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1. Introduction

Let G be a semisimple linear algebraic group over an algebraically
closed �eld k. The subset of nilpotent elementsN inside the Lie algebra
g of G is called the nilpotent cone. The group G acts on N by the
adjoint action with only �nitely many orbits. A nilpotent variety is
the closure of such an orbit.
When the characteristic of the ground �eld k is zero it was proved

by Broer [3] that the subregular nilpotent variety is normal. One of
the main ingredients in the proof was a vanishing result concerning line
bundles on the cotangent bundle of a ag variety. By a clever induction
and use of the Borel-Bott-Weil theorem Broer later [2] generalized the
vanishing result, and were in this way able to prove the normality of a
broader class of nilpotent varieties.
Recently (see [12]) it was realized that the theory of Frobenius split-

ting could be used to generalize Broer's original vanishing result in [2]
to ag varieties over �elds of good characteristics (see De�nition 3).
In the same paper the normality of the subregular nilpotent variety in
good characteristic was obtained.
This paper deals with the generalization of the vanishing and nor-

mality results of [3] to positive good characteristics. One obstruction is
that the Borel-Bott-Weil theorem only remains true under some restric-
tions. The vanishing result on line bundles on the cotangent bundle of
a ag variety obtained in this paper, is therefore weaker than in the cor-
responding characteristic zero situation. It is however noticeable that
all the normality results from [3] generalize to good characteristics.
Contrary to characteristic zero situation some of the normality results
obtained for classical groups seem to be unknown. In characteristic
zero these results was already contained in [11].
The approach in this paper is very similar to the one in [3]. Only

minor changes are needed to make Broer's approach work in positive
characteristic. For convenience of the reader we have however tried to
make this paper independent of [3].

The author is partially supported by the TMR programme \Algebraic Lie Rep-
resentations" (ECM Network Contract No. ERB FMRX-CT 97/0100).
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We would like to thank Jens Carsten Jantzen for some useful con-
versations and suggestions. In particular the approach in Section 7 is
due to him. We should also say that the approach to Proposition 6 is
very similar to an approach shown to us by A. Broer.

2. Notation

Let G be a connected semisimple simply connected linear algebraic
group over an algebraically closed �eld k of characteristic p > 0. Let T
be a maximal torus and B be a Borel subgroup containing T . By � we
denote the roots of G with respect to T . If � is a root, we denote by s�
the corresponding reection inside the Weyl group W = NG(T )=T of
G. The negative roots �� is by de�nition the set of roots which are T
weights of the Lie algebra of B. The set of positive root is denoted by
�+, while the set of simple positive roots is denoted by �. Any subset
I of � de�nes a parabolic subgroup PI containing B. The unipotent
radical of a parabolic subgroup P is denoted by UP and the Levi part
by LP . The Lie algebra of UP is denoted by uP , but when PI = B we
will also use the notation u.
The character group of T is denoted by �, and elements in here is

called weights. There is a natural perfect pairing h; i between � and
the set of cocharacters X�(T ). If � is a root we denote by �_ the
corresponding coroot. In this setting we have

s�(�) = � � h�; �_i� ; � 2 � ; � 2 �:

A weight � in � is said to be dominant if

h�; �_i � 0 ; 8� 2 �:

The set of dominant weights is denoted by �+. On � we have an
order denoted by �, and de�ned by � � � if and only if � � � is a
sum of positive roots. For each weight � the W -orbit of � contains
precisely one dominant weight denoted by �+. For a weight � which
can be written as a sum of n simple positive roots, we de�ne the height
ht(�) of � to be n. Every T -character � 2 � can be uniquely extended
to a B-character. The corresponding 1-dimensional representation is
denoted by k�.
If P is a parabolic subgroup and M is a P module we denote by

G�P M the variety which is the quotient of G�M under the P action

p � (g;m) = (gp�1; p:m) ; p 2 P; g 2 G;m 2M:

If X is a variety (over k) we write k[X] for the global regular functions
on X, and OX for the sheaf of regular functions on X.

3. Weyl group translates

Let � 2 � be a weight. As mentioned above there exist a unique
dominant Weyl group translate �+ of �. In this section we will study
the behavior of �+ with respect to the order �.
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To � in � we de�ne

l(�) = #f� 2 �+ : h�; �_i < 0g;

and say that l(�) is the length of �. Notice that a weight is dominant
exactly when is has length zero.

Lemma 1. Let � be a weight and � be a short simple root such that

h�; �_i is negative. Then

l(s��) = l(�)� 1:

Proof. For any positive root � we have hs��; �_i = h�; s�(�)_i: Notic-
ing that s� acts as a permutation on the set �+ nf�g and that s�(�) =
��, this implies the result.

Corollary 1. If � 2 � is a weight then �+ � �.

Proof. Let � be a weight and assume by induction that the statement
is correct for weights of smaller length than �. We may assume that
there exist a simple root � as in Lemma 1. Then

� � s�(�) � (s�(�))
+ = �+;

where the second equality follows by induction and Lemma 1.

Proposition 1. Let � 2 � be a weight and � be a positive root.

(i). If h�; �_i � 0 then �+ < (�+ �)+:
(ii). If h�; �_i = �1 then �+ = (�+ �)+:
(iii). If h�; �_i � �2 then �+ > (�+ �)+:

Proof. If h�; �_i = �1 it follows that � + � = s�(�) and therefore
that � + � is in the the same Weyl group orbit as �. This implies (ii).
Assume now that h�; �_i � 0. We will prove (i) by induction in l(�).
Assume that the statement is correct for all � with l(�) < l(�). If � is
dominant we have

�+ = � < � + � � (�+ �)+;

where the last relation follows from Corollary 1. We may therefore
assume that there exist a simple positive root � such that h�; �_i is
negative. By Lemma 1 we know that l(s�(�)) < l(�). As � is simple
we also know that s�(�) is positive. By induction (used on s�(�) and
s�(�)) we therefore conclude

�+ = (s�(�))
+ < (s�(�) + s�(�))

+ = (� + �)+:

This implies (i). Assume �nally that h�; �_i � �2. Then

hs�(�+ �); �_i = �h� + �;�_i = �h�; �_i � 2 � 0

By this and the proof of (i) we conclude that

(� + �)+ = (s�(�+ �))+ < (s�(� + �) + �)+ = (s�(�))
+ = �+;

which ends the proof.
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4. Minimal dominant weights

In the previous section we saw that the dominant Weyl group trans-
late �+ of a weight � had the property that �+ � �. In general �+ is
not minimal with this property. In fact, for most weights � there exist
a dominant weight � 6= �+, such that

� � � � �+:

However, as the height of �+ � � is �nite we see that there must exist
weights � minimal among dominant weights with the property � � �.
The following arguments show that there is a unique minimal dominant
weight � with � � �.

Lemma 2. Let � 2 � be a weight and � be a simple positive root such

that h�; �_i is negative. Then every dominant weight � with � � �
satis�es that � � � + �.

Proof. Let � and � be as described above and let � be a dominant
weight with � � �. Let �1; : : : ; �n (n = ht(� � �)) be a collection of
(not necessarily distinct) simple positive roots such that

�� � =

nX
i=1

�i:

It is enough to show that there exist an i such that � = �i. By the
choice of � we have

h�� �; �_i = h�; �_i+ (�h�; �_i) > 0:

Therefore also

h
nX
i=1

�i; �
_i > 0:

But if �j 6= � then h�j ; �_i � 0, which implies that there must exist
an i such that �i = �.

Proposition 2. To each weight � 2 � there exist a dominant weight

�� such that

(i). �� � �.
(ii). If � is dominant and � � � then � � ��.

Proof. For each weight � de�ne the number

N� = minfht(�� �) : � dominant and � � �g:

Notice that the minimum is taken over a nonempty set as �+ is domi-
nant and �+ � �. We will prove the proposition by induction in N�. So
assume that the result is true for all �0 with N�0 < N�. If � is dominant
we may choose �� = �. Assume therefore that � is not dominant. Then
there exist a positive simple root � such that h�; �_i is negative. By
Lemma 2 it follows that N�+� < N� and that �� := (� + �)� satis�es
the desired conditions.
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In view of this result we will in the following use the notation �� to
denote the minimal dominant weight with �� � �.

Corollary 2. Let � 2 � be a weight and � be a positive simple root

such that h�; �_i is negative. Then �� = (�+ �)�.

Proof. Clear by Lemma 2.

Following [3] we de�ne

De�nition 1. If � 2 � is a weight, we denote by Cht(�) the largest
integer r for which there exist dominant weights �0; �1; : : : ; �r satisfying

�� = �0 < �1 < � � � < �r�1 < �r = �+:

Proposition 3. Let � 2 � be a weight and � be a simple positive root.

(i). If h�; �_i = �1 then Cht(�) = Cht(�+ �):
(ii). If h�; �_i � �2 then Cht(�) > Cht(�+ �):
(iii). If h�; �_i � 0 then Cht(�) � Cht(s�(�)):
(iv). If h�; �_i � �2 then Cht(�) > Cht(s�(�)� �):

Proof. For (i) and (ii) use Proposition 1 and Corollary 2.
If h�; �_i � 0 then � � s�(�) � (s�(�))

�, and by Proposition 2
we conclude that �� � (s�(�))�. Furthermore �+ = (s�(�))+ which
proves the equality in (iii). Assume �nally that h�; �_i � �2. Then
h� + �;�_i � 0 and thus by (iii) and (ii) we have

Cht(s�(�) � �) = Cht(s�(� + �)) � Cht(�+ �) < Cht(�):

This ends the proof.

5. Vanishing

In this section � will denote a simple positive root, and P will denote
the minimal parabolic subgroup Pf�g of G.

Lemma 3. Let V be a P module and � 2 � be a weight. If n denotes

the number h�; �_i, then

H i(G=B; V 
 k�) =

8><
>:

H i(G=P; V 
H0(P=B; k�)) if n � �1;

H i�1(G=P; V 
H1(P=B; k�)) if n � �1;

0 if n = �1.

By de�nition H i�1(G=P; V 
H1(P=B; k�)) is zero when i = 0.

Proof. We want to calculate the cohomology group H i(G=B; V 
k�) by
using the spectral sequence corresponding to the natural map G=B !
G=P , gB 7! gP . This gives us

Ep;q
2 = Hp(G=P; V 
Hq(P=B; k�))) Hp+q(G=B; V 
 k�):

As at most one of the cohomology groups Hq(P=B; k�) is nonzero (re-
member that P=B w P1) this spectral sequence degenerates. Further-
more H1(P=B; k�) is nonzero only if n < �1 while H0(P=B; k�) is
nonzero only if n > �1.
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Proposition 4. Notation as in the Lemma 3. If (�p � 1) � n < 0,
then

H i(G=B; V 
 k�) w H i�1(G=B; V 
 ks�(�)��); 8i � 1:

Proof. By Lemma 3 we know that

H i(G=B; V 
 k�) w H i�1(G=P; V 
H1(P=B; k�)):

Consider H1(P=B; k�). As (�p � 1) � n < 0 we know by the Borel-
Bott-Weil theorem (see Prop.II.5.4 in [10]) that

H1(P=B; k�) w H0(P=B; ks�(�)��);

as P -modules. Therefore

H i(G=B; V 
 k�) w H i�1(G=P; V 
H0(P=B; ks�(�)��)):

As hs�(�) � �;�_i � �1 the statement follows by using Lemma 3 on
the right side.

5.1. Application. Let uP denote the Lie algebra of UP , and let u

denote the Lie algebra of U . Restricting linear functions on u to uP

gives us a short exact sequence

0! k� ! u
� ! u

�
P ! 0:

For each integer i > 0 this induces a short exact sequence

0 ! Si�1(u�)
 k� ! Si(u�)! Si(u�P )! 0;(1)

where Si denotes the i'th symmetric product. Thinking of S�1(u�)
as being equal to zero, we may also make sense to (1) when i = 0.
Summing over all i � 0 we arrive at the following short exact sequence

0! S�(u�)
 k� ! S�(u�)! S�(u�P )! 0:(2)

To ease the notation we now de�ne

De�nition 2. If � 2 � is a weight we de�ne

H i(�) := H i(G=B;S�(u�)
 k�):

H i
�(�) := H i(G=B;S�(u�P )
 k�):

Corollary 3. Let � be a weight such that (�p � 1) � n < 0 where

n = h�; �_i. Then

H i
�(�) = H i�1

� (s�� � �) ;8i � 1:

Proof. This follows from Proposition 4 with V = S�(u�P ).

Proposition 5. Let � be a weight such that (�p � 1) � n < 0 where

n = h�; �_i. Then

(i). If n = �1 then H i(�) w H i(�+ �) for all i � 1.
(ii). If H i(� + �) = H i�1(s�(�) � �) = H i(s�(�)) = 0 for an i � 1,

then H i(�) = 0.



NORMALITY OF CERTAIN NILPOTENT VARIETIES 7

Proof. Assume �rst that n = �1. Then Lemma 3 tells us that H i
�(�) =

0 for all i � 0. Consider now the long exact sequence of cohomology
groups induced by the short exact sequence (2) tensored by k� :

0! H0(�+ �)! H0(�)! H0
�(�)!

! H1(�+ �)! H1(�)! H1
�(�)! � � �

� � � ! H i(� + �)! H i(�)! H i
�(�)! � � �

(3)

Then (i) follows immediately. Assume now that n � �2 and that
H i(� + �) = H i�1(s�(�) � �) = H i(s�(�)) = 0 with i � 1. Consider
the long exact sequence of cohomology groups corresponding to (2)
tensored by ks�(�)�� :

� � � ! H i�1(s�(�))! H i�1(s�(�) � �)! H i�1
� (s�(�) � �)! � � �

! H i(s�(�)) ! � � �

By the assumptions we conclude that H i�1
� (s�(�) � �) = 0. This

implies by Corollary 3 that H i
�(�) = 0. Finally this together with the

assumptions implies, by using the exact sequence (3), that H i(�) =
0.

6. The Vanishing Theorem

In this section we will state a vanishing theorem which will enable us
to conclude the normality of certain nilpotent varieties. Compared to
the characteristic zero situation in [3], the vanishing result in positive
characteristic is less general. Still the positive characteristic vanishing
result is su�cient to conclude the same normality results as in char-
acteristic zero. From now on we assume that the characteristic of the
ground �eld is good, which means

De�nition 3. If G is almost simple then the characteristic p of the
ground �eld is said to be a good prime for G if : p � 2 for type A,
p � 3 for type B, C and D, p � 5 for type F4 ,G2 ,E6 and E7, p � 7
for type E8. If G is arbitrary, the characteristic is de�ned to be good
if it is so for all almost simple normal subgroups of G.

To prove the vanishing result we have to restrict our attention to the
following subset of the set of weights :

Cp = f� 2 � : h�; �_i � (�p � 1) ; 8� 2 �+g:

The invariance of this set is described in

Lemma 4. Let � be an element of Cp and let � be a positive simple

root such that n := h�; �_i is negative. If m is an integer satisfying

0 � m � �n then

� +m� 2 Cp:

In particular (� + �), s�(�) and (s�(�)� �) belongs to Cp.
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Proof. Let � be a positive root, and m be an integer between 0 and
�n. If h�; �_i � 0, then

h� +m�;�_i = h�; �_i+mh�; �_i � �p � 1:

We may therefore assume that h�; �_i < 0. Then � 6= � and

h� +m�;�_i � h� � n�; �_i

= hs�(�); �
_i

= h�; s�(�)
_i � (�p� 1):

The last equality follows as s�(�) is a positive root as � is simple and
not equal to �.

Theorem 1. For every weight � in Cp we have

H i(�) = 0 ; 8i > Cht(�):

Proof. By induction we may assume that the statement is correct for
all weights �0 in Cp satisfying

Cht(�0) < Cht(�) or (Cht(�0) = Cht(�) and l(�0) < l(�)):

If � is dominant then Cht(�) = 0 and the result follows from Thm. 2
in [12]. We may therefore assume that there exist a simple root � such
that n := h�; �_i is negative.
If n = �1 then Cht(�+�) = Cht(�) by Proposition 3. At the same

time Lemma 1 tells us that l(�+ �) < l(�). As � + � is an element of
Cp by Lemma 4 we conclude by induction that

H i(� + �) = 0 ; 8i > Cht(�):

Using Proposition 5(i) the result follows.
We may therefore assume that n � �2. By Proposition 3 we have

Cht(� + �) < Cht(�). Consequently induction and Lemma 4 tells us
that

H i(� + �) = 0 ; 8i > Cht(�):(4)

Consider now s�(�). Then Proposition 3(iii), Lemma 1, Lemma 4 and
induction tells us

H i(s�(�)) = 0 ; 8i > Cht(�):(5)

Consider �nally s�(�) � �. Then Proposition 3(iv), Lemma 4 and
induction tells us

H i(s�(�) � �) = 0 ; 8i > Cht(�)� 1:(6)

Now (4), (5) and (6) together with Proposition 5 ends the proof.
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7. Pairwise orthogonal simple short roots

From now on we assume that the group G is almost simple.
Let �1; �2; : : : ; �m be a set of pairwise orthogonal simple short roots,

and let � := �1+ � � �+�m. In this section we will calculate Cht(�). As
for a large part of this paper, this may also be found in [3]. However
in this paper we will here choose a slightly di�erent approach following
an argument shown to us by J. C. Jantzen.
Choose a Weyl group invariant bilinear form (; ) on the Euclidean

space �
ZR, and normalize it so that (�;�) = 1 whenever � is a short
root. With this normalization of (; ) we have

Lemma 5. If � is a root, then (�; �) is an integer.

Proof. Let � be any root. As the underlying root system of G is irre-
ducible there exist a short root � such that (�; �) 6= 0 (see [8] Lemma
B, Sect. 10.4). Then Table 1, Sect. 9.4 in [8], tells us that

(�; �) =
(�; �)

(�;�)
2 f1; 2; 3g:

Lemma 6. If � is a weight in the root lattice Z�, then (�; �) is an

integer.

Proof. Write � as a sum of roots � =
Pn

i=1 �i: Then

(�; �) =
X

1�i<j�n

2(�i; �j) +
nX
i=1

(�i; �i)

=
X

1�i<j�n

(�j; �j)h�i; �
_
j i +

nX
i=1

(�i; �i);

which is an integer by Lemma 5.

Lemma 7. Let � and � be dominant weights with � < �. Then

(�; �) < (�; �).

Proof. Consider

(�; �) = (�; �) + (�� �; � � �) + 2(� � �; �) > (�; �) + 2(�� �; �):

As � is dominant and � > � the number (���; �) is nonnegative, and
the result follows.

Proposition 6. Cht(�) = m� 1.

Proof. Let  denote the short dominant root. Then  = �+
i for all i.

In particular �i �  for all i, and as  may be written uniquely as a
sum of simple roots we conclude that � � . Therefore �� � . If
�� 6=  then Lemma 7 tells us that (��; ��) < (; ) = 1, as  was a
short root. By Lemma 6 this implies that (��; ��) = 0 or that �� = 0.
This contradicts that � � �� and we conclude that �� = .



10 JESPER FUNCH THOMSEN

Consider a sequence �0; : : : ; �r of dominant weights with

�� = �0 < �1 < � � � < �r�1 < �r = �+:

Then by Lemma 7 we have

1 = (��; ��) < (�1; �1) < � � � < (�r; �r) = (�+; �+) = m:(7)

Here the last equality follows as � is a sum of pairwise orthogonal short
roots, and as (�+; �+) = (�;�). Using Lemma 6 we conclude from (7)
that r � m� 1, and consequently Cht(�) � m� 1.
To see the opposite equality put �i = (�1 + � � � + �i+1)+ for i =

1; : : : ;m� 1. Then Proposition 1(i) gives us a sequence of dominant
weights :

�� < �1 < � � � < �m�2 < �m�1 = �+:

This implies that Cht(�) � m� 1.

We will also need that � is contained in Cp, which follows from

Lemma 8. Let �1; �2; : : : ; �m be a set of short pairwise orthogonal

simple roots, and let � := �1 + � � �+ �m denote their sum. Then

h�; �_i � �3 ; 8� 2 �+:

In particular � 2 Cp.

Proof. Let � be a positive root. We may assume that h�i; �_i < 0 for
all i = 1; : : : ;m: As each �i is short this means that h�i; �_i = �1. So
we have to show that m � 3. Assume therefore that m = 4. Then

(� + 2�; �+ 2�) = (�;�) + 4(�; �) + 4(�; �)

= 4 + 4(�; �) + 2(�; �)h�; �_i

= 4(1 � (�; �)) � 0:

The last equality follows from Lemma 5. This implies that � + 2� =
0 which is a contradiction as � + 2� is a nontrivial sum of positive
roots

8. Normality

Let from now on �1; : : : ; �m be a set of pairwise orthogonal short
simple roots, and consider the parabolic subgroup P = PI of G with
I = f�1; : : : ; �mg. Let uP denote the Lie algebra of UP and u denote
the Lie algebra of the unipotent radical U of B. Consider the short
exact sequence of B-modules

0! (u=uP )
� ! u

� ! u
�
P ! 0:(8)

As �1; : : : ; �m are pairwise orthogonal we know that

(u=uP )
�
w k�1 � k�2 � � � � � k�m :
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For each positive integer s we let Vs denote the s'th exterior power of
(u=uP )�, i.e. :

Vs = ^s(u=uP )
� =

M
1�n1<n2<���<ns�m

k�n1+���+�ns :

By Proposition 6 we see that Vs is a direct sum of 1-dimensional B-
representations with weights � with Cht(�) = s� 1. In particular

Lemma 9. H i(G=B;S�u� 
 Vs) = 0 ; i � s:

Proof. Use Lemma 8 and Theorem 1.

Let j be a positive integer and consider the Koszul resolution induced
by (8) and j (see e.g. [10] II.12.12)

� � � ! Sj�s
u
� 
 Vs ! � � � ! Sj�2

u
� 
 V2 ! Sj�1

u
� 
 V1 ! Kj ! 0:

Here Kj denotes the kernel of the surjective map Sju� ! Sju�P .

Lemma 10. H i(G=B;Kj) = 0 ; i > 0:

Proof. Break the Koszul resolution of Kj up into short exact sequences
and use Lemma 9.

Consider the short exact sequence

0 ! K ! S�
u
� ! S�

u
�
P ! 0;(9)

where K = �jKj. Then Lemma 10 tells us that the induced map

H0(G=B;S�
u
�)! H0(G=B;S�

u
�
P ) w H0(G=P; S�

u
�
P );(10)

is surjective. The last isomorphism follows by an argument similar to
the one used in the proof of Lemma 3.

8.1. Springer resolution. LetN denote the closed subset of nilpotent
elements inside the Lie algebra g ofG. By results of Springer it is known
that N is a normal variety. The projective morphism

� : G�B
u! N

(g; x) 7! g � x:
(11)

is a resolution of singularities of N and is called the Springer resolution.
As N is normal and � is a birational projective map we know that
��(OG�Bu

) = ON: In particular

k[N]
��

! k[G�B
u](12)

is surjective. Consider the commutative diagram

G �P uP

&&

�P

MMM
MMM

MMM
MM

G�B uP
oo p //�1� �

��
�
jG�BuP

G �B
u

��
�

GuP
//�2� �
N
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Here �1 and �2 are inclusion maps, p denotes the natural projection map
and GuP denotes the closure of GuP inside N. Reformulating (10) we
see that

k[G�B
u]

��
1! k[G�B

uP ]
p�

w k[G �P
uP ]

is surjective, and composing this with the surjective map (12) and using
the commutativity of the diagram above, we conclude that

k[GuP ]
��
P! k[G�P

uP ](13)

is surjective. Furthermore as ��P is dominant (13) is in fact an isomor-
phism.

8.2. Proofs of main results.

Proposition 7. GuP is a normal variety.

Proof. As G �P uP is a normal variety the ring k[G�P uP ] is normal.
As ��P is an isomorphism this implies that the coordinate ring k[GuP ]
of the a�ne variety GuP is normal.

That ��P is an isomorphism means, as GuP is a�ne, that

(�P )�OG�P uP = OGuP
:(14)

Using that �P is projective this implies ([6] Cor.III.11.3) that �P has
connected �bers.

Lemma 11. The map �P is birational.

Proof. As �P is a dominant morphism between varieties of the same
dimension, and as the �bers of �P are connected, it is enough to show
that �P is separable. By a theorem of Richardson (see [15]) the P
module uP has a dense P -orbit. Let x 2 uP be an element in this
dense P -orbit, and consider the morphism � : G ! G �P uP given by
�(g) = (g; x). By the choice of x this map is dominant. As a composite
of two �eld extensions F0 � F1 � F2 is separable only if F0 � F1 is
separable, we see that it is enough to show that �P � � is separable.
In other words we have to show that the orbit map g 7! g � x of x is
separable. Using that the the nilpotent variety N is isomorphic to the
unipotent variety, it is enough to show that the orbit map g 7! g � x0

is separable for any unipotent element x0 in G. Unless G is of type A,
this now follows from [17], I 5.1-5.6 and [1], Sect. 9.1. If G is of type
A we may compose �P � � with the natural map GLn(k) 7! G and use
a similar argument.

For convenience of the reader we state the following de�nition of a
rational resolution.

De�nition 4. A proper birational map f : X ! Y is a rational reso-

lution of Y if

1. Y is normal and X is smooth.
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2. Rif�(OX) = 0 ; i > 0.
3. Rif�(!X) = 0 ; i > 0, where !X is the dualizing sheaf of X.

If there exist a rational resolution of Y we say that Y has rational

singularities.

Lemma 12. The smooth variety G �P uP has trivial dualizing sheaf.

Proof. By [16] Lemma 4.4 we recognize uP as (g=p)�, where p is the Lie
algebra of P . The result now follows as G �P (g=p)� is the cotangent
bundle over G=P and as such has trivial dualizing sheaf.

Theorem 2. The nilpotent variety GuP is a normal Gorenstein vari-

ety with rational singularities.

Proof. We claim that �P is a rational resolution ofGuP . By Proposition
7, Lemma 11 and Lemma 12 this follows if we show

Ri(�P )�(OG�P uP ) = 0 ; i > 0:

As GuP is a�ne this is equivalent to

H i(G=P; S�
u
�
P ) = H i(G �P

uP ;OG�P uP ) = 0 ; i > 0:(15)

Using an argument similarly to the one used in the proof of Lemma
3 we see that H i(G=P; S�u�P ) = H i(G=B;S�u�P ). Furthermore Lemma
10 and the short exact sequence (9) implies that H i(G=B;S�u�P ) =
H i(G=B;S�u�). Now (15) follows fromTheorem 1. That GuP is Goren-
stein now follows (see [5], p.49-50) from Lemma 12.

9. Bala-Carter labels and partitions

In the previous section the normality of certain kinds of Richardson
nilpotent varieties was proved. These varieties were given by sets of
short pairwise orthogonal simple roots. In this section we will deter-
mine exactly which nilpotent varieties that arises in this way. For the
classical groups we will parameterize these by certain partitions and
for the exceptional groups we will use the Bala-Carter label. Much of
this is straightforward checking from de�nitions and tables, and most
of this will be left to the reader. Useful references are [7] (Lemma 7.3.)
and Table 1-3, 6-8 in [14].

Lemma 13. Let 1; 2; : : : ; m;  and 1; : : : ; m; 
0 be two sets of pair-

wise orthogonal short simple roots, and let P and P 0 denote the corre-

sponding parabolic groups. If h0; _i < 0 then GuP = GuP 0 .

Proof. Let L and L0 denote the Levi parts of P and P 0 respectively. As

ss0() = 0

ss0(i) = i ; i = 1; : : : ;m;

it follows that L and L0 are conjugated under the Weyl group element
ss0 . By de�nition this means that P and P 0 are associated (see [9] p.
84) and the corresponding Richardson orbits are therefore equal.
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De�nition 5. We say : (*) two sets 1; : : : ; m;  and 1; : : : ; m; 0 of
pairwise orthogonal simple short roots are equivalent if  and 0 are
non-orthogonal. In general two sets E and E0 of short simple pair-
wise orthogonal roots is said to be equivalent if there exist a sequence
E0; E1 : : : ; Er of sets of short simple pairwise orthogonal roots such
that for each i = 0; : : : ; r the set Ei is equivalent to Ei+1 in the sense
of (*).

By Lemma 13 we see that two equivalent sets of pairwise orthog-
onal simple short roots determine the same nilpotent variety. In the
following �1; �2; : : : ; �n will denote the simple roots of G taken in the
Bourbaki order.

Lemma 14. The equivalence classes of sets of short pairwise orthogo-

nal simple roots are given by

1. If G is of type An, Bn, Cn, G2, F4, E6 or E8 then any two sets of

pairwise orthogonal simple short roots of rank m are equivalent.

2. If G is of type E7 then any two sets of pairwise orthogonal simple

short roots of rank m 6= 3 are equivalent. The sets �1; �2; �5 and

�2; �5; �7 represent the two equivalence classes of rank 3
3. In case G is of type Dn we have the following two distinct types

of equivalence classes :

(a) Any two sets of short pairwise orthogonal simple roots of the

same rank not containing both �n�1 and �n are equivalent,

except that �1; �3; : : : ; �n�3; �n�1 and �1; �3; : : : ; �n�3; �n are

nonequivalent when n is even.

(b) Any two sets of short pairwise orthogonal simple roots of the

same rank containing both �n�1 and �n are equivalent.

Proof. Straightforward by de�nition.

As above we let GuP denote the nilpotent variety determined by a
set �1; : : : ; �m of short pairwise orthogonal short simple roots. The
following types of nilpotent varieties is of this form.

An : In this case nilpotent orbits correspond to partitions of n. For
each integer 1 � m � (n + 1)=2 there exist �1; : : : ; �m as above,
and the corresponding nilpotent variety is given by the partition
[n; n�m].

Bn : In this case nilpotent orbits correspond to partitions of 2n + 1
in which even parts appears with even multiplicity. As there is
only one short simple root, only the subregular nilpotent variety is
contained in Theorem 2. This correspond to the partition [2n+1].

Cn : In this case nilpotent orbits correspond to partitions of 2n in which
odd parts occur with even multiplicity. For each integer 1 �
m � n=2 there exist �1; : : : ; �m as above, and the corresponding
nilpotent variety is given by the partition [2(n�m); 2m].
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Dn : In this case nilpotent orbits correspond to partitions of 2n in which
even parts occur with even multiplicity, except that every parti-
tion with only even parts (the \very even" partitions) correspond
to two orbits. We divide into 3 cases (remember that �1; �2; : : : �n
denotes the simple roots of G)
(a) If f�n�1; �ng * f�1; : : : ; �mg : For each integer 1 � m <

n=2 there exist �1; : : : ; �m with the above properties, and the
corresponding partition is [2(n�m)� 1; 2m+ 1].

(b) If f�n�1; �ng * f�1; : : : ; �mg and m = n=2 : There is 2 pos-
sible nonequivalent sets of �1; : : : ; �m with these properties.
These correspond to the 2 nilpotent orbits with very even
partition [n2].

(c) Both �n�1 and �n are among �1; : : : ; �m : For each integer 2 �
m � n=2+1 a set �1; : : : ; �m with the above properties exist,
and the corresponding partition is [2(n�m) + 1; 2m� 3; 12].

G2 : In this case m = 1 and the only nilpotent variety which is con-
tained in Theorem 2 is the subregular nilpotent variety G2(a1).

F4 : In this case m = 1 and the only nilpotent variety which is con-
tained in Theorem 2 is the subregular nilpotent variety F4(a1).

E6 : By Lemma 14 three distinct nilpotent varieties are contained in
Theorem 2. Each of these nilpotent varieties is contained in
those of higher dimension. In particular the nilpotent variety
corresponding to m = 3 sits in a sequence of nilpotent vari-
eties of length 4. At the same time Table 1 in [14] tells us that
A5+A1 (corresponding to Bala-Carter label E6(a3)) is contained
in a nilpotent variety of the form GuP with m = 3. By Table 6 in
[14] this forces D5 and E6(a1) to correspond to m = 2 and m = 1
respectively.

E7 : By Lemma 14 there are three or four distinct nilpotent varieties
contained in Theorem 2. Each of these nilpotent varieties is con-
tained in those of higher dimension. In particular the nilpotent
variety corresponding to m = 4 must be contained in a sequence
of nilpotent varieties of length 5. At the same time Table 2 in [14]
tells us that E6(a1) is contained in a nilpotent variety of the form
GuP with m = 4. By Table 7 in [14] this forces E6(a1) to be the
nilpotent variety corresponding to m = 4. We also conclude that
E7(a2) and E7(a1) corresponds to m = 2 and m = 1 respectively.
The case m = 3 remains. In this case there is 2 equivalence classes
of sets of short simple pairwise orthogonal roots. By Table 7 in
[14] they correspond to either E6 or D6 + A1 (Bala-Carter label
E7(a3)). By Table 2 in [14] (and dimension reasoning) it follows
that E6 corresponds to �2; �5; �7, while the nilpotent variety with
Bala-Carter label E7(a3) arises from e.g. �2; �3; �6.

E8 : By Lemma 14 four distinct nilpotent varieties are contained in
Theorem 2. Each nilpotent variety is contained in those of higher
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dimension. In particular the nilpotent variety corresponding to
m = 4 must be contained in a sequence of nilpotent varieties
of length 5. At the same time Table 3 in [14] tells us that D8

(Bala-Carter label E8(a4)) is contained in a nilpotent variety of
the form GuP with m = 4. By Table 8 in [14] this forces the
variety with Bala-Carter label E8(a4) to be the nilpotent variety
corresponding to m = 4. We also conclude that E7 + A1 (Bala-
Carter label E8(a3)), E8(a2) and E8(a1) corresponds to m = 3,
m = 2 and m = 1 respectively.

Remark 1. The normality of all nilpotent varieties for groups of type
A over �elds of positive characteristic was proved by Donkin in [4].
Using the theory of Frobenius splitting, this result together with ratio-
nal singularities was later also obtained by Mehta and van der Kallen
[13]. For arbitrary groups (and good characteristics) the subregular
nilpotent variety is known [12] to be a normal Gorenstein variety with
rational singularities. Besides the overlap with these result it seems
that the results in this paper are new.

References

1. A. Borel, Linear Algebraic Groups, Springer Verlag, 1991.
2. A. Broer, Line bundles on the cotangent bundle of the ag variety, Invent.

Math. 113 (1993), 1{20.
3. , Normality of some nilpotent varieties and cohomology of line bundles

on the cotangent bundle of the ag variety, Lie theory and geometry (Boston),
Prog. Math., Birkh�auser, 1994, pp. 1{19.

4. S. Donkin, The normality of closures of conjugacy classes of matrices, Invent.
Math. 101 (1990), 717{736.

5. G. Kempf et al., Toroidal embeddings, Lecture Notes in Mathematics, vol. 339,
Springer-Verlag, Berlin-New York, 1973.

6. R. Hartshorne, Algebraic Geometry, GTM 52, Springer Verlag, 1977.
7. W.H. Hesselink, Polarisations in the classical groups, Math. Z. 160 (1978),

217{234.
8. J. E. Humphreys, Introduction to Lie Algebras and Representation Theory,

GTM 9, Springer Verlag, 1972.
9. , Conjugacy Classes in Semisimple Algebraic Groups, Mathematical sur-

veys and monographs, vol. 43, A.M.S., 1995.
10. J. C. Jantzen, Representations of Algebraic Groups, Academic Press, 1987.
11. H. Kraft and C. Procesi, On the geometry of conjugacy classes in classical

groups, Comment. Math. Helv. 57 (1982), 539{602.
12. S. Kumar, N. Lauritzen and J. F. Thomsen, Frobenius splitting of cotangent

bundles of ag varieties, To appear in Invent. Math.
13. V.B. Mehta and W. van der Kallen, A simultaneous frobenius splitting for

closures of conjugacy classes of nilpotentmatrices., Comp. Math. 84 (1992),
211{221.

14. K. Mizuno, The conjugate classes of unipotent elements of the Chevalley groups

E7 and E8, Tokyo J. Math 3 (1980), 391{461.
15. R.W. Richardson, Conjugacy classes in parabolic subgroups of semisimple alge-

braic groups, Bull. London Math. Soc. (1974), 21{24.



NORMALITY OF CERTAIN NILPOTENT VARIETIES 17

16. T.A. Springer, The unipotent variety of a semisimple group, Algebraic Geome-
try (London) (S. Abhyankar, ed.), Oxford University Press, 1969, pp. 373{391.

17. T.A. Springer and R. Steinberg, Conjugacy classes, Seminar on Algebraic
Groups and Related Finite Groups (A. Borel, ed.), Lecture notes in Mathe-
matics, vol. 131, Springer Verlag, 1970.

Matematisk Institut, Aarhus Universitet, Ny Munkegade, DK-8000
�arhus C, Denmark

E-mail address: funch@imf.au.dk


