
D E P A R T M E N T  O F  M A T H E M A T I C S

U N I V E R S I T Y  O F  A A R H U S

Preprint Series No.: 14 July 1999

Ny Munkegade, Bldg. 530 http://www.imf.au.dk
8000 Aarhus C, Denmark institut@imf.au.dk

ISSN: 1397-4076

THE STABLE MAPPING CLASS
GROUP AND Q( )CP∞

By Ib Madsen and Ulrike Tillmann





The stable mapping class group and Q(C P∞+ )

Ib Madsen and Ulrike Tillmann*

July 1999

Abstract. In [T1] it was shown that the classifying space of the stable mapping
class groups after plus construction BΓ+

∞ has an infinite loop space structure. This
result and the tools developed in [BM] to analyse transfer maps, are used here to
show the following splitting theorem.

Let Σ∞(CP∞)∧p ' E0 ∨ · · · ∨Ep−2 be the “Adams-splitting” of the p-completed
suspension spectrum of C P∞ . Then for some infinite loop space Wp

(BΓ+
∞)∧p ' Ω∞(E0)× · · · × Ω∞(Ep−3)×Wp

where Ω∞Ei denotes the infinite loop space associated to the spectrum Ei. The
homology of Ω∞Ei is known, and as a corollary one obtains large families of torsion
classes in the homology of the stable mapping class group. This splitting also detects
all the Miller-Morita-Mumford classes. Indeed, after p-completion for p odd, there
is a split surjective map

BΓ+
∞ −→ BU.

The Mumford conjecture asserts that this map is a rational homotopy equivalence.

§1. Introduction and statement of theorems.

For an oriented surface F , we let Diff(F ) denote the topological group of orien-
tation preserving diffeomorphisms that keep the boundary ∂F pointwise fixed when
∂F 6= ∅. The components of Diff(F ) are contractible when the genus of F is greater
than one [EE], [ES], so BDiff(F ) ' BΓ(F ) where Γ(F ) = π0Diff(F ) is the mapping
class group of F .

Let Fg,1 denote a genus g surface with one boundary component. One may add
a torus with two boundary circles to Fg,1 to get an inclusion into Fg+1,1, and hence
a map

BDiff(Fg,1) −→ BDiff(Fg+1,1).

*The second author is supported by an Advanced Fellowship of the EPSRC.
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The mapping class group Γg,1 = Γ(Fg,1) is perfect for g ≥ 3 [P], so one may apply
Quillen’s plus construction. The maps

(1.1) BDiff(Fg,1)+ −→ BDiff(Fg+1,1)+, BDiff(Fg,1)+ −→ BDiff(Fg)+

are [g/2]-connected, respectively [(g − 2)/2]-connected by [H], [I]. The homotopy
direct limit of the maps in (1.1) as g → ∞ is denoted BΓ+

∞. Its homology is the
stable homology of the mapping class group. By the main result of [T1], Z×BΓ+

∞
(and BΓ+

∞) are infinite loop spaces, i.e. the 0-th space in a connective Ω-spectrum.

1.1. The map to Q(C P∞+ ).

This paper compares Z×BΓ+
∞ to the infinite loop space Q(BS1

+) where Q(−) =
Ω∞Σ∞(−) and where we prefer to write BS1 instead of C P∞ for the infinite com-
plex projective space. Here and elsewhere the subscript + indicates the addition
of a disjoint base point. The construction of the infinite loop space structure on
Z× BΓ+

∞ is described in Section 2 below, where we also produce an infinite loop
map

α : Z×BΓ+
∞ −→ A(BS1)

into Waldhausen’s A-functor applied to BS1. The topological Dennis trace is an
infinite loop map

tr : A(X)→ Q(ΛX+)

into the stable homotopy of the free loop space, and we can compose it with the
map from ΛX to X that evaluates a free loop at 1 to get an infinite loop map σ
from A(X) to Q(X+), cf. [BHM], [W1]. There results an infinite loop map

(1.2) σ ◦ α : Z×BΓ+
∞ −→ Q(BS1

+).

The definition of α is very abstract and not so well suited for calculational purposes.
But there is another interpretation of the composition σ ◦ α that we now describe.
We also indicate the relation of (1.2) to the Miller-Morita-Mumford classes κi ∈
H2i(BΓ∞), cf. [Mi], [Mo], [Mu].

Let F → E → B be a smooth oriented surface bundle, and T vE the tangent
bundle along the fibres. This is an oriented 2-plane bundle over E, i.e. a complex
line bundle. Let

IF : H2i+2(E)→ H2i(B)

be the “integration along the fibres” map. One gets characteristic classes

κi = IF (c1(T vE)i+1)

In the universal situation:

(1.3) F −→ E(F ) πF−→ BDiff(F ), E(F ) = EDiff(F )×Diff(F ) F,
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where F is some compact surface, one has

T vE(F ) = EDiff(F )×Diff(F ) TF,

and gets classes κi(F ) ∈ H2i(BDiff(F )). By (1.1) one obtains stable classes

κi ∈ H2i(BΓ+
∞), i = 1, 2, . . .

They are known to generate a polynomial subalgebra

(1.4) Q [κ1 , κ2, . . . ] ⊂ H∗(BΓ+
∞;Q),

cf. [Mi], [Mo] and it is expected that one has equality in (1.4); this is the Mumford
conjecture.

Let us return to the smooth fibre bundle F → E → B and suppose for simplicity
that F is a closed surface. Choose a smooth embedding of E in some Euclidean
space Rk . The normal bundle Nv(E) of the resulting embedding E ⊂ B × Rk is
the “normal bundle along the fibres”,

T v(E)⊕Nv(E) ' E × Rk .

Collapsing a tube around E in B × Rk induces a map

(1.5) B+ ∧ Sk −→ Th(NvE)

into the Thom space. The induced map in cohomology composed with the Thom
isomorphism is the integration homomorphism IF . The maps in (1.5) for varying
k define a map

Σ∞(B+) −→ Th(−T vE)

from the suspension spectrum of B+ into the (−3)-connected Thom spectrum
Th(−T vE). Let

θE : E −→ BS1

classify the complex line bundle T vE. There is an induced map of spectra

Th(−T vE) −→ Th(−L)

where L is the universal line bundle. The range is the spectrum usually denoted
C P∞−1 amongst topologists, cf. [R].

Notation 1.1. For a connective spectrum E it is common to denote by Ω∞E the
bottom space in the associated Ω-spectrum

Ω∞E = hocolim ΩkEk.

If E is not connective, i.e. has non-zero homotopy in negative degrees, Ω∞E is
defined to be the bottom space in the connective cover E[0,∞) where one has



4 IB MADSEN AND ULRIKE TILLMANN

killed the homotopy groups of E in negative degrees. We write Q(Sn ∧ X) =
Ω∞(Σ∞(Sn ∧X)), n ∈ Z.

One can approximate BDiff(F ) by manifolds and obtain from the above a map

τ̂F : BDiff(F ) −→ Ω∞C P∞−1

and in turn

(1.6) τ̂∞ : BΓ+
∞ −→ Ω∞C P∞−1 .

If we compose (1.5) with the map on Thom spaces induced by the inclusion

w : Nv(E) −→ Nv(E)⊕ T v(E),

via the zero section of T v(E), we get a map from B+ ∧ Sk into E+ ∧ Sk. This is
the Becker-Gottlieb transfer map [BG] of the fibre bundle E → B with fibre F . In
the universal situation (1.3), on composition with θE(F ) : E(F ) → BS1, we get a
map

(1.7) τF : BDiff(F ) −→ Q(E(F )+)
Q(θE(F)+ )
−→ Q(BS1

+),

This leads to a map

(1.8) τ∞ : BΓ+
∞ −→ Q(BS1

+)

such that the diagram

(1.9)

BΓ+
∞ BΓ+

∞

τ̂∞

y τ∞

y
Ω∞C P∞−1

ω∞−−−−→ Q(BS1
+).

is homotopy commutative. (We do not know if there are phantom maps from BΓ+
∞

into Ω∞(CP∞−1) or into Q(CP∞+ ), i.e. non-trivial maps that are null homotopic on
all finite skeletons. Thus (1.9) is in the weak sense of homotopy commutative on
all finite skeletons.)

In Section 2.5, we prove, based on results from [DWW] that the diagram

(1.10)

BDiff(Fg,1)+ γg−−−−→ Z×BΓ+
∞

τg,1

y σ◦α
y

Q(BS1
+)

+[1]←−−−− Q(BS1
+)

is homotopy commutative; here τg,1 = τFg,1 maps into the (1− 2g)-th component,
while γg maps into the g-th component, σ ◦ α as defined in (1.2) multiplies by −2
on components, and the arrow labeled +[1] denotes loop sum with the base point
in the 1-st component. Since γg (when translated to a fixed component) becomes
highly connected for g →∞, the weak homotopy type of (+[1])◦σ◦α is determined
by the τg,1, and τ∞ is weakly homotopy equivalent to (+[1]) ◦ σ ◦ α.
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1.2. A partial splitting for τ∞.

The spaces in (1.10) are of finite type (have finitely generated homotopy groups in
each degree), so little is lost by replacing them with their profinite or p-completions,
cf. [BK, chap. VI]. The universal (p-local) Bockstein operator

β(p) : B(Q/Z(p)) −→ BS1
(p)

(with homotopy fibre BQ) induces an isomorphism on ordinary homology with Z/p
coefficients. Thus for any p-complete spectrum E∧p , the induced map

β∗(p) : [BS1, E∧p ]
∼=−→ [B(Q/Z(p)), E∧p ]

is an isomorphism, [BK, chap. VI, prop. 5.4]. But

[B(Q/Z(p)), E∧p ] ∼= lim←−[BCpn , E∧p ]

since hocolimBCpn ' B(Q/Z(p)) so we have

(1.11) lim←−[BCpn , E∧p ] ∼= [BS1, E∧p ].

One can produce maps

(1.12) ρF : BCpn −→ BDiff(F )

by exhibiting a suitable surface F equipped with an action of Cpn , and one can
then study τF ◦ ρF . This amounts to a study of the transfer for bundles

πn : ECpn ×Cpn F −→ BCpn ,

where we can use results from [BM]: If F admits a non-degenerate vector field X
and S(X) denotes its singular set, then πn contains the covering space

ECpn ×Cpn S(X) −→ BCpn

and the transfer trf(πn) is expressible in terms of the covering space transfer, which
is easy to calculate.

The maps ρF of (1.12), for suitable surfaces F , can be assembled to a map from
hocolimBCpn into (BΓ+

∞)∧p , and so by (1.11) to a map from BS1 into (BΓ+
∞)∧p .

Since the latter is an infinite loop space there is a unique extension to an infinite
loop map

(1.13) µp : Q(BS1) −→ (BΓ+
∞)∧p .

This is done in Section 3.

Q(−) takes wedge sums to products. Thus

Q(BS1
+) ' Q(BS1)×Q(S0).
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Let S0 ⊂ Z×BΓ+
∞ be the embedding that sends the non-base point into (1, ∗). It

is proved in [T2] that the composition

(1.14) QS0 −→ Z×BΓ+
∞

σ◦α−→ Q(BS1
+)

proj2−→ QS0

is multiplication with 2. In this paper we are interested in the other factor

BΓ+
∞

σ◦α−→ Q(BS1
+)

proj1−→ Q(BS1).

Consider the map
ψk : BS1 −→ (BS1)∧p

that represents k · c1(L) in H2(BS1;Zp). It extends uniquely (up to homotopy) to
a self map of Q(BS1)∧p which we again denote by ψk. Our main result, proved in
Section 3, is

Theorem 1.2. The composition

proj1 ◦ (τ∞)∧p ◦ µp : Q(BS1)∧p −→ Q(BS1)∧p

is homotopic to 1− gψg, where g ∈ Z×p is a topological generator (g = 3 if p = 2).

The p-complete infinite loop space Q(BS1)∧p decomposes into a product of (p−1)
infinite loop spaces,

(1.15) Q(BS1)∧p ' Ω∞E0 × . . .× Ω∞Ep−2.

There is a corresponding decomposition of BU∧p , considered an infinite loop space
via Bott periodicity,

BU∧p ' B0 × . . .×Bp−2.

In fact even the localized space BU(p) decomposes into p − 1 pieces, cf. [A]. The
two decompositions correspond under the infinite loop map

Q(BS1) −→ BU

which on BS1 ⊂ Q(BS1) is the reduced canonical line bundle.
In Section 4 we evaluate 1− gψg in H∗(Ei) to see that

1− gψg : Ω∞Ei −→ Ω∞Ei

is a homotopy equivalence when i 6= p− 2. This produces the decomposition given
in the abstract,

(1.16) (BΓ+
∞)∧p ' Ω∞E0 × · · · × Ω∞Ep−3 ×Wp

where by (1.14) Q0S
0, the component of degree zero maps, splits off Wp for p odd.

We have thus exhibited large families of torsion classes in the homology of the stable
mapping class group, cf. Corollary 4.3 and 4.4.
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1.3. The split surjection BΓ+
∞ → BU on p-completions.

The map ω∞ in (1.9) is not a homotopy equivalence. In fact its homotopy fibre
is Q(S−2), so there is a homotopy fibration

(1.17) Q(S−2) −→ Ω∞(C P∞−1) ω∞−→ Q(BS1
+) ' Q(BS1)×Q(S0).

The 0-th skeleton of C P∞−1 is Σ∞(S−2 ∪η D0) where η is the desuspension of the
Hopf map from S3 to S2. Since η has order two, when p is odd,

(C P∞−1)(p) ' Σ∞(S0 ∨ C P∞−1/S
0)(p)

and
Ω∞(CP∞−1)(p) ' Q(C P∞−1/S

0)(p) ×Q(S0)(p).

For p odd, ω∞ in (1.17) is the identity on the Q(S0) factor.

Let imJp denote the homotopy fibre of

1− ψg : BSU(p) −→ BSU(p)

with g as above. By Bott periodicity

Ω2BSU ' BU, Ω2(ψg) ' gψg,
so there is a fibration sequence

Ω2imJp −→ BU(p)
1−gψg−→ BU(p).

This was compared to (1.17) in [MS]; there is a homotopy commutative diagram

(1.18)

Q(S−2) −−−−→ Ω∞C P∞−1
ω∞−−−−→ Q(BS1

+)y l−1

y l0

y
Ω2(imJp) −−−−→ BU(p)

1−gψg−−−−→ BU(p).

For odd p the vertical maps are split surjective. The splitting maps are not infinite
loop maps, but they are single loop maps by [MS]. In Section 4.2 we prove

Theorem 1.3. For odd primes p, the composition

l−1 ◦ τ̂∞ : (BΓ+
∞)∧p −→ BU∧p

is split surjective.

The named arrows in (1.18) are all rational homotopy equivalences, but are far
from being p-local homotopy equivalences. The Mumford conjecture asserts that
l−1 ◦ τ̂∞, or equivalently τ∞, is a rational equivalence. One may wonder about a
p-integral version (p odd). There are two natural candidates. Either

(A) µp : Q(BS1
+)∧p −→ (Z×BΓ+

∞)∧p
or

(B) τ̂∞ : (Z×BΓ+
∞)(p) −→ Ω∞(C P∞−1)(p)

could be a homotopy equivalence (p odd).
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§2. Construction of the infinite loop map.

The main task of this section is to construct a map of infinite loop spaces

α : Z×BΓ+
∞ −→ A(BS1)

from Z × BΓ+
∞ to the Waldhausen K-theory of BS1, and hence a map (1.2) of

infinite loop spaces to Q(BS1
+) on compostion with Waldhausen’s trace map [W1]

σ : A(BS1) −→ Q(BS1
+).

The construction of α is technically somewhat complicated though the underlying
principle is straight forward and can be outlined as follows.

Dwyer, Weiss and Williams [DWW] construct for a fibration E → B, with fibres
Fb homotopy equivalent to a compact CW-complex, an A-theory transfer map

χ : B −→ AB(E).

Here AB(E) is a fibration over B with fibres A(Fb). The inclusions Fb ↪→ E induce a
natural map AB(E)→ A(E). In the case of interest to us, E is the universal smooth
bundle E(F ) of a surface F (1.3). Then the classifying map θE(F ) : E(F ) → BS1

for the vertical tangent bundle induces a map in A-theory, and on composition a
map

Θ : AB(E(F )) −→ A(E(F ))
A(θE(F))−→ A(BS1).

The maps αF := Θ ◦ χ are compatible with gluing and disjoint union of surfaces,
the two operations in the symmetric monoidal category S. that gives rise to the
infinite loop space structure of Z×BΓ+

∞, cf. [T1] or Section 2.3 below. Hence, the
induced map α is a map of infinite loop spaces.

In Section 2.5 we will relate σ ◦ α to the transfer map τg,1 = τFg,1 of (1.7) using
results from [DWW].

2.1. Homotopy colimit constructions.

The definition of the A-theory transfer map uses the notion of homotopy colimit.
Let I be a small category and D : I → TOP be a functor from I to the category
of topological spaces. The homotopy colimit1 of D is the simplicial space EI ×I D

1When the indexing category I is the translation category of the natural numbers, we also use
in other sections the familiar notation hocolimI(n).
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with q-simplices (f1, . . . , fq; x) where fi : ai → ai−1 is a map in I and x ∈ D(aq).
The face maps are given by

(f1, . . . , fq; x) ∂i−→


(f2, . . . , fq; x), for i = 0
(f1, . . . , fifi+1, . . . fq; x), for 0 < i < q

(f1, . . . , fq−1;D(fq)(x)), for i = q.

A natural transformation τ of two functors D,D′ : I → TOP induces a map on
homotopy colimits

τ : EI ×I D −→ EI ×I D′

mapping (f1, . . . , fq; x) 7→ (f1, . . . , fq; τaq(x)). In these terms, the natural forgetful
map EI ×I D → N.I to the nerve of I is induced by the canonical natural trans-
formation from D to the trivial functor that assigns to each object in I the one
point space ∗.

We need below a slight generalization, namely where I is replaced by a simplicial
index category. Note first the following functoriality in I. Given a functor of index
categories F : I → I′ the assignment (f1, . . . , fq; x) 7→ (F (f1), . . . , F (fq); x) defines
a map of homotopy colimits

EI ×I (D′ ◦ F ) F−→ EI′ ×I′ D′.

Definition 2.1. A simplicial functor D. : I. → TOP is a collection of functors
Dk : Ik → TOP with a collection of natural transformations

δi : Dk → Dk−1 ◦ ∂i, σi : Dk−1 → Dk ◦ si

that satisfies the standard simplicial identities.
A simplicial natural transformation τ. between two simplicial functors D.,D.′ :

I.→ TOP is a collection of natural transformation τk : Dk → D′k which commute
with the face and degeneracy maps.

The simplicial homotopy colimit in this situation is the bisimplical space

EI.×I. D. = {EIk ×Ik Dk}k.

The i-th face map in the k-direction sends (f1, . . . , fk, x) ∈ EIk ×Ik Dk to

(∂if1, . . . , ∂ifk, δix) ∈ EIk−1 ×Ik−1 Dk−1

and similarly for the degeneracy maps.
Natural transformations of simplicial functors induce maps of associated simpli-

cial homotopy colimits.
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2.2. The A-theory transfer map.

¿From a pointed category P with cofibrations and weak equivalence wP, Wald-
hausen in [W2] constructs a simplicial category wS.P. The objects of wSkP are
k-flags A, that is sequences of cofibrations

(2.1) ∗ → A01 → · · · → A0k

with a choice of subquotients Aij ' A0j/A0i for i < j. A morphism between two
flags A and A′ is given by a set of compatible weak equivalences Aij → A′ij .

Let P(Y ) denote the Waldhausen category of homotopy finitely dominated spaces
over a space Y . Its objects are homotopy finitely domintated retractive spaces X
over Y

X
r
�
s
Y

with rs = 1Y and s a closed embedding with the homotopy extension property.2

A map X → X ′ over Y is a cofibration if the underlying map of spaces is a closed
embedding having the homotopy extension property. It is a weak equivalence if the
underlying map is. For any (simplicial) category C we write |C| for the realization
of the (bi)simplicial set N.C. Waldhausen defines

A(Y ) := Ω|wS.P(Y )|.

A map Y t Y ′ → Z defines a functor

wP(Y )×wP(Y ′) '−→ wP(Y t Y ′) −→ wP(Z)

where the first functor is the isomorphism (X,X ′) 7→ X t X ′. In particular the
map 1t1 : Y tY → Y defines a sum operation on wP(Y ) and wS.P(Y ), and hence
gives rise to a Γ-space (in the sense of Segal [S1]). Since S1P = P and S0P = ∗ the
map induced by the natural inclusion [0, 1] × |wP(Y )| → |wS.P(Y )|, factors over
the reduced suspension and its adjoint is the A-theory group completion map

(2.2) |wP(Y )| −→ A(Y ).

Now let B = |C| for a small category C and Π : C → TOPhf a functor to
the category of homotopy finite spaces such that all morphisms are mapped to
homotopy equivalences. Then the natural projection

E = |EC ×C Π| π−→ B

2X is homotopy finitely dominated over Y if it fits into a diagram X′ →W → X of retractive
spaces over Y with W homotopy finite over Y and the composite map a weak homotopy equiva-
lence. W is homotopy finite over Y if there is a weak homotopy equivalence Z → W where Z is
a space over Y which is a finite CW-complex relative to Y .
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is a quasi-fibration with fibres Π(a), cf. [S1]. Let D0, D1, D2 be three functors from
C to the category CAT of small categories,

(2.3)

D0 : a 7→ ∗, the trivial category,

D1 : a 7→ C/a, the category of objects over a in C,
D2 : a 7→ wP(Π(a)).

They define functors |Di| from C to TOP, and there are natural transformations
τ1 : |D1| → |D0|, τ2 : |D1| → |D2| induced from the trivial functor C/a → ∗, and
from the functor C/a→ wP(a) which to φ : a1 → a assigns the retractive space

Π(a1) tΠ(a)
Π(φ)t1

�
incl

Π(a).

The A-theory transfer is now defined (up to homotopy) as

(2.4) χ : B = EC ×C |D0| τ1←−
'

EC ×C |D1| τ2−→ EC ×C |D2|.

Here τ1 is a homotopy equivalence because C/a has a terminal object and hence
|C/a| ' ∗. We may think of χ as a section of the quasi-fibration |wP|B(E) → B
with fibres |wP(Π(a))|.

2.3. The infinite loop space structure of BΓ+
∞.

Next we recall the infinite loop space structure on BΓ+
∞ following [T2]. Let K be

the cobordism category with objects {0, 1, 2, . . .} representing the empty manifold,
a copy of the circle, two copies of the circle, . . . ; the morphisms K(n,m) are defined
as follows: Consider the following (generating) morphisms with separate labeling
of incoming and outgoing boundary circles:

(i) a fixed smooth disk, D ∈ K(0, 1);
(ii) a fixed smooth pair of pants, P ∈ K(2, 1);

(iii) a fixed smooth torus with two disks removed, T ∈ K(1, 1);
(iv) for each permutation σ on n letters, n ≥ 0, a morphism Cσ ∈ K(n, n)

(one may think of these as n zero length cylinders with incoming labels
i = 1, . . . , n and outgoing labels σ(i)).

D,P and T come equipped with a fixed smooth collar of their boundary circles.
Elements in K(n,m) will be those labelled cobordisms from n to m copies of a circle
obtained from these generating morphisms by a finite number of applications of the
following two operations:

(I) Gluing: for F1 ∈ K(n1, n2) and F2 ∈ K(n2, n3), let F2◦F1 ∈ K(n1, n3) be the
cobordism obtained by gluing the two sets of n2 boundary circles according
to their labeling, using the parametrization induced by the collars;

(II) Disjoint union: for Fi ∈ K(ni,mi), let F1tF2 ∈ K(n1 +n2,m1 +m2) be the
disjoint union where F1 retains its labels while the labels of the source and
target boundary components of F2 are shifted by n1 and m1 respectively.
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The cobordism category K is a symmetric monoidal category with composition (I)
and product (II).

We will now construct the simplicial category S.: The simplicial set ob S. of
objects of S. is the nerve of K, ob S. = N.K. Thus the objects of Sk are the
composable k-tuples of cobordisms

F̄ = (F1, F2, . . . , Fk), Fi ∈ K(ni, ni−1).

A morphism between F̄ and F̄ ′ in Sk is a k-tuple

φ̄ = (φ1, φ2, . . . , φk), φi ∈ Diff(Fi, Fi′)

of oriented diffeomorphisms from Fi to F ′i which fix the collars. (S0 is the category
with objects 0, 1, 2, . . . and identity morphisms). The face and degeneracy maps of
ob S. = N.K are extended to the morphisms in the obvious way. Disjoint union
defines a funtor S.×S.→ S. and gives rise to a Γ-space with underlying space |S.|
(in the sense of [S1]). More precisely, |S.| is the realization of the bisimplicial set
N.S.. Interchanging simplicial directions, N.S. can also be seen to be the nerve
of the simplicial category with constant object set {0, 1, 2, . . .} and morphism set
N.S1, cf. [T2]. Disjoint union defines a symmetric monoidal structure on this
simplicial category and hence one can construct a symmetric monoidal Γ-category
from it (see May [Ma; construction 10]).

Theorem 2.2 ([T1], [T2]). Z×BΓ+
∞ ' Ω|S.|.

We now construct the analogue of the group completion map for S.. As S0 has
many objects, some care has to be taken. Let F ∈ K(n,m) and S1(F ) be the full
subcategory of S1 with one object F . The inclusion S1(F ) ↪→ S1 induces, just as
in (2.2), a natural map

(2.5) γ̂F : |S1(F )| −→ Ωn,m|S.|

to the space of paths in |S.| from n to m. If we choose 1 to be the base point in
|S.|, a choice of cobordisms F ′ ∈ K(n, 1) and F ′′ ∈ K(m, 1) (and hence of paths
from n to 1 and m to 1 in |S.|) defines up to homotopy a map from |S1(F )| to
Ω1,1|S.| = Ω|S.|. The component of the image depends on F ′ and F ′′. Indeed, by
[T0], the component is given by

1
2

(χ(F ′)− χ(F )− χ(F ′′))

where χ denotes the Euler characteristic. Concretely, let F = Fg,1 ∈ K(0, 1) and
let F ′ ∈ K(0, 1) be the disk. Then this defines a group completion map into the
g-th component

(2.6) γg : |S1(Fg,1)| ' BDiff(Fg,1) −→ Ω|S.| ' Z×BΓ+
∞.
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Remark on topologies. The morphism sets Sk(F̄ , F̄ ′) have a natural topology, com-
ing from the compact-open topology on diffeomorphism spaces. Above |S.| means
the realization which takes this topology into account. In order to apply the A-
theory transfer map, however, Sk has to be replaced by a suitable discrete simplicial
category. This can be done as follows.

Let C be a topological category with a discrete set of objects. Define the cate-
gory sin .C to be the simplicial category whose objects in each degree is ob C. The
morphisms between c, d ∈ sin kC is the set of singular k-simplices Map(4k, C(c, d)).
We note that

sin .(C × D) = sin .C × sin .D, |sin .C| ' |C|.

Hence, sin . takes topological, symmetric categories to simplicial, symmetric cat-
egories without changing the (weak) homotopy type of the associated classifying
spaces. In the following section we shall assume that our topological categories have
been replaced by their simplicial version. But in order not to make the notation too
complicated we are not going to display this extra simplicial direction – we pretend
S. is discrete rather than working with the bisimplicial category sin .S..

2.4. Construction of α as a map of infinite loop spaces.

The definition of α is given in two steps: We first define the analogue of the
A-theory transfer χ, and then the map Θ induced by the classifying map of the
vertical tangent bundle.

Consider the functor Πk : Sk → TOPhf defined on objects by

Πk : (F1, . . . , Fk) 7→ F1 t · · · t Fk

for k > 0, and Π0(n) = ∗n, a different one-point space for each n ≥ 0. On a
connected component (Sk)[F̄ ] containing the object F̄ , Πk takes all morphisms to
homotopy equivalences. Apply now the A-theory transfer map (2.4) to the quasi-
fibration

|ESk ×Sk Πk|[F̄ ]
π−→ |Sk|[F̄ ].

This yields maps

(2.7) χk,[F̄ ] : |Sk|[F̄ ] −→ |ESk ×Sk |wP ◦Πk||[F̄ ].

Proposition 2.3. The maps in (2.7) define a map of Γ-spaces

χ : |S.| −→ |ES.×S. |wP ◦Π.||.

Proof. The functors D0, D1 and D2 = wP ◦ Πk used in the definition of χk,[F̄ ]

are compatible with gluing of surfaces and hence extend to simplicial functors
D.0, D.1, D.2 : S.→ CAT in the sense of Definition 2.1. This is trivially true for D.0
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and easily checked for D.1. For D.2 the natural transformations δi : D2
k → D2

k−1◦∂i
are induced by the natural functor

wP(F1)× wP(F2) ∼= wP(F1 t F2) −→ wP(F1 ◦ F2).

The simplicial identities are satisfied, so the maps χk,[F̄ ] fit together to define the
map χ.

Disjoint union not only defines a functor t : S. × S. → S. but also a natural
transformation between the functors wP ◦t◦ (Π.×Π.) and wP ◦Π.◦t from S.×S.
to CAT in the sense of Definition 2.1. Using this, one can construct a Γ-space
along the lines of [Ma; construction 10] with |ES. ×S. |D.2|| as underlying space.
The χk,[F̄ ]’s are also compatible with disjoint union so that χ extends to a map of
Γ-spaces. �

We next define the map Θ : |ES.×S. |wP ◦ Π.|| → |wS.P(BS1)| which extends
to a map of Γ-spaces. First note that

|ES1 ×S1 Π1|[F ] ' |ES1(F )×S1(F ) F | = E(F ),

the universal bundle from (1.3). Second, the bundle classifying map θ(F ) : E(F )→
BS1 has the following interpretation. Let

θ[F ] : |ES1 ×S1 Π1|[F ] −→ BGL1(C ) ' BS1

be the map defined on simplices by

(2.8) θ[F ](σ1, . . . , σq; x) = (dσ1|σ2...σq(x), . . . , dσq|x).

Here dσ|x denotes the derivative of the diffeomorphisms σ evaluated at the point
x, and we have identified the classifying space of the category of 2-dimensional
oriented vector spaces with BGL1(C ).

Now define Θ[F̄ ] as the composition:

(2.9)

|ESk ×Sk |wP ◦Πk||[F̄ ]y
|wP(|ESk ×Sk Πk|)|([F̄ ])y

|wSkP(BS1)|.

The individual maps are defined as follows. The inclusion of the fibres into the
total space always defines a map FB(E) → F (E) for any homotopy equivalence
preserving functor F from spaces to spaces and any quasi-fibration E = |EC ×C
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Π| → B = |C|. This explains the first map with F = |wP(−)|. Next note that
|ESk ×Sk Πk| = Y1 t · · · t Yk where

Yi = |ESk ×Sk Πi
k|[Fi]

is the space corresponding to the i-th component; here Πi
k(F̄ ′) := F ′i. The second

map is induced by the functor taking the k-tuple (X1, . . . , Xk) of retractive spaces

Xi

ri
�
si

Yi

to the flag A of the form (2.1) with subquotients

Aij := BS1 t(Yi+1t···tYj) (Xi+1 t · · · tXj).

In other words, Aij is the pushout for the maps θ̃[Fi+1]t· · ·t θ̃[Fj ] and si+1t· · ·tsj ,
where

θ̃[Fi] : Yi = |ESk ×Sk Πi
k|[Fi]

pri−→ |ES1 ×S1 Π1|[Fi]
θ[Fi]−→ BS1.

Weak equivalences of k-tuples of retractive spaces are clearly taken to maps of flags.

Proposition 2.4. The maps (2.9) define a map of Γ-spaces

Θ : |ES.×S. |wP ◦Π.|| −→ |wS.P(BS1)|.

Proof. Again, it is straight forward to check that the maps Θ[F̄ ] are compatible
with gluing and hence yield the map Θ.

Similarly, the maps Θ[F ] are compatible with disjoint union of surfaces. In the
target space this corresponds to the functor

wP(BS1)× wP(BS1) −→ wP(BS1)

induced by 1t1 : BS1tBS1 → BS1 which defines the sum operation in wS.P(BS1).
A functor that takes the product of a symmetric category to the sum operation of
another category induces a map of associated Γ-spaces. �

Remark. We are not claiming that the intermediate space in (2.9) gives rise to a
Γ-space.

Disjoint union allows us to define a functor G : Γ→ TOP where Γ is the category
of pointed sets, such that G(1) = |wP(|ES.×S. Π.|)| and G(k) ' |wP(|ES.k ×S.k
Π.k|)| (along the lines of construction 10 in [Ma]). However, G(k) is not homotopic
to G(1)k, and therefore G is not a Γ-space (in the sense of [S1]). But since we are
only interested in the composition in (2.9), this is of no consequence.

As |S.| and |wS.P (BS1)| are connected, the two propositions together prove that

Θ ◦ χ : |S.| −→ |wS.P(BS1)|
is a map of infinite loop spaces. Looping this once, we have proved the main goal
of this section.
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Theorem 2.5. The map α := Ω(Θ ◦ χ) : Z×BΓ+
∞ → A(BS1) is a map of infinite

loop spaces. �

2.5. Comparing σ ◦ α with τg,1.

Let F be a surface in S1. Consider the universal F -bundle (1.3)

E(F ) = EDiff(F )×Diff(F ) F
πF−→ B = BDiff(F ),

and let χF denote the composition

χF : B
χ−→ ABE(F ) −→ A(E(F )).

Here χ is defined just as in (2.4) with the functor |D2| = |wP ◦Π| replaced by the
functor A ◦Π = Ω|wS.P ◦Π|.

Lemma 2.6. The following diagram commutes up to homotopy.

BDiff(F )
χF−−−−→ A(E(F ))

A(θE(F ))−−−−−−→ A(BS1)∥∥∥ σ

y σ

y
BDiff(F )

trf(πF )−−−−→ Q(E(F )+)
Q(θE(F)+ )
−−−−−−−→ Q(BS1

+)

Proof. One of the main results in [DWW] asserts that for a smooth fibre bundle like
E(F ), χF factors as the Becker-Gottlieb transfer trf(πF ) : BDiff(F ) → Q(E(F )+)
composed with Waldhausen’s standard map i : Q(E(F )+)→ A(E(F )). Hence, the
first square commutes up to homotopy for σ is a homotopy left inverse of i, cf.
[W1]. The second square commutes by naturallity of the trace map σ. �

The bottom row in the above diagram is the definition of τF (1.7). We thus have

(2.10) τF ' σ ◦A(θE(F )) ◦ χF .

Now take F = Fg,1. By definition (2.5), γ̂Fg,1 is compatible with the A-theory
group completion map in the sense that the following diagram commutes up to
homotopy

BDiff(Fg,1)
γ̂Fg,1−−−−→ Ω0,1|S.|

χFg,1

y Ω0,1(Θ◦χ)

y
A(E(Fg,1))

A(θE(Fg,1))
−−−−−−−→ A(BS1).

Identifying the path space with the loop space as in the definition of γg (2.6), yields
the homotopy commutative diagram

Ω0,1|S.| '−−−−→ Ω|S.|

Ω0,1(Θ◦χ)

y Ω1,1(Θ◦χ)=α

y
A(BS1)

+[1]←−−−− A(BS1)
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where +[1] denotes loop sum with the base point in the component of 1. Hence,

A(θE(Fg,1)) ◦ χFg,1 ' (+[1]) ◦ α ◦ γg.

This together with (2.10) proves the commutativity of Diagram (1.10). That is

Theorem 2.7. τg,1 ' (+[1]) ◦ σ ◦ α ◦ γg : BDiff(Fg,1)→ Q(BS1
+). �

Remark 2.8. Commutativity of the left square in Lemma 2.6 is folklore and is
supposed to hold not just for smooth fibrations but also for any homotopy fibration
with homotopy finite fibre. Unfortunately, it seems that a proof would be rather
involved, and technical details have never been written down. The results of [DWW]
used here are much deeper and they do give a quick argument. They also imply
that α factors through Q(BS1

+).

§3. Transfers and diffeomorphisms of surfaces.

This section constructs surfaces equipped with an action of a cyclic group Cq
and exhibits Cq-invariant vector fields on them. We then apply the “parametrised
Poincaré-Hopf” theorem from [BM] to get information about the transfer of the
universal smooth bundle (1.3).

3.1. Branched covers.

Let Σ be a (fixed) connected surface. We consider divisors D = Σki=0nipi ∈
C0(Σ;Z/q) with

(3.1) (ni, q) = 1 and Σki=0ni ≡ 0 (mod q).

Given D, we construct an associated connected surface F with a smooth Cq-action,
and

FCq = {p0, ..., pk}, F/Cq = Σ.

Let C (n) denote the complex plane with Cq-action t ·z = e2πin/q ·z where t ∈ Cq
is a generator. The tangent representation at pi of the surface F will be

(3.2) TpiF = C (mi), mini ≡ 1 (mod q).

To construct F , consider the complement Σ∗ of a small open tube N{p0, ..., pk} of
the branch points. We have the Poincaré duality diagram

H1(Σ∗;Z/q) δ∗−−−−→ H2(Σ,Σ∗;Z/q)

'
y '

y
H1(Σ, {p0, ..., pk};Z/q)

∂∗−−−−→ H0({p0, ..., pk};Z/q),
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and note by excision that

H2(Σ,Σ∗;Z/q) '
k⊕
i=0

H2(D2
pi
, S1

pi
;Z/q).

The second condition in (3.1) implies a class κD ∈ H1(Σ∗;Z/q) with ∂∗(κD∩ [Σ]) =
D. We view κD as a map from Σ∗ to BCq and let F ∗ → Σ∗ be the induced principal
Cq-cover.

Let S1(m) (resp. D2(m)) be the unit Cq-sphere (resp. -disk) of C (m), and let
∆n : S1 → S1 be the n-th power map ∆n(z) = zn. The restriction of the Cq-cover
F ∗ → Σ∗ to the i-th boundary component S1

pi
is by construction the pull-back

∂iF
∗ −−−−→ S1(1)y ∆q

y
S1
pi

∆ni−−−−→ S1,

so ∂iF
∗ = {(w, z)|wni = zq}. This is a circle by associating to u ∈ S1 the pair

(uq, uni). Thus ∂iF ∗ = S1(mi) as a Cq-space, where mini ≡ 1 (mod q).

Definition 3.1. The Cq-branched cover of Σ associated with the divisor D is the
surface

F = F ∗ t∂ (D(m0) t . . . tD(mk)).

Lemma 3.2. There exists a non-degenerate Cq-invariant vector field X on F whose
singular set S(X) contains the branch points {p0, ..., pk} with local indices

indpi(X) = +1.

Proof. We choose a Morse function f : Σ → R such that {p0, ..., pk} are local
maxima or local minima. Let X̄ be its gradient vector field. Its singular set includes
the branch points, so it lifts to an equivariant vector field X on F .

The local index of X̄ at pi is +1, since the Morse index at pi is ±2, and thus
indpi(X) is also +1. (If the Morse index for f at pi had been ±1, then indpi(X̄) =
−1 and indpi(X) = 1 − 2q so X would have been degenerate at pi). For p ∈
S(X) \ {p0, ..., pk}, indp(X) = indπ(p)(X̄). This completes the proof. �

3.2. Transfers and vector fields.

Consider a smooth fibre bundle with closed oriented fibre,

(3.3) F −→ E
π−→ B
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with finite (or compact Lie) structure group. Then E = P ×G F where P → B is
the associated principal bundle. We assume G acts on F preserving the orientation.
Suppose given a non-degenerate vector field X on F that is G-invariant. Its singular
set S(X) is a finite G-set, so there is a finite covering space contained in (3.3):

(3.4)

P ×G S(X) incl−−−−→ P ×G F

πS

y π

y
B B.

Theorem 2.10 from [BM] asserts a relationship between the Becker-Gottlieb trans-
fers trf(πS) and trf(π):

Theorem 3.3 ([BM]). There is a homotopy commutative diagram

B
trf(π)−−−−→ Q(P ×G F+)

trf(πS)

y Q(incl+)

x
Q(P ×G S(X)+)

IND(X)−−−−−→ Q(P ×G S(X)+).

�

We recall the definition of IND(X). Choose a G-invariant metric on F , a G-
embedding of F into a representation space V , and a complement η to the vector
bundle P ×G V . This is possible since B is compact. For σ ∈ S(X), the differential
dXσ may be considered as an automorphism of the tangent space TσF , and gives
rise to a G-bundle automorphism dX of τF |S(X). We add the identity on νF |S(X)

and apply P ×G (−) to get a bundle automorphism

P ×G dX : P ×G (S(X)× V ) −→ P ×G (S(X)× V )

over P ×G S(X). Let η̇ denote the fibrewise one point compactification of η. Then

(P ×G S(X)× SV ) ∧P×GS(X) π
∗
S(η̇) ' (P ×G S(X)+) ∧ Sm

where on the left we take the fibrewise smash product. The fibrewise one point
compactification of P×GdX induces a homotopy automorphism of the above space.
Looping down m times and letting m→∞ we obtain the map

IND(X) : Q(P ×G S(X)+) −→ Q(P ×G S(X)+).

Our next lemma identifies IND(X) in more computable terms. First some prepa-
rations are necessary.

Let W be a representation space for G and f : SW → SW a G-homotopy
equivalence. Its G-homotopy class is determined by the set of degrees {deg fH |H ⊆
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G}. These degrees (all equal to ±1) define a unit d(f) of the Burnside ring A(G),
cf. [tDP]. Conversely, any d ∈ A(G)× is equal to d(f) for a suitable W .

Given a principal G-bundle E → B with compact base space there is a map

(3.5) A(G)× −→ [Q(B+), Q(B+)]Ω∞ ' [B+, Q(B+)]

into the homotopy invertible infinite loop maps. It maps d(f) into the element
determined by

E ×G f : E ×G SW −→ E ×G SW

upon taking fibrewise smash product with ξ̇ as above, where ξ is a complement to
E ×GW .

In the situation of Theorem 3.3, let σ ∈ S(X) have isotropy group Gσ. The one
point compactification of

dXσ : TσF −→ TσF

defines an element χ(X, σ) ∈ A(Gσ)×, i.e.

(3.6) χ(X, σ) = {det(dXH
σ )|H ⊆ Gσ} ∈ A(Gσ)×.

We decompose S(X) into its G-orbits,

P ×G S(X) =
∐

P ×Gσ {σ}; σ ∈ S(X)/G.

Since Q(−) converts wedge sums into products,

(3.7) Q(P ×G S(X)+) =
∏

Q(P/Gσ+); σ ∈ S(X)/G.

The image of χ(X, σ) in [Q(P/Gσ+), Q(P/Gσ+)] under the map (3.5) is again
denoted by χ(X, σ).

Lemma 3.4. Under the identification (3.7),

IND(X) '
∏

χ(X, σ); σ ∈ S(X)/G.

�

Remark. In [BM], Theorem 2.10, the map IND(X) was falsely asserted to be∏
indσ(X) rather than the more complicated expression in Lemma 3.4. The mis-

take – pointed out in [MP] – occurs at the top of page 141 in [BM]. Indeed the
homotopy Ĵt need not be proper. We note that indσ(X) = χ(X, σ) if and only if
det(dXH

σ ), H ⊆ Gσ is independent of H. This happens always if Gσ is of odd order,
since A(Gσ)× = {±1}.

In our application, (3.3) is the bundle

ECq ×Cq F −→ BCq
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where F is the branched cover from Definition 3.1, and X is the vector field from
Lemma 3.2. In this case χ(X, σ) = indσ(X). Indeed, in this case the action on F
is free off the fixed set and it suffices to check that

dXσ : STσF −→ STσF

has equal degrees on fixed sets of the isotropy subgroup (Cq)σ. This is clear since
(Cq)σ 6= 1 only for σ ∈ {p0, . . . , pk} where dXσ has degree +1. Moreover, the Cq
fixed set is S0, and dXσ maps it by the identity.

Recall from (1.7) and (1.8) that we seek information about the composition

τF : BDiff(F )
trf(πF )−→ Q(E(F )+)

Q(θE(F)+ )
−→ Q(BS1

+).

Let F be the Cq-surface of Definition 3.1, and

ρF : BCq −→ BDiff(F )

the associated map. Our next result calculates τF ◦ ρF in terms of the maps

ψ̂mi : BCq
j−→ BS1 ψmi−→ BS1 incl−→ Q(BS1

+)

τ̂q : BCq
τq−→ Q((ECq)+) '−→ Q(S0) ↪→ Q(BS1

+)

where j is the standard map and τq is the transfer of the canonical covering ECq →
BCq.

Theorem 3.5. The composition τF ◦ ρF is equal to

Σki=0 ψ̂
mi + Σ εj τ̂q

in [BCq+, Q(BS1
+)], where εj is a sign and the second sum runs over the number

of free Cq-orbits in the singular set of the vector field from Lemma 3.2.

Proof. Consider the pull-back diagram

ECq ×Cq F
ρ̂F−−−−→ E(F )

π

y πF

y
BCq

ρF−−−−→ BDiff(F ).

Transfers are natural under pull-backs, so

trf(πF ) ◦ ρF = Q(ρ̂F+) ◦ trf(π),

and we can apply Theorem 3.3 to study π. We have

S(X) = {p0, ..., pk} t S′ ×Cq, ECq ×Cq S(X) = (
k∐
i=0

BCq) t (S′ ×ECq),
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and hence

Q(ECq ×Cq S(X)+) = (
k∏
i=0

Q(BCq+))× (
∏
j∈S′

Q(ECq+)).

The transfer for a sum of covering spaces is the product of the individual transfers.
So the transfer for

πS : ECq ×Cq S(X) −→ BCq

is the product of (k+ 1) copies of the inclusion ι : BCq → Q(BCq+) and |S′| copies
of the standard transfer τq : BCq → Q(ECq+). By (3.2)

ρ̂∗F (T vE(F )) = ECq ×Cq TF
restricts to ECq ×Cq C (mi) over ECq ×Cq {pi}, and this bundle is classified by
ψmi ◦ j : BCq → BS1. An application of Theorem 3.3 and Lemma 3.4 completes
the proof. �

3.3. The splitting map µp.

We fix a base surface Σ, a prime p and a p-adic divisor,
(3.7) D = 1 · p0 +mp1 + . . .+mpk ∈ C0(Σ;Zp)
with m ∈ Z×p , 1 + km ≡ 0 and −k ∈ Z×p a topological generator of Z×p . (If p = 2,
take k ≡ 5 (mod 8).) For each prime power q = pn, let F = F (n) be the closed
surface from Definition 3.1. It has genus

g(n) = g(Σ) · pn +
1
2

(pn − 1)(k − 1)

by the Riemann-Hurwitz formula. We remove an open disc from F (n) to get the
surface F (n)1 with one boundary circle. There is a commutative diagram

(3.8)

BCpn
ρn−−−−→ BDiff(F (n))+

incl

x x
(BCpn)[g(n)/2] ρn−−−−→ BDiff(F (n)1)+

since the right-hand vertical map is [g(n)/2]-connected by [H], [I]; X [r] denotes the
r-skeleton of X. We can compose the bottom horizontal map in (3.8) with the map
from BDiff(F (n)1)+ to BΓ+

∞ to obtain homotopy classes

(3.9) [ρn] ∈ [BC[g(n)/2]
pn , BΓ+

∞].
We do not know (at present) that those elements fit together to define an element
of the inverse limit, and hence give a homotopy class

ρ∞ : BCp∞ → BΓ+
∞,

with a possible extension over the universal Bockstein BCp∞ → BS1
(p). However,

we can get around this difficulty when we complete our spaces.

Recall the notation that ψ̂l : BCpn → Q(BS1) is the standard map into BS1

followed by ψl and the inclusion into Q(BS1).
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Theorem 3.6. There exists a map µp : BS1 → (BΓ+
∞)∧p such that

[τ∞ ◦ µp] = 1̂ + kψ̂−k ∈ [BS1, Q(BS1)∧p ].

Proof. Theorem 2.9 and Theorem 3.5 show that

[τ∞ ◦ ρn] = 1̂ + kψ̂−k ∈ [BC[g(n)/2]
pn , Q(BS1)].

Therefore the subgroup Gn of [BC[g(n)/2]
pn , (BΓ+

∞)∧p ], given by

Gn = {[f ] | [τ∞ ◦ f ] = 1̂ + kψ̂−k}

is non-empty. It is also compact, since BΓ+
∞ is of finite type (has finitely generated

homotopy groups in all dimensions), and Tychonov’s theorem implies that

lim←−Gn 6= ∅.

Let (ρn) ∈ lim←−Gn. Since g(n)→∞ for n→∞,

lim←−[BC[g(n)/2]
pn , (BΓ+

∞)∧p ] = lim←−[BCpn , (BΓ+
∞)∧p ].

The element µp := (ρn) ∈ lim←−Gn gives the required map, cf. (1.11). �

Remark. We used above the homotopy commutative diagram

BDiff(F1)
trf(π1)−−−−→ Q(E(F1)+)y +[1]

y
BDiff(F )

trf(π)−−−−→ Q(E(F )+)

where +[1] denotes shift of components by 1, and

π1 : E(F1) = EDiff(F1)×Diff(F1) F1 −→ BDiff(F1)

π : E(F ) = EDiff(F )×Diff(F ) F −→ BDiff(F )

(F1 = F \
◦
D2). Since transfers are natural under pull-backs, the commutativity

amounts to comparing the transfers of π1 and π. The second bundle can be viewed
as the fibrewise union of E(F1) and the trivial disc bundle. It is now easy to make
the comparison. Details are left to the reader.
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§4. Proof of the splitting theorems.

4.1. The splitting of Q(BS1)∧p and the proof of (1.16).

Consider the (reduced) cohomology theory associated to Q(BS1)∧p ,

Ei(X) = [X,Q(Si ∧BS1)∧p ].

For k ∈ Z×p , Q(1 ∧ ψk) defines a natural endomorphisms of Ei(X) that commutes
with suspension. Let ω : Z/p× → Z×p be the Teichmüller character that splits the
natural projection Z× → Z/p×. We get a natural action of Zp[Z/p×] on E∗(X).
The ring Zp[Z/p×] is semisimple and decomposes into a sum of (p − 1) copies of
Zp, and there is an induced isomorphism of cohomology theories

(4.1) E∗(X) ∼= E∗0(X)⊕ . . .⊕ E∗p−2(X)

More precisely, if l generates Z/p× then

(4.2) ei =
1

p− 1

p−1∑
ν=0

ω(l−νi)ψω(lν), i = 0, ..., p− 2

are orthogonal idempotents of Zp[Z/p×], and

E∗i (X) = eiE
∗(X).

There is a similar splitting of p-complete (or even p-local) K-theory, often called
the Adam’s splitting [A]. We get from (4.1), and its K-theory analogue, the induced
splitting of infinite loop spaces

(4.3)
Q(BS1)∧p ' Ω∞E0 × Ω∞E1 × . . .× Ω∞Ep−2

BU∧p ' B0 ×B1 × . . .×Bp−2.

The map from Q(BS1) into BU , induced from the reduced canonical line bundle
[L − 1] ∈ K̃(BS1), gives infinite loop maps from Ω∞Ei to Bi, whose homotopy
fibre is rationally homotopy equivalent to a point.

Lemma 4.1. Let p be an odd prime and g ∈ Z×p be a topological generator. Then

1− gψg : Ω∞Ei −→ Ω∞Ei

is a homotopy equivalence for i = 0, 1, ..., p− 3.

Proof. It suffices to prove that the induced map on spectrum homology

(1− gψg)∗ : H∗(Ei) −→ H∗(Ei)
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is an isomorphism for each i 6= p − 2. The homology of Ei is one copy of Zp in
each degree 2n with n ≡ i(mod p− 1) and zero in other degrees. Indeed, the wedge
product E0 ∨ . . . ∨ Ep−2 is the p-complete suspension spectrum of BS1, so

H∗(E0 ∨ · · · ∨ Ep−2) = H∗((Σ∞BS1)∧p ) = H∗(Σ∞BS1;Zp),

a copy of Zp in each even degree. On the other hand, it follows from (4.2) that

ψω(l) ◦ ei = ω(li)ei,

so that ψω(l) induces multiplication by ω(li) on H2n(Ei) for all n. But ψω(l) induces
multiplication by ω(l)n on H2n((Σ∞BS1)∧p ). Thus ω(ln) = ω(li) on H2n(Ei), and
n ≡ i(mod p− 1).

The map 1 − gψg induces multiplication by 1 − gn+1 on H2n((Σ∞BS1)∧p ) and
1− gn+1 is a p-adic unit precisely when n 6≡ −1(mod p− 1). �

¿From Theorem 3.6 and the previous lemma we get

Theorem 4.2. The map

(BΓ+
∞)∧p

τ∞−→ Q(BS1)∧p
proj−→ Ω∞E0 × . . .× Ω∞Ep−3.

is split surjective as a map of infinite loop spaces. �

Combining with the main result of [T2], cf. (1.15), we get

Corollary 4.3. For odd primes p there is an infinite loop space W ′p such that

(Z×BΓ+
∞)∧p ' Q(S0)∧p × Ω∞E0 × · · · × Ω∞Ep−3 ×W ′p.

�

We remark that Q(S0)∧p × Ω∞E0 is the 0-th component of the splitting of
Q(BS1

+)∧p induced by the idempotents ei of (4.2), so that the space Q(S0)∧p ×
Ω∞E0 × · · · ×Ω∞Ep−3 classifies the functor

(4.5) X 7−→ (1− ep−2) · ([X,Q(BS1
+)]⊗ Zp).

The homology H∗(Q(BS1
+);Z/p) is completely known. The original source is [DL],

but [CLM] is a better reference. We briefly recall the result.

Consider sequences I = (ε1, s1, . . . , εk, sk) with

εj ∈ {0, 1}, sj ≥ ej and psj − ej ≥ sj−1.
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Define

(4.6)

e(I) = 2s1 − ε1 −
k∑
j=2

(2sj(p− 1)− εj)

b(I) = ε1

d(I) =
k∑
j=1

(2sj(p− 1)− εj)

Let X be an infinite loop space. For each I there is a homology operation

QI : Hq(X; Fp ) −→ Hq+d(I)(X; Fp)

which can be non-zero only if e(I) + b(I) ≥ q. Here Fp = Z/p.

The homology of Q(BS1
+) can be described in terms of the homology operations,

applied to H∗(BS1; Fp) ⊂ H∗(Q(BS1
+); Fp). Indeed, let

(4.7) T = {QIι2q | q ≥ 0, e(I) + b(I) > 2q}.

The group of components π0Q(BS1
+) ' π0QS

0 is the infinite cyclic group Z, and all
components are homotopy equivalent. The homology of the component Q0(BS1

+) =
Q(BS1)×Q0(S0) turns out to be the free commutative algebra on the graded set T ,
i.e. a tensor product of the polynomial algebra on the even dimensional generators
and exterior algebra on the odd dimensional generators. The homology of the full
space is then

(4.8) H∗(Q(BS1
+); Fp) = FreeCommAlg(T )⊗ Fp [Z].

In view of the Corollary 4.3 and (4.5) we have

(1− ep−2)H∗(Q(BS1); Fp) ⊂ H∗(BΓ+
∞; Fp).

The left hand side is the free commutative algebra on

T ′ = {QIι2q ∈ T | q 6= −1( mod p− 1)}.

So we get

Corollary 4.4. FreeCommAlg(T ′) ⊂ H∗(BΓ+
∞; Fp). �
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4.2. The proof of Theorem 1.3.

The proof given at the end of the section requires some preliminaries. We shall
be brief, and refer the reader to [MS] for more details.

The infinite unitary group U may be considered as a subspace of the space FS1

of S1-equivariant homotopy equivalences of the free S1-spheres S2n−1 as n → ∞.
There is a homotopy equivalence

ζ : FS1 −→ Q(S1 ∧BS1
+),

cf. [BS], [MS]. This yields a map from U to Q(S1 ∧BS1
+) such that the diagram

(4.9)

S1 ∧BS1
+ S1 ∧BS1

+

R

y incl

y
U

ζ−−−−→ Q(S1 ∧BS1
+)

is homotopy commutative. Here R is the complex rotation map, adjoint to the map
from BS1 to Ω(U) ' Z×BU that represents the canonical line bundle. One may
extend R to an infinite loop map, again denoted by R, from Q(S1 ∧ BS1) to U ,
and (4.9) implies that the composition

(4.10) U
ζ−→ Q(S1 ∧BS1

+) R−→ U

is the identity up to homotopy. The splitting of Q(S1 ∧BS1
+) induced from (4.10)

is not well-connected to the S1-transfer

trf : Σ∞(S1 ∧BS1
+) −→ Σ∞(S0).

Indeed, the fibre of trf is the suspension ΣC P∞−1 of the spectrum C P∞−1 , but the
above splitting does not induce a splitting of Ω∞(ΣC P∞−1). However from [MS,
Theorem 2.4.5] we do have a commutative diagram

(4.11)

Ω∞(ΣC P∞−1)(p)
ω∞−−−−→ Q(S1 ∧BS1

+)(p)
trf−−−−→ QS0

(p)

l1−1

y l10

y e

y
U(p)

Ω(1−ψg)−−−−−→ U(p)
4−−−−→ Z× imJ(p),

where e is the unit of the connective ring spectrum Z × imJ(p), and l1−1, l
1
0 are

infinite loop maps which are split surjective but by maps that are not infinite loop
maps.

We remarked in Section 1.2 that after localization at an odd prime, Q(S1)(p)

splits off both Ω∞(ΣC P∞−1)(p) and Ω∞(S1 ∧ BS1
+)(p), so that the upper fibration

sequence in (4.11) may be replaced by its reduced version

Ω∞(Σ(CP∞−1/S
0))(p)

ω̄∞−→ Q(S1 ∧BS1)(p)
trf−→ QS0

(p).
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Looping down this reduced version of (4.11) we get the fibration diagram

(4.12)

Ω∞(CP∞−1/S
0)(p)

ω̄∞−−−−→ Q(BS1)(p)
Ωtrf−−−−→ Q(S−1)(p)

l−1

y l0

y Ωe

y
BU(p)

1−gψg−−−−→ BU(p)
Ω4−−−−→ ΩimJ(p).

¿From the reduced version of (4.10) we get upon looping once the homotopy com-
mutative diagram

BS1 [L−1]−−−−→ BU

incl

y ∥∥∥
Q(BS1) ΩR̄−−−−→ BU,

where [L− 1] is the reduced canonical line bundle. Similarly (4.10) implies a map
Ωζ̄ so that the composite

BU
Ωζ̄−→ Q(BS1) ΩR̄−→ BU

is the identity. Here BU is the 0-th component of Z× BU ' ΩU or equivalently
BU ' ΩSU . It follows easily that

(4.13)

BS1 BS1

incl

y [L−1]

y
Q(BS1)

Ωζ̄←−−−− BU

is homotopy commutative.

We are now ready to present the proof of Theorem 1.3 which asserts that

l−1 ◦ τ̂∞ : (BΓ+
∞)∧p −→ BU∧p

is a split surjection for all odd primes p.

Proof. Theorem 3.4 (with g = −k a topological generator of Z×p ) and the above
yields a homotopy commutative diagram

(4.14)

(BΓ+
∞)∧p

τ̂∞−−−−→ Ω∞(CP∞−1/S
0)∧p

l−1−−−−→ BU∧p

µp

x ω̄∞

y 1−gψg
y

Q(BS1)∧p
1−gψg−−−−→ Q(BS1)∧p

l0−−−−→ BU∧p .

¿From (4.13) we see that Ωζ̄ ◦ (1 − gψg) ' (1 − gψg) ◦ Ωζ̄, and (4.14) yields the
diagram

BU∧p
µp◦Ω(ζ)−−−−−→ (BΓ+

∞)∧p
l−1◦τ̂∞−−−−−→ BU∧p

1−gψg
y ω̄∞◦τ̂∞

y 1−gψg
y

BU∧p
Ω(ζ)−−−−→ Q(BS1) l0−−−−→ BU∧p .
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The lower composition is a homotopy equivalence, and the diagram implies that
the upper composite is a homotopy equivalence. This completes the proof. �
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