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Abstract

This thesis is about constructions of canonical metrics in complex non-Kéhler geome-
try, focusing in particular on balanced metrics satisfying special hermitian curvature con-
ditions.

More specifically, we adapt gluing strategies from Kihler geometry to obtain families
of balanced metrics with special curvature properties, with particular relevance for the con-
structions of solutions of the Hull-Strominger system and the geometrization of balanced
classes. More specifically, we show that: crepant resolutions of orbifolds with isolated sin-
gularities admitting singular Chern-Ricci flat balanced metrics can also be endowed with
Chern-Ricci flat balanced metrics; small resolutions of smoothable Calabi-Yau singular
threefolds with a finite family of Ordinary Double Points admit an approximately Chern-
Ricci flat balanced metric; the blowup at a finite family of points of a compact Chern-Ricci
flat balanced manifold always admits Chern-scalar constant balanced metrics. In all three
cases we have a control on the Bott-Chern cohomology class of metrics constructed.

Furthermore, we use representation theory techniques to construct special balanced
metrics on the class of real simple Lie groups of inner type, as well as on the correspond-
ing compact homogeneous spaces, on which we obtain that the metrics constructed are
Chern-scalar with non-vanishing Chern-Ricci tensor, providing a family of compact com-
plex manifolds with vanishing first Chern class and non-vanishing first Bott-Chern class.
Moreover, we show that for this class of homogeneous spaces the Fino-Vezzoni conjecture
holds.



Abstract

Denne afthandling omhandler konstruktioner af kanoniske metrikker i kompleks ikke-
Kéihler geometri med serligt fokus pa balancerede metrikker, der opfylder specielle her-
mitiske krumningsbetingelser.

Mere specifikt tilpasser vi limningsstrategier fra Kdhler geometri til at opna familier af
balancerede metrikker med specielle krumningsegenskaber med serlig relevans for kon-
struktioner af lgsninger til Hull-Strominger systemet og geometriseringen af balancerede
klasser. Mere specifikt viser vi at: ikke-afvigende oplgsninger af orbifolde med isolerede
singulariteter, som tillader singulere Chern-Ricci-flad balancerede metrikker, ogsa kan
udstyres med Chern-Ricci-flad balancerede metrikker; sma oplgsninger af smoothable
Calabi-Yau singulere 3-flader med en endelig familie af ordin@re dobbeltpunkter tillader
en approksimativ Chern-Ricci-flad balanceret metrik; blowuppet i en endelig familie af
punkter pa en kompakt Chern-Ricci-flad balanceret mangfoldighed tillader altid Chern-
skalar-konstant balancerede metrikker. I alle tre tilfelde har vi kontrol over Bott-Chern
cohomologiklassen for de konstruerede metrikker.

Ydermere anvender vi teknikker fra representationsteori til at konstruere specielle bal-
ancerede metrikker pa klassen af reelle simple Lie-grupper af indre type og desuden pa
de tilhgrende kompakte homogene rum, hvorpa vi opnar at de konstruerede metrikker
er Chern-skalar med ikke-forsvindende Chern-Ricci-tensor, hvilket giver en familie af
kompakte komplekse mangfoldigheder med forsvindende fgrste Chern-klasse og ikke-
forsvindende fgrste Bott-Chern-klasse. Desuden viser vi at for denne klasse af homogene
rum er Fino-Vezzoni-formodningen sand.
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Introduction

With the ultimate aim of geometrizing and classifying, one of the most studied prob-
lems in complex geometry is the existence of hermitian metrics that can be regarded as
canonical. Through the years, the Kihler case is the one that has been studied and under-
stood the most. However, in the last decades the interest towards the non-Kéhler world
has been increasing more and more, leading to the search for special metrics also in this
particular context. While in the Kihler case special metrics arise naturally, the non-Kihler
scenario is too wild to guide us directly towards some central notion of special metric. Nev-
ertheless, one can have indications on the path to follow by watching the Kihler world.
More specifically, given an n-dimensional complex manifold (M, .J), if it is Kihler the ob-
vious class of special (on a first level) metrics is given exactly by Kihler metrics - which
we recall being hermitian metrics » whose fundamental form w := h(J-, -) is d-closed. In
addition, this condition can also be combined with the notion of Einstein metric (thanks to
the properties of Kéhler metrics) from the general riemannian case, giving rise to the no-
tion of Kihler-Einstein metrics, which are universally regarded as the "most canonical” in
the Kéhler world. Likewise, other notions of special Kédhler metrics have been introduced
and studied (some of them are still central in the study of Kihler geometry), like constant
scalar curvature Kdhler (cscK) metrics, or the more general class of extremal Kdhler met-
rics (introduced by Calabi in [C]), however they all share the fact that they are giving a
curvature condition on the metric, thus this suggests that when searching for special met-
rics in the non-Kihler case we shall ask for these metrics to be special under two aspects:
the cohomological one (satisfying a condition possibly generalizing the Kihler one) and
the curvature one.

Regarding the cohomological aspect, several conditions have been introduced that gen-
eralize the Kihler one, and one of the most studied is given by dw”™! = 0, identifying the
class of balanced metrics (originally introduced by Michelsohn [M], and also considered
by Gauduchon in [Gal] as semi-Kdhler metrics), which is the class of metrics we are in-
terested in working with. Balanced metrics carry many interesting properties such as the
coincidence between the Hodge laplacian and the Dolbeault laplacian on scalar functions
(showed by Gauduchon in [Gal]), and the class of balanced manifolds (i.e. manifolds ad-
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mitting balanced metrics) was shown to be closed under holomorphic submersions proved
in [M] (showing a sort of duality between the Kéhler condition and the balanced condi-
tion). Also in [M], Michelsohn proved a characterization of balanced metrics in terms of
currents, which leads to the celebrated result from Alessandrini and Bassanelli (see [AB1])
showing that the class of compact balanced manifolds is closed under proper modifications
(condition not satisfied by the class of Kéhler manifolds). Moreover, balanced metrics
ended up being central in many interesting currently open problems, such as the conjecture
from Fino and Vezzoni (see [FV]), regarding the coexistence of balanced and pluriclosed
metrics - described by the condition 99w = 0 - on compact non-Kihler manifolds, and the
Gauduchon conjecture for balanced metrics (see [Tos] and [STW], in which was solved
in its original version for Gauduchon metrics - identified by the condition 90w ™! = 0,
which weakens the balanced condition - posed by Gauduchon). Moving instead on the cur-
vature aspect, there are several known notions of special metrics in the non-Kéhler world
such as Chern-Ricci flat metrics, Bismut-Ricci flat metrics (which in the balanced case are
equivalent to Chern-Ricci flat metrics, see [Al]), Chern-Einstein metrics and many more.
As we will see, a class of metrics on which we will be focusing is the one of Chern-Ricci
flat balanced metrics. Our interest towards said metrics comes actually from the realm
of Calabi-Yau geometry. Indeed, for a not necessarily Kihler Calabi-Yau manifold (i.e. a
complex manifold endowed with a holomorphic volume form) it was introduced by Hull
and Strominger (respectively in [Hu] and [S]) a system coming from heterotic superstring
theory known as the Hull-Strominger system whose solutions have proved to be extremely
hard to construct (see [GF] for a full presentation of the system and some known solu-
tions, together with several other references such as [AGF], [FuY], [LY3], [P], [TY] and
the very recent [CPY?2], [FeY] for the invariant case, [PPZ] for a flow approach, and the re-
cent moment map picture from [GFGM]). The problem of solving this system, apart from
its physical meaning, carries great geometric interest, since it generalizes the Calabi-Yau
condition to the non-Kéhler framework, and it holds a central role in the geometrization
conjecture for compact Calabi-Yau threefolds known as Reid’s Fantasy (see [R]). This last
conjecture, in particular, states that all compact Kéhler Calabi-Yau threefolds can be con-
nected through a finite number of conifold transitions (introduced by Clemens and Fried-
man, see [F]). These framework motivates further our interest towards Chern-Ricci flat
balanced metrics, since it is directly related to one of the equation of the Hull-Strominger
system, namely the conformally balanced equation, which on a compact Calabi-Yau man-
ifold (X, ) - where Q is the holomorphic volume form - is an equation for hermitian
metrics w given by d(||Q||.w™ ) = 0 which is clearly satisfied by balanced Chern-Ricci
flat hermitian metrics.

The main goal of this thesis is to construct examples of balanced metrics satisfying
some curvature conditions, in the attempt of constructing good candidate canonical met-
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rics for the non-Kihler setting. The approach focuses on the use of gluing techniques -
which, as far as we know, were never used before in the non-Kihler setting to combine
cohomological and curvature conditions (in [FLY] a gluing approach was used to construct
balanced metrics on conifold transitions) - and through symmetries in the homogeneous
case.

Regarding the gluing approach, our first result - which constitutes the main theorem of
the paper [GS] - is a construction for Chern-Ricci flat balanced metrics on the crepant res-
olutions of certain non-Kéhler Calabi-Yau orbifolds endowed with a singular Chern-Ricci
flat balanced metric, hence an adaptation to the balanced setting of the Kiimmer construc-
tion from Biquard and Minerbe in [BM]. The statement of this result is the following, and
it is proved in Chapter 2.

Theorem (2.0.1). Let (M, &) be an n-dimensional non-Kéhler Calabi-Yau orbifold with
a finite family of isolated singularities, endowed with w a singular Chern-Ricci flat bal-
anced metric, and let M be a crepant resolution of M. Then M admits a Chern-Ricci flat
balanced metric w such that

/i:j k

@n ] = [+ (<) A3 S e PDE)

i=1 j=1
where PD|E’] denotes the Poincaré dual of the class [Ej).

This results hence produces many new examples of Chern-Ricci flat balanced metrics
and shows that under crepant resolutions they behave as Kéhler Ricci-flat metrics; also,
our result takes a first step towards solving the problem proposed by Becker, Tseng and
Yau in (Section 6 of) [BTY], about extending orbifold solutions of the Hull-Strominger
system through crepant resolutions. A natural question that arises from this construction,
in the setting of the Hull-Strominger system and Reid’s Fantasy, is if this strategy can be
adapted to the case of singular threefolds with a finite family of ordinary double points
aiming (in some sense) towards "reversing the arrow" in the construction done by Fu, Li
and Yau in [FLY] and Collins, Picard and Yau in [CPY1]. Our strategy in this scenario
unfortunately carries a complication that is hidden in the asymptotic behaviour of the
standard Calabi-Yau metric w,, (introduced by Candelas and de la Ossa, see [CO]) on
the small resolution of the standard conifold. We are however able to achieve some partial
result, which is also part of [GS], and its proof is presented in Chapter 3, together with the
difficulties arising in the gluing approach, along with a discussion on a gluing attempt to
understand if the metric produced in the result below might make the holomorphic tangent
bundle into a slope-stable bundle. The result is the following.
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Proposition (3.0.1). Let (M,&) be a smoothable projective Kiihler Calabi-Yau nodal
threefold (with w a singular Calabi-Yau metric), and let M be a compact (not necessarily
Kdihler) small resolution of M. Then M admits a balanced approximately Chern-Ricci flat
metric w such that

[w?] = [@°] + ' [P"].

Hence, despite not being able to produce a Chern-Ricci flat balanced metric, we con-
struct a very explicit family of balanced metrics that are approximately Kéhler and approx-
imately Chern-Ricci flat, which can be extremely helpful to study the Hull-Strominger
system on the considered small resolutions.

The third and last gluing result is instead focused on Chern-scalar constant balanced
metrics, as an attempt to extend to the balanced case the celebrated result from Arezzo and
Pacard (see [AP] and [Sz]); it is a joint work with Elia Fusi and its proof is given in Chap-
ter 4. Our interest towards constructing metrics with this curvature property comes from
their importance in the Kéhler setting, where they have been central in the last decades,
fueled by the famous Yau-Tian-Donaldson conjecture. The statement of the theorem is the
following.

Theorem (4.0.1). Let M be a compact complex manifold of dimension n, endowed with
w a Chern-Ricci flat balanced metric. Then, the blowup M at a point v € M admits
Chern-scalar constant balanced metric w such that

" ae = (67 Yac + (<1 @)

Moving instead to the homogeneous realm, our work focuses on searching for bal-
anced metrics in the class of semisimple real non-compact Lie groups and on their com-
pact (non-Kihler) quotients by a cocompact lattice, and it is joint work with Fabio Podesta,
and it is all contained in the paper [GiPo]. The reason why we focus on the non-compact
semisimple case is because, while it appears that, despite invariant complex structures on
semisimple (reductive) Lie algebras being fully classified in [Sn] (after the special case of
compact Lie algebras had been considered by Samelson ( [Sam]) and later in [Pi]), they
have never been deeply investigated from this point of view. In contrast, the case where the
Lie group is compact is fully understood, as in this case it is very well known that every
invariant complex structure can be deformed to an invariant one for which the opposite
of the Cartan-Killing form is a pluriclosed Hermitian metric h, i.e. it satisfies 90wy, = 0.
Moreover it has been proved in [FGV] that a compact semisimple Lie group does not carry
any balanced metric at all, in accordance with the conjecture from Fino and Vezzoni. More
specifically, in this work we have focused on a large class of simple non-compact real Lie
algebras g, of even dimension, namely those which are of inner type, i.e. when the maxi-
mal compactly embedded subalgebra £ in a Cartan decomposition of g, contains a Cartan
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subalgebra. In these algebras we construct standard invariant complex structures ( named
regular in [Sn]) and write down the balanced condition for invariant Hermitian metrics.
A careful analysis of the resulting equation together with some general argument on root
systems allows us to show the existence of a suitable invariant complex structure and a
corresponding Hermitian metric satisfying the balanced equation, and having vanishing
Chern-scalar curvature. Our result is the following.

Theorem (5.0.1). Every non-compact simple Lie group G, of even dimension and of inner
type admits an invariant complex structure J and w an invariant balanced J-Hermitian
metric. Moreover, if T is a cocompact lattice, the quotient M = T'\G,, inherits the balanced
structure.

The existence of cocompact lattices is guaranteed by Borel’s Theorem, stating that
every semisimple Lie group G, admits a cocompact lattice I'. As a consequence of the
theorem and with some further work we also obtain the following proposition.

Proposition (5.0.2). Let G, be a non-compact simple group of even dimension and of
inner type together with a co-compact lattice I' C G,. If M = I'\G, is endowed with a
standard complex structure and a Hermitian balanced metric h, then the Chern Ricci form
p of h never vanishes and the Kodaira dimension k(M) = —oc.

We note here that the resulting metrics come in families and moreover the same kind
of arguments can be applied to show the existence of balanced structures on quotients
Go/S, where G, is any simple non-compact Lie group of inner type of any dimension
and S is a suitable abelian closed subgroup. It is also significant to highlight that, as a
consequence of the theorem, we obtain that the compact quotients constructed have non-
vanishing firs Bott-Chern class, hence giving a nice class of spaces such that ¢; (M) = 0
but ¢P¢ (M) # 0.

Our second result concerns the non-existence of pluriclosed metrics on the compact
quotients of the complex manifolds we have constructed in Theorem 5.0.1. Namely, we
prove the following

Theorem (5.0.3). Let G, be a non-compact simple even-dimensional Lie group of inner
type endowed with the invariant complex structure J as in Theorem 5.0.1. If T" is a co-
compact lattice of G, then the complex manifold (M, J) with M = I'\G,, does not carry
any pluriclosed metric.

This result is in accordance with the above mentioned conjecture by Fino and Vezzoni,
that has been already verified in several cases, and in some sense reflects a kind of dual-
ity between the compact and non-compact case, switching the existence of balanced and
pluriclosed Hermitian metrics.
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Structure of the thesis

In Chapter 1, we give a general discussion on canonical metrics in complex geometry.
In particular, after briefly describing the Kihler case, we see how the it suggests the ap-
proach in the non-Kihler setting, and recall some of the main families of special metrics
in non-Kihler geometry and their interactions, focusing in particular on balanced met-
rics. We also shortly recall the Hitchin-Kobayashi correspondence in the non-Kihler case,
and conclude with a discussion on the Hull-Strominger system, involving several concepts
introduced through the chapter.

In Chapter 2, after giving examples, we present the first step of our work, consisting of
the construction of a balanced metric on the crepant resolution. More specifically we wish
to work on orbifolds M whose singular set is made of a finite number of isolated singular-
ities admitting crepant resolutions, and are endowed with a balanced Chern-Ricci flat sin-
gular metric w. Then, performing a cut-off on the singular metric to the flat one around the
singularities, together with what it is known on orbifold singularities (i.e. Joyce’s theory
on ALE spaces) and its crepant resolutions to build, with a gluing construction (inspired
by, for example, [AP], [BM] and [J]), Chern-Ricci flat balanced metrics on the crepant res-
olutions of the orbifold. The strategy of the proof consists of two main steps: (1) a metric
"rough" gluing between the singular Chern-Ricci flat balanced metric w with the (rescaled)
Joyce’s ALE metrics w4 g (that are Kédhler Calabi-Yau metrics on the crepant resolution
of the singularity model, see [J]), and (2) an Implicit Function Theorem deformation ar-
gument, where the deformation preserves the balanced class (introduced in [FWW], here
chosen with a particular ansatz) and all the analysis is performed in suitable weighted
Holder spaces, in order to obtain the proof of Theorem 2.0.1. By the way, the choice of
the deformation shows also that on this class of manifolds a Calabi-Yau-type Theorem for
balanced metrics holds for some classes in the balanced cone.

In Chapter 3, we take a look at the case of Ordinary Double Points on threefolds, walk
through the gluing process from Chapter 1 to produce again an approximately Chern-Ricci
flat balanced metrics, obtain Proposition 3.0.1, and discuss the difficulties that arise if we
try to repeat the deformation argument in this case. We also describe an attempt to adapt
Collins-Picard-Yau’s approach in [CPY 1] to obtain Hermite-Einstein metrics with respect
to the approximately Chern-Ricci flat balanced through a gluing process, but we again
meet difficulties related to the ones found to construct Chern-Ricci flat balanced metrics.

In Chapter 4, we consider the case of blowups of Chern-Ricci flat balanced metrics, and
show Theorem 4.0.1, repeating the strategy in Chapter 2 with the necessary adaptations -
mostly with the substitution of Joyce’s ALE metrics with the Burns-Simanca metric on the
bubble - that they always admit Chern-scalar constant balanced metrics.

Finally, in Chapter 5, we first review basic facts on simple real non-compact Lie al-
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gebras with invariant complex structures and we consider a class of invariant Hermitian
metrics for which we write down the balanced condition in terms of roots. Then we prove
our main result, namely Theorem 5.0.1, in several stages: ee first rewrite the balanced
equation in terms of simple roots and then the key Lemma 5.2.2 allows us to select an in-
variant complex structure so that the relative balanced equation admits solutions. We then
move on to prove Theorem 5.0.3 by using the properties of the Weyl basis for root spaces,
and conclude by proving Proposition 5.0.2.



Chapter 1

Canonical metrics in complex geometry

As highlighted in the introduction, the study of special metrics in geometry has al-
ways been at the center of the research in the field, as said metrics arise as a natural tool
to geometrize classes of manifolds by helping describe their moduli spaces. In complex
geometry, the class of manifolds that have been most investigated in this direction is the
class of Kéhler manifolds, for which many important and deep results have been obtained
through the years. Hence, in this preliminary chapter, we shall first recall what is known
in the Kéhler case, and then move on to the non-Kéhler case, describing how the many
results from the Kéhler world have somehow inspired and guided towards the definitions,
the results and the conjectures that are currently the most studied in non-K#hler geometry,
focusing in particular on the ones on which the work of this thesis builds on.

Throughout this chapter, (M, J,w) will be an n-dimensional complex manifold with
J an integrable almost-complex structure and w (the fundamental form associated to g) a
hermitian metric.

1.1 Kaihler geometry

We shall start with a definition.
Definition 1.1.1. The metric w is said to be Kdhler if it holds dw = 0.

The reason why this metrics have been studied so much through time is clear by the
many interesting characterizations that they have, which portray them as metrics with re-
ally special properties. For the various basic results and properties we will recall in this
section, the references will always be [Bes] and [Sz], unless differently stated.

The first characterization can be given without recalling any other object, stating that
in each point, a Kdhler metric osculates the flat metric at second order.

13
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Proposition 1.1.2. The metric w is Kdhler if and only if for every p € M there exist
coordinates z; centered at p such that

9;%(2) = 05 + O(|2*),
where O(|z|?) denotes a function decaying to zero at least quadratically.

The special coordinates are usually called geodesic coordinates or normal coordinates,
and happen to be very useful for computations and gluing constructions.

In order to give another significant characterization, we shall denote with V" the
Chern connection of associated to w for (M, J). Then we can recall:

Proposition 1.1.3. A metric w is Kdahler if and only if V" = V€, where V*C is the
Levi-Civita connection of w, i.e. if and only if V" has vanishing torsion tensor.

This result essentially tells us that the hermitian and riemannian geometry of Kéhler
manifolds coincide, hence revealing a deeper interaction between the complex structure
and the riemannian structure. In particular, it shows a compatibility of the riemannian cur-
vature tensor with the complex structure, and hence tells us that it is still highly interesting
in the Kihler setting to study the properties of said tensor the same way is done in rieman-
nian geometry. One particular problem becomes then natural to be considered in Kéhler ge-
ometry, that is the search for Einstein metrics, that in Kdhler geometry are usually referred
as Kdhler-Einstein metrics. Kdhler-Einstein metrics have been central in Kédhler geometry,
as they proved to be really a class of special metrics in the sense we discussed, thanks to
the following celebrated results, which were originally proved in [A], [Y], [CDS], [Til].

Theorem 1.1.4 (Aubin-Yau, Calabi-Yau, Chen-Donaldson-Sun, Tian). Let M be a com-
pact Kihler manifold and let c1(M) be its first Chern class. Then

(i) if c1(M) < 0 we can always find a Kdihler-Einstein metric in ¢, (M),

(ii) if c1(M) = 0 we can always find a Kihler Ricci-flat (which is Kdihler-Einstein)
metric in c1(M);

(iii) if c;(M) > 0, M admits Kdhler-Einstein metrics if and only if (M,—Kyy) is K-
polystable.

For the proof of (i) and (i), the main idea (given by Calabi, which he used to prove
uniqueness of Kihler-Einstein metrics in each given Kéhler class) is to rephrase the prob-
lem as a complex Monge-Ampére equation, and this can be achieved using a highly signif-
icant consequence of the existence of Kidhler metrics, known as the 00-Lemma.



CHAPTER 1. CANONICAL METRICS IN COMPLEX GEOMETRY 15

Lemma 1.1.5. On (M, w) a compact Kéihler manifold, every d-exact form is also O0-exact.

This Lemma ensures us that each Kéhler class is parametrized by real valued smooth
scalar functions, hence searching solutions to a differential equation inside a Kéhler class
can be reduced to a differential equation for scalar functions instead of tensors. As a final
note, it is important to highlight the fact that the 90-Lemma is not a characterization of
the existence of Kéhler metrics, and it was shown that there exist spaces on which the
00-Lemma holds, but do not admit Kéhler metrics (see [An], Section 2.1.3). Despite this
fact, non-Kihler manifolds on which the 99-Lemma holds are quite rare, and as of today
their existence does not correspond to the existence of a class of metrics with some special
property, hence when we will focus on studying certain classes of non-Kahler metrics, we
will not have the Lemma available, hence we will have to deal with the complications dued
to its absence.

Regarding instead part (i7i), the problem was originally referred to as the Yau-Tian-
Donaldson conjecture, which was initially suggested by Yau, who conjectured the ex-
istence of an algebro-geometric stability condition for Kihler-Eisntein metrics to exist
in the case of Fano manifolds; as a response, Tian introduced the concept of K-stability
(in [Ti]) based on Mabuchi’s K-energy functional, which was later reformulated by Don-
aldson (in [D1]) in a purely algebro-geometric way. While this original statement of the
conjecture has been solved (by Chen, Donaldson and Sun in [CDS] and independently by
Tian in [Til]), the conjecture has been extended to the case of constant scalar curvature
Kihler (cscK) metrics, and of today it represents one of the main research topics in Kéhler
geometry.

Conjecture 1.1.6 (Yau-Tian-Donaldson). A smooth polarised variety (M, L) admits cscK
metrics in ¢1(L) if and only if it is K-polystable.

It is signifcant to add that cscK metric are actually a particular case (the same as
Kiéhler-Einstein metrics are a particular case of cscK metrics) of a larger family of metrics
satisfying a curvature condition, known as extremal Kdhler metrics, introduced by Calabi
in [C], as critical points of the Calabi functional.

We will now move on to the non-Kihler setting, and we will see how the Kéhler setting
that we briefly presented above, guides the research for canonical metrics.

1.2 Special non-Kihler metrics

In the non-Kéhler world, the first challenge encountered is to establish how to identify
a metric as special. While there is no (apparently) natural choice for such metrics, if we
look at the Kéhler case we can make out some properties that special metrics should have;
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in particular, we can conclude that a metric, in order to be a good candidate special metric,
needs to satisfy

* a cohomological condition (e.g. the Kihler condition), and

* a curvature condition (e.g. the Einstein condition).

1.2.1 Cohomological conditions

If we focus first on the cohomological aspect, it is natural to search for a condition that
is always satisfied by Kéhler metrics, hence a generalization of the Kihler condition. In
this direction, many notions have been introduced through the years, thus we shall recall a
few of the more interesting ones.

Definition 1.2.1. A metric w is called
e balanced if dw"' = 0 (introduced in [M]) ;

* Gauduchon if 00w™™! = 0 (introduced in [Ga2]);
e pluriclosed or strong Kdhler with torsion (SKT) if 90w = 0 (introduced in [Bi]);
o astheno-Kéihler if 900w™ 2 = 0 (introduced in [JY]);

* locally conformally Kéihler (LCK) if for all p € M, it exists a neighborhood U, C M
of pand f : U, — R smooth such that w = e/, with n a Kihler metric on U,
(introduced in [Lib1] and [Lib2]).

The main reason why so many notions popped out through the years, is that many
of these generalize independently the Kéhler condition, in the sense that combining this
conditions on a metric (or on a manifold) might force the metric (or the manifold) to be
Kihler, hence we shall spend some time to discuss what is known about the relations
between the above conditions. First of all:

Remark 1.2.2. 1t is straighforward to notice that every balanced metric is Gauduchon.
As a consequence, Gauduchon’s Théoréeme de [’excentricité nulle, tells us that in each
conformal class, if a balanced metric exists, it is unique up to homoteties.

Now, in order to further compare this metrics, we shall recall the following definition:
Definition 1.2.3. We call rorsion 1-form of the metric w the 1-form
0, = A,dw,
or equivalently, the 1-form satisfying the equation

dw™ =0, A"
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Remark 1.2.4. The torsion 1-form’s definition immediately yields the following two ex-
plicit expressions
0 =A,dw=Jd"w.

The torsion 1-form is useful for the following characterization, from which is once
again clear the implication between the two.

Proposition 1.2.5. A metric w is
* Gauduchon if and only if 0,, is co-closed;
* balanced if and only if 6, vanishes.

This characterization is also useful to compare balanced metrics with LCK metrics,
indeed the latter have a similar characterization that is

Proposition 1.2.6. The metric w is LCK if and only if it exists a closed 1-form 6 such that
dw =0 N\ w.

The form 6 is called Lee form.

While it may seem confusing the choice of the letter § to indicate also the Lee form,
it is actually natural as the two objects coincide (up to a constant factor) when they both
exist. Hence it easily follows that

Proposition 1.2.7. If a metric w is both balanced and LCK, then it is Kdhler.

There is also a very similar statement about balanced and SKT metrics, which instead
has a more delicate proof, that is

Proposition 1.2.8 ( [Al]). Let w be a hermitian metric on an n-dimensional complex man-
ifold. Then it holds

(i) (100w, w*)y = |02 — |0w|Z + d*6;
(ii) |0 Awlf = (n—DIOL
In particular, it follows that

* if w is both balanced and pluriclosed, then w is Kdhler;

* ifw is both SKT and LCK, and n > 3, then w is Kdhler.
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Proof. (1) Since in our work in the following chapters we will be using the formula
only in the balanced case, we shall prove it for w balanced, making the computation
much more straightforward (the following proof was done by Popovici in [Pop]).
Indeed, it is easy to notice that

n n—3

.AaE o, W . =

(100w, w >wm = —i0w N\ Ow A =Rk

Moreover, when w is balanced, Remark 1.2.4 and Proposition 1.2.5 tell us that Ow is
a primitive form, hence the formula for the Hodge-star operator of primitive forms

(see [Vo]) gives us that
n—3

w
(n—3)!
from which combined with the previous formula gives

*Ow = 10w N

(100w, w?), = —|0w|?.

(ii) Using the representation of s[(2,C) on the algebra of complex differential forms,
and the fact that A, vanishes on 1-forms, we get

0 A w|? = (L6, LO), = (A, LO,0)y = (n—1)|0.
O

This type of results, and the many constructions of these metrics in the literature, nat-
urally lead to extend the compatibility problem to the complex structure, that is: given a
complex manifold (), J) not admitting Kéhler metrics, can we find two metrics - com-
patible with J - each one satisfying some special cohomological property? This type of
problems have been central in non-Kihler geometry, as they could lead to a much better
understanding of the non-Kihler world, leading to some sort of orthogonal decomposi-
tion of said world, hence they are extremely interesting. A very recent result in this sense
involves a special subclass of LCK manifolds introduced in [V].

Definition 1.2.9. An LCK metric is called Vaisman if its Lee form is Levi-Civita parallel.
Then it holds:

Theorem 1.2.10 (Angella, Otiman [AO]). A compact Vaisman manifold admitting SKT
metrics or astheno-Kdhler metrics or balanced metrics admits also Kdhler metrics.

This type of results however tend to be quite hard to achieve, and one of the most
interesting compatibility problem is still open (originally proposed in [FV]), that is
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Conjecture 1.2.11 (Fino, Vezzoni). A compact complex manifold admitting a balanced
metric and a SKT metric admits also Kdhler metrics.

Many examples constructed in the literature have been proved to satisfy the conjec-
ture (in Chapter 5 we will show that it holds true for the class of balanced manifolds we
have constructed with Podesta), however the result is still far from being proved, even in
restricted classes of compact complex manifolds.

As opposed to this results, it was also shown that some of the above conditions can
coexist on a compact complex manifold, thus we shall summarize a few of them in the
following remark.

Remark 1.2.12. Tt exists a compact complex manifold (M, J) without Kahler metrics,
admitting

e SKT metrics and Gauduchon metrics, which can also be satisfied at the same time
by only one metric, for example every SKT left-invariant metric is also Gauduchon;

* balanced metrics and astheno-Kéahler metrics, such as in [FGV] and [LUJ;

e SKT metrics and LCK metrics, for example the Inoue-Bombieri surface; it is how-
ever expected (see Remark 3.2.1 in [O]) that in dimension at least three, the existence
of this two type of metrics forces the existence of Kédhler metrics.

It is thus clear how wild the non-Ké&hler world appears, and how difficult it is to estab-
lish which class of metrics might be the "best metrics".

1.2.2 Curvature conditions

As anticipated at the beginning of the section, the second class of conditions that can
help identify a metric as special are curvature conditions. However, the non-Kéhler setting
presents itself immediately with a complication: there is no canonical choice of connection
as in the Kihler case; indeed we can find a full line of connections compatible with both
the metric and the complex structure, usually referred to as canonical 1-parameter family
of hermitian connections, and said connections are sometimes called Gauduchon connec-
tions, as they were introduced by Gauduchon in [Ga4]. The definition is the following.

Definition 1.2.13. The canonical 1-parameter family of hermitian connections on (M, J, w)
is given by

t—1
V=V 4 — ([@w+M(dw), tER,
where 91 is the involution M (B)(X,Y, Z) := B(X, JY, JZ).
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While it is clear that if w is Kéhler, then this line reduces to a point, consisting of the
Levi-Civita connection, when the metric is not Kihler, all this connections are different
choices that extend the Kihler case to the non-Kihler setting. Thus, a natural question to
ask is whether there is a best choice of connection for an established cohmologically spe-
cial class of metrics. As we will see, our focus will be centered on balanced metrics, and
when it comes to these metrics, the connection that is usually considered is the Chern con-
nection (corresponding to ¢ = 0), and sometimes also the Strominger-Bismut connection
(corresponding to t = —1).

We shall now spend a little bit of time recalling what is known about the curvature
tensor of the Chern connection, in order to establish what conditions appear as effective to
identify a canonical metric.

The first thing to recall is that the Chern connection is identified by the torsion being
of type (1,1), hence not necessarily zero, thus, when the metric is not Kéhler we lose
the symmetries that the vanishing of the torsion gives, and hence there are four possible
ways to trace the Chern curvature tensor ©. However, we will focus just on two out of the
three, since they are the ones that actually have a significant geometric meaning. Following
[ACS2], we recall

Definition 1.2.14. If © = ©,5; is the Chern curvature tensor of w, we call
* first Chern-Ricci form (or just Chern-Ricci form) the trace taken on the third and
fourth indices, i.e.

Ric"(w) e gkl@gki,
which extends globally;

* second Chern-Ricci form the trace taken on the first and second indices i.e.

loc.

S(w) = g7 05,
which also extends globally.

Remark 1.2.15. The first Chern-Ricci form is always closed and represents the first Bott-
Chern class of the manifold, hence it presents itself as the "nearest" generalization of
the Kédhler-Ricci form to the non-Kéhler setting, which is the reason why we just refer
to it as Chern-Ricci form. However, we will see that also the second Chern-Ricci form
carries important geometric information, but more related to the bundle geometry of the
holomorphic tangent bundle, which we shall discuss in the next section.

This definitions lead naturally to a rephrasing, in terms of the Chern connection, of the
Einstein metrics problem, hence we can define:
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Definition 1.2.16. A metric w is called
e Chern-Einstein if Ric™*(w) = \w for some A € R;
* Hermite-Einstein if S(w) = Aw for some A € R.

Remark 1.2.17. Since the Chern-Ricci form is closed, it is clear that a Chern-Einstein
metric with A # 0 is Kéhler, thus the only Chern-Einstein metrics that are significant in
non-Kéhler geometry are the Chern-Ricci flat ones. A natural generalization could be to
consider a weakened version of Chern-Einstein metrics, where ) is a real valued function,
but Angella, Calamai and Spotti showed in [ACS?2] that every weak Chern-Einstein metric
with A\ not identically zero is conformal to a Kéhler metric, showing that even with this
generalization, the only significant case remains the Chern-Ricci flat one.

The search for Chern-Ricci flat metrics has been quite active, and results in this direc-
tion where obtained for example by Tosatti and Weinkove in [TW], and by Székelyhidi,
Tosatti and Weinkove in [STW], where they where able to obtain Chern-Ricci flat Gaudu-
chon metrics on any compact complex manifold with vanishing first Bott-Chern class, i.e.
metrics that satisfy both a cohomological condition and a curvature condition, hence met-
rics that present as "candidate" canonical non-Kéhler metrics. As we will see in the next
chapter, our interest will be centered on Chern-Ricci flat balanced metrics, which satisfy
a stronger cohomological constraint, and hence give a better hope of having a finite di-
mensional moduli space (which Chern-Ricci flat Gauduchon metrics don’t have), together
with the relation to the Hull-Strominger system, which we shall discuss in the last section
of this chapter.

As it happens in Kéhler geometry, it is also interesting to consider a notion of scalar
curvature, and luckily, there is a natural one since tracing both the Chern-Ricci forms lead
to the same scalar function, hence

Definition 1.2.18. The Chern scalar curvature of a metric w is

loc.

ch oc ij Kkl -
s (w) == gYg Gijklv

w)
and extends globally. It can also be written globally as

W) = Ric(w) A w”_l.

ch
s o
Thus, since csck metrics are central in the study of canonical metrics in Kihler ge-

ometry (as we recalled in the first section , we are interested in combining this curvature
condition together with a cohomological one.
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While the problem of prescribing the Chern scalar curvature has been studied with
significant results in [ACS1] and [Fus], its combination with a cohomological condition
does not have a very wide literature (a partial result in this sense was obtained by Shen
in [Sh], with metrics satisfying a condition strenghtening the SKT one), hence in Chapter 3
and Chapter 5 we will present two constructions to obtain families of Chern scalar constant
metrics which are also balanced.

1.3 Holomorphic vector bundles

As anticipated in the previous section, we will extend our discussion about canonical
metrics to vector bundles, and our main reference will be [LT]. This case appears as inter-
esting and natural when studying canonical metrics on manifolds, for example, as hinted
at in the previous section, second Chern-Einstein metrics correspond actually to Hermite-
Einstein metrics on the holomorphic tangent bundle. One further topic where metrics on
bundles are crucial, is the study of the Hull-Strominger system, which - as we will see
in the final section of this chapter - is a system of equations aiming to produce canonical
metrics on non-Kdhler Calabi-Yau manifolds, generalizing the Kihler Calabi-Yau setting.
With this in mind, shall now recall some interesting facts about these bundles and their
canonical metrics.

In this section, (£, Jx) will be a holomorphic vector bundle on a hermitian manifold
(M, J,w), endowed with a hermitian bundle metric h.

Definition 1.3.1. A metric A on £ is said to be Hermite-Einstein with respect to w if
A Fy, = cldg, with ¢ € R, where F}, is the curvature of the Chern connection of h.

Remark 1.3.2. It is clear that if we choose £ = T'M with the standard holomorphic
structure we get exactly the definition of second Chern-Einstein.

Remark 1.3.3. As for the Chern-Einstein problem, it is natural to consider a weaker version
of the Hermite-Einstein equation, choosing c to be a real valued function. However, it is
easily seen that if a weak Hermite-Einstein metric exists, then it is conformal to an actual
Hermite-Einstein metric, thus it is only interesting to focus on the latter ones.

Remark 1.3.4. The constant c in the Hermite-Einstein equation, known as Einstein con-
stant, is prescribed by the Hermite-Einstein equation itself, since it always holds

2 [y (i) AW

~ rank(E) - Vol,(M)

In particular,
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» if w is Gauduchon, ¢ only depends on ¢; (E) and the metric w;

« if w is Kéhler, ¢ only depends on ¢;(E) and [w], i.e. its purely cohomological.

The Hermite-Einstein equation can also be rephrased in a gauge-theoretical way, start-
ing from the following definition.

Definition 1.3.5. A connection V on F is called Hermitian-Yang-Mills if it satisfies
g =,0
AwFV = C]dE

With this notion, we can produce a new equation for a given hermitian bundle (£, h, 0),
which can be shown to be equivalent to the Hermite-Einstein equation, that is

AwFf~5E = CIdE,

for f € G, the complex gauge group of E, where F; 5  denotes the curvature of the Chern

connection of h with respect to the compatible complex structure f - 9y = f~ 1o dgo f.
To be more specific with the equivalence, what can be shown is that for a given hermitian
bundle (E, 0, h) we can find a Hermite-Einstein metric /' if and only if we can find f € G
such that the Chern connection of (h, f-Jf) is Hermitan-Yang-Mills. It is thus common to
mix the terminology and talk about Hermite-Einstein connections or Hermite-Yang-Mills
metrics.

The existence of these metrics on holomorphic vector bundles has been thoroughly
studied in the past decades, and was at the center of a conjecture known as Hitchin-
Kobayashi correspondence, stated in the early *80s and ispired by the result for Riemann
surfaces of Narasimhan-Seshadri (in [NaSe]) and proved after a few years by Donaldson
(in [D]) and Uhlenbeck-Yau (in [UY]) in the Kidhler case, and later extended to the gen-
eral non-Kihler case by Buchdahl (in [Bu]) and Li-Yau (in [LY2]). Said correspondence,
relates the existence of Hermite-Einstein metrics to an algebro-geometric property, called
slope stability, introduced by Mumford in [Mu]. This notion was originally given only for
bundles whose bases are Kihler manifolds (and the conjecture itself was stated originally
for the Kéhler case), but it was noted that it can be extended for any manifold endowed
with a Gauduchon metric, which we can now recall.

Definition 1.3.6. For (M, w) with w Gauduchon, we define the [w" '] 4-slope of a torsion-
free coherent sheaf F the quantity
a(E) - [w" ]

rank(F)

Hlwr—1] 4 (‘F) =

We then say that a bundle £ on M is
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o [w" ] 4-slope semistable if for every subsheaf F C F it holds

P11 (F) < prpon-11, (E);
o [w" 1] 4-slope stable if for every subsheaf F C F it holds
Hiwn=114 (F) < ppn—11, (E);

o [w" Y a-polystable if
Y

with El stable and /,L[wn—l]A(EZ'> = u[wn—l]A(Ej) for all ’l,j

This extended definition allowed to extend the conjecture to the non-Kihler setting.
Moreover, it holds

Lemma 1.3.7 (Lemma 2.1.5 from [LT]). If the bundle E on (M,w) admits a Hermite-
Einstein metric with respect to w, then it admits a Hermite-Einstein metric with respect to
any metric conformal to w.

Thus, thanks to the fact that every conformal class admits a Gauduchon metric, the
Hitchin-Kobayashi correspondence makes sense for any compact complex manifold, which
- as mentioned - was proved in this general setting by Li and Yau in [LY2].

Such a result is, in analogy with the existence theorems for Kihler-Einstein metrics,
exactly the type of result highlighting the power that canonical metrics have when it comes
to classification, as the Hitchin-Kobayashi correspondence has been a crucial tool in the
study of moduli spaces of holomorphic vecotor bundles over Kéhler manifolds. However,
Hermite-Einstein metrics are not only significant in Kidhler geometry, but are also central
in problems for non-Kéhler geometry, one of which is the Hull-Strominger system, which
- as anticipated - we will discuss about in the final section of this chapter.

1.4 Balanced metrics

As previously stated, the class of cohomologically special metrics we are mostly inter-
ested in are balanced metrics, hence in this section we shall recall some important results
related to this class of metrics, as well as aspects that are highly significant to the research
work in this thesis. We shall also discuss some open problems involving balanced met-
rics, in order to motivate our interest towards this class of metrics and their importance in
complex non-Kéhler geometry.

The first property we will recall is the following characterization from [Gal].
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Proposition 1.4.1 (Gauduchon). Let (M, w) be a compact hermitian manifold. Then w is
balanced if and only if on scalar functions holds

1 —
_Aw = 0w = O,
2

where A, and O, are respectively the Hodge laplacian and the Dolbeault laplacian of w.

This condition is extremely important, as it tells us that, despite the absence of a Kéhler
metric allowing us to have the perfect environment to perform analysis on the manifold,
balanced metrics are still sufficiently special to allow us to do analysis with scalar functions
exactly as in the Kéhler case (in the following chapters, we will widely use this property).
This fact in particular gave hope that many results from Kéhler geometry achieved through
geometric analysis techniques could be obtained also in the balanced setting. Among the
others, it stands out Yau’s Theorem and its extended version to Gauduchon metrics from
Sz€ékelyhidi, Tosatti and Weinkove, which was explicitly proposed in [Tos] and it is still
an open problem.

Conjecture 1.4.2 (Székelyhidi, Tosatti, Weinkove). Let (M,w) be a compact balanced
manifold and let W € CPC(M). Then, it exists a balanced metric wy ' € [w" Y pc such
that Ric™(wy) = .

In the case where cP¢ (M) vanishes, this result goes in the direction of geometrizing

the balanced class through finding a canonical metric in said class, identified by some
curvature condition. However, it is still unknown if Chern-Ricci flat balanced metrics could
be unique, or at least have finite dimensional moduli space, in a given balanced class.
Hence the conjecture itself lies in a wider question that is

Question 1.4.3. Can we find a condition on the Chern curvature identifying uniquely a
canonical metric in a given balanced class?

Once again, this problem is still far from being solved, and it is one of the reasons
why balanced metrics appear as so interesting; in particular the ¢?“(M) = 0 appears as
particularly interesting in relation to the Hull-Strominger system.

Still regarding analytical aspects, there is also a characterization of the existence of
balanced metrics in cohomological/geometric measure theory terms, from [M].

Theorem 1.4.4 (Michelsohn). A compact complex manifold M is balanced if and only if
is homologically balanced, i.e. every non-zero d-closed (n — 1,n — 1)-current represents
a non-zero class in Hy, o( M, R).

Among the consequences of this theorem, the most significant one is the celebrated
result by Alessandrini and Bassanelli in [AB1] and [AB2], that is:
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Theorem 1.4.5 (Alessandrini, Bassanelli). The class of compact balanced manifolds is
closed under proper modifications.

In particular this shows that this weakening of the Kéhler condition makes us gain this
closure of the class, that instead does not hold for compact Kéhler manifolds, thanks to a
counterexample from Hironaka in [Hi].

If we now go back to the balanced condition in its original form, we can conclude this
section seeing that, thanks to the properties of the Hodge-* operator, it is easily seen that
balanced condition for a metric w is equivalent to

d'w =0

i.e. w is co-closed. This suggests that the balanced condition might be - in some sense -
dual to the Kéhler condition. An example of this behaviour is in the following result from
[M], showing that, while Kéhler metrics are induced on submanifolds, balanced metrics
are induced through submersions.

Proposition 1.4.6 (Michelsohn). Let M and N be compact complex manifolds.
(i) If M and N are balanced, then M x N is also balanced.

(ii) If exists f : M — N a holomorphic submersion and M is balanced, then also N is
balanced.

It is thus interesting to keep investigating balanced metrics in order to search for more
results that could confirm further this duality relation with the Kéhler condition.

1.5 The Hull-Strominger system

We will now conclude this preliminary chapter recalling the Hull-Strominger system
with a brief discussion about its meaning when it comes to canonical metrics, and its role
in motivating part of our research work. The main reference for this section are going to
be the notes [GF] from Garcia-Fernandez.

The realm in which the system lives is the one of not necessarily Kihler Calabi-Yau
manifolds (a relaxed version without this restriction was recently introduced by Gonzalez-
Molina and Garcia-Fernandez in [GFGM1] as coupled Hermitian-Einstein system), hence
we will first recall what we mean by this

Definition 1.5.1. A complex manifold M of dimension n is said to be Calabi-Yau if it
admits a non-vanishing holomorphic global section €2 of the canonical bundle K;. The
(n,0)-form (2 is called holomorphic volume form.
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It is clear that, thanks to Yau’s theorem, whenever the manifold is Kihler, this guar-
antees the existence of Kihler Ricci-flat metrics, and hence the classical notion of Kihler
Calabi-Yau manifold.

Let us now give a remark about what immediate consequences we have from the ex-
istence of the holomorphic volume, showing us in particular that it is natural to study
Chern-Ricci flat metrics on these spaces.

Remark 1.5.2. If (M, ) is a compact Calabi-Yau manifold, and w is hermitian metric on
M, it holds

121255 = (~1)" V20 A Q.
n:

This relation is extremely significant, as it implies that log ||2||., is a global 9-potential
for the Chern-Ricci form, from which it immediately follows that

« every Calabi-Yau manifold has cP¢ (M) = 0;

e every hermitian metric w is conformal to a Chern-Ricci flat metric, given by w’ :=
192",

We can now move on and recall the equations of the system.

Definition 1.5.3. Given a Calabi-Yau manifold (M, (2) and a holomorphic vector bundle
E on M, we say that the triple (w, h, Or) is a solution of the Hull-Strominger system if it
satisfies

AF, =0, F)*=0 (1.1)

A R =0, (1.2)

d*w — dlog |||, = 0, (1.3)

ddw — a(trR A R — trFj, A F),) = 0, (1.4)

where, « is a non-vanishing constant, w is a hermitian metric on M, h is a hermitian
metric along the fibers of F, Or is a holomorphic structure on the tangent bundle of M,
and R is the Chern curvature tensor of w with respect to 0.

Remark 1.5.4. Notice that if we choose (F, h) to be the holomorphic tangent bundle with
the metric w, and take w a Kihler Ricci-flat metric, we notice that this satisfies the system,
thus being a solution of the Strominger system is a condition that generalizes being Kih-
ler Calabi-Yau, making solutions to the system a promising candidate class of canonical
metrics for non-Kéhler Calabi-Yau manifolds.
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In order to understand the link between the system and balanced metrics, we shall recall
a result from Li and Yau in [LY 1] (and also Gauntlett, Martelli and Waldram in [GMW]).
In this result they show that Equation (1.5.3) is equivalent to a simpler equation involving
balanced metrics, known as conformally balanced equation.

Proposition 1.5.5. The dilatino equation is equivalent to the conformally balanced equa-
tion, i.e.
d (||9]].w™ ") = 0. (1.5)

Thus a Calabi-Yau manifold that admits solutions of the dilatino equation has to be
necessarily a balanced manifold, whence solutions to the Hull-Strominger system can be
searched on the restricted class of balanced manifolds.

Remark 1.5.6. Actually Equation (1.5) allows us to show that every Calabi-Yau balanced
manifold (M, ), dimcM > 3, always admits solutions to the dilatino equation; we can
indeed show even more, that is: every balanced metric 7 is conformal to a solution of

Equation (1.5), given by 7' = ||Q[|, /"2

Remark 1.5.7. Combining Equation (1.5) with Remark 1.5.2, we immediately see that
a balanced Chern-Ricci flat metric is always a solution of the dilatino equation. Hence,
the system fuels the interest towards this class of metrics, presenting them as possible
candidate canonical metrics.

Moreover, Equation (1.5) shows also that a solution w to the dilatino equation gives a
standard choice of a balanced class 7, given by

7= [||Q]|ow" ] € Hpe"" (M, R).

This, combined with Equation (1.2), in light of the Hitchin-Kobayashi correspondence,
gives us also a necessary condition on the bundle F, that is the 7- slope polystability,
together with ¢; (F) - 7 = 0. And necessary conditions are not over, since Equation (1.5.3),
known as the Bianchi identity, or anomaly cancellation equation, implies that necessarily

chy(F) = chy(M) € Hpz(M,R), (1.6)

where chsy denotes the second Chern character.
We shall remark that this necessary conditions were also conjectured to be sufficient,
in the case of threefolds, by Yau in [Y1]:

Conjecture 1.5.8. Ler (M,2) be a compact Calabi-Yau threefold endowed with a bal-
anced class T, and let E be a holomorphic vector bundle satisfying ¢;(E) - 7 = 0 and
(1.6). Then, if E is T-stable then (M, <), E') admits a solution to the Hull-Strominger sys-
tem.
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The conjecture is not even completely clear when M is Kéhler; indeed, when 7 is the
square of a Kihler class, it was shown by Andreas and Garcia-Fernandez in [AGF] that
the conjecture holds, and the result was recently strenghtened by Collins, Picard and Yau
in [CPY?2], where they showed that it holds while preserving the balanced class. However,
Fu and Xiao in [FX] showed that a balanced class needs not to be the square of a Kéhler
class, hence the conjecture remains open in this case, as well as in the case of non-Kéhler
manifolds.

In the direction of this conjecture, in [GF] it was proposed an intermediate step:

Question 1.5.9 (Garcia-Fernandez). Given M a compact complex manifold, T a balanced
class and p a real 00-exact (2, 2)-form. Is there a balanced metric in T such that 00w = p?

In light of Proposition 1.2.8, it is clear that we can not expect an affirmative answer
in the general non-Kihler setting, however one can hope to identify a favorable condition
that allows to answer positively to the question. Such an answer would be of great support
for Yau’s conjecture, and thus it keeps high the interest towards the study of balanced
manifolds.

We will now end this section (and this preliminary chapter) by presenting an example
of a non-Kihler solution of the system constructed by Fu and Yau in [FuY], which will be
significant for our work in the next chapter. This solution forgets about Equation (1.5.3),
and substitutes it by imposing the standard holomorphic structure on the tangent bun-
dle, making the connection the standard Chern connection of the metric; this assumption
clashes with the physical meaning of the system, but makes the problem more accessible,
and hence a useful assumption to obtain preliminary (partial) solutions to the full system.

Example 1.5.10 (Fu-Yau). The spaces on which this solutions are construct are the total
spaces of a class of torus bundles over /3 surfaces, initially constructed by Goldstein and
Prokushkin in [GP] as examples of threefolds not admitting Kédhler metrics. We then start
with (S, wg3) a K3 surfaces endowed with wys a Kéhler Calabi-Yau metric and Qg3 a
holomorphic volume form, and consider wy, w, anti-slef-dual (1, 1)-forms such that

lwi/27] € H*(S,Z).

We then take X the total space of the fibered product of the U (1) bundles identified by the
cohomology classes of w; and w-, and set # a connection on X such that i Fy = wq + wo.
With this ingredients, we get that

Q::QKg/\H

defines a holomorphic volume for X, and the metric

7 _
w:=pwgs + 59/\9
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i1s a Chern-Ricci flat balanced metric. From here, we can obtain a family of balanced
metrics with the rescaling

Wa = P (wics) + %6 A, (1.7)

where p is the fibration map. Now, if £ is a degree-zero holomorphic vector bundle on
S endowed with hg a Hermite-Einstein metric with respect to wgs, then p*E is again a
degree-zero holomorphic vector bundle over X, endowed with p*hg a Hermite-Einstein
metric with respect to w,,. Hence, for what we have observed about the equations involved,
the system reduces to just the Bianchi identity, which - when studied on the family w, -
reduces to the following Monge-Ampere equation:

2
Wk3

1
dd°(e"wgs —ae "p) + §ddcu Addu = p 5
where p is a smooth real (1, 1)-form on S, independent of u, such that
uwf(g) = (|w1|2 + |OJ2|2)W%<3 + Oé(tI'Fh A\ Fh — tI'RKg A RKg,

where Ry is the Chern curvature of wgs. Solutions to Equation (1.7) (and hence to the
system) are then given by the following result from [FuY]:

Theorem 1.5.11 (Fu-Yau). Equation (1.7) has solutions for o > 0, provided that

0= / ey = / (or? + wal?)rs — 87°0(24 — o E)).
S S



Chapter 2

Orbifolds and Chern-Ricci flat balanced
metrics

In this Chapter we will discuss the paper A Kiimmer construction for Chern-Ricci flat
balanced metrics (see [GS]), from a joint work with Cristiano Spotti. The aim lying behind
this work is to produce special non-Kihler metrics on spaces that are relevant for the Hull-
Strominger system, obtaining partial solutions to said system. The main Theorem we will
prove in this section is the following.

Theorem 2.0.1. Let (M, &) be an n-dimensional non-Kéhler Calabi-Yau orbifold with
a finite family of isolated singularities, endowed with w a singular Chern-Ricci flat bal-
anced metric, and let M be a crepant resolution of M. Then M admits a Chern-Ricci flat
balanced metric w such that
kj k
"] = [0 4 (~1) (3 Sl PD[E)

i=1 j=1

where P D[E?] denotes the Poincaré dual of the class [E).

2.1 The pre-gluing metric

Following several known gluing constructions from the literature (such as [AP], [BM],
[J] and many others), our gluing process will be made of two main parts: the construction
of a pre-gluing metric (which will be done in this section) obtained from a rough cut-off
procedure providing an approximate solution to the problem, and a perturbative argument
to obtain a genuine solution.

The goal of this section will be to prove the following:

31
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Proposition 2.1.1. Let M be a Calabi-Yau orbifold with a finite family of isolated singu-
larities, endowed with a Chern-Ricci flat balanced singular metric w, and suppose that
it admits M a crepant resolution. Then M admits w an approximately Chern-Ricci flat
balanced metric.

2.1.1 Chern-Ricci flat balanced orbifolds and their crepant resolu-
tions

Before discussing the construction, we shall establish some notations for the reminder
of the paper, and also use the occasion to briefly recall some known results from literature
to understand better the framework we will be working in.

Throughout the paper we will denote with M an n-dimensional non-Kihler Calabi-
Yau orbifold, i.e. a complex orbifold endowed with a holomorphic volume form Q, with a
finite family of isolated singularities, such that it admits a crepant resolution M.

Remark 2.1.2. A necessary condition for an orbifold to admit crepant resolutions is that
the isotropy groups corresponding to the singularities are subgroups of SL(n, C), and for
n = 3 it is also sufficient (see [J]), making it a useful criterion to search for examples.

Remark 2.1.3. The exceptional set of a crepant resolution of an orbifold singularity is
always divisiorial, i.e. in codimension 1. Indeed, it is known that orbifold singularities are
"mild", meaning that (see for example [KM]) every orbifold is normal and (Q-factorial. But
the existence of a (quasi-projective) small resolution would imply that the orbifold is not
(QQ-factorial, i.e. a contradiction.

We will also assume that M is equipped with a singular balanced Chern-Ricci flat
metric w, and thus it is worth giving examples of spaces that satisfy our assumptions, in
order to ensure that we are working on an actually existing class of spaces.

Example 2.1.4. A first, trivial example is the one of quotients of tori with isolated orbifold
singularities of the form C3 /Zs. In these cases, we know that the quotient is equipped with
a singular Kéhler Calabi-Yau metric, and D. Joyce (in [J], for example) has shown that
also their crepant resolutions admit Kéhler Calabi-Yau metrics, which can be obtained via
gluing construction in the same fashion as the one we are about to present. However, since
every Kéhler Ricci-flat metric is also balanced Chern-Ricci flat, we can still consider these
spaces in our class, and - as we will se ahead - our construction does not ensure that the
Chern-Ricci flat balanced metric obtained need to coincide with the Kéhler Calabi-Yau,
since the cohomology class preserved is going to be the balanced one, on which there are
no known uniqueness results.

A possible variation on this argument could be to apply the (orbifold version of) the
result of Tosatti and Weinkove in [TW 1], which ensures us that we can find a Chern-Ricci
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flat balanced metric on the singular quotient of the torus, and thus provides a suitable
metric for our construction.

Example 2.1.5. A more interesting example can be obtained on torus bundles on some
algebraic K3 surfaces. Indeed, Goldstein and Prokushkin produced in [GP] a family of
T? bundles on K3 surfaces that do not admit Kihler metrics; and they showed that these
threefolds can be endowed with a balanced Chern-Ricci flat metric of the form

i
77:7T*77K3+§6'/\(9,

where 7,3 is the Calabi-Yau metric on the K3, and 6 is a (1, 0)-form arising from the duals
of the horizontal lift of the coordinate vector fields on the K'3. These bundles X inherit
also a non-Kihler Calabi-Yau structure, i.e. a holomorphic volume form given by

Q=QrsN0.

Now, while these are the building blocks of the Fu and Yau solutions for the Hull-Strominger
system (see [FuY]), Becker, Tseng and Yau constructed (in [BTY], Section 6) a Z3 action
on a subclass of the aformentioned torus bundles for some special choices of algebraic
K 3’s, of the form

p: (2’072’1,22,23,2'472’) — (C2207C2217C22,2’3,Z4,CQZ),

with ¢ a cubic root of unity different from 1, and where the z;s are the homogeneous
coordinates of the P? in which the K3 lies, and z is the fiber coordinate. This action,
despite not preserving the Calabi-Yau structures of the base and the fibres, it preserves (2,
together with the Chern-Ricci flat balanced metric 7, producing an orbifold with 9 isolated
singularities of the form C?/Zs, i.e. exactly from the family of orbifolds we are interested
in working with.

Example 2.1.6. A further example comes from an action of Z, on the Iwasawa manifold,
constructed by Sferruzza and Tomassini in [ST]. In said paper they showed that the action
of Z, = (o) on C3, where

o(z1, 20, 23) 1= (121,129, —23),

descends to the quotient corresponding the (standard) Iwasawa manifold, producing 16
isolated singular points. Moreover, if we recall the standard coframe of invariant (with
respect to the Heisenberg group operation) 1-forms

p1:=dz, @y :=dz, @3:=dz— zndz,



CHAPTER 2. ORBIFOLDS AND CHERN-RICCI FLAT BALANCED METRICS 34
this can be used to construct a balanced metric

i
wi=S(er Apr+oa Aps + o3 A ws),
which descends to a Chern-Ricci flat balanced metric on the Iwasawa manifold, and is
clearly invariant through o, as well as the standard holomorphic volume of C2. Thus the
quotient of the Iwasawa manifold through this action gives again an orbifold satisfying our
hypotheses.

Our aim is to work on the crepant resolution M, and obtain via a gluing construction
(using Joyce’s ALE metrics on the bubble, see [J]) a family of Chern-Ricci flat balanced
metrics from (M ,@). In the following we will focus on the construction of the pre-gluing
metric on M, that will be an approximately Chern-Ricci flat balanced metric. To make the
presentation more clear, we will divide the process into three natural steps, and for sim-
plicity assume that M has just one singularity (the process obviously applies analogously
to the case in which the singularities are any finite number). We are also going to compute
explicitly a holomorphic volume form for M (starting from the one on M), since such
form is a crucial ingredient for the deformation argument in the following section, as it
can be used to obtain a global expression for the Chern-Ricci potential.

2.1.2 Pre-gluing - Step 1

We first glue together the metric w with the flat metric w, centered at the singularity
so that the resulting metric is balanced. This follows actually from the following remark,
which holds for any balanced manifold and recovers a weaker version of the strategy used
with normal coordinates in the Kihler case.

Lemma 2.1.7. Given (X, n) an n-dimensional balanced orbifold with isolated singulari-
ties, for every v € X it exists a sufficiently small € > 0, coordinates z centered at x and a
balanced metric 1. such that

Jwe if 2| <e
T 2

where w, is the flat metric around x, and such that |n.|,, < ce on {e < |z] < 2¢}.

Proof. 1f (X, n) is an n-dimensional balanced orbifold and we fix any point z € M, we
can choose coordinates z around x such that, in a sufficiently small neighborhood of the
point, it holds

N =W, + O(|Z|),
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where w, is the flat metric in a neighborhood of z in the coordinates z. But now this means
that if we take the n — 1 power we obtain

nn—l _ wg—l + a,

where « is a closed (n — 1,n — 1)-form (thanks to the facts that 7 is balanced and w, is
Kihler) such that & = O(]z|). Thus if we restrict to a simply connected neighborhood of
x, it exists a form [ such that

a=dp,

and it can be chosen to be such that 5 = O(|z|?), since if we decompose 3 = S + f3,,
where (3 is the component depending at most linearly on |z| and f3, is the quadratic one,
the fact that o = O(|z|) forces df5; = O(|z|) which holds if and only if df; = 0, thus we
can always choose 3 = f3,.

Hence, if we introduce a cut-off function

0 ify <1
X(y) := < non decreasing if 1 <y < 2
1 ify > 2

and call r(z) := |z| the (flat) distance from x, we can take x.(y) := x(y/¢) and define

ne =Wyt d(xe(r)B).

Here, the notation 7”~! makes sense thanks to [M], since on the gluing region holds

|d(Xs<T)6>| < |dX6||/8| + |X€Hd5| < cg,

ensuring that n”~' > 0. Thus we have obtained a balanced metric 7. on X \ {z} which is
exactly flat in a neighborhood of x. The same argument applies to the orbifold points after
taking a cover chart. O

We shall notice that, by proving the above lemma, we have showed en passant an
Alessandrini-Bassanelli type of result, that is:

Proposition 2.1.8. The class of balanced (not necessarily compact) manifolds is closed
under blowups at finite families of isolated points.

Thus we can start from our Chern-Ricci flat balanced metric & on M and obtain the
corresponding cut-off metric w. in a neighborhood of the orbifold singularity x by chosing
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coordinates z on the orbifold cover chart. For our construction, it will however be more
convenient to slightly vary the cut-off function and, for p > 0, choose

Xep(y) = x(y/e")

so that the gluing region for @. becomes {¢? < r < 2¢P}. Also, using again the results
in [M], we can notice that, even though we are cutting at the level of (n — 1, n — 1)-forms,
we have that on the gluing region the metric keeps being close to the flat metric, indeed:

Remark 2.1.9. Notice that we can choose a basis {e;} of 1-forms diagonalizing simulta-
neously w, (we can actually assume it to be the identity) and @.; this means that also w"~*
and "~ ! are diagonal (in the sense of (n — 1,n — 1)-forms, implying that also the term

O(r) is necessarily diagonal with respect to this basis. Thus we can write

o =3 "(1+0(r)e; A Te

i=1

and applying Michelson’s result with A; = 1 + O(r), we obtain @. = > 7, Aje; A Je,
with .
(L+0(r)---(14+0(r)))"
P =1
I 1+0(r) o),

which implies, again thanks to Michelson’s theorem

w—i(l—FO(T))@j/\Jej_wo"‘O(T)a

J=1

showing also that dw has uniformly bounded norm.

2.1.3 Pre-gluing - Step 2

In this second step we instead perform the gluing between Joyce’s Kéhler-Ricci flat
ALE metric w4, and the flat metric w, of C", on the crepant resolution X of the singular
model C"/G, and we will actually be able to do it without losing the Kihler condition. To
do this we recall that away from the singularity holds

WALE = Wo + Ai@g(r2_2” + 0(7“2_2”)),

where A > 0 is a constant and r is the (flat) distance from the singularity. This suggests
introducing a large parameter R and a smooth cut-off function yg(z) := x2(z/R) on



CHAPTER 2. ORBIFOLDS AND CHERN-RICCI FLAT BALANCED METRICS 37

[0, +00) such that

1 ify <1
X2(y) := ¢ Non increasing if1<y<3,
0 ify > 1,

from which we introduce the family of closed (1, 1)-forms
Wr = Wo +100(Xr(T)(r* 2" + o(r**")).
Once again, on the gluing region G := {£ <r < £} we have
om — ol < OB (KR + o)), < R <

which clearly implies the positivity of wr also on Gy (as long as R is chosen to be suffi-
ciently large) ensuring that wp is a Kédhler metric on X which is exactly flat outside of a
compact set.

2.1.4 Pre-gluing - Step 3

In this third and last step we want to glue together the metrics w. from Step 1 with the
metric wg from Step 2 by matching isometrically the exactly conical regions. In order to
do this we are going to need to rescale by a constant A > 0 the metric on X, and we will
now see that this constant is a geometric constant, since it is dictated by the geometries of
the two metrics we are gluing together.

In what follows we will denote with z the coordinates on M,., nearby the singularity
and with ¢ the coordinates on X, both given by the identification with the singularity
model C"/G. We then consider the regions

Cri={R/A<r(()<2R}C X and C.:={"/4<r(z) <2} C M,
and define a biholomorphism between them by imposing
R
- (5):

From this expression we have that on the identified region the following identity holds

o= ((£)2) = B
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which yields A = (e, R) := ( From this follows A\r?(¢) 2

%) = r?(z), and thus on the
identified conical regions C” ={R <r(() <2R} ~{e? <r(z) < 2P

} =: C! holds
Aw,o(C) = wo(2), and consequently e g = We.

Hence, )\ is the needed rescaling factor, which allows us to define the glued family of
balanced metrics on the crepant resolution M as

AWR onr(() <
We R 1= { W, one? <r(z ) < 2eP,
We onr(z) > 2eP

Remark 2.1.10. Notice that this first construction implies an Alessandrini-Bassanelli type
result (see [AB1]) since it shows that any compact complex manifold bimeromorphic to a
balanced orbifold with isolated singularities is also balanced.

In order to understand better the geometry of this new family of metrics, we shall obtain
again some estimates on its distance from the flat metric on the gluing region, and since
inside said region there is also an exactly flat part - whose geometry is also understood -
which separates the two gluing regions from the first two steps, we can just estimate the
distance separately on the two regions from the previous steps and then take the maximum.

Clearly, the metric is unaltered on the gluing region from Step 1, thus we still have on
G that

|vf,o (W= wo)lw, < Crl_ka

forall £ > 0.

On the other hand, since in this step we had to rescale the metric on X, we have to
check how it has affected the distance from the cone. To have clearer estimates, we will
express also this one in terms of the small coordinates z, and we will relate the parame-
ters R and € by chosing R = 79, with ¢ > 0. We first notice that on Gy (actually the
corresponding region through the biholomorphism) it holds

<W5,R — Wo, We,. R — w0>wo (Z) = )‘_2<)‘(WR - Wo)7 A(WR - w0)>wo (C)
= (WR — Wo, WR — Wo)w, (€)

implying that |w. g — Wolw,(2) = |Wr — Wo|w,(¢). From here, we can recall the estimate
done in Step 2 and obtain

|we, R — Woluw, (2) <|wr — Wolw, (¢)
<er () = e < er™ P (2).
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which implies, on the whole gluing region, that for all £ > 0 holds
|V¢kj;0 (wa,R - wo)|wo S Crm_ka

where m = min{1, 2nq/p}.

2.1.5 The Chern-Ricci potential

In order to use this description of the metrics to estimate the Chern-Ricci potential on
the gluing region we are also going to need to understand how the holomorphic volume
form of the resolution is related to the holomorphic volume of our background Calabi-Yau
orbifold.

Before doing it we start by fixing some notation. Denote

o with O the holomorphic volume of M,.., such that

=i A

« with ) the rescaled holomorphic volume of the singularity model C"/G (and its
crepant resolution X) in order to match the metric rescaling, i.e. Q := M\/2Q), where

Now, in a neighborhood of the singularity it exists a holomorphic function A such that
Q = hQy.

On the other hand, under the rescaling biholomorphism that glues X to M \ {z}, we
identify the €2, around the singularity with (), thus we canread h as a holomorphic function
on the singularity model, and hence holomorphically extend it to a holomorphic function
on the whole X, and thus we can glue together h§) with Q to obtain  a holomorphic
volume for M.

We can also obtain information on h by noticing that, since @ is asymptotic to w,
around the singularity, we obtain that around x it holds

(14 O(|2]))w? = &® = iQ A Q = [h[2iQ0 A Qy = |h[2w?

from which follows
|h| =1+ O(r),

from which, by continuity, we have that |2|*> = 1 on the exceptional part.
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Thus we can define a global Chern-Ricci potential as

iOAQ
f = fpqe :zlog( 5 )

and conclude this section by describing the behaviour of f in all the regions of M, to show
that it is suitable to apply a deformation argument similar to the one done in [BM]. We
have

« on {r(z) > 2"} hold w = & and Q = Q, thus f = 0;

e on{e? < r(z) < 2P} holdw = w, + O(r) and QA Q = Qy A Q + O(r), from
which we have

B wi 4+ O(r) B B ‘
f =tog (200 =) ~lox(1-+ 0(r) = ()

« on {ie? <r(z) < e} holdw = w,and QA Q = i(1+ O(r))Q A Q, from which
follows f = O(r);

e} hold w = w, + O(r?"4/P) and Q A Q = Qy A Qp + O(r),

+on {3er/2 < r(z) <}
|

implying f = O(r™);
 on {r(z) < ?/2} hold w® = i, A Q, and Q A Q = i(1 + O(r))Q A Qp, giving
once again f = O(r).
Thus we can write globally (on M) that
[fl <er™,

ensuring that the metric w is an approximately Chern-Ricci flat balanced metric (as wanted
in Proposition 2.1.1), hence a suitable one to perform our gluing construction.

2.2 The deformation argument

In this section we will see that what was built in the previous section are exactly the
ingredients we need to introduce a deformation argument in the same fashion as [BM],
in order to obtain a balanced Chern-Ricci flat metric on our crepant resolution M. We
will also analyze the cohomology class of the metric obtained and see why said metric is
interested in the framework of the Hull-Strominger system.
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2.2.1 The strategy

We will now set up the problem for this section. First of all we recall the deformation
of the metric that preserves the balanced condition introduced in [FWW] (here taken with
a particular ansatz):

wi =W +i00(Yw"?), ¢ € C°°(M,R) such that W} "' > 0.

Thus the problem we are interested in solving, following what was done in [BM], is the
balanced Monge-Ampére type equation

Wy = efwn (2.1)

for ¢p € C*°(M, R) such that wz_l > 0.

Remark 2.2.1. The equation introduced above makes sense, because, as we’ve seen, f =
O(r™), thus e/ = 1+ O(r™), meaning that e/w™ is nearby w" itself, hence it makes sense
to try to obtain it as a small deformation of w.

For practicality, it is useful to reformulate our equation as an operator on the space of
smooth functions, thus we introduce F' : C*°(M,R) — C*°(M,R) as

Our aim is then to solve the equation F'(¢)) = 0 - which is equivalent to (2.1) - through
a fixed point argument, hence the first step to take towards this argument is to compute
the linearization at O of the operator F'. To do this we shall introduce the notation wy, :=
%h:owt“’ where wy, is the curve corresponding to the tangent vector u € C'*°(M,R), and
compute the derivative at zero of wy,, in two different ways:

d

n n—1 /
— Wy, = Nw A wp;
tu 0
dt -

d _
— W =i00(uw" ) Aw + W AW,
dt|t:0

Even though none of these two expressions are explicit, we can put them together to obtain
an explicit one for the linearization, that is

n i00(uw™ %) A w
n—1 wn ‘

Lu:= L.u=doF(u) =

Here we can work through a few computations to get a clearer (an much more understand-
able) expression for the operator.
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Lemma 2.2.2. The linearized operator L can be written as

1
n—1

Lu=

(Awu - L\awﬁu) (2.2)
n—1

forallu e C>*(M).
Proof. For all n > 3 it holds
i00(uw™ %) =i0(du A w2 + (n — 2)udw A W"3)
=i00u Aw" 2 — (n —2)idu A dw A w" > + (n — 2)idu A dw A W™
+ (n — 2)uiddw A w" ™ — (n — 2)(n — 3)uidw A dw A w" 4,

and since the balanced condition dw™ ™! = 0 implies dw A w"~2 = 0, we get

i00(uw™ ) A w

= i00u A w" ™t 4 (n — 2)uid0w A w2 — (n — 2)(n — 3)uidw A Ow A w™?

= %(Awu)wn + (n— 2)u(i85w Aw' 2 — (n— 3)i5w A Ow A w”_3).

Now, applying the operator 0 to the identity dw A w™ 2 = 0, we get
0 =i00w A w2 — (n — 2)idw A Ow A wW" ™,

that s _ B
100w A w"? = (n — 2)idw A Ow A W',

giving us
_ 1 —
i00(uw™?) Aw = —(Ayu)w" + (n — 2)uidw A Ow A w™ .
n

On the other hand, we can recall Proposition 1.2.8, which in the balanced case gives us
n—3

(n—3)

w™ —
—|8w|i—| = 10w A Ow N\
n!

from which we finally obtain the linearized balanced Monge-Ampere type operator

1 1
Lu = At — ——|0w|2u |,
n—1 n—1

and we can clearly notice that it is bounded (using Remark 2.1.9) and L?-self adjoint. [
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Proposition 2.2.3. The linear operator L introduced above has vanishing kernel on any
n-dimensional (n > 3) compact balanced manifold (X, n), with 1 not Kchler.

Proof. If w € Ker L, then also uLu = 0, which integrated on X gives us (using the
balanced condition)

1 2,2 n 2 1 2,2 n
0= [ (Fugus —tonf Yo = [ (19 + = lonza ) o

from which necessarily

V,ul =0 u=ceR
-~
|On2u* =0 lonl? =0,
which implies, thanks to dn # 0, that ¢ = 0, and hence © = 0, i.e. L has vanishing
kernel. O

Notice that the fact that the metric is not Kihler is crucial for the proof, since the
non-vanishing of 97 ensures that the constants do not lie in the kernel of the operator.

2.2.2 Weighted analysis

Our aim is now to study the invertibility of the linear operator L, and we wish to do this
in suitable weighted functional spaces. In order to introduce said spaces we shall start by
introducing a weight function useful in our situation, and for simplicity we may assume
that the neighbourhood of x on which the 2z coordinates are defined contains the region
{r(z) < 1} (this is true up to a rescaling). Define then

(cpta onr(z) < ertd,
non decreasing on e?t? < r(z) < 2ePT9,
p=pe(2):=4r(z2) on 2ePt1 < r(z) < 1/2,
non decreasing on1/2 <r(z) <1,
1 onr(z) > 1,

\

Using this weight function we can introduce the weighted Holder norm and its correspond-
ing weighted Holder spaces Cfba(]\/[ ), where £ > 0, a € (0,1) is the Holder constant,
b € R is the weight and ¢ indicates the dependence on the metric w obtained by the gluing
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construction done above. We define

k
HuHc’“’lj‘(M) ::ZSUP ‘pb—i_iviu’w
- i—0 M

Viu(z) — VEu(y)
d.(x,y)~

+ sup |min (p"M(2), pPTFT(y))

de (l‘,y)<inj5

Y
w

where i1 j. is the injectivity radius of the metric w, and thus interpret F' (and L) as operators
defined as F' : 25 (M) — C2y,(M).
Following then the literature, we first wish to prove the following estimate.

Lemma 2.2.4. With the same notations as above, for every b € (0,n — 1) it exists ¢ > 0
(independent of <) such that for sufficiently small ¢ it holds

lullgzg < ellLulleos

forallu € C’ff

Proof. Suppose by contradiction that the above inequality does not hold. This means that
forall K € Nwe can find e, > 0 and uy, € C’f};‘”‘b such thate, — Oask — 0, ||Uk||02,o¢b =1
) e

and )
||Luk||cf:fb+2 < T 2.3)

In the first place we analyze what happens on M., i.e. away from the exceptional part.
The properties of the sequence {uy}reny guarantee us that we can apply Arzela-Ascoli’s
Theorem, and hence up to subsequences we may assume u; — o, uniformly on compact
subsets of M,., in the sense of C,? *“, with respect to w. Moreover, since for any compact
set K C M,.4 there exists ng € N such that for all £ > ng on K it holds w = @, and
hence V,, = V;, we actually have C’f *“-convergence (again uniformly on compact subsets
of M,.s). We shall then prove that u, is necessarily identically zero on the whole M,.,.
Indeed, take 0 > 0 and B; a ball of radius ¢ around the singularity, and notice that, calling
M; := M \ Bs, we get

1
0=— / Uoo LoolUoo@™ = / <—umA@um + —|d@|§u§o) Q" (24)
M; M; n—1

and since @ 18 balanced it holds

d(i0Use N (Use@™ 1)) = UeeiO0Use A D" 4 i0Use A Ottoe A D™ 1,



CHAPTER 2. ORBIFOLDS AND CHERN-RICCI FLAT BALANCED METRICS 45

which combined with (2.4) gives
LY ~n—1 2 1 ~12 .2 ~n
0= / UsotOUoo N 0" + / (|V@uoo| + ——|dw &)uoo> w". (2.5)
9Bs Mg n—1

But if we call dV the volume form induced by the flat metric, we get

/ Uoo1OUs A O™
dBs

thus choosing b < n — 1 and taking the limit for 6 — 0 in (2.5), we get v = 0 on M,.., by
repeating what was done in Remark 2.2.3.

Let now M. := {r(z) > 1/2} C M,., be a compact set on which we know that
ur — 0 uniformly in C’g **. To obtain a contradiction we want to prove that {uy, } xen admits
a subsequence uniformly convergent to zero in C;* also on A := {r(z) < 1/2}.

In order to work in this region, it is simpler to shift to the "large" coordinates (, i.e. the
coordinates on the crepant resolution X away from the exceptional part. It is then useful
to recall the relations

< c/ |uoo|w|8uoo|wd\7 < 052(”_1_b),
dBs

(=P and r(z) = ePtir(Q),
from which we can write down the explicit identification
1 < L o) 5
r(z)<§ =A~A=A. = 7’(()<§57’q C X;

this last set A is the one we will be working on. )
The first thing to do is rewrite the weight function in terms of this coordinates on A,
resulting in

gPta onr(¢) <1,
p = { non decreasing on1 < r(() < 2,
ePtar(Q) on2 < r(¢) < 1/2ePHa),

Notice that the entire gluing region of the metric (from the previous step) is entirely con-
tained inside the third region, i.e. {2 < r({) < 1/2e~(P+9},
We now go back to our sequence {uy }ren. Since ||uy| |C2,ab = 1forall k € N, we have
ks

in particular that on all flk = flgk holds

"] < c.
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Introducing then the new sequence

Uk: _gk(P-HI) U,

the above weighted estimates for u; imply the following ones for this new sequence:

Uk < e onr(¢) < 1,
Ul < e onl <r(¢) <2,
|Uk| < Cr_b(g) on2 <r(() < 1/25;(13-&-(1)

These estimates for U, suggest us to introduce a new weight function 5 = j; on A, given
by

1 onr(() <1,
p(¢) = ¢ non decreasing on1 < r(¢) < 2, :
r(¢) on2 < r(¢) < 1/2¢, %%,
with which we get that
|,6bUk| <eg, (2.6)

and analogous weighted estimates also for VU, and V2Uy, hence again by Ascoli-Arzela
theorem we have that U, — U, uniformly on compact sets of X (since 4;, = X)in
the sense of C’2 = C’2 “(p), where this last space is the weighted Holder space on X
identified by the weight p and the metric w4z p.
On the other hand, on any compact subset of X, for sufficiently large k it holds
P2 Luy, = o2 AL, U, .7)

WALE

and since 1 > || Luy| |co.« , taking the limit in (2.7) we obtain that U, is harmonic with
sk,b+2

respect to the ALE metric w7 p. Moreover, taking the limit in (2.6) ensures us that Uy

~2 e
decays at infinity, from which follows that U, = 0 on the whole X, and thus U, —> 0
uniformly on compact sets of X.

If we are now able to prove that U admits a subsequence converging uniformly to zero

A ~ C’O

on the whole X in the sense C’,? we get our contradiction, and we are done. Indeed, if Uy, =
0 uniformly (up to subsequences) on X, then scaled Schauder estimates imply that also

~2,a 2&

e
U, % 0 uniformly, which is the same as saying u;, —5 0 uniformly on {r(z) < 1/2}.
Thus {ug }ren up to subsequences is uniformly convergent to zero on the whole manifold
M, which is a contradiction with the fact that ||uy| \Cz,ab = 1forall k € N.
€los
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Now we will prove that the said uniformly convergent subsequence exists. If by contra-
diction this was not the case, since we have the uniform convergence on compact sets, we
would be able to find § > 0 and {zy }reny C X,z € Ay, such that Ry, := r(¢(zy)) — +o0
and RYUy(xy) > § for all k € N, and since Ry — +00, we can actually assume p = r on
the points of the sequence, from which we get that for all £ € N holds

R Ui ()| > 6. (2.8)

Naming then 7 := r(z(xy)), recalling the relation between the two coordinates we have
% > = sﬁ’Lqu, thus up to subsequences we can end up into two cases:

@

(ii)

if r, — 1 > 0, then x;, — x,, and since uy, is uniformly convergent on compact sets
on M,.,, we get that uy(xy) is bounded, giving

0<6<RUL(xp) = (Rksfrq)buk(xk) = rPuy(2) - 0,
which is a contradiction;

if ry — 0, let X* = X \ E the singularity model and X’ a copy of X*, and we
consider the biholomorphisms oy : B, — A \ {0}, given by

on(2) =12,
-1
where By := {0 < r(z) < "~} C X'. Then, if we endow Bj, with the metric

Oy := 1, 0w,

it is easy to notice that the couple (B, ;) converges to (X', wyiqt), i.e. the standard
singularity model. If we then introduce the functions

wy, = rhoruy,
on By, we notice that the pullback of the weight function p gives

et onr(2) < R,
p(2) = oip(2') = { non decreasing on R, ' < r(z') < 2R, ",
—1
rr(2) on2R, " <r(2) < X%,

from which we get (pulling back the inequality p°|u| < 1)

r’(2Nw(2') <1 (2.9)
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on each 2z’ € X (assuming k to be sufficiently large). Hence, this shows that for
any compact K C X', we can choose k£ € N to be sufficiently large in order to
have K C By, and p'(2') = ryr(2’) on the whole K, and get that wy, is uniformly
bounded on K’; and since this works for any compact X C X', we obtain that - up
to subsequences - {wy, }ren converges uniformly on compact sets of X’ to a function
Wso, and from (2.9) we get that w, 1s decaying at infinity. Moreover, recalling that
ROU(xy) > 6 for all k € N, if we introduce the sequence y;, = o}, '(zy), it
is straighforward to notice that from its definition follows that wy(y;x) > ¢ and
llyk||o, = 1 forall k € N, thus implying that - up to subsequences - ¥ — Yoo € X/,
and hence

Woo (Yoo ) > 0. (2.10)

Now, if we recall the definition of the operator L and take the pullback with respect
to oy, of p**2Luy, it is immediate to see that on every compact K C X' we get

N o, [100wE NG
n—1 () ( oy
n

O'Z (pb”Luk) = + ]d9k|§kwk>

(2.11)

from which we have, taking the limit as £ — +oo, that

— /
Ay Woo =0 on X7,

i.e., Wy 18 harmonic on X' with respect to the flat metric. Thus, since it decays at
infinity, we obtain w,, = 0, which is a contradiction as (2.10) holds.

Thus the proof is complete. []
As a direct consequence we get

Lemma 2.2.5. The operator L : C’fba (M) — Cgf "o (M) defined above is a linear isomor-
phism for every b € (0,n — 1).

Proof. Notice that L is elliptic and shares its index with the laplacian, which is zero.
Moreover, by Proposition 2.2.3 we have that L is injective, thus we automatically get that
L is also surjective and - from 2.2.4 - has bounded inverse, thus L is a isomorphism.  []

With this result we can now show how to reformulate the original equation as a fixed
point problem.
In order to do this we shall consider the expansion

F() = F(0) + L(¢) + Q(¢),
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and thus rewrite the balanced Monge-Ampere type equation as

F(0) + L(y) + Q(¢) = 0,

and using now Lemma 2.2.5, we get that our equation is therefore equivalent to

=L (=F(0) - Q(v)) = N(v), (2.12)

i.e. the search for a fixed point for the operator V : Cfba (M) — Ci’lf“ (M). To do this, we
will have to identify the open set on which we wish to apply Banach’s Lemma, and show
that on said open set, the operator N can be restricted and gives rise to a contraction.

The first thing to do is the following remark.

Remark 2.2.6. If C, 7 > 0, and ¢ is a function on M such that ||¢| ]02,32 < (€7, thanks to
Remark 2.2.2 it is straightforward to see that 7

1100(pw)llcoe < lellgze, < Ce",

thus we are guaranteed that, choosing ¢ to be sufficiently small, wal > 0, and thus its
(n—1) root w,, exists and is a balanced metric. Moreover, we can apply again the argument
used in Remark 2.1.9, and obtain that if ||| |Cz,a2 < C¢e7, then

= el < elpllgas, < e,

which also implies that w, — w, as e — 0.

Thanks to this remark, we have a suggestion on how to choose the open set on which
apply Banach’s Lemma, hence we introduce

Uy = {p € CZ5' | [lgllgae < 2e®00H21H7} C O,

and we notice that for every ¢ € U, it holds ||¢| |Cz,g2 < (&7, with C independent of ¢

and €.
We will now prove that on U, the operator /V is a contraction. In particular, given
1,2 € U,, we want to estimate

N(p1) = Nlp2) = L ((Q(p2) — Q(1))).

To do so, we notice that by the Mean Value Theorem we can find ¢ € [0, 1] such that

Q1) — Qp2) = dQu (w1 — w2) = (Ly — L) (1 — ¢2),
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where v = tpy + (1 — t)po € U,, and L, is the linearization of F' at v. With the same
strategy used to compute L we can easily obtain an expression for L,, and thus get

n (w, —w) Aidd((1 — p2)w"2)
n—1 wn ’

(Ly = L) (1 — 2) =

From here, taking the norms with respect to w, we can use the fact that v € U, together
with Remark 2.2.6, to obtain

(Ly = L) (1 = ¢2)| < clwy = wlu]id0((p1 = p2)w" )| < c2T[i00((1 = p2)0" ),

b+2

and thus, by multiplying the inequality with p°™*, get

1Q(p1) — Qe2)llogsy < =" llgr — ol 13)

hence, choosing ¢ sufficiently small ensures us that /N is a contraction on U.,.

We are left with proving that N (U.) C U,. To do this we shall assume that pm — q(b+
2) > 7 > 0 (which can easily be done), and see that for every ¢ € U,, thanks to estimate
(2.13) and Lemma 2.2.4, we have

IN()lllezg <IIN(2) = NO)lleze + 1N (O) [l
<eeTlllllgzg + LML = )lllga

-
<ee"llellgzg + 1 fllcos |
Sc(g(p+q)(b+2)+27— + 2,:,;z;(b+2)—i-pm>

< cemin{rpm—q(b+2)—=7} _(p+4q)(b+2)+7

SéE(P+Q)(b+2)+T’
implying that N(U) C U.
This shows that everything is into place to apply Banach’s Lemma on the open set U
and obtain w a Chern-Ricci flat balanced metric w on M, thus proving Theorem 2.0.1.
Remark 2.2.6 also implies:

Corollary 2.2.7. The couple (M, ©) Gromov-Hausdorff converges to the singular Calabi-
Yau metric on M,.4 and, up to rescaling, to Joyce’s ALE metrics nearby the exceptional
curve.

We conclude this part with a few remarks.
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Remark 2.2.8. In light of Remark 2.1.3, Stokes’ Theorem shows that - with the deforma-
tion given by the balanced Monge-Ampere type equation - the volume of the exceptional

divisors remains the same as the one of the pre-gluing metric, i.e. the (scaled) volume of
the ALE metric.

Remark 2.2.9. Thanks to what is known about Joyce’s ALE metrics, if we have £ € N
orbifold singularities and we call E%, i = 1, ..., k; the exceptional divisors corresponding
to the resolution of the j-th singularity, for 5 = 1, ..., k, from our construction we can
conclude (in the same way as in [BM]) that

k]' k

W = = @ ()G Y PDIE])

i=1 j=1

where PD[E!] denotes the Poincaré dual of the class [£].
Thus completing the proof of Theorem 2.0.1.

Remark 2.2.10. It is known that for a manifold which is Calabi-Yau with holomorphic
volume (2, the existence of a Chern-Ricci flat balanced metric implies that €2 is parallel
with respect to the Bismut connection associated to said metric. Among the other things,
this implies that the restricted holonomy of the Bismut connection of Chern-Ricci flat
balanced metrics is contained in SU (n).

Remark 2.2.11. Even though this construction is done to address a non-Kéhler situation,
it can also be applied when M is instead Kihler (Ricci flat). In this case we know from
Joyce’s theorem that M admits a Kéhler Calabi-Yau metric w;, hence together with the
balanced class induced by our Chern-Ricci flat balanced metric w we also have the one
induced by w;. This two balanced classes need not be the same, however, even if they are
to coincide, there is no uniqueness result that would guarantee that the two metrics have
to be the same; moreover, the deformation we used in our construction does not cover the
whole balanced class, hence in this case we are not even guaranteed that the two metrics
are linked by our chosen deformation.

As a conclusion of this chapter, if we view the metric constructed in the system’s
scenario, we can make the following final remark in which we explain our ideas on how
to expand our construction in this direction.

Remark 2.2.12. Given B a Chern-Ricci flat balanced metric on a Calabi-Yau threefold
(Y, W), it holds

[ W[|5 = const.,
showing that our metric w gives a solution of the conformally balanced/dilatino equation
on our crepant resolutions (M, €)). Thus our construction gives us two solutions of the
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dilatino equation on (M, (), that are & and w' := ||Q]| 2w, where this last one is the
dilatino equation solution associated to the balanced metric w obtained in the first part
of the gluing construction. From here, thanks to the fact that this metrics are nearby a
Kéhler Ricci-flat metric, an idea could be to try and adapt stretegies as in [CPY1] or
[DS] to construct a Hermite-Einstein metric on the tangent bundle with respect to the
above metrics, and eventually from there try and extend it to a whole solution of the Hull-
Strominger system, using - for example - some version of the approach of [AGF].

Other possible paths could instead be related to examples 2.1.5 and 2.1.6, on which it
could be interesting to see if, again through a gluing process, if it is possible to construct
new non-Kéhler solutions to the Hull-Strominger system.



Chapter 3

Small resolutions of ordinary double
points

As anticipated in the introduction, it is natural to ask weather or not the construction
from the previous chapter can be adapted to the case of ordinary double points on three-
folds, in order to fit our result in the conifold transition framework. Unfortunately issues
show up, hence in the following we shall - after recalling the ingredients on Ordinary Dou-
ble Points on threefolds - walk through our construction and see what continues to hold,
see what fails and discuss ideas on how to eventually solve the issues. The partial result
we obtained is the following.

Proposition 3.0.1. Let (M , @) be a smoothable projective Kiihler Calabi-Yau nodal three-
Jfold (with w a singular Calabi-Yau metric), and let M be a compact (not necessarily Kéh-
ler) small resolution of M. Then M admits a balanced approximately Chern-Ricci flat

metric w such that
[w?] = [@%] + e*[PY].

We will also discuss some ideas related to the slope stability of the holomorphic tan-
gent bundle of this manifolds, in particular the idea of implementing Collins-Picard-Yau’s
method from [CPY 1] to "reverse the arrow" from their work in order to construct Hermite-
Einstein metrics on said bundle, and see that the same difficulty as for Chern-Ricci flat
balanced metrics occurs. The following is joint work with Cristiano Spotti, and it is an
extended version of the discussion in Section 4 of [GS].

53
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3.1 Geometry and Topology of the small resolutions

The type of singularity adressed in this case is the one of Ordinary Double Points on
threefolds (which are the most common kind of singularities), and are described by the
local model

X ={g3+2+2+2=0}CC

which is known as the 3-dimensional standard conifold, whose only singular point is the
origin. Then we have:

Definition 3.1.1. A singular point p in a singular threefold Y is called ordinary double
point (ODP) if we can find a neighborhood p € U C M and a neighborhood 0 € V' C X
such that U and V' are biholomorphic through a map that sends p to 0.

These singularities arise naturally on threefolds when collapsing (—1, —1)-curves, i.e.
rational curves biholomorphic to P! whose normal bundle is isomorphic to Op: (—1)%2,
and actually this procedure to obtain ODPs covers all the possibilities on threefolds. In-
deed, the standard conifold can be constructed in several ways, one of which is the follow-
ing: consider the rank 2 bundle Op: (—1)®? on P! and notice that the map

([X1 : Xol, (wi,wg)) = (w1 X7, w1 Xo, we Xy, weXo)

maps Op:1(—1)%? onto X - since X through a change of coordinates is biholomorphic
to the set {W W, — W3W, = 0} - sending the zero section onto the origin. Moreover
this map restricted to Op1(—1)%2 \ P! (where P! is meant as the zero section) gives a
biholomorphism with X \ {0}, proving our previous statement. This shows us that these
singularities always admit small resolutions (with P! as the exceptional curve) biholomor-
phic to X = Op (—1)®2, and it can be shown that a singular threefold with n ordinary
double points admits exactly 2" small resolutions of this type (every singularity can be
resolved with a curve in two distinct bimeromorphic ways).

Regarding instead the metric aspect of this singularities, the standard conifold X is
naturally endowed with a conical structure. Indeed, we can introduce the function on Cc*

2
r(z) = |lzl[5,

which restricted to X yields the conical distance to the singularity, and can be used to
define the metric 5
Weo 1= 10012,
’ 2
on the smooth part of X, which is clearly Kéhler. Moreover, it can be seen that w,, o is
actually also Ricci flat, as well as a cone metric over the link L := {r = 1} C X which
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can be written as 3
Geo,0 = 5(6[7'2 + rsz)a

with g;, a Sasaki-Einstein metric on the link L.

This metric structure of the standard conifold, with some further work, yields also
a Kihler Calabi-Yau structure on the small resolution. In fact, Candelas and de la Ossa
(see [CO]) constructed a family of metrics, depending on the parameter a > 0, of the form

Weoa = 100f,(r*) + 4a*Thwrs,
where wrg is the Fubini-Study metric on P!, and f, is smooth function satisfying the ODE

(@fo(@)) +6a*(zfo(2))* = 2%, fulz) 20,

on [0, +00), which immediately gives f,(z) = a®f(x/a?). Here the function 7 is simply
the conical distance from the singularity re-read on the resolution, hence portraying the
conical distance from the exceptional curve. Moreover, this family of metrics is such that
as a — 0 the metrics w,, , converges, away from the exceptional curve, to the standard
cone metric we,,, and it is also asymptotic (at infinity) to the cone metric we, o, and these
facts can be seen explicitly with the following expansion from [CPY1].

Lemma 3.1.2. For xgl, the function f,(x) has a convergent expansion

2n

3 s
filx) = §£B% — 2log(x) + Z; CpX” B .

We shall now establish the notation and some assumptions useful to describe the gluing
attempt, as well as show that the problem makes sense in the non-Kihler setting we are
interested in.

First of all, we lay out the details of the setting and take M a smoothable Kihler
Calabi-Yau singular threefold obtained from the contraction of a finite family of disjoint
(—1,—1)-curves in a compact complex threefold (thus the singular set of M is made of a
finite number of Ordinary Double Points) - hence with the regular part M,.., of M equipped
with w a Kihler Calabi-Yau metric - and M a compact small resolution of M.

Remark 3.1.3. The reason why we have much stronger assumptions with respect to the
orbifold case, is because for this type of singularities we are not aware of a version of
Lemma 2.1.7, thus we need a condition to be able to smoothly cut-off the singular metric
at the standard model around the singularity (given in this case by the standard cone metric
Weo,0)» and such condition is given exactly by the smoothability assumption, which allows
us to apply the following result from Hein and Sun (Theorem 1.4 and Lemma A.1 from
[HS]), which can be simplified for our purpose with the following statement (here written
only for threefolds):
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Theorem 3.1.4 (Hein-Sun). Let M be a smoothable singular threefold whose singular set
is a finite family of ODPs endowed with a Kdhler Calabi-Yau metric w on its smooth
part M,.,. Then for every singular point p € M \ M, there exist a constant \y > 0,
neighborhoods p € U, C M and 0 € V, € X, and a biholomorphism P : V, \ {0} —
U, \ {p} such that

P00 — Weop = 100, for some o € C33,

where 1 is the conical distance from the singularities and C53,  is the space of smooth
functions with decay rate at zero of 2 + A (i.e. an f € C3%,  is a smooth function such
that nearby zero it holds |V* f| < cr®>t=* for all k > 0).

Anyway, what follows actually works if we replace the assumption above with: @ a
singular Chern-Ricci flat balanced metric such that in a neighborhood of each singularity
is asymptotic to the standard cone metric we, g.

Now, since our work aims to face the case of compact non-Kéhler small resolutions
of said M, before describing the gluing attempt it is significant to show that this kind of
resolutions are actually a very common situation.

Remark 3.1.5. Thanks to a result from Cheltsov (see [Ch]) we know that a hypersurface
M in P* of degree d with only isolated ODPs is factorial when M has at most (d — 1)2 — 1
singularities, thus is in particular (Q-factorial. We can then apply the work from Namikawa
and Steenbrink (see [INS]) to obtain that M is smoothable, and hence, thanks to the results
from Friedman (see [F]) we have that any small resolution M of M with exceptional
curves C1, ..., Oy, C; ~ P!, satisfies necessarily a condition

k
Zki[Ci] =0 in Hy(M,R), whereeach \; # 0,

i=1

which immediately implies that if M has only one ODP, then M can’t be Kéhler because
it contains a homologically trivial curve (note that the generic quintic threefold has ex-
actly one node, and is smoothable since it is a hypersurface in the projective space, hence
satisfies this situation).

Moreover, Werner proved in [W] that M is projective if and only if all C;s are homo-
logically non-trivial, and since M is Moishezon, projectivity is equivalent to Kéhlerness.
Thus the class of examples above lies in a larger one, since every small resolution with at
least a homologically trivial exceptional curve is non-Kéhler.

Before discussing the construction, if we momentarily drop the curvature condition,
it is straightforward from literature to conclude the existence of balanced metrics on the
small resolution. Indeed:
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Remark 3.1.6. Thanks to the results from Hironaka and Alessandrini-Bassanelli ( [Hi]
and [AB3]), we already know that such small resolutions admit balanced metrics, since
blowing up the singularites produces a smooth Kihler threefold which is birational to the
small resolution. This fact also shows that for the non-Kéhler small resolutions we are
considering, the Fino-Vezzoni conjecture (see [FV], Problem 3) holds true, since M is
Moishezon, and thus we can apply Theorems B and C from [CRS] to obtain that M does
not admit SKT metrics.

3.2 Gluing attempt and possible solutions

We will now present the gluing attempt. Since the proofs are essentially the same as
the ones performed in Chapter 2, we will just avoid them and only state the results. Again
for simplicity we will just work with one singularity.

The first thing to do is to produce a pre-gluing metric, and in the same fashion as we
have done in Chapter 2, we do this in three steps.

(1) First, we glue the background singular metric w to the standard cone metric around
the singularity. To do so, we take a cut-off function . as in Step 1 from Chapter 2,
and use Theorem 3.1.4. Indeed, if we take p > 0 and £ > 0 sufficiently small, so
that on the region {0 < r < 2¢P} C X exists a constant Ay > 0 and is defined a
function ¢ € €37, such that

W= Weo,0 + 285(,0,
we can define the smooth real (1, 1)-form
We 1= Weo,0 T+ Zag(xé (T)§0)7

which for € sufficiently small defines a Kéhler metric on M,., which is exactly
conical around the singularity.

(2) Now, we work on the small resolution of the conifold X and glue the Candelas-de
la Ossa metric w,, , to the standard cone metric, away from the exceptional curve,
and since it’s not possible to do it preserving the Kéhler condition, we will do it
maintaining the balanced one. This can be done thanks to the fact that the Candelas-
de la Ossa metric is not exact at infinity, but its square is so, since it holds

2
= (100 (32 (1)) ) +20%00 (1u1%) A ).
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Thus if we introduce a cut-off function xr as in Step 2 above, we can define the
family of closed (2, 2)-forms

_ /3 2 _
wZ’R = (i@@ (57‘2 + aQXR(T)wa(T))> + 2a%i00 (XR(T)fa(’f‘g)) AT wrg,
which correspond to balanced metrics for sufficiently large R > 0.

(3) Asin Step 3 from Chapter 2, we suitably rescale the metrics w, g on the bubble with
a geometric parameter A and match the two pieces on their exactly conical regions,
and hence define

AWa.R onr(() <R,
W= We R = § Weo 0 one? < r(z) < 2P,
We onr(z) > 2eP.

At this stage, as done above, we can just unify the parameters € and R, and choose R :=
74, with ¢ > 0, and using Remark 2.1.9 we can see that on the gluing region {%gp <r<
2eP} holds

W = Weoo + O(r™) + O(r*?logr).

Moreover, we can also here match the holomorphic volumes of the singular threefold and
of the small resolution to obtain an (almost) explicit holomorphic volume {2 for M, which
can be used again to define the global Chern-Ricci potential

QAQ
f - fp,q,a = 10g ( ) 5

w3
and obtain that globally on M holds
|| = O@™) + O(r*/Plogr),

1.e. a small Chern-Ricci potential.

Remark 3.2.1. As in Remark 2.2.12, the existence of this metric gives us immediately a
solution to the dilatino equation, that is the metric ' := ||€2]|;%w, which is still quite
explicit, thus again a potentially interesting starting point for the construction of a solution
to the Hull-Strominger system.

Let us now analyze then the cohomology class naturally associated to the metric w just
obtained, i.e. the (2, 2)-class
[w?) € H (M),
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If we introduce two cut off functions 601, 65 : [0, +00) — [0, 1] defined as follows:

1 if x < oo
01(x) :=  nonincreasing if fe79 <z < 677
0 if x> }Ls_q
and
0 if x <871
05(x) := ¢ non decreasing if 877 <z < 1677
1 if x> 1679

and since for sufficiently small € we have that w is exact on K := {377 < r(¢) < 877},
it exists a 3-form [ such that
w?=df onK.

Introduce then the form

e = d(61(r(C)) + 02(r(C)))B),

which is a smooth compactly supported form. Moreover, the form

B — (61(r) + 05(r))B

can be extended as zero to the whole A, thanks to the definition of the cut-offs, and thus
get that
w?] = [,

i.e. the class [w?] admits a compactly supported representative. In addition, the two cut-offs
introduced also allow us to decompose €2, = €2, + 7, such that on K hold

Q. =d(6:(r)B) and  QF = d(02(r)p),

and both 2/, and 2" are compactly supported and closed; in particular said compact sup-
ports are respectively contained in X and M., (via the obvious identifications), and from
their definition it is straightforward to see that

(] = eI, ] € HA(X)

co,a

and
(] = [©%] € H(Myeq),
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where H. denotes the compactly supported cohomology group. Also, recalling that X ~
Op1 (—1)#2, it is clear that X is homotopically equivalent to P!; hence applying Poincaré
duality we get ) )

HZ(X) ~ H5(X) ~ H3(P) = Hy(P') = ([P]),
which means that the non-zero class [w?, ,], up to multiplicative constants, is the Poincaré

dual of the generator of HQ(IP’l) (thus we can "confuse" them with each other), and thus
Wwe can write

(W3] = [@7] + PO [P in Ho 5 (M).

Finally, we also notice that
/ W= 52(p+q)/ Weoa — 0,
Pl Pl e—0

hence the balanced class [wz], as ¢ — 0, converges to a nef class, i.e. to the boundary of
the balanced cone. This completes the proof of Proposition 3.0.1.

From what was proven above, the pre-gluing metric w appears as suitable for a defor-
mation argument, but unfortunately it is exactly here where the issue lies, and descends
from the asymptotic behaviour of the Candelas-de la Ossa metrics.

Indeed, we can again consider the balanced Monge-Ampere type equation (2.1), ob-
tained with our ansatz for the Fu-Wang-Wu balanced deformation, and obtain the corre-
sponding operator F' and its linearization at zero L (we use the same names of the operators
used above since their expressions are unchanged). At this point, considering analogous
weighted Holder spaces as the ones used in the previous chapter, and a variation of £ (fol-

lowing an argument of [Sz]) given by F () == i—i — efev=¥ we obtain, with essentially
the same proof, the invertibility of the corresponding linearization L and an estimate for
its inverse (as in Lemma 2.2.4), i.e.

Lemma 3.2.2. For every b € (0,2) it exists ¢ > 0 (independent of ) such that for suffi-
ciently small ¢ the operator L is invertible and it holds

lullezs < ellZulleos .

forallu € C’ff

From here, we see that we can again turn the equation ﬁ’(z/J) = (0 (which still produces
Chern-Ricci flat balanced metrics) into a fixed point problem. In order to do this we shall

introduce the operators F', E, G : Cfba (M) — C’g’f " o(M) defined as

F@) ==, E@):=e*=W and G@) = efev,(v),
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from which we can write 3 R
F=F—-F.

Now, we can consider the expansion

A ~

F(i) = F(0) + L(v) + Q(v),

and thus rewrite '(0) = 0 as

~

F(0) + L(¥) + Q(v) — E(y) = 0.

Here, we notice that L = L — G, thus we can rewrite F (0) = 0 once more and get

A

F(0)+ L(y) + Q(¢) + G() — E(¥) =0,

and using the above Lemma, we get that the balanced Monge-Ampere type equation is
therefore equivalent to

~

v =L NE@) - G) — F(0) — Q(¥)) = N(¥), 3.1)

i.e. the search for a fixed point for the operator N : Cf;l (M) — Cfbo‘ (M).
At this stage, analogously as above it is easy to check that on a suitable open set U,
with 7 > 0, given by

Uy = {p € C2' | llgllpaa < ce®HO0+2H7} C O,

it holds that NV is a contraction operator. Unfortunately, it is impossible to consistently
choose p, ¢ and 7 to repeat the above proof and obtain that

N(U,) C UL,

and this is caused by the asymptotic quadratic decay to the cone of the Candelas-de la Ossa
metrics (unusual for Calabi-Yau metrics), making the norm || F'(0)|| cve 100 large. Actu-
€,b+

ally, what happens is that this quadratic decay is exactly the threshold for this argument to
work, since if said decay was (arbitrarily) more than quadratic, the argument would have
worked without issues.

Analyzing further the Candelas-de la Ossa metrics, one can see that if we just consider
the cut-off metrics w, r on the small resolution X, these are exactly conical at infinity,
thus a deformation argument as the one performed above could lead to Chern-Ricci flat
balanced metrics with faster decay to the cone, but unfortunately the metric w, r cannot
be used to do this as the "initial error" given by the Chern-Ricci potential of said metric
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turns out to be blowing up with repsect to the weighted Holder norm, suggesting that there
might not be any Chern-Ricci flat balanced metrics in a neighborhood of the Candelas-de
la Ossa metrics.

Hence, a possibility that we wish to explore in order to solve this issue, is to understand
if it’s possible to obtain Chern-Ricci flat balanced metrics on X which have fast decay but
are not necessarily near to the Candelas-de la Ossa metrics, and the approach we think
might be interesting to use is to try and obtain a balanced version of Conlon-Hein’s result
(see [CH]) starting from the metric w, r, which would immediately produce the missing
ingredient to complete the above failed gluing construction.

Obviously such a problem comes with several challenges on the analytic side, as the
balanced setting and the definition of the balanced Monge-Ampere type equation do not
allow many of the tools typically to obtain Yau’s estimates such as the Moser iteration
technique, and the non-compact (even though weighted) setting makes it also hard to ap-
ply other inequalities that are typically used in non-Kihler settings such as the Cherrier
inequality (see [TW1]).

Another possible interesting path to take could be to try and understand if the balanced
class induced by the metric w could be a polystable class for the holomorphic tangent bun-
dle. This, thanks to the Hitchin-Kobayashi correspondence, would lead us to the existence
of Hermite-Einstein metrics on said bundle, and thus add a block in the construction of a
solution to the Hull-Strominger system.

3.3 Stability of the holomorphic tangent bundle

In the framework of the Hull-Strominger system, it is also a natural question to ask
if the metric obtained in Proposition 2.0.1 from the previous section defines a balanced
class making the holomorphic tangent bundle a polystable bundle. Following the strategy
in [CPY 1], one can attempt to obtain the polystability through a gluing procedure, thanks
to the fact that both X and the singular manifold M are endowed with Hermite-Einstein
metrics with suitable asymptotic behaviour. We will however see that the issue appearing
in the previous section is again preventing us from concluding the gluing procedure, thus
in the following we will discuss the steps that work and why we are not able to conclude.
This time, as a difference with the previous section, we shall provide the details of the
proofs, as they differ in some aspects since we are working with endomorphisms of the
tangent bundle and not just functions.

Let us then set up the problem as in [CPY1]. Given w the pregluing metric on the small
resolution M from Proposition 2.0.1, and indicating with H the metric induced by w on
the holomorphic tangent bundle 7*°M, our aim is to deform H into a Hermite-Einstein
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metric, with respect to the balanced class [w?].

In order to achieve this, we shall follow the steps taken in Section 6 from [CPY 1] and
adapt them to our case (which will turn out to be slightly more simple).

Consider the Banach space

H = {uecT(EndT*'M) |u' = u},

where 1 indicates the adjoint with respect to H, i.e. with respect to the L?-product induced
by (w, H) that is
(U, V) (w0, 1) = / (u, v) gw?,
M

where (_, _) g is the scalar product induced by H on the fibers of T1°M.
Consider then the operator F = F. : H — H given by

F(u) = e¥? (iN,Fy,) e "/,

where H, := He", for all u € H. Moreover, it is straightforward to notice that it holds the
orthogonal decomposition
H=WaC(Cld,

wz{uem /M(Tru)w3:o},

and thanks to the facts that ¢; = 0 and F(u)" = F(u), we get (as seen in [CPY1]) that F
restricts to

where

F:W - W.

Now, our final aim is to find a Hermite-Einstein metric on 7% M with respect to w, and
this can be achieved by finding u € W such that F(u) = 0. To approach this last problem
as done by Collins-Picard-Yau, we notice that if we call £ the linearization of F at 0 and
Qits corresponding quadratic part, we obtain the expansion

F(u) = F(0) + Lu + Q(u). (3.2)

In particular, if we are able to prove that £ is an isomorphism, the equation F(u) = 0,
thanks to (3.1.2), becomes equivalent to solving the fixed point problem

where

M(u) == L7 (=F(0) = Q(u)) . (3.3)
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Hence the plan to attack the problem is to first show that £ is actually an isomorphism, and
then conclude by showing that M is a contraction (in order to apply Banach’s Lemma.

Before we start developing the two steps of the proof, it is significant to make the
following remark to justify a technical assumption that we will be making in our proof, that
is the simplicity of the holomorphic tangent bundle of A, that is the global holomorphic
sections of the bundle End(T'° M) are only scalar multiples of the identity.

Remark 3.3.1. Tt is known that a singular threefold M of the type we are considering with
n ordinary double points admits 2" small resolutions, which are all bimeromorphic with
each other through a birational transformation known as Atiyah flop. Moreover, in [CPY 1]
it was shown that whenever the small resolution is Kihler, than the bundle 7%° M is simple.
We can however take this a little step further and show that simplicity is preserved through
flops, meaning that if one of the small resolutions has simple holomorphic tangent bundle,
then all the other small resolutions also have simple holomorphic tangent bundle. Indeed,
if we take M, M’ small resolutions of M with M’ such that T+° M\’ simple, then if we take
o a holomorphic global section of End(T"°M) and call M, ., C M the regular part, we
can consider the restriction
0= 00y, T Mg = T My,

which keeps being holomorphic. But we can now apply Hartogs’ Theorem and extend
& holomorphically to a global holomorphic section 6 of End(T"°M’"), and thus use the
simplicity of TH°M’ to get that & = cI for some ¢ € C. Hence, the restriction of the
holomorphic section o to the open subset 7'°M,., is identically of the form cI, thus
necessarily also o = cI, that is 7'M is simple.

The above remark in particular shows that whenever our M admits a Kihler small
resolution, then all its small resolutions (Kihler and non-Kéhler) have simple holomorphic
tangent bundle, guaranteeing that (thanks also to Remark 3.1.5) assuming the simplicity
of the holomorphic tangent bundle of M covers a very large class of cases (actually the
most common ones).

The first thing to do is to compute the linearization of F, and we can do it by reusing
the computations on [CPY 1] which give us

AFu(0) = = e (0TI (e (dexp)alv)) ) 2 »
+ (deXp1/2)u(’U) (Z-AWFHu)Q*U/2 + eu/Q(ZAwFHu)(d eprl/Z)uCU)’

which evaluated in u = 0 gives

> 1
Lv = —gjka,;VfU - é[iAwFH,v].
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In order to study the invertibility of this operator, we shall shift to work in weighted Holder
spaces (as done in [GS]), for which we recall the norm, for all « € (0, 1), is given by, for
u € T¥(End(TYM))

||uHFk°‘(End(T1 0M)) ZSUP PPV,

b+k+a(x) pb+k+a(y)) Vfu(ff) - Vfu(y)

dé‘('r)y)a w ’

where inj. is the injectivity radius of the metric w, V. denotes the Chern connection
associated to H, and the weight function p is given by

+  sup min (p

de (:t,y)<inj€

)l

(cpta onr(z) < ertd,
non decreasing on ePt? < r(z) < 2ePT9,
p=p:(2) = qr(2) on 2ePT1 < r(z) < 1/2,
non decreasing on1/2 <r(z) <1
1 onr(z) > 1.

\

The functional space we will be working with is going to be F’g{f W) = Ff_f{f (End(T™M))N
W (the subscript € in the definition of the space is to enhance the dependence on the met-
rics w and H, which both depend on the parameter ¢).

Our aim is to prove the following.

Lemma 3.3.2. If T'°M is simple, there exists ¢ > 0 such that for sufficiently small ¢ it
holds

HvHria < C||£UHFOZ‘+2 (W)

forallv € I’g;‘(W)

Proof. Suppose by contradiction that such ¢ > 0 does not exist, then we can find sequences
{en}nen and {v, }ren C FI;?(W) such that

oullizgpon =1 and[1Cv,lgo (3

ba+2(W
foralln € N,and ¢,, — 0 as n — +o0.
Consider then K C M,.., compact and notice that for sufficiently large n € N, w = w
on K, that is w is Kihler Ricci-flat, implying that A, Fj; = 0, and hence (3.5) gives
o™ 067 vl om0 36

n——+oo
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Applying then Ascoli-Arzela’s Theorem, we get that - up to subsequences - our {v, }nen
is uniformly convergent on compact sets of M,., in the Cf *“ sense. In particular, calling
vp the limit, (3.6) implies ~

g 0V =0 (3.7)

on every compact set of M., (here H denotes the metric on the tangent bundle induced
by w). Also, it is clear that U(T) = vg (here 1 denotes the adjoint with respect to H). Now,
from (3.7) it follows (equally as seen in [CPY1])

A@|U0|% == |va|% (38)

In order to obtain a contradiction, our final aim is to show that v,, — 0 on the whole M.
Our first step towards this is to prove that Vvy = 0, i.e. vy is holomorphic on M,..4. To do
this, for all 6 > 0 we introduce ys a smooth cut-off function such that

0 onr < %
Xs = { non decreasing on% <r<d
1 onr >0

and such that |Agys| < 672
Then for small 4, introducing Bs := {x € M,, | d(P*,x) < §}, Ms := M,., \ Bs, we

have
2/ |ngo|2®3 < 2/ X(5|7va|2&)3 :/ X5A|v0|%ld)3
M§ Mreg M'reg

:/ 00| Ag x50 Z/ |vol% Ag x50
Myeg {0/2<r<é}

<[ sl < o 0ol3"
{6/2<r<d} {6/2<r<d}

< 05_2/ |vo| Fwd, o < C(S_Qb_Q/ wo, g < 6.
{6/2<r<d} {6/2<r<d}

Thus, assuming b < 2 and taking the limit as 6 — 0 we obtain

/ [Vuo|40* =0,
Mr‘eg

that is Vuvy, = 0 on M4, 1.€. vg 1s holomorphic on M,.,. Moreover, by Hartogs” Theorem
we have that vy extends holomorphically to the whole M.
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On the other hand, by hypothesis it holds

/M(Trvn)cu3 =0

for all n € N. Hence, for sufficiently small v > 0 (with M, defined as above) and large
n € N, it holds

/M W(Trvn)wg’ = /M (Trv,)@o® — (Trvg)@®>.

n—oo
vy M’Y

But we also have

< / | Trvy, |w?
B

~

/ (Tt

< cv_b/ w? < ey —0.
B v—0

/ (Tt

v

Moreover

—

v—0 ’

/ (Trvg)@* / (Trvg)@*
MW MTeg

/ (Trvg)&® = 0.
Mreg

But now this last information, combined with the holomorphicity of vy on the whole M
and the hypothesis of simplicity for the tangent bundles implies necessarily that vy = 0 on
M. We will now work from here to get a contradiction.

From the weighted Schauder estimates, from (3.5) we get that for all n» € N holds

and hence

1
(lonllizgom + ) = 1

that is, it exists ~/ > 0 such that

||Un||1"§7bo‘(w) Z y/

for all n € N. It follows that it exists 2/ > v > 0 and a sequence {z,, } ey C M such that

for all n € N. We then have two possibilities.
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If

liminfr, > 0,
n—-+4o0o

where r,, := r(z(x,)), then - up to subsequences - we can assume x,, — T, together with
r(2(rs)) > 0, in particular it follows that for sufficiently large n € N we get p(z,,) =
r(z,), from which

—b

[vo(Teo)| g > vr(2(70)) ™" > 0,

i.e. a contradiction, since vy = 0.

If instead it holds

liminfr, =0,
n——+o00

again up to subsequences we can assume r, — 0. Re-reading this scenario in the { coor-
dinates leads to two further subcases.

(i) If r(¢(z,)) is bounded, up to subsequences we can assume r(((z,)) — 7 > 0. In
this case we can repeat the strategy we adopted in [GS] (also previously adopted
in [BM]), and notice that reading p, {v,, }nen and {z,, }nen in the ¢ coordinates on
X, gives us that z,, — zo, € {r({) > L} C X, for some L > 0. Moreover, the
bound on the weighted norms of the v,,s imply that the sequence V,, := v, is - once

again up to subsequences - uniformly convergent on compact sets of X (thanks to

Ascoli-Arzela’s Theorem) to some V., from which we get

O0<rv< ‘pb(f/vn)Un(mn)’Hco,l < ‘Tb(g(zn))vn(xn)’Hco,m

where H,,; 1s the metric induced on the tangent bundle by the Candelas-de la Ossa
metric we,,1. Taking then the limit as n — +o0 in this last inequality gives us

0 < v < r(C(o0)) Voo (To0) | Huy s - (3.10)
But if we recall the definition of £, and the fact that

o2 Lu, — 0,

n—-+4o0o

we have
b+4-2 ~b+2 EZ Hco,l
P Ly = POV Vi,

where p is the weight function on X given by

1 onr(() <1,
p(¢) = ¢ non decreasing on1 < r(¢) < 2,
r(Q) on2 <r(¢) <1/2¢, 1,
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(ii)

This gives again that A, |V

%—Ico,l = |vvoo |%‘I

co,1”

implying in particular that
|Voo|%., | is subharmonic and obviously non-negative. This last two facts, combined
with the facts that |Voo|%,m1 < cr™% and w,, 1 is asymptotically conical, imply - ap-
plying an asymptotically conical version of Lemma 6.9 from [CPY1] - that V, = 0,
hence a contradiction since (2.13) holds.

If instead (¢ (x,)) is unbounded, we can assume r({(z,)) — +00, which in partic-
ular implies p(z,) = r(z,), and thus from (3.9) we get

2 (2,)|vn(x,)|g > v foralln € N. (3.11)
Consider then the region A* := {0 < r(z) < 3}, and the family of biholomorphisms

on: C, — A"

given by o,(2) = ra/?2, where C,, = {0 < r(?) < %} C X. We can then

introduce on C,, the metrics 7, := r,, 20w and the sequence ¥, := o, (z,) € C,,
and notice that
r(y,) =1 foralln € N,

giving us in particular that y,, — Yo € X up to subsequences.
On the other hand we can introduce the sequence of bundle endomorphisms
W, =rboru,
and notice that (3.11) implies that
W ()| = 7°(2' (Yn)) Wi (Y )]y, > v foralln € N. (3.12)

Moreover, using again Ascoli-Arzela’s Theorem we can assume W,, — W, uni-
formly on compact sets of X (since C;,, — X). Thus, noticing that 7,, — w0 as
n — oo, taking the limit in (3.12) gives

[Woo(Yoo))
On the other hand, taking the pullback
o* (pb+2£Un)

n

we0,0 Z v > 0. (313)

we obtain (on any K C X compact subset)
1

o (P720) =036 (720675 (050 - 5

Ao Foe 1t a;:vn])

— 1
- (0T~ 0 )
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which after taking the limit as n — 400, implies once again

2 Avi 2
AWCO,O|WOO|HCO,0 = |VWoo|Hw,0'
In particular we have that [W|3;  is subharmonic and non-negative, and thanks to
the weighted estimates we have in the hypothesis, it also satisfies

2 —2b
Hco,() S cr )

Weo

hence applying Lemma 6.9 from [CPY1] we get W, = 0, which is a contradiction
since (3.13) holds.

Thus the estimate holds necessarily. ]
From this we can easily obtain the invertibility of L.

Theorem 3.3.3. The linear operator L : Fi?(W) — Fg:?JrQ(W) defined above is an
isomorphism.

Proof. As seen in Lemma 3.3.2 we have that £ is injective. Moreover, it is straightforward
to notice that £ is elliptic and shares its principal symbol with the laplacian, thus it is also
surjective. Hence it admits an inverse £~ which is still continuous thanks to the estimate
from Lemma 3.3.2. O]

At this stage, the natural choiche of a neighborhood of zero to study M on is resem-
bling the choice done in the previous section, that is

U, := {u € P2 [ fullp2a o) < 5gb+2+7} C I2W).

As it happened previously, we are once again able to show that M contracts distances on
this neighborhood, but we cannot show that U, is preserved by M, and the problem is
again related to the "inital error" of the pregluing metric, as it happens that

WO llkzgon < ellFOleag, on < () + ¥ loge),
which is not enough to conclude that M (U,) C U,.

It however remains of central interest to try and understand if [w?] makes the holo-
morphic tangent bundle into a slope stable bundle, as it is the balanced class naturally
associated to a solution of the dilatino equation, hence we plan to explore alternative ap-
proaches to try and obtain this property for the bundle.



Chapter 4

Blowing up Chern-Ricci flat balanced
manifolds

In this chapter I will be presenting a result obtained with Elia Fusi. It consists of another
gluing construction in the balanced case, this time aimed to the construction of Chern-
scalar constant balanced metrics, in an attempt of extending the result from Arezzo and
Pacard in [AP] to the balanced case. The statement follows.

Theorem 4.0.1. Let M be a compact complex manifold of dimension n, endowed with
w a Chern-Ricci flat balanced metric. Then, the blowup M at a point v € M admits
Chern-scalar constant balanced metric w such that

W e = [ g + (1) Tl AP

As we will see, at the moment the construction only works assuming that the base
manifold is Chern-Ricci flat, but we are currently working towards extending it to the
general Chern-scalar constant balanced case.

4.1 The approximate solution

Let M be a compact complex manifold of dimension n > 3, endowed with w a Chern-
scalar constant balanced metric, and let M be the blowup at a point z € M. Our aim is to
obtain a Chern-scalar constant balanced metric on M , and the first step towards this will
be to construct an approximate solution. In order to do this, we shall implement a cut-off
argument (as in [GS]) followed by a description of the behaviour of the newly obtained
metric in the gluing region, to ensure that the metric is indeed an approximate solution.

71
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4.1.1 Cutting off

In order to produce the metric we want, we shall first establish which are the ingredi-
ents we will use. One of the main components of our argument is the Burns-Simanca met-
ric wpg, introduced by Burns and Simanca (see [LeB] and [Sim]), which is a scalar-flat,
asymptotically flat Kihler metric on BlyC", already used successfully in gluing construc-
tions of cscK metrics on blow-ups by Arezzo and Pacard in [AP] (see also [Sz]). Hence,
we want to glue together the background metric w with wgg on a flat region, and in order
to do this, our second main ingredient will be the balanced property. Let us then start to
describe this gluing process by seeing how the balanced property intervenes, and this can
be done recalling Lemma 2.1.7. Thus, starting from @, we can obtain the corresponding
w., which is exactly flat in a neighborhood of z.

On the other hand, we can consider coordinates ¢ on X := BI,(C")\ CP""! =
C"\ {0} =: X \ {0}, and a cut-off function

1 ify <1,
Y(y) := < Non increasing if{ <y <3,
0 ify > 7,

which, for all ¢ > 0, can be rescaled to

Ve(y) == P(e%).

This rescaling, makes the cut-off happen far away from the exceptional divisor, hence in
the asymptotically flat part. Hence, thanks to the fact that the Burns-Simanca metric, away
from the exceptional divisor, has the following expansion

wps = 100(|¢1* +(I¢])),
with v([¢|) = O(|¢|*~?"), we can introduce the family of closed (1, 1)-forms
wps.e = i00(|¢|* + v-(I¢1)(IC])),
and easily see that, on the cut-off region {igfq <[¢] < 55*‘1}, it holds
wps.e = wo + O(ICI*7?™), (4.1)

where now w, denotes the flat metric on C™\ {0} induced by the coordinates ¢, from which
it follows that, for sufficiently small €, wpg . is an asymptotically exactly flat Kéhler metric
on X.
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If we then consider the biholomorphism
z = ePtC,

this gives the identification

1 1
{Za_q <[] < 25_‘1} = {15” <z < 25”}

with we wich we can topologically realize M, and also obtain that

|2|? = 20T 2,

which tells that on M , the metrics 52(“‘1)@)357(E and w. coincide (with the flat metric), on

the region
1 1
{§5q§’C!§5q} {gf:“pﬁfz\ée?p},

hence allowing us to glue w. and g2ta)y, B, to a global balanced metric w on M.

4.1.2 Behaviour of the new metric

We will now describe the behaviour of w, and make sure that it is the approximate
solution we were searching for.
First of all, it is clear that the metric is unaltered on {e? < |z| < 2P}, on which we
still have
|Vf,o(w — Wo)lw, < 2",

for all £ > 0.
On the other hand, since to obtain w we had to rescale the metric wpg . on X, we have
to check how it has affected the distance from the flat metric. To have clearer estimates, we

will express also this one in terms of the "small" coordinates z. The main thing to observe,
is that on {¢~7 < |¢| < 279} it holds

(W = Wo, W — W), (2) = e 40D (204D (ypo . — w,), 2P (Wpg . — wo))a,, (€)

9
= <WBS,6 — Wy, WBS e — Wo>wo(C)

implying that |w — wo|w,(2) = |WBse — Wolw, (). From here, we can recall the expansion
(4.1) and obtain

- o 2—2n (2n—2)q (2n—2)q/p
olw >~ € olw >~ >~ > 5
W — Woluw, (2) <|wBse — Wolw, (¢) < c[¢] < ce < c|z|
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which implies, on the whole gluing region, that, for all £ > 0, holds
|vf;o (W - W0>|wo < Crm_ka

where m = min{1, (2n — 2)q/p}, showing again that w is indeed a metric on M :=
Bl (M). Moreover, the closeness between the metric w and the flat metric w shows us that
w 1s suitable to perform analysis with, and hence we can try to search for a Chern-scalar
constant balanced metric through a deformation argument.

As a final note, we can see that as in the Kéhler case, we have information on the scalar
curvature of the metrics we wish to construct. Also, for simplicity, from now on we shall
assume p +q = 1.

Remark 4.1.1. As for the first Chern class of Kéhler manifolds, we have that blowing up a
point on a non Kéhler metric yields

ct(M) = (M) + (n — D[P,

where here we denoted with [P"~!] the Poincare¢ dual of the (2n — 2)-homology class
defined by the exceptional divisor.
On the other hand, the construction of the metric w explained above, gives that

n—l]

(W Be = [@" Yo + [E2was]"

and since [wpg] = —[P" ], we get
[Wn_l]BC — [a’n_l]BC + (_1)71—18271—2[1[))71—1]‘

As highligthed in [ACSI1, Proposition 2.6], the value of the Chern scalar curvature of w
must be equal to the Gauduchon degree of the conformal class of w, I'({w}), introduced
in [Ga3, I.17]. Thus, as it holds

sM(w) =T({w}) = / nRic"(w) AWt = C?C(M)[w”’l]Bc, 4.2)

M
it follows that

o (w) =n(cFC(M) + (n — D) (B po + (—1)" 2P

=5M(@) —n(n — 1) 2

S



CHAPTER 4. BLOWING UP CHERN-RICCI FLAT BALANCED MANIFOLDS 75

4.2 Setting up the equation

We now wish to obtain a Chern-scalar constant balanced metric starting from the ap-
proximate solution, and as done in [BM], [AP], [Sz] and many others, we plan to do it
through a deformation argument. In particular, since we wish to work inside the balanced
class of w, we will consider the balanced deformation introduced by [FWW], with the
ansatz considered in [GS], that is

wi =W +i00(ew™ %), @ € C%°(M,R) such that w ™" > 0.

Thus the problem we are interested in solving, following what was done in [Sz], is the
equation
5" (w,) = const. 4.3)

for ¢ € C°°(M,R) such that wﬁfl > 0. Now, as observed in Remark 4.1.1, we can expect
the solution to have a scalar Chern curvature near to the one of the background metric,
thus we can rephrase equation (4.3) with

S(p) = SCh(ww) — @) =c 4.4)

for ¢ € C°(M,R) and ¢ € R. Moreover, we can get rid of the unknown constant by
rewriting the equation as

S) := s (wy,) — s™(@) — / pw™ = 0. 4.5)
M

This last version of the equation encodes the unknown constant from equation (4.4), and
we will see that it will help us in obtaining the invertibility of the linearized operator of S.
The interest in this linearized operator, is that we wish to solve the problem of equation
(4.5) with Banach’s Lemma in a neighborhood of zero, hence our next step will be to
obtain the linearization at 0 of S.

4.2.1 Computation of the linearized operator

We thus want to obtain an explicit expression for the operator £(u) := dys(u) =
%|t:030h (wi.u), where wy,, is an arbitrary curve of Hermitian metrics, lying in [w"!]pc,
such that wy, = w and w; ,(0) = u. In order to do this, first of all, we recall that equation
(4.2), gives us

5" (W)w™ = nRic”(w) Aw™ . (4.6)



CHAPTER 4. BLOWING UP CHERN-RICCI FLAT BALANCED MANIFOLDS 76

Then, using wy’,, b= w1 4 4i00(uw™~2) and differentiating at ¢ = 0 the relation above,

we have that

L(u)w" + sCh(w)%]towzu = n%hoRiCCh(wt’u) AW + nRic™ (w) A0 (uw™ ).
(4.7)
Following then the computations and notations in Chapter 2 (i.e. the ones in [GS]), we
have that

owyy, = L(u)w™ = i00(uw" ) A w,

%‘t: ’ n—1

d 4.8)
%ltZORz’cCh(wt,u) = —i00L(u).
Then, using (4.8) in (4.7), we obtain
00 (uw"2) A (Ric(w) — - s
L) = —Au(a) + /22 (Ric(w) = 775" (@)w) 49)

wn

Remark 4.2.1. If we restrict £ to M, := M \ {z} and assume @ to be balanced with
constant Chern-scalar curvature case, if u € ker £ then,

g W'
/ 5" (w)]dw| U= 0.
Indeed, as long as b < 2n — 4 we have that
/ AwLuw— =0, / i00(uw™ ™% A Ric™(w)) =0,
M, nt M,

while

n

n /M S @)iod ) = / () () 27

n—1
_s(w) p W
n_1/!d\

TL 1 n
0= / Lus = / sCh(w)]dw|2uw—
oonl n—=1 [y !

The next step will be to understand more about the linearization at 0 of S, which clearly
is given by

Then,

giving us the claim.

Lu:= dogu = £u+/ Uw

M
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4.2.2 Inverting the linearized operator

We will now focus on obtaining the invertibility of the operator L. However, we need
this invertibility to be uniform with respect to ¢, so that, once we reformulate the equation
as a fixed point problem, we will be able to solve it. Hence, in order to do this, we shall
introduce suitable weighted spaces, once again following [BM], as done in the previous
chapters. We then define (we can always assume up to rescaling that the open set on which
the z coordinates are defined contains the region {|z| < 1})

4

€ onr(z) <e,

non decreasing one < r(z) < 2¢,
p=p:(2) = qr(z) on2e <r(z) <1/2

non decreasing on1/2 <r(z) <1,

1 onr(z) > 1,

\

We then introduce, for all b € R, the weighted Holder norm as

k
[|u| |C’“f‘(M) = Z sup [ p" ' Viul,
- i—0 M
pb+k+a(y)) Vfu(x) - V’;u(y)
d&(mﬂ y)a w ’

where inj. is the injectivity radius of the metric w; and consequently define the corre-
sponding weighted Holder spaces Cflf(]\/[ ), where k > 0, € (0, 1) is the Holder con-
stant, and ¢ indicates the dependence on the pre-gluing metric w obtained above. Hence
we can interpret S as

b+k+a (ZL’)

+  sup min (,0

de () <inje

9

S CLy (M) = C27, (M),
and obtain the following result (we will keep following the strategy in [BM]), which will
imply the uniform invertibility of the linearized operator. In order to be able to complete

the proof, we will assume from now on that the background metric «w is Chern-Ricci flat.

Theorem 4.2.2. Forany b € (0,n — 1), there exists C > 0 such that, for all u € Cli’f(M),
we have

HUHC;‘;S(M) < C||£“||q?ﬁﬁ(]ﬁ[)'

Proof. Suppose by contradiction that statement does not hold. Hence, we can find se-
quences {&x }ren € Rog and {ug ren C C’fkab(M) such that

e — 0, |lugllgse =1, VEEN, 4.10)
k——+oo €kb
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and

. 1
Hﬁukucgm <7 VkeN. (4.11)

We will focus first on M,. By applying Ascoli-Arzela’s Theorem, we have that u; — s
uniformly on compact subsets of M, in the sense of C,f’o‘, with respect to the background
metric w. This implies in particular that on any compact subset of M, thanks to the fact
that @ is a Chern-Ricci flat balanced metric, it holds

Ly, — Ag(Lats), (4.12)

i.e. Luy converges uniformly on compact sets to a continuous function on M. If we then
fix a point y € M,, in the region where p = 1, condition (4.11) implies that

ﬁuk(y) — 0,

which, combined with equation (4.12), implies that the real sequence | i wew" has finite
limit, hence by Lebesgue’s Theorem we get

/ukw"—>/ U™ (4.13)
M My

If we now integrate Ly, on M,, using equations (4.12) and (4.13) and assuming b < 2n—4,
we obtain

0= Lusi" = Ay (Lgpus)@™ + Volg,(M)/ U = Vol@(M)/ Uso",
M, M, . M,

4.14)
hence | 2, Uoo@™ = 0, and thus

from which follows that u, is such that Lu,, = ¢ € R. Following then [GS], if we
integrate on M, the equation 0 = s, LyUs = Clo, and assume b < n — 1, we get

1
0 —/ (—uooA@uoo + —\dwygu;> "
, n—

1
:/ (|V0~Jum]2 + —yd@@ugo) " = c/ Uso™ =0,
M, n—1 -

implying that u., is constant, which paired with [ Az Usow™ = 0, gives us that u,, = 0 on
M,

(4.15)

We thus fix the compact set M. := M \ {|z| < 1/2}, and focus on A := {|z| < 1/2},
on which we wish to obtain uniform convergence to zero. For convenience, we shall shift
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to the "large" coordinates (, i.e. the coordinates on the blow-up X defined outside the
exceptional divisor. Recalling then that

(=cz and |2 = <lc],

we have the identification

A~ A=A, ::{|C| <%51} C X,

and the last description will be the one we will use.
First of all, we shall rewrite p with respect to  on A, giving

3 on|C| <1,
p = ¢ non decreasing onl < |{| < 2,
el¢| on2 < |¢| <1/2e7h

It follovzs that, if we go back to {uy }ren and recall (4.10), we have in particular that on all
Ay = A,, it holds
|pPu| < c.

This suggests us to introduce the new sequence

Uk = €Zuk,
and using again (4.10), we obtain
|U| < ¢ on|¢| <1,
Uk < ¢ onl < |(] <2,

Uk < ¢|2|7%(¢) on2<[¢] <1/2, 7,

and the same for its derivatives up to the fourth degree. These estimates for Uy, bring us to
consider a new weight function p = p;, on Ay given by

L on ¢l <1,
p(¢) = < non decreasing on1 < (| <2, ,
q on2 < |¢| <1/2¢, 1,

with which we get that
Ul < ¢, (4.16)
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and estimates also for V""Uy, m = 1, ..., 4, hence again by Ascoli-Arzela’s Theorem we
have that U, — U, uniformly on compact sets of X (since Ak - X ) in the sense of
C’;"“ = Cé"o‘(ﬁ), where this last space is the weighted Holder space on X given by the
weight p and the metric wgg.

On the other hand, on any compact subset of X, for sufficiently large £ it holds

1
PP Ly, = ——15b+4D*DUk, (4.17)

where D*D is the Lichnerowitz operator corresponding to wpg. Thus, since it holds % >
HﬁukHCo,ab , taking the limit in (4.17) we obtain that U, is in the kernel of D*D with
€k b+4

respect to the Burns-Simanca metric wpg, and thus, applying Proposition 8.10 from [Sz],
we get that U, is necessarily constant, which needs to be zero as U, decays at infinity

~4, o .
(from inequality (4.16)), hence U, — 0 uniformly on compact sets of X.
In order to conclude, we will show that~ U admits a subsequence uniformly conver-
gent to zero on the whole X in the sense C,?. This, combined with the scaled Schauder

~4,a
estimates, will imply that also U, = 0 uniformly. On the other hand, this is equivalent
to u, — 0 uniformly on {|z| < 1/2} in C*{. Together with the fact that u; converges
uniformly to zero on M., it gives a contradiction with the fact that ||Uk||c4f = 1 for all

ke N.

The final step of the proof will be to show that such subsequence necessarily exists.
Indeed, if we assume by contradiction that such subsequence does not exist, then we can
find a sequence {x, },en € X and a § > 0 such that

Ry = |¢(xx)| = 400 (4.18)
and
P ()| Uk(z)| > 6 Vk >0, (4.19)
where this last condition can be rewritten (up to choosing sufficiently large k) as
Rb\Up(z1)| > 6 Vk>0. (4.20)
If we then define 7, := |z(z})|, we have that r, = &Ry, for all & € N, from which (up to

subsequences) we see that we can only fall into two cases:

o if limg_ ., 7x = r > 0, then it means that we can assume z, — x,, which com-
bined with the uniform convergence to zero on compact sets (of M) of the sequence

{ug }ren gives

i.e. a contradiction;



CHAPTER 4. BLOWING UP CHERN-RICCI FLAT BALANCED MANIFOLDS 81

e if instead limy,_,, o 7 = 0, we take X’ a copy of X, and for all £ > 0 we introduce
the holomorphic maps
o : By — A" := A\ {0},

given by 0 (2') = ri2/, where By, := {0 < || < ri/2} C X', over which we can
define the metrics
Oy := 1} 2ow,
and easily observe that (By, ;) — (X', w,), where w, here denotes the flat metric
induced by the coordinates z’. Then it is natural to consider the functions on each
By, given by
Wi :=rboju,, VkeN,

and the pullback weight function

€k on || < R;*
p'(2') = oip(z') = { nonincreasing on R ' < || < 2R;' (4.21)
] 2| on 2R, < 2| < r .

Now, if we pullback (4.10) with o, we immediately obtain that {1V} } ey is a se-
quence that is uniformly bounded on compact sets in the Cgl ** sense, thus by Ascoli-
Arzela’s Theorem we can assume that W, — W, and still from pulling back (4.10)
obtain that W, is a C**-function on X’ decaying to infinity. Moreover, analyzing
the pieces of the pullback

ni00(upw"2) A (Ric™(w) — L= s (w)

O'Z(/;uk) = UZ(AW(Luk) + — n—1 )

we can see that

- 03 A, (Luy) = r,;(bH)Agk Ly, Wy, where Ly, is the operator L with 6, substi-
tuting w;

- 0 (Ric™(w) — L5 s (w)) = Ric™(0x) — 255 (6,);

n—1

- 05 (i00(upw™2) = T;(b+4)i85(Wk9Z_2),

hence, pulling back with o}, inequality (4.11) and taking the limit in k, we obtain that
W is biharmonic on X’; and pulling back (4.10) and recalling (4.21), we obtain
that W, decays at infinity, implying necessarily that W, = 0 on X’. On the other
hand, if we define the sequence y;, := ak’l(:ck) € X', it is straighforward to see that
lyx| = 1 for all k& € N, hence it can be assumed to be convergent to some ¥, which
combined with the limit of pullback through o of (4.20), implies W, (y~) > 0, i.e.
a contradicition with the fact that W, = 0.
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Hence the thesis is proven. [
As a consequence we easily obtain the uniform invertibility.
Lemma 4.2.3. The operator
~ 4.1 0, 9
L: Os,b (M) - Ce,b+4(M)

is an isomorphism for b € (0,n — 1).

Proof. Thanks to Theorem (4.2.2), we have that L is injective. Moreover, L is clearly
elliptic and it has the same index of A2 which is 0. This automatically guarantees the
claim. []

Remark 4.2.4. If we compare this result with the Kihler case, we notice that our proof
of the invertibility of (the limit of) L on M,, imposes the condition b < n — 1, which is
stronger then b < 2n — 4 which appears in the Kéhler case (see Proposition 8.10 in [Sz]).
Our additional restriction comes from the integration by parts needed to obtain the identity
(4.15), showing that this stronger condition is consequence of the non-Kéhler nature of the
problem.

4.3 The fixed point problem

We can now reformulate (4.5) as a fixed point problem. In order to do so, we consider
the expansion

5" (wy) = sM(w) + Lu + Q(u),

where () is the quadratic part of sCh(wu). Then, (4.5) can be rewritten as
sMw) + Lu+ Qu) =0.
Now, using (4.2.3), we obtain that
N(u) = =L s (w) + Qu)) = u. (4.22)
So, in order to find a solution to (4.5), we need to show that
N (M) = Cy (M)

. . . . . 4
is a contraction on a suitable open neighborhood of zero in C; .
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4.3.1 Determining the open set

In order to determine this open set, we observe that, if ||¢|| cre < Ce" for some
C, 1 > 0, then, ’

00" Dl cge < Cllew 2ng < Clipllesy, SCT. (423

where the second inequality is due to the fact that ||w™ 2| cie < C. Up to choosing &

sufficiently small, this guarantees that wf,ffl > (0, hence provides a balanced metric, thanks
to [M], as well as

||WZ_1 . W”_1||c§;g _ ||i85(90wn_2)||03:? < Ce. (4.24)

Moreover, arguing as in Remark 2.8 in [GS], we can fix a point y € M and consider
holomorphic coordinates so that, in y, w is the identity and w,, is diagonal with eigenvalues
Ai. On the other hand, w"~! will be again the "identity" and wZ*1 will have eigeinvalues
A;. But, thanks to (4.24), we know that

A =1+0(7),

1

which implies that \; = (H#i Aj) "™ = 140(e7) . This last fact readily guarantees that
|wy — chg;g < CeT, (4.25)
which in particular gives that w, — w as e — 0. As in [GS], we then consider the open set
Uri={p € CLAWT) | ligllgpn < CE*7Y,
and we note that, if ¢ € U, then

lellgag < e P lgllgaa < Ce™, (4.26)

where the first inequality is due to the fact that [|¢[|ora < 5"’*““@”05,@, for any k& > 0,

a < b, thanks to the definition of our weight. This inequality guarantees also that every
v € U,, is not only small in the weighted sense, but it is so also in the standard sense,
ensuring that our setting for the problem makes sense in this set.

We are thus left with the estimates to obtain that A preserves U, and is a contraction
on 1t.
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4.3.2 Estimates

We first show that A/ contracts distances on U, which thanks to Theorem 4.2.3 reduces
to showing that () contracts distances. Thus, fixed 1, o € U, the Mean value Theorem
guarantees that there exists ¢ € [0, 1] such that, defined x := ty; + (1 —1)¢o (Which clearly
is also contained in U,), we have

Qp1) — Qp2) = Q1 — p2) = (L — L) (1 — 2) -

We now need to compute L, i.e. the differential d,S. As done before, we define w, ,(s) :=
wy + $i00(uw™?), then,

Ly(u) = %lszosch(wx,u(s>).

But, differentiating again (4.6), we obtain that

d
L, (w)w” =n—|soRic™(wy.(s)) A wi !

X ds

d
- ch
+ nRic™ (wy) A Tols=

As done before, we have

d U
%|s:0wx,u(5)n_l = Z@@(Uu} 1) ,
d n o _ n .05 n—2
%|s:0wx,u(3) = n_ 1288(’&0) ) A Wy

d - _ch _ EEa¥A) d ny __ Ay %|SZOWX7U(S)TL (427)
dS|S:0ch (Wyu(s)) = — z@@ds\szg log(wy . (8)") = —i00 ( o

Then, defining

we have that

Ly(u) = =Au, Ly(u) +
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Before going through the estimates, we need to explore the relation between the differen-
tial operators we are working with. First of all, we define the function
w’I’L
9x) = —
Wy

then, for any function v at least C2, we have

00v A w! — 1 00v A 100 (xw™ 2
e nidov nwx — o) <va N nidov A ziﬁ(xw )) ’ 4.28)
wy w
which gives us that
ni0v A i00(xw" 2
Do = B = (g(0) = Do+ () (LAY
For the sake of simplicity, we will denote
nid0v A 100 (xw" 2
B0 =00 ( o)
w
so that (4.28) can be rewritten as
Ay v =gx)Av+ E(v). (4.29)
Moreover, we define
100(vw™2) A (Ric™(wy) — 155 (wy )wy)
G(v) == N
Wy
i00(vw" %) A (Ric™(w) — s (w)w)
wn
i00(vw"2) A (g(x)RicCh(wX) — Ric"(w) — ﬁ(g(x)sc’l(wx)wx — sCh(w)w))
= o .
Then, using (4.29) and these new notations, we have
(£ = £)(©) = = (g00ALy(0) ~ AuLu) + E(Lyw) + G(0) w30,

= —g(X)AL(Ly — L)v — (g(x) — 1)A,Lv + E(Lyv) + G(v).

We will then breakdown the estimates in a series of smaller lemmas which will be used to
conclude.
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Lemma 4.3.1. Considering x as above,
lg(x) = Ulgze <Ce, [lg0)llcze <1+ Ce™ (4.31)

Proof. Obviously, it is sufficient to prove the first inequality, since the second one can be
recovered by that one using the triangle inequality and the fact that ||1|] oo = 1. In order

to prove the first one, we observe that

w" —wy :w;_l Aw—wy) +wA Wt — ;_1)

w
=" A (W= wy) +i00(xw" ) A (w —wy) Fw A (W —wl ).
Now, from this, we have
o~ wfllgae <Cllw = wylgas + CliOIE Dgas o — wylloas
n—1 n—1
+ CHM - wx ||C§:E°‘
<Ce

where the last inequality is due to the (4.23), (4.24), (4.25). This last inequality readily
implies that
w"=wi +0(e7),

which gives us the claim. [

Lemma 4.3.2. For ¢ sufficiently small, we have that, for any v € C',i -,
IE@) g, < C ol
Proof. Recalling the definition of £, we can conclude that

IE@)llcoe < Cllg0)llgoelliddv]|coe [[i00(xw" )| .o
b+2,e 0,e b+2,e 0,e
<Clglllggelliddvlicoe 11i090xw™ )|l cae -

But, now, using (4.31) and (4.23), we have that

IE@)lcgs, < CL+NEollcge < ol
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Before showing the next Lemma, we notice that for any v at least C?, it holds

n (i@@(vw"Q) Awy  109(vw™ %) A w)

Lw—Lv=

_ n n
n—1 wy w

o (g(x) (iﬁé(vw"‘Z) /\wx> _ 109w "?) M’) 4.32)

n—1 wn wn

_— (g(x) (wé(vwn_Q)wa> + (9(x) — 1)L“)> :

T n—1 wn
Lemma 4.3.3. For ¢ sufficiently small, for any v € C, Ii ", we have that
ILew = Lollzg < C=7ollcge -
Proof. Thanks to (4.32), we can obtain that
1L = Lolleze, <C (llg00leasllox — wlleae 1000w ) gas,
900 = Ulgze I Lvlicze )
<0 (10 lze lon — @llze Iollgpe + 1900 = ezslLvlcas)
Now, we can use (4.31), (4.25) and the continuity of L : C’é o= Cl?fQ,s to obtain that
[Lxv = Loflgze < C((L+eN)eNvllgpe +emllvllgpe) < CeTllv]lgpe
concluding the proof. L

It remains to analize G(v). In order to do so, we need two more estimates.

Lemma 4.3.4. For ¢ sufficiently small,
la)Ric™ (@) — Ric™(@)llgas < O, [lg(0)s™ (@ )eoy — s (@)l com < O
Proof. We have that

g(X)RicCh(wX) - RicCh(w) :g(X)(RicCh(wX) - RicCh(w)) + (g9(x) — 1)Rz’cCh(w)
= g(x)i001og(9(x)) + (9(x) — 1) Ric"(w)

On the other hand, we have

[ Rie™(@)lgz <€ ™ @)l g < O @33
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Indeed, we know that w = wy + O(]z]™) and then w" = w{ + O(|z|™) which implies that
Ric™(w) = O(|["?),  s™(w) = O(|2|"7?)

implying that
p*Ric™(w) = O(|2[™),  p*s”(w) = O(|2|™)

giving us the claim. Now,
lg(x) Ric™ (wy) — Ric (w)lleoe < N9(x)llen[1i091og g(x)ll oo
+ 1900 = UlggellRic™ | coe (4.34)
<C+eN)log g(X) Mgz + Ce™

But if we now recall inequalities (4.31), we can use the Taylor expansion and obtain
from (4.34) the first claim. As for the second one, we observe that

g0 (wywy = 5™ (W)w =g(x) (8™ (wy) — s (w))wy + g(0)s™ (W) (wy — w)
+(g(x) = 1)s™(w)w.
Moreover, using (4.31), (4.25) and (4.33), we have that
lg(x)s™ (wywn = s (@)wllgge < CL+ T (wy) — 5™ (W))wyllege
+C(14¢€")e™ + Ce
<O+ C(1+€N)]|5 (wy) — 5%() g lollons

(4.35)
Again, using (4.25), we have that

londlege < Iwllcge + ll = wllcge < C1+27),
which put into (4.35) gives that

||9(X)30h(wx)wx _ Sch(w)wHCg:? < Ce™ + C(l + 67—)2||$ch(wx) o SCh(w)HCg:? (436)
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On the other hand, we have

R' ch A n—1
SCh(wX) . SCh(w) _ nmuc <WX) wx . SCh<w)

wy

_ nRicM (wy) Aw™ ! N nRic(wy) A i00(xw"?)
wy wy

nidolo Awnt

— (9n) — 15w + g(n) 2B
nRic™(w,) A 100 (w2

= (g(x) — 1)s”(w) + g(x) A, log(g(x))

nRic(w,) A i00(yw™ 2

w?’L
and then, using again (4.31) and (4.33)

ch(

— sM(w)

Y

5 () = 5™ @)l cge <O +C1+ e
+ L+ &) [ Ric ) 7 000" ) e
<O+ C(1+ )| Rie™ (w2 g 0006 ) g

But, we have

1Ric™ (W)l cge < [Ric™ ()]l cge + [10010g g(x) e < C(1+£7)

e - ki (4.37)
11000 ) ens < lxe"llczg. < Cllxllng. < Ce

where the last inequality is due to (4.26). Putting (4.37) into (4.36), we have the claim.

]
Thus, using Lemma (4.3.4), we can conclude that
1G(@)llcos,
ch _ oCh
< C||85(an_2)||co,a g(X)Ricc"(wX) _ RiCCh(w) o g(X)S (WX)WX S (w)w
b+2 n— 1 nga

< Cellcge

(4.38)

We are finally ready to prove that \ is a contraction operator on U .



CHAPTER 4. BLOWING UP CHERN-RICCI FLAT BALANCED MANIFOLDS 90

Proposition 4.3.5. For ¢ sufficiently small and b < n — 1, the operator N is a contraction
and N'(U;) C U,.

Proof. Consider v = 1 — 5y as above,

IV (g1) = N(@2)llese < Cll(Ly = L)oo

b+4,e

Using (4.30), (4.31), Lemma (4.3.3), Lemma (4.3.2) and (4.38) and the continuity of
A, Gyt — Cyy and thatof L: Cpfy . — Cy ., we have

1Ly = Dleg, < O ol

which, after choosing ¢ sufficiently small, guarantees that A is a contraction. Now fix
@ € U,, we have that

IN@)llgge < INO)llgge + IV (@) = NO)llgge < INOllege + C ez
b,e b,e P b e
< ||N(O)Hcga + Ce?T 2 < ||£71(SCh(w))HC§’a | Ogrb

ch 27+b+2
< Clls™ (@) g, + 742,

On the other hand,

ch p(m+b+2)
s (W)llcos | < Ce ,

from which follows

”N(SO)”()';“" < ng(m+b+2) + C€2T+b+2 < Ogmin{T,pm—q(b-i-?)—T}€T+b+2 )

It is then sufficient to notice that 7 can be chosen such that pm — (1 — p)(b+2) > 7 > 0,
giving us the claim the claim.
O

Hence Theorem 4.0.1 is proven.

As anticipated, our plan is to extend the proof to the whole Chern-scalar constant
balanced case, and we are currently in the process to overcome the analyitical difficulties
arising from the non-Kihler setting.



Chapter 5

Real semisimple Lie groups and
balanced metrics

Despite our work has been mostly focusing on gluing constructions, another very com-
mon technique to search for special metrics is the use of symmetries. The work in this last
chapter is joint work with Fabio Podesta and it can be found in [GiPo]. The paper lies
in the realm of Lie groups and homogeneous spaces, and consists of a construction of a
class of spaces admitting balanced metrics, and satisfying some curvature and topological
constraints. The main statements are the following.

Theorem 5.0.1. Every non-compact simple Lie group G, of even dimension and of inner
type admits an invariant complex structure J and w an invariant balanced J-Hermitian
metric. Moreover, if T is a cocompact lattice, the quotient M = '\ G, inherits the balanced
structure.

Proposition 5.0.2. Let G, be a non-compact simple group of even dimension and of inner
type together with a co-compact lattice I' C G,. If M = T'\G,, is endowed with a standard
complex structure and a Hermitian balanced metric h, then the Chern Ricci form p of h
never vanishes and the Kodaira dimension k(M) = —oo.

By the end, we will notice that the spaces obtained form a quite wide class of complex
manifolds admitting balanced metrics, which have vanishing first Chern class but non-
vanishing first Bott-Chern class, showing again how the absence of the 90-lemma in the
non-Kidhler world makes things a lot more unpredictable.

We will also see that the class of spaces constructed do not admit any SKT metric,
providing a new class of spaces in which the Fino-Vezzoni conjecture holds. In particular
we obtained:

91
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Theorem 5.0.3. Let G, be a non-compact simple even-dimensional Lie group of inner type
endowed with the invariant complex structure J as in Theorem 5.0.1. If ' is a co-compact
lattice of G, then the complex manifold (M, J) with M = T'\G, does not carry any
pluriclosed metric.

5.1 Preliminaries

Let g, be a real simple 2n-dimensional Lie algebra and let G, be a connected Lie group
with Lie algebra g,. It is well known that either the complexification g is a complex simple
Lie algebra (and in this case g, is called absolutely simple) or g, is the realification gg of
a complex simple Lie algebra g (see e.g. [He]).

When g, is even dimensional, it is known ( [Mo], see also [Sas]) that g, admits an
invariant complex structure, namely an endomorphism J € End (g,) with J? = —Id
which extends by left translation to an almost complex structure on G, with vanishing
Nijenhuis tensor. This last condition can be written at the level of the Lie algebra g as

go=g®a, [a,%a" Ca’

where g0, g% are the +i, —i-eigenspace of J on g respectively.

When G, is non-compact, a result due to Borel ( [Bo]), guarantees the existence of a
discrete, torsion-free cocompact lattice I' C G, so that M := I"\G, is compact and the
left-invariant complex structure J on G, descends to a complex structure J on M.

When G, is compact and even-dimensional, i.e. g, is of compact type, we recall that the
existence of an invariant complex structure was already established by Samelson ( [Sam]),
while in [Pi] it was shown that every invariant complex structure on G, is obtained by
means of Samelson’s construction.

If we now consider an even-dimensional simple Lie group G, and a compact quotient
M endowed with an invariant complex structure J, we are interested in the existence of
special Hermitian metrics h. The following proposition states a known fact, namely the
non-existence of (invariant) Kéhler structures.

Proposition 5.1.1. Let G, be a semisimple Lie group endowed with a left invariant com-
plex structure J and let ' C G, be a cocompact lattice so that M = T'\G, is compact.
Then the group G, does not admit any invariant Kdahler metric and M is not Kdhler.

Proof. The first assertion is contained in [Chu], but we give here an elementary proof. If w
is an invariant symplectic form on g,, then the closedness condition dw = 0 can be written
as follows for z,y, z € g,

w(lz,yl, 2) + w([z, z],y) + w([y, 2], ) = 0. (5.1
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If B denotes the non-degenerate Cartan-Killing form of g,, then we can define the endo-
morphism F' € End (g,) by B(Fx,y) = w(z,y) (x,y € s) so that using the biinvariance
of B, (5.1) can be written as

B(F([a:,y}),z) - B([F:U,y],z) - B([QJ,Fy],Z) =0,

hence [’ turns out to be a derivation of g,. As g, is semisimple, there exists a unique u € g,
with F' = ad(u), so that for z,y € g,, w(z,y) = B([u,x],y) and therefore u € kerw, a
contradiction.

We now suppose that the compact complex manifold M has a Kéhler metric with Kéh-
ler form w. Using w and a symmetrization procedure that goes back to [Bel], we now con-
struct an invariant Kihler form on G,, obtaining a contradiction. We fix a basis x1, ..., T2,
of g, and we extend each vector as a left invariant vector fields on G,; these vector fields
can be projected down to M as vector fields 27, ..., 5, that span the tangent space T'M
at each point. As G, is semisimple, we can find a biinvariant volume form dy, that also
descends to a volume form on M. We now define a left-invariant non-degenerate 2-form
¢ on G, by setting

Pe(, 75) ZZ/MW(:Bf,:I:;)du.

As ¢ is left invariant and w is closed, we have for¢, 7,k =1,...,2n
sdo(nao) =~ 3 ol == [ Y wllelajl.a) du
cyclic (i,7,k) cyclic (4,5,k)
_ / S (el o)) dp.
M cyclic (4,7,k)

As L,+dp = 0 for every 4, we have

[ sttt du= [ Los(otaan) d =0
M M

by Stokes’ theorem and therefore we obtain that d¢ = 0, hence ¢ is invariant and sym-
plectic, a contradiction. L]

Therefore we are interested in the existence of special Hermitian metrics on the com-
plex manifold (M, J), in particular balanced and pluriclosed metrics, when the group G,
is of non-compact type.

The case of a simple Lie algebra g, which is the realification of a complex simple Lie
algebra g can be easily treated and will be dealt with in subsection 5.1.3.

We will now focus on some subclasses of simple real algebras, namely those which are
absolutely simple and of inner type.
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5.1.1 Simple Lie algebras of inner type

Let g, be an absolutely simple real algebra (i.e. g is a simple Lie algebra) of non-
compact type. It is well-known that g, admits a Cartan decompositon

gO:E+p7

where £ is a maximal compactly embedded subalgebra and

&, p] Cp, [p,p] CE

so that (g,, £) is a symmetric pair. Moreover the algebra g, is said to be of inner type when
the symmetric pair (g,, ) is of inner type, i.e. when a Cartan subalgebra t of ¢ is a Cartan
subalgebra of g, or equivalently its complexification t¢ is a Cartan subalgebra of g¢. Using
the notation as in [He], p. 126, we obtain the list of all inner symmetric pairs (g,, ) of
non-compact type with g, simple and even dimensional (Table 1).

’ Type \ g \ ¢ \ conditions ‘
A su(p, q) su(p) +su(q) +R | p>g>1, p+qodd
B |so(2p+1,2q) | so(2p+1)+s0(2q) | p>0,¢g>1, p+ qeven
C sp(2n, R) su(2n) +R n>1
C sp(p, q) sp(p) +sp(q) p,q>1, p+qgeven
D s0(4n)* su(2n) + R n>2
D 50(2p, 2q) s50(2p) +50(2q) | p,g>1,p+qgeven >4
G 02(2) su(2) + su(2)

F Fa(—20) 50(9)

F faa) su(2) + sp(3)
E ¢6(2) su(2) + su(6)
E €6(—14) 50(10) + R
1) €8(8) 50(16)

E €8(—24) su(2) + e;

Table 5.1: Inner symmetric pairs (g, £) of non-compact type with g simple and even di-
mensional.

5.1.2 Invariant complex structures

In this section we will describe how to construct invariant complex structures on even-
dimensional absolutely simple non-compact Lie algebras g, of inner type.
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We fix a maximal abelian subalgebra t C €, so that h := t° is a Cartan subalgebra of
g := go. Note that if g, is even dimensional , the same holds for t. The corresponding root
system is denoted by R and we have the following decompositions

ECZ{C@@QQ, pc:@ga’

QGRE CMERp

where g, denotes the root space relative to « € R. A root o will be called compact
(resp. non-compact), when g, C £° (resp. g C p©) and the set of all compact (resp. non-
compact) roots is denoted by I (resp. R,). It is a standard fact that u := € +p C gisa
compact real form of g and that we can choose the standard Weyl basis { £, }cr of root
spaces so that

T(Ea) = _E—ow B(Eoch—oc) = ]-) [Eoca E—oc] = Ha

where 7 denotes the anticomplex involution defining u, B is the Cartan Killing form of g
and H,, is the B-dual of « (see e.g. [He]). If o is the involutive anticomplex map defining
g0, we then have that

O'(E'a) =—F_,, «a€ Ry,
U(Ea) - Efo” (e e Rp.

If we fix an ordering , namely a splitting R = R UR~ with R~ = —R" and (R +R")N
R C R™, we can define a subalgebra

q::hl@@gaa

aERT

where h); C b is a subspace so that h; @ o(h;) = h. The subalgebra q C g defined in this
way satisfies
g=aq®o(q)
and therefore it defines a complex structure J on g, with the property that ¢ = g.°. This
complex structure depends on the arbitrary choice of b, i.e. on the arbitrary choice of a
complex structure on t.
We remark that the complex structure J enjoys the further property of being ad(t)-

invariant, namely
lad(z),J] =0, xe€t

Therefore if G, is a Lie group with Lie algebra g,, then J extends to a left-invariant com-
plex structure on G, and it will be also right-invariant with respect to right translations
by elements h € T := exp(t) (note that T might be non-compact, unless G, has finite
center).

We will call such an invariant complex structure standard.
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Remark 5.1.2. In [Sn] the class of (simple) real Lie algebras of inner type is called “Class
I’ and it is then proved that every invariant complex structure in these algebras are stan-
dard, with respect to a suitable choice of a Cartan subalgebra (such complex structures are
called regular in [Sn]).

5.1.3 Invariant metrics and the balanced condition

Let M be a compact complex manifold of the form I"\G,, endowed with a complex
structure J which is induced by a standard invariant complex structure J on G,, as in the
previous section. It is clear that any left invariant J-Hermitian metric h on G, induces an
Hermitian metric 4 on M and h is balanced or pluriclosed if and only if & is so. For the
converse, we prove the following

Proposition 5.1.3. If (M, J) admits a balanced (pluriclosed) Hermitian metric, there ex-
ists a left invariant and right T-invariant Hermitian metric on G, which is balanced (pluri-
closed resp.).

Proof. Suppose we have a balanced metric ~ on M with associated fundamental form w.
Then using the same notation and arguments as in the proof of Prop.5.1.1, we define a
left-invariant positive (n — 1,n — 1)-form ¢ on G, as follows

¢€(xi17 s 7xi2n—2) = /M wn_l(l‘;’ o 71’3271,72) du‘

As dw™™! = 0, we obtain that also d¢ = 0. Therefore, we can find an unique (1, 1)-form
@ so that @™ ! = ¢ (see [M]) and the metric given by & is balanced. As ¢ is left invariant,
so is w by uniqueness. Now, the group Ad(T) is compact and using a standard avaraging
process we can make ¢, also Ad(T)-invariant. This means that ¢ is also invariant under
right T-translations. Again, by the uniqueness, the same will hold true for w.

As for the pluriclosed condition, the lifted metric from M to G, is clearly pluriclosed
and can be made 7-invariant by a standard averaging. ]

Remark 5.1.4. We can now deal with the case when g, is the realification of a simple Lie
algebra g. In this case the complex structure J commutes with ad(g,) and g, = u + 7u is
a Cartan decomposition, where u is a compact real form of g. Let G, be a real group with
algebra g, and let ¢/ be the compact subgroup with algebra u. Then the metric 4 which
coincides with —B on u, with B on 7u and such that h(u,iu) = 0 is a Hermitian metric
which is balanced. Indeed, % is Ad(lf)-invariant and therefore the corresponding dw is
Ad(U)-invariant 1-form, hence it vanishes identically. This is consistent with the fact that
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complex parallelizable manifolds carry balanced metrics as they carry Chern-flat metrics,
as noted in [Gal], p. 121 (see also [AG], [Gr]).

On the other hand, G, admits no invariant pluriclosed metric. Indeed, any such metric
h can be avaraged to produce an Ad({/)-invariant pluriclosed metric, which would be
balanced by the previous argument. This is not possible, as a metric which is balanced and
pluriclosed at the same time has to be Kihler (see e.g. [Al]), contrary to Prop 5.1.1.

We now focus on the case where g, is absolutely simple of inner type, endowed with an
invariant standard complex structure. We fix a Cartan subalgebra t C £ with corresponding
root system R = R, U R, as in section 5.1.1 and we consider an ordering R = RT U R~
giving an invariant complex structure J, on g,/t. We extend J, to an invariant complex
structure J on g,.

We also fix a basis of a complement of tin g,

1
V2

1
E(Ea + FE ), Wy = ﬁ

so that v, w, € g, for every & € R* and moreover

(Eo — E_o), w (Ea+ E_yo), a € R,

Vg 1=

I
<. g| <
[\

Vo 1=

(Eo — E_a), @ € R,

JUy = Wy, JWo = —Vq,
[H,v,] = —ia(H)w,, H €0,
[Va, o] = i1Hy, o € R,

[Va, Wa] = —iHq, a € R}

We now construct invariant Hermitian metrics i on g,. First, we define h on t by
choosing a .J-Hermitian metric i on t. If we set m,, := Span{v,, W, }acr+, we define for
a#p3eR

h(t,m,) =0, h(m,,mg) =0,
h(Va, Vo) = h(Wa, wo) = h2,  h(va, we) =0
for h, € R™.

In particular we are interested in constructing balanced Hermitian metrics, namely
Hermitian metrics whose associated (1, 1)-form w = h(-, J-) satisfies dw"~* = 0 or equiv-
alently dw = 0, where ¢ denotes the codifferential.

We use the standard expression of the codifferential in terms of the Levi Civita con-
nection V of h (see e.g. [Bes], p.34)

dw(z) = —TrV.w(., ZV w(e,x) =
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—Z (Ve.ei,2) + w(e, Ve,x)),

where {e;} is an orthonormal ba51s of g, w.r.t. h. Note that both / and J are ad(t)-invariant
and therefore dw is ad(t)-invariant too. This last fact implies that dw vanishes identically
if and only if dw(x) = O for every = € t.
We have the following expression for the Levi Civita connection, namely for z,y, 2z €
Yo
20(Vay, 2) = h([z,y], 2) + h([z, 2], y) + h([z, 9], 2).

Then for every x € t,y € g,
h(Vyy,x) = h(lz, yl,y) = 0.

Therefore for x € t we have

dw(z) = wle;, Ve,x) = Zh (Je;, Ve,z) (5.2)
1
=5 (h([es, x], Je;) + h([Jes, €], ) + h([Jei, x], €;)) .
We now observe that .J is ad(t)-invariant and hence h([Je;, |, e;) = —h([e;, z], Je;) for
every ¢ = 1,...,2n, so that (5.2) can be written as

—6&) Zh Jezaez

- %.2 Z h%h([wa,va],x)+ Z h—Qh([wa>Ua]>$) -

acRf acRry
1 , r .
— Z 2 —h(—iH,,x) + Z h—2h(zHa,x),
S acRry

whence dw|¢ = 0 if and only if
1 1
=D et Y sy Ha=0.
aeRy acRf ¢
Summing up, the metric & is balanced when the following equation is satisfied
1 1
> = o (5.3)
ozGRE+ @ aGR; @

Note that this does not depend on the choice of the metric along the toral part t.
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5.2 Proof of the main result

In this section we will prove our main result Theorem 5.0.1.

We keep the same notation as in the previous sections and we start noting that equation
(5.3) involves the unknowns {h,, }.cr+ and also a choice of positive roots, i.e. an ordering
or equivalenty a complex structure on g,. We will always fix a complex structure on t once
for all. It is known that giving an ordering on the root system R is equivalent to the choice
of a system of simple roots II and that two systems of simple roots are conjugate under
the action of the Weyl group W. We may fix a system of simple roots IT = {«1,...,a;}
and put IT = II. U II,,., where II./,. denotes the set of simple roots which are compact or
noncompact. We set [1. = {¢y,..., ¢}, e = {¢1, ..., U}, k+1 = r = rank(g,). Each
root @« € R™ can be written as

a—an qﬁl—i-Zm]

for n;(o), m;(«) € N nonnegative integers. If we set g, := 75 and g; := gg,, hj = gy,
equation (5.3) can be written as

) 9a<2m ¢]+Zm] ->+]z:gj¢j:

aER?‘,aQH
l
- Z Ja (Z”y ¢J+Zma '>+Zhj¢j’
erR'J,r,agl_[ 7j=1

and therefore

g; = Z ganj(a) - Z ganj(a)> ] = 17 ) k>

aER, agll a€RY, agll
' 5.4)
h; = Z gamj(a) — Z gamj(a), j=1,...,L
aeR?, agll ocER'?, agll

Remark 5.2.1. If we consider for instance the case g, = su(p,q) (p + ¢ even, p,q >
2) and the standard system of simple roots II = {e; — €2,€5 — €3,..., €61 — €, 6, —
€ptly- -y Eptg1 — Eptq) OF 8I(p+ ¢, C), then I1,,. = {€, — €,+1 } and I1. gives a system of
simple roots for the semisimple part £ of €. This means that every root « € R, ¢ II
is a linear combination of roots in 11. and therefore the right hand side of the last equation
in (5.4) is nonpositive, so that (5.4) has no solution. This shows that the choice of the
invariant complex structure might not be straightforward.



CHAPTER 5. REAL SEMISIMPLE LIE GROUPS AND BALANCED METRICS 100

The following lemma provides key tools in our argument.

Lemma 5.2.2. For each symmetric pair (g,, ) as in Table 1, (g,, ) % (s0(1,2n),s0(2n))
and given a Cartan subalgebra t C ¥ with corresponding root system R, there exists an
ordering of the roots, hence a system of simple roots 11, such that

Ve € TL,,. ' € T, with o + ' € R. (5.5)

This implies that, if IT,,. = {¢1, ..., 4}, then for every ¢; € II,,. there exists & € R,
with m;(a) # 0 and o € Span{Il,,.}.

Y

Remark Note that sp(1,1) = so(1,4) is also not admissible in the above Lemma. In
general, for g, = so(1, 2n) we have the standard system IT = {¢; —¢€;41,€,, i = 1,...,n—
1} with TT,,. = {€,}. As R, consists precisely of all the short roots, it is clear that for any
element o of the Weyl group W = ZI x S,, we have that o(II),,. consists of one element.
We will deal with this case later on.

Proof. We first deal with the classical case. We start with the standard system of simple
roots II, following the notation as in [He]. It is immediate to check that in this case II,,.
consists of a single root 1.

Assume first to be in the case where 1) is a short root. Let A be the set of all simple
roots which are connected to v in the Dynkin diagram relative to II. If s € ¥ denotes the
reflection around ), then s leaves every element IT \ A pointwise fixed. We observe that
A consists of either at most three short roots or it contains a long root. In the first case,
s(A) = {Y+ Al X € A} C R, so that s(II),,. = {—1, s(A)} and therefore the system of
simple roots s(II) satisfies (5.5). If A contains a long root, then it also contains a short root,
unless (g,, €) = (s0(2,3), R 4 50(3)), that is isomorphic to (sp(2),u(2)); this case will be
dealt with in the second part of the proof. Therefore A = {¢1, ¢} with ¢; short and ¢
long. Again the reflection s around v gives s(¢1) = ¥ + ¢1 and s(¢pa) = P + 210 € Ry
or s(¢2) = ¢ + ¢2 € R,. This implies that the system of simple roots s(II) has s(II),,. =
{=Y, ¢+ ¢1} or {—1, ¢ + ¢1,9 + ¢2} and in both cases it satisfies (5.5).

We are then left with the case where ¢ is a long root, namely the case where g, =
sp(2n,R) and ¢ = u(2n). A standard system of simple roots is given by II = {e; —
€9,€2 — €3,...,€9,_1 — €2, 269, } and I, = {1 = 2e€y,}. Again using sz, we see that
$g(I1)pe = {—2€2y, €2n—1 + €2,,} so that condition (5.5) is satisfied.

We may now deal with the exceptional cases. Starting with the standard system of
simple roots II, we list the set II,,., that turns out to consist of a single root /3. For each
case, using the symmetry sz we obtain the system of simple roots I := s3(II) that satisfies
condition (5.5).

(1) (g0, t) = (g2, 5u(2) + su(2)). Here I = {a, 5}, with 3 long. We have I1,,. = {4} and
IV = {—B,a + B}.
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(2) (90,€) = (fa(—20),50(9)). According to [He], the standard system of simple roots is
II = {a1 — €2 —€3,09 = €3 — €4,03 = €4,04 = %(61 — €9 — €3 — 64)} so that an = {Oz4}
and therefore I/, = {—ay, ay + a3}.

(3) (80, ) = (Fa(a), 5u(2)+sp(3)). In this case I1,,. = {ay } and therefore IT),, = {—ay, a1+
062}.

(4) (90, ) = (es(s),50(16)). For eg we have the standard system of simple roots

1 1
041:5(614‘68)—§(€2+63+64+€5+66+€7),062:€1+62,

aj = €1 — €2, j:3,,8

Then I, = {ay } and IT),, = {—a, o + a3}

(5) (8o, €) = (es(—24),5u(2) + ¢7). Keeping the same notation for simple roots as above,
we have I1,,. = {ag} and I/, = {—as, as + az}.

(6) (90,€) = (es(2),5u(2) + su(6)). As the system root system II can be taken to be
composed of the simple roots {ay,...,as} of es, we have II,,, = {as} and II/,, =
{—042, Qo + 044}.

(7) (80, &) = (e6(—14), R+ 50(10)). We have IL,,. = {o} and I/, = {—a,0q + a3}, [

Lemma 5.2.3. For every system of simple roots 11 = 1. U1l with 11, = {¢1, ..., dr } we
have

ijl,...,k,ﬂozER;,aQ’H: nj(a) # 0,

where n;(«) denotes the coordinate of o along the root ;.

Proof. We start noting that the centralizer Cic(p¢) = Ci(p)¢ = {0}. It then follows that
[Ey,,p°] # {0}, hence there exists 7 € R, with [E, , E,] # 0, ie. ¢; +v € R,. Now,
if v > 0, then @ := ¢; + v € R \ Il and nj(a) > 1. Suppose now v < 0. We write
v =cjp; + Zeen\ 65 cot) for some nonpositive integers c;, cg. As ¥ # —¢;, there exists at
least one negative coefficient ¢y < 0, for some 6 € II,0 # ¢;. Therefore the root v + ¢,
must be negative and 1 + ¢; < 0,i.e. v := —vy € R; \ II'and n;(a) = —¢; > 1. O

We now fix a system of simple roots II as in Lemma 5.2.2. In order to solve the cor-
responding system of equations (5.4) for the positive unknowns {g;, h;, go }, we will show
how to choose the positive values {gq }ocr+\i in such a way to guarantee that the constants
{gi, h;}, defined to satisfy (5.4), are positive.

We set

EE = {Oé € R;—’ (0% € H, o € Span{an}}a AE = (R;_ \ HC) \ EE‘
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Then the system of equations (5.4) can be written as

gi= Y. gani(@) =Y gany(), j=1...,k (1)

aeR;‘f, a¢ll a€cAy;
| (5.6)
h; = Z gam;(a) — Z gomi(a), j=1,...,01.(2)
a€RY, agll aER}, agll

We start assigning g, = 1 for every o € Ap.

Then, for every 5 = 1,...,k, we use Lemma 5.2.3 selecting a root o € R; with
nj(a) # 0, o ¢ II. This root cv, which depends on j, contributes to the first sum in the
right hand side of equation (1) in (5.6) and the value g, can be chosen big enough so
that g; is strictly positive. Summing up, we can assign values {ga } ¢ RA\IL,, SO that all g;,
j=1,...,k can be defined as in (5.6), (1), and are strictly positive.

We now turn to equation (5.6)-(2), which can now be written as

h; = Z gamj(a) + Z m;(a) — Z Gamj(a), (5.7

X €A aeR‘J{, agll

where in the right hand side the last two sums have a fixed value. Now, by Lemma 5.2.2,
we know that for every j = 1,...,[, we can find a € ¥, with m;(a) # 0. These roots can
be used to choose the coefficients { gz} sex, big enough to guarantee that /;, when defined
to satisfy (5.7), is strictly positive.

In order to complete the proof of our main result Theorem 5.0.1, we are left with
the case (g,,¢) = (s0(1,2n),s0(2n)) with standard system of simple roots II = {¢; —
€ir1,€ny 0= 1,...,n — 1}, II,. = {€,}. We see that

R;—:{EZZEEJ,Z<]}7 Rp:{€1,...,€n}.

Now, we use equation (5.3) and search for positive real numbers {x,y,z2;, i = 1,...,n}
so that .
x‘ZEi—€j+y'Z€i+€j :Zziei,
i<y i<j i=1
ie.

n

Dl +y)n—i)+(z —y)(i —1]e = Z Zii-

i=1
It is clear that the above equation has positive solutions by simply choosing x > y > 0.
This concludes the proof of Theorem 5.0.1. [
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Remark 5.2.4. We can consider the metric h, which coincides with —B on the compact
part ¢, with B on p and such that h,(¢,p) = 0. This metric is easily seen to depend only
on g, and not on the Cartan decomposition g, = € + p. We could then ask whether there
exists a suitable complex structure such that the metric h, turns out to be balanced. The
resulting equation has been already treated in [APo] and has a solution if and only if
go =su(p,p+1) Zsu(p+1,p) forp > 1.

5.3 Non-existence of pluriclosed metrics

In this section we prove our result Theorem 5.0.3 concerning the non-existence of
pluriclosed metrics on the compact quotients M we have constructed in the previous sec-
tions and we will keep the same notation used above.

Suppose now that A is a pluriclosed metric on M = T'\G,. Then we can obtain a
pluriclosed invariant metric » on G, which is also invariant under right T-translations. It
follows that on g we have

hga:95) =0 if B# —a.

In order to write down the condition dd‘w = 0, where w is the fundamental form of h, we
recall the standard formula for the differential of invariant forms (see e.g. [He], p.136). If
¢ is any invariant k-form on G, or equivalently on g,, then for every v,, ..., v in g,

(k+1) - d(vg, ..., vx) = D (=17 ([0,05], Vo, ., Ty Ty V)

i<j
We set ¢ := d°w and compute dp(E,, E_,, Eg, E_3) for o, f € R*. We have
4 d¢(Eaa E—Om Eﬁv E—,B) - _gb(Haa Eﬁ7 E—ﬁ) + ¢(NaﬁEa+ﬁ> E—Om E—,B)

_¢(Na,—,3Ea—Ba E—om EB) - gb(N—oz,BEﬁ—om Eom E—[)’) + ¢<N—a,—,3E—oz—ﬁEom Eﬁ)
_¢(H5a Eou E—a)v

where we use the standard notation [E., E.] = N, E, . for every v,e € R. Using the
known identities for the Weyl basis (see [He], p. 172,176), we can write that

4 d(b(EouEfomEﬁa E*ﬁ) = _¢(HQ7E57 E*B) - (b(Hﬁan?Efa)

+20(NuapFas s E-a, E_5) — 26(Na—3Ea—p, E—o, Eg).
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We also introduce the notation JE, = ie, E, for every v € R, where e, = &1 according
to v € R*. Then

4ddw(Ey, E_o,Eg, E_g) = —dw(JHy, Eg, E_g) — dw(JHgp, E,, E_,)
—2iNy gdw(Eatp, E—o, E_p) — 2iNy _geq—pdw(Ea—_p, E_qo, Eg).
Now we easily compute
3dw(JH,, Es, E_g) = —w(Hg, JH,)
and
3 dw(Eats, E—a, E_g) = Na,g(w(Eq, E_a) + w(Ep, E_g) — w(Easps, E_a-p)),

where we have used the fact that N, 3 = Noi5,_3 = —Nais,—q (see [He], p. 172). Simi-
larly,

3dw(Ea_p, E_o,E3) = No_p(—w(Es, E_g) + w(Ey, E_o) — w(Ea—3s, Es—a)).
Summing up we have
12 dd°w(Ey, E_, Eg, E_p) = —2w(JH,, Hp)
~2iNg 5(w(Ba, B-a) + w(Ep, E_p) — w(Eatp, B-ap)) (5.8)
~2iN; _géa—p(~w(Es, E_p) + w(Ea, E-a) — w(Ea—p, Bs-a))-
If we now set a,, := h(FE,, F_,), the pluriclosed condition and (5.8) imply that
0= —h(Ha, Hg) — iN; g(—iae — iag + iasp)
—iN2 _g€a—p(—i€p_ala_pg + iag — iay),
hence
WHg, Hg) = NZ 5(a0+5 — @a — ag) + N2 _s€a-5(€a—pa—p + as — o). (5.9)
We recall that
ao = h(Eq, E_o) = —h(va,vs) <0, a € Ry,
o = h(Eo, E_o) = h(va,v4) > 0, a € R;r,
h(H,, Hg) = —h(iH,,iHg) € R, h(H,, H,) < 0.

Now, we note that the existence of the complex structure J, which we constructed
in section 5.2, relies on Lemma 5.2.2. In particular, when g, # so(1,2n), we have the
existence of two simple roots 11, ¥y € 1L, with ¢ 4+ 15 = ¢ € Re. The following lemma
is elementary.
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Lemma 5.3.1. Either i, + 215 € R or 5 + 2¢1 € R.
Proof. As 11,1, are simple, we have £(¢); — ¢)3) ¢ R. Now, ¢; + ny; € R if and only

it0 < n < g withg; = —2<mfﬁ3> € N for i # j. It is then clear that ¢1,q2 > 2 is
impossible, as 1, # ¥y implies q; - qo < 4. O

Suppose then that ¢ + ¢ = ¥ + 201 ¢ R. We now apply (5.9) with two possible
choices for a, [, namely:

(1) a = 1y, B = 25. Then
h(Hd)u Hw) = Nil,d)Q (a¢> = Gy — a%)'
2) a = ¢, 8 = 11. Then
h(Hy, Hy,) = N3 (ay, + ay, — ag).
Subtracting (1) from (2) we get
h(Hy,, Hy,) = (N3 _y, 4+ Ny, ) (@, + ay, — ag).

This is a contradiction, as h(Hy,, Hy,) < 0, while a,, > 0fori = 1,2 and a4 < 0.

We are left with the case g, = so(1, 2n), that we have dealt with separately in section
5.2. In this case the complex structure J is defined by the standard system of positive
roots, namely RT = {e; + €;,¢;, 1 < i # j < n}. In particular R} = {¢; £ €}y,
and R; = {€i}i=1...n- We now consider ¢; = ¢, i = 1,2, ¢; = ¢y + ¢» € R, and

-----

P2 = 11 — 1y € Ry We apply (5.9) in two different ways:
(1) @ =11, B = 1. Then

h(Hy,, Hy,) = N7, 4, (a5 — ay, — ay,) + NZ, _y, (ag, + ay, — ay,).
(2) o = ¢1, ﬁ = ¢2. Note that ¢1 + ¢1 € R. Then
h(H¢17 Hdn) - N;Lﬂ/zl(a% T Ay — CL¢1).
Therefore
h<le7 le) = (N(il,f’d)l + Nil,d}g)(ad& + awl - a¢l) + Nil,fi/)z (awl - a¢)2 - a¢2>

We now recall that, if v, € R, then Nﬁﬁ = @Hfmz, where 0 +nvy, p < n < g, is the
~-series containing o (see [He], p.176). We then immediately see that Nil,wz = Nilj_w
and noting furthermore that N, 21’7% = Nihw, we can write

W Hy,, Hy,) = N3, (ay, + 3ay, — 2a4, — ag,),

hence the contradiction h(Hy, , Hy,) > 0. This concludes the proof of Theorem 5.0.3.
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5.4 Geometric properties

In this last section, we collect some properties of the complex Hermitian manifolds we
have constructed in the previous section, to obtain a the proof of Proposition 5.0.2.

Proof. We consider a standard complex structure J on a manifold M = I'\ G,. We denote
by D the Chern connection relative to a Hermitian metric A which is induced by an invari-
ant metric on G, again denoted by h. We can moreover suppose that / is invariant by the
right T-translations.

If x € g, we define the endomorphism D, € End (g,) as follows: given y € g,, we
extend z, y as left invariant vector fields z*, y* on G, and we put D,y := D,-y*|.. Clearly
D, € so(g,, h) and [D,, J] = 0. Moreover

Dy =[z,y]", Voeg), yegl (5.10)

that follows from the fact that 7"' = 0, where 7' is torsion of D.
If R denote the curvature of the Chern connection, where R, = [D,, Dy] — Dz, We
are interested in the first Ricci form p given by

1
p(x,y) = —§Tr(J o Ryy).

As the complex structure and the metric are both invariant under the adjoint action of the
group 7' = exp(t), we see that

p(t, E,) =0, YVa € R,
p(Ey, Eg) # 0implies f = —a, o, f € R.
Therefore we can compute

1
p(Ey, E_p) = §Tr(JDHa).

Lemma 5.4.1. For every x € b
D, = ad(z).

Proof. We use similar arguments as in [Po]. It will suffice to consider the case where
x € h19; then for every o € R™ we have

D.E_ = [xa E—a](n = [I7 E—a]’ D:cb(n =0
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by (5.10). Then if 3 € R we have
WD.Ey, E_5) = —h(Ey, DoE_g) = —f(x)h(Eqy, E_g) =0 if o # 3,

so that D, E, = a(z)E, = [x, E,] (mod h). As h(D,E,,h") = —h(E,, D,h") = 0,
we conclude that

D,E, = [z, E.).
Finally, h(D,h*, §%) = 0 and h(D,H'°, E_,) = —h(H'°, [z, E_,]) = 0, so that D, h =
0= [z, b]. O]

It follows that
p(h,h) =0

and

1 .

P(EaBo) =5 | 2 Y iB(Ha) | = B(Ha,0), (5.11)
BERT
where
0= iHg€t#0,
BERT

hence p never vanishes.

We now show that the tensor powers K" are holomorphically non trivial for ev-
ery m > 1. Indeed, the metric i induces a Hermitian metric on the line bundles Kj?jlm
with curvature form mp. If €2 is a nowhere vanishing holomorphic section of K™ , then
mp = —i00 log(||©2]|?). If we denote by ~the result of the symmetrization process, which

—

commutes with the operators d and d, we obtain on G,, that p = —iddlog(||Q2||2) = 0. As
p is invariant, p = p = 0 and we get a contradiction as § # 0.
The claim k(M) = —oo now follows from Thm. 1.4 in [Ya]. O

Remark 5.4.2. We note that the manifold M is parallelizable and therefore ¢, (M) = 0,
hence the Chern Ricci form p is exact. Moreover the Chern scalar curvature s vanishes
identically, as it can be deduced from the expression (5.11) of p or in a simpler way* since

dw™ ' = 0 and .
0:/ p/\wn—lz_/ SChwn:SCh/wn.
M nJm M

We also remark here that the balanced condition implies that the two scalar curvatures that
one can obtain tracing the Chern curvature tensor coincide (see [Ga3], p. 501).

We finally note that also for a compact group K endowed with an invariant complex
structure we have h™°(K) = 0, see [Pi], Prop. 3.7.

“We are indebted to an anonymous referee for this remark
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