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THE NODAL SURFACE OF THE SECOND EIGENFUNCTION OF THE

LAPLACIAN IN RD CAN BE CLOSED

S�REN FOURNAIS

Abstract. We construct a set in RD with the property that the nodal surface of the second
eigenfunction of the Dirichlet Laplacian is closed, i.e. does not touch the boundary of the
domain. The construction is explicit in all dimensions D � 2 and we obtain explicit control of
the connectivity of the domain.
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1. Introduction

It is a famous conjecture by Payne [Pay67] that the nodal surface of the 2nd eigenfunc-
tion of the Dirichlet Laplacian on a bounded, connected domain 
 in RD touches the bound-
ary @
. For convex domains in R2 this conjecture was proved by Melas [Mel92]. However,
M. Ho�mann-Ostenhof, T. Ho�mann-Ostenhof and N. Nadirashvili [HOHON98] constructed a
non-simply connected counterexample to the general conjecture in R2. The 2-dimensional ex-
ample in [HOHON98] relies heavily on choosing a very symmetric domain and using symmetry
arguments. In higher dimensions it is not possible to choose similar, very symmetric domains.
The obstruction being that there are only a �nite number of regular polyhedra in any dimension
greater than or equal to 3 (in 3 dimensions these are the platonic solids). Below we will look at
almost the same domain as in the above mentioned paper. Because of the lack of symmetries
the argument from [HOHON98] cannot be applied. We shall use an alternative, and in a way
more direct, argument to reach the desired conclusion.

1.1. Generalities. For a bounded connected domain 
 (with su�ciently regular boundary)
we will look at the Laplace operator with Dirichlet conditions at the boundary. This de�nes a
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2 S�REN FOURNAIS

positive, self adjoint operator ��
 with domain W 1;2
0 (
) (see [GT83] for notation) and purely

discrete spectrum. We denote the eigenvalues (eigenfunctions) by f�j(
)g1j=1 (fuj(
)g1j=1), so

��
uj(
) = �j(
)uj(
) in 


uj(
) � 0 on @
;

and the eigenvalues are ordered according to size: 0 < �1(
) < �2(
) � �3(
) � ::: (It is
a general result that �1(
) is simple and strictly positive). We may take the eigenfunctions
to be real and orthonormal: huj(
); uk(
)i = �j;k, where � is the Kronecker delta. Since the
eigenfunctions are real, and the �rst can be chosen positive, the second eigenfunction u2(
) has
to take both positive and negative values. According to Courant's Nodal Domains Theorem 

splits into exactly two connected open sets 
+;
� such that u2 > 0 on 
+, u2 < 0 on 
� and

 = 
+ [ 
�.
It is now natural to study the geometry of the nodal set N (u2), where

N (u2) = fx 2 
ju2(
)(x) = 0g:

Generically (see [Uhl72]), this is a manifold of codimension 1, and one may ask wether it always
touches the boundary of the domain, i.e. wether

N (u2) \ @
 6= ;

always. This is the above mentioned conjecture by Payne [Pay67].

1.2. The domain. We choose 0 < R1 < R2 such that

�1(B(R1)) < �1(B(R2) nB(R1)) < �2(B(R1)):

Furthermore we letN 2 N, and let fx1; :::; xNg � fx 2 RD
��jxj = R1g. Then we let � 2 R+[f0g

and de�ne


� = (B(R2) nB(R1)) [
�[Nj=1B(xj; �)� [B(R1):
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A typical domain

As a measure of the distance between the points we introduce:

� = inf
�
� > 0

��fx 2 RD
��jxj = R1g � [Nj=1B(xj; �)

	
:

This measures the maximal distance between neighboring points. Let us also introduce the
simpler:

� = min
j 6=k

fdistSN�1(xj; xk)g;
where distSN�1 is geodesic distance on the sphere. We will always assume that � > 0 and that
� < �=2. To make sure that the holes are evenly distributed, we assume �=� � c0, where c0 is
some constant which will be assumed �xed throughout the paper.
We will simplify notation by writing �j;� and uj;� instead of the heavier �j(
�) and uj(
�)

Notice that 
0 = (B(R2) n B(R1)) [ B(R1), is the union of two disjoint domains and that
the Dirichlet Laplacian on this set is explicitly solvable in terms of Bessel functions.
In [Sto95] it was proved that ��� converges to ��0 in strong resolvent sense as �& 0. Thus

in particular

�j;� % �j;0:

From this we see that when � is su�ciently small, then �2;� is a simple eigenvalue. We choose
u1;0 and u2;0 to be positive functions.

De�ne N (u2;�) = fx 2 
�

��u2;�(x) = 0g, then the result of this paper is:

Theorem 1.1. There exists a �0 such that if � � �0 then

N (u2;�) \ @
� = ;;
for all � su�ciently small.
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Remark 1.2. Thus, the theorem says, that if we cut many, small holes, and they are almost
evenly distributed over the sphere, then the nodal surface will be closed.

In section 4 we get an explicit upper bound on the minimal number of holes necessary which
is � 109.
We use [Bas95] and [PS78] as standard references for results on stochastic processes. In those

books references to the original articles can be found.

2. Preliminary Estimates

The most important result in this section is the following estimate:

Lemma 2.1. 9C > 0 independent of �; � such that

jhuj;�; u2;0ij � C
�
1+D=4
j;�

j�j;� � �2;0jN�D +O(�D+1);

when � is su�ciently small (dep. on �). Here C can be chosen as:

C = (@ru2;0jr=R1
)�D�1e

1+ 1

8�C0;

where C0 is the constant given in Lemma 2.6 below, and �D�1 = volRD�1(B(1)).

Remark 2.2. ��(D�1) is proportional to the number of holes, so N in the above Lemma can
be changed to ��(D�1), up to a change in the constant C.

The proof of Lemma 2.1 is given in the rest of this section as a series of lemmas.

Lemma 2.3.

huj;�; u2;0i = �@ru2;0jr=R1

�j;� � �2;0

Z
S�

uj;�(y)d�(y);

where S� = fx 2 
�

��jxj = R1g and � is surface measure on the sphere fjxj = R1g.
Proof. This is, in fact, just Green's identity:

�j;�huj;�; u2;0i = h���uj;�; u2;0i
= �2;0huj;�; u2;0i �

Z
S�

uj;�(y)@ru2;0(y)d�(y):

Now we use that u2;0 is rotationally symmetric to reach the conclusion.

Thus we need to estimate
R
S�
uj;�(y)d�(y).

Notice the following argument:

Lemma 2.4. 8y 2 
� we have:

juj;�(y)j � kuj;�k1e�j;�Ey [��];
where �� is the exit time of Brownian motion from 
� i.e.

�� = infft > 0jWt =2 
�g;
where Wt is D-dimensional Brownian motion and E denotes the expectation.

Proof.

uj;�(y) = et�j;�(et��uj;�)(y)

= et�j;�Ey [uj;�(Wt); t < ��]

� et�j;�kuj;�k1Ey [1 < ��=t]

� et�j;�kuj;�k1Ey [��]=t:
Now we put t = ��1j;� to get the lemma.
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Lemma 2.5.

kuj;�k1 � e1=(8�)(�j;�)
D=4:

Proof. This was proved in [Dav89][p. 63]. I am grateful to T. Ho�mann-Ostenhof for pointing
my attention to this reference.

Thus we will prove a bound E
y [��] = O(�) when y 2 S�. This will �nish the proof of

Lemma 2.1.

Lemma 2.6. Let Wt = (X1
t ;X

2
t ; :::;X

D
t ) be D-dimensional Brownian motion. Let

�� = infft > 0jWt =2 
�g:
Then 9C0 > 0 such that 8� > 0

sup
y2S�

E
y [��] � C0�+O(�);

when � is su�ciently small (depending on �). Here C0 can be chosen as:

C0 =
(D � 2)Dp

D � 1

R
�(D�1)
1

R
�(D�2)
1 �R

�(D�2)
2

(R2
2 �R2

1)(1 +R2=R1);

for D � 3 and

C0 =
1

2
(R2

2 �R2
1)R

�1
1

1 +R2=R1

log(R2=R1)
;

for D = 2.

Proof. Let Mt = W 2
t � Dt, then Mt is a martingale since the di�erent coordinates of Wt are

independent 1-dimensional Brownian motions. Let x 2 S�, we may choose the coordinates so
that x = (R1; 0; ::::; 0). Now, by the martingale property,

E
x [Mt] = E

x [M0] = R2
1;

so

DEx [��] = E
x [W 2

��]�R2
1

= R2
1P

x[jW��j = R1] +R2
2P

x[jW��j = R2]�R2
1

= (R2
2 �R2

1)P
x[jW��j = R2]:

We will now prove that when � is su�ciently small, then

P
x[jW��j = R2] � C1�+ (

1

2
+O(�)) sup

y2S�

P
y[jW��j = R2]:

Since x 2 S� was arbitrary, this proves the lemma, with C0 = 2
R2
2
�R2

1

D
C1:

We introduce the following stopping times:
Let

k =
�p

R2
1 � �2

R1 +R2

2
� R1 +R2

2R1
�;

and de�ne

� �1 = infft > 0j
vuut DX

j=2

(Xj
t )2 = k or jX1

t j =
R1 +R2

2
or jX1

t j = R1=2g:
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The stopping time � �1

De�ne furthermore

�1 = infft > 0jjWtj = R1g;
�2 = infft > 0jjWtj = R2g:

Then

P
x[jW��j = R2] = P

x[jW��j = R2 ^ � �1 < � �]

� P
x[jW��j � �� �1 = R2]

= E
x [PW��

1 [jW��j = R2]];

where we used the strong Markov property of Brownian motion. We continue the calculation:

E
x [PW��

1 [jW��j = R2]] = E
x [PW��

1 [jW��j = R2; �1 < �2;W�1 2 S�]] + E
x[PW��

1 [�1 > �2]]

� a+ b:

Let us look at the �rst term a. Below we will once again use the strong Markov property of
Brownian motion.

P
W��

1 [jW��j = R2; �1 < �2;W�1 2 S�] = P
W��

1[jW��j � ��1 = R2; �1 < �2;W�1 2 S�]

= E
W��

1 [1f�1<�2g1fW�12S�g
P
W�1 [jW��j = R2]]

� (sup
y2S�

P
y[jW��j = R2])E

W��
1 [1f�1<�2g1fW�12S�g

]

� (
1

2
+O(�))(sup

y2S�

P
y[jW��j = R2]);

when � is su�ciently small (dep. on �). Here we used that due to symmetry the chance of
"falling back" into the hole we came from, is � 1=2, and the probability of falling into another
hole is O(�) as �! 0 (this follows from [PS78][Thm. 3.1. p. 102]).
Thus we only need an estimate of order � of the term b. This is easily accomplished:

First for D � 3. Since jWtj�(D�2) is a martingale and leaves [R
�(D�2)
2 ; R

�(D�2)
1 ] with probability

one, we get ( [Bas95][Cor. 4.10 p.33])

P
W��

1 [�1 > �2] =
R
�(D�2)
1 � jW� �

1
j�(D�2)

R
�(D�2)
1 �R

�(D�2)
2

1fjW��
1
j>R1g:
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Therefore, by a �rst order Taylor expansion,

b � cEx [jX1
� �
1
�R1j]

� c
q
Ex [jX1

� �
1
�R1j2]

= cEx [
p
� �1];

by the Jensen inequality, since (X1
t )

2� t is a martingale. Here c can be chosen (up to errors of
higher order in �) as

c =
(D � 2)R�(D�1)

1

R
�(D�2)
1 �R

�(D�2)
2

:

Now � �1 � ~� �1, where ~� �1 = infft > 0j
qPD

j=2(X
j
t )2 = kg. Remember that x = (R1; 0; ::; 0) By

scaling

E
x[~� �1] = k2Ex [� ];

where � = infft > 0j
qPD

j=2(X
j
t )

2 = 1g.

For D = 2 we have to use log jWtj instead of jWtj�(D�2).

P
W��

1 [�1 > �2] =
log jW� �

1
j � logR1

log(R2=R1)
1fjW��

1
j>R1g

� R�1
1

��jW� �
1
j �R1

��
log(R2=R1)

1fjW��
1
j>R1g

� R�1
1

���jX1
� �
1
j �R1

���
log(R2=R1)

1fjW��
1
j>R1g +O(�2):

Now,
PD

j=2(X
j
t )

2 � (D � 1)t is a martingale, thus

E
x [� ] =

1

D � 1
E
x [

DX
j=2

(Xj
� )

2] =
1

D � 1
;

and we get

C1 =
D � 2p
D � 1

R
�(D�1)
1

R
�(D�2)
1 �R

�(D�2)
2

1 +R2=R1

2
;

for D � 3, and

C1 =
R�1
1

log(R2=R1)

1 +R2=R1

2
;

for D = 2.

3. Proof of the main theorem

Here we will prove the following, more precise, version of the main theorem. Let us �rst �x
the relative magnitude of the various parameters: Since � � �, N � ��(D�1) and we can express
everything in terms of �.

Theorem 3.1. 9�0 > 0 8� < �0 9� > 0 such that u2;�(x) � 0 8x with jxj = R1 � �.
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Remark 3.2. The following argument shows that Theorem 3.1 implies Theorem 1.1:
Let R�

0 < R1 be chosen such that

�1(B(R
�
0)) = �2;�:

Then R�
0 & R0, where �1(B(R0)) = �2;0: Suppose now that u2;�(x) � 0 8jxj � R1 � �. For �

and � small enough this implies that u2;�(x) is positive on an open set containing B(R0) and
therefore, by Courant's Nodal Domains Theorem, that �2;� > �2;0. This is a contradiction, thus
u2;� takes negative values inside the sphere of radius R1� � and the nodal surface gets trapped.

The strategy of the proof is the following:
We look at

(���)
�(n+1)u2;0(x);

where jxj = R1 � �. On one hand, we can express this, using the spectral theorem, as a sum of
terms of the form

1

�n+1j;�

huj;�; u2;0iuj;�(x);

where we expect the term with j = 2 to be the most important one. If u2;�(x) � 0 we get

(���)
�(n+1)u2;0(x) �

�����
X
j 6=2

1

�n+1j;�

huj;�; u2;0iuj;�(x)
����� ;

Which will be small in a suitable sense, i.e. O(�D).
On the other hand, we can estimate

(���)
�(n+1)u2;0(x);

from below, rather explicitely, using Brownian motion techniques. This gives a lower bound,
which is also of order �D. By keeping track of how the constants in both bounds depend on
�, we get a contradiction, for small �, if u2;�(x) � 0. Notice, that it is essential for the lower
bound that u2;0 is a positive function.
Now we will give the details:

Lemma 3.3. Let y 2 S� � fx 2 
�

��jxj = R1g, and let d = dist(y; @
�) > 0. Then 9c; C > 0
independent of �; � such that

1

�n+12;�

hu2;�; u2;0iu2;�(y) � cd� C�2 � C�D+1��1:

Here c can be chosen as c = 1
�n+12;0

1
8
@ru2;0jr=R1

Proof. Let F be a box around y with sidelength d with two sides at right angles to the vector
from y to the origin. Let F1 be the side of F with the largest distance to the origin. We de�ne
the stopping time �F as the exit time from F i.e.

�F (!) = infft � 0
��Wt(!) =2 Fg:

Let also

�0(!) = infft � 0
��Wt(!) =2 
0g

��(!) = infft � 0
��Wt(!) =2 
�g:

Notice that �F � �0 � ��. We look at the iterated resolvent (���)�(n+1) for a su�ciently big n:

�
(���)

�(n+1)u2;0
�
(y) =

1X
j=1

1

�n+1j;�

hu2;0; uj;�iuj;�(y)
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From Section 2 we get: �����
X
j 6=2

1

�n+1j;�

huj;�; u2;0iuj;�(y)
����� � C�D+1N:

We apply the following elementary formula to the resolvent:Z 1

0

tne�t�dt =
1

cn

1

�1+n
;

where cn is a normalisation. Below, we will repeatedly use the fact that u2;0 � 0. We will write
� instead of ��.�

(���)
�(n+1)u2;0

�
(y) = cn

Z 1

0

tn(et��u2;0)(y)dt

= cnE
y [

Z 1

0

tnu2;0(Wt^�)dt]

� cnE
y [

Z 1

�F

tnu2;0(Wt^�)dt]

= cnE
y [

Z 1

0

(t+ �F )
nu2;0(W(t+�F )^�)dt]

� cn

Z 1

0

tnEy [u2;0(W(t+�F )^�)]dt

= cn

Z 1

0

tnEy [Ey [u2;0(W(t+�F )^�)jF�F ]]dt

= cn

Z 1

0

tnEy [EW�F [u2;0(Wt^�)]]dt

� cnE
y [EW�F [

Z �0

0

tnu2;0(Wt^�)dt]]

= E
y [(��0)

�(n+1)u2;0(W�F )]

=
1

�n+12;0

E
y [u2;0(W�F )]

� 1

�n+12;0

1

4
minfu2;0(z)jz 2 F1g

� 1

�n+12;0

1

4

d

2
@ru2;0jr=R1

+O(�2):

Remark 3.4. Let us look at one of the holes

H = fjyj = R1g \B(xk; �):
Let d(y) = dist(y; @
�), and let d� be normalised surface measure on fjyj = R1g, thenZ

H

d(y) d�(y) �
Z
fy2Hjd(y)��=2g

�=2 d�(y)

= �=2(�=2)D�1
�D�1

RD�1
1 ~�D

+O(�D+1)

= 2�D�D
�D�1

RD�1
1 ~�D

+O(�D+1);
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where �m = volRm(B(1)) and ~�D is the surface measure of fjyj = 1g in RD

Lemma 3.5. Let x 2 
�, jxj = R1 � �. Then there exists a positive constant c1 such that�
(���)

�(n+1)u2;0
�
(x) � c1�

D��(D�1) +O(�D+1):

Here c1 can be chosen as

c1 = 2�(2D+3)
�D�1
~�D

R�1
1 (2R1 � �)

1

�n+12;0

(@ru2;0jr=R1
):

Proof. The same calculus as above, again using the strong Markov property of Brownian motion,
proves that �

(���)
�(n+1)u2;0

�
(x) � cn

Z 1

0

tnEx
�
E
W�B [u2;0(Wt^�)]

�
dt;

where

�B(!) = infft � 0
��jWt(!)j � R1g;

is the exit time from the ball of radius R1. Using the integral formula and the spectral theorem,
the right hand side is equal to

E
x

"
1X
j=1

1

�n+1j;�

hu2;0; uj;�iuj;�(W�B)

#
:

Now, the exit distribution of the ball for Brownian motion started at x is explicitly known
( [Bas95][p.92]) so we get

�
(���)

�(n+1)u2;0
�
(x) �

1X
j=1

1

�n+1j;�

hu2;0; uj;�i
Z
S�

K(x; y)uj;�(y)d�(y)

=
1

�n+12;�

hu2;0; u2;�i
Z
S�

K(x; y)u2;�(y)d�(y) +O(�D+1):

where d� is normalised surface measure on S� and

K(x; y) = RD�2
1

R2
1 � jxj2
jy � xjD :

If we just include the hole nearest to x in the integral, we get:Z
S�

K(x; y)
1

�n+12;�

hu2;0; u2;�iu2;�(y)d�(y)

�
�
RD�2
1

2R1 � �

(� + �)D
�

��
2�D�D

�D�1

RD�1
1 ~�D

� 
1

�n+12;0

1

8
@ru2;0jr=R1

!
+O(�D+1):

Thus c1 can be chosen as

c1 = 2�(2D+3)
�D�1
~�D

R�1
1 (2R1 � �)

1

�n+12;0

(@ru2;0jr=R1
):

Now, we can prove Theorem 3.1:

Proof. If jxj = R1 � � and � � �, then

juj;�(x)j � kuj;�k1e�j;�Ex [��]
= kuj;�k1e�j;�o�(1);
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where o�(1) tends to zero as � gets small1. Therefore�����
X
j 6=2

1

�n+1j;�

huj;�; u2;0iuj;�(x)
����� � �D��(D�1)o�(1):

On the other hand, �
(���)

�(n+1)u2;0
�
(x) � c1�

D��(D�1) +O(�D+1):

Choosing now �; � su�ciently small, we get a contradiction if u2;� � 0.

4. An explicit estimate on the number of holes for D = 2

Let us redo the proof of Theorem 3.1 a little more carefully in the case where D = 2 and the
holes are evenly placed i.e. 2�R1 = N� = 2N�
First we estimate �����

X
j 6=2

1

�n+1j;�

huj;�; u2;0iuj;�(x)
����� :

For jxj = R1 � �, where � � �, we get

juj;�(x)j � kuj;�(x)k1e�j;�Ex [��]
= kuj;�(x)k1e�j;�(Ex [�0] +O(�)):

Now

jxj2 = E
x [W�0 � 2�0]

= R2
1 � 2Ex [�0];

so

E
x [�0] =

R2
1 � jxj2
2

;

and therefore

juj;�(x)j � kuj;�(x)k1e�j;� 2R1 � �

2
�

� e1+
1

8�
2R1 � �

2
�
3=2
j;� �;

by Lemma 2.5. Therefore�����
X
j 6=2

1

�n+1j;�

huj;�; u2;0iuj;�(x)
����� � e1+

1

8�
2R1 � �

2
C
X
j 6=2

1

�n+1j;�

�
3=2
j;�

j�j;� � �2;0j�
3=2
j;� N��2

= e1+
1

8�
2R1 � �

2
C
X
j 6=2

�2�nj;�

j�j;� � �2;0j�R1�
2;

1In fact,

E
x [��] = E

x [�0] +O(�)

=
R2

1
� jxj2

D
+O(�)

=
2R1 � �

D
� +O(�):

This is proved in section 4.
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where C is the constant from Lemma 2.1. Let us estimate 1
j�j;���2;0 j

by

maxf 1

j�1;� � �2;0j ;
1

j�3;� � �2;0jg = maxf 1

j�1;0 � �2;0j ;
1

j�3;0 � �2;0jg+ o(1);

as �& 0.
Let us �x R2=R1 in such a way that

�2;0 = �1(B(R2) nB(R1)) =
�1;0 + �3;0

2
=
�1(B(R1)) + �2(B(R1))

2
:

Furthermore, we have to estimate X
j 6=2

�2�nj;� :

We may take n = 4, and get X
j 6=2

��2j;� �
X

�j(B(R2))
�2

�
X
j

�
4�

1

2

j

�R2
2

��2
;

by an inequality proved in [LY83][Cor. 1]. ThusX
j 6=2

��2j;� �
R4
2

4

X
j

j�2 =
�2R4

2

24
;

and we �nally obtain �����
X
j 6=2

1

�5j;�
huj;�; u2;0iuj;�(x)

�����
� e1+

1

8�
�3

48
(2R1 � �)CR1R

4
2

2

�3;0 � �1;0
�2 + o(�2)

On the other hand we get from Lemma 3.5 that�
(���)

�5u2;0
�
(x) � 1

128

2R1 � �

�R1

1

�52;0
(@ru2;0jr=R1

)�2��1 +O(�3):

Thus we get a contradiction when

� <
3

8
��4(e1+

1

8� )�2��52;0(�2;0 � �1;0)
R�1
1 R�4

2 log(R2=R1)

(R2
2 �R2

1)(1 +R2=R1)
:

This is equivalent to:

N > (e1+
1

8� )2
8�5

3

1 + R2=R1

log(R2=R1)
R2
1R

4
2(R

2
2 �R2

1)
�52;0

�3;0 � �1;0
:

If we take R1 = 1 then we get from a table of Bessel functions:

�1;0 = 5:7831 = (2:4048)2

�3;0 = 14:6819 = (3:8317)2

Thus, we get �2;0 = 10:2325. The Maple computation in the appendix shows that R2 = 1:9762,
and we get

N > 15:843 � 109:
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Appendix A. A numerical calculation

In this appendix we have a short Maple code which gives us a graph where R2 can be read
o�.

> with(plots):

> e1:=diff(u(x),x$2)+diff(u(x),x)/x+10.2325*u(x ) = 0;

e1 := (
@2

@x2
u(x)) +

@
@x
u(x)

x
+ 10:2325 u(x) = 0

> p:=dsolve(fe1,u(1)=0,D(u)(1)=1g,u(x),type=n umeric);

p := proc(rkf45 x ) : : : end

> odeplot(p,[x,u(x)],1..2);

0

0.05

0.1

0.15

0.2

0.25

1 1.2 1.4 1.6 1.8 2

> odeplot(p,[x,u(x)],1.97..1.98);
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-0.001

0

0.001

0.002

0.003
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