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Preface

With this dissertation, I conclude my PhD studies at the Department of Mathematics, Aarhus
University, lasting from August 2021 to July 2024. It consists of the following four papers:

Paper A Optimal parameter estimation for linear SPDEs from multiple measurements.
To appear in the Annales of Statistics.
Preprint available at arXiv (arXiv:2211.02496v2).

Paper B Nonparametric velocity estimation in stochastic convection-diffusion equations
from multiple local measurements.
Preprint available at arXiv (arXiv:2402.08353v1).

Paper C Multivariate change estimation for a stochastic heat equation from local measure-
ments.
Working paper, a preprint will be available soon.

Paper D Parameter estimation in hyperbolic linear SPDEs from multiple measurements.
Preprint available at arXiv (arXiv:2407.13461v1).

Besides minor changes in layout, numbering, typesetting and correction of typing errors, those
papers correspond to their revised or current versions, respectively. All of the articles were joint
projects where both research and writing stage did not follow any strict work division and I have
contributed extensively to those phases in all four papers.

That being said, I could not have written these articles nor this dissertation without all the
wonderful people who supported me on that path during the last three years and beyond that.

Let me start with my main supervisor Claudia Strauch. I am very grateful for everything
you helped me with. Not only did you find the time to discuss many of my numerous scientific
problems and assisted me in the best imaginary way in all bureaucratic matters a PhD consists
of, but you also cared for my general well-being. Clearly, the dissertation would not have been
possible without you.

Next, I want to thank all my colleagues here in Aarhus for little chats during the day and for
teaching me the hard way that ropes and hands don’t go well together. Special thanks goes to
my office mates Péter Juhász and Emil Dare for sharing the struggle of a PhD’s life together. I
also want to point out Niklas Dexheimer and Lukas Trottner for your valuable ability to cheer
me up, for refreshing coffee breaks and for ’lending’ me your thesis template.

Furthermore, I want to express my gratitude to Markus Reiß for the opportunity to join his
working group during my change of research environment at Humboldt University of Berlin in
autumn 2023. It was a warm welcome right from the start and a really productive time period.
In this context, I would also like to mention Gregor Pasemann, Sascha Gaudlitz and Eric Ziebell
with whom I had many fruitful discussions on SPDEs and related topics.

Many thanks goes to the people I met and the friends I made in Aarhus in the last three
years through the local volleyball club, during countless boulder-sessions or in the language
school, exploring the difficulty of Danish together. Special thanks goes to Lara for your sunny
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disposition and wisdom to life and to Daniela for being the lovely and inspiring human being you
are. Without you I probably would never have got to know Mellemfolk - a non-profit plant-based
café in Aarhus operated by volunteers - where I spend many hours of my free time in the last
six months. I would like to name all of the people working there but then this preface goes on
forever. So let me just say that you creating such a wonderful and welcoming community, that
you all are doing amazing work and that I will miss that place very much.

But speaking of friends, I would also like to acknowledge all the constant support that I
received from my friends from Germany. To reply to one of them—Lukas—hopefully you can
call me officially ’Doktor Anton’ very soon. Thank you all for visits in Denmark, for wonderful
evenings in Berlin, for dramatic DnD-sessions, and also for long-distance activities such as
scientific settlement placements, magnificent monster hunts, chivalrous crusades, legendary
league clubs, sensational shootouts and abyssal adventures. Special thanks goes to Thorsten,
Ally and Robert ’der Hühne’ as even moving to Aarhus would have been difficult without your
help.

Lastly, I want to thank my family. I thank my older sister Marzelline, her husband Robert and
their two little kids Aurelia and Konstantin for their support in reaching my goals, my younger
sister Frenilla for always bringing joy to my life and my parents Karoline and Sven for long
phone calls, advice to all kinds of situations or, more general, for raising me to be the person I am.

Anton Tiepner
Aarhus, July 2024



Abstract

Stochastic partial differential equations are a multifaceted field where both theoretical and
applied problems arise. While there is a rich literature on analytical and probabilistic matters,
works on statistical aspects are limited, leaving many research questions unanswered. This
dissertation aims to bridge some of these gaps by exploring the statistical potential of the novel
local measurement approach.

Paper A is devoted to the joint parameter estimation for coefficients in a linear stochastic
convection-diffusion equation. A modified log-likelihood approach leads to an asymptotically
normal estimator and the derived central limit theorem generalises previous results. Robustness
and applicability of the estimator are discussed. Moreover, minimax rate-optimality, i.e., a lower
bound with the same rate of convergence, is established based on innovative insights on the
reproducing kernel Hilbert space of the stochastic heat equation and its relation to the Hellinger
distance between Gaussian measures.

Paper B examines nonparametric estimation of a spatially varying velocity. The constructed
pointwise estimator is motivated through a local log-likelihood approach, and weight functions
known from nonparametric regression are introduced. The estimator is decomposed into bias
and variance components which are balanced through an additional bandwidth parameter.
Under Hölder smoothness conditions, classical nonparametric convergence rates are achieved
and their optimality is verified through an adaptation of the lower bounds approach in Paper
A. Furthermore, the estimation procedure is extended to both integrated risk and unknown
diffusivity level.

Paper C addresses multivariate change estimation for the stochastic heat equation where the
discontinuous diffusivity has a jump occurring at some hypersurface. An estimator for the change
area is constructed by a CUSUM approach. It consists of the union of optimally chosen pixels.
The quality of the estimator is evaluated in terms of the symmetric difference pseudometric.
Its analysis depends on the area’s underlying complexity, i.e., its boundary roughness, and on
the concentration of empirical processes. The results are discussed for the special cases of both
graph representation and convexity of the change area.

Paper D focuses on hyperbolic stochastic partial differential equations, and the considered
second-order Cauchy problem is given by an elastic system, whose intensity and energy devel-
opment is characterised by unknown parameters. Combining methods and ideas from both
parabolic and hyperbolic equations, a joint central limit theorem for the unknown coefficients
is established. The derived convergence rate reflects the impact of the system’s damping, i.e.,
energy loss, as underlying coefficients are more difficult to identify when the magnitude of the
damping increases.
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Resumé

Stokastiske partielle differentialligninger er et komplekst felt, hvor både teoretiske og anvendte
problemer opstår. Selv om der findes en omfattende litteratur om analytiske og sandsynlighed-
steoretiske emner, er der begrænset arbejde inden for statistiske aspekter, hvilket efterlader
mange forskningsspørgsmål ubesvarede. Denne afhandling sigter mod at udfylde nogle af disse
huller ved at udforske det statistiske potentiale ved nye lokale målemetoder.

Artikel A er dedikeret til simultan parameterestimation for koefficienter i en lineær stokastisk
konvektions-diffusionsligning. En modificeret log-likelihood tilgang fører til en asymptotisk
normal estimator, hvor den afledte centrale grænseværdisætning generaliserer tidligere resultater.
Robustheden og anvendeligheden af estimatoren diskuteres. Desuden fastlægges minimaks
rate-optimalitet, dvs. en nedre grænse med samme konvergensrate, baseret på innovative
indsigter om reproducing kernel Hilbert space for den stokastiske varmeligning og dens relation
til Hellinger-afstanden mellem Gaussiske mål.

Artikel B undersøger ikke-parametrisk estimering af en rumvarierende hastighed. Den
konstruerede punktvise estimator er motiveret gennem en lokal log-likelihood tilgang, og vægt-
funktioner kendt fra ikke-parametrisk regression introduceres. Estimatoren dekomponeres i bias-
og varianskomponenter, som balanceres gennem en ekstra båndbreddeparameter. Under Hölder
glathedsbetingelser opnås klassiske ikke-parametriske konvergensrater, og deres optimalitet
verificeres gennem en tilpasning af den ovenfor nævnte nedre grænse tilgang. Endvidere udvides
estimeringsproceduren til både integreret risiko og ukendt diffusivitetsniveau.

Artikel C adresserer multivariat ændringsestimation for den stokastiske varmeligning, hvor
en diskontinuerlig diffusivitet har et spring, der forekommer ved en hyperflade. En estimator for
ændringsområdet konstrueres ved en CUSUM-tilgang som foreningen af optimalt valgte pixels.
Kvaliteten af estimatoren evalueres i forhold til den symmetriske mængdedifference. Analysen
afhænger af den underliggende kompleksitet, dvs. områdets grænseruhed, og koncentrationen af
empiriske processer. Resultaterne diskuteres for de specielle tilfælde af både grafrepræsentation
og konveksitet af ændringsområdet.

Artikel D fokuserer på hyperbolske stokastiske partielle differentialligninger, og det resul-
terende andetordens Cauchy problem gives ved et elastisk system, hvis intensitet og energiforbrug
karakteriseres ved ukendte parametre. Ved at kombinere metoder og ideer fra både paraboliske
og hyperbolske ligninger udledes en simultan central grænseværdisætning for de ukendte ko-
efficienter. Den afledte konvergensrate afspejler systemets dæmpning, dvs. energitab, idet de
underliggende koefficienter er sværere at identificere, når dæmpningens størrelse øges.
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Introduction

1In my PhD studies, I worked in the project ’Exploring the potential of nonparametric modelling
of complex systems via stochastic partial differential equations’ financed by the Carlsberg
Foundation Young Researcher Fellowship grant. Two key ingredients of this thesis project
are given by stochastic partial differential equations (SPDEs) and by (nonparametric) statistics
which unite my written papers in this time period.

In the following chapter, I give a brief introduction into the world of SPDEs in Section 1.1,
and I also present some of the current state of the art on their statistical aspects in Section
1.2. There I will discuss, among other things, the observation scheme of local measurements
which was employed in all four papers. The subsequent sections provide an overview of the
frameworks, main results and methodologies in the different articles.

1.1 Introduction to SPDEs

When explaining SPDEs to non-experts on that field, I often motivate them either as deterministic
partial differential equations (PDEs) with additional dynamical noise or as the limit 𝑁 → ∞ of
𝑁-dimensional stochastic differential equations (SDEs) with a specific type of drift structure. I
will portray these motivations in detail below.

While trying to avoid unnecessary technicalities, let me start with a brief and abstract
definition of SPDEs, see, e.g., [19, Chapter 6]. Consider the equation{

¤𝑋 (𝑡, 𝑥) = 𝐴𝑋 (𝑡, 𝑥) + 𝑓 (𝑡, 𝑥) + 𝐵 ¤𝑊 (𝑡, 𝑥), 0 < 𝑡 ≤ 𝑇, 𝑥 ∈ 𝐻,

𝑋 (0) = 𝑋0,
(1.1)

on a Hilbert space 𝐻 where 𝐴 : D(𝐴) ⊂ 𝐻 → 𝐻, 𝐵 : D(𝐵) ⊂ 𝐻 → 𝐻 are linear operators, 𝑋0 is
an 𝐻-valued F0-measurable random variable, 𝑓 is a predictable processes and𝑊 is a cylindrical
Brownian motion on 𝐻 inducing the white noise ¤𝑊 in time and space. The equation (1.1)
belongs to the class of additive SPDEs, meaning that the volatility operator 𝐵 is independent
of the 𝐻-valued predictable solution process 𝑋 = (𝑋 (𝑡))0≤𝑡≤𝑇 . Heuristically, the first temporal
derivative of the process 𝑋 corresponds to some spatial derivatives of 𝑋 , given through the
(differential) operator 𝐴, a source or nonlinear term induced by the process 𝑓 and a driving
force, i.e., the (colored) noise 𝐵 ¤𝑊.

SPDEs find application in many real life phenomena. Examples include microscopic particle
movement [42], surface temperature fluctuation [34], fluid dynamics [52], neuronal response
[56], biomass concentration [20] or wave evolution [10] on, for instance, mechanical, electro-
magnetic or acoustic level. As a common factor, SPDEs model systems which have both spatial
and temporal changes while also accounting for random effects.

As the cylindrical Brownian motion𝑊 is not differentiable in time, ¤𝑊 is mathematically not
well-defined and (1.1) has to be understood in the sense of a stochastic integral. From a technical
point of view, one distinguishes between the three solution concepts of analytically strong, weak
andmild solutions, each characterising the solution to (1.1) in a different sense. Interestingly, the
terms of analytically strong and weak solution do not correspond to probabilistically strong/weak
solution concepts in classical SDEs. Rather, the weak solution in an SPDE sense is closely related
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2 Chapter 1. Introduction

to weak solutions in the PDE theory, that is (1.1) only holds for functionals ⟨𝑋 (𝑡), 𝜑⟩, i.e.,
when 𝑋 is tested against certain (smooth) test functions 𝜑. Furthermore, mild solutions can be
obtained from weak solutions by the variation of constants formula and vice versa given that
some regularity assumptions are satisfied. A more detailed overview on underlying solution
theory to SPDEs, cylindrical Brownian motions and definitions of the stochastic integral can be
found in the books [19, 41, 45].

In what follows, the Hilbert space 𝐻 is given by 𝐿2(Λ) for some open subset Λ ⊂ ℝ𝑑 , 𝐴

is some differential operator parameterised by an unknown function 𝜗, which is the target of
estimation, the source term 𝑓 vanishes and 𝐵 corresponds to the identity id on 𝐿2(Λ). These
restrictions are made to unify the framework throughout this introduction. They are aligned
with the settings of the four papers.

1.1.1 Motivation via PDEs

As outlined, I informally explain in this section, how deterministic partial differential equations
are connected to their stochastic counterpart (1.1). Prototypical PDEs are discussed in Example
1.1 and a graphical illustration is present in Figure 1.1.

PDEs arise in a vast variety of phenomena in, for instance, physics, chemistry, biology or
geoscience. They are processes in both time and space. An important class is given by the
continuity (or transport) equations, where the time derivative equals the divergence (spatial
derivative) of some vector field. For a fruitful and detailed discussion on PDEs, I can recommend
the monographs [21, 53].

Linear parabolic PDEs are usually formulated as an abstract first order Cauchy problem
¤𝑈 (𝑡, 𝑥) = 𝐴𝑈 (𝑡, 𝑥), 0 < 𝑡 ≤ 𝑇, 𝑥 ∈ Λ, (1.2)

which can be solved under the specification of initial and boundary conditions. The differential
operator 𝐴 is the infinitesimal generator of a strongly continuous semigroup (𝑆(𝑡))𝑡≥0 and the
mild solution to (1.2) is given by

𝑈 (𝑡, 𝑥) = 𝑆(𝑡)𝑈 (0, 𝑥), 0 ≤ 𝑡 ≤ 𝑇, 𝑥 ∈ Λ.

Some simple examples of linear PDEs include the following.
Example 1.1.
(i) Heat equations

¤𝑈 (𝑡, 𝑥) = 𝜗Δ𝑈 (𝑡, 𝑥), 0 < 𝑡 ≤ 𝑇, 𝑥 ∈ Λ,

model the diffusion of heat or particles. The diffusion speed is determined by the diffu-
sivity 𝜗 > 0. The spatial movement is entailed by the Laplace operator Δ =

∑𝑑
𝑖=1 𝜕

2/𝜕𝑥2
𝑖
.

Given Dirichlet boundary conditions and the initial condition 𝑈 (0) = 𝑈0 ∈ 𝐿2(ℝ𝑑), the
fundamental solution on Λ = ℝ𝑑 is explicitly given as a convolution with the heat kernel
𝑞𝑡 (𝑦) = (4𝜋𝑡)−𝑑/2 exp(−∥𝑦∥2/(4𝑡)), i.e.,

𝑈 (𝑡, 𝑥) = (𝑞𝜗𝑡 ∗ 𝑈0) (𝑥), 0 ≤ 𝑡 ≤ 𝑇, 𝑥 ∈ ℝ𝑑 .

(ii) Convection-reaction-diffusion equations
¤𝑈 (𝑡, 𝑥) = (∇ · 𝜗1∇ + 𝜗2 · ∇ + 𝜗3)𝑈 (𝑡, 𝑥), 0 < 𝑡 ≤ 𝑇, 𝑥 ∈ Λ, (1.3)
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additionally account for spatial transportation via the velocity 𝜗2 : Λ → ℝ𝑑 and damping
(or amplifying) described by the reaction coefficient 𝜗3 : Λ → ℝ. Stochastic versions of
(1.3) are discussed in Paper A, B and C.

(iii) Linear second-order Cauchy problems result in a coupled PDE{
¥𝑢(𝑡, 𝑥) = 𝐴𝑢(𝑡, 𝑥) + 𝐵𝑣(𝑡, 𝑥), 0 < 𝑡 ≤ 𝑇, 𝑥 ∈ Λ,

¤𝑢(𝑡, 𝑥) = 𝑣(𝑡, 𝑥), 0 < 𝑡 ≤ 𝑇, 𝑥 ∈ Λ,

which can be transformed into a first-order problem by the transformation
𝑈 (𝑡, 𝑥) = (𝑢(𝑡, 𝑥), 𝑣(𝑡, 𝑥))⊤, leading to

¤𝑈 (𝑡, 𝑥) = A𝑈 (𝑡, 𝑥), 0 < 𝑡 ≤ 𝑇, 𝑥 ∈ Λ,

for the matrix-valued differential operator

A =

(
0 𝐼

𝐴 𝐵

)
.

The elasticity operator 𝐴 models the deformation and the dissipative operator 𝐵 describes
the energy development of the coupled system. Prototypical examples are provided by

(a) the (undamped) wave equation: 𝐴 = 𝜗Δ, 𝐵 = 0 with the wave speed 𝜗 > 0.
(b) the structurally damped plate equation: 𝐴 = 𝜗1Δ2, 𝐵 = 𝜗2Δ, where 𝜗1 < 0, 𝜗2 > 0.

Stochastic second-order Cauchy problems are investigated in Paper D.
When adding noise to PDEs to account for model misspecifications or observational errors,

there is a fundamental difference whether the noise enters (1.2) dynamically (SPDE) or ob-
servationally (PDE with added observation noise). A graphical illustration in the case of the
convection-reaction-diffusion equation in Example 1.1 (ii) can be found in Figure 1.1. It can
be seen that both the PDE with added noise and the SPDE retain the striking bright heat flow
of the deterministic PDE. On the other hand, the dynamical noise in the SPDE provides more
complex structures, leading to visible ’butterfly effects’ and highly flexible data dynamics, for
which the noisy PDE does not account for.

Figure 1.1: Comparison of a realisation of a convection-reaction-diffusion equation. Time is
marked on the x-axis and space on the y-axis. Initial heat concentration in the one-dimensional
domain Λ = (0, 1) diffuses and is transported in space over time; (left) no noise; (middle)
observational noise; (right) dynamical noise.
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1.1.2 Motivation via SDEs

Another starting point to motivate SPDEs is given by stochastic differential equations which
already include a random forcing term. Conceptually, the solution to an SPDE is a function-valued
process whereas the solution to an SDE is only an 𝑁-dimensional process in time. When 𝑁 is
large and the drift function follows a specific structure, the SDE solution can be interpreted as
an approximate point evaluation of the function-valued SPDE solution at 𝑁 distinct spatial grid
points. I illustrate this motivation using the example of the stochastic heat equation. Furthermore,
I will discuss statistical aspects of this toy model with regard to the results in Section 1.2.

Generally speaking, SDEs provide a flexible tool to describe the temporal evolution of
processes and find application in, for instance, stock prices or particle movements. The solution
process (�̃� (𝑡))𝑡≥0 to

d�̃� (𝑡) = 𝑏(𝑡, �̃� (𝑡)) d𝑡 + 𝜎(𝑡, �̃� (𝑡)) d�̃� (𝑡), 0 < 𝑡 ≤ 𝑇, (1.4)
with an ℝ𝑁 -valued Brownian motion (�̃� (𝑡))𝑡≥0, a drift function 𝑏 : [0, 𝑇] × ℝ𝑁 → ℝ𝑁 and
dispersion 𝜎 : [0, 𝑇] × ℝ𝑁 → ℝ𝑁×𝑁 is also referred to as (Itô) diffusion, already resulting
in a terminological overlap with the diffusivity 𝜗 in the heat equation from Example 1.1 (i).
The reason for the different meaning of ’diffusion’ lies in the considered perspective. From a
microscopic or atomistic point of view, the movement of particles is characterised by a random
walk. On the other hand, Fick’s law describes diffusion as the movement of quantities from
regions of higher concentration to lower concentrated ones, thus resulting in the macroscopic
PDE perspective.

Under a certain drift structure, which describes specific component interactions, SDEs can
be understood as approximations to SPDEs on a fine spatial grid. Consider the 𝑁-dimensional
Ornstein–Uhlenbeck (OU) process starting in 0 and given by the following SDE

d�̃� (𝑡) = 𝜗𝐴�̃� (𝑡) d𝑡 + d�̃� (𝑡), 0 < 𝑡 ≤ 𝑇. (1.5)
The drift matrix 𝐴 ∈ ℝ𝑁×𝑁 is assumed to be of the form

𝐴 := (𝑁 + 1)2
©«

−2 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −2

ª®®®®®®¬
, (1.6)

i.e., 𝐴 forms an approximation based on finite differences of the Laplace operator Δ with
Dirichlet boundary conditions on (0, 1). When 𝑁 → ∞, the process 𝑌 (𝑡) := (0, �̃�⊤, 0)⊤ ∈ ℝ𝑁+2

approximates the 𝐿2((0, 1))-valued process 𝑋 (𝑡) solving the following heat equation on (0, 1)
d𝑋 (𝑡) = 𝜗Δ𝑋 (𝑡) d𝑡 + d𝑊 (𝑡), 0 < 𝑡 ≤ 𝑇, (1.7)

with a cylindrical Brownian motion (𝑊 (𝑡))𝑡≥0 on 𝐿2((0, 1)), cf. [44, Theorem 3.34 and Theorem
5.13].

Such spatial approximations are important, for instance, in the simulations of PDEs and SPDEs,
cf. [44]. They are also useful to motivate the case of continuous space. The one-dimensional
wave equation, for example, can be derived from Hooke’s law. Then, in the overdamped regime,
ignoring the mass of particles, reaction-diffusion equations arise as discussed in [24, Section
2.1]. More generally, SPDEs can be obtained from lifts of diffusion processes, cf. [19, Chapter 0].
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Statistical inference for the toy example

Consider again the equation (1.4). Given a time-continuous record of observations (�̃� (𝑡))0≤𝑡≤𝑇 ,
the statistician ’knows’ the exact value of the diffusion coefficient 𝜎(𝑡, �̃� (𝑡))𝜎⊤(𝑡, �̃� (𝑡)) through
differentiation of the observable quadratic variation process. This trivial identifiability criterion
holds since the measures induced by different diffusion coefficients are singular. Note that
inference on 𝜎(𝑠, 𝑥)𝜎⊤(𝑠, 𝑥), 𝑠 ≤ 𝑇, is impossible if 𝑥 ∈ ℝ𝑁 is not visited by (�̃� (𝑡))𝑡≤𝑇 . On the
other hand, the (non)parametric estimation of the drift coefficient 𝑏 is not possible in finite time
𝑇 < ∞ and fixed dimension 𝑁, even in the simple case of linear drift. I refer to [37] for a general
overview on statistical matters for diffusion processes. Now, if we were to increase the dimension
𝑁, this results in an identifiability criterion in finite time.

I will finish this section with a little teaser on statistical aspects and an enlightening observa-
tion regarding matching convergence rates for the maximum likelihood estimator (MLE) �̂� in
the OU model (1.5) compared to the MLE obtained from local measurement observations of the
stochastic heat equation.

It was shown in paper A that the unknown diffusivity 𝜗 > 0 in (1.7) is identifiable with
optimal rate of convergence 𝑁−3/2, given 𝑁 local measurement observations, described in detail
in Section 1.2, at points 𝑥1, . . . , 𝑥𝑁 separated by an Euclidean distance of order 𝑁−1. The next
result shows that the same rate is obtained in the SDE setting (1.5), when the dimension 𝑁

tends to infinity.
Theorem 1.2. The maximum-likelihood estimator �̂� for 𝜗 in the SDE (1.5), given by

�̂� =

(∫ 𝑇

0
�̃� (𝑡)⊤𝐴2�̃� (𝑡) d𝑡

)−1 ∫ 𝑇

0
�̃� (𝑡)⊤𝐴 d�̃� (𝑡), (1.8)

satisfies

𝑁3/2(�̂� − 𝜗) 𝑑→ N

(
0, 𝜗
𝑇

)
.

Proof. The expression of the MLE (1.8) follows by maximising the Radon–Nikodym derivative,
obtained through Girsanov’s theorem, with respect to 𝜗, cf. [37]. Plugging (1.5) into (1.8)
yields the error decomposition

�̂� = 𝜗 +
(∫ 𝑇

0
�̃� (𝑡)⊤𝐴2�̃� (𝑡) d𝑡

)−1 ∫ 𝑇

0
�̃� (𝑡)⊤𝐴 d�̃� (𝑡).

Since the observed Fisher-information

I :=
∫ 𝑇

0
�̃� (𝑡)⊤𝐴2�̃� (𝑡) d𝑡

forms the quadratic variation of the (time-)martingale∫ 𝑇

0
�̃� (𝑡)⊤𝐴 d�̃� (𝑡),

it suffices to show the convergence of 𝑁−3I → 𝑇𝜗−1 due to a general martingale CLT, e.g.,
Theorem A.25 in Paper A below. I prove

𝑁−3𝔼[I] → 𝑇

𝜗
, 𝑁−6 Var(I) → 0, (1.9)
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which implies 𝑁−3I𝛿 → 𝑇𝜗−1 in probability as 𝑁 → ∞ by Chebyshev’s inequality. By the
variation of constants formula, it holds

�̃� (𝑡) =
∫ 𝑡

0
𝑒𝜗(𝑡−𝑠)𝐴 d�̃� (𝑠), 0 ≤ 𝑡 ≤ 𝑇.

Furthermore, the eigenvalues of the tridiagonal Toeplitz matrix 𝐴 from (1.6) are given by

𝜆𝑘 = (𝑁 + 1)2
(
−2 + 2 cos(𝑘𝜋(𝑁 + 1)−1)

)
∈ (−4(𝑁 + 1)2, 0), 𝑘 = 1, . . . , 𝑁.

Note that for a symmetric matrix 𝐵 ∈ ℝ𝑁×𝑁 with eigenvalues 𝜇1, . . . , 𝜇𝑁 the Hilbert–Schmidt-
norm ∥𝐵∥HS (or Frobenius-norm ∥𝐵∥F) satisfies

∥𝐵∥2HS = tr(𝐵2) =
𝑁∑︁
𝑘=1

𝜇2𝑖 .

Thus, it follows

𝔼[I] = 𝔼

[∫ 𝑇

0
�̃� (𝑡)⊤𝐴2�̃� (𝑡) d𝑡

]
=

∫ 𝑇

0

∫ 𝑡

0
∥𝑒𝜗(𝑡−𝑠)𝐴𝐴∥2HS d𝑠 d𝑡

=

𝑁∑︁
𝑘=1

∫ 𝑇

0

∫ 𝑡

0
𝑒2𝜗𝜆𝑘𝑠𝜆2𝑘 d𝑠 d𝑡

=

𝑁∑︁
𝑘=1

∫ 𝑇

0
𝜆𝑘 (2𝜗)−1

(
𝑒2𝜗𝜆𝑘𝑡 − 1

)
d𝑡

=

𝑁∑︁
𝑘=1

(2𝜗)−2
(
𝑒2𝜗𝑇𝜆𝑘 − 2𝜗𝑇𝜆𝑘 − 1

)
.

Observe further that

𝑁−3
𝑁∑︁
𝑘=1

𝜆𝑘 = −2𝑁−2(𝑁 + 1)2 + 2 (𝑁 + 1)2
𝑁3

𝑁∑︁
𝑘=1

cos
(
𝑘𝜋

𝑁 + 1

)
→ −2, 𝑁 → ∞,

due to symmetry properties of the cosine function. Since |𝑒2𝜗𝑇𝜆𝑘 − 1| ≤ 1 when 𝜆𝑘 < 0, this
yields

𝑁−3𝔼[I] → 𝑇

𝜗
, 𝑁 → ∞.

As for the variance, Wick’s formula [31, Theorem 1.28] and the Cauchy–Schwarz inequality
imply

Var(I) = 4
∫ 𝑇

0

∫ 𝑡

0
Cov(�̃� (𝑡), �̃� (𝑠))2 d𝑠 d𝑡

= 4
∫ 𝑇

0

∫ 𝑡

0

(∫ 𝑡−𝑠

0
∥𝑒𝜗(𝑠/2+𝑟)𝐴𝐴∥2HS d𝑟

)2
d𝑠 d𝑡

= 4
∫ 𝑇

0

∫ 𝑡

0

(∫ 𝑡−𝑠

0

𝑁∑︁
𝑘=1

𝑒𝜗(𝑠+2𝑟)𝜆𝑘𝜆2𝑘 d𝑟
)2

d𝑠 d𝑡
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= 4
∫ 𝑇

0

∫ 𝑡

0

(
𝑁∑︁
𝑘=1

𝜆𝑘𝑒
𝑠𝜗𝜆𝑘

2𝜗 (𝑒2𝜗(𝑡−𝑠)𝜆𝑘 − 1)
)2

d𝑠 d𝑡

≤ 4
∫ 𝑇

0

∫ 𝑡

0
𝑁

𝑁∑︁
𝑘=1

𝜆2
𝑘
𝑒2𝑠𝜗𝜆𝑘

4𝜗2 d𝑠 d𝑡

≲
∫ 𝑇

0
𝑁

𝑁∑︁
𝑘=1

|𝜆𝑘 | d𝑡

≲ 𝑁4.

Hence, 𝑁−6 Var(I) → 0, which proves (1.9). ■

Theorem 1.2 demonstrates that time-continuous observations of the high-dimensional SDE
model (1.5) with interacting nodes, i.e., points 𝑥1, . . . , 𝑥𝑁 , on a spatial grid of [0, 1], allow
for the consistent estimation of 𝜗 where the MLE �̂� achieves the rate of convergence 𝑁−3/2.
In Section 1.2, I briefly present the spectral, discrete and local observation approaches, each
leading to the same convergence rate. Interestingly, the asymptotics of the SDE setting describe
a system of increasing interaction and intensity in the space-discontinuous process �̃� whereas
in the mentioned SPDE observation schemes 𝑁 functionals of the underlying space-continuous
process 𝑋 from (1.7) are observed which asymptotically results in an improved observational
accuracy.

Remark 1.3. When the heat equation is approximated on a 𝑑-dimensional domain instead, the
finite difference scheme gives an 𝑁𝑑 × 𝑁𝑑 dimensional drift matrix 𝐴 where each entry is again
of order 𝑁2. Repeating the previous steps results in the optimal convergence rate 𝑁−1/2−1/𝑑 .

1.2 Statistical inference for SPDEs

To be best of my knowledge, the first articles on statistics for SPDEs were published in the
mid 80s ([36, 43]). Since then, many researchers have studied all kinds of problems in that
field employing various estimation methods, utilising different techniques and assuming certain
observable structures. While there is plenty of material available by now, many questions are
still open. In the following section, I present an excerpt of some relevant literature related to my
own research, thus I will limit myself on studies of (non)parametric drift estimation in SPDEs in
finite time and non-vanishing noise. Beyond that, I recommend the survey paper [14] and the
website [3] for a more comprehensive overview of the existing literature.

The estimation quality of an unknown quantity 𝜗, e.g., the diffusivity in the stochastic
heat equation (1.7), relies on the amount of observed data. But what is actually observable
in an SPDE? As the solution 𝑋 (𝑡, 𝑥) is a process in time and space, it seems ideal to observe it
continuously in both components, i.e., 𝑋 (𝑡, 𝑥) is known for any 0 ≤ 𝑡 ≤ 𝑇 and 𝑥 ∈ Λ, which
provides the largest amount of information possible while also keeping all fundamental properties
of the solution. Unfortunately, a full record of observations is rarely possible and usually less
data is available to the statistician. In the following, I will present three different approaches
where discretisations are used.
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1.2.1 Spectral measurements

In the spectral approach, firstly mentioned in [27, 28] and concretised in [29], an SPDE on
Λ ⊂ ℝ𝑑 of the form

d𝑋 (𝑡, 𝑥) = (𝐴0 + 𝜗𝐴1)𝑋 (𝑡, 𝑥) d𝑡 + d𝑊 (𝑡, 𝑥), 0 < 𝑡 ≤ 𝑇, 𝑥 ∈ Λ,

is considered where 𝐴0 and 𝐴1 are known diagonalisable differential operators having a common
system of orthonormal eigenvectors (𝑒𝑘)𝑘≥1 ⊂ 𝐿2(Λ) with eigenvalues (𝜇𝑘)𝑘≥1 and (𝜆𝑘)𝑘≥1,
respectively. It is assumed that the projection of the solution on the first 𝑁 eigenvectors are
given, i.e., the first 𝑁 Fourier-modes (𝑋𝑘 (𝑡))𝑡≤𝑇 := (⟨𝑋 (𝑡, ·), 𝑒𝑘 (·)⟩)𝑡≤𝑇 , 1 ≤ 𝑘 ≤ 𝑁, are observed
continuously in time. This leads to the study of 𝑁 independent Ornstein–Uhlenbeck processes
satisfying

d𝑋𝑘 (𝑡) = (𝜇𝑘 + 𝜗𝜆𝑘)𝑋𝑘 (𝑡) d𝑡 + d𝛽𝑘 (𝑡), 0 < 𝑡 ≤ 𝑇, 1 ≤ 𝑘 ≤ 𝑁,

for independent Brownian motions (𝛽𝑘)𝑘≥1. The MLE �̂� is constructed through Girsanov’s
theorem. The analysis of the estimator �̂� relies on the size of the eigenvalues and, consequently,
consistency is only possible if a certain relation between dimension 𝑑, the differential order
ord(𝐴0) and ord(𝐴1) is satisfied. As the eigenvalues of higher-order differential operators are
larger, the corresponding higher-order coefficients become more visible, and they are identified
at faster rate.

Extensions of the spectral approach include, e.g., joint parameter estimation for two unknown
parameters [46], hyperbolic equations [39, 40], fractional noise [13], testing [18], lower-order
nonliniarities [50], temporal discretisation [15] or to the Bayesian framework [11]. A detailed
overview on the methodology is provided by [47].

Due to the elegant decoupling of the spectral observation scheme, the underlying estimation
problem is separated into the study of independent OU processes which simplifies the estimation
analysis. However, there are some drawbacks to the approach. There is, for instance, no known
estimator yet for a velocity from Example 1.1 (ii) in the stochastic convection-diffusion equation.
Furthermore, nonparametric estimation of space-dependent coefficients has not been studied so
far as the eigenvalues and eigenfunctions will no longer be independent of 𝜗. As a final note,
the Fourier modes are usually not directly observable and have to be approximated through
discrete spatial observations instead, cf. [16, p. 2] and [17, p. 2], but a complete analysis of this
idea is still an open problem.

1.2.2 Discrete observations

The access to discrete measurements, on the other hand, is quite natural to assume. Suppose 𝑋
solves the stochastic convection-diffusion equation

d𝑋 (𝑡, 𝑥) = (𝜗1Δ + 𝜗2∇ + 𝜗3)𝑋 (𝑡, 𝑥) d𝑡 + 𝜎 d𝑊 (𝑡, 𝑥), 0 < 𝑡 ≤ 𝑇, 𝑥 ∈ (0, 1),

with unknown constants 𝜗1, 𝜗2, 𝜗3, 𝜎. Given that 𝑋 (𝑡𝑖, 𝑥𝑘), 1 ≤ 𝑖 ≤ 𝑀, 1 ≤ 𝑘 ≤ 𝑁, is observed
on a time-space grid, the following can be found.

The estimation of the volatility 𝜎 relies on the quadratic variation and can be realised via
method of moments or power variation approaches [8, 9, 12]. Furthermore, it is impossible
to estimate both 𝜗1 and 𝜎 if only temporal or spatial increments are available [26, Proposition
2.3]. The reaction coefficient 𝜗3, however, cannot be identified in one spatial dimension, even
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if the covariance structure is exploited both in time and space. In that case other asymptotic
regimes such as large time [25], small diffusivity [23], spatial ergodicity [22] or small noise
[32] have to be considered. Joint estimation is treated, amongst others, in [7, 26, 33] leading to
similar rates obtained in the spectral approach if both 𝑀 and 𝑁 tend to infinity sufficiently fast.
Discrete measurements are also utilised in the study of a nonparametric reaction-terms [25], in
the two-dimensional framework [54] with colored noise or hyperbolic equations [48].

Despite the accessibility of observations, the methodology is not yet viable in arbitrary
space dimensions since point evaluations are no longer well-defined in dimension 𝑑 ≥ 2 as the
rough space-time white noise ¤𝑊 (𝑡) only induces a distribution-valued solution 𝑋 (𝑡). Moreover,
nonparametric estimation of the coefficients is again complicated due to their influence on the
eigenvalues in the spectral representation.

1.2.3 Local measurements

Observing the exact value of a process (𝑋 (𝑡, 𝑥))0≤𝑡≤𝑇 at a discrete point 𝑥 ∈ Λ in space is, in
general, not possible due to physical limitations. Besides from measurement errors induced by
the used measurement device, often only a blurred image is available in optical systems, which is
modeled through a convolution of 𝑋 with a so-called point-spread function 𝐾𝛿,𝑥 [5, 6]. Examples
of such locally blurred averages can, for instance, occur when an infrared thermometer with
laser diameter 𝛿 is used to evaluate the temperature at a small area around 𝑥 or, alternatively,
in microscopic scaling limits with resolution level 𝛿.

Mathematically formulated, a continuous time local in space measurement is defined through

𝑋𝛿,𝑥 (𝑡) := ⟨𝑋 (𝑡), 𝐾𝛿,𝑥⟩, 0 ≤ 𝑡 ≤ 𝑇, 𝑥 ∈ Λ, 𝛿 > 0,

where
𝐾𝛿,𝑥 (𝑦) := 𝛿−𝑑/2𝐾 (𝛿−1(𝑦 − 𝑥)), 𝑦 ∈ Λ, 𝛿 > 0,

for some compactly supported function 𝐾 ∈ 𝐿2(ℝ𝑑). The scaling 𝛿−𝑑/2 is just taken as a
convenient normalising factor as ∥𝐾𝛿,𝑥 ∥𝐿2 (Λ) = ∥𝐾∥𝐿2 (ℝ𝑑 ) and does not affect the estimation
procedure.

Local measurements were introduced in [4], where it was shown that a spatially varying
diffusivity 𝜗 in the perturbed heat equation (convection-reaction-diffusion equation)

d𝑋 (𝑡) = (∇ · 𝜗∇ + 𝑏 · ∇ + 𝑐)𝑋 (𝑡) d𝑡 + d𝑊 (𝑡), 0 < 𝑡 ≤ 𝑇, (1.10)

can already be identified at 𝑥0 ∈ Λ with rate 𝛿 upon observing (𝑋𝛿,𝑥0 (𝑡))0≤𝑡≤𝑇 .
Subsequently, extensions of (1.10) have been studied and the local measurement approach

was successfully applied to semilinear (coupled) equations [1, 2], and practical relevance to cell
repolarisation was investigated in [1]. Furthermore, [30] explored the heat equation driven
by multiplicative noise, [51] analysed a one-dimensional change-point problem arising from a
discontinuous diffusivity and [57] considered the nonparametric wave equation.

The full anisotropic case of (1.10) was studied in Paper A, where we were also interested
in estimation of the lower-order transport and reaction coefficients 𝑏 and 𝑐. It turned out that
consistency for those parameters necessarily requires an increasing amount 𝑁 = 𝑁 (𝛿) → ∞
of local measurements centred at 𝑥1, . . . , 𝑥𝑁 ∈ Λ. Given that the corresponding point-spread
functions 𝐾𝛿,𝑥𝑘 have non-overlapping support, this allows for at most 𝑁 ≍ 𝛿−𝑑 observation points.
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In other words, only data of distinct pixel provides adequate new information. Under such
assumptions, we established a minimax-optimal convergence rate. The verification of the lower
bound relies on a novel approach relating the Hellinger distance of Gaussian measures with the
reproducing kernel Hilber space (RKHS) of the local measurements using the Feldman–Hájek
theorem. This rate matches convergence results obtained in, for instance, the spectral approach
[29], the discrete setting [26] or the described high-dimensional SDE setup in Section 1.1.

To the best of my knowledge, Paper B is the only paper in the literature devoted to the
nonparametric velocity estimation. Based on the results of Paper A, we derived a weighted
estimator from a local log-likelihood approach which is designed to automatically reduce the
bias appearing in the nonparametric framework. This led to the introduction of the bandwidth
ℎ = ℎ(𝛿) → 0. Naturally, we had to face the classical bias-variance trade off and we obtained
minimax-optimality through the optimal bandwidth choice.

In Paper C, we extended the one-dimensional change point problem studied in [51] to its
multivariate equivalent. Primarily interested in the estimation of the boundary of some set Λ+,
i.e., the change interface of a discontinuous diffusivity, we constructed an estimator Λ̂+ as the
union of optimal pixels (cubes). The estimation procedure was motivated by a CUSUM approach,
common in change point problems, which we combined with ideas from image reconstruction,
cf. [35].

Lastly, Paper D was devoted to the study of second-order stochastic Cauchy problems, extend-
ing the work [57] on the nonparametric stochastic wave equation. Our obtained convergence rate
coincides with the spectral approach [39], but the proofs required different arguments in contrast
to previous contributions. Due to additional smoothing properties of an associated semigroup,
we arrived eventually in between semigroup-structures of heat equations and undamped wave
equations, and neither of the established approaches in these setting was applicable. We dealt
with the emerging statistical problems through functional calculus for operators, discovering
new analytical results along the way.

1.3 Paper A

Paper A was written in collaboration with Randolf Altmeyer and Martin Wahl. It has started as
an extension of my master’s thesis on parametric velocity estimation from local measurements.
The derived central limit theorem (CLT) and accompanying material has seen major changes
throughout the beginning and its final state which itself forms an exiting result. The significant
novelty, however, lied in the lower bound approach also bypassing a gap in the original paper
[4]. In order to stay consistent throughout the introduction, I replace the number 𝑀 of observed
measurements in Paper A by 𝑁 in the following section.

1.3.1 Framework

We studied the stochastic convection-diffusion equation

d𝑋 (𝑡) = 𝐴𝜗𝑋 (𝑡) d𝑡 + d𝑊 (𝑡), 0 < 𝑡 ≤ 𝑇, (1.11)

on some open, bounded domain Λ ⊂ ℝ𝑑, starting in 𝑋 (0) = 𝑋0 ∈ 𝐿2(Λ), driven by space-time
white noise and with Dirichlet boundary conditions. A prototypical example of the second-order
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linear elliptic operator 𝐴𝜗 is given by

𝐴𝜗 = 𝜗1Δ + 𝜗2 · ∇ + 𝜗3

for 𝜗1 > 0, 𝜗2 ∈ ℝ𝑑 , 𝜗3 ∈ ℝ. The goal was to recover the unknown parameter 𝜗 = (𝜗1, 𝜗2, 𝜗3)⊤ ∈
ℝ𝑑+2.

We assumed access to the continuously observed local measurement process 𝑋 𝐴
𝛿,𝑘

(𝑡) =(
𝑋𝛿,𝑘 (𝑡),−𝑋∇

𝛿,𝑘
(𝑡), 𝑋Δ

𝛿,𝑘
(𝑡)

)⊤
, where for 0 ≤ 𝑡 ≤ 𝑇 , 1 ≤ 𝑘 ≤ 𝑁,

𝑋𝛿,𝑘 (𝑡) = ⟨𝑋 (𝑡), 𝐾𝛿,𝑥𝑘⟩,
𝑋∇
𝛿,𝑘 (𝑡) = ⟨𝑋 (𝑡),∇𝐾𝛿,𝑥𝑘⟩,
𝑋Δ
𝛿,𝑘 (𝑡) = ⟨𝑋 (𝑡), Δ𝐾𝛿,𝑥𝑘⟩.

Thus, each local measurement 𝑋𝛿,𝑘 is an Itô process fulfilling

d𝑋𝛿,𝑘 (𝑡) = 𝜗𝑋 𝐴𝛿,𝑘 (𝑡) d𝑡 + ∥𝐾∥𝐿2 (ℝ𝑑 ) d𝑊𝑘 (𝑡), 0 < 𝑡 ≤ 𝑇, 1 ≤ 𝑘 ≤ 𝑁, (1.12)

with initial values 𝑋𝛿,𝑘 (0) = ⟨𝑋0, 𝐾𝛿,𝑥𝑘⟩ and driven by the scalar Brownian motions 𝑊𝑘 (𝑡) =

⟨𝑊 (𝑡), 𝐾𝛿,𝑥𝑘⟩/∥𝐾∥𝐿2 (ℝ𝑑 ) . As neither 𝑋𝛿,𝑘 nor 𝑋 𝐴𝛿,𝑘 are Markov processes due to the infinite speed
of propagation in space induced by the semigroup (𝑆𝜗(𝑡))𝑡≥0 generated by 𝐴𝜗, the processes
𝑋𝛿,𝑘 are not independent, even when the driving Brownian motions 𝑊𝑘 are. Hence, classical
statistical methods for diffusion processes, see, e.g., [37], fail. However, using a general Girsanov
theorem for multivariate Itô processes and ignoring conditional expectations, we obtained the
augmented MLE

�̂�𝛿 = I−1𝛿

𝑁∑︁
𝑘=1

∫ 𝑇

0
𝑋 𝐴𝛿,𝑘 (𝑡) d𝑋𝛿,𝑘 (𝑡), (1.13)

with the observed Fisher information matrix

I𝛿 =

𝑁∑︁
𝑘=1

∫ 𝑇

0
𝑋 𝐴𝛿,𝑘 (𝑡)𝑋

𝐴
𝛿,𝑘 (𝑡)

⊤ d𝑡. (1.14)

1.3.2 Main results

In Paper A, we derived three major results. First of all, we were interested in the asymptotic
properties of the estimator (1.13). If the observation points 𝑥1, . . . , 𝑥𝑁 belong to a compact
subset J ⊂ Λ and the corresponding localising functions 𝐾𝛿,𝑥𝑘 have disjoint supports, then,
under suitable smoothness assumptions on the initial condition 𝑋0 and 𝐾, for some deterministic,
invertible matrix Σ𝜗 the following CLT unfolds.

©«
𝑁1/2𝛿−1(�̂�1 − 𝜗1)
𝑁1/2(�̂�2 − 𝜗2)
𝑁1/2𝛿(�̂�3 − 𝜗3)

ª®®¬
𝑑→ N(0, ∥𝐾∥2

𝐿2 (ℝ𝑑 )Σ
−1
𝜗 ), , 𝛿 → 0. (1.15)

As an immediate consequence, the consistent estimation of 𝜗2 and 𝜗3 necessarily requires
𝑁1/2 → ∞ and 𝑁1/2𝛿 → ∞, respectively. Combined with the fact that the disjoint support
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assumption on 𝐾𝛿,𝑥𝑘 restricts the number of measurements to 𝑁 ≍ 𝛿−𝑑, the seemingly best
convergence rates for 𝜗𝑖 are given by 𝛿𝑑/2+2−𝑖, 𝑖 ∈ {1, 2, 3}. They mirror the rates from both
spectral and discrete setting. In case of the reaction coefficient 𝜗3, the rate 𝛿𝑑/2−1 explodes in
𝑑 = 1 and a boundary case occurs in 𝑑 = 2, where we instead proved logarithmic rates, when
less restricting smoothing assumptions on the kernel 𝐾 are imposed.

Since we were also interested in the verification of minimax-optimal in the sense of [55],
lower bounds had to be proven. A key argument for those lower bound considerations is a precise
characterisation of the RKHS of the Gaussian measure induced by the solution to the stochastic
heat equation and the related RKHS-norm. Such findings were derived by a generalisation of
the finite-dimensional Ornstein–Uhlenbeck case and are of independent interest.

It turned out that the rates in (1.15) are indeed optimal. Not only is it impossible to
consistently estimate the velocity 𝜗2 from a single local measurement in finite time, but even a
full observation scheme does not allow consistent estimation of 𝜗3 in 𝑑 ≤ 2. This, however, is no
contradiction to the mentioned logarithmic rate in 𝑑 = 2 due to different assumptions on the
kernel 𝐾.

1.3.3 Methodology

A key observation in the analysis of (1.13) lied in the study of the observed Fisher information
(1.14). Indeed, plugging (1.12) into (1.13) results in the error decomposition

�̂�𝛿 = 𝜗 + ∥𝐾∥𝐿2 (ℝ𝑑 )I
−1
𝛿 M𝛿

with the martingale term

M𝛿 =

𝑁∑︁
𝑘=1

∫ 𝑇

0
𝑋 𝐴𝛿,𝑘 (𝑡) d𝑊𝑘 (𝑡).

When the Brownian motions𝑊𝑘, 𝑘 = 1, . . . , 𝑁, are mutually independent (which holds under
the imposed disjoint support condition) the observed Fisher information I𝛿 forms the quadratic
covariation matrix of M𝛿. By a martingale CLT and Slutsky’s lemma, the CLT (1.15) holds if we
find a deterministic matrix Σ𝜗 as limiting object of the rescaled Fisher information. In other
words, given a diagonal matrix 𝜌𝛿 of rescaling coefficients, we had to show that

𝔼[𝜌𝛿I𝛿𝜌𝛿] → Σ𝜗, Var(𝜌𝛿I𝛿𝜌𝛿) → 0, 𝛿 → 0.

These convergences relied upon pointwise convergence of the semigroup to the heat kernel
via a Feynman–Kac approach, rescaling properties of semigroups and operators, (integrable)
semigroup bounds to utilise dominated convergence and Wick’s formula for the variance part.

As the information geometry of local measurements is complex and a Markovian structure of
standard diffusion processes is not maintained, standard MLE optimality results for continuously
observed processes were no longer available. Hence, the lower bounds are based on an innovative
strategy, relating the Hellinger distance of Gaussian measures to properties of their RKHS. The
RKHS computations were mainly achieved under basic operations such as linear transformations.
The combination of the Feldman–Hájek theorem [19, Theorem 2.25] with basic properties of the
Hellinger distance resulted in the desired lower bound, once underlying RKHS-norms, written
in terms of covariance operators between local measurements, were sufficiently well bounded.
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1.4 Paper B

Paper B was a joint work with my supervisor Claudia Strauch. The main goal was the construction
and analysis of an estimator for a spatially varying velocity field 𝜗. This estimation problem, to
the best of my knowledge, has not been investigated before.

1.4.1 Framework

We considered the stochastic convection-diffusion equation (1.11) where the differential operator
𝐴𝜗 is defined through

𝐴𝜗 = 𝑎Δ + 𝜗 · ∇ + 𝑐

for the (possibly unknown) constant diffusivity 𝑎 > 0, the unknown velocity 𝜗 : Λ → ℝ𝑑 and
the nuisance reaction function 𝑐 : Λ → ℝ. Due to the nonparametric nature of the problem, we
had to adjust the estimation procedure to account for bias-reduction. Motivated through the
augmented MLE in Paper A and a local constant log-likelihood approach, we constructed the
weighted augmented MLE �̂�(𝑥)

�̂�𝛿(𝑥) = −(I𝑥𝛿)
−1

𝑁∑︁
𝑘=1

𝑤𝑘 (𝑥)
(∫ 𝑇

0
𝑋∇
𝛿,𝑘 (𝑡) d𝑋𝛿,𝑘 (𝑡) −

∫ 𝑇

0
𝑎𝑋Δ

𝛿,𝑘 (𝑡)𝑋
∇
𝛿,𝑘 (𝑡) d𝑡

)
with the weighted observed Fischer information matrix

I𝑥𝛿 =

𝑁∑︁
𝑘=1

𝑤𝑘 (𝑥)
∫ 𝑇

0
𝑋∇
𝛿,𝑘 (𝑡)𝑋

∇
𝛿,𝑘 (𝑡)

⊤ d𝑡

and weight functions 𝑤𝑘 : Λ → ℝ as an estimator for 𝜗 evaluated at 𝑥 ∈ Λ. The estimator is
decomposable into

�̂�𝛿(𝑥) = 𝜗(𝑥) + (I𝑥𝛿)
−1R𝑥

𝛿 − ∥𝐾∥𝐿2 (ℝ𝑑 ) (I𝑥𝛿)
−1M𝑥

𝛿, (1.16)
with the martingale part and remainder defined through

M𝑥
𝛿 =

𝑁∑︁
𝑘=1

𝑤𝑘 (𝑥)
∫ 𝑇

0
𝑋∇
𝛿,𝑘 (𝑡) d𝑊𝑘 (𝑡),

R𝑥
𝛿 =

𝑁∑︁
𝑘=1

𝑤𝑘 (𝑥)
∫ 𝑇

0
𝑋∇
𝛿,𝑘 (𝑡)⟨𝑋 (𝑡), ((𝜗 − 𝜗(𝑥)) · ∇ + div(𝜗) − 𝑐)𝐾𝛿,𝑥𝑘⟩ d𝑡.

An appropriate choice of weight functions was vital and we found inspiration in the classical
local polynomial regression, cf. [55, Chaper 1.6]. Introducing an extra tuning parameter,
the bandwidth ℎ, which enters the weight functions to control the contribution of each local
measurement, the analysis of the decomposition (1.16) was studied under Hölder-smoothness
assumptions on 𝜗.

1.4.2 Main results

Given that 𝜗 belongs to the class of 𝛽-Hölder continuous functions for 𝛽 ∈ (1, 2], i.e., 𝜗 is
continuously differential with continuous partial derivatives having Hölder-exponent 𝛽 − 1, the



14 Chapter 1. Introduction

pointwise estimator satisfies

�̂�𝛿(𝑥) − 𝜗(𝑥) = 𝑂ℙ(ℎ𝛽 + (𝑁ℎ𝑑)−1/2). (1.17)

Clearly, (1.17) is optimised for the choice ℎ ≍ 𝑁−1/(2𝛽+𝑑) , leading to the standard nonparametric
rate 𝑁−𝛽/(2𝛽+𝑑) for the estimator or, in terms of a full observation scheme 𝑁 ≍ 𝛿−𝑑 , the equivalent
rate 𝛿𝛽𝑑/(2𝛽+𝑑) . Adapting the lower bound method of Paper A, we were able to verify that
𝑁−𝛽/(2𝛽+𝑑) is indeed the minimax-optimal rate of convergence. Moreover, we also studied
estimation when the diffusivity 𝑎 is unknown and investigated the integrated risk.

1.4.3 Methodology

Due to the incorporation of the weights 𝑤𝑘 in the estimation procedure, the weighted Fisher
information I𝑥

𝛿
no longer forms the quadratic covariation of M𝑥

𝛿
. In fact, due to the convergence

I𝑥
𝛿
→ Σ as 𝛿 → 0, which does not involve any normalisation, the estimation error is solely

induced by the bias term R𝑥
𝛿
and the variance part M𝑥

𝛿
.

Since the square root of the quadratic covariation bounds the order of the martingale M𝑥
𝛿

itself, it was enough to verify for the quadratic covariation process [M𝑥
𝛿
] that

[M𝑥
𝛿]𝑇 =

𝑁∑︁
𝑘=1

𝑤𝑘 (𝑥)2
∫ 𝑇

0
𝑋∇
𝛿,𝑘 (𝑡)𝑋

∇
𝛿,𝑘 (𝑡)

⊤ d𝑡 = 𝑂ℙ((𝑁ℎ𝑑)−1), 𝛿 → 0,

to derive the order of the variance term. The proof combines the imposed structure on the
weights, namely ∑𝑁

𝑘=1𝑤𝑘 (𝑥)2 ≲ (𝑁ℎ𝑑)−1, and calculations close to those made in Paper A for
the summands in the observed Fisher-information.

On the other hand, verification of R𝑥
𝛿
= 𝑂ℙ(ℎ𝛽) was more involved and it was particularly

challenging to prove 𝔼[R𝑥
𝛿
] = 𝑂(ℎ𝛽). The covariance structure of local measurements depends on

the semigroup (𝑆∗
𝜗
(𝑡))𝑡≥0 generated by 𝐴∗

𝜗
. Precisely controlling the semigroup approximations

arising from both the variation of constants formula and a Feynman–Kac argument, we considered
the heat kernel instead of 𝑆∗

𝜗
in the covariance structure. A major difficulty lied in the difference

𝜗(·) − 𝜗(𝑥) appearing in the remainder R𝑥
𝛿
. This difference was rewritten by a first-order Taylor

expansion with Peano-remainder. Choosing reproducing weights of order one imply under
(anti-)symmetry kernel assumptions that the first-order term of the Taylor series vanishes. To
achieve that we exploited that a convolution with the heat kernel keeps the orientation of an even
(respectively odd) function. Thus, the size of 𝔼[R𝑥

𝛿
] is entirely determined by the Peano-reminder

of order 𝑂(ℎ𝛽).

1.5 Paper C

Paper C was a collaboration with Lukas Trottner. We studied the multivariate version of the
change point problem in [51]. As the change interface no longer consists of a single point but
instead is characterised by a hypersurface in space, a different estimation construction had to be
developed.
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1.5.1 Framework

We considered the heat equation
d𝑋 (𝑡) = Δ𝜗𝑋 (𝑡) d𝑡 + d𝑊 (𝑡), 0 < 𝑡 ≤ 𝑇,

with weighted Laplace operator Δ𝜗 = ∇ · 𝜗∇ and discontinuous diffusivity
𝜗(𝑥) = 𝜗−1Λ− (𝑥) + 𝜗+1Λ+ (𝑥), 𝑥 ∈ (0, 1)𝑑 ,

where the jump occurs at the hypersurface
Γ ≔ 𝜕Λ− ∩ 𝜕Λ+ ⊂ [0, 1]𝑑

which separates Λ = [0, 1]𝑑 into a partition of sets Λ±. Local measurement observations 𝑋𝛿,𝛼,
𝑋Δ
𝛿,𝛼

were assumed on a regular spatial grid with observation points 𝑥𝛼 = 𝛿(𝛼 − 1
21), 𝛼 ∈ [𝑛]𝑑

for 𝑛 = 𝛿−1 ∈ ℕ. Estimating Γ is intrinsically related to the estimation of Λ+, and the proposed
estimator Λ̂+ consists of a union of closed hypercubes Sq(𝛼) decomposing [0, 1]𝑑 into 𝑛𝑑 cubes
of edge length 𝛿. It is constructed by a CUSUM approach in the following way.

We introduced the modified log-likelihood

ℓ𝛿,𝛼(𝜗−, 𝜗+, Λ+) = 𝜗𝛿,𝛼(Λ+)
∫ 𝑇

0
𝑋Δ
𝛿,𝛼(𝑡) d𝑋𝛿,𝛼(𝑡) −

𝜗𝛿,𝛼(Λ+)2
2

∫ 𝑇

0
𝑋Δ
𝛿,𝛼(𝑡)

2 d𝑡,

for the decision rule

𝜗𝛿,𝛼(Λ+) ≔
{
𝜗+, Sq(𝛼) ⊂ Λ+,

𝜗−, else, =

{
𝜗+, 𝑥𝛼 ∈ Λ+,

𝜗−, else,
determining where to assign the value 𝜗±. Then, the M-estimator is given by

(�̂�−, �̂�+, Λ̂+) ∈ argmax
(𝜗− ,𝜗+,Λ+ ) ∈Θ−×Θ+×A+

∑︁
𝛼∈[𝑛]𝑑

ℓ𝛿,𝛼(𝜗−, 𝜗+, Λ+). (1.18)

1.5.2 Main results

To quantify how well the estimator Λ̂+ from (1.18) approximates the truth Λ0
+, we considered

the expectation of the symmetric difference’s Lebesgue measure 𝝀(Λ̂+ △ Λ0
+). The convergence

rate depends on the underlying complexity of the boundary 𝜕Λ0
+, measured by the set

B = {𝛼 ∈ [𝑛]𝑑 : Sq(𝛼)◦ ∩ 𝜕Λ0
+ ≠ ∅},

which quantifies cubes Sq(𝛼) whose interior intersects the boundary 𝜕Λ0
+. Given that for some

𝛽 ∈ (0, 1] and some constant 𝑐 > 0 the size of B is bounded by
|B| ≤ 𝑐𝛿−𝑑+𝛽, (1.19)

we obtained for some absolute constant 𝐶 independent of 𝛿 our main result
𝔼
[
𝝀(Λ̂+ △ Λ0

+)
]
≤ 𝐶𝛿𝛽 .

We subsequently showed consistency for the nuisance parameters 𝜗0±, establishing |�̂�± − 𝜗0± | =
Oℙ(𝛿𝛽/2). The main results was also discussed in two special cases where the hypersurface has
either a graph representation, given by a 𝛽-Hölder continuous function 𝜏0, or is assumed to be
the boundary of a convex set Λ0

+. In both cases, the number of tiles covering the boundary is
bounded in the sense of (1.19).
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1.5.3 Methodology

The estimation method was based on a CUSUM approach commonly used in change point
problems. The form of the M-estimator Λ̂+, on the other hand, was motivated by related edge
estimation techniques, cf. [35].

To analyse the estimator, we first introduced a minimal deterministic tiling Λ↕
+, consisting of

unions of hypercubes Sq(𝛼), which covered the truth Λ0
+ as tight as possible. This enabled the

study of the symmetric difference pseudometric between Λ̂+ and Λ↕
+ instead which we could

relate to the size of B. In a last step, we controlled the concentration of some underlying
empirical processes, resulting from an estimator decomposition, similarly to [51].

When proving the consistency of the nuisance parameters 𝜗0±, it is crucial that the underlying
partition is visible, i.e., 𝝀(Λ0

±) > 0, to identify a jump in the diffusivity correctly.
The smoothness of the boundary 𝜕Λ0

+ determines (1.19). In case of the graph representation,
the boundary fragment was assumed to be 𝛽-Hölder continuous, 𝛽 ∈ (0, 1], providing an upper
bound directly. When Λ0

+ is a convex set, the boundary can be described locally by a Lipschitz
function. In particular, a vertical ray through the interior of Λ0

+ intersects the boundary at exactly
two points and those intersections form an upper concave and a lower convex function. An
upper bound of |B| is thus intuitively given with 𝛽 = 1 in (1.19), cf. also [38].

1.6 Paper D

The work on Paper D begun during my research stay at the Humboldt University of Berlin in
autumn 2023 and evolved as a fruitful collaboration with Eric Ziebell. We were interested in
parameter estimation for general hyperbolic equations where both characteristics from parabolic
problems (Paper A) and phenomena of wave equations [57] arise.

1.6.1 Framework

In contrast to the other projects Paper A, Paper B and Paper C, we considered now a hyperbolic
equation, i.e., a second-order stochastic Cauchy problem of the form{

d𝑣(𝑡) = (
𝐴𝜗𝑢(𝑡) + 𝐵𝜂𝑣(𝑡)

) d𝑡 + d𝑊 (𝑡), 0 < 𝑡 ≤ 𝑇,

d𝑢(𝑡) = 𝑣(𝑡) d𝑡, (1.20)

with amplitude 𝑢 and velocity 𝑣. The elastic and dissipative differential operators 𝐴𝜗 and 𝐵𝜂 are
linear combinations of fractional Laplace operators, i.e.,

𝐴𝜗 =

𝑝∑︁
𝑖=1

𝜗𝑖 (−Δ)𝛼𝑖 , 𝐵𝜂 =

𝑞∑︁
𝑗=1

𝜂 𝑗 (−Δ)𝛽 𝑗 ,

for strictly increasing nonnegative sequences (𝛼𝑖)𝑖≤𝑝 and (𝛽 𝑗) 𝑗≤𝑞.We assumed local measurement
observations

𝑢𝛿,𝑘 (𝑡) = ⟨𝑢(𝑡), 𝐾𝛿,𝑥𝑘⟩, 𝑢
Δ𝑖
𝛿,𝑘

(𝑡) = ⟨𝑢(𝑡), (−Δ)𝛼𝑖𝐾𝛿,𝑥𝑘⟩, 0 ≤ 𝑡 ≤ 𝑇, 1 ≤ 𝑖 ≤ 𝑝, 1 ≤ 𝑘 ≤ 𝑁

𝑣𝛿,𝑘 (𝑡) = ⟨𝑣(𝑡), 𝐾𝛿,𝑥𝑘⟩, 𝑣
Δ 𝑗

𝛿,𝑘
(𝑡) = ⟨𝑣(𝑡), (−Δ)𝛽 𝑗𝐾𝛿,𝑥𝑘⟩, 0 ≤ 𝑡 ≤ 𝑇, 1 ≤ 𝑗 ≤ 𝑞, 1 ≤ 𝑘 ≤ 𝑁,
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which are collected in the vector-valued observation processes

𝑌𝛿,𝑘 (𝑡) =
(
𝑢
Δ1
𝛿,𝑘

(𝑡) . . . 𝑢
Δ𝑝
𝛿,𝑘

(𝑡) 𝑣
Δ1
𝛿,𝑘

(𝑡) . . . 𝑣
Δ𝑞
𝛿,𝑘

(𝑡)
)⊤

∈ ℝ𝑝+𝑞, 0 ≤ 𝑡 ≤ 𝑇, 𝑘 = 1, . . . , 𝑁.

The augmented MLE (�̂�𝛿, �̂�𝛿)⊤ ∈ ℝ𝑝+𝑞 is given by(
�̂�𝛿
�̂�𝛿

)
= I−1𝛿

𝑁∑︁
𝑘=1

∫ 𝑇

0
𝑌𝛿,𝑘 (𝑡) d𝑣𝛿,𝑘 (𝑡)

where the observed Fisher information matrix is defined through

I𝛿 =

𝑁∑︁
𝑘=1

∫ 𝑇

0
𝑌𝛿,𝑘 (𝑡)𝑌𝛿,𝑘 (𝑡)⊤ d𝑡.

An error decomposition results in(
�̂�𝛿
�̂�𝛿

)
=

(
𝜗𝛿
𝜂𝛿

)
+ ∥𝐾∥𝐿2 (ℝ𝑑 )I

−1
𝛿 M𝛿

with the martingale part

M𝛿 =

𝑁∑︁
𝑘=1

∫ 𝑇

0
𝑌𝛿,𝑘 (𝑡) d𝑊𝑘 (𝑡). (1.21)

1.6.2 Main results

Under similar assumptions as imposed in Paper A, we established asymptotic normality, i.e., we
derived

𝜌−1𝛿

(
�̂�𝛿 − 𝜗

�̂�𝛿 − 𝜂

)
𝑑→ N(0, ∥𝐾∥2

𝐿2 (ℝ𝑑 )Σ
−1
𝜗,𝜂), 𝛿 → 0,

with normalising diagonal matrix 𝜌𝛿 ∈ ℝ(𝑝+𝑞)×(𝑝+𝑞) given by

(𝜌𝛿)𝑖𝑖 :=
{
𝑁−1/2𝛿2𝛼𝑖−𝛼1−𝛽1 , 𝑖 ≤ 𝑝,

𝑁−1/2𝛿2𝛽𝑖−𝑝−𝛽1 , 𝑝 < 𝑖 ≤ 𝑝 + 𝑞.

The limiting matrix Σ𝜗,𝜂 is block-diagonal, implying the asymptotic independence between
elasticity and damping coefficients. It depends on the time horizon 𝑇 like the MLE of the drift in
an Ornstein–Uhlenbeck process in the explosive, stable and ergodic case, cf. [37, Proposition
3.46]. Under a full observation scheme 𝑁 ≍ 𝛿−𝑑 , the convergence rates match the rates achieved
in the spectral approach [39] up to some logarithmic boundary cases.

1.6.3 Methodology

We rewrote the coupled system of equations (1.20) as a first-order system

d𝑋 (𝑡) = A𝜗,𝜂𝑋 (𝑡) d𝑡 +
(
0
𝐼

)
d𝑊 (𝑡), 0 < 𝑡 ≤ 𝑇,
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for 𝑋 (𝑡) = (𝑢(𝑡), 𝑣(𝑡))⊤. The differential operator A𝜗,𝜂, defined through

A𝜗,𝜂 :=
(
0 𝐼

𝐴𝜗 𝐵𝜂

)
,

generates a strongly continuous semigroup (𝐽𝜗,𝜂 (𝑡))𝑡≥0 given by

𝐽𝜗,𝜂 (𝑡) :=
(
𝑀 (𝑡) 𝑁 (𝑡)
𝐴𝜗𝑁 (𝑡) 𝑀 (𝑡) + 𝐵𝜂𝑁 (𝑡)

)
=

(
𝑀 (𝑡) 𝑁 (𝑡)
𝑀′(𝑡) 𝑁 ′(𝑡)

)
, 𝑡 ≥ 0.

The 𝑀, 𝑁-functions appearing in the semigroup, cf. [49], are generalisations of cosine and
sine operator functions which are related to the solution of the deterministic undamped wave
equation. They have additional smoothing properties in similarity to parabolic problems due to
the damping operator 𝐵𝜂 or rather its generated semigroup (𝑒𝑡𝐵𝜗)𝑡≥0 emerging in these functions.
Therefore, controlling the observed Fisher information, i.e., showing

𝔼[𝜌𝛿I𝛿𝜌𝛿] → Σ𝜗,𝜂, Var(𝜌𝛿I𝛿𝜌𝛿) → 0, 𝛿 → 0, (1.22)

required a new method as we could neither rely on the asymptotic equipartition of energy [57],
nor the pointwise convergence of a certain integrand as utilised in Paper A. Our solution is based
on functional calculus. Combined with sufficiently good semigroup upper bounds, we verified
(1.22) by the fundamental theorem of calculus.
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Optimal parameter estimation for linear SPDEs from
multiple measurements

ARandolf Altmeyer, Anton Tiepner and Martin Wahl

Abstract

The coefficients in a second order parabolic linear stochastic partial differential equation
(SPDE) are estimated from multiple spatially localised measurements. Assuming that the
spatial resolution tends to zero and the number of measurements is non-decreasing, the rate
of convergence for each coefficient depends on its differential order and is faster for higher
order coefficients. Based on an explicit analysis of the reproducing kernel Hilbert space of
a general stochastic evolution equation, a Gaussian lower bound scheme is introduced. As
a result, minimax optimality of the rates as well as sufficient and necessary conditions for
consistent estimation are established.

A.1 Introduction

Stochastic partial differential equations (SPDEs) form a flexible class of models for space-time
data. They combine phenomena such as diffusion and transport that occur naturally in many
processes, but also include random forcing terms, which may arise from microscopic scaling
limits or account for model uncertainty. Quantifying the size of these different effects is an
important step in model validation.

Suppose that 𝑋 = (𝑋 (𝑡))0≤𝑡≤𝑇 solves the linear parabolic SPDE

d𝑋 (𝑡) = 𝐴𝜗𝑋 (𝑡) d𝑡 + d𝑊 (𝑡), 0 ≤ 𝑡 ≤ 𝑇, (A.1)

on an open, bounded and smooth domain Λ ⊂ ℝ𝑑 with some initial value 𝑋0, a space-time white
noise d𝑊 and a second order elliptic operator

𝐴𝜗 =

𝑝∑︁
𝑖=1

𝜗𝑖𝐴𝑖 + 𝐴0 (A.2)

satisfying zero Dirichlet boundary conditions. The 𝐴𝑖 are known differential operators of
differential order 𝑛𝑖 ∈ {0, 1, 2} and we aim at recovering the unknown parameter 𝜗 ∈ ℝ𝑝. A
prototypical example is

𝐴𝜗 = 𝜗1Δ + 𝜗2(∇ · 𝑏) + 𝜗3, 𝜗 ∈ (0,∞) ×ℝ × (−∞, 0], (A.3)

with diffusivity, transport and reaction coefficients 𝜗1, 𝜗2, 𝜗3 in front of the Laplace operator
Δ and the divergence operator ∇· such that 𝑛1 = 2, 𝑛2 = 1, 𝑛3 = 0, with a known unit velocity
vector 𝑏 ∈ ℝ𝑑 . The general form in (A.2) allows for wide range of models affected by a mixture
of different, possibly anisotropic, mechanisms. Equations such as (A.1) are also called stochastic
advection–diffusion equations and often serve as building blocks for more complex models, with
applications in different areas such as neuroscience [50, 57, 60], biology [1, 2], spatial statistics
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24 Chapter A. Optimal parameter estimation for linear SPDEs

[41, 53] and data assimilation [42]. For concrete examples of (A.2) with a mixture of known
and unknown model coefficients from fluid dynamics and engineering see [11, 29, 45].

While the estimation of a scalar parameter in front of the highest order operator 𝐴𝑖 is
well studied in the literature [13, 14, 23, 27, 32], there is little known about estimating the
lower order coefficients or the full multivariate parameter 𝜗. Relying on discrete space-time
observations 𝑋 (𝑡𝑘, 𝑥 𝑗) in case of (A.3) and in dimension 𝑑 = 1, [9, 26, 54] have analysed power
variations and contrast estimators. For two parameters in front of operators 𝐴1 and 𝐴2, [44]
computed the maximum likelihood estimator from 𝑀 spectral measurements (⟨𝑋 (𝑡), 𝑒 𝑗⟩)0≤𝑡≤𝑇 ,
𝑗 = 1, . . . , 𝑀, where the 𝑒 𝑗 are the eigenfunctions of 𝐴𝜗 and ⟨·, ·⟩ is the inner product on 𝐿2(Λ).
This leads as 𝑀 → ∞ to rates of convergence depending on the differential order of the operators
𝐴1, 𝐴2, but is restricted to domains and diagonalisable operators with known 𝑒 𝑗, independent of
𝜗. In particular, in the spectral approach there is no known estimator for the transport coefficient
𝜗2 in (A.3). Estimators for nonlinearities or noise specifications are studied e.g. by [8, 12, 21,
25].

In contrast, we construct an estimator �̂�𝛿 of 𝜗 on general domains and with arbitrary possibly
anisotropic 𝐴𝜗 from local measurement processes

𝑋𝛿,𝑘 = (⟨𝑋 (𝑡), 𝐾𝛿,𝑥𝑘⟩)0≤𝑡≤𝑇 , 𝑋
𝐴𝑖
𝛿,𝑘

= (⟨𝑋 (𝑡), 𝐴∗𝑖 𝐾𝛿,𝑥𝑘⟩)0≤𝑡≤𝑇

for 𝑖 = 0, . . . , 𝑝 and locations 𝑥1, . . . , 𝑥𝑀 ∈ Λ. The 𝐾𝛿,𝑥𝑘 , also known as point spread functions in
optical systems [6, 7], are compactly supported functions on subsets of Λ with radius 𝛿 > 0 and
centred at the 𝑥𝑘. They are part of the observation scheme and describe the physical limitation
that point sources 𝑋 (𝑡𝑘, 𝑥 𝑗) can only be measured up to a convolution with the point spread
function. Local measurements were introduced in a recent contribution by [4] to demonstrate
that a nonparametric diffusivity can already be identified at 𝑥𝑘 from the spatially localised
information 𝑋𝛿,𝑘 as 𝛿 → 0 with 𝑇 > 0 fixed. See [3] for robustness to semilinear perturbations
and different noise configurations besides space-time white noise. For more details on practical
aspects of local measurements, as well as a concrete example from cell biology [2], see Section
A.5.3 below.

Let us briefly describe our main contributions. Our first result extends the augmented MLE
�̂�𝛿 and the CLT of [4] to 𝑀 = 𝑀 (𝛿) measurements and joint asymptotic normality of

(𝑀1/2𝛿1−𝑛𝑖 (�̂�𝛿,𝑖 − 𝜗𝑖)) 𝑝𝑖=1, 𝛿 → 0.

This yields the convergence rates 𝑀1/2𝛿1−𝑛𝑖 for 𝜗𝑖, with the fastest rate for diffusivity terms
with 𝑛𝑖 = 2 and the slowest rate for reaction terms with 𝑛𝑖 = 0. We then turn to the problem
of establishing optimality of these rates in case of (A.3). We compute the reproducing kernel
Hilbert space (RKHS) of the Gaussian measures induced by the laws of 𝑋 and of the local
measurements. From this we derive minimax lower bounds, implying that the rates in the CLT
are indeed optimal, and provide conditions under which consistent estimation is impossible.
Combined with our CLT we deduce for general point spread functions 𝐾𝛿,𝑥𝑘 with non-intersecting
supports that consistent estimation is possible if and only if 𝑀1/2𝛿1−𝑛𝑖 → ∞. Since 𝑀 is at most
of order 𝛿−𝑑 , reaction terms cannot be estimated when 𝑑 = 1.

Conceptually, spectral measurements can be obtained approximately from local measure-
ments on a dense grid over the entire domain by a discrete Fourier transform and we recover
the rates of convergence of [27] by taking 𝑀 of maximal order 𝛿−𝑑 .
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The information geometry underlying local measurements is complex due to the non-linear
dependence of the solution 𝑋 on 𝜗 (cf. (A.4)) and the non-Markovian dynamics of the processes
𝑋𝛿,𝑘, 𝑋 𝐴𝑖𝛿,𝑘. This leads to a non-explicit likelihood function, making standard MLE-based estimation
and optimality results for continuously observed diffusion processes [36] non-applicable in this
context. Instead, we introduce a novel lower bound scheme for Gaussian measures, which
exploits that the Hellinger distance of their laws can be related to properties of their RKHS. This
is different from the lower bound approach of [4] for 𝑀 = 1 and paves the way to rigorous lower
bounds for each coefficient and an arbitrary number of measurements. One of our key results
states that the RKHS of the Gaussian measure induced by 𝑋 with 𝐴𝜗 = Δ consists of all absolutely
continuous ℎ ∈ 𝐿2( [0, 𝑇]; 𝐿2(Λ)) with Δℎ, ℎ′ ∈ 𝐿2( [0, 𝑇]; 𝐿2(Λ)) and its squared RKHS norm
equals

∥Δℎ∥2
𝐿2 ( [0,𝑇 ];𝐿2 (Λ) ) + ∥ℎ′∥2

𝐿2 ( [0,𝑇 ];𝐿2 (Λ) ) + ∥(−Δ)1/2ℎ(0)∥2
𝐿2 (Λ) + ∥(−Δ)1/2ℎ(𝑇)∥2

𝐿2 (Λ) .

This surprisingly simple formula generalises the finite-dimensional Ornstein–Uhlenbeck case
[38], and provides a route to obtain the RKHS of local measurements as linear transformations
of 𝑋 . To the best of our knowledge the RKHS of 𝑋 has not been stated before in the literature,
and may be of independent interest, e.g. in constructing Bayesian procedures with Gaussian
process priors, cf. [58].

The paper is organised as follows. Section A.2 deals with the local measurement scheme, the
construction of our estimator and the CLT. Section A.3 addresses the RKHS of 𝑋 and of the local
measurements, while Section A.4 presents the lower bounds for the rates established in the CLT.
Section A.5 covers model examples, the boundary case for estimating zero order terms in 𝑑 = 2
and some practical aspects. All proofs are deferred to Section A.6 and Section A.7.

Basic notation

Throughout the paper, we work on a filtered probability space (Ω,F, (F𝑡)0≤𝑡≤𝑇 ,ℙ). We write
𝑎 ≲ 𝑏 if 𝑎 ≤ 𝐶𝑏 for a universal constant 𝐶 not depending on 𝛿, but possibly depending on other
quantities such as 𝑇 and Λ. Unless stated otherwise, all limits are understood as 𝛿 → 0 with
non-decreasing 𝑀 = 𝑀 (𝛿) possibly depending on 𝛿.

The Euclidean inner product and distance of two vectors 𝑎, 𝑏 ∈ ℝ𝑝 is denoted by 𝑎 · 𝑏 and
|𝑏 − 𝑎|, 𝐼𝑝×𝑝 is the identity matrix in ℝ𝑝×𝑝. We write ∥ · ∥op for the operator norm of a matrix.
For an open set 𝑈 ⊂ ℝ𝑑 and 𝑝 ≥ 1, 𝐿𝑝(𝑈) is the usual 𝐿𝑝-space with norm ∥·∥𝐿𝑝 (𝑈 ) and the
inner product on 𝐿2(𝑈) is denoted ⟨·, ·⟩𝐿2 (𝑈 ) . We write ⟨·, ·⟩ = ⟨·, ·⟩𝐿2 (Λ) , ∥·∥ = ∥·∥𝐿2 (Λ) . Let
𝐻𝑘 (𝑈) denote the usual Sobolev spaces and let 𝐻1

0 (𝑈) be the completion of the space of smooth
compactly supported functions 𝐶∞

𝑐 (𝑈) relative to the 𝐻1(𝑈)-norm.
Wewrite 𝐷𝑖, 𝐷𝑖 𝑗 for partial derivatives. The gradient and Laplace operators are∇, Δ =

∑𝑑
𝑖=1 𝐷𝑖𝑖.

The divergence of a 𝑑-dimensional vector field 𝑣 is ∇ · 𝑣 =
∑𝑑
𝑖=1 𝐷𝑖𝑣𝑖. The Laplace operator Δ

will be considered with domain 𝐻1
0 (Λ) ∩ 𝐻2(Λ), while with domain 𝐻2(ℝ𝑑) it will be denoted

by Δ0.
For a Hilbert space H, the space 𝐿2( [0, 𝑇];H) consists of all measurable functions

ℎ : [0, 𝑇] → H with
∫𝑇
0 ∥ℎ(𝑡)∥2

H
d𝑡 < ∞. We write ∥𝑇 ∥HS(H1,H2 ) for the Hilbert–Schmidt norm

of a linear operator 𝑇 : H1 → H2 between two Hilbert spaces H1,H2.
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A.2 Joint parameter estimation

A.2.1 Setup

Let 𝜗 ∈ Θ ⊂ ℝ𝑝 be an unknown parameter. For 𝑖 = 0, . . . , 𝑝, suppose that the operators in
(A.2) are of the form 𝐴𝑖 = ∇ · 𝑎(𝑖)∇ + ∇ · 𝑏(𝑖) + 𝑐 (𝑖) for symmetric 𝑎(𝑖) ∈ ℝ𝑑×𝑑, 𝑏(𝑖) ∈ ℝ𝑑 and
𝑐 (𝑖) ∈ ℝ, where for each 𝑖 = 1, . . . , 𝑝 only one of the coefficients 𝑎(𝑖) , 𝑏(𝑖) , 𝑐 (𝑖) is non-vanishing.
For each 𝐴𝑖, the formal adjoint is 𝐴∗

𝑖
= ∇ · 𝑎(𝑖)∇ − ∇ · 𝑏(𝑖) + 𝑐 (𝑖) , and its differential order

𝑛𝑖 = ord(𝐴𝑖) ∈ {0, 1, 2} is the number of non-vanishing derivatives. With 𝑎𝜗 =
∑𝑝

𝑖=1 𝜗𝑖𝑎
(𝑖) + 𝑎(0) ,

𝑏𝜗 =
∑𝑝

𝑖=1 𝜗𝑖𝑏
(𝑖) + 𝑏(0) and 𝑐𝜗 =

∑𝑝

𝑖=1 𝜗𝑖𝑐
(𝑖) + 𝑐 (0) , (A.2) gives

𝐴𝜗 = ∇ · 𝑎𝜗∇ + ∇ · 𝑏𝜗 + 𝑐𝜗.

We suppose that 𝑎𝜗 is positive definite for all 𝜗 ∈ Θ. Then 𝐴𝜗 is a strongly elliptic operator
and generates with domain 𝐻1

0 (Λ) ∩ 𝐻2(Λ) an analytic semigroup (𝑆𝜗(𝑡))𝑡≥0 on 𝐿2(Λ) [46].
Considered with the same domain, the adjoint 𝐴∗

𝜗
=

∑𝑝

𝑖=1 𝜗𝑖𝐴
∗
𝑖
+ 𝐴∗0 generates the adjoint

semigroup (𝑆∗
𝜗
(𝑡))𝑡≥0 [62, Section 2.5.3].

With an F0-measurable initial value 𝑋0 and a cylindrical Wiener process𝑊 on 𝐿2(Λ) define
a process 𝑋 = (𝑋 (𝑡))0≤𝑡≤𝑇 by

𝑋 (𝑡) = 𝑆𝜗(𝑡)𝑋0 +
∫ 𝑡

0
𝑆𝜗(𝑡 − 𝑡′) d𝑊 (𝑡′), 0 ≤ 𝑡 ≤ 𝑇. (A.4)

Due to the low spatial regularity of𝑊 this process is understood as a random element with values
in 𝐿2(Λ) ⊂ H1 almost surely for a larger Hilbert space H1 with an embedding 𝜄 : 𝐿2(Λ) → H1
such that

∫ 𝑡
0∥𝜄𝑆𝜗(𝑡

′)∥2HS(𝐿2 (Λ) ,H1 )
d𝑡′ < ∞ [24, Remark 6.6]. Such an embedding always exists.

For example, H1 can be realised as a negative Sobolev space (see Section A.6.2 below). Let
H′

1 denote the dual space of H1 with the associated dual pairing ⟨·, ·⟩H1×H′
1 . Let (𝑒𝑘)𝑘≥1 be an

orthonormal basis of 𝐿2(Λ) and let 𝛽𝑘 be independent scalar Brownian motions. Then, realising
the Wiener process as 𝑊 =

∑
𝑘≥1 𝑒𝑘𝛽𝑘, we find for all 𝑧 ∈ H′

1 ⊂ 𝐿2(Λ), 0 ≤ 𝑡 ≤ 𝑇 , that (see,
e.g. [40, Lemma 2.4.1 and Proposition 2.4.5])

⟨𝑋 (𝑡) − 𝑆𝜗(𝑡)𝑋0, 𝑧⟩H1×H′
1 =

∑︁
𝑘≥1

∫ 𝑡

0
⟨𝑆𝜗(𝑡 − 𝑡′)𝑒𝑘, 𝑧⟩H1×H′

1 d𝛽𝑘 (𝑡
′)

=

∫ 𝑡

0
⟨𝑆∗𝜗(𝑡 − 𝑡′)𝑧, d𝑊 (𝑡′)⟩.

According to [4, Proposition 2.1] and [40, Lemma 2.4.2] this allows us to extend the dual
pairings ⟨𝑋 (𝑡), 𝑧⟩H1×H′

1 to a real-valued Gaussian process (⟨𝑋 (𝑡), 𝑧⟩)0≤𝑡≤𝑇,𝑧∈𝐿2 (Λ) by

⟨𝑋 (𝑡), 𝑧⟩ = ⟨𝑆𝜗(𝑡)𝑋0, 𝑧⟩ +
∫ 𝑡

0
⟨𝑆∗𝜗(𝑡 − 𝑡′)𝑧, d𝑊 (𝑡′)⟩ (A.5)

(the notation ⟨𝑋 (𝑡), 𝑧⟩ is used for convenience and indicates that the process does not depend
on the embedding space H1). This process solves the SPDE (A.1) in the sense that for all
𝑧 ∈ 𝐻1

0 (Λ) ∩ 𝐻2(Λ) and 0 ≤ 𝑡 ≤ 𝑇

⟨𝑋 (𝑡), 𝑧⟩ = ⟨𝑋0, 𝑧⟩ +
∫ 𝑡

0
⟨𝑋 (𝑡′), 𝐴∗𝜗𝑧⟩ d𝑡′ + ⟨𝑊 (𝑡), 𝑧⟩, (A.6)

where ⟨𝑊 (𝑡), 𝑧⟩/∥𝑧∥𝐿2 (Λ) is a scalar Brownian motion.
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A.2.2 Local measurements, construction of the estimator

Introduce for 𝑧 ∈ 𝐿2(ℝ𝑑) the scale and shift operation
𝑧𝛿,𝑥 (𝑦) = 𝛿−𝑑/2𝑧(𝛿−1(𝑦 − 𝑥)), 𝑥, 𝑦 ∈ Λ, 𝛿 > 0. (A.7)

Suppose that 𝐾 ∈ 𝐻2(ℝ𝑑) is an (unscaled) point spread function with compact support (see
Section A.5 for concrete examples). Consider locations 𝑥1, . . . , 𝑥𝑀 ∈ Λ, 𝑀 ∈ ℕ, and a resolution
level 𝛿 > 0, which is small enough to ensure that the point spread functions 𝐾𝛿,𝑥𝑘 are supported
on Λ. Local measurements of 𝑋 at the locations 𝑥1, . . . , 𝑥𝑀 at resolution 𝛿 correspond to the
continuously observed processes 𝑋𝛿, 𝑋 𝐴0𝛿 ∈ 𝐿2( [0, 𝑇];ℝ𝑀), 𝑋 𝐴

𝛿
∈ 𝐿2( [0, 𝑇];ℝ𝑝×𝑀), where for

𝑖 = 1, . . . , 𝑝, 𝑘 = 1, . . . , 𝑀
(𝑋𝛿)𝑘 = 𝑋𝛿,𝑘 = (⟨𝑋 (𝑡), 𝐾𝛿,𝑥𝑘⟩)0≤𝑡≤𝑇 ,

(𝑋 𝐴0
𝛿
)𝑘 = 𝑋

𝐴0
𝛿,𝑘

= (⟨𝑋 (𝑡), 𝐴∗0𝐾𝛿,𝑥𝑘⟩)0≤𝑡≤𝑇 ,
(𝑋 𝐴𝛿 )𝑖𝑘 = 𝑋

𝐴𝑖
𝛿,𝑘

= (⟨𝑋 (𝑡), 𝐴∗𝑖 𝐾𝛿,𝑥𝑘⟩)0≤𝑡≤𝑇 .
According to (A.6), every local measurement is an Itô process

d𝑋𝛿,𝑘 (𝑡) =
( 𝑝∑︁
𝑖=1

𝜗𝑖𝑋
𝐴𝑖
𝛿,𝑘

(𝑡) + 𝑋 𝐴0
𝛿,𝑘

(𝑡)
)
d𝑡 + ∥𝐾∥𝐿2 (ℝ𝑑 ) d𝑊𝑘 (𝑡) (A.8)

with initial values 𝑋𝛿,𝑘 (0) = ⟨𝑋0, 𝐾𝛿,𝑥𝑘⟩ and scalar Brownian motions
𝑊𝑘 (𝑡) = ⟨𝑊 (𝑡), 𝐾𝛿,𝑥𝑘⟩/∥𝐾∥𝐿2 (ℝ𝑑 ) .

It should be noted that neither (A.8) nor the system of equations augmented with 𝑋 𝐴
𝛿
, 𝑋 𝐴0

𝛿

are Markov processes, because the time evolution at 𝑥𝑘 depends on the spatial structure of the
whole process 𝑋 , and not only of 𝑋𝛿. This is due to the infinite speed of propagation in space by
𝑆𝜗(𝑡). This also means the processes 𝑋𝛿,𝑘 are not independent, even if the driving noise processes
𝑊𝑘 are, e.g., due to non-overlapping supports of the 𝐾𝛿,𝑥𝑘 as will be assumed below. Therefore,
standard results for estimating the parameters 𝜗𝑖 from continuously observed diffusion processes
by the maximum likelihood estimator (e.g., [36]) do not apply here. Instead, a general Girsanov
theorem for multivariate Itô processes, cf. [39, Section 7.6], yields after ignoring conditional
expectations, the initial value and possible correlations between measurements the modified
log-likelihood function

ℓ𝛿(𝜗) = ∥𝐾∥−2
𝐿2 (ℝ𝑑 )

𝑀∑︁
𝑘=1

( ∫ 𝑇

0

( 𝑝∑︁
𝑖=1

𝜗𝑖𝑋
𝐴𝑖
𝛿,𝑘

(𝑡) + 𝑋 𝐴0
𝛿,𝑘

(𝑡)
)
d𝑋𝛿,𝑘 (𝑡)

−1
2

∫ 𝑇

0

( 𝑝∑︁
𝑖=1

𝜗𝑖𝑋
𝐴𝑖
𝛿,𝑘

(𝑡) + 𝑋 𝐴0
𝛿,𝑘

(𝑡)
)2)

d𝑡.

Maximising ℓ𝛿(𝜗) with respect to 𝜗 leads to the estimator

�̂�𝛿 = I−1𝛿

𝑀∑︁
𝑘=1

(∫ 𝑇

0
𝑋 𝐴𝛿,𝑘 (𝑡) d𝑋𝛿,𝑘 (𝑡) −

∫ 𝑇

0
𝑋 𝐴𝛿,𝑘 (𝑡)𝑋

𝐴0
𝛿,𝑘

(𝑡) d𝑡
)
, (A.9)

which we call augmented MLE generalising [2, Section 4.1], with observed Fisher information

I𝛿 =

𝑀∑︁
𝑘=1

∫ 𝑇

0
𝑋 𝐴𝛿,𝑘 (𝑡)𝑋

𝐴
𝛿,𝑘 (𝑡)

⊤ d𝑡. (A.10)
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A.2.3 A central limit theorem

We show now that the augmented MLE �̂�𝛿 satisfies a CLT as 𝛿 → 0. Replacing d𝑋𝛿,𝑘 (𝑡) in the
definition of the augmented MLE by the right hand side in (A.8) yields the basic decomposition

�̂�𝛿 = 𝜗 + ∥𝐾∥𝐿2 (ℝ𝑑 )I
−1
𝛿 M𝛿 (A.11)

with the martingale term

M𝛿 =

𝑀∑︁
𝑘=1

(∫ 𝑇

0
𝑋 𝐴𝛿,𝑘 (𝑡) d𝑊𝑘 (𝑡)

)
. (A.12)

If the Brownian motions𝑊𝑘 are independent, then the matrix I𝛿 corresponds to the quadratic co-
variation process of M𝛿 and we therefore expect I−1/2

𝛿
M𝛿 to follow approximately a multivariate

normal distribution. The rate at which the estimation error in (A.11) vanishes corresponds to the
speed at which the components of the observed Fisher information diverge. Exploiting scaling
properties of the underlying semigroup (cf. Lemma A.13), we will see that this depends on its
action on the point spread functions 𝐾𝛿,𝑥𝑘 . We define a diagonal matrix of scaling coefficients
𝜌𝛿 ∈ ℝ𝑝×𝑝,

(𝜌𝛿)𝑖𝑖 = 𝑀−1/2𝛿𝑛𝑖−1, (A.13)

and make the following additional structural assumptions.
Assumption H.

(i) The functions 𝐴𝑖𝐾 are linearly independent for all 𝑖 = 1, . . . , 𝑝.

(ii) 𝑛𝑖 > 1 − 𝑑/2 for all 𝑖 = 1, . . . , 𝑝.

(iii) The locations 𝑥𝑘, 𝑘 = 1, . . . , 𝑀, belong to a fixed compact set J ⊂ Λ, which is independent
of 𝛿 and 𝑀. There exists 𝛿′ > 0 such that supp(𝐾𝛿,𝑥𝑘) ∩ supp(𝐾𝛿,𝑥𝑙 ) = ∅ for 𝑘 ≠ 𝑙 and all
𝛿 ≤ 𝛿′.

(iv) sup𝑥∈J
∫𝑇
0 𝔼[⟨𝑋0, 𝑆∗𝜗(𝑡)𝐴

∗
𝑖
𝐾𝛿,𝑥⟩2] d𝑡 = 𝑜(𝛿2−2𝑛𝑖) for all 𝑖 = 1, . . . , 𝑝.

Assumption H(i) guarantees invertibility of the observed Fisher information, for a proof see
Section A.7.1.

Lemma A.1. Under Assumption H(i), I𝛿 is ℙ-almost surely invertible.

The support condition in Assumption H(iii) is natural in applications, e.g., in microscopy.
It guarantees ⟨𝐾𝛿,𝑥𝑘 , 𝐾𝛿,𝑥𝑙⟩ = 0 and thus independence of the Brownian motions𝑊𝑘 in (A.8) as
𝛿 → 0. It holds for 𝑥𝑘, which are separated by a Euclidean distance of at least 𝐶𝛿 for a fixed
constant 𝐶, hence there are at most 𝑀 = 𝑂(𝛿−𝑑) such locations. The next lemma shows that
Assumption H(iv) on the initial value is satisfied in most relevant situations. For a proof see
again Section A.7.1.

Lemma A.2. Assumption H(ii) implies Assumption H(iv) for any 𝑋0 ∈ 𝐿𝑞(Λ), 𝑞 > 2, and if 𝑐𝜗 ≤ 0
also for the stationary initial condition 𝑋0 =

∫ 0
−∞ 𝑆𝜗(−𝑡′) d𝑊 (𝑡′).
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We establish now the asymptotic behaviour of the observed Fisher information and a CLT
for the augmented MLE as the resolution 𝛿 tends to zero. To this extent, consider the positive
operator −∇ · 𝑎𝜗∇ with domain 𝐻2(ℝ𝑑). Its spectral calculus induces for each 𝑠 ∈ ℝ the
fractional operator (−∇ · 𝑎𝜗∇)𝑠, which acts in the Fourier domain as the multiplication operator
with multiplier 𝜉 ↦→ (−𝜉⊤𝑎𝜗𝜉)𝑠, cf. [37] or [18, Chapter VI.5]. By positive definiteness of 𝑎𝜗, this
means (−∇ · 𝑎𝜗∇)𝑠𝑧 ∈ 𝐿2(ℝ𝑑) as soon as 𝜉 ↦→ |𝜉|2𝑠F𝑧(𝜉) ∈ 𝐿2(ℝ𝑑) with the Fourier transform
F𝑧. By usual Fourier calculus [18, Lemma VI.5.4], F𝐷 𝑗𝑧 = 𝑖𝜉 𝑗F𝑧. Together with Assumption
H(ii), this means (−∇ · 𝑎𝜗∇)−1/2𝐴∗𝑖 𝐾 ∈ 𝐿2(ℝ𝑑) for all 𝑖 = 1, . . . , 𝑝.

Theorem A.3. Under Assumption H the matrix Σ𝜗 ∈ ℝ𝑝×𝑝 with entries

(Σ𝜗)𝑖 𝑗 = (𝑇/2)⟨(−∇ · 𝑎𝜗∇)−1/2𝐴∗𝑖 𝐾, (−∇ · 𝑎𝜗∇)−1/2𝐴∗𝑗𝐾⟩𝐿2 (ℝ𝑑 )

is invertible and 𝜌𝛿I𝛿𝜌𝛿
ℙ→ Σ𝜗 as 𝛿 → 0. Moreover, the augmented MLE satisfies the CLT

(𝜌𝛿I𝛿𝜌𝛿)1/2𝜌−1𝛿 (�̂�𝛿 − 𝜗) 𝑑→ N(0, ∥𝐾∥2
𝐿2 (ℝ𝑑 ) 𝐼𝑝×𝑝), 𝛿 → 0,

or, equivalently,
(𝑀1/2𝛿1−𝑛𝑖 (�̂�𝛿,𝑖 − 𝜗𝑖)) 𝑝𝑖=1

𝑑→ N(0, ∥𝐾∥2
𝐿2 (ℝ𝑑 )Σ

−1
𝜗 ).

Theorem A.3 shows that parameters 𝜗𝑖 of an operator 𝐴𝑖 with differential order 𝑛𝑖 can be
estimated at the rate of convergence 𝑀1/2𝛿1−𝑛𝑖 . Consistency requires 𝑀1/2𝛿1−𝑛𝑖 → ∞. This
excludes reaction terms 𝜗𝑖 in 𝑑 = 1 with 𝑛𝑖 = 0 and 𝑀 = 𝑂(𝛿−1), but in 𝑑 = 2 a logarithmic rate
holds for a restricted class of functions 𝐾, see Proposition A.12. The asymptotic variances for
two parameters 𝜗𝑖, 𝜗 𝑗 are independent if 𝐴∗

𝑖
𝐾 and 𝐴∗

𝑗
𝐾 are orthogonal in the geometry induced

by ∥(−∇ · 𝑎𝜗∇)−1/2·∥𝐿2 (ℝ𝑑 ) . The theorem generalises [4, Theorem 5.3] in the parametric case to
the anisotropic setting with 𝑀 measurement locations.

A.3 The RKHS

In Section A.4, we show optimality of the rates of convergence appearing in Theorem A.3.
A crucial ingredient for these lower bound considerations is a good understanding of the
reproducing kernel Hilbert space (RKHS) of the Gaussian measure induced by the law of the
observations when 𝐴𝜗 = Δ.

We first derive the RKHS of the stochastic convolution (A.4) in a more general setting.
Suppose that 𝐴 is an (unbounded) negative self-adjoint closed operator on a Hilbert space
(H, ∥·∥H) with domain D(𝐴) ⊂ H such that 𝐴𝑒 𝑗 = −𝜆 𝑗𝑒 𝑗 for a non-decreasing sequence (𝜆 𝑗) 𝑗≥1
of positive real numbers with 0 < 𝜆1 ≤ 𝜆2 ≤ · · · and an orthonormal basis (𝑒 𝑗) 𝑗≥1 of H, and
such that 𝐴 generates a strongly continuous semigroup (𝑆(𝑡))𝑡≥0 on H [18]. With a cylindrical
Wiener process𝑊, consider the stationary stochastic convolution

𝑋 (𝑡) =
∫ 𝑡

−∞
𝑆(𝑡 − 𝑡′) d𝑊 (𝑡′), 𝑡 ≥ 0. (A.14)

As discussed after (A.4) the process 𝑋 = (𝑋 (𝑡))0≤𝑡≤𝑇 is understood as a random element with
values in H ⊂ H1 almost surely for some larger Hilbert space H1.
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In what follows, we use the convention that a RKHS is denoted by the letter 𝐻. Moreover, we
add a subscript to indicate the process which is under consideration. For instance, 𝐻𝑋 denotes
the RKHS of 𝑋 considered as a Gaussian random variable taking values in the Hilbert space
𝐿2( [0, 𝑇];H1). Since the RKHS of 𝑋 depends only on its distribution, the RKHS, as well as its
norm, in the next theorem are independent of the embedding space H1 (see, e.g., Exercise 2.6.5
in [22]). For the proof and some background on the RKHS of a Gaussian measure see Section
A.6.2.

Theorem A.4. Let (𝐻𝑋 , ∥ · ∥𝑋 ) be the RKHS of the process 𝑋 in (A.14). Let 𝑇 ≥ 1. Then

𝐻𝑋 = {ℎ ∈ 𝐿2( [0, 𝑇];H) : ℎ absolutely continuous, 𝐴ℎ, ℎ′ ∈ 𝐿2( [0, 𝑇];H)}

and for ℎ ∈ 𝐻𝑋

∥ℎ∥2𝑋 = ∥𝐴ℎ∥2
𝐿2 ( [0,𝑇 ];H) + ∥ℎ′∥2

𝐿2 ( [0,𝑇 ];H) + ∥(−𝐴)1/2ℎ(0)∥2H + ∥(−𝐴)1/2ℎ(𝑇)∥2H,

as well as

∥ℎ∥2𝑋 ≤ 3∥𝐴ℎ∥2
𝐿2 ( [0,𝑇 ];H) + ∥ℎ∥2

𝐿2 ( [0,𝑇 ];H) + 2∥ℎ′∥2
𝐿2 ( [0,𝑇 ];H) .

Note that ℎ, ℎ′, 𝐴ℎ ∈ 𝐿2( [0, 𝑇];H) implies that the map 𝑡 ↦→ ⟨𝐴ℎ(𝑡), ℎ(𝑡)⟩ is absolutely
continuous (cf. the proof of [19, Theorem 5.9.3] and the proof of Theorem A.4), so that the norm
∥ · ∥𝑋 is indeed well-defined. Theorem A.4 generalises the result for scalar Ornstein–Uhlenbeck
processes to the infinite dimensional process 𝑋 , cf. Lemma A.20 below.

Next, as in (A.6), consider the Gaussian process (⟨𝑋 (𝑡), 𝑧⟩H)𝑡≥0,𝑧∈H, where the ‘inner product’
here corresponds to

⟨𝑋 (𝑡), 𝑧⟩H =

∫ 𝑡

−∞
⟨𝑆(𝑡 − 𝑡′)𝑧, d𝑊 (𝑡′)⟩H,

satisfying (A.6) for 𝑧 ∈ D(𝐴∗) = D(𝐴) by analogous arguments. We study the RKHS of
(⟨𝑋 (𝑡), 𝑧⟩H)0≤𝑡≤𝑇 for finitely many 𝑧. A first proof considers 𝑧 from the dual space of H1. In
that case, we can realise ⟨𝑋, 𝑧⟩H as a linear transformation of 𝑋 by a bounded linear map 𝐿

from 𝐿2( [0, 𝑇];H1) to 𝐿2( [0, 𝑇])𝑀 , and this allows for relating the RKHS of 𝑋 and ⟨𝑋, 𝑧⟩H
using Theorem A.4. Another proof is presented in Section A.7.7, which circumvents this by an
approximation argument.

Theorem A.5. For 𝐾1, . . . , 𝐾𝑀 ∈ D(𝐴) and with 𝑋 in (A.14) consider the process 𝑋𝐾 with
𝑋𝐾 (𝑡) = (⟨𝑋 (𝑡), 𝐾𝑘⟩H)𝑀𝑘=1. Suppose that the Gram matrix 𝐺 = (⟨𝐾𝑘, 𝐾𝑙⟩H)1≤𝑘,𝑙≤𝑀 is non-singular,
and let 𝐺𝐴 = (⟨𝐴𝐾𝑘, 𝐴𝐾𝑙⟩H)1≤𝑘,𝑙≤𝑀 . Let 𝑇 ≥ 1. Then the RKHS (𝐻𝑋𝐾 , ∥ · ∥𝑋𝐾 ) of 𝑋𝐾 satisfies
𝐻𝑋𝐾 = 𝐻𝑀 , where

𝐻 = {ℎ ∈ 𝐿2( [0, 𝑇]) : ℎ absolutely continuous, ℎ′ ∈ 𝐿2( [0, 𝑇])}

and for ℎ = (ℎ𝑘)𝑀𝑘=1 ∈ 𝐻𝑋𝐾

∥ℎ∥2𝑋𝐾 ≤ (3∥𝐺−1∥2op∥𝐺𝐴∥op + ∥𝐺−1∥op)
𝑀∑︁
𝑘=1

∥ℎ𝑘∥2𝐿2 ( [0,𝑇 ] ) + 2∥𝐺−1∥op
𝑀∑︁
𝑘=1

∥ℎ′𝑘∥
2
𝐿2 ( [0,𝑇 ] ) .
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Theorem A.5 (and its slight generalization in (A.31)) can be used to compute the RKHS of
quite general observation schemes. In the specific case 𝐴 = Δ and local measurements with
𝐾𝑘 = 𝐾𝛿,𝑥𝑘 we obtain the following.

Corollary A.6. Let (𝐻𝑋𝛿 , ∥ · ∥𝑋𝛿) be the RKHS of 𝑋𝛿 with respect to 𝐴 = Δ, 𝐾 ∈ 𝐻2(ℝ𝑑) with
∥𝐾∥𝐿2 (ℝ𝑑 ) = 1, and points 𝑥1, . . . , 𝑥𝑀 such that supp(𝐾𝛿,𝑥𝑘) ⊂ Λ for all 𝑘 = 1, . . . , 𝑀 and
supp(𝐾𝛿,𝑥𝑘) ∩ supp(𝐾𝛿,𝑥𝑙 ) = ∅ for all 1 ≤ 𝑘 ≠ 𝑙 ≤ 𝑀. Suppose that 𝛿2 ≤ ∥Δ𝐾∥𝐿2 (ℝ𝑑 ) and 𝑇 ≥ 1.
Then 𝐻𝑋𝛿 = 𝐻𝑀 and for ℎ = (ℎ𝑘)𝑀𝑘=1 ∈ 𝐻𝑋𝛿

∥ℎ∥2𝑋𝛿 ≤ 4
∥Δ𝐾∥2

𝐿2 (ℝ𝑑 )

𝛿4

𝑀∑︁
𝑘=1

∥ℎ𝑘∥2𝐿2 ( [0,𝑇 ] ) + 2
𝑀∑︁
𝑘=1

∥ℎ′𝑘∥
2
𝐿2 ( [0,𝑇 ] ) .

Similar results hold for the RKHS of (𝑋𝛿, 𝑋 𝐴𝛿 ), see Corollary A.28.

A.4 Optimality

In this section, we show that the rates of convergence 𝑀1/2𝛿1−𝑛𝑖 achieved by the augmented
MLE for parameters 𝜗𝑖 with respect to operators 𝐴𝑖 of order 𝑛𝑖 = ord(𝐴𝑖) are indeed optimal and
cannot be improved in our general setup. The proof strategy (presented in Section A.6.3) relies
on a novel lower bound scheme for Gaussian measures by relating the Hellinger distance of their
laws to properties of their RKHS. The Gaussian lower bound is then applied to one-dimensional
submodels (ℙ𝜗)𝜗∈Θ𝑖

with 𝐴𝜗 from (A.3) assuming a sufficiently regular kernel function 𝐾 and a
stationary initial condition.
Assumption L. Suppose that ℙ𝜗 corresponds to the law of the stationary solution 𝑋 to the SPDE
(A.1) and assume that the following conditions hold:

(i) The kernel function satisfies 𝐾 = Δ2 �̃� with �̃� ∈ 𝐶∞
𝑐 (ℝ𝑑).

(ii) The models are 𝐴𝜗 = 𝜗1Δ +𝜗2(∇ · 𝑏) +𝜗3 for 𝜗 ∈ ℝ3, a fixed unit vector 𝑏 ∈ ℝ𝑑 , and where
𝜗 lies in one of the parameter classes

Θ1 = {𝜗 = (𝜗1, 0, 0) : 𝜗1 ≥ 1},
Θ2 = {𝜗 = (1, 𝜗2, 0) : 𝜗2 ∈ [0, 1]},
Θ3 = {𝜗 = (1, 0, 𝜗3) : 𝜗3 ≤ 0}.

(iii) Let 𝑥1, . . . , 𝑥𝑀 be 𝛿-separated points in Λ, that is, |𝑥𝑘 − 𝑥𝑙 | > 𝛿 for all 1 ≤ 𝑘 ≠ 𝑙 ≤
𝑀. Moreover, suppose that supp(𝐾𝛿,𝑥𝑘) ⊂ Λ for all 𝑘 = 1, . . . , 𝑀 and supp(𝐾𝛿,𝑥𝑘) ∩
supp(𝐾𝛿,𝑥𝑙 ) = ∅ for all 1 ≤ 𝑘 ≠ 𝑙 ≤ 𝑀.

The parameter classes Θ𝑖 correspond to the cases of estimating the diffusivity 𝜗1, transport
coefficient 𝜗2 and reaction coefficient 𝜗3 in front of operators 𝐴𝑖 with differential orders 𝑛1 = 2,
𝑛2 = 1, 𝑛3 = 0. We start with a non-asymptotic lower bound when only 𝑋𝛿 is observed.

Theorem A.7. Grant Assumption L with 𝑀 ≥ 1, 𝑇 ≥ 1 and let 𝑖 ∈ {1, 2, 3}. Then there exist
constants 𝑐1, 𝑐2 > 0 depending only on 𝐾 and an absolute constant 𝑐3 > 0 such that the following
assertions hold:
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(i) If 𝛿𝑛𝑖−1/
√
𝑇𝑀 < 1 and 𝛿 ≤ 𝑐1, then

inf
�̂�𝑖

sup
𝜗∈Θ𝑖

|𝜗−(1,0,0)⊤ | ≤𝑐2 𝛿
𝑛𝑖−1√
𝑇𝑀

ℙ𝜗

(
|�̂�𝑖 − 𝜗𝑖 | ≥

𝑐2
2
𝛿𝑛𝑖−1
√
𝑇𝑀

)
> 𝑐3.

(ii) If 𝛿𝑛𝑖−1/
√
𝑇𝑀 ≥ 1 and 𝛿 ≤ 𝑐1, then

inf
�̂�𝑖

sup
𝜗∈Θ𝑖

|𝜗−(1,0,0)⊤ | ≤𝑐2

ℙ𝜗( |�̂�𝑖 − 𝜗𝑖 | ≥ 𝑐2/2) > 𝑐3.

In (i) and (ii), the infimum is taken over all real-valued estimators �̂�𝑖 = �̂�𝑖 (𝑋𝛿).

Several comments are in order for the above result. First, by Markov’s inequality Theorem A.7
also implies lower bounds for the squared risk. Second, part (ii) detects settings under which
consistent estimation is impossible. For instance, if 𝑖 = 2, then consistent estimation is impossible
for 𝑇 = 1 (resp. 𝑇 bounded) and 𝑀 = 1, that is, if only a single spatial measurement is observed
in a bounded time interval. A similar conclusion holds in the case 𝑖 = 3, in which case consistent
estimation is even impossible in a full observation scheme with 𝑀 = ⌈𝑐𝛿−𝑑⌉ locations for 𝑑 ≤ 2
and 𝑇 bounded. Third, part (i) of Theorem A.7 shows that the different rates in our CLT are
minimax optimal. In particular, it easily implies an asymptotic minimax lower bound when
𝛿 → 0. A first important case is 𝑀 = 1 and 𝑖 = 1 in which case Theorem A.7 also follows from
Proposition 5.12 in [4] and gives the rate of convergence 𝛿. For 𝑀 = ⌈𝑐𝛿−𝑑⌉ we get the following.
Corollary A.8. Grant Assumption L with 𝑀 = ⌈𝑐𝛿−𝑑⌉, 𝛿 → 0 and 𝑇 ≥ 1, and let 𝑖 ∈ {1, 2, 3}. If
𝑛𝑖 − 1 + 𝑑/2 > 0, then

lim inf
𝛿→0

inf
�̂�𝑖

sup
|𝜗−(1,0,0)⊤ | ≤𝑐1

ℙ𝜗(𝛿−𝑛𝑖+1−𝑑/2 |�̂�𝑖 − 𝜗𝑖 | ≥ 𝑐2) > 0,

where the infimum is taken over all real-valued estimators �̂�𝑖 = �̂�𝑖 (𝑋𝛿).

Similar optimality results have been derived in [27] for the case of 𝑀 spectral measurements.
Provided there exists an orthonormal basis of eigenfunctions (𝑒 𝑗)∞𝑗=1 of 𝐴𝜗 independent of 𝜗
(e.g., in the case 𝑖 = 1 or 𝑖 = 3), it is possible to estimate 𝜗𝑖 from 𝑀 spectral measurements
(⟨𝑋 (𝑡), 𝑒 𝑗⟩)0≤𝑡≤𝑇,1≤ 𝑗≤𝑀 with rates 𝑀−𝜏 or log𝑀 if 𝜏 = 𝑛𝑖/𝑑 −1/𝑑 +1/2 > 0 or 𝜏 = 0, respectively.
Consistent estimation fails to hold for 𝜏 < 0. While [27] obtained asymptotic efficiency by
combining Girsanov’s theorem with LAN techniques, these rates can also be derived from Lemma
A.29 combined with a version of Lemma A.23. For 𝛿 = 𝑐𝑀−1/𝑑 the rate in Corollary A.8 and
Theorem A.3 coincides with 𝑀−𝜏 if 𝜏 > 0, and 𝜏 = 0 is again a boundary case. Regarding the
latter case, we briefly discuss in Section A.5 that a non-negative point spread function achieves
the log𝑀-rate when 𝑖 = 3 and 𝑑 = 2.

Recall that the augmented MLE �̂�𝛿 depends also on the measurements 𝑋 𝐴
𝛿
. We show next

that including them into the lower bounds does not change the optimal rates of convergence.
Theorem A.9. Theorem A.7 remains valid when the infimum is taken over all real-valued estimators
�̂�𝑖 = �̂�𝑖 (𝑋𝛿, 𝑋Δ

𝛿
, 𝑋∇·𝑏

𝛿
), provided that 𝐾, Δ𝐾 and (∇ · 𝑏)𝐾 are linearly independent and Assumption

L holds for 𝐾, Δ𝐾 and (∇ · 𝑏)𝐾.
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A.5 Applications and extensions

A.5.1 Examples

Let us illustrate the main results in two examples.
Example A.10. Suppose 𝐴𝜗 = 𝜗1Δ + 𝜗2∇ · 𝑏 + 𝑐 for 𝜗1 > 0. This corresponds to (A.2) with 𝐴0 = 𝑐,
𝐴1 = Δ, 𝐴2 = ∇ · 𝑏 for 𝑐 ∈ ℝ and a unit vector 𝑏 ∈ ℝ𝑑 , and with differential orders 𝑛1 = 2, 𝑛2 = 1.
A typical realisation of the solution 𝑋 in 𝑑 = 1 can be seen in Figure A.1(left). For known 𝑐, the
augmented MLE �̂�𝛿 is a consistent estimator of 𝜗 ∈ ℝ2 by Theorem A.3, attaining the optimal
rates of convergence 𝑀1/2𝛿−1, 𝑀1/2 for the diffusivity and the transport terms, respectively
according to the lower bounds in Theorem A.7. If we suppose for simplicity ∥𝐾∥𝐿2 (ℝ𝑑 ) = 1, then
the CLT holds with a diagonal matrix

Σ𝜗 =
𝑇

2𝜗1
diag

(
∥∇𝐾∥2

𝐿2 (ℝ𝑑 ) , ∥(−Δ0)−1/2(∇ · 𝑏)𝐾∥2
𝐿2 (ℝ𝑑 )

)
,

implying that �̂�𝛿,1 and �̂�𝛿,2 are asymptotically independent.
Figure A.1(right) presents root mean squared errors in 𝑑 = 1 for local measurements obtained

from the data displayed in the left part of the figure with 𝐾 (𝑥) = exp(−5/(1− 𝑥2))1(−1 < 𝑥 < 1)
and the maximal choice of 𝑀 ≍ 𝛿−1. We see that the optimal rates of convergence, and even
the exact asymptotic variances (blue dashed lines) are approached quickly as 𝛿 → 0. For
comparison, we have included in Figure A.1(right) estimation errors for an estimator 𝜗𝛿 without
the correction factor depending on the lower order ‘nuisance operator’ 𝐴0 in (A.9). We can see
that this introduces only a small bias, which is negligible as 𝛿 → 0.
Example A.11. Consider now 𝐴𝜗 = 𝜗1Δ + 𝜗2∇ · 𝑏 + 𝜗3 such that 𝐴1, 𝐴2 are as in the last example,
but now also 𝐴0 = 0, 𝐴3 = 1 with 𝑛3 = 0. If 𝑑 ≥ 3 and 𝑀1/2𝛿 → ∞, then the CLT in Theorem
A.3 applies with optimal rates of convergence as in the last example for 𝜗𝛿,1, 𝜗𝛿,2 and with rate
𝑀1/2𝛿 for the reaction term 𝜗3. Using integration by parts we find

Σ𝜗 =
𝑇

2𝜗1
©«
∥∇𝐾∥2

𝐿2 (ℝ𝑑 ) 0 −1
0 ∥(−Δ0)−1/2(∇ · 𝑏)𝐾∥2

𝐿2 (ℝ𝑑 ) 0
−1 0 ∥(−Δ0)−1/2𝐾∥2𝐿2 (ℝ𝑑 )

ª®®¬,
so we have pairwise asymptotic independence of diffusion and transport estimators, as well
as of transport and reaction estimators. Similar numerical results as in the first example were
obtained, but details are omitted.

A.5.2 A boundary case: estimation in 𝑑 = 2
Theorem A.3 is not valid for 𝑑 ≤ 2 and reaction terms 𝜗𝑖 with differential order 𝑛𝑖 = 0. The
singularities of the heat kernel on ℝ𝑑 in 𝑑 ≤ 2 (cf. the discussion before Theorem A.3) can be
avoided for sufficiently regular 𝐾, e.g., by assuming 𝐾 = Δ�̃� for some �̃� ∈ 𝐻4(ℝ𝑑). In that case,
the CLT still holds with the same proof, but consistency towards 𝜗𝑖 is lost, because 𝑀1/2𝛿 does
not diverge. Nevertheless, we show now that in 𝑑 = 2 for non-negative 𝐾, a logarithmic rate
holds. This is consistent with results for the MLE from spectral observations in 𝑑 = 2, cf. [27].
For a proof see Section A.7.2. For simplicity, only a simplified model is considered.
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Figure A.1: (left) heat map for a typical realisation of 𝑋 (𝑡, 𝑥) corresponding to (A.1) in 𝑑 = 1
with domain Λ = (0, 1) in Example A.10; (right) log10 log10 plot of the root mean squared errors
for estimating 𝜗1 and 𝜗2 in Example A.10.

Proposition A.12. Suppose that 𝑑 = 2, 𝐴𝜗 = Δ + 𝜗 for 𝜗 ∈ ℝ, 𝑋 (0) = 0 and 𝑀𝛿2 → 1 as 𝛿 → 0.
If 𝐾 ≥ 0 and 𝐾 ≠ 0, then �̂�𝛿 = 𝜗 + 𝑂ℙ(log(𝛿−1)−1/2).

A.5.3 Practical aspects

In this section, we outline a precise situation where local measurements arise, and how the
augmented MLE can be applied, even if the additional measurements 𝑋 𝐴𝑖

𝛿,𝑘
are not available.

Optical measurements of physical or chemical concentrations 𝑋 (𝑡) at a focal point 𝑥𝑘 ∈ Λ are
obtained as (normalised) counts of certain markers, e.g., photons [17]. According to classical
microscopy [35], diffraction leads to a blurred image of 𝑋 (𝑡), and the blur pattern can be
described by convolution with a specific point spread function, which can be written as

𝑋𝛿,𝑘 (𝑡) = ⟨𝑋 (𝑡), 𝐾𝛿,𝑥𝑘⟩ = (𝑋 (𝑡) ∗ �̄�𝛿) (𝑥𝑘), �̄�𝛿(𝑦) = 𝛿𝑑/2𝐾 (−𝛿−1𝑦). (A.15)

It is reasonable to assume that the additional measurement noise due to photon counting is
negligible and that measuring happens on faster time scales than the dynamics of 𝑋 .

The resolution 𝛿 is specific to the measurement device and determines how far focal points can
be apart to distinguish them [35, Definition 2.5]. The point spread function depends inversely
on 𝛿, and is often approximated by a normal density with standard deviation 𝛿 [6]. This
phenomenon is the source for the large number of statistical works on Gaussian deconvolution.
In applications, both the point spread function and the resolution 𝛿 are usually known, and can
even be engineered to meet desired specifications [7]. Note that multiplicative constants such as
the scaling of 𝐾𝛿,𝑥𝑘 cancel out in the augmented MLE and therefore play no role for parameter
estimation.

If we have (time discrete) local measurements (A.15) at our disposal, then exchanging
differentiation and convolution gives

𝑋
𝐴𝑖
𝛿,𝑘

= (𝑋 (𝑡) ∗ 𝐴∗𝑖 �̄�𝛿) (𝑥𝑘) = 𝐴∗𝑖 (𝑋 (𝑡) ∗ �̄�𝛿) (𝑥𝑘).

This can be approximated by finite differences. For example, if 𝐴𝑖 = Δ and 𝑥𝑘−1 = 𝑥𝑘 − 𝛿𝑒𝑖,
𝑥𝑘+1 = 𝑥𝑘 + 𝛿𝑒𝑖 are ‘neighbours’ of 𝑥𝑘 in the 𝑖-th coordinate with the unit vector 𝑒𝑖, separated by
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a distance 𝛿, then 𝑋
𝐴𝑖
𝛿,𝑘

(𝑡) can be approximated by 𝛿−2(𝑋𝛿,𝑘+1(𝑡) − 2𝑋𝛿,𝑘 (𝑡) + 𝑋𝛿,𝑘−1(𝑡)). Using
suitable Riemann sum approximations for Lebesgue and stochastic integrals, we thus obtain a
discretised version of the augmented MLE �̂�𝛿.

While a full analysis of such discretisation schemes is beyond the scope of this paper, we
shortly report on a recent case study for cell motility, using the augmented MLE for real and
simulated data [2, Sections 5 and 6]. There, the first component of a coupled stochastic activator-
inhibitor system (𝑋1, 𝑋2) follows a semi-linear SPDE with diffusity 𝜗, reaction function 𝑓 and
noise level 𝜎 > 0,

d𝑋1(𝑡) = (𝜗Δ𝑋1(𝑡) + 𝑓 (𝑋1(𝑡), 𝑋2(𝑡))) d𝑡 + 𝜎 d𝑊 (𝑡).

The equation models the change in actine concentration along the cell cortex during cell repolari-
sation. In [43], on a time grid of up to 256 seconds 𝑀 = 100 measurements for 18 different cells,
expected to have about the same diffusivities, were used to fit parameters in the deterministic
PDE with 𝜎 = 0. In [2], the same data were taken as local measurements from 𝑋1(𝑡), and 𝜗

was estimated by the discretised augmented MLE as discussed above, providing a biologically
reasonable magnitude for 𝜗, which can be used to distinguish the mechanisms contributing to
diffusion. The resolution 𝛿 was found as an upper bound on the spatial mesh size. The estimates
are stable across the cell populations as opposed to [43], which averaged the different estimates
across cells to reduce ‘noise’, and obtained in this way a much inflated average diffusivity.

A.6 Core Proofs

A.6.1 Proof of the central limit theorem

Preliminaries

Wewrite Λ𝛿,𝑥 = {𝛿−1(𝑦−𝑥) : 𝑦 ∈ Λ}, Λ0,𝑥 = ℝ𝑑 and introduce with domains 𝐻1
0 (Λ𝛿,𝑥)∩𝐻2(Λ𝛿,𝑥)

the operators

𝐴𝜗,𝛿,𝑥 = ∇ · 𝑎𝜗∇ + 𝛿∇ · 𝑏𝜗 + 𝛿2𝑐𝜗, 𝐴𝜗,𝛿,𝑥 = ∇ · 𝑎𝜗∇. (A.16)

They generate the analytic semigroups (𝑆𝜗,𝛿,𝑥 (𝑡))𝑡≥0 and (�̃�𝜗,𝛿,𝑥 (𝑡))𝑡≥0 on 𝐿2(Λ𝛿,𝑥). Similarly,
the adjoint operators 𝐴∗

𝜗,𝛿,𝑥
and 𝐴∗

𝜗,𝛿,𝑥
generate with the same domains the adjoint semigroups

(𝑆∗
𝜗,𝛿,𝑥

(𝑡))𝑡≥0 and (�̃�∗
𝜗,𝛿,𝑥

(𝑡))𝑡≥0. When 𝑎𝜗 is the identity matrix, then we also write Δ𝛿,𝑥 = 𝐴𝜗,𝛿,𝑥

and 𝑒𝑡Δ𝛿,𝑥 = �̃�𝜗,𝛿,𝑥 (𝑡). Moreover, 𝑒𝑡Δ0 and 𝑒𝑡∇·𝑎𝜗∇ are semigroups on 𝐿2(ℝ𝑑) generated by Δ0 and
∇ · 𝑎𝜗∇, respectively, with domain 𝐻2(ℝ𝑑). We often use implicitly that 𝑧 ∈ 𝐿2(Λ𝛿,𝑥) extends to
an element of 𝐿2(ℝ𝑑) by setting 𝑧(𝑦) = 0 outside of Λ𝛿,𝑥 . The 𝐴𝑖 and their formal adjoints 𝐴∗

𝑖

are considered as differential operators on sufficiently weakly differentiable functions without
boundary conditions.

The rescaled semigroup

In this section we collect some results on the semigroup operators 𝑆𝜗(𝑡) and their actions on
localised functions 𝑧𝛿,𝑥 (·) = 𝛿−𝑑/2𝑧(𝛿−1(· − 𝑥)).

By a standard-PDE result (see, e.g., [31, Example III.6.11] or [48, equation (5.1)]), the
operator 𝐴𝜗,𝛿,𝑥 and the generated semigroup are diagonalizable [18, Example 2.1 in Section
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II.2]. This yields the useful representations

𝐴𝜗,𝛿,𝑥 = 𝑈𝜗,𝛿,𝑥 (𝐴𝜗,𝛿,𝑥 + 𝛿2 �̃�𝜗)𝑈−1
𝜗,𝛿,𝑥 , 𝑆𝜗,𝛿,𝑥 (𝑡) = 𝑒𝑡𝛿

2 �̃�𝜗𝑈𝜗,𝛿,𝑥 �̃�𝜗,𝛿,𝑥 (𝑡)𝑈−1
𝜗,𝛿,𝑥 (A.17)

with the multiplication operators 𝑈𝜗,𝛿,𝑥𝑧(𝑦) = exp(−(𝑎−1
𝜗
𝑏𝜗) · (𝛿𝑦 + 𝑥)/2)𝑧(𝑦) and with �̃�𝜗 =

𝑐𝜗 − 1
4𝑏𝜗 · (𝑎

−1
𝜗
𝑏𝜗). Observe the following scaling properties.

Lemma A.13. Let 𝛿′ ≥ 𝛿 ≥ 0, 𝑥 ∈ Λ, 𝑖 = 1, . . . , 𝑝.

(i) If 𝑧 ∈ 𝐻1
0 (Λ𝛿,𝑥) ∩ 𝐻2(Λ𝛿,𝑥), then 𝐴∗

𝑖
𝑧𝛿,𝑥 = 𝛿−𝑛𝑖 (𝐴∗

𝑖
𝑧)𝛿,𝑥 , 𝐴∗𝜗𝑧𝛿,𝑥 = 𝛿−2(𝐴∗

𝜗,𝛿,𝑥
𝑧)𝛿,𝑥 .

(ii) If 𝑧 ∈ 𝐿2(Λ𝛿,𝑥), 𝑡 ≥ 0, then 𝑆∗
𝜗
(𝑡)𝑧𝛿,𝑥 = (𝑆∗

𝜗,𝛿,𝑥
(𝑡𝛿−2)𝑧)𝛿,𝑥 .

Proof. Part (i) is clear, part (ii) follows analogously to [4, Lemma 3.1]. ■

The semigroup on the bounded domain Λ𝛿,𝑥 is after zooming in as 𝛿 → 0 intuitively close to
the semigroup on ℝ𝑑 . The next result makes this precise, uniformly in 𝑥 ∈ J.

Lemma A.14. Under Assumption H(iii) the following holds:

(i) There exists 𝐶 > 0 such that if 𝑧 ∈ 𝐶𝑐 (ℝ𝑑) is supported in
⋂

𝑥∈J Λ𝛿,𝑥 for some 𝛿 ≥ 0, then for
all 𝑡 ≥ 0

sup
𝑥∈J

���(𝑆∗𝜗,𝛿,𝑥 (𝑡)𝑧) (𝑦)��� ≤ 𝐶𝑒𝑐𝜗𝑡𝛿
2 (𝑒𝑡∇·𝑎𝜗∇ |𝑧 |) (𝑦), 𝑦 ∈ ℝ𝑑 .

(ii) If 𝑧 ∈ 𝐿2(ℝ𝑑), then as 𝛿 → 0 for all 𝑡 > 0

sup
𝑥∈J

∥𝑆∗𝜗,𝛿,𝑥 (𝑡) (𝑧 |Λ𝛿,𝑥 ) − 𝑒𝑡∇·𝑎𝜗∇𝑧∥𝐿2 (ℝ𝑑 ) → 0.

Proof. (i). By (A.17) and noting that the function 𝑦 ↦→ exp(−(𝑎−1
𝜗
𝑏𝜗) · (𝛿𝑦 + 𝑥)/2) is uniformly

upper and lower bounded on ⋂
𝑥∈J Λ𝛿,𝑥 , we get

sup
𝑥∈J

���(𝑆∗𝜗,𝛿,𝑥 (𝑡)𝑧) (𝑦)��� ≲ 𝑒𝑡𝛿
2 �̃�𝜗 (�̃�𝜗,𝛿,𝑥 (𝑡) |𝑧 |) (𝑦), 𝑦 ∈ ℝ𝑑 .

It is therefore enough to prove the claim with respect to �̃�𝜗,𝛿,𝑥 and with |𝑧 | instead of 𝑧. By
the classical Feynman–Kac formulas (cf. [30, Chapter 4.4], the anisotropic case is an easy
generalisation, which can also be obtained by a change of variables leading to a diagonal
diffusivity matrix 𝑎𝜗, which corresponds to 𝑑 scalar heat equations) we have with a process
𝑌𝑡 = 𝑦 + 𝑎1/2

𝜗
�̃�𝑡 and a 𝑑-dimensional Brownian motion �̃�, all defined on another probability

space with expectation and probability operators �̃�𝑦, ℙ̃𝑦, that (𝑒𝑡∇·𝑎𝜗∇𝑧) (𝑦) = �̃�𝑦 [𝑧(𝑌𝑡)] and
�̃�𝜗,𝛿,𝑥 (𝑡)𝑧(𝑦) = �̃�𝑦

[
𝑧(𝑌𝑡)1

(
𝑡 < 𝜏𝛿,𝑥

) ] with the stopping times 𝜏𝛿,𝑥 := inf{𝑡 ≥ 0 : 𝑌𝑡 ∉ Λ𝛿,𝑥}. The
claim follows now from

sup
𝑥∈J

(�̃�𝜗,𝛿,𝑥 (𝑡) |𝑧 |) (𝑦) ≤ �̃�𝑦 [|𝑧(𝑌𝑡) |] = (𝑒𝑡∇·𝑎𝜗∇ |𝑧 |) (𝑦).

(ii). By an approximation argument it is enough to consider 𝑧 ∈ 𝐶𝑐 (Λ̄) and 0 < 𝛿 ≤ 𝛿′

such that 𝑧 is supported in Λ𝛿′,𝑥 , hence 𝑧 |Λ𝛿,𝑥 = 𝑧 for all such 𝛿. Compactness of J according to
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Assumption H(iii) guarantees for sufficiently small 𝛿 the existence of a ball with centre 0 and
radius 𝜌𝛿−1 for some 𝜌 > 0, contained in ⋂

𝑥∈J Λ𝛿,𝑥 . With this and the representation formulas
in (i), combined with the Cauchy–Schwarz inequality, we have for all 𝑦 ∈ ℝ𝑑

sup
𝑥∈J

| (�̃�𝜗,𝛿,𝑥 (𝑡)𝑧) (𝑦) − (𝑒𝑡∇·𝑎𝜗∇𝑧) (𝑦) |2 = sup
𝑥∈J

|�̃�𝑦
[
𝑧(𝑌𝑡)1(𝜏𝛿,𝑥 ≤ 𝑡)

]
|2

≤ sup
𝑥∈J

�̃�𝑦 [𝑧2(𝑌𝑡)]ℙ̃𝑦 (𝜏𝛿,𝑥 ≤ 𝑡) ≤ (𝑒𝑡∇·𝑎𝜗∇𝑧2) (𝑦)ℙ̃𝑦 (max
0≤𝑠≤𝑡

|𝑌𝑠 | ≥ 𝜌𝛿−1)

≤ (𝑒𝑡∇·𝑎𝜗∇𝑧2) (𝑦)ℙ̃𝑦 (max
0≤𝑠≤𝑡

|�̃�𝑠 | ≥ �̃�𝛿−1) ≲ (𝑒𝑡∇·𝑎𝜗∇𝑧2) (𝑦) (𝛿𝑡1/2𝑒−𝛿−2𝑡−1) → 0

as 𝛿 → 0 for another constant �̃�, concluding by [30, equation (2.8.4)]. Since ∥𝑒𝑡∇·𝑎𝜗∇𝑧2∥𝐿1 (ℝ𝑑 ) ≤
∥𝑧∥2

𝐿2 (ℝ𝑑 ) , dominated convergence proves the claim when 𝑏𝜗 = 0, 𝑐𝜗 = 0. The general case is
then an easy consequence of the last display and (A.17). ■

We require frequently quantitative statements on the decay of the action of the semigroup
operators 𝑆∗

𝜗,𝛿,𝑥
(𝑡) as 𝑡 → ∞ when applied to functions of a certain smoothness and integrability.

This is well-known for an analytic semigroup, but is shown here to hold true for all 𝛿 and
uniformly in 𝑥 ∈ J.

Lemma A.15. Let 0 ≤ 𝛿 ≤ 1, 𝑡 > 0, 𝑥 ∈ J and 1 < 𝑝 ≤ ∞. Moreover, let 𝑧 ∈ 𝐿𝑝(Λ𝛿,𝑥) if 1 < 𝑝 < ∞
and 𝑧 ∈ 𝐶(Λ𝛿,𝑥) with 𝑧 = 0 on 𝜕Λ𝛿,𝑥 if 𝑝 = ∞. Then it holds with implied constants not depending
on 𝑥:

∥𝐴∗𝜗,𝛿,𝑥𝑆
∗
𝜗,𝛿,𝑥 (𝑡)𝑧∥𝐿𝑝 (Λ𝛿,𝑥 ) ≲ 𝑡−1∥𝑧∥𝐿𝑝 (Λ𝛿,𝑥 ) .

Proof. Apply first the scaling in Lemma A.13 in reverse order such that with 1 < 𝑝 ≤ ∞

∥𝐴∗𝜗,𝛿,𝑥𝑆
∗
𝜗,𝛿,𝑥 (𝑡)𝑧∥𝐿𝑝 (Λ𝛿,𝑥 ) = 𝛿𝑑 (1/2−1/𝑝)+2∥𝐴∗𝜗𝑆

∗
𝜗(𝑡𝛿

2)𝑧𝛿,𝑥 ∥𝐿𝑝 (Λ) .

If 𝑝 < ∞, by the semigroup property for analytic semigroups in [5, Theorem V.2.1.3], the
𝐿𝑝(Λ)-norm is up to a constant upper bounded by (𝑡𝛿2)−1∥𝑧𝛿,𝑥 ∥𝐿𝑝 (Λ) , and the claim follows. The
same proof applies to 𝑝 = ∞, noting that 𝐴∗

𝜗
generates an analytic semigroup on {𝑢 ∈ 𝐶(Λ), 𝑢 = 0

on 𝜕Λ}, cf. [47, Theorem 7.3.7]. ■

The proof for the next result relies on the Bessel-potential spaces 𝐻𝑠,𝑝

0 (Λ𝛿,𝑥), 1 < 𝑝 < ∞,
𝑠 ∈ ℝ, defined for 𝛿 > 0 as the domains of the fractional Dirichlet–Laplacian (−Δ𝛿,𝑥)𝑠/2 on Λ𝛿,𝑥
with norms ∥·∥𝐻𝑠,𝑝 (Λ𝛿,𝑥 ) = ∥(−Δ𝛿,𝑥)𝑠/2·∥𝐿𝑝 (Λ𝛿,𝑥 ) , see [16] for details and also Section A.6.2 below.
Since 𝑎𝜗 is positive definite, the norms ∥·∥𝐻𝑠,𝑝 (Λ𝛿,𝑥 ) are equivalently generated by the fractional
powers of −𝐴𝜗,𝛿,𝑥 [62, Theorem 16.15].

Lemma A.16. Let 0 < 𝛿 ≤ 1, 𝑡 > 0, 1 < 𝑝 ≤ 2 and grant Assumption H(iii). Let 𝑧 ∈ 𝐻𝑠
0(ℝ

𝑑), 𝑠 ≥ 0,
be compactly supported in

⋂
𝑥∈J Λ𝛿,𝑥 , suppose that 𝑉𝛿,𝑥 : 𝐿𝑝(Λ𝛿,𝑥) → 𝐻

−𝑠,𝑝
0 (Λ𝛿,𝑥) are bounded

linear operators with ∥𝑉𝛿,𝑥𝑧∥𝐻−𝑠,𝑝 (Λ𝛿,𝑥 ) ≤ 𝑉op∥𝑧∥𝐿𝑝 (Λ𝛿,𝑥 ) for some 𝑉op independent of 𝛿, 𝑥. Then for
1 < 𝑝 ≤ 2 and 𝛾 = (1/𝑝 − 1/2)𝑑/2 there exists a constant 𝐶 > 0, depending on 𝑝 and 𝑠 such that

sup
𝑥∈J

∥𝑆∗𝜗,𝛿,𝑥 (𝑡)𝑉𝛿,𝑥𝑧∥𝐿2 (Λ𝛿,𝑥 ) ≤ 𝐶𝑒𝑐𝜗𝑡𝛿
2 sup
𝑥∈J

(
∥𝑉𝛿,𝑥𝑧∥𝐿2 (Λ𝛿,𝑥 ) ∧ (𝑉op𝑡−𝑠/2−𝛾∥𝑧∥𝐿𝑝 (Λ𝛿,𝑥 ) )

)
.

If 𝑠 = 0, then this holds also for 𝑝 = 1.
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Proof. Set 𝑢 = 𝑉𝛿,𝑥𝑧, 𝑣 = 𝑈𝜗,𝛿,𝑥𝑢. The 𝑈𝜗,𝛿,𝑥 are bounded operators on 𝐿2(Λ𝛿,𝑥) uniformly in
𝛿 ≥ 0 and 𝑥 ∈ J and thus by (A.17)

∥𝑆∗𝜗,𝛿,𝑥 (𝑡)𝑢∥𝐿2 (Λ𝛿,𝑥 ) ≲ 𝑒𝑐𝜗𝑡𝛿
2 ∥�̃�𝜗,𝛿,𝑥 (𝑡)𝑣∥𝐿2 (Λ𝛿,𝑥 ) . (A.18)

Let first 𝑠 = 0 such that 𝐻−𝑠,𝑝
0 (ℝ𝑑) = 𝐿𝑝(ℝ𝑑). Ellipticity and symmetry of 𝑎𝜗 show

∥𝑒𝑡∇·𝑎𝜗∇ |𝑣|∥𝐿2 (ℝ𝑑 ) ≤ ∥𝑒𝑡𝐶′Δ0 |𝑣|∥𝐿2 (ℝ𝑑 )

for a constant 𝐶′ > 0 (use either [51] or argue that the semigroup 𝑒𝑡∇·𝑎𝜗∇ on acts on 𝐿2(ℝ𝑑)
as a multiplication operator in the Fourier domain according to [18, Section VI.5], which can
be upper bounded by the identity operator). Approximating 𝑢 by continuous and compactly
supported functions, we thus find from Lemma A.14(i) and hypercontractivity of the heat kernel
on ℝ𝑑 uniformly in 𝑥 ∈ J

∥𝑆∗𝜗,𝛿,𝑥 (𝑡)𝑢∥𝐿2 (Λ𝛿,𝑥 ) ≲ 𝑒𝑐𝜗𝑡𝛿
2 ∥𝑒𝐶′𝑡Δ0 |𝑣|∥𝐿2 (ℝ𝑑 ) ≲ 𝑒𝑐𝜗𝑡𝛿

2
𝑡−𝛾∥𝑢∥𝐿𝑝 (ℝ𝑑 ) ≲ 𝑒𝑐𝜗𝑡𝛿

2
𝑡−𝛾∥𝑧∥𝐿𝑝 (ℝ𝑑 ) .

This yields the result for 𝑠 = 0. These inequalities hold also for 𝑝 = 1, thus proving the
supplement of the statement. For 𝑠 > 0 and 𝑝 > 1 note first that by [3, Proposition 17(i)] we
have ∥(−𝑡𝐴𝜗,𝛿,𝑥)𝑠/2�̃�𝜗,𝛿,𝑥 (𝑡)𝑧∥𝐿2 (Λ𝛿,𝑥 ) ≲ ∥𝑧∥𝐿2 (Λ𝛿,𝑥 ) . Inserting this and then the last display with 𝑢
replaced by (−𝐴𝜗,𝛿,𝑥)−𝑠/2𝑣 into (A.18) we get

∥𝑆∗𝜗,𝛿,𝑥 (𝑡)𝑢∥𝐿2 (Λ𝛿,𝑥 ) ≲ 𝑒𝑐𝜗𝑡𝛿
2 ∥(−𝐴𝜗,𝛿,𝑥)𝑠/2�̃�𝜗,𝛿,𝑥 (𝑡) (−𝐴𝜗,𝛿,𝑥)−𝑠/2𝑣∥𝐿2 (Λ𝛿,𝑥 )

≲ 𝑒𝑐𝜗𝑡𝛿
2
𝑡−𝑠/2∥�̃�𝜗,𝛿,𝑥 (𝑡/2) (−𝐴𝜗,𝛿,𝑥)−𝑠/2𝑣∥𝐿2 (Λ𝛿,𝑥 ) ≲ 𝑒𝑐𝜗𝑡𝛿

2
𝑡−𝑠/2−𝛾∥𝑣∥𝐻−𝑠,𝑝 (Λ𝛿,𝑥 ) ,

uniformly in 𝑥 ∈ J. Note that the 𝑈𝜗,𝛿,𝑥 also induce a family of multiplication operators on
𝐻
𝑠,𝑝

0 (ℝ𝑑) for 𝑠 ≥ 0 with operator norms uniformly bounded in 𝑥 ∈ J, cf. [55, Theorem 2.8.2].
By duality and restriction this transfers to 𝐻

𝑠,𝑝

0 (Λ𝛿,𝑥) for general 𝑠 according to [55, Theorem
3.3.2]. Hence,

∥𝑆∗𝜗,𝛿,𝑥 (𝑡)𝑢∥𝐿2 (Λ𝛿,𝑥 ) ≲ 𝑒𝑐𝜗𝑡𝛿
2
𝑡−𝑠/2−𝛾∥𝑢∥𝐻−𝑠,𝑝 (Λ𝛿,𝑥 ) ≲ 𝑒𝑐𝜗𝑡𝛿

2
𝑡−𝑠/2−𝛾𝑉op∥𝑧∥𝐿𝑝 (Λ𝛿,𝑥 ) . ■

Covariance structure of multiple local measurements

Lemma A.17.

(i) If 𝑋0 = 0, then the Gaussian process from (A.5) has mean zero and covariance function

Cov(⟨𝑋 (𝑡), 𝑧⟩, ⟨𝑋 (𝑡′), 𝑧′⟩) =
∫ 𝑡∧𝑡′

0
⟨𝑆∗𝜗(𝑡 − 𝑠)𝑧, 𝑆∗𝜗(𝑡

′ − 𝑠)𝑧′⟩ d𝑠.

(ii) If 𝑋0 is the stationary initial condition from Lemma A.2, then the Gaussian process from (A.5)
has mean zero and covariance function

Cov(⟨𝑋 (𝑡), 𝑧⟩, ⟨𝑋 (𝑡′), 𝑧′⟩) =
∫ ∞

0
⟨𝑆∗𝜗((𝑡 − 𝑡′) + 𝑠)𝑧, 𝑆∗𝜗(𝑠)𝑧

′⟩ d𝑠, 𝑡 ≥ 𝑡′.
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Proof. Part (i) follows from (A.5) and Itô’s isometry [15, Proposition 4.28]. For part (ii) we
conclude in the same way from noting that the stationary solution given by

⟨𝑋 (𝑡), 𝑧⟩ =
∫ 𝑡

−∞
⟨𝑆∗𝜗(𝑡 − 𝑠)𝑧, d𝑊 (𝑠)⟩

has mean zero. ■

Introduce for 𝑖, 𝑗 = 1, . . . , 𝑝

Ψ𝜗(𝐴∗𝑖 𝐾, 𝐴∗𝑗𝐾) =
1
2 ⟨(−∇ · 𝑎𝜗∇)−1/2𝐴∗𝑖 𝐾, (−∇ · 𝑎𝜗∇)−1/2𝐴∗𝑗𝐾⟩𝐿2 (ℝ𝑑 ) ,

which is well-defined under Assumption H. by the discussion before Theorem A.3.

Lemma A.18. Grant Assumption H and let 𝑋0 = 0. We have as 𝛿 → 0

𝛿−2+𝑛𝑖+𝑛 𝑗 (𝑀𝑇)−1
𝑀∑︁
𝑘=1

∫ 𝑇

0
𝔼
[
⟨𝑋 (𝑡), 𝐴∗𝑖 𝐾𝛿,𝑥𝑘⟩⟨𝑋 (𝑡), 𝐴∗𝑗𝐾𝛿,𝑥𝑘⟩

]
d𝑡 → Ψ𝜗(𝐴∗𝑖 𝐾, 𝐴∗𝑗𝐾).

Proof. Fix 𝑖, 𝑗 with 𝑛𝑖 + 𝑛 𝑗 > 2− 𝑑. Then, applying Lemma A.17(i), the scaling from Lemma A.13
and changing variables give

𝛿−2+𝑛𝑖+𝑛 𝑗 (𝑀𝑇)−1
𝑀∑︁
𝑘=1

∫ 𝑇

0
𝔼
[
⟨𝑋 (𝑡), 𝐴∗𝑖 𝐾𝛿,𝑥𝑘⟩⟨𝑋 (𝑡), 𝐴∗𝑗𝐾𝛿,𝑥𝑘⟩

]
d𝑡 =

∫ ∞

0
𝑓𝛿(𝑡′) d𝑡′

with

𝑓𝛿(𝑡′) = (𝑀𝑇)−1
𝑀∑︁
𝑘=1

⟨𝑆∗𝜗,𝛿,𝑥𝑘 (𝑡
′)𝐴∗𝑖 𝐾, 𝑆∗𝜗,𝛿,𝑥𝑘 (𝑡

′)𝐴∗𝑗𝐾⟩𝐿2 (Λ𝛿,𝑥𝑘 )
∫ 𝑇

0
1{0≤𝑡′≤𝑡𝛿−2} d𝑡.

Consider now the differential operators 𝑉𝛿,𝑥𝑘 = 𝐴∗
𝑖
. If 𝐷𝑚 is a composition of 𝑚 partial differential

operators, then Theorem 1.43 of [62] yields that 𝐷𝑚 is a bounded linear operator from 𝐿𝑝(Λ)
to 𝐻

−𝑚,𝑝
0 (Λ), implying ∥𝐷𝑚𝐾𝛿,𝑥𝑘 ∥𝐻−𝑚,𝑝 (Λ) ≲ 𝛿−𝑚∥𝐾𝛿,𝑥𝑘 ∥𝐿𝑝 (Λ) . Since (𝐷𝑚𝐾)𝛿,𝑥𝑘 = 𝛿𝑚𝐷𝑚𝐾𝛿,𝑥𝑘 ,

changing variables gives ∥𝐷𝑚𝐾∥𝐻−𝑚,𝑝 (Λ𝛿,𝑥𝑘 ) ≲ ∥𝐾∥𝐿𝑝 (Λ𝛿,𝑥𝑘 ) . From this we find ∥𝑉𝛿,𝑥𝑘𝐾∥𝐻−𝑛𝑖,𝑝 (Λ𝛿,𝑥 ) ≤
∥𝐾∥𝐿𝑝 (Λ𝛿,𝑥𝑘 ) , ∥𝑉𝛿,𝑥𝑘𝐾∥𝐿2 (Λ𝛿,𝑥𝑘 ) ≲ ∥𝐾∥𝐻𝑛𝑖 (ℝ𝑑 ) , and Lemma A.16 shows for 0 ≤ 𝑡′ ≤ 𝑇𝛿−2, 𝜀 > 0
and all sufficiently small 𝛿 > 0

sup
𝑥∈J

∥𝑆∗𝜗,𝛿,𝑥 (𝑡
′)𝐴∗𝑖 𝐾∥𝐿2 (Λ𝛿,𝑥 ) ≲ 1 ∧ (𝑡′)−𝑛𝑖/2−𝑑/4+𝜀. (A.19)

By the Cauchy–Schwarz inequality we get | 𝑓𝛿(𝑡′) | ≲ 1 ∧ (𝑡′)−𝑛𝑖/2−𝑛 𝑗/2−𝑑/2+2𝜀. In particular,
taking 𝜖 so small that 𝑛𝑖 + 𝑛 𝑗 > 2 − 𝑑 − 4𝜖 yields sup𝛿>0 | 𝑓𝛿 | ∈ 𝐿1( [0,∞)). Lemma A.14(ii),
Lemma A.13(ii) and continuity of the 𝐿2-scalar product show now pointwise for all 𝑡′ > 0
that 𝑓𝛿(𝑡′) → ⟨𝑒2𝑡′∇·𝑎𝜗∇𝐴∗

𝑖
𝐾, 𝐴∗

𝑗
𝐾⟩𝐿2 (ℝ𝑑 ) . Conclude by the dominated convergence theorem and∫∞

0 ⟨𝑒2𝑡′∇·𝑎𝜗∇𝐴∗
𝑖
𝐾, 𝐴∗

𝑗
𝐾⟩𝐿2 (ℝ𝑑 ) d𝑡′ = Ψ𝜗(𝐴∗𝑖 𝐾, 𝐴∗𝑗𝐾). ■

Lemma A.19. Grant Assumption H and let 𝑋0 = 0. If 𝑛𝑖 + 𝑛 𝑗 > 2 − 𝑑 for 𝑖, 𝑗 = 1, . . . , 𝑝, then
sup𝑥∈J Var(

∫𝑇
0 ⟨𝑋 (𝑡), 𝐴

∗
𝑖
𝐾𝛿,𝑥⟩⟨𝑋 (𝑡), 𝐴∗𝑗𝐾𝛿,𝑥⟩ d𝑡) = 𝑜(𝛿4−2𝑛𝑖−2𝑛 𝑗).
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Proof. Applying the scaling from Lemma A.13 and using Wicks theorem [28, Theorem 1.28] we
have for 𝑥 ∈ J

𝛿2𝑛𝑖+2𝑛 𝑗 Var
( ∫ 𝑇

0
⟨𝑋 (𝑡), 𝐴∗𝑖 𝐾𝛿,𝑥⟩⟨𝑋 (𝑡), 𝐴∗𝑗𝐾𝛿,𝑥⟩ d𝑡

)
= Var

( ∫ 𝑇

0
⟨𝑋 (𝑡), (𝐴∗𝑖 𝐾)𝛿,𝑥⟩⟨𝑋 (𝑡), (𝐴∗𝑗𝐾)𝛿,𝑥⟩ d𝑡

)
= 𝑉1 + 𝑉2

with 𝑉1 = 𝑉𝛿,𝑥 (𝐴∗𝑖 𝐾, 𝐴∗𝑖 𝐾, 𝐴∗𝑗𝐾, 𝐴∗𝑗𝐾), 𝑉2 = 𝑉𝛿,𝑥 (𝐴∗𝑖 𝐾, 𝐴∗𝑗𝐾, 𝐴∗𝑗𝐾, 𝐴∗𝑖 𝐾), and where for 𝑣, 𝑣′, 𝑧, 𝑧′ ∈
𝐿2(Λ𝛿,𝑥)

𝑉𝛿,𝑥 (𝑣, 𝑣′, 𝑧, 𝑧′) =
∫ 𝑇

0

∫ 𝑇

0
𝔼[⟨𝑋 (𝑡), 𝑣𝛿,𝑥⟩⟨𝑋 (𝑡′), 𝑣′𝛿,𝑥⟩]𝔼[⟨𝑋 (𝑡), 𝑧𝛿,𝑥⟩⟨𝑋 (𝑡

′), 𝑧′𝛿,𝑥⟩] d𝑡′ d𝑡.

We only upper bound 𝑉1, the arguments for 𝑉2 are similar. Set

𝑓𝑖, 𝑗 (𝑠, 𝑠′) = ⟨𝑆∗𝜗,𝛿,𝑥 (𝑠 + 𝑠
′)𝐴∗𝑖 𝐾, 𝑆∗𝜗,𝛿,𝑥 (𝑠

′)𝐴∗𝑗𝐾⟩𝐿2 (Λ𝛿,𝑥 ) .

Using Lemma A.17(i) and the scaling in Lemma A.13 we have

𝑉1 = 2𝛿6
∫ 𝑇

0

∫ 𝑡𝛿−2

0

( ∫ 𝑡𝛿−2−𝑠

0
𝑓𝑖,𝑖 (𝑠, 𝑠′) d𝑠′

) ( ∫ 𝑡𝛿−2−𝑠

0
𝑓 𝑗, 𝑗 (𝑠, 𝑠′′) d𝑠′′

)
d𝑠 d𝑡,

cf. [4, Proof of Proposition A.9]. From (A.19) and the Cauchy–Schwarz inequality we infer

sup
𝑥∈J

| 𝑓𝑖,𝑖 (𝑠, 𝑠′) 𝑓 𝑗, 𝑗 (𝑠, 𝑠′′) | ≲(1 ∧ 𝑠−(𝑛𝑖+𝑛 𝑗 )/2−𝑑/2+2𝜀) (1 ∧ 𝑠′−𝑛𝑖/2−𝑑/4+𝜀) (1 ∧ 𝑠′′−𝑛 𝑗/2−𝑑/4+𝜀)

for 𝜀 > 0, which gives

sup
𝑥∈J

|𝑉1 | ≲ 𝛿6
∫ 𝑇𝛿−2

0
(1 ∧ 𝑠−𝑛𝑖/2−𝑛 𝑗/2−𝑑/2+2𝜀) d𝑠

∫ 𝑇𝛿−2

0
(1 ∧ 𝑠′−𝑛𝑖/2−𝑑/4+𝜀) d𝑠′

·
∫ 𝑇𝛿−2

0
(1 ∧ 𝑠′′−𝑛 𝑗/2−𝑑/4+𝜀) d𝑠′′

≲ 𝛿6(1 ∨ 𝛿𝑛𝑖+𝑛 𝑗+𝑑−2−4𝜀) (1 ∨ 𝛿𝑛𝑖+𝑑/2−2−2𝜀) (1 ∨ 𝛿𝑛 𝑗+𝑑/2−2−2𝜀).

Without loss of generality let 𝑛𝑖 ≤ 𝑛 𝑗. For 𝜀 small enough, we can ensure 𝛿𝑛𝑖+𝑛 𝑗+𝑑−2−4𝜀 ≤ 1, as
𝑛𝑖 + 𝑛 𝑗 > 2 − 𝑑. In 𝑑 ≤ 2 only the pairs (𝑛𝑖, 𝑛 𝑗) ∈ {(0, 0), (0, 1)} are excluded, and in every case
the claimed bound holds. The same applies to 𝑑 ≥ 3 for all pairs (𝑛𝑖, 𝑛 𝑗). ■

Proof of Theorem A.3

Proof. We begin with the observed Fisher information. Suppose first 𝑋0 = 0. Under Assumption
H we find that 𝑛𝑖 + 𝑛 𝑗 > 2 − 𝑑 for all 𝑖, 𝑗 = 1, . . . , 𝑝 in all dimensions 𝑑 ≥ 1. It follows from
Lemmas A.18 and A.19 that

(𝜌𝛿I𝛿𝜌𝛿)𝑖 𝑗 = 𝛿−2+𝑛𝑖+𝑛 𝑗𝑀−1
𝑀∑︁
𝑘=1

∫ 𝑇

0
⟨𝑋 (𝑡), 𝐴∗𝑖 𝐾𝛿,𝑥𝑘⟩⟨𝑋 (𝑡), 𝐴∗𝑗𝐾𝛿,𝑥𝑘⟩ d𝑡
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= 𝑇Ψ𝜗(𝐴∗𝑖 𝐾, 𝐴∗𝑗𝐾) + 𝑜ℙ(1) = (Σ𝜗)𝑖 𝑗 + 𝑜ℙ(1).

This yields for 𝑋0 = 0 the wanted convergence 𝜌𝛿I𝛿𝜌𝛿
ℙ→ Σ𝜗. In order to extend this to the general

𝑋0 from Assumption H, let 𝑋 be defined as 𝑋 , but starting in 𝑋 (0) = 0 such that for 𝑣 ∈ 𝐿2(Λ),
⟨𝑋 (𝑡), 𝑣⟩ = ⟨𝑋 (𝑡), 𝑣⟩ + ⟨𝑆𝜗(𝑡)𝑋0, 𝑣⟩. If Ī𝛿 is the observed Fisher information corresponding to 𝑋 ,
then by the Cauchy–Schwarz inequality, with 𝑣𝑖 = sup𝑘 𝛿2𝑛𝑖−2

∫𝑇
0 ⟨𝑋0, 𝑆

∗
𝜗
(𝑡)𝐴∗

𝑖
𝐾𝛿,𝑥𝑘⟩2 d𝑡,

| (𝜌𝛿I𝛿𝜌𝛿)𝑖 𝑗 − (𝜌𝛿Ī𝛿𝜌𝛿)𝑖 𝑗 | ≲ (𝜌𝛿Ī𝛿𝜌𝛿)1/2𝑖𝑖
𝑣
1/2
𝑗

+ (𝜌𝛿Ī𝛿𝜌𝛿)1/2𝑗 𝑗
𝑣
1/2
𝑖

+ 𝑣1/2
𝑖

𝑣
1/2
𝑗
.

By the first part, (𝜌𝛿Ī𝛿𝜌𝛿)𝑖𝑖 is bounded in probability and Assumption H(iv) gives 𝑣𝑖 = 𝑜ℙ(1) for
all 𝑖. From this obtain again the convergence of the observed Fisher information. Regarding the
invertibility of Σ𝜗, let 𝜆 ∈ ℝ𝑝 such that

0 =

𝑝∑︁
𝑖, 𝑗=1

𝜆 𝑖𝜆 𝑗 (Σ𝜗)𝑖 𝑗 = 𝑇Ψ𝜗

( 𝑝∑︁
𝑖=1

𝜆 𝑖𝐴
∗
𝑖 𝐾,

𝑝∑︁
𝑖=1

𝜆 𝑖𝐴
∗
𝑖 𝐾

)
.

By the definition of Ψ𝜗 this implies 𝑒𝑡∇·𝑎𝜗∇ (∑𝑝

𝑖=1 𝜆 𝑖𝐴
∗
𝑖
𝐾) = 0 for all 𝑡 ≥ 0 and thus ∑𝑝

𝑖=1 𝜆 𝑖𝐴
∗
𝑖
𝐾 = 0.

Since the functions 𝐴∗
𝑖
𝐾 are linearly independent by Assumption H(i), conclude that Σ𝜗 is

invertible.
We proceed next to the proof of the CLT. The augmented MLE and the statement of the

limit theorem remain unchanged when 𝐾 is multiplied by a scalar factor. We can therefore
assume without loss of generality that ∥𝐾∥𝐿2 (ℝ𝑑 ) = 1. By the basic error decomposition (A.11)
and because Σ𝜗 is invertible, this means

(𝜌𝛿I𝛿𝜌𝛿)1/2𝜌−1𝛿 (�̂�𝛿 − 𝜗) = (𝜌𝛿I𝛿𝜌𝛿)−1/2Σ1/2
𝜗

(Σ−1/2
𝜗

𝜌𝛿M𝛿). (A.20)

Note that M𝛿 = M𝛿(𝑇) corresponds to a 𝑝-dimensional continuous and square integrable
martingale (M𝛿(𝑡))0≤𝑡≤𝑇 with respect to the filtration (F𝑡)0≤𝑡≤𝑇 evaluated at 𝑡 = 𝑇 . In view of
Assumption H(iii) let 𝛿 ≤ 𝛿′ such that for 𝑠, 𝑡 ≥ 0 and 𝑘, 𝑘′ with the Kronecker delta 𝛿𝑘,𝑘′

𝔼[𝑊𝑘 (𝑠)𝑊𝑘′ (𝑡)] = (𝑠 ∧ 𝑡)⟨𝐾𝛿,𝑥𝑘 , 𝐾𝛿,𝑥𝑘′ ⟩ = (𝑠 ∧ 𝑡)𝛿𝑘,𝑘′ .

This means that the Brownian motions𝑊𝑘 and𝑊𝑘′ are independent for 𝑘 ≠ 𝑘′ and thus their
quadratic co-variation process at 𝑡 is [𝑊𝑘,𝑊𝑘′]𝑡 = 𝑡𝛿𝑘,𝑘′ . From this infer that the quadratic
co-variation process of the martingale (M𝛿(𝑡))0≤𝑡≤𝑇 at 𝑡 = 𝑇 for 𝛿 ≤ 𝛿′ is equal to

[M𝛿]𝑇 =

𝑀∑︁
𝑘,𝑘′=1

∫ 𝑇

0
𝑋 𝐴𝛿,𝑘 (𝑡)𝑋

𝐴
𝛿,𝑘′ (𝑡)

⊤𝑑 [𝑊𝑘,𝑊𝑘′]𝑡 = I𝛿.

Theorem A.25 now implies Σ−1/2
𝜗

𝜌𝛿M𝛿
𝑑→ N(0, 𝐼𝑝×𝑝). Conclude in (A.20) by 𝜌𝛿I𝛿𝜌𝛿

ℙ→ Σ𝜗 and
Slutsky’s lemma. ■

A.6.2 RKHS computations

The proofs of the RKHS results from Section A.3 are achieved by basic operations on RKHS, in
particular under linear transformation (see, e.g., [38, Chapter 4] or [59, Chapter 12]).
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Recall the stationary process 𝑋 in (A.14) and that 𝐴𝑒 𝑗 = −𝜆 𝑗𝑒 𝑗 with eigenvalues 0 < 𝜆1 ≤
𝜆2 ≤ · · · and an orthonormal basis (𝑒 𝑗) 𝑗≥1 of H. The cylindrical Wiener process can be realised
as𝑊 =

∑
𝑗≥1 𝑒 𝑗𝛽 𝑗 for independent scalar Brownian motions 𝛽 𝑗 and we obtain

𝑋 (𝑡) =
∑︁
𝑗≥1

∫ 𝑡

−∞
𝑒−𝜆 𝑗 (𝑡−𝑡

′ ) d𝛽 𝑗 (𝑡′)𝑒 𝑗 =
∑︁
𝑗≥1

𝑌𝑗 (𝑡)𝑒 𝑗, (A.21)

with independent stationary Ornstein–Uhlenbeck processes 𝑌𝑗 satisfying

d𝑌𝑗 (𝑡) = −𝜆 𝑗𝑌𝑗 (𝑡) d𝑡 + d𝛽 𝑗 (𝑡).

For a sequence (𝜇 𝑗) of non-decreasing, positive real numbers, take H1 to be the closure of H
under the norm

∥𝑧∥2H1 =
∑︁
𝑗≥1

1
𝜇2
𝑗

⟨𝑧, 𝑒 𝑗⟩2H,

such that H is continuously embedded in H1. If for 0 ≤ 𝑡 ≤ 𝑇∫ 𝑡

−∞
∥𝑆(𝑡′)∥2HS(H,H1 ) d𝑡

′ =
∑︁
𝑗≥1

∫ 𝑡

−∞
∥𝑆(𝑡′)𝑒 𝑗∥2H1 d𝑡

′ =
∑︁
𝑗≥1

1
𝜇2
𝑗

∫ 𝑡

−∞
𝑒−2𝜆 𝑗𝑡

′ d𝑡′ < ∞, (A.22)

then we conclude by [15, Theorem 5.2] that the law of 𝑋 induces a Gaussian measure on the
Hilbert space 𝐿2( [0, 𝑇];H1). A first universal choice is given by 𝜇 𝑗 = 𝑗 for all 𝑗 ≥ 1. Moreover,
if 𝐴 is a second order elliptic differential operator, then Weyl’s law [52, Lemma 2.3] says that
the 𝜆 𝑗 are positive real numbers of the order 𝑗2/𝑑 , meaning that the choice 𝜇 𝑗 = 𝜆

𝑠/2
𝑗

is possible
whenever 𝑠 ≥ 0 and 𝑠 + 1 > 𝑑/2. In this case, H1 corresponds to a Sobolev space of negative
order −𝑠 induced by the eigensequence (𝜆 𝑗, 𝑒 𝑗) 𝑗≥1.

Let us introduce some background on the RKHS of a centred Gaussian random variable
𝑍, defined on a separable Hilbert space Z. Its covariance operator 𝐶𝑍 is necessarily positive
self-adjoint and trace-class. This means, by the spectral theorem, there exist strictly positive
eigenvalues (𝜎2

𝑗
) 𝑗≥1 and an associated orthonormal system of eigenvectors (𝑢 𝑗) 𝑗≥1 such that

𝐶𝑍 =
∑

𝑗≥1 𝜎
2
𝑗
(𝑢 𝑗 ⊗ 𝑢 𝑗). Associate with 𝑍 (or rather with the induced centred Gaussian measure)

the so-called kernel or RKHS (𝐻𝑍, ∥ · ∥𝑍), where

𝐻𝑍 = {ℎ ∈ Z : ∥ℎ∥𝑍 < ∞}, ∥ℎ∥2𝑍 =
∑︁
𝑗≥1

⟨𝑢 𝑗, ℎ⟩2Z
𝜎2
𝑗

(A.23)

(see, e.g., [38, Example 4.2] and also [38, Chapters 4.1 and 4.3] and [22, Chapter 3.6] for
other characterizations of the RKHS of a Gaussian measure or process). Alternatively, we have
𝐻𝑍 = 𝐶

1/2
𝑍 Z and ∥ℎ∥𝑍 = ∥𝐶−1/2

𝑍 ℎ∥Z for ℎ ∈ 𝐻𝑍. A useful tool to compute the RKHS is the fact
that the RKHS behaves well under linear transformation. More precisely, if 𝐿 : Z → Z′ is a
bounded linear operator between Hilbert spaces, then the image 𝐿(𝑍) is a centred Gaussian
random variable with RKHS 𝐿(𝐻𝑍) and norm ∥ℎ∥𝐿(𝑍) = inf{∥ 𝑓 ∥𝑍 : 𝑓 ∈ 𝐿−1ℎ} (see Proposition
4.1 in [38] and also Chapter 3.6 in [22]).
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RKHS of an Ornstein–Uhlenbeck process

We start by computing the RKHS (𝐻𝑌𝑗 , ∥·∥𝑌𝑗) of the processes 𝑌𝑗. We show that the RKHS is equal
to the set 𝐻 from Theorem A.5, and therefore independent of 𝑗, while the corresponding norm
depends on 𝜆 𝑗.
Lemma A.20. For every 𝑗 ≥ 1 we have 𝐻𝑌𝑗 = 𝐻 and

∥ℎ∥2𝑌𝑗 = 𝜆2𝑗 ∥ℎ∥2𝐿2 ( [0,𝑇 ] ) + 𝜆 𝑗 (ℎ
2(𝑇) + ℎ2(0)) + ∥ℎ′∥2

𝐿2 ( [0,𝑇 ] ) . (A.24)

Proof. By Example 4.4 in [38], a scalar Brownian motion (𝛽(𝑡))0≤𝑡≤𝑇 starting in zero has RKHS
𝐻𝛽 = {ℎ : ℎ(0) = 0, ℎ absolutely continuous, ℎ, ℎ′ ∈ 𝐿2( [0, 𝑇])} with norm

∥ℎ∥2𝛽 =
∫ 𝑇

0
(ℎ′(𝑡))2 d𝑡.

Moreover, the Brownian motion (𝛽(𝑡))0≤𝑡≤𝑇 with 𝛽(𝑡) = 𝑋0 + 𝛽(𝑡), where 𝑋0 is a standard
Gaussian random variable independent of (𝛽(𝑡))0≤𝑡≤𝑇 has RKHS

𝐻𝛽 = {𝛼 + ℎ : 𝛼 ∈ ℝ, ℎ ∈ 𝐻𝛽} = 𝐻, ∥ℎ∥2
𝛽
=

∫ 𝑇

0
(ℎ′(𝑡))2 d𝑡 + ℎ2(0),

as can be seen from Proposition 4.1 in [38] or Example 12.28 in [59]. To compute the RKHS
of 𝑌𝑗 we now proceed similarly as in Example 4.8 in [38]. Define the bounded linear map
𝐿 : 𝐿2( [0, 𝑒2𝜆 𝑗𝑇 − 1]) → 𝐿2( [0, 𝑇]), (𝐿 𝑓 ) (𝑡) = (2𝜆 𝑗)−1/2𝑒−𝜆 𝑗𝑡 𝑓 (𝑒2𝜆 𝑗𝑡 − 1). Then we have 𝐿𝛽 = 𝑌𝑗

in distribution and 𝐿 is bijective with inverse 𝐿−1ℎ(𝑠) =
√︁
2𝜆 𝑗 (𝑠 + 1)ℎ((2𝜆 𝑗)−1 log(𝑠 + 1)) for

0 ≤ 𝑠 ≤ 𝑒2𝜆 𝑗𝑇 − 1. By Proposition 4.1 in [38] (see also the discussion after (A.23)), we conclude
that 𝐻𝑌𝑗 = 𝐿(𝐻𝛽) = 𝐿(𝐻) = 𝐻 with

∥ℎ∥2𝑌𝑗 = ∥𝐿−1ℎ∥2
𝛽
=

∫ 𝑒
2𝜆 𝑗𝑇−1

0

( d
d𝑠

√︁
2𝜆 𝑗 (𝑠 + 1)ℎ

( 1
2𝜆 𝑗

log(𝑠 + 1)
))2

d𝑠 + 2𝜆 𝑗ℎ2(0)

=

∫ 𝑇

0
(𝜆 𝑗ℎ(𝑡) + ℎ′(𝑡))2 d𝑡 + 2𝜆 𝑗ℎ2(0)

= 𝜆2𝑗

∫ 𝑇

0
ℎ2(𝑡) d𝑡 + 𝜆 𝑗 (ℎ2(𝑇) + ℎ2(0)) +

∫ 𝑇

0
(ℎ′(𝑡))2 d𝑡. ■

RKHS of the SPDE

We compute next the RKHS of the process 𝑋 . Let us start with the following series representation,
which is independent of H1.
Lemma A.21. The RKHS (𝐻𝑋 , ∥ · ∥𝑋 ) of the process 𝑋 in (A.14) satisfies

𝐻𝑋 =

{
ℎ =

∑︁
𝑗≥1

ℎ 𝑗𝑒 𝑗 : ℎ 𝑗 ∈ 𝐻, ∥ℎ∥𝑋 < ∞
}

and ∥ℎ∥2𝑋 =
∑︁
𝑗≥1

∥ℎ 𝑗∥2𝑌𝑗 .

Note that ℎ ∈ 𝐿2( [0, 𝑇];H) if and only if ℎ =
∑

𝑗≥1 ℎ 𝑗𝑒 𝑗 with ℎ 𝑗 ∈ 𝐿2( [0, 𝑇]) and where∑
𝑗≥1 ∥ℎ 𝑗∥2𝐿2 ( [0,𝑇 ] ) < ∞. In this case we have ℎ 𝑗 = ⟨ℎ, 𝑒 𝑗⟩ for all 𝑗 ≥ 1. Moreover, since the 𝜆 𝑗

are bounded from below by a positive constant, we conclude that 𝐻𝑋 is indeed a subspace of
𝐿2( [0, 𝑇];H).
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Proof of Lemma A.21. Choose 𝜇 𝑗 = 𝑗 for all 𝑗 ≥ 1. Then 𝑋 =
∑

𝑗≥1 𝑗
−1𝑌𝑗 �̃� 𝑗 with orthonormal

basis �̃� 𝑗 = 𝑗𝑒 𝑗 of H1 and the covariance operator 𝐶𝑋 of 𝑋 is given by

𝐶𝑋 : 𝐿2( [0, 𝑇];H1) → 𝐿2( [0, 𝑇];H1),
∑︁
𝑗≥1

𝑓 𝑗 �̃� 𝑗 ↦→
∑︁
𝑗≥1

𝑗−2(𝐶𝑌𝑗 𝑓 𝑗) �̃� 𝑗.

with 𝐶𝑌𝑗 : 𝐿2( [0, 𝑇]) → 𝐿2( [0, 𝑇]) being the covariance operator of 𝑌𝑗. Hence, using the
definition of the RKHS given after (A.23), the RKHS of 𝑋 consists of all elements of the form

ℎ = 𝐶
1/2
𝑋 𝑓 =

∑︁
𝑗≥1

𝑗−1(𝐶1/2
𝑌𝑗

𝑓 𝑗) �̃� 𝑗 =
∑︁
𝑗≥1

(𝐶1/2
𝑌𝑗

𝑓 𝑗)𝑒 𝑗

with 𝑓 =
∑

𝑗≥1 𝑓 𝑗 �̃� 𝑗 ∈ 𝐿2( [0, 𝑇];H1) and we have

∥ℎ∥2𝑋 = ∥𝐶−1/2
𝑋 ℎ∥2

𝐿2 ( [0,𝑇 ];H1 ) = ∥ 𝑓 ∥2
𝐿2 ( [0,𝑇 ];H1 ) =

∫ 𝑇

0
∥ 𝑓 (𝑡)∥2H1 d𝑡 =

∑︁
𝑗≥1

∥ 𝑓 𝑗∥2𝐿2 ( [0,𝑇 ] ) < ∞.

Using Lemma A.20, we can write ℎ =
∑

𝑗≥1 ℎ 𝑗𝑒 𝑗 with ℎ 𝑗 = 𝐶
1/2
𝑌𝑗

𝑓 𝑗 ∈ 𝐻 and

∥ℎ 𝑗∥2𝑌𝑗 = ∥𝐶−1/2
𝑌𝑗

ℎ 𝑗∥2𝐿2 ( [0,𝑇 ] ) = ∥ 𝑓 𝑗∥2𝐿2 ( [0,𝑇 ] ) .

Inserting this above, the claim follows. ■

Proof of Theorem A.4. We first show

𝐻𝑋 =

{
ℎ =

∑︁
𝑗≥1

ℎ 𝑗𝑒 𝑗 : ℎ 𝑗 ∈ 𝐻,
∑︁
𝑗≥1

(𝜆2𝑗 ∥ℎ 𝑗∥2𝐿2 ( [0,𝑇 ] ) + ∥ℎ′𝑗∥2𝐿2 ( [0,𝑇 ] ) ) < ∞
}
, (A.25)

meaning that the middle term in the squared RKHS norm ∥ · ∥2𝑌𝑗 can be dropped. By the calculus
rules for Sobolev functions (cf. [20, Theorem 4.4]), we have

∀𝑠, 𝑢 ∈ [0, 𝑇] : ℎ2𝑗 (𝑠) − ℎ2𝑗 (𝑢) = 2
∫ 𝑠

𝑢

ℎ′𝑗 (𝑡)ℎ 𝑗 (𝑡) d𝑡.

Fix 𝑗 ≥ 1 for the moment and choose 𝑡0 ∈ [0, 𝑇] such that ℎ2
𝑗
(𝑡0) = 𝑇−1∥ℎ 𝑗∥2𝐿2 ( [0,𝑇 ] ) . Then

𝜆 𝑗 (ℎ2𝑗 (𝑇) + ℎ2𝑗 (0)) = 2
( ∫ 0

𝑡0
+
∫ 𝑇

𝑡0

)
ℎ′𝑗 (𝑡)ℎ 𝑗 (𝑡) d𝑡 + 2𝜆 𝑗∥ℎ 𝑗∥2𝐿2 ( [0,𝑇 ] )

≤ 2𝜆 𝑗∥ℎ′𝑗∥𝐿2 ( [0,𝑇 ] ) ∥ℎ 𝑗∥𝐿2 ( [0,𝑇 ] ) + 2𝜆 𝑗∥ℎ 𝑗∥2𝐿2 ( [0,𝑇 ] )
≤ 2𝜆2𝑗 ∥ℎ 𝑗∥2𝐿2 ( [0,𝑇 ] ) + ∥ℎ′𝑗∥2𝐿2 ( [0,𝑇 ] ) + ∥ℎ 𝑗∥2𝐿2 ( [0,𝑇 ] ) ,

where we also used the Cauchy–Schwarz inequality, the fact that 𝑇 ≥ 1, and the inequality
2𝑎𝑏 ≤ 𝑎2 + 𝑏2, 𝑎, 𝑏 ∈ ℝ. Summing over 𝑗 ≥ 1, we get∑︁

𝑗≥1
𝜆 𝑗 (ℎ2𝑗 (𝑇) + ℎ2𝑗 (0)) ≤

∑︁
𝑗≥1

(2𝜆2𝑗 ∥ℎ 𝑗∥2𝐿2 ( [0,𝑇 ] ) + ∥ℎ′𝑗∥2𝐿2 ( [0,𝑇 ] ) + ∥ℎ 𝑗∥2𝐿2 ( [0,𝑇 ] ) ), (A.26)

from which (A.25) follows, taking into account the discussion after Lemma A.21.
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Let us now write

𝐻𝑋 = {ℎ ∈ 𝐿2( [0, 𝑇];H) : 𝐴ℎ, ℎ′ ∈ 𝐿2( [0, 𝑇];H)}

and

∥ℎ∥2
𝐻𝑋

= ∥𝐴ℎ∥2
𝐿2 ( [0,𝑇 ];H) + ∥ℎ′∥2

𝐿2 ( [0,𝑇 ];H) + ⟨−𝐴ℎ(0), ℎ(0)⟩H + ⟨−𝐴ℎ(𝑇), ℎ(𝑇)⟩H.

By the RKHS computations in Lemma A.21 it remains to check that 𝐻𝑋 = 𝐻𝑋 and ∥ℎ∥𝑋 = ∥ℎ∥𝐻𝑋
for all ℎ ∈ 𝐻𝑋 . First, let ℎ =

∑
𝑗≥1 ℎ 𝑗𝑒 𝑗 ∈ 𝐻𝑋 . Then ℎ is absolutely continuous with

ℎ′ =
∑︁
𝑗≥1

ℎ′𝑗𝑒 𝑗 ∈ 𝐿2( [0, 𝑇];H), 𝐴ℎ = −
∑︁
𝑗≥1

𝜆 𝑗ℎ 𝑗𝑒 𝑗 ∈ 𝐿2( [0, 𝑇];H). (A.27)

Hence, ℎ ∈ 𝐻𝑋 and therefore 𝐻𝑋 ⊂ 𝐻𝑋 . To see the second claim in (A.27), set ℎ(𝑚) =
∑𝑚

𝑗=1 ℎ 𝑗𝑒 𝑗
and 𝑔 (𝑚) = −∑𝑚

𝑗=1 𝜆 𝑗ℎ 𝑗𝑒 𝑗 for 𝑚 ≥ 1. Then, ℎ(𝑚) (𝑡) and 𝑔 (𝑚) (𝑡) are in H for all 𝑡 ∈ [0, 𝑇] and
we have 𝐴ℎ(𝑚) = 𝑔 (𝑚) because (𝜆 𝑗, 𝑒 𝑗) 𝑗≥1 is an eigensequence of −𝐴. Moreover ℎ(𝑚) (𝑡) → ℎ(𝑡)
and 𝐴ℎ(𝑚) (𝑡) = 𝑔 (𝑚) (𝑡) → 𝑔(𝑡) = ∑

𝑗≥1 𝜆 𝑗ℎ 𝑗 (𝑡)𝑒 𝑗 for a.e. 𝑡. Since 𝐴 is closed, we conclude that
𝐴ℎ(𝑡) = 𝑔(𝑡) for a.e. 𝑡.

Next, let ℎ ∈ 𝐻𝑋 . Then we can write ℎ =
∑

𝑗≥1 ℎ 𝑗𝑒 𝑗 with ℎ 𝑗 = ⟨ℎ, 𝑒 𝑗⟩ ∈ 𝐿2( [0, 𝑇]). Using also
[40, Proposition A.22], the ℎ 𝑗 are absolutely continuous with ℎ′

𝑗
= ⟨ℎ, 𝑒 𝑗⟩′ = ⟨ℎ′, 𝑒 𝑗⟩ ∈ 𝐿2( [0, 𝑇]).

Hence, ℎ 𝑗 ∈ 𝐻 for all 𝑗 ≥ 1. Moreover, the relations in (A.27) continue to hold, as can be seen
from the identities ⟨𝐴ℎ(𝑡), 𝑒 𝑗⟩ = 𝜆 𝑗ℎ 𝑗 (𝑡) and ⟨ℎ′, 𝑒 𝑗⟩ = ℎ′

𝑗
, and we have

∥𝐴ℎ∥2
𝐿2 ( [0,𝑇 ];H) =

∑︁
𝑗≥1

𝜆2𝑗 ∥ℎ 𝑗∥2𝐿2 ( [0,𝑇 ] ) , ∥ℎ′∥2
𝐿2 ( [0,𝑇 ];H) =

∑︁
𝑗≥1

∥ℎ′𝑗∥2𝐿2 ( [0,𝑇 ] ) . (A.28)

Hence, ℎ ∈ 𝐻𝑋 and therefore also 𝐻𝑋 ⊂ 𝐻𝑋 . We conclude that 𝐻𝑋 = 𝐻𝑋 and that the norms
coincide, where the latter follows from (A.28) and (A.27). Moreover, inserting

⟨−𝐴ℎ(0), ℎ(0)⟩H + ⟨−𝐴ℎ(𝑇), ℎ(𝑇)⟩H
≤ 2∥𝐴ℎ∥2

𝐿2 ( [0,𝑇 ];H) + ∥ℎ′∥2
𝐿2 ( [0,𝑇 ];H) + ∥ℎ∥2

𝐿2 ( [0,𝑇 ];H) ,

the upper RKHS norm bound follows, as can be seen from (A.26), (A.27) and (A.28). ■

RKHS of multiple measurements

In this section we deduce Theorem A.5 from Theorem A.4. This requires the 𝐾1, . . . , 𝐾𝑀 to
lie in the dual space H′

1. When 𝐴 = Δ this is a Sobolev space of order 𝑠 > 𝑑/2 − 1 (see
the beginning of Section A.6.2). In Section A.7.7, we give a second more technical proof
based on an approximation argument, which provides the claim under the weaker assumption
𝐾1, . . . , 𝐾𝑀 ∈ D(𝐴).

First proof of Theorem A.5. For a non-decreasing sequence (𝜇 𝑗) of positive real numbers, take

𝑉𝜇 = { 𝑓 ∈ H : ∥ 𝑓 ∥2𝑉𝜇 =
∑︁
𝑗≥1

𝜇2𝑗 ⟨ 𝑓 , 𝑒 𝑗⟩2H < ∞},
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and take H1 = 𝑉 ′
𝜇 to be the closure of H under the norm

∥𝑧∥2𝑉′
𝜇
=

∑︁
𝑗≥1

1
𝜇2
𝑗

⟨𝑧, 𝑒 𝑗⟩2H.

Then, 𝑉𝜇 is continuously embedded in H and (𝑉𝜇,H, 𝑉 ′
𝜇) forms a Gelfand triple, i.e., H is

identified with its dual and thus H is also continuously embedded in 𝑉 ′
𝜇. Moreover, we can

extend ⟨ 𝑓 , 𝑔⟩ = ⟨ 𝑓 , 𝑔⟩H to pairs 𝑓 ∈ 𝑉𝜇 and 𝑔 ∈ 𝑉 ′
𝜇 andwe have the (generalised) Cauchy–Schwarz

inequality

|⟨ 𝑓 , 𝑔⟩| ≤ ∥ 𝑓 ∥𝑉𝜇 ∥𝑔∥𝑉′
𝜇
. (A.29)

We choose the sequence (𝜇 𝑗) such that (A.22) holds, meaning that 𝑋 can be considered as a
Gaussian random variable in 𝐿2( [0, 𝑇];𝑉 ′

𝜇). For 𝐾1, . . . , 𝐾𝑀 ∈ 𝑉𝜇, consider the linear map

𝐿 : 𝐿2( [0, 𝑇];𝑉 ′
𝜇) → 𝐿2( [0, 𝑇])𝑀 , 𝐿 𝑓 (𝑡) = (⟨𝐾𝑘, 𝑓 (𝑡)⟩)𝑀𝑘=1, 𝑡 ∈ [0, 𝑇].

Then, 𝐿𝑋 = 𝑋𝐾 in distribution. Using (A.29), it is easy to see that 𝐿 is a bounded operator with
norm bounded by (∑𝑀

𝑘=1∥𝐾𝑘∥2𝑉𝜇 )
1/2:

𝑀∑︁
𝑘=1

∫ 𝑇

0
⟨𝐾𝑘, 𝑓 (𝑡)⟩2 d𝑡 ≤

( 𝑀∑︁
𝑘=1

∥𝐾𝑘∥2𝑉𝜇
)
∥ 𝑓 ∥2

𝐿2 ( [0,𝑇 ];𝑉′
𝜇 )
.

Next, we show that 𝐿(𝐻𝑋 ) = 𝐻𝑀 . First, for (ℎ𝑘)𝑀𝑘=1 ∈ 𝐻𝑀 , the function

𝑓 =

𝑀∑︁
𝑘,𝑙=1

𝐺−1
𝑘,𝑙 𝐾𝑘ℎ𝑙 ∈ 𝐻𝑋 satisfies 𝐿 𝑓 = (ℎ𝑘)𝑀𝑘=1. (A.30)

Hence 𝐻𝑀 ⊂ 𝐿(𝐻𝑋 ). To see the reverse inclusion, let 𝑓 ∈ 𝐻𝑋 . Set (ℎ𝑘)𝑀𝑘=1 = 𝐿 𝑓 such that
ℎ𝑘 (𝑡) = ⟨𝐾𝑘, 𝑓 (𝑡)⟩. By the definition of 𝐻𝑋 and properties of the Bochner integral (see, e.g., [40,
Proposition A.22]), the ℎ𝑘 are absolutely continuous with derivatives ℎ′

𝑘
(𝑡) = ⟨𝐾𝑘, 𝑓 ′(𝑡)⟩, and we

have ∫ 𝑇

0
(ℎ′𝑘 (𝑡))

2 d𝑡 ≤ ∥𝐾𝑘∥2H
∫ 𝑇

0
∥ 𝑓 ′(𝑡)∥2H d𝑡 = ∥𝐾𝑘∥2H∥ 𝑓 ′∥2

𝐿2 ( [0,𝑇 ];H) < ∞.

We get ℎ𝑘 ∈ 𝐻 for all 𝑘 = 1, . . . , 𝑀. Hence, 𝐿(𝐻𝑋 ) ⊂ 𝐻𝑀 and therefore 𝐿(𝐻𝑋 ) = 𝐻𝑀 . It
remains to prove the bound for the norm. Using (A.30), the behavior of the RKHS under linear
transformation (see [38, Proposition 4.1]) and Theorem A.4, we have

∥(ℎ𝑘)𝑀𝑘=1∥
2
𝑋𝐾

≤ ∥
𝑀∑︁

𝑘,𝑙=1
𝐺−1
𝑘,𝑙 𝐾𝑘ℎ𝑙∥

2
𝑋 ≤ 3∥

𝑀∑︁
𝑘,𝑙=1

𝐺−1
𝑘,𝑙 𝐴𝐾𝑘ℎ𝑙∥

2
𝐿2 ( [0,𝑇 ];H)

+ ∥
𝑀∑︁

𝑘,𝑙=1
𝐺−1
𝑘,𝑙 𝐾𝑘ℎ𝑙∥

2
𝐿2 ( [0,𝑇 ];H) + 2∥

𝑀∑︁
𝑘,𝑙=1

𝐺−1
𝑘,𝑙 𝐾𝑘ℎ

′
𝑙 ∥

2
𝐿2 ( [0,𝑇 ];H) .
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Using the definition of 𝐺𝐴, the last display becomes

∥(ℎ𝑘)𝑀𝑘=1∥
2
𝑋𝐾

≤ 3
∫ 𝑇

0

𝑀∑︁
𝑘,𝑙=1

(𝐺−1𝐺𝐴𝐺
−1)𝑘𝑙ℎ𝑘 (𝑡)ℎ𝑙 (𝑡) d𝑡 +

∫ 𝑇

0

𝑀∑︁
𝑘,𝑙=1

(𝐺−1)𝑘𝑙ℎ𝑘 (𝑡)ℎ𝑙 (𝑡) d𝑡

+ 2
∫ 𝑇

0

𝑀∑︁
𝑘,𝑙=1

(𝐺−1)𝑘𝑙ℎ′𝑘 (𝑡)ℎ
′
𝑙 (𝑡) d𝑡, (A.31)

and the claim follows from standard results for the operator norm of symmetric matrices. ■

Proof of Corollary A.6. Since the Laplace operator Δ is negative and self-adjoint, the stochastic
convolution (A.14) is just the weak solution in (A.4) andH = 𝐿2(Λ). If (𝐾𝑘)𝑀𝑘=1 = (𝐾𝛿,𝑥𝑘)𝑀𝑘=1 with
∥𝐾∥𝐿2 (ℝ𝑑 ) = 1, then 𝐾1, . . . , 𝐾𝑀 have disjoint supports and satisfy the assumptions of Theorem
A.5 with 𝐺 = 𝐼𝑀×𝑀 and 𝐺Δ being a diagonal matrix with (𝐺Δ)𝑘𝑘 = ∥Δ𝐾𝛿,𝑥𝑘 ∥2𝐿2 (ℝ𝑑 ) . By construction
and the Cauchy–Schwarz inequality, we have ∥𝐾𝛿,𝑥𝑘 ∥ = 1 and ∥Δ𝐾𝛿,𝑥𝑘 ∥ ≤ 𝛿−2∥Δ𝐾∥𝐿2 (ℝ𝑑 ) . From
Theorem A.5, we obtain the RKHS 𝐻𝑋𝐾 = 𝐻𝑀 of 𝑋𝐾 with the claimed upper bound on its norm,
where we also used that 𝛿2 ≤ ∥Δ𝐾∥𝐿2 (ℝ𝑑 ) by assumption. ■

A.6.3 Proof of the lower bounds

In this section, we give the main steps of the proof of Theorem A.7, which follows a Gaussian route.
First, we combine a classical Gaussian lower bound (based on two hypotheses) with arguments
from the Feldman–Hájek theorem to formulate a lower bound scheme that is expressed in terms
of covariance operators and RKHS norms. Second, we invoke the RKHS computations from
Section A.3 to further reduce our analysis to 𝐿2-distances of the involved (cross-)covariance
kernels and their first and second derivatives. Finally, we use semigroup perturbation arguments
to compute these distances in the setting of Assumption L. The proofs of three key lemmas are
deferred to the appendix.

Gaussian minimax lower bounds

Let (ℙ𝜗)𝜗∈Θ be a family of probability measures defined on the same measurable space with
a parameter set Θ ⊂ ℝ𝑝. For 𝜗0, 𝜗1 ∈ Θ, the (squared) Hellinger distance between ℙ𝜗0 and
ℙ𝜗1 is defined by 𝐻2(ℙ𝜗0 ,ℙ𝜗1) =

∫
(
√︁
ℙ𝜗0 −

√︁
ℙ𝜗1)2 (see, e.g. [56, Definition 2.3]). Moreover, if

𝜗0, 𝜗1 ∈ Θ satisfy

𝐻2(ℙ𝜗0 ,ℙ𝜗1) ≤ 1, (A.32)

then we have the lower bound

inf̂
𝜗

max
𝜗∈{𝜗0,𝜗1}

ℙ𝜗

(
|�̂� − 𝜗| ≥ |𝜗0 − 𝜗1 |

2
)
≥ 1

4
2 −

√
3

4 =: 𝑐3, (A.33)

where the infimum is taken over all ℝ𝑝-valued estimators �̂� and | · | denotes the Euclidean norm.
For a proof of this lower bound, see [56, Theorem 2.2(ii)].

Next, let ℙ𝜗0 and ℙ𝜗1 be two Gaussian measures defined on a separable Hilbert space Z

with expectation zero and positive self-adjoint trace-class covariance operators 𝐶𝜗0 and 𝐶𝜗1 ,
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respectively. By the spectral theorem, there exist strictly positive eigenvalues (𝜎2
𝑗
) 𝑗≥1 and

an associated orthonormal system of eigenvectors (𝑢 𝑗) 𝑗≥1 such that 𝐶𝜗0 =
∑

𝑗≥1 𝜎
2
𝑗
(𝑢 𝑗 ⊗ 𝑢 𝑗).

Given the Gaussian measure ℙ𝜗0 , we can associate the RKHS (𝐻𝜗0 , ∥ · ∥𝐻𝜗0 ) of ℙ𝜗0 given by
𝐻𝜗0 = {ℎ ∈ Z : ∥ℎ∥𝐻

𝜗0 < ∞} and ∥ℎ∥2𝐻
𝜗0

=
∑

𝑗≥1 𝜎
−2
𝑗
⟨𝑢 𝑗, ℎ⟩2Z (cf. the beginning of Section A.6.2).

Combining (A.32) with the RKHS machinery, we get the following lower bound.
Lemma A.22. In the above Gaussian setting, suppose that (𝑢 𝑗) 𝑗≥1 is an orthonormal basis of Z and
that ∑︁

𝑗≥1
𝜎−2𝑗 ∥(𝐶𝜗1 − 𝐶𝜗0)𝑢 𝑗∥2𝐻

𝜗0
≤ 1/2. (A.34)

Then the lower bound in (A.33) holds, that is

inf̂
𝜗

max
𝜗∈{𝜗0,𝜗1}

ℙ𝜗

(
|�̂� − 𝜗| ≥ |𝜗0 − 𝜗1 |

2
)
≥ 𝑐3.

Lemma A.22 is a consequence of the proof of the Feldman–Hájek theorem [15, Theorem
2.25] in combination with basic properties of the Hellinger distance and the minimax risk. A
proof is given in Section A.7.3.

Proof of Theorem A.7

Our goal is to apply Lemma A.22 and Corollary A.6 to the Gaussian process 𝑋𝛿 under Assumption
L. We assume without loss of generality that ∥𝐾∥𝐿2 (ℝ𝑑 ) = 1. We choose 𝜗0 = (1, 0, 0) and
𝜗1 ∈ Θ1 ∪ Θ2 ∪ Θ3, meaning that the null model is 𝐴𝜗0 = Δ and the alternatives are 𝐴𝜗1 =

𝜗11Δ + 𝜗12(∇ · 𝑏) + 𝜗13 for 𝜗1 ∈ ℝ3, where 𝜗1 lies in one of the parameter classes Θ1, Θ2 or
Θ3. For 𝜗 ∈ {𝜗0, 𝜗1}, let ℙ𝜗,𝛿 be the law of 𝑋𝛿 on Z = 𝐿2( [0, 𝑇])𝑀 , let 𝐶𝜗,𝛿 be its covariance
operator, and let (𝐻𝜗,𝛿, ∥·∥𝐻𝜗,𝛿) be the associated RKHS. For ( 𝑓𝑘)𝑀𝑘=1 ∈ 𝐿2( [0, 𝑇])𝑀 , we have
𝐶𝜗,𝛿( 𝑓𝑘)𝑀𝑘=1 = (∑𝑀

𝑙=1 𝐶𝜗,𝛿,𝑘,𝑙 𝑓𝑙)𝑀𝑘=1 with (cross-)covariance operators defined by

𝐶𝜗,𝛿,𝑘,𝑙 : 𝐿2( [0, 𝑇]) → 𝐿2( [0, 𝑇]),
𝐶𝜗,𝛿,𝑘,𝑙 𝑓𝑙 (𝑡) = 𝔼𝜗 [⟨𝑋𝛿,𝑙, 𝑓𝑙⟩𝐿2 ( [0,𝑇 ] )𝑋𝛿,𝑘 (𝑡)], 0 ≤ 𝑡 ≤ 𝑇

(see also Section A.7.4 for more details). By stationarity of 𝑋𝛿 under Assumption L

𝐶𝜗,𝛿,𝑘,𝑙 𝑓𝑙 (𝑡) =
∫ 𝑡

0
𝑐𝜗,𝛿,𝑘,𝑙 (𝑡 − 𝑡′) 𝑓𝑙 (𝑡′) d𝑡′ +

∫ 𝑇

𝑡

𝑐𝜗,𝛿,𝑙,𝑘 (𝑡′ − 𝑡) 𝑓𝑙 (𝑡′) d𝑡′, 0 ≤ 𝑡 ≤ 𝑇

with covariance kernels 𝑐𝜗,𝛿,𝑘,𝑙 (𝑡) = 𝔼𝜗 [𝑋𝛿,𝑘 (𝑡)𝑋𝛿,𝑙 (0)], 0 ≤ 𝑡 ≤ 𝑇 . Following the notation
of Section A.6.3, let (𝜎2

𝑗
) 𝑗≥1 be the strictly positive eigenvalues of 𝐶𝜗0,𝛿 and let (𝑢 𝑗) 𝑗≥1 with

𝑢 𝑗 = (𝑢 𝑗,𝑘)𝑚𝑘=1 ∈ 𝐿2( [0, 𝑇])𝑀 be a corresponding orthonormal system of eigenvectors. By Corollary
A.6, we have 𝐻𝜗0,𝛿 = 𝐻𝑀 as sets. Since 𝐻𝑀 is dense in 𝐿2( [0, 𝑇])𝑀 , (𝑢 𝑗) 𝑗≥1 forms an orthonormal
basis of 𝐿2( [0, 𝑇])𝑀 . This means that the first assumption of Lemma A.22 is satisfied. To verify
the second assumption in (A.34), we will use the bound for the RKHS norm in Corollary A.6.
Lemma A.23. In the above setting, we have

∞∑︁
𝑗=1

𝜎−2𝑗 ∥(𝐶𝜗0,𝛿 − 𝐶𝜗1,𝛿)𝑢 𝑗∥2𝐻
𝜗0 ,𝛿
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≤ 𝑐𝑇

𝑀∑︁
𝑘,𝑙=1

( ∥Δ𝐾∥4
𝐿2 (ℝ𝑑 )

𝛿8
∥𝑐𝜗0,𝛿,𝑘,𝑙 − 𝑐𝜗1,𝛿,𝑘,𝑙∥2𝐿2 ( [0,𝑇 ] ) + ∥𝑐′′

𝜗0,𝛿,𝑘,𝑙 − 𝑐′′
𝜗1,𝛿,𝑘,𝑙∥

2
𝐿2 ( [0,𝑇 ] )

)
for all 𝛿2 ≤ ∥Δ𝐾∥𝐿2 (ℝ𝑑 ) and all 𝑇 ≥ 1, where 𝑐 > 0 is an absolute constant.

The proof of Lemma A.23 can be found in Section A.7.4. Moreover, combining Lemma
A.17(ii) with perturbation arguments for semigroups, we prove the following upper bound in
Section A.7.5.

Lemma A.24. In the above setting let 𝜗1 = (𝜗1, 𝜗2, 𝜗3) ∈ Θ1 ∪ Θ2 ∪ Θ3 with 𝑀 ≥ 1. Then there
exists a constant 𝑐 > 0, depending only on 𝐾 such that

𝑀∑︁
𝑘,𝑙=1

(
𝛿−8∥𝑐𝜗0,𝛿,𝑘,𝑙 − 𝑐𝜗1,𝛿,𝑘,𝑙∥2𝐿2 ( [0,𝑇 ] ) + ∥𝑐′′

𝜗0,𝛿,𝑘,𝑙 − 𝑐′′
𝜗1,𝛿,𝑘,𝑙∥

2
𝐿2 ( [0,𝑇 ] )

)
≤ 𝑐𝑀 (𝛿−2(1 − 𝜗1)2 + 𝜗22 + 𝛿2𝜗23).

Choosing consecutively

𝜗1 = (𝜗1, 0, 0) ∈ Θ1, 𝜗1 = 1 + 𝑐2
𝛿

√
𝑇𝑀

,

𝜗1 = (1, 𝜗2, 0) ∈ Θ2, 𝜗2 = 𝑐2
1

√
𝑇𝑀

,

𝜗1 = (1, 0, 𝜗3) ∈ Θ3, 𝜗3 = 𝑐2 min
(
1, 𝛿−1

√
𝑇𝑀

)
,

Theorem A.7 follow from Lemma A.22 in combination with Lemmas A.23 and A.24. ■

A.7 Additional proofs

A.7.1 Additional proofs from Section A.2

The proof of invertibility of the observed Fisher information is classical when the solution process
is a multivariate Ornstein–Uhlenbeck process [33], but requires a different proof for the Itô
processes 𝑋 𝐴

𝛿,𝑘
.

Proof of Lemma A.1. It is enough to show that the first summand with 𝑘 = 1 in the definition of
the observed Fisher information is ℙ-almost surely positive definite. By a density argument we
can assume without loss of generality that 𝐾 ∈ 𝐶∞

𝑐 (ℝ𝑑). Define a symmetric matrix 𝛽 ∈ ℝ𝑝×𝑝,
𝛽𝑖 𝑗 = ⟨𝐴∗

𝑖
𝐾𝛿,𝑥1 , 𝐴

∗
𝑗
𝐾𝛿,𝑥1⟩ and suppose for 𝜆 ∈ ℝ𝑝 that

0 =

𝑝∑︁
𝑖, 𝑗=1

𝜆 𝑖𝜆 𝑗𝛽𝑖 𝑗 = ∥
𝑝∑︁
𝑖=1

𝜆 𝑖𝐴
∗
𝑖 𝐾𝛿,𝑥1 ∥2.

By linear independence this yields 𝜆 = 0, and so 𝛽 is invertible. It follows that

d𝑋 𝐴𝛿,1(𝑡) = (⟨𝑋 (𝑡), 𝐴∗𝜗𝐴
∗
𝑖 𝐾𝛿,𝑥1⟩)

𝑝

𝑖=1 d𝑡 + 𝛽1/2 d�̄� (𝑡)
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with a 𝑝-dimensional Brownian motion �̄� (𝑡) = 𝛽−1/2(⟨𝑊 (𝑡), 𝐴∗
𝑖
𝐾𝛿,𝑥1⟩)

𝑝

𝑖=1. Then 𝑌 = 𝛽−1/2𝑋 𝐴
𝛿,1

satisfies d𝑌 (𝑡) = 𝛼(𝑡) d𝑡 + d�̄� (𝑡) for some 𝑝-dimensional Gaussian process 𝛼. Invertibility
of

∫𝑇
0 𝑋

𝐴
𝛿,1(𝑡)𝑋

𝐴
𝛿,1(𝑡)

⊤ d𝑡 is equivalent to the invertibility of
∫𝑇
0 𝑌 (𝑡)𝑌 (𝑡)

⊤ d𝑡. Applying first the
innovation theorem, cf. [39, Theorem 7.18], componentwise and then the Girsanov theo-
rem for multivariate diffusions, this is further equivalent to the ℙ-almost sure invertibility of∫𝑇
0 �̄� (𝑡)�̄� (𝑡)⊤ d𝑡. The result is now obtained from noting that the determinant of the 𝑝 × 𝑝

dimensional random matrix (�̄� (𝑡1), . . . , �̄� (𝑡𝑝)) is ℙ-almost surely not zero for any pairwise
different time points 𝑡1, . . . , 𝑡𝑝, because �̄� has independent increments. ■

Proof of Lemma A.2. It is enough to prove the claim for 𝐴∗
𝑖
∈ {1, 𝐷 𝑗, 𝐷 𝑗𝑘} with 𝑛𝑖 ∈ {0, 1, 2}. Let

𝑢𝑖 = 𝛿−𝑛𝑖 (𝑣𝑖)𝛿,𝑥 for 𝑣𝑖 = 𝐴∗
𝑖
𝐾. Suppose first 𝑋0 ∈ 𝐿𝑝(Λ). The scaling in Lemma A.13, the Hölder

inequality and Lemma A.16 applied to 𝛿 = 1, 𝑠 = 0, yield for 1/𝑝 + 1/𝑞 = 1
sup
𝑥∈J

⟨𝑋0, 𝑆∗𝜗(𝑡)𝑢𝑖⟩
2 ≲ ∥𝑆𝜗(𝑡)𝑋0∥2𝐿𝑝 (Λ) sup

𝑥∈J
∥𝑢𝑖∥2𝐿𝑞 (Λ) ≲ 𝛿𝑑 (1−2/𝑝)−2𝑛𝑖 ∥𝑋0∥2𝐿𝑝 (Λ) ,

The same Lemmas applied to 𝑠 = 𝑛𝑖 also show for 𝜀, 𝜀′ > 0

sup
𝑥∈J

∫ 𝑇

𝜀′
⟨𝑋0, 𝑆∗𝜗(𝑡)𝑢𝑖⟩

2 d𝑡 ≤ ∥𝑋0∥2 sup
𝑥∈J

∫ 𝑇

𝜀′
∥𝑆∗𝜗(𝑡)𝑢𝑖∥

2 d𝑡

≲ 𝛿−2𝑛𝑖 sup
𝑥∈J

∫ 𝑇

𝜀′
∥𝑆∗𝜗,𝛿,𝑥 (𝑡𝛿

−2)𝑣𝑖∥2𝐿2 (Λ𝛿,𝑥 ) d𝑡 ≲ 𝛿−2𝑛𝑖
∫ 𝑇

𝜀′
(𝑡𝛿−2)−𝑛𝑖−𝑑/2+𝜀 d𝑡.

Assumption H(ii) implies 1− 𝑛𝑘 − 𝑑/2 < 0, and so the last line is of order 𝑂((𝜀′)1−𝑛𝑖−𝑑/2+𝜀𝛿𝑑−2𝜀).
After splitting up the integral we conclude

sup
𝑥∈J

∫ 𝑇

0
⟨𝑋0, 𝑆∗𝜗(𝑡)𝑢𝑖⟩

2 d𝑡 ≲ 𝜀′𝛿𝑑 (1−2/𝑝)−2𝑛𝑖 + (𝜀′)1−𝑛𝑖−𝑑/2+𝜀𝛿𝑑−2𝜀.

Choosing 𝜀′ = 𝛿
2𝑛𝑖+2𝑑/𝑝−2𝜀
𝑛𝑖+𝑑/2−𝜀 yields the order 𝑂(𝛿ℎ(𝑝)−𝜀′′) with the function ℎ(𝑝) = 𝑑(1 − 2/𝑝) +

2(𝑛𝑖 + 𝑑/𝑝)/(𝑛𝑖 + 𝑑/2) − 2𝑛𝑖 for any 𝜀′′ > 0. We get ℎ(2) = 2 − 2𝑛𝑖 and ℎ′(𝑝) > 0. From this
obtain the claim when 𝑋0 ∈ 𝐿𝑝(Λ).

Let now 𝑋0 =
∫ 0
−∞ 𝑆𝜗(−𝑡′) d𝑊 (𝑡′) and 𝑐𝜗 ≤ 0. By Itô’s isometry, the 𝛿-scaling and changing

variables we get

𝔼[⟨𝑋0, 𝑆∗𝜗(𝑡)𝑢𝑖⟩
2] =

∫ ∞

0
∥𝑆∗𝜗(𝑡

′ + 𝑡)𝑢𝑖∥2 d𝑡′ = 𝛿2−2𝑛𝑖
∫ ∞

0
∥𝑆∗𝜗,𝛿,𝑥 (𝑡

′ + 𝑡𝛿−2)𝑣𝑖∥2𝐿2 (Λ𝛿,𝑥 ) d𝑡
′.

By Lemma A.16 and �̃�𝜗 ≤ 0 the integral is uniformly bounded in 𝑥 ∈ J and 0 ≤ 𝑡 ≤ 𝑇 and
converges to zero by dominated convergence, because the integrand does so as 𝛿 → 0. From
this obtain the claim in the stationary case. ■

Theorem A.25. Let 𝑀𝛿 = (𝑀𝛿(𝑡))𝑡≥0 be a family of continuous 𝑝-dimensional square integrable
martingales with respect to the filtered probability space (Ω,F, (F𝑡),ℙ), with 𝑀𝛿(0) = 0 and with
quadratic covariation processes ( [𝑀𝛿]𝑡)𝑡≥0. If 𝑇 > 0 is such that

[𝑀𝛿]𝑇
ℙ→ 𝐼𝑝×𝑝, 𝛿 → 0,

then we have the convergence in distribution

𝑀𝛿(𝑇)
𝑑→ N(0, 𝐼𝑝×𝑝), 𝛿 → 0.
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Proof. For 𝑥 ∈ ℝ𝑝 the process 𝑌𝛿(𝑡) = 𝑥⊤𝑀𝛿(𝑡)𝑥 defines a one dimensional continuous martingale
with respect to (F𝑡) with 𝑌𝛿(0) = 0 and with quadratic variation

[𝑌𝛿]𝑇
ℙ→ 𝑥⊤𝑥, 𝛿 → 0.

An application of the Dambis–Dubins–Schwarz theorem ([30, Theorem 3.4.6]) shows 𝑌𝛿(𝑡) =
𝑤𝛿( [𝑌𝛿]𝑡) with scalar Brownian motions (𝑤𝛿(𝑡))𝑡≥0, which are possibly defined on an extension
of the underlying probability space. From the last display Slutsky’s lemma implies the joint
weak convergence (𝑤𝛿, [𝑌𝛿]𝑇 )

𝑑→ (𝑤0, 𝑥⊤𝑥) on the product Borel sigma algebra of 𝐶( [0,∞)) ×ℝ,
where 𝐶( [0,∞)) is endowed with the uniform topology on compact subsets of [0,∞), and
where 𝑤0 is another scalar Brownian motion. The continuous mapping theorem with respect to
( 𝑓 , 𝑡) ↦→ 𝜙( 𝑓 , 𝑡) = 𝑓 (𝑡) yields then the result, noting that𝑤0(𝑥⊤𝑥) has distributionN(0, 𝑥⊤𝑥). ■

A.7.2 Proof of Proposition A.12

Proof. Note first that 𝐴𝜗 = Δ + 𝜗 corresponds to 𝐴1 = 1, 𝐴0 = Δ and with observed Fisher
information I𝛿 =

∑𝑀
𝑘=1

∫𝑇
0 ⟨𝑋 (𝑡), 𝐾𝛿,𝑥𝑘⟩

2 d𝑡. In particular, Assumptions H(i), (iii) and (iv) hold.
As in the proof of Theorem A.3, we can suppose that ∥𝐾∥𝐿2 (ℝ𝑑 ) = 1. Recall from the basic

decomposition (A.11), �̂�𝛿 = 𝜗 + I−1
𝛿

M𝛿 and from the proof of Theorem A.3 that M𝛿 = M𝛿(𝑇) for
a square integrable martingale (M𝛿(𝑡))0≤𝑡≤𝑇 , whose quadratic variation at 𝑡 = 𝑇 coincides with
I𝛿. We show below

log(𝛿−1)−1I𝛿 = 𝑂ℙ(1), (log(𝛿−1)−1I𝛿)−1 = 𝑂ℙ(1). (A.35)

A well-known result about tail properties of square integrable martingales (e.g., [61, p. 3.8])
therefore implies M𝛿 = 𝑂ℙ(log(𝛿−1)1/2), and we conclude from the basic decomposition that
�̂�𝛿 = 𝜗 + 𝑂ℙ(log(𝛿−1)−1/2) as claimed.

For (A.35) it is enough to show that I𝛿/𝔼[I𝛿]
ℙ→ 1 and log(𝛿−1)𝔼[I𝛿] ≍ 1, which in turn

holds if for some 𝑐, 𝐶 > 0, independent of 𝛿,

𝑐 ≤ log(𝛿−1)−1𝔼[I𝛿] ≤ 𝐶, log(𝛿−1)−2 Var(I𝛿) = 𝑜(1). (A.36)

As in the proofs of Lemmas A.18, A.19 and using their notation we compute

𝔼[I𝛿] ≤ 𝑀𝛿2
∫ 𝑇

0

∫ 𝑡𝛿−2

0
sup
𝑥∈J

∥𝑆∗𝜗,𝛿,𝑥 (𝑡
′)𝐾∥2

𝐿2 (Λ𝛿,𝑥 ) d𝑡
′ d𝑡,

Var(I𝛿) ≲ 𝑀2 sup
𝑥∈J

Var
(∫ 𝑇

0
⟨𝑋 (𝑡), 𝐾𝛿,𝑥⟩2 d𝑡

)
= 𝑀2 sup

𝑥∈J
4𝛿6

∫ 𝑇

0

∫ 𝑡𝛿−2

0

(∫ 𝑡𝛿−2−𝑠

0
𝑓1,1(𝑠, 𝑠′) d𝑠′

)2
d𝑠 d𝑡.

By the supplement in Lemma A.16 we find in 𝑑 = 2 that

sup
𝑥∈J

∥𝑆∗𝜗,𝛿,𝑥 (𝑡)𝐾∥𝐿2 (Λ𝛿,𝑥 ) ≲ 1 ∧ 𝑡−1/2, 𝑡 ≥ 0, 𝛿 ≥ 0. (A.37)
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Plugging this into the last display and using 𝑀𝛿2 ≲ 1 provides us with

𝔼[I𝛿] ≲
∫ 𝑇

0

∫ 𝑡𝛿−2

0
(1 ∧ 𝑠−1) d𝑠 d𝑡 ≲

∫ 𝑇

0
log(𝑡𝛿−2) d𝑡 ≲ log(𝛿−1),

Var(I𝛿) ≲ 𝑀2𝛿6
(∫ 𝑇𝛿−2

0
(1 ∧ (𝑡′)−1) d𝑡′

) (∫ 𝑇𝛿−2

0
(1 ∧ 𝑡−1/2) d𝑡

)2
≲ log(𝛿−1).

We are thus left with showing 𝔼[I𝛿] ≳ log(𝛿−1). First, note that

∥𝑆∗𝜗,𝛿,𝑥 (𝑡)𝐾∥𝐿2 (ℝ2 ) ≥ 𝑒−𝑇 |𝜗 | ∥�̃�𝜗,𝛿,𝑥 (𝑡)𝐾∥𝐿2 (ℝ2 )

and decompose

∥�̃�𝜗,𝛿,𝑥 (𝑡)𝐾∥2𝐿2 (ℝ2 ) = ⟨�̃�𝜗,𝛿,𝑥 (𝑡)𝐾, �̃�𝜗,𝛿,𝑥 (𝑡)𝐾⟩𝐿2 (ℝ2 )

= ∥𝑒𝑡Δ0𝐾∥2
𝐿2 (ℝ2 ) + ⟨𝑒𝑡Δ0𝐾 + �̃�𝜗,𝛿,𝑥 (𝑡)𝐾, �̃�𝜗,𝛿,𝑥 (𝑡)𝐾 − 𝑒𝑡Δ0𝐾⟩𝐿2 (ℝ2 ) .

Recalling 𝐾 ≥ 0, the inner product here is uniformly in 𝑥 ∈ J up to a universal constant upper
bounded by

⟨𝑒𝑡Δ0𝐾, (𝑒𝑡Δ0𝐾2)1/2⟩𝐿2 (ℝ2 ) (𝛿𝑡1/2𝑒−𝛿
−2𝑡−1)1/2 ≤ ∥𝑒𝑡Δ0𝐾∥𝐿2 (ℝ2 ) ∥𝑒𝑡Δ0𝐾2∥𝐿1 (ℝ2 )𝛿𝑡

1/2,

concluding by the Cauchy–Schwarz inequality and sup𝑥≥0 𝑥𝑒−𝑥 ≲ 1 in the last inequality. Since
∥𝑒𝑡Δ0𝐾2∥𝐿1 (ℝ2 ) = ∥𝐾∥2

𝐿2 (ℝ2 ) and using (A.37), it thus follows for some 𝐶 > 0 that

∥�̃�𝜗,𝛿,𝑥 (𝑡)𝐾∥2𝐿2 (ℝ2 ) ≥ ∥𝑒𝑡Δ0𝐾∥2
𝐿2 (ℝ2 ) − 𝐶(1 ∧ 𝑡−1/2)𝛿𝑡1/2.

Hence, using 𝑀𝛿2 ≳ 1,

𝔼[I𝛿] ≥
∫ 𝛿−1

0
∥𝑒𝑡Δ0𝐾∥2

𝐿2 (ℝ2 ) d𝑡 −
∫ 𝛿−1

0
𝐶𝛿 d𝑡 =

∫ 𝛿−1

0
∥𝑒𝑡Δ0𝐾∥2

𝐿2 (ℝ2 ) d𝑡 − 𝐶.

Suppose without loss of generality that the support of 𝐾 is contained in the unit ball 𝐵1(0).
Writing 𝑒𝑡Δ0𝐾 = 𝑞𝑡 ∗ 𝐾 as convolution with the heat kernel 𝑞𝑡 (𝑥) = (4𝜋𝑡)−1 exp(−|𝑥 |2/(4𝑡)) we
have

∥𝑒𝑡Δ0𝐾∥2
𝐿2 (ℝ2 ) =

∫
ℝ2

(∫
𝐵1 (0)

𝑞𝑡 (𝑦 − 𝑥)𝐾 (𝑥) d𝑥
)2

d𝑦.

The heat kernel 𝑞𝑡 (𝑥) is decreasing as |𝑥 | → ∞. Hence, for 𝑥 ∈ 𝐵1(0), we bound 𝑞𝑡 (𝑦 − 𝑥) ≥
𝑞𝑡 (𝑦 + 𝑦/|𝑦 |) for any 𝑦 ∈ ℝ2 \ {0}. Plugging this into the preceding display yields by 𝐾 ≥ 0

∥𝑒𝑡Δ0𝐾∥2
𝐿2 (ℝ2 ) ≥

∫
ℝ2

(∫
𝐵1 (0)

𝑞𝑡 (𝑦 + 𝑦/|𝑦 |)𝐾 (𝑥) d𝑥
)2

d𝑦

= ∥𝐾∥2
𝐿1 (ℝ2 )

∫
ℝ2
𝑞𝑡 (𝑦 + 𝑦/|𝑦 |)2 d𝑦 ≳ 𝑡−1.

In all, we conclude that 𝔼[I𝛿] ≳ 𝐶′ ∫ 𝛿−1
0 𝑡−1 d𝑡 − 𝐶 for 𝐶′ > 0, implying the wanted lower bound

in (A.36). ■
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A.7.3 Proof of Lemma A.22

By definition, we have∑︁
𝑗≥1

𝜎−2𝑗 ∥(𝐶𝜗1 − 𝐶𝜗0)𝑢 𝑗∥2𝐻
𝜗0

=
∑︁
𝑗,𝑘≥1

𝜎−2𝑗 𝜎−2𝑘 ⟨𝑢 𝑗, (𝐶𝜗1 − 𝐶𝜗0)𝑢𝑘⟩2Z.

Combining this with (A.34) and the fact that (𝑢 𝑗) 𝑗≥1 is an orthonormal basis of Z, the infinite ma-
trix (⟨𝑢 𝑗, (𝐶𝜗1 −𝐶𝜗0)𝑢𝑘⟩Z/(𝜎 𝑗𝜎𝑘))∞𝑗,𝑘=1 defines an Hilbert–Schmidt operator 𝑆 on Z. Let (𝑣 𝑗, 𝜇 𝑗) 𝑗≥1
be an eigensequence of 𝑆 with (𝑣 𝑗) 𝑗≥1 being an orthonormal basis of Z. Since ∥𝑆∥2HS(Z) ≤ 1/2 by
(A.34), we have 𝜏 𝑗 := 𝜇 𝑗 + 1 ∈ [1− 2−1/2, 1 + 2−1/2] for all 𝑗 ≥ 1. Now, let {𝜉 𝑗} 𝑗≥1 be a sequence
of independent standard Gaussian random variables. Then the series∑︁

𝑗≥1
𝜉 𝑗𝐶

1/2
𝜗0

𝑣 𝑗 and
∑︁
𝑗≥1

√
𝜏 𝑗𝜉 𝑗𝐶

1/2
𝜗0

𝑣 𝑗

converge a.s. and their laws coincide with those of ℙ𝜗0 and ℙ𝜗1 , respectively (see, e.g., [15, Proof
of Theorem 2.25] or [34, Pages 166-167]). By standard properties of the Hellinger distance
(see, e.g., Equation (A.4) in [49]), we have

𝐻2
(⊗

𝑗≥1
N(0, 1),

⊗
𝑗≥1

N(0, 𝜏 𝑗)
)
≤

∑︁
𝑗≥1

𝐻2(N(0, 1),N(0, 𝜏 𝑗))

≤ 2
∑︁
𝑗≥1

(𝜏 𝑗 − 1)2 = 2∥𝑆∥2HS(Z) ≤ 1. (A.38)

Moreover, defining 𝑄𝜗0 =
⊗

𝑗≥1 N(0, 1), 𝑄𝜗1 =
⊗

𝑗≥1 N(0, 𝜏 𝑗) and the measurable map T :
ℝ∞ → Z by T({𝛼 𝑗}) =

∑
𝑗≥1 𝛼 𝑗𝐶

1/2
𝜗0

𝑣 𝑗 if the limit exists and 𝑇 ({𝛼 𝑗}) = 0 otherwise, the image
measures satisfy 𝑄𝜗0 ◦ T−1 = ℙ𝜗0 and 𝑄𝜗1 ◦ T−1 = ℙ𝜗1 . Finally, by the transformation formula,
the minimax risk in (A.33) can be written as inf

�̂�
max𝜗∈{𝜗0,𝜗1} 𝑄𝜗( |�̂� ◦ T − 𝜗| ≥ |𝜗0 − 𝜗1 |/2),

where the infimum is taken over all measurable functions from Z to ℝ𝑝. Allowing for general
estimators depending on the whole coefficent vector in ℝ∞, the claim follows from (A.38) and
(A.33) applied to the product measures 𝑄𝜗0 and 𝑄𝜗1 . ■

A.7.4 Proof of Lemma A.23

Let us recall some simple facts on the space Z = 𝐿2( [0, 𝑇])𝑀 and a bounded linear operator
𝐼 : Z → Z. First, Z is a Hilbert space equipped with the inner product ⟨( 𝑓𝑘)𝑀𝑘=1, (𝑔𝑘)𝑀𝑘=1⟩ =∑𝑀

𝑗=1⟨ 𝑓 𝑗, 𝑔 𝑗⟩𝐿2 ( [0,𝑇 ] ) . Second, 𝐼 can be represented by linear operators 𝐼𝑘,𝑙 : 𝐿2( [0, 𝑇]) →
𝐿2( [0, 𝑇]) such that 𝐼( 𝑓𝑘)𝑀𝑘=1 = (∑𝑀

𝑙=1 𝐼𝑘,𝑙 𝑓𝑙)𝑀𝑘=1. Finally, 𝐼 is a Hilbert–Schmidt operator if and
only if all 𝐼 𝑗𝑘 are Hilbert–Schmidt operators and we have

∥ 𝐼∥2HS(Z) =
𝑀∑︁

𝑘,𝑙=1
∥ 𝐼𝑘,𝑙∥2HS(𝐿2 ( [0,𝑇 ] ) ) ,

where ∥·∥HS(𝐿2 ( [0,𝑇 ] ) ) denotes the Hilbert–Schmidt norm on 𝐿2( [0, 𝑇]). Recall also that (𝜎2
𝑗
) 𝑗≥1

are the strictly positive eigenvalues of 𝐶𝜗0,𝛿 and that (𝑢 𝑗) 𝑗≥1 with 𝑢 𝑗 = (𝑢 𝑗,𝑘)𝑚𝑘=1 ∈ Z is a
corresponding orthonormal basis of eigenvectors. We first prove a more general version of
Lemma A.23.



54 Chapter A. Optimal parameter estimation for linear SPDEs

Lemma A.26. Grant Assumption L. Consider an integral operator 𝐼 = (𝐼𝑘,𝑙)𝑀𝑘,𝑙=1 : Z → Z,
𝐼𝑘,𝑙 𝑓 (𝑡) =

∫ 𝑡
0 𝜅𝑘,𝑙 (𝑡 − 𝑡′) 𝑓 (𝑡′) d𝑡′ +

∫𝑇
𝑡
𝜅𝑙,𝑘 (𝑡′ − 𝑡) 𝑓 (𝑡′) d𝑡′ with square integrable and twice con-

tinuously differentiable functions 𝜅𝑘,𝑙 satisfying 𝜅𝑘,𝑙 (0) = 𝜅𝑙,𝑘 (0) and 𝜅′𝑘,𝑙 (0) = −𝜅′
𝑙,𝑘
(0) for all

1 ≤ 𝑘, 𝑙 ≤ 𝑀. Then we have

∞∑︁
𝑗=1

𝜎−2𝑗 ∥ 𝐼𝑢 𝑗∥2𝐻
𝜗0 ,𝛿

≤
𝑀∑︁

𝑘,𝑙=1

(
240𝑇

∥Δ𝐾∥4
𝐿2 (ℝ𝑑 )

𝛿8
∥𝜅𝑘,𝑙∥2𝐿2 ( [0,𝑇 ] ) + 200𝑇 ∥𝜅′′𝑘,𝑙∥2𝐿2 ( [0,𝑇 ] )

)
for all 𝛿2 ≤ ∥Δ𝐾∥𝐿2 (ℝ𝑑 ) and all 𝑇 ≥ 1.

Proof of Lemma A.26. We divide the proof into the cases of single and multiple measurements.

Case 𝑀 = 1 If 𝑀 = 1, then we consider an integral operator 𝐼 : 𝐿2( [0, 𝑇]) → 𝐿2( [0, 𝑇]),
𝐼 𝑓 (𝑡) =

∫𝑇
0 𝜅( |𝑡 − 𝑡′ |) 𝑓 (𝑡′) d𝑡′ with some square integrable and twice continuously differentiable

function 𝜅 satisfying 𝜅′(0) = 0. Define the operators

𝐼′ 𝑓 (𝑡) =
∫ 𝑇

0
sign(𝑡 − 𝑡′)𝜅′( |𝑡 − 𝑡′ |) 𝑓 (𝑡′) d𝑡′,

𝐼′′ 𝑓 (𝑡) =
∫ 𝑇

0
𝜅′′( |𝑡 − 𝑡′ |) 𝑓 (𝑡′) d𝑡′.

We show first

(𝐼 𝑓 )′(𝑡) = 𝐼′ 𝑓 (𝑡), (𝐼 𝑓 )′′(𝑡) = 𝐼′′ 𝑓 (𝑡). (A.39)

Indeed, after splitting up the integral defining 𝐼 𝑓 (𝑡) it follows from the chain rule that

(𝐼 𝑓 )′(𝑡) =
(∫ 𝑡

0
𝜅(𝑡 − 𝑡′) 𝑓 (𝑡′) d𝑡′ +

∫ 𝑇

𝑡

𝜅(𝑡′ − 𝑡) 𝑓 (𝑡′) d𝑡′
) ′

= 𝜅(0) 𝑓 (𝑡) +
∫ 𝑡

0
𝜅′(𝑡 − 𝑡′) 𝑓 (𝑡′) d𝑡′ − 𝜅(0) 𝑓 (𝑡) −

∫ 𝑇

𝑡

𝜅′(𝑡′ − 𝑡) 𝑓 (𝑡′) d𝑡′,

(𝐼 𝑓 )′′(𝑡) = 𝜅′(0) 𝑓 (𝑡) +
∫ 𝑡

0
𝜅′′(𝑡 − 𝑡′) 𝑓 (𝑡′) d𝑡′ + 𝜅′(0) 𝑓 (𝑡) +

∫ 𝑇

𝑡

𝜅′′(𝑡′ − 𝑡) 𝑓 (𝑡′) d𝑡′,

from which (A.39) follows by inserting the assumption 𝜅′(0) = 0. Thus, Corollary A.6 (applied
with 𝑀 = 1) and (A.39) yield for all 𝑗 ≥ 1

∥ 𝐼𝑢 𝑗∥2𝐻
𝜗0 ,𝛿

≤ 4𝛿−4∥Δ𝐾∥2
𝐿2 (ℝ𝑑 ) ∥ 𝐼𝑢 𝑗∥

2
𝐿2 ( [0,𝑇 ] ) + 2∥(𝐼𝑢 𝑗)′∥2𝐿2 ( [0,𝑇 ] )

= 4𝛿−4∥Δ𝐾∥2
𝐿2 (ℝ𝑑 ) ∥ 𝐼𝑢 𝑗∥

2
𝐿2 ( [0,𝑇 ] ) + 2∥ 𝐼′𝑢 𝑗∥2𝐿2 ( [0,𝑇 ] )

for all 𝛿2 ≤ ∥Δ𝐾∥𝐿2 (ℝ𝑑 ) and all 𝑇 ≥ 1. By construction, 𝐼 is symmetric, while 𝐼′ is anti-symmetric,
implying that ⟨𝐼𝑢 𝑗, 𝑢 𝑗′⟩2𝐿2 ( [0,𝑇 ] ) = ⟨𝑢 𝑗, 𝐼𝑢 𝑗′⟩2𝐿2 ( [0,𝑇 ] ) and ⟨𝐼′𝑢 𝑗, 𝑢 𝑗′⟩2𝐿2 ( [0,𝑇 ] ) = ⟨𝑢 𝑗, 𝐼′𝑢 𝑗′⟩2𝐿2 ( [0,𝑇 ] ) for
all 𝑗, 𝑗′ ≥ 1. Combining this with Parseval’s identity, we get

∥ 𝐼𝑢 𝑗∥2𝐻
𝜗0 ,𝛿

≤
∞∑︁
𝑗′=1

(4𝛿−4∥Δ𝐾∥2
𝐿2 (ℝ𝑑 ) ⟨𝑢 𝑗, 𝐼𝑢 𝑗′⟩

2
𝐿2 ( [0,𝑇 ] ) + 2⟨𝑢 𝑗, 𝐼′𝑢 𝑗′⟩2𝐿2 ( [0,𝑇 ] )

)
.
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Multiplying the right-hand side with 𝜎−2
𝑗

and summing over 𝑗 ≥ 1 yields
∞∑︁
𝑗′=1

(4𝛿−4∥Δ𝐾∥2
𝐿2 (ℝ𝑑 ) ∥ 𝐼𝑢 𝑗′ ∥

2
𝐻
𝜗0 ,𝛿

+ 2∥ 𝐼′𝑢 𝑗′ ∥2𝐻
𝜗0 ,𝛿

)
,

as can be seen from (A.23). Applying again Corollary A.6 and the definition of the Hilbert–
Schmidt norm, we arrive at

∞∑︁
𝑗=1

𝜎−2𝑗 ∥ 𝐼𝑢 𝑗∥2𝐻
𝜗0 ,𝛿

≤ 16
∥Δ𝐾∥4

𝐿2 (ℝ𝑑 )

𝛿8
∥ 𝐼∥2HS(𝐿2 ( [0,𝑇 ] ) )

+ 16
∥Δ𝐾∥2

𝐿2 (ℝ𝑑 )

𝛿4
∥ 𝐼′∥2HS(𝐿2 ( [0,𝑇 ] ) ) + 4∥ 𝐼′′∥2HS(𝐿2 ( [0,𝑇 ] ) )

for all 𝛿2 ≤ ∥Δ𝐾∥𝐿2 (ℝ𝑑 ) and all 𝑇 ≥ 1. Inserting

∥ 𝐼∥2HS(𝐿2 ( [0,𝑇 ] ) ) =
∫ 𝑇

0

∫ 𝑇

0
𝜅2( |𝑡 − 𝑡′ |) d𝑡 d𝑡′ ≤ 2𝑇 ∥𝜅∥2

𝐿2 ( [0,𝑇 ] ) ,

∥ 𝐼′∥2HS(𝐿2 ( [0,𝑇 ] ) ) ≤ 2𝑇 ∥𝜅′∥2
𝐿2 ( [0,𝑇 ] ) , ∥ 𝐼′′∥2HS(𝐿2 ( [0,𝑇 ] ) ) ≤ 2𝑇 ∥𝜅′′∥2

𝐿2 ( [0,𝑇 ] ) , (A.40)

we get
∞∑︁
𝑗

𝜎−2𝑗 ∥ 𝐼𝑢 𝑗∥2𝐻
𝜗0 ,𝛿

≤ 32𝑇
∥Δ𝐾∥4

𝐿2 (ℝ𝑑 )

𝛿8
∥𝜅∥2

𝐿2 ( [0,𝑇 ] )

+ 32𝑇
∥Δ𝐾∥2

𝐿2 (ℝ𝑑 )

𝛿4
∥𝜅′∥2

𝐿2 ( [0,𝑇 ] ) + 8𝑇 ∥𝜅′′∥2
𝐿2 ( [0,𝑇 ] ) (A.41)

for all 𝛿2 ≤ ∥Δ𝐾∥𝐿2 (ℝ𝑑 ) and all 𝑇 ≥ 1. The claim now follows from an interpolation inequality
(see, e.g., [10]). To get precise constants with respect to 𝑇 , we give a self-contained argument.
By partial integration and the fact that 𝜅′(0) = 0, we have∫ 𝑇

0
(𝜅′(𝑡))2 d𝑡 = −

∫ 𝑇

0
𝜅′′(𝑡)𝜅(𝑡) d𝑡 + 𝜅′(𝑇)𝜅(𝑇).

Let 𝑡0 ∈ [0, 𝑇] such that 𝜅(𝑡0) = 𝑇−1 ∫𝑇
0 𝜅(𝑡) d𝑡. Then, by the Cauchy–Schwarz inequality, we

have

𝜅2(𝑇) = 2
∫ 𝑇

𝑡0
𝜅′(𝑡)𝜅(𝑡) d𝑡 +

(
𝑇−1

∫ 𝑇

0
𝜅(𝑡) d𝑡

)2
≤ 2∥𝜅∥𝐿2 ( [0,𝑇 ] ) ∥𝜅′∥𝐿2 ( [0,𝑇 ] ) + 𝑇−1∥𝜅∥2

𝐿2 ( [0,𝑇 ] )

and similarly

(𝜅′(𝑇))2 = (𝜅′(𝑇))2 − (𝜅′(0))2

=

∫ 𝑇

0
2𝜅′′(𝑡)𝜅′(𝑡) d𝑡 ≤ 2∥𝜅′∥𝐿2 ( [0,𝑇 ] ) ∥𝜅′′∥𝐿2 ( [0,𝑇 ] ) .
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Combining these estimates, using also the Cauchy–Schwarz inequality, the fact that 𝑇 ≥ 1 and
the inequality 2𝑎𝑏 ≤ 𝜖𝑎2 + 𝜖−1𝑏2, 𝜖 > 0, 𝑎, 𝑏 ∈ ℝ consecutively with 𝜖 ∈ {1/4, 1/

√
2, 1}, we get

∥𝜅′∥2
𝐿2 ( [0,𝑇 ] ) ≤ ∥𝜅∥𝐿2 ( [0,𝑇 ] ) ∥𝜅′′∥𝐿2 ( [0,𝑇 ] )

+ 2
√︃
∥𝜅∥𝐿2 ( [0,𝑇 ] ) ∥𝜅′′∥𝐿2 ( [0,𝑇 ] ) ∥𝜅′∥𝐿2 ( [0,𝑇 ] )

+
√
2
√︃
∥𝜅′∥𝐿2 ( [0,𝑇 ] ) ∥𝜅′′∥𝐿2 ( [0,𝑇 ] ) ∥𝜅∥𝐿2 ( [0,𝑇 ] )

≤ ∥𝜅∥𝐿2 ( [0,𝑇 ] ) ∥𝜅′′∥𝐿2 ( [0,𝑇 ] )
+ 4∥𝜅∥𝐿2 ( [0,𝑇 ] ) ∥𝜅′′∥𝐿2 ( [0,𝑇 ] ) + ∥𝜅′∥2

𝐿2 ( [0,𝑇 ] )/4
+ ∥𝜅′∥𝐿2 ( [0,𝑇 ] ) ∥𝜅∥𝐿2 ( [0,𝑇 ] )/2 + ∥𝜅∥𝐿2 ( [0,𝑇 ] ) ∥𝜅′′∥𝐿2 ( [0,𝑇 ] )
≤ 6∥𝜅∥𝐿2 ( [0,𝑇 ] ) ∥𝜅′′∥𝐿2 ( [0,𝑇 ] ) + ∥𝜅′∥2

𝐿2 ( [0,𝑇 ] )/2 + ∥𝜅∥2
𝐿2 ( [0,𝑇 ] )/4

and thus

∥𝜅′∥2
𝐿2 ( [0,𝑇 ] ) ≤ 12∥𝜅∥𝐿2 ( [0,𝑇 ] ) ∥𝜅′′∥𝐿2 ( [0,𝑇 ] ) + ∥𝜅∥2

𝐿2 ( [0,𝑇 ] )/2.

Using again the inequality 2𝑎𝑏 ≤ 𝑎2 + 𝑏2, 𝑎, 𝑏 ∈ ℝ, we conclude that

32𝑇
∥Δ𝐾∥2

𝐿2 (ℝ𝑑 )

𝛿4
∥𝜅′∥2

𝐿2 ( [0,𝑇 ] )

≤ 192𝑇
∥Δ𝐾∥4

𝐿2 (ℝ𝑑 )

𝛿8
∥𝜅∥2

𝐿2 ( [0,𝑇 ] ) + 192𝑇 ∥𝜅′′∥2
𝐿2 ( [0,𝑇 ] ) + 16𝑇

∥Δ𝐾∥2
𝐿2 (ℝ𝑑 )

𝛿4
∥𝜅∥2

𝐿2 ( [0,𝑇 ] )

≤ 208𝑇
∥Δ𝐾∥4

𝐿2 (ℝ𝑑 )

𝛿8
∥𝜅∥2

𝐿2 ( [0,𝑇 ] ) + 192𝑇 ∥𝜅′′∥2
𝐿2 ( [0,𝑇 ] )

where we used the inequality 𝛿2 ≤ ∥Δ𝐾∥𝐿2 (ℝ𝑑 ) in the last step. Inserting this into (A.41), the
claim follows.

Case 𝑀 > 1 We now extend the result to the general case 𝑀 > 1. Define the operators
𝐼′ = (𝐼′

𝑘,𝑙
)𝑀
𝑘,𝑙=1 and 𝐼′′ = (𝐼′′

𝑘,𝑙
)𝑀
𝑘,𝑙=1 by

𝐼′𝑘,𝑙 𝑓 (𝑡) =
∫ 𝑡

0
𝜅′𝑘,𝑙 (𝑡 − 𝑡′) 𝑓 (𝑡′) d𝑡′ −

∫ 𝑇

𝑡

𝜅′𝑙,𝑘 (𝑡
′ − 𝑡) 𝑓 (𝑡′) d𝑡′,

𝐼′′𝑘,𝑙 𝑓 (𝑡) =
∫ 𝑡

0
𝜅′′𝑘,𝑙 (𝑡 − 𝑡′) 𝑓 (𝑡′) d𝑡′ +

∫ 𝑇

𝑡

𝜅′′𝑙,𝑘 (𝑡
′ − 𝑡) 𝑓 (𝑡′) d𝑡′.

Using that 𝜅𝑘,𝑙 (0) = 𝜅𝑙,𝑘 (0) and 𝜅′𝑘,𝑙 (0) = −𝜅′
𝑙,𝑘
(0), we have

(𝐼𝑘,𝑙 𝑓𝑙)′(𝑡) = 𝐼′𝑘,𝑙 𝑓𝑙 (𝑡), (𝐼𝑘,𝑙 𝑓𝑙)′′(𝑡) = 𝐼′′𝑘,𝑙 𝑓𝑙 (𝑡),

as can be seen by proceeding similarly as in the case 𝑀 = 1. Hence, we get

(𝐼( 𝑓𝑘)𝑀𝑘=1)
′ = 𝐼′( 𝑓𝑘)𝑀𝑘=1 and (𝐼( 𝑓𝑘)𝑀𝑘=1)

′′ = 𝐼′′( 𝑓𝑘)𝑀𝑘=1.
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Thus, Corollary A.6 again yields for all 𝑗 ≥ 1

∥ 𝐼(𝑢 𝑗,𝑘)𝑀𝑘=1∥
2
𝐻
𝜗0 ,𝛿

≤ 4𝛿−4∥Δ𝐾∥2
𝐿2 (ℝ𝑑 ) ∥ 𝐼(𝑢 𝑗,𝑘)

𝑀
𝑘=1∥

2
𝐿2 ( [0,𝑇 ] )𝑀 + 2∥ 𝐼′(𝑢 𝑗,𝑘)𝑀𝑘=1∥2𝐿2 ( [0,𝑇 ] )𝑀 .

Next, by construction, we have (𝐼𝑘,𝑙)∗ = 𝐼𝑙,𝑘 and (𝐼′
𝑘,𝑙
)∗ = −𝐼′

𝑙,𝑘
, implying that 𝐼 is symmetric,

while 𝐼′ is anti-symmetric. Combining this with Parseval’s identity, we get

∥ 𝐼(𝑢 𝑗,𝑘)𝑀𝑘=1∥
2
𝐻
𝜗0 ,𝛿

≤ 4𝛿−4∥Δ𝐾∥2
𝐿2 (ℝ𝑑 )

∞∑︁
𝑗′=1

⟨(𝑢 𝑗,𝑘)𝑀𝑘=1, 𝐼(𝑢 𝑗′,𝑘)
𝑀
𝑘=1⟩

2
𝐿2 ( [0,𝑇 ] )𝑀

+ 2
∞∑︁
𝑗′=1

⟨(𝑢 𝑗,𝑘)𝑀𝑘=1, 𝐼
′(𝑢 𝑗′,𝑘)𝑀𝑘=1⟩

2
𝐿2 ( [0,𝑇 ] )𝑀 .

Multiplying this with 𝜎−2
𝑗

and summing over 𝑗 yields
∞∑︁
𝑗=1

𝜎−2𝑗 ∥ 𝐼(𝑢 𝑗,𝑘)𝑀𝑘=1∥
2
𝐻
𝜗0 ,𝛿

≤
∞∑︁
𝑗′=1

(4𝛿−4∥Δ𝐾∥2
𝐿2 (ℝ𝑑 ) ∥ 𝐼(𝑢 𝑗′,𝑘)

𝑀
𝑘=1∥

2
𝐻
𝜗0 ,𝛿

+ 2∥ 𝐼′(𝑢 𝑗′,𝑘)𝑀𝑘=1∥2𝐻𝜗0 ,𝛿
)
.

Applying again Theorem A.5, we arrive at
∞∑︁
𝑗=1

𝜎−2𝑗 ∥ 𝐼(𝑢 𝑗,𝑘)𝑀𝑘=1∥
2
𝐻
𝜗0 ,𝛿

≤ 16
∥Δ𝐾∥4

𝐿2 (ℝ𝑑 )

𝛿8
∥ 𝐼∥2HS(𝐿2 ( [0,𝑇 ] )𝑀 )

+ 16
∥Δ𝐾∥2

𝐿2 (ℝ𝑑 )

𝛿4
∥ 𝐼′∥2HS(𝐿2 ( [0,𝑇 ] )𝑀 ) + 4∥ 𝐼′′∥2HS(𝐿2 ( [0,𝑇 ] )𝑀 ) .

Inserting

∥ 𝐼 ( 𝑗) ∥2HS(𝐿2 ( [0,𝑇 ] )𝑀 ) =
𝑀∑︁

𝑘,𝑙=1
∥ 𝐼 ( 𝑗)
𝑘,𝑙

∥2HS(𝐿2 ( [0,𝑇 ] ) ) , 𝑗 = 0, 1, 2,

with

∥ 𝐼 ( 𝑗)
𝑘,𝑘

∥2HS(𝐿2 ( [0,𝑇 ] ) ) =
∫ 𝑇

0

∫ 𝑇

0
(𝜅( 𝑗)

𝑘,𝑘
( |𝑡 − 𝑡′ |))2 d𝑡 d𝑡′ ≤ 2𝑇 ∥𝜅( 𝑗)

𝑘,𝑘
∥2
𝐿2 ( [0,𝑇 ] )

for all 𝑘 = 1, . . . , 𝑀 and

∥ 𝐼 ( 𝑗)
𝑘,𝑙

∥2HS(𝐿2 ( [0,𝑇 ] ) ) + ∥ 𝐼 ( 𝑗)
𝑙,𝑘

∥2HS(𝐿2 ( [0,𝑇 ] ) )

=

∫ 𝑇

0

∫ 𝑡

0
(𝜅( 𝑗)

𝑘,𝑙
(𝑡 − 𝑡′))2 d𝑡′ d𝑡 +

∫ 𝑇

0

∫ 𝑇

𝑡

(𝜅( 𝑗)
𝑙,𝑘

(𝑡′ − 𝑡))2 d𝑡′ d𝑡

+
∫ 𝑇

0

∫ 𝑡

0
(𝜅( 𝑗)

𝑙,𝑘
(𝑡 − 𝑡′))2 d𝑡′ d𝑡 +

∫ 𝑇

0

∫ 𝑇

𝑡

(𝜅( 𝑗)
𝑘,𝑙

(𝑡′ − 𝑡))2 d𝑡′ d𝑡

=

∫ 𝑇

0

∫ 𝑇

0
(𝜅( 𝑗)

𝑘,𝑙
( |𝑡 − 𝑡′ |))2 d𝑡′ d𝑡 +

∫ 𝑇

0

∫ 𝑇

0
(𝜅( 𝑗)

𝑙,𝑘
( |𝑡′ − 𝑡 |))2 d𝑡′ d𝑡



58 Chapter A. Optimal parameter estimation for linear SPDEs

≤ 2𝑇 ∥𝜅( 𝑗)
𝑘,𝑙

∥2
𝐿2 ( [0,𝑇 ] ) + 2𝑇 ∥𝜅( 𝑗)

𝑙,𝑘
∥2
𝐿2 ( [0,𝑇 ] )

for all 1 ≤ 𝑘 ≠ 𝑙 ≤ 𝑀 (here, we used 𝐼 (0)
𝑙,𝑘

= 𝐼𝑙,𝑘, 𝐼 (1)𝑙,𝑘
= 𝐼′

𝑙,𝑘
and 𝐼 (2)

𝑙,𝑘
= 𝐼′′

𝑙,𝑘
and similar notation for

the derivatives of 𝜅), we arrive at
∞∑︁
𝑗=1

∥ 𝐼𝑢 𝑗∥2𝐻
𝜗0 ,𝛿

𝜎2
𝑗

≤ 32𝑇
∥Δ𝐾∥4

𝐿2 (ℝ𝑑 )

𝛿8

𝑀∑︁
𝑘,𝑙=1

∥𝜅𝑘,𝑙∥2𝐿2 ( [0,𝑇 ] )

+ 32𝑇
∥Δ𝐾∥2

𝐿2 (ℝ𝑑 )

𝛿4

𝑀∑︁
𝑘,𝑙=1

∥𝜅′𝑘,𝑙∥
2
𝐿2 ( [0,𝑇 ] ) + 8𝑇

𝑀∑︁
𝑘,𝑙=1

∥𝜅′′𝑘,𝑙∥
2
𝐿2 ( [0,𝑇 ] )

for all 𝛿2 ≤ ∥Δ𝐾∥𝐿2 (ℝ𝑑 ) and all 𝑇 ≥ 1. The claim now follows as in the case 𝑀 = 1 by an
interpolation argument. ■

Proof of Lemma A.23. We apply Lemma A.26 to 𝐼 = 𝐶𝜗0,𝛿 − 𝐶𝜗1,𝛿 : Z → Z. This means that
𝐼 = (𝐼𝑘,𝑙)𝑀𝑘,𝑙=1 with 𝐼𝑘,𝑙 𝑓 (𝑡) =

∫ 𝑡
0 𝜅𝑘,𝑙 (𝑡

′ − 𝑡) 𝑓 (𝑡′) d𝑡′ +
∫𝑇
𝑡
𝜅𝑙,𝑘 (𝑡 − 𝑡′) 𝑓 (𝑡′) d𝑡′ for the integral kernels

𝜅𝑘,𝑙 (𝑡) = 𝑐𝜗0,𝛿,𝑘,𝑙 (𝑡) − 𝑐𝜗1,𝛿,𝑘,𝑙 (𝑡), 0 ≤ 𝑡 ≤ 𝑇 , with

𝑐𝜗,𝛿,𝑘,𝑙 (𝑡) = 𝔼𝜗 [𝑋𝛿,𝑘 (𝑡)𝑋𝛿,𝑙 (0)] =
∫ ∞

0
⟨𝑆∗𝜗(𝑡 + 𝑡

′)𝐾𝛿,𝑥𝑘 , 𝑆∗𝜗(𝑡
′)𝐾𝛿,𝑥𝑙⟩ d𝑡′, (A.42)

where the last equality follows from Lemma A.17(ii). From (A.42), we immediately infer
𝜅𝑘,𝑙 (0) = 𝜅𝑙,𝑘 (0). The first two derivatives of the cross-covariance integral kernels for 𝜗 ∈ {𝜗0, 𝜗1}
are

𝑐′𝜗,𝛿,𝑘,𝑙 (𝑡) =
∫ ∞

0
⟨𝐴∗𝜗𝑆

∗
𝜗(𝑡 + 𝑡

′)𝐾𝛿,𝑥𝑘 , 𝑆∗𝜗(𝑡
′)𝐾𝛿,𝑥𝑙⟩ d𝑡′, (A.43)

𝑐′′𝜗,𝛿,𝑘,𝑙 (𝑡) =
∫ ∞

0
⟨(𝐴∗𝜗)

2𝑆∗𝜗(𝑡 + 𝑡
′)𝐾𝛿,𝑥𝑘 , 𝑆∗𝜗(𝑡

′)𝐾𝛿,𝑥𝑙⟩ d𝑡′. (A.44)

We note that

𝑐′𝜗,𝛿,𝑘,𝑙 (0) + 𝑐′𝜗,𝛿,𝑙,𝑘 (0)

=

∫ ∞

0
(d/d𝑡′)⟨𝑆∗𝜗(𝑡′)𝐾𝛿,𝑥𝑘 , 𝑆∗𝜗(𝑡′)𝐾𝛿,𝑥𝑙⟩ d𝑡′ = −⟨𝐾𝛿,𝑥𝑘 , 𝐾𝛿,𝑥𝑙⟩

is independent of 𝜗, and hence, 𝜅′
𝑘,𝑙
(0) + 𝜅′

𝑙,𝑘
(0) = 0. ■

A.7.5 Proof of Lemma A.24

It is sufficient to upper bound the 𝐿2-norms of the 𝜅𝑘,𝑙. Indeed, the proof below for this remains
valid if 𝐾𝛿,𝑥𝑘 is replaced by 𝛿−4(𝐴2

𝜗,𝛿,𝑥𝑘
𝐾)𝛿,𝑥𝑘 and so it yields also the wanted bound on the

𝐿2-norm of 𝜅′′
𝑘,𝑙
, cf. (A.44). As in (A.17) we have

𝑆∗
𝜗0 (𝑡) = 𝑒𝑡Δ, 𝑆∗

𝜗1 (𝑡) = 𝑈
−1
𝜗1 𝑒

𝑡𝜗1Δ𝑈𝜗1𝑒
𝑡𝑐
𝜗1

with 𝑈𝜗1 (𝑥) = 𝑒−(2𝜗1 )−1𝜗2𝑏·𝑥 and �̃�𝜗1 = 𝜗3 − (4𝜗1)−1𝜗22 ≤ 0. From Lemma A.13, we also have

𝑆𝜗0,𝛿,𝑥𝑘 (𝑡) = 𝑒𝑡Δ𝛿,𝑥𝑘 , 𝑆∗
𝜗1,𝛿,𝑥𝑘

(𝑡) = 𝑈−1
𝜗1,𝛿,𝑥𝑘

𝑒𝑡𝜗1Δ𝛿,𝑥𝑘𝑈𝜗1,𝛿,𝑥𝑘𝑒
𝑡𝛿2 �̃�

𝜗1
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with 𝑈𝜗1,𝛿,𝑥𝑘 (𝑥) = 𝑈𝜗1 (𝑥𝑘 + 𝛿𝑥). Note that

𝑒𝑡𝜗1Δ = 𝑈𝜗1 (𝑥𝑘)−1𝑒𝑡𝜗1Δ𝑈𝜗1 (𝑥𝑘).

To get started, let 1 ≤ 𝑘, 𝑙 ≤ 𝑀 and decompose 𝜅𝑘,𝑙 =
∑6

𝑗=1 𝜅
( 𝑗)
𝑘,𝑙

with

𝜅
(1)
𝑘,𝑙

(𝑡) =
∫ ∞

0
⟨(𝑒(𝑡+𝑡′ )Δ − 𝑒(𝑡+𝑡

′ )𝜗1Δ)𝐾𝛿,𝑥𝑘 , 𝑒𝑡
′Δ𝐾𝛿,𝑥𝑙⟩ d𝑡′,

𝜅
(2)
𝑘,𝑙

(𝑡) =
∫ ∞

0
⟨𝑒(𝑡+𝑡′ )𝜗1Δ𝐾𝛿,𝑥𝑘 , (𝑒𝑡

′Δ − 𝑒𝑡
′𝜗1Δ)𝐾𝛿,𝑥𝑙⟩ d𝑡′,

𝜅
(3)
𝑘,𝑙

(𝑡) =
∫ ∞

0
⟨𝑈𝜗1 (𝑥𝑘)−1𝑒(𝑡+𝑡

′ )𝜗1Δ (𝑈𝜗1 (𝑥𝑘) − 𝑈𝜗1𝑒𝑐𝜗1 (𝑡+𝑡
′ ) )𝐾𝛿,𝑥𝑘 , 𝑒𝑡

′𝜗1Δ𝐾𝛿,𝑥𝑙⟩ d𝑡′,

𝜅
(4)
𝑘,𝑙

(𝑡) =
∫ ∞

0
⟨(𝑈𝜗1 (𝑥𝑘)−1 − 𝑈−1

𝜗1 )𝑈𝜗1𝑆
∗
𝜗1 (𝑡 + 𝑡

′)𝐾𝛿,𝑥𝑘 , 𝑒𝑡
′𝜗1Δ𝐾𝛿,𝑥𝑙⟩ d𝑡′,

𝜅
(5)
𝑘,𝑙

(𝑡) =
∫ ∞

0
⟨𝑆∗

𝜗1 (𝑡 + 𝑡
′)𝐾𝛿,𝑥𝑘 , 𝑈𝜗1 (𝑥𝑘)−1𝑒𝑡

′𝜗1Δ (𝑈𝜗1 (𝑥𝑘) − 𝑈𝜗1𝑒𝑐𝜗1 𝑡
′)𝐾𝛿,𝑥𝑙⟩ d𝑡′,

𝜅
(6)
𝑘,𝑙

(𝑡) =
∫ ∞

0
⟨𝑆∗

𝜗1 (𝑡 + 𝑡
′)𝐾𝛿,𝑥𝑘 , (𝑈𝜗1 (𝑥𝑘)−1 − 𝑈−1

𝜗1 )𝑒
𝑡′𝜗1Δ𝑈𝜗1𝑒

𝑐
𝜗1 𝑡

′
𝐾𝛿,𝑥𝑙⟩ d𝑡′.

We only show ∑
1≤𝑘,𝑙≤𝑀 ∥𝜅

( 𝑗)
𝑘,𝑙

∥2
𝐿2 ( [0,𝑇 ] ) ≤ 𝑐𝛿8𝑀 (𝛿−2(1 − 𝜗1)2 + 𝜗22 + 𝛿2𝜗23) for 𝑗 = 1, 3, 4. The

proof that the same bound holds for 𝑗 = 2, 5, 6 follows from similar arguments and is therefore
skipped. Diagonal (i.e., 𝑘 = 𝑙) and off-diagonal (i.e., 𝑘 ≠ 𝑙) terms are treated separately. Set
𝐾𝑘,𝑙 = 𝐾 (· + 𝛿−1(𝑥𝑘 − 𝑥𝑙)).

Case 𝑗 = 1 The scaling in Lemma A.13 and changing variables yield

𝜅
(1)
𝑘,𝑙

(𝑡𝛿2) = 𝛿2
∫ ∞

0
⟨(𝑒(𝑡+𝑡′ )Δ𝛿,𝑥𝑘 − 𝑒(𝑡+𝑡

′ )𝜗1Δ𝛿,𝑥𝑘 )𝐾, 𝑒𝑡′Δ𝛿,𝑥𝑘 𝐾𝑘,𝑙⟩𝐿2 (Λ𝛿,𝑥𝑘 ) d𝑡
′

= 𝛿2⟨
∫ ∞

0
(𝑒(𝑡+2𝑡′ )Δ𝛿,𝑥𝑘 − 𝑒(𝑡𝜗1+(𝑡

′ (1+𝜗1 ) )Δ𝛿,𝑥𝑘 ) d𝑡′ 𝐾, 𝐾𝑘,𝑙⟩𝐿2 (Λ𝛿,𝑥𝑘 )

=
𝛿2

2 ⟨(𝑒𝑡Δ𝛿,𝑥𝑘 − 2(1 + 𝜗1)−1𝑒𝑡𝜗1Δ𝛿,𝑥𝑘 ) (−Δ𝛿,𝑥𝑘)−1𝐾, 𝐾𝑘,𝑙⟩𝐿2 (Λ𝛿,𝑥𝑘 )

=
𝛿2

2 ⟨(𝑒𝑡Δ𝛿,𝑥𝑘 − 𝑒𝑡𝜗1Δ𝛿,𝑥𝑘 ) (−Δ𝛿,𝑥𝑘)−1𝐾, 𝐾𝑘,𝑙⟩𝐿2 (Λ𝛿,𝑥𝑘 )

− 𝛿2(1 − 𝜗1)
2(1 + 𝜗1)

⟨𝑒𝑡𝜗1Δ𝛿,𝑥𝑘 (−Δ𝛿,𝑥𝑘)−1𝐾, 𝐾𝑘,𝑙⟩𝐿2 (Λ𝛿,𝑥𝑘 ) .

With
𝑒𝑡𝜗1Δ𝛿,𝑥𝑘 − 𝑒𝑡Δ𝛿,𝑥𝑘 = (1 − 𝜗1)

∫ 𝑡

0
𝑒𝑠(𝜗1−1)Δ𝛿,𝑥𝑘 d𝑠 𝑒𝑡Δ𝛿,𝑥𝑘 (−Δ𝛿,𝑥𝑘),

as follows from the variation of parameters formula, see [18, p. 162], the identity 𝑒𝑡Δ𝛿,𝑥𝑘 =

𝑒(𝑡/2)Δ𝛿,𝑥𝑘 𝑒(𝑡/2)Δ𝛿,𝑥𝑘 and the Cauchy–Schwarz inequality, we get���⟨(𝑒𝑡Δ𝛿,𝑥𝑘 − 𝑒𝑡𝜗1Δ𝛿,𝑥𝑘 ) (−Δ𝛿,𝑥𝑘)−1𝐾, 𝐾𝑘,𝑙⟩𝐿2 (Λ𝛿,𝑥𝑘 )
���
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= |1 − 𝜗1 |
����∫ 𝑡

0
⟨𝑒𝑠(𝜗1−1)Δ𝛿,𝑥𝑘 𝑒(𝑡/2)Δ𝛿,𝑥𝑘 𝐾, 𝑒(𝑡/2)Δ𝛿,𝑥𝑘 𝐾𝑘,𝑙⟩𝐿2 (Λ𝛿,𝑥𝑘 ) d𝑠

���� (A.45)

≲ |1 − 𝜗1 |𝑡∥𝑒(𝑡/2)Δ𝛿,𝑥𝑘 𝐾∥𝐿2 (Λ𝛿,𝑥𝑘 ) ∥𝑒
(𝑡/2)Δ𝛿,𝑥𝑘 𝐾𝑘,𝑙∥𝐿2 (Λ𝛿,𝑥𝑘 ) .

In the same way, and using 𝐾 = Δ2 �̃�,���⟨𝑒𝑡𝜗1Δ𝛿,𝑥𝑘 (−Δ𝛿,𝑥𝑘)−1𝐾, 𝐾𝑘,𝑙⟩𝐿2 (Λ𝛿,𝑥𝑘 ) ��� (A.46)
≤ ∥𝑒(𝑡/2)𝜗1Δ𝛿,𝑥𝑘Δ�̃�∥𝐿2 (Λ𝛿,𝑥𝑘 ) ∥𝑒

(𝑡/2)𝜗1Δ𝛿,𝑥𝑘 𝐾𝑘,𝑙∥𝐿2 (Λ𝛿,𝑥𝑘 ) .

Lemma A.16 therefore gives 𝜅(1)
𝑘,𝑙

(𝑡𝛿2) ≲ 𝛿2 |1 − 𝜗1 | (1 ∧ 𝑡−1−𝑑/2+𝜀) for any 𝜀 > 0. Changing
variables one more time and recalling that 𝜗1 ≥ 1 already proves for the sum of diagonal terms
that ∑1≤𝑘≤𝑀 ∥𝜅

(1)
𝑘,𝑘

∥2
𝐿2 ( [0,𝑇 ] ) ≲ 𝛿6(1 − 𝜗1)2𝑀, and the implied constant depends only on 𝐾.

With respect to the off-diagonal terms, by exploring the different supports of 𝐾 and 𝐾 (· +
𝛿−1(𝑥𝑘 − 𝑥𝑙)), we can obtain a second bound for 𝜅(1)

𝑘,𝑙
. First, Lemma A.15 gives

sup
𝑦∈supp 𝐾

��(𝑒𝑡Δ𝛿,𝑥𝑘Δ2 �̃�𝑘,𝑙) (𝑦)
�� ≤ ∥𝑒𝑡Δ𝛿,𝑥𝑘Δ2 �̃�𝑘,𝑙∥𝐿∞ (Λ𝛿,𝑥𝑘 )

≲ ∥Δ2 �̃�𝑘,𝑙∥𝐿∞ (ℝ𝑑 ) ∧ (𝑡−2∥ �̃�𝑘,𝑙∥𝐿∞ (ℝ𝑑 ) ) ≲ 1 ∧ 𝑡−2, (A.47)

while on the other hand Lemma A.14(i) shows

sup
𝑦∈supp 𝐾

| (𝑒𝑡Δ𝛿,𝑥𝑘 𝐾𝑘,𝑙) (𝑦) | ≲ sup
𝑦∈supp 𝐾

| (𝑒𝑡Δ0 |𝐾𝑘,𝑙 |) (𝑦) |

= sup
𝑦∈supp 𝐾

∫
ℝ𝑑

(4𝜋𝑡)−𝑑/2 exp(−|𝑥 − 𝑦 |2/(4𝑡)) |𝐾𝑘,𝑙 (𝑥) | d𝑥

≤ (4𝜋𝑡)−𝑑/2𝑒−𝑐′
|𝑥𝑘−𝑥𝑙 |2
𝛿2𝑡 ∥𝐾∥𝐿1 (ℝ𝑑 ) ≲ 𝑡−𝑑/2𝑒−𝑐

′ |𝑥𝑘−𝑥𝑙 |2
𝛿2𝑡 , (A.48)

for some 𝑐′ > 0. By applying the Hölder inequality and using the results from the last two
displays we thus obtain for (A.45) the upper bound

(𝜗1 − 1)𝑡∥𝐾∥𝐿1 (ℝ) sup
0≤𝑠≤𝑡,𝑦∈supp 𝐾

| (𝑒(𝑡+𝑠(𝜗1−1) )Δ𝛿,𝑥𝑘 𝐾𝑘,𝑙) (𝑦) |1/2+1/2

≲ (𝜗1 − 1) sup
𝑦∈supp 𝐾

| (𝑒𝑡Δ0 |𝐾𝑘,𝑙 |) (𝑦) |1/2 ≲ (𝜗1 − 1)𝑡−𝑑/4𝑒−(𝑐′/2) |𝑥𝑘−𝑥𝑙 |
2

𝛿2𝑡 .

The same upper bound (up to the factor 𝜗1 − 1 and with 𝑐′ instead of 𝑐′/2) holds in (A.46).
Hence, together with the bound 𝜅

(1)
𝑘,𝑙

(𝑡𝛿2) ≲ 𝛿2(𝜗1 − 1)𝑡−(1+𝑑/2−𝜖𝑑/4) (1−𝜖)−1) from above (for
sufficiently small 𝜖) we get

|𝜅(1)
𝑘,𝑙

(𝑡𝛿2) | ≲ 𝛿2(𝜗1 − 1)min
(
𝑡−(1+𝑑/2−𝜖𝑑/4) (1−𝜖)−1 , 𝑡−𝑑/4𝑒−(𝑐′/2) |𝑥𝑘−𝑥𝑙 |

2
𝛿2𝑡

)
≤ 𝛿2(𝜗1 − 1)𝑡−1−𝑑/2𝑒−𝜖′

|𝑥𝑘−𝑥𝑙 |2
𝛿2𝑡 (A.49)

for 𝜖′ = 𝑐′𝜖/2, where we have used the inequality min(𝑎, 𝑏) ≤ 𝑎1−𝜖𝑏𝜖 valid for 𝑎, 𝑏 ≥ 0. Applying
the bound ∫ ∞

0
𝑡−𝑝−1𝑒−𝑎/𝑡 d𝑡 = 𝑎−𝑝

∫ ∞

0
𝑡−𝑝−1𝑒−1/𝑡 d𝑡 ≲ 𝑎−𝑝
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to 𝑝 = 1 + 𝑑 > 0 and 𝑎 = 2𝜖′𝛿−2 |𝑥𝑘 − 𝑥𝑙 |2 this means∫ 𝑇

0
𝜅
(1)
𝑘,𝑙

(𝑡)2 d𝑡 ≲ 𝛿6(1 − 𝜗1)2
∫ ∞

0
𝑡−2−𝑑𝑒−2𝜖

′ |𝑥𝑘−𝑥𝑙 |2
𝛿2𝑡 d𝑡

≲ 𝛿6(1 − 𝜗1)2
𝛿2+2𝑑

|𝑥𝑘 − 𝑥𝑙 |2+2𝑑
. (A.50)

Recalling that the 𝑥𝑘 are 𝛿-separated we obtain from Lemma A.27 below that∑︁
1≤𝑘≠𝑙≤𝑀

∥𝜅(1)
𝑘,𝑙

∥2
𝐿2 ( [0,𝑇 ] ) ≲ 𝛿6(1 − 𝜗1)2

𝑀∑︁
𝑘=1

𝑀∑︁
𝑙=1,𝑙≠𝑘

𝛿2+2𝑑

|𝑥𝑘 − 𝑥𝑙 |2+2𝑑
≲ 𝛿6(1 − 𝜗1)2𝑀.

Together with the bounds for the diagonal terms this yields in all ∑
1≤𝑘,𝑙≤𝑀 ∥𝜅

(1)
𝑘,𝑙

∥2
𝐿2 ( [0,𝑇 ] ) ≤

𝑐𝛿6𝑀 (1 − 𝜗1)2 for a constant 𝑐 depending only on 𝐾.

Case 𝑗 = 3 We begin again with the scaling from Lemma A.13 and changing variables such
that with the multiplication operators 𝑉𝑡,𝑡′,𝛿(𝑥) = 1 − 𝑒𝑐𝜗1𝛿

2 (𝑡+𝑡′ )−(2𝜗1 )−1𝜗2𝛿𝑏·𝑥

𝜅
(3)
𝑘,𝑙

(𝑡𝛿2) = 𝛿2
∫ ∞

0
⟨𝑒(𝑡+𝑡′ )𝜗1Δ𝛿,𝑥𝑘𝑉𝑡,𝑡′,𝛿𝐾, 𝑒𝑡

′𝜗1Δ𝛿,𝑥𝑘 𝐾𝑘,𝑙⟩𝐿2 (Λ𝛿,𝑥𝑘 ) d𝑡
′

= 𝛿2
∫ ∞

0
⟨𝑒(𝑡/2+𝑡′ )𝜗1Δ𝛿,𝑥𝑘𝑉𝑡,𝑡′,𝛿𝐾, 𝑒(𝑡/2+𝑡

′ )𝜗1Δ𝛿,𝑥𝑘 𝐾𝑘,𝑙⟩𝐿2 (Λ𝛿,𝑥𝑘 ) d𝑡
′. (A.51)

Since 𝐾 is compactly supported and �̃�𝜗1 ≤ 0, 𝑉𝑡,𝑡′,𝛿 can be extended to smooth multiplication
operators with operator norms bounded by 𝑣𝑡,𝑡′,𝛿 = −�̃�𝜗1𝛿2(𝑡 + 𝑡′) + (2𝜗1)−1𝛿𝜗2. Recalling
𝐾 = Δ2 �̃�, Lemma A.16 gives for any 𝜖 > 0

|𝜅(3)
𝑘,𝑙

(𝑡𝛿2) | ≤ 𝛿2
∫ ∞

0
∥𝑒(𝑡/2+𝑡′ )𝜗1Δ𝛿,𝑥𝑘𝑉𝑡,𝑡′,𝛿𝐾∥𝐿2 (Λ𝛿,𝑥𝑘 ) ∥𝑒

(𝑡/2+𝑡′ )𝜗1Δ𝛿,𝑥𝑘 𝐾𝑘,𝑙∥𝐿2 (Λ𝛿,𝑥𝑘 ) d𝑡
′

≤ 𝛿2
∫ ∞

0
𝑣𝑡,𝑡′,𝛿(1 ∧ (𝑡 + 𝑡′)−4−𝑑/2+𝜖) d𝑡′ ≲ 𝛿3(−�̃�𝜗1𝛿 + (2𝜗1)−1𝜗2) (1 ∧ 𝑡−1−𝑑/2)

≤ 𝛿3(𝛿|𝜗3 | + 𝜗2) (1 ∧ 𝑡−1−𝑑/2), (A.52)

recalling in the last line that 𝜗1 ≥ 1 and 𝜗2 ≤ 1. Changing variables therefore proves for the
sum of diagonal terms ∑

1≤𝑘≤𝑀 ∥𝜅
(3)
𝑘,𝑘

∥2
𝐿2 ( [0,𝑇 ] ) ≲ 𝛿8(𝛿|𝜗3 | + 𝜗2)2𝑀.

With respect to the off-diagonal terms we have

𝜅
(3)
𝑘,𝑙

(𝑡𝛿2) = 𝛿2
∫ ∞

0
⟨𝑉𝑡,𝑡′,𝛿𝐾, 𝑒(𝑡+2𝑡

′ )𝜗1Δ𝛿,𝑥𝑘 𝐾𝑘,𝑙⟩𝐿2 (Λ𝛿,𝑥𝑘 ) d𝑡
′.

Write 𝐾 = Δ�̄� for some compactly supported �̄� and note that

𝑉𝑡,𝑡′,𝛿𝐾 = 𝑉𝑡,𝑡′,𝛿Δ�̄� = Δ(𝑉𝑡,𝑡′,𝛿 �̄�) − (Δ𝑉𝑡,𝑡′,𝛿) �̄� − 2∇𝑉𝑡,𝑡′,𝛿 · ∇�̄�.

Similar to (A.47) we find from Lemma A.15

sup
𝑦∈supp �̄�

��(Δ𝑒𝑡Δ𝛿,𝑥𝑘 𝐾𝑘,𝑙) (𝑦)�� ≲ ∥Δ𝐾𝑘,𝑙∥𝐿∞ (ℝ𝑑 ) ∧ (𝑡−3∥ �̃�𝑘,𝑙∥𝐿∞ (ℝ𝑑 ) ) ≲ 1 ∧ 𝑡−3.



62 Chapter A. Optimal parameter estimation for linear SPDEs

Together with the Hölder inequality and (A.48) this provides us for sufficiently small 𝜖 > 0 with

𝛿2
����∫ ∞

0
⟨Δ(𝑉𝑡,𝑡′,𝛿 �̄�), 𝑒(𝑡+2𝑡

′ )𝜗1Δ𝛿,𝑥𝑘 𝐾𝑘,𝑙⟩𝐿2 (Λ𝛿,𝑥𝑘 ) d𝑡
′
����

= 𝛿2
����∫ ∞

0
⟨𝑉𝑡,𝑡′,𝛿 �̄�, Δ𝑒(𝑡+2𝑡

′ )𝜗1Δ𝛿,𝑥𝑘 𝐾𝑘,𝑙⟩𝐿2 (Λ𝛿,𝑥𝑘 ) d𝑡
′
����

≲ 𝛿2
∫ ∞

0
𝑣𝑡,𝑡′,𝛿∥ �̄�∥𝐿1 (ℝ𝑑 ) sup

𝑦∈supp 𝐾

���(Δ𝑒(𝑡+2𝑡′ )𝜗1Δ𝛿,𝑥𝑘 𝐾𝑘,𝑙) (𝑦)��� d𝑡′
≲ 𝛿2

∫ ∞

0
𝑣𝑡,𝑡′,𝛿(1 ∧ (𝑡 + 2𝑡′))−3(1−𝜀) sup

𝑦∈supp 𝐾

���(𝑒(𝑡+2𝑡′ )𝜗1Δ𝛿,𝑥𝑘Δ𝐾𝑘,𝑙) (𝑦)���𝜖 d𝑡′
≲ 𝛿3(𝛿|𝜗3 | + 𝜗2)𝑒−𝜖𝑐

′ |𝑥𝑘−𝑥𝑙 |2
𝛿2𝑡

∫ ∞

0
(1 ∧ (𝑡′)−1−𝜖𝑑/2) d𝑡′ ≲ 𝛿3(𝛿|𝜗3 | + 𝜗2)𝑒−𝜖𝑐

′ |𝑥𝑘−𝑥𝑙 |2
𝛿2𝑡 .

Next, using 𝜗2 ≤ 1, we have ∥Δ𝑉𝑡,𝑡′,𝛿∥𝐿∞ (Λ𝛿,𝑥𝑘 ) + ∥|∇𝑉𝑡,𝑡′,𝛿 |∥𝐿∞ (Λ𝛿,𝑥𝑘 ) ≲ 𝛿𝜗2, and so analogously to
the computations in the last display

𝛿2
����∫ ∞

0
⟨(Δ𝑉𝑡,𝑡′,𝛿) �̄� + 2∇𝑉𝑡,𝑡′,𝛿 · ∇�̄�, 𝑒(𝑡+2𝑡

′ )𝜗1Δ𝛿,𝑥𝑘 𝐾𝑘,𝑙⟩𝐿2 (Λ𝛿,𝑥𝑘 ) d𝑡
′
����

≲ 𝛿3𝜗2

∫ ∞

0
(∥ �̄�∥𝐿1 (ℝ𝑑 ) + ∥|∇�̄� |∥𝐿1 (ℝ𝑑 ) ) sup

𝑦∈supp 𝐾

���(𝑒(𝑡+2𝑡′ )𝜗1Δ𝛿,𝑥𝑘 𝐾𝑘,𝑙) (𝑦)��� d𝑡′
≲ 𝛿3𝜗2𝑒

−𝜖𝑐′ |𝑥𝑘−𝑥𝑙 |
2

𝛿2𝑡 .

In all, this means |𝜅(3)
𝑘,𝑙

(𝑡𝛿2) | ≲ 𝛿3(𝛿|𝜗3 | + 𝜗2)𝑒−𝜖𝑐
′ |𝑥𝑘−𝑥𝑙 |2

𝛿2𝑡 . Arguing as for (A.49) and (A.50), as

well as using (A.52) we conclude that |𝜅(3)
𝑘,𝑙

(𝑡𝛿2) | ≲ 𝛿3(𝛿|𝜗3 | + 𝜗2)𝑡−1/2−𝑑/2𝑒−𝜖
′ |𝑥𝑘−𝑥𝑙 |2

𝛿2𝑡 for some
𝜖′ > 0 and ∫ 𝑇

0
𝜅
(3)
𝑘,𝑙

(𝑡)2 d𝑡 ≲ 𝛿8+2𝑑 (𝛿|𝜗3 | + 𝜗2)2
|𝑥𝑘 − 𝑥𝑙 |2𝑑

.

We thus get for diagonal and off-diagonal terms that∑1≤𝑘,𝑙≤𝑀 ∥𝜅
(3)
𝑘,𝑙

∥2
𝐿2 ( [0,𝑇 ] ) ≤ 𝑐𝛿8(𝛿|𝜗3 | +𝜗2)2𝑀

for a constant 𝑐 depending only on 𝐾.

Case 𝑗 = 4 As in the previous cases we have

𝜅
(4)
𝑘,𝑙

(𝑡𝛿2) = 𝛿2
∫ ∞

0
⟨(𝑒−𝛿(𝜗2/𝜗1 )𝑏·𝑥 − 1)𝑆∗

𝜗1,𝛿,𝑥𝑘
(𝑡 + 𝑡′)𝐾, 𝑒𝑡′𝜗1Δ𝛿,𝑥𝑘 𝐾𝑘,𝑙⟩𝐿2 (Λ𝛿,𝑥𝑘 ) d𝑡

′.

Using the Cauchy–Schwarz inequality, Lemma A.14(i) and Lemma A.16 with 𝐾 = Δ2 �̃� we get
for any 𝜖 > 0, and recalling that 𝜗1 ≥ 1,

⟨(𝑒−𝛿(𝜗2/𝜗1 )𝑏·𝑥 − 1)𝑆∗
𝜗1,𝛿,𝑥𝑘

(𝑡 + 𝑡′)𝐾, 𝑒𝑡′𝜗1Δ𝛿,𝑥𝑘 𝐾𝑘,𝑙⟩𝐿2 (Λ𝛿,𝑥𝑘 )
≲ 𝛿𝜗2(1 ∧ (𝑡 + 𝑡′)−2−𝑑/4+𝜖)∥ |𝑥 |𝑒𝑡′𝜗1Δ0 |𝐾𝑘,𝑙 |∥𝐿2 (ℝ𝑑 ) . (A.53)

Note that 𝐾𝑘,𝑙 ∈ 𝐶1
𝑐 (ℝ𝑑) such that |𝐾𝑘,𝑙 | ∈ 𝐻1,∞(ℝ𝑑) and ∇|𝐾𝑘,𝑙 | ∈ 𝐿∞(ℝ𝑑) with compact support.

Using now [4, Lemma A.2(ii)] to the extent that
𝑥 (𝑒𝑡′𝜗1Δ0 |𝐾𝑘,𝑙 |) (𝑥) = (𝑒𝑡′𝜗1Δ0 (−2𝑡′𝜗1∇|𝐾𝑘,𝑙 | + 𝑥 |𝐾𝑘,𝑙 |)) (𝑥), (A.54)
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we find that the 𝐿2(ℝ𝑑)-norm in (A.53) is uniformly bounded in 𝑡′ > 0. Hence, |𝜅(4)
𝑘,𝑙

(𝑡𝛿2) | ≲
𝛿3𝜗2(1 ∧ 𝑡−1/2−𝑑/4−𝜖) and changing variables shows for the sum of diagonal terms∑︁

1≤𝑘≤𝑀
∥𝜅(4)

𝑘,𝑘
∥2
𝐿2 ( [0,𝑇 ] ) ≲ 𝛿8𝜗22𝑀.

Regarding the off-diagonal terms we have similarly for some �̄� ∈ 𝐿∞(ℝ𝑑) having compact
support ���⟨(𝑒−𝛿(𝜗2/𝜗1 )𝑏·𝑥 − 1)𝑆∗

𝜗1,𝛿,𝑥𝑘
(𝑡 + 𝑡′)𝐾, 𝑒𝑡′𝜗1Δ𝛿,𝑥𝑘 𝐾𝑘,𝑙⟩𝐿2 (Λ𝛿,𝑥𝑘 )

���
=

���⟨𝐾, 𝑆𝜗1,𝛿,𝑥𝑘 (𝑡 + 𝑡′) (𝑒−𝛿(𝜗2/𝜗1 )𝑏·𝑥 − 1)𝑒𝑡′𝜗1Δ𝛿,𝑥𝑘 𝐾𝑘,𝑙⟩𝐿2 (Λ𝛿,𝑥𝑘 )
���

≲ 𝛿𝜗2∥𝐾∥𝐿1 (ℝ𝑑 ) sup
𝑦∈supp 𝐾

���(𝑒(𝑡+𝑡′ )𝜗1Δ0 |𝑥 |𝑒𝑡′𝜗1Δ0 |𝐾𝑘,𝑙 |
)
(𝑦)

���
≲ 𝛿𝜗2(1 ∨ 𝑡′) sup

𝑦∈supp 𝐾

���(𝑒(𝑡+2𝑡′ )𝜗1Δ0 | �̄�𝑘,𝑙 |
)
(𝑦)

���
≲ 𝛿𝜗2(1 ∨ 𝑡′)𝑡−𝑑/2𝑒−𝑐

′ |𝑥𝑘−𝑥𝑙 |2
𝛿2𝑡 ,

using (A.48). Arguing as for (A.49) and (A.50) we then find from combining the last display
with (A.53) that |𝜅(4)

𝑘,𝑙
(𝑡𝛿2) | ≲ 𝛿3𝜗2𝑡−1/2−𝑑/4−𝜖

′
𝑒
−𝜖′ |𝑥𝑘−𝑥𝑙 |

2
𝛿2𝑡 for some 𝜖′ > 0 and∫ 𝑇

0
𝜅
(4)
𝑘,𝑙

(𝑡)2 d𝑡 ≲
𝛿8+𝑑+4𝜖

′
𝜗22

|𝑥𝑘 − 𝑥𝑙 |4𝜖′+𝑑
,

and so in all, for diagonal and off-diagonal terms, ∑
1≤𝑘,𝑙≤𝑀 ∥𝜅

(4)
𝑘,𝑙

∥2
𝐿2 ( [0,𝑇 ] ) ≤ 𝑐𝛿8𝜗22𝑀 for a

constant 𝑐 depending only on 𝐾. ■

Lemma A.27. Let 𝑥1, . . . , 𝑥𝑀 be 𝛿-separated points in ℝ𝑑 , and let 𝑝 > 𝑑. Then we have
𝑀∑︁
𝑘=2

1
|𝑥1 − 𝑥𝑘 |𝑝

≤ 𝐶𝛿−𝑝,

where 𝐶 is a constant depending only on 𝑑 and 𝑝.

Proof. Since 𝑥1, . . . , 𝑥𝑀 are 𝛿-separated, the Euclidean balls 𝐵(𝑥𝑘, 𝛿/2) = {𝑦 ∈ ℝ𝑑 : |𝑦 − 𝑥𝑘 | ≤
𝛿/2} around the 𝑥𝑘 of radius 𝛿/2 are disjoint. Moreover, for 𝑦 ∈ 𝐵(𝑥𝑘, 𝛿/2) and 𝑘 > 1, we have

|𝑦 − 𝑥1 | ≤ |𝑦 − 𝑥𝑘 | + |𝑥𝑘 − 𝑥1 | ≤
𝛿

2 + |𝑥𝑘 − 𝑥1 | ≤
3
2 |𝑥𝑘 − 𝑥1 |,

implying that
1

|𝑥𝑘 − 𝑥1 |
≤ 3

2
1

|𝑦 − 𝑥1 |
.

We conclude that
𝑀∑︁
𝑘=2

1
|𝑥1 − 𝑥𝑘 |𝑝

=

𝑀∑︁
𝑘=2

1
vol(𝐵(𝑥𝑘, 𝛿/2))

∫
𝐵(𝑥𝑘,𝛿/2)

1
|𝑥1 − 𝑥𝑘 |𝑝

d𝑦



64 Chapter A. Optimal parameter estimation for linear SPDEs

≤ (3/2) 𝑝
(𝛿/2)𝑑 vol(𝐵(0, 1))

𝑀∑︁
𝑘=2

∫
𝐵(𝑥𝑘,𝛿/2)

1
|𝑦 − 𝑥1 |𝑝

d𝑦

≤ (3/2) 𝑝
(𝛿/2)𝑑 vol(𝐵(0, 1))

∫
𝐵(𝑥1,𝛿/2) 𝑐

1
|𝑦 − 𝑥1 |𝑝

d𝑦

=
(3/2) 𝑝

(𝛿/2)𝑑 vol(𝐵(0, 1))

∫
𝐵(0,𝛿/2) 𝑐

1
|𝑦 |𝑝 d𝑦.

Changing to polar coordinates, we arrive at
𝑀∑︁
𝑘=2

1
|𝑥1 − 𝑥𝑘 |𝑝

≤ 𝑑(3/2) 𝑝
(𝛿/2)𝑑

∫ ∞

𝛿/2

1
𝑡𝑝
𝑡𝑑−1 d𝑡 = 𝑑(3/2) 𝑝

(𝛿/2) 𝑝
∫ ∞

1
𝑠𝑑−𝑝−1 d𝑠.

Since 𝑝 > 𝑑, the latter integral is finite, and the claim follows. ■

A.7.6 Proof of Theorem A.9

Argue as in the proof of Theorem A.7, using slight modifications of Lemmas A.23 and A.24. The
key additional ingredient is an appropriate extension of Corollary A.6. For this, let 𝐴1, . . . , 𝐴𝑝
be as in Section A.2.1. We assume that

(𝐴∗𝑖 𝐾)
𝑝

𝑖=1 are linearly independent in 𝐿2(Λ). (A.55)

Define

𝐻 =

(〈 𝐴∗
𝑖
𝐾

∥𝐴∗
𝑖
𝐾∥𝐿2 (Λ)

,
𝐴∗
𝑗
𝐾

∥𝐴∗
𝑗
𝐾∥𝐿2 (Λ)

〉) 𝑝
𝑖, 𝑗=1

,

and let 𝜆min = 𝜆min(𝐻) be the smallest eigenvalue of 𝐻. By (A.55), 𝐻 is non-singular, meaning
that 𝜆min(𝐻) > 0. Finally, let

𝑣 =

𝑝∑︁
𝑖=1

∥Δ𝐴∗
𝑖
𝐾∥2

𝐿2 (Λ)

∥𝐴∗
𝑖
𝐾∥2

𝐿2 (Λ)
.

Corollary A.28. Let (𝐻𝑋𝛿 , ∥ · ∥𝑋𝛿) be the RKHS of the measurements 𝑋𝛿 with differential operator
𝐴𝜗 = Δ, where 𝑋𝛿(𝑡) = (⟨𝑋 (𝑡), 𝐾1𝑘⟩, . . . , ⟨𝑋 (𝑡), 𝐾𝑝𝑘⟩)𝑀𝑘=1 and 𝐾𝑖𝑘 = 𝐴∗

𝑖
𝐾𝛿,𝑥𝑘/∥𝐴∗𝑖 𝐾𝛿,𝑥𝑘 ∥𝐿2 (Λ) . Then

we have 𝐻𝑋𝛿 = (𝐻 𝑝)𝑀 and

∥((ℎ𝑖𝑝) 𝑝𝑖=1)
𝑀
𝑘=1∥

2
𝑋𝛿

≤ 4𝑣𝑝
𝛿4𝜆2min

𝑀∑︁
𝑘=1

𝑝∑︁
𝑖=1

∥ℎ𝑖𝑘∥2𝐿2 ( [0,𝑇 ] ) +
2

𝜆2min

𝑀∑︁
𝑘=1

𝑝∑︁
𝑖=1

∥ℎ′𝑖𝑘∥
2
𝐿2 ( [0,𝑇 ] )

for all ((ℎ𝑖𝑝) 𝑝𝑖=1)
𝑀
𝑘=1 ∈ (𝐻 𝑝)𝑀 , 𝛿2 ≤

√
𝑣 and 𝑇 ≥ 1.

Proof of Corollary A.28. First, let 𝑀 = 1. Additionally to 𝐻, define

𝐻Δ =

(〈 Δ𝐴∗
𝑖
𝐾

∥𝐴∗
𝑖
𝐾∥𝐿2 (Λ)

,
Δ𝐴∗

𝑗
𝐾

∥𝐴∗
𝑗
𝐾∥𝐿2 (Λ)

〉) 𝑝
𝑖, 𝑗=1

.
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By the Cauchy–Schwarz inequality, we have ∥𝐻Δ∥op ≤ 𝑣. Moreover, we have 𝐺 = 𝐻 and
𝐺Δ = 𝛿−4𝐻Δ. Inserting these bounds into Theorem A.5, we obtain that

∥(ℎ𝑖) 𝑝𝑖=1∥
2
𝑋𝐾

≤
( 3𝑣
𝛿4𝜆2min

+ 1
𝜆min

) 𝑝∑︁
𝑖=1

∥ℎ𝑖∥2𝐿2 ( [0,𝑇 ] ) +
2

𝜆min

𝑝∑︁
𝑖=1

∥ℎ′𝑖 ∥2𝐿2 ( [0,𝑇 ] ) .

Next, let 𝑀 > 1. Then 𝐺 and 𝐺Δ are block-diagonal with 𝑀 equal 𝑝 × 𝑝-blocks all of the above
form and we get

∥((ℎ𝑖) 𝑝𝑖=1)
𝑀
𝑘=1∥

2
𝑋𝐾

≤ 4𝑣
𝛿4𝜆2min

𝑝∑︁
𝑖=1

𝑀∑︁
𝑘=1

∥ℎ𝑖𝑘∥2𝐿2 ( [0,𝑇 ] ) +
2

𝜆2min

𝑝∑︁
𝑖=1

𝑀∑︁
𝑘=1

∥ℎ′𝑖𝑘∥
2
𝐿2 ( [0,𝑇 ] ) ,

where we also used that 𝜆min ∈ (0, 1] and 𝛿2 ≤
√
𝑣. ■

A.7.7 Second proof of Theorem A.5

In this Appendix, we prove Theorem A.5 under the weaker assumption 𝐾1, . . . , 𝐾𝑀 ∈ D(𝐴). This
is achieved by an additional approximation argument. Let 𝑋𝑚 (𝑡) =

∑
𝑗≤𝑚 𝑌𝑗 (𝑡)𝑒 𝑗, 0 ≤ 𝑡 ≤ 𝑇 , be

the projection of 𝑋 (𝑡) onto 𝑉𝑚 = span{𝑒1, . . . , 𝑒𝑚}, and taking values in 𝐿2( [0, 𝑇];𝑉𝑚). We start
with the following consequence of Lemma A.20.

Lemma A.29. For every 𝑚 ≥ 1, the RKHS (𝐻𝑋𝑚 , ∥ · ∥𝑋𝑚) of 𝑋𝑚 satisfies

𝐻𝑋𝑚 =

{
ℎ =

𝑚∑︁
𝑗=1

ℎ 𝑗𝑒 𝑗 : ℎ 𝑗 ∈ 𝐻, 1 ≤ 𝑗 ≤ 𝑚
}

and ∥ℎ∥2𝑋𝑚 =

𝑚∑︁
𝑗=1

∥ℎ 𝑗∥2𝑌𝑗 .

Moreover, we have ∥ℎ∥𝑋𝑚 = ∥ℎ∥𝑋 with the latter norm defined in Theorem A.4.

Proof. Since 𝐿2( [0, 𝑇];𝑉𝑚) is isomorphic to 𝐿2( [0, 𝑇])𝑚, it suffices to compute the RKHS of the
coefficient vector 𝑌 = (𝑌1, . . . , 𝑌𝑚). Using that 𝑌1, . . . , 𝑌𝑚 are independent stationary Ornstein–
Uhlenbeck processes, the vector 𝑌 is a Gaussian process in 𝐿2( [0, 𝑇])𝑚 with expectation zero and
covariance operator

⊕𝑚
𝑗=1 𝐶𝑌𝑗 with 𝐶𝑌𝑗 : 𝐿2( [0, 𝑇]) → 𝐿2( [0, 𝑇]) being the covariance operator

of 𝑌𝑗. Combining this with (A.23) and Lemma A.20, we conclude that the RKHS of 𝑌 is equal to
𝐻𝑚 with norm ∑𝑚

𝑗=1∥ℎ 𝑗∥2𝑌𝑗 . Translating this back to 𝑋𝑚, the first claim follows. The second one
follows from (𝜆 𝑗, 𝑒 𝑗)∞𝑗=1 being an eigensystem of −𝐴. ■

Proof of Theorem A.5. The first step will be to compute the RKHS (𝐻𝑋𝐾,𝑚 , ∥ · ∥𝑋𝐾,𝑚) of 𝑋𝐾,𝑚 =

(⟨𝑋𝑚, 𝐾𝑘⟩H)𝑀𝑘=1. To this end define the bounded linear map

𝐿 : 𝐿2( [0, 𝑇];𝑉𝑚) → 𝐿2( [0, 𝑇])𝑀 , 𝑓 ↦→ (⟨ 𝑓 , 𝐾𝑘⟩H)𝑀𝑘=1.

Combining the fact that 𝐿𝑋𝑚 = 𝑋𝐾,𝑚 in distribution with Proposition 4.1 in [38] and Lemma
A.29, we obtain that 𝐻𝑋𝐾,𝑚 = 𝐿({ℎ : ℎ =

∑𝑚
𝑗=1 ℎ 𝑗𝑒 𝑗 : ℎ 𝑗 ∈ 𝐻}). This implies 𝐻𝑋𝐾,𝑚 ⊂ 𝐻𝑀 . To see

the reverse inclusion, let 𝑃𝑚 be the orthogonal projection of 𝐿2(Λ) onto 𝑉𝑚 = span{𝑒1, . . . , 𝑒𝑚},
and let 𝐺𝑚 = (⟨𝑃𝑚𝐾𝑘, 𝑃𝑚𝐾𝑙⟩H)𝑀𝑘,𝑙=1. Since (𝑒 𝑗) 𝑗≥1 is an orthonormal basis of H, 𝐺𝑚 tends (e.g.,
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in operator norm) to 𝐺 as 𝑚 → ∞. Since 𝐺 is non-singular, we deduce that 𝐺𝑚 is non-singular
for all 𝑚 large enough (which we assume from now on). Hence, for (ℎ𝑘)𝑀𝑘=1 ∈ 𝐻𝑀 , we have that

𝑓 =

𝑀∑︁
𝑘,𝑙=1

(𝐺𝑚)−1𝑘,𝑙 𝑃𝑚𝐾𝑘ℎ𝑙 ∈ 𝐻𝑋𝑚 satisfies 𝐿 𝑓 = (ℎ𝑘)𝑀𝑘=1, (A.56)

where we also used that 𝑃𝑚𝐾𝑘 ∈ 𝑉𝑚 for all 1 ≤ 𝑘 ≤ 𝑀. Hence, 𝐻𝑀 ⊂ 𝐻𝑋𝐾,𝑚 and therefore
𝐻𝑋𝐾,𝑚 = 𝐻𝑀 . Moreover, combining (A.56) with Proposition 4.1 in [38] and the fact that
𝐴𝑃𝑚 = 𝑃𝑚𝐴, we get from Lemma A.29

∥(ℎ𝑘)𝑀𝑘=1∥
2
𝑋𝐾,𝑚

≤ ∥
𝑀∑︁

𝑘,𝑙=1
(𝐺𝑚)−1𝑘,𝑙 𝑃𝑚𝐾𝑘ℎ𝑙∥

2
𝑋

≤ 3∥𝑃𝑚
𝑀∑︁

𝑘,𝑙=1
(𝐺𝑚)−1𝑘,𝑙 𝐴𝐾𝑘ℎ𝑙∥

2
𝐿2 ( [0,𝑇 ];H) + ∥𝑃𝑚

𝑀∑︁
𝑘,𝑙=1

(𝐺𝑚)−1𝑘,𝑙 𝐾𝑘ℎ𝑙∥
2
𝐿2 ( [0,𝑇 ];H)

+ 2∥𝑃𝑚
𝑀∑︁

𝑘,𝑙=1
(𝐺𝑚)−1𝑘,𝑙 𝐾𝑘ℎ

′
𝑙 ∥

2
𝐿2 ( [0,𝑇 ];H) .

Letting 𝑚 go to infinity, in which case (𝐺𝑚)−1 converges to 𝐺−1, and so by definition of 𝐺𝐴, the
last display becomes

lim sup
𝑚→∞

∥(ℎ𝑘)𝑀𝑘=1∥
2
𝑋𝐾,𝑚

≤ 3
∫ 𝑇

0

𝑀∑︁
𝑘,𝑙=1

(𝐺−1𝐺𝐴𝐺
−1)𝑘𝑙ℎ𝑘 (𝑡)ℎ𝑙 (𝑡) d𝑡 +

∫ 𝑇

0

𝑀∑︁
𝑘,𝑙=1

(𝐺−1)𝑘𝑙ℎ𝑘 (𝑡)ℎ𝑙 (𝑡) d𝑡

+ 2
∫ 𝑇

0

𝑀∑︁
𝑘,𝑙=1

(𝐺−1)𝑘𝑙ℎ′𝑘 (𝑡)ℎ
′
𝑙 (𝑡) d𝑡.

Using standard results for the operator norm of symmetric matrices yields thus the upper bound
claimed for lim sup𝑚→∞∥(ℎ𝑘)𝑀𝑘=1∥

2
𝑋𝐾,𝑚

in the statement of the theorem to hold for ∥ℎ∥2𝑋𝐾 .
Next, we use the above results to compute the RKHS of 𝑋𝐾 = (⟨𝑋, 𝐾𝑘⟩H)𝑀𝑘=1. First, let us argue

that the RKHS of a single measurement ⟨𝑋, 𝐾𝑘⟩H (as a set) equals 𝐻. Combining Girsanov’s
theorem for the Itô process ⟨𝑋, 𝐾𝑘⟩H in (A.6) with Feldman–Hájek’s theorem, the RKHS of
⟨𝑋, 𝐾𝑘⟩H starting in zero is 𝐻𝛽. Adding an independent Gaussian random variable with variance
greater zero, we obtain that in the stationary case ⟨𝑋, 𝐾𝑘⟩H has RKHS 𝐻 = 𝐻𝛽 (see also the proof
of Lemma A.20). Now, consider the case 𝑀 > 1. By Proposition 4.1 in [38], each coordinate
projection maps the RKHS of 𝑋𝐾 to the RKHS of a single measurement, thus to 𝐻 by the first
step. Hence, we have 𝐻𝑋𝐾 ⊂ 𝐻𝑀 . It remains to show the reverse inclusion 𝐻𝑀 = 𝐻𝑋𝐾,𝑚 ⊂ 𝐻𝑋𝐾 .
To see this, note that

⟨𝑋𝑚, 𝐾𝑘⟩H =

𝑚∑︁
𝑗=1

⟨𝐾𝑘, 𝑒 𝑗⟩H𝑌𝑗 and ⟨𝑋, 𝐾𝑘⟩H =

∞∑︁
𝑗=1

⟨𝐾𝑘, 𝑒 𝑗⟩H𝑌𝑗,

so that 𝑋𝐾 = 𝑋𝐾,𝑚 + (𝑋𝐾 − 𝑋𝐾,𝑚) can be written as a sum of two independent processes taking
values in the Hilbert space 𝐿2( [0, 𝑇])𝑀 . Letting 𝐶𝐾 and 𝐶𝐾,𝑚 be the covariance operators of
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𝑋𝐾 and 𝑋𝐾,𝑚, respectively, this implies that 𝐶𝐾 = 𝐶𝐾,𝑚 + 𝐶 with 𝐶 self-adjoint and positive.
Combining this with the characterisation of the RKHS norm in Proposition 2.6.8 of [22], we get
∥(ℎ𝑘)𝑀𝑘=1∥

2
𝑋𝐾

≤ ∥(ℎ𝑘)𝑀𝑘=1∥
2
𝑋𝐾,𝑚

and 𝐻𝑋𝐾,𝑚 ⊂ 𝐻𝑋𝐾 for all 𝑚 ≥ 1. Finally, inserting the upper bound
on ∥(ℎ𝑘)𝑀𝑘=1∥

2
𝑋𝐾,𝑚

derived above, the proof is complete. ■
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Nonparametric velocity estimation in stochastic
convection-diffusion equations from multiple local
measurements

BClaudia Strauch and Anton Tiepner

Abstract

We investigate pointwise estimation of the function-valued velocity field of a second-
order linear SPDE. Based on multiple spatially localised measurements, we construct a
weighted augmented MLE and study its convergence properties as the spatial resolution of
the observations tends to zero and the number of measurements increases. By imposing
Hölder smoothness conditions, we recover the pointwise convergence rate known to be
minimax-optimal in the linear regression framework. The optimality of the rate in the
current setting is verified by adapting the lower bound ansatz based on the RKHS of local
measurements to the nonparametric situation.

B.1 Introduction

Stochastic partial differential equations (SPDEs) are an appealing tool to model spatio-temporal
data. They describe the evolution of dynamical systems and can be utilised in almost all areas of
natural sciences, finance, economics, and many more applied disciplines. By including random
forcing terms, SPDEs also account for microscopic scaling limits or model misspecification.
We will focus on the important subclass of stochastic convection-diffusion or advection-diffusion
equations which can also serve as a basis for more complex models. They describe the movement
of quantities (such as particles, heat, energy, etc.) in a physical system and find applications in,
but are not limited to, weather forecasts [31, 39, 40], neuronal responses [44, 45], solar radiation
[10], air quality [30], sediment concentrations [41], biomass distributions [13], groundwater
flows [38], and term structure movements [11].

More specifically, for a finite time horizon 𝑇 , we consider the solution 𝑋 = (𝑋 (𝑡))0≤𝑡≤𝑇 to the
linear parabolic SPDE 

d𝑋 (𝑡) = 𝐴𝜗𝑋 (𝑡) d𝑡 + d𝑊 (𝑡), 𝑡 ∈ (0, 𝑇],
𝑋 (0) = 𝑋0 ∈ 𝐿2(Λ),
𝑋 (𝑡) |𝜕Λ = 0, 𝑡 ∈ (0, 𝑇],

(B.1)

on a bounded open domain Λ ⊂ ℝ𝑑 with 𝐶2-boundary 𝜕Λ, Dirichlet boundary conditions, driven
by a cylindrical Brownian motion 𝑊 = (𝑊 (𝑡))0≤𝑡≤𝑇 . The second-order elliptic operator 𝐴𝜗
appearing in (B.1) is specified as

𝐴𝜗𝑧 = 𝑎Δ𝑧 + 𝜗 · ∇𝑧 + 𝑐𝑧, (B.2)

where 𝑎 > 0, 𝜗 and 𝑐 represent the (constant) diffusivity, the velocity field and the reaction
coefficient, inducing spatial diffusion, transportation and damping, respectively. While the
analytical theory of SPDEs is well understood and established, see, e.g., [12, 20, 29, 33], the
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literature on their statistical aspects is somewhat limited, and many research questions are still
open. As a concrete example, to the best of our knowledge, estimation of a function-valued
velocity has not yet been investigated. Wewant to fill in this gap by estimating the function-valued
velocity field 𝜗 by means of nonparametric methods based on local measurements.

Parameter estimation for SPDEs is widely studied in the literature, but primarily devoted to a
scalar parameter in 𝐴𝜗 = 𝜗𝐴 + 𝐵 for some (non-) linear operators 𝐴 and 𝐵. When 𝐴 and 𝐵 share
a common system of eigenvectors and are self-adjoint, [23] constructed a maximum likelihood
estimator (MLE) for 𝜗, relying on 𝑁 spectral measurements (⟨𝑋 (𝑡), 𝑒𝑖⟩)0≤𝑡≤𝑇 , 𝑖 = 1, . . . , 𝑁, with
an eigenbasis (𝑒𝑖)𝑖≥1. Given some relation between the differential order of 𝐴 and 𝐵 and the
dimension 𝑑, the derived MLE was shown to be consistent and asymptotically normal. This
so-called spectral approach was subsequently adapted and extended to different settings, such
as nonlinear SPDEs [8, 36], fractional noise [9], or joint parameter estimation [34]. However,
the majority of these studies considered the case where 𝜗 specifies the highest order operator,
i.e., ord(𝐴) > ord(𝐵), and there is no known estimator for a constant transport coefficient 𝜗 in
(B.2) in the spectral approach setting. Based on discrete observations 𝑋 (𝑡 𝑗, 𝑥𝑖) in time and space,
[22, 26, 42] analysed power variations and contrast estimators in dimension one and two for all
occurring quantities in the parametric version of (B.2). Reaction or source-sink terms have been
studied, for example, by [17, 21, 24]. We refer to [7] for a detailed overview of further related
literature.

In this paper, we construct a pointwise estimator �̂�(𝑥) for the velocity field 𝜗, evaluated at
the spatial location 𝑥 ∈ Λ from local measurement processes for multiple locations, i.e., our data
are given by observing the solution to (B.1) locally in space and continuously in time. Given
some fixed function 𝐾 ∈ 𝐻2(ℝ𝑑) with compact support, we consider points 𝑥1, . . . , 𝑥𝑁 ∈ Λ and
a resolution level 𝛿 > 0 small enough such that the localised functions 𝐾𝛿,𝑥𝑘 , defined through

𝐾𝛿,𝑥𝑘 (𝑥) := 𝛿−𝑑/2𝐾 (𝛿−1(𝑥 − 𝑥𝑘)), 𝑥 ∈ Λ, 𝑘 = 1, . . . , 𝑁,

are supported in Λ. In optical systems, they are known as point spread functions [5, 6], and
they describe the physical limitation that 𝑋 (𝑡 𝑗, 𝑥𝑖) can only be measured up to some locally
blurred average, i.e., a convolution with the point spread function. Specifically, the local mea-
surements of 𝑋 are given as the continuously observed processes 𝑋𝛿, 𝑋Δ

𝛿
∈ 𝐿2( [0, 𝑇];ℝ𝑁) and

𝑋∇
𝛿
∈ 𝐿2( [0, 𝑇];ℝ𝑑×𝑁), where, for 𝑘 = 1, . . . , 𝑁,

(𝑋𝛿)𝑘 = 𝑋𝛿,𝑘 = (⟨𝑋 (𝑡), 𝐾𝛿,𝑥𝑘⟩)0≤𝑡≤𝑇 ,
(𝑋∇

𝛿 )𝑘 = 𝑋∇
𝛿,𝑘 = (⟨𝑋 (𝑡),∇𝐾𝛿,𝑥𝑘⟩)0≤𝑡≤𝑇 ,

(𝑋Δ
𝛿 )𝑘 = 𝑋Δ

𝛿,𝑘 = (⟨𝑋 (𝑡), Δ𝐾𝛿,𝑥𝑘⟩)0≤𝑡≤𝑇 .
(B.3)

Local measurements were introduced by [4]. There, the authors investigated the estimation of
a nonparametric diffusivity 𝑎(𝑥) and demonstrated that it can already be estimated with the
parametric minimax rate 𝛿 upon observing the local information 𝑋𝛿,𝑥 . The method proved to
be robust to low-order nonlinearities, cf. [2, 3], and was used in a direct application to cell
repolarisation, estimating the diffusivity of the activator in the stochastic Meinhardt model [2].
Adapting the extended MLE approach of [4], Paper A considered the fully anisotropic parametric
version of (B.2), addressing joint estimation of diffusivity, velocity, and reaction components.
In particular, it has been shown that transport and damping coefficients cannot be estimated
consistently in finite time if the number 𝑁 = 𝑁 (𝛿) of local measurements remains finite. If the
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number of measurements is chosen to be maximal, i.e., 𝑁 ≍ 𝛿−𝑑 , the derived convergence rates
agree with the convergence rates obtained with the spectral approach of [23]. In the case of the
transport coefficient 𝜗, the convergence rate 𝑁−1/2 has been proven to be optimal.

Let us briefly describe our main findings. We combine the approach of Paper A with tech-
niques from nonparametric regression and local likelihood estimation. The contribution of each
measurement is individually weighted and controlled by a bandwidth ℎ = ℎ(𝛿) to account for
bias reduction. The obtained weighted augmented MLE �̂�𝛿(𝑥) is consistent, and under appropriate
Hölder smoothness assumptions, it satisfies, for 𝑥 ∈ Λ,

�̂�𝛿(𝑥) − 𝜗(𝑥) = 𝑂ℙ(ℎ𝛽 + (𝑁ℎ𝑑)−1/2), 𝛽 ∈ (1, 2]. (B.4)

Optimising (B.4) with respect to ℎ, we obtain the convergence rate 𝑁−𝛽/(2𝛽+𝑑) known from local
linear regression estimation. This convergence rate turns out to be optimal, as we demonstrate
by adapting the lower bound ansatz of Paper A, which is based on the RKHS of our local
measurements and its relation to the Hellinger distance, to the nonparametric framework.

The paper is structured as follows. We specify the model and construct the estimator in
Section B.2. Section B.3 provides upper bounds on the pointwise risk of the estimator, along
with a discussion of the involved assumptions and a number of examples and applications. Lower
bounds are stated in Section B.4. All proofs are deferred to Section B.5.

Notation Throughout this paper, the time horizon 𝑇 < ∞ is fixed, and we work on a filtered
probability space (Ω,F, (F𝑡)0≤𝑡≤𝑇 ,ℙ). We write 𝑎 ≲ 𝑏 if 𝑎 ≤ 𝑀𝑏 holds for a universal constant
𝑀 not depending on 𝛿, 𝑁, ℎ, or a spatial location 𝑥 ∈ Λ, and 𝑎 ≲𝑠 𝑏 if 𝑎 ≤ 𝐶𝑏 with a constant 𝐶
explicitly depending on the quantity 𝑠. Unless otherwise stated, all limits are to be understood as
the spatial resolution level 𝛿 → 0. For an open set 𝑈 ⊂ ℝ𝑑 , 𝐿2(𝑈) is the usual 𝐿2 space with inner
product ⟨·, ·⟩ = ⟨·, ·⟩𝐿2 (𝑈 ) . The Euclidean inner product and distance of two vectors 𝑎, 𝑏 ∈ ℝ𝑝

are denoted by 𝑎 · 𝑏 and |𝑎 − 𝑏|, respectively. Let 𝐻𝑘 (𝑈) denote the usual Sobolev spaces, and
denote by 𝐻1

0 (𝑈) the completion of 𝐶∞
𝑐 (𝑈), the space of smooth compactly supported functions,

relative to the 𝐻1(𝑈) norm. For a multi-index 𝛼 = (𝛼1, . . . , 𝛼𝑑), let 𝐷𝛼 be the 𝛼-th weak partial
derivative operator of order |𝛼| = 𝛼1 + · · · + 𝛼𝑑 . The gradient, divergence and Laplace operator
are denoted by ∇, ∇· and Δ, respectively. For 𝛽 > 0, denote by H(𝛽) the space of functions
𝑓 : Λ → ℝ with continuous derivatives up to order ⌊𝛽⌋ such that their ⌊𝛽⌋-th partial derivatives
are Hölder continuous with exponent 𝛽 − ⌊𝛽⌋ ≤ 1.

B.2 Pointwise estimation approach

Our interest is in estimating the velocity coefficient appearing in the second-order linear elliptic
differential operator 𝐴𝜗 as introduced in (B.2) with domain 𝐻1

0 (Λ) ∩ 𝐻2(Λ). For 𝑧 ∈ 𝐻1
0 (Λ) ∩

𝐻2(Λ), its adjoint 𝐴∗
𝜗
is defined by

𝐴∗𝜗𝑧 := 𝑎Δ𝑧 − ∇ · 𝜗𝑧 + 𝑐𝑧 = 𝑎Δ𝑧 − 𝜗 · ∇𝑧 + (𝑐 − ∇ · 𝜗)𝑧.

Both 𝐴𝜗 and 𝐴∗𝜗 generate analytic semigroups, denoted by (𝑆𝜗(𝑡))𝑡≥0 and (𝑆∗
𝜗
(𝑡))𝑡≥0, respectively,

on 𝐿2(Λ). The weak solution to (B.1) is given by

𝑋 (𝑡) = 𝑆𝜗(𝑡)𝑋0 +
∫ 𝑡

0
𝑆𝜗(𝑡 − 𝑡′) d𝑊 (𝑡′).
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As discussed in [4, Proposition 2.1], it only takes values in negative-order Sobolev spaces, but still
allows the definition of real-valued centred Gaussian processes (⟨𝑋 (𝑡), 𝑧⟩)0≤𝑡≤𝑇,𝑧∈𝐿2 (Λ) , satisfying
for 𝑧 ∈ 𝐻1

0 (Λ) ∩ 𝐻2(Λ)

⟨𝑋 (𝑡), 𝑧⟩ = ⟨𝑋0, 𝑧⟩ +
∫ 𝑡

0
⟨𝑋 (𝑡′), 𝐴∗𝜗𝑧⟩ d𝑡′ + ⟨𝑊 (𝑡), 𝑧⟩, 0 ≤ 𝑡 ≤ 𝑇. (B.5)

Our nonparametric analysis relies on Hölder smoothness conditions. Let 𝛽 ∈ (1, 2]. We
assume that the (possibly unknown) diffusion coefficient 𝑎 > 0 is constant, each component
𝜗𝑖 : Λ → ℝ, 𝑖 = 1, . . . , 𝑑, of the velocity field 𝜗 is contained inH(𝛽), and the (nuisance) reaction
function 𝑐 : Λ → ℝ belongs to H(𝛽 − 1). Since the differential operator 𝐴∗

𝜗
contains the first-

order derivative of 𝜗, we require for existence reasons, cf. also [4, Proposition 3.5], that 𝜗 is
continuously differentiable, i.e., 𝛽 > 1.

Recall that we work in a local measurements framework, i.e., we construct an estimator based
on the observations (B.3). Let𝑊𝑘 (𝑡) := ⟨𝑊 (𝑡), 𝐾𝛿,𝑥𝑘⟩∥𝐾∥−1𝐿2 (ℝ𝑑 ) be scalar Brownian motions. Each
local measurement forms an Itô process with initial condition 𝑋𝛿,𝑘 (0) = ⟨𝑋0, 𝐾𝛿,𝑥𝑘⟩ and, using
(B.5),

d𝑋𝛿,𝑘 (𝑡) = ⟨𝑋 (𝑡), 𝐴∗𝜗𝐾𝛿,𝑥𝑘⟩ d𝑡 + ∥𝐾∥𝐿2 (ℝ𝑑 ) d𝑊𝑘 (𝑡), 𝑘 = 1, . . . , 𝑁. (B.6)
Before constructing an estimator for 𝜗(𝑥), we give a brief recap on the construction of local

polynomial log-likelihood estimators. The following is based on [32]. We also refer to [15, 16,
37] for further discussion of the local likelihood approach and to the monograph [46] for an
overview of general nonparametric techniques. Suppose we observe response variables

𝑌𝑖 ∼ 𝑓 (·, 𝜇(𝑥𝑖)), 𝑖 = 1, . . . , 𝑛,

with density 𝑓 depending on the design points 𝑥𝑖 ∈ ℝ via an unknown function 𝜇. Simple
examples are given by nonparametric regression, where 𝑌𝑖 = 𝜇(𝑥𝑖) + 𝜀𝑖, with 𝜀𝑖 ∼ N(0, 𝜎2),
or logistic regression, where 𝑃(𝑌𝑖 = 1) = 𝑝(𝑥𝑖), 𝑃(𝑌𝑖 = 0) = 1 − 𝑝(𝑥𝑖), and we consider the
link function 𝜇(𝑥𝑖) = log(𝑝(𝑥𝑖)/(1 − 𝑝(𝑥𝑖)). Assuming that 𝜇(𝑥) has a polynomial fit of degree
𝑝 ∈ ℕ0, i.e., by a 𝑝-th order Taylor approximation,

𝜇(𝑥𝑖) ≈
𝑝∑︁
𝑗=0

𝑎 𝑗 (𝑥𝑖 − 𝑥) 𝑗

𝑗! = ⟨𝑎, 𝐴(𝑥𝑖 − 𝑥)⟩ℝ𝑝+1 ,

where 𝑎 = (𝑎0, . . . , 𝑎𝑝)⊤, 𝐴(𝑦) = (1, 𝑦, . . . , 𝑦𝑝/𝑝!)⊤, the basic idea is to maximise the local
polynomial log-likelihood

𝑙(𝜇, 𝑥) =
𝑛∑︁
𝑖=1

𝑤𝑖 (𝑥) log( 𝑓 (𝑌𝑖, ⟨𝑎, 𝐴(𝑥𝑖 − 𝑥)⟩ℝ𝑝+1)) (B.7)

over 𝑎 ∈ ℝ𝑝+1 and with weight functions 𝑤𝑖, 𝑖 = 1, . . . , 𝑛. The estimator for 𝜇(𝑥) is then given by
�̂�(𝑥) = �̂�0. For a smoothing parameter ℎ (bandwidth), only observations within a given window
(𝑥 − ℎ, 𝑥 + ℎ) are used, and each observation in (B.7) is weighted by 𝑤𝑖 (𝑥) = W

( 𝑥𝑖−𝑥
ℎ

). Often,
W is chosen as a positive kernel function, but in principle it can be more general. This approach
can be extended to the multivariate case (cf., amongst others, [1, 16, 37]), and is also close
to local polynomial regression (cf. [19, 43]) as a generalisation of it. We will adapt the above
method in the next section to construct a nonparametric estimator for 𝜗(𝑥).
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The weighted augmented MLE The local observation processes 𝑋𝛿, 𝑋∇
𝛿
and 𝑋Δ

𝛿
as introduced

in (B.3) are no longer Markovian, as the time evolution at the point 𝑥𝑘, 𝑘 ∈ {1, . . . , 𝑁}, depends
on the entire spatial structure of 𝑋 . Therefore, a general Girsanov theorem for multivariate Itô
processes, cf. [28, Section 7.6], results in the modified log-likelihood

∥𝐾∥−1
𝐿2 (ℝ𝑑 )

𝑁∑︁
𝑘=1

( ∫ 𝑇

0
⟨𝑋 (𝑡), 𝐴∗𝜗𝐾𝛿,𝑥𝑘⟩ d𝑋𝛿,𝑘 (𝑡) −

1
2

∫ 𝑇

0
⟨𝑋 (𝑡), 𝐴∗𝜗𝐾𝛿,𝑥𝑘⟩

2 d𝑡
)
, (B.8)

provided the driving Brownian motions 𝑊𝑘 in (B.6) are independent. For parametric 𝜗, it is
straightforward to derive an estimate based on the observed processes by maximising (B.8),
as shown in Paper A. In our set-up, we assume instead that we can approximate 𝜗 locally by a
constant, i.e., for some 𝛾 ∈ ℝ𝑑 ,

⟨𝑋 (𝑡), 𝐴∗𝜗𝐾𝛿,𝑥𝑘⟩ ≈ 𝑎𝑋Δ
𝛿,𝑘 (𝑡) + 𝛾

⊤𝑋∇
𝛿,𝑘 (𝑡), 0 ≤ 𝑡 ≤ 𝑇.

Note that approximations by a polynomial of degree 𝑝 ≥ 1 result in additional observations,
which we do not have access to and which cannot be recovered by convolution and a finite
difference scheme, see Remark B.1 below. Therefore, we restrict our investigations to the local
constant approximation.

Note further that we cannot use the local likelihood approach introduced before directly since
𝜗 is incorporated in ⟨𝑋 (𝑡), 𝐴∗

𝜗
𝐾𝛿,𝑥𝑘⟩ via ⟨𝑋 (𝑡),∇ · 𝜗𝐾𝛿,𝑥𝑘⟩ ≠ 𝜗(𝑥𝑘)⊤𝑋∇

𝛿,𝑘
(𝑡). Instead, we adapt the

underlying idea by weighting the contribution of the 𝑘-th summand individually. Hence, we
maximise

𝑙𝛿(𝛾, 𝑥) = ∥𝐾∥−1
𝐿2 (ℝ𝑑 )

𝑁∑︁
𝑘=1

𝑤𝑘 (𝑥)
(∫ 𝑇

0

(
𝑎𝑋Δ

𝛿,𝑘 (𝑡) − 𝛾⊤𝑋∇
𝛿,𝑘 (𝑡)

)
d𝑋𝛿,𝑘 (𝑡)

− 1
2

∫ 𝑇

0

(
𝑎𝑋Δ

𝛿,𝑘 (𝑡) − 𝛾⊤𝑋∇
𝛿,𝑘 (𝑡)

)2
d𝑡

)
over 𝛾 ∈ ℝ𝑑 to derive the weighted augmented MLE, given by

�̂�𝛿(𝑥) = −(I𝑥𝛿)
−1

𝑁∑︁
𝑘=1

𝑤𝑘 (𝑥)
(∫ 𝑇

0
𝑋∇
𝛿,𝑘 (𝑡) d𝑋𝛿,𝑘 (𝑡) −

∫ 𝑇

0
𝑎𝑋Δ

𝛿,𝑘 (𝑡)𝑋
∇
𝛿,𝑘 (𝑡) d𝑡

)
(B.9)

with the weighted observed Fisher information

I𝑥𝛿 =

𝑁∑︁
𝑘=1

𝑤𝑘 (𝑥)
∫ 𝑇

0
𝑋∇
𝛿,𝑘 (𝑡)𝑋

∇
𝛿,𝑘 (𝑡)

⊤ d𝑡.

Remark B.1 (higher order approximations). Intuitively, approximating 𝜗 by a polynomial of
higher order should perform an automatic bias correction and should thus improve the quality
of the estimation. However, due to the spatial influence of 𝜗 in ⟨𝑋 (𝑡), 𝐴∗

𝜗
𝐾𝛿,𝑥𝑘⟩, i.e., in

⟨𝑋 (𝑡),∇ · 𝜗𝐾𝛿,𝑥𝑘⟩,

the log-likelihood (B.8) depends not only on the pointwise evaluations 𝜗(𝑥𝑘), 𝑘 = 1, . . . , 𝑁, but
rather on 𝜗 and ∇ · 𝜗 in a neighbourhood around 𝑥𝑘. While the processes 𝑋∇

𝛿,𝑘
and 𝑋Δ

𝛿,𝑘
can,
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in principle, be obtained by observing 𝑋𝛿,𝑦 (𝑡) in a neighbourhood of 𝑥𝑘, cf. [4], this fails to
hold true for the additional observations required for higher order approximations. Even in the
simplest case, i.e., a linear approximation of the form 𝜗(𝑦) = 𝛾 + Γ(𝑦 − 𝑥), one obtains

⟨𝑋 (𝑡),∇ · (𝛾 + Γ(· − 𝑥))𝐾𝛿,𝑥𝑘⟩ = 𝛾⊤𝑋∇
𝛿,𝑘 (𝑡) + ⟨𝑋 (𝑡), (Γ(· − 𝑥))⊤∇𝐾𝛿,𝑥𝑘⟩ + tr(Γ)𝑋𝛿,𝑘 (𝑡).

Since 𝐾𝛿,𝑥𝑘 takes only non-zero values in a neighbourhood around 𝑥𝑘, we could instead approxi-
mate the non-observable term on the right hand side of the last display, while also ignoring the
lower order perturbation, by

⟨𝑋 (𝑡),∇ · (𝛾 + Γ(· − 𝑥))𝐾𝛿,𝑥𝑘⟩ ≈ 𝛾⊤𝑋∇
𝛿,𝑘 (𝑡) + (Γ(𝑥𝑘 − 𝑥))⊤𝑋∇

𝛿,𝑘 (𝑡).

Extending this idea to arbitrary polynomial approximations yields an estimate of 𝜗 and its partial
derivatives at point 𝑥. The analysis of this estimator, however, is nonstandard and seems to
provide only limited, if any, improvement over �̂�𝛿(𝑥) in (B.9) as its resulting bias component
also depends on the approximation error within the accessible and inaccessible observations
which restricts the usage of arbitrary Hölder regularity.

B.3 Convergence in probability: Upper bound results

Plugging (B.6) into (B.9) yields the decomposition

�̂�𝛿(𝑥) = 𝜗(𝑥) + (I𝑥𝛿)
−1R𝑥

𝛿 − (I𝑥𝛿)
−1M𝑥

𝛿∥𝐾∥𝐿2 (ℝ𝑑 ) , (B.10)

where the martingale term and the remainder, respectively, are specified as

M𝑥
𝛿 =

𝑁∑︁
𝑘=1

𝑤𝑘 (𝑥)
∫ 𝑇

0
𝑋∇
𝛿,𝑘 (𝑡) d𝑊𝑘 (𝑡),

R𝑥
𝛿 =

𝑁∑︁
𝑘=1

𝑤𝑘 (𝑥)
∫ 𝑇

0
𝑋∇
𝛿,𝑘 (𝑡)⟨𝑋 (𝑡), ((𝜗 − 𝜗(𝑥)) · ∇ + 𝜑𝜗)𝐾𝛿,𝑥𝑘⟩ d𝑡,

with 𝜑𝜗 := ∇ · 𝜗− 𝑐 ∈ H(𝛽 − 1). The following assumption gathers technical conditions required
for our statistical analysis.
Assumption L. Assume that the following conditions are satisfied:

(i) The locations 𝑥 and 𝑥1, . . . , 𝑥𝑁 belong to a fixed compact set J ⊂ Λ, which is independent
of the resolution 𝛿 and 𝑁. There exists 𝛿′ > 0 such that supp(𝐾𝛿,𝑥𝑘) ∩ supp(𝐾𝛿,𝑥𝑙 ) = ∅ for
𝑘 ≠ 𝑙, 𝑘, 𝑙 ≤ 𝑁, and all 𝛿 ≤ 𝛿′.

(ii) There exists a compactly supported function �̄� ∈ 𝐻4(ℝ𝑑), which is either even or odd,
such that 𝐾 = (−Δ) �̄�.

(iii) Given ℎ > 0, there exist weight functions 𝑤𝑘 = 𝑤𝑘 (𝑁, ℎ, 𝑥1, . . . , 𝑥𝑁) : J → ℝ, depending
only on 𝑁, ℎ, 𝑥1, . . . , 𝑥𝑁 , fulfilling the following conditions for a universal constant 𝐶∗ not
depending on 𝑁, 𝛿, ℎ and 𝑥:

(1) sup𝑘∈[𝑁 ],𝑥∈J |𝑤𝑘 (𝑥) | ≤ 𝐶∗(𝑁ℎ𝑑)−1;
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(2) ∑𝑁
𝑘=1 |𝑤𝑘 (𝑥) | ≤ 𝐶∗;

(3) 𝑤𝑘 (𝑥) = 0 if |𝑥𝑘 − 𝑥 | > ℎ;
(4) ∑𝑁

𝑘=1𝑤𝑘 (𝑥) = 1, and for any 𝛼 with |𝛼| = 1, it holds ∑𝑁
𝑘=1(𝑥𝑘 − 𝑥)𝛼𝑤𝑘 (𝑥) = 0.

(iv) The initial condition 𝑋0 is such that either 𝑋0 ∈ 𝐿𝑝(Λ) ∩D(𝐴𝜗), 𝑝 > 2, or, if in addition
there exists a constant 𝛾 < 0 such that 𝑐 − ∇ · 𝜗 ≤ 𝛾, 𝑋0 =

∫ 0
−∞ 𝑆𝜗(𝑡′) d𝑊 (𝑡′).

A few comments on the above conditions are in order. The support condition in Assumption
L(i) guarantees that the Brownian motions 𝑊𝑘 in (B.6) are independent as 𝛿 → 0, while the
processes 𝑋𝛿,𝑘 defined in (B.3) do not inherit independence. It requires the measurement
locations 𝑥𝑘 to be separated by a Euclidean distance of at least 𝐶𝛿 for a fixed constant 𝐶, which
means that 𝑁 grows at most as 𝑁 = 𝑂(𝛿−𝑑). Existence of weight functions 𝑤𝑘 in Assumption
L(iii) holds true under standard structural assumptions on the locations 𝑥𝑘 (see Lemma B.7
and the subsequent remark below). Since the partial derivatives 𝜕𝑖𝐾, 𝑖 = 1, . . . , 𝑑, are mutually
independent, condition (4) also implies that I𝑥

𝛿
is ℙ-a.s. invertible, which can be deduced from

Lemma A.1 in Paper A. The weights can be constructed similarly to weights in local polynomial
regression, cf. for instance [43, Chapter 1.6], such that they are reproducing of order one.
Assumption L(iv) guarantees that a general initial condition is asymptotically neglectable. If
𝜗 = 0, it can be further relaxed such that 𝛾 = 0 is allowed, i.e., 𝑋0 =

∫ 0
−∞ 𝑆𝜗(𝑡′) d𝑊 (𝑡′) is, for

instance, also valid for 𝐴𝜗 = 𝑎Δ. Despite using the local constant (LP(0)) approach, we will
show that �̂�𝛿(𝑥) achieves the convergence rate of an LP(1)-estimator. While in local polynomial
regression, this is known to happen for the Nadaraya–Watson estimator if, for instance, one
works with equidistant design points 𝑥𝑘 and estimates at one of those locations, see Example B.8,
we only rely on a first-order multivariate Taylor expansion and use the reproducing property
of the weights as well as (anti-) symmetry of ∇𝐾, implied by Assumption L(ii). Depending on
more information about the initial condition and the dimension 𝑑, Assumption L(ii) can also be
softened.

A precise control of the error decomposition (B.10) results in consistency of the estimate
�̂�𝛿(𝑥) as the resolution level 𝛿 tends to zero. As known from the parametric case, cf. Paper A,
consistent estimation in finite time 𝑇 of the velocity 𝜗 naturally requires 𝑁 = 𝑁 (𝛿) → ∞ as
𝛿 → 0. On the other hand, the bandwidth ℎ → 0 is usually chosen in dependence on the number
𝑁 of observations to balance between bias and variance terms. In that case, ℎ is implicitly also
related to 𝛿.

Theorem B.2. Under Assumption L, the weighted augmented MLE satisfies

�̂�𝛿(𝑥) − 𝜗(𝑥) = 𝑂ℙ(ℎ𝛽 + (𝑁ℎ𝑑)−1/2), 𝛽 ∈ (1, 2]. (B.11)

In particular, this bound is independent of the spatial location 𝑥 ∈ J in the sense that, for any 𝜀 > 0,
there exist some 𝑀 > 0, 𝛿′ > 0 such that, for any 𝑥 ∈ J and for any 𝛿 ≤ 𝛿′, we have

ℙ
(���̂�𝛿(𝑥) − 𝜗(𝑥)

�� (ℎ𝛽 + (𝑁ℎ𝑑)−1/2
)−1

> 𝑀
)
≤ 𝜀. (B.12)

To achieve consistency in the first place, the above result implies that 𝑁ℎ𝑑 → ∞ is required.
Hence, it can only hold if 𝛿 ≪ ℎ, since Assumption L(i) imposes at most 𝑁 ≍ 𝛿−𝑑 measurement
locations.
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Remark B.3 (convergence rate). Optimising the upper bound stated in (B.11) with respect to
the bandwidth ℎ yields

ℎ ≍ 𝑁−1/(2𝛽+𝑑) , that is, ℎ𝛽 ≍ 𝑁−𝛽/(2𝛽+𝑑) , 𝛽 ∈ (1, 2], (B.13)

thus matching the standard rates for the mean-squared error in nonparametric regression. The
usual bias-variance trade-off, resulting from choosing suboptimal ℎ, is illustrated in Figure B.1.
For a maximal choice 𝑁 ≍ 𝛿−𝑑 , the optimal bandwidth specification gives

ℎ ≍ 𝛿𝑑/(2𝛽+𝑑) , that is, ℎ𝛽 ≍ 𝛿𝛽𝑑/(2𝛽+𝑑) , 𝛽 ∈ (1, 2]. (B.14)

A graphical illustration in 𝑑 = 1 for 𝛽 = 2, i.e., ℎ𝛽 ≍ 𝛿2/5, is given in Figure B.1. As demonstrated
in Section B.4, the rates in (B.13) and (B.14) are optimal.

Naturally, one may ask if the rate in (B.13) also holds true under higher order Hölder
regularity assumptions. Indeed, Theorem B.2 might, in principle, be extended to arbitrary 𝛽 > 2,
using reproducing weights functions 𝑤𝑘 of order ⌊𝛽⌋ instead. The analysis of the remainder R𝑥

𝛿

in Section B.5.3, however, indicates that its order is not determined by the bandwidth ℎ and
smoothness parameter 𝛽 alone, yet also dependent on the resolution level 𝛿. In particular,

R𝑥
𝛿 = 𝑂ℙ(ℎ𝛽 + 𝛿ℎ + 𝛿2).

Thus, the dominating term varies, depending on the dimension 𝑑 and the assumed smoothness
𝛽. If 𝛽 ≤ 2, the remainder is always of order ℎ𝛽 whilst the parametric order 𝛿2 can be achieved
for 𝑑 → ∞ and arbitrary 𝛽 ≥ 2. This matches the observations made in [4] or Paper A, where
the bias term does neither depend on the time horizon 𝑇 , the diffusivity 𝑎, nor the number of
spatial observations 𝑁. As a consequence, arbitrary 𝛽 > 1 allow for the dimension-improving
convergence rates 𝛿𝛽𝑑/(2𝛽+𝑑) ∨ 𝛿2. This phenomenon, however, is no contradiction to the curse
of dimensionality stated in (B.13) as it results by reparametrisation of 𝑁. Nonetheless, it is in
harmony with the CLT A.3 in Paper A which also yields a better rate if 𝑁 is chosen maximal.

A second extension of Theorem B.2 involves the diffusivity 𝑎. While the estimator �̂�𝛿(𝑥) in
(B.9) requires knowledge of this parameter, in general it may be unknown. Replacing thus 𝑎 by
a reasonable estimate �̂�𝛿 yields another estimator �̃�𝛿(𝑥) which achieves the same convergence
rate.

Corollary B.4. Grant Assumption L, and suppose that the diffusivity 𝑎 > 0 is unknown. Define
the estimator �̃�𝛿(𝑥) similarly to (B.9), replacing 𝑎 with an estimate �̂�𝛿. If �̂�𝛿 satisfies

�̂�𝛿 − 𝑎 ∈ 𝑂ℙ(ℎ𝛽 + (𝑁ℎ𝑑)−1/2), (B.15)

then �̃�𝛿(𝑥) − 𝜗(𝑥) ∈ 𝑂ℙ(ℎ𝛽 + (𝑁ℎ𝑑)−1/2).

Estimators which fulfill (B.15) are, for instance, given by

�̂�𝛿 =

∑𝑁
𝑘=1𝑤𝑘 (𝑥)

∫𝑇
0 𝑋

Δ
𝛿,𝑘

(𝑡) d𝑋𝛿,𝑘 (𝑡)∑𝑁
𝑘=1𝑤𝑘 (𝑥)

∫𝑇
0 𝑋

Δ
𝛿,𝑘

(𝑡)2 d𝑡
or �̂�𝛿 =

∑𝑁
𝑘=1

∫𝑇
0 𝑋

Δ
𝛿,𝑘

(𝑡) d𝑋𝛿,𝑘 (𝑡)∑𝑁
𝑘=1

∫𝑇
0 𝑋

Δ
𝛿,𝑘

(𝑡)2 d𝑡
. (B.16)

Finally, we can also extend Theorem B.2 beyond the pointwise risk and quantify the quality
of �̂�𝛿 on the whole domain Λ. Since the estimator �̂�𝛿(𝑥) in (B.9) was only defined for 𝑥 ∈ J, we
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Figure B.1: (top-left) typical realisation of the solution 𝑋 (𝑡, 𝑥) in 𝑑 = 1 with domain Λ = (0, 1);
(top-right) trajectory of �̂�𝛿(𝑥) compared to 𝜗(𝑥) = −0.3 + 1.5𝑥2 in the interval [0.2, 0.8] ⊂ Λ
with weights 𝑤𝑘 (𝑥) based on the Epanechnikov kernel; (bottom) log-log plot of the root mean
squared error for estimating 𝜗 at 𝑥 = 0.5 with 𝛿 → 0, ℎ ≍ 𝛿2/5 (left); 𝛿 fix, ℎ → 0 (right).

start by expanding its definition to Λ. Its value at 𝑥 ∈ Λ \ J is set to a value �̂�𝛿(𝑥0), whereas
𝑥0 ∈ J is closest to 𝑥, that is,

�̂�𝛿(𝑥) := inf
𝑥0
�̂�𝛿(𝑥0), (B.17)

with 𝑥0 ∈ {𝑥 ∈ J : |𝑥 − 𝑥0 | = dist(𝑥, J)}. Hence, we take the estimate at the closest point 𝑥0 ∈ J

to further exploit Hölder continuity. The infimum over all possible 𝑥0 is taken to obtain a unique
estimate. Alternatively, one could also consider polynomial interpolation outside of J.

Corollary B.5. Grant Assumption L, and define �̂�𝛿 outside of J via (B.17). Then,∫
Λ

(
�̂�𝛿(𝑥) − 𝜗(𝑥)

)2
d𝑥 = 𝑂ℙ

(
ℎ2𝛽 + 1

𝑁ℎ𝑑

)
+ 𝑂(𝑑2max𝜆 (Λ \ J)), (B.18)

where 𝜆 denotes the Lebesgue measure on ℝ𝑑 and 𝑑2max := sup𝑥∈Λ\J dist2(𝑥, J) is the maximal
squared distance of J to the boundary 𝜕Λ.

Remark B.6 (discussion of Corollary B.5). Equation (B.18) splits the squared integrated error
into a term of stochastic order, similar to the pointwise risk in Theorem B.2, and a deterministic
part which is entirely dependent on the compact set J ⊂ Λ. While the question of consistency
thus is not immediately clear, it still can be achieved with a (possibly) slower rate. The supports
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of 𝐾𝛿,𝑥 are contained in Λ̄ for all 𝑥 ∈ J and any 𝛿 ≤ 𝛿′ for 𝛿′ small enough due to the compactness
of J. This means that the distance between the boundary 𝜕Λ and J behaves at best like 𝛿′, i.e.,
𝑑2max ≍ (𝛿′)2. On the other hand, 𝜆 (Λ \ J) becomes small if 𝑑2max decreases. In fact, 𝑑2max ≍ (𝛿′)2
implies 𝜆 (Λ \ J) = 𝑂(𝛿′). Hence, under a maximal choice of 𝑁 and optimisation in ℎ, (B.18)
yields the order

𝑂ℙ(𝛿2𝛽𝑑/(2𝛽+𝑑) ) + 𝑂((𝛿′)3).
Cases where 𝑑2max ≍ 𝛿′2 are given, for instance, if

• Λ is an 𝑑-dimensional open ball of radius 𝑟, and J is the closed ball with radius 𝑟 − 𝛿′ and
the same centre point;

• Λ is a rectangular cuboid of the form (𝑎1, 𝑏1) × · · · × (𝑎𝑑 , 𝑏𝑑), and J is chosen as [𝑎1 +
𝛿′, 𝑏1 − 𝛿′] × · · · × [𝑎𝑑 + 𝛿′, 𝑏𝑑 − 𝛿′].

Let us finish this section with a closer inspection of the weight functions 𝑤𝑘 (𝑥) from Assump-
tion L(iii). Their existence holds under general design assumptions, cf. also [43, Lemma 1.4 and
Lemma 1.5].
Lemma B.7. Let ℎ > 0 and 𝑉 : ℝ𝑑 → ℝ be a kernel function. Consider the ℝ𝑑+1-valued function 𝑈
given by 𝑈 (𝑢) = (1, 𝑢1, . . . , 𝑢𝑑)⊤, and define the matrix

𝐵𝑁𝑥 =
1
𝑁ℎ𝑑

𝑁∑︁
𝑘=1

𝑈
( 𝑥𝑘 − 𝑥

ℎ

)
𝑈⊤

( 𝑥𝑘 − 𝑥

ℎ

)
𝑉
( 𝑥𝑘 − 𝑥

ℎ

)
.

Assume that the following conditions hold:

(LP1) There exist a real number 𝜆0 > 0 and a positive integer 𝑛0 such that the smallest eigenvalue
𝜆min(𝐵𝑁𝑥) ≥ 𝜆0 for all 𝑛 ≥ 𝑛0 and any 𝑥 ∈ J.

(LP2) There exists a real number 𝑎0 > 0 such that, for any 𝐴 ⊂ J and all 𝑁 ≥ 1,

1
𝑁

𝑁∑︁
𝑘=1

1(𝑥𝑘 ∈ 𝐴) ≤ 𝑎0 max(𝜆 (𝐴), 1/𝑁),

with 𝜆 denoting the Lebesgue measure.

(LP3) The kernel 𝑉 has compact support in [−1, 1]𝑑 , and there exists a number 𝑉max < ∞ such that
𝑉 (𝑢) ≤ 𝑉max for all 𝑢 ∈ ℝ𝑑 .

Then, the weights defined by

𝑤𝑘 (𝑥) :=
1
𝑁ℎ𝑑

𝑈⊤(0)𝐵−1𝑁𝑥𝑈
( 𝑥𝑘 − 𝑥

ℎ

)
𝑉
( 𝑥𝑘 − 𝑥

ℎ

)
(B.19)

satisfy Assumption L(iii).

Assumptions (LP1)-(LP3) in Lemma B.7 are satisfied under reasonable constraints on the
design points 𝑥1, . . . , 𝑥𝑁 . (LP2) means that they are densely enough distributed over J. This
holds true, for instance, under equidistant design, noting that at most 𝑁 ≍ 𝛿−𝑑 . (LP1) is satisfied
if 𝑉 (𝑢) > 𝑉min > 0 in a neighbourhood around 0 and if additionally 𝑥1, . . . , 𝑥𝑁 are sufficiently
dense in J, cf. [43, Lemma 1.4 and Lemma 1.5]. (LP3) presents no restriction since the kernel 𝑉
can be chosen according to need.
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Example B.8. Let us give a concrete example of the weights𝑤𝑘 in (B.19). Assume 𝑑 = 1, J = [0, 1],
and choose the rectangular kernel 𝑉 (𝑦) = 1(−1/2 ≤ 𝑦 ≤ 1/2). Define 𝐼ℎ = {𝑘 : |𝑥𝑘 − 𝑥 | ≤ ℎ/2}.
Then,

𝐵𝑁𝑥 =
1
𝑁ℎ

( ∑
𝑘∈ 𝐼ℎ 1

∑
𝑘∈ 𝐼ℎ

𝑥𝑘−𝑥
ℎ∑

𝑘∈ 𝐼ℎ
𝑥𝑘−𝑥
ℎ

∑
𝑘∈ 𝐼ℎ

( 𝑥𝑘−𝑥
ℎ

)2)
has strictly positive determinant if there are at least two different points 𝑥𝑖, 𝑥 𝑗 in an ℎ/2-
neighbourhood around 𝑥. If the measurement points 𝑥𝑘 are equidistantly distributed on J,
that is, if 𝑥𝑘 = (𝑘 − 1)/(𝑁 − 1), 𝑘 = 1, . . . , 𝑁, and we estimate at the location 𝑥 = 𝑟/(𝑁 − 1),
1 ≤ 𝑟 ≤ 𝑁 − 2, with ℎ < min(𝑥, 1 − 𝑥)/2, then ∑

𝑘∈ 𝐼ℎ (𝑥𝑘 − 𝑥)/ℎ = 0 by symmetry. The weights
𝑤𝑘 (𝑥) in (B.19) are given by

𝑤𝑘 (𝑥) = (#𝐼ℎ)−11(𝑘 ∈ 𝐼ℎ).

In that case, the weights correspond to the weight function of the Nadaraya–Watson estimator
with rectangular kernel.

An estimated trajectory based on the weights in (B.19) with Epanechnikov kernel 𝑉 (𝑦) =
0.75(1 − 𝑦2)1( |𝑦 | ≤ 1) is given in Figure B.1.

B.4 Lower bounds

The convergence rate 𝑁−𝛽/(2𝛽+𝑑) established for the weighted augmented MLE in Theorem B.2
is optimal and cannot be improved in our general setup, as will be shown in this section. We
will only consider submodels ℙ𝜗 such that 𝐴𝜗 involves a negative reaction term, assuming a
sufficiently regular kernel function 𝐾 and a stationary initial condition.
Assumption O. Suppose that ℙ𝜗 corresponds to the law of the stationary solution 𝑋 to the SPDE
(B.1), and assume that the following conditions hold:

(i) The kernel function satisfies 𝐾 = Δ2 �̃� with �̃� ∈ 𝐶∞
𝑐 (ℝ𝑑).

(ii) The model is 𝐴𝜗 = Δ + 𝜗 · ∇ + 𝑐 with a nonpositive reaction function 𝑐 : Λ → ℝ and such
that 𝜗 : Λ → ℝ lies in the class Θ of 𝛽-Hölder continuous functions with the properties
that there exists a constant 𝛾 ≤ 0 such that the (𝛽−1) Hölder-continuous function 𝑐−∇ ·𝜗
is smaller or equal than 𝛾 and that 𝜗 is a conservative vector field.

(iii) Let 𝑥1, . . . , 𝑥𝑁 be 𝛿-separated points in Λ, that is, |𝑥𝑘 − 𝑥𝑙 | > 𝛿 for all 1 ≤ 𝑘 ≠ 𝑙 ≤ 𝑁.
Moreover, suppose that supp(𝐾𝛿,𝑥𝑘) ⊂ Λ for all 𝑘 = 1, . . . , 𝑁, and that supp(𝐾𝛿,𝑥𝑘) ∩
supp(𝐾𝛿,𝑥𝑙 ) = ∅ for all 1 ≤ 𝑘 ≠ 𝑙 ≤ 𝑁.

We consider the null model to be 𝐴𝜗 = Δ, i.e., 𝜗 = 0, 𝑐 = 𝛾 = 0, and we test against
alternatives where 𝜗 ≠ 0 and 𝑐 is strictly negative such that 𝑐 − ∇ · 𝜗 ≤ 𝛾 < 0.

Theorem B.9. Grant Assumption O. Then, there exist 𝑐1 > 0, depending only on 𝐾 and 𝑑, and an
absolute constant 𝑐2 > 0 such that, for any 𝑥 ∈ Λ, the following assertion holds:

inf̂
𝜗

sup
𝜗∈Θ

ℙ𝜗

(
|�̂�(𝑥) − 𝜗(𝑥) | ≥ 𝑐1

2 𝑁
−𝛽/(2𝛽+𝑑)

)
> 𝑐2,

where the infimum is taken over all real-valued estimators �̂�𝑖 = �̂�𝑖 (𝑋𝛿).
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As the weighted augmented MLE is not only based on the observations of 𝑋𝛿, but also on
𝑋Δ
𝛿
and 𝑋∇

𝛿
, Theorem B.9 can be furthermore extended to estimators �̂� using those additional

observations.

Theorem B.10. Theorem B.9 remains valid when the infimum is taken over all real-valued
estimators �̂�𝑖 = �̂�𝑖 (𝑋𝛿, 𝑋Δ

𝛿
, 𝑋∇

𝛿
), provided that 𝐾, Δ𝐾 and 𝜕𝑖𝐾 are independent and Assumption O(i)

holds for 𝐾, Δ𝐾 and 𝜕𝑖𝐾, 1 ≤ 𝑖 ≤ 𝑑.

Theorem B.9 is proven in Section B.5.4 below. The proof of Theorem B.10 is skipped as it
relies only on minor modifications, see also Theorem A.9 in Paper A.

B.5 Technical supplement: Auxiliary results and proofs

We start with a few initial notations and remarks. Write Λ𝛿,𝑦 = {𝛿−1(𝑢 − 𝑦) : 𝑢 ∈ Λ}, Λ0,𝑦 = ℝ𝑑 ,
and introduce the rescaled operators 𝐴𝜗,𝛿,𝑦 and 𝐴𝛿,𝑦 with domain 𝐻1

0 (Λ𝛿,𝑦) ∩ 𝐻2(Λ𝛿,𝑦) by setting

𝐴𝜗,𝛿,𝑦 := 𝑎Δ + 𝛿𝜗(𝑦 + 𝛿·) · ∇ + 𝛿2𝑐(𝑦 + 𝛿·), 𝐴𝛿,𝑦 := 𝑎Δ.

The associated analytic semigroups on 𝐿2(Λ𝛿,𝑦) are denoted by (𝑆𝜗,𝛿,𝑦 (𝑡))𝑡≥0 and (𝑆𝛿,𝑦 (𝑡))𝑡≥0,
respectively. Write e𝑡𝑎Δ for the semigroup on 𝐿2(ℝ𝑑) generated by 𝑎Δ on 𝐻2(ℝ𝑑). Define the
heat kernel 𝑞𝑡 (𝑢) = (4𝜋𝑡)−𝑑/2 exp(−|𝑢|2/(4𝑡)), and notice that, for (e𝑡𝑎Δ)𝑧 = 𝑞𝑎𝑡 ∗ 𝑧, by Young’s
inequality,

∥e𝑡𝑎Δ𝑧∥𝐿2 (ℝ𝑑 ) ≲ (1 ∧ 𝑡−𝑑/4) (∥𝑧∥𝐿1 (ℝ𝑑 ) + ∥𝑧∥𝐿2 (ℝ𝑑 ) ).

We denote 𝜑𝜗 = ∇ · 𝜗− 𝑐, and we want to estimate 𝜗 at the (fixed) location 𝑥 ∈ J. The stochastic
order 𝑂ℙ(ℎ𝛽 + 𝛿ℎ + 𝛿2) of R𝑥

𝛿
, which can, in principle, be found from the proofs in Section B.5.3

below, will always be dominated by ℎ𝛽 as 𝛽 ≤ 2. This is clear since our methodology is only
applicable if 𝛿 ≪ ℎ. Indeed, if ℎ ≤ 𝛿, then consistency cannot be achieved as the number of
observations used to construct the estimator in (B.9) remains finite. Optimising (B.11) with
respect to the bandwidth ℎ yields that ℎ ≍ 𝑁−1/(2𝛽+𝑑) . Furthermore, Assumption L implies that
there exist at most 𝑁 ≍ 𝛿−𝑑 spatial observation locations. Together, this gives for any dimension
𝑑 ≥ 1 and 𝛽 ∈ (1, 2],

𝛿2 ≪ 𝛿𝛽𝑑/(2𝛽+𝑑) = 𝑂(ℎ𝛽), 𝛿𝑑/2 ≪ ℎ𝛽, (B.20)
which we will frequently use in Sections B.5.2 and B.5.3 down below.

B.5.1 The rescaled semigroup

In this section, we present properties of the rescaled semigroup (𝑆∗
𝜗,𝛿,𝑦

(𝑡))𝑡≥0 and its infinitesimal
generator 𝐴∗

𝜗,𝛿,𝑦
.

Lemma B.11 (Lemma 3.1 of [4]). For 𝛿 > 0 and 𝑦 ∈ Λ, it holds:

(i) If 𝑧 ∈ 𝐻1
0 (Λ𝛿,𝑦) ∩ 𝐻2(Λ𝛿,𝑦), then 𝐴∗

𝜗
𝑧𝛿,𝑦 = 𝛿−2(𝐴∗

𝜗,𝛿,𝑦
𝑧)𝛿,𝑦;

(ii) if 𝑧 ∈ 𝐿2(Λ𝛿,𝑦), then 𝑆∗𝜗(𝑡)𝑧𝛿,𝑦 = (𝑆∗
𝜗,𝛿,𝑦

(𝑡𝛿−2)𝑧)𝛿,𝑦, 𝑡 ≥ 0.

The following lemma is a classical result for sectorial operators and corresponding analytic
semigroups. Our version holds for growing domains Λ𝛿,𝑦, uniformly in 𝑦 ∈ J.
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Lemma B.12. There exist universal constants 𝑀0, 𝑀1, 𝐶 > 0 such that, for 𝛿 ≥ 0, 𝑡 > 0,

sup
𝑦∈J

∥𝑆∗𝜗,𝛿,𝑦 (𝑡)∥𝐿2 (Λ𝛿,𝑦 ) ≤ 𝑀0e𝐶𝛿
2𝑡,

sup
𝑦∈J

∥𝑡(𝐶𝛿2𝐼 − 𝐴∗𝜗,𝛿,𝑦)𝑆
∗
𝜗,𝛿,𝑦 (𝑡)∥𝐿2 (Λ𝛿,𝑦 ) ≤ 𝑀1e𝐶𝛿

2𝑡 .

This lemma shows that the shifted semigroup e−2𝐶𝛿2𝑡𝑆∗
𝜗,𝛿,𝑦

(𝑡) decays exponentially,

∥e−2𝐶𝛿2𝑡𝑆∗𝜗,𝛿,𝑦 (𝑡)∥𝐿2 (Λ𝛿,𝑦 ) ≤ e−𝐶𝛿2𝑡,

and so the resolvent set of the correspondingly shifted infinitesimal generator 2𝐶𝛿2 − 𝐴∗
𝜗,𝛿,𝑦

contains the right half of the complex plane. This allows for defining the fractional powers
(2𝐶𝛿2 − 𝐴∗

𝜗,𝛿,𝑦
)𝑠 for 𝑠 ∈ ℝ, see [20, Section 4.4], and we obtain by [20, Proposition 4.37] the

usual smoothing property of analytic semigroups.

Lemma B.13. There exists a universal constant 𝑀2 such that, for 𝛿 ≥ 0, 𝑡 > 0 and 𝑠 ≥ 0,

sup
𝑦∈J

∥𝑡𝑠 (2𝐶𝛿2 − 𝐴∗𝜗,𝛿,𝑦)
𝑠𝑆∗𝜗,𝛿,𝑦 (𝑡)∥𝐿2 (Λ𝛿,𝑦 ) ≤ 𝑀2e𝐶𝛿

2𝑡 .

Intuitively, letting 𝛿 → 0, the semigroup on Λ𝛿,𝑦 will be close to the semigroup on ℝ𝑑. The
following auxiliary result states this more precisely.

Lemma B.14. Let 𝑡 > 0, and grant Assumption L.

(i) There exist universal constants 𝑐1, 𝑐2, 𝑐3 such that, if 𝑧 ∈ 𝐶𝑐 (ℝ𝑑) is supported in
⋂

𝑦∈J Λ𝛿,𝑦
for some 𝛿 ≥ 0, then

sup
𝑦∈J

���(𝑆∗𝜗,𝛿,𝑦 (𝑡)𝑧) (𝑢)��� ≤ 𝑐3e𝑐1𝛿
2𝑡 (𝑞𝑐2𝑡 ∗ |𝑧 |) (𝑢), 𝑢 ∈ ℝ𝑑 .

(ii) If 𝑧 ∈ 𝐿2(ℝ𝑑), then, as 𝛿 → 0,

sup
𝑦∈J

∥𝑆∗𝜗,𝛿,𝑦 (𝑡) (𝑧 |Λ𝛿,𝑦) − e𝑡𝑎Δ𝑧∥𝐿2 (ℝ𝑑 ) → 0.

(iii) If 𝑧 ∈ 𝐿2(ℝ𝑑), then, for any 𝑡 ≥ 0,

sup
𝑦∈J

∥𝑆𝛿,𝑦 (𝑡)𝑧 − e𝑡𝑎Δ𝑧∥𝐿2 (ℝ𝑑 ) ≲ 𝛿1/2𝑡1/4e−𝛿−2𝑡−1/2.

The action of the semigroup operators 𝑆∗
𝜗,𝛿,𝑦

(𝑡) applied to functions of a certain smooth-
ness and integrability is given in the next lemma. The proof relies on the Bessel potential
spaces 𝐻𝑠,𝑝

0 (Λ𝛿,𝑦), 1 < 𝑝 < ∞, 𝑠 ∈ ℝ, defined for 𝛿 > 0 as the domains of the fractional
weighted Dirichlet–Laplacian (−𝐴𝜗,𝛿,𝑦)𝑠/2 of order 𝑠/2 on Λ𝛿,𝑦 with norms ∥ · ∥𝐻𝑠,𝑝 (Λ𝛿,𝑦 ) =

∥(−𝐴𝜗,𝛿,𝑦)𝑠/2·∥𝐿𝑝 (Λ𝛿,𝑦 ) .
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Lemma B.15 (Lemma A.16 in Paper A). Let 𝛿 ∈ [0, 1], 𝑡 > 0, and grant Assumption L. Let
𝑧 ∈ 𝐻𝑠

0(ℝ
𝑑), 𝑠 ≥ 0, be compactly supported in

⋂
𝑦∈J Λ𝛿,𝑦, and suppose that 𝑉𝛿,𝑦 : 𝐿𝑝(Λ𝛿,𝑦) →

𝐻
−𝑠,𝑝
0 (Λ𝛿,𝑦) are bounded linear operators with ∥𝑉𝛿,𝑦𝑧∥𝐻−𝑠,𝑝 (Λ𝛿,𝑦 ) ≤ 𝑉op∥𝑧∥𝐿𝑝 (Λ𝛿,𝑦 ) , for some 𝑉op

independent of 𝛿 and 𝑦. Then, there exists a universal constant 𝐶 > 0 such that, for 1 < 𝑝 ≤ 2 and
𝛾 = (1/𝑝 − 1/2)𝑑/2,

sup
𝑦∈J

∥𝑆∗𝜗,𝛿,𝑦 (𝑡)𝑉𝛿,𝑦𝑧∥𝐿2 (Λ𝛿,𝑦 ) ≤ 𝐶e𝑐1𝑡𝛿2 sup
𝑦∈J

(
∥𝑉𝛿,𝑦𝑧∥𝐿2 (Λ𝛿,𝑦 ) ∧ (𝑉op𝑡−𝑠/2−𝛾∥𝑧∥𝐿𝑝 (Λ𝛿,𝑦 ) )

)
,

where 𝑐1 is the constant described in Lemma B.14(i). If 𝑠 = 0, the inequality holds also for 𝑝 = 1.

B.5.2 Properties of multiple local measurements

For the reader’s convenience, we give the result of Paper A, specifying the covariance function of
the Gaussian process defined in (B.5).

Lemma B.16 (Lemma A.17 in Paper A). (i) If 𝑋0 = 0, then the Gaussian process from (B.5) has
mean zero and covariance function

Cov(⟨𝑋 (𝑡), 𝑧⟩, ⟨𝑋 (𝑡′), 𝑧′⟩) =
∫ 𝑡∧𝑡′

0
⟨𝑆∗𝜗(𝑡 − 𝑠)𝑧, 𝑆∗𝜗(𝑡

′ − 𝑠)𝑧′⟩ d𝑠.

(ii) If 𝑋0 is the stationary initial condition from Assumption L(iv), then the Gaussian process from
(B.5) has mean zero and covariance function

Cov(⟨𝑋 (𝑡), 𝑧⟩, ⟨𝑋 (𝑡′), 𝑧′⟩) =
∫ ∞

0
⟨𝑆∗𝜗(𝑡 + 𝑠)𝑧, 𝑆

∗
𝜗(𝑡

′ + 𝑠)𝑧′⟩ d𝑠.

Lemma B.17. Grant Assumption L, and consider 𝑢, 𝑤 ∈ {𝐷𝛼𝐾 : |𝛼| ≤ 2} = {−𝐷𝛼Δ�̄� : |𝛼| ≤ 2}.
Let 𝑋0 = 0, and set 𝑓0(𝑡) := ⟨e𝑡𝑎Δ𝑢, e𝑡𝑎Δ𝑤⟩𝐿2 (ℝ𝑑 ) . Then, the following properties hold true:

(i) 𝜓(𝑢, 𝑤) =
∫∞
0 𝑓0(𝑡) d𝑡 is well-defined, i.e., 𝑓0 ∈ 𝐿1( [0,∞)).

(ii) For 𝛿 → 0,

sup
𝑦∈J

����𝛿−2 ∫ 𝑇

0
Cov(⟨𝑋 (𝑡), 𝑢𝛿,𝑦⟩, ⟨𝑋 (𝑡), 𝑤𝛿,𝑦⟩) d𝑡 − 𝑇𝜓(𝑢, 𝑤)

���� → 0.

(iii) If, additionally, 𝜓(𝑢, 𝑤) = 0, then

sup
𝑦∈J

����𝛿−3 ∫ 𝑇

0
Cov(⟨𝑋 (𝑡), 𝑢𝛿,𝑦⟩, ⟨𝑋 (𝑡), 𝑤𝛿,𝑦⟩) d𝑡

���� ≲ 1.

Lemma B.18. Grant Assumption L, and let 𝑋0 = 0.

(i) For 𝑢, 𝑤 ∈ {𝐷𝛼𝐾 : |𝛼| ≤ 2},

sup
𝑦∈J

Var
(∫ 𝑇

0
⟨𝑋 (𝑡), 𝑢𝛿,𝑦⟩⟨𝑋 (𝑡), 𝑤𝛿,𝑦⟩ d𝑡

)
= 𝑂(𝛿6).
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(ii) For 𝑢 ∈ {𝜕𝑖𝐾 : 1 ≤ 𝑖 ≤ 𝑑} and 𝑤 := 𝑔 (𝜗,𝑦,𝛿) · ∇𝐾, with 𝑔 (𝜗,𝑦,𝛿) defined in (B.22) below, it
holds

sup
𝑥∈J

sup
𝑦∈J, |𝑦−𝑥 | ≤ℎ

Var
(∫ 𝑇

0
⟨𝑋 (𝑡), 𝑢𝛿,𝑦⟩⟨𝑋 (𝑡), 𝑤𝛿,𝑦⟩ d𝑡

)
= 𝑂(𝛿4ℎ2𝛽).

(iii) For 𝑢 ∈ {𝜕𝑖𝐾 : 1 ≤ 𝑖 ≤ 𝑑} and 𝑤 := 𝜑𝜗(𝑦 + 𝛿·)𝐾, we have

sup
𝑥∈J

sup
𝑦∈J, |𝑦−𝑥 | ≤ℎ

Var
(∫ 𝑇

0
⟨𝑋 (𝑡), 𝑢𝛿,𝑦⟩⟨𝑋 (𝑡), 𝑤𝛿,𝑦⟩ d𝑡

)
= 𝑂(𝛿2ℎ2𝛽).

B.5.3 Proof of the upper bound

Before proving Theorem B.2, we carefully inspect the observed Fisher information I𝑥
𝛿
and the

remainder R𝑥
𝛿
appearing in the decomposition (B.10).

The Fisher information and the martingale part

Proposition B.19. Grant Assumption L. Then,

I𝑥𝛿
ℙ→ Σ, where Σ𝑖 𝑗 =

𝑇

2𝑎 ⟨(−Δ)
−1𝜕𝑖𝐾, 𝜕 𝑗𝐾⟩, 𝑖, 𝑗 ∈ {1, . . . , 𝑑},

and Σ thus defined is invertible.

Proof. We only consider the case where 𝑋0 = 0. Note that Assumption L(iv) implies the assumed
structure in Paper A, cf. Lemma A.2. We hence refer to Theorem A.3 for the invertibility of Σ
and the generalisation of the initial condition. Thus, it suffices to show that, for 1 ≤ 𝑖, 𝑗 ≤ 𝑑,

𝔼[I𝑥𝛿] 𝑖 𝑗 → Σ𝑖 𝑗, Var((I𝑥𝛿)𝑖 𝑗) → 0. (B.21)

Recall that, for 𝑧, 𝑧′ ∈ 𝐿2(ℝ𝑑), the function 𝜓(·, ·) introduced in Lemma B.17 is defined as

𝜓(𝑧, 𝑧′) =
∫ ∞

0
⟨e𝑡𝑎Δ𝑧, e𝑡𝑎Δ𝑧′⟩ d𝑡 = 1

2𝑎 ⟨(−Δ)
−1𝑧, 𝑧′⟩.

In view of ∑𝑁
𝑘=1𝑤𝑘 (𝑥) = 1, ∑𝑁

𝑘=1 |𝑤𝑘 (𝑥) | ≲ 1, the first part of (B.21) follows by

sup
𝑥∈J

|𝔼[I𝑥𝛿] 𝑖 𝑗 − Σ𝑖 𝑗 |

≤ sup
𝑥∈J

𝑁∑︁
𝑘=1

|𝑤𝑘 (𝑥) |
����𝛿−2 ∫ 𝑇

0
Cov(⟨𝑋 (𝑡), (𝜕𝑖𝐾)𝛿,𝑥𝑘⟩, ⟨𝑋 (𝑡), (𝜕 𝑗𝐾)𝛿,𝑥𝑘⟩) d𝑡 − 𝑇𝜓(𝜕𝑖𝐾, 𝜕 𝑗𝐾)

����
≤ 𝐶∗ sup

𝑦∈J

����𝛿−2 ∫ 𝑇

0
Cov(⟨𝑋 (𝑡), (𝜕𝑖𝐾)𝛿,𝑦⟩, ⟨𝑋 (𝑡), (𝜕 𝑗𝐾)𝛿,𝑦⟩) d𝑡 − 𝑇𝜓(𝜕𝑖𝐾, 𝜕 𝑗𝐾)

����
→ 0,

where the convergence statement in the last line is a consequence of Lemma B.17(ii). By the
Cauchy–Schwarz inequality and Lemma B.18(i), we obtain

sup
𝑥∈J

Var((I𝑥𝛿)𝑖 𝑗)1/2 ≤ sup
𝑥∈J

𝑁∑︁
𝑘=1

|𝑤𝑘 (𝑥) |𝛿−2Var
(∫ 𝑇

0
⟨𝑋 (𝑡), (𝜕𝑖𝐾)𝛿,𝑥𝑘⟩⟨𝑋 (𝑡), (𝜕 𝑗𝐾)𝛿,𝑥𝑘⟩ d𝑡

)1/2
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≤ 𝐶∗ sup
𝑦∈J

𝛿−2Var
(∫ 𝑇

0
⟨𝑋 (𝑡), (𝜕𝑖𝐾)𝛿,𝑦⟩⟨𝑋 (𝑡), (𝜕 𝑗𝐾)𝛿,𝑦⟩ d𝑡

)1/2
→ 0,

concluding the proof. ■

Proposition B.20. Grant Assumption L. Then,

[M𝑥
𝛿]𝑇 :=

𝑁∑︁
𝑘=1

𝑤𝑘 (𝑥)2
∫ 𝑇

0
𝑋∇
𝛿,𝑘 (𝑡)𝑋

∇
𝛿,𝑘 (𝑡)

⊤ d𝑡 = 𝑂ℙ((𝑁ℎ𝑑)−1),

where the stochastic order of the right hand side is indepenent of 𝑥 ∈ J.

Proof. Again, it suffices to verify the claim with initial condition 𝑋0 = 0. We show 𝔼[[M𝑥
𝛿
]𝑇 ] =

𝑂((𝑁ℎ𝑑)−1) and Var(( [M𝑥
𝛿
]𝑇 )𝑖 𝑗) = 𝑜((𝑁ℎ𝑑)−2). Using that ∑𝑁

𝑘=1𝑤𝑘 (𝑥)2 ≲ (𝑁ℎ𝑑)−1, we get
similarly to the proof of Proposition B.19 that

sup
𝑥∈J

𝔼[[M𝑥
𝛿]𝑇 ] 𝑖 𝑗 ≤ sup

𝑥∈J

𝑁∑︁
𝑘=1

𝑤𝑘 (𝑥)2
����𝛿−2 ∫ 𝑇

0
Cov(⟨𝑋 (𝑡), (𝜕𝑖𝐾)𝛿,𝑥𝑘⟩, ⟨𝑋 (𝑡), (𝜕 𝑗𝐾)𝛿,𝑥𝑘⟩) d𝑡

���� ≲ (𝑁ℎ𝑑)−1

as well as

sup
𝑥∈J

Var(( [M𝑥
𝛿]𝑇 )𝑖 𝑗)

1/2 ≤ sup
𝑥∈J

𝑁∑︁
𝑘=1

𝑤𝑘 (𝑥)2 sup
𝑦∈J

𝛿−2Var
(∫ 𝑇

0
⟨𝑋 (𝑡), (𝜕𝑖𝐾)𝛿,𝑦⟩⟨𝑋 (𝑡), (𝜕 𝑗𝐾)𝛿,𝑦⟩ d𝑡

)1/2
≤ 𝐶∗(𝑁ℎ𝑑)−1 sup

𝑦∈J
𝛿−2Var

(∫ 𝑇

0
⟨𝑋 (𝑡), (𝜕𝑖𝐾)𝛿,𝑦⟩⟨𝑋 (𝑡), (𝜕 𝑗𝐾)𝛿,𝑦⟩ d𝑡

)1/2
= 𝑜((𝑁ℎ𝑑)−1).

■

The remainder term

In this subsection, we will study the expected value and variance of the remainder term R𝑥
𝛿
,

given by

R𝑥
𝛿 =

𝑁∑︁
𝑘=1

𝑤𝑘 (𝑥)
∫ 𝑇

0
𝑋∇
𝛿,𝑘 (𝑡)⟨𝑋 (𝑡), ((𝜗 − 𝜗(𝑥)) · ∇ + 𝜑𝜗)𝐾𝛿,𝑥𝑘⟩ d𝑡.

We start by exploring the connection between the weight functions 𝑤𝑘 (𝑥) and the multivariate
Taylor expansion. Define the difference

𝑔 (𝜗,𝑥𝑘,𝛿) (𝑦) := 𝜗(𝑥𝑘 + 𝛿𝑦) − 𝜗(𝑥). (B.22)
For 1 ≤ 𝑖 ≤ 𝑑, its 𝑖-th entry is given by the first order multivariate Taylor expansion with Peano
remainder 𝑃1,𝑖,𝑥𝑘 (𝑦)

𝑔
(𝜗,𝑥𝑘,𝛿)
𝑖

(𝑦) :=
∑︁
|𝛼 |=1

𝐷𝛼𝜗𝑖 (𝑥)
𝛼! (𝑥𝑘 + 𝛿𝑦 − 𝑥)𝛼 +

∑︁
|𝛼 |=1

𝐷𝛼(𝜗𝑖 (𝜉) − 𝜗𝑖 (𝑥))
𝛼! (𝑥𝑘 + 𝛿𝑦 − 𝑥)𝛼

=
∑︁
|𝛼 |=1

𝐷𝛼𝜗𝑖 (𝑥)
𝛼! (𝑥𝑘 + 𝛿𝑦 − 𝑥)𝛼 + 𝑃1,𝑖,𝑥𝑘 (𝑦),

(B.23)

for some value 𝜉 ∈ 𝐵𝑥𝑘+𝛿𝑦 (𝑥).
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Corollary B.21. Grant Assumption L. Then, for any 0 ≤ 𝑠 ≤ 𝑇𝛿−2,

𝑁∑︁
𝑘=1

𝑤𝑘 (𝑥)⟨e2𝑠𝑎Δ∇𝐾, 𝑔 (𝜗,𝑥𝑘,𝛿) · ∇𝐾⟩𝐿2 (ℝ𝑑 ) ≲ ℎ𝛽 (1 ∧ 𝑠−3/2−𝑑/4). (B.24)

Proof. By Assumption L(iii),

𝑁∑︁
𝑘=1

𝑤𝑘 (𝑥)𝑔 (𝜗,𝑥𝑘,𝛿)𝑖
(𝑦) =

𝑁∑︁
𝑘=1

𝑤𝑘 (𝑥)©«
∑︁
|𝛼 |=1

𝐷𝛼𝜗𝑖 (𝑥)
𝛼! (𝛿𝑦)𝛼 + 𝑃1,𝑖,𝑥𝑘 (𝑦)

ª®¬.
Thus,

𝑁∑︁
𝑘=1

𝑤𝑘 (𝑥)⟨e2𝑠𝑎Δ∇𝐾, 𝑔 (𝜗,𝑥𝑘,𝛿) · ∇𝐾⟩𝐿2 (ℝ𝑑 )

=

𝑁∑︁
𝑘=1

𝑤𝑘 (𝑥)⟨e2𝑠𝑎Δ∇𝐾,
𝑑∑︁
𝑖=1

©«
∑︁
|𝛼 |=1

𝐷𝛼𝜗𝑖 (𝑥)
𝛼! (𝛿·)𝛼 + 𝑃1,𝑖,𝑥𝑘

ª®¬𝜕𝑖𝐾⟩𝐿2 (ℝ𝑑 ) .

By the symmetry of the heat kernel, e2𝑎𝑠Δ𝜕 𝑗𝐾 (𝑦) = (𝑞2𝑎𝑠 ∗ 𝜕 𝑗𝐾) (𝑦) is even if 𝜕 𝑗𝐾 is even and odd
if 𝜕 𝑗𝐾 is odd, respectively, and Assumption L guarantees that one of these cases always holds
true. Moreover, the identity in ℝ𝑑 is an odd function which implies that 𝑦𝑙𝜕𝑖𝐾 (𝑦) is odd if 𝜕𝑖𝐾 is
even and even if 𝜕𝑖𝐾 is odd, respectively. Hence, for all 1 ≤ 𝑗, 𝑙, 𝑖 ≤ 𝑑,

⟨e2𝑠𝑎Δ𝜕 𝑗𝐾 (𝑦), 𝛿𝑦𝑙𝜕𝑖𝐾 (𝑦)⟩𝐿2 (ℝ𝑑 ) = 0

as an integral over an odd function. Note that ∥𝑃1,𝑖,𝑥𝑘𝜕𝑖𝐾∥𝐿2 (ℝ𝑑 ) ≲ ℎ𝛽 whenever |𝑥𝑘 − 𝑥 | ≤ ℎ due
to 𝛿 ≪ ℎ, the Hölder assumption on 𝜗 and 𝜕𝑖𝐾 having compact support. Indeed,

∥𝑃1,𝑖,𝑥𝑘𝜕𝑖𝐾∥𝐿2 (ℝ𝑑 ) ≲ ∥|𝑥𝑘 + 𝛿𝑦 − 𝑥 |𝛽𝜕𝑖𝐾 (𝑦)∥𝐿2 (ℝ𝑑 )

≲ |𝑥𝑘 − 𝑥 |𝛽 ∥𝜕𝑖𝐾∥𝐿2 (ℝ𝑑 ) ≲ ℎ𝛽 .

(B.24) hence follows by the Cauchy–Schwarz inequality, 𝐾 = (−Δ) �̄� and Lemma B.15, since
𝑁∑︁
𝑘=1

𝑤𝑘 (𝑥)
𝑑∑︁
𝑖=1

⟨e2𝑠𝑎Δ∇𝐾, 𝑔 (𝜗,𝑥𝑘,𝛿) · ∇𝐾⟩𝐿2 (ℝ𝑑 ) =
∑︁

𝑘: |𝑥𝑘−𝑥 | ≤ℎ
𝑤𝑘 (𝑥)

𝑑∑︁
𝑖=1

⟨e2𝑠𝑎Δ∇𝐾, 𝑔 (𝜗,𝑥𝑘,𝛿) · ∇𝐾⟩𝐿2 (ℝ𝑑 )

=
∑︁

𝑘: |𝑥𝑘−𝑥 | ≤ℎ
𝑤𝑘 (𝑥)⟨e2𝑠𝑎Δ∇𝐾,

𝑑∑︁
𝑖=1

𝑃1,𝑖,𝑥𝑘𝜕𝑖𝐾⟩𝐿2 (ℝ𝑑 )

≲ ℎ𝛽 (1 ∧ 𝑠−3/2−𝑑/4).

■

Proposition B.22. Grant Assumption L, and assume that 𝑋0 = 0. Then,

sup
𝑥∈J

𝔼[R𝑥
𝛿] = 𝑂(ℎ𝛽).
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Proof. Using the covariance structure in Lemma B.16 and the rescaling Lemma B.11, we obtain

𝔼[R𝑥
𝛿] =

𝑁∑︁
𝑘=1

𝑤𝑘 (𝑥)
∫ 𝑇

0
𝔼
[
𝑋∇
𝛿,𝑘 (𝑡)⟨𝑋 (𝑡), ((𝜗 − 𝜗(𝑥)) · ∇ + 𝜑𝜗)𝐾𝛿,𝑥𝑘⟩

]
d𝑡

=

𝑁∑︁
𝑘=1

𝑤𝑘 (𝑥)
∫ 𝑇

0
Cov(𝑋∇

𝛿,𝑘, ⟨𝑋 (𝑡), ((𝜗 − 𝜗(𝑥)) · ∇ + 𝜑𝜗)𝐾𝛿,𝑥𝑘⟩) d𝑡

=

∫ 𝑇

0

∫ 𝑡𝛿−2

0
𝐴(𝑠) d𝑠 d𝑡 + 𝛿

∫ 𝑇

0

∫ 𝑡𝛿−2

0
𝐵(𝑠) d𝑠 d𝑡, (B.25)

with

𝐴(𝑠) :=
𝑁∑︁
𝑘=1

𝑤𝑘 (𝑥)⟨𝑆∗𝜗,𝛿,𝑥𝑘 (𝑠)∇𝐾, 𝑆
∗
𝜗,𝛿,𝑥𝑘

(𝑠) (𝜗(𝑥𝑘 + 𝛿·) − 𝜗(𝑥)) · ∇𝐾⟩𝐿2 (Λ𝛿,𝑥𝑘 ) ,

𝐵(𝑠) :=
𝑁∑︁
𝑘=1

𝑤𝑘 (𝑥)⟨𝑆∗𝜗,𝛿,𝑥𝑘 (𝑠)∇𝐾, 𝑆
∗
𝜗,𝛿,𝑥𝑘

(𝑠)𝜑𝜗(𝑥𝑘 + 𝛿·)𝐾⟩𝐿2 (Λ𝛿,𝑥𝑘 ) .

Noting that 𝑆∗
𝜗,𝛿,𝑥𝑘

(𝑠)𝑢(𝑥) = 0 for 𝑥 ∉ Λ𝛿,𝑥𝑘 and using multivariate Taylor expansion for 𝜗𝑖, we
can write

𝐴(𝑠) =
𝑁∑︁
𝑘=1

𝑤𝑘 (𝑥)⟨𝑆∗𝜗,𝛿,𝑥𝑘 (𝑠)∇𝐾, 𝑆
∗
𝜗,𝛿,𝑥𝑘

(𝑠)𝑔 (𝜗,𝑥𝑘,𝛿) · ∇𝐾⟩𝐿2 (ℝ𝑑 ) ,

with 𝑔 (𝜗,𝑥𝑘,𝛿) given by (B.22). Corollary B.21 already implies
𝑁∑︁
𝑘=1

𝑤𝑘 (𝑥)⟨e2𝑠𝑎Δ∇𝐾, 𝑔 (𝜗,𝑥𝑘,𝛿) · ∇𝐾⟩𝐿2 (ℝ𝑑 ) ≲ ℎ𝛽 (1 ∧ 𝑠−3/2−𝑑/4).

Hence, ∫ 𝑇

0

∫ 𝑡𝛿−2

0

𝑁∑︁
𝑘=1

𝑤𝑘 (𝑥)⟨e2𝑠𝑎Δ∇𝐾, 𝑔 (𝜗,𝑥𝑘,𝛿) · ∇𝐾⟩𝐿2 (ℝ𝑑 ) d𝑠 d𝑡 ≲ ℎ𝛽 . (B.26)

Thus, it remains to control the error terms resulting from the switch of semigroups. This is given
in the next lemma. The proof relies on the 𝐿2-distance of e𝑠𝑎Δ to 𝑆𝛿,𝑦 (𝑠) (pointed out in Lemma
B.14(iii)), the 𝐿2-distance of 𝑆𝛿,𝑦 (𝑠) to 𝑆∗𝜗,𝛿,𝑦 (𝑠) (which can be controlled via the variation of
parameters formula) and a sufficiently sharp upper bound for ∥𝑆∗

𝜗,𝛿,𝑦
(𝑠)𝑔 (𝜗,𝛿,𝑦) · ∇𝐾∥𝐿2 (Λ𝛿,𝑦 ) .

Lemma B.23. It holds∫ 𝑇

0

∫ 𝑡𝛿−2

0
𝐴(𝑠) d𝑠 d𝑡 =

∫ 𝑇

0

∫ 𝑡𝛿−2

0

𝑁∑︁
𝑘=1

𝑤𝑘 (𝑥)⟨e2𝑠𝑎Δ∇𝐾, 𝑔 (𝜗,𝑥𝑘,𝛿) · ∇𝐾⟩𝐿2 (ℝ𝑑 ) d𝑠 d𝑡 + 𝑜(ℎ𝛽),

where the 𝑜-term is independent of 𝑥 ∈ J.

Lemma B.23 combined with (B.26) already yields the desired rate ℎ𝛽 for the leading order
term

∫𝑇
0
∫ 𝑡𝛿−2
0 𝐴(𝑠) d𝑠 d𝑡 in (B.25). The lower order term 𝛿

∫𝑇
0
∫ 𝑡𝛿−2
0 𝐵(𝑠) d𝑠 d𝑡 is bounded in the

same manner. Expand the right-hand side of the scalar product by adding and subtracting 𝜑𝜗(𝑥).
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Following the same structure as above, i.e., switching from the semigroup on 𝐿2(Λ𝛿,𝑥𝑘) to the
heat kernel on 𝐿2(ℝ𝑑), we similarly obtain

𝛿

∫ 𝑇

0

∫ 𝑡𝛿−2

0

𝑁∑︁
𝑘=1

𝑤𝑘 (𝑥)⟨𝑆∗𝜗,𝛿,𝑥𝑘 (𝑠)∇𝐾, 𝑆
∗
𝜗,𝛿,𝑥𝑘

(𝑠) (𝜑𝜗(𝑥𝑘 + 𝛿·) − 𝜑𝜗(𝑥))𝐾⟩𝐿2 (Λ𝛿,𝑥𝑘 ) d𝑠 d𝑡 = 𝑜(ℎ𝛽).

On the other hand, using 𝜓(∇𝐾, 𝜑𝜗(𝑥)𝐾) = 0 (due to integration by parts), Lemma B.17(iii),
Lemma B.18(i) and (B.20), we derive

𝛿

∫ 𝑇

0

∫ 𝑡𝛿−2

0

𝑁∑︁
𝑘=1

𝑤𝑘 (𝑥)⟨𝑆∗𝜗,𝛿,𝑥𝑘 (𝑠)∇𝐾, 𝑆
∗
𝜗,𝛿,𝑥𝑘

(𝑠)𝜑𝜗(𝑥)𝐾⟩𝐿2 (Λ𝛿,𝑥𝑘 ) d𝑠 d𝑡 ≲ 𝛿2 = 𝑜(ℎ𝛽).

■

Proposition B.24. Grant Assumption L, and suppose that 𝑋0 = 0. Then,

sup
𝑥∈J

Var(R𝑥
𝛿) = 𝑂(ℎ2𝛽).

Proof. We will show that each entry of the covariance matrix of R𝑥
𝛿
satisfies the required order,

which then directly implies the order for the entire covariance matrix. Note that Cov(R𝑥
𝛿
)𝑖 𝑗 is

given by
𝑁∑︁
𝑘=1

𝑁∑︁
𝑙=1

𝑤𝑘 (𝑥)𝑤𝑙 (𝑥)𝛿−2Cov
(∫ 𝑇

0
⟨𝑋 (𝑡), (𝜕𝑖𝐾)𝛿,𝑥𝑘⟩⟨𝑋 (𝑡), (𝜑𝜗 + (𝜗 − 𝜗(𝑥)) · ∇)𝐾𝛿,𝑥𝑘⟩ d𝑡,∫ 𝑇

0
⟨𝑋 (𝑡), (𝜕 𝑗𝐾)𝛿,𝑥𝑙⟩⟨𝑋 (𝑡), (𝜑𝜗 + (𝜗 − 𝜗(𝑥)) · ∇)𝐾𝛿,𝑥𝑙⟩ d𝑡

)
.

The Cauchy–Schwarz inequality and (𝑎+𝑏)2 ≤ 2𝑎2+2𝑏2 imply that, up to constants independent
of 𝑥 ∈ J, this last quantity is upper bounded by

𝛿−2 sup
𝑦∈J, |𝑦−𝑥 | ≤ℎ,𝑘≤𝑑

Var
(∫ 𝑇

0
⟨𝑋 (𝑡), (𝜕𝑘𝐾)𝛿,𝑦⟩⟨𝑋 (𝑡), (𝜑𝜗(𝑦 + 𝛿·)𝐾)𝛿,𝑦⟩ d𝑡

)
+ 𝛿−4 sup

𝑦∈J, |𝑦−𝑥 | ≤ℎ,𝑘≤𝑑
Var

(∫ 𝑇

0
⟨𝑋 (𝑡), (𝜕𝑘𝐾)𝛿,𝑦⟩⟨𝑋 (𝑡), 𝑔 (𝜗,𝑦,𝛿) · ∇𝐾)𝛿,𝑦⟩ d𝑡

)
,

with 𝑔 (𝜗,𝑦,𝛿) from (B.22). The result follows then immediately by Lemma B.18(ii) and (iii). ■

Proposition B.22 and B.24 already imply that R𝑥
𝛿
is of stochastic order 𝑂ℙ(ℎ𝛽) whenever

𝑋0 = 0. Under Assumption L(iv), this can furthermore be extended to general initial conditions.

Proposition B.25. Grant Assumption L. Define R̄𝑥
𝛿
analogous to R𝑥

𝛿
, but with respect to 𝑋 satisfying

(B.1) with initial condition 𝑋 (0) = 0. Then,

R𝑥
𝛿 = R̄𝑥

𝛿 + 𝑜ℙ(ℎ
𝛽),

where the 𝑜ℙ-term does not depend on 𝑥 ∈ J.
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Proof of the upper bound statement

Proof of Theorem B.2. We use the error decomposition (B.10). To prove (B.11), it suffices to show
for 𝛿 → 0 that I𝑥

𝛿

ℙ→ Σ for some invertible, deterministic matrix Σ, while M𝑥
𝛿
= 𝑂ℙ((𝑁ℎ𝑑)−1/2)

and R𝑥
𝛿
= 𝑂ℙ(ℎ𝛽). Proposition B.19 gives that I𝑥

𝛿

ℙ→ Σ for some invertible Σ. Define a sequence
of martingales via

M𝑥
𝛿(𝑡) =

𝑁∑︁
𝑘=1

𝑤𝑘 (𝑥)
∫ 𝑡

0
𝑋∇
𝛿,𝑘 (𝑠) d𝑊𝑘 (𝑠).

In particular, due to the independence of the Brownian motions𝑊𝑘 guaranteed by Assumption
L, the quadratic variation of M𝑥

𝛿
= M𝑥

𝛿
(𝑇) is given by

[M𝑥
𝛿]𝑇 =

𝑁∑︁
𝑘=1

𝑤𝑘 (𝑥)2
∫ 𝑇

0
𝑋∇
𝛿,𝑘 (𝑡)𝑋

∇
𝛿,𝑘 (𝑡)

⊤ d𝑡.

A standard argument, cf. [47, Lemma 3.6 or Lemma 3.8], shows thatM𝑥
𝛿
behaves like the squared

root of its quadratic variation, i.e., using Proposition B.20, M𝑥
𝛿
= 𝑂ℙ((𝑁ℎ𝑑)−1/2). Combining

Proposition B.22, Proposition B.24 and Proposition B.25 yields the rate 𝑂ℙ(ℎ𝛽) for R𝑥
𝛿
.

To prove the supplement (B.12), it is enough to show that

ℙ
(��(I𝑥𝛿)−1R𝑥

𝛿

��ℎ−𝛽 > 𝑀
)
≤ 𝜀

2 , (B.27)

ℙ
(��(I𝑥𝛿)−1M𝑥

𝛿

��(𝑁ℎ𝑑)1/2 > 𝑀∥𝐾∥−1
𝐿2 (ℝ𝑑 )

)
≤ 𝜀

2 . (B.28)

We only show the statement (B.27), as the arguments for (B.28) are similar. Now,

ℙ
(��(I𝑥𝛿)−1R𝑥

𝛿

��ℎ−𝛽 > 𝑀
)
≤ ℙ

(��((I𝑥𝛿)−1 − Σ−1)R𝑥
𝛿

��ℎ−𝛽 > 𝑀
)
+ ℙ

(��Σ−1R𝑥
𝛿

��ℎ−𝛽 > 𝑀
)

≤ ℙ
(
∥(I𝑥𝛿)

−1 − Σ−1∥
��R𝑥

𝛿

��ℎ−𝛽 > 𝑀
)
+ 𝑃

(��R𝑥
𝛿

��ℎ−𝛽 > 𝑀∥Σ−1∥−1
)

(B.29)

with arbitrary matrix norm ∥·∥ on ℝ𝑑×𝑑 . Due to Proposition B.22, Proposition B.24, Chebyshev’s
inequality, and for 𝛿 sufficiently small and 𝑀 sufficiently large, the term ℙ

(��R𝑥
𝛿

��ℎ−𝛽 > 𝑀∥Σ−1∥−1
)

is uniformly bounded in 𝑥 ∈ J by 𝜀/4. On the other hand,

𝑃
(
∥(I𝑥𝛿)

−1 − Σ−1∥
��R𝑥

𝛿

��ℎ−𝛽 > 𝑀
)
≤ 𝑃

(��R𝑥
𝛿

��ℎ−𝛽 > 𝑀
)
+ 𝑃

(
∥(I𝑥𝛿)

−1 − Σ−1∥ > 1
)
.

Again, 𝛿 and 𝑀 can be chosen such that 𝑃
(��R𝑥

𝛿

��ℎ−𝛽 > 𝑀
)
≤ 𝜀/8. Moreover, there exists a value

𝜂 > 0 with the property that ∥((I𝑥
𝛿
)−1 − Σ−1)∥ ≤ 1 whenever ∥(I𝑥

𝛿
− Σ)∥ ≤ 𝜂, due to the

continuity of the function 𝑦 ↦→ 𝑦−1 and the fact that both Σ and I𝑥
𝛿
are (a.s.) invertible. Hence,

for sufficiently small 𝛿,

ℙ
(
∥(I𝑥𝛿)

−1 − Σ−1∥ > 1
)
≤ 𝑃

(
∥I𝑥𝛿 − Σ∥ > 𝜂

)
≤ 𝜀/8

due to Proposition B.19, thus showing the assertion. ■
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B.5.4 Proof of the lower bound

The proof of Theorem B.9 relies on the general reduction scheme in [43, Section 2.2] and
the RKHS machinery described in detail in Section A.6.3 in Paper A. In what follows, we will
therefore summarise the key components until the nonparametric setup requires a different
reasoning.

Let ℙ𝜗0 and ℙ𝜗1 be two Gaussian measures defined on a separable Hilbert space H with
expectation zero and positive self-adjoint trace-class covariance operators 𝐶𝜗0 and 𝐶𝜗1 , respec-
tively. 𝜗0 and 𝜗1 belong to a set of functions Θ. By the spectral theorem, there exist (strictly)
positive eigenvalues (𝜎2

𝑗
) 𝑗≥1 and an associated orthonormal system of eigenvectors (𝑢 𝑗) 𝑗≥1 such

that 𝐶𝜗0 =
∑

𝑗≥1 𝜎
2
𝑗
(𝑢 𝑗 ⊗ 𝑢 𝑗). The reproducing kernel Hilbert space (RKHS) associated to ℙ𝜗0 is

given by

𝐻𝜗0 = {ℎ ∈ H : ∥ℎ∥𝐻
𝜗0 < ∞}, ∥ℎ∥2𝐻

𝜗0
=

∑︁
𝑗≥1

⟨𝑢 𝑗, ℎ⟩2H
𝜎2
𝑗

.

Instead of Lemma A.22 in Paper A, we rely on its nonparametric equivalent. The proof is identical
and therefore skipped.

Lemma B.26. In the above Gaussian setting, suppose that (𝑢 𝑗) 𝑗≥1 is an orthonormal basis of H and
that ∑︁

𝑗≥1
𝜎−2𝑗 ∥(𝐶𝜗1 − 𝐶𝜗0)𝑢 𝑗∥2𝐻

𝜗0
≤ 1

2 . (B.30)

Then, the squared Hellinger distance satisfies the bound 𝐻2(ℙ𝜗0 ,ℙ𝜗1) ≤ 1. Therefore, for any
𝑥 ∈ Λ and a generic constant 𝑐1 > 0,

inf̂
𝜗

max
𝜗∈{𝜗0,𝜗1}

ℙ𝜗

(
|�̂�(𝑥) − 𝜗(𝑥) | ≥ 𝑐1𝑁−𝛽/(2𝛽+𝑑)

2

)
≥ 1

4 · 2 −
√
3

4 =: 𝑐2.

We assume without loss of generality that ∥𝐾∥𝐿2 (ℝ𝑑 ) = 1. Choose 𝜗0 such that the null model
is 𝐴𝜗0 = Δ, i.e., 𝜗 = 0, 𝑐 = 0, and choose 𝜗1 such that the alternatives are 𝐴𝜗1 = Δ + 𝜗 · ∇ + 𝑐,
where 𝑐 − ∇ · 𝜗 ≤ 𝛾 < 0 and 𝜗 is componentwise 𝛽-Hölder continuous and a conservative vector
field. For 𝜗 ∈ {𝜗0, 𝜗1}, let ℙ𝜗,𝛿 be the law of 𝑋𝛿 on H = 𝐿2( [0, 𝑇])𝑀 , let 𝐶𝜗,𝛿 be its covariance
operator, and let (𝐻𝜗,𝛿, ∥·∥𝐻𝜗,𝛿) be the associated RKHS. For ( 𝑓𝑘)𝑀𝑘=1 ∈ H, we have 𝐶𝜗,𝛿( 𝑓𝑘)𝑀𝑘=1 =
(∑𝑀

𝑙=1 𝐶𝜗,𝛿,𝑘,𝑙 𝑓𝑙)𝑀𝑘=1 with (cross-) covariance operators 𝐶𝜗,𝛿,𝑘,𝑙 : 𝐿2( [0, 𝑇]) → 𝐿2( [0, 𝑇]) defined by

𝐶𝜗,𝛿,𝑘,𝑙 𝑓𝑙 (𝑡) = 𝔼𝜗 [⟨𝑋𝛿,𝑙, 𝑓𝑙⟩𝐿2 ( [0,𝑇 ] )𝑋𝛿,𝑘 (𝑡)], 0 ≤ 𝑡 ≤ 𝑇.

Due to stationarity of 𝑋𝛿 (cf. Assumption O), we have, for 0 ≤ 𝑡 ≤ 𝑇,

𝐶𝜗,𝛿,𝑘,𝑙 𝑓𝑙 (𝑡) =
∫ 𝑡

0
𝑐𝜗,𝛿,𝑘,𝑙 (𝑡 − 𝑡′) 𝑓𝑙 (𝑡′) d𝑡′ +

∫ 𝑇

𝑡

𝑐𝜗,𝛿,𝑙,𝑘 (𝑡′ − 𝑡) 𝑓𝑙 (𝑡′) d𝑡′,

with covariance kernels 𝑐𝜗,𝛿,𝑘,𝑙 (𝑡) = 𝔼𝜗 [𝑋𝛿,𝑘 (𝑡)𝑋𝛿,𝑙 (0)], 0 ≤ 𝑡 ≤ 𝑇 .
Let (𝜎2

𝑗
) 𝑗≥1 be the strictly positive eigenvalues of 𝐶𝜗0,𝛿, and let (𝑢 𝑗) 𝑗≥1 with 𝑢 𝑗 = (𝑢 𝑗,𝑘)𝑀𝑘=1 ∈ H

be a corresponding orthonormal system of eigenvectors. We want to verify the assumption in
(B.30), for which we require the following lemma.
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Lemma B.27 (Lemma A.23 in Paper A). In the above setting, we have

∞∑︁
𝑗=1

𝜎−2𝑗 ∥(𝐶𝜗0,𝛿 − 𝐶𝜗1,𝛿)𝑢 𝑗∥2𝐻
𝜗0 ,𝛿

≤ 𝐶𝑇

𝑁∑︁
𝑘,𝑙=1

( ∥Δ𝐾∥4
𝐿2 (ℝ𝑑 )

𝛿8
∥𝑐𝜗0,𝛿,𝑘,𝑙 − 𝑐𝜗1,𝛿,𝑘,𝑙∥2𝐿2 ( [0,𝑇 ] ) + ∥𝑐′′

𝜗0,𝛿,𝑘,𝑙 − 𝑐′′
𝜗1,𝛿,𝑘,𝑙∥

2
𝐿2 ( [0,𝑇 ] )

)
for all 𝛿2 ≤ ∥Δ𝐾∥𝐿2 (ℝ𝑑 ) and all 𝑇 ≥ 1, where 𝐶 > 0 is an absolute constant.

Adapting Lemma A.24 in Paper A to our setting results in another upper bound.

Lemma B.28. In the above setting, let 𝜗1 ∈ Θ with 𝑁 ≥ 1. Then, there exists a constant 𝑐3 > 0,
depending only on 𝐾 and 𝑑, such that

𝑁∑︁
𝑘,𝑙=1

(
𝛿−8∥𝑐𝜗0,𝛿,𝑘,𝑙 − 𝑐𝜗1,𝛿,𝑘,𝑙∥2𝐿2 ( [0,𝑇 ] ) + ∥𝑐′′

𝜗0,𝛿,𝑘,𝑙 − 𝑐′′
𝜗1,𝛿,𝑘,𝑙∥

2
𝐿2 ( [0,𝑇 ] )

)
≤ 𝑐3

𝑁∑︁
𝑘=1

(
|𝜗(𝑥𝑘) |2 + 𝛿2 �̃�𝜗(𝑥𝑘)2

)
,

with �̃�𝜗 = 𝑐 − ∇ · 𝜗/2 − |𝜗|2/4.

Let 𝑐4, 𝑐5 > 0 be constants independent of 𝑁 and ℎ. Consider a kernel function 𝑉 ∈
𝐶∞
𝑐 (ℝ𝑑; [0,∞]) with compact support in [−1/2, 1/2]𝑑 . Define the potential

𝜉(𝑦) = 𝑐4ℎ𝛽+1𝑉 ((𝑦 − 𝑥)/ℎ),

and let 𝜗 = ∇𝜉. We consider hence the alternative

𝜗(𝑦) = 𝑐4ℎ𝛽 (∇𝑉)
( 𝑦 − 𝑥

ℎ

)
and a reaction function 𝑐 : Λ → ℝ− small enough. For ℎ = 𝑐5𝑁−1/(2𝛽+𝑑) , we have that

𝑐3
𝑁∑︁
𝑘=1

(
|𝜗(𝑥𝑘) |2 + 𝛿2 �̃�𝜗(𝑥𝑘)2

)
≲

𝑁∑︁
𝑘=1

|𝜗(𝑥𝑘) |2 ≲ 𝑁ℎ𝑑ℎ2𝛽 ≲ 1.

The claim of Theorem B.9 follows now from Lemma B.26 in combination with Lemmas B.27
and B.28 and sufficiently small constants 𝑐4, 𝑐5. ■

B.5.5 Remaining proofs

Remaining proofs for Section B.3

Proof of Corollary B.4. We decompose

�̃�𝛿(𝑥) = 𝜗(𝑥) − (I𝑥𝛿)
−1M𝑥

𝛿∥𝐾∥𝐿2 (ℝ𝑑 ) + (I𝑥𝛿)
−1R𝑥

𝛿 + (�̂�𝛿 − 𝑎) (I𝑥𝛿)
−1U𝑥

𝛿
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with
U𝑥
𝛿 =

𝑁∑︁
𝑘=1

𝑤𝑘 (𝑥)
∫ 𝑇

0
𝑋∇
𝛿,𝑘 (𝑡)𝑋

Δ
𝛿,𝑘 (𝑡) d𝑡.

Combining Lemma B.17(iii) and Lemma B.18(i), it follows by the arguments given in Section
B.5.3 that U𝑥

𝛿
= 𝑂ℙ(1). Thus, the claim hold once �̂�𝛿 satisfies (B.15). Just as the estimator �̂�𝛿(𝑥)

described in (B.10), the estimates in (B.16) can again be decomposed into a bias and martingale
part. While the orders of the appearing coefficients differ due to a different scaling in 𝛿, all
terms can be controlled with the techniques used in Section B.5.3 and B.5.3. It is therefore
straightforward to verify that both given candidates for �̂�𝛿 satisfy

�̂�𝛿 − 𝑎 ∈ 𝑂ℙ(𝛿ℎ + 𝛿2 + 𝛿(𝑁ℎ𝑑)−1/2)
and thus fulfill (B.15). ■

Proof of Corollary B.5. By decomposing the integral and using (B.12) from Theorem B.2, we
obtain ∫

Λ

(
�̂�𝛿(𝑥) − 𝜗(𝑥)

)2
d𝑥 =

∫
J

(
�̂�𝛿(𝑥) − 𝜗(𝑥)

)2
d𝑥 +

∫
Λ\J

(
�̂�𝛿(𝑥) − 𝜗(𝑥)

)2
d𝑥

= 𝑂ℙ

(
ℎ2𝛽 + 1

𝑁ℎ𝑑

)
+

∫
Λ\J

(
�̂�𝛿(𝑥) − 𝜗(𝑥)

)2
d𝑥.

Due to the decomposition (B.10) and (B.17), it holds for 𝑥 ∉ J and appropriate 𝑥0 = 𝑥0(𝑥) ∈ J

that
�̂�𝛿(𝑥) = �̂�𝛿(𝑥0) = 𝜗(𝑥) + (𝜗(𝑥0) − 𝜗(𝑥)) + 𝑂ℙ(ℎ𝛽 + (𝑁ℎ𝑑)−1/2).

Thus, plugging this into the previous display yields by the Hölder regularity of 𝜗,∫
Λ\J

(
�̂�𝛿(𝑥) − 𝜗(𝑥)

)2
d𝑥 ≲ 𝑂ℙ

(
ℎ2𝛽 + 1

𝑁ℎ𝑑

)
+

∫
Λ\J

(𝜗(𝑥) − 𝜗(𝑥0))2 d𝑥

≲ 𝑂ℙ

(
ℎ2𝛽 + 1

𝑁ℎ𝑑

)
+

∫
Λ\J

dist2(𝑥, J) d𝑥

≲ 𝑂ℙ

(
ℎ2𝛽 + 1

𝑁ℎ𝑑

)
+ 𝑑2max𝜆 (Λ \ J).

■

Proof of Lemma B.7. We use the well-known theory for local polynomial estimators, more specif-
ically, for the local linear case. The one-dimensional case in [43, Chapter 1.6] can be easily
extended to the general 𝑑-dimensional version. By a first order multivariate Taylor expansion
for a function 𝑓 : ℝ𝑑 → ℝ, we can write for 𝑦, 𝑧 ∈ ℝ𝑑 , a multiindex 𝛼, and any ℎ > 0,

𝑓 (𝑧) ≈
∑︁

0≤ |𝛼 | ≤1

𝐷𝛼 𝑓 (𝑦)
𝛼! (𝑧 − 𝑦)𝛼 = 𝜉⊤(𝑦)𝑈

( 𝑧 − 𝑦

ℎ

)
,

where
𝑈 (𝑢) =

(
(𝑢𝛼/𝛼!)0≤ |𝛼 | ≤1

)⊤
, 𝜉(𝑥) =

(
(𝐷𝛼 𝑓 (𝑥)ℎ |𝛼 |)0≤ |𝛼 | ≤1

)⊤
.

Modifying [43, Proposition 1.12] and [43, Lemma 1.3] to their multivariate counterparts,
it follows that the weights 𝑤𝑘 (𝑥) are reproducing of order 1 and satisfy Assumption L(iii) if
(LP1)-(LP3) hold true. ■
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Remaining proofs for Section B.5.1

Proof of Lemma B.12. Since 𝐴𝜗 is elliptic, it follows as in the proof of [4, Proposition A.4], after
formally replacing Δ𝜗(𝛿· ) and min𝑥 𝜗(𝑥) contained there by 𝑎Δ and the lower bound on the
spectrum of 𝑎, respectively, that 𝐴∗

𝜗,𝛿,𝑦
is a sectorial operator on 𝐿2(Λ𝛿,𝑦), that is, there exists a

constant 𝑀, independent of 𝛿 and 𝑦 ∈ J, such that

∥(𝜆𝐼 − 𝐴∗𝜗,𝛿,𝑦)
−1∥𝐿2 (Λ𝛿,𝑦 ) ≤

𝑀

|𝜆 − 𝐶𝛿2 |

for all 𝜆 ∈ Σ𝜂 = {𝜌 ∈ ℂ : |arg(𝜌 − 𝐶𝛿2) | < 𝜂} \ {𝐶𝛿2} with some 𝜂 ∈ (𝜋/2, 𝜋) or, equivalently,
for all 𝜆 ∈ Σ𝜂 + 𝐶𝛿2,

∥(𝜆𝐼 + (𝐶𝛿2 − 𝐴∗𝜗,𝛿,𝑦))
−1∥𝐿2 (Λ𝛿,𝑦 ) ≤

𝑀

|𝜆 | .

The shifted operator 𝐶𝛿2 − 𝐴∗
𝜗,𝛿,𝑦

generates the semigroup e−𝐶𝛿2𝑡𝑆∗
𝜗,𝛿,𝑦

(𝑡), and so the result
follows from [35, Proposition 2.1.1]. ■

Proof of Lemma B.14. The proof is a combination of [4, Proposition 3.5] and Lemma A.14 in
Paper A. For fixed 𝑦 ∈ J, 𝑢 ∈ ℝ𝑑 , it holds by a Feynman–Kac representation that

𝑆∗𝜗,𝛿,𝑦 (𝑡)𝑧(𝑢) = �̃�𝑢

[
𝑧(𝑌 (𝛿,𝑦)

𝑡 ) exp
(∫ 𝑡

0
�̃�𝛿,𝑦 (𝑌 (𝛿,𝑦)

𝑠 ) d𝑠
)
1
(
𝑡 < 𝜏𝛿,𝑦 (𝑌 (𝛿,𝑦) )

)]
,

where the process 𝑌 (𝛿,𝑦) takes the form

d𝑌 (𝛿,𝑦)
𝑡 = �̃�𝛿,𝑦 (𝑌 (𝛿,𝑦)

𝑡 ) d𝑡 +
√
2𝑎1/2 d�̃�𝑡, 𝑌

(𝛿,𝑦)
0 = 𝑢 ∈ ℝ𝑑 ,

with �̃�𝛿,𝑦 (·) = −𝛿𝜗(𝑦 + 𝛿·), �̃�𝛿,𝑦 (·) = 𝛿2(𝑐(𝑦 + 𝛿·) − ∇ · 𝜗(𝑦 + 𝛿·)), a scalar Brownian motion �̃�,
and with the stopping times 𝜏𝛿,𝑦 := inf{𝑡 ≥ 0 : 𝑌 (𝛿,𝑦)

𝑡 ∉ Λ𝛿,𝑦}.
(i). By upper bounding the transition densities of 𝑌 (𝛿,𝑦) as in [4, Proposition 3.5(i)], we get

sup
𝑦∈J

(𝑆∗𝜗,𝛿,𝑦 (𝑡) |𝑧 |) (𝑢) ≤ 𝑐3e𝑐1𝑡𝛿
2 (e𝑐2𝑡Δ |𝑧 |) (𝑢),

where the right hand side is in 𝐿2(ℝ𝑑).
(ii). By dense approximation, it is enough to consider 𝑧 ∈ 𝐶𝑐 (Λ̄) and such that 𝑧 is supported

in Λ𝛿,𝑦 for 𝛿 small enough, hence, 𝑧 |Λ𝛿,𝑦 = 𝑧. With (e𝑡𝑎Δ𝑧) (𝑢) = �̃�𝑢 [𝑧(𝑌 (0)
𝑡 )], decompose

𝑆∗𝜗,𝛿,𝑦 (𝑡)𝑧(𝑢) − e𝑡𝑎Δ𝑧(𝑢) = 𝑇1(𝑦, 𝑢) + 𝑇2(𝑦, 𝑢) + 𝑇3(𝑦, 𝑢)

with

𝑇1(𝑦, 𝑢) := �̃�𝑢

[
𝑧(𝑌 (𝛿,𝑦)

𝑡 ) − 𝑧(𝑌 (0)
𝑡 )

]
,

𝑇2(𝑦, 𝑢) := �̃�𝑢

[
𝑧(𝑌 (𝛿,𝑦)

𝑡 )
(
exp

(∫ 𝑡

0
�̃�𝛿,𝑦 (𝑌 (𝛿,𝑦)

𝑠 ) d𝑠
)
− 1

)
1(𝑡 < 𝜏𝛿,𝑦 (𝑌 (𝛿,𝑦) ))

]
,

𝑇3(𝑦, 𝑢) := −�̃�𝑢
[
𝑧(𝑌 (𝛿,𝑦)

𝑡 )1(𝑡 ≥ 𝜏𝛿,𝑦 (𝑌 (𝛿,𝑦) ))
]
.
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The arguments in [4, Proposition 3.5(ii)] yield

sup
𝑦∈J

|𝑇1(𝑦, 𝑢) | → 0 and sup
𝑦∈J

|𝑇2(𝑦, 𝑢) | → 0,

while compactness of J guarantees for sufficiently small 𝛿 the existence of a ball 𝐵𝜌𝛿−1 ⊂
⋂

𝑦∈J Λ𝛿,𝑦
with centre 0 and radius 𝜌𝛿−1 for some 𝜌 > 0. Using that the running maximum of a Brownian
motion decays exponentially, see, for instance [27, Problem 2.8.3], we conclude similarly to
Lemma A.14(ii) in Paper A that

sup
𝑦∈J

|𝑇3(𝑦, 𝑢) | = sup
𝑦∈J

|�̃�𝑢
[
𝑧(𝑌𝑡)1(𝑡 ≥ 𝜏𝛿,𝑦 (𝑌 ))

]
|

≲ sup
𝑦∈J

ℙ̃𝑢(𝜏𝛿,𝑦 (𝑌 ) ≤ 𝑡) ≤ ℙ̃𝑢(max
0≤𝑠≤𝑡

|𝑌𝑠 | ≥ 𝜌𝛿−1)

≤ ℙ̃𝑢(max
0≤𝑠≤𝑡

|�̃�𝑠 | ≥ �̃�𝛿−1) ≤ 𝛿𝑡1/2𝐶e−𝐶𝛿−2𝑡−1 → 0,

for a modified constant �̃�. This implies pointwise, for all 𝑢 ∈ ℝ𝑑 ,

sup
𝑦∈J

|𝑆∗𝜗,𝛿,𝑦 (𝑡)𝑧(𝑢) − e𝑡𝑎Δ𝑧(𝑢) | → 0, 𝛿 → 0.

By (i), we know sup𝑦∈J | (𝑆∗𝜗,𝛿,𝑦 (𝑡)𝑧) (𝑢) | ∈ 𝐿2(ℝ𝑑). Dominated convergence yields the claim.
(iii). We use the decomposition in (ii). The process 𝑌 (𝛿,𝑦) is independent of 𝛿 and �̃�𝛿,𝑦 = 0,

�̃�𝛿,𝑦 = 0. This implies 𝑇1(𝑦, 𝑢) = 𝑇2(𝑦, 𝑢) = 0 for all 𝑦 ∈ J and 𝑢 ∈ ℝ𝑑. Hölder’s inequality thus
yields

sup
𝑦∈J

∥(𝑆𝛿,𝑦 (𝑡) − e𝑡𝑎Δ)𝑧∥𝐿2 (ℝ𝑑 ) ≤ sup
𝑦∈J

(
∥(𝑆𝛿,𝑦 (𝑡) − e𝑡𝑎Δ)𝑧∥𝐿1 (ℝ𝑑 ) ∥(𝑆𝛿,𝑦 (𝑡) − e𝑡𝑎Δ)𝑧∥𝐿∞ (ℝ𝑑 )

)1/2
≲ 𝛿1/2𝑡1/4e−𝛿−2𝑡−1/2.

■

Proof of Lemma B.15. While the result matches Lemma A.16 in Paper A, the proof differs as we
cannot rely on diagonalisability of 𝑆∗

𝜗,𝛿,𝑦
(𝑡) in the nonparametric framework.

We write 𝑢 = 𝑉𝛿,𝑦𝑧. Let first 𝑠 = 0 such that 𝐻−𝑠,𝑝
0 (ℝ𝑑) = 𝐿𝑝(ℝ𝑑). Approximating 𝑢 by contin-

uous and compactly supported functions, we obtain by Lemma B.14(i) and hypercontractivity
of the heat kernel on ℝ𝑑 uniformly in 𝑦 ∈ J

∥𝑆∗𝜗,𝛿,𝑦 (𝑡)𝑢∥𝐿2 (Λ𝛿,𝑦 ) ≲ e𝑐1𝑡𝛿2 ∥e𝐶𝑡Δ |𝑢|∥𝐿2 (ℝ𝑑 )

≲ e𝑐1𝑡𝛿2𝑡−𝛾∥𝑢∥𝐿𝑝 (ℝ𝑑 ) ≲ e𝑐1𝑡𝛿2𝑡−𝛾∥𝑧∥𝐿𝑝 (ℝ𝑑 ) .

This yields the result for 𝑠 = 0. These inequalities hold also for 𝑝 = 1, thus proving the supplement
of the statement. For 𝑠 > 0 and 𝑝 > 0, we apply first Lemma B.13 and then the inequality from
the last display to (2𝐶𝛿2 − 𝐴∗

𝜗,𝛿,𝑦
)−𝑠/2𝑢 instead of 𝑢. Thus, uniformly in 𝑦 ∈ J,

∥𝑆∗𝜗,𝛿,𝑦 (𝑡)𝑢∥𝐿2 (Λ𝛿,𝑦 ) = ∥(2𝐶𝛿2 − 𝐴∗𝜗,𝛿,𝑦)
𝑠/2𝑆∗𝜗,𝛿,𝑦 (𝑡) (2𝐶𝛿2 − 𝐴∗𝜗,𝛿,𝑦)

−𝑠/2𝑢∥𝐿2 (Λ𝛿,𝑦 )
≲ e𝑐1𝑡𝛿−2𝑡−𝑠/2∥𝑆∗𝜗,𝛿,𝑦 (𝑡) (2𝐶𝛿2 − 𝐴∗𝜗,𝛿,𝑦)

−𝑠/2𝑢∥𝐿2 (Λ𝛿,𝑦 )
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≲ e𝑐1𝑡𝛿−2𝑡−𝑠/2−𝛾∥(2𝐶𝛿2 − 𝐴∗𝜗,𝛿,𝑦)
−𝑠/2𝑢∥∥ ∥ 𝐿𝑝(Λ𝛿,𝑦)

≲ e𝑐1𝑡𝛿−2𝑡−𝑠/2−𝛾∥(−𝐴𝜗,𝛿,𝑦)−𝑠/2𝑢∥𝐿𝑝 (Λ𝛿,𝑦 )
≲ e𝑐1𝑡𝛿−2𝑡−𝑠/2−𝛾∥𝑢∥𝐻−𝑠,𝑝 (Λ𝛿,𝑦 )

≲ e𝑐1𝑡𝛿−2𝑡−𝑠/2−𝛾𝑉op∥𝑧∥𝐿𝑝 (Λ𝛿,𝑦 ) .

■

Remaining proofs for Section B.5.2

Proof of Lemma B.17. Lemma B.15 applied for 𝑠 = 2 shows that, for 𝑣 ∈ {𝑢, 𝑤} and any 𝜀 > 0,

sup
𝑦∈J

∥𝑆∗𝜗,𝛿,𝑦 (𝑡)𝑣∥𝐿2 (Λ𝛿,𝑦 ) ≲𝜀 1 ∧ 𝑡−1−𝑑/4+𝜀. (B.31)

(i). Applying (B.31) to 𝑢 and 𝑤, the Cauchy–Schwarz inequality gives for all dimensions
𝑑 ≥ 1 that

| 𝑓0(𝑡) | ≲ ∥e𝑡𝑎Δ𝑢∥𝐿2 (ℝ𝑑 ) ∥e𝑡𝑎Δ𝑤∥𝐿2 (ℝ𝑑 ) ≲ 1 ∧ 𝑡−2.

This yields 𝑓0 ∈ 𝐿1( [0,∞)), proving the claim.
(ii). Lemma B.16 and Lemma B.11(ii) imply that

𝛿−2
∫ 𝑇

0
Cov(⟨𝑋 (𝑡), 𝑢𝛿,𝑥⟩, ⟨𝑋 (𝑡), 𝑤𝛿,𝑥⟩) d𝑡 =

∫ 𝑇

0

∫ 𝑡𝛿−2

0
𝑓𝑡,𝛿,𝑦 (𝑡′) d𝑡′ d𝑡,

with

𝑓𝑡,𝛿,𝑦 (𝑡′) = ⟨𝑆∗𝜗,𝛿,𝑦 (𝑡
′)𝑢, 𝑆∗𝜗,𝛿,𝑦 (𝑡

′)𝑤⟩𝐿2 (Λ𝛿,𝑦 )1(0 ≤ 𝑡′ ≤ 𝑡𝛿−2). (B.32)

Note that
∫𝑇
0
∫∞
0 𝑓0(𝑡′) d𝑡′ d𝑡 = 𝑇𝜓(𝑢, 𝑤), and write

sup
𝑦∈J

�����∫ 𝑇

0

∫ 𝑡𝛿−2

0
𝑓𝑡,𝛿,𝑦 (𝑡′) d𝑡′ d𝑡 −

∫ 𝑇

0

∫ ∞

0
𝑓0(𝑠) d𝑡′ d𝑡

�����
≤

∫ 𝑇

0

∫ 𝑡𝛿−2

0
sup
𝑦∈J

�� 𝑓𝑡,𝛿,𝑦 (𝑡′) − 𝑓0(𝑡′)
�� d𝑡′ d𝑡 + ∫ 𝑇

0

∫ ∞

𝑡𝛿−2
| 𝑓0(𝑡′) | d𝑡′ d𝑡.

Lemma B.14(ii) readily yields the pointwise convergence | 𝑓𝑡,𝛿,𝑦 (𝑡′) − 𝑓0(𝑡′) | → 0 as 𝛿 → 0,
uniformly in 𝑦 ∈ J and for any fixed 𝑡, 𝑡′ > 0. Dominated convergence, i.e., (B.31), implies
convergence to zero.

(iii). Define 𝑓𝑡,𝛿,𝑦 analogously to 𝑓𝑡,𝛿,𝑦 from (B.32), now with respect to the semigroup 𝑆𝛿,𝑦 (𝑡).
The first step of the proof is to reduce the argument to 𝑓𝑡,𝛿,𝑦. More specifically, we will show that

sup
𝑦∈J

∫ 𝑇

0

∫ 𝑡𝛿−2

0
𝑓𝑡,𝛿,𝑦 (𝑡′) d𝑡′ d𝑡 = sup

𝑦∈J

∫ 𝑇

0

∫ 𝑡𝛿−2

0
𝑓𝑡,𝛿,𝑦 (𝑡′) d𝑡′ d𝑡 + 𝑂(𝛿).

For doing so, consider the decomposition 𝑓𝑡,𝛿,𝑦 (𝑡′) − 𝑓𝑡,𝛿,𝑦 (𝑡′) = 𝑓
(1)
𝑡,𝛿,𝑦

(𝑡′) + 𝑓
(2)
𝑡,𝛿,𝑦

(𝑡′) with

𝑓
(1)
𝑡,𝛿,𝑦

(𝑡′) := ⟨(𝑆∗𝜗,𝛿,𝑦 (𝑡
′) − 𝑆𝛿,𝑦 (𝑡′))𝑢, 𝑆∗𝜗,𝛿,𝑦 (𝑡

′)𝑤⟩𝐿2 (Λ𝛿,𝑦 )1(0 ≤ 𝑡′ ≤ 𝑡𝛿−2),
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𝑓
(2)
𝑡,𝛿,𝑦

(𝑡′) := ⟨𝑆𝛿,𝑦 (𝑡′)𝑢, (𝑆∗𝜗,𝛿,𝑦 (𝑡
′) − 𝑆𝛿,𝑦 (𝑡′))𝑤⟩𝐿2 (Λ𝛿,𝑦 )1(0 ≤ 𝑡′ ≤ 𝑡𝛿−2).

The variation of parameters formula, see p. 162 in [14], shows

𝑆∗𝜗,𝛿,𝑦 (𝑡
′) − 𝑆𝛿,𝑦 (𝑡′) =

∫ 𝑡′

0
𝑆𝛿,𝑦 (𝑠)

(
𝐴∗𝜗,𝛿,𝑦 − 𝐴𝛿,𝑦

)
𝑆∗𝜗,𝛿,𝑦 (𝑡

′ − 𝑠) d𝑠

= −𝛿
∫ 𝑡′

0
𝑆𝛿,𝑦 (𝑠) (𝜗(𝑦 + 𝛿·) · ∇ + 𝛿𝜑𝜗(𝑦 + 𝛿·))𝑆∗𝜗,𝛿,𝑦 (𝑡

′ − 𝑠) d𝑠.

Letting 𝑤 = 𝑆𝛿,𝑦 (𝑠)𝑆∗𝜗,𝛿,𝑦 (𝑡
′)𝑤, Lemma B.13 applied for 𝑠 = 1/2 gives

∥∇𝑤∥𝐿2 (Λ𝛿,𝑦 ) ≲ ∥(−𝐴𝛿,𝑦)1/2𝑆𝛿,𝑦 (𝑠)𝑆∗𝜗,𝛿,𝑦 (𝑡
′)𝑤∥𝐿2 (Λ𝛿,𝑦 ) ≲ (𝑠)−1/2∥𝑆∗𝜗,𝛿,𝑦 (𝑡

′)𝑤∥𝐿2 (Λ𝛿,𝑦 ) .

Note furthermore that the adjoint of 𝜗(𝑦 + 𝛿·) · ∇ is given by

−𝜗(𝑦 + 𝛿·) · ∇ − 𝛿𝜑𝜗(𝑦 + 𝛿·) − 𝛿𝑐(𝑦 + 𝛿·).

Consequently, integration by parts, the Cauchy–Schwarz inequality and (B.31) show that, for
any sufficiently small 𝜀 > 0, 𝑠 ≤ 𝑇𝛿−2, uniformly in 𝑦 ∈ J,�����𝛿−1 ∫ 𝑡𝛿−2

0
𝑓
(1)
𝑡,𝛿,𝑦

(𝑡′) d𝑡′
����� (B.33)

=

�����∫ 𝑡𝛿−2

0

∫ 𝑡′

0
⟨𝑆𝛿,𝑦 (𝑠) (𝜗(𝑦 + 𝛿·) · ∇ + 𝛿𝜑𝜗(𝑦 + 𝛿·))𝑆∗𝜗,𝛿,𝑦 (𝑡

′ − 𝑠)𝑢, 𝑆∗𝜗,𝛿,𝑦 (𝑡
′)𝑤⟩𝐿2 (Λ𝛿,𝑦 ) d𝑠 d𝑡′

�����
=

�����∫ 𝑡𝛿−2

0

∫ 𝑡𝛿−2

𝑠

⟨𝑆𝛿,𝑦 (𝑠) (𝜗(𝑦 + 𝛿·) · ∇ + 𝛿𝜑𝜗(𝑦 + 𝛿·))𝑆∗𝜗,𝛿,𝑦 (𝑡
′ − 𝑠)𝑢, 𝑆∗𝜗,𝛿,𝑦 (𝑡

′)𝑤⟩𝐿2 (Λ𝛿,𝑦 ) d𝑡′ d𝑠
�����

=

�����∫ 𝑡𝛿−2

0

∫ 𝑡𝛿−2

𝑠

⟨𝑆∗𝜗,𝛿,𝑦 (𝑡
′ − 𝑠)𝑢, (𝜗(𝑦 + 𝛿·) · ∇ − 𝛿𝑐(𝑦 + 𝛿·))𝑆𝛿,𝑦 (𝑠)𝑆∗𝜗,𝛿,𝑦 (𝑡

′)𝑤⟩𝐿2 (Λ𝛿,𝑦 ) d𝑡′ d𝑠
�����

≲
∫ 𝑡𝛿−2

0

∫ 𝑡𝛿−2

0
∥𝑆∗𝜗,𝛿,𝑦 (𝑡

′)𝑢∥𝐿2 (Λ𝛿,𝑦 ) 𝑠
−1/2∥𝑆∗𝜗,𝛿,𝑦 (𝑡

′ + 𝑠)𝑤∥𝐿2 (Λ𝛿,𝑦 ) d𝑡′ d𝑠 ≲ 1.

The bound for 𝑓 (2)
𝑡,𝛿,𝑦

is obtained similarly. We will conclude by proving that

sup
𝑦∈J

∫ 𝑇

0

∫ 𝑡𝛿−2

0
𝑓𝑡,𝛿,𝑦 (𝑡′) d𝑡′ d𝑡 = 𝑜(𝛿). (B.34)

By Assumption L, there exists a compactly supported function 𝑧, given by 𝑧 = (𝐷𝛼 �̄�)/𝑎, such
that 𝑢 = (−𝐴)𝑧 = (−𝐴𝛿,𝑦)𝑧 for sufficiently small 𝛿. As 𝑆𝛿,𝑦 (𝑡′) is self-adjoint,∫ 𝑡𝛿−2

0
𝑓𝑡,𝛿,𝑦 (𝑡′) d𝑡′ =

∫ 𝑡𝛿−2

0
⟨𝑆𝛿,𝑦 (2𝑡′)𝑢, 𝑤⟩𝐿2 (Λ𝛿,𝑦 ) d𝑡′

=
1
2 ⟨(𝐼 − 𝑆𝛿,𝑦 (2𝑡𝛿−2)) (−𝐴𝛿,𝑦)−1𝑢, 𝑤⟩𝐿2 (Λ𝛿,𝑦 )

=
1
2 ⟨𝑧, 𝑤⟩𝐿2 (Λ𝛿,𝑦 ) −

1
2 ⟨𝑆𝛿,𝑦 (2𝑡𝛿

−2)𝑧, 𝑤⟩𝐿2 (Λ𝛿,𝑦 ) .
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The first summand vanishes, as can be seen from

1
2 ⟨𝑧, 𝑤⟩𝐿2 (Λ𝛿,𝑦 ) =

1
2 ⟨𝑧, 𝑤⟩𝐿2 (ℝ𝑑 ) =

∫ ∞

0
⟨e2𝑡𝑎Δ (−𝑎Δ)𝑧, 𝑤⟩𝐿2 (ℝ𝑑 ) d𝑡

=

∫ ∞

0
⟨e𝑡𝑎Δ𝑢, e𝑡𝑎Δ𝑤⟩𝐿2 (ℝ𝑑 ) d𝑡 = 𝜓(𝑢, 𝑤) = 0.

Consequently, (B.34) follows from Lemma B.15 such that, uniformly in 𝑦 ∈ J,�����∫ 𝑇

0

∫ 𝑡𝛿−2

0
𝑓𝑡,𝛿,𝑦 (𝑡′) d𝑡′ d𝑡

����� ≤ ∫ 𝑇

0

1
2 |⟨𝑆𝛿,𝑦 (2𝑡𝛿

−2)𝑧, 𝑤⟩𝐿2 (Λ𝛿,𝑦 ) | d𝑡

≲ 𝛿2
∫ 𝑇𝛿−2

0
∥𝑆𝛿,𝑦 (𝑡)𝑧∥𝐿2 (Λ𝛿,𝑦 ) ∥𝑆𝛿,𝑦 (𝑡)𝑤∥𝐿2 (Λ𝛿,𝑦 ) d𝑡

≲ 𝛿2
∫ 𝑇𝛿−2

0
(1 ∧ 𝑡−𝑑/2−1+2𝜀) d𝑡 = 𝑂(𝛿2).

■

Proof of Lemma B.18. Using Wick’s theorem (see [25, Theorem 1.28]), write

𝛿−6Var
(∫ 𝑇

0
⟨𝑋 (𝑡), 𝑢𝛿,𝑦⟩⟨𝑋 (𝑡), 𝑤𝛿,𝑦⟩ d𝑡

)
= 2𝑉1 + 2𝑉2,

where 𝑉1 = 𝑉 (𝑢, 𝑢, 𝑤, 𝑤), 𝑉2 = 𝑉 (𝑢, 𝑤, 𝑤, 𝑢), and, for 𝑣, 𝑣′, 𝑧, 𝑧′ ∈ 𝐿2(Λ𝛿,𝑦),

𝑉 (𝑣, 𝑣′, 𝑧, 𝑧′) = 𝛿−6
∫ 𝑇

0

∫ 𝑡

0
Cov(⟨𝑋 (𝑡), 𝑣𝛿,𝑦⟩, ⟨𝑋 (𝑠), 𝑣′𝛿,𝑦⟩)Cov(⟨𝑋 (𝑡), 𝑧𝛿,𝑦⟩, ⟨𝑋 (𝑠), 𝑧′𝛿,𝑦⟩) d𝑠 d𝑡

=

∫ 𝑇

0

∫ 𝑡𝛿−2

0

∫ 𝑡𝛿−2−𝑠

0
𝑓𝛿,𝑦 ((𝑠 + 𝑟), 𝑣), (𝑟, 𝑣′) d𝑟

∫ 𝑡𝛿−2−𝑠

0
𝑓𝛿,𝑦 ((𝑠 + 𝑟′, 𝑧), (𝑟′, 𝑧′)) d𝑟′ d𝑠 d𝑡,

with
𝑓𝛿,𝑦 ((𝑙, 𝑣), (𝑙′, 𝑧)) = ⟨𝑆∗𝜗,𝛿,𝑦 (𝑙)𝑣, 𝑆

∗
𝜗,𝛿,𝑦 (𝑙

′)𝑧⟩𝐿2 (Λ𝛿,𝑦 ) , for 0 ≤ 𝑙, 𝑙′ ≤ 𝑇𝛿−2.

Since the arguments for treating both terms are similar, we restrict ourselves to the upper bound
for 𝑉1.

(i). By the Cauchy–Schwarz inequality and (B.31), we find for any 𝜀 > 0 that

sup
𝑦∈J

| 𝑓𝛿,𝑦 ((𝑠 + 𝑟, 𝑢), (𝑟, 𝑢)) | ≲ sup
𝑦∈J

∥𝑆∗𝜗,𝛿,𝑦 (𝑠 + 𝑟)𝑢∥𝐿2 (Λ𝛿,𝑦 ) sup
𝑦∈J

∥𝑆∗𝜗,𝛿,𝑦 (𝑟)𝑢∥𝐿2 (Λ𝛿,𝑦 )

≲𝜀 (1 ∧ (𝑠 + 𝑟)−1−𝑑/4+𝜀) (1 ∧ 𝑟−1−𝑑/4+𝜀).
(B.35)

Similar results are obtained for 𝑤. Hence,

sup
𝑦∈J

|𝑉1 | ≲
∫ 𝑇𝛿−2

0
(1 ∧ 𝑠−2−𝑑/2+2𝜀) d𝑠

∫ 𝑇𝛿−2

0
(1 ∧ 𝑟−1−𝑑/4+𝜀) d𝑟

∫ 𝑇𝛿−2

0
(1 ∧ 𝑟′−1−𝑑/4+𝜀) d𝑟′

≲ 1.
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(ii). Note that

sup
𝑦∈J, |𝑦−𝑥 | ≤ℎ

∥𝑆∗𝜗,𝛿,𝑦 (𝑡)𝑔
(𝜗,𝑦,𝛿) · ∇𝐾∥𝐿2 (Λ𝛿,𝑦 ) ≲ ℎ(1 ∧ 𝑡−𝑑/4+𝜀),

implying that

sup
𝑦∈J, |𝑦−𝑥 | ≤ℎ

| 𝑓𝛿,𝑦 ((𝑠 + 𝑟, 𝑤), (𝑟, 𝑤)) | ≲ ℎ2(1 ∧ (𝑠 + 𝑟)−𝑑/4+𝜀) (1 ∧ 𝑟−𝑑/4+𝜀).

Combining this with (B.20) and (B.35) gives

sup
𝑦∈J, |𝑦−𝑥 | ≤ℎ

|𝑉1 | ≲
∫ 𝑇𝛿−2

0
ℎ2(1 ∧ 𝑟−𝑑/2+2𝜀) d𝑟 ≲ ℎ2(1 ∨ 𝛿−2+𝑑−4𝜀) ≲ ℎ2𝛽𝛿−2.

(iii). The result follows similarly to part (ii), noting now that

sup
𝑦∈J, |𝑦−𝑥 | ≤ℎ

∥𝑆∗𝜗,𝛿,𝑦 (𝑡)𝜑𝜗(𝑦 + 𝛿·)𝐾∥𝐿2 (Λ𝛿,𝑦 ) ≲ (1 ∧ 𝑡−𝑑/4+𝜀),

and thus

sup
𝑦∈J, |𝑦−𝑥 | ≤ℎ

|𝑉1 | ≲
∫ 𝑇𝛿−2

0
(1 ∧ 𝑟−𝑑/2+2𝜀) d𝑟 ≲ (1 ∨ 𝛿−2+𝑑−4𝜀) ≲ ℎ2𝛽𝛿−4.

■

Remaining proofs for Section B.5.3

Proof of Lemma B.23. We start with deriving the following useful upper bound, which holds for
any 𝜀 > 0, and which will be applied several times: Lemma B.15 yields

sup
𝑦∈J, |𝑦−𝑥 | ≤ℎ

∥𝑆∗𝜗,𝛿,𝑦 (𝑡)𝑔
(𝜗,𝛿,𝑦) · ∇𝐾∥𝐿2 (Λ𝛿,𝑦 ) ≲𝜀

(
ℎ(1 ∧ 𝑡−1−𝑑/4+𝜀) + (ℎ𝛽 + 𝛿) (1 ∧ 𝑡−𝑑/4)

)
(B.36)

≤ ℎ(1 ∧ 𝑡−𝑑/4).

Indeed, by the Minkowski inequality and (B.23) with the identity function id on ℝ𝑑 ,

sup
𝑦∈J, |𝑦−𝑥 | ≤ℎ

∥𝑆∗𝜗,𝛿,𝑦 (𝑡)𝑔
(𝜗,𝛿,𝑦) · ∇𝐾∥𝐿2 (Λ𝛿,𝑦 )

≲ sup
𝑦∈J, |𝑦−𝑥 | ≤ℎ

𝑑∑︁
𝑖=1

∑︁
|𝛼 |=1

(
| (𝑦 − 𝑥)𝛼 |∥𝑆∗𝜗,𝛿,𝑦 (𝑡)𝜕𝑖𝐾∥𝐿2 (ℝ𝑑 ) + 𝛿∥𝑆∗𝜗,𝛿,𝑦 (𝑡) id 𝜕𝑖𝐾∥𝐿2 (ℝ𝑑 )

+ ∥𝑆∗𝜗,𝛿,𝑦 (𝑡) (𝐷
𝛼(𝜗𝑖 (𝜉) − 𝜗(𝑥)) (𝑦 + 𝛿 id−𝑥)𝛼)𝜕𝑖𝐾∥𝐿2 (ℝ𝑑 )

)
≲ ℎ(1 ∧ 𝑡−1−𝑑/4+𝜀) + (ℎ𝛽 + 𝛿) (1 ∧ 𝑡−𝑑/4).

The last bound holds by three applications of Lemma B.15, noting that both the functions id 𝜕𝑖𝐾
and (𝐷𝛼(𝜗𝑖 (𝜉) − 𝜗(𝑥)) (𝑦 + 𝛿 id−𝑥)𝛼)𝜕𝑖𝐾 are compactly supported with

∥(𝐷𝛼(𝜗𝑖 (𝜉) − 𝜗(𝑥)) (𝑦 + 𝛿 id−𝑥)𝛼)𝜕𝑖𝐾∥𝐿2 (ℝ𝑑 ) ≲ ℎ𝛽
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by the Hölder assumption on 𝜗. Next, we study the shift from 𝑆𝜗,𝛿,𝑦 (𝑡) to e𝑡𝑎Δ. Assumption L,
the triangle inequality and (B.36) imply

𝑁∑︁
𝑘=1

𝑤𝑘 (𝑥)⟨(𝑆𝛿,𝑥𝑘 (2𝑠) − e2𝑠𝑎Δ)∇𝐾, 𝑔 (𝜗,𝑥𝑘,𝛿) · ∇𝐾⟩𝐿2 (ℝ𝑑 )

≤
𝑁∑︁
𝑘=1

|𝑤𝑘 (𝑥) | |⟨𝑆𝛿,𝑥𝑘 (𝑠)∇𝐾, 𝑆𝛿,𝑥𝑘 (𝑠)𝑔 (𝜗,𝑥𝑘,𝛿) · ∇𝐾⟩𝐿2 (ℝ𝑑 ) |

+
𝑁∑︁
𝑘=1

|𝑤𝑘 (𝑥) | |⟨e𝑠𝑎Δ∇𝐾, e𝑠𝑎Δ𝑔 (𝜗,𝑥𝑘,𝛿) · ∇𝐾⟩𝐿2 (ℝ𝑑 ) |

≲ ℎ𝑠−1−𝑑/2+2𝜀.

On the other hand, by Lemma B.14(iii), we have for 𝑧 ∈ 𝐿2(ℝ𝑑)

sup
𝑦∈J

∥𝑆𝛿,𝑦 (𝑠)𝑧 − e𝑠𝑎Δ𝑧∥𝐿2 (ℝ𝑑 ) ≲ 𝛿1/2𝑠1/4e−𝛿−2𝑠−1/2 ≲ 𝛿6+1/2𝑠3+1/4,

using that e−𝑥 ≤ 𝑥−3 for 𝑥 > 0. Thus, by splitting the integral at some 𝑟 ∈ [0, 𝑡𝛿−2], we obtain

∫ 𝑇

0

∫ 𝑡𝛿−2

0

𝑁∑︁
𝑘=1

𝑤𝑘 (𝑥)⟨(𝑆𝛿,𝑥𝑘 (2𝑠) − e2𝑠𝑎Δ)∇𝐾, 𝑔 (𝜗,𝑥𝑘,𝛿) · ∇𝐾⟩𝐿2 (ℝ𝑑 ) d𝑠 d𝑡

≲
∫ 𝑇

0

∫ 𝑟

0
𝛿6+1/2𝑠3+1/4 d𝑠 d𝑡 +

∫ 𝑇

0

∫ 𝑡𝛿−2

𝑟

ℎ𝑠−1−𝑑/2+2𝜀 d𝑠 d𝑡

≲ 𝛿6+1/2
∫ 𝑟

0
𝑠3+1/4 d𝑠 + ℎ

∫ 𝑇𝛿−2

𝑟

𝑠−1−𝑑/2+2𝜀 d𝑠

≲ 𝛿6+1/2𝑟4+1/4 + ℎ𝑟−𝑑/2+2𝜀 (B.37)

for any 𝜀 > 0. The choice 𝑟 = 𝛿−1 yields that the last display is of order 𝑜(𝛿2 + 𝛿𝑑/2). We are left
with the shift from 𝑆∗

𝜗,𝛿,𝑥𝑘
(𝑡) to 𝑆𝛿,𝑥𝑘 (𝑡). By the variation of parameters formula, cf. [14, p. 161],

we have for 𝑦 ∈ Λ

𝐺𝜗,𝛿,𝑦 (𝑠) := 𝑆∗𝜗,𝛿,𝑦 (𝑠) − 𝑆𝛿,𝑦 (𝑠) =
∫ 𝑠

0
𝑆𝛿,𝑦 (𝑟) (𝐴∗𝜗,𝛿,𝑦 − 𝐴𝛿,𝑦)𝑆∗𝜗,𝛿,𝑦 (𝑠 − 𝑟) d𝑟

= −𝛿
∫ 𝑠

0
𝑆𝛿,𝑦 (𝑟) (𝜗(𝑦 + 𝛿·) · ∇ + 𝛿𝜑𝜗(𝑦 + 𝛿·))𝑆∗𝜗,𝛿,𝑦 (𝑠 − 𝑟) d𝑟.
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Consequently,∫ 𝑇

0

∫ 𝑡𝛿−2

0

𝑁∑︁
𝑘=1

𝑤𝑘 (𝑥)⟨𝑆∗𝜗,𝛿,𝑥𝑘 (𝑠)∇𝐾, 𝑆
∗
𝜗,𝛿,𝑥𝑘

(𝑠)𝑔 (𝜗,𝑥𝑘,𝛿) · ∇𝐾⟩𝐿2 (Λ𝛿,𝑥𝑘 ) d𝑠 d𝑡

=

∫ 𝑇

0

∫ 𝑡𝛿−2

0

𝑁∑︁
𝑘=1

𝑤𝑘 (𝑥)⟨𝑆𝛿,𝑥𝑘 (2𝑠)∇𝐾, 𝑔 (𝜗,𝑥𝑘,𝛿) · ∇𝐾⟩𝐿2 (Λ𝛿,𝑥𝑘 ) d𝑠 d𝑡

+
∫ 𝑇

0

∫ 𝑡𝛿−2

0

𝑁∑︁
𝑘=1

𝑤𝑘 (𝑥)⟨𝑆𝛿,𝑥𝑘 (𝑠)∇𝐾, 𝐺𝜗,𝛿,𝑥𝑘 (𝑠)𝑔 (𝜗,𝑥𝑘,𝛿) · ∇𝐾⟩𝐿2 (Λ𝛿,𝑥𝑘 ) d𝑠 d𝑡

+
∫ 𝑇

0

∫ 𝑡𝛿−2

0

𝑁∑︁
𝑘=1

𝑤𝑘 (𝑥)⟨𝐺𝜗,𝛿,𝑥𝑘 (𝑠)∇𝐾, 𝑆𝛿,𝑥𝑘 (𝑠)𝑔 (𝜗,𝑥𝑘,𝛿) · ∇𝐾⟩𝐿2 (Λ𝛿,𝑥𝑘 ) d𝑠 d𝑡

+
∫ 𝑇

0

∫ 𝑡𝛿−2

0

𝑁∑︁
𝑘=1

𝑤𝑘 (𝑥)⟨𝐺𝜗,𝛿,𝑥𝑘 (𝑠)∇𝐾, 𝐺𝜗,𝛿,𝑥𝑘 (𝑠)𝑔 (𝜗,𝑥𝑘,𝛿) · ∇𝐾⟩𝐿2 (Λ𝛿,𝑥𝑘 ) d𝑠 d𝑡.

The first summand in the last display has already been examined. We show the desired rate for
the second summand. The bound for the other ones is obtained analogously. Arguing as for
(B.33), we get�����∫ 𝑇

0

∫ 𝑡𝛿−2

0

𝑁∑︁
𝑘=1

𝑤𝑘 (𝑥)⟨𝑆𝛿,𝑥𝑘 (𝑠)∇𝐾, 𝐺𝜗,𝛿,𝑥𝑘 (𝑠)𝑔 (𝜗,𝑥𝑘,𝛿) · ∇𝐾⟩𝐿2 (Λ𝛿,𝑥𝑘 ) d𝑠 d𝑡
�����

≲ 𝛿

∫ 𝑇

0

∫ 𝑡𝛿−2

0

∫ 𝑡𝛿−2

0

𝑁∑︁
𝑘=1

|𝑤𝑘 (𝑥) |∥𝑆𝛿,𝑥𝑘 (𝑠 + 𝑠′)∇𝐾∥𝐿2 (Λ𝛿,𝑥𝑘 ) 𝑠
′−1/2

· ∥𝑆∗𝜗,𝛿,𝑥𝑘 (𝑠
′)𝑔 (𝜗,𝑥𝑘,𝛿) ∥𝐿2 (Λ𝛿,𝑥𝑘 ) d𝑠 d𝑠

′ d𝑡

≲ 𝛿

∫ 𝑇

0

∫ 𝑡𝛿−2

0

∫ 𝑡𝛿−2

0
(1 ∧ (𝑠 + 𝑠′)−1−𝑑/4+𝜀)𝑠′−1/2(1 ∧ 𝑠′−𝑑/4+𝜀)ℎ d𝑠′ d𝑠 d𝑡

= 𝑂(ℎ𝛿(1 ∨ 𝛿−1/2+𝑑/2−6𝜀)) (B.38)

for any 𝜀 > 0. Combining (B.37), (B.38) and (B.20) yields the assertion. ■

Proof of Proposition B.25. Writing for 𝑢 ∈ 𝐿2(Λ)

⟨𝑋 (𝑡), 𝑢⟩ = ⟨𝑆𝜗(𝑡)𝑋0, 𝑢⟩ + ⟨𝑋 (𝑡), 𝑢⟩,

we obtain the decomposition

R𝑥
𝛿 = R̄𝑥

𝛿 +
𝑁∑︁
𝑘=1

𝑤𝑘 (𝑥)
∫ 𝑇

0
⟨𝑋 (𝑡),∇𝐾𝛿,𝑥𝑘⟩⟨𝑆𝜗(𝑡)𝑋0, (𝜑𝜗 + (𝜗 − 𝜗(𝑥)) · ∇)𝐾𝛿,𝑥𝑘⟩ d𝑡

+
𝑁∑︁
𝑘=1

𝑤𝑘 (𝑥)
∫ 𝑇

0
⟨𝑆𝜗(𝑡)𝑋0,∇𝐾𝛿,𝑥𝑘⟩⟨𝑋 (𝑡), (𝜑𝜗 + (𝜗 − 𝜗(𝑥)) · ∇)𝐾𝛿,𝑥𝑘⟩ d𝑡

+
𝑁∑︁
𝑘=1

𝑤𝑘 (𝑥)
∫ 𝑇

0
⟨𝑆𝜗(𝑡)𝑋0,∇𝐾𝛿,𝑥𝑘⟩⟨𝑆𝜗(𝑡)𝑋0, (𝜑𝜗 + (𝜗 − 𝜗(𝑥)) · ∇)𝐾𝛿,𝑥𝑘⟩ d𝑡.
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We only show that the higher order terms are of the desired order. The arguments for the lower
order ones, i.e., terms containing 𝜑𝜗 are similar and thus skipped. We hence have to show for
all 1 ≤ 𝑖 ≤ 𝑑, using the definition of 𝑔 (𝜗,𝑥𝑘,𝛿) in (B.22), that

𝛿−2
𝑁∑︁
𝑘=1

𝑤𝑘 (𝑥)
∫ 𝑇

0
⟨𝑋 (𝑡), (𝜕𝑖𝐾)𝛿,𝑥𝑘⟩⟨𝑆𝜗(𝑡)𝑋0, (𝑔 (𝜗,𝑥𝑘,𝛿) · ∇𝐾)𝛿,𝑥𝑘⟩ d𝑡 (B.39)

+ 𝛿−2
𝑁∑︁
𝑘=1

𝑤𝑘 (𝑥)
∫ 𝑇

0
⟨𝑆𝜗(𝑡)𝑋0, (𝜕𝑖𝐾)𝛿,𝑥𝑘⟩⟨𝑋 (𝑡), (𝑔 (𝜗,𝑥𝑘,𝛿) · ∇𝐾)𝛿,𝑥𝑘⟩ d𝑡 (B.40)

+ 𝛿−2
𝑁∑︁
𝑘=1

𝑤𝑘 (𝑥)
∫ 𝑇

0
⟨𝑆𝜗(𝑡)𝑋0, (𝜕𝑖𝐾)𝛿,𝑥𝑘⟩⟨𝑆𝜗(𝑡)𝑋0, (𝑔 (𝜗,𝑥𝑘,𝛿) · ∇𝐾)𝛿,𝑥𝑘⟩ d𝑡 (B.41)

= 𝑜ℙ(ℎ𝛽)

which is done by controlling the expectations and standard deviations of (B.39), (B.40) and
(B.41) separately for a deterministic initial condition 𝑋0 ∈ 𝐿𝑝(Λ) ∩D(𝐴𝜗), 𝑝 > 2, and for the
stationary case 𝑋0 =

∫ 0
−∞ 𝑆𝜗(−𝑡′) d𝑊 (𝑡′) under the extra constraint that 𝑐 − ∇ · 𝜗 ≤ 𝛾 < 0.

Case 1: 𝑋0 is deterministic Recalling (B.20), the definition (B.23) and the upper bound (B.36),
it holds for the deterministic term (B.41) by Lemma B.15, noting furthermore 𝐾 = (−Δ) �̄� for
some �̄� ∈ 𝐻4(ℝ𝑑) with compact support, that

𝛿−2
𝑁∑︁
𝑘=1

𝑤𝑘 (𝑥)
∫ 𝑇

0
⟨𝑆𝜗(𝑡)𝑋0, (𝜕𝑖𝐾)𝛿,𝑥𝑘⟩⟨𝑆𝜗(𝑡)𝑋0, (𝑔 (𝜗,𝑥𝑘,𝛿) · ∇𝐾)𝛿,𝑥𝑘⟩ d𝑡

= 𝛿−2
𝑁∑︁
𝑘=1

𝑤𝑘 (𝑥)
∫ 𝑇

0
⟨(−𝐴𝜗)𝑋0, 𝑆∗𝜗(𝑡) (−𝐴

∗
𝜗)

−1(𝜕𝑖𝐾)𝛿,𝑥𝑘⟩⟨𝑋0, 𝑆∗𝜗(𝑡) (𝑔
(𝜗,𝑥𝑘,𝛿) · ∇𝐾)𝛿,𝑥𝑘⟩ d𝑡

≲ 𝛿2
∫ 𝑇𝛿−2

0
∥𝐴𝜗𝑋0∥ sup

𝑦∈J, |𝑦−𝑥 | ≤ℎ
∥𝑆∗𝜗,𝛿,𝑦 (𝑡) (𝐴

∗
𝜗,𝛿,𝑦)

−1𝜕𝑖𝐾∥𝐿2 (Λ𝛿,𝑦 ) ∥𝑆
∗
𝜗,𝛿,𝑦 (𝑡)𝑔

(𝜗,𝑦,𝛿) · ∇𝐾∥𝐿2 (Λ𝛿,𝑦 ) d𝑡

≲ 𝛿2
∫ 𝑇𝛿−2

0
(1 ∧ 𝑡−1/2−𝑑/4+𝜀)

(
ℎ(1 ∧ 𝑡−1−𝑑/4+𝜀) + (𝛿 + ℎ𝛽) (1 ∧ 𝑡−𝑑/4)

)
d𝑡

= 𝑜(ℎ𝛽). (B.42)

The expectations of (B.39) and (B.40) are zero. For its standard deviations, note first that, for
any 𝑦 ∈ J with |𝑦 − 𝑥 | ≤ ℎ, 𝑢, 𝑣 ∈ 𝐿2(ℝ𝑑), it holds

Var
(∫ 𝑇

0
⟨𝑋 (𝑡), 𝑢𝛿,𝑦⟩⟨𝑋0, 𝑆∗𝜗(𝑡)𝑣𝛿,𝑦⟩ d𝑡

)
= 2

∫ 𝑇

0

∫ 𝑡

0
⟨𝑋0, 𝑆∗𝜗(𝑡)𝑣𝛿,𝑦⟩⟨𝑋0, 𝑆

∗
𝜗(𝑠)𝑣𝛿,𝑦⟩ Cov

(
⟨𝑋 (𝑡), 𝑢𝛿,𝑦⟩, ⟨𝑋 (𝑠), 𝑢𝛿,𝑦⟩

) d𝑠 d𝑡
= 2

∫ 𝑇

0

∫ 𝑡

0
⟨𝑋0, 𝑆∗𝜗(𝑡)𝑣𝛿,𝑦⟩⟨𝑋0, 𝑆

∗
𝜗(𝑠)𝑣𝛿,𝑦⟩

∫ 𝑠

0
⟨𝑆∗𝜗(𝑡 − 𝑟)𝑢𝛿,𝑦, 𝑆∗𝜗(𝑠 − 𝑟)𝑢𝛿,𝑦⟩ d𝑟 d𝑠 d𝑡

= 2
∫ 𝑇

0

∫ 𝑡

0
⟨𝑋0, 𝑆∗𝜗(𝑡)𝑣𝛿,𝑦⟩⟨𝑋0, 𝑆

∗
𝜗(𝑠)𝑣𝛿,𝑦⟩

∫ 𝑠

0
⟨𝑆∗𝜗(𝑡 − 𝑠 + 𝑟)𝑢𝛿,𝑦, 𝑆∗𝜗(𝑟)𝑢𝛿,𝑦⟩ d𝑟 d𝑠 d𝑡 (B.43)
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= 2
∫ 𝑇

0

∫ 𝑡

0

∫ 𝑡−𝑠

0
⟨𝑋0, 𝑆∗𝜗(𝑡)𝑣𝛿,𝑦⟩⟨𝑋0, 𝑆

∗
𝜗(𝑡 − 𝑠)𝑣𝛿,𝑦⟩⟨𝑆∗𝜗(𝑠 + 𝑟)𝑢𝛿,𝑦, 𝑆

∗
𝜗(𝑟)𝑢𝛿,𝑦⟩ d𝑟 d𝑠 d𝑡. (B.44)

Applying the scaling Lemma B.11 to (B.43) with 𝑣 = 𝜕𝑖𝐾 and 𝑢 = 𝑔 (𝜗,𝑦,𝛿) · ∇𝐾, followed by
multiple applications of the Cauchy–Schwarz inequality and Lemma A.16, thus yields by (B.20)

sup
𝑦∈J, |𝑦−𝑥 | ≤ℎ

Var
(∫ 𝑇

0
⟨𝑆𝜗(𝑡)𝑋0, (𝜕𝑖𝐾)𝛿,𝑦⟩⟨𝑋 (𝑡), 𝑔 (𝜗,𝑦,𝛿) · ∇𝐾)𝛿,𝑦⟩ d𝑡

)
≲ 𝛿6

∫ 𝑇𝛿−2

0

(
ℎ2(1 ∧ 𝑟−2−𝑑/2+2𝜀) + (ℎ2𝛽 + 𝛿2) (1 ∧ 𝑟−𝑑/2)

)
d𝑟 = 𝑜(𝛿4ℎ2𝛽).

Hence,

Var
(
𝛿−2

𝑁∑︁
𝑘=1

𝑤𝑘 (𝑥)
∫ 𝑇

0
⟨𝑆𝜗(𝑡)𝑋0, (𝜕𝑖𝐾)𝛿,𝑥𝑘⟩⟨𝑋 (𝑡), (𝑔 (𝜗,𝑥𝑘,𝛿) · ∇𝐾)𝛿,𝑥𝑘⟩ d𝑡

)
≲ 𝛿−4

𝑁∑︁
𝑘=1

|𝑤𝑘 (𝑥) | Var
(∫ 𝑇

0
⟨𝑆𝜗(𝑡)𝑋0, (𝜕𝑖𝐾)𝛿,𝑥𝑘⟩⟨𝑋 (𝑡), 𝑔 (𝜗,𝑥𝑘,𝛿) · ∇𝐾)𝛿,𝑥𝑘⟩ d𝑡

)
= 𝑜(ℎ2𝛽). (B.45)

Analogue calculations with 𝑢 = 𝜕𝑖𝐾, 𝑣 = 𝑔 (𝜗,𝑦,𝛿) · ∇𝐾 applied to (B.44) also imply

Var
(
𝛿−2

𝑁∑︁
𝑘=1

𝑤𝑘 (𝑥)
∫ 𝑇

0
⟨𝑋 (𝑡), (𝜕𝑖𝐾)𝛿,𝑥𝑘⟩⟨𝑆𝜗(𝑡)𝑋0, (𝑔 (𝜗,𝑥𝑘,𝛿) · ∇𝐾)𝛿,𝑥𝑘⟩ d𝑡

)
= 𝑜(ℎ2𝛽). (B.46)

Combining (B.42), (B.45) and (B.46) yields the claim.

Case 2: 𝑋 is stationary Itô’s isometry implies again that the expectations of (B.39) and (B.40)
are zero, while the expected value of (B.41) is bounded by

𝛿−2
𝑁∑︁
𝑘=1

𝑤𝑘 (𝑥)
∫ 𝑇

0
𝔼[⟨𝑆𝜗(𝑡)𝑋0, (𝜕𝑖𝐾)𝛿,𝑥𝑘⟩⟨𝑆𝜗(𝑡)𝑋0, (𝑔 (𝜗,𝑥𝑘,𝛿) · ∇𝐾)𝛿,𝑥𝑘⟩] d𝑡

= 𝛿−2
𝑁∑︁
𝑘=1

𝑤𝑘 (𝑥)
∫ 𝑇

0

∫ ∞

0
⟨𝑆∗𝜗(𝑡 + 𝑡

′) (𝜕𝑖𝐾)𝛿,𝑥𝑘 , 𝑆∗𝜗(𝑡 + 𝑡
′) (𝑔 (𝜗,𝑥𝑘,𝛿) · ∇𝐾)𝛿,𝑥𝑘⟩ d𝑡′ d𝑡

≲ 𝛿2
∫ 𝑇𝛿−2

0

∫ ∞

0
sup

𝑦∈J, |𝑦−𝑥 | ≤ℎ
∥𝑆∗𝜗,𝛿,𝑦 (𝑡 + 𝑡

′)𝜕𝑖𝐾∥𝐿2 (Λ𝛿,𝑦 ) ∥𝑆
∗
𝜗,𝛿,𝑦 (𝑡 + 𝑡

′)𝑔 (𝜗,𝑦𝛿) ·∇𝐾 ∥𝐿2 (Λ𝛿,𝑦 ) d𝑡′ d𝑡

≲ 𝛿2
∫ 𝑇𝛿−2

0

(
ℎ(1 ∧ 𝑡−1−𝑑/4+𝜀) + (𝛿 + ℎ𝛽) (1 ∧ 𝑡−𝑑/4)

)
d𝑡 = 𝑜(ℎ𝛽).

We can bound the variance of (B.39) again by

Var
(
𝛿−2

𝑁∑︁
𝑘=1

𝑤𝑘 (𝑥)
∫ 𝑇

0
⟨𝑋 (𝑡), (𝜕𝑖𝐾)𝛿,𝑥𝑘⟩⟨𝑆𝜗(𝑡)𝑋0, (𝑔 (𝜗,𝑥𝑘,𝛿) · ∇𝐾)𝛿,𝑥𝑘⟩ d𝑡

)
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≲ 𝛿−4 sup
𝑦∈J, |𝑦−𝑥 | ≤ℎ

Var
(∫ 𝑇

0
⟨𝑋 (𝑡), (𝜕𝑖𝐾)𝛿,𝑦⟩⟨𝑆𝜗(𝑡)𝑋0, (𝑔 (𝜗,𝑦,𝛿) · ∇𝐾)𝛿,𝑦⟩ d𝑡

)
similar to the deterministic case. Since 𝜑𝜗 = 𝑐 − ∇ · 𝜗 ≤ 𝛾 for some 𝛾 < 0 as assumed, the upper
bound in Lemma B.15 holds with e−𝛾𝑡𝛿2 , i.e., 𝑐1 = −𝛾. By similar calculations as in Lemma B.18,
i.e., by Wick’s Theorem, and using again Itô’s isometry we get

sup
𝑦∈J, |𝑦−𝑥 | ≤ℎ

Var
(∫ 𝑇

0
⟨𝑋 (𝑡), (𝜕𝑖𝐾)𝛿,𝑦⟩⟨𝑆𝜗(𝑡)𝑋0, (𝑔 (𝜗,𝑦,𝛿) · ∇𝐾)𝛿,𝑦⟩ d𝑡

)
= 2

∫ 𝑇

0

∫ 𝑡

0
Cov (⟨𝑋 (𝑡), (𝜕𝑖𝐾)𝛿,𝑦⟩, ⟨𝑋 (𝑠), (𝜕𝑖𝐾)𝛿,𝑦⟩)

· Cov
(
⟨𝑆𝜗(𝑡)𝑋0, (𝑔 (𝜗,𝑦,𝛿) ·𝐾 )𝛿,𝑦⟩, ⟨𝑆𝜗(𝑠)𝑋0, (𝑔 (𝜗,𝑦,𝛿) ·𝐾 )𝛿,𝑦⟩

)
d𝑠 d𝑡

= 2
∫ 𝑇

0

∫ 𝑡

0

∫ 𝑠

0
⟨𝑆∗𝜗(𝑡 − 𝑟) (𝜕𝑖𝐾)𝛿, 𝑦, 𝑆∗𝜗(𝑠 − 𝑟) (𝜕𝑖𝐾)𝛿,𝑦⟩ d𝑟

·
∫ ∞

0
⟨𝑆∗𝜗(𝑡 + 𝑟

′) (𝑔 (𝜗,𝑦𝛿) · ∇𝐾)𝛿,𝑦, 𝑆∗𝜗(𝑠 + 𝑟
′) (𝑔 (𝜗,𝑦𝛿) · ∇𝐾)𝛿,𝑦⟩ d𝑟′ d𝑠 d𝑡

≲ 𝛿6
∫ 𝑇𝛿−2

0
(1 ∧ 𝑡−1−𝑑/4+𝜀) d𝑡

∫ 𝑇𝛿−2

0
(1 ∧ 𝑠−1−𝑑/4+𝜀) d𝑠

·
∫ ∞

0

(
ℎ2(1 ∧ 𝑟−2−𝑑/2+2𝜀) + (ℎ2𝛽 + 𝛿2)𝑒−𝛾𝑟𝛿2 (1 ∧ 𝑟−𝑑/2)

)
d𝑟.

If 𝑑 ≥ 3, the last display is already of order 𝑜(𝛿4ℎ2𝛽). For 𝑑 ≤ 2, we bound e−𝛾𝑟𝛿2 ≲ 𝑟−1/2−𝜀𝛿−1−2𝜀,
and hence

𝛿6
(
ℎ2 + (ℎ2𝛽 + 𝛿2)

)
𝛿−1−2𝜀 = 𝑜(𝛿4ℎ2𝛽)

by (B.20). Similar calculations also hold for the standard deviations of (B.40) and (B.41),
implying the claim. ■

Remaining proofs for Section B.5.4

Proof of Lemma B.28. Define the integral kernels
𝜅𝑘,𝑙 (𝑡) = 𝑐𝜗0,𝛿,𝑘,𝑙 (𝑡) − 𝑐𝜗1,𝛿,𝑘,𝑙 (𝑡).

It suffices to derive the upper bound for the 𝐿2-norm of 𝜅𝑘,𝑙, as the proof remains valid if one
replaces 𝐾𝛿,𝑥𝑘 by 𝛿−4(𝐴2𝜗,𝛿,𝑥𝑘𝐾)𝛿,𝑥𝑘 . This also gives the desired upper bound on the 𝐿2-norm of
𝜅′′
𝑘,𝑙
(𝑡). Following the structure as in the proof of Lemma A.24 in Paper A, we start by some

initial notation and the diagonalizability of the semigroup 𝑆∗
𝜗,𝛿,𝑥𝑘

(𝑡). We write Δ and e𝑡Δ for the
Laplacian and its generated semigroup on 𝐿2(Λ), as well as Δ𝛿,𝑥 and e𝑡Δ𝛿,𝑥 on 𝐿2(Λ𝛿,𝑥), and Δ0
and e𝑡Δ0 on 𝐿2(ℝ𝑑). We have that

𝐴∗
𝜗1 = Δ − 𝜗 · ∇ + (𝑐 − ∇ · 𝜗).

Given that 𝜗 is a conservative vector field, we choose a potential 𝜉 such that ∇𝜉(𝑥) = 𝜗(𝑥)/2 for
some function 𝜉. By [18, Example 10], 𝐴∗

𝜗1
is diagonalizable, i.e.,

𝑈−1
𝜗1 𝐴

∗
𝜗1𝑈𝜗1𝑧 = Δ𝑧 + �̃�𝜗𝑧
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with the multiplication operator (𝑈𝜗1𝑧) (𝑥) = e∇𝜉(𝑥 ) 𝑧(𝑥) and �̃�𝜗 = 𝑐 − ∇·𝜗
2 − |𝜗 |2

4 ≤ 0 due to the
choice of 𝜗1. [14, Example 2.1 in Section II.2] and the rescaling Lemma B.11 furthermore imply
that

𝑆∗
𝜗1,𝛿,𝑥𝑘

(𝑡) = 𝑈−1
𝜗1,𝛿,𝑥𝑘

e𝑡Δ𝛿,𝑥𝑘𝑈𝜗1,𝛿,𝑥𝑘e𝑡𝛿
2 �̃�𝜗 (𝑥𝑘+𝛿𝑥 ) , 𝑆𝜗0,𝛿,𝑥𝑘 (𝑡) = e𝑡Δ𝜗,𝛿,𝑥𝑘

with 𝑈𝜗1,𝛿,𝑥𝑘 (𝑥) = 𝑈𝜗1 (𝑥𝑘 + 𝛿𝑥). Note that

e𝑡Δ = 𝑈𝜗1 (𝑥𝑘)−1e𝑡Δ𝑈𝜗1 (𝑥𝑘).

We decompose 𝜅𝑘,𝑙 =
∑4

𝑗=1 𝜅
( 𝑗)
𝑘,𝑙

, with

𝜅
(1)
𝑘,𝑙

(𝑡) =
∫ ∞

0
⟨𝑈𝜗1 (𝑥𝑘)−1e(𝑡+𝑡

′ )Δ (𝑈𝜗1 (𝑥𝑘) − 𝑈𝜗1e�̃�𝜗1 (𝑡+𝑡
′ ) )𝐾𝛿,𝑥𝑘 , e𝑡

′Δ𝐾𝛿,𝑥𝑙⟩ d𝑡′,

𝜅
(2)
𝑘,𝑙

(𝑡) =
∫ ∞

0
⟨(𝑈𝜗1 (𝑥𝑘)−1 − 𝑈−1

𝜗1 )𝑈𝜗1𝑆
∗
𝜗1 (𝑡 + 𝑡

′)𝐾𝛿,𝑥𝑘 , e𝑡
′Δ𝐾𝛿,𝑥𝑙⟩ d𝑡′,

𝜅
(3)
𝑘,𝑙

(𝑡) =
∫ ∞

0
⟨𝑆∗

𝜗1 (𝑡 + 𝑡
′)𝐾𝛿,𝑥𝑘 , 𝑈𝜗1 (𝑥𝑘)−1e𝑡

′Δ (𝑈𝜗1 (𝑥𝑘) − 𝑈𝜗1e�̃�𝜗1 𝑡
′)𝐾𝛿,𝑥𝑙⟩ d𝑡′,

𝜅
(4)
𝑘,𝑙

(𝑡) =
∫ ∞

0
⟨𝑆∗

𝜗1 (𝑡 + 𝑡
′)𝐾𝛿,𝑥𝑘 , (𝑈𝜗1 (𝑥𝑘)−1 − 𝑈−1

𝜗1 )e
𝑡′Δ𝑈𝜗1e�̃�𝜗1 𝑡

′
𝐾𝛿,𝑥𝑙⟩ d𝑡′.

It suffices to show that ∑1≤𝑘,𝑙≤𝑁 ∥𝜅
( 𝑗)
𝑘,𝑙

∥2
𝐿2 ( [0,𝑇 ] ) ≤ 𝑐3𝛿8

∑
1≤𝑘≤𝑁 ( |𝜗(𝑥𝑘) |2 + 𝛿2 �̃�𝜗(𝑥𝑘)2) for 𝑗 = 1, 2.

The arguments for 𝑗 = 3, 4 are similar and therefore skipped. Diagonal (i.e., 𝑘 = 𝑙) and off-
diagonal (i.e., 𝑘 ≠ 𝑙) terms are treated separately. Set 𝐾𝑘,𝑙 = 𝐾 (· + 𝛿−1(𝑥𝑘 − 𝑥𝑙)). Lemma B.14
yields

sup
𝑦∈supp 𝐾

| (e𝑡Δ𝛿,𝑥𝑘 𝐾𝑘,𝑙) (𝑦) | ≲ sup
𝑦∈supp 𝐾

| (e𝑡Δ0 |𝐾𝑘,𝑙 |) (𝑦) |

= sup
𝑦∈supp 𝐾

∫
ℝ𝑑

(4𝜋𝑡)−𝑑/2 exp(−|𝑥 − 𝑦 |2/(4𝑡)) |𝐾𝑘,𝑙 (𝑥) | d𝑥

≤ (4𝜋𝑡)−𝑑/2e−𝑐′
|𝑥𝑘−𝑥𝑙 |2
𝛿2𝑡 ∥𝐾∥𝐿1 (ℝ𝑑 ) ≲ 𝑡−𝑑/2e−𝑐′

|𝑥𝑘−𝑥𝑙 |2
𝛿2𝑡 , (B.47)

for some 𝑐′ > 0.

Case 𝑗 = 1. We start with scaling as in Lemma B.11 and changing variables such that, using
the multiplication operators

𝑉𝑡,𝑡′,𝛿,𝑘 (𝑥) = 1 − e�̃�𝜗1 (𝑥𝑘+𝛿𝑥 )𝛿2 (𝑡+𝑡′ )−𝜉(𝑥𝑘 )+𝜉(𝑥𝑘+𝛿𝑥 ) ,

𝜅
(1)
𝑘,𝑙

(𝑡𝛿2) = 𝛿2
∫ ∞

0
⟨e(𝑡+𝑡′ )Δ𝛿,𝑥𝑘𝑉𝑡,𝑡′,𝛿,𝑘𝐾, e𝑡

′Δ𝛿,𝑥𝑘 𝐾𝑘,𝑙⟩𝐿2 (Λ𝛿,𝑥𝑘 ) d𝑡
′

= 𝛿2
∫ ∞

0
⟨e(𝑡/2+𝑡′ )Δ𝛿,𝑥𝑘𝑉𝑡,𝑡′,𝛿,𝑘𝐾, e(𝑡/2+𝑡

′ )Δ𝛿,𝑥𝑘 𝐾𝑘,𝑙⟩𝐿2 (Λ𝛿,𝑥𝑘 ) d𝑡
′. (B.48)

Since 𝐾 is compactly supported and �̃�𝜗1 ≤ 0, 𝑉𝑡,𝑡′,𝛿,𝑘 can be extended to smooth multiplication
operators with operator norms bounded by 𝑣𝑡,𝑡′,𝛿,𝑘 = −�̃�𝜗1 (𝑥𝑘)𝛿2(𝑡 + 𝑡′) + |𝜗(𝑥𝑘) |𝛿. (This can be
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seen from a Taylor expansion, using the Hölder smoothness assumptions for the higher order
Taylor terms.) Recalling 𝐾 = Δ2 �̃�, Lemma B.15 gives, for any 𝜖′ > 0,

|𝜅(1)
𝑘,𝑙

(𝑡𝛿2) | ≤ 𝛿2
∫ ∞

0
∥e(𝑡/2+𝑡′ )Δ𝛿,𝑥𝑘𝑉𝑡,𝑡′,𝛿,𝑘𝐾∥𝐿2 (Λ𝛿,𝑥𝑘 ) ∥e

(𝑡/2+𝑡′ )Δ𝛿,𝑥𝑘 𝐾𝑘,𝑙∥𝐿2 (Λ𝛿,𝑥𝑘 ) d𝑡
′

≤ 𝛿2
∫ ∞

0
𝑣𝑡,𝑡′,𝛿,𝑘 (1 ∧ (𝑡 + 𝑡′)−4−𝑑/2+𝜖′) d𝑡′

≲ 𝛿3(−�̃�𝜗1 (𝑥𝑘)𝛿 + |𝜗(𝑥𝑘)) | (1 ∧ 𝑡−1−𝑑/2)
≤ 𝛿3( |𝜗(𝑥𝑘) | + |𝛿𝑐𝜗(𝑥𝑘) |) (1 ∧ 𝑡−1−𝑑/2).

Changing variables therefore proves for the sum of diagonal terms∑︁
1≤𝑘≤𝑁

∥𝜅(1)
𝑘,𝑘

∥2
𝐿2 ( [0,𝑇 ] ) ≲

∑︁
1≤𝑘≤𝑀

𝛿8 |𝜗(𝑥𝑘) |2 + 𝛿10 |𝑐𝜗(𝑥𝑘) |2.

Using Lemma B.15, the integrand in (B.48) can be bounded as follows,

⟨e(𝑡/2+𝑡′ )Δ𝛿,𝑥𝑘𝑉𝑡,𝑡′,𝛿,𝑘𝐾, e(𝑡/2+𝑡
′ )Δ𝛿,𝑥𝑘 𝐾𝑘,𝑙⟩𝐿2 (Λ𝛿,𝑥𝑘 ) ≲ 𝑣𝑡,𝑡′,𝛿,𝑘 (1 ∧ (𝑡 + 𝑡′)−4−𝑑/2+𝜀′).

On the other hand, using (B.47), it also satisfies the bound

⟨e(𝑡/2+𝑡′ )Δ𝛿,𝑥𝑘𝑉𝑡,𝑡′,𝛿,𝑘𝐾, e(𝑡/2+𝑡
′ )Δ𝛿,𝑥𝑘 𝐾𝑘,𝑙⟩𝐿2 (Λ𝛿,𝑥𝑘 ) = ⟨𝑉𝑡,𝑡′,𝛿,𝑘𝐾, e(𝑡+2𝑡

′ )Δ𝛿,𝑥𝑘 𝐾𝑘,𝑙⟩𝐿2 (Λ𝛿,𝑥𝑘 )

≲ ∥𝑉𝑡,𝑡′,𝛿,𝑘𝐾∥𝐿1 (ℝ𝑑 ) sup
𝑦∈supp 𝐾

���(e(𝑡+2𝑡′ )Δ𝛿,𝑥𝑘 𝐾𝑘,𝑙) (𝑦)���
≲ 𝑣𝑡,𝑡′,𝛿,𝑘 (𝑡′)−𝑑/2 exp

(
−𝑐′ |𝑥𝑘 − 𝑥𝑙 |2

𝛿2𝑡

)
.

With respect to the off-diagonal terms, we therefore have, using the inequalitymin(𝑎, 𝑏) ≤ 𝑎1−𝜀𝑏𝜀

for 𝑎, 𝑏 ≥ 0,

𝜅
(1)
𝑘,𝑙

(𝑡𝛿2) = 𝛿2
∫ ∞

0
⟨𝑉𝑡,𝑡′,𝛿,𝑘𝐾, e(𝑡+2𝑡

′ )Δ𝛿,𝑥𝑘 𝐾𝑘,𝑙⟩𝐿2 (Λ𝛿,𝑥𝑘 ) d𝑡
′

≲ 𝛿2
∫ ∞

0
𝑣1−𝜀𝑡,𝑡′,𝛿,𝑘 (1 ∧ (𝑡 + 𝑡′)−4−𝑑/2+𝜖′)1−𝜀 sup

𝑦∈supp 𝐾

���(e(𝑡+2𝑡′ )Δ𝛿,𝑥𝑘 𝐾𝑘,𝑙) (𝑦)���𝜀 d𝑡′
≲ 𝛿3( |𝜗(𝑥𝑘) | + 𝛿 |̃𝑐𝜗(𝑥𝑘) |) (1 ∧ 𝑡−1−𝑑/2)e−𝜀𝑐′

|𝑥𝑘−𝑥𝑙 |2
𝛿2𝑡 . (B.49)

Applying the bound ∫ ∞

0
𝑡−𝑝−1e−𝑎/𝑡 d𝑡 = 𝑎−𝑝

∫ ∞

0
𝑡−𝑝−1e−1/𝑡 d𝑡 ≲ 𝑎−𝑝

to 𝑝 = 1 + 𝑑 > 𝑑 and 𝑎 = 𝑐′𝜖𝛿−2 |𝑥𝑘 − 𝑥𝑙 |2, we obtain∫ 𝑇

0
𝜅
(1)
𝑘,𝑙

(𝑡)2 d𝑡 ≲ 𝛿8( |𝜗(𝑥𝑘) | + 𝛿 |̃𝑐𝜗(𝑥𝑘) |)2
∫ ∞

0
𝑡−2−𝑑e−𝑐′𝜖

|𝑥𝑘−𝑥𝑙 |2
𝛿2𝑡 d𝑡

≲
𝛿10+2𝑑 ( |𝜗(𝑥𝑘) |2 + 𝛿2 |̃𝑐𝜗(𝑥𝑘) |2)

|𝑥𝑘 − 𝑥𝑙 |2+2𝑑
.

(B.50)
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Recalling that the 𝑥𝑘 are 𝛿-separated, we get from Lemma B.29 below that∑︁
1≤𝑘≠𝑙≤𝑁

∥𝜅(1)
𝑘,𝑙

∥2
𝐿2 ( [0,𝑇 ] ) ≲ 𝛿10+2𝑑

𝑁∑︁
𝑘=1

(
|𝜗(𝑥𝑘) |2 + 𝛿2 |̃𝑐𝜗(𝑥𝑘) |2

) 𝑁∑︁
𝑙=1,𝑙≠𝑘

1
|𝑥𝑘 − 𝑥𝑙 |2+2𝑑

≲ 𝛿8
𝑁∑︁
𝑘=1

|𝜗(𝑥𝑘) |2 + 𝛿2 |̃𝑐𝜗(𝑥𝑘) |2.

Together with the bounds for the diagonal terms, this yields, for a constant 𝐶 depending only on
𝐾, ∑︁

1≤𝑘,𝑙≤𝑁
∥𝜅(1)

𝑘,𝑙
∥2
𝐿2 ( [0,𝑇 ] ) ≤ 𝐶𝛿8

∑︁
1≤𝑘≤𝑁

|𝜗(𝑥𝑘) |2 + 𝛿2 |̃𝑐𝜗(𝑥𝑘) |2.

Case 𝑗 = 2. As in the previous case, we have

𝜅
(2)
𝑘,𝑙

(𝑡𝛿2) = 𝛿2
∫ ∞

0
⟨(e𝜉(𝑥𝑘+𝛿𝑥 )−𝜉(𝑥𝑘 ) − 1)𝑆∗

𝜗1,𝛿,𝑥𝑘
(𝑡 + 𝑡′)𝐾, e𝑡′Δ𝛿,𝑥𝑘 𝐾𝑘,𝑙⟩𝐿2 (Λ𝛿,𝑥𝑘 ) d𝑡

′.

Using the Cauchy–Schwarz inequality, Lemma B.14(i) and Lemma B.15 with 𝐾 = Δ2 �̃�, we get
for any 𝜖 > 0

⟨(e𝜉(𝑥𝑘+𝛿𝑥 )−𝜉(𝑥𝑘 ) − 1)𝑆∗
𝜗1,𝛿,𝑥𝑘

(𝑡 + 𝑡′)𝐾, e𝑡′Δ𝛿,𝑥𝑘 𝐾𝑘,𝑙⟩𝐿2 (Λ𝛿,𝑥𝑘 )
≲ 𝛿|𝜗(𝑥𝑘) | (1 ∧ (𝑡 + 𝑡′)−2−𝑑/4+𝜖)∥ |𝑥 |e𝑡′Δ0 |𝐾𝑘,𝑙 |∥𝐿2 (ℝ𝑑 ) .

(B.51)

Note that 𝐾𝑘,𝑙 ∈ 𝐶1
𝑐 (ℝ𝑑) such that |𝐾𝑘,𝑙 | ∈ 𝐻1,∞(ℝ𝑑) and ∇|𝐾𝑘,𝑙 | ∈ 𝐿∞(ℝ𝑑) with compact support.

Using now [4, Lemma A.2(ii)] to the extent that

𝑥 (e𝑡′Δ0 |𝐾𝑘,𝑙 |) (𝑥) = (e𝑡′Δ0 (−2𝑡′∇|𝐾𝑘,𝑙 | + 𝑥 |𝐾𝑘,𝑙 |)) (𝑥),

we find that the 𝐿2(ℝ𝑑)-norm in (B.51) is uniformly bounded in 𝑡′ > 0. Hence, |𝜅(2)
𝑘,𝑙

(𝑡𝛿2) | ≲
𝛿3 |𝜗(𝑥𝑘) | (1 ∧ 𝑡−1/2−𝑑/4−𝜖), and changing variables shows for the sum of diagonal terms∑︁

1≤𝑘≤𝑁
∥𝜅(2)

𝑘,𝑘
∥2
𝐿2 ( [0,𝑇 ] ) ≲ 𝛿8

∑︁
1≤𝑘≤𝑁

|𝜗(𝑥𝑘) |2.

Regarding the off-diagonal terms, we have similarly for some �̄� ∈ 𝐿∞(ℝ𝑑) having compact
support ���⟨(e𝜉(𝑥𝑘+𝛿𝑥 )−𝜉(𝑥𝑘 ) − 1)𝑆∗

𝜗1,𝛿,𝑥𝑘
(𝑡 + 𝑡′)𝐾, e𝑡′Δ𝛿,𝑥𝑘 𝐾𝑘,𝑙⟩𝐿2 (Λ𝛿,𝑥𝑘 )

���
=

���⟨𝐾, 𝑆𝜗1,𝛿,𝑥𝑘 (𝑡 + 𝑡′) (e𝜉(𝑥𝑘+𝛿𝑥 )−𝜉(𝑥𝑘 ) − 1)e𝑡′Δ𝛿,𝑥𝑘 𝐾𝑘,𝑙⟩𝐿2 (Λ𝛿,𝑥𝑘 )
���

≲ 𝛿|𝜗(𝑥𝑘) |∥𝐾∥𝐿1 (ℝ𝑑 ) sup
𝑦∈supp 𝐾

���(e(𝑡+𝑡′ )Δ0 |𝑥 |e𝑡′Δ0 |𝐾𝑘,𝑙 |
)
(𝑦)

���
≲ 𝛿|𝜗(𝑥𝑘) | (1 ∨ 𝑡′) sup

𝑦∈supp 𝐾

���(e(𝑡+2𝑡′ )Δ0 | �̄�𝑘,𝑙 |
)
(𝑦)

���
≲ 𝛿|𝜗(𝑥𝑘) | (1 ∨ 𝑡′)𝑡−𝑑/2e−𝑐′

|𝑥𝑘−𝑥𝑙 |2
𝛿2𝑡 ,
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using (B.47). Arguing as for (B.49) and (B.50), we then find from combining the last display
with (B.51) that |𝜅(4)

𝑘,𝑙
(𝑡𝛿2) | ≲ 𝛿3 |𝜗(𝑥𝑘) |𝑡−1/2−𝑑/4−𝜖

′e−𝜖𝑐′
|𝑥𝑘−𝑥𝑙 |2
𝛿2𝑡 for some 𝜖, 𝜖′ > 0 and∫ 𝑇

0
𝜅
(2)
𝑘,𝑙

(𝑡)2 d𝑡 ≲ 𝛿8+𝑑+4𝜖 |𝜗(𝑥𝑘) |
|𝑥𝑘 − 𝑥𝑙 |4𝜖+𝑑

.

So, all in all, for diagonal and off-diagonal terms,∑︁
1≤𝑘,𝑙≤𝑁

∥𝜅(2)
𝑘,𝑙

∥2
𝐿2 ( [0,𝑇 ] ) ≤ 𝐶𝛿8

∑︁
1≤𝑘≤𝑁

|𝜗(𝑥𝑘) |2,

for a constant 𝐶 depending only on 𝐾. ■

Lemma B.29 (Lemma A.27 in Paper A). Let 𝑥1, . . . , 𝑥𝑁 be 𝛿-separated points in ℝ𝑑 , and let 𝑝 > 𝑑.
Then, for a constant 𝐶 = 𝐶(𝑑, 𝑝),

𝑁∑︁
𝑘=2

1
|𝑥1 − 𝑥𝑘 |𝑝

≤ 𝐶𝛿−𝑝.
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Multivariate change estimation for a stochastic heat
equation from local measurements

CAnton Tiepner and Lukas Trottner

Abstract

We study a stochastic heat equation with piecewise constant diffusivity 𝜗 having a jump at
a hypersurface Γ that splits the underlying space [0, 1]𝑑 , 𝑑 ≥ 2, into two disjoint sets Λ−∪Λ+.
Based on multiple spatially localized measurement observations on a regular 𝛿-grid of [0, 1]𝑑 ,
we propose a joint M-estimator for the diffusivity values and the set Λ+ that is inspired by
statistical image reconstruction methods. We study convergence of the domain estimator Λ̂+
in the vanishing resolution level regime 𝛿 → 0 and with respect to the expected symmetric
difference pseudometric. Our main finding is a characterization of the convergence rate
for Λ̂+ in terms of the complexity of Γ measured by the number of intersecting hypercubes
from the regular 𝛿-grid. Implications of our general result are discussed under two specific
structural assumptions on Λ+. For a 𝛽-Hölder smooth boundary fragment Γ, the set Λ+
is estimated with rate 𝛿𝛽. If we assume Λ+ to be convex, we obtain a 𝛿-rate. While our
approach only aims at optimal domain estimation rates, we also demonstrate consistency of
our diffusivity estimators.

C.1 Introduction

Over the last decades interest in statistics for stochastic partial differential equations (SPDEs)
has continuously increased for several reasons. Not only is it advantageous to model many
natural space-time phenomena by SPDEs as they automatically account for model uncertainty
by including random forcing terms that describe a more accurate picture of data dynamics, but
also the general surge in data volume combined with enlarged computational power of modern
computers makes it more appealing to investigate statistical problems for SPDEs.

In this paper we study a multivariate change estimation model for a stochastic heat equation
on Λ = (0, 1)𝑑 , 𝑑 ≥ 2, given by

d𝑋 (𝑡) = Δ𝜗𝑋 (𝑡) d𝑡 + d𝑊 (𝑡), 0 ≤ 𝑡 ≤ 𝑇, (C.1)

with discontinuous diffusivity 𝜗. The driving force is space-time white noise ¤𝑊 (𝑡) and the
weighted Laplace operator Δ𝜗 = ∇ · 𝜗∇ is characterized by a jump in the diffusivity

𝜗(𝑥) = 𝜗−1Λ− (𝑥) + 𝜗+1Λ+ (𝑥), 𝑥 ∈ (0, 1)𝑑 , (C.2)

where the sets Λ± form a partition of Λ = [0, 1]𝑑 . Our primary interest lies in the construction
of a nonparametric estimator of the change domain Λ+, which is equivalently characterized by
the hypersurface

Γ ≔ 𝜕Λ− ∩ 𝜕Λ+ ⊂ [0, 1]𝑑 . (C.3)
The SPDE (C.1) can, for instance, be used to describe the heat flow through two distinct materials
with different heat conductivity, colliding in Γ. Structurally, the statistical problem of estimating
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Γ is closely related to image reconstruction problems where one usually considers a regression
model with (possibly random) design points 𝑋𝑘 and observational noise 𝜀𝑘 given by

𝑌𝑘 = 𝑓 (𝑋𝑘) + 𝜀𝑘, 1 ≤ 𝑘 ≤ 𝑁,

where the 𝑌𝑘 correspond to the observed color of a pixel centred around the spatial point
𝑋𝑘 ∈ [0, 1]𝑑, and the otherwise continuous function 𝑓 : [0, 1]𝑑 → [0, 1] has a discontinuity
along the hypersurface Γ, that is

𝑓 (𝑥) = 𝑓− (𝑥)𝟙Λ− (𝑥) + 𝑓+(𝑥)𝟙Λ+ (𝑥), 𝑥 ∈ [0, 1]𝑑 .

Such problems are, for instance, studied in [17–20, 24–26, 28, 31, 34]. Assuming specific
structures such as boundary fragments [34] or star-shapes [30, 31], nonparametric regression
methods are employed to consistently estimate both the image function 𝑓 as well as the edge Γ,
which in the boundary fragment case is characterized as the epigraph of a function 𝜏 : [0, 1]𝑑−1 →
[0, 1]. The rates of convergence depend on the smoothness of 𝑓 and 𝜏, the dimension 𝑑 as well
as the imposed distance function. Moreover, optimal convergence rates for higher-order Hölder
smoothness 𝛽 > 1 can in general not be achieved under equidistant, deterministic design, cf.
[34, Chapter 3-5].

Estimation of scalar parameters in SPDEs is well-studied in the literature. When observing
spectral measurements (⟨𝑋 (𝑡), 𝑒𝑘⟩)0≤𝑡≤𝑇,𝑘≤𝑁 for an eigenbasis (𝑒𝑘)𝑘∈ℕ of a parameterized dif-
ferential operator 𝐴𝜗, [14] derive criteria for identifiability of 𝜗 depending on ord 𝐴𝜗 and the
dimension. This approach was subsequently adapted to joint parameter estimation [23], hyper-
bolic equations [22], lower-order nonlinearities [27], temporal discretization [8] or fractional
noise [9]. If only discrete points 𝑋 (𝑥𝑘, 𝑡𝑖) on a space-time grid are available, then estimation
procedures relying on power variation approaches and minimum-contrast estimators are ana-
lyzed, amongst others, in [6, 13, 16, 33]. For a comprehensive overview of statistics for SPDEs
we refer to the survey paper [7] and the website [3].

Our estimation approach is based on local measurements, as first introduced in [4], which
are continuous in time and localized in space around 𝛿-separated grid center points 𝑥𝛼 ∈ (0, 1)𝑑 ,
𝛼 ∈ {1, . . . , 𝛿−1}𝑑. More precisely, for a compactly supported and sufficiently smooth kernel
function 𝐾 and a resolution level 𝛿 ∈ 1/ℕ, we observe for 𝛼 ∈ {1, . . . , 𝛿−1}𝑑

(𝑋𝛿,𝛼(𝑡))0≤𝑡≤𝑇 = (⟨𝑋 (𝑡), 𝐾𝛿,𝛼⟩)0≤𝑡≤𝑇 , (𝑋Δ
𝛿,𝛼(𝑡))0≤𝑡≤𝑇 = (⟨𝑋 (𝑡), Δ𝐾𝛿,𝛼⟩)0≤𝑡≤𝑇 ,

for the localized functions 𝐾𝛿,𝛼(·) = 𝛿−𝑑/2𝐾 (𝛿−1(· − 𝑥𝛼)). The rescaled function 𝛿−𝑑/2𝐾 (𝛿−1·)
is also referred to as point-spread function, which is motivated from applications in optical
systems, and the local measurement 𝑋𝛿,𝛼 represents a blurred image—typically owing to physical
measurement limitations—that is obtained from convoluting the solution with the point spread
function at the measurement location 𝑥𝛼. The asymptotic regime 𝛿 → 0 therefore allows for
higher resolution images of the heat flow at the chosen measurement locations. Given such local
measurements, we employ a CUSUM approach leading to an M-estimator for the quantities
(𝜗−, 𝜗+, Λ+).

Since their introduction in [4], local measurements have been used in numerous statistical
applications. In [4] it was shown that a continuously differentiable diffusivity 𝜗 can be identified
at location 𝑥𝛼 from the observation of a single local measurement (𝑋𝛿,𝛼(𝑡))0≤𝑡≤𝑇 . Subsequently,
their approach has been extended to semilinear equations [2], convection-diffusion equations
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(Paper A and Paper B), multiplicative noise [15] and wave equations [35]. In [1] the practical
revelance of the method has been demonstrated in a biological application to cell repolarization.

Closely related to this paper is the one-dimensional change point estimation problem for a
stochastic heat equation studied in [29], which should be understood as the one-dimensional
analogue to our problem setting. Indeed, in 𝑑 = 1, the estimation of (C.3) boils down to
the estimation of a single spatial change point at the jump location of the diffusivity. In [29]
two different jump height regimes are analyzed, where the absolute jump height is given by
𝜂 ≔ |𝜗+ − 𝜗− |. In the vanishing jump height regime 𝜂 → 0 as 𝛿 → 0, the authors demonstrate
distributional convergence of the centralized change point estimator, where the asymptotic
distribution is given by the law of the minimizer of a two-sided Brownian motion with drift,
cf. [29, Theorem 4.2]. In contrast, if 𝜂 is uniformly bounded away from 0, it is shown in [29,
Theorem 3.12] that the change point can be identified with rate 𝛿 while the estimators for
(𝜗−, 𝜗+) achieve the optimal rate 𝛿3/2 in one dimension, cf. Paper A regarding optimality for
parameter estimation, also in higher dimensions.

Coming back to our multivariate model (C.1), change estimation is no longer a parametric
problem but becomes a nonparametric one, and we may either target Λ+ directly or indirectly
via estimation of the change interface (C.3). In this paper, we will first discuss the estimation
problem for general sets Λ+ and then specialize our estimation strategy and result to specific
domain shapes.

Let us briefly describe our estimation approach in non-technical terms. For simplicity and
to underline the correspondence to image reconstruction problems, let us consider for the
moment only the case 𝑑 = 2. We may then interpret the regular 𝛿-grid as pixels, indexed by
𝛼 ∈ {1, . . . , 𝛿−1}2. By the nature of local observations that give only aggregated information
on the heat flow on each of these pixels, the best we can hope for is a good approximation
of a pixelated version of the true “foreground image” Λ0

+ that we wish to distinguish from the
true “background image” Λ0

−. The pixelated version Λ↕
+ is defined as the union of pixels that

have a non-zero area intersection with Λ0
+ as illustrated in Figure C.1. Based on a generalized

Figure C.1: Λ0
+ (blue) is approximated by the pixelated version Λ↕

+ (red); left: 𝛿 = 0.1; right:
𝛿 = 0.05.

Girsanov theorem for Itô processes, we can assign a modified local log-likelihood ℓ𝛿,𝛼(𝜗−, 𝜗+, Λ+)
to each 𝛼-pixel for all pixelated candidate sets Λ+ ∈ A+ that assigns the diffusivity value 𝜗± to
the 𝛼-pixel if and only if 𝑥𝛼 ∈ Λ±. An estimator (�̂�−, �̂�+, Λ̂+) is then obtained as the maximizer
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of the aggregated contrast function

(𝜗−, 𝜗+, Λ+) ↦→
∑︁
𝛼

ℓ𝛿,𝛼(𝜗−, 𝜗+, Λ+),

which may be referred to as a CUSUM approach in analogy to change point estimation problems.
Let us emphasize that we only require Λ↕

+ ∈ A+ of the pixelated candidate sets A+, which, given
specific information on the shape of the true domain Λ0

+, allows for much more parsimonious
choices than the canonical choice of all possible black and white 𝛿−1 × 𝛿−1-images. On a
more technical note, to establish the convergence bound, we reformulate our estimator as
an M-estimator based on an appropriate empirical process 𝜒 ↦→ 𝑍𝛿(𝜒), so that quite naturally,
concentration analysis of 𝑍𝛿 becomes key. The basic idea of taking Λ̂+ as union of best explanatory
pixels by optimizing over a given family of candidate sets originates from classical statistical
image reconstruction methods [19, 24, 25, 34].

The convergence rate of our estimator Λ̂+ is entirely characterized by the complexity of the
separating hypersurface Γ that induces a bias between the true domain Λ0

+ and its pixelated
version Λ0

+. In particular, assuming that the set B, describing the number of pixels that are sliced
by Γ into two parts of non-zero volume, is of size

|B| ≲ 𝛿−𝑑+𝛽, 𝛽 ∈ (0, 1], (C.4)

we show in Theorem C.7 that
𝔼[𝝀(Λ̂+ △ Λ0

+)] ≲ 𝛿𝛽,

with the symmetric set difference △. This result immediately entails estimation rates for Λ0
+

in terms of the Minkowski dimension of its boundary. Furthermore, the estimation procedure
results in the diffusivity parameter estimation rates |�̂�± − 𝜗± | = 𝑂ℙ(𝛿𝛽/2), which yields the same
estimation rate for the diffusivity or “image” estimator �̂� ≔ �̂�+𝟙Λ̂+

+ �̂�−𝟙Λ̂−
.

To make this general estimation strategy and result concrete, we apply it to two specific shape
constraints on Λ0

+. Assuming that Γ is a boundary fragment that is described by a change interface
with graph representation 𝜏0 : [0, 1]𝑑−1 → [0, 1], that is, Λ0

+ = {(𝑥, 𝑦) ∈ [0, 1]𝑑 : 𝑦 > 𝜏0(𝑥)}, we
choose closed epigraphs of piecewise constant grid functions 𝜏 : [0, 1]𝑑−1 → [0, 1] as candidate
sets A+. The boundary of the estimator Λ̂+ may then be interpreted as the epigraph of a random
function �̂� : [0, 1]𝑑−1 → [0, 1] that gives a nonparametric estimator of the true change interface
𝜏0. Then, given 𝛽-Hölder smoothness assumptions on 𝜏0, where 𝛽 ∈ (0, 1], we can verify (C.4)
and obtain

𝔼[∥�̂� − 𝜏0∥𝐿1 ( [0,1]𝑑−1 ) ] ≲ 𝛿𝛽 or equivalently 𝔼[𝝀(Λ̂+ △ Λ0
+)] ≲ 𝛿𝛽 .

In a second model, we assume that Λ0
+ is a convex set with boundary Γ. Based on the idea that

any ray that intersects the interior of a convex set does so in exactly two points, we construct a
family of candidate sets A+ of size |A+ | ≍ 𝛿−(𝑑+1) and show that

𝔼[𝝀(Λ̂+ △ Λ0
+)] ≲ 𝛿.

Optimality of the obtained rates in both models is discussed in the related image reconstruction
problem.
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Outline The paper is structured as follows. In Section C.2 we formalize the model and discuss
fundamental properties of the solution to (C.1). The general estimation strategy and our main
result is given in Section C.3. In Section C.4, those findings are applied to the two explicitly
studied change domain structures outlined above. Lastly, we summarize our results and discuss
potential extensions in future work in Section C.5.

Notation Throughout this paper, we work on a filtered probability space (Ω,F, (F𝑡)0≤𝑡≤𝑇 ,ℙ)
with fixed time horizon 𝑇 < ∞. The resolution level 𝛿 is such that 𝑛 ≔ 𝛿−1 ∈ ℕ and 𝑁 ≔ 𝑛𝑑 .

For a set 𝐴 ⊂ ℝ𝑑, the notation 𝐴◦ is exclusively reserved for its interior in ℝ𝑑 endowed with
the standard Euclidean topology. For a general topological space X and a subset 𝐴 ⊂ X, we
denote its interior by int 𝐴, let 𝐴 be its closure and 𝜕𝐴 be its boundary in X. If not mentioned
explicitly otherwise, we always understand the topological space in this paper to be X = [0, 1]𝑑
endowed with the standard subspace topology. For two numbers 𝑎, 𝑏 ∈ ℝ, we write 𝑎 ≲ 𝑏 if
𝑎 ≤ 𝐶𝑏 holds for a constant 𝐶 that does not depend on 𝛿. For an open set 𝑈 ⊂ ℝ𝑑, 𝐿2(𝑈) is
the usual 𝐿2-space with inner product ⟨·, ·⟩𝐿2 (𝑈 ) and we set ⟨·, ·⟩ ≔ ⟨·, ·⟩𝐿2 (Λ) . The Euclidean
norm of a vector 𝑎 ∈ ℝ𝑝 is denoted by |𝑎|. If 𝑓 : ℝ𝑑 → ℝ𝑑 is a vector valued function, we write
∥ 𝑓 ∥𝐿2 (ℝ𝑑 ) ≔ ∥| 𝑓 |∥𝐿2 (ℝ𝑑 ) . By 𝐻𝑘 (𝑈) we denote the usual Sobolev spaces, and let 𝐻1

0 (𝑈) be the
completion of 𝐶∞

𝑐 (𝑈), the space of smooth compactly supported functions, relative to the 𝐻1(𝑈)
norm. The gradient, divergence and Laplace operator are denoted by ∇, ∇· and Δ, respectively.

C.2 Setup

We start by formally introducing the SPDE model, discussing existence of solutions and introduc-
ing the local measurement observation scheme that we will be working with in our statistical
analysis.

C.2.1 The SPDE model

In the following we consider a stochastic partial differential equation on Λ ≔ (0, 1)𝑑, where
𝑑 ≥ 2, with Dirichlet boundary condition, which is specified by

d𝑋 (𝑡) = Δ𝜗𝑋 (𝑡) d𝑡 + d𝑊 (𝑡), 0 ≤ 𝑡 ≤ 𝑇,

𝑋 (0) ≡ 0,
𝑋 (𝑡) |𝜕Λ = 0, 0 ≤ 𝑡 ≤ 𝑇,

(C.5)

for driving space-time white noise ( ¤𝑊 (𝑡))𝑡∈[0,𝑇 ] on 𝐿2(Λ). The operator Δ𝜗 with domain D(Δ𝜗)
is given formally by

Δ𝜗𝑢 = ∇ · 𝜗∇𝑢 =

𝑑∑︁
𝑖=1

𝜕𝑖 (𝜗𝜕𝑖𝑢), 𝑢 ∈ D(Δ𝜗), (C.6)

where 𝜗 is piecewise constant in space, given by
𝜗(𝑥) = 𝜗−1Λ− (𝑥) + 𝜗+1Λ+ (𝑥), 𝑥 ∈ (0, 1)𝑑 ,

for two measurable and disjoint sets Λ± s.t. Λ− ∪ Λ+ = [0, 1]𝑑 and 𝜗−, 𝜗+ ∈ [𝜗, 𝜗] ⊂ (0,∞).
Equivalently, we may rewrite the diffusivity in terms of the jump height 𝜂 ≔ 𝜗+ − 𝜗− as

𝜗(𝑥) = 𝜗− + 𝜂𝟙Λ+ (𝑥), 𝑥 ∈ (0, 1)𝑑 .
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Under these assumptions, Δ𝜗 is a uniformly elliptic divergence-form operator. We assume that
Λ− and Λ+ are separated by a hypersurface Γ parameterizing the set of points in the intersection
of the boundaries

Γ ≔ 𝜕Λ+ = 𝜕Λ− ⊂ [0, 1]𝑑 , (C.7)
where 𝜕Λ± denotes the boundary of Λ± as a subset of the topological space [0, 1]𝑑 . We are mainly
interested in estimating the domain Λ+ which is intrinsically related to Γ. We first propose a
general estimator based on local measurements of the solution on a uniform grid of hypercubes,
whose convergence properties are determined by the complexity of the boundary Γ measured in
terms of the number of hypercubes that are required to cover it.

The more structural information we are given on the set Λ+, the better we can fine-tune
the family of candidate sets underlying the estimator in order to increase the feasibility of
implementation. Specifically, we will consider two different models for Λ±.

Model A: Graph representation
Γ forms a boundary fragment that has a graph representation, denoted by a change interface
𝜏 : [0, 1]𝑑−1 → [0, 1], i.e.,

Γ =
{
(𝑥, 𝜏(𝑥)) : 𝑥 ∈ [0, 1]𝑑−1

}
(C.8)

and the set Λ+ takes the form

Λ+ = {(𝑥, 𝑦) ∈ [0, 1]𝑑 : 𝑦 > 𝜏(𝑥)}.

Accordingly, the estimation problem of identifying Λ± can equivalently be broken down to

Figure C.2: Change interface 𝜏 in dimension 𝑑 = 3.

the nonparametric estimation of the function 𝜏. Specifically, for an estimator �̂� of 𝜏 we let
Λ̂+ ≔ {(𝑥, 𝑦) ∈ [0, 1]𝑑 : 𝑦 > �̂�(𝑥)} be the closure of the epigraph of �̂� and Λ̂− ≔ [0, 1]𝑑 \ Λ̂+ be
its complement. This gives

𝔼
[
𝝀
(
Λ̂± △ Λ±

) ]
= 𝔼

[
∥�̂� − 𝜏∥𝐿1 ( [0,1]𝑑−1 )

]
, (C.9)

such that evaluating the quality of the domain estimators Λ̂± measured in terms of the expected
Lebesgue measure of the symmetric differences Λ̂± △ Λ±, is equivalent to studying the 𝐿1-risk of
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the nonparametric estimator �̂� of the change interface. An exemplary illustration of 𝜏 in three
spatial dimensions is present in Figure C.2.

Model B: Convex set
Λ+ is convex. By convexity, for any 𝑥 ∈ intΛ0

+, the vertical ray 𝑦 ↦→ 𝑥 + 𝑦𝑒𝑑 intersects 𝜕Λ+ in
exactly two points and those intersection points can be modeled by a lower convex function 𝑓1
and an upper concave function 𝑓2. Estimation of Λ+ is then heuristically speaking equivalent to
the estimation of the upper and lower function, taking the closure of {(𝑥, 𝑦) ∈ [0, 1]𝑑 : �̂�1(𝑥) ≤
𝑦 ≤ �̂�2(𝑥)} as an estimator for Λ+.

C.2.2 Characterization of the solution

We shall first discuss properties of the operator Δ𝜗 based on general theory of elliptic divergence
form operators with measurable coefficients from [11]. Let the closed quadratic form E𝜗 with
domain D(E𝜗) be given by {

D(E𝜗) = 𝐻1
0 (Λ),

E𝜗(𝑢, 𝑣) =
∫
Λ
𝜗∇𝑢 · ∇𝑣.

By [11, Theorem 1.2.1], E𝜗 is the form of a positive self-adjoint operator −Δ𝜗 on 𝐿2(Λ) in the
sense that ∥(−Δ𝜗)1/2𝑢∥2 = E𝜗(𝑢, 𝑢) for D((−Δ𝜗)1/2) = D(E𝜗) and according to [11, Theorem
1.2.7], we have 𝑢 ∈ D(−Δ𝜗) ⊂ 𝐻1

0 (Λ) if there exists 𝑔 ∈ 𝐿2(Λ) such that for any 𝑣 ∈ 𝐶∞
𝑐 (Λ),

E𝜗(𝑢, 𝑣) =
∫
Λ
𝑔𝑣,

in which case −Δ𝜗𝑢 = 𝑔. Thus, (C.6) can be interpreted in a distributional sense and we have
the relation

E𝜗(𝑢, 𝑣) = −⟨Δ𝜗𝑢, 𝑣⟩, (𝑢, 𝑣) ∈ D(Δ𝜗) ×D(E𝜗).

Moreover, [11, Theorem 1.3.5] shows that E𝜗 is a Dirichlet form, whence Δ𝜗 generates a
strongly continuous, symmetric semigroup (𝑆𝜗(𝑡))𝑡≥0 ≔ (exp(Δ𝜗𝑡))𝑡≥0. The spectrum of Δ𝜗
is discrete and the minimal eigenvalue, denoted by 𝜆, is strictly positive, cf. [12, Theorem
6.3.1]. Thus, (−Δ𝜗)−1 exists as a bounded linear operator with domain 𝐿2(Λ) and we may fix
an orthonormal basis {𝑒𝑘, 𝑘 ∈ ℕ} consisting of eigenvectors corresponding to the eigenvalues
{𝜆𝑘, 𝑘 ∈ ℕ} = 𝜎(−Δ𝜗) that we denote in increasing order. Using the heat kernel bounds for the
transition density of 𝑆𝜗(𝑡) given in [11, Corollary 3.2.8], it follows that for any 𝑡 > 0, 𝑆𝜗(𝑡) is a
Hilbert–Schmidt operator, but no weak or mild solution to (C.5) in the sense of [10, Theorem
5.4] exists in 𝐿2((0, 1)𝑑) since 𝑑 ≥ 2 implies that

∫𝑇
0 ∥𝑆𝜗(𝑡)∥

2
HS d𝑡 = ∞.

However, following the discussion in [4, Section 2.1] and Section A.6.2 in Paper A, taking
into account that by [12, Theorem 6.3.1] we have 𝜆𝑘 ≍ 𝑘2/𝑑 for any 𝑘 ∈ ℕ, the stochastic
convolution

𝑋 (𝑡) ≔
∫ 𝑡

0
𝑆𝜗(𝑡 − 𝑠) d𝑊 (𝑠), 𝑡 ∈ [0, 𝑇],

is well-defined as a stochastic process on the embedding space H1 ⊃ 𝐿2((0, 1)𝑑), where H1 can
be chosen as a Sobolev space of negative order −𝑠 < −𝑑/2 + 1 that is induced by the eigenbasis



122 Chapter C. Multivariate change estimation for a stochastic heat equation

(𝜆𝑘, 𝑒𝑘)𝑘∈ℕ. Extending the dual pairings ⟨𝑋 (𝑡), 𝑧⟩H1×H′
1 then allows us to obtain a Gaussian

process (⟨𝑋 (𝑡), 𝑧⟩)𝑡∈[0,𝑇 ],𝑧∈𝐿2 ( (0,1)𝑑 ) given by

⟨𝑋 (𝑡), 𝑧⟩ ≔
∫ 𝑡

0
⟨𝑆𝜗(𝑡 − 𝑠)𝑧, d𝑊 (𝑠)⟩, 𝑡 ∈ [0, 𝑇], 𝑧 ∈ 𝐿2((0, 1)𝑑),

that solves the SPDE in the sense that for any 𝑧 ∈ D(Δ𝜗),

⟨𝑋 (𝑡), 𝑧⟩ =
∫ 𝑡

0
⟨𝑋 (𝑠), Δ𝜗𝑧⟩ d𝑠 + ⟨𝑊 (𝑡), 𝑧⟩, 𝑡 ∈ [0, 𝑇], 𝑧 ∈ 𝐿2((0, 1)𝑑). (C.10)

C.2.3 Local measurements

We decompose [0, 1]𝑑 into 𝑛𝑑 closed 𝑑-dimensional hypercubes (Sq(𝛼))𝛼∈[𝑛]𝑑−1 , where Sq(𝛼)
has edge length 𝛿 and is centered at 𝑥𝛼 ≔ 𝛿(𝛼 − 1

2𝟙) for any 𝛼 ∈ [𝑛]𝑑. By Sq(𝛼)◦ we denote
the interior of Sq(𝛼) in ℝ𝑑. Let also P ≔ 2{Sq(𝛼):𝛼∈[𝑛]𝑑 } be the power set of {Sq(𝛼) : 𝛼 ∈ [𝑛]𝑑}
and let P ≔ {⋃𝐶∈C 𝐶 : C ∈ P} be the family of sets that can be built from taking unions of
hypercubes in {Sq(𝛼) : 𝛼 ∈ [𝑛]𝑑}. We refer to the hypercubes Sq(𝛼) as tiles and for any set
𝐴 ⊂ [0, 1]𝑑 we call a set 𝐶 ∈ P such that 𝐴 ⊂ 𝐶 a tiling of 𝐴.

Our estimation procedure is based on continuous-time observations of

𝑋𝛿,𝛼(𝑡) = ⟨𝑋 (𝑡), 𝐾𝛿,𝛼⟩, 𝑋Δ
𝛿,𝛼(𝑡) = ⟨𝑋 (𝑡), Δ𝐾𝛿,𝛼⟩, 𝛼 ∈ [𝑛]𝑑 , 0 ≤ 𝑡 ≤ 𝑇,

with 𝐾𝛿,𝛼(𝑦) = 𝛿−𝑑/2𝐾 (𝛿(𝑦 − 𝑥𝛼)), and 𝐾 : ℝ𝑑 → ℝ a kernel function such that supp 𝐾 ⊂
[−1/2, 1/2]𝑑 and 𝐾 ∈ 𝐻2(ℝ𝑑). The measurement points 𝑥𝛼, 𝛼 ∈ [𝑛]𝑑 , are separated by
an Euclidean distance of order 𝛿 such that the supports of the 𝐾𝛿,𝛼 are non-overlapping. In
other words, we have 𝑁 = 𝛿−𝑑 measurement locations. Note that 𝐾𝛿,𝛼 ∈ D(Δ𝜗) whenever
supp 𝐾𝛿,𝛼 ∩ 𝜕Λ+ = ∅, since then 𝜗 is constant on the support of 𝐾𝛿,𝛼. Thus, for 𝑔 = −𝜗(𝑥𝛼)Δ𝐾𝛿,𝛼,
integration by parts reveals

∫
Λ
𝑔𝑣 =

∫
Λ
𝜗∇𝐾𝛿,𝛼 · ∇𝑣 for any 𝑣 ∈ 𝐶∞

𝑐 (Λ), i.e., 𝑔 = −Δ𝜗𝐾𝛿,𝛼.

C.3 Estimation strategy and main result

From here on, we denote the truth, i.e., the true values of the diffusivity and the true set partition
of Λ, by an additional superscript 0 for statistical purposes. To avoid some technicalities, we
impose from now on the following assumption on Λ0

+.

Assumption C.1. Λ0
+ is open in [0, 1]𝑑 .

Since we are primarily interested in recovering the change domain Λ0
+ and therefore treat the

diffusivity parameters 𝜗0± as nuisance parameters, we also make the following, slightly restricting
assumption throughout the remainder of the paper:

Assumption C.2. We have access to two compact sets Θ−,Θ+ ⊂ [𝜗, 𝜗] such that

(i) 𝜗0− ∈ Θ− and 𝜗0+ ∈ Θ+, and

(ii) Θ− and Θ+ are separated by 𝜂 > 0, i.e., for any 𝜗− ∈ Θ− and 𝜗+ ∈ Θ+, it holds |𝜗+−𝜗− | ≥ 𝜂.
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In particular, this assumption implies that we have access to a lower bound 𝜂 > 0 on the
absolute diffusivity jump height |𝜂0 | = |𝜗0+ − 𝜗0− |. For some set 𝐶 ⊂ [0, 1]𝑑 define

𝐶+ ≔
⋃

𝛼∈[𝑛]𝑑 :Sq(𝛼)◦∩𝐶≠∅
Sq(𝛼),

which, if 𝐶 is open in [0, 1]𝑑 , is the minimal tiling of 𝐶, so that in particular 𝐶 ⊂ 𝐶+ ∈ P. Let us
also set

Λ↕
+ ≔ (Λ0

+)+,
which is the minimal tiling of Λ0

+ by our assumption that Λ0
+ is open in [0, 1]𝑑 . Let A+ ⊂ P be a

family of candidate sets for a tiling of Λ0
+ such that Λ↕

+ ∈ A+. Note that A+ = P is always a valid
choice. However, as we shall see later, much more parsimonious choices are possible if we can
assume some structure on the set Λ0

+. We now introduce the modified local log-likelihood

ℓ𝛿,𝛼(𝜗−, 𝜗+, Λ+) = 𝜗𝛿,𝛼(Λ+)
∫ 𝑇

0
𝑋Δ
𝛿,𝛼(𝑡) d𝑋𝛿,𝛼(𝑡) −

𝜗𝛿,𝛼(Λ+)2
2

∫ 𝑇

0
𝑋Δ
𝛿,𝛼(𝑡)

2 d𝑡, (C.11)

for the decision rule

𝜗𝛿,𝛼(Λ+) ≔
{
𝜗+, Sq(𝛼) ⊂ Λ+,

𝜗−, else, =

{
𝜗+, 𝑥𝛼 ∈ Λ+,

𝜗−, else, (C.12)

where 𝜗± ∈ Θ± and the candidate sets Λ+ ∈ A+ are anchored on the grid P spanned by the
hypercubes Sq(𝛼). The interpretation of the stochastic integral in (C.11) is provided by the
following result that characterizes the tested processes 𝑋𝛿,𝛼 as semimartingales whose dynamics
are determined by the location of the hypercube Sq(𝛼) relative to Λ0

±.
Proposition C.3 (Modification of Proposition 2.1 in [29]). For any 𝛼 ∈ [𝑛]𝑑 and 𝑡 ∈ [0, 𝑇] we
have

𝑋𝛿,𝛼(𝑡) =

𝜗0−

∫ 𝑡
0 𝑋

Δ
𝛿,𝛼

(𝑠) d𝑠 + 𝐵𝛿,𝛼(𝑡), Sq(𝛼) ⊂ Λ0
−,

𝜗0+
∫ 𝑡
0 𝑋

Δ
𝛿,𝛼

(𝑠) d𝑠 + 𝐵𝛿,𝛼(𝑡), Sq(𝛼) ⊂ Λ0
+,∫ 𝑡

0
∫ 𝑠
0⟨Δ𝜗0𝑆𝜗0 (𝑠 − 𝑢)𝐾𝛿,𝛼, d𝑊 (𝑢)⟩ d𝑠 + 𝐵𝛿,𝛼(𝑡), else,

where (𝐵𝛿,𝛼)𝛼∈[𝑛]𝑑 is an 𝑛𝑑-dimensional vector of independent scalar Brownian motions.

Proof. The first two lines follow from (C.10) using 𝐾𝛿,𝛼 ∈ D(Δ𝜗0) if supp 𝐾𝛿,𝛼 ∩ 𝜕Λ− ∩ 𝜕Λ+ = ∅,
in which cases Δ𝜗0𝐾𝛿,𝛼 = 𝜗0−Δ𝐾𝛿,𝛼 and Δ𝜗𝐾𝛿,𝛼 = 𝜗0+Δ𝐾𝛿,𝛼, respectively. The expression on the
change areas, where generally 𝐾𝛿,𝛼 ∉ D(Δ𝜗0), is proven in complete analogy to [29, Lemma
A.1] using spectral calculus and the stochastic Fubini theorem. ■

We employ a CUSUM estimation approach based on the local log-likelihoods in (C.11) and
therefore specify an estimator (�̂�−, �̂�+, Λ̂+) via

(�̂�−, �̂�+, Λ̂+) ∈ argmax
(𝜗− ,𝜗+,Λ+ ) ∈Θ−×Θ+×A+

∑︁
𝛼∈[𝑛]𝑑

ℓ𝛿,𝛼(𝜗−, 𝜗+, Λ+). (C.13)

Here, the set of maximizers is well defined and we can make a measurable choice for a maximizer
since Θ± are compact and A+ is a finite set. Setting

Λ̂− ≔ [0, 1]𝑑 \ Λ̂+,
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as the corresponding estimator of Λ0
− we obtain the nonparametric diffusivity estimator

�̂�(𝑥) ≔ �̂�−𝟙Λ̂−
(𝑥) + �̂�+𝟙Λ̂+

(𝑥), 𝑥 ∈ (0, 1)𝑑−1.

Introduce further
𝜗0𝛿,𝛼 ≔

{
𝜗0+, Sq(𝛼) ⊂ Λ↕

+,

𝜗0−, else, =

{
𝜗0+, 𝑥𝛼 ∈ Λ↕

+
𝜗0−, else, (C.14)

and define by

B = {𝛼 ∈ [𝑛]𝑑 : Sq(𝛼)◦ ∩ 𝜕Λ0
+ ≠ ∅},

the indices 𝛼 of hypercubes whose interiors intersect the boundary of Λ0
+. It is important to

observe that the boundary tiles B may equivalently be expressed as follows.

Lemma C.4. It holds that

B = {𝛼 ∈ [𝑛]𝑑 : Sq(𝛼)◦ ∩ (Λ↕
+ △ Λ0

+) ≠ ∅}.

Proof. Since Λ0
+ is open in [0, 1]𝑑 , it holds that Λ0

+ ⊂ Λ↕
+ and therefore Λ↕

+ △ Λ0
+ = Λ↕

+ \ Λ0
+. Since

Λ↕
+ is closed and 𝜕Λ0

+ ∩ Λ0
+ = ∅, it follows that 𝜕Λ0

+ ⊂ Λ↕
+ △ Λ0

+, which gives the inclusion

B ⊂ {𝛼 ∈ [𝑛]𝑑 : Sq(𝛼)◦ ∩ (Λ↕
+ △ Λ0

+) ≠ ∅}.

Conversely, if ∅ ≠ Sq(𝛼)◦ ∩ (Λ↕
+ △ Λ0

+) = Sq(𝛼)◦ ∩ (Λ↕
+ \ Λ0

+), it follows that Sq(𝛼)◦ ⊄ Λ0
+, but

Sq(𝛼) ⊂ Λ↕
+ since the latter belongs to P. Thus, by definition of Λ↕

+, we have Sq(𝛼)◦ ∩ Λ0
+ ≠ ∅,

which because Sq(𝛼)◦ is connected and Sq(𝛼)◦ ⊄ Λ0
+ implies that Sq(𝛼)◦ ∩ 𝜕Λ0

+ ≠ ∅. This now
also yields

B ⊃ {𝛼 ∈ [𝑛]𝑑 : Sq(𝛼)◦ ∩ (Λ↕
+ △ Λ0

+) ≠ ∅}.

■

Plugging the given representation of Proposition C.3 into (C.11), we may now express ℓ𝛿,𝛼
in the following way,

ℓ𝛿,𝛼(𝜗−, 𝜗+, Λ+) =
(
𝜗𝛿,𝛼(Λ+)𝜗0𝛿,𝛼 − 𝜗𝛿,𝛼(Λ+)2/2

)
𝐼𝛿,𝛼 + 𝜗𝛿,𝛼(Λ+)𝑀𝛿,𝛼

+ 𝟙B(𝛼)𝜗𝛿,𝛼(Λ+)𝑅𝛿,𝛼,

where we denote
𝑀𝛿,𝛼 ≔

∫ 𝑇

0
𝑋Δ
𝛿,𝛼(𝑡) d𝐵𝛿,𝛼(𝑡), 𝐼𝛿,𝛼 ≔

∫ 𝑇

0
𝑋Δ
𝛿,𝛼(𝑡)

2 d𝑡,

and
𝑅𝛿,𝛼 ≔

∫ 𝑇

0
𝑋Δ
𝛿,𝛼(𝑡)

( ∫ 𝑡

0
⟨Δ𝜗0𝑆𝜗0 (𝑡 − 𝑠)𝐾𝛿,𝛼 − 𝜗0+𝑆𝜗0 (𝑡 − 𝑠)Δ𝐾𝛿,𝛼, d𝑊 (𝑠)⟩

)
d𝑡.

The estimator (C.13) therefore can be represented as

(�̂�−, �̂�+, Λ̂+) ∈ argmax
(𝜗− ,𝜗+,Λ+ ) ∈Θ−×Θ+×A+

{ ∑︁
𝛼∈[𝑛]𝑑

(
(𝜗𝛿,𝛼(Λ+) − 𝜗0𝛿,𝛼)𝑀𝛿,𝛼 −

1
2 (𝜗𝛿,𝛼(Λ+) − 𝜗0𝛿,𝛼)

2𝐼𝛿,𝛼
)
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+
∑︁
𝛼∈B

𝜗𝛿,𝛼(Λ+)𝑅𝛿,𝛼 +
∑︁

𝛼∈[𝑛]𝑑

(
𝜗0𝛿,𝛼𝑀𝛿,𝛼 +

(𝜗0
𝛿,𝛼

)2

2 𝐼𝛿,𝛼

)}
= argmin

(𝜗− ,𝜗+,Λ+ ) ∈Θ−×Θ+×A+

{
𝑍𝛿(𝜗−, 𝜗+, Λ+) −

∑︁
𝛼,∈B

𝜗𝛿,𝛼(Λ+)𝑅𝛿,𝛼
}
, (C.15)

where the empirical process 𝑍𝛿(·) is given by

𝑍𝛿(𝜗−, 𝜗+, Λ+) ≔
∑︁

𝛼∈[𝑛]𝑑

1
2 (𝜗𝛿,𝛼(Λ+) − 𝜗0𝛿,𝛼)

2𝐼𝛿,𝛼 −
∑︁

𝛼∈[𝑛]𝑑
(𝜗𝛿,𝛼(Λ+) − 𝜗0𝛿,𝛼)𝑀𝛿,𝛼

=
1
2 𝐼𝑇,𝛿(𝜗−, 𝜗+, Λ+) − 𝑀𝑇,𝛿(𝜗−, 𝜗+, Λ+),

(C.16)

where

𝐼𝑇,𝛿(𝜗−, 𝜗+, Λ+) ≔
∑︁

𝛼,∈[𝑛]𝑑
(𝜗𝛿,𝛼(Λ+) − 𝜗0𝛿,𝛼)

2𝐼𝛿,𝛼,

𝑀𝑇,𝛿(𝜗−, 𝜗+, Λ+) ≔
∑︁

𝛼∈[𝑛]𝑑
(𝜗𝛿,𝛼(Λ+) − 𝜗0𝛿,𝛼)𝑀𝛿,𝛼.

Note in particular that 𝑍𝛿(𝜗0−, 𝜗0+, Λ↕
+) = 0, so that 𝑍𝛿(·) is centered around the truth (𝜗0−, 𝜗0+, Λ

↕
+).

It will be crucial to have good control on the empirical process 𝑍𝛿, which is provided by the
following lemma that specifies the order of the observed Fisher informations 𝐼𝛿,𝛼. The proof is a
straightforward extension of the corresponding one-dimensional result [29, Lemma 3.3] using
the analogous spectral arguments in higher dimensions and can therefore be omitted.

Lemma C.5 (Modification of Lemma 3.3 in [29]).

(i) For any 𝛼 ∈ [𝑛]𝑑 with 𝛼 ∉ B, it holds

𝔼[𝐼𝛿,𝛼] =
𝑇

2𝜗0
𝛿,𝛼

∥∇𝐾∥2
𝐿2 (ℝ𝑑 )𝛿

−2 + 𝑂(1).

(ii) For any 𝛼 ∈ B, it holds

𝔼[𝐼𝛿,𝛼] ∈
[
2𝜆𝑇 − 1 + e−2𝜆𝑇

4𝜆𝜗
∥∇𝐾∥2

𝐿2 (ℝ𝑑 )𝛿
−2,

𝑇

2𝜗 ∥∇𝐾∥
2
𝐿2 (ℝ𝑑 )𝛿

−2
]
.

(iii) For any vector 𝛽 ∈ (ℝ𝑛)𝑑 with 𝛽𝛼 = 0 if 𝛼 ∈ B, we have

Var
( ∑︁
𝛼∈[𝑛]𝑑

𝛽𝛼𝐼𝛿,𝛼

)
≤ 𝑇

2𝜗3
𝛿−2∥𝛽∥2

𝑙2 ∥∇𝐾∥
2
𝐿2 (ℝ𝑑 ) .

Furthermore, convergence of the estimator (�̂�−, �̂�+, Λ̂+) requires insight on the order of the
remainders 𝑅𝛿,𝛼 in the representation (C.15), given by the following lemma.
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Lemma C.6. For any 𝛼 ∈ B we have

𝔼
[
|𝑅𝛿,𝛼 |

]
≲ 𝛿−2.

Proof. By Lemma C.5 we know that 𝔼[𝐼𝛿,𝛼] ≲ 𝛿−2 for any 𝛼 ∈ [𝑛]𝑑 . Since

𝑅𝛿,𝛼 =

∫ 𝑇

0
𝑋Δ
𝛿,𝛼(𝑡)

∫ 𝑡

0
⟨Δ𝜗0𝑆𝜗0 (𝑡 − 𝑠)𝐾𝛿,𝛼, d𝑊 (𝑠)⟩ d𝑡 − 𝜗0+𝐼𝛿,𝛼,

it is enough to show

𝔼
[��� ∫ 𝑇

0
𝑋Δ
𝛿,𝛼(𝑡)

∫ 𝑡

0
⟨Δ𝜗0𝑆𝜗0 (𝑡 − 𝑠)𝐾𝛿,𝛼, d𝑊 (𝑠)⟩ d𝑡

���] ≲ 𝛿−2. (C.17)

We have

𝔼
[��� ∫ 𝑇

0
𝑋Δ
𝛿,𝛼(𝑡)

∫ 𝑡

0
⟨Δ𝜗0𝑆𝜗0 (𝑡 − 𝑠)𝐾𝛿,𝛼, d𝑊 (𝑠)⟩ d𝑡

���]
≤ 𝔼

[
𝐼𝛿,𝛼

]1/2
𝔼
[ ∫ 𝑇

0

( ∫ 𝑡

0
⟨Δ𝜗0𝑆𝜗0 (𝑡 − 𝑠)𝐾𝛿,𝛼, d𝑊 (𝑠)⟩

)2
d𝑡

]1/2
≲ 𝛿−1

(
𝔼
[ ∫ 𝑇

0

( ∫ 𝑡

0
⟨Δ𝜗0𝑆𝜗0 (𝑡 − 𝑠)𝐾𝛿,𝛼, d𝑊 (𝑠)⟩

)2
d𝑡

] )1/2
= 𝛿−1

( ∫ 𝑇

0

∫ 𝑡

0

Δ𝜗0𝑆𝜗0 (𝑡 − 𝑠)𝐾𝛿,𝛼
2 d𝑠 d𝑡)1/2,

where we used the Cauchy–Schwarz inequality for the first two inequalities and Fubini’s theorem
together with the Itô-isometry for the last line. Since∫ 𝑇

0

∫ 𝑡

0

Δ𝜗0𝑆𝜗0 (𝑡 − 𝑠)𝐾𝛿,𝛼
2 d𝑠 d𝑡 ≤ 𝑇

∫ 𝑇

0

Δ𝜗0𝑆𝜗0 (𝑡)𝐾𝛿,𝛼2 d𝑡
= 𝑇

∑︁
𝑘∈ℕ

∫ 𝑇

0
𝜆2𝑘e−2𝜆𝑘𝑡 d𝑡⟨𝑒𝑘, 𝐾𝛿,𝛼⟩2

≤ 𝑇

2
∑︁
𝑘∈ℕ

𝜆𝑘⟨𝑒𝑘, 𝐾𝛿,𝛼⟩2

=
𝑇

2
(−Δ𝜗0)1/2𝐾𝛿,𝛼2

=
𝑇

2

∫
Λ
𝜗0(𝑥) |∇𝐾𝛿,𝛼(𝑥) |2 d𝑥

≤ 𝑇𝜗

2 ∥∇𝐾𝛿,𝛼∥2𝐿2 (ℝ𝑑 )

= 𝛿−2
𝑇𝜗∥∇𝐾∥2

𝐿2 (ℝ𝑑 )
2 ,

the bound (C.17) follows, proving the assertion. ■

We are now ready to prove our main result.
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Theorem C.7. Suppose that for some 𝛽 ∈ (0, 1] and some constant 𝑐 > 0 it holds that

|B| ≤ 𝑐𝛿−𝑑+𝛽 . (C.18)
Then, for some absolute constant 𝐶 depending only on 𝑐, 𝑑, 𝜗, 𝜗, 𝑇 and 𝜂 it holds that

𝔼
[
𝝀(Λ̂+ △ Λ0

+)
]
≤ 𝐶𝛿𝛽 .

Proof. Let 𝜒0 ≔ (𝜗0−, 𝜗0+, (Λ0
+)+) = (𝜗0−, 𝜗0+, Λ

↕
+) and set for 𝜒 = (𝜗−, 𝜗+, Λ+) ∈ Θ− × Θ+ × A+,

𝐿𝛿(𝜒) = 𝛿𝑑+2𝑍𝛿(𝜗−, 𝜗+, Λ+), �̃�𝛿(𝜒) = 𝔼[𝐿𝛿(𝜒)].

We first observe that (C.15) implies

𝐿𝛿(�̂�−, �̂�+, Λ̂+) ≤ min
𝜒∈Θ−×Θ+×A+

𝐿𝛿(𝜒) + 2𝛿2+𝑑𝜗
∑︁
𝛼∈B

|𝑅𝛿,𝛼 |. (C.19)

Furthermore, since 𝐿𝛿(𝜒0) = 0 and 𝔼[𝑀𝛿,𝛼] = 0, we obtain with Lemma C.5 that for any
𝜒 = (𝜗−, 𝜗+, Λ+) ∈ Θ− × Θ+ × A+,

�̃�𝛿(𝜒) − �̃�𝛿(𝜒0) = 𝔼[𝐿𝛿(𝜒)] ≍ 𝛿𝑑
∑︁

𝛼∈[𝑛]𝑑
(𝜗𝛿,𝛼(Λ+) − 𝜗0𝛿,𝛼)

2

= 𝛿𝑑
∑︁

𝛼∈[𝑛]𝑑 :Sq(𝛼)◦⊂(Λ+∩Λ↕
+ )

(𝜗+ − 𝜗0+)2 + 𝛿𝑑
∑︁

𝛼∈[𝑛]𝑑 :Sq(𝛼)◦⊂(Λ+∪Λ↕
+ )c

(𝜗− − 𝜗0−)2

+ 𝛿𝑑
∑︁

𝛼∈[𝑛]𝑑 :Sq(𝛼)◦⊂(Λ+△Λ↕
+ )

(𝜗𝛿,𝛼(Λ+) − 𝜗0𝛿,𝛼)
2

≥ 𝜂2𝛿𝑑
��{𝛼 ∈ [𝑛]𝑑 : Sq(𝛼)◦ ⊂ (Λ+ △ Λ↕

+)
}��

= 𝜂2𝝀(Λ+ △ Λ↕
+),

(C.20)

where for the penultimate line we observe that for Sq(𝛼)◦ ⊂ (Λ+ △ Λ↕
+) we have 𝜗𝛿,𝛼(Λ+) = 𝜗±

iff 𝜗0
𝛿,𝛼

= 𝜗0∓, and conclude with 𝜗±, 𝜗0± ∈ Θ± and the fact that Θ+ and Θ− are 𝜂-separated. Now,
using the characterization from Lemma (C.4) and the assumption (C.18), it follows that

𝝀(Λ0
+ △ Λ↕

+) ≤ 𝛿𝑑 |B| ≤ 𝑐𝛿𝛽 . (C.21)
Combined with (C.20), triangle inequality for the symmetric difference pseudometric therefore
yields

𝝀(Λ+ △ Λ0
+) ≲ �̃�𝛿(𝜒) − �̃�𝛿(𝜒0) + 𝛿𝛽, 𝜒 = (𝜗−, 𝜗+, Λ+) ∈ Θ− × Θ+ × A+,

whence the assertion follows once we have verified that
𝔼[ �̃�𝛿(�̂�) − �̃�𝛿(𝜒0)] ≲ 𝛿𝛽, �̂� ≔ (�̂�−, �̂�+, Λ̂+), (C.22)

where by definition �̃�𝛿(�̂�) = 𝔼[𝐿𝛿(𝜒)] |𝜒=�̂�. Taking into account (C.18), (C.19) and Lemma C.6,
we arrive at

𝔼[ �̃�𝛿(�̂�) − �̃�𝛿(𝜒0)] ≤ 𝔼
[
�̃�𝛿(�̂�) − �̃�𝛿(𝜒0) + 𝐿𝛿(𝜒0) − 𝐿𝛿(�̂�)

]
+ 2𝛿𝑑+2𝑐𝛿𝛽−𝑑 max

𝛼∈B
𝔼[|𝑅𝛿,𝛼 |]

≲ 𝔼
[

sup
𝜒∈Θ−×Θ+×A+

|𝐿𝛿(𝜒) − �̃�𝛿(𝜒) |
]
+ 𝛿𝛽 .

(C.23)
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To prove (C.22) it therefore remains to show

𝔼
[

sup
𝜒∈Θ−×Θ+×A+

|𝐿𝛿(𝜒) − �̃�𝛿(𝜒) |
]
≲ 𝛿𝛽,

which, recalling the decomposition (C.16) and using 𝔼[𝑀𝑇,𝛿(𝜒)] = 0, boils down to show

𝔼
[

sup
𝜒∈Θ−×Θ+×A+

|𝐼𝑇,𝛿(𝜒) − 𝔼[𝐼𝑇,𝛿(𝜒)] |
]
≲ 𝛿𝛽−𝑑−2, (C.24)

𝔼
[

sup
𝜒∈Θ−×Θ+×A+

|𝑀𝑇,𝛿(𝜒) |
]
≲ 𝛿𝛽−𝑑−2. (C.25)

Clearly, by triangle inequality, we get the rough bounds

sup
𝜒∈Θ−×Θ+×A+

|𝐼𝑇,𝛿(𝜒) − 𝔼[𝐼𝑇,𝛿(𝜒)] | ≤ (𝜗 − 𝜗)2
∑︁

𝛼∈[𝑛]𝑑
|𝐼𝛿,𝛼 − 𝔼[𝐼𝛿,𝛼] |,

sup
𝜒∈Θ−×Θ+×A+

|𝑀𝑇,𝛿(𝜒) | ≤ |𝜗 − 𝜗|
∑︁

𝛼∈[𝑛]𝑑
|𝑀𝛿,𝛼 |.

Thus, applying once more the assumption (C.18) and the bounds from Lemma C.5,

𝔼
[

sup
𝜒∈Θ−×Θ+×A+

|𝐼𝑇,𝛿(𝜒) − 𝔼[𝐼𝑇,𝛿(𝜒)] |
]

≲ 𝛿𝛽−𝑑 max
𝛼∈B

𝔼[|𝐼𝛿,𝛼 − 𝔼[𝐼𝛿,𝛼] |] + 𝛿−𝑑 max
𝛼∈[𝑛]𝑑\B

𝔼[|𝐼𝛿,𝛼 − 𝔼[𝐼𝛿,𝛼] |]

≤ 2𝛿𝛽−𝑑 max
𝛼∈B

𝔼[|𝐼𝛿,𝛼 |] + 𝛿−𝑑 max
𝛼∈[𝑛]𝑑\B

Var(𝐼𝛿,𝛼)1/2

≲ 𝛿𝛽−𝑑−2 + 𝛿−𝑑−1,

which establishes (C.24). For the martingale part, using 𝔼[|𝑀𝛿,𝛼 |2] = 𝔼[𝐼𝛿,𝛼], the Cauchy–
Schwarz inequality and Lemma C.5, we have

𝔼
[

sup
𝜒∈Θ−×Θ+×A+

|𝑀𝑇,𝛿(𝜒) |
]
≲ 𝛿−𝑑 max

𝛼∈[𝑛]𝑑
𝔼[|𝑀𝛿,𝛼 |]

≤ 𝛿−𝑑 max
𝛼∈[𝑛]𝑑

(𝔼[𝐼𝛿,𝛼])1/2

≲ 𝛿−𝑑−1,

showing (C.25). This finishes the proof. ■

This result entails convergence rates for the estimation of domains Λ0
+ with boundary of

Minkowski dimension (also called box counting dimension) 𝑑−𝛽. Recall that if for a set 𝐴 ⊂ [0, 1]𝑑
we let 𝑁 (𝐴, 𝛿) be the minimal number of hypercubes Sq(𝛼) needed to cover 𝐴 and set

dim
M
(𝐴) = lim inf

𝛿→0
log 𝑁 (𝐴, 𝛿)
log 1/𝛿 , dimM(𝐴) = lim sup

𝛿→0

log 𝑁 (𝐴, 𝛿)
log 1/𝛿 ,

then, if dim
M
(𝐴) = dimM(𝐴), we call

dimM(𝐴) = lim
𝛿→0

log 𝑁 (𝐴, 𝛿)
log 1/𝛿 ,
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the Minkowski dimension of 𝐴 (see [5, p.2] for the fact that this is an equivalent characterization
of the Minkowski dimension in the Euclidean space [0, 1]𝑑). Clearly,

|B| ≤ 𝑁 (𝜕Λ0
+, 𝛿),

so that Theorem C.7 yields the following corollary.

Corollary C.8. Suppose that for some 𝛽 ∈ (0, 1] it holds that

dimM(𝜕Λ0
+) ≤ 𝑑 − 𝛽.

Then, for any 𝜀 > 0,
𝔼
[
𝝀(Λ̂+ △ Λ0

+)
]
= 𝑜(𝛿𝛽−𝜀).

Remark C.9. The Minkowski dimension dimM always dominates the Hausdorff dimension dimH.
For many reasonable sets they coincide and in these cases the condition on dimM(𝜕Λ0

+) may be
replaced by the same one on dimH (𝜕Λ0

+). In most cases, dimM(𝜕Λ0
+) = 𝑑−𝛽 is verified explicitly by

establishing that 𝑁 (𝜕Λ0
+, 𝛿) ≍ 𝑐𝛿−𝑑+𝛽, which then improves the result to 𝔼

[
𝝀(Λ̂+ △ Λ0

+)
]
= O(𝛿𝛽).

As outlined before, our estimator only aims at rate optimality for inference on Λ0
+. Given a

necessary identifiability assumption, the nuisance parameters 𝜗0± are still consistently estimated
under the assumptions of Theorem C.7.

Corollary C.10. Suppose that |B| ≤ 𝑐𝛿−𝑑+𝛽 for some 𝛽 ∈ (0, 1] and some constant 𝑐 > 0. If
𝝀(Λ0

±) > 0, then �̂�± is a consistent estimator satisfying |�̂�± − 𝜗0± | = Oℙ(𝛿𝛽/2). In particular, if both
Λ0
+ and Λ0

− have positive Lebesgue measure, it holds that ∥�̂� − 𝜗0∥𝐿1 ( (0,1)𝑑 ) ∈ Oℙ(𝛿𝛽/2).

Proof. We only prove the assertion on �̂�+ given 𝝀(Λ0
+) ≠ 0; the case for �̂�− under the assumption

𝝀(Λ0
−) ≠ 0 is analogous and the final statement on the convergence rate of �̂� then follows from

combining the first statement and Theorem C.7 based on the inequality

|�̂�(𝑥) − 𝜗0(𝑥) | ≤ |�̂�− − 𝜗0− | + |�̂�+ − 𝜗0+ | + 2𝜗|𝟙Λ̂+
(𝑥) − 𝟙Λ0

+
(𝑥) |, 𝑥 ∈ (0, 1)𝑑 .

Let 𝜅 = 𝝀(Λ0
+) > 0. From (C.21) it follows that on the event {𝝀(Λ̂+ △ Λ0

+) ≤ 𝛿𝛽/2} we have for 𝛿
small enough

𝜅

2 ≤ 𝝀(Λ̂+ ∩ Λ↕
+) = 𝛿𝑑

��{𝛼 ∈ [𝑛]𝑑 : Sq◦(𝛼) ⊂ (Λ̂+ ∩ Λ↕
+)

}��,
where the equality follows from the fact that for 𝐴, 𝐵 ∈ P we also have 𝐴 ∩ 𝐵 ∈ P. Thus, for
𝛿 small enough, it follows from the second line of the calculation in (C.20) that on the event
{𝝀(Λ̂+ △ Λ0

+) ≤ 𝛿𝛽/2} we have

�̃�𝛿(�̂�) − �̃�𝛿(𝜒0) ≥
𝜅

2 (�̂�+ − 𝜗0+)2.

Consequently, there exists 𝐶′ > 0 such that for any 𝛿−1 ≥ 𝐶′ and 𝑧 > 0,

ℙ
(
𝛿−𝛽 (�̂�+ − 𝜗0+)2 ≥ 𝑧

)
≤ ℙ

(
𝛿−𝛽 (�̂�+ − 𝜗0+)2 ≥ 𝑧, 𝝀(Λ̂+ △ Λ0

+) ≤ 𝛿𝛽/2
)
+ ℙ

(
𝝀(Λ̂+ △ Λ0

+) > 𝛿𝛽/2
)

≤ ℙ
(
�̃�𝛿(�̂�) − �̃�𝛿(𝜒0) ≥ 𝜅

2𝛿
𝛽𝑧

)
+ ℙ

(
𝝀(Λ̂+ △ Λ0

+) > 𝛿𝛽/2
)
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≤ 2𝔼[ �̃�𝛿(�̂�) − �̃�𝛿(𝜒0)]
𝜅𝛿𝛽𝑧

+
𝔼
[
𝝀(Λ̂+ △ Λ0

+)
]

𝛿𝛽/2

≤ 𝐶
( 1
𝑧
+ 𝛿𝛽/2

)
,

for some finite constant 𝐶 > 0 independent of 𝛿 where the last line follows from (C.22) and
Theorem C.7. Thus, if for given 𝜀 > 0 we choose 𝑧 = 2𝐶/𝜀, it follows that for any 𝛿−1 ≥
(2𝐶/𝜀)−2/𝛽 ∨ 𝐶′ we have

ℙ
(
𝛿−𝛽 (�̂�+ − 𝜗0+)2 ≥ 𝑧

)
≤ 𝜀,

which establishes (�̂�+ − 𝜗0+)2 = Oℙ(𝛿𝛽) as 𝛿−1 → ∞. ■

Given the results from Paper A, which can be applied to a stochastic heat equation with
constant diffusivity, this rate is not expected to be optimal. As argued in [29], a more careful
approach in the design of the estimator that accounts for the irregularities of the diffusivity
in a more elaborate way would be needed to also achieve rate-optimality for the diffusivity
parameters. Since the paper focuses on the estimation of the domain Λ0

+, these issues will not be
discussed further.

C.4 Results for specific models

In this section we give explicit constructions of the candidate sets A+ and estimator convergence
rates for two specific shape restrictions.

C.4.1 Estimation of change interfaces with graph representation

Consider model A from Section C.2, for which Λ0
+ is fully determined by the continuous change

interface 𝜏0 : [0, 1]𝑑−1 → [0, 1]. For any function 𝜏 : [0, 1]𝑑−1 → [0, 1] let us define the open
epigraph

epi 𝜏 ≔ {(𝑥, 𝑦) ∈ [0, 1]𝑑−1 × [0, 1] : 𝜏(𝑥) > 𝑦}.

For 𝛾 ∈ [𝑛]𝑑−1 let S̃q𝑑−1(𝛾) be a (𝑑 − 1)-dimensional hypercube with edge length 𝛿 that is
centered at 𝑧𝛾 ≔ 𝛿(𝛾 − 1

2𝟙). The hypercubes S̃q𝑑−1(𝛾) are chosen such that (S̃q𝑑−1(𝛾))𝛾∈[𝑛]𝑑−1
forms a partition of [0, 1]𝑑−1, i.e., [0, 1]𝑑−1 = Ï

𝛾∈[𝑛]𝑑−1 S̃q𝑑−1(𝛾). Let us also denote Sq𝑑−1(𝛾) ≔
S̃q𝑑−1(𝛾). With

G ≔ {𝑖𝛿 : 𝑖 = 0, 1, . . . , 𝑛}𝑛𝑑−1 ,
we now define the grid functions

𝜏𝜁 (𝑥) =
∑︁

𝛾∈[𝑛]𝑑−1
𝜁𝛾1S̃q𝑑−1 (𝛾) (𝑥), 𝑥 ∈ [0, 1]𝑑−1, 𝜁 = (𝜁𝛾)𝛾∈[𝑛]𝑑−1 ∈ G,

and set
Λ+(𝜁) ≔ (epi 𝜏𝜁)+ ∈ P, 𝜁 ∈ G.

In other words, Λ+(𝜁) can be written as

Λ+(𝜁) =
⋃

𝛾∈[𝑛]𝑑−1:𝜁𝛾<1
Sq𝑑−1(𝛾) × [𝜁𝛾, 1].
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We then choose our candidate tiling sets as

A+ =
{
Λ+(𝜁) : 𝜁 ∈ G

}
.

Note that the size |A+ | = 𝑛𝑑−1(𝑛 + 1) of this family of candidate sets if significantly smaller than
that of the uninformed choice A+ = P, which is 2𝑛𝑑 . To see that A+ is a valid choice, note that for

𝜁
↑
𝛾 ≔ 𝛿⌈𝛿−1 sup{𝜏0(𝑥) : 𝑥 ∈ S̃q𝑑−1(𝛾)}⌉, 𝜁

↓
𝛾 ≔ 𝛿⌊𝛿−1 inf{𝜏0(𝑥) : 𝑥 ∈ S̃q𝑑−1(𝛾)}⌋,

it holds that 𝜏𝜁↓ is the maximal grid function dominated by 𝜏0 and therefore

Λ↕
+ = (epi 𝜏0)+ = (epi 𝜏𝜁↓)+ = Λ+(𝜁↓),

whence in particular Λ↕
+ ∈ A+ as required. Furthermore, the function

𝜑 : A+ → G, Λ+(𝜁) → 𝜁,

is a bijection. Thus, for the estimator Λ̂+ from the previous section, if we set

�̂� ≔ 𝜑(Λ̂+),

it follows that
Λ̂+ = Λ+(�̂�) = (epi 𝜏

�̂�
)+.

Consequently, if we define the change interface estimator

�̂� = 𝜏
�̂�
,

then we have the identity
∥�̂� − 𝜏0∥𝐿1 ( [0,1]𝑑−1 ) = 𝝀(Λ̂+ △ Λ0

+).

An example of a change interface and its grid function approximation can be seen in Figure
C.3. Under Hölder smoothness assumptions on the change interface 𝜏0, Theorem C.7 allows us
to obtain a convergence rate for the change domain estimator Λ̂+ in the symmetric difference
pseudometric, or equivalently, for the change interface estimator �̂� in the 𝐿1-metric. For 𝛽 ∈ (0, 1],
𝐿 > 0, let H(𝛽, L) be the (𝛽, L)-Hölder class on [0, 1]𝑑−1 w.r.t. the maximum metric, i.e.,

H(𝛽, L) ≔
{
𝑓 : [0, 1]𝑑−1 → ℝ : | 𝑓 (𝑥) − 𝑓 (𝑦) | ≤ L∥𝑥 − 𝑦∥𝛽∞ for all 𝑥, 𝑦 ∈ [0, 1]𝑑−1

}
.

Proposition C.11. If 𝜏0 ∈ H(𝛽, L) for 𝛽 ∈ (0, 1] and L > 0, then there exists a constant 𝐶
depending only on 𝛽, L, 𝑑, 𝜗, 𝜗, 𝑇 and 𝜂 such that

𝔼
[
∥�̂� − 𝜏0∥𝐿1 ( [0,1]𝑑−1 )

]
= 𝔼

[
𝝀(Λ̂+ △ Λ0

+)
]
≤ 𝐶𝛿𝛽 .

Moreover, if 𝜏0 is not identically 1 (resp. not identically 0), then |�̂�+ − 𝜗0+ | = Oℙ(𝛿𝛽/2) (resp.
|�̂�− − 𝜗0− | = Oℙ(𝛿𝛽/2)). In particular, if 𝜏0(𝑥) ∈ (0, 1) for some 𝑥 ∈ [0, 1]𝑑−1, it holds that
∥�̂� − 𝜗0∥𝐿1 ( (0,1)𝑑 ) ∈ Oℙ(𝛿𝛽/2).
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Figure C.3: Example of a change interface 𝜏 and a piecewise constant approximation 𝜏𝜁 in
dimension 𝑑 = 2 with 𝛿 = 0.05.

Proof. By Theorem C.7 and Corollary C.10, it suffices to show that |B| ≤ L𝛿𝑑−𝛽. To this end, we
first observe that in the change interface model it holds that

B =
{
𝛼 ∈ [𝑛]𝑑 : Sq(𝛼) ∩ 𝜕Λ0

+ ≠ ∅
}

=
{
(𝛾, 𝑗) ∈ [𝑛]𝑑−1 × [𝑛] : (Sq𝑑−1(𝛾)◦ × (( 𝑗 − 1)𝛿, 𝑗𝛿)) ∩ 𝜏0(Sq𝑑−1(𝛾)) ≠ ∅

}
⊂

{
(𝛾, 𝑗) ∈ [𝑛]𝑑−1 × [𝑛] : 𝑗 ∈ 𝛿−1(𝜁↓𝛾 , 𝜁↑𝛾]

}
.

Because 𝜏0 ∈ H(𝛽, L) implies that |𝜁↑𝛾 − 𝜁
↓
𝛾 | ≤ L𝛿𝛽 for any 𝛾 ∈ [𝑛]𝑑−1, we obtain

|{ 𝑗 ∈ 𝛿−1(𝜁↓𝛾 , 𝜁↑𝛾] ∩ [𝑛]}| ≤ L𝛿𝛽−1.

Thus, from above,
|B| ≤ 𝛿−(𝑑−1)L𝛿𝛽−1 = L𝛿−𝑑+𝛽,

as desired. ■

Remark C.12. The domain estimation rate 𝛿𝛽 translates to 𝑁−𝛽/𝑑 in terms of the number
of observations 𝑁 = 𝛿−𝑑. As pointed out in [19, Chapter 3-5], for appropriately designed
random measurement locations, the minimax rate for estimating a boundary fragment in image
reconstruction is given by 𝑁−𝛽/(𝛽+𝑑−1) for arbitrary 𝛽 > 0. Unless we have Lipschitz regularity
𝛽 = 1, this rate is, however, not achievable for an equidistant deterministic design, which is
usually referred to as regular design. In fact, it can be shown that with regular design, the
rate 𝑁−𝛽/𝑑 is the optimal rate for 𝛽 ∈ (0, 1] in the edge estimation problem by adapting [19,
Theorem 3.3.1]. Indeed, consider the regular design image reconstruction problem

𝑌𝛼 = 𝜗(𝑥𝛼) + 𝜀𝛼, 𝛼 ∈ [𝑛]𝑑 ,

where
𝜗(𝑥) = 𝜗−𝟙Λ− (𝑥) + 𝜗+𝟙Λ+ (𝑥), 𝑥 ∈ [0, 1]𝑑 ,
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for known values 𝜗− ≠ 𝜗+ and Λ− ¤⋃Λ+ = [0, 1]𝑑 and denote by ℙΛ+ the law generated by the
observations for fixed Λ+. Let 𝜏0 ≡ 0 and further let

𝜏1(𝑥) ≔
∑︁

𝛾∈[𝑛]𝑑−1
∥𝑥 − 𝑧𝛾∥𝛽∞𝟙{ ∥𝑥−𝑧𝛾 ∥∞≤𝛿/2} , 𝑥 ∈ [0, 1]𝑑−1.

Then, for Λ𝑖
+ ≔ {(𝑥, 𝑦) ∈ [0, 1]𝑑 : 𝜏𝑖 (𝑥) > 𝑦}, 𝑖 = 0, 1, we have

{𝑥𝛼 : 𝛼 ∈ [𝑛]𝑑} ⊂ Λ0
+ ∩ Λ1

+ = Λ1
+,

and therefore ℙΛ1
+
= ℙΛ0

+
. Since furthermore 𝝀(Λ0

+ △ Λ1
+) =

∫
𝜏1(𝑥) d𝑥 ≍ 𝛿𝛽 and 𝜏𝑖 ∈ H(𝛽, 1)

for 𝑖 = 0, 1, we obtain the minimax lower bound
inf
Λ̂+

sup
Λ+∈Ξ(𝛽,L)

𝔼Λ+

[
𝝀(Λ̂+ △ Λ+)

]
≳ 𝛿𝛽 = 𝑁−𝛽/𝑑 ,

for the class Ξ(𝛽, L) of epigraphs of functions 𝜏 ∈ H(𝛽, 1).
Remark C.13. Note that the underlying assumption on the graph orientation, that is Λ0

+ is an
epigraph w.r.t. the 𝑑-th coordinate, can be easily circumvented by adapting the candidate set A+
to represent any graph structure that may only become visible after rotation of the cube [0, 1]𝑑 .
Since a 𝑑-dimensional hypercube admits 2𝑑 faces, the size of the adapted candidate set would
increase from 𝑛𝑑−1(𝑛 + 1) to 2𝑑𝑛𝑑−1(𝑛 + 1).

C.4.2 Estimation of convex sets

Suppose that model B from Section C.2 holds, i.e., Λ0
+ ⊂ Λ is convex. A simple choice for

A+ is given by A+ = {𝐶+ : 𝐶 ⊂ [0, 1]𝑑 convex}. This choice of candidate sets is however not
particularly constructive. Let us therefore propose another family of candidate sets, whose
construction follows a similar principle as the one for the graph representation model from the
previous subsection.

The basic observation is that by convexity, for any 𝑥 ∈ intΛ0
+, the vertical ray 𝑦 ↦→ 𝑥 + 𝑦𝑒𝑑

intersects 𝜕Λ+ in exactly two points. The natural idea is therefore to build candidate sets from
hypercuboids Sq𝑑−1(𝛾) × [𝜁𝛾, 𝜁𝛾] for 𝜁𝛾, 𝜁𝛾 living on the grid G. Heuristically speaking, as the
upper and lower intersection points of the vertical ray can be described by a concave and convex
function, respectively, we aim to approximate those by piecewise constant functions on S̃q𝑑−1(𝛾)
in analogy to the graph representation of Section C.4.1. In similarity to Section C.4.1, let

𝜁
↑
𝛾 ≔ 𝛿⌈𝛿−1 sup{𝑥𝑑 : 𝑥 ∈ 𝜕Λ0

+ ∩ (Sq𝑑−1(𝛾)◦ × [0, 1])}⌉, 𝛾 ∈ [𝑛]𝑑−1,
𝜁
↓
𝛾 ≔ 𝛿⌊𝛿−1 inf{𝑥𝑑 : 𝑥 ∈ 𝜕Λ0

+ ∩ (Sq𝑑−1(𝛾)◦ × [0, 1])}⌋, 𝛾 ∈ [𝑛]𝑑−1,

be the grid projections of upper and lower limits of the intersection of the convex set Λ+
0 with the

strip Sq𝑑−1(𝛾)◦ × [0, 1]. Here, the supremum and the infimum of the empty is set to 0. Consider
candidate sets

Λ+(𝜁) ≔
⋃

𝛾∈[𝑛]𝑑−1:𝜁
𝛾
<𝜁𝛾

Sq𝑑−1(𝛾) × [𝜁
𝛾
, 𝜁𝛾], 𝜁

𝛾
, 𝜁𝛾 ∈ G,

and the minimal tiling
Λ↕
+ ≔

⋃
𝛾∈[𝑛]𝑑−1:𝜁↓𝛾<𝜁↑𝛾

Sq𝑑−1(𝛾) × [𝜁↓𝛾 , 𝜁↑𝛾]



134 Chapter C. Multivariate change estimation for a stochastic heat equation

both belonging to
A+ =

{
Λ+(𝜁) : 𝜁

𝛾
, 𝜁𝛾 ∈ G, 𝛾 ∈ [𝑛]𝑑−1

}
. (C.26)

Then, it holds that |A+ | = 𝑛𝑑−1((𝑛 + 𝑛2)/2 + 1) ≍ 𝑛𝑑+1. An exemplary illustration in 𝑑 = 2 can
be found in Figure C.4.

Figure C.4: Approximation (red) of Λ0
+ (blue) for 𝛿 = 0.05.; left: by some Λ+(𝜁) from (C.26);

right: by Λ↕
+.

In order to apply Theorem C.7, it remains to control the size of the boundary tiling indices
B, which can be done with a classical result from convex geometry. By [21, Corollary 2], the
boundary of any convex set 𝐶 ⊂ [0, 1]𝑑 can be covered by at most

𝑛𝑑 − (𝑛 − 2)𝑑 < 2𝑑𝑛𝑑−1 = 2𝑑𝛿−𝑑+1

hypercubes from the tiling {Sq(𝛼) : 𝛼 ∈ [𝑛]𝑑} of [0, 1]𝑑 . This entails the bound

|B| = |{𝛼 ∈ [𝑛]𝑑 : Sq(𝛼)◦ ∩ 𝜕Λ0
+ ≠ ∅}| < 2𝑑𝛿−𝑑+1.

Consequently, Theorem C.7 and Corollary C.10 yield the following convergence result.

Proposition C.14. Suppose that Λ0
+ is convex and A+ be given by (C.26). Then, for some absolute

constant 𝐶 depending only on 𝑑, 𝜗, 𝜗, 𝑇 and 𝜂 it holds that

𝔼
[
𝝀(Λ̂+ △ Λ0

+)
]
≤ 𝐶𝛿.

Moreover, if 𝝀(Λ0
±) ≠ 0, it holds that |�̂�± − 𝜗0± | ∈ Oℙ(𝛿1/2). In particular, if 𝝀(Λ0

+) ∉ {0, 1}, we
have ∥�̂� − 𝜗0∥𝐿1 ( (0,1)𝑑 ) ∈ Oℙ(𝛿1/2).

Remark C.15. For an indication of optimality of the domain convergence rate, let us again
consider the regular design image reconstruction problem

𝑌𝛼,= 𝜗(𝑥𝛼) + 𝜀𝛼, 𝛼 ∈ [𝑛]𝑑 ,

from Remark C.12. Let Λ0
+ ⊂ (0, 1)𝑑 be an open hypercube with volume 𝑣0 ∈ (0, 1) and edge

length 𝑙0 = 𝑣
1/𝑑
0 such that the corners of the hypercube lie on {𝑥𝛼}𝛼∈[𝑛]𝑑 and let Λ1

+ be the
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open hypercube containing Λ0
+ such that 𝑑∞(Λ0

+, Λ
1
+) = 𝛿/2, where 𝛿 is chosen small enough s.t.

Λ+ ⊂ (0, 1)𝑑 . Then 𝑥𝛼 ∈ Λ+
0 iff 𝑥𝛼 ∈ Λ0

+ and therefore ℙΛ0
+
= ℙΛ1

+
. Moreover,

𝝀(Λ0
+ △ Λ1

+) = (𝑙0 + 𝛿/2)𝑑 − 𝑙𝑑0 ≥ 𝑑

2 𝑙
𝑑−1
0 𝛿 = 𝛿

𝑑

2𝑣
𝑑−1
𝑑

0 ,

yielding the minimax lower bound

inf
Λ̂+

sup
Λ+∈C(𝑣0 )

𝔼Λ+

[
𝝀(Λ̂+ △ Λ+)

]
≳ 𝐶(𝑣0)𝛿,

for the class C(𝑣0) of convex sets in [0, 1]𝑑 with volume at least 𝑣0 ∈ (0, 1).
The constructed estimator Λ̂+ has the drawback of generally not being a convex or even

connected set. However, we can easily transform our estimator Λ̂+ into a convex estimator Λ̂con
+

that converges at the same rate. To this end we employ a minimum distance fit by choosing an
estimator Λ̂con

+ such that

𝝀
(
Λ̂con
+ △ Λ̂+

)
≤ inf

𝐶⊂[0,1]𝑑 :𝐶 is convex
𝝀
(
𝐶 △ Λ̂+

)
+ 𝛿.

Up to a 𝛿-margin, Λ̂con
+ is therefore a convex set with maximal overlap in volume with Λ̂+.

Corollary C.16. The convex estimator Λ̂con
+ satisfies

𝔼
[
𝝀(Λ̂con

+ △ Λ0
+)

]
≤ (2𝐶 + 1)𝛿,

where 𝐶 is the constant from Proposition C.14.

Proof. By triangle inequality for the symmetric difference pseudometric, it follows that

𝔼
[
𝝀
(
Λ0
+ △ Λ̂con

+
) ]

≤ 𝔼
[
𝝀
(
Λ̂con
+ △ Λ̂+

) ]
+ 𝔼

[
𝝀
(
Λ0
+ △ Λ̂+

) ]
≤ 2𝔼

[
𝝀
(
Λ0
+ △ Λ̂+

) ]
+ 𝛿,

where we used that since Λ0
+ is convex we have

𝝀
(
Λ̂con
+ △ Λ̂+

)
≤ 𝝀

(
Λ0
+ △ Λ̂+

)
+ 𝛿.

The assertion therefore follows from Proposition C.14. ■

Given the estimator Λ̂+, numerical implementation of Λ̂con
+ can be conducted with methods

for convexity constrained image segmentation based on the binary image input {(𝑥𝛼, 𝟙Λ̂+
(𝑥𝛼)) :

𝛼 ∈ [𝑛]𝑑}, see, e.g., the recent implicit representation approach in [32].

C.5 Conclusion and outlook

Before discussing limitations and possible extensions of our work, let us briefly summarize our
results. We have studied a change estimation problem for a stochastic heat equation (C.1) in
𝑑 ≥ 2. The underlying space is partitioned into Λ− ∪ Λ+ by a separating hypersurface Γ = 𝜕Λ+,
where the piecewise constant diffusivity 𝜗 exhibits a jump. Following a CUSUM approach, we
have constructed an M-estimator Λ̂+ based on local measurements on a fixed uniform 𝛿-grid
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that exhibits certain analogies to regular design estimators in statistical image reconstruction.
Our main result, Theorem C.7, shows how the convergence properties of our estimator are
determined by the number of tiles that are sliced by Γ. The estimation principle and rates are
made concrete for two specific models that impose shape restrictions on the change domain Λ+:
(A) a graph representation of Γ with Hölder smoothness 𝛽 ∈ (0, 1], and (B) a convex shape. We
have established the rates of convergences 𝛿𝛽 for model A and 𝛿 for model B with respect to
the symmetric difference risk 𝔼[𝝀(Λ̂+ △ Λ+)], which are the optimal rates of convergence in the
corresponding image reconstruction problems with regular design. Furthermore, the diffusivity
parameters can be recovered with rate 𝛿𝛽/2 and 𝛿1/2. To conclude the paper, let us now give an
outlook on potential future work that can build on our results.

Based on Theorem C.7, an extension of Proposition C.11 to a known number 𝑚 of change
interfaces 𝜏1, . . . , 𝜏𝑚 that yields a partition Λ =

⋃
0≤ 𝑖≤𝑚 Λ𝑖 of layers Λ𝑖 with alternating dif-

fusivities 𝜗±, is straightforward. Assuming that each 𝜏𝑚 belongs to H(𝛽, 𝐿), the same rate of
convergence can be established. For the canonical choice A+ = P, our general estimator from
Theorem C.7 would also adapt to an unknown number of layers 𝑚, but it might be interesting in
this scenario to develop a more implementation friendly procedure.

Having an unknown number of layers, or, more generally, an unknown number of “impurities”
is also particularly interesting from a testing perspective. In this spirit, a further model extension
would allow a partition Λ =

⋃
0≤ 𝑖≤𝑚 Λ𝑖 with 𝜗 ≡ 𝜗𝑖 on Λ𝑖 and 𝜗𝑖 ≠ 𝜗 𝑗 for 𝑗 ≠ 𝑖, which can be

used, for instance, to model sediment layers. This model extension is unproblematic from an
SPDE perspective, but poses additional statistical challenges.

More generally, besides spatial change areas, future work could contain temporal change
points, i.e., the diffusivity 𝜗 = 𝜗(𝑡, 𝑥) is also discontinuous in time, thereby allowing for the
modeling of thermal spikes. In this case, tools from change point detection in time series have
to be incorporated into the estimation procedure and online estimation becomes an intriguing
question.

In this paper, we have fixed the parameters 𝜗± and therefore also the absolute jump height
𝜂 = |𝜗+ − 𝜗− |. Extensions of the result to a 𝛿-dependent, but non-vanishing jump height, i.e.,
𝜂 = 𝜂(𝛿) ≥ 𝜂 for some fixed 𝜂 > 0, are straightforward. In contrast, the vanishing jump height
regime 𝜂 → 0 as 𝛿 → 0 that has been considered for the one-dimensional change point problem
in [29], introduces significant technical challenges that require a sharper concentration analysis.
Similarly to how the limit result from [29] in this regime draws analogies to classical change
point limit theorems, in our multivariate case one would expect asymptotics that are comparable
to [24].

As mentioned in Remark C.12 and Remark C.15, the convergence rates for 𝑁−𝛽/𝑑 and 𝑁−1/𝑑 ,
respectively, are optimal in the related image reconstruction problem when working with a
regular design. However, as alluded to before, it is shown in [19] that the minimax optimal
rate for irregular measurement designs that introduce a certain level of randomness is given
by 𝑁−𝛽/(𝛽+𝑑−1) for arbitrary 𝛽 > 0, which is not only substantially faster for 𝛽 ∈ (0, 1), but also
allows to exploit higher-order smoothness of the change interface. Appropriately introducing such
randomness in the measurement locations 𝑥𝛼 of the local observation scheme while preserving
favorable probabilistic properties such as independence of the associated Brownian motions 𝐵𝛿,𝛼
is a conceptually challenging task that could contribute to improve change domain estimation
performance in the given heat equation model.

Finally, let us reiterate that we have focused on optimal change domain estimation for regular
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local measurements and have not attempted to optimize estimation rates for the diffusivity
parameters 𝜗±. For the binary image reconstruction model with regeression function 𝜗(𝑥) =
𝜗+1(𝑥 ∈ Λ+) + 𝜗−1(𝑥 ∈ Λ−), [19, Theorem 5.1.2] establishes the typical parametric rate
𝑁−1/2 = 𝛿𝑑/2 for 𝜗±. On the other hand, the minimax rate 𝛿𝑑/2+1 for a constant diffusivity is
proven in Paper A, which can also be obtained in the one-dimensional change point estimation
problem for a stochastic heat equation by introducing an additional nuisance parameter 𝜗◦
in the estimation procedure that reduces the bias from a constant approximation 𝜗 ≡ 𝜗◦ on
a proposed spatial change interval, cf. [29, Theorem 3.12]. This demonstrates a significant
difference between heat diffusivity and image estimation. Optimal diffusivity estimation in the
here considered change estimation problem is therefore an especially relevant task for future
work, which may also open the door to the investigation of fully nonparametric diffusivities
𝜗(𝑥) = 𝜗− (𝑥)𝟙Λ− (𝑥) + 𝜗+(𝑥)𝟙Λ+ (𝑥).
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Parameter estimation in hyperbolic linear SPDEs from
multiple measurements

DAnton Tiepner and Eric Ziebell

Abstract

The coefficients of elastic and dissipative operators in a linear hyperbolic SPDE are
jointly estimated using multiple spatially localised measurements. As the resolution level
of the observations tends to zero, we establish the asymptotic normality of an augmented
maximum likelihood estimator. The rate of convergence for the dissipative coefficients
matches rates in related parabolic problems, whereas the rate for the elastic parameters also
depends on the magnitude of the damping. The analysis of the observed Fisher information
matrix relies upon the asymptotic behaviour of rescaled 𝑀, 𝑁-functions generalising the
operator sine and cosine families appearing in the undamped wave equation. In contrast to
the energetically stable undamped wave equation, the 𝑀, 𝑁-functions emerging within the
covariance structure of the local measurements have additional smoothing properties similar
to the heat kernel, and their asymptotic behaviour is analysed using functional calculus.

D.1 Introduction

We study parameter estimation for a general second-order stochastic Cauchy problem

¥𝑢(𝑡) = 𝐴𝜗𝑢(𝑡) + 𝐵𝜂 ¤𝑢(𝑡) + ¤𝑊 (𝑡), 0 < 𝑡 ≤ 𝑇, (D.1)

driven by space-time white noise ¤𝑊 on an open, bounded spatial domain Λ ⊂ ℝ𝑑 . The differential
operators 𝐴𝜗 and 𝐵𝜂 defined through

𝐴𝜗 =

𝑝∑︁
𝑖=1

𝜗𝑖 (−Δ)𝛼𝑖 , 𝛼1 > · · · > 𝛼𝑝 ≥ 0,

𝐵𝜂 =

𝑞∑︁
𝑗=1

𝜂 𝑗 (−Δ)𝛽 𝑗 , 𝛽1 > · · · > 𝛽𝑞 ≥ 0,

are parameterised by unknown constants 𝜗 ∈ ℝ𝑝, 𝜂 ∈ ℝ𝑞. In general, such equations model
elastic systems, and we refer to 𝐴𝜗 as the elastic operator while 𝐵𝜂 is called the dissipation (or
damping) operator.

In the absence of any damping (𝐵𝜂 = 0) and noise, a prototypical example of (D.1) is the
isotropic plate equation (without any in-plane forces, thermal loads or elastic foundation)

𝜌ℎ¥𝑢(𝑡) = −𝐷Δ2𝑢(𝑡), (D.2)

modelling the bending of elastic plates over time. The parameters governing (D.2) are the
material density 𝜌 and the bending stiffness 𝐷 = ℎ3𝐸

12(1−𝜈2 ) . The bending stiffness 𝐷 depends on
the plate thickness ℎ, the material-specific Poisson-ratio 𝜈 and Young’s modulus 𝐸. Numerous
extensions and applications of such equations can, for instance, be found in [22, 31]. To account
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for the system’s energy loss, damping is added to the equation, where a higher differential
order of 𝐵𝜂 describes stronger damping. In fact, a parabolic behaviour of (D.1) is obtained for
𝛽1 > 0 due to the smoothing effects within the related 𝐶0-semigroup [9, 13]. In closely related
situations, i.e. when both 𝐴𝜗 and 𝐵𝜂 are negative operators, the 𝐶0-semigroup has been shown
to become analytic if and only if 2𝛽1 ≥ 𝛼1, where a borderline case occurs under equality, cf.
[10].

While parameter estimation for SPDEs is well-studied in second-order parabolic equations,
e.g. in Paper A and [11, 14, 15, 26, 30, 37] and the references therein, the literature on
higher-order hyperbolic equations is limited. We refer to [39] and the references mentioned
there for studies of the (non-)parametric wave equation. In [1, 2], the authors considered a
weakly damped system, i.e. 𝛽1 = 0, and developed a first approach for identifying coefficients of
the elastic operator in a Kalman filtering problem based on the methods of sieves. [27] studied
equations driven by a fractional cylindrical Brownian motion and derived a consistent estimator
of a scalar drift coefficient using the ergodicity of the underlying system. Based on spectral
measurements (⟨𝑢(𝑡), 𝑒 𝑗⟩)0≤𝑡≤𝑇 , 𝑗 = 1, . . . , 𝑁, where (𝑒 𝑗) 𝑗≥1 forms an orthonormal basis of 𝐿2(Λ)
composed of eigenvectors for 𝐴𝜗 and 𝐵𝜂, [23] constructed maximum-likelihood estimators and
established the asymptotic normality for diagonalisable hyperbolic equations given that the
number 𝑁 of observed Fourier-modes tends to infinity.

In contrast, our estimator is based on continuous observations of local measurement processes

𝑢𝛿,𝑘 = (⟨𝑢(𝑡), 𝐾𝛿,𝑥𝑘⟩)0≤𝑡≤𝑇 , 𝑢
𝛾

𝛿,𝑘
= (⟨𝑢(𝑡), (−Δ)𝛾𝐾𝛿,𝑥𝑘⟩)0≤𝑡≤𝑇 ,

for locations 𝑥1, . . . , 𝑥𝑁 ∈ Λ and 𝛾 ∈ {𝛼𝑖, 𝛽 𝑗 |1 ≤ 𝑖 ≤ 𝑝; 1 ≤ 𝑗 ≤ 𝑞}. The point spread functions [7,
8] 𝐾𝛿,𝑥𝑘 are compactly supported functions taking non-zero values in an area centred around 𝑥𝑘
with radius 𝛿. Local measurements emerge naturally as they describe the physical limitation of
measuring 𝑢(𝑡, 𝑥𝑘), which, in general, is only possible up to a convolution with a point spread
function. Local observations were introduced to the field of statistics for SPDEs in [5], where the
authors investigated a stochastic heat equation with a spatially varying diffusivity. It was shown
that the diffusivity at location 𝑥𝑘 ∈ Λ can be estimated based on a single local measurement
process at 𝑥𝑘 as the resolution level 𝛿 tends to zero. The local observation scheme turned
out to be robust under semilinearities [3, 4], multiplicative noise [17], discontinuities [32] or
lower-order perturbation terms (Paper A and B). In contrast to the estimation of the diffusivity,
the identifiability of transport or reaction coefficients necessarily requires an increasing amount
𝑁 → ∞ of measurements. In the recent contribution [39], the local measurement approach
was extended to hyperbolic problems and the non-parametric wave speed in the undamped
stochastic wave equation was estimated by relating the observed Fisher information to the
energetic behaviour of an associated deterministic wave equation.

Based on the local measurement approach, we construct the augmented maximum likelihood
estimator (MLE) (�̂�𝛿, �̂�𝛿)⊤ ∈ ℝ𝑝+𝑞 and prove the asymptotic normality of(

𝑁1/2𝛿−2𝛼𝑖+𝛼1+𝛽1 (�̂�𝛿,𝑖 − 𝜗𝑖)
𝑁1/2𝛿−2𝛽 𝑗+𝛽1 (�̂�𝛿, 𝑗 − 𝜂 𝑗)

)
𝑖≤𝑝, 𝑗≤𝑞

, 𝛿 → 0,

with 𝑁 = 𝑁 (𝛿) measurements. The consistent estimation for 𝜗𝑖 holds if 𝑁1/2𝛿−2𝛼𝑖+𝛼1+𝛽1 → ∞,
whereas 𝜂 𝑗 can be estimated in the asymptotic regime 𝑁1/2𝛿−2𝛽 𝑗+𝛽1 → ∞. In particular, esti-
mating elastic coefficients is more difficult under higher dissipation, while damping coefficients
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are unaffected by the order of the elastic operator 𝐴𝜗 and their convergence rates reflect the
rates obtained in advection-diffusion equations, cf. Paper A. For the maximal number of non-
overlapping observations 𝑁 ≍ 𝛿−𝑑 , our convergence rates match the rates obtained in the spectral
approach up to specific boundary cases. In the weakly damped case, i.e. 𝛽1 = 0, we confirm
the results in [24]. That is, the dependence of the time horizon 𝑇 of the asymptotic variance
resembles the explosive, stable and ergodic cases of the maximum likelihood drift estimator
for an Ornstein–Uhlenbeck process, cf. [21, Proposition 3.46]. In the structural damped case
(𝛽1 > 0), the asymptotic variance is of order 𝑇−1 instead.

We begin this paper by specifying the model and discussing properties of the local mea-
surements in Section D.2. The augmented MLE is constructed and analysed in Section D.3,
and the CLT is established. The section additionally contains various remarks and examples,
complemented by a numerical study underpinning and illustrating the main result. All proofs
are deferred to Section D.4.

D.2 Setup

D.2.1 Notation

Throughout this paper, we fix a filtered probability space (Ω,F, (F𝑡)0≤𝑡≤𝑇 ,ℙ) with a fixed time
horizon 𝑇 < ∞. We write 𝑎 ≲ 𝑏 if 𝑎 ≤ 𝑀𝑏 holds for a universal constant 𝑀, independent of the
resolution level 𝛿 > 0 and the number of spatial points 𝑁. Unless stated otherwise, all limits
are to be understood as the spatial resolution level tending to zero, i.e. for 𝛿 → 0. For an open
set Λ ⊂ ℝ𝑑 , 𝐿2(Λ) is the usual 𝐿2-space with the inner product ⟨·, ·⟩ := ⟨·, ·⟩𝐿2 (Λ) . The Euclidean
inner product and distance of two vectors 𝑎, 𝑏 ∈ ℝ𝑝 are denoted by 𝑎⊤𝑏 and |𝑎 − 𝑏|, respectively.
We abbreviate the Laplace operator with Dirichlet boundary conditions on the bounded spatial
domain Λ by Δ and on the unbounded spatial domain ℝ𝑑 by Δ0. Let 𝐻𝑘 (Λ) denote the usual
Sobolev spaces, and denote by 𝐻1

0 (Λ) the completion of 𝐶∞
𝑐 (Λ), the space of smooth compactly

supported functions, relative to the 𝐻1(Λ) norm. As in [19], let ¤𝐻2𝑠 (Λ) := D((−Δ)𝑠) for 𝑠 > 0
be the domain of the fractional Laplace operator on 𝐿2(Λ) with Dirichlet boundary conditions.
The order of a differential operator 𝐷 is denoted by ord(𝐷).

D.2.2 The model

Consider the second-order stochastic Cauchy problem



d𝑣(𝑡) = (
𝐴𝜗𝑢(𝑡) + 𝐵𝜂𝑣(𝑡)

) d𝑡 + d𝑊 (𝑡), 0 < 𝑡 ≤ 𝑇,

d𝑢(𝑡) = 𝑣(𝑡) d𝑡,
𝑢(0) = 𝑢0 ∈ 𝐿2(Λ),
𝑣(0) = 𝑣0 ∈ 𝐿2(Λ),
𝑢(𝑡, 𝑥) = 𝑣(𝑡, 𝑥) = 0, 0 ≤ 𝑡 ≤ 𝑇, 𝑥 ∈ Λ |𝜕Λ

(D.3)

on an open, bounded domain Λ ⊂ ℝ𝑑 having 𝐶2-boundary 𝜕Λ. We assume Dirichlet boundary
conditions and a driving space-time white noise d𝑊 in (D.3). The elasticity and damping
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operators 𝐴𝜗 and 𝐵𝜂 are parameterised by 𝜗 ∈ ℝ𝑝 and 𝜂 ∈ ℝ𝑞 and given by

𝐴𝜗 =

𝑝∑︁
𝑖=1

𝜗𝑖 (−Δ)𝛼𝑖 , 𝐷(𝐴𝜗) = 𝐷((−Δ)𝛼1) = ¤𝐻2𝛼1 (Λ),

𝐵𝜂 =

𝑞∑︁
𝑗=1

𝜂 𝑗 (−Δ)𝛽 𝑗 , 𝐷(𝐵𝜂) = 𝐷((−Δ)𝛽1) = ¤𝐻2𝛽1 (Λ),
(D.4)

with 𝛼1 > 0 and 0 ≤ 𝛼𝑖, 𝛽 𝑗 < ∞ satisfying 𝛼1 > 𝛼2 > · · · > 𝛼𝑝 and 𝛽1 > 𝛽2 > · · · > 𝛽𝑞.
Example D.1.

(a) Weakly damped wave equation (𝛽1 = 0): 𝐴𝜗 = −𝜗1Δ, 𝐵𝜂 = 𝜂1.

(b) Clamped plate equation:

1) Weakly damped (𝛽1 = 0) : 𝐴𝜗 = 𝜗1Δ2, 𝐵𝜂 = 𝜂1.

2) Structurally damped (0 < 𝛽1 < 𝛼1): 𝐴𝜗 = 𝜗1Δ2, 𝐵𝜂 = −𝜂1Δ.
3) Strongly damped (𝛽1 = 𝛼1): 𝐴𝜗 = 𝜗1Δ2, 𝐵𝜂 = 𝜂1Δ2.

Figure D.1 displays a heatmap illustrating both the weakly and structurally damped plate
equation in one spatial dimension. The solution of the SPDEs were approximated on a
fine time-space grid using the finite difference scheme associated with the semi-implicit
Euler–Maruyama method, see [25, Chapter 10]. Additional smoothing properties in
the structurally damped case due to the dissipative operator 𝐵𝜂 result in an accelerated
energetic decay in comparison to the weakly damped case.

Figure D.1: Realisation of the solution 𝑢(𝑡, 𝑥) to the clamped plate equation on (0, 1); (left)
¥𝑢(𝑡) = −0.3Δ2𝑢(𝑡) + 0.3Δ ¤𝑢(𝑡) + ¤𝑊 (𝑡); (right) ¥𝑢(𝑡) = −0.3Δ2𝑢(𝑡) − 0.3 ¤𝑢(𝑡) + ¤𝑊 (𝑡).

Throughout the rest of the paper, we impose the following assumptions on the parameters.
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Assumption D.2 (Assumption on the parameters).
(i) 𝜗1 < 0;
(ii) If 𝛽1 > 0, then 𝜂1 < 0;
(iii) 𝛼1 ≥ 2𝛽1 and if 𝛼1 = 2𝛽1 then 𝜗1 + 𝜂21/4 < 0.

Assumption D.2 does not guarantee that either 𝐴𝜗 or 𝐵𝜂 are, in general, negative operators.
Instead, it implies that at least all but finitely many of their eigenvalues are negative. Moreover,
conditions (i) and (iii) are necessary to ensure that the difference 𝐿𝜗,𝜂 := −𝐴𝜗 − 𝐵2𝜂/4 is a
positive operator, which itself is not required for the proofs and is just assumed for technical
reasons in Section D.4 as all arguments also carry over to the non-positive case, resulting in a
complex-valued operator, cf. Remark D.10.

D.2.3 Local measurements

For 𝛿 > 0, 𝑦 ∈ Λ and 𝑧 ∈ 𝐿2(ℝ𝑑) we define the rescaling
Λ𝛿,𝑦 = {𝛿−1(𝑥 − 𝑦) : 𝑥 ∈ Λ},

𝑧𝛿,𝑦 (𝑥) = 𝛿−𝑑/2𝑧(𝛿−1(𝑥 − 𝑦)), 𝑥 ∈ ℝ𝑑 .
(D.5)

Fix a function 𝐾 ∈ 𝐻 ⌈2𝛼1 ⌉ (ℝ𝑑) with compact support. By a slight abuse of notation, we define
local measurements at the location 𝑥 ∈ Λ with resolution level 𝛿 as the continuously observed
processes 𝑢𝛿,𝑥 , 𝑢Δ𝑖𝛿,𝑥 , 𝑣𝛿,𝑥 , 𝑣

Δ 𝑗

𝛿,𝑥
where for 𝑖 = 1, . . . , 𝑝 and 𝑗 = 1, . . . , 𝑞:

𝑢𝛿,𝑥 = (⟨𝑢(𝑡), 𝐾𝛿,𝑥⟩)0≤𝑡≤𝑇 , 𝑢
Δ𝑖
𝛿,𝑥

= (⟨𝑢(𝑡), (−Δ)𝛼𝑖𝐾𝛿,𝑥⟩)0≤𝑡≤𝑇 ,

𝑣𝛿,𝑥 = (⟨𝑣(𝑡), 𝐾𝛿,𝑥⟩)0≤𝑡≤𝑇 , 𝑣
Δ 𝑗

𝛿,𝑥
= (⟨𝑣(𝑡), (−Δ)𝛽 𝑗𝐾𝛿,𝑥⟩)0≤𝑡≤𝑇 .

Analogously to [39], these local measurements satisfy the following Itô-dynamics

d𝑢𝛿,𝑥 (𝑡) = 𝑣𝛿,𝑥 (𝑡) d𝑡, d𝑣𝛿,𝑥 (𝑡) =
(

𝑝∑︁
𝑖=1

𝜗𝑖𝑢
Δ𝑖
𝛿,𝑥

(𝑡) +
𝑞∑︁
𝑗=1

𝜂 𝑗𝑣
Δ 𝑗

𝛿,𝑥
(𝑡)

)
d𝑡 + ∥𝐾∥𝐿2 (ℝ𝑑 ) d𝑊𝑥 (𝑡), (D.6)

with scalar Brownian motions (𝑊𝑥 (𝑡))0≤𝑡≤𝑇 = (∥𝐾∥−1
𝐿2 (ℝ𝑑 ) ⟨𝑊 (𝑡), 𝐾𝛿,𝑥⟩)0≤𝑡≤𝑇 , which become

mutually independent provided that
⟨𝐾𝛿,𝑥 , 𝐾𝛿,𝑥′⟩ = ∥𝐾∥2

𝐿2 (ℝ𝑑 )𝛿𝑥,𝑥′ = 0, 𝑥, 𝑥′ ∈ ℝ𝑑 ,

where the Kronecker-delta 𝛿𝑥,𝑥′ evaluates to zero for 𝑥 ≠ 𝑥′.
For locations 𝑥1, . . . , 𝑥𝑁 ∈ Λ, we define the vector process 𝑌𝛿 ∈ 𝐿2( [0, 𝑇];ℝ(𝑝+𝑞)×𝑁) of

observations through

𝑌𝛿,𝑘 =
(
𝑢
Δ1
𝛿,𝑥𝑘

. . . 𝑢
Δ𝑝
𝛿,𝑥𝑘

𝑣
Δ1
𝛿,𝑥𝑘

. . . 𝑣
Δ𝑞
𝛿,𝑥𝑘

)⊤
∈ ℝ𝑝+𝑞, 𝑘 = 1, . . . , 𝑁. (D.7)

Remark D.3 (Accessibility of the measurements). The measurements (𝑢Δ𝑖
𝛿,𝑥

, 𝑖 = 1, . . . , 𝑝), can
be approximated by observing 𝑢𝛿,𝑦, 𝑦 ∈ Λ, on a fine spatial grid in Λ. Moreover, all the
measurements wrt. 𝑣, i.e. 𝑣𝛿,𝑥 and 𝑣

Δ 𝑗

𝛿,𝑥
, 𝑗 ≤ 𝑞, can be obtained by differentiating 𝑢𝛿,𝑥 and

𝑢
Δ 𝑗

𝛿,𝑥
:= ⟨𝑢(·), (−Δ)𝛽 𝑗𝐾𝛿,𝑥⟩ in time.
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D.3 The estimator

Motivated by a general Girsanov theorem, as described in detail in [5] or Paper A, the augmented
MLE (�̂�𝛿, �̂�𝛿)⊤ ∈ ℝ𝑝+𝑞 is given by(

�̂�𝛿
�̂�𝛿

)
= I−1𝛿

𝑁∑︁
𝑘=1

∫ 𝑇

0
𝑌𝛿,𝑘 (𝑡) d𝑣𝛿,𝑥𝑘 (𝑡) (D.8)

with the observed Fisher information matrix

I𝛿 =

𝑁∑︁
𝑘=1

∫ 𝑇

0
𝑌𝛿,𝑘 (𝑡)𝑌𝛿,𝑘 (𝑡)⊤ d𝑡. (D.9)

Clearly, the matrix I𝛿 is symmetric and positive semidefinite. By plugging the Itô-dynamics (D.6)
into the definition of the estimator (D.8), we obtain the decomposition(

�̂�𝛿
�̂�𝛿

)
=

(
𝜗𝛿
𝜂𝛿

)
+ ∥𝐾∥𝐿2 (ℝ𝑑 )I

−1
𝛿 M𝛿 (D.10)

on the event {det(I𝛿) > 0} with the martingale part

M𝛿 =

𝑁∑︁
𝑘=1

∫ 𝑇

0
𝑌𝛿,𝑘 (𝑡) d𝑊𝑥𝑘 (𝑡).

As the limiting object of the rescaled observed Fisher information is deterministic and invertible
(see Theorem D.5 below), I𝛿 will itself be invertible for sufficiently small 𝛿, cf. [20, Theorem
A.7.7, Corollary A.7.8].

Assumption D.4 (Regularity of the kernel and the initial condition).

1. The locations 𝑥𝑘, 𝑘 = 1, . . . , 𝑁, belong to a fixed compact set J ⊂ Λ, which is independent of 𝛿
and 𝑁. There exists 𝛿′ > 0 such that supp(𝐾𝛿,𝑥𝑘) ∩ supp(𝐾𝛿,𝑥𝑙 ) = ∅ for 𝑘 ≠ 𝑙 and all 𝛿 ≤ 𝛿′.

2. There exists a compactly supported function �̃� ∈ 𝐻 ⌈2𝛼1 ⌉+2⌈𝛼1 ⌉ (ℝ𝑑) such that 𝐾 = Δ⌈𝛼1 ⌉
0 �̃�.

3. The functions (−Δ)𝛼𝑖−(𝛼1+𝛽1 )/2𝐾 are linearly independent for all 𝑖 = 1, . . . , 𝑝, and the func-
tions (−Δ)𝛽 𝑗−𝛽1/2𝐾 are linearly independent for all 𝑗 = 1, . . . , 𝑞.

4. The initial condition (𝑢0, 𝑣0)⊤ in (D.3) takes values in ¤𝐻2𝛼1 (Λ) × ¤𝐻𝛼1 (Λ).

Assumption D.4 (i) ensures that ⟨𝐾𝛿,𝑥𝑘 , 𝐾𝛿,𝑥𝑙⟩ = ∥𝐾∥2
𝐿2 (ℝ𝑑 )𝛿𝑘,𝑙 with the Kronecker-delta 𝛿𝑘,𝑙.

Consequently, the Brownian motions𝑊𝑥𝑘 become mutually independent if 𝛿 is sufficiently small.
Thus, I𝛿 forms the quadratic variation process of the time-martingaleM𝛿, and we expect I−1/2

𝛿
M𝛿

to be asymptotically normally distributed. Both (ii) and (iii) guarantee that the limiting object
of the observed Fisher information is well-defined and invertible, while (iv) ensures that the
initial condition is asymptotically negligible. In principle, the required smoothness in (ii) can be
relaxed, depending on the dimension 𝑑 and the identifiability of the appearing parameters in
(D.3), but is kept for the simplification of the proofs.
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We define a diagonal matrix of scaling coefficients 𝜌𝛿 ∈ ℝ(𝑝+𝑞)×(𝑝+𝑞) via

(𝜌𝛿)𝑖𝑖 :=
{
𝑁−1/2𝛿2𝛼𝑖−𝛼1−𝛽1 , 1 ≤ 𝑖 ≤ 𝑝,

𝑁−1/2𝛿2𝛽𝑖−𝑝−𝛽1 , 𝑝 < 𝑖 ≤ 𝑝 + 𝑞,
(D.11)

and the constant 𝐶(𝜂1, 𝑇) through

𝐶(𝜂1, 𝑇) :=
{
𝑒𝑇𝜂1−𝑇𝜂1−1

2𝜂21
, 𝜂1 ≠ 0,

𝑇2
4 , 𝜂1 = 0.

(D.12)

The following result shows the asymptotic normality of the estimator (D.8).

Theorem D.5 (Asymptotic behaviour of the joint estimator). Grant Assumption D.4.

(i) The matrix Σ𝜗,𝜂 ∈ ℝ(𝑝+𝑞)×(𝑝+𝑞) , given by

Σ𝜗,𝜂 :=
(
Σ1,𝜗,𝜂 0
0 Σ2,𝜗,𝜂

)
with

(Σ1,𝜗,𝜂)𝑖 𝑗 =
{
−𝐶 (𝜂1,𝑇 )

𝜗1
∥(−Δ0) (𝛼𝑖+𝛼 𝑗−𝛼1 )/2𝐾∥2𝐿2 (ℝ𝑑 ) , 𝛽1 = 0,

𝑇
2𝜗1𝜂1 ∥(−Δ0) (𝛼𝑖+𝛼 𝑗−𝛼1−𝛽1 )/2𝐾∥2𝐿2 (ℝ𝑑 ) , 𝛽1 > 0,

(Σ2,𝜗,𝜂)𝑘𝑙 =
{
𝐶(𝜂1, 𝑇)∥𝐾∥2𝐿2 (ℝ𝑑 ) , 𝛽1 = 0,
− 𝑇

2𝜂1 ∥(−Δ0) (𝛽𝑘+𝛽𝑙−𝛽1 )/2𝐾∥2𝐿2 (ℝ𝑑 ) , 𝛽1 > 0,

for 1 ≤ 𝑖, 𝑗 ≤ 𝑝 and 1 ≤ 𝑘, 𝑙 ≤ 𝑞, is well-defined and invertible. In particular, the observed
Fisher information matrix admits the convergence

𝜌𝛿I𝛿𝜌𝛿
ℙ→ Σ𝜗,𝜂, 𝛿 → 0.

(ii) The estimator (𝜗𝛿, �̂�𝛿)⊤ is consistent and asymptotically normal, i.e

𝜌−1𝛿

(
�̂�𝛿 − 𝜗

�̂�𝛿 − 𝜂

)
𝑑→ N(0, ∥𝐾∥2

𝐿2 (ℝ𝑑 )Σ
−1
𝜗,𝜂), 𝛿 → 0.

The convergence rates among the different parameters are given by (D.11). As the number
of observation points cannot exceed 𝑁 ≍ 𝛿−𝑑 due to the disjoint support condition of Assumption
D.4, not all coefficients can, in general, be consistently estimated in all dimensions, see Example
D.7. In contrast to parameter estimation in convection-diffusion equations based on local
measurements in Paper A, the convergence rates for speed parameters are influenced not only
by the order 𝛼1 of 𝐴𝜗, but also by 𝛽1, the order of the damping operator 𝐵𝜂. Unsurprisingly,
higher-order damping results in worse convergence rates as the parameters are harder to identify
due to the associated dissipation of energy within the system. On the other hand, the rates for
the damping coefficients are not influenced by the order of 𝐴𝜗, and their rates mirror the rates
known from parabolic equations, cf. [16] or Paper A. Similar effects were already observed
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under the full observation scheme 𝑁 ≍ 𝛿−𝑑 in the spectral approach, cf. [23], leading to identical
convergence rates.

In addition to the joint asymptotic normality of the augmented MLE (�̂�𝛿, �̂�𝛿)⊤, Theorem D.5
further yields the asymptotic independence of its components, i.e. the marginal estimators for
elastic and damping parameters are asymptotically independent.

If the equation is weakly damped, i.e. if 𝛽1 = 0 and 𝜂1 < 0, then the term −𝑇𝜂1 dominates
the expression (𝑒𝑇𝜂1 − 𝑇𝜂1 − 1)/2𝜂21 in the asymptotic variance within (D.12) as 𝑇 → ∞. The
converse is true in the amplified case with 𝜂1 > 0. If 𝜂1 = 0, the asymptotic variance of the
augmented MLE for 𝜗 and 𝜂1 depends on the time horizon through 𝑇−2 as discussed in [39,
Remark 5.8]. It mirrors the rate of convergence of the MLE in the ergodic, stable, and explosive
case of the standard Ornstein–Uhlenbeck process as described in [21, Proposition 3.46].

If, on the other hand, 𝛽1 > 0, then the asymptotic variance of the MLE is of order 𝑇−1 in
time. In other words, any dissipation decelerates the temporal convergence rate to the rate 𝑇−1

associated with parabolic equations.
Remark D.6 (Parameter estimation under higher-order damping). For simplicity, we did not
consider cases where the damping dominates (D.3), i.e. where 2𝛽1 > 𝛼1. Nonetheless, studying
parameter estimation in those situations is neither impossible nor does it require new approaches.
It solely relies on a careful analysis of underlying terms within the asymptotic analysis of the
observed Fisher information, which may potentially become complex-valued, cf. also Remark
D.10. Taking this into account, similar convergence rates may be established.
Example D.7.

(a) Weakly damped (or amplified) wave equation: Consider the weakly damped (or amplified)
wave equation (𝜗1 > 0, 𝜂1 ∈ ℝ):

d𝑣(𝑡) = (𝜗1Δ𝑢(𝑡) + 𝜂1𝑣(𝑡)) d𝑡 + d𝑊 (𝑡), 0 < 𝑡 ≤ 𝑇.

Then, Theorem D.5 implies(
𝑁−1/2𝛿(�̂�𝛿 − 𝜗1)
𝑁−1/2(�̂�𝛿 − 𝜂1)

)
𝑑→ N

©«
(
0
0

)
,
©«

𝜗1 ∥𝐾 ∥2
𝐿2 (ℝ𝑑 )

𝐶 (𝜂1,𝑇 ) ∥ (−Δ0 )1/2𝐾 ∥2
𝐿2 (ℝ𝑑 )

0
0 1

𝐶 (𝜂1,𝑇 )

ª®®¬
ª®®¬.

Thus, the augmented MLE attains the convergence rate known from the spectral approach,
see [23, 24] if it is provided with the maximal number of spatial observations 𝑁 ≍ 𝛿−𝑑.
Interestingly, the limiting variance of �̂�𝛿 is independent of the kernel function 𝐾 similar to
the augmented MLE for the first order transport coefficient in Paper A.

(b) Clamped plate equation: Consider the clamped plate equation with

1) Weak damping (𝜗1 > 0, 𝜂1 ∈ ℝ):

d𝑣(𝑡) = (−𝜗1Δ2𝑢(𝑡) + 𝜂1𝑣(𝑡)) d𝑡 + d𝑊 (𝑡), 0 < 𝑡 ≤ 𝑇. (D.13)

2) Structural damping (𝜗1 > 0, 𝜂1 > 0):

d𝑣(𝑡) = (−𝜗1Δ2𝑢(𝑡) + 𝜂1Δ𝑣(𝑡)) d𝑡 + d𝑊 (𝑡), 0 < 𝑡 ≤ 𝑇. (D.14)
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A realisation of the solution can be seen in Figure D.1. Depending on the type of damping,
the convergence rate for both 𝜗1 and 𝜂1 changes. In the case of the weakly damped plate
equation (D.13), the CLT yields(

𝑁1/2𝛿−2(�̂�𝛿 − 𝜗1)
𝑁1/2(�̂�𝛿 − 𝜂1)

)
𝑑→ N

©«
(
0
0

)
,
©«

𝜗1 ∥𝐾 ∥2
𝐿2 (ℝ𝑑 )

𝐶 (𝜂1,𝑇 ) ∥Δ0𝐾 ∥2
𝐿2 (ℝ𝑑 )

0
0 1

𝐶 (𝜂1,𝑇 )

ª®®¬
ª®®¬,

while

(
𝑁1/2𝛿−1(�̂�𝛿 − 𝜗1)
𝑁1/2𝛿−1(�̂�𝛿 − 𝜂1)

)
𝑑→ N

©«
(
0
0

)
,

©«
2𝜗1𝜂1 ∥𝐾 ∥2

𝐿2 (ℝ𝑑 )
𝑇 ∥ (−Δ0 )1/2𝐾 ∥2

𝐿2 (ℝ𝑑 )
0

0
2𝜂1 ∥𝐾 ∥2

𝐿2 (ℝ𝑑 )
𝑇 ∥ (−Δ0 )1/2𝐾 ∥2

𝐿2 (ℝ𝑑 )

ª®®®¬
ª®®®¬.

holds under the structural damping given in (D.14). The asymptotic variances between
�̂�𝛿 and �̂�𝛿 coincide in the cases 𝜗1 = ∥Δ0𝐾∥2𝐿2 (ℝ𝑑 ) ∥𝐾∥

−2
𝐿2 (ℝ𝑑 ) or 𝜗1 = 1, respectively. The

consistency and the varying convergence rates of the estimators are visualised in Figure D.2.
Based on the finite difference schemewithin the semi-implicit Euler–Maruyamamethod [25,
Chapter 10] (with 10000000 × 2000 time-space grid points), we computed the root mean
squared error (RMSE) for decreasing resolution level 𝛿 from 100Monte Carlo runs, 𝑁 ≍ 𝛿−1

measurement locations and the kernel function 𝐾 (𝑥) = exp(−5/(1 − 𝑥2))1( |𝑥 | < 1). In
the weakly damped case, it can be seen that the estimator for the elastic coefficient 𝜗1
achieves a much quicker convergence rate than the estimator of the damping coefficient
𝜂1. On the other hand, their rates are equal under structural damping. The asymptotic
variances are attained in both cases.

(c) General hyperbolic equation: Consider the hyperbolic equation

d𝑣(𝑡) =
(

𝑝∑︁
𝑖=1

𝜗𝑖 (−Δ)𝛼𝑖𝑢(𝑡) +
𝑞∑︁
𝑗=1

𝜂 𝑗 (−Δ)𝛽 𝑗𝑣(𝑡)
)
d𝑡 + d𝑊 (𝑡), 0 < 𝑡 ≤ 𝑇,

with 𝑝 + 𝑞 unknown parameters. Then, the convergence rates for 𝜗𝑖 and 𝜂 𝑗, respectively,
are given by {

𝑁−1/2𝛿2𝛼𝑖−𝛼1−𝛽1 , 1 ≤ 𝑖 ≤ 𝑝,

𝑁−1/2𝛿2𝛽 𝑗−𝛽1 , 1 ≤ 𝑗 ≤ 𝑞.

Given the maximal number of local measurements 𝑁 ≍ 𝛿−𝑑 , these rates translate to{
𝛿𝑑/2+2𝛼𝑖−𝛼1−𝛽1 , 1 ≤ 𝑖 ≤ 𝑝,

𝛿𝑑/2+2𝛽 𝑗−𝛽1 , 1 ≤ 𝑗 ≤ 𝑞.
(D.15)

Thus, our method provides a consistent estimator for a parameter 𝜗𝑖 or 𝜂 𝑗, respectively, if
and only if the conditions

𝛼𝑖 > (𝛼1 + 𝛽1 − 𝑑/2)/2, 𝑖 ≤ 𝑝, (D.16)



150 Chapter D. Parameter estimation in hyperbolic linear SPDEs

Figure D.2: log-log plot of the RMSE for 𝛿 → 0 and a maximal number of measurement locations
in 𝑑 = 1 compared with the theoretical rate in black; (left) structurally damped (D.14) with
𝜂1 = 0.3, 𝜗1 = 0.3; (right) weak damping (D.13) with 𝜂1 = −0.3, 𝜗1 = 0.3.

𝛽 𝑗 > (𝛽1 − 𝑑/2)/2, 𝑗 ≤ 𝑞, (D.17)
hold. Similar results were found in the spectral regime, cf. [23, Theorem 1.1 and Theorem
4.1]. Interestingly, the authors verified a slightly stronger consistency condition, resulting
in a logarithmic rate under equality in (D.16) and (D.17). Otherwise, they also obtain the
rates in (D.15). We believe that the logarithmic rates in the boundary cases are also valid
in the local measurement approach given that less restrictive assumptions on the kernel 𝐾
are imposed, similar to Proposition A.12 in Paper A in a related parabolic problem.

D.4 Proofs

For 𝛿 > 0 and 𝑥 ∈ Λ denote by Δ𝛿,𝑥 the Laplace operator with Dirichlet boundary conditions
on Λ𝛿,𝑥 and define the following differential operators with domain ¤𝐻2𝛼1 (Λ) and ¤𝐻2𝛼1 (Λ𝛿,𝑥),
respectively:

𝐿𝜗,𝜂𝑧 := (−𝐴𝜗 − 𝐵2𝜂/4)𝑧 = −
𝑝∑︁
𝑖=1

𝜗𝑖 (−Δ)𝛼𝑖 𝑧 −
1
4

𝑞∑︁
𝑘,𝑙=1

𝜂𝑘𝜂𝑙 (−Δ)𝛽𝑘+𝛽𝑙 𝑧,

𝐿𝜗,𝜂,𝛿,𝑥𝑧 := −
𝑝∑︁
𝑖=1

𝛿2𝛼1−2𝛼𝑖𝜗𝑖 (−Δ𝛿,𝑥)𝛼𝑖 𝑧 −
1
4

𝑞∑︁
𝑘,𝑙=1

𝛿2𝛼1−2𝛽𝑘−2𝛽𝑙𝜂𝑘𝜂𝑙 (−Δ𝛿,𝑥)𝛽𝑘+𝛽𝑙 𝑧.

Introduce further the rescaled versions of 𝐵𝜂 and 𝐴𝜗, defined through

𝐵𝜂,𝛿,𝑥 :=
𝑞∑︁
𝑗=1

𝛿2𝛽1−2𝛽 𝑗𝜂 𝑗 (−Δ𝛿,𝑥)𝛽 𝑗 , 𝐷(𝐵𝜂,𝛿,𝑥) = 𝐷((−Δ𝛿,𝑥)𝛽1) = ¤𝐻2𝛽1 (Λ𝛿,𝑥),

𝐴𝜗,𝛿,𝑥 :=
𝑝∑︁
𝑖=1

𝛿2𝛼1−2𝛼𝑖𝜗𝑖 (−Δ𝛿,𝑥)𝛼𝑖 , 𝐷(𝐴𝜗,𝛿,𝑥) = 𝐷((−Δ𝛿,𝑥)𝛼1) = ¤𝐻2𝛼1 (Λ𝛿,𝑥),

and the limiting objects

𝐿𝜗,𝜂𝑧 :=
{
−𝜗1(−Δ0)𝛼1𝑧, 𝛼1 > 2𝛽1,
−(𝜗1 +

𝜂21
4 ) (−Δ0)𝛼1𝑧, 𝛼1 = 2𝛽1,

𝐷(𝐿𝜗,𝜂) = 𝐷((−Δ0)𝛼1) = ¤𝐻2𝛼1 (ℝ𝑑),
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𝐵𝜂 := 𝜂1(−Δ0)𝛽1 , 𝐷(𝐵𝜂) = 𝐷((−Δ0)𝛽1) = ¤𝐻2𝛽1 (ℝ𝑑),
𝐴𝜗 := 𝜗1(−Δ0)𝛼1 , 𝐷(𝐴𝜗) = 𝐷((−Δ0)𝛼1) = ¤𝐻2𝛼1 (ℝ𝑑).

We will frequently use that 𝐿𝜗,𝜂 is an (unbounded) normal operator with spectrum 𝜎(𝐿𝜗,𝜂)
and the resolution of identity 𝐸 (cf. [33, Chapter 13]). By the functional calculus for normal
unbounded operators, we can define the operator 𝑓 (𝐿𝜗,𝜂) :=

∫
𝜎(𝐿𝜗,𝜂 )

𝑓 (𝜆) d𝐸(𝜆) on the domain

D 𝑓 := D( 𝑓 (𝐿𝜗,𝜂)) =
{
𝑧 ∈ 𝐿2(Λ) :

∫
𝜎(𝐿𝜗,𝜂 )

| 𝑓 (𝜆) |2 d𝐸𝑧,𝑧 (𝜆) < ∞
}
,

for any measurable function 𝑓 : ℂ → ℂ. Analogous statements also apply to 𝐴𝜗, 𝐵𝜂 and the
rescaled differential operators.

Lemma D.8 (Rescaling of operators). Let 𝛿 > 0, 𝑥 ∈ Λ and 𝑓 : ℂ → ℂ ∪ {±∞} be measurable. If
𝑧𝛿,𝑥 ∈ D 𝑓 , then

𝑓 (𝐿𝜗,𝜂)𝑧𝛿,𝑥 = ( 𝑓 (𝛿−2𝛼1𝐿𝜗,𝜂,𝛿,𝑥)𝑧)𝛿,𝑥 ,
𝑓 (𝐵𝜂)𝑧𝛿,𝑥 = ( 𝑓 (𝛿−2𝛽1𝐵𝜂,𝛿,𝑥)𝑧)𝛿,𝑥 ,
𝑓 (𝐴𝜗)𝑧𝛿,𝑥 = ( 𝑓 (𝛿−2𝛼1𝐴𝜗,𝛿,𝑥)𝑧)𝛿,𝑥 .

Proof of Lemma D.8. Suppose 𝑧 ∈ ¤𝐻2𝛼1 (Λ𝛿,𝑥) such that 𝑧𝛿,𝑥 ∈ ¤𝐻2𝛼1 (Λ) ⊂ D 𝑓 . Then, the claim
follows immediately for 𝑓 (𝑥) = 𝑥 by differentiating 𝑧𝛿,𝑥 and from the definition of 𝐿𝜗,𝜂,𝛿,𝑥 , see
also [4, Lemma 16]. Using (i) and (iii) of [34, Proposition 5.15], the result can be extended to
measurable 𝑓 : ℂ → ℂ ∪ {±∞} by first passing to the associated resolution of the identities of
𝐿𝜗,𝜂, 𝐵𝜂, 𝐴𝜗 and 𝐿𝜗,𝜂,𝛿,𝑥 , 𝐵𝜂,𝛿,𝑥 , 𝐴𝜗,𝛿,𝑥 respectively, and interpreting the localisation as a bounded
linear operator from 𝐿2(Λ𝛿,𝑥) to 𝐿2(Λ). ■

Throughout the remainder of the paper, we will assume that 𝐿𝜗,𝜂, and thus also 𝐿𝜗,𝜂,𝛿,𝑥 , is a
positive operator. A sufficient condition for this is given in the next lemma.

Lemma D.9 (Sufficient condition for positivity). Let (𝑒𝑘)𝑘∈ℕ form an orthonormal basis of (−Δ)
with eigenvalues 𝜆𝑘 ≥ 𝑐(Λ) for some constant 𝑐(Λ) > 0. Then, 𝐿𝜗,𝜂 is a positive operator if one of
the following conditions is satisfied:

(i) Assumption D.2 holds, 𝑐(Λ) ≥ 1 and

|𝜗1 | >
𝑝∑︁
𝑖=2

|𝜗𝑖 | +
1
4

𝑞∑︁
𝑘,𝑙=1

|𝜂𝑘𝜂𝑙 |;

(ii) Assumption D.2 holds, 𝑐(Λ) < 1 and

|𝜗1 | >
𝑝∑︁
𝑖=2

|𝜗𝑖 |𝑐(Λ)𝛼𝑖−𝛼1 +
1
4

𝑞∑︁
𝑘,𝑙=1

|𝜂𝑘𝜂𝑙 |𝑐(Λ)𝛽𝑘+𝛽𝑙−𝛼1 .
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Proof of Lemma D.9. Assumption D.2 states in particular that 𝜗1 < 0 and, additionally, 𝜗1 +
𝜂21/4 < 0 in case 𝛼1 = 2𝛽1. It is now enough to show that all eigenvalues of 𝐿𝜗,𝜂 are positive,
which holds if for all 𝑥 ≥ 𝑐(Λ):

|𝜗1 |𝑥𝛼1 −
𝑝∑︁
𝑖=2

|𝜗𝑖 |𝑥𝛼𝑖 −
1
4

𝑞∑︁
𝑘,𝑙=1

|𝜂𝑘𝜂𝑙 |𝑥𝛽𝑘+𝛽𝑙 > 0. (D.18)

(i) If 𝑐(Λ) ≥ 1, then both 𝑥𝛼𝑖 and 𝑥𝛽𝑘+𝛽𝑙 are bounded by 𝑥𝛼1 for any 𝑖 ≤ 𝑝 and 𝑘, 𝑙 ≤ 𝑞, thus
(D.18) is satisfied.

(ii) If 𝑐(Λ) < 1, then 𝑥𝛼𝑖−𝛼1 ≤ 𝑐(Λ)𝛼𝑖−𝛼1 and 𝑥𝛽𝑘+𝛽𝑙−𝛼1 ≤ 𝑐(Λ)𝛽𝑘+𝛽𝑙−𝛼1 . ■

Remark D.10. If 𝐿𝜗,𝜂 is not a positive operator and has non-positive eigenvalues, any choice of
the operator root is a complex-valued operator. Consequently, the associated family of 𝑀, 𝑁-
functions in the following subsection is again complex-valued. Thus, inner products hereinafter
are associated with complex Hilbert spaces. However, this does not influence the asymptotic
results of Section D.4.2 due to the convergence 𝐿𝜗,𝜂,𝛿,𝑥 → 𝐿𝜗,𝜂 to a positive limiting operator
𝐿𝜗,𝜂.

D.4.1 Properties of generalised cosine and sine operator functions

Lemma D.11 (Representations 𝑀, 𝑁-functions). The operators 𝐴𝜗 and 𝐵𝜂 defined in (D.4) generate
a family of 𝑀, 𝑁-functions (𝑀 (𝑡), 𝑁 (𝑡), 𝑡 ≥ 0) given by

𝑀 (𝑡) := m𝑡 (𝐿𝜗,𝜂, 𝐵𝜂) := 𝑒𝐵𝜂𝑡/2
( cos (𝐿1/2

𝜗,𝜂
𝑡) −

𝐵𝜂

2 sin (𝐿1/2
𝜗,𝜂

𝑡)𝐿−1/2
𝜗,𝜂

)
, 𝐿2(Λ) ⊂ D(𝑁 (𝑡)), (D.19)

𝑁 (𝑡) := n𝑡 (𝐿𝜗,𝜂, 𝐵𝜂) := 𝑒𝐵𝜂𝑡/2 sin (𝐿1/2
𝜗,𝜂

𝑡)𝐿−1/2
𝜗,𝜂

, 𝐿2(Λ) ⊂ D(𝑁 (𝑡)). (D.20)

Proof of Lemma D.11. Note that by [34, Theorem 5.9] all of the appearing operators 𝑒𝐵𝜂𝑡/2,
cos(𝑡𝐿1/2

𝜗,𝜂
), sin(𝑡𝐿1/2

𝜗,𝜂
), 𝐵𝜂 and 𝐿

−1/2
𝜗,𝜂

in (D.19) and (D.20) are well-defined and even commute
on the smallest occurring domain as they are all based on the same underlying Laplace operator.
By direct computation, one can now verify that the conditions (M1)-(M4) in [28, Definition
1.7.2] are satisfied by 𝑀 (𝑡) and 𝑁 (𝑡) from (D.19) and (D.20) using the functional calculus. ■

Lemma D.12 (Self-adjointness of 𝑀, 𝑁-functions). Assume that 𝐿𝜗,𝜂 is a positive operator. Then,
the 𝑀, 𝑁-functions defined through (D.19) and (D.20) are self-adjoint.

Proof of Lemma D.12. The unique positive self-adjoint operator root of the positive self-adjoint
operator 𝐿𝜗,𝜂 is well-defined and exists by [34, Proposition 5.13]. Thus, in view of Lemma D.11,
the 𝑀, 𝑁-functions can each be interpreted as the applications of a real-valued function to the
underlying Laplace operator on a bounded spatial domain. In particular, by [34, Theorem 5.9]
the 𝑀, 𝑁-functions are self-adjoint. ■

As we are interested in the effect of 𝑀, 𝑁-functions applied to localised functions, we further
define the rescaled 𝑀, 𝑁-functions:

𝑀𝛿,𝑥 (𝑡) := m𝑡 (𝛿−2𝛼1𝐿𝜗,𝜂,𝛿,𝑥 , 𝛿−2𝛽1𝐵𝜂,𝛿,𝑥), (D.21)
𝑁𝛿,𝑥 (𝑡) := n𝑡 (𝛿−2𝛼1𝐿𝜗,𝜂,𝛿,𝑥 , 𝛿−2𝛽1𝐵𝜂,𝛿,𝑥). (D.22)
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An application of Lemma D.8 yields the scaling properties of the 𝑀, 𝑁-functions in analogy to
[5, Lemma 3.1] and [39, Lemma 3.1]:

𝑀 (𝑡)𝑧𝛿,𝑥 = (𝑀𝛿,𝑥 (𝑡)𝑧)𝛿,𝑥 , 𝑁 (𝑡)𝑧𝛿,𝑥 = (𝑁𝛿,𝑥 (𝑡)𝑧)𝛿,𝑥 , 𝑧 ∈ 𝐿2(Λ𝛿,𝑥).

Lemma D.13 (Semigroup upper bounds). Let 0 ≤ 𝑡 ≤ 𝑇𝛿−2𝛽1 , 𝛾 ≥ 0 and 𝑧 ∈ 𝐻2⌈𝛾⌉ (ℝ𝑑)
with compact support in

⋂
𝑥∈J Λ𝛿,𝑥 and such that there exists a compactly supported function

�̃� ∈ 𝐻2⌈𝛾⌉+⌈𝛼1 ⌉ (ℝ𝑑) with 𝑧 = Δ⌈𝛼1 ⌉
0 �̃�. Then, if 𝛽1 > 0, we have

sup
𝑥∈J

∥𝑒𝑡𝐵𝜂,𝛿,𝑥 𝐿−1/2
𝜗,𝜂,𝛿,𝑥

(−Δ𝛿,𝑥)𝛾𝑧∥𝐿2 (Λ𝛿,𝑥 ) ≲ 1 ∧ 𝑡−(𝛾+⌈𝛼1 ⌉−𝛼1/2)/𝛽1; (D.23)

sup
𝑥∈J

∥𝑒𝑡𝐵𝜂,𝛿,𝑥 (−Δ𝛿,𝑥)𝛾𝑧∥𝐿2 (Λ𝛿,𝑥 ) ≲ 1 ∧ 𝑡−(𝛾+⌈𝛼1 ⌉ )/𝛽1 . (D.24)

Moreover, in case 𝛽1 = 0, the left-hand sides in (D.23) and (D.24) are bounded by a constant
independent of 𝛿 and 𝑡.

Proof of Lemma D.13. The key idea of the proof is that all involved operators emerge as an
application of the functional calculus applied to the same Laplace operator. In particular, they
are simultaneously diagonalisable through the same eigenfunctions. Note that in contrast to the
eigenfunctions, the associated eigenvalues do not depend themselves on the shift, i.e. 𝑥 ∈ Λ,
within the rescaling of the Laplace operator.

Let 𝛽1 > 0.We only prove (D.24), since the argument for (D.23) is similar, using additionally
that 𝐿𝜗,𝜂,𝛿,𝑥 commutes with (−Δ𝛿,𝑥)𝛾, ord(𝐿𝜗,𝜂,𝛿,𝑥) = 2𝛼1 and a bound of 𝐿𝜗,𝜂,𝛿,𝑥 in terms of its
leading term (−Δ𝛿,𝑥)𝛼1 . Let (𝑒𝑘)𝑘∈ℕ form an orthonormal basis of (−Δ) in 𝐿2(Λ) with eigenvalues
𝜆𝑘 > 0. Then, there exists a constant 𝑐(Λ) such that 𝜆𝑘 ≥ 𝑐(Λ) for all 𝑘 ≥ 1, see [35, Proposition
5.2 and Corollary 5.3]. We consider the most involved case, that is, 𝜂1 < 0 and 𝜂2, . . . , 𝜂𝑞 > 0.
Consequently, 𝐵𝜂 will, in general, not be a negative operator, but there exists 𝑦0 > 0 such that
for all 𝑦 ≥ 𝑦0, we have

𝜂1𝑦𝛽1 +
𝑞∑︁
𝑗=2

𝜂 𝑗𝑦
𝛽 𝑗 ≤ 𝜂1𝑦𝛽1

2 ,

and all but finitely many eigenvalues of 𝐵𝜂 will be negative due to Assumption D.2 (ii). Consider
the polynomial

𝑃𝜂 (𝑦) :=
𝜂1
2 𝑦𝛽1 +

𝑞∑︁
𝑗=2

𝜂 𝑗𝑦
𝛽 𝑗

and define 𝐶1 := max𝑦∈[𝑐(Λ) ,𝑦0 ] |𝑃𝜂 (𝑦) |. Then

𝜂1𝑦𝛽1 +
𝑞∑︁
𝑗=2

𝜂 𝑗𝑦
𝛽 𝑗 − 𝐶1 ≤ 𝜂1𝑦𝛽1

2

holds for all 𝑦 ≥ 𝑐(Λ), and all eigenvalues of the operator 𝐵𝜂 − 𝐶1 are negative and upper
bounded by 𝜂1𝑐(Λ)/2. Analogously, (𝑒𝑘,𝛿,𝑥)𝑘∈ℕ forms an orthonormal basis of (−Δ𝛿,𝑥) in 𝐿2(Λ𝛿,𝑥)
with eigenvalues 𝜆𝑘,𝛿,𝑥 = 𝛿2𝜆𝑘 ≥ 𝛿2𝑐(Λ). Similar calculations imply that

𝜂1𝑦𝛽1 +
𝑞∑︁
𝑗=2

𝜂 𝑗𝛿
2(𝛽1−𝛽 𝑗 )𝑦𝛽 𝑗 − 𝛿2𝛽1𝐶1 ≤ 𝜂1𝑦𝛽1

2 , 𝑦 ≥ 𝛿2𝑐(Λ). (D.25)



154 Chapter D. Parameter estimation in hyperbolic linear SPDEs

Thus, all eigenvalues of the operator difference 𝐵𝜂,𝛿,𝑥 − 𝛿2𝛽1𝐶1 are negative and the difference is
bounded by 𝜂1(−Δ𝛿,𝑥)𝛽1/2 in the sense that

∥𝑒𝑡 (𝐵𝜂,𝛿,𝑥−𝛿2𝛽1𝐶1 )𝑤∥𝐿2 (Λ𝛿,𝑥 ) ≤ ∥𝑒𝑡𝜂1 (−Δ𝛿,𝑥 ) 𝛽1/2𝑤∥𝐿2 (Λ𝛿,𝑥 ) , 𝑤 ∈ 𝐿2(Λ𝛿,𝑥),

independent of 𝑥 ∈ J. Note further that 𝑧 = Δ⌈𝛼1 ⌉
0 �̃� = Δ⌈𝛼1 ⌉

𝛿,𝑥
�̃� since 𝑧 is compactly supported in⋂

𝑥∈J Λ𝛿,𝑥 . With that, we have all the ingredients to prove (D.24). For 0 ≤ 𝑡 ≤ 𝑇𝛿−2𝛽1 , we obtain

sup
𝑥∈J

∥𝑒𝑡𝐵𝜂,𝛿,𝑥 (−Δ𝛿,𝑥)𝛾𝑧∥𝐿2 (Λ𝛿,𝑥 ) = sup
𝑥∈J

∥𝑒𝑡𝛿2𝛽1𝐶1𝑒𝑡 (𝐵𝜂,𝛿,𝑥−𝛿2𝛽1𝐶1 ) (−Δ𝛿,𝑥)𝛾𝑧∥𝐿2 (Λ𝛿,𝑥 )

≤ 𝑒𝐶1𝑇 sup
𝑥∈J

∥𝑒𝑡 (𝐵𝜂,𝛿,𝑥−𝛿2𝛽1𝐶1 ) (−Δ𝛿,𝑥)𝛾 (−Δ𝛿,𝑥) ⌈𝛼1 ⌉ �̃�∥𝐿2 (Λ𝛿,𝑥 )

≤ 𝑒𝐶1𝑇 sup
𝑥∈J

∥𝑒𝑡𝜂1 (−Δ𝛿,𝑥 ) 𝛽1/2(−Δ𝛿,𝑥)𝛾+⌈𝛼1 ⌉ �̃�∥𝐿2 (Λ𝛿,𝑥 )

≲ (1 ∧ 𝑡−(𝛾+⌈𝛼1 ⌉ )/𝛽1) sup
𝑥∈J

(
∥ �̃�∥𝐿2 (Λ𝛿,𝑥 ) + ∥(−Δ𝛿,𝑥)𝛾𝑧∥𝐿2 (Λ𝛿,𝑥 )

)
,

where the last line follows from the fact that (−Δ𝛿,𝑥)𝛽1𝜂1/2 generates a contraction semigroup
and the smoothing property of semigroups. As Δ𝑛

𝛿,𝑥
𝑧 = Δ𝑛0𝑧 holds for any 𝑥 ∈ J and 1 ≤ 𝑛 ≤ ⌈𝛾⌉,

an application of the functional calculus yields
sup
𝑥∈J

∥(−Δ𝛿,𝑥)𝛾𝑧∥2𝐿2 (Λ𝛿,𝑥 ) ≤ sup
𝑥∈J

∥(−Δ𝛿,𝑥) ⌈𝛾⌉𝑧∥2𝐿2 (ℝ𝑑 ) + sup
𝑥∈J

∥(−Δ𝛿,𝑥) ⌊𝛾⌋𝑧∥2𝐿2 (ℝ𝑑 )

= ∥(−Δ0) ⌈𝛾⌉𝑧∥2𝐿2 (ℝ𝑑 ) + ∥(−Δ0) ⌊𝛾⌋𝑧∥2𝐿2 (ℝ𝑑 )

< ∞,

proving the assertion. The claim for 𝛽1 = 0 follows directly by bounding
|𝑒𝑡𝐵𝜂,𝛿,𝑥 | = |𝑒𝑡𝜂1 | ≤ 𝐶, 0 ≤ 𝑡 ≤ 𝑇,

for some constant 𝐶 only depending on 𝜂1 and 𝑇 . ■

The theory of cosine operator functions was developed by Sova [36] and led to general deter-
ministic solution theory for undamped second-order abstract Cauchy problems. By substituting
the time derivative as its own variable, it is possible to rewrite a second-order abstract Cauchy
problem as a first-order abstract Cauchy problem in two components. The associated strongly
continuous semigroup then lives on a product of Hilbert spaces called the phase-space; see [6,
Chapter 3.14], [29] and [28, Chapter 0.3]. The same remains true under suitable assumptions
on the elastic and dissipation operator within a damped abstract second-order Cauchy problem
[28, Chapter 1.7].
Lemma D.14 (Semigroup on the phase-space). The operator A𝜗,𝜂, defined through

A𝜗,𝜂 :=
(
0 𝐼

𝐴𝜗 𝐵𝜂

)
, 𝐷(A𝜗,𝜂) = ¤𝐻2𝛼1 (Λ) × ¤𝐻2𝛽1 (Λ),

generates a 𝐶0-semigroup (𝐽𝜗,𝜂 (𝑡))𝑡≥0 on the phase-space ¤𝐻𝛼1 (Λ) × 𝐿2(Λ) given by

𝐽𝜗,𝜂 (𝑡) :=
(
𝑀 (𝑡) 𝑁 (𝑡)
𝐴𝜗𝑁 (𝑡) 𝑀 (𝑡) + 𝐵𝜂𝑁 (𝑡)

)
=

(
𝑀 (𝑡) 𝑁 (𝑡)
𝑀′(𝑡) 𝑁 ′(𝑡)

)
, 𝑡 ≥ 0, (D.26)

with 𝑀 (𝑡) and 𝑁 (𝑡) given in (D.19) and (D.20), respectively.
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Proof of Lemma D.14. It is well-known that in the special case where both 𝐴𝜗 and 𝐵𝜂 are strictly
negative operators A𝜗,𝜂 generates a 𝐶0-semigroup, which is even analytic if and only if 𝛼1/2 ≤
𝛽1 ≤ 𝛼1, cf. [10]. On the other hand, (𝐽𝜗,𝜂 (𝑡))𝑡≥0 given by (D.26) is indeed a semigroup
generated by A𝜗,𝜂 which follows by direct verification of the differential properties of 𝑀, 𝑁-
functions in [28, p. 131] using the functional calculus. ■

The coupled second-order system (D.3) can also be written as a first-order system

d𝑋 (𝑡) = A𝜗,𝜂𝑋 (𝑡) d𝑡 +
(
0
𝐼

)
d𝑊 (𝑡), 0 < 𝑡 ≤ 𝑇,

for 𝑋 (𝑡) = (𝑢(𝑡), 𝑣(𝑡))⊤ and the matrix-valued differential operator A𝜗,𝜂 generating the strongly
continuous semigroup (𝐽𝜗,𝜂 (𝑡))𝑡≥0 constituted by the 𝑀, 𝑁-functions defined in Lemma D.11.
The 𝑀, 𝑁-functions correspond to the cosine and sine functions in the undamped wave equation,
see [6, Chapter 3]. Naturally, they appear in the solution to the stochastic partial differential
equation (D.3): (

𝑢(𝑡)
𝑣(𝑡)

)
= 𝐽𝜗,𝜂 (𝑡)

(
𝑢(0)
𝑣(0)

)
+

∫ 𝑡

0
𝐽𝜗,𝜂 (𝑡 − 𝑠)

(
0
𝐼

)
d𝑊 (𝑠) (D.27)

=

(
𝑀 (𝑡)𝑢0 + 𝑁 (𝑡)𝑣0
𝑀′(𝑡)𝑢0 + 𝑁 ′(𝑡)𝑣0

)
+

( ∫ 𝑡
0 𝑁 (𝑡 − 𝑠) d𝑊 (𝑠)∫ 𝑡
0 𝑁

′(𝑡 − 𝑠) d𝑊 (𝑠)

)
.

D.4.2 Asymptotic properties of local measurements

In this section, we study the asymptotic covariance structure of the local measurements, which
is crucial in showing the convergence of the observed Fisher information matrix I𝛿.

Lemma D.15 (Covariance structure). Assume that (𝑢0, 𝑣0)⊤ = (0, 0)⊤. For any 𝑡, 𝑠 ∈ [0, 𝑇], 𝑥 ∈ Λ,
1 ≤ 𝑖, 𝑗 ≤ 𝑝, 1 ≤ 𝑘, 𝑙 ≤ 𝑞, the covariance between local measurements is given by

Cov(𝑢Δ𝑖
𝛿,𝑥

(𝑡), 𝑢Δ 𝑗

𝛿,𝑥
(𝑠))

= 𝛿−2𝛼𝑖−2𝛼 𝑗
∫ 𝑡∧𝑠

0
⟨𝑁𝛿,𝑥 (𝑡 − 𝑟) (−Δ𝛿,𝑥)𝛼𝑖𝐾, 𝑁𝛿,𝑥 (𝑠 − 𝑟) (−Δ𝛿,𝑥)𝛼 𝑗𝐾⟩𝐿2 (Λ𝛿,𝑥 )d𝑟,

Cov(𝑣Δ𝑘
𝛿,𝑥

(𝑡), 𝑣Δ𝑙
𝛿,𝑥

(𝑠))

= 𝛿−2𝛽𝑘−2𝛽𝑙
∫ 𝑡∧𝑠

0
⟨𝑁 ′

𝛿,𝑥 (𝑡 − 𝑟) (−Δ𝛿,𝑥)𝛽𝑘𝐾, 𝑁 ′
𝛿,𝑥 (𝑠 − 𝑟) (−Δ𝛿,𝑥)𝛽𝑙𝐾⟩𝐿2 (Λ𝛿,𝑥 ) d𝑟,

Cov(𝑢Δ𝑖
𝛿,𝑥

(𝑡), 𝑣Δ𝑘
𝛿,𝑥

(𝑠))

= 𝛿−2𝛼𝑖−2𝛽𝑘
∫ 𝑡∧𝑠

0
⟨𝑁𝛿,𝑥 (𝑡 − 𝑟) (−Δ𝛿,𝑥)𝛼𝑖𝐾, 𝑁 ′

𝛿,𝑥 (𝑠 − 𝑟) (−Δ𝛿,𝑥)𝛽𝑘𝐾⟩𝐿2 (Λ𝛿,𝑥 )d𝑟.

Proof of Lemma D.15. Using (D.27) and [12, Proposition 4.28], we observe

Cov(𝑢Δ𝑖
𝛿,𝑥

(𝑡), 𝑢Δ 𝑗

𝛿,𝑥
(𝑠)) =

∫ 𝑡∧𝑠

0
⟨𝑁∗(𝑡 − 𝑟) (−Δ)𝛼𝑖𝐾𝛿,𝑥 , 𝑁∗(𝑠 − 𝑟) (−Δ)𝛼 𝑗𝐾𝛿,𝑥⟩d𝑟,

Cov(𝑣Δ𝑘
𝛿,𝑥

(𝑡), 𝑣Δ𝑙
𝛿,𝑥

(𝑠)) =
∫ 𝑡∧𝑠

0
⟨(𝑁 ′(𝑡 − 𝑟))∗(−Δ)𝛽𝑘𝐾𝛿,𝑥 , (𝑁 ′(𝑠 − 𝑟))∗(−Δ)𝛽𝑙𝐾𝛿,𝑥⟩d𝑟,
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Cov(𝑢Δ𝑖
𝛿,𝑥

(𝑡), 𝑣Δ𝑘
𝛿,𝑥

(𝑠)) =
∫ 𝑡∧𝑠

0
⟨𝑁∗(𝑡 − 𝑟) (−Δ)𝛼𝑖𝐾𝛿,𝑥 , (𝑁 ′(𝑠 − 𝑟))∗(−Δ)𝛽𝑘𝐾𝛿,𝑥⟩d𝑟.

We can rewrite the last equations through the functional calculus by using Lemma D.8, the
representations (D.21) and (D.22), self-adjointness by Lemma D.12 as well as [34, Theorem
5.9]:

Cov(𝑢Δ𝑖
𝛿,𝑥

(𝑡), 𝑢Δ 𝑗

𝛿,𝑥
(𝑠))

= 𝛿−2𝛼𝑖−2𝛼 𝑗
∫ 𝑡∧𝑠

0
⟨𝑁𝛿,𝑥 (𝑡 − 𝑟) (−Δ𝛿,𝑥)𝛼𝑖𝐾, 𝑁𝛿,𝑥 (𝑠 − 𝑟) (−Δ𝛿,𝑥)𝛼 𝑗𝐾⟩𝐿2 (Λ𝛿,𝑥 )d𝑟,

Cov(𝑣Δ𝑘
𝛿,𝑥

(𝑡), 𝑣Δ𝑙
𝛿,𝑥

(𝑠))

= 𝛿−2𝛽𝑘−2𝛽𝑙
∫ 𝑡∧𝑠

0
⟨𝑁 ′

𝛿,𝑥 (𝑡 − 𝑟) (−Δ𝛿,𝑥)𝛽𝑘𝐾, 𝑁 ′
𝛿,𝑥 (𝑠 − 𝑟) (−Δ𝛿,𝑥)𝛽𝑙𝐾⟩𝐿2 (Λ𝛿,𝑥 ) d𝑟,

Cov(𝑢Δ𝑖
𝛿,𝑥

(𝑡), 𝑣Δ𝑘
𝛿,𝑥

(𝑠))

= 𝛿−2𝛼𝑖−2𝛽𝑘
∫ 𝑡∧𝑠

0
⟨𝑁𝛿,𝑥 (𝑡 − 𝑟) (−Δ𝛿,𝑥)𝛼𝑖𝐾, 𝑁 ′

𝛿,𝑥 (𝑠 − 𝑟) (−Δ𝛿,𝑥)𝛽𝑘𝐾⟩𝐿2 (Λ𝛿,𝑥 )d𝑟. ■

Lemma D.16 (Scaling limits for 𝑀, 𝑁-functions). Let 𝛿 > 0. Let 𝑧1, 𝑧2 ∈ 𝐿2(ℝ𝑑) with compact
support in

⋂
𝑥∈J Λ𝛿,𝑥 such that there exist compactly supported functions �̄�1, �̄�2 ∈ 𝐻2⌈𝛼1 ⌉ (ℝ𝑑) with

𝑧𝑖 = Δ⌈𝛼1 ⌉
0 �̄�𝑖, 𝑖 = 1, 2. As 𝛿 → 0, we obtain the following convergences.

1. Let 𝑡 ≥ 0. Let 𝛽1 = 0, i.e. 𝐵𝜂 = 𝜂1. Then, uniformly in 𝑥 ∈ J,

𝛿−2𝛼1 ⟨𝑁𝛿,𝑥 (𝑡)𝑧1, 𝑁𝛿,𝑥 (𝑡)𝑧2⟩𝐿2 (Λ𝛿,𝑥 ) → −𝑒𝜂1𝑡 12 ⟨𝐴
−1
𝜗 𝑧1, 𝑧2⟩𝐿2 (ℝ𝑑 ) ,

⟨𝑀𝛿,𝑥 (𝑡)𝑧1, 𝑀𝛿,𝑥 (𝑡)𝑧2⟩𝐿2 (Λ𝛿,𝑥 ) → 𝑒𝜂1𝑡
1
2 ⟨𝑧1, 𝑧2⟩𝐿2 (ℝ𝑑 ) ,

𝛿−𝛼1 ⟨𝑁𝛿,𝑥 (𝑡)𝑧1, 𝑀𝛿,𝑥 (𝑡)𝑧2⟩𝐿2 (Λ𝛿,𝑥 ) → 0.

2. Let 𝑟1 ≠ 𝑟2. Let 𝛽1 = 0. Then, uniformly in 𝑥 ∈ J,

𝛿−2𝛼1 ⟨𝑁𝛿,𝑥 (𝑟1)𝑧1, 𝑁𝛿,𝑥 (𝑟2)𝑧2⟩𝐿2 (Λ𝛿,𝑥 ) → 0,
⟨𝑀𝛿,𝑥 (𝑟1)𝑧1, 𝑀𝛿,𝑥 (𝑟2)𝑧2⟩𝐿2 (Λ𝛿,𝑥 ) → 0,

𝛿−𝛼1 ⟨𝑁𝛿,𝑥 (𝑟1)𝑧1, 𝑀𝛿,𝑥 (𝑟2)𝑧2⟩𝐿2 (ΛΛ𝛿,𝑥
) → 0.

3. Let 0 < 2𝛽1 ≤ 𝛼1, 𝑡 ∈ (0, 𝑇]. Then, uniformly in 𝑥 ∈ J,

𝛿−2𝛼1−2𝛽1 ⟨
∫ 𝑡

0
𝑁𝛿,𝑥 (𝑟)2 d𝑟𝑧1, 𝑧2⟩𝐿2 (Λ𝛿,𝑥 ) →

1
2 ⟨𝐵

−1
𝜂 𝐴−1𝜗 𝑧1, 𝑧2⟩𝐿2 (ℝ𝑑 ) ,

𝛿−2𝛽1 ⟨
∫ 𝑡

0
(𝑁 ′

𝛿,𝑥 (𝑟))
2 d𝑟𝑧1, 𝑧2⟩𝐿2 (Λ𝛿,𝑥 ) → −1

2 ⟨𝐵
−1
𝜂 𝑧1, 𝑧2⟩𝐿2 (ℝ𝑑 ) ,

𝛿−2𝛽1−𝛼1 ⟨
∫ 𝑡

0
𝑁𝛿,𝑥 (𝑟)𝑁 ′

𝛿,𝑥 (𝑟) d𝑟𝑧1, 𝑧2⟩𝐿2 (Λ𝛿,𝑥 ) → 0.
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Proof of Lemma D.16.

1. Using (D.20) we have

𝑁𝛿,𝑥 (𝑡) = 𝛿𝛼1𝑒𝜂1𝑡/2 sin(𝑡𝛿−𝛼1𝐿1/2
𝜗,𝜂,𝛿,𝑥

)𝐿−1/2
𝜗,𝜂,𝛿,𝑥

, 𝑡 ∈ [0, 𝑇],

and thus

𝛿−2𝛼1 ⟨𝑁𝛿,𝑥 (𝑡)𝑧1, 𝑁𝛿,𝑥 (𝑡)𝑧2⟩𝐿2 (Λ𝛿,𝑥 )
= 𝑒𝜂1𝑡⟨sin(𝑡𝛿−𝛼1𝐿1/2

𝜗,𝜂,𝛿,𝑥
)𝐿−1/2

𝜗,𝜂,𝛿,𝑥
𝑧1, sin(𝑡𝛿−𝛼1𝐿1/2𝜗,𝜂,𝛿,𝑥

)𝐿−1/2
𝜗,𝜂,𝛿,𝑥

𝑧2⟩𝐿2 (Λ𝛿,𝑥 ) .

Since 𝑆𝜗,𝜂,𝛿,𝑥 (𝑡) := sin(𝑡𝐿𝜗,𝜂,𝛿,𝑥)𝐿−1/2𝜗,𝜂,𝛿,𝑥
is the operator sine function, which is generated

by −𝐿𝜗,𝜂,𝛿,𝑥 , and 𝐿𝜗,𝜂,𝛿,𝑥 → 𝐿𝜗,𝜂 as 𝛿 → 0, the desired convergence follows by repeating
the steps of [39, Proposition A.10 (i)] regarding asymptotic equipartition of energy. Note
that the assumptions in [39, Proposition A.10] can be relaxed, as we are not considering
the non-parametric case. The employed strong resolvent convergence and the involved
convergence of the spectral measures then follow from [38, Theorem 1 and 2] by choosing
the core 𝐶∞

𝑐 (ℝ𝑑) as described in [39, Lemma A.6]. The convergences for the functional
calculus associated with the respective spectral measures are then immediate, see [39,
Proposition 3.3]. Similarly, we observe

⟨𝑀𝛿,𝑥 (𝑡)𝑧1, 𝑀𝛿,𝑥 (𝑡)𝑧2⟩𝐿2 (Λ𝛿,𝑥 )
= 𝑒𝜂1𝑡⟨(cos(𝑡𝛿−𝛼1𝐿1/2

𝜗,𝜂,𝛿,𝑥
) − 𝛿𝛼1𝜂1/2 sin(𝑡𝛿−𝛼1𝐿1/2𝜗,𝜂,𝛿,𝑥

)𝐿−1/2
𝜗,𝜂,𝛿,𝑥

)𝑧1,

(cos(𝑡𝛿−𝛼1𝐿1/2
𝜗,𝜂,𝛿,𝑥

) − 𝛿𝛼1𝜂1/2 sin(𝑡𝛿−𝛼1𝐿1/2𝜗,𝜂,𝛿,𝑥
)𝐿−1/2

𝜗,𝜂,𝛿,𝑥
)𝑧2⟩𝐿2 (Λ𝛿,𝑥 ) .

Likewise, 𝐶𝜗,𝜂,𝛿,𝑥 (𝑡) := cos(𝑡𝐿1/2
𝜗,𝜂,𝛿,𝑥

) is the cosine operator function associated with the
operator −𝐿𝜗,𝜂,𝛿,𝑥 . [6, Example 3.14.15] yields the representation

𝐶𝜗,𝜂,𝛿,𝑥 (𝑡𝛿−𝛼1) =
1
2
(
𝑈𝜗,𝜂,𝛿,𝑥 (𝑡𝛿−𝛼1) + 𝑈𝜗,𝜂,𝛿,𝑥 (−𝑡𝛿−𝛼1)

)
with the unitary group (𝑈𝜗,𝛿,𝑥 (𝑡))𝑡∈ℝ generated by 𝑖(𝐿1/2

𝜗,𝜂,𝛿,𝑥
) on 𝐿2(Λ𝛿,𝑥) and the steps of

[39, Proposition A.10 (i)] can be repeated to verify convergence. Analogous calculations
show

𝛿−𝛼1 ⟨𝑁𝛿,𝑥 (𝑡)𝑧1, 𝑀𝛿,𝑥 (𝑡)𝑧2⟩𝐿2 (Λ𝛿,𝑥 ) → 0.

All the above convergences hold uniformly in 𝑥 ∈ J since in the parametric case the
convergences in [39, Proposition 4.5 and Lemma A.6] are uniform in 𝑥 ∈ J when applied
to functions with support in ⋂

𝑥∈J Λ𝛿,𝑥 . In fact, restricted to ⋂
𝑥∈J Λ𝛿,𝑥 , the Laplacian Δ𝛿,𝑥

is identical to Δ𝛿,𝑦 for 𝑦 ∈ J and the associated spectral measures become independent of
the spatial point 𝑦 ∈ J, when applied to functions with support in ⋂

𝑥∈J Λ𝛿,𝑥 .

2. The convergences follow similarly to (i) by using the slow-fast orthogonality as presented
in [39, Proposition A.10 (ii)].
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(iii) For readability, we suppress various indices throughout the remainder of the proof. Thus,
we introduce the following notation:

𝐴 := 𝐴𝜗,𝛿,𝑥; 𝐵 := 𝐵𝜂,𝛿,𝑥; 𝐿 := 𝐿𝜗,𝜂,𝛿,𝑥; 𝛼 = 𝛿𝛼1; 𝛽 = 𝛿𝛽1 . (D.28)

By definition of 𝑀, 𝑁-functions, substitution and the fundamental theorem of calculus, we
then obtain

𝛿−2𝛼1−2𝛽1 ⟨
∫ 𝑡

0
𝑁𝛿,𝑥 (𝑟)2 d𝑟𝑧1, 𝑧2⟩𝐿2 (Λ𝛿,𝑥 )

= 𝛼−2𝛽−2⟨
∫ 𝑡

0
𝑁𝛿,𝑥 (𝑟)2 d𝑟𝑧1, 𝑧2⟩𝐿2 (Λ𝛿,𝑥 )

= ⟨
∫ 𝑡𝛽−2

0
𝑒𝑟𝐵 sin2(𝑟𝛼−1𝛽2𝐿1/2)𝐿−1 d𝑟𝑧1, 𝑧2⟩𝐿2 (Λ𝛿,𝑥 ) (D.29)

= ⟨
(
𝑒𝑡𝛽

−2𝐵 sin2(𝑡𝛼−1𝐿1/2)𝐵2 − 2𝛼−1𝛽2𝑒𝑡𝛽−2𝐵𝐵𝐿1/2 cos(𝑡𝛼−1𝐿1/2) sin(𝑡𝛼−1𝐿1/2)

+2𝛼−2𝛽4(𝑒𝑡𝛽−2𝐵 − 𝐼)𝐿
)
𝐵−1𝐿−1(4𝛼−2𝛽4𝐿 + 𝐵2)−1𝑧1, 𝑧2⟩𝐿2 (Λ𝛿,𝑥 ) .

We can rewrite the last display as
1
2 ⟨𝐵

−1𝐴−1𝑧1, 𝑧2⟩𝐿2 (Λ𝛿,𝑥 ) (D.30)

− 𝛼2𝛽−4

4 ⟨𝑒𝑡𝛽−2𝐵 sin2(𝑡𝛼−1𝐿1/2)𝐿−1𝐵𝐴−1𝑧1, 𝑧2⟩𝐿2 (Λ𝛿,𝑥 ) (D.31)

+ 𝛼𝛽−2

2 ⟨𝑒𝑡𝛽−2𝐵 cos(𝑡𝛼−1𝐿1/2) sin(𝑡𝛼−1𝐿1/2)𝐿−1/2𝐴−1𝑧1, 𝑧2⟩𝐿2 (Λ𝛿,𝑥 ) (D.32)

− 1
2 ⟨𝑒

𝑡𝛽−2𝐵𝐵−1𝐴−1𝑧1, 𝑧2⟩𝐿2 (Λ𝛿,𝑥 ) . (D.33)

Since 𝐴 = 𝐴𝜗,𝛿,𝑥 converges to 𝐴𝜗, (D.30) converges to 1
2 ⟨𝐵

−1
𝜂 𝐴−1

𝜗
𝑧1, 𝑧2⟩𝐿2 (ℝ𝑑 ) , while (D.31),

(D.32) and (D.33) tend to zero by the Cauchy–Schwarz inequality and Lemma D.13.
As we will integrate (D.29) on the time interval [0, 𝑇] in Lemma D.17, we will already com-
pute a uniform upper bound of (D.29), enabling the usage of the dominated convergence
theorem. By the Cauchy–Schwarz inequality and Lemma D.13 we obtain for a constant 𝐶
independent of the spatial point 𝑥 and the resolution level 𝛿 > 0:

⟨
∫ 𝑡𝛽−2

0
𝑒𝑟𝐵 sin2(𝑟𝛼−1𝛽2𝐿1/2)𝐿−1 d𝑟𝑧1, 𝑧2⟩𝐿2 (Λ𝛿,𝑥 )

≤
∫ 𝑇𝛿−2𝛽1

0
∥𝑒𝑟𝐵𝜂,𝛿,𝑥/2𝐿−1/2

𝜗,𝜂,𝛿,𝑥
𝑧1∥𝐿2 (Λ𝛿,𝑥 ) ∥𝑒

𝑟𝐵𝜂,𝛿,𝑥/2𝐿−1/2
𝜗,𝜂,𝛿,𝑥

𝑧2∥𝐿2 (Λ𝛿,𝑥 ) d𝑟

≤
∫ ∞

0
𝐶
(
1 ∧ 𝑟−𝛼1/(2𝛽1 ) )

)2
d𝑟 =: 𝑉 < ∞.

(D.34)

Similarly to (D.29), as 𝛿 → 0, we obtain

𝛿−2𝛽1 ⟨
∫ 𝑡

0
(𝑁 ′

𝛿,𝑥 (𝑟))
2 d𝑟𝑧1, 𝑧2⟩𝐿2 (Λ𝛿,𝑥 )
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= 𝛿−2𝛽1 ⟨
∫ 𝑡

0

(
𝑀𝛿,𝑥 (𝑟) + 𝛿−2𝛽1𝐵𝜂,𝛿,𝑥𝑁𝛿,𝑥 (𝑟)

)2
d𝑟𝑧1, 𝑧2⟩𝐿2 (Λ𝛿,𝑥 )

= ⟨
∫ 𝑡𝛽−2

0
𝑒𝑟𝐵

(
cos(𝑟𝛼−1𝛽2𝐿1/2) + 𝛼𝛽−2

2 𝐵 sin(𝑟𝛼−1𝛽2𝐿1/2)
)2

d𝑟𝑧1, 𝑧2⟩𝐿2 (Λ𝛿,𝑥 )

= ⟨
(
𝛼2𝛽−4𝐵𝑒𝑡𝛽

−2𝐵 sin2(𝑡𝛼−1𝐿1/2)𝐿−1/4

+ 𝛼𝛽−2𝑒𝑡𝛽−2𝐵 cos(𝑡𝛼−1𝐿1/2) sin(𝑡𝛼−1𝐿1/2)𝐿−1/2/2
+(𝑒𝑡𝛽−2𝐵 − 𝐼)𝐵−1/2

)
𝑧1, 𝑧2⟩𝐿2 (Λ𝛿,𝑥 )

→ −1
2 ⟨𝐵

−1
𝜂 𝑧1, 𝑧2⟩𝐿2 (ℝ𝑑 ) ,

and

𝛿−2𝛽1−𝛼1 ⟨
∫ 𝑡

0
𝑁𝛿,𝑥 (𝑟)𝑁 ′

𝛿,𝑥 (𝑟) d𝑟𝑧1, 𝑧2⟩𝐿2 (Λ𝛿,𝑥 )

= 𝛿−2𝛽1−𝛼1 ⟨
∫ 𝑡

0
𝑁𝛿,𝑥 (𝑟)

(
𝑀𝛿,𝑥 (𝑟) + 𝛿−2𝛽1𝐵𝜂,𝛿,𝑥𝑁𝛿,𝑥 (𝑟)

)
d𝑟𝑧1, 𝑧2⟩𝐿2 (Λ𝛿,𝑥 )

= ⟨
∫ 𝑡𝛽−2

0
𝑒𝑟𝐵 sin(𝑟𝛼−1𝛽2𝐿1/2)𝐿−1/2

·
(
cos(𝑟𝛼−1𝛽2𝐿1/2) + 𝛼𝛽−2

2 𝐵 sin(𝑟𝛼−1𝛽2𝐿1/2)𝐿−1/2
)
d𝑟𝑧1, 𝑧2⟩𝐿2 (Λ𝛿,𝑥 )

=
1
2 ⟨𝛼𝛽

−2𝑒𝑡𝛽
−2𝐵 sin2(𝑡𝛼−1𝐿1/2)𝐿−1𝑧1, 𝑧2⟩𝐿2 (Λ𝛿,𝑥 ) → 0,

again having a uniform upper bound in analogy to (D.34).
■

Lemma D.17. Grant Assumption D.4 (i)-(iii) and suppose (𝑢0, 𝑣0)⊤ = (0, 0)⊤. Recall the definition
of 𝐶(𝜂1, 𝑇) given by (D.12) and let 𝛽1 = 0. Then, for 1 ≤ 𝑖, 𝑗 ≤ 𝑝 and 1 ≤ 𝑘, 𝑙 ≤ 𝑞, we obtain, as
𝛿 → 0, the convergences

sup
𝑥∈J

����𝛿2(𝛼𝑖+𝛼 𝑗−𝛼1 ) ∫ 𝑇

0
Cov(𝑢Δ𝑖

𝛿,𝑥
(𝑡), 𝑢Δ 𝑗

𝛿,𝑥
) d𝑡 + 𝐶(𝜂1, 𝑇)

𝜗1
∥(−Δ) (𝛼𝑖+𝛼 𝑗−𝛼1 )/2𝐾∥2

𝐿2 (ℝ𝑑 )

���� → 0; (D.35)

sup
𝑥∈J

����∫ 𝑇

0
Var(𝑣𝛿,𝑥 (𝑡)) d𝑡 − 𝐶(𝜂1, 𝑇)∥𝐾∥2𝐿2 (ℝ𝑑 )

���� → 0; (D.36)

sup
𝑥∈J

����𝛿2(𝛼𝑖−𝛼1/2) ∫ 𝑇

0
Cov(𝑢Δ𝑖

𝛿,𝑥
(𝑡), 𝑣𝛿,𝑥 (𝑡)) d𝑡

���� → 0. (D.37)

If, 0 < 2𝛽1 ≤ 𝛼1 we obtain the convergences

sup
𝑥∈J

����𝛿2(𝛼𝑖+𝛼 𝑗−𝛼1−𝛽1 ) ∫ 𝑇

0
Cov(𝑢Δ𝑖

𝛿,𝑥
(𝑡), 𝑢Δ 𝑗

𝛿,𝑥
) d𝑡 − 𝑇

2𝜂1𝜗1
∥(−Δ) (𝛼𝑖+𝛼 𝑗−𝛼1−𝛽1 )/2𝐾∥2

𝐿2 (ℝ𝑑 )

���� → 0;

(D.38)

sup
𝑥∈J

����𝛿2(𝛽𝑘+𝛽𝑙−𝛽1 ) ∫ 𝑇

0
Cov(𝑣Δ𝑘

𝛿,𝑥
(𝑡), 𝑣Δ𝑙

𝛿,𝑥
(𝑡)) d𝑡 + 𝑇

2𝜂1
∥(−Δ) (𝛽𝑘+𝛽𝑙−𝛽1 )/2𝐾∥2

𝐿2 (ℝ𝑑 )

���� → 0; (D.39)



160 Chapter D. Parameter estimation in hyperbolic linear SPDEs

sup
𝑥∈J

����𝛿2(𝛼𝑖+𝛽𝑘−𝛽1−𝛼1/2) ∫ 𝑇

0
Cov(𝑢Δ𝑖

𝛿,𝑥
(𝑡), 𝑣Δ𝑘

𝛿,𝑥
(𝑡)) d𝑡

���� → 0. (D.40)

Proof of Lemma D.17. With the majorant constructed in (D.34) in case of (D.38) or directly by
Lemma D.13 for (D.35), we obtain uniformly in 𝑥 ∈ J by Lemma D.15, Lemma D.16(i),(iii) and
the dominated convergence theorem:

𝛿2(𝛼𝑖+𝛼 𝑗−𝛼1−𝛽1 )
∫ 𝑇

0
Cov(𝑢Δ𝑖

𝛿,𝑥
(𝑡), 𝑢Δ 𝑗

𝛿,𝑥
(𝑡)) d𝑡

= 𝛿−2𝛼1−2𝛽1
∫ 𝑇

0

∫ 𝑡

0
⟨𝑁𝛿,𝑥 (𝑟)2(−Δ0)𝛼𝑖𝐾, (−Δ0)𝛼 𝑗𝐾⟩𝐿2 (Λ𝛿,𝑥 ) d𝑟 d𝑡

=

{
−

∫𝑇
0
∫ 𝑡
0 𝑒

𝜂1𝑟 1
2 ⟨𝐴

−1
𝜗

(−Δ0)𝛼𝑖𝐾, (−Δ0)𝛼 𝑗𝐾⟩𝐿2 (ℝ𝑑 ) d𝑟 d𝑡 + 𝑜(1), 𝛽1 = 0,∫𝑇
0

1
2 ⟨𝐵

−1
𝜂 𝐴−1

𝜗
(−Δ0)𝛼𝑖𝐾, (−Δ0)𝛼 𝑗𝐾⟩𝐿2 (ℝ𝑑 ) d𝑡 + 𝑜(1), 𝛽1 > 0,

=

{
−𝐶 (𝜂1,𝑇 )

𝜗1
∥(−Δ0) (𝛼𝑖+𝛼 𝑗−𝛼1 )/2𝐾∥2𝐿2 (ℝ𝑑 ) + 𝑜(1), 𝛽1 = 0,

𝑇
2𝜂1𝜗1 ∥(−Δ0) (𝛼𝑖+𝛼 𝑗−𝛼1−𝛽1 )/2𝐾∥2𝐿2 (ℝ𝑑 ) + 𝑜(1), 𝛽1 > 0.

This proves (D.35) and (D.38). Analogously, (D.36) and (D.39) as well as (D.37) and (D.40)
follow using the remaining convergences in Lemma D.16. ■

Lemma D.18. Grant Assumption D.4 (i)-(iii) and let (𝑢0, 𝑣0)⊤ = (0, 0)⊤. Then, for 1 ≤ 𝑖, 𝑗 ≤ 𝑝,
1 ≤ 𝑘, 𝑙 ≤ 𝑞, we observe

sup
𝑥∈J

Var
(∫ 𝑇

0
𝑢
Δ𝑖
𝛿,𝑥

(𝑡)𝑢Δ 𝑗

𝛿,𝑥
(𝑡) d𝑡

)
= 𝑜(𝛿−4(𝛼𝑖+𝛼 𝑗−𝛼1−𝛽1 ) ); (D.41)

sup
𝑥∈J

Var
(∫ 𝑇

0
𝑣
Δ𝑘
𝛿,𝑥

(𝑡)𝑣Δ𝑙
𝛿,𝑥

(𝑡) d𝑡
)
= 𝑜(𝛿−4(𝛽𝑘+𝛽𝑙−𝛽1 ) ); (D.42)

sup
𝑥∈J

Var
(∫ 𝑇

0
𝑢
Δ𝑖
𝛿,𝑥

(𝑡)𝑣Δ𝑘
𝛿,𝑥

(𝑡) d𝑡
)
= 𝑜(𝛿−4(𝛼𝑖+𝛽𝑘−𝛽1−𝛼1/2) ). (D.43)

Proof of Lemma D.18. We only show the assertion for (D.41). The other two statements (D.42)
and (D.43) follow in the same way. By Wick’s formula [18, Theorem 1.28] it holds

𝛿4(𝛼𝑖+𝛼 𝑗−𝛼1−𝛽1 ) Var
(∫ 𝑇

0
𝑢
Δ𝑖
𝛿,𝑥

(𝑡)𝑢Δ 𝑗

𝛿,𝑥
(𝑡) d𝑡

)
= 𝛿4(𝛼1+𝛼 𝑗−𝛼1−𝛽1 ) (𝑉1 + 𝑉2) (D.44)

with

𝑉1 := 𝑉 ((−Δ)𝛼𝑖𝐾𝛿,𝑥 , (−Δ)𝛼𝑖𝐾𝛿,𝑥 , (−Δ)𝛼 𝑗𝐾𝛿,𝑥 , (−Δ)𝛼 𝑗𝐾𝛿,𝑥),
𝑉2 := 𝑉 ((−Δ)𝛼𝑖𝐾𝛿,𝑥 , (−Δ)𝛼 𝑗𝐾𝛿,𝑥 , (−Δ)𝛼 𝑗𝐾𝛿,𝑥 , (−Δ)𝛼𝑖𝐾𝛿,𝑥),

and

𝑉 (𝑤,𝑤′, 𝑧, 𝑧′) :=
∫ 𝑇

0

∫ 𝑇

0
Cov(⟨𝑢(𝑡), 𝑤⟩, ⟨𝑢(𝑠), 𝑤′⟩) Cov(⟨𝑢(𝑡), 𝑧⟩, ⟨𝑢(𝑠), 𝑧′⟩) d𝑠 d𝑡,

for 𝑤,𝑤′, 𝑧, 𝑧′ ∈ 𝐿2(Λ). By Lemma D.15 and rescaling, we obtain the representation

𝛿4(𝛼𝑖+𝛼 𝑗−𝛼1−𝛽1 )𝑉1
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=

∫ 𝑇

0

∫ 𝑇

0
Cov(𝑢Δ𝑖

𝛿,𝑥
(𝑡), 𝑢Δ𝑖

𝛿,𝑥
(𝑠))Cov(𝑢Δ 𝑗

𝛿,𝑥
(𝑡), 𝑢Δ 𝑗

𝛿,𝑥
(𝑠))d𝑠d𝑡 (D.45)

= 2𝛿2𝛽1
∫ 𝑇

0

∫ 𝑡𝛿−2𝛽1

0

(∫ 𝑡𝛿−2𝛽1−𝑠

0
𝑓𝑖,𝑖 (𝑠, 𝑠′) d𝑠′

) (∫ 𝑡𝛿−2𝛽1−𝑠

0
𝑓 𝑗, 𝑗 (𝑠, 𝑠′′) d𝑠′′

)
d𝑠 d𝑡, (D.46)

where, for 𝑠, 𝑠′ ∈ [0, 𝑇𝛿−2𝛽1], we have set

𝑓𝑖, 𝑗 (𝑠, 𝑠′) := ⟨𝑒(𝑠+𝑠′ )𝐵𝜂,𝛿,𝑥/2 sin(𝛿−𝛼1+2𝛽1 (𝑠 + 𝑠′)𝐿1/2
𝜗,𝜂,𝛿,𝑥

)𝐿−1/2
𝜗,𝜂,𝛿,𝑥

(−Δ𝛿,𝑥)𝛼𝑖𝐾,

𝑒𝑠
′𝐵𝜂,𝛿,𝑥/2 sin(𝛿−𝛼1+2𝛽1 (𝑠′)𝐿1/2

𝜗,𝜂,𝛿,𝑥
)𝐿−1/2

𝜗,𝜂,𝛿,𝑥
(−Δ𝛿,𝑥)𝛼 𝑗𝐾⟩𝐿2 (Λ𝛿,𝑥 ) .

In case that 𝛽1 = 0, we use the pointwise convergences 𝑓𝑖,𝑖 (𝑠, 𝑠′) → 0 and 𝑓 𝑗, 𝑗 (𝑠, 𝑠′′) → 0, given
by the slow-fast orthogonality in Lemma D.16(ii), and dominated convergence over fixed finite
time intervals to prove the claim directly from the representation (D.45). If, however, 𝛽1 > 0,
we use Assumption D.4 (ii), i.e. 𝐾 = Δ⌈𝛼1 ⌉

0 �̃�, and Lemma D.13 such that

sup
𝑥∈J

| 𝑓𝑖,𝑖 (𝑠′, 𝑠) | ≲ (1 ∧ (𝑠 + 𝑠′)−(𝛼𝑖+𝛼1/2)/𝛽1) (1 ∧ 𝑠−(𝛼𝑖+𝛼1/2)/𝛽1)

≲ (1 ∧ 𝑠′−1) (1 ∧ 𝑠−1).

Thus implies sup𝑥∈J |𝑉1 | = 𝑂(𝛿−4(𝛼𝑖+𝛼 𝑗−𝛼1−𝛽1 )𝛿2𝛽1 log(𝛿−2𝛽1)) = 𝑜(𝛿−4(𝛼𝑖+𝛼 𝑗−𝛼1−𝛽1 ) ). The ar-
guments for 𝑉2 follow in the same way be replacing 𝑓𝑖,𝑖 and 𝑓 𝑗, 𝑗 with 𝑓𝑖, 𝑗 and 𝑓 𝑗,𝑖 in (D.46),
respectively. The assertion follows in view of (D.44). ■

Lemma D.19 (Bounds on the initial condition). Grant Assumption D.4 (i) (ii) and (iv). Then, for
1 ≤ 𝑖 ≤ 𝑝, 1 ≤ 𝑗 ≤ 𝑞, we have

(i) sup𝑥∈J 𝛿4𝛼𝑖−2𝛼1−2𝛽1
(∫𝑇

0 ⟨𝑀 (𝑡)𝑢0 + 𝑁 (𝑡)𝑣0, (−Δ)𝛼𝑖𝐾𝛿,𝑥⟩2 d𝑡
)
= 𝑜(1);

(ii) sup𝑥∈J 𝛿4𝛽 𝑗−2𝛽1
(∫𝑇

0 ⟨𝐴𝜗𝑁 (𝑡)𝑢0 + (𝑀 (𝑡) + 𝐵𝜂 (𝑁 (𝑡))𝑣0, (−Δ)𝛽 𝑗𝐾𝛿,𝑥⟩2 d𝑡
)
= 𝑜(1).

Proof of Lemma D.19.

(i) Define the reverse scaling operation for 𝑧 ∈ 𝐿2(ℝ𝑑) via

𝑧 (𝛿,𝑥 )−1 (𝑦) := 𝛿𝑑/2𝑧(𝑥 + 𝛿𝑦), 𝑦 ∈ ℝ𝑑 .

The rescaling Lemma D.8, self-adjointness and the commutativity of operators imply

⟨𝑀 (𝑡)𝑢0, (−Δ)𝛼𝑖𝐾𝛿,𝑥⟩2

= 𝛿−4𝛼𝑖 ⟨(𝑢0) (𝛿,𝑥 )−1 , 𝑀𝛿,𝑥 (𝑡) (−Δ𝛿,𝑥)𝛼𝑖𝐾⟩2𝐿2 (Λ𝛿,𝑥 )
= 𝛿−4𝛼𝑖+4𝛼1 ⟨((−Δ)𝛼1𝑢0) (𝛿,𝑥 )−1 , 𝑀𝛿,𝑥 (𝑡) (−Δ𝛿,𝑥)𝛼𝑖−𝛼1𝐾⟩2𝐿2 (Λ𝛿,𝑥 )
≲ 𝛿−4𝛼𝑖+4𝛼1 ∥(−Δ)𝛼1𝑢0∥2𝐿2 (Λ) ∥𝑒

𝑡𝛿−2𝛽1 𝐵𝜂,𝛿,𝑥 (−Δ𝛿,𝑥)𝛼𝑖−𝛼1𝐾∥2𝐿2 (Λ𝛿,𝑥 )
≲ 𝛿−4𝛼𝑖+4𝛼1 ∥𝑒𝑡𝛿−2𝛽1 𝐵𝜂,𝛿,𝑥 (−Δ𝛿,𝑥)𝛼𝑖−𝛼1𝐾∥2𝐿2 (Λ𝛿,𝑥 ) .



162 Chapter D. Parameter estimation in hyperbolic linear SPDEs

Thus, using Lemma D.13 and that 𝐾 = Δ⌈𝛼1 ⌉
0 �̃�, we obtain the upper bound

sup
𝑥∈J

𝛿4𝛼𝑖−2𝛼1−2𝛽1
∫ 𝑇

0
⟨𝑀 (𝑡)𝑢0, (−Δ)𝛼𝑖𝐾𝛿,𝑥⟩2 d𝑡

≲ 𝛿2𝛼1
∫ 𝑇𝛿−2𝛽1

0
sup
𝑥∈J

∥𝑒𝑡𝐵𝜂,𝛿,𝑥 (−Δ𝛿,𝑥)𝛼𝑖−𝛼1𝐾∥2𝐿2 (Λ𝛿,𝑥 ) d𝑡

≲ 𝛿2𝛼1
∫ 𝑇𝛿−2𝛽1

0
1 ∧ 𝑡−𝛼𝑖/𝛽1 d𝑡

= 𝑂(𝛿2(𝛼1−𝛽1 ) ) = 𝑜(1).

Similarly,

⟨𝑁 (𝑡)𝑣0, (−Δ)𝛼𝑖𝐾𝛿,𝑥⟩2

= 𝛿−4𝛼𝑖 ⟨(𝑣0) (𝛿,𝑥 )−1 , 𝑁𝛿,𝑥 (𝑡) (−Δ𝛿,𝑥)𝛼𝑖𝐾⟩2𝐿2 (Λ𝛿,𝑥 )
= 𝛿−4𝛼𝑖+2𝛼1 ⟨((−Δ)𝛼1/2𝑣0) (𝛿,𝑥 )−1 , 𝑁𝛿,𝑥 (𝑡) (−Δ𝛿,𝑥)𝛼𝑖−𝛼1/2Δ𝐾⟩2𝐿2 (Λ𝛿,𝑥 )
≲ 𝛿−4𝛼𝑖+4𝛼1 ∥𝑒𝑡𝛿−2𝛽1 𝐵𝜂,𝛿,𝑥 𝐿−1/2

𝜗,𝜂,𝛿,𝑥
(−Δ𝛿,𝑥)𝛼𝑖−𝛼1/2𝐾∥2𝐿2 (Λ𝛿,𝑥 )

Hence,

sup
𝑥∈J

𝛿4𝛼𝑖−2𝛼1−2𝛽1
∫ 𝑇

0
⟨𝑁 (𝑡)𝑣0, Δ𝐾𝛿,𝑥⟩2 d𝑡

≲ 𝛿2𝛼1
∫ 𝑇𝛿−2𝛽1

0
sup
𝑥∈J

∥𝑒𝑡𝐵𝜂,𝛿,𝑥 𝐿−1/2
𝜗,𝜂,𝛿,𝑥

(−Δ𝛿,𝑥)𝛼𝑖−𝛼1/2𝐾∥2𝐿2 (Λ𝛿,𝑥 ) d𝑡

= 𝑂(𝛿2(𝛼1−𝛽1 ) ) = 𝑜(1),

proving the assertion.

(ii) The steps from (i) can be repeated, resulting in

sup
𝑥∈J

𝛿4𝛽 𝑗−2𝛽1
(∫ 𝑇

0
⟨𝐴𝜗𝑁 (𝑡)𝑢0 + (𝑀 (𝑡) + 𝐵𝜂 (𝑁 (𝑡))𝑣0, (−Δ)𝛽 𝑗𝐾𝛿,𝑥⟩2 d𝑡

)
= 𝑂(𝛿2(𝛼1−𝛽1 ) ) = 𝑜(1). ■

D.4.3 Proof of the CLT

Proof of Theorem D.5.

1. Assume first that (𝑢0, 𝑣0)⊤ = (0, 0)⊤. For any 1 ≤ 𝑖, 𝑗 ≤ 𝑝 + 𝑞, we obtain from Lemma D.17
and Lemma D.18 that

(𝜌𝛿I𝛿𝜌𝛿)𝑖 𝑗 = 𝜌𝑖𝑖𝜌 𝑗 𝑗

𝑁∑︁
𝑘=1

∫ 𝑇

0
(𝑌𝛿,𝑘 (𝑡))𝑖 (𝑌𝛿,𝑘 (𝑡)) 𝑗 d𝑡

= (Σ𝜗,𝜂)𝑖 𝑗 + 𝑜ℙ(1).
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This yields for zero initial conditions the convergence

(𝜌𝛿I𝛿𝜌𝛿)
ℙ→ Σ𝜗, 𝛿 → 0. (D.47)

In order to extend this result to a general initial condition (𝑢0, 𝑣0)⊤ satisfying Assumption
D.4 (iii), let (𝑢(𝑡), 𝑣(𝑡))⊤ be defined as (𝑢(𝑡), 𝑣(𝑡))⊤, but starting in (0, 0)⊤ such that for
𝑧 ∈ 𝐿2(Λ)

⟨𝑢(𝑡), 𝑧⟩ = ⟨𝑢(𝑡), 𝑧⟩ + ⟨𝑀 (𝑡)𝑢0, 𝑧⟩ + ⟨𝑁 (𝑡)𝑣0, 𝑧⟩,
⟨𝑣(𝑡), 𝑧⟩ = ⟨𝑣(𝑡), 𝑧⟩ + ⟨𝐴𝜗𝑁 (𝑡)𝑢0, 𝑧⟩ + ⟨(𝑀 (𝑡) + 𝐵𝜂𝑁 (𝑡))𝑣0, 𝑧⟩.

If Ī𝛿 corresponds to the observed Fisher information with zero initial condition, then by
the Cauchy–Schwarz inequality��(𝜌𝛿I𝛿𝜌𝛿)𝑖 𝑗 − (𝜌𝛿Ī𝛿𝜌𝛿)𝑖 𝑗

�� ≲ (𝜌𝛿Ī𝛿𝜌𝛿)1/2𝑖𝑖
𝑤

1/2
𝑗

+ (𝜌𝛿Ī𝛿𝜌𝛿)1/2𝑗 𝑗
𝑤

1/2
𝑖

+ 𝑤1/2
𝑖

𝑤
1/2
𝑗
,

for all 1 ≤ 𝑖, 𝑗 ≤ 𝑝 + 𝑞, where

𝑤𝑖 =


sup𝑥∈J 𝑁𝜌2𝑖𝑖

(∫𝑇
0 ⟨𝑀 (𝑡)𝑢0 + 𝑁 (𝑡)𝑣0, (−Δ)𝛼𝑖𝐾𝛿,𝑥⟩2 d𝑡

)
, 1 ≤ 𝑖 ≤ 𝑝,

sup𝑥∈J 𝑁𝜌2𝑖𝑖
(∫𝑇

0 ⟨𝐴𝜗𝑁 (𝑡)𝑢0 + (𝑀 (𝑡) + 𝐵𝜂 (𝑁 (𝑡))𝑣0, (−Δ)𝛽𝑖𝐾𝛿,𝑥⟩2 d𝑡
)
, else.

By the first part, (𝜌𝛿Ī𝛿𝜌𝛿)𝑖𝑖 is bounded in probability and Lemma D.19 shows 𝑤𝑖 = 𝑜(1).
Hence, we obtain (D.47) also in the case of non-zero initial conditions.
Due to Assumption D.4 (i)-(iii), Σ𝜗,𝜂 is well-defined as all entries are finite. Regarding
invertibility, note first that Σ𝜗,𝜂 is invertible if and only if both Σ1,𝜗,𝜂 and Σ2,𝜗,𝜂 are invertible.
We only argue that Σ1,𝜗,𝜂 is invertible as the argument for Σ2,𝜗,𝜂 is identical. Let 𝜆 ∈ ℝ𝑝

such that

0 =

𝑝∑︁
𝑖, 𝑗=1

𝜆 𝑖𝜆 𝑗 (Σ1,𝜗,𝜂)𝑖 𝑗 ⇐⇒ 0 =

𝑝∑︁
𝑖, 𝑗=1

𝜆 𝑖𝜆 𝑗∥(−Δ) (𝛼𝑖+𝛼 𝑗−𝛼1−𝛽1 )𝐾∥2𝐿2 (ℝ𝑑 ) .

Now,

0 =

𝑝∑︁
𝑖, 𝑗=1

𝜆 𝑖𝜆 𝑗∥(−Δ) (𝛼𝑖+𝛼 𝑗−𝛼1−𝛽1 )𝐾∥2𝐿2 (ℝ𝑑 )

= ⟨
𝑝∑︁
𝑖=1

𝜆 𝑖 (−Δ)𝛼𝑖−(𝛼1+𝛽1 )/2𝐾,
𝑝∑︁
𝑖=1

𝜆 𝑖 (−Δ)𝛼𝑖−(𝛼1+𝛽1 )/2𝐾⟩𝐿2 (ℝ𝑑 ) ,

hence ∑𝑝

𝑖=1 𝜆 𝑖 (−Δ)
𝛼𝑖−(𝛼1+𝛽1 )/2𝐾 = 0. Since the functions (−Δ)𝛼𝑖−(𝛼1+𝛽1 )/2𝐾 ,1 ≤ 𝑖 ≤ 𝑝, are

linearly independent by Assumption D.4 (iii), Σ1,𝜗,𝜂 is invertible.
2. We refer to Theorem A.3 in Paper A for a detailed proof of the CLT in the case of the

perturbed stochastic heat equation, which relies on a general multivariate martingale
central limit theorem. All steps translate directly into our setting due to the stochastic
convergence 𝜌𝛿I𝛿𝜌𝛿

ℙ→ Σ𝜗,𝜂 from (i).
■
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