects form the random

quantity

Yn =
(
∆̂(n), (ξti 1{ti<τ(r−δ)})i=1,...,k, ξτ(r+δ), ∆̃

(n), (ξ̃t̃i)i=1,...,k̃, ξ̂
(n)
)
,

and as required in Lemma I.10 the variable Un is independent of (Vn, Yn) and the above

events under Pz.
Observe that the quantities ∆̃(n), ξ̃t̃i are independent of the rest and have a joint weak

limit as given by Theorem I.1. But the rest converges according to Theorem I.3, where

stopping at τ(r − δ) requires that ξ does not jump at this time, which is indeed true. Thus

29



Paper I. Discretization of the Lamperti representation of a positive self-similar Markov process

Lemma I.10 yields (Yn, {τ(r)n}) d−→ (Y,U) with an independent standard uniform U and

obvious Y for any given δ > 0.

Finally, we piece together different components to get the integrated difference processes

with the time interval (τ(r − δ), τ(r + δ)) excluded, as well as the corresponding limiting

expression, see also (I.6). Now we can take δ ↓ 0 using Jacod and Protter (2011, Prop. 2.2.4)

to get

(
∆(n), (ξti 1{ti<τ(r)})i=1,...,k, (ξτ(r)+t̃i

)i=1,...,k, ξ̂
(n), {τ(rnn)}

)

d−−→
(
∆, (ξti 1{ti<τ(r)})i=1,...,k, (ξτ(r)+t̃i

)i=1,...,k, ξ̂, U
)
.

It is only required to verify the assumptions of Jacod and Protter (2011, Prop. 2.2.4). Firstly,

the limits converge a.s. as δ ↓ 0, because τ(r ± δ) → τ(r) and the process ξ is continuous

at τ(r) and at τ(r) + t̃i. Secondly, we must show that the excluded integrated difference is

uniformly negligible:

lim
δ↓0

lim sup
n→∞

P
(

sup
t≤dτ(r+δ)ne/n

∣∣∣n
∫ [tn]/n

[τ(r−δ)n]/n

(exp(αξs)− exp(αξ(n)
s )) ds

∣∣∣ ≥ ε
)

= 0.

But the respective quantity converges weakly according to Theorem I.1, and the limit goes

to 0 a.s. establishing this claim. The proof is now complete.

I.4.3 Extension to multivariate case

Let us recall a basic result, which readily follows from Skorokhod’s representation theorem.

Assume that µn is a sequence of finite measures converging weakly to a finite measure

µ and that fn is a sequences of bounded functions that are continuously convergent, i.e.

fn(zn)→ f(z) whenever zn → z for z in the support of µ. Then we also have

∫
fn dµn →

∫
f dµ.

Proof of Theorem I.5. We prove the multivariate case inductively. Suppose the case d ≥ 1

is proven. Consider r = (rd + rd+1)/2, and let τn = dτ(r)ne/n be the epoch following τ(r)

which is a stopping time. Note also that τn → τ(r) and r(n) = Iτn → r a.s. We condition

on ξτn = x and r(n) − r = ε and use the strong Markov property to split the quantities of

interest. The processes ∆(n) are split into two parts: the one stopped at τn and the post-τn
contribution. The latter corresponds to exp(αx)∆̃(n) for the process ξ̃t = ξτn+t − ξτn which

is independent of Fτn . Moreover, note that

τ(rd+1) = τn + τ̃(exp(−αx)(rd+1 − r − ε))

and zooming in at τ(rd+1) translates into zooming in on ξ̃ at the respective time, whereas

{τ(rd+1)n} = {τ̃(exp(−αx)(rd+1 − r − ε))n}.

Finally, we may assume that none of the zoomed-in processes over [−T, T ] span both [0, τn]

and (τn,∞) since this is true with arbitrarily large probability for large enough n. This

allows to split the variables of interest into two independent groups under the conditional

law specified above.

Next, we construct the measures µn(dx,dε) and the functions fn by simply applying

bounded continuous functions to the two quantities of interest, where the latter also include
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ξ̃t̃i needed to guarantee the stable convergence. Weak convergence of measures follows from

the inductive assumption and the facts that τn → τ(r), r(n) → r and ξ is continuous at τ(r).

Convergence of fn(xn, εn) for (xn, εn)→ (x, 0) follows from Lemma I.9 with rn → r given by

exp(−αxn)(rd+1 − r − εn)→ exp(−αx)(rd+1 − r).

It is left to glue back the limits, where the only dependence comes from x needed to

reconstruct the process (∆t)≥0 and the variables ξτ(r)+t̃i
. Finally, note that convergence

still holds when ξτn+t̃i
are replaced by ξτ(r)+t̃i

in the pre-limit. This yields the stated stable

convergence for d+ 1, and the proof is complete.

I.5 Zooming-in on pssMp

I.5.1 The result

Self-similarity of X implies that n1/αXt/n (with X starting at x) has the law of Xt (starting

at xn1/α). There is, however, a different scaling resulting in a limit process as n→∞, which

we now state. Importantly, it provides a zooming-in limit for the pssMp X and connects it to

the zooming-in limit for ξ. It is noted that this result does not require the assumption (I.2).

Furthermore, this result is somewhat related to the law of iterated logarithm for Xt at small

times, see Lamperti (1972, Thm. 7.1) and Pardo and Rivero (2013, §2.3).

Theorem I.11. Under the assumption [I.A1] there is the convergence for any x > 0

an(Xt/n − x)t≥0
st−−→ x1−α/β(ξ̂t)t≥0 as R 3 n→∞, (I.18)

where ξ̂ is independent of F and 1/β is its Hurst index.

Furthermore, [I.A1] is equivalent to the weak convergence of an(X1/n − 1) to a non-zero

limit for x = 1.

Proof. For all t ∈ [0, T ] we have

an(Xt/n − x) = xanξτ(x−αt/n)(1 +Rt,n),

where supt≤T |Rt,n|
P−→ 0. It is left to show that

sup
t≤T
|τ(x−αt/n)n− x−αt| P−−→ 0, (I.19)

since then by continuity of subordination (Whitt, 2002, Thm. 13.2.2) at the limiting time

change x−αt, and anξ·/n
st−→ ξ̂ we find

(anξτ(x−αt/n))t≤T
st−−→ (ξ̂x−αt)t≤T

d
= x−α/β(ξ̂t)t≤T .

To this end, observe that

t/n− τ(t/n) =

∫ τ(t/n)

0

(eαξs − 1) ds = τ(t/n)oP(1),

which firstly shows that nτ(x−αT/n)
P−→ x−αT and then also yields (I.19).

Next, assume that an(X1/n − 1)
d−→ Z 6= 0 for x = 1. Then

anξτ(1/n) = an(eξτ(1/n) − 1)
(
1 + oP(1)

) d−−→ Z.
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But τ(1/n)n
P−→ 1 and according to Proposition I.12 below we must have

anξ1/n
d−−→ Z

The proof is now complete.

Let us note that the non-zero weak limit of an(X1/n − 1), when it exists, is necessarily

ξ̂1. In fact, this assumption is equivalent to a seemingly weaker assumption, namely that

an(Xt/n − x)
d−→ Z 6= 0 for some t, x > 0. Importantly, Theorem I.11 allows to identify ξ̂

directly without determining the corresponding process ξ first. An application of this will be

given in §I.6 below.

I.5.2 On convergence of Lévy processes at random times

The following basic result is essential for the second statement in Theorem I.11, and it may

be useful in various other settings. Somewhat surprisingly, it is not contained in the standard

monographs.

Proposition I.12. Consider a sequence of Lévy processes ξn and assume that ξnTn
d−→ Z for

some random times 0 ≤ Tn P−→ 1. Then ξn1
d−→ Z.

Importantly, we do not assume that ξn and Tn are independent. The main difficulty is in

proving that ξn1 is tight, which is the content of the following two lemmas.

Lemma I.13. Assume that 0 ≤ Tn
P−→ 1 and ξnTn

P−→ 0 for a sequence of Lévy processes ξn

such that

P(sup
t≤1
|ξnt | > 1) ≤ 1/2. (I.20)

Then ξn1
P−→ 0.

Proof. Suppose for contradiction that there exist ε, δ > 0 such that

lim inf
n→∞

P(ξn1−δ < −2ε) > 0.

Let ξ′nt = ξn1−δ+t − ξn1−δ be the incremental post-(1− δ) process. Using the typical notation

ξ
′n
s for supu∈[0,s] ξ

′n
u we have

P(ξnTn > −ε, |Tn − 1| < δ, ξn1−δ < −2ε) ≤ P(ξn1−δ < −2ε)P(ξ
′n
2δ > ε),

where on the right-hand side we used independence of ξ′n and ξn1−δ. By the initial assumption

we readily obtain

pn := P(ξ
n

2δ > ε)→ 1 as n→∞.

Applying the strong Markov property at first passage times we now find

1/2 ≥ P(ξ
n

1 > 1) ≥ pd1/εen

for all n, given that 2δd1/εe < 1. In this case the right-hand side tends to 1, which is a

contradiction. Similar reasoning works when P(ξn1−δ > 2ε) is assumed to be bounded away

from 0. Thus we conclude that for any ε > 0 and small enough δ > 0 we have

P(|ξn1−δ| > ε)→ 0 as n→∞.

Fix arbitrary h, ε > 0 and choose δ small so that P(|ξn1−2δ| < ε) and P(|ξn1−δ| < ε) are larger

than 1− h for all large n. Thus P(|ξnδ | < 2ε) > 1− 2h implying that P(|ξn1 | < 3ε) > 1− 3h,

which completes the proof.
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I.6. Application to self-similar Lévy processes conditioned to stay positive

Lemma I.14. The conclusion of Lemma I.13 is true without the assumption (I.20).

Proof. We choose the maximal bn such that (I.20) is satisfied for ξ′nt = bnξ
n
t :

bn = sup{b ∈ (0, 1] : P(sup
t≤1
|bξnt | > 1) ≤ 1/2}.

Since bn is upper bounded by construction, we still have ξ′nTn
P−→ 0. Now the previous lemma

implies that bnξ
n
1

P−→ 0, and then according to the standard theory (Kallenberg, 2002, Thm.

15.17) we also have convergence on the process level. By the continuous mapping theorem

we find

bn sup
t≤1
|ξnt |

P−−→ 0,

whereas by maximality of bn it must be that P(supt≤1|2bnξnt | > 1) > 1/2 for any bn < 1.

Hence bn = 1 for all large n and the proof is complete.

Proof of Proposition I.12. Take any sequence 0 ≤ hn → 0 and note that hnξ
n
Tn

P−→ 0. By

Lemma I.14 we also have hnξ
n
1

P−→ 0. According to Kallenberg (2002, Lem. 4.9) the sequence ξn1
is tight. Thus every subsequence has a weakly convergent further subsequence ξnk1 (Kallenberg,

2002, Prop. 5.21). It must be (Kallenberg, 2002, Thm. 15.12) that the limit is Z ′1 for some

Lévy process Z ′, and ξnk
d−→ Z ′, see Kallenberg (2002, Thm. 15.17). But Z ′ is necessarily

continuous at time 1 a.s., and thus ξnkTnk
d−→ Z ′1 showing that Z ′1 and Z have the same

distribution. Thus ξnk1
d−→ Z and the proof is now complete.

I.6 Application to self-similar Lévy processes conditioned to stay

positive

I.6.1 Definition and properties

Let (X0
t )t≥0 be a non-monotone 1/α-self-similar Lévy process. In particular, X0 is either (I)

a drift-less Brownian motion (α = 2) or (II) a strictly α-stable Lévy process with α ∈ (0, 2).

Without real loss of generality we may fix the scale, and so in case (I) we assume that X0 is

a standard Brownian motion. We also define the negativity parameter

ρ = P(X0
1 < 0) ∈ (0, 1),

which additionally must satisfy α− 1 ≤ αρ ≤ 1 and, in particular, ρ = 1/2 in case (I).

Let X be the process X0 conditioned to stay positive when started from x > 0. Formally

it is defined via Doob’s h-transform (Caballero and Chaumont, 2006):

P↑x(A) := h−1(x)E[h(x+X0
t ) 1A 1{x+X0

t>0}], t ≥ 0, A ∈ Ft, (I.21)

where h(x) = xαρ and X0
t = infs≤tX0

s , see also Bertoin (1993) for the case when X0 is a

general Lévy process. We write (X,P) for the pair (x+X0,P↑x) and specify x > 0 separately

when needed. Let us also mention that the new law in (I.21) coincides with the limit of

P(A |x+X0
s > 0) as s→∞, explaining the name ‘conditioned to stay positive’. Importantly,

X is a strictly positive pssMp with Hurst parameter 1/α. Such processes naturally arise

in limit theory concerned with extremes, first passage times and Skorokhod reflection,

see Ivanovs (2018) and Ivanovs and Podolskij (2020) and references therein. Importantly, in

case (I) the process X is Bessel-3.

As before, let ξ be the Lévy process in the Lamperti representation (I.1) of X. In case

(I) the process ξ is a Brownian motion with unit variance and drift 1/2, see Carmona et al.
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(2001). In case (II) the Lévy triplet of ξ has been identified in Caballero and Chaumont

(2006)1, excluding the non-symmetric Cauchy case. It is worth mentioning that ξ has no

Brownian component, and its Lévy density behaves as the Lévy density of the original stable

process X0 both at 0+ and at 0−. Furthermore, ξ is a pure jump process when α ∈ (0, 1).

Importantly, Theorem I.11 allows to identify ξ̂ and to verify assumption [I.A1] without

the knowledge of ξ. It turns out that ξ̂ has the law of the original process X0 and, in

particular, β = α.

Proposition I.15. Let X be X0 conditioned to stay positive. Then the assumption [I.A1] is

satisfied with

an = n1/α and ξ̂
d
= X0.

Proof. According to Theorem I.11 we only need to verify that

n1/α(X1/n − 1)
d−−→ X0

1

for x = 1 as R 3 n→∞. Using (I.21) and self-similarity of X0 one easily verifies that

P(n1/α(X1/n − 1) ≤ z) = E[(n−1/αX0
1 + 1)αρ 1X0

1≤z 1n−1/αX0
1>−1],

for any z ∈ R. But the right-hand side converges to P(X0
1 ≤ z), and we are done.

Alternatively, one may prove Proposition I.15 using the knowledge of the Lévy triplet

of ξ by checking the conditions of Ivanovs (2018, Thm. 2). The latter approach requires

verification that the drift parameter of ξ is zero in case α < 1. Furthermore, calculations are

somewhat tedious in the symmetric Cauchy case, whereas the triplet of ξ in the non-symmetric

case is not yet available.

In various applications the law of interest corresponds to the weak limit of P↑x as x ↓ 0,

which corresponds to the conditioned process started at 0. This can be approximated by

taking small x > 0, which then results in large r = x−αt. Thus it would be interesting to

understand the behavior of L(r) as r →∞.

I.6.2 Simulations

Here we present a small simulation study in order to illustrate our results. For simplicity, we

take a standard Brownian motion conditioned to stay positive (Bessel-3 process) as the pssMp

X of interest. Let us stress that simple and exact simulation methods exist for Bessel-3

process, and our only purpose is to illustrate the results of §I.3. In this case α = 2, an =
√
n,

ξ is a Brownian motion with unit variance and drift 1/2, whereas ξ̂ is a standard Brownian

motion, see Proposition I.15. We also note that assumption [I.A2] is satisfied since the

density gt(x, y) in Lemma I.17 is indeed jointly continuous in t, x, y > 0, see Borodin and

Salminen (2002, 1.8.8, p. 613).

We start X at x = 1 and simulate at time t = 1. Hence X1 = exp(ξτ(1)). We use

two rather coarse discretization grids corresponding to n = 10 and n = 100. The true

quantities are computed using N = 106, so that ξ(N) and X(N) are used in place of ξ and

X, respectively. The process ∆ in (I.6) is approximated by taking ξ(N) in the Brownian

integral and removing the sum over jump times, which must be 0 in the case of continuous ξ.

Finally, τ(1) is replaced by τN (1). Importantly, the increments of ξ(N) are assembled into

1Caballero and Chaumont (2006, Eq. (17)) has a typo: the second term should come with a minus sign,

which only affects the drift parameter.
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the increments of ξ(n), so that the two processes correspond to the same sample path. These

sample paths are then reused in construction of the limit variables.

In Figure I.2 below we compare the distributions of n(τ(1)− τn(1)) and the limit L(1),

see Proposition I.2. All histograms are based on simulation of 10 000 independent copies

of the relevant random variable. In red we have n(τ(1)− τn(1)) and in blue we have L(1).

Since some values are quite large the histogram has been trimmed to contain at least 98%

of the realizations. More precisely the lower limit is the minimum of the 1%-quantiles for

n(τ(1) − τn(1)) and L(1), and the upper limit is the maximum of the 99%-quantiles. We

discuss these large values in detail later. Let us remark that already at n = 10 we see very

similar histograms and at n = 100 the fit is even better.

−1 0 1 2 3

(a) n = 10

−1 0 1 2 3

(b) n = 100

Figure I.2: Histograms for n(τ(1)− τn(1)) in red and L(1) in blue trimmed to contain at least

98% of the realizations.

In Figure I.3 we depict the discretization errors for the pssMp itself. That is, we compare

the distributions of
√
n(X1−X(n)

1 )/X1 in red and the limit ξ̂L(1)+U in blue, see Corollary I.6.

The fit is worse than in Figure I.2, which is to be expected since now we combine the error in

time and the zooming-in approximation. Again we have trimmed the histograms to contain

at least 98% of the realizations.

−1 0 1

(a) n = 10

−1 0 1

(b) n = 100

Figure I.3: Histograms for
√
n(X1 −X(n)

1 )/X1 in red and ξ̂L(1)+U in blue trimmed to contain at

least 98% of the realizations.

In order to understand the extreme values of L(1) and n(τ(1)− τn(1)) we depict a sample

path in Figure I.4a which results in large values of both variables. In this case n = 10.

Notice that I(n) hits 1 right before exp(αξt) vanishes (−ξt becomes large), whereas I hits 1

upon much later. This illustrates how n(τ(1)− τn(1)) can become very large. Furthermore,
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exp(αξτ(1)) = Xα
1 is close to zero and so L(1) = −∆τ(1)X

−α
1 can be large as well. It seems

that heaviness of the tails of L(1) is determined by X−α1 ; for the Bessel-3 process this quantity

has a power tail with exponent −3/2, see Borodin and Salminen (2002, 1.0.6, p. 373).

0 5 10 15

0

1

2

(a) The processes exp(αξt) and exp(αξ(n)t )
in respectively blue and red with n = 10.

0 5 10 15

0

0.5

1

(b) Integrals of the processes in Figure
I.4a. The colored dashed lines mark τ(1)
and τn(1).

Figure I.4: A sample path and corresponding integrals producing extreme values of L(1) and

n(τ(1)− τn(1)).

In conclusion, discretization provides the standard rate of convergence n−1/α, but the

limit variables normally exhibit heavy-tails.

I.7 Extensions and comments

I.7.1 Trapezoidal approximation

An interesting modification of our approximation scheme is obtained by considering the

trapezoidal rule (instead of the left Riemann sum) in computation of the integral It, so that

the points (i/n, exp(αξi/n)) are connected by straight lines. Importantly, all the results and

proofs of this paper continue to hold true given that Theorem I.1 and the definition of ∆

in (I.6) are adjusted accordingly, which we now discuss.

Observe that the trapezoidal approximation Ĩ(n) satisfies

Ĩ(n)
i/n = I(n)

i/n + (f(ξi/n)− f(0))/(2n)

and hence the form of the new limiting process is intuitively clear:

∆̃t =
σ2

√
12

∫ t

0

f ′(ξs) dW ′s +
∑

m:Tm≤t
(f(ξTm)− f(ξTm−))(κm −

1

2
),

that is, the bias (f(ξt)− f(0))/2 is removed from (I.6).

Theorem I.16. The trapezoidal approximation Ĩ(n) satisfies

n(I[tn]/n − Ĩ(n)
[tn]/n)t≥0

st−−→ (∆̃t)t≥0.

Proof. The proof requires only some simple adaptations of the proof in Jacod and Protter

(2011, Ch. 6). Firstly, we note that the reduction of the problem in §6.2.2 is still true,

because of the u.c.p. convergence of processes in (6.2.13). Secondly, (6.3.6) now contains

our new term, which is rewritten using Itô’s formula, and the limiting expression in (6.3.7)

is modified accordingly. The expressions, in fact, become even shorter, and the rest of the

proof applies.
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It must be noted that this result cannot be directly retrieved from Jacod and Protter

(2011, Thm. 6.1.2) and the basic relation between left Riemann sum and trapezoidal rule.

The problem is that the continuous mapping theorem does not apply for the sum of the two

processes of interest since both components may jump at the same time. This issue does not

arise in the setting of continuous Itô semimartingales considered in Altmeyer (2019).

I.7.2 Absolute continuity of the inverse

Here we establish a sufficient condition for [I.A2] in terms of the integral It and the end-value

exp(αξt). We assume that the pair

(It, Yt) =
(∫ t

0

exp(αξs) ds, exp(αξt)
)

has a density gt(x, y) for all t > 0. Recall that τ(r) is defined by the relation Iτ(r) = r, and

that we need simple conditions implying that the pair (τ(r), Yτ(r)) has a density for all r > 0.

Lemma I.17. Assume that gt(x, y) is jointly continuous in x, y, t > 0. Then for any r > 0

P(τ(r) ∈ dt, Yτ(r) ∈ dy) = ygt(r, y) dtdy, t, y > 0.

Proof. For fixed r > 0 and 0 < a < b <∞ consider

F (t) = P(τ(r) ≤ t, Yτ(r) ∈ [a, b]), t ≥ 0.

We note that it is sufficient to show that F (t) is a (left-) continuous function with the

right-derivative

∂+F (t) =

∫ b

a

ygt(r, y) dy =: f(t) (I.22)

for all t > 0. This is so, because f is continuous and so with G(t) =
∫ t

0
f(u) du we have

∂+(F (t)−G(t)) = 0 for all t > 0, implying that F (t) coincides with G(t) on t > 0 up to a

constant. By taking t ↓ 0 we see that this constant is 0 and hence

F (t) =

∫ t

0

∫ b

a

ygu(r, y) dy du

establishing the claim.

For h > 0 we note the identity

F (t+ h)− F (t) = P(It < r ≤ It+h, Yτ(r) ∈ [a, b]). (I.23)

Moreover, It+h = It + YtI
′
h with I ′h corresponding to ξ′u = ξt+u − ξt, and so the latter is

independent of Ft. Next, we note for any z > 0 that

1

h
P(It < r ≤ It + Ytzh, Yt ∈ [a, b]) =

1

h

∫ b

a

∫ r

r−yzh
gt(x, y) dxdy

→ z

∫ b

a

ygt(r, y) dy.

(I.24)

This follows from the mean value theorem and the fact that gt(x, y) is bounded for x of

interest.
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Define ∆′h = exp(α supu≤h ξ
′
u) and note that I ′h ≤ h∆′h. Moreover, for any ε > 0 we may

choose c > 1 large enough so that P(∆′h > c) < εh for h small enough. This can be seen

from the inequality (Gikhman and Skorokhod, 2004, Lem. 2, p. 420)

P(sup
u≤h
|ξ′u| > log c/α) ≤ (1 + o(1))P(|ξ′h| ≥ log c/(2α)),

and the standard bounds on the right-hand side, see the argument in Sato (2013, Lem. 30.3).

Thus in the following we may always assume that ∆′h ≤ c. Similarly, we may also assume

that ∆′h = exp(α infu≤h ξ′u) ≥ c ∈ (0, 1).

Now, we readily find that

P(It < r ≤ It + Ytch, Yt ∈ [a/c, b/c],∆′h > 1 + ε) = o(h)

and the analogous statement with ∆′h < 1− ε. Hence we have the following upper bound on

(I.23)

P(It < r ≤ It + YtI
′
h, I
′
h < ch, Yt ∈ [a/(1 + ε), b/(1− ε)])

up to some negligible terms, and a similar lower bound. It is left to condition on I ′h/h, to

apply the arguments from (I.24) and to notice that

lim
h↓0

E(Ih/h1Ih/h<c) = 1,

where the latter is a consequence of the mean value theorem and the dominated convergence

theorem. Hence (I.22) is now proven. Left-continuity of F (t) follows from P(It−h < r ≤
It−h + (b/c)ch)→ 0.
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Lévy processes conditioned to stay in a

half-space with applications to directional

extremes

Jevgenijs Ivanovs
Department of Mathematics, Aarhus University

Jakob D. Thøstesen
Department of Mathematics, Aarhus University
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Lévy process conditioned to stay positive/negative. Thus obtained processes conditioned to stay

in half-spaces are closely related to the original process on a compact time interval seen from its

directional extremal points. In the case of a correlated Brownian motion the law of the conditioned

process is obtained by a linear transformation of a standard Brownian motion and an independent

Bessel-3 process. Further motivation is provided by a limit theorem corresponding to zooming in

on a Lévy process with a Brownian part at the point of its directional infimum. Applications to

zooming in at the point farthest from the origin are envisaged.
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II.1 Introduction

There are multiple examples of conditioning a univariate Lévy process in some limiting

sense, which alternatively can be described by Doob h-transforms, see Bertoin (1993), Döring

et al. (2019) and Döring and Weissmann (2020) and references therein. Most often the focus

is on establishing properties directly related to these conditional processes. The case of

conditioning to stay positive/negative is special in the sense that it is intimately related to the

post- and pre-infimum processes (Bertoin, 1993), leading to various important applications.

Further links to path decomposition results can be found in Duquesne (2003).

Local behavior of a univariate Lévy process at its extremal points is studied in Ivanovs

(2018), see also Bertoin (1993) for a self-similar case and Asmussen et al. (1995) for a linear

Brownian motion. It is shown that zooming in at the point of infimum results in a pair of

processes obtained from the underlying self-similar Lévy process conditioned to stay positive

and negative. Further applications of this theory in the setting of high-frequency statistics

include estimation of threshold exceedance in Bisewski and Ivanovs (2020) and optimal

estimation of extremes in Ivanovs and Podolskij (2020). Bertoin’s pathwise construction of
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conditioned processes in Bertoin (1993) plays a fundamental role in these works. For yet

another application see Asmussen and Ivanovs (2018) studying the discretization error in the

two-sided Skorokhod reflection map.

In this work we extend Bertoin’s construction to the multivariate setting to define a

Lévy process conditioned to stay in a half-space specified by some normal vector η 6= 0,

see §II.3. Importantly, the link to post- and pre-extremum processes is preserved, where

extrema are understood with respect to the direction η. Furthermore, in §II.4 we establish

an associated invariance principle which, in particular, yields a limit result when zooming in

on a Lévy process at the point of directional extremum. This is achieved via a short and

direct argument relying on the path-wise construction. Applications of this result to high

frequency statistics and the study of discretization errors in problems related to directional

extrema and exceedance are anticipated.

In the multivariate case we have a continuum of possible directions, and the effect of

linear transformations is studied in §II.5. It is shown that conditioning with respect to

any direction η can be reduced to, say, conditioning an appropriately rotated process so

that its first component stays positive. Furthermore, we provide a simple expression for

the conditioned correlated Brownian motion in terms of a certain linear transformation

of independent standard Brownian motions and a Bessel-3 process. In §II.6 we present

the semigroup of the conditioned process in the general case, which turns out to have an

intuitive structure. In §II.7 we utilize the arguments and insights from Chaumont and Doney

(2005) to establish some important properties of the conditioned process. This leads to a

natural definition of the respective Feller process started from an arbitrary point in the

closed half-space.

We have attempted to present the multivariate theory in a streamlined and concise form,

while emphasizing the main novelties stemming from the multivariate setting. Finally, in

§II.8 we state a conjecture related to the local behavior at the point farthest from the origin,

which hints at even greater application potential of the multivariate theory.

II.2 Preliminaries

Fix an integer d ≥ 1 and let D denote the space of càdlàg functions ω : R→ Rd ∪ {†}, where

† is an isolated absorbing state. As usual we equip the path space D with the Skorokhod

topology and let F denote the Borel σ-field. Furthermore we denote the coordinate process by

X = (Xt) and its natural completed filtration by (Ft). Unless stated otherwise we work with

a subclass of processes satisfying Xt = 0 for t < 0, and let ζ := inf{t ≥ 0 |Xt = †} ∈ [0,∞]

be the lifetime.

II.2.1 Directional infimum

We shall consider a fixed vector η ∈ Rd \ {0} and the respective open and closed half-spaces

S := {x ∈ Rd | 〈x, η〉 > 0} and S := {x ∈ Rd | 〈x, η〉 ≥ 0};
for ease of notation we omit η here and in the following. The projected process is defined by

Zt := 〈Xt, η〉 ∈ R ∪ {†},
where 〈†, η〉 = † by convention.

Assume for a moment that the lifetime is finite and strictly positive, ζ ∈ (0,∞). Consider

the directional infimum Z := inf{Zt | t ≥ 0} and the respective (last) time

τ := sup{t ≥ 0 | Zt ∧ Zt− = Z} ∈ [0, ζ],
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where z ∧ † = z. Letting X := Xτ 1{Zτ≤Zτ−}+Xτ− 1{Zτ>Zτ−} be the position of X at

the time of directional infimum, we define the (directional) post-infimum and reversed

pre-infimum processes by

X−→t :=

{
Xτ+t −X if 0 ≤ t < ζ − τ,
† if t ≥ ζ − τ,

X←−t :=

{
X(τ−t)− −X if 0 ≤ t < τ,

† if t ≥ τ,

see also Figure II.1 for a schematic illustration. According to the above convention we set

X−→t = X←−t = 0 for t < 0. Note that X−→t = † for t ≥ 0 if τ = ζ, and similarly X←−t = † for t ≥ 0

if τ = 0. The pair of processes (X←−, X−→) is a representation of the process X seen from the

time-space point (τ,X). Alternatively, we could have defined a proper two-sided process.

II.2.2 Lévy processes

Throughout this paper P will be a probability measure on (D,F) such that X is a d-

dimensional Lévy process with infinite lifetime. We write X : P when there is a need to

specify the law of X explicitly. For a deterministic T ∈ (0,∞) the process X : P sent to †
at T is denoted by X : PT , and in particular PT (ζ = T ) = 1. By default we work with P if

no law is mentioned explicitly. The Lévy measure of X is denoted by Π(dx). Additional

notation will be introduced in the following when required.

Throughout this paper we assume (the excluded case is simple but somewhat cumbersome):

Assumption II.A. For the chosen direction η the projected process Z is not a compound

Poisson process.

Under Assumption II.A it is well known that the process Z : PT achieves its infimum once

only (at the time τ) a.s. This means that X−→ and X←− are inside the open half-space S for strictly

positive times preceding ζ. Our next result shows that X cannot jump perpendicularly to η

at τ , see Figure II.1, and so X−→0 and X←−0 are either at the origin or inside S ∪ {†}. For the

definition of regular/irregular points we refer to Bertoin (1996, p. 104).

Lemma II.1. The following trichotomy holds with respect to the projected process Z : P.

(l) If 0 is regular for (−∞, 0) and for (0,∞) then X←−0 = X−→0 = 0 PT -a.s.

(↑) If 0 is irregular for (−∞, 0) then X←−0 ∈ S ∪ {†} and X−→0 = 0 PT -a.s.

(↓) If 0 is irregular for (0,∞) then X←−0 = 0 and X−→0 ∈ S ∪ {†} PT -a.s.

Proof. The latter two statements are easy and follow from the univariate case. Suppose

instead that 0 is regular for both half-lines, in which case PT (τ ∈ {0, T}) = 0. We may

choose a sequence (Tn) of stopping times, ranging over all jump epochs of X. Applying the

strong Markov property yields PT (ZTn = Z) = 0 since Z is regular for (−∞, 0). Thus, if X

jumps at τ then Zτ > Z PT -a.s. The same argument applied to the time reversed process

(XT −X(T−t)−) having the law of X : PT shows that Zτ− > Z if X jumps at τ PT -a.s.; here

we employ regularity for (0,∞). We conclude that X is PT -a.s. continuous at τ and this

proves the statement.
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η

(0, 0)

η

(0, 0)

η

Figure II.1: Schematic illustration of the process in R2 seen from its directional infimum: (↑) jump

into η-minimum (left), (↓) jump out of η-infimum (center) and an impossible case (right).

II.3 The fundamental representation and the limit object

We start with a fundamental representation of the law of the pair (X←−, X−→) : PT , which extends

a univariate construction by Bertoin (1993) based, in turn, on an implicit identity for random

walks appearing in Feller (1971, Lem. XII.8.3). Our representation is in terms of time-changed

stochastic integrals, since the construction in Bertoin (1993) in terms of the local time at 0

does not have a simple analogue in the multivariate setting.

Consider the non-killed process X and let X̃t := X(−t)− be its time-reversal, which

is a process with stationary and independent increments for negative times. Define two

(Ft)-adapted càdlàg processes Y ± by

Y +
t := −

∫

[−t,0]

1{〈X̃s−,η〉>0} dX̃s, Y −t := −
∫

[−t,0]

1{〈X̃s−,η〉≤0} dX̃s for t ≥ 0,

and Y ±∞ := †. These stochastic integrals can be understood intuitively as
∫ t

0
1{〈Xs,η〉>0} dXs

and
∫ t

0
1{〈Xs,η〉≤0} dXs, where the integrands are not predictable.

The cumulative times when X is and is not in S are denoted by A+ and A− respectively.

That is,

A+
t :=

∫ t

0

1{〈Xs,η〉>0} ds, A−t :=

∫ t

0

1{〈Xs,η〉≤0} ds for t ≥ 0.

Consider now the right-continuous inverses α±t := inf{s ≥ 0 |A±s > t} of A±, and define

X↑t := Y +

α+
t

, X↓t := Y −
α−t

for t ≥ 0.

The processes X↑ and X↓ under PT are obtained by killing X↑ and X↓ at the times A+
T and

A−T under P, respectively. The times A±T are non-decreasing in T , which results in longer

lifetimes ζ↑ and ζ↓ for larger time horizons T .

Theorem II.2. Under PT for T ∈ (0,∞) there is the following identity in law:

(X←−, X−→)
d
= (−X↓, X↑),

where −† = † by convention.

Proof. The proof is based on a random walk approximation and exchangeability of increments

as in the one-dimensional cases of Bertoin (1993); it is deferred to §II.A.

Importantly, the above construction of the pair (X↓, X↑) : PT depends on T via the

killing times A±T alone. In particular, for 0 < T1 < T2 the paths of X↑ : PT1 and X↑ : PT2

coincide up to the time A+
T1

when the former is sent to †, whereas the latter is killed at

A+
T2
≥ A+

T1
. It is convenient to think of growing the paths as T increases. As T → ∞ we

obtain (X↓, X↑).
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Corollary II.3. It holds that

(X←−, X−→) : PT d−−→ (−X↓, X↑) as T →∞.

It is noted that the above weak convergence statement can be strengthened, see Bertoin

(1993, Cor. 3.2), but we prefer using Theorem II.2 directly when needed. The pair (X↓, X↑)
is our main object of interest. According to Corollary II.3, the process X↑ : P can be called

a limiting post-infimum process. In analogy to the univariate case we instead call it X

conditioned to stay in the half-plane S, and provide a justification below.

Observe that −X↓t , X↑t ∈ S ∪ {†} for t > 0 a.s., whereas the initial values are classified

according to the trichotomy in Lemma II.1. In particular, X↑0 = 0 in cases (l), (↑), and

X↓0 = 0 in cases (l), (↓). Importantly, the projected conditioned processes 〈X↑, η〉 and

〈X↓, η〉 coincide with the univariate Lévy process Z conditioned to stay positive and negative,

respectively. In particular, the lifetimes ζ↑ and ζ↓ can be studied using the univariate theory,

and so

ζ↑ =∞ iff lim sup
t→∞

Zt =∞, ζ↓ =∞ iff lim inf
t→∞

Zt = −∞

with probability 1. Furthermore, ζ↑ > 0 unless Z is a non-increasing process and then ζ↑ = 0

a.s. Yet another useful observation is given by the following result.

Lemma II.4. The processes X↑ and X↓ do not jump at a fixed t > 0 a.s.

Proof. Assume that X←− : PT jumps at t > 0 with positive probability. Then by an argument

as in the proof of Lemma II.1 we find that we must be in the case (↑). Hence X has two

jumps separated by time t with positive probability, which is impossible. According to

Theorem II.2 we find that X↓ has no jump at t a.s. when excluding the jump into †. The

latter would imply P(ζ↓ = t) > 0, which is again impossible by a similar argument. By

time-reversal the same property is true with respect to X↑.

Importantly, (under Assumption II.A) the process X↓ is a.s. the same if the non-strict

inequalities in its definition are replaced by strict inequalities, which follows from basic

properties of Lévy processes. In particular, we find that X↓ = −(−X)↑ a.s. The respective

equality in distribution can also be seen using the representation in Theorem II.2 and the

standard time-reversal argument. Finally, observe a close link to the classical Sparre-Andersen

identity (Bertoin, 1996, Lem. VI.15): A+
T has the same law as the time of the supremum of

Z on [0, T ], which by time-reversal coincides with the law of the lifetime of the respective

post-infimum process.

II.4 Motivating limit theorem

Bertoin’s representation and its above stated generalization are indispensable in the study of

Lévy processes around their extremes. In the one-dimensional setting it has been fundamental

for the results in Bisewski and Ivanovs (2020) and Ivanovs and Podolskij (2020). We further

demonstrate its usefulness by establishing an invariance principle, see Chaumont and Doney

(2010) and Ivanovs (2018) for alternative approaches in the univariate case (the latter needs

a better justification of convergence of Markov processes). The following short proof requires

certain assumptions, and for simplicity we consider only the case of an oscillating Zt = 〈Xt, η〉:

lim sup
t→∞

Zt =∞ and lim inf
t→∞

Zt = −∞ a.s. (II.1)

Recall that this assumption implies that both X↑ and X↓ have infinite lifetimes.
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Theorem II.5. Let X(n) be a sequence of Lévy processes weakly convergent to a Lévy process

X satisfying (II.1) and Assumption II.A. Then for any sequence of finite deterministic times

Tn →∞ there is the weak convergence

(X←−
(n), X−→

(n)) : PTn d−−→ (−X↓, X↑).

Proof. Fix an arbitrary finite T > 0. By the continuous mapping theorem we have under PT :

(X←−
(n), X−→

(n))
d−−→ (X←−, X−→).

Indeed, for converging paths the directional infima and their (right) times must converge

assuming the limiting path has no jump at T and it achieves the directional infimum only

once (this is a.s. true). Furthermore, X has no jump perpendicular to η at τ , see Lemma II.1

and Figure II.1 (right). Note that making all processes stay at 0 for negative times is essential

in the case when the limit process jumps at τ .

According to Theorem II.2 we have

(−X(n)↓, X(n)↑) : PT d−−→ (−X↓, X↑) : PT

for every T > 0, and the latter weakly converges to (−X↓, X↑) as T →∞. Thus it is left to

apply a standard approximation result, see Billingsley (1999, Thm. 3.2) or Kallenberg (2002,

Thm. 4.28), to obtain

(−X(n)↓, X(n)↑) : PTn d−−→ (−X↓, X↑), (II.2)

and hence also the stated result (apply Theorem II.2 to the left hand side). The crux of the

approximation result consists in showing that the Skorokhod distance (on each compact time

interval [0, t]) between the left hand side in (II.2) and the same object for the time horizon T

converges to 0 in probability as T →∞ uniformly for large n. In our case it is sufficient to

check that

lim
T→∞

lim sup
n

P(A(n)±
Tn
∧A(n)±

T > t) = 1, t > 0,

where the event corresponds to two identical paths on the time interval [0, t]. We may assume

that Tn ≥ T implying A(n)±
Tn
≥ A(n)±

T , but the latter weakly converges to A±T . Finally, note

that (II.1) implies A±∞ =∞ a.s.

The above argument can be adapted to include the case where limt→∞ Zt = ∞ and

limt→∞ Z(n)
t =∞ for all large enough n, as well as the case with −∞ limits. That is, the

infinite-time behavior of Z and the approximating sequence Z(n) is the same. Otherwise, the

proof becomes substantially more difficult and it is then required to work with a compactified

space where † is a point at infinity.

Finally, we show that zooming in on X at the time-space location of the directional

infimum results in the pair of conditioned processes corresponding to the underlying Brownian

part. This limit law is studied in Proposition II.9 below.

Corollary II.6. Let B be the Brownian part of the d-dimensional X, and assume that

〈B1, η〉 is not a.s. zero. Then

√
n(X←−·/n, X−→·/n) : P1 d−−→ (−B↓, B↑).

Proof. Define a scaled time-changed process X(n)
t =

√
nXt/n and note that X(n) d−→ B,

see Bertoin (1996, Prop. 2) and Kallenberg (2002, Thm. 15.17). It is left to apply Theorem II.5

with Tn = n.
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II.5 Linear transformations and the Brownian example

Linear transformations play an important role in the multivariate theory as demonstrated by

the following result.

Lemma II.7. Consider a d′ × d matrix M and d′-dimensional vector η′ 6= 0 such that

M>η′ 6= 0. Then (MX)↑ defined using η = η′ coincides with M(X↑) defined using η = M>η′.

Proof. Note that 〈MX, η′〉 = 〈X,M>η′〉 and use linearity of the stochastic integral in the

definition of Y ±.

Consequently, it suffices to study conditioning for just one direction, say

η1 = (1, 0, . . . , 0)> ∈ Rd.

For any unit vector η ∈ Rd we may choose an orthogonal matrix R (RR> = I) such that

Rη = η1. Then X↑ coincides with R>(RX)↑ where the latter is defined for the direction η1.

Our next result allows us reduce certain multivariate cases to the univariate theory.

Lemma II.8. Consider X = X ′v +X ′′, where X ′ and X ′′ are independent Lévy processes

with dimensions 1 and d respectively, and additionally 〈v, η〉 > 0, 〈X ′′t , η〉 = 0, t ≥ 0. Then

X↑
d
= X ′↑v + X ′′, where X ′↑ is the univariate X ′ conditioned to stay positive and by

convention † · v + x′′ = †.

Proof. Note that the process X−→ : PT has the same law as X ′−−→v +X ′′ : PT , where X ′−−→ is the

post-infimum process of univariate X ′. This is so, because Zt = 〈v, η〉X ′t and the process X ′′

is independent of τ , whereas X ′v−−−→ = X ′−−→v under PT . It is left to apply Corollary II.3 and the

continuous mapping theorem.

We are now ready to treat the basic example of a conditioned Brownian motion. In

this regard note that a univariate standard Brownian B(1) conditioned to stay positive is a

Bessel-3 process which we denote by B(1)↑.

Proposition II.9. Let X be a (driftless) Brownian motion with covariance matrix Σ such

that Ση 6= 0. Then

X↑
d
= −X↓ d

= MR(B(1)↑, B(2), . . . , B(d))>,

where B = (B(1), . . . , B(d))> is a standard Brownian motion in Rd, and the square matrices

M and R satisfy

MM> = Σ, RR> = I, R>M>η =
√
η>Σηη1.

Proof. The first distributional equality is a consequence of −X d
= X. Next, using X

d
= MRB

and Lemma II.7 we find that X↑ has the law of MR(B↑) for the direction R>M>η, where

the latter is proportional to η1. It is left to apply Lemma II.8 to find that B↑ for the direction

η1 has the law of (B(1)↑, B(2), . . . , B(d))>.

Example II.10. Take d = 2, η = (a, b)> and a Brownian motion X with standard deviations

σ1, σ2 > 0 and correlation ρ ∈ (−1, 1). Then Proposition II.9 yields

X↑
d
=

1√
a2σ2

1 + 2abσ1σ2ρ+ b2σ2
2

(
aσ2

1 + bσ1σ2ρ −bσ1σ2

√
1− ρ2

aσ1σ2ρ+ bσ2
2 aσ1σ2

√
1− ρ2

)(
B(1)↑

B(2)

)
,

where we used a Cholesky square-root M .
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Figure II.2: Two independent paths simulated from the common law of −X↓ and X↑ for the

direction η = (1, 2)>, where σ1 = σ2 = 1 and ρ = −0.8. The dashed line is the boundary of the

corresponding half-space.

In particular, simulation of X↑ over a grid is a trivial task when X is a driftless Brownian

motion. We depict two independent sample paths in Figure II.2.

Further insight can be obtained from Figure II.3 consisting of three plots, each containing

500 simulations of X↑1 for different values of ρ.
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(a) ρ = −0.8.
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(b) ρ = 0.
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(c) ρ = 0.8.

Figure II.3: Simulated values of X↑1 for the direction η = (1, 2)> and for different values of ρ. The

standard deviations are σ1 = σ2 = 1.

II.6 The law of the limit pair

We need some additional notation. Consider an extension of the probability space (D,F ,P)

supporting a standard exponential random variable e1 independent of everything else. Define

eq = e1/q, an exponential random variable of rate q > 0, and let X : Peq be the process X : P
killed at eq. Finally, the process X : Peqx corresponds to the shifted process Xt + x1{t≥0}
killed at eq, and in the case of no killing we write Px.

II.6.1 Exponential time horizon

As in the univariate case the characterization of the law of the limit object (−X↓, X↑)
proceeds by first studying the respective pair of processes under Peq , that is, when the killing

time of the original process is an independent exponential random variable of rate q > 0. We

start with a simple observation that under Peq (and Assumption II.A) we have

(X←−, X−→)
d
= (−X
−−−→

,−X
←−−−

),
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which readily follows by time-reversal; alternatively one may use Theorem II.2. The following

splitting result is based on some classical arguments, and we only provide appropriate

references.

Proposition II.11. Under Peq the processes X←− and X−→ are independent Markov processes.

The semigroup of X−→ is given by

Peqx (Xt ∈ dy, Zt > 0)Peqy (Z > 0)

Peqx (Z > 0)
= Peqx (Xt ∈ dy | Z > 0), t > 0, x, y ∈ S.

Moreover, in case (↓) the initial distribution is given by

Peq (X−→0 ∈ dy) = Peqy (Z > 0)Π(dy)/
(
q +

∫

{〈z,η〉>0}
Peqz (Z > 0)Π(dz)

)
, y ∈ S.

Proof. The fact that X−→ is Markov with the stated semigroup is proven in Millar (1978).

Independence of the processes follows by discretizing the local time of Z at its infimum as in

the proof by Bertoin (1996, Lem. VI.6). The initial distribution in case (↓) can be obtained

analogously to Ivanovs (2017, Prop. 3.3) using an enumeration of jumps of X.

II.6.2 Infinite time horizon

We are now ready to characterize the law of the limit object (−X↓, X↑). Consider a so-called

renewal function associated to the ladder height process H corresponding to −Z:

h(x) :=

∫ ∞

0

P(Ht ≤ x) dt,

where the scaling of local time is arbitrary, see also Bertoin (1996, p. 157, 171). This is

exactly the h-function appearing in the Doob h-transform corresponding to the univariate

Z conditioned to stay positive, see Bertoin (1993) and Chaumont and Doney (2005) for

alternative representations. The function h is finite, continuous and increasing.

Theorem II.12. The processes −X↓ and X↑ are independent Markov processes, and the

former has the law of (−X)↑. The semigroup of X↑ is given by

p↑t (x, dy) :=
h(〈y, η〉)
h(〈x, η〉)Px(Xt ∈ dy, Zt > 0), t > 0, x, y ∈ S.

Furthermore, in case (↓) and if Z is non-monotone we have

P(X↑0 ∈ dy) = h(〈y, η〉)Π(dy)/

∫

{〈z,η〉>0}
h(〈z, η〉)Π(dz), y ∈ S. (II.3)

Proof. We apply Theorem II.2 with T = eq and Proposition II.11, and then let q ↓ 0. Since

eq → ∞ we indeed retrieve −X↓ and X↑. The Markov property follows from the strong

convergence result implied by Theorem II.2 upon recalling that the distribution of ζ↑ has no

atoms, see Lemma II.4. Let us check that the semigroup in Proposition II.11 has the stated

weak limit. From the univariate theory (Chaumont and Doney, 2005, Eq. (2.5)) we know

that for a certain cq > 0

Peqx (Z > 0)/cq → h(〈x, η〉), x ∈ S

as q ↓ 0, and it is left to apply the dominated convergence theorem as in Chaumont and

Doney (2005, Prop. 1).
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With respect to the initial distribution (for the assumed case) we observe that

Peq (X−→0 ∈ A)→ P(X↑0 ∈ A),

∫

A

Peqy (Z > 0)/cqΠ(dy)→
∫

A

h(〈y, η〉)Π(dy) <∞

for any bounded Borel set A, also bounded away from 0 (by the dominated convergence

theorem). It is left to recall that ζ↑ > 0 and X↑0 ∈ S a.s., and A can be chosen so

that
∫
A
h(〈y, η〉)Π(dy) > 0. The latter is true since h(z) > 0 for z > 0 and necessarily

Π(S) > 0.

In the univariate case the initial distribution formula (II.3) is known in the case of no

negative jumps, where H(t) = t implying h(x) = x, see Chaumont (1994) and also Chaumont

and Doney (2005, Eq. (2.12)). Let us also stress the following relation to the univariate

conditioned processes.

Remark II.13. Choosing the direction η1 = (1, 0, . . . , 0)> we observe that

p↑t (x,dy) = p(1)
t
↑
(x(1),dy(1))Px(2:d)(X(2:d)

t ∈ dy(2:d) |X(1)
t = y(1), X(1)

t > 0),

where X = (X(1), X(2:d)) and p(1)
t
↑

corresponds to X(1) conditioned to stay positive.

II.7 Starting away from the origin

Theorem II.12 characterizes the law of X↑ in case (↓), but otherwise it lacks convergence of

the semigroup as x → 0. In this section we address this issue and also state a number of

further useful properties. The proofs follow closely the univariate analogues in Chaumont

and Doney (2005) and thus we only state the main steps and observations.

It is easy to see that the semigroup p↑t (x,dy) of X↑, see Theorem II.12, is conservative

and satisfies the Feller properties on Ŝ := S ∪ {†}. Note that the hyperplane defining this

half-space has been excluded. We write X : P ↑x for the respective Feller process indexed by

[0,∞) and started at x ∈ Ŝ, and note that it satisfies the strong Markov property (Kallenberg,

2002, Thm. 19.17).

Observe that the law of the Markov process with the semigroup in Proposition II.11 when

started in x ∈ Ŝ can be conveniently written as

(X | Z > 0) = (X |Xt ∈ Ŝ ∀t ≥ 0) under Peqx . (II.4)

Furthermore, Chaumont and Doney (2005, Prop. 1) readily generalizes to

P ↑x (Λ, t < ζ) = lim
q↓0

Peqx (Λ, t < ζ | Z > 0), Λ ∈ Ft, t > 0, x ∈ S, (II.5)

which explains the name ‘conditioned to stay in a half-space’. Note that 〈X, η〉 : P ↑x is the

univariate process 〈X, η〉 conditioned to stay positive and started from 〈x, η〉.

Proposition II.14. For any x ∈ S the process Zt = 〈Xt, η〉 under P ↑x has a unique and

finite time of infimum, X−→ and X←− are independent under P ↑x , and

X−→ : P ↑x
d
= X↑.

Furthermore,

X : P ↑x
d−−→ X↑ as S 3 x→ 0,

where by convention the sample paths satisfy ωt = 0, t < 0.
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Proof. It follows from the calculations in Chaumont and Doney (2005, p. 956) that the time

of infimum is finite. Consider the process in (II.4) and establish a splitting result analogous

to Proposition II.11. The post-infimum process has the law of X−→ : Peq , and so we can apply

(II.5) and Theorem II.2 to get the first statement.

In view of the first part, it is only required to show that the pre-infimum process X←− : P ↑x
becomes negligible in probability as x→ 0. The arguments of Chaumont and Doney (2005,

Thm. 2) still apply, and we additionally show that the maximal fluctuation of the pre-limit

process perpendicular to η is negligible. This can be done by considering the stopping time

ν = inf{t ≥ 0 | ‖Xt − x‖ > ε} and employing similar analysis based on the strong Markov

property. In case (l) and (↓) we then need to show that Px(Zν > 0)→ 0, which is indeed

true.

The above proof, in fact, shows that

X : P ↑x
d−−→ x0 +X↑ as S 3 x→ x0, 〈x0, η〉 = 0.

In cases (l), (↑) the process x0 +X↑ starts at x0 and according to Lemma II.4 it does not

jump at fixed times. Hence in these cases we may extend our Feller process X : P ↑x to the

state space S ∪ {†}, the closed half-space with an absorbing state, by setting

X : P ↑x0
:= x0 +X↑ for any x0 with 〈x0, η〉 = 0.

Note that this definition coincides with the result of the construction presented in Section II.3

if we take X started at x0 and let Y +
t = −

∫
[−t,0]

1{〈X̃s−,η〉≥0} dX̃s which yields an a.s.

identical process in the original case.

II.8 Conjecture: zooming in at the maximal distance from the

origin

For a possible further application we turn our attention to the local behavior of a Lévy

process at the time when it reaches the maximal distance from the origin. Assuming finite

life time, ζ ∈ (0,∞), we let

τ := sup{t ≥ 0 | ‖Xt‖ ∨ ‖Xt−‖ = sup
s≥0
‖Xs‖} ∈ [0, ζ]

be the (last) time when the Euclidean norm is maximal. Consider the respective position

M := Xτ if ‖Xτ‖ ≥ ‖Xτ−‖ and M := Xτ− otherwise, and define the processes

−→
Xt :=

{
Xτ+t −M if 0 ≤ t < ζ − τ,
† if t ≥ ζ − τ,

←−
Xt :=

{
X(τ−t)− −M if 0 ≤ t < τ,

† if t ≥ τ.

Observe that the pair (
←−
X,
−→
X) coincides with (X←−, X−→) studied above for the (path-dependent)

direction η = −M , see also Figure II.4 for a schematic illustration. Inspired by Corollary II.6

and using the intuition from the one-dimensional stable convergence in Ivanovs (2018), we

conjecture the following result; proving it seems to be exceedingly challenging at the moment.

We anticipate that the convergence is again stable (Aldous and Eagleson, 1978) but avoid

complicating the statement.
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0

M

η

Figure II.4: Schematic illustration of zooming in at the maximal distance.

Conjecture II.15. Let B be the Brownian part of X with a non-singular covariance matrix.

Then
√
n(
←−
X ·/n,

−→
X ·/n) : P1 d−−→ (−B⇓, B⇑),

where the limit pair is a mixture of (−B↓, B↑) for the independent direction η = −M : P1.

We illustrate this conjecture by a simulation study where X = B is a 2-dimensional

Brownian motion with correlation ρ = −0.8 as in Section II.5. We simulate K (approximate)

copies of the random vector
√
n
−→
X1/n under P1 for n = 1000 using discretization with step

size 10−5. The K samples of the limit quantity B⇑1 are constructed by reusing the directions

η = −M : P1 and then independently sampling B↑1 according to Example II.10.

Note that
−→
X may have a lifetime strictly smaller than 1/n, making

√
n
−→
X1/n undefined.

In our simulation we exclude these cases, effectively conditioning
−→
X to have a lifetime larger

than 1/n. We simulated 5000 times, resulting in K = 4833 (conditional) samples of
√
n
−→
X1/n.

The respective bivariate densities are presented in Figure II.5, and we observe that they are

indeed rather close.

-2

0

2

-2 0 2

-2

0

2

-2 0 2

Figure II.5: Estimated bivariate densities for
√
n
−→
X1/n and B⇑1 on the left and right respectively.

A darker shade of blue indicates a higher density. The dashed line is the line through the origin

with slope −1.

It is noted that the Brownian motion X with correlation ρ tends to achieve its maximal

distance from the origin in the NW or SE direction, which leads to the two clusters of points

in Figure II.5.
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II.A Proof of Theorem II.2

II.A.1 Discrete time

We begin by stating a discrete-time version of Theorem II.2. Fix ζ ∈ N and consider a process

X ∈ Rd over the index set {0, . . . , ζ} together with the projected process Zi := 〈Xi, η〉. Let

τ := sup{i ≤ ζ | Zi = Zi} be the index of the (last) minimum of Z, and X := Xτ be the

value of the directional minimum. The directional post-minimum and reversed pre-minimum

chains X−→ and X←− are given by

X−→i :=

{
Xτ+i −X if i ≤ ζ − τ,
† if i > ζ − τ,

X←−i :=

{
Xτ−i −X if i ≤ τ,
† if i > τ.

Next, define

A+
i :=

i∑

j=1

1{Zj>0}, A−i :=

i∑

j=1

1{Zj≤0} (II.6)

when i ≤ ζ, and let α±i := inf{j ∈ N | A±j = i} denote the inverses of A±. With ∆Xj :=

Xj −Xj−1 we define the chains X↑ and X↓ by

X↑i :=

{∑α+
i
j=1 1{Zj>0}∆Xj if i ≤ A+

ζ

† if i > A+
ζ ,

X↓i :=

{∑α−i
j=1 1{Zj≤0}∆Xj if i ≤ A−ζ

† if i > A−ζ .

We are now ready to state the discrete analogue of Theorem II.2.

Theorem II.16. Assume that ζ ∈ N and X has exchangeable increments. Then the pairs of

processes (X↓, X↑) and (−X←−, X−→) have the same law.

Proof. The proof of Bertoin (1993, Thm. 2.1) is easily adapted to this setting.

II.A.2 Continuous time

The proof of Theorem II.2 proceeds much like the proof of Bertoin (1993, Thm. 3.1). We

discretize, apply Theorem II.16 and take the limit.

Recall that we are considering a Lévy process X : PT up to a finite time horizon T > 0.

For each n ∈ N let Xn be the chain given by Xn
i := Xi/n, and let Xn↑ and Xn↓ be the

chains obtained from Xn by the procedure in §II.A.1. Define

Y n+
i :=

i∑

j=1

1{〈Xnj ,η〉>0}∆Xn
j ,

and note that almost surely

Y n+
[tn] = −

−1∑

i=−[tn]

1{〈X̃i/n,η〉>0}(X̃(i+1)/n − X̃i/n).
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By Kallenberg (2002, Cor. 17.13) we have

sup
0≤t≤T

‖Y n+
[tn] − Y +

t ‖
P−−→ 0.

Consider further the increasing chains An± obtained from Xn through the construction

in (II.6), and let αn± be the inverses. Note that 1
nA

n+
[tn] → A+

t for all t ≥ 0 a.s. since the zero

set of 〈X · , η〉 is a Lebesgue null-set a.s. It follows that almost surely 1
nα

n+
[tn] → α+

t for all

t ∈ C(α+), where C(α+) is the set of continuity points for α+. To see this, observe first that

inf{s ≥ 0 | 1
nA

n+
[sn] > t} = inf{s ≥ 0 |An+

[sn] ≥ [tn] + 1} =
1

n
αn+

[tn]+1.

Almost surely the expression on the left converges to α+
t for all t ∈ C(α+). This basic

convergence of right-continuous inverses is easy to prove (e.g. using the arguments in the

proof by Resnick (1987, Prop. 0.1)). Lastly one verifies that 1
nα

n+
[tn]+1 can indeed by replaced

by 1
nα

n+
[tn].

Let f : [0,∞) → Rd be a continuous function. Then it follows from the observations

above that

1

n

[Tn]∑

i=0

〈f(i/n), Xn↑
i 〉

P−−→
∫ T

0

〈f(s), X↑s 〉ds,

where we make the convention that 〈a, †〉 =∞ for a 6= 0 and 〈0, †〉 = 0. To prove this we use

the fact that α+ is strictly increasing and has at most countably many discontinuities, with

the former implying that Y + jumps at α+
t for at most countably many t.

Similarly, if g : [0,∞)→ Rd is a continuous function we obtain the convergence

1

n

[Tn]∑

i=0

〈g(i/n), Xn↓
i 〉

P−−→
∫ T

0

〈g(s), X↓s 〉ds.

Using the fact that almost surely (Xt)t∈[0,T ] reaches its infimum in the direction given by

η exactly once, it follows that almost surely

1

n

[Tn]∑

i=0

〈f(i/n), X−→
n
i 〉 →

∫ T

0

〈f(s), X−→s〉ds,

and

1

n

[Tn]∑

i=0

〈g(i/n), X←−
n
i 〉 →

∫ T

0

〈g(s), X←−s〉ds,

where f and g are as above. By Theorem II.16 we obtain the distributional identity

(∫ T

0

〈g(s), X↓s 〉ds,
∫ T

0

〈f(s), X↑s 〉ds
)

d
=
(
−
∫ T

0

〈g(s), X←−s〉ds,
∫ T

0

〈f(s), X−→s〉ds
)

under PT , thus proving Theorem II.2.
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Paper III

Local behavior of diffusions at the supremum

Jakob D. Thøstesen
Department of Mathematics, Aarhus University

Abstract. This paper studies small-time behavior at the supremum of a diffusion process. For a

solution to the SDE dXt = µ(Xt) dt + σ(Xt) dWt (where W is a standard Brownian motion) we

consider (ε−1/2(XmX+εt−X))t∈R as ε ↓ 0, where X is the supremum of X on the time interval [0, 1]

and mX is the time of the supremum. It is shown that this process converges in law to a process

ξ̂, where (ξ̂t)t≥0 and (ξ̂−t)t≥0 arise as independent Bessel-3 processes multiplied by −σ(X). The

proof is based on the fact that a continuous local martingale can be represented as a time-changed

Brownian motion. This representation is also used to prove a limit theorem for zooming in on X at

a fixed time. As an application of the zooming-in result at the supremum we consider estimation of

the supremum X based on observations at equidistant times.

Keywords: Diffusion process, functional limit theorem, small-time behavior, stable convergence,

discretization error, Bessel process

2020 MSC: 60J60; 60F17

III.1 Introduction

Differentiation is a central concept in classical analysis and it is useful in many areas with

one example being approximation. When dealing with stochastic processes, however, we

rarely care about differentiation as the paths of many typical processes are differentiable at

few (if any) points. This means that there is a need for a similar tool to handle the local

behavior of such processes.

A differentiation-type concept for stochastic processes was introduced in Asmussen et al.

(1995) with the purpose of describing local behavior at the supremum of the Brownian motion.

This concept was revisited in Ivanovs (2018) where it was called zooming in. A stochastic

process X starting at zero is said to satisfy the zooming-in condition if

(aεXεt)t≥0
fdd−−−→ (X̃t)t≥0 as ε ↓ 0, (III.1)

where aε is a scaling function and X̃ is a non-trivial stochastic process. It is clear that this

is connected to differentiation (from the right) at time 0. Indeed, if t 7→ Xt is differentiable

from the right at 0 then the convergence holds with aε = ε−1 and X̃ being a line.

The related concept of zooming out was studied in Lamperti (1962). While this sounds like

quite a different framework it is in fact possible to transfer many of ideas to the zooming-in

setting. This includes the study of the scaling function and the limit process. For more

details see Ivanovs (2018).
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The zooming-in condition has proven to be a very useful regularity assumption in e.g.

Bisewski and Ivanovs (2020), Ivanovs and Podolskij (2020) and Ivanovs and Thøstesen (2021).

In those papers the zooming-in theory plays a large role in various discretization problems.

Naturally there is a big difference between zooming in at a fixed time and at a random

time. With X being a Lévy process satisfying the zooming-in assumption it was shown in

Ivanovs (2018) that one may also zoom in at the supremum of X over the interval [0, 1]. The

scaling is again aε and the law of the limit process is related to X̃. This theory was used in

Ivanovs and Podolskij (2020) to derive limit theorems related to estimation of the supremum

of X in a high-frequency setting, and it was used in Bisewski and Ivanovs (2020) to study

threshold exceedance for Lévy processes.

This paper presents limit results for zooming in at a fixed time and at the supremum of a

diffusion process. Estimation of the supremum is studied as an application of the limit theory.

The approach is based on the fact that a continuous local martingale can be represented as a

time-changed Brownian motion. For zooming in at the supremum this lets us build on an

existing zooming-in result for the Brownian motion.

All relevant definitions and prerequisites are contained in §III.2. In §III.3 the main results

are presented. Generality of the results and possible extensions are covered in §III.4, and

finally the most technical proofs are found in §III.5.

III.2 Definitions and prerequisites

III.2.1 The setup

Consider the SDE

dXt = µ(Xt) dt+ σ(Xt) dWt and X0 = x0, (III.2)

where W is a standard Brownian motion. We assume that there exists a weak solution (X,W )

to (III.2), defined on a filtered probability space (Ω,F , (Ft),P) such that X is (Ft)-adapted

and W is an (Ft)-Brownian motion. We assume that (Ft) satisfies the usual conditions.

In this paper we will encounter several (Ft)-adapted processes which are almost surely

continuous, X and W being the first examples. Since (Ft) is complete we may and will

assume that these processes are continuous for all ω ∈ Ω.

We need some regularity assumptions on µ and σ which are stated in Assumption III.A

below. Here, the range of X is the set of points x ∈ R for which P(Xt = x for some t ∈
[0,∞)) > 0. Note that the positivity in assumption (ii) is quite standard and guarantees the

presence of some amount of noise at any time. This is important for zooming in since the

presence of a Brownian motion affects the scaling function. For example, if X is a Brownian

motion plus a linear drift then aε ∼ c1ε−1/2 (for some c1 > 0), and if X is just a linear drift

then aε ∼ c2ε−1 (for some c2 > 0), see Ivanovs (2018, Thm. 2).

Assumption III.A.

(i) The function µ : R→ R is locally bounded.

(ii) The function σ : R→ [0,∞) is continuous and strictly positive on the range of X.

We let X := supt∈[0,1]Xt denote the supremum of X over the unit interval, and we denote

the time of the ultimate supremum by mX := sup{t ∈ [0, 1] |Xt = X}. We then define the
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pre- and post-supremum processes, X←− and X−→, by

X←−t :=

{
XmX−t −X if 0 ≤ t < mX ,

† if t ≥ mX ,

X−→t :=

{
XmX+t −X if 0 ≤ t < 1−mX ,

† if t ≥ 1−mX .

III.2.2 Path space and topology

The processes appearing in this paper are viewed as random variables taking values in the

measurable space (D[0,∞),D), where D[0,∞) is the space of real-valued càdlàg functions

defined on [0,∞) and D is the Borel σ-algebra induced by the Skorokhod topology. A

standard reference treating this space is Billingsley (1999, §16).

For convergence in distribution it is often sufficient to consider the restrictions of processes

to intervals of the form [0, T ] for T > 0. Consider D[0,∞)-valued random variables (i.e.

stochastic processes) X,X1, X2, . . . . Then Xn d−→ X if and only if (Xn
t )t∈[0,T ]

d−→ (Xt)t∈[0,T ]

for all T > 0 where X is almost surely continuous at T , see e.g. Billingsley (1999, Thm. 16.7).

Here the restrictions are seen as random variables in D[0, T ] (the space of càdlàg functions

on [0, T ]).

III.2.3 The central representation

Suppose for a moment that X solves the SDE (III.2) with x0 = 0 and µ ≡ 0. Then X is a

continuous local (Ft)-martingale starting at zero. We denote the quadratic variation of X

by [X] and recall that it is almost surely given by

[X]t =

∫ t

0

σ2(Xs) ds, t ≥ 0.

Note that [X] is continuous and strictly increasing and let τt := inf{s ≥ 0 | [X]s > t} denote

its (right-continuous) inverse. We define a new filtration (Gt) by Gt := Fτt . A standard result

(Kallenberg, 2021, Thm. 19.4) gives the existence of a Brownian motion W̃ with respect to

a standard extension (Ĝt) of (Gt) (Kallenberg, 2021, p. 420) such that X = (W̃[X]t)t≥0 a.s.

Furthermore, for any s ≥ 0 the random variable [X]s is a (Gt)t≥0-stopping time.

III.2.4 Stable convergence

A central concept in this paper is the notion of stable convergence which was originally

introduced by Rényi (1963). Later papers which are also of interest include Aldous and

Eagleson (1978) and Podolskij and Vetter (2010). In this subsection we present only the

results which are relevant for this paper.

We consider a probability space (Ω,F ,P) supporting a sequence of random variables

(Xn) taking values in some Polish space. We say that Xn converges stably to X (written

Xn
st−→ X) defined on an extension (Ω̃, F̃ , P̃) of the space if

E[f(Xn)Z]→ Ẽ[f(X)Z] (III.3)

for all bounded continuous functions f and all bounded F-measurable Z.

The extension of (Ω,F ,P) is a product space (Ω̃, F̃) = (Ω× Ω′,F ⊗ F ′) equipped with

a probability measure P̃ which satisfies P̃(A × Ω′) = P(A) for any A ∈ F . A random
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variable Z defined on (Ω,F ,P) becomes a random variable on the extension by defining

Z(ω, ω′) := Z(ω). We often need the extension to support a random variable X which is

independent of F . In that case we let (Ω′,F ′,P′) be a probability space on which X can be

defined. As before X can be viewed as a random variable on (Ω× Ω′,F ⊗ F ′), and taking

P̃ = P⊗ P′ gives the desired independence. In this case, and when Xn
st−→ X, we sometimes

say that the convergence is mixing. This concept was first introduced in Rényi (1958).

Proving the main results of this paper we will require a few lemmas about stable

convergence. These can be found in §III.5.1.

III.3 Main results

III.3.1 Zooming in at a fixed time

We begin with a limit theorem that formalizes the intuitive understanding of a diffusion

process. Namely that the local behavior of X at a fixed time T > 0 is that of a scaled

Brownian motion. To simplify we consider the time point T = 1.

For ε > 0 and t ∈ R we let X(ε)
t := ε−1/2(X1+εt −X1). Consider further two standard

Brownian motions U (1) and U (2) defined on an extension of (Ω,F ,P) which are independent

of each other and of F .

Theorem III.1. It holds that

(
l(X(ε)
−t )t≥0, (X

(ε)
t )t≥0

) st−−→
(
σ(X1)U (1), σ(X1)U (2)

)
as ε ↓ 0.

Dealing with (X(ε)
t )t≥0 is fairly simple as we look forward in time. Looking backwards

in time is generally harder and proving the convergence of (X(ε)
−t )t≥0 is indeed somewhat

technical. The proof of Theorem III.1 is deferred to §III.5.2.

Looking backwards in time may be difficult but it is quite useful. The following result is

very intuitive in addition to being necessary for proving Theorem III.4 below, and proving it

is now trivial.

Corollary III.2. Almost surely mX 6= 1.

Proof. Let A ⊆ D[0,∞) be the set of functions f in D[0,∞) with f(t) ≤ 0 for all t ∈ [0, 1).

Using Billingsley (1999, Thm. 16.1) it is easy to verify that A is closed in the Skorokhod

topology. It follows from Theorem III.1 and the Portmanteau theorem that

P(mX = 1) ≤ lim sup
ε↓0

P
(
(X(ε)
−t )t≥0 ∈ A

)
≤ P̃

(
(σ(X1)U (1)

t )t≥0 ∈ A
)

= 0.

Remark III.3. With a few straight-forward modifications to the proof we may extend

Theorem III.1 to cover the case where X is given by the more general SDE dXt = µt dt+

σt dWt. In this case we assume that the process µ is locally bounded and that σ is continuous.

III.3.2 Zooming in at the supremum

The local behavior of X at time 1 is described by the zooming-in result in Theorem III.1.

In a similar fashion we want to describe the local behavior at the supremum through a

zooming-in result. It is well-known (Bertoin, 1993) that the negated pre- and post-supremum

processes for a Brownian motion are two independent Bessel-3 processes (killed at certain

random times). With this in mind the following result is somewhat intuitive.
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Theorem III.4. Let B(1) and B(2) be two independent Bessel-3 processes defined on an

extension of (Ω,F ,P) such that both processes are independent of F . Then it holds that

(
(ε−1/2X←−εt)t≥0, (ε

−1/2X−→εt)t≥0

) st−−→
(
−σ(X)B(1),−σ(X)B(2)

)
as ε ↓ 0. (III.4)

The proof of Theorem III.4 is deferred to §III.5.3.

III.3.3 Estimation of the supremum

As an application of Theorem III.4 we consider a high-frequency setting in which the process

X is observed on the set of times ε(N0 + U) ∩ [0, 1] for some small ε > 0, where U is a

standard uniform defined on an extension of the space such that it is independent of F and

B(1), B(2). The objective is to estimate the supremum X over [0, 1]. To avoid constantly

having to intersect with the unit interval we consider X as being restricted to this interval.

We take the basic estimator M (ε) := supt∈ε(N0+U)Xt. The following result establishes

the convergence rate ε−1/2.

Proposition III.5. For all ε > 0 it holds that

0 ≥ ε−1/2(M (ε) −X) ≥ ε−1/2X−→ε{U−mX/ε},

where {U−mX/ε} is the fractional part of U−mX/ε. Furthermore, there is stable convergence

of the lower bound:

ε−1/2X−→ε{U−mX/ε}
st−−→ −σ(X)B(2)

U .

Proof. Observe that

ε−1/2(M (ε) −X) = sup
i∈N0

ε−1/2(Xε(i+U) −X) = sup
i∈Z

ε−1/2(Xε(i+{U−mX/ε})+mX −X)

for all ε > 0. We can get a lower bound by taking a specific i instead of taking the supremum

over Z. With i = 0 we get the claimed lower bound.

By conditioning one sees that for all ε > 0 the fractional part Uε := {U −mX/ε} is a

standard uniform independent of F and B(1), B(2). In combination with Theorem III.4 and

Whitt (2002, Prop. 13.2.1) we obtain the convergence of the lower bound.

Remark III.6. The lower bound in Proposition III.5 is somewhat conservative. Indeed, in the

proof we see that the discretization error can be written as supi∈Z ε
−1/2(Xε(i+{U−mX/ε})+mX−

X). Looking to Theorem III.4 it is expected that this quantity will converge to supi∈Z ξ̂i+U ,

where ξ̂t = −σ(X)B(1)
−t for t < 0 and ξ̂t = −σ(X)B(2)

t for t ≥ 0. However, this is not

straight-forward to prove. The issue is that taking the supremum over an unbounded set of

times is not continuous. This was solved by Bisewski and Ivanovs (2020, App. B) where the

authors corrected the proof by Ivanovs (2018, Thm. 5). In those papers X is a Lévy process

satisfying the zooming-in condition. The approach is not directly applicable here because it

is based on results known only for Lévy processes.

It is perfectly valid to ask why we choose to sample at times ε(i+ U) rather than εi for

i ∈ N0. In the latter case one would consider the estimator M̃ (ε) := supt∈εN0
Xt. For this

estimator it holds that

ε−1/2(M̃ (ε) −X) = sup
i∈Z

ε−1/2(Xε(i+{−mX/ε})+mX −X)

for any ε > 0. This gives the lower bound ε−1/2X−→ε{−mX/ε}. In order to obtain a limit theorem

for this quantity we need to know what happens to {−mX/ε} as ε ↓ 0. By the classical
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result of Kosulajeff (1937) it is known that {−mX/ε} converges to the standard uniform

distribution if mX has a density wrt. the Lebesgue measure. As seen in Proposition III.5 we

are able to avoid such considerations by translating the sampling times by εU .

III.4 Further comments

III.4.1 Generality of the results

Theorem III.1 describes zooming in at time 1. Naturally there is nothing special about the

time 1 so the result also holds if we zoom in at some other fixed time T > 0. In that case

one simply replaces σ(X1) by σ(XT ) in the limit. The time point 1 is chosen only to simplify

notation.

In the same way there is nothing special about the time interval [0, 1] in the formulation

of Theorem III.4. This interval can be replaced by [T1, T2] where 0 ≤ T1 < T2 <∞ are fixed.

In the formulation of the result one will then have to define X := supt∈[T1,T2]Xt.

III.4.2 Extending to other processes

The approach used to prove Theorem III.1 and Theorem III.4 is based on representing

the local martingale part of X as a time-changed Brownian motion. The time-change is

differentiable and this lets us apply zooming-in results for the Brownian motion to obtain

corresponding results for X.

It is possible to extend the result about zooming in at the supremum to other classes of

stochastic processes. In Ivanovs (2018) this was done for any Lévy process satisfying the

zooming-in condition (III.1). With the approach used to prove Theorem III.4 it is likely that

this result can be used to prove limit results for zooming in at the supremum of time-changed

Lévy processes. Below are two examples where this appears to be do-able.

Example A: Let X be a positive 1/α-self-similar Markov process (pssMp) starting at

some value x > 0. The classical result of Lamperti (1972) tells us that there exists a Lévy

process ξ such that

Xt = x exp(ξτ(tx−α)), t ≥ 0,

where τ(tx−α) = inf{s > 0 |
∫ s

0
exp(αξu) du ≥ tx−α}. The key point is that Xt is obtained by

time-changing a Lévy process and applying a strictly increasing and differentiable function.

Note also that the time-change is differentiable. The last ingredient is that ξ must satisfy

the zooming-in condition. This is completely characterized in Ivanovs (2018, Thm. 2) in

terms of the characteristics of ξ. Note also that one must pay special attention to a possible

jump at the time of supremum.

Example B: Let X be a continuous-state branching process. Then there exists (Kyprianou,

2006, Thm. 10.2) a Lévy process ζ such that

Xt = ζθ(t)∧τ−0 , t ≥ 0,

where τ−0 = inf{s > 0 | ζs < 0} and θ(t) = inf{s > 0 |
∫ s

0
ζ−1
u du > t}. We note that the

time-change is not as well-behaved as for the class of pssMps. For example, t 7→ θ(t) is not

differentiable everywhere. As a consequence one will again have to be particularly aware of

any jump at the supremum.

62



III.5. Proofs

III.5 Proofs

III.5.1 Useful lemmas

This subsection contains a few results which are useful when working with stable convergence.

Lemma III.7. Assume that Xn
st−→ X. Then we have the following:

(i) If Y, Y1, Y2, . . . are random variables (taking values in some Polish space) on (Ω,F ,P)

and Yn
P−→ Y , then (Xn, Yn)

st−→ (X,Y ).

(ii) If g is a Borel-measurable function taking values in a Polish space and g is almost

surely continuous at X then g(Xn)
st−→ g(X).

Proof. See e.g. Häusler and Luschgy (2015, Thm. 3.18).

If H ⊆ F is a sub-σ-algebra and (III.3) is only known to hold for H-measurable Z we say

that Xn converges H-stably to X (written Xn
H−st−−−→ X). The following basic lemma shows

that sometimes stable convergence can be obtained just by proving H-stable convergence for

a suitable sub-σ-algebra H. This trick is used in e.g. the proof of Jacod and Protter (2012,

Thm. 4.3.1).

Lemma III.8. Let H ⊆ F be a sub-σ-algebra. Assume that each Xn is H-measurable, X is

independent of F and Xn
H−st−−−→ X. Then Xn

st−→ X.

Proof. We must verify (III.3) for all bounded continuous functions f and all bounded

F-measurable Z. Since Xn is H-measurable and Xn
H−st−−−→ X it holds that

E[f(Xn)Z] = E[f(Xn)E[Z | H]]→ Ẽ[f(X)E[Z | H]].

Finally the assumed independence yields

Ẽ[f(X)E[Z | H]] = Ẽ[f(X)]Ẽ[Z] = Ẽ[f(X)Z].

It is often useful to work with equivalent definitions of stable convergence.

Lemma III.9. For a sub-σ-algebra H ⊆ F the following statements are equivalent:

(i) Xn
H−st−−−→ X.

(ii) (Xn, Y )
H−st−−−→ (X,Y ) for any H-measurable Y taking values in some Polish space.

(iii) (Xn, Y )
d−→ (X,Y ) for any H-measurable Y taking values in some Polish space.

(iv) (Xn,1F )
d−→ (X,1F ) for any F ∈ E, where E ⊆ H is closed under finite intersections

and further satisfies Ω ∈ E and σ(E) = H.

Proof. For equivalence of (i)–(iii) see Podolskij and Vetter (2010, Prop. 1), and for equivalence

of (i) and (iv) see Häusler and Luschgy (2015, Thm. 3.17).

Independence plays a large role for convergence of joint distributions. The following

lemma shows that joint stable convergence can also be obtained under certain independence

assumptions.
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Lemma III.10. Let (Xn), (Yn) be independent sequences of random variables, and let X,Y

be independent random variables such that X and Y are independent of F , Xn
st−→ X and

Yn
st−→ Y . Then (Xn, Yn)

st−→ (X,Y ).

Proof. Let A = σ({Xn | n ∈ N}), B = σ({Yn | n ∈ N}) and H = σ(A ∪ B). According to

Lemma III.8 it is sufficient to prove H-stable convergence. For A ∈ A and B ∈ B we see that

(Xn,1A, Yn,1B)
d−−→ (X,1A, Y,1B)

due to the assumed independence. Hence, (Xn, Yn,1A∩B)
d−→ (X,Y,1A∩B). The H-stable

convergence follows since condition (iv) in Lemma III.9 is satisfied with E being the collection

of sets on the form A ∩B where A ∈ A and B ∈ B.

III.5.2 Proof of Theorem III.1

As in the formulation of Theorem III.1 we let (U (1), U (2)) denote a pair of independent

standard Brownian motions, defined on an extension of (Ω,F ,P) such that they are also

independent of F .

We may write Xt as

Xt = x0 +At +Mt, t ≥ 0,

where A is a continuous and (Ft)-adapted process with bounded variation, M is a continuous

(Ft)-local martingale and A0 = M0 = 0 a.s. We see that

X(ε)
t = ε−1/2(X1+εt −X1) = ε−1/2(A1+εt −A1) + ε−1/2(M1+εt −M1)

for all t ≥ −1/ε. We treat each term from the right-hand side separately.

Note that At =
∫ t

0
µ(Xs) ds for all t ≥ 0 a.s. Since µ and X are both locally bounded we

immediately find that

sup
t∈[−T,T ]

ε−1/2|A1+εt −A1| ≤ 2Tε1/2 sup
t∈[1−εT,1+εT ]

|µ(Xt)| → 0

a.s. as ε ↓ 0 for any T > 0.

Below in the proof of Theorem III.4 it is necessary to deal with the drift differently. The

same approach could be used here, however it is the author’s belief that the calculation above

is more illustrative since it clearly shows that the drift vanishes due to the ε−1/2 scaling.

It remains to show that

(
(ε−1/2(M1−εt −M1))t≥0, (ε

−1/2(M1+εt −M1))t≥0

)

st−−→
(
σ(X1)U (1), σ(X1)U (2)

)
.

(III.5)

To do so we will represent M as a time-changed Brownian motion. Let (FMt ) denote the

completed natural filtration generated by M , let τ denote the inverse of [M ], and define

GMt = FMτt . Now, as in §III.2.3 a standard result gives the existence of a Brownian motion

W̃ with respect to a standard extension (ĜMt ) of (GMt ) such that M = (W̃[M ]t)t≥0 a.s. Recall

that [M ]s is a (GMt )-stopping time for any s ≥ 0. Finally we note that the quadratic variation

of M is given by

[M ]t = [X]t =

∫ t

0

σ2(Xs) ds, t ≥ 0,

almost surely.
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The next step in the proof of Theorem III.1 is Lemma III.11 below which allows for

zooming in on W̃ from the right. Instead of simply zooming in at time 1 we generalize to

zooming in at 1− εR with R ≥ 0 since we will need this in the proof of Lemma III.12 below.

This slight generalization requires very little extra effort.

Lemma III.11. For any R ≥ 0 it holds that

(
ε−1/2(W̃[M ]1−εR+εt − W̃[M ]1−εR)

)
t≥0

st−−→ U, (III.6)

where U is a standard Brownian motion defined on an extension of (Ω,F ,P) such that U is

independent of F .

Proof. We fix R ≥ 0 and recall that [M ]1−εR is a (GMt )-stopping time. It follows that the

left-hand side of (III.6) is a standard Brownian motion for any ε > 0 so the convergence in

distribution is trivial.

Now, let A denote the σ-algebra generated by the process W̃ ′ := (W̃[M ]1+t − W̃[M ]1)t≥0.

The first step is proving A-stable convergence. It is sufficient to show that

(
(ε−1/2(W̃[M ]1−εR+εt − W̃[M ]1−εR))t∈[0,T ], (W̃

′
ti)i=1,...,k

)

d−−→
(
(Ut)t∈[0,T ], (W̃

′
ti)i=1,...,k

) (III.7)

for any T > 0, k ∈ N and 0 < t1 < . . . < tk. To this end define a(ε)
i := W̃[M ]1+ti − W̃[M ]1+εT

and b(ε)i := W̃[M ]1+εT − W̃[M ]1 . Then W̃ ′ti = a(ε)
i + b(ε)i , b(ε)i → 0 a.s. as ε ↓ 0, and for

ε ∈ (0, t1/T ) we see that a(ε)
i is independent of (W̃t)t∈[0,[M ]1−εR+εT ]. Hence,

(
(ε−1/2(W̃[M ]1−εR+εt − W̃[M ]1−εR))t∈[0,T ], (a

(ε)
i )i=1,...,k

)

d−−→
(
(Ut)t∈[0,T ], (W̃

′
ti)i=1,...,k

)
.

The convergence in (III.7) follows immediately. This establishes (III.6) with
st−→ replaced by

A−st−−−→.

We let H := σ(GM[M ]1
∪ A) = σ(FM1 ∪ A) and note that the left-hand side in (III.6) is H-

measurable. Thus, proving H-stable convergence automatically yields F-stable convergence

by Lemma III.8. We note that FM1 = σ(
⋃
δ>0 FM1−δ) since M(ω) is continuous for all ω ∈ Ω

(recall the considerations in the beginning of §III.2.1). According to Lemma III.9 it is

sufficient to show that

(
(ε−1/2(W̃[M ]1−εR+εt − W̃[M ]1−εR))t≥0,1A,1F

) d−−→ (U,1A,1F )

for any δ > 0, F ∈ FM1−δ and A ∈ A. Since the first two components on the left-hand side are

independent of 1F for small enough ε this is a trivial consequence of the A-stable convergence.

This concludes the proof.

We proceed by proving the following lemma, stating that we can zoom in on W̃ at time

[M ]1. The proof follows the same strategy as the proof of Ivanovs and Thøstesen (2021,

Thm. 3).

Lemma III.12. As ε ↓ 0 it holds that

(
(W̃ (ε)
−t )t≥0, (W̃

(ε)
t )t≥0

) st−−→ (U (1), U (2)), (III.8)

where W̃ (ε)
t := ε−1/2(W̃[M ]1+εt − W̃[M ]1).
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Proof. There are two immediate things to note. Firstly, the convergence (W̃ (ε)
t )t≥0

st−→ U (2) is

nothing more than the case R = 0 in Lemma III.11. Secondly, since (W̃ (ε)
−t )t≥0 and (W̃ (ε)

t )t≥0

are independent for all ε > 0 it is sufficient, according to Lemma III.10, to show that the

former converges stably to U (1). Again it is sufficient to show stable convergence of the

process restricted to the time interval [0, T ] for all T > 0.

For any R ≥ 0 we have the almost sure convergence ε−1([M ]1−[M ]1−εR)→ Rσ2(X1) =: s.

Given T > 0 we can pick R such that s > T with probability arbitrarily close to 1. With

Y (ε)
t = ε−1/2(W̃[M ]1−εR+εt − W̃[M ]1−εR) we then write

ε−1/2(W̃[M ]1−εt − W̃[M ]1) = −(Y (ε)
ε−1([M ]1−[M ]1−εR) − Y (ε)

ε−1([M ]1−[M ]1−εR−εt)). (III.9)

That is, on {s > T} the increment of ε−1/2W̃ over [[M ]1 − εt, [M ]1] can be viewed as the

increment of Y (ε) over [ε−1([M ]1 − [M ]1−εR − εt), ε−1([M ]1 − [M ]1−εR)] (for small enough

ε > 0).

Almost surely ε−1([M ]1 − [M ]1−εR − εt)→ s− t uniformly for t ∈ [0, T ]. By combining

this with (III.9), Lemma III.11, continuity of subordination (Whitt, 2002, Thm. 13.2.2) and

Lemma III.7 we find that

E[1{s>T} f((W̃ (ε)
−t )t∈[0,T ])Z]→ Ẽ[1{s>T} f(−(Us − Us−t)t∈[0,T ])Z] (III.10)

for all bounded continuous f and all bounded F-measurable Z, where U is a standard

Brownian motion defined on an extension of (Ω,F ,P) such that U is independent of F
and independent of U (2). We conclude by noting that the limit in (III.10) is equal to

Ẽ[1{s>T} f((U (1)
t )t∈[0,T ])Z], where U (1) is a standard Brownian motion defined on an exten-

sion of (Ω,F ,P), independent of F and independent of U (2).

We are now ready to finish the proof of Theorem III.1 which we have reduced to proving

the convergence

(
(M (ε)
−t )t≥0, (M

(ε)
t )t≥0

) st−−→
(
σ(X1)U (1), σ(X1)U (2)

)
,

where M (ε)
t := ε−1/2(M1+εt −M1).

Firstly, we have the almost sure convergence

σ2
ε (t) := ε−1([M ]1+εt − [M ]1)→ tσ2(X1).

This convergence is uniform in t over compact intervals so we get the a.s. functional conver-

gence (
(σ2
ε (−t))t≥0, (σ

2
ε (t))t≥0

)
→
(
(−tσ2(X1))t≥0, (tσ

2(X1))t≥0

)
,

which we may add to the stable convergence in (III.8).

Now, for t ∈ R we can write

M (ε)
t = ε−1/2(M1+εt −M1) = ε−1/2(W̃[M ]1+εt − W̃[M ]1) = W̃ (ε)

σ2
ε (t),

where W̃ (ε) is defined in Lemma III.12. By piecing the above together we obtain the

convergence (
(M (ε)
−t )t≥0, (M

(ε)
t )t≥0

) st−−→
(
(U (1)

tσ2(X1))t≥0, (U
(2)
tσ2(X1))t≥0

)

=
(
σ(X1)Ũ (1), σ(X1)Ũ (2)

)
,

where Ũ (i)
t := σ−1(X1)U (i)

tσ2(X1). Again we use continuity of subordination (Whitt, 2002,

Thm. 13.2.2). We conclude by remarking that (Ũ (1), Ũ (2)) is again a pair of independent

standard Brownian motions, also independent of F .
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III.5.3 Proof of Theorem III.4

We begin by establishing that we may assume that X starts at zero and has no drift. As in

Theorem III.4 (B(1), B(2)) denotes a pair of independent Bessel-3 processes, defined on an

extension of (Ω,F ,P) such that they are also independent of F .

Following Kallenberg (2021, Ch. 33) we let p be the function given by

p′(x) = exp
{
−2

∫ x

x0

(µ/σ2)(u) du
}

and p(x0) = 0.

Note that this definition of p has a problem at a value x if the function µ/σ2 is not integrable

over the interval [x0, x] (or [x, x0] depending on which is larger). However, if x is in the

range of X then µ/σ2 is bounded on [x0, x] (or [x, x0]) due to Assumption III.A. As we will

only need to evaluate p at such points we need not worry.

Now, let Yt := p(Xt) for t ≥ 0. The choice of p has two particularly useful implications.

Firstly, p is strictly increasing so Y = p(X) and mX = mY . Secondly, Y is a diffusion process

solving the SDE

dYt = σ̃(Yt) dWt and Y0 = 0, (III.11)

where σ̃ = (σp′) ◦ p−1.

Now we are able to prove the following lemma which is an essential step in proving

Theorem III.4.

Lemma III.13. It is sufficient to prove Theorem III.4 under the assumption that x0 = 0

and µ ≡ 0.

Proof. Assume that Theorem III.4 holds for any diffusion process which starts at zero, has

no drift and satisfies Assumption III.A.

We consider the transformation Y := p(X) introduced above. In addition to solving the

SDE (III.11) we further note that Y satisfies Assumption III.A. So by our initial assumption

there is the convergence

(
(ε−1/2Y←−εt)t≥0, (ε

−1/2Y−→εt)t≥0

) st−−→ (−σ̃(Y )B(1),−σ̃(Y )B(2)),

where Y←− and Y−→ are pre- and post-supremum processes defined for the interval [0, 1]. Using

the mean value theorem we find that

ε−1/2X−→εt = ε−1/2(p−1)′(cε(t))Y−→εt,

where cε(t) is between YmX+εt and Y . One easily verifies that (p−1)′(cε( · )) converges (in

the Skorokhod topology) to the constant function (p−1)′(Y ). Hence,

(
ε−1/2(p−1)′(cε(t))Y−→εt

)
t≥0

st−−→ −(p−1)′(Y )σ̃(Y )B(2) = −σ(X)B(2),

where the final identity comes from the definition of σ̃. Obviously we can do similar

calculations for the pre-supremum process. Hence,

(
(ε−1/2X←−εt)t≥0, (ε

−1/2X−→εt)t≥0

) st−−→ (−σ(X)B(1),−σ(X)B(2)).

For the rest of this subsection we assume that x0 = 0 and µ ≡ 0. Then, as in §III.2.3,

we can write Xt = W̃[X]t where W̃ is a standard Brownian motion and [X] is the quadratic

variation of X. To proceed we need the following result about zooming in at the supremum of
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W̃ , defined for the stochastic interval [0, [X]1]. This result is essentially a direct consequence

of Ivanovs (2018, Cor. 2) except for one technical complication. That paper works only on

the canonical path space and since stable convergence is not only concerned with laws but

also very much with the probability space the result does not apply directly. Instead we

provide a short proof which fixes this problem.

Lemma III.14. It holds that

(
(ε−1/2W̃←−εt)t≥0, (ε

−1/2W̃−→εt)t≥0

) st−−→ (−B(1),−B(2)), (III.12)

where W̃←− and W̃−→ are the pre- and post-supremum processes defined for the interval [0, [X]1].

Proof. For each T > 0 we let W̃←−
(T ) and W̃−→

(T ) denote the pre- and post-supremum processes

for W̃ , defined for the interval [0, T ]. According to Ivanovs (2018, Thm. 4) there is the stable

convergence

(
(ε−1/2W̃←−

(T )
εt )t≥0, (ε

−1/2W̃−→
(T )
εt )t≥0

) H−st−−−−−→ (−B(1),−B(2)),

where H is the σ-algebra generated by W̃ . Since the left-hand side is obviously H-measurable

the H-stable convergence extends to F-stable convergence by Lemma III.8.

At this point it remains to extend to the case T = [X]1. Corollary III.2 tells us that

the supremum of W̃ over the interval [0, [X]1] is almost surely attained strictly before time

[X]1. Using this the convergence in (III.12) follows via the same arguments as in the proof

of Ivanovs (2018, Cor. 2).

Finally we are ready to prove Theorem III.4 in the case with x0 = 0 and µ ≡ 0. As in

Lemma III.14 we let W̃←− and W̃−→ denote the pre- and post-supremum processes for W̃ defined

for the interval [0, [X]1].

Since [X]t =
∫ t

0
σ2(Xs) ds it follows immediately that

σ2
ε (t) := ε−1([X]mX+εt − [X]mX )→ tσ2(X)

a.s. for any t ∈ R since σ is continuous on the range of X. We note that this convergence is

uniform on compact sets. Hence we have the almost sure functional convergence

(
(σ2
ε (−t))t≥0, (σ

2
ε (t))t≥0

)
→
(
(−tσ2(X))t≥0, (tσ

2(X))t≥0

)
, (III.13)

which we may add to the stable convergence in (III.12). We further note that

ε−1/2X−→εt = ε−1/2(XmX+εt −X)

= ε−1/2(W̃[X]mX+εt
− W̃[X]mX

)

= ε−1/2W̃−→εσ2
ε (t)

for each t ≥ 0. Similarly, it holds that ε−1/2X←−εt = ε−1/2W̃←−−εσ2
ε (−t) for all t ≥ 0. By continuity

of subordination (Whitt, 2002, Thm. 13.2.2) we have the convergence

(
(ε−1/2X←−εt)t≥0, (ε

−1/2X−→εt)t≥0

) st−−→
(
(−B(1)

tσ2(X)
)t≥0, (−B(2)

tσ2(X)
)t≥0

)

=
(
−σ(X)B̃(1),−σ(X)B̃(2)

)
,

where B̃(i)
t := σ−1(X)B(i)

tσ2(X)
. We note that (B̃(1), B̃(2)) is again a pair of Bessel-3 processes,

independent of F and of each other. This concludes the proof of Theorem III.4.
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Graphical models for Lévy processes
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Department of Mathematics, Aarhus University

Abstract. Conditional independence and graphical models for Lévy processes are seemingly un-

explored topics. In this paper we consider a multivariate Lévy process and study conditional

independence of its components, in particular leading to a notion of graphical models. Any Lévy

process decomposes into the sum of a Brownian part and an independent jump part, and we show

that these two parts may be considered separately when studying conditional independence. We

further characterize conditional independence for the jump part in terms of the Lévy measure. Here

we rely on a generalized notion of conditional independence which originates in extreme value theory.

The class of stable Lévy processes is particularly interesting due to homogeneity of the Lévy measure.

This is illustrated by considering models where the graphical structure is a tree. In this setting the

jumps of the process have a particular product structure. We further present a method for consistent

estimation of the tree given high frequency observations in a compact time interval. Lastly we

discuss a common method for simulating a Lévy process, involving approximation of the small jumps

using a Brownian motion. We show that under certain assumptions the Brownian approximation

inherits the conditional independence structure of the Lévy process.

IV.1 Introduction

A Lévy process is an Rd-valued stochastic process X = (X(t))t≥0 with independent and

stationary increments that satisfies X(0) = 0 almost surely. For any fixed t ≥ 0, the

univariate marginal distribution of X(t) is infinitely divisible and, thus, it arises as the limit

of row sums of a triangular array. For this reason, Lévy processes are fundamental objects in

limit theory that arise naturally in numerous settings. The Lévy–Itô decomposition states

that any Lévy process can be decomposed into two independent processes,

X = W + J,

where the continuous part W = (W (t))t≥0 is a Brownian motion with covariance Σ and drift

γ ∈ R, and the jump process J = (J(t))t≥0 is described by the so-called Lévy measure Λ.

In the last decades, the probabilistic properties of Lévy processes have been extensively

studied, ranging from detailed analysis of the sample path behavior to applications in

physics, finance and other areas. Surprisingly, there is little known about conditional
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independence in this class of stochastic processes. In probability theory and statistics,

conditional independence is a crucial notion of irrelevance that is at the heart of the many

fields such as graphical models and causality. It further allows the definition of sparsity and

is therefore the backbone for modern theory and statistical methods in larger dimensions.

One reason for the lacking connection is that the seemingly most natural definition of

conditional independence for a Lévy process does not lead to useful characterizations. Indeed,

for disjoint subsets A,B,C ⊆ {1, . . . , d} and a fixed time point t > 0 one might be tempted

to consider the conditional independence XA(t) ⊥⊥ XB(t) | XC(t). While such a statement

is of course well-defined, we will argue that it is neither natural nor useful for theory or

practice. Intuitively, the issue is that that conditioning only on the vector XC(t) collapses

important information on the stochastic process up to time t into a single vector.

Instead, we propose to study conditional independence on the level of sample paths. As

a first fundamental result, we show the (non-trivial) equivalence

XA ⊥⊥ XB | XC ⇔ JA ⊥⊥ JB | JC and WA ⊥⊥WB |WC .

That is, the characterization of conditional independence of the process X can be separated

into the corresponding statements for the Brownian and jump parts. Conditional indepen-

dence for the Brownian motion part is well understood; if the corresponding covariance

matrix Σ is invertible, then the any any conditional independence statement can be read off

from the precision matrix Σ−1.

Our main result characterizes conditional independence of the jump part J. Since this

part of the Lévy process is described by the Lévy measure Λ, we would like to describe

stochastic properties in terms of this object. In fact, it turns out that exactly this is possible

for conditional independence statement. Under a mild condition on Λ we show that for the

jump process we have

JA ⊥⊥ JB | JC ⇔ A ⊥ B | C [Λ],

where the conditional independence notion on the right-hand side is a natural generalization

of classical conditional independence to infinite measures exploding at the origin, see Engelke

et al. (2022). This provides an effective tool to study conditional independence at the

stochastic process level, to construct concrete examples and develop statistical methodology

for Lévy processes by considering the much simpler object Λ.

Moreover, our theory allows us to define graphical models for Lévy processes, a mostly

unexplored field with numerous open questions and potential for efficient statistical inference

methods.

Figure IV.1 below shows a realization of a 3-dimensional Lévy process X. It is clear

that neither of the three components are independent since the paths have rather similar

behavior. However, the processes X1 and X3 are conditionally independent given X2 but

this is not obvious from looking at the plot. In §IV.6 we present a method that lets us learn

this dependence structure from data.

In §IV.8 we consider daily stock prices for a selection of US companies. It is common

to model the log prices using a Lévy process. In Figure IV.2 below we see the log prices

for Target (TGT), United Parcel Service (UPS) and The Coca-Cola Company (KO) for the

period January 2nd 2013 until December 31st 2015. Note that each time series has been

shifted by its initial value such that they all start at zero. The analysis in §IV.8 suggests

that TGT and KO are conditionally independent given UPS.
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X1 X2 X3

Figure IV.1: A realization of a 3-dimensional Lévy process X where X1 ⊥⊥ X3 | X2.

TGT UPS KO

Figure IV.2: Shifted log prices for the tickers TGT, UPS and KO.

IV.1.1 Dependence models for stochastic processes

In the study of multivariate stochastic processes it is natural to want to model the dependence

between different components. Numerous papers have aimed to do this and before we proceed

we will briefly mention some of the proposed approaches. As is often the case, none of these

are suited for all classes of processes and all applications. In practice one must therefore

browse the literature for the most appropriate dependence model.

A popular concept is Granger causality, originally introduced by Granger (1969). The

general idea is to study how information about one component of a time series up to time

n− 1 influences prediction of the value of another component at time n. Granger causality

is the basis of many other papers such as Eichler (2012) which introduces graphical models

in the context of multivariate time series.

The ideas from Granger causality can be extended to continuous time to obtain what is

commonly known as local independence. The idea is to study how information about one

coordinate influences the infinitesimal increment of another coordinate. Local independence

is considered for various classes of stochastic processes. For instance, Didelez (2008) uses it

to define graphical models for marked point processes. Another example is Mogensen and

Hansen (2022) who study diffusion models with correlated driving noise.

The concepts of Granger causality and local independence are both based on dependence

in time. This is entirely trivial if one considers a Lévy process since it has independent and

stationary increments. For example, the evolution of the process after a fixed time point

T > 0 is independent of the process up to time T . In this paper we concentrate instead on

dependence in space. We look at individual jumps and study the dependence structure of

such random vectors.
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The idea of α-stable graphical models was introduced by Misra and Kuruoglu (2016).

These models describe α-stable random vectors which are recursively constructed according

to a directed acyclic graph. It is shown by Engelke et al. (2022, §7.3) that these models can

be seen as a special case of directed graphical models based on the notion of conditional

independence given in Definition IV.5 below. We note that the Lévy measures associated to

these models are quite basic (for example, they do not admit a Lebesgue density) whereas

our approach includes more complicated measures.

To model dependence of the jumps of a Lévy process Kallsen and Tankov (2006) use

Lévy copulas, which are an analogue to copulas for random vectors. A somewhat similar idea

based on so-called Pareto Lévy measures is suggested by Eder and Klüppelberg (2012). Both

works choose to model the dependence via the Lévy measure. A feature they share with the

approach presented in §IV.4 below.

IV.2 Preliminaries

In this section we will provide a brief introduction to conditional independence and Lévy

processes along with a bit of notation.

Throughout we denote the index set {1, . . . , d} by V . This will eventually be the set of

vertices in our graphical models. We will often consider sets of points x ∈ Rd which satisfy

some conditions. To keep things simple we use the notation {x ∈ A} = {x ∈ Rd | x ∈ A}.
For example, we will write {x1 ≥ 1} for the set {x ∈ Rd | x1 ≥ 1}.

IV.2.1 Conditional independence

The following is a quick recap of conditional independence. A far more detailed account can

be found in Kallenberg (2021, Ch. 8).

For random variables X,Y, Z, defined on some probability space (Ω,F ,P) and taking

values in spaces SX , SY , SZ , we say that X is conditionally independent of Y given Z if

P(X ∈ A, Y ∈ B | Z) = P(X ∈ A | Z)P(Y ∈ B | Z)

almost surely for all measurable sets A and B. If this holds we write X ⊥⊥ Y | Z.

It is often convenient to write conditional probabilities using a probability kernel µ. That

is,

P((X,Y ) ∈ F | Z = z) = µ(z, F )

for all measurable F and P(Z ∈ · )-almost all z. If such a kernel exists the conditional

independence X ⊥⊥ Y | Z holds if and only if µ(z,A×B) = µ(z,A× SY ) · µ(z, SX ×B) for

for all measurable A,B and P(Z ∈ · )-almost all z.

A sufficient condition for existence of µ is that SX , SY are Polish spaces. In this paper we

will typically consider either Rn for some natural number n or the space of càdlàg functions

from [0,∞) into Rn. These are both examples of Polish spaces (where the latter is endowed

with the Skorokhod topology, see Jacod and Shiryaev (2003, Thm. 1.14)).

IV.2.2 Lévy processes

Consider a stochastic process X = (X(t))t≥0 taking values in Rd. Generally we will use bold

letters to denote stochastic processes. We say that X is a Lévy process if it satisfies the

following:

1. P(X(0) = 0) = 1.
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2. For n ∈ N and 0 ≤ t0 < t1 < · · · < tn the increments X(t1)−X(t0), . . . , X(tn)−X(tn−1)

are independent.

3. The distribution of X(t+ s)−X(s) does not depend on s.

4. The sample path t 7→ X(t) is càdlàg P-almost surely.

Typical references for Lévy processes include Bertoin (1996), Sato (1999) and Applebaum

(2009).

A basic consequence of the definition above is that the distribution of X(1) is infinitely

divisible. Therefore, see e.g. Sato (1999, Thm. 8.1), its characteristic function is given by the

Lévy–Khintchine formula

E[ei〈u,X(1)〉] = exp
(
i〈u, γ〉 − 1

2
〈u,Σu〉

+

∫

Rd
ei〈u,x〉 − 1− i〈u, x〉1{‖x‖≤1} Λ(dx)

)
, u ∈ Rd,

where γ ∈ Rd, Σ is a positive semidefinite d × d matrix, ‖ · ‖ is a norm on Rd and Λ is

a measure on Rd. We say that X has characteristic triplet (γ,Σ,Λ). The so-called Lévy

measure Λ satisfies ∫

Rd
(1 ∧ ‖x‖2) Λ(dx) <∞. (IV.1)

In particular, Λ(F ) <∞ for any F ∈ B(Rd) bounded away from 0.

Just like any Lévy process gives rise to an infinitely divisible distribution the converse is

also true. That is, for any infinitely divisible distribution ν on Rd there exists a Lévy process

X such that X(1) ∼ ν. Some typical examples of Lévy processes are:

• A deterministic drift, i.e. X(t) = t · γ for some γ ∈ Rd. The associated triplet is (γ, 0, 0).

• A Brownian motion with drift γ and covariance matrix Σ. Here the triplet is (γ,Σ, 0).

• A compound Poisson process with rate λ ≥ 0 and jump distribution µ. The triplet is

given by (γ, 0,Λ) where Λ = λ · µ and γ =
∫
{‖x‖≤1} xΛ(dx).

• An α-stable process. That is, a Lévy process where the distribution of X(1) is α-stable.

See §IV.5 for further details.

Furthermore, the sum of two independent Lévy processes is again a Lévy process and its

triplet is simply the sum of the two original triplets.

0 1

0

Compound Poisson process

0 1

Brownian motion

0 1

Cauchy process

Figure IV.3: Examples of Lévy processes.

A Lévy process may be represented by its Lévy–Itô decomposition. More precisely, if X

is a Lévy process with triplet (γ,Σ,Λ) we can write it as X = J + W, where J is a Lévy
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process with characteristic triplet (0, 0,Λ), and W is a Brownian motion with drift γ and

covariance matrix Σ which is independent of J. Since W is a.s. everywhere continuous it is

common to refer to J and W as respectively the jump part and the Brownian part of X.

Importantly, the terms J and W may be constructed from X. A fact which will be used to

prove multiple results in this paper.

IV.3 Conditional independence for the process

We want to discuss conditional independence for the components of a d-dimensional Lévy

process. More precisely, for disjoint subsets A,B,C ⊆ V we consider the statement

XA ⊥⊥ XB | XC .

We remark that this is just one way of thinking about conditional independence for Lévy

processes. Another option is to consider XA(t0) ⊥⊥ XB(t0) | XC(t0) for some t0 > 0. The

primary difference between these two set-ups is the amount of information that we condition

on since σ(XC) is much larger than σ(XC(t0)). Indeed, we note that not only does XC(t0)

tell us nothing about the the future (i.e. (XC(t0 + t) − XC(t0))t≥0) but it also provides

very little information about the fluctuations and jumps up to time t0. As such the idea of

conditioning on the entire process XC seems more interesting. In the following subsection

we briefly discuss how these two types of conditional independence are related.

IV.3.1 Fixed times

An important question is whether the following equivalence holds.

There exists t0 > 0 such that XA(t0) ⊥⊥ XB(t0) | XC(t0) ⇔ XA ⊥⊥ XB | XC . (IV.2)

As the following example demonstrates we can rule out the implication from right to left in

(IV.2). The issue is that XA(t0) and XB(t0) may have some dependence which is determined

by the full history of XC on [0, t0] and not only by XC(t0).

Example IV.1. Let X be a 3-dimensional compound Poisson process such that the jumps

of X2 take the values −1 or 1 (both with positive probability). Moreover, X1 and X3 are

independent, jumping precisely when ∆X2 = 1 and ∆X2 = −1 respectively. The jumps of X1

and X3 are all of size 1. Then X1 ⊥⊥ X3 | X2. For any t0 > 0 the random variables X1(t0)

and X3(t0) are not conditionally independent given X2(t0). For example, conditionally on

the event {X2(t0) = 0} (which has positive probability) we have X1(t0) = X3(t0) and this

common value is not deterministic.

The difference between conditioning on one value and conditioning on the entire path

can also be illustrated visually. Suppose that X is 3-dimensional with X1 ⊥⊥ X3 | X2.

Figure IV.4 shows part of the dependence structure. Observe that conditioning on X2(t0)

does not guarantee independence between X1(t0) and X3(t0) since there is still a potential

connection via the past X2(t), t < t0. The solid edges illustrate possible dependence while

the dashed edges are the ones closed by the conditioning, i.e. those where at least one of

the connected vertices is deterministic. Observe that conditioning on the entire path, i.e.

X2(t), t ≤ t0, closes any possible connection between X1(t0) and X3(t0).

To obtain an implication similar to the one from left to right in (IV.2) we have to replace

the left-hand side with a stronger statement. The following result provides a sufficient

condition.
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X1(t), t < t0 X1(t0)

X2(t), t < t0 X2(t0)

X3(t), t < t0 X3(t0)

(a) Conditioning on X2(t0).

X1(t), t < t0 X1(t0)

X2(t), t < t0 X2(t0)

X3(t), t < t0 X3(t0)

(b) Conditioning on X2(t), t ≤ t0.

Figure IV.4: Illustration of the difference between conditioning on X2(t0) and conditioning on

X2(t), t ≤ t0. To disconnect X1(t0) and X3(t0) it is not enough to condition on the present value

X2(t0).

Proposition IV.2. There is the implication:

XA(t) ⊥⊥ XB(t) | XC(t) for all t ≥ 0 ⇒ XA ⊥⊥ XB | XC .

The proof of Proposition IV.2 is in §IV.A.3 and does in fact not require that XA(t) ⊥⊥
XB(t) | XC(t) for all t ≥ 0. Instead it is sufficient for this to hold for all t ∈ (0, ε) for some

ε > 0.

Assume for a moment that X is a stable Lévy process (we will come back to this in §IV.5).

That is, for any h > 0 there exist b > 0 and c ∈ Rd such that X(h)
d
= bX(1) + c. Then

the left-hand side in Proposition IV.2 is equivalent to having the conditional independence

XA(t0) ⊥⊥ XB(t0) | XC(t0) for a single time point t0 > 0. Whether this is also true without

stability is unclear. Importantly, distributional properties of X(t) may be time dependent.

Sato (1999, §23) lists some examples of this such as unimodality and absolute continuity.

IV.3.2 The Lévy–Itô decomposition

As mentioned in the introduction we can write the process in its Lévy–Itô decomposition

X = J + W, where J is the jump part and W is the Brownian part. Interestingly,

Proposition IV.3 below shows that we may study conditional independence for J and W

separately.

Proposition IV.3. There is the equivalence

XA ⊥⊥ XB | XC ⇔ JA ⊥⊥ JB | JC and WA ⊥⊥WB |WC .

While this result is not the most surprising it is also not as trivial as it might appear.

Note for example that for independent random vectors Y and Z the implication

YA ⊥⊥ YB | YC and ZA ⊥⊥ ZB | ZC ⇒ YA + ZA ⊥⊥ YB + ZB | YC + ZC

does not hold in general. The issue is that conditioning on YC+ZC is not guaranteed to provide

enough information about the individual terms YC and ZC . The proof of Proposition IV.3 is

in §IV.A.4 and makes use of the fact that JC and WC may be constructed from XC .

The Brownian part W is stable (with α = 2) so Proposition IV.2 and the subsequent

discussion tells us that WA ⊥⊥ WB | WC if and only if WA(t0) ⊥⊥ WB(t0) | WC(t0) for

some t0 > 0. If Σ is invertible we know that the latter is equivalent to having (Σ−1)ij = 0

for all i ∈ A, j ∈ B. In §IV.4 we study conditional independence for the jump part J.
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IV.3.3 The killed process

The concept of killing is central in the theory of Lévy processes. It does, for example, allow

us to consider a setting where X is only observed until some time point T > 0. Here we

briefly discuss it in the context of conditional independence.

For the Lévy process X and a fixed time T > 0 we define the killed process XT by

XT (t) =

{
X(t) for t < T,

† for t ≥ T.

Then we have the following simple result.

Proposition IV.4. There is the equivalence:

XA ⊥⊥ XB | XC ⇔ XT
A ⊥⊥ XT

B | XT
C for all T > 0.

Extending Proposition IV.4 to the case where T can be any positive stopping time is not

possible. The interesting implication is the one from the left, and in general it does not hold.

For example, if |A| = |B| = 1 we can look at T = inf{t ≥ 1 | |XA(t)−XB(t)| ≤ ε} for some

ε > 0. If we further assume that XC is independent of XA∪B we easily see that XT
A and XT

B

are not conditionally independent given XT
C .

For left-hand side in Proposition IV.4 to imply conditional independence for the killed

process XT it is sufficient to assume that T is σ(XC)-measurable. In fact, the original proof

goes through without changes.

IV.4 Conditional independence for the jumps

We consider now a Lévy process X with characteristic triplet (γ, 0,Λ), meaning that X

has no Brownian component. Studying conditional independence for the jumps of X is

straightforward if the the Lévy measure is finite. One simply considers YA ⊥⊥ YB | YC where

Y is a random vector with distribution Λ/Λ(Rd) (the jump distribution). However, if Λ

has infinite mass this is obviously not possible, so it becomes necessary to find a different

approach. What we will use is a generalized notion of conditional independence which was

introduced by Engelke et al. (2022). This is inspired by the work of Engelke and Hitz

(2020) who considered conditional independence for multivariate Pareto distributions. One

of the main contributions of the present paper is Theorem IV.7 below which characterizes

conditional independence for X in terms of its Lévy measure.

IV.4.1 Conditional independence for the Lévy measure

Recall the notation V = {1, . . . , d}. We write

R(Λ) = {R = ×v∈VRv |Rv ∈ B(R), 0 /∈ R̄,Λ(R) > 0}

for the class of product sets which have positive mass and are bounded away from the origin.

We require each set R ∈ R(Λ) to have positive and finite mass since this means that it

induces a probability measure PR = Λ( · ∩R)/Λ(R). The reason for restricting to product

sets is that it is natural in the context of independence. Indeed, two random vectors can

only be independent if the joint support is a product set. We will often consider a random

variable Y with distribution PR. To simplify notation we typically think of Y as the identity

such that PR(Y ∈ A) = PR(A).
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(A) (B) (C)

Figure IV.5: Examples of sets in R2. Figures (A) and (B) show two sets which are bounded away

from 0 but only the former is a product set. Meanwhile, (C) shows a product set containing 0.

Hence, only (A) shows a set which may be in R(Λ).

For a non-empty subset D ⊆ V we may consider two measures on ED = RD \ {0D}
defined by

ΛD = Λ({xD ∈ · }), Λ0
D = Λ({xD ∈ · , xV \D = 0V \D}).

For v ∈ V we shall use the simplified notation Λv = Λ{v}. The distributions PR are now

used for defining conditional independence w.r.t. the measure Λ.

Definition IV.5. Let A,B,C ⊆ V be disjoint. We say that Λ admits conditional indepen-

dence of A and B given C if and only if

YA ⊥⊥ YB | YC for YA∪B∪C ∼ PRA∪B∪C for all RA∪B∪C ∈ R(ΛA∪B∪C).

We denote this conditional independence by A ⊥ B | C [Λ]. For C = ∅ we say that Λ admits

independence of A and B and this is denoted by A ⊥ B [Λ].

To verify the conditional independence introduced in Definition IV.5 it is sufficient to

consider certain sub-classes of product sets. In particular, we may look at sets on the form

Rv,ε = {|xv| ≥ ε} for v ∈ V and ε > 0. We shall use the simplified notation Pv,ε = PRv,ε . For

a partition A,B,C ⊆ V Engelke et al. (2022, Thm. 4.1) showed that the following statements

are equivalent:

• A ⊥ B | C [Λ].

• YA ⊥⊥ YB | YC for Y ∼ Pv,ε for all v ∈ V, ε > 0.

• YA ⊥⊥ YB | YC for Y ∼ Pc,ε for all c ∈ C, ε > 0, and A ⊥ B [Λ0
A∪B ].

Contained in this result is the often useful implication:

A ⊥ B | C [Λ] ⇒ A ⊥ B [Λ0
A∪B ]

for a partition A,B,C ⊆ V .

IV.4.2 Distributional interpretation of the conditional independence

The conditional independence in Definition IV.5 concerns the Lévy measure and hence the

jumps of the process. In this subsection we show how this translates to statements about

the process X itself.

We begin by discussing the simpler case of independence. Assume that

Λ({xv 6= 0}) ∈ {0,∞} for all v ∈ V . [IV.A1]
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Then, for a partition A,B ⊆ V , Engelke et al. (2022, Prop. 5.1) show that the independence

A ⊥ B [Λ] holds if and only if Λ({xA 6= 0A, xB 6= 0B}) = 0. The latter is the same as saying

that the Lévy measure is concentrated on the subfaces {xA = 0A} and {xB = 0B}. Without

[IV.A1] we still have that Λ({xA 6= 0A, xB 6= 0B}) = 0 implies independence w.r.t. Λ. This

leads to the following independence result for the Lévy process.

Lemma IV.6. Let A,B ⊆ V be a partition and assume [IV.A1]. Then there is the

equivalence:

XA ⊥⊥ XB ⇔ A ⊥ B [Λ].

The implication from the left holds even if [IV.A1] is false.

Proof. The processes XA and XB are independent if and only if they have no simultaneous

jumps, corresponding to Λ({xA 6= 0A, xB 6= 0B}) = 0.

Having dealt with independence we turn to the generally more complicated case of

conditional independence. For this we need need a stronger assumption than before. More

precisely, [IV.A1] is replaced with the following.

Λ0
D({xd 6= 0}) ∈ {0,∞} for all D ⊆ V and all d ∈ D. [IV.A2]

We will now see that Lemma IV.6 is just a special case of the more general Theorem IV.7

below. Intuitively it tells us that XA ⊥⊥ XB | XC if and only if the jumps of X exhibit the

same conditional independence.

Theorem IV.7. Let A,B,C ⊆ V be a partition. Under [IV.A2] there is the equivalence:

XA ⊥⊥ XB | XC ⇔ A ⊥ B | C [Λ].

The implication from the left holds without [IV.A2].

The proof of the result is postponed to §IV.A.6 but we can sketch the general idea,

concentrating on the implication from the right. It is possible to write X = X′ + X′′, where

X′,X′′ are independent Lévy processes with Lévy measures Λ′,Λ′′ given by Λ restricted

to {xC = 0} and {xC 6= 0} respectively. The idea is to show that both terms satisfy the

conditional independence between components A and B given C. For X′′ we know that

all jumps have a non-zero C-component. Hence, conditioning on X′′C fixes all jump times.

We combine this with the conditional independence A ⊥ B | C [Λ]. For X′ we note that it

is essentially a (d− |C|)-dimensional process since the C-component is deterministic. The

associated Lévy measure is Λ0
V \C and due to [IV.A2] it satisfies [IV.A1]. Hence, we may

apply Lemma IV.6 (recall that A ⊥ B | C [Λ] implies A ⊥ B [Λ0
V \C ]).

IV.4.3 Graphical models

As previously advertised we want to define (undirected) graphical models for Lévy processes.

The main object is a graph G = (V,E), where V = {1, . . . , d} is the index set and E is a

subset of V × V with a pair (i, j) ∈ E representing an edge between the vertices i and j.

Since our focus is on undirected models we do not care about the ordering, i.e. (i, j) and

(j, i) are seen as the same edge.

For sets A,B,C ⊆ V we say that C separates A and B in G if every path from any

vertex in A to any vertex in B goes through C. We say that the Lévy process X satisfies

the global Markov property with respect to a graph G if XA ⊥⊥ XB | XC for any disjoint
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sets A,B,C ⊆ V such that C separates A and B in G. In this case we call the pair (X, G) a

graphical model.

These graphical models are also what we call semi-graphoids. That is, for a graphical

model (X, G) and disjoint subsets A,B,C,D ⊆ V the following four properties are satisfied:

(L1) If XA ⊥⊥ XB | XC then XB ⊥⊥ XA | XC .

(L2) If XA ⊥⊥ XB∪D | XC then XA ⊥⊥ XB | XC .

(L3) If XA ⊥⊥ XB∪D | XC then XA ⊥⊥ XB | XC∪D.

(L4) If XA ⊥⊥ XB | XC and XA ⊥⊥ XD | XB∪C then XA ⊥⊥ XB∪D | XC .

Importantly, Lauritzen (1996, Prop. 3.4) uses these semi-graphoid properties to show that

the global Markov property implies the local Markov property which further implies the

pairwise Markov property.

Graphical models need not be based on the traditional notion of conditional independence.

In fact, in the work by Engelke et al. (2022) the idea is to study graphical models based on

conditional independence w.r.t. Λ as defined in Definition IV.5. One of many results is that

the semi-graphoid properties are satisfied under [IV.A2]. A fact which may also be seen as a

corollary of Theorem IV.7. This connection makes another argument for the need of [IV.A2]

in the above.

IV.5 Stable processes

The class of so-called stable processes have particularly nice Lévy measures which allow for

some interesting theory along with the possibility of consistently estimating certain graphical

structures. We will now give a brief introduction to stable processes. A more detailed

overview is provided by e.g. Sato (1999, §13–14).

A Lévy process X is said to be stable if for any h > 0 there exist b > 0 and c ∈ Rd such

that

X(h)
d
= bX(1) + c.

This turns out to be equivalent to a seemingly stronger statement. Namely that there exists

α ∈ (0, 2] with the following property:

For any h > 0 there exists c : [0,∞)→ Rd such that

(X(ht))t≥0
d
= (h1/αX(t) + c(t))t≥0.

(IV.3)

The constant α is known as the stability index of X.

If (IV.3) holds with c ≡ 0 for all values of h > 0 we say that X is strictly stable. In that

case the property in (IV.3) is also called self-similarity with exponent 1/α.

The stability index is essential in describing stable processes. For α = 2 the process X is

α-stable if and only if it is a Brownian motion, i.e. its characteristic triplet is (γ,Σ, 0). For

α ∈ (0, 2), on the other hand, X is α-stable if and only if its triplet is of the form (γ, 0,Λ)

(i.e. no Brownian component) and the Lévy measure is −α-homogeneous. The latter means

that Λ(hE) = h−αΛ(E) for any h > 0 and E ∈ B(Rd). For any v ∈ V the marginal measure

Λv is also −α-homogeneous. Consequently,

Λv(du) =

{
m+
v αu

−1−α du for u > 0,

m−v α|u|−1−α du for u < 0,
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where m±v = Λ({±xv ≥ 1}). Note that we may have Λ({xv = 0}) > 0.

We remark that [IV.A2] is automatically satisfied if Λ is −α-homogeneous. Indeed, if

Λ0
D({xd 6= 0}) > 0 for someD ⊆ V and d ∈ V , then there is n ∈ N with Λ0

D({|xd| ≥ 1/n}) > 0.

Using homogeneity we find that

Λ0
D({xd 6= 0}) = lim

m→∞
Λ0
D({|xd| ≥ 1/m})

= lim
m→∞

Λ({|xd| ≥ n/(nm), xV \D = 0V \D})

= lim
m→∞

(n/m)−αΛ0
D({|xd| ≥ 1/n})

=∞.

IV.5.1 The kernel representation

For the rest of this section we assume that X is a stable Lévy process. We will utilize

the homogeneity of Λ to derive the existence of certain random vectors which will become

essential in describing the structure of the jumps.

For a non-empty subset C ⊆ V there is a ΛC-unique probability kernel νC : EC ×
B(RV \C)→ [0, 1] such that for any R ∈ R(Λ) with 0C /∈ RC we have that

Λ(R) =

∫

RC

νC(xC , RV \C) ΛC(dxC),

see Engelke et al. (2022, Lem. 4.3). Furthermore, for any c ∈ C and ε > 0 with Λ(Rc,ε) > 0

there is the identity

νC(xC , RV \C) = Pc,ε(YV \C ∈ RV \C | YC = xC) (IV.4)

for ΛC-almost all xC with |xc| ≥ ε.
We will focus on the case where C contains just one element c. In this case ν{c} admits a

rather particular representation.

Lemma IV.8. For any c ∈ V there exist two d-dimensional random vectors ξ(c,+), ξ(c,−)

such that ξ(c,±)
c = ±1 almost surely, and for Λc-almost all h 6= 0

ν{c}(h, · ) = P(|h|ξ(c,±)
V \{c} ∈ · ) for ±h > 0.

According to (IV.4) we may think of ν{c}(h, · ) as the conditional distribution of YV \{c}
given Yc = h, where Y ∼ Pc,ε for some ε > 0. Hence, the intuitive interpretation of

Lemma IV.8 is that sampling Y conditionally on Yc = h 6= 0 is the same as sampling ξ(c,+)

or ξ(c,−) (depending on the sign of h) followed by multiplication with |h|.

Lemma IV.9. The random vectors ξ(c,±) satisfy E[‖ξ(c,±)‖α] <∞ and every such pair of

vectors may arise from some -α-homogeneous Lévy measure. Furthermore, for any v ∈ V \{c},
∫

{xc∈(0,1)}
x2
v Λ(dx) =

αm+
c

2− αE[(ξ(c,+)
v )2],

and

∫

{xc∈(−1,0)}
x2
v Λ(dx) =

αm−c
2− αE[(ξ(c,−)

v )2].
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Assume that Λ is concentrated on [0,∞)d. Since ξ(c,−) is not of interest in this situation

we will use the slightly simpler notation ξ(c) = ξ(c,+). If ∆(c) is a random vector with

distribution Pc,ε it follows from Lemma IV.8 that

∆(c) d
= P · ξ(c) (IV.5)

where P is independent of ξ(c) and absolutely continuous with density proportional to

x 7→ x−1−α on [ε,∞). The latter is the same as saying that P follows a Pareto distribution

with scale ε and shape α.

IV.5.2 Tree models

In this subsection we assume that Λ satisfies the global Markov property w.r.t. a tree

T = (V,E). The idea is that this is a graph where we condition on only one vertex at a

time. Lemma IV.8 tells us that conditioning on a single vertex c can be expressed using the

random vectors ξ(c,+), ξ(c,−).

Given a pair of vertices i, j ∈ V we define ξ±(i,j) = ξ(i,±)
j . For c ∈ V and ε > 0 we have

Pc,ε(Yv ∈ |h|F | Yc = h) = P(ξ
sgn(h)
(c,v) ∈ F ) for all F ∈ B(R) (IV.6)

for Λc-almost all |h| ≥ ε, where sgn(h) = + for h ≥ 0 and sgn(h) = − for h < 0.

We further want to know the conditional distribution of Yj given Yi = h under Pc,ε in

the particular case where c and j are separated by i in the tree T .

c · · · i · · · j

Figure IV.6: Graphical representation of {c} ⊥ {j} | {i} [Λ].

Lemma IV.10. Suppose that {c} ⊥ {j} | {i} [Λ] as illustrated in Figure IV.6. Then for any

ε > 0 and Pc,ε(Yi ∈ · )-almost all h 6= 0

Pc,ε(Yj ∈ |h|F | Yi = h) = P(ξ
sgn(h)
(i,j) ∈ F ) for all F ∈ B(R). (IV.7)

Proof. For ε, δ > 0 and F ∈ B(R) we find that

Λ({|xc| ≥ ε, xi ≥ δ, xj ∈ xiF}) =

∫ ∞

δ

Pi,δ(|Yc| ≥ ε, Yj ∈ hF | Yi = h) Λi(dh)

=

∫ ∞

δ

Pi,δ(|Yc| ≥ ε | Yi = h)Pi,δ(Yj ∈ hF | Yi = h) Λi(dh)

= Λ({|xc| ≥ ε, xi ≥ δ})P(ξ+
(i,j) ∈ F )

using (IV.4) and the assumed conditional independence. Dividing by Λ({|xc| ≥ ε}) yields

P(ξ+
(i,j) ∈ F )Pc,ε(Yi ≥ δ) = Pc,ε(Yi ≥ δ, Yj ∈ YiF )

=

∫ ∞

δ

Pc,ε(Yj ∈ hF | Yi = h)Pc,ε(Yi ∈ dh).

Via standard arguments we have now established (IV.7) for Pc,ε(Yi ∈ · )-almost all h > 0.

For h < 0 we consider Λ({|xc| ≥ ε, xi ≤ −δ, xj ∈ |xi|F}) and apply similar arguments.
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For a fixed vertex c ∈ V we define a directed tree T (c) = (V,E(c)) by letting E(c) consist

of all edges in E which are pointing away from c in the original tree. For i ∈ V we let

phT (c, i) denote the set of edges in the unique path from c to i in T (c). If i = c we have

phT (c, i) = ∅.
Assume that the random variables ξ±e , e ∈ E(c) are independent. For ε > 0 we further let

P be an independent random variable with distribution given by Λc restricted to (−∞,−ε]∪
[ε,∞) and normalized. We can now define a random vector Z recursively by

Zc = P and Zj = |Zi| · ξsgn(Zi)
(i,j) for j 6= c, (IV.8)

where i ∈ V is the unique vertex such that (i, j) ∈ phT (c, j).

Theorem IV.11. The random vector Z defined in (IV.8) has distribution Pc,ε.

This result tells us that we can ‘build’ a vector with distribution Pc,ε by starting with

P at vertex c and then expanding to the rest of the tree by multiplying with the random

variables ξ±e .

If we assume that Λ is concentrated on [0,∞)d we do not have to worry about the sign

of Zi since it will always be positive. Therefore it is possible to write down Z in a slightly

simpler form. In this case we have that

Zj = P ·
∏

e∈phT (c,j)

ξe,

where the empty product is defined to be 1. Here we use the simplified notation ξe = ξ+
e .

This is nearly identical to the formula given by Engelke and Volgushev (2022, Prop. 1).

We conclude the section with Proposition IV.12 below which tells us how the distributions

of ξ(i,j) and ξ(j,i) are related. In other words, it describes what happens when we reverse the

direction of an edge. Something which is relevant when the root of the directed tree T (c) is

changed.

Proposition IV.12. Assume that Λ has no mass outside [0,∞)d. For distinct i, j ∈ V we

have that

P(ξ(j,i) ≥ h) =
mi

mj
E[1{1/ξ(i,j)≥h} ξ

α
(i,j)], h > 0,

and

P(ξ(j,i) 6= 0) = lim
h↓0

P(ξ(j,i) ≥ h) =
mi

mj
E[ξα(i,j)],

where mi = Λ({xi ≥ 1}),mj = Λ({xj ≥ 1}).

We may combine this result with Theorem IV.11 to obtain the identity

mh

mt
=

∏

(u,v)∈phT (h,t)

mu

mv
, h, t ∈ V . (IV.9)

This will be used in the proof of Proposition IV.13 below.

IV.6 Structure learning for trees

Assume that the conditional independence structure of the Lévy process X is given by a

tree T = (V,E). We are interested in learning the tree structure from discrete observations

X(k/n) where n ∈ N and k = 1, . . . , n. We further assume that X is α-stable with α ∈ (0, 2).
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We rely on the work of Engelke and Volgushev (2022, §4) who consider structure learning

for extremal tree models. In extreme value theory it is standard to study dependence

after normalization to unit Pareto marginals, yielding the measure Λ with the marginals

Λ({xi ≥ u}) = u−1. Normalization of the Lévy measure is uncommon as it would drastically

change the Lévy process. Hence we only assume stability and make no further restriction to

identical marginals. Recall that the marginals of the −α-homogeneous Lévy measure are

given by

Λi(u) := Λ({xi ≥ u}) = miu
−α, u > 0,

where mi = Λ({xi ≥ 1}). We mainly focus on the case when Λ is concentrated on [0,∞)d

and give comments about the general case at the end.

IV.6.1 Tree recovery from bivariate summary statistics

We begin with the theoretical foundations for learning the underlying tree T . Afterwards we

discuss how the estimation is carried out in practice, culminating with Theorem IV.17 which

provides a step-by-step procedure.

Mimicking the definition of the extremal correlation coefficient we let

χij :=
Λ({xi ≥ Λ

−1

i (q), xj ≥ Λ
−1

j (q)})
Λ({xi ≥ Λ

−1

i (q)})
=Λ({xi ≥ m1/α

i , xj ≥ m1/α
j }),

(IV.10)

which is independent of q > 0. The latter equality follows by homogeneity and the fact that

Λ({xi ≥ m
1/α
i }) = 1. This is also the extremal correlation coefficient of the multivariate

Pareto vector characterized by Λ. Note also that χ is symmetric, i.e. χij = χji. Due to

homogeneity we may switch to strict inequalities in (IV.10) if desired.

The following result is crucial for showing that χij can be used to recover the underlying

tree T as the minimal spanning tree. Recall that phT (h, t) denotes the set of edges on the

path from h to t in the directed tree T (h).

Proposition IV.13. For any edge (i, j) ∈ phT (h, t) it holds that

χht ≤ χij . (IV.11)

Note that because of symmetry (IV.11) holds for any undirected edge (i, j) on the path

between h and t in the undirected tree.

Proof. From the definition of χht and the factorial representation in Theorem IV.11 we find

that

χht = mh

∫ ∞

m
1/α
h

αx−α−1P
(
x

∏

(u,v)∈phT (h,t)

ξ(u,v) ≥ m1/α
t

)
dx.

Apply Tonelli’s theorem and (IV.9) to obtain

χht = mhE
[
max

(
m

1/α
h ,m

1/α
t /

∏

(u,v)∈phT (h,t)

ξ(u,v)

)−α]

= E
[
min

(
1,

∏

(u,v)∈phT (h,t)

mu

mv
ξα(u,v)

)]
.

According to Proposition IV.12 we have that

E
[mu

mv
ξα(u,v)

]
= P(ξ(v,u) 6= 0) ≤ 1,
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and so it is left to apply the bound E[min(1, Z1Z2)] ≤ E[min(1, Z1)] for independent Z1 and

Z2 with E[Z2] ≤ 1.

The following theorem assumes that the inequality in (IV.11) is strict for all (i, j) ∈
phT (h, t) when (h, t) /∈ E. A sufficient condition for this to hold is the following: For any

(i, j) ∈ E and every ε > 0 we have P(mimj ξ(i,j) > 1) > 0 and P(1− ε < mi
mj
ξ(i,j) < 1) > 0. See

Lemma IV.24 in §IV.A.1 for further details. This condition is quite similar to the one given

by Hu et al. (2022, Prop. 2.5). It is satisfied if e.g. supp(ξ(i,j)) = [0,∞) for all (i, j) ∈ E.

The latter is the condition given by Engelke and Volgushev (2022, just after Prop. 5).

Theorem IV.14. Let g be a strictly decreasing function on [0, 1], and χ̂(n)
ij be a consistent

estimator of χij. Assume also that the inequalities in (IV.11) are strict when (h, t) /∈ E.

Then the minimal spanning tree for the edge weights g(χ̂(n)
ij ) coincides with T with probability

tending to 1.

Here one may use g = − log to guarantee the positivity of the weights if desired. This

result readily follows using the arguments of Engelke and Volgushev (2022), see the proofs

of Proposition 5 and Theorem 2 there. Importantly, the assumption of strict inequalities

implies that for all (i, j) ∈ E we have χij > 0, and so {i} ⊥ {j} [Λ] cannot happen.

Remark IV.15. It is important to note that homogeneity of Λ is crucial for the above theory

in at least two ways. Firstly, it underlies the factorization identity leading to the inequalities

for χ. Secondly, it allows for consistent estimation of χij on a constant interval [0, 1]. Indeed,

the number of large jumps does not grow with n and hence we must rely on some structural

assumption allowing for estimation of our summary statistic using small jumps.

IV.6.2 Estimation of the coefficients

Initially we will assume that X is strictly α-stable. In §IV.6.4 we present an easy adaptation

which covers the general case of stable processes.

For the estimation we use the increments ∆(n, 1), . . . ,∆(n, n) given by

∆(n, k) = X(k/n)−X((k − 1)/n).

Additionally for each i ∈ V we let F̂ (n)
i denote the empirical CDF of ∆i(n, 1), . . . ,∆i(n, n).

This is defined as

F̂ (n)
i (x) =

1

n+ 1

n∑

k=1

1{∆i(n,k)≤x}, x ∈ R.

For q ∈ (0, 1) we define an estimator χ̂(n)
ij (q) by

χ̂(n)
ij (q) =

1

n(1− q)
n∑

k=1

1{F̂ (n)
i (∆i(n,k))>q,F̂ (n)

j (∆j(n,k))>q} . (IV.12)

Note that computing χ̂(n)
ij does not involve estimation of any other parameters even though

the definition of χij uses both mi, mj and α. Consistency of the estimator is provided by

the following result.

Proposition IV.16. Let (qn) be a sequence in (0, 1) such that qn → 1 and n(1− qn)→∞
as n→∞. Then

χ̂(n)
ij (qn)

P−−→ χij for any i, j ∈ V .
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We can combine all of the above into Theorem IV.17 which describes the two steps of

the estimation.

Theorem IV.17. Assume that the inequalities in (IV.11) are strict for (h, t) /∈ E. Let (qn)

be a sequence of positive numbers satisfying qn → 1 and n(1− qn)→∞. Then the following

procedure correctly estimates the tree T with probability going to 1 as n→∞.

1. For each i, j ∈ V compute χ̂(n)
ij (qn) according to (IV.12).

2. Calculate the edge weights ρ̂(n)
ij = − log(χ̂(n)

ij (qn)) and compute the corresponding mini-

mum spanning tree T̂n.

Above we require that qn → 1 as n → 0 but we further assume that 1 − qn does not

vanish too quickly. However, for a given n this does not tell us how to pick qn in good way.

The simulation study in §IV.7.3 will illustrate how the recovery probability can depend on

the choice of qn.

A crucial ingredient in the proof of Proposition IV.16 is the following asymptotic behavior

which follows from a classical convergence result (Sato, 1999, Cor. 8.9). For any E ⊆ Rd

which is measurable and bounded away from zero

P(X(h) ∈ E) ∼ hΛ(E) as h ↓ 0. (IV.13)

To prove the convergence we will consider the random vectors Y (k) = X(k)−X(k − 1)

for k ∈ N. Denote the empirical CDF of Yi(1), . . . , Yi(n) by Ĝ(n)
i . By self-similarity of X we

obtain the distributional identity

χ̂(n)
ij (qn)

d
=

1

n(1− qn)

n∑

k=1

1{Ĝ(n)
i (Yi(k))>qn,Ĝ(n)

j (Yj(k))>qn} .

Lemma IV.18. For each i ∈ V let Gi denote the CDF of Yi(1) and let (qn) be a sequence

as in Proposition IV.16. Then

pn = P(Gi(Yi(1)) > qn, Gj(Yj(1)) > qn)) ∼ (1− qn)χij as n→∞

for any i, j ∈ V .

Proof. First, let hn,i = G−1
i (qn) and note that hn,i → ∞ as n → ∞. It follows from

self-similarity and (IV.13) that

1− qn = P(Yi(1) > hn,i) = P(Xi(h
−α
n,i ) > 1) ∼ h−αn,imi as n→∞. (IV.14)

The probability of interest can be rewritten as

pn = P(Xi(h
−α
n,i ) > 1, Xj(h

−α
n,i ) >

hn,j
hn,i

).

Another application of (IV.13) yields the asymptotic equivalence

p′n = P(Xi(h
−α
n,i ) > 1, Xj(h

−α
n,i ) > (

mj
mi

)1/α)

∼ h−αn,iΛ({xi > 1, xj > (
mj
mi

)1/α})

∼ (1− qn)
Λ({xi > 1, xj > (

mj
mi

)1/α})
Λ({xi > 1})

= (1− qn)χij ,
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where the two last steps use (IV.14) and homogeneity of Λ. Finally, for any ε > 0 it follows

from (IV.14) that |(mjmi )1/α − hn,j
hn,i
| ≤ ε for large enough n. Hence,

|pn − p′n| ≤ P(Xj(h
−α
n,i ) is between (

mj
mi

)1/α and
hn,j
hn,i

)

≤ P(Xj(h
−α
n,i ) ∈ [(

mj
mi

)1/α − ε, (mjmi )1/α + ε])

∼ h−αn,iΛ({xj ∈ [(
mj
mi

)1/α − ε, (mjmi )1/α + ε]})
∼ (1− qn)m−1

i Λ({xj ∈ [(
mj
mi

)1/α − ε, (mjmi )1/α + ε]})

for large enough n. This concludes the proof as Λ({xj ∈ [(
mj
mi

)1/α − ε, (mjmi )1/α + ε]}) can be

made arbitrarily small by choosing ε > 0 small enough.

Proving Proposition IV.16 is now mostly an exercise in applying the Glivenko–Cantelli

theorem which states that for each i ∈ V

sup
x∈R
|Ĝ(n)

i (x)−Gi(x)| → 0 almost surely, (IV.15)

see e.g. Kallenberg (2021, Prop. 5.24).

Proof of Proposition IV.16. For n ∈ N and k ≤ n we let

Zn,k = 1{Ĝ(n)
i (Yi(k))>qn,Ĝ

(n)
j (Yj(k))>qn} .

For any ε > 0 we use Chebyshev’s inequality to obtain the estimate

P(|χ̂(n)
ij − (1− qn)−1E[Zn,1]| > ε) ≤ ε−2Var(χ̂(n)

ij ).

It is sufficient to show that the variance on the right-hand side vanishes since combining

Lemma IV.18 and (IV.15) yields the convergence (1− qn)−1E[Zn,1]→ χij . The variance can

be written as

Var(χ̂(n)
ij ) =

1

n2(1− qn)2

n∑

k=1

n∑

`=1

Cov(Zn,k, Zn,`).

There are n(n−1) off-diagonal terms (those with k 6= `) for which (1−qn)−2Cov(Zn,k, Zn,`)→
0 uniformly in k, `. Here we use the asymptotics from Lemma IV.18. Since we further divide

by n2 the total contribution of these terms vanish in the limit. The sum of the n terms with

k = ` does also vanish as n→∞. To see this note that Var(Zn,k) is approximately pn(1−pn)

by (IV.15), where pn is as in Lemma IV.18. To conclude simply apply the asymptotics of pn
along with the assumption that n(1− qn)→∞.

IV.6.3 Allowing for jumps in all directions

Suppose now that Λ is not restricted to the positive orthant, and let the marginal measures

be given by Λ({±xi ≥ u}) = m±i u
−α for u > 0. We still assume that Λ is globally Markov

with respect to a tree T . It is easy to see that conditional independence statements remain

to be true for Λ restricted to any orthant, see also Engelke et al. (2022, Lem. A.5). Hence

one may apply the above described method to a single orthant to recover the underlying

tree T , given that no independence statements arise because of this restriction.

The above approach is based on a small portion of information only (jumps in the chosen

orthant). Thus we propose to consider a combined summary statistic over the four quadrants:

χij = χ++
ij + χ+−

ij + χ−+
ij + χ−−ij ,
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where χ+−
ij = Λ({xi ≥ (m+

i )1/α,−xj ≥ (m−j )1/α}) and the other quantities are defined

similarly. Importantly, Proposition IV.13 continues to hold in this setting. This can be seen

by summing up the inequalities for all 2d orthants encoded by (s1, . . . , sd) with si ∈ {+,−}:

Λ({shxh ≥ (msh
h )1/α, stxt ≥ (mst

t )1/α, svxv > 0 ∀v 6= h, t})
≤ Λ({sixi ≥ (msi

i )1/α, sjxj ≥ (m
sj
j )1/α, svxv > 0 ∀v 6= i, j}).

Next, a consistent estimator of χij is obtained by summing up four estimators of the type

(IV.12), corresponding to each quadrant. This estimator is then used in step 2. of the

procedure in Theorem IV.17.

One way to obtain an estimator for χ+−
ij is to take the estimator in (IV.12) with ∆j(n, k)

replaced by −∆j(n, k). Note that F̂ (n)
j must then be the empirical distribution function of

−∆j(n, 1), . . . ,−∆j(n, n). Equivalently, one can keep the original increments and simply

replace the inequality F̂ (n)
i (∆j(n, k)) > q with F̂ (n)

i (∆j(n, k)) < 1− q. The other estimators

are obtained by similar modifications of χ̂(n)
ij .

IV.6.4 Generalizing to non-strict stability

As mentioned we also want a method for structure estimation when X is a general α-

stable process. A well-known idea used by e.g. Zolotarev (1986, §4.3) is to replace in the

increments by the ‘increments of increments’ ∆(2)(n, 1), . . . ,∆(2)(n, bn/2c) which are given

by ∆(2)(n, k) = ∆(n, 2k)−∆(n, 2k−1). These can be seen as increments of a strictly α-stable

process with Lévy measure Λ̃ given by Λ̃(dx) = Λ(dx) + Λ(d(−x)). The two terms obviously

have identical dependence structures. Hence, Λ̃ will have the same dependence structure.

Thus, estimation of the underlying tree is carried out by simply performing the estimation

procedure in Theorem IV.17 using ∆(2)(n, 1), . . . ,∆(2)(n, bn/2c) in place of the original

increments. Notice that Λ̃ will have mass outside [0,∞)d so one should do quadrant-wise

estimation as explained in §IV.6.3.

IV.7 Examples and simulations

Until now we have taken a fairly theoretical approach with few examples. In this section

we give an example of a parametric class of stable Lévy processes for which the conditional

independence structure can be read off from a single matrix. We also discuss a method

for approximate simulation of Lévy processes which is useful when one can simulate from

the distributions Pc,ε. Finally we present a simulation study, demonstrating the estimation

procedure from §IV.6.

IV.7.1 Hüsler–Reiss type jumps

Let Γ be a symmetric d×d strictly conditionally negative definite matrix Γ (i.e. u>Γu < 0 for

any u ∈ Rd \ {0} with 1>u = 0) with diag(Γ) = 0 and non-negative entries A d-dimensional

random vector Y is said to be Hüsler–Reiss distributed with variogram Γ if it is concentrated

on {x ≥ 0, ‖x‖∞ ≥ 1} and

Y (c) d
= P · exp(U − Uc − 1

2Γ·c) (IV.16)

for each c ∈ V , where Y (c) has the distribution of Y | Yc ≥ 1. Here P is a standard Pareto

random variable and U is an independent centered normal vector with variogram Γ (i.e.

E[(Ui − Uj)2] = Γij for any i, j ∈ V ).
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The Hüsler–Reiss distributions belong to the larger class of multivariate Pareto distribu-

tions. This means that if Y is Hüsler–Reiss distributed we have that

P(Y ∈ · ) =
Λ( · ∩ {‖x‖∞ ≥ 1})

Λ({‖x‖∞ ≥ 1}) ,

where Λ is the so-called exponent measure. This measure satisfies Λ({0}) = 0, it is −1-

homogeneous and Λ({xi ≥ 1}) is the same for all i ∈ V . Because of the latter we may freely

assume unit marginals, i.e. Λ({xi ≥ 1}) = 1 for all i.

We want to extend the notion of Hüsler–Reiss distributions. Specifically we want to

include any −α-homogeneous measure (where α ∈ (0, 2)) and we want to generalize to

different marginal masses. For (α,m1, . . . ,md) ∈ (0, 2)× (0,∞)d we define

Λ̃({x1 ≥ u1, . . . , xd ≥ ud}) = Λ({x1 ≥ m−1
1 uα1 , . . . , xd ≥ m−1

d uαd }), u1, . . . , ud > 0,

where Λ is a Hüsler–Reiss exponent measure as described above. The result is a −α-

homogeneous measure with Λ̃({xi ≥ 1}) = mi for each i. Consider now the random vectors

Y (c) ∼ Λ( · ∩ {xc ≥ m−1
c εα})

Λ({xc ≥ m−1
c εα}) and ∆(c) ∼ Λ̃( · ∩ {xc ≥ ε})

Λ̃({xc ≥ ε})
.

As in (IV.16) we can write Y (c) d
= P · exp(U −Uc − 1

2Γ·c) where U is as before and P is now

Pareto distributed with scale m−1
c εα and shape 1. Moreover, we note that ∆(c) d

= (mY (c))1/α.

This readily leads to a similar representation for ∆(c). Namely,

∆(c) d
= P̃ · exp{ 1

α (U + log(m)− (Uc + log(mc))− 1
2Γ·c)},

where P̃ = (mcP )1/α. Note that P̃ is independent of U and that P̃ is Pareto distributed with

scale ε and shape α. If Λ̃ is the Lévy measure of X we say that the process has Hüsler–Reiss

type jumps with stability index α, variogram Γ and marginals m1, . . . ,md.

Since Λ̃ has the same conditional independence structure as Λ we conclude that it depends

only on the variogram matrix Γ and not on the remaining parameters α,m1, . . . ,md. This

allows us to directly apply results known from extreme value theory. For each k ∈ V we

define the matrix

Σ(k) = 1
2{Γik + Γjk − Γij}i,j 6=k.

This is a positive definite matrix and we denote its inverse by Θ(k). These matrices are

used to determine the conditional independence structure. To be precise, for i 6= j and

k ∈ V \ {i, j} we have that

{i} ⊥ {j} | V \ {i, j} [Λ] ⇔ Θ(k)
ij = 0,

see Engelke and Hitz (2020, Prop. 3). Since Θ(k)
ij = Θ(k′)

ij for any k, k′ ∈ V \ {i, j} one may

define the so-called Hüsler–Reiss precision matrix, see Hentschel et al. (2022, Def. 3.2), by

Θij = Θ(k)
ij for some k ∈ V \ {i, j}.

We see that {i} ⊥ {j} | V \ {i, j} [Λ] if and only if Θij = 0.

Remark IV.19 (Symmetry). Assume that X has Hüsler–Reiss type jumps with parameters

α,Γ,m1, . . . ,md. Then for each c ∈ V the random vector ξ(c) = ξ(c,+) from Lemma IV.8

can be represented as

ξ(c) d
= exp{ 1

α (U + log(m)− (Uc + log(mc))− 1
2Γ·c)}, (IV.17)
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where U is any centered normal random vector with variogram Γ. Recalling the notation

ξ(i,j) = ξ(i)
j we see that

ξ(j,i)
d
=
(
mi
mj

)2/α
ξ(i,j).

This shows that Hüsler–Reiss type jumps have built-in symmetry between the distributions of

ξ(i,j) and ξ(j,i) which is simpler than the general result in Proposition IV.12.

IV.7.2 Approximate simulation

Consider a Lévy process X with characteristic function

E[ei〈u,X(1)〉] = exp
(
i〈u, γ〉 − 1

2
〈u,Σu〉

+

∫

Rd
ei〈u,x〉 − 1− i〈u, x〉1{‖x‖∞≤1} Λ(dx)

)
, u ∈ Rd.

Exact simulation of X at fixed times 0 ≤ t0 < t1 < . . . < tn is easy if one can simulate

increments of the process. When this is not possible it is typical to simulate an approximation

of the process. A simple approach for approximating the jump part of X consists of picking

a small ε > 0 and simulating a compound Poisson process N(ε) with Lévy measure given by

Λ( · ∩ {‖x‖∞ ≥ ε}). This involves simulating from Pε = Λ( · ∩ {‖x‖∞ ≥ ε})/Λ({‖x‖∞ ≥ ε}),
i.e. the jump distribution of N(ε). It might not be clear how to do this but sometimes it

is easier to simulate from the distributions Pv,ε = Λ( · ∩ {|xv| ≥ ε})/Λ({|xv| ≥ ε}). An

example where this is clearly the case is when X has Hüsler–Reiss type jumps. In general,

the following rejection sampling procedure lets us simulate from Pε if we can simulate from

Pv,ε for each v ∈ V .

Proposition IV.20. The following procedure generates a random vector with distribution

Pε.

1. Simulate a V -valued random variable I with P(I = v) proportional to mv = Λ({|xv| ≥ 1}).

2. Simulate a random vector Z such that (Z | I = v) ∼ Pv,ε for any v ∈ V .

3. Accept Z with probability (#{v ∈ V | |Zv| ≥ ε})−1. Otherwise, repeat from step 1.

Approximation of the jump part using only a compound Poisson process is not ideal since

it ignores the small jump activity. To address this issue one may (under certain assumptions)

use a Brownian motion to approximate the small jumps. Here we assume for simplicity that

X is α-stable for some α ∈ (0, 2). For a fixed ε > 0 we then define

γ(ε) = γ −
∫

{ε≤‖x‖∞≤1}
xΛ(dx), S =

∫

{‖x‖∞≤1}
xx> Λ(dx).

The approximating process X(ε) is given by

X(ε)(t) = γ(ε)t+ ε1−α/2W (t) +N (ε)(t),

where W is a centered Brownian motion with covariance matrix S and N(ε) is as above.

Now, when S is invertible Cohen and Rosiński (2007, Thm. 3.1) proved the convergence

X(ε) d−→ X as ε ↓ 0.
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IV.7.3 Simulation study

A simple simulation study has been conducted with the purpose of demonstrating how the

estimation procedure described above recovers the true tree structure with large probability.

At the same time we also investigate how this probability depends on the threshold q. All of

this is done using the R programming language and the code is available at https://github.

com/jakobdt/levy_graphical_models.git. The actual tree is depicted in Figure IV.7

below.

8
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1

3

2

9 10

12

11

Figure IV.7: The tree T used for the simulation.

For n ∈ N we simulate X(1/n), . . . , X(1) approximately using the procedure discussed in

§IV.7.2. Three different situations are considered:

(A) Λ is concentrated on [0,∞)d.

(B) Λ is again concentrated on [0,∞)d but the dependence between components is weaker

than in (A).

(C) Λ has mass on all orthants in Rd.

The exact details of the models and the simulation are given below. From the simulated

realisations we perform the estimation procedure described above. In each scenario we use

the approach from §IV.6.3, meaning that in (A) and (B) we do not use knowledge about Λ

having no mass outside [0,∞)d.

We estimate the probability of recovering the underlying tree by running the experiment

1000 times for each n = 200, 500, 1000, 2000, 5000 and q = 1
2 + k · 10−2 with k = 0, . . . , 49.

The results are presented in Figure IV.8 below. In (A) we find that n ≥ 500 observations

are sufficient for high recovery probability. Unsurprisingly the weaker dependence in (B)

means that more observations are needed. We further see that a larger n is required in the

two-sided scenario (C). This is to be expected since the fact that the jumps are divided

among far more orthants (2d versus only 1).

In all three scenarios we clearly see that the assumptions on the sequence (qn) in

Proposition IV.16 are necessary. Indeed, the probability of recovering T drops when q is far

from 1 or too close to 1.

The simulated processes have stability index α = 3/2. The simulation is performed using

the approximate simulation method discussed in §IV.7.2. We use the threshold ε = 10−3

and the Lévy measure Λ is scaled such that Λ({‖x‖∞ ≥ ε}) = 10 000. We approximate the

quantities γ(ε) and S using numerical methods. In all simulations the processes are strictly

stable. This is means that γ = −
∫
{‖x‖∞>1} xΛ(dx). In the three scenarios the models are

given as follows.
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Figure IV.8: Estimated probabilities of recovering the correct tree as a function of q ∈ [ 1
2
, 1) for

each of the three scenarios (A), (B), and (C).

(A) The process has Hüsler–Reiss type jumps with identical marginals and variogram Γ,

where Γij is given by the number of edges in the shortest path from from vertex i to

vertex j in the tree T . That is, for ∆(c) ∼ Pc,ε we have the representation

∆(c) d
= P · exp{ 1

α (U − Uc − 1
2Γ·c)},

where U is a centered normal random vector with variogram Γ. This vector is

constructed by letting {U1} ∪ {Ui − Uj | (i, j) ∈ E} be a collection of independent

standard normals.

(B) The process has Hüsler–Reiss type jumps with different marginals and the variogram

is given by 4Γ, where Γ is the variogram from (A).

(C) Let Λ(A) denote the Lévy measure of the process in (A). In this scenario the Lévy

measure Λ is a ‘symmetric version’ of Λ(A). That is, for any s ∈ {−1, 1}d and

h ∈ [0,∞)d,

Λ(×i∈V {sixi ≥ hi}) = 2−dΛ(A)(×i∈V {xi ≥ hi}).

Hence, if ∆(A) ∼ P(A)
ε is a jump of the compound Poisson process simulated in (A),

and σ is an independent random vector which is uniform in {−1, 1}d, then the jumps

in this scenario can be represented as

∆i = σi∆
(A)
i , i ∈ V .

IV.8 Application to stock prices

To further demonstrate the estimation method from §IV.6 we consider daily stock prices

for several American companies during the period April 1st 2010 until December 31st 2015.

Table IV.1 below contains all the stocks including their respective sectors. For the analysis

we assume that the prices can be modelled by the exponential of a strictly stable Lévy

process. Hence, the estimation procedure in is carried out using the log prices. The data

and R code is available at https://github.com/jakobdt/levy_graphical_models.git.
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Company Ticker Sector

Home Depot HD Consumer Discretionary

Target TGT Consumer Discretionary

The Coca-Cola Company KO Consumer Staples

PepsiCo Inc. PEP Consumer Staples

Chevron Corp. CVX Energy

Occidental Petroleum OXY Energy

JPMorgan Chase & Co. JPM Financials

Wells Fargo WFC Financials

FedEx Corporation FDX Industrials

United Parcel Service UPS Industrials

Apple Inc. AAPL Information Technology

Microsoft Corp. MSFT Information Technology

Table IV.1: Stocks included in the analysis.

IV.8.1 Results

For the estimation procedure we have to choose the parameter q. Based on Figure IV.12

we will use q = 0.94. This choice is further explained below. The tree in Figure IV.9 is the

result of the estimation procedure. We see that much of the structure is rather intuitive.

Indeed, companies from the same sector are generally located near each other.

OXY CVX FDX UPS HD TGT

JPM WFC PEPKO

AAPL MSFT

Figure IV.9: Result of the estimation procedure with q = 0.94.

We further choose to do the estimation above on subsamples of the data. More precisely,

we randomly sample 754 data points (half of the original data) without replacement and

estimate the tree. This is done 10 000 times and the color map in Figure IV.10 shows the

proportion of times each edge was selected by the estimation procedure. To avoid putting too

much importance on the choice of q we choose, for each subsample, to sample q uniformly in

[0.925, 0.95]. Again, the choice of this range is explained by the observations in Figure IV.12

below. We observe that certain edges between companies from the same sector are selected

almost every time.

If we denote the values displayed in Figure IV.10 by wij then we can compute the

minimum spanning tree for the edge weights −wij . This tree is displayed in Figure IV.11

below. We observe that the tree is not identical to the one in Figure IV.9 but much of the

general structure is the same. Indeed, eight out of eleven edges are preserved.
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Figure IV.10: Result of running the estimation procedure on random subsamples.
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Figure IV.11: Result of running the estimation procedure on random subsamples.

IV.8.2 Choosing q

In order to decide on a value for the hyperparameter q we look at − log χ̂(n)
ij (q) as a function

of q. Figure IV.12 below shows the calculated values for different values of q. Here we use

i = 1 which corresponds to the AAPL ticker. We observe that the interval [0.925, 0.95] is a

somewhat stable region.

IV.8.3 Conclusion

This is a rather basic study but it shows that the method has potential applications to actual

data. Indeed, the stronger dependence observed between companies from the same sector

suggests that such an analysis is able to, at least partially, uncover the dependence structure.

Assuming that the dependence structure is given by a tree is of course quite strict. A

natural next step would be to somehow extend to a larger class of graphs. Additionally,

the process of log prices might not be jointly strictly stable. Even if one believes that each

marginal is strictly stable it is not necessarily that easy to verify joint stability. Therefore, it

would be sensible to study what can be done in the case where this is not satisfied.

It is reasonable to expect that we may have both positive and negative jumps. Looking

at Figure IV.8 (C) we note that the number of observations in this study (approximately

1500) might not actually be sufficient to have a good chance of recovering the ‘correct tree’.

For this reason one might want to increase the sampling frequency to e.g. hourly rather than
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Figure IV.12: Estimation of − logχ1j for the stock data, where the vertex 1 corresponds to AAPL.

daily.

IV.9 Small-jump approximation

In this section we again assume that the Lévy process X is α-stable with α ∈ (0, 2). Above we

discussed approximate simulation where one simulates a compound Poisson process containing

the large jumps. The small jumps are then approximated with a suitable Brownian motion.

Previously a jump was considered ‘large’ if its sup norm was above some threshold ε. Instead

we will now fix a non-empty subset U ⊆ V and say that a jump is large if it exceeds ε in

absolute value in at least one component of U . Note that U = V corresponds to the previous

notion of large jumps.

U = {1} U = V

Figure IV.13: Jumps in the blue area are considered small.

We may represent X as an independent sum X = X(ε) +W(ε) +γ(ε), where γ(ε) is a linear

drift, W(ε) is a martingale and a Lévy process with Lévy measure given by Λ restricted to

the set {|xu| ≤ ε∀u ∈ U}, and X(ε) is a compound Poisson process with jumps exceeding ε

in absolute value in at least one component of U .

In the following we assume that

∫

{|xu|≤1 ∀u∈U}
x2
i Λ(dx) <∞ for all i /∈ U , (IV.18)

and note that this property readily extends to all i ∈ V from the properties of Λ. It is
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important to note that this assumption implies that

Λ({xU = 0U}) = 0,

because the Lévy measure Λ0
V \U is −α-homogeneous and integrates xV \U 7→ x2

i for all i /∈ U .

Now we may define the matrix

Σ =

∫

{|xu|≤1 ∀u∈U}
xx> Λ(dx), (IV.19)

where existence of the integral on the right-hand side is ensured by the assumption above.

Lemma IV.21. Assume (IV.18). Then with aε = ε1−α/2 it holds that

W(ε)/aε
d−−→W as ε ↓ 0, (IV.20)

where W is a drift-less Brownian motion with covariance matrix Σ defined in (IV.19).

The next step is to establish conditions such that conditional independence for Λ transfers

to the classical conditional independence for the limiting Brownian motion W in Lemma IV.21.

We start with the simpler case of independence.

Lemma IV.22. Assume that A ⊥ B [Λ] for a partition A,B ⊆ V , and that (IV.18) is

satisfied. Then the Brownian motions WA and WB are independent.

Proof. Recall that [IV.A2] is satisfied because the process is stable. According to Engelke

et al. (2022, Prop. 1) we have that Λ({xi 6= 0, xj 6= 0}) = 0 for i ∈ A, j ∈ B. Hence, Σij = 0

and the result follows.

The case of conditional independence is much more subtle, and it requires several strong

assumptions.

Theorem IV.23. Assume that U satisfies (IV.18), and that A ⊥ B | C [Λ] for a partition

A,B,C ⊆ V . Moreover, assume that

• |C| = 1.

• Λ({xC < 0}) = 0.

• U is a subset of either A ∪ C or B ∪ C.

• Σ defined in (IV.19) is invertible.

Then (Σ)−1
ij = 0 for all i ∈ A, j ∈ B, and hence WA(1) ⊥⊥WB(1) |WC(1).

IV.A Proofs and other technical details

IV.A.1 A sufficient condition

We are in the setting of §IV.6. In particular, we assume that Λ satisfies the global Markov

property with respect to a Tree T = (V,E).
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Lemma IV.24. Assume that for all (i, j) ∈ E every ε > 0 we have

P(
mi

mj
ξα(i,j) > 1) > 0 and P(1− ε < mi

mj
ξα(i,j) < 1) > 0. (IV.21)

Then for h, t ∈ V with (h, t) /∈ E we have the inequality

χht < χij

for all (i, j) ∈ phT (h, t).

Proof. In the proof of Prop IV.13 we saw that

χht = E
[
min

(
1,

∏

(u,v)∈phT (h,t)

mu

mv
ξα(u,v)

)]
. (IV.22)

It remains to prove that E[min(1, Z1Z2)] < E[min(1, Z1)], where

Z1 =
mi

mj
ξα(i,j) and Z2 =

∏

(u,v)∈phT (h,t)
(u,v)6=(i,j)

mu

mv
ξα(u,v).

Independence of Z1 and Z2 allows us to write

E[min(1, Z1Z2)] =

∫

[0,∞)

E[min(1, z1Z2)]PZ1
(dz1).

Generally, Jensen’s inequality tells us that E[min(1, z1Z2)] ≤ min(1, z1E[Z2]). The first

assumption of the lemma ensures the existence of ε > 0 such that P(Z2 ∈ (1/z1,∞)) > 0 for

all z1 ∈ (1− ε, 1). For such z1 we have

E[min(1, z1Z2)] =

∫

[0,1/z1]

z1z2 PZ2
(dz2) +

∫

(1/z1,∞)

1PZ2
(dz2)

<

∫

[0,∞)

z1z2 PZ2
(dz2)

= z1E[Z2]

= min(1, z1E[Z2]),

where the final identity uses E[Z2] ≤ 1 which follows from Proposition IV.12. Using the

second assumption we conclude that

E[min(1, Z1Z2)] <

∫

[0,∞)

min(1, z1E[Z2])PZ1
(dz1) ≤ E[min(1, Z1)],

where we again used E[Z2] ≤ 1.

IV.A.2 Decompositions and conditioning

The Lévy process X may be represented by its Lévy–Itô decomposition X = J + W, where J

is a Lévy process with characteristic triplet (0, 0,Λ), and W is a Brownian motion with drift

γ and covariance matrix Σ which is independent of J. Note that J contains all the jumps

of X. For C ⊆ {1, . . . , d} the processes JC ,WC may be obtained as almost sure limits of

processes J(n)
C ,W(n)

C created from XC , see e.g. Applebaum (2009, §2.4). Thus, JC ,WC are

σ̄(XC)-measurable, where σ̄(XC) denotes the P-completion of σ(XC). For F ∈ σ(JC ,WC)
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we may therefore write F = F ′∪N , where N is a null-set and F ′ ∈ σ(XC). For an integrable

random variable Z one immediately finds that

E[E[Z |XC ] 1F ] = E[Z 1F ].

Since E[Z |XC ] is σ(JC ,WC)-measurable it follows that

E[Z |XC ] = E[Z | JC ,WC ]

almost surely.

In addition to the Lévy–Itô decomposition we may represent X in other ways. Suppose

for simplicity that X is a Lévy process with triplet (γ, 0,Λ). Define Λ(1) = Λ( · ∩ {xC = 0C})
and Λ(2) = Λ( · ∩ {xC 6= 0C}). Then X may be represented as the independent sum of two

Lévy processes X(1),X(2) with triplets (γ, 0,Λ(1)) and (0, 0,Λ(2)). The processes X(1)
C ,X(2)

C

are constructed from XC and with arguments similar to the above we find that

E[Z |XC ] = E[Z |X(1)
C ,X(2)

C ]

almost surely for any integrable random variable Z.

IV.A.3 Proof of Proposition IV.2

Assume that XA(t) ⊥⊥ XB(t) | XC(t) for all t ≥ 0. We need to show that

{XA(ti)}ki=1 ⊥⊥ {XB(ti)}ki=1 | XC (IV.23)

for any k ∈ N and 0 = t1 < . . . < tk.

For each n ≥ k we let S(n) = {s(n)
j }nj=1 be a collection of time points such that

• For any n ≥ k and j = 1, . . . , n− 1 we have 0 ≤ s(n)
j < s(n)

j+1 ≤ tk.

• For any n ≥ k and i = 1, . . . , k we have ti ∈ S(n).

• The sequence of sets (S(n)) is increasing.

• There is the convergence maxj=1,...,n−1(s(n)
j+1 − s(n)

j )→ 0.

Now, for each n ≥ k and j = 1, . . . , n− 1 we let I(n)(j) = X(s(n)
j+1)−X(s(n)

j ) denote the

increment of X between times s(n)
j and s(n)

j+1. Using stationarity and independence of the

increments along with the initial conditional independence assumption we deduce that

{I(n)
A (j)}n−1

j=1 ⊥⊥ {I(n)
B (j)}n−1

j=1 | {I(n)
C (j)}n−1

j=1 .

From the increments we may construct {XA(ti)}ki=1 and {XB(ti)}ki=1, and we therefore have

that

{XA(ti)}ki=1 ⊥⊥ {XB(ti)}ki=1 | {I(n)
C (j)}n−1

j=1 for all n ≥ k.
It is sufficient to prove (IV.23) with XC replaced by (XC(s))0≤s≤tk since conditioning

on the process (XC(tk + s)−XC(tk))s≥0 is easily added using independence. By the above

conditional independence it is enough to show the identity

σ(XC(s), 0 ≤ s ≤ tk) = G,

where G = ∪n≥kσ(I(n)
C (j), j = 1, . . . , n − 1). The inclusion ⊇ is obvious. For the other

inclusion it suffices to show that XC(s) is the limit of a sequence of G-measurable random

vectors for any s ∈ [0, tk]. For each n ≥ k we pick an index jn such that the sequence (s(n)
jn

)

converges to s from the right. Then XC(s(n)
jn

) converges to XC(s), and since each XC(s(n)
jn

)

is G-measurable we are done.
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IV.A.4 Proof of Proposition IV.3

Lemma IV.25. Let (Xn), (Yn) be sequences of random variable defined on a probability

space (Ω,F ,P), taking values in Polish spaces SX , SY , and assume that there exist random

variables X,Y, Z such that Xn → X a.s., Yn → Y a.s. and Xn ⊥⊥ Yn | Z for all n ≥ 1. Then

X ⊥⊥ Y | Z.

Proof. The collection of random variables ((Xn), (Yn), X, Y ) takes values in a Polish space,

thus establishing the existence of a regular conditional distribution given Z. Denoting this

probability kernel by µ we note that P-almost surely

µ(Z, {xn ∈ A, yn ∈ B}) = µ(Z, {xn ∈ A}) · µ(Z, {yn ∈ B})

for all A ∈ B(SX), B ∈ B(SY ), where e.g. {xn ∈ A} = {((xm), (ym), x, y) ∈ SN
X × SN

Y ×
SX × SY | xn ∈ A}. Furthermore, µ(Z, {xn → x, yn → y}) = 1 almost surely. Now, since

independence is preserved under almost sure convergence the result follows.

Proof of Proposition IV.3. Assume that JA ⊥⊥ JB | JC and WA ⊥⊥WB |WC . Recall from

§IV.A.2 that conditioning on XC is the same as conditioning on (JC ,WC). We combine

this with the independence of J and W to obtain the identity

E[1EA×FA(JA,WA) 1EB×FB (JB ,WB) |XC ]

= E[1EA×EB (JA,JB) | JC ]E[1FA×FB (WA,WB) |WC ]

for any Borel sets EA, EB , FA, FB. The conditional expectations on the right-hand side

factorize due to the assumed conditional independence. Applying the above identity twice

with appropriately chosen EA, EB , FA, FB yields

E[1EA×FA(JA,WA) 1EB×FB (JB ,WB) |XC ]

= E[1EA×FA(JA,WA) |XC ]E[1EB×FB (JB ,WB) |XC ].

Hence, the pairs (JA,WA) and (JB ,WB) are conditionally independent given XC . The

stated conditional independence follows immediately.

Assume instead that XA ⊥⊥ XB | XC . The processes JA,WA can be constructed as

almost sure limits of functions of XA, and similarly for the B-component. According to

Lemma IV.25 we then have

JA ⊥⊥ JB | XC and WA ⊥⊥WB | XC .

As previously discussed, conditioning on XC is the same as conditioning on the pair (JC ,WC).

Now the claimed conditional independence follows by since J and W are independent.

IV.A.5 Proof of Proposition IV.4

For any T > 0 we note that conditioning on XC is the same as conditioning on the pair

{XT
C , (XC(T + t)−XC(T ))t≥0}. Here we use the fact that X is a.s. continuous at time T .

Assume that XA ⊥⊥ XB | XC and let T > 0. Then XT
A ⊥⊥ XT

B | XC . Since XT is

independent of (XC(T + t)−XC(T ))t≥0 we also have conditional independence given just

XT
C .

For the opposite implication we assume that XT
A ⊥⊥ XT

B | XT
C for all T > 0. For k ∈ N

and 0 ≤ t1 < . . . < tk we pick T > tk and note that XA(ti) = XT
A(ti) for all i = 1, . . . , k

(and similarly for the B-component). Hence, {XA(ti)}ki=1 ⊥⊥ {XB(ti)}ki=1 | XT
C . Finally we

employ independence to further condition on the process (XC(T + t)−XC(T ))t≥0.
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IV.A.6 Proof of Theorem IV.7

Part 1: Assume that XA ⊥⊥ XB | XC . Let c ∈ C and ε > 0 We may write X as the

independent sum X = X≥ε + X<ε, where X≥ε is a compound Poisson process consisting

of the jumps of X in {|xc| ≥ ε}. Then X≥εA is a function of XA,XC and similarly for

X≥εB . It follows that X≥εA ⊥⊥ X≥εB | XC . Since X≥εC ,X<ε
C are functions of XC we have

X≥εA ⊥⊥ X≥εB | X≥εC ,X<ε
C which is the same as X≥εA ⊥⊥ X≥εB | X≥εC by independence. We may

write

X≥ε(t) =

N(t)∑

n=1

Y (n), t ≥ 0,

where N is a Poisson process with rate Λ({|xc| ≥ ε}) and (Y (n)) is a sequence of i.i.d. random

vectors independent of N with Y (1) ∼ Pc,ε = Λ( · ∩ {|xc| ≥ ε})/Λ({|xc| ≥ ε}). Since N and

(Y (n)) can be obtained from X≥ε we find that YA(1) ⊥⊥ YB(1) | YC(1). According to Engelke

et al. (2022, Thm. 4.1) it remains to prove that A ⊥ B [Λ0
A∪B]. We consider a different

decomposition X = X=0 + X 6=0, where X=0,X 6=0 are independent Lévy processes with Lévy

measures given by Λ restricted to {xC = 0C} and {xC 6= 0C} respectively. The process X=0

can be constructed as an almost sure limit of σ(X)-measurable processes (we refer to the

discussion in §IV.A.2). By applying Lemma IV.25 we find that X=0
A ⊥⊥ X=0

B | X=0
C , and in

fact we have X=0
A ⊥⊥ X=0

B since X=0
C is deterministic. Then the independence A ⊥ B [Λ0

A∪B ]

follows from Lemma IV.6 as we note that X=0
A∪B has Lévy measure Λ0

A∪B .

Part 2: Assume that A ⊥ B | C [Λ]. First we consider the case where Λ is a finite Lévy

measure such that Λ({xC = 0C}) = 0. Then X is the sum of a linear drift and a compound

Poisson process. To be precise,

X(t) = tγ +

N(t)∑

n=1

Y (n), t ≥ 0,

where N is a Poisson process with rate Λ(Rd) and (Y (n)) is a sequence of i.i.d. random

variables, independent of N and with Y (1) ∼ Λ/Λ(Rd). We note that conditioning on XC

will also fix N since Λ({xC = 0C}) = 0. For each n ∈ N we further find that the random

variables YA(n) and YB(n) are conditionally independent given XC . Now we apply the ideas

from the proof of Proposition IV.3 to conclude that XA ⊥⊥ XB | XC .

Now we no longer assume that Λ is finite. Instead we assume that Λ({xc = 0}) = 0

for some c ∈ C. We may view X as an almost sure limit of a sequence (X(n)) of Lévy

processes, where (X(n)) has finite Lévy measure given by Λ(n) = Λ( · ∩ {1/n < |xc|}). Since

A ⊥ B | C [Λ] we also have A ⊥ B | C [Λ(n)] for every n ∈ N. Then, by the previous

paragraph, we get that X(n)
A ⊥⊥ X(n)

B | XC since conditioning on XC or X(n)
C has the same

effect on X(n). Using Lemma IV.25 the conditional independence XA ⊥⊥ XB | XC follows.

Finally we can consider a general Lévy measure Λ. We proceed with induction in k = |C|.
From Lemma IV.6 we know that the result holds for k = 0. Now, assume that it holds

when C has k − 1 elements, and fix some c ∈ C. We write X = X′ + X′′, where X′

and X′′ are independent Lévy processes with Lévy measures Λ′ = Λ( · ∩ {xc = 0}) and

Λ′′ = Λ( · ∩ {xc 6= 0}). We have A ⊥ B | C [Λ′] and since Λ′ is concentrated on {xc = 0}
it follows that A ⊥ B | C \ {c} [Λ′V \{c}]. Importantly, Λ′V \{c} satisfies [IV.A2], so by the

induction hypothesis we have that X′A ⊥⊥ X′B | X′C\{c}. We note that this still holds if we

condition on all of X′C instead because X′c is deterministic. We further have A ⊥ B | C [Λ′′],
and since Λ′′({xc = 0}) = 0 we have X′′A ⊥⊥ X′′B | X′′C by the paragraph above. To conclude

we make use of the fact that conditioning on XC is the same as conditioning on the pair
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(X′C ,X
′′
C) as discussed in §IV.A.2. By combining this with the conditional independence

statements for the two terms we arrive at the conditional independence XA ⊥⊥ XB | XC .

For the last step we again use the ideas from the proof of Proposition IV.3.

IV.A.7 Proof of Lemma IV.8

For any Borel set EV \{c} ⊆ RV \{c} we introduce an auxiliary set ∆+
EV \{c}

= {(h, hxV \{c}) |
h ≥ 1, xV \{c} ∈ EV \{c}} as illustrated in Figure IV.14 below. We can then define a probability

measure µ+
c by

µ+
c (EV \{c}) = Λ(∆+

EV \{c}
)/Λc([1,∞)), EV \{c} ∈ B(RV \{c}).

Now, let ξ(c,+) be a d-dimensional random vector such that ξ(c,+)
V \{c} ∼ µ+

c and ξ(c,+)
c = 1. For

any ε > 0 and h > 0 we have

∫

[ε,∞)

ν{c}(h, hEV \{c}) Λc(dh) = Λ(ε∆+
EV \{c}

)

= ε−αΛ(∆+
RA∪B )

= ε−αΛc([1,∞))µ+
c (EV \{c})

= Λc([ε,∞))µ+
c (EV \{c}).

Hence, ν{c}(h, hEV \{c}) = µ+
c (EV \c) for Λc-almost all h ≥ ε. Using standard arguments we

may extend this to

ν{c}(h, hEV \{c}) = µ+
c (EV \{c}) for all EV \{c} ∈ B(RV \{c})

for Λc-almost all h > 0. Hence,

ν{c}(h,EV \{c}) = µ+
c (h−1EV \{c}) = P(hξ(c,+) ∈ EV \{c}) for all EV \{c} ∈ B(RV \{c})

for Λc-almost all h > 0.

The case of negative h is similar. Here we define µ−c (EV \{c}) = Λ(∆−EV \{c})/Λc((−∞,−1]),

where ∆−EV \{c} = {(h, |h|xV \{c}) | h ≤ −1, xV \{c} ∈ EV \{c}}.

EV \{c}

1

∆+
EV \{c}

h

Figure IV.14: Illustration of the set ∆+
EV \{c}

.
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IV.A.8 Proof of Lemma IV.9

For any v ∈ V \ {c} consider

Λ({xv > 1, xc > 0}) = E[

∫ ∞

0

1{xcξ(c,+)
v >1} αm

+
c x
−α−1
c dxc]

= m+
c E[|ξ(c,+)

v |α 1{ξ(c,+)
v >0}],

which must be finite. We find that E[|ξ(c,+)
v |α 1{ξ(c,+)

v <0}] < ∞ by considering Λ({xv <
−1, xc > 0}). Hence ξ(c,+) is in Lα as claimed. Similar calculations show that ξ(c,−) is in

Lα.

Now, consider a d-dimensional random vector ξ(c,+) with ξ(c,+)
c = 1 a.s. We can define

Λ+(E) = E[

∫ ∞

0

1{xcξ(c,+)∈E} x
−α−1
c dxc], E ∈ B(Rd).

One easily checks that Λ+ is a −α-homogeneous measure with Λ+({0}) = 0. If we further

assume that ξ(c,+) is in Lα we find that

∫ ∞

0

(1 ∧ ‖x‖2) Λ+(dx) <∞.

Similarly, for a random vector ξ(c,−) with ξ(c,−)
c = −1 a.s. we define

Λ−(E) = E[

∫ 0

−∞
1{|xc|ξ(c,−)∈E}|xc|−α−1 dxc], E ∈ B(RV ),

and if ξ(c,−) is in Lα this again defines a −α-homogeneous Lévy measure on {xc < 0}. Now

it is easy to see that Λ = Λ+ + Λ− is a −α-homogeneous Lévy measure giving rise to the

vectors ξc,±.

The final calculations are trivial.

IV.A.9 Proof of Theorem IV.11

The conditional independence structures for Z and for Y under Pc,ε are both given by the

same tree T . Hence, by conditioning according to the tree structure one finds that it is

sufficient to show the following:

(a) Zc ∼ Pc,ε(Yc ∈ · ).

(b) (Zi | Zc = h) ∼ Pc,ε(Yi ∈ · | Yc = h) for Pc,ε(Yc ∈ · )-a.a. |h| ≥ ε.

(c) (Zj | Zi = h) ∼ Pc,ε(Yj ∈ · | Yi = h) for Pc,ε(Yi ∈ · )-a.a. h ∈ R for any (i, j) ∈ E(c).

Firstly, it is clear that Z satisfies (a). Secondly, (b) follows directly from (IV.6). Now,

Lemma IV.10 establishes (c) for h 6= 0 since {c} ⊥ {j} | {i} [Λ] when (i, j) ∈ E(c). Finally, it

might be that 0 is an atom for Pc,ε(Yi ∈ · ). However, in that case we simply note that

Pc,ε(Yj = 0 | Yi = 0) = 1

since Λ({xc ≥ ε, xj 6= 0, xi = 0}) = 0 according to Engelke et al. (2022, Cor. 6.3).
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IV.A.10 Proof of Proposition IV.12

We prove the first equality in the result and note that everything else follows immediately

from there. Assume w.l.o.g. that d = 2, i = 1 and j = 2. For v = 1, 2 we let ∆(v) be a random

vector with distribution Λ(· ∩{xv ≥ 1})/Λ({xv ≥ 1}). Hence, ∆(1) d
= P ·(1, ξ(1,2)) and ∆(2) d

=

P · (ξ(2,1), 1), where P is independent of ξ(1,2), ξ(2,1) and has density x 7→ αx−1−α 1{x>1}.
For h ≥ 1 the set Θh = {x2 ≥ 1, x1 ≥ hx2} is contained in [1,∞)2. We find that

P(ξ(2,1) ≥ h) = P(∆(2) ∈ Θh)

=
Λ(Θh)

Λ({x2 ≥ 1})

=
Λ(Θh)

m2

m1
Λ({x1 ≥ 1})

=
m1

m2
P(∆(1) ∈ Θh).

To calculate the probability on the right-hand side we first condition on P . Note that we

may rewrite Θh = {x1 ≥ h, 1 ≤ x2 ≤ x1/h}. We get

P(∆(1) ∈ Θh) =

∫ ∞

h

αx−1−α
1 P(1 ≤ x1ξ(1,2) ≤ x1/h) dx1

= E
[∫ ∞

0

αx−1−α
1 1{x1≥h,1≤x1ξ(1,2)≤x1/h} dx1

]

= E
[∫ ∞

0

αy−1−αξα(1,2) 1{y≥hξ(1,2),1≤y,ξ(1,2)≤1/h} dy
]

= E[1{1/ξ(1,2)≥h} ξ
α
(1,2)],

where the third equality comes from defining y = x1ξ(1,2).

For h ∈ (0, 1) we let Ψh = {x1 ≥ 1, 1/h ≤ x2 ≤ x1/h}. We deduce that

hαP(ξ(2,1) ≥ h) = P(P ≥ 1/h, ξ(2,1) ≥ h)

= P(∆(2) ∈ Ψh)

=
m1

m2
P(∆(1) ∈ Ψh),

where the last equality follows as before using the fact that Ψh ⊆ [1,∞)2. With calculations

similar to the above we can show that

P(∆(1) ∈ Ψh) = hαE[1{1/ξ(1,2)≥h} ξ
α
(1,2)].

IV.A.11 Proof of Proposition IV.20

The target distribution Pε has a density f w.r.t. Λ given by

f(x) = (Λ({‖x‖∞ ≥ ε}))−1 1{‖x‖∞≥ε}(x), x ∈ Rd,

and the random vector Z has a density g w.r.t. Λ given by

g(x) =
εα

m
#{v ∈ V | |xv| ≥ ε}, x ∈ Rd,
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where m = m1 + · · · + md. To see this consider a set of coordinates W ⊆ V and a Borel

measurable subset S ⊆ {|xv| ≥ ε∀v ∈W, |xv| < ε∀v ∈ V \W}. Then

P(Z ∈ S) =
∑

v∈W
P(Z ∈ S | I = v) · P(I = v)

=
∑

v∈W

Λ(S)

Λ({|xv| ≥ ε})
· mv

m

=
∑

v∈W
Λ(S)

εα

m
,

where the last equality uses homogeneity of Λ. Note that the final sum coincides with∫
S
g(x) Λ(dx).

We must bound the ratio f/g. For x ∈ Rd with ‖x‖∞ ≥ ε we have

f(x)

g(x)
=

(Λ({‖x‖∞ ≥ ε}))−1

εα

m#{v ∈ V | |xv| ≥ ε}
=

m

Λ({‖x‖∞ ≥ 1})#{v ∈ V | |xv| ≥ ε}
≤ m

Λ({‖x‖∞ ≥ 1})
=: M,

where we once again use homogeneity of Λ. Finally, it is well-known that we obtain the

target distribution by accepting the proposed Z with probability f(Z)/(Mg(Z)). This is

exactly the quantity (#{v ∈ V | |Zv| ≥ ε})−1 from step 3 of the procedure.

IV.A.12 Proof of Lemma IV.21

Letting Λ(ε) be the Lévy measure of the pre-limit process W(ε)/aε we find
∫
xx> Λ(ε)(dx) = a−2

ε

∫

{|xu|≤ε ∀u∈U}
xx> Λ(dx)

=

∫

{|xu|≤1 ∀u∈U}
xx> Λ(ε dx)εα

= Σ,

where the last equality follows from homogeneity of Λ.

Next we show that Λ(ε) v−→ 0 on Rd \ {0}. That is, for every h > 0 and i ∈ V we have the

convergence Λ(ε)({|xi| ≥ h})→ 0 as ε ↓ 0. Using homogeneity again we find that

Λ(ε)({|xi| ≥ h}) = Λ({|xu| ≤ ε∀u ∈ U, |xi| ≥ haε})
= ε−αΛ({|xu| ≤ 1∀u ∈ U, |xi| ≥ hε−α/2}).

On the latter set we have ε−α ≤ h−2x2
i and so we find that

Λ(ε)({|xi| ≥ h}) ≤ h−2

∫

|xu|≤1 ∀u∈U,|xi|≥hε−α/2
x2
i Λ(dx)→ 0,

where we used dominated convergence with dominating function x 7→ x2
i 1{|xu|≤1 ∀u∈U}.

According to Kallenberg (2021, Thm. 7.7 & Thm. 16.14) it is left to show
∫

{‖x‖≤1}
xx> Λ(ε)(dx)→ Σ and γε → 0,
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where γε is obtained from the martingale requirement, i.e. γε +
∫
{‖x‖>1} xΛ(ε)(dx) = 0. Both

are implied by
∫

{‖x‖>1}
x2
i Λ(ε)(dx) =

∫

{|xu|≤1 ∀u∈U,‖x‖≥ε−α/2}
x2
i Λ(dx)→ 0,

derived using the same calculations as above. For the second we also employ the vague

convergence to the zero measure.

IV.A.13 Proof of Theorem IV.23

We start by proving the following auxiliary result.

Lemma IV.26. Consider a positive semi-definite block matrix of the form

M =




δ δm>1 m>2
δm1 δM11 m1m

>
2

m2 m2m
>
1 M22


 ,

where δ is a scalar, M11,M22 are square matrices, and m1,m2 are vectors of appropriate

dimensions. If M is positive-definite (i.e. invertible) then the (2, 3) and (3, 2) blocks of M−1

are zero.

Proof. For a positive definite block matrix X =

(
P Q

R S

)
with square blocks P, S it is well

known that

X−1 =

(
P−1 + P−1QY RP−1 −P−1QY

−Y RP−1 Y

)
, Y = (S −RP−1Q)−1.

Firstly, we have

(
1 m>1
m1 M11

)−1

=

( · ·
−(M11 −m1m

>
1 )−1m1 (M11 −m1m

>
1 )−1

)
,

where the first row is not important to us. Secondly, we partition M so that S = M22 and

obtain the following representation of the (2, 3) block of M−1:

−δ−1[−(M11 −m1m
>
1 )−1m1, (M11 −m1m

>
1 )−1]

(
m>2

m1m
>
2

)
Y = 0.

Proof of Theorem IV.23. Without loss of generality we may assume that C = {1}, the

elements of A are smaller than the elements of B, and U ⊆ B ∪ {1}. According to

Lemma IV.26 it is sufficient to establish that Σ has the form of M .

The marginal measure is given by

Λ1(dx1) = m1αx
−α−1
1 dx1, x1 > 0,

where m1 = Λ({x1 > 1}). For x1 > 0 consider the kernel ν{1}(x1, ·). Recall that Lemma IV.8

gives the existence of a d-dimensional random vector ξ(1) such that ξ(1)
1 = 1 a.s. and

ν{1}(x1, · ) = P(x1ξ
(1)
V \{1} ∈ · )

for Λ1-almost all x1 > 0.
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For i ∈ A ∪ {1} and j ∈ B ∪ {1} we may compute

Σij =

∫

{|xu|≤1 ∀u∈U}
xixj Λ(dx)

= m1αE
[ ∫

{x1>0,|x1ξ(1)u |≤1 ∀u∈U}
(x1ξ

(1)
i )(x1ξ

(1)
j )x−α−1

1 dx1

]

=
m1α

2− αE
[
ξ(1)
i ξ(1)

j min
u∈U
|ξ(1)
u |α−2

]
.

For the second equality we used that x1 = 0 has no contribution to Σ. If i = 1 or j = 1 this

is obvious, and if i ∈ A, j ∈ B we recall that A ⊥ B | {1} [Λ] implies Λ0
V \{1}({xi 6= 0, xj 6=

0}) = 0, see Engelke et al. (2022, Lem. 3.3 & Prop. 5.1).

According to Engelke et al. (2022, Thm. 4.4) the conditional independence A ⊥ B | {1} [Λ]

implies ξ(1)
A ⊥⊥ ξ(1)

B . Letting δ = m1α
2−αE

[
minu∈U |ξ(1)

u |α−2
]

we find that

Σ11 = δ,

Σ1i = δE[ξ(1)
i ],

Σ1j =
m1α

2− αE[ξj min
u∈U
|ξ(1)
u |α−2],

Σij =
m1α

2− αE[ξ(1)
i ]E[ξj min

u∈U
|ξ(1)
u |α−2].

This shows that Σ has the form of M in Lemma IV.26.
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I. Eder and C. Klüppelberg. Pareto Lévy measures and multivariate regular variation. Adv.

in Appl. Probab., 44(1):117–138, 2012. ISSN 0001-8678.

M. Eichler. Graphical modelling of multivariate time series. Probability Theory and Related

Fields, 153(1):233–268, 2012.

S. Engelke and A. S. Hitz. Graphical models for extremes. J. R. Stat. Soc. Ser. B. Stat.

Methodol., 82(4):871–932, 2020. ISSN 1369-7412. With discussions.

S. Engelke and S. Volgushev. Structure learning for extremal tree models. J. R. Stat. Soc.

Ser. B. Stat. Methodol., 84(5):2055–2087, 2022. ISSN 1369-7412,1467-9868.

107



References

S. Engelke, J. Ivanovs, and K. Strokorb. Graphical models for infinite measures with
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models through matrix completions. arXiv preprint arXiv:2210.14292, 2022.

S. Hu, Z. Peng, and J. Segers. Modelling multivariate extreme value distributions via markov

trees. arXiv preprint arXiv:2208.02627, 2022.

J. Jacod and A. N. Shiryaev. Limit theorems for stochastic processes, volume 288 of

Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical

Sciences]. Springer-Verlag, Berlin, second edition, 2003. ISBN 3-540-43932-3.

O. Kallenberg. Foundations of modern probability, volume 99 of Probability Theory and

Stochastic Modelling. Springer, Cham, third edition, 2021. ISBN 978-3-030-61871-1;

978-3-030-61870-4.

J. Kallsen and P. Tankov. Characterization of dependence of multidimensional Lévy processes
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