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Preface

This dissertation is a tangible conclusion of my Ph.D. studies at the Department of
Mathematics, Aarhus University as part of the Stochastics group and the Centre for
Digitalisation, Big Data and Data Analytics (DIGIT). It was written during the period
from February 2020 through October 2023 under the supervision of Lars Nørvang
Andersen and Henrik Karstoft.

The dissertation comprises five self-contained papers, preceded by a general intro-
duction to the research field. The papers, and their respective venues, are:

Paper A Even your Teacher Needs Guidance: Ground-Truth Targets Dampen Regular-
ization Imposed by Self-Distillation.
Advances in Neural Information Processing Systems 34 (NeurIPS).

Paper B Self-Distillation for Gaussian Process Models.
Submitted to Journal of Machine Learning Research (JMLR).

Paper C Distilling from Similar Tasks for Transfer Learning on a Budget.
International Conference on Computer Vision (ICCV) 2023.

Paper D A Quest for Perfect Teacher-Student Agreement in Knowledge Distillation.
Working paper.

Paper E Automatic Sleep Scoring using Patient-Specific Ensemble Models and Knowl-
edge Distillation for Ear-EEG Data.
Biomedical Signal Processing and Control (Volume 81).

Besides layout and minor edits, the papers are replications of the published or submitted
versions at the respective venues. Thus, some differences in notation and terminology are
inevitable, but any ambiguousness should be easily alleviated through the context of the
respective papers and venues. Furthermore, due to the strict page requirement of most
current machine learning venues, the main content of Papers A, B, C, and D is highly
condensed and additional details and results are largely deferred to the supplementary
material of each paper.

The introductory chapter primarily acts as a general introduction to the research field,
as well as motivates and positions the five papers in the field of research. Paper A and
Paper B are joint work with Lars Nørvang Andersen, and I have contributed significantly
to both the research and writing of these papers. For Paper B the research and writing
were more or less equally divided between us. In accordance with GSNS rules, large parts
of Paper A were also part of the progress report for my qualifying examination. Paper C
is the result of my research stay at Cornell University in Ithaca, New York, USA visiting
Professor Bharath Hariharan during the spring of 2022. It was written in collaboration
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with Cheng Perng Phoo and Bharath Hariharan, where I contributed significantly in
both research and writing. Paper D is a single-author working paper initiated during the
latter part of my Ph.D. studies and is yet to be finalized. Finally, Paper E is a joint work
with Kaare Mikkelsen and Preben Kidmose of the Bioelectrical Instrumentation and
Signal Processing research group at Aarhus University as well as Huy Phan from Queen
Mary University of London. I undertook the majority of research and writing of this
paper, and in particular, Kaare Mikkelsen contributed to conceptualizing the research.

∗ ∗ ∗
Now, at the culmination of my studies with the completion of this treatise, I would like
to express my sincerest gratitude for the journey that has been my Ph.D. studies. It
has been both deeply challenging and highly rewarding — I owe a huge thank you to
everyone who has supported me along this journey.

I thank my supervisors Lars Nørvang Andersen and Henrik Karstoft for allowing
me to pursue a Ph.D. degree in such a stimulating and challenging field of research. I
appreciate your guidance, support, and readiness to discuss my, at times endless amount
of, research ideas.

In the spring of 2022, I had the great pleasure of visiting Bharath Hariharan at
Cornell University in Ithaca, New York, USA. I am thankful to Cornell University for
the hospitality, and to Bharath for great support and for allowing me to be a part of the
department. Also, thank you to my co-author Cheng Perng Phoo for good company and
engaging scientific discussions. I would also like to express my gratitude to Stibo-Fonden,
Augustinusfonden, Otto Mønsteds Fond, William Demant Fonden, and Knud Højgaards
Fond for the travel funds they have granted me. I am also grateful to the Department
of Mathematics and DIGIT for providing financial support for my participation in
conferences and my research visit, and for the research community I have been part of.

Conducting my Ph.D. studies at the Department of Mathematics at Aarhus University
has been great, and my colleagues deserve a lot of recognition for this. In particular, I
would like to thank my office mates Helene, Lota, Ragnhild, and Jakob, although our
discussions have been less academic and more about traveling, career, and Formula 1.

Finally and most importantly, my family and friends deserve huge appreciation for
listening to my relentless blabbering about my research, despite it most often being
completely irrelevant and incomprehensible to you. I am thankful to my parents, Dan
and Lone, for their patience and never-ending support, and to my brother, Daniel, for the
many discussions on statistical matters. An especially heartfelt thank you is reserved for
my wife Lea — words can not adequately express my gratitude for your unconditional
support, encouragement, and love. Thank you for everything! Finally, a deep thank you
to our son, Isak, who has made the last endeavors of my studies the most memorable of
all.

Kenneth E. Borup
Aarhus, October 2023
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Abstract

Knowledge distillation is a powerful and flexible machine learning technique that can be
used to train smaller, more efficient models (called students) by mimicking larger trained
models (called teachers). Such students can often achieve better predictive performance
than models trained in a classical supervised manner. However, despite its empirical
success, a rigorous foundation of knowledge distillation is still largely non-existent.

This dissertation investigates both the theoretical and empirical foundations of
knowledge distillation. In the first two papers, we develop theoretical frameworks
for understanding knowledge distillation in the simplified settings of self-distillation
with kernel ridge regression and Gaussian process models, respectively. In these frame-
works, we investigate the properties of iterative self-distillation and determine particular
regularizing behaviors imposed by self-distillation.

In a third paper, we perform a rigorous empirical study of knowledge distillation
with neural networks to support our theoretical findings. We investigate the efficiency
of knowledge distillation under various controlled settings to determine under which
conditions we can obtain perfect teacher-student agreement. In a fourth paper, we
illustrate the real-world applicability of knowledge distillation by showing how to
apply knowledge distillation for personalized automatic sleep scoring based on Ear-EEG
measurements.

Finally, in a fifth paper, we address the challenge of exploiting diverse publicly
available neural network models to improve the predictive performance on a given
task under computational constraints. In particular, we propose a method to construct
efficient models by identifying and distilling suitable pre-trained models with minimal
access to these models.

Overall, this dissertation contributes to the theoretical and empirical foundations
of knowledge distillation and proposes novel methods for adapting publicly available
neural network models to specific tasks under constraints.
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Resumé

Knowledge distillation er en effektiv og fleksibel maskinlæringsteknik, der kan bruges til
at træne mindre, mere effektive modeller (kaldet students) ved at efterligne større trænede
modeller (kaldet teachers). Sådanne students opnår ofte bedre prædiktiv nøjagtighed
(accuracy) end tilsvarende modeller trænet med klassisk superviseret træning. På trods
af den empiriske succes er et stringent grundlag for knowledge distillation stadig stort
set ikke-eksisterende.

Denne afhandling undersøger både det teoretiske og empiriske grundlag for knowl-
edge distillation. I de første to artikler opstilles teoretiske rammer til at opnå en forbedret
forståelse af knowledge distillation i de forenklede tilfælde med self-distillation for kernel
ridge regression og Gaussiske procesmodeller. I disse forenklede tilfælde undersøger vi
egenskaberne ved iterativ self-distillation og udleder særlige de regulariserende egensk-
aber, der opstår ved gentagen self-distillation.

I en tredje artikel laves en struktureret empirisk undersøgelse af knowledge distil-
lation med neurale netværk for at understøtte de teoretiske resultater. Vi undersøger
effektiviteten af knowledge distillation i forskellige kontrollerede forsøg for at bestemme,
under hvilke betingelser man kan opnå perfekt enighed mellem teacher og student. I
en fjerde artikel illustrerer vi anvendeligheden af knowledge distillation på data fra
den virkelige verden ved at anvende knowledge distillation til personlig og automatisk
søvnscoring baseret på Ear-EEG-målinger.

Endelig, i en femte artikel behandles udfordringen med at udnytte forskellige of-
fentligt tilgængelige neurale netværksmodeller til at forbedre den prædiktive nøjagtighed
på en given opgave med begrænset computerkraft. Vi introducerer en metode til at
konstruere effektive modeller ved at identificere og destillere relevante præ-trænede
modeller med minimal adgang til disse modeller.

Denne afhandling bidrager både til det teoretiske og empiriske grundlag for knowl-
edge distillation og introducerer nye metoder til at tilpasse offentligt tilgængelige neurale
netværksmodeller til specifikke opgaver under begrænsninger på computerkraft.
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Introduction

This chapter serves as an introduction to the field of research and the topics of the
dissertation. Due to the rapid speed of research and publication by the machine learning
research community, few widely established books on the foundations of machine
learning exist, and the following will be a convolution of information from various
references, and as is increasingly common in the field of machine learning, also curated
preprints.

The chapter will be organized as follows. Initially, machine learning will be in-
troduced in a general and common setting, followed by an overview of how to train
and evaluate such models with various degrees of annotated and/or unannotated data.
Afterward, the idea of knowledge distillation will be presented along with the associated
terminology and aim as well as a brief overview of some extensions on the conventional
knowledge distillation idea, both in terms of what knowledge to distill as well as what to
distill it from. Finally, each paper included in this dissertation is individually motivated
and the main results of each paper are introduced.

1 Machine Learning

LetX be an input space and Y an output space. LetDtrain = {(xi ,yi) ∈ X×Y | i = 1, . . . ,n} be
an observed set of elements, where we assume that there exists some underlying unknown
function, f ∗ : X →Y , mapping samples x ∈ X to values or labels y ∈ Y possibly affected
by some unknown noise. The aim of machine learning is to approximate the underlying
true function f ∗, by some function f , often parameterized by some parameters θ. This
is typically achieved through training of the model: i.e. by the minimization of some
objective function, quantifying the loss associated with the approximation, over the set
of training samples Dtrain. When f is parameterized as a neural network, we usually
refer to the model and procedure as deep learning.

1.1 Deep learning

Deep learning is a somewhat vaguely defined subfield of machine learning, usually
referring to research and applications of neural network models. Depending on the
specific parameterization of the model, we subdivide neural networks into different
architectures, and while originally neural networks referred to merely fully-connected
multi-layer perceptrons (MLP), recently it encapsulates anything from MLPs, through
Recurrent Neural Networks (RNN) and Convolutional Neural Networks (CNN), to
Transformers amongst others. However, for ease of exposition, we will not introduce all
of these architectures here but refer to e.g. Goodfellow et al. (2016) for details on the
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Introduction

most established architectures, and e.g. Vaswani et al. (2017) for details on the more
modern transformer architecture. A fully-connected MLP is defined as the composition
of a sequence of functions;

fθ(x) = lD ◦ · · · ◦ l1(x),

where li(z) def= ψ(Wiz + bi) is a linear transformation with weights, Wi , and bias, bi , such
that θ = {W1,b1,W2,b2, . . . ,WD ,bD }, followed by a differentiable nonlinear activation
function ψ. Different activation functions are commonly used, and while e.g. the sigmoid
and hyperbolic tangent functions were historically popular modern models typically use
e.g. the Rectified Linear Unit (ReLU) or adaptations hereof (Fukushima, 1975; Nair and
Hinton, 2010; Maas et al., 2013; Hendrycks and Gimpel, 2016). Each function li is often
referred to as a layer and the amount of such composed layers is the depth of the model.
Furthermore, the output dimension of Wi is commonly called the width of the layer, and
in turn, defines the width of the model. Both the depth and width of the model need
to be predefined before the training of the model. Different architectures are typically
comprised of different types of layers, skip-connections, pooling, attention, etc. and we
refer to e.g. Goodfellow et al. (2016) for details on this.

1.2 Training and Evaluating Models

Since we aim to approximate the unknown underlying function f ∗, we need to fit (i.e.
train) our model on some observations produced by this mapping. Thus, in supervised
learning we assume access to a labeled training dataset Dtrain = {(xn,yn)}Nn , where we
assume that yn = f ∗(xn) for n = 1, . . . ,N . We also select a reasonable evaluation measure
of the goodness of fit. For instance, for classification, we typically aim to maximize
the accuracy of our model. However, since accuracy is non-differentiable, we will
in such cases need to optimize our model using a proxy for the evaluation measure.
Therefore, given a pre-defined model f parameterized by θ ∈Θ, the model is trained by
minimization of some objective function, L, quantifying the error (or loss) between the
model predictions and the true targets over the training dataset, Dtrain;

θ∗ = argmin
θ∈Θ

1
N

∑
(x,y)∈Dtrain

ℓ(fθ(x),y), (1)

where ℓ is typically the cross-entropy for classification tasks and the mean squared error
for regression tasks. In practice, many machine learning tasks are either overparam-
eterized and/or ill-posed optimization problems, and some type of regularization is
applied to restrict the space of possible solutions. Often one aims to obtain simple and
sparse solutions to reduce the generalization error, by making the models less prone to
overfitting the training data (Hastie et al., 2009; Goodfellow et al., 2016). For ease of
exposition, we leave out explicit regularization terms here.

Unfortunately, (1) is intractable for neural networks and no analytical solution can
be derived (Hastie et al., 2009). Thus, in practice, a solution, θ∗, for neural networks
is typically computed using first-order numerical methods such as stochastic gradient
descent (SGD)1. Denote by ℓn(θ) def= ℓ(fθ(xn),yn) the loss on the n’th sample, when the

1 A note on terminology. Typically, the procedure is called gradient descent (GD) when the gradient is
computed over all samples at each iteration, stochastic gradient descent (SGD) when the gradient is
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1 · Machine Learning

model is parameterized by θ, then SGD amounts to iteratively solving

θt+1
def= θt − η

1
b

∑
n∈Bt

∇θℓn(θt) where t = 0, . . . ,T ,

for T > 1 iterations where Bt is a subset of b > 1 (batch size) indexes from {1, . . . ,N }
called a batch, η > 0 is a step size typically denoted the learning rate, and θ0 is randomly
initialized. In practice, the batches Bt typically traverse through a shuffled list of all the
indexes, where each traversal of all N samples is called an epoch — hence, often T ∝ ⌊Nb ⌋.
Other more advanced optimization techniques e.g. utilize the empirical average of the
first (Hinton et al., 2012) and second (Kingma and Ba, 2015) moments of the gradient
to obtain faster convergence speed. However, research into improved optimization
techniques for neural networks is an active research field (Anil et al., 2020; Schmidt
et al., 2021). Furthermore, the learning rate η can also be iteration dependent, ηt , and
e.g. be large initially and gradually decrease as the optimization approach minima for a
more stable optimization procedure. Such a procedure is commonly called a learning
rate schedule, where common choices are the cosine annealing schedule and linear decay
(Smith, 2017, 2018; Loshchilov and Hutter, 2017).

Following the optimization, we denote by θT and fθT the trained weights and trained
model, respectively. To obtain an estimate of the generalization performance of fθT it is
evaluated on a test set Dtest assumed to follow the same data distribution and underlying
mapping asDtrain. Depending on the task various evaluation metrics could be of interest;
e.g. accuracy, precision, or recall for classification, and (root) mean squared error or
mean absolute error for regression tasks. When computing the evaluation metric over
the training or test set, we refer to the computed metric as the training or test metric,
respectively. Without loss of generality, we now consider accuracy, where a higher score
is better.

Generally, if the test metric is low compared to the training metric the model is likely
overfitting to the training data and is not able to generalize to similar but unseen data.
However, if both the test metric and the training metric are low, the model is likely
underfitting the training data and is not able to accurately represent the data. Both
cases require modifications of the training scheme, and possibly any of the customiz-
able elements (such as e.g. model architecture, learning rate, or batch size), which we
collectively denote hyperparameters can be of importance. Yet, if we were to rerun our
experiment multiple times with different sets of hyperparameters, and reevaluate our
model on the test set each time, we could potentially overfit to the test set. Thus, we use
a validation set Dval under the same assumptions as the test set for model selection, and
merely evaluate our final selected model on the test set.2 In practice, hyperparameters
are often selected either based on the researchers’ experience, based on a grid search
over all possible hyperparameter combinations (within some bounds), or by e.g. random
search or Bayesian hyperparameter optimization (Snoek et al., 2012).

computed over merely a single sample at each iteration, and mini-batch gradient descent when a subsample
of b > 1 samples is used at each iteration. However, an irrevocable practice in machine learning is to denote
mini-batch gradient descent as SGD irrespective of b > 1. We will adopt this convention here.

2 Ideally we would apply a more elaborate evaluation scheme such as cross-validation, but due to the
computational costs of optimizing neural networks, such elaborate schemes are prohibitive.
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1.3 Connections Between Neural Networks and Kernel Methods

Although the inherent nonlinearity of neural networks implies the need for numerical
optimization, equivalences between sufficiently wide3 neural networks and certain
kernel methods have been shown (Neal, 1996; Jacot et al., 2018; Arora et al., 2019; Lee
et al., 2018a, 2019; Yang, 2019; Du et al., 2019b,a). Specifically, when each layer of a
randomly initialized fully connected neural network tends to infinity one layer at a
time, the neural network (when seen as merely a function) tends to a Kernel (Ridge)
Regression (KRR) model with the Neural Tangent Kernel (NTK) as the kernel. The NTK
can be explicitly derived for most neural network architectures (Arora et al., 2019; Yang,
2019; Hron et al., 2020), and through numerous existing theoretical results on KRR,
the behavior of wide neural networks can be analyzed. However, despite theoretical
equivalences, the empirical performance of KRR with the NTK still deviates notably
from the empirical performance of neural networks (Yang and Hu, 2021). Similarly, we
now consider a D-layer deep fully connected neural network with layers li of width ni for
i = 1, . . . ,D parameterized by weights Wi and biases bi . We draw all elements of weights
and biases independently with zero mean and variances σ2

w/ni and σ2
b respectively. Then

Lee et al. (2019) show that the neural network is equivalent to a Gaussian process model
with a particular covariance function when the width ni of each layer tends to infinity
(Neal, 1996; Matthews et al., 2018; Novak et al., 2019). This Gaussian process model is
dubbed the Neural Network Gaussian Process (NNGP).

The equivalences of specific kernel ridge regression and Gaussian process models with
certain neural networks establish the foundation and motivate our theoretical analysis
of distillation for kernel ridge regression and Gaussian process models in Paper A and
Paper B, respectively. For additional details on NTK and NNGP, we refer to e.g. Jacot
et al. (2018) and Lee et al. (2019), respectively.

1.4 Different Degrees of Supervision

While the most common learning scheme is supervised learning, annotated data can
be expensive and therefore sparse in practice. Thus, different approaches to training a
neural network exist. Opposite to supervised learning introduced above, unsupervised
or self-supervised learning has no access to targets during training. Both these fields of
research aim at training models using merely input data, without any associated targets,
often by creating auxiliary tasks, somewhat resembling the properties one might expect
useful for a particular task (Goodfellow et al., 2016). For instance, in contrastive learning
(a self-supervised approach) a computer vision model is trained to map two different
augmentations of the same image to similar representations while ensuring different
images yield representations further away (He et al., 2020; Grill et al., 2020; Chen et al.,
2020a,b,c; Caron et al., 2020). Following such pre-training procedure, the model naturally
has to be either fine-tuned on some labeled downstream task (which is now possible
with less annotated data) or used for unsupervised tasks such as re-identification of
particular individual objects. Semi-supervised learning is the trade-off in which some

3 Determining the exact width required for the equivalences to hold is still an active and open research
question. Initially, the width was required to tend to infinity in a particular order (Jacot et al., 2018), but
more recent research has shown equivalences for wide but finite width networks (Arora et al., 2019). We
omit the details for ease of exposition and consider the infinite case here.
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2 · Knowledge Distillation

data has associated targets, while the remaining is unlabeled. Techniques for semi-
supervised learning typically aim at effectively propagating target information from
the annotated samples to the unannotated samples, through e.g. pseudo-labeling/self-
training or consistency regularization (Lee, 2013; Xie et al., 2020a; Sohn et al., 2020;
Tarvainen and Valpola, 2017; Berthelot et al., 2019; Phoo and Hariharan, 2021; Islam
et al., 2021). As will be evident in the following sections, knowledge distillation can be
posed with either of these different degrees of supervision.

2 Knowledge Distillation

This section serves as a general introduction to the idea and motivation of knowledge
distillation. It includes a presentation of the unusual yet distinctive terminology and
analogies associated with knowledge distillation, a mathematical definition of conven-
tional knowledge distillation as introduced by Hinton et al. (2015) along with a mention
of the immense flexibility of the method, as well as an overview of more recent alterations
and modifications to the conventional knowledge distillation procedure, both in terms
of what knowledge to transfer and what to transfer knowledge from.

2.1 Motivation

Despite commonly attributed to Hinton et al. (2015), the idea of knowledge distillation
originates back to Bucila et al. (2006); Ba and Caruana (2014) under the more general
term model compression. However, common for all three formulations is the aim of
“compressing” a cumbersome model (e.g. an ensemble of models) into a smaller, faster,
and more efficient model without a significant loss in predictive performance. The
success of any such procedure would yield cheaper and faster inference in applications
and allow for improved and widened utilization of machine learning in devices with
limited compute such as e.g. smartphones, headphones, or cameras.

2.2 Terminology of the Classroom

The field of knowledge distillation has collectively adopted a lot of terminology from the
common classroom, and thus often allows for easy interpretation through analogies and
connections to such settings. For instance, consider the following setting; a student is
about to learn a given topic and aims at performing as well as possible on an upcoming
test. The student is provided both with a textbook on the topic, containing annotated
examples and information to learn from and with access to a teacher knowledgeable on
the subject. The student is allowed to ask the teacher questions with the aim of learning
from the answers. This setting largely corresponds to the general knowledge distillation
setting, where the teacher is a well-trained high-capacity model for a specific task, the
student is a smaller untrained model, the textbook is a labeled training dataset, and
answers from the teacher acts as soft targets for the student. Now, no two teaching
situations are identical: teachers teach differently, students learn differently, the size
and quality of the textbook might differ, different tasks and subjects require different
knowledge to be taught, and so on. Most alterations of the teaching situation have
an analogous knowledge distillation procedure or setting. For instance, whether the
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student asks the teacher questions about examples from the textbook, previously unseen
unannotated examples, or both, translates to either supervised, unsupervised, or semi-
supervised knowledge distillation. Furthermore, we might consider how vague or
open-ended answers we want from the teacher (i.e. how soft our teacher targets should
be), whether to be provided with answers, or the thought process behind such answers
(i.e. perform response-based or feature-based distillation), or how much weight to assign
to the answers of the teacher compared to the annotated examples from the textbook (i.e.
how to weight supervised and distillation-objectives during knowledge distillation).

Such analogies and connections often allow a faster entrance to the research field
but also tend to ease the task of communicating state-of-the-art research in a technical
field to laypeople. In the remainder of this dissertation, few such analogies will be made
explicitly, but a strong encouragement, especially for the uninformed reader, to mentally
use the analogies stand.

2.3 Original Aim and Formulation

In the following, the concept of knowledge distillation as formulated by Hinton et al.
(2015) is restated in a slightly generalized manner. This particular distillation procedure
is remarkably simple yet exceptionally flexible. With minor modifications, it allows
for either supervised, semi-supervised, or unsupervised distillation, while being model
agnostic for both the teacher and student, yet requiring minimal access to the teacher
model. Despite its simplicity, it has shown great competitiveness to more intricate
distillation procedures (Beyer et al., 2022).

We now consider a C-class classification setting for C > 1. Then, given an input
example x ∈ X it yields a vector of logits, z = f (x) ∈ RC , when passed through a model f .
Typically, such logit vectors are transformed into a probability vector by applying the
softmax function, but for distillation, we use the temperature-scaled softmax

σ (z, τ) = (σ1(z, τ), . . . ,σC(z, τ)) , where σi (z, τ) =
exp

(
zi
τ

)
∑C
c exp

(
zc
τ

) ,
and where τ > 0 is a hyperparameter, called temperature. This corresponds to the
classical softmax for τ = 1, and in such cases, we will omit the τ from the notation, i.e.
σi (z,1) def= σi (z). By adjusting τ , the distribution of the resulting probability vector can
be adjusted. In particular, for τ < 1 the vector is sharpened, thereby assigning a larger
probability to the largest entry of the logits. Conversely, for τ > 1, the probability is
dispersed between the entries, yielding a softened probability vector. The extremes τ→ 0
and τ→∞, correspond to a one-hot encoded (hard) probability vector with all weight
assigned to the largest entry of the logit and a completely uninformative probability
vector assigning equal probability to all classes, respectively.

The knowledge distillation procedure formulated by Hinton et al. (2015) corresponds
to utilization of a combination of two loss functions; an ordinary supervised cross-
entropy loss between the student logits, z = fs(x), on some examples x ∈ X , and the
associated ground-truth target y,

ℓL(zs,y) def= −
C∑
c=1

yc log(σc(zs)), (2)
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and a distillation loss,

ℓD(zs,zt , τ) def= −τ2
C∑
c=1

σc (zt , τ) log(σc (zs, τ)) , (3)

between the temperature-scaled logits, zt = ft(x), of the teacher and the student logits,
zs. Note, the multiplier τ2 on the distillation loss follows the presentation of Hinton
et al. (2015) and ensures a consistently comparable scale between the supervised and
distillation loss when altering the hyperparameters since the gradients of the distillation
loss are scaled by τ−2 compared to the supervised loss. Thus, the full objective function
is a linear combination of the above loss functions over the available labeled dataset, DL

and distillation dataset, DD, respectively,

L =
α
|DL|

∑
(x,y)∈DL

ℓL(zs(x),y) +
1−α
|DD|

∑
x∈DD

ℓD(zs(x),zt(x), τ), (4)

where α ∈ [0,1] is a hyperparameter adjusting the weight assigned to the teacher pre-
dictions and ground-truth labels respectively. A notable feature of (4) is its immense
flexibility: choosing α = 1 yields ordinary supervised training while α = 0 yields a
fully unsupervised training by utilization of the teacher-produced pseudo-targets, and
for α ∈ (0,1) the procedure becomes semi-supervised. Furthermore, if we denote by
Dx def= {x | (x,y) ∈ D}, then one can have both that DD ⊆ DxL, or DD ⊇ DxL, or even that
DD ∩DxL = ∅. That is the input examples of DL and DD can be identical, any manner of
overlapping, or completely disjoint. Furthermore, since the training procedure requires
merely the logits of the teacher model, it is not only model agnostic, but also merely
requires access to the output of the model, and not any of the intermediate activations or
weights. Hence, utilizing this distillation scheme in principle allows for the distillation of
proprietary black-box teacher models, potentially only accessible for inference through
e.g. an online API (given logits can be obtained from such a model). However, in practice,
obtaining a sufficient number of examples through such API might be infeasible due to
costs, time, or policies restricting access and/or utilization of model predictions for the
training of new models.

A note on model size. In the above the term model size has been used intentionally
vague. While the size of neural networks is often measured by the number of parameters
used for a particular architecture, it is merely one of many possible proxies for model
size. In particular, model size might refer to e.g. the functional space spanned by a model,
the memory requirements needed for training or deployment, inference and/or training
speed, FLOPS required for inference, or any other measure of model size relevant to
the application of interest. Throughout this introduction, the common procedure of
using the number of model parameters as a proxy for model size will be adopted unless
otherwise mentioned.

2.4 A Generalized Formulation of Knowledge Distillation

Although the objective function in (4) is already a slight generalization of the conven-
tional distillation objective, more recently introduced distillation procedures require a
yet more general formulation of distillation. Recent research on distillation techniques

7



Introduction

has introduced an immense amount of flexibility and modifications to the idea of knowl-
edge distillation, including variations on what knowledge to transfer from the teacher
as well as what a teacher model can or should look like. In particular, in recent work
ℓD is allowed to be any loss function that is able to compute a distance between two
models; e.g. based on the intermediate layer activations, activation correlation, or inter-
sample geometry. Furthermore, methods allowing teachers of identical architecture to
the student, multiple homo- or heterogeneous models as teachers, or teachers trained on
different tasks have also been proposed. Thus, in current literature, the term distillation
is often used for any procedure that encompasses the training of a model on the output
of another model. Thus, in general, one can consider distillation as the general procedure
for solving

argmin
θ∈Θ

L(fθ , gω) def= argmin
θ∈Θ

α
|DL|

∑
(x,y)∈DL

ℓL(fθ(x),y) +
1−α
|DD|

∑
x∈DD

ℓD(fθ(x), gω(x))

def= argmin
θ∈Θ

(
αLL + (1−α)LD

) (5)

where the latter equality is for notational convenience, and fθ is the student model
parameterized by θ ∈Θ, gω the teacher model parameterized by ω ∈Ω, ℓL is a supervised
loss function between the student predictions and the original targets, and ℓD is a
distillation loss function between any statistic of the student model and the same statistic
of the teacher model. Either partial loss function can be evaluated over any relevant set
of annotated and unannotated elements, respectively.

In the following, we provide additional details on some of the proposed distillation
techniques, in particular on what information to transfer between the models, what the
teacher model can look like, as well as how to make distillation work well in practice.
For extended surveys on diverse distillation techniques see e.g. Gou et al. (2021); Wang
and Yoon (2021).

2.5 Different Notions of Knowledge

While Hinton et al. (2015) focused on matching the teacher and student on the (soft-
ened) distribution of the pre-softmax logits, subsequent research has investigated the
advantages of matching on other statistics. One can generally categorize these different
approaches as either response-, feature-, or relational-based.

Response-based knowledge distillation. A response-based knowledge distillation
technique aims at training the student to match the teacher on information obtained
from the output layer of the model. Hence, the formulation by Hinton et al. (2015)
is a response-based technique since it aims at making the student mimic the teacher’s
logits. Response-based techniques have gained great recognition due to the simplicity
and limited need for access to the teacher model, making them flexible procedures. Since
the seminal distillation procedure introduced in Section 2.3 subsequent works have,
amongst others, investigated different ways of capturing response-based information. Of
other response-based knowledge distillation techniques Tarvainen and Valpola (2017);
Srinivas and Fleuret (2018); Kim and Rush (2016); Furlanello et al. (2018); Yang et al.
(2020); Gao et al. (2020) are worthy of an explicit mention.
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Feature-based knowledge distillation. Different layers of a neural network learn
different levels of feature representations (Kornblith et al., 2019; Raghu et al., 2021;
Nguyen et al., 2021), and instead of merely training the student to mimic the output
distribution of the teacher, feature-based knowledge distillation aims at mimicking
the intricate and elaborate features of the teacher. Naturally, this requires access to
intermediate activations of the teacher model limiting some practical applications on e.g.
proprietary teacher models. Furthermore, care must be taken with regard to dimensional
differences between teacher and student features.

Now we define LD to measure the squared Euclidean distance between intermediate
activation vectors from both models (Romero et al., 2015) and take the form

LD
def=

1
|DD|

∑
x∈DD

∥ψ(fθ)(x)− β (ψ(gω)(x))∥22,

where ψ(h)(x) is a function that extracts a flattened intermediate activation vector (fea-
tures) of a model h evaluated on an element x, and β(·) is a learnable linear transformation
between the (likely different) dimensions of the teacher and student activation vectors.
Other notable feature-based knowledge distillation techniques are Zagoruyko and Ko-
modakis (2017); Heo et al. (2019); Tung and Mori (2019); Heo et al. (2019); Ahn et al.
(2019).

Relation-based knowledge distillation. Where both response- and feature-based
knowledge distillation utilize information from specific layers of the models, relation-
based knowledge distillation employ the inter-layer or inter-sample relationships of the
models. Now recall the general distillation loss in (5), then we could use LD to measure
the mutual relations of data elements (Park et al., 2019), and take the form

LD
def=

1

|DND |

∑
(x1,x2,...,xN )∈DND

ℓhuber

(
φ (f1, f2, . . . , fN ) ,φ (g1, g2, . . . , gN )

)
,

where DND is the set of N -dimensional tuples (x1,x2, . . . ,xN ), where each element is
distinct and xi ∈ DD, and we use the notation fi

def= fθ(xi) and gi
def= gω(xi). Furthermore,

ℓhuber(z,w) is the Huber loss (Huber, 1964), and φ is a relational function that measures
a geometric relational measure of the given N -tuple. For instance, let N = 3, and

φ(zi ,zj ,zk)
def=

(
zi − zj

)⊺ (
zk − zj

)
∥zi − zj∥2∥zk − zj∥2

,

then we optimize the student to match the angle-wise relation between the teacher
predictions. Other interesting approaches to relation-based knowledge distillation are
Yim et al. (2017); Tung and Mori (2019); Lee et al. (2018b); Passalis et al. (2021).

2.6 What do teachers look like and how to learn from them

In the above, we investigated what knowledge to transfer between the teacher and
student model, but we intentionally kept the teacher arbitrarily general. While indeed,
the conventional formulation of knowledge distillation by Hinton et al. (2015) aimed at
model compression, by matching a pre-trained teacher model, with a smaller student
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model, this formulation is not a necessity. In particular, with some adaptations to
the distillation loss in (5) one can e.g. choose a teacher model a) of any (ensemble of)
architecture(s) larger than the student (Hinton et al., 2015; Fukuda et al., 2017) b) of
identical architecture as the student (Furlanello et al., 2018; Mobahi et al., 2020) or c) of
smaller architecture than the student (Xie et al., 2020b). Additionally, a teacher can be
trained on different datasets than the one currently at hand (Phoo and Hariharan, 2021),
a completely different modality (Tian et al., 2020; Gupta et al., 2016), and multiple homo-
or heterogeneous (both in architecture and dataset) teachers can be used in conjunction
(You et al., 2017; Fukuda et al., 2017; Tan et al., 2019; Liu et al., 2020). The teacher
can even be trained simultaneously with the student in online distillation or offline
knowledge distillation can be combined with other model compression techniques such
as quantization or pruning (Anil et al., 2018; Aghli and Ribeiro, 2021; Polino et al.,
2018; Kim and Rush, 2016). However, the effectiveness of the conventional knowledge
distillation has been observed to be dependent on the size gap between the teacher
and student model (Mirzadeh et al., 2020; Cho and Hariharan, 2019). Furthermore,
it has been shown that one can distill a teacher model without any access to data by
synthesizing new data from the teacher with data-free distillation techniques (Chen
et al., 2019; Fang et al., 2019; Lopes et al., 2017; Nayak et al., 2019).

Other than the conventional formulation of knowledge distillation, self-distillation is of
particular interest for this dissertation, as its simplicity in formulation lends itself to a
natural first step for analyzing the behavior of knowledge distillation. Self-distillation
works by first training a teacher model on a labeled dataset and subsequently training a
student model of identical architecture (or model class) to the teacher on the predictions
of the teacher model, possibly using the original targets analogously to (6) as well.4 This
procedure can be iterated multiple times and despite no additional information being
provided to the system, it can yield an increase in predictive performance (Furlanello
et al., 2018; Mobahi et al., 2020; Yang et al., 2018). This procedure does not aim at model
compression, but rather at improving the predictive performance, and the idea of itera-
tively reusing a model as the teacher is the foundation of the theoretical investigation
of Mobahi et al. (2020), and in extension also for our theoretical analyses in Paper A
and Paper B. Mobahi et al. (2020) investigates self-distillation for particular constrained
kernel regression models and finds that when no ground-truth targets are used, the
models are progressively regularized more, yielding increasingly sparser models, even-
tually collapsing into a zero-solution. However, we find that this is not necessarily true
when including the original targets in the distillation procedure or considering Gaussian
process models.

Another relevant and interesting direction of research is on cross-domain distillation.
While conventionally, Hinton et al. (2015) proposed to distill a teacher model trained
on an identical dataset as the training dataset (or at least on a dataset assumed drawn
from the same distribution), more recently the idea of cross-domain distillation has been
proposed (Gupta et al., 2016; Tian et al., 2020; Phoo and Hariharan, 2021; Liu et al.,

4 Notably a few different approaches are often dubbed self-distillation, but unless otherwise mentioned, in
this dissertation self-distillation will refer to the procedure described here.
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2020). Cross-domain distillation allows the teacher model to be trained on any dataset
and works under the assumption that the (intermediate) representations of the teacher
model are informative on the training dataset. However, this assumption is hard to verify,
and given multiple teacher models trained on data from different domains, it is unclear
which teacher to choose. This challenge is investigated in Paper C.

2.7 Knowledge Distillation in Practice

Despite the empirical success of numerous knowledge distillation techniques, published
empirical findings are often the result of highly specialized and optimized experiments
on a set of benchmark datasets exploiting various optimization tricks. Some of these
tricks include providing different augmentations of the same data to the teacher and
student (possibly using less intrusive augmentations for the teacher data), obtaining
teacher predictions once before training on clean data and providing the student with
augmented data, or appending multiple weighted unsupervised or semi-supervised loss
functions to the overall optimization problem (Faghri et al., 2023; Tian et al., 2020; Chen
et al., 2020a,b,c; Gao et al., 2022; Grill et al., 2020). Such specialized tricks complicate
comparisons and obscure the actual effectiveness and generalization of knowledge
distillation techniques. Thus, Beyer et al. (2022) perform a large-scale empirical analysis
of the conventional knowledge distillation procedure by Hinton et al. (2015) to identify
a robust and effective recipe for effective knowledge distillation. Beyer et al. (2022)
find that effective knowledge distillation generally requires consistent input data for
the teacher and student model, exceptionally long training schemes compared to the
majority of common deep learning training as well as strong data augmentation. These
findings are in large part supported by another empirical, yet rigorous, analysis of
the efficiency of knowledge distillation by Stanton et al. (2021). They also consider
the conventional knowledge distillation setting by Hinton et al. (2015), and through
numerous ablation studies conclude that the challenge of efficient knowledge distillation
is solving an unusually hard optimization problem. The findings of both Beyer et al.
(2022) and Stanton et al. (2021) motivate our empirical analysis in Paper D.

3 Introduction of Papers

In the following section, the five papers included in this dissertation are each introduced
individually. Specifically, each is motivated and aligned with related research, and the
methodological approach along with the main results are presented. The approach to
investigate and improve knowledge distillation differs notably between the five papers.
In particular, Paper A and Paper B are theoretical papers providing rigorous mathemati-
cal derivations, whereas Paper C, Paper D, and Paper E are empirical papers yielding
experimental observations and/or provide novel procedures for certain empirical tasks.
These differences will be clear in the following introductions and the papers themselves.
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3.1 Paper A: Even your Teacher Needs Guidance: Ground-Truth Targets
Dampen Regularization Imposed by Self-Distillation

Despite the significant empirical success of knowledge distillation, a theoretical justifica-
tion of knowledge distillation lags behind mainly due to the immense challenges of ap-
plying mathematical rigor to neural networks and their training procedures. This paper
provides theoretical results on the inner workings of the particular case of self-distillation
in the simplified, yet mathematically rigorous setting of kernel ridge regression.

This paper is building on the seminal results of Mobahi et al. (2020), which analyses
self-distillation of nonlinear functions in a Hilbert Space subject to ℓ2-regularization.
By omission of details, this setting is largely similar to fitting kernel ridge regression
models in a constrained optimization setting. In particular, Mobahi et al. (2020) first
finds that the model, ft , after any finite number, t > 0, of distillation steps, can be written
as a weighted sum of some basis functions (see Mobahi et al., 2020, equation (47)), and
then shows that self-distillation without the original targets (except for the first fit)
corresponds to applying a progressively amplified regularization to this solution (see
Mobahi et al., 2020, Theorem 5). Thus, self-distillation progressively sparsifies the set
of basis functions used for the solution, eventually causing the solution to collapse to a
zero-solution.

We propose to directly investigate self-distillation for kernel ridge regression and to
include the original targets in each step of distillation in Paper A. That is, we consider
the objective function

Ldistill(f (X,β),y,y(τ−1))

=
α(τ)

2

∥∥∥f (X,β)− y
∥∥∥2

2
+

1−α(τ)

2

∥∥∥f (X,β)− y(τ−1)
∥∥∥2

2
+
λ
2

∥∥∥β∥∥∥2
2
,

(6)

where α(τ) ∈ [0,1], τ ≥ 1, λ > 0, y ∈ Rn are the original targets, y(0) def= y, and f (X,β) =
ϕ(X)β. Furthermore, y(τ−1) def= f (X, β̂(τ−1)) ∈ Rn are the predictions of the previous iter-
ation of the model where β̂(τ−1) def= argminβLdistill(f (X,β),y,y(τ−2)). Thus, the objective
in (6) is a weighted sum of two mean squared error objective functions with different
targets and an ℓ2-regularization on the model weights. While indeed (6) can be solved
analytically, doing so for multiple distillation steps quickly becomes computationally
expensive. Thus, we derive an explicit expression for the solution at any distillation step,
which can be computed efficiently based on the first ordinary fit to the original data. In
particular, fix α(2), . . . ,α(τ) ∈ [0,1), and let η(i,τ) def=

∏τ
j=i

(
1−α(j)

)
, then for τ ≥ 1, we have

y(τ) =

 τ∑
i=2

α(i)η(i + 1, τ)
(
K (K +λIn)−1

)τ−i+1
+ η(2, τ)

(
K (K +λIn)−1

)τy (7)

f (x, β̂(τ)) = α(τ)f (x, β̂(1)) + (1−α(τ))f (x, β̂(τ)
α=0) for any x ∈ Rd (8)

where β̂(τ)
α=0 is the minimizer of (6) with α(τ) = 0. Here we can reuse the computation of

K and the inverted matrix (K +λIn)−1 for any τ > 1. We now note that we can rewrite
K = VDV⊺ by the spectral decomposition, where V ∈ Rn×n is an orthogonal matrix with
the eigenvectors of K as rows and D ∈ Rn×n is a non-negative diagonal matrix with the
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associated eigenvalues in the diagonal. We can then rewrite (7) as

y(τ) = VB(τ)V⊺y, where (9)

B(τ) def=
τ∑
i=2

α(i)η(i + 1, τ)Aτ−i+1 + η(2, τ)Aτ , and (10)

A def= D(D +λIn)−1, (11)

and A, B(τ) ∈ Rn×n are diagonal matrices, and merely B(τ) depend on τ . Thus, any
dynamic of the distillation procedure must be derivable from B(τ). By analyzing (9) ,
we both recover the findings of Mobahi et al. (2020); the solutions are progressively
sparsified for α = 0, but also that we can provide no such guarantees when α ∈ (0,1). In
particular, we find that when we include the original targets in our distillation procedure
the solutions are not consistently regularized stronger with each distillation step, but we
can potentially obtain solutions which does not sparsify any further. We further provide
a formula to compute how the solution will behave at the next immediate distillation
step in such a setting.

Now, since the solutions do not necessarily collapse to a zero-solution for α ∈ (0,1],
we are able to derive

lim
τ→∞

y(τ) = K
(
K +

λ
α

In
)−1

y (12)

as a simple closed-form expression for the solution after an infinite number of distillation
steps. This solution merely corresponds to an ordinary kernel ridge regression solution
with regularization parameter α−1, despite the intermediate solutions showing different
behavior as argued above. Furthermore, if we let X̃ ∈ Rm×d be the matrix of validation
inputs, ỹ ∈ Rm the associated vector of validation targets and allow α(τ) ∈ R, we find an
optimal α(τ) at each step τ as the solution to

α⋆(τ) = argmin
α(τ)∈R

∥∥∥ỹ− f (X̃, β̂(τ))
∥∥∥2

2

Finally, we provide a procedure to estimate the optimal weight efficiently for neural
networks and support these theoretical findings with illustrative examples for kernel
ridge regression and empirical experiments for neural networks.

3.2 Paper B: Self-Distillation for Gaussian Process Models

The aim of Paper B is to extend the kernel ridge regression setting investigated in Mobahi
et al. (2020) and Paper A to Gaussian Process (GP) models. Unlike the deterministic
predictions obtained from kernel ridge regression, GP models produce probabilistic
predictions, and it is not immediately clear how one should incorporate such probabilistic
information in a distillation setting. At the time, no investigation of distillation with
GPs existed in the literature, and thus, in this paper, we propose two different types of
self-distillation with GP models for both regression and classification tasks.

Specifically, we proposed a deterministic procedure, named d-GPSD, as well as a
probabilistic procedure, named ρ-GPSD. d-GPSD discards the uncertainty estimates of
the predictions and merely reuses the mean predictions for the training of the model
in the succeeding iteration, whereas ρ-GPSD reuses the full posterior predictive distri-
bution as a prior for the succeeding iteration of distillation, thereby incorporating the
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probabilistic nature of the predictions. For the sake of brevity, we restrict our analysis
to the case where ground-truth targets are only used for the first model fit, and all
subsequent fits are based on merely the predictions of the preceding iteration of the
model. Furthermore, for simplicity, we consider one-dimensional input and targets (i.e.
univariate regression or binary classification).

Generally, we assume a generic input-output pair (x, y) ∈ Rd ×R is related by y =
f (x) + ε, where f ∼ GP (m,k) with mean function m : Rd → R and positive semi-definite
covariance function (kernel) k : Rd ×Rd → R, and independent ε ∼N (0,γ). However, for
ease of exposition, we only consider univariate inputs, x ∈ R. Given a training set D =
{(xi , yi) | i = 1, . . . ,N }, where we denote x def= (x1, . . . ,xN )⊺, and a test set x∗

def= (x∗1, . . . ,x∗M )⊺,
the posterior predictive distribution of f∗

def= (f (x∗1), . . . , f (x∗M ))⊺ given D is

f∗ | x,y,x∗ ∼N (µ∗,Σ∗), where

µ∗ =m(x∗) + k(x∗,x
⊺)(K +γIN )−1 (y−m(x)) ,

Σ∗ = k(x∗,x
⊺
∗ )− k(x∗,x

⊺)(K +γIN )−1k(x,x⊺∗ ).

and where x and x∗ are stacked training and test input, respectively. We use the notation
K for the matrix K = k(x,x⊺) which we assume is invertible, and we will notationally omit
the conditioning on x and x∗. For classification, we assume the conditional distribution
y | f (x) is a Bernoulli distribution with probability σ (f (x)) where σ ( · ) is the logistic
function and f ∼ GP (m,k).

We first investigate the regression task, and find that for d-GPSD, the behavior of the
mean function is equivalent to the kernel ridge regression solution from Mobahi et al.
(2020) and Paper A. However, for ρ-GPSD, if we allow the noise terms γt to be different
in each step indexed by t = 1,2, . . . , then the distillation procedure yields a sequence of
GP models, GP (mt , kt), where the mean and covariance functions satisfy the recursions

mt+1(x) =mt(x) + kt(x,x
⊺)[Kt +γtIN ]−1(y−mt(x)) (13)

kt+1(x,y) = kt(x,y)− kt(x,x⊺)[Kt +γtIN ]−1kt(x, y) (14)

with Kt
def= kt(x,x⊺), m0(x) def= 0, k0(x,y) def= k(x,y) and γt > 0. Solving these recursions for t

steps with γ0,γ1, . . . ,γt−1 is equivalent to an ordinary GP regression model with penalty
parameter 1/γ−t−1 where γ−t

def=
∑t
s=0 1/γs and γ−−1

def= 0. In particular, for t = 1,2, . . . we show
in Theorem B.3 that

mt(x) = k0(x,x⊺)(K + IN /γ
−
t−1)−1y (15)

kt(x,y) = k0(x,y)− k0(x,x⊺)(K + IN /γ
−
t−1)−1k0(x, y).

Additionally, we show that if we fix γt = γ for all t = 1,2, . . . then fitting an ordinary GP
regression model on a dataset, Dt , consisting of t replicates of the original dataset yields
the same solution as t steps of self-distillation, in a sense made precise in Corollary B.4.

Next, we investigate the classification setting, and as usual for GP classification
we need to approximate the intractable f | y. We will use the Laplace approximation
throughout (Rasmussen and Williams, 2006). For the ρ-GPSD setting, we find that t steps
of probabilistic distillation on a replicated dataset, Dt , correspond to an ordinary GP
classification model with the covariance function scaled by t. Furthermore, t iterations of
probabilistic distillation on the original dataset yield approximately the same posterior
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as a GP classification model with the covariance function scaled by t. For the d-GPSD
setting, we need additional care. In particular, while the predictions of the first GP
classification model are deterministic, they represent probabilities and are in [0,1] rather
than binary classes in {0,1}. Thus, using the Bernoulli likelihood for distillation would
yield a misspecified model, and we need to reformulate the GP model in the distillation
steps. A natural choice of likelihood function would be the beta distribution (with equal
parameters), but compared to the Bernoulli distribution, the parameter and variable
switch places, making the analysis of such a setting peculiar. Thus, we propose to use
the Continuous Bernoulli by Loaiza-Ganem and Cunningham (2019), denoted by CB(λ)
for some probability parameter λ, which is a more natural extension on the Bernoulli
distribution to continuous parameters compared to the beta distribution. This allows us
to naturally model soft predictions, but to do so we first derive some properties of the
normalizing term, C(λ) of a CB(λ) distribution. In particular, let λ = σ (a) for some a ∈ R,
then by utilizing trigonometric functions, we find simple expressions for both C(σ (a)),
as well as the first- and second-order derivatives of log(C(σ (a))) when a , 0,

C(λ) = acoth
( a

2

)
,

d
da

log(C(λ)) =
1
a
− 1

sinh(a)
,

d2

d2a
log(C(λ)) = − 1

a2 +
coth(a)
sinh(a)

,

where coth, and sinh are the hyperbolic cotangent, and sine functions, respectively. See
Proposition B.5 for details and the results when a = 0. Based on these results, we can
apply the Laplace approximation and empirically find that this has a significant effect
on the model predictions, especially compared to an improperly specified model using
the binomial on soft targets.

While ideally, we would analyze properties of self-distillation with neural networks,
we resolve to derive properties of self-distillation in the rigorous and tractable Gaussian
Process models, which translates to certain wide neural networks through the NNGP
(Neal, 1996; Matthews et al., 2018; Novak et al., 2019). Thus, intuitively t steps of self-
distillation with wide neural networks should be (at least approximately) equivalent to t
steps of self-distillation with the corresponding Gaussian Process model, the behavior of
which is described through the results in Paper B.

3.3 Paper C: Distilling from Similar Tasks for Transfer Learning on a Budget

It has been observed that the performance of neural networks typically improves with
the size of the model and the amount of data used for training (Sun et al., 2017; Zhai
et al., 2022; Kolesnikov et al., 2020). This however is a challenge for specialized tasks
in e.g. medicine (x-ray images) or science (e.g. satellite images), where annotated data
and the available compute (both for training and inference) are often sparse. Thus, the
aim of Paper C is to determine how to train accurate models on tight data and compute
budgets without fine-tuning large pre-trained models.

A common attempt at alleviating the challenge of limited annotated data is by fine-
tuning large models that are pre-trained on some other task. Unfortunately, evidence
suggests that fine-tuning large models performs the best (Zhai et al., 2022; Dehghani
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et al., 2023; Kolesnikov et al., 2020), and even fine-tuning large models can be pro-
hibitively expensive. Thus, specialized applications are left with a trade-off between
expensive computational costs or inferior predictive performance from smaller models.
Thus, to avoid fine-tuning large pre-trained models, we propose to utilize the large
amount of publicly available models trained on specialized tasks in a semi-supervised
cross-domain distillation procedure.

In particular, we assume a semi-supervised setting in which we have a target task
specified by a limited set of annotated data Dlτ , but readily available unannotated
data, Duτ , associated with the target task. Furthermore, we assume the ability to perform
inference with a set S = {Ms}Ss=1 of S different source models,Ms, of various architectures
and trained on source tasks different from the target task. We assume all modelsMs are
classification models that can be parameterized as a feature extractor φs followed by a
classifier head, hs, i.e. written as Ms = hs ◦φs.

The main idea of our methods is based on the following observation. Despite a
source and target model typically do not share the same label space (or even dimension),
the source model can still be informative of the target task if the label space of the
source model and the true target tasks labels align well. Thus, we can ignore the actual
interpretation of the source label space and utilize the pseudo-labels provided in the
source space as proxies for the true labels in the target label space. For instance, if the
target task aims at classifying dog breeds, and a source model specialized in cat breeds
(or satellite images for that matter) consistently classifies certain dog breeds as certain cat
breeds, then this classification (although nonsensical for interpretation) is informative
on how to classify the dog breeds.

Concretely, we propose two methods DistillNearest and DistillWeighted. The
general strategy entails first computing a measure of “task similarity” between each
source model and the target task, capturing whether the source model is discriminative
of the target task. Then the source models are ranked based on the task similarity and
for DistillNearest the most similar source model is selected, while for DistillWeighted

each source model is assigned a relative weight αs based on the computed task similarity
measure, such that

∑S
s=1αs = 1. We then propose to minimize the objective function

Lmulti
def= λLlabeled + (1−λ)

S∑
s=1

αsLdistill
s , (16)

where λ,α1, . . . ,αS ∈ [0,1], and the first loss function is the standard supervised objective
over the labeled data,

Llabeled def=
1

|Dlτ |

∑
(x,y)∈Dlτ

ℓCE (hτ (φτ (x)),y) , (17)

where ℓCE( · , · ) is the cross-entropy loss. The second term consists of distillation losses
over the unlabeled data,

Ldistill
s

def=
1
|Duτ |

∑
x∈Duτ

ℓCE (hsτ (φτ (x)),Ms(x))) , (18)

but since the source and target tasks do not share the same label space additional
classifier heads, hsτ , mapping the features from the target task feature extractor, φτ , to
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the label space of the source task are introduced. These additional classifier heads are all
discarded after training, leaving the architecture of the original target model unchanged
at inference time. We note, that for DistillNearest we have αs∗ = 1, where s∗ corresponds
to the index of the single highest-ranked source model, and all other weights are zero.

Thus, it remains to determine how to define the task similarity measure such that
it is informative of the discriminative power of a source model on a target task, but
also dimension agnostic, since various source models produce predictions in different
label spaces. We identify existing measures such as the PARC, CKA, and RSA (Cortes
et al., 2012; Kornblith et al., 2019; Dwivedi and Roig, 2019; Bolya et al., 2021) that are
dimension agnostic measures of similarity between similarity matrices and we find that
these measures correlate well with the predictive performance of our target model after
distillation. Thus, we use PARC as default and observe that the highest-ranked model by
PARC is often also the best source model for distillation.

We evaluate the accuracy of both DistillNearest and DistillWeighted over a set of
8 different target tasks, each with 28 different source models, and show superior perfor-
mance averaged over all tasks compared to multiple baselines including fine-tuning an
ImageNet pre-trained target model and the strong semi-supervised baseline FixMatch
(Sohn et al., 2020). Furthermore, we find that while DistillNearest shows great im-
provements, it assumes a single optimal source model is available for the target task.
This assumption might not be satisfied in practice and in such cases DistillWeighted

improves on or matches the performance of DistillNearest, by the ability to combine
information from multiple (weighted) source models. In the paper, and the associated
supplementary material, we perform numerous ablation studies and find that while
our method is simple it performs well and is robust to hyperparameter selection. Thus,
we find that under computational constraints and limited annotated data, our methods
outperform strong baselines across different target tasks.

3.4 Paper D: A Quest for Perfect Teacher-Student Agreement in Knowledge
Distillation

The common tale of why distillation works is that the student learns to match the
predictions of the teacher, and thus improves over a student model trained supervised
(Bucila et al., 2006; Hinton et al., 2015). However, Stanton et al. (2021) and Beyer
et al. (2022) questions this understanding. In particular, Stanton et al. (2021) considers
the agreement between the teacher and student under various conditions and shows
that a randomly initialized student trained with distillation does not match the teacher
predictions very often (only ≈ 80% of the time) even though it has the model capacity
to perfectly do so. However, when initialized close enough to the trained teacher, it
can perfectly match the teacher. Beyer et al. (2022) finds that students trained with
distillation benefit from excessively long training durations combined with very strong
augmentation and interpolation between training samples to better match the function
of the teacher.

Hence, the common conception of why distillation works appears to be ungrounded,
and thus, in this working paper, we perform a set of experiments aimed at understanding
under which conditions we do in fact obtain a perfect teacher-student agreement. If
we can provide such conditions, we can adjust the conditions to imitate more realistic
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distillation scenarios and get a better understanding of how and when distillation works.
Therefore, the starting point of Paper D is to investigate the self-distillation setting,

where we explicitly know the trained teacher weights, and that the student has the
functional capacity to perfectly match this teacher. In particular, we consider the
knowledge distillation loss as formulated by Hinton et al. (2015) and presented in (4), but
initialize our student models with weights interpolated between the teacher initialization
and the trained teacher weights. Through multiple experiments, we find supporting
evidence for the excessive training durations of Beyer et al. (2022). Additionally, we
recover the observation of Stanton et al. (2021) that student initialization is highly
important in order to achieve high agreement. In particular, students initialized slightly
toward the teacher achieve notably higher agreement than students initialized at the
teacher initialization.

Interesting directions for future research in this paper are to investigate other means
of student initialization such as interpolation between random weights and trained
teacher weights. Furthermore, analysis of the possible confounding effect of teacher
accuracy on the achieved agreement is also of great importance.

3.5 Paper E: Automatic Sleep Scoring using Patient-Specific Ensemble
Models and Knowledge Distillation for Ear-EEG Data

Knowledge distillation has shown great empirical results on controlled benchmark
datasets. However, its effectiveness in less controlled settings has not been well-studied.
Thus, the aim of Paper E is to illustrate the effectiveness of knowledge distillation in an
automatic sleep scoring task, which is a challenging yet important problem due to the
high subject variability of sleep patterns (Mikkelsen et al., 2019, 2021, 2022).

Specifically, we consider 4 full nights of ear-EEG measurements associated with 20
different subjects. Furthermore, half the subjects also have 12 additional full nights
of ear-EEG measurements without annotations. Each night is split into a sequence of
30-second subsequences, and one of five sleep stages is manually assigned to each epoch
by a clinician (Mikkelsen et al., 2019; Berry et al., 2017). Thus, a single night of 8 hours
of measurements corresponds to approximately 960 subsequences that need manual
annotation. This time-consuming and labor-intensive task quickly makes such manual
annotation financially prohibitive, and the need for reliable, effective, and accurate
automatic sleep-scoring techniques is immediate.

We propose a two-phase approach for automatic sleep scoring using knowledge
distillation by utilization of ensemble models and unannotated personal measurements.
In the first phase, we train multiple neural network models of the specialized architecture
SeqSleepNet (Phan et al., 2019). These models are then combined into an ensemble
model, and we observe a monotonically increasing predictive performance (measured by
Cohen’s kappa) with the size of the ensemble as well as a significant improvement over a
single model. However, the cumbersome ensemble model is computationally expensive
to deploy. Thus, we employ knowledge distillation to reduce the computational costs of
model inference with little drop in predictive performance (namely Cohen’s kappa).

In the second phase, we use knowledge distillation to distill the ensemble model into
a single SeqSleepNet model. However, due to the flexibility of the knowledge distillation
setup, we are able to utilize unannotated data in the distillation procedure. We repeat the
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distillation procedure with different amounts and types of data, both to investigate the
possible performance gains of different types of data and to simulate realistic settings. In
particular, we consider general students and various personal students. For the former, we
utilize 108 nights of unannotated samples (i.e. all unannotated samples not associated
with the test subject) and are able to recover about 40% of the performance improvement
by the ensemble model compared to the single-model baseline. For the latter, we
consider 4 different choices of unannotated samples: using the 4 test nights without
manual annotations along with a) no other nights, b) the 12 unannotated nights for the
test subject, c) all 120 unannotated nights, or d) only using the 12 unannotated nights
associated with the test subject and not the 4 test nights. Evaluated over the 10 subjects
with unannotated nights, we observe a consistent performance increase compared to
the baseline, even surpassing the ensemble model when such is constructed of 2 base
models. All these student models require identical compute costs to a baseline model at
inference time.

We further support our findings with ablation studies on the choice of distillation
temperature and the number of unannotated nights. We find that the performance of
the distilled model improves with a small distillation temperature and monotonically
increases with more unannotated nights. However, the improvements associated with
additional nights diminish after about 10-12 nights.

Thus, Paper E demonstrates that knowledge distillation is a promising approach for
automatic sleep scoring and illustrates a promising way to utilize large amounts of cheap
unannotated data for personalized models.
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Abstract. Knowledge distillation is classically a procedure where a neural network is trained
on the output of another network along with the original targets in order to transfer knowledge
between the architectures. The special case of self-distillation, where the network architectures
are identical, has been observed to improve generalization accuracy. In this paper, we consider
an iterative variant of self-distillation in a kernel regression setting, in which successive steps
incorporate both model outputs and the ground-truth targets. This allows us to provide the first
theoretical results on the importance of using the weighted ground-truth targets in self-distillation.
Our focus is on fitting nonlinear functions to training data with a weighted mean square error
objective function suitable for distillation, subject to ℓ2 regularization of the model parameters.
We show that any such function obtained with self-distillation can be calculated directly as a
function of the initial fit and that infinite distillation steps yield the same optimization problem as
the original with amplified regularization. Furthermore, we provide a closed-form solution for
the optimal choice of weighting parameter at each step and show how to efficiently estimate this
weighting parameter for deep learning and significantly reduce the computational requirements
compared to a grid search.
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A.1 Introduction

Knowledge distillation, most commonly known from Hinton et al. (2015), is a procedure
to transfer knowledge from one neural network (teacher) to another neural network
(student).1 Often the student has fewer parameters than the teacher, and the procedure
can be seen as a model compression technique. Originally, the distillation procedure
achieves the knowledge transfer by training the student network using the original
training targets, denoted as ground-truth targets, as well as a softened distribution of
logits from the (already trained and fixed) teacher network.2 Since the popularization
of knowledge distillation by Hinton et al. (2015), the idea of knowledge distillation has
been extended to a variety of settings.3 This paper will focus on the special case where
the teacher and student are of identical architecture, called self-distillation, and where
the aim is to improve predictive performance, rather than compressing the model.

The idea of self-distillation is to use outputs from a trained model together with the
original targets as new targets for retraining the same model from scratch. We refer to
this as one step of self-distillation, and one can iterate this procedure for multiple distil-
lation steps (see Figure A.1). Empirically, it has been shown that this procedure often
generalizes better than the model trained merely on the original targets, and achieves
higher predictive performance on validation data, despite no additional information
being provided during training (Furlanello et al., 2018; Ahn et al., 2019; Yang et al.,
2018).

Figure A.1: Illustration of self-distillation for two steps after the initial training, where we use the notation
f (τ) = f ( · , β̂(τ)). See Section A.3 for details.

Modern deep neural networks are often trained in the over-parameterized regime,
where the number of trainable parameters highly exceeds the number of training samples.
Under simple first-order methods such as gradient descent, such large networks can
fit any target, but in order to generalize well, such overfitting is usually undesirable
(Zhang et al., 2017; Nakkiran et al., 2020). Thus, some type of regularization is typically
imposed during training, in order to avoid overfitting. A common choice is to add an
ℓ2-regularization4 term to our objective function, which has been shown to perform
comparably to early-stopping gradient descent training (Yao et al., 2007). However, in the
theoretical study of the over-parameterized regime, regularization is often overlooked,
but recent results have shown a connection between wide neural networks and kernel
ridge regression through the Neural Tangent Kernel (NTK) (Lee et al., 2019, 2020; Hu

1 Often knowledge distillation is also referred to under the name Teacher-Student learning.
2 We will refer to the weighted outputs of the penultimate layer, i.e. pre-activation of the last layer, as logits.
3 See Section A.2 for a brief overview, or see Wang and Yoon (2021) for a more exhaustive survey
4 With slight differences, ℓ2 regularization is often referred to as weight decay and ridge regularization in

deep learning and statistical learning literature, respectively. See e.g. Loshchilov and Hutter (2019) for
details.
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et al., 2020). We briefly elaborate on this connection in Section A.IV, which motivates
our problem setup and connection to deep learning in Section A.5.

Our Contributions. Through a theoretical analysis, we show that

• the solution at any distillation step can easily be calculated as a function of the
initial fit, and infinitely many steps of self-distillation (with fixed distillation
weight) correspond to solving the usual kernel ridge regression problem with a
specific amplified regularization parameter when the distillation weight is non-
zero,

• for fixed distillation weights, self-distillation amplifies the regularization at each
distillation step, and the ground-truth targets dampen the sparsification and
regularization of the self-distilled solutions, ensuring non-zero solutions for any
number of distillation steps,

• the optimal distillation weight has a closed-form solution for kernel ridge regres-
sion, and can be estimated efficiently for neural networks compared to a grid
search.

Proofs of all our results can be found in Supplementary Material A.I, and code to
reproduce our illustrative example in Section A.4.5 and experimental results in Section
A.II can be found at https://github.com/Kennethborup/self_distillation.

A.2 Related Work

The idea of knowledge distillation dates back to Bucila et al. (2006), and was later
brought to the deep learning setting by Ba and Caruana (2014) and more recently
popularized by Hinton et al. (2015) in the context of compressing neural networks. Since
the original formulation, various extensions have been proposed. Some approaches focus
on matching the teacher and student models on statistics other than the distribution of
the logits, such as intermediate representations (Romero et al., 2015), spacial attention
maps (Zagoruyko and Komodakis, 2017), Jacobians (Srinivas and Fleuret, 2018), Gram
matrices (Yim et al., 2017), or relational information between teacher outputs (Park
et al., 2019). Other extensions focus on developing the transfer procedure, such as self-
distillation (Furlanello et al., 2018), data-free distillation (Lopes et al., 2017; Nayak et al.,
2019; Micaelli and Storkey, 2019; Chen et al., 2019; Fang et al., 2019), data distillation
(Radosavovic et al., 2018), residual knowledge distillation (Gao et al., 2020), online
distillation (Anil et al., 2018) or contrastive distillation (Ahn et al., 2019; Tian et al.,
2020a).

The practical benefits of knowledge distillation have been proven countless times in a
variety of settings, but the theoretical justification for knowledge distillation is still highly
absent. Hinton et al. (2015) conjecture that the success of knowledge distillation should
be attributed to the transfer of dark knowledge (e.g. inter-class relationships revealed in the
soft labels). Müller et al. (2019); Tang et al. (2020) support this conjecture, and argue that
knowledge distillation is similar to performing adaptive label smoothing weighted by the
teacher’s confidence in the predictions. Dong et al. (2019) shows the importance of early
stopping when training over-parameterized neural networks for distillation purposes
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by arguing that neural networks tend to fit informative and simple patterns faster than
noisy signals, and knowledge distillation utilizes these simple patterns for knowledge
transfer. Abnar et al. (2020) empirically investigate how knowledge distillation can
transfer inductive biases between student and teacher models, and Gotmare et al. (2019)
empirically shows how the dark knowledge shared by the teacher mainly is disbursed to
some of the deepest layers of the teacher.

To the best of our knowledge, few papers investigate knowledge distillation from
a rigorous theoretical point of view, and those that do, do so with strong assumptions
on the setting. Phuong and Lampert (2019) ignore the ground-truth targets during
distillation and furthermore assume linear models. Mobahi et al. (2020) investigate
self-distillation in a Hilbert space setting with kernel ridge regression models where
the teacher is trained on the ground-truth targets, and the student (and subsequent
iterations) is only trained on the predictions from the teacher without access to the
ground-truth targets. They show that self-distillation progressively limits the number of
basis functions used to represent the solutions, thus eventually causing the solutions to
underfit. In this paper, we build on the theoretical results of Mobahi et al. (2020), but we
include the weighted ground-truth targets in the self-distillation procedure, where we
allow the weight to depend on the self-distillation step, and show how this drastically
affects the behavior and effect of self-distillation.5

A.3 Problem Setup

Notation. Vectors and matrices are denoted by bold-faced letters; vectors are column
vectors by default, and for a vector a let [a]i be the i-th entry, and for a matrix A let [A]i,j
be the (i, j)-th entry. Let In denote the identity matrix of dimension n, [k] = {1,2, . . . , k},
and let ∥ · ∥2 and ∥ · ∥F denote the ℓ2-norm and the Frobenius norm, respectively. Finally,
for a function h : Rn→ Rd and X ∈ Rm×n, we denote by h(X) the Rm×d matrix of outcomes,
where the i’th row of h(X) is the function applied to the i’th row of X, i.e. [h(X)]i,· = h(xi).

Consider the training dataset D ⊆ Rd ×R, and let X = {x | (x, y) ∈ D} and Y = {y |
(x, y) ∈ D} denote the inputs and targets, respectively. Let X = [xi]i∈[n] ∈ Rn×d be the
matrix of inputs, y = [yi]i∈[n] the vector of targets, and X̃ ∈ Rm×d , ỹ ∈ Rm be the matrix
and vector of validation inputs and targets, respectively. Given a feature map ϕ : Rd →V ,
where V has dimension D, we denote by K = κ(X,X) = [κ(xi ,xj )]ni,j=1 ∈ Rn×n, where
κ(xi ,xj ) = ⟨ϕ(xi),ϕ(xj )⟩, the symmetric kernel (Gram) matrix associated with the feature
map ϕ.6

A.3.1 Self-Distillation of Kernel Ridge Regressions

In order to avoid overfitting our training data, we will impose a regularization term on
our weights, and thus investigate the kernel ridge regression functions f ∈ F mapping
f : X → Y , to construct a solution which best approximates the true underlying data
generating map and generalize well to new unseen data from this underlying map. We

5 In Supplementary Material A.V we relate our problem setup to Mobahi et al. (2020) and extend some of our
results to a constrained optimization setting with a regularization functional in Hilbert space.

6 Since the kernel trick makes the predictions depend only on inner products in the feature space, it is not a
restriction if D is infinite. However, for ease of exposition, we assume D is finite.
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consider self-distillation in the kernel ridge regression setup; i.e. consider the (self-
distillation) objective function

Ldistill(f (X,β),y1,y2) =
α
2

∥∥∥f (X,β)− y1

∥∥∥2
2

+
1−α

2

∥∥∥f (X,β)− y2

∥∥∥2
2

+
λ
2

∥∥∥β∥∥∥2
2
, (A.1)

where α ∈ [0,1], λ > 0, y1,y2 ∈ Rn and f (X,β) = ϕ(X)β. The objective in (A.1) is a
weighted sum of two Mean Square Error (MSE) objective functions with different tar-
gets7 and an ℓ2-regularization on the model weights. Minimization of (A.1) w.r.t. β is
straightforward and yields the minimizer

β̂
def= argmin

β
Ldistill(f (X,β),y1,y2) (A.2)

= ϕ(X)⊺ (K +λIn)−1 (αy1 + (1−α)y2) (A.3)

by Woodbury’s matrix identity and definition of K. This solution can also be seen as a
direct application of the Representer Theorem (Schölkopf et al., 2001). Let y(0) def= y, i.e.
the original targets, and recursively define for the steps τ ≥ 1,

β̂(τ) def= argmin
β
Ldistill(f (X,β),y,y(τ−1)) (A.4)

= ϕ(X)⊺ (K +λIn)−1
(
α(τ)y + (1−α(τ))y(τ−1)

)
,

f (x, β̂(τ)) def= ϕ(x)⊺β̂(τ) (A.5)

= κ(x,X)⊺ (K +λIn)−1
(
α(τ)y + (1−α(τ))y(τ−1)

)
,

y(τ) def= f (X, β̂(τ)), (A.6)

for fixed α(τ) ∈ [0,1]. Notice, the initial step (τ = 1) corresponds to standard training
by definition and as such is independent of α(1). Self-distillation treats the weighted
average of the predictions, y(1), from this initial model on X, and the ground-truth
targets, y, as targets. This procedure is repeated as defined in (A.4) -(A.6) and we obtain
the self-distillation procedure as illustrated in Figure A.1. Note, the special cases α(τ) = 0
and α(τ) = 1 correspond to merely training on the predictions from the previous step,
and only training on the original targets, respectively. Thus, α(τ) = 1 is usually not of
interest, as the solution is equal to a classical kernel ridge regression, and self-distillation
plays no role in this scenario. We will often consider the special case of equal weights,
α(2) = · · · = α(τ) = α, and if α = 0 this corresponds to the setting investigated in Mobahi
et al. (2020) in a slightly different setup. Thus, some of the following results can be seen
as a generalization of Mobahi et al. (2020) to step-wise and non-zero α.

A.4 Main Results

In this section, we present our main results for finitely and infinitely many distillation
steps along with a closed-form solution for the optimal α(τ) as well as an illustrative
example highlighting the effect of the chosen sequence of (α(t)) on the solutions.

7 It is straightforward to verify that minimizing (A.1) and the classic MSE objective with a weighted target,
i.e. L̃distill(f (X,β),y1,y2) = 1

2 ∥f (X,β)− (αy1 + (1−α)y2)∥22 + λ
2 ∥β∥

2
2, are equivalent and that the objective

functions are equal up to the additive constant α(α − 1)∥y1 − y2∥22.
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A.4.1 Finite Self-Distillation Steps

Our first result, which follows from straightforward computations, states that the pre-
dictions obtained after any finite number of distillation steps can be expressed directly
as a function of y and the kernel matrix K calculated at the initial fit (τ = 1).

Theorem A.1. Let y(τ), β̂(τ), and f ( · , β̂(τ)) be defined as above. Fix α(2), . . . ,α(τ) ∈ [0,1), and
let η(i,τ) def=

∏τ
j=i

(
1−α(j)

)
, then for τ ≥ 1, we have that

y(τ) =

 τ∑
i=2

α(i)η(i + 1, τ)
(
K (K +λIn)−1

)τ−i+1
+ η(2, τ)

(
K (K +λIn)−1

)τy, (A.7)

f (x, β̂(τ)) = α(τ)f (x, β̂(1)) + (1−α(τ))f (x, β̂(τ)
α=0) (A.8)

for any x ∈ Rd , where β̂(τ)
α=0 is the minimizer in (A.4) with α(τ) = 0.

Proof. See proof on page 48.

Since (A.7) and (A.8) are expressed only in terms of K, (K + λIn)−1, κ(x,X), and y
we are able to calculate the predictions for the training data as well as for any x ∈ Rd

based merely on the initial fit (τ = 1) without the need for any additional fits. Hence,
despite the calculations of K, κ(x,X), and especially (K + λIn)−1 being (potentially)
highly computationally demanding, when obtained, we can calculate any distillation
step directly by the equations in Theorem A.1. Furthermore, predictions at step τ can
be seen as a weighted combination of two classical ridge regression solutions, based on
the original targets and the predicted targets from step τ − 1, respectively. However,
choosing appropriate α(t) for t = 2, . . . , τ is non-trivial. We explore these dynamics in
Section A.4.3 and A.4.4. First, we use Theorem A.1 to analyze the regularization that
self-distillation progressively imposes on the solutions.

A.4.2 Effective Sparsification of Self-Distillation Solutions

We now show that we can represent the solutions as a weighted sum of basis functions and
that this basis sparsifies when we increase τ , but also that the amount of sparsification
depends on the choice of α. A similar sparsification result for the special case of fixed
α(τ) = 0 for τ ≥ 1 was proved in Mobahi et al. (2020), and in particular, our (A.15)
generalizes equation (47) in their paper.

Using the spectral decomposition of the symmetric matrix K we write K = VDV⊺,
where V ∈ Rn×n is an orthogonal matrix with the eigenvectors of K as rows and D ∈ Rn×n is
a non-negative diagonal matrix with the associated eigenvalues in the diagonal. Inserting
the diagonalization yields

K(K +λIn)−1 = VDV⊺(VDV⊺ +λIn)−1 (A.9)

= VD (D +λIn)−1 V⊺, (A.10)
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where λ > 0. By straightforward calculations using (A.7) and (A.10) we have

y(τ) = VB(τ)V⊺y, where (A.11)

B(τ) def=
τ∑
i=2

α(i)η(i + 1, τ)Aτ−i+1 + η(2, τ)Aτ , and (A.12)

A def= D(D +λIn)−1, (A.13)

and A, B(τ) ∈ Rn×n are diagonal matrices for any τ . Furthermore, by (A.11) the only part
of the solution depending on τ is the diagonal matrix, B(τ), and in the following we show
how B(τ) determines the effective sparsification of the solution f ( · , β̂(τ)).

Lemma A.2. Let B(τ), and A be defined as above, and let B(0) def= In. Then we can express B(τ)

recursively as

B(τ) = A
(
(1−α(τ))B(τ−1) +α(τ)In

)
, (A.14)

and [B(τ)]k,k ∈ [0,1] is (strictly) decreasing in τ for all k ∈ [n] and τ ≥ 1 if α(2) = · · · = α(τ) = α.

Proof. See proof on page 48.

Similarly to (A.11), if we use Lemma A.2 and Theorem A.1, we can show that for any
x ∈ Rp

f (x, β̂(τ)) = κ(x,X)⊺VD−1B(τ)V⊺y

= p(x)⊺B(τ)z, where (A.15)

p(x) def= D−1V⊺κ(x,X), and (A.16)

z def= V⊺y.

Thus, the solution f (·, β̂(τ)) can be represented as a weighted sum of some basis functions,
where the basis functions are the components of the orthogonally transformed and scaled
basis p(x), and z is an orthogonally transformed vector of targets.

Now assume α(2) = · · · = α(τ) = α for any τ ≥ 2 for the remaining of this section.
In the following we show how the behaviour of B(τ), and in turn also the behaviour
of f ( · , β̂(τ)), with τ is dependent on the choice of α. Lemma A.2 not only provides a
recursive formula for B(τ) but also shows that each diagonal element of B(τ) is in [0,1]
and is strictly decreasing in τ , which in turn implies that the self-distillation procedure
progressively shrinks the coefficients of the basis functions. Using Lemma A.2 we can
now show, that not only does B(τ) decrease in τ , smaller elements of B(τ) shrink faster
than larger elements for α = 0, as we elaborate on below the theorem.

Theorem A.3. For any pair of diagonals of D, i.e. dk and dj , where dk > dj , we have for all
τ ≥ 1,

[B(τ)]k,k
[B(τ)]j,j

=


1+ λ

dj

1+ λ
dk

, for α = 1, 1+ λ
dj

1+ λ
dk

τ , for α = 0,

(A.17)
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and if we let sgn( · ) denote the sign function8, then for α ∈ (0,1) we have that

sgn
(

[B(τ)]k,k
[B(τ)]j,j

−
[B(τ−1)]k,k
[B(τ−1)]j,j

)
= sgn

(( [B(τ−1)]k,k
[B(τ−1)]j,j

−
[A]k,k
[A]j,j

)
[A]j,j

[B(τ−1)]k,k([A]k,k − [A]j,j )
+ 1

)−1

−α

 . (A.18)

Proof. See proof on page 49.

If we consider a pair of diagonals of D, where dk > dj , then for α = 0, the fraction
[B(τ)]k,k

/
[B(τ)]j,j is strictly increasing in τ , due to the r.h.s. of (A.17) inside the parenthesis

being strictly larger than 1. Hence, the diagonals corresponding to smaller eigenvalues
shrink faster than the larger ones as τ increases. However, for α ∈ (0,1) we can not
ensure this behavior, but at step τ we are able to predict the behavior at step τ + 1,
by using (A.18). Thus, when we include the ground-truth targets in our distillation
procedure we do not consistently increase the regularization with each distillation step,
but can potentially obtain a solution that does not sparsify any further. We now turn our
attention to the question of how to pick the α(τ)’s in an optimal manner and find that it
can be done if we relax the condition that the weights are restricted to the interval [0,1].

A.4.3 Closed Form Optimal Weighting Parameter

Recall, X̃ ∈ Rm×d is the matrix of validation inputs and ỹ ∈ Rm the vector of validation
targets. If we allow α(τ) ∈ R, we can find an optimal α(τ) (which is a non-trivial function
of λ) at each step τ , denoted by α⋆(τ).9 Here, optimal denotes the value for which the
validation MSE is minimized. Note, α⋆(τ) is optimal for a single distillation step, but not
necessarily so for multiple distillation steps, however we may consider α⋆(τ) a greedy
estimate of the optimal value across multiple steps.

Theorem A.4. Fix τ ≥ 2, λ > 0 and α(2), . . . ,α(τ−1) ∈ R, then

α⋆(τ) = argmin
α(τ)∈R

∥∥∥ỹ− f (X̃, β̂(τ))
∥∥∥2

2
(A.19)

= 1−

(
ỹ(τ)
α=0 − ỹ(1)

)⊺ (
ỹ− ỹ(1)

)
∥∥∥ỹ(τ)
α=0 − ỹ(1)

∥∥∥2
2

(A.20)

where ỹ(1) = f (X̃, β̂(1)), and ỹ(τ)
α=0 = f (X̃, β̂(τ)

α=0).

Proof. See proof on page 50.

Since neither ỹ(1) nor ỹ(τ)
α=0 depend on the choice of α(τ), we can calculate α⋆(τ)

recursively as presented in Algorithm 1, where α⋆(τ) has the closed form in (A.19).
In combination with the diagonalization results of Section A.4.2 we can efficiently
calculate the solutions. This should be compared to performing grid-search for α with

8 Note, we use the definition of sgn( · ) where sgn(0)def= 0.
9 If α⋆(τ) < [0,1], the sign of either the first or second term of (A.1) becomes negative, indicating either too

strong or weak regularization of the previous distillation step, and one might fear this affects distillation
performance. However, simply clipping of α⋆(τ) to be in [0,1] alleviates this, at the cost of requiring a larger
τ .
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g equidistant values on [0,1] in order to approximate the optimal α, which requires
g(τ −1) + 1 model fits if one uses the same α for each sequence of τ ≥ 2 steps (gτ−1 if α is
not fixed across distillation steps). However, by Algorithm 1 it is sufficient to perform
2(τ − 1) + 1 model fits, and obtain the exact optimal value at each step instead of an
approximated value. In Section A.5 we apply Algorithm 1 to approximate α⋆(τ) in a deep
learning setting.

Algorithm 1: Calculate β̂(τ) and α⋆(τ) for τ ≥ 2.

1 Calculate β̂(1) from (A.4) (with any α(1))

2 Calculate ỹ(1) = f (X̃, β̂(1))

3 for t = 2 to τ do
4 Calculate β̂(t)

α=0 from (A.4) and ỹ(t)
α=0 = f (X̃, β̂(t)

α=0)

5 Solve α⋆(t) = argmin
α∈R

∥∥∥∥ỹ−
(
αỹ(1) + (1−α)ỹ(t)

α=0

)∥∥∥∥2

2

6 Calculate β̂(t) from (A.4) with α⋆(t)

7 end

A.4.4 Infinite Number of Self-Distillation Steps

We now prove that if we were to perform an infinite number of distillations steps (τ→∞)
with a fixed α (i.e. α(2) = · · · = α(τ) = α) the solution would solve the classical kernel
ridge regression problem, with an amplified regularization parameter (by α−1) if α > 0.
Observe that, when α = 0 and τ→∞, (A.7) and (A.8) yield that the predictions y(∞) and
f (x, β̂(∞)) collapse to the zero-solution for any x ∈ Rp as expected from Mobahi et al.
(2020).

Theorem A.5. Let y(τ), β̂(τ), and f ( · , β̂(τ)) be defined as above, and α ∈ (0,1], then the
following limits hold

y(∞) def= lim
τ→∞

y(τ) = K
(
K +

λ
α

In
)−1

y (A.21)

f (x, β̂(∞)) def= lim
τ→∞

f (x, β̂(τ)) = αf (x, β̂(1)) + (1−α)f (x, γ̂ (∞))

where (A.21) corresponds to classical kernel ridge regression with amplified regularization
parameter λ/α, and we let γ̂ (∞) denote the kernel ridge regression weights associated with
solving another kernel ridge regression on the targets y(∞) with regularization parameter λ.
Furthermore, the convergence limτ→∞y(τ) is of linear rate.

Proof. See proof on page 51.

If α > 0, then by (A.10) and Theorem A.5, we have that y(∞) =
∑p
j=1 vj

dj
dj+

λ
α

v⊺
j y and

we shrink the eigenvectors with smallest eigenvalues, corresponding to the directions
with least variance, the most. Furthermore, if α > 0 the limiting solution is a non-zero
kernel ridge regression with regularization parameter λ/α ≥ λ, causing the eigenvectors
associated with the smallest eigenvalues to shrink even more than in the original solution.
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Our results give a theoretical explanation for why one should treat α(τ) as an ad-
justable hyperparameter to fine-tune the amount of regularization that self-distillation
imposes for a particular problem, and that it can be chosen in an optimal way for kernel
ridge regression. In the following we provide an illustrative example, and in Section A.5
we estimate the optimal weighting parameter for deep learning using an adaptation of
Algorithm 1.

A.4.5 Illustrative Example

Consider the training dataset D where X = {0,0.1, . . . ,0.9,1} and Y = {sin(2πx)+ε | x ∈ X},
and ε is sampled from a zero-mean Gaussian random variable with standard deviation
0.5. Let ϕ be the Radial Basis Function kernel, i.e. κ(xi ,xj ) = e−γ∥xi−xj∥22 , where we choose
γ = 1

80 , and let λ = 0.2 and consider the three cases; (a) α = 0, (b) α = 0.25, and (c)
step-wise optimal α⋆(τ).

As illustrated in Figure A.2a for case (a), the regularization imposed by self-distillation
initially improves the quality of the solution, but eventually overregularize and the
solutions underfit the data, and will eventually converge to the zero-solution (see sup-
plementary materials for the loss values). Using α > 0 (see Figure A.2b), and more
specifically α = 0.25, reduce the imposed regularization and increase the stability of the
distillation procedure; i.e. the solutions differ much less between each distillation step.
This allows for a more dense exploration of solutions during iterated distillation steps,
where increasing α reduces the difference between solutions from two consecutive steps,
but also reduces the space of possible solutions as the limit, f ( · , β̂(∞)), approaches the
initial solution f ( · , β̂(1)) quickly.10. However, choosing the step-wise optimal α⋆(τ) yields
minuscule changes to the solution for τ > 2, and a single step of distillation is effectively
enough. Furthermore, for τ ≥ 3, all α⋆(τ) are approximately equal, and the distillation
procedure has reached an equilibrium.11

As expected from Lemma A.2 and Theorem A.3, Figure A.3 verifies that both in
case (a) and (b), the diagonal of B(τ) is decreasing in τ and the diagonal coordinates
corresponding to smaller eigenvalues shrink faster than those corresponding to larger
eigenvalues in case (a). Without loss of generality we can assume d1 < d2 < · · · < dn, and
for k = 1, . . .n− 1 and any τ ≥ 1 define R(τ)

k
def= [B(τ)]k+1,k+1

/
[B(τ)]k,k . We expect R(τ)

k to be
strictly increasing in τ for all k in case (a), but for case (b) we can make no such guarantee.
Both of these properties are verified in Figure A.4.

Finally, we observe that in case (a), the values of B(τ) shrink much faster than in case
(b), and eventually collapse to all zeros, whereas the latter is nearly converged after six
iterations. Furthermore, case (a) appears to obtain a more sparsified solution, as the
smallest coordinates effectively diminish, which is not true for case (b). Furthermore,
when directly comparing solutions from both cases with similar quality of fit, the solu-
tions obtained with α = 0 usually have smaller coordinates in B(τ) than those obtained
with larger values of α.

10 As expected by Theorem A.5, we experience a fast convergence to the limit; usually less than 10 iterations
are sufficient to converge

11 If we clip α⋆(τ) to be in [0,1], the α⋆(τ) converges at τ = 4 rather than τ = 3.
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Figure A.2: Six steps of self-distillation with (a) zero limiting solution (dashed), (b) non-zero limiting solution
(dashed), and (c) optimal step-wise α⋆(τ). Training examples are represented with × and in (c) we also plot
α⋆(τ) with τ .
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Figure A.3: Diagonal of B(τ) for τ = 1, . . . ,6 associated with Figure A.2. Note, the plots are overlaid, but since
the diagonal of B(τ) decreases in τ , all values until convergence are visible. In (a) we expect and observe strictly
decreasing values in τ for all indices until collapsing at 0, but in (b) and (c) they converge to a non-zero limit.
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Figure A.4: Ratios, R(τ)
k of the ordered diagonal of B(τ) for all τ . In (a) we expect and observe strictly increasing

values in τ for all k, but have no such guarantee in (b) or (c). The x-axis corresponds to indices k = 1, . . . ,n− 1.
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A.5 Approximate Optimal Weighting Parameter for Deep Learning

The following experiment aims to empirically evaluate the theoretical analysis above in
a simple deep-learning setting. In (A.19) we find α⋆(τ) on closed form when f ( · , β̂(τ)) is a
(self-distilled) kernel ridge regression. No closed-form solution can be found for neural
networks, but recent results show that (very) wide neural networks can be seen as kernel
ridge regression solutions with the neural tangent kernel (Jacot et al., 2018; Arora et al.,
2019; Lee et al., 2019, 2020).

Thus, inspired by (A.8) we propose to estimate α⋆(t) for t = 2, . . . , τ , denoted by α̂(t),
for a neural network trained with self-distillation using an adapted Algorithm 1. Let
fnn( · ,θ) ∈ Rp be a neural network with vector of weights θ, and recursively for τ ≥ 1 let
θ̂(τ) be the weights solving

argmin
θ

α(τ)

2

∥∥∥fnn(X,θ)−Y(1)
∥∥∥2
F

+
1−α(τ)

2

∥∥∥fnn(X,θ)−Y(τ−1)
∥∥∥2
F

+
λ
2
∥θ∥22, (A.22)

with α(τ) = α̂(τ) and where Y(τ) ∈ Rn×p.12 Furthermore, let θ̂(τ)
α=0 be the weights associated

with minimizing (A.22) with α(τ) = 0, and Ỹ(τ)
α=0

def= fnn(X̃, θ̂(τ)
α=0) as well as Ỹ(τ) def= fnn(X̃, θ̂(τ))

be the predictions on the validation input X̃. Then, following Algorithm 1 with ∥ · ∥2
replaced by ∥ · ∥F , and (A.22) rather than (A.1) we can calculate the estimates α̂(t). These
estimates yield comparable predictive performance to the best fixed α(τ) (found with
time-consuming grid search) but only require one additional model fit per distillation
step; i.e. 2(τ −1)+1 fits compared to g(τ −1)+1 for a grid search over g values. See Figure
A.5 for results and supplementary material for experimental details.

A.5.1 Experiment

We perform self-distillation with ResNet-50 (He et al., 2016) networks on CIFAR-10
(Krizhevsky et al., 2009), with minor pre-processing and augmentations. The model
is initialized randomly at each step13 and trained according to the above with either
estimated optimal parameters, α̂(τ), or fixed α for all steps. We use the network weights
from the last iteration of training at each distillation step for the next step, irrespective
of whether a better model occurred earlier in the training. Our models are trained for
fixed 75 epochs and each experiment is repeated with 4 different random seeds over 11
chains of distillation steps, corresponding to α ∈ {0.0,0.1, . . . ,0.9} and α̂(τ), with the first
model initialized identically across all chains. The accuracy reported at the τ’th step is
based on comparing the training and validation predictions, Y(τ) and f (X̃, β̂(τ)) with the
original training and validation targets; Y and Ỹ.14

12 We treat class labels as p-dimensional one-hot encoded vectors and use norm of the difference between the
predicted class probabilities and the one-hot vectors.

13 Note, we initialize the models equally across all α for one experiment, but alter the seed for initialization
between experiments.

14 The empirical experiments are constrained by the theoretical set-up and performed in a highly simple
setting; e.g. using the weighted MSE loss from (A.22) (see supplementary materials for more details).
Therefore, our accuracy measures are to be expected to be lower than for more fine-tuned training setups.
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Figure A.5: Training and validation accuracy for five distillation steps with ResNet-50 models on CIFAR-10.
Comparing fixed α(t) for t = 2 . . . , τ and estimating optimal weight with α̂(t) at each step. The experiment is
repeated four times and the mean (and max/min in shaded) is reported.

A.6 Conclusion

In this paper, we provided theoretical arguments for the importance of weighting the
teacher outputs with the ground-truth targets when performing self-distillation with
kernel ridge regressions along with a closed-form solution for the optimal weighting
parameter. We proved how the solution at any (possibly infinite) distillation step can
be calculated directly from the initial distillation step, and that self-distillation for
an infinite number of steps corresponds to a classical kernel ridge regression solution
with amplified regularization parameter. We showed both empirically and theoretically
that the weighting parameter α determines the amount of regularization imposed by
self-distillation, and empirically supported our results in a simple deep-learning setting.

Future Research Directions

Interesting directions of future research are on rigorously connecting neural networks
and kernel methods in a knowledge distillation setting, extending to other objective
functions than MSE as well as including intermediate model statistics in the distillation
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procedure. Finally, a larger empirical study of the connection between the choice of α
and the degree of overfitting is interesting as well.
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Supplementary material

A.I Proofs

This section includes all proofs referenced in the main part of the paper, along with the
associated theorems and lemmas for completeness.

Theorem A.1 (from page 34). Let y(τ), β̂(τ), and f ( · , β̂(τ)) be defined as above. Fix α(2), . . . ,

α(τ) ∈ [0,1), and let η(i,τ) def=
∏τ
j=i

(
1−α(j)

)
, then for τ ≥ 1, we have that

y(τ) =

 τ∑
i=2

α(i)η(i + 1, τ)
(
K (K +λIn)−1

)τ−i+1
+ η(2, τ)

(
K (K +λIn)−1

)τy,

f (x, β̂(τ)) = α(τ)f (x, β̂(1)) + (1−α(τ))f (x, β̂(τ)
α=0)

for any x ∈ Rd , where β̂(τ)
α=0 is the minimizer in (A.4) with α(τ) = 0.

Proof. We prove the theorem by induction, where we let K̃ def= K(K + λIn)−1. For τ = 1,
the result holds trivially, and thus, assume it holds for τ = t. Since β(t+1) = ϕ(X)⊺(K +
λIn)−1

(
α(t+1)y + (1−α(t+1))y(t)

)
we have that

y(t+1) = ϕ(X)ϕ(X)⊺(K +λIn)−1
(
α(t+1)y + (1−α(t+1))y(t)

)
= α(t+1)K̃y + (1−α(t+1))K̃

 t∑
i=2

α(i)η(i + 1, t)K̃t−i+1 + η(2, t)K̃t

y

= α(t+1)K̃y +

 t∑
i=2

α(i)η(i + 1, t + 1)K̃(t+1)−i+1) + η(2, t + 1)K̃t+1

y

=

 t+1∑
i=2

α(i)η(i + 1, t + 1)K̃(t+1)−i+1) + η(2, t + 1)K̃t+1

y

which finalizes our induction proof for the first part. For the second part, note that it also
holds trivially for τ = 1. Thus assume, it holds for τ = t, then by direct manipulations

f (x,β(t+1)) = κ(x,X)⊺(K +λIn)−1
(
α(t+1)y + (1−α(t+1))y(t)

)
= α(t+1)f (x,β(1)) + (1−α(t+1))κ(x,X)⊺(K +λIn)−1y(t)

= α(t+1)f (x,β(1)) + (1−α(t+1))f (x, β̂(t+1)
α=0 ),

where we let β̂(t+1)
α=0 denote the minimizer (A.4) with α(t+1) = 0; i.e. minimizing the

classical kernel ridge regression problem with targets y(t).

Lemma A.2 (from page 35). Let B(τ), and A be defined as above, and let B(0) def= I. Then we
can express B(τ) recursively as

B(τ) = A
(
(1−α(τ))B(τ−1) +α(τ)In

)
,

and [B(τ)]k,k ∈ [0,1] is (strictly) decreasing in τ for all k ∈ [n] and τ ≥ 1 if α(2) = · · · = α(τ) = α.
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Proof. The case, τ = 1, is easy to verify, and we assume the claim holds for τ = t. Then
note that

A
(
(1−α(t+1))B(t) +α(t+1)In

)
=

t∑
i=2

α(i)η(i + 1, t + 1)A(t+1)−i+1) + η(2, t + 1)At+1 +α(t+1)A

=
t+1∑
i=2

α(i)η(i + 1, t + 1)A(t+1)−i+1) + η(2, t + 1)At+1

= B(t+1),

finalizing the induction proof. Now, assume α(2) = · · · = α(τ) = α and note that for any k
and τ ≥ 1, then

[A]k
(
(1−α)[B(τ−1)]k,k +α

)
= [B(τ)]k,k

≤ [B(τ−1)]k,k

= [A]k
(
(1−α)[B(τ−2)]k,k +α

)
,

if and only if [B(τ−1)]k,k ≤ [B(τ−2)]k,k , and iteratively, if and only if [B(1)]k,k ≤ [B(0)]k,k . The
latter is indeed true, since B(1) = A, and finally, A = In if and only if λ = 0.

Theorem A.3 (from page 35). Assume α(2) = · · · = α(τ) = α. Then, for any pair of diagonals
of D, i.e. dk and dj , where dk > dj , we have that for all τ ≥ 1,

[B(τ)]k,k
[B(τ)]j,j

=


1+ λ

dj

1+ λ
dk

, for α = 1, 1+ λ
dj

1+ λ
dk

τ , for α = 0,

and if we let sgn( · ) denote the sign function, i.e.

sgn(x) def=


1 if x > 0

0 if x = 0

−1 if x < 0

,

then for α ∈ (0,1) we have that

sgn
(

[B(τ)]k,k
[B(τ)]j,j

−
[B(τ−1)]k,k
[B(τ−1)]j,j

)
= sgn

(( [B(τ−1)]k,k
[B(τ−1)]j,j

−
[A]k,k
[A]j,j

)
[A]j,j

[B(τ−1)]k,k([A]k,k − [A]j,j )
+ 1

)−1

−α

 .
Proof. First note that

[A]k,k
[A]j,j

=
dk
dk+λ
dj
dj+λ

=
1 + λ

dj

1 + λ
dk

,

and for α = 1, (A.14) amounts to B(τ) = A, which gives the first result. For α = 0, (A.14)
amounts to B(τ) = Aτ , and the second result follows. For the remainder we denote
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[B(τ−1)]k,k by Bk and [A]k,k by Ak to simplify notation. We investigate the case where
both r.h.s. and l.h.s. equals zero. Thus, for α ∈ (0,1), we observe that if

Bk
Bj

=
Ak

Aj

(1−α)Bk +α
(1−α)Bj +α

=
Ak

Aj

1−α
α Bk + 1

1−α
α Bj + 1

,

then we have that

Bj =
1

Ak
Aj

( 1−α
α Bk+1

Bk

)
− 1−α

α

=
Bk

Ak
Aj

(
1−α
α Bk + 1

)
− 1−α

α Bk

1−α
α

Bj + 1 =
1−α
α Bk

Ak
Aj

(
1−α
α Bk + 1

)
− 1−α

α Bk
+ 1 =

Ak
Aj

(
1−α
α Bk + 1

)
Ak
Aj

(
1−α
α Bk + 1

)
− 1−α

α Bk
,

which in turn yields that

Bk
Bj

=
Ak

Aj

(1−α
α

Bk + 1
)

Ak
Aj

(
1−α
α Bk + 1

)
− 1−α

α Bk
Ak
Aj

(
1−α
α Bk + 1

)


=
Ak

Aj

(1−α
α

Bk + 1
)
− 1−α

α
Bk .

Now, observe that 0 = α −
((

Bk
Bj
− Ak

Aj

)
Aj

Bk(Ak−Aj )
+ 1

)−1
yield that

Bk
Bj

=
1−α
α

Bk(Ak −Aj )

Aj
+

Ak

Aj
=

Ak

Aj

(1−α
α

Bk + 1
)
− 1−α

α
Bk .

Thus, similar calculations with > and < instead of =, completes the claim.

Theorem A.4 (from page 36). Fix τ ≥ 2, λ > 0 and α(2), . . . ,α(τ−1) ∈ R, then

α⋆(τ) = argmin
α(τ)∈R

∥∥∥ỹ− f (X̃, β̂(τ))
∥∥∥2

2

=

(
∂

∂α(τ) f (X̃, β̂(τ))
)⊺ (

ỹ− ỹ(1)
)

∥∥∥ ∂
∂α(τ) f (X̃, β̂(τ))

∥∥∥2 + 1,

= 1−

(
ỹ(τ)
α=0 − ỹ(1)

)⊺ (
ỹ− ỹ(1)

)
∥∥∥ỹ(τ)
α=0 − ỹ(1)

∥∥∥2
2

where ỹ(1) = f (X̃, β̂(1)), and ỹ(τ)
α=0 = f (X̃, β̂(τ)

α=0).

Proof. Let L(α(τ),λ) = ∥ỹ−f (X̃, β̂(τ))∥2, where f depends on α(τ) and λ through β̂(τ). Note
that,

f (X̃, β̂(τ)) = κ(X̃,X)(K +λI)−1
(
α(τ)y + (1−α(τ))y(τ−1)

)
∂

∂α(τ) f (X̃, β̂(τ)) = κ(X̃,X)(K +λI)−1
(
y− y(τ−1)

)
.

Then for fixed λ > 0, we have that

∂
∂α(τ)L(α,λ) =

(
∂

∂α(τ) f (X̃, β̂(τ))
)⊺ (

2f (X̃, β̂(τ))− 2ỹ
)
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and since we can decompose f (X̃, β̂(τ)) as

f (X̃, β̂(τ)) = α(τ)κ(X̃,X)(K +λI)−1
(
y− y(τ−1)

)
+κ(X̃,X)(K +λI)−1y(τ−1)

= α(τ) ∂
∂α(τ) f (X̃, β̂(τ)) +κ(X̃,X)(K +λI)−1y(τ−1),

and set ∂
∂α(τ)L(α(τ),λ) = 0, we can solve as follows

(∂f (τ))⊺ ỹ− (∂f (τ))⊺κ(X̃,X)(K +λI)−1y(τ−1) = α(τ) (∂f (τ))⊺ (∂f (τ))

= α(τ)
∥∥∥∂f (τ)

∥∥∥2
,

where we use the notation ∂f (τ) def= ∂
∂α(τ) f (X̃, β̂(τ)) for brevity. Now since

−κ(X̃,X)(K +λI)−1y(τ−1) = κ(X̃,X)(K +λI)−1(y− y(τ−1))−κ(X̃,X)(K +λI)−1y,

we can finalize the proof with

α⋆(τ) =

(
∂
∂α f (X̃, β̂(τ))

)⊺ (
ỹ− ỹ(1)

)
∥∥∥ ∂
∂α f (X̃, β̂(τ))

∥∥∥2 + 1,

and noting that ∂
∂α(τ) f (X̃, β̂(τ)) = ỹ(1) − ỹ(τ)

α=0.

Note, in the following we state and prove a slightly more general result than Theo-
rem A.5.

Theorem A.5 (from page 37). Let y(τ), β̂(τ), and f ( · , β̂(τ)) be defined as above, and α ∈ [0,1],
then the following limits hold

y(∞) def= lim
τ→∞

y(τ) = αK (αK +λIn)−1 y

f (x, β̂(∞)) def= lim
τ→∞

f (x, β̂(τ)) = ακ(x,X)⊺(K +λIn)−1
(
In + (1−α)K(αK +λIn)−1

)
y

and if α > 0, then

y(∞) = K
(
K +

λ
α

In
)−1

y

f (x, β̂(∞)) = αf (x, β̂(1)) + (1−α)f (x, γ̂ (∞))

where (A.21) corresponds to classical kernel ridge regression with amplified regularization
parameter λ

α , and we let γ̂ (∞) denote the kernel ridge regression parameter associated with
solving another kernel ridge regression on the targets y(∞) with regularization parameter λ.
Furthermore, the convergence limτ→∞y(τ) is of linear rate.

Proof. By (A.10) we have that K(K+λIn)−1 = VD (D +λIn)−1 V⊺ where λ > 0, D is positive
diagonal and V is orthogonal, and hence, the eigenvalues of K(K +λIn)−1 are all smaller
than 1 in absolute value, and thus (1−α)τ−1

(
K(K +λIn)−1

)τ
converge to the zero-matrix

when τ→∞. Thus, using the limit for a geometric series of matrices we get that

lim
τ→∞

y(τ) =

 α
1−α

∞∑
i=1

(
(1−α)K(K +λIn)−1

)iy

=
α

1−α
(1−α)K(K +λIn)−1(In − (1−α)K(K +λIn)−1)−1y

= αK (αK +λIn)−1 y.
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If α > 0, the remaining result for limτ→∞ y(τ) follows directly. Now, by inserting y(∞) and
manipulating the result, we get that

f (x,β(∞)) = κ(x,X)⊺(K +λIn)−1 (αy + (1−α)y(∞))

= κ(x,X)⊺(K +λIn)−1
(
αIn + (1−α)αK (αK +λIn)−1

)
y

= ακ(x,X)⊺(K +λIn)−1
(
In + (1−α)K (αK +λIn)−1

)
y,

and if α > 0, then

f (x,β(∞)) = αf (x,β(1)) + (1−α)κ(x,X)⊺(K +λIn)−1K
(
K +

λ
α

In
)−1

y

= αf (x,β(1)) + (1−α)f (x, γ̂ (∞)),

where we let γ̂ (∞) denote the kernel ridge regression parameter associated with the classi-
cal kernel ridge regression problem on the targets y(∞) with regularization parameter λ.
Finally, denote by C def= (1−α)K(K +λIn)−1, then we have that

E(t) def=
t∑
i=1

Ci −
∞∑
i=1

Ci = Ct+1 (C− In)−1 ,

and thus for an additional s steps we have E(t + s) = Ct+s+1(C− In)−1 = CsE(t). Hence, the
convergence is of linear rate as claimed.

A.II Experiments

In the following, we show empirical results of performing a simple self-distillation
procedure with deep neural networks with varying choices of α to investigate the large-
scale effects. The experiments are adapted from Mobahi et al. (2020) with the additional
introduction of the α-parameter. For stronger baselines of the possible performance
gains from self-distillation see e.g. Furlanello et al. (2018); Tian et al. (2020b); Ahn et al.
(2019); Yang et al. (2018). The following sections provide additional details to that of
Section A.5.

A.II.1 Experimental Setup

We perform self-distillation with ResNet-50 (He et al., 2016) networks on CIFAR-10
(Krizhevsky et al., 2009), with minor pre-processing and augmentations.15 The model is
initialized randomly at each step16 and trained as described in Section A.5 with either
estimated optimal parameters, α̂(τ), or fixed α for all steps. We use Adam optimizer
with a learning rate of 10−4, ℓ2 regularization with regularization coefficient 10−4, and
train on the full 50000 training images and validate our generalization performance on
the 10000 test images. We use the weights from the last step of optimization at each

15 Training: We randomly flip an image horizontally with probability 1
2 , followed by a random 32× 32 crop of

the 40× 40 zero padded image. Finally, we normalize the image to have mean 0 and standard deviation 1.
Validation: We normalize the image with the empirical mean and standard deviation from the training data.

16 Note, we initialize the models equally across all α for one experiment, but alter the seed for initialization
between experiments.
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distillation step for the next step, irrespective of whether a better model occurred earlier
in the training. Our models are trained for fixed 75 epochs, which does not allow our
models to overfit the training data, which is important for our models to be suitable for
distillation procedures (Dong et al., 2019). The experiments are performed on a single
Nvidia Tesla V100 16GB GPU with the PyTorch Lightning framework (Falcon, 2019).

A.II.2 Results

We repeat our experiment 4 times and illustrate the mean, minimum and maximum at
each distillation step in Figure A.5. Each experiment is 11 chains of distillation steps,
corresponding to α ∈ {0.0,0.1, . . . ,0.9}, with the first model initialized identically across
all chains. The accuracy reported at the τ’th step is based on comparing the training
and validation predictions, Y(τ) and f (X̃, β̂(τ)) with the original training and validation
targets; Y and Ỹ.
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Figure A.6: (Identical to Figure A.5) Training and validation accuracy for five distillation steps with ResNet-50
models on CIFAR-10. Comparing fixed α(t) for t = 2 . . . , τ and estimating optimal weight with α̂(t) at each step.
The experiment is repeated four times and the mean (and max/min in shaded) is reported.

The theory introduced in Section A.4 suggests that self-distillation corresponds to a
progressively amplified regularization of the solution, and larger α dampens the amount
of regularization imposed by the procedure more than small values of α. Thus, for small
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α we expect the training accuracy to decrease with each distillation, but for larger α we
might experience an increase in training accuracy, due to additional training iterations
and a sufficient amount of ground-truth target information being kept in the optimization
problem, which could prove beneficial. However, depending on the need for increased
regularization, we expect the validation accuracy to increase for some α, and possibly
decrease for α values either too small or too large. The above properties are observed in
Figure A.5, where α ≤ 0.4 generally overregularize the solution, and performance drops
with distillation steps. For α > 0.4 the performance generally improves with distillation,
but for α close to one, the gains reduce, and a suitably balanced α for this experiment
would be in [0.5,0.7]. This aligns well with the optimal α̂(τ) estimated at approx. 0.6 for
each step of self-distillation.

A.III Illustrative Example

In Figure A.7 we show the training and validation loss associated with the illustrative
example in Section A.4.5. Although subtly, we observe a performance improvement
in the first few distillation steps across all three choices of α. However, for α = 0 the
solutions progressively underfit the data as τ increases further.
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Figure A.7: Training (dashed lines) and validation (solid lines) loss associated with α = 0, α = 0.25, and α⋆(τ).
Both losses associated with α = 0 for τ→∞ are huge compared to finite τ and the plot is bounded accordingly.

A.IV Connection to Neural Networks

This paper theoretically investigates self-distillation of kernel ridge regression models,
but distillation procedures are more commonly used in a deep learning setting. How-
ever, recent research in the over-parameterized regime has shown great progress and
connected wide neural networks with kernel ridge regression using the Neural Tangent
Kernel (NTK) (Lee et al., 2019, 2020; Hu et al., 2020). The following is a brief and infor-
mal connection between kernel ridge regression and wide17 neural networks, motivating
our problem setup and approach to estimate α̂(τ) in Section A.5.

17 Note, we refer to width as the number of hidden nodes in a fully connected neural network or channels in a
convolutional neural network.
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Consider a neural network with scalar output fnn(x,θ) ∈ R, where θ(t) ∈ RD is the
vector of all network parameters at training iteration t ≥ 0, and x ∈ Rd some input.
We consider the case where we use gradient descent on the MSE objective, L(θ) =
1
2
∑n
i=1(fnn(xi ,θ)−yi)2 over some training datasetDtrain ⊆ Rd ×R. Consider the first-order

Taylor-expansion of fnn(x,θ) w.r.t its parameters at initialization, θ(0),

fnn(x,θ) ≈ fnn(x,θ(0)) + ⟨∇θfnn(x,θ(0)),θ −θ(0)⟩ (A.23)

where fnn(x,θ(0)) and ∇θfnn(x,θ(0)) are constants w.r.t. θ. For sufficiently wide networks,
(A.23) holds, and we say that we are in the (NTK) regime (Arora et al., 2019; Lee et al.,
2019). Now, let ϕ(x) def= ∇θfnn(x,θ(0)) for any x ∈ Rd , and denote the random kernel
κ(xi ,xj )

def= ⟨ϕ(xi),ϕ(xj )⟩ for any xi ,xj ∈ Rd (Jacot et al., 2018). For sufficiently wide
networks, the random kernel converges to a deterministic kernel, and since the r.h.s.
of (A.23) is linear, one can show that minimizing L with gradient descent leads to the
solution of the kernel regression problem, with the NTK; x 7→ κ(x,X)⊺κ(X,X)−1y, where
X ∈ Rn×d is the matrix of training inputs, and y ∈ Rn the vector of training targets (Arora
et al., 2019; Lee et al., 2019). It has been shown that when minimizing the ℓ2-regularized
MSE loss, the solution becomes the kernel ridge regression solution (Lee et al., 2020).

The connections between neural networks and kernel ridge regressions in knowledge
distillation settings have, to the best of our knowledge, not been explicitly investigated
yet, but we hope that the results of this paper will improve the understanding of self-
distillation of neural networks once such a connection is made rigorously.

A.V Connections to Constrained Optimization Problem

The setup investigated in this paper is the unconstrained optimization problem presented
in (A.2), but some of the results can easily be extended to a constrained optimization
problem, with a general regularization functional in Hilbert spaces, namely the natural
extension of the setup proposed by Mobahi et al. (2020). For the rest of this section we
assume α(2) = · · · = α(τ) = α. Mobahi et al. (2020) propose to solve the problem

f (τ) def= argmin
f ∈F

∫
X

∫
X
u(x,x′)f (x)f (x′)dxdx′ s.t.

1
N

N∑
n=1

(f (xn)− yn)2 ≤ ε,
(A.24)

where ε > 0 is a desired loss tolerance, τ ≥ 1, f (0)(xn) = yn for n = 1, . . . ,N , and u being
symmetric and such that ∀f ∈ F the double integral is greater than or equal to 0 with
equality only when f (x) = 0.18 See Mobahi et al. (2020) for details.

The natural extension of this problem is to include ground-truth labels and solve the
weighted problem

f (τ) = argmin
f ∈F

∫
X

∫
X
u(x,x′)f (x)f (x′)dxdx′ s.t.

α
N

N∑
n=1

(f (xn)− yn)2 +
1−α
N

N∑
n=1

(
f (xn)− f (τ−1)(xn)

)2
≤ ε,

(A.25)

18 For a given u the function space F is the space of functions f for which the double integral in (A.24) is
bounded.
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for τ ≥ 1, where α ∈ [0,1] and f (0)(xn) = yn for n = 1, . . . ,N . In Mobahi et al. (2020),
α = 0, and this problem completely ignores the ground truth data after the first model
fit, and it is easy to see that consecutive self-fits will be penalized increasingly stronger,
and eventually collapse to zero, whenever 1

N

∑N
n=1 (f (xn)− yn)2 ≤ ε. The case α = 1,

corresponds to fitting to the ground-truth at each iteration, and do not benefit from
distillation, and thus is without interest here.

A.V.1 Collapsing and Converging Conditions

The regularization functional of (A.25), is clearly minimized by ft(x) = 0, but in order for
this to be a solution for some τ ≥ 1, it must hold that

α
N
∥y∥22 +

1−α
N

∥∥∥y(τ−1)
∥∥∥2

2
≤ ε,

where we use the notation that y(τ) = (f (τ)(x1), . . . , f (τ)(xN ))T and y = (y1, . . . , yN ). For
τ = 1, this amounts to 1

N ∥y∥
2
2 ≤ ε, and for τ > 1

1−α
N

∥∥∥y(τ−1)
∥∥∥2

2
≤ ε − α

N
∥y∥22. (A.26)

But since the l.h.s. is non-negative, it is required that α
N ∥y∥

2
2 ≤ ε in order for f (τ)(x) = 0

to be a solution. Hence, we can construct the following settings, that determine the
behavior of the solutions:

1. Collapsed solution:

1
N
∥y∥22 ∈ [0, ε] =⇒

∥∥∥y(τ)
∥∥∥

2
= 0 ∀τ ≥ 1

2. Converging to collapsed solution:

1
N
∥y∥22 ∈

(
ε,
ε
α

]
=⇒ ∃τ ≥ 1 such that


∥∥∥y(τ)

∥∥∥
2
> 0 ∀τ < τ,∥∥∥y(τ)

∥∥∥
2

= 0 ∀τ ≥ τ,

3. Converging to non-collapsed solution:

1
N
∥y∥22 ∈

( ε
α
,∞

)
=⇒

∥∥∥y(τ)
∥∥∥

2
> 0 ∀τ ≥ 1.

If we let α → 0 the interval
(
ε, εα

]
effectively becomes (ε,∞), and any solution will

collapse at some point (Mobahi et al., 2020). Analogously, if we let α→ 1, the interval
(ε, εα ] effectively becomes empty, and all non-collapsed solutions will converge to a
non-zero solution. Hence, if α > 0, one can obtain non-collapsing convergence with
infinite iterations. Furthermore, if we let ε→ 0, then [0, ε] and (ε, εα ] will practically
collapse to empty intervals, and we will always obtain convergence to non-collapsing
solutions, which will correspond to an interpolating solution. For the remainder we
assume α ∈ (0,1), since the boundary cases are covered in Mobahi et al. (2020) (α = 0) or
is without interest (α = 1). Furthermore, we assume that ∥y∥2 >

√
Nε to avoid a collapsed

56



A.V · Connections to Constrained Optimization Problem

solution from the beginning. Utilizing the Karush-Kuhn-Tucker (KKT) conditions for
this problem, we can rephrase our optimization problem as

f (τ) = argmin
f ∈F

α
N

N∑
n=1

(f (xn)− yn)2 +
1−α
N

N∑
n=1

(
f (xn)− f (τ−1)(xn)

)2

+λτ

∫
X

∫
X
u(x,x′)f (x)f (x′)dxdx′ ,

where λτ ≥ 0. For suitably chosen λτ , one can show that f (τ) is an optimal solution to
our problem.19

A.V.2 Extending Our Results

By direct calculations similar to those of Mobahi et al. (2020) one can obtain the closed
form solution of (A.27), but first, we will repeat some definitions from Mobahi et al.
(2020). Let the Green’s Function g(x, t) be such that

∫
X u(x,x′)g(x′ , t)dx′ = δ(x − t), where

δ is the Dirac delta, and let [G]j,k = 1
N g(xj ,xk) and [g(x)]k = 1

N g(x,xk), where G is a matrix
and g(x) a vector dependent on x. Now we can present the proposition.

Proposition A.6. For any τ ≥ 1, the problem (A.27) has a solution of the form

y(τ) = g(x)⊺ (G +λτI)−1 (αy + (1−α)y(τ−1)),

where y(0) def= y.

Since G is positive semi-definite, we can decompose it as G = VDV⊺. Define B(0) def= I,
then for τ ≥ 1, we have that y(τ) = VB(τ)V⊺y, where we set

B(τ) def=
α

1−α

τ−1∑
i=1

(1−α)τ−i
τ−1∏
j=i

A(j+1) + (1−α)τ−1
τ∏
j=1

A(j),

A(τ) def= D(D +λτI)−1.

By equivalent calculations as those of Lemma A.2, we have that

B(τ) = A(τ)((1−α)B(τ−1) +αIN ) ∀τ ≥ 1,

and we can now formulate the following theorem, similar to Theorem A.3.

Theorem A.7. For any pair of diagonals of D, i.e. dk and dj , where dk > dj , we have that for
all τ ≥ 1 and for α ∈ (0,1), then

sign
(

[B(τ)]k,k
[B(τ)]j,j

−
[B(τ−1)]k,k
[B(τ−1)]j,j

)
(A.27)

= sign

(( [B(τ−1)]k,k
[B(τ−1)]j,j

−
[A(τ)]k,k
[A(τ)]j,j

)
[A(τ)]j,j

[B(τ−1)]k,k([A(τ)]k,k − [A(τ)]j,j )
+ 1

)−1

−α

 . (A.28)

Proof. The proof follows analogously to the proof of Theorem A.3.

19 See Mobahi et al. (2020) for a detailed argument.
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For the case α = 1, the results are identical to Theorem A.3, since no distillation is
actually performed. However, the case α = 0 is more involved and we refer the reader to
Mobahi et al. (2020) for the treatment of this case since our setups are identical when
α = 0.

Finally, due to the dependency of λτ on the solution from the previous step of
distillation in this constrained optimization problem, we are unable to obtain a simple
recurrent expression as (A.7) and a limiting solution as in Theorem A.5. However, by the
results in Section A.V.1, we can determine, from the norm of the targets, whether the
solution collapses or not.
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Abstract. Knowledge distillation has empirically proven to be an effective technique for training a
student model to reproduce a teacher model. However, a rigorous theoretical understanding of why
distillation techniques work is largely absent. In this paper, we aim to remedy this gap between
theory and practice by theoretically analyzing self-distillation for Gaussian process regression
(GPR) and Gaussian process classification (GPC). We propose two approaches to extend the notion
of self-distillation to Gaussian Processes, which we refer to as deterministic GPSD (d-GPSD)
and probabilistic GPSD (ρ-GPSD). The d-GPSD approach resembles most current distillation
techniques for machine learning, and refits a model on deterministic predictions from the teacher,
while the ρ-GPSD approach, re-uses the full probabilistic posterior for the next iteration. By
analyzing the properties of these methods, we show that the d-GPSD approach for GPR closely
relates to known results for self-distillation and that the ρ-GPSD approach for GPR corresponds to
ordinary GPR with a particular choice of hyperparameters. Furthermore, we demonstrate that
the ρ-GPSD approach for GPC approximately corresponds to data duplication and a particular
scaling of the covariance and that the d-GPSD approach for GPC requires redefining the model
from a Binomial likelihood to a continuous Bernoulli likelihood to be well-specified. We illustrate
our theoretical results with empirical examples. To our knowledge, our proposed approaches are
the first to formulate self-distillation specifically for GP models.
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Figure B.1: Conceptual illustration of our two proposed methods of performing distillation for Gaussian
processes. In deterministic self-distillation, we re-use the mean function of the previous solution in the next
step, and in probabilistic self-distillation, we re-use the full distribution.

B.1 Introduction and Problem Setting

In this paper, we propose a notion of knowledge distillation (KD) in a Gaussian process
(GP) context. Despite numerous research and applications of (extensions of) KD in
the context of deep learning, research on knowledge distillation for other methods of
machine learning than deep learning is lacking. Recent work by Borup and Andersen
(2021); Mobahi et al. (2020); Phuong and Lampert (2019); Frosst and Hinton (2017)
amongst others, provide results on KD for simplified settings, in particular for kernel
ridge regression. A natural extension of these results is to investigate KD for Gaussian
processes, and since no prior work has been performed in this context, we propose and
analyze approaches on how one could define knowledge distillation for GP models. In
this paper, we restrict our analysis to self-distillation, i.e. where the student and teacher
models are of an identical class, which in practice corresponds to the chosen kernel
function being identical for both models.

In ordinary GP models, one defines a prior, and, based on a set of observations D,
a posterior model is obtained which can be used for inference on previously unseen
samples. We propose two approaches, illustrated in Figure B.1 and B.2, for using the
posterior model in a self-distillation step: d-GPSD and ρ-GPSD.

Deterministic self-distillation (d-GPSD). In deterministic distillation, we treat the
output predictions of a model at step t as the input to the model at step t + 1. This
procedure aligns well with most current distillation methods known from deep learning
(Hinton et al., 2015). However, unlike in deep learning, the output of our models is
not merely scalars, but distributions. We propose to discard the stochasticity of our
predictions at step t and merely keep the mean predictions for the training of the model
at step t + 1. We show that for GP regression the mean after self-distillation is closely
related to distillation with kernel ridge regression as in Borup and Andersen (2021);
Mobahi et al. (2020). Furthermore, we argue that for distillation in a classification setting,
one needs to adapt the likelihood function to support continuous targets rather than
binary targets. We address this by utilization of the continuous Bernoulli distribution
(Loaiza-Ganem and Cunningham, 2019). We investigate deterministic distillation for
regression in Section B.3.1 and for classification in Section B.4.1.
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Probabilistic self-distillation (ρ-GPSD). In probabilistic distillation, we replace the
prior at a given step, t, with the posterior of the previous step, t − 1. In GP regression
the posterior distribution is a GP itself, and we can directly consider it as a prior for the
succeeding step. This yields an iteratively refined and data-dependent prior with each
distillation step. For classification, more care has to be taken as the posterior is not known
analytically. However, by utilizing the Laplace approximation of the posterior as the
prior of the latent GP model, we are able to define a meaningful notion of probabilistic
distillation in the classification setup as well. We investigate probabilistic for regression
in Section B.3.2 and for classification in Section B.4.2.
We summarize our contributions as:

• We propose two different approaches to self-distillation for both GP regression and
GP classification, reusing either the mean predictions (d-GPSD) or full predictive
distribution (d-GPSD) of the previous iteration of the model.

• We show a connection between deterministic self-distillation for GP regression and
self-distillation of kernel ridge regression. Furthermore, we prove that probabilistic
self-distillation for GP regression is equivalent to ordinary GP regression with a
particular choice of hyperparameter.

• We find that a naïve approach to deterministic self-distillation for GP classification
yields a misspecified model due to the continuous form of the predictions, and we
alleviate this by utilization of the continuous Bernoulli distribution. Furthermore,
we find that probabilistic self-distillation can be efficiently approximated by a
particular scaling of the covariance function for any number of distillation steps.

Limitations. The work in this paper should be seen as a theoretical contribution to the
understanding of knowledge distillation by extending and analyzing the tractable kernel
methods to their natural generalization (Phuong and Lampert, 2019; Mobahi et al., 2020;
Borup and Andersen, 2021). We view this as a step towards understanding KD in neural
networks, due to the connection between kernel methods and neural networks given by
the Neural Tangent Kernel, see e.g Jacot et al. (2018) and Arora et al. (2019). Hence, it is
not the aim of the paper to provide numerical methods, which are superior to existing
benchmarks.

Paper outline. The structure of the paper is as follows. In Section B.2 we present
preliminary results on GP regression and GP classification. Next, we focus on self-
distillation for GP regression in Section B.3, and in particular on deterministic distillation
in Section B.3.1 and probabilistic distillation in Section B.3.2. Afterward, in Section
B.4 we investigate the classification setup and in particular the deterministic setting in
Section B.4.1 and probabilistic setting in Section B.4.2. Finally, we relate our work to
existing research in Section B.6. Additionally, in the appendix, we provide additional
mathematical details, implementation details, experiment ablations, as well as all proofs.
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Figure B.2: In (a) we illustrate a typical procedure to fit a GP to an observed dataset, D = {(xi , yi )}ni=0,
and compute the output distribution for some unseen sample x∗. In (b) we illustrate the probabilistic self-
distillation procedure, where we reuse the posterior as a prior. In (c), we illustrate the deterministic self-
distillation procedure, where we iteratively replace the training observations Dt = {(xi , yt,i )}ni=0 with the
posterior predictions of the current model, Dt+1 = {(xi , yt+1,i )}ni=0, and refit the model to these samples.

B.2 Preliminaries

Our starting point is the standard set-up for Gaussian Process regression and classifica-
tion. We use the standard results and notation, see Bishop (2006) and Rasmussen and
Williams (2006).

B.2.1 Gaussian Process Regression

We assume a generic input-output pair (x, y) ∈ Rd ×R is related by y = f (x)+ε, where f ( · )
is a function, which we wish to infer, based on the assumption that f is a random function
whose prior distribution is f ∼ GP (m,k) for mean function m : Rd → R and positive semi-
definite covariance function (kernel) k : Rd ×Rd → R, and ε is an independent noise term
with ε ∼N (0,γ). For notational convenience, we will assume that our input is univariate,
i.e. d = 1. For a training set D = {(xi , yi) | i = 1, . . . ,N } and test set (x∗1, . . . ,x∗M )⊺, the first
task is to describe the posterior distribution of f∗ = (f (x∗1), . . . , f (x∗M ))⊺ given D. The
posterior predictive distribution of f∗ given D is

f∗ | x,y,x∗ ∼N (µ∗,Σ∗), where

µ∗ =m(x∗) + k(x∗,x
⊺)(K +γIN )−1 (y−m(x)) ,

Σ∗ = k(x∗,x
⊺
∗ )− k(x∗,x

⊺)(K +γIN )−1k(x,x⊺∗ ).

and where x and x∗ are stacked training and test input, respectively.
Throughout the paper, we will write K for the matrix K = k(x,x⊺) which we assume is

invertible. Furthermore, we will often notationally omit the conditioning on x and x∗ for
ease of exposition.

B.2.2 Gaussian Process Classification

We follow the usual setup for classification with Gaussian Processes in which each input-
output pair (x, y) is related by the assumption that the conditional distribution y | f (x) is
a Bernoulli distribution with probability σ (f (x)) where σ ( · ) is the logistic function and
the prior distribution of f is GP (m,k).
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Unlike the regression case, the posterior distribution f | y is not analytically tractable
and needs to be approximated. This issue is not specific to distillation but arises in
any practical application involving Gaussian process classification, and a number of
approaches have been suggested for obtaining an approximation of the posterior distri-
bution. In this paper, we will focus on the Laplace approximation, where the posterior
distribution is approximated by

q(f | y) =N
(
f | f̂, (K−1 + W)−1

)
where f̂ = (f̂n)Nn=1 is the mode ofψ(f) and W is theN×N matrix diagn{σ (f̂n)(1−σ (f̂n))}. The
approximate posterior predictive distribution is found in Rasmussen and Williams (2006,
Section 3.4.2) when m = 0 and for a general prior mean m, we have p(f∗ | x,y) ≈N (µ∗,Σ∗)
where

µ∗ = Eq[f∗ | y,x∗] =m(x∗) + k(x∗,x
⊺)K−1(f̂−m(x)) (B.1)

Σ∗ = Covq(f∗ | y,x∗) = k(x∗,x
⊺
∗ )− k(x∗,x

⊺)(K + W−1)−1k(x,x⊺∗ ). (B.2)

See Section B.II.1 for additional details on Gaussian Process classification. We return to
the classification setting in Section B.4.

B.3 Self-Distillation for GP Regression

We now consider deterministic and probabilistic self-distillation for GP regression (GPR)
separately.

B.3.1 Deterministic Self-Distillation (d-GPSD)

For the general setup of deterministic distillation, we consider a mean-zero prior dis-
tribution, f ∼ GP (0, k), and the posterior distribution on x = (x1, . . . ,xN )⊺ at step t ≥ 1 as
ft | yt−1 ∼N (µt ,Σt), where

µt = K(K +γtIN )−1yt−1, and Σt = K−K(K +γtIN )−1K,

and γt > 0 for t ≥ 1. Deterministic self-distillation corresponds to using the mean predic-
tions µt in place of yt when fitting the succeeding step, thereby fitting the subsequent
model to the mean predictions of the current model. In this setting the behavior of
the mean function becomes equivalent to that of Mobahi et al. (2020) and Borup and
Andersen (2021) as evident from the following result.

Proposition B.1. Define yt
def= µt and y0

def= y. Then it holds for any t ≥ 1 that ft | µt−1 ∼
N (µt ,Σt), where

yt =

 t∏
s=1

K(K +γsIN )−1

y, (B.3)

E[ft,∗ | µt−1] = k(x∗,x)(K +γtIN )−1yt−1, (B.4)

and Σt = K−K(K +γtIN )−1K as well as yt is only affected by the choice of γt .

Proof. See proof on page 88.
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(a) Deterministic distillation for ten steps.
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(b) Probabilistic distillation for ten steps.

Figure B.3: Ten steps of self-distillation with fixed hyperparameters and (γ1, . . . ,γ10) = (0.1, . . . ,1) for both the
deterministic and probabilistic approach. We plot both the mean function and the 2.5 and 97.5 percentiles of
the uncertainty estimate at each step.

It can be shown that the behavior of yt as t increases corresponds to progressively
sparsifying the underlying basis functions by shrinking the basis functions with the
smallest eigenvalues the most, thereby imposing a regularization effect on the predictions
(Mobahi et al., 2020; Borup and Andersen, 2021). Furthermore, since yt only depend
on t through {γs}ts=1, once can efficiently compute (B.3) for any choice of t, by using a
spectral decomposition of K.

Furthermore, following Borup and Andersen (2021) the results can be extended to
include a weighting (by α) of the original training observations and (by 1 − α) of the
predictions from the previous iteration of the model.

B.3.2 Probabilistic Self-Distillation (ρ-GPSD)

The central observation of the probabilistic approach is that the posterior distribution is
itself a Gaussian Process, namely GP (m∗, k∗), where

m∗(x) =m(x) + k(x,x⊺) (K +γIN )−1 (y−m(x))

k∗(x,y) = k(x,y)− k(x,x⊺) (K +γIN )−1 k(x, y) .

Since the posterior distribution is a Gaussian process, we may ”distill” the posterior
distribution, by using it as a prior distribution in our initial set-up, and we may iterate
this procedure for any finite number of steps, see Figure 1 (b). Furthermore, we may select
the noise terms γt to be different in each step, and we see that the distillation procedure
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leads to a series of Gaussian Processes GP (mt , kt) where the mean- and covariance function
satisfy the recursions

mt+1(x) =mt(x) + kt(x,x
⊺)[Kt +γtIN ]−1(y−mt(x)) (B.5)

kt+1(x,y) = kt(x,y)− kt(x,x⊺)[Kt +γtIN ]−1kt(x, y) (B.6)

where Kt
def= kt(x,x⊺), m0(x) def= 0, k0(x,y) def= k(x,y) and γt > 0, t = 0,1, . . . .

The solutions to the above recursions (B.5) and (B.6) are given in Theorem B.3 be-
low, where we show that iterating the recursions t times with penalty parameters
γ0,γ1, . . . ,γt−1 yields the same result as performing a single iteration with penalty pa-
rameter 1/γ−t−1 where γ−t

def=
∑t
s=0 1/γs and γ−−1

def= 0. To show this, we first need a lemma.

Lemma B.2. Let λ(t)
i , for i = 1, . . . ,N , denote the eigenvalues of Kt . Write K0 = Odiagi(λ

(0)
i )O⊺

for the spectral decomposition of K0. Then we have for t = 0,1, . . . that

Kt = Odiag
i

(
λ(0)
i ζ

(t)
i

)
O⊺ (B.7)

where ζ(t)
i

def= 1
λ(0)
i γ−t−1+1

. For kt(x,x⊺) and mt(x) we have

kt(x,x
⊺) = k0(x,x⊺)Odiag

i

(
ζ(t)
i

)
O⊺ (B.8)

mt(x) = Odiag
i

(
λ(0)
i γ

−
t−1ζ

(t)
i

)
O⊺y. (B.9)

Proof. See proof on page 88.

We may now prove the main result of this section.

Theorem B.3. The solution to the recursions (B.5) and (B.6) is given by

mt(x) = k0(x,x⊺)(K + IN /γ
−
t−1)−1y (B.10)

kt(x,y) = k0(x,y)− k0(x,x⊺)(K + IN /γ
−
t−1)−1k0(x, y)

for t = 1,2, . . . .

Proof. See proof on page 91.

It follows from Theorem B.3, that performing multiple steps of probabilistic self-
distillation is equivalent to fitting an ordinary GP with a particular choice of noise
parameter. Next, if we assume that the noise parameter is identical in all distillation
steps, i.e. γt = γ for t = 0,1, . . . , then γ−t−1 = t/γ which corresponds to fitting a GPR to a
dataset Dt , which consists of t replications of D with noise parameter γ , in a sense made
precise by the following corollary.

Corollary B.4. If we let Dt = {(xij , yij ) | i = 1, . . . ,N , and j = 1, . . . , t} where xij = xi for all i
and j, then the posterior distribution of f isN (µt ,Σt) where

µt =


K(K +γ/tIN )−1y

...

K(K +γ/tIN )−1y

 (B.11)

Σt = 11⊺ ⊗ (K−K(K +γ/tIN )−1K) (B.12)

where ⊗ is the Kronecker product.

Proof. See proof on page 92.
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B.3.3 Illustratory Example

We now consider an illustratory example, where we assume a true function g(z) = z sin(z),
10 training samples x equidistantly distributed between 0 and 10, and observed values
yi = g(xi) + εi , where εi is standard normally distributed. We use a scaled radial basis
kernel with two hyperparameters σf and l as well as noise parameters γt . See Section
B.III for further details on the setup.

We now consider 10 steps of both deterministic and probabilistic self-distillation
with fixed hyperparameters for all steps. In Figure B.3a and Figure B.3b we plot the
results for deterministic distillation with (γ1, . . . ,γ10) = (0.1, . . . ,1). Here, we observe
the expected increase in regularization of the mean, and that the uncertainty increases
with each step as expected from the choice of (γ1, . . . ,γ10). This aligns well with our
theory. However, for the probabilistic case, the mean function is nearly unaffected by the
distillation procedure, and the uncertainty estimate does not change much either. This is
due to the relatively small change in 1/γ−t when t goes from 1 to 10 as 1/γ−1 = 0.1 and
1/γ−10 = 0.034, which yield a small change for each distillation step. See Appendix B.III
for additional examples with different choices of parameters.

B.4 Self-Distillation for GP Classification

In the following, we separately investigate deterministic and probabilistic self-distillation
for GP classification.

B.4.1 Deterministic Self-Distillation (d-GPSD)
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Figure B.4: Ordinary GPC model and one step of deterministic distillation, with both continuous and ordinary
Bernoulli likelihood. We note that the Bernoulli likelihood, although well-performing, does not constitute a
well-specified model.

Similarly to the deterministic approach for GPR, we will in this section consider the
posterior mean predictions as deterministic targets for the next iteration of the model.
In particular, at each step, t, we assume the prior of ft to be GP (0, k), and for t = 1 we
will obtain predictions, ŷ0 as the average posterior prediction based on the Laplace
approximation e.g. ŷ0 = Eq[σ (f1) | y0]. These predictions will then be used in place of
the original observations for step t = 2, which will lead to new predictions ŷ2, that we
can use in the succeeding step, and so on.
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Figure B.5: One step of deterministic distillation with continuous Bernoulli likelihood as in Figure B.4, both
with and without regularization imposed by a noise assumption on the observations. Adjusting the parameter
γ1 adjusts the regularization.

Since the original observations, y0, are in {0,1}N and the predictions, ŷ1, are in [0,1]N ,
directly reusing the predictions, ŷ1, in place of the observations, y0, in the subsequent
step yields a misspecified model as the Bernoulli distribution only has support on {0,1}.
To alleviate this misspecification, we redefine our model for t ≥ 2 to assume a conditional
continuous Bernoulli distribution rather than the usual conditional Bernoulli (Loaiza-
Ganem and Cunningham, 2019). We will occasionally refer to this method as C-GPC,
and in practice, this requires that we multiply each element of (B.15) by the appropriate
normalizing constant, C (see (B.20) and Appendix B.IV). That is, for t ≥ 2 we assume

yt−1 | ft ∼
N∏
n=1

C(σ (ft,n))σ (ft,n)yt−1,n(1− σ (ft,n))1−yt−1,n ,

which in turn affects the log posterior log p̃(ft | yt−1) through log p̃(yt−1 | ft) which now
becomes

log p̃(yt−1 | ft) = logp(yt−1 | ft) +
N∑
n=1

logC(σ (ft,n)).

Furthermore, this also affects the gradient and hessian of log p̃(ft | yt−1) used to obtain the
Laplace approximation, and although logC(λ) nor d

dλ logC(λ) attains no simple expres-
sions, we show in Proposition B.5 that both C(σ (a)) and the derivatives d

da logC(σ (a)) and
d2

d2a
logC(σ (a)) yield surprisingly simple expressions of standard hyperbolic functions

(see also Figure B.14 for plots of the functions).

Proposition B.5. Let C(σ (a)) be defined as in (B.20) with λ = σ (a), then we have that

C(σ (a)) =

2 if a = 0

acoth
(
a
2

)
otherwise,

d
da

log(C(σ (a))) =

0 if a = 0
1
a −

1
sinh(a) otherwise,

d2

d2a
log(C(σ (a))) =

1
6 if a = 0

− 1
a2 + coth(a)

sinh(a) otherwise,
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where coth, and sinh are the hyperbolic cotangent, and sine functions, respectively.

Proof. See proof on page 93.

Thus, if we denote Ct
def=

∑N
n=1 log(C(σ (ft,n))), we get that the gradient and hessian of

the log posterior becomes

∇ψ̃(ft) = yt−1 −σt−1 −K−1ft +∇Ct ,

−∇∇ψ̃(ft) = Wt + K−1 −∇∇Ct ,

where Wt = diagn{σ (ft,n)(1− σ (ft,n))} and ∇∇Ct = diagn{
d2

d2ft,n
logC(σ (ft,n))}, respectively.

This also affects the Laplace approximation of the posterior as evident from Figure B.4.
Unfortunately, unlike deterministic self-distillation for GPR, we are unable to obtain

a closed-form solution for the distilled models due to the numerical approximations
necessary to obtain the posterior (predictions). However, we do empirically investigate
the effect of using the continuous Bernoulli rather than the discrete Bernoulli distribution
in Figure B.4. In particular, we plot the solutions for a single step of distillation with
C-GPC and with the discrete Bernoulli where we use continuous observations despite
the support of the Bernoulli distribution being discrete. We expand on this example in
Section B.4.3 below.

B.4.2 Probabilistic Self-Distillation (ρ-GPSD)

In the probabilistic approach, we proceed in a similar manner as in Section B.3.2. Firstly,
we observe from (B.1) and (B.2) that our approximate posterior distribution is a Gaussian
process GP (m∗, k∗) with

m∗(x) =m(x) + k(x,x⊺)K−1(f̂−m(x))

k∗(x,y) = k(x,y)− k(x,x⊺)(K + W−1)−1k(x, y) .

This may then be used as a prior distribution, which again implies a series of Gaussian
processes GP (mt , kt), t = 0,1,2, . . . where analogue to equations (B.5) and (B.6) in this case
becomes

mt+1(x) =mt(x) + kt(x,x
⊺)K−1

t (f̂t −mt(x)) (B.13)

kt+1(x,y) = kt(x,y)− kt(x,x⊺)(Kt + W−1
t )−1kt(x, y). (B.14)

Here, f̂t is the mode of ψt(f), the log posterior for the t’th iteration, and similarly
Wt = diagn{σ (f̂t,n)(1− σ (f̂t,n))}.

Since f̂t is not given analytically, we cannot solve the above recursions in the classifi-
cation case, as we could in the regression setting and must resort to numerical results.
However, we show an analogous result to the data duplication result from Corollary B.4
and it follows that iterated distillation in the probabilistic setup may be approximated by
scaling the covariance in the first distillation step. These observations are summarized
in the following proposition, where Dt as in Corollary B.4 consists of the dataset D
replicated t times, and an example is illustrated in Figure B.6a and B.6b.
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(a) Solutions for 10 steps of distillation.
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(b) Error between iterated and scaled solutions.

Figure B.6: Ten steps of probabilistic self-distillation for GP classification. In (a) we plot the solutions using the
scaled covariance approximation, and in (b) we plot the approximation error between the iterated distillation
procedure and scaled approximation over the test set of 90 equidistant point on the interval [−2,7].

Proposition B.6. (A) A single step of probabilistic distillation using Dt and a Gaussian prior
GP (0, k) yields the same posterior distribution as a single step of probabilistic distillation using
a Gaussian prior GP (0, tk). (B) Performing t iterations of the probabilistic distillation using
D and starting with an inital Gaussian prior GP (0, k) yields approximately the same posterior
as a single step of probabilistic distillation using a Gaussian prior GP (0, tk).

Proof. See proof on page 95.

B.4.3 Illustratory Example

We now consider an illustratory example, where we consider the true underlying function
g(x) = 2sin(xπ/2). We sample training observations, x, from an U (0,5) distribution and
binary targets from a Bernoulli distribution with probability parameterized by g(x).

d-GPSD for GPC. For d-GPSD, we initially fit an ordinary GPC model with Bernoulli
distribution to the binary observations and fit a secondary model to the continuous
predictions of this first model. In Figure B.4 we plot the predictions of both these
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models when we use either a continuous Bernoulli distribution (as argued in Section
B.4) or a discrete Bernoulli distribution (where we intentionally violate the discrete
support of the distribution) for the second model. The hyperparameters of the models
minimize the negative log-likelihood (NLL) over the input data, and while the distilled
Bernoulli model is slightly flattened, compared to the initial fit, the C-GPC model yields
more ”extreme” predictions. We conjecture that the implicit regularization imposed
by the misspecification of the distilled Bernoulli model is absent in the C-GPC model.
Furthermore, by Section B.IV we expect the continuous Bernoulli to favor more extreme
values compared to the ordinary Bernoulli, as is also evident in Figure B.4. To dampen
the degree of overfitting in the C-GPC model we reintroduce the noise parameter γt > 0
along the diagonal of the kernel matrix of the training data and plot both the regularized
and non-regularized solutions in Figure B.5. We observe that with the noise parameter,
we get not only a well-specified model but also get more control over the amount of
regularization. See Appendix B.III for more experiments.

ρ-GPSD for GPC. Again, we initially fit an ordinary GPC model, but unlike the d-
GPSD case, for ρ-GPSD distillation, we do not change the model assumptions for the
distillation step. In Figure B.6a we plot the solutions for 10 steps of distillation and
observe a significantly different behavior compared to d-GPSD; the effect of distillation
is much more subtle and more closely resembles that of distillation in the regression case
where the solutions are getting progressively closer to the original data. Furthermore,
in Figure B.6b we plot the mean squared approximation error between the solutions
obtained from (B.5)-(B.6) and those obtained by scaling the kernel matrix as argued in
Proposition B.6. Although the error is almost linearly increasing, it does so by less than
0.5 × 10−5 per step, and the approximation error is on the order of 10−5 for 10 steps.
Thus, since the scaling approximation is much faster (especially for many distillation
steps) it is a great alternative for naïve computations.

B.5 Additional Experiments

To further illustrate our theoretical results on empirical data, we include additional
experiments on both regression and classification tasks on realistic data in Appendix B.VI.
For these experiments, we apply common training strategies such as hyperparameter
optimization by minimization of the negative log-likelihood and a cross-validated grid
search over the noise parameter, kernels, and the number of distillation steps.

B.6 Related Works

To the best of our knowledge, no literature on knowledge distillation for Gaussian process
models exists. However, for good measure in the following, we relate our proposed
methods to the existing related literature on knowledge distillation and Gaussian process
regression/classification.

Knowledge Distillation. The idea of knowledge distillation originates back to Ba
and Caruana (2014); Bucila et al. (2006), but is typically most known from Hinton
et al. (2015). It was originally aimed at model compression, by training a small (in an
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appropriate measure of model size) student model on the outputs of a larger teacher
model.

In recent years, the idea of distillation has expanded in numerous directions, and for
various types of applications. Of particular relevance is the direction of self-distillation,
where the student model is considered to be of the same model class/architecture as
the teacher model (Furlanello et al., 2018; Zhang et al., 2019; Allen-Zhu and Li, 2022).
Other interesting directions of research on distillation are on the impact of the size-gap
between teacher and student (Mirzadeh et al., 2020), matching on other information
than the output (Park et al., 2019; Romero et al., 2015; Srinivas and Fleuret, 2018), as
well as multi-teacher and multi-source distillation (Li et al., 2021; Liu et al., 2020; You
et al., 2017; Borup et al., 2023b). Finally, due to the domain-agnostic nature of most
distillation methods, they are applied in a wide range of domains (Parthasarathi and
Strom, 2019; Borup et al., 2023a).

Despite much empirical success of a wide array of distillation techniques, a rigorous
understanding of distillation is still lacking behind. However, recent work has provided
insights into simplified settings such as linear models, kernel ridge regression, and
decision trees (Phuong and Lampert, 2019; Borup and Andersen, 2021; Frosst and
Hinton, 2017).

Gaussian Processes. In recent years, an increasing amount of research on extending
the capabilities of GP models and adapting them to modern compute availability and
dataset sizes has been made. This includes theoretical connections between neural
networks and Gaussian processes (Lee et al., 2018; Yang, 2019; Garriga-Alonso et al.,
2019), stochastic and sparse GPs (Titsias, 2009; Hensman et al., 2013, 2015), and the
possibility of exploiting the successes of neural networks in combination with Gaussian
processes e.g. deep kernel learning (Wilson et al., 2016a,b).

B.7 Conclusion

In conclusion, we propose two approaches to extend knowledge distillation to Gaussian
process regression and classification; deterministic and probabilistic. We show that
some of these approaches are closely related to known results or very particular choices
of hyperparameters, but also that some methods require careful redefinition of our
model assumptions to be appropriate. To the best of our knowledge, this paper is
the first attempt to propose knowledge distillation specifically for Gaussian Process
models, opening new avenues for further research with potential implications in machine
learning. Interesting directions of future research include, amongst others, the utilization
of a convex combination of both the original and predicted targets in the distillation
steps, as well as combinations of d-GPSD and ρ-GPSD distillation approaches.
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Supplementary material

B.I Notation

In the main text, we adopt the notation of Rasmussen and Williams (2006) and use the
following. In the expressions for µ∗ and Σ∗, we have used the notation

g(x,y⊺) =
{
g(xi , yj )

}N,M
i,j=1
∈ RN×M

where g : R2 ∋ (x,y) 7→ g(x,y) ∈ R, and x = (x1, . . . ,xN )⊺ ∈ RN , y = (y1, . . . , yM )⊺ ∈ RM are
column vectors. Notice, that if either argument is a scalar we have

g(x,x⊺) = (g(x,x1), . . . , g(x,xN )) ∈ R1×N

g(x, y) = (g(x1, y), . . . , g(xN , y))⊺ ∈ RN×1

where g(x,x⊺) is a row-vector and g(x, y) a column vector.

B.II Additional Details on Self-Distillation for GP Classification

In the following, we restate some known results for GP classification with more details
than in the main paper. We also provide some additional details on our self-distillation
results for GP classification.

B.II.1 Gaussian Process Classification

Following the usual setup for classification with Gaussian Processes, we assume f ∼
GP (m,k), and for a training set D = {(xi , yi) | i = 1, . . . ,N } we denote f = (fn)Nn=1 =
(f (x1), . . . , f (xN ))⊺ and y = (y1, . . . , yn)⊺ so that

y | f ∼
N∏
n=1

σ (fn)yn(1− σ (yn))1−yn . (B.15)

The log posterior has the form

ψ(f) def= logp(f | y) ∝
f

logp(f) + logp(y | f),

where p(f) is the pdf of the multivariate Gaussian distribution and it follows from (B.15)
that

logp(y | f) = y⊺f−
N∑
n=1

log(1 + exp(fn)) .

so that (up to the proportionality in f):

ψ(f) = −1
2

(fN −m)⊺K−1(f−m) + y⊺f−
N∑
n=1

log(1 + exp(fn)) . (B.16)

Since the posterior is non-Gaussian, we apply Laplace approximation to get a Gaussian
approximation. Thus, we need the gradient and Hessian to obtain f̂ (the MAP estimate)
and the covariance matrix. It follows from (B.16) that

∇ψ(f) = y−σ −K−1f + K−1m

−∇∇ψ(f) = W + K−1
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where (σ )n = σ (fn) (this term comes from
∑N
n=1 log(1+efn )) and W = diagn{σ (fn)(1−σ (fn))}.

Using these can use the Newton-Raphson procedure to find f̂, and it follows from the
expression for the gradient, that f̂ will be the solution to

f̂ = m + K(y−σ ) . (B.17)

The Gaussian approximation of p(f | y) comes out to

q(f) =N (f | f̂, (W + K−1)−1).

The posterior predictive distribution is computed as

p(f∗ | x,y,x∗) =
∫
p(f∗ | f)p(f | y)df (B.18)

(see Bishop (2006)) where the GP (m,k) prior gives the conditional distribution

p(f∗ | f) =N (f∗ |m(x) + kTK−1(f−m), k −kTK−1k) . (B.19)

We can obtain predictions in two different ways: Either by substituting q(f) for p(f | y) in
(B.19) (this leads to (B.1) and (B.2)), or simply as the predictions of the mean

σ (Eq[f | y]) = σ (f̂).

We note that while the two are different in general, the decision boundary is identical for
binary classification (Bishop, 2006, Sec. 10.3).

B.II.2 Deterministic Self-distillation for GP Classification

For a single step of deterministic distillation, we can choose either of the above predic-
tions as our new targets and will denote them as y1 irrespective of the choice. However,
while y ∈ {0,1}N we now have y1 ∈ [0,1]N , and we can no longer assume a conditional
Bernoulli distribution over y1. However, by extending to the continuous Bernoulli
distribution (Loaiza-Ganem and Cunningham, 2019), we can avoid this problem, by
introducing the appropriate normalizing constant

C(λ) def=

2 if λ = 1
2 ,

2tanh−1(1−2λ)
1−2λ otherwise.

(B.20)

See Figure B.14 for plots of the normalizing constant, its gradient, and Hessian. We now
assume f1 ∼ GP (0, k) and

y1 | f1 ∼
N∏
n=1

C(σ (f1,n))σ (f1,n)y1,n(1− σ (f1,n))1−y1,n ,

which in turn yields that

logp(y1 | f1) = y⊺
1 f1 −

N∑
n=1

log(1 + exp(f1,n)) +
N∑
n=1

logC(σ (f1,n)),
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where we note that
∑N
n=1 logC(σ (f1,n)) > 0. In Proposition B.5 we find the derivative and

second derivative of logC(σ (a)). Thus, if we denote C1
def=

∑N
n=1 log(C(σ (f1,n))), we get that

the gradient of the conditional density is

∇ψ1(f1) = y1 −σ1 −K−1f1 +∇C1,

where we can compute the last term by use of the derivative above. Similarly, it follows
that the Hessian can be computed as

−∇∇ψ1(f1) = W1 + K−1 −∇∇C1,

where we note that ∇∇C1 is a diagonal matrix, and that σ1 and W1 are defined anal-
ogously to the classical case. With the gradient and Hessian, we can follow the usual
setup and compute the MAP estimate for the mean of the Laplace approximation, and
use the inverse Hessian as covariance. That is, we use

fnew
1 = f1 −

(
−W1 −K−1 +∇∇C1

)−1(y1 −σ1 −K−1f1 +∇C1
)

=
(
W1 + K−1 −∇∇C1

)−1((W1 + K−1 −∇∇C1
)
f1 + y1 −σ1 −K−1f1 +∇C1

)
= KK−1(W1 + K−1 −∇∇C1

)−1((W1 −∇∇C1
)
f1 + y1 −σ1 +∇C1

)
= K

((
W1 −∇∇C1

)
K + I

)−1((
W1 −∇∇C1

)
f1 + y1 −σ1 +∇C1

)
That is, we now have the Laplace approximation

p(f1 | y) ≈ q(f1 | y) =N
(
f1 | f̂1,

(
W1 + K−1 −∇∇C1

)−1)
,

where f̂1 is the MAP estimate from above, and we can also use the Laplace approximation
to get the marginal log-likelihood. First by a Taylor approximation of ψ1(f1) at f̂1, we get
that ψ1(f1) ≈ ψ1(f̂1)− 1

2 (f1 − f̂1)⊺H−1(f1 − f̂1), where H−1 is the covariance matrix of q, i.e.

H def= W1 + K−1 −∇∇C1. Thus, we have that

logp(y1) =
∫
ψ(f1)df1

≈ ψ1(f̂1) +
∫
−1

2 (f1 − f̂1)⊺H−1(f1 − f̂1)df1

= ψ1(f̂1) + N
2 log(2π)− 1

2 log |H|

= y⊺
1 f̂1 −

N∑
n=1

log(1 + exp(f̂1,n)) +
N∑
n=1

logC(σ (f̂1,n))− 1
2 f̂⊺1 K−1f̂1

− 1
2 log |K| − N

2 log(2π) + N
2 log(2π)− 1

2 log |H|

= y⊺
1 f̂1 −

N∑
n=1

log(1 + exp(f̂1,n)) +
N∑
n=1

logC(σ (f̂1,n))

− 1
2 f̂⊺1 K−1f̂1 − 1

2 log(|K|)− 1
2 log(|W1 + K−1 −∇∇C1|)

The marginal log-likelihood is useful for hyperparameter optimization.
We can then iterate this distillation procedure any number of times. Usually, we

consider the inversion of K the most computationally expensive step of fitting a GP,
and since we can re-use K−1 for all our steps, the addition of distillation steps is, com-
putationally, not very demanding. In the above MAP estimation, we even rewrite the
optimization to avoid the use of the inverse of K.
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B.III Setup for Illustratory Examples and Additional Results

Throughout the main paper, we have included illustrations and plots based on various
illustrator examples. However, all these illustratory examples have been computed with
a radial basis kernel function

k(x1,x2) = σ2
f exp

(
−∥x1 − x2∥2

2l

)
,

where σ2
f > 0 and l > 0 are both hyperparameters tunable for the particular example. We

also (mainly for the regression setup) consider a noise parameter γ ≥ 0 which is added
to the diagonal of K, i.e. assume noise on the training observations. Even without this
assumption we typically use a small γ ≈ 10−8 to avoid numerical instability both in
regression and classification examples.

In Figure B.7 we plot the negative log-likelihood over a grid of values for σf and l
both in the case of using the ordinary GP classification with Bernoulli likelihood and
the adjusted setting with continuous Bernoulli likelihood when the input is the true
continuous underlying function g(x) = 2sin(xπ/2).

B.III.1 Additional Experiments and Results

In the following, we present additional results on the same illustratory experiments as
in the main paper, but with changes to e.g. the model parameters or data assumptions.
In particular, in Figure B.8 we present different solutions to the deterministic GPR
example in the main text when varying the choices of (γ1, . . . ,γ10). Similarly, in Figure
B.9 we repeat the same experiments for probabilistic GPR. Finally, in Figure B.10 we
plot the solutions of deterministic GPC, when we fit the distilled model, not to the
continuous predictions of the initial model, but to the (0,1)-encoded targets obtained
by thresholding the initial model at 0.5. In this setting, using an ordinary Bernoulli
assumption does not result in a misspecified model, but the thresholded neglects some
of the information contained in the continuous targets, and as evident from FigureB.10,
the distilled models, in this case, is largely similar to that of a C-GPC on the continuous
targets.

B.IV Some Details on the Continuous Bernoulli Distribution

The continuous Bernoulli distribution (denoted by CB(λ)) was introduced in Loaiza-
Ganem and Cunningham (2019) and dealt with the relatively common case, where data
is continuous values in [0,1] rather than discrete values in {0,1}. When performing
distillation this is indeed the case, and merely using a (implicit or explicit) Bernoulli
assumption is not suitable. For good measure, we repeat some key results of CB from
Loaiza-Ganem and Cunningham (2019) in the following section. Note, in the following,
we will treat Bernoulli variables as if they could attain continuous values in [0,1], which
is the incorrect approach currently often used in practice.

First, we recall that the density of the Bernoulli distribution with parameter λ ∈ (0,1)
is given by

X ∼ B(λ) ⇐⇒ p̃(x | λ) = λx(1−λ)1−x.
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Figure B.7: Grid search of hyperparameters of two different types of GP classification. We indicate the
minimum of each grid with a white dot. Note, the absolute values can not be compared between the two
models due to different likelihood functions.

Second, by Loaiza-Ganem and Cunningham (2019) the density of CB differs from the
density of B merely by a multiplicative normalizing constant (dependent on the parame-
ter λ), denoted by C(λ). See Figure B.11 for a plot of both densities. In particular, we
have that for λ ∈ (0,1) then

X ∼ CB(λ) ⇐⇒ p(x | λ) = C(λ)λx(1−λ)1−x

where the normalizing constant can be shown to be

C(λ) def=

2 if λ = 1
2 ,

2tanh−1(1−2λ)
1−2λ otherwise,

and tanh−1 is the inverse hyperbolic tangent function.
In Figure B.13 we plot the normalizing constant for both the ordinary (equal to 1 for

all λ) and continuous Bernoulli distribution, and we also observe that since the mean of
a CB(λ) distributed variable is not merely λ, the optimal λ (i.e. maximizing the density)
for a single observation x is different from λ.
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(c) Noise parameters: (γ1 , . . . ,γ10) = (0.1,0.42, . . . ,3)
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(d) Noise parameters: (γ1, . . . ,γ10) = (3,2.68, . . . ,0.1)

Figure B.8: Ten steps of d-GPSD for GPR with fixed hyperparameters, but with varying choices of noise
parameters. We note the progressively increasing regularization present in all examples.
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Figure B.9: Ten steps of ρ-GPSD for GPR with fixed hyperparameters, but with varying choices of noise
parameters. We note that while (c) and (d) yield the same solution at step 10, the path to that solution varies.
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Figure B.10: Same setup as in Figure B.4, but instead of fitting the distilled model to the soft output of the first,
we also include (in dashed) the ordinary GPC and C-GPC when fitted to the binary predictions (thresholded
at 0.5). We see that the overfitting of the C-GPC is amplified, while the ordinary GPC closely resembles the
initial C-GPC on soft targets.
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Figure B.11: Density of Bernoulli and continuous Bernoulli distributions with different choices of parameter λ.
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Figure B.12: Negative log-likelihood of Bernoulli and continuous Bernoulli distributions with different choices
of parameter λ. We illustrate the optimizing λ for each x by a cross ×, and note that for a given observation x
the optimal choice of λ for the Bernoulli is x, while it for the continuous Bernoulli is a non-linear function of x,
which is generally biased towards more extreme values of λ. See also Figure B.13.
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Figure B.13: Normalizing constant and optimal λ values (i.e. maximizing likelihood for a single observation of
x) for both ordinary and continuous Bernoulli distributions.

Finally, in Figure B.14 we both plot the log-normalizing constant, as well as the first
and second derivatives with respect to a versus either λ = σ (a) or a. See Proposition B.5
for the derivations of these.
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Figure B.14: Log-normalizing constant for the continuous Bernoulli distribution C(λ), along with first and
second derivatives with respect to a.

B.V Implementation and Time/Compute Analysis

Despite the main aim of our proposed self-distillation methods being of a theoretical
nature, in the following, we investigate the compute requirements of our proposed
methods.
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B.V.1 (Efficient) Implementation

We provide a public implementation of our methods in Python on https://github.c
om/Kennethborup/gaussian_process_self_distillation. We provide four classes;
deterministic and probabilistic self-distillation for both GP regression and GP classi-
fication. The classes are named straightforwardly as DataCentricGPR, Distribution-
CentricGPR, DataCentricGPC, and DistributionCentricGPC.1 Each method has .fit,
and .predict methods that are similar to the scikit-learn API. For DataCentricGPR
we provide both a naïve and efficient implementation, which significantly improves
the training speed for multiple steps of distillation. In particular, inspired by Borup
and Andersen (2021) we utilize the singular values decomposition of K as VDV⊺ (here
V ∈ RN×N is an orthogonal matrix with the eigenvectors of K as rows and D ∈ RN×N is a
non-negative diagonal matrix with the associated eigenvalues in the diagonal), to rewrite
(B.3) for t = 1 into

y1 = VD (D +γ1IN )−1 V⊺y

which by iterative inserting yields the more general expression

yt =

 t∏
s=1

K(K +γsIN )−1

y,

= V

 t∏
s=1

As

V⊺y,

where As = D(D+γsIN )−1 = diagn=1,...,.N

(
dn

dn+γs

)
for s = 1, . . . t are diagonal matrices. Thus,

when V and D are computed, the subsequent distillation steps are computationally
cheap due to the diagonal structure of the As’s. One can similarly rewrite the prediction
formula (B.3) — see the source code for more implementation details.

B.V.2 Time Requirements

To evaluate the practical implications of our proposed methods, we compared the time
it takes to fit our methods (for a varying number of distillation steps) with an ordi-
nary fit using the standard implementation of GP regression and GP classification in
scikit-learn; namely the GaussianProcessRegressor and GaussianProcessClassi-

fier. In particular, we fit a model with each of our methods for a particular number
of steps and divide the fitting time with the fitting time of the corresponding ordinary
scikit-learn method. We repeat our experiments 30 times and report the mean and
10 and 90 empirical percentiles in Figure B.15. All experiments are performed on a
Mac M1 Pro CPU.

For regression, we observe that probabilistic self-distillation (as expected from The-
orem B.3) requires no more computation than ordinary GPR with the scikit-learn

implementation of GP regression. This is simply due to probabilistic self-distillation
for regression stays within the GP setting. For deterministic self-distillation the story is
different; the time complexity of a naïve iterative implementation where each successive
model is fitted to the predictions of the preceding model scales linearly with the number

1 The naming follows an earlier version of the paper, where data-centric refers to the deterministic methods,
and distribution-centric refers to the probabilistic methods.
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of distillation steps (at a rate of ≈ 0.11). However, by utilization of an eigendecomposi-
tion of K in (B.3), one can rewrite the solution to optimize the fitting speed significantly.
In particular, each additional step of distillation merely requires updating a diagonal
matrix and a few matrix products (of re-used matrices), which is much cheaper. Thus,
with this efficient implementation, we are able to fit deterministic self-distillation to any
number of distillation steps at a constant time complexity. Thus, both deterministic and
probabilistic self-distillation for regression does not take longer to fit than an ordinary
GP regression from scikit-learn.

For classification, we observe that deterministic self-distillation scales linearly with
the number of distillation steps at a rate of≈ 0.26, and multiple steps of self-distillation in
this setting are quickly computationally costly. However, the time to fit with probabilistic
self-distillation is (as expected) constant with the number of distillation steps. This
is clearly expectable from Proposition B.6, and fits as quickly as the scikit-learn

implementation.
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Figure B.15: Relative time to fit various self-distilled GP models compared to a single fit with the standard
scikit-learn implementation of the regression and classification model respectively. On the (left) we plot
the relative time to fit regression models. For deterministic self-distillation, we use both a naïve and efficient
approach. While the naïve approach scales linearly with the distillation steps, the efficient approach is constant
in relative time for all distillation steps. On the (right) we plot the relative time for the classification models
compared to the scikit-learn implementation and observe that the deterministic approach scales linearly
with distillation steps, while (as expected) the probabilistic approach is constant with distillation steps. The
shaded regions represent the 10 and 90 empirical quantiles of 30 repetitions for each method and the number
of distillation steps. We note that these experiments are performed with hyperparameters optimized at the
first step only.

B.V.3 Computational Requirements

In the following, we consider the computational requirements of our methods. We will
consider the inversion of matrices, matrix products, Cholesky decomposition, and SVD
to all be O(N3) ignoring constants, although some algorithms exist to reduce the order
of computation for different methods to O(Nω) where typically 2 < ω ≤ 3. Our imple-
mentation is based on Algorithm 3.1, 3.2, and 5.1 in Rasmussen and Williams (2006),
which largely depends on using the Cholesky decomposition for back-substitution.

We note that while the framing of our setup differs notably from the ordinary GP
regression and GP classification setups, our proposed methods still stay close to or within
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the ordinary GP framework simplifying the analysis. In particular, for probabilistic GPR,
the solution is an ordinary GPR model with a particularly scaled noise parameter (see
Theorem B.3), and any existing GPR implementation can be used. Thus, the complexity
of this method is O(N3) as usual. For probabilistic GP classification, we consider the
approximate method from Proposition B.6, and note, that this too is equivalent to
an ordinary GPC model, and is in O(N3). For deterministic GP regression, a naive
implementation would require t iterative fits of an ordinary GPR model, but utilizing the
efficient implementation above, we replace the Cholesky decomposition with the SVD,
and can thus reuse V, and D for multiple steps of distillation. Thus, each additional
distillation step merely requires matrix products of diagonal matrices and with theN ×N
matrices, which makes this method O(N3) as well. Finally, due to the iterative nature of
deterministic GP classification, which does not allow a simplified solution, this method,
unfortunately, scales linearly with the number of distillation steps (although still in
O(N3)). In particular, for t > 1 we change the likelihood function to the continuous
Bernoulli, which is a negligent change due to the simple and closed-form solutions
provided in Proposition B.5, but since we do not have a closed form solution for our
model, we need to fit each model in an ordinary fashion, thus requiring O(tN3) with
t the number of distillation steps. This can be computationally demanding for large t.
Generally, we observe that, despite deterministic GP classification scaling linearly with t,
all our proposed methods are still primarily limited by the scaling of N . Finally, due to
the minor changes in our methods, methods to e.g. efficiently compute/approximate K
should largely still be compatible with our methods.

B.VI Experiments on Realistic Data

To supplement our theoretical analysis we provide results on empirical data in Table B.1
for both regression and classification tasks. We use the implementation presented in
Section B.V, and provide results for ordinary GP models and both ρ-GPSD and d-GPSD
for comparison.

We investigate three regression tasks and three classification tasks. In particular, for
regression, we analyze the Diabetes dataset (Efron et al., 2004), the California Housing
dataset2, and the Linnerud dataset (we only model the second output dimension)3. For
classification, we need to adapt any task as a binary task per the restrictions of the
implementation. Thus, we consider the Breast Cancer dataset (Wolberg William and
Street, 1995), a binary version of the Cover Type dataset (only compare classes 5 and 6)
(Blackard, 1998), and the Credit-G dataset (Hofmann, 1994). To keep the computational
requirements at a reasonable scale to perform a search of a large grid of hyperparameters,
we subsample the California Housing and Cover Type datasets to 1000 samples. We
apply a 5-fold cross-validated grid-search over the hyperparameters; noise parameter
(for regression only), number of distillation steps, and kernel function. We report the
predictive performance as the average RMSE or accuracy on the 5 validation sets for
regression and classification, respectively. For all methods (ordinary, ρ-GPSD, and d-
GPSD) we optimize the kernel parameters by minimizing the negative log-likelihood on

2 https://www.dcc.fc.up.pt/~ltorgo/Regression/cal_housing.html
3 https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_linnerud.html
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Diabetes (↓) Cal. Housing (↓) Linnerud (↓)
Ordinary 54.095 0.430 2.733

Single-optimization

ρ-GPSD 54.095 0.430 2.733
d-GPSD 54.492 0.430 2.522

Multi-optimization

d-GPSD 53.677 0.430 2.709

(a) RMSE for GPR on three different datasets.

Breast Cancer (↑) Cover Type (↑) Credit-G (↑)
Ordinary 0.975 0.991 0.763

Single-optimization

ρ-GPSD 0.975 0.991 0.763
d-GPSD 0.975 0.991 0.763

(b) Accuracy for GPC on three different datasets.

Table B.1: Predictive performance through 5-fold cross-validation on 3 different tasks for both regression
and classification. For GPR we include both ordinary GPR, and ρ-GPSD and d-GPSD with hyperparameter
optimization at the first step, as well as d-GPSD with hyperparameter optimization at each distillation step.
For GPC, we include ordinary GPC as well as ρ-GPSD and d-GPSD with hyperparameter optimization at the
first step only.

the original data at the first fit, while we for ρ-GPSD and d-GPSD reuse these parameters
for all distillation steps in the Single-optimization rows of the table, and refit these kernel
parameters (by minimizing the NLL on the previous predictions) at each distillation step
for d-GPSD on regression in the Multi-optimization row. Multi-optimization solutions
tend to perform slightly better than single-optimization but do not warrant the increased
computational requirements. Due to the limitations of our implementation, we only
provide multi-optimization results for d-GPSD.

As expected from the theoretical results, ρ-GPSD is equivalent to an ordinary fit,
where the constant kernel parameter is scaled by 1 over the number of distillation steps,
as long as we search over an equivalent set of noise parameters. Hence, when we optimize
the kernel parameters on the NLL at the initial fit, we expect them to converge to an
equivalent solution. We also observe that for classification, self-distillation does not
improve the predictive performance for d-GPSD. However, for the regression tasks, we
observe that while d-GPSD with re-used hyperparameters (from the first fit) is inferior
to both ordinary GPR and ρ-GPSD on the Diabetes dataset, it is superior on Linnerud
and equivalent on California Housing. Furthermore, we observe that while d-GPSD with
hyperparameters updated at each step is superior to all other methods on Diabetes, and
to GPR and ρ-GPSD on Linnerud, it is still outperformed by a single-step optimized
d-GPSD on Linnerud. We stress that, while self-distillation for GP models appears to
provide some possibilities for empirical improvements, it is not the aim of this paper to
provide a superior empirical method, but rather to provide a theoretical framework on
how to analyze self-distillation in a mathematically tractable setting of GP models.
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B.VII Proofs From the Main Paper

In the following, we restate the results of the main paper and provide the associated
proofs.

Proposition B.1 (from page 63). Define yt
def= µt and y0

def= y. Then it holds for any t ≥ 1 that
ft | µt−1 ∼N (µt ,Σt), where

yt =

 t∏
s=1

K(K +γsIN )−1

y, (B.3)

E[ft,∗ | µt−1] = k(x∗,x)(K +γtIN )−1yt−1, (B.21)

and Σt = K−K(K +γtIN )−1K as well as yt is only affected by the choice of γt .

Proof. We assume the model yt−1 = ft(x) + εt , with ft ∼ GP (0, k), and εt ∼N (0,γt) for all
t ≥ 1. This yields

p(ft) =N (ft | 0,K)

p(yt−1 | ft) =N (yt−1 | ft ,γtIN )

p(yt−1) =
∫
p(yt−1 | ft)p(ft)dft =N (yt−1 | 0,K +γtIN ),

where we use the usual bolded notation for functions evaluated in x1, . . . ,xN ; i.e. yt =
(yt(x1), . . . , yt(xN ))⊺ ∈ RN and ft = (ft(x1), . . . , ft(xN ))⊺ ∈ RN . Which combined yields the
prior [

yt−1

ft

]
∼ N

([
0
0

]
,

[
K +γtI K

K K

])
.

Thus, following the standard results for conditional multivariate Gaussian distributions,
we get the posterior

fn | yt−1 ∼N
(
K(K +γtIN )−1yt−1, K−K(K +γtIN )−1K

)
. (B.22)

Recall that we use yt
def= µt = E[fn | yt−1], and by iteratively inserting yt−1 = K(K +

γt−1IN )−1yt−2 into (B.22), we get

yt = E[ft | yt−1] = K(K +γtIN )−1yt−1

= K(K +γtIN )−1K(K +γt−1IN )−1yt−2

= AtAt−1yt−2

=

 n∏
m=1

Am

y0,

where we use the notation Ai = K(K+γiIN )−1. Note, the claim for E[ft(x)] follows directly
from analogous results for arbitrary x.

Lemma B.2 (from page 65). Let λ(t)
i , for i = 1, . . . ,N , denote the eigenvalues of Kt . Write

K0 = Odiagi(λ
(0)
i )O⊺ for the spectral decomposition of K0. Then we have for t = 0,1, . . . that

Kt = Odiag
i

(
λ(0)
i ζ

(t)
i

)
O⊺ (B.7)
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where ζ(t)
i

def= 1
λ(0)
i γ−t−1+1

. For kt(x,x⊺) and mt(x) we have

kt(x,x
⊺) = k0(x,x⊺)Odiag

i

(
ζ(t)
i

)
O⊺ (B.8)

mt(x) = Odiag
i

(
λ(0)
i γ

−
t−1ζ

(t)
i

)
O⊺y. (B.9)

Proof. First we observe that (B.6) gives the following recursion for Kt :

Kt+1 = Kt −Kt(Kt +γtIN )−1Kt (B.23)

If we let (λ,o) be an eigenvalue-eigenvector pair for Kt , it follows from (B.23), that
(λ−λ2/(λ+γt),o) is an eigenvalue-eigenvector pair for Kt+1, so that we have the following
recursion for eigenvalues of the Kt-matrices:

λ(t+1)
i = λ(t)

i −
(λ(t)
i )2

λ(t)
i +γt

=
λ(t)
i γt

λ(t)
i +γt

i = 1, . . . ,N .

From this it can be easily verified by induction, that

λ(t)
i =

λ(0)
i

λ(0)
i γ

−
t−1 + 1

i = 1, . . . ,N ,

and we see that the solution to the recursion (B.7) is

Kt = Odiag
i

 λ(0)
i

λ(0)
i γ

−
t−1 + 1

O⊺ . (B.24)

Notice that (B.24) trivially holds for t = 0. Next, we note the following consequences of
(B.24): Firstly, it follows from (B.23) that

(Kt +γtI)−1 = Odiag
i

 1
λ(0)
i

λ(0)
i γ−t−1+1

+γt

O⊺ = Odiag
i

 λ(0)
i γ

−
t−1 + 1

γt(λ
(0)
i γ

−
t + 1)

O⊺ . (B.25)

Secondly, combining (B.24) and (B.25) gives

Kt(Kt +γtI)−1 = (Kt +γtI)−1Kt = Odiag
i

 λ(0)
i

γt(λ
(0)
i γ

−
t + 1)

O⊺ . (B.26)

Finally, we see that

IN − [Kt +γtIN ]−1Kt = Odiag
i

1−
λ(0)
i /γt

λ(0)
i γ

−
t + 1

O⊺

= Odiag
i

λ(0)
i γ

−
t−1 + 1

λ(0)
i γ

−
t + 1

O⊺ .

(B.27)
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Now, we can turn our attention to kt(x,x⊺). Here we have

kt+1(x,x⊺)

=
(
kt+1(x,x1), kt+1(x,x2), . . . , kt+1(x,xN )

)
=

(
kt(x,x1)− kt(x,x⊺)[Kt +γtIN ]−1kt(x,x1),

. . . , kt(x,xN )− kt(x,x⊺)[Kt +γtIN ]−1kt(x,xN )
)

= kt(x,x
⊺)−

(
kt(x,x

⊺)[Kt +γtIN ]−1kt(x,x1),

. . . , kt(x,x
⊺)[Kt +γtIN ]−1kt(x,xN )

)
= kt(x,x

⊺)− kt(x,x⊺)[Kt +γtIN ]−1Kt

= kt(x,x
⊺)

(
IN − [Kt +γtIN ]−1Kt

)
Iterating the recursion for kt(x,x) above and using (B.27) we obtain for t = 1, . . . ,

kt(x,x
⊺) = k0(x,x⊺)

t−1∏
j=0

Odiag
i

λ(0)
i γ

−
j−1 + 1

λ(0)
i γ

−
j + 1

O⊺

= k0(x,x⊺)Odiag
i

 t−1∏
j=0

λ(0)
i γ

−
j−1 + 1

λ(0)
i γ

−
j + 1

O⊺

= k0(x,x⊺)Odiag
i

 1

λ(0)
i γ

−
t−1 + 1

O⊺ .

(B.28)

Next, we prove (B.9). First, we note that (B.5) gives the following recursion for mt+1(x):

mt+1(x) =mt(x) + kt(x,x
⊺)[kt(x,x

⊺) +γtIN ]−1(y−mt(x))

=mt(x) + Kt[Kt +γtIN ]−1(y−mt(x))

= (It −Kt[Kt +γtIN ]−1)mt(x) + Kt[Kt +γtIN ]−1y

(B.29)

It follows by induction that

mt(x) = Odiag
i

 γ−t−1λ
(0)
i

γ−t−1λ
(0)
i + 1

O⊺y (B.30)

The claim is trivial for t = 0. Assuming (B.30) is true and using (B.29) together with
(B.25) and (B.27), we find

mt+1(x)

= Odiag
i

λ(0)
i γ

−
t−1 + 1

λ(0)
i γ

−
t + 1

O⊺Odiag
i

 γ−t−1λ
(0)
i

γ−t−1λ
(0)
i + 1

O⊺y

+ Odiag
i

 λ(0)
i

γt(λ
(0)
i γ

−
t + 1)

O⊺y

= Odiag
i

 γ−t−1λ
(0)
i

λ(0)
i γ

−
t + 1

O⊺y + Odiag
i

 λ(0)
i

γt(λ
(0)
i γ

−
t + 1)

O⊺y

= Odiag
i

 γ−t−1λ
(0)
i

λ(0)
i γ

−
t + 1

+
λ(0)
i

γt(λ
(0)
i γ

−
t + 1)

O⊺y
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= Odiag
i

γtγ−t−1λ
(0)
i +λ(0)

i

γt(λ
(0)
i γ

−
t + 1)

O⊺y

= Odiag
i

λ(0)
i (γ−t−1 + 1/γt)

λ(0)
i γ

−
t + 1

O⊺y

= Odiag
i

 λ(0)
i γ

−
t

λ(0)
i γ

−
t + 1

O⊺y

as required.

Theorem B.3 (from page 65). The solution to the recursions (B.5) and (B.6) is given by

mt(x) = k0(x,x⊺)(K + IN /γ
−
t−1)−1y (B.10)

kt(x,y) = k0(x,y)− k0(x,x⊺)(K + IN /γ
−
t−1)−1k0(x, y)

for t = 1,2, . . . .

Proof. We first consider kt . By combining (B.6), (B.24), (B.25) and (B.28), we find

kt+1(x,y) = kt(x,y)− k0(x,x⊺)Odiag
i

 1

γt(λ
(0)
i γ

−
t + 1)(λ(0)

i γ
−
t−1 + 1)

O⊺k0(x, y) (B.31)

= kt(x,y)− k0(x,x⊺)Odiag
i

 1

λ(0)
i

 1

λ(0)
i γ

−
t−1 + 1

− 1

λ(0)
i γ

−
t + 1

O⊺k0(x, y) .

Iterating the equation above gives

kt(x,y) = k0(x,y)−
n−1∑
j=0

k0(x,x⊺)Odiag
i

 1

λ(0)
i

 1

λ(0)
i γ

−
j−1 + 1

− 1

λ(0)
i γ

−
j + 1


O⊺k0(x, y)

= k0(x,y)− k0(x,x⊺)Odiag
i

 1

λ(0)
i

n−1∑
j=0

 1

λ(0)
i γ

−
j−1 + 1

− 1

λ(0)
i γ

−
j + 1


O⊺k0(x, y)

= k0(x,y)− k0(x,x⊺)Odiag
i

 1

λ(0)
i

 1

λ(0)
i γ

−
−1 + 1

− 1

λ(0)
i γ

−
t−1 + 1

O⊺k0(x, y)

and since γ−−1 = 0 we see that

kt(x,y) = k0(x,y)− k0(x,x⊺)Odiag
i

 1

λ(0)
i

1− 1

λ(0)
i γ

−
t−1 + 1

O⊺k0(x, y)

= k0(x,y)− k0(x,x⊺)Odiag
i

 1

λ(0)
i + 1/γ−t−1

O⊺k0(x, y)

= k0(x,y)− k0(x,x⊺)(K + IN /γ
−
t−1)−1k0(x, y)

as required.
Next, we consider (B.10). From (B.5) we have

mt+1(x) =mt(x) + kt(x,x
⊺)[Kt +γtIN ]−1(y−mt(x))
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Using (B.8), (B.9) and (B.25), we may rewrite this as

mt+1(x)

=mt(x) + k0(x,x⊺)Odiag
i

 1

γt(λ
(0)
i γ

−
t + 1)

O⊺

y−Odiag
i

 λ(0)
i γ

−
t−1

λ(0)
i γ

−
t−1 + 1

O⊺y


=mt(x) + k0(x,x⊺)Odiag

i

 1

γt(λ
(0)
i γ

−
t + 1)

− 1

γt(λ
(0)
i γ

−
t + 1)

λ(0)
i γ

−
t−1

(λ(0)
i γ

−
t−1 + 1)

O⊺y

=mt(x) + k0(x,x⊺)Odiag
i

 1

γt(λ
(0)
i γ

−
t + 1)(λ(0)

i γ
−
t−1 + 1)

O⊺y (B.32)

Notice, that the entries of the diagonal-matrix appearing in (B.32) are identical to those
appearing in (B.31). Using the same calculations as above, we find

mt+1(x) =m0(x) + k0(x,x⊺)Odiag
i

 1

λ(0)
i + 1/γ−t−1

O⊺y

= k0(x,x⊺)Odiag
i

 1

λ(0)
i + 1/γ−t−1

O⊺y ,

from which (B.10) follows.

Corollary B.4 (from page 65). If we let Dt = {(xij , yij ) | i = 1, . . . ,N , and j = 1, . . . , t} where
xij = xi for all i and j, then the posterior distribution of f isN (µt ,Σt) where

µt =


K(K +γ/tIN )−1y

...

K(K +γ/tIN )−1y

 (B.33)

Σt = 11⊺ ⊗ (K−K(K +γ/tIN )−1K) (B.34)

where ⊗ is the Kronecker product.

Proof. For simplicity, we only prove the statement for t = 2, as the general proof is similar.
The key observation is that the prior covariance matrix may be written as{

K K
K K

}
+γI2N =

{
K +γIN K

K K +γIN

}
Using the formula for the inverse of a partitioned matrix, we find{

K +γIN K
K K +γIN

}−1

=
{

A11 A12

A21 A22

}
where

A11 = A22 = (K +γIN −K(K +γIN )−1K)−1

A12 = A21 = −(K +γIN −K(K +γIN )−1K)−1K(K +γIN )−1

and these may be further simplified to obtain({
K K
K K

}
+ I2N

)−1

=
{
−(2Kγ +γ2IN )−1(K +γIN ) (2Kγ +γ2IN )−1K
−(2Kγ +γ2IN )−1K (2Kγ +γ2IN )−1(K +γIN )

}
,
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so we find

µ2 =
{

K K
K K

}{
(2Kγ +γ2IN )−1(K +γIN ) −(2Kγ +γ2IN )−1K
−(2Kγ +γ2IN )−1K (2Kγ +γ2IN )−1(K +γIN )

}(
y
y

)
=

{
K K
K K

}(
(2Kγ +γ2IN )−1γy
(2Kγ +γ2IN )−1γy

)
=

(
2K(2Kγ +γ2IN )−1γy
2K(2Kγ +γ2IN )−1γy

)
=

(
K(K + (γ/2)IN )−1y
K(K + (γ/2)IN )−1y

)
.

Similarly, the covariance matrix is found as

Σ2 =
{

K K
K K

}
−
{

K K
K K

}{
(2Kγ +γ2IN )−1(K +γIN ) −(2Kγ +γ2IN )−1K
−(2Kγ +γ2IN )−1K (2Kγ +γ2IN )−1(K +γIN )

}{
K K
K K

}
which may be simplified to give

Σ2 =
{

K−K(K + (γ/2)IN )−1K K−K(K + (γ/2)IN )−1K
K−K(K + (γ/2)IN )−1K K−K(K + (γ/2)IN )−1K

}
,

as desired.

Proposition B.5 (from page 67). Let C(σ (a)) be defined as in (B.20) with λ = σ (a), then we
have that

C(σ (a)) =

2 if a = 0

acoth
(
a
2

)
otherwise,

d
da

log(C(σ (a))) =

0 if a = 0
1
a −

1
sinh(a) otherwise,

d2

d2a
log(C(σ (a))) =

1
6 if a = 0

− 1
a2 + coth(a)

sinh(a) otherwise,

where coth, and sinh are the hyperbolic cotangent, and sine functions, respectively.

Proof. First we note that for a , 0 it can be shown that

C(σ (a)) =
2tanh−1(1− 2σ (a))

1− 2σ (a)
= acoth

( a
2

)
, (B.35)

which follows from the fact that tanh(x) = e2x−1
e2x+1

1− 2σ (a) = 1− 2ea

1 + ea
=

1 + ea

1 + ea
− 2ea

1 + ea
=

1− ea

1 + ea
= tanh

(
− a

2

)
and thus it follows directly that

2tanh−1(1− 2σ (a)) = 2tanh−1
(
tanh

(
− a

2

))
=
−2a

2
= −a

and finally by coth(x) = 1
tanh(x) and tanh(−x) = −tanh(x) that

1
1− 2σ (a)

=
1

−tanh
(
a
2

) = −coth
( a

2

)
,
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which combines to the claim in (B.35). Now, By properties of the hyperbolic functions4

we get by direct computation that

d
da

log(C(σ (a))) =
d
da

log(a) +
d
da

logcoth
( a

2

)
for a , 0

=
1
a

+
1

coth
(
a
2

) d
da

coth
( a

2

)
for a , 0

=
1
a

+
sinh

(
a
2

)
cosh

(
a
2

) − 1

2sinh2
(
a
2

) for a , 0

=
1
a
− 1

2cosh
(
a
2

)
sinh

(
a
2

) for a , 0

=
1
a
− 1

sinh(a)
for a , 0

=
1
a
− csch(a) for a , 0.

Additionally, by further properties of the hyperbolic functions5 it follows directly that

d2

d2a
log(C(σ (a))) = − 1

a2 −
d
da

csch(x) for a , 0

= − 1
a2 + csch(a)coth(a) for a , 0.

= − 1
a2 +

1
sinh(a)

1
tanh(a)

for a , 0.

It remains to show both derivatives for a = 0. First let f (a) = log(C(σ (a))) = logacoth
(
a
2

)
for a , 0 and log(2) elsewhere, then we have that

f (−x) = log
(
−xcoth

(−x
2

))
= log

(
xcoth

(x
2

))
= f (x),

and we can without loss of generality merely consider limits from the right. See that

lim
h↓0

f (h)− f (0)
h

= lim
h↓0

d
dx
f (h)

= lim
h↓0

(
1
h
− 1

sinh(h)

)
= lim
h↓0

(
sinh(h)− h
hsinh(h)

)
,

and by applying L’Hôpital’s rule for 0/0 limits we have that

lim
h↓0

f (h)− f (0)
h

= lim
h↓0

(
cosh(h)− 1

sinh(h) + xcosh(h)

)
= 0.

By a similar argument we get that since sinh(−x) = −sinh(x) then d
dx f (−x) = − d

dx f (x), and
we can w.l.o.g. look only at right limits and apply L’Hôpital’s rule, which yields that

lim
h↓0

d
dx f (h)− d

dx f (0)

h
= lim
h↓0

d2

d2x
f (h) = lim

h↓0

(
− 1
a2 +

1
sinh(a)

1
tanh(a)

)
=

1
6

4 In particular that sinh(2x) = 2sinh(x)cosh(x) and that d
da coth(x) = − 1

sinh2(x)
for x , 0.

5 Here, in particular d
da csch(x) = −csch(x)coth(x), coth(x) = 1

tanh(x) and csch(x) = 1
sinh(x) .
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and we are done.

Proposition B.6 (from page 69). (A) A single step of probabilistic distillation using Dt and
a Gaussian prior GP (0, k) yields the same posterior distribution as a single step of probabilistic
distillation using a Gaussian prior GP (0, tk). (B) Performing t iterations of the probabilistic
distillation using D and starting with an inital Gaussian prior GP (0, k) yields approximately
the same posterior as a single step of probabilistic distillation using a Gaussian prior GP (0, tk).

Proof. (A) First, we notice that duplicating the data simply implies that the term corre-
sponding to the conditional distribution of the data given the latent variables is repeated
t times. Using the notation from section B.II.1, this implies that the log posterior will
satisfy

ψ(f) def= logp(f | y) ∝
f

logp(f) + t logp(y | f)

with gradient
∇ψ(f) = −K−1f + t(y−σ )

and by setting this equal to zero, we see that the maximizer f̂ will satisfy

f̂ = (tK)(y−σ ) .

Compared to the same equation for single-step distillation implied by (B.17), we see that
the two methods give the same result.
Next, we wish to show (B). For simplicity, we consider t = 2 as the argument for general
t is similar. From (A) we see that we can obtain the desired result by showing that 2
steps of distillation will give approximately the same result as a single step of distillation
based on D2. For the latter, we see from the proof of (A) that the posterior distribution is
proportional to  N∏

n=1

σ (fn)tn(1− σ (fn))1−tn


2

exp
(
−1

2
f⊺K−1f

)
. (B.36)

If we define

ϕ(f) def=

 N∏
n=1

σ (fn)tn(1− σ (fn))1−tn

exp
(
−1

2
f⊺K−1f

)
we may rewrite (B.36) as  N∏

n=1

σ (fn)tn(1− σ (fn))1−tn

ϕ(f) . (B.37)

Now we simply observe that 2-step distillation will correspond to replacing ϕ(f) in (B.37)
with the appropriate Gaussian distribution coming from the Laplace distribution, and
hence the approximation comes from the fact that ϕ(f) is not itself exactly proportional
to a Gaussian distribution.
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Abstract. We address the challenge of getting efficient yet accurate recognition systems with
limited labels. While recognition models improve with model size and amount of data, many
specialized applications of computer vision have severe resource constraints both during training
and inference. Transfer learning is an effective solution for training with few labels, however
often at the expense of a computationally costly fine-tuning of large base models. We propose
to mitigate this unpleasant trade-off between compute and accuracy via semi-supervised cross-
domain distillation from a set of diverse source models. Initially, we show how to use task
similarity metrics to select a single suitable source model to distill from, and that a good selection
process is imperative for good downstream performance of a target model. We dub this approach
DistillNearest. Though effective, DistillNearest assumes a single source model matches the
target task, which is not always the case. To alleviate this, we propose a weighted multi-source
distillation method to distill multiple source models trained on different domains weighted
by their relevance for the target task into a single efficient model (named DistillWeighted).
Our methods need no access to source data and merely need features and pseudo-labels of the
source models. When the goal is accurate recognition under computational constraints, both
DistillNearest and DistillWeighted approaches outperform both transfer learning from strong
ImageNet initializations as well as state-of-the-art semi-supervised techniques such as FixMatch.
Averaged over 8 diverse target tasks our multi-source method outperforms the baselines by
5.6%-points and 4.5%-points, respectively.
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C.1 Introduction
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Figure C.1: Average test accuracy over five target tasks with different methods for weighting source models for
distillation. Our methods outperform the baselines and transfer learning from ImageNet. See Section C.5.3 for
details.

Recognition models get more accurate the larger they are and the more data they
are trained on Sun et al. (2017); Zhai et al. (2022); Kolesnikov et al. (2020). This is a
problem for many applications of interest in medicine (e.g. X-ray analysis) or science
(e.g. satellite-image analysis) where both labeled training data, as well as computational
resources needed to train such large models, are lacking.

The challenge of limited labeled data can potentially be alleviated by fine-tuning
large-scale “foundation models” Zhai et al. (2022); Dehghani et al. (2023); Kolesnikov
et al. (2020). However, fine-tuning is computationally expensive, especially when one
looks at foundation models with billions of parameters Dehghani et al. (2023). Unfor-
tunately, all evidence suggests that larger foundation models perform better at fine-
tuning Kolesnikov et al. (2020); Zhai et al. (2022). This leaves downstream applications
the unpleasant trade-off of expensive computational hardware for fine-tuning large
models or inaccurate results from smaller models. Motivated by this challenge, we ask
can we train accurate models on tight data and compute budgets without fine-tuning large
foundation models?

To set the scene, we assume the existence of a diverse set (both in architecture and
task) of pre-trained source models (or foundation models). We do not have the resources
to fine-tune these models, but we assume we can perform inference on these models and
extract features, e.g. through APIs on cloud services Bisong (2019); Rekognition (2023).
For the target task, we assume that labeled data is very limited, but unlabeled data is
available. We then propose a simple and effective strategy for building an accurate model
for the target task: DistillNearest. Concretely, we first compute a measure of “task
similarity” between our target task and each source model and rank the source models
accordingly. Then we pseudo-label the unlabeled data using the most similar source
model. These pseudo-labels may not even be in the same label space as the target task,
but we conjecture that due to the similarity between the source and target tasks, the
pseudo-labels will still group the target data points in a task-relevant manner. Finally,
we train the target model using the pseudo-labels and the available ground truth labeled
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Figure C.2: We propose to weigh a set of S source models,Ms = hs ◦φs, by using task similarity metrics to
estimate the alignment of each source model with the particular target task using a small probe set of labeled
data, Dpτ . Since the task similarity metrics are independent of feature dimension, we can utilize source models
of any architecture and from any source task. We show that by choosing the weighting, α1, . . . ,αS , this way we
are able to improve performance over transfer from ImageNet and training with FixMatch amongst others (see
e.g. Table C.1 and Figure C.3).

data. This allows us to bypass the large computations required to fine-tune source
models and directly work on the target model. At the same time, we get to effectively
use the knowledge of the large source model even if it is trained on a different task.

DistillNearest assumes that a single best source model exists. But for some target
tasks, we might need to combine multiple source models to achieve a sufficiently diverse
representation to distill. We, therefore, propose an extension of our approach that distills
multiple (diverse) source models trained on different domains, weighted by their relevance
for the target task. This extension obtains even further improvements on our target
performance (see Figure C.1). We dub this method DistillWeighted.

We summarize our contributions as follows:

• We train more than 200 models across a diverse set of source and target tasks using
single-source distillation, and extensively show that the choice of source model is
imperative for the predictive performance of the target model. To the best of our
knowledge, no previous work has addressed how to efficiently select a teacher model
for (cross-domain) distillation.

• We find that task similarity metrics correlate well with predictive performance and can
be used to efficiently select and weight source models for single- and multi-source
distillation without access to any source data.

• We show that our approaches yield the best accuracy on multiple target tasks under
compute and data constraints. We compare our DistillNearest and DistillWeighted

methods to two baselines (transfer learning and FixMatch), as well as the naïve case of
DistillWeighted with equal weighting (called DistillEqual), among others. Averaged
over 8 diverse datasets, our DistillWeighted outperforms the baselines with at least
4.5% and in particular 17.5% on CUB200.
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C.2 Related Work

Knowledge Distillation. One key aspect of our problem is to figure out how to com-
press single or multiple large foundation models into an efficient target model. A
common approach is knowledge distillation (Ba and Caruana, 2014; Hinton et al., 2015)
where an efficient student model is trained to mimic the output of a larger teacher
model. However, most single-teacher (Romero et al., 2015; Mirzadeh et al., 2020; Park
et al., 2019; Cho and Hariharan, 2019; Borup and Andersen, 2021) or multi-teacher
knowledge distillation (You et al., 2017; Fukuda et al., 2017; Tan et al., 2019; Liu et al.,
2020) research focuses on the closed set setup, where the teacher(s) and the student both
attempts to tackle the same task. To the best of our knowledge, compressing models
specializing in various tasks different from the target task has rarely been explored in the
literature. Our paper explores this setup and illustrates that carefully distilling source
models trained on different tasks can bring forth efficient yet accurate models.

Semi-Supervised Learning and Transfer. Given our target tasks are specified in a
semi-supervised setting, it is customary to review methods for semi-supervised learning
(SSL). The key to SSL approaches is how to effectively propagate label information from
a small labeled dataset to a large unlabeled dataset. Along this vein, methods such as
pseudo-labeling/self-training (Lee, 2013; Xie et al., 2020) or consistency regularization
(Tarvainen and Valpola, 2017; Berthelot et al., 2019; Sohn et al., 2020) have shown
remarkable results in reducing deep networks dependencies on large labeled datasets
via unlabeled data. However, most SSL approaches focus on training models from
scratch without considering the availability of pre-trained models. Given the increasing
availability of large pre-trained models (Paszke et al., 2019; Wolf et al., 2020), recent
work has started exploring the intersection between transfer learning and SSL (Phoo and
Hariharan, 2021; Islam et al., 2021; Abuduweili et al., 2021). However, most of these
works focus on how to transfer from a single pre-trained model to the target task. Our
paper, however, explores an even more practical setup: how to transfer from multiple
pre-trained models to a downstream task where in-domain unlabeled data are available.
In principle, we could combine our approach with a lot of previous work on SSL to
(potentially) gain even larger improvements, but to keep our method simple we leave
such exploration to future work and focus on how to better utilize an available set of
pre-trained models.

Multi-Source Domain Adaptation. Our setup also bears a resemblance with multi-
source domain adaptation (MSDA) (Peng et al., 2019) in which the goal is to create a
target model by leveraging multiple source models. However, MSDA methods often
assume the source and target models share the same label space to perform domain
alignment. We do not make such an assumption and in fact, focus on the case where the
label space of source and target tasks have minimal to no overlap. Besides, a lot of the
MSDA approaches (Zhao et al., 2018; Xu et al., 2018; Peng et al., 2019; Zhao et al., 2020)
rely on the availability of source data or the fact that the source and target tasks share
the same model architecture to build domain invariant features. Given the discrepancy
in assumptions between MSDA and our setup, we do not consider any methods from
this line of work as baselines.
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Transfer Learning From Multiple Sources. Transfer learning from multiple different
pre-trained models has been explored in different setups. Bolya et al. (2021) focuses on
how to select a single good pre-trained model to use as a model initialization whereas
we explore how to distill an efficient model from the pre-trained models (i.e. our target
architecture could be different from those of the source models). Agostinelli et al. (2022)
focuses on how to select a subset of pre-trained models to construct an (fine-tuned)
ensemble, whereas we focus on creating a single model. Li et al. (2021) focuses on
creating a generalist representation by equally distilling multiple pre-trained models
using proxy/source data (which often requires high-capacity models) whereas our goal
is to construct an efficient specialist model using the target data. All these works have
indicated the importance of exploring how to best leverage a large collection of pre-
trained models but due to differences in setup and assumptions, we do not (and could
not) compare to them.

Task Similarity / Transferability Metrics. A key insight of our approach is to leverage
the similarity between the target and source tasks to compare and weigh different
pre-trained source models during distillation. Characterizing tasks (or similarities
between tasks) is an open research question with various successes. A common approach
is to embed tasks into a common vector space and characterize similarities in said
space. Representative research along this line of work include Achille et al. (2019);
Peng et al. (2020); Wallace et al. (2021). Another related line of work investigates
transferability metrics (Tran et al., 2019; Bao et al., 2019; Nguyen et al., 2020; Dwivedi
et al., 2020; Dwivedi and Roig, 2019; Bolya et al., 2021). After all, one of the biggest
use cases of task similarities is to predict how well a model transfers to new tasks.
Since it is not our intention to define new task similarity/transferability metrics for
distillation, we use already established metrics that capture the similarity between
source representations and one-hot labels to weigh the source models. Under this
purview, metrics that characterize similarities between features such as CKA (Cortes
et al., 2012; Kornblith et al., 2019) and transferability metrics based on features (Dwivedi
and Roig, 2019; Bolya et al., 2021) suffice.

C.3 Problem Setting

The aim of this paper is to train an accurate model for a given target task, subject to
limited labeled data and computational constraints (e.g. limited compute resources).
Formally, we assume that our target task is specified via a small labeled training set Dlτ .
Furthermore, we assume (a) the availability of a set of unlabeled data, Duτ , associated
with the target task, and (b) the ability to perform inference on a set S = {Ms}Ss=1 of S
different source models,Ms, trained on various source tasks different from the target
task. We emphasize that we have no access to any source data which could be practical
due to storage, privacy, and computational constraints. Neither do we need full access
to the source models provided we can perform inference on the models anywise (e.g.
through an API).

We assume that the architecture of the target model,Mτ , must be chosen to meet any
applicable computational constraints. This can imply that no suitable target architecture
is available in the set of source models S , making classical transfer learning impossible.
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Figure C.3: Test accuracy for distillation with each dot representing single-source distillation from different
source models. The colors represent the task similarity for the source models (from small to large; ).
We include the performance from fine-tuning ImageNet ( ), DistillNearest; i.e. distillation of the highest
ranked source model (▶) as well as DistillEqual (◀), and DistillWeighted(p) where weights are proportional
to task similarity with power p = 1 (◀), and p = 12 (◀), respectively. The numbers in parentheses at the bottom
are Spearman correlations between the task similarity and test accuracy for single-source distillation.

For simplicity, we restrict our models (regardless of source or target) to classification
models that can be parameterized asM = h ◦φ; the feature extractor φ embeds input
x into a feature representation, and the classifier head, h, maps the feature φ(x) into
predicted conditional class probabilities, P (y | x).

C.4 Cross-Task Distillation for Constructing Efficient Models from
Foundation Models

To construct an efficient model, we propose to distill large foundation models. Along
this vein, we propose two variants: (a) DistillNearest that distills the single nearest
source model (Section C.4.1) and (b) DistillWeighted that distills a weighted collection
of source models (Section C.4.2).

C.4.1 DistillNearest

To construct a single efficient target model, DistillNearest undergoes two steps sequen-
tially: (a) selecting an appropriate source model and (b) distilling the knowledge from
the selected source model into the target model. For ease of exposition, we start by
explaining the distillation process and then discuss how to select an appropriate source
model.

Distilling a selected source model. Given a selected source model Ms, the target
modelMτ = hτ ◦φτ is trained by minimizing a weighted sum of two loss functions,

Lsingle
def= λLlabeled + (1−λ)Ldistill

s , (C.1)

where λ ∈ [0,1]. The first loss function is the standard supervised objective over the
labeled data,

Llabeled def=
1

|Dlτ |

∑
(xi ,yi )∈Dlτ

ℓCE (hτ (φτ (xi)),yi) , (C.2)
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where ℓCE( · , · ) is the cross-entropy loss. The second loss function is a distillation loss
over the unlabeled data,

Ldistill
s

def=
1
|Duτ |

∑
xi∈Duτ

ℓCE (hsτ (φτ (xi)),Ms(xi))) . (C.3)

Note, the source and target tasks do not share the same label space so we introduce
an additional classifier head, hsτ , which maps the features from the target task feature
extractor, φτ , to the label space of the source task. This additional classifier head, hsτ , is
discarded after training and only the target classifier head, hτ , is used for inference.

In principle, we could add additional semi-supervised losses, such as the FixMatch
loss (Sohn et al., 2020) to propagate label information from the labeled set to the unla-
beled set for better performance, but this would add additional hyperparameters and
entangle the effect of our methods. We leave such explorations to future work.

Selecting the nearest source model for distillation. Selecting a source model for dis-
tillation is an under-explored problem. Given the recent success of using task similarity
metrics (Bolya et al., 2021) for selecting foundation models for fine-tuning, we conjec-
ture that high similarities between a source model and the target task could indicate
better performance of the distilled model (we verify this in Section C.5.2). However,
quantifying similarities between tasks/models is an open research question with various
successes (Achille et al., 2019; Nguyen et al., 2020). For simplicity, we pick our similarity
based on one simple intuition: target examples with identical labels should have similar
source representations and vice versa. Along this vein, the recently introduced metric,
PARC (Bolya et al., 2021) fits the bill.

For convenience, we briefly review PARC. Given a small labeled probe set Dpτ =
{(xi ,yi)}ni=1 ⊆ D

l
τ and a source representation of interest φs, PARC first constructs two

distance matrices Dφs , DY based on the Pearson correlations between every pair of
examples in the probe set;

Dφs = 1−pearson({φs(xi)}ni=1),

DY = 1−pearson({yi}ni=1).

PARC is computed as the Spearman correlation between the lower triangles of the
distance matrices;

PARC(φs,Y ) = spear
(
{Dφs [i, j]}i<j , {DY [i, j]}i<j

)
.

Intuitively, PARC quantifies the similarity of representations by comparing the (dis)simi-
larity structures of examples within different feature spaces: if two representations are
similar, then (dis)similar examples in one feature space should stay (dis)similar in the
other feature space. In Figure C.3 and C.4 we show that ranking source models by PARC
correlates well with test accuracy and that selecting an appropriate source model can
yield significant improvements.

C.4.2 DistillWeighted

Above, DistillNearest assumes a single optimal source model exists for the target task,
but what if no single source model aligns well with our target task? To alleviate this issue,
we propose to distill multiple source models, weighted according to their similarities
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MobileNetV3
(0.24 GFLOPs)

IN+Transfer ✓ – 92.4 42.8 47.3 97.4 81.6 37.3 75.9 62.6 67.2

IN+FixMatch ✓ ✓ 93.5 41.9 38.5 98.1 82.6 42.8 83.4 65.8 68.3

DistillRandomSelection ✓ ✓ 89.6 46.5 46.6 97.4 81.8 39.0 79.4 61.9 67.8

(Ours) DistillNearest ✓ ✓ 92.0 59.6 46.8 97.4 81.0 47.4 81.9 71.3 72.2

DistillEqual ✓ ✓ 90.8 53.5 45.7 97.5 81.5 41.4 82.1 62.1 69.3

DistillRandomWeights ✓ ✓ 87.9 44.9 46.9 97.8 81.6 39.6 80.2 59.2 67.3

(Ours) DistillWeighted ✓ ✓ 92.0 60.0 47.7 97.6 82.2 48.3 84.4 69.9 72.8

AlexNet
(0.71 GFLOPs)

IN+Transfer ✓ – 85.0 18.4 46.2 91.9 67.8 13.0 50.9 29.1 50.3

Fine-tune Selected Source ✓ – 88.0 30.4 42.9 89.8 74.5 17.9 66.8 41.3 56.5

GoogLeNet
(1.51 GFLOPs)

IN+Transfer ✓ – 91.8 42.8 41.4 96.8 80.5 36.5 84.8 65.9 67.6

Fine-tune Selected Source ✓ – 91.6 61.2 48.6 96.9 78.3 33.0 87.8 71.8 71.2

ResNet-18
(1.83 GFLOPs)

IN+Transfer ✓ – 92.2 37.8 45.2 96.6 80.2 34.0 80.2 58.2 65.6

Fine-tune Selected Source ✓ – 91.3 58.2 46.4 97.0 75.8 35.4 80.7 69.3 69.3

ResNet-50
(4.14 GFLOPs)

IN+Transfer ✓ – 92.9 42.0 43.4 96.8 79.9 39.9 83.3 65.9 68.0

Fine-tune Selected Source ✓ – 93.0 70.8 43.9 97.2 81.3 47.4 84.8 79.3 74.7

Table C.1: Cross-task distillation compared to baselines. MobileNetV3 models (target architecture) trained with our methods are
highly competitive with baseline methods on MobileNetV3 as well as baseline methods for more demanding model architectures
(source architectures: Alexnet, GoogLeNet, ResNet-18, ResNet-50). We highlight the top 3 methods, which comply with compute
requirements (i.e. MobileNetV3) for each target task by bold, blue, and underline, respectively. We also indicate the target data used
by different methods.

with the target tasks. In the following, we explain our weighted distillation objective and
how the weights are constructed. Figure C.2 is a schematic depiction of the approach
DistillWeighted.

Weighted objective for distilling multiple sources. Given a set of source models
S = {Ms}Ss=1, we modify the distillation loss of (C.1) with a weighted sum of multiple
distillation losses (one for each source model):

Lmulti
def= λLlabeled + (1−λ)

S∑
s=1

αsLdistill
s , (C.4)

where λ,α1, . . . ,αS ∈ [0,1] (Llabeled and Ldistill
s are as defined in (C.2) and (C.3), respec-

tively). Here αs is the relative weight assigned to each source model such that
∑S
s=1αs = 1.

Once again, we could add additional semi-supervised losses, such as the FixMatch loss,
but to ensure simplicity, we leave such explorations for future research.

Task similarity weighting of source models. Simply assigning equal weight to all
source models is sub-optimal (e.g. weighing source models trained on ImageNet and
Chest X-ray equally might not be optimal for recognizing birds). As such, we propose
to compute the source weight αs from a task similarity metric between the s-th source
model and the target task. In particular, let es be such a similarity metric, then we
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compute the source weights {αi}i∈[S] as

αi =
e
p
i∑S

s=1 e
p
s

, where ej = max(0, ej ) (C.5)

for j = 1, . . . ,S. Here p is a hyperparameter to re-scale the distribution of the weights.
Larger p assigns more weight to the most similar source models, while p = 0 corresponds
to equal weights for all models (denoted DistillEqual), and p→∞ assigns all weight to
the most similar source model (i.e. DistillNearest). When relevant, we use the notation
DistillWeighted(p) to indicate the choice of p.

Scalability. For DistillWeighted to be feasible, compared to DistillNearest, we
need to ensure that the training procedure scales well with the size of S . Since the
computation of the weights {αs}Ss=1 is based on the small probe set and is almost identical
to the selection procedure for DistillNearest this is a negligible step. When training the
target model, we merely require one forward pass on the unlabeled target dataset with
each source model (to obtain pseudo-labels) as well as training of a one-layer classifier
head per source model, both of which are cheap compared to the full training procedure
of the target model. Nonetheless, one could employ a pre-selection of the top-k source
models with the largest task similarity, thereby reducing the number of classifier heads
and forward passes required. However, doing so introduces another hyperparameter, k,
(i.e. how many models to use) complicating the analysis. Moreover, since large p induces
such pre-selection in a soft manner, we leave it to future research to determine how to
select the appropriate k.

C.5 Experiments and Results

C.5.1 Experimental Setup

Benchmark. Despite our methods being designed with the interest of using large vision
models (that are potentially only available for inference), such a setting is intractable
for our research. Thus, to allow for controlled experimentation we restrict our source
models to a more tractable scale. In particular, we modify an existing transfer learning
benchmark: Scalable Diverse Model Selection by Bolya et al. (2021), and use the publicly
available models to construct a set of source models for each target task. Thus, we
consider a set consisting of 28 models: 4 architectures (AlexNet, GoogLeNet, ResNet-
18, and ResNet-50 (Russakovsky et al., 2015; He et al., 2016)) trained on 7 different
source tasks (CIFAR-10, Caltech101, CUB200, NABird, Oxford Pets, Stanford Dogs, and
VOC2007). For the target tasks, we consider 8 different tasks covering various image
domains (Natural images: CIFAR-10, CUB200, NABird, Oxford Pets, Stanford Dogs;
X-ray: ChestX; Skin Lesion Images: ISIC; Satellite Images: EuroSAT). We treat 20%
of the samples as labeled, and the remaining as unlabeled. We carefully remove any
source models associated with a particular target task, if such exists, in order to avoid
information leakage between source and target tasks. For the target architecture, we use
MobileNetV3 (Howard et al., 2019) due to its low computational requirements compared
to any of the source models. Furthermore, unless otherwise mentioned λ = 0.8 and
p = 12. We refer the reader to the supplementary material for further details.
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Baselines. We consider a set of different baselines: based on ImageNet initializations
we consider IN+Transfer (fine-tunes ImageNet representations using only the labeled
data), and IN+FixMatch (Sohn et al., 2020) (fine-tunes the ImageNet representation us-
ing labeled and unlabeled data), and based on source model initializations we fine-tune
the highest-ranked source model of each source architecture. To show the importance of
using the right source model(s) to distill, we also compare DistillNearest to Distill-

RandomSelection which is the average of distilling from a randomly selected source,
and for comparison to DistillWeighted we also construct distilled models using the
multi-source objective (C.4) with a random weight (DistillRandomWeights) and equal
weights (DistillEqual). For ease of exposition, we present results for DistillNearest

(Section C.5.2) and DistillWeighted (Section C.5.3) in separate sections.

C.5.2 Results for DistillNearest

We compare DistillNearest with the baselines in Table C.1 and Figure C.3. Our obser-
vations are as follows.

Distillation with the right source model is better than fine-tuning from ImageNet.
We observe that within the same target architecture (MobileNetv3), simply fine-tuning
ImageNet representations (IN+Transfer) is less optimal than distilling from the most
similar single model (DistillNearest). In fact, for fine-grained datasets such as CUB200,
NABird, Oxford Pets, and Stanford Dogs, we observe that distilling from an appropriate
source model (DistillNearest) could yield much better performance than fine-tuning
from a generalist ImageNet representation. More surprisingly, even with the aid of unla-
beled data, models fine-tuned from ImageNet representations using a label propagation
style approach (IN+FixMatch) still underperform distillation-based methods by at least
3.9% on average. These observations indicate the importance of selecting the right source
model for transfer/distillation.

Distilling to efficient architecture could be better than fine-tuning larger models. In
Table C.1, we include the performance when fine-tuning larger architectures trained
on ImageNet (IN+Transfer) and the source model (of the same architecture) most
similar to each target task selected using PARC (Fine-tune Selected Source). A few
observations are immediate: (a) our choice of task similarity metric is effective for
transfer; across all 4 architectures, we observe at least 4% improvement over simple
fine-tuning from ImageNet, which validates the results by Bolya et al. (2021), and (b)
with the aid of unlabeled data and distillation, the computationally efficient architecture
MobileNetV3 can outperform larger architectures fine-tuned on labeled data from the
target task (i.e. AlexNet, GoogLeNet, ResNet-18). Although underperforming fine-tuning
a ResNet-50 initialized with the most similar ResNet-50 source model by a mere average
of 2.5%-points (Fine-tune Selected Source), using a ResNet-50 would require 17.5×
more computations during inference to achieve such improvements.

Task Similarity Metrics for DistillNearest

One key component of DistillNearest is to select the source model to perform cross-
task distillation on using task similarity metrics. Despite many existing metrics for
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o CKA 0.72 0.62 0.23 0.39 -0.04 0.31 0.69 0.11 0.38

PARC 0.79 0.79 0.02 0.17 0.06 0.48 0.72 0.54 0.45

RSA 0.82 0.31 -0.11 0.30 0.10 -0.03 0.65 0.38 0.30

Fe
at

u
re CKA 0.82 0.39 0.36 0.21 -0.04 0.47 0.69 0.55 0.43

PARC 0.84 0.84 0.18 0.42 -0.14 0.81 0.81 0.84 0.58

RSA 0.86 0.81 0.03 0.38 0.03 0.28 0.89 0.85 0.52

Table C.2: Spearman correlation between test accuracy after all possible single-source distillations and
task similarities associated with the source models. Generally feature representations correlate better with
distillation performance compared to pseudo-label representations.

quantifying task similarities, their effectiveness for distillation remains unclear. Given
the myriads of metrics, we restrict our focus to metrics that can capture similarities
between a source representation of a target example and its one-hot label representation.
Along this vein, two questions arise: which metric to use for comparing representations,
and which representations from a source model should be used to represent a target
example?

For the first question, we look into multiple metrics in the literature that compare
various representations: CKA (Cortes et al., 2012), RSA (Dwivedi and Roig, 2019),
and PARC (Bolya et al., 2021). For the second question, we look into the common
representations from a source model: the features φ and the probabilistic outputs h ◦φ.

To establish the effectiveness of our choice of similarity metric, we report the Spear-
man correlation between the task similarities and the test accuracy of the distilled
models in Table C.2. We see that features from the source models can better capture
the correlation between the source models and the test accuracy of the distilled models,
than the probabilistic pseudo-labels. In addition, we also see a much higher correlation
among natural tasks (compared to specialized tasks such as ChestX, EuroSAT, and ISIC)
which suggests that our choice of task similarity is effective at selecting similar tasks.
Besides, we also observe a higher correlation when using PARC compared to the other
metrics, thus validating our choice of using PARC as the default metric.

To further establish the effectiveness of our metrics to rank various source models, we
compute the relative test accuracy between the top-3 models most similar to the target
task and the top-3 best models after distillation (see Table C.3). Again, we observe that
all three metrics are capable of ranking affinity between source models, but ranking the
models with PARC outperforms the other two metrics.

C.5.3 Results for DistillWeighted

From Table C.1, we observe that DistillWeighted compares favorably to DistillNear-

est, thus the conclusions for DistillNearest translates to DistillWeighted. Yet, one
particular task, Oxford Pets, is worth more attention. On Oxford Pets (classification of
different breeds of cats and dogs), we observe that distilling from multiple weighted
sources (DistillWeighted) is much better than distilling from the single most similar
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Figure C.6: Improvement over IN+Transfer. Here • is the average improvement over all eight target tasks and
• represents the performance on a target task. Note, p = 0 corresponds to DistillEqual, and p =∞ corresponds
to DistillNearest.

source (DistillNearest), which is a ResNet-18 trained on Caltech101 (that can recognize
concepts such as Dalmatian dog, spotted cats, etc.). Although the most similar source
model contains relevant information for recognizing different breeds of dogs and cats, it
might not contain all relevant knowledge from the set of source models that could be
conducive to recognizing all visual concepts in Oxford Pets. In fact, we observe that the
second most similar model is a GoogLeNet model trained on Stanford Dogs to recognize
more dog breeds than the most similar source model (but incapable of recognizing cats).
In this case, DistillWeighted allows aggregation of knowledge from multiple sources
and can effectively combine knowledge from different source models for a more accurate
target model than distillation from a single source. This suggests that under certain
conditions such as high heterogeneity in data, distilling from multiple source models can
outperform distilling a single best source model.

Task Similarity Metrics for Weighing Sources

We have established that our task similarity metric can capture the correlation between
the source model representations and the test accuracy of the distilled models. However,
it is not a priori clear that weighing source models based on the ranking of their affinity
to the target task would yield better performance for multi-source distillation. As such,
we investigate alternative choices of weighing schemes for a subset of 5 target tasks
(CUB200, EuroSAT, ISIC, Oxford Pets, Stanford Dogs): Inverse (weights are inversely
proportional to task similarity), DistillRandomWeights (weights are sampled uniformly
on a 4-simplex), DistillRandomSelection (randomly selecting a single source model),
and DistillEqual (equal weights for all models).

Through Figure C.1, we find that distilling from a single or set of source models
ranked using the similarity metric is much more effective than distilling from source
models that are weighted randomly or equally (DistillRandomWeights or DistillEqual).
In addition, the fact that Inverse underperforms IN+Transfer on average suggests that
it is crucial to follow the ranking induced by the similarity metrics when distilling the
sources and that the metric ranks both the most similar source models and the least
similar source models appropriately.
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Effect of p

Our task similarity metrics give a good ranking of which source models to select for
distillation but it is unclear whether the similarity score could be used directly without
any post-processing. To investigate, we visualize the relationship between the test
accuracy of the models distilled from a single source and our task similarity. From
Figure C.4, it is clear that the distribution of task similarities depends on the target task,
which motivates our normalization scheme.

In addition, it is not apriori clear that the weights should scale linearly with the
similarity scores. Thus, we investigate the effect of the rescaling factor, p, for constructing
the weights. In Figure C.6, we see that although no rescaling (p = 1) outperforms equal
weighting, it is less optimal than e.g. p = 12 (our default). This suggests that task
similarity and good weights have a monotonic, but non-linear relationship.

C.5.4 Additional Ablations and Analyses

Due to space constraints, we include additional ablations and analyses in the supple-
mentary materials. We summarize the main findings as follows.

ResNet-50 as target model. Averaged over 8 tasks, DistillWeighted outperforms both
IN+Transfer and DistillEqual by 5.6% and 3.8%, respectively. Also, compared to
ImageNet initialization, using DistillWeighted with the most similar ResNet-50 source
model as target model initialization improves accuracy by 1.0%.

Improvements on VTAB. DistillWeighted outperforms IN+Transfer averaged over
the Natural and Specialized tasks of VTAB, by 5.1% and 0.8%, respectively. DistillN-

earest outperform by 4.8% and 0.6%, respectively.

Fewer labels. DistillWeighted and DistillNearest outperform IN+Transfer (by
6.8% and 4.4%, respectively) under a setup with even fewer labeled samples.

Additional analysis of task similarity metrics. We consider additional correlation met-
rics and top-k relative accuracies of the selected models — all supporting the usefulness
of task similarity to weigh and select source models.

C.6 Conclusion

We investigate the use of diverse source models to obtain efficient and accurate models
for visual recognition with limited labeled data. In particular, we propose to distill
multiple diverse source models from different domains weighted by their relevance to
the target task without access to any source data. We show that under computational
constraints and averaged over a diverse set of target tasks, our methods outperform both
transfer learning from ImageNet initializations and state-of-the-art semi-supervised
techniques.

Acknowledgments. This work was funded in part by NSF 2144117, and in part by
Aarhus University Centre for Digitalisation, Big Data and Data Analytics (DIGIT).

110



C.6 · Conclusion

Bibliography

Abuduweili, A., Li, X., Shi, H., Xu, C. Z., and Dou, D. (2021). Adaptive Consistency
Regularization for Semi-Supervised Transfer Learning. In Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern Recognition, pages 6919–
6928. Cited on page 100.

Achille, A., Lam, M., Tewari, R., Ravichandran, A., Maji, S., Fowlkes, C., Soatto, S., and
Perona, P. (2019). Task2Vec: Task embedding for meta-learning. In Proceedings of the
IEEE International Conference on Computer Vision, pages 6429–6438. Cited on pages 101
and 103.

Agostinelli, A., Uijlings, J., Mensink, T., and Ferrari, V. (2022). Transferability Metrics
for Selecting Source Model Ensembles. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 7936–7946. Cited on pages 101 and 121.

Ba, J. L. and Caruana, R. (2014). Do Deep Nets Really Need to be Deep? In Advances in
Neural Information Processing Systems, volume 27, pages 2654–2662. Cited on page 100.

Bao, Y., Li, Y., Huang, S. L., Zhang, L., Zheng, L., Zamir, A., and Guibas, L. (2019).
An Information-Theoretic Approach to Transferability in Task Transfer Learning. In
Proceedings of the International Conference on Image Processing (ICIP), pages 2309–2313.
IEEE. Cited on page 101.

Berthelot, D., Carlini, N., Goodfellow, I., Papernot, N., Oliver, A., and Raffel, C. A. (2019).
Mixmatch: A holistic approach to semi-supervised learning. In Advances in neural
information processing systems, volume 32. Cited on page 100.

Bisong, E. (2019). Google Colaboratory, pages 59–64. Apress, Berkeley, CA. Cited on
page 98.

Bolya, D., Mittapalli, R., and Hoffman, J. (2021). Scalable Diverse Model Selection for
Accessible Transfer Learning. arXiv preprint arXiv:2111.06977. Cited on pages 101, 103,
105, 106, 107, 119, 122, and 123.

Borup, K. and Andersen, L. N. (2021). Even your Teacher Needs Guidance: Ground-Truth
Targets Dampen Regularization Imposed by Self-Distillation. In Advances in Neural
Information Processing Systems, volume 34, pages 5316–5327. Cited on page 100.

Cho, J. H. and Hariharan, B. (2019). On the Efficacy of Knowledge Distillation. In
Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Cited
on page 100.

Cortes, C., Mohri, M., and Rostamizadeh, A. (2012). Algorithms for learning kernels
based on centered alignment. Journal of Machine Learning Research, 13:795–828. Cited
on pages 101, 107, and 122.

Dehghani, M., Djolonga, J., Mustafa, B., Padlewski, P., Heek, J., Gilmer, J., Steiner, A.,
Caron, M., Geirhos, R., Alabdulmohsin, I., Jenatton, R., Beyer, L., Tschannen, M.,
Arnab, A., Wang, X., Riquelme, C., Minderer, M., Puigcerver, J., Evci, U., Kumar, M.,
van Steenkiste, S., Elsayed, G. F., Mahendran, A., Yu, F., Oliver, A., Huot, F., Bastings,
J., Collier, M. P., Gritsenko, A., Birodkar, V., Vasconcelos, C., Tay, Y., Mensink, T.,

111



Paper C · Distilling from Similar Tasks for Transfer Learning on a Budget

Kolesnikov, A., Pavetić, F., Tran, D., Kipf, T., Lučić, M., Zhai, X., Keysers, D., Harmsen,
J., and Houlsby, N. (2023). Scaling Vision Transformers to 22 Billion Parameters. In
Proceedings of the International Conference on Machine Learning (ICML), pages 7480–
7512. Cited on pages 98.

Dwivedi, K., Huang, J., Cichy, R. M., and Roig, G. (2020). Duality Diagram Similarity: A
Generic Framework for Initialization Selection in Task Transfer Learning. Proceedings
of the European Conference on Computer Vision (ECCV), pages 497–513. Cited on
page 101.

Dwivedi, K. and Roig, G. (2019). Representation similarity analysis for efficient task
taxonomy & transfer learning. In Proceedings of the IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, pages 12379–12388. Cited on pages 101,
107, and 122.

Fukuda, T., Suzuki, M., Kurata, G., Thomas, S., Cui, J., and Ramabhadran, B. (2017).
Efficient knowledge distillation from an ensemble of teachers. In Proceedings of the An-
nual Conference of the International Speech Communication Association, INTERSPEECH,
pages 3697–3701. Cited on page 100.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recog-
nition. Proceedings of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, pages 770–778. Cited on page 105.

Hinton, G., Vinyals, O., and Dean, J. (2015). Distilling the Knowledge in a Neural
Network. arXiv preprint arXiv:1503.02531. Cited on page 100.

Howard, A., Sandler, M., Chen, B., Wang, W., Chen, L. C., Tan, M., Chu, G., Vasudevan,
V., Zhu, Y., Pang, R., Le, Q., and Adam, H. (2019). Searching for mobileNetV3. In
Proceedings of the IEEE International Conference on Computer Vision, pages 1314–1324.
Cited on page 105.

Islam, A., Chen, C.-F. R., Panda, R., Karlinsky, L., Feris, R., and Radke, R. J. (2021).
Dynamic Distillation Network for Cross-Domain Few-Shot Recognition with Unla-
beled Data. In Advances in Neural Information Processing Systems, volume 34, pages
3584–3595. Cited on page 100.

Jia, M., Tang, L., Chen, B. C., Cardie, C., Belongie, S., Hariharan, B., and Lim, S. N. (2022).
Visual Prompt Tuning. In Proceedings of the European Conference on Computer Vision
(ECCV), pages 709–727. Cited on page 124.

Kolesnikov, A., Beyer, L., Zhai, X., Puigcerver, J., Yung, J., Gelly, S., and Houlsby, N.
(2020). Big Transfer (BiT): General Visual Representation Learning. In Proceedings
of the 16th European Conference on Computer Vision, pages 491–507. Cited on pages 98
and 124.

Kornblith, S., Norouzi, M., Lee, H., and Hinton, G. (2019). Similarity of neural network
representations revisited. In 36th International Conference on Machine Learning (ICML),
pages 6156–6175. Cited on page 101.

Lee, D.-H. (2013). Pseudo-label: The simple and efficient semi-supervised learning
method for deep neural networks. In Workshop on challenges in representation learning
(ICML), volume 3. Cited on page 100.

112



C.6 · Conclusion

Li, Z., Ravichandran, A., Fowlkes, C., Polito, M., Bhotika, R., and Soatto, S. (2021). Repre-
sentation Consolidation for Training Expert Students. arXiv preprint arXiv:2107.08039.
Cited on page 101.

Liu, Y., Zhang, W., and Wang, J. (2020). Adaptive multi-teacher multi-level knowledge
distillation. Neurocomputing, 415:106–113. Cited on page 100.

Mirzadeh, S.-I., Farajtabar, M., Li, A., Levine, N., Matsukawa, A., and Ghasemzadeh,
H. (2020). Improved Knowledge Distillation via Teacher Assistant: Bridging the
Gap Between Student and Teacher. In Proceedings of the AAAI conference on artificial
intelligence, volume 34, pages 5191–5198. Cited on page 100.

Nguyen, C. V., Hassner, T., Seeger, M., and Archambeau, C. (2020). LEEP: A new
measure to evaluate transferability of learned representations. In Proceedings of the
37th International Conference on Machine Learning (ICML), pages 7250–7261. PMLR.
Cited on pages 101 and 103.

Park, W., Kim, D., Lu, Y., and Cho, M. (2019). Relational Knowledge Distillation. In
Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition. Cited on page 100.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,
Gimelshein, N., Antiga, L., Desmaison, A., Köpf, A., Yang, E., DeVito, Z., Raison,
M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and Chintala, S. (2019).
PyTorch: An imperative style, high-performance deep learning library. In Advances in
Neural Information Processing Systems, volume 32. Cited on page 100.

Peng, X., Bai, Q., Xia, X., Huang, Z., Saenko, K., and Wang, B. (2019). Moment matching
for multi-source domain adaptation. In Proceedings of the IEEE International Conference
on Computer Vision, pages 1406–1415. Cited on pages 100.

Peng, X., Li, Y., and Saenko, K. (2020). Domain2Vec: Domain Embedding for Unsuper-
vised Domain Adaptation. In Proceedings of the European Conference on Computer Vision
(ECCV), pages 756–774, Cham. Springer International Publishing. Cited on page 101.

Phoo, C. P. and Hariharan, B. (2021). Self-training For Few-shot Transfer Across Ex-
treme Task Differences. In Proceedings of the International Conference on Learning
Representations (ICLR). Cited on page 100.

Rekognition, A. (2023). Rekognition. Cited on page 98.

Romero, A., Ballas, N., Kahou, S. E., Chassang, A., Gatta, C., and Bengio, Y. (2015).
FitNets: Hints for thin deep nets. In Proceedings of the 3rd International Conference on
Learning Representations (ICLR). Cited on page 100.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A.,
Khosla, A., Bernstein, M., Berg, A. C., and Fei-Fei, L. (2015). ImageNet Large Scale
Visual Recognition Challenge. International Journal of Computer Vision (IJCV), pages
211–252. Cited on page 105.

Sohn, K., Berthelot, D., Li, C.-L., Zhang, Z., Carlini, N., Cubuk, E. D., Kurakin, A., Zhang,
H., and Raffel, C. (2020). FixMatch: Simplifying Semi-Supervised Learning with
Consistency and Confidence. In Advances in Neural Information Processing Systems,
volume 33, pages 596–608. Cited on pages 100, 103, and 106.

113



Paper C · Distilling from Similar Tasks for Transfer Learning on a Budget

Sun, C., Shrivastava, A., Singh, S., and Gupta, A. (2017). Revisiting Unreasonable
Effectiveness of Data in Deep Learning Era. In Proceedings of the IEEE International
Conference on Computer Vision, pages 843–852. Cited on page 98.

Tan, X., Ren, Y., He, D., Qin, T., Zhao, Z., and Liu, T. Y. (2019). Multilingual neural
machine translation with knowledge distillation. In Proceedings of the 7th International
Conference on Learning Representations (ICLR). Cited on page 100.

Tarvainen, A. and Valpola, H. (2017). Mean teachers are better role models: Weight-
averaged consistency targets improve semi-supervised deep learning results. In Ad-
vances in Neural Information Processing Systems, volume 30, pages 1196–1205. Cited on
page 100.

Tran, A., Nguyen, C., and Hassner, T. (2019). Transferability and hardness of supervised
classification tasks. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 1395–1405. Cited on page 101.

Wallace, B., Wu, Z., and Hariharan, B. (2021). Can We Characterize Tasks Without Labels
or Features? In Proceedings of the IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, pages 1245–1254. Cited on page 101.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P., Rault, T.,
Louf, R., Funtowicz, M., Davison, J., Shleifer, S., von Platen, P., Ma, C., Jernite, Y.,
Plu, J., Xu, C., Le Scao, T., Gugger, S., Drame, M., Lhoest, Q., and Rush, A. (2020).
Transformers: State-of-the-Art Natural Language Processing. In Proceedings of the 2020
conference on empirical methods in natural language processing: system demonstrations,
pages 38–45. Cited on page 100.

Xie, Q., Dai, Z., Hovy, E., Luong, M.-T., and Le, Q. V. (2020). Unsupervised data
augmentation for consistency training. In Advances in Neural Information Processing
Systems, volume 33, pages 6256–6268. Cited on page 100.

Xu, R., Chen, Z., Zuo, W., Yan, J., and Lin, L. (2018). Deep Cocktail Network: Multi-
source Unsupervised Domain Adaptation with Category Shift. In Proceedings of the
IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pages
3964–3973. Cited on page 100.

You, S., Xu, C., Xu, C., and Tao, D. (2017). Learning from Multiple Teacher Networks. In
Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD ’17), pages 1285–1294. Cited on page 100.

Zhai, X., Kolesnikov, A., Houlsby, N., and Beyer, L. (2022). Scaling Vision Transformers.
In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, pages 12094–12103. Cited on pages 98.

Zhai, X., Puigcerver, J., Kolesnikov, A., Ruyssen, P., Riquelme, C., Lucic, M., Djolonga,
J., Pinto, A. S., Neumann, M., Dosovitskiy, A., Beyer, L., Bachem, O., Tschannen, M.,
Michalski, M., Bousquet, O., Gelly, S., and Houlsby, N. (2019). A Large-scale Study of
Representation Learning with the Visual Task Adaptation Benchmark. arXiv preprint
arXiv:1910.04867. Cited on pages 116 and 124.

114



C.6 · Conclusion

Zhao, H., Zhang, S., Wu, G., Costeira, J. P., Moura, J. M., and Gordon, G. J. (2018).
Multiple source domain adaptation with adversarial learning. In Workshop proceedings
of the 6th International Conference on Learning Representations (ICLR). Cited on page 100.

Zhao, S., Wang, G., Zhang, S., Gu, Y., Li, Y., Song, Z., Xu, P., Hu, R., Chai, H., and Keutzer,
K. (2020). Multi-source distilling domain adaptation. In Proceedings of the 34th AAAI
Conference on Artificial Intelligence, volume 34, pages 12975–12983. Cited on page 100.

115



Paper C · Distilling from Similar Tasks for Transfer Learning on a Budget

Supplementary material

C.I Additional Ablations and Analyses

C.I.1 Results on VTAB

We report the results of our VTAB (Zhai et al., 2019) experiment in Table C.4. On
VTAB, We find that both DistillWeighted and DistillNearest distillation outperform
IN+Transfer on each of the Natural tasks. Particularly, DistillWeighted outperforms
IN+Transfer with 13.9%-points on CIFAR-10 and 10.6%-points on Sun397 and averaged
across Natural DistillWeighted outperforms IN+Transfer with 5.1%-points. Average
over Specialized both DistillWeighted and DistillNearest outperform IN+Transfer,
although with a small margin. Finally, averaged over Structured IN+Transfer out-
performs our methods, but due to the nature of these tasks, we do not expect source
models to transfer well to these tasks.1 Yet, we still obtain the best accuracy on DMLab,
dSpr-Loc, and sNORB-Azimuth.
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IN+Transfer 88.1 47.0 57.4 85.8 82.8 75.3 27.8 66.3 81.0 95.0 80.0 72.7 82.2 73.1 55.9 43.6 75.7 18.7 58.6 21.2 46.0 49.1 62.4

DistillWeighted 88.6 60.9 62.4 86.1 84.4 79.0 38.4 71.4 80.6 95.9 83.3 72.2 83.0 57.4 45.6 44.6 67.7 27.4 44.9 23.9 38.2 43.7 62.2

DistillNearest 88.9 59.5 61.9 86.2 84.5 79.5 37.6 71.1 80.5 95.8 83.2 71.7 82.8 60.5 45.4 45.2 67.9 20.8 40.6 24.2 36.5 42.6 61.6

Table C.4: Top-1 accuracy by dataset in VTAB. The accuracy for each task is in grey, and the average accuracy for each category of
tasks is in black. Note, the Mean is the average across all tasks, not categories. The largest value in each column is marked in bold.
Here DistillWeighted is with p = 9.

C.I.2 Relative Accuracy of Single-source Distillation

Similarly to Table C.3, we extend our evaluation of how well the task similarity selects
the best source models for single-source distillation. We report the ratio between the
average test accuracy of the top-k target models ranked using the task similarity and the
average test accuracy for the actual top-k target models found after the fact in Table C.5,
Table C.6, and Table C.7 for k = 1, k = 3, and k = 5, respectively.

We find that generally, using task similarity on feature representations rather than
the corresponding pseudo-labels yields better rankings, but also that PARC shows very
little difference between features and pseudo-labels for all considered k ∈ {1,3,5}.

Relative accuracy over all k. The relative accuracy measure reported above is sensitive
to k and the actual accuracy values of the models. That is, if a metric flips the order of
the best and second best model when there is a notable performance gap between the
two models, the relative accuracy for k = 1 will be low, and we might be mistaken to
believe the metric is not working well. However, the metric might rank every model for

1 The Structured tasks are mainly (ordinal) regression tasks transformed into classification tasks, and thus it
seems reasonable to expect very general features (such as those from an ImageNet pre-trained model) to
generalize better to such constructed tasks than specialized source models.
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k > 2 perfectly correct, and since we typically utilize the full set of source models, the
initial mistake should not be detrimental to the selection of the task similarity metric.
Thus, in Figure C.7 we plot the relative accuracy for each task similarity metric and
all k ∈ {1, . . . ,S}. We find that while PARC on feature representations is outperformed
by both PARC and CKA on pseudo-labels for k < 3, PARC on feature representations
outperforms all the other metrics for k ≥ 3. In particular, from Table C.8 we have that on
average over all k < S, PARC, performs the best.
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Table C.5: Relative accuracy of top-1 single-source distilled target model selected by task similarity over the
best model found in hindsight. We compute the test accuracy of the highest-ranked target model (ranked by
some task similarity) and divide this by the test accuracy of the best-performing target model.
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d
o CKA 99.1 95.6 97.4 99.6 98.8 89.4 100.0 97.6 97.2

PARC 99.5 100.0 95.5 99.6 98.5 99.7 98.8 99.7 98.9

RSA 100.0 77.7 96.5 99.7 98.5 87.2 98.6 97.6 94.5

Fe
at

u
re CKA 100.0 95.6 97.0 99.8 99.0 93.3 100.0 96.4 97.6

PARC 100.0 100.0 97.8 99.7 98.3 100.0 97.1 98.5 98.9

RSA 100.0 100.0 96.7 99.8 98.9 94.9 98.9 98.8 98.5

Table C.6: (Identical to Table C.3) Relative accuracy of top-3 single-source distilled target models selected
by task similarity over the average of the 3 best models found in hindsight. We compute the average test
accuracy of the top-3 highest ranked target models and divide this average by the average test accuracy of the
3 best-performing target models.

C.I.3 Ablation of p for DistillWeighted

We report the values associated with Figure C.6 for each target task and all considered
choices of p in Table C.9.

C.I.4 DistillWeighted with ResNet-50 as Target Architecture

In the main part of the article, we consider the computationally constrained setting,
where some compute budget restricts the possible size of our target model. Thus, we
use MobileNetV3 models as target models throughout the main paper. However, in
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o CKA 99.3 98.7 98.3 99.7 99.0 92.9 99.2 98.4 98.2

PARC 99.7 100.0 96.7 99.7 98.9 94.5 99.4 98.4 98.4

RSA 99.7 83.2 97.6 99.8 99.0 84.9 99.2 92.8 94.5

Fe
at

u
re CKA 99.7 97.4 97.7 99.8 98.9 96.5 99.2 97.8 98.4

PARC 99.7 100.0 97.9 99.8 99.1 99.7 97.5 99.7 99.2

RSA 99.7 99.7 97.9 99.8 99.2 97.9 98.9 99.7 99.1

Table C.7: Relative accuracy of top-5 single-source distilled target models selected by task similarity over the
average of the 5 best models found in hindsight. We compute the results analogously to Table C.6 with k = 5.

CKA PARC RSA

Pseudo 0.985 0.990 0.974

Feature 0.986 0.993 0.991

Table C.8: The mean relative accuracy, across all k, for each metric in Figure C.7. The average is bounded
in (0,1], and 1 corresponds to perfect ordering by task similarity. We find that using feature representations
consistently outperforms pseudo-labels and that for both feature representations and pseudo-labels PARC
performs the best.
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Figure C.7: Relative accuracy of top-k single-source distilled target models selected by task similarity over
the average of the top-k actual best target models found in hindsight. If the ordering by task similarity were
perfectly correct, the relative accuracy would be 1 for all k. See Table C.8 for the average of each metric across
all k.
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IN+Transfer 92.4 42.8 47.3 97.4 81.6 37.3 75.9 62.6 67.2

IN+FixMatch 93.5 41.9 38.5 98.1 82.6 42.8 83.4 65.8 68.3

DistillEqual 90.8 53.5 45.7 97.5 81.5 41.4 82.1 62.1 69.3

DistillWeighted(1) 91.1 55.6 46.5 97.9 81.5 42.5 83.3 64.4 70.3

DistillWeighted(3) 91.6 57.7 46.5 97.7 82.3 44.5 84.6 67.4 71.6

DistillWeighted(6) 91.8 59.0 46.7 97.5 82.5 46.7 84.7 69.1 72.3

DistillWeighted(9) 92.0 59.6 46.8 97.6 82.4 47.6 84.5 69.5 72.5

DistillWeighted(12) 92.0 60.0 47.7 97.6 82.2 48.3 84.4 69.9 72.8

DistillWeighted(15) 92.6 60.3 46.7 97.5 81.7 48.2 83.9 70.2 72.6

DistillNearest 92.0 59.6 46.8 97.4 81.0 47.4 81.9 71.3 72.2

Table C.9: Test accuracy of DistillWeighted with various choices of p, compared to the baseline methods of
IN+Transfer and IN+FixMatch. We highlight the largest value for each target task in bold and shade our
default options. The results are also visualized in Figure C.6.
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IN+Transfer ImageNet 92.9 42.0 43.4 96.8 79.9 39.9 83.3 65.9 68.0

Fine-tune Source Source 93.0 70.8 43.9 97.2 81.3 47.4 84.8 79.3 74.7

DistillEqual ImageNet 87.8 57.3 46.1 97.0 78.9 42.4 84.1 64.5 69.8

DistillWeighted(12) ImageNet 91.5 64.5 45.4 97.0 78.9 49.8 87.1 74.2 73.6

DistillEqual Source 87.5 68.8 45.5 97.4 81.2 43.2 81.9 65.1 71.3

DistillWeighted(12) Source 91.6 70.0 47.6 97.0 80.8 50.0 85.7 73.8 74.6

Table C.10: DistillWeighted with ResNet-50 as target model architecture. We compare fine-tuning of
the highest ranked source model (Bolya et al., 2021) with DistillWeighted to both ImageNet-initialized
target models and target models initialized from the highest ranked ResNet-50 source model. For p = 12,
DistillWeighted performs on par with fine-tuning the selected source model. The largest value for each target
task is in bold.

Table C.10 we remove the computational budget and allow the target model to be of any
architecture, and particularly we use a ResNet-50 as the target model.

We compare DistillWeighted (with p = 0 and p = 12) initialized with either Ima-
geNet pre-trained weights or the weights of the highest ranked ResNet-50 source model
to IN+Transfer and Fine-tune Selected Source. We find that DistillWeighted ini-
tialized from ImageNet outperforms IN+Transfer on average for both equal weighting
and p = 12, but underperforms Fine-tune Selected Source for both p. However, since
Fine-tune Selected Source is initialized from well-selected source model weights, the
comparison is not entirely fair. Thus, we also consider the case where we initialize the
target model for DistillWeighted with the weights of the highest ranked ResNet-50
source model, and find that for p = 12 DistillWeighted performs on par with Fine-tune

Selected Source.
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Figure C.8: Transformation of weights for various choices of power (left) or softmax temperature (right). Here
S is the number of source models, and we consider equidistantly distributed normalized metrics.

C.I.5 Normalization of Task Similarity for Source Model Weighting

We propose to choose the weights α = (α1, . . . ,αS ) as

αi =
e
p
i∑S

s=1 e
p
s

, where ej = 1(ej>0) ej

for j = 1, . . . ,S, and es is the task similarity for source modelMs, evaluated on the target
task, normalized to satisfy es ∈ [0,1] with min-max normalization over all es. Here, the
hyperparameter, p can be used to increase/decrease the relative weight on the highest
ranked source models, with the extremes p = 0 and p → ∞ corresponding to equal
weight and single-source distillation, respectively. An alternative way to obtain our
normalization is to use the softmax function on the task similarities,

αi =
exp

(
ei
T

)
∑S
s=1 exp

(
es
T

) .
This does not require clipping the task similarity at 0, and with the temperature, T , we
can adjust the relative weight on particular source models. Here, large T flattens the
weights, and T →∞ corresponds to an equal weighting of all source models, while small
T increases the weight on the highest-ranked source models. Quantitatively, the two
normalization methods can yield similar transformations with appropriate choices of p
and T — see Figure C.8.

C.I.6 Smaller Amount of Labeled Data

We now repeat the experiment of the main paper across the 8 target datasets with a
reduced amount of labeled samples. Here, we reduce the number of labeled samples
to 5% (rather than 20%) of the training set and report the accuracy in Table C.11. We
find a similar pattern as observed in the main experiment, where DistillWeighted

distillation on average outperforms IN+Transfer irrespective of the choice of p. For
p = 9 DistillWeighted outperforms IN+Transfer by 6.8%-point on average and in
particular 15.5%-points on CUB200, whereas the only loss in performance is on ChestX
with a drop of 0.9%-point.
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IN+Transfer 88.0 16.8 43.5 94.8 73.9 14.4 55.0 38.9 53.2

DistillWeighted(1) 88.1 29.2 42.3 95.9 76.3 20.5 66.6 42.1 57.6

DistillWeighted(9) 90.2 32.3 42.6 95.9 76.7 24.8 68.2 49.0 60.0

DistillNearest 87.2 31.4 39.7 95.1 75.4 24.0 58.9 49.7 57.7

Table C.11: Distillation on the eight target tasks with only 5% labeled samples per task. Again, we compare to
the baseline of IN+Transfer. The largest value for each target task is in bold.

C.I.7 Different Measures of Correlation

In order to evaluate the quality of a task similarity metric to estimate the performance
of a target model after distillation, we consider the correlation between the computed
metric and the actual observed performance after distillation. However, since we have no
reason to believe that the relationship is linear, we consider the Spearman correlation in
the main paper. However, for completeness of exposition, we report Pearson correlation
and Kendall’s Tau in Table C.12 and Table C.13, respectively. For both these correlation
measures, the overall conclusions are the same: Using feature representations is prefer-
able to pseudo-labels, and PARC generally outperforms both CKA and RSA, albeit not
by much over CKA.
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d
o CKA 0.62 0.85 0.07 0.30 -0.06 0.33 0.67 0.21 0.37

PARC 0.75 0.74 -0.03 0.27 -0.00 0.36 0.63 0.51 0.40

RSA 0.75 0.13 -0.07 0.38 0.04 -0.09 0.66 0.40 0.27

Fe
at

u
re CKA 0.84 0.60 0.39 0.29 0.00 0.30 0.71 0.54 0.46

PARC 0.86 0.73 0.17 0.46 -0.06 0.58 0.77 0.78 0.54

RSA 0.90 0.85 0.07 0.45 0.04 0.27 0.87 0.83 0.54

Table C.12: Pearson correlation between test accuracy after all possible single-source distillations and task
similarity associated with the source models. Similar to Table C.2.

C.I.8 Choice of Task Similarity Metrics

Recently, multiple measures intended to estimate the transferability of a source model
have been proposed. However, despite the very recently published Multi-Source Leep
(MS-LEEP) and Ensemble Leep (E-Leep) no task similarity metric considers the esti-
mation over multiple models at once (Agostinelli et al., 2022). Thus, we consider each
source model separately and compute the metrics independent of other source models.
This has the added benefit of reducing the number of metric computations required as
we do not need to compute the task similarity for all possible combinations of n models
from S possible (i.e.

(n
S

)
), which grows fast with S.
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o CKA 0.51 0.46 0.16 0.28 -0.05 0.24 0.49 0.07 0.27

PARC 0.61 0.64 0.01 0.12 0.02 0.36 0.54 0.39 0.34

RSA 0.62 0.17 -0.07 0.22 0.08 -0.01 0.48 0.29 0.22

Fe
at

u
re CKA 0.67 0.34 0.25 0.14 -0.05 0.40 0.50 0.38 0.33

PARC 0.69 0.67 0.14 0.31 -0.10 0.65 0.62 0.67 0.46

RSA 0.72 0.65 0.02 0.28 0.02 0.19 0.72 0.67 0.41

Table C.13: Kendall Tau correlation between test accuracy after all possible single-source distillations and task
similarity associated with the source models. Similar to Table C.2.

Assume X ∈ RN×dX and Y ∈ RN×dY , and that Kij = k(xi ,xj ) for and Lij = l(yi ,yj ) where
k, and l are two (similarity) kernels as well as xi ,xj and yi ,yj are rows of X and Y,
respectively. Then we have that CKA is defined as

ρCKA(X,Y) def=
HSIC(K,L)√

HSIC(K,K)HSIC(L,L)
,

where K,L ∈ RN×N and HSIC is the Hilbert-Schmidt Independence Criterion,

HSIC(K,L) def=
1

(N − 1)2 tr (KHNLHN ) , with

HN
def= IN −

1
N

11⊺.

In particular, if both k and l are linear kernels, then

ρCKA(X,Y) =
∥Y⊺X∥2F

∥X⊺X∥F∥Y⊺Y∥F
,

where ∥ · ∥F is the Frobenius norm. We use the linear kernel throughout this paper and
refer to Cortes et al. (2012) for additional details on CKA.

For RSA, we consider the dissimilarity matrices given by

Kij
def= 1−pearson(xi ,xj ) and

Lij
def= 1−pearson(yi ,yj ),

where X and Y are assumed normalized to have mean 0 and variance 1. We then compute
RSA as the Spearman correlation between the lower triangles of K and L,

ρRSA(X,Y) def= spearman
(
{Kij | i < j}, {Lij | i < j}

)
.

For additional details on RSA, we refer the reader to Dwivedi and Roig (2019). While
Bolya et al. (2021) introduces PARC alongside a heuristic and feature reduction, the
PARC metric is almost identical to RSA. However, RSA was introduced to compute
similarities between two sets of representations, and PARC was aimed at computing
similarities between a set of representations and a set of labels associated with the dataset.
Thus, in our use of PARC, it merely differs from RSA in the lack of normalization of Y,
which is assumed to be one-hot encoded vectors of class labels from the probe dataset.
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C.I.9 Compute Requirements and Scalability

For DistillNearest and DistillWeighted to be feasible in practice, we need to ensure
that the computational costs of training and inference for both methods are reasonable
and that it scales well with the size of S .

Inference. We note, that while both DistillNearest and DistillWeighted use ad-
ditional classifier head(s) during training, these are discarded at inference time, and
no additional compute overhead remains. Thus, memory and compute requirements
at inference time are identical to those of the original target model, and thereby the
equivalent target model trained supervised.

Training. We can separate the training procedure into two phases; a) estimation of
task similarity metrics, and b) training of the target model with DistillNearest or
DistillWeighted. The majority of compute is typically needed for b) as is expected for
the training of neural networks. For a) we estimate the task similarity metric for a single
model based on the small annotated probe set (we use 500 samples). The computation of
the metric itself is dominated by the forward pass, which is a single forward pass on each
of the 500 samples, thus corresponding to less compute than 4 batches of training, where
we typically train for thousands of batches. We thus consider phase a) as negligible as it
is also reusable across multiple experiments for the target task. Furthermore, for b) we
use additional compute in two parts of the training; 1) training of an additional classifier
head per source model used (thus 1 for DistillNearest and |S| for DistillWeighted),
and 2) obtaining pseudo-labels for the unlabeled data. We note that for 224×224 inputs,
a MobileNetV3 uses 0.24 GFLOPs as default, and each additional classifier head requires
an additional approx. 0.0013 GFLOPs (for 1000 classes). Thus, we can attach about 3000
classifier heads (and thereby 3000 source models) to a MobileNetV3 before we require
the same GFLOPs as a ResNet-50. Regarding 2), the pseudo-labels are obtained by a
single forward pass by each source model over the unlabeled data. For very large source
models, this can potentially be expensive, but the pseudo-labels can be reused across
multiple experiments for the same target task. However, the computational requirements
for this step highly depend on the set of source models S , and is thereby hard to quantify.

C.II Experimental Details

In the following, we provide some experimental details.

C.II.1 Main Experiments

Unless otherwise mentioned, we use SGD with a learning rate of 0.01, weight decay of
0.0001, batch size of 128, and loss weighting of λ = 0.8. We initialize our target models
with the ImageNet pre-trained weights available in torchvision (https://pytorch.or
g/vision/stable/models) and consider 28 fine-tuned models from Bolya et al. (2021)
publicly available at https://github.com/dbolya/parc as our set of source models. The
source models consist of each of the architectures (AlexNet, GoogLeNet, ResNet-18, and
ResNet-50) trained on CIFAR-10, Caltech101, CUB200, NABird, Oxford Pets, Stanford
Dogs, and VOC2007. Note, we always exclude any source model trained on the particular
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target task, thus effectively reducing the number of source models for some target tasks.
For FixMatch we use a batch size of 128 (with a 1:1 ratio of labeled to unlabeled samples
for each batch) and fix the confidence threshold at 0.95 and the temperature at 1. We
keep the loss weighting between the supervised loss and the unlabeled FixMatch loss at
λ = 0.8.

C.II.2 VTAB Experiments

For each VTAB experiment, we consider the full training set (as introduced in Zhai et al.
(2019)) as the unlabeled set, Duτ , and the VTAB-1K subset as the labeled set, Dlτ . We use
the Pytorch implementation from Jia et al. (2022) available at https://github.com/KMn
P/vpt.

We use SGD with a learning rate of 0.005, weight decay of 0.0001, batch size of 128
equally split in 64 labeled and unlabeled samples, and loss weighting of λ = 0.9. We
train our models for 100 epochs, where we define one epoch as the number of steps
required to traverse the set of unlabeled target data, Duτ when using semi-supervised
methods, or merely as the number of steps to traverse the labeled set, Dlτ , for supervised
transfer methods. We initialize our target models with the BiT-M ResNet-50x1 model
fine-tuned on ILSVRC-2012 from BiT (Kolesnikov et al., 2020) publicly available at
https://github.com/google-research/big_transfer.

We consider the 19 BiT-M ResNet-50x1 models fine-tuned on the VTAB-1K target
tasks from Kolesnikov et al. (2020) as the set of source models. We always exclude the
source model associated with the target task from the set of source models, and thus
effectively have 18 source models available for each target task in VTAB. We use the
PARC metric on the source model features to compute the source weighting, but also
only use the top-5 highest-ranked source models to reduce the computational costs of
training. Furthermore, we use p = 9 for DistillWeighted.

C.III Domain Gap Between Source Tasks, Targets Tasks and
ImageNet

As is evident from Figure C.3 and Table C.1, both DistillNearest and DistillWeighted

do not yield notable improvements on e.g. ChestX and ISIC, but yield significant im-
provements on e.g. CUB200 and Oxford Pets. Notably, for the latter target tasks there are
semantically similar source tasks present in our set of source models, while this is not
true for the former target tasks. Hence, as one would expect, the availability of a source
model trained on source tasks similar to the target tasks is important for cross-domain
distillation to work well, which is expected to be true for both DistillNearest and
DistillWeighted. Indeed, the task similarity metrics considered in this paper all aim
at measuring alignment between tasks, and if the alignment between source and target
tasks is small, we do not expect to gain much from distillation. This is affirmed by our
experiments in e.g. Table C.1.
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C.III.1 A Note on Potential Data Overlap Between Source and Target Tasks

Whenever any type of transfer learning is applied, including using ImageNet initial-
izations, we (often implicitly) assume that the model we transfer from has not been
trained on any data from the target test set. Although this assumption is often satisfied in
practice due to domain gaps between the source and target task, utilizing initializations
trained on e.g. ImageNet can potentially violate the assumption. This is due to the fact
that ImageNet and many other modern publicly available datasets are gathered from
various public websites and overlaps between samples in different datasets might occur.

Thus, it is natural to question whether the observed improvements are due to method-
ological advances or information leakage between source and target tasks. To ensure our
advancements are valid we carefully remove any source model associated with the target
task from the set of source models, S . However, information leakage might still appear if
e.g. there are identical samples in the target dataset and the source dataset or ImageNet.
Despite large overlaps being improbable, it has been shown that there e.g. is a minor
overlap (of at least 43 samples) between the training set of ImageNet and the test set of
CUB200 (see e.g. https://gist.github.com/arunmallya/a6889f151483dcb348fa70523cb
4f578). However, since the test set of CUB200 consists of 5794 samples, the presence of
such a minor overlap should not affect the true performance of a model much.

In our experiments, we consistently compare our target models (initialized with Ima-
geNet weights) to either identically initialized target models or source models initialized
with either ImageNet weights or with weights from a source task. Hence, any potential
gain from information leakage between ImageNet and a target task would bias both our
results and the baselines, and thereby not affect our overall results. Furthermore, while
an overlap between a source and target task might unfairly benefit the performance of
our methods compared to IN+Transfer and IN+FixMatch, such an overlap would likely
benefit the fine-tuned source models even more making this baseline even harder to
outperform (see e.g. Figure C.5 and Table C.1). Thus, our results should be at most as
biased as the baselines.
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Abstract. Knowledge distillation has shown great success at training a small student model on the
predictions of a larger teacher model, thereby achieving improved generalization performance of
the student. However, while it is commonly expected that knowledge distillation works by the
student learning to match the predictions of the teacher, this claim has yet to be confirmed. In fact,
it has been shown that even a student with sufficient capacity to match a known optimal solution,
often fails to do so.

We investigate the effect of different implicit design choices, with the aim of obtaining perfect
teacher-student agreement. Thus, while we do not aim to propose a new distillation technique, we
strive to identify the effect of particular choices of hyperparameters and settings on the effective-
ness of knowledge distillation. We do this through empirical experiments, and amongst others
find that the teacher-student agreement sometimes negatively correlates with the generalization
performance. Furthermore, we confirm the hypothesis that excessively long training schedules are
needed to obtain perfect agreement in some cases.
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D.1 Introduction

Currently, many areas of computer vision are dominated by large-scale vision models
trained on huge datasets (Kolesnikov et al., 2020; Sun et al., 2017; Zhai et al., 2022).
Thus, state-of-the-art models push the limits of current hardware for classification, ob-
ject detection, and semantic segmentation tasks. Yet, such computationally demanding
models are often infeasible for deployment in practice due to high computational costs.
Thus, state-of-the-art performance improvements often do not translate into practical
real-world applications. Two widely used paradigms attempting to alleviate the gap
between research and applications are model pruning and knowledge distillation. Both
start with a well-performing large model and aim at reducing the computational require-
ments by reducing the model size. Model pruning achieves this by selectively pruning
away parts of the model (Aghli and Ribeiro, 2021; Anwar et al., 2017; Molchanov et al.,
2016; Frankle and Carbin, 2019). However, this restricts the final model to be an altered
version of the original architecture and can be challenging due to internal dependencies
between e.g. weights and normalization statistics. Knowledge distillation is more flexible,
avoids these inconveniences, and allows nearly any architecture to be used as the final
model (Hinton et al., 2015).

The idea of knowledge distillation is to distill information from a large cumbersome
and pre-trained teacher model into a smaller and more efficient student model. Recent
research has proposed various notions of information to transfer from the teacher to the
student model (Park et al., 2019; Srinivas and Fleuret, 2018; Zagoruyko and Komodakis,
2017; Romero et al., 2015; Yim et al., 2017), but we restrict ourselves to one of the
conventional formulations by Hinton et al. (2015) and Ba and Caruana (2014). Despite
the large empirical success of this simple approach, a thorough understanding of how,
why, and when this procedure works is still largely lacking.

A widespread, yet largely unsupported, expectation for the empirical successes of
a multitude of distillation techniques is that a student model trained with distillation
learns to mimic the predictions of the teacher model (Bucila et al., 2006; Hinton et al.,
2015; Gotmare et al., 2019; Tang et al., 2020; Dong et al., 2019). However, evidence of
such ability is lacking at large, and merely little research investigates this claim. Two
branches of research attempt to answer how, when, and why knowledge distillation
works. One branch investigates knowledge distillation with theoretical mathematical
rigor under somewhat strong assumptions (Phuong and Lampert, 2019; Mobahi et al.,
2020; Borup and Andersen, 2021, 2023), and another branch performs empirical analyses
of knowledge distillation (Stanton et al., 2021; Beyer et al., 2022). In particular, for the
latter, Stanton et al. (2021) explicitly investigates the agreement between the teacher and
student, while Beyer et al. (2022) finds that excessively long training durations and very
strong augmentation schemes are necessary for a student to accurately match a teacher.
In this paper, we delve into the question;

“Under which conditions can we obtain perfect teacher-student agreement?”

Specifically, we perform numerous experiments with conventional logit-based distillation
aimed at discovering under which conditions one can obtain perfect agreement and how
interventions to these conditions affect the agreement.
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D.2 Method

To illuminate parts of the inner workings of knowledge distillation we perform a variety
of experiments. Unless otherwise mentioned, we will keep the teacher model fixed and
denote it asMt and will analyze studentsMs trained with knowledge distillation. We
will refer to pre-softmax predictions ofMs (orMt) by zs (or zt), and denote them as
logits.

We consider the conventional knowledge distillation loss function introduced in
Hinton et al. (2015), over a labeled dataset, DL, and a distillation dataset, DD,1

L =
α
|DL|

∑
(x,y)∈DL

ℓCE(Ms(x),y) +
1−α
|DD|

∑
x∈DD

ℓdistill(Ms(x),Mt(x)), (D.1)

where we define the two partial loss functions as usual;

ℓCE(zs,y) = −
C∑
c=1

yc log(σc(zs)), (D.2)

ℓdistill(zs,zt) = −τ2
C∑
c=1

σc

(zt
τ

)
log

(
σc

(zs
τ

))
, (D.3)

with α ∈ [0,1]. We note that the multiplier τ2 on the distillation loss merely scales the
distillation loss to keep the gradients of both loss functions comparable between different
choices of temperature, τ .

Agreement metric. Throughout this paper, we evaluate the agreement between the
teacher and the student by the top-1 accuracy between the teacher’s predictions and the
student’s predictions. That is, whether the class predicted by the student matches the
class predicted by the teacher. Specifically, we use

Agg(Ms,Mt)
def=

1
|D |

∑
x∈Dx

1

(
argmax
c∈{1,...,C}

Mt(x)c = argmax
c∈{1,...,C}

Ms(x)c
)
,

where D can be either a training, validation, or test dataset. Throughout this paper, we
denote an agreement of at least 95% as perfect and often shade this area with light gray
in plots.

Assumptions and limitations. We restrict our analysis by the following assumptions:
a) our teacher model is fixed throughout both in architecture and trained weights, and b)
we will merely consider distillation in its simplest form as introduced in Hinton et al.
(2015). However, we will investigate some alterations to this setup and the training
scheme for an improved understanding of distillation under various interventions.

Naturally, we can not provide universally applicable conclusions from this con-
strained setup, nor can we investigate every possible distillation setup. However, we
believe our methodical analysis and results can provide some useful insights into the (at
times elusive) behavior of distillation, and leave it to future research to generalize these
findings to even more general settings. While it would be seminal to provide closed-form

1 Note, one can have DxL ⊆ DD, or DxL ⊇ DD, or even DxL ∩DD = ∅, where we use the notation Dx = {x | x ∈ D}
— i.e. the input of the samples without the associated targets.
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mathematical proofs for the conclusions of our analysis it is significantly more difficult
(and sometimes impossible with current methods) than a structured empirical analysis,
and merely few such results exist in simplified setups, see e.g. Borup and Andersen
(2023, 2021); Mobahi et al. (2020); Phuong and Lampert (2019). Finally, we acknowledge
that our analysis bears a resemblance to those of Stanton et al. (2021) and Beyer et al.
(2022), and stress that this analysis aims to extend on (and at the very least recover
some of) the conclusions by these previous works. Our starting point will be from the
conclusion of Stanton et al. (2021): “Optimization is challenging in knowledge distillation:
even in cases when the student has sufficient capacity to match the teacher on the distillation
data, it is unable to do so.”

In the following section, we pose numerous different hypotheses on the “inner workings”
of knowledge distillation and present various experiments performed in the quest of
elucidating these hypotheses.

D.3 Experiments

One of the main conclusions of Stanton et al. (2021) and Beyer et al. (2022) is that the
main challenge of knowledge distillation is to solve the unusually difficult optimization
problem sufficiently well. This conclusion is supported by a lack of agreement between
student and teacher models in a self-distillation setup, where the student has the capacity
to perfectly represent the teacher, and by students consistently improving in accuracy
with long training schedules when distilling large teachers. In particular, Stanton et al.
(2021) finds that a randomly initialized student or even a student initialized at the teacher
initialization is unable to achieve training agreements exceeding 80% on CIFAR-100
(Krizhevsky et al., 2009).

Our initial aim is to determine under which conditions, we can obtain perfect agree-
ment, and then to analyze the effect of various interventions on such conditions. Thus,
we naturally start in the self-distillation setup, and in the consecutive, we minimize (D.1)
with α = 0 unless otherwise mentioned. We train a ResNet-20 teacher, and distill it into
various ResNet-20 students initialized with weights interpolated between the trained
teacher weights θ∗t , and the initial teacher weights θ(0)

t . See the supplementary materials
for additional details and ablation experiments.

Naïve solutions. By direct analysis of (D.1), (D.2), and (D.3), a few naive solutions
obtaining perfect agreement are immediate. First, for α = 1, initialization of the stu-
dent with the teacher initialization (i.e. θ(0)

t ), and weight decay of 10−4, will make the
distillation procedure identical to the teacher training and yield a perfect agreement.
Furthermore, if α = 0, no weight-decay is used, and we let the student initialization be
the trained teacher (i.e. θ∗t ) then (D.1) is minimized at initialization and we obtain perfect
agreement without any training. However, if we deviate from any of these settings, the
effect on the agreement is not clear and the following sections investigate exactly this.
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D.3.1 Linearly Interpolated Model Weights

We now consider the case where the student initialization, θ(0)
s , is linearly interpolated

between the initial teacher weights θ(0)
t , and the trained teacher weights θ∗t , i.e.

θ(0)
s = (1−λ)θ(0)

t +λθ∗t .

In the below, we propose variations to this, and our initial goal is to obtain perfect
agreement across all λ ∈ [0,1], but in particular for λ = 0. In practice, we use λ ∈
{0.0,0.125,0.25, . . . ,1.0}. Finally, we adopt the procedure from Stanton et al. (2021) and
replace all batch-normalization layers (Ioffe and Szegedy, 2015) with layer-normalization
layers (Ba et al., 2016), in order to avoid the non-parametric running batch statistics
affecting the predictions of identically parameterized models due to the shuffling of
samples.

Teacher weights are not optimal weights for self-distillation with weight decay.
While self-distillation has the nice property, that we know the student has the capacity to
match the teacher, we also know an optimal solution to (D.3); namely the teacher weights,
θ∗t . However, Stanton et al. (2021) finds that if the student weights, θs, are initialized too
far away from the optimal weights, then the agreement between the trained student and
the teacher is still low. One reason for this could be that, while indeed θ∗t does minimize
(D.3), this is not generally true when using weight decay. That is, with SGD and weight
decay we no longer minimize (D.3), but rather Ldistill + β∥θs∥2. Thus, for β > 0 then θ∗t is
likely not an optimal solution, and expecting perfect agreement from θ∗t is unreasonable.

To verify this, we train students both with a weight-decay of 10−4 and without any
weight-decay. From Figure D.1 we observe a) when using weight-decay students with
λ ≥ 0.25 all reach a lower agreement with the teacher compared to not using weight-
decay, verifying that θ∗t is indeed not optimal weights, and b) when no weight-decay is
used, students initialized close to the optimal reach almost 100% agreement, but the
agreement also slowly taper off when initialized further away from the trained teacher.
These observations hold for both training and test agreements.

Softened and sharpened labels make distillation more challenging. In the above, we
have adopted the default temperature of τ = 4 from Stanton et al. (2021), but we found
that even for known optimal weights, we are unable to perfectly match the teacher if we
are not initialized somewhat in the direction of the optimal weights. Thus, one might
ask, if the task of matching the soft labels is too difficult a task, and if we should consider
changing the temperature. Thus, we train students without weight-decay and with
varying temperatures τ ∈ {0.2,1,4,8}, corresponding to either a sharpening of the labels,
using the original predictions, or two different degrees of softening the labels. From
Figure D.2 we observe that a) softening labels slightly reduces the agreement for small λ
compared to the original predictions (τ = 1), and b) that sharpening of the labels (τ = 0.2)
is significantly worse than using softened labels with temperature τ ∈ {1,4,8} unless we
initialize the student very close to the trained teacher, as well as c) a temperature of τ = 1
yields near-perfect agreement for all λ, except for λ = 0.
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Figure D.1: Accuracy and agreement for ResNet-20 students initialized at linearly interpolated weights and
distilled with different choices of weight-decay. Without weight-decay the trained teacher initialization is
optimal. We use α = 0 and τ = 4 here.
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Figure D.2: Accuracy and agreement for ResNet-20 students initialized at linearly interpolated weights and
distilled with different choices of temperature, τ , and without weight-decay. Hard labels are one-hot encoded
labels. We use α = 0 for all experiments here.
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Hard labels are not the solution. Since soft labels appear to be a challenge for self-
distillation, one might suspect the possible noise in the non-max indices of the soft label is
too hard to fit for the student yielding subpar agreement. However, as evident both from
the sharpened labels (τ = 0.2) in Figure D.2 and the hard targets where we train students
with temperature τ = 1, no weight-decay, one-hot encoded (hard) teacher predictions, this
is not the case. In fact, assigning all weight to the top-1 teacher prediction (equivalent to
τ→ 0) consistently underperforms ordinary soft labels (i.e. τ ≥ 1) in agreement for most
λ. Thus, while too-soft labels might be too uninformative, so might hard labels. This
observation is further supported by the hard labels underperforming sharpened labels
for λ > 0.5 and not obtaining perfect agreement irrespective of initialization.

Accuracy and agreement are negatively correlated when changing α. While in the
above, we merely consider a fixed α = 0, alternating α ∈ [0,1], yields a negative correla-
tion between accuracy and agreement (see Figure D.3). In particular, when increasing
α from 0 to 1, the accuracy consistently and gradually increases for all interpolation
weights λ ∈ [0,1], while the agreement consistently and gradually decreases. Thus, this
poses a trade-off between agreement and accuracy when choosing α. We observe this
general pattern both when distilling without (see Figure D.3a) and with (see Figure D.3b)
weight-decay.

Training for a long time is helpful. In the previous experiments, all students were
trained for an identical amount of 300 epochs, but models initialized closer to the teacher,
i.e. large λ are closer to a known fitted model, and one would expect fewer training
steps would be needed to reach a reasonable solution in such cases, compared to models
initialized at random (i.e. smaller λ) making the comparison across different λ unfair.
Thus, we now train models initialized from the teacher initialization (λ = 0) for 100, 300
(default), 500, 1000, and 5000 epochs, respectively. From Figure D.4 we find that longer
training yields notable improvements in agreement both with and without weight decay.
Notably, we observe evanescing gains when exceeding 1000 steps (which is significantly
longer training than commonly used) without weight decay, but not when using weight
decay. Hence, we find that if our student is trained for significantly longer durations,
with weight decay, a temperature of τ = 1 and α = 0, we are able to achieve (near) perfect
agreement for all λ ∈ [0,1].

D.3.2 Training Supervised Students for Comparison

We now consider the baseline of fully supervised students (i.e. α = 1) initialized at the
linearly interpolated weights. This training procedure is identical to how the teacher
is trained, and thus, when λ = 0 and weight-decay are used, the student is trained
identically to the teacher, and we obtain perfect agreement and identical accuracy — see
Figure D.5. Furthermore, from Figure D.5 we observe a near-consistent improvement
in both accuracy (even outperforming the teacher) and agreement when the student is
initialized at weights increasingly closer to the trained teacher model and trained for
300 epochs. Yet, it only reaches about 72% agreement at best. However, any student
initialized with λ > 0 is essentially pre-trained for 300λ epochs, yielding an unfair
comparison. Thus, we also train identical student models, with reduced training schemes
depending on how close to the teacher they are initialized. Specifically, they are trained
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(a) Varying α and not using weight decay.
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(b) Varying α and using weight decay.

Figure D.3: Accuracy and agreement for ResNet-20 students initialized at linearly interpolated weights and
distilled with different choices of distillation weight, α. Here, α = 1 corresponds to supervised training, while
α = 0 corresponds to only using the distillation loss. We use τ = 1 for all experiments here.

for (1−λ)300 epochs,2 and we observe a notable change in performance both with and
without weight decay. While initially improving in accuracy when getting closer to the
trained teacher, the performance eventually drops off when initialized too close to the
final teacher and only trained for a few epochs. However, for λ ∈ (0,1) the agreement
monotonically increases as we initialize closer to the trained teacher. Yet, when initialized
and trained for one epoch from the final trained teacher, the training agreement suddenly
drops to the level observed when training with long schedules, while the test agreement
is largely unchanged from λ = 0.875. Notably, with no training and initialization at λ = 1,
the agreement would be 100%, just as observed for λ = 0 and 300 epochs.

2 If λ = 1, we use a single epoch.
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Figure D.4: Accuracy and agreement for ResNet-20 students initialized at the teacher initialization and
distilled for different numbers of epochs with different choices of weight-decay. We use α = 0 and τ = 1.

300 263 225 188 150 113 75 38 1

55
58
60
62
65

Ac
cu

ra
cy

Teacher

Epochs EpochsTraining
300 263 225 188 150 113 75 38 1

55
58
60
62
65

Teacher

Epochs Epochs Test

0
(teacher init.)

0.5 1
(teacher)

70

80

90

100

Ag
re

em
en

t

0
(teacher init.)

0.5 1
(teacher)

70

80

90

100 wd=0, Long
wd=1e-4, Long
wd=0, Equal
wd=1e-4, Equal

Figure D.5: Students trained fully supervised but initialized at different interpolated weights of the teacher.
For each initialization, both a student with and without weight decay are trained with both a long training
schedule of 300 epochs and an equal schedule of (1−λ)300 epochs. We measure the agreement towards the
fully trained teacher model.

135



Paper D · A Quest for Perfect Teacher-Student Agreement in Knowledge Distillation

D.3.3 Teacher Training-trajectory Interpolated Model Weights

In the above, we assume that the distance of model weights on the linear path between
the teacher initialization and the final trained teacher is representative of the distance of
the predictions produced by such models. However, this is not immediately clear, and
in Section D.II.1 we provide additional experiments with students initialized at model
weights interpolated along the training-trajectory of the teacher model. In summary, the
overall findings under this interpolation scheme do not change.

D.4 Related Works

Knowledge distillation has shown great empirical effectiveness in obtaining well-performing
student models for improved model efficiency, model transparency, as well as semi- and
unsupervised training. First introduced by Ba and Caruana (2014); Bucila et al. (2006),
their seminal work showed that large cumbersome ensemble models could be com-
pressed into a single small student model with comparable predictive performance to
the ensemble teacher. More recent work on knowledge distillation originates in the
work of Hinton et al. (2015) and focuses on matching the softened probabilistic class
predictions of a teacher model. Since then research into different alterations on this
setting has been conducted with varying success (Romero et al., 2015; Mirzadeh et al.,
2020; Park et al., 2019; Cho and Hariharan, 2019; Beyer et al., 2023; Borup et al., 2023;
Srinivas and Fleuret, 2018).

Most of this research focuses on empirically improving some metric of predictive
performance (e.g. accuracy) over a (set of) benchmark dataset(s), by changing either
what statistic from the teacher to match (Park et al., 2019; Srinivas and Fleuret, 2018;
Zagoruyko and Komodakis, 2017; Romero et al., 2015; Yim et al., 2017), the available
labeled and unlabeled data (Phoo and Hariharan, 2021; Caron et al., 2021; Chen et al.,
2019; Fang et al., 2019; Nayak et al., 2019), or what model(s) to use as the teacher
(Furlanello et al., 2018; Hinton et al., 2015; Xie et al., 2020; Gupta et al., 2016; You et al.,
2017; Liu et al., 2020; Borup et al., 2023). Such proposed adaptations are often based
on the belief that the student actually does match the corresponding statistic from the
teacher, which is largely unsupported. To the best of our knowledge, merely Stanton
et al. (2021) explicitly investigates this claim and argues that this is indeed not generally
true. This is further supported by Beyer et al. (2022) which finds that care must be taken
when defining the distillation setup, and one should expect excessively long training
schemes in order to succeed with distillation.

The theoretical justification of the efficacy of knowledge distillation is largely lacking,
with recent work showing that the special case of self-distillation corresponds to partic-
ular types of regularization when considering analytically tractable settings (Mobahi
et al., 2020; Phuong and Lampert, 2019; Borup and Andersen, 2021, 2023). However, to
the best of our knowledge, no rigorous theoretical justification for knowledge distillation
with neural networks has been published to this date, making rigorous controlled empir-
ical investigations such as those by Beyer et al. (2022); Stanton et al. (2021) important
for the understanding of knowledge distillation.
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D.5 Conclusion

In this paper, we empirically investigate the behavior of knowledge distillation under
various interventions with the aim of optimizing the fidelity of the student models. In
particular, we aim to obtain perfect agreement between student and teacher models and
perform several interventions to our setup to examine the effect of these changes on the
agreement. Amongst others, we recover the findings of Stanton et al. (2021); students
with sufficient capacity to match the teacher are not necessarily able to do so in practice
due to a challenging optimization problem. Furthermore, we observe support for the
findings of Beyer et al. (2022); excessively long training schemes are important for the
success of knowledge distillation. We also find that when weighting the ground-truth
targets and the teacher predictions by α agreement and accuracy become negatively
correlated over α (i.e. larger α yields larger accuracy, but lower agreement, and vice
versa).

D.6 Future Directions of Research

In this paper, we have investigated and established the challenges of obtaining perfect
agreement between a teacher model and students initialized at various interpolations
between the trained and untrained teacher. However, it remains to extend this analysis
to include randomly initialized students as well as use teachers of different sizes than the
student to more closely resemble the usual knowledge distillation setup. Furthermore,
we will consider additional measures of alignment between teachers and students, such
as e.g. centered kernel alignment (Cortes et al., 2012) and KL-divergence, thereby not
relying merely on the top-1 prediction of the models. We plan to investigate these
directions in the future.
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Supplementary material

D.I Experimental Details

Throughout our experiment, we have a default setup for our training and distillation.
In particular, we consider the CIFAR-100 (Krizhevsky et al., 2009) dataset, where we
randomly split the default training set into 90% training samples and 10% validation
samples. We apply simple augmentations in the form of first normalizing the data,
followed by a random (p = 0.5) horizontal flip and a random resize and crop to 32× 32
images. We use a batch size of 256 and train for 300 epochs with a cosine-annealing
learning rate schedule starting at 0.05 and ending at 0. We use stochastic gradient
descent with Nesterov momentum of 0.9 and weight decay of either 0 or 10−4. We
consistently use preactivation ResNet-20 models (He et al., 2016) with layer-norms
instead of batch-norms and 16, 32, and 64 filters in each stage. We use a single Nvidia
RTX 3060 for each experiment and employ mixed-integer (bf16) training with gradient
clipping at norms of 1. Unless otherwise mentioned we use a temperature of τ = 4 and a
distillation weight of α = 0.

D.II Additional Experiments and Results

In the following, we include additional ablations and experiments to supplement the
findings presented in the main paper. Specifically, we will consider experiments with
interpolations along the teacher training trajectory rather than linearly interpolated.

D.II.1 Interpolation Along the Teacher Training Trajectory

In the main paper, we work under the assumption that linearly interpolating weights
is representative of how close the models associated with the weights are when pro-
ducing predictions. However, it is not immediately clear that this equivalence between
weight space and prediction space should hold in general, and in the following, we use
checkpointed weights along the training trajectory of the teacher instead. Thus, the
interpolation coefficient λ ∈ [0,1] is now interpolating along the training trajectory, i.e.

θ(0)
s = θ(⌊λT ⌋)

t ,

where T > 1 is the total number of training epochs of the teacher (default is T = 300),
and thus θ(T )

t = θ∗t . In practice, we choose λ ∈ {0,0.2,0.4,0.6,0.8,1} such that λT are
multiples of 60.

Results

The overall findings are equivalent to those of the main paper, and using this training
trajectory interpolation procedure yields minor changes to the results. However, as
evident from Figure D.6 and Figure D.7 using this interpolation procedure produces
slightly higher accuracy and agreement — this is mostly evident for small λ. Furthermore,
we observe that both the agreement and accuracy appear to be slightly less sensitive to
changes in the temperature for small λ than for linear interpolation of weights.
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(b) Varying α and using weight decay.

Figure D.6: Accuracy and agreement for ResNet-20 students initialized at interpolated weights along the
teacher training trajectory and distilled with different choices of distillation weight, α. We use τ = 1 here.
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Figure D.7: Accuracy and agreement for ResNet-20 students initialized at interpolated weights along the
teacher training trajectory and distilled with different choices of temperature, τ . We use α = 0 here.
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Abstract. Human sleep can be described as a series of transitions between distinct states. This
makes automatic sleep analysis (scoring) suitable for an automatic implementation using machine
learning. However, the task becomes harder when data is sampled using more lightweight or
mobile equipment, often chosen due to greater comfort for the patient. In this study we investigate
the improvement in sleep scoring when multiple state-of-the-art neural networks are joined into
an ensemble, and subsequently distilled into a single model of identical network architecture,
but with improved predictive performance. In this study, we investigate ensembles of up to 10
networks and show that, on the same data, ensembles of neural networks perform better than each
single subject model (improvement: 2.4%) and that this improvement can be transferred back into
a single network using a combination of patient-specific data and knowledge distillation. The study
demonstrates both a way to further improve automatic sleep scoring from mobile devices, which
in itself is interesting, but also highlights the great potential of the vast amounts of unlabeled
personal data which will become available from personal recording devices.
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E.1 Introduction

Humans sleep for one-third of their lives. Our sleep both affects and is impacted by our
health and as such knowledge about patient sleep is recognized as a valuable ingredient
in clinical care and diagnosis (Berry et al., 2017; van Gilst et al., 2019). However, the
current gold standard for sleep monitoring builds on manual classification (scoring) of
polysomnography (PSG) recordings, the entire process of which is both expensive and
intrusive on the patient’s actual sleep. This has led to repeated attempts to update the
process, both through new and more light-weight recording devices (Arnal et al., 2019;
Mikkelsen et al., 2019; Gangstad et al., 2019; Mikkelsen et al., 2019; Miettinen et al.,
2018) and automatic algorithms for analyzing the data (Phan et al., 2019; Stephansen
et al., 2018). The present study falls into both categories, in that we explore automatic
algorithms specifically for scoring light-weight recordings.

Multiple studies (Koley and Dey, 2012; Mikkelsen et al., 2019; Boostani et al., 2017)
have shown the efficiency of ensemble models for the classification of electroencephalog-
raphy (EEG) data. At the same time, all state-of-the-art algorithms for automatic sleep
scoring in the past few years have been built on neural networks (Phan and Mikkelsen,
2022). A natural question then becomes to which extent the combination of these
methods will lead to even better performance.

In this paper, we train ensembles of neural networks for sleep scoring and perform a
thorough investigation of the possible benefits and realistic applications of this method.
We focus on an established deep neural network for automatic sleep scoring, the Se-

qSleepNet (Phan et al., 2019), in the specific context of a proven light-weight sleep
monitoring technology, the ear-EEG (Mikkelsen et al., 2015). A major limitation of neu-
ral ensembles is the added memory and computational requirements for such models.
This leads us to a further investigation of the benefits of knowledge distillation (Hinton
et al., 2015; Ba and Caruana, 2014; Bucila et al., 2006), which was specifically introduced
to alleviate this problem by distilling the ensemble of models into a single model at the
cost of a small loss in predictive performance.

The idea of knowledge distillation (or just distillation) originates back to Bucila et al.
(2006), and was later brought to the deep learning setting by Ba and Caruana (2014), but
it is most commonly known as a model compression technique popularized by Hinton
et al. (2015). It is a procedure to transfer some statistic (often called knowledge) from
one model (teacher) to another model (student). Originally the student was considered
smaller1 than the teacher, and the distillation procedure aimed at training the student
to mimic the softened probability distribution over the logits of the (trained and fixed)
teacher model alongside the original training data. However, since the formulation
by Hinton et al. (2015) an extensive amount of alterations to the procedure has been
proposed. A branch of research proposes mimicking the teacher on other statistics than
the distribution of logits (Romero et al., 2015; Zagoruyko and Komodakis, 2017; Srinivas
and Fleuret, 2018; Park et al., 2019; Yim et al., 2017), while another branch focuses on
developing the transfer procedure and the choice of data used for distillation (Furlanello
et al., 2018; Ahn et al., 2019; Tian et al., 2020; Lopes et al., 2017; Micaelli and Storkey,
2019; Fang et al., 2019; Anil et al., 2018; Caron et al., 2021).

1 Depending on the task at hand different measures of model size can be relevant; e.g. model parameters, in-
ference time, memory requirements or model complexity. However, often model parameters are considered
a reasonable proxy for model size.
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Exactly why knowledge distillation works well is still an open research question and
an active field of research, but Mobahi et al. (2020) show that self-distillation2 with
kernel ridge regression models progressively shrinks the number of basis functions used
to represent the solution, thus acting as a method of regularization. Furthermore, Borup
and Andersen (2021) shows that this behavior is highly dependent on the weighting
between labeled ground-truth data and teacher outputs used during distillation. Our
application of knowledge distillation builds on the empirical successes of distillation
techniques and is closely related to self-distillation.

In order to reduce the computational burden of ensemble models at inference time,
we utilize knowledge distillation to distill the cumbersome ensemble into a single
model. Our distillation framework is very flexible, and distillation can be performed in
supervised, semi-supervised, or unsupervised settings depending on the available data.

We find that forming ensembles of neural networks does indeed improve performance
relative to single networks and that by using unlabeled data from the individual patient,
we can transfer some of that improvement back into a single network using knowledge
distillation.

Our contributions. In this study, we present a number of important contributions to
the field of automatic sleep scoring:

• To our knowledge, this is the first study successfully leveraging unlabeled, personal
data, which is likely to be important in long-term sleep monitoring.

• We show that simple ensembles of 10 SeqSleepNet models trained independently
improve predictive performance, and only differ by 0.04 in Cohen’s kappa com-
pared to the best-case scenario of two manual scorers.

• Despite no change in model architecture, we show that a single SeqSleepNet model
trained with our semi-supervised distillation setup retains between 50% and 100%
of the improvements obtained by ensemble models (of various sizes) when trained
with personal data.

Details on our experimental setup and the code to reproduce our experimental results
can be found in the supplementary material.

E.2 Problem Setup and Methods

E.2.1 Data

In this study, the input data to the algorithm is a bilateral ear-EEG derivation (specifically,
the average of the left ear electrodes relative to the average of the right ear electrodes),
while labels come from manual scoring of a reduced PSG montage. See Figure E.1 for
visualizations of the two methods. The left-right ear-EEG derivation is used because it has
been thoroughly studied for sleep scoring, and has been shown to be a strong candidate
for clinical-grade home sleep monitoring (Mikkelsen et al., 2021). We recommend
reading Mikkelsen et al. (2019) for a detailed description of the recording platform.

2 Self-distillation often refers to the use of identical teacher and student models, which is not entirely true for
our setup as our teacher is an ensemble.
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Figure E.1: The recording setup used in the data set. (A): the setup used for the labeled recordings, where
the data from the electrodes in the cap is used for the manual labeling. (B): the setup used for the unlabeled
recordings. There are only electrodes inside the ears and next to the right eye. (C): Positions of the electrodes
in picture (A), excluding the ear electrodes. Note the two positions next to the eyes and the three on the chin.
(D): an example of the soft ear pieces with dry electrodes placed inside the ears. Note that the ruler at the
bottom goes from 0 to 3 cm.

The specific recordings used are presented in Mikkelsen et al. (2019) and Mikkelsen
et al. (2022). Combined, they constitute a data set of 20 subjects recorded using the same
equipment. Each subject has four nights of labeled recordings. Half of the subjects also
have a further 12 nights of unlabeled recordings each. We shall refer to the two groups
of subjects as respectively short and long subjects. See Figure E.2 for an overview.

In accordance with standard sleep scoring practice, the sleep recordings have been
partitioned into 30-second epochs. For the labeled recordings, they have been manually
scored by the same sleep technician according to the five-stage scoring described in the
AASM manual (Berry et al., 2017): Wake, REM, Non-REM 1, Non-REM 2, and Non-REM 3.

E.2.2 Cohen’s Kappa Score

As is established practice when quantifying sleep scoring performance, we measure
the performance of our automatic classifier by calculating Cohen’s kappa (Cohen, 1960)
between the predicted and manual labels.

E.2.3 Model Architecture (SeqSleepNet Classifier)

In this paper, we use the sequence-to-sequence neural network architecture SeqSleep-

Netintroduced in Phan et al. (2019). SeqSleepNet takes a sequence of L consecutive
epochs as input and outputs a sequence of L 5-dimensional probability vectors. The in-
put can be either single- or multichannel log-scale spectrograms, where the data of each
channel is (approximately) normalized to zero mean and unit variance for each frequency
bin. The output probability vectors are the predicted class probability for each of the
P = 5 sleep stages. In this paper, we follow the settings of Mikkelsen et al. (2021) and use
spectrograms with T = 29 time bins (spanning 30 seconds), with F = 129 frequency bins,
and with a single, C = 1, channel. Furthermore, we will use a sequence length of L = 20
as in Mikkelsen et al. (2021) and Phan et al. (2019). We denote each epoch by zi ∈ RT×F×C ,
and the sequence of L epochs by xn = (zn,zn+1, . . . ,zn+L−1) ∈ RL×T×F×C .3 For more details
on the SeqSleepNet architecture we refer to Phan et al. (2019) and our implementation

3 When using multiple nights for training or evaluation, we assume no gap between the nights, and thus,
some sequences of epochs might overlap two different nights or even subjects. However, the effect of this on
the overall predictive performance is low from our experience.
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in PyTorch available on GitHub: https://github.com/Kennethborup/SeqSleepNet. For
details on training, we refer to Section E.2.4 and to Appendix E.I for experimental details
and additional results.

Sliding window average prediction. The sequence-to-sequence nature of the SeqSleep-

Net allows us to obtain predictions on a sequence of epochs with a sliding window
approach. More specifically, we first apply our model on x1 = (z1, . . . ,z1+L−1) followed
by x2 = (z2, . . . ,z2+L−1) and so on. Thus, by sliding our model across a sequence of L
epochs by increments in the index of one, we obtain L predictions for each epoch, and
averaging these predictions for each epoch yields a new probability vector.4 Through-
out this study, we will always be utilizing this sliding window average and therefore
refer to this procedure merely as predicting. Note, that while this procedure improves
predictive performance, it also requires L times as many steps of predictions, which is
computationally expensive at inference time, especially for large L.

E.2.4 Model Training

We perform our experiments using Leave-One-Subject-Out-Cross-Validation (LOSO-CV)
across all 20 subjects (both short and long). For each CV-step we divide the subjects into
training (15 subjects), validation (4 subjects), and test (one subject) sets, irrespective of
the subject type (long/short) - see Figure E.2 for an illustration of this. Thus, for each
random initialization of our model, we train 20 different models, but will merely refer to
it as one model and will report the predictive performance of this model as the average
Cohen’s kappa on the 4 scored nights of the test subjects across all 20 subjects. Our
study is split into two phases; in Phase 1, we train a set of single SeqSleepNet models
in the classical supervised way and denote these models as baseline models. In Phase 2,
we collect these baseline models into a large and computationally demanding ensemble
model (called a teacher model) which in turn is distilled into a single SeqSleepNet

model by utilization of knowledge distillation, thereby reducing the computational
requirements at inference time significantly.

Baseline models and training (Phase 1). We independently train M random initial-
izations of the SeqSleepNet model and refer to these models as baseline models, each
denoted by Bj for j = 1, . . . ,M. We train each model to minimize the cross-entropy loss
on the 4 scored nights for all training subjects. That is, let Dtrain = {(xn,yn)}Nn=1 be the
training dataset, then we minimize

LCE(Bj )
def=

1
|Dtrain|

∑
(x,y)∈Dtrain

ℓCE(y,Bj (x)), where

ℓCE(t,s) def= −
L∑
l=1

P∑
p=1

[tl]p log
(
[sl]p

)
, for t,s ∈ RL×P ,

and where Bj (x) is the sequence of predicted class-probabilities on x, and y the sequence
of associated one-hot encoded ground-truth labels. We refer to the training of the

4 Note, for the initial and final L− 1 epochs we will not obtain L predictions, due to missing data prior and
after the sequence, and we will merely consider the average predictions of all the possible predictions at
these epochs.
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Figure E.2: We perform our experiments using Leave-One-Subject-Out-Cross-Validation (LOSO-CV), and our
dataset consists of 20 subjects. 10 subjects (denoted short subjects) have 4 nights of scored observations, and
the remaining 10 subjects (denoted long subjects) have 4 nights of scored observations along with 12 nights
of unscored observations. For each CV-step, we divide the subjects into a training (15 subjects), validation (4
subjects), and test (one subject) set, irrespective of the subject type (long/short). Thus, each set can consist of
both long and short subjects, but whether the unscored recordings are used or not, depends on the experiment.

baseline models as supervised training or Phase 1 (see Figure E.3) and remind that by Bj
we in fact refer to the 20 underlying models trained in a LOSO-CV setup.

Ensemble models. Based on theM baseline models, {Bj }Mj=1, we can construct ensemble
models of size m, where m ∈ {1, . . . ,M} is the number of baseline models used in the
ensemble. We construct the ensemble models as the unweighted average of the m
individual predictions on some sample x, i.e. as T (x) = 1

m

∑m
j=1Bj (x), and thus T (x) is still

a probability vector. We denote an ensemble model of size m by Tm, or merely T if the
size is unambiguous.5 By using an unweighted average ensemble of baseline models, no
additional training is required to construct the ensemble, but m times more prediction
steps are required in order to perform inference. Due to the L times more steps required
by the sliding window prediction of each baseline model, prediction with an ensemble
model requires Lm times more prediction steps compared to naïve prediction using a
single baseline model. In Section E.3 we report the predictive performance of all possible
ensemble models constructed of unique sets of m baseline models, and in the following
we investigate a semi-supervised adaptation of knowledge distillation as a way to reduce
the computational requirements of ensemble models at inference time. We stress the fact,
that distilling an ensemble of m baseline models into a single student model, reduces
the computational requirements at inference time by m× at a small loss in predictive
performance (see e.g. Figure E.4).

5 We remind that by Tm we in fact refer to the 20 underlying models trained in a LOSO-CV setup. Thus, each
of the 20 underlying ensemble models is the unweighted combination of the m underlying baseline models
at the particular CV-step.
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E.2.5 Distillation of Ensembles to Single Models (Phase 2)

In the following, we present our approach to distillation which allows for utilization
of unlabeled data in a semi-supervised manner. This approach is at large similar to
methods sometimes known as self-training or self-distillation.

In this study, we utilize a semi-supervised adaptation of the original knowledge
distillation technique, where we match the teacher on a set of unlabeled data, and employ
an imbalanced smoothing of the labels - see below for details. Thus, we now refer to T
as the teacher model and initialize a new SeqSleepNet model denoted by S which we
refer to as the student model following the conventions in the knowledge distillation
literature. Let Ddistill =Dgt ∪Dpseudo be the distillation dataset, where Dgt = {(xn,yn)}Ngt

n=1
and Dpseudo = {(xn,T (xn))}Npseudo

n=1 are the ground-truth and pseudo-labeled data sets,
respectively. We will refer to the predictions of the teacher, T (x), on the pseudo-labeled
dataset, Dpseudo, as pseudo-labels. Note, the set of input samples for Dgt and Dpseudo need
not be equal, and are often disjoint. Furthermore, Dpseudo does not require any labels
allowing for a semi- or unsupervised distillation procedure. Define the distillation-loss
as a weighted (by α ∈ [0,1)) sum of two terms; one for scored samples and one for
pseudo-labeled samples, i.e. as

Ldistill(S) def= αLgt(S) + (1−α)Lpseudo(S) (E.1)

where Lgt and Lpseudo are the ground truth and pseudo loss, respectively, defined as

Lgt(S) def=
1
|Dgt|

∑
(x,y)∈Dgt

ℓCE (y,S(x)) , and (E.2)

Lpseudo(S) def=
1

|Dpseudo|

∑
(x,T (x))∈Dpseudo

ℓCE

(
σ
(
T̃ (x)/τ

)
,S(x)

)
, (E.3)

where σ is the softmax function, T̃ (x) is the pre-softmax logits of T (x) (i.e. σ (T̃ (x)) =
T (x)), α ∈ [0,1) is a weighting parameter, and τ a temperature for softening/sharpening
of the teacher class-probabilities introduced in Hinton et al. (2015).6 Setting α = 0
(and ensuring Dpseudo ,∅) makes the distillation procedure fully unsupervised, while
α ∈ (0,1) yields a semi-supervised procedure. In this paper we consistently use α = 0.5
and τ = 1.7 Hence, the distillation procedure is as follows: 1) fix the teacher, T , 2)
compute pseudo-labels with T , and 3) train the student, S , on the distillation dataset,
Ddistill, by minimizing Ldistill(S) in (E.1). See Phase 2 in Figure E.3 for an illustration of
the distillation procedure. Note, when distilling a teacher, Tm, to a single baseline model
we reduce the computational requirements at inference by m times which for e.g. m = 10
corresponds to a decrease of 90%.

Since no labels are used forDpseudo, we can use both scored (i.e. discarding the known
labels) and truly unscored samples in Dpseudo as well as samples from validation and/or
test subjects. When any data from the test subject is used during distillation, we refer to
the student as a personalised student, and a general student otherwise.

6 Note, unlike classical distillation, we do not apply the temperature softening to the student logits, but only
the teacher logits creating an imbalanced setting.

7 By investigation of different choices of τ , we find that the performance does not change much for τ between
0.1 and 1, and τ ≤ 2 yield some improvement - see Figure E.8. Thus, we consistently use τ = 1. Furthermore,
we leave the investigation of varying α to future work.
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Figure E.3: Our training procedure is split into two phases: 1) classical training of baseline models and 2)
distillation of ensembles of baseline models into a single student model. In Phase 1 we independently train
M random initializations of the baseline model on the 15 training subjects (note, the set of training subjects
depend on the initialization, but the test subject is constant.). We denote each of these trained models by Bj
for j = 1, . . . ,M. In Phase 2, we combine a subset (of size m) of baseline models into an ensemble model which
we use as a teacher (denoted by T ). We obtain pseudo labels on a selection of unscored data (which can be
from training, validation and/or test subject(s)) as predictions from T and train the student model (denoted by
S) on these pseudo labels as well as optionally (hard) labeled training data.

Models
Teacher Size

(m)
Personal

Data
Unlabeled

Data
Inference Time∗

(Sec.)
Long

Subjects
Short

Subjects
All

Subjects

Baseline (ours) 1 – – – 10.3 (1×) 0.758 (±0.005) 0.754 (±0.011) 0.756 (±0.006)

Ensemble 2 – – – 20.6 (2×) 0.771 (±0.005) 0.767 (±0.006) 0.769 (±0.004)

Ensemble 10 – – – 102.8 (10×) 0.781 (±0.000) 0.778 (±0.000) 0.780 (±0.000)

General Student 1 2 – ✓ 10.3 (1×) 0.766 (±0.008) 0.759 (±0.005) 0.763 (±0.006)

General Student 1 8 – ✓ 10.3 (1×) 0.769 (±0.003) 0.762 (±0.003) 0.766 (±0.002)

Personal Student 1 2 ✓ ✓ 10.3 (1×) 0.771 (±0.005) 0.753 (±0.007) 0.762 (±0.005)

Personal Student 1 8 ✓ ✓ 10.3 (1×) 0.774 (±0.002) 0.749 (±0.008) 0.761 (±0.004)

Mikkelsen et al. (2019) 1 – – – – – – 0.73∗∗

Mikkelsen et al. (2019) 1 – ✓ – – – – 0.76∗∗

Mikkelsen et al. (2021) 1 – – – – – – 0.76
∗Inference time is measured as the average time over 100 samples on an Apple M1 Pro CPU and extrapolated to a night of 8 hours of sleep recordings.
∗∗Mikkelsen et al. (2019) report median performance rather than mean, and due to the left tail of the distribution, the median is larger than the mean for these
reported results.

Table E.1: Here General Student is trained merely on data from other subjects (see Section E.3.2), while Personal Student is
trained on the additional 12 unlabeled subject-specific nights (see Section E.3.2). We also report a subset of Ensemble models, the
Baseline introduced in this paper, as well as the state-of-the-art on the labeled data alone. The standard deviation is reported in
parentheses (estimated across 4 replicated experiments for the distilled students and across all possible ensembles).

E.3 Results

We summarise selected results and baseline results in Table E.1, and have collected con-
fusion matrices in Figure E.4. We find from the confusion matrices that the performance
improvements, when going from worst performing model (baseline) to best performing
(10-model ensemble), is spread across all 5 stages rather than a specific stage getting
better.

Below, we have separated the analysis of our results into separate segments for
specific model groups: Ensemble teachers, general students and personalised students.
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Figure E.4: Cohen’s kappa for general (a) and personalised (b) student models. The x-axis is the number of
baseline models used in the teacher ensemble, but all students are merely constructed as a single model, and
the position of students on the x-axis indicates the number of models in the teacher model. The light and dark
shaded gray areas represent the 10− 90% and 25− 75% empirical confidence intervals.

E.3.1 Ensemble Teachers

We let M = 10, and in Figure E.4 we report the mean test performance of all simple
ensemble models constructed of unique sets of m baseline models for m = 1, . . . ,10 along
with the empirical 25−75% and 10−90% confidence interval for each m.8 In total we
consider 1023 different ensemble models. We see a monotonic improvement in mean
predictive performance with increasing m, where the performance increase is largest for
small m, and the performance appears to saturate at ≈ 0.780. Furthermore, there exist
ensembles with m ≥ 4 that perform equivalently to the best-performing ensemble with
m = 10 (selecting these specific ensemble models prior to training and evaluation of all
ensemble models is not possible). Compared to our baseline at 0.755, which is equivalent
to the previous state-of-the-art on this dataset (Mikkelsen et al., 2021), an ensemble of
merely two models improves the mean performance by 0.013, while an ensemble of 10
models improves by 0.024.

E.3.2 Distilled Students

In the following we let Dgt be the set of all training subjects and investigate the perfor-
mance of student models trained with the distillation procedure from Section E.2.5 for
different choices of Dpseudo. More specifically, we separately consider the case where no
data from the test subject is used (general students), and the case where some data from
the test subjects is used to personalize the student (personalised students). We investi-
gate the impact on the student performance by the size (i.e. m) of the teacher model as
well as the particular distillation dataset chosen. We repeat all experiments four times
with different seeds, and report the mean performance across all four replications. See
Apppendix E.I for experimental details and used hyperparameters.

8 Note, the amount of possible models vary with m. i.e. with 10 baseline models, then for m = 1 there are 10
possible ensemble models, for m = 2 there are 45 models, for m = 3 there are 120 models and so on.

153



Paper E · Automatic Sleep Scoring using Patient-Specific Ensemble Models and Knowledge
Distillation for Ear-EEG Data

General Students

We now consider the case whereDpseudo is the set of 108 unscored training and validation
nights.9 In Figure E.4a we report the mean performance for teachers of size m = 2,5,8,
and 10.

We are able to recover about 40% of the improvement obtained by the best teacher
in a single student model using our distillation procedure and additional data, which
yields an improvement of approx. 0.01 in predictive performance compared to the
baseline. In order to verify that our distillation procedure is in fact useful, we compute a
weight-space ensemble of the 10 baseline models; that is, for each layer we average the
weights of the layer across all baseline models and use these averaged weights in a single
SeqSlepNet model. Similar approaches to weight-space ensembles have shown great
potential by Izmailov et al. (2018); Garipov et al. (2018). However, the weight-space
ensemble only performs on par with the single baseline models with Cohen’s kappa of
0.759 across all 20 subjects.

Personalized Students

In the following section, we consider the case where a personalized student model is
trained based on a set of unscored observations from the test subject. Thus, we only
include the predictive performance on the 10 long subjects in this section. For evaluation
of the models on the short subjects, we refer the reader to Figure E.10 in the appendix.
Note, at no point do we use any manual scorings from the test subject. We consider the
cases where we have access to either the 12 unscored nights, the 4 scored nights (without
manual scores), or all 16 nights for the long test subject. In Figure E.4a we report the
mean performance for teacher ensembles of sizem = 2,5,8, and 10. If we use an ensemble
of size m = 2 personalised students perform equivalently to the teacher at a reduction
of 50% in computational costs. Thus, using the distillation procedure we are able to
get personalised students that improve by ≈ 0.01 in Cohen’s kappa. However, larger
teacher ensembles yield only small improvements in personalised student performance.
The choice of subject-specific data does not appear to be important, as long as some
subject-specific data is used for distillation. This is also supported by Figure E.9 in the
appendix.

In Figure E.5 we compare the performance, on a subject-level, of the baseline models,
the ensemble with m = 10, and the personalised student based on the 12 unscored nights
of the test subject. We sort the subjects by increasing baseline performance, and note
that the teacher ensemble consistently outperforms the baseline models on all subjects.
Furthermore, the personalised students perform at least as well as the baseline, and even
surpass the teacher ensemble for some subjects, despite requiring 1/10’th of the compute
at inference time (See Table E.1).

More subject-specific data is better. In Figure E.4b we observe that using the 12
unscored nights from the test subject improves the performance enough to be comparable
to the ensemble teacher for some m > 1. In Figure E.7 we show the personalised student

9 For long subjects all 108 unscored training and validation nights are used, while for short subjects (for
which there are 120 unscored training and validation nights) the unscored nights of one randomly chosen
long subject is not included in Dpseudo, which yield a total of 108 unscored nights for all subjects.
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Figure E.5: Cohen’s kappa on subject-level, sorted by increasing baseline performance. We report the mean
of all 10 baseline models (in blue), the ensemble model of 10 baseline models (in grey), and the mean of the
personalised student trained on the 12 unscored nights of the test subject (in yellow with vertical lines between
min. and max. of all 8 repetitions). Note, we only report the performance of the personalised student on the
long subjects.

performance when using an increasing number of unscored nights (from one to all 12
nights). We repeat the experiment 10 times with a fixed teacher of size m = 5, and
observe a near monotonically increasing mean performance with the increase in number
of nights. Thus, the more nights available to personalise the model to the test subject,
the better.

Importance of adjusting pseudo-labels with a temperature. We investigate the effect
of changing the temperature, τ , in (E.3) and plot the performance in Figure E.8. We
observe that for τ ≤ 2 the performance exceeds the baseline, and more specifically we
observe small differences in performance for τ ∈ {0.1,0.5,1} as well as hard pseudo-labels,
although with a slight peak at τ = 0.5. Hard pseudo-labels corresponds to letting τ→ 0,
and in practice we use the one-hot encoded label with one at the largest entry of the
pseudo-label and zero elsewhere. For larger temperatures, the performance decreases
significantly compared to the baseline.

E.4 Discussion and Conclusion

In this study we have analysed the utility of ensembles of neural networks (neural
ensembles) for automatic sleep scoring using wearable EEG recordings. Neural ensembles
appear as a likely source of improvement for a difficult problem, making the question
suitable for a thorough analysis. On first approach, we find that for the size of data set
available here, ensembles are a good approach, and we find a respectable improvement
in Cohen’s kappa when using ensembles of 10 networks, from 0.756 to 0.780, but also
note that with the correct choice of baseline models, even 4-5 models is sufficient for
this improvement. Crucially, we find an improvement in all individuals, meaning that,
apparently, the ensemble is always better. Given that kappa values between manual
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(b) General Student, κ = 0.773.
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Figure E.6: Confusion matrices for comparison between manual scoring (along the y-axis) and automatic
scoring (along the x-axis). The values represent the number of epochs and are computed over all long subjects
for the five sleep stages. Furthermore, we include the specificity and sensitivity for each class on the right. We
report the confusion matrices for (a) a single baseline model trained in a classical supervised manner, (b) a
general student trained with pseudo-labels (computed by an ensemble of m = 8 models) on the additional 108
unscored nights of non-test subjects, (c) a personalised student trained with pseudo-labels (also computed by
an ensemble of m = 8 models) on the additional 12 unscored nights associated with the test subject, and (d)
the ensemble of m = 10 baseline models. Cohen’s kappa for the long subjects of the models is in the caption.
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Figure E.7: Cohen’s kappa for personalised students
trained using the scored training nights along with
a varying number of unscored nights from the test
subject. We consider merely the performance on the
10 long subjects and use a teacher with m = 5. We
report the mean along with 10 − 90% and 25 − 75%
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Figure E.8: Different choices of temperature, τ , when
student is trained on all unscored data (120 nights)
and the 15 scored training subjects. We report the per-
formance over all 20 subjects and the points are the
mean of 5 repetitions of the experiments with empiri-
cal confidence intervals in shades. Hard labels refer to
one-hot encoded predictions by the teacher.

scorers are around 0.82 for this data set (Mikkelsen et al., 2021), we think that the
improvement shown is close to the best-case scenario. We note that our set of baseline
models is restricted to be models of identical architecture and training method but
with different random initializations. On this basis, constructing ensembles using
baseline models from various different network architectures, of various size, and with
stacking are interesting future directions of research in order to improve the predictive
performance of the ensembles even further. Furthermore, one can consider reducing the
computational requirements at inference time by using cascades of models.

One benefit of mobile sleep monitoring is that the sleep analysis could conceivably
be performed locally, for instance on a smartphone. In that case, it is beneficial to keep
memory and computation requirements to a minimum, particularly after the model has
been trained. Neural ensembles is a potentially very greedy approach which leads us to
consider knowledge distillation, as a way to compress an ensemble into a single network.
We find that the distillation is relatively successful, and a single network can inherit
more than half the improvement in kappa value seen for the best teaching ensemble, but
using only the same resources as the original baseline model. However, crucially, we
find that this degree of improvement requires use of (unlabeled) recordings from the
individual for which the model is needed. This is not necessarily a significant issue for
mobile sleep monitoring (in which personal unlabeled data is easy to come by), but it is
important to keep in mind. We find that the kappa value monotonically increases with
the number of recorded nights from the individual, but even without any recordings
from the individual, distillation is still able to recover about 40% of the improvement in
kappa value, when recordings from other individuals are used.

Moving forward, we find that this is a promising approach for ambulant sleep moni-
toring, and shows an interesting way to benefit from the large amounts of unlabeled data
which can easily be gathered in this way. We could imagine a process where the first n
nights for a patient were uploaded to a central server in charge of performing the person-
alised distillation. Once the distillation was completed, the improved, personal model
could be returned to the recording device, after which sleep scoring of improved quality
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could be performed locally. This full process would require no manually scored labels
for the patient. It will be interesting in future studies to see whether the personalised
benefits could be even larger for more challenging data sets (such as elderly people),
where the room for improvement is greater.
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Supplementary material

E.I Experimental Details

In the following we present some details on the experimental setting and the hyperpa-
rameters used for fitting our models.

E.I.1 Hyperparameters and Training Setup

All our models are based on a PyTorch implementation of the SeqSleepNet architecture
introduced in Phan et al. (2019). Our code is publicly available on GitHub: https:
//github.com/Kennethborup/SeqSleepNet. We set our sequence length to L = 20,
and consider input epochs of length T = 29 with F = 129 frequency bins and a single
C = 1 channel spectrogram. More specifically, we only use the LR derivation from
Mikkelsen et al. (2019). We halve the learning rate when the validation loss has not
improved for 50 training epochs and employ early stopping after a minimum of 700
training epochs. Training is done with the Adam optimizer, with learning rate of 10−3,
momentum parameters (β1,β2) = (0.9,0.999), and weight-decay of 10−4. We define a
training epoch as the number of gradient updates required to pass through the scored
training set (15 subjects each with 4 nights) once, and when training on larger datasets
(due to unlabeled data), we still consider a single training epoch to be this amount of
steps, but will only pass through a random subset of the samples of the larger dataset.
This way, the amount of training epochs are comparable across models, and we limit it
to a maximum of 1500 training epochs. However, due to early stopping, training is often
effectively stopped at less than 1000 training epochs.

E.I.2 Ablation of Temperature

When performing distillation we fix τ = 1 and α = 1
2 for all experiments. However, in

Figure E.8 we show the mean Cohen’s kappa for five repetitions of distillation with
different choices of temperature τ , where the teacher model consists of 5 baseline models
and is identical across all experiments. We let Dpseudo be all unscored data (120 nights)
and let Dgt be the 15 scored training subjects, irrespective of subject type (long/short).
We see that for τ ≤ 2 we observe an increase in Cohen’s kappa, but for τ between 0.1 and
1 the differences are small. Finally, we also observe that using hard pseudo labels (i.e.
one-hot encoded pseudo-labels with 1 at the entry of the largest class-probability) yields
comparable performance to the best choices of τ , and can be a simple alternative to soft
labels. This observation suggests that it is the utilization of additional data that is the
key to the improved performance by distillation, rather than the implicit properties of
the soft labels.

E.I.3 Discarding Manually Scored Labels for Distillation

During the distillation part of our training, we have the option to completely discard all
manually obtained labels and merely rely on the pseudo-labels produced by the teacher
model. In Figure E.9 we show the performance (across all subjects) of student models
trained with pseudo-labels instead of the ground-truth labels on the nights which were
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scored manually. Thus, we discard the manual labels, and effectively the distillation
procedure is now fully unsupervised. However, these models slightly under-perform the
models trained using the original manually produced labels. Furthermore, from Figure
E.9 we also observe that without any additional data, simply using the soft labels is not
sufficient to improve model predictive performance.

E.I.4 Performance on Short Subjects

In Section E.3.2 and Figure E.4b we presented the predictive performance of person-
alised student models on long subjects when trained with unlabeled data from these test
subjects. In Figure E.10 we report the performance on the short subjects in the exact same
experiments. The lack of improvement by the yellow line is due to the fact that these
models are trained identically to the baseline models, and we expect them to perform
equally. However, we also observe an higher relative improvement in performance than
for the long subjects as long as the unlabeled data contains the 4 test nights as unlabeled
training data.
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Figure E.9: Performance of students on all subjects,
when the original labels of the scored nights are dis-
carded and pseudo-labels are used on this dataset in-
stead. We generally observe a slightly worse perfor-
mance than when the original labels are used.
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Figure E.10: Performance of personalised students
on the short subjects in the same experiments as in
Figure E.4b. Note that these subjects do not have the
additional 12 unscored nights, and any improvement
observed here must be attributed to the use of pseudo-
labeled test nights.
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