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FILTRATIONS ON G1T -MODULES

HENNING HAAHR ANDERSEN� AND KANEDA MASAHARU��

Let G be an almost simple and simply connected algebraic group de�ned and split
over the prime �eld Fp . Choose a split maximal torus T in G and a Borel subgroup
B containing T . We denote the kernel of the Frobenius homomorphism on G (resp.
B) by G1 (resp. B1).

Recall that the representation theory for G is closely related to the corresponding
theory for G1T , see [Ja2]. This paper will mainly be concerned with the latter
theory. More precisely, we study �ltrations in the G1T -setup analogous to those
introduced by the �rst author in [An3] involving tilting modules for G.

To explain our results we need a little more notation. Let X denote the character
group of T and set R (resp. R+, resp. S) equal to the root system for (G;T ) (resp.
the set of positive roots relative to B+, the Borel subgroup opposite to B, resp. the
set of simple roots in R+). Write W for the Weyl group.

For each � 2 X we have a standard G1T -module Z(�) with highest weight �.
It is sometimes called a baby Verma module and it is de�ned as the G1T - module
induced by the 1-dimensional B1T -module �. In fact, for each w 2 W we have
such a standard G1T -module Zw(�) (obtained by replacing B by wBw�1). By using
certain deformations of these modules it was shown in [AJS, Section 6 ] how one may
construct Jantzen �ltrations of Zw(�) and prove the corresponding sum formulas.

In this paper we shall use the same deformation theory to construct for each pro-
jective G1T -module Q a �ltration of the vector space F�(Q) = HomG1T (Z(�)

� ; Q).
Here � denotes contravariant dual (see 1.6). Our construction is completely analo-
gous to the one used in [An3] once one notices that a tilting module for G1T is the
same as a projective module.

There are certain natural homomorphisms between standard G1T -modules which
play a crucial role in the theory. We prove that our �ltrations may be described in
terms of the canonical homomorphism Z(�) ! Z(�)� . This description allows us
via standard arguments to prove a sum formula for our �ltration. Moreover, it gives
in turn a direct relation between our �ltrations for F�(Q(�)) and the occurrence of
L(�) in the Jantzen �ltration of Z(�). Here L(�) is the simple G1T -module with
highest weight � and Q(�) is its projective cover.

�Supported in part by the TMR programme \Algebraic Lie Representations", EC Network
Contract No. ERB FMRX-CT97/0100.

��Supported in part by a grant from Ministry of Education.
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The Verma modules for a complex semi-simple Lie algebra are simple when their
highest weights are anti-dominant. Likewise Weyl modules for G are simple when
their highest weights belong to the bottom dominant alcove. However, a standard
G1T -module with a p-regular highest weight is never simple. This presents a major
di�culty in developing a G1T -analogue of the Gabber-Joseph theory for Verma-
modules, see [GJ] (and its Weyl module version [An3]), namely there is no starting
point for an induction. However, our way of constructing �ltrations in this paper
presents us with a natural �rst case: the projective cover with highest weight in the
bottom alcove (relative to any special point). We describe our �ltrations completely
in that case and then go on via translation functors to the other alcoves. We show
(exactly as in [An3]) that if the �ltrations behave as expected with respect to the
wall crossing functors, then the Lusztig conjecture for the character of irreducible
G1T -modules (or G-modules) holds. Comparing with [AK] we can then also deduce
a re�nement of Humphreys-Brauer reciprocity.

We conclude the paper by considering the following related cases: the 'small'
quantum groups, the ordinary quantum groups (at complex roots of unity) and the
semi-simple algebraic groups (in characteristic p).

The paper is organized as follows. In Section 1 we give the set up and prove a few
re�nements of the deformation theory of G1T -modules from [AJS]. Section 2 deals
with projective objects in our categories and then Section 3 contains the above
mentioned results on our �ltration of the Hom-spaces between standard modules
and projective modules. In Section 4 we study the translation functors relative to
our situation. We use these results in Section 5 �rst to give an explicit description
of our �ltrations in the case where the projective module is indecomposable with
highest weight in the bottom dominant alcove and then to analyse the behavior
of our �ltrations under 'wall-crossings'. Finally, in Section 6 we look at the above
mentioned related cases.
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1. Standard modules

In this section we recall from [AJS, Sections 2-6] the parts of the deformation
theory for G1T -modules that we need.

1.1. Fix an algebraically closed �eld k of characteristic p > 0 and consider G as an
algebraic group over k. Let g denote the Lie algebra of G. This is a p-Lie algebra
whose p-operation we denote x 7! x[p]; x 2 g.

We have g = n� � h � n+ where h is the Lie algebra of T , n� (resp. n+) is
the Lie algebra of the unipotent radical of B (resp. B+). As in [AJS] we then
set I equal to the ideal in the universal enveloping algebra U(g) of g generated by
fxp � x[p] j x 2 n� [ n+g and de�ne U = U(g)=I.

Denote by U� (resp. U0, resp. U+) the image in U of U(n�) (resp. U(h), resp.
U(n+)). Then we have U = U�U0U+.

1.2. The algebra U has a natural X-grading and the subspaces U0 and U0U+

are both graded subalgebras. If � is a noetherian commutative U0-algebra then
we denote by C� the category introduced in [AJS]. The objects in C� are certain
X-graded U 
k �-modules.

The corresponding category of U0U+
k�-modules (resp. U0
k�-modules) which
in [AJS] is denoted C 0� (resp. C00�) will here be denoted C

�0
� (resp. C0�).

We then have the induction functor Z� : C
�0
� ! C� de�ned by

Z�(M) = U 
U0U+ M; M 2 C�0�

as in [AJS]. More generally, if we for w 2 W let Tw 2 Endk�alg(U) denote the
endomorphism of U given as conjugation by w (or more precisely by a representa-
tive in NG(T ) of w) then we have a category C�0;w� consisting of certain X-graded

Tw(U0U+)
k �-modules corresponding to C�0� . The induction functor from C�0;w� to
C� is denoted Zw

� .

These induction functors behave well under base change: If �0 is a �-algebra then
in C�0�0 we have

Zw
� (M) 
� �

0 ' Zw
�0(M 
� �

0)(1)

for all M 2 C�0;w� .

1.3. Let as usual e� 2 Z[X] be the element corresponding to � 2 X. If M 2 C� is
free as a �-module then we set

chM =
X
�2X

(rk�M�)e
� 2Z[X]:
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Each � 2 X de�nes an element in C�0� , namely the U0U+ 
k �-module which as
X-graded module is equal to � concentrated in degree � and on which the U+-action
is trivial. Likewise, � de�nes for any w 2 W an object in C�;w� which is free of rank
1 over �.

For � 2 X;w 2 W we set (as in [AJS]) �hwi = � + (p � 1)(w� � �), where � as
usual denotes half the sum of the positive roots. Then

chZw
� (�hwi) = e�

Y
�2R+

1 � e�p�

1 � e��
= chZ�(�):(1)

1.4. In this paper we shall mainly consider three choices for �. The �rst is � = k.
In this case we drop subscripts and write e.g., C instead of Ck and Z instead of Zk.
Recall that C may be identi�ed with the category of �nite dimensional G1T -modules
and Zk with the coinduction functor from B+

1 T -modules to G1T -modules.

The other two choices for � are � = k[t](t) (which we will denote k̂ from now on)

and � = k(t) (which we will denote ~k), i.e., the local ring obtained by localizing
the polynomial ring k[t] in one variable at the maximal ideal generated by t and
the fraction �eld of k[t]. The U0-algebra structures on these algebras are given by

[AJS,6.5]. In these cases we write Ĉ (resp. ~C) instead of Ck[t](t) (resp. Ck(t)), Ẑ (resp.
~Z) instead of Zk[t](t) (resp. Zk(t)). Most of what we do in this paper remain valid
when we replace k by any �eld of characteristic p.

1.5. Let � be a �eld. For each � 2 X the standard module Z�(�) has a unique
simple quotient which we denote L�(�). In other words, if for M 2 C� we let hd(M)
denote the head of M , i.e. the maximal semi-simple quotient of M , then

(1) hd Z�(�) = L�(�); � 2 X:
(2) fL�(�) j � 2 Xg is a full set of simple objects in C�:
(3) If � = ~k, then all ~Z(�) are irreducible and in fact all objects of C� are semi-

simple, i.e., direct sums of ~Z(�)'s.

Recall also that if � = k, then Lk(�) may be identi�ed with the irreducible G1T -
module L(�) of highest weight �. If moreover � is restricted, i.e. 0 � h�; �i < p for
all � 2 S, then L(�) identi�es with the irreducible G-module with highest weight �.

Remark . The above results (1) - (3) hold also when we replace 1 2 W by an
arbitrary w 2 W (with appropriate change of weight in (1), see [AJS]).

1.6. For � 2 S we let F� 2 n�; E� 2 n+ and H� = [E�; F�] 2 h denote Chevalley
generators (elements of a Chevalley basis for g). There is an involutative k-algebra
antiautomorphism � of U given by

� (F�) = E�; � (E�) = F�; � (H�) = H�; � 2 S:
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This allows us to de�ne the (contravariant) dual of an object M in C� as M � =
Hom�(M;�) with U -action de�ned by uf : m 7! f(� (u)m);m 2M; f 2M � ; u 2 U .
The X-grading on M � is given by (M �)� = ff 2M � j f(M�) = 0 for � 6= �g:

If M = C� is free as a �-module, we see

(M � )� 'M in C�(1)

and for any �-algebra �0

M � 
� �
0 ' (M 
� �

0)� in C�:(2)

If also M 0 2 C� is free over � then

ExtiC�(M;M 0) ' ExtiC�(M
0� ;M � ):(3)

Note that chM = chM � . In particular, it follows that if � is a �eld, then we have
for all � 2 X

L�(�)
� ' L�(�) in C�:(4)

1.7. Let � 2 X and recall the notation �hwi = �+ (p� 1)(w�� �) from 1.3. Then
by [AJS, 4.7] we have for all w;w0 2 W

HomC�(Z
w
� (�hwi); Z

w0

� (�hw0i)) ' �:(1)

Moreover, if w0 denotes the longest element in W , then by slight generalizations of
[AJS, 4.10 and 4.12]

Zw
� (�hwi)

� ' Zww0
� (�hww0i) in C�(2)

and if � 2 X

ExtiC�(Z
w
� (�hwi); Z

ww0
� (�)) '

(
� if i = 0 and � = �hww0i

0 otherwise.
(3)

In the case where � = k̂ we may add

HomĈ(Ẑ
w(�hwi); Ẑy(�hyi)) = ��;�k̂(4)

for all �; � 2 X; w; y 2 W . This is seen by noticing that the left hand side is torsion
free as a k̂-module and hence free. Now tensor by ~k and apply 1.5 (3).

1.8. Let � 2 X and x; y 2 W . Suppose x�1y = s1 � � � sr is a reduced expression
with si = s�i for some �i 2 S; i = 1; � � � ; r. Set yi = xs1 � � � si�1; i = 1; � � � ; r + 1.

By 1.7(1) we have a generator '��;i 2 HomC�(Z
yi
� (�hyii); Z

yi+1
� (�hyi+1i)) (unique

up to unit in �), resp. 0'��;i 2 HomC�(Z
yi+1
� (�hyi+1i); Z

yi
� (�hyii)). By [AJS, 5.13] we

have

(1) '��;i is bijective on the �-weight space if yi�i 2 R+.

If �0 is a �-algebra then we have up to units in �0
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(2) '��;i 
� �0 = '��0;i and
0'��;i 
� �0 = 0'��0;i (see 1.2(1)).

If � = ~k, then '��;i and
0'��;i are isomorphisms for all i. If in (2) we take � = k̂ and

�0 = ~k, we deduce that (writing '̂�i short for '�
k̂;i
)

(3) '̂�i is injective for i = 1; � � � ; r.

1.9.

Lemma . Up to units in k̂ we have

(i) 0'̂�i � '̂
�
i =

(
t idẐyi (�hyii) if h� + �; yi�

_
i i 6� 0 (mod p)

idẐyi(�hyii) otherwise.

(ii) '̂�i �
0'̂�i =

(
t idẐyi+1(�hyi+1i) if h� + �; yi�

_
i i 6� 0 (mod p)

idẐyi+1 (�hyi+1i) otherwise:

(iii) If h� + �; yi�
_
i i � 0 (modp) then both '̂�i and 0'̂�i are isomorphisms.

Proof: By 1.7(1) it is enough to evaluate 0'̂�i � '̂
�
i on a single non-zero element. We

choose v0 2 Ẑyi(�hyii)�hyiinf0g and �nd by [AJS, 5.6]

(1)

0'̂�i � '̂
�
i (v0) =

�
h�; yi�_i it+ h�hyii; yi�

_
i i

p � 1

�
v0

up to a unit in k̂. Hence (i) follows.

The proof of (ii) is similar and (iii) is an immediate consequence of (i) and (ii).

1.10. We still keep the notation from 1.8. Set

'̂�x;y = '̂�r � � � � � '̂
�
1 and 0'̂�x;y =

0'̂�1 � � � � �
0'̂�r :

Then '̂�x;y 2 HomĈ(Ẑ
x(�hxi); Ẑy(�hyi)) and 0'̂�x;y 2 HomĈ(Ẑ

y(�hyi); Ẑx(�hxi)).

This makes sense for any x; y 2 W . Note that since y�1i yi+1 = si, we have

'̂�yi;yi+1 = '̂�i (up to a unit in k̂). Likewise '̂�yi+1;yi =
0'̂�i .

Lemma . Assume h�+�; yi�_i i 6� 0 (mod p). Ifmj denotes a generator of Ẑyj(�hyji)�;

j = i; i+ 1, then we have up to units in k̂

'̂�yi;yi+1mi = '̂�imi =

(
mi+1 if yi�i > 0

tmi+1 otherwise:

In particular, '̂�i (resp. 0'̂�i ) is an isomorphism on the �-weight space i� yi�i 2 R+

(resp. �R+).

6



Proof: If yi�i > 0 the statements hold by 1.8(1). So assume yi�i < 0. Then
yi+1�i > 0 and '̂�yi+1;yi is an isomorphism on the �-weight space. Therefore we have

up to units in k̂
0'̂�imi+1 = '̂�yi+1;yimi+1 = mi:

Hence '̂�imi = tmi+1 (because of Lemma 1.9).

1.11. Let mx (resp. my) denote a generator of Ẑx(�hxi)� (resp. Ẑy(�hyi)�). Set

N(x; y; �) = #f� 2 R+ j x�1� < 0; y�1� > 0 and h� + �; �i 6� 0 (mod p)g:

Note that N(1; y; �) = 0 = N(y;w0; �) for all y 2 W . If � is p-regular (i.e.
h� + �; �_i 6� 0 (mod p) for all � 2 R) then N(x; 1; �) = l(x) = N(w0; w0x; �)
for all x 2 W . Here l denotes the length function on W .

Proposition . The homomorphism '̂�x;y is (up to a unit in k̂) independent of the

choice of reduced expression for x�1y. On the �-weight space we have (up to a unit

in k̂)
'̂�x;y(mx) = tN(x;y;�)my:

Proof: By 1.7(1) it is enough to prove the second statement. By Lemma 1.10 we
get '�x;ymx = tnmy where n = #fi j yi�i < 0 and h� + �; yi�ii 6� 0 (mod p)g. But

f� 2 R+ j y�1x� < 0g = fs1 � � � si�1(�i) j i = 1; � � � ; rg

and xs1 � � � si�1(�i) = yi�i; i.e., n = N(x; y; �).

1.12. Corollary. If l(y) = l(x) + l(x�1y) (resp. l(y) = l(x) � l(x�1y)) then the
homomorphism '̂�x;y is an isomorphism on the �-weight (resp. �hw0i-weight) space.

In either case '̂�x;y therefore generates HomĈ(Ẑ
x(�hxi); Ẑy(�hyi)). In particular,

'̂�1;w0
is an isomorphism on the �-weight space. By symmetry so is '̂�w;ww0

on the
�hwi-weight space for all w 2 W .

Proof: If l(y) = l(x) + l(x�1y) then N(x; y; �) = 0 and the corollary follows im-

mediately from Proposition 1.11. At the same time we see that '̂�1;w0
: Ẑ(�) !

Ẑw0(�hw0i) is an isomorphism on the �-weight space (and in fact under the given
condition '̂�x;y is a factor in '̂�1;w0

).

By symmetry '̂w0;1 : Ẑ
w0(�hw0i)! Ẑ(�) is an isomorphism on the �hw0i-weight

space. If l(y) = l(x) � l(x�1y) then '̂w0;1 factors through '̂�x;y and the corollary
follows in this case as well.

Recall from 1.7(3) that HomĈ(Ẑ
x(�hxi); Ẑy(�hyi)) ' k̂. Hence the second state-

ment in the corollary is clear.
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2. Projectives

In [AJS, Section, 3-4] one �nds a treatment of the projective objects in C�, � a
general noetherian commutative U0-algebra. We shall basically only need the cases
� = k; k̂ and ~k and in this section we have collected the results we need about
projectives in these cases.

2.1. Let M 2 C� and w 2 W . We say that M admits a Zw-�ltration if there exists
a �ltration

M =M0 �M1 � � � � �M r = 0

of M in C� with M i�1=M i ' Zw
� (�i) for some �i 2 X; i = 1; � � � ; r.

We set then for � 2 X

(M : Zw
� (�)) = #fi j �i = �g;

the multiplicity of Zw
� (�) in the Zw-�ltration of M . Note that these numbers are

the same for any two Zw-�ltrations of M .

By [AJS, 2.14] we have

if Ext1C�(Z
w
� (�); Z

w
� (�

0)) 6= 0 then �� �0 2
X
�2S

Nw�(1)

This implies that in a Zw-�ltration of M as above we can always arrange that

if �j � �i 2
X
�2S

Nw�; then j > i:(2)

We recall �nally from [AJS, 2.16] that

all projective modules in C� admit a Zw-�ltration:(3)

2.2. Consider now the case � = ~k. As noted in 1.5(3) the category ~C is semi-simple.
In fact, each M 2 ~C splits into a direct sum of ~Z(�)'s. Hence M has certainly a
Z-�ltration (and a Zw-�ltration for all w 2 W ).

We may also phrase the semi-simplicity of ~C by saying that all objects in ~C are
projective (as well as injective).

2.3. Next we take � = k. As pointed out in 1.4 we may identify C with the category
of �nite dimensional G1T -modules. Hence by [Ja2, II, 9.3] we have for M 2 C

(1) M is projective i� M is injective.

Moreover, we have the following criteria for injectivity in C

(2) M is injective in C i� M admits a Zw-�ltration for all w 2 W .
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This follows from [Ja2, 11.2 and 11.4]. For an alternative proof see 2.5 below.

Let us for each � 2 X denote by Q(�) the injective hull of L(�). An easy appli-
cation of 1.7(3) gives the reciprocity formula

(3) (Q(�) : Zw(�hwi)) = (Q(�) : Z(�)) = [Z(�) : L(�)]; � 2 X; w 2 W .

Here [M : L(�)] denotes the multiplicity of L(�) as a composition factor in M 2 C.

It follows from (3) and 1.3(1) that

(4) Q(�) has lowest weight � � 2(p � 1)� = �hw0i and this weight occurs with
multiplicity 1.

Note also that � is minimal among the �i's for which Z(�i)'s occurs in a Z-�ltration
of Q(�). Hence by 2.1(2) we see that Z(�) and therefore also L(�) are quotients of
Q(�). Combining this with (1) we conclude

(5) Q(�) is the projective cover of L(�)

and

(6) Q(�)� ' Q(�) in C:

2.4. Finally we take � = k̂. Let again � 2 X. Then according to [AJS, 4.19] we
have

(1) There is a (unique up to isomorphism) projective object Q̂(�) 2 Ĉ which sat-

is�es Q̂(�) 

k̂
k ' Q(�).

By 2.1(3) we see that Q̂(�) has a Zw-�ltration for all w. Clearly,

(2) (Q̂(�) : Ẑw(�)) = (Q(�) : Zw(�)) for all � 2 X; w 2 W .

By 1.6(2) and 2.3(6) we get Q̂(�)� 
 k ' Q(�). If we dualize a Zw0 -�ltration of

Q̂(�) then we obtain a Z-�ltration of Q̂(�)� . Hence [AJS, 3.5] implies that Q̂(�)� is

projective in Ĉ and we conclude

(3) Q̂(�)� ' Q̂(�) in Ĉ:

Let us also record the following fact, see [AJS, 4.19].

(4) Any projective module in Ĉ is a direct sum of certain Q̂(�).

9



2.5. Proposition. Let Q̂ 2 Ĉ. Then Q̂ is projective i� Q̂ has a Zw-�ltration for all
w 2 W .

Proof: The only if part follows from 2.1(3). Moreover, by [AJS, 3.5] we see that it
is enough to prove

(1) if Q 2 C has a Z- and a Zw0 -�ltration, then Q is projective.

Now this follows from 2.3(2). Here is an alternative argument: Choose � 2 X
minimal with (Q : Z(�)) 6= 0. Then we have two surjections � and �� (see 2.1(2))

0

Q //�

!!C
C
C
C Z(�) //

OO

0

Q(�)

aaC
C
C
C

OO
��

We claim that the dotted maps in this diagram exist making the triangle commu-
tative. Since ker�� has a Z-�ltration (by the construction of �) and since Q has a
Zw0 -�ltration it follows from 1.7(3) that Ext1C(Q; ker��) = 0. This produces the de-
sired homomorphism Q! Q(�). The other map is obtained by a similar argument
(or simply by using that Q(�) is projective).

Since Q(�) is indecomposable, it follows from this diagram that it is a direct sum-
mand of Q. The existence of Z- as well as Zw0 -�ltrations is inherited by summands
([AJS, 2.16]) and hence we may continue this until we have a decomposition of Q
into a direct sum of certain Q(�); � 2 X. So (1) is proved.

Remark . By analogy with the representation theory for G it is natural to de�ne
a tilting module in C� to be a module which admits both a Z-�ltration and a Zw0-
�ltration. Using this terminology the above results can be stated as follows

In C and Ĉ a module is tilting i� it is projective.(2)

2.6. If � 2 X is a special point, i.e., � + � 2 pX, then we have for all w 2 W the
following isomorphism in C

L(�) ' Z(�) ' Zw(�hwi) ' Q(�):(1)

In Ĉ we have

Ẑ(�) ' Ẑw(�hwi) ' Q̂(�):(2)

In particular, if � = (p� 1)� then L(�) is also a simple module for G. This is called
the Steinberg module and denoted by St. Note that any other special point may be
written as (p� 1)� + p�1 for some �1 2 X. Then we have in C

L((p � 1)� + p�1) ' St
p�1 ' Q((p� 1)� + p�1):(3)
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3. Filtrations

Let � 2 X and write Z� (�) short for Zw0(�hw0i). In this section we introduce
(following [An3]) a �ltration of the vector spaces HomC(Z� (�); Q); Q a projective
object in C. We prove a sum formula for this �ltration and relate it to the Jantzen
�ltration of Z(�); see [AJS, 6.6].

3.1. In the following we shall work with a �xed generator c = c� 2 HomĈ (Ẑ
�(�);Z(�))

(recall from 1.7 that this module is free of rank 1 over k̂.

For any projective module Q 2 C there is a unique \lift" to Ĉ, i.e. there exists a
unique (up to isomorphism) projective module Q̂ 2 Ĉ with Q̂


k̂
k ' Q, see 2.4 (1)

and (4). We set

F̂�(Q) = HomĈ(Ẑ
� (�); Q̂) and Ê�(Q) = HomĈ(Q̂; Ẑ(�)):(1)

Then it follows from 1.7 (2), (3) and 2.1 (3) that

F̂�(Q) and Ê�(Q) are both free over k̂ of rank (Q : Z(�)):(2)

Moreover, if we set F�(Q) = HomC(Z� (�); Q) and E�(Q) = HomC(Q;Z(�)) then

F�(Q) ' F̂�(Q)
k̂ k and E�(Q) ' Ê�(Q)
k̂ k:(3)

De�ne now a �ltration (F̂�(Q)j)j�0 of F̂�(Q) by setting

F̂�(Q)
j = f' 2 F̂�(Q) j  � ' 2 k̂t

jc for all  2 Ê�(Q)g(4)

and let F�(Q)j denote the image of F̂�(Q)j in F�(Q). Then

F�(Q)
j ' (F̂�(Q)

j + tF̂�(Q))=tF̂�(Q) ' F̂�(Q)
j=tF̂�(Q)

j�1:(5)

Finally, we let F�(Q)j denote the j-th quotient in the �ltration F�(Q) = F�(Q)0 �
F�(Q)1 � � � � � F�(Q)r = 0; i.e.,

F�(Q)j = F�(Q)
j=F�(Q)

j+1 ' F̂�(Q)
j=(F̂�(Q)

j+1 + tF̂�(Q)
j�1); j = 0; � � � ; r � 1:

(6)

Remark . If in the above set-up we replace Z�(�) by Zww0(�hww0i) ' Zw(�hwi)�

and Z(�) by Zw(�hwi) for some w 2 W then we obtain analogous �ltrations of
Fw
� (Q) = HomC(Zww0(�hww0i); Q). As will be evident all the following results could

be stated (and proved in the same way) for these �ltrations.

3.2. With notation as in 3.1 consider the pairing

a� : F̂�(Q)� Ê�(Q)! k̂

given by  � ' = a�('; )c;  2 Ê�(Q); ' 2 F̂�(Q). When tensored with ~k this

pairing becomes non-degenerate, i.e. the associated k̂-homomorphism

�� : F̂�(Q)! Ê�(Q)
_ = Homk̂(Ê�(Q); k̂)

de�ned by
��(') :  7! a�('; )

11



becomes an isomorphism when tensored by ~k. Standard arguments (e.g. [Ja2,

II.8.18]) then give (with �t : k̂ !Zdenoting the t-adic valuation).

Lemma . There exist bases ff1; � � � ; fn�g of F̂�(Q) and fe1; � � � ; en�g of Ê�(Q)_

and integers m�(1); � � � ;m�(n�) 2 N such that

��(fi) = tm�(i)ei; i = 1; � � � ; n�:

Moreover, X
j�1

dimF�(Q)
j = �t(det ��) =

n�X
i=1

m�(i):

3.3. According to 2.1 there is a �ltration of Q̂

Q̂ = Q̂0 � Q̂1 � � � � � Q̂r = 0

in Ĉ with

Q̂i�1=Q̂i ' Ẑ�(�i)
ni ; ni = (Q : Z(�i))(1)

and

if �i < �j ; then i > j:(2)

This gives us for each i = 1; � � � ; r a short exact sequence

0! HomĈ(Ẑ
�(�i); Q̂

i�1)! HomĈ(Ẑ
� (�i); Ẑ

�(�i)
ni)! Ext1

Ĉ
(Ẑ� (�i); Q̂

i)! 0:(3)

Moreover, the inclusion Q̂i�1 ,! Q̂ induces an isomorphismHomĈ(Ẑ
� (�i); Q̂i�1) '

HomĈ(Ẑ
� (�i); Q̂) = F̂�i(Q) because Q̂=Q̂

i�1 is �ltered by Ẑ� (�j); j = i+ 1; � � � ; r.

We let

�i : F̂�i(Q̂)! EndĈ(Ẑ
� (�i))

ni ' k̂ni

denote the k̂-homomorphism resulting from this identi�cation of the �rst term in
(3). Then (3) says that coker�i = Ext1

Ĉ
(Ẑ�(�i); Q̂i). As in [An4, 1.6-7] we deduce

(denoting by lt the length function on k̂-modules of �nite type).

Lemma .

F̂�i(Q)
j = f' 2 F̂�i(Q) j �i(') 2 t

jk̂nig

and X
j�1

dimF�i(Q)
j = lt(Ext

1
Ĉ
(Ẑ�(�i); Q̂

i)):

3.4. Let us recall how the Jantzen �ltration from [AJS, 6.6] is constructed.

Choose a generator c0 = c0� 2 HomĈ(Ẑ(�); Ẑ
� (�)). Then Lemma 1.9 implies

c � c0 = tN(�) idẐ(�) and c0 � c = tN(�) idẐ� (�)(1)

where N(�) = #f� 2 R+ j h� + �; �veei 6� 0(mod p)g.

12



The Jantzen �ltration on Ẑ� (�) (resp. Ẑ(�)) is given by

Ẑ�(�)j = fv 2 Ẑ�(�) j cv 2 tjẐ(�)g

(resp.

Ẑ(�)j = fv0 2 Ẑ(�) j c0v0 2 tjẐ� (�)g):

Exactly as in 3.2 one sees that there exist bases fv1; � � � ; vng of Ẑ�(�) and fv01; � � � ; v
0
ng

of Ẑ(�) and integers a1; � � � ; an 2 N such that

cvi = taiv0i and c
0v0i = tN(�)�aivi;(2)

i = 1; � � � ; n. If we denote by Z� (�)j (resp. Z(�)j) the image of Ẑ�(�)j in Z�(�)

(resp. of Ẑ(�)j in Z(�)), then we get (setting �vi = vi 
 1 and �v0i = v0i 
 1)

Z�(�)j =
X
i

ai�j

k�vi and Z(�)j =
X
i

N(�)�ai�j

k�v0i:(3)

Observing that �vi and �v0i have the same weight we deduce from (3)

chZ�(�)j + chZ(�)N(�)�j+1 = chZ(�)(4)

3.5. Recall the notation F̂w0
� (Q) from Remark 3.1. With N(�) as in 3.4 (1) we

have

Lemma . There exist k̂-bases f 1; � � � ;  rg of Ê�(Q) and f 01; � � � ;  
0
rg of F̂

w0
� (Q)

such that (up to units in k̂)

 i �  
0
j = �ijt

N(�) id
Ẑ(�);

i; j = 1; � � � ; r.

Proof: With notation as in 3.3 we see from 1.7(3) that if � = �i, then we have
isomorphisms

F̂w0
� (Q)

�
 HomĈ(Ẑ(�); Q̂

i�1)
�
! HomĈ(Ẑ(�); Ẑ

� (�i)
ni)

induced by the inclusion Q̂i�1 ,! Q̂ and the projection Q̂i�1 ! Q̂i�1=Q̂i ' Ẑ� (�i)ni,

respectively. Let  0j 2 F̂w0
� (Q) be the element which under these isomorphisms

corresponds to the composite of c0 with the j-th inclusion ij : Ẑ� (�)! Ẑ�(�i)ni.

We have similar isomorphisms

Ê�(Q)
�
! HomĈ(Q̂

i�1; Ẑ(�))
�
 HomĈ(Ẑ

�(�i)
ni ; Ẑ(�))

and we let  j 2 Ê�(Q) denote the element corresponding to the composite of the

j-th projection �j : Ẑ�(�i)ni ! Ẑ(�) with c.

Then we get

 s �  
0
t = (c � �s) � (it � c

0) = �stc � c
0;

s; t = 1; � � � ; ni. The lemma therefore follows from 3.4(1).
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3.6. We can now deduce yet another characterization of our �ltration

Proposition . For each j 2 N we have

F̂�(Q)
j = f' 2 F̂�(Q) j ' � c

0 2 tjF̂w0
� (Q)g:

Proof: Let ' 2 F̂�(Q) and  2 Ê�(Q). In the notation of 3.2 we have  � ' =
a�('; )c and hence 3.4(1) implies

 � ' � c0 = a�('; )t
N(�) idẐ(�) :(1)

Using the basis from Lemma 3.5 we may write ' � c0 =
Pr

s=1 bs 
0
s for some bs 2 k̂.

Then Lemma 3.5 and (1) give us bs = a�('; s) for all s. Hence ' � c0 2 tjF̂
w0
� (Q)

i� tj j a�('; s) for all s, i.e. i� ' 2 F̂�(Q)j.

3.7. Proposition. Let � 2 X. ThenX
j�1

dimF�(Q(�))
j =

X
j�1

[Z(�)j : L(�)]:

Proof: Let w0 = s1 � � � sN be a reduced expression of w0. In this proof we then use
the abbreviations

Ẑ i = Ẑs1 ���si(�hs1 � � � sii) and Z
i = Zs1���si(�hs1 � � � sii):

By Corollary 1.12 we may take the generator c0 2 HomĈ(Ẑ
0; ẐN) as the composite

Ẑ0 '̂1! Ẑ1 '̂2! � � �
'̂N! ẐN

where '̂i = '̂�s1���si�1;s1���si
.

Set Q = Q(�) and let Q̂ = Q̂(�) 2 Ĉ (see 2.4(1)). Denote by �̂i : HomĈ(Ẑ
i; Q̂)!

HomĈ(Ẑ
i�1; Q̂) the map induced by '̂i and set �̂ = �̂1 � � � � � �̂N . Then Proposition

3.6 says

F̂�(Q)
j = f' 2 F̂�(Q) j �̂(') 2 t

jF̂w0
� (Q)g

Hence the standard arguments (compare 3.2) giveX
j�1

dimF�(Q)
j = �t(det �̂) =

NX
i=1

�t(det �̂i)(1)

Set Ĉ = coker '̂i. Then by Lemma 1.9 we have

tĈi = 0 for all i:(2)

Hence also

t Ext1
Ĉ
(Ĉi; Q̂) = 0 for all i:(3)
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Note that by 1.7(3) and Proposition 2.5 we have Ext1
Ĉ
(Ẑ i; Q̂) = 0. Therefore we

have the exact sequence

0! HomĈ(Ẑ
i; Q̂)

�̂i! HomĈ(Ẑ
i�1; Q̂)! Ext1

Ĉ
(Ĉi; Q̂)! 0(4)

and so (3) implies

�t(det �̂i) = lt(coker �̂i) = dimk(Ext
1
Ĉ
(Ĉi; Q̂)
k̂

k):(5)

Set 'i = '̂i 
k̂
k and Ci = Ĉi 
k̂

k. Then Ci = coker'i and the injectivity of Q in
C gives the exactness of the top row in the following diagram

0! HomC(Ci;Q) ! HomC(Z
i;Q) ! HomC(Z

i�1;Q) ! HomC(ker'i;Q) ! 0

�

��� �

���
Hom

Ĉ
(Ẑi;Q̂)


k̂
k ! Hom

Ĉ
(Ẑi�1;Q̂)


k̂
k ! Ext1

Ĉ
(Ĉi;Q)


k̂
k ! 0

Here the bottom sequence is obtained by tensoring (4) with k and the vertical

isomorphisms result from 1.7(3) and 2.5. This diagram shows that Ext1
Ĉ
(Ĉi; Q)
k̂

k
may be identi�ed with HomC(ker'k; Q) and that this has the same dimension as
HomC(Ci; Q). But this dimension equals [Ci : L(�)].

The standard arguments applied to the Jantzen �ltration of Z0 = Z(�) (see 3.4)
give X

j�1

ch Z(�)j =
NX
i=1

ch Ci:(6)

Hence combining (1), (5), (6) and the above we deduceX
j�1

dimF�(Q)
j =

NX
i=1

[Ci : L(�)] =
X
j�1

[Z(�)j : L(�)]

and the proposition is proved.

3.8. Theorem. If Q 2 C is projective, then

dimF�(Q)
j = dimHomC(Z(�)

j; Q)

for all j 2 N.

Proof: We shall �rst prove

if ' 2 F�(Q)
j; then '(Z� (�)N(�)+1�j) = 0:(1)

To see this, note that by de�nition ' 2 F�(Q)j is the image of some '̂ 2 F̂�(Q)j.

According to Proposition 3.6 we have '̂ � c0 2 tjF̂w0
� (Q). On the other hand, we

have from 3.4 (2) that '̂ � c0(v0i) = tN(�)�ai'̂(vi); i = 1; � � � ; n. We conclude that

if N(�) � ai � j; then '̂(vi) 2 t
j�N(�)+aiQ̂:(2)

15



However, by 3.4(3) we see that Z� (�)N(�)+1�j is spanned by those �vi where ai �

N(�) + 1 � j. Hence by (2) we see that if �vi 2 Z� (�)N(�)+1�j, then '̂(vi) 2 tQ̂, i.e.,
'(�vi) = 0 and (1) is proved.

Now (1) says that F�(Q)j � HomC(Z� (�)=Z� (�)N(�)+1�j; Q): Since Q is injective,
the dimension of this Hom-space only depends on the character of Z�(�)=Z� (�)N(�)+1�j.
Therefore by 3.4(4) we deduce

dimF�(Q)
j � dimHomC(Z(�)

j ; Q):

This being true for all j we obtain equality by Proposition 3.7 (the case j = 0 is
trivial).

3.9. If in Theorem 3.8 we take Q = Q(�) for some � 2 X then the result says

dimF�(Q(�))
j = [Z(�)j : L(�)](1)

for all j.

The length of the Jantzen �ltration of Z(�) is N(�). Hence it follows from Theo-
rem 3.8 that

F�(Q)
N(�)+1 = 0(2)

for all projective modules Q 2 C. (This could also be seen directly from Proposition
3.6).

3.10. We can use Theorem 3.8 to translate the results of [AJS, Proposition 6.6] into
statements about the �ltration (F�(Q)j). To formulate these we need the following
notation. If Q 2 C is projective we denote for � 2 X by (Q : Q(�)) the number
of times Q(�) occurs as summand in Q. We set R+(�) = f� 2 R+ j h� + �; �_i 6�
0(mod p)g and for � 2 R+(�) we let n� 2 f1; � � � ; p � 1g denote the residue of
h� + �; �veei mod p.

Corollary . For each projective module Q 2 C we have

i) dimF�(Q)0 = (Q : Q(�)):
ii) dimF�(Q)N(�) = (Q : Q(�0)) where L(�0) = soc Z(�):
iii)

P
j�1 dimF�(Q)j =P
�2R+(�)(

P
i�0(Q : Z(� � (ip+ n�)�))�

P
i�1(Q : Z(� � ip�))):

16



ith

4. Translations

In this section we shall prove some results on translation which we need in order
to compare our �ltrations for two adjacent weights. For the de�nition and basic
properties of translation functors we refer to [AJS, 6-7]. Starting in 4.2 we assume
p � h (in order to ensure the existence of p-regular weights). This means that the

U0-algebra structure on k̂ (and on k) may be given by mapping all H� to 0; � 2 R+.

4.1. Let B denote the U0-algebra from [AJS, 5.3] (this should not be confused with
the Borel subgroup of G also denoted B in the introduction). Consider a B-algebra
�. When � 2 X we let C�(�) denote the block in C� corresponding to the orbit
Wp:�.

Suppose �; � 2 X are in the closure of the same alcove. Then we have translation
functors (see [AJS, 6])

T �

� : C�(�)! C�(�) and T
�
� : C�(�)! C�(�):

These two functors are adjoint. If M 2 C�(�) and N 2 C�(�), then we denote the
corresponding functorial isomorphisms

adj1 : HomC�(M;T �
�N)

�
�! HomC�(T

�

�M;N)

and
adj2 : HomC�(N;T

�

�M)
�
�! HomC�(T

�
�N;M):

We shall rely heavily on the following two facts, see [AJS, 7.5].

(1) Translation functors commutewith base change, e.g. (T �

�M)
��0 ' T
�

� (M
� �0);
M 2 C�(�);�! �0 any �-algebra.

(2) The module T �

�Z�(�) admits a Z�-�ltration with quotients Z�(x:�); x 2
StabWp(�)=StabWp(�) \ StabWp(�), each occurring with multiplicity 1.

Here StabWp(�) = fx 2 Wp j x:� = �g; � 2 X.

4.2. Assume for the rest of this section that � is p-regular, i.e. StabWp(�) = 1 and
that � is semi-p-regular, i.e. jStabWp(�)j = 2. Denote by s 2 Wp the reection with
s:� = �. There exist � 2 R+ and n� 2Zsuch that s = s�;n� , i.e.,

s:� = s�:� + n�p�; � 2 X:

We assume that �0 = s:� < �. This means n�p < h� + �; �_i < (n� + 1)p.

With these assumptions we get from 4.1 (2)

(1) T �

�Z�(�) ' Z�(�) ' T �

�Z�(�0):
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(2) There is an exact sequence in C�(�)

0! Z�(�) ! T �
�Z�(�)! Z�(�

0)! 0

4.3. Let � : B ! � denote the structure homomorphism. Then we have (with the
conventions as in 4.2 and with H� as in [AJS])

Proposition . i) ExtjC�(Z�(�0); Z�(�)) = 0 for j > 1.

ii) Ext1C�(Z�(�0); Z�(�)) ' �=�(H�)�.

Proof: Using adjointness we get from 4.2 (1)

ExtjC�(Z�(�
0); T �

�Z�(�)) ' ExtjC�(Z�(�); Z�(�))(1)

for all j � 0. But for j > 0 we have for any �; � 2 X that ExtjC�(Z�(�); Z�(�)) = 0
unless � > �. In fact, we recorded this already in 2.1(1) when j = 1. It follows for
j > 1 by taking a projective cover Q 2 C� of Z�(�) with [Q : Z�(�0)] = 0 for �0 � �,
see [AJS, Remark 2.13]. Hence 4.2 (2) and (1) give

ExtjC�(Z�(�
0); Z�(�)) ' Extj�1C�

(Z�(�
0); Z�(�

0)) = 0

for j > 1. This proves i).

The vanishing in i) implies by the usual base change arguments that

Ext1C�(Z�(�
0); Z�(�)) ' Ext1CB(ZB(�

0); ZB(�)) 
B �:

Therefore, ii) follows from [AJS, 8.6].

4.4. We shall now study in more details the case when � = k̂. Using the isomor-
phism in 4.2(1) we de�ne generators of the following Hom-spaces

î = adj�11 (id
Ẑ(�)) 2 HomĈ(Ẑ(�); T

�
� Ẑ(�))

p̂ = adj2(idẐ(�)) 2 HomĈ(T
�
� Ẑ(�); Ẑ(�

0))

r̂ = adj2(idẐ(�)) 2 HomĈ(T
�
� Ẑ(�); Ẑ(�))

ŝ = adj�11 (idẐ(�)) 2 HomĈ(Ẑ(�
0); T �

� Ẑ(�))

Then we have

Lemma . i) The sequence 0! Ẑ(�)
î
! T �

� Ẑ(�)
p̂
! Ẑ(�0)! 0 is exact.

ii) We have the following identities (valid up to units in k̂)

r̂ � î = t idẐ(�); p̂ � ŝ = t idẐ(�0) and î � r̂ + ŝ � p̂ = t idT�� Ẑ(�) :

Proof: i) By 4.2 (2) the modules in question form an exact sequence. Since î and p̂
are generators of the respective Hom-spaces, it follows easily that they coincide (up

to units in k̂) with the homomorphisms appearing in any such sequence.
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ii) Proposition 4.3 ii) and the arguments in the proof of Proposition 4.3 give the
exact sequence

HomĈ(Ẑ(�
0); T �

� Ẑ(�))
//�p

o

EndĈ(Ẑ(�
0)) //

o

k̂=tk̂ //

o

0

EndĈ(Ẑ(�))

o

k̂ k

k̂

Here �p takes f 2 HomĈ(Ẑ(�
0); T �

� Ẑ(�)) into p̂ � f . This diagram shows that the

generator ŝ is mapped to t 2 k̂, i.e., p̂ � ŝ = t id
Ẑ(�). The other identities are proved

in the same way (see also [AJS, 8.12]).

4.5. The results in 4.1-4 have straightforward analogues with Zw; w 2 W replacing
Z. In particular, we have for w = w0 a short exact sequence

0! Ẑw0(�0hw0i)
îw0�! T �

� Ẑ
w0(�hw0i)

p̂w0�! Ẑw0(�hw0i)! 0

with îw0 = adj�11 (idẐw0(�hw0i)
) and p̂w0 = adj2(idẐw0 (�hw0i)

):

We have also generators r̂w0 and ŝw0 analogous to r̂ and ŝ and there are identities
completely similar to those in Lemma 4.4.

4.6. Recall from 1.10 that if � 2 X then we have natural homomorphisms '̂�1;w0
:

Ẑ(�) ! Ẑw0(�hw0i) and '̂�w0 ;1
: Ẑw0(�hw0i) ! Ẑ(�). According to Corollary 1.12

these homomorphisms generate the Hom-spaces to which they belong. The following
lemma gives their behaviour under translation.

Lemma . With �; �0 and � as in 4.2 we have up to units in k̂

i) T �

� '̂
�0

1;w0
= '̂�1;w0

and T �

� '̂
�
w0 ;1

= '̂�w0;1
.

ii) T �

� '̂
�0

w0;1 = t'̂�w0;1 and T �

� '̂
�
1;w0

= t'̂�1;w0
.

Proof: i) Recall that the image of '�
0

1;w0
= '̂�

0

1;w0


k̂
k : Z(�0)! Zw0(�0hw0i) is L(�0)

and that T �

�L(�
0) = L(�). It follows that T �

�'
�0

1;w0
6= 0 and hence that T �

� '̂
�0

1;w0
gen-

erate HomĈ(Ẑ(�
0); Ẑw0(�0hw0i)): This proves the �rst equality. The second equality

is proved completely similarly.

ii) By the identities in 1.9 we see that

'̂�1;w0
� '̂�w0;1 = tN idẐ(�)(1)

and

'̂�1;w0
� '̂�w0;1 = tN�1 idẐ(�)(2)
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(HereN = jR+j). Applying T �

� to (1) and using i) we get (T �

� '̂
�
1;w0

)�'̂�1;w0
= tN id

Ẑ(�).

When we compare this with (2) we get the second equality. The �rst is obtained in
the same way.

4.7. Proposition. With notation as above we have the following diagram in Ĉ

0 // Ẑw0(�0hw0i)
//

îw0

T �
� Ẑ

w0(�hw0i)oo
r̂w0

//
p̂w0

��
T�� '̂

�
w0;1

Ẑw0(�hw0i)oo
ŝw0

// 0

0 // Ẑ(�)
//î

T �
� Ẑ(�)

OO
T�� '̂

�
1;w0

oo
r̂

//ŝ

Ẑ(�0)oo
p̂

// 0

in which the rows (reading from left to right) are exact. Moreover, the following
relations hold

i) ŝw0 � '̂
�
1;w0

= t(T �
� '̂

�
1;w0
� î) and îw0 � '̂

�0

1;w0
= T �

� '̂
�
1;w0
� ŝ.

ii) î � '̂�w0;1
= T �

� '̂
�
w0;1
� ŝw0 and ŝ � '̂�

0

w0;1
= t(T �

� '̂
�
w0;1
� îw0)

iii) '̂�1;w0
� r̂ = t(p̂w0 � T

�
� '̂

�
1;w0

) and '̂�
0

1;w0
� p̂ = r̂w0 � T

�
� '̂

�
1;w0

iv) '̂�
0

w0;1 � p̂w0 = r̂ � T �
�'

�
w0 ;1 and '̂�w0;1 � r̂w0 = t(p̂ � T �

� '̂
�
w0;1)

Proof: i) We have already established the exactness of the two rows. The �rst
identity in i) is obtained by using the functoriality of adj�11 (see [AJS, 7.6]) and
Lemma 4.6 ii):

ŝw0 � '̂
�
1;w0

= adj�11 (id) � '̂�1;w0
= adj�11 (id �T �

� '̂
�
1;w0

) =

t adj�11 ('̂�1;w0
� id) = t(T �

� '̂
�
1;w0
� adj�11 (id)) = t(T �

� '̂
�
1;w0
� î):

The second equality in i) is obtained in the same way (using this time the �rst half
of Lemma 4.6 i)).

ii)-iv) are proved analogously by using also the functoriality of adj2 and Lemma
4.6 ii).

4.8. Finally, we shall need the following result

Proposition . If p is odd, then the composite

adj1(idT�� Ẑ(�)) � adj
�1
2 (idT�� Ẑ(�)) : Ẑ(�)! Ẑ(�)

is an isomorphism.

Proof: By adding a multiple of p� if necessary we may assume that � is dominant.
Then we denote by V (�) the Weyl module with highest weight � and we let � :
Z(�) ! V (�) denote the corresponding natural G1T -homomorphism which is an
isomorphism on the �-weight spaces.
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Consider now the commutative diagram in C

Z(�) //
adj�1

2 (id
T�� Z(�)

)

��
�

T �

� T
�
�Z(�) //

adj1(idT��Z(�)
)

��
T
�
�
T�� �

Z(�)

��
�

V (�) //
adj�1

2 (id
T�� V (�)

)

T �

� T
�
�V (�) //

adj1(idT�� V (�)
)

V (�):

In the bottom row the translation functors as well as the adjointness are taken in the
category of G-modules. According to [Ja2, II. 9.19] translation functors commute
with the forgetful functors from this category into our category C.

The composite of the maps in the bottom row is an isomorphism, see [An3, 2.2
and 2.8]. It follows that the composite in the top row is an isomorphism on the
�-weight spaces and therefore on all of Z(�). The proposition now follows via the
Nakayama lemma.

Remark . Our assumption p > 2 is only relevant for type A1 (since we are assuming
p � h). For type A1 and p = 2 a direct computation shows that then the composite
in the proposition is in fact 0.
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5. Filtrations and associated polynomials

In this section we shall study the polynomials attached to our �ltrations. Their
values at 0 determine the decomposition of a projective module into its indecom-
posable summands.

We conjecture that the polynomials attached to an indecomposable projective
module with p-regular highest weight coincide with the Kazhdan-Lusztig polynomi-
als associated with the corresponding elements in the a�ne Weyl group. In the case
where the highest weight of our projective module is in the \�rst" alcove we are able
to explicitly determine the polynomials attached to our �ltration, see Proposition
5.3. The result veri�es the conjecture in this case. Then we try to proceed via \wall-
crossing". If our �ltrations behave as expected (see Conjecture 5.4 and compare with
[An3, Conjecture 3.1]) then we deduce that the conjecture is true in general. We
also demonstrate that it would give a re�nement of the Brauer-Humphreys reci-
procity for indecomposable projective G1T -modules. Moreover, it would imply that
the Jantzen �ltration of a standard module coincides with its Loewy series.

5.1. Let Q 2 C be projective and suppose � 2 X. Then we set

f�(Q) =
X
j�0

dimF�(Q)jq
j 2Z[q]:(1)

In case Q is indecomposable, i.e., Q = Q(�) for some � 2 X, we write f�;� instead
of f�(Q(�)):

A general projective moduleQ 2 C decomposes into a direct sum of various Q(�)'s.
We denote the number of summands in Q isomorphic to Q(�) by (Q : Q(�)).

Proposition . i) f�(Q)(0) = (Q : Q(�)).
ii) For all �; � 2 X we have f�;� = f�+p�;�+p�.

Proof: i) was proved in 3.10.i), and ii) is clear from the de�nition since Z(�+p�) '
Z(�) 
 p� and Q(� + p�) ' Q(�)
 p�.

5.2. Recall from [Lu] the concept of distance between two alcoves. If A and C are
alcoves in X we denote by d(A;C) the distance from A to C and we let QA;C be the
Kazhdan-Lusztig polynomial attached to the pair (A;C) as in loc. cit.

Assume from now on that � is p-regular (as in 4.2). This requires p � h which we
assume for the rest of this section. We also assume p to be odd. Then each alcove A
contains a unique element �A 2 Wp:� and we write fA;C instead of f�A;�C . If w 2 Wp

we let Aw denote the alcove containing w�1:�A

Conjecture . Suppose A and C are alcoves in X. Then we have

QA;C(q) = q
1
2d(A;C)fAw0 ;Cw0

�
q�

1
2

�
:
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Remark . Equivalently, we should have the following relation to the polynomials
pA;C considered by W. Soergel in [So, 4.4]

pA;C(q) = q
3
2d(A;C)fAw0;Cw0

�
q�

1
2

�
:

5.3. The following result shows that Conjecture 5.2 holds when C is the bottom
dominant alcove.

Proposition . Suppose � 2 X belongs to the top antidominant alcove, i.e. �p <
h� + �; �_i < 0 for all � 2 R+. Then

f�;� =

(
ql(w) if � = w:� for some w 2 W ;

0 otherwise:

Proof: Recall from 2.6 that Q(��) = Z(��). It follows easily that Q(�) =
T �
��Q(��) and hence by 4.1 (2)

(Q(�) : Z(�)) =

(
1 if � 2 W:�;

0 otherwise:

So we may assume � = w:� for some w 2 W . As � is minimal in W:� with respect
to the ordering on X determined by w(R+) we see that Ẑww0(�hww0i) occurs at the

bottom of a Zww0 -�ltration of Q̂(�). The corresponding inclusion Ẑww0(�hww0i) ,!

Q̂(�) induces two isomorphisms

HomĈ(Ẑ(�)
� ; Ẑww0(�hww0i)) ' F�(Q̂(�)):

and

HomC(Ẑ(�); Ẑ
ww0(�hww0i)) ' F

w0
� (Q̂(�)):

This says that we may identify a generator of F̂�(Q(�)) (resp. F̂w0
� (Q(�))) with

'̂�w0;ww0
(resp. '̂�1;ww0

). We have '̂�w0;ww0
� c0 = tl(w)'̂�1;ww0

(see Lemma 1.9). Hence
Proposition 3.6 gives the desired conclusion.

5.4. We would like to determine the polynomials fA;C for any pair of alcoves A;C.
The �rst step is taken in Proposition 5.3, and we shall now try to proceed by
induction on C using the translation functors from Section 4. Since our strategy is
very similar to the one used in [An3] we shall leave most of the proofs to the reader.

Suppose �; �0 and � are as in 4.2. Let Q̂ 2 Ĉ(�) be projective. Then the exact
sequence in 4.6 gives rise to the exact sequence

0! F̂�(Q)
�p
! F̂�(T

�

�Q)
�i
! F̂�0(Q)! 0:(1)

Here �p and �i are the homomorphisms induced by p̂w0 and îw0, respectively. Explicitly,

�p(') = adj�12 (' � p̂w0); ' 2 F̂�(Q)

and
�i( ) = îw0 � adj2( );  2 F̂�(T

�

�Q):
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Recall that s is the reection in Wp which �xes �. If � 2 Wp:�, then we write �s
for the mirror image of � in the s-wall, i.e., if � = w:�, then �s = ws:�.

Conjecture . Assume Q̂ contains no summands of the form Q(�) with � < �s.
Then for all j � 0

i) F̂�0(Q)j+1 = �i(F̂�(T
�

�Q)
j):

ii) F̂�(Q)j = tF̂ (Q)j + �p�1(F̂�(T
�

�Q)
j):

Remarks.

i) This conjecture gives the expected behavior of our �ltrations under the transla-
tion functor T �

� . As we shall see below (Proposition 5.6) the behavior under T �
�

is easy to prove.
ii) Of course we could also phrase the conjecture in terms of the corresponding

�ltrations of k-spaces. Then the expected behavior is:
The exact sequence

0! F�(Q)! F�(T
�

�Q)! F�0(Q)! 0(2)

(obtained from (1) by tensoring with k) induces for each j � 0 a short exact
sequence

0! F�(Q)
j ! F�(T

�

�Q)
j ! F�0(Q)

j+1! 0:

5.5. The following four results may be viewed as evidence for or partial veri�cation
of Conjecture 5.4. They are deduced via the results in Section 4 exactly as the
analogous statements in [An3]. The notation and assumptions are as in 5.4.

tF̂�0(Q)
j ��i(F̂�(T

�

�Q)
j) � F̂�0(Q)

j for all j:(1)

F̂�(Q)
j+1 ��p�1(F̂�(T

�

�Q)
j) � F̂�(Q)

j for all j:(2)

If F̂�(Q) =0 then F̂�0(Q)
j+1 = �i(F̂�(T

�

�Q)
j) for all j:(3)

If F̂�0(Q) =0 then �p�1(F̂�(T
�

�Q)
j) = F̂�(Q)

j for all j:(4)

5.6. Arguing as in [An3, 2.5-7] we obtain

Proposition . Let Q0 2 C(�) be projective. Then

F̂�(T
�
�Q

0)j+1 ' F̂�(Q
0)j ' F̂�0(T

�
�Q

0)j

for all j � 0.

5.7. Combining 5.4 and 5.6 we can now deduce how our �ltrations are expected to
behave with respect to the \wall-crossing" functor �s = T �

�T
�

� .

Proposition . Let Q 2 C(�) be projective and assume Q contains no summands of
the form Q(�) with � < �s. If Conjecture 5.4 holds then we have for any � 2 Wp:�

f�(�sQ) =

(
qf�(Q) + f�s(Q) if � > �s

q�1f�(Q) + f�s(Q) if � < �s
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Proof: Argue as in [An3, 3.5].

5.8. Corollary. Let � 2 Wp:� and suppose � > �s. If Conjecture 5.4 holds for
Q(�) then

�sQ(�) = Q(�s)� (
M

�s<�<�s

�

f 0�;�(0)Q(�)):

(Here f 0 denotes the formal derivative of f 2Z[q]).

Proof: To get the decomposition of �sQ(�) into indecomposable summands we
have by Proposition 5.1 i) just to compute f�(�sQ(�))(0) for all � 2 Wp:�. This is
easy once we have Proposition 5.7.

Remark . Any � 2 X may be written uniquely � = �0 + p�1 with �0 2 X1 = f� 2
X j 0 � h�; �_i < p;� 2 Sg and �1 2 X. Set then �̂ = w0:�

0 + p(�1 + 2�).

It follows from [AJS, 16.14] that the �'s occurring in the corollary satisfy �s " � "
�̂ "c�s. Here " denotes the strong linkage relation, see loc. cit.

5.9. Another consequence of Proposition 5.7 is that it veri�es Conjecture 5.2. In
other words, Conjecture 5.4 implies Conjecture 5.2. In fact, we saw already (in
Proposition 5.3) that Conjecture 5.2 holds when C is the bottom dominant alcove.
For general C we then just compare Corollary 5.8 with the inductive formula [Lu,
10.7] for the Kazhdan-Lusztig polynomials.

In particular, we conclude from 5.2 that the \leading coe�cient" �(A;C) (see
loc.cit) of QA;C is given by

�(A;C) = f 0Aw0;Cw0
(0):(1)

Hence we may reformulate Corollary 5.8 as follows:

If �A < �As then �sQ(�A) = Q(�As)� (
M

�C<�Cs

�(Cw0; Aw0)Q(�C)):(2)

This is Cline's reformulation of Lusztig's conjecture, see [Cl, 3.2].

5.10. Note that Conjecture 5.2 gives the following identity when we evaluate at 1

QA;C(1) = fAw0;Cw0(1) = [Z(�Aw0) : L(�Cw0 )] :(1)

This is the G1T -version of Lusztig's conjecture. We proved in [AK, 6.3] that this
conjecture implies the following interpretation of the Kazhdan-Lusztig polynomials

QA;C =
X
j�0

q
1
2 (d(A;C)�j) [radj Z(�Aw0 ) : L(�Cw0 )] :(2)

Here radj denotes the j'th level in the radical series.

When we compare with 5.2 we get the following G1T -version of [An3, 3.5].
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Corollary . Suppose Conjecture 5.2 holds. Then we have for all p-regular weights
� 2 X

radj Z(�) = Z(�)j; j � 0

Proof: By (2) and Conjecture 5.2 we get

[radj Z(�A) : L(�C)] = dimF�A(Q(�C))j(3)

Remark . The identity (1) may be thought of as a re�nement of Brauer-Humphreys
reciprocity.
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6. Some related cases

In this section we shall consider some cases which are closely related to the theory
developed in the previous sections.

The �rst case (treated in 6.1) is the \small" quantum group associated with R
(this is case II in [AJS]). Here the theory carries over almost verbatim.

The second and third cases are the \big" quantum group at a complex root of
unity (treated in 6.2-11) and the algebraic group G itself (treated in 6.12-13). These
cases were already studied in [An3] (which in turn inspired many of the results in
this paper). In particular, the theory in Sections 4-5 was developed in loc.cit. Here
we shall see that the results in Section 3 have at least some partial analogues in
these cases as well.

6.1. Replace the ground �eld considered so far by k = Q(�), where � is a primitive
p-th root of unity. We assume that p 2 N is odd and if R is of type G2, then we also
require p not to be divisible by 3.

Denote by U2 the quantum group over k associated to R, see [AJS]. This is a
k-algebra with generators fE�; F�;K�;K

�1
� j � 2 Sg and certain relations. As in

[AJS] we then de�ne U = U2=I where I is the two-sided ideal in U2 generated by
fEp

�; F
p

� j � 2 R+g. Here E� and F� are some (�xed) choice of root vectors, see
loc.cit.

Then U has a triangular decomposition, U = U�U0U+ with U� (resp. U0, resp.
U+) generated by the images in U of fF� j � 2 Sg (resp. fK�;K

�1
� j � 2 Sg, resp.

fE� j � 2 Sg). We have U0 ' k[fK�;K
�1
� j � 2 Sg], the Laurent polynomial ring

in the variables fK� j � 2 Sg.

To stay in analogy with the notation of the previous sections we set also in this
case k̂ = k[t](t) and ~k = k(t). Then k̂ (and ~k) is a U0-algebra with structure

homomorphism � : U0 ! k̂ given by �(K�) = t+ 1 for all � 2 S, see [AJS, 6.5].

We now have categories C; Ĉ and ~C, standard modules Z(�); Zw(�) and their

counterparts in Ĉ and ~C as well as projective modules, see [AJS]. The theory from
Sections 1-5 carry over with almost no change at all. The only place where there is
a small di�erence is in the proof of 1.9. The relevant formula replacing 1.9 (1) reads
(using analogous notation, see also [AJS, 5.6])

0'̂�i � '̂
�
i (v0) = �

��
Kyi�i; h�hyii; yi�

_
i i

p � 1

��
v0

where for c 2Z; t 2 N and � 2 R+ we have
�
K� ;c
t

�
=
Qt

j=1

K��
d�(c+1�j)�K�1

�
�
�d�(c+1�j)

�
d�j���d�j

as in [AJS, 5.1]. Inserting �(K�) = t + 1, we easily check that up to units in k̂ we
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get

�

��
Kyi�i; h�hyii; yi�

_
i i

p � 1

��
=

(
t if h�+ �; yi�

_
i i 6� 0mod p;

1 otherwise :

6.2. Let p; � and k be as in 6.1.

Consider now the quantum group U� = UZ[q;q�1] 
Z[q;q�1] k obtained from the
Lusztig Z[q; q�1]-form UZ[q;q�1] of the generic quantum group associated with R by
specializing q to �. We let C = Ck denote the category of �nite dimensional U�-
modules of type 1.

For each � 2 X+ we have (as \standard" modules in C) a Weyl module ��(�)
and an induced module r�(�) with highest weight �. The simple module L�(�) is
the head of ��(�) and the socle of r�(�). In addition we have an indecomposable
tilting module T�(�) also having highest weight �. (Recall that M 2 C is tilting if
M has both a ��- and a r�-�ltration).

In order to stay close to the notation used in the previous sections we set k̂ =
Q[q](�p), the localization of the polynomial ring Q[q] at the prime ideal generated by

the p-th cyclotomic polynomial �p. Then k is the residue �eld of k̂ (via q 7! �) and
~k = Q(q) is the fraction �eld.

We have categories Ĉ and ~C similar to C. They consist of (integrable) modules

for the corresponding quantum groups over k̂ and ~k, respectively. Moreover, the
standard modules ��(�) and r�(�) lift to k̂-free modules in Ĉ which we denote

�̂(�) and r̂(�). The tilting module T�(�) also lift to a tilting module T̂ (�) 2 Ĉ (see
[An5]).

6.3. In the notation of [An3] we have (for � 2 X+)

r�(�) = H0
� (�) and ��(�) = HN

� (w0:�):

Here H0
� : C

�0 ! C denotes the induction functor and Hj
q ; j � 0 its derived functors,

see [APW]. We have similar functors over k̂ which we shall denote Ĥ0 and Ĥj. Then
(loc.cit.)

r̂(�) = Ĥ0(�) and �̂(�) = ĤN (w0:�):

More generally, we consider for w 2 W the module Ĥ l(w)(w:�) 2 Ĉ. This is not

always a free k̂-module so we factor out the torsion submodule Ĥ l(w)(w:�)tor and set

r̂w(�) = Ĥ l(w)(w:�)=Ĥ l(w)(w:�)tor:

Then r̂w(�) is free of the same rank as r̂(�). In fact, by the quantized Bott theorem
[APW] we have

Ĥ l(w)(w:�) 
k̂
~k ' Ĥ0(�) 
k̂

~k:

The character of r̂w(�) is then given by the Weyl character formula.
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Note that in this notation we have

�̂(�) = r̂w0(�):

6.4. We shall now prove that we have some results similar to those in 1.7-9. So let
� 2 X+ and �x w 2 W . Suppose siw > w for some simple reection si. Then

Lemma . There exist homomorphisms '̂�i;w 2 HomĈ(r̂
siw(�); r̂w(�)) and 0'̂�i;w 2

HomĈ(r̂
w(�); r̂siw(�)) such that

0'̂�i;w � '̂
�
i;w =

(
�p idr̂siw(�) if hw(� + �); �_i i > p and hw(� + �); �_i i 6� 0(mod p);

idr̂siw(�) otherwise:

(i)

'̂�i;w �
0'̂�i;w =

(
�p idr̂w(�) if hw(� + �); �_i i > p and hw(� + �); �_i i 6� 0(mod p);

idr̂w(�) otherwise:

(ii)

Proof:

Let U�(i) denote the subalgebra of U� generated by U�
q ; U

0
q and fE(r)

i j r 2 Ng.
Then we have a \rank 1"-induction functor H0

i : C�0 ! C(i), where C(i) is the
category of integrable U�(i)-modules. We let H1

i denote the �rst derived functor

and have corresponding functors Ĥj

i : Ĉ
�0 ! Ĉ(i); j = 0; 1.

If � 2 X+ has m = h�; �_i i � 0, then the result in [APW, Section 4] show that

Ĥ0
i (�) and Ĥ1

i (si:�) are both k̂-free of rank m + 1 and that there exist natural

homomorphisms in Ĉ(i)

 ̂�
i : Ĥ

1
i (si:�)! Ĥ0

i (�) and
0 ̂�

i : Ĥ
0
i (�)! Ĥ1

i (si:�)

which in suitably chosen bases fv0jg for Ĥ
1
i (si:�) and fvjg for Ĥ

0
i (�) are given by

(using notation as in loc. cit. for the Gaussian integers and binomial coe�cients)

 ̂�
i (v

0
j) =

�
m
j

�
di

vj and
0 ̂�

i (vj) = [m� j]di![j]di!v
0
j;

j = 0; 1; � � � ;m. (In fact all this works also over Z[q; q�1]).

Noting that �p divides [r]di i� p divides r, we see that
0 ̂�

i is divisible by(
�m1
p if m < p or m � �1(modp);

�m1�1
p otherwise,

where m1 2 N is determined by m1p � m < (m1+ 1)p. If we carry out this division

and still denote the resulting homomorphism 0 ̂�
i then the composite of  ̂�

i and 0 ̂�
i

(in either order) is multiplication by a scalar a 2 k̂ which up to a unit in k̂ is given
by

a =

(
�p if m � p and m 6� �1(mod p);

1 otherwise:
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Now  ̂�
i (resp. 0 ̂�

i ) induces for each j a homomorphism Ĥj+1(si:�)! Ĥj(�) (resp.

Ĥj(�) ! Ĥj+1(si:�)). The composite (in either order) of these induced homomor-
phisms is again multiplication by a.

Taking � = w:� and j = l(w) we obtain the lemma.

6.5. Let w0 = si1 � � � siN be a reduced expression. By tracing the e�ect on the
1-dimensional �-weight spaces we see that the composite

�̂(�) = r̂w0(�)
'̂�i1 ;si1

w0
�����! r̂si1w0(�) ���! � � �

'̂�iN ;1
���! r̂(�)

is, in fact, an isomorphism on the �-weight spaces, and hence it generates the k̂-
module HomĈ(�̂(�); r̂(�)) ' k̂. We denote this generator c = c�.

Similarly, we set c0 = c0� equal to the composite

r̂(�)
0'̂�iN ;1
���! r̂siN (�) ���! � � �

0'̂�i1;si1
w0

�����! r̂w0(�) = �̂(�)

Then Lemma 6.4 shows

c � c0 = �N
0(�)

p idr̂(�) and c0 � c = �N
0(�)

p id�̂(�);(1)

where N 0(�) = #f� 2 R+ j h� + �; �_i > p and h� + �; �_i 6� 0(mod p)g. Recall
from 3.4 the notation N(�). Note that N 0(�) = N(�) if and only if h� + �; �_i � p
for all � 2 R+, i.e. � � (p � 1)� 2 X+. In that case it is known that (see [Ja1,
Section 6])

if � � (p� 1)� 2 X+; then soc(��(�)) = L�(�̂) = ��(�)
N(�);(2)

where �̂ is de�ned as in Remark 5.8 and (��(�)j)j�0 denotes the Jantzen �ltration
of ��(�). It follows from (1) and (2) that c0 
k̂ k 6= 0 when � � (p � 1)� 2 X+.

Hence for such � we have that c0� is a generator of HomĈ(r̂(�); �̂(�)). In general,
we have

Lemma . Set N 00(�) = maxfj j �(�)j 6= 0g. Then N 00(�) � N 0(�) and c0� =

�
N 0(�)�N 00(�)
p c00� for some generator c00� 2 HomĈ(r̂(�); �̂(�)).

Proof: Choose bases fvig for �̂(�) and fv0ig for r̂(�) such that

c�(vi) = �aip v
0
i

for some ai 2 N. Then (1) shows that

c0�(v
0
i) = �N

0(�)�ai
p vi:

By de�nition N 00(�) = maxfaig. Hence N 00(�) � N 0(�) and there exists some

c00� 2 HomĈ(r̂(�); �̂(�)) with c0� = �
N 0(�)�N 00(�)
p c00�. The above shows that there exists

some i for which c00�(v
0
i) = vi. It follows that c00� is a generator of HomĈ(r̂(�); �̂(�)).

Remark . The number N 00(�) in this lemma is the length of the Jantzen �ltration
of �(�). No general formula is known for this length. As observed above we have
N 00(�) = N(�) if �� (p�1)� 2 X+. However, if � is close to one of the walls of X+
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it is easy to �nd an example where N 00(�) < N 0(�): Suppose R is of type A2 and let
� = p! where ! is one of the fundamental weights. Then N 0(�) = 2 > 1 = N 00(�).

6.6. Recall that for any �; � 2 X+ we have [An4]

Exti
Ĉ
(�̂(�); r̂(�)) =

(
k̂ if i = 0 and � = �;

0 otherwise.
(1)

If we invert the order of � and r then the corresponding result is no longer true.
However, we have the following weak version

Proposition . Let � 2 X+ and � 2 (p� 1)� +X+.

HomC(r�(�);��(�)) =

(
k if � = �;

0 if � 6� �:
(i)

Ext1
Ĉ
(r̂(�); �̂(�)) = 0 unless � < �:(ii)

Proof: Since T�(�) maps surjectively onto r�(�) we have HomC(r�(�);��(�)) ,!
HomC(T�(�);��(�)). Since � 2 (p � 1)� +X+, we know from [An2] that T�(�) is

the projective cover of L�(�̂) (in the notation of Remark 5.8). Hence

dimHomC(T�(�);��(�)) = [��(�) : L�(�̂)] = [r�(�) : L�(�̂)] = dimHomC(T�(�);r�(�))

Using (1), we see that this is equal to (T�(�) : ��(�)): But this number is 1 if � = �
and 0 unless � � �. So (i) follows.

By the universal coe�cient theorem we have a short exact sequence

0! HomĈ(r̂(�); �̂(�))

k̂
k ! HomC(r�(�);��(�))! Tork̂1(Ext

1
Ĉ
(r̂(�); �̂(�)); k)! 0:

For � 6� � the middle term in this sequence is 0 by i). Hence Tork̂1(Ext
1
Ĉ
(r̂(�); �̂(�)); k) =

0 and since Ext1
Ĉ
(r̂(�); �̂(�)) is a torsion module, it must be 0. If � = � then the

two �rst terms in the sequence are both equal to k and we get the same conclusion.

Remark . i) As the dual of r�(�) is ��(�), it follows from this proposition that

HomC(r�(�);��(�)) = ��;�k and Ext1
Ĉ
(r̂(�); �̂(�)) = 0 if both � and � are in

(p� 1)� +X+.
ii) The proposition fails without the assumption � 2 (p � 1)� + X+. In fact,

take � = 0 and let � = 2(p � 1)�. Then r�(�) = k = soc(��(�)) and clearly

HomC(r�(�);��(�)) = k. The proof of (ii) shows that also Ext1
Ĉ
(r̂(�); �̂(�)) 6=

0. If p � h, we can �nd many other counter examples: Take for instance � in
the bottom dominant alcove and let � be its mirror image in the next alcove.

iii) The analogue of (ii) is false in C. For instance one may check by direct com-
putation that for type A2 one has Ext1C(r�(p�);��(p�)) = k2.

6.7. Let Q̂ 2 Ĉ be a tilting module. Using 6.6(1) and Proposition 6.6 we get via
the same arguments as in 3.5
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Lemma . For each � 2 (p�1)�+X+ there exist bases f 1;  2; � � � ;  ng of HomĈ(Q̂; r̂(�))

and f 01;  
0
2; � � � ;  

0
ng of HomĈ(r̂(�); Q̂) such that

 i �  
0
j = �N(�)

p �i;j idr̂(�) :

Remark . This lemma also fails without the assumption � 2 (p � 1)� + X+. In
general the best we can say is that the image of the natural pairing

HomĈ(r̂(�); Q̂)�HomĈ(Q̂; r̂(�))
// EndĈ(r̂(�)) ' k̂

('̂;  ̂)
� //  ̂ � '̂

is contained in �N
00(�)

p k̂.

Note, however, that the image of the pairing may be strictly less than �
N 00(�)
p k̂.

Take for instance � in the bottom dominant alcove. Then we have equality only if
Q̂ has a component equal to T̂�(�).

6.8. Let again Q̂ 2 Ĉ be a tilting module and let � 2 X+. Recall [An3] that we

have a �ltration of F̂�(Q) = HomĈ(�̂(�); Q̂) de�ned by

F̂�(Q)
j = f' 2 F̂�(Q) j  � ' 2 �

j
pk̂c� for all  2 HomĈ(Q̂; r̂(�))g

In analogy with 3.6 we also have a �ltration de�ned by

0F̂�(Q)
j = f' 2 F̂�(Q) j ' � c

00
� 2 �

j
pHomC(r̂(�); Q̂)g:

Proposition . i) F̂�(Q)j � 0F̂�(Q)j for all j 2 N:
ii) If � 2 (p � 1)�+X+, then F̂�(Q)j = 0F̂�(Q)j for all j 2 N:

Proof: i) Let ' 2 0F̂�(Q)j and  2 HomĈ(Q̂; r̂(�)). Then Remark 6.7 implies that

 �' � c00� is divisible by �
N 00(�)+j
p . On the other hand (see 6.5),  �' = ac� for some

a 2 k̂. By 6.5(1) we conclude that a is divisible by �jp, i.e., ' 2 F̂�(Q)
j.

ii) In this case Lemma 6.7 applies and we may argue as in 3.6.

6.9. Let us now compare with the Jantzen �ltration of Weyl modules. Suppose Q
is a tilting module in C and let Q̂ be a lift of Q to Ĉ. Let � 2 X+ and consider
' 2 0F̂�(Q)j. Then '�c00� = �jp for some  2 HomĈ(r̂(�); Q̂). If x 2 �̂(�)N

00(�)+1�j

then we have (see 6.5 (1))

�N
00(�)

p x = c00� � c�(x) = �N
00(�)+1�j

p c00�(y)

for some y 2 r̂(�). It follows that

�N
00(�)

p '(x) = �N
00(�)+1�j

p ' � c00�(y) = �N
00(�)+1

p  (y);

i.e. '(x) 2 �pQ̂. We have therefore proved
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Proposition . 0F�(Q)j � HomC(��(�)=��(�)N
00(�)+1�j; Q) for all j:

6.10. Suppose Q 2 C is projective. According to [An2] this is the case if and only
if Q is a direct sum of T�(�) with � 2 (p� 1)� +X+.

Proposition . Assume p � h. Let � 2 (p� 1)� +X+. ThenX
j�1

dimF�(Q)
j =

X
j�1

dimHomC(��(�)=��(�)
N(�)+1�j; Q)

Proof: By the observation above we may assume that Q = T�(�) for some � 2
(p � 1)� + X+. Set � = �̂. Then we have [Q : �(�)] = [�(�) : L�(�)] for all � 2 X
and the sum formula in [An4] shows that the left hand side in the lemma equals

�
X
�2R+

X
m

[�(��mp�) : L�(�)]:

The second sum runs over those m 2Zwhich satisfy mp < 0 or mp > h�+ �; �_i.

On the other hand the sum formula (see [APW]) for the Jantzen �ltration of
��(�) shows that the right hand side in the lemma equals

N(�)[�(�) : L�(�)] +
X
�2R+

X
m

[�(��mp�) : L�(�)]:

Here the second sum is over those m 2 N for which mp < h�+ �; �_i. Hence we are
done if we prove X

m2Z

[�(��mp�) : L�(�)] = 0:(1)

We claim that (1) actually holds for all � 2 X. To see this observe �rst that since
there exists w 2 W such that w(�) is simple and �(� �mp�) = (�1)l(w)�(w:� �
mpw(�)) it is enough to consider the case where � is simple. Note also that if
h� + �; �_i 2 pZ, then the terms in (1) cancel pairwise. So we assume from now on
that h� + �; �_i 62 pZ.

For eachm 2 N we let �m 2 f�; s�:�g+pZ�be determined bymp < h�m+�; �_i <
(m+ 1)p. Then (1) is equivalent toX

m�0

(�1)m[�(�m) : L�(�)] = 0:(2)

Assume now that � = �i and let us use the notation from 6.4. We have an exact
sequence of U�(i)-modules

� � � ! H0
i (�2)! H0

i (�1)! H0
i (�0)! 0:(3)

Let for each n � 0 Li(�n) = ker(H0
i (�n) ! H0

i (�n�1)). (This is in fact the simple
U�(i)-module with highest weight �n). Since �(�m) = �(H0

i (�m)) for all m, we get
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from (3)

nX
m=0

(�1)m�(�m) = (�1)n�(Li(�n)):(4)

Pick now n so big that if m > n then [Hj

� (�m) : L�(�)] = 0 for all j. ThenP
m�0(�1)

m[�(�m) : L�(�)] =
Pn

m=0(�1)
m[�(�m) : L�(�)] and by (4) this equals

(�1)n[�(Li(�n)) : L�(�)]. If this number is non-zero, then there exists j such that

[Hj

� (Li(�n)) : L�(�)] 6= 0. But the short exact sequence

0! Li(�n+1)! H0
i (�n+1)! Li(�n)! 0

then implies that also [Hj+1
� (Li(�n+1)) : L�(�)] 6= 0. Continuing in this way we get

[Hj+r
� (Li(�n+r)) : L�(�)] 6= 0 for all r � 0. This contradicts the fact that Hs

� = 0
for s > N and we are done.

6.11. Putting together Propositions 6.8.ii), 6.9 and 6.10 we get the following ana-
logue of Theorem 3.8

Corollary . Assume p � h and let � 2 (p � 1)� + X+. Then for any projective
module Q 2 C we have

F�(Q)
j = HomC(��(�)=��(�)

N(�)+1�j; Q)

for all j 2 N.

6.12. We now turn to the representation theory of G (see Section 1). So k is an
algebraically closed �eld of characteristic p > 0 and C = Ck is the category of �nite
dimensional G-modules. For � 2 X+ we have a Weyl module �(�), an induced
module r(�), and an indecomposable tilting module T (�) in C, all having highest
weight �.

Set k̂ =Z(p), the localization of Zat the prime p and let Ĝ denote the Chevalley

group over k̂ corresponding to G. Then Ĉ is the category of Ĝ-modules which are
�nitely generated over k̂. Just as in 6.2 we have \lifts" �̂(�); r̂(�) and T̂ (�) in Ĉ of
the above modules in C. Moreover, we de�ne in analogy with 6.3 for each w 2 W
the module

r̂w(�) = Ĥ l(w)(w:�)=Ĥ l(w)(w:�)tor 2 Ĉ:

Here Ĥj(�) may be thought of as the j-th cohomology of the line bundle associated

with � 2 X on the ag variety for Ĝ.

6.13. Let C2 be the subcategory in C consisting of those modules whose weights �
satisfy h� + �; �_i � p2 for all � 2 R+. De�ne Ĉ2 as the analogous subcategory of Ĉ.

Then for p � 2(h � 1) all the results in 6.4-11 carry over to C2 and Ĉ2. We simply
have to replace �p everywhere by p.
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Remark . It is of course possible (and interesting) to study the tilting modules in C
which are not in C2 by using the methods in this paper. However, in that case higher
powers of p will occur in the analogue of Lemma 6.4. This complicates matters
considerably and we shall not pursue this here.
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