
Homological Algebra of
Proper Abelian Subcategories

Anders Sten Kortegård
PhD Dissertation

Supervised by Peter Jørgensen

Department of Mathematics
Aarhus University

July 31, 2024





Abstract

This thesis consists of four main parts. In Paper A we work with a Frobenius category E ,
whose stable category C is 2 Calabi–Yau, Hom-finite, and idempotent complete. Moti-
vating examples of these stable categories are cluster categories. We show that, given two
maximal rigid objects x, y ∈ C with self-injective endomorphism algebras, the endomor-
phism algebras are derived equivalent. Furthermore, we provide a method to construct a
2-sided tilting complex which induces such an equivalence.

In the rest of the projects, we focus on proper abelian categories, which are abelian
categories, nicely embedded into an ambient triangulated category. In Paper B we de-
fine intermediate categories with respect to a proper abelian category. This generalizes a
similar definition by Enomoto and Saito. We show that, under mild assumption, these in-
termediate categories are in bijection with torsion-free classes in the corresponding proper
abelian categories. This mirrors the relationship between intermediate t-structures and
torsion-free classes in a certain heart.

In Paper C we discuss torsion triples, a way to filter objects in a proper abelian
subcategory, which generalized that of torsion pairs. We describe a method to construct
torsion triples from two appropriately ‘close’ proper abelian categories. This generalizes
work by Jensen, Madsen and Su, who has done similar work for the heart of a standard
t-structure.

In Paper B we came across a snake lemma for proper abelian subcategories, closely
resembling homology of two-term complexes. In Project D, we generalize this snake lemma
into a theory of homology for proper abelian subcategoires. We show that for a proper
abelian subcategory in a triangulated category T , we can define functors, on a subcategory
of T , that looks like homology functors in the sense that we get long exact sequences “of
homology”.

We end the thesis on a computational note, describing some code that implements parts
of a combinatorial model for the negative cluster categories of type An.
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Resumé

Denne afhandling er opdelt i fire hoveddele. I Paper A arbejder vi med en Frobenius-
kategori E , hvis stabile kategori C er 2 Calabi–Yau, Hom-endelige og idempotent fuld-
stændig. Motiverende eksempler af sådanne stabile kategorier er klyngekategorier. Vi
viser, at givet to maksimalt rigide objekter x, y ∈ C , hvis endomorfialgebraer er selvinjek-
tive, så er de deriveret ækvivalente. Vi fremlægger en metode til at konstruere et 2-sidet
tilting kompleks, som inducerer en sådanne ækvivalens.

I resten af projekterne fokuserer vi på proper abelske delkategorier, som er abelske
kategorier, der er pænt indlejret i en omgivende trianguleret kategori. I Paper B de-
finerer vi, hvad det vil sige at være en intermediær kategori i forhold til en proper abelsk
delkategori. Dette generaliserer en lignende definition af Enomoto og Saito. Vi viser, at
under milde antagelser er disse intermediære kategorier i bijektion med torsionsfrie klasser
i den tilsvarende proper abelske delkategori. Dette spejler forholdet mellem intermediære
t-strukturer og torsionsfrie klasser i et bestemt hjerte.

I Paper C diskuterer vi torsionstripler, som er en måde at filtrere objekter i en proper
abelsk delkategori, der generaliserer torsionspar. Vi giver en metode til at konstruere
torsionstriple fra to passende ’tætte’ proper abelske delkategorier. Dette generaliserer
arbejde af Jensen, Madsen og Su, som har lavet lignende arbejde for hjertet af en standard
t-struktur.

I Paper B stødte vi på et slangelemma for proper abelske delkategorier, som ligner
homologi for to-leds komplekser. I Project D generaliserer vi dette slangelemma til en
teori om homologi. Vi viser at for en proper abelsk delkategori i en trianguleret kategori
T , kan vi definere funktorer, på en delkategori af T , der ligner homologifunktorene, i den
forstand at vi får lange eksakte sekvenser “af homologi”.

Vi afslutter afhandlingen på en beregningsmæssig note, hvor vi beskriver noget kode, der
implementerer dele af en kombinatorisk model for de negative klyngekategorier af type
An.
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Introduction

We will start by briefly introducing the field and present the essential definitions and
results. This means there will not be provided proof of the results stated. For an in-depth
introduction to the different topics or proof of the results, we refer you to the relevant
material, which is referenced throughout the chapter.

For the rest of this chapter, let k be a field and A an abelian category.

1 The derived category

The derived category of an abelian category is a category that encodes some of the homo-
logical properties of A , such as Ext and Tor. To describe the derived category, we first
need to talk about complexes.

Definition 1.1 ([Wei94, def. 1.1.1]). A chain complex in A is a pair

X = ((Xi)i∈Z, (di)i∈Z),

where (Xi)i∈Z is a collection of objects Xi ∈ A , and (di)i∈Z a collection of morphisms
di : Xi → Xi−1, such that di−1di = 0 for all i ∈ Z.

· · · X2 X1 X0 X−1 X−2 · · · .d2 d1 d0 d−1

The maps di are referred to as differential maps.
Given two chain complexes X = ((Xi)i∈Z, (dXi )i∈Z) and Y = ((Yi)i∈Z, (dYi )i∈Z), a

morphism of chain complexes f : X → Y is a collection f = (fi)i∈Z of morphisms fi :
Xi → Yi, such that dYi fi = fi−1d

X
i for all i ∈ Z, i.e. making the following diagram

commute.

· · · X2 X1 X0 X−1 X−2 · · ·

· · · Y2 Y1 Y0 Y−1 Y−2 · · · .

f2

dX
2

f1

dX
1

f0

dX
0

f−1

dX
−1

f−2

dY
2 dY

1 dY
0 dY

−1

Denote the category of chain complexes C(A ).

Remark 1.2. A complex can also be thought of as a pair (X, d), where X is a Z-graded
object, and d : X → X is a morphims of degree 1, such that d2 = 0.
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2 Introduction

Dual to the notion of chain complexes is that of cochain complexes. A cochain complex
is a pair X = ((Xi)i∈Z, (di)i∈Z) where (Xi)i∈Z is a collection of objects Xi ∈ A , and (di)i∈Z
a collection of morphisms di : Xi → Xi+1, such that di+1di = 0 for all i ∈ Z.

· · · X−2 X−1 X0 X1 X2 · · · .d−2 d−1 d0 d1

Given an object X ∈ C(A ), we can represent X both as a chain complex and as a cochain
complex. The only difference is that the indexing is done in opposite directions, i.e., a
difference of notation. Thus, everything that can be done for chain complexes can also be
done for cochain complexes. By default, we will work with chain complexes.

Notation 1.3. Let X ∈ C(A ). Unless otherwise stated, we will assume that the corre-
sponding collection of objects is denoted (Xi)i∈Z, and the differential maps are denoted
(dXi )i∈Z. We may denote di = dXi if the corresponding complex easily can be identified by
context.

Given a chain complex X ∈ C(A ), a natural operation we can do on X is to shift all
the objects a number of times. That is, given an integer n ∈ Z define the complex X[n]
by (X[n])i = Xi−n. Visually, we can see this as shifting the complex n degrees to the left,
as follows:

X : · · · X2 X1 X0 X−1 · · · ,

X[n] : · · · X2−n X1−n X−n X−1−n · · · ,

d2 d1 d0

d2−n d1−n d−n

where the degrees are aligned vertically.

Definition 1.4. Given two complexes X,Y ∈ C(A ), and a morphism f : X → Y . Define
the complex cone(f) = ((Ci)i∈Z, (d cone(f)

i )i∈Z), where Ci = Xi−1 ⊕ Yi and

d
cone(f)
i =

(
−dXi−1 0
−fi−1 dYi

)
,

for i ∈ Z.

Example 1.5. Let A be an abelian category, and consider X,Y ∈ A and f ∈ Hom(X,Y ).
If we consider X,Y as complexes concentrated in degree 0 then f becomes a morphism of
chain complexes.

· · · 0 X 0 · · ·

· · · 0 Y 0 · · ·

f

Denote the cone by C := cone(f). Then C0 = 0 ⊕ Y ∼= Y and C1 = X ⊕ 0 ∼= X. For
i ̸= 0, 1 we have that Ci = 0. Calculating the differential dC1 , we get that

dC1 =
(

0 0
−f 0

)
.

Hence we get that cone(f) is the complex

· · · 0 X Y 0 · · · .−f
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Definition 1.6.

• A complex X ∈ C(A ) is called left bounded (resp. right bounded) if there exists
N ∈ Z such that Xi = 0 for i > N (resp. i < N). Denote the category of left
bounded (resp. right bounded) chain complexes Clb(A ) (resp. Crb(A ))

• A complex X ∈ C(A ) is called bounded if it is both left- and right bounded. Denote
the category of bounded chain complexes Cb(A ).

Lemma 1.7 (cf. [Wei94, thm. 1.2.3]). The categories C(A ),Clb(A ),Crb(A ) and Cb(A )
are abelian categories, in which kernels, cokernels, and images are computed degreewise.

1.1 Double complexes

Definition 1.8. A double complex X over A consists of a collection {Xi,j}i,j∈Z of objects
Xi,j ∈ A , together with horizontal differentials dhi,j : Xi,j → Xi−1,j for each i, j ∈ Z and
vertical differentials dvi,j : Xi,j → Xi,j−1 for each i, j ∈ Z, such that dhdh = 0 and dvdv = 0,
and dvdh + dhdv = 0.

Essentially, this means that we have an anti-commutative diagram.

...
...

...
...

· · · X2,1 X1,1 X0,1 X−1,1 · · ·

· · · X2,0 X1,0 X0,0 X−1,0 · · ·

· · · X2,−1 X1,−1 X0,−1 X−1,−1 · · ·

· · · X2,−2 X1,−2 X0,−2 X−1,−2 · · ·

...
...

...
...

dh
2,1

dv
2,1

dh
1,1

dv
1,1

dh
0,1

dv
0,1 dv

−1,1
dh

2,0

dv
2,0

dh
1,0

dv
1,0

dh
0,0

dv
0,0 dv

−1,0
dh

2,−1

dv
2,−1

dh
1,−1

dv
1,−1

dh
0,−1

dv
0,−1 dv

−1,−1
dh

2,−2 dh
1,−2 dh

0,−2

in which each row and column is a complex.

There are multiple ways to produce complexes from double complexes; we will use two
of them.

Definition 1.9. LetX = {Xi,j}i,j∈Z be a double complex with differential maps {dhi,j}i,j∈Z

and {dvi,j}i,j∈Z. Then define the total complexes Tot⊕ and TotΠ with objects

(Tot⊕)n :=
⊕
i+j=n

Xi,j and (TotΠ)n :=
∏

i+j=n
Xi,j ,

for n ∈ Z and differential maps d = dh + dv.



4 Introduction

Example 1.10 (Hom complex). Given a chain complex X ∈ C(A ) and a cochain complex
Y ∈ C(A ), we can define a double complex Hom(X,Y ), with objects Hom(X,Y )i,j =
Hom(Xi, Y

j), horizontal differentials

dhi,j : Hom(Xi, Y
j)→ Hom(Xi+1, Yj), defined by dhi,jf = fdXi+1,

and vertical differentials

dvi,j : Hom(Xi, Y
j)→ Hom(Xi, Y

j+1), defined by dvi,jf = (−1)i+j−1djY f.

From this we get the total complex TotΠ Hom(X,Y ) ∈ C(Ab). From now on, we will
denote by Hom(X,Y ) the total complex TotΠ Hom(X,Y ).

Example 1.11 (Tensor complex). Let R be a ring. Then given two complexes X ∈
C(ModR) and Y ∈ C(ModRop), we can define a double complex X ⊗ Y , with objects
(X ⊗ Y )i,j = Xi ⊗ Yj , horizontal differentials

dhi,j : Xi ⊗ Yi → Xi−1 ⊗ Yi, generated by dhi,j(x⊗ y) = dXi x⊗ y

and vertical differentials

dvi,j : Xi ⊗ Yi → Xi ⊗ Yi−1, generated by dvi,j(x⊗ y) = (−1)ix⊗ dYi y.

From this we get the complex Tot⊕(X ⊗ Y ) ∈ C(Ab). From now on we will denote by
X ⊗ Y the total complex Tot⊕(X ⊗ Y ).

1.2 The homotopy category

Definition 1.12. Let X,Y ∈ C(A ) and f, g ∈ HomC(A )(X,Y ). Then a chain homotopy
from f to g is a collection of morphisms {si : Xi → Yi+1}i∈Z such that fi− gi = si−1d

X
i +

dYi+1si for all i ∈ Z.

· · · X2 X1 X0 X−1 X−2 · · ·

· · · Y2 Y1 Y0 Y−1 Y−2 · · · .

s2 g2f2

dX
2

s1 g1f1

dX
1

s0 g0f0

dX
0

s−1 g−1f−1

dX
−1

s−2 g−2f−2

dY
2 dY

1 dY
0 dY

−1

In this case we say that f and g are homotopic, and write f ∼ g. If f ∼ 0, then f is said
to be null-homotopic.

Lemma 1.13. For each X,Y ∈ C∗(A ), with ∗ ∈ {∅, lb, rb, b}, the map ∼ defines an
equivalence relation on HomC∗(A )(X,Y ).

Definition 1.14. The homotopy category K∗(A ) for ∗ ∈ {∅, lb, rb, b} if defined by

• ob(K∗(A )) = ob(C∗(A )),

• HomK∗(A )(X,Y ) = HomC∗(A )(X,Y )/ ∼.
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1.3 The derived category

Definition 1.15. Let X ∈ C(A ) and i ∈ Z then define the i’th homology of X as
Hi(X) = Ker di/ Im di+1.

Lemma 1.16. Let X,Y ∈ C(A ) and f ∈ Hom(X,Y ), then for each i ∈ Z there is an
induced morphism on the homology Hi(f) : Hi(X)→ Hi(Y ).

Definition 1.17. Let X,Y ∈ C(A ), then a morphism f : X → Y is called a quasi-
isomorphism if Hi(f) is an isomorphism for each i ∈ Z. Denote the collection of quasi-
isomorphisms by Qu.

Definition 1.18. Define the derived category D(A ) of A as the localization D(A ) :=
K(A )[Qu−1]. That is, a category D(A ) equipped with a localization functor q : K(A )→
D(A ), such that

1. q sends quasi-isomorphisms f ∈ Qu to isomorphisms q(f).

2. For each functor F : K(A )→ C sending quasi-isomorphisms to isomorphisms, there
exists a unique functor F̂ : D(A )→ C such that F = F̂ q.

K(A ) C.

D(A )

q

F

∃!F̂

Similarly we can define D∗(A ) as K∗(A )[Qu−1] for ∗ ∈ {lb, rb, b}.

Remark 1.19. It is important to note that there might be some set-theoretical issues
arising in the definition given above. If the abelian category in question is small, we are
guaranteed that the resulting derived category is a locally small. However, if the abelian
category is not small, this becomes a bit more tricky. For the purposes of this thesis, we
will not delve into these set-theoretical issues.

It is important to note that even though A and C(A ) are abelian categories, it is not
true that the homotopy category K(A ) nor the derived category D(A ) are abelian. The
problem is that kernels and cokernels no longer exist. Instead, we get weak kernels and
weak cokernels. Hence, we get a different structure that, to some extent, resembles an
abelian structure. More precisely, they are triangulated categories.

2 Triangulated categories

Definition 2.1. Let T be a category, and Σ : T → T an automorphism, then a triple
of morphisms (u, v, w)

X Y Z ΣX,u v w (2.1)
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is called a triangle on the triple (X,Y, Z) of objects. A morphism between triangles, is a
triple of morphisms (f, g, h) such that the following diagram commute

X Y Z ΣX

X ′ Y ′ Z ′ ΣX ′,

u

f

v

g

w

h Σf

u′ v′ w′

where each row is a triangle. The triple is called an isomorphism if f, g, h are isomorphisms.

Typically, we refer to a triangle by its corresponding diagram, such as (2.1).

Definition 2.2 ([Wei94, def. 10.2.1], [Nee14, prop 1.4.6]). Let T be an additive category,
Σ : T → T an automorphism, and ∆ a collection of triangles, called exact triangles. Then
the triple T = (T ,Σ,∆) is a triangulated category if it satisfies the following axioms

TR1 • For each morphism u : X → Y , there exists a triangle (u, v, w) ∈ ∆.
• For each X ∈ A , we have that (idX , 0, 0) ∈ ∆.
• Given two isomorphic triangles η and η′, then η ∈ ∆ if and only if η′ ∈ ∆.

TR2 Given a triangle (u, v, w) ∈ ∆ then (v, w,−Σu) ∈ ∆ and (−Σ−1w, u, v) ∈ ∆. These
two triangles are called rotations of the original triangle.

TR3 Given exact triangles X Y Z ΣXu v w and X ′ Y ′ Z ′ ΣX ′u′ v′ w′
, together

with morphism f : X → X ′ and g : Y → Y ′ such that u′f = gu, then there exists a
morphism h : Z → Z ′ making (f, g, h) a morphism of triangles.

X Y Z ΣX

X ′ Y ′ Z ′ ΣX ′

f

u

g

v w

∃h Σf

u′ v′ w′

TR4 Given exact triangles

X Y Z ΣXu

Y Y ′ Y ′′ ΣYα ,

X Y ′ Z ′ ΣXαu ,

then we can complete these into a commutative diagram

X Y Z ΣX

X Y ′ Z ′ ΣX

0 Y ′′ Z ′′ 0

ΣX ΣY ΣZ ΣwX,

u

α

αu

Σu

where each row and column is an exact triangle.
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Σ is called the suspension functor.

Notation 2.3. From now on, when we say triangle, we mean exact triangles.

Proposition 2.4 ([Wei94, prop. 10.2.4, cor. 10.2.5, cor. 10.4.3]). For ∗ ∈ {∅, lb, rb, b}.
the categories K∗(A ) and D∗(A ) are triangulated categories with suspension functor [1].

Proposition 2.5 ([Wei94, ex. 10.4.9, 1.5.2]). Given two objects X,Y ∈ D(A ), and a
morphism f : X → Y , then f fits into a triangle

X Y cone(f) ΣX.f

Remark 2.6. Given a triangulated category T , objects X,Y ∈ T and a morphism
f : X → Y , there exists a triangle X f−→ Y → Z → ΣX. Motivated by Proposition 2.5 Z
is often denoted by cone(f).

Definition 2.7. Let T ,T ′ be triangulated categories. A pair F = (F, η) of a functor
F : T → T ′, and a natural isomorphism η : FΣ→ ΣF , is called a triangulated functor if
given a triangle

X Y Z ΣX,f g h

in T then
FX FY FZ ΣFX.Ff Fg ηXFh

is a triangle in T ′. If F is an equivalence, we say that T and T ′ are equivalent as
triangulated categories.

Definition 2.8. Let B be an abelian category, and F : D(A ) → D(B) a triangulated
equivalence. Then we call F a derived equivalence and say that A and B are derived
equivalent.

Given two noetherian ring R,S, then we say they are derived equivalent if their module
categories mod(R),mod(S) are derived equivalent.

2.1 Derived functors

Let A and B be abelian categories. If we are given a functor F : A → B, it would be very
convenient if we could construct a functor F ′ : D(A )→ D(B) on their derived categories.
Since B embeds nicely into its own derived category, we get a functor A → D(B). The
naive way to get the functor F ′ defined on D(A ) would be to apply F component-wise.
However, this will not necessarily provide us with a well-defined triangulated functor. To
fix this, we will introduce derived functors. For a more in-depth introduction see [Kra21,
sec. 4.3] and [Wei94, sec. 10.5].

Proposition 2.9 ([Wei94, sec. 10.5]). Let A ,B be abelian categories, and let F : A → B

be a functor. Then there are induced functors F ′ : C(A )→ C(B) and F ′′ : K(A )→ K(B).

Definition 2.10 ([Wei94, def. 10.5.1]). Let A ,B be abelian categories, with qA : K(A )→
D(A ) and qB : K(B) → D(B) the corresponding localization functors. Given a functor
F : K(A ) → K(B), a right derived functor of F is a functor RF : D(A ) → D(B)
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together with a natural transformation η : qBF ⇒ RFqA satisfying the following universal
property.

For each pair (G, ξ) where G : D(A ) → D(B) is a functor, and ξ : qBF ⇒ GqA a
natural transformation, there exists a unique natural transformation µ : RF ⇒ G such
that (µqA )η = ξ.

K(A ) D(A )

K(B) D(B)

F

qA

RF
η

qB

qF Gq

RFq

ξ

η
µqA

Left derived functors are defined dually.

Since the right- and left-derived functors are defined by a universal property, we are
guaranteed that if they exist, then they are unique. However, we are not guaranteed that
they always exist.

Theorem 2.11 ([CFH, constr. 7.2.7]). Given rings S and R, and a functor

F : K(Mod(R))→ K(Mod(S)),

then both the right derived functor RF and left derived functor LF exists.

Example 2.12 (Hom functor). Let R be a ring. Recall that given complexes X,Y ∈
C(Mod(R)), we can construct a complex Hom(X,Y ), see Example 1.10. This construction
induces a functor

Hom(X,−) : K(Mod(R))→ K(Ab).

Theorem 2.11 now says that there exists a right derived hom functor

RHom(X,−) : D(Mod(R))→ D(Ab).

This functor can be extended to a bifunctor

RHom : D(Mod(R))op × D(Mod(R))→ D(Ab),

cf. [Wei94, thm. 10.7.4].
Now let A,B,C be finite-dimension k-algebras. If gl. dim(A) < ∞ then the functor

above induces a functor

RHom : Db(mod(Bop ⊗A))op × Db(mod(Cop ⊗A))→ Db(mod(B ⊗ Cop)).

Example 2.13 (Tensor product). Let R be a ring, and let X ∈ C(Mod(R)) and Y ∈
C(Mod(Rop)). In Example 1.11 we defined a complex X ⊗ Y . This construction induces
a functor

X ⊗− : K(Mod(Rop))→ K(Ab),

Theorem 2.11 now says that a left derived functor

X
L
⊗− : D(Mod(Rop))→ D(Ab)
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exists. Furthermore, this functor can then be extended to a bifunctor

−
L
⊗− : D(Mod(R))× D(Mod(Rop))→ D(Ab),

cf. [Wei94, thm. 10.6.3].
Now let A,B,C be finite-dimensional k-algebras. If gl. dim(B) < ∞ then the functor

above induces a functor on the following form.

−
L
⊗− : Db(mod(Aop ⊗B))× Db(mod(Bop ⊗ C))→ Db(mod(Aop ⊗ C)).

Definition 2.14 ([Ric91, def. 3.4]). Let R,S be rings. A triangulated functor F :
D(Mod(R)) → D(Mod(S)) is called a standard derived equivalence if it is isomorphic
to RHom(T,−) for some T ∈ D(Mod(R)).

2.2 Serre functors

Some triangulated categories have an especially interesting functor, called a Serre functor.

Definition 2.15. Let T be a k-linear triangulated category. A triangulated functor
S : T → T is called a Serre functor if it is an autoequivalence, and for all X,Y ∈ T

Hom(X,Y ) ∼= DHom(Y,SX),

where D refers to the k-dual D = Hom(−, k).

Definition 2.16. Let T be a k-linear triangulated category, and d ∈ Z. Then T is said
to be d-Calabi–Yau (or d-CY), if (Σ,− id)d is a Serre functor.

3 Frobenius and stable categories

Homotopy categories and derived categories are good sources of triangulated categories.
However, this section will introduce another way to find triangulated categories through
Frobenius’s exact categories.

Definition 3.1. An exact category E is called a Frobenius category if

1. E has enough projective objects.

2. E has enough injective objects.

3. The projective and injective objects coincide, i.e. proj(E ) = inj(E ).

Example 3.2. Let A be a finite-dimensional self-injective k-algebra, then the module
category mod(A) is a Frobenius category. For a specific example, let n ∈ N and choose
the self-injective algebra A = k[x]/xn. Then, mod(A) is a Frobenius category.

Definition 3.3. Let E be a Frobenius category, and define its corresponding stable cate-
gory E as follows:

• ob(E ) := ob(E ),
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• HomE (x, y) := HomE (x, y)/I (x, y) , where I (x, y) is the ideal of morphisms that
factor through a projective object.

Proposition 3.4 ([Hap98, thm. I.2.6]). Given a Frobenius category E , then the corre-
sponding stable category E is a triangulated category.

4 The cluster category

The cluster category is a triangulated category defined as the orbit category of the derived
category. Thus, to define the cluster category, we must start by defining orbit categories.

Throughout this section let T be a triangulated category.

Definition 4.1 ([Kel05, sec. 1]). Let F : T → T be an automorphism, define the orbit
category T /F by

• ob(T /F ) := ob(T )

• HomT /F (X,Y ) :=
⊕

n∈Z HomT (X,FnY ).

Notice that the orbit category comes together with a canonical projection functor
π : T → T /F . As stated by Keller, the orbit category does not need to be triangulated
in such a way that π becomes a triangulated functor. However, there are still some cases
in which this happens.

Theorem 4.2 ([Kel05, thm. 1]). Let T = Db(modA) for some finite-dimensional algebra
A, and let F a standard equivalence, and assume the following

1. There exists a hereditary abelian category H, such that Db(modA) ∼= Db(H) as
triangulated categories. From now on, we will identify T as Db(H).

2. For each indecomposable X ∈ H, we have that F i(X) ∈ H for only finitely many
i ∈ Z.

3. There exists N ∈ N such that for each X ∈ T there exists an i ∈ Z, and n ∈ N0
with 0 ≤ n ≤ N such that F iX ∈ ΣnH. In other words, each F -orbit has an object
contained in ΣnH for some integer n with 0 ≤ n ≤ N .

Then T /F has a triangulated structure, which makes the corresponding projection functor
π : T → T /F a triangulated functor.

This result says that the orbit category sometimes has a canonical triangulated struc-
ture. If this is the case, then Keller also showed that it arises as a stable category.

Theorem 4.3 ([Kel05, sec. 9.6]). Let T be a triangulated category, and F : T → T a
standard equivalence satisfying the conditions from Theorem 4.2, the orbit category T /F

is the stable category of some Frobenius category.

With the framework of orbit categories set up, it is now possible to define cluster
categories. Buan, Marsh, Reineke, Reiten, and Todorov defined the cluster category as a
categorization of cluster algebras.
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Definition 4.4 ([BMRRT06]). Let H be a finite dimensional hereditary k-algebra, and
consider the derived category Db(modH), with Auslander-Reiten translation τ , then define
the cluster category is C(H) := Db(modH)/τ−1Σ.

Proposition 4.5. Let H be a finite-dimensional hereditary k-algebra, then the cluster
category C(H) is 2-Calabi–Yau.

There also exist generalizations of this definition, which produces n-Calabi–Yau cate-
gories, for n ∈ Z\{0, 1}.

Definition 4.6. Let H be a finite-dimensional hereditary k-algebra.

• m-cluster categories [Tho07]: Let m ∈ N with m ≥ 2, then define the m-cluster
category Cm(H) := Db(modH)/τ−1Σm−1. This is an m-Calabi–Yau category.

• Negative cluster categories [CPP22]: Let w ∈ N with w ≥ 1, then define the negative
cluster category C−w(H) := Db(modH)/Σw+1τ . This is a −w-Calabi–Yau category.

5 Abelian categories inside triangulated categories

An abelian category A can be embedding into its derived category Db(A ) as stalk com-
plexes, that is complexes that are concentrated in degree 0. Thus, from now on, we will
associate A with its embedding in Db(A ). This embedding has a very nice property.
Each short exact sequence a b c, induces a triangle a b c Σa. Conversely,
given a triangle a b c Σa, in Db(A ) with objects a, b, c ∈ A , then a b c is
a short exact sequence in A . This is a property that will be important to us.

This embedding of an abelian category into its derived category is an example of the
heart of a t-structure.

Proposition/Definition 5.1 ([BBD83, def. 1.3]). Let (T ,F) be a pair subcategories in
in T , then it is called a torsion pair if it satisfies the following.

1. Hom(T ,F) = 0.

2. T = T ∗ F .

Furthermore, a torsion pair is called a t-structure, if it also satisfies

3. ΣT ⊆ T and Σ−1F ⊆ F .

Associated to a t-structure is an abelian category H = T ∩ ΣF called its heart. Further-
more, T is called the aisle, and F the coaisle of the t-structure.

Remark 5.2. Notice that this definition of a t-structure differs slightly from the original
definition. In the original definition, T and F overlap, with the intersection being the
heart. Thus, if we have a t-structure (T ,F) with respect to our definition, then (T ,ΣF)
would be a t-structure with respect to the original definition. Both these definitions are
widely used in the literature; thus, one should be aware of this difference.
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Example 5.3. Consider the triangulated category Db(A ). Given an integer n ∈ Z con-
sider the following collections

D≥n = {X ∈ Db(A ) | Hi(X) = 0 for i < n},
D<n = {X ∈ Db(A ) | Hi(X) = 0 for i ≥ n}.

Then (D≥n,D<n) is a t-structure. We call the t-structure (D≥0,D<0) the standard t-
structure.

Let (T ,F) be a t-structure in T , then given an object x ∈ T there exists a unique
triangle

τT x x τFx ΣτT x, (5.1)

with τT x ∈ T and τFx ∈ F . This defines two functors.

τT : T −→ T
x 7−→ τT x

τF : T −→ F
x 7−→ τFx

We call these functors truncation functors, and the corresponding triange (5.1) a truncation
triangle. The reason for this name will be made clear in the following example.

Example 5.4. Given an integer i ∈ Z consider the t-structure (D≥i, D<i), introduced in
Example 5.3, in the derived category Db(A ). Denote τ≥i := τD≥i

and τ<i := τD<i . Let
X ∈ Db(A ) be given by the following complex.

· · · Xi+2 Xi+1 Xi Xi−1 Xi−2 · · · .di+2 di+1 di di−1

Then we have the truncation triangle

τ≥iX X τ<iX Στ≥iX.

We can also describe the objects of this triangle using complexes.

τ≥i : · · · Xi+1 Coker di+1 0 0 · · ·

x : · · · Xi+1 Xi Xi−1 Xi−2 · · ·

τ<i : · · · 0 Ker di Xi−1 Xi−2 · · · .

di+1

di+1 di di−1

di di−1

It is straightforward to check that

Hjτ≥iX =

HjX j ≥ i
0 j < 0

and Hjτ<iX =

0 j ≥ i
HjX j < 0.

Notice that HiX = τ<i+1τ≥iX, which motivates the following definition

Definition 5.5. Let τ = (T ,F) be a t-structure in T , then define the 0’th homology
functor Hτ

0 := τΣFτT : T → H. From this define the i’th homology functor Hτ
i = Hτ

0 Σ−i.
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Given a t-structure τ = (T ,F), with corresponding heart H, there is a method to
generate other t-structures. This method was described by Happel, Reiten, and Smalø,
and therefore is known as HRS-tilting. Let (X ,Y) be a torsion pair in H, and define

T ′ = {X ∈ T | Ht
0(X) ∈ X },

F ′ = {X ∈ ΣF | Ht
0(X) ∈ Y}.

Then (T ′,F ′) is a t-structure, and is called the HRS-Tilt of τ with respect to (X ,Y).

Example 5.6 (HRS tilt). Let Q = 1→ 2→ 3→ 4 and consider A := mod(kQ), with the
corresponding derived category D := Db(mod(kQ)). In D we have the standard t-structure
(D≥0, D<0), see Figure 5.1.

Σ−1S(2) Σ−1I(1) P (1) ΣP (4) ΣS(3) ΣS(2)

Σ−1M Σ−1I(2) P (2) I(3) ΣP (3) ΣM ΣI(2)

Σ−1I(3) P (3) M I(2) ΣP (2) ΣI(3)

Σ−1P (1) P (4) S(3) S(2) I(1) ΣP (1) Σ2P (1)

Figure 5.1: AR quiver of D, the aisle D≥0 is surrounded by a blue line and the coaisle D<0
surrounded by a red line. The heart of the t-structure (D≥0, D<0) is surrounded by a blue
dashed line.

In A consider the torsion pair (T ,F) given by

T = add(P (4)⊕ P (3)⊕ S(3)⊕ I(1)) and F = add(S(2)⊕ I(2)).

Tilting the standard t-structure (D≥0, D<0) with respect to the torsion pair (T ,F) we
obtain a new t-structure t = (X ,Y), which can be seen in Figure 5.2. From Figure 5.2
we also observe that the heart of (X ,Y) is equivalent to Ht

∼= mod(kA2)⊕mod(kA2). In
particular notice that Ht

∼= ΣF ∗ T .

Σ−1S(2) Σ−1I(1) P (1) ΣP (4) ΣS(3) ΣS(2)

Σ−1M Σ−1I(2) P (2) I(3) ΣP (3) ΣM ΣI(2)

Σ−1I(3) P (3) M I(2) ΣP (2) ΣI(3)

Σ−1P (1) P (4) S(3) S(2) I(1) ΣP (1) Σ2P (1)

Figure 5.2: AR quiver of D, the aisle X is surrounded by a blue line and the coaisle Y
surrounded by a red line. The heart of the t-structure (X ,Y) is surrounded by a dashed blue
line.
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One of the important properties of hearts of t-structures is the correspondence between
its short exact sequences and the triangles in the ambient triangulated category.

Proposition 5.7 ([BBD83, thm. 1.3.6]). Let H be the heart of a t-structure in a triangu-
lated category T . Then 0 x y z 0 is a short exact sequence in H if and only
if x, y, z ∈ H and there is a triangle x y z Σx in T .

Proposition 5.8. Let H be the heart of a t-structure in the triangulated category T . Then
H has no negative self-extensions in T , i.e. given h, h′ ∈ H then HomT (h,Σ−ih′) = 0
for i > 0.

5.1 Proper abelian subcategories

Definition 5.9. Let A ⊆ T be an additive subcategory, then A is a proper abelian
subcategory of T if it is abelian in such a way that 0 x y z 0 is a short exact
sequence if and only if x, y, z ∈ A and there is a triangle x y z Σx in T .

Definition 5.10. Let A ⊆ T be a proper abelian subcategory and n ∈ N, then A is said
to satisfy En if HomA (a,Σ−ia′) = 0 for 0 < i ≤ n. If A satisfies En for all n ∈ N, then
we say it satisfies E∞.

Example 5.11. By Propositions 5.7 and 5.8 hearts of t-structures are all proper abelian
subcategories which satisfy E∞, however, there are also proper abelian subcategories that
are not hearts. Consider the algebra kA4, where A4 is the quiver A4 : 1 → 2 → 3 → 4.
The AR-quiver of the derived category Db(mod kA4) can be seen in Figure 5.1.

1. Consider an object X ∈ Db(kA4) then the category B := add(X) is a proper abelian
subcategory. It is straightforward to see that B satisfies E∞. Generally, given
a proper abelian subcategory B of the triangulated category T , then every wide
subcategory B′ ⊆ B is also a proper abelian subcategory of T .

2. Consider the objects S(2), S(3) ∈ Db(kA4), then B := add(S(2)⊕ S(3)) is a proper
abelian subcategory. However, it is not closed under extensions. It is straightforward
to see that B satisfies E∞.

3. Consider the object P (4) ∈ Db(kA4). Then B = add(P (4) ⊕ Σ2P (2)) is a proper
abelian subcategory, which satisfies E1 but not E2.

4. For a non-example, consider X = add(P (4)⊕P (1)⊕ I(1)), then X is abelian and is
equivalent to mod(kA2). However, X is NOT a proper abelian subcategory. This
can be seen by realizing that 0→ P (4)→ P (1)→ I(1)→ 0 is a short exact sequence
in X , but there exists no triangle P (4)→ P (1)→ I(1)→ ΣP (4) in Db(kA4).

6 Results

In this section, we will present an overview of the results in this thesis, comparing them
to the results they build on top of.

The papers in this thesis are slightly modified versions of the published and preprint
versions of the same papers.
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Paper A: Derived equivalences of self-injective 2-Calabi–Yau tilted alge-
bras
(Bulletin of the London Mathematical Society 56 (2024), no. 3, 1071–1094, [Kor24b])

In this paper, we generalize a result by August [Aug20]. Let Spec(R) be a complete local
isolated cDV singularity. By CM(R), we denote the full subcategory of mod(R) consisting
of all the maximal Cohen-Macaulay modules, see [Aug20, def. 2.2] for a definition. Then
CM(R) is a Frobenius category, and the stable category CM(R) is a 2-CY, Hom-finite,
Krull-Schmidt triangulated category, with suspension functor ΣR, in which Σ2

R
∼= id, see

[Aug20, prop. 2.3].
Consider a basic rigid object M =

⊕n
i=0Mi ∈ CM(M), with M0 ∼= R. In CM(R), there

is a notation of mutation, meaning that we can mutate this kind of rigid object to obtain a
different rigid object, see [Aug20, sec. 2.2]. A mutation of M in the i’th summand is done
by replacing it with another summand. We will denote this mutation νiM = M/Mi ⊕ Vi,
for some correctly chosen Vi ∈ CM(R). Denote algebras

Λ := HomCM(R)(M,M)
Λcon := HomCM(R)(M,M)

Γ := HomCM(R)(νiM,νiM)
Γcon := HomCM(R)(νiM,νiM).

Define Ti := τ≤1(Γcon⊗L
Γ Hom(M,νiM)⊗L

Λ Λcon) where τ≤1 refers to a soft truncation in
cohomological degrees ≤ 1. With this setup, August proved the following statement.

Theorem 6.1 ([Aug20, cor. 3.3]). Ti is a 2-sided tilting complex inducing an equivalence
−⊗L

Γcon
Ti : Db(Γcon)→ Db(Λcon).

In particular, this means that the endomorphism algebras Γcon and Λcon are derived
equivalent. August then showed that if instead of Γcon and Λcon being separated by one
mutation, they are separated by several mutations, then they still are derived equivalent,
see [Aug20, cor. 5.11].

Let k be an algebraically closed field. Paper A generalizes the above result, replacing
CM(R) with a general k-linear Frobenius category E whose stable category C := E is
a 2-CY, Hom-finite and Krull-Schmidt triangulated category, with suspension functor
ΣC . This allows for an extensive range of new categories, which we will discuss later.
Furthermore, we relax the assumption that the objects must be connected by a sequence
of mutations. We were able to show the following.

Theorem 6.2 (= Corollary A.3.11). Let E be k-linear Frobenius category such that the
associated stable category C := E is 2-CY, hom-finite and Krull-Schmidt.

Let l,m ∈ C be maximal rigid objects. Denote A = HomC (l, l) and B = HomC (m,m).
Assume that A and B are self-injective. Then, they are derived equivalent.

Furthermore, there exist objects l′,m′ ∈ C with l ∼= l′ and m ∼= m′, such that by
denoting A = HomE (l′, l′), B = HomE (m′,m′) and T = HomE (l′,m′) there is a two-sided
tilting complex of B ⊗Aop-modules

BTA = τ≤1

(
B

L
⊗
B
T

L
⊗
A
A

)
,
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inducing this derived equivalence. The subscript τ≤1 denotes the soft truncation to homo-
logical degrees ≤ 1.

Notice that in this result, we have the extra assumption that A and B need to be
self-injective. To get an idea of what this means, consider the following lemma.

Lemma 6.3 (= Lemma A.2.5). Let x ∈ C be a maximal rigid object, then Σ2
Cx
∼= x if

and only if C (x, x) is a self-injective algebra.

If we look at the setup from [Aug20], as discussed above, we see that due to the fact
that Σ2

R
∼= id, it automatically follows that Λcon and Γcon are self-injective. They are

even symmetric. Essentially, this means that we have removed the global assumption of
Σ2
R
∼= id, and replaced it with a local assumption on the endomorphism algebras.

Paper B: Intermediate categories for proper abelian subcategories
(Preprint, arXiv:2310.12045, [Kor24a])

Paper B generalizes one of the results in [ES22] by Enomoto and Saito. Given a skeletally
small abelian category A , they define intermediate categories in Db(A ).

Definition 6.4 ([ES22, def. 5.2]). A subcategory C ⊆ Db(A ) is called an intermediate
category if it satisfies the following conditions.

1. A ⊆ C ⊆ A [1] ∗A .

2. C is closed under extensions in Db(A ).

3. C is closed under direct summands in Db(A ).

This definition can be considered a local version of the coaisle of an intermediate t-
structure. This intuition also aligns with the result they have shown, which is the following.

Theorem 6.5 ([ES22, thm. 5.3]). The following statements hold.

1. Given a torsion-free class F ⊆ A , then F [1] ∗ A is an intermediate category in
Db(A )

2. Let C ⊆ Db(A ) be an intermediate category, then H−1(C) is an torsion-free class in
A , and C = H−1(C)[1] ∗A

The assignments given by (1) and (2) induce a bijection between the set of torsion-free
classes in A and the set of intermediate categories in Db(A ).

Now assume A is an extension-closed proper abelian subcategory of some triangulated
category T satisfying E2, then it is not guaranteed that A is the heart of a t-structure.
There might not even exist any non-trivial t-structures in T . Thus we define intermediate
categories with respect to a proper abelian category, instead of in relation to a heart.
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Definition 6.6. A subcategory C ⊆ T is called an A -intermediate category if

1. A ⊆ C ⊆ ΣA ∗A ,

2. C is extension-closed,

3. C is closed under direct summands.

Given an object x ∈ ΣA ∗A there exists a unique triangle

Σax1 x ax0 Σ2ax1

with axi ∈ A , thus the assignment x 7→ axi induces a functor Fi : ΣA ∗ A → A . The
functor F1 will take the place of H−1 from Theorem 6.5. With this, we can show the
following.

Theorem 6.7 (= Theorem B.4.2 & Corollary B.4.3). The following statements hold.

1. If F ⊆ A is a torsion-free class then ΣF ∗ A is an A -intermediate category.
Furthermore, F1(ΣF ∗A ) = F .

2. Let C be an A -intermediate category such that C ⊆ A ∗ΣA . Then F1(C) is torsion-
free. Furthermore, we have that C = ΣF1(C) ∗A .

Furthermore, if ΣA ∗A = A ∗ ΣA then there is a bijection

{C ⊆ T | C is A -intermediate} 1:1←−−→ {F ⊆ A | F torsion-free}
C 7−−−→ F1(C)

ΣF ∗A 7−−−→ F

Thus, we have generalized the result to not only hold for any t-structures, but to hold
for any proper abelian subcategory satisfying E2.

A thing that is worth noting is that if A is the heart of a t-structure, then the functors
Fi are exactly the homology functors restricted to the subcategory ΣA ∗A . In Paper B,
we even show that we can get long exact sequences “of homology”, similar to those in the
derived category.

Lemma 6.8 (= Lemma B.3.4). Let c c′ c′′ Σcf g be a triangle in T with c, c′, c′′ ∈
ΣA ∗A then there exists a morphism δ : F1(c′′)→ F0(c), such that

0 F1(c) F1(c′) F1(c′′) F0(c)

F0(c′) F0(c′′) 0

F1(f) F1(g) δ

F0(f) F0(g)

is an exact sequence in A .
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Paper C: Filtrations of Torsion Classes in Proper Abelian Subcategories
(Preprint, arXiv:2406.13418, [Kor24])

In Paper C, we generalize a result from [JMS13] where Jensen, Madsen, and Su show
their result using what essentially is, the standard t-structure on the derived category.
We will give a proof of a similar result using proper abelian subcategories, in some fitting
triangulated category, leading to a more general result.

Let k be a field, and A an abelian k-category similar to one of those from [JMS13,
sec. 0], as an example one could choose mod(A) for a finite-dimensional k-algebra A. Let
T ∈ A be a tilting object of projective dimension ≤ 2, i.e., it induces a derived equivalence

F = RHom(T,−) : Db(A ) −→ Db(mod HomA (T, T )op).

Denote B̂ := mod HomA (T, T )op, and define subcategories

F i := {x ∈ A | HjF (x) = 0 for j ̸= i}.

It is a well-known result, that if pdT = 1 (think of tilting modules), then T induces
a torsion pair (Gen(T ),⊥ Gen(T )), however, this need not be the case if pdT > 1. For
pdT = 2 Jensen, Madsen and Su define three subcategories of A

E0 := ⟨GenA (F0)⟩A , E1 := F1, and E2 := ⟨SubA (F2)⟩A ,

which function as a kind of torsion triple.

Theorem 6.9 ([JMS13, thm. 2]). Using the notation from above, assume pdT ≤ 2. Then
for each object x ∈ A there exists a unique filtration 0 = x0 ⊆ x1 ⊆ x2 ⊆ x3 = x, such
that xi+1/xi ∈ E i, for i = 0, 1, 2.

Since F is an equivalence of triangulated categories, we can pull back B̂ through the
equivalence to obtain a heart B := F−1(B̂) in the derived category Db(A ). This is the
kind of setup we work with in Paper C.

Let T be a triangulated category, and let A ,B ⊆ T be proper abelian categories
satisfying E5. Assume that A is noetherian, and that A ⊆ B ∗ Σ−1B ∗ Σ−2B and
B ⊆ Σ2A ∗ ΣA ∗A . Define

• E0 = ⟨GenA (A ∩B)⟩A ,

• E1 = A ∩ Σ−1B,

• E2 = ⟨SubA (A ∩ Σ−2B)⟩A .

This allows us to show the following result.

Theorem 6.10 (= Corollary C.3.6). Let x ∈ A . Then, up to isomorphism, there exists
a unique filtration of subobjects 0 = x0 ⊆ x1 ⊆ x2 ⊆ x3 = x such that each quotient
xi+1/xi ∈ Ei.
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Project D: Homology for Proper Abelian Subcategories
In [BBD83] Beilinson, Bernstein and Deligne define t-structures of triangulated categories,
see Proposition/Definition 5.1. Given a t-structures σ = (T ,F) with heart H in a tri-
angulated category T they define homological functors Hσ

i : T → H for i ∈ Z, see
Definition 5.5. They show the following result

Theorem 6.11 ([BBD83, thm. 1.3.6]). Using the notation from above, given a triangle
x→ y → z → Σx in T , then there exists a long exact sequence

· · · Hσ
i+1(z) Hσ

i (x) Hσ
i (y) Hσ

i (z) Hσ
i−1(x) · · · .

This result is very powerful, and it is one of the reasons why t-structures are important.
However, there are many situations in which a similar result could be useful, but where
there is not enough space for a t-structure. As an example, consider the negative cluster
category C−3(A4) = C−3(mod kA4) for some field k, see Figure 6.1.

(0, 3) (4, 7) (8, 11) (12, 15) (1, 16) (2, 5) (6, 9) (10, 13) (14, 17) (0, 3)

(0, 7) (4, 11) (8, 15) (1, 12) (5, 16) (2, 9) (6, 13) (10, 17) (3, 14)

(7, 14) (0, 11) (4, 15) (1, 8) (5, 12) (9, 16) (2, 13) (6, 17) (3, 10) (7, 14)

(11, 14) (0, 15) (1, 4) (5, 8) (9, 12) (13, 16) (2, 17) (3, 6) (7, 10)

Figure 6.1: AR quiver for C−3(A4).

Consider the object (9, 16) ∈ C−3(A4), see Figure 6.1. If we were to look for a t-
structure (T ,F) with heart H such that (9, 16) ∈ H, then we would have that (9, 16) ∈ T
and Σ−1(9, 16) = (8, 15) ∈ F . Similarly Σ−i(9, 16) ∈ F for i ≥ 1. However, this means
that Σ−3(9, 16) = (6, 13) ∈ F , which is a problem since Hom((9, 16), (6, 13)) ̸= 0. Thus,
there is no t-structure with a heart containing (9, 16) in C−3(A4).

In fact it has been shown that no negative cluster category contains a non-trivial
t-structure, see [HJY13, lem. 3.1]. The problem here is somehow that the aisle of a t-
structure needs to be closed under suspension, and the coaisle under cosuspension, this
is problematic when the category is “cylindrical” (see Figure 6.1). To solve this problem,
instead of covering the whole triangulated category with a t-structure, we work locally
around a given proper abelian subcategory.

Let T be a triangulated category, n,m ∈ Z with n > m, and consider a proper abelian
subcategory A ⊆ T such that Hom(A ,Σ−iA ) = 0 for 1 ≤ i ≤ n−m+3. Then for k ∈ Z
such that n ≥ k ≥ m there exists functors

τ≥k : ΣnA ∗ · · · ∗ ΣmA → ΣnA ∗ · · · ∗ ΣkA ,

and
τ<k : ΣnA ∗ · · · ∗ ΣmA → Σk−1A ∗ · · · ∗ ΣmA .

These functors resembles the truncation functor for a t-structure, but they are only defined
locally around A . With this we can define functors

HA
i : ΣnA ∗ · · · ∗ ΣmA → A
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for i = m, . . . , n by HA
i x = Σ−kτ<k+1τ≥kx. This resembles the definition of homology

defined using t-structures, see Definition 5.5. We can then show the following result.

Theorem 6.12 (= Theorem D.4.5). Assume the notation from above. Given a triangle
c → c′ → c′′ → Σc with object in c, c′, c′′ ∈ ΣnA ∗ · · · ∗ ΣmA . Then there exists a long
exact sequence

0→ HA
n c→ HA

n c
′ → HA

n c
′′ → HA

n−1c→ · · · → HA
m+1c

′′ → HA
m c→ HA

m c
′ → HA

m c
′′ → 0.
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Paper A

Derived Equivalences of Self-injective
2-Calabi–Yau Tilted Algebras

Abstract
Consider a k-linear Frobenius category E such that the corresponding stable category C is
2-Calabi–Yau, Hom-finite with split idempotents. Let l,m ∈ C be maximal rigid objects
with self-injective endomorphism algebras. We will show that their endomorphism algebras
C (l, l) and C (m,m) are derived equivalent. Furthermore we will give a description of the
two-sided tilting complex which induces this derived equivalence.

1 Introduction

In [Aug20b] August showed that given two objects M,N ∈ CM(R) with SpecR being a
complete local isolated cDV singularity, such that M and N are maximal rigid objects
connected through a number of mutations, the contraction algebras End(M) and End(N)
are derived equivalent. Note that in this setting End(M) and End(N) are symmetric
algebras.

In this paper we generalize the result mentioned above to the setting of a more general
Frobenius category than CM(R). Our general course of action and a number of the proofs
will be based on those in [Aug20b]. We shall use a result from [ZZ11] that will give a
conflation which is able to replace the exchange sequences you would get from mutations.
This will allow us to prove that End(M) and End(N) are derived equivalent if they are self-
injective and M and N are maximal rigid objects. This will therefore lead to significantly
more general results, allowing for categories without the condition Σ2 ∼= id and categories
that may have infinitely many maximal-rigid objects.

Two-sided tilting complex. The definition of a tilting complex was introduced by
Rickard in [Ric89]. He showed that given two derived equivalent algebras, there exists a
tilting complex inducing such an equivalence.

Let k be an algebraically closed field, A a k-algebra. Let projA denote the category
of f.g. projective left A-modules, Kb(projA) its bounded homotopy category.

Definition 1.1. A complex T ∈ Kb(projA) is called a tilting complex if the following are
satisfied.

• Hom(T, T [i]) = 0 for all i ̸= 0.

• thick(T ) = Kb(projA), where thick(T ) indicates the thick closure of add(T ).

The notion of a two-sided tilting complex is also due to Rickard [Ric91]. We use the
following form of the definition due to Keller [Kel98, 8.1.4]. Let unadorned tensor products
be over k and let D denote the derived category.

23



24 Paper A

Definition 1.2. Let BTA ∈ D(B⊗Aop) be a complex of (B,A)-bimodules. Let BT (resp.
TA) be BTA seen as a complex in D(B) (resp. D(Aop)). TB A is a two-sided tilting complex
if the following are satisfied:

1. The canonical map B → HomD(Aop)(TA, TA) is bijective and HomD(Aop)(TA, TA[i]) =
0 for i ̸= 0.

2. TA is quasi-isomorphic to a complex in Kb(projAop).

3. thick(TA) = Kb(projAop).

Let E be a k-linear Frobenius category. Then given two maximal rigid objects l,m ∈ E

with suitable projective summands, the complex T = E (l,m) is a two-sided tilting complex
in D(E (m,m) ⊗ E (l, l)op) (see [JY19, prop 5.1]), making A = E (l, l) and B = E (m,m)
derived equivalent. Looking at the stable category C of E , a similar choice of the module
C (l,m) does not necessarily give a tilting module, and it is not necessarily true that
A = C (l, l) and B = C (m,m) are derived equivalent. However, we are able to prove the
following main result.

Theorem A (Corollary 3.11). Let E be k-linear Frobenius category such that the associ-
ated stable category C := E is 2-CY and Hom-finite with split idempotents.

Let l,m ∈ C be maximal rigid objects. Denote A = C (l, l) and B = C (m,m). Assume
that A and B are self-injective. Then they are derived equivalent. Furthermore, there
exist objects l′,m′ ∈ C with l ∼= l′ and m ∼= m′, such that by denoting A = E (l′, l′),
B = E (m′,m′) and T = E (l′,m′) there is a two-sided tilting complex of B ⊗Aop-modules

BTA =
(
B

L
⊗
B
T

L
⊗
A
A

)
⊆1
,

inducing this derived equivalence. The subscript ⊆ 1 denotes the soft truncation to homo-
logical degrees ≤ 1.

In the fourth section we will focus on two examples. The first example is on cluster-
tilting objects in the cluster category C(D2n). In [Rin08] Ringel has listed the cluster-tilting
objects of C(D2n) with self-injective endomorphism algebras. It has already been shown in
[BHL14, lem. 4.5] that these endomorphism algebras are derived equivalent. This result
was achieved by supplying a tilting complex ad hoc. We will use our result to recover this
tilting complex by manually calculating the tilting complex TA.

The second example will be on a class of examples based on Postnikov diagrams. We
will use the work of Pasquali [Pas20], which describes how reduced and symmetric (k, n)-
Postnikov diagrams give rise to cluster tilting objects with self-injective endomorphism
algebras. This will lead to the following result:

Corollary B (Corollary 4.4). Let k, n ∈ N, with k < n. Let B̂ be the completion of
the so-called boundary algebra (see section 4). Let D,D′ be two symmetric and reduced
(k, n)-Postnikov diagrams, with associated cluster tilting objects T, T ′ (resp.) in CM(B̂),
the stable category of Cohen–Macaulay modules. Then the self-injective algebras End(T )
and End(T ′) are derived equivalent.
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In the setting of Frobenius categories, derived equivalences between endomorphism
algebras have previously been studied by several authors. Assume that E is a sufficiently
nice Frobenius category with stable category C and choose two cluster tilting objects in
C . In a 2007 article, Iyama showed that if you look at these objects as objects in E then
they have derived equivalent endomorphism algebras (see [Iya07, cor. 5.3.3]). Further-
more, Iyama constructs a two-sided tilting complex that induces the derived equivalence.
This result was extended by Palu to a more general Frobenius category (see [Pal09, prop.
4]). Both of these results concerns derived equivalences of endomorphism algebras in the
Frobenius category. A natural question to ask is whether this extends to derived equiv-
alences of endomorphism algebras in the stable category. Although this is not always
true, under certain conditions it will be. Dugas showed that if we look at the Frobenius
category CM(R) for some odd-dimensional Gorenstein hypersurface R that is an isolated
singularity, the endomorphism algebras of cluster-tilting objects in the stable category
are derived equivalent (see [Dug15, cor. 5.5]). This was done by providing a one-sided
tilting complex. If we instead have a complete local isolated cDV singularity R and two
cluster-tilting objects linked by a path of mutations, a result by August provides us with
a two-term tilting complex between the two stable endomorphism algebras (see [Aug20b,
thm. 3.2, cor 3.3]). This result was shown to hold for maximal rigid objects, a generaliza-
tion of cluster-tilting objects. The two latter articles consider Frobenius categories whose
stable categories satisfy Σ2 ∼= id. This article aims to generalize these results to a more
general Frobenius category and to replace the global assumption of Σ2 ∼= id with local
assumptions on the maximal rigid objects considered. Further, we do not assume that
there exists a path of mutations between the objects.

2 Preliminaries

Setup 2.1. Let k be an algebraically closed field. Let E be a k-linear Frobenius category.
Let C := E be the associated stable category. We will assume that C is a 2-Calabi–Yau,
Hom-finite category with split idempotents. Observe that C has the same objects as E

but different morphisms.

It is well-known that C is a triangulated category, whose suspension functor will be
denoted Σ.

Definition 2.2.

• x ∈ C is called rigid if C (x,Σx) = 0.

• x ∈ C is called maximal rigid if it is rigid, and C (x ⊕ y,Σ(x ⊕ y)) = 0 implies
y ∈ addC (x).

The following result is due to Zhou and Zhu [ZZ11]. It generalizes a similar result from
[GLS06], which then can be applied to our setup. We will use it to construct conflations
which will then connect maximal rigid objects in a way that can “replace” exchange
sequences of mutations.
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Theorem 2.3 ([ZZ11, cor. 2.5]). Let x ∈ C be maximal rigid, and let y ∈ C be rigid,
then y ∈ addC (x) ∗ addC (Σx), i.e. there exists a triangle

x1 x0 y Σx1,

with xi ∈ addC (x).

The following lemma is a collection of useful results when working in the context of
Setup 2.1. See also [JY19, lem. A.1].

Lemma 2.4. Let x, y, z ∈ E . Define A := E (x, x) and A := C (x, x).

(a) If x ∼= 0 in C , then x is a projective object in E .
(b) For each triangle x→ y → z → Σx in C there is a conflation 0→ x→ y′ → z′ → 0

in E such that y ∼= y′ and z ∼= z′ in C .
(c) x ∼= y in C if and only if there exist projective objects p, p′ ∈ E such that x⊕p ∼= y⊕p′

in E .
(d) If x ∈ addE (y) or z ∈ addE (y) then composition of morphisms induces a k-linear

bijection
E (y, z)⊗B E (x, y)→ E (x, z)

which is natural in x, z, where B = E (y, y).
(e) If x̃ ∈ addE (x) then composition of morphisms induces a k-linear bijection

C (x, y)⊗A E (x̃, x)→ C (x̃, y)

which is natural in x̃, y.
(f) If y ∈ addC (x) then the canonical map

C (x,−) : C (y, z)→ HomAop(C (x, y),C (x, z))

is a bijection.
(g) If x is maximal rigid and y, z are rigid then the map

C (x,−) : C (y, z)→ HomAop(C (x, y),C (x, z))

is surjective.

Proof. (a) If x ∼= 0 in C , then idx = 0 and therefore idx factors through a projective object
idx = p′p : x→ P → x in E . This makes x projective (see [Büh10, cor 11.4]).

(b) Since E is a Frobenius category, there are enough injectives. Hence there is an inflation
α : x→ I, with I being an injective object. It follows that(

u

α

)
: x→ y ⊕ I,

is an inflation. Thus there is a conflation 0 → x → y ⊕ I → z′ → 0. Since I is injective,
y ⊕ I ∼= y in C , and it then follows that z ∼= z′ in C .
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(c) The ‘if’ part is straightforward. For the ‘only if’ part assume that x ∼= y in C . This
implies the existence of a triangle x → y → 0 → Σx, which by (b) is induced by a
conflation 0 → x → y ⊕ I → P → 0, with P ∼= 0 in C . Now P is a projective object by
(a), giving that the conflation splits. Hence x⊕ P ∼= y ⊕ I.

(d) Consider the morphism ◦̃(−) : E (y, z) ⊗B E (x, y) → E (x, z) induced by composition.
We need to check that this is bijective. We show the case x ∈ add(y), the case for
z ∈ add(y) is similar. Assume that x ∈ add(y). This means that there exist diagrams

x yn y,

η

ν

πi

ιi

such that νη = idx, and where πi is the projection to the i’th component, and ιi is the
inclusion of the i’th component.

To show surjectivity, let ψ ∈ E (x, z). Since idyn =
∑
i ιiπi, the element mapped to ψ

can be found as follows:

ψ = ψν
(∑

i

ιiπi
)
η =

∑
i

(ψνιi) ◦ (πiη) =
∑
i

◦̃(ψνιi ⊗B πiη) = ◦̃
(∑

i

ψνιi ⊗B πiη
)
.

For injectivity assume that ◦̃(
∑
j fj ⊗ gj) = 0, for fj ∈ E (y, z) and gj ∈ E (x, y). Then∑

j

fj ⊗
B
gj =

∑
j

fj ⊗
B

(∑
i

gjνιiπiη
)

=
∑
i

∑
j

(fjgjνιi)⊗
B

(πiη) =
∑
i

0⊗
B

(πiη) = 0.

(e) Consider the diagram

E (x, y)⊗A E (x̃, x) E (x̃, y)

C (x, y)⊗A E (x̃, x) C (x̃, y)

pr ⊗ id

ϕ

pr

ψ

where the horizontal morphisms are induced by composition, and where pr denotes the
projection. Since ϕ is an isomorphism and since pr is surjective, we get that ψ is surjective.
To check that ψ is injective, suppose that ψ(

∑
i gi⊗A fi) =

∑
i gifi = 0, with gi ∈ E (x, y),

and fi ∈ E (x̃, x). As in the proof of (d) consider the diagram

x̃ xn x,

η

ν

πi

ιi

such that νη = idx̃, and where πi is the projection to the i’th component, and ιi is the
inclusion of the i’th component. Now∑

i

gi⊗
A
fi =

∑
i

gi⊗
A
fi
∑
j

νιjπjη =
∑
j

(∑
i

gi⊗
A

(fiνιjπjη)
)

=
∑
j

(∑
i

(gifi)νιj ⊗
A

(πjη)
)

= 0.
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(f) consider the following diagram

y xn x,

η

ν

πi

ιi

such that νη = idy, and where πi is the projection to the i’th component, and ιi is the
inclusion of the i’th component. First we show injectivity. Let ψ ∈ C (y, z), such that
C (x, ψ) = 0. Assume for the sake of a contradiction that ψ ̸= 0.

0 ̸= ψ idy = ψν
∑
i

ιiπiη =
∑
i

ψνιiπiη.

Therefore there exists k ∈ {1, . . . , n} such that ψνιkπkη ̸= 0. Thus C (x, ψ)(νιk) = ψνιk ̸=
0, which is a contradiction.

For surjectivity let Φ ∈ HomAop(C (x, y),C (x, z)). Let ϕ =
∑
i Φ(νιi)πiη, then we

claim that Φ = C (x, ϕ). For each f ∈ C (x, y) calculate

Φ(f) = Φ(idy f) = Φ
(∑

i

νιiπiηf
)

=
∑
i

Φ(νιi)πiηf = ϕf = C (x, ϕ)(f).

(g) Since x is maximal rigid, and y, z are rigid, Theorem 2.3 says that there exist triangles

xy1 → xy0
α−→ y → Σxy1 and xz1 → xz0

β−→ z → Σxz1,

with xzi , x
y
i ∈ addC (x). Since x is rigid this induces two exact sequences

C (x, xy1)→ C (x, xy0) α∗−→ C (x, y)→ 0 and C (x, xz1)→ C (x, xz0) β∗−→ C (x, z)→ 0.

Now let f ∈ HomAop(C (x, y),C (x, z)). Since xyi , xzi ∈ addC (x), (f) says that there exist
morphisms gi ∈ C (xyi , xzi ) making the following diagram commute:

C (x, xy1) C (x, xy0) C (x, y) 0

C (x, xz1) C (x, xz0) C (x, z) 0.

g1∗

α∗

g0∗ f

β∗

By the axioms of triangulated categories, there exists a morphism g ∈ C (y, z), making
(g1, g0, g) a morphism of triangles

xy1 xy0 y Σxy1

xz1 xz0 z Σxz1.

g1

α

g0 g Σg1

β

Thus we get a diagram

C (x, xy1) C (x, xy0) C (x, y) 0

C (x, xz1) C (x, xz0) C (x, z) 0,

g1∗

α∗

g0∗ f g∗

β∗

with fα∗ = β∗g0∗ = g∗α∗. Since α∗ is an epimorphism this implies that f = g∗.
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Let D(−) = Homk(−, k) denote k-duality.

Lemma 2.5. Let x ∈ C be a maximal rigid object, then Σ2x ∼= x if and only if C (x, x) is
a self-injective algebra.

Proof. Let x′ ∈ C , and assume that Σ2x ∼= x. Since C is 2-Calabi–Yau there are isomor-
phisms

D C (x′, x) ∼= D C (x′,Σ2x) ∼= C (x, x′),

which are functorial in x′. This gives an isomorphism D C (x, x) ∼= C (x, x) of left C (x, x)-
modules making C (x, x) self-injective. For the opposite implication one can do an argu-
ment similar to that of [IO13, prop. 3.6].

Let Ω denote the syzygy, Ω−1 the cosyzygy in E . With this the following is a standard
result.

Lemma 2.6. Let x, y ∈ E , then Ext1
E (x,Ωy) ∼= C (x, y) ∼= Ext1

E (Ω−1x, y).

Proof. We will prove the first isomorphism. The second one follows by a dual argument.
Recall that E being Frobenius requires that there are enough projective objects. Hence
there exists a conflation

0 Ωy P y 0f g

with P being projective and injective. Denote by pr the projection E (x, y) → C (x, y).
Since C (x, y) = E (x, y)/Ker(pr), and since Ext1(x,Ωy) = E (x, y)/ Im(g∗), it is enough
to show that Ker(pr) = Im(g∗). Since pr g∗ = 0 we have the inclusion Im(g∗) ⊆ Ker(pr).
Thus it is enough to show that Ker(pr) ⊆ Im(g∗).

Let h ∈ Ker(pr), then h factors through a projective object P̃ , say h = p′p where
p : x → P̃ , p′ : P̃ → y. Using that g is an epimorphism, there exists a morphism
w : P̃ → P making the following diagram commute:

P̃ P

x y.

w

p′
gp

h

In other words, h = g∗(wp), thus h ∈ Im g∗.

Condition 2.7. Let x ∈ C be rigid such that Σ2x ∼= x. Then x is said to satisfy Condi-
tion 2.7 with projective objects q1, q2 if there are conflations in E :

0 Ωx q1 x 0,g f

0 x q2 Ωx 0,g′ f ′ (2.1)

with qi ∈ addE (x) being projective objects.
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Lemma 2.8. Let x ∈ C be rigid such that Σ2x ∼= x, and denote A = E (x, x). Assume that
x satisfies Condition 2.7 with projective objects q1, q2 ∈ addE (x), then the corresponding
conflations induce augmented projective resolutions:

0 E (x, x) E (x, q2) E (x, q1) E (x, x) C (x, x) (2.2)

0 E (x, x) E (q1, x) E (q2, x) E (x, x) C (x, x). (2.3)

Here the first sequence is a projective resolution of right A-modules, and the second se-
quence is a projective resolution of left A-modules.

Proof. Since x satisfies Condition 2.7 with projective objects q1, q2 there are conflations

0 Ωx q1 x 0,g f

0 x q2 Ωx 0.g′ f ′

Hence there is an exact sequence spliced from these two conflations

0 x q2 q1 x 0.

Ωx

g′

f ′

f

g

Applying the functor E (x,−) gives the exact sequence

0 E (x, x) E (x, q2) E (x, q1) E (x, x).

E (x,Ωx)

g′
∗

f ′
∗

f∗

g∗

That f ′
∗ is surjective follows directly from x being rigid and therefore Ext1(x, x) = 0,

see Lemma 2.6. Since Ext1(x, q1) = 0 it follows directly from Lemma 2.6 that this is
a projective resolution of C (x, x) over right A-modules. This shows that we have the
resolution from (2.2). The method for finding the resolution from (2.3) is similar.

Lemma 2.9. Let x ∈ C be rigid such that Σ2x ∼= x and assume it satisfies Condition 2.7
with projective objects q1, q2 ∈ addE (x). Let p ∈ E be a projective object. Then x ⊕ p
satisfies Condition 2.7 with projective objects q1 ⊕ p, q2 ⊕ p.

Proof. Consider the conflations

0 0 p p 0,

0 p p 0 0.

By adding these to those in (2.1) one obtains the needed criteria to satisfy Condition 2.7.

Lemma 2.10. Let x ∈ C be rigid, such that Σ2x ∼= x. Then there exists a projective object
p ∈ E such that x′ = x⊕ p satisfies Condition 2.7 with projective objects q1, q2 ∈ addE (p).
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Proof. Let 0 → Ωx → p1 → x → 0 and 0 → Ω2x → p′
2 → Ωx → 0 be conflations in E

where p1, p
′
2 are projective objects. Since Ω2x ∼= Σ−2x ∼= x in C , Lemma 2.4(c) says that

there are projective objects p3, q ∈ E such that Ω2x ⊕ q ∼= x ⊕ p3. Hence there are two
exact sequences

0 Ωx p1 x 0,g f

0 x⊕ p3 p2 Ωx 0,g′ f ′

where p2 = p′
2⊕q. By adding some ‘trivial’ conflations we obtain two different conflations.

0 Ωx p1 ⊕ (p1 ⊕ p2 ⊕ p3) x⊕ (p1 ⊕ p2 ⊕ p3) 0,
( g0 )

(
f 0
0 id

)

0 x⊕ p3 ⊕ (p1 ⊕ p2) p2 ⊕ (p1 ⊕ p2) Ωx 0.

(
g′ 0
0 id

)
( f ′ 0 )

Let x′ = x⊕ p1⊕ p2⊕ p3, q1 = p1⊕ (p1⊕ p2⊕ p3), q2 = p2⊕ (p1⊕ p2). Using this the two
conflations above can be written as follows:

0 Ωx′ q1 x′ 0,
0 x′ q2 Ωx′ 0.

(2.4)

This implies that x′ satisfies Condition 2.7 with projective objects q1, q2 ∈ addE (p) for
p = p1 ⊕ p2 ⊕ p3.

Lemma 2.11. Let x ∈ C be rigid such that Σ2x ∼= x and assume it satisfies Condition 2.7.
Let y ∈ C . Define A := E (x, x), and A := C (x, x). Then TorA2 (C (x, y),AA) ∼= 0.

Proof. By Lemma 2.8 there is an augmented projective resolution

0 E (x, x) E (p1, x) E (p2, x) E (x, x) C (x, x) 0,

of AA over left A-modules, where pi ∈ addE (x) are projective objects. Using Lemma 2.4(e)
gives that

C (x, y)
L
⊗
A
A ∼= C (x, y)⊗

A

(
0 E (x, x) E (p1, x) E (p2, x) E (x, x) 0

)
∼= 0 C (x, y) C (p1, y) C (p2, y) C (x, y) 0

∼= 0 C (x, y) 0 0 C (x, y) 0.

Hence TorA2 (C (x, y),AA) ∼= 0.

Lemma 2.12. Let x ∈ C be rigid such that Σ2x ∼= x and such that it satisfies Condi-
tion 2.7. Define A := E (x, x), and A := C (x, x). Let a be the ideal in A of morphisms
factoring through a projective object. Let h : M → Q be a morphism of right A-modules
with Q being a projective object, such that Cokerh ∼= C (x, y) for some y ∈ C . Then
Ma ∩Kerh = (Kerh)a.

Proof. Using the Tor2 vanishing of Lemma 2.11, this can be proved by the same argument
as [Aug20b, lem. 3.7].
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Definition 2.13. Let x, y ∈ C be maximal rigid such that Σ2x ∼= x, Σ2y ∼= y and
assume that x, y satisfy Condition 2.7 with projective objects px1 , px2 ∈ E and py1, p

y
2 ∈ E

respectively, then we say that (x, y) is a compatible pair if

1. pxi , p
y
i ∈ addE (x) ∩ addE (y).

2. There are conflations

0 x1 x0 y 0 and 0 x y0 y1 0,

where xi ∈ addE (x) and yi ∈ addE (y).

Remark 2.14. Given x, y ∈ C such that (x, y) is a compatible pair, notice that this does
not necessarily mean that (y, x) is a compatible pair.

Lemma 2.15. Let x′, y′ ∈ C be maximal rigid objects such that Σ2x′ ∼= x′ and Σ2y′ ∼= y′.
Then there exist objects x, y ∈ C with x ∼= x′ and y ∼= y′ such that (x, y) is a compatible
pair.

Proof. By Lemma 2.10 there exist projective objects Px′ , Py′ ∈ E such that x′ ⊕ Px′

and y′ ⊕ Py′ satisfy Condition 2.7 with projective objects in addE (Px′) and addE (Py′)
respectively. Let x̃ = x′⊕Px′ ⊕Py′ and ỹ = y′⊕Px′ ⊕Py′ . By Lemma 2.9 x̃ and ỹ satisfy
Condition 2.7 with projective objects in addE (Px′⊕Py′), and thereby satisfy condition (1)
of Definition 2.13.

By Theorem 2.3 there exist triangles

x̃1 x̃0 ỹ Σx̃1

ỹ0 ỹ1 Σx̃ Σỹ0,

with x̃i ∈ addC (x̃) and ỹi ∈ addC (ỹ). By rotating the latter triangle we get that there
also is a triangle

x̃ ỹ0 ỹ1 Σx̃.

By Lemma 2.4(b) there exist conflations

0 x̃′
1 x̃′

0 ỹ 0

0 x̃ ỹ′
0 ỹ′

1 0,

with x̃′
i, ỹ

′
i ∈ E such that x̃i ∼= x̃′

i and ỹi ∼= ỹ′
i in C . Thus there exist projective objects

px̃i , p
x̃′
i , p

ỹ
i , p

ỹ′

i ∈ E such that

x̃i ⊕ px̃i ∼= x̃′
i ⊕ px̃

′
i and ỹi ⊕ pỹi ∼= ỹ′

i ⊕ p
ỹ′

i (2.5)

in E , see Lemma 2.4(c).
Since x̃i ∈ addC (x̃), there exist n ∈ N and t ∈ C such that x̃i ⊕ t ∼= x̃n. Therefore, by

Lemma 2.4(c) there exist projective objects qi, ri ∈ E such that x̃i⊕ t⊕ qi ∼= x̃n⊕ ri in E .
This means that x̃i ∈ addE (x̃⊕ ri), and by (2.5) x̃′

i ∈ addE (x̃⊕ ri⊕ px̃i ). Let Qxi = ri⊕ px̃i ,
and similarly we can find projective objects Qyi ∈ E such that ỹ′

i ∈ addE (ỹ ⊕Qyi ).
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Let P = Qx0 ⊕ Qx1 ⊕ Q
y
0 ⊕ Q

y
1, x = x̃ ⊕ P , and y = ỹ ⊕ P . By Lemma 2.9 x, y satisfy

Condition 2.7 with projective objects in addE (Px′⊕Py′⊕P ), and therefore satisfy condition
(1) of Definition 2.13. By adding ‘trivial’ conflations to the ones above we get following
conflations:

0 x̃′
1 x̃′

0 ⊕ P y 0,

0 x ỹ′
0 ⊕ P ỹ′

1 0.

Letting x1 = x̃′
1, x0 = x̃′

0 ⊕ P , y1 = ỹ′
1, y0 = ỹ′

0 ⊕ P , we get that (x, y) is a compatible
pair.

3 Derived equivalences

In this section, Setup 2.1 together with the following setup will be assumed.

Setup 3.1. Let l,m ∈ C be maximal rigid objects, such that Σ2l ∼= l, and Σ2m ∼= m in
C . Without loss of generality, by Lemma 2.15, we may assume that (l,m) is a compatible
pair. Let A = E (l, l), A = C (l, l), B = E (m,m), B = C (m,m) and BTA = E (l,m). The
following construction of a two-sided tilting complex is inspired by [Miz19, p. 5123] and
[Aug20b, thm. 1.1].

BTA =
(
B

L
⊗
B
T

L
⊗
A
A

)
⊆1
,

where ⊆ 1 refers to taking a soft truncation, keeping the homological degrees ≤ 1.

The main goal of this section is to show that BTA is a 2-sided tilting complex, making
A and B derived equivalent (Corollary 3.11).

Lemma 3.2 ([JY19, prop 5.1]). BTA is a two-sided tilting complex viewed as a B ⊗Aop-
complex.

Proof. Given that (l,m) is a compatible pair, the proof is similar to that of [JY19, prop
5.1].

Since (l,m) is a compatible pair there are conflations in E :

0 Ωm p1 m 0,g f

0 m p2 Ωm 0g′ f ′ (3.1)

where pi ∈ addE (m) ∩ addE (l) are projective objects, giving a projective resolution

QB : 0 −→ E (m,m) −→ E (m, p2) −→ E (m, p1) −→ E (m,m) (3.2)

of BB (see Lemma 2.8).

Lemma 3.3. In D(Aop) the object B ⊗L
B TA is quasi-isomorphic to the complex

0 E (l,m) E (l, p2) E (l, p1) E (l,m),g′
∗ (gf ′)∗ f∗ (3.3)
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with homology

Hi(B
L
⊗
B
TA) =


C (l,m) i = 0,
C (l,Ωm) i = 1,
0 otherwise.

Proof. Using the projective resolution QB of BB from (3.2), calculate

B
L
⊗
B
TA
∼= Q⊗

B
TA

∼= 0 E (m,m)⊗
B
TA E (m, p2)⊗

B
TA E (m, p1)⊗

B
TA E (m,m)⊗

B
TA

∼= 0 E (l,m) E (l, p2) E (l, p1) E (l,m),

where the last isomorphism follows from Lemma 2.4(d).
This complex can also be seen as the result of applying the functor E (l,−) to the

concatenation of the conflations from (3.1):

0 E (l,m) E (l, p2) E (l, p1) E (l,m).

E (l,Ωm)

g′
∗

f ′
∗

(gf ′)∗ f∗

g∗

Thus Hi(B ⊗L
B TA) = 0 for i ̸= 0, 1. Since Ext1

E (l, p1) ∼= 0, it follows from Lemma 2.6
together with the long exact Ext sequence of the conflation

0 −→ Ωm −→ p1 −→ m −→ 0,

that H0(B ⊗L
B TA) ∼= C (l,m).

To calculate H1, notice that Ker(f∗) ∼= E (l,Ωm), and Im((gf ′)∗) ∼= Im(f ′
∗), due to g∗

being injective. Therefore H1(B⊗L
B TA) ∼= E (l,Ωm)/ Im(f ′

∗). Using that Ext1
E (l, p2) ∼= 0,

the long exact Ext sequence of the conflation

0 −→ m −→ p2 −→ Ωm −→ 0

gives that H1(B⊗L
B TA) ∼= Ext1(l,m) ∼= C (l,Ω−1m), with the last isomorphism coming

from Lemma 2.6. However, Σ2m ∼= m means Ω−2m ∼= m so Ω−1m ∼= Ωm.

Corollary 3.4. There is a quasi-isomorphism in D(Aop) from B ⊗L
B TA to the complex

E (l, p1)/ Im((gf ′)∗) E (l,m).f∗ (3.4)

Proof. This follows directly from Lemma 3.3 by using soft truncation.

The next goal is to obtain an alternative description of B ⊗L
B TA . Since l,m are

maximal rigid and (l,m) is a compatible pair, there exists a conflation

0 l1 l0 m 0,ϕ1 ϕ0
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where li ∈ addE (l). For the rest of this section denote by PA the complex of Aop-modules

PA : C (l, l1) C (l, l0),ϕ1∗

concentrated in degrees 0,1. The claim is that B ⊗L
B TA

∼= PA in D(Aop). To show this
is the case, we will find a complex of projective objects which is quasi-isomorphic to the
complex from Corollary 3.4, and show that it is also quasi-isomorphic to PA.

Firstly, notice that since p1 is projective there is a push-out diagram

0 Ωm p1 m 0

0 l1 l0 m 0,

γ1
⌟

g

γ0

f

ϕ1 ϕ0

which gives a conflation (see [Büh10, lem. 2.12])

0 Ωm p1 ⊕ l1 l0 0.
( g
γ1 ) ( −γ0 ϕ1 ) (3.5)

Lemma 3.5. There is a complex PA in D(Aop) of projective objects, given by

E (l, l1) E (l, l0) E (l, p2) E (l, p1 ⊕ l1) E (l, l0),ϕ1∗ (g′ϕ0)∗

(
gf ′

γ1f ′

)
∗ ( −γ0 ϕ1 )∗ (3.6)

that is quasi-isomorphic to the complex from (3.4).

Proof. Notice that the complex from (3.4) is isomorphic to cone(f∗). We will show that
cone(f∗) is quasi-isomorphic to the complex in (3.6).

By Lemma 2.6 there is an exact sequence

0 E (l, l1) E (l, l0) E (l,m) 0.ϕ1∗ ϕ0∗ (3.7)

This is an augmented projective resolution of E (l,m), and we write

Q : E (l, l1) E (l, l0).ϕ1∗

By concatenating the sequences from (3.3) and (3.7), followed by a truncation and adding
the cokernel, the following exact sequence is obtained:

0 E (l, l1) E (l, l0) E (l, p2) E (l, p1) E (l, p1)/ Im(gf ′)∗ 0.ϕ1∗ (g′ϕ0)∗ (gf ′)∗ pr

This is an augmented projective resolution of E (l, p1)/ Im(gf ′)∗, and we write

Q′ : E (l, l1) E (l, l0) E (l, p2) E (l, p1).ϕ1∗ (g′ϕ0)∗ (gf ′)∗
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Now lift f∗ to a morphism of chain complexes f̄∗ : Q′ → Q. This lift is illustrated in the
following diagram.

0 E (l, l1) E (l, l0) E (l, p2) E (l, p1) E (l, p1)/ Im(gf ′)∗ 0

0 0 0 E (l, l1) E (l, l0) E (l,m) 0,

ϕ1∗ (g′ϕ0)∗

(γ1f ′)∗

(gf ′)∗

γ0∗

pr

f∗

ϕ1∗ ϕ0∗

where each row is an augmented projective resolution of Aop-modules. Thus there is a
quasi-isomorphism

cone(f̄∗) ∼−→ cone(f∗).

Using [Wei94, ex. 1.2.8] cone(f̄∗) is seen to be the total complex Tot⊕(C), of the double
complex C induced by f̄∗, which exactly is the complex from (3.6).

For the rest of this section we will use the complex PA from the previous lemma.

Lemma 3.6. The degreewise projection Φ : PA → PA

0 E (l, l1) E (l, l0) E (l, p2) E (l, p1 ⊕ l1) E (l, l0)

C (l, l1) C (l, l0)

ϕ1∗ (g′ϕ0)∗

(
gf ′

γ1f ′

)
∗ ( −γ0 ϕ1 )∗

pr ◦( 0 idl1 )∗ pr

ϕ1∗

is a quasi-isomorphism.

Proof. By Lemma 3.5 the top row PA is quasi-isomorphic to B ⊗L
B TA and hence is exact

in all degrees other than 0,1 by Lemma 3.3. Thus to prove the lemma, it is enough to
show that Hi(Φ) is an isomorphism for i = 0, 1. First we check that the homology of the
two complexes agree, after which it is enough to check that Hi(Φ) is surjective because
the homology spaces are finite dimensional over k.

Since there is a triangle Ωm→ l1 → l0 → m, and since l is rigid with Ωl ∼= Σ−1l ∼= Σl,
there is an exact sequence

0 C (l,Ωm) C (l, l1) C (l, l0) C (l,m) 0.

In combination with Corollary 3.4 and Lemmas 3.3 and 3.5 this gives that Hi(PA) ∼=
Hi(PA), for every i ∈ Z.

Next we show that Hi(Φ) is surjective. For i = 0 this is straightforward. For i = 1 consider
the diagram

E (l, p1 ⊕ l1) E (l, l0)

C (l, l1) C (l, l0).

( −γ0 ϕ1 )∗

pr( 0 idl1 )∗ pr

ϕ1∗
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Let α ∈ E (l, l1) such that the projection α ∈ C (l, l1) lies in Kerϕ1∗. Thus ϕ1α = 0,
which means that ϕ1α factors through a projective object q ∈ E , say by ϕ1α = ρ′ρ, where
ρ : l→ q and ρ′ : q → l0. By using (3.5) there is a commutative diagram

q p1 ⊕ l1

l l1 l0,

ρ′

(
a1

a2

)
(

−γ0 ϕ1

)
α

ρ

ϕ1

where a1, a2 exist by using the fact that q is projective. Now calculate

ϕ1α =
(
−γ0 ϕ1

)(a1
a2

)
ρ = ϕ1a2ρ− γ0a1ρ.

Therefore

0 = ϕ1(a2ρ− α)− γ0a1ρ =
(
−γ0 ϕ1

)( a1ρ

a2ρ− α

)
=
(
−γ0 ϕ1

)
∗

(
a1ρ

a2ρ− α

)
.

This means that
(

a1ρ

a2ρ− α

)
∈ Ker

(
−γ0 ϕ1

)
∗
, making

(
a1ρ

a2ρ− α

)
+ Im

(
gf ′

γ1f
′

)
∗

an ele-

ment of H1(PA). Now

H1(Φ)
(
−
(

a1ρ

a2ρ− α

)
+ Im

(
gf ′

γ1f
′

)
∗

)
= α− a2ρ = α,

which means that H1(Φ) is surjective, and therefore Φ is surjective on homology.

Corollary 3.7. There are two isomorphisms

(a) TA =
(
B ⊗L

B T ⊗L
AA

)
⊆1
∼= PA in D(Aop).

(b) T ⊗L
AAA

∼= B ⊗L
B TA in D(Aop).

Proof. (a) Corollary 3.4 and Lemma 3.5 imply PA
∼= B ⊗L

B TA . Lemma 2.4(e) implies
that P ⊗AA ∼= PA ⊕ PA[3]. Thus

B
L
⊗
B
T

L
⊗
A
A ∼= P ⊗

A
A ∼= PA ⊕ PA [3],

giving that
TA
∼= (PA ⊕ PA[3])⊆1 ∼= PA.

(b) It follows from (a) combined with Corollary 3.4 and Lemmas 3.5 and 3.6 that

T
L
⊗
A
AA
∼= P

L
⊗
A
AA
∼= PA ∼= PA

∼= B
L
⊗
B
TA .
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We now have a one-sided isomorphism T ⊗L
AAA

∼= B ⊗L
B TA in D(Aop). Next we see

that this isomorphism can be lifted to a two-sided isomorphism, i.e. an isomorphism in
D(B ⊗Aop).

Theorem 3.8. In the derived category D(B ⊗ Aop) (resp. D(B ⊗ Aop)), there is an
isomorphism

TB

L
⊗
A
AA
∼= B

L
⊗
B
TA

(
resp. BB

L
⊗
B

TA
∼= TB

L
⊗
A
A

)
.

Proof. We will prove the first isomorphism, the second one can be done in a symmetric
fashion. Let QB A

∼−→ B ⊗L
B TA be a projective resolution over B ⊗ Aop. Denote by

α : QB A → QB ⊗AAA the morphism defined by q 7→ q ⊗ 1. Consider the composition of
morphisms

pr ◦α : QB A
α−→ QB ⊗

A
AA

pr−−→ ( QB ⊗
A
AA)⊆1.

By construction this is isomorphic to

B
L
⊗
B
TA −→ B

L
⊗
B
T

L
⊗
A
AA −→

(
B

L
⊗
B
T

L
⊗
A
AA

)
⊆1
∼= TB

L
⊗
A
AA.

Writing out the composition gives the following, which we will show to be a quasi-
isomorphism:

· · · Q2 Q1 Q0 0 · · ·

· · · Q2⊗AA Q1⊗AA Q0⊗AA 0 · · ·

· · · 0 Q1 ⊗A A/ Im(d2 ⊗ id) Q0 ⊗A A 0 · · · .

α2

d2

α1

d1

α0

d2⊗id d1⊗id

pr pr

d1⊗id

The projection pr : QB ⊗AAA → ( QB ⊗AAA)⊆1 of soft truncation is an isomorphism on
homology in degrees ≤ 1. By Lemma 3.3 we have Hi( QB A) = 0 for i ̸= 0, 1. Therefore it
is enough to check that α is an isomorphism on homology in degrees 0 and 1. Moreover,
since we are dealing with finite dimensional vector spaces, Corollary 3.7(b) gives that for
i = 0, 1 the dimensions of Hi(B ⊗L

B TA ) ∼= Hi( QB A) and Hi( TB ⊗L
AAA) ∼= Hi( QB ⊗AAA)

are the same, making it enough to check that Hi(α) is injective, for i = 0, 1.
Let i ∈ {0, 1}, and let h ∈ Ker(di) be such that h + Im(di+1) ∈ Ker(Hi(α)). Then

there exist morphisms hj ∈ Qi+1 and aj ∈ A such that

Im(di+1⊗
A

id) ∋ αi(h) = h⊗
A

1

= (di+1⊗
A

id)
(∑

j

hj ⊗
A
aj
)

=
∑
j

(di+1(hj)⊗
A
aj)

=
∑
j

(di+1(hjaj)⊗
A

1)

=
(∑

j

di+1(hjaj)
)
⊗
A

1.
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Thus (h −
∑
j di+1(hjaj)) ⊗A 1 = 0. Letting a be the ideal of morphisms in A factoring

through a projective object gives that h −
∑
j di+1(hjaj) ∈ Qia ∩ Ker di. However, this

intersection equals (Ker di)a, by Lemma 2.12. Lemma 2.12 applies for i = 0 because the
cokernel of Q0 → 0 is 0 which has the form C (l, y) for y = 0. Lemma 2.12 applies for
i = 1 because the cokernel of Q1 → Q0 is H0(QA) ∼= H0(B ⊗L

B TA ) which has the form
C (l,m) by Lemma 3.3. Since h−

∑
j di+1(hjaj) ∈ (Ker di)a we have

h−
∑
j

di+1(hjaj) =
∑
j

h̃j ãj ,

for some h̃j ∈ Ker di and ãj ∈ a. By Lemma 3.3 there are isomorphisms over Aop:

ξi : Hi(QA) −→


C (l,m) i = 0,
C (l,Ωm) i = 1,
0 otherwise.

Notice that a annihilates Im(ξi), meaning that

ξi
(∑

j

h̃j ãj + Im(di+1)
)

=
∑
j

ξi(h̃j + Im(di+1))ãj = 0.

Since ξi is injective h−
∑
j di+1(hjaj) =

∑
j h̃j ãj ∈ Im(di+1). Thus h ∈ Im di+1.

Theorem 3.9. The canonical morphisms

B −→ EndD(Aop)(BTA) and A −→ EndD(B)(BTA),

induced by −⊗L
B TA and BT ⊗L

A− are isomorphisms.

Proof. We will show the first isomorphism. The second one is done similarly in a symmetric
fashion. From the isomorphism in Theorem 3.8 the following commutative diagram is
produced:

EndD(Bop)(BB) EndD(Bop)(BB)

EndD(Aop)(TA) EndD(Aop)(TA).

− ⊗L
B BB

− ⊗L
B TA − ⊗L

B TA

− ⊗L
A AA

The morphism induced by −⊗L
B BB is an isomorphism, and since BTA is a tilting complex

(by Lemma 3.2), the morphism induced by −⊗L
B TA is also an isomorphism. Hence the

map induced by −⊗L
AAA is surjective. Thus to show −⊗L

B TA is an isomorphism, it is
enough to show that

EndDAop(TA) ∼= EndDAop(TA),
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making −⊗L
AAA an isomorphism. This is seen using the following calculation:

RHomAop(TA,TA) ∼= RHomAop
(
T

L
⊗
A
AA,RHomAop( AA ,TA )

)
∼= RHomAop

(
(T

L
⊗
A
A)

L
⊗
A
A,TA

)
∼= RHomAop

(
B

L
⊗
B
T

L
⊗
A
A,TA

)
(by Corollary 3.7(b))

∼= RHomAop
(
P ⊗

A
A,TA

)
(by Corollary 3.4 and Lemma 3.5)

∼= RHomAop
(
PA ⊕ PA[3],TA

)
. (by Lemma 2.4(e))

By taking the 0’th homology one obtains that

EndD(Aop)(TA) ∼= HomD(Aop)
(
PA ⊕ PA[3],TA

)
∼= HomD(Aop)

(
PA,TA

)
∼= EndD(Aop)

(
TA

)
,

where the second isomorphism comes from TA being isomorphic in D(Aop) to a two term
complex of projective objects, see Corollary 3.7(a), and the last isomorphism is also by
Corollary 3.7(a).

Lemma 3.10. The complex PA,

C (l, l1) C (l, l0),ϕ1∗

is a two-term tilting complex in D(Aop).

Proof. PA is a silting complex by [Aug20a, thm 2.18 and rmk 2.19(2)]. Thus to show that
PA is a tilting complex it is enough to show that HomKb(projAop)(PA, PA[−1]) = 0.

Recall that PA is defined using the triangle

l1 l0 m Σl1.
ϕ1 ϕ0 Σϕ2

By applying C (l,−) to this triangle we obtain an exact sequence

0 C (l,Σ−1m) C (l, l1) C (l, l0) C (l,m) 0.ϕ2∗ ϕ1∗ ϕ0∗

This shows that Ker(ϕ1∗) = C (l,Σ−1m), and Coker(ϕ1∗) = C (l,m). Let a chain map
f ∈ HomKb(projAop)(PA, PA[−1]) be given:

C (l, l1) C (l, l0) 0

0 C (l, l1) C (l, l0).

ϕ1∗

f0

ϕ1∗

f being a chain map implies that f0ϕ1∗ = 0. Thus f0 factors through Coker(ϕ1∗), say
f0 = f ′

0ϕ0∗. If we use that f is a chain map again we get that ϕ1∗f
′
0=0, giving that
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f ′
0 factors through Ker(ϕ1∗), say f ′

0 = ϕ2∗f
′′
0 , with f ′′

0 ∈ HomA(C (l,m),C (l,Σ−1m)).
Therefore f0 = ϕ2∗f

′′
0 ϕ0∗:

C (l, l1) C (l, l0) C (l,m)

C (l,Σ−1m) C (l, l1) C (l, l0).

ϕ1∗

f0

ϕ0∗

f ′′
0

ϕ2∗ ϕ1∗

Since m is rigid and Σ2m ∼= m we have that C (m,Σ−1m) = 0. Thus Lemma 2.4(g) gives
that f ′′

0 = 0, and thereby f0 = 0. Hence f = 0, making PA a tilting complex.

Corollary 3.11. BTA is a two-sided tilting complex. In particular

−
L
⊗
B

TA : D(Bop) −→ D(Aop)

is a triangulated equivalence, making A and B derived equivalent.

Proof. Recall that TA
∼= PA in D(Aop) (by Corollary 3.7(a)), and that PA is a tilting

complex (by Lemma 3.10). This establishes the second half of part (1) as well as parts (2)
and (3) of Definition 1.2. The first half of part (1) holds by Theorem 3.9. The triangulated
equivalence follows from [Kel98, prop. 8.1.4].

4 Examples

4.1 Cluster-tilting objects from C(D2n)

It was shown in [BHL14, lem. 4.5] that the self-injective cluster tilted algebras of the
cluster category C = C(D2n) are derived equivalent. This was done by finding a tilting
complex ad hoc. In this example we will see how our results can be used to find such a
tilting complex, and thereby recover the tilting complex from [BHL14].

To apply the results from the previous section on this example, we need to ensure that
C has a Frobenius model E that satisfies Setup 2.1.

Theorem 4.1. There exists a Frobenius category E , such that C = E . Furthermore the
pair of E and C satisfy Setup 2.1.

Proof. Let I be the direct sum of all injective indecomposable objects in mod(kD2n), and
M = I ⊕ τI. This M has the needed properties to apply [GLS07, thm. 2.1], giving a
Frobenius category E such that C = E , which also satisfies Setup 2.1.

Let n ∈ N, with n ≥ 4. Consider the quiver D2n.

a

c • · · · •

b
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There are indecomposable projective representations P (a), P (b), P (c) corresponding to the
vertices a, b, c, and these can be viewed as objects of C . In [Rin08], Ringel described two
cluster-tilting objects in C , see Figure 4.1:

T1 =
(
n−1⊕
i=0

τ−2iP (a)
)
⊕
(
n−1⊕
i=0

τ−2i−1P (b)
)

T2 =
(
n−1⊕
i=0

τ−2iP (a)
)
⊕
(
n−1⊕
i=0

τ−2i−1P (c)
)
.

Denote their endomorphism algebras by Ai = EndC (Ti) = C (Ti, Ti). To describe the
endomorphism algebras we define the following quivers:

Q1 :

· · ·α

2

α 1 α

2n

α

Q2 :

1
•

α

β

β

2

•
α

β

β3n− 1
•

α

β

β
n

•

α
β

β

· · ·

Then Ai = kQi/Ii, with I1 = ⟨α2n−1⟩, and I2 = ⟨αβ, βα, β2−αn−1⟩. Both of these algebras
are self-injective by Lemma 2.5, but neither of them is symmetric. Now Corollary 3.11
says that A1 and A2 are derived equivalent. Furthermore, there is a direct way to calculate
the associated one-sided tilting complexes.

• τ−1P (a) • • • • •

• P (b) • • • • • • • • • • • •

• • • • • • •

• • • • • • •

• • • • • • •

• • • • • • •

• • τ−2P (c) • • • •

Figure 4.1: Auslander-Reiten quiver of mod(kD8).

Using the Auslander-Reiten quiver of mod(kD2n) (see Figure 4.1 for an example in the
case n = 4), one can use the dimension vectors to see that there is an exact sequence (see
[Ass06, prop. IX.3.1, lem. IX.1.1(a)])

0 P (b) τ−1P (a) τ−2P (c) 0ϕ ψ
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inducing a triangle

P (b) τ−1P (a) τ−2P (c) ΣP (b)ϕ ψ

in the cluster category C . This implies that for each i there is a triangle

τ iP (b) τ i−1P (a) τ i−2P (c) Στ iP (b)ϕi ψi−1

in C . With this we construct the following triangle. Let Φ′ = ⊕n−1
i=0 ϕ−2i−1 and let

Ψ′ = ⊕ni=1ψ−2i, then there exists a triangle

(⊕n−1
i=0 τ

−2i−1P (b)
) (⊕n

i=1 τ
−2iP (a)

)
⊕(⊕n

i=1 τ
−2iP (a)

)
(⊕n

i=1 τ
−2iP (a)

)
⊕(⊕n

i=1 τ
−2i−1P (c)

)

T 2
1 T 1

1 T2

(
0

Φ′

) (
id 0

0 Ψ′

)

Φ Ψ

with T j1 ∈ add(T1). Notice that we have used that τ2n ∼= id when describing T2. It
follows from T1 being rigid that Ψ is an add(T1) pre-cover, namely if there is a morphism
Ψ̃ : S → T2, with S ∈ add(T1) then C (S,ΣT 2

1 ) = 0, and Ψ̃ will therefore factor through Ψ.
To see that Ψ is a cover, it is enough to check that Φ ∈ radC (see [Fed19, lem 3.12]). All
the components ϕ−2i−1 of Φ are morphisms between two different indecomposable objects,
and are therefore all in the radical. Thus Φ is in the radical.

Define the following complex concentrated in degrees 0,1:

P1 : C (T1, T
2
1 ) C (T1, T

1
1 ).Φ∗

This complex is a tilting complex over A1 by Lemma 3.10. By Theorem 3.9, there is an
isomorphism A2 ∼= EndD(Aop

1 )(P1). Similarly a tilting complex P2 could be found such
that A1 ∼= EndD(Aop

2 )(P2).
To verify that this is indeed the case we check the isomorphism A2 ∼= EndD(Aop

1 )(P1).
For each T ′ ∈ add(T1), the right A1-module C (T1, T

′) is projective. We can therefore
identify the Hom-space from T1 to indecomposable summands of T1 with indecomposable
projective modules over A1. We will do that as follows:

PA1(2i) ∼= C (T1, τ
−2iP (a)) and PA1(2j + 1) ∼= C (T1, τ

−(2j+1)P (b))

for 0 < i ≤ n, and 0 ≤ j < n. The morphisms between projective objects can be described
as follows:

dim Hom(PA1(i), PA1(j)) =


0 if j = i− 1
0 if i = 1, j = 2n
1 otherwise.
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Now EndD(Aop
1 )(P1) can be calculated. There are 2n indecomposable components in P1:

Bi : PA1(2i+ 1) ϕ−2i−1∗−−−−−→ PA1(2i+ 2),

Cj : 0 −−−−−→ PA1(2j),

with 0 ≤ i < n, and 0 < j ≤ n. To describe the morphisms we split it into cases.

(i) γ ∈ Hom(Ci, Bi−1) ̸= 0, for 0 < i ≤ n. Here γ is the inclusion.

(ii) β ∈ Hom(Bi, Ci) ̸= 0, for 0 < i ≤ n−1 and β ∈ Hom(B0, Cn) ̸= 0. Here β is induced
by the morphism P (a)→ τ2P (a).

(iii) α ∈ Hom(Ci, Ci+1) ̸= 0, for all 0 < i ≤ n− 1, and α ∈ Hom(Cn, C1) ̸= 0. Here α is
induced by the morphism P (a)→ τ−2P (a).

(iv) Hom(Bi, Bi+1) = 0, for all 0 ≤ i < n − 1, and Hom(Bn−1, B0) = 0. This is due to
the ‘potential’ morphisms being null-homotopic.

(v) δ ∈ Hom(Ci, Ci−1) ̸= 0, for all 1 < i ≤ n, and δ ∈ Hom(C1, Cn) ̸= 0. But notice
that δ factors through Bi−1:

Ci 0 PA1(2i)

Bi−1 : PA1(2i− 1) PA1(2i)

Ci−1 0 PA1(2i− 2).

γ

β

From this we can determine the quiver of the endomorphism algebra EndD(Aop
1 )(P1):

Q :

C0

B0

α

β
γ

C1

B1α

β

γC2Cn−1

Bn−1 α

β

γ
α

β
γ

· · ·

It is straightforward to check that βγ ∼= αn−1 using (v). It follows from the form of I1
that αβ = 0. Lastly there is the relation γα = 0, which is due to γα being null-homotopic.
It follows from αn−1 ̸= 0 and βγ ̸= 0, that there are no more relations. This now means
that

EndD(Aop
1 )(P1) ∼= Q/⟨αn−1 − βγ, αβ, γα⟩ ∼= A2.
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4.2 Example from symmetric (k, n)-Postnikov diagrams

It turns out that a good source of examples for finding derived equivalent algebras using
Corollary 3.11 are Postnikov diagrams as shown in Figures 4.2 and 4.3. A (k, n)-Postnikov
diagram D is a Postnikov diagram with n vertices, and strands going from vertices i to
vertices i + k. Such a diagram is called symmetric if it is invariant under rotation by
k vertices, see Figures 4.2 and 4.3. Furthermore, D is called reduced if no “untwisting”
moves can be applied. For a detailed description of these properties see [Pas20, sec. 4].

To each Postnikov diagram D one can associate an ice quiver with potential (Q,W,F ),
where

• Q is the quiver associated to D. The vertices of Q corresponds to the alternating
regions of D. There is an arrow between two vertices if their corresponding regions
meet at an intersection of strands, the arrow will point with the ‘flow’ of those
intersecting stands. See Figures 4.2 and 4.3.

• W is the potential given by the sum of clockwise cycles in Q minus anti-clockwise
cycles in Q, and

• F is the frozen vertices, which is the set of vertices on the boundary of D.

For further details see [Pas20, sec. 4]. Denote the associated frozen Jacobian algebra
P(Q,W,F ).

Next we construct the boundary algebra as described in [Pas20, sec. 6]. Given k, n ∈ N,
with k < n, consider a Z/nZ-grading on C[x, y] given by deg x = 1, and deg y = −1. Now
let R = C[x, y]/(xk − yn−k) and define the boundary algebra

B = EndZ/nZ
R

 ⊕
i∈Z/nZ

R(i)

 ,
where (i) indicates the shift in degrees by i in modZ/nZ(R). Let B̂ be the completion of
B with respect to the ideal (x, y).

The following two theorems are a collection of results due to Geiß-Jensen-King-Leclerc-
Pasquali-Schröer-Su. The first theorem shows Setup 2.1 is satisfied. The category CM of
Cohen-Macaulay modules and its stabilisation CM were introduced in [JKS16, secs. 3, 4].

Theorem 4.2. Let k, n ∈ N with k < n. We then have the following results

1. CM(B̂) is a Frobenius category ([JKS16, cor.3.7])

2. CM(B̂) is 2-Calabi–Yau ([JKS16, cor. 4.6] and [GLS08, prop. 3.4])

3. CM(B̂) is Hom-finite ([JKS16, cor. 4.6] and [GLS08, sec. 3.1, 3.2]).

4. CM(B̂) has split idempotents.

Proof. That CM(B̂) has split idempotents comes from the fact that SubQk from [JKS16,
cor. 4.6] and [GLS08, sec. 3] has split idempotents. This is due to it being the full sub-
category of submodules of sums of Qk, in a module category which has split idempotents.
Since SubQk has split idempotents, SubQk has split idempotents, and by [JKS16, cor.
4.6] there is a triangle equivalence SubQk ∼= CM(B̂).
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The next collection of result describes the objects we want to work with.

Theorem 4.3. We have the following results

1. For every reduced (k, n)-Postnikov diagram D, there is an associated cluster-tilting
object T (D) of CM(B̂) ([Pas20, thm. 7.2]).

2. Given a reduced (k, n)-Postnikov diagram D, then D is symmetric if and only if the
endomorphism ring End(T (D)) is self-injective ([Pas20, thm. 8.2, lem 7.7]).

3. If D is a (k, n)-Postnikov diagram, T the associated cluster tilting object, (Q,W,F)
the associated ice quiver with potential, then EndB̂(T ) ∼= P(Q,W,F )/⟨F ⟩, where ⟨F ⟩
is the ideal generated by the frozen vertices ([Pas20, lem. 7.5, prop 7.6, sec. 3]).

Corollary 4.4. Let k, n ∈ N, with k < n. Let D,D′ be two symmetric and reduced (k, n)-
Postnikov diagrams, with associated cluster tilting objects T = T (D) and T ′ = T (D′) in
CM(B̂). Then End(T ) and End(T ′) are derived equivalent.

Proof. Since D and D′ are symmetric Postnikov diagrams Theorem 4.3(2) gives that EndT
and EndT ′ are self-injective. Therefore Corollary 3.11 gives that End(T ) and End(T ′) are
derived equivalent.

As an example of the use of Corollary 4.4, see Figures 4.2 and 4.3 for two symmetric
and reduced (3, 9)-Postnikov diagrams and their associated ice quivers. The frozen ver-
tices are exactly the ones on the boundary. Denote these ice quivers with potential by
(Q,W,F ) and (Q′,W ′, F ′) respectively. Using Theorems 4.3(2) and 4.3(3) together with
Corollary 4.4 we get that the associated algebras P(Q,W,F )/⟨F ⟩ and P(Q′,W ′, F ′)/⟨F ′⟩
are self-injective and derived equivalent. Note that in contrast to [Aug20b] the 2-CY-tilted
algebras considered here are not symmetric.

Figure 4.2: To the left is a (3, 9)-Postnikov diagram, and to the right is its associated quiver,
with the vertices on the outer boundary being the frozen vertices.
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Figure 4.3: To the left is a (3, 9)-Postnikov diagram, and to the right is its associated quiver,
with the vertices on the outer boundary being the frozen vertices.

5 An application

For the rest up this section, let k be an algebraically closed field.
We have already breifly discussed ice quivers with potential, and in this section we will

work with quivers with potential. For an introduction into quiver with potential we refer
the reader to [DWZ08]. However, we will include the essential definitions and results.
First, we need to define what a quiver with potential is, and what the corresponding
Jacobian algebra is.

Definition 5.1.

• Let Q be a quiver, then an element W ∈
∏
i>1 kQcyc,i, where kQcyc,i is the collection

of cycles of length i, is called a potential in kQ. A pair (Q,W ) of a quiver Q and a
potential W is called a quiver with potential, or QP for short.

• Let W be a potential for a quiver Q. Then W is said to be reduced if W ∈∏
i≥3 kQcyc,i.

• [DWZ08, def 3.1] Let (Q,W ) be a quiver with potential. Given an arrow a ∈ Q1,
define the cyclic derivative ∂a :

∏
i>1 kQcyc,i → k̂Q generated by

∂a(a1 · · · an) =
∑
ai=a

ai+1 · · · ana1 · · · ai−1.

• [DWZ08, def 3.1] Let (Q,W ) be QP. The Jacobian ideal is an ideal, of the completed
path algebra k̂Q, defined by J (W ) := ⟨∂a(w) | a ∈ Q1, w ∈W ⟩.

• [DWZ08, def 3.1] Let (Q,W ) be a QP. Then the Jacobian algebra is defined by
P(Q,W ) = k̂Q/J (W ).

Given a QP (Q,W ), we will typically identify properties of the Jacobian algebra
P(Q,W ) with that of (Q,W ). To that end we have the following definition.
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Definition 5.2.

• [HI11, def. 3.6(b)] A QP (Q,W ) is said to be self-injective if P(Q,W ) is self-injective.

• [Ami09, sec. 3.3] A QP (Q,W ) is called Jacobi-finite if P(Q,W ) is finite-dimensional.

Example 5.3. Let n ∈ N, and consider the following quiver.

Qn :

· · ·
αn−1

n

αn

1

α1
2

α2

3

α3

In this quiver we have a cycle of length n. We will let this cycle be the potential
W = αn · · ·α2α1. The Jacobian algebra corresponding to the QP (Qn,W ) is therefore
P(Qn,W ) = kQ/ radn−1.

Notice that this algebra is both self-injective and finite-dimensional. Thus, the QP
(Qn,W ) is both self-injective and Jacobi-finite. Also notice that for n > 2 we do not have
any loops or 2-cycles, making (Q,W ) reduced.

Quivers with potential have a notion of mutation, which given a QP offers a way to
generate another QP.

Definition 5.4 ([DWZ08, sec. 5] or [Miz15, def. 2.2]). Let (Q,W ) be a QP, let i ∈ Q0
not contained in a 2-cycle. For x ∈ Q0 define a new QP µ̃x(Q,W ) = (Q̃, W̃ ) where

• Q̃0 := Q0.

• Q̃1 is constructed in 3 steps:

1. Set Q̃1 := Q1.

2. For each pair of arrows a, b ∈ Q1 with t(a) = s(b) = x add an arrow [ba] :
s(a)→ t(b) to Q̃1.

3. For each arrow a ∈ Q1 such that s(a) = x or t(a) = x, add an arrow a∗ : t(a)→
s(a) to Q̃1, and remove a from Q̃1.

• Let [W ] be the object coming from W by replacing compositions ba, where t(a) =
s(b) = x, with the new direct arrow [ba], i.e. with s([ba]) = s(a) and t([ba]) = t(b).
Let ∆ =

∑
t(a)=s(b)=x b

∗[ba]a∗. Define W̃ = [W ] + ∆.

Define the mutation µx(Q,W ) of (Q,W ) at x as the reduced part of µ̃x(Q,W ), i.e., we
remove the all summands which are 2-cycles.

Example 5.5. Consider the QP from Example 5.3 for n = 6. That is the quiver
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Q6:

1
2

3
4

5

6

a1

a2

a3 a4

a5

a6

together with the potential W = a1a6a5a4a3a2. If we now mutate this QP at the vertex 1
we would get the QP µ1(Q6,W ) = (Q̂6, Ŵ ) where

Q̂6:

1
2

3
4

5

6

a∗
1

a2

a3 a4

a5

a∗
6

[a1a6]

and Ŵ = [a1a6]a5a4a3a2 + a∗
1[a1a6]a∗

6.

For our purposes, we are only interested in Jacobi-finite QPs. Therefore we would like
to know whether or not the mutation of a QP will be Jacobi-finite. However, the class of
Jacobi-finite QPs are closed under mutation.

Theorem 5.6 ([DWZ08, cor. 6.6]). Let (Q,W ) be a reduced QP, and let x ∈ Q0 not
contained in a 2-cycle, then (Q,W ) is Jacobi-finite if and only if µx(Q,W ) is Jacobi-
finite.

5.1 Nakayama permutation

Let Q be a finite quiver, then each simple module S over kQ is associated to a vertex
i ∈ Q0, and therefore we denote it by S(i). Denote P (i) (resp. I(i)) as the projective cover
(resp. injective envolope) of S(i).

Proposition/Definition 5.7. Let Q be a quiver and I an admissible ideal of kQ, such
that kQ/I is a self-injective finite dimensional algebra. Then there exists a map σ : Q0 →
Q0 defined by the property that P (i) = I(σi). Since kQ/I is self-injective, this map is a
permutation. This is called the Nakayama permutation.

Example 5.8. Consider the QP (Q,W ) given in Example 5.3. There we get that P (i) =
I(i− 2) modulo n. Thus, the corresponding Nakayama permutation σ : Q0 → Q0 is given
by σ(i) = i− 2 modulo n.

5.2 Derived equivalence via mutation

Our goal is to give an application of Corollary 3.11. We will show it generalizes a similar
result in [Miz15] in the setting of quivers with potentials and Jacobian algebras.

Let Q be a quiver, and let I ⊆ Q0 be a subset of vertices. Similar to [Miz15, sec. 3],
we give names to the following conditions on I:
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(a1) No vertex in I is contained in a 2-cycle.

(a2) There are no arrows between any two vertices in I.

Theorem 5.9 ([Miz15, thm. 3.1, cor. 3.2]). Let (Q,W ) be a jacobi-finite, self-injective QP
and Λ := P(Q,W ). Let I ⊆ Q0 satisfying (a1) and (a2), and denote the corresponding
Okuyama–Rickard complex µI(Λ) ∈ Kb(proj Λ) (see [Miz15, p. 1745]). Then there is an
isomorphism of k-algebras

EndKb(proj Λ)(µI(Λ)) ∼= P(µI(Q,W )).

Here µI(Q,W ) refers to the QP obtained by mutating (Q,W ) at each vertex in I. Let
σ denote the Nakayama permutation for Λ. Furthermore if σI = I then µI(Λ) is tilting
object making P(Q,W ) and P(µI(Q,W )) derived equivalent.

We will show that the derived equivalence statement of Theorem 5.9 follows by Corol-
lary 3.11. To use our result we need to know that the algebras in question arise as
endomorphism algebras of maximal rigid objects in some algebraic category satisfying a
few conditions. For this we need to turn to cluster categories. A result by Amiot shows
that every Jacobi finite QP is isomorphic to the endomorphism algebra of a cluster tilting
object in a certain cluster category.

Theorem 5.10 ([Ami11, cor. 3.11] or [Ami09, thm. 3.5]). Let (Q,W ) be a Jacobi-finite
QP, then there exists a category C(Q,W ) which is Hom-finite, 2-CY, and Krull-Schmidt,
and has a cluster-tilting object ℓ ∈ C(Q,W ) such that End(ℓ) ∼= P(Q,W ).

The construction of these cluster categories stems from the Ginzburg DG algebra in a
way that ensures it has a Frobenius model.

Theorem 5.11. Using notation from Theorem 5.10 there is a Frobenius category E such
that the associated stable category is C(Q,W ).

Notice that given two different QPs, this does not tell us whether the corresponding
cluster categories coincide. However, Amiot has shown that they coincide when the QPs
are related by mutation.

Theorem 5.12 ([Ami11, thm. 3.13(a)]). Let (Q,W ) be a QP without loops, and let i ∈ Q0
not contained in a 2-cycle. Then there is a triangle equivalence C(Q,W ) ∼= Cµi(Q,W ).

To use Theorem 5.12 we need to avoid loops, and therefore mutate in vertices not part
of a 2-cycle. This motivated the next definition.

Definition 5.13. Given n ∈ N let x = {x1, . . . , xn} be a collection where xi ⊆ Q0, be a
sequence of vertices of Q. We say that (Q,W ) is mutable over x if xi is not in a 2-cycle of
µxi−1 · · ·µx1(Q,W ). Define µx(Q,W ) = µxn · · ·µx1(Q,W ).

Example 5.14. Consider the QP (Q6,W ) from Example 5.5, an example of mutable
sequences would be x = (1 3 5) or x = (2 4 6).

Lemma 5.15. Let (Q,W ) be a QP, and let I ⊆ Q0 satisfy (a1) and (a2). Then each
sequence {xj} ⊆ I, with xj ̸= xk for j ̸= k, is mutable.
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Proof. Follows directly from the definition of mutation.

Now we can combine Theorem 5.12 and Corollary 3.11 to get the following result.

Proposition 5.16. Let (Q,W ) be a self-injective QP without loops. Let x = {x1, ..., xn}
with xi ∈ Q0 be a mutable sequence in Q. If µx(Q,W ) is self-injective, then P(Q,W ) and
P(µx(Q,W )) are derived equivalent.

Proof. By Theorems 5.10 to 5.12 there is a Frobenius category E whose associated stable
category is 2-CY, Hom-finite and Krull-Schmidt, such that there are cluster-tilting objects
ℓ,m ∈ C satisfying

C (ℓ, ℓ) ∼= P(Q,W ) and C (m,m) ∼= P(µx(Q,W )).

Now Corollary 3.11 gives that P(Q,W ) and P(µx(Q,W )) are derived equivalent.

This can be combined with the following result by Herschend and Iyama.

Theorem 5.17 ([HI11, thm. 4.2]). Let (Q,W ) be a self-injective QP without loops with
Nakayama permutation σ. Let x = {x1, ..., xn} ⊆ Q0 be a σ orbit satisfying (a1) and (a2),
i.e., x = {x = σnx, σx, σ2x, ..., σn−1}. Then µx(Q,W ) is self-injective.
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Paper B

Intermediate Categories for Proper
Abelian Subcategories

Abstract

Let A be an extension closed proper abelian subcategory of a triangulated category T ,
with no negative 1 and 2 extensions. From this, two functors from ΣA ∗ A to A can
be constructed giving a snake lemma mirroring that of homology without needing a t-
structure.

We generalize the concept of intermediate categories, which originates from a paper by
Enomoto and Saito, to the setting of proper abelian subcategories and show that under
certain assumptions this collection is in bijection with torsion-free classes in A .

1 Introduction

In [ES22], Enomoto and Saito introduce and study Grothendieck monoids of extriangu-
lated categories as a generalization of the Grothendieck group. They study what happens
to the Grothendieck monoid when an extriangulated category is localized, and further-
more, they ask when this becomes the localization of the Grothendieck monoid of that
original extriangulated category. That is, given an extriangulated category C and a class
of morphisms S ∈ Mor(C), when does the Grothendieck monoid M(CS) of the localization
CS become a localization of the Grothendieck monoid M(C) of C? As an example of when
this happens, they study intermediate categories of a derived category Db(A). A category
C ⊆ Db(A) is called intermediate in Db(A) if it is closed under extensions and direct
summands, and A ⊆ C ⊆ ΣA ∗A.

In this paper we generalize the notion of intermediate categories to the setting of an
arbitrary triangulated category T containing a proper abelian subcategory A . Proper
abelian subcategories were introduced by Jørgensen in [Jør22] as full additive subcategories
A of a triangulated category T , with conflations exactly those coming from T as short
triangles, giving A the structure of an abelian category. In this setting an A -intermediate
category C ⊆ T is closed under extensions and direct summands, and satisfies A ⊆ C ⊆
ΣA ∗ A . Notice that this is a generalization of the former notion since A sits inside
Db(A) as a proper abelian subcategory. With this new definition we can consider, as
an example, hearts of t-structures which also sit inside a triangulated category as proper
abelian subcategories. When working with a t-structure in a triangulated category T one
will always have a homology functor from T to the heart H of that t-structure. This
homology functor can to some extent describe objects in T in terms of H, using long
exact sequences.

It is not always the case that proper abelian subcategories are hearts of t-structures;
for an example of this look no further than Example 5.2. Therefore we loose the feature
of having a homology functor. We can make a substitute of this, using a version of the
snake lemma.
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Lemma A (= Lemma 3.4). Let A be a proper abelian subcategory in a triangulated
category T . Assume T is Krull-Schmidt and that T (A ,Σ−iA ) = 0 for i = 1, 2. Let
c ∈ ΣA ∗A , then there exists a unique minimal right ΣA -approximation Σa1 → c, and a
unique minimal left A -approximation c→ a0. Defining G,F : ΣA ∗A → A by F (c) = a1
and G(c) = a0 induces two functors with the following property: Let

c c′ c′′ Σcf g (1.1)

be a triangle in T with c, c′, c′′ ∈ ΣA ∗A , then there exists a morphism δ : F (c′′)→ G(c),
such that

0 F (c) F (c′) F (c′′) G(c) G(c′) G(c′′) 0F (f) F (g) δ G(f) G(g)

is an exact sequence in A .

Using this snake lemma as a substitute for homology, we can similarly to Enomoto and
Saito classify all the A -intermediate subcategories of T as follows.

Theorem B (= Theorem 4.2 & Corollary 4.3). Let A be an extension closed proper
abelian subcategory in a triangulated category T . Assume T is Krull-Schmidt and that
T (A ,Σ−iA ) = 0 for i = 1, 2.

1. If F ⊆ A is a torsion-free class then ΣF ∗ A is an A -intermediate category.
Furthermore, F (ΣF ∗A ) = F .

2. Let C be an A -intermediate category which also satisfies that C ⊆ A ∗ ΣA . Then
F (C) is a torsion-free class. Furthermore C = ΣF (C) ∗A .

If A ∗ ΣA = ΣA ∗ A , this gives a bijection between the collection of A -intermediate
categories and that of torsion-free classes of A .

In the last section we give an example of applying this theory in a negative cluster
category. This is a triangulated category in which proper abelian subcategories are not
hearts of t-structures. We give examples of when the assumptions made in the article are
satisfied, together with applying the results.

Conventions

Let A be a proper abelian subcategory of a triangulated category T . We will denote
monomorphisms (resp. epimorphisms) in A by ↣ (resp. ↠). Conversely, if one of these
arrows is used, it will be with respect to a proper abelian subcategory.

All subcategories will by default be assumed to be full.

2 Preliminaries

Definition 2.1. Let T be a triangulated category and let A ,B ⊆ T be subcategories.
Then define the subcategory

A ∗B = {x | there exists a triangle a→ x→ b→ Σa in T , with a ∈ A , b ∈ B}.
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Definition 2.2. Let A be an additive category. A subcategory B ⊆ A of A is called
an additive subcategory of A if it is closed under isomorphisms, direct sums and direct
summands.

2.1 Proper abelian subcategories

Proper abelian subcategories of a triangulated category were introduced by Jørgensen in
[Jør22], which also serves as a good introduction to the subject. Here we will state the
properties that are needed for this article.

For the rest of this section let T be a triangulated category.

Definition 2.3. Let A ⊆ T be an additive subcategory. A is a proper abelian subcategory
if it is abelian in such a way that a↣α a′ ↠α

′
a′′ is a short exact sequence in A if and only

if there is a triangle a α−→ a′ α′−→ a′′ → Σa in T .

Definition 2.4 ([Jør21, def. 0.2]). Let A ⊆ T be a proper abelian subcategory, n ∈ N.
We say that A satisfies En if T (A ,Σ−iA ) = 0 for 0 < i ≤ n.

Definition 2.5. Let A be an abelian category. An additive subcategory F ⊆ A is called
a torsion-free class if it is closed under extensions and subobjects.

Lemma 2.6. Let A ⊆ T be an extension closed proper abelian subcategory, F ⊆ A a
torsion-free class then the following statements hold.

1. A ∗ ΣF ⊆ ΣF ∗A ,

2. ΣF ∗A is extension closed,

3. If T is Krull-Schmidt and A satisfies E1, then ΣF ∗A is an additive subcategory
of T .

Proof. (1) Since F is closed under subobjects, this follows from a similar argument as
[Jør22, lem. 5.2].

(2) Follows directly from the following calculation:

(ΣF ∗A ) ∗ (ΣF ∗A ) ⊆ (ΣF ∗ ΣF ) ∗ (A ∗A ) ⊆ Σ(F ∗F ) ∗ (A ∗A ) ⊆ ΣF ∗A .

(3) Since F and A are both additive subcategories of T , it follows directly from [IY08,
2.1(i)] that ΣF ∗A is an additive subcategory of T .

2.2 Extriangulated categories

The concept of extriangulated categories is a simultaneous generalization of exact cate-
gories and triangulated categories. These were first introduced by Nakaoka and Palu in
[NP19]. For the concrete definition see [NP19, def. 2.12]. An extriangulated category is a
triple C = (C ,E, s), where C is an additive category, E : C op × C → Ab is a bifunctor to
the category of abelian groups, and s is a “realization” of E.
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Example 2.7. 1. Let E be an exact category, then E can be described as an extrian-
gulated category (E ,Ext1

E (−,−), s) where the realization of δ ∈ Ext1
E (Z,X) is its

corresponding conflation, i.e. s(δ) = (X ↣ Y ↠ Z).

2. Let T be a triangulated category, then T can be described as an extriangulated
category (T ,HomT (−,Σ−), s) where the realization of δ ∈ HomE (Z,ΣX) is its
corresponding short triangle, i.e. s(δ) = (X → Y → Z).

3. Let A be an extension closed proper abelian subcategory of a triangulated category
T . The canonical extriangulated structure of A is the restriction of the extriangu-
lated structure on T to A .

There are also extriangulated categories that are neither exact nor triangulated. The
following lemma can give an example of such a category.

Lemma 2.8. Let A be an extension closed proper abelian subcategory of a triangulated
category T . Then ΣA ∗ A = (ΣA ∗ A ,HomT (−,Σ−), s) is an extriangulated category
obtained by restriction of the extriangulated structure of T .

Proof. By Lemma 2.6(2), ΣA ∗A is extension-closed. Therefore the claim follows directly
from [NP19, rmk. 2.18].

2.3 Monoids

For an introduction to monoids and localization of monoids we refer to [ES22, app. A].
Here we give a very short introduction including the results we need.

Definition 2.9. A monoid is a pair (M, ·), where M is a set, and · : M ×M → M is a
binary operation satisfying the following:

1. The operation “·” is associative,

2. There is an identity element in M w.r.t. “·”.

In other words, a monoid can be viewed as a group without inverses.

Definition 2.10. Given a monoid M and a subset S ⊆ M , a localization of M w.r.t. S
is a pair (MS , q) with a monoid MS and a morphism q : M →MS satisfying the following
universal property: For each monoid N and morphism ϕ : M → N where ϕ(s) is invertible
for all s ∈ S, there exists a unique morphism ψ : MS → N such that ϕ = ψ ◦ q. That is,
there exists a commutative diagram

M N

MS

q

ϕ

∃!ψ

Lemma 2.11 ([ES22, under def. A.11]). Given a monoid M and a subset S ⊆ M , the
localization MS exists.
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2.4 The Grothendieck monoid

Definition 2.12 ([ES22, def. 2.5]). Let C be a skeletally small extriangulated category.
Then a Grothendieck monoid of C is a pair M(C) = (M(C), π), with a monoid M(C), and
a map π : Iso(C)→M(C), such that

1. π respects conflations, i.e. π([0]) = 0 and for every conflation X → Y → Z 99K in C
one has that π([X]) + π([Z]) = π([Y ]).

2. Given a monoid N and map µ : Iso(C)→ N which respects conflations, there exists
a unique morphism µ : M(C)→ N such that µ ◦ π = µ.

Iso(C) N

M(C).

π

µ

∃!µ

Proposition 2.13 ([ES22, prop. 2.7]). Let C be an skeletally small extriangulated category,
then the Grothendieck monoid exists.

2.5 Intermediate categories

Definition 2.14. Let A be an extension closed proper abelian subcategory of a triangu-
lated category T . A subcategory C ⊆ T is called an A -intermediate category if

1. A ⊆ C ⊆ ΣA ∗A ,

2. C is extension-closed,

3. C closed under direct summands.

Lemma 2.15. Let A be an extension closed proper abelian subcategory of a triangulated
category T , then an A -intermediate category C has an extriangulated structure inherited
from T by restriction.

Proof. By definition C will be extension-closed, hence it follows directly from [NP19,
rmk. 2.18] that C has the claimed extriangulated structure.

3 The snake lemma

The following setup will be assumed throughout the rest of this section.

Setup 3.1. Let T be a Krull-Schmidt triangulated category, and A an extension closed
proper abelian subcategory satisfying E2.

Lemma 3.2. We have the following.

1. Up to isomorphism each x ∈ ΣA ∗ A permits a unique short triangle Σax1
ϕx−→

x
ψx−→ ax0 , with ϕx a minimal right ΣA -approximation, and ψx a minimal left A -

approximation. Furthermore, ϕx, ψx are natural in x.
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2. The assignments x 7→ ax1 and x 7→ ax0 have canonical augmentations to functors F
and G.

Proof. Given x ∈ ΣA ∗ A there is a short triangle Σax1
ϕx−→ x

ψx−→ ax0 , with ax0 , a
x
1 ∈

A . Since A satisfies E1 we get that ϕx is a right ΣA -approximation, and ψx is a
left A -approximation. Since T is Krull-Schmidt there are, up to isomorphism, unique
ax0 , a

x
1 , ψx, ϕx such that ϕx, ψx are minimal. Before showing that ϕx and ψx are natural in

x, we will show that the assignments F (x) = ax1 and G(x) = ax0 induce functors. We will
show that F is a functor. Showing that G is a functor follows by a similar argument.

It is enough to check that given x, y ∈ ΣA ∗ A , and f ∈ Hom(x, y), there exists a
unique morphism α : ΣF (x)→ ΣF (y) such that the following diagram commutes,

ΣF (x) ΣF (y)

x y,

α

ϕx ϕy

f

(3.1)

where ϕx, ϕy are the minimal right ΣA -approximations from above. Existence of α follows
directly from ϕy being a right ΣA -approximation. To prove uniqueness, assume there is
another morphism β : ΣF (x)→ ΣF (y) satisfying that ϕy ◦ β = f ◦ϕx. Then ϕy ◦ (α−β) =
0, thus α− β factors though Σ−1G(y):

ΣF (x) x

Σ−1G(y) ΣF (y) y.

ϕx

α−β 0
ϕy

The assumption that A satisfies E2 implies that α− β = 0, thus α = β. This shows that
F is a functor, and that ϕx is natural in x follows directly from this (see (3.1)).

Notation 3.3. For the rest of the paper we let F,G denote the functors from Lemma 3.2,
and given x ∈ ΣA ∗A we let ϕx, ψx denote the morphisms from Lemma 3.2.

Lemma 3.4. Let
c c′ c′′ Σcf g (3.2)

be a triangle with c, c′, c′′ ∈ ΣA ∗A then there exists a morphism δ : F (c′′)→ G(c), such
that

0 F (c) F (c′) F (c′′) G(c) G(c′) G(c′′) 0F (f) F (g) δ G(f) G(g)

is an exact sequence in A .

Proof. Given a triangle

c c′ c′′ Σcf g Σh
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with c, c′, c′′ ∈ ΣA ∗A , we can get the following diagram.

F (c) F (c′) F (c′′) ΣF (c) ΣF (c′) ΣF (c′′)

Σ−1c Σ−1c′ Σ−1c′′ c c′ c′′

Σ−1G(c) Σ−1G(c′) Σ−1G(c′′) G(c) G(c′) G(c′′).

F (f)

Σ−1ϕc

F (g)

Σ−1ϕc′ Σ−1ϕc′′

ΣF (f)

ϕc

ΣF (g)

ϕc′ ϕc′′

Σ−1ψc

Σ−1f

Σ−1ψc′

Σ−1g

Σ−1ψc′′

h

ψc

f

ψc′

g

ψc′′

Σ−1G(f) Σ−1G(g) G(f) G(g)

Composing the blue arrows in the diagram above defines a function

δ := ψc ◦ h ◦ Σ−1ϕc′′ : F (c′′)→ G(c).

Exact at F (c). Since A is an abelian category there exists a conflation

kerF (g) F (c′) imF (g).β α′

By definition this conflation comes from a triangle in T . Consider the following commu-
tative diagram of solid arrows.

F (c) F (c′) F (c′′)

kerF (g) imF (g)

Σ−1c Σ−1c′ Σ−1c′′.

Σ−1ϕc

F (f)
α

Σ−1ϕc′

F (g)

α′

Σ−1ϕc′′

ε

β

η

β′

Σ−1f Σ−1g

Using the axiom TR3 we get that ε exists. Since Σ−1ϕc is a right A -approximation, η
exists such that Σ−1ϕc ◦ η = ε. From the fact that F (g) ◦F (f) = 0 it follows that α exists
in such a way that β ◦α = F (f).

We will check that ε ◦α = Σ−1ϕc. Notice that

Σ−1f ◦ ε ◦α = Σ−1ϕc′ ◦ β ◦α = Σ−1ϕc′ ◦F (f) = Σ−1f ◦ Σ−1ϕc.

Therefore Σ−1f(ε ◦α−Σ−1ϕc) = 0. This means that ε ◦α−Σ−1ϕc factors through Σ−2c′′.

F (c)

Σ−2c′′ Σ−1c Σ−1c′.

ε◦α−Σ−1ϕc

0

Since A satisfies E2, we have that Hom(A ,Σ−1A ∗ Σ−2A ) = 0, thus ε ◦α− Σ−1ϕc = 0,
giving that ε ◦α = Σ−1ϕc.

We now check that α ◦ η = id. Firstly we have that

Σ−1ϕc′ ◦ β ◦α ◦ η = Σ−1ϕc′ ◦F (f) ◦ η = Σ−1f ◦ Σ−1ϕc ◦ η = Σ−1f ◦ ε = Σ−1ϕc′ ◦ β.
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Hence Σ−1ϕc′ ◦ (β−β ◦α ◦ η) = 0. A similar argument as before shows that β−β ◦α ◦ η = 0
since it would have to factor through Σ−2G(c′). Therefore β(id−α ◦ η) = 0, and since β
is a monomorphism in A , this implies that id−α ◦ η = 0, and therefore id = α ◦ η.

Lastly we see that η ◦α = id. Notice that

Σ−1ϕc ◦ η ◦α = ε ◦α = Σ−1ϕc.

Thus Σ−1ϕc ◦ (η ◦ α − id) = 0, meaning that η ◦ α − id factors though Σ−2G(c) and
therefore η ◦ α − id = 0 by the assumption that A satisfies E2. This concludes the proof
that η ◦α = id. In particular, α is an isomorphism making F (f) a monomorphism.

Exact at F (c′). We just proved that F (c) ∼= kerF (g). This gives the following diagram.

F (c) F (c′) F (c′′)F (f) F (g)

But then kerF (g) ∼= F (c) ∼= imF (f), making the sequence exact at F (c′).

Exact at F (c′′). Since F (f) is a monomorphism with cokernel a = imF (g), we get the
following triangle.

F (c) F (c′) a ΣF (c) ΣF (c′).F (f) η µ ΣF (f)

Using the 3×3 lemma (see [BBD, prop. 1.1.11] or [May01, lem. 2.6]) on the commutative
square

F (c) F (c′)

Σ−1c Σ−1c′

F (f)

Σ−1ϕc Σ−1ϕc′

Σ−1f

gives that Diagram 3.1 is a commutative diagram where each row and column is a triangle.
In the Diagram 3.1, the monomorphism τ exists such that F (g) = τη because η is a cokernel
of F (f) while F (g) ◦ F (f) = 0. Recall that δ = ψc ◦ h ◦ Σ−1ϕc′′ (i.e. the composition of
the blue arrows in the diagram above). We check that the solid triangle commutes, that
is Σ−1ϕc′′ ◦ τ = γ. Since τη = F (g), we get that

(γ − Σ−1ϕc′′ ◦ τ)η = γ ◦ η − Σ−1ϕc′′ ◦F (g) = Σ−1g ◦ Σ−1ϕc′ − Σ−1g ◦ Σ−1ϕc′ = 0.

Therefore γ − Σ−1ϕc′′ ◦ τ factors through µ:

F (c′) a ΣF (c)

Σ−1(c′′)

η

0

µ

γ−Σ−1ϕc′′◦τ

∃λ

But notice that λ ∈ Hom(ΣA ,A ∗Σ−1A ), thus λ = 0 since A satisfies E2. This implies
that γ − Σ−1ϕc′′ ◦ τ = 0, giving that γ = Σ−1ϕc′′ ◦ τ .
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ã

F (c) F (c′) a ΣF (c) ΣF (c′)

F (c′′)

Σ−1c Σ−1c′ Σ−1c′′ c c′

Σ−1G(c) Σ−1G(c′) x G(c) G(c′).

ω ν

F (f)

Σ−1ϕc

η

Σ−1ϕc′

µ

γ

τ

ΣF (f)

ϕc
ϕc′

Σ−1ϕc′′

Σ−1ψc

Σ−1f

Σ−1ψc′

Σ−1g

ε

h

ψc

f

ψc′

Σ−1G(f) ξ ζ G(f)

Diagram. 3.1: A commutative diagram used to show exactness at F (c′′).

We now show that τ satisfies the universal property of being a kernel of δ. Let ã ∈ A be
given together with a morphism ω : ã→ F (c′′) such that δ ◦ω = 0. We want to show that
ω factors through τ .

First we notice that

0 = δ ◦ω = ψc ◦ h ◦ Σ−1ϕc′′ ◦ω = ζ ◦ (ε ◦ Σ−1ϕc′′ ◦ω).

This means that ε ◦ Σ−1ϕc′′ ◦ω factors through ξ. But Hom(ã,Σ−1G(c′)) = 0 and therefore
ε ◦ Σ−1ϕc′′ ◦ω = 0. This gives that Σ−1ϕc′′ ◦ω factors through γ, say Σ−1ϕc′′ ◦ω = γ ◦ ν (ν
is the dashed morphism in the diagram). Notice that

Σ−1ϕc′′(ω − τ ◦ ν) = Σ−1ϕc′′ ◦ω − γν = 0.

Thus ω − τ ◦ ν factors through Σ−2G(c′′).

ã

Σ−2G(c′′) F (c′′) Σ−1c′′.

ω−τ◦ν

00

Σ−1ϕc′′

This means that ω − τ ◦ ν = 0, thus ω = τ ◦ ν. The uniqueness part of the universal
property follows from τ being a monomorphism in A . This concludes the proof that
ker δ ∼= a.

Exact at G(c), G(c′), G(c′′). These can be done in a dual way to showing that the
sequence is exact in F (c), F (c′), F (c′′).

Lemma 3.5. Let c ∈ A ∗ ΣA , and thus c ∈ ΣA ∗ A by Lemma 2.6(1). Given two
triangles a0

f−→ c → Σa1 → Σa0 and Σb0 → c
β−→ b1 → Σ2b0, with ai, bi ∈ A , the

composition β ◦ f : a0 → b1 is an epimorphism in A .
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Proof. There exists a diagram

a0

Σb0 c b1 Σ2b0

Σa1 d

f

α β

m

γ

h
ε = 0

ξ = 0

where the row and column containing c are triangles. We claim that β ◦ f : a0 → b1 is
an epimorphism. To show this let d ∈ A and a morphism h : b1 → d be given such that
h ◦ β ◦ f = 0. It is enough to show that h = 0. Since h ◦ β ◦ f = 0 we get that h ◦ β factors
through m, i.e. there exists a morphism ξ : Σa1 → d, such that ξ ◦m = h ◦ β. But notice
that ξ = 0 since A satisfies E1. Thus h ◦ β = 0. This means that h factors through γ, i.e.
there exists a morphism ε : Σ2b0 → d such that h = ε ◦ γ. But since A satisfies E2, we
get that ε = 0, hence h = 0.

Proposition 3.6. The following are equivalent.

1. For all a, a′ ∈ A and f ∈ T (a,Σ2a′) there exist d ∈ A , g1 ∈ T (a,Σd), and
g2 ∈ T (Σd,Σ2a′) such that f = g2 ◦ g1.

2. ΣA ∗A = A ∗ ΣA .

3. For c ∈ ΣA ∗A , there exist a ∈ A and f ∈ T (a, c), such that ψc ◦ f : a→ G(c) is
an epimorphism.

Proof. (1) ⇒ (2): By Lemma 2.6(1), ΣA ∗A ⊇ A ∗ ΣA . To check the other inclusion
let c ∈ ΣA ∗A , which means that there is a triangle

ΣF (c) c G(c) Σ2F (c).γ

By (1) there exists d ∈ A and morphisms g1 : G(c) → Σd, g2 : Σd → Σ2F (c), such that
g2 ◦ g1 = γ. Using the octahedral axiom (see [Nee14, prop 1.4.6]) we get a diagram

d M G(c) Σd

ΣF (c) c G(c) Σ2F (c)

N N 0 ΣN

Σd ΣM ΣG(c) Σ2d,

g1

g2

γ

where each row and column is a triangle. Since A and ΣA are extension closed in T

we get that M ∈ A and N ∈ ΣA . The second column in the diagram now implies that
c ∈ A ∗ ΣA .
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(2) ⇒ (1): Let f ∈ T (a,Σ2a′), and consider the triangle

Σa′ c a Σ2a′.
f

Now c ∈ ΣA ∗A = A ∗ ΣA , hence there exist b0, b1 ∈ A fitting into a triangle

b1 b0 c Σb1.

The octahedral axiom gives the following commutative diagram with rows and columns
being triangles.

d b0 a Σd

Σa′ c a Σ2a′

Σb1 Σb1 0 Σ2b1

Σd Σb0 Σa Σ2d.

h g1

g2

f

It follows from Lemma 3.5 that h is an epimorphism, and therefore d ∈ A . This concludes
the argument since now f = g2 ◦ g1.

(2) ⇒ (3): Follows directly from Lemma 3.5.

(3) ⇒ (2): By Lemma 2.6(1), A ∗ΣA ⊆ ΣA ∗A , hence there is only left to check that
A ∗ ΣA ⊇ ΣA ∗ A . Let c ∈ ΣA ∗ A , and assume we have an a ∈ A and a morphism
f : a→ c such that ψc ◦ f is an epimorphism. Using the octahedral axiom we can get the
following commutative diagram, with rows and columns being triangles.

F (c) 0 ΣF (c) ΣF (c)

Σ−1M a c M

ker(ψc ◦ f) a G(c) Σ ker(ψc ◦ f)

f

ψc

ψc◦f

Since the right column is a triangle, we get that M ∈ ΣA , and therefore since the middle
row is a triangle c ∈ A ∗ ΣA .

4 intermediate subcategories

Setup 3.1 will be assumed throughout this section.

Lemma 4.1. Let F ⊆ A be a torsion-free class. Let c ∈ ΣF ∗A , then F (c) ∈ F .
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Proof. Let c ∈ ΣF ∗A , then there is a triangle Σf α−→ c → a, where f ∈ F and a ∈ A .
Since α is a right ΣA -approximation we get that the object F (c) from the minimal right
ΣA -approximation is a direct summand of f , and therefore F (c) ∈ F .

Theorem 4.2 (cf. [ES22, thm. 5.3]). The following statements hold.

1. If F ⊆ A is a torsion-free class then ΣF ∗ A is an A -intermediate category.
Furthermore, F (ΣF ∗A ) = F .

2. Let C be an A -intermediate category such that C ⊆ A ∗ΣA . Then F (C) is torsion-
free. Furthermore, we have that C = ΣF (C) ∗A .

Proof. (1) It follows directly from Lemma 2.6 that ΣF ∗A is an A -intermediate category.
Furthermore, the claim that F (ΣF ∗A ) = F follows from Lemma 4.1, together with the
fact that F (Σf) = f for all f ∈ F .

(2) That C ⊆ ΣF (C) ∗ A follows directly from the fact that there for each c ∈ C is a
triangle

ΣF (c) c G(c) Σ2F (c).

To see that C ⊇ ΣF (C) ∗ A it is enough to check that ΣF (C) ⊆ C. Let c ∈ C. We will
check that ΣF (c) ∈ C. There is a triangle

ΣF (c) c G(c) Σ2F (c).ϕc ψc

Since C ⊆ A ∗ ΣA , Lemma 3.5 says that there exists an object b ∈ A and a morphism
α : b → c such that ψc ◦ α : b → G(c) is an epimorphism. Consider the following
commutative square

ΣF (c) ΣF (c)

b⊕ ΣF (c) c.

( 0
1 ) ϕc

(α ϕc )

Using the octahedral axiom we can complete this into a commutative diagram

0 ΣF (c) ΣF (c)

M b⊕ ΣF (c) c

M b G(c),

( 0
1 ) ϕc

(α ϕc )

( 1 0 ) ψc

δ

where the rows and columns are short triangles. Since the lower right square commutes we
get that δ = ψc ◦ α is an epimorphism. This implies that M ∈ A . Using that the middle
row in the diagram is a triangle we get that b⊕ΣF (c) ∈ C due to C being extension closed.
In particular, this means that ΣF (c) ∈ C given that C is closed under direct summands.
This implies that C = ΣF (c) ∗A .



5. Examples 69

To show that F (C) is a torsion-free class, we first need to check that it is extension
closed. Let c, c′ ∈ C and assume that there is a conflation

F (c) d F (c′)

in A . We just saw that ΣF (c),ΣF (c′) ∈ C, and since C is extension closed this implies
that Σd ∈ C. Since d ∈ A we have d = F (Σd), thus d ∈ F (C). Lastly to show that F (C)
is closed under subobjects, let F (c) ∈ F (C), and let d′ ∈ A be a subobject. This gives a
triangle

a Σd′ ΣF (c) Σa

with a ∈ A . Since C is closed under extensions, Σd′ ∈ C. Given that Σd′ ∈ ΣA , we get
that G(Σd′) = 0 and thus ΣF (Σd′) = Σd′. Therefore d′ = F (Σd′) ∈ F (C).

Corollary 4.3. If ΣA ∗A = A ∗ ΣA then there is a bijection

{C ⊆ T | C is A -intermediate} 1:1←−−→ {F ⊆ A | F torsion-free}
C 7−−−→ F (C)

ΣF ∗A 7−−−→ F

Proof. Follows directly from Theorem 4.2.

Remark 4.4. Corollary 4.3 uses the assumption that ΣA ∗ A = A ∗ ΣA . Notice that
Proposition 3.6 gives some statements that are equivalent to this.

Theorem 4.5. Assume that T is skeletally small. Let F ⊆ A be a torsion-free class, then
the monoid morphism i : M(A ) → M(ΣF ∗A ) induced by the inclusion A → ΣF ∗A

induces an isomorphism
M(A )MF

→M(ΣF ∗A ),

where MF = {[x] ∈M(A ) | x ∈ F}.

Proof. Using Lemma 3.4, this proof is exactly the same as in [ES22, thm. 5.4].

5 Examples

Lemma 5.1 ([HJY13, lem. 3.1]). Let C be a (−w)-CY category for w ∈ N. Then for each
t-structure (X,Y ) the associated heart H = X ∩ ΣY = 0.

Given integers w ≥ 1, n ≥ 1, one can define the negative cluster category as the orbit
category

C−w(An) := Db(kAn)/Σw+1τ.

This is a triangulated category, and it is (−w)-Calabi–Yau, i.e. there is a Serre functor
given by S = Σ−w. In [CSP16, sec. 10] they give a complete combinatorial model of this
category. The indecomposable objects in C−w(An) can be matched with certain diagonals
in an N -gon, where N = (w+1)(n+1)−2. That is, if we label the vertices in the N -gon by
0, ..., N − 1, we can identify an indecomposable object X ∈ C−w(An) as a pair of numbers
X = (a, b), where a and b correspond to the endpoints of the appropriate diagonal. A
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diagonal (a, b), with a < b, corresponds to an indecomposable if w+ 1 | b− a+ 1. We call
these admissible diagonals. See Figure 5.1 for an example of such admissible diagonals.

There is also a combinatorial method to find proper abelian subcategories in C−w(An),
using simple-minded systems. A collection S consisting of n non-crossing admissible
diagonals, with no two diagonals sharing an endpoint, corresponds to a w-simple-minded
system in C−w(An) (see [Jør22, def. 1.2] for a definition). given such a simple-minded
system S , one can obtain the corresponding abelian category ⟨S ⟩ by closing it under
extensions. See Figure 5.1 for an example of such a collection.

12

3

4

5

6 7

8

9

0

Figure 5.1: A simple-minded systems for C−2(A3).

Notice that due to Lemma 5.1 there is no t-structure with a non-trivial heart in any of
the negative cluster categories. This means that the proper abelian subcategories obtained
from simple-minded systems in C−w(An) are not hearts of t-structures.

Example 5.2. Consider C−3(A4), the AR-quiver of which can be seen in Figure 5.2. The
labels of the objects correspond to admissible diagonals of an 18-gon. This is a category
where we can find proper abelian subcategories that satisfy the properties needed to use
Corollary 4.3. Consider the collection of indecomposable objects

S = {(0, 3), (4, 11), (5, 8), (12, 15)}.

This is a 3-simple-minded system. Consider the proper abelian subcategory A := ⟨S ⟩
induced by S . In Figure 5.2 we can see the indecomposable objects of A as those marked
with red discs. Similarly, we can see ΣA in Figure 5.2 marked with blue discs. It is
straightforward to check that A satisfies E2 and that ΣA ∗A = A ∗ ΣA .

(0, 3) (4, 7) (8, 11) (12, 15) (1, 16) (2, 5) (6, 9) (10, 13) (14, 17) (0, 3)

(0, 7) (4, 11) (8, 15) (1, 12) (5, 16) (2, 9) (6, 13) (10, 17) (3, 14)

(7, 14) (0, 11) (4, 15) (1, 8) (5, 12) (9, 16) (2, 13) (6, 17) (3, 10) (7, 14)

(11, 14) (0, 15) (1, 4) (5, 8) (9, 12) (13, 16) (2, 17) (3, 6) (7, 10)

Figure 5.2: AR quiver for C−3(A4). The red discs indicate A , and the blue discs indicate
ΣA .
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Using [Jør22, thm. 4.6] gives A ∼= mod(A), where A = kQ/I with

Q :
4

3 2 1α β

I = ⟨αβ⟩.

Calculating the AR quiver of A results in the following:

2
3 4

1 2 3
2
4

1
2

2
4 3

1
2
4

where

1 ∼ (0, 3) 1
2 ∼ (0, 11)

1
2
4
∼ (0, 15)

2 ∼ (4, 11) 2
4 ∼ (4, 15) 2

3 ∼ (8, 11)

3
2
4 ∼ (8, 15) 4 ∼ (12, 15) 3 ∼ (5, 8).

Using this we can calculate the torsion-free classes of A (see Figure 5.4). By Corollary 4.3
these torsion-free classes will correspond exactly to the A -intermediate subcategories in
C−3(A4). As an example, choose F = add((0, 3), (0, 11), (4, 11), (8, 11)), then C = ΣF ∗A
is an A -intermediate subcategory (see Figure 5.3).

(0, 3) (4, 7) (8, 11) (12, 15) (1, 16) (2, 5) (6, 9) (10, 13) (14, 17) (0, 3)

(0, 7) (4, 11) (8, 15) (1, 12) (5, 16) (2, 9) (6, 13) (10, 17) (3, 14)

(7, 14) (0, 11) (4, 15) (1, 8) (5, 12) (9, 16) (2, 13) (6, 17) (3, 10) (7, 14)

(11, 14) (0, 15) (1, 4) (5, 8) (9, 12) (13, 16) (2, 17) (3, 6) (7, 10)

Figure 5.3: An A -intermediate category of C−3(A4). The red discs indicate A , the green
discs indicate ΣF , and the cyan disc is not in either, but is contained in ΣF ∗A .

Example 5.3. Consider the algebra A := kQ, where

Q : 1 2 3.

The AR-quiver of Db(A) is as follows

· · ·

Σ−1S(2) Σ−1I(1) P (1) ΣP (3) ΣS(2)

Σ−1I(2) P (2) I(2) ΣP (2)

Σ−1P (1) P (3) S(2) I(1) ΣP (1)

· · ·

Note that modA sits inside Db(A) as a proper abelian subcategory since modA is the
heart of the standard t-structure in Db(A), but one can also find other proper abelian
subcategories in Db(A) which are not hearts of t-structures.
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Figure 5.4: Torsion-free classes of A . Each small figure is in the shape of the AR-quiver for
A as described above, and the blue discs indicate the indecomposable objects of the torsion-
free class.

For example, S = {P (3), S(2)} is a 2-orthogonal collection (see [Jør22, def. 1.2] for
a definition). Thus the extension closure ⟨S ⟩ = add(P (3), S(2), P (2)) is a proper abelian
subcategory by [Jør22, thm. A]. Notice that ⟨S ⟩ ∼= mod kA2. It is easy to check that
⟨S ⟩ satisfies E2. This means that the proper abelian subcategory ⟨S ⟩ satisfies Setup 3.1.
Furthermore,

Σ⟨S ⟩ ∗ ⟨S ⟩ = Σ⟨S ⟩ ⊕ ⟨S ⟩ = ⟨S ⟩ ∗ Σ⟨S ⟩.

Since we know that ⟨S ⟩ ∼= mod kA2 we can find torsion-free classes. As an example we
can choose F = add(P (3), P (2)), which would give the corresponding ⟨S ⟩-intermediate
category C = ΣF ∗ ⟨S ⟩ = add(ΣP (3),ΣP (2), P (3), P (2), S(2)).
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Filtrations of Torsion Classes in Proper
Abelian Subcategories

Abstract
In an abelian category A , we can generate torsion pairs from tilting objects of projective
dimension ≤ 1. However, when we look at tilting objects of projective dimension 2, there
is no longer a natural choice of an associated torsion pair. Instead of trying to generate
a torsion pair, Jensen, Madsen and Su generated a triple of extension closed classes that
can filter any objects of A . We generalize this result to proper abelian subcategories.

1 Introduction

Let k be a field. Given a finite dimensional k-algebra Λ let A = mod Λ. Given a tilting
object T ∈ A of projective dimension pd(T ) ≤ 1 (see [HRS96, chap. I.4] for a definition),
we can construct a torsion pair (T ,F) where T = Gen(T ) and F = T ⊥. For each x ∈ A

there exists, by definition, a short exact sequence t ↣ x ↠ f with t ∈ T and f ∈ F .
Another way to describe this is by saying that there exists a filtration 0 ⊆ t ⊆ x of x,
where the quotient of the first inclusion Cok(0 ↣ t) ∈ T and the quotient of the second
inclusion Cok(t↣ x) ∈ F . The reason to formulate it in this way will become clear a bit
later.

If T is a tilting object of projective dimension pd(T ) = 2 there is no longer a natural
choice for a torsion pair in A associated to T , but there will be an associated t-structure
in the derived category Db(A ) whose heart is equivalent to B := mod(End(T )op) (under
the right assumptions, see [BR07, sec. III.4]). Furthermore, B will be derived equivalent
to A . In [JMS13] Jensen, Madsen and Su use this derived equivalence to construct three
extension closed classes E0, E1, E2 ⊆ A with Hom(Ei, Ej) = 0 for i < j, such that each
object in A can be filtered with quotients in Ei.

Theorem ([JMS13, thm. 2]). Given x ∈ A there exists a unique filtration 0 = x0 ⊆ x1 ⊆
x2 ⊆ x3 = x such that Cok(xi ↣ xi+1) ∈ Ei, for i = 0, 1, 2.

In this article we will give a different construction of the classes Ei and generalize this
theorem to the setting of proper abelian subcategories. The concept of proper abelian sub-
categories is a generalization of hearts of t-structures, introduced by Jørgensen in [Jør22].
A proper abelian subcategory A is an abelian category that sits inside a triangulated
category T in such a way that short exact sequences in A correspond exactly to short
triangles in T whose objects are in A , see Definition 2.18.

Instead of using the derived equivalence to construct the classes Ei, we will construct
them by using proper abelian subcategories A and B that satisfy the property that
B ⊆ Σ2A ∗ ΣA ∗A and A ⊆ B ∗ Σ−1B ∗ Σ−2B. With this we can show the following
statement.

75
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Theorem A (=Corollary 3.6). Let T be a triangulated category, and let A ,B be proper
abelian subcategories, where A is a noetherian abelian category, satisfying the property
T (A ,Σ−iA ) = T (B,Σ−iB) = 0 for 1 ≤ i ≤ 5. Assume that B ⊆ Σ2A ∗ ΣA ∗A and
A ⊆ B ∗ Σ−1B ∗ Σ−2B. Then we can define extension closed classes E0, E1, E2 ⊆ A ,
with Hom(Ei, Ej) = 0 for i < j, such that given x ∈ A , there is a filtration of subobjects
0 = x0 ⊆ x1 ⊆ x2 ⊆ x3 = x such that each quotient xi+1/xi = Cok(xi ↣ xi+1) ∈ Ei.

Notice that the condition that T (A ,Σ−iA ) = 0 for 1 ≤ i ≤ 5 is satisfied if A

is the heart of a t-structure (see [HJY13, lem. 3.1]). Furthermore, the condition that
B ⊆ Σ2A ∗ ΣA ∗ A and A ⊆ B ∗ Σ−1B ∗ Σ−2B essentially says that A and B are
not too far apart, which as an example would be the case if B was induced from a tilting
object of projective dimension ≤ 2 as in [JMS13].

In Section 4 we will apply Theorem A to an example of proper abelian subcategories
that cannot be seen as hearts of t-structures.

2 Background

2.1 Abelian Categories

Definition 2.1. Let T be a triangulated category. Given full subcategories X ,Z ⊆ T

define the full subcategory

X ∗T Z = {y ∈ T | there exists a triangle x→ y → z → Σx with x ∈ X , z ∈ Z}.

Similarly we can define ∗ for an abelian category.

Definition 2.2. Let A be an abelian category. Given full subcategories X ,Z ⊆ A define
the full subcategory

X ∗A Z = {y ∈ A | there exists a short exact sequence x↣ y ↠ z with x ∈ X , z ∈ Z}.

Notation 2.3. We will omit the subscript of ∗ if it is clear in which category the operation
is performed.

It is well-known that the operation ∗ is associative, both in the context of triangulated
categories and abelian categories.

Notation 2.4. Let A be an abelian category. Given objects x, y ∈ A and a monomor-
phism f : x↣ y, we write y/x := Cok(f).

Definition 2.5. Let A be an abelian category, and let S ⊆ A be a full subcategory.

• GenA (S) = {x ∈ A | there exists an epimorphism s↠ x with s ∈ S}.

• SubA (S) = {x ∈ A | there exists a monomorphism x↣ s with s ∈ S}.

• S⊥A = {x ∈ A | Hom(S, x) = 0}.

• ⊥A S = {x ∈ A | Hom(x, S) = 0}.

• S is said to be extension closed if S ∗ S ⊆ S.
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• Given n ∈ N let (S)n be the following full subcategory

(S)n :=
{
a ∈ A

∣∣∣∣∣ a has a filtration 0 = a0 ⊆ a1 ⊆ · · · ⊆ an = a

s.t. ai+1/ai ∈ S ∪ {0}

}
.

Then define the extension closure of S by ⟨S⟩A :=
⋃
n∈N(S)n.

Notation 2.6. The subscripts of ⟨−⟩,Gen(−), Sub(−), (−)⊥ and ⊥(−) will be omitted if
it is clear in which abelian category the operation is taking place.

Lemma 2.7. Let A be an abelian category, and let S ⊆ A be a full subcategory. Given
x ∈ (S)n, with corresponding filtration 0 = x0 ⊆ x1 ⊆ · · · ⊆ xn = x, then for all 0 ≤ i < n

the inclusion xi ⊆ x has cokernel x/xi ∈ (S)n−i.

Proof. Consider the following diagram of solid arrows, where ↣ represents the inclusions
given by the filtration, which we then complete into short exact sequences.

xi xn−1 xn−1/xi

xi xn xn/xi

s s,

with s ∈ S ∪ {0}. Using [Buh10, lem. 3.5] we can fill out this diagram with the dashed
arrows, such that the third column is a short exact sequence. In particular we get an
inclusion xn−1/xi ⊆ xn/xi, with cokernel (xn/xi)/(xn−1/xi) ∼= s. Using induction we can
construct a filtration

0 = xi/xi ⊆ xi+1/xi ⊆ · · · ⊆ xn−1/xn ⊆ xn/xi,

where (xj/xi)/(xj−1/xi) ∈ S for i < j ≤ n. In particular, we get that xn/xi ∈ (S)n−i.

Lemma 2.8. Let A be an abelian category, and let S ⊆ A be a full subcategory. Given
n,m ∈ N then (S)m+n = (S)m ∗ (S)n.

Proof. It follows from Lemma 2.7 that (S)m+n ⊆ (S)m ∗ (S)n, thus to show that they are
equal, it is enough to show that (S)m+n ⊇ (S)m ∗ (S)n. Let y ∈ (S)m ∗ (S)n, this means
that there is a short exact sequence

x y z, (2.1)

with x ∈ (S)m and z ∈ (S)n. Since z ∈ (S)n, there is a filtration 0 = z0 ⊆ z1 ⊆ · · · ⊆
zn = z, where zi/zi−1 ∈ S ∪ {0}. Using the inclusion zn−1 ⊆ zn together with (2.1), we
can construct the following pullback diagram of solid arrows

x yn−1 zn−1

x y z

s s.

⌜
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By [Buh10, prop. 2.12], the upper right square is bicartesian, meaning that the columns
can be completed to short exact sequences, as illustrated by the dashed lines, such that
y/yn−1 ∼= z/zn−1 ∈ S ∪ {0}. Notice that x ⊂ yn−1. Using the same trick, an induction
argument will construct a filtration y0 ⊆ y1 ⊆ · · · ⊆ yn = y, where yi/yi−1 ∈ S ∪ {0}.
Furthermore, for each i we get a short exact sequence

x yi zi.

In particular we get such a short exact sequence for i = 0, and since zi = 0 this gives that
x ∼= y0. Notice that this short exact sequence also gives that x ⊆ yi for all i. Combining
the filtration we have of y so far, together with that of x we get a filtration

0 = x0 ⊆ x1 ⊆ · · · ⊆ xm ⊆ y1 ⊆ · · · ⊆ yn = y,

where the cokernel of each inclusion is contained in S ∪ {0}, meaning that y ∈ (S)m+n.
With this we can conclude that (S)m+n = (S)m ∗ (S)n.

Corollary 2.9. Let A be an abelian category, and let S ⊆ A be a full subcategory. Then
⟨S⟩ is an extension-closed subcategory.

Proof. Let y ∈ ⟨S⟩ ∗ ⟨S⟩. This means there is a short exact sequence

x y z

with x, z ∈ ⟨S⟩ = ∪n∈N(S)n. Thus there exists n,m ∈ N such that x ∈ (S)n and z ∈ (S)m.
Lemma 2.8 now gives that y ∈ (S)n+m ⊆ ⟨S⟩.

Lemma 2.10. Let A be an abelian category, and let X ,Y ⊆ A be full subcategories.

1. If X ,Z are closed under quotients, then so is X ∗ Z .

2. If X ,Z are closed under subobjects, then so is X ∗ Z .

Proof. (1) Assume we have an epimorphism v : y ↠ a with a ∈ A and y ∈ X ∗ Z . That
means there is a diagram with x ∈ X and z ∈ Z and the row short exact.

x y z

a

f g

v

Notice that vf factors over its own image, thus giving a commutative diagram of solid
arrows

x y z

Im(vf) a Cok(α).

f

u

g

v w

α β

Since βvf = βαu = 0 there exists a morphism w : z → Cok(α), making the diagram
above commute. Notice that w is an epimorphism since βv is an epimorphism. Hence
Im(vf) ∈ X and Cok(α) ∈ Z and thus a ∈ X ∗ Z .
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(2) Follows by a similar argument to (1).

Lemma 2.11. Let A be an abelian category, and let S ⊆ A be a full subcategory. Then
⟨Gen(S)⟩ is closed under quotients, and ⟨Sub(S)⟩ is closed under subobjects.

Proof. This follows directly from Lemma 2.10 by the use of induction.

Lemma 2.12. Let A be an abelian category, and let S ⊆ A , then the following hold.

1. S⊥ = Gen(S)⊥,

2. S⊥ = ⟨S⟩⊥,

3. ⊥S = ⊥ Sub(S),

4. ⊥S = ⊥⟨S⟩.

Proof. (1) The inclusion S⊥ ⊇ Gen(S)⊥ follows directly from the fact that S ⊆ Gen(S).
For the other inclusion let x ∈ S⊥, and let z ∈ Gen(S). This means that there exists an
epimorphism f : s ↠ z, with s ∈ S. Now assume there is a morphism h : z → x. Since
x ∈ S⊥ we get that hf = 0, and since f is an epimorphism, this implies that h = 0, and
therefore x ∈ Gen(S)⊥.

s z ∈ Gen(S)

x ∈ S⊥.

f

0
h

(2) The inclusion S⊥ ⊇ ⟨S⟩⊥ follows directly from the fact that S ⊆ ⟨S⟩. To show the
other inclusion, notice that S⊥ = (S)⊥

1 , and therefore it will be enough to show that
(S)⊥

n−1 ⊆ (S)⊥
n . Let x ∈ (S)⊥

n−1, and let z ∈ (S)n. By Lemma 2.8 there is a short exact
sequence s1 ↣ z ↠ s2, with s1 ∈ S and s2 ∈ (S)n−1. Assume we have a morphism
f : z → x, that gives us the following diagram

s1 z s2

x.

α β

f
γ

Since x ∈ (S)⊥
n−1 we get that fα = 0, and thus there exists a morphism γ : s2 → x such

that f = γβ. However, s2 ∈ (S)n−1 which implies that γ = 0, hence f = 0.

The proof of (3) and (4) is similar to that of (1) and (2).

Definition 2.13. Let A be an abelian category, and let F , T ⊆ A be full subcategories.
we say that (T ,F) is a torsion pair if

1. HomA (T ,F) = 0,

2. A = T ∗ F .
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Here T is called the torsion part, and F is called the torsion-free part.

We can also define the torsion part and torsion-free part by themselves.

Definition 2.14. Let A be an abelian category, X ⊆ A a full subcategory, then

1. X is called a torsion class if it is closed under quotients and extensions,

2. X is called a torsion-free class if it is closed under subobjects and extensions.

Given a torsion pair (T ,F) in an abelian category A , it is straightforward to see
that the torsion part T will be a torsion class, and that the torsion-free part F will be a
torsion-free class. However, it is important to note that given a torsion class T ′ ⊆ A , it
does not need to be part of a torsion pair, and similar for torsion-free classes. If we want
every torsion class to be part of a torsion pair, we need some assumptions on A .

Definition 2.15. Let A be an abelian category, then A is said to be noetherian if for all
objects x ∈ A , ascending chains of subobjects x1 ⊆ x2 ⊆ x3 ⊆ · · · of x stabilise. That is,
there exists n ∈ N such that xn = xn+i for all i ∈ N.

Theorem 2.16 ([Pol07, lem. 1.1.3]). Let A be a noetherian abelian category, and let
T ⊆ A be a torsion class, then (T , T ⊥) is a torsion pair. Similarly, given a torsion-free
class F ⊆ A then (⊥F ,F) is a torsion pair.

Corollary 2.17. Let A be a noetherian abelian category, and S ⊆ A . Then the pairs
(⟨Gen(S)⟩, S⊥) and (⊥S, ⟨Sub(S)⟩) are torsion pairs.

Proof. This follows directly from Theorem 2.16 and lemmas 2.11 and 2.12.

2.2 Proper Abelian Subcategories

Given an abelian category A , it sits inside its derived category Db(A ) in such a way
that short exact sequences in A induce triangles in Db(A ), and short triangles in Db(A )
with objects in A come from short exact sequences in A . This situation can also be
found many other places. Given a t-structure, the corresponding heart sits inside the
associated triangulated category with this property. Simple-minded systems is another
way to construct examples with this property that are neither hearts of t-structures nor
contained in a derived category. To formalize this property we need the following definition.

Definition 2.18 ([Jør22, def. 1.2]). Let T be a triangulated category, and let A ⊆ T

be a full additive subcategory. A is called a proper abelian subcategory of T , if it is an
abelian category in such a way that x↣α y ↠

β
z is a short exact sequence in A if and only

if there is a triangle x α−→ y
β−→ z → Σx in T .

In a derived category D = Db(A ) the standard heart A has no negative self extensions,
i.e. given a, a′ ∈ A then HomD(a,Σ−na′) = 0 for n ≥ 1. In general, this property is true
for an arbitrary heart in a triangulated category (see [HJY13, lem. 3.1]). This is a very
useful property of hearts, but it does not hold true for all proper abelian subcategories.
Therefore we need the following definition.
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Definition 2.19. Let A ⊆ T be a proper abelian subcategory of a triangulated category
T . For n ∈ N, we say that A satisfies En if HomA (a,Σ−ia′) = 0 for all a, a′ ∈ A and
1 ≤ i ≤ n.

Given two equivalent triangulated categories we can move proper abelian subcategories
between them.

Proposition 2.20. Let T ,D be triangulated categories, and F : T → D an equivalence
of triangulated categories. Given a proper abelian subcategory B ⊆ D , then F−1(B) ⊆ T

is a proper abelian subcategory.

Proof. This is straightforward to check, thus we omit the proof.

3 Filtrations of torsion classes

The following setup will be assumed throughout this section.

Setup 3.1. Let T be a triangulated category. Let A ,B ⊆ T be proper abelian sub-
categories that satisfy E5, such that A ⊆ B ∗ Σ−1B ∗ Σ−2B and B ⊆ Σ2A ∗ ΣA ∗A .
Furthermore, assume that A is noetherian. Define

• E0 = ⟨GenA (A ∩B)⟩A ,

• E1 = A ∩ Σ−1B,

• E2 = ⟨SubA (A ∩ Σ−2B)⟩A .

Lemma 3.2. E⊥A
0 = (A ∩B)⊥A = A ∩ (Σ−1B ∗ Σ−2B).

Proof. First equality: This follows directly from Lemma 2.12.

Second equality: That (A ∩B)⊥A ⊇ A ∩ (Σ−1B ∗ Σ−2B) follows directly from the
fact that B satisfies E2. For the other inclusion let a ∈ (A ∩ B)⊥A . Since A ⊆ B ∗
Σ−1B ∗ Σ−2B, there exists a triangle

Σ−1x b a x,
f

with b ∈ B and x ∈ Σ−1B ∗ Σ−2B. We want to show that f = 0, which would give that
a is a direct summand of x, and thus a ∈ Σ−1B ∗Σ−2B by [IY08, prop. 2.1(1)], implying
the inclusion we are seeking. Since b ∈ B ⊆ Σ2A ∗ ΣA ∗A there exists a triangle

z b ã Σz,g

where ã ∈ A and z ∈ Σ2A ∗ ΣA . This gives the combined diagram

z

Σ−1x b a x.

ã

g

f
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Since A satisfies E2 we get that fg = 0, and therefore g factors through Σ−1x, but

Σ−1x ∈ Σ−2B ∗ Σ−3B ⊆ (A ∗ Σ−1A ∗ Σ−2A ) ∗ (Σ−1A ∗ Σ−2A ∗ Σ−3A ).

Using that A satisfies E5 we get that Hom(z,Σ−1x) = 0, and therefore g = 0. Thus b is a
direct summand of ã, in particular b ∈ A . By assumption a ∈ (A ∩B)⊥A meaning that
f = 0, giving the result we want.

Lemma 3.3. ⊥A E2 = ⊥A (A ∩ Σ−2B) = A ∩ (B ∗ Σ−1B).

Proof. The proof of this is very similar to that of Lemma 3.2 and is therefore omitted.

Corollary 3.4. There are torsion pairs

• (E0,A ∩ (Σ−1B ∗ Σ−2B)),

• (A ∩ (B ∗ Σ−1B), E2).

Proof. This follows directly from Lemmas 3.2 and 3.3 and Theorem 2.16.

Lemma 3.5. There is a filtration of torsion classes 0 ⊆ E0 ⊆ A ∩ (B ∗ Σ−1B) ⊆ A .

Proof. The only inclusion that it is necessary to check is the second inclusion. Notice that
A ∩B ⊆ A ∩(B∗Σ−1B). By Corollary 3.4 we get that A ∩(B∗Σ−1B) is a torsion class,
and is therefore closed under taking quotients and extensions. Thus it follows directly that
E0 = ⟨GenA (A ∩B)⟩A ⊆ A ∩ (B ∗ Σ−1B).

Corollary 3.6. Let x ∈ A , then up to isomorphism there exists a unique filtration of
subobjects 0 = x0 ⊆ x1 ⊆ x2 ⊆ x3 = x such that each quotient xi+1/xi = cok(xi ↣
xi+1) ∈ Ei.

Proof. By Corollary 3.4 we get that (A ∩ (B ∗ Σ−1B), E2) is a torsion pair in A . Thus
there exists a short exact sequence

x2 x e2

with x2 ∈ A ∩ (B ∗ Σ−1B) and e2 ∈ E2. Corollary 3.4 also says that there is a torsion
pair (E0, A ∩ (Σ−1B ∗ Σ−2B)). Therefore, there exists a short exact sequence

x1 x2 e1

with x1 ∈ E0 and e1 ∈ A ∩(Σ−1B ∗Σ−2B). Notice that since A ∩(B ∗Σ−1B) is a torsion
class we get that e1 ∈ A ∩ (B ∗ Σ−1B) ∩ (Σ−1B ∗ Σ−2B) = A ∩ Σ−1B = E1 by [Jør21,
lem. 2.2(ii)].

The uniqueness follows directly from the uniqueness of the short exact sequences cor-
responding to torsion pairs.

Definition 3.7. A tuple (S0,S1,S2) of full subcategories in an abelian category A is
called a torsion triple if

1. HomA(Si,Sj) = 0 for i < j,
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2. A = S0 ∗ S1 ∗ S2.

Corollary 3.8. (E0, E1, E2) is a torsion triple.

Proof. That Hom(Ei, Ej) = 0 for i < j follows directly from the fact that B satisfies
E2. For the second condition, let x ∈ A, then by Corollary 3.6 there is a filtration
0 = x0 ⊆ x1 ⊆ x2 ⊆ x3 = x such that each quotient xi+1/xi ∈ Ei. Thus there exist short
exact sequences

x2 x e2 and e0 x2 e1,

where ei ∈ Ei. This means that x2 ∈ E0 ∗ E1 and thus x ∈ E0 ∗ E1 ∗ E2.

Proposition 3.9. There is a bijection

{torsion triples in A } Φ−−→
{

Pairs of torsion pairs [(T ,F), (T̃ , F̃)]
in A satisfying T ⊆ T̃

}
(S0,S1,S2) 7−→ (S0,S1 ∗ S2), (S0 ∗ S1,S2)

(T ,F ∩ T̃ , F̃)←− [ [(T ,F), (T̃ , F̃)].

Proof. Denote the potential inverse for Φ by Φ′. It is straightforward to check that the
maps take values in the relevant sets.

Let us check that ΦΦ′ = id. Let [(T ,F), (T ′,F ′)] be a pair of torsion pairs such that
T ⊆ T ′. Then

ΦΦ′((T ,F), (T ′,F ′)) = Φ(T ,F ∩ T ′,F ′) = [(T , (F ∩ T ′) ∗ F ′), (T ∗ (F ∩ T ′),F ′)].

Thus we need to check that (F ∩ T ′) ∗F ′ = F and T ∗ (F ∩ T ′) = T ′. We check the first
one of these, and the other one can be shown by a similar argument. Since F ′ ⊆ F we
get that (F ∩ T ′) ∗F ′ ⊆ F . To see the other inclusion, let x ∈ F , then since (T ′,F ′) is a
torsion pair, there is a short exact sequence

t′ ↣ x↠ f ′,

with f ′ ∈ F ′ and t′ ∈ T ′. However, since torsion-free classes are closed under subobjects,
we get that t′ ∈ F . Thus t′ ∈ F ∩ T ′, and therefore x′ ∈ (F ∩ T ′) ∗ F ′.

Let us check that Φ′Φ = id. Let (S0,S1,S2) be a torsion triple. Then

Φ′Φ(S0,S1,S2) = Φ′((S0,S1 ∗ S2), (S0 ∗ S1,S2)) = (S0, (S1 ∗ S2) ∩ (S0 ∗ S1),S2).

We therefore need to check if (S1 ∗ S2) ∩ (S0 ∗ S1) = S1. It is straightforward to see that
the inclusion ⊇ is satisfied. For the other inclusion, let x ∈ (S1 ∗ S2) ∩ (S0 ∗ S1). Thus
there are two short exact sequences s1 ↣ x ↠ s2 and s0 ↣ x ↠ s′

1, with si ∈ Si and
s′

1 ∈ S1. Consider the following diagram of solid arrows.

s0 x s′
1

s1 x s2.

f

η

g

α β

Notice that βf = 0 due to the definition of a torsion triple. Thus there exists a morphism
η : s0 → s1 such that f = αη. However, η = 0 due to the same definition, implying that
f = 0. Thus, g is an isomorphism, making x ∼= s′

1 ∈ S1.
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4 Examples

4.1 Jensen-Madsen-Su

Let k be a field. Let A be a noetherian abelian category of the type studied in [JMS13],
that is, A is either the module category of a finite-dimensional k-algebra, or it is a noethe-
rian abelian k-category with finite homological dimension and Hom-finite derived category
Db(A ), such that there is a locally noetherian abelian Grothendieck k-category A ′ with
finite homological dimension such that A ⊆ A ′ is the subcategory of noetherian objects
(see [JMS13, sec. 0]).

Now consider a tilting object T ∈ A of homological dimension 2. By this, we mean an
object T ∈ A that induces a derived equivalence

F = RHom(T,−) : Db(A )→ Db(B̂),

where B̂ = mod(End(T )op), such that H iFX = Exti(T,X) = 0 for all X ∈ A and i ≥ 3.
Denote the quasi-inverse functor by G : Db(B̂)→ Db(A ). Notice that B̂ sits inside Db(B̂)
as a proper abelian subcategory, and since F is a derived equivalence we can pull B̂ back
to be considered as a proper abelian subcategory of Db(A ), see Proposition 2.20. Let
B = F−1(B̂).

To show that we are in a setup similar to that of Setup 3.1, we need the following
lemma.

Lemma 4.1. Using the notation from above, we have that A ⊆ B ∗ Σ−1B ∗ Σ−2B and
B ⊆ Σ2A ∗ ΣA ∗A .

Proof. We start by proving the first inclusion. Let x ∈ A . Using the assumption that T
has projective dimension 2, it follows that H iRHom(T, x) = Exti(T, x) = 0 for i ̸= 0, 1, 2.
Thus by the use of soft truncations one can see that RHom(T, x) is equivalent to a three
term complex concentrated in cohomological degrees 0, 1, 2, i.e. x ∈ B ∗ Σ−1B ∗ Σ−2B.

To show the second inclusion, recall that A is the heart of the standard t-structure
(D≥0,D<0) in Db(A ). For i ∈ Z denote D≥i = ΣiD≥0, and D<i = ΣiD<0. Similarly, B̂ is
the heart of the standard t-structure (P≥0,P<0) in Db(B̂). For i ∈ Z denote P≥i = ΣiP≥0,
and P<i = ΣiP<0. Since T has projective dimension 2 is follows that F (D≥0) ⊆ P≥−2.
Thus

F (D≥0)⊥ ⊇ P⊥
≥−2 =⇒ F (D⊥

≥0) ⊇ P⊥
≥−2 =⇒ F (D<0) ⊇ P<−2

=⇒ D<0 ⊇ G(P<−2) =⇒ D<3 ⊇ G(P<1),
(4.1)

where the second implication follows from the fact that t-structures are torsion pairs, and
the last implication follows by applying Σ3. A similar calculation can be done for the
torsion-free parts.

F (D<0) ⊆ P<0 =⇒ ⊥F (D<0) ⊇ ⊥P<0 =⇒ F (⊥D<0) ⊇ ⊥P<0

=⇒ F (D≥0) ⊇ P≥0. =⇒ D≥0 ⊇ G(P≥0).
(4.2)

Combining (4.1) and (4.2) now gives that

G(B̂) ⊆ G(P≥0) ∩G(P<1) ⊆ D≥0 ∩D<3.
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This means that objects in B = G(B̂) have homology concentrated in homological degrees
0, 1, 2. Thus, B ⊆ Σ2A ∗ ΣA ∗A .

In [JMS13] Jensen, Madsen and Su define collections of objects

F i = {x ∈ A | HjF (x) = 0 for j ̸= i},

for i ≥ 0. Note that F i = 0 for i ≥ 3. It is straightforward to check that F i =
A ∩ Σ−iB. From this they build three other collections of objects E i, which by [JMS13,
lem. 17 & 22] can be described as E0 = ⟨Gen(F0)⟩, E1 = F1 and E2 = ⟨Sub(F2)⟩. This
places us in the situation of Setup 3.1 so [JMS13, thm. 2] follows from our Corollary 3.6.

4.2 Negative Cluster Categories

Negative cluster categories are examples of triangulated categories in which there are
proper abelian subcategories, none of which are hearts of t-structures. Furthermore, these
categories also have the advantage that there is a full combinatorial model describing some
of them, see [CSP16, sec. 10]. Here we will give a short introduction.

Let n,w ∈ N = {1, 2, 3, . . . }, and define the negative cluster category as the orbit category

C−w(An) := Db(kAn)/Σw+1τ,

where τ refers to the Auslander-Reiten translation. This triangulated category is −w-
Calabi–Yau (see [Kel05, sec. 4, sec. 8.4]), which means that Σ−w is a Serre functor. Let
N = (w+1)(n+1)−2 and consider the N -gon, say PN . Labelling the corners by 0, ..., N−1
anticlockwise we can denote each diagonal in PN by a pair of numbers (a, b) with a < b.
We say that the diagonal (a, b) is admissible if w + 1 | b − a + 1. There is a one to one
correspondence between indecomposable objects in C−w(An) and admissible diagonals in
the N -gon.

One way to find proper abelian subcategories in this setting is to create them from
simple minded systems (see [Jør22, def. 1.2] for a definition). Given a simple minded
system S , a proper abelian subcategory is generated by taking the extension closure
⟨S ⟩, see [Jør22, thm. A]. In the setting of negative cluster categories, all simple minded
systems can be classified combinatorially, see [CSP20, prop. 2.13] and [CS15, thm. 6.5]. In
C−w(An) a collection of n admissible diagonals corresponds to a w-simple minded system if
no two diagonals in the collection cross and there are no two diagonals sharing an endpoint.
See Figure 4.1 for two examples of such collections.

Furthermore, it is possible to describe triangles and morphisms between objects using
the combinatorial model. All of this can be found in [CSP16, sec. 10].

The example. Let w = 6, n = 5, and consider the negative cluster category C−w(An)
which we can work with combinatorially as described above, using an N -gon, where N =
(w+ 1)(n+ 1)− 2 = 40. In Figure 4.2 we can see a segment of the AR quiver of C−w(An).
Now consider the following two simple minded systems

SA = {(28, 34), (14, 20), (21, 27), (1, 7), (0, 13)}
SB = {(23, 29), (7, 13), (22, 35), (1, 14), (15, 21)}.
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Figure 4.1: two simple-minded systems in C−2(A3).

Using these we construct proper abelian subcategories A = ⟨SA ⟩ and B = ⟨SB⟩, see
Figure 4.2. It is straightforward to check that both A and B satisfy E5. Similarly, it is
straightforward to check that A ⊆ B∗Σ−1B∗Σ−2B and B ⊆ Σ2A ∗Σ1A ∗A . Lastly for
Setup 3.1 to be satisfied, A needs to be noetherian. However, notice that A is isomorphic
to the module category of a path algebra, that is A ∼= mod kQ where Q is the quiver

Q : 1 2 3 4 5.

Thus we get that A is a noetherian abelian category, and thereby Setup 3.1 is satisfied.
With this, the intersections needed can be described as

E0 = ⟨GenA (A ∩B)⟩A = {(1, 7), (7, 13)},
E1 = A ∩ Σ−1B = {(0, 34), (0, 20), (14, 20), (14, 34), (21, 34), (0, 13), (28, 34)},
E2 = ⟨SubA (A ∩ Σ−2B)⟩A = {(21, 27)},

see Figure 4.2. This means that we are in a setup where Corollary 3.6 can be used. To
see a specific example of a filtration of an element consider x = (7, 27) ∈ A . This element
has the filtration

0 ⊆ (7, 13) ⊆ (7, 20) ⊆ (7, 27) = x.

Using the combinatorial model for C−w(An) we can see that there are short triangles,

(7, 13) (7, 20) (14, 20) and (7, 20) (7, 27) (21, 27).

Since all the elements of the two short triangles are in A , this implies that we have
corresponding short exact sequences

(7, 13) (7, 20) (14, 20) and (7, 20) (7, 27) (21, 27),

where (7, 13) ∈ E0, (14, 20) ∈ E1, and (21, 27) ∈ E2. Thus the given filtration of x is indeed
of the form stated by Corollary 3.6.

Acknowledgement. I would like to thank my supervisor Peter Jørgensen for all of his
helpful guidance.

This project was supported by grant no. DNRF156 from the Danish National Research
Foundation.
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(0, 6) (7, 13) (14, 20) (21, 27) (28, 34) (1, 35) (2, 8) (9, 15) (16, 22) (23, 29)

(0, 13) (7, 20) (14, 27) (21, 34) (1, 28) (8, 35) (2, 15) (9, 22) (16, 29) (23, 36)

(13, 33) (0, 20) (7, 27) (14, 34) (1, 21) (8, 28) (15, 35) (2, 22) (9, 29) (16, 36)

(20, 33) (0, 27) (7, 34) (1, 14) (8, 21) (15, 28) (22, 35) (2, 29) (9, 36) (3, 16)

(20, 26) (27, 33) (0, 34) (1, 7) (8, 14) (15, 21) (22, 28) (29, 35) (2, 36) (3, 9)

Figure 4.2: This is a segment of the AR quiver of C−6(A5). The objects in A are the ones
surrounded by a red line, and the objects of B are the ones surrounded by a blue line. E0 is
indicated by a green fill, E1 is indicated by a red fill, and E2 is indicated by a gray fill.
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Project D

Homology for Proper Abelian
Subcategories

1 Introduction

Consider the derived category D(A ) of an abelian category A . Then each object X ∈
D(A ) can be represented by a complex

· · · X2 X1 X0 X−1 X−2 · · · .d2 d1 d0 d−1

From such a complex, we can define its homology groups. That is, given some i ∈ Z define
the i’th homology Hi(X) = Ker di/ Im di+1. One of the main features of homology is that
each triangle X → Y → Z → ΣX induces a long exact sequence of homology

· · · Hi+1Z HiX HiY HiZ Hi−1X · · · .

Using t-structures, the concept of homology has been generalized to a setting beyond
what we have just seen. Given a triangulated category T , let τ = (T ,F) be a t-structure
with heart Hτ . A t-structure comes with two truncation functors τ≥0 : T → T and
τ<0 : T → F . Furthermore, define τ≥i = Σiτ≥0Σ−i, and τ<i = Σiτ<0Σ−i. Another way
to think about these, is that τ≥i and τ<i are the truncation functors corresponding to the
t-structure (ΣiT ,ΣiF).

Using these functors we can define the i’th homology of an object X ∈ T as Hi(X) =
Σ−iτ≥iτ<i+1X = τ≥0τ<1Σ−iX. Notice that different t-structures can give different homol-
ogy.

Essentially, the homology functor is a very nice functor H0 : T → A from a tri-
angulated category T to an embedded abelian category A . However, there are many
triangulated categories with nicely embedded abelian subcategories for which there is no
corresponding t-structure. As an example, consider the abelian category A := mod(kA3)
for some field k, together with the wide subcategory mod(kA2) ⊆ A . We know that A

is a heart of the standard t-structure inside Db(A ), however, there exists no t-structure
whose heart is equivalent to mod(kA2).

There are also triangulated categories in which there are no non-trivial t-structures.
An example of such a category is the negative cluster category. However, we can usually
find many nicely embedded abelian categories in a negative cluster category, such as those
induced by simple-minded systems. In the examples above, generalizing any of the above
methods to construct something that acts like homology is not straightforward.

But before we generalize homology to these cases, we must discuss what we mean
by “nicely embedded”. The categories from above are all examples of proper abelian
subcategories.

Definition 1.1. Let T be a triangulated category and A ⊆ T be a full additive sub-
category. Then A is called a proper abelian subcategory if it is an abelian category in
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such a way that x ↣ y ↠ z is a conflation in A if and only if there exists a triangle
x→ y → z → Σx in T with objects x, y, z ∈ A .

Notice that proper abelian subcategories are not extension-closed by definition; how-
ever, we will only be working with proper abelian subcategories that are extension-closed.

Consider an abelian category A and its bounded derived category Db(A ), then the
standard t-structure is given by τ = (T ,F) where

T = · · · ∗ Σ2A ∗ ΣA ∗A and F = Σ−1A ∗ Σ−2A ∗ Σ−3A ∗ · · · .

Now assume that the only objects in Db(A ) we care about, are complexes which are
concentrated in degrees −2, . . . , 2, i.e. objects in C = Σ2A ∗ ΣA ∗ · · · ∗ Σ−2A . Then, to
do the kinds of truncations associated with the t-structure τ on these objects, we do not
need T and F to “extend” infinitely to either side. We just need it to cover C. With this,
we can prove the following result:

Theorem 1.2 (= Theorem 4.5). Let A be a proper abelian subcategory of a triangulated
category T . Let n,m ∈ Z with n ≥ m, and assume that that Hom(A ,Σ−iA ) = 0 for
1 ≤ i ≤ n −m + 3. Then there exist functors Hi : T → A , such that given a triangle
c→ c′ → c′′ → Σc with object c, c′, c′′ ∈ ΣnA ∗ · · · ∗ΣmA . Then the functors Hi induce a
long exact sequence

0→ Hnc→ Hnc
′ → Hnc

′′ → Hn−1c→ · · · → Hm+1c
′′ → Hmc→ Hmc

′ → Hmc
′′ → 0.

The notion of t-structures, and the homology of t-structures is due to Beilinson, Bernstein,
and Deligne [BBD83]. Throughout this paper we will use a similar strategy as used in
[BBD83], and some of the proofs will look similar.

Notation

Let X be a full subcategory category of the triangulated category T and let n,m ∈ Z.
Define Σ[n,m]X = ΣnX ∗ · · · ∗ ΣmX , by convention if n < m we let Σ[n,m]X = 0.

2 Background

Throughout this section, let T be a triangulated category.

2.1 Extriangulated categories

Extriangulated categories were defined by Nakaoka and Palu in [NP19]. It is a simultane-
ous generalization of exact and triangulated categories. For the full definition, see [NP19,
Def. 2.12].

An extriangulated category is a triple (C ,E, s), where C is an additive category, E :
C op × C → Ab is a biadditive functor, and s is an additive realization of E.
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Remark 2.1. Let C be an extriangulated category, and let X ⊆ C be a subcategory,
that is closed under extensions. By [NP19, rem. 2.18], X will again be an extriangulated
category if one defines the extriangulated structure as a restriction of the structure on
C . For the rest of this article, we will assume that it is given that an extension-closed
subcategory has an extriangulated structure, which is given by restriction.

Definition 2.2 (Exact sequences). Let C be an extriangulated category. A sequence

x0 x1 · · · xn
f0 f1 fn−1

is called exact if there exist objects ei ∈ C for 0 ≤ i ≤ n+ 1 and conflations

ei xi ei+1
gi hi

for 0 ≤ i ≤ n, such that fi = gi+1 ◦ hi. This can also be illustrated as the following
commutative diagram.

e0 e1 e2 · · · en en+1

x0 x1 · · · xn

g0 g1 gn

f0

h0

f1

h1

fn−1

hn

where consecutive ↣↠ are conflations in C .

Remark 2.3. Given an abelian category A , the exact sequences from the above definition
align with the exact sequences we are used to.

3 Defining Homology functors

Throughout this section let T be a triangulated category, and let n,m ∈ Z.

3.1 The E condition.

Definition 3.1. Let X ⊆ T be a subcategory, n ∈ N or n =∞ then X is said to satisfy
En if Hom(X ,Σ−iX ) = 0 for 0 < i ≤ n.

An example of a category that satisfies all En properties is the heart of a t-structure.

Lemma 3.2. Let H be the heart of a t-structure (T ,F) in T , then H satisfies E∞.

Proof. Recall that H ⊆ ΣF , and ΣiH ⊆ ΣT for all i > 0. Since (ΣT ,ΣF) is a t-structure,
we get that Hom(ΣT ,ΣF) = 0. Thus, it follows that H satisfies E∞.

Proper abelian subcategories do not, in general, satisfy E∞. However, when work-
ing with proper abelian subcategories, we quickly realize that the vanishing of negative
extensions is very useful, and many results require an En condition to be satisfied.

Lemma 3.3. Let X ⊆ T be a subcategory let n > m, and assume that X satisfies En−m,
then Σ[n,m]X is closed under direct summands.
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Proof. This follows directly from [IY08, prop. 2.1(1)] with the use of induction.

Lemma 3.4. Assume that n > 1, let X be an extension-closed subcategory of T satisfying
En−1 then X ∗ ΣnX ⊆ ΣnX ∗ X .

Proof. Let c ∈ X ∗ ΣnX , meaning that there exists a triangle

x c Σnx′ Σx,α

with x, x′ ∈ X . Since X satisfies En−1 we get that α = 0, and thus c ∼= x ⊕ Σnx′ ∈
X ⊕ ΣnX ⊆ ΣnX ∗ X .

For proper abelian subcategories, the above lemma is also true for n = 1

Lemma 3.5 ([Jør21, lem. 4.1]). Let A ⊆ T be a proper abelian subcategory, then A ∗
ΣA ⊆ ΣA ∗A .

Corollary 3.6 (cf. [Jør21, thm. D]). Let X ⊆ T be an additive and extension-closed
subcategory satisfying E2. Then X is a proper abelian subcategory if and only if ΣX ∗ X
is extension-closed.

Proof. The only if part is given by Lemma 3.5. For the other direction, assume that
ΣX ∗ X is extension-closed. Then

X ∗ ΣX ⊆ (ΣX ∗ X ) ∗ (ΣX ∗ X ) ⊆ ΣX ∗ X ,

Thus [Jør21, thm. D] gives that X is a proper abelian subcategory.

Lemma 3.7. Let m < n and let A be an extension-closed proper abelian category of T ,
satisfying En−m, then Σ[n,m]A is an extension-closed additive subcategory of T . Espe-
cially, Σ[n,m]A is an extriangulated category.

Proof. Since Σ[n,m]A = ΣmΣ[n−m,0]A , we can assume without loss of generality that
m = 0. By Lemmas 3.4 and 3.5 we know that A ∗ ΣkA ⊆ ΣkA ∗ A for all n ≥ k ≥ 0,
thus by using this multiple times we get that

ΣkA ∗ · · · ∗A ∗ ΣkA ⊆ ΣkA ∗ ΣkA ∗ Σk−1A ∗ · · · ∗A .

Using this fact multiple times, we get that

Σ[n,0]A ∗ Σ[n,0]A = (ΣnA ∗ · · · ∗A ) ∗ (ΣnA ∗ · · · ∗A )
⊆ (ΣnA ∗ ΣnA ) ∗ · · · ∗ (A ∗A )
⊆ ΣnA ∗ · · · ∗A

= Σ[n,0]A .

Hence, Σ[n,0]A is extension-closed and thereby also closed under direct sums. Therefore,
Σ[n,0]A is a additive subcategory of T . It follows by [NP19, rem. 2.18] that Σ[n,0]A is an
extriangulated category.
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3.2 Truncation functors

For the rest of this section, we will assume the following setup.

Setup 3.8. Let T be a triangulated category and A ⊆ T be an extension-closed proper
abelian subcategory. Let m,n, k, l ∈ Z.

Lemma 3.9. Let m ≤ k ≤ n, and assume that A satisfies En−m+1. Given c ∈ Σ[n,m]A ,
then up to isomorphism there exists a unique triangle

τ
(n,m)
≥k c c τ

(n,m)
<k c Στ (n,m)

≥k c,

with τ
(n,m)
≥k c ∈ Σ[n,k]A and τ

(n,m)
<k c ∈ Σ[k−1,m]A . Furthermore, the assignments c 7→

τ
(n,m)
≥k c and c 7→ τ

(n,m)
<k c induce functors.

Proof. The existence follows directly by the definition of ∗. Assume there is another such
triangle b→ c→ d→ Σb, and consider the following diagram of solid arrows.

Σ−1τ
(n,m)
<k c τ

(n,m)
≥k c c τ

(n,m)
<k c

Σ−1d b c d

α0

g

α1

f

α2

α′
0 α′

1
f ′

α′
2

Since α′
2α1 = 0, the dashed arrows in the diagram above exist, making the diagram

commute. That the diagram is commutative means that α1f
′f = α′

1f = α1, and thus
α1(f ′f − id) = 0. Consider the following diagram of solid arrows.

τ
(n,m)
≥k c

Σ−1τ
(n,m)
<k c τ

(n,m)
≥k c c τ

(n,m)
<k c.

f ′f−id

0
β

α0 α1 α2

Since α1(f ′f − id) = 0 there exists a morphism β making the above diagram commute.
Due to A satisfying En−m+1 we get that β ∈ Hom(τ (n,m)

≥k c,Σ−1τ
(n,m)
<k c) = 0, thus f ′f = id.

A similar argument shows that ff ′ = id, which means that f is an isomorphism. Using
the 5-lemma gives that d ∼= τ

(n,m)
<k c.

To check that τ (n,m)
≥k and τ

(n,m)
<k induce functors, let x, y ∈ Σ[n,m]A and a morphism

f : x→ y be given. Consider the following diagram of solid arrows.

τ
(n,m)
≥k x x τ

(n,m)
<k x Στ (n,m)

≥k x

τ
(n,m)
≥k y y τ

(n,m)
<k y Στ (n,m)

≥k y.

αx

η

βx

f µ

αy βy

Since A satisfies En−m+1 it follows that βyfαx = 0, hence the dashed morphisms η, µ in
the diagram above exist. We want to check that η and µ are unique. The argument for
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the uniqueness of the two morphisms is very similar; therefore, we will only show that η
is unique.

Assume that there exists another morphism η′ : τ (n,m)
≥k x → τ

(n,m)
≥k y, such that αyη′ =

fαx, and consider the following diagram of solid arrows.

τ
(n,m)
≥k x

Σ−1τ
(n,m)
<k y τ

(n,m)
≥k y y τ

(n,m)
<k y.

η−η′
0

ξ

γy αy βy

Since αy(η − η′) = αyη − αyη
′ = fαx − fαx = 0 there exists a morphism ξ making

the above diagram commute. However Hom(τ (n,m)
≥k x,Σ−1τ

(n,m)
<k y) = 0 since A satisfies

En−m+1. This means that η − η′ = γyξ = 0, hence η = η′.
With this, we can now define τ (n,m)

≥k f = η and τ
(n,m)
<k f = µ.

Notation 3.10. Using the notation from Lemma 3.9, for the rest of the article we will
denote by τ

(n,m)
≥k : Σ[n,m]A → Σ[n,k]A the functor that assigns c 7→ τ

(n,m)
≥k c. Similar, we

will denote by τ (n,m)
<k : Σ[n,m]A → Σ[k−1,m]A the functor that assigns c 7→ τ

(n,m)
<k c.

For convenience, we will also define the functors τ (n,m)
>k := τ

(n,m)
≥k+1 and τ

(n,m)
≤k := τ

(n,m)
<k+1 .

Corollary 3.11. Given integers m′ < n′ and m < n, let N = max(n, n′)−min(m,m′)+1,
and assume that A satisfies EN . If x ∈ Σ[n,m]A ∩Σ[n′,m′]A then τ

(n,m)
≥k x ∼= τ

(n′,m′)
≥k x and

τ
(n,m)
<k x ∼= τ

(n′,m′)
<k x.

Proof. Notice that the truncation triangles

Σ−1τ
(n,m)
<k x τ

(n,m)
≥k x x τ

(n,m)
<k xα

and
Σ−1τ

(n′,m′)
<k x τ

(n′,m′)
≥k x x τ

(n′,m′)
<k x.α′

both are truncation triangles for x in Σ[max(n,n′),min(m,m′)]A at degree k. Thus, the result
follows by Lemma 3.9.

Remark 3.12. So far, superscripts have been used for truncations to indicate where
the truncations are taking place. Corollary 3.11 essentially says that under the correct E
condition these truncations will coincide. Thus, from now on, we will omit the superscripts
of truncations wherever they are not essential.

Lemma 3.13. Let n ≥ k ≥ m ≥ l and assume that A satisfies En−l+1, then

(Σ[n,m]A ) ∩ (Σ[k,l]A ) = (Σ[k,m]A ).

Proof. Let x ∈ (Σ[n,m]A ) ∩ (Σ[k,l]A ). Since x ∈ Σ[n,m]A there is a truncation triangle

τ>kx x τ≤kx Στ>kx,α β
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with τ>kx ∈ Σ[n,k+1]A and τ≤kx ∈ Σ[k,m]A . However, since x ∈ Σ[k,l]A and A satisfies
En−l we have that α = 0. Thus x is a direct summand of τ≤kx, and since Σ[k,m]A is
closed under direct summands by Lemma 3.3, we get that x ∈ Σ[k,m]A .

Lemma 3.14. Assume that A satisfies En−m+1, and x ∈ Σ[n−1,m]A , then τ≥k+1Σx ∼=
Στ≥kx and τ≤k+1Σx ∼= Στ≤kx.

Proof. Let x ∈ Σ[n−1,m]A , then there is a truncation triangle

τ
(n−1,m)
≥k x x τ

(n−1,m)
<k x Στ (n−1,m)

≥k x

in Σ[n−1,m]A . By applying Σ this induces a triangle in Σ[n,m+1]A

Στ (n−1,m)
≥k x Σx Στ (n−1,m)

<k x Σ2τ
(n−1,m)
≥k x.

Since Σx ∈ Σ[n,m+1]A , and Στ (n−1,m)
≥k x ∈ Σ[n,k+1]A , and Στ (n−1,m)

<k x ∈ Σ[k,m+1]A , this
triangle is isomorphic to the truncation triangle

τ
(n,m+1)
≥k+1 Σx Σx τ

(n,m+1)
<k+1 Σx Στ (n,m+1)

≥k+1 Σx,

by Lemma 3.9, thereby proving the statement.

Lemma 3.15. Assume that A satisfies En−m+2, and that m ≤ l ≤ k ≤ n. If x ∈ Σ[n,m]A

then τ≥lτ≤kx = τ≤kτ≥lx.

Proof. Consider the following diagram.

τ>kx

τ≥lx x τ<lx

τ≤kx

β0

0γ

α0 α1

β1

where the middle row and the middle column are truncation triangles. Since A satisfies
En−m+1 and l ≤ k the composition α1β0 = 0. Thus β0 factors through α0, meaning that
there exists a morphism γ : τ>kx → τ≥lx such that β0 = α0γ. Next, use the octahedral
axiom on the composition α0γ to get the following diagram of triangles.

τ>kx τ>kx 0

τ≥lx x τ<lx

z τ≤kx τ<lx

γ β0
α0

ϵ

α1

β1

δ

We now claim that τ≥lτ≤kx = z = τ≤kτ≥lx. Notice that

z ∈ (Σ[n,l]A ) ∗ (Σ[n+1,k+2]A ) ⊆ Σ[n+1,l]A ,
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and
z ∈ (Σ[l−2,m−1]A ) ∗ (Σ[k,m]A ) ⊆ Σ[k,m−1]A .

By Lemma 3.13
z ∈ Σ[n+1,l]A ∩ Σ[k,m−1]A = Σ[k,l]A .

However, this implies that the triangle

τ>kx τ≥lx z
γ ϵ

is the unique truncation triangle (see Lemma 3.9) that splits τ≥lx at degree k. i.e., the
following triangle

τ>kτ≥lx τ≥lx τ≤kτ≥lx.
γ′

ϵ

Thus z ∼= τ≤kτ≥lx. Using a similar argument, one obtains that z ∼= τ≥lτ≤kx.

Definition 3.16 (Homology). Assume that A satisfies En−m+1, and let m ≤ k ≤ n.
Given x ∈ Σ[n,m]A define H(n,m)

k (x) = Σ−kτ≥kτ≤kx ∈ A .

Remark 3.17. The superscript of H(n,m)
k is omitted if the interval is given or implied.

Lemma 3.18. Assume that A satisfies En−m+1 for m < k < n. Given x ∈ Σ[n−1,m]A

then H
(n,m)
k Σx ∼= H

(n,m)
k−1 x.

Proof. Let x ∈ Σ[n−1,m]A and calculate

H
(n,m)
k Σx = Σ−kτ

(n,m)
≥k τ

(n,m)
≤k Σx

∼= Σ−kτ
(n,m+1)
≥k τ

(n,m+1)
≤k Σx by Corollary 3.11

∼= Σ−kτ
(n,m+1)
≥k Στ (n−1,m)

≤k−1 x by Lemma 3.14
∼= Σ−(k−1)τ

(n−1,m)
≥k−1 τ

(n−1,m)
≤k−1 x by Lemma 3.14

∼= Σ−(k−1)τ
(n,m)
≥k−1τ

(n,m)
≤k−1x by Corollary 3.11

= H
(n,m)
k−1 x.

4 Exactness of homology

The following setup will be assumed throughout this section.

Setup 4.1. Let T be a triangulated category and A ⊆ T an extension-closed proper
abelian subcategory. Let n,m, k ∈ Z with n ≥ m and assume that A satisfies En−m+2.

Lemma 4.2. Assume that m ≤ k ≤ n, and let c → c′ → c′′ → Σc be a triangle with
elements in Σ[n,m]A such that τ<kc = 0, then the induced sequence

τ≥kc τ≥kc
′ τ≥kc

′

is a conflation in Σ[n,k]A .
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Proof. The triangle induces the following diagram of solid arrows, where each column is
a truncation triangle.

τ≥kc τ≥kc
′ τ≥kc

′′ Στ≥kc Στ≥kc
′ Στ≥kc

′′

c c′ c′′ Σc Σc′ Σc′′

0 τ<kc
′ τ<kc

′′ 0 Στ<kc′ Στ<kc′′

τ≥kf

ϕ ϕ′ ϕ′′

f g

ψ′

h

ψ′′

τ<kg

Since τ<kc = 0 we have that ϕ is the identity, and thus it is clear that the dashed arrow
exists (the dashed arrow is the composition hϕ′′). Considering the octahedral axiom used
on the composition ϕ′τ≥kf , the following diagram is obtained.

τ≥kc τ≥kc
′ z Στ≥kc

c c′ c′′ Σc

0 τ<kc
′ τ<kc

′ 0,

τ≥kf γ

ϕ′ α

δ

f g

ψ′ β

(4.1)

where each row and column is a triangle. From the top row, we can deduce that

z ∈ (Σ[n,k]A ) ∗ (Σ[n+1,k+1]A ) ⊆ Σ[n+1,k]A .

Thus the triangle from the third column of (4.1) is a truncation triangle in Σ[n+1,m]A .
Since c′′ ∈ Σ[n,m]A Corollary 3.11 gives that τ≥kc

′′ ∼= z and τ<kc
′ ∼= τ<kc

′′. That is, we
have a commutative diagram

τ≥kc
′′ c′′ τ<kc

′′

z c′′ τ<kc
′,

ϕ′′

ξ0

ψ′′

ξ1

α β

where ξ0 is an isomorphism. Considering this diagram, we can construct Diagram 4.1, in
which every square, and the middle triangle, commutes. For

τ≥kc τ≥kc
′ τ≥kc

′′ Στ≥kc
τ≥kf τ≥kg

to be a triangle, it is enough to show that the top triangle commutes, i.e., that γ = ξ0τ≥kg.
Calculate

αξ0τ≥kg = idϕ′′τ≥kg = gϕ′ = αγ,

and thus α(ξ0τ≥kg − γ) = 0. Therefore, ξ0 τ≥kg − γ factors through Σ−1τ<kc
′.

τ≥kc
′

Σ−1τ<kc
′ z c′′ τ<kc

′

ξ0τ≥kg−γ

0η

α β
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Σ−1τ<kc
′

z

τ≥kc τ≥kc
′ τ≥kc

′′ Στ≥kc

c′′

c c′ c′′

τ<kc
′

τ<kc τ<kc
′ τ<kc

′′

δ

ξ0

ϕ

τ≥kf

ϕ′

τ≥kg

γ

ϕ′′

α

β

ψ

f

ψ′

g

g

ψ′′

ξ1

τ<kf τ<kg

Diagram. 4.1: A diagram using in the proof of Lemma 4.2

Since A satisfies En−m+1 we get that Hom(τ≥kc
′,Σ−1τ<kc

′) = 0 and thus η = 0. With
this we get that γ = ξ0τ≥kg.

Lemma 4.3. Let c → c′ → c′′ → Σc be a triangle with c, c′, c′′ ∈ Σ[n,m]A . Then, there
are exact sequences

Σkay Σdv

τ≥kc τ≥kc
′ τ≥kc

′′ Στ<kc Στ<kc′ Στ<kc′′,

bz Σkaw

where bz ∈ Σ[n,k]A , and Σkaw,Σkaw ∈ ΣkA , and Σdv ∈ Σ[k,m+1]A . Consecutive ↣↠
are conflations in Σ[n,m+1]A .

Proof. Consider the following diagram in which each column is a truncation triangle.

Σ[n,k]A ∋ τ≥kc τ≥kc
′ τ≥kc

′′ Στ≥kc Στ≥kc
′ Στ≥kc

′′

Σ[n,m]A ∋ c c′ c′′ Σc Σc′ Σc′′

Σ[k−1,m]A ∋ τ<kc τ<kc
′ τ<kc

′′ Στ<kc Στ<kc′ Στ<kc′′

τ≥kf

ϕ

τ≥kg

ϕ′ ϕ′′

f

ψ

g

ψ′

h

ψ′′ Σψ

τ<kf τ<kg
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Using the octahedral axiom on the composition fϕ gives the diagram

τ≥kc τ≥kc 0 Στ≥kc

c c′ c′′ Σc

τ<kc z c′′ Στ<kc.

ϕ fϕ

f h

Σψ

ν α

(4.2)

Considering the second column will give the following diagram of truncation triangles.

Σ[n,k]A ∋ τ≥kc τ≥kc
′ τ≥kz Στ≥kc

Σ[n,m]A ∋ τ≥kc c′ z Στ≥kc

Σ[k−1,m]A ∋ 0 τ<kc
′ τ<kz 0

By Lemma 4.2 the top row is a conflation.

τ≥kc τ≥kc
′ τ≥kz.

Consider the morphism ν : z → c′′ from (4.2), this induces a morphism τ≥kν : τ≥kz →
τ≥kc

′′, giving the commutative diagram

τ≥kc τ≥kc
′ τ≥kc

′′.

τ≥kz

τ≥kν (4.3)

However, we do not currently know what cone(τ≥kν) is. To figure this out, consider a
rotation of the last row in (4.2), and find the corresponding truncation triangles. That is,

Σ[n,k]A ∋ τ≥kz τ≥kc
′′ Σkad Στ≥kz

Σ[n,m]A ∋ z c′′ Στ<kc Σz

Σ[k−1,m]A ∋ τ<kz τ<kc
′′ τ<kΣτ<kc Στ<kz,

τ≥kν

µ

ν α

ψ′′

where Σkad = τ≥kΣτ<kc ∈ ΣkA . It follows directly from the commutativity of (4.2)
that α = Σψh Using the same strategy as before, apply the octahedral axiom on the
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composition νµ using the same strategy as before.

τ≥kz τ≥kz 0

z c′′ Στ<kc Σz

τ<kz w Στ<kc

µ

ν α

Recall that τ<kc, τ<kz ∈ Σ[k−1,m]A implying that Στ<kc ∈ Σ[k,m+1]A , and therefore
w ∈ Σ[k−1,m]A ∗Σ[k,m+1]A which means that w ∈ Σ[k,m]A = ΣkA ∗Σ[k−1,m]A . Especially
we can split w up as Σkaw → w → τ<kw, with Σkaw = τ≥kw ∈ ΣkA . Thus, by considering
the truncation diagram of the second column, we get

Σ[n,k]A ∋ τ≥kz τ≥kc
′′ Σkaw Στ≥kz

Σ[n,m]A ∋ τ≥kz c′′ w Στ≥kz

Σ[k−1,m]A ∋ 0 τ<kc
′ τ<kw 0

τ≥kν

Lemma 4.2 gives that the top row is a triangle. Thus

τ≥kz τ≥kc
′′ Σkaw.

τ≥kν

is a conflation in Σ[n,k]A . Using this, we can build upon the exact sequence (4.3) in
Σ[n,m+1]A

τ≥kc τ≥kc
′ τ≥kc

′′

τ≥kz Σkaw.

Recall that we have a morphism w → Στ<kc which induces a morphism Σkaw → Σkad.
This gives

τ≥kc τ≥kc
′ τ≥kc

′′ Στ<kc

τ≥kz Σkaw Σkad

By a similar argument, we get an exact sequence

τ≥kc
′′ Στ<kc Στ<kc′ Στ<kc′′.

Σkay Στ<kv

Combining these two diagrams, we get the result.
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Corollary 4.4. Let c→ c′ → c′′ → Σc be a triangle with c, c′, c′′ ∈ Σ[n,m]A . If m ≤ k ≤ n
then the induced sequence

Hkc Hkc
′ Hkc

′′

is exact in A .

Proof. Consider the following diagram, in which each column is a truncation triangle.

τ≥kc τ≥kc
′ τ≥kc

′′

c c′ c′′

τ<kc τ<kc
′ τ<kc

′′.

ϕ′′

f

ψ

g

ψ′ ψ′′

τ<kf τ<kg

By Lemma 4.3, the top row is an exact sequence, with decomposition

bz Σkaw

τ≥kc τ≥kc
′ τ≥kc

′′

(4.4)

in Σ[n,k]A . Using Lemma 4.3, the first conflation induces the diagram

τ≥kc τ≥kc
′ bz

ΣkHkc ΣkHkc
′ τ≤kbz

Σka′

with consecutive ↣↠ being a conflation in ΣkA . Using Lemma 4.2 with the second
conflation from (4.4) we obtain the following commutative diagram

bz τ≥kc
′′ Σkaw

τ≤kbz ΣkHkc
′′ Σkaw.

Concatenating these two exact sequences, we get the following exact sequence in ΣkA .

ΣkHkc ΣkHkc
′, ΣkHkc

′′.

Σka′ τ≤kbz

By shifting this sequence by −k, we get the result as stated.
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Theorem 4.5 (cf. [BBD83, thm. 1.3.6]). Assume that A satisfies En−m+3. Given a
triangle c → c′ → c′′ → Σc with object in c, c′, c′′ ∈ Σ[n,m]A . Then there exists a long
exact sequence of homology

0→ Hnc→ Hnc
′ → Hnc

′′ → Hn−1c→ · · · → Hm+1c
′′ → Hmc→ Hmc

′ → Hmc
′′ → 0.

Proof. Let m < k < n, and consider the diagram

τ≥kc τ≥kc
′ τ≥kc

′′

c c′ c′′

τ<kc τ<kc
′ τ<kc

′′,

f g

in which each column is a truncation triangle. By Lemma 4.3 the top row is exact in
Σ[n,k]A , and the decomposition can be seen in the top row of the following diagram.

bz Σmaw

τ≥kc τ≥kc
′ τ≥kc

′′

Σka′ τ≤kbz Σkaw

ΣkHkc ΣkHkc
′ ΣkHkc

′′

(4.5)

where consecutive ↣↠ describes conflations in Σ[n,k]A , with aw ∈ A and bz ∈ Σ[n,k]A .
Using Lemmas 4.2 and 4.3 again on these conflations we get the lower part of the digram
(4.5), where consecutive ↣↠ describes conflations in ΣkA .

Now consider the once-shifted triangle c′ → c′′ → Σc. We can do a similar thing to this
triangle as done above to the unshifted version, which would give the truncation diagram

τ≥kc
′ τ≥kc

′′ τ≥kΣc

c′ c′′ Σc

τ<kc
′ τ<kc

′′ τ<kΣc.

g

ψ′

h

ψ′′

τ<kg τ<kh
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However, notice that c′ → c′′ → Σc is no longer a triangle with objects in Σ[n,m]A but
with objects in Σ[n+1,m]A . Given that En−m+3 is satisfied, we know that the top row is
an exact sequence in Σ[n+1,k]A . Thus, similar to before, using Lemma 4.3, the top row
gives us the top part a diagram

bx Σka0

τ≥kc
′ τ≥kc

′′ τ≥kΣc

Σka2 Σka1 Σka0

ΣkHkc
′ ΣkHkc

′′ ΣkHkΣc

(4.6)

where a0 ∈ A and bx ∈ Σ[n+1,k]A . Using the same method twice, we get the bottom part
of the above diagram. Comparing the bottom parts of the diagrams in (4.5) and (4.6), we
obtain the following diagram:

Σka2 Σka1 Σka0

ΣkHkc
′ ΣkHkc

′′ ΣkHkΣc

Σka′ τ≤kbz Σkaw

ΣkHkc ΣkHkc
′ ΣkHkc

′′

α′

τ≥kτ≤kg τ≥kτ≤kh

α

τ≥kτ≤kf τ≥kτ≤kg

Due to [Bü10, lem. 8.4] (see also [Hel58, prop. 3.4]) it follows that Σka2 ∼= τ≤kbz. In
particular, this means that α ∼= α′ and thus cok(α) ∼= cok(α′) meaning that Σka1 ∼= Σkaw.

With this, we have the exact sequence

ΣkHkc ΣkHkc
′ ΣkHkc

′′ ΣkHk−1c

ΣkHkΣc

τ≥kτ≤kf τ≥kτ≤kg

τ≥k τ≤kh ∼

The equivalence comes from Lemma 3.18. Shifting the sequence by −k we get an exact
sequence Hkc → Hkc

′ → Hkc
′′ → Hk−1c. Using a similar argument, we can get an exact

sequence
Hk+1c→ Hkc→ Hkc

′ → Hkc
′′.

Notice that we can do the same thing for the endpoints.

0→ Hnc→ Hnc
′ → Hnc

′′ → Hn−1c and Hm+1c→ Hmc
′ → Hmc

′′ → Hmc→ 0.

With this, the result follows.
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5 Examples

Example 5.1 (t-structures). Let A be an abelian category, and consider the associated
derived category Db(A ). This is a triangulated category that comes with a canonical t-
structure, the standard t-structure, σ = (D≥0, D<0). Denote the corresponding truncation
functors by σ≥0 and σ<0. From this we typically define truncation functors σ≥i and σ<i
which correspond to the t-structures (D≥i, D<i) := (ΣiD≥0,ΣiD<0)

Since we are working in the bounded derived category, we can write these t-structures
as

D≥i = Σ[∞,i]A = · · · ∗ Σi+2A ∗ Σi+1A ∗ ΣiA

D<i = Σ[i−1,−∞]A = Σi−1A ∗ Σi−2A ∗ Σi−3A ∗ · · · .

We want to verify that the truncation functors we have used for proper abelian subcate-
gories match those from t-structures, at least when we are in a setup where both can be
used. Consider a complex X ∈ Db(A )

· · · X2 X1 X0 X−1 X−2 · · ·d2 d1 d0 d−1

Using the truncation functors σ≥i and σ<i we obtain the triangle

σ≥iX X σ<iX Σσ≥iX. (5.1)

In this case, we know what the truncations look like:

σ≥i = · · · Xi+2 Xi+1 Ker di 0 0 · · ·

σ<i = · · · 0 0 0 Cok di Xi−2 · · · .

di+2 di+1

di−1

Now assume that X is concentrated in degrees m to n for some integers m < n. Then
X ∈ Σ[n,m]A , meaning that Lemma 3.9 tells us that up to isomorphism, there is a unique
truncation triangle

τ≥iX X τ<iX Στ≥iX,

with τ≥iX ∈ Σ[n,i]A and τ<iX ∈ Σ[i−1,m]A . However, (5.1) is another triangle that
satisfies this. Hence σ≥iX ∼= τ≥iX and σ<iX ∼= τ<iX. Using this, it follows directly
from Definition 3.16, together with the definition of homology from t-structures, that
Hi(X) ∼= Hσ

i (X), where Hi(X) refers to the homology from Definition 3.16 and Hσ
i (X)

refers to homology with respect to the t-structure σ.

Example 5.2 (Negative cluster categories). Let w, n ∈ N = {1, 2, . . . }, in Section 5 we
described a combinatorial model for the negative cluster category

C−w(An) = Db(kAn)/Σw+1τ.

For this example, we will use that same model. Let w = 6 and n = 4, then we can
represent objects of C−6(A4) as admissible diagonals in an 33-gon.
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Consider the 3-simple-minded system S = {(0, 6), (7, 20), (8, 14), (21, 27)} also con-
sidered in Example B.5.2, see Figure 5.1. For the object (1, 14) ∈ Σ[1,0]A there exists a
triangle

(1, 7) (1, 14) (8, 14) (2, 8),

where (1, 7) ∈ ΣA and (8, 14) ∈ ΣA . Thus we may conclude that H1((1, 14)) =
Σ−1(1, 7) = (0, 6) and H0((1, 14)) = (8, 14).

· · ·

(0, 6) (7, 13) (14, 20) (21, 27) (1, 28) (2, 8) (9, 15)

(0, 13) (7, 20) (14, 27) (1, 21) (8, 28) (2, 15) (9, 22)

(13, 26) (0, 20) (7, 27) (1, 14) (8, 21) (15, 28) (2, 22)

(20, 26) (0, 27) (1, 7) (8, 14) (15, 21) (22, 28) (2, 29)

· · ·

Figure 5.1: AR quiver for C−6(A4). The red discs indicate A , and the blue discs indicate
ΣA .
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Code – Negative Cluster Categories

1 Introduction

The negative cluster category is a triangulated category which, as seen in Lemma B.5.1,
has no non-trivial t-structures. If we look at negative cluster categories over An, then
there is a combinatorial model, that makes computations in the category much easier.
To help make computations even easier, we have made some code that can do many of
these calculations for us (see [Kor24]). By coding parts of the combinatorial model, we
can quickly test an idea on a wide range of examples. It can also help us find examples
for results that we already know. Later, we will give some examples of use cases.

We will only work with negative cluster categories of type An, therefore, for the rest
of this chapter, we will use negative cluster categories refer to negative cluster categories
of type An.

The code is written in the programming language typescript, which is built on top of
javascript. There are a few reasons for this choice.

1. Typescript is a very accessible language, making it easier for other people to use the
code even though they do not have experience with it.

2. Typescript can be compiled into javascript, which runs in the browser. Thus, there
is the possibility of creating a web application that could be a useful tool.

The code is available online and can be found on GitHub [Kor24].

Setup 1.1. Let e, w ∈ N. We will consider the negative cluster category C−wAe.

Many methods will use numbers w and e as parameters throughout the code. These
will always refer to the numbers from the setup.

We give a short overview of the methods available. The code and a more in-depth
explanation of the methods can be found later.

isNOrdered(a,b,c,N) Checks if a < b < c in Z/NZ.

Ndist(a,b,N) Calculates clockwise distance from a to b in
polygon PN .

sigma(x,N,p) Calculates Σpx.

homDim(x,y,w,e) Calculates dimk Hom(x, y).

isWDiagonal(x, w) Checks whether x is an admissible diagonal,
i.e., if it corresponds to an object in C−wAe.

111
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getDiagonalDifferenece Calculates the diagonal difference which is
used to find triangles, and to calculate Ext.

ext(z,x,w,N) Calculates a y such that there is a triangle
x→ y → z → Σx.

extensionClose(A) Calculates the extension closure of a collection
A of diagonals.

isHomBetweenCollections(A,B) Checks if Hom(A,B) is non-empty.

isEn(A, n) Checks if the collections A of objects satisfies
En

extension(A,B) Calculates A ∗B

leftPerp(A,B) Calculates ⊥BA

rightPerp(A,B) Calculates A⊥B

filtGen(A,S) Calculates ⟨GenS(A)⟩S
filtSub(A,S) Calculates ⟨SubS(A)⟩S
findRandomTorsionFreeClass(A) Generates a random torsion-free class in a

proper abelian subcategory A.

tilt(A,F) HRS-tilts a proper abelian category A in a
torsion-free subcategory F .

randomSimpleMindedSystem(w,e) Generates a random simple-minded system in
C−w(Ae).

(0, 3) (4, 7) (8, 11) (12, 15) (1, 16) (2, 5) (6, 9) (10, 13) (14, 17) (0, 3)

(0, 7) (4, 11) (8, 15) (1, 12) (5, 16) (2, 9) (6, 13) (10, 17) (3, 14)

(7, 14) (0, 11) (4, 15) (1, 8) (5, 12) (9, 16) (2, 13) (6, 17) (3, 10) (7, 14)

(11, 14) (0, 15) (1, 4) (5, 8) (9, 12) (13, 16) (2, 17) (3, 6) (7, 10)

Figure 1.1: AR quiver for C−3(A4).

2 Code for diagonals

2.1 Types and Classes

The combinatorial model for negative cluster categories associates to each object a diagonal
of some N -gon P , where N ∈ N. Label the vertices of PN anticlockwise by 0, . . . N − 1.
Then, each diagonal can be represented by a pair of numbers. Thus, we create the following
type:
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code/src/DiagonalCollection.ts

1 export type Diagonal = [number, number]

Similar to the model for negative cluster categories, quite a few combinatorial models
use diagonals. Therefore, we start by implementing a class representing a collection of
diagonals.

code/src/DiagonalCollection.ts

1 export class DiagonalCollection {
2 diagonals: Diagonal[] = [];
3

4 constructor(objs: Diagonal[]) {
5 for (var k of objs) { this.add(k); }
6 }
7

8 clone(filter: (d: Diagonal) => boolean = () => { return true; }) {
9 return new (<any>this.constructor)([...this.diagonals].filter(filter)

↪→ );
10 }
11

12 toString(): string {
13 return this.diagonals.map(a => "(" + a.toString() + ")").toString()
14 }
15

16 add(obj: Diagonal) {
17 this.diagonals.push(obj);
18 }
19

20 containsSet(objs: Diagonal[]) {
21 for (let v of objs) {
22 if (!this.contains(v)) { return false; }
23 }
24 return true;
25 }
26

27 contains(obj: Diagonal) {
28 const i = this.find(obj);
29 if (i < 0) { return null; }
30 return this.diagonals[i];
31 }
32

33 find(obj: Diagonal) {
34 for (var _i = 0; _i < this.diagonals.length; _i++) {
35 if (this.diagonals[_i][0] == obj[0] && this.diagonals[_i][1] ==

↪→ obj[1]) { return _i; }
36 }
37 return -1;
38 }
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39

40 equal(A: DiagonalCollection) {
41 return this.containsSet(A.diagonals) && A.containsSet(this.diagonals)

↪→ ;
42 }
43 }

2.2 Methods

Now that we have a framework to work with collections of diagonals, we can implement
some standard operations for such collections.

Method – Union
union<T extends DiagonalCollection>(...args : T[])

Calculates the union of two collections of objects.
Implementation

code/src/DiagonalCollectionFcts.ts

1 export function union<T extends DiagonalCollection>(...args : T[]): T{
2 if(args.length == 0){ return null; }
3 if(args.length == 1){ return args[0]; }
4 let unionColl = args[0].clone() as T
5 for (let i = 1; i < args.length; i++) {
6 for(let v of args[i].diagonals){
7 if(!unionColl.contains(v)){
8 unionColl.add(v);
9 }

10 }
11 }
12 return unionColl;
13 }

Method — Intersection
intersect<T extends DiagonalCollection>(...args : T[])

Calculates the intersection of two collections of objects.
Implementation

code/src/DiagonalCollectionFcts.ts

1 export function intersect<T extends DiagonalCollection>(...args : T[]): T{
2 if(args.length == 0){ return null; }
3 if(args.length == 1){ return args[0]; }
4 return args[0].clone((diag) => {
5 for (let i = 1; i < args.length; i++) {
6 if(!args[i].contains(diag)){ return false }
7 }
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8 return true
9 }) as T

10 }

Method – Subtract
subtract<T extends DiagonalCollection>(A: T, B: T)

Calculates the difference between two collections of objects.

Implementation

code/src/DiagonalCollectionFcts.ts

1 // A - B
2 export function subtract<T extends DiagonalCollection>(A: T, B: T): T{
3 return A.clone((diag)=>{ return !B.contains(diag) }) as T
4 }

Method – Are diagonals crossing
isCrossing(a: Diagonal, b: Diagonal)

This method checks if two diagonals cross. Two diagonals (a, b) and (c, d) cross if a < c <

b < d or a < d < b < c with a cyclic order.

Example 2.1. See Figure 2.1, where the diagonal (1, 3) and (2, 8) cross, since 1 < 2 <
3 < 8. However, the diagonals (1, 3) and (4, 8) do not cross. Similarly, the diagonals (2, 8)
and (4, 8) are not seen as crossing, even though they share an endpoint.
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Figure 2.1: Diagonals in a 10-gon.

Implementation

code/src/DiagonalCollectionFcts.ts

1 export function isCrossing(a: Diagonal, b: Diagonal): boolean{
2 return !(a[0]>=b[1] || a[1]<=b[0] || (a[1] <= b[1] && a[0] >= b[0]) || (b

↪→ [1] <= a[1] && b[0] >= a[0]));
3 }
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Method – Get a shared endpoint
getSharedEndpoint(a: Diagonal, b: Diagonal)

This method finds the shared endpoint between two diagonals, and if no such endpoint
exists, it will return −1.

Example 2.2. Consider the diagonals (2, 8) and (4, 8) from Figure 2.1. These share the
endpoint 8. However, if we look at the diagonals (1, 3) and (4, 8), we can see that they do
not share an endpoint, thus, the method would return −1.

getSharedEndpoint((2,8), (4,8)) = 8,

getSharedEndpoint((1,3), (4,8)) = -1.

Implementation

code/src/DiagonalCollectionFcts.ts

1 export function getSharedEndpoint(a: Diagonal, b: Diagonal){
2 if(a[0] == b[0] || a[0] == b[1]){ return a[0]; }
3 if(a[1] == b[0] || a[1] == b[1]){ return a[1]; }
4 return -1
5 }

Method – Calculate N-Distance
Ndist(a:number, b:number, N:number)

This function measures the distance from a vertex a to a vertex b by moving anticlockwise
in the polygon.

Example 2.3. Consider the 10-gon, which can be seen in Figure 2.1. Then, we would
want the following distances

Ndist(1,2,10) = 1, Ndist(2,1,10) = 9,

Ndist(2,6,10) = 4, Ndist(7,1,10) = 4.

Implementation

code/src/NCC.ts

1 export function Ndist(a:number,b:number, N:number){
2 if(b > a){ return b-a }
3 if(b < a){ return N - a + b }
4 return 0;
5 }



3. Code for Negative cluster categories 117

Method – Is triple N-ordered
isNOrdered(n1: number, n2: number, n3: number, N: number)

Working with vertices in an anticlockwise order in a polygon is practically the same as
working with a cyclic order in Z/NZ. Therefore, we need a method to check if a triple
of numbers is ordered. The intuition behind the order is that a < b < c, if we follow the
vertices of the polygon anticlockwise, starting at a, we will encounter b before we see c.

Example 2.4. For N = 10 we have that 1 < 4 < 7 and 7 < 3 < 5. For non-examples the
following is NOT true: 1 < 4 < 3 and 4 < 1 < 8.

isNOrdered(1,4,7,10)= true isNOrdered(7,3,5,10)= true

isNOrdered(1,4,3,10)= false isNOrdered(4,1,8,10)= false

Implementation

code/src/NCC.ts

1 export function isNOrdered(n1: number, n2: number, n3: number, N: number):
↪→ Boolean{

2 let d = Ndist(n1, n3, N);
3 return (Ndist(n1, n2, N) < d && Ndist(n2, n3, N) < d);
4 }

3 Code for Negative cluster categories

Now that we have a foundation to work with diagonals, we will create a class that inherits
from the DiagonalCollection, in which we can put the methods that are special to the
negative cluster category.

3.1 Classes

This class contains some basic methods to construct and clone the class. Besides that is
contained a function to check whether a system of diagonals is a simple-minded system,
and a function to check whether a system is extension closed.

code/src/NegativeCCDiagonalCollection.ts

1 export class NCCDiagonalCollection extends DiagonalCollection{
2

3 w: number = 0;
4 e: number = 0;
5 N: number = 0;
6

7 constructor(objs: Diagonal[], w:number, e:number){
8 super(objs);
9 this.w = w;

10 this.e = e;
11 this.N = (w+1)*(e+1)-2;
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12 }
13

14 clone(filter: (d:Diagonal) => boolean = () => { return true; }):
↪→ NCCDiagonalCollection{

15 return new NCCDiagonalCollection([...this.diagonals].filter(filter),
↪→ this.w, this.e);

16 }
17

18 isSimpleMindedSystem(){
19 for(var _i = 0; _i < this.diagonals.length; _i++){
20 if(this.diagonals[_i][1] <= this.diagonals[_i][0]){ return false

↪→ }
21 if(NCC.isWDiagonal(this.diagonals[_i], this.w))
22 for(var _j = _i+1; _j < this.diagonals.length; _j++){
23 if(this.diagonals[_i][0] == this.diagonals[_j][0] ||
24 this.diagonals[_i][1] == this.diagonals[_j][0] ||
25 this.diagonals[_i][1] == this.diagonals[_j][1] ||
26 this.diagonals[_i][0] == this.diagonals[_j][1] ){
27 return false
28 }
29 if(isCrossing(this.diagonals[_i],this.diagonals[_j])){
30 return false;
31 }
32 }
33 }
34 return true;
35 }
36

37 isExtensionClosed(){
38 return this.equal(NCC.extensionClose(this))
39 }
40 }

3.2 Methods

Method – Suspension
Sigma(s:Diagonal, N:number, power:number)

Given a diagonal (a, b), the suspension Σ(a, b) is calculated by rotating the diagonal one
step anticlockwise, that means Σp(a, b) = (a + p, b + p) calculated modulo N . The code
underneath takes a lot of different cases into account. It can apply the suspension to an
arbitrary power, either of a diagonal or a collection of diagonals. Furthermore, it also
ensures that the resulting diagonal (a′, b′) is sorted, that is, a′ < b′.

Example 3.1. Consider C−2(A3), which corresponds to w = 2 and e = 3, and thereby
N = 10. Then (4, 9) is an admissible diagonal. Using Σ should result in Σ(4, 9) = (0, 5),
see Figure 3.1. Similarly Σ3(4, 9) = (2, 7). Thus, we want the function to output

Sigma([4,9], 10) = [0,5], Sigma([4,9],10,3) = [2,7],
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Implementation

code/src/NCC.ts

1 export function Sigma(s:NCCDiagonalCollection):NCCDiagonalCollection;
2 export function Sigma(s:NCCDiagonalCollection, power:number):

↪→ NCCDiagonalCollection;
3 export function Sigma(s:Diagonal, N:number, power:number):Diagonal;
4 export function Sigma(s:Diagonal, N:number):Diagonal;
5 export function Sigma(s:NCCDiagonalCollection | Diagonal, N?:number, power?:

↪→ number):unknown{
6 if(N && !(s instanceof NCCDiagonalCollection) && typeof N == "number"){
7 if(power === undefined){ power = 1 }
8 if(!(s instanceof NCCDiagonalCollection)){
9 const n: Diagonal = [(s[0]+power) % N, (s[1]+power) % N];

10 if(n[0]<n[1]){ return n; }
11 return [n[1], n[0]];
12 }
13 }
14 if(s instanceof NCCDiagonalCollection){
15 const objs = []
16 for(let diag of s.diagonals){
17 objs.push(Sigma(diag, s.N, N)) // Notice N here is the power
18 }
19 let a = new NCCDiagonalCollection(objs, s.w, s.e)
20 return a
21 }
22 }
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Figure 3.1: 10-gon, C−2(A3) corresponding to e = 3 and w = 2. The blue diagonal is the
suspension of the black diagonal, and the red diagonal is Σ3 applied to the black diagonal.

Method – Hom Space Dimension
homDim(s1:Diagonal, s2:Diagonal, w:number, e:number)

Let x, y ∈ C−wAe, then by [CSP16, prop. 10.8] dimk Hom(x, y) ∈ {0, 1}, and [CSP16,
cor. 10.6] describes a combinatorial method to check when Hom(x, y) ̸= 0. This is imple-
mented in the method below.
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Example 3.2. Consider the negative cluster category C−3A4. Using the AR-quiver (see
Figure 1.1), we can visualize which objects have morphisms to which. From this, we can
see that the following should be the case:

homDim([1,4],[1,16],3,4) = 1, homDim([1,12],[9,16],3,4) = 1,

homDim([1,12],[1,12],3,4) = 1, homDim([1,12],[8,15],3,4) = 0.

Implementation

code/src/NCC.ts

1 export function homDim(s1:Diagonal, s2:Diagonal, w:number, e:number){
2 const N = (w+1)*(e+1)-2;
3 const sig: Diagonal = Sigma(s1, N);
4 if(s1[0] === s2[0] && s1[1] === s2[1]){ return 1; }
5 if(s1[0] === s2[0] && (Ndist(s1[1], s2[1], N)) % (w+1) === 0 && !diag.

↪→ isCrossing(s2, sig)){ return 1; }
6 if(s1[1] === s2[0] && (Ndist(s1[0], s2[1], N)) % (w+1) === 0 && !diag.

↪→ isCrossing(s2, sig)){ return 1; }
7 if(s1[0] === s2[1] && (Ndist(s1[1], s2[0], N)) % (w+1) === 0 && !diag.

↪→ isCrossing(s2, sig)){ return 1; }
8 if(s1[1] === s2[1] && (Ndist(s1[0], s2[0], N)) % (w+1) === 0 && !diag.

↪→ isCrossing(s2, sig)){ return 1; }
9

10 if(diag.isCrossing(s2, sig) && diag.getSharedEndpoint(s2,s1)==-1){
11 if(
12 isNOrdered(sig[0],sig[1], s2[0], N) && (Ndist(s2[0], sig[0], N))

↪→ % (w+1) === 0 &&
13 (Ndist(s2[1], sig[1], N)) % (w+1) === 0
14 ){ return 1; }
15 if(
16 isNOrdered(sig[0],sig[1], s2[1], N) && (Ndist(s2[1], sig[0], N))

↪→ % (w+1) === 0 &&
17 (Ndist(s2[0], sig[1], N)) % (w+1) === 0
18 ){ return 1; }
19 }
20 return 0;
21 }

Method – Is the diagonal admissible
isWDiagonal(a: Diagonal, w: number)

To each object in C−wAe, a diagonal is associated. However, not all diagonals correspond
to an object. It is only admissible diagonal that does. This method checks whether a
diagonal is admissible.

Example 3.3. Consider the negative cluster category C−2A3, with w = 2 and e = 3.
Then the diagonal (4, 9) is admissible since w + 1 = 3 | (9 − 4) + 1 = 6. Similarly, the
diagonals (1, 3) and (1, 9) are admissible, but (5, 9) and (6, 9) are not, see Figure 3.2. Thus,
we should get the following.
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isWDiagonal([4,9], 2) = true, isWDiagonal([1,3], 2) = true,

isWDiagonal([1,9], 2) = true, isWDiagonal([5,9], 2) = false,

isWDiagonal([6,9], 2) = false.
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Figure 3.2: 10-gon, C−2(A3) corresponding for e = 3 and w = 2. The black diagonals are
admissible, whereas the red diagonals are not admissible.

Implementation

code/src/NCC.ts

1 export function isWDiagonal(a: Diagonal, w: number): boolean{
2 return (((a[1] - a[0]) + 1 )% (w + 1) == 0);
3 }

Method – Calculate the diagonal difference
getDiagonalDifferenece(c: Diagonal, a: Diagonal, N:number)

This is a helper function for when to calculate Ext. Consider two diagonals c = (c0, c1)
and a = (a0, a1), see Figure 3.3. Then, if there is a triangle a → b → c → Σb, with
a ̸= 0, the diagonals representing direct summands of b can be described combinatorially,
see Figure 3.3. b has two diagonal b = b0 ⊕ b1, possibly one or both being 0. Loosely
speaking, to find the diagonal bi, we start a point bi and follow the polygon anticlockwise
until we get to a point x that is either part of the diagonal c or a if it is part of a we let
bi = 0. However, if it is part of c, we let bi = (ai, x). We will call the result b the diagonal
difference of (c, a). It is this the method getDiagonalDifference calculates. Notice that
this method does not ensure that we get a triangle or that the resulting diagonals are
admissible.

Example 3.4. The diagonal difference is somewhat easy to read directly from seeing the
diagonals drawn in a polygon. Here are some examples for N = 10.

getDiagonalDifferenece([2,7],[0,5],10) = [[0,2], [5,7]],

getDiagonalDifferenece([0,2],[0,5],10) = [],

getDiagonalDifferenece([0,5],[0,2],10) = [[2,5]].
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c0

c1

a0

a1

c0

c1

a0

a1

Figure 3.3: Given diagonals c = (c0, c1) and a = (a0, a1), the middle object of a triangle
a→ b→ c→ Σa can be found combinatorially, here b is represented by a dashed red line.

See Figure 3.4 for an illustration of these examples.
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Figure 3.4: For the 10-gon, this figure illustrates three examples of the function
getDiagonalDifference(a,b,10), where a is blue, b is red, and the result is dashed

Implementation

code/src/NCC.ts

1 export function getDiagonalDifferenece(a: Diagonal, b: Diagonal, N:number){
2 const objs:Diagonal[] = [];
3

4 let currIndex = 0;
5 if(a.includes(b[currIndex])){
6 currIndex = 1;
7 }
8

9 for(var _j = currIndex; _j < 2; _j++){
10 for(var _i = b[_j] + 1; _i < b[_j] + N; _i++){
11 if( b.includes(_i % N) ){
12 break;
13 }
14 if( a.includes(_i % N) ){
15 objs.push([b[_j], _i % N].sort((n1,n2) => n1 - n2) as Diagonal

↪→ );
16 break;
17 }



3. Code for Negative cluster categories 123

18 }
19 }
20

21 return objs;
22 }

Method – Ext between diagonals
ext(c: Diagonal, a:Diagonal, w:number, N:number)

Given two (admissible) diagonals c, a, if Ext(c, a) ̸= 0 then there exists a triangle a →
b → c → Σa. The following method will use getDiagonalDifference, described above,
and return a list of the direct summands of b. If no such triangle exists, the method will
return an empty list.

Example 3.5. Using Figure 1.1 we can easily find triangles in the category C−3(A4). As
an example, there are

(1, 8)→ (5, 8)⊕ (1, 12)→ (5, 12)→ Σ(1, 8)

(8, 15)→ (5, 8)⊕ (12, 15)→ (5, 12)→ Σ(8, 15)

(5, 8)→ (2, 5)→ (2, 9)→ Σ(5, 8)

However, there are no non-trivial triangles (5, 12) → x → (8, 15) → Σ(5, 12). Thus, we
will get the following.

ext((5,12),(1,8),3,18) = [(5,8), (1,12)] ,

ext((5,12),(8,15),3,18) = [(5,8), (12,15)],

ext((2,9),(5,8),3,18) = [(2,5)],

ext((8,15),(5,12),3,18) = [].

Implementation

code/src/NCC.ts

1 export function ext(c: Diagonal, a:Diagonal, w:number, N:number){
2 if( diag.isCrossing(c,a) || ( !diag.isCrossing(c,a) && diag.

↪→ getSharedEndpoint(Sigma(a, N), c) >= 0 ) ){
3 //There is an extension
4 let diff:Diagonal[] = getDiagonalDifferenece(a,c, N);
5

6 // Check if it is w diagonals
7 if(diff.every((curVal) => isWDiagonal(curVal, w))){
8 return diff;
9 }

10 }
11 return [];
12 }
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Method – Extensions between collections
extension(A: NCCDiagonalCollection, B: NCCDiagonalCollection)

Given two collections of diagonals A and B, this method will return the collection A ∗ B
of extension between them, i.e. all the diagonals c such that there exists a triangle a →
c→ b→ Σa with a ∈ A and b ∈ B.

Implementation

code/src/NCC.ts

1 export function extension(A: NCCDiagonalCollection, B: NCCDiagonalCollection
↪→ ): NCCDiagonalCollection{

2 let a: NCCDiagonalCollection = diag.union(A, B);
3

4 for(let x of A.diagonals){
5 for(let y of B.diagonals){
6 if(diag.diagonalEqual(x,y)){ continue; }
7 // Find e’s such that: x ---> e ---> y, or rather a ---> e ---> b
8 let e = ext(y, x, A.w, A.N);
9 for(let z of e){

10 if(!a.contains(z)){ a.add(z); }
11 }
12 }
13 }
14 return a;
15 }

Method – Extension-close NCC Diagonal Collection
extensionClose(A: NCCDiagonalCollection)

Given a collection of object A the following method return a collection ⟨A⟩ which is the
closure of A under extensions. Setting (A)0 = A and (A)i = (A)i−1 ∗ (A)i−1 for i > 0,
we can calculate the extension-closure as ⟨A⟩ = ∪i∈N(A)i. This is essentially what this
method does.

Notice that since the number of objects in C−wAe is finite, there exists a natural number
M ∈ N such that ⟨A⟩ = (A)M . This means that our method will always terminate.

Example 3.6. Consider the negative cluster category C−3(A4), and define the collection
of objects A = {(1, 4), (5, 8), (9, 12)}, i.e.

A = new NCCDiagonalCollection([[1,4], [5,8], [9,12]], 3,4).

Using Figure 1.1, we can calculate

(A)1 = {(1, 4), (5, 8), (9, 12), (1, 8), (5, 12)},
(A)2 = {(1, 4), (5, 8), (9, 12), (1, 8), (5, 12), (1, 12)},
(A)3 = {(1, 4), (5, 8), (9, 12), (1, 8), (5, 12), (1, 12)}.
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Since (A)2 = (A)3 we may conclude that ⟨A⟩ = (A)2. In code, this can be computed using
the following method:

extensionClose(A)= [[1,4], [5.8], [9,12], [1,8], [5,12], [1,12]].

Implementation

code/src/NCC.ts

1 export function extensionClose(A: NCCDiagonalCollection){
2 let res: NCCDiagonalCollection = new NCCDiagonalCollection([...A.

↪→ diagonals], A.w, A.e);
3 let somethingAdded: Boolean = false;
4 while(true){
5 somethingAdded = false;
6 for(let x of res.diagonals){
7 for(let y of res.diagonals){
8 if(x == y){ continue; }
9 let e = ext(x, y, A.w, A.N);

10 for(let z of e){
11 if(!res.contains(z)){
12 res.add(z);
13 somethingAdded = true;
14 }
15 }
16 }
17 }
18 if(!somethingAdded){ break; }
19 }
20 return res;
21 }

Method – Morphisms between collections
isHomBetweenCollections(from: NCCDiagonalCollection, to:
↪→ NCCDiagonalCollection)

Given two collections A and B of diagonals, the following method checks if Hom(A,B) ̸= 0.
This can be done by looping through the objects in A and the B until a pair of objects
(a, b) is found such that Hom(a, b) ̸= 0. If no such pair exists, then it will return false

Example 3.7. Using Figure 1.1, it is possible to see which indecomposable objects have
morphisms between each other. As an example, we can see that Hom((9, 12), (6, 9)) ̸= 0.
Thus if we define two collections

let A = new NCCDiagonalCollection([[5,8],[9,12]], 3,4)
let B = new NCCDiagonalCollection([[6,9],[10,13]], 3,4)

This means that there should be morphisms from A to B but not the other way around.
Thus we would get the following.
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isHomBetweenCollections(A,B) = true
isHomBetweenCollections(B,A) = false

Implementation

code/src/NCC.ts

1 export function isHomBetweenCollections(from: NCCDiagonalCollection, to:
↪→ NCCDiagonalCollection): boolean{

2 for(let x of from.diagonals){
3 for(let y of to.diagonals){
4 if(homDim(x, y, from.w, to.e) > 0){
5 return true;
6 }
7 }
8 }
9 return false;

10 }

Method – The En condition

Given a collection A of diagonals, this method checks if A satisfies En. That is, checking
if Hom(x,Σ−iy) = 0 for 0 < i ≤ n.

Example 3.8. Consider the objects (1, 4), then by looking at Figure 1.1, we can obverse
that

Hom((1, 4),Σ−1(1, 4)) = Hom((1, 4), (0, 3)) = 0,
Hom((1, 4),Σ−2(1, 4)) = Hom((1, 4), (2, 17)) = 0,
Hom((1, 4),Σ−3(1, 4)) = Hom((1, 4), (1, 16)) ̸= 0.

Thus {(1, 4)} satisfies E2 but not E3. Hence if we set

let A = new NCCDiagonalCollection([[1,4]], 3,4),

we will get that

ncc.isEn(A,1)= true, ncc.isEn(A,2)= true, ncc.isEn(A,3)= false.

Implementation

code/src/NCC.ts

1 export function isEn(coll: NCCDiagonalCollection, n: number){
2 let a = new NCCDiagonalCollection(coll.diagonals, coll.w, coll.e);
3

4 for(let i = 0; i<n; i++){
5 a = Sigma(a);
6 if(isHomBetweenCollections(a, coll)){ return false; }
7 }
8 return true
9 }
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Method – Left orthogonal collection
leftPerp(of:NCCDiagonalCollection, inColl:NCCDiagonalCollection)

Given two collections of, inColl of diagonals, this method finds all the diagonals in inColl,
with no morphisms to of . That is ⊥inCollof = {x ∈ inColl | Hom(x, of) = 0}.

Example 3.9. Consider the negative cluster category C−3(A4), see Figure 1.1, and let
A = add((1, 4), (1, 8), (1, 12), (5, 8), (5, 12), (9, 12)). Then A is a proper abelian category
equivalent to mod(kA3), see Figure 3.5

let A = new NCCDiagonalCollection([[1,4], [1,8], [1,12], [5,8],
↪→ [5,12], [9,12]], 3,4),

Letting B = add((9, 12)), i.e.

B = new NCCDiagonalCollection([[9,12]], 3,4),

we get that ⊥AB = add((1, 4), (1, 8), (5, 8)), Which is also what the code shows

leftPerp(B,A)= [[1,4], [1,8], [5,8]].

(1, 12)

(1, 8) (5, 12)

(1, 4) (5, 8) (9, 12)

Figure 3.5: AR-quiver for the proper abelian subcategory A considered in Example 3.9

Implementation

code/src/NCC.ts

1 export function leftPerp(of:NCCDiagonalCollection, inColl:
↪→ NCCDiagonalCollection){

2 return inColl.clone((diag) => {
3 for(let ofDiag of of.diagonals){
4 if(homDim(diag, ofDiag, inColl.w, inColl.e) > 0){
5 return false
6 }
7 }
8 return true
9 })

10 }

Method – Right orthogonal collection
rightPerp(of:NCCDiagonalCollection, inColl:NCCDiagonalCollection)

Given two collections of, inColl of diagonals, this method find all the diagonals in inColl,
with no morphisms from of . That is of⊥inColl = {x ∈ inColl | Hom(of, x) = 0}.
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Example 3.10. Using the collection A and B from Example 3.9, we can see that B⊥A =
A\B, and therefore we will get that

rightPerp(B,A)= [[1,4], [1,8], [1,12], [5,8], [5,12]].

Implementation

code/src/NCC.ts

1 export function rightPerp(of:NCCDiagonalCollection, inColl:
↪→ NCCDiagonalCollection){

2 return inColl.clone((diag) => {
3 for(let ofDiag of of.diagonals){
4 if(homDim(ofDiag, diag, inColl.w, inColl.e) > 0){ return false }
5 }
6 return true
7 })
8 }

Method – Closure under extension and quotient objects
filtGen(set: NCCDiagonalCollection, alg: NCCDiagonalCollection)

Given a noetherian abelian category alg, together with a collection A ⊆ alg of diagonals,
the ⟨Genalg(A)⟩alg is the smallest subcategory of alg containing A that is closed under
extensions and quotients. However, this can also be calculated as ⟨Genalg(A)⟩alg =⊥alg

(A⊥alg ). This is what this method calculates.

Example 3.11. Consider the proper abelian algebra A from Example 3.9. And let B =
add((1, 8), (9, 12)), ie.

B = new NCCDiagonalCollection([[1,8], [9,12]], 3,4).

Since (9, 12) is simple, there is no epimorphism from it. However, we do have an epi-
morphism (1, 8) ↠ (5, 8), thus GenA(B) = add((1, 8), (9, 12), (5, 8)). However, this is not
closed under extensions since there are short exact sequences

(1, 8) ↣ (1, 12) ↠ (9, 12) and (5, 8) ↣ (5, 12) ↠ (9, 12).

Including the object we get from these extensions, we get an extension-closed collection
⟨GenA(B)⟩A = GenA(B) = add((1, 8), (1, 12), (5, 8), (5, 12), (9, 12)). Thus

filtGen(B,A)= [[1,8], [1,12], [5,8], [5,12], [9,12]].

Implementation

code/src/NCC.ts

1 export function filtGen(set: NCCDiagonalCollection, alg:
↪→ NCCDiagonalCollection){

2 return leftPerp(rightPerp(set, alg), alg)
3 }
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Method – Closure under extension and sub objects
filtSub(set: NCCDiagonalCollection, alg: NCCDiagonalCollection)

Given a noetherian abelian category alg, together with a collection A ⊆ alg of diagonals
the ⟨Subalg(A)⟩alg is the smallest subcategory of alg containing A that is closed under
extensions and subobjects. However, this can also be calculated as ⟨Subalg(A)⟩alg =
(⊥algA)⊥alg . This is what this method calculates.

Example 3.12. Consider the proper abelian algebra A from Example 3.9. And let B =
add((1, 8), (9, 12)), ie.

B = new NCCDiagonalCollection([[1,8], [9,12]], 3,4).

Closing B under subobjects we get add(B ∪ {(1, 4)}), and closing that under extensions,
we get ⟨SubA(b)⟩A = add((1, 4), (1, 8), (1, 12), (9, 12)). In code, this can be calculated as:

filtSub(B,A)= [[1,4], [1,8], [1,12], [9,12]].

Implementation

code/src/NCC.ts

1 export function filtSub(set: NCCDiagonalCollection, alg:
↪→ NCCDiagonalCollection){

2 return rightPerp(leftPerp(set, alg), alg)
3 }

Method – Finding random torsion class
findRandomTorsionFreeClass(alg: NCCDiagonalCollection)

Consider an abelian category A , if we are given a collection of objects X ⊆ A , then, we can
construct a torsion-free class by closing it under subobjects and extensions. Thus ⟨Sub(X )⟩
would be the smallest torsion-free class containing X . This method picks a random number
of random objects in A and then closes it under subobjects and extensions.
Implementation

code/src/NCC.ts

1 export function findRandomTorsionFreeClass(alg: NCCDiagonalCollection){
2 const num = Math.floor(Math.random() * alg.diagonals.length + 1)
3 const shuffled = alg.diagonals.sort(() => 0.5 - Math.random());
4 let selected = shuffled.slice(0, num);
5 return filtSub(new NCCDiagonalCollection(selected, alg.w, alg.e), alg)
6 }

Method – HRS tilt
tilt(alg:NCCDiagonalCollection, torsionFree:NCCDiagonalCollection)

Given a torsion pair (T ,F) in a proper abelian subcategory A , we can, under the right
assumptions, tilt A with respect to this torsion pair. The resulting proper abelian sub-
category is then ΣF ∗ T .
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Example 3.13. Working with C−3(A4), consider the proper abelian subcategory A from
Example 3.9,

let A = new NCCDiagonalCollection([[1,4], [1,8], [1,12], [5,8],
↪→ [5,12], [9,12]], 3,4).

Then X = add((1, 4), (1, 8)) is a torsion-free class. That is

let X = new NCCDiagonalCollection([[1,4], [1,8]], 3,4).

From this torsion-free class, we can determine the corresponding torsion class

Y = add((1, 12), (5, 8), (5, 12), (9, 12)).

Now we calculate the tilt by

B = ΣX ∗ Y = add((2, 5), (2, 9), (1, 12), (5, 8), (5, 12), (9, 12)).

This calculation can be verified using Figure 1.1. We get the following if we try to do this
calculation using the code.

tilt(A, X)= [[2,5], [2,9], [1,12], [5,8], [5,12], [9,12]].

Implementation

code/src/NCC.ts

1 export function tilt(alg:NCCDiagonalCollection, torsionFree:
↪→ NCCDiagonalCollection){

2 let torsion = leftPerp(torsionFree, alg)
3 return extension(Sigma(torsionFree), torsion);
4 }

Method – Finding random simple-minded system
randomSimpleMindedSystem(w:number, e:number)

When testing ideas, it helps to be able to test something on many different proper abelian
subcategories. A special class of proper abelian subcategories in negative cluster categories
comes from simple-minded systems. In C−w(Ae), a collection of diagonals S forms a simple-
minded system if

1. |S| = e,

2. no two diagonals in S are crossing, and

3. no two diagonals in S share an endpoint.

This is the same as saying S is a maximal set of diagonals satisfying 2 and 3. We will
create some code to find such a collection of diagonals at random. We will go through the
process we will implement step by step, with a running example in C−2(A5), which we can
use to visualize the steps. We start with an empty polygon, in this case, a 16-gon.
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Step 1. Choose a random vertex. This is illustrated by a gray ball.

Step 2. Identify all the other vertices that, combined with v, make an admissible diag-
onal. These are illustrated with green balls.

Step 3. Choose one of the vertices at random and complete to a diagonal

Step 4. Split the polygon into two polygons along this diagonal, and mark the points
already taken as an endpoint. These endpoints are marked with red in the illustration.

Step 5. Repeat steps 1 through 4 on the new restricted polygons until no more admissible
diagonals can be found, however, do not allow the marked points to be chosen as endpoints
again. In the example, we need to repeat the process three more time. First time:

Second time:
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The Third time, we split the leftmost into two:

If we collect all the diagonals into the original polygon, we end up with the following:

Implementation. First, we need some helper functions that will make the code a bit
nicer to look at. These should be self-explanatory.

code/src/NCC.ts

1 function getRandomInteger(min: number, max: number) {
2 return Math.floor(Math.random() * (max - min)) + min;
3 }
4

5 function random_array_value(arr: any[]){
6 return arr[Math.floor(Math.random() * arr.length)]
7 }
8

9 function numberArray(from: number, to:number){
10 return Array.from({length: to-from+1}, (_, index) => index + from)
11 }
12

13 function random_shuffle(array: any[]) {
14 let currentIndex = array.length
15 let randomIndex: number;
16

17 while (currentIndex > 0) {
18 randomIndex = getRandomInteger(0, currentIndex)
19 currentIndex -= 1;
20

21 [array[currentIndex], array[randomIndex]] = [array[randomIndex],
↪→ array[currentIndex]];
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22 }
23

24 return array;
25 }

With this, we are ready to see the implementation of the method. The code is com-
mented and follows the steps described above.

code/src/NCC.ts

1 export function randomSimpleMindedSystem(w:number, e:number):
↪→ NCCDiagonalCollection{

2 const N: number = (e+1) * (w+1) - 2;
3

4 function helper(polygon: number[], taken: number[]){
5 // checks if there is enoguh space to have a diagonal
6 if(polygon.length < (w+1)*2-2){ return [] }
7

8 // Find all the vertices in ‘polygon‘ that are not already
9 // enpoints of diagonals

10 let available_nodes = random_shuffle(polygon.filter((d) => taken.
↪→ indexOf(d) == -1))

11 if(available_nodes.length < 2){ return [] }
12

13 // Shuffles available vertices, to randomize pick of diagonal
14 let randomized_available_nodes = random_shuffle(available_nodes)
15 let random_partner:number = -1
16 let i = 0
17 let found_one = false
18

19 // Goes throguh each of the available vertices, and try to match it
20 // with another vertex to construct a diagonal
21 for (i = 0; i < randomized_available_nodes.length; i++) {
22 // Find possible partners to construct a diagonal with
23 // randomized_available_nodes[i]
24 let possiblePartners = available_nodes.filter((n) => {
25 if(n == randomized_available_nodes[i]){ return false }
26 return (Math.abs(n-randomized_available_nodes[i]) + 1) % (w +

↪→ 1) == 0
27 })
28 if(possiblePartners.length == 0){ continue }
29

30 // Picks a random partner
31 found_one = true
32 random_partner = random_array_value(possiblePartners)
33 break
34 }
35

36 if(random_partner == -1){ return []}
37 if(!found_one){
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38 console.log("error:␣Diagonal␣not␣found")
39 return []
40 }
41

42 // The chosen random diagonal
43 let diag = [randomized_available_nodes[i], random_partner].sort((a, b

↪→ )=>{return a-b})
44

45 // Splitting the polygon up into two part,
46 // one on each side of the diagonal
47 const pol1 = polygon.filter((n) => {
48 return isNOrdered(diag[0], diag[1],n, N) || n == diag[0] || n ==

↪→ diag[1]
49 })
50 const taken1 = taken.filter((n) => { return pol1.indexOf(n)>=0 })
51 taken1.push(diag[0], diag[1])
52

53 const pol2 = polygon.filter((n) => {
54 return !isNOrdered(diag[0], diag[1],n, N) || n == diag[0] || n ==

↪→ diag[1]
55 })
56 const taken2 = taken.filter((n) => { return pol2.indexOf(n)>=0 })
57 taken2.push(diag[0], diag[1])
58

59 // recursivly finding diagonal in the two parts the polygon is split
↪→ into

60 return [diag, ...helper(pol1, taken1), ...helper(pol2, taken2)]
61 }
62

63 let h = helper(numberArray(0,N-1), [])
64 return new NCCDiagonalCollection(h,w,e)
65 }

4 Examples of usage

4.1 Testing the En properties of proper abelian subcategories

Let us assume that we have come up with the hypothesis that given a proper abelian sub-
category A generated by a simple-minded system, in a negative cluster category C−w(Ae),
that A always will satisfy Ew−1. Let us come up with some code to test this. We will do
this as follows.

1. Generate random numbers for w and e with 2 ≤ w, e ≤ 20.

2. Generate a random simple-minded system in C−wAe and construct the corresponding
algebra.

3. Check if it satisfies Ew−1.

4. Repeat (step 1 - step 3) 100,000 times.
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We have implemented this:

code/examples/example1.ts

1 import * as ncc from "../src/NCC"
2

3 var isMyGuessCorrect = true
4 let times = 100000
5 for (var i = 0; i < times; i++){
6 // Finding two random numbers
7 var random_w = Math.floor(Math.random() * 18) + 2;
8 var random_e = Math.floor(Math.random() * 18) + 2;
9

10 // Generate a random proper abelian subcategory from an sms.
11 var sms = ncc.randomSimpleMindedSystem3(random_w, random_e)
12 var A = ncc.extensionClose(sms)
13

14 // Finding
15 isMyGuessCorrect &&= ncc.isEn(A, random_w-1)
16 }
17 console.log("Is␣my␣guess␣correct?", isMyGuessCorrect);

Running the code, we find that isMyGuessCorrect = true, meaning that it is true for
all the cases in which the hypothesis has been checked.

Since we have found this experiment successful, we might think that all these proper
abelian categories might satisfy Ew. However, changing the code above to check that, we
will get a negative result, meaning that there are natural numbers e, w and proper abelian
subcategories coming from simple-minded systems in C−w(Ae), that do not satisfy Ew.

4.2 Finding torsion triples

Let w, e ∈ N, and consider the negative cluster category C−w(Ae). In Part Paper C, we
defined torsion triples and found a way to construct such torsion triples. To do this, we
needed two proper abelian subcategories A ,B satisfying E5 such that B ⊆ Σ2A ∗ΣA ∗A
and A ⊆ Σ−2B ∗ Σ−1B ∗B.

The naive way to test this would be to generate two random simple-minded systems and
testing if they satisfy the properties we need. However, given a proper abelian subcategory
A , one way to construct another proper abelian subcategory is by doing an HRS-tilt. This
process was described in [Jør21] for proper abelian subcategories. The plan is, therefore,
the following:

1. Generate a random simple-minded system and find the corresponding algebra alg.
2. Tilt alg two times with respect to random torsion-free classes to get alg3.
3. Check if the pair (alg, alg3) satisfies the wanted properties.
4. Repeat (step 1 - step 3) 10,000 times, or until step 3 says we have found an appro-

priate pair.

This we have implemented in the following code.
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code/examples/example2.ts

1 import * as ncc from "../src/NCC"
2 import * as n from "../src/NegativeCCDiagonalCollection"
3

4 // Tilt an proper abelian subcategory at a random torsion class
5 function randomTilt(alg: n.NCCDiagonalCollection){
6 var T = ncc.findRandomTorsionFreeClass(alg)
7 return ncc.tilt(alg, T)
8 }
9

10 var A: null | n.NCCDiagonalCollection = null
11 var B: null | n.NCCDiagonalCollection = null
12

13 for(var i = 0; i< 10000; i++){
14

15 // Find random simple-minded system
16 var sms = ncc.randomSimpleMindedSystem3(6,6);
17 var alg = ncc.extensionClose(sms);
18 if(!ncc.isEn(alg, 5)){ continue; }
19

20 // Tilt twice at random
21 var alg2 = randomTilt(alg)
22 var alg3 = randomTilt(alg2)
23

24 // Check if the pair (alg, alg3) satisfies the wanted criteria
25 if(!ncc.isEn(alg3, 5)){ continue }
26

27 // Check if the needed properties are satisfied
28 var SSA_SA_A = ncc.extension(ncc.Sigma(alg, 2), ncc.extension(ncc.Sigma(

↪→ alg), alg))
29 var B_SB_SSB = ncc.extension(alg3, ncc.extension(ncc.Sigma(alg3,-1), ncc.

↪→ Sigma(alg3, -2)))
30

31 if(!SSA_SA_A.containsSet(alg3.diagonals)){ continue }
32 if(!B_SB_SSB.containsSet(alg.diagonals)) { continue }
33

34 // Ensure not boring
35 var SA_A = ncc.extension(ncc.Sigma(alg), alg)
36 if(SA_A.containsSet(alg3.diagonals)){ continue }
37

38 A = alg
39 B = alg3
40 break
41 }
42

43 console.log(A)
44 console.log(B)
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