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Abstract

In English

The main part of the thesis provides new criteria ensuring irrationality, transcend-
ence, linear independence over a field, or algebraic independence for numbers ex-
pressed as infinite series

∑∞
n=1 1/an that are generated by sequences {an}∞n=1 of

algebraic numbers containing a subsequence of sufficiently rapidly increasing mod-
ulus. Using similar methods, the thesis also provides new linear independence
criteria for numbers expressed as continued fractions [0; a1, a2, . . .] and new irra-
tionality and transcendence criteria for numbers expressed as infinite products∏∞

n=1(1 + 1/an) or as infinite products of infinite series
∏∞

m=1

(
1 +

∑∞
n=1 1/am,n

)
,

again generated by sequences {an}∞n=1 or {am,n}∞n=1 of algebraic numbers contain-
ing a subsequence of sufficiently rapidly increasing modulus. All proofs apply a
method originally developed by Erdős. The results are compared to related no-
tions of irrationality, transcendence, linear independence over a field, and algebraic
independence of sequences rather than numbers.

The thesis also contains two smaller chapters related to different subfields of
number theory. The first of these settles two conjectures regarding which values
are possible as the measure of certain p-adic sets. In the first of these conjectures,
the sets originate as a p-adic variant to those originally considered in the fam-
ous Duffin–Schaeffer Conjecture, while the latter conjecture considers related sets
based on a slightly different Diophantine inequality.

The final chapter provides an asymptotic equivalence for the number of integer
partitions over the Fibonacci numbers or over some other strictly increasing linearly
recurrent sequence where the associated characteristic polynomial satisfies certain
mild conditions.
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ii Abstract

In Danish

I hovedparten af denne afhandling gives nye kriterier, der sikrer irrationalitet, tran-
scendens, lineær uafhængighed over et legeme eller algebraisk uafhængighed for tal
skrevet som uendelige rækker

∑∞
n=1 1/an, der er genereret af følger {an}∞n=1 af al-

gebraiske tal indeholdende en delfølge af tilpas hurtigt voksende modulus. Gennem
lignende metoder giver afhandlingen ogs̊a nye kriterier for lineær uafhængighed af
tal skrevet som kædebrøker [0; a1, a2, . . .] samt irrationalitets- og transcendenskri-
terier for tal skrevet som uendelige produkter

∏∞
n=1(1 + 1/an) eller som uendelige

produkter af uendelige rækker
∏∞

m=1

(
1 +

∑∞
n=1 1/am,n

)
, igen genereret af følger

{an}∞n=1 eller {am,n}∞n=1 af algebraiske tal indeholdende en delfølge af tilpas hurtigt
voksende modulus. Beviserne anvender alle en metode, som oprindeligt er udviklet
af Erdős. Resultaterne sammenholdes med relaterede begreber om irrationalitet,
transcendens, lineær uafhængighed og algebraisk uafhængighed af følger frem for
tal.

Afhandlingen indeholder ogs̊a to mindre kapitler om andre emner inden for
talteori. I det første besvares formodninger om hvilke værdier, der er mulige som
m̊alet p̊a visse p-adiske mængder. I det første af disse formodninger opst̊ar disse
mængder som p-adiske pendanter til mængderne fra den berømte Duffin–Schaeffer-
formodning, mens den anden formodning omhandler relaterede mængder, hvor den
underliggende diofantiske ulighed er delvist ændret.

Det sidste kapitel giver en asymptotisk ækvivalens for antallet af heltalsparti-
tioner over fibonaccitallene eller over en anden strengt voksende lineært rekursiv
følge, hvis karakteristiske polynomium overholder visse milde betingelser.



Preface

This PhD thesis is split into three chapters. While all chapters are entirely within
the field of number theory, they belong to different branches that have little to do
with each other. For this reason, they may be read independently and in any order,
with each chapter having a separate introduction. The only exceptions are the
notions of irrationality and transcendence, which are used to motivate Chapter
2, and of conjugates, which are used in Chapter 3, relying on definitions and –
in the motivation of Chapter 2 – classical results introduced early in Chapter 1.

ALT 0 The only exceptions are the notions of irrationality and transcendence, which
are used to motivate Chapter 2, and of conjugates, which are used in Chapter
3. These notions rely on definitions and – in the motivation of Chapter 2 –
classical results introduced early in Chapter 1.

ALT 1 The only exceptions are the notions of irrationality and transcendence, which
are used to motivate Chapter 2, and of conjugates, which are used in Chapter
3, with each of these notions being introduced in Chapter 1.

ALT 2 The only exceptions are the notions of irrationality and transcendence, which
are used to motivate Chapter 2, and of conjugates, which are used in Chapter
3. Each of these notions is introduced early in Chapter 1.

ALT 3 The only exceptions are the notions of irrationality, transcendence, and con-
jugates, which are introduced in Chapter 1, with Chapter 2 using classical res-
ults on irrationality and transcendence as part of its motivation and Chapter
3 briefly using conjugates to help formulate the assumptions for one of its
main results.

ALT 4 The only exceptions are the notions of irrationality, transcendence, and con-
jugates, which are introduced in Chapter 1; Chapter 2 uses classical irra-
tionality and transcendence criteria as part of its motivation, and Chapter
3 uses the notion of conjugates to help formulate the assumptions for one of
its main results.

Each chapter presents a number of new results by the current author. Some
of these results were proven in collaboration with others [9, 23, 24, 35], while some
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iv Preface

results were not [36–39]. The preprints are all freely accessible on the distribution
service arXiv.org, henceforth referred to simply as arXiv. While arXiv does not
perform peer-review, all papers have been submitted to scientific journals that do,
and the preprints have been updated to reflect any significant changes. At the
time of writing, the three papers [36–38] have been published while the other five
are currently under review.

While the papers are aimed at experts within their respective fields, this author
has strived toward making the rest of the thesis accessible to as broad an audience
as possible. This is done towards the ideal that scientific work should be as easily
accessible to the public as possible. Given that most mathematical research re-
quires a fairly high amount of specialization, the possible availability can be rather
limited, but it is the hope of this author that the present thesis will be under-
standable to most graduates in mathematics. Particular efforts have been made
to make the introductions of Chapters 1 and 3 approachable. Consequently, these
parts of the thesis are estimated to require the least mathematical background,
and it is the hope that at least the first page of these chapters will make sense
even to non-mathematicians.

Chapter 1 takes up the far majority of the thesis and concerns itself with ir-
rationality, transcendence, linear independence, and – to some degree – algebraic
independence of numbers. The chapter contains six out of the eight papers men-
tioned above. The results are also compared to corresponding but less broadly
known notions of irrationality, transcendence, linear independence over a field,
and algebraic independence for sequences. All six papers use an analytical method
originally developed by Erdős [11], which is named the Erdős Jump by the current
author. In each paper, the method has been generalized from former versions to
fit the problem at hand, though the paper [39] entirely reuses the Erdős Jump
from [38]. The chapter is divided into the following seven sections.

• Section 1.1 introduces the reader to the field of study.

• Section 1.2 then introduces the Erdős Jump in greater detail and presents
a conjecture that aims to capture all generalizations present in the papers
[23,24,35,36,38,39].

• Section 1.3 introduces some algebraic number theory that was deemed too
involved for the introduction but that is relevant for the subsequent sections.

• Section 1.4 introduces and compares the papers [36] and [35], which provide
irrationality criteria for infinite series and infinite products, respectively, of
algebraic numbers. The methods of proof in the two papers are highly sim-
ilar, though the method is improved in the latter paper, [35], which thereby
achieves a stronger result. We then use this improvement to strengthen the
main result of [36] to a result that has not been published prior to this thesis.
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• In continuation hereof, Section 1.5 presents the paper [24], which provides
criteria for linear independence of continued fractions generated by sequences
of algebraic numbers but using a different algebraic method from that in the
preceding section.

• Section 1.6 then presents the papers [38] and [39], which provide transcend-
ence criteria for infinite series and infinite products, respectively, of algebraic
numbers. Again, the methods of proof are highly similar and were improved
in the latter paper, leading to more relaxed and slightly simpler criteria.

• Finally, Section 1.7 presents the paper [23], which provides criteria for algeb-
raic independence. The paper also introduces new notions for irrationality
and transcendence of sequences, which we generalize to notions of linear
independence over a field and algebraic independence.

Chapter 2 is concerned with p-adic variants of the famous theorem formerly
known as the Duffin–Schaeffer Conjecture and presents the paper [37] by the cur-
rent author. This chapter assumes a basic understanding of measure theory and
analytical completions, both being fundamental to the field and too involved to
introduce in the present text. The chapter is divided into the following two sec-
tions.

• Section 2.1 introduces the reader to the field as well as two newer conjectures
regarding which measure values are attainable for certain p-adic variants of
the sets considered in the Duffin–Schaeffer Conjecture. One of these new
conjectures was introduced in a joint work by Simon Kristensen and the
current author [34], which was submitted for publication before this author
started his PhD studies. For this reason, this paper is not presented in its
entirety and is only to be considered as context for the subsequent section.

• Section 2.2 introduces the paper [37], which settles the two new conjectures
mentioned above.

Chapter 3 is concerned with partition functions with a particular interest in
the partitions over the Fibonacci numbers. It is divided into the following two
sections.

• Section 3.1 introduces the reader to the field of study.

• Section 3.2 introduces the paper [9], which provides asymptotic equivalences
for the partition functions over the Fibonacci sequence and a broad family
of linearly recurrent sequences.

Unless otherwise stated, this thesis uses standard mathematical notation. Since
some notation is used differently among different mathematicians, let us briefly



vi Preface

cover some of the most basic notation that is subject to various interpretations.
In this text, N is used to denote the set of positive integers, and N0 = N ∪ {0}
is used to denote the non-negative integers. Secondly, we will use (a, b) only to
denote open intervals or pairs of mathematical objects (such as integers), denoting
the greatest common divisor of two integers by gcd(a, b).1 Finally, log denotes the
natural logarithm while log2 is used for the logarithm to base 2.

1In the literature, many authors write (a, b) for the greatest common divisor. This likely
originates from the study of ideals in ring theory, where the ideal generated by a and b is
commonly denoted (a, b) and is equal to the ideal generated by gcd(a, b).
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Chapter 1

Irrational and Transcendental
Sequences

1.1 Introduction

As the story goes, the ancient Greeks long believed that any conceivable number
could be written as the fraction of two positive integers. It was therefore not
received well when it was proven that no such fraction exists for something as
simple as the diagonal of the square with side length 1, also known as

√
2, making

this the first irrational number. Legend has it that the gods in their fury summoned
a storm while the culprit behind the proof was travelling by sea, thus capsizing
the ship and drowning him. Fortunately, it seems, the gods have calmed down and
no longer punish mathematicians who dabble in the dark arts of irrationality. Not
even working with transcendence – a special kind of irrationality, which we will
define below – appears to be of any great risk, even though the Greek gods must
have found this even more despicable than mere irrationality. The first proof of the
existence of transcendental numbers was made in 1844 by Joseph Liouville [40],
while Charles Hermite [28] was the first to prove an already famous number to be
transcendental when he did so for Euler’s number e =

∑∞
n=0 1/n! in 1873.1 Even

worse was it when Georg Cantor [7] in 1874 proved that nearly all real numbers
have to be transcendental. Given that all three of them lived several decades after
publishing their respective results and they each reached an age of more than 70
years, it should be of no particular risk for the reader to continue reading the
present chapter about irrationality and transcendence.

Before moving ahead, let us first take a step back and consider the definitions
of rational, irrational, algebraic, and transcendental numbers. Recall that a real
number a is rational if it there exists a positive integer q so that the resulting

1Hermit’s proof was later modified by Lindemann to prove that also π is transcendental.
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2 Chapter 1. Irrational and Transcendental Sequences

number p = aq is again an integer, and we say that a is irrational if this cannot be
done. In other words, a is rational if it solves an equation of the form qx− p = 0
where p and q are integers with q > 0. Seeing how qx−p is a polynomial of degree
1, a natural step for broadening the set of rational numbers is to consider more
general polynomial equations, such as

c0 + c1x+ c2x
2 + · · ·+ cdx

d = 0, (1.1)

where d is a positive integer, and the coefficients c0, c1, . . . , cd are integers with
cd > 0. We then say that a real or complex number a is algebraic if it solves such
an equation, and we then define the degree of a, denoted deg a, as the smallest
d where this is possible. If a solves equation (1.1) with cd = 1, then we also
say that a is an algebraic integer. We use the symbol Q to denote the set of all
algebraic numbers.

√
2, which solves the equation x2 − 2 = 0, is an example of

an algebraic integer that is also irrational. If a real or complex number is not
algebraic, then we say that it is transcendental and that its degree is ∞. This
makes the transcendental numbers are a special kind of irrational numbers.

It is a well-known fact in number theory that if a is a rational number, then
there is a constant C > 0 that depends only on a so that

∣∣∣∣a−
p

q

∣∣∣∣ ≥
C

q
, (1.2)

for all integers p and q with q > 0 and p/q ̸= a. Hence, a number is automatically
irrational if no such C exists. Another way to determine irrationality is in the form
of continued fractions. Let {an}∞n=0 a sequence of be real or complex numbers with
an ̸= 0 for all n ≥ 1, and let N be a positive integer. We then define the finite
continued fraction generated by a0, a1, . . . , aN as

[a0; a1, a2, . . . , aN ] := a0 +
1

a1 +
1

a2 +
1

. . . +
1

aN

when [aN ; ] ̸= 0, [aN−1; aN ] ̸= 0, . . . , [a1; a2, . . . , aN ] ̸= 0, writing [aN ; ] = aN . In
the case that [a0; a1, a2, . . . , aN ] is well-defined for all large N ∈ N and converges
for N → ∞, we define the infinite continued fraction generated by {an}∞n=0 as

[a0; a1, a2, . . . , ] := lim
N→∞

[a0; a1, a2, . . . , aN ] = a0 +
1

a1 +
1

a2 +
1

. . .

,
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If the an are all integers with an > 0 when n > 0, then the finite continued fractions
are all well-defined and converge to a number a = [a0; a1, a2, . . .]. Furthermore, this
a does not satisfy inequality (1.2) for any choice of C and is therefore irrational.
In fact, the p, q used to disprove inequality (1.2) for a may be chosen among the
finite continued fractions [a0; a1, . . . , aN ]. See, e.g., [6] for a proof.

Let us now turn our attention to criteria that ensure transcendence instead.
Liouville’s construction of the ‘first’ transcendental numbers was done through a
generalized version of inequality (1.2), which he proved in the same paper [40].

Theorem 1.1 (Liouville, 1844). Let a be an algebraic number of degree at most d.
Then there is a constant C > 0, depending only on a, so that

∣∣∣∣a−
p

q

∣∣∣∣ ≥
C

qd

is true for all integers p and q with q > 0 and p/q ̸= a.

From this result, it is easy to prove that the Liouville constant

L =
∞∑

n=1

10−n! =
1

10
+

1

100
+

1

1, 000, 000
+

1

(1, 000, 000)4
+ · · ·

cannot be algebraic, by picking

p

q
=

N∑

n=1

10−n! =
1

10
+

1

100
+

1

1, 000, 000
+

1

(1, 000, 000)4
+ · · ·+ 1

10−N !

for various values of N and noticing

∣∣∣∣L− p

q

∣∣∣∣ <
2

qN+1
.

In the time after Liouville presented this theorem, several improvements were made
to the implied transcendence criterion. This culminated 111 years later with the
following theorem due to Roth [46].

Theorem 1.2 (Roth, 1955). Let a be an irrational real algebraic number, and let
δ > 0. Then there is a constant C > 0, depending only on a and δ, so that

∣∣∣∣a−
p

q

∣∣∣∣ ≥
C

q2+δ

is true for all integers p and q with q > 0.
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One of the most remarkable properties of transcendental numbers is how in-
credibly difficult it can be to prove that a specific one of them is even irrational. A
famous example of such difficulties is concerned with the Riemann zeta function,

ζ(s) =
∞∑

n=1

n−s, s > 1. (1.3)

When s > 1 is an even integer, we know that ζ(s) is transcendental, and we have
no reason to believe that this should not also be the case when s > 1 is an odd
integer. However, while Apéry was able to prove that ζ(3) is irrational in 1979 [3],
it remains an open question if it is transcendental. Even worse, irrationality (or
rationality) has not yet been shown for any ζ(s) when s > 3 is a fixed odd integer.

The main focus of this chapter is on irrationality and transcendence criteria in-
spired by the below theorem due to Erdős from 1975. Specifically, we are interested
in such results for infinite series

∑∞
n=1 1/an, infinite products

∏∞
n=1(1+1/an), and

continued fractions [0; a1, a2, . . .] where the numbers an are algebraic. We will also
present criteria related to infinite product of infinite series

∏∞
m=1(1+

∑∞
n=1 1/an,m).

While these criteria by no means ensure irrationality or transcendence for numbers
such as ζ(s), they have the neat property that small alterations to the sequence
of an are less likely to affect whether the criteria are satisfied. All of these results
are inspired by and generalize the below theorem by Erdős [11].

Theorem 1.3 (Erdős, 1975). Let ε > 0, and let {an}∞n=1 be an increasing sequence
of integers such that an ≥ n1+ε for all n. Suppose

lim sup
n→∞

a2
−n
n = ∞.

Let {cn}∞n=1 be a sequence of positive integers. Then the number
∑∞

n=1 1/(ancn) is
irrational.

Like many other results on irrationality and transcendence of numbers, Erdős’
proof may be split into two parts; an algebraic part and an analytical one. The
algebraic part is rather simple. By a quick argument, it is sufficient to prove the
theorem for cn = 1. Then, pretending that

∑∞
n=1 1/an is rational, one writes

q =
∏N

n=1 an and p = q
∑N

n=1 /an, so that inequality (1.2) implies

(
N∏

n=1

an

) ∞∑

n=N+1

1

an
=

(
N∏

n=1

an

)∣∣∣∣∣
∞∑

n=1

1

an
−

N∑

n=1

1

an

∣∣∣∣∣ ≤ C (1.4)

for a constant C > 0 that depends only on
∑∞

n=1 /an. In the analytical part of the
proof, which is much more involved, Erdős proves that this inequality cannot be
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satisfied for all N under the given assumptions on an. We will give a more detailed
sketch of this part of the proof in Section 1.2 as it plays a vital role for not only
the theorems given below but also for the new results by the current author and
his co-authors, as presented in Sections 1.4–1.7 .

Before considering further results, we will need a few more definitions. We start
with the below definition of expressible sets, a term that appears to originally have
been used in the below sense by Hančl, Nair, and Šustek [25] for infinite series.
Later, Kolouch and Novotný [32] introduced a variant of the term for infinite
products. The new notion for continued fractions follow this pattern.

Definition 1.4 (Expressible sets). Let ({a1,n}∞n=1, . . . , {aK,n}∞n=1) be a list of se-
quences of non-zero real or complex numbers. We then define the associated ex-
pressible set of series as

EΣ

(
{ai,n}∞n=1

)K
i=1

:=





( ∞∑

n=1

1

ai,ncn

)K

i=1

: cn ∈ N ∀n ∈ N



 ,

the associated expressible set of products as

EΠ

(
{ai,n}∞n=1

)K
i=1

:=





( ∞∏

n=1

(
1 +

1

ai,ncn

))K

i=1

: cn ∈ N ∀n ∈ N



 ,

and the associated expressible set of continued fractions as

ECF

(
{ai,n}∞n=1

)K
i=1

:=
{(

[0; ai,1c1, ai,2c2, . . .]
)K
i=1

: cn ∈ N ∀n ∈ N
}
.

Our main use of the above definitions of expressible sets will be as a means to
better introduce the following notions of irrationality, transcendence, and linear
independence of sequences. These terms of irrationality and transcendence are
slightly older than that of expressible sets and were coined by Hančl in the papers
[15] and [16]. The term ‘linear independence’ was first used in the below sense in the
paper [22] by Hančl, Korčeková, and Novotný and was called ’linear unrelatedness’
in previous papers, starting with the paper [17] by Hančl. The below notion of
XK-irrationality for arbitrary fields K is more recent and was introduced by the
current author in [39] to get a more finely incremented terminology.

Definition 1.5. Let K be a field containing Q, and let X be a placeholder for either
one of the labels Σ, Π, and CF. We then say that a sequence {an}∞n=1 of real or
complex numbers is

• XK-irrational if EX{an}∞n=1 does not contain any element from K,
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• X-irrational if it is XQ-irrational, or

• X-transcendental if it is XQ -irrational.

We further say that sequences {a1,n}∞n=1, . . . , {aK,n}∞n=1 of real or complex num-
bers are X-linearly independent over K if the numbers 1, ξ1, . . . , ξK are linearly
independent over K for all lists (ξ1, . . . , ξK) in EX({a1,n}∞n=1, . . . , {aK,n}∞n=1).

Remark 1.6. While we could make corresponding definitions for infinite products of
infinite series, the current author is unaware of any results that could meaningfully
be described as providing proper ‘ΠΣ-irrationality’.

In this language, the conclusion of Theorem 1.3 may now be restated as {an}∞n=1

being Σ-irrational. The rest of this chapter covers a selection of generalizations and
variants of that theorem. While many results were not originally proven with the
above definitions in mind, we will either reformulate such results correspondingly
or extract corollaries that use Definition 1.5.

The first generalization of Theorem 1.3 that we will consider here is one by
Hančl and Sobková [26]. They provided a criterion for linear independence of
sequences when the limsup criterion of Theorem 1.3 is sufficiently strengthened in
terms of the number of sequences considered. Soon after this, Hančl [19] proved
that the conclusion remains true when the limsup criterion is replaced by the
condition that the corresponding liminf and limsup values are different. Combined,
we get the following theorem. In the theorem and for the rest of this chapter, we
write logα2 x as shorthand for (log2 x)

α.

Theorem 1.7 (Hančl–Sobková, 2003–2004). Let α ∈ (0, 1), ε > 0, and K ∈ N. For
i = 1, . . . , K, let {ai,n}∞n=1 and {bi,n}∞n=1 be sequences of positive integers such that

n1+ε < a1,n ≤ a1,n+1, bn < 2log
α
2 a1,n , 2− logα2 a1,nai,n ≤ a1,n ≤ 2log

α
2 a1,nai,n,

and such that the sequence
{
a
(1+K)−n

1,n

}∞
n=1

diverges in R. Then the sequences
{a1,n/b1,n}∞n=1, . . . , {aK,n/bK,n}∞n=1 are linearly independent over Q.

Taking K = 1 in this theorem, we replace the limsup condition in Erdős’
Theoerem 1.3 by the slightly more relaxed requirement that the sequence {a2−nn }∞n=1

is divergent in R.
Our next result is due to Andersen and Kristensen [1] and generalizes Theorem

1.3 in a different direction, favouring what turns out to be ΣK-irrationality rather
than Σ-linear independence over Q and allowing an to potentially be irrational
algebraic numbers, provided |an| satisfies a sufficiently strict limsup criterion. To
better phrase their theorem, we need to increase our vocabulary a bit.
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Definition 1.8. Let a be an algebraic number. We then say that b is a conjugate of
a if it solves inequality (1.1) with c0, . . . , cd ∈ Z whenever a does. The maximum
absolute value of a or any of its conjugates is called the house of a and is denoted
a .

Remark 1.9. Including itself, any algebraic number a has exactly deg a conjugates.

Definition 1.10. A field K is said to be a number field if there is an algebraic
number a such that K = Q(a), which is to say that each element of K may be
written as c0 + c1a+ · · · cd−1a

d−1 where d = deg a, and c0, c1, . . . , cd−1 may be any
rational numbers. In this case, we also say that K is of degree d.

We will also use ℜ(x) and ℑ(x) to denote the real and imaginary values, re-
spectively, of a given complex number x.

Theorem 1.11 (Andersen–Kristensen, 2019). Let d,D ∈ N be positive integers, and
let {an}∞n=1 be a sequence of algebraic integers of degree deg an ≤ d such that

n1+ε ≤ an = |an| ≤ |an+1|

such and that either ℜ(an) > 0 for all n or ℑ(an) > 0 for all n. Suppose

lim sup
n→∞

|an|D
n
∏n−1
i=1 (di+d)−1

= ∞.

Then {an}∞n=1 is (Σ,K)-irrational for any number field K of degree at most D.

Remark 1.12. In the original phrasing of this theorem, the conclusion was only that
deg

∑∞
n=1 1/an > D, while the present formulation is equivalent to the stronger

statement that deg
∑∞

n=1 1/(ancn) > D for all sequences {cn}∞n=1 of positive in-
tegers. The stronger statement follows quite easily from the original, however (see
the proof of Corollary 1.27 in Section 1.4).

In the paper [36], which will be presented in Section 1.4, the current author com-
bines the arguments of [19] and Theorem 1.11 into a result from which a criterion
for Σ-linear independence over K may be extracted through a liminf<limsup<∞
condition. Also in Section 1.4, we will consider two variations of Theorem 1.11
that consider infinite products and infinite products of infinite series, respectively.
These results were proven by Kristensen and the current author in [35] and general-
ize existing irrationality results by Hančl and Kolouch [20,21] where an is assumed
to be rational.

In Section 1.5, we then consider a result by Hančl, Leta, and the current author
[24], which provides a criterion for Σ-linear independence over K of continued
fractions for a fixed number field K, taking inspiration from a continued fractions
variant of Theorem 1.11 by Andersen and Kristensen [2].
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It may be noted that Theorem 1.11 also provides a criterion for Σ-transcen-
dence when the limsup condition is satisfied for allD ∈ N. Relying on a generalized
version of Theorem 1.1, this is, unfortunately, rather restrictive. This becomes
particularly clear when comparing with the following result by Hančl [18], which
uses Theorem 1.2 to achieve Σ-transcendence of sequences.

Theorem 1.13 (Hančl, 2001). Let δ, ε > 0, let α ∈
( log(3+2ε)
log(3+2ε+δ)

, 1
)
, and let {an}∞n=1

and {bn}∞n=1 be sequences of positive integers such that

n1+ε < an ≤ an+1, bn < aε/(1+ε)n 2− logα2 an and lim sup
n→∞

a(3+2ε+δ)−n
n = ∞.

Then the number {an/bn}∞n=1 is Σ-transcendental.

In Section 1.6, we will consider the papers [38,39], in which the current author
generalizes the above theorem to provide criteria for Σ- and Π-transcendence,
though with slightly less lenient bounds of bn. This is, in part, done through an
application of Schmidt’s Subspace Theorem [47]. The theorem will be presented
in that section and is a generalization of Roth’s Theorem.

Finally, in Section 1.7, we consider alternative versions of Definitions 1.4 and
1.5, replacing the condition cn ∈ N with cn ∈ Z and p ∤ cn for one or multiple prime
numbers p. We then relate these definitions to results from a recent paper by Hančl,
Kristensen, and the current author [23]. Inspired by Theorem 1.11, the paper
provides new criteria for irrationality, transcendence, linear independence, and
algebraic independence of numbers expressed as infinite series. We say that a list
of complex numbers (a1, . . . , aK) is algebraically independent if P (a1, . . . , aK) ̸= 0
for all polynomials P in K variables and with integer coefficients.

1.2 The Erdős Jump

Recall how the proof of Theorem 1.3 may be split into an algebraic and an analyt-
ical part, with the algebraic part showing that if

∑∞
n=1 1/an is rational, then there

is a fixed C > 0 such that inequality (1.4), which reads

(
N∏

n=1

an

) ∞∑

n=N+1

1

an
≥ C,

is satisfied for all positive integers N . In this section, we will consider the analytical
part of the proof, in which this inequality is proven to be impossible.

Due to the assumption lim supn→∞ a2
−n
n = ∞, there will be times when aN+1

is particularly large compared to the values of previous an (if an accelerates fast
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enough, this may happen for all N). We will then say that the sequence {an}∞n=1

makes a jump at time N .

The main idea of the proof is to find N such that an makes a large jump at time
N and then remains sufficiently large in terms of n for long enough thereafter to
ensure that

∑∞
n=N+1 1/an becomes so small compared to

∏N
n=1 an that inequality

(1.4) cannot be satisfied. As it turns out, “sufficiently large” can be taken to mean
an ≥ 2n. If this is true for all n, we just need a lower bound for the largest jumps
by an, which turns out to not be too difficult. More care has to be taken when
the sequence {an}∞n=1 stagnates for periods of time long enough that we will get
an < 2n infinitely often. In this case, it may very well be that the next stagnation
comes right after our jump, which would allow values of

∑∞
n=N+1 1/an that fail

to contradict inequality (1.4). Since lim supn→∞ a2
−n
n = ∞, there will, for all

positive numbers A, be infinitely many k such that ak > A2k . Combined with the
assumption an ≥ n1+ε, this gives some control of

∑∞
n=k 1/an. However, since each

such k may potentially be followed by a long stagnation, it may not be enough
to disprove inequality 1.4 on its own. Erdős solved this problem by first fixing
such a k, then identifying the most recent stagnation, and finally timing the choice
of N to be at the very first jump after this stagnation. This guarantees that no
stagnation happens between N and k, which gives us a decent upper bound on the
infinite series

∑∞
n=N+1 1/an, while the preceding stagnation itself ensures that the

product
∏N

n=1 an cannot be too large, either. By picking the A mentioned earlier to

be sufficiently large, it follows that the resulting number
(∏N

n=1 an

)∑∞
n=N+1 1/an

can be made arbitrarily small.

Because of how central the jump at time N and the timing hereof are to the
proof, the current author names this method the Erdős Jump (or Jump for short),
given that no one else seems to have named it in the literature.

When the Erdős Jump is used to prove a new theorem, it is often the case that
the entire argument or large parts of it are presented again since different forms of
generalization are required (see, e.g., [1,2,17–21,25,26]). The same pattern can be
seen in the papers by the current author that use an Erdős Jump [23,24,35,36,38,
39], where only the paper [39] does not make a new Jump but rather refers back
to the one made in [38]. However different, all these generalizations have certain
similarities and appear to be special cases of a more general Erdős Jump. In
writing the present thesis, this led the current author to the following conjectures.
The first seed toward these conjectures was planted by the paper [25], which uses a
more flexibly phrased Jump than many other papers. [25] also inspired the Jumps
made in the papers [23] and [38].

Conjecture 1.14. Let ε,K > 0, and let {mn}∞n=1 and {µn}∞n=1 be sequences of real
numbers such that mn ≥ 1 and µn > 0. Write Mn =

∏n
i=1mi. Let {an}∞n=1,
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{bn}∞n=1, and {En}∞n=1 be sequence of positive numbers such that

an+1 ≥ an ≥ n1+ε, lim sup
n→∞

log bn
log an

≤ 0,

and
En ≤ max

{
b
nK max1≤i≤n µi
n , 2Kn

−2(log logn)−1
∏n−1
i=1 (mi+µiMi)

}
.

If the sequence
{
a
1/
∏n−1
i=1 (mi+µiMi)

n

}∞

n=1
diverges in R, then

lim inf
N→∞

((
EN

N∏

n=1

aµnn

)MN ∞∑

n=N+1

bn
an

)
= 0.

Assuming this conjecture to be true, it is easily generalized to the following
statement, which allows values of bn that are much closer to an, in exchange for a
harsher divergence criterion.

Conjecture 1.15. Let ε, K, {mn}∞n=1, {µn}∞n=1, {Mn}∞n=1, and {an}∞n=1 be given
as in Conjecture 1.14. Let β ∈ [0, ε/(1 + ε)), and let {bn}∞n=1 and {En}∞n=1 be
sequences of positive numbers such that lim supn→∞(log bn/log an) ≤ β and

En ≤ max

{(
bn

aβn

)nK max1≤i≤n µi

, 2Kn
−2(log logn)−1

∏n−1
i=1 (mi+

µiMi
1−β )

}
.

If the sequence
{
a
1/
∏n−1
i=1 (mi+

µiMi
1−β )

n

}∞

n=1
diverges in R, then

lim inf
N→∞

((
EN

N∏

n=1

aµnn

)MN ∞∑

n=N+1

bn
an

)
= 0.

Proof (assuming Conjecture 1.14). Write

a′n = a1−βn , ε′ = (1 + ε)(1− β)− 1, b′n =
bn

aβn
and µ′

n =
µn

1− β
.

From this follows that ε′ > 0,

a′n+1 ≥ a′n ≥
(
n1+ε

)1−β
= n1+ε′ ,

and

lim sup
n→∞

log b′n
log a′n

=
1

1− β
lim sup
n→∞

log bn − β log an
log an

≤ 0.
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Then the sequence

{
a′n

1/
∏n−1
i=1 (mi+µ′iMi)

}∞

n=1
=

{(
a
1/
∏n−1
i=1 (mi+

µiMi
1−β )

n

)1−β
}∞

n=1

clearly diverges, while
(
2N

K
N∏

n=1

(
a1−βn bn

)µn
)MN ∞∑

n=N+1

bn
an

=

(
2N

K
N∏

n=1

(
a′n

1
1−β b′n

)µn
)MN ∞∑

n=N+1

b′n
a′n

≤
(
2N

K
N∏

n=1

(a′nb
′
n)
µ′n

)MN ∞∑

n=N+1

b′n
a′n
.

The statement now follows immediately from Conjecture 1.14.

Combining the Erdős Jumps from [23, 35], we get the following lemma. The
paper [35] is presented in Section 1.4, while [23] is presented in Section 1.7.

Lemma 1.16. Conjecture 1.14 is true in the following cases.

1. mi, µi ∈ N with fixed µi = µ, bn ≤ 2log
α
2 an for some fixed constant α ∈ (0, 1),

and En = bn
2

n .

2. mi = 1, µi = µ is fixed, bn ≤ 2log
α
2 an for some fixed constant α ∈ (0, 1),

En = max{bn2

n , n
−32(1+µ)

n+1}, and lim sup
n→∞

a(1+µ)
−n

n = ∞.

3. mi ∈ N, µi = i + 1 − M−1
i−1, bn ≤ a

(log log an)−3−ε
n , En = 2n

2∏n
i=1 b

µi
i , and

lim sup
n→∞

a
1/(n!

∏n−1
i=1 Mi)

n = ∞.

Furthermore, Conjecture 1.15 is true given the assumptions of case 2 where the
bound on bn weakened to bn ≤ |an|β2logα2 an and the limsup condition strengthened

to lim sup
n→∞

a(1+µ/(1−β))
−n

n = ∞.

Remark 1.17. In case 3, n!
∏n−1

i=1 Mi is equal to
∏n−1

i=1 (mi + µiMi) due to the choice
of µi. Similarly, (1 + µ)n−1 =

∏n−1
n=1(mi + µiMi) in case 2.

Proof. Case 1. This follows from [35, Lemma 16] with D = 1, d1 = µm1, and
dn+1 = mn+1.

Case 2. This follows from the proof of Lemma 11 in [23] with M = µ − 1.
While the lemma assumes µ ≥ 1, this additional assumption is easily removed (see
subsection 1.7.2).

Case 3. This follows from [35, Lemma 19] where D = 1 and Dn =Mn.
The statement regarding Conjecture 1.15 follows from case 2 and the condi-

tional proof of the conjecture. This completes the present proof.
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1.3 Some additional algebra

In this section, we introduce further notions and theorems that will play a central
role in phrasing and proving results that will be presented in the next few sections.
Unless otherwise stated, the introduced terminology and results are standard know-
ledge within the field of algebraic number theory.

We start by expanding our vocabulary regarding fields and field extensions.

Definition 1.18. Let K and L be fields. We then make the following definitions.

• If L ⊇ K, then we say that L is a field extension of K, and we define the
degree of this field extension, denoted [L : K], as the dimension of L when
viewed as a K-vector space.

• Let a lie in a field extension of K. If there exist d ∈ N such that

c0 + c1a+ . . .+ cda
d = 0,

for the right choices of c0, . . . , cd ∈ K with cd ̸= 0, then we define the degree
of a over K, denoted degK a, as the smallest such d. If no such d exists, we
write degK a = ∞.

• If K ⊆ Q, we say that a map σ : K → Q is an embedding into Q if it is a ring
homomorphism over K, i.e., if σ(a+ bc) = σ(a) + σ(b)σ(c) for all a, b, c ∈ K.

Notation. Let K be a field, and let {an}∞n=1 be a sequence of numbers from a field
extension of K. Then we have the following notation.

• If degK an = d <∞, we write K(an) =
{∑d−1

i=0 cia
i
n : ci ∈ K

}
.

• If degK an = ∞, we write K(an) =
{∑K

i=−K cia
i
n : ci ∈ K, K ∈ N

}
.

• We write K(am, an) = (K(am))(an), i.e., K(am, an) = K′(an) if K′ = K(am).

• We write K(a1, a2, . . .) =
⋃∞
n=1K(a1, a2, . . . , an).

• If K ⊆ Q, we write OK for the set of algebraic integers in K.

Remark 1.19. The following facts will be considered common knowledge when
using the above notation and definitions.

• K(a) always defines a field, and so does K(a1, a2, . . .).

• The above definitions of degree generalize the notions introduced in Section
1.1 since it easily follows that [K(a) : K] = degK a and degQ a = deg a.
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• By a simple argument from linear algebra involving bases, it follows that
[K(a, b) : K] = [K(a, b) : K(a)][K(a) : K].

• If K ⊆ Q, then any embedding σ : K → Q is automatically injective, and
the number of such embeddings is equal to [K : Q].

We will now introduce ways of estimating the complexity of algebraic numbers.

Definition 1.20. Let a be an algebraic number of degree d. We then make the
following definitions.

• The minimal polynomial of a is the unique polynomial Pa = c0+ c1X+ . . .+
cdX

d such that Pa(a) = 0, c0, . . . , cd−1 ∈ Z, cd ∈ N, and gcd(c0, . . . , cd) = 1.

• The leading coefficient cd of Pa is called the denominator of a, denoted den a.

• Factoring Pa as Pa = cd(X − a(1)) · · · (X − a(d)), Mahler measure of a is
defined as

M(a) := cd

d∏

i=1

max
{
1,
∣∣a(i)

∣∣}.

Notice that the denominator of an algebraic number a is also the smallest
positive integer c such that ac is an algebraic integer.

One of the advantages of the Mahler measure is that it provides a way to
measure the complexity of an algebraic number. Another and particularly useful
way to do the same is with the Weil height, defined below. This definition is more
advanced and relies on the notions of places and their associated local fields. Since
places and local fields take a while to introduce and are not used elsewhere in
this chapter, the interested reader is instead referred to [48, Section 3.1], which
provides a neat and brief introduction.2 Alternatively, the reader may understand
the Weil height in terms of the Mahler measure through the remarkable Theorem
1.22 below.

Definition 1.21. Let a be an algebraic number. We then define the Weil height of
a as

H(a) :=
∏

ν∈MK

max{1, |a|ν}[Kν :Qν ]/[K:Q],

where K is an arbitrary number field containing a, MK denotes the set of places
for K, and Kν is the local field of K at ν.

2In [48], normalized absolute values are used instead of places, but this makes no difference
since places are simply the equivalence classes of absolute values, of which the normalized ones
are canonical representatives.
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This definition does not depend on the choice of K (see [48] for a proof).
Recalling Definition 1.8, we may compare the Weil height, the Mahler measure,

and the house using the following classical theorem. The equality is proven in [48]
while the inequality is a trivial consequence of Definitions 1.8 and 1.20.

Theorem 1.22. Let a be an algebraic number of degree d. Then

H(a)d =M(α) ≤ (den a)max{1, a d}

The Weil height appears in the rather useful Theorem 1.25, which is presented
in the below Section 1.4, but it also behaves rather nicely with respect to addition
and multiplication. This is seen in the following lemma, a proof of which is found
in [48].

Lemma 1.23. Let a1, . . . , an ∈ Q with a1 ̸= 0. Then

H(a1 + · · ·+ an) ≤ nH(a1) · · ·H(an), H(a1a2) ≤ H(a1)H(b1),

H (1/a1) = H(a1).

The following lemma has also been used for bounding the house of a sum of
algebraic numbers. Its two statements are proven in [38] and [39], respectively, but
are most likely also proven elsewhere in the literature.

Lemma 1.24. Let x1, . . . , xd be algebraic numbers. Then there is a constant C1 > 0,
depending only on x1, . . . , xd, so that for any (c1, . . . , cd) ∈ Qd,

c1x1 + c2x2 + · · ·+ cdxd ≤ C1 max
1≤i≤d

|ci|.

If furthermore x1, . . . , xd are linearly independent over Q, then there is another
constant C2 > 0, depending only on x1, . . . , xd, so that for any (c1, . . . , cd) ∈ Qd,

c1x1 + c2x2 + · · ·+ cdxd ≥ C2 max
1≤i≤d

|ci|.

1.4 Irrationality of series and products

In this section, we will consider criteria for K-irrationality of infinite series, infinite
products, and infinite products of infinite series. These results are based on the
papers [36] and [35] by the current author, the latter paper being a joint work
with Simon Kristensen. The preprints of the papers are printed in their entirety
in subsections 1.4.3 and 1.4.4, respectively. In subsection 1.4.1, we will consider a
number of examples.

Common for all these results is that they rely on the below generalization of
Theorem 1.1, a proof of which may be extracted from [6, Theorem A.1]. H is the
Weil height as defined in Definition 1.21.
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Theorem 1.25. Let a, b be non-conjugate algebraic numbers. Then

|a− b| ≥
(
2H(a)H(b)

)− deg(a) deg(b)
.

We are now ready to state the below theorem, which is the main result of
the paper [36]. It generalizes Theorem 1.7 and extends Theorem 1.11, combining
arguments from both theorems.

Theorem 1.26 (Laursen, 2023). Let D,K ∈ N, α ∈ [0, 1) ε > 0, and ζ ∈ C with
|ζ| = 1. Let {dn}n∈N be a sequence of natural numbers, and write Dn =

∏n
i=1 di.

For i = 1, . . . , K, let {ai,n}n∈N and {bi,n}n∈N be sequences of algebraic and positive
integers, respectively, so that

n1+ε ≤ |a1,n| ≤ |a1,n+1|, [Q (a1,n, . . . , aK,n) : Q] ≤ dn,

bi,n ai,n ≤ 2log
α
2 |a1,n||ai,n|, |ai,n|2− logα2 |a1,n| < |a1,n| < |ai,n|2log

α
2 |a1,n|,

ℜ
(
ζ
bi,n
ai,n

)
> 0, lim

n→∞
ℜ(ζbi,n/ai,n)

ℜ(ζbi+1,n/ai+1,n)
= 0,

writing bK+1,n, aK+1,n = 1, and

lim inf
n→∞

|a1,n|1/(D
n
∏n−1
i=1 (di+KDi)) < lim sup

n→∞
|a1,n|1/(D

n
∏n−1
i=1 (di+KDi)) <∞. (1.5)

Then the numbers 1,
∑∞

n=1 b1,n/a1,n, . . . ,
∑∞

n=1 bK,n/aK,n are linearly independent
over K for all number fields K of degree at most D.

In [36], it was assumed that |a1,n| < |a1,n+1|, but making the inequality soft
does not affect the proof in any meaningful way, and it allows us to extract the
following corollary regarding ΣK-irrationality.

Corollary 1.27. Let d ∈ N. Suppose all assumptions of Theorem 1.26 are satisfied
with dn = d for all n. Then the sequences {a1,n/b1,n}∞n=1, . . . , {aK,n/bK,n}∞n=1 are
Σ-linearly independent over K for all number fields K of degree at most D.

Proof. Let {cn}∞n=1 be a sequence of positive integers. Let σ : N → N be a
bijection such that A1,n := a1,σ(n)cσ(n) is of non-decreasing modulus, and set Ai,n :=
ai,σ(n)cσ(n), Bi,n := bi,σ(n)cσ(n). Then the sequences {Ai,n}∞n=1 and {Bi,n}∞n=1, with
i = 1, . . . , K, satisfy the assumptions of Theorem 1.26 with dn = d. This completes
the proof.

Remark 1.28. By this corollary, the limsup condition of Theorem 1.11 may be

replaced with the more general assumption that |an|1/(D
n
∏n−1
i=1 (di+KDi)) is divergent

in R.
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In the above corollary, we fixed dn = d due to the necessary re-ordering of
|a1,ncn|. Suppose for a moment that we did not make this assumption. Depending
on {cn}∞n=1, the reordering may move (a1,n, . . . , aK,n) arbitrarily around. For a
sufficiently devious {cn}∞n=1, we may therefore be in the case that this reordering
postpones those indices n that have small values of dn increasingly far while bring-
ing the indices n with large values of dn correspondingly forward. If done correctly,
this will increase the resulting Dn significantly for all values of n, which in turn
makes the liminf<limsup criterion much harder to satisfy as it now appears plaus-

ible to end up with lim supn→∞ |A1,n|1/(D
n
∏n−1
i=1 (d′i+KD

′
i)) = 1, where d′n = dσ(n) and

D′
n =

∏n−1
i=1 d

′
i. Of course, this may be avoided if cn is sufficiently large for the

right n, but it is doubtable that this will always be the case.
In the paper [35], Kristensen and the current author found that the products

versions of Theorems 1.11 and 1.26 follow from almost the exact same proofs. By
tweaking the algebraic part of the proofs, the following somewhat stronger theorem
was shown.

Theorem 1.29 (Kristensen–Laursen, 2025 on arXiv). Let D ∈ N, ε > 0, α ∈ (0, 1),
and e ∈ {−1, 1}. Let {an}∞n=1 and {bn}∞n=1 be sequences of algebraic and positive
integers, respectively. Write K0 = Q, Kn = Kn−1(an), dn = [Kn : Kn−1], and
Dn =

∏n
i=1 di. Let K denote the field

⋃∞
n=1 Kn, and suppose for all n and some

fixed e ∈ {−1, 1} that

n1+ε ≤ |an| ≤ |an+1|, an bn ≤ |an|2(log2 |an|)
α

, e(ℜ(an/bn) + 1/2) ≥ 0,

with (ℜ(an/bn) + 1/2)e > 0 infinitely often, and that |an|1/(Dn
∏n−1
i=1 (di+Di)) diverges

in R as n→ ∞. Then degK
∏∞

n=1 (1 + bn/an) > D.

Restricted to a statement on ΠK-irrationality, we get the following corollary.
Notice that the bound of real values is strengthened for e = 1 in order to make
it resilient against significant scalings of an. The same is observed by the current
author in [39].

Corollary 1.30. Let d,D ∈ N, ε > 0, α ∈ (0, 1), e ∈ {−1, 1}, and let K be a number
field. Let {an}∞n=1 and {bn}∞n=1 be sequences of algebraic integers with degK an ≤ d
and bn ∈ N. Suppose for all n that

n1+ε ≤ |an| ≤ |an+1|, an bn ≤ |an|2(log2 |an|)
α

,

eℜ
(
an
bn

)
≥
{
0 if e = 1,

1/2 if e = −1,

with ℜ(an/bn) ̸= −1/2 infinitely often, and that |an|1/(Dn
∏n−1
i=1 (d+di[K:Q])) diverges

in R as n → ∞. Then {an/bn}∞n=1 is (Σ,L)-irrational for all field extensions
L ⊇ K(a1, a2, . . .) of degree at most D.
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The improvement of the proof that leads to the stronger statements of both
theorem and corollary compared to the series setting is surprisingly simple and
relies on how Theorem 1.25 is applied. In the algebraic arguments of Theorems
1.11 and 1.26 with K = 1, we write γ =

∑∞
n=1

bn
an

and γN =
∑N

n=1
bn
an
. For Theorem

1.29, we have γ =
∏∞

n=1(1 + bn
an
) and γN =

∏N
n=1(1 + bn

an
) instead, but this is of

no significance in the following. Then we assume, towards contradiction, that
deg γ ≤ D (for Theorem 1.29, we only assume degK γ ≤ D).

After bounding H(γN) and ensuring that γN eventually differs from γ, we apply
Theorem 1.25. In the proofs of Theorems 1.11 and 1.26, we take a = γ and b = γN ,
which leads to

|γ − γN | ≥
(
2H(γ)H(γN)

)−(deg γ) deg γN ≥
(
2H(γ)H(γN)

)−DN deg γ
, (1.6)

using that deg γN ≤ deg a1 · · · deg aN . Notice that the moment after we apply The-
orem 1.25 in this way, we can no longer take advantage of any algebraic connection
between γ and γN . In the proof of Theorem 1.29, we instead take a = γ − γN and
b = 0. Since H(0) = deg 0 = 1, this now leads to

|γ − γN | ≥
(
2H(γ − γN)

)− deg(γ−γN ) ≥
(
4H(γ)H(γN)

)− deg(γ−γN )
,

using Lemma 1.23 for the second inequality. This now becomes a much stronger
bound if deg(γ − γN) is significantly smaller than DN deg γ, which is easily the
case if γ has a large degree and lies in a field extension of K.

Doing these improvements to Theorem 1.11, Theorem 1.26, and Corollary 1.27,
we find the following theorem on linear independence of numbers and sequences,
which has not previously been published. Drawing inspiration from the papers
[38, 39], the theorem also contains an additional improvement by replacing the
exponent Dn

∏n−1
i=1 (di +DiK) with the slightly smaller

∏n−1
i=1 (di +DDiK).

Theorem 1.31. Let D,K ∈ N, α ∈ [0, 1) ε > 0, and ζ ∈ C with |ζ| = 1. Let
{Kn}∞n=1 be a sequence of number fields satisfying Kn ⊆ Kn+1, and let K denote
the field

⋃∞
n=1Kn. Write d1 = [K1 : Q], dn+1 = [Kn+1 : Kn], and Dn =

∏n
i=1 di.

For i = 1, . . . , K, let {ai,n}n∈N and {bi,n}n∈N be sequences of algebraic integers with
ai,n ∈ OKn and bi,n ∈ N, respectively, so that

n1+ε ≤ |a1,n| ≤ |a1,n+1|, bi,n ai,n ≤ 2(log2 |a1,n|)
α|ai,n|,

|ai,n|2−(log2 |a1,n|)α < |a1,n| < |ai,n|2(log2 |a1,n|)
α

, ℜ
(
ζ
b1,n
a1,n

)
> 0,

and, when i < K,

lim
n→∞

|bi,n/ai,n|
|bi+1,n/ai+1,n|

= 0. (1.7)
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If the sequence
{
|a1,n|1/

∏n−1
i=1 (di+DDiK)

}∞

n=1
diverges in R, then the numbers 1,

∑∞
n=1

b1,n
a1,n

, . . . ,
∑∞

n=1
bK,n
aK,n

are linearly independent over L for all field extensions

L ⊇ K of degree at most D.
Let d ∈ N, and let K0 be a number field. Suppose [K0(a1,n, . . . , aK,n) : K0] ≤ d

for all n ∈ N and that the sequence
{
|a1,n|1/

∏n−1
i=1 (d+diD[K0:Q])

}∞

n=1
diverges in R.

Then the sequences {a1,n/b1,n}∞n=1, . . . , {aK,n/bK,n}∞n=1 are Σ-linearly independent
over L for all field extensions L ⊇ K0(a1,n, . . . , aK,n : n ∈ N) of degree at most D.

If we replace equation (1.7) with

ℜ
(
ζ
bi+1,n

ai+1,n

)
> 0 and lim

n→∞
ℜ(ζbi,n/ai,n)

ℜ(ζbi+1,n/ai+1,n)
= 0, (1.8)

then the above statements still hold but where ‘[...] independent over L’ is replaced
with ‘[...] independent over L ∩ R’.

We prove this in subsection 1.4.2. Considering the matters of Σ- and Π-
irrationality settled, let us move on to an irrationality result for infinite products
of infinite series that Kristensen and the current author dealt with in the second
half of [35]. In this setting, we have to be more restrictive regarding the real and
imaginary values of an/bn than in the series and products cases. For that reason,
we introduce the following definition.

Definition 1.32. Let (an,m)m,n∈N and (bn,m)m,n∈N be infinite arrays of algebraic and
positive integers, respectively. We then say that (an,m)m,n∈N and (bn,m)m,n∈N form
a ΠΣ-neat pair if at least one of the following conditions is satisfied.

1. ℜ(an,m) ≥ 0 and eℑan,m ≥ 0 for all m,n ∈ N, where e ∈ {−1, 1} is fixed.

2. ℜ(an,m/bn,m) ≥ −1
2
for all sufficiently large m + n with > infinitely often,

and eℑ(an,m) ≥ |ℜ(an,m)| for all m,n ∈ N, where e ∈ {−1, 1} is fixed.

3. |ℑ(an,m)| ≤ ℜ(an,m) for all m,n ∈ N.

4. X < 1, ℜ(an,m/bn,m) ≤ 0, and |ℑ(an,m)| ≤ R|ℜ(an,m)| for all m,n ∈ N,
where X = supm∈N{

∑∞
n=1

bn,m
|an,m|} and R ∈ (0, 1/X) are fixed.

We then get the following theorem.

Theorem 1.33 (Kristensen–Laursen, 2025 on arXiv). Let D ∈ N, let ε > 0. Let
(an,m)m,n∈N and (bn,m)m,n∈N be infinite arrays of algebraic and positive integers,
respectively, that form a ΠΣ-neat pair. Suppose that the sequence {|an,1|}∞n=1 is
non-decreasing and that for n sufficiently large,

n1+ε ≤ |an,1|,
n∑

j=1

∣∣∣∣
bn−j+1,j

an−j+1,j

∣∣∣∣ ≤ |an,1|−1+(log log |α|)−3−ε
,
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and
n∏

j=1

an−j+1,j ≤ |an,1|n+(log log |α|)−3−ε
.

Write K1 = Q(a1,1), Kn = Kn−1(a1,n+1, a2,n, . . . , an+1,1), and Dn = [Kn : Q]. Let
K denote the field

⋃∞
n=1Kn. Then degK

∏∞
m=1 (1 +

∑∞
n=1 bn,m/an,m) > D if

lim sup
n→∞

|an,1|1/(D
nn!

∏n−1
i=1 Di) = ∞.

The proof combines ideas from the proofs of Theorem 1.11, Theorem 1.29, and
the paper [21] by Hančl and Kolouch.

It would now seem natural to extract an irrationality statement like those
in Corollaries 1.27 and 1.30. Unfortunately, this is not as easily done for the
following reason. In the series and product settings, the number of ai,j and bi,j
considered for fixed n did not depend on n itself. Meanwhile, for Theorem 1.33,
we have increasingly many ai,j and bi,j to consider for each n, namely those with
i+ j − 1 = n. These ai,j and bi,j are furthermore compared to each other without
any immediate connection to those considered for other values of n except for the
fact that {|an,1|}∞n=1 is non-decreasing and satisfies a specific limsup condition. If
we now try to reorder the terms, we will be forced to mix collections of ai,j and bi,j
from different values of n and compare them. How to handle this appears to be a
study in itself, though one this author fears would be of too little reward. For now,
the closest we get to a notion of ‘ΣΠ-irrationality’ is the below trivial corollary to
Theorem 1.33.

Corollary 1.34. Keeping the assumptions and notation of Theorem 1.33, let {cn}∞n=2

be a sequence of positive integers such that {|an|cn−1}∞n=1 is non-decreasing. Then
degK

∏∞
m=1 (1 +

∑∞
n=1 bn,m/(an,mcm+n)) > D if

lim sup
n→∞

|an,1|1/(D
nn!

∏n−1
i=1 Di) = ∞.

Notice that the assumptions of Theorem 1.33 imply more lenient bounds of
bn in terms of an,1 than would be expected from Theorems 1.26 and 1.29, thus

allowing bn,1 an,1 as large as |an,1|1+1/ log3+ε log |an,1|. This is due to a more effective
Erdős Jump (see Section 1.2). This Jump has, however, not yet been made in the
cases of liminf<limsup<∞.

1.4.1 Examples

In this subsection, we will present a list of examples to the theorems presented
above. Most of these examples are inspired by [23, Remark 4]. Recall the Riemann
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zeta function, defined by equation (1.3). A direct consequence of Theorem 1.3 is
that the number

∑∞
n=1 1/(n

san) is irrational when s > 1 is an integer and {an}∞n=1 is

a sequence of positive integers such that lim supn→∞ a2
−n
n = ∞. Our first example

provides a similar statement when s > 1 is a rational number but not necessarily
an integer. This is then generalized in the subsequent example to a statement of
linear independence of multiple series. In all the below examples, π denotes the
prime counting function, i.e., π(n) is the number of prime numbers p ≤ n.

Example 1.35. Let p, q ∈ N with p > q, and let {an}∞n=1 be a non-decreasing

sequence of positive integers such that a
1/
∏n−1
i=1 (1+qπ(i))

n diverges in R. Then the
number

∑∞
n=1 1/(n

p/qan) is irrational by Theorems 1.11 and 1.26. Instead applying
Theorem 1.31, we get the stronger result that

∑∞
n=1 1/(n

p/qan) /∈ Q( q
√
2, q
√
3, . . .).

Example 1.36. Let s1 > . . . > sK > 1 be distinct rational numbers, let Q be the
least common multiple of the denominators of s1, . . . , sK , and let {an}∞n=1 be a non-
decreasing sequence of positive integers with an ≥ nlogn such that the sequence{
a
1/
∏n−1
i=1 (1+Qπ(i))

n

}∞

n=1
diverges in R. Then the numbers 1,

∑∞
n=1 1/(n

s1an), . . . ,
∑∞

n=1 1/(n
sKan) are linearly independent over Q( Q

√
2, Q

√
3, . . .) and, in particular,

over Q. This follows from Theorem 1.31 with α = 2/3 and ai,n = nsian.

We now consider similar examples for infinite products and for infinite products
of infinite series.

Example 1.37. Let p, q ∈ N with p > q, and let {an}∞n=1 be a non-decreasing

sequence of positive integers such that a
1/
∏n−1
i=1 (1+qπ(i))

n diverges in R. By Theorem
1.29, the number

∏∞
n=1

(
1 + 1/(np/qan)

)
is irrational and, in fact, not contained in

the field Q( q
√
2, q
√
3, . . .).

Example 1.38. Let q,m0 ∈ N, and let {an}∞n=1 be a non-decreasing sequence of

positive integers with an ≥ nlogn such that lim supn→∞ a
1/(n!

∏n−1
i=1 qπ(i))

n = ∞. Write
am,1 = 1 and am,n = an+m−m0−1 for n > 1. Then Theorem 1.33 with α = 2/3
ensures that the number

∞∏

m=m0

∞∑

n=1

1

nm/qam,n
=

∞∏

m=m0

(
1 +

∞∑

n=2

1

nm/qam,n

)

is irrational and, in fact, not contained in the field Q( q
√
2, q
√
3, . . .).

Remark 1.39. The assumption an ≥ nlogn that is present in Examples 1.36 and
1.38 is most likely unnecessary for the examples to be true. However, removing
this assumption requires improvements to the Erdős Jump, similar to those made
for case 2 of Lemma 1.16. While this should not be too difficult, it will require
more time than this author has available at the time of writing.



1.4. Irrationality of series and products 21

Our final example is a special case of [39, Example 3.1].

Example 1.40. Let x be an algebraic integer with x = x > 1. By Corollary 1.30
and Theorem 1.31, the sequence {xhn}∞n=1 is ΣQ(x)- and ΠQ(x)-irrational if hn ∈ N
and hn ≥ n2 for all n and hn ≥ 3n log n infinitely often. For instance, we may
take hn = 3nn or hn = 32

⌊log2 n⌋ + n, where ⌊log2 n⌋ denotes the largest integer no
greater that log2 n.

1.4.2 Proof of an improved theorem

We will now prove Theorem 1.31. The analytical part of the proof is an application
of Lemma 1.16, while the algebraic part is covered by the following two lemmas.
The first lemma combines ideas from [36, Lemma 11] and [35, Lemma 15], while
the latter generalizes a statement used in the proof of [36, Lemma 11].

Lemma 1.41. Let D,K ∈ N, let {Kn}∞n=1 be a sequence of number fields satisfying
Kn ⊆ Kn+1, and let K denote the field

⋃∞
n=1Kn. Write K0 = Q, dn = [Kn : Kn−1],

and Dn =
∏n

i=1 di. For i = 1, . . . , K, let {ai,n}n∈N and {bi,n}n∈N be sequences
of algebraic integers such that ai,n ∈ OKn, bi,n ∈ N, bi,n ≤ max1≤i≤n ai,n, and∑∞

n=1 |bi,n/ai,n| converges for all i. Let L be a field extension of K of degree at
most D, let β1, . . . , βK ∈ L, and write

γN =
K∑

i=1

βi

N∑

n=1

bi,n
ai,n

and γ =
K∑

i=1

βi

∞∑

n=1

bi,n
ai,n

Suppose that {γN}∞N=1 does not contain any constant subsequence and that γ ∈ L.
Then

lim
N→∞



(
2N

2
N∏

n=1

max
1≤i≤K

ai,n
K

)DDN ∞∑

n=N+1

max
1≤i≤K

bi,n
|ai,n|


 = ∞.

Proof. Because γN does not attain the same value infinitely often, we must have
γN ̸= γ for all large enough N . We then have from Theorem 1.25 that

|γ − γN | ≥
(
2H(γ − γN)

)− deg(γ−γN )
. (1.9)

Pick ξ ∈ L such that L = K(ξ), and write Ln = Kn(ξ). Since degK ξ = [L : K] ≤ D,
there is a polynomial P ∈ K[X] of degP ≤ D and P (ξ) = 0. BecauseK =

⋃∞
n=1Kn

and Kn ⊆ Kn+1, it follows that the coefficients of P must be contained in Kn for all
sufficiently large n. Hence, [Ln : Kn] ≤ D when n is large enough. Clearly, we also
have L =

⋃∞
n=1 Ln, which means that we eventually have β1, β2, . . . , βK , γ ∈ LN

and, consequently, γ − γN ∈ LN . The upshot is that when N is sufficiently large,

deg(γ − γN) ≤ [LN : Q] = [LN : KN ]
N∏

n=1

[Kn : Kn−1] ≤ DDN .
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Combined with inequality (1.9), we have

|γ − γN | ≥
(
2H(γ − γN)

)−DDN (1.10)

By Lemma 1.23 and Theorem 1.22,

H(γ − γN) ≤ (K + 2)H(γ)
K∏

i=1

(
H(βi)(N + 1)

N∏

n=1

H

(
bi,n
ai,n

))

≤ 2N/D−1

K∏

i=1

N∏

n=1

H

(
ai,n
bi,n

)
≤ 2N/D−1

N∏

n=1

K∏

i=1

max{ ai,n , bi,n}.

for all sufficiently large N . Since bi,n ≤ max1≤i≤n |ai,n|, inequality (1.10) now yields

|γ − γN | ≥
(
2N

N∏

n=1

max
1≤i≤n

ai,n
DK

)−DN

From this and the triangle inequality follows that

(
2N

N∏

n=1

max
1≤i≤n

ai,n
DK

)−DN

≤
∣∣∣∣∣
K∑

i=1

βi

∞∑

n=N+1

bi,n
ai,n

∣∣∣∣∣ ≤
K∑

i=1

|βi|
∞∑

n=N+1

∣∣∣∣
bi,n
ai,n

∣∣∣∣

≤ N
∞∑

n=N+1

max
1≤i≤K

∣∣∣∣
bi,n
ai,n

∣∣∣∣,

for all large enough N , which completes the proof as it implies

(
2N

2
N∏

n=1

max
1≤i≤n

ai,n
DK

)DN ∞∑

n=N+1

max
1≤i≤K

∣∣∣∣
bi,n
ai,n

∣∣∣∣ ≥
2N(N−1)DN

N
.

Lemma 1.42. Let ζ ∈ C with |ζ| = 1. For i = 1, . . . , K, let {ai,n}n∈N and {bi,n}n∈N
be sequences of non-zero complex numbers with bi,n = |bi,n| so that

ℜ (ζb1,n/a1,n) > 0.

Let β1, . . . , βK be complex numbers that are not all 0, and write

γN =
K∑

i=1

βi

N∑

n=1

bi,n
ai,n

If equation (1.7) is true whenever 1 ≤ i < K, or if β1, . . . , βK ∈ R and equation
(1.8) is true whenever 1 ≤ i < K, then the sequence {γN}∞N=1 does not contain
any constant subsequence.



1.4. Irrationality of series and products 23

Proof. Let M,N ∈ N with M > N , and let R ≤ K be the maximal index such
that βR ̸= 0. If R = 1, then

ℜ
(
ζ
γN
β

)
= ℜ

(
N∑

n=1

ζ
b1,n
a1,n

)
=

N∑

n=1

ℜ
(
ζ
b1,n
a1,n

)

is strictly increasing, and the proof is complete. We then suppose R > 2. Notice
that it will be sufficient to prove that γM ̸= γN when N is sufficiently large.

Suppose equation (1.7) is true for i = 1, . . . , R − 1. By the converse triangle
inequality,

|γM − γN | =
∣∣∣∣∣

R∑

i=1

βi

M∑

n=N+1

bi,n
ai,n

∣∣∣∣∣ ≥ |βR|
(

M∑

n=N+1

∣∣∣∣
bR,n
aR,n

∣∣∣∣−
R−1∑

i=1

∣∣∣∣
βi
βR

∣∣∣∣
∣∣∣∣
bi,n
ai,n

∣∣∣∣

)
.

Writing β = max1≤i<R |βi|, it now follows from equation (1.7) that when N is
sufficiently large,

|γM − γN | ≥ |βR|
M∑

n=N+1

(∣∣∣∣
bi,n
ai,n

∣∣∣∣−
(R− 1)β

|βR|

∣∣∣∣
bR−1,n

aR−1,n

∣∣∣∣

)
> 0.

This completes the proof in the present case.
Suppose now that β1, . . . , βK ∈ R and that assumption (1.8) is true whenever

1 ≤ i < K. The proof is then identical to that of the claim in the proof of [36,
Lemma 11]. We repeat the argument here for clarity, making only a minimal
amount of changes to notation and wording.

Assume without loss of generality that βR > 0 (otherwise replace each βi by
−βi for all i). Using that the the real value map is linear over R, together with
the first part of assumption 1.8, we find for each n ∈ N that

ℜ
(
ζ

K∑

j=1

βj
bj,n
αj,n

)
=

K∑

j=1

ℜ
(
ζβj

bj,n
αj,n

)

= ℜ
(
ζβR

bR,n
αR,n

)(
1 +

R−1∑

j=1

ℜ(ζβjbj,n/αj,n)
ℜ(ζβRbR,n/αR,n)

)
.

The second part of assumption (1.8) then implies for n sufficiently large that

∣∣∣∣∣
R−1∑

j=1

βj
ℜ(ζbj,n/αj,n)
ℜ(ζbR,n/αR,n)

∣∣∣∣∣ < βR,
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and thus ℜ
(
ζ
∑K

j=1 βj
bj,n
αj,n

)
> 0, by the assumption that ℜ(ζbj,n/aj,n) > 0. For N

sufficiently large, it hence follows that

ℜ(ζγN) =
N∑

n=1

ℜ
(
ζ

K∑

j=1

βj
bj,n
αj,n

)
<

M∑

n=1

ℜ
(
ζ

K∑

j=1

βj
bj,n
αj,n

)
= ℜ(ζγM),

which completes the proof.

We are now ready to properly prove Theorem 1.31.

Proof of Theorem 1.31. We first prove the statements of linear independence of

numbers, so we may assume that the sequence
{
|a1,n|1/

∏n−1
i=1 (di+DDiK)

}∞

n=1
diverges

in R. If assumption (1.8) with β1, . . . , βK ∈ R is used rather than equation (1.7),
then replace L by L ∩ R in the following. Let (β1, . . . , βK) ∈ LK \ {0}K , and let
γN and γ be defined as in Lemma 1.41. If we had γ ∈ L, then Lemmas 1.42 and
1.41 would imply that

lim
N→∞



(
2N

2
N∏

n=1

max
1≤i≤K

ai,n
DK

)DN ∞∑

n=N+1

max
1≤i≤K

bi,n
|ai,n|


 = ∞.

Applying the bounds of bi,n and ai,n , we get

(
2N

2
N∏

n=1

|a1,n|DK2DK logα2 |a1,n|
)DN ∞∑

n=N+1

22 log
α
2 |a1,n|

|a1,n|

≥
(
2N

2
N∏

n=1

max
1≤i≤K

ai,n
DK

)DN ∞∑

n=N+1

max
1≤i≤K

bi,n
|ai,n|

≥ 1,

which contradicts case 1 of Lemma 1.16 with mn = dn and µ = DK. Hence,
γ /∈ L. Since(β1, . . . , βK) ∈ LK \ {0}K where chosen arbitrarily, this proves that
the numbers 1,

∑∞
n=1

a1,n
b1,n

, . . . ,
∑∞

n=1
aK,n
bK,n

are linearly independent over L.
The argument for linear independence of sequences then follows in complete

parallel to Corollary 1.27.
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1.4.3 Paper 1: Algebraic degree of reciprocal algebraic integers

Below, the reader will find the paper [36], which has the current author as its
sole author. The paper was published in Rocky Mountains Journal of Mathem-
atics in April 2022 and is available through the link https://doi.org/10.1007/

s40993-024-00553-2. While the published version of the paper is not available
without a subscription, the preprint is freely available on arXiv through the link
https://arxiv.org/abs/2203.11786 or via the arXiv identifier 2203.11786.

Though the published version is nicer to look at than the preprint, the differ-
ences between the two versions are of no real significance. These differences entail
a different formatting, corrections of minor typing errors, and slight changes to
wording and notation. Finally, the theorems and lemmas are numbered differently
in the two versions; where the preprint writes Theorem 1, Theorem 2, . . ., The-
orem 4, Lemma 1, Lemma 2, . . ., Lemma 8, and Theorem 5, the published version
instead writes Theorem 1, Theorem 2, . . ., Theorem 4, Lemma 5, Lemma 6, . . .,
Lemma 12, and Theorem 13. The lemmas and theorems are presented in the same
order in the two versions, however.

The journal preferred that the published version would not be included in this
thesis. Respecting this, we will instead see the preprint as it is available on arXiv
but with the numbering of its lemmas and theorems changed to match that of
the published paper. The presented version has a length of 15 pages, numbered 1
through 15.

https://doi.org/10.1007/s40993-024-00553-2
https://doi.org/10.1007/s40993-024-00553-2
https://arxiv.org/abs/2203.11786
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MATHIAS LØKKEGAARD LAURSEN

Abstract. In this paper, I give sufficient conditions for any linear

combination in Q of numbers
∑∞
n=1

b1,n
α1,n

, . . .,
∑∞
n=1

bK,n

αK,n
to have

algebraic degree greater than an arbitrary fixed integer D when the
numbers αi,n are algebraic integers of sufficiently rapidly increasing
modulus and the bi,n are positive integers that are not too large.

1. Introduction

In 1975, Erdős [3] gave a sufficient condition for an increasing series
of reciprocal integers to be irrational, as stated in the below theorem.

Theorem 1 (Erdős). Let {an}n∈N be an increasing sequence of natural
numbers such that an > n1+ε for some ε > 0 for all n sufficiently large.

If lim supn→∞ a
1/2n

n = ∞, then
∑∞

n=1
1
an

is irrational.

Later, in [4], Hančl extended this theorem to also cover the case of

1 ≤ lim sup
n→∞

a1/2
n

n < lim sup
n→∞

a1/2
n

n <∞,

while also providing a related condition for finitely many series of frac-
tions

∑∞
n=1

bi,n
ai,n

(i = 1, . . . , K) with sufficiently small and positive bi,n
to be irrational and linear independent over Q.

Theorem 2 (Hančl). Let K ∈ N, and let A1, A2, a, ε > 0 be real numbers
such that a < 1 ≤ A1 < A2. For i = 1, . . . , K, let {ai,n}n∈N and
{bi,n}n∈N each be sequences of natural numbers. Suppose that

∀n ∈ N : n1+ε ≤ a1,n < a1,n+1,

lim sup
n→∞

a1,n
1/(K+1)n = A2,

lim inf
n→∞

a1,n
1/(K+1)n = A1,

∀n ∈ N ∀1 ≤ i ≤ K : bi,n < 2(log2 a1,n)
a

,

∀1 ≤ i < j ≤ K : lim
n→∞

bi,naj,n
ai,nbj,n

= 0,

∀1 < i ≤ K : ai,n 2−(log2 a1,n)
a

< a1,n < ai,n 2(log2 a1,n)
a

.

This research is supported by the Independent Research Fund Denmark.
1
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Then
∑∞

n=1
b1,n
a1,n

, . . . ,
∑∞

n=1
bK,n
aK,n

are irrational and linearly independent

over Q.

In 2017, Hančl and Nair [5] showed that integer sequences of the
form an+1 = a2n − an + 1 with a1 ≥ 2 will satisfy both limn→∞ an ∈ Q
and

1 < 4

√
a21 − a1 ≤ lim inf

n→∞
a1/2

n

n = lim sup
n→∞

a1/2
n

n <∞,

which exemplifies that the requirement A1 < A2 cannot in general
be omitted from Theorem 2. The main result of [5] was a variant of
Theorem 1 where the an may be square roots of positive integers when

limn→∞ a
1/2n

2/2

n = ∞. Two years later, this result was generalised to the
below theorem by Andersen and Kristensen [1], which gives a sufficient
condition for

∑∞
n=1 1/αn to have large algebraic degree when αn are

algebraic integers of bounded degree.

Theorem 3 (Andersen and Kristensen). Let d,D ∈ N, ε > 0, and let
{αn}n∈N be a series of algebraic integers of maximal degree d such that

∀n ∈ N : n1+ε ≤ |αn| < |αn+1|,

lim sup
n→∞

|αn|
1

Dn
∏n−1
i=1

(d+di) = ∞,

∀n ∈ N : αn = |αn|.

Suppose that ℜ(αn) > 0 holds for all n ∈ N or that ℑ(αn) > 0 holds
for all n ∈ N. Then deg

∑∞
n=1

1
αn

is strictly greater than D.

Both in the above theorem and for the remainder of this paper, α
denotes the house of an algebraic number α, which is defined as the
maximum modulus among the conjugates of α.
As Andersen and Kristensen note in their paper, their proof only

really needs αn to be bounded by C|αn| for some uniform constant
C > 0. Similarly, the restriction on the sign of the real (or imaginary)
value of αn is only to enforce that all αn are contained in an open half
plane not containing 0, which ensures that the partial sums

∑N
n=1

1
αn

are non-zero and non-conjugate to
∑∞

n=1
1
αn

for sufficiently large N .
The main result of this paper is a generalisation of Theorem 2 in the

spirit of Theorem 3, and the proof will combine the arguments used
by the respective papers. For the sake of clarity, we will, however, be
slightly more explicit with the open half-plane containing all αn, as
compared to Andersen’s and Kristensen’s proof of Theorem 3. For this
purpose, I introduce notation ℜζ(z) to denote ℜ(ζz) for ζ ∈ C\{0} and
z ∈ C, as ℜζ(z) > 0 is then equivalent to z lying in the open half-plane
with 0 on its border and moving in direction of ζ.
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Theorem 4. Let D,K ∈ N, let A1, A2, a, ε > 0 be real numbers such
that a < 1 ≤ A1 < A2, and let ζ ∈ C with |ζ| = 1. Let {dn}n∈N be a se-
quence of natural numbers, and write Dn =

∏n
i=1 di. For i = 1, . . . , K,

let {bi,n}n∈N be a sequence of natural numbers, and let {αi,n}n∈N be
sequences of algebraic integers such that

∀n ∈ N : |α1,n| < |α1,n+1|(1)

∀n ∈ N : |α1,n| ≥ n1+ε(2)

∀n ∈ N : [Q (α1,n, . . . , αK,n) : Q] ≤ dn(3)

lim inf
n→∞

|α1,n|
1

Dn
∏n−1
i=1

(KDi+di) = A1(4)

lim sup
n→∞

|α1,n|
1

Dn
∏n−1
i=1

(KDi+di) = A2(5)

∀n ∈ N ∀1 < i ≤ K : 2−(log2 |α1,n|)a <
|α1,n|
|αi,n|

< 2(log2 |α1,n|)a(6)

∀n ∈ N ∀1 ≤ i ≤ K : bi,n αi,n ≤ 2(log2 |α1,n|)a|αi,n|(7)

∀n ∈ N ∀1 ≤ i ≤ K : ℜζ

(
bi,n
αi,n

)
> 0,(8)

∀1 ≤ i < j ≤ K : lim
n→∞

(
ℜζ

(
bi,n
αi,n

)
/ℜζ

(
bj,n
αj,n

))
= 0.(9)

Then deg γ > D when γ is any non-trivial linear combination over Q
of the numbers

∑∞
n=1

b1,n
α1,n

, . . .,
∑∞

n=1
bK,n
αK,n

.

2. Auxiliary Results

The proof of Theorem 4 will be split into two parts, the first of
which will be based around the Weil height and the Mahler measure.
We recall the definitions below.

For K being some finite field extension of Q of degree d, we define
for α ∈ K the Weil height of α as the number

H(α) :=
∏

ν∈MK

max{1, |α|ν}dν/d,

whereMk denotes the set of places ofK, and dν = [Kν : Qν ] denotes the
degree of the completion of K with respect to place ν as an extension of
the completion of Q with respect to ν. With the normalisation in the
exponent dν/d, the definition is independent of the field K containing
α. We define the Mahler measure of α as

M(α) := |ad|
n∏

i=1

max{1, |αi|},

where ad here denotes leading coefficient of the minimal polynomial in
Z[X] of α, and α1, . . . , αd denote the conjugates of α.
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The proof will furthermore use the following lemmas, the first of
which relates Weil height, Mahler measure, and house of algebraic in-
tegers. The main part of the statement, H(α) =M(α)1/d, is a classical
result, which is presented in [8]. The rest is essentially a trivial consid-
eration, see [1].

Lemma 5. Let α be an algebraic number of degree d. Then

H(α) =M(α)1/d ≤ α ≤M(α) = H(α)d

The second lemma is a list of further classical results regarding the
Weil height, see [8].

Lemma 6. Let α, β be algebraic numbers. Then

H (1/α) = H(α) if α ̸= 0, H(α + β) ≤ 2H(α)H(β),

H(αβ) ≤ H(α)H(β)

Similar results are likewise true for the degree function, as seen by
the below lemma.

Lemma 7. Let α, β be algebraic numbers. Then

deg(1/α) = deg(α) if α ̸= 0,

deg(α + β) ≤ deg(α) deg(β), deg(αβ) ≤ deg(α) deg(β)

This is essentially trivial: Following the spirit of [6], the inequalities
come from noting that α + β and αβ both lie in the field extension
Q(α, β), which clearly has degree at most deg(α) deg(β) over Q. Noting
1/α ∈ Q(α) and α ∈ Q(1/α) for α ̸= 0, it is likewise obvious that
deg(1/α) = degα.
The below lemma is central for the first part of the proof of Theorem

4, and seems to originally be from [7]. A proof may also be extracted
from the proof of Theorem A.1 in Appendix A of [2].

Lemma 8. Let α, β be non-conjugate algebraic numbers. Then

|α− β| ≥ 1

2deg(α) deg(β)M(α)deg(β)M(β)deg(α)

In the second part of the proof of Theorem 4, we will occasionally
need the below simple estimate related to the exponent of the limes
superior and limes inferior.

Lemma 9. Let D,K,N ∈ N be natural numbers, and let {dn}n∈N be a
sequence of natural numbers. Writing Dn =

∏n
i=1 di, we have

DN+1

N∏

i=1

(KDi + di) ≥ KDDn

N∑

n=1

Dn

n−1∏

i=1

(KDi + di).
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Proof. The first statement proven by induction in N . Note that the
statement clearly holds for N = 1. Suppose it holds for N − 1, for
some N > 1. Then

DN+1

N∏

i=1

(KDi + di) = D(KDN + dN)

(
DN

N−1∏

i=1

(KDi + di)

)

≥ KDDN

(
DN

N−1∏

i=1

(KDi + di)

)

+ dN

(
KDDN−1

N−1∑

n=1

Dn

n−1∏

i=1

(KDi + di)

)

= KDDN

N∑

n=1

Dn

n−1∏

i=1

(KDi + di).

□

Near the end of the proof, we will use a generalised version of a
lemma from [3], which Erdős used for proving Theorem 1. The current
version is presented and proven in [1].

Lemma 10. Let ε > 0, and let {an}∞n=1 be an increasing sequence of
real numbers satisfying an > n1+ε for all n ∈ N. Then

∑

n=N

1

an
<

2 + 1/ε

a
ε/(1+ε)
N

.

3. Proof of Main Result

The proof of Theorem 4 will be split into two lemmas:

Lemma 11. Let D,K ∈ N, let ζ ∈ C with |ζ| = 1, and let a, c, A2 > 0
such that c < a < 1 < A2. Let {dn}n∈N be a sequence of natural
numbers, and write Dn =

∏n
i=1 di. For i = 1, . . . , K, let {αi,n}n∈N be

a sequence of algebraic integers, and {bi,n}n∈N be a sequence of natural
numbers. Suppose that equations (3), (5), (6), (7), (8), (9) are satisfied,
let β1, . . . , βK ∈ Z be integers that are not all 0, and write

γ =
K∑

j=1

βj

∞∑

n=1

bj,n
αj,n

, γ(N) =
K∑

j=1

βj

∞∑

n=N+1

bj,n
αj,n

If deg γ ≤ D and c ∈ (a, 1), then

|γ(N)|
(
2D

cN
∏N−1
i=1 (KDi+di)

c
N∏

n=1

|α1,n|K
)DDN

≥ 1

holds for all sufficiently large N .



6 MATHIAS LØKKEGAARD LAURSEN

Lemma 12. Let D,K ∈ N, and let A1, A2, a, ε > 0 be real numbers such
that a < 1 ≤ A1 < A2. Let {dn}n∈N be a sequence of natural numbers,
and write Dn =

∏n
i=1 di. For i = 1, . . . , K, let {αi,n}n∈N and {bi,n}n∈N

be sequences of complex numbers. Suppose that equations (1), (2), (4),
(5), (6) hold and that

∀n ∈ N ∀1 ≤ i ≤ K : |bi,n| ≤ 2(log2 |α1,n|)a .(10)

Let β1, . . . , βK ∈ Z be integers that are not all 0, and write

γ(N) =
K∑

j=1

βj

∞∑

n=N+1

bj,n
αj,n

Let c ∈ (a, 1). Then

lim inf
N→∞

|γ(N)|
(
2D

cN
∏N−1
i=1 (KDi+di)

c
N∏

n=1

|α1,n|K
)DDN

= 0.

One minor result that will be briefly used for proving both lemmas
is that equation (5) implies

|α1,n| ≤ (2A2)
Dn

∏n−1
i=1 (KDi+di)(11)

for n sufficiently large
We now prove Lemma 11:

Proof(Lemma 11). We introduce further notation

γN :=
K∑

i=1

βi

N∑

n=1

bi,n
αi,n

, β :=
K∏

i=1

H(βi).

By Lemma 7 and equation (3), we quickly find

deg γN ≤
N∏

n=1

deg

(
K∑

i=1

β
bi,n
αi,n

)
≤ DN .

Applying Lemma 5 and Lemma 6 followed by equation (7), we then
get

M(γN) = H(γN)
deg γN ≤

(
2NK

K∏

i=1

H(βi)
N∏

n=1

H(bi,n)H

(
1

αi,n

))DN

=

(
2KNβ

K∏

i=1

N∏

n=1

H(αi,n)H(bi,n)

)DN

≤
(
2KNβ

K∏

i=1

N∏

n=1

αi,n bi,n

)DN

≤
(
β2KN+KN(log2 |α1,N |)a

K∏

i=1

N∏

n=1

|αi,n|
)DN

,
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using that α1,n is non-decreasing and that bi,n = bi,n as bi,n ∈ N. From
equations (6) and (11), we then have for N sufficiently large that

M(γN) <

(
22KN(log2(2A2)DN

∏N−1
i=1 (KDi+di))

a
N∏

n=1

|α1,n|K
)DN

≤
(
2D

cN
∏N−1
i=1 (KDi+di)

c

2H(γ)

N∏

n=1

|α1,n|K
)DN

.(12)

We now wish to apply Lemma 10 to get an estimate on |γ(N)|. To do
so, we need γ ̸= γN , which is ensured for sufficiently large N if the γN
are mutually distinct from a some point.

Claim (γM ̸= γN for M > N sufficiently large). To see this, let R be
the maximal value of i such that βi ̸= 0 and assume without loss of
generality that βR > 0 (otherwise replace each βi by −βi for all i).
Using that ℜζ is clearly linear in R, we find for each n ∈ N that

ℜζ

(
K∑

j=1

βj
bj,n
αj,n

)
=

K∑

j=1

βjℜζ

(
bj,n
αj,n

)

= ℜζ

(
bR,n
αR,n

)(
βR +

R−1∑

j=1

βj
ℜζ(bj,n/αj,n)

ℜζ(bR,n/αR,n)

)

Equation (9) then implies that for n sufficiently large, we have
∣∣∣∣∣
R−1∑

j=1

βj
ℜζ(bj,n/αj,n)

ℜζ(bR,n/αR,n)

∣∣∣∣∣ < βR,

and thus ℜζ

(∑K
j=1 βj

bj,n
αj,n

)
> 0, by equation (8). For N sufficiently

large, it hence follows that

ℜζγN =
N∑

n=1

ℜζ

K∑

j=1

βj
bj,n
αj,n

<
M∑

n=1

ℜζ

K∑

j=1

βj
bj,n
αj,n

= ℜζγM ,

which implies the claim.

Since γ can have at most D conjugates, it then follows that γ and
γN must be non-conjugate for N sufficiently large, and we may apply
Lemma 8, Lemma 5, and equation (12) (in that order) to find

|γ(N)| = |γ − γN | ≥
1

2deg(γ) deg(γN )M(γ)deg(γN )M(γN)deg(γ)

≥ 1

2DDNH(γ)DDNM(γN)D

≥ 1
(
2D

cN
∏N−1
i=1 (KDi+di)c

∏N
n=1 |α1,n|K

)DDN .
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This proves the lemma. □
Proof (Lemma 12). Applying equations (6) and (10) followed by (1),
we find

|γ(N)| =
∣∣∣∣∣

∞∑

n=N+1

K∑

j=1

bj,n
αj,n

∣∣∣∣∣ ≤
∞∑

n=N+1

K∑

j=1

|bj,n|
|αj,n|

≤
∞∑

n=N+1

K2(log2 |α1,n|)a

|α1,n|2−(log2 |α1,n|)a ≤
∞∑

n=N+1

2(log2 |α1,n|)c

|α1,n|
,(13)

for N sufficiently large.
We now split into two cases, both using the notation

an := |α1,n|, Sn := a

1

Dn
∏n−1
i=n

(KDi+di)

n .

Case 1 (an ≥ 2n for all n sufficiently large). We continue on equation
(13) and use that the function x(log2 x)

c
/x is decreasing for x > 1 to find

|γ(N)| ≤
∞∑

N<n≤log aN+1

2(log2 an)
c

an
+

∞∑

n>log aN+1

2(log2 an)
c

an

≤ 22(log2 aN+1)
c

aN+1

+
∞∑

n>log aN+1

2(log2 2
n)c

2n

=
22(log2 aN+1)

c

aN+1

+
∞∑

n>log aN+1

1

2n−cn

≤ 22(log2 aN+1)
c

aN+1

+ C
1

2log2 aN+1−(log2 aN+1)c
≤ 2(log2 aN+1)

ω

aN+1

,(14)

for sufficiently large N , where C > 0 and ω ∈ (c, 1) do not depend
on N . The above equation is (safe for notational differences) a direct
transcription of equation (14) of [4], which is repeated here for clarity.
Next, we will make a choice of N that will later show the conclusion

of Lemma 12. Let δ > 0 be a “sufficiently” small number (we will later
make uniform assumptions on its size). By equations (5) and (4), there
exist s0 ∈ N such that

max{1, A1 − δ} < Sn < A2 + δ(15)

holds for all n ≥ s0. For each such s0, pick s1 ∈ N minimal such that

s1 > Ds0

s0−1∏

i=1

(KDi + di), max{1, A1 − δ} < Ss1 < A1 + δ,(16)

and pick then s2 ∈ N minimal such that

s2 > s1, A2 − δ < Ss2 < A2 + δ.(17)
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For sufficiently large s0, pick N = N(s0) ∈ N minimal such that

s1 ≤ N < s2, SN+1 >

(
1 +

1

(N + 1)2

)
max
s1≤j≤N

{Sj, A2 − 2δ}.(18)

This is doable as the contrary would imply

A2 − δ < Ss2 ≤
(
1 +

1

s22

)
max

s1≤j<s2
{Sj, A2 − 2δ}

≤ . . . ≤ max{Ss1 , A2 − 2δ}
s2∏

j=s1+1

(
1 +

1

j2

)

≤ (A2 − 2δ)
∞∏

j=s1+1

(
1 +

1

j2

)
,

which would be a contradiction for large enough s0 (and thus s1), re-
gardless of δ.
We then apply equation (18) along with Lemma 9 to find

aN+1 = S
DN+1

∏N
i=1(KDi+di)

N+1

>

(
1 +

1

(N + 1)2

)DN+1
∏N
i=1(KDi+di)

max
s1≤j≤N

{Sj, A2 − 2δ}DN+1
∏N
i=1(KDi+di)

≥
(
1 +

1

(N + 1)2

)DN+1
∏N
i=1(KDi+di)

(
max
s1≤j≤N

{Sj, A2 − 2δ}
∑N
n=1D

n
∏n−1
i=1 (KDi+di)

)KDDN

≥
(
1 +

1

(N + 1)2

)DN+1
∏N
i=1(KDi+di)

(
N∏

n=s1+1

an

)KDDN

(
s1∏

n=1

(A2 − 2δ)D
n
∏n−1
i=1 (KDi+di)

)KDDN

≥
(
1 +

1

(N + 1)2

)DN+1
∏N
i=1(KDi+di)

(
N∏

n=1

an

)KDDN

(
1∏s0−1

n=1 an

s1∏

n=s0

(A2 − 2δ)D
n
∏n−1
i=1 (KDi+di)

an

)KDDN

,(19)
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for a small enough choice of δ. For sufficiently large s0, equation (11)
gives

1∏s0−1
n=1 an

≥ 1∏s0−1
n=1 (3A2)D

n
∏n−1
i=1 (KDi+di)

≥ (3A2)
−N ,(20)

by choice of s1 and N . Meanwhile, equations (15) and (16) followed by
Lemma 9 give

s1∏

n=s0

(A2 − 2δ)D
n
∏n−1
i=1 (KDi+di)

an

≥
(
s1−1∏

n=s0

(A2 − 2δ)D
n
∏n−1
i=1 (KDi+di)

(A2 + δ)D
n
∏n−1
i=1 (KDi+di)

)
(A2 − 2δ)D

s1
∏s1−1
i=1 (KDi+di)

(A1 + δ)D
s1
∏s1−1
i=1 (KDi+di)

≥
s1−1∏

n=s0

(
(A2 − 2δ)2

(A2 + δ)(A1 + δ)

)Dn∏n−1
i=1 (KDi+di)

≥ 1,(21)

by choosing δ > 0 small enough that (A2 − 2δ)2 > (A2 + δ)(A1 + δ).
Notice that since di and K are all positive integers, we must have
KDi + di ≥ 2, which ensures

N∏

i=1

(KDi + di) ≥
log 2

log
(
1 + 1

(N+1)2

)N3DN

N−1∏

i=1

(KDi + di)
ω,

for large enough N (recall c < ω < 1), using that 1/ log
(
1 + 1

(N+1)2

)
is

dominated by the polynomial (N + 1)2. Thus
(
1 +

1

(N + 1)2

)DN+1
∏N
i=1(KDi+di)

≥ 2N
3DN+1DN

∏N−1
i=1 (KDi+di)

ω

.(22)

Applying this as well as equations (20) and (21) to equation (19), we
have

aN+1 ≥
(

N∏

n=1

an

)KDDN

2N
3DN+1DN

∏N−1
i=1 (KDi+di)

ω

(3A2)
−KNDDN

≥
(

N∏

n=1

an

)KDDN

2N
2DN+1

∏N
i=1(KDi+di)

ω

,

for N(s0) large enough, using that (KDN + dN)/DN ≤ K + 1, and K
is constant. Recalling equations (14) and (11), we now have

|γ(N)| ≤ 2(log2 aN+1)
ω

aN+1

≤
(

N∏

n=1

an

)−KDDN
2(log2(2A2)DN+1

∏N
i=1(KDi+di))

ω

2N
2DN+1

∏N
i=1(KDi+di)

ω

≤
(

N∏

n=1

an

)−KDDN

2−ND
N+1

∏N
i=1(KDi+di)

ω

,
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and so

|γ(N)|
(
2(D

N
∏N−1
i=1 (KDi+di))

c
N∏

n=1

a1,n
K

)DDN

≤ 2D
cN
∏N−1
i=1 (KDi+di)

c

2ND
N
∏N
i=1(KDi+di)

ω
≤ 2−(K+1)ωN ,

for all sufficiently large N(s0). As this becomes arbitrarily small as s0
tends to infinity, the lemma follows.

Case 2 (an < 2n infinitely often). Put A = (1 + A2)/2. By equation
(5), we may pick arbitrarily large k ∈ N such that

Sk > A.(23)

For each such k, pick k0 ∈ N maximal such that

k0 ≤ k, ak0 < 2k0 .(24)

Notice that the case assumption implies

k0 −→
k→∞

∞.(25)

As clearly k0 < k for just slightly large k, pick N ∈ N minimal such
that

k0 ≤ N < k, SN+1 >

(
1 +

1

(N + 1)2

)
max

k0≤j≤N
Sj.(26)

Such N must exist as the contrary would imply

A < Sk ≤
(
1 +

1

k2

)
max
k0≤j<k

Sj ≤ · · · ≤ Sk0

k∏

j=k0

(
1 +

1

j2

)

< Sk0

∞∏

j=k0

(
1 +

1

j2

)

for large enough k, as the number

Ck := Sk0

∞∏

j=k0

(
1 +

1

j2

)

tends to 1 as k (and thus k0, by (25)) tends to infinity. Following the
same argument, we may also conclude that Sn < Ck for all k0 ≤ n ≤ N
when k is sufficiently large. That leads to

N∏

n=1

an =

(
k0∏

n=1

an

)
N∏

n=k0+1

an <

(
k0∏

n=1

2k

)
N∏

n=k0+1

C
Dn

∏n−1
i=1 (KDi+di)

k

≤ 2k
2
0C

DN
∏N−1
i=1 (KDi+di)

k

N−1∏

n=k0+1

C
Dn

∏n−1
i=1 (KDi+di)

k ,
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by using the choice of k0 and equation (1). Applying Lemma 9 and the
lower bound on N , we reach

N∏

n=1

an < 2N
2
(
C
DN

∏N−1
i=1 (KDi+di)

k

)2
= 2N

2 (
C2
k

)DN ∏N−1
i=1 (KDi+di) .(27)

Aiming for a lower bound on aN+1, we use equation (26) and Lemma
9 to find

aN+1 = S
DN+1

∏N
i=1(KDi+di)

N+1

>

(
1 +

1

(N + 1)2

)DN+1
∏N
i=1(KDi+di)

(
max

k0≤j≤N
Sj

)DN+1
∏N
i=1(KDi+di)

≥
(
1 +

1

(N + 1)2

)DN+1
∏N
i=1(KDi+di)

(
max

k0≤j≤N
Sj

)KDDN∑N
n=1D

n
∏n−1
i=1 (KDi+di)

≥
(
1 +

1

(N + 1)2

)DN+1
∏N
i=1(KDi+di)

(
N∏

n=1

an

)KDDN

(
k0−1∏

n=1

1

an

)KDDN

.

By equation (1) and the choice of k0, we have

(
k0−1∏

n=1

1

an

)KDDN

≥
(
k0−1∏

n=1

2−k0

)KDDN

≥ 2−KN
2DDN .

Recalling equation (22) (which uses neither case assumption or choice
of N), we get for sufficiently large N that

aN+1 > 2N
3DN+1DN

∏N−1
i=1 (KDi+di)

ω

(
N∏

n=1

an

)KDDN

2−KN
2DDN

≥ 2N
2DN+1

∏N
i=1(KDi+di)

ω

(
N∏

n=1

an

)KDDN

.(28)
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Repeating equation (20) of [4], we use that the function 2(log x)
c
/x is

decreasing combined with equation (2) to see that
∞∑

n=k

2(log2 an)
c

an
=

∑

k≤n≤aak

2(log2 an)
c

an
+

∞∑

n>aak

2(log2 an)
c

an

≤ aak
2(log2 ak)

c

ak
+
∑

n>aak

2(log2 n
1+ε)c

n1+ε

≤ a
(a−1)/2
k +

∑

n>aak

1

n1+ε/2
≤ a

(a−1)/2
k +B0

1

(aak)
1+ε/2

≤ a
(a−1)/2
k + a

−aε/3
k ≤ a−Bk ,

for k sufficiently large, for some 0 < B < 1 < B0 not depending on k.
By equations (13), (23) and (28), we then have

|γ(N)| ≤
k−1∑

n=N+1

2(log2 an)
c

an
+

∞∑

n=k

2(log2 an)
c

an
≤ 2(log2 aN+1)

ω

aN+1

+ a−Bk

Thus

|γ(N)|
(
2D

cN
∏N−1
i=1 (KDi+di)

c
N∏

n=1

aKn

)DDN

≤
(
2(log2 aN+1)

ω

aN+1

+ a−Bk

)(
2D

cN
∏N−1
i=1 (KDi+di)

c
N∏

n=1

aKn

)DDN

It follows by c < ω and equations (11) and (28) that

2(log2 aN+1)
ω

aN+1

(
2D

cN
∏N−1
i=1 (KDi+di)

c
N∏

n=1

aKn

)DDN

<
2(log2(2A2)+1)Dω(N+1)

∏N
i=1(KDi+di)

ω

2N
2DN+1

∏N
i=1(KDi+di)

ω
< 2−(K+1)ωN ,

for sufficiently large N . Meanwhile, equations (23) and (27) imply that

a−Bk

(
2((K+1)DDN/2)

cN
N∏

n=1

aKn

)DDN

<
(
2D

cN
∏N−1
i=1 (KDi+di)

c
)DDN

(
2N

2
(C2

k)
DN

∏N−1
i=1 (KDi+di)

)DDN

ABD
k
∏k−1
n=1(KDi+di)

=
(
2N

2+DcN
∏N−1
i=1 (KDi+di)

c
)DDN (C2

k)
DN+1DN

∏N−1
i=1 (KDi+di)

(AB)D
N+1

∏N
n=1(KDi+di)

< 2D
cN
∏N
i=1(KDi+di)

c
/
(AB/2)D

N+1
∏N
n=1(KDi+di) ≤ 2−(K+1)cN ,
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using that C2
k < AB/2 for k (and thus N) sufficiently large. For k

sufficiently large, we conlcule

|γ(N)|
(
2((K+1)DDN/2)

cN
N∏

n=1

aKn

)DDN

< 2−(K+1)ωN + 2−(K+1)cN ,

which clearly tends to 0 as k (and thus N) grows large, and the lemma
follows. □

Proof (Theorem 4). It is clear that the entire hypothesis of Lemma 12
is implied by the hypothesis of Theorem 4, as equation (7) implies
equation (10). It is likewise clear that the only part of the hypothesis
of Lemma 11 that is not also used in the hypothesis of Theorem 4 is
the assumption that deg γ ≤ D. As the conclusions of the two lemmas
are mutually exclusive, we conclude deg γ > D. □

Concluding Remarks

As in the case of Theorem 3, the requirements using ℜζ (i.e. equa-
tions (8) and (9)) are used solely to ensure that γN is non-zero and
non-conjugate to γ for all sufficiently large N . Consequently, these re-
quirements may be replaced any other set of conditions ensuring that
property. Note, however, that the property is required as one might
otherwise construct a sequence converging to a rational number while
satisfying all other parts of the hypothesis.
In the case of K = 1, Theorem 4 implies

Theorem 13. Let D ∈ N be a natural number, let ζ ∈ C with |ζ| = 1,
and let a, ε > 0 be real numbers. Let {αn}n∈N be a sequence of algebraic
integers, and let {bn}n∈N be a sequences of rational integers. For n ∈ N,
write dn = degαn and Dn =

∏n
i=1 di. Suppose that

∀n ∈ N : n1+ε ≤ |αn| < |αn+1|,

1 ≤ lim inf
n→∞

|αn|
1

Dn
∏n−1
i=1

(Di+di) < lim sup
n→∞

|αn|
1

Dn
∏n−1
i=1

(Di+di) <∞,

∀n ∈ N : bn αn ≤ 2(log2 |αn|)
a|αn|,

∀n ∈ N : ℜζ(αn) > 0.

Then
∑∞

n=1
1
αn

has algebraic degree strictly greater than D.

By doing the right modifications to the proof of Theorem 3, it may
be improved so that the sequence {αn}n∈N only needs to satisfy the
hypothesis of Theorem 13 where the requirement

1 ≤ lim inf
n→∞

|αn|
1

Dn
∏n−1
i=1

(Di+di) < lim sup
n→∞

|αn|
1

Dn
∏n−1
i=1

(Di+di) <∞
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is replaced by lim supn→∞ |αn|
1

Dn
∏n−1
i=1

(Di+di) = ∞. This will in particular
remove the restriction that the αn must be of bounded algebraic degree
while also slacking the upper bound on αn .

Acknowledgements. I thank my supervisor Simon Kristensen for point-
ing me towards this problem, for helping me in finding the proper lit-
erature, and for advising me in the formulation of this paper.
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INFINITE PRODUCTS WITH ALGEBRAIC NUMBERS

SIMON KRISTENSEN AND MATHIAS LØKKEGAARD LAURSEN

Abstract. We obtain general criteria for giving a lower bound on

the degree of numbers of the form
∏∞

n=1

(
1 + bn

αn

)
or of the form

∏∞
m=1

(
1 +

∑∞
n=1

bn,m

αn,m

)
, where the αn and αn,m are assumed to

be algebraic integers, and the bn and bn,m are natural numbers. In
each case, we give a lower bound of the degree over the smallest
extension of Q containing all algebraic numbers in the expression.
The criteria obtained depend on growth conditions on the involved
quantities.

1. Introduction

Proving that a comcrete number is irrational can be a difficult task.
Proving transcencence results can be even more difficult. In the present
paper, we are concerned with general criteria showing that a number
represented in a certain way has lower bounded degree. The criteria
are on parameters of the representation, and so the representation of
the number will reveal arithmetical properties of the number itself.
This study has a long history, and we begin by giving some relevant
highlights.

In [4], Erdős proved that if ε > 0 is fixed and {an}∞
n=1 is an increasing

sequence of positive integers satisfying an ≥ n1+ε and

lim sup
n→∞

a1/2
n

n = ∞,

then the number
∑∞

n=1
1

ancn
is irrational for all sequences of positive in-

tegers {cn}∞
n=1. This result has since seen many generalizations, includ-

ing criteria for irrationality of infinite products and continued fractions
(see [6] for an overview). Later, Andersen, Kristensen and Laursen
[1, 2, 7] have provided criteria for getting a lower bound on the al-
gebraic degree of series of reciprocals of algebraic integers as well as
continued fractions with algebraic integers as partial coefficients.

This leaves the case of infinite products, which we deal with in this
note. In the assumptions for our theorems and in their proofs, we let α
denote the house of an algebraic number α, i.e., the maximum modulus
among α and its algebraic conjugates.

Research supported by the Independent Research Fund Denmark (Grant ref.
1026-00081B) and Aarhus University Research Fund (Grant ref. AUFF-E-2021-9-
20).

1
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Theorem 1. Let D ∈ N, ε > 0, a ∈ (0, 1), e ∈ {−1, 1}, let {bn}∞
n=1 be a

sequence of positive integers, and let {αn}∞
n=1 be a sequence of algebraic

integers, such that αn bn ≤ |αn|2(log2 |αn|)a. Suppose that |αn| increases,
and that |αn| > n1+ε for n sufficiently large. Furthermore, we suppose
(ℜ(αn/bn) + 1/2)e ≥ 0 for all n ∈ N with strict inequality for infinitely
many n ∈ N. Write K0 = Q, Kn+1 = Kn(αn+1), dn = degKn−1

αn and

Dn =
∏n

i=1 di. Finally, suppose that |αn|1/(Dn
∏n−1

i=1 (Di+di)) diverges in R
as n → ∞. Write K = Q(α1, α2, . . .). Then

degK

( ∞∏

n=1

(
1 +

bn
αn

))
> D.

This theorem generalizes a result by Hančl and Kolouch [4], which
restricted αn to be positive integers and only covered the case D = 1

and |αn|1/(Dn
∏n−1

i=1 (Di+di)) = ∞. [4] does, however, give a more lenient
bound for bn. In our concluding remark we point to how one would get
similarly relaxed bounds on bn for the present paper.

We also provide a proof for the below theorem regarding infinite
products of infinite series, which generalizes another theorem by Hančl
and Kolouch [5], with their version having αn ∈ N and D = 1.

Theorem 2. Let D ∈ N, let ε > 0, let (bn,m)m.n∈N be an infinite array
of positive integers, and let (αn,m)m,n∈N be an infinite array of algebraic
integers. Suppose that |αn,1| increases, and that for n sufficiently large,

n1+ε ≤ |αn,1|,(1)
n∑

j=1

∣∣∣∣
bn−j+1,j

αn−j+1,j

∣∣∣∣ ≤ |αn,1|−1+(log log|α|)−3−ε

,(2)

n∏

j=1

αn−j+1,j ≤ |αn,1|n+(log log|α|)−3−ε

.(3)

Furthermore, we suppose that ℜ(αn,m) ≥ 0 and eℑαn,m ≥ 0 for all
pairs (m,n), where e ∈ {−1, 1} is fixed. Write K0 = Q, Kn+1 =
Kn(α1,n+1, α2,n, . . . , αn+1,1), and Dn = [Kn : Q]. Finally, suppose that

(4) lim sup
N→∞

|αN,1|
1

DNN!
∏N−1

n=1
Dn = ∞.

Let K = Q(αm,n : m,n ∈ N). Then

degK

( ∞∏

m=1

(
1 +

∞∑

n=1

bn,m
αn,m

))
> D.

Remark. As will be evident from the proof, the restrictions on real and
imaginary values of αn,m/bn,m are only there to ensure that the sequence
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{∏N
m=1

(
1 +

∑N−m+1
n=1

bn,m

αn,m

)}∞

N=1
does not take the same value infin-

itely often and that the terms
(
1 +

∑∞
n=1

bn,m

αn,m

)
are non-zero. In fact,

either of the following assumptions would also have been sufficient. We
will prove this together with the theorem.

• ℜ(αn,m

bn,m
) ≥ −1

2
for all sufficiently large m + n with > infinitely

often, and eℑαn,m ≥ |ℜ(αn,m)| for all m,n, where e ∈ {−1, 1}
is fixed.

• |ℑ(αn,m)| ≤ ℜ(αn,m) for all m,n.
• X < 1, ℜ(αn,m

bn,m
) ≤ 0, and |ℑ(αn,m)| ≤ R|ℜ(αn,m)| for all m,n,

where X = supm∈N{∑∞
n=1

bn,m

|αn,m|} and R ∈ (0, 1/X) are fixed.

2. Auxiliary results

We will make heavy use of Weil heights and Mahler measures of
algebraic numbers. We recall the definitions.

Let α be an algebraic number, let K be a number field containing α
and let MK denote the set of places of K. Then, the (Weil) height of
α is defined as

H(α) =
∏

ν∈MK

max{1, |α|ν}dν/d,

where d = [K : Q] and dν = [Kν : Qν ], and where Kν and Qν denote
the completions of the fields at the place ν. With the normalisation in
the exponent, the height becomes independent of the field K.

We will also need to define the Mahler measure of α. For this pur-
pose, suppose that α is algebraic of degree d and let α1 = α, α2, . . . , αd

denote the conjugates of α. Finally, let ad denote the leading coefficient
of the minimal polynomial of α defined over Z. The Mahler measure
of α is defined as

M(α) = |ad|
d∏

i=1

max{1, |αi|}.

Here, the only place playing a role is the usual Archimedean one, i.e.
the modulus in the complex plane.

The following wonderful result is classical, see e.g. [11].

Theorem 3. For an algebraic number α of degree d,

H(α) = M(α)1/d.

The following lemma from [1] relates heights and houses.

Lemma 4. Let α be an algebraic integer of degree d. Then,

H(α) = M(α)1/d ≤ α ≤ M(α) = H(α)d.

The inequalities are best possible.
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We will need to know that the height remains unchanged on taking
the reciprocal. This is also classical, see [11].

Lemma 5. Let α be a non-zero algebraic number. Then, H(α) =
H(1/α).

[11] also provides bounds of the Weil height of sums and products of
algebraic numbers.

Lemma 6. Let n ∈ N, and let β1, . . . , βn be algebraic numbers. Then,

H

(
n∑

i=1

βi

)
≤ 2n

n∏

i=1

H(βi), and H

(
n∏

i=1

βi

)
≤

n∏

i=1

H(βi).

Our proof depends critically on the Liouville–Mignotte inequality
[9, 10], which is the following.

Lemma 7. Let α and β be non-conjugate algebraic numbers. Then,

|α − β| ≥ (2H(α)H(β))−deg(α) deg(β).

A nice proof can be found in [3]. The following two lemmas are found
in [1].

Lemma 8. Let {an}∞
n=1 be an increasing sequence of real numbers such

that an > n1+ε for some ε > 0 and all n ∈ N. Then, for all N ∈ N,

∞∑

n=N

1

an
<

2 + 1
ε

a
ε/(1+ε)
N

.

Lemma 9. Let {an}∞
n=1 be a sequence of real numbers such that

lim sup
n→∞

an = ∞

Then for infinitely many N ∈ N,

aN+1 >

(
1 +

1

k2

)
max

1≤n≤N
an.

The following three lemmas are taken from [5]. While the first two
of the below lemmas assumed αn,1 to be integers in their original form,
this property is never used in the proofs, so they remain valid in the
present formulation. The third lemma has been generalized slightly
from [5], but the proof is the same.

Lemma 10. Let ε and αn,1 be given as in Theorem 2. Then, for N
sufficiently large,

∞∑

n=N

|αn,1|
−1+ 1

log3+ε log|αn,1| < |αN,1|−
ε

2(1+ε)
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Lemma 11. Let ε and αn,1 be given as in Theorem 2 such that

(5) 2n < |αn,1|
Then, for N sufficiently large,

∞∑

n=N

|αn,1|
−1+ 1

log3+ε log|αn,1| < |αN,1|
−1+ 1

log3+ε/2 log|αN,1|

Lemma 12. Let δ ∈ [0, 1), and let D ∈ N, let (Dn)
∞
n=1 be a sequence

of natural numbers. Suppose (an)
∞
n=1 is a non-decreasing sequence of

positive real numbers such that

(6) lim sup
n→∞

a

1

Dn(n+δ)!
∏n−1

i=1
Di

n = ∞.

Then, for infinitely many N ,

(7) a

1

DN+1(N+1+δ)!
∏N

i=1
Di

N+1 >

(
1 +

1

N2

)
max

1≤n≤N
a

1

Dn(n+δ)!
∏n−1

i=1
Di

n

and

(8) aN+1 >

((
1 +

1

N2

)DN (N+1+δ)!
∏N−1

i=1 Di N∏

n=1

an+δ
n

)DDN

.

As some applications of Lemma 11 are a little opaque, we will state
a consequence of it that is more easily applied. It follows immediately
by adding infinitely many terms to the finite sum of the corollary and
subsequently applying Lemma 11.

Corollary 13. Let ε and αn,1 be given as in Theorem 2 such that

2n < |αn,1|,
for n ∈ [t, k] for infinitly many disjoint intervals [t, k]. Then, for t
sufficiently large,

k∑

n=t

|αn,1|
−1+ 1

log3+ε log|αn,1| < |αt,1|
−1+ 1

log3+ε/2 log|αt,1|

Finally, we present another lemma that will be useful for proving
Theorem 2.

Lemma 14. Let (an)
∞
n=1 be a sequence of complex numbers such that∏∞

n=1(1 + an) is absolutely convergent. Write

C = sup
K∈N

K−1∏

n=1

|1 + an|.

Then ∣∣∣∣∣1 −
∞∏

n=1

(1 + an)

∣∣∣∣∣ ≤ C
∞∑

n=1

|an|.
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Proof. Let K ∈ N. We will then show that
∣∣∣∣∣1 −

K∏

n=1

(1 + an)

∣∣∣∣∣ ≤ C

K∑

n=1

|an|

If K = 1, this is trivial. If K > 1, it follows by induction upon noting
∣∣∣∣∣1 −

K∏

n=1

(1 + an)

∣∣∣∣∣ ≤
∣∣∣∣∣1 −

K−1∏

n=1

(1 + an)

∣∣∣∣∣+ |aK |
K−1∏

n=1

|1 + an|

≤
∣∣∣∣∣1 −

K−1∏

n=1

(1 + an)

∣∣∣∣∣+ C|aK |.

The lemma then follows by letting K tend to infinity. �

3. Proof of Theorem 1

The theorem follows from the following two lemmas

Lemma 15. Let D, dn, Dn, a, ε, αn, and bn be given as in Theorem 1,

except that |αn|
1

Dn ∏N−1
n=1 (di+Di) need not diverge. Suppose

∏∞
n=1

(
1 + bn

αn

)

has degree at most D over K. Then

(9) lim inf
N→∞

(
2N

2 logα2 |αN |
N∏

n=1

|αn|
)DDN ∞∑

n=N+1

∣∣∣∣
bn
αn

∣∣∣∣ = ∞.

Proof. For N ∈ N, let

x =

∞∏

n=1

(
1 +

1

αn

)
and xN =

N∏

n=1

(
1 +

1

αn

)
.

By Lemmas 6 and 5,

H(x − xN ) ≤ 2H(x)

N∏

n=1

2H(αn)H(1/bn)

= 2N+1H(x)

N∏

n=1

H(αn)H(bn).

Appealing to Lemma 4, we then have

(10) H(x − xN) ≤ 2N+1H(x)

N∏

n=1

αn bn.

A simple calculation shows that |1+bn/αn|−1 is negative, 0, or pos-
itive when ℜ(αn/bn)+1/2 is negative, 0, or positive, respectively, while
the bounds |αn| ≥ |α1| > 1 and bn ≤ 2log

a
2 |αn| ensure that |bn/αn| < 1

and thereby xN 6= 0. Hence, the restriction on ℜ(αn/bn) implies that
{|xN |}∞

N=1 is monotonous but not constant, so that xN 6= x. Since



INFINITE PRODUCTS WITH ALGEBRAIC NUMBERS 7

x − xN must be algebraic due to degKN
x = D < ∞, we get from

Lemma 7 with α = x − xN and β = 0 that

|x − xN | ≥ 1

(2H(x − xN))deg(x−xN )
.

Since clearly K =
⋃∞

n=1 Kn, degK x = degKN
x for all sufficiently large

N . Then x − xN ∈ KN(x), and so

deg(x − xN ) ≤ [KN : Q] degKN
x ≤ D

N∏

n=1

[KN : KN−1] = DDN .

Recalling inequality (10), we continue the lower bound of |x − xN |,

|x − xN | ≥
(
2N+2H(x)

N∏

n=1

αn bn

)−DDN

.

Then applying the assumed upper bound of an bn, we have

|x − xN | ≥
(
2N+1H(x)

N∏

n=1

22 log
a
2 |αn||αn|

)−DDN

≥
(
22N loga2 |αN |

N∏

n=1

|αn|
)−DDN

,(11)

for all sufficiently large N
To get an upper bound on |x − xN |, let K ≥ N . Then

∣∣∣∣1 − xK+1

xN

∣∣∣∣ ≤
∣∣∣∣1 − xK

xN

∣∣∣∣ +
∣∣∣∣
bK+1

αK+1

∣∣∣∣
∣∣∣∣
xK

xN

∣∣∣∣

Recalling that |xN | is monotonous and taking induction in K, we have

∣∣∣∣1 − xK+1

xN

∣∣∣∣ ≤
K+1∑

n=N+1

∣∣∣∣
xK

xN

∣∣∣∣
∣∣∣∣
bn
αn

∣∣∣∣ ≤ max

{
1,

∣∣∣∣
xK

xN

∣∣∣∣
} K+1∑

n=N+1

∣∣∣∣
xK

xN

∣∣∣∣
∣∣∣∣
bn
αn

∣∣∣∣

≤ max

{
1

|xN | ,
∣∣∣∣
xK

xN

∣∣∣∣
} K+1∑

n=N+1

∣∣∣∣
xK

xN

∣∣∣∣
∣∣∣∣
bn
αn

∣∣∣∣ .

Letting K tend to infinity, we then get

|x − xN | = |xN |
∣∣∣∣1 − x

xN

∣∣∣∣ ≤ max{1, |x|}
∞∑

n=N+1

∣∣∣∣
bn
αn

∣∣∣∣ .
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Combining this with inequality (11), we conclude
(
2N

2 loga2 |αn|
N∏

n=1

|αn|
)DDN ∞∑

n=N+1

∣∣∣∣
bn
αn

∣∣∣∣

≥
(
2N

2 loga2 |αn|
N∏

n=1

|αn|
)DDN ∞∑

n=N+1

∣∣∣∣
bn
αn

∣∣∣∣

≥ 2DDN (N2−2N) loga2 |αn|

max{1, |x|} −→
N→∞

∞,

and the proof is complete. �
Lemma 16. Let D, dn, Dn, a, ε, and αn be given as in Theorem 1, and
let c ∈ (a, 1). Then

(12) lim inf
N→∞

(
2N

2 logα2 |αN |
N∏

n=1

|αn|
)DDN

∣∣∣∣∣
∞∑

n=N+1

bn
αn

∣∣∣∣∣ = 0.

Proof. Write

an = |αn|, and Hn = a

1

Dn ∏n−1
i=1

(Di+di)

n .

The case of

lim inf
n→∞

Hn < lim sup
n→∞

Hn < ∞,

is merely a special case of Lemma 12 from [7], by noting that for all
c ∈ (a, 1),

2N
2 loga2 aN = 2N

2DaN
∏N−1

i=1 (Di+di)a loga2 Hn < 2D
cN
∏N−1

i=1 (Di+di)c .

Henceforth, we assume lim supn→∞ |αn|
1

Dn ∏n−1
i=1

(Di+di) = ∞. Recall
the definitions of an and Hn above. Write further

Dn,δ = Dn + δ and Hn,δ = a

1

Dn ∏n−1
i=1

Di,δ+di
n ,

for any δ ≥ 0. Note that
(

max
1≤n≤N

Hn,δ

)DN+1
∏N

i=1 Di,δ+di

≥ a
DDN,δ

N

(
max

1≤n≤N
Hn,δ

)DN+1dN
∏N−1

i=1 Di,δ+di

≥a
DDN,δ

N

(
max

1≤n≤N
Hn,δ

)DN+1DN,δ
∏N−2

i=1 Di,δ+di

(
max

1≤n≤N
Hn,δ

)DN+1dNdN+1
∏N−2

i=1 Di,δ+di

≥ · · · ≥
(

N∏

n=1

aD
N−n

n

)DDN,δ

≥
N∏

n=1

a
DDN,δ
n .(13)
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Let c ∈ (a, 1) and notice that

log2

(
1 +

1

N2

)
DN+1

N∏

i=1

Di,δ + di > DN+1N3DN,δ

N−1∏

i=1

(Di + di)
c,

for all sufficiently large N . Combined with inequality (13), Lemma 9
now implies that if lim supn→∞Hn,δ, then

aN+1 ≥
(
1 +

1

N2

)DN+1
∏N

i=1 Di,δ+di(
max

1≤n≤N
Hn,δ

)DN+1
∏N

i=1 Di,δ+di

>

(
2D

NN3
∏N−1

i=1 (Di+di)
c

N∏

n=1

an

)DDN,δ

,(14)

for infinitely many N .
We will split the proof into several cases, but before doing so, notice

that if an ≥ 2n for all sufficiently large n, then

∞∑

n=N+1

bn
an

≤
⌊log2 aN+1+1⌋∑

n=N+1

2log
a
2 an

an
+

∑

n>log2 aN+1+1

2log
a
2 an

an

≤ log2 aN+1 + 1

aN+1
2log

a
2 aN+1 +

∞∑

n>log2 aN+1+1

2n
a

2n

≤ log2 aN+1 + 1

aN+1

2log
a
2 aN+1 + C

2log
a
2 aN+1

aN+1

≤ 22 log
a
2 aN+1

aN+1

,(15)

for a suitably fixed C > 0 and all sufficiently large N .
Case 1. an ≥ 2n for all sufficiently large n, and lim supn→∞Hn,δ = ∞

for some δ > 0. Fix such a δ. Combining inequalities (14) and (13),
there are infinitely many N satisfying

∞∑

n=N+1

bn
an

≤
(
2D

NN3
∏N−1

i=1 (Di+di)
c

N∏

n=1

an

)−DDN,δ

· 22 log
α
2

(
2D

NN3 ∏N−1
i=1

(Di+di)
c ∏N

n=1 an

)DDN,δ

≤
N∏

n=1

a
−DDN,δ/2
n ,

so that
(
2N

2 loga2 aN

N∏

n=1

an

)DDN ∞∑

n=N+1

bn
an

≤
N∏

n=1

a
DDN,δ/3
n

N∏

n=1

a
−DDN,δ/2
n

≤
N∏

n=1

a
−DDN,δ/6
n ,

which becomes arbitrarily small as N increases.
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Case 2. an ≥ 2n for all sufficiently large n, but lim supn→∞Hn,δ < ∞
for all δ > 0. Recall a < c < 1, and pick δ > 0 such that

m+ δ ≤ mc/(2a)

for all m ≥ 2. Then there must be some C > 0 such that

log2 aN ≤ CDN
N−1∏

i=1

Di,δ + di ≤
N−1∏

i=1

(Di + di)
c/a,

for all sufficiently large N , and so

(16) 2log
a
2 aN ≤ 2

∏N−1
i=1 (Di+di)c

Inserting this and inequality (14) into inequality (13) now yields

∞∑

n=N+1

bn
an

≤ 22 log
a
2 aN+1

aN+1

≤ 2
loga2

((
2D

NN3 ∏N−1
i=1

(Di+di)
c ∏N

n=1 an

)DDN
)

(
2D

NN3
∏N−1

i=1 (Di+di)c
∏N

n=1 an

)DDN

for infinitely many N . By inequality (16),

loga2



(
2D

NN3
∏N−1

i=1 (Di+di)
c

N∏

n=1

an

)DDN



≤ (DDN)
a

(
DNN3

N−1∏

i=1

(Di + di)
c + 2

N∑

n=1

N−1∏

i=1

(Di + di)
c/a

)a

≤ (DDN)
a

(
2DNN3

N−1∏

i=1

(Di + di)
c/a

)a

= 2aDa(N+1)Da
NN

3a

N−1∏

i=1

(Di + di)
c,

Continuing our bound on
∑∞

n=N+1
bn
an
, we now have

∞∑

n=N+1

bn
an

≤ 22
aDa(N+1)Da

NN3a
∏N−1

i=1 (Di+di)c

(
2D

NN3
∏N−1

i=1 (Di+di)c
∏N

n=1 an

)DDN

≤
(
22D

NN2
∏N−1

i=1 (Di+di)c
N∏

n=1

an

)−DDN

Using this and inequality (16), we conclude
(
2N

2 loga2 aN

N∏

n=1

an

)DDN ∞∑

n=N+1

bn
an

≤ 2N
2
∏N−1

i=1 (Di+di)
c

22D
NN2

∏N−1
i=1 (Di+di)c

≤ 1

2D
NN2

∏N−1
i=1 (Di+di)c

,
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Case 3. an < 2n infinitely often.
Let A > 1 be a large number, and pick k1 ∈ N such that

Hk1 > 2A.(17)

Then pick k2 ≤ k1 maximal such that

ak2 < 2k2.(18)

Notice that k1 grows large when A does since lim supn→∞Hn = ∞.
The case assumption then implies

k2 −→
A→∞

∞.(19)

By Lemma 9, we may now pick N ≥ k2 minimal such that

HN+1 >

(
1 +

1

(N + 1)2

)
max

k2≤j≤N
Hj

Since
∏∞

n=1

(
1 + 1

(n+1)2

)
< ∞, it follows by the choices of k1 and k2

that N < k1 when A is large enough. Notice that N satisfies inequality
(14) with δ = 0.

Since an is increasing, it follows by the choices of k2 and N that

N∏

n=1

an ≤ ak2k2

N∏

n=k2+1

(
1 +

1

N2

)n−k2

ak ≤ aNk2

N∏

n=k2+1

(
1 +

1

N2

)N

≤ 2N
2

∞∏

n=k2+1

(
1 +

1

N2

)N

Since
∏∞

n=1

(
1 + 1

N2

)
< ∞, it follows for large enough values of A

(and thereby k2) that

N∏

n=1

an ≤ 2N
3

.(20)

We now turn to estimating the infinite series. By maximality of k2,
we have that an ≥ 2n for each n ∈ [N + 1, k1). Hence, by inequalities
(15) and (14),

k1−1∑

n=N+1

bn
an

≤
k1−1∑

n=N+1

bn
an

+
∞∑

n=k1

1

2n
≤ 22 log

a
2 aN+1

aN+1

≤ 2
2 loga2

(
2D

NN3 ∏N−1
i=1

(Di+di)
c ∏N

n=1 an

)DDN

(
2D

NN3
∏N−1

i=1 (Di+di)c
∏N

n=1 an

)DDN
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By applying inequality (20) in the exponent of the numerator, we find

log2



(
2D

NN3
∏N−1

i=1 (Di+di)
c

N∏

n=1

an

)DDN



≤ DDN

(
DNN3

N−1∏

i=1

(Di + di)
c +N3

)

≤ 2DN+1DNN
3
N−1∏

i=1

(Di + di)
c,

and so

k1−1∑

n=N+1

bn
an

≤ 24D
a(N+1)Da

NN3a
∏N−1

i=1 (Di+di)
ac

(
2D

NN3
∏N−1

i=1 (Di+di)c
∏N

n=1 an

)DDN

≤ 1
(
2D

NN2
∏N−1

i=1 (Di+di)c
∏N

n=1 an

)DDN
.(21)

Noticing an/bn ≥ n1+ε/2, Lemma 8 and the bound on bn yield

∞∑

n=k1

bn
an

≤ 2 + 2
ε

(ak1/bk1)
ε/(2+ε)

≤ 2(1 + 1
ε
)2

ε
2+ε

loga2 ak1

a
ε/(2+ε)
k1

By choice of k1 and since N < k1, we then have

∞∑

n=k1

bn
an

≤ 2(1 + 1
ε
)2

ε
2+ε

(ADk1
∏k1−1

i=1 (Di+di))
a

2
ε

2+ε
ADk1

∏k1−1
i=1 (Di+di)

≤ 1

2
ε

3+ε
ADN+1

∏N
i=1(Di+di)

Together with inequality (21), we then have

∞∑

n=N+1

bn
an

=

k1−1∑

n=N+1

bn
an

+

∞∑

n=k1

bn
an

≤ 1
(
2D

NN2
∏N−1

i=1 (Di+di)c
∏N

n=1 an

)DDN

+
1

2
ε

3+ε
ADN+1

∏N
i=1(Di+di)

.
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Hence,
(
2N

2 loga2 aN

N∏

n=1

an

)DDN ∞∑

n=N+1

bn
an

≤ 2N
2 loga2 aN

2D
N+1DNN2

∏N−1
i=1 (Di+di)c

+
2N

2 loga2 aN
∏N

n=1 an

2
ε

3+ε
ADN+1

∏N
i=1(Di+di)

.

The first summand clearly tends to 0 as A (and thereby N) grows large.
The other summand is estimated through inequality (20),

2N
2 loga2 aN

∏N
n=1 an

2
ε

3+ε
ADN+1

∏N
i=1(Di+di)

≤ 2N
2+3a+N3

2
ε

3+ε
ADN+1

∏N
i=1(Di+di)

,

which shows that also this summand tends to 0. Thereby,
(
2N

2 loga2 aN

N∏

n=1

an

)DDN ∞∑

n=N+1

bn
an

can be made arbitrarily small.
Since we have now covered all possible cases, the proof is complete.

�

Proof Theorem 1. Since the conclusions of Lemmas 15 and 16 are quite
clearly mutually exclusive, the theorem follows by comparing hypo-
theses. �

4. Proof of Theorem 2

For this section, we will write

x =

∞∏

m=1

(
1 +

∞∑

n=1

bn,m
αn,m

)
, xN =

N∏

m=1

(
1 +

N−m+1∑

n=1

bn,m
αn,m

)
.

The proof of Theorem 2 and the remark following it will be split into
the following three lemmas.

Lemma 17. Let αm,n and bm,n be given as in Theorem 2, except for
the restrictions on real and imaginary values, and suppose one of the
following statements holds.

I. ℜ(αn,m

bn,m
) ≥ 0 and eℑαn,m ≥ 0 for all m,n.

II. ℜ(αn,m

bn,m
) ≥ −1

2
for all sufficiently large m + n with > infinitely

often and that eℑαn,m ≥ |ℜ(αn,m)| for all m,n.
III. ℜ(αn,m) ≥ |ℑ(αn,m)| for all m,n.
IV. X < 1, ℜ(αn,m

bn,m
) ≤ −1

2(1−XR)
, and |ℑ(αn,m)| ≤ R|ℜ(αn,m)| for all

pairs (m,n), where X = supm∈N{∑∞
n=1

bn,m

|αn,m|} and R ∈ [1, 1/X)

are fixed.
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Then |1 +∑∞
n=1 bn,m/αn,m| ≥ C0 for a fixed number C0 ∈ (0, 1) that

does not depend on m, and the sequence {xN}∞
N=1 does not contain the

same number infinitely often.

Proof. We first consider the estimate |1 +∑∞
n=1 bn,m/αn,m| ≥ C0 In

statements I and III, ℜ(αn,m/bn,m) ≥ 0, which implies ℜ(bn,m/αn,m) ≥
0, and so

∣∣∣∣∣1 +
∞∑

n=1

bn,m
αn,m

∣∣∣∣∣ ≥ ℜ
(
1 +

∞∑

n=1

bn,m
αn,m

)
= 1 +

∞∑

n=1

ℜ
(
bn,m
αn,m

)
≥ 1.

As for statement II, the bound on the imaginary value implies
∣∣∣∣ℑ
(
bn,m
αn,m

)∣∣∣∣ =
bn,m|ℑ(αn,m)|

|αn,m|2 ≥ bn,mℜ(αn,m)

|αn,m|2 = ℜ
(
bn,m
αn,m

)
.

From this and the converse triangle inequality follows
∣∣∣∣∣1 +

∞∑

n=1

bn,m
αn,m

∣∣∣∣∣ ≥ max

{∣∣∣∣∣1 +
∞∑

n=1

ℜ
(
bn,m
αn,m

)∣∣∣∣∣ ,
∣∣∣∣∣

∞∑

n=1

ℑ
(
bn,m
αn,m

)∣∣∣∣∣

}

≥ max

{
1 −

∞∑

n=1

∣∣∣∣ℜ
(
bn,m
αn,m

)∣∣∣∣ ,
∞∑

n=1

∣∣∣∣ℜ
(
bn,m
αn,m

)∣∣∣∣

}

≥ 1

2
.

For statement IV, we again use the converse triangle inequality,
∣∣∣∣∣1 +

∞∑

n=1

bn,m
αn,m

∣∣∣∣∣ ≥ 1 − X > 0.

We now turn our attention to the sequence {xN}∞
N=1. Consider

|xN |
|xN−1|

=
N∏

m=1

∣∣∣∣∣1 +
bN−m+1,m

αN−m+1,m

1 +
∑N−m

n=1
bn,m

αn,m

∣∣∣∣∣

=
N∏

m=1

∣∣∣∣∣1 +
1

αN−m+1,m

bN−m+1,m

(
1 +

∑N−m
n=1

bn,m

αn,m

)
∣∣∣∣∣.(22)

We will focus on the numbers

ξN,m =
αN−m+1,m

bN−m+1,m

(
1 +

N−m∑

n=1

bn,m
αn,m

)
.

Since

|1 + ξ−1
N,m|2 = (|ξN,m|2 + ℜ(ξN,m))

2 + ℑ(ξN,m)
2

|ξN,m|4

= 1 +
1 + 2ℜ(ξN,m)

|ξN,m|2 ,
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it follows that the number |1+1/ξN,m|−1 will be 0, negative, or positive
exactly when the number ℜ(ξN,m) + 1/2 is 0, negative, or positive,
respectively. Hence, the proof will follow from equation (22) if we can
show that ℜ(ξN,m) + 1/2 is either always non-negative or always non-
positive and that it is non-zero infinitely often.

We calculate

ℜ(ξN,m) = ℜ
(
αN−m+1,m

bN−m+1,m

(
1 +

N−m∑

n=1

bn,m
αn,m

))

= ℜ
(
αN−m+1,m

bN−m+1,m

)
+

N−m∑

n=1

ℜ
(

αN−m+1,m

bN−m+1,m

)
ℜ (αn,m) bn,m

|αn,m|2

+

N−m∑

n=1

ℑ
(

αN−m+1,m

bN−m+1,m

)
ℑ (αn,m) bn,m

|αn,m|2
(23)

If statement I holds, then certainly ξN,m ≥ 0 > −1/2 for all N,m, and
we are done.

If Statement II holds, then

ℑ
(
αN−m+1,m

bN−m+1,m

)
ℑ (αn,m) =

∣∣∣∣ℑ
(
αN−m+1,m

bN−m+1,m

)∣∣∣∣ |ℑ (αn,m)|

≥
∣∣∣∣ℜ
(
αN−m+1,m

bN−m+1,m

)∣∣∣∣ |ℜ (αn,m)| ,

so that equation (23) yields

ξN,m ≥ ℜ
(
αN−m+1,m

bN−m+1,m

)
≥ −1

2
,

with strict inequality for infinitely many pairs of indices (N,m).
If statement III holds, we find ξN,m ≥ 0 > −1/2, using parallel

arguments to those used for statement II.
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Finally, suppose that statement IV holds. Then equation (23) implies

ℜ(ξN,m) = −
∣∣∣∣ℜ
(
αN−m+1,m

bN−m+1,m

)∣∣∣∣

+
N−m∑

n=1

bn,m

∣∣∣ℜ
(

αN−m+1,m

bN−m+1,m

)∣∣∣ |ℜ (αn,m)| + ℑ
(

αN−m+1,m

bN−m+1,m

)
ℑ (αn,m)

|αn,m|2

≤ −
∣∣∣∣ℜ
(
αN−m+1,m

bN−m+1,m

)∣∣∣∣

+max

{∣∣∣∣ℜ
(
αN−m+1,m

bN−m+1,m

)∣∣∣∣ ,
∣∣∣∣ℑ
(
αN−m+1,m

bN−m+1,m

)∣∣∣∣
}N−m∑

n=1

bn,m
|αn,m|

≤ −
∣∣∣∣ℜ
(
αN−m+1,m

bN−m+1,m

)∣∣∣∣+R

∣∣∣∣ℜ
(
αN−m+1,m

bN−m+1,m

)∣∣∣∣
N−m∑

n=1

bn,m
|αn,m|

< −
∣∣∣∣ℜ
(
αN−m+1,m

bN−m+1,m

)∣∣∣∣ (1 − RX) ≤ −1

2
,

for all pairs (N,m). Since
∣∣∣ℑ
(

αN−m+1,m

bN−m+1,m

)∣∣∣ ≤ R
∣∣∣ℜ
(

αN−m+1,m

bN−m+1,m

)∣∣∣, it

follows that
∣∣∣ℜ
(

αN−m+1,m

bN−m+1,m

)∣∣∣ ≥
√
1 +R2

−1
∣∣∣αN−m+1,m

bN−m+1,m

∣∣∣. By inequalit-

ies (1) and (2), this converges uniformly to ∞ as N → ∞. Hence,
ℜ(ξN,m) < −1/2 for all m when N is sufficiently large. This completes
the proof. �

Lemma 18. Let D, dn,m, Dn, ε, bm,n, and αm,n be given as in Theorem
2, except that we do not assume equation (4) and that the restriction on
real and imaginary values may be replaced by either of the three altern-
ative restrictions posed in the remark following the theorem. Suppose
degK x ≤ D. Then

lim
N→∞

(
2N

2
N∏

n=1

|αn,1|
n+ n+2

log3+ε log|αn,1|

)DDN ∞∑

n=N+1

|αn,1|
1

log3+ε log|αn,1|

|αn,1|
= ∞.

Proof. Suppose that degK x ≤ d, which ensure that x is algebraic.
By Lemmas 6 and 5, we have

H(xN) ≤
N∏

m=1

(
2N−m+1

N−m+1∏

n=1

bn,mH

(
1

αn,m

))

= 2N(N+1)/2
N∏

n=1

n∏

j=1

bn−j+1,jH(αn−j+1,j)
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We then apply Lemma 4 as well as inequalities (2) and (3) to find

H(xN) ≤ 2N(N+1)/2

N∏

n=1

n∏

j=1

|αn,1|
−1+ 1

log3+ε log|αn,1| αn−j+1,j
2

≤ 2N(N+1)/2
N∏

n=1

|αn,1|
−n+n 1

log3+ε log|αn,1| |αn,1|
2n+2 1

log3+ε log|αn,1|

= 2N(N+1)/2
N∏

n=1

|αn,1|
n+ n+2

log3+ε log|αn,1| .(24)

By Lemma 17, it follows that xN 6= x for all sufficiently large N ,
which means that we may apply Lemma 7 with α = x−xN and β = 0,
leading to

|x − xN | ≥ (2H(x − xN ))
− deg(x−xN ).

Since clearly K =
⋃∞

n=1 Kn, degK x = degKN
x for all sufficiently large

N . Then x − xN ∈ KN(x), and so

deg(x − xN ) ≤ [KN : Q] degKN
x ≤ D

N∏

n=1

[KN : KN−1] = DDN .

Using this and inequality (24), we continue the above estimate on |x−
xn| and find

|x − xN | ≥
(
2

2
3
N2

N∏

n=1

|αn,1|
n+ n+2

log3+ε log|αn,1|

)−DDN

.

To also get an upper bound of |x − xN |, notice that the number

C = sup
K,N∈N0

{
N∏

m=1

∣∣∣∣1 +
∑∞

n=N−m+2
bm,n

am,n

1 +
∑N−m+1

n=1
bm,n

am,n

∣∣∣∣
N+K∏

m=N+1

∣∣∣∣1 +
∞∑

n=1

bm,n

am,n

∣∣∣∣

}

is a finite, positive number. Lemma 14 now yields

|x − xN |
|xN | =

∣∣∣∣1 −
N∏

m=1

(
1 +

∑∞
n=N−m+2

bm,n

am,n

1 +
∑N−m+1

n=1
bm,n

am,n

) ∞∏

m=N+1

(
1 +

∞∑

n=1

bm,n

am,n

)∣∣∣∣

≤ C

( N∑

m=1

∣∣∣∣

∑∞
n=N−m+2

bm,n

am,n

1 +
∑N−m+1

n=1
bm,n

am,n

∣∣∣∣+
∞∑

m=N+1

∣∣∣∣
∞∑

n=1

bm,n

am,n

∣∣∣∣
)
.

By Lemma 17, the numbers
∣∣1 − ∑∞

n=1
bm,n

am,n

∣∣ have a uniform lower

bound, C0, while inequalities (1) and (2) ensure that each limm→∞
∑∞

n=1

∣∣ bm,n

am,n

∣∣ =
0. Hence, the numbers

∣∣1+∑N−m+1
n=1

bm,n

am,n

∣∣ are bounded by C0/2 for all
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sufficiently large N , and so

|x − xN |
|xN | ≤ C

(
2

C0

N∑

m=1

∣∣∣∣
∞∑

n=N−m+2

bm,n

am,n

∣∣∣∣+
∞∑

m=N+1

∣∣∣∣
∞∑

n=1

bm,n

am,n

∣∣∣∣
)

≤ 2C

C0

( N∑

m=1

∞∑

n=N−m+2

∣∣∣∣
bm,n

am,n

∣∣∣∣+
∞∑

m=N+1

∣∣∣∣
∞∑

n=1

bm,n

am,n

∣∣∣∣
)

=
2C

C0

∞∑

n+m≥N+2

∣∣∣∣
bm,n

am,n

∣∣∣∣ =
2C

C0

∞∑

n=N+1

n∑

j=1

∣∣∣∣
bn−j+1,j

an−j+1,j

∣∣∣∣.

by also applying the triangle inequality in the second estimate. By
inequality (2), we now have

|x − xN | ≤ 2C

C0
|xN |

∞∑

n=N+1

|αn,1|
−1+ 1

log3+ε log|αn,1|

≤ C ′
∞∑

n=N+1

|αn,1|
−1+ 1

log3+ε log|αn,1| ,

for a suitable constant C ′ > 0 that does not depend on N . Recalling
the lower bound on |x − xN | found above, we conclude

(
2N

2
N∏

n=1

|αn,1|
n+ n+2

log3+ε log|αn,1|

)DDN ∞∑

n=N+1

|αn,1|
1

log3+ε log|αn,1|

|αn,1|

≥ 2DDN
N2

3

C ′ −→
N→∞

∞. �

Lemma 19. Let D, dn,m, DN , ε, and αn,1 be given as in Theorem 2.
Then

lim inf
N→∞

(
2N

2
N∏

n=1

|αn,1|
n+ n+2

log3+ε log|αn,1|

)DDN ∞∑

n=N+1

|αn,1|
1

log3+ε log|αn,1|

|αn,1|
= 0.

Proof (original). To simplify notation, we introduce an = |αn,1| and

ZN =

(
2N

2
N∏

n=1

a
n+ n+2

log3+ε log an
n

)DDN ∞∑

n=N+1

a
1

log3+ε log an
n

an
,

so that our aim is to prove that ZN has no positive lower bound. We
now split into four cases.

Case 1. Assume that equation (5) holds for all sufficiently large N
and that there is a real number 0 < δ < 1 such that an and δ satisfy
equation (6). By Lemma 12 and equation (4), we then have infinitely
many N so that

(25) aN+1 >

((
1 +

1

N2

)DN (N+1+δ)!
∏N−1

i=1 Di N∏

n=1

an+δ
n

)DDN

.
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Then

aN+1 >

(
1 +

1

N2

)DN+1(N+1+δ)!
∏N

i=1 Di

≥ 2N
5+εDDN(26)

and

log log aN+1 ≥ log
(
DDN log

(
(1 +N−2)D

N (N+1+δ)!
∏N−1

i=1 Di

))

≥ log

(
(N + 1 + δ)!

2N2
DN+1

N∏

i=1

Di

)
> log((N − 1 + δ)!)

≥ (N − 1 + δ) log(N − 1 + δ)

2
≥ N logN

3
+ log 2.

Using the latter after applying Lemma 11 and inequality (25), we have

∞∑

n=N+1

a
1

log3+ε log an
n

an

(
N∏

n=1

a
n+2

log3+ε log an
n

)DDN

< a
−1+ 1

log3+ε/2 log aN+1
+ 2

log3+ε log aN+1

N+1 < a
−1+ 2

log3+ε/2 log aN+1

N+1

< a
−1+(N logN

3 )
−3−ε/2

N+1 .

By equation (26), we have

a
(N logN

3 )
−3−ε/2−N−3−ε/2

N+1 < aN
−3−ε

N+1 < 2−N2DDN ,

and so
(
2N

2
N∏

n=1

a
n+2

log3+ε log an
n

)DDN ∞∑

n=N+1

a
1

log3+ε log an
n

an
< a−1+N−3−ε/2

N+1(27)

≤
(

N∏

n=1

an+δ
n

)DDN (−1+N−3−ε/2)

,

Thus,

ZN =

(
2N

2
N∏

n=1

a
n+ n+2

log3+ε log an
n

)DDN ∞∑

n=N+1

a
1

log3+ε log an
n

an

<

(
N∏

n=1

a−δ+(n+δ)N−3−ε/2

n

)DDN

≤
(

N∏

n=1

a−δ/2
n

)DDN

.

As there are infinitely many such N , this completes the proof in the
present case.
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Case 2. Assume that equation (5) holds for all sufficiently large N
and that there is no real number 0 < δ < 1 such that an and δ satisfy
equation (6). For all 0 < δ < 1, we then have

(28) an < 2D
n(n+δ)!

∏n−1
i=1 Di ,

for all sufficiently large n.
By Lemma 12 and equation (4), we have infinitely many N so that

(29) aN+1 >

((
1 +

1

N2

)DN (N+1)!
∏N−1

i=1 Di N∏

n=1

ann

)DDN

.

Notice that all arguments leading to (27) in Case 1 remain valid when
we replace δ by 0. Hence, equation (29) implies

(
2N

2
N∏

n=1

a
n+2

log3+ε log an
n

)DDN ∞∑

n=N+1

a
1

log3+ε log an
n

an
< a−1+N−3−ε/2

N+1

<

((
1 +

1

N2

)(N+1)! N∏

n=1

ann

)DDN(−1+N−3−ε/2)

.

Let δ > 0 be sufficiently small. When the above N grow sufficiently
large, equation (28) and the fact that (1 + 1/N)N > 2 imply

ZN =

(
2N

2
N∏

n=1

a
n+ n+2

log3+ε log an
n

)DDN ∞∑

n=N+1

a
1

log3+ε log an
n

an

<

((
1 +

1

N2

)(N+1)!(−1+N−3−ε/2) N∏

n=1

anN
−3−ε/2

n

)DDN

≤
(
2N !(−1+N−3−ε/2)

N∏

n=1

2
(n+δ)! n

N3+ε/2

)DDN

≤
(
2DDN

)N2(N+δ)!+N!

N3+ε/2
−N !

< 2−N ,

and so the proof is complete in this case.
Case 3. Assume that

(30) an ≤ 2n

holds for infinitely many N and that there is a real number 0 < δ < 1
such that an and δ satisfy equation (6).

We fix an A > 0. By (6), there is an n ∈ N such that

a

1

Dn(n+δ)!
∏n−1

i=1
Di

n > A,

so we may pick k1 minimal with this property. We then choose k2 < k1
maximal such that ak2 ≤ 2k2 by (30). If no such k2 exists, we increase
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A until it does. This is possible since k1 tends to infinity with A and
since (30) is satisfied for infinitely many indices.

Now,

(31) ak1 > ADn(n+δ)!
∏n−1

i=1 Di = 2log2(A)Dn(n+δ)!
∏n−1

i=1 Di ,

so there is an n < k1 with

(32) an+1 > 2D
n+1(n+1+δ)!

∏n
i=1 Di .

We pick N ∈ [k2, k1) minimal such that the latter holds. Such an index
exists since

ak2 ≤ 2k2 ≤ 2D
k2 (k2+δ)!

∏k2−1
i=1 Di ,

since an is increasing, and since ak1 satisfies (31). Note that as A
increases, both k1 and k2 will increase. Hence, N will tend to infinity
as A tends to infinity.

Consider first the product,

N∏

n=1

a
n+ n+2

log3+ε log an
n =

(
k2∏

n=1

a
n+ n+2

log3+ε log an
n

)(
N∏

n=k2+1

a
n+ n+2

log3+ε log an
n

)
= M1·M2.

By choice of k2, since an is an increasing sequence,

M1 ≤
k2∏

n=1

2
n2+n n+2

log3+ε log 2n ≤
k2∏

n=1

2
n

(
k2+

k2+2

log3+ε log 2k2

)

≤ 2k
3
2 ,

by carrying out the multipliction and noticing the triangular number
in the exponent.

Now, for M2 we have by (32)

M2 ≤
N∏

n=k2+1

(
2D

n(n+δ)!
∏n−1

i=1 Di

)n+ n+2
log3+ε log an

≤
N∏

n=k2+1

2
(Dn(n+δ)!

∏n−1
i=1 Di)

(
n+ n+2

log3+ε(Dn+1(n+1+δ)!(
∏n

i=1
Di) log 2)

)

≤ 2(D
N (N+δ)!

∏N−1
i=1 Di)(N+ 1

N2 )
N−1∏

n=k2+1

2(D
n(n+δ)!

∏n−1
i=1 Di)(n+ 1

n2 )

≤
(
2(N+δ)!(N+ 1

N2 )
N−1∏

n=k2+1

2(n+δ)!(n+ 1
n2 )

)DN
∏N−1

i=1 Di

,

where we have bounded n+2
log3+ε Dn+1(n+1+δ)!

∏n
i=1 Di log 2

rather brutally by

1/n2. To continue,

2(N+δ)!(N+ 1
N2 ) = 2(N+1+δ)!−(1+δ− 1

N2 )(N+δ)!.
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Thus, for N large enough, which we can ensure by increasing A, the
term

2−(1+δ− 1
N2 )(N+δ)!

will cancel out the product over the remaining n’s as well as the term
coming from M1. Thus,

M1M2 ≤ 2((N+1+δ)!− δ
2
(N+δ)!)DN

∏N−1
i=1 Di.

Now, consider the sum

∞∑

n=N+1

a
1

log3+ε log an
n

an
=

k1−1∑

n=N+1

a
1

log3+ε log an
n

an
+

∞∑

n=k1

a
1

log3+ε log an
n

an
= S1 + S2.

By Corollary 13, choice of N , and (32),

S1 ≤ a

1

log3+ε/2 log aN+1
−1

N+1 ≤ 2
DN+1(N+1+δ)!( 1

(N+1)3
−1)

∏N+1
i=1 Di,

by a brutal estimate in the exponent. For S2, Lemma 10 together with
(31) gives us that

S2 ≤ a
− ε

2(1−ε)

k1
≤ 2−(log2 A) ε

2(1−ε)
DN+1(N+1+δ)!

∏N
i=1 Di.

The upshot is that

ZN ≤
(
2N

2

M1M2

)DDN

(S1 + S2).

But this evidently tends to 0 as A – and hence N – increases, by
inserting all the above estimates. This completes the proof in this
case.

Case 4. Assume that equation (30) holds for infinitely many N and
that there is no real number 0 < δ < 1 such that an and δ satisfy
equation (6). For all 0 < δ < 1, equation (28) holds for all sufficiently
large n. Note that by the limsup assumption in Theorem 2, we instead
have equation (6) if we let δ = 0.

Let δ > 0 be fixed, and let A be sufficiently large. By inequality
(28),

(33) an ≤ 2D
n(n+δ)!

∏n−1
i=1 Di

holds for all sufficiently large n ∈ N. Pick k1 ∈ N to be minimal with
the property that

ak1 > ADk1k1!
∏k1−1

i=1 Di .

Now, choose k2 < k1 to be maximal so that ak2 ≤ 2k2. Should no such
k2 exist, then choose A larger. Note also that for A increasing, both k1
and k2 must increase.

As before, we now choose N ∈ [k2, k1) such that a large jump must
occur at this place. Concretely, we use Lemma 9 and inequality (6) to



INFINITE PRODUCTS WITH ALGEBRAIC NUMBERS 23

let N ≥ k2 be minimal with

a

1

DN+1(N+1)!
∏N

i=1
Di

N+1 >

(
1 +

1

(N + 1)1+ε/4

)
max

j=k2,...,N
a

1

Djj!
∏j−1

i=1
Di

j .

Since
∏∞

n=1

(
1 + 1

(N+1)1+ε/4

)
< ∞, we must have N < k1 when k1 is

sufficiently large.
We claim that ZN tends to zero with N , which again suffices, as both

k1 and k2 tend to infinity with A, so that a subsequence of left hand
sides in the lemma will tend to zero.

Again, as in the preceding case, we will let

N∏

n=1

a
n+ n+2

log3+ε log an
n =

(
k2∏

n=1

a
n+ n+2

log3+ε log an
n

)(
N∏

n=k2+1

a
n+ n+2

log3+ε log an
n

)
= M1·M2.

For r < k2, ar ≤ ak2 ≤ 2k2, so as before

M1 ≤
k2∏

n=1

2
n2+n n+2

log3+ε log 2n ≤
k2∏

n=1

2
n

(
k2+

k2+2

log3+ε log 2k2

)

≤ 2k
3
2 .

Now, by minimality of N , it follows for each r ∈ (k2, N ] that

a

1

Dnn!
∏n−1

i=1
Di

r ≤
(
1 +

1

n1+ε/4

)
max

j=k2,...,n−1
a

1

Djj!
∏j−1

i=1
Di

j .

Using this successively, we find that

a

1

Dnn!
∏n−1

i=1
Di

n ≤
(
1 +

1

n1+ε/4

)(
1 +

1

(n − 1)1+ε/4

)
max

j=k2,...,n−2
a

1

Djj!
∏j−1

i=1
Di

j

≤ · · · ≤ a

1

Dk2k2!
∏k2−1

i=1
Di

k2

n∏

j=k2+1

(
1 +

1

j1+ε/4

)

The latter is a partial product of a convergent infinite product, and so
can be bounded by a constant depending only on ε. Since ak2 < 2k2 ,
the first factor is also bounded by

√
2, say. The upshot is that for some

B depending only on ε,

an ≤ BDnn!
∏n−1

i=1 Di,

so that

M2 ≤
N∏

n=k2+1

B(Dnn!
∏n−1

i=1 Di)
(
n+ n+2

log3+ε log an

)
≤

N∏

n=k2+1

B
(Dnn!

∏n−1
i=1 Di)

(
n+ n+2

log3+ε(n log 2)

)

,

since an > 2n by maximality of k2.
Again as in the preceding case, consider now the sum

∞∑

n=t

a
1

log3+ε log an
n

an
=

k1−1∑

n=t

a
1

log3+ε log an
n

an
+

∞∑

n=k1

a
1

log3+ε log an
n

an
= S1 + S2.
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By Corollary 13 as before,

(34) S1 ≤ a

1

log3+ε/2 log aN+1
−1

N+1

Since

a

1

DN+1(N+1)!
∏N

i=1
Di

N+1 >

(
1 +

1

(N + 1)1+ε/4

)
max

j=s,...,N
a

1

Djj!
∏j−1

i=1
Di

j ,

certainly,

aN+1 >

((
1 +

1

(N + 1)1+ε/4

)
max

j=s,...,N
a

1

Djj!
∏j−1

i=1
Di

j

) 1

DN+1(N+1)!
∏N

i=1
Di

≥
(
1 +

1

N1+ε/4

) 1

DN+1(N+1)!
∏N

i=1
Di

N∏

r=1

ar.

(35)

Furthermore, by minimality of t, for each n ∈ (k2, N ],

a

1

Dnn!
∏n−1

i=1
Di

n ≤
(
1 +

1

n1+ε/4

)
max

j=k2,...,n−1
a

1

Djj!
∏j−1

i=1
Di

j

≤
(
1 +

1

n1+ε/4

)(
1 +

1

(n − 1)1+ε/4

)
max

j=k2,...,n−2
a

1

Djj!
∏j−1

i=1
Di

j

≤ . . .

≤
n∏

j=k2+1

(
1 +

1

j1+ε/4

)
a

1

Djj!
∏j−1

i=1
Di

k2
.

Since ak2 ≤ 2k2, this is bounded by a constant, K say, on estimating
the product by its infinite counterpart. Consequenly, since an is an
increasing sequence by assumption,

(36)
N∏

r=1

ar =

k2∏

r=1

ar

N∏

r=k2+1

ar ≤ 2k
2
2

N∏

r=k2+1

KDrr!
∏r−1

i=1 Di

We insert (35) into (34) to obtain

S1 ≤
((

1 +
1

N1+ε/4

) 1

DN+1(N+1)!
∏N

i=1
Di

N∏

r=1

ar

) 1

log3+ε/2 log aN+1
−1

.

Using (33),

S1 ≤
((

1 +
1

N1+ε/4

) 1

Dtt!
∏N

i=1
Di

N∏

r=1

ar

) 1

t3+ε/4
−1

.



INFINITE PRODUCTS WITH ALGEBRAIC NUMBERS 25

Using finally (36),

S1 ≤
(
1 + 1

N1+ε/4

) 1

DN+1(N+1)!
∏N

i=1
Di

(
1

N3+ε/4
−1
) (

2k
2
2
∏N

r=k2+1K
Drr!

∏r−1
i=1 Di

) 1

N3+ε/4

∏N
r=1 ar

The second summand S2 is estmated by Lemma 10, so that

S2 =

∞∑

n=k1

a
1

log3+ε log an
n

an
< |ak1 |−

ε
2(1+ε) < A−ε(Dk1k1!

∏k1−1
i=1 Di)/2(1+ε).

In other words, since

ZN = (2N
2

M1M2)
DDN (S1 + S2),

by inserting the estimates above, ZN can be made arbitrarily small by
increasing A, which in turn corresponds to increasing t, so that in this
case the liminf of the Lemma is also equal to zero. The four cases
exhaust the possibilities of satisfying the conditions of the lemma, and
so the proof is complete. �

5. Concluding Remarks

In the light of Theorem 1, we expect that Theorem 2 will remain
true if the limsup criterion (4) is weakened to the assumption that

|αN,1|
1

DNN!
∏N−1

n=1 Dn diverges in R, though this will require additional ar-
guments in lemma 19, most likely in the form of two additional cases
to be considered. We deemed this question out of scope for the current
paper, however.

Similarly, the proof of Theorem 2 may be modified so that the
bound on bn an can be loosened to bn ≤ |an|(log log |an|)−3−ε

and an ≤
|an|1+(log log |an|)−3−ε

, thus presenting the same lenient bound on bn as
found in [4]. Note however that in order to accomplish this, we would
then have to strengthen the divergence assumption to

lim sup
n→∞

|an|1/D
n
∏n−1

i=1 (Di+di) = ∞,

at least until the case of

lim inf
n→∞

|an|1/D
n
∏n−1

i=1 (Di+di) < lim sup
n→∞

|an|1/D
n
∏n−1

i=1 (Di+di) < ∞

has been handled.
Furthermore, in [8], an analogue of Theorem 1 for series

∑∞
n=1

bn
αn

with Dn = d constant was proven (Proposition 4.3 of the paper) and
where the divergence criterion is replaced by limsup criterion. Com-
pared to the present paper and [1, 7], the exponent in the limsup ex-
pression is not

lim sup
n→∞

|αn|D
−n(1+d)−n

= ∞,
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as would be expected, but rather

lim sup
n→∞

|αn|(1+dD)−n

= ∞.

We therefore suspect that Theorem 1 may be improved so that the
exponent in the divergence criterion may be replaced with

1∏n−1
i=1 (di +DDi)

.

This is less strict when D > 1. We further suspect tha the exponent
in the limsup expression of Theorem 2 may be replaced with

1∏N−1
i=1 (di + iDDi)

,

which is easily checked to be more lenient when DDi > 1.
It is also likely that the restrictions on real and imaginary values

in Theorem 2 – including the alternative restrictions presented in the
subsequent remark – may be weakened to some extent.
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1.5 Linear independence of continued fractions

In this section, we consider linear independence in the continued fractions setting,
based on the joint paper [24] by Jaroslav Hančl, Jitu Berhanu Leta, and the current
author. Recall the notation

[0; a1, a2, . . .] =
1

a1 +
1

a2 +
1

. . .

.

from Section 1.1. The main result of the paper is the below theorem, which
generalizes the paper [2].

Theorem 1.43 (Hančl–Laursen–Leta, 2024 on arXiv). Let K ∈ N, let K be a
number field of degree d, write D = max(2, dK − 1), and let α ∈ (0, 1). For each
i = 1, . . . , K, let {an,i}∞n=1 be a sequence of positive real numbers from K of the
form an,i = (Sn,ibn,i+cn,i)/di,n, where Sn,i ∈ Z and bn,i, cn,i, dn,i ∈ OK, and suppose
that for all n ∈ N,

bi,n , ci,n , di,n ≤ max(2log
α
2 ai,n , 2D

αn

), a1,n < max(aK,n2
logα2 aK,n , 2D

αn

),

and

a−1
i,n ≤ 1

2
. (1.11)

For i = 1, . . . , K − 1, assume furthermore that

lim inf
n→∞

√
n

(
an,i
an,i+1

− 1

)
> 0. (1.12)

Suppose that
lim sup
n→∞

aD
−n

n = ∞.

Then the sequences {a1,n}∞n=1, . . . , {a1,n}∞n=1 are CF-linearly independent over K.
This result is also true if instead of (1.11),

ei,σℜ(σai,n) ≥ min{2− logα2 an,1 , 2−D
αn} (1.13)

holds for all i = 1, . . . , K, all embeddings σ of K into Q, and all n ∈ N, where
ej,σ ∈ {−1, 1} does not depend on n.

Remark 1.44. In the original phrasing of the theorem, the conclusion is only that
the numbers 1, [0; a1,1, a1,2, . . .], . . . , [0; aK,1, aK,2, . . .] are linearly independent over
K. However, none of the assumptions are affected by replacing ai,n and Si,n by
cnai,n and cnSi,n, respectively, when all cn are positive integers. Hence, the present
formulation is equally true.
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From this theorem, we may extract the following corollary. Notice that CF-
linear independence over Q is a generalization of CF-transcendence.

Corollary 1.45. Suppose all assumptions of Theorem 1.43 are satisfied. If further-
more

lim sup
n→∞

aA
−n

i,n = ∞,

is true for for all A ∈ N, then the sequences {a1,n}∞n=1, . . . , {aK,n}∞n=1 are CFQ-
linearly independent over K.

It is a well-known fact from the theory of continued fractions that

[0; a1, a2, . . . , aN ] =
pN
qN
,

where
p0 = 0, p1 = 1, pn+2 = an+2pn+1 + pn,

q0 = 1, q1 = a1, qn+2 = an+2qn+1 + qn.
(1.14)

When an is an integer for all n ∈ N and positive for n ≥ 1, then qN and pN are
always coprime integers with qN positive. If the an are not assumed to be integers,
then this is no longer guaranteed, but the above formula remains true. Notice that
if an is a positive real number for all n ∈ N, then so are pn and qn.

As part of proving Theorem 1.43, the authors also prove the below lemma about
comparing the sequences qN generated from two different continued fractions.

Lemma 1.46 (Hančl–Laursen–Leta, 2024 on arXiv). Let {an}∞n=1 and {bn}∞n=1 be
two sequences of real numbers with an, bn ≥ 1 such that inequality (1.12) is satisfied.
For each n ∈ N, let qn,a and qn,b be defined by formula (1.14) using the finite
continued fractions [0; a1, a2, . . . , an] and [0; b1, b2, . . . , bn], respectively. Then

lim
n→∞

qn,a
qn,b

= ∞.

1.5.1 Examples

The paper [24] contains various applications of Theorem 1.43. While some are
presented as examples, others are given the status of corollary or even theorem.
We will here give special attention to the two applications that are considered
proper theorems. The reader may find the remaining ones in [24, Section 3] as
presented in subsection 1.5.2 together with a number of unsolved questions to
inspire future work.

We start by presenting [24, Theorem 1], which is an immediate consequence of
Theorem 1.43. In the language of irrational sequences, it reads as follows.
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Theorem 1.47 (Hančl–Laursen–Leta, 2024 on arXiv). Let {an}∞n=1 be a non-decreas-
ing sequence of positive integers such that lim supn→∞ a3

−n
n = ∞, and let {pn}∞n=1

be the sequence of all prime numbers. Then the sequences {an(1+pn/n)
√
2}∞n=1 and

{an(pn/n)
√
2}∞n=1 are CF-linearly independent over over Q(

√
2). In particular, the

numbers
[
0; a1

(
1 +

p1
1

)√
2, . . . , an

(
1 +

pn
n

)√
2, . . .

]
,
[
0; a1

p1
1

√
2, . . . , an

pn
n

√
2, . . .

]
,

and 1 are linearly independent over Q(
√
2).

Remark 1.48. In the original version of this theorem, the first of these sequences,
{an(1 + pn/n)

√
2}∞n=1, was presented as {(1 + pn/n)

√
2}∞n=1 instead; this was a

typing error.

As in subsection 1.4.1, we let π denote the prime counting function, i.e., π(K) is
the number of prime numbers less than or equal to K. By the Prime Number The-
orem, we have π(K) ∼ K/ logK, which is to say that limn→∞ π(K)/(K/ logK) =
1. This implies that pn ∼ n log n, which is part of the reason why inequality (1.12)
is satisfied in Theorem 1.47.

The prime counting function is also used in [24, Theorem 3] as presented below.
This theorem is proven by slightly modifying the proof of Theorem 1.43. It is again
trivial to generalize the original statement of linear independence of numbers to a
statement of CF-linear independence of sequences.

Theorem 1.49 (Hančl–Laursen–Leta, 2024 on arXiv). Let K ∈ N with K ≥ 2,
write K = Q(

√
2, . . . ,

√
K), and let {an}∞n=1 be a sequence of integers such that

an ≥ K and lim supn→∞ a
(K2π(K))−n
n = ∞. Then the sequences {

√
1an}∞n=1, . . .,

{
√
Kan}∞n=1 are CF-linearly independent over K.

1.5.2 Paper 3: Linear independence of continued fractions with

algebraic terms

Below, the reader will find the most recent preprint of the paper [24], which is
joint work between Jaroslav Hančl, Jitu Berhanu Leta, and the current author.
The paper is currently under review but has not yet been accepted for publication.
The preprint is available on arXiv through the link https://arxiv.org/abs/

2406.19047v1 or by using the arXiv identifier 2406.19047. It has a length of 26
pages, numbered 1 through 26.

https://arxiv.org/abs/2406.19047v1
https://arxiv.org/abs/2406.19047v1
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Abstract

We give conditions on sequences of positive algebraic numbers {an,j}∞
n=1,

j = 1, . . . ,M and number field K to ensure that the numbers defined by

the continued fractions [0; a1,j, a2,j , . . . ], j = 1, . . . ,M and 1 are linearly

independent over K.



1 Introduction

Following Erdős [4], Davenport and Roth [3] we prove:

Theorem 1. Let {an}∞
n=1 be a non-decreasing sequence of positive integers

such that lim
n→∞

a
1
3n
n = ∞ and {pn}∞

n=1 be the increasing sequence of all primes.

Then the continued fractions

[
0;
(
1 +

p1
1

)√
2, . . . ,

(
1 +

pn
n

)√
2, . . .

]
,
[
0; a1

p1
1

√
2, . . . , an

pn
n

√
2, . . .

]

and number 1 are linearly independent over Q(
√
2) particularly over Q .

This is an immediate consequence of Theorem 2, which will be introduced

in the chapter Main Results. The results presented in this paper have some

history. Forty years ago Davenport and Roth in [3] proved that the con-

tinued fraction [a1; a2, . . . ], where a1, a2, . . . are positive integers satisfying

lim supn→∞

(
(log log an)

√
logn
n

)
= ∞, is a transcedental number. Hančl [8]

found some criteria for continued fractions to be linearly independent. Ander-

sen and Kristensen [1] come with special conditions on continued fractions

consisting of algebraic integers to be irrational or transcedental numbers.

The generalization of transcendence is algebraic independence and there are

several results concerning the algebraic independence of continued fractions,

see, for instance, [2], [7] or [13]. In 1975, Erdős [4] proved that if {an}∞
n=1

is a non-decreasing sequence of positive integers such that limn→∞ a
1
2n
n = ∞

then the number
∑∞

n=1
1
an

is irrational. Later, in 1991, Hančl [6] proved that

if {an}∞
n=1 is a sequence of positive real numbers such that an ≤ 2

1
n2 2

n

holds

for any positive integer n, then there exists a sequence {cn}∞
n=1 of positive

integers such that the number
∑∞

n=1
1

cnan
is rational. Rucki [20] established

a criterion for the sums of reciprocals of a sequence of natural numbers to

be irrational. Genčev [5] obtained some irrationality results with the help of

1



special transformations. Then Hančl and Sobková [9] established the linear

independence of the sums of certain infinite series. Using Padé approximation

Matala-aho and Zudilin [17] obtained some interesting results in irrational-

ity of infinite series. Recently, Hančl and Kolouch [11] gave a criterion for

infinite products of rational numbers to be irrational. A nice review of these

results can be found in [14] and [15].

Our results are of a quite general character and written in the spirit

of Erdös. This method was later develop by Hančl and Sobková [10], see

also [12]. We do not for instance require that the elements of {an}∞
n=1 be

approximable by the elements of a finite union of power sequences or be

associated with any differential equation as in the method of K. Mahler, for

which the reader is referred to K. Nishioka’s book [19]. Let us mention also

[18].

The main result of this paper is Theorem 2. Many consequences and

examples of this theorem can be found in the chapter Main Results. Lemma

14 deals with the conditions which guarantee that the ratio of two linear

recurrences tends to infinity.

2 Notations

We use the standard notation: N and Z the set of non-negative integers

and integers, respectively. For a positive real number x the expression log x,

log2 x and π(x) denotes the natural logarithm of x, the logarithm base 2 of

x and number of primes less than or equal to x, respectively. If x is positive

integer then d(x) denotes the number of divisors of x.

Let pn
qn

= [a0; a1, a2, · · · , an] be the n-th partial fraction of the real number

2



a = [a0; a1, a2, · · · ]. We have

p0 = a0, q0 = 1, p1 = a1a0 + 1, q1 = a1, pn+2 = an+2pn+1 + pn,

qn+2 = an+2qn+1 + qn, qn+1pn − pn+1qn = (−1)n+1,

a = [a0; a1, a2, · · · ] =
[
a0; a1, a2, · · · , an, [an+1; an+2, an+3, · · · ]

]

=
pn[an+1; an+2, an+3, · · · ] + pn−1

qn[an+1; an+2, an+3, · · · ] + qn−1
,

a − pn
qn

=
(−1)n

q2n([an+1; an+2, . . . ] + [0; an, . . . , a1])

=
(−1)n

q2n([an+1; an+2, . . . ] +
qn−1

qn
)
, (1)

pn
qn

=
n∑

k=1

(−1)k+1

qkqk−1

, (2)

and

qn = anqn−1 + qn−2 > anqn−1 > · · · >
n∏

k=1

ak, ak > 0, k = 1, . . . , n (3)

for all n ∈ N. If a = [a0; a1, a2, · · · , ak] is finite and k ≥ 1, then we suppose

that ak 6= 1. All of this can be found in the book of Schmidt [21] pages 7-10.

If x is algebraic number and x1 = x, x2, . . . , xk all are its different conjugates,

then the house of x is the maximal modulus among the conjugates of x i.e.

x = max1≤j≤k |xj |.

3 Main Results

Theorem 2. Let D and M be positive integers, and let γ ∈ (0, 1). Let

K be an algebraic field such that degK = D. For every j = 1, . . . ,M let

{Sn,j}∞
n=1, {an,j}∞

n=1, {bn,j}∞
n=1 , {cn,j}∞

n=1, {dn,j}∞
n=1 be the sequences and

3



αj = [a0,j; a1,j , . . . ] be continued fractions such that for all n ∈ N, we have

Sn,j ∈ Z, bn,j , cn,j, dn,j ∈ K are algebraic integers,

an,j =
Sn,jbn,j + cn,j

dn,j
≥ 1, (4)

1

an,j
≥ 1

2
, (5)

an,1 < max(an,M2(log2 an,M )γ , 2d
nγ

), (6)

and

bn,j , cn,j , dn,j ≤ max(2(log2 an,j)
γ

, 2d
nγ

). (7)

Assume that

lim inf
n→∞

√
n
( an,j
an,j+1

− 1
)
> 0 (8)

for all j = 1, . . . ,M − 1. Set d = max(2, DM − 1). Suppose that

lim sup
n→∞

a
1
dn

n,j = ∞. (9)

Then the numbers α1, . . . , αM and 1 are linearly independent over K.

This result is also true if instead of (5),

(−1)ej,σℜ(σan,j) ≥ max(2(log2 an,1)γ , 2d
nγ

)−1 (10)

holds for all j = 1, . . . ,M and all embeddings σ of K into Q, where ej,σ ∈
{0, 1} does not depend on n.

Theorem 3. Let K ≥ 2 be an integer and let {an}∞
n=1 be a sequence of

integers greater or equal to K and such that lim supn→∞ a
1

(K2π(K))n

n = ∞. Then

the continued fractions [0;
√
ja1,

√
ja2, . . . ], j = 1, 2, . . . , K and the number

1 are linearly independent over Q(
√
1,

√
2, . . . ,

√
K) particularly over Q.

Corollary 4. Let K be a positive integer and let {an}∞
n=1 be a sequence of

positive integers greater or equal to K and such that lim supn→∞ a
1
dn
n = ∞

where d = max(2, K − 1). Then the continued fractions [0; a1
j
, a2

j
, . . . ], j =

1, 2, . . . , K and the number 1 are linearly independent over Q.
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Example 5. Let {an}∞
n=1 be a sequence of positive integers greater or equal

to 3 and such that lim supn→∞ a
1
2n
n = ∞. Then the continued fractions

[0; a1, a2, . . . ], [0; a1
2
, a3

2
, . . . ], [0; a3

3
, a3

3
, . . . ] and number 1 are linearly inde-

pendent over Q.

Corollary 6. Let K ≥ 2 be an integer and P (x) be a polynomial with integer

coefficients and degP = K. Assume that all roots α1, α2, . . . , αK of P (x) are

real, different and greater than 1. Let {an}∞
n=1 be the sequence of positive

integers such that lim supn→∞ a
1

(K2−1)n

n = ∞. Then the continued fractions

[0;αja1, αja2, . . . ], j = 1, . . . , K and the number 1 are linearly independent

over Q(α1, . . . , αK) particularly over Q.

Example 7. Let {an}∞
n=1 be the sequence of positive integeres such that

lim supn→∞ a
1
3n
n = ∞. Then the continued fractions

[
0;
(
4 +

√
2
)
a1,
(
4 +

√
2
)
a2, . . .

]
,
[
0;
(
4 −

√
2
)
a1,
(
4 −

√
2
)
a2, . . .

]

and the number 1 are linearly independent over Q(
√
2) particularly they are

linearly independent over Q.

Example 8. Let K be a positive integer, let ϕ = (
√
5+1)/2 be the golden ra-

tio, and let {an}∞
n=1 be a sequence of positive integers such that lim supn→∞ a

1
dn
n =

∞ where d = max{2, 2K − 1}. Then the continued fractions

[
0;ϕa1, ϕ

3a2, ϕ
5a3, . . .

]
,
[
0;ϕ2a1, ϕ

4a2, ϕ
6a3 . . .

]
, . . . ,

[
0;ϕKa1, ϕ

K+2a2, ϕ
K+4a3, . . .

]
,

and the number 1 are linearly independent over Q(α).

Corollary 9. Let K be an integer and let {an}∞
n=1 be a sequence of positive

integers such that lim supn→∞ a
1
dn
n = ∞ where d = max(2, K − 1). Then the

continued fractions [0; a1(j+
∑1

k=1
1
k
), . . . , an(j+

∑n
k=1

1
k
), . . . ], j = 1, . . . , K

and number 1 are linearly independent over Q.
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Corollary 10. Let K be an integer and {an}∞
n=0 be a sequence of positive

integers such that lim supn→∞ a
1
dn
n = ∞ where d = max(2, K − 1). Then the

continued fractions [0; a1(1+
π(1)
1
)j , . . . , an(1+

π(n)
n

)j , . . . ], j = 0, 1, . . . , K−1

and number 1 are linearly independent over Q.

Example 11. Let {an}∞
n=1 be the sequence of positive integer such that

lim supn→∞ a
1
3n
n = ∞. Then the continued fractions

[
0; a1d(1)

√
2, . . . , and(n)

√
2, . . .

]
,
[
0; a1(1+d(1))

√
2, . . . , an(1+d(n))

√
2, . . .

]
,

and the number 1 are linearly independent over Q(
√
2) particularly over Q.

Question 12. Does every sequence {an}∞
n=1 of positive integers such that

lim supn→∞ a
1
2n
n = ∞, then the continued fractions [0; a1 +

√
2, a2 +

√
2, . . . ]

,and [0; a1 +
√
3, a2 +

√
3, . . . ] are linearly independent over Q?

Question 13. Check if there exists a sequence {an}∞
n=1 of positive integers

such that the continued fractions [0; a1, a2, . . . ] and [0; a1 + 1, a2 + 2, . . . ] are

linearly dependent over Q?

Lemma 14. Let {an}∞
n=1 and {bn}∞

n=1 be two sequences of real numbers

greater or equal to 1 and such that

lim inf
n→∞

√
n
(an
bn

− 1
)
> 0. (11)

Let qn,a and qn,b be denominator of n-th partial of the continued fraction

a = [0; a1, a2, . . . ] and b = [0; b1, b2, . . . ], respectively. Then

lim
n→∞

qn,a
qn,b

= ∞. (12)

Question 15. Is that possible to substitute condition (11) by the condition

lim supn→∞ n(an
bn

− 1) > 0?

6



Remark 16. We cannot substitute condition (11) by the weaker condition

lim supn→∞ n2(an
bn

− 1) > 0. For example set an = n2 + 1 and bn = n2 for all

n ∈ N. Then

qn,a
qn,b

=
(n2 + 1)qn−1,a + qn−2,a

n2qn−1,b + qn−2,b
=

n2 + 1

n2

qn−1,a

qn−1,b

(
1 +

qn−2,a

(n2+1)qn−2,a

1 +
qn−2,b

n2qn−2,b

)

<
(
1 +

1

n2

)2 qn−1,a

qn−2,b
< · · · <

∞∏

n=1

(
1 +

1

n2

)2
= const < ∞.

Lemma 17. Let z0, z1, z2, . . . , zn be complex numbers such that for every

k = 0, 1, 2, . . . , n we have

|zk| ≥ 2. (13)

Then
∣∣[z0; z1, z2, . . . , zn]

∣∣ ≥ 1. (14)

Lemma 18. Let z0, z1, z2, . . . , zn be complex numbers with ℜ(zk) > 0 for

every k = 0, 1, 2, . . . , n. Then

|ℜ
(
[−z0;−z1,−z2, . . . ,−zn]

)
| = ℜ

(
[z0; z1, z2, . . . , zn]

)
≥ ℜ(z0).

4 Proofs

Proof of Lemma 17 . Lemma 17 can be proved by mathematical induction

using the inequality |a+ b| ≥ ||a| − |b||, which holds for all complex numbers

a and b.

Proof of Lemma 18 . Lemma 18 can be proved by mathematical induction

using that ℜ(a+b−1) = ℜ(a)+ℜ(b)/|b|2, which holds for all non-zero complex

numbers a and b.

Proof of Theorem 2. Let σ1, . . . , σD be the set of embeddings of K into Q,

where σ1 is the identity. Then the number
∏D

i=1 σi(x) is a rational number

for every x ∈ K.
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If bn,j 6= 0, then we have that |∏D
i=1 σi(bn,j)| = A where A is a positive

integer. From this and (7) we obtain that for every i = 1, . . . , D

|σi(bn,j)| =
A

|∏D
I=1,I 6=i σI(bn,j)|

≥ 1

max(2(D−1)(log2 an,j )γ , 2(D−1)dnγ )
(15)

and similarly

|σi(dn,j)| ≥ 1

max(2(D−1)(log2 an,j)γ , 2(D−1)dnγ )
. (16)

Inequalities (4), (7) and (15) yield

|Sn,j| =
∣∣∣dn,jan,j − cn,j

bn,j

∣∣∣ ≤ 2an,j max(2(D log2 an,j)γ , 2Ddnγ

). (17)

Suppose that the numbers α1, α2, . . . , αM and 1 are linearly dependent

over K. Then there exist A1, A2, . . . , AM ∈ K, not all equal to zero such

that
∑M

j=1Ajαj ∈ K. Let us write
∑M

j=1Ajαj = y where y ∈ K. Therefore
∑M

j=1Ajαj − y = 0. Let n0 and n be sufficiently large and such that n ≥ n0.

Then we have
M∑

j=1

Ajαj − y =
M∑

j=1

Aj

(
αj − pn,j

qn,j

)
+

M∑

j=1

Aj
pn,j
qn,j

− y = 0.

Hence
M∑

j=1

Aj
pn,j
qn,j

− y = −
M∑

j=1

Aj

(
αj − pn,j

qn,j

)
. (18)

Now we prove that for all large n we have

∣∣∣∣
M∑

j=1

Aj
pn,j
qn,j

− y

∣∣∣∣ > 0. (19)

Without loss of generality let M∗ be an integer such that AM = · · · =

AM∗+1 = 0 and AM∗ 6= 0. From this and (1), we obtain that

M∑

j=1

Aj(αj − pn,j
qn,j

) =
M∗∑

j=1

Aj(αj − pn,j
qn,j

)

=

M∗∑

j=1

Aj(−1)n

q2n,j(an+1,j + [0; an+2,j, an+3,j, . . . ] + [0; an,j, . . . , a1,j ])
.
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This and Lemma 14 yield

∣∣∣∣
M∑

j=1

Aj

(
αj − pn,j

qn,j

)∣∣∣∣

≥ |AM∗|
q2n,M∗(an+1,M∗ + [0; an+2,j, an+3,j, . . . ] + [0; an,j, . . . , a1,j])

−
M∗−1∑

j=1

|Aj|
q2n,jan+1,j

≥ |AM∗|
3q2n,M∗an+1,M∗

−
M∗−1∑

j=1

|Aj |
q2n,jan+1,j

=
|AM∗|

3q2n,M∗an+1,M∗

(
1 −

M∗−1∑

j=1

3|Aj |
|AM∗ |

(
qn,j

qn,M∗ )
2 an+1,j

an+1,M∗

)
> 0.

This and (18) yield (19).

Using (1) yields that

∣∣∣∣
M∑

j=1

Aj(αj − pn,j
qn,j

)

∣∣∣∣ =
∣∣∣∣
M∗∑

j=1

Aj(αj − pn,j
qn,j

)

∣∣∣∣

=

∣∣∣∣
M∗∑

j=1

Aj(−1)n

q2n,j(an+1,j + [0; an+2,j, an+3,j, . . . ] + [0; an,j, . . . , a1,j])

∣∣∣∣

≤
M∗∑

j=1

maxj=1,2,...,M∗(|Aj|)
q2n,jan+1,j

. (20)

From this, Lemma 14 and (8) we obtain that

∣∣∣∣
M∑

j=1

Aj(αj − pn,j
q2n,j

)

∣∣∣∣ ≤ max
j=1,,...,M

(|Aj|)
M∑

j=1

1

q2n,jan+1,j

=
maxj=1,2,...,M(|Aj |)

q2n,Man+1,M

(
1 +

M−1∑

j=1

(
qn,M
qn,j

)2
an+1,M

an+1,j

)

≤M maxj=1,2,...,M |Aj |
q2n,Man+1,M

=
c

q2n,Man+1,M

where c = M maxj=1,2,...,M |Aj | is a constant which does not depend on n.

This, (18), and (19) yield

0 <

∣∣∣∣
M∑

j=1

Aj
pn,j
qn,j

− y

∣∣∣∣ <
c

q2n,Man+1,M
.
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It implies that

D∏

i=1

∣∣∣∣σi

( M∑

j=1

Aj
pn,j
qn,j

− y

)∣∣∣∣ ≤
D∏

i=2

∣∣∣∣σi

( M∑

j=1

Aj
pn,j
qn,j

− y

)
c

q2n,Man+1,M

.

Hence,

c
∣∣∏D

i=2

∑M
j=1(σi(Aj

pn,j

qn,j
) − σi(y))

∣∣
q2n,Man+1,M

≥
∣∣∣∣

D∏

i=1

M∑

j=1

(
σi

(
Aj

pn,j
qn,j

)
− σi(y)

)∣∣∣∣. (21)

From (19) and by Galois theory the number on the right is a rational number

a
b
, (a, b) = 1, a, b ∈ Z+ such that there exist a constant C which does not

depend on n and such that

0 < b ≤ C

D∏

i=1

M∏

j=1

∣∣∣∣σi

(( n∏

k=1

dk,j

)
qn,j

)∣∣∣∣

= C
D∏

i=1

M∏

j=1

|σi(qn,j)|
n∏

k=1

|σi(dk,j)|.

This and (7) yield

0 < b ≤ C
D∏

i=1

M∏

j=1

|σi(qn,j)|
n∏

k=1

max(2(log2 ak,j)
γ

, 2d
kγ

). (22)

Write Rk,j = max(2(log2 ak,j)
γ
, 2d

kγ
) and notice that 1/ak,j ≤ Rk,j regardless

of whether we assume (5) or (10). Combining this with inequality (4), we

find

|σi(qn,j)| = |σi(an,jqn−1,j + qn−2,j)|

≤ |σi(an,j)||σi(qn−1,j)| + |σi(qn−2,j)|

≤ |σi(qn−2,j)|
(
|σi(an,j)||σi(an−1,j)| + 1

)
+ |σi(an,j)||σi(qn−3,j)|

< (1 +Rn,jRn−1,j)|σi(an,j)|
(
|σi(an−1,j)||σi(qn−2,j)| + |σi(qn−3,j)|

)

< · · · <
n∏

k=1

(1 +Rk,jRk−1,j)|σi(ak,j)| < 2nRn,j

n−1∏

k=1

R2
k,j|σi(ak,j)|

<

∏n
k=1R

2
k,j|σi(ak,j)|

C1/DM
=

∏n
k=1max(2(log2 ak,j)

γ
, 2d

kγ
)|σi(ak,j)|

C1/DM
.
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This and (22) yield

0 < b ≤ C

D∏

i=1

M∏

j=1

|σi(qn,j)|
n∏

k=1

max(2(log2 ak,j)
γ

, 2d
kγ

)

<

D∏

i=1

M∏

j=1

n∏

k=1

|σi(ak,j)|max(2(log2 ak,j)
γ

, 2d
kγ

)3.

From this, (4) and (16) we obtain that

0 < b ≤
D∏

i=1

M∏

j=1

n∏

k=1

|σi(Sk,jbk,j + ck,j)|
|σi(dk,j)|

max(2(log2 ak,j)
γ

, 2d
kγ

)3

≤
D∏

i=1

M∏

j=1

n∏

k=1

(|Sk,j||σi(bk,j)| + |σi(ck,j)|)max(2(log2 ak,j)
γ

, 2d
kγ

)D+2.

This and (7) imply that

0 < b <
D∏

i=1

M∏

j=1

n∏

k=1

(|Sk,j| + 1)max(2(log2 ak,j)
γ

, 2d
kγ

)D+3.

This and (17) yield

0 < b <

D∏

i=1

M∏

j=1

n∏

k=1

(
2ak,j max(2(D log2 ak,j)

γ

, 2Ddkγ) + 1
)

×

max(2(log2 ak,j)
γ

, 2d
kγ

)D+3

≤
D∏

i=1

M∏

j=1

n∏

k=1

(
ak,j max(2(log2 ak,j)

γ

, 2d
kγ

)5D
)

This and (8) imply that

0 < b <
D∏

i=1

M∏

j=1

n∏

k=1

(
ak,1max(2(log2 ak,1)

γ

, 2d
kγ

)5D
)

=

n∏

k=1

(
aDM
k,1 max(2(log2 ak,1)

γ

, 2d
kγ

)5D
2M
)

(23)

11



We now calculate

|σi(qn,j)| =|σi(an,j)σi(qn−1,j) + σi(qn−2,j)|

=|σi(qn−1,j)|
∣∣∣∣σi(an,j) +

σi(qn−2,j)

σi(qn−1,j)

∣∣∣∣

=|σi(qn−1,j)||σi(an,j) + [0; σi(an−1,j), σi(an−2,j), . . . , σi(a1,j)]|

=|σi(qn−1,j)||[σi(an,j); σi(an−1,j), σi(an−2,j), . . . , σi(a1,j)]|. (24)

If (5) is satisfied, we then apply Lemma 17 to (24) and find

|σi(qn,j)| ≥ |σi(qn−1,j)| ≥ |σi(qn−2,j)| ≥ · · · ≥ |σi(q0,j)| = 1,

while (10) would allow us to apply Lemma 18 to (24) and obtain

|σi(qn,j)| ≥ |σi(qn−1,j)||ℜ([σi(an,j); σi(an−1,j), σi(an−2,j), . . . , σi(a1,j)])|

≥ |σi(qn−1,j)||ℜσi(an,j)| ≥ |σi(qn−1,j)|
max(2(log2 ak,1)

γ
, 2dkγ )

≥ · · · ≥
n∏

k=1

max(2(log2 ak,j)
γ

, 2d
kγ

)−1

Whether (5) or (10) is true, this and (2) then yield
∣∣∣∣∣

D∏

i=2

(
M∑

j=1

(σi(Aj
pn,j
qn,j

) − σi(y))

)∣∣∣∣∣

=

∣∣∣∣∣
D∏

i=2

(
M∑

j=1

(σi(Aj

n∑

k=1

(−1)k+1

qk,jqk−1,j

− σi(y)))

)∣∣∣∣∣

≤
D∏

i=2

(
M∑

j=1

|σi(Aj)|
n∑

k=1

1

|σi(qk,j)||σi(qk−1,j)|

)

≤
D∏

i=2

(
M∑

j=1

|σi(Aj)|
n∑

k=1

max(2(log2 ak,j)
γ

, 2d
kγ

)

k−1∏

l=1

max(2(log2 al,j)
γ

, 2d
lγ

)2

)

≤
n∏

k=1

max(2(log2 ak,1)
γ

, 2d
kγ

)2D, (25)

for all sufficiently large n.
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From (21),(23), and (25), we obtain that for all sufficiently large n,

q2n,Man+1,M <
1

c

n∏

k=1

(
aDM
n,1 max(2(log2 ak,1)

γ

, 2d
kγ

)7D
2M
)

≤
(

n∏

k=1

aDM
n,1

)(
n∏

k=1

27D
2M(log2 ak,1)

γ

)(
n∏

k=1

27D
2Mdkγ

)

= 27D
2M dγ(n+1)

dγ−1

(
n∏

k=1

aDM
n,1

)(
n∏

k=1

27D
2M(log2 ak,1)

γ

)

≤ 27D
2M dγ(n+1)

dγ−1

(
n∏

k=1

aDM
n,1

)(
n∏

k=1

27D
2M(log2 ak,1)

γ

)

From this and (6) we obtain that

q2n,Man+1,M < 27D
2M dγ(n+1)

dγ−1

(
n∏

k=1

max(ak,M2(log2 ak,M )γ , 2d
kγ

)DM

)
×

(
n∏

k=1

27D
2M(log2 max(ak,M2

(log2 ak,M )γ
,2d

kγ
))γ

)
.

Set bk = max{ak,M , 2d
kγ}. From this and (23) we obtain for sufficiently large

n that

q2n,Man+1,M < 27D
2M dγ(n+1)

dγ−1

(
n∏

k=1

bk2
(log2 bk)

γ

)DM ( n∏

k=1

28D
2M(log2 bk)

γ

)

≤ 27D
2M dγ(n+1)

dγ−1

(
n∏

k=1

bk

)DM ( n∏

k=1

28D
2M(log2 bk)

γ

)
. (26)

Inequality (3) implies that

qn,M >
n∏

k=1

ak,M ≥
n∏

k=1

bk

n∏

k=1

2−dkγ ≥ 2−
dγ(n+1)

dγ−1

n∏

k=1

bk.

This and inequality (26) imply

an+1,M < 29D
2M dγ(n+1)

dγ−1

(
n∏

k=1

bk

)d−1( n∏

k=1

28D
2M(log2 bk)

γ

)
(27)
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Now the proof falls into two cases:

Case 1

Assume that there is δ > 0 such that

lim sup
n→∞

b
1

(d+δ)n

n = ∞. (28)

From this and Borel’s theorem we obtain that there exist infinitely many N

such that

b
1

(d+δ)N+1

N+1 >
(
1 +

1

N2

)
max

k=1,...,N
b

1

(d+δ)k

k .

Therefore

bN+1 >

(
1 +

1

N2

)(d+δ)N+1 (
max

k=1,...,N
b

1

(d+δ)k

k

)(d+δ)N+1

> 2d
N+1

(29)

and

bN+1 >

(
1 +

1

N2

)(d+δ)N+1 (
max

k=1,...,N
b

1

(d+δ)k

k

)(d+δ)N+1

>

(
1 +

1

N2

)(d+δ)N+1 (
max

k=1,...,N
b

1

(d+δ)k

k

)(d+δ−1)((d+δ)N+(d+δ)N−1+···+1)

> 2
1

N3 (d+δ)N+1

(
N∏

k=1

bk

)d+δ−1

. (30)

hold for infinitely many N . From inequatity (29) and the fact that bn+1 =

max(aN+1,M , 2dγ(N+1)) we obtain that bN+1 = aN+1,M . This and (30) imply

that

aN+1,M >

(
N∏

k=1

bk

)d−1( N∏

k=1

bk

)δ

2
1

N3 (d+δ)N+1

a contradiction with (27).

Case 2

Suppose that there is no δ > 0 such that (28) holds. Then for every δ > 0,

there exist n1 such that for every n > n1, we have

bn < 2(d+δ/2)n . (31)

14



This implies that for all sufficiently large n,

n∏

k=1

28D
2M(log2 bk)

γ ≤
n∏

k=1

28D
2M(log2 2

(d+δ)k )γ =

n∏

k=1

28D
2M(d+δ)kγ

= 2
8D2M (d+δ)γ(n+1)−(d+δ)γ

(d+δ)γ−1 ≤ 2
8D2M (d+δ)γ(n+1)

(d+δ)γ−1 . (32)

Borel’s theorem and (9) yield that for infinitely many N ,

b
1

dN+1

N+1 >

(
1 +

1

N2

)
max

k=1,2,...,N
b

1

dk

k

holds. It implies that

bN+1 >

(
1 +

1

N2

)dN+1 (
max

k=1,2,...,N
b

1

dk

k

)dN+1

>

(
1 +

1

N2

)dN+1 (
max

k=1,2,...,N
b

1

dk

k

)(d−1)(dN+dN−1+···+1)

>

(
1 +

1

N2

)dN+1
(

N∏

k=1

bk

)d−1

.

Therefore

bN+1 > 2
1

N3 d
N+1

(
N∏

k=1

bk

)d−1

.

From this and the fact that bN+1 = max(aN+1,M , 2d
(N+1)γ

) we obtain that

bN+1 = aN+1,M . Hence

aN+1,M > 2
1

N3 d
N+1

(
N∏

k=1

bk

)d−1

.

This and (32) yield

aN+1,M >2
1

N3 d
N+1

(
N∏

k=1

bk

)d−1( N∏

k=1

27D
2M(log2 bk)

γ

)(
N∏

k=1

27D
2M(log2 bk)

γ

)−1

≥2
1

N3 d
N+1−8D2M

(d+δ)γ(N+1)

(d+δ)γ−1

(
N∏

k=1

bk

)d−1( N∏

k=1

28D
2M(log2 bk)

γ

)
,

which contradicts (27) for a sufficiently small choice of δ.
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Proof of Theorem 3. We follow the proof of Theorem 2 and the exception

will be only the lower estimation of partial denominaters for the continued

fractions α2 = [0;−
√
2a1,−

√
2a2, . . . ] and α3 = [0;−

√
3a1,−

√
3a2, . . . ]. For

α2 we have

qn+1,α2 = −
√
2an+1,α2qn,α2 + qn−1,α2

= −
√
2an+1,α2qn,α2

(
1 +

qn−1,α2

−
√
2an+1,α2qn,α2

)

= −
√
2an+1,α2qn,α2

(
1 +

1

−
√
2an+1,α2

[
0;−

√
2an,−

√
2an−1, . . . ,−

√
2a1
])

.

Hence

|qn+1,α2 | =
√
2an+1,α2 |qn,α2|

(
1 +

1√
2an+1,α2

[0;
√
2an,

√
2an−1, . . . ,

√
2a1]

)

≥|qn,α2| ≥ · · · ≥ |q1,α2 | = 1

and (25) follows. Similarly for α3.

Proof of Corollary 4. Corollary 4 is an immediate consequence of Theorem

2 when we set D = 1 and M = K.

Proof of Example 5. Example 5 is the immediate consequence of Corollary 4

if we set K = 3.

Proof of Corollary 6. Corollary 6 is the immediate consequence of Theorem

2 if we set D = M = K.

Proof of Example 7. Example 7 is the immediate consequence of Corollary 6

when we set K = 2 and P (x) = x2 − 8x+ 14.

Proof of Example 8. This is an immediate consequence of Theorem 2 if we

set D = degα, since ϕ2nan+j clearly satisfies (10).
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Proof of Corollary 9. This is the immediate consequence of Theorem 2 if we

set D = 1, K = M and the fact that c = limn→∞(− logn +
∑n

j=1
1
j
) is the

Euler–Mascheroni constant.

Proof of Corollary 10. This is the immediate consequence of Theorem 2 if

we set D = 1, K = M and the fact that limn→∞
π(n)

n
log n

= 1.

Proof of Example 11. This is the immediate consequence of Theorem 2 if we

set D = M = 2 and the well-known facts that lim infn→∞ d(n) = 2 and

lim supn→∞
log d(n) log logn

logn
= log 2.

Proof of Lemma 14. From (11) we obtain that there exists positive real num-

ber ε and positive integer n0 such that for every positive integer n ≥ n0 − 4

we have

an ≥
(
1 +

ε√
n

)
bn, (33)

ε2 − ε√
n+

√
n+1√

n + 1(
√
n+ ε)

− 2

(n+ 1) ln(n+ 1)
> 0. (34)

and the function

f(x) =
ε2 − ε√

x+
√
x+1√

x+ 1(
√
x+ ε)

is decreasing for x > n0.

Set c = [a0, a1, a2, . . . , an0−5, (1 +
ε√

n0−4
)bn0−4, (1 +

ε√
n0−3

)bn0−3, . . . ] and

qn,c the denominator of its n-th partial. Then for all positive integers n we

have
qn,a
qn,b

≥ qn,c
qn,b

. (35)

To prove Lemma 14 we prove that for every large n we have

qn+1,c

qn+1,b
≥
(
1 +

1

(n+ 1) ln (n+ 1)

)
qn,c
qn,b

. (36)
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Then this, (35) and the fact that
∏∞

j=n0+1(1 +
1

j ln j
) = ∞ imply that

lim
n→∞

qn,a
qn,b

≥ lim
n→∞

qn,c
qn,b

≥ lim
n→∞

(
1 +

1

n lnn

)qn−1,c

qn−1,b

≥ · · · ≥ lim
n→∞

(
n+1∏

j=n0+1

(1 +
1

j ln j
)

)
qn0,c

qn0,b

=
qn0,c

qn0,b

∞∏

j=n0+1

(
1 +

1

j ln j

)
= ∞

and (12) follows.

To prove (36) let us set xn = 1 + ε√
n
and yn = 1 + 1

n lnn
. Then we have

qn+1,c

qn+1,b
=
xn+1bn+1qn,c + qn−1,c

bn+1qn,b + qn−1,b

=
(xn+1 − yn+1 + yn+1)bn+1qn,c + qn−1,c

bn+1qn,b + qn−1,b

=

yn+1bn+1qn,c

(
xn+1−yn+1

yn+1
+ 1 + 1

bn+1yn+1
qn,c

qn−1,c

)

bn+1qn,b

(
1 + 1

bn+1
qn,b

qn−1,b

) .

This yields that it is enough to prove that

xn+1 − yn+1

yn+1

+ 1 +
1

bn+1yn+1
qn,c

qn−1,c

≥ 1 +
1

bn+1
qn,b

qn−1,b

and this is equivalent to

A =
xn+1 − yn+1

yn+1
+

1

bn+1

(
1

yn+1(xnbn +
qn−2,c

qn−1,c
)

− 1

bn +
qn−2,b

qn−1,b

)
≥ 0. (37)

Now we have

1

yn+1(xnbn +
qn−2,c

qn−1,c
)

− 1

bn +
qn−2,b

qn−1,b

=
bn +

qn−2,b

qn−1,b
− yn+1xnbn − qn−2,c

qn−1,c
yn+1

(yn+1xnbn +
qn−2,c

qn−1,c
yn+1)(bn +

qn−2,b

qn−1,b
)

=
1 − yn+1xn +

1
bn
(
qn−2,b

qn−1,b
− qn−2,c

qn−1,c
yn+1)

(yn+1xn +
1
bn

qn−2,c

qn−1,c
yn+1)(bn +

qn−2,b

qn−1,b
)
. (38)
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This, the fact that 1 − yn+1xn < 0 and bn+1 ≥ 1 imply that

1

yn+1(xnbn +
qn−2,c

qn−1,c
)

− 1

bn +
qn−2,b

qn−1,b

=
1 − yn+1xn +

1
bn
(
qn−2,b

qn−1,b
− qn−2,c

qn−1,c
yn+1)

(yn+1xn +
1
bn

qn−2,c

qn−1,c
yn+1)(bn +

qn−2,b

qn−1,b
)

≥ 1 − yn+1xn

yn+1xn
+

1
bn
(
qn−2,b

qn−1,b
− qn−2,c

qn−1,c
yn+1)

(yn+1xn +
1
bn

qn−2,c

qn−1,c
yn+1)(bn +

qn−2,b

qn−1,b
)
. (39)

Set En(yn+1) =
1
bn
(
qn−2,b

qn−1,b
− qn−2,c

qn−1,c
yn+1), D = (yn+1xn+

1
bn

qn−2,c

qn−1,c
yn+1)(bn+

qn−2,b

qn−1,b
)

and F = xn+1−yn+1

yn+1
+ 1−yn+1xn

yn+1xn
. This, (38) and (39) yield that to prove (37),

it is enough to prove that

F +
1

bn+1

En(yn+1)

D
≥ 0. (40)

Set E∗
n−1(yn+1) =

1
bn−1

( qn−3,c

qn−2,c
− qn−3,b

qn−2,b
yn+1) and

Dn−1 = (xn−1 +
1

bn−1

qn−3,c

qn−2,c
)(bn−1 +

qn−3,b

qn−2,b
). Now we have

En(yn+1) =
1

bn
(
qn−2,b

qn−1,b
− qn−2,c

qn−1,c
yn+1)

=
1

bn

(
1

(bn−1 +
qn−3,b

qn−2,b
)

− yn+1

bn−1xn−1 +
qn−3,c

qn−2,c

)

=
1

bn

xn−1 − yn+1 + E∗
n−1(yn+1)

Dn−1
(41)

and

E∗
n−1(yn+1) =

1

bn−1

(
qn−3,c

qn−2,c
− qn−3,b

qn−2,b
yn+1

)

=
1

bn−1

(
1

(bn−2xn−2 +
qn−4,c

qn−3,c
)

− yn+1

bn−2 +
qn−4,b

qn−3,b

)

=
1

bn−1

1 − xn−2yn+1 + En−2(yn+1)

Dn−2
.

From this and the fact that 1 − xn−2yn+1 < 0 we obtain that

E∗
n−1(yn+1) =

1

bn−1

1 − xn−2yn+1 + En−2(yn+1)

Dn−2

>
1 − xn−2yn+1

xn−2
+

1

bn−1

En−2(yn+1)

Dn−2
.
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This and (41) imply that

En(yn+1) =
1

bn

xn−1 − yn+1 + E∗
n−1(yn+1)

Dn−1

>
1

bn

xn−1 − yn+1 +
1−xn−2yn+1

xn−2
+ 1

bn−1

En−2(yn+1)
Dn−2

Dn−1
. (42)

For every j = n0, . . . , n we have

xj+1 − yn+1 +
1 − xjyn+1

xj

= 1 +
ε√

(j + 1)
− 1 − 1

(n+ 1) ln(n+ 1)
+

1 − (1 + ε√
j
)(1 + 1

(n+1) ln(n+1)
)

1 + ε√
j

=
ε√

(j + 1)
− 1

(n+ 1) ln(n+ 1)
+

1

1 + ε√
j

− 1 − 1

(n+ 1) ln(n+ 1)

=
ε√

(j + 1)
− 2

(n+ 1) ln(n+ 1)
− ε√

j + ε
=

ε2 − ε√
j+

√
j+1√

(j + 1)(
√
j + ε)

− 2

(n+ 1) ln(n+ 1)
.

This and the fact that the function f(x) =
ε2− ε√

x+
√
x+1√

x+1(
√
x+ε)

is decreasing for x > n0

we obtain that

xj+1 − yn+1 +
1 − xjyn+1

xj
=

ε2 − ε√
j+

√
j+1√

(j + 1)(
√
j + ε)

− 2

(n+ 1) ln(n+ 1)

≥
ε2 − ε√

n+
√
n+1√

(n + 1)(
√
n + ε)

− 2

(n+ 1) ln(n+ 1)
. (43)

From this and (34) we obtain that xj+1 − yn+1 +
1−xjyn+1

xj
> 0. Hence xn−1 −

yn+1 +
1−xn−2yn+1

xn−2
> 0. This and (42) yield that

En(yn+1) >
1

bn

xn−1 − yn+1 +
1−xn−2yn+1

xn−2
+ 1

bn−1

En−2(yn+1)
Dn−2

Dn−1

>
1

bn

1
bn−1

En−2(yn+1)
Dn−2

Dn−1
.

20



If we repeat this procedure then we obtain

En(yn+1) >
1

bn

1
bn−1

(En−2(yn+1)
Dn−2

)

Dn−1

> · · · >
En−2[n

2
]+2n0−2(yn+1)

∏n−2[n
2
]+2n0

j=n bjDj−1

>
−|En−2[n

2
]+2n0−2(yn+1)|

∏n−2[n
2
]+2n0

j=n xj−1

=
−|En−2[n

2
]+2n0−2(yn+1)|

∏n−2[n
2
]+2n0

j=n (1 + ε√
j−1

)

=
−|En−2[n

2
]+2n0−2(yn+1)|

e
∑n−2[ n2 ]+2n0

j=n log(1+ ε√
j−1

)
>

−|En−2[n
2
]+2n0−2(yn+1)|

e
√
2ε(

√
n−2−√

2n0+2)
.

This implies that to prove (40) it is enough to prove that

F −
|En−2[n

2
]+2n0−2(yn+1)|

e
√
2ε(

√
n−2−√

2n0+2)
≥ 0. (44)

From (43) we obtain that

F =
1 + ε√

(n+1)
− 1 − 1

(n+1) ln(n+1)

yn+1
+

1 − (1 + ε√
n
)(1 + 1

(n+1) ln(n+1)
)

yn+1xn

=
1

yn+1
(

ε2 − ε√
n+

√
n+1√

(n + 1)(
√
n + ε)

− 2

(n+ 1) ln(n+ 1)
).

This implies that inequality (44) has the form

1

yn+1
(

ε2 − ε√
n+

√
n+1√

(n+ 1)(
√
n+ ε)

− 2

(n + 1) ln(n + 1)
) −

|En−2[n
2
]+2n0−2(yn+1)|

e
√
2ε(

√
n−2−√

2n0+2)
≥ 0

which holds for all sufficiently large n. The proof of Lemma 14 is complete.
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98 Chapter 1. Irrational and Transcendental Sequences

1.6 Transcendence of series and products

In this section, we will consider criteria for Σ- and Π-transcendence of sequences
whose elements all belong to a fixed number field K, based on the papers [38, 39]
by the current author. In this section, N : Q → Q denotes the map that sends
algebraic numbers to the product of their conjugates. This function is related to
the notion of field norms. If K is a number field, and σ1, . . . , σd are its distinct
embeddings into Q, then we define the field norm for the extension K ⊇ Q is as
the map NK : K → Q given by NK(a) = σ1(a) · · ·σd(a). When a ∈ K, we have in
particular that NK(a) = N (a)degK a.

The first two results govern Σ-transcendence and were proven in [38]. As was
shown in the same paper, each theorem admits sequences {an/bn}∞n=1 the other
does not.

Theorem 1.50 (Laursen, 2024). Let K be a number field of degree d ≥ 2, consider
real numbers α ∈ (0, 1), ε > 0, β ∈ [0, ε/(1 + ε)), and y ≥ 1, and let ζ ∈ C with
ζ ̸= 0. Let {an}∞n=1 and {bn}∞n=1 be sequences of non-zero numbers from N and
OK, respectively, with n

1+ε ≤ an ≤ an+1. Suppose that for sufficiently large n,

|bn| ≤ aβn2
logα2 an , bn ≤ ayn2

logα2 an , and ℜ(ζbn) > 0. (1.15)

Then the sequence {an/bn}∞n=1 is Σ-irrational if

lim sup
n→∞

a
( dy
1−β+1)

−n

n = ∞,

and it is Σ-transcendental if

lim sup
n→∞

a

(
d2y
1−β+1

)−n
n = ∞.

Theorem 1.51 (Laursen, 2024). Let K be a number field of degree d, consider
real numbers α ∈ (0, 1), δ, ε > 0, β ∈ [0, ε/(1 + ε)), y1 ≥ 1, y2 ≥ β, η1 ∈
[0, (d− 1)y1 + y2], and η2 ≥ 1, and let ζ ∈ C with ζ ̸= 0. Let {an}∞n=1 and {bn}∞n=1

be sequences of non-zero numbers from OK with , and let {rn}∞n=1 be a sequence of
positive integers such that rn | an in OK. Suppose that for all sufficiently large n,

n1+ε ≤ an ≤ an+1, |bn| ≤ |an|β2log
α
2 |an|, bn ≤ |an|y22log

α
2 |an|,

an ≤ |an|y12log
α
2 |an|, | NK(an)| ≥ |an|η12− logα2 |an|,

rn

∣∣∣∣N
(
an
rn

)∣∣∣∣ ≤ |an|η22log
α
2 |an|, and ℜ

(
ζ
an
bn

)
> 0.
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are satisfied. Then the sequence {an/bn}∞n=1 is Σ-irrational if

lim sup
n→∞

|an|
(
d(y1+y2)

1−β +1
)−n

= ∞,

and it is Σ-transcendental if

lim sup
n→∞

|an|
(
d((d−1)y1+y2−η1+η2)+η2+δ

1−β +1
)−n

= lim sup
n→∞

|an|
(
d2(y1+y2)

1−β +1
)−n

= ∞.

Remark 1.52. In the original phrasings of these theorems, an and bn were written
in a Q-linear basis of K, bounding the corresponding max norm of an and bn
rather than an and bn . As follows from Lemma 1.24, however, this affects the
respective bounds by at most a fixed constant C > 0, and then we just replace α
by α′ ∈ (α, 1) if necessary.

The two theorems have almost identical proofs and split into two halves with
each their algebraic argument and Erdős jump. The first half considered in the
paper provides a criterion that ensures that

∑∞
n=1 bn/an is either transcendental or

an element of K, relying heavily on an application of Schmidt’s Subspace Theorem
[47]. This theorem, presented below, uses the notion of linear forms, which are
polynomials of the form L = c1X1+ . . .+cdXd where X1, . . . , Xd are free variables,
and c1, . . . , cd are the corresponding coefficients. While it may not be clear from
first glance, the theorem is a generalization of Theorem 1.2

Theorem 1.53 (Schmidt, 1980). Let L1, . . . , Ld be Q-linearly independent linear
forms in d variables with algebraic coefficients. For any δ > 0, there exists a finite
collection of proper subspaces T1, . . . , Tw ⊊ Qd such that any x ∈ Zd with

|L1(x) · · ·Ld(x)| < |x|−δ

is contained in at least one subspace Ti.

In this chapter, we specifically have Li = Xi for i < d and Ld = c1X1+. . .+cdXd

with cd ̸= 0. Compared to Theorem 1.2, the coefficient cd then plays the role of a,
Xd plays the role of q, and c1X1+ . . .+ cd−1Xd−1 plays the role of −p. Using a few
technical arguments as well, this leads to the following lemma from [38], in which
d has been replaced by d + 1, the coefficients c1, . . . , cd+1 have been renamed to
−x1, . . . ,−xd, s, and the variables X1, . . . , Xd+1 have been renamed to p1, . . . , pd, q.

Lemma 1.54 (Laursen, 2024). Let x1, . . . , xd, s be algebraic numbers such that s is
Q-linearly independent of x1, . . . , xd, and let C, δ > 0. Then the inequality

∣∣∣∣∣qs−
d∑

i=1

pixi

∣∣∣∣∣
d∏

i=1

max{1, |pi|} < q−δ.

has only finitely many solutions (p1, . . . , pd, q) ∈ Zd × N with |pi| ≤ qC.
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Remark 1.55. In the original phrasing in [38] of the above lemma, the current
author forgot to add the needed condition |pi| ≤ qC , which is what allows us
to replace |(p1, . . . , pd, q)|−δ by q−δ. However, since this assumption is satisfied
whenever the lemma is applied, the proofs of [38] remain valid.

Picking s =
∑∞

n=1
bn
ancn

and p1,N , . . . , pd,N , qN with sufficient care, including

so that (pd,Nx1 + p2,Nx2 + · · · + pd,Nxd)/q =
∑N

n=1 bn/(ancn), Lemmas 1.16 and
1.54 then lead to the conclusion that

∑∞
n=1 bn/(ancn) is either transcendental or

contained in K. These choices of p1,N , . . . , pd,N , qN are rather simple when an ∈ Z.
In that case, we simply take qN =

∏N
n=1 an and pick pi,N accordingly with respect

to a chosen basis x1, . . . , xd of K. If we are not guaranteed an ∈ Z, we have to
be more careful with the choice of qN (and, by extension, p1,N , . . . , pd,N). This is
the main reason why Theorem 1.51 has more assumptions to check than Theorem
1.50 and why it has the more intricate limsup condition

lim sup
n→∞

|an|
(
d((d−1)y1+y2+η2−η1)+δ

1−β +1
)−n

= ∞.

The remaining half of the proofs of Theorems 1.50 and 1.51 uses the methods
behind Theorems 1.11 and 1.26 to provide the Σ-irrationality statement and ensure
that

∑∞
n=1 bn/(ancn) /∈ K.

Similar to what we experienced in Section 1.4, it is not too difficult to trans-
late the proofs of Theorems 1.50 and 1.51 into criteria for Π-irrationality and Π-
transcendence. By making modifications to the arguments corresponding to those
made in Section 1.4 as well as further improvements, the current author found the
following results in [39]. While presenting these theorems, we will elaborate on
brief remarks made in the same paper on how to improve Theorems 1.50 and 1.51.

Theorem 1.56. Let K be a number field of degree d, and consider real numbers
α ∈ (0, 1), ε > 0, β ∈ [0, ε/(1 + ε)), y1 ≥ 1, y2 ≥ β, z1 ≥ −y2, z2 ≥ 0, and
e ∈ {0, 1}. Let {an}∞n=1 and {bn}∞n=1 be sequences of non-zero numbers in OK, and
let {rn}∞n=1 be a sequence of positive integers such that rn | an in OK. Let d0 be a
positive integer, and suppose that for all sufficiently large n,

n1+ε ≤ |an| ≤ |an+1|, |bn| < |an|β2log
α
2 |an|, bn ≤ |an|y22log

α
2 |an|,

an ≤ |an|y12log
α
2 |an|, a−1

n ≤ |an|z12log
α
2 |an|, deg(an/bn) ≥ d0,

rn

∣∣∣∣N
(
an
rn

)∣∣∣∣ ≤ |an|z22log
α
2 |an|, and eℜ

(
an
bn

)
≥
{
0 if e = 1,

1/2 if e = −1,

with ℜ(an/bn) ̸= −1/2 infinitely often. Then the sequence {an/bn}∞n=1 is ΠK-
irrational if

lim sup
n→∞

|an|
(
d(y2+z1+z2/d0)

1−β +1
)−n

= ∞, (1.16)
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lim sup
n→∞

|an|
(
d(y1+y2)

1−β +1
)−n

= ∞, (1.17)

or, in the case that all n satisfy an ∈ Z or bn ∈ Z, if

lim sup
n→∞

|an|
(
dmax{y1,y2}

1−β +1
)−n

= ∞. (1.18)

Remark 1.57. The reason why we reach ΠK-irrationality rather than mere Π-
irrationality is the exact same as it was for Theorem 1.29 in section 1.4 and
is equally applicable in the infinite series setting. Hence, we may improve the
statements of Σ-irrationality in Theorems 1.50 and 1.51 to statements of ΣK-
irrationality without changing any assumptions.

Remark 1.58. As can be seen in the proof in [39], the difference between using
condition 1.16 compared to condition 1.17 or 1.18 comes solely from the difference
between bounding H(bn/an) via Theorem 1.22 as

H

(
bn
an

)
≤ den

(
bn
an

)1/ deg(bn/an)

max

{
1,
bn
an

}

≤
(
rnN

(
an
rn

)1/d0
)
max

{
1, bn a−1

n

}

≤ |an|z2/d0+y2+z123 log2 α|an|,

or via Lemma 1.23 and Theorem 1.22 as

H

(
bn
an

)
≤ H(bn)H(an) ≤ bn an ≤ |an|y2+y122 log2 α|an|

or, when an ∈ Z or bn ∈ Z,

H

(
bn
an

)
= H

(
an
nn

)
≤
{
|an|max{1, bn/an } if an ∈ Z,
|bn|max{1, an/bn } if bn ∈ Z

≤ |an|max{y1,y2}2log2 α|an|.

Hence, the limsup condition for irrationality in Theorem 1.51 may be replaced by
equation (1.16) or, when all n satisfy an ∈ Z or bn ∈ Z, by equation (1.18). This
does not affect the validity of Remark 1.57 above.

Theorem 1.59 (Laursen, 2025 on arXiv). Let K be a number field of degree d ∈ N,
and consider real numbers δ, ε > 0, α ∈ (0, 1), β ∈ [0, ε/(1 + ε)), e ∈ {−1, 1}, and
y ≥ 1. Let {an}∞n=1 and {bn}∞n=1 be sequences of non-zero numbers from N and OK,
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respectively, and let {rn}∞n=1 be a sequence of positive integers such that rn | an in
OK. Suppose that for all sufficiently large n,

n1+ε ≤ |an| ≤ |an+1|, |bn| < |an|β2log
α
2 |an|, bn ≤ |an|y2log

α
2 |an|,

and

eℜ
(
an
bn

)
≥
{
0 if e = 1,

1/2 if e = −1,

with ℜ(an/bn) ̸= −1/2 infinitely often. Then the sequence {an/bn}∞n=1 is Π-
transcendental if

lim sup
n→∞

a
( dy+1+δ

1−β +1)
−n

n = ∞.

Theorem 1.60. Let K be a number field of degree d ∈ N, and consider real numbers
α ∈ (0, 1), δ, ε > 0, β ∈ [0, ε/(1 + ε)), e ∈ {−1, 1}, y ≥ β, z1 ≥ −y, and z2 ≥ 0.
Let {an}∞n=1 and {bn}∞n=1 be sequences of non-zero numbers in OK, and let {rn}∞n=1

be a sequence of positive integers such that rn | an in OK. Suppose that for all
sufficiently large n,

n1+ε ≤ |an| ≤ |an+1|, |bn| < |an|β2log
α
2 |an|, bn ≤ |an|y2log

α
2 |an|,

a−1
n ≤ |an|z12log

α
2 |an|, rn

∣∣∣∣N
(
an
rn

)∣∣∣∣ ≤ |an|z22log
α
2 |an|,

and

eℜ
(
an
bn

)
≥
{
0 if e = 1,

1/2 if e = −1,

with ℜ(an/bn) ̸= −1/2 infinitely often. Then the sequence {an/bn}∞n=1 is Π-
transcendental if

lim sup
n→∞

|an|
(
d(y+z1+z2)+z2+δ

1−β +1
)−n

= ∞.

Remark 1.61. The more slacked limsup criteria of Theorems 1.59 and 1.60 com-
pared those of Theorems 1.50 and 1.51 are due to changes in argumentation that
are equally valid if the products

∏
(1 + bn/an) are replaced by the series

∑
bn/an.

Hence, we may replace the limsup criteria for transcendence in Theorems 1.50 and
1.51 with those of Theorems 1.59 and 1.60. In fact, this improvement to Theorem
1.50 is an immediate consequence of Remark 1.57.

The main change in the proof of Theorem 1.60 compared to Theorem 1.51,
other than using a stronger result to ensure K-irrationality, relied on how the Q-
linear coefficients pi,N/qN used for Lemma 1.54 were bounded. By immediately
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using Lemma 1.24 to bound these coefficients by a scalar times
∑d

i=1 pi,Nxi/qN ,
the subsequent estimates became more simple to handle, and it became easy to
spot a simpler and more efficient bound, which then led to the improved limsup
criterion.

As we also experienced in Section 1.4, we may slacken the assumptions to
some degree if we only seek irrationality or transcendence for the specific series
or product generated by the sequence {an/bn}∞n=1 rather than the sequence itself.
This leads to the below theorem from [39].

Theorem 1.62 (Laursen, 2025 on arXiv). In Theorems 1.56 and 1.60, suppose
we weaken the assumption that z2 ≥ 1 and the bounds on ℜ(an/bn) to z2 ≥ 0
and eℜ (an/bn + 1/2) ≥ 0 with strict inequality infinitely often. Then the state-
ments of the theorems still hold but with the statements of ΠK-irrationality and
Π-transcendence weakened to

∏∞
n=1(1 + bn/an) /∈ K and

∏∞
n=1(1 + bn/an) /∈ Q,

respectively.

Remark 1.63. After applying Remarks 1.57–1.61 to Theorem 1.51, we may similarly
replace z2 ≥ 1 by z2 ≥ 0 if we also replace ΣK-irrationality and Σ-transcendence
by
∑∞

n=1 bn/an /∈ K and
∑∞

n=1 bn/an /∈ Q, respectively.

In allowing z2 below 1, this theorem provides the greatest surprise of the paper,
at least in the eyes of the current author. Suddenly, we may use the Erdős Jump
to prove irrationality for a number

∑∞
n=1 1/an with lim supn→∞ |an|2−n = 1, some-

thing that this author has not seen anywhere in the literature. Admittedly, an has
to have some quite restrictive arithmetic properties in order to have y2+z1+z2 < 1,
but it is possible, as is evident from Example 1.64 below and [39, Example 3.2].

1.6.1 Examples

In this subsection, it is assumed that Theorems 1.50 and 1.51 have been improved
through Remarks 1.57, 1.58, and 1.61 so that they match Theorems 1.56, 1.59,
and 1.60 in strength.

For the purpose of the following examples, let φ = (1 +
√
5)/2 be the golden

ratio, and let F1, F2, . . . be the Fibonacci numbers, defined by F1 = F2 = 1 and
Fn+2 = Fn+Fn+1. It follows that φ

n = Fnφ+Fn−1 and, thereby, Fn ≈ φn−1. The
reasons for using φ to construct examples are as follows.

• With a minimal polynomial of X2 − X − 1, φ is fairly simple and, at least
to this author, easier to relate to than more obscure numbers.

• φ is an algebraic unit, meaning that it is an algebraic integer whose mul-
tiplicative inverse is again an algebraic integer or, equivalently, N (φ) = 1,
which makes it easier to construct examples with specific values of z1 and z2.
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• Being a real number greater than 1 means that all powers of φ remain in the
positive half plane and contribute to the increase in modulus of the resulting
sequence {an}∞n=1.

We will also consider another real algebraic unit greater than one, namely the
supergolden ratio ψ, which is the real root of the polynomial X3 − X2 − 1. In
addition to sharing the above properties with φ, ψ also satisfies 1/ψ =

√
ψ, thus

allowing a smaller z1 for a sequence like {ψhn}∞n=1. Defining F̂1 = F̂2 = F̂3 = 1
and F̂n+3 = F̂n + F̂n+2, we have ψn = F̂nψ + F̂n−2 and F̂n ≈ ψn−1.

Recall the Riemann zeta function ζ from equation (1.3). Inspired by [23, Re-
mark 4], we notice that Theorems 1.3 and 1.13 imply

∞∑

n=1

1

nsan
/∈ Q and

∞∑

n=1

1

nsAn
/∈ Q,

respectively, when {an}∞n=1 and {An}∞n=1 are non-decreasing sequences of integers

with lim supn→∞ a2
−n
n = ∞ and lim supn→∞A

(3+δ)−n
n = ∞ for some fixed δ > 0.

Inspired by [23, Remark 3], we may modify [39, Examples 3.2 and 3.5], to weaken
these limsup restrictions on an and An if we multiply with suitable sequences of
algebraic units with comparable growth. In the below examples, we use ⌊a⌋ to
denote the largest rational integer less than or equal to a given real number a.

Example 1.64. Let s > 1 be a positive integer. For i > 1, let {ai,n}∞n=1 be a non-

decreasing sequence of positive integers with lim supn→∞ a
(1+1/i)−n

i,n = ∞. Then, by
Remark 1.63 and Theorem 1.51 with d0 = d, z1 = y2 = 0, and z2 = 1/i,

∞∑

n=1

1

nsa2,nφ⌊log(nsa2,n)/ logφ⌋ /∈ Q(φ) and
∞∑

n=1

1

nsa3,nψ2⌊log(nsa3,n)/ logφ⌋ /∈ Q(ψ).

More generally, if x > 1 is an algebraic unit with 1/x = x1/(i−1), then

∞∑

n=1

1

nsai,nx(i−1)⌊log(nsai,n)/ log x⌋ /∈ Q(x).

Remark 1.65. Notice that the limsup condition required for the general part of the
example becomes more lenient the larger values of i that have a matching x in the
above sense. Seeing how 1/x = x1/(deg x−1) for x = φ, ψ, it is this author’s hope
that the same is true for x of arbitrarily large degree.

Example 1.66. Let s > 1 be a positive integer. For j > 0, let {Ai,n}∞n=1 be a

non-decreasing sequence of positive integers with lim supn→∞A
(2+1/i+δ)−n

i,n = ∞ for
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any fixed δ > 0. Then the numbers

∞∑

n=1

1

nsA2,nφ
⌊logφ(nsA2,n)⌋ and

∞∑

n=1

1

nsA3,nψ
2⌊logψ(nsA3,n)⌋

are transcendental. More generally, suppose x > 1 is an algebraic unit of degree d
with 1/x = x1/(i−1). Writing j = (d+ 1)/i− 1, the number

∞∑

n=1

1

nsA1/j,nx
(i−1)⌊logx(nsA1/j,n)⌋

is transcendental.

Remark 1.67. Notice that with the right algebraic units x, assuming such x exist,
the limsup, condition can be made arbitrary close to that of Theorem 1.3. Com-
pared to Example 1.64, we have to be more careful with these x, however, as i has
to grow sufficiently fast in terms of d.

Notice that each of the above examples would be equally true in the setting of
infinite products, though the connection to ζ(s) might be less clear.

The remaining examples, which all deal with irrationality and transcendence of
sequences, are further special cases of those provided in [39]. We start by combining
Examples 3.2 and 3.5 of the paper. The reader may notice that the considered
sequences have the same arithmetic properties as in the previous examples except
for much stricter limsup conditions, which are a consequence of the restriction
z2 ≥ 1.

Example 1.68. For i ∈ N, let {hi,n}∞n=1 be a strictly increasing sequence of integers

with hi,n ≥ (i+ 1/i)n and h
(j)
i,n ≥ (1 + j − 1/i)n infinitely often. Writing hn = h1,n,

Theorems 1.51 and 1.56 ensure that the sequence {Fhnφhn}∞n=1 is both ΣQ(φ)- and

ΠQ(φ)-irrational and that the sequence {F̂hnψ2hn}∞n=1 is ΣQ(ψ)- and ΠQ(ψ)-irrational.

By Theorems 1.51 and 1.60, the sequences {Fh4,nφh4,n}∞n=1 and {F̂h5,nψ2h5,n}∞n=1 are
both Σ- and Π-transcendental.

As an application of Theorem 1.50 and its product counterparts, we now com-
bine Examples 3.1 and 3.4 from [39] as follows.

Example 1.69. Let {hn}∞n=1 be a strictly increasing sequence of integers with hn ≥
3nn infinitely often. By Theorems 1.50 and 1.56, the sequence {Fhn/(1+φ−hn)}∞n=1

is both ΣQ(φ)-irrational and ΠQ(φ)-irrational. Using Theorems 1.50 and 1.59,
{Fhn/(1 + φ−hn)}∞n=1 is furthermore Σ- and Π-transcendental if hn ≥ (4 + 1/4)n

infinitely often.
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In the last irrationality example of this section, which is based on [39, Example
3.3], we consider a situation where limsup condition (1.17) is our best option.

Example 1.70. Let {hn}∞n=1 be a strictly increasing sequence of integers with hn ≥
7n log n infinitely often. Then the sequence

{(
2hn + 3

√
2
n)/(

1 +
(

3
√
2− 1

)hn )}∞

n=1
is ΣQ( 3√2)- and ΠQ( 3√2)-irrational, by following Theorems 1.51 and 1.56.

Finally, in the below special case of [39, Example 3.6], we consider transcend-
ence for a sequence constructed solely by powers of ψ.

Example 1.71. Let {hn}∞n=1 and {h′n}∞n=1 be a strictly increasing sequence of in-
tegers with hn ≥ (7 − 1/3)n and h′n ≥ (3 − 1/3)n infinitely often. By Theorems
1.51 and 1.60, {ψhn}∞n=1 is Π-transcendental, and the number

∏∞
n=1(1 + ψ−h′n) is

transcendental.

1.6.2 Paper 4: Transcendence of certain infinite series

Below, the reader will find the paper [38], which has the current author as its sole
author. The paper is published in Research in Number Theory in July 2024 as an
open access article and is available through the link https://doi.org/10.1007/

s40993-024-00553-2. It has a length of 25 pages, numbered 1 through 25.
When reading Lemma 3.3 of the paper as well as its proof, the reader may

replace the assumption M ≥ 1 by M > 0, which does not affect the validity of
the proof later in the paper. The only point where it is actively used that M ≥ 1
rather than M > 0 is in a single line on page 22 of the paper, which reads

a
( M
1−β+1)

−k1

k1
≤ 2k12

−k1 ≤ 1

2
.

However, this is not an issue When µ ∈ (0, 1), this should be replaced by

a
( M
1−β+1)

−k1

k1
≤ 2k1(

M
1−β+1)

−k1
≤ 1

2
,

which is valid even for M ∈ (0, 1) when k1 is sufficiently large, This is a valid
replacement since it is argued earlier on the same page that k1 is unbounded and
only large values of k1 are important to the proof.

https://doi.org/10.1007/s40993-024-00553-2
https://doi.org/10.1007/s40993-024-00553-2
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1 Introduction andmain results
Provingwhether a given real number is algebraic, or even rational, canbe aquite frustrating
endeavour. While more than a century and a half have passed since Hermite proved
that the number e = ∑∞

n=0
1
n! is transcendental in early 1873, it remains unsolved if

the number
∑∞

n=0
1

n!+1 is even irrational, despite what may appear as a much similar
construction. Similarly, it is well-known that the Riemann ζ function defined as ζ (s) =
∑∞

n=1 n−s for �(s) > 1 is transcendental when s is a positive even integer while the
question of irrationality remains open when s ≥ 5 is any fixed odd integer. In other words,
we have a multitude of interesting numbers that we know to be transcendental but where
a small perturbation to the infinite series used to describe them renders even the question
of irrationality exceedingly hard to settle. Aiming away from frustrations of this kind,
this paper studies irrationality and transcendence criteria that are less sensitive to such
perturbations.
Following the notions of Erdős and Graham [1] (respectively Hančl [2]), we say that a

sequence {an}∞n=1 of real or complex numbers is irrational (respectively transcendental) if
the sumof the series

∑∞
n=1

1
ancn is irrational (respectively transcendental) for any sequence

{cn}∞n=1 of positive integers. An early and central result on irrational sequences was proven
in 1975 by Erdős [3].

Theorem 1.1 (Erdős) Let ε > 0, and let {an}∞n=1 be an increasing sequence of integers such
that an ≥ n1+ε for all n. Suppose

lim sup
n→∞

a2
−n

n = ∞.
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Then the sequence {an}∞n=1 is irrational.

As noted in [3], the number 2 in the theorem is best possible, in the sense that there exist
sequences {an}∞n=1 of positive integers that satisfy lim supn→∞ aA−n

n = ∞ for all A < 2
while the sum of the series

∑∞
n=1 1/an is rational. Still, much effort has been applied to

extend this result (see [4] for a broader overview). One such result is the below theorem
by Hančl [5], which gives a corresponding condition for a sequence of (not necessarily
integral) rational numbers to be transcendental.

Theorem 1.2 (Hančl) Let γ > 2ε > 0 and 1 > α >
log(3+2ε)
log(3+γ ) , and let {an}∞n=1 and {bn}∞n=1

be sequences of positive integers such that

n1+ε < an ≤ an+1, lim sup
n→∞

a(3+γ )−n
n = ∞,

and

bn < aε/(1+ε)
n 2− logα

2 an . (1)

Then the sequence {an/bn}∞n=1 is transcendental.

One way to extend on this result is to broaden the family of numbers that may be con-
tained by the sequence to a greater class of algebraic numbers. The best known result
in this direction is due to Andersen and Kristensen [6], which gives sufficient conditions
for bounding the algebraic degree from below. In their theorem, they use the notion of
algebraic integers, which are defined as the algebraic numbers that have a monic minimal
polynomial over the integers. Given an algebraic extension K of Q, we will use OK to
denote the set of algebraic integers contained in K . Recall that OK forms a subring of K .
They also use the notion of a house, written as a := max1≤j≤d |a(j)|, where a(1), . . . , a(d)
denotes the conjugates of an algebraic number a, i.e., the roots of its minimal polynomial
over Z. In terms of irrational and transcendental sequences, the theorem reduces to the
below result.

Theorem 1.3 (Andersen–Kristensen) Let d ∈ N be a positive integer, and let {an}∞n=1 be
a sequence of algebraic integers of degree deg an ≤ d such that

n1+ε ≤ an = |an| ≤ |an+1|.
Suppose �(an) > 0 for all n or that �(an) > 0 for all n. If

lim sup
n→∞

|an|
∏n−1

i=1 (d
i+d)−1 = ∞,

then {an}∞n=1 is irrational. Furthermore, if for all D ∈ N,

lim sup
n→∞

|an|D−n ∏n−1
i=1 (d

i+d)−1 = ∞,

then {an}∞n=1 is transcendental.

Note that the restriction on �(an) or �(an) corresponds to the restriction that an be
positive in Theorem 1.1. Furthermore, as can be seen in the proof, the somewhat extensive
assumptions on the divergence of the limsup of an is in part due to the fact that each
successive aN may potentially increase the algebraic degree of

∑N
n=1 1/an by a factor of

d. By assuming the an to come from a fixed number field K , the limsup conditions would
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thus be much weakened, replacing the product
∏n−1

i=1 (di + d)−1 with (2d)−n. The main
results of this paper are improvements to this result when all an are contained in the same
number field, in terms of allowing sequences with non-integral elements, replacing the
restriction an = |an| with much weaker conditions, and weakening the limsup criteria.
In our first result, below,we assumean to be rational but allow bn to attain certain algebraic
irrational values. This will be proven in Sect. 4.

Theorem 1.4 Let K be a number field of dimension d ≥ 2, and let x1, . . . , xD ∈ K.
Consider real numbers ε > 0, 0 < α < 1 ≤ y, and β ∈ [0, ε

1+ε
). Let {an}∞n=1 be a sequence

of positive integers such that

n1+ε ≤ an ≤ an+1, (2)

and let {bn}∞n=1 be a sequence of non-zero numbers so that bn = ∑D
i=1 bi,nxi for suitable

bi,n ∈ Z. Suppose for n sufficiently large, i = 1, . . . , D, and some fixed ζ ∈ C,

|bn| ≤ aβ
n2log

α
2 an , |bi,n| ≤ ayn2log

α
2 an , (3)

and

�(ζbn) > 0. (4)

Then the sequence {an/bn}∞n=1 is irrational if

lim sup
n→∞

a
(

dy
1−β

+1
)−n

n = ∞,

and it is transcendental if

lim sup
n→∞

a
(

d2y
1−β

+1
)−n

n = ∞. (5)

Remark 1.5 In the proof of the theorem, assumption (4) will only be used once and only
to ensure that the partial sums

∑N
n=1

bn
an do not take the same value infinitely often (see

the proof of Proposition 4.3 later in this paper). Therefore, assumption (4) can be replaced
by any other assumption that preserves this property.

The main novelty of this result is the improved transcendence criterion, which relies
on Schmidt’s Subspace Theorem along with ideas from [7] to exclude near all algebraic
numbers as possible values for the sum of

∑∞
n=1

1
ancn , leaving only a finite field of potential

algebraic values to be dealt with in the spirit of [6].
Since the above theorem assumes an to be rational, much of the arithmetic information

regarding the number an/bn – such as its algebraic degree – is carried solely by bn. This is
in some contrast to Theorems 1.1 and 1.3, which can be viewed as having bn constantly 1,
so that all arithmetic information is stored in an alone. Bymodifying the proof of Theorem
1.4 in order to get a result where we again havemost of the arithmetic information carried
by an, we reach the below result. Unfortunately, this version of the theorem is a bit more
complicated to read, which is in part due to the method of proof as it requires

∑N
n=1

bn
ancn

to be written as a Q-linear combination of the xi – something that is more easily and
neatly done when the an are guaranteed to be rational.
In the theorem and for the rest of this paper, N : Q → Q denotes the map that sends

each algebraic number to the product of its algebraic conjugates, and NK : K → Q
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denotes the field norm for the finite extension K ⊆ Q. Notice that NK (a) = N (a)d/ deg a

for all a ∈ K , where d denotes the degree of the extension K ⊆ Q.

Theorem 1.6 Let K be a number field of dimension d, and let x1, . . . , xD ∈ K. Consider
real numbers α, δ, ε > 0, β , η1 ≥ 0, and η2, y ≥ 1 such that α < 1, β < ε/(1 + ε), and
η1 ≤ (d−1)y+β . Let {an}∞n=1 be a sequence of non-zero numbers given by an = ∑D

i=1 ai,nxi
with ai,n ∈ Z such that for all sufficiently large n,

n1+ε ≤ |an| ≤ |an+1|, (6)

|NK (an)| ≥ |an|η12− logα
2 |an|, (7)

and

rn
∣
∣N (an/rn)

∣
∣ ≤ |an|η22logα

2 |an|, (8)

where rn := gcd(a1,n, . . . , aD,n). Let {bn}∞n=1 be a sequence of positive integers such that for
some fixed ζ ∈ C, each i = 1, . . . , D, and all sufficiently large n,

bn ≤ |an|β2logα
2 |an|, |ai,n| ≤ |an|y2logα

2 |an|,

and �(ζan) > 0. Then the sequence {an/bn}∞n=1 is irrational if

lim sup
n→∞

|an|
(
d(y+β)
1−β

+1
)−n

= ∞,

and it is transcendental if

lim sup
n→∞

|an|
(

η2+d((d−1)y+β+η2−η1)+δ

1−β
+1

)−n

= lim sup
n→∞

|an|
(
d2(y+β)
1−β

+1
)−n

= ∞.

In the proof of Theorem 1.6, it makes little difference if we also allow bn to be irrational.
Doing so leads to the below generalization, which we will prove in Sect. 5.

Theorem 1.7 Let K be a number field of dimension d, and let x1, . . . , xD ∈ K. Consider
real numbers α, δ, ε > 0, β , η1 ≥ 0, η2, y1 ≥ 1, and y2 ≥ β such that α < 1, β < ε/(1+ ε),
and η1 ≤ (d − 1)y1 + y2. Let {an}∞n=1 and {bn}∞n=1 be sequences of non-zero numbers given
by an = ∑D

i=1 ai,nxi and bn = ∑D
i=1 bi,nxi with ai,n, bi,n ∈ Z such that inequalities (6), (7),

and (8) are satisfied for n sufficiently large. For each i = 1, . . . , D, and some fixed ζ ∈ C,
suppose additionally that

|ai,n| ≤ |an|y12logα
2 |an|, |bi,n| ≤ |an|y22logα

2 |an|, (9)

|bn| ≤ |an|β2logα
2 |an|, (10)

and

�(ζan/bn) > 0, (11)

when n is sufficiently large. Then the sequence {an/bn}∞n=1 is irrational if

lim sup
n→∞

|an|
(
d(y1+y2)

1−β
+1

)−n

= ∞,
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and it is transcendental if

lim sup
n→∞

|an|
(

η2+d((d−1)y1+y2+η2−η1)+δ

1−β
+1

)−n

= lim sup
n→∞

|an|
( d2(y1+y2)

1−β
+1

)−n

= ∞. (12)

Remark 1.8 Similarly to Theorem 1.4, the assumption (11) can be replaced with any
other assumption that ensures that the partial sums

∑N
n=1

bn
an do not have the same value

infinitely often (see the proof of Proposition 5.3 later in this paper).

Remark 1.9 Suppose that {an}∞n=1 and {bn}∞n=1 satisfy the assumptions of either of The-
orems 1.4, 1.6, and 1.7 for some choice of x1, . . . , xD. If x′

1, . . . , x
′
D′ ∈ K such that an

and bn lie in the Q-linear span of these numbers, then {an}∞n=1 and {bn}∞n=1 satisfy the
assumptions of the same theorem with x′

1/Q, . . . , x
′
D′/Q instead of x1, . . . , xD, where Q is

a positive integer that depends only on x1, . . . , xD and x′
1, . . . , x

′
D′ .

To see that this is indeed the case, pick one ofTheorems 1.4, 1.6, and 1.7, use the notation
from that theorem, and assume the conditions are satisfied. Let d′ denote the dimension
of the Q-linear span of x′

1, . . . , xD′ . By renumbering if necessary, we may assume that
x′
1, . . . , x

′
d′ are linearly independent. Let x̃1, . . . x̃d be a Q-linear basis of K so that x̃j = x′

j
for 1 ≤ j ≤ d′, and write xi = ∑d

j=1
pi,j
qi,j x̃j , for suitable choices of pi,j ∈ Z and qi,j ∈ N.

Pick Q = ∏D
i=1

∏d
j=1 qi,j . Let ξ denote either letter a or b so that ξn is not assumed to be

a positive integer by the chosen theorem. Seeing that

ξn =
D∑

i=1
ξi,nxi =

d∑

j=1

D∑

i=1

Q
qi,j

pi,jai,n
x̃j
Q
,

write ξ̃j,n = ∑D
i=1

Q
qi,j pi,jξi,n, and set ξ ′

j,n = ξ̃j,n for 1 ≤ j ≤ d′ and ξ ′
j,n = 0 for d′ < j ≤ D′.

Since each ξn is contained in the spanof x′
1, . . . , x

′
D′ (and so in the spanof x̃1 = x′

1, . . . , x̃d′ =
x′
d′ ), it follows that ξ̃j,n = 0 for d′ < j ≤ d, and so

ξn =
d∑

j=1
ξ̃j,n

x̃j
Q

=
D′
∑

j=1
ξ ′
j,n
x′
j

Q
,

while

max
1≤j≤D′ |ξ ′

j,n| = max
1≤j≤d

|ξ̃j,n| ≤
D∑

i=1

Q
qi,j

|pi,j||ξi,n| ≤ DQmax
i,j

|pi,j| max
1≤i≤D

|ξi,n|.

By replacing α with (1+ α)/2, it follows that {an}∞n=1 and {bn}∞n=1 satisfy the assumptions
of the chosen theorem with x′

1/Q, . . . , x
′
D′ instead of x1, . . . , xD.

Notice that the sum y1 + y2 in Theorem 1.7 corresponds to y + β in Theorem 1.4. As
such, one should not expect to be able to derive Theorem 1.4 as a corollary to Theorem
1.7. This is further underlined by Example 2.3 in section 2. Similarly, as will be seen from
Example 2.7, there are caseswhereTheorem1.7 is applicablewhile the other two theorems
are not.
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2 Examples
Wewill now go through a few applications of the main theorems in order to better under-
stand the strengths and differences of applicability between them. For this purpose, wewill
say that a theorem is immediately applicable to a sequence {xn}∞n=1 if there are sequences
{an}∞n=1 and {bn}∞n=1 that satisfy xn = an/bn and the assumptions of the theorem.
For these examples, we make use of the Fibonacci sequence Fn, defined by F0 = 0,

F1 = 1, and Fn+1 = Fn + Fn−1, along with the golden ratio ϕ = (1 + √
5)/2 and its

conjugate ϕ̄ = (1 − √
5)/2 = −ϕ−1. Recall that ϕn = Fnϕ + Fn−1 and ϕ̄n = Fnϕ̄ + Fn−1

for each n ∈ N.
The first example, below, shows the strengths of Theorem 1.4 in terms of providing

transcendence of K -linear combinations of multiple series of rational numbers when K is
a suitable number field.

Example 2.1 Let x be any algebraic number of degree at most 2, and let {cn}∞n=1 be a
sequence of positive integers. Then

x
∞∑

n=1

1
F9nncn

+
∞∑

n=1

1
F9nn+1cn

is a transcendental number. To see this, write

x
∞∑

n=1

1
F9nncn

+
∞∑

n=1

1
F9nn+1cn

=
∞∑

n=1

F9nn+1x + F9nn
F9nnF9nn+1cn

.

Aiming to use Theorem 1.4, pick x2 = x, β = 1/2, y = 1, and any 0 < α < 1 < ε. Suppose
x �= ϕ̄. The transcendence follows if we can find ζ ∈ C such that�(ζ (F9nn+1x+F9nn)) > 0
for all sufficiently large n. If �(x) �= 0, pick ζ = −i�(x). Otherwise, pick ζ = x− ϕ̄, as then

ζ (F9nn+1x + F9nn) = F9nn(x − ϕ̄)
(

x + F9nn−1
F9nn

)

(13)

and limn→∞ F9nn−1/F9nn = 1/ϕ = −ϕ̄ ensure that ζ (F9nn+1x + F9nn) is a positive real
number when n is sufficiently large, and we are done.
This leaves us with the case of x = ϕ̄, where we have

F9nn+1ϕ̄ + F9nn = ϕ̄9nn+1.

While we have no hope of getting �(ζ ϕ̄9nn+1) > 0 for all large n, Remark 1.5 allows us to
ignore this if we can show that

sN :=
N−1∑

n=1

ϕ̄9nn+1

F9nnF9nn+1
.

does not take the same value for infinitely manyN . To see this, we letM > N and use the
converse triangle inequality to find

|sN − sM | =
∣
∣
∣
∣
∣

M∑

n=N

ϕ̄9nn+1

F9nnF9nn+1

∣
∣
∣
∣
∣
> 0,

for all sufficiently large N , and the example is complete.
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The next example shows Theorem 1.4 is not easily replaced by Theorem 1.7 in the above
example. For this purpose, we will need a simple lemma, which will be proven in Sect. 3,
right after Lemma 3.6.

Lemma 2.2 Let x be a fixed non-zero algebraic number, and let a, b ∈ Z. Then there is
a constant C > 0, depending only on x, so that |a + bx| ≥ Cmax{|a|, |b|, 1}−2 deg x when
a + bx �= 0.

Example 2.3 In Example 2.1, Theorem 1.7 would not have been immediately applicable
on the sequences that appears when x �= ϕ̄ is quadratic irrational. To see this, notice that
we must have

an = F9nnF9nn+1ãn and bn = (F9nn+1x + F9nn)ãn,

for some suitable sequence of ãn ∈ Q such that κan and κbn are all algebraic integers for
some fixed κ ∈ N. If ãn /∈ Q(x) for some n, then we get d ≥ 4 and so

d2(y1 + y2)
1 − β

+ 1 ≥ 17 > 9,

making Theorem 1.7 inapplicable, so we assume ãn ∈ Q(x) for all n. Due to Eq. (13), it
follows that

y2 ≥ β ≥ lim supn→∞ log |bn|
lim supn→∞ log |an| = 1 + c

2 + c
, where c = lim sup

n→∞
log |ãn|
log F9nn

.

Note that we need c > −2 in order to have a y1 that satisfies the bound on ai,n for all n. By
Remark 1.9, we may assume D = 2, x1 = 1, and x2 = x. Writing ãn = ã1,n + ã2,nx with
ã1,n, ã2,n ∈ Q, we obtain from Lemma 2.2 that

|ãn| ≥ Cmax{|ã1,n|, |ã2,n|}−4 ,

where C > 0 is a constant that depends only on x, and so

y1 ≥ lim sup
n→∞

log(F9nnF9nn+1 max{|ã1,n|, |ã2,n|})
log(F9nnF9nn+1|ãn|) ≥ 2 − c

4
2 + c

.

If c ≤ −1, then

d2(y1 + y2)
1 − β

+ 1 ≥ 4
( 2−c/4

2+c + 0
)

1 − 0
+ 1 = 8 − c

2 + c
+ 1 ≥ 9 + 1 > 9.

while assuming c > −1 yields

d2(y1 + y2)
1 − β

+ 1 ≥ 4( 2−c/4
2+c + 1+c

2+c )
1 − 1+c

2+c
+ 1 = 12 + 3c + 1 > 9.

This shows that Theorem 1.7 is not immediately applicable and concludes the example.

In the remaining examples, we fix K = Q(
√
5) = Q(ϕ), D = d = 2, and x1 = 1, while

the value of x2 will be chosen as either ϕ or ϕ̄. The aim of these examples is to show
some more simple applications of the theorems while also highlighting the differences in
applicability.
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Example 2.4 The sequence {n5nϕn}∞n=1 is transcendental. This follows from Theorem 1.6
with x2 = ϕ, β = 0, y = η1 = η2 = 1, and arbitrary α, δ, ε ∈ (0, 1). Alternatively, one
could apply Theorem 1.4 with x2 = ϕ̄, β = 0, y = 1, and any α, ε ∈ (0, 1) upon rewriting
to

n5
n
ϕn = n5n

(−ϕ̄)n
= n5n

(−1)n(Fnϕ̄ + Fn−1)
.

Example 2.5 The sequence {ϕ7n}∞n=1 is transcendental. This follows from Theorem 1.6
with x2 = ϕ, β = η1 = 0, and η2 = y = 1. Note that if we wished to immediately apply
Theorem 1.4, we would be left with

bn = anϕ−7n = an(F7n−1 − F7nϕ−1).

Now, if an ≤ F7n , we have β = 0 but must take y ≥ 2, which means that the limsup
criterion is not satisfied since d2y/(1 − β) + 1 ≥ 9 > 7. If an ≥ F7n is large enough, we
may achieve y = 2− γ for some 0 ≤ γ < 1, but then it is easily shown that we get β ≥ γ ,
so that

d2y
1 − β

+ 1 ≥ 9 > 7,

and the divergence criterion remains unsatisfied.

Example 2.6 The sequence {F9nn+1ϕ9nn/F9nn}∞n=1 is transcendental. This follows by
rewriting into

F9nn+1ϕ9nncn
F9nn

= F9nn+1
F9nn(−ϕ̄)9nn

= F9nn+1
F9nn(−1)n(F9nn−1 + F9nnϕ̄)

,

and then applying Theorem 1.4 with x2 = ϕ̄, β = 0, and y = 2 or, alternatively, Theorem
1.7 with x2 = ϕ̄, β = 0, η1 = η2 = y1 = 1, and y2 = 2. On the other hand, Theorem
1.6 is not immediately applicable, as can be seen through similar arguments to those in
Example 2.5.

In our final example, below, we consider a sequence where only Theorem 1.7 is appli-
cable. This will also serve as an example that we may encounter

|an|
(

η2+d((d−1)y1+y2+η2−η1)+δ

1−β
+1

)−n

> |an|
( d2(y1+y2)

1−β
+1

)−n

for some sequences, though it should bementioned that there appears to be no connection
between this inequality and the applicability of the other theorems.

Example 2.7 The sequence {ϕ2·14n/(F14n + ϕ)}∞n=1 is transcendental. This follows from
Theorem 1.7 by taking η1 = 0, β = y1 = 1/2, and η2 = y2 = 1. Here, neither one of
Theorems 1.4 and 1.6 is immediately applicable, as seen through similar arguments to
those in Example 2.5.
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3 Preliminaries
A central tool for proving the main results is Schmidt’s Subspace Theorem [8], below.

Theorem 3.1 (Schmidt) Let L1, . . . , Ld be Q-linearly independent linear forms in d vari-
ables with algebraic coefficients. For any δ > 0, there exists a finite collection of proper
subspaces T1, . . . , Tw � Qd such that any x ∈ Zd with

|L1(x) · · · Ln(x)| < |x|−δ

is contained in
⋃w

i=1 Ti.

This theorem will be used together with the following lemma, which is found in a paper
by Hančl, Nair, and Šustek [7]. TheM used in the present version of the lemma equals 1
plus the M used in the original. [7] also had additional assumptions for the lemma (such
as the an being integers andM having a greater lower bound), but those assumptions were
never used in the proof andwere only there for the sake of themain theorem of that paper.

Lemma 3.2 Consider real numbers ε > 0, 0 < α < 1 ≤ M, and β ∈ [0, 1+ε
ε
). Let {an}∞n=1

be a sequence of positive integers such that

n1+ε ≤ an ≤ an+1 and lim sup
n→∞

a
(

M
1−β

+1
)−n

n = ∞.

Let x1, . . . , xd ∈ C, let y1, . . . , yd ≥ 1, and let {bn}∞n=1 be a sequence of complex numbers
with bn = ∑d

i=1 xibi,n for some b1,n, . . . , bd,n ∈ Z, such that for all sufficiently large n and
each i = 1, . . . , d,

bn ≤ aβ
n2log

α
2 an

and

|bi,n| ≤ |an|yi2logα
2 |an|.

Finally, let {cn}∞n=1 be a sequence of positive integers. Then there is a positive real number
E > 0 such that the inequality

∣
∣
∣
∣
∣

∞∑

n=1

bn
ancn

−
∑d

i=1 pixi
q

∣
∣
∣
∣
∣
<

1

(log22 q)2d log(1+2α)/3
2 qqM

(14)

has infinitely many solutions (p1, . . . , pd, q) ∈ Zd × N satisfying

|pi| ≤ E2log
(1+2α)/3
2 qqyi , for all i = 1, . . . , d. (15)

Another central tool for theproofs is the following lemma,which is a slight strengthening
of another lemma from [7] and follows from a much similar proof. For clarity, we will go
through the proof in Sect. 6.

Lemma 3.3 Let ε > 0, 0 < α < 1 ≤ M, and β ∈ [0, 1+ε
ε
). Let {an}∞n=1 and {bn}∞n=1 be

sequences of positive real numbers such that for all sufficiently large n,

n1+ε ≤ an ≤ an+1, bn ≤ aβ
n2log

α
2 an ,
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and

lim sup
n→∞

a
(

M
1−β

+1
)−n

n = ∞. (16)

Let 0 < c < 1 be fixed. Then

lim inf
N→∞

(

2N
2 logc2 aN−1

(N−1∏

n=1
aMn

) ∞∑

n=N

bn
an

)

= 0.

We now present a few notions from algebraic number theory that will be relevant in
the proofs of the main theorems. Let a be an algebraic number with minimal polyno-
mial

∑d
i=0 ciXi over the integers (cd > 0). The leading coefficient, cd , is also called the

denominator of a, since cda is an algebraic integer while c′a is not for any rational integer
0 < c′ < cd . By rewriting the minimal polynomial of a as cd

∏d
i=1(X − ai) instead, the

Mahler measure of a is defined as

M(a) := cd
d∏

i=1
max{1, |ai|}.

Surprisingly closely related to this is the Weil height, which we define as

H (α) :=
∏

ν∈MK

max{1, |a|ν}[Kν :Qν ]/[K :Q],

where K is any number field containing a, MK denotes the set of places of K , Kν is the
local field of K at ν, and [K : L] denotes the degree of a field extension K ⊇ L. This does
not depend on the choice of K (see [9] for a proof). We will compare and estimate the
house, Mahler measure, and Weil height using the following classical results.

Lemma 3.4 Let a be an algebraic number with denominator cd. Then

H (a)d = M(a) ≤ |cd |max{ a d, 1}.

Proof The inequality is a trivial consequence of the definitions. For the equality, see [9,
Lemma 3.10]. ��

Lemma 3.5 Let a, b ∈ Q with a �= 0. Then

H (a + b) ≤ 2H (a)H (b), H (ab) ≤ H (a)H (b),

H (1/a) = H (a).

Proof See [9]. ��

Lemma 3.6 (Liouville Inequality) Let a, b be non-conjugate algebraic numbers. Then

|a − b| ≥ (
2H (a)H (b)

)− deg(a) deg(b).

Proof This can be extracted from [10, Theorem A.1]. ��
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Proof of Lemma 2.2 Pick C = min{(2H (x))− deg x, |x|}. If a or b is 0, the statement is
trivially true. If ab �= 0, then we may apply Lemmas 3.6 and 3.5 to conclude

|a + bx| ≥ (2H (a)H (−bx))− deg(a) deg(−bx) ≥ (2H (a)H (b)H (x))− deg(x)

= (2H (x))− deg(x)|ab|− deg x ≥ Cmax{|a|, |b|}− deg x.

��

In order to prove Theorem 1.7, we will need a different version of Lemma 3.2, the proof
of which will use some elementary of Galois theory. Recall that a field extension K ⊇ Q is
called a Galois extension if all irreducible polynomials over Q that have a root in K split
into linear factors overK . Note that this is equivalent toK being closed under conjugation.
We use Gal(K ) to denote the associated Galois group, i.e., the field automorphisms on K
that preserve Q. Recall that for any finite field extension L ⊇ Q, L has a unique finite field
extension K ⊇ L of minimal degree such that K ⊇ Q is Galois (see, e.g., Theorem 11.6
of [11]). This also implies the below lemma, which will be relevant for the proofs of both
Theorems 1.4 and 1.7.

Lemma 3.7 Let a1, . . . , ad ∈ Q. Then there is a constant C, depending only on a1, . . . , ad,
so that for any (c1, . . . , cd) ∈ Qd,

c1a1 + c2a2 + · · · + cdad ≤ C max
1≤i≤d

|ci|.

Proof Let K ⊇ Q be the smallest Galois extension of Q containing a1, . . . , ad . Since
conjugation is a field automorphism on Q, and K is closed under conjugation, we find

d∑

i=1
ciai ≤ max

ψ∈Gal(K )

∣
∣
∣
∣
∣
ψ

( d∑

i=1
ciai

)∣
∣
∣
∣
∣
= max

ψ∈Gal(K )

∣
∣
∣
∣
∣

d∑

i=1
ciψ(ai)

∣
∣
∣
∣
∣
.

The proof is then completed by an application of the triangle inequality,

d∑

i=1
ciai ≤

(
d max

ψ∈Gal(K )
max
0≤i≤d

|ψ(ai)|
)
max
0≤i≤d

|ci|.

��

4 Proof of Theorem 1.4
We will first prove the below result, which is inspired by the main theorem of [7].

Theorem 4.1 Let d ∈ N be a positive integer, and consider real numbers δ, ε > 0, 0 <

α < 1 ≤ y1, . . . , yn, and β ∈ [0, ε
1+ε

). Let furthermore x1, . . . , xd be algebraic numbers,
and let {an}∞n=1 be a sequence of positive integers that satisfy inequality (2) and

lim sup
n→∞

a

(
1+∑d

i=1 yi+δ

1−β
+1

)−n

n = ∞.

Let {bn}∞n=1 be a sequence of non-zero numbers given by bn = ∑d
i=1 bi,nxi where bi,n ∈ Z

and such that the inequalities of inequality (3) are satisfied for n sufficiently large and each
i = 1, . . . , d. Let {cn}∞n=1 be a sequence of positive integers. Then the number

∑∞
n=1

bn
ancn is

either transcendental or a Q-linear combination of x1, . . . , xd .
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Themain difference between the proof of this theorem and that of the corresponding one
in [7] lies in the below application of Theorem 3.1, which replaces [7, Lemma 7].

Lemma 4.2 Let x1, . . . , xd , s be algebraic numbers such that s is Q-linearly independent
of x1, . . . , xd , and let δ > 0. Then the inequality,

∣
∣
∣
∣
∣
qs −

d∑

i=1
pixi

∣
∣
∣
∣
∣

d∏

i=1
max{1, |pi|} < q−δ , (17)

has only finitely many solutions (p1, . . . , pd, q) ∈ Zd × N.

Proof This will be proven by induction, using the convention that linear independence
of the empty set is equivalent to being non-zero. Let S denote the set of solutions
(p1, . . . , pd, q) ∈ (Z \ {0})d × N to inequality (17). For d = 0 or S = ∅, S is clearly
finite, so suppose d > 0, S �= ∅, and that the lemma is true for d′ = d − 1.
Note that all elements of S satisfy

∣
∣
∣
∣
∣
qs −

d∑

i=1
pixi

∣
∣
∣
∣
∣

d∏

i=1
|pi| < q−δ .

By Theorem 3.1, there is a finite collection of proper subspaces T1, . . . , Tw � Qd+1 such
that S ⊆ ⋃w

l=1 Tl . Write Sl = S ∩ Tl for l = 1, . . . , w, and let 1 ≤ l ≤ w such that
Sl �= ∅. Then Tl contains an element with a non-zero q-entry. Since dimTl ≤ d, it
follows that there is a j such that the pj-entry is given as a fixed linear combination of the
remaining entries for all elements in Tl . By renumbering if necessary, wemay assume that
j = d and then pick r1, . . . , rd ∈ Q such that pd = r1p1 + · · · + rd−1pd−1 + rdq for all
(p1, . . . , pd, q) ∈ Tl . For elements of Sl , inequality (17) now reduces to

q−δ >

∣
∣
∣
∣
∣
q(s − xdrd) −

d−1∑

i=1
pi(xi + xdri)

∣
∣
∣
∣
∣

d∏

i=1
max{1, |pi|}

≥
∣
∣
∣
∣
∣
q(s − x1r1) −

d−1∑

i=1
pi(xi + x1ri)

∣
∣
∣
∣
∣

d−1∏

i=1
max{1, |pi|}.

Hence, Sl is finite by induction. Since S = S1 ∪ · · · ∪ Sw , this completes the proof. ��
Proof of Theorem 4.1 PutM = 1 + ∑d

i=1 yi + δ. By Lemma 3.2, there are infinitely many
(p1, . . . , pd, q) ∈ Zd × N satisfying both inequalities (14) and (15), where we may take E
to be rational. Rewriting inequality (14) using the above choice ofM, we find

∣
∣
∣
∣
∣
q

∞∑

n=1

bn
ancn

−
d∑

i=1
pixi

∣
∣
∣
∣
∣

d∏

i=1

(
qyi2log

(1+2α)/3
2 q

)
< q−δ ,

and it follows from inequality (15) that
∣
∣
∣
∣
∣
qE−d

∞∑

n=1

bn
ancn

−
d∑

i=1
piE−dxi

∣
∣
∣
∣
∣

d∏

i=1
max{1, |pi|} < q−δ .

Lemma 4.2 then implies that E−d ∑∞
n=1

bn
ancn cannot both be algebraic and Q-linearly

independent of E−dx1, . . . , E−dxk . Since E is rational, this completes the proof. ��
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To finish the proof of Theorem 1.4, we will use the below proposition to ensure that
∑∞

n=1
bn
ancn is indeed Q-linearly independent of x1, . . . , xd .

Proposition 4.3 Let d, d̃ ∈ N, let K be a number field of degree d, let x1, . . . , xD ∈ K, and
consider real numbers ε > 0, 0 < α < 1, β ∈ [0, ε

1+ε
), and y ≥ 1. Let {an}∞n=1 be a sequence

of positive integers that satisfy inequality (2) and

lim sup
n→∞

a

(
dd̃y
1−β

+1
)−n

n = ∞.

Let {bn}∞n=1 be a sequence of non-zero numbers given by bn = ∑d
i=1 bi,nxi where bi,n ∈ Z

and such that inequalities (3) and (4) are satisfied for all sufficiently large n. Let {cn}∞n=1
be a sequence of positive integers. Then the number

∑∞
n=1

bn
ancn has degree strictly greater

than d̃.

Proof Let σ : N → N be a bijection such that An = aσ (n)cσ (n) is increasing, and put
Bn = bσ (n) and Bi,n = Bi,σ (n). Since clearly An ≥ an for all n, we get that {An}∞n=1,
{Bi,n}∞n=1, and {Bn}∞n=1 satisfy all assumptions of the proposition. For the remainder of the
proof, we may therefore assume that cn = 1 for all n.
Assume towards contradiction that deg

(∑∞
n=1

bn
an

) ≤ d̃, and write

s =
∞∑

n=1

bn
an

, sN =
N−1∑

n=1

bn
an

.

Note that deg(sN ) ≤ d, and let c denote the least common multiple of the denominators
of x1, . . . , xD. Then the denominator of sN is at most c

∏N−1
n=1 an. By Lemmas 3.4 and 3.7,

H (sN ) ≤ c
(N−1∏

n=1
an

)

sN ≤ C1

(N−1∏

n=1
an

)

max
1≤i≤D

∣
∣
∣
∣
∣

N−1∑

n=1

bi,n
an

∣
∣
∣
∣
∣
, (18)

where C1 > 0 is some sufficiently large constant depending only on x1, . . . , xD. Since
y ≥ 1, the triangle inequality and inequality (3) then imply

∣
∣
∣
∣
∣

N−1∑

n=1

bi,n
an

∣
∣
∣
∣
∣
≤

N−1∑

n=1
ay−1
n 2log

α
2 an ≤ N2log

α
2 anay−1

N−1,

for all sufficiently largeN . Applying this to inequality (18) and once again using that y ≥ 1,
we obtain that when N is sufficiently large,

H (sN ) ≤ C1

(N−1∏

n=1
an

)

Nay−1
N−12

logα
2 aN−1 ≤ 2(3dd̃)

−1N 2 logα
2 aN−1

N−1∏

n=1
ayn. (19)

When N grows large, inequality (4) makes �(ζ sN ) strictly increasing. Since s has only
finitelymany conjugates, s and sN can thus only be conjugate numbers for finitelymanyN .
When N is sufficiently large, it therefore follows from the triangle inequality and Lemma
3.6 that

∞∑

n=N

∣
∣
∣
∣
bn
an

∣
∣
∣
∣ ≥ |s − sN | ≥ (2H (s)H (sN ))− deg(s) deg(sn) ,

and so, recalling that deg s ≤ d̃ and deg sn ≤ d while applying inequality (19),

∞∑

n=N

∣
∣
∣
∣
bn
an

∣
∣
∣
∣ ≥

(

2H (s)2(3dd̃)
−1N 2 log2 aN−1

N−1∏

n=1
ayn

)−dd̃

>
√
2
N 2 logα

2 aN−1
N−1∏

n=1
a−dd̃y
n
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We conclude that for all large enough N ,

2N
2 logα

2 aN−1

(N−1∏

i=1
add̃yn

) ∞∑

n=N

∣
∣
∣
∣
bn
an

∣
∣
∣
∣ >

√
2
N 2 logα

2 aN−1 ,

which contradicts Lemma 3.3 and thus completes the proof. ��

Proof of Theorem 1.4 By Remark 1.9, wemay assume thatD = d and that x1, . . . , xd forms
aQ-linear basis ofK . The irrationality statement is then simply Proposition 4.3with d̃ = 1,
while the transcendence statement follows from Theorem 4.1 and Proposition 4.3 with
d̃ = d. ��

5 Proof of Theorem 1.7
Our first step in proving Theorem 1.7 will be to prove the below parallel result to Theorem
4.1.

Theorem 5.1 Let K be a number field with Q-linear basis x1, . . . , xd , and consider real
numbers α, ε > 0, β , η1, y1 ≥ 0, and η2, y2 ≥ 1 such that α < 1, β < ε/(1 + ε), and
η1 ≤ (d − 1)y1 + y2. Let {an}∞n=1 and {bn}∞n=1 be non-zero sequences in K given by an =
∑d

i=1 ai,nxi and bn = ∑d
i=1 bi,nxi where ai,n, bi,n ∈ Z such that

lim sup
n→∞

|an|
(

η2+d((d−1)y1+y2−η1+η2)+δ

1−β
+1

)−n

= ∞

and inequalities (6), (7), (8), (9), and (10) are satisfied for each i = 1, . . . , d and all
sufficiently large n. Then the number

∑∞
n=1

bn
ancn is either transcendental or a Q-linear

combination of x1, . . . , xd .

This is not quite as neat asTheorem4.1, and the reason for this is to be found inLemma3.2.
As part of its proof in [7], the authors write bn/an as a Q-linear combination of x1, . . . , xd ,
which is fairly elegantly done when an is rational and less so when an may be irrational.
Using the Galois theory mentioned by the end of Sect. 3 to make the corresponding
modifications, we reach the below lemma.

Lemma 5.2 Using the notation and assumptions of Theorem 5.1, the inequality
∣
∣
∣
∣
∣

∞∑

n=1

bn
ancn

−
∑d

i=1 pixi
q

∣
∣
∣
∣
∣
<

1

2d log(1+2α)/3
2 qqd+1+d (d−1)y1+y2−η1

η2

(20)

has infinitely many solutions (p1, . . . , pd, q) ∈ Zd × N satisfying

|pi| ≤ 2log
(1+2α)/3
2 qq1+

(d−1)y1+y2−η1
η2 , for all i = 1, . . . , d. (21)

Proof Let σ : N → N be a bijection such that the sequence {An}∞n=1, given by An =
aσ (n)cσ (n), is of increasing modulus. Put Bi,n = bi,σ (n), Bn = bσ (n), and Rn = rσ (n). Since
these new sequences satisfy the hypothesis of the lemma, we may assume without loss of
generality that cn = 1 for all n.
Let K̃ ⊇ Q be the smallest Galois extension of Q with K ⊆ K̃ . Pick xd+1, . . . , xD such

that x1, . . . , xD is a Q-linear basis of K̃ , and let πi denote the i’th coordinate map in this
basis. Note that πi(an) = ai,n and πi(bn) = bi,n when 1 ≤ i ≤ d. Pick c > 0 and κ ∈ N so
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that

c ≥
∣
∣
∣
∣
∣
πi

( d′
∏

k=1
gk (xjk )

)∣
∣
∣
∣
∣

and κπi

( d′
∏

k=1
gk (xjk )

)

∈ Z,

for all d′ | d, all i, j1, . . . , jd′ ∈ {1, . . . , d}, and all g1, . . . , gd′ ∈ Gal(K̃ ).
For each n ∈ N, pick ãn ∈ Z of minimal modulus such that

ãnrnN (an/rn) ≥ |an|η2 ,

and note by inequality (8) that then

ãnrnN (an/rn) ≤ 2|an|η22logα
2 |an|. (22)

Write dn = deg an and pick g1, . . . , gdn ∈ Gal(K̃ ) such that (gk (an))dnk=1 runs through all
dn conjugates of an, with g1(an) = an. It follows that

πi

(

κrnN
(
an
rn

)
bn
an

)

= κπi

(( d∑

j=1
bj,nxj

) dn∏

k=2

d∑

j=1

aj,n
rn

gk (xj)
)

=
d∑

j1=1
bj1 ,n

d∑

j2=1

aj2 ,n
rn

· · ·
d∑

jdn=1

ajdn ,n
rn

κπi

( dn∏

k=1
gk (xjk )

)

must be an integer by choice of κ since dn | d. Define

qN := κ

N−1∏

n=1
ãnrnN (an/rn) and pi,N := πi

(

qN
N−1∑

n=1

bn
an

)

,

and note that qN ∈ N and pi,N ∈ Z by the above considerations. Set M = η2 + d((d −
1)y1 + y2 − η1 + η2)+ δ. The choice of pi,N , the triangle inequality, and Lemma 3.3 show
that for infinitely many N ,

∣
∣
∣
∣
∣

∞∑

n=1

bn
an

−
∑d

i=1 pi,N xi
qN

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

∞∑

n=1

bn
an

−
N−1∑

n=1

bn
an

∣
∣
∣
∣
∣
≤

∞∑

n=N

∣
∣
∣
∣
bn
an

∣
∣
∣
∣

< 2− log(1+α)/2
2

∏N−1
n=1 |an|

N−1∏

n=1
|an|−M.

Inequality (22), with the choices of qN andM, then implies

∣
∣
∣
∣
∣

∞∑

n=1

bn
an

−
∑d

i=1 pi,N xi
qN

∣
∣
∣
∣
∣
< 2− log(1+α)/2

2
∏N−1

n=1 |an|
N−1∏

n=1
(ãnrnN (an/rn))−M/η2

≤ 2− log(1+α)/2
2 qN q−M/η2

N

= 2− log(1+α)/2
2 qN q

−1−d−d (d−1)y1+y2−η1
η2

N .

Since log(1+α)/2
2 qN ≥ d log(1+2α)/3

2 qN when N (and thereby qN ) is sufficiently large, we
conclude that inequality (20) is satisfied for q = qN and pi = pi,N , for infinitely many
choices of N .
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We now just need to check that inequality (21) is also satisfied for q = qN and pi = pi,N .
We start by noting

bn
an

= 1
N (an)d/dn

( d∑

j=1
bj,nxj

)( d∑

j=1
aj,nxj

)d/dn−1 dn∏

k=2

( d∑

j=1
aj,n gk (xj)

)d/dn

= 1
NK (an)

d∑

j1=1
· · ·

d∑

jd=1
bj1,n aj2 ,n · · · ajd ,n

dn∏

k=1

d/dn∏

l=1
gk (xjkdn+l ).

It then follows from the triangle inequality and the choice of c that

∣
∣
∣
∣πi

(
bn
an

)∣
∣
∣
∣ ≤ ddc

1
N (an)

max
1≤j≤d

|bj,n| max
1≤j≤d

|aj,n|d−1.

Hence, by inequalities (7) and (9),

∣
∣
∣
∣πi

(
bn
an

)∣
∣
∣
∣ ≤ ddc |an|−η1+y2+y1(d−1)2(d+1) logα

2 |an|.

Recalling the choice of pi,N , we now find

∣
∣
∣
∣
pi,N
qN

∣
∣
∣
∣ ≤ ddc

N−1∑

n=1
|an|y1(d−1)+y2−η12(d+1) logα

2 |an|

≤ N |aN−1|y1(d−1)+y2−η12(d+2) logα
2 |aN |.

For all sufficiently large N , the choice of qN and inequality (6) lead to

logα
2 qN ≥ logα

2
(
(N − 2)!|aN−1|

) ≥ 1
d + 3

max{log2N, logα
2 |aN−1|}.

Since η1 ≤ y1(d − 1) + y2, this means that

∣
∣
∣
∣
pi,N
qN

∣
∣
∣
∣ ≤ |aN−1|y1(d−1)+y2−η12log

α
2 |qN | ≤ |qN |

y1(d−1)+y2−η1
η2 2log

α
2 |qN |,

by choice of ãN and qN , and the proof is complete. ��

Proof of Theorem 5.1 This follows in full parallel to the proof of Theorem 4.1, with M =
d(y1(d − 1) + y2 + η2 − η1) + δ and using Lemma 5.2 in place of Lemma 3.2. In the
application of Lemma 4.2, replace δ with δ/η2. ��

We now just need a variant of Proposition 4.3 where we allow the an to be irrational.

Proposition 5.3 Let d, d̃ ∈ N, let K be a number field of degree d, let x1, . . . , xD ∈ K, and
consider real numbers ε > 0, y1 ≥ 1 > α > 0, β ∈ [0, ε

1+ε
), and y2 ≥ β . Let {an}∞n=1 and

{bn}∞n=1 be sequences of non-zero numbers given by an = ∑D
i=1 ai,nxi and bn = ∑D

i=1 bi,nxi
where ai,n, bi,n ∈ Z and satisfy inequality (6),

n1+ε ≤ |an| ≤ |an+1|,
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and

lim sup
n→∞

|an|
( dd̃(y1+y2)

1−β
+1

)−n

= ∞.

Suppose for all sufficiently large n, each i = 1 . . . , D, and some fixed ζ ∈ C that inequalities
(9), (10), and (11) are satisfied. Let {cn}∞n=1 be a sequence of positive integers. Then the
number

∑∞
n=1

bn
ancn has algebraic degree strictly greater than d̃.

The main change from the proof of Proposition 4.3 is that we now use Lemma 3.5 a few
times before using Lemmas 3.4 and 3.7 in the estimate of H (sN ). This makes the proof
closer to that in [6].

Proof of Proposition 5.3 The proof is essentially the same as that of Proposition 4.3, except
that the calculation startingwith inequality (18) and endingwith inequality (19) is replaced
by

H (sN ) ≤ 2N−2
N−1∏

i=1
H (an)H (bn) ≤ 2N−2

N−1∏

i=1
c2/d an bn

≤ CN
N−1∏

i=1
max
1≤i≤D

|ai,n| max
1≤i≤D

|bi,n| ≤ CN
N−1∏

i=1
|an|y1+y222 log

α
2 |an|,

≤ 2(3dd̃)
−1N 2 logα

2 |aN−1|
N−1∏

i=1
|an|y1+y2 ,

using Lemmas 3.5, 3.4, 3.7 and the inequalities of inequality (9), where C > 0 is some
sufficiently large constant that depends only on x1, . . . , xD. The rest of the proof follows
the exact same arguments as those for the proof of Proposition 4.3 but with y replaced
with y1 + y2.

��
Proof of Theorem 1.7 By Remark 1.9, we may assume thatD = d and that x1, . . . , xd form
a Q-linear basis of K . Then the irrationality statement is identical to Proposition 5.3 with
d̃ = 1, while the transcendence statement follows from Theorem 5.1 and Proposition 5.3
with d̃ = d. ��

6 Proof of Lemma 3.3
The proof of Lemma 3.3 closely follows the proof of [7, Lemma 5]. Similarly to Lemma
3.2, the below lemmas are taken from [7], in which the first three of them appear with
additional assumptions that are never used in their proofs.

Lemma 6.1 {an}∞n=1 and {bn}∞n=1 satisfy the assumptions of Lemma 3.3. Then there is a
fixed number 0 < γ < 1 such that for all sufficiently large N ,
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∞∑

n=N

bn
an

≤ 1
aγ

N
.

Lemma 6.2 Let β , {an}∞n=1, and {bn}∞n=1 satisfy the assumptions of Lemma 3.3. Suppose
that an ≥ 2n for all sufficiently large n. Then there is a fixed number 0 < � < 1 such that
for all sufficiently large N ,

∞∑

n=N

bn
an

≤ 2log�
2 aN

a1−β

N
.

Lemma 6.3 Let β , {an}∞n=1, and {bn}∞n=1 satisfy the assumptions of Lemma 3.3. Then there
is a fixed number 0 < � < 1 so that if N ≤ Q are sufficiently large and an ≥ 2n for
n = N, . . . , Q, then

Q∑

n=N

bn
an

≤ 2log�
2 aN

a1−β

N
.

Lemma 6.4 Let {yn}∞n=1 be an unbounded sequence of positive real numbers. Then there
are infinitely many positive integers N such that

yN >

(

1 + 1
N 2

)

max
1≤n<N

yn.

By a simple induction argument, we notice for k < N and δ ≥ 0 that

(M + 1 + δ)N = (M + 1 + δ)N−1 + (M + δ)(M + 1 + δ)N−1 = · · ·

= (M + 1 + δ)k + (M + δ)
N−1∑

n=k
(M + 1 + δ)n. (23)

This will be used both in the proof of Lemma 3.3 and for proving the below lemma, which
is to be used together with Lemma 6.4 and Eq. (16).

Lemma 6.5 Let {an}∞n=1 be a sequence of positive real numbers, and let k be a positive
integer. Then for all N > k,

(

max
k≤n<N

a
(

M
1−β

+1
)−n

n

)
(

M
1−β

+1
)N

>

N−1∏

n=k
a

M
1−β
n .

Proof We use equation (23) with δ = 0 to find

(
max

k≤n<N
a

(
M
1−β

+1
)−n

n
)

(
M
1−β

+1
)N

>

(

max
k≤n<N

a
(

M
1−β

+1
)−n

n

) M
1−β

∑N−1
n=k

(
M
1−β

+1
)n

≥
N−1∏

n=k

(

a
(

M
1−β

+1
)−n

n

) M
1−β

(
M
1−β

+1
)n

=
N−1∏

n=k
a

M
1−β
n .

��

Proof of Lemma 3.3 We will split into three cases, depending on whether

lim sup
n→∞

a
(

M
1−β

+1+δ
)−n

n = ∞ (24)
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holds for some fixed δ > 0 and whether an < 2n infinitely often. To shorten notation,
write

ZN = 2N
2 logc2 aN−1

(N−1∏

n=1
aMn

) k2∑

n=N

bn
an

.

Case 1 (inequality (24) is satisfied for some δ > 0) Pick 0 < γ < 1 as in Lemma 6.1,
and let z > 2 be some sufficiently large number. Pick k1, k2, N ∈ N as follows. Let k2 be
the smallest integer such that

a
(

M
1−β

+1+δ
)−k2

k2 > z1/γ , (25)

let k1 be the largest integer such that k1 < k2 and

ak1 ≤ zk1 , (26)

and let N be the smallest number such that N > k1 and

a
(

M
1−β

+1+δ
)−N

N ≥ z. (27)

Note that k2 ≥ N > k1 and that k1 → ∞ as z → ∞. From the above choices of k1 andN ,
it follows that an < z(

M
1−β

+1+δ)n when k1 ≤ n < N . Hence, by also applying Eq. (23)

N−1∏

n=k1

an < z
∑N−1

n=k1
( M
1−β

+1+δ)n
< z(

M
1−β

+δ)−1( M
1−β

+1+δ)N ,

while inequality (26) implies

k1−1∏

n=1
an ≤ ak1−1

k1−1 < ak1k1 ≤ zk
2
1 < zN

2
,

since an is increasing and k1 < N . Thus
N−1∏

n=1
|an| < zN

2+
(

M
1−β

+δ
)−1( M

1−β
+1+δ

)N

. (28)

Since γ was chosen as in Lemma 6.1, we have for each sufficiently large z (and thereby
k2) that

∞∑

n=k2

bn
an

≤ 1
aγ

k2
.

Combining this with inequality (25) and the fact that N ≤ k2, we find that
∞∑

n=k2

bn
an

≤ 1

z
(

M
1−β

+1+δ
)k2

≤ 1

z
(

M
1−β

+1+δ
)N (29)

when z is sufficiently large. Since

1 − β = M
( M
1−β

) >
M

M
1−β

+ δ
,
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we may pick a fixed number ζ such that

M
M/(1 − β) + δ

< ζ < 1 − β . (30)

Now pick 0 < � < 1 as in Lemma 6.3. Since k1 is the largest number less than k2 satisfying
inequality (26) and k1 < N ≤ k2, it follows that

k2−1∑

n=N

bn
an

≤ 2log�
2 aN

a1−β

N

when z (and therebyN ) is sufficiently large. Applying inequalities (30) and (27), this yields
that for all sufficiently large z,

k2−1∑

n=N

bn
an

<
1
aζ
N

≤ 1

zζ
(

M
1−β

+1+δ
)N .

Combined with inequality (29), we conclude
∞∑

n=N

bn
an

<
1

zζ
(

M
1−β

+1+δ
)N + 1

z
(

M
1−β

+1+δ
)N <

2

zζ
(

M
1−β

+1+δ
) , (31)

when z is sufficiently large.
Since N is the smallest number strictly greater than k1 satisfying inequality (27), and

since k1 cannot satisfy inequality (27), due to inequality (26), we get in particular that
N − 1 does not satisfy inequality (27). Thus,

2N
2 logc2 aN−1 ≤ 2N

2
(

M
1−β

+1+δ
)(N−1)c

logc2 z < zN
2
(

M
1−β

+1+δ
)Nc

. (32)

When z is sufficiently large, we obtain from inequalities (28), (31), and (32) that

ZN = 2N
2 logc2 aN−1

(N−1∏

n=1
aMn

) k2∑

n=N

bn
an

< zN
2
(

M
1−β

+1+δ
)Nc+MN 2+

(
M

M/(1−β)+δ
−ζ

)(
M
1−β

+1+δ
)N

.

To simplify notation, write ζ ′ = ζ − M
M/(1−β)+δ

, which is positive due to inequality (30).
We then continue our calculation to find that

ZN < zN
2
(

M
1−β

+1+δ
)Nc+MN 2−ζ ′

(
M
1−β

+1+δ
)N

< z− ζ ′
2

(
M
1−β

+1+δ
)N

,

when z is sufficiently large. As the right-hand side clearly tends to 0 as z tends to infinity,
we get the desired result.
Case 2 (inequality (24) is not satisfied for any fixed δ > 0) This case is a bit more
involved than the other one and will need to be split into two subcases, depending on
whether an ≤ 2n infinitely often. However, both cases will need an estimate of the expres-
sion

2n2 logc2 an−1+log�
2 an

(1 + (n − 1)−2)(1−β)
(

M
1−β

+1
)n , (33)
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where � ∈ (0, 1) is a fixed number to be chosen in each subcase. Set �0 = max{�, c}, and
pick δ > 0 so small that

(
M

1 − β
+ 1 + δ

)(1+�0)/2
<

(
M

1 − β
+ 1

)(2+�0)/3
. (34)

When n is sufficiently large, the case assumption will ensure that an ≤ 2
(

M
1−β

+1+δ
)n

, and
so it follows that

2n
2 logc2 an−1+log�

2 |an| ≤ 2n
2
(

M
1−β

+1+δ
)cn+

(
M
1−β

+1+δ
)�n

≤ 2
(

M
1−β

+1+δ
)n(1+�0)/2

< 2
(

M
1−β

+1
)n(2+�0)/3

,

by applying inequality (34) in the last inequality. As for the denominator of expression.
(33), the Taylor expansion of log2(1 + x) implies that log2(1 + n−2) ≥ n−5/2. Therefore,

2n2 logc2 an−1+log�
2 an

(1 + n−2)(1−β)
(

M
1−β

+1
)n <

2
(

M
1−β

+1
)n(2+�0)/3

2n
−5/2(1−β)

(
M
1−β

+1
)n ≤ 2−n−3

(
M
1−β

+1
)n

, (35)

for all sufficiently large n.
Case 2.a (an ≥ 2n for all but finitely many n) By picking � as in Lemma 6.2, we get for
all sufficiently large N ∈ N that

∞∑

n=N

∣
∣
∣
∣
bn
an

∣
∣
∣
∣ ≤ 2log�

2 |aN |

|aN |1−β
.

At the same time, it follows from Lemma 6.5 and Lemma 6.4 with Eq. (16) that there are
infinitely many N ∈ N such that

N−1∏

n=1
|an|M <

(
maxk≤n<N a

(
M
1−β

+1
)−n

n
)(1−β)

(
M
1−β

+1
)N

(1 + N−2)(1−β)
(

M
1−β

+1
)N

<
|aN |1−β

(1 + N−2)(1−β)
(

M
1−β

+1
)N .

Hence, for these infinitely many N ,

ZN = 2N
2 logc2 aN−1

(N−1∏

n=1
aMn

) k2∑

n=N

bn
an

<
2N 2 logc2 aN−1+log�

2 |aN |

(1 + N−2)(1−β)
(

M
1−β

+1
)N .

From this and inequality (35), we obtain that for infinitely many N ,

ZN < 2−N−3
(

M
1−β

+1
)N

,

and we are done.
Case 2.b (an < 2n infinitely often) Let z > 0 be sufficiently large, and pick k1, k2, N ∈ N
as follows. Let k2 be the smallest integer such that

a
(

M
1−β

+1
)−k2

k2 > z, (36)
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and let k1 be the largest integer such that k1 < k2 and

ak1 < 2k2 . (37)

Due to the assumption that an < 2n infinitely often and the fact that k2 is clearly
unbounded, k1 is also unbounded. Applying Lemma 6.4 with k = k1 to Eq. (16), we
pick N to be the smallest integer such that N > k1 and

a
(

M
1−β

+1
)−N

N >
(
1 + N−2) max

k1≤n<N
a

(
M
1−β

+1
)−n

n . (38)

Whenever k1 < n < N , we then find by induction that

a
(

M
1−β

+1
)−n

n ≤ (
1 + n−2) max

k1≤m<n
a

(
M
1−β

+1
)−m

m ≤ · · ·

≤
( n∏

m=k1+1

(
1 + m−2)

)

a
(

M
1−β

+1
)−k1

k1

≤ a
(

M
1−β

+1
)−k1

k1

∞∏

m=1

(
1 + m−2). (39)

Since log(1 + x) ≤ x, we find that

∞∏

m=1

(
1 + m−2) = exp

( ∞∑

m=1
log

(
1 + m−2)

)

≤ exp
( ∞∑

m=1
m−2

)

= exp
(

π2

6

)

< 6.

Similarly, inequality (37) and the fact that 2n/2n ≤ 1/2 allow us to deduce

a
(

M
1−β

+1
)−k1

k1 ≤ 2k12
−k1 ≤ 1

2
.

Recalling inequality (39), it follows that

a
(

M
1−β

+1
)−n

n <
1
2

· 6 = 3, (40)

for each k1 ≤ n < N , and so, due to Eq. (23) with δ = 0, it follows that

N−1∏

n=k1

aMn < 3M
∑N−1

n=k1

(
M
1−β

+1
)n

< 3
(

M
1−β

+1
)N

when z (and thereby N ) is sufficiently large. Using inequality (37) and the fact that an is
non-decreasing to estimate

k1−1∏

n=1
aMn ≤ aMk1

k1 ≤ 2Mk21 < 2MN 2
, (41)

we may then conclude that

N−1∏

n=1
an =

( k1−1∏

n=1
an

) N−1∏

n=k1

an < 2MN 2
3
(

M
1−β

+1
)N

≤ 4
(

M
1−β

+1
)N

, (42)
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for all sufficiently large values of z. On the other hand, we might also estimate
∏N−1

n=k1 a
M
n ,

using Lemma 6.5 and inequality (38) instead, which leads to

N−1∏

n=k1

aMn ≤ a1−β

N
(
1 + N−2)(1−β)

(
M
1−β

+1
)N ,

so that we, by means of inequality (41), reach

N−1∏

n=1
aMn ≤ 2MN 2 a1−β

N
(
1 + N−2)(1−β)

(
M
1−β

+1
)N , (43)

for all sufficiently large z (and thereby N ).
Let 0 < γ < 1 be given as in Lemma 6.1. From this, inequality (36), and the fact that

N ≤ k2 when z is large, we then obtain

∞∑

n=k2

bn
an

≤ a−γ

k2 < z−γ
(

M
1−β

+1
)k2

≤ z−γ
(

M
1−β

+1
)N

, (44)

when z is sufficiently large. Let similarly 0 < � < 1 be given as in Lemma 6.3. Since k1 is
the largest number less than k2 that satisfies inequality (37) and k1 < N ≤ k2, we have

k2−1∑

n=N

bn
an

≤ 2log�
2 aN

a1−β

N
.

Together with inequality (44), this leads to

∞∑

n=N

bn
an

=
k2−1∑

n=N

bn
an

+
∞∑

n=k2

bn
an

≤ 2log�
2 aN

a1−β

N
+ z−γ

(
M
1−β

+1
)N

. (45)

Combining inequalities (42), (43), and (45), we obtain

ZN = 2N
2 logc2 aN−1

(N−1∏

n=1
aMn

) k2∑

n=N

bn
an

< 2N
2 logc2 aN−1 min

{

4
(

M
1−β

+1
)N

, 2MN 2 a1−β

N
(
1 + N−2)(1−β)

(
M
1−β

+1
)N

}

·
(
2log�

2 aN

a1−β

N
+ z−γ

(
M
1−β

+1
)N )

≤ 2N 2 logc2 aN−1+MN 2+log�
2 aN

(
1 + N−2)(1−β)

(
M
1−β

+1
)N + 2N 2 logc2 aN−14

(
M
1−β

+1
)N

zγ
(

M
1−β

+1
)N , (46)

for all sufficiently large z. From inequality (35), it follows that

2N 2 logc2 aN−1+MN 2+log�
2 aN

(
1 + N−2)(1−β)

(
M
1−β

+1
)N <

2MN 2

2N
−3

(
M
1−β

+1
)N ,
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which clearly tends to 0 as z (and thereby N ) tends to infinity. We are thus left to show
that the remaining term of the right-hand side of inequality (46) also approaches 0 when
z grows large. Fortunately, this immediately follows from the calculation that

2N 2 logc2 aN−14
(

M
1−β

+1
)N

zγ
(

M
1−β

+1
)N ≤ 5

(
M
1−β

+1
)N

zγ
(

M
1−β

+1
)N ≤ z− γ

2

(
M
1−β

+1
)N

,

for all sufficiently large z. This completes the proof. ��

7 Concluding remarks
In [12], the present author proves a variant of the main theorem of [6]. In particular, this
implies that one may replace lim supn→∞ |an|

∏n−1
i=1 (d

i+d)−1 = ∞ with

lim inf
n→∞ |an|

∏n−1
i=1 (d

i+d)−1
< lim sup

n→∞
|an|

∏n−1
i=1 (d

i+d)−1
< ∞

in Theorem 1.3 and still get irrationality. Certainly, a corresponding result can be proven
for Propositions 4.3 and 5.3 as well, leading to alternative versions of Theorems 1.4, 1.6,
and 1.7, though we will not do that here.
We will now compare the main theorems to Theorem 1.2. If we set d = 1 in Theorems

1.6 or Theorem 1.7, we get the below corollary, which also appears if we assume d = 1 in
the proof of Theorem 1.4.

Corollary 7.1 Let α, δ, ε > 0 be positive real numbers with α < 1, and let β ∈ [0, ε
1+ε

).
Let {an}∞n=1 and {bn}∞n=1 be sequences of positive integers so that

n1+ε ≤ an ≤ an+1, lim sup
n→∞

a
(
2+δ
1−β

+1
)−n

n = ∞,

and for all sufficiently large n,

bn ≤ aβ
n2log

α
2 an . (47)

Then the sequence {an/bn}∞n=1 is transcendental.

This corollary also follows from Theorem 1.2 by replacing ε with β/(1 − β) + δ/3 and
putting γ = 2β+δ

1−β
, while noting that aβ

n2log
α1
2 an < aε/(1+ε)

n /2log
α2
2 an for any fixed values

of α1,α2 ∈ (0, 1) and all sufficiently large n. On the other hand, Theorem 1.2 is slightly
stronger than Corollary 7.1 since inequality (1) allows log |bn|/ log |an| to approach ε/(1+
ε) as n → ∞, which is prevented by inequality (47). Quite naturally, this raises the
following question.

Question 7.2 Suppose we replaced β by ε/(1 + ε), let α be sufficiently close to 1, and
replaced the assumption |bn| ≤ |an|β2logα

2 an by |bn| < |an|ε/(1+ε)2− logα
2 |an| for all suffi-

ciently large n. Would Theorems 1.4, 1.6, and 1.7 then remain true?

While the above comparison between Corollary 7.1 and Theorem 1.2 would suggest an
affirmative answer, this question is not so easily answered. To see why, we start by taking
a brief look at Hančl’s proof of Theorem 1.2 as presented in [5]. Part of the proof follows
an argument much similar to Lemma 3.3. The most significant difference is that Hančl
takes advantage of the fact that γ can always be replaced by a smaller value γ ′ > 2ε
without affecting whether any assumption of the theorem is satisfied. This means that
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he only ever has to consider what corresponds to case 1 from the proof of Lemma 3.3.
In the proofs of Theorems 4.1 and 5.1, we can make the same trick by replacing δ with
a smaller positive number, so the proofs of these theorems should be easily modified to
allow the changes proposed by the above question. The problem arises with Propositions
4.3 and 5.3 – here none of the parameters present in the limsup conditions can be reduced
without strengthening some other assumption, and so we cannot apply Hančl’s trick and
must deal with some version of case 2 from the proof of Lemma 3.3. When imposing the
changes fromQuestion 7.2, this becomes a muchmore difficult task, and there appears to
be no immediate way of modifying the proof of Lemma 3.3 so that all of case 2 is covered.
Therefore, at least until Question 7.2 is answered in the affirmative for at least one of the

theorems, we cannot both get the large values of |bn| that Theorem 1.2 suggests without
making the limsup conditions more strict.
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1.6.3 Paper 5: Irrationality and transcendence of infinite products

Below, the reader will find the most recent preprint of the paper [39], which has
the current author as its sole author. The paper is currently under review but has
not yet been accepted for publication. The preprint is available on arXiv through
the link https://arxiv.org/abs/2503.01575v1 or by using the arXiv identifier
2503.01575. It has a length of 14 pages, numbered 1 through 14.

In order to prove the irrationality part of Theorem 1.62 presented earlier in this
section, the assumption M ≥ 1 has to be weakened to M > 0 in Lemma 4.1 of the
below paper. The first page of subsection 1.6.2 explains why the lemma remains
true with this slight change of assumption.

https://arxiv.org/abs/2503.01575v1


ar
X

iv
:2

50
3.

01
57

5v
1 

 [
m

at
h.

N
T

] 
 3

 M
ar

 2
02

5

TRANSCENDENCE CRITERIA FOR INFINITE PRODUCTS
OF ALGEBRAIC NUMBERS

MATHIAS L. LAURSEN

Abstract. Using an application of Schmidt’s Subspace Theorem,
this paper gives new transcendence criteria for rapidly converging
infinite products of algebraic numbers. The paper also improves
existing criteria for irrationality of products and criteria for irra-
tionality and transcendence of infinite series. These results gener-
alize a classical theorem on the irrationality of infinite series due
to Erdős.

1. Introduction

Proving whether a given real number is algebraic, or even rational,
can be a quite frustrating endeavour. While more than a century and
a half have passed since Hermite proved that the number e =

∑∞
n=0

1
n!

is transcendental in early 1873, it remains unsolved if the number∑∞
n=0

1
n!+1

is even irrational, despite what may appear as a much similar
construction. Similarly, it is well-known that the Riemann ζ function
defined as ζ(s) =

∑∞
n=1 n

−s for ℜ(s) > 1 is transcendental when s
is a positive even integer while the question of irrationality remains
open when s ≥ 5 is any fixed odd integer. In other words, we have
a multitude of interesting numbers that we know to be transcendental
but where a small perturbation to the infinite series used to describe
them renders even the question of irrationality exceedingly hard to
settle. Aiming away from frustrations of this kind, this paper studies
irrationality and transcendence criteria that are less sensitive to such
perturbations.

Following the notions of Hančl [3, 4], we say that a sequence {an}∞
n=1

of real or complex numbers is Σ-irrational (respectively Σ-transcenden-
tal) if the sum of the series

∑∞
n=1

1
ancn

is irrational (respectively tran-

scendental) for any sequence {cn}∞
n=1 of positive integers. Inspired by

this, we say that {an}∞
n=1 is (Π, K)-irrational if the number

∏∞
n=1

(
1 +

1
ancn

)
lies outside of a given field K for all sequences {cn}∞

n=1 of positive

integers. We then say that {an}∞
n=1 is Π-irrational if it is ΠQ-irrational

and that it is Π-transcendental if it is ΠQ-irrational.
The first result on Σ-irrationality was proven in 1975 by Erdős [2].

This research is supported by the Independent Research Fund Denmark.
1
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Theorem 1.1 (Erdős). Let ε > 0, and let {an}∞
n=1 be an increasing

sequence of integers such that an ≥ n1+ε for all n. Suppose

lim sup
n→∞

a2
−n

n = ∞.

Then the sequence {an}∞
n=1 is Σ-irrational.

Since then, more Σ-related results have come to light, such as criteria
for Σ-transcendence (starting with [4] in 1996) or Q-linear independ-

ence of the numbers 1,
∑∞

n=1
b1,n
a1,ncn

, . . . ,
∑∞

n=1
bK,n

aK,ncn
(starting with [5]

in 1999).
Meanwhile, the first result on Π-irrationality was not published un-

til 2011, where Hančl and Kolouch [6] proved that sequences {an}∞
n=1

satisfying the assumptions of Theorem 1.1 will also be Π-irrational.
This result was extended by Kristensen and the current author in [7]
where an are allowed to be algebraic integers from a broader family
of algebraic numbers and where a lower bound on algebraic degree of
the numbers

∏∞
n=1(1 + a−1

n ) is given. Recall that an algebraic integer
is an algebraic number whose primitive polynomial over Z is monic.
We use OK to denote the ring of algebraic integers contained in a
given field K. When only considering the questions of Π-irrationality
and Π-transcendence, this result specializes to the below theorem. To
the current author’s knowledge, this is so far the only available result
regarding Π-transcendence. The notation an denotes the maximum
modulus amongst the conjugates of an.

Theorem 1.2 (Kristensen and Laursen). Let K be a number field of

degree d, let d̃, D ∈ N be positive integers, and consider ε > 0 and α ∈
(0, 1). Let {an}∞

n=1 be a sequence of algebraic integers such that n1+ε <

|an| ≤ |an+1|. Write K̃ = Q(an : n ∈ N), let K′ be a field extension

of degree D of K̃, and let {bn}∞
n=1 be a sequence of positive integers.

Suppose an bn ≤ |an|2logα2 |an|, degK an ≤ d̃, and eℜ(an/bn − 1/4) ≥ 1/4
for all n with e ∈ {−1, 1} fixed and ℜ(an/bn) 6= −1/2 infinitely often.

Then {an}∞
n=1 is ΠK′-irrational if |an|D−n

∏n−1
i=1 (d̃id+d̃)−1

= ∞ diverges in
R, and {an}∞

n=1 is Π-transcendental if for all A > 0,

lim sup
n→∞

|an|A
−n

∏n−1
i=1 (di+d)−1

= ∞.

In the present paper, we will improve this result in the case d̃ = 1,
i.e., when an ∈ K for all n, while providing conditions for when an |bn|
is large and when bn is picked in K rather than Q. The most significant
improvement lies in the transcendence criterion, where the new version
allows one to stop at a finite A. Results of this nature was proven for
infinite series in [8] by the current author. In that paper, the most
simple criteria were found when an is assumed to be rational while
bn carries the algebraic degree of the number. Revisiting these ideas,
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we will not only achieve stronger results for infinite products but also
improve the theorems from [8].

2. Main results

As in [8], our main results will be variations of each other. When
restricting our attention to rational numbers, we get the following ir-
rationality and transcendence criteria.

Theorem 2.1. Let ε > 0, 0 < α < 1, and β ∈ [0, ε
1+ε

). Let {an}∞
n=1 and

{bn}∞
n=1 be sequences of positive integers such that

n1+ε < an ≤ an+1 and bn ≤ aβn2
logα2 an .

Then the sequence {an/bn}∞
n=1 is Π-irrational if

lim sup
n→∞

a
( 1
1−β

+1)−n

n = ∞,

and it is Π-transcendental if

lim sup
n→∞

a
( 2+δ
1−β

+1)−n

n = ∞.

Moving on to algebraic numbers, we need to be more careful and
to take into account the arithmetic properties of an and bn. We will
first consider the question of irrationality, which is also the easiest to
prove. We provide three different limsup criteria, the latter two of
which correspond to the irrationality conditions given in [8], while the
first condition is new and will be used for proving the transcendence
criteria of the subsequent theorems. While the theorem has a good
number of assumptions, some of them may be skipped, depending on
which limsup condition one means to imply; thus inequality (3) may be
skipped when using condition (8), while inequalities (5) and (6) may
be skipped when using condition (9) or (10). In this theorem, and for
the remainder of the current paper, N : Q → Q denotes the map that
sends an algebraic number to the product of its (algebraic) conjugates.
A reader familiar with field norms will notice that N (a) is exactly the
field norm associated with Q(a), evaluated at a.

Theorem 2.2. Let K be a number field with of degree d ∈ N, and con-
sider real numbers α ∈ (0, 1), ε > 0, β ∈ [0, ε/(1 + ε)), y1 ≥ 1, y2 ≥ β,
z1 ≥ −y2, z2 ≥ 0, and e ∈ {−1, 1}. Let {an}∞

n=1 and {bn}∞
n=1 be

sequences of non-zero numbers in OK such that

(1) n1+ε ≤ |an| ≤ |an+1|,

(2) |bn| < |an|β2log
α
2 |an|,

(3) an ≤ |an|y12log
α
2 |an|,

(4) bn ≤ |an|y22log
α
2 |an|,
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(5) a−1
n ≤ |an|z12log

α
2 |an|,

(6) rn
∣∣N (an/rn)

∣∣ ≤ |an|z22log
α
2 |an|,

and

(7) ℜ
(
an
bn

){≥ 0 if e = 1,

≤ −1/2 if e = −1,

where each rn is a positive integer dividing an, and ℜ(an/bn) 6= −1/2
infinitely often. Let d0 ∈ N and suppose deg(an/bn) ≥ d0 for all large
enough n. Then the sequence {an/bn}∞

n=1 is ΠK-irrational if

(8) lim sup
n→∞

|an|
(

d(y2+z1+z2/d0)
1−β

+1
)−n

= ∞,

(9) lim sup
n→∞

|an|
(

d(y1+y2)
1−β

+1
)−n

= ∞,

or, in the case that an ∈ Z or bn ∈ Z for each n, if

(10) lim sup
n→∞

|an|
(

dmax{y1,y2}
1−β

+1
)−n

= ∞.

The main novelty of this theorem lies in limsup condition (8) since it
grants Π-irrationality for sequences {an}∞

n=1 satisfying both deg an > 1
and

lim
n→∞

|an|1/(2+δ)
n

= 1,

for all δ > 0, while granting a somewhat weaker result when the same
is true for δ = 0, as seen in Example 3.2. Meanwhile, all former Σ- or
Π-irrationality statements in the literature require at least

lim
n→∞

|an|(d+1)−n

= ∞.

when Q(a1, a2, . . .) is a finite field of degree d.
Theorem 2.2 also provides a stronger irrationality statement than

those in [8], where only ΣQ-irrationality was proven. This improvement,
however, does not rely on any difference between products and series,
and so the irrationality statements of [8] may easily be strengthened to
match Theorem 2.2 by modifying the proofs accordingly. An import-
ant consequence of the improved irrationality statement is that we may
slack the transcendence criterion when d > 1, giving us the below the-
orem. In parallel to [8], transcendence is proven through an application
of Schmidt’s Subspace Theorem, which will give us that each product∏∞

n=1(1+
bn
cnan

) is either transcendental or contained in K, then dealing
with K through Theorem 2.2. As with Theorem 2.2, the corresponding
theorem in [8] may be improved to match this result.
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Theorem 2.3. Let K be a number field of degree d ∈ N, and consider
real numbers δ, ε > 0, α ∈ (0, 1), β ∈ [0, ε

1+ε
), e ∈ {−1, 1}, and y ≥ 1.

Let {an}∞
n=1 and {bn}∞

n=1 be a sequences of non-zero numbers from Z
and OK, respectively, such that inequalities (1), (2), (4), and (12) are
satisfied with y2 = y. Suppose that ℜ(an/bn) 6= −1/2 infinitely often
and that

lim sup
n→∞

a
( dy+1+δ

1−β
+1)

−n

n = ∞.

Then the sequence {an/bn}∞
n=1 is Π-transcendental.

In order to use the above mentioned application of Schmidt’s Sub-
space Theorem, we need to write the approximants

∏N
n=1(1 + bn

ancn
)

as a Q-linear combination of some basis x1, . . . , xd of K. If we allow
an ∈ OK, we then need to also consider the coordinates of a−1

n and
the associated least common denominator, which makes both theorem
and proof a bit more involved but allows us to conclude the following
theorem. Again, we get an improvement compared to [8], and updat-
ing the proof in that paper accordingly will give a matching result for
Σ-irrationality.

Theorem 2.4. Let K be a number field with of degree d ∈ N, and con-
sider real numbers α ∈ (0, 1), δ, ε > 0, β ∈ [0, ε/(1 + ε)), e ∈ {−1, 1},
y ≥ β, z1 ≥ −y, and z2 ≥ 0. Let {an}∞

n=1 and {bn}∞
n=1 be sequences

of non-zero numbers in OK such that inequalities (1), (2), (4)–(6), and
(12) are satisfied with y2 = y, rn ∈ Z, and rn | an. Suppose that
ℜ(an/bn) 6= −1/2 infinitely often and that

(11) lim sup
n→∞

|an|
(

d(y+z1+z2)+z2+δ
1−β

+1
)−n

= ∞.

Then the sequence {an/bn}∞
n=1 is Π-transcendental.

When specializing to an ∈ N, we retrieve Theorem 2.3, which has
the advantage of being more easily checked. Further specializing to
bn ∈ N, we reach Theorem 2.1. However, when allowing an ∈ OK and
specializing to bn ∈ N, we do not get the same simplification as is the
case for Theorem 2.3, and we will for that reason not state it as a
separate theorem.

Theorem 2.5. Replace the assumptions z2 ≥ 1 and (7) with the weaker
assumptions z2 ≥ 0 and

(12) eℜ
(
an
bn

+
1

2

)
≥ 0.

Then Theorems 2.2, 2.3, and 2.4 remain valid if we replace the state-
ments of ΠK-irrationality and ΠK-transcendence with ξ /∈ K and ξ being
transcendental, respectively, where ξ is the number

∏∞
n=1(1 + bn/an).
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3. Applications

In the following examples, ϕ is the golden ratio (the positive root of
x2−x−1) and ψ is the supergolden ratio (the real root of x3−x2−1). Let

Fn and F̂n be the corresponding linear recurrences, i.e., F1 = F2 = 1,
Fn+2 = Fn + Fn+1, F̂1 = F̂2 = F̂3 = 1, and F̂n+3 = F̂n + F̂n+2. Notice
that ϕ and ψ are units with ϕ−1 = ϕ and ψ−1 = ψ1/2. We will also use
the notation of ⌈a⌉ to denote the smallest integer k ≥ a when a ∈ R.

If for a given example below, some of the assumptions (1) through
(12) are not be satisfied for all of the first finitely many n, apply first
the relevant theorem first on {an+N/bn+N}∞

n=1 and then realize that the
conclusion then also holds for {an/bn}∞

n=1.

Example 3.1. Let {hn}∞
n=1 be a strictly increasing sequence of integers

with hn ≥ 3nn infinitely often. Relying on condition (10) of Theorem
2.2, the sequences {ϕhn}∞

n=1, {ϕhn + bn}∞
n=1, and {Fhn/bn}∞

n=1 are all
ΠQ(ϕ)-irrational when bn ∈ Q(ϕ) with 0 < bn ≤ 2h

α
n and bn ≤ Fhn . The

same is true if ϕ is replaced by any other quadratic irrational number
x with x = x > 1.

The next example shows how relaxed condition (8) becomes when
the numbers an have the right arithmetic properties.

Example 3.2. For i = 1, 2, 3, let {hi,n}∞
n=1 be a strictly increasing se-

quence of integers with hi,n ≥ (1 + 1/i)n logn infinitely often. Using
condition (8), Theorem 2.2 ensures that the sequences {Fh1,nϕh1,n}∞

n=1

and {F̂⌈h1,n/2⌉ψ
h1,n}∞

n=1 are ΠQ(ϕ)-irrational and ΠQ(ψ)-irrational, re-
spectively, while we may use Theorem 2.5 to further get

∏∞
n=1(1 +

F−1
h2,n

ϕ−h2,n) /∈ Q(ϕ) and
∏∞

n=1 1 + F̂−1
⌈h3,n/2⌉ψ

−h3,n /∈ Q(ψ).

More generally, if x > 1 is an algebraic unit with x−1 = xz , then
{⌈xzh1,n⌉xh1,n}∞

n=1 is ΠQ(x)-irrational while
∏∞

n=1(1 + 1
⌈x−zhn⌉−1x−hn ) /∈

Q(x) when {hn}∞
n=1 is a strictly increasing sequence of integers with

hn ≥ (1 + Z)n log n infinitely often where Z = z/(1 + z).

We then provide an example where condition (9) is preferred over
condition (8) and where we may have an, bn /∈ Z infinitely often.

Example 3.3. Let {hn}∞
n=1 be a strictly increasing sequence of integers

with hn ≥ 7n log n infinitely often. Then condition (8) of Theorem 2.2

ensures that the sequence {(2hn+ 3
√
2
n
)/bn}∞

n=1 is (Π,Q( 3
√
2))-irrational

if bn ∈ OQ( 3√2) with 0 < bn < 2h
α
n and bn ≤ 2hn for all n. The same is

true when 3
√
2 is replaced for any other d’th root of a positive integer

and hn ≥ (2d+ 1)n log n infinitely often.

We will now give examples of Π-transcendental sequences. The first
one shows how simple it is to apply Theorem 2.3 while the following
two show how lenient equation (11) of Theorem 2.4 can be when the
right sequences are considered.
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Example 3.4. For each i ∈ N, let {hi,n}∞
n=1 be a strictly increasing

sequence of integers with hi,n ≥ (i+1/i)n infinitely often. By Theorem
2.3, {Fh4,n/(1+ϕ−hn)} is Π-transcendental by picking β = 0 and y = 1.
More generally, if x > 1 is an algebraic unit of degree d, then the
sequence {⌈xhd+2,n⌉/(1 + x−hd+2,n)}∞

n=1 is Π-transcendental.

Example 3.5. For i ∈ N, let {hi,n}∞
n=1 and {h′i,n}∞

n=1 be strictly in-
creasing sequences of integers with hi,n ≥ (i + 1/i)n and h′i,n ≥ (3 −
1/i)n infinitely often. Then Theorem 2.4 implies that the sequences

{Fh4,nϕh4,n}∞
n=1 and {F̂⌈h5,n/2⌉ψ

h3,n}∞
n=1 are Π-transcendental while The-

orem 2.5 ensures that also the numbers
∏∞

n=1(1 + F−1
h′3,n

ϕ−h′3,n) and
∏∞

n=1 1 + F̂−1
⌈h′2,n/2⌉

ψ−h′2,n are transcendental.

More generally, if x > 1 is an algebraic unit with x−1 = xz and
deg x = d, then {⌈xzhd+2,n⌉xhd+2,n}∞

n=1 is Π-transcendental while we
further have

∏∞
n=1(1+

1
⌈x−zhn⌉−1x−hn ) /∈ Q(x) when {hn}∞

n=1 is a strictly

increasing sequence of integers with hn ≥ (2 + dZ)n infinitely often
where Z = z/(1 + z).

Example 3.6. Let {hn}∞
n=1 and {h′n}∞

n=1 be a strictly increasing sequence
of integers with hn ≥ (7 − 1/3)n and h′n ≥ (3 − 1/3)n infinitely often.
By Theorems 2.4 and 2.5, {ψhn} is Π-transcendental, and the number∏∞

n=1(1 + ψ−h′n) is transcendental. A similar argument can be made

for any other real algebraic unit x with 1 < x−1 < x2/d and assuming
hn ≥ (3 − δ)n for some sufficiently small δ > 0.

4. Preliminaries

In this section, we provide useful definitions and lemmas that are
either proven elsewhere or that have particularly short proofs.

We start by introducing two lemmas that are proven in [8]. The first
lemma uses the method of proof introduced in [2], while the other one
is an application of Schmidt’s Subspace Theorem [9].

Lemma 4.1. Let ε > 0, 0 < α < 1 ≤ M , and β ∈ [0, 1+ε
ε
). Let {an}∞

n=1

and {bn}∞
n=1 be sequences of numbers in C that satisfy inequalities (1)

and (2). If

lim sup
n→∞

|an|(
M

1−β
+1)

−n

= ∞,

then for all fixed 0 < c < 1,

lim inf
N→∞

∞∑

n=N+1

∣∣∣∣
bn
an

∣∣∣∣

(
N∏

n=1

|an|M
)
2N

2 logc2 |aN−1| = 0.
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Lemma 4.2. Let x1, . . . , xd, s be algebraic numbers such that s is Q-
linearly independent of x1, . . . , xd, and let C, δ > 0. Then the inequality

(13)

∣∣∣∣∣qs−
d∑

i=1

pixi

∣∣∣∣∣
d∏

i=1

max{1, |pi|} < q−δ

has only finitely many solutions (p1, . . . , pd, q) ∈ Zd × N with |pi| ≤ qC.

The below lemma can be extracted from the proof of Lemma 15 in
[7] and replaces the triangle inequality from the series setting.

Lemma 4.3. Let {an}∞
n=1 be a sequence of complex numbers such that

the infinite product
∏∞

n=1 |1 + an| converges monotonously. Then, for
all N ,
∣∣∣∣

∞∏

n=1

(1 + an) −
N∏

n=1

(1 + an)

∣∣∣∣ ≤ max

{
1,

∞∏

n=1

|1 + an|
} ∞∑

n=N+1

|an|.

We now present certain notions to further describe algebraic num-
bers. Let a be an algebraic number with minimal polynomial

∑d
i=0 ciX

i

over the integers, with cd > 0. The leading coefficient, cd, is also called
the denominator of a, since cda is an algebraic integer while c′a is not
for any rational integer 0 < c′ < cd.

By rewriting the minimal polynomial of a as cd
∏d

i=1(X−ai) instead,
we define the Mahler measure as

M(a) := cd

d∏

i=1

max{1, |ai|}.

Surprisingly closely related to this is the Weil height, which we define
as

H(α) :=
∏

ν∈MK

max{1, |a|ν}[Kν :Qν ]/[K:Q],

where K is any number field containing a, MK denotes the set of places
of K, Kν is the local field of K at ν, and [K : K′] denotes the degree
of a field extension K ⊇ K′. This does not depend on the choice of K
(see [10] for a proof). We will compare and estimate the house, Mahler
measure, and Weil height using the following classical results.

Lemma 4.4. Let a be an algebraic number with denominator cd. Then

H(α)d =M(α) ≤ |cd|max{1, α d}.
Proof. The inequality is a trivial consequence of the definitions. For
the equality, see Lemma 3.10 of [10]. �
Lemma 4.5. Let a1, . . . , an ∈ Q with a1 6= 0. Then

H(a1 + · · ·+ an) ≤ nH(a1) · · ·H(an), H(a1a2) ≤ H(a1)H(b1),

H (1/a1) = H(a1).
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Proof. See [10]. �
Lemma 4.6 (Liouville Inequality). Let α be a non-zero algebraic num-
ber. Then

|α| ≥
(
2H(α)

)− deg(α)
.

Proof. This can be extracted from [1, Theorem A.1]. �
Finally, we will be using the below lemma to compare the house with

a given max norm on a finite field K seen as a Q-vector space.

Lemma 4.7. Let a1, . . . , ad ∈ Q. Then there is a constant C1 > 0,
depending only on a1, . . . , ad, so that for any (c1, . . . , cd) ∈ Qd,

c1a1 + c2a2 + · · ·+ cdad ≤ C1 max
1≤i≤d

|ci|.

If a1, . . . ad are linearly independent over Q, then there also is a con-
stant C2 > 0 such that

c1a1 + c2a2 + · · ·+ cdad ≥ C2 max
1≤i≤d

|ci|.

Proof. The first statement is proven in [8], so we limit our attention to
the second one. We make the proof by induction. The lemma is trivial
for d = 1, so suppose d > 1 and that the statement holds for d′ = d−1.
If ci = 0 for any i, the induction is trivial, so suppose not. Write

α =
c1a1 + c2a2 + · · · + cdad

ad
= c1

a1
ad

+ c2
a2
ad

+ · · · + cd−1
ad−1

ad
+ cd.

Since a1, . . . , ad are linearly independent over Q, c1, . . . , cd 6= 0, and d >
1, then α must be irrational. Let σ1, . . . , σD be the distinct embeddings
of Q(a1, . . . , an) into Q.

We then have by the induction assumption that

max
1≤i≤D

α− σi(α) = max
1≤i≤D

d−1∑

j=1

cj

(
aj
ad

− σi

(
aj
ad

))
≥ C ′

2 max
1≤i<d

{|ci|},

for some C ′
2 > 0 that depends only on a1/ad, . . . , ad−1/ad and the set

{σ1, . . . , σD}, which in turn only depend on a1, . . . , ad. Pick j such that

α− σjα = max1≤i≤D α− σi(α) . Then

max
1≤i≤D

α− σi(α) = |σk(σj(α)) − σk(α)|,

for a suitable k. Noticing that 1/ 1/ad is the modulus of the smallest
conjugate of ad, we then have

d∑

i=1

ciai = adα ≥ α

1/ad
≥ max{|σk(σj(α))|, |σk(α)|}

1/ad

≥ |σk(σj(α)) − σk(α)|
2 1/ad

≥ C ′
2

2 1/ad
max
1≤i<d

{|ci|},
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and the proof is complete. �

5. Proof of Main Theorems

We will first prove the irrationality result of Theorem 2.5, which we
state below as a separate result for future reference.

Proposition 5.1. Use the notation of Theorem 2.2 except that we as-
sume z2 ≥ 0 rather than z2 ≥ 1. Suppose assumptions (1)-(6) and (12)
are satisfied. Then the number

∏∞
n=1(1 + bn/an) is not contained in K

if either condition (8) or (9) is satisfied. If, for all n ∈ N, bn ∈ Z or
an ∈ Z, then we may replace condition (9) with condition (10).

Theorem 2.2, combining ideas from [7] and [8].

Proof of Theorem 2.2. Write

γ =

∞∏

n=1

(
1 +

bn
an

)
and γN =

N−1∏

n=1

(
1 +

bn
an

)
,

and assume towards contradiction that γ ∈ K.
We start by boudning H(an/bn). Applying Lemmas 4.5 and 4.4

followed by inequalities (3) and (4), we find

H

(
bn
an

)
= H

(
an
bn

)
≤





max{|an|, bn } if an ∈ Z,
max{|bn|, an } if bn ∈ Z,
H(an)H(bn) ≤ an bn regardless

≤
{

|an|max{y1,y2}2log
α
2 an if ∀m ∈ N : am ∈ Z or bm ∈ Z,

|an|y1+y222 logα2 an otherwise.

Instead using only Lemma 4.4, we have

H

(
bn
an

)
≤
∣∣∣∣rnN

(
an
rn

)∣∣∣∣
1/ deg(bn/an)

max

{
1,
bn
an

}

≤
∣∣∣∣rnN

(
an
rn

)∣∣∣∣
1/d0

max
{
1, a−1

n bn
}
,

so that inequalities (4), (5), and (6) yield

H

(
bn
an

)
≤ |an|y2+z1+z2/d023 log

α
2 |an|.

Writing y = min{y′, y2 + z1 + z2/d0} where

y′ =

{
max{y1, y2} if for all n ∈ N : an ∈ Z or bn ∈ Z,
y1 + y2 otherwise,

the above bounds on H(an/bn) combine to

H

(
bn
an

)
≤ |an|y23 log

α
2 |an|.
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Then, by Lemma 4.5,

(14) H(γ − γN) ≤ 2H(γ)

N−1∏

n=1

(
2H

(
an
bn

))
≤ 22N logα2 |aN−1|

N−1∏

n=1

|an|y,

for large values of N .
We now wish to apply Lemma 4.6. By inequalities (1) and (2),

|1 + bn/an| > 0 for all n. Hence, inequality (12) and the fact that
ℜ(an/bn) 6= −1/2 infinitely often makes |γN | monotonous with |γN | 6=
|γ|, being non-decreasing for e = 1 and non-increasing for e = −1.
Hence γ − γN 6= 0 are different for all large enough N , and we may
thus apply the lemma and then inequality (14) to find

|γ − γN | ≥ (2H(γ − γN))
− deg(γ−γN ) ≥

(
23N logα2 |aN−1|

N−1∏

n=1

|an|y
)−d

.

Hence, by Lemma 4.3,
N−1∏

n=1

|an|−dy ≤ 23dN logα2 |aN−1||γ − γN | ≤ 24dN logα2 |aN−1|
∞∑

n=N

∣∣∣∣
bn
an

∣∣∣∣,

and thereby

lim
N→∞

∞∑

n=N+1

∣∣∣∣
bn
an

∣∣∣∣

(
N∏

n=1

|an|dy
)
2N

2 logα2 |aN−1| = ∞.

Recalling the choice of y along with the relevant assumption (8), (9),
or (10), this contradicts Lemma 4.1. This completes the proof. �

We are now left to prove Theorem 2.4. This will follow from Theorem
2.2 and the below result, the proof of which takes inspiration from [8].

Theorem 5.2. Using the notation of Theorem 2.4, suppose all assump-
tions of that theorem, except that inequality (12) does not have to be
satisfied and the assumption z2 ≥ 1 is replaced with z2 > 0. Then the
number

∏∞
n=1(1 + bn/an) is either transcendental or contained in K.

To prove this theorem, we will need the below lemma.

Lemma 5.3. Use the notation and assumptions of Theorem 5.2. Write
M = d(y+ z1+ z2)+ z2+ δ, and let x1, . . . , xd span OK as a Z-module.
Then there exist sequences {p1,N}∞

N=1, . . . , {pd,N}∞
N=1, and {qN}∞

N=1

with pi,N ∈ Z and qN ∈ N with qN > 2N such that the inequalities

(15) |pi,N | ≤ 2N logα2 qN q
1+

y+z1
z2

N

are satisfied for each i = 1, . . . , d and all sufficiently large N , while

(16)

∣∣∣∣∣
∞∑

n=1

bn
an

−
∑d

i=1 pi,Nxi
qN

∣∣∣∣∣ <
1

2dN logα2 qNqM/z2

is satisfied for infinitely many N ∈ N.
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Proof. Clearly, (x1, . . . , xd) forms a Q-linear basis of K. Let π1, . . . , πd :
K → Q denote the associated coordinate maps. Notice that πi maps
integers to integers πi(α) ∈ Z for all α ∈ OK.

For each n ∈ N, pick ãn ∈ Z of minimal modulus such that

ãn+1rn+1N (an+1/rn+1) ≥ ãnrnN (an/rn) ≥ |an|z2,
noting by inequality (6) that then

ãnrnN (an/rn) ≤ 2|an|z22log
α
2 |an|.(17)

Then choose

qN =
N−1∏

n=1

(
ãnrnN

(
an
rn

))
and pi,N = πi

(
qN

N−1∏

n=1

(
1 +

bn
an

))
.

Clearly, qN ∈ N with qN > 2N for large values of N , while we have
pi,N ∈ Z since

(
qN

N−1∏

n=1

(
1 +

bn
an

))
=

N−1∏

n=1

(
ãn(an + bn)

N (an/rn)

an/rn

)
∈ OK.

Noticing

N∏

n=1

(
1 +

bn
an

)
=

∑

S⊆{1,...,N}

∏

n∈S

bn
an
,

it follows from linearity of πi and the triangle inequality
∣∣∣∣
pi,N
qN

∣∣∣∣ =
∣∣∣∣∣πi
(

N−1∏

n=1

(
1 +

bn
an

))∣∣∣∣∣ ≤
∑

S⊆{1,...,N}

∣∣∣∣∣πi
(∏

n∈S

bn
an

)∣∣∣∣∣.

By Lemma 4.7, there then is a C ≥ 1 such that
∣∣∣∣
pi,N
qN

∣∣∣∣ ≤
∑

S⊆{1,...,N}
C
∏

n∈S

bn
an

≤ 2NC

N−1∏

n=1

max
{
1, bn a−1

n

}
.

Hence, by inequalities (4) and (5) along with the fact that z1 ≥ −y,
∣∣∣∣
pi,N
qN

∣∣∣∣ ≤ 2NC
N−1∏

n=1

|an|y+z122 log
α
2 |an| ≤ 2z

α
2N logα2 |aN−1|

N−1∏

n=1

|an|y+z1

for all sufficiently large N . By inequality (17) and the choice of qN , we
conclude inequality (15), since

∣∣∣∣
pi,N
qN

∣∣∣∣ < 2N logα2 (ãnrnN (an/rn))
N−1∏

n=1

(ãnrnN (an/rn))
y+z1
z2

≤ 2N logα2 qNq
y+z1
z2

N .
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We now just have to ensure that inequality (16) holds for infinitely
many N . The choice of pi,N and Lemma 4.3 show that
∣∣∣∣∣

∞∏

n=1

(
1 +

bn
an

)
−
∑d

i=1 pi,Nxi
qN

∣∣∣∣∣ =
∣∣∣∣∣

∞∏

n=1

(
1 +

bn
an

)
−

N−1∏

n=1

(
1 +

bn
an

)∣∣∣∣∣

≤ C ′
∞∑

n=N

∣∣∣∣
bn
an

∣∣∣∣

holds for all sufficiently large N and a suitable C ′ ≥ 1. By inequality
(11) and the choice of M , Lemma 4.1 then implies that

∣∣∣∣∣
∞∏

n=1

(
1 +

bn
an

)
−
∑d

i=1 pi,Nxi
qN

∣∣∣∣∣ <
(

N∏

n=1

|an|−M
)
2−N

2 logα2 |aN−1|

for infinitely many N . For these N , the choices of ãn and qN now allow
us to conclude inequation (16) by calculating
∣∣∣∣∣

∞∏

n=1

(
1 +

bn
an

)
−
∑d

i=1 pi,Nxi
qN

∣∣∣∣∣ <
q
−M/z2
N

22dN
2−α logα2 ((rN−1ãN−1N (an/rn))N )/zα1

≤ 1

2dN logα2 qNq
M/z2
N

.

This completes the proof. �
Proof of Theorem 5.2. By Lemma 5.3, infinitely many (p1, . . . , pd, q) ∈
Zd × N satisfy both inequalities (15) and (16) with |pi| < qC for some
fixed C > 0 that does not depend on (p1, . . . , pd, q). We first rewrite
inequality (16) by recalling M = d(y + z1 + z2) + z2 + δ,

∣∣∣∣∣q
∞∏

n=1

(
1 +

bn
an

)
−

d∑

i=1

pixi

∣∣∣∣∣
d∏

i=1

(
q
1+

d(y+z1+z2)
z2 2N logα2 q

)
< q−δ/z2 .

It then follows from the inequalities of (15) that
∣∣∣∣∣q

∞∏

n=1

(
1 +

bn
an

)
−

d∑

i=1

pixi

∣∣∣∣∣
d∏

i=1

max{1, |pi|} < q−δ/z2 .

Lemma 4.2 now implies that
∏∞

n=1

(
1+bn/an

)
cannot both be algebraic

and Q-linearly independent of x1, . . . , xd. In other words, the number∏∞
n=1

(
1 + bn/an

)
is either contained in K or transcendental, and the

proof is complete. �
Proof of Theorem 2.5. Replace δ and z2 with δ′ = δ/(d + 2) and z′2 =
z2 + δ′, respectively. Then the statement follows from Proposition 5.1
and Theorem 5.2. �
Proof of Theorems 2.2 and 2.4. Let {cn}∞

n=1 be a sequence of positive
integers. Replacing an and rn by ancn and cnrn, respectively, then
invalidates neither an ≥ n1+ε nor any of the inequalities (2)-(7) since
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we clearly have ε, β, y2 ≥ 0, y1, z2 ≥ 1, and z1 ≥ −1. Rearranging
the terms of {ancn/bn}∞

n=1 so that |ancn| becomes non-decreasing then
allows us to apply Theorem 2.5 on the number

∏∞
n=1

(
1 + bn

ancn

)
. This

completes the proof. �
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1.7 Algebraic independence of infinite series

This section presents the recent paper [23] by Hančl, Kristensen, and the current
author. The paper contains new criteria for linear and algebraic independence of
finite sets real numbers expressed as infinite series of rational numbers as well as
new notions for irrationality and transcendence of sequences.

Recall from the end of Section 1.1 that a list of complex numbers (a1, . . . , aK)
is algebraically independent if P (a1, . . . , aK) ̸= 0 for all integer polynomials P ∈
Z[X1, . . . , XK ] in K variables. When K = 1, this is just a repetition of the
definition of transcendence. When K ≥ 2, however, we have a property that is
strictly stronger than being linearly independent over Q, which is the best we can
get from any of the papers presented in the preceding sections.

The new notions of irrationality and transcendence are as follows. Notice that
the main difference from Definitions 1.4 and 1.5 is that we assume p ∤ cn rather
than assuming cn > 0.

Definition 1.72. Let {a1,n}∞n=1, . . . , {aK,n}∞n=1 be sequences of real or complex num-
bers, and let P be a non-empty set of prime numbers.

• The (Σ,P)-expressible set of {a1,n}∞n=1, . . . , {aK,n}∞n=1 is defined as

EΣ,P
(
{ai,n}∞n=1

)K
i=1

:=





( ∞∑

n=1

1

ai,ncn

)K

i=1

: cn ∈ Z \
⋃

p∈P
pZ for all n ∈ N



 .

• The sequences {a1,n}∞n=1, . . . , {aK,n}∞n=1 are said to be (Σ,P)-linearly inde-
pendent over Q if the numbers 1, ξ1, . . . , ξK are linearly independent over Q
for all lists (ξ1, . . . , ξd) in EΣ,P({a1,n}∞n=1, . . . , {aK,n}∞n=1)

• The sequences {a1,n}∞n=1, . . . , {aK,n}∞n=1 are said to be (Σ,P)-algebraically
independent if each list of numbers in EΣ,P({a1,n}∞n=1, . . . , {aK,n}∞n=1) is al-
gebraically independent.

• We say that a single sequence {an}∞n=1 is (Σ,P)-irrational (respectively
(Σ,P)-transcendental) if all elements of EΣ,P{an}∞n=1 are irrational (respect-
ively transcendental).

When P = {p}, we may write (Σ, p) in place of (Σ, {p}) for each of the above
definitions.

Inspired by [15,16], the definitions of (Σ,P)-irrationality and (Σ,P)-transcen-
dence (including when P is replaced by p) were introduced in [23], while the notions
of (Σ,P)-linear independence and (Σ,P)-algebraic independence do not appear to
have been used before the present thesis.
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In parallel to Definition 1.5, one may generalize to notions of (XK,P)-irrationa-
lity, (X,P)-transcendence, (X,P)-linear independence overK, and (X,P)-algebraic
independence when X is any one of the labels Σ, Π, and CF. We will, however,
only need the notions presented in Definition 1.72.

Notice that in all generalizations of Erdős’ Theorem 1.3 presented so far in
this chapter, there has been one or more bounds related to the real value of an
(or to a complex number times an). When dealing with the p- and P-variants
of irrationality, transcendence, and so on, we instead introduce certain bounds on
the p-adic valuation of an. The p-adic valuation, denoted νp, is defined so that
νp(0) = ∞ and νp(n) ∈ N0 with pνp(n) | n and pνp(n)+1 ∤ n when n is a non-
zero integer. We then get the following alternative version of Theorem 1.3, which
combines Theorems 5 and 10 from [23].

Theorem 1.73 (Hančl–Kristensen–Laursen, 2025 on arXiv). Let α ∈ (0, 1), let
ε > 0, let p be a prime number, and let Cp > 0. Let {an}∞n=1 and {bn}∞n=1 be
sequences of non-zero integers with p ∤ gcd(an, bn) such that for each n ∈ N,

νp(an) ≤ Cp or νp(an) ̸= νp(a1), . . . , νp(an−1) (1.19)

and
sup
n∈N

νp(an) = ∞. (1.20)

Suppose that

|an+1| ≥ |an| ≥ n1+ε, |bn| ≤ 2log
α
2 |an|, and lim sup

n→∞
|an|2

−n
= ∞. (1.21)

Then the sequence {an/bn}∞n=1 is (Σ, p)-irrational.
Suppose we replace equation (1.20) by supn∈N νp(an) > Cp. If the assumptions

are now all satisfied for all p in an infinite set of prime numbers P, then {an/bn}∞n=1

is (Σ,P)-irrational.
If furthermore, lim supn→∞ |an|d−n = ∞ for all d ∈ N, then the above state-

ments of p- and P-irrationality may be replaced by statements of p- and P-tran-
scendence, respectively.

Notice that the limsup condition required for transcendence is rather strict and
no more lenient than that of Theorem 1.11. Having seen Theorems 1.13 and 1.50,
it would only be natural for the reader to expect a weakening of this assumption.
Not wanting to disappoint, let us consider the below result, which is a special case
of [38, Theorem 5.1] by the current author.

Theorem 1.74 (Laursen, 2024). Let α ∈ (0, 1) and δ, ε > 0. Let {an}∞n=1 and
{bn}∞n=1 be sequences of non-zero integers that satisfy assumption (1.21) and

lim sup
n→∞

a(3+δ)
−n

n = ∞.
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Let {cn}∞n=1 be a sequence of positive integers. Then the number
∑∞

n=1 bn/(ancn)
is either transcendental or rational.

Notice that the above theorem makes no assumptions on valuation or sign of
an other than an ̸= 0. Combined with the irrationality statement of Theorem 1.73,
we reach the following theorem.

Theorem 1.75. Let α ∈ (0, 1), let δ, ε > 0, let p be a prime number, and let Cp > 0.
Let {an}∞n=1 and {bn}∞n=1 be sequences of non-zero integers with p ∤ gcd(an, bn) such
that assumptions (1.19)–(1.21) are satisfied for all n ∈ N. If

lim sup
n→∞

a(3+δ)
−n

n = ∞,

Then the sequence {an/bn}∞n=1 is (Σ, p)-transcendental.
Suppose we replace equation (1.20) by supn∈N νp(an) > Cp. If the assumptions

are now all satisfied for all p in an infinite set of prime numbers P, then {an/bn}∞n=1

is (Σ,P)-transcendental.

Proof. Let P be either the set containing the single prime number p or the infinite
set of prime numbers from the theorem, depending on which assumptions are made.
Let {cn}∞n=1 be a sequence of integers with p ∤ cn for all p ∈ P . We are then to
show that the number

∑∞
n=1 bn/(ancn) is transcendental. We already know that it

is irrational from Theorem 1.73. Transcendence now follows from Theorem 1.74
by rewriting

∞∑

n=1

bn
ancn

=
∞∑

n=1

bn
(ancn/|cn|)|cn|

.

Like most other results from [23], Theorem 1.73 is proven as a corollary to
Theorems 1 and 6 of the paper. Combined, these theorems read as follows.

Theorem 1.76 (Hančl–Kristensen–Laursen, 2025 on arXiv). Let K and d be positive
integers, let α ∈ (0, 1), let ε > 0, and let p be a prime number. For i = 1, . . . , K,
let {ai,n}∞n=1 and {bi,n}∞n=1 be sequences of non-zero integers with p ∤ gcd(ai,n, bk,n)
such that for each sufficiently large N ∈ N,

νp(ai,n) = max
1≤m≤N

νp(ai,m)

for exactly one n ≤ N and

lim
N→∞

(
max

1≤n≤N
νp(ai,n)− d max

1≤n≤N
νp(ai−1,n)

)
= ∞, (1.22)

writing a0,n = 1 for all n. Suppose there is a sequence {an}∞n=1 of integers such
that for every i = 1, . . . , K and each sufficiently large n ∈ N,

n1+ε ≤ an ≤ an+1, |bi,n| ≤ 2(log2 an)
α

,
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an2
−(log2 an)

α ≤ |ai,n| ≤ max
{
an2

(log2 an)
α

, 2n
−3(Kd+1)n

}
,

and
lim sup
n→∞

a(Kd+1)−n
n = ∞.

Then the list of numbers
(∑∞

n=1 b1,n/a1,n, . . .,
∑∞

n=1 bK,n/aK,n
)
is not the root of

any non-zero polynomial of K variables with integer coefficients and degree less
than or equal to d.

The same is true if we replace equation (1.22) by

max
n=1,...,N

νp(ai,n) > d max
n=1,...,N

νp(ai−1,n), (1.23)

and assume that all assumptions are satisfied for not one but infinitely many dis-
tinct prime numbers p.

Suppose K = 2 and that d is replaced by 3 in equation (1.22) and inequal-
ity (1.23). If all assumptions are otherwise satisfied, then the pair of numbers(∑∞

n=1 b1,n/a1,n,
∑∞

n=1 b2,n/a2,n
)
is non-degenerately independent of order d.

The term non-degenerately independent of order d is introduced in [23] and
means that the two numbers considered are not the root of any P ∈ Z[X1, X2] of
degree at most d unless that P belongs to a rather sparse family of polynomials. To
be precise, this family consists of exactly those polynomials of degree 4 or greater
for which the set of solutions to P (x1, x2) = 0 over C defines a manifold of geometric
genus at most 1. A pair of numbers is called non-degenerately independent if it is
non-degenerately independent of order d for all d ∈ N.

The remaining results of [23] regard algebraic independence of numbers [23,
Theorems 2 and 7] and non-degenerate independence [23, Theorems 3 and 8] (see
subsection 1.7.2).

We now extract the following criteria for linear and algebraic independence of
the (Σ, p) and (Σ,P) types, which are not explicitly stated in the paper.

Theorem 1.77. Let K and d be positive integers, let α ∈ (0, 1), let ε > 0, and let
p be a prime number. For i = 1, . . . , K, let {ai,n}∞n=1 and {bi,n}∞n=1 be sequences of
non-zero integers with p ∤ gcd(ai,n, bk,n) such that for all n ∈ N,
[
νp(ai,n) ≤ C or νp(ai,n) ̸= νp(a1), . . . , νp(an−1)

]
, νp(ai,n) ≥ νp(ai−1,n), (1.24)

and
lim sup
n→∞

(
νp(ai,n)− νp(ai−1,n)

)
= ∞, (1.25)

writing a0,n = 1 for all n. Suppose there is a sequence {an}∞n=1 of integers such
that for every i = 1, . . . , K and each sufficiently large n ∈ N,

n1+ε ≤ an ≤ an+1, |bi,n| ≤ 2(log2 an)
α

,
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an2
−(log2 an)

α ≤ |ai,n| ≤ max
{
an2

(log2 an)
α

, 2n
−3(Kd+1)n

}
,

and
lim sup
n→∞

a(K+1)−n
n = ∞. (1.26)

Then the sequences {a1,n/b1,n}∞n=1, . . . , {aK,n/bK,n}∞n=1 are (Σ, p)-linearly independ-
ent over Q. If furthermore, for all A ∈ N,

lim sup
n→∞

νp(ai,n)

1 + νp(ai−1,n)
= ∞ and lim sup

n→∞
aA

−n
n = ∞, (1.27)

then the sequences {a1,n/b1,n}∞n=1, . . . , {aK,n/bK,n}∞n=1 are (Σ, p)-algebraically inde-
pendent.

Let P be an infinite set of prime numbers. Replace inequality (1.25) by

lim sup
n→∞

(
νp(ai,n)−max{C, νp(ai−1,n)}

)
> 0, (1.28)

and assumption (1.27) by

lim sup
n→∞

(
νp(ai,n)−max{C,Aνp(ai−1,n)}

)
> 0 and lim sup

n→∞
aA

−n
n = ∞. (1.29)

Suppose that any assumption made for p is made for all p ∈ P. Then the
above statements remain true but with ‘(Σ, p)-linearly independent’ and ‘(Σ, p)-
algebraically independent’ replaced by ‘(Σ,P)-linearly independent’ and ‘(Σ,P)-
algebraically independent’, respectively.

Notice that assumption (1.29) implies (1.27) for i > 1 but not for i = 1. The
proof of this theorem is essentially the same as that of Theorem 1.73, but we will
repeat it here for clarity, modifying the details to fit the current statement.

Proof. Let P be either the set containing the single prime number p or the infin-
ite set of prime numbers from the theorem, depending on which assumptions are
made. Let {cn}∞n=1 be an infinite set of integers with p ∤ cn for all p ∈ P , and let
σ : N → N be a bijection so that {An}∞n=1 is non-decreasing where An = aσ(n)|cσ(n)|.
Put Ai,n = ai,σ(n)cσ(n) and Bi,n = bi,σ(n). Notice that all assumptions of Theorem
1.76 not involving gcd or νp are then clearly satisfied. Let p ∈ P . Since p ∤ cn,
we have νp(Ai,n) = ai,σ(n) and gcd(Ai,n, Bi,n) = gcd(ai,σ(n), bi,σ(n)). Then notice
that assumption (1.24) combined with either equation (1.25) or (1.28) implies the
remaining assumptions of Theorem 1.76 with d = 1. If we instead combine assump-
tion (1.24) with either equation (1.27) or (1.29), then the remaining assumptions
of Theorem 1.76 are satisfied for all d ∈ N. This completes the proof.

Compared to the transcendence criterion in Theorems 1.75 and 1.77, the limsup
criterion lim supn→∞ aA

−n
n = ∞ required for algebraic independence appears rather

strict. Unfortunately, this author has not discovered any way to prove a more
lenient assumption.
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1.7.1 Examples

Recall the Riemann zeta function ζ as defined in equation (1.3). Related to this,
the following example may then be extracted from Remark 4 of [23].

Example 1.78 (Hančl–Kristensen–Laursen, 2025 on arXiv). Let s > 1 be a positive
integer, and let {an}∞n=1 be a sequence of odd integers with |an+1| ≥ |an| and
lim supn→∞ |an|2−n = ∞. Then the number

∑∞
n=1 1/(n

san) is irrational. This
follows from Theorem 1.76 with d = 1 and p = 2.

Remark 1.79. This example only works for the prime p = 2. The reason is as
follows. For any given k, the smallest positive integer n with νp(n) ≥ k is the
number pk, and the next one is 2pk. When p = 2, we have ν2(2

k) < ν2(2 ·2k), which
is well in line with the assumptions. However, when p > 2, then νp(p

k) = νp(2p
k),

which breaks one of the first assumptions of Theorem 1.76.

This example is easily modified to one regarding transcendence.

Example 1.80. Let s > 1 be a positive integer, let δ > 0, and let {an}∞n=1 be a
sequence of odd integers with |an+1| ≥ |an| and lim supn→∞ |an|(3+δ)−n = ∞. Then
the number

∑∞
n=1 1/(n

san) is transcendental. This follows by combining the above
example with Theorem 1.74.

In comparing the new Theorem 1.75 with Theorem 1.73, we may also improve
Example 6 of [23] to the following.

Example 1.81. Let z ∈ N with z ≥ 2, let δ > 0, and let {an}∞n=1 be a non-decreasing

sequence of positive integers with gcd(an, z) = 1 and lim supn→∞ a
(3+δ)−n
n = ∞.

Let {rn}∞n=1 be a sequence of pairwise different non-negative integers. Then the
sequence {zrnan}∞n=1 is (Σ, p)-transcendental for all prime numbers p dividing z.

By combining the ideas from Examples 1, 2, and 4 of [23], we get new examples
on (Σ, p)-algebraic independence and (Σ, p)-linear independence.

Example 1.82. Let z be a non-zero integer, and let {an}∞n=1 be a non-decreasing
sequence of positive integers with p ∤ an such that lim supn→∞ aA

−n
n = ∞ for every

positive integer A. Then the sequences {anzn}∞n=1, {anzn
2}∞n=1, . . . , {anzn

K}∞n=1 are
(Σ, p)-algebraically independent for all prime numbers p dividing z.

Example 1.83. Let K, z ∈ N, and let {an}∞n=1 be a non-decreasing sequence of

integers with p ∤ an such that lim supn→∞ a
(K+1)−n
n = ∞ for all A ∈ N. Then the

sequences {anzn}∞n=1, {anz2n}∞n=1, . . . , {anzKn}∞n=1 are (Σ, p)-linearly independent
over Q for all prime numbers p dividing z.

Meanwhile, examples of (Σ,P)-linear independence and (Σ,P)-algebraic inde-
pendence with infinite P may be extracted straight from Examples 7 and 8 of [23].
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Example 1.84. Let K be a positive integer, and let {rn}∞n=1 be a strictly increasing
sequence of positive integers such that lim supn→∞ rn/(K +1)n = ∞. Let {pn}∞n=1

be an unbounded and non-decreasing sequence of prime numbers, and let P be an
unbounded subset of these pn. Then the sequences {p1+rnn }∞n=1, . . . , {pK+rn

n }∞n=1 are
(Σ,P)-linearly independent over Q.

Example 1.85. Let {pn}∞n=1 be a strictly increasing sequence of odd prime numbers,
and let {rn}∞n=1 be a non-decreasing sequence of integers such that rn ≥ pn and
lim supn→∞(rn/A

n) = ∞ for all A ∈ N. Let P be a set of infinitely many of these
pn, and write a1,n = 2rnpn and ak+1,n = 2rn(p1 · · · pn)nk−1

for all k, n ∈ N. Then
the sequences {a1,n}∞n=1, . . . , {a1,n}∞n=1 are (Σ,P)-algebraically independent.

The Examples and applications section on pages 8–11 of the below paper con-
tain the original versions of the examples presented above as well as additional
examples, including some for (Σ, p)- and (Σ,P)-irrationality.

1.7.2 Paper 6: Algebraic independence of infinite series

Below, the reader will find the most recent preprint of the paper [23], which is
joint work between Jaroslav Hančl, Simon Kristensen, and the current author.
The paper is currently under review but has not yet been accepted for publication.
A preprint is available on arXiv through the link https://arxiv.org/abs/2502.

19079v1 or by using the arXiv identifier 2502.19079.
The day before the deadline of this thesis, the current author found a small

technical mistake in the preprint on arXiv, which is corrected in the below version.
The mistake was found in the proof of [23, Lemma 22] and required an improvement
to [23, Lemma 11] and its proof.

This mistake has been corrected in the below version of the paper, which has
a total length of 30 pages, including front page and abstract, with the remaining
28 pages being numbered 1 through 28.

Similar to the case of [38], which is presented in subsection 1.6.2, the Erdős
Jump (i.e., Lemma 11) of the below paper can be further improved. Specifically,
the assumptionM ≥ 0 of the lemma can be replaced byM > −1 without affecting
the proof in any meaningful way. This is not important to the paper itself, but it
may be for a future paper, as it happened in [39].

https://arxiv.org/abs/2502.19079v1
https://arxiv.org/abs/2502.19079v1
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Abstract

We give conditions on a finite set of series of rational numbers to ensure that
they are algebraically independent. Specialising our results to polynomials
of lower degree, we also obtain new results on irrationality and Q-linear
independence of such series.



1 Introduction

The study of irrationality and transcendence of numbers date back to an-
tiquity, where an unfortunate Pythagorean lost his life in proving the irra-
tionality of

√
2. Much later, in the late nineteenth century, the existence of

transcendental numbers was proven, explicit examples were provided, and
some famous numbers such as π and e were shown to be transcendental.
Later on, concepts such as linear independence over Q, over Q and algebraic
independence of numbers have been important. In the first two cases, one
thinks of the set of real numbers R as a vector space defined over the ra-
tionals, Q, or the algebraic numbers, Q, and investigate whether a set of
numbers is linearly independent over the base field as vectors. For alge-
braic independence, one investigates whether a set of K real numbers has
the property that no non-zero integer polynomial in K variables vanishes at
this set. In this case, the numbers are said to be algebraically independent.
Of course, if one considers only polynomials of degree 1, the notion of linear
independence over Q is rediscovered. If furthermore K = 1, the question of
irrationality is rediscovered.

The present paper is concerned with algebraic independence of a finite set
of real numbers given in terms of series of rationals. More precisely, we will
derive conditions on such a set of series which ensure that the numbers are
algebraically independent. An important result in this respect is the 1975
result of Erdős [4], where it is shown that if {an}∞n=1 is an increasing sequence
of positive integers with an > n1+ϵ for some ϵ > 0 and

lim sup
n→∞

a1/2
n

n = ∞,

then the number
∑∞

n=1
1
an

is irrational. The result has been extended numer-
ous times by various authors to encompass a wider range of series [7] as well
as series with more general denominators [10, 1, 16].

Our objective here is to obtain criteria ensuring algebraic independence
of a set of such series. We will allow for numerators as well as denominators,
although our series will remain defined over the rationals. One novelty of
our approach is that we are able to remove the restriction of positivity in
Erdős’ result at some expense. The conditions obtained will look somewhat
cumbersome and technical. In order to demonstrate their applicability, we
will provide a large number of examples of concrete series, which we show to
be irrational, linearly independent over Q or even algebraically independent.

1



2 Main results

We will now state our main theorem. We will be considering series of the
form

αk =
∞∑

n=1

bk,n
ak,n

,

where for k = 1, 2, . . . , K, {ak,n}∞n=1 and {bk,n}∞n=1 are sequences of non-zero
integers. Our results depend heavily on the joint divisibility properties of the
denominators. In our main result, we express the required properties in terms
of the p-adic valuation. As usual, for a prime p and an integer n, we will let
νp(n) denote the p-adic valuation of n, i.e., νp(0) = ∞ and, for n ̸= 0, νp(n)
is the unique non-negative integer such that pνp(n)|n but pνp(n)+1 ∤ n. With
this in mind, we now state our main result on the algebraic independence
of a finite set of series of the above form. In some of the theorems, we give
conditions to ensure that non-zero polynomials P ∈ Z[x1, . . . , xK ] of a degree
bounded by a fixed integer d will all satisfy P (α1, . . . , αK) ̸= 0. We here take
the degree of a polynomial to be the maximum degree of its monomial terms,
and we define deg(xi11 · · ·xiKK ) = i1 + · · ·+ iK .

When only two series are considered, so that K = 2, we are able to obtain
much weaker criteria at the cost of arriving at a somewhat weaker conclusion.
To fix ideas, we define a weaker notion here. For a polynomial P (x1, x2), let
P̃ (x1, x2, x3) be the projective version of P , i.e., the homogeneous polynomial
obtained from P by multiplying each monomial with x3 sufficiently many
times that the resulting polynomial is homogeneous of the same degree as
the original one. This polynomial defines a plane, projective curve, CP ∈ P2.
If this curve is smooth, its (geometric) genus g(CP ) is given by the genus–
degree formula,

g(CP ) =
(degP − 1)(degP − 2)

2
.

If the curve is singular, the genus decreases. An ordinary singularity of
multiplicity r decreases the genus by r(r − 1)/2. Non-ordinary singularities
need to be examined individually. We will say that two numbers α1 and α2

are non-degenerately independent of order d if no integer polynomial P in two
variables of degree at most d such that degP ≤ 3 or g(CP ) ≥ 2 vanishes at the
point (α1, α2). If two numbers α1 and α2 are non-degenerately independent of
order d for any d, we will say that α1 and α2 are non-degenerately algebraically
independent.

For polynomials P such that the resulting plane, projective curve is
smooth, the genus condition is satisfied as soon as degP > 3. For higher
degrees, we are removing certain potential algebraic dependencies with this
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definition, arising from the decrease in genus from the singularities. One
should stress that most polynomials give rise to a smooth curve, and that if
the degree is large, most non-smooth curves will have genus ≥ 2. In work
in progress [15], F. Pazuki and the second named author obtain a counting
estimate for polynomials of fixed degree d resulting in a curve of fixed genus
g.

Theorem 1. Let K and d be positive integers, let ε and κ be positive real
numbers with κ < 1, and let p be a prime number. For k = 1, . . . , K, let
{ak,n}∞n=1 and {bk,n}∞n=1 be sequences of non-zero integers with p ∤ gcd(ak,n, bk,n)
such that for each sufficiently large N ∈ N,

νp(ak,n) = max
1≤m≤N

νp(ak,m) (1)

for exactly one n ≤ N and

lim
N→∞

(
max

1≤n≤N
νp(ak,n)− d max

1≤n≤N
νp(ak−1,n)

)
= ∞, (2)

writing a0,n = 1 for all n. Suppose there is a sequence {an}∞n=1 of integers
such that for every k = 1, . . . , K and each sufficiently large n ∈ N,

n1+ε ≤ an ≤ an+1, (3)

an2
−(log2 an)

κ ≤ |ak,n| ≤ max
{
an2

(log2 an)
κ

, 2n
−3(Kd+1)n

}
, (4)

|bk,n| ≤ 2(log2 an)
κ

, (5)

and

lim sup
n→∞

a
1

(Kd+1)n

n = ∞. (6)

For k = 1, . . . , K, set αk =
∑∞

n=1
bk,n
ak,n

. Then (α1, . . . , αK) is not the root of

any non-zero polynomial of K variables with integer coefficients and degree
less than or equal to d.

If K = 2, this is also true when d is replaced by 3 in equation (2) and
the non-vanishing conclusion is replaced by non-degenerately independent of
order d.

It is worth noting that in the last case of the theorem, if one replaces
3 with any higher number d′, say, (2) automatically rules out the existence
of polynomials of degree ≤ d′ vanishing at the point (α1, α2). This cuts
down on the number of degenerate polynomials potentially obstructing full
independence.
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The conditions of Theorem 1 may seem unwieldy to check, and their origin
may not be terribly clear. Let us take a moment to digest them. Condition
(3), (4), (5) and (6) are reminiscent of the conditions in Erdős’ paper [4],
except that no numerators were present in that paper, and it had K = 1
and an = a1,n. Nonetheless, the role played by these conditions is similar
and will be used to show that the theorem follows from a result about the
partial sums

∑∞
n=N bk,n/ak,n when N is large. Assumptions (4) and (5) arise

from considering several numbers and from having a non-fixed denominators,
respectively, and essentially allow us to replace the sequences {ak,n}∞n=1 and
{bk,n}∞n=1 with the single sequence {an}∞n=1 for a central part of the proof.

The novelty of our result lies in the origins of assumptions (1) and (2). As
we shall see, their role is to ensure that no integer polynomial in K variables
will vanish at infinitely many of the partial sums of the numbers αk.

From the conditions in Theorem 1, we could easily formulate conditions
under which (2) and (6) hold for every value of d ∈ N. This immediately
leads us to a criterion for algebraic independence of the αk in the following
way.

Theorem 2. Let K be a positive integer, let p be a prime number, and let ε
and κ be positive real numbers with κ < 1. For k = 1, . . . , K, let {ak,n}∞n=1

and {bk,n}∞n=1 be sequences of non-zero integers with p ∤ gcd(ak,n, bk,n) so that
assumption (1) is satisfied for exactly one n ≤ N when N is sufficiently
large, while

lim
N→∞

maxn=1,...,N νp(ak,n)

1 + maxn=1,...,N νp(ak−1,n)
= ∞, (7)

where a0,n = 1 for each n ∈ N. Suppose there is a non-decreasing sequence
{an}∞n=1 of positive integers that, for each k = 1, . . . , K and all sufficiently
large n,A ∈ N, satisfies assumption (3), (5),

an2
−(log2 an)

κ ≤ |ak,n| ≤ max
{
an2

(log2 an)
κ

, 2A
n}
, (8)

and
lim sup
n→∞

a
1
An
n = ∞. (9)

For k = 1, . . . , K, set αk =
∑∞

n=1
bk,n
ak,n

. Then α1, . . . , αK are algebraically

independent over Q.

As stated in the results, when K = 2, most of the conditions needed for
our two previous results become simpler at the cost of removing potential
degenerate cases of algebraic dependence. Indeed, it is straightforward to
check in this case that the following holds.
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Theorem 3. Let {ak,n}∞n=1, {bk,n}∞n=1, {an}∞n=1, and αk be given as in The-
orem 1 with K = 2, d = 3, and the additional assumption that for every
positive integer A,

lim sup
n→∞

a
1
An
n = ∞.

Then α1 and α2 are non-degenerately algebraically independent over Q.

If we focus on K = 1, we also get new irrationality and transcendence
criteria, which we will phrase in terms of the following definitions of p-
irrationality and p-transcendence.

Definition 4. Let p be a prime number. We say that a sequence of non-zero
numbers {an}∞n=1 is p-irrational or p-transcendental, if for every sequence
{cn}∞n=1 of integers cn with p ∤ cn, the infinite series

∞∑

n=1

1

ancn

converges to a number that is irrational or transcendental, respectively.

This generalises the notions of irrational and transcendental sequences
introduced by Erdős [4] and Hančl [6], respectively, where it is assumed that
cn > 0 rather than p ∤ cn. From Theorem 1, we obtain the below result.

Theorem 5. Let p be a prime number, let C be a positive integer, and let ε
and κ be positive real numbers with κ < 1. Let {an}∞n=1 and {bn}∞n=1 be se-
quences of non-zero integers with p ∤ gcd(an, bn) such that lim supn→∞ νp(an) =
∞ and either νp(am) ̸= νp(an) or νp(am) = νp(an) ≤ C when m ̸= n. Sup-
pose that an+1 ≥ an ≥ n1+ε and |bn| ≤ 2(log2 |an|)

κ
when n is sufficiently large.

Then the sequence {an/bn} is p-irrational if

lim sup
n→∞

|an|
1
2n = ∞, (10)

and it is p-transcendental if equation (9) is satisfied for every positive integer
A.

Proof. Let cn ∈ Z with p ∤ cn, and let σ : N → N be the bijection so that |An|
is non-decreasing where An = aσ(n)cσ(n), and put Bn = bσ(n). If equation
(9) is satisfied, let d ∈ N be arbitrary. If not, assume equation (10), and
put d = 1. Since certainly

∑∞
n=1

bn
ancn

=
∑∞

n=1
Bn
An
, the theorem follows if we

can show that {An}n=1 and {Bn}∞n=1 satisfy the assumptions of Theorem 1.
We immediately notice that inequalities (2), (4), (5), and (6) are satisfied.
Since An is non-decreasing and |ancn| ≥ an ≥ n1+ε, inequality (3) must also
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be satisfied. As p ∤ cn, gcd(an, bn), it follows that p ∤ gcd(An, Bn), while the
facts that p ∤ cn, lim supn→∞ νp(n) = ∞, and νp(n) ̸= νp(m) when νp(n) and
m ̸= n are large ensure that equation (1) can be satisfied by at most one
n ≤ N when N is large. Thus, all assumptions of Theorem 1 are satisfied.

Remark 1. When {cn}∞n=1 is a sequence of non-zero integers, as is the case
when all cn are non-divisible by any given prime, then α =

∑∞
n=1

bn
ancn

is
absolutely convergent, and so the resulting number is the same if we reorder
the terms. Hence, if we have νp(am) ̸= νp(an) for all m ̸= n, we can freely
reorder the terms to ensure that νp(an) is strictly increasing. Then an ≥
pνp(an) ≥ pn−1, and so we automatically get the assumptions lim sup νp(an) =
∞ and an ≥ n1+ε when n is sufficiently large, thus reducing the number of
assumptions one needs to check when applying Theorem 5 to such a sequence.

In Theorem 1, we might also consider what happens if we keep track
of multiple prime numbers p rather than just one. This leads to the below
theorem, the proof of which is almost identical to that of Theorem 1. As
such, these two theorems will be proven in unison.

Theorem 6. Let K and d be positive integers, let ε and κ be positive real
numbers with κ < 1 and let P be a set of infinitely many prime numbers. For
k = 1, . . . , K, let {ak,n}∞n=1 and {bk,n}∞n=1 be sequences of non-zero integers
with p ∤ gcd(ak,n, bk,n) for each fixed p ∈ P. Suppose that for each sufficiently
large N ∈ N, exactly one n ≤ N satisfies equation (1) while

max
n=1,...,N

νp(ak,n) > d max
n=1,...,N

νp(ak−1,n), (11)

where a0,n = 1. Suppose that there is a sequence {an}∞n=1 that satisfies as-
sumptions (3), (4), (5), and (6) for every k = 1, . . . , K and n ∈ N. For

k = 1, . . . , K, set αk =
∑∞

n=1
bk,n
ak,n

. Then (α1, . . . , αK) is not the root of any

non-zero polynomial of K variables with integer coefficients and degree less
than or equal to d.

If K = 2, this is also true when d is replaced by 3 in equation (11) and
the conclusion is replaced by non-degenerate independence of order d.

As with Theorem 1, one could replace 3 in the last part by a number
d′ > 3 to cut down on the number of potentially ‘bad’ polynomials

This theorem has corollaries in complete parallel to Theorems 2 and 3.

Theorem 7. Let K be a positive integer, let P be an infinite set of a prime
numbers, and let ε and κ be positive real numbers with κ < 1. For k =
1, . . . , K, let {ak,n}∞n=1 and {bk,n}∞n=1 be sequences of non-zero integers such
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that, for all p ∈ P, p ∤ gcd(ak,n, bk,n), assumption (1) is satisfied for exactly
one n ≤ N when N is sufficiently large, and if k > 1, then equation (7)
is satisfied. Suppose there is a non-decreasing sequence {an}∞n=1 of positive
integers that, for each k = 1, . . . , K and all sufficiently large A, n ∈ N,
satisfies assumptions (3), (5), (8), and (9). For k = 1, . . . , K, set αk =∑∞

n=1
bk,n
ak,n

. Then α1, . . . , αK are algebraically independent over Q.

Theorem 8. Let {ak,n}∞n=1, {bk,n}∞n=1, {an}∞n=1, and αk be given as in The-
orem 6 with K = 2, d = 3, and the additional assumption that for every
positive integer A,

lim sup
n→∞

a
1
An
n = ∞.

Then α1 and α2 are non-degenerately algebraically independent over Q.

Remark 2. Theorems 2 and 7 are very similar in their assumptions. In
fact, the only differences are that Theorem 7 does not assume equation (7)
for K = 1 and that it makes its assumptions for infinitely many primes p.
This is a consequence of how an unbounded d makes νp(ak,n) unbounded
when k > 1, which in turn makes the differences between inequality (11) and
equation (2) small when d grows large. As such, Theorem 7 should only be
used when νp(an,1) is bounded for all fixed p ∈ P (or when it is unknown
if this is the case); otherwise, Theorem 2 would be sufficient by just picking
any one p from P with unbounded νp(a1,n).

Aiming for a result corresponding to Theorem 5, we introduce notions of
P-irrationality and P-transcendence when P is a set of prime numbers.

Definition 9. Let P be a set of prime numbers. We say that a sequence
{an}∞n=1 is P-irrational or P-transcendental if the series

∑∞
n=1

1
ancn

converges
to an irrational or transcendental number, respectively, for all sequences of
integers {cn}∞n=1 with p ∤ cn for all p ∈ P .

By considerations similar to those in the last part of Remark 2, it is clear
that when K = 1, Theorem 6 is only interesting when νp(a1,n) is bounded for
all fixed p, since one could otherwise apply Theorem 1 with much less effort
instead. For that reason, we formulate the result corresponding to Theorem
5 as follows.

Theorem 10. Let P be a set of infinitely many prime numbers, and let ε and
κ be positive real numbers with κ < 1. Let {an}∞n=1 and {bn}∞n=1 be sequences
of non-zero integers such that, for each fixed p ∈ P, p ∤ gcd(an, bn) for all n,
while νp(an) is bounded and attains its maximum value exactly once. Suppose
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that an+1 ≥ an ≥ n1+ε and |bn| ≤ 2(log2 |an|)
κ
. Then the sequence {an/bn} is P-

irrational if equation (10) is satisfied, and it is P-transcendental if equation
(9) is satisfied for every positive integer A.

Proof. The proof is essentially the same as that of Theorem 5, except that we
apply Theorem 6 rather than Theorem 1. As such, our interest in equation
(2) is replaced with inequality (11).

3 Examples and applications

In this section, we give a number of examples of applications of our results.
It is of interest that the terms of our series have varying signs since this was
not allowed in previous papers, such as [1, 4, 6, 7, 16]. Let f1, . . . , fK denote
arbitrary functions from N into Z. This way, we can express the varying signs
as (−1)fk(n). Possible choices for fk(n) could, for instance, be the product
kn, the number of divisors of n, or the Euler totient function of n, i.e., the
number of m = 1, . . . , n such that gcd(m,n) = 1.

We start by giving some simple examples to highlight the immediate
applications of our results in terms of algebraic independence. For these
examples, use Theorem 2.

Example 1. Let {an}∞n=1 be a non-decreasing sequence of positive odd inte-
gers such that for every positive integer A,

lim sup
n→∞

a
1
An
n = ∞.

Set αk =
∑∞

n=1
(−1)fk(n)

an2n
k , k = 1, . . . , K. Then the numbers α1, . . . , αK are

algebraically independent over Q.

Example 2. Let K and z be positive integers with z ≥ 2, and let {an}∞n=1

be a non-decreasing sequence of integers with gcd(an, z) = 1, an ≥ n1+ε, and

lim sup
n→∞

a
1
An
n = ∞,

for every positive integer A. Set αk =
∑∞

n=1
(−1)fk(n)

anzν2(n)
k , k = 1, . . . , K. Then

the numbers α1, . . . , αK are algebraically independent over Q.

As is seen from the theorems, we have non-degenerate algebraic indepen-
dence with weaker restrictions when we know that K = 2, which gives us the
below example by applying Theorem 3.
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Example 3. Let z ≥ 2 be a positive integer, and let {an}∞n=1 be a non-
decreasing sequence of positive integers with gcd(z, an) = 1 and, for all posi-

tive integers A, lim sup a
1/An

n = ∞. For k = 1, 2, . . ., set αk =
∑∞

n=1
(−1)fk(n)

anz(3
k−1)n

.

If k ̸= l, then αk and αl are non-degenerately algebraically independent.

Meanwhile, by using the more general Theorem 1, we are also able to
prove irrationality and linear independence of series where we are not cur-
rently able to determine algebraic independence, as seen in the next example.

Example 4. Let K and z be positive integers with z ≥ 2, and let {an}∞n=1

be a non-decreasing sequence of positive integers such that gcd(an, z) = 1

and lim sup a
1/(K+1)n

n = ∞. For k = 1, . . . , K, set αk =
∑∞

n=1
(−1)fk(n)

anz
k νp(n)

. Then

1, α1, . . . , αK are linearly independent over Q.

Remark 3. We are not able to prove that the number ζ(5) =
∑∞

n=1
1
n5 is

irrational. Erdős [4] proved that if {an}∞n=1 is a non-decreasing sequence of

positive integers such that lim supn→∞ a
1
2n
n = ∞, then α =

∑∞
n=1

1
ann5 is an

irrational number. From Theorem 1 with p = 2, we now obtain that if all

an are also odd, then the number
∑∞

n=1
(−1)f(n)

ann5 is irrational for all functions
f : N → Z.

Remark 4. For integer functions f : N → Z and g(n) : N → N, write

ζf,g(k) =
∑∞

n=1
(−1)f(n)

g(n)nk
. Then ζ0,1 is Riemann’s zeta function, where 0 and 1

denote the functions that are constantly 0 and 1, respectively. We get from
Remark 3 that ζf,g(5) is irrational when {g(n)}∞n=1 defines a non-decreasing
sequence of positive odd integers with lim supn→∞ g(n)1/2

n
= ∞, regardless

of f . In fact, ζf,g(k) is irrational for all such g and all integers k ≥ 2.
However, if we remove the conditions that g(n) is non-decreasing and that
lim supn→∞ g(n) = ∞ and fix f(n) and k ≥ 2, then we can pick g so that
ζf,g(k) is rational. If f(n) is both infinitely often even and infinitely often
odd, we can take a permutation σ : N → N such that

ζf,g(k) =
∞∑

n=1

(−1)f(n)

nkg(n)
=

∞∑

n=1

(−1)n

σ(n)kg(σ(n))
.

Then picking g so that g(σ(2m)) = σ(2m− 1)k and g(σ(2m− 1)) = σ(2m)k,
we get ζf,g(k) = 0, which is rational. If f(n) is even only finitely often, then
ζf,g(k) is a rational number minus the number

∑∞
n=N

1
nkg(n)

. By a result due

to Hančl [5], we can now choose g so that this number is rational. If f(n) is
odd only finitely often, we just note that ζf,g(k) = −ζf+1,g(k). Then 1+f(n)
is even only finitely often, and we can pick g so that ζf,g(k) is rational by the
previous consideration.
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Open Problem 5. While it is well-known that ζ0,1(2) = ζ(2) = π2/6 is
transcendental, and Apéry [2] showed that ζ0,1(3) = ζ(3) is irrational, the

authors do not know if ζf,1(k) =
∑∞

n=1
(−1)f(n)

nk
is irrational in general for

k ≥ 2.

We now give examples of p-irrationality and p-transcendence of a se-
quence, using Theorem 5 and Remark 1.

Example 5. Let {an}∞n=1 be a non-decreasing sequence of positive odd in-

tegers with lim supn→∞ a
1/2n

n = ∞. Let {rn}∞n=1 be a sequence of pairwise
different non-negative integers. Then the sequence {2rnan}∞n=1 is 2-irrational.
Likewise, for any integer z ≥ 2, if we assume gcd(an, z) = 1 in place of an be-
ing odd, then the sequence {zrnan}∞n=1 is p-irrational for all primes p dividing
z.

Example 6. Let z ≥ 2 be a positive integer, and let {an}∞n=1 be a non-
decreasing sequence of positive integers coprime with z such that, for all A ∈
N, lim supn→∞ a

1/An

n = ∞. Let {rn}∞n=1 be a sequence of pairwise different
non-negative integers. Then the sequence {zrnan}∞n=1 is p-transcendental for
all primes p dividing z.

Finally, we present the below four examples of Theorems 6, 7, 8, and 10,
respectively. Comparing these with Examples 4, 1, 3, and 5, respectively,
we see some of the differences in applicability between considering a single
prime or infinitely many.

Example 7. Let K be a positive integer, and let {rn}∞n=1 be a strictly in-
creasing sequence of positive integers such that

lim sup
n→∞

rn
(K + 1)n

> 0.

Let {pn}∞n=1 be an unbounded and non-decreasing sequence of prime numbers.

For k = 1, . . . , K, set αk =
∑∞

n=1
(−1)fk(n)

pk+rnn
. Then the numbers 1, α1, . . . , αK

are linearly independent over Q.

Example 8. Let {pn}∞n=1 be a strictly increasing sequence of odd prime
numbers, and let {rn}∞n=1 be a non-decreasing sequence of integers such that

rn ≥ pn and lim supn→∞(rn/A
n) = ∞ for all A ∈ N. Set α1 =

∑∞
n=1

(−1)f1(n)

2rnpn

and αk+1 =
∑∞

n=1
(−1)fk(n)

2rn (p1···pn)nk−1 for each k ∈ N with k > 1. Then α1, . . . , αK

are algebraically independent for all K ∈ N.
For this example, it may not be clear that we can actually pick a sequence

{an}∞n=1 of integers that satisfies (8) for each k and all large values of A and

10



n. Write a1,n = 2rnpn and ak,n = 2rn(p1 · · · pn)nk−1
for k > 1, fix K, and

pick an = 2rn and κ = 1/2. Then the only assumption that is not trivially
satisfied is the upper bound of (8) when k > 1. Since a1,n < · · · < aK,n, it
suffices to prove this when A = 2, k = K > 1 and aK,n > 22

n
. By using log2,

the upper bound of (8) is equivalent to

rn + log2
(
(p1 · · · pn)n

k)
= log2 a1,n ≤ log2

(
an2

(log2 an)
κ)

= rn + r1/2n ,

i.e.,

r1/2n ≥ log2
(
(p1 · · · pn)n

k)
= nk

n∑

m=1

log2 pm.

If rn ≥ n4K , then this is indeed satisfied, recalling that rn ≥ pn and calculat-
ing

r1/2n = r1/4n r1/4n ≥ (n4K)1/4p1/4n > nK−1n log2 pn ≥ nK−1

n∑

m=1

log2 pm.

If pn ≥ n4K , we are therefore done, so consider the case pn < n4K . Since
aK,n > 22

n
, we then have

22
n

< aK,n = 2rn(p1 · · · pn)n
K−1

< 2rnpn
K

n < 2rnn4KnK .

As this clearly ensures that rn ≥ n4K for all large values of n, we are done.

Example 9. Let {pn}∞n=1 be a strictly increasing sequence of odd prime
numbers, and let {rn}∞n=1 be a non-decreasing sequence of integers such that
rn ≥ pn and lim supn→∞(rn/A

n) = ∞ for all positive integers A. For k =

1, 2, . . ., set αk =
∑∞

n=1
(−1)fk(n)

2rnp3
k−1
n

. If k ̸= l, then αk and αl are non-degenerately

algebraically independent.

Example 10. Let {pn}∞n=1 be an increasing sequence of prime numbers, let
P be an infinite subset of {pn : n ∈ N}, and let {an}∞n=1 be an increasing
sequence of positive integers with lim supn→∞(anpn)

1/2n = ∞ and p ∤ an
for all p ∈ P . Then the sequences {anpn}∞n=1 and {anp2npn−1 · · · p1}∞n=1 are
each P-irrational. If furthermore, lim supn→∞(anpn)

1/An = ∞ for all positive
integers A, then the sequences {anpn}∞n=1 and {anp2npn−1 · · · p1}∞n=1 are each
P-transcendental.

4 Preliminaries

In this section, we give some auxiliary results needed for the proofs of the
main theorems. The first one is a slight strengthening of Lemma 5 of [10]
when specialized to a single sequence {an/bn} with bn ≤ 2(log2 an)

κ
.
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Lemma 11. Let ε > 0, 0 < κ < 1, and M ≥ 0. Let {an}∞n=1 and {bn}∞n=1 be
sequences of positive integers such that an is non-decreasing and

lim sup
n→∞

a(M+2)−n
n = ∞. (12)

Suppose that for all sufficiently large n that

an ≥ n1+ε

and

bn ≤ 2(log an)
κ

.

Then for any fixed 0 < c < 1,

lim inf
N→∞

2max{N2(log2 aN )c, N−3(M+2)N+1}
(
N−1∏

n=1

an

)M+1 ∞∑

n=N

∣∣∣∣
bn
an

∣∣∣∣ = 0.

Not surprisingly, the proof will closely follow that of Lemma 5 in [10] and
use the same preliminary lemmas, below, which are proven in [10]. In their
original form, the lemmas had additional assumptions, but these were never
used in their proofs and are thus omitted here. They may also be extracted
from the proof in [4].

Lemma 12. Let {an}∞n=1 and {bn}∞n=1 satisfy the assumptions of Lemma 11.
Then there exists a number γ > 0 that does not depend on N and such that
for all sufficiently large N ,

∞∑

n=N

bn
an

≤ 1

aγN
.

Lemma 13. Let {an}∞n=1 and {bn}∞n=1 satisfy the assumptions of Lemma
11. Suppose that an ≥ 2n for all sufficiently large n. Then there is a fixed
0 < Γ < 1 such that for all sufficiently large N ,

∞∑

n=N

bn
an

≤ 2(log2 aN )Γ

aN
.

Lemma 14. Let {an}∞n=1 and {bn}∞n=1 satisfy the assumptions of Lemma 11.
Then there is a fixed number 0 < Γ < 1 so that if N and Q are sufficiently
large and an ≥ 2n for n = N, . . . , Q, then

Q∑

n=N

bn
an

≤ 2(log2 aN )Γ

aN
.
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Lemma 15. Let {yn}∞n=1 be an unbounded sequence of positive real numbers.
Then there are infinitely many N such that

yN >

(
1 +

1

N2

)
max

1≤n<N
yn.

By a simple induction argument, we notice that for k < N and δ ≥ 0,

(M + 2 + δ)N = (M + 2 + δ)N−1 + (M + 1 + δ)(M + 2 + δ)N−1 = · · ·

= (M + 2 + δ)k + (M + 1 + δ)
N−1∑

n=k

(M + 2 + δ)n, (13)

which will be used for the proof of Lemma 11. Equation (13) also helps prove
the below corollary to Lemma 15.

Corollary 16. Let {an}∞n=1 and {bn}∞n=1 satisfy the assumptions of Lemma
11. Let k be a positive integer. Then for infinitely many N > k,

aN >

(
1 +

1

N2

)(M+2)N(
max
k≤n<N

a(M+2)−n
n

)(M+2)N

.

For such N , we further have

aN >

(
1 +

1

N2

)(M+2)N N−1∏

n=k

aM+1
n .

Proof. The first inequality follows immediately from Lemma 15 by taking

yn = a
(M+2)−n
n for n ≥ k and yn = yk for n < k. We then use (13) to

conclude

(
max
k≤n<N

a(M+2)−n
n

)(M+2)N

≥
(

max
k≤n<N

a(M+2)−n
n

)(M+1)
∑N−1
n=k (M+2)n

≥
N−1∏

n=k

aM+1
n .

Proof of Lemma 11. To shorten notation, write

En = max{n2(log2 an)
κ, n−3(M + 2)n+1}

and

ZN = 2EN

(
N−1∏

n=1

an

)M+1 k2∑

n=N

bn
an

13



We here split the proof into two cases depending on whether

lim sup
n→∞

a(M+2+δ)−n
n = ∞ (14)

is true some fixed δ > 0.
Case 1 (equation (14) holds for some δ > 0). Pick 0 < γ < 1

as in Lemma 12, and let z > 2 be some sufficiently large number. Pick
k1, k2, N ∈ N as follows. Let k2 be the smallest integer such that

a
(M+2+δ)−k2
k2

> z1/γ, (15)

let k1 be the largest integer such that k1 < k2 and

ak1 ≤ zk1 , (16)

and let N be the smallest number such that N > k1 and

a
(M+2+δ)−N

N ≥ z. (17)

Note that N ≤ k2 and N → ∞ as z → ∞. By inequalities (16) and (17),
an < z(M+2+δ)n when k1 ≤ n < N . Hence,

2N
2(log2 an)

κ ≤ 2N(M+2+δ)(N−1)c(log2 z)
c

< zN
2(M+2+δ)Nc , (18)

while also
N−1∏

n=k1

an <
N−1∏

n=k1+1

z(M+2+δ)n = z
∑N−1
n=k1+1(M+2+δ)n .

From this and equation (13), we obtain

N−1∏

n=k1

an < z
(M+2+δ)N

M+1+δ ,

while inequality (16) together with the facts that N > k1 and an is non-
decreasing yields

k1−1∏

n=1

an ≤ ak1−1
k1

< zN
2

.

Thus,
N−1∏

n=1

aM+1
n < z(M+1)N2+(M+1)

(M+2+δ)N

M+1+δ . (19)
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Having a bound for the product in ZN , we move on to bounding the
infinite series. Let 0 < Γ < 1 be given as in Lemma 14. Let ζ ∈

(
M+1
M+1+δ

, 1
)

be a fixed number that does not depend on z. Since k1 is the largest number
less than k2 satisfying (16), we have an > zn > 2n for N ≤ n ≤ k2. By
Lemma 14, this means that when z (and thereby N) is sufficiently large,
then

k2∑

n=N

bn
an

≤ 2(log2 aN )Γ

aN
≤ 1

aζN
.

This and inequality (17) imply

k2∑

n=N

bn
an

≤ z−(M+2+δ)N ζ .

From Lemma 12, inequality (15), and the fact that an is non-decreasing, it
follows for all sufficiently large z that

∞∑

n=k2+1

bn
an

≤ a−γk2+1 ≤ a−γk2 ≤ z−(M+2+δ)k2 ,

and so we have

∞∑

n=N

bn
an

≤ z−(M+2+δ)N ζ + z−(M+2+δ)k2 ≤ 2

z(M+2+δ)N ζ
. (20)

Write ζ ′ = ζ − M+1
M+1+δ

and note that ζ ′ > 0. By inequalities (18), (19),
and (20), we find that for sufficiently large z (and thus N),

ZN = 2EN

(
N−1∏

n=1

aMn

)
k2∑

n=N

bn
an

< zN
−3(M+2+δ)N+(M+1)N2+(M+2+δ)N( M+1

M+1+δ
−ζ)

= zN
−3(M+2+δ)N+MN2−ζ′(M+2+δ)N < z−

ζ′
2
(M+2+δ)N .

Hence, ZN tends to 0 when z grows toward infinity, and this case is complete.
Case 2 (equation (14) does not hold for any δ > 0). This case will

be split into further 2 subcases, depending on whether an < 2n infinitely
often. Before we do that, we make an observation to be used for both cases.

Given any fixed number Γ, set Γ0 = max{c,Γ} and Γ̃ = (1+2Γ0)/(2+Γ0).
Note that Γ0 < Γ̃ < 1. By the assumption that equation (14) holds for no
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δ > 0, we may pick a small number δΓ > 0 that does not depend on n, such
that

(M + 2 + δΓ)
(2+Γ0)/3 < M + 2

and an < 2(M+2+δΓ)
n

for all sufficiently large n. Due to this and the fact that
an is non-decreasing,

n2(log2 an)
c + (log2 an)

Γ < 2n2(log2 an)
Γ̃ < 2n2

(
M + 2 + δΓ

)nΓ0

< 2n2(M + 2)
n

3Γ0
2+Γ0 < (M + 2)

n
1+2Γ0
2+Γ0

= (M + 2)Γ̃n < n−3(M + 2)n (21)

Recalling (1 + n−2) = 2log2(1+n
−2) and using the Taylor expansion of log2 x

around 1, we have that (1 + n−2) > 2n
−2

when n is large. From this and
inequality (21), we obtain for all large enough n that

2En+(log2 an)
Γ

(1 + n−2)(M+2)n
<

22n
−3(M+2)n+1

2n−2(M+2)n
< 2−n

−3(M+2)n . (22)

Case 2a (an < 2n for at most finitely many n). By Lemma 13, we
may pick 0 < Γ < 1 such that for all sufficiently large N ,

∞∑

n=N

bn
an

≤ 2(log2 aN )Γ

aN
.

This and Corollary 16 imply that for infinitely many N ,

ZN < 2EN
aN

(1 +N−2)(M+2)N

2(log2 aN )Γ

aN

=
2EN+(log2 aN )Γ

2(M+2)N log2(1+N
−2)
.

From this and inequality (22), we then have

ZN < 2−N
−3(M+2)N

for infinitely many N , and we are done.
Case 2b (an < 2n infinitely often). Let C > 0 be sufficiently large.

Pick k1, k2, N ∈ N that depend on C as follows. Let k2 be the smallest integer
such that

a
(M+2)−k2
k2

> C, (23)
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and let k1 be the largest integer such that k1 < k2 and

ak1 < 2k1 . (24)

Since k2 → ∞ as C → ∞, the assumption that an < 2n infinitely often
implies that also k1 → ∞ as C → ∞. Using Corollary 16, pick N > k1 to be
the smallest integer such that

aN >

(
1 +

1

N2

)(M+2)N(
max

k1≤n<N
a(M+2)−n
n

)(M+2)N

. (25)

Consequently, we get by induction that if k1 < n < N , then

a(M+2)−n
n ≤

(
1 +

1

n2

)
max
k1≤i<n

a
(M+2)−i

i

≤ · · · ≤ a
(M+2)−k1
k1

n∏

m=k1+1

(
1 +

1

m2

)
.

Therefore, each n with k1 ≤ n < N must satisfy

an < 8(M+2)n = 23(M+2)n , (26)

using that
∏∞

m=1(1 + m−2) < 4 and that a
(M+2)−k1
k1

< 2 by inequality (24).
Note that inequalities (23) and (26) ensure N ≤ k2 when C is large.

Using inequality (24) along with the facts that an is non-decreasing and
N > k1, we find

k1−1∏

n=1

an ≤ ak1−1
k1−1 < ak1k1 < 2k

2
1 < 2N

2

. (27)

From inequalities (26) and (27), we get

N−1∏

n=1

aM+1
n =

(
k1−1∏

n=1

aM+1
n

)
N−1∏

n=k1

aM+1
n < 2N

2(M+1)+3
∑N−1
n=k1

(M+2)n .

Due to this and equation (13), all large enough C (and thus N) must satisfy

N−1∏

n=1

aM+1
n < 2N

2(M+1)+3
∑N−1
n=k1

(M+2)n < 2N
2(M+1)+3(M+2)N

< 24(M+2)N . (28)
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Meanwhile, inequality (25) allows us to apply Corollary 16 and find

N−1∏

n=k1

aM+1
n ≤ aN

(1 +N−2)(M+2)N
,

which together with inequality (27) yields

N−1∏

n=1

aM+1
n =

(
k1−1∏

n=1

aM+1
n

)
N−1∏

n=k1

aM+1
n

< 2N
2(M+1) aN

(1 +N−2)(M+2)N
. (29)

Having two upper bounds of
∏N−1

n=1 a
M+1
n , we move on to also bounding∑∞

n=N bn/an. Pick Γ ∈ (0, 1) as in Lemma 14. Since k1 < N ≤ k2, k1 is the
greatest integer less than k2 that satisfies inequality (24), and ak2 > 2k2 due
to inequality (23), we obtain from Lemma 14 that

k2∑

n=N

bn
an

≤ 2(log2 aN )Γ

aN
. (30)

Similarly, pick γ ∈ (0, 1) as in Lemma 12. Then

∞∑

n=k2+1

bn
an

≤ 1

aγk2+1

≤ 1

aγk2
,

since an is non-decreasing. Estimating this further by applying inequality
(23) together with the fact that k2 ≥ N , we get

∞∑

n=k2+1

bn
an

≤ 1

aγk2
<

1

Cγ(M+2)k2
≤ 1

Cγ(M+2)N
.

This and inequality (30) imply

∞∑

n=N

bn
an

=

k2∑

n=N

bn
an

+
∞∑

n=k2+1

bn
an

≤ 2(log2 aN )Γ

aN
+

1

Cγ(M+2)N
. (31)
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From inequalities (28), (29), and (31) follows that

ZN =2EN

(
N−1∏

n=1

an

)M+1 k2∑

n=N

bn
an

< 2EN min

{
24(M+2)N ,

2N
2(M+1)aN

(1 +N−2)(M+2)N

}

·
(
2(log2 aN )Γ

aN
+

1

Cγ(M+2)N

)

≤ 2EN+N2(M+1)+(log2 aN )Γ

(1 +N−2)(M+2)N
+

2EN+4(M+2)N

Cγ(M+2)N
.

By inequalities (21) and (22), we then have

ZN < 2−N
−3(M+2)N +

25(M+2)N

Cγ(M+2)N
,

which tends to 0 as C grows large, due to the facts that N > k1, k1 → ∞ as
C → ∞, and Γ̃ < 1. This completes the proof.

Lemma 11 is to be used in connection with the below elementary result.

Lemma 17. Let R ≥ 1, let P ∈ Z[x1, . . . , xK ] be a polynomial, and let
α1, . . . , αK , β1, . . . , βK ∈ C with |αk|, |βk| ≤ R for each k. Then there is a
constant C > 0, depending only on P and R, such that

|P (α1, . . . , αK)− P (β1, . . . , βK)| ≤ C max
1≤k≤K

|αk − βk|

Proof. For ik ∈ N, note that

K∏

k=1

αikk −
K∏

k=1

βikk =
K∑

k=1

(
k−1∏

j=1

αill

)
(αikk − βikk )

K∏

j=k+1

βill

=
K∑

k=1

(
(αk − βk)

ik∑

j=1

αj−1
k βk−jk

)(
k−1∏

j=1

αill

)
K∏

j=k+1

βill . (32)

Write P (x1, . . . , xK) =
∑

i1,...,ik
ci1,...,iKx

i1
1 · · · xiKK , d = degP , α = (α1, . . . , αK),

and β = (β1, . . . , βK). Then the triangle inequality, equation (32), and the
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facts that degP = d and |αk|, |βk| ≤ R let us conclude

|P (α1, . . . , αK)− P (β1, . . ., βK)| =
∣∣∣∣∣
∑

i1,...,ik

ci1,...,iK

(
K∏

k=1

αikk −
K∏

k=1

βikk

)∣∣∣∣∣

≤
∑

i1,...,ik

|ci1,...,iK |
K∑

k=1

|αk − βk|dRd−1

≤
(
dKRd−1

∑

i1,...,ik

|ci1,...,iK |
)

max
1≤k≤K

|αk − βk|.

In order to handle the case of K = 2 and d > 3 in Theorems 1 and
6, we will need a few results from algebraic geometry. Let PK denote the
K-dimensional complex projective space, i.e., P = (CK+1 \ 0)

/
∼ where∼ de-

notes the equivalence relation that x ∼ y if x = αy for some α ∈ C\0. For i =
1, . . . , n, let Pi ∈ C[x1, . . . , xK ] be a polynomial, and let P̃i ∈ C[x1, . . . , xK+1]
denote the unique homogeneous polynomial of minimal degree such that
Pi(x1, . . . , xK) = P̃i(x1 . . . , xK , 1). We then say that the set

V (P1, . . . , Pn) = {[x] ∈ PK : P̃1(x) = · · · = P̃n(x) = 0}

is a projective variety. If the coefficients of P1, . . . , Pn are all rational num-
bers, we say that V (P1, . . . , Pn) is a projective variety over Q.

Let V1 and V2 be two non-empty irreducible projective varieties that are
proper subvarieties of PK . We then say that f : V1 99K V2 is a rational
map if there is a proper subvariety B1 ⊊ V1 (which may be reducible) such
that f restricted to V1 \ B1 is a well-defined rational function, i.e., each
coordinate map is given as the quotient of two polynomials. If there is
another rational map g : V2 99K V1 so that g ◦ f coincides with the identity
where it is defined, then we say that f is a birational map and that V1 and
V2 are birationally equivalent. We furthermore say that f is a rational (resp.
birational) map over Q if the implied rational function can be chosen so that
the coefficients of its coordinate maps are contained in Q, and we say that
V1 and V2 are birationally Q-equivalent if there is a birational map V1 99K V2
over Q. We will need the below three theorems, of which the first is known
as Fatings’s Theorem, and the second is a consequence of the degree–genus
formula. Genus here refers to the geometric genus. All three theorems can
be found in [13].

Theorem 18 (Faltings). Let A be a non-singular irreducible projective vari-
ety over Q of genus g > 1 and dimension 1. Then A has only finitely many
rational points.
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Theorem 19. Let V ⊆ P2 be a non-singular irreducible projective variety of
degree d and dimension 1. Then the genus of V equals (d− 1)(d− 2)/2.

Theorem 20. Let V ⊆ P2 be an irreducible singular projective variety over Q
of dimension 1. Then V is birationally Q-equivalent to a smooth irreducible
projective variety over Q.

Finally, we will also need the below simple result.

Lemma 21. Let V1, V2 be birationally equivalent irreducible projective vari-
eties of dimension 1. Then the implied rational map f : V1 99K V2 is defined
for all but finitely many elements of V1.

Proof. Because V1 is irreducible, any non-empty proper subvariety B of V1
must be of a lower dimension than V1. Since V1 is of dimension 1, this makes
B finite.

5 Proof of Theorems 1 and 6

For this section, let d and K be positive integers, and let {ak,n}∞n=1 and
{bk,n}∞n=1 be sequences of non-zero integers such that each of the sequences
{α1,N}∞N=1, . . . , {αK,N}∞N=1 defined by

αk,N =
N∑

n=1

bk,n
ak,n

converge, and we write αk = limN→∞ αk,N for the corresponding limit.
Theorems 1 and 6 have almost identical proofs. For that reason, we will

prove them simultaneously. Roughly speaking, their proofs can be divided
into an analytical part, which is covered by the below lemma, and an algebraic
part, which is covered by the subsequent two lemmas.

Lemma 22. Let ε and κ be positive real numbers with κ < 1. Suppose
for all k = 1, . . . , K and n ∈ N that equations (3), (4), (5), and (6) are
satisfied. Let P ∈ Z[x1, . . . , xK ] be a polynomial of degree at most d. If
P (α1,N , . . . αK,N) ̸= 0 for all sufficiently large N , then P (α1, . . . αK) ̸= 0.

Proof. Let N be sufficiently large. Then P (α1,N , . . . , αK,N) ̸= 0. Therefore,

since degP ≤ d and αk,N
∏N

n=1 |ak,n| must be integral, we get

|P (α1,N , . . . , αK,N)| ≥
(

N∏

n=1

K∏

k=1

|ak,n|
)−d
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and so, by inequality (4),

|P (α1,N , . . . , αK,N)| ≥
N∏

n=1

(
aKn 2

(K−1)max{(log2 an)κ, n−3(Kd+1)n}
)−d

≥ 2−max{N2(log2 aN )κ, N−3(Kd+1)N+1}
N∏

n=1

a−dKn . (33)

Meanwhile, Lemma 17 implies that there is a C > 0 depending only on P
and on supk,N |αk,N | such that

|P (α1, . . . , αK)− P (α1,N , . . . , αK,N)| ≤ C max
1≤k≤K

|αk − αk,N |

= C max
1≤k≤K

∣∣∣∣∣
∞∑

n=N+1

bk,n
ak,n

∣∣∣∣∣.

Therefore, due to the triangle inequality followed by inequalities (4) and (5),

|P (α1, . . . , αK)− P (α1,N , . . . , αK,N)| ≤ C max
1≤k≤K

∞∑

n=N+1

|bk,n|
|ak,n|

≤ C
∞∑

n=N+1

22(log2 an)
κ

an
= C

∞∑

n=N+1

4(log2 an)
κ

an
.

This, the triangle inequality, and estimate (33) imply that

|P (α1, . . . , αK)| ≥ |P (α1,N , . . . , αK,N)| − |P (α1, . . . , αK)

− P (α1,N , . . . , αK,N)|

≥ 2−max{N2(log2 aN )κ, N−3(Kd+1)N+1}
N∏

n=1

a−dKn

− C
∞∑

n=N+1

4(log2 an)
κ

an
.

Hence, to prove the lemma, it is enough to show that there are infinitely
many N such that

2−max{N2(log2 aN )κ, N−3(Kd+1)N+1}
N∏

n=1

a−dKn > C
∞∑

n=N+1

4(log2 an)
κ

an

or, equivalently,

2max{N2(log2 aN )κ, N−3(Kd+1)N+1}
(

N∏

n=1

a−dKn

) ∞∑

n=N+1

4(log2 an)
κ

an
< C−1. (34)
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Note that

2max{N2(log2 aN )κ, N−3(Kd+1)N+1}
(

N∏

n=1

a−dKn

) ∞∑

n=N+1

4(log2 an)
κ

an

≤ 2N
2(log2 aN )κ

(
N∏

n=1

an

)dK ∞∑

n=N+1

⌈
4(log2 an)

κ⌉

an
, (35)

for all large enough values of N . Taking κ′ ∈ (κ, 1), we have
⌈
4(log2 an)

κ⌉ ≤
2(log2 an)

κ′
when N is sufficiently large. Using this together with assumptions

(3) and (6), we may apply Lemma 11 with M = dK − 1. Therefore, we can
pick infinitely many N such that the right-hand-side of (35) is smaller than
C−1, and so inequality (34) follows, and the proof is complete.

For the remaining two lemmas, let P be a set of either a single prime
number or infinitely many prime numbers, and assume that p ∤ gcd(bk,n, ak,n)
for all k = 1, . . . , K and n ∈ N. Recall the elementary facts that

νp(ab) = νp(a) + νp(b), νp(a+ b)

{
= νp(a), if νp(a) < νp(b),

≥ νp(a), if νp(a) = νp(b).
(36)

From the first of these two facts, νp extends to a function Q → Z by νp(0) =
∞ and νp(q) = νp(a)− νp(b) when q = a/b; note that νp(q) does not depend
on the choice of representative (a, b).

In the proof of the below lemma, we will order tuples of indices colexico-
graphically, i.e., we will say that

(i1, . . . , in+1) < (j1, . . . , jn+1)

if in+1 < jn+1, or if both in+1 = jn+1 and (i1, . . . , in) < (j1, . . . , jn).

Lemma 23. Suppose for each fixed k = 1, . . . , K and p ∈ P that equation
(1) holds for all N ∈ N and that inequality (11) holds for all sufficiently
large N . If P = {p}, assume additionally that equation (2) holds for each
k = 1, . . . , K. Let P ∈ Z[x1, . . . , xK ] be a non-zero polynomial of degree at
most d. Then P (α1,N , . . . , αK,N) ̸= 0 for all sufficiently large N .

Proof. Write

P (x1, . . . , xK) =
∑

i1,...,iK

ci1,...,iKx
i1
1 · · ·xiKK ,
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and let cj1,...,jKx
j1
1 · · ·xjKK be its leading term in colexicographic order. We

will now prove that for a suitably chosen p ∈ P and each sufficiently large
N , the term cj1,...,jKα

j1
1,N · · ·αjKK,N has strictly lower p-adic valuation than any

of the other terms of P (α1,N , . . . , αK,N). By (36), this will then imply the
lemma. To simplify notation, write

Ci1,...,iK =
ci1,...,iK
cj1,...,jK

K∏

k=1

αik−jkk,N . (37)

If |P| = 1, let p be the unique prime in P . Otherwise, |P| is infinite, and we
instead pick p such that

νp(cj1,...,jK ) = 0. (38)

Since clearly Cj1,...,jK = 1 by equation (37), the lemma follows if we can prove
for all (i1, . . . , iK) ̸= (j1, . . . , jK) with ci1,...,iK ̸= 0 that

νp(Ci1,...,iK ) > 0 (39)

when N is sufficiently large.
Suppose (i1, . . . , iK) ̸= (j1, . . . , jK) with ci1,...,iK ̸= 0, and let m be the

largest index such that ik ̸= jk. Note that this implies im < jm since
cj1,...,jKx

j1 · · ·xjK is the leading term of P . When N is sufficiently large, we
have from inequality (11) that max1≤n≤N νp(ak,n) > 0 for each k = 1, . . . , K,
which together with (1), (36), and the fact that p ∤ gcd(ak,n, bk,n) implies that
νp(αk,N) = −max1≤n≤N νp(ak,n). Using this and equation (37), we find that
when N is sufficiently large,

νp(Ci1,...,iK ) = νp(ci1,...,iK )− νp(cj1,...,jK ) +
K∑

k=1

(ik − jk)νp(αk,N)

= νp(ci1,...,iK )− νp(cj1,...,jK ) +
m∑

k=1

(jk − ik) max
1≤n≤N

νp(ak,n).

Hence, using the facts that im < jm, ci1,...,iK ∈ Z, and ak,n ∈ Z,

νp(Ci1,...,iK ) ≥ −νp(cj1,...,jK ) + max
1≤n≤N

νp(am,n)−
m−1∑

k=1

ik max
1≤n≤N

νp(ak,n).

This, the fact that degP ≤ d, and inequality (11) yield

νp(Ci1,...,iK ) ≥ −νp(cj1,...,jK ) + max
1≤n≤N

νp(am,n)− d max
1≤n≤N

νp(am−1,n). (40)

24



If |P| = 1, then inequality (39) follows from inequality (40) and equation
(2) when N is sufficiently large. Similarly, if |P| = ∞, then (39) is verified
by applying inequality (38) and equation (11) to inequality (40) when N is
sufficiently large. This completes the proof.

The final lemma of this paper provides an improvement to Lemma 23
when K = 2 and the degree of P is greater than 3.

Lemma 24. Suppose the assumptions of Lemma 23 are satisfied for d = 3
and K = 2. Let P ∈ Z[x1, x2] be a non-zero polynomial of arbitrary degree
such that P defines a curve of genus ≥ 2. Then P (α1,N , α2,N) ̸= 0 for all
sufficiently large N .

As before, we remark that choosing a different value d′ in place of 3 will
rule out polynomials of degree ≤ d′. This will make the genus requirement
less restrictive. Indeed, there are fewer polynomials resulting in low genus if
the degree becomes higher.

Proof of Theorem 1. Since equation (2) implies inequality (11), the theorem
follows by combining Lemma 22 with Lemmas 23 and 24.

Proof of Theorem 6. This follows by combining Lemma 22 with Lemmas 23
and 24.

Proof of Lemma 24. Without loss of generality, P is irreducible; if not, then
we may write P as the product of irreducible polynomials P1, . . . , PL ∈
Z[x1, x2], and we would then just have to prove the lemma for each of these
Pl. If degP ≤ 3, the statement follows from Lemma 23, so we may assume
degP > 3.

Since p ∤ gcd(bk,n, ak,n) for all p ∈ P , equations (1) and (36) together
with either (11) (if |P| = ∞) or (2) (if P = {p}) implies that the minimal
denominator of αk,N tends to infinity as N tends to infinity. Hence, αk,N
does not take the same value infinitely often.

Introducing an extra variable X3, let P̃ ∈ Z[X1, X2, X3] be the ho-
mogenised version of P , and consider the projective curve CP = {[x] ∈ P2 :
P̃ (x) = 0}. Since P (α1,N , α2,N) = P̃ (α1,N , α2,N , 1) and since αk,N is always
rational but does not take the same value infinitely often, it suffices to prove
that CP contains only finitely many rational points.

Suppose first that CP is non-singular. By the degree–genus formula [13,
Theorem A.4.2.6.], the genus of CP is at least 2 since P is irreducible with
degP > 3. By Faltings’s Theorem, such a variety contains at most finitely
many rational points, and the lemma is proven.
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Next, suppose that CP is singular. In this case, we may normalise VP , by
appealing to e.g. [13, Theorem A4.1.4.], to obtain a smooth projective curve
birationally equivalent to CP . As mentioned in the introduction, this may
result in a curve of lower genus than predicted by the degree–genus formula.
Ordinary singularities result in a decrease of 1

2
r(r− 1), where r is the multi-

plicity of the singularity. Non-ordinary singularities decrease the genus by a
quantity which must be calculated on a case-by-case basis, but such polyno-
mials are very rare indeed. At any rate, the assumptions of the lemma is that
the resulting curve has genus at least 2, so by Falting’s Theorem there are
only finitely many rational points on CP . For the original polynomial (before
normalisation), we observe that desingularising again would not increase the
number of rational points, and we are done.
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Chapter 2

p-adic Duffin–Schaeffer Sets

2.1 Introduction

In the study of irrationality and transcendence of numbers as introduced in the first
few pages of Chapter 1, one often encounters various Diophantine inequalities, i.e.,
inequalities with integer coefficients where one is interested in finding or counting
the set of integer solutions. One such inequality is the following, where α is a fixed
real number, ψ is a map from N to R≥0,

∣∣∣α− a

n

∣∣∣ ≤ ψ(n)

n
. (2.1)

Depending on how ψ is chosen, various arithmetic properties of α may be deduced
from the size of the solution set of inequality (2.1). We may, for instance, reformu-
late Theorem 1.1 with d = 1 and Theorem 1.2 from Chapter 1 into the following
statement.

Theorem 2.1. Let α ∈ R. Then α is irrational if inequality (2.1) has infinitely
many solutions with a/n ̸= α and ψ(n) = 1. If inequality (2.1) also has infinitely
many solutions with a/n ̸= α and ψ(n) = n−1−δ for some δ > 0, then α is
transcendental.

Let ψ : N → R≥0 be fixed, and let m ∈ N. Notice that if (a, n) is a solution to
inequality (2.1) for some α, then (a +mn, n) is a solution for α +m. Hence, the
number of solutions for fixed n is unaffected by adding or subtracting integers from
α. Because of this, it is sufficient to consider α between 0 and 1 to gain information
about the real numbers in general, at least when it comes to inequality (2.1).

We will now consider the set of α from the unit interval with infinitely many
solutions (a, n), formally defined as

K(ψ) := {α ∈ [0, 1] : (2.1) is true for infinitely many (a, n) ∈ Z× N}.
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An immediate benefit from studying subsets of [0, 1] rather than of R is that the
Lebesgue measure, which we denote as λ, is a probability measure on [0, 1]. This
gives us access to a number of tools from probability theory that are less easy to
apply on R. In 1924, Alexandre Khintchine [31] used some of these tools to prove
the following theorem. To the current author’s knowledge, this theorem started
the field now known as metric Diophantine approximation, to which all theorems of
this chapter belong. Named after him, we will also refer to K(ψ) as the Khintchine
set associated to ψ.

Theorem 2.2 (Khintchine, 1924). Let ψ : N → R≥0, and suppose that nψ(n) is
monotonous. Then

λ(K(ψ)) =

{
1 if

∑∞
n=1 ψ(n) = ∞,

0 if
∑∞

n=1 ψ(n) <∞.

The main limitation of Theorem 2.2 is the restriction that nψ(n) must be
monotonous. While it might seem possible Khintchine just lacked the arguments
to prove it more generally, Duffin and Schaeffer [10] showed in 1941 that at least
some restriction has to be put on ψ for the statement to be true. Specifically, they
constructed an approximation function ψ : N → R≥0 that contradicts it but with
nψ(n) being far from monotonous. They then suggested a related but slightly
different set to K(ψ), which we will call the Duffin–Schaeffer set and define as

A∞(ψ) := {α ∈ [0, 1] : (2.1) is true for infinitely many a/n ∈ Q}, (2.2)

where each rational number a/n ∈ Q is in reduced form, i.e., a ∈ Z and n ∈ N
with gcd(a, n) = 1. By weighting ψ(n) based on the number of rational numbers
in the interval [0, 1) with denominator n, they proposed the following formula for
deciding the Lebesgue measure of A∞(ψ). Here and for the rest of this chapter, φ
denotes the Euler totient function, i.e., φ(n) is the number of integers 1, 2, . . . , n
that are coprime with n.

Conjecture 2.3 (Duffin–Schaeffer, 1941). Let ψ : N → R≥0. Then

λ(A∞(ψ)) =

{
1 if

∑∞
n=1 ψ(n)φ(n)/n = ∞,

0 if
∑∞

n=1 ψ(n)φ(n)/n <∞.

While it may seem similar to Theorem 2.2, it remained unproven for the better
part of a century. It even took two decades before Gallagher [14] in 1961 managed
to prove that λ(A∞(ψ)) cannot take other values than 0 or 1.

Theorem 2.4 (Gallagher, 1961). λ(A∞(ψ)) ∈ {0, 1} for all ψ : N → R≥0.
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After yet another 29 years, Pollington and Vaughan [45] came close to a proof,
leaving a relatively small family of ψ to be considered. They also fully proved
a higher dimensional variant of the conjecture for dimension 2 and greater. In
2020, after 79 years, the conjecture was finally proven by Koukoulopoulos and
Maynard [33].

Theorem 2.5 (Koukoulopoulos–Maynard, 2020). Conjecture 2.3 is true.

In the meantime, Haynes [27] had introduced a p-adic variant of A∞(ψ), hoping
that it might be easier to prove the theorem within the realm of p-adic numbers
(defined below) and then move the result back into the real setting.

Definition 2.6. Let p be a prime number. We then have the following definitions.

• The p-adic valuation, denoted νp, is defined on Q as follows.

– νp(0) = ∞.

– If n ∈ Z with n ̸= 0, then νp(n) is the largest non-negative integer such
that pνp(n) | n and pνp(n)+1 ∤ n.

– If (m,n) ∈ Z× N, then νp(m/n) = νp(m)− νp(n).

• Writing p−∞ = 0, the p-adic absolute value on Q is given by |x|p = p−νp(x).

• The metric (x, y) 7→ |x − y|p induced by the p-adic absolute value is called
the p-adic metric.

• The set of p-adic numbers, denotedQp, is defined as the analytical completion
of Q with respect to the p-adic metric.

• The set of p-adic integers, denoted Zp, is defined as the analytical completion
of Z with respect to the p-adic metric or, equivalently, as the set of p-adic
numbers x with |x|p ≤ 1.

• The set of p-adic units, denoted Z×
p , is defined as the set of p-adic integers

that have a multiplicative inverse in Zp or, equivalently, as the set of p-adic
numbers x with |x|p = 1.

• We will use µp to denote the p-adic Haar measure normalized on Zp, i.e., the
unique translation invariant Borel measure on Qp with µp(Zp) = 1.

Just like the unit interval is equal to the set of real numbers
∑∞

n=1 anp
−n in

the usual metric with an ∈ {0, . . . , p− 1} for all n, Zp is equal to the set of p-adic
numbers of the form

∑∞
n=1 anp

n−1 in the p-adic metric with an ∈ {0, . . . , p− 1} for
all n. For this reason, it makes sense to think of Zp as a p-adic parallel to the unit
interval, which we will do for the remainder of this chapter.



188 Chapter 2. p-adic Duffin–Schaeffer Sets

The p-adic numbers differ from the real numbers in many ways. Since |a|p
can be arbitrarily small among the integers, we are suddenly in the situation that
inequality (2.1) always has infinitely many solutions for each value of n when
ψ(n) > 0, α ∈ Zp, and | · | is replaced with | · |p. Since this makes the inequality
redundant, we modify it in the spirit of Jarńık [30] and Lutz [41],

∣∣∣α− a

b

∣∣∣
p
≤ ψ(n)

n
, n = max{|a|, b}. (2.3)

Readers familiar with height functions will notice that max{|a|, b} is exactly the
classical height function on the number a/b when a and b are coprime. Inserting
these notions into equation (2.2), we get a p-adic parallel to the Duffin–Schaeffer
set,

Bp(ψ) := {α ∈ Zp : (2.3) is true for infinitely many a/b ∈ Q}.
Again, a/b is assumed to be in reduced form. This is not the only way to define
a p-adic variant of the Duffin–Schaeffer set, however. When studying A∞(ψ), it is
convenient to first express it as a limsup set, which is to say, write it as

A∞(ψ) =
∞⋂

N=1

∞⋃

n=N

A∞
n (ψ) (2.4)

for a suitable sequence of sets {A∞
n (ψ)}∞n=1. From the definition of A∞(ψ), it is

easy to see that this is achieved by taking

A∞
n (ψ) :=

⋃

0≤a≤n
gcd(a,n)=1

B[0,1]

(
a

n
,
ψ(n)

n

)
,

where BX(x, r) denotes the closed ball in the metric space X with radius r around
the point x. In particular,

B[0,1]

(
a

n
,
ψ(n)

n

)
=

[
a− ψ(n)

n
,
a+ ψ(n)

n

]
∩ [0, 1],

which has a p-adic variant in the form of

BZp

(
a

n
,
ψ(n)

n

)
=

{
α ∈ Zp :

∣∣∣∣α− a

n

∣∣∣∣
p

≤ ψ(n)

n

}
.

Based on this, Haynes [27] defined a different p-adic Duffin–Schaeffer set to Bp(ψ),

Ap(ψ) :=
∞⋂

N=1

∞⋃

n=N

Ap
n(ψ),
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where

Ap
n(ψ) :=

⋃

−n≤a≤n
gcd(a,n)=1

BZp

(
a

n
,
ψ(n)

n

)
.

He preferred this variant since it – unlike Bp(ψ) – always has a measure of 0 or 1
(see [27] for a proof), and he proposed the following conjecture.

Conjecture 2.7 (Haynes, 2010). Let p be a prime number, and let ψ : N → R≥0.
Then

µp(Ap(ψ)) =

{
1 if

∑∞
n=1 µp(Ap

n(ψ)) = ∞,

0 if
∑∞

n=1 µp(Ap
n(ψ)) <∞.

Among other interesting results in [27], Haynes proved that a certain strength-
ening of Conjecture 2.3 would imply Conjecture 2.7. In 2023, Kristensen and the
current author [34] combined this with a modification of the proof of Theorem 2.5
by Koukoulopoulos and Maynard to settle the conjecture.

Theorem 2.8 (Kristensen–Laursen, 2023). Conjecture 2.7 is true.

The same paper also provided a few theorems regarding µp(Bp(ψ)), one of these
being the below result, which considers the spectrum of values that µp(Bp(ψ))
attains when we allow ψ : N → R≥0 to vary. To ease notation, let us write

SBp :=
⋃

ψ:N→R≥0

{µp(Bp(ψ))}.

Going forward, this definition will also be used where Bp is replaced by other
labels X such that X(ψ) denotes a set inspired by the Khintchine set or the
Duffin–Schaeffer set, writing µ∞ = λ for p = ∞. This way, Theorem 2.4 may
be rephrased as SA∞ = {0, 1}. In the following theorem and for the rest of this
chapter, we use the notation of a + bX = {a + bx : x ∈ X} when a, b ∈ Y and
X ⊆ Y for some set of numbers Y . The theorem also uses the following definition
of Cantor sets, which is taken from [43].

Definition 2.9. Let x ∈ (0, 1/2), write I0,1 = [0, 1], and consider the following
iterative process. At step n for n ∈ N0, we will have a list of intervals In,1, . . . , In,2n ,
each of which is of length xn. We then remove the middle of each In,j, leaving
behind two closed intervals In+1,2j−1(x) and In+1,2j(x) of length xλ(In,j) = xn+1 to

be used in the next iterative step. Noticing that
⋃2n+1

j=1 In+1(x) ⊆
⋃2n

j=1 In(x), we
define the Cantor set with parameter x as the limit of this sequence of joined sets,

C(x) :=
∞⋂

n=1

2n⋃

j=1

In,j(x) =

{ ∞∑

n=0

cnx
n : cn ∈ {0, 1− x} for all n ∈ N0

}
.
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This process can, to some extent, also be done for x = 0 or x = 1/2, leading to
the sets C(0) = {0, 1} and C(1/2) = [0, 1].

Theorem 2.10 (Kristensen–Laursen, 2023). Let p be a prime number. Then

p−1C(p−1) ∪ {1} ⊆ SBp ⊆ [0, p−1] ∪ {1}.
In particular, SB2 = [0, 1/2] ∪ {1}.
Remark 2.11. If we were to replace p with∞ and write B∞ = A∞ in the conclusion
of this theorem (with the convention ∞−1 = 0), we retrieve the statement of
Theorem 2.4. Hence, the above theorem may be said to hold for p = ∞ as well.

This theorem inspired the following conjecture, based on an optimism towards
having an easily described spectrum and an expectation that when [0, 1] \ SBp is
an open interval for p = 2 and p = ∞ (writing B∞ = A∞), then it is probably
also true for the remaining values of p. Besides, it would be quite the coincidence
if SBp were to be a mildly modified Cantor set.

Conjecture 2.12 (Kristensen–Laursen, 2023). SBp = [0, 1/p] ∪ {1} for all prime
numbers p.

In Section 2.2, we settle this conjecture by presenting the paper [37] by the
current author, in which SBp was in fact shown to be a mildly modified Cantor set.

When writing inequality (2.1), we implicitly use the denominator to quantify
the complexity of a rational number, whereas inequality (2.3) uses the maximum of
numerator and denominator to do the same. While each of these ways of measuring
the complexity is meaningful in its respective setting, there are cases where a third
way is preferable. This is, for instance, the case in [4], where Badziahin and
Bugeaud replaced inequalities (2.1) and (2.3) with the multiplicative inequality

∣∣∣∣α− a

b

∣∣∣∣
p

≤ ψ(n)

n
, n = |ab|. (2.5)

Based on this, they construct what we will call the multiplicative p-adic Duffin–
Schaeffer set,

Ap(ψ) =

{
α ∈ Zp : (2.5) is true for infinitely many

a

b
∈ Q

}
, (2.6)

where we assume a/b to be reduced fractions, same as we did in the definitions
of A∞(ψ) and Bp(ψ). Badziahin and Bugeaud then proved a theorem similar to
Conjectures 2.3 and 2.7 but with certain technical restrictions on ψ. As a brief
remark, they suggested that these restrictions might not be needed, likely inspired
by the apparent similarities between Ap(ψ) and either of A∞(ψ) and Ap(ψ). If
this suggestion were true, it would imply the following milder conjecture, which
would then correspond to Theorem 2.4.
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Conjecture 2.13 (Badziahin–Bugeaud, 2022). Let p be a prime number. Then
SAp = {0, 1}.

This conjecture will also be settled in Section 2.2, where another result from [37]
states that SAp equals the unit interval.

2.2 Attainable values for µp(Bp) and µp(Ap)

In this section, we will consider the main results of the paper [37] by the current
author. Recall Conjecture 2.12 from Section 2.1. It follows from the definition of
Bp that

Bp(ψ) =
∞⋂

N=1

∞⋃

n=N

(Ap
n(ψ) ∪ Cpn(ψ)),

where

Cpn(ψ) =
⋃

0<|a|<n
gcd(a,n)=1

BZp

(
n

a
,
ψ(n)

n

)
.

Defining

Cp(ψ) :=
∞⋂

N=1

∞⋃

n=N

Cpn(ψ),

the current author settles Conjecture 2.12 in the paper [37] in the form of the
following theorem, which may be considered a shell-wise Cp-variant of Theorem
2.4.

Theorem 2.14 (Laursen, 2023). Let p be a prime number, and let ψ : N → R≥0.
Then

µp(Cp ∩ pkZ×) ∈ {0, (p− 1)/pk+1}.

In particular, SCp = C(p−1) and SBp = p−1C(p−1) ∪ {1}.

Remark 2.15. A reader familiar with the Hausdorff dimension, denoted dimH, will
notice that dimH SBp = dimH SCp = log 2/ log p, which fits how dimH SA∞ = 0.
See [43] for a definition of dimH and a proof that dimHC(x) = log 2/ log(x−1).

The proof of Theorem 2.14 is inspired by that of [27, Lemma 1] and uses many
of the same ideas. Part of this involves p-adic variants of classical results regarding
the Lebesgue measure.

Expecting that the remaining results of [27] may also be altered to work for
Cp(ψ)∩pkZ× instead of Ap(ψ), the current author proposes a conjecture equivalent
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to the following at the end of [37]. In the conjecture and for the rest of this section,
we write

κ(ψ) = inf
{
k ∈ N0 : ψ(n) ≥ pn for infinitely many n ∈ pkZp

}
,

with the convention that inf ∅ = ∞.

Conjecture 2.16 (Laursen, 2023). Let p be a prime number, let ψ : N → R≥0, and
let k ∈ N0. If k < κ(ψ), then

µp(Cp(ψ) ∩ pkZ×
p ) =

{
(p− 1)/pk+1 if

∑
νp(n)=k

ψ(n)φ(n)/n = ∞,

0 if
∑

νp(n)=k
ψ(n)φ(n)/n <∞.

This conjecture is to be seen in the context of the below theorem, which follows
immediately from Theorem 2.8 and the fact that Bp(ψ) = Ap(ψ)∪Cp(ψ). Together,
the conjecture (if proven true) and the theorem provide a formula for deciding
µp(Cp(ψ)) and µp(Bp(ψ)) for any ψ : N → R≥0.

Theorem 2.17 (Laursen, 2023). Let p be a prime number, and let ψ : N → R≥0.
Then

µp(Cp(ψ)) = p−κ(ψ) +

κ(ψ)−1∑

n=0

µp(Cp(ψ) ∩ pnZ×
p )

and

µp(Bp(ψ)) =
{
1 if

∑
νp(n)=0 ψ(n)φ(n)/n = ∞,

µp(Cp(ψ)) if
∑

νp(n)=0 ψ(n)φ(n)/n <∞.

Now recall Conjecture 2.13 from Section 2.1. A similar conjecture could likewise
be posed for the set

Kp(ψ) := {α ∈ Zp : (2.5) holds for infinitely many (a, b) ∈ Z× N}, (2.7)

which is inspired by the Khintchine set. By writing | · |∞ = | · |, Z∞ = [0, 1], and
µ∞ = λ, equations (2.6) and (2.7) give notions of multiplicative Duffin–Schaeffer
sets and multiplicative Khintchine sets, respectively, over the real numbers.

Conjecture 2.13 is then disproven for both Ap(ψ) and Kp(ψ), whether p is a
prime number or ∞, by the following result from [37].

Theorem 2.18 (Laursen, 2023). Let p be a prime number or ∞, and let x ∈ [0, 1].
Then an approximation function ψ : N → R≥0 can be constructed such that
µp(K

p(ψ)) = µp(A
p(ψ)) = x. In particular, SAp = SKp = [0, 1].
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Remark 2.19. There are also ψ : N → R≥0 with µp(K
p(ψ)) ̸= µp(A

p(ψ)). When p
is a prime, this happens for the function ψ : N → R≥0 that Haynes [27] used to
prove SBp ̸= {0, 1}. This ψ is defined by ψ(n) = n/p when p | n and ψ(n) = 0
when p ∤ n. It then follows that Kp(ψ) = Zp and Ap(ψ) = pZp, so that

µp(K
p(ψ)) = 1 > 1/p = µp(A

p(ψ)).

While this theorem is relatively easy to prove for p = ∞, it is much more
difficult when p is a prime number. In the presented proof, the prime numbers are
divided into 5 families: The primes p > 5 congruent to 1 modulo 4, the primes
p > 5 congruent to 3 modulo 4, the prime 2, the prime 3, and finally the prime
5. Given a number x ∈ [0, 1], ψ : N → R≥0 is constructed through a method that
draws inspiration from the proof of Theorem 2.10 in [34] but is much more involved
and depends on which of the 5 families the considered prime number belongs to.
Of the three prime numbers that requires individual attention, the prime 2 was
the easiest to handle while the prime 5 was the most difficult.

2.2.1 Paper 7: Attainable measures for certain types of p-adic

Duffin–Schaeffer sets

Below, the reader will find the paper [37], which has the current author as its
sole author. It was published in Mathematica Scandinavica in 2023 and is avail-
able through the link https://doi.org/10.7146/math.scand.a-139832. It has
a length of 29 pages, numbered 452 through 480.

While the published version of the paper is not currently available on the
webpage of Mathematica Scandinavica without a subscription, it will be so in
the year 2028, 5 years after its publication. The preprint is also available on
arXiv through the link https://arxiv.org/abs/2212.03619 or by using its arXiv
identifyier 2212.03619, though without the formatting of Mathematica Scand-
inavica and with some minor typing errors.

Below, the reader will find the published version of the paper, which the journal
has kindly allowed the current author to include in this thesis.

https://doi.org/10.7146/math.scand.a-139832
https://arxiv.org/abs/2212.03619
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ATTAINABLE MEASURES FOR CERTAIN TYPES OF
p-ADIC DUFFIN-SCHAEFFER SETS

MATHIAS L. LAURSEN

Abstract
This paper settles recent conjectures concerning the p-adic Haar measure applied to a family of
sets defined in terms of Diophantine approximation. This is done by determining the spectrum of
measure values for each family and seeing that this contradicts the corresponding conjectures.

1. Introduction

In Diophantine approximation, we are often interested in determining when a
given number α ∈ [0, 1] has infinitely many solutions to inequalities of the
form ∣∣∣α − a

n

∣∣∣ < ψ(n)

n
, (1.1)

for some chosen function ψ :N → R≥0. In 1924, Khintchine [7] gave one of
the first metric results regarding this inequality, as stated below.

Theorem (Khintchine). Let ψ :N → R≥0 and write

K (ψ) = {
α ∈ [0, 1] : (1.1) holds for infinitely many (a, n) ∈ Z×N

}
.

Ifψ(n) is monotonic, then K (ψ) has Lebesgue measure 1 if
∑∞

n=1 ψ(n) = ∞
and has Lebesgue measure 0 otherwise.

Later, Duffin and Schaeffer [3] tried to remove the monotonicity condition
and found a counterexample, which lead them to suppose that it would be more
natural to consider the set

A (ψ) = {
α ∈ [0, 1] : (1.1) holds for infinitely many a

n
∈ Q}, (1.2)

where the fractions a/n are assumed to be reduced, i.e. gcd(a, n) = 1. They
then famously conjectured the below theorem, which was only proven a couple
of years ago by Koukoulopoulos and Maynard [8].

Received 7 December 2022, in final form 21 June 2023. Accepted 21 June 2023.
DOI: https://doi.org/10.7146/math.scand.a-139832
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Theorem (Duffin-Schaeffer). Let ψ :N → R≥0. Then

|A (ψ)| =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if
∞∑
n=1

ψ(n)φ(n)

n
< ∞,

1 if
∞∑
n=1

ψ(n)φ(n)

n
= ∞.

Here and throughout this paper, φ denotes the Euler totient function. Named
after the conjecture, we will refer to A (ψ) as the (real) Duffin-Schaeffer set.
In handling the conjecture, one usually writes it as a lim-sup set A (ψ) =
lim supn→∞ An(ψ) where

An(ψ) =
⋃

1≤a≤n
gcd(a,n)=1

BR

(
a

n
,
ψ(n)

n

)
∩ [0, 1].

We use BX(x, r) to denote the closed ball of radius r around the point x in
metric space X when r > 0, and the singleton {x} when r = 0.

Before the conjecture was settled, Haynes [5] proposed a p-adic variant of
the conjecture in terms of the p-adic Haar measure μp with μp(Zp) = 1 and
a p-adic Duffin-Schaeffer set, Ap. To this end, he first translated An into

Ap
n (ψ) :=

⋃
|a|≤n

gcd(a,n)=1

BQp

(
a

n
,
ψ(n)

n

)
∩ Zp

and then defined Ap as the limsup set of A
p
n (ψ). From this, Haynes phrased

a p-adic Duffin-Schaeffer conjecture for the set Ap(ψ). One of the main res-
ults of Haynes’ paper was that if a certain ‘quasi-independentness on average’
criterion, closely related to the real Duffin-Schaeffer conjecture, were to hold,
then his conjecture would follow. In [9], Kristensen and Laursen modified ar-
guments from [8] to prove this ‘quasi-independentness on average’for relevant
ψ , thus settling the conjecture in the affirmative, so we may now state it as a
theorem.

Theorem (p-adic Duffin-Schaeffer). We have

μp(A
p(ψ)) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if
∞∑
n=1

μp(A
p
n (ψ)) < ∞

1 if
∞∑
n=1

μp(A
p
n (ψ)) = ∞.
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However, the set Ap(ψ) is not the only natural choice for a p-adic variant
of A (ψ), as one might instead start from equation (1.2) when translating the
question to a p-adic context. For this, we first need a translation of inequality
(1.1). Following Jarník [6] and Lutz [10], this should be∣∣∣α − a

n

∣∣∣
p

≤ ψ(max{|a|, |n|})
max{|a|, |n|} . (1.3)

By fixing max{|a|, |n|}, we limit both the numerator and the denominator. If
we, as is done in the real case, merely compared based on n, the inequality
would trivially have infinitely many answers a ∈ Z for any x ∈ Zp whenever
ψ(n) > 0, as the fractions a/n would be dense in the ball of radius |n|−1

p

around the origin, by virtue of Z being dense in Zp. If we impose the condition
that a/n be a reduced fraction, the argument becomes slightly more obscure,
but the fractions would still be dense in Zp when gcd(a, n) = 1 – just add the
proper multiple of a sufficiently large power of p to a when gcd(a, n) > 1.
We then define the alternative p-adic Duffin-Schaeffer set as

Bp(ψ) = {
α ∈ Zp : (1.3) holds for infinitely many a

n
∈ Q}.

This set was also briefly considered by Haynes [5], who showed that this
set allowed for μp(Bp(ψ)) �= 0, 1, by explicitly constructing a ψ such that
the measure was p−1. Kristensen and Laursen [9] revisited the set and found
an uncountable collection of possible values for μp(Bp(ψ)) when ψ varies.
For p = 2, they found that the possible values were exactly those in the set
[0, 1/2]∪{1} and conjectured that the set of possible values would be [0, 1/p]∪
{1} for p > 2. The first main result of this paper rejects this conjecture by
proving that the spectrum of possible values ofμp(Bp(ψ)) is in fact limited to
those already found in [9]. As noted in that paper, this means that the spectrum
becomes a Lebesgue-null set of Hausdorff dimension log 2/logp.

Furthermore, a new paper by Badziahin and Bugeaud [1] introduces another
Duffin-Schaeffer-like set of p-adic numbers, which we will denote by �′p(ψ).
The definition of this set is related to that of Bp(ψ) where inequality (1.3) is
replaced by ∣∣∣α − a

b

∣∣∣
p
<
ψ(|ab|)

|ab| , (1.4)

so that �′p(ψ) becomes

�′p(ψ) = {
α ∈ Zp : (1.4) holds for infinitely many a

b
∈ Q}.

This set is not quite a generalisation of the original Duffin-Schaeffer set, but
it appears to be of a similar nature. In their paper, Badziahin and Bugeaud
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prove a theorem inspired by the above theorem due to Khintchine and by
the Duffin-Schaeffer Theorem. Akin to Khintchine, they achieve their result
by imposing certain restrictions on the approximation function ψ , including
some weak growth restrictions. After stating the theorem, they suggest that
it may hold with these restrictions weakened or perhaps even removed. We
will in this paper show that said restrictions cannot be removed entirely as the
spectrum of values attainable by μp(�′p(ψ)) is the entire unit interval when
ψ is allowed to be any function onto R≥0.

2. Main results

For ease of notation, we will suppressψ when talking about the various Duffin-
Schaeffer-inspired sets in the cases where there is no ambiguity towards the
underlying ψ .

The most obvious reason for the difference between Ap and Bp is that
Ap only allows fractions where the numerator is bounded by the denominator
while Bp allows numerators of any size relative to the denominator. As such, it
appears natural to consider what happens with the remaining fractions, where
the numerator is greater than the denominator. This leads to a third p-adic
Duffin-Schaeffer set, Cp, which we define as the limsup set of sets C

p
n given

by

Cp
n =

⋃
|a|<n

gcd(a,n)=1

BQp

(
n

a
,
ψ(n)

n

)
∩ Zp,

for n > 1, and C
p

1 = ∅ for n = 1. It is then easy to see that Bp is the limsup
set of B

p
n := A

p
n ∪ C

p
n . By Dirichlet’s pigeonhole principle, we then get

Bp = Ap ∪ Cp. (2.1)

If p �n and p | a, then |n/a|p > 1, so thatB(n/a,ψ(n)/n)∩Zp = ∅ unless
ψ(n)/n ≥ |a|−1

p > 1, in which case C
p
n = Zp = B(n/1, ψ(n)/n) ∩ Zp. By

this realization, we may instead write

Cp
n (ψ) =

⋃
|a|<n

gcd(a,pn)=1

BQp

(
n

a
,
ψ(n)

n

)
∩ Zp,

Note that this is also applicable for n = 1, as the union is empty in that case.
We will therefore use this as the de facto definition of C

p
n (ψ) going forward.

We are now ready to state the first main result of this paper, which determines
the spectra of values for μp(Cp) and μp(Bp), respectively.
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Theorem 2.1. Let x ∈ [0, 1]. There exists a function ψ :N → R≥0 such
that μp(Cp(ψ)) = x if, and only if, x is of the form

x =
∞∑
k=0

xk(p − 1)p−k−1, xk ∈ {0, 1} ∀k ∈ N0.

There exists a function ψ :N → R≥0 such that μp(Bp(ψ)) = x if and only if,
x = 1 or x is of the form

x =
∞∑
k=1

xk(p − 1)p−k−1, xk ∈ {0, 1} ∀k ∈ N.

We now turn our attention towards the set �′p from [1]. In order to have
notation more in line with the Duffin-Schaeffer sets A and Bp, we alter in-
equality (1.4) slightly, ∣∣∣α − a

b

∣∣∣
p

≤ ψ(|ab|)
|ab| , (2.2)

which leads to a set

�p(ψ) = {
α ∈ Zp : (2.2) holds for infinitely many a

b
∈ Q}.

To see that this set will have the same spectrum of measures as �′p, define ψ ′
by

ψ ′(n) =
{
pψ(n) if ψ(n) = n/pk for some k ∈ Z,

ψ(n) otherwise.

Note that ∣∣∣α − a

n

∣∣∣
p

≤ 0

has at most 1 solution a/n ∈ Q for any given α, and so the collection of n
with ψ(n) = 0 contributes to neither �p(ψ) nor �′p(ψ ′). For ψ(n) > 0,
inequality (1.4) withψ ′ is equivalent to inequality (2.2) withψ . It thus follows
that �p(ψ) = �′p(ψ ′). Since there is an obvious bijection between ψ and ψ ′,
�p and �′p have the same spectrum of measures.

We will also consider a Khintchine-like variant of the set, defined as

�p(ψ) = {
α ∈ Zp : (2.2) holds for infinitely many (a, b) ∈ (Z \ {0})×N

}
.

By takingZ∞,Q∞, |·|∞, andμ∞ to mean [0, 1],R, |·|, and the Lebesque meas-
ure, respectively, we define related sets over the real numbers when allowing
p = ∞.
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As is the case for the ‘proper’Duffin-Schaeffer sets, we will want to write �p

and �p as the limsup set of sets �
p
n and �

p
n , respectively. Write BQp (±a, r) =

BQp (a, r)∪BQp (−a, r) andn = ∏ω(n)
i=1 p

νpi (n)

i , whereω(n) denotes the number
of distinct prime divisors of n. By defining

�p
n (ψ) =

⋃
a|n
BQp

(
± a

n/a
,
ψ(n)

n

)
∩ Zp,

�p
n (ψ) =

⋃
a1,...,aω(n)∈{0,1}

BQp

(
±
∏
ai=1 p

νpi (n)

i∏
ai=0 p

νpi (n)

i

,
ψ(n)

n

)
∩ Zp,

we immediately achieve

�p = lim sup
n→∞

�p
n , �p = lim sup

n→∞
�p
n .

It so happens that the spectra of values for |�∞| and |�∞| are surprisingly
easy to settle while the spectra of values forμp(�p) andμp(�p)when p < ∞
require significantly more care. However, the spectra are nonetheless inde-
pendent of p as they always take up the entire unit interval as seen by the
below theorem. We will prove the easy case of p = ∞ immediately and save
p < ∞ for Section 5. That section will be independent of Sections 3 and 4.

Theorem 2.2. Let p be a prime or p = ∞, and let x ∈ [0, 1]. Then there
exists a ψ :N → R≥0 such that μp(�p(ψ)) = μp(�

p(ψ)) = x.

Proof for p = ∞. Let x ∈ [0, 1] and define ψ :N → R≥0 by

ψ(n) =
{
nx if n is a prime,

0 otherwise.

Since ψ is supported on the primes, we immediately have that �∞ = �∞. We
are thus left with showing that |�∞| = x. Upon applying the Borel-Cantelli
Lemma, this follows by a brief calculation, where we use q to denote primes:

|�∞| =
∣∣∣∣lim sup
q→∞

⋃
e1,e2∈{−1,1}

BR(e1q
e2 , x) ∩ [0, 1]

∣∣∣∣
=
∣∣∣lim sup
q→∞

[0, x + q−1]
∣∣∣ = x.

This completes the proof

Note that �
p
n (ψ) ⊆ �

p
n (ψ) will hold with strict inclusion for all small

enough ψ , so we should not expect equality between μp(�p) and μp(�p) in
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general. In fact, if we in the above proof had taken

ψ(n) =
{
nx if n is the square of a prime,

0 otherwise,

we would still find |�∞| = x while |�∞| = min{2x, 1} as �p now also accepts
infinitely many copies of 1 = q/q as approximants and thereby includes the
interval [1 − x, 1] in �∞.

3. Some p-adic measure theory

In this section, we will present a series of general measure theoretical results
that will be used for the proof of Theorem 2.1. Except for Lemma 3.5, these
results all appear to have been applied to some extent in [5], even though
only Lemma 3.2 was formally stated. All results are to be applied in proving
Proposition 4.2, which will be introduced in Section 4 and plays a central role
in proving the ‘only if’ parts of Theorem 2.1.

Note that each non-negative real number x ∈ R≥0 has a canonical base p
expansion of the form

x =
∞∑
n=N

anp
−n,

where an ∈ {0, . . . , p − 1}, lim inf an < p − 1, and N ∈ Z≤0 is maximal
possible. Throughout this paper, the function ιp:R≥0 → Qp denotes the asso-
ciated map

x =
∞∑
n=N

anp
−n �→ ιp(x) =

∞∑
n=N

anp
n.

This function is measure preserving in that λ(A) = pμp(ιp(A)) for any meas-
urable subset A ⊆ R.

Lemma 3.1. The preimage map ι−1
p maps balls B ⊆ Qp to half-open inter-

vals inR of length pμp(B). In particular, ιp is measurable, and the associated
push-forward measure on the Lebesgue measure, ιp#, is equal to pμp.

Proof. Notice that

ι−1
p (Zp) =

{ ∞∑
m=0

bmp
−m ∈ R : bm ∈ {0, . . . , p − 1}, lim inf

m→∞ bm < p − 1

}

= [0, p).
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Let B be a ball in Zp and write B = ∑M−1
m=0 bmp

m + pMZp for some M ∈ N0

and b0, . . . , bM−1 ∈ {0, . . . , p − 1}. We then have

ι−1
p (B) = ι−1

p

(M−1∑
m=0

bmp
m

)
+ p−Mι−1

p (Zp) =
M−1∑
m=0

bmp
−m + [0, p1−M),

which proves the first part of the lemma. Since the Borel algebra of Zp is
generated by the collection of balls in Zp, and the intervals are contained in the
Borel algebra of R≥0, ιp is a measurable function, and the push-forward ιp# is
a Borel-measure onQp. From the above equation, we notice in particular that
for all balls B in Qp,

ιp#(B) = pμp(B).

Since all balls have finite measure, and the collection of the empty set and all
balls in Qp is preserved under pairwise intersection and generates the Borel
algebra of Qp, this implies that ιp# = pμp, by the Uniqueness of Measures
Theorem, and the proof is complete.

The alternative definition ofμp provided by the above lemma gives a tool to
translate measure theoretic results regarding R into measure theoretic results
regardingQp. It appears that Haynes may have used this alternative definition
in [5], though it was not explicitly stated. One result that very easily translates
using ιp is the below lemma from [4], which is a modification of a lemma from
[2].

Lemma 3.2. Let {In}n∈N be a sequence of real intervals with λ(In) −→
n→∞ 0,

and let {Un}n∈N be a sequence of measurable sets such that

Un ⊆ In, |Un| ≥ ε|In| ∀n ∈ N,
for some fixed 0 < ε < 1. Then |lim supn→∞ Un| = |lim supn→∞ In|.

Corollary 3.3. Let {Bn}n∈N be a sequence ofp-adic balls with the property
μp(Bn) −→

n→∞ 0. Suppose {Un}n∈N is a sequence of measurable sets such that,

for some
Un ⊆ Bn, μp(Un) ≥ εμp(Bn) ∀n ∈ N,

for some fixed 0 < ε < 1. Then μp(lim supn→∞ Un) = μp(lim supn→∞ Bn).

Proof. Applying pμp = ιp# by Lemma 3.1, we have

pμp
(
lim sup
n→∞

Un
) =

∣∣∣∣ι−1
p

( ∞⋂
N=1

⋃
n≥N

Un

)∣∣∣∣ = lim
N→∞

∣∣∣∣ι−1
p

(⋃
n≥N

Un

)∣∣∣∣
=
∣∣∣lim sup
n→∞

ι−1
p (Un)

∣∣∣.
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By repeating the process for Bn, the statement follows by Lemma 3.2, and the
proof is complete.

Another relevant result that may be derived using ιp is a p-adic version of
the Lebesgue Density Theorem, as presented below.

Lemma 3.4 (Lebesgue Density Theorem for Qp). Let A be a measurable
subset ofQp such thatμp(A) > 0. ThenA contains a point of density 1, which
is to say that there exists a ∈ A such that if {BM}M∈N is a sequence of balls
BM � a of radius r(BM) −→

M→∞ 0, then

μp(A ∩ BM)
μp(BM)

−→
M→∞ 1.

Proof. By Lemma 3.1, we have pμp = ιp#. Thus Ã = ι−1
p (A) has positive

Lebesgue measure, which means that it must contain a point x ∈ Ã of density 1,
by the Lebesgue Density Theorem. Put a = ιp(x), and let {BM} be a collection
of balls around a in Qp of radius r(BM) −→

M→∞ 0.

Let ε > 0, and put B̃M = ι−1
p (BM). Since ι−1

p maps balls to half-open

intervals of length pμp(BM) by Lemma 3.1, and we must have B̃M � x, it
follows that |Ã ∩ B̃M | > 0, as x is of density 1 in Ã. Using once more that
B̃ is an interval, this allows us to pick open intervals IM ⊇ B̃M such that
|Ã ∩ IM | ≤ pε|Ã ∩ B̃M | and |IM | ≤ 2|B̃M |. Hence,

μp(A ∩ BM)
μp(BM)

= |Ã ∩ B̃M |
|B̃M | ≥ p−ε|Ã ∩ IM |

|IM | . (3.1)

As IM � x, write IM = (x − sM, x + tM) with sM, tM > 0 and put uM =
max{sM, tM}. Then

1 ≥ |Ã ∩ IM |
|IM | ≥ |Ã ∩ (x − uM, x + uM)| − (uM − sM)− (uM − tM)

sM + tM

= 2uM
sM + tM

|Ã ∩ (x − uM, x + uM)|
|(x − uM, x + uM)| − 2uM

sM + tM
+ 1.

Since x is of density 1, and we have

uM ≤ 2|IM | ≤ 4|B̃M | = 4p μp(BM) −→
M→∞ 0,

the squeezing lemma then implies that |Ã ∩ IM |/|IM | → 1 as M → ∞.



ATTAINABLE MEASURES OF p-ADIC DUFFIN-SCHAEFFER SETS 461

Combined with equation (3.1), this means that

lim inf
M→∞

μp(A ∩ BM)
μp(BM)

≥ p−ε,

and the lemma follows by letting ε tend to 0.

We will also use the below lemma, which relies on elementary algebra and
then the Uniqueness of Measures Theorem. This does not use ιp.

Lemma 3.5. Let f :Z×
p → Z×

p denote the map x �→ 1/x. Then f maps
balls in Z×

p to balls of the same measure in Z×
p . In particular, f preserves μp

restricted to Z×
p .

Proof. This is a simple calculation.

4. Proof of Theorem 2.1

To prove Theorem 2.1, we will use two propositions. The first one putsμp(Bp)

equal to μp(Ap) or μp(Cp), depending on a divergence criterion, and splits
Cp into smaller pieces to be dealt with individually.

In the proof and for the rest of this paper, we will use � to denote the disjoint
union of sets.

Proposition 4.1. Let l be the minimal k ∈ N0 such that ψ(n)/n ≥ p−k for
infinitely many n ∈ pkN, if such a k exists. Otherwise, put l = ∞ and write
p−∞ = 0. Then

μp(B
p) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

μp(A
p) = 1 if

∑
p�n

φ(n)ψ(n)

n
= ∞,

μp(C
p) if

∑
p�n

φ(n)ψ(n)

n
< ∞,

(4.1)

μp(C
p) = p−l +

∑
0≤k<l

μp
(
Cp ∩ pkZ×

p

)
. (4.2)

Furthermore, if k < l, then Cp ∩ pkZ×
p = lim supνp(n)=k C

p
n .

Proof. We start by proving equation (4.1). If
∑

p�n
φ(n)ψ(n)

n
= ∞, this is [9,

Theorem 2], so suppose not. Then
∑

p�n μp(A
p
n ) < ∞. If

∑
p|n μp(A

p
n ) = ∞,

then we must have ψ(n) ≥ pn infinitely often, and so the definitions imply
B
p
n ⊇ C

p
n ⊇ BQp (n/1, p) ∩ Zp = Zp for these n when n > 1. Hence,

Bp = Cp = Zp. If
∑

p|n μp(A
p
n ) < ∞, then the Borel-Cantelli Lemma

implies μp(Ap) = 0, and the statement follows by equation (2.1).
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Moving on to equation (4.2), notice that

Cp = (Cp ∩ plZp) �
⊔

0≤k<l
Cp ∩ pkZ×

p ,

with the convention of p∞ = 0 (as an element of Zp) in the case of l = ∞.
Equation (4.2) is then equivalent to μp(Cp ∩ plZp) = pl . If l = ∞, this is
trivial, so suppose l < ∞. Let α ∈ plZp. By definition of l, there are infinitely
many n ∈ plN with ψ(n) ≥ p−ln. For these n, |α − n/1|p ≤ p−l ≤ ψ(n)/n,
and so α ∈ C

p
n . Hence, Cp ⊇ plZp, implyingμp(Cp∩plZp) = pl as claimed.

As for the final part of the statement, this is vacuous if l = 0, so suppose
l > 0 and let 0 ≤ j ≤ k < l. Then ψ(n)/n < p−j for all but finitely many
n ∈ pjN. If νp(n) = j , then α ∈ C

p
n would imply

|α|p =
∣∣∣α − n

a
+ n

a

∣∣∣
p

= p−j ,

for some |a| < n with gcd(a, pn) = 1 when n is sufficiently large, so that

lim sup
νp(n)=j

Cp
n ⊆ pjZ×

p .

If νp(n) > k, we would instead find

|α|p ≤ max

{∣∣∣α − n

a

∣∣∣
p
,

∣∣∣n
a

∣∣∣
p

}
< p−k,

for some |a| < n with gcd(a, pn) = 1 when n is sufficiently large, so that

lim sup
νp(n)>k

Cp
n ⊆ pk+1Zp.

By the pigeon-hole principle, the proposition is proven upon calculating

Cp ∩ pkZ×
p =

(
lim sup
νp(n)>k

Cp
n ∩ pkZ×

p

)
∪

k⋃
j=0

lim sup
νp(n)=j

Cp
n ∩ pkZ×

p

= lim sup
νp(n)=k

Cp
n .

The other proposition leading to Theorem 2.1 is a bit more involved and
may be thought of as a shell-wise zero-full law for Cp. This relates to, and is
inspired by, the zero-one laws |A | ∈ {0, 1} [4] and μp(Ap) ∈ {0, 1} [5].

Proposition 4.2. Let k ∈ N0. Then μp(Cp ∩ pkZ×
p ) ∈ {0, (p − 1)/pk+1}.
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The proof of this proposition follows the same overall structure as the proof
of the 0-1 law in [5], with some modifications. In that light, it is perhaps not
surprising that we will need the below lemma, which corresponds to the less
trivial part of [5, Lemma 2]. We will here continue to use ω(n) to denote the
number of prime divisors of n. The proof of the lemma will apply the M+Âbius
function μ, which is defined as μ(d) = (−1)ω(d) when d is square free, and
μ(d) = 0 otherwise. In this context, the following three facts, which can be
found in [11], will be applied without proof.

∑
d|n
μ(d) =

{
1 if d = 1,

0 if d �= 1,
(4.3)

∑
d|n
μ(d)

n

d
= φ(n), (4.4)

φ(n)

n
=
∏
q|n
(1 − q−1). (4.5)

Lemma 4.3. If n > 1 and ψ(n) > 4ω(n), then C
p
n ⊇ pνp(n)Z×

p .

Proof. Put k = νp(n), and let α ∈ pkZ×
p . Then n/α ∈ Z×

p , and we write

n

α
=

∞∑
m=0

bmp
m, bm ∈ {0, . . . , p − 1} ∀m ∈ N0, b0 �= 0.

If ψ(n) ≥ n/pk , then clearly α ∈ C
p
n since |n|p = |α|p = p−k implies

∣∣α −
n
1

∣∣
p

≤ p−k , so suppose not. Pick N ∈ Z such that ψ(n)/n ∈ [p−N, p−N+1).

Note thatN > k. Our job of proving α ∈ C
p
n then reduces to finding an a with

|a| < n and gcd(a, pn) = 1 such that νp(α − n/a) ≥ N . As νp(α) = k and
p � a, the latter part is equivalent to νp(a − n/α) ≥ N − k. The proof is then
complete if we find an a with |a| < n and gcd(a, pn) = 1 such that

a = n

α
+

∞∑
m=N−k

cmp
m =

N−k−1∑
m=0

bmp
m +

∞∑
m=N−k

(bm + cm)p
m,

with cm ∈ {0, . . . p − 1} for all m. Write b = ∑N−k−1
m=0 bmp

m. Since p � b as
b0 �= 0 and N > k, all elements of the set

A = {
a ∈ Z : |a| < n, gcd(a, n) = 1, a ≡ b mod pN−k}
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satisfy these criteria, and so we are done if we can show that #A > 0. By
equation (4.3), we have

#A =
∑
|a|<n

a≡b mod pN−k

∑
d|gcd(a,n)

μ(d) =
∑
d|n
p�d

∑
|a|<n, d|a

a≡b mod pN−k

μ(d)

=
∑
d|n/pk

μ(d)
∑

|l|<n/d
l≡bd−1 mod pN−k

1.

To simplify notation, let ñ = n/pk . For each d | ñ, pick xd ∈ Z such that
xd ≡ bd−1 mod pN−k , and let kd denote the difference #((−n/d, n/d) ∩
(xd + pN−kZ))− 2n/(pN−kd). Then

#A =
∑
d|ñ
μ(d)

∑
|l|<n/d

l∈xd+pN−kZ

1 =
∑
d|ñ
μ(d)

(
2n

pN−kd
+ kd

)

= 2pk

pN−k
∑
d|ñ
μ(d)

ñ

d
+
∑
d|ñ
μ(d)kd = 2p−Np2kφ(ñ)+

∑
d|ñ
μ(d)kd

≥ 2pk
ψ(n)

n
φ(n)+

∑
d|ñ
μ(d)kd,

where the final equality and the inequality follow from equation (4.4) and the
choices of N and k, respectively. Notice that |kd | ≤ 1, which combined with
the assumption that ψ(n) > 4ω(n) implies

#A > 2pk
4ω(n)

n
φ(n)−

∑
d|ñ

|μ(d)| = 2pk
φ(n)

n
4ω(n) − 2ω(ñ).

By equation (4.5), we have

2
φ(n)

n
4ω(n) = 2

∏
q|n

q prime

4(1 − q−1) ≥ 2
∏
q|n

q prime

2 = 2ω(n)+1,

and so #A > 2ω(n) > 0. We conclude α ∈ C
p
n and thus C

p
n ⊇ pkZ×

p , and the
proof is complete.

We will also need the below lemma, which is essentially a specialisation of
Corollary 3.3 in the context of Cp.
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Lemma 4.4. Let k ∈ N0, and suppose supp(ψ) ⊆ pkN \ pk+1N. Then
μp
(
Cp(xψ) ∩ pkZ×

p

) = μp
(
Cp(ψ) ∩ pkZ×

p

)
for all x > 0.

Proof. There is nothing to prove if x = 1 or if ψ(n) > 0 for only finitely
many n, so suppose neither is the case. By replacing ψ with ψ ′ = xψ and
x by x ′ = 1/x if necessary, we may assume without loss of generality that
x ∈ (0, 1). If xψ(n) ≥ 4ω(n) infinitely often, then Lemma 4.3 implies that
Cp(ψ),Cp(xψ) ⊇ pkZ×

p , so suppose not. Then, for n sufficiently large,

ψ(n)

n
≤ x−1 4ω(n)

n
≤ 16x−1 4log5(n)

n
−→
n→∞ 0.

Sinceμp(C
p
n (ψ)) = 0 whenψ(n) = 0, we have by the Borel-Cantelli Lemma

that
μp
(
Cp(ψ)

) = μp

(
lim sup
ψ(n)>0

Cp
n (ψ)

)
,

μp
(
Cp(xψ)

) = μp

(
lim sup
ψ(n)>0

Cp
n (xψ)

)
.

Notice that for ψ(n) > 0, C
p
n (ψ) is a finite union of proper balls Bin, . . . ,

Bin+1−1 of radius ψ(n)/n −→
n→∞ 0, and that each ball Bin+j is matched one-to-

one by a ball Uin+j from C
p
n (xψ) satisfying

Uin+j ⊆ Bin+j , μp(Uin+j ) ≥ x

p
μp(Bin+j ).

From Corollary 3.3, it follows that μp(Cp(xψ)) = μp(C
p(ψ)). This com-

pletes the proof since clearly Cp(xψ) ⊆ Cp(ψ).

We are now ready to complete the proof of the shell-wise p-adic zero-full
law. The remaining part of the proof is where it differs the most from the proof
of the 0-1 law in [5], though it still follows the same overall idea.

Proof of Proposition 4.2. Let l be defined as in Proposition 4.1. If
k ≥ l, then l < ∞, and it follows from the proof of that proposition that
Cp(ψ) ⊇ plZp ⊇ pkZ×

p , and we are done, so suppose k > l. We then have that
Cp(ψ) ∩ pkZ×

p = lim supνp(n)=k C
p
n (ψ), and we may hence assume, without

loss of generality, that supp(ψ) ⊆ pkN \ pk+1N. Following the arguments
in the proof of Lemma 4.4, lim supn→∞ ψ(n)/n > 0 would likewise imply
C
p
n (ψ) ⊇ pkZ×

p , so suppose lim supn→∞ ψ(n)/n = 0. We then have, for any
fixed j , that

ψ(n)

n
< p−j for all n ≥ Nj , for some Nj ∈ N.
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Let τ1:Z×
p → Z×

p and τ2:pkZ×
p → pkZ×

p be given by

τ1(b) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∞∑
m=0

bm+1p
m if b1 �= 0,

1 +
∞∑
m=0

bm+1p
m if b1 = 0,

τ2(p
kb) = pk/τ1(b),

for b = ∑∞
m=0 bmp

m ∈ Z×
p . For K ≥ 2 and b = ∑K−1

m=0 bmp
m ∈ Z×

p , note that

τ1
(
b + pKZp

) = τ1(b1)+
K−2∑
m=1

bm+1p
m + pK−1Zp. (4.6)

Thus, τ1 maps balls of centre b and radius p−K to balls of centre τ1(b) and
radius p1−K when K ≥ 2. This makes any restriction of τ1 to a ball in Z×

p

of radius at most p−2 into a homeomorphism onto its image as it is clearly a
bijection under such a restriction. By Lemma 3.5, these properties extend to a
restriction of τ2 when replacing K by M ≥ k + 2. Let B be a ball of radius
at most p−k−2. The inverse of τ2 restricted to B, τ2|−1

B is thus measurable and
has a push-forward measure, (τ2|−1

B )#μ, satisfying

(τ2|−1
B )#μ(B̃) = μp(τ2(B̃)) = pμp(B̃),

for all balls B̃ ⊆ τ2(B). By the proof of Lemma 3.1, this means that (τ2|−1
B )#μ =

pμp, i.e.,
μp(τ2(A)) = pμp(A), (4.7)

for all Borel subsets A ⊆ B.
Let α ∈ Cp(ψ) ∩ pkZ×

p and write

α′ := α/pk =
∞∑
m=0

amp
m ∈ Z×

p , ai ∈ {0, . . . , p − 1}.

Let n ∈ N such that α ∈ C
p
n (ψ). Since limn→∞ ψ(n)/n = 0, we have

ψ(n)/n ≤ p−k−2 for n large enough. By the assumption on the support of ψ ,
we may write n = pkn′ for some n′ ∈ N \ pN and pick some |a| < |n| with
gcd(a, pn) = 1 such that

|n′α′ − a|p =
∣∣∣n
α

− a

∣∣∣
p

= pk
∣∣∣α − n

a

∣∣∣
p

≤ pk
ψ(n)

n
.
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If a1 �= 0, put a′ = (a − a0n
′)/p. Then∣∣∣∣ n

τ2(α)
− a′

∣∣∣∣
p

=
∣∣∣∣n′τ1(α

′)− a − a0n
′

p

∣∣∣∣
p

=
∣∣∣∣n′(α′ − a0)− (a − a0n

′)
p

∣∣∣∣
p

= p|n′α′ − a|p ≤ pk+1ψ(n)

n
,

|a′| =
∣∣∣∣a − a0n

′

p

∣∣∣∣ ≤ |a| + (p − 1)n

p
< n,

a′ = a − a0n
′

p
= a − (a0 + pa1)n

′

p
+ a1n

′.

Since p2 | a − α′n′, we have p | (a − (a0 + pa1)n
′)/p ∈ Z. From the last

equation, we can thus deduce that gcd(a′, pn′) = gcd(a′, pn) = 1, as p � a1n
′

and gcd(a, n′) = 1. Combined with the other two equations, we conclude that
τ2(α) ∈ C

p
n (pψ). If a1 = 0, we put a′ = (a+(p−a0)n

′)/p and reach the same
conclusion, based on similar calculations. Hence, τ2(C

p(ψ)) ⊆ Cp(pψ). By
induction, we then have

τ
j

2 (C
p(ψ)) ⊆ Cp(pjψ), (4.8)

for all j ∈ N, where τ j2 denotes the composition of j copies of τ2.
If μp(Cp(ψ)) = 0, we are done, so suppose that μp(Cp(ψ)) > 0. Then

Lemma 3.4 implies that Cp(ψ) contains a point α of density 1, i.e.,

μp(C
p(ψ) ∩ BM(α))
μp(BM(α))

−→
M→∞ 1,

where we use BM(α) as short-hand notation of the ball BQp (α, p
−M) = α +

pMZp. Let ε > 0 and pick M ≥ k + 2 such that

μp(C
p(ψ) ∩ BM(α)) ≥ (1 − ε)μp(BM(α)) = (1 − ε)p−M.

Pick x = pk
∑M−k−1

m=0 xmp
m ∈ N such that BM(x) = BM(α). Put A =

τM−k−1
2 (Cp ∩BM(x)). By Lemma 4.4, equation (4.6), and inclusion (4.8), we

have

μp
(
Cp(ψ) ∩ pkZ×

p

) = μp
(
Cp(pM−kψ) ∩ pkZ×

p

)
≥ μp

(
τM−k

2 (Cp(ψ) ∩ BM(x))
) = μp(τ2(A)). (4.9)

Let x̃ = τM−k−1
2 (x) and note that x̃ = pkx̃0 for some x̃0 ∈ {1, . . . , p − 1}.
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Then

A ⊆ Bk+1(x̃) = pk
p−1⊔
i=0

(
x̃0 + ip + p2Zp

)
.

By applying equation (4.7) and then later the above inclusion, we find

μp(τ2(A)) ≥
p−1∑
i=1

μp(τ2(A ∩ Bk+2(x̃ + ip)))

= p

p−1∑
i=1

μp(A ∩ Bk+2(x̃ + ip))

= pμp(A \ Bk+2(x̃)) ≥ p(μp(A)− p−k−2)

≥ (p − 1)μp(A)

Meanwhile, an iterative application of equations (4.6) and (4.7) yield

μp(A) = pM−k−1μp(C
p ∩ BM(x)) ≥ 1 − ε

pk+1
,

so that μp
(
Cp(ψ)∩pkZ×

p

) ≥ p−1
pk+1 (1 − ε), by inequality (4.9). This completes

the proof.

Proof of Theorem 2.1. We start by the ‘only if’ parts. For Cp, it follows
by Proposition 4.2 upon noting

Cp = (Cp ∩ {0}) �
∞⊔
k=0

(
Cp ∩ pkZ×

p

)
.

As for Bp, suppose μp(Bp) < 1. By Proposition 4.1,
∑

p�n φ(n)ψ(n)/n <

∞, μp(Bp) = μp(C
p), and Cp ∩ Z×

p = lim supp�n C
p
n . Since

∑
p�n

μp(C
p
n ) ≤

∑
p�n

2φ(n)ψ(n)

n
< ∞,

the Borel-Cantelli Lemma implies μp(Cp ∩ Z×
p ) = 0, and we are done by the

above consideration of Cp.
The ‘if’parts of the theorem are already dealt with in the proof of Theorem 3

of [9] (at least for Bp), but we will repeat the argument here for clarity,
shortened by means of Proposition 4.1. Let xk ∈ {0, 1} for k ∈ N0 and define
ψ :N → R≥0 by

ψ(n) = xνp(n)
n

pνp(n)+1
.
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Let k ∈ N0, and let q > p be some large prime. If xk = 0, we clearly have
lim supνp(n)=k C

p
n = ∅. If, on the other hand, xk = 1, then ψ(pkq)/(pkq) =

p−k−1, and so

C
p

pkq
=

⋃
|a|<pkq

gcd(a,pk+1q)=1

BQp

(
pkq

a
, p−k−1

)

⊇
p−1⋃
a=1

pk
q

a
+ pk+1Zp = pk

p−1⋃
a=1

q

a
+ pZp

Since q is a unit modulo p, and since inversion and multiplication by units
only permute the set of units modulo p, this implies that C

p

pkq
⊇ pkZ×

p . As

there are infinitely many such q, we get Cp ⊇ pkZ×
p . Note that if x0 = 1, then∑

p�n φ(n)ψ(n)/n = ∞. By Proposition 4.1, this means that

μp(C
p) =

∑
xk=1

μp(p
kZ×
p ) =

∞∑
k=0

xk(p − 1)p−k−1,

μp(B
p) =

⎧⎪⎨
⎪⎩

1 if x0 = 1,
∞∑
k=1

xk(p − 1)p−k−1 if x0 = 0,

as the value l from the proposition is clearly infinite. This completes the proof
of Theorem 2.1.

5. Proof of Theorem 2.2 for p < ∞
The proof of Theorem 2.2 follows the same main idea as the ‘if’ part of The-
orem 2.1, though some details are different. The main difference is that addi-
tional care is needed for the choice of the support. This will rely heavily on
the below theorem due to Dirichlet, which may be found in [11].

Dirichlet’s Theorem on primes. Let a, b ∈ N such that gcd(a, b) = 1.
Then there are infinitely many primes q ≡ a mod b.

To simplify the notation, the symbol ± will be used to implicitly denote the
union of the cases of + and −, respectively, in place of ±. We thus write

B(±a±1, r) = B(a±1, r) ∪ B(−a±1, r)

= B(a, r) ∪ B(a−1, r) ∪ B(−a, r) ∪ B(−a−1, r).
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Furthermore, we continue using � to denote the disjoint union of sets. Recall
that we already proved Theorem 2.2 for p = ∞ in Section 2.

Proof of Theorem 2.2 forp < ∞. Letx ∈ [0, 1]. Ifx = 1, the statement
is trivial, so suppose not. We then write x = ∑∞

k=0 xkp
−k−1 where the xk are

chosen such that lim infk→∞ xk < p−1. PickK = min{k ∈ N0 : xk < p−1},
and let g ∈ N be such that g+pZp generates the multiplicative group Zp/pZp.
As the rest of the construction will depend on the prime p, we split into four
cases. In the first two cases, which construct ψ for primes p > 5 according to
their congruency classes modulo 4, we do not put any further restrictions on
the choice of g. In the other two cases, which deal with p = 2 and p = 3, 5,
respectively, we will need some further restrictions on g and therefore fix a
specific value, depending on p.

Case 1: (5 < p ≡ 1 mod 4). For a ∈ {0, . . . , p − 1} and k ∈ N0, define

Ia :=

⎧⎪⎪⎨
⎪⎪⎩

∅ if a < 4,{
1, g

p−1
4

}
∪ {gi : 2 ≤ i ≤ a/4} if 4 ≤ a < p − 1,

{1, . . . , p − 1} if a = p − 1,

rk :=

⎧⎪⎨
⎪⎩
xk − 4

⌊xk
4

⌋
+

∞∑
l=k+1

xlp
k−l if xk < p − 1,

0 if xk = p − 1.

Since clearly rk ∈ [0, 4], we may write

rk

4
=

∞∑
i=1

bk,ip
−i , bk,i ∈ {0, 1, . . . , p − 1}.

Based on this, we construct ψ as

ψ(n) :=
{
fk(q) if n = pkq, where k ≤ K ,

0 otherwise,

where we use q to denote primes other than p, and

fk(q) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

q/p if q ≡ m mod p, where m ∈ Ixk ,

q/pi+1 if q ≡ g + b′pi mod pi+1,
where 1 ≤ b′ ≤ bk,i , i ∈ N,

0 otherwise.
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Let k ≤ K . Then

�
p

pkq
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

BQp (±q±1pk, p−k−1) if q ≡ m mod p, where m ∈ Ixk ,

BQp (±q±1pk, p−k−i−1)
if q ≡ g + b′pi mod pi+1,
where 1 ≤ b′ ≤ bk,i , i ∈ N,

BQp (±q±1pk, 0) otherwise

= pk

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

±q±1 + pZp if q ≡ gi mod p, where gi ∈ Ixk ,

±q±1 + pi+1Zp
if q ≡ g + b′pi mod pi+1,
where 1 ≤ b′ ≤ bk,i , i ∈ N,

{±q±1}, otherwise,

(5.1)

⊆ pkZ×
p .

If k < K , then Ixk = {1, . . . , p − 1}, and so we are in the first case for all q,
implying that lim supq→∞ �

p

pkq
= pkZ×

p , by Dirichlet’s Theorem on primes.
By Dirichlet’s pigeonhole principle, this means that

�p ⊇ �p ⊇ lim sup
n→∞

n=pkq, k<K
�p
n =

K−1⋃
k=0

lim sup
q→∞

�
p

pkq
= Zp \ pKZp. (5.2)

We are thus left to consider �p ∩pKZp and �p ∩pKZp. Since q is prime, and
ψ(pkq)/(pkq) ≤ p−k−1, we note, for arbitrary k ∈ N0,

�
p

pkq
⊆ �

p

pkq
∪

⋃
0<j≤k/2

pk−2jZ×
p . (5.3)

Since �
p
n is finite when ψ(n) = 0, and �

p

qpk
⊆ Zp \ pk+1Zp by equation (5.1)

and inclusion (5.3), we have

μp(�
p ∩ pKZp) = μp

(
lim sup
n→∞

�p
n ∩ pKZp

)
= μp

(
lim sup
q→∞

�
p

pKq
∩ pKZp

)
.

Applying inclusion (5.3) and then equation (5.1) once more, we find

μp(�
p ∩ pKZp) = μp

(
lim sup
q→∞

�
p

pKq
∩ pKZp

)
= μp

(
lim sup
q→∞

�
p

pKq
Zp
)

= μp
(
�p ∩ pKZp

)
.
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Since xk = p − 1 for 0 ≤ k < K , inclusion (5.2) implies

μp(�
p) = μp(�

p) = μp(Zp \ pKZp)+ μp

(
lim sup
q→∞

�
p

pKq

)

=
K−1∑
k=0

xkp
−k−1 + μp

(
lim sup
q→∞

�
p

pKq

)
.

The theorem hence follows for the current case if we can show that

μp

(
lim sup
q→∞

�
p

pKq

)
=

∞∑
k=K

xkp
−k−1. (5.4)

Applying Dirichlet’s Theorem on primes on equation (5.1) for k = K , we find

lim sup
q→∞

�
p

pKq
=

⋃
m∈IxK

(±m±1pK + pK+1Zp)

∪
∞⋃
i=1

bK,i⋃
b′=1

(±(g + b′pi)±1pK + pK+i+1Zp)

=
⊔
m∈IxK

(±m±1pK + pK+1Zp)

(5.5)

�
∞⋃
i=1

bK,i⋃
b′=1

(±(g + b′pi)±1pK + pK+i+1Zp),

using that (±m±1
1 pK + pK+1Zp) ∩ (±m±1

2 pK + pK+1Zp) = ∅ for distinct
m1,m2 ∈ {gj : 0 ≤ j ≤ (p − 1)/4}. We clearly also have

(±(g + b′
1p

i)±1pK + pK+i+1Zp) ∩ (±(g + b′
2p

j )±1pK + pK+j+1Zp) = ∅,
for i �= j or b′

1 �= b′
2. Applying this to the above calculation, we find

μp

(
lim sup
q→∞

�
p

pKq

)
=
∑
m∈IxK

μp(±m±1pK + pK+1Zp)

+
∞∑
l=1

bK,l∑
b′=1

μp(±(g + b′pl)±1pK + pK+l+1Zp)

= p−K
( ∑
m∈IxK

μp(±m±1 + pZp)

(5.6)

+
∞∑
l=1

bK,l∑
b′=1

μp(±(g + b′pl)±1 + pl+1Zp)

)
.
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In order to determine the first sum in equation (5.6), note that

−gi ≡ g
p−1

2 +i , g−i ≡ gp−1−i , −g−i ≡ g
p−1

2 −i

modulo p. For 1 ≤ i < (p − 1)/4, we have

p − 1

4
<
p − 1

2
− i <

p − 1

2
<
p − 1

2
+ i

< 3
p − 1

4
< p − 1 − i < p − 1,

implying that gi, g−i ,−g,−g−i are not congruent modulo pl for l ≥ 1. A
similar argument yields 1 = 1−1 �≡ −1 = −1−1 and

g(p−1)/4 ≡ −g−(p−1)/4 �≡ −g(p−1)/4 ≡ g−(p−1)/4

modulo p. Hence, for integers 1 ≤ i < (p− 1)/4, 0 ≤ b′ ≤ p− 1, l ≥ 1, and
j ∈ {0, (p − 1)/4},

μp(±(gi + b′pl)±1 + pl+1Zp) = 4/pl+1,

μp(±g±j + pZp) = 2/p.
(5.7)

We are now ready to handle the first sum of (5.6). For xK ≥ 4, we find

∑
m∈IxK

μp(±m±1 + pZp) =
�xK/4�∑
i=2

μp(±g±(p−1)/4 + pZp)

+ μp(±1±1 + pZp)+ μp(±g±(p−1)/4 + pZp)

=
(�xK/4�∑

i=2

4

p

)
+ 2

p
+ 2

p
= 4

p

⌊xk
4

⌋
.

For xK < 4, IxK = ∅, and so we reach the same conclusion in that case.
Equation (5.6) and the definitions ofba,i , ra , andxk then allow us to conclude

equation (5.4) as we see

μp
(
lim sup
q→∞

�
p

pKq

)
= p−K

(
4

p

⌊xK
4

⌋
+

∞∑
i=1

bK,i∑
b′=1

4

pi+1

)
= p−K−14

(⌊xK
4

⌋
+

∞∑
i=1

bk,ip
−i
)

= p−K−14

(⌊xK
4

⌋
+ rK

4

)
= p−K−1

∞∑
l=K

pK−lxl =
∞∑
l=K

xlp
−l−1.
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Case 2: (5 < p ≡ 3 mod 4). This case closely follows the structure of
Case 1. The main difference is a modification to the definitions of Ia and rk ,
so that

Ia :=

⎧⎪⎨
⎪⎩

∅ if a < 2,

{1} ∪ {gi : 2 ≤ i ≤ (a + 2)/4} if 2 ≤ a < p − 1,

{1, . . . , p − 1} if a = p − 1,

rk :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∞∑
l=k

xlp
k−l if xk < 2,

∞∑
l=k

xlp
k−l − 4

⌊xk − 2

4

⌋
− 2 if 2 ≤ xk < p − 1,

0 if xk = p − 1.

Note that all arguments until and including equation (5.7) remain valid, except
that we no longer have an integer j = (p − 1)/4. For xK < 2, the remaining
arguments are unchanged, so suppose xK ≥ 2. Then

∑
m∈IxK

μp
(±m±1 + pZp

) =
�(xK+2)/4�∑

i=2

μp(±g±(p−1)/4 + pZp)

+ μp(±1±1 + pZp)

=
(�(xK+2)/4�∑

i=2

4

p

)
+ 2

p
= 4

p

⌊xk − 2

4

⌋
+ 2

p
.

Applying this and equation (5.7) to equation (5.4), we conclude

μp

(
lim sup
q→∞

�
p

pKq

)
= p−K

(
4

p

⌊xk − 2

4

⌋
+ 2

p
+

∞∑
i=1

bK,i∑
b′=1

4

pi+1

)

= p−K−14

(⌊xk − 2

4

⌋
+ 1

2
+

∞∑
i=1

bk,ip
−i
)

= p−K−14

(⌊xk − 2

4

⌋
+ 1

2
+ rK

4

)

= p−K−1
∞∑
l=K

pK−lxl =
∞∑
l=K

xlp
−l−1.
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Case 3: (p = 2). In this case, we will use the same construction as in
Case 1, except that we fix g = 1 and change bK,i such that

rK

2
=

∞∑
i=1

bK,i2
−i .

In terms of Ia , the case a = p − 1 is more important than the case a < 4, so
we read the construction as I1 = {1} for p = 2. Note that all arguments of the
proof for Case 1 until equation (5.6) remain valid. Since (1 + 2i )−1 ≡ 1 + 2i

mod 2i+1, bK,i ∈ {0, 1}, and xK = 0, we find

μ2
(
lim sup
q→∞

�2
2Kq

) = 2−K
∞∑
i=1

bK,iμ2
(±(1 + 2i )+ 2i+1Z2

)

= 2−K
∞∑
i=1

bK,i2 · 2−i−1 = 2−K rK
2
,

= 2−K−1
∞∑

l=K+1

xl2
K−l =

∞∑
l=K

xl2
−l−1,

which completes the proof in this case.
Case 4: (p = 3, 5). We use the same construction as in Case 2, except that

we further change rk and ψ so that

rk =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
xK − 2

⌊xK
2

⌋
+

∞∑
l=K+2

xlp
K−l if k = K ,

xk − 2
⌊xk

2

⌋
if k �= K ,

ψ(n) :=
{
fk(q) if n = pkq, k ≤ K + 1,

0 otherwise.

The value of g will also be fixed, depending on p. Note that the arguments
of Case 2 (which follows the arguments of Case 1) remain valid all the way
to inclusion (5.3) and that equation (5.1) now also holds for k = K + 1. By
following the same argument as in Case 1, we find

μp
(
�p ∩ pKZp

) = μp

(
lim sup
q→∞

(
�
p

pKq
∪ �

p

pK+1q

) ∩ pKZp
)
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By inclusion (5.3), it then follows that

μp
(
�p ∩ pKZp

) = μp

(
lim sup
q→∞

(
�
p

pKq
∪ �

p

pK+1q

))
= μp

(
lim sup
q→∞

�
p

pKq

)
+ μp

(
lim sup
q→∞

�
p

pK+1q

)

= μp
(
�p ∩ pKZp

)
,

Recalling xk = p − 1 for k < K , inclusion (5.2) implies

μp(�
p) = μp(�

p) =
K−1∑
k=0

xkp
−k−1 + μp

(
lim sup
q→∞

�
p

pKq

)

+ μp

(
lim sup
q→∞

�
p

pK+1q

)
,

so that we are left to prove

μp

(
lim sup
q→∞

�
p

pKq

)
+ μp

(
lim sup
q→∞

�
p

pK+1q

)
=

∞∑
k=K

xkp
−k−1.

Note that equation (5.5) is preserved and that it remains valid for K replaced
by K + 1. Let k ∈ {K,K + 1}. Then

⋃
m∈Ixk

±mpk + pk+1Zp = pk

⎧⎪⎨
⎪⎩
Z×
p if xk = p − 1,

(±1 + pZp) if 2 ≤ xk < p − 1,

∅ otherwise.

From this follows

μp

(
lim sup
q→∞

�
p

pkq

)
= p−k−12

⌊xk
2

⌋

+ p−k
∞∑
i=1

μp

( bk,i⋃
b′=1

(±(g + b′pi)±1 + pi+1Zp)

)
.

We are now done if we, for each of p = 3, 5, can show

∞∑
i=1

μp

( bk,i⋃
b′=1

(±(g + b′pi)±1 + pi+1Zp)

)
= rk, (5.8)
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as this would imply

μp

(
lim sup
q→∞

�
p

pkq

)
= p−k−12

⌊xk
2

⌋
+ p−krk

=

⎧⎪⎪⎨
⎪⎪⎩
xKp

−K +
∞∑

l=K+2

xlp
−l if k = K ,

xK+1p
−(K+1) if k = K + 1.

For p = 3, fix g = 2. Then lim inf l→∞ xl < 2, and we have

rk

4
≤ 1

4

(
1 +

∞∑
l=k+2

xl3
k−l
)
<

1

4

(
1 + 1

3

)
= 1

3
,

i.e., b1,k = 0. For i ≥ 2 and 1 ≤ b′ ≤ bk,i , notice that

(2 + b′3i )+ 3i+1Z3 ⊆ 2 + 32Z3,

−(2 + b′3i )+ 3i+1Z3 ⊆ 7 + 32Z3,

(2 + b′3i )−1 + 3i+1Z3 ⊆ 5 + 32Z3,

−(2 + b′3i )−1 + 3i+1Z3 ⊆ 4 + 32Z3.

Since all balls on the right-hand-side of the above four inclusions are disjoint,
the same holds for the four balls defining (±2±1 + b′3i + 3i+1Z3). When we
then vary i, we note that the sets

(±2 + b′3i )±1 + 3i+1Z3 ⊆ ±2±1 + 3iZ×
3

are also disjoint. We conclude equation (5.8) by calculating

∞∑
i=1

μ3

( bk,i⋃
b′=1

(±(2 + b′3i )±1 + 3i+1Z3)

)

=
∞∑
i=1

bk,i∑
b′=1

4μ3(3
i+1Z3) = 4

∞∑
i=1

bk,i3
−i−1 = rk.

For p = 5, fix g = 3 and estimate

rk

4
≤ 1

4

(
1 +

∞∑
l=K+2

xl5
xK−l

)
<

1

4

(
1 + 1

5

)
<

2

5
,
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so that bk,1 ∈ {0, 1}. For i ≥ 1 and 1 ≤ b′ ≤ bk,i , let ai ∈ {0, 1} such that
a1 = b′ and ai = 0 for i > 1. We then find

(3 + b′5i )+ 5i+1Z5 ⊆ 3 + ai5 + 52Z5,

−(3 + b′5i )+ 5i+1Z5 ⊆ 2 + (4 − ai)5 + 52Z5,

(3 + b′5i )−1 + 5i+1Z5 ⊆ 2 + (3 + ai)5 + 52Z5,

−(3 + b′5i )−1 + 5i+1Z5 ⊆ 3 + (1 − ai)5 + 52Z5.

We are again left with four disjoint balls on the right-hand-side, for i fixed.
We then apply arguments in parallel to those for p = 3 and conclude equation
(5.8). This completes the proof.

In cases 3 and 4 of the above proof, note that the choice of generator g
matters; for p = 2, g > 1 would lead to ±g±1 representing four unique values
modulo 2i for sufficiently large i, where we want exactly 2 unique values. For
p = 3, g ≡ −1 mod 9 would on the other hand lead to ±g±1 representing
only two unique values modulo 9, where we want exactly 4. The same issue
arises modulo 25 for p = 5 when g + a15 = g + 5 ≡ ±7 mod 25.

Note also that the alterations introduced in Case 4 would not be sufficient
for p = 5 if they were to be applied to Case 1, even though 5 ≡ 1 mod 4, since
it would allow any bk,1 between 0 and 4, which would lead to g + a15 ≡ ±7
mod 25 for some a1, regardless of g.

Finally, note that the construction in Case 4 would also work for p = 2 by
putting g = 3 and rk = 0 for k �= K , though that would not actually shorten
the proof as we would then have to give p = 2 the same amount of special
attention as we gave each of p = 3 and p = 5. This suggests that we are in
a peculiar case of p = 2 not being the most troublesome prime, as that title
appears to go to p = 5, with p = 3 as a close second.

6. Concluding remarks

Considering how Proposition 4.2 acts as a shell-wise Cp-variant of the 0-1 law
on Ap from [5], it appears rather plausible that the p-adic Duffin-Schaeffer
theorem should also have a shell-wise Cp-variant, as formally stated below.

Conjecture. Let ψ :N → R≥0, and let p be a prime. Suppose suppψ ⊆
pkN \ pk+1N for some k ∈ N0. Then

μp
(
Cp ∩ pkZ×

p

) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
(p − 1)/pk+1 if

∞∑
n=1

μp(C
p
n ) = ∞,

0 if
∞∑
n=1

μp(C
p
n ) < ∞.
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As with the original and p-adic Duffin-Schaeffer Theorems, the Borel-
Cantelli Lemma directly impliesμp(Cp) = 0 when the series converges. If the
conjecture holds true, it combines with Proposition 4.1 to provide an explicit
formula for determining the p-adic measures of Bp and Cp. It is expected that
the conjecture will follow from a modification of the proof of [5, Theorem 2]
combined with [8, Proposition 5.4], following the structure presented in [9].
In the light of [9, Theorem 2], it appears only natural if the measures μp(C

p
n )

in the divergence criterion may be replaced by the fractions φ(n)ψ(n)/n from
the real Duffin-Schaeffer Theorem, by following a similar argument.

As for the set �p, one might try to modify the construction with the aim of
decreasing the spectrum of possible measure values, similarly to what Haynes
[5] achieved in constructing Ap instead of Bp. In his construction, Haynes
effectively removed the sets B

p
n that were restricted to specific shells pkZ×

p

from consideration as he indirectly forced the sets A
p
n with p | n to be either

empty or full [5, Lemma 2]. Trying to get a similar modification of �p, we
might consider the set

lim sup
n→∞

⋃
d|n

gcd(d,pn/d)=1

BQp

(
d

n/d
,
ψ(n)

n

)
.

However, for p �= 3, 5 and x ∈ [0, (p− 1)/p] ∪ {1}, the ψ constructed in the
proof of Theorem 2.2 will still produce measure x. For p = 3, 5,ψ only works
for x ∈ {1, (p − 1)/p} ∪ ⋃p−2

x0=0
x0
p

+ [0, p−2), but it seems reasonable that
there should also exist aψ for the remaining x ∈ [0, (p−1)/p]∪{1}; perhaps
a hybrid between the constructions from cases 3 and 4 would do the trick.
Note that this attack would work identically if the above modification were
carried out on �p instead. As such, there does not seem to be any immediate
‘correction’ to the set �p that would make it satisfy a 0-1 law in general.

Acknowledgements. I thank my supervisor Simon Kristensen for aiding
me in writing this paper, and the Independent Research Fund Denmark for
funding my research (Grant ref. 1026-00081B). I also thank the referee for
providing helpful comments.

REFERENCES

1. Badziahin, D., and Bugeaud, Y., Multiplicative p-adic approximation, Michigan Math. J. 71
(2022), no. 1, 121–143.

2. Cassels, J. W. S., Some metrical theorems in Diophantine approximation. I, Proc. Cambridge
Philos. Soc. 46 (1950), no. 2, 209–218.

3. Duffin, R. J., and Schaeffer,A. C., Khintchine’s problem in metric Diophantine approximation,
Duke Math. J. 8 (1941), no. 2, 243–255.



480 M. L. LAURSEN

4. Gallagher, P., Approximation by reduced fractions, J. Math. Soc. Japan 13 (1961), no. 4,
342–345.

5. Haynes, A. K., The metric theory of p-adic approximation, Int. Math. Res. Not. IMRN 2010,
no. 1, 18–52.

6. Jarník, V., Sur les approximations diophantiques des nombres p-adiques, Rev. Ci. (Lima) 47
(1945), 489–505.

7. Khintchine, A., Einige Sätze über Kettenbrüche, mit Anwendungen auf die Theorie der Dio-
phantischen Approximationen, Math. Ann. 92 (1924), no. 1–2, 115–125.

8. Koukoulopoulos, D., and Maynard, J., On the Duffin-Schaeffer conjecture, Ann. of Math. (2)
192 (2020), no. 1, 251–307.

9. Kristensen, S., and Laursen, M. L., The p-adic Duffin-Schaeffer conjecture, Funct. Approx.
Comment. Math. 68 (2023), no. 1, 113–126.

10. Lutz, E., Sur les approximations diophantiennes linéaires p-adiques, Actualités Scientifiques
et Industrielles; No. 1224. Hermann & Cie, Paris, 1955.

11. Montgomery, H. L., andVaughan, R. C., Multiplicative number theory I. Classic theory, Cam-
bridge Studies in Advanced Mathematics, 97. Cambridge University Press, Cambridge,
2007.

DEPARTMENT OF MATHEMATICS
AARHUS UNIVERSITY
8000 AARHUS C
DENMARK
E-mail: mll@math.au.dk



Chapter 3

Partition functions and the Fibonacci
numbers

3.1 Introduction

In his book Liber Abaci from 1202, Leonardo Pisano (posthumously known as
Fibonacci) introduced the now widely used Hindu-Arabic numeral system to the
Europeans. To motivate it, he presented a collection of arithmetic problems as
evidence of its strength compared to the Roman numerals in terms of calculating
with and expressing large numbers. In the perhaps most famous of these problems,
one imagines living in a world where rabbits reach maturity after a month, produce
a new pair of rabbits once a month thereafter, and live on indefinitely. Starting
with a single pair of newborn rabbits, one is then tasked with keeping track of the
population. Named after Pisano, the number of rabbits at the start of the n’th
month in this scenario is called the n’th Fibonacci number and denoted Fn. It
follows that the first two Fibonacci numbers are both equal to 1 and that each
subsequent Fibonacci number is given as Fn+2 = Fn+1 + Fn, so that we have

F1 = 1, F2 = 1, F3 = 2, F4 = 3, F5 = 5, F6 = 8, F7 = 13,

and so on. The sequence also has close ties to the golden ratio (also called the
golden mean in the literature), denoted by the Greek letter φ. It is classically
defined as the unique positive number with the property that if two line segments
are given where one is φ times longer than the other, then their combined length
is φ times greater than the length of the longest one of them. In more modern
terms, we say that φ is the positive solution to the equation X + 1 = X2. By
solving this second order equation, one finds that

φ =
1 +

√
5

2
.
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It also follows from the equation X + 1 = X2 that φn+2 = φn+1 + φn, which is
strikingly similar to the recurrence Fn+2 = Fn+1 + Fn. More connections between
the Fibonacci numbers and the golden ratio exist, and the two may in fact be
thought of as different sides of the same coin.

Given the simple and yet significant nature of the Fibonacci sequence, it is
only natural to start asking which other properties the sequence has and then
how these properties may generalize to related sequences. In this chapter, we will
investigate one such question, which was handled by Coons, Kristensen, and the
current author in the paper [9]. More precisely, we will be interested in describing
the asymptotic behaviour of the number of partitions, defined below, of positive
integers n over the sequence {Fk}∞k=2. We exclude F1 from the sequence to ensure
that the same number does not occur twice.

Definition 3.1. Let {Pk}∞k=1 be a strictly increasing sequence of positive integers,
and let n ∈ N. We then say that a sequence {ak}∞n=1 with ak ∈ N0 is a partition
of n over {Pk}∞k=1 if it satisfies

n = a1P1 + a2P2 + a3P3 + · · · , (3.1)

We use pP (n) and pF (n) to denote the number of partitions of n over {Pk}∞k=1 and
{Fk}∞k=2, respectively. The map pP : N → N0 is also called the partition function
over {Pk}∞k=1.

With this definition in hand, our interest in pF (n) is a specific instance of the
following question. To ensure pP (n) ≥ 1 for all n, we will enforce P1 = 1.

Question 3.2. Given a strictly increasing sequence {Pk}∞k=1 of positive integers with
P1 = 1, what is the asymptotic behaviour of pP (n) as n→ ∞?

When dealing with this question, we will use the following standard asymptotic
notation.

Notation. Let f, g, h : N → R. We then write as follows.

• f(n) = g(n) + O(h(n)) if |f(n) − g(n)| ≤ C|h(n)| for all n ∈ N and some
fixed constant C > 0.

• f(n) ≍ g(n) if f(n) = O(g(n)) and g(n) = O(f(n)).

• f(n) = g(n) + o(h(n)) if f(n)− g(n) = O(h(n)) but h(n) ̸= O(f(n)− g(n)).
If h(n) ̸= 0 for all n, this is equivalent to limn→∞ |f(n)− g(n)|/|h(n)| = 0.

• f ∼ g if f(n) = g(n) + o(f(n)) or, equivalently, f(n) = g(n)(1 + o(1)). In
this case, we also say that f and g are asymptotically equivalent.
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Question 3.2 is not new. Already in 1918, Hardy and Ramanujan gave an an-
swer for the sequence {k}∞k=1 of all positive integers, writing p for the corresponding
partition function.

Theorem 3.3 (Hardy–Ramanujan, 1918). Let p be the partition function for the
sequence {k}∞k=1. Then

p(n) ∼ eπ
√

2n/3

4n
√
3
.

While the endeavour might be tempting, answering Question 3.2 in full gen-
erality does not appear feasible. For that reason, we will limit our attention to
linearly recurrent sequences as defined below.

Definition 3.4. We say that a sequence {Pk}∞k=1 of positive integers is linearly
recurrent if there is a fixed positive integer d and fixed integers c0, . . . , cd−1 such
that

Pk+d = c0Pk + c1Pk+1 + · · ·+ ck−1Pk+d−1.

In that case, the smallest such d is called the degree of {Pk}k=1. Writing d =
deg{Pk}∞k=1, the characteristic polynomial of {Pk}k=1 is (uniquely) defined as

χP (X) := Xd − cd−1X
d−1 − · · · − c2X

2 − c1X − c0.

Writing χP (X) = (X − a1) · · · (X − ad), we say that ai is a dominant root of χP
if |ai| ≥ |aj| for all j.

Remark 3.5. The sequence Pk = k considered by Hardy and Ramanujan satisfies
Pk+2 = 2Pk+1 − Pk and is thereby a linearly recurrent sequence of degree 2 as no
c satisfies k + 1 = ck for all k. This also shows that the characteristic polynomial
is not necessarily irreducible since we get χP = (X2 − 2X + 1) = (X − 1)2.

For a proof that χP is indeed well defined, see [29].
With the requirements P1 = 1 and Pn+1 > Pn, the linearly recurrent sequences

of degree 1 are exactly the sequences {rk}∞k=0 with r ≥ 2. The number of partitions
pr(n) of such sequences was estimated by Mahler in 1940 [42]. In 1948, this was
improved by de Bruijn [5], who found and specified an oscillation in the leading
term. His result may be phrased as follows.

Theorem 3.6 (de Bruijn, 1948). Let r ≥ 2 be a fixed integer. Then there is an
explicit positive 1-periodic function ψr(x) such that

pr(rn) ∼ ψr

(
log n− log log n

log r

)
nBr(n)(log n)Cr(n),
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where Br(n) and Cr(n) are given by

Br(n) =
log n− 2 log log n+ log r + 2 log log r + 2

2 log r

and

Cr(n) =
log log n− 2 log r − 2 log log r

2 log r
.

Remark 3.7. As noted by Mahler [42], pr(rn+m) = pr(rn) for m = 0, 1, . . . , r−1.
Hence, if we were to write out the asymptotics of pr(n) rather than pr(rn), we
would have to handle an error term in Br(n/r) and Cr(n/r) in order to have them
stagnate for n between rn′ and rn′ + r − 1.

Having an answer for linear recurrences of degree 1, the natural next step in
answering Question 3.2 is to consider the linear recurrences of degree 2 or greater,
of which the Fibonacci sequence is a central example, especially among those with
an irreducible characteristic polynomial. While this appears not to have been
done prior to the paper [9] by Coons, Kristensen, and the current author, similar
answers have been handled when additional restrictions are put on the sequence
{ak}∞k=1 from Definition 3.1. An early such result was made by Zeckendorf in 1972,
where he proved that there for each n ∈ N is exactly one partition {zk}∞k=2 over
{Fk}∞k=2 with zk ∈ {0, 1} and min{zk, zk+1} = 0. We will call this partition the
Zeckendorf representation of n. This result was later generalized by Fraenkel in
1985 [13] to a theorem that provides natural restrictions that permit exactly one
partition {ak}∞k=1 over {Pk}∞k=1 for each n when {Pk}∞k=1 is a strictly increasing
sequence of integers with P1 = 1. It should be noted that the algorithm for at
least the recurrent sequences of degree 2 had been known long before, though it
does not appear to have been used to actually generate a representation of positive
integers; Ostrowski applied a version of it already in 1921 for a study of continued
fractions [44].

Slacking the requirements of the Zeckendorf representation, we may instead
consider the number qF (n) of distinct partitions of integers n over {Fk}∞k=2, which
is to say, the number of partitions with ak ∈ {0, 1} for all k. Recently, in 2021,
Chow and Slattery [8] gave an explicit formula for qF (n) as a function of the list of
indices k with zk = 1 in the Zeckendorf representation of n. Studying qF further,
they found that

∑N
n=1 qF (n) ≍ N log 2/ logφ and showed that there are oscillations

in the main terms. This author is not aware of any generalizations of these results
to a broader family of sequences {Pk}∞k=1. Notice, however, that such a family
will be rather small if we want to have qP (n) ≥ 1 for all n since this requires
Pk+1 ≤ 1 + P1 + · · ·Pk.

In the below section, we consider the main results of the paper [9], which
answer Question 3.2 for the Fibonacci sequence and a broad family of related
linearly recurrent sequences.
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3.2 Partitions over the Fibonacci sequence and other

linear recurrences

The main theorem of this chapter is the following result from the paper [9] by
Coons, Kristensen and the current author. In this result and going forward, γ
denotes the Euler Mascheroni constant. The theorem is of roughly the same form
as Theorem 3.6 but with greater control of the error term.

Theorem 3.8. Let pF (n) be the number of partitions of n over non-distinct Fibon-
acci numbers. Then, for n > 1,

pF (n) = ψF

(
log n

logφ

)
nBF (n)(log n)CF (n)

(
1 +O

(
(log log n)2

log n

))
,

where

BF (n) :=
1

2 logφ

(
log n− 2 log log n+ ψ0,F

(
log n

logφ

))
,

CF (n) :=
1

2 logφ

(
log log n− ψ0,F

(
log n

logφ

)
− 8γ − 2 log 5 + 8 logφ+ 2

)
,

and where the functions ψF (x) and ψ0,F (x) are 1-periodic and explicitly computable
with ψF (x) > 0.

Remark 3.9. While different, the 1-periodic functions ψF (x) and ψ0,F (x) are easily
computed from those in [9, Theorem 1]. Then same is true for the 1-periodic
functions in Theorem 3.10 below.

After this theorem is proven, it is immediately generalized to cover the family
of linearly recurrent sequences that satisfy the following conditions.

• {Pk}∞k=1 is strictly increasing with P1 = 1.

• The characteristic polynomial, χP , is irreducible and of degree at least 2.

• χP has a single dominant root, β.

Since χP is irreducible, it follows from a theorem in [12] that there are constants
λ, λ2, . . . , λr ∈ C such that

Pk = λβk + λk2β1 + · · ·+ λkrβr, (3.2)

where β2, . . . , βr are the conjugates of β other than β itself. The notion of conjug-
ates is defined in Definition 1.8 in Section 1.1. By another theorem in [12], we also
have |Pk| ≍ |β|k since β is a dominant root. Since Pk is positive and increasing,
and β is the only dominant root, it now follows from equation (3.2) that β and λ
must both be positive real numbers.



228 Chapter 3. Partition functions and the Fibonacci numbers

Theorem 3.10. Let {Pk}∞k=1 be a strictly increasing linearly recurrent sequence of
integers with P1 = 1. Suppose the associated characteristic polynomial is irredu-
cible and has a unique dominant root β, and let λ be defined by (3.2). Then, for
n > 1,

pP (n) = ψP

(
log n

log β

)
nBP (n)(log n)CP (n)

(
1 +O

(
(log log n)2

log n

))
,

where

BP (n) :=
1

2 log β

(
log n− 2 log log n+ ψ0,P

(
log n

log β

))
,

CP (n) :=
1

2 log β

(
log log n+ ψ0,P

(
log n

log β

)
− 8γ + 4 log λ+ 4 log β + 2

)
,

and where the functions ψP (x) and ψ0,P (x) are 1-periodic and explicitly computable
with ψP (x) > 0.

Remark 3.11. Theorem 3.8 is a special case of this theorem. Write Pn = Fn+1. The
roots of χP = X2−X−1 are then φ and its conjugate φ̄ = −1/φ = (1−

√
5)/2. It

follows from simple induction that φn = Fnφ+Fn−1 and φ̄
n = Fnφ̄+Fn−1. Hence,

Pn = Fn+1 =
φn+1 − φ̄n+1

φ− φ̄
=

φ√
5
φn +

1

φ
√
5
φ̄n.

In particular, β = φ, and λ = φ/
√
5, and we rediscover Theorem 3.8 from Theorem

3.10.

Focusing on the Fibonacci numbers, the paper [9] proofs Theorem 3.8 before
generalizing the method to prove Theorem 3.10. Since the argument is slightly
simpler for the Fibonacci numbers, this also provides the reader with an easier
and perhaps more intuitive proof than for the general setting. Both proofs are
inspired by the arguments used by de Bruijn [5].

3.2.1 Paper 8: Asymptotics for partitions over the Fibonacci num-
bers and related sequences

Below, the reader will find the most recent preprint of the paper [9], which is
joint work between Michael Coons, Simon Kristensen and the current author. The
paper is currently under review and is to appear in Combinatorics and Number
Theory. The preprint is available on arXiv through the link https://arxiv.org/

abs/2312.07404v3 or by using the arXiv identifier 2312.07404. It has a length of
20 pages, numbered 1 through 20.

https://arxiv.org/abs/2312.07404v3
https://arxiv.org/abs/2312.07404v3
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ASYMPTOTICS FOR PARTITIONS OVER THE FIBONACCI NUMBERS

AND RELATED SEQUENCES

MICHAEL COONS, SIMON KRISTENSEN, AND MATHIAS L. LAURSEN

Abstract. In this paper, harkening back to ideas of Hardy and Ramanujan, Mahler and de

Bruijn, with the addition of more recent results on the Fibonacci Dirichlet series, we determine

the asymptotic number of ways pF (n) to write an integer as the sum of non-distinct Fibonacci

numbers. This appears to be the first such asymptotic result concerning non-distinct partitions

over Fibonacci numbers. As well, under weak conditions, we prove analogous results for a

general linear recurrences.

1. Introduction

We consider the number pF (n) of non-distinct partitions of n over the Fibonacci sequence, Fk.

Specifically, for a positive integer n, pF (n) is the number of solutions of

(1) n = a2F2 + a3F3 + · · · + akFk + · · · ,

in nonnegative integers ak. In recent work, Chow and Slattery [2] gave results on the number

distinct partitions, qF (n) over the Fibonacci sequence, and noted that their work shows that neither

qF (n), nor its partial sums, have a ‘nice’ asymptotic formula. In particular, they showed that there

is some oscillation in the partial sums of qF (n), and they gave bounds on these oscillations. In a

similar vein, very recently, Sana [14] showed that there are also oscillations in the partial sums of

the powers (qF (n))
m for eachm. In this paper, with a related motivation, we determine asymptotic

formulas for pF (n) and describe the oscillations that occur.

The asymptotic theory of partitions goes back to the celebrated result Hardy and Ramanujan

who, in 1918, showed that the number of ways p(n) to write a positive integer as the sum of

positive integers satisfies p(n) ∼ (4n
√
3)−1eπ

√
2n/3, as n → ∞. Here, p(n) has an asymptotic with

a non-oscillating main term. Mahler [8] and de Bruijn [1] encountered a partition asymptotic with

an oscillatory main term—they considered the number of ways pr(n) of writing n as the sum of

non-distinct rth powers, for a positive integer r > 2. Here, we contribute the following result.

Theorem 1. Let pF (n) be the number of partitions of n over non-distinct Fibonacci numbers.

Then, as n → ∞,

log pF (n) ∼ (log n)2

2 logϕ
.

In particular,

pF (n) = AF

(
logn

logϕ

)
nBF (n)(logn)CF (n)

(
1 +O

(
(log logn)2

logn

))
,
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where

AF (x) :=

√
1

2π logϕ
· exp

(
(log logϕ)2

2 logϕ
+ log logϕ

(
c3

logϕ
− 1

)
+ c2 + 2γ + ψ1(x)

)
,

BF (n) :=
1

2 logϕ


logn− 2 log logn−

4ψ0

(
logn
logϕ

)

logϕ
+ 2 log logϕ+ 2c3 − 4 logϕ+ 2


 ,

CF (n) :=
1

2 logϕ


log logn−

4ψ0

(
logn
logϕ

)

logϕ
+ 2 log logϕ− 2c3 + 3 logϕ+ 4


 ,

c2 :=
3γ2

2 logϕ
− γ1

logϕ
+

π2

12 logϕ
+ 2γ

(
log 5 − logϕ

2 logϕ

)
+
∑

k>1

(−1)k

k(ϕ2k + (−1)k+1)
, and

c3 :=
1

2
log 5 − 1

2
logϕ+ 2γ,

where ϕ is the golden mean, γ is the Euler–Mascheroni constant, γ1 is the first Stieltjes constant,

and ψ0(x) and ψ1(x) are explicitly computable 1-periodic functions.

Theorem 1 seems to be the first asymptotic result chracterising non-distinct partitions over Fi-

bonacci numbers. Distinct partitions over Fibonacci numbers have received considerable attention;

see [2] and the references therein for details. In very recent work, addressing a question of Chow

and Slattery [2], Kempton [7] has shown that n− log 2
log ϕ

∑
m6n qF (m) is log-periodic. Our proof of

Theorem 1 gives a way to describe the related log-periodic function for pF (n).

Our main result on Fibonacci partitions followa from a result of Coons and Kirsten [3], which

uses a saddle-point method, which itself was inspired by the work of Nanda [9] and Richmond

[12, 13]. In particular, Richmond [12] was not only able to give a new proof of Hardy and

Ramanujan’s above-mentioned result, he gave asymptotics for all of the moments of p(n). The

method therein, and herein, relies on the existence of invertible asymptotics for the related saddle

point. In our situation, the lead order asymptotic of the saddle point is monotonic, so we have

invertibility, but, additionally, we are able compute the second-order term, which is oscillatory.

These terms are asymptotically close enough, so that they both contribute to the outcome of

Theorem 1. We note that our results are heavily related to analytic properties of the Fibonacci zeta

function (defined and discussed in more detail below); in particular, the Fibonacci zeta function

is defined by a Dirichlet series which converges in the positive right half-plane. This presents

added difficulties compared to the more fully-examine case of partitions related to Dirichlet series

whose abscissa of convergence is strictly positive—for an interesting study on the asymptotics

of partitions related to to Dirichlet series whose abscissa of convergence is strictly positive, see

Debruyne and Tenenbaum [4].

This paper is organised as follows. In Sections 2 and 3, we focus the proof of Theorem 1. In

particular, inspired by ideas of de Bruijn [1], we prove an exact formula for the generating function

of pF (n) in Section 2. We then use a saddle-point method in Section 3 to give the asymptotic

result for pF (n). Finally, in Section 4, we give the complete extension of Theorem 1 to the case of a

linear recurrence with dominant root. In particular, suppose that Pk is a strictly increasing linearly

recurrent sequence of positive integers of degree at least 2 with P1 = 1, such that the characteristic

polynomial χP (x) of Pk has a single dominant root β > 0 and Pk = λβk + λ2β
k
2 + · · · + λrβ

k
r ,

where λ, λ2, . . . , λr are constants and β2, . . . , βr are the algebraic conjugates of β, then we have
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Theorem 2. Let pP (n) be the number of partitions of n over non-distinct elements of the se-

quence Pk. Then, as n → ∞,

pP (n) = AP

(
logn

log β

)
nBP (n)(log n)CP (n)

(
1 +O

(
(log logn)2

logn

))
,

where AP (x) is the a positive 1-periodic function satisfying

AP (x) :=

√
1

2π log β
· exp

(
(log log β)2

2 logβ
+ (2γ − logλ)

log log β

log β
− 1

2
log log β + C2 + ψ4(x)

)
,

BP (n) :=
1

2 log β


logn− 2 log logn−

4ψ3

(
log n
log β

)

log β
+ 2 log log β + 4γ − 2 logλ− 2 logβ + 2


 ,

CP (n) :=
1

2 log β


log logn+ 2 −

4ψ3

(
logn
log β

)

log β
+ 2 log log β − 4γ + 2 logλ+ 2 logβ + 2


 ,

where ψ3(x) and ψ4(x) are explicitly computable 1-periodic functions, and C2 is the constant defined

in Proposition 9.

2. An exact formula for for the generating series of pF (n)

To prove Theorem 1, we study the asymptotics of the generating series

F2(x) :=
∑

n>0

pF (n)x
n =

∏

k>2

(
1 − xFk

)−1

as x → 1−. Note that we are starting with F2 = 1, and not with F1 = 1, since we wish to avoid

having two representations of 1 in our partitions. We will necessarily need to consider a Fibonacci

Dirichlet series. Navas [10] determined most of the properties we need by considering the analytic

continuation of the series ζF (z) =
∑

k>1 F
−z
k , but here with 1 doubly represented. It turns out

this is not much of a problem. To deal with this, we merely consider the product

(2) F (x) = (1 − x)−1F2(x) =
∏

k>1

(
1 − xFk

)−1
,

then translate the results back to F2(x). It is convenient to change variables, setting x = e−s, so

that we are considering the function F (e−s), with particular interest in the asymptotics as s → 0+.

Taking the logarithm and using the Taylor series of the logarithm near 1,

(3) logF (e−s) = −
∞∑

k=1

log
(
1 − e−sFk

)
=

∞∑

k=0

∞∑

m=1

1

m
e−sFkm.

Mellin’s formula for the exponential function states that for a > 0 and w > 0,

e−w =
1

2πi

∫ a+i∞

a−i∞
Γ(z)w−zdz.

Inserting this into (3) and interchanging integration and summation, as we may by absolute

convergence, and finally rearranging the sum,

(4) logF (e−s) =
1

2πi

∫ a+i∞

a−i∞

∞∑

k=0

∞∑

m=1

1

m
Γ(z) (sFkm)

−z
dz =

1

2πi

∫ a+i∞

a−i∞
s−zΓ(z)ζ(1+ z)ζF (z)dz,

where a > 0, ζ(z+1) denotes the Riemann ζ-function at z+1, and, as above ζF (z) :=
∑
k>1 F

−z
k .

Note that ζF (z) is absolutely convergent for ℜ(z) > 0 and continuable to a meromorphic function

on all of C; this is discussed more below—see Navas [10].
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We would like to estimate the final integral in (4) using Cauchy’s formula; that is, we would

like to move the vertical contour towards −∞. Applying the functional equation of the Riemann

ζ-function, we find that

lim
n→∞

1

2πi

∫ −n+ 1
2+i∞

−n+ 1
2−i∞

s−zΓ(z)ζ(1 + z)ζF (z)dz = 0,

where n runs over the positive integers, and, as we shall see in what follows, the vertical line avoids

poles of the integrand. Also, contributions from horizontal paths of integration do not contribute

in the limit, as they are moved up or down respectively. Thus, the integral in (4) is nothing but

the sum over the residues at the poles of the integrand. In what follows, we prove

Theorem 3. The function F2(z) defined above satisfies, as s → 0+,

logF2(e
−s) =

(log s)2

2 logϕ
− (log s)

(
c3

logϕ
− 1

)
+ c2 + 2γ + f(s) +O(s2).

where f(s) = f(ϕs) +O(s2), c3 := 1
2 log 5 − 1

2 logϕ+ 2γ, and

c2 :=
3γ2

2 logϕ
− γ1

logϕ
+

π2

12 logϕ
+ 2γ

(
log 5 − logϕ

2 logϕ

)
+
∑

k>1

(−1)k

k(ϕ2k + (−1)k+1)
.

The proof of Theorem 3 will come as a direct application of five propositions, each having to

do with contributions coming from certain singularities of s−zΓ(z)ζ(1 + z)ζF (z), and one lemma.

To this end, note that for s > 0, the function z 7→ s−z can be expanded in a Taylor series as

(5) s−z = 1 − z log s+ 1
2 (log s)

2z2 +O(z3),

which converges for all z ∈ C. The Γ-function has simple poles at non-positive integers, where the

residue at −n is

Res
s=−n

{Γ(s)} =
(−1)n

n!
.

The function ζ(z + 1) has a simple pole with residue 1 at z = 0, and the trivial zeros of ζ(z + 1)

at all points in −2N − 1 will cancel the corresponding poles of Γ.

The function ζF (z) is the most mysterious of the functions we will consider here, but much is

known due to work of Navas [10]. We will use several of these properties, which we have gathered

into the following proposition.

Proposition 1 (Navas, 2001). The Dirichlet series ζF (z) can be continued analytically to a

meromorphic function on all of C, still called ζF (z), whose singularities are simple poles at

s = s(n, k) = −2k + πi(2n+k)
logϕ , for n, k ∈ Z and k > 0, with

Res
z=s

{ζF (z)} =
(−1)k5s/2

(−s
k

)

logϕ
.

Moreover, we have that ζF (−(4m+ 2)) = 0 for each m ∈ N0, and ζF (−1) = −1.

The poles of ζF (z) collude with the poles of s−zΓ(z)ζ(1 + z) to become poles of higher order.

Combining our knowledge of the functions s−z, Γ(z) and ζ(1+z) with Proposition 1, the integrand

s−zΓ(z)ζ(1 + z)ζF (z) has

• a triple pole at z = 0,

• a simple pole coming from Γ(z) at z = −1,

• double poles at z ∈ −4N, and

• simple poles off the real line at z = s(n, k), for k > 0 and k 6= −2n.
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Note that the poles of Γ(z) at z = −(4m+ 2) for m ∈ N0 are cancelled by the corresponding zero

of ζF (z). The higher order poles require more terms in the expansions of Γ(z), ζ(1+ z) and ζF (z).

We will consider these in the order above.

To calculate the contribution of the triple pole at z = 0, we need the first three terms of the

Laurent expansions of the contributing functions, i.e., of Γ(z), ζ(z + 1) and ζF (z). The former

two are well known,

(6) Γ(z) =
1

z
+ γ + 1

2

(
γ2 +

π2

6

)
z +O(z2),

where γ is the Euler–Mascheroni constant, and

(7) ζ(1 + z) =
1

z
+ γ − γ1z +O(z2),

where γ1 is the first Stieltjes constant,

γ1 = lim
m→∞

(
m∑

k=1

log k

k
− 1

2 (logm)2

)
.

For ζF (z), results beyond the residue are not available in literature, so we present them here.

Lemma 1. Near z = 0, we have

ζF (z) =
1

logϕ
· 1
z
+

log 5 − logϕ

2 logϕ
+

(
logϕ− 3 log 5

12
+

(log 5)2

8 logϕ
+ c1

)
z +O(z2),

where c1 :=
∑

k>1
(−1)k

k(ϕ2k+(−1)k+1)
≈ −0.20436188.

Proof. The first two terms were found in [10]. For clarity, we repeat the same process here. As a

first step, noting ϕ̄ = −1/ϕ and Fn = (ϕn − ϕ̄n)/
√
5, we have

(8) ζF (z) =
∑

n>1

1

F zn
= 5z/2

∑

n>1

1

(ϕn − ϕ̄n)z
.

We recover the Taylor expansion of 5z/2 from that of the exponential function,

(9) 5z/2 = elog(5)z/2 =
∑

k>0

(log 5)k

2kk!
zk = 1 +

log 5

2
z +

(log 5)2

8
z2 +O(z3).

For the series, we start with an application of the binomial theorem to give

∑

n>1

1

(ϕn − ϕ̄n)z
=
∑

n>1

1

ϕnz
(
1 + (−1)n+1ϕ−2n

)−z
=
∑

n>1

1

ϕnz

∑

k>0

(−z
k

)
(−1)k(n+1)ϕ−2nk.

Since the double sum is absolutely convergent, as argued in [10], we swap the order of summation

and recognise a geometric series to give

∑

n>1

1

(ϕn − ϕ̄n)z
=
∑

k>0

(−z
k

)
(−1)k

∑

n>1

(
(−1)kϕ−(z+2k)

)n

=
∑

k>0

(
z + k − 1

k

)
(−1)kϕ−(z+2k)

1 − (−1)kϕ−(z+2k)

=
∑

k>0

Γ(z + k)

Γ(z)Γ(k + 1)
· (−1)k

ϕz+2k + (−1)k+1

=
1

ϕz − 1
+
∑

k>1

Γ(z + k)

Γ(z)k!
· (−1)k

ϕz+2k + (−1)k+1
.
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The first term is particularly cumbersome, but a few applications of L’Hôpital’s rule gives

1

ϕz − 1
=

1

logϕ
· 1
z

− 1

2
+

logϕ

12
z +O(z2).

For the remaining summands, by 1
Γ(z) = z +O(z2), Γ(z + k) = Γ(k) + O(z) = (k − 1)! +O(z),

and
(−1)k

ϕz+2k + (−1)k+1
=

(−1)k

ϕ2k + (−1)k+1
+O(z),

we have that ∑

n>1

1

(ϕn − ϕ̄n)z
=

1

logϕ
· 1
z

− 1

2
+

(
logϕ

12
+ c1

)
z +O(z2),

where c1 is defined as in the statement of the lemma. Thus, using (9),

ζF (z) = 5z/2
(

1

logϕ
· 1
z

− 1

2
+

(
logϕ

12
+ c1

)
z +O(z2)

)

=
1

logϕ
· 1
z
+

(
−1

2
+

log 5

2 logϕ

)
+

(
logϕ

12
+ c1 − log 5

4
+

(log 5)2

8 logϕ

)
z +O(z2)

=
1

logϕ
· 1
z
+

log 5 − logϕ

2 logϕ
+

(
logϕ− 3 log 5

12
+

(log 5)2

8 logϕ
+ c1

)
z +O(z2),

which is the desired result. �

Proposition 2. We have

Res
z=0

{
s−zΓ(z)ζ(1 + z)ζF (z)

}
=

(log s)2

2 logϕ
−
(
1

2
log 5 − 1

2
logϕ+ 2γ

)
log s

logϕ
+ c2,

where, as in Theorem 1,

c2 :=
3γ2

2 logϕ
− γ1

logϕ
+

π2

12 logϕ
+ 2γ

(
log 5 − logϕ

2 logϕ

)
+
∑

k>1

(−1)k

k(ϕ2k + (−1)k+1)
.

Proof. Around z = 0, using (5), (6) and (7), we have

s−zΓ(z)ζ(1 + z) =
1

z2
+

2γ − log s

z
+

(
(γ − log s)(3γ − log s)

2
− γ1 +

π2

12

)
+O(z).

Thus, by Lemma 1, we have

Res
z=0

{
s−zΓ(z)ζ(1 + z)ζF (z)

}
=

1

logϕ

(
(γ − log s)(3γ − log s)

2
− γ1 +

π2

12

)

+
log 5 − logϕ

2 logϕ
(2γ − log s) +

(
logϕ− 3 log 5

12
+

(log 5)2

8 logϕ
+ c1

)
.

Gathering powers of log s finishes the proof. �

The simple pole at z = −1 is a straightforward calculation, using known values.

Proposition 3. We have

Res
z=−1

{
s−zΓ(z)ζ(1 + z)ζF (z)

}
= −s

2
.

Proof. We calculate, using that Res
z=−1

{Γ(z)} = −1, ζ(0) = −1/2, and ζF (−1) = −1 to give

Res
z=−1

{
s−zΓ(z)ζ(1 + z)ζF (z)

}
= s ζ(0) ζF (−1) · Res

z=−1
{Γ(z)} = s

(−1

2

)
(−1)(−1) = −s

2
.

For the calculation of ζF (−1) see Navas [10, Eq. 9] �
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For the double poles at z ∈ −4N, we require the first two terms of the Laurent expansions

of Γ(z) and ζF (z) respectively around these points. For Γ(z), the first term of the expansion is

well known to be 1
(4n)! · 1

z+4n . The constant term is surprisingly difficult to find in literature, but

it can be easily calculated as the derivative of (z + 4n)Γ(z), evaluated at z = −4n. In order to

accomplish this, we repeatedly apply the functional equation zΓ(z) = Γ(z + 1) to find that

Γ(z) =
Γ(z + 1)

z
= · · · = Γ(z + 4n+ 1)

z(z + 1) · · · (z + 4n)
,

so that we only need to evaluate the derivative

d

dz

{
Γ(z + 4n+ 1)

z(z + 1) · · · (z + 4n− 1)

}

at z = −4n. Recalling that Γ(1) = 1 and Γ′(1) = −γ, we find that the constant term of the

Laurent series of Γ(z) around z = −4n is

d

dz

{
Γ(z + 4n+ 1)

z(z + 1) · · · (z + 4n− 1)

} ∣∣∣
z=−4n

=
1

(4n)!

(
4n∑

k=1

1

k
− γ

)
,

so that near z = −4n,

(10) Γ(z) =
1

z + 4n
· 1

(4n)!
+

1

(4n)!

(
4n∑

k=1

1

k
− γ

)
+O(z + 4n).

We also require the constant term of the Laurent series of ζF (z) around z = −4n. Following

Navas [10],

ζF (z) = 5z/2
∞∑

k=0

(−z
k

)
(−1)k

ϕz+2k + (−1)k+1
= 5z/2

∞∑

k=0

Γ(1 − z)

Γ(1 − z − k)k!
· (−1)k

ϕz+2k + (−1)k+1

= 5z/2
Γ(1 − z)

Γ(1 − z − 2n)(2n)!
· 1

ϕz+4n − 1
+ 5z/2

∞∑

k=0
k 6=2n

Γ(1 − z)

Γ(1 − z − k)k!
· (−1)k

ϕz+2k + (−1)k+1
.

The second term is holomorphic at z = −4n and contributes to the constant term with its value,

which we denote by c−4n. For the first term, we note that

lim
z→−4n

5z/2 = 5−2n, and lim
z→−4n

Γ(1 − z)

Γ(1 − z − 2n)(2n)!
=

(4n)!

((2n)!)2
.

Thus, it remains to note that

lim
z→−4n

d

dz

{
z + 4n

ϕz+4n − 1

}
= −1

2
,

which is easily shown by differentiating and applying L’Hôpital’s rule twice. Proposition 1 gives

that the residue of ζF (z) at z = −4n is

b−4n := Res
z=−4n

{ζF (z)} =
5−2n

logϕ

(
4n

2n

)
=

5−2n

logϕ
· (4n)!

((2n)!)2
,

so that near z = −4n, we have

(11) ζF (z) =
b−4n

z + 4n
+

(
c−4n − 5−2n

2
· (4n)!

((2n)!)2

)
+O(z + 4n).

Proposition 4. We have

g(s) :=

∞∑

n=1

Res
z=−4n

{
s−zΓ(z)ζ(1 + z)ζF (z)

}
=

∞∑

n=1

αn s
4n − log s

∞∑

n=1

βns
4n,
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where βn := b−4nζ(1 − 4n)/(4n)!,

αn :=
B2n

4n · (4n)!

(
b−4n

(
4n∑

k=1

1

k
− γ

)
+ c−4n − 5−2n

2

(4n)!

((2n)!)2

)
+
b−4n

(4n)!
· ζ′(1 − 4n),

and B2n is the 2n-th Bernoulli number. Moreover, as s → 0+, we have g(s) = O(s2).

Proof. The first part of the proposition follows from (10), (11), and the expansions, around z =

−4n,

s−z = s4ns−(z+4n) = s4n − (z + 4n) log s+O((z + 4n)2),

and ζ(1 + z) = ζ(1− 4n) + ζ′(1− 4n)(z+4n)+O((z +4n)2) along with the fact that ζ(1− 4n) =

B2n/4n; see Titchmarch [16, p. 19].

For the second part, we start by using that

ζ′(1 − 4n) =
(−1)k+1(4n)!

2n(2π)2n
ζ′(4n) +

B4n

4n

(
4n−1∑

k=1

1

k
− γ − log(2π)

)
.

Using the facts that ζ′(4n) ∼ −2−4n log 2 and |B4n| ∼ 2(4n)!
(2π)4n with Stirling’s approximation of the

factorial, we have that

b−4n

(4n)!
· ζ′(1 − 4n) = O

(
(4n)!

(40π)2nn((2n)!)2

)
= O

(
1

(10π)2nn3/2

)
= O(1).

Now, we have at hand asymptotic information about all of the quantities in αn except for c−4n.

It turns out that c−4n is uniformly bounded; more precisely |c−4n| < 3. To see this, note that for

all n > 1, we have

|c−4n| =

∣∣∣∣∣∣∣
1

52n

∞∑

k=0
k 6=2n

(
4n

k

)
· (−1)k

ϕ−4n+2k + (−1)k+1

∣∣∣∣∣∣∣
=

1

52n

4n∑

k=0
k 6=2n

(
4n

k

)
· ϕ4n−2k

∣∣∣∣
1

1 − ϕ4n−2k

∣∣∣∣

since
(
4n
k

)
= 0 for k > 4n. Now the value of

∣∣∣ 1
1−ϕ4n−2k

∣∣∣ is maximal when k = 2n − 1 (recall,

k 6= 2n), and there, it is approximately 2.6180, which yields

|c−4n| <
3

52n

4n∑

k=0
k 6=2n

(
4n

k

)
· ϕ4n−2k 6 3

52n

4n∑

k=0

(
4n

k

)
· ϕ4n−k

(
1

ϕ

)k
=

3

52n

(
ϕ+

1

ϕ

)4n

= 3,

which shows that c−4n is uniformly bounded. With this in hand, we will now use the fact that

|B2n| = 2(2n)!
(2π)2n ζ(2n) and ζ(2n) ∼ 1 as n → ∞, to finish our proof. To this end, using the definition

of b−4n and Stirling’s approximation, we have

|αn| < |B2n|
4n · (4n)!

(
5−2n

logϕ
· (4n)!

((2n)!)2

(
4n∑

k=1

1

k
− γ

)
+ 3 +

5−2n

2

(4n)!

((2n)!)2

)
+O(1)

= ζ(2n)
2(2n)!

4n · (2π)2n · (4n)!

(
5−2n

logϕ
· (4n)!

((2n)!)2

(
4n∑

k=1

1

k
− γ

)
+ 3 +

5−2n

2

(4n)!

((2n)!)2

)
+O(1)

∼ 2(2n)!

4n · (2π)2n · (4n)!

(
5−2n

logϕ
· (4n)!

((2n)!)2
log(4n) + 3 +

5−2n

2

(4n)!

((2n)!)2

)
+O(1)

=
2

4n · (2π)2n
(
5−2n

logϕ
· log(4n)

(2n)!
+

3 · (2n)!
(4n)!

+
5−2n

2(2n)!

)
+O(1)

∼ 2

4n · (2π)2n · 5
−2n

logϕ
· log(4n)

(2n)!
+O(1) ∼ 1

4
√
π logϕ

· logn√
n

·
( e

20πn

)2n
+O(1) = O(1).
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Similarly, we have that

|βn| ∼ 1

4
√
π logϕ

· 1√
n

·
( e

20πn

)2n
= O(1).

To see g(s) = O(s2) as s → 0+, we note that, using L’Hôpital’s rule, we have lims→0+ s
2 log s = 0.

Using this, along with an application of the first part of the proposition,

g(s) =
(
α1s

4 − β1s
4 log s

)
(1 +O(s4)) = O(s2). �

Finally, at the simple poles of ζF (z) off the real line, which occur at z = s(n, k) with k > 0 and

n 6= −k/2, we note that s−zΓ(z)ζ(1 + z) is analytic at these points. Concerning the contributions

from these singularities, we have the following result.

Proposition 5. We have

h(s) :=

∞∑

k=0

∞∑

n=−∞
n6=−k/2

Res
z=s(n,k)

{
s−zΓ(z)ζ(1 + z)ζF (z)

}

=
1

logϕ

∞∑

k=0

∞∑

n=−∞
n6=−k/2

(−1)k
(−s(n, k)

k

)(
s√
5

)−s(n,k)
Γ(s(n, k)) ζ(1 + s(n, k)).

Moreover, h(s) = h(ϕs) +O(s2) as s → 0+.

Proof. The form h(s) of these contributions is immediate using Proposition 1. Also, since the

terms in each sum over n is symmetric about the real axis, h(s) is real. It remains to examine the

analytic properties of h(s) as a function of s.

We first consider the k = 0 term of h(s), which we denote by [k = 0]h(s). Noting that

(
ϕs√
5

) iπ(2n)
log ϕ

= cos

(
2πn

logϕ
log

(
ϕα√
5

))
+ i sin

(
2πn

logϕ
log

(
ϕα√
5

))

= cos

(
2πn+

2πn

logϕ
log

(
α√
5

))
+ i sin

(
2πn+

2πn

logϕ
log

(
α√
5

))

= cos

(
2πn

logϕ
log

(
α√
5

))
+ i sin

(
2πn

logϕ
log

(
α√
5

))
=

(
s√
5

) iπ(2n)
log ϕ

,

we have that [k = 0]h(ϕs) = [k = 0]h(s).

For k 6= 0, using the functional equations for ζ and Γ, since we are examining complex values,

there is a positive constant dn,k that is uniformly bounded such that

∣∣Γ(s(n, k))ζ(1 + s(n, k))
∣∣ =

∣∣∣∣∣∣
ζ(−s(n, k))2s(n,k)πs(n,k)+1

s(n, k) sin
(
− s(n,k)π

2

)

∣∣∣∣∣∣

=

∣∣∣∣∣∣
π · ζ

(
2k − iπ(2n+k)logϕ

)
(
−2k + iπ(2n+k)logϕ

)
(2π)2k sin

(
iπ

2(2n+k)
2 logϕ

)

∣∣∣∣∣∣
∼ dn,k · e

− π2k
2 log ϕ

(2π)2k
· e−

π2|n|
log ϕ ,

where we have used that | sin(z)| is π-periodic in the ℜ(z), that |eiθ| = 1 for all θ, and that, as k

or |n| (or both) grows,
∣∣∣sin

(
iπ

2(2n+k)
2 logϕ

)∣∣∣ ∼ e
π2k

2 log ϕ e
π2|n|
log ϕ /2.
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It remains to deal with the factor
(−s(n,k)

k

)
. To this end, note that

∣∣∣∣
(−s(n, k)

k

)∣∣∣∣ =
∣∣∣∣

Γ(1 − s(n, k))

k! Γ(1 − s(n, k) − k)

∣∣∣∣ =
1

k!




2k∏

j=k+1

(
j2 +

(π(2n+k)
logϕ

)2)



1/2

=
(kn)k

k!




2k∏

j=k+1

((
j

nk

)2

+

(
π( 2

k+ 1
n )

logϕ

)2
)


1/2

6 (kn)k

k!

((
2

n

)2

+

(
π( 2

k+ 1
n )

logϕ

)2
)k/2

,

and, independent of k,
((

2

n

)2

+

(
π( 2

k+ 1
n )

logϕ

)2
)k/2

n→∞−−−−→
(

2π

k logϕ

)k
.

Thus, there is a d > 0, independent from n and k, such that any term of h(s) with k 6= 0, satisfies,

∣∣[k 6= 0]h(s)
∣∣ 6 d

∞∑

n=−∞
n6=−k/2

(
s√
5

)2k
(kn)k

k!

(
2π

k logϕ

)k
· dn,k · e

− π2k
2 log ϕ

(2π)2k
· e−

π2|n|
log ϕ

= d

(
s√
5

)2k
1

k!

(
1

logϕ

)k
e−

π2k
2 log ϕ

(2π)k

∞∑

n=−∞
n6=−k/2

dn,k · nk · e−
π2|n|
log ϕ ,

where dn,k here is different from above, but still a uniformly bounded positive constant. So, there

is a positive constant d, also different from above, but still independent of n and k, such that

∣∣[k 6= 0]h(s)
∣∣ 6 d

(
s2

10π · logϕ · e π2

2 log ϕ

)k
1

k!

∞∑

n=0

nke−
π2|n|
log ϕ

= d

(
s2

10π · logϕ · e π2

2 log ϕ

)k
1

k!
· e

− π2

2 log ϕAk
(
e−

π2

2 log ϕ
)

(
1 − e−

π2

2 log ϕ
)k+1

= d


 s2

10π · logϕ ·
(
e

π2

2 log ϕ − 1
)



k

1

k!
· Ak

(
e−

π2

2 log ϕ
)

(
e

π2

2 log ϕ − 1
)

<
d

(
e

π2

2 log ϕ − 1
)


 s2

10π · logϕ ·
(
e

π2

2 log ϕ − 1
)



k

,

where, for k > 1, we have used that
∑

n>0 n
kxn = xAk(x)(1 − x)−(k+1), where Ak(x) ∈ Z>0[x] is

the k-th Eulerian Polynomial, which satisfies degAk(x) = k− 1 and Ak(1) = k!. Hence, the terms

[k 6= 0]h(s) contribute O(s2) collectively, and the lemma follows. �

Lemma 2. As s → 0+, we have

log(1 − e−s) = log s− 2γ − s

2
+O(s2).

Proof. We follow the method above, writing

− log(1 − e−s) =
1

2πi

∫ a+i∞

a−i∞
s−zΓ(z)ζ(1 + z)dz,

where, for now, a > 0. We use the expansions of Γ(z) and ζ(1+ z) around z = 0 from above, with

the fact that the integrand has a simple pole at z = −1 coming from Γ(z) to get that, as s → 0+,

− log(1 − e−s) = − log s+ 2γ − sζ(0) +O(s2)
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which, since ζ(0) = −1/2, when multiplied by −1, yields the desired result. �

Using the relationship in (2) and combining this lemma with the previous four propositions

proves Theorem 3.

3. Fibonacci partitions pF (n) via the saddle point method

In this section, we prove our main result using a saddle point method. To achieve this, we must

determine the behaviour as s → 0+ of each of the pieces in the expansion of logF (e−s).

We begin in the same way as Hardy and Ramanujan [6], using Cauchy’s integral formula, but

diverge from their argument almost immediately. We have

pF (n) =
1

2πi

∫

Cε

F2(z)

zm+1
dz =

1

2πi

∫

Cε

en(− log z+ 1
n logF2(z))

z
dz =

1

2πi

∫

s.p.

en(s+
1
n logF2(e

−s))ds,

where Cε indicates a positively oriented circle of radius ε ∈ (0, 1) and s.p. indicates a path that

goes through the saddle point s = α of the integrand, that is, the point s = α which is the solution

of the equation

(12)
d

ds

(
s+

1

n
logF2(e

−s)

)
= 0.

Our main result on Fibonacci partitions will follow from a result of Coons and Kirsten [3], which

itself was inspired by the work of Nanda [9] and Richmond [12, 13].

Theorem 4 (Coons and Kirsten, 2009). If Λ(x) =
∏
k>1

(
1 − xλk

)−1
generates a sequence pλ(n),

and s = α is the solution of (12) with F2(e
−s) replaced by Λ(e−s), then, as n tends to infinity,

pλ(n) =
enαΛ(e−α)√

2π

(√
1

− dn
ds

∣∣
s=α

+O

(
1

n3/2

))
.

Here, α must be thought of as being replaced by its large-n asymptotic expansion so that the

asymptotic of pλ(n) represents a large-n asymptotic.

Remark 1. The proof of Theorem 4 was accomplished by iteratively applying an asymptotic

result on exponential integrals, which can be found in the book of Olver [11, p. 127, Theorem 7.1].

Note that Coons and Kirsten [3] use the notation t0Λ(n) for our definition of pλ(n) above. ♦

Remark 2. The statement “α must be thought of as being replaced by its large-n asymptotic

expansion” may seem a bit cumbersome, but, here, the point is that the solution of (12) gives n

as a function of the saddle point α as an (asymptotically) monotonic function, so it is invertible;

that is, there is a well-defined asymptotic for the saddle point α in terms n—this is precisely the

method we employ.

To apply this Theorem 4, we must first determine the saddle point for large values of n. From

(12), we have that

(13) n = − d

ds
logF2(e

−s)

∣∣∣∣
s=α

.

We will use this combined with Theorem 3 to prove the following result.

Lemma 3. There exists a function h0(s) satisfying h0(s) = h0(ϕs) such that for sufficiently large

n, or, equivalently, for sufficiently small α > 0,

n =
− log(α)

α logϕ
+
h0(α)

α
+O (α) .
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Proof. Let f(s) := g(s) + h(s), where g(s) and h(s) are as in Propositions 4 and 5, respectively.

As s → 0+, using Proposition 4 and one application of L’Hôpital’s rule gives g(s) = O(s2) (in fact,

one gets that g(s) = O(s4−ε) for any fixed small positive ε, but only O(s2) is necessary after later

comparison with the asymptotics for h(s)). Now, collectively, the sum of all of the terms with

k > 0 in the formula for h(s) in Proposition 5 go to zero as s → 0+, since ℜ(−s(n, k)) = 2k > 0.

Thus, as s = α → 0+, separating out the k = 0 term of the sum, denoting it [k = 0]h(s), and

noting that s(n, 0) = 2πin
logϕ , we have,

f(α) = [k = 0]h(α) +O(α2) =
1

logϕ

∞∑

n=−∞
n6=0

(
α√
5

)− 2πin
log ϕ

Γ( 2πinlogϕ ) ζ(1 +
2πin
logϕ) +O(α2),

so that

f ′(α) =

√
5

α
· [k = 0]h(α) +O(α).

The form of [k = 0]h(s) immediately implies that [k = 0]h(s) = [k = 0]h(ϕs).

Now, we calculate

n = − d

ds
logF2(e

−s)

∣∣∣∣
s=α

= − d

ds

(
(log s)2

2 logϕ
− (log s)

(
c3

logϕ
− 1

)
+ c2 + 2γ + f(s) +O(s2)

)∣∣∣∣
s=α

= − logα

α logϕ
− 1

α

(
c3

logϕ
− 1 −

√
5 · [k = 0]h(α)

)
+O (α) .(14)

setting h0(s) :=
√
5 · [k = 0]h(s) + 1 − c3/ logϕ gives the result. �

Remark 3. Lemma 3 provides the leading two terms for n in terms of the saddle point α. Here,

the first term shows that the relationship is asymptotically monotonic, so that it can be inverted.

The second term is oscillatory. If one follows this method and tries to apply it to the distinct

Fibonacci partitions function qF (n) the resulting asymptotic is not monotonic—the leading term is

oscillatory. This is precisely why this method doesn’t immediately generalise to distinct Fibonacci

partitions.

While the above lemma gives n as a function of α, we necessarily need α as a function of n to

apply the saddle point method. We achieve this via the Lambert W -function.

Proposition 6. There is a continuous 1-periodic function ψ0(x), such that for sufficiently small

α > 0, or, equivalently, for sufficiently large n,

α =
W
(
eψ0( log n

log ϕ )/ logϕn/ logϕ
)

n logϕ

(
1 +O

(
logn

n2

))
,

where W (x) denotes Lambert’s W -function.

Proof. Note that the previous lemma gives that

n =

(− log(α)

α logϕ
+
h0(α)

α

)(
1 +O

(
α2

logα

))
,

where h0(s) is fixed along any sequence {xϕm}m>0. We use this property to invert the above rela-

tionship between α and n. Note that the relationship is invertible because the lead asymptotics are

strictly monotonic. Now, when one inverts n ∼ A 1
α log 1

α +B 1
α , one gets α ∼ A ·W

(
eB/A n

A

)
/n ∼

A logn/n, where W (x) is Lambert’s W -function. Doing this along the sequences {xϕm}m>0 to
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ensure a constant B = B(x), we then reconstruct, using a fundamental interval, say x ∈ [ϕ, ϕ2],

to get a continuous 1-periodic function ψ0(x) such that for large n,

α =
W
(
eψ0( log n

log ϕ )/ logϕn/ logϕ
)

n logϕ

(
1 +O

(
logn

n2

))
.

Here, we have used the original relationship to find that O(α/ logα) = O(1/n), and then the

inverse, noting that W (n) ∼ logn. �

In what follows, we will use Proposition 6 to give asymptotics for several functions of α, including

nα, dn
ds

∣∣
s=α

, logα and (logα)2. To give our end result, we will need varying orders of precision

for the asymptotics for each of these terms. In particular, first order asymptotics of the Lambert

W -function will not be enough to deal with (logα)2, though they will be enough for some terms

so we record them below. For convenience, we note here that the Lambert W -function satisfies,

(15) W (x) = log x− log log x+
log log x

log x
+O

(
log log x

(log x)2

)
,

as x → ∞; see, e.g., Corless et al. [5].

Corollary 1. For sufficiently small α > 0, or, equivalently, for sufficiently large n,

α =
logn

n logϕ

(
1 +O

(
log logn

logn

))
,

and

logα = − logn+ log logn− log logϕ+O

(
log logn

logn

)
.

Proof. The first result follows directly from the fact that

W (x) = log x(1 +O(log log x/ log x))

for all x sufficiently large. The second follows immediately from the first. �

Corollary 2. For sufficiently small α > 0, or, equivalently, for sufficiently large n,

dn

ds

∣∣∣∣
s=α

=
−n2 logϕ

logn

(
1 + O

(
log logn

logn

))
.

Proof. We start with Lemma 3 in the form n = − log(α)/(α logϕ)+O (1/α) , and take a derivative,

then apply both parts of Corollary 1 to get

dn

ds

∣∣∣∣
s=α

=
logα

α2 logϕ
+O

(
1

α2

)
=

logα

α2 logϕ

(
1 +O

(
1

logα

))
=

−n2 logϕ

logn

(
1 +O

(
log logn

logn

))
,

which finishes the proof. �

The final term necessary is (logα)2. Here, in addition to using the full asymptotic in (15), we

will use the fact that for any y, logW (y) = log y −W (y).
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Corollary 3. For sufficiently small α > 0, or, equivalently, for sufficiently large n,

(logα)2 = logn


logn− 2 log logn−

4ψ0

(
log n
logϕ

)

logϕ
+ 2 log logϕ




+ log log n


log logn+ 2 −

4ψ0

(
logn
logϕ

)

logϕ
+ 2 log logϕ




+ (log logϕ)2 −
2ψ0

(
logn
logϕ

)

logϕ
+ 2 log logϕ+O

(
(log logn)2

logn

)
.

Proof. We start with Proposition 6 and take the natural logarithm of both sides to obtain

(16) (logα)2 =


log



W
(
eψ0( log n

log ϕ )/ logϕn/ logϕ
)

n logϕ






2

+O

(
(logn)2

n2

)
,

since

log



W
(
eψ0( log n

log ϕ )/ logϕn/ logϕ
)

n logϕ


 = O(log n).

We now use the full force of (15) to give an asymptotic for the first term in (16), first noting that

log



W
(
eψ0( log n

log ϕ )/ logϕn/ logϕ
)

n logϕ


 = log

(
eψ0( log n

log ϕ )/ logϕn/ logϕ
)

− log(n logϕ) −W
(
eψ0( log n

log ϕ )/ logϕn/ logϕ
)

=
ψ0

(
logn
logϕ

)

logϕ
−W

(
eψ0( log n

log ϕ )/ logϕn/ logϕ
)
.

Thus,

(17)


log



W
(
eψ0( log n

log ϕ )/ logϕn/ logϕ
)

n logϕ






2

=



ψ0

(
logn
logϕ

)

logϕ




2

−
2ψ0

(
logn
logϕ

)

logϕ
W
(
eψ0( log n

log ϕ )/ logϕn/ logϕ
)
+W

(
eψ0( log n

log ϕ )/ logϕn/ logϕ
)2
.

For the middle term we use the first three terms of the asymptotic ofW in (15) and, for the square,

we will use the square of all of (15), which is, as x → ∞,

W (x)2 = (log x)2 + (log log x)2 − 2 log x log log x+ 2 log log x+O

(
(log log x)2

log x

)
.

To this end, we to determine strong estimates for the asymptotics of log x, log log x and log x log log x

with x = eψ0( log n
log ϕ )/ logϕn/ logϕ. Here, we have

log
(
eψ0( log n

log ϕ )/ logϕn/ logϕ
)
= logn+

ψ0

(
logn
logϕ

)

logϕ
− log logϕ(18)

= logn


1 +

ψ0

(
logn
logϕ

)
/ logϕ− log logϕ

logn


 ,
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and so, using that as y → 0, log(1 + y) = y − y2/2 +O(y3), we have

(19) log log
(
eψ0( log n

log ϕ )/ logϕn/ logϕ
)
= log logn+

ψ0

(
logn
logϕ

)
/ logϕ− log logϕ

logn
+O

(
1

(log n)2

)
.

So, using the above asymptotics,

(20) W
(
eψ0( log n

log ϕ )/ logϕn/ logϕ
)
= logn+ log logn+

ψ0

(
log n
logϕ

)

logϕ
− log logϕ+O

(
log log n

logn

)
,

and

(21) W
(
eψ0( log n

log ϕ )/ logϕn/ logϕ
)2

= (logn)2 − 2 logn log logn

− 2 logn



ψ0

(
logn
logϕ

)

logϕ
− log logϕ


+ (log logn)2 + 2 log logn


1 + log logϕ−

ψ0

(
logn
logϕ

)

logϕ




+



ψ0

(
logn
logϕ

)

logϕ
− log logϕ




2

− 2



ψ0

(
logn
logϕ

)

logϕ
− log logϕ


 +O

(
(log logn)2

logn

)
.

Combining (16), (17), (20) and (21) gives the result. �

Proposition 7. Let f(s) := g(s) + h(s), where g(s) and h(s) are as in Propositions 4 and 5,

respectively. Then, as s → 0+, the function f(s) satisfies f(s) = f(ϕs) + O(s2). That is, for

sufficiently small α > 0, or equivalently, for sufficiently large n,

f(α) = ψ1

(
logn

logϕ

)
+O

(
log logn

logn

)
,

for some 1-periodic function ψ1(x), and any ε > 0.

Proof. We proceed as in the proof of Lemma 3, and, as in that proof, separating out the k = 0

term of the sum for f(α) and denoting it [k = 0]h(s), as s = α → 0+,

f(α) = [k = 0]h(α) +O(α2) =
1

logϕ

∞∑

n=−∞
n6=0

(
α√
5

)− 2πin
log ϕ

Γ( 2πinlogϕ ) ζ(1 +
2πin
logϕ) +O(α2)

=
2

logϕ

∞∑

n=1

ℜ
((

α√
5

)− 2πin
log ϕ

Γ( 2πinlogϕ ) ζ(1 +
2πin
logϕ )

)
+O(α2)

=
2

logϕ

∞∑

n=1

ℜ
((

cos
(

2πn
logϕ log

(
α√
5

))
− i sin

(
2πn
logϕ log

(
α√
5

)))
(22)

×Γ( 2πinlogϕ ) ζ(1 +
2πin
logϕ)

)
+O(α2).

Since both the sine and cosine functions are 2π-periodic, (22) gives that f(s) = f(ϕs) +O(s2) as

s → 0+. Applying Corollary 1, we obtain

2πj

logϕ
log
(
α√
5

)
= −2πj

(
log n

logϕ

)
+O

(
log logn

logn

)
.

Finally, we note that O(α2) = O((log n)2/n2) = O (log logn/ logn) and set ψ1(s) = [k = 0]h(s) to

finish the proof. �

We now have all of the elements to continue with our proof Theorem 1 in the case of non-distinct

partitions of n.
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Proof of Theorem 1. We evaluate the pieces of the asymptotic in Theorem 4. Towards this end,

Proposition 6 combined with (20) gives,

nα =
1

logϕ
W
(
eψ0( log n

log ϕ )/ logϕn/ logϕ
)(

1 +O

(
logn

n2

))

=
logn

logϕ
+

log logn

logϕ
+
ψ0

(
logn
logϕ

)

(logϕ)2
− log logϕ

logϕ
+O

(
log logn

logn

)
,

so that

(23) enα = e
1

(log ϕ)2
ψ0( log n

log ϕ )−
log log ϕ

log ϕ n1/ logϕ(logn)1/ logϕ
(
1 +O

(
log logn

logn

))

Corollary 2 gives

(24)

(√
1

− dn
ds

∣∣
s=α

+O

(
1

n3/2

))
=

1

n

(
logn

logϕ

)1/2(
1 +O

(
log logn

logn

))
.

It remains to determine the small α, and hence large n, asymptotics of F2(e
−α). To this end, we

combine Theorem 3 with Corollaries 1 and 3, and Proposition 7 to obtain, as n → ∞,

logF2(e
−α) =

(logα)2

2 logϕ
− (logα)

(
c3

logϕ
− 1

)
+ c2 + 2γ + f(α) +O(α2)

=
logn

2 logϕ


logn− 2 log logn−

4ψ0

(
logn
logϕ

)

logϕ
+ 2 log logϕ+ 2c3 − 2 logϕ




+
log logn

2 logϕ


log logn+ 2 −

4ψ0

(
logn
logϕ

)

logϕ
+ 2 log logϕ− 2c3 + 2 logϕ




+
(log logϕ)2

2 logϕ
−

2ψ0

(
logn
logϕ

)

2(logϕ)2
+

log logϕ

logϕ
+ log logϕ

(
c3

logϕ
− 1

)

+ c2 + 2γ + ψ1

(
logn

logϕ

)
+O

(
(log logn)2

logn

)
.

Thus, we have

F2(e
−α) = ψ2(n)n

a(n)(log n)b(n)
(
1 +O

(
(log logn)2

logn

))
,

where ψ2(n) is the strictly positive bounded (above and below) function

ψ2 (n) := exp

(
(log logϕ)2

2 logϕ
−

2ψ0

(
log n
logϕ

)

2(logϕ)2
+

log logϕ

logϕ

+ log logϕ

(
c3

logϕ
− 1

)
+ c2 + 2γ + ψ1

(
logn

logϕ

))
,

a(n) :=
1

2 logϕ


logn− 2 log logn−

4ψ0

(
logn
logϕ

)

logϕ
+ 2 log logϕ+ 2c3 − 2 logϕ




b(n) :=
1

2 logϕ


log logn+ 2 −

4ψ0

(
logn
logϕ

)

logϕ
+ 2 log logϕ− 2c3 + 2 logϕ


 .

Combing the asymptotic for F2(e
−α) with equations (23) and (24) gives the desired result. �
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4. Partitions over general linear recurrences with a dominant root

The results of the previous sections on Fibonacci partitions can be generalised to positive

recurrence sequences Pn with an irreducible characteristic polynomial having a positive dominant

real root and such that P1 = 1. We will also assume that the values Pn are distinct. Here, we

require P1 = 1 so that there always exists a non-distinct partition of n over Pn. The restriction

on the values of Pn being distinct is not a very strict one—since the recursion has a dominant

real root there are at most finitely many repeated values, so an analysis analogous to moving

between F (x) and F2(x) is possible, and uncomplicated. For such Pn, we wish to asymptotically

understand the number of solutions to

(25) n = a1P1 + a2P2 + · · · + akPk + · · · .

As before, we let pP (n) denote the number of non-distinct partitions of n over the sequence Pn,

that is, solutions to (1) in nonnegative integers ak.

The case of partitions over Pn is carried out exactly as in the case with the Fibonacci num-

bers Fn, but with the Fibonacci zeta function replaced by the zeta function ζP (z) which is the

meromorphic continuation of the Dirichlet series
∑
k>1 P

−z
k (ℜ(z) > 0). Here, we consider the

generating function,

FP (x) :=
∑

n>0

pP (n)x
n =

∏

k>1

(
1 − xPk

)−1
.

To complete our analysis, we use the following result of Serrano Holdago and Navas Vicente [15],

which is a generalisation of Navas [10].

Proposition 8 (Serrano Holdago and Navas Vicente, 2023). Let P (x) be the minimal polynomial

with degP (x) = r of the linear recurrence Pn (as described above) and let β > 1 be the dominant

root of P (x). Then the Dirichlet series ζP (z) :=
∑

k>1 P
−z
k (ℜ(z) > 0) can be analytically contin-

ued to a meromorphic function, also denoted ζP (z), all of whose singularities are simple poles at

the points

s(n,k) :=
log |β−k1βk1−k22 · · ·βkr−1

r |
log β

+ i · arg(β
−k1
1 βk1−k22 · · ·βkr−1

r ) + 2πn

log β
,

where k = (k1, . . . , kr−1), β2, . . . , βr are the algebraic conjugates of β, n ∈ Z and the parameters

k1, . . . , kr−1 are integers satisfying 0 6 kr−1 6 kr−2 6 · · · 6 k1.

We adopt the terminology of Proposition 8 for the rest of this section along with the definitions

of the real numbers λ = λ1, λ2, . . . , λr, which satisfy

Pn = λβn + λ2β
n
2 + · · · + λrβ

n
r .

Note that since Pn is strictly increasing, we necessarily have that λ > 0.

Continuing the analogy with the Fibonacci partitions, we need asymptotic results, as s → 0+,

of the functions

logFP (e
−s) =

1

2πi

∫ a+i∞

a−i∞
s−zΓ(z)ζ(1 + z)ζP (z)dz.

As before, we have a few different types of poles to consider:

• a triple pole at z = 0 in the case of FP (e
−s),

• simple poles at countable (and separated) non-integer real values z 6 − log(β/|β2|)
log β .

• double poles at z ∈ −N, and

• simple poles off the real line at z = s(n,k).
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Now, it is clear from the previous analysis on Fibonacci partitions that the main contribution

will come from the pole at z = 0, which comes only from k = 0 = (0, . . . , 0). The negative real

poles will give a cumulative contribution of O
(
smin{log(β/|β2|)/log β,1−ε}) for any fixed ε > 0, since

s log s = O(s1−ε) for any fixed ε > 0 as s → 0+. As well, the simple poles off the real line contribute

a function f2(s) toward logFP (e
−s), that satisfies f2(s) = f2(βs) + O

(
smin{log(β/|β2|)/log β,1−ε}).

It remains to obtain the contributions from the pole at z = 0. For these, we require the following

result.

Lemma 4. Near z = 0, we have

ζP (z) =
1

log β
· 1
z

− logλ

log β
− 1

2
+

(
(log λ)2

2 logβ
+

logλ

2
+

log β

12
+ C1

)
z +O(z2),

where C1 :=
∑

k>1

∑
k 6=0

1
k1

(
k1
k2

)
· · ·
(
kr−2

kr−1

) (λrβ
k
r )

kr−1

(λβk)z+k1

(∏r−1
j=2(λjβ

k
j )
kj+1−kj

)
.

Proof. Following Serrano Holdago and Navas Vicente [15], we write

ζP (z) =
∑

k>1

∑

k

(−z
k1

)(
k1
k2

)
· · ·
(
kr−2

kr−1

)
(λrβ

k
r )
kr−1

(λβk)z+k1



r−1∏

j=2

(λjβ
k
j )
kj+1−kj




=
∑

k>1

1

(λβk)z
+
∑

k>1

∑

k 6=0

(−z
k1

)(
k1
k2

)
· · ·
(
kr−2

kr−1

)
(λrβ

k
r )
kr−1

(λβk)z+k1



r−1∏

j=2

(λjβ
k
j )
kj+1−kj




=
λ−z

βz − 1
+
∑

k>1

∑

k 6=0

Γ(z + k1)

Γ(z) k1!

(
k1
k2

)
· · ·
(
kr−2

kr−1

)
(λrβ

k
r )
kr−1

(λβk)z+k1



r−1∏

j=2

(λjβ
k
j )
kj+1−kj


 .

where
∑

k :=
∑

k1>0

∑k1
k2=0 · · ·∑kr−2

kr−1=0 . Again, using that 1
Γ(z) = z + O(z2) and Γ(z + k1) =

(k1 − 1)! +O(z) near z = 0, along with the asymptotic expansions

λ−z = 1 − z logλ+
1

2
(log λ)2z2 +O(z3),

and
1

βz − 1
=

1

log β
· 1
z

− 1

2
+

log β

12
z +O(z2),

we have that

ζP (z) =
1

log β
· 1
z

− logλ

log β
− 1

2
+

(
(log λ)2

2 log β
+

logλ

2
+

log β

12
+ C1

)
z +O(z2). �

In the following result, we use Lemma 4 to determine the asymptotic behaviour of the function

logFP (e
−s) as s → 0+. All of the expansions of the functions involved, s−z, Γ(z) and ζ(1 + z),

have been noted somewhere in the previous sections of this work—we use them below without

further reference.

Proposition 9. For any fixed ε ∈ (0, 1), as s → 0+, the function FP (z) defined above satisfies,

logFP (e
−s) =

(log s)2

2 logβ
+

(
log λ

log β
+

1

2
− 2γ

log β

)
log s+ C2 + f2(s) +O

(
smin{log(β/|β2|)/log β,1−ε}),

where

C2 :=
1

log β

(
1

2

(
γ2 +

π2

6

)
+ γ2 − γ1

)
−
(
logλ

log β
+

1

2

)
2γ +

(
(logλ)2

2 log β
+

logλ

2
+

log β

12
+ C1

)
,

and f2(s) = f2(βs) +O
(
smin{log(β/|β2|)/log β,1−ε}).
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Proof. Note that near z = 0, we have

s−zΓ(z)ζ(1 + z) =
1

z2
+ (2γ− log s)

1

z

+

(
1

2

(
γ2 +

π2

6

)
+ γ2 − γ1 − 2γ log s+

(log s)2

2

)
+O(z),

so that, using Lemma 4, we have that

Res
z=0

{
s−zΓ(z)ζ(1 + z)ζP (z)

}
=

1

log β

(
1

2

(
γ2 +

π2

6

)
+ γ2 − γ1 − 2γ log s+

(log s)2

2

)

−
(
logλ

log β
+

1

2

)
(2γ − log s)

+

(
(log λ)2

2 logβ
+

logλ

2
+

log β

12
+ C1

)

=
(log s)2

2 log β
+

(
logλ

log β
+

1

2
− 2γ

log β

)
log s+ C2.

The contributions coming from the rest of the poles are as discussed before the statement of

Lemma 4. �

On inspection, one notices that the dominant asymptotic terms of logFP (e
−s) are precisely

the dominant asymptotic terms of logF2(e
−s), the function related to the Fibonacci partitions,

after substituting β for ϕ. Of course, this is not so surprising, as the Fibonacci numbers Fk are

just a special case of the more general sequence Pk. The property of note, here, is regarding the

associated saddle point. Since the leading order behaviour is the same, the saddle points satisfy

the same leading order asymptotics. In particular, Proposition 6 and its corollaries hold for the

saddle point αFP related to non-distinct partitions of n over Pk, and so also then, do (23) and

(24). We use these results, as well as this notation, below.

Proof of Theorem 2. By Proposition 9, Proposition 6 and its corollaries, the small-αFP asymp-

totics, or, equivalently, the large-n asymptotics satisfy,

logFP (e
−αFp ) =

(logαFp)
2

2 log β
− (logαFp)

(
2γ

log β
− logλ

log β
− 1

2

)

+ C2 + f2(αFp) +O
(
α
min{log(β/|β2|)/log β,1−ε}
Fp

)

=
logn

2 logβ


logn− 2 log logn−

4ψ3

(
logn
logϕ

)

log β
+ 2 log log β + 4γ − 2 logλ− log β




+
log log n

2 logβ


log logn+ 2 −

4ψ3

(
logn
log β

)

log β
+ 2 log log β − 4γ + 2 logλ+ log β




+
(log log β)2

2 log β
−
ψ3

(
logn
log β

)

(log β)2
+ (1 + 2γ − logλ)

log log β

log β
− 1

2
log log β

+ C2 + ψ4

(
logn

log β

)
+O

(
(log logn)2

logn

)
,

where ψ3(x) and ψ4(x) are explicitly computable 1-periodic functions that are analogous to ψ0(x)

and ψ1(x), respectively. Thus, we have

FP (e
−αFP ) = ψ5

(
logn

log β

)
nc(n)(log n)d(n)

(
1 +O

(
(log logn)2

logn

))
,
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where ψ5(n) is the 1-periodic positive function

ψ5(x) := exp

(
(log log β)2

2 log β
− ψ3(x)

(log β)2
+ (1 + 2γ − logλ)

log log β

log β
− 1

2
log log β + C2 + ψ4(x)

)
,

c(n) :=
1

2 log β


logn− 2 log logn−

4ψ3

(
log n
logϕ

)

log β
+ 2 log log β + 4γ − 2 logλ− log β


 ,

d(n) :=
1

2 log β


log log n+ 2 −

4ψ3

(
log n
log β

)

log β
+ 2 log log β − 4γ + 2 logλ+ log β


 .

Combing the asymptotic for FP (e
−αFP ) with equations (23) and (24) gives the desired result. �
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